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Zusammenfassung

Spektroskopische Himmelsdurchmusterungen wie SDSS/eBOSS und DESI haben die As-
tronomie durch die Bereitstellung einer gigantischen Datenmenge revolutioniert. Es besteht
ein dringender Bedarf an effizienten Analysealgorithmen, um dieser Datenflut gerecht zu
werden. Als Antwort darauf werden Techniken der kiinstlichen Intelligenz (KI) immer be-
liebter. Die Aufgabe der Parameterinferenz in der Kosmologie ist ein Anwendungsbereich,
in dem KI zunehmend verbreitet ist. Dies liegt daran, dass die traditionellen Methoden
auf analytischen zusammenfassenden Statistiken beruhen, die zwar leicht zu interpretie-
ren sind, aber nicht effizient genug sind, um die Informationen in den Daten zu kodieren.
Prominente Beispiele hierfiir sind Zwei-Punkt-Korrelationen oder Leistungsspektren, die
alle GauBschen Informationen in den Daten enthalten, aber deren nicht-Gaufische Aspekte
nicht erfassen kénnen. KI, insbesondere Deep Learning (DL), bietet leistungsstarke Losun-
gen fiir dieses wachsende Problem.

In dieser Arbeit habe ich das erste solcher DL-Frameworks fiir den speziellen Fall des
Lya-Waldes entwickelt, welcher die Absorption der Emissionskontinua entfernter Quasare
durch das intergalaktische Medium (IGM) im expandierenden Universum darstellt. Als
solches ist der Lya-Wald ein einzigartiger und empfindlicher Indikator fiir einen weiten
Bereich der kosmischen Physik, einschliefllich des thermischen Zustands des IGM, der hier
im Mittelpunkt steht. Das Lya-Transmissionsfeld hat von Natur aus eine nicht-gaufische
Verteilung, was es zu einem hervorragenden Kandidaten fiir die DL-Parameterinferenz
macht.

Die Aussagekraft von DL hangt stark von der Verfiigbarkeit groffer Trainingsdatenséitze
ab. Ich habe riesige kosmologische Hydrodynamik-Simulationen verwendet, um gelabelte
Mock-Datensétze fiir das Training neuronaler Netze (NN) mittels Supervised Learning
zu generieren. Daher habe ich zunéchst die Erzeugungsverfahren dieser Mock-Datenséatze
auf ihre Genauigkeit hin tiberpriift und dabei verschiedene Naherungen, die iiblicherwei-
se zur Reduzierung des Rechenaufwands verwendet werden, genau untersucht. Anschlie-
Bend habe ich eine ResNet-CNN-Architektur unter Verwendung dieser unkontaminierten
Mock-Datensatze trainiert, um eine optimale Extraktion von Merkmalen aus dem Trans-
missionsfeld zu erreichen. In diesem theoretischen Fall habe ich eine signifikante Verbesse-
rung der Prézision im Posterior gegentiber herkdmmlichen Zusammenfassungen um einen
Faktor von einigen wenigen beobachtet. Nach diesem Erfolg habe ich Anpassungen des
Inferenzframeworks zur Nutzung realistischerer Daten vorgenommen. Konkret habe ich
eine aktualisierte Architektur mit verrauschten Spektren niedrigerer Auflésung trainiert
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und den Einfluss des Rauschpegels auf die Parameterprézision charakterisiert. Obwohl die
Verbesserung der Genauigkeit nicht ganz so stark ist wie im theoretischen Szenario, zeigt
sie dennoch das Potenzial von DL, mit realistischen Datenséitzen iiber die herkommliche
Zweipunktstatistik hinaus zu arbeiten.

Diese Dissertation demonstriert somit, dass DL ein sehr effizientes und hochrelevan-
tes Werkzeug fiir die Informationsextraktion und Parameterinferenz mit dem Lya-Wald
unter Verwendung grofler Datenséitze sein kann. Gleichzeitig liefert sie wertvolle Erkennt-
nisse iiber die Herausforderungen bei der Entwicklung einer voll funktionsfahigen und ver-
trauenswiirdigen DL-Inferenzpipeline fiir spektroskopische Untersuchungen der néchsten
Generation und mogliche Wege zu deren Bewéltigung.



Abstract

Spectroscopic sky surveys such as SDSS/eBOSS and DESI have revolutionized astronomy
by delivering a gargantuan amount of data. An urgent need for finding efficient analysis
algorithms to complement this data inflation has arisen. Artificial intelligence (AI) tech-
niques are becoming increasingly popular in response. The task of parameter inference in
cosmology is an avenue with increasingly widespread applications of AI. This is because
the traditional methods rely on analytically well-defined summary statistics that are easily
interpreted but are not efficient enough to encode the information in the data. Prominent
examples of those are two-point correlations or power spectra that include all Gaussian
information in the data, but fail to capture their non-Gaussian aspects. Al, specifically
deep learning (DL), offers powerful remedies to this growing problem.

In this thesis, I have developed the first of such DL frameworks for the specific case
of the Lya forest, which is a consequence of the interaction of distant quasars’ emission
continua with the intergalactic medium (IGM) in the expanding Universe. As such the
Ly« forest is a unique and sensitive probe of a wide range of cosmic physics, including the
IGM thermal state, which is the focus here. The Ly« transmission field has an inherently
non-Gaussian nature, making it a great candidate for DL parameter inference.

The power of DL heavily relies on the availability of large training datasets. I employed
giant cosmological hydrodynamic simulations to source labeled mock datasets for training
neural networks (NN) via supervised learning. Therefore, I first scrutinized the generation
of those mocks for their fidelity, closely examining different approximations commonly
made to reduce the computational cost. I then trained a ResNet convolutional architecture
using those pure mocks for an optimal extraction of features from the transmission field.
In this theoretical, uncontaminated case, I observed a significant improvement of posterior
precision over traditional summaries by factors of a few. Following this success, I made
adaptations to the framework for inference with more realistic data. Namely, I trained an
updated architecture with noisy, lower resolution spectra and characterized the impact of
the noise level on the posterior precision. Although the tightening of the constraints is not
quite as strong as for the theoretical scenario, it is still indicative of the potential of DL to
work beyond conventional two-point statistics with realistic datasets.

This thesis hence motivates DL as a very efficient and highly relevant tool for informa-
tion extraction and parameter inference with the Ly« forest using large datasets. Simulta-
neously, it also provides valuable insights into the challenges for the development of a fully
functional and trustworthy DL inference pipeline for the next generation of spectroscopic
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surveys and potential ways to tackle them.



Author’s note

This dissertation contains original research led by me and in collaboration with my coau-
thors as and when appropriately listed. Any typographical, grammatical or material errors
are my own.

Use of large language models (LLM)

While the scientific content of this thesis is entirely human generated, I have on several
occasions relied on OpenAl’s public LLM ChatGPT (in particular GPT-40 and 5) as
well as Google’s Gemini (2.5 Flash) for assistance with the following tasks: for making
pretty, publication-ready plots in Matplotlib; while fixing minor code bugs for breaking
down complicated snippets into simpler pieces; for finding the correct syntax of Python
and LaTeX tools; for drawing vocabularic inspiration; for finding more formal alternative
phrasings. I have also used GitHub Copilot integrated with VS Code for suggesting and
fixing code snippets. I have written the abstract originally in English and translated into
German using Deepl, Translator.

In all these cases, the outputs of the LLMs have been thoroughly vetted by me before
use in this thesis.

Mathematical notations

In the mathematical text of this thesis, the following global notations have been adopted,
unless otherwise specified. Boldface letters such as 7 denote vector (or matrix) quantities.
Einstein summation convention is implied in the case of Greek u, v indices. I follow the
“East Coast” convention for the Minkowski metric, namely, 7,, = diag(—1,1,1,1). The
natural logarithm is denoted by simple log, whereas the logarithm with any other basis
is denoted specifically, such as log;,. The determinant of a matrix is denoted by det|]

as well as |...|, depending on the chapters. (...) denote ensemble averages. Derivatives
w.r.t. x (x) have been explicitly denoted by d[...]|/dz in case of ordinary derivatives and
J]...]/0z in case of partial derivatives (V]...] in case of gradients). Derivatives w.r.t. ¢
(as in time) are denoted by [...] (first derivative) and [...] (second derivative). Standard

spectroscopists’ notations are adopted for ionic species of an element, e.g., Hel denotes
neutral Helium, Helr singly ionized Helium, and so on.
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Outline of this thesis

This document is organized as follows. I provide the necessary background in cosmology,
statistical inference, and deep learning in Chapters [I] and 2] Not only do these chapters
serve as primers on the topics discussed, they also lay a more gradual path leading to the
core agenda of this dissertation (Chapters 3] [ [f).

In Chapter [3] I discuss the process of mock Ly« forest data creation from hydrody-
namic simulations for training our deep learning inference framework. I then describe this
framework by reproducing two papers I led (Nayak et al. 2024, |2025) in Chapters [4| and
as a proof of concept and for more realistic, noisy data, respectively. Only minor stylistic
changes have been applied to the original manuscripts while preserving the main subject
matter. For this reason, some redundancies in the content may appear. The appendices of
both the original papers have been moved to the end of the thesis for a logical flow of the
contents.

For the reader in a hurry, I provide a concise summary of this text in Chapter [6]
The Outlook at the end of that chapter outlines prospective avenues that may yet attract
further exploration.



Chapter 1

Cosmology

“Our whole universe was in a hot, dense state
Then nearly 14 billion years ago, expansion started [...]”
— Ed Robertson & Steven Page, “The History of Everything” (2007)

This line from the Canadian musicians has widely popularized the Big Bang paradigm
of modern cosmology. It aptly conveys our current understanding of the origins of our
Universe that has been cultivated over decades of careful scientific investigation. Since the
development of Einstein’s general theory of relativity (Einstein 1915, 1917), the discipline
of physical cosmology saw a renewed interest both from a theoretical and an observational
perspective. The concept of an expanding universe (e.g., Lemaitre 1931)—and therefore a
smaller, denser universe in the past—started to be accepted by the scientific community as
evidence emerged that distant galaxies were receding away from us (Hubble 1929)). With
the milestone a5y paper (Alpher et al. [1948), the theory of Big Bang nucleosynthesis was
born, positing that light chemical elements were formed in the hot, primordial Universe in
the aftermath of the Big Bang. The discovery of the cosmic microwave background (CMB)
by Penzias and Wilson (1965 drove the final nail in the coffin of previously proposed
alternative cosmological theories (e.g., Bondi and Gold |1948)).

The inflationary paradigm (e.g., Guth [1981) proposed that in the first 1073%s of the
Big Bang, the Universe underwent an infinitesimally brief period of exponential expansion
by at least 60 e-folds. This came as a potential solution to two outstanding problems with
the Big Bang picture: (i) the horizon problem, the observation that regions of the CMB at
large angular separations have nearly identical properties despite their never having been
in causal contact, and (ii) the flatness problem, the apparent serendipity of the density of
the Universe being extremely fine-tuned to produce a spatially flat Universe today, despite
any minute early deviations being expected to grow with time. Inflation also provided a
means for the primordial quantum fluctuations in the density distribution to grow rapidly
and seed the large scale structure we see today (Mukhanov and Chibisov |1982)).

Pioneering measurements of the rotation curves of spiral galaxies led by Vera Rubin
posed an unavoidable need for dark matter, a component not showing any electromagnetic
footprint yet comprising the majority of the Universe’s mass (Rubin [1983). The High-



2 1. Cosmology

7 Supernova Search Team and the Supernova Cosmology Project found groundbreaking
evidence that the expansion of the Universe is accelerating (e.g., Riess et al.|1998; Goobar et
al. 2000)), reinvoking Einstein’s cosmological constant A as a key ingredient of the Universe.
Thus began the modern era of the standard ACDM cosmological model.

Meanwhile, observations of intergalactic absorption by Hydrogen and Helium in quasar
spectra (e.g., Gunn and Peterson [1965; Bahcall and Salpeter (1965) had provided evi-
dence that the intergalactic medium (IGM), the biggest reservoir of baryonic matter in
the Universe, underwent a major phase transition from completely neutral to completely
ionized—a period called the epoch of reionization that occurred in the wake of the forma-
tion of first stars and galaxies. The ionized gas also attenuated the CMB via Thomson
scattering, leaving a measurable imprint on the polarization angular power spectrum (see,
e.g., Planck Collaboration et al. 2020). This phase transition is thought to have deposited
large amounts of heat into the IGM, governing the thermal evolution of the gas in its
aftermath. The Ly« forest, a unique imprint of the IGM on quasar spectra, has emerged
as a powerful probe of the thermal state of the gas leading up to the end of reionization.

In the following, I briefly discuss the fundamentals of the modern cosmological theory,
including the ACDM model. T also delve a little into the epoch of reionization and the
physics of the Lya forest. The material presented here is of a typical graduate level
cosmology textbook, and I have particularly relied on Weinberg (2008) and Draine (2011)
for reference.

1.1 Geometry of the universe

In Einstein’s general relativity (GR), gravity is manifest as the geometry of the spacetime.
In the 3+1 dimensional Minkowski framework, an infinitesimal squared distance element
(henceforth “line element”) is

ds* = g, dztdx”, (1.1)

where 2V := ct and 2’ := x - ), for i € {1,2,3} where 7), are the unit spatial basis vectors.
The tensor g,, = ¢, (t,x) is called the metric of the spacetime.

Cosmological Principle: Astronomical observations suggest that on very large scales
(d 2 300 Mpc) the Universe is homogeneous and isotropic. In cosmology, therefore, the
metric of the background spacetime (on which all the contents of the Universe sit) is only
a function of the cosmic time ¢ and not spatial coordinates x. Hence, g,, = g, (t). This is
known as the Cosmological Principle.

The only degree of freedom for such geometries is the time-dependent scaling of the
physical coordinates, i.e. x — a(t)x. A generalized line element of our spacetime can thus
be expressed, in spherical polar coordinates, as

dr?

ds® = —dt* + a*(t) | ———
s c +a(>1—Kr2

+ 72(d6* + sin” 0d¢?) |, (1.2)
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Contraction

I::> Expansion

Figure 1.1: A visualization of the Robertson-Walker metric for a simplified case of flat 2D space. Notice
here that the galaxies stay at the fixed points on the grid while the grid itself expands or contracts such
that the physical distance between those galaxies changes. The comoving distance between those galaxies
is r ~ 2 grid points.

where
0 flat space

K = ¢ +1 spherical space (1.3)
—1 hyperspherical space.

The flat space is the usual Euclidean 3D space, the spherical space is a spherical 3-
surface in the 4D Euclidean space, and the hyperspherical space is a hyperbolic 3-surface
in the 4D Euclidean space (Weinberg 2008). The metric pertaining to the above geometry
is commonly known as the Robertson-Walker (RW) metric. In this formalism,  is the “co-
moving” coordinate which is constant at all cosmic times and a(¢)r the physical coordinate
at time ¢ (see [Figure 1.1)). a(t) is called the scale factor and conveniently takes the value
a(t = ty) = 1 at the present cosmic time ty. In the rest of this work, we shall assume a flat
RW spacetime.

1.2 Cosmological redshift and Hubble’s law

In 1929 Edwin Hubble (Hubble |1929) observed that the spectra of distant galaxies are
redshifted and that a recessional velocity v(<c) associated with a galaxy’s redshift is
linearly proportional to its distance from us. A redshift parameter can be defined as

. )\obs_)\emN
=R

Aem

ole

: (1.4)

where the latter equality is valid only for small v/c.
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For a light wave traveling in a flat universe, ds* = 0 and thus cdt = +a(t)dr. For the
scenario of dt representing the frequency of the said light wave v = 1/dt, its wavelength
A = a(t)dr (adopting the positive sign because of obvious physical reasons). If, further,
this light ray is emitted by a distant source at t = tq, and observed at t = t,s = %o
(present),

14 2 = Aove/Aem = alto)/a(t) = 1/a(t). (1.5)

This is known as the cosmological redshift, and it is physically different from the Doppler
shift, which concerns the relative motion of objects through space. In accordance with the
one-to-one mapping in Eq. , the cosmological redshift z is often used in lieu of ¢ as
a lookback parameter. It explains the observation by Hubble to an arbitrarily large z as
a consequence of the expansion of the Universe. In this picture, the recessional velocity,
called the “Hubble flow” is merely a proxy for the rate of expansion; it carries no other
physical meaning. In the RW formalism, the proper distance to a galaxy is d(t) = a(t)r
and the Hubble flow velocity is v(t) = d(t) = a(t)r. Thus, we have

v = <9>d —: H(t)d, (1.6)

a

where H(t) is called the Hubble parameter and determines the rate of expansion. The
present value of the Hubble parameter is conveniently expressed in the literature as Hy =
100h km s *Mpc™. The determination of the value of h through observations is still a
topic of active research, especially since its current best estimate from late time probes
(such as Supernova la) and early time probes (such as CMB) seem to be in tension with
each other (see Schoneberg et al. 2022, for an interesting review).

1.3 Friedmann equations

Einstein’s field equation of GR can be written as

1 8tG
R/,w - §g,ul/R = 7TMV7 (17)
where R, is the Ricci tensor, R is the Ricci scalar, 7}, is the energy-momentum tensor
and G is the gravitational constant. The Robertson-Walker metric in Eq. (1.2)) can be
shown to be a solution to this equation. Plugging the Robertson-Walker g, and T}, =
—diag(—pc?, P, P, P) of an ideal fluid into Eq. (1.7)) yields the two Friedmann equations

.\ 2
K 2

a? 3

a 4 P
i_ G (p+ 3—) , (1.9)

3 c?
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where p is the energy density of the ideal fluid and P is its relativistic pressure. The
equation of state for such a fluid is P = wpc®. From these, a further continuity equation
follows:

p+3H(t)(1+w)p=0, (1.10)

which can be solved to obtain a general expression of density evolution, p oc a=3(1+%),

1.4 The ACDM cosmology

In the standard ACDM model of cosmology, our Universe has a flat (Einstein-de Sitter)
geometry (K = 0) and is made up of the following three main components:

(i) Cold (non-relativistic) matter with w = 0, hence p, x a™® = (1 + z)3. This com-
ponent is further classified into ordinary (baryonic) matter (p,) and dark matterf]

(pcowm)-
(ii) Relativistic matter (radiation) with w = 1/3, hence p, < a™* = (1 + 2)*.

(iii) Vacuum energy or dark energy with w = —1, hence a time-independent energy density

PA = #. The notation A is attributed to the equivalence of this component with

Einstein’s cosmological constant (Einstein [1917)).

Together, the total density of the Universe is p = pm + p, 4+ pa. We can now rearrange the
2
first Friedmann equation Eq. (1.8)) in terms of a critical density p. = % to read

H(t)  plt)
H3 pe

(1.11)

Further, defining the density parameters as €2; := p;/p. for the component i € {m,~, A},
we can write a parametric Friedmann equation as

H? = HJ(Q + Q, + ), (1.12)

with a special case of the present time, ) .€; o = 1. This is the central equation of the
standard ACDM model. The current concordance model has the following values of the
density parameters: Q0 = 0.04, Qcpymo = 0.23, Qao = 0.73 and Q. ~ O(107°), with
Q= Oy + Qcpu.

1.5 Epoch of reionization
Approximately 380,000 years after the Big Bang (z ~ 1100), the Universe had expanded

and cooled enough so that protons and electrons in the primordial plasma could combine
to form neutral atoms, and the hitherto trapped radiation (due to Thomson scattering off
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Years after the Big Bang

400 thousand 0.1 billion 1 billion 4 billion 8 billion 13.8 billion

The Big Bang

saby eq eyl
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Fully ionised Neutral S aentw w > Fully ionised

10
Redshift + 1

Figure 1.2: The history of the Universe in the Big Bang model, depicting major epochs such as re-
combination, dark ages, and reionization. The epoch of reionization progresses in an inside-out fashion
with individual galaxies forming ionized bubbles that grow over cosmic time and merge with each other
to eventually result in the entirety of the Universe being ionized. Credits: NAOJ.

charged particles) could escape to travel freely into space. That radiation is still seen from
Earth as the 2.73 K blackbody CMB radiation.

After this event known as the epoch of recombination, the Universe underwent a pro-
longed phase of expansion and structure formation. During this period, there were no
new sources of radiation other than the CMB—the Universe was essentially dark. During
these Dark Ages, the Universe was matter-dominated and gravity drove collapse of dark
matter into halos. The baryonic matter (gas) then fell onto the potential wells created by
dark matter overdensities and formed the first stars and galaxies, by z ~ 15, launching
the “cosmic dawn.” As the number density of those galaxies grew, their ultraviolet (UV)
radiation started ionizing their surrounding intergalactic gas that was predominantly made
of neutral Hydrogen and Helium. The ionization potential of Hydrogen is E¥" = 13.6 €V
corresponding to a transition of electron from the ground state to an unbound state. For
Helium, the ionization potentials are ggl = 24.6 ¢V and ﬁ’cn2 = 54.4 eV corresponding
to the first and second electron, respectively. The ionizing UV background radiation spec-
trum of the early galaxies allowed the ionization of H (Hi— Hir) and the first ionization of
He (Hei— Herr). Individual stellar and galactic clusters sent ionization fronts and formed
bubbles of ionized gas surrounding themselves, which grew and started merging with each
other. Eventually, by z ~ 6 almost all of the intergalactic medium (IGM) was ionized with
the mass fraction of neutral H as small as zy; ~ 107%. Since the previously recombined
cosmic gas was now ionized again, this period in the history of the Universe is called the
“epoch of reionization” and marks a very important phase transition. During reionization,
the background UV radiation also photo-heated the IGM up to T ~ 10* K.
shows an illustration of the history of the Universe, marking the above phase transitions
and epochs.

'This distinction is based on the interaction of the material with photons: baryons interact with
electromagnetic radiation such that we can “see” them whereas dark matter does not.
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The stellar and galactic UV background was unfortunately not hard enough to doubly
ionize Helium (He1r— Hertir). This is thought to have happened much later, between z ~ 4
and z ~ 3 thanks to the hard UV radiation of quasars. By z ~ 3, almost all of the baryonic
intergalactic gas was ionized with Hir and Herrl. This second Helium reionization event
further dumped heat into the IGM.

Following the end of reionization, the IGM started cooling off predominantly adiabat-
ically as the Universe expanded. This gave rise to a power law relationship between the
gas density and temperature for the diffuse gas. This temperature-density relation (TDR)

can be written as -

T=T, (@> , (1.13)

Po

where Ty characterizes a temperature of the IGM with the mean density p, and ~ is the
power law index. Constraining these two parameters from z ~ 2 up to z ~ 5 provides
crucial evidence for the reionization timescale and the heat deposited into the IGM. In
practice, however, the temperature and density of the ionized IGM are not measurable
directly. Fortunately, the expanding Universe provides us with a unique probe of this gas
called the Ly« forest.

1.6 Ly« forest

The electronic transition in neutral Hydrogen (HT) between the ground state (n = 1) and
the first excited state (n = 2) is called a Lyman-« transition and leads to absorption or
emission of a photon of wavelength Ay, = 1215.67 A in the rest frame. Hydrogen is the
most abundant element in the universe and that is certainly true for massive accretion
disks around quasars as well as the intergalactic medium (IGM). Indeed, the broad Ly«
emission line is one of the most iconic features of a quasar’s spectral energy distribution
(SED). The Ly« is an ultraviolet radiation, however, and is inaccessible to ground-based
observatories due to Earth’s atmosphere. These Lya photons, while traveling through the
expanding Universe before being collected by a telescope on Earth, experience cosmological
redshift proportional to their distance of travel. Hence, the observed emission peak is seen
at ){1;5& = 1215.67 A (1 + 2qso) for a quasar of redshift zqso. At zqso 2 2, the Lya peak
enters the optical spectrum and we can detect it using ground-based telescopes.

Electronic transitions between the ground state and higher excited states form the
Lyman series (Lya (1 — 2), Lyg (1 — 3), Lyy (1 — 4), ..) and a bound-free transition
from the ground state leads to the Lyman limit (1 — oo). Photons with higher energy
than the Lyoo make up the Lyman continuum (LyC). From the Rydberg formula

1\ !
)\n_911.75A<1——2> ., n=2734,...,
n
one can see that a higher Lyman series line has a shorter wavelength.
The neutral Hydrogen in the IGM attenuates the Lya radiation of the quasars via
Ions = Iome™ ", where 7 is called the optical depth of the medium. However, due to the
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Figure 1.3: A quasar spectrum observed by the Dark Energy Spectroscopic Instrument (DESI) at z ~ 3.4.
The Lya forest can be seen on the blue side of the quasar’s Lya emission peak at 1216A. Adopted from
Ravoux et al. (2023]), DESI Collaboration.

constantly redshifting quasar spectrum, this attenuation is spread over a wide range of
observed wavelengths (7 — 7(2)) blueward (z < zqgso) of the intrinsic Lya emission of the
quasar (Gunn and Peterson 1965). The local Ly« optical depth at redshift z scales linearly
with the number density of neutral H nyg, as

7(z) = mnm(z) ~ 1.856 (&> (1.14)

" mecH(2) 10~1%cm—3

around z ~ 2, where ¢, is the electronic charge, fy,, = 0.416 is the Ly« oscillator strength,
and \g = ALya is the restframe Lya wavelength. Neutral H densities of ny; = 107 *cm™3
lead to a complete absorption of the incident radiation and an absorption trough can be
seen in the spectra of some high-z quasars blueward of the intrinsic Lya. It is called a
Gunn-Peterson trough.

The gas distribution in the IGM is not devoid of any structure, however. Density
spikes along the line of sight due to, e.g., cosmic sheets, filaments, and halos lead to
enhanced attenuation by absorption lines scattered in the spectrum (Bahcall and Salpeter
1965). Thus, the Lya forest owes its name to the appearance of such closely packed Ly«
absorption lines in high-resolution quasar spectra. Similarly, higher order Lyman series
forests also exist blueward of their respective emission wavelengths for a given quasar. For
instance, in the observed wavelengths A < Aryg a superposition of Lya and -3 forests is
featured, for A < Ay, a superposition of Lyc, -3 and -y forests, and so on. Physically,
a Ly« forest in a z ~ 3 quasar extends over hundreds of Mpc in front of the quasar and
provides a continuous trace of the IGM along the sightline. shows a quasar
spectrum observed by the Dark Energy Spectroscopic Instrument (DESI).
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Figure 1.4: Voigt profile for a Lya absorption line with b = 20 km/s for a range of absorber column
densities.

For studying the intervening Universe with the Lya forest, the intrinsic shape of the
quasar’s spectrum is of little importance and as such we can factor it out by defining a
dimensionless Lya transmission field as F(Aobs) := Tobs(Aobs)/Lem(Xobs) = € 7o) where
I (Aobs) 1s the intrinsic emission spectrum of the quasar, redshifted to zqgo.

Even though the transition wavelength is well-defined, the individual absorption lines
in the Lya forest are not sharp d-function dips in the spectra. Instead they have a specific
line shape expressed by a normalized profile function ¢ such that [ ¢(v)dv = [ ¢(N)d = 1.
Two principal physical effects govern the line profile:

(i) Stochastic thermal motion of atoms in an absorber cloud smooths out the absorption
line via Doppler broadening. This effect has an intrinsic Gaussian line profile of the
form

1 2 2
= ¢ mm)l/Anp 1.15

ng(V) Al/Dﬁe ) ( )
with the Doppler width Avp = by /c that controls the width of the Gaussian, where
b = \/2kgT /my. This is a manifestation of the Maxwellian velocity distribution of
the gas particles.

(ii) Quantum mechanical uncertainty in the transition timescale gives rise to a Lorentzian
profile

B M 272 fou

C m(Av2 +432)’ = 3MmecA3’

where 71, is known as the Lorentz damping width.

oL

(1.16)

Thus, the Lya optical depth at Hubble velocity v along the line of sight can be expressed
as 7(v) ~ ny(v)dyv(v), where nyp is the number density of neutral Hydrogen and ¢y is
called the Voigt profile, which is a convolution of the Gaussian and Lorentzian profiles.
Curve of growth: The broadening of absorption lines can be quantified by their
equivalent width (see, e.g., Draine 2011). For any given absorption line, the equivalent
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Figure 1.5: The curve of growth for a Lya absorption line (Ag =1216 A) and a variety of Doppler
parameters b typical of the diffuse IGM that gives rise the the Lya forest feature.

width is defined as the width of a rectangle of height FF = 1 (i.e., I = I,) whose area
equals that under the given absorption line. Mathematically, this is equivalent to

Wy = /d)\ 11— FO). (1.17)

In the wings of an absorption line, the Doppler profile attenuates fast but the Lorentzian is
a slowly decaying function. For very low column densities N ~ [ n-duv, i.e., optically thin
absorbers, the effect of the wing absorption is negligible. Therefore the equivalent width
increases rapidly with increasing density (linearly, W oc N') and quickly achieves saturation.
After that, the equivalent width varies slowly with density as W o v/log N. At very high
column densities, the absorption in the wings starts to matter and the equivalent width
starts increasing again with density as W o v/N. An example of the Voigt line profile for
varying column densities is shown in This behavior of equivalent width of an
absorption line w.r.t. the absorber column density is known as the “curve of growth” and
is shown in for the resonant Lya line.

Eqgs. and establish that the absorption lines in the Ly« forest are extremely
sensitive to the temperature and density of the diffuse IGM, which can be exploited for
constraining the TDR (7j,y) parameters. The concepts developed in this subsection shall
be applied to the generation of mock Ly« forest data in Chapter [3



Chapter 2

Statistical methods

One of the core themes of this work is the use of statistics to make sense of complex, high-
dimensional data. In this chapter I discuss the fundamental statistical techniques that are
predominantly employed in this thesis. For the discussion of deep learning in Section
I have drawn inspiration from a classic text by Goodfellow et al. (2016).

2.1 Bayesian inference

A scientific observable from an experiment is often fit with a theoretical model with some
free parameters. For instance, the angular power spectrum of the CMB can be fit with the
standard ACDM model and in the process the values of cosmological parameters can be
inferred.

A primary goal of any scientific experiment is to measure or infer the value of a set of
parameters 7 of interest. In most cases in astrophysics and cosmology, it is not possible to
make a direct measurement and we must rely on observable proxies with a known physical
relationship to the parameter(s) of interest. For instance, to infer the total mass of a
galaxy, its rotation curve (rotational velocity as a function of radius) can be used since
it is sensitive to the galactic masﬂ In an astrophysical observation, Starting from our
prior belief of the likely values of those parameters and using data of an observable d, we
can apply Bayes’ theorem of conditional probabilities to infer the probability distribution
of  a posteriori. The prior can be a wide flat (uniform) uninformative distribution or
it may be influenced by any underlying physical constraints, or we may choose to trust a
previous experiment and use the posterior distribution as our prior. Bayesian probability
assigns a degree of belief or confidence in a measurement of a random variable (7 in
our case), as opposed to a frequentist probability that relies on repeated experiments to
chart a representative distribution of the random variable. Having a prejudice over the
parameters a priori implies a Bayesian standpoint and henceforth all the probabilities
should be interpreted as such.

IThe existence of dark matter was hypothesized to explain “missing” mass in spiral galaxies (Rubin
1983).
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With Bayes’ theorem, we can express the joint distribution of the observed data and
the parameters in terms of their conditional distributions as

P(d,w) = P(w|d)P(d) = P(d|m)P (), (2.1)

where d is an observable data vector of size Nq. Intuitively, this means the act of observing
given values of d and 7 together can be decomposed into observing one quantity indepen-
dently and then the other, conditional on the first having taken a specific value. We can
express the posterior probability P(m|d) as

P(d, ) _ P(d|m)P ()
P(d) P(d)

P(wld) = (2.2)
In the terminology of Bayesian inference, P(d|=) is called the “likelihood” and is a function
of 7, P(d|w) =: L(w), for the given value d of the observable. It should be noted that
L is not a probability density function (PDF) of 7. P(d) is called the Bayesian evidence
and is useful for comparing the adequacy of competing models. Since in this work we
focus exclusively on one model, however, the evidence term merely plays the role of a
normalization constant.

In cosmological literature, the likelihood function is often assumed to be a (multivariate)
Gaussian function of the model prediction for the observable d,(7) centered around the
data d, such as

1 X2
log L(7) —5 log det C — bR (2.3)
with
Y2 = AC'AT, (2.4)

where A = d,,(7) — d and C is the covariance matrix of the observable. In experiments,
the covariance matrix may be estimated from repeated observations of d (called the data
covariance) or, if available, a theoretical model may be used to compute it. In the latter, C
may be dependent on 7, C = C(7r). Then, samples can be drawn from the posterior PDF
using Markov chain Monte Carlo (MCMC) methods. Each MCMC step requires evaluation
of the likelihood function and the prior PDF, which in turn requires an evaluation of d,,.
Within ACDM, a closed-form expression of the CMB angular power spectrum model can
be derived using Boltzmann equations. At late cosmological epochs, however, nonlinear
gravitational structure formation renders analytical modeling infeasible. To model the
Universe at late times, expensive N-body or hydrodynamical simulations need to be run.
A simulator may be defined as a machine or process that generates mock data vectors
for any given input parameter values, dgy (7). Conventional N-body or hydrodynamical
simulations are computationally expensive and challenging to mass-produce. Usually, a
small number of simulation boxes are generated with a variety of underlying parameters
and mock dg, (7) vectors are extracted from them. A fast and computationally inexpensive
surrogate simulator can then be fit to the known set {d, ,w’} that emulates the original
simulation process, for instance, by using Gaussian processes or machine learning. These
“emulators” are then used directly in the likelihood evaluations during MCMC.
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2.1.1 Likelihood-free inference (LFI)

In many practical applications, the exact form of the likelihood function P(d|7) is analyti-
cally intractable, especially when the data-generating process involves complex simulations
and/or nonlinear systematics. In such cases, common approximations such as Gaussian
likelihoods may fail to capture the true distribution of residuals. Likelihood-free inference
(LFI) encompasses a class of methods that bypass the need for an explicit form of the
likelihood function by instead relying on our ability to forward simulate data from the
physical model. Prominent examples include approximate Bayesian computation (ABC),
density-estimation likelihood-free inference (DELFT), and more recently simulation-based
inference (SBI) techniques employing neural networks. In this work, I experimented with
DELFT (see, e.g., Alsing et al. |2018), wherein a surrogate model of the joint distribution
P(d, ) is trained using samples from the simulator. Then, the posterior PDF is expressed
as a slice through the joint PDF at the observed data d.. Using the first equality in

Eq. ,

P(w|ld=d,) x P(d, = (2.5)

) ‘d:d* '
A surrogate model for the joint PDF can be fit using Gaussian mixture models or more
sophisticated density estimation methods. MCMC is then used again to draw samples from
the posterior PDF.

2.2 Summary statistics

Astrophysical observables d are often extremely high-dimensional, containing a vast num-
ber of degrees of freedom—for example, Ly« forest transmission profiles from spectroscopic
observations of quasars. These are commonly termed field-level observables. For stochas-
tic, high-dimensional fields like these, evaluating a likelihood function becomes infeasible,
since the complexity of the data precludes meaningful comparison to model predictions.
This high dimensionality also poses a significant obstacle for fitting a surrogate model to
the joint density P(d, ) in DELFI.

However, the subspace of features in the field that are sensitive to the parameters of
interest is often much lower-dimensional. It is therefore reasonable to compress the full
field into lower-dimensional vectors that summarize the relevant information in various
statistical ways. These summary statistics allow us to extract essential, informative fea-
tures of the data while marginalizing over other, potentially irrelevant or noisy degrees of
freedom. We can then use summary statistics in lieu of the field as our observables for
performing Bayesian inference.

Different summary statistics of the same field can exhibit different degrees of sensitivity
to the parameters of interest. This sensitivity directly affects the tightness of our posterior
constraints and degeneracies, if any, in the parameter space. In general, higher sensitivity
manifests itself as tighter posterior constraints and vice versa. Formally, this notion is
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captured by the Fisher information matrix, defined for a likelihood function L£(7) as
0?log L(m)
Li; =—(—>=), 2.6
J (ﬂ-) < 67'('1' a,ﬂ_j > ( )

which quantifies the amount of information a statistic carries about the given parameters.
Selecting summary statistics that preserve Fisher information is therefore a crucial step in
simulation-based inference.

With the advent of deep learning based data compression, a new classification of sum-
mary statistics has emerged: (i) conventional, intuitive and analytical summaries, and (ii)
machine-learned, weakly interpretable (black-box) summaries. In this work, I developed a
framework of the latter kind for the Ly« forest. By training a deep neural network to com-
press the field and make point predictions of the parameters of interest, we can construct
a custom summary statistic optimized to preserve the field-level information pertinent to
those parameters. Because of this, such methods are sometimes referred to as field-level
approaches. An important caveat, however, is that compressions of this sort tend to be
largely insensitive to parameters not included in training. Expanding the parameter set
7 typically requires retraining a more complex model, although techniques such as pre-
training and transfer learning may help alleviate this problem. In contrast, conventional
summary statistics are often sensitive to a broader range of cosmological and astrophysical
parameters, albeit typically with reduced per-parameter sensitivity. In this work, we trade
off broader sensitivity for higher precision of a targeted subset of parameters.

In the following, I introduce two of the commonly used conventional summary statistics
of the Ly« forest transmission field. In later chapters, I compare the posterior constraints
obtained from my deep learning framework with those derived from these conventional
statistics and their combination.

2.2.1 1D power spectrum

The line-of-sight power spectrum, more commonly referred to as the 1D power spectrum
of the Ly« forest is one of the most well-studied summary statistics of the transmission
field. It is a measure of the variance of the Fourier modes of the transmission contrast
op(v) = F(v)/(F), — 1,

AL(k) = kPp(k)/m, (2.7)

with Pp(k) ~ (0g(k)* - 0p(k)), where v is the Hubble flow velocity along the line of sight
and k = 2w /v. At large scales, i.e., small k, Pr exhibits a power-law increase. At larger
k, the thermal and pressure smoothing of the gas leads to suppression of power. At these
scales, Pr is highly sensitive to the thermal state of the IGM as illustrated in
(left). An effective increase in IGM temperature amounts to an enhanced damping of
power at large k£ and further a shift of the Pr turnover scale toward smaller k. The 1D
power spectrum of the Lya forest has been measured by large cosmological surveys with
very high precision. Because of its sensitivity to a wide range of physics, it has been used
to constrain cosmological parameters such as og, €2,,, and ng as well.
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Figure 2.1: 1D power spectrum (left) and PDF (right) of the Ly« forest transmission from hydrodynam-
ical simulations with varying TDR parameters Tj and +.

2.2.2 Transmission PDF

The PDF of the Ly« transmission, p(F'), is another common statistic of the Ly« forest. At
low redshifts (z ~ 2) the absorption is small and the forest is sparse, yielding the maximum
transmission probability at F' ~ 1. Near F' ~ 0 saturated absorption lines lead to another
peak in p(F). As the right panel of shows, the transmission PDF (TPDF) is
also sensitive to the thermal state of the IGM. An increase in temperature — implying a
broadening of lines — amounts to a transfer of probablity from F' ~ 0.2 to F' ~ 0.8. The
TPDF is shown to be more sensitive to variations in v than 7. In practice, the TPDF is
measured in ~ O(10) discrete transmission bins in 0 < F' < 1 and normalized such that
ffooo dF p(F) = 1. Because of the normalization, this statistic is highly degenerate, and
while estimating the covariance matrix, one of the bins should be left out in order to avoid
singularities.

2.3 Deep learning

Deep learning refers to a specific class of artificial intelligence (AI) algorithms that is
rooted in learning representations in a hierarchical fashion from data. Training proceeds
in a layered manner, from some input through a set of tiers stacked onto each other to
the output, each intermediate tier a (usually smaller dimensional) representation of the
previous one. As such, these models are deep, the depth controlled by the number of
layers.

Feedforward models: These are deep models in which the information flows strictly
forward from the input to the output without any intermediate feedback circuits.

Usually, the goal of such models is to learn an unknown complex, high-dimensional
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relationship or a function from one vector-valued variable to another using an available
representative set of examples called the training data. Say we wish to learn an unknown
target function y = f'(x), where the sizes of x and y may be different. Deep learning aims
to find a parametric representation of this function,

y = f(x; 9), (2.8)

with a vector of “trainable” parameters ¢ and a measure of distance or similarity between
fand fin terms of a cost function. Provided is a representative set of example data {x’,y’}
drawn from the underlying data generating distribution p(x,y). Training entails optimizing
the cost function w.r.t. ¢; in other words, fitting f with the training data. Since we have
known function evaluations at specific data points, this constitutes supervised learning
wherein the network is supervised by the example labels {y’} of the underlying unknown
function to be learned. The term label is borrowed from a classification problem where
the different target categories are labeled and the task of the machine is to classify the
input data vector into one of them. In a regression task such as the one described here,
the known values of the function serve a similar purpose.

The choice of a cost function, or more commonly a loss function in deep learning
terminology, is somewhat dependent on the task at hand. Binary cross-entropy is a common
type of loss function used in classification tasks. For regression, the mean squared error
(MSE) is one of the most typical loss functions. Other examples are mean absolute error,
Y2, negative log likelihood, etc. The programmer may choose a specific loss function that
must then be used throughout the learning process. Training constitutes starting with
random values of ¢, evaluating the function y’ = f(x; @) for the training examples {x'}
(called model prediction), calculating the distance between the model prediction {y’}
and the true labels {y’} in terms of the loss L(¢), and then finding optimal values of
the parameters ¢* that minimize the loss function such that ¢* = argming L(¢p). The
algorithm for optimization is also the choice of the programmer and typical optimizers
include stochastic gradient descent (SGD) and Adam.

2.3.1 Neural networks

We start with the simplest form of adaptable representation viz. a linear mapping,

Y = fin(x; @)

2.9
= Wx + b, (29)

where W is a matrix of weight coefficients and b is an offset or bias vector, and together
they form the set of trainable parameters ¢ = {W,b}. Linear fitting may be a good
representation in many simpler, lower dimensional cases following Occam’s razor, however,
it does not always serve when the target function is more complex and high dimensional.
Introduction of nonlinearity may help ameliorate this problem,

y =a(Wx +Db),
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where a is a nonlinear function of the programmer’s choosing. However, in this case, the
form of the fit is entirely governed by a. To allow for more fitting freedom a further linear
mapping layer may be introduced:

(2.10)

where h is an intermediate nonlinear mapping. The model in Eq. is called a “percep-
tron” and is the simplest nonlinear learning algorithm. One may interpret it as implicitly
learning a nonlinear h and then finding a linear combination of its units to form the final
representation. In this spirit, h is a hidden layer of learning. The parameters of the hidden
layer are not directly influenced by the training data and the model must find the optimal
values of them that best represent the data. The fitting degrees of freedom can be greatly
augmented by chaining multiple such mappings

y :fM(x;{Wm,bm}L m=1,....M+1
such as

Y = Wasthy + by,

hy, = a(Wyhy 1 +byy),

‘ (2.11)
hy, = a(Wsh; + by),

h; = a(W;x + by).

In this model, each hidden layer learns an intermediate nonlinear representation and
together they help better adapt the full representation to the actual target function.
Eq. corresponds to a multilayer perceptron (MLP) model and is the quintessen-
tial deep learning algorithm. It is more commonly known as a (artificial) neural network
(NN) due to its structural and functional similarity to biological neural networks from
where it draws the inspiration. When biological neurons receive an input signal, they ei-
ther stay passive or they fire and activate the passage of that signal to other connected
neurons depending on the strength of the signal. Fach unit of a hidden layer h,, acts as
a neuron: it receives a signal from the previous layer h,, ;, the nonlinear function a acts
as the activation and this “activated” signal is then passed on to all the units of the next
layer h,, 1 connected with it. The number of neurons in a layer (input, hidden or output)
determines the width of the network and the number of hidden layers determines the depth.
Figure 2.2 shows an illustration of a fully-connected NN with a depth of 2 hidden layers.
The specific structure of a NN, e.g.. depth, width of individual hidden layers, etc, is called
the network’s “architecture.”

Gradient based optimizers require that derivatives of the vector valued functions be
computed w.r.t. the input variable(s). In the case of chained representations such as
neural networks, this implies that the chain rule of derivatives be employed for computing
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Figure 2.2: An illustration of a multilayer perceptron model with two hidden layers h; and hy. The input
dimension is 3 and the output dimension is 2. All the neurons in each hidden layer are fully connected
with the previous and the following layers. The information is fed from x to y in one direction without
any intermediate feedback loops. For this reason, it can also be called a fully-connected feedforward NN.

all the intermediate differentiations leading back to the input. For a simpler case of a
perceptron in Eq. (2.10) with the set of parameters ¢ = {W;, Wy, by, ba} we may compute
the gradient of a component y; w.r.t. ¢ using the chain rule as

on\" _
Vsyi = (%) Vi,

where 0h/0¢ is the Jacobian matrix of partial derivatives of h w.r.t. ¢. For deeper
networks, it requires the computation of the Jacobian of each hidden layer w.r.t. the
previous layer, or a propagation of derivatives from the output through the intermediate
mappings all the way back to the input. For this reason, the computation of gradients in
deep models and a step of the optimizer is called “back-propagation.”

Deep learning models usually come with a set of background “hyperparameters,” sepa-
rate from ¢, that do not change over the course of model training, but rather they influence
the model architecture, loss function, optimizers, etc. Tuning the values of these hyperpa-
rameters is crucial for obtaining a model with optimal capacity.
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Capacity: The capacity is a somewhat abstract concept that refers to the ability of
any given deep learning model to fit a large variety of target functions. Alternatively, it
may be interpreted as the adaptability of the model to fit the given training data. Models
with too low capacity struggle to find a best fit solution, or in other words their optimal
training loss is too high. This indicates underfitting. For instance, a linear model in
Eq. would underfit a polynomial function with a degree n > 1. On the other hand,
models with too high capacity fit the training set too well so that the optimal training loss
is very small, however, they perform poorly on new, previously unseen data. This failure in
generalization of high capacity models indicates overfitting. Models with optimal capacity
achieve small error values on both the training data and previously unseen test data.

We would like our model to make good predictions for new data that the model hasn’t
seen during the learning process. Learning here comprises training with back-propagation
and hyperparameter-tuning. For this purpose, a small part of the training data is usually
set aside before starting the learning process to monitor the generalization of the model
during hyperparameter-tuning. This set is called the “validation” dataset that guides the
choice of optimal hyperparameter values. In practice, the two steps of the learning process
can be completed within a single nested model training program.

2.3.2 Convolutional neural networks

A convolutional neural network (CNN) is a special type of NN that employs the convolution
operation to detect useful features of data with a specific topology like 1D time series or 2D
images. CNNs have revolutionized the field of Computer Vision. They have been widely
used in image processing applications such as detecting cats and dogs, or recognizing
handwritten digits. CNNs are also deep networks that learn important features of data in
a hierarchical fashion, starting from low level features (sometimes called atomic elements)
in the initial layers, through repeated submotifs and high-level motifs in the later layers.

In 1D, the discrete convolution operation between a function f and a kernel k can be
expressed as

(F@k)i =) fi-kij. (2.12)

It can be seen intuitively as sliding the kernel over the given function (signal) to estimate
a local correlation of the signal with the kernel. CNNs incorporate this operation in place
of the matrix multiplications in fully-connected NNs (Eq. (2.11])). In this analogy, the
weights W can be replaced with the convolutional kernels or filters k and the hidden layers
h are then called feature maps since they represent correlation maps of the input with the
given filters. A key difference to note here is that while in fully-connected NNs the hidden
layers are vectors, in CNNs a hidden layer constitutes multiple filters of the same size
leading to multiple feature maps. The aim of training such a network is to learn distinct
features of the data through trainable filters at different scales and eventually use the
presence and strength of those features to make a final decision (regression, classification,
etc). Heuristically, hierarchical data such as images or spectra consist of a small number of
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atomic elements and the higher level features are different combinations of the lower level
features. Thus, in a typical CNN architecture the number of trainable filters increases
with the depth of the convolutional layer. Convolution may not necessarily result in a
compression of data into smaller sizes. For deep CNNs with a large number of filters in
deeper layers, this may practically result in a computational overload. To tackle such
numerical challenges, pooling layers are usually added to help keep the data dimension
in check. Most common examples of pooling layers are max-pooling and average pooling
layers.

Residual learning

The depth of a NN architecture is an important hyperparameter. Deeper models have
larger degrees of freedom, allowing us to fit more complex representations. However, is
increasing the depth, i.e., stacking more layers always beneficial while the model is still
below optimal capacity? Curiously, the answer turns out to be no. In this low capacity
regime, not all of the kernels in a newly added layer may need to learn new features and
they only need to relay the features of the previous layer. When nonlinear activations
are involved, training individual kernels to emulate identity mappings becomes extremely
difficult, usually leading to a rise in the training loss upon increasing the depth. He et al.
(2015a)) came up with a clever solution to this problem by introducing linear skip connec-
tions into a sequential (stacked) architecture. The layers learn residual mappings relative
to the identity that are easier to push to null with nonlinear layers. Further discussion on
residual learning can be found in Section [£.3.2] This revolutionary invention facilitated
training deeper CNNs and led to major advances in Computer Vision. These residual net-
works, or more commonly “ResNets” have since become the canonical CNN architectures.
I thus employed a 1D ResNet architecture for the field-level inference framework that is at
the heart of this thesis.

Having established the necessary theoretical background, I now turn to the central
investigations of this thesis in the following chapters.



Chapter 3

Synthesis of mock Lya forest spectra

Deep learning models are only as good as their training data. The success of a deep
learning model for the inference of the IGM TDR parameters (7o, ) from the Lya forest
lies within a large labeled training dataset of mock spectra. For the production of those
mocks, I used a suite of hydrodynamic simulations by Walther et al. (2025) run with
the NYX code (Almgren et al. 2013 that is suitable for Lya forest analyses. This is
motivated by some convergence studies such as Walther et al. (2019) and Chabanier et
al. (2023)) at the level of 1D power spectrum. Although they lend a sufficient degree of
reliability to the mocks for inference with traditional summary statistics, they make no
similar assertions regarding the trustworthiness of the mocks at the full transmission field
level. Such an extensive investigation into the physical fidelity of the full hydrodynamic
simulations is beyond the scope of this thesis, however, an equivalent excursion into the
post-processing mock generation is not only realizable but also one of necessity. Since a
field-level comparison of mocks with real observations is highly impractical, an internal
consistency check is the next most crucial step for asserting that the mocks carry the same
degree of fidelity as the underlying hydrodynamic simulations if they are to be utilized for
training NN models. Existing tools for the generation of mocks, used e.g., by Walther et al.
(2025) rely on physically motivated assumptions at various stages of this process, however,
often with little evidentiary justification. In this chapter, I examine those approximations
critically and compare them with their counterparts involving exact calculations. I also
evaluate the computational cost for the approximate as well as the full methods and find
the best tradeoffs in different cosmological regimes.

3.1 Introduction

A cosmological hydrodynamic simulation models the evolution of a Universe with cer-
tain cosmological and astrophysical parameters and with arbitrary initial conditions under
gravity and hydrodynamics. The NYX hydrodynamics code—used for running the simula-
tions used in this thesis—models dark matter as gravitating N-body Lagrangian particles
coupled with baryons simulated as an ideal fluid on an Eulerian grid. It offers adaptive
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mesh refinement (AMR) capability for a better treatment of overdense regions, however,
for analyses involving the Ly« forest that primarily traces only mild overdensities AMR
is inefficient and as such not adopted while running this simulation. For a more detailed
description of the physical processes accounted for by NYX I refer the reader to Almgren
et al. (2013) and Luki¢ et al. (2015)). The simulation used for the analyses discussed in
this chapter has a box side length of 80 Mpc/h (comoving) and contains 4096% volumetric
cells (hereafter voxels) and dark matter particles. It is the fiducial model of Walther et al.
(2025)) with the cosmological parameters from Planck Collaboration et al. (2020), namely,
h = 0.6732, O, = 0.3144, Q, = 0.0494, A, = 2.101 x 1072, ng = 0.9660.

A snapshot of a simulation refers to the state of the entire simulation box at a fixed
redshift z (or cosmic time). It contains the information of dark matter density py,, density
of the baryonic gas py, peculiar velocity of the gas vpe., and temperature of the gas 7'
(among others) for every voxel of the box. The box follows periodic boundary conditions
on all surfaces. A line of sight can be realized as a pencil beam penetrating all consecutive
cells along one of the three axes of the box while the other two are kept fixed. Such a
mock line of sight is often called a “skewer” as a culinary analogy. If we imagine that a
skewer points to a bright source of Lya photons such as a quasar at a high enough redshift
(2Qs0 > #box), We can use the hydrodynamic fields provided by the simulation to mock
up the attenuation of that radiation by this part of the universe. shows an
illustration of this process.

“box ZQS0O

Figure 3.1: An illustration (not to scale) of the creation of a mock Ly« forest spectrum. The part of
the universe simulated by a cosmological simulation centered at zpox shown here imprints a Ly« forest
absorption feature on the corresponding part of the quasar spectrum. Quasar continuum credits: LyCAN
/ Wynne Turner.

As a result of the interaction of the Ly« radiation of a bright background source with
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the gas along a skewer through the box, a unique Ly« forest transmission spectrum is gen-
erated, represented by F'(v) = e~ where v is equivalent to a redshifted Ly wavelength.
The optical depth is given by

™ 2 UA / / /
() = %/L () (o) (3.1)

where ¢/ (v) is the line profile centered at v" and evaluated at v. Here, H(z) is assumed to be
fixed along the skewer to H (zpox). Such a mock spectrum has an infinite spectral resolution
and may be estimated at an arbitrarily high pixel resolution (Av, — 0). However, since
the underlying skewer has a limited spatial resolution, I chose the pixel size corresponding
to the size of the voxel, i.e., Av, = H(z)a(2)Aleom = MAlcom, where Al is the lateral

1+z
comoving extent of a voxel. The discretized version of the expression in Eq. (3.1)) is

T, = COZ”HI,j¢j<Ui)AU/a (3'2)
J

2
_ T4 feudo
where CO = WL:c—Hu(z)’

output pixels of a spectrum, and index j runs over the voxels in the input skewer. The
profile ¢; is centered at the net velocity (Hubble flow + peculiar) at the voxel j, e.g.,
the Doppler profile ¢P(v;) ~ exp [—(v; — v} — v);)?/b?] where v} is the Hubble velocity at
voxel j and v ; is the line-of-sight component of the peculiar velocity at the same voxel. I
shall occasionally refer to the voxels as belonging to the “real space” and the pixels to the
“redshift space.”

As indicated by Eq. , the determination of 7 for a mock spectrum requires two key
ingredients at every voxel j along the underlying skewer: (i) the local ny, ;, and (ii) the
correct line profile ¢;(v;). The local ny, depends on the baryon density and temperature
as well as the underlying UV background. The line profile is a function of the local
temperature (through Doppler broadening) and peculiar velocity, the latter of which shifts
the absorption lines in the redshift space. I describe this two-step methodology in the
following two sections. I implemented this complete procedure in an open-source PYTHON
pipeline SYNTH| standing for Synthesis of Transmission from Hydrodynamical simulations.

Av' is the size of a voxel in velocity units, the index ¢ runs over the

3.2 Determination of ny;

The IGM can be modeled as primarily comprising two components: atomic Hydrogen
and Helium (neutral as well as ionized) with mass abundances X ~ 0.75 and Y ~ 0.25,
respectively. An atomic species can be ionized collisionally as well as radiatively and the
same holds for the inverse (recombination) process. The IGM can be reasonably assumed
to be in ionization equilibrium among the different neutral and ionized species (H1, Hii,
Hei, Helr, Helir) and free electrons (e”). This leads to the following three equilibrium
equations:


https://github.com/par-nay/synth
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Figure 3.2: A randomly chosen skewer through the simulation at z ~ 2.2. Top: baryon density in units
of cosmic mean baryon density and the number density of H. Bottom: temperature of the gas and the
Doppler broadening parameter b.

Fe,HlnenHI + F’y,HInHI = Oy HuNeMH11, (33)

Fe,HeInenHeI + 1—‘w,HeInHeI = (ar,HeII + Oéd,HeH)”enHeHy

Fe,HeHnenHeH + F’y,HeIInHeII = O Hem e Her, . )
where, for a given species S, I'c g is the collisional ionization coefficient, I'y g is the pho-
toionization coefficient (sometimes called the UV background), and a,s and aqg are the
radiative and dielectronic recombination coeflicients. The left-hand side of each of the

above equations constitutes the ionization processes and the right-hand side the recombi-
nation processes.

We also have the closure and charge conservation equations:

nan = A — ny, (3'6)
B

NHem = E — NHe1r — NHen, (3'7)

Ne = NHn + NHen 1 2nHeIH) (3'8)

where A := ;‘;% (=ny) and B := % (= 2npe).

An example skewer through the simulation is shown in [Figure 3.2

In practice, solving the full set of coupled ionization equations is computationally ex-
pensive, especially if we need to synthesize mock spectra in bulk, for instance, for estimating
the model power spectrum or for training a deep learning machinery. However, in different
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redshift regimes, we may be able to rely on some fast approximate methods for the esti-
mation of ny;. I describe two such methods below and compare their results against a full
solution of the coupled equations in Section 3.4}

3.2.1 A low redshift approximation

At low cosmological redshifts (z < 2.5), it is safe to assume that the second Helium
reionization episode is over and hence Helium is almost entirely doubly-ionized, i.e., Tge; =&
1 (e.g., Gaikwad et al. 2025). This greatly simplifies our analytical calculations and leaves
us with a single quadratic equation in ny; that is much faster to solve. If we call y = ny;,
then the simplified quadratic equation is

ay* + by +c =0, (3.9)
where
a = Fe,HI + Qr Hin (310)
b=—(Cemi(A+ B) + arqu(2A+ B) 4+ T u1), (3.11)
c= a,an(A®+ AB). (3.12)

The two analytical solutions of this equations are then y* = =bEvb-—dac V2b2’4ac, however, due to
certain physical constraints on ny; (e.g., ny; > 0 and ny,/ny < 1), only one of them (y~) is
of interest to us. Thus, we can uniquely estimate the neutral H density by simply solving
a quadratic equation in a single variable. Henceforth I will refer to this method as the
“approximate” method. We would expect this solution to become increasingly inaccurate
as we move to higher redshifts, however, since the underlying assumption (zpe;; &~ 1) may
no longer be valid.

3.2.2 Intermediate redshifts: an iterative approach

At redshifts z 2 3 it becomes more important to consider all three ionization equilibrium
equations since the second Helium reionization is still underway. Some assumptions may
still hold, such as xg,mer = 0, that results in simplification of the coupled equations and
an approximate estimation of ne and Tyen e that can then inform the estimation of xy;.
We may iteratively correct this initial estimate of the neutral fraction, dropping the initial
assumptions. I describe this approach in detail below.

For the sake of brevity, I first relabel quantities. The different species are assigned
numbers respectively as {e~, H1, Hir, Her, Herr, Hettr} = {0,1,...,5}. Then, the ionization
and recombination rates for species S: I'e s — I'g 5, I'y s — T'i 5, cng — o5, and aq g — v 6
Vs € {1,2,...,5}. In this subsection, I work with mass fractions instead of number densities,
Tia = Miz/ng = nio/A and X345 = N3as/nue = 2n345/B. Now we can rewrite the
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ionization equilibrium equations as

(FOJTLO + Pl,l)xl — Qp2NoT2 = O, (313)
(Fosno +T'g)rs — (o4 + ara)nors =0, (3.14)
[F1’4 + no(FOA + 06074 + 061’4>].%'4 — (F()’gno + Fl’g)l'g — 05075TL0£L'5 = O, (315)

where the last equation combines the Hel and Helr ionization processes. The closure and
charge conservation equations are

T1+ X9 = 1, (316)
T3+ x4+ x5 =1, (3.17)

where in Eq. (3.18]), we have already used Egs. (3.16]) and (3.17)).

As the first approximation, we assume that the gas is almost completely ionized, i.e.,
the neutral fractions are negligible,

x1, 73 = 0. (3.19)

Under this assumption, Eq. (3.15) leads, in combination with Egs. (3.16)-(3.18)), to a
quadratic equation in x4 of the form

azxi +bry +c=0, (3.20)
where,
a = B(F()A + 04074 + 041,4 + Oz075)/2, (321)
b=—[T14+ (A+3B/2)ans + (A+ B)(Lou + aoa + ar4)], (3.22)
C = (A + B)Oé075. (323)

The next steps are:

» Solve Eq. (3.20) and adopt the more physically sensible of the two roots as z4 (e.g.,
a constraint such as 0 < x4 <1).

» Using that, solve Eq. (3.18) for ng under the assumption in Eq. (3.19).
 Using that, solve Eq. (3.13)) in combination with Eq. (3.16) for z,

. &,270
I'1q+ (ag2 +Toq)no

Ty (3.24)

The steps until this point can be called the naive first iteration. This first iteration can,
however, be refined by the next 3 steps:

o Solve Eq. (3.14]) for x5 using ng computed in the naive first iteration.
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o Recalculate ng from Eq. (3.18)) without any assumptions.
o Thence recalculate x; from Eq. (3.13)) in combination with Eq. (3.16)).

This concludes the full first iteration of this method (Nje = 1). Further iterations with
the following steps can be made as necessary:

Solve Eq. (3.15)) in combination with Egs. (3.14]) and (3.17)) for x4 as

Q5105
(Coano + Ty 4)

(3.25)

Ty =

Find x3 using Eq. (3.14)) from all the rest of the existing values of the quantities.
Recalculate ny from Eq. (3.18]) without any assumptions.

Recalculate z; from Eq. (3.13) in combination with Eq. (3.16]).

This iterative method is still computationally efficient since we are at most only solving
a quadratic equation in a single variable at a time. A full solution, on the contrary,
constitutes three coupled quadratic equations in three independent variables. For the sake
of completeness, I show those full equations below.

3.2.3 Full set of equations

We may use the closure and charge conservation equations to reduce the full set of ion-
ization equations to three polynomials in as many independent variables. I shall reuse
the shorthand notations from Section [3.2.2] however, in number densities ny instead of
fractions x,.

First ionization equilibrium equation

Fo1(A+ B —ny—2n3 —ng)ng + Iy ng
—ap2(A+ B —ny —2n3 —ny)(A—ny) =0.
= n3(To1+ aga) + 2nn3(Toq + ago) + nina(To + ao2)
—ni{(To1 + a02)(A+ B) + ap2A+ T}
— 2n3092A — nyap 2 A + ap2A(A+ B) = 0.

This is a second-order polynomial in n = (ny, ng, n4) that can alternatively be expressed
as
P(n) := nPn’ +pn” +p=0, (3.26)
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where
Fog+ a2 Tor+ape (Tog+ ao2)/2
P33 = 0 0 ,
sym. 0
(To1 +2)(A+ B) +apaA+ T4,
_p{xi% = 2050,214 ,
0407214
and

p = ap2A(A+ B).
Second ionization equilibrium equation

Fos(A+ B —ny —2ng —ng)ng + ' 3ng
— (s 4+ a14)(A+ B —ny — 2n3 — nyg)ny = 0.
= —ninzlos + nmina(aos + ars) — 2n300 3
+ n3na{2(os + ar4) — Toz} +ni(aos + a14)
+n3{To3(A+ B) + T3} —ny(aps +a14)(A+ B) = 0.

This is another second-order polynomial in n that can alternatively be expressed as

Q(n) :=nQn’ + qn” + ¢ =0, (3.27)
where
0 —To3 Qo4+ Qg
Q3.3 = —2l0s  2(apsa+a14) —Tosl|,
sym. Qo4+ Q4
0
q{xii = F0’3<A + B) -+ F173 s and q = 0.

—(apa +a14)(A+ B)

Third ionization equilibrium equation

F1747’L4 + A4TL4(A -+ B — ny — 2n3 — 714)
B
— 0_/075(14 + B — N — 2713 — 7’L4) (E — N3 — 714)
—Tosns(A+ B —ny —2n3 —ny) — 'y 3ng = 0.
= 2”3@0,3 —p5) — ni<A4 + aps) +mang(Tos — aos) — naina(Ay + ags)
+ngng(Los — 284 — 3 5) + ng{aps(A+2B) —To3(A+ B) —TI'1 3}
+naosB/2+n{T14+ Ay(A+ B)+ aps(A+3B/2)} —apsB(A+ B)/2=0.
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This is the final second-order polynomial in n that can alternatively be expressed as

R(n) := nRn” +rn’ + 7 =0, (3.28)
where

0 Loz —apps —(Ay + app)

Riyxs = 2(T03 —aps) Tosz—2A4 =395 ,
Oé()75B/2
i3 = | ags(A+2B) —Tos(A+B)—Ti3 |,

04075(14 + 33/2) + A4(A ‘l— B) + F174

and

T = —oz075B(A + B)/Z

In SYNTH, I solve these coupled equations numerically with scipy.optimize.root rou-
tine of PYTHON. This additionally requires the Jacobian of the set of functions involving
partial derivatives ;-] := 9[]/0n,,

P 0P O4P
J=101Q 0;Q 0.Q],
R OsR O4R

for which we may find an analytical closed-form expression using Eqgs. (3.26)-(3.28).

3.3 Determination of 7y,

The second major step in the computation of 7 for a mock spectrum is to use local tempera-
tures and peculiar velocities along the corresponding skewer to properly inform the absorp-
tion line profiles. As described in Section [1.6] absorption lines are broadened by two pri-
mary effects—intrinsic quantum mechanical (pressure) broadening and thermal (Doppler)
broadening—that result in a Voigt profile, which is the convolution of the Doppler and
Lorentz profiles. The intrinsic Lorentz broadening width (half width at half maximum or
HWHM) in units of velocity is given by

_ 27”]3 ffu
3mecAo

L = 6.055 x 107* km/s, (3.29)

whereas the HWHM of the Doppler profile is

kT log 2
by/log2 = 1/ B2 %82 _ 19853 /T) km/s, (3.30)

mp

where T, = T/(10%K) is typically of order unity in the diffuse IGM that gives rise to
the Lya forest. Clearly, Doppler broadening is the dominant broadening effect of the
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Figure 3.3: An illustration of the partial extension of a skewer necessary for an adequate estimation
of the line profile, especially at the edge pixels. This is possible due to the skewers’ periodic boundary
conditions. This process may be likened to notes on a piano. In this toy model, the original skewer is 9
voxels long (equivalent to an octave on the keyboard) and is extended on each end by Ney; = 3 voxels
from the opposite end (keys from the following and the preceding octaves in the musical analogy). The
estimation of the line profile (and thus 7) would benefit the most at pixels corresponding to voxels 1 and
9, and it would benefit the least at the pixel corresponding to voxel 5 (in a hypothetical scenario with no
peculiar motion of the gas).

two. Only when the column density is quite large, Ng, ~ O(10%m™2), do the wings
of the Lorentz profile start showing up in the absorption lines. Examples of such high
column density systems (HCDs) are galaxies or proto-galaxies along the line of sight.
The absorption in the damping wings extends out to much larger Av from the central
Hubble velocity of the absorber and overlaps heavily with the Ly« forest signal over the
surrounding wavelengths. For studies involving the forest, such damped Ly« systems
(DLAs) are undesirable contaminants in our analyses, and hence we would like to omit any
spectra that contain them. Additionally, our simulations do not possess high enough fidelity
to model galaxy formation, and therefore the baryon overdensities py,/py, are artificially
clipped to 10? before estimating local ny; to avoid inaccurately simulating HCDs. This
does not introduce any errors since the Lya transmission ' ~ 0 in the regime of py, /py, ~ 103
and is thus insensitive to any density fluctuations.

For every pixel in the output spectrum, the integral in Eq. —and consequently the
sum in Eq. (3.2)—runs in principle along the entire line of sight, i.e., from the observer
to the source. However, depending on the local broadening widths and line center shifts
due to peculiar velocities, the integrand is expected to be negligible far outside the line
core and the integral may be truncated at sufficiently large Av from the pixel(s). An issue
arises at the pixels corresponding to the skewer boundaries due to a lack of voxels on one
side of the line center. Since the skewers follow periodic boundary conditions, however, at
one end of the skewer we may append an arbitrary number of voxels from the opposite
end, effectively extending the skewer to be able to properly estimate the line profile at the
edge pixels. This process is illustrated in [Figure 3.3l The number of voxel in the extension,
Next, depends on the peculiar velocities and temperatures toward the edges of the skewers.
I examined the effect of this hyperparameter on the line profile accuracy; the results are
shown in Section [3.4]
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The bulk of the IGM at low redshifts z ~ 2 that are involved in our studies of deep
learning inference (Chapters {4 and |5)) is optically thin to Ly« radiation and the absorption
line profiles can be reasonably well approximated by the Doppler profile. This is especially
useful since the evaluation of the full Voigt profile is computationally expensive. In this
work, I investigated the impact of such approximations while synthesizing mock Ly« forest
spectra. In particular, I implemented the full Doppler profile as well as a version of it
involving the error function as used by Lukié¢ et al. (2015)), and made comparisons with a
full Voigt profile.

Error function version of the Doppler profile

Rather than approximating the profile as ¢;(v;) for voxel j in the discretized version, we
may break the integral in Eq. (3.1)) down into a piecewise integral over the voxels, i.e.,

j+1/2

[ 008 = S [ o, -

j—1/2

where j 4+ 1/2 denote the two edges of voxel j along the line of sight, and the local ny; is
fixed over the extent of the voxel (so are all other hydrodynamic fields in the simulation,
such as temperature and peculiar velocity). If we further assume a Doppler profile, this
expression reduces to error functions. Applying a change of variables y' = (v — ') /b,

/j+1/2 / / 1 Z j+1/2 (oo s
dp(v)dv' = —= e\ dv
j—1/2 b by/m = Jj-1/2

195 I
= — eV dy

e j+1/2

1 =1/ ” /2 ”
‘72[/ oy [ o]

1
= 52 lerf(y;—1/2) — erf(y;41/2)],
J

i) = 1 [

and Y1172 = (v; —v;.ﬂﬂ —v),;)/b;. Since we estimated the full integral (in a piecewise man-
ner) here, this is a slightly better approximation of the Doppler profile for the computation
of 7 than Eq. . However, it involves two evaluations of the error function as opposed
to one evaluation of the Gaussian function, and may add additional computational load.

J

where the error function is
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3.3.1 Rescaling 7 to adapt the mean transmission

The mean Lyca transmission F' in a set of spectra is one of the most important statistical
measures of the Lya forest. An effective optical depth corresponding to this, 7o := — log F,
is a quantification of the overall optical depth of the IGM. Its value is set by observations
of a large number of quasars (e.g., Becker et al. 2013) and it is imperative for our mocks
to reproduce this value as a zeroth order check. For optically thin gas in photoionization
equilibrium (for which the contribution of collisional ionization can be ignored), the fluctu-
ating Gunn-Peterson approximation (FGPA; see, e.g., Croft et al. 1998) relates the optical
depth to the intergalactic H1 UV background I' (shorthand for I', ;) as

p%TfOJ
T .

The value of T" is very poorly constrained, however, and the underlying model for the UV
background may lead to a slightly different optical depth 7. than its observed value. A
common practice is to apply a constant factor to scale all the 7 values in the mocks to
correct for any mismatch post facto. For a set of spectra, we would like to estimate a
correction factor A such that

(3.32)

T X Ny X

(F) = (e™"7) = Fobs,

where the average is taken over the entire given set of spectra. The UV background may
then be adjusted to ~ I'/A. We can estimate the factor A by solving for f(A*) = 0, where
f(A) == (e74™) — F,p. In my implementation in SYNTH, I achieve this using Newton’s
root finding method (scipy.optimize.newton).

3.4 Benchmark tests

Table 3.1: Computation time (in ms) for estimation of ny; on a single skewer using three different
methods: (i) approximate, (ii) iterative, and (iii) full. The numbers in this table correspond to estimates
of a single evaluation, t;/N;, with N} = 100 and N, = 100 (see main text for an explanation). This was
performed on a single CPU with 32 GB of random-access memory.

Method Best  Average St.dev.
Approximate 0.272 0.274  0.002
Iterative
Niter = 1 0.903 0.910  0.005
Niter = 2 0.975 0.982  0.005
Niter = 3 1.045 1.052  0.005
Niter = 4 1.115 1.123  0.007
Full 470.867 473.483 1.832

Using SYNTH, I performed a set of extensive tests of the efficiency and robustness of
the different (approximate) methods for the estimation of local ny, and spectral 7. In
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Figure 3.4: Relative error ¢ in ny; w.r.t. the full solution across snapshot redshifts for the test set of
skewers. The gray-shaded region indicates ¢ > 1%. In all cases shown here, the relative errors increase
with redshift. For the iterative method with Nji, = 2, the mean € stays under 1% at all redshifts.

Table 3.2: Computation time (in ms) for estimation of 7 for a single spectrum of length 4096 pixels (with
precomputed ny; and fixed fexs = 0.1) using three different profile implementations: (i) discrete Doppler,
(ii) error function, and (iii) discrete Voigt. The numbers in this table correspond to estimates of a single
evaluation, ¢,/ Ny, with Ny = 100 and N, = 100 (see main text for an explanation). This was performed on

a single CPU with 32 GB of random-access memory, the same as for

Profile Best  Average St.dev.

Discrete Doppler 260.017 264.530 11.431
Error function 539.0564 561.970 86.469
Discrete Voigt 682.593 696.048  57.925

particular, I made comparisons of the approximate and iterative methods (with a range
of Niter) with the full solution for the computation of ny;, and of the three line profile
cases with each other for the computation of 7, namely the discrete Doppler profile, the
error function version of the Doppler profile, and the discrete Voigt profile. Additionally, I
analyzed the importance of the skewer extension by varying the hyperparameter N and
quantifying its impact on the accuracy of 7 estimation. For each of the above analyses,
I ran benchmarks of the computation time of the different methods and their respective
error(s) in the fields nyg, and 7 as well as in the 1D power spectrum of the Lya forest,
P(k). T used a set of 1000 randomly chosen skewers (along a fixed Cartesian axis of the
box) through the simulations here and I henceforth collectively call them the “test set.”
(The physical location of the skewers was kept fixed across snapshot redshifts.) The results
of this comprehensive study provide the key basis for selecting the optimal method(s) to
produce mock spectra in bulk, directly impacting the reliability of neural network inference.

I present those results in the following.
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Figure 3.5: A power spectrum comparison at all available snapshot redshifts of the approximate and the
iterative methods of ny; estimation w.r.t. the full solution for the test set of skewers. For the iterative
method, only the best case of Njier = 2 is shown. For all of them, the error function profile was used to
compute F = e~ 7 and the 7 values were rescaled to match the mean transmission to the observed value.
The gray-shaded area indicates k& > 0.195 s/km, a realistic cutoff on the Fourier modes.

ny; estimation

One of the main bottlenecks to the estimation of ny, is the computation time. Especially,
the full solution involving three coupled matrix polynomials is anticipated to be quite
slow. I used the PYTHON routine timeit to benchmark the run-time of the three ng;
estimation methods (approximate, iterative, and full) by repeatedly running evaluation on
a single skewer. timeit provides two controllable hyperparameters, namely, N, (loops)
and N, (repetitions). The total time ¢ of running IV iterations of the desired evaluation
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Figure 3.6: A comparison of the three different ny, estimation methods at the field level on a randomly
chosen skewer from the test set (the same as in at z ~ 2.2. The iterative case is with Njte, = 2.
The top panel(s) show ny, along the skewer estimated with the three methods and their relative differences
Arel. The bottom panels show the Ly transmission F' for a spectrum corresponding to this skewer and
the absolute differences |AF|. For this skewer, A, < 0.25% and the largest A, occur at voxels with
ng; > 107%cm™3; the transmission F and the absolute differences are all close to zero for the corresponding
pixels in the redshift space.

is measured and this process is repeated N, timedl] In[Table 3.1 T show the statistics of
those repetitions (it is noteworthy that no other processes were running parallelly on the
same CPU used for these measurements). The approximate method is by far the fastest
of them all, as expected. The iterative method with only one iteration is slower than the
approximate method by a factor ~ 3.3, and gets slower with a rate ~ 0.07 ms per iteration
per skewer. The full solution is significantly slower than the approximate and the iterative
methods, by a factor ranging from 400 to 1700, underscoring the need for approximate
methods in the first place.

I then ran ny, evaluation on the test set. shows the relative error € :=
|nm1 — M fan| /M s across snapshot redshifts zpo, € [2.2,6.0]. For low redshifts z < 3,
the approximate and the iterative methods agree with the full solution to within 0.1%. At
higher redshifts ¢ becomes larger than 1% for the approximate solution. For the iterative
method, we may make the following observations: (i) For one iteration (Nje = 1), the
error remains close to or under 1% at all redshifts. (ii) One more iteration (Nier = 2)

!The best (smallest) value found by this repeated analysis is an estimate of the upper limit of the
device’s speed for the given computation and is the most reliable measure of the computation time.
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Figure 3.8: Absolute differences in transmission, |AF|, in pairs of the profile cases described in the main
text across snapshot redshifts in the test set. A gradual increase in |AF| from z ~ 2 through 4-5 and a
drop thereafter can be observed for all three pairs.

helps reduce the error at high redshifts, bringing ¢ at all redshifts to within 1%. (iii)
Further iterations (N > 3) increase the error at redshifts z > 3 dramatically, surpassing
100% around z ~ 5. A potential explanation to these observations is that the iterative
method starts with an arguably more accurate assumption than the approximate method
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Figure 3.9: A skewer (from the test set) containing an HCD absorber system at z ~ 3.2, highlighted by
the non-gray-shaded area (the width(s) of the highlighted regions are arbitrary). The top four panels show
quantities in the real space along the skewer and the bottom two panels show transmission and differences
thereof in the redshift space in the corresponding spectrum. A shift in the line center for this HCD system
due to a high peculiar velocity may be noticed. The differences in F' between the Voigt profile and the
Doppler approximation(s) rise sharply from 0 as we transition from the saturated line core to the wings
and then drops back to 0 in the wings over Av ~ 1500 km/s on each side.

and hence results in an increasingly less erroneous estimation of nyg; over the first two
iterations, especially at high redshifts. However, the error made in each iteration by making
inaccurate approximations starts to accumulate, potentially causing the overall error for
Niter = 3 to rise.
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Figure 3.10: A power spectrum comparison at all available snapshot redshifts of the discrete Doppler
profile and the error function version thereof w.r.t. the discrete Voigt profile for the test set of skewers.
For all of them, the full solution was used for ng; estimation and the 7 values were rescaled to match the
mean transmission to the observed value. The gray-shaded areas indicate k& > 0.195 s/km, a realistic limit
on the power spectrum accuracy in our simulations.

Another indicative test of the accuracy of our mocks is a comparison of different meth-
ods of ny; estimation at the level of 1D power spectrum, P(k). T first used the error
function profile to produce mock spectra corresponding to the test set of skewers for all
available snapshot redshifts and then computed P (k) (having rescaled all 7 values to match
the corresponding observed F). shows a comparison of P(k) among the three
ny; estimation methods at all redshifts. In the range £ < 0.195 s/km, the relative dif-
ferences in P(k), AP/P, for the approximate method w.r.t. the full solution are under
0.15% for z < 3. At higher redshifts those differences grow larger, still staying under 1.5%
in the same k range. For z > 5, the differences in P(k) get smaller again. The iterative
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method with Ny = 2 agrees with the full solution at the P(k) level to within 0.25%
at all redshifts. At higher k values than 0.195 s/km (smaller scales) the power spectrum
estimate becomes noisier due to numerical inaccuracies in the simulations and the three
cases start to diverge. Furthermore, spectral resolution effects in real-world observations
put a realistic constraint on the scales that can be accurately probed by the Ly« forest.
Hence, in this work we shall disregard the scales & > 0.19 s/km.

In (top panel), I show ny, along a randomly chosen skewer at z ~ 2.2 (the
same skewer as in estimated with the three methods described above. Not only
is the relative error ¢ under 1% at every voxel, but the largest errors along the skewer are
made at voxels with ng, > 10™%cm™ (recall Eq. (1.14)) leading to a complete absorption
in any case. The absolute error in transmission F' (computed using the error function
profile) is under 0.0006 for this particular skewer (bottom panel), indicating an excellent
agreement with the full solution, and the largest errors do not correspond to the saturated
lines (F' ~ 0).

Based on these results, I make the following recommendations for the choice of method
of ny; estimation when producing mocks in bulk:

(i) The approximate method is the fastest and accurate to within 1% of the full solution
up to z ~ 3, and hence, is an excellent choice in that redshift regime.

(ii) At higher redshifts z > 3, the iterative method with one or two iterations works quite
well, and the difference in the computation time between the two is rather small.
Hence, in this redshift range, the iterative method with Nj, = 2 is preferable.

Skewer extension

As discussed in Section [3.3] it is necessary to extend the skewers exploiting their periodic
boundary conditions in order to accurately estimate line profiles. The number of vox-
els needed to extend the skewer on each end, N., depends on the local temperatures,
baryon densities and peculiar velocities. I investigated the impact of this parameter on the
accuracy of T estimation and the computation time. (By definition, Ny is a comoving
length measure.) I computed the optical depth 7 spectra for a varying Ny (alternatively
fext = Next /4096, the fraction of the skewer length) corresponding to the test set of skew-
ers, and measured the fractional change in 7 w.r.t. Ne, |07/7| over the sampled values
of Ney. This is expected to converge to an extremely small value after a sufficiently large
extension of the skewers. For this investigation I used the full Voigt profile as the line
profile because it exhibits an extended wing feature (generally absent in the Doppler pro-
file) that bears the most importance for Ney. I performed a benchmark analysis for this
hyperparameter N, with all three profile cases using the timeit module with N, = 100
and N, = 10. In [Figure 3.7/ I present the results of this investigation. As seen on the left
panel, for all redshifts shown, the mean |67 /7| drops steeply from ~ 1072 per voxel for no
extension through < 10~ per voxel and converges after N ~ 400 voxels, which is less
than 10% of the skewer length. On the right panel, we may see a linear increase in the
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computation time for all three profile cases, which is the expected behavior. The best val-
ues of tj/ Ny at fexr ~ 0.1 are ~ 15% larger than those at foxy ~ 0 (no extension). Based on
these results, fexy = 0.1 appears to be sufficient for an accurate computation of 7 without
adding a large computational overhead, and therefore I fix that value for the remainder of
this work. I list the computation time values for the three profile cases at fixed fo; = 0.1
in [Table 3.2] Clearly, the discrete Doppler profile case is the fastest of all since it only
requires evaluation of a single Gaussian function per pixel per term in the summation in
Eq. . The error function version requires two evaluations of the error function on an
equivalent level and hence is approximately a factor of 2 slower. The discrete Voigt profile
case is the slowest of all.

Line profile

For the fixed foxy = 0.1, I analyzed the differences in 7 and F' among the three line profile
cases for the test set. In[Figure 3.8|1 show the absolute deviations in F' for the three distinct
pairs across snapshot redshifts. I make the following observations: (i) The mean differences
between the error function and the discrete Doppler profile cases are extremely small at all
redshifts, suggesting that the error function version does not particularly offer any more
accurate estimation of 7 than the discrete Doppler profile. (ii) The mean and median
deviations increase from low redshifts z ~ 2 through intermediate z ~ 4 and then drop
through high z ~ 6. (iii) The median absolute deviations in all three pairs are smaller than
the mean deviations at all redshifts. This hints at a high |[AF| tail. Indeed, the differences
between the Doppler and the Voigt profile cases reach as high as 0.7 for isolated skewers, in
short pixel ranges, due to the presence of HCDs. An example of such a skewer from the test
set at z ~ 3.2 is shown in Since this skewer contains an HCD absorber system,
the Doppler profile (or a variation thereof, such as the error function case) is no longer a
good approximation at the wings of the absorption line, leading to large differences in F.
In the studies of neural network inference, I shall omit skewers that contain one or more
such HCDs.

In [Figure 3.10} I show a comparison of the different profile cases at the P(k) level for
the test set at all redshifts. I use the full solution for the ny; here and rescale all 7 values
to match the corresponding observed F(z). In the range k < 0.195 s/km, the relative
differences in P(k) w.r.t. the Voigt profile case stay close to or under 1%. It is important
to note that, since the skewers with potential HCDs are included here, large errors AP /P
w.r.t. the Voigt profile case at large scales (small k) are expected. Under these conditions,
a percent level agreement is very promising. The differences between the discrete Doppler
and the Error function cases appear to be negligible at large scales, but they start to
diverge for k£ > 0.03 s/km at all redshifts.

T rescaling

In my implementation of the synthesis of mock spectra, I use the photoionization rates
(I'ys, VS € {HI1, Her, Helr}) from the late reionization model of Onorbe et al. (2017),
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Figure 3.11: The effect of rescaling 7 values (and the UV background I' exploiting the FGPA) to match
the observed mean transmission F,ps of Becker et al. (2013) at all snapshot redshifts. Left: absolute
deviation from F,s using the raw I' values from Onorbe et al. (2017) and the subsequent raw 7 values
(solid line); raw T but the rescaled 7 values (dashed); and the rescaled I'/A; with the subsequent raw 7
values (dotted). Right: the two rescaling factors A; o.

assuming a spatially uniform UV background. As discussed in Section [3.3.1] however,
those values are not very well-constrained and lead to a different mean Ly« transmission
from the observed value, F.ns. Therefore I rescale all the newly computed 7 values by a
factor A;(z) to correct for this mismatch in the mocks. In order to test the validity of this
operation, I applied the resulting correction factor to the H1 UV background as I' — I'/ A,
and ran the spectral extraction anew for the test set of skewers. The resultant mean
transmission is expected to be less divergent from Fpps than that of the raw first iteration
if the rescaling is valid. As a convergence check, I computed a further factor Ay(z) for
scaling the 7 values derived from the rescaled UV background I'/A;. If the rescaled UV
background is a better estimate of the true value than originally, the new 7 values should
more closely reproduce Fps and A, should be closer to 1. I show the deviation from F
against redshift for the raw 7 values in the original (raw) and rescaled I' cases, as well
as for the rescaled, A;7 values in the raw I' case in the left panel of [Figure 3.11} In the
right panel therein are the two rescaling factors A;»(z). In @, I list those factors
at all snapshot redshifts along with the target Fps(2) derived using the fitting formula
of Becker et al. (2013)). Indeed, our expectations hold to an excellent degree, in that the
second rescaling factor A, is very close to 1 and the deviations from F,p, for the rescaled
UV background are close to or under 102 at all redshifts.

For the purpose of neural network training on spectra, the rescaled optical depth values
Ay7 of the raw I' and the raw 7 of the rescaled I'/A; (dashed and dotted lines in the left
panel of , respectively) are equivalent and hence I utilize the former in order
to minimize the computational load. Any discrepancies between the two are the result of
the small but non-zero contribution of collisional ionization that is ignored in the FGPA.
This contribution is a function of density. The overdensities get increasingly pronounced
at smaller redshifts as the structures grow, enhancing the impact of collisional ionization
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Table 3.3: The redshift-dependent scaling factors A; o for the first and second 7 rescalings, respectively,
as described in the main text. The corresponding target F,s values from Becker et al. (2013) are listed
for reference. A; ranges from 0.4 to 1.1 whereas As remains consistently close to 1, eliminating the need
for further rescaling.

z F obs Al A2

2.2 0.8629 0.7857 0.9945
24 0.8178 0.9226 0.9986
2.6 0.7701 1.0064 1.0001
2.8 0.7204 1.0743 1.0007
3.0 0.6692 1.0903 1.0005
3.2 0.6170 1.1007 1.0003
3.4 0.5646 1.0900 1.0002
3.6 05125 1.0515 1.0001
3.8 0.4614 1.0005 1.0000
4.0 0.4117 0.9460 1.0000
4.2 0.3642 0.8843 0.9999
44 0.3191 0.8101 0.9999
4.6 0.2769 0.7558 0.9999
5.0 0.2024 0.6788 0.9999
5.4 0.1418 0.5148 0.9999
6.0 0.0763 0.3990 0.9999

at the level of 7. However, in those optically thick regimes, sub-percent changes in 7 are
negligible at the level of F'.

3.5 Summary

The synthesis of mock Lya forest spectra is a crucial task for providing the most important
ingredient of a NN inference machinery: the training data. As discussed in this chapter, it
involves multiple computational steps corresponding to a set of physical effects that play a
role in giving rise to the Ly« forest feature in QSO spectra. Since neutral Hydrogen is the
progenitor atomic species of this spectral phenomenon, we first and foremost require the
information of its number density, ny;, from the contents of a hydrodynamical simulation.
At the cosmological redshifts of interest in this work, the epoch of reionization is over
and the gas is almost entirely ionized. The remaining neutral species of H and He are in
ionization equilibrium with the ionized species and free electrons, and this results in a set of
equilibrium equations that need to be solved in order to extract the necessary information.
In Section [3.2] T describe the physical and computational details of this procedure.
Peculiar motions (along the lines of sight) in the intergalactic gas due to gravity as well
as turbulence move the resonant absorption lines in a spectrum via Doppler shift and the
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density and temperature of the absorber clouds lead to broadening of the lines via Doppler
and quantum mechanical pressure broadening profiles, culminating in a Voigt profile. The
shapes and locations of the Lya absorption lines in a forest are governed by these two effects
combined. Furthermore, a poorly constrained value of intergalactic ionizing background(s)
could lead to a mismatch in the effective Lya optical depth, 7., of the simulated IGM
from its observed value, however, an overall scalar factor may be applied a posteriori to
correct for this, as is common practice in the literature. In Section [3.3]1 discuss all of these
effects that are necessary for an accurate computation of Ly« optical depth per pixel in
the synthetic spectra from the existing information of ny;.

Due to the heavy computational resource demands of the various steps in the synthesis
of mocks, cheaper alternatives are often found based on certain assumptions that may be
applicable at some but not all cosmological epochs. I describe some of the popular approxi-
mations for computing ny; and the line profiles in the aforementioned sections. It becomes
crucial to analyze the discrepancies of those approximate methods w.r.t their exact counter-
parts and weigh them in light of their gain in computational time. In Section [3.4]T present
a thorough investigation of this nature involving the popular approximations described
earlier and make recommendations as to the suitable techniques in various cosmological
regimes based on the findings. Those are also the techniques I have employed for producing
vast amounts of mock Ly« forest datasets for training our field-level inference machinery
that is the focus of the following two chapters.
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Deep learning inference: proof of
concept
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ing field-level inference machine for the Lyman-a forest.” A&A 689, A153.
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In this work, we demonstrate the potential of deep learning at the field-level for the infer-
ence of the power law parameters (Tj,7) of the IGM temperature density relation. From
pure (uncontaminated) mock spectra, our machinery puts more stringent constraints on
the said parameters than the traditional summary statistics such as the 1D power spec-
trum and PDF of the Ly« transmission. As the lead author, I completed the following key
tasks: creating all the mock training/validation/test datasets, developing the core inference
framework, writing the vast majority of code in PYTHON, training neural networks and
optimizing hyperparameters, running tests with the trained networks and the traditional
summaries that I computed from the mocks. I also wrote the majority of the manuscript
and produced the various illustrations/plots. My coauthors M. Walther and D. Gruen
contributed significantly to the development of the project idea and also provided valuable
scientific discussions. M. Walther ran the suite of simulations used in this work. S. Adiraju
contributed to the development of the basic initial codebase of the neural machinery with
KERAS upon which I built this inference framework. All coauthors reviewed the draft of
the manuscript and suggested improvements.
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4.1 Introduction

The characteristic arrangement of Ly« absorption lines in the spectra of distant quasars,
commonly known as the “Lya forest” (Lynds[1971), has been shown to be a unique probe
of the physics of the Universe at play over a wide window of cosmic history (z < 6). As the
continua of emission by the quasars traverse the diffuse intergalactic gas, resonant scatter-
ing by the neutral Hydrogen leads to a net absorption of the radiation at the wavelength
of the Ly transition (Gunn and Peterson [1965). In an expanding Universe where spectral
redshift z is a proxy of distance, a congregation of absorber clouds in the intergalactic
medium (IGM) along a quasar sight line imprints a dense forest of Lya absorption lines
on their spectra. Due to cosmic reionization of Hydrogen being largely complete by z ~ 6
(e.g., McGreer et al. [2015)), its neutral fraction zy, within the IGM is extremely minute,
yet sufficient to produce this unique feature that enables a continuous trace of the cosmic
gas.

The observations of the Ly« forest, through the advent of high-resolution instruments
such as Keck/HIRES and VLT /UVES as well as large-scale structure surveys such as the
extended Baryon Oscillation Spectroscopic Survey (eBOSS; Dawson et al. 2013)) of the
Sloan Digital Sky Survey (SDSS; Blanton et al. 2017) and the Dark Energy Spectroscopic
Instrument (DESI; DESI Collaboration et al. [2022)), have delivered a wealth of information
about the nonlinear matter distribution on submegaparsec scales, thermal properties of the
intergalactic gas, and large-scale structure. Not only is the Ly« forest an extremely useful
tool to study the thermal evolution of the IGM and reionization (as demonstrated, e.g., by
Becker et al. 2011, Walther et al. [2019, Boera et al. 2019, Gaikwad et al. 2021)), but it has
also opened up avenues for constraining fundamental cosmic physics. Chief among those
are the baryon acoustic oscillation (BAO) scale and cosmic expansion (e.g., Slosar et al.
2013], Busca et al. 2013, du Mas des Bourboux et al. 2020, Gordon et al. 2023, Cuceu et al.
2023), the nature and properties of dark matter (e.g., Viel et al. 2005, Viel et al. 2013,
[rsi¢ et al. 2017b, Armengaud et al. 2017, Rogers and Peiris 2021)), and in combination
with the cosmic microwave background (CMB, e.g., Planck Collaboration et al. 2020)) also
inflation and neutrino masses (e.g., Seljak et al. 2006, Palanque-Delabrouille et al. 2015|
Yeche et al. 2017, Palanque-Delabrouille et al. 2020).

The classical way of carrying out parameter inference with the Lya forest, as for any
other cosmic tracer, relies on summary statistics of the underlying field, as they conve-
niently pick out a small number of relevant features from a much larger number of degrees
of freedom of the full data. For the Ly« forest, a number of summary statistics exists that
have been accurately measured and effectively used for cosmological and astrophysical pa-
rameter inference. These include the line-of-sight (1D) transmission power spectrum (TPS
hereinafter; e.g., Croft et al. 1998, Chabanier et al. 2019, Walther et al. 2019, Boera et al.
2019, Ravoux et al. 2023, Karagayli et al. 2024), transmission probability density function
(TPDF hereinafter; e.g., McDonald et al. 2000, Bolton et al. 2008, Viel et al. 2009, Lee
et al. 2015), wavelet statistics (e.g., Meiksin 2000, Theuns and Zaroubi 2000, Zaldarriaga
2002, Lidz et al. 2010, Wolfson et al. [2021)), curvature statistics (e.g., Becker et al. 2011}
Boera et al. [2014), distributions of absorption line fits (e.g., Schaye et al. 2000, Bolton et al.
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2014, Hiss et al. [2019} Telikova et al. 2019, Hu et al. 2022), and combinations thereof (e.g.,
Garzilli et al. 2012, Gaikwad et al. 2021). While these provide accurate measurements of
parameter values, they fail to capture all of the information contained in the transmission
field, thereby resulting in a loss of constraining power the full spectral datasets have to
offer.

Recently, deep learning approaches have become popular in the context of cosmologi-
cal simulations and data analysis. Complex and resource-heavy conventional problems in
cosmology have started to see fast, efficient, and demonstrably robust solutions in neu-
ral network (NN) based algorithms (see, e.g., Moriwaki et al. [2023| for a recent review).
Artificial intelligence has opened up a broad avenue for studies of the Ly« forest as well.
Cosmological analyses with the Ly« forest generally demand expensive hydrodynamic sim-
ulations for an accurate modeling of the small-scale physics of the IGM. Deep learning
offers alternative, light-weight solutions to such problems. For instance, Harrington et al.
2022/ and Boonkongkird et al. |2023| recently built U-Net based frameworks for directly
predicting hydrodynamic quantities of the gas from computationally much less demand-
ing, dark-matter-only simulations. A super-resolution generative model of Lya-relevant
hydrodynamic quantities is presented in Jacobus et al. (2023), based on conditional gen-
erative adversarial networks (cGANs). These works greatly accelerate the generation of
mock data for Lya forest analyses. Deep learning is also demonstrated to be a very effec-
tive methodology for a variety of tasks involving spectral, 1D datasets. Durovéikova et al.
(2020) introduced a deep NN to reconstruct high-z quasar spectra containing Ly damping
wings. Melchior et al. (2023)) and Liang et al. (2023)) describe a framework for generating,
analyzing, reconstructing, and detecting outliers from SDSS galaxy spectra consisting of
an autoencoder and a normalizing flow architecture. Recent works have shown immense
potential of various deep NN methods for the analysis of the Lya forest. For example, a
convolutional neural network (CNN) model to detect and characterize damped Lya sys-
tems (DLAs) in quasar spectra was introduced by Parks et al. (2018). Similarly, Busca
and Balland (2018) applied a deep CNN called “QuasarNET” for the identification (clas-
sification) and redshift estimation of quasar spectra. Huang et al. (2021) constructed a
deep learning framework to recover the Lya optical depth from noisy and saturated Ly«
forest transmission. Later, Wang et al. (2022b)) applied the same idea to the reconstruction
of the line-of-sight temperature of the IGM and detection of temperature discontinuities
(e.g., hot bubbles). In neighboring disciplines, deep learning is already identified as a re-
liable tool for field-level inference. For instance, a set of recent works (Gupta et al. 2018,
Fluri et al. 2018, Ribli et al. [2019 Kacprzak and Fluri 2022/ among others) has established
the superiority of deep learning techniques for cosmological inference directly from weak
gravitational lensing maps over the classical two-point statistics of the cosmic density-field
proxies.

In this work we present LyaNNA — short for “Lya Neural Network Analysis” — a
deep learning framework for the analysis of the Ly« forest. Here, we have implemented a
1D ResNet (a special type of CNN with skip-connections between different convolutional
layers to learn the residual maps; He et al. |2015a) called “SANSA” for inference of model
parameters with Lya forest spectral datasets, harvesting the full information carried by
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the transmission field. We perform nonlinear regression on the thermal parameters of the
IGM directly from the spectra containing the Lya forest absorption features that are ex-
tracted efficiently by our deep model. This architecture was trained in a supervised fashion
using a large set of mock spectra from cosmological hydrodynamic simulations with known
parameter labels to not only distinguish between two distinct parameter combinations but
also pinpoint the exact location of a given spectral set in the parameter space. For better
statistical reliability of our results, we employed a committee of 20 neural networks for the
inference, combining the outputs via bootstrap aggregation (Breiman 2004). Finally, we
built a likelihood model to perform inference on mock datasets via Markov chain Monte
Carlo (MCMC) and compared with classical summary statistics, namely a combination of
TPS and TPDF, showcasing the improvement we gain by working at the field level.

This paper is structured as follows. Section describes the simulations, the mock
Lya forest spectra we use for training and testing our methodology, and the summary
statistics we compare to. In Section we introduce the inference framework of SANSA
with details of the architecture and its training. Our results of doing inference with SANSA
and a comparison with the traditional summary statistics are presented and discussed in
Section We conclude in Section with a précis of our findings and an outlook.

4.2 Simulations

In this section we introduce the hydrodynamic simulation used throughout this work as
well as the post-processing approach we adopt to generate mock Ly« forest spectra.

4.2.1 Hydrodynamic simulations

We used a NYX cosmological hydrodynamic simulation snapshot generated for Lya forest
analyses (see Walther et al. 2021)) to create the mock data used for various purposes in this
work. NYX is a relatively novel hydrodynamics code based on the AMREX framework
and simulates an ideal gas on an Eulerian mesh interacting with dark matter modeled
as Lagrangian particles. While adaptive mesh refinement (AMR) is possible and would
allow better treatment of overdense regions, we used a uniform grid here as the Ly« forest
only traces mildly overdense gas, rendering AMR techniques inefficient. Gas evolution
was followed using a second-order accurate scheme (see Almgren et al. 2013 and Lukié
et al. 2015 for more details). In addition to solving the Euler equations and gravity,
Nvx also models the main physical processes required for an accurate model of the Lya
forest. The chemistry of the gas was modeled following a primordial composition of H and
He. Inverse Compton cooling of the CMB was taken into account as well as the updated
recombination, collisional ionization, dielectric recombination and cooling rates from Lukié¢
et al. 2015, All cells were assumed to be optically thin to ionizing radiation and a spatially
uniform ultraviolet background (UVB) was applied according to the late reionization model
of Onorbe et al. 2017, where heating rates were modified by a fixed factor Ayyg affecting
the thermal history and thus pressure smoothing of the gas. Here, we used a simulation box
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Figure 4.1: Slice (29 kpc thick) through our NYX simulation box (120 Mpc side length, with 4096 cells
along a side) at z = 2.2 shown here for the gas overdensity (left) and temperature (right). A systematic
relationship between both the hydrodynamic fields can be seen.
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Figure 4.2: Joint, volume-weighted distribution of the temperature and density of baryons in our sim-
ulation at z = 2.2. Center: the fiducial (Tp,~) parameter case (values obtained by fitting a power-law
through gas temperatures and densities). Left: the case with rescaled temperatures for a lower  than
the fiducial and the same Tj. This can be seen to affect the slope of the TDR by a twisting of the 2D
distribution. Right: the case with rescaled temperatures for a higher Ty than the fiducial and the same
. The entire distribution is shifted along the log,,(T/K) axis, keeping the shape the same. (Note that
the color-bar label is using shorthand for p(log;,(pn/pb),log;0(T/K)).)
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at z = 2.2 with 120 Mpc side length and 4096* volumetric cells (“voxels”) and dark matter
particles, motivated by recent convergence analyses (Walther et al. |2021| and Chabanier
et al.[2023)). The cosmological parameters of the box are h = 0.7035, wy, = Q,h?* = 0.1589,
wp, = Qph? = 0.0223, A = 1.4258 x 1072, ng = 1.0327, Ayys = 0.9036.

During the epoch of reionization the ionizing UV radiation from star-forming galaxies
heats up the intergalactic gas as well. Afterward, as the universe expands, the IGM cools
down mostly adiabatically with subdominant nonadiabatic contribution, for instance, from
inverse Compton scattering off of the CMB and recombination of the ionized medium, as
well as heating due to photoionization and gravitational collapse. The bulk of this gas
is diffuse (relatively cool with T < 10° K and mildly overdense with log;,(pn/pn) < 2,
contained mostly in cosmic voids, sheets, and filaments; see, e.g., Martizzi et al. 2019)) and
imprints the Ly« forest absorption features on to quasar spectra. The IGM at z ~ 2.2
can be further classified into subdominant phases such as warm-hot intergalactic medium
(WHIM; T > 10° K and log;y(pn/p1) < 2), condensed halo (T < 10° K and log,,(pn/pp) >
2) and warm halo or circumgalactic medium (WCGM; T' > 10° K and log;,(pn/p1) > 2).
At this redshift, the effects due to the inhomogeneous UVB of the reionization of H and He
are considered to be small (e.g., Onorbe et al. 2019; Upton Sanderbeck and Bird |2020) and
we ignore them for this work. The diffuse IGM component in our cosmological simulation
exhibits a tight power-law relation in temperature and density (Hui and Gnedin (1997}
McQuinn and Upton Sanderbeck 2016) that is classically characterized by

T = TO('(_&>H, (4.1)

Pb

where py, is the mean density of the gas, and Tj (a temperature at the mean gas density)
and ~y (adiabatic power-law index) are the two free parameters of the model. Indeed, a
strong systematic p,-1" relationship is visually apparent in a slice through our simulation
box . We performed a linear least-squares fit of the above relation through
our simulation in the range —0.5 < logy(pn/pp) < 0.5 and log,o(T/K) < 4. The best-
fit (fiducial) values are T, = 10104.15 K and 7 = 1.58. While a range of works have
demonstrated the potential of using different summary statistics of the Ly« forest as probes
to measure T and 7 (see, e.g., Gaikwad et al. 2020)), in this work we highlight a first field-
level framework for inference of these two thermal parameters of the IGM.

The following strategy was adopted for sampling the parameter space of (Tp,~y) to pro-
duce labeled data for the supervised training of the inference machine. Both the parameters
were varied by a small amount at a time, log7Ty, — log7y + logxz and v — v + y to obtain
a new temperature-density relation (TDR). We then rescaled the simulated temperatures
at every cell of the simulation by T — x - (pp/pn)? - T at fixed densities py, to appropri-
ately incorporate the scatter off the TDR into our mock data, effectively conserving the
underlying 7T-py, distribution rather than drawing from a pure power-law. This procedure
is illustrated in with the help of the full 2D histograms of temperature and
density for two individual parameter rescalings as well as the fiducial case.
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Figure 4.3: Simulated baryon overdensities, temperatures, line-of-sight peculiar velocity, and transmission
along an example skewer through our box for three different temperature-density relations — one pair each
for fixed Ty and fixed v — to indicate characteristic variations with respect to the two TDR parameters.
The line shifts due to the peculiar velocity component (vpec,|) can be easily noticed. Since the rescaling of
the temperatures depends on the densities, inhomogeneous differences are seen in the skewer temperatures
in the cases with varying «. The absorption lines are broader where the temperatures are higher and the
amount of broadening is also a function of densities being probed through ~.

4.2.2 Mock Lyman-«a forest

In order to simulate the Ly« forest transmission F' = e~ (7 being the optical depth), we
first chose 10° random lines of sight (LOS, a.k.a. skewers) parallel to one of the Cartesian
sides (e.g., Z-axis) of the box by picking all consecutive 4096 voxels along that axis while
keeping the other two coordinates (X and Y) fixed at a time. The Ly« optical depth at an
output pixel in a spectrum was calculated from the information of the density, temperature,
and the LOS component of gas peculiar velocity (vpec,|) at each corresponding voxel along
the given skewer. Here, the gas was reasonably assumed to be in ionization equilibrium
among the different species of H and He and further that He is almost completely (doubly)
ionized at z ~ 2.2 (i.e., Tgem ~ 1; Miralda-Escudé et al. Becker et al. in order
to estimate the neutral H density, nyg, for each of those voxels. The Lya optical depth at
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a pixel with Hubble velocity v and gas peculiar velocity vye. | was estimated as

2\
T( ) — e Lyaflu

mecH (2) /nHI(’U/WD(UI;U —i—vpec,u,b)dv', (4.2)

where the rest-frame Ary, = 1215.67 A, the Lya oscillator strength f,, = 0.416, and

60 (v: 10, b) = —— exp [— (“ ‘b”‘))z] (4.3)

by/m

is the Doppler line profile with the temperature-dependent broadening parameter b =
/2kgT /mp. These 7 values were additionally rescaled by a constant factor such that
the mean Ly« transmission in our full set of 10° skewers matched its observed value of
Fi1s = 0.86, compatible with Becker et al. (2013). For our simulation, we performed tests
with a simplified, approximate model of lightcone evolution along the LOS (Appendix [A))
and found negligible impact on the performance of our inference framework. Therefore,
we ignored any small lightcone evolution along our skewers and used the snapshot of the
simulation for creating mock Ly« forest spectra, assuming a constant TDR for simplicity.

To mimic observational limitations and minimize the impact of numerical noise on small
scales in the simulations, we restricted the Fourier modes within the spectra to & < k*,
k* = 0.18 s km~!. This was effectively achieved by smoothing them with a spectral
resolution kernel of Rpwmy ~ 11,000 and additionally rebinning them by 8-pixel averages,
matching the Nyquist sampling limit. The final size of a spectrum in our analysis is thus
512 pixels.

When sampling the (75, ) space, new mock spectra were produced for each parameter
combination with the new (rescaled) temperatures and the original densities and line-of-
sight peculiar velocities along the same set of skewers. An example skewer is shown in
for three different TDRs. Since the temperature rescaling is a function of py,/py,
through ~, characteristic differences in skewer temperatures and Ly« transmission between
cases with varying 7 are visible. Changes in T result in a homogeneous broadening of the
absorption lines, whereas changes in v (for v > 1)E], depending on the underlying over-
density being probed, result in larger or smaller broadening (i.e., generally, the shallower
lines are broadened less than the deeper ones). We expect our convolutional architecture
to be able to pick up such features in order to discriminate between thermal models. In
this work, we sampled a grid of 11x11 (7y,) combinations as shown in — for
each of which we have the same set of 10° physical skewers — for training and testing our
deep learning machinery. This grid is oriented in a coordinate system that captures the
well-known degeneracy direction in the (75, ) space as identified in many TPS analyses
(e.g., Walther et al. 2019) and is motivated by the heuristic argument that it is easiest
to train a neural network for inference with an underlying parametrization that captures

Ly = 1 would mean the diffuse IGM is roughly isothermal and v < 1 would lead to an “inverted TDR,”
where underdensities are hotter than overdensities as proposed by Bolton et al. 2008, for instance.
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Figure 4.4: Our sample of thermal models for the various training and test purposes that contains 11x11
(121) distinct (Tp,y) combinations. The fiducial TDR parameter combination is depicted as the green
square. The rescaled (TO, %) axes are also shown for context (see Section . This is a uniform grid in a
parametrization that captures the well known degeneracy direction in the (Tp,~y) space. The gray-shaded
area shows our prior range in this parameter space. Please refer to Appendix [B]for more details regarding

the strategy used for this sampling.
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Figure 4.5: Transmission power spectrum (left) and transmitted PDF (right) computed from our set of
10% skewers for three TDR parameter combinations; the same as in The fractional differences
between different TDR cases are shown in the corresponding bottom panels with the gray-shaded areas as
1o uncertainty ranges (bands drawn from discrete k-modes in TPS and discrete histogram bins in TPDF),
equivalent of 100 spectra.

the most characteristic variations in the data. The exact sampling strategy is further de-
scribed in Appendix [Bl We used the gray-shaded region in [Figure 4.4] as our prior range of
parameters having a uniform prior distribution in all our further analyses.

4.2.3 Summary statistics

We considered two summary statistics — TPS and TPDF — of the Ly« forest in this work
for demonstrating the benefit of field-level inference. The TPS is defined here as the
variance of the transmitted “flux contrast” 0 = (F — F)/F in Fourier space, that is,
Py(k) ~ (6(k)* - §(k)). For a consistent comparison of inference outcomes, we applied
the same restriction & < 0.18 s km™! as in the input to our deep learning machinery
(see Section . To obtain the TPDF, we considered the histogram of the transmitted
flux F' in the full set of skewers over 50 bins of equal width between 0 and 1. For the
likelihood analysis with the TPDF we left the last bin out as it is fully degenerate with
the rest due to the normalization of the PDF. The mean TPS and TPDF computed from
the 10° skewers for three different TDR parameter combinations are shown in
along with the relative differences in both the statistics between pairs of TDR models.
The uncertainty range shown as a gray band therein corresponds to a lo equivalent of
100 spectra. The TPS follows a power-law increase for small k and exhibits a suppression
of power at larger k (smaller physical scales) due to deficiency of structures as well as
the thermal broadening of lines. The variations in the thermal parameters that effectively
result in the broadening of absorption lines amount to a shift in this turnover scale toward
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Figure 4.6: Correlation matrix of the joint summary vector (the first 256 entries being TPS and the later
49 being TPDF) estimated from our set of 10° mock spectra for the fiducial thermal model. Notice the
mild correlations within the individual summaries and the cross-correlations between the two summaries.

smaller l{:—modesﬂ Equivalently, the broader lines have shallower depths (in this low density
regime of the curve of growth), which in turn results in a transfer of probability from smaller
(F' < 0.4) to larger (F' 2 0.6) transmission. We also computed the joint covariance matrix
of the concatenated summary vector of the TPS and TPDF from our full set of mock
spectra by the estimator

- .
Cs = N1 Z(S" —s) (s; —s), (4.4)

=1

where N = 10° and s is a vector of which the first 256 entries are the Fourier modes in
the TPS (k < k*) and the later 49 entries are the bins in the TPDF, F' € [0,1). The
joint correlation matrix for a thermal model from our sample is shown in [Figure 4.6, Mild
correlations among relatively close entries within the TPS or the TPDF can be observed
as well as moderate cross-correlations between the two summary statistics.

For inference with these summary statistics, we cubic-spline interpolated both (the
TPDF per histogram bin and the TPS per discrete k-mode) as a function of the parameters
(To,7) to obtain an emulator over our prior range as depicted in where we
assumed a flat (uniform) prior in both the parameters. We verified that choosing a different

B 2We recall that the mean transmission F is kept fixed for our spectra; for fixed UVB — hence varying
F — the quantitative variations in the TPS with respect to the thermal parameters would be different,
especially for small k.
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interpolation scheme, such as linear, does not strongly affect the results of the inference.

4.3 Field-level inference machinery

As described in Section 4.2 we have simulated Ly« forest absorption profiles (spectra)
from hydrodynamic simulations having known thermal (7, ) parameter values. The aim
of our machinery is to learn the characteristic variations in the spectra (i.e., at the field
level) with respect to those parameters in order first to distinguish between two adjacent
thermal models and ultimately also to provide an uncertainty estimate as well as a point
estimate of the parameter values whereby Bayesian inference can be performed. Thus
framed, this is a very well-suited problem for application of supervised machine learning.
The output of a fully trained deep neural network can be used as a model (emulator) for
a newly learned, optimal “summary statistic” of the Ly« transmission field that is fully
degenerate with the thermal parametersﬂ hence carrying most of the relevant information
about them that the full field offers. In the following we describe our framework in detail,
with a special focus on the neural network architecture and training.

4.3.1 Overview

The general structure of inference with LyaNNA entails a feed-forward 1D ResNet neural
network called “SANSA” that connects an underlying input information vector (transmis-
sion field) to an output “summary vector” that can be conveniently mapped to the thermal
parameters (Tp, ). Ideally, we expect this summary vector to be a direct actual estimate
of the parameters itself, however, due to a limited prior range of thermal models available
for training, a systematic (quantifiable) bias was observed in the pure network estimates
(see Appendix . Nonetheless, these estimates can be mapped to the parameters via a
tractable linear transformation. For brevity our network encompasses this mappingf_f] such
that its output is a direct estimate of the parameters @ = (TO, 7). As an estimate of
its own uncertainty of a given prediction, the network also returns a parameter covariance
matrix C. Since our two parameters have dynamic ranges different by orders of magnitude,
we linearly rescaled them as Ty — Tp and v — 7, to fall in the same range ~ (—=1,1). This
bijective mapping ensures numerical stability of the point estimates by the network and is a
common practice for deep learning regression schemes. The output covariance matrix (and
its inverse) must be positive-definite as a mathematical requirement. This was ensured in
our framework in a way similar to Fluri et al. 2019 by a Cholesky decomposition of the
form

C!'=LL", (4.5)

3Meaning that the machine can summarize the field most optimally (informed by the full data) into
Npar values that can be directly mapped to the actual parameters of interest.

4Although this linear map is part of our network, it is not fitted during back-propagation in order to
avoid the bias due to the prior limits.
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Figure 4.7: Schematic representation of the architecture of SANSA. It comprises a 1D residual convolu-
tional neural network with four residual blocks in series for extracting crucial features from the spectra of
size 512 pixels, followed by a fully connected layer to map the outcome to the parameter point predictions
7 and a covariance estimate C over 5 output neurons.

where L is a lower triangular matrix. Our network predicts the three independent com-
ponents of that matrix (log Ly1, log Lag, Lis to further ensure uniquenes@ rather than

the covariance matrix directly. The network was optimized following a Gaussian negative
log-likelihood loss (hereinafter NL3),

L(7) =1og|C| + (7 — 7)C (7 — 7)7, (4.6)

where ™ = (To,&) are the true parameter labels. This can be seen as an extension of
the conventional mean squared error, MSE = (& — &)(w — &)7, in the presence of a
network estimated covariance. It can be noted that the covariance matrix does not have
any labels and is primarily a way to regularize network predictions under a Gaussian
likelihood assumption.

4.3.2 Architecture

We built our architecture using the open-source PYTHON package TENSORFLOW /KERAS
(Chollet et al. [2015). The neural network for field-level inference with LyaNNA is called
SANSA and consists of a 1D ResNet (He et al. 2015al), a residual convolutional neural net-
work that extracts useful features from spectra and turns them into a “summary” vector
which can then be used for inference of model parameters. [Figure 4.7 shows a schematic
representation of the architecture of SANSA. The input layer consists of 512 spectral units.

5Since C’g = (£L;;)?, we explicitly chose the positive branch of the Cholesky coefficients (a unique,
one-to-one mapping) via the lognormal transformation, for numerical stability reasons.
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This input is passed through four residual blocks in series with varying numbers of input
and output units, each block having the same computational structure as illustrated in
ure 4.8. Each residual block is followed by a batch normalization and an average-pooling
layer to downsample the data vectors consecutively. A ResNet architecture is particularly
attractive because of its ease of convergence during training owing to predominantly learn-
ing the residual mappings that could conveniently be driven to zero if identity maps are the
most optimal in intermediate layers. This is achieved by introducing “skip-connections”
in a sequential convolutional architecture that fulfill the role of identity (linear) functions.
The residual blocks can more easily adapt to those linear mappings than having to train
nonlinear layers to mimic them. A special advantage of the skip-connections is that they
do not introduce more parameters than a sequential counterpart. Our neural network has
a total of 136,784 trainable parameters that were tuned via back-propagation. We used
the TENSORFLOW in-built leaky ReLU (rectified linear unit) function for all the nonlinear
activations in the residual blocks with the negative-slope of 0.3. The resultant set of fea-
ture tensors is flattened into a single vector of size 128 and mapped to the output vector
(Toﬁ, log L11,log Lo, L12) with a fully connected, unbiased linear layer. We regularized
the network kernels with a very small 1.2 weight decay (O(107%) in the convolutional lay-
ers, O(1077) in the fully connected layer). We also used a dropout (Srivastava et al. 2014))
of 0.09 after each residual block during training for encouraging generalization®}

4.3.3 Training

All convolutional kernels in SANSA were initialized following the approach of Glorot and
Bengio (2010) and the weights in the final linear layer were initialized similarly to He et al.
(2015b). After a preliminary convergence test with respect to training dataset size, we
chose a training set consisting of 10,000 distinct spectra from each thermal model in our
sample. We also had a separate validation set for monitoring overfitting viz. 2/5 the size
of the training set with an equivalent distribution of spectra among thermal models. The
network was trained by minimizing the NL3 loss function in Eq. . Additionally, three
other metrics were monitored during the training: log|C|, x* = (7 — @)C™} (7 — )T, and
the MSE. We notice that the loss function is simply the sum of the first two metrics.

The training was performed by repeatedly cycling through the designated training
dataset in randomly chosen batches of a fixed size. Each cycle through the data was
deemed an “epoch”, and each back-propagation action on a batch was termed a “step
of training”. Since the spectra follow periodic boundary conditions, a cyclic permutation
of pixels (“rolling”) is mathematically allowed and leads to no alteration of underlying
physical characteristics (e.g., thermal parameters Ty, ). This is also true for reverting the
order of the pixels (“flipping”). These are some of the modifications that augment the
existing training set and we expect our network to be robust against. Therefore, at every
epoch we applied a uniformly randomly sampled amount (in number of pixels) of rolling

6We note that this value of the dropout rate p is consistent with the KERAS convention, that is, the
fraction of input layer units to drop, unlike the original definition by Srivastava et al. 2014 where p is the
probability of the output of a given layer unit being propagated further in the network.
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Figure 4.8: Residual block in SANSA. An input vector x is first passed through a convolutional layer
and a copy of the output tensor is made which consecutively goes through a pair of convolutional layers
introducing nonlinearity, all the while preserving the shape of the output tensor. The outcome is then
algebraically added to the earlier copy (i.e., a parallel, identity function) and the sum is passed through
a nonlinear activation to obtain the final outcome of the block. The latter two convolutional layers thus
learn a residual nonlinear mapping. (Note that a zero-padding is applied during all convolutions in order
to preserve the feature shape in the subsequent layers through the network.)
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and a flipping with 50% probability to each of the training spectra, on the fly. We note
that the validation set was not augmented on the fly because we would like to compare
the generalization of the network predictions at different epochs for the same set of input
spectra.

We expect the x? metric to optimally take the value ~ N, because of the underlying
Gaussian assumption (in our case Np,, = 2). The improvement of the network during
training is then in large parts due to a decrement in log|(~3| which indicates that the
network becomes less uncertain of its estimates as the training progresses. The state of a
network is said to be improving if the value of NL3 decreases and the network y? remains
close to 2 for data unseen during back-propagation, the validation set. Therefore, we
deemed the best state of the network to be occurring at the epoch during training at which
the validation NL3 was minimal while the validation |x? — 2| < ¢, for a small ¢ = 0.05]
We used the Adam optimizer (Kingma and Ba [2014) with a learning-rate of 5.8 x 107%.
The Adam moment parameters had the values 5; = 0.97 and By = 0.999. We performed a
Bayesian hyperparameter tuning for fixing the values of kernel weight decays, the dropout
rate, the learning rate, and the optimizer moment [3; parameter. We refer the reader to
Appendix [D] for a further description of our strategy for choosing optimal hyperparameters
for our network architecture and training. We present the progress of the network’s training
quantified by the four metrics mentioned above in Appendix [E]

4.3.4 Ensemble learning

The initialization of our network weights (kernels) as well as the training over batches and
epochs is a stochastic process. This introduces a bias in the network predictions that can be
traded for variance in a set of randomly initialized and trained networks. Essentially, if the
errors in different networks’ predictions are uncorrelated, then combining the predictions
of multiple such networks helps in improving the accuracy of the predictions. It has been
shown that a “committee” of neural networks could outperform even the best-performing
member network (Dietterich 2000]). This falls under the umbrella of “ensemble learning”.

Once we found an optimal set of hyperparameter values for SANSA, we trained 20 neural
networks with the exact same architecture and the learning hyperparameters but initializ-
ing the network weights with different pseudo-random seeds and training with differently
shuffled and augmented batches of the dataset. The output predictions by all the member
networks of this committee of Ng nsa = 20 neural networks were then combined in the form
of a weighted averaging of the individual predictions to obtain the final outcome (this is
commonly known as bootstrap aggregating or “bagging”; see, e.g., Breiman 2004). For a
given input spectrum z, let S;(z) denote the output point predictions by the ith network
in our committee. Then the combined prediction of the committee is

1 1
X ~ S;(x), 4.7
NSANSA i |Cl($)| ( ) ( )

S(x)

"The sample variance on x? (at each epoch, assuming a y2-distribution) for the validation set can be
expected to be 02 = 2Npar/ Nyalidation ~ (0.003)2.
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where Cz(x) is the output estimate of the covariance matrix by the ith network for the input
spectrum x. This combination puts more weight on less uncertain network predictions and
thus is optimally informed by the individual network uncertainties. Even with such a
small number of cognate members, we observed slight improvements with respect to the
best-performing member as discussed in Appendix [F] All the output point predictions by
SANSA considered in the following part of the text are implicitly assumed to be that of the
committee and not of an individual network unless specified otherwise.

4.3.5 Inference

We performed Bayesian inference of the model parameters with SANSA as well as the
traditional summary statistics introduced in Section [£.2.3] In all the cases, we assumed a
Gaussian likelihood and a uniform prior over the range shown in [Figure 4.4l For inference
with SANSA we created an emulator for a likelihood analysis in the following way. A
test set of spectr for a given truth (TO, 7) were fed into SANSA and a corresponding set
of parameter point estimates (T 0,7) were obtained. Owing to our optimization strategy
(described in Section these network predictions have an inherent scatter that is
consistent with a network covariance estimate C. A mean point prediction 7 = (Ty, %)
and a covariance matrix were estimated from the scatter of the point estimates. This was
performed for each of our 121 thermal models in the test sample. We then cubic-spline
interpolated the mean network point prediction and the scatter covariancdﬂ over our prior
range of thermal parameters 7 to obtain a model (emulator) [p(m), X(m)]. The advantage
of creating such a model for the likelihood is two-fold: (i) we can perform Bayesian inference
with a different choice of prior (e.g., Gaussian) within the gray-shaded area of
and (ii) the inference results of our machinery could, in principle, be combined with other
probes of interest to further constrain our knowledge of the thermal state of the IGM. This
emulator was then used to perform an MCMC analysis for getting posterior constraints
with a likelihood function,

log Ly ()
~ = %[log 1Xn ()| — (7y — p(m)) By~ () (7 — u(ﬂ'))T], (4.8)

where 7 is the mean network point prediction for a given set of N test spectra and
Yn(m) = X(m)/N quantifies the uncertainty in the mean point estimate for the given
dataset sizd'”} We show this model in[Figure 4.9} The model for the mean parameter values,
p(7r), consists of rather smoothly varying functions approximating po(m,m) = 72,
conforming to our expectation.

8We note that this was the same set of spectra as that used for the validation of generalization during
network training (see Section .

9For computational simplicity, we actually interpolated the inverse of the scatter covariance matrix.

Formulated thus (and due to the Gaussian likelihood assumption), N could be deliberately varied to
mimic the inference outcome of a given size of the dataset.
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Figure 4.9: Likelihood model of inference with SANSA over our prior range for the rescaled 7 parameters.
The top panel shows a measure of the covariance model 3(7r) and the bottom panels the model for the two
rescaled parameters, 1 = Ty and po = 5. The model for the mean summary vector fairly approximates

pi(m) = m;.
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4.4 Results and discussion

In this section, we show the results of doing mock inference with our machinery as described
in Section and compare them with a summary-based approach (see Section for
more details on the summaries used). We investigated a few different test scenarios for
establishing robustness of our inference pipeline. For each test case, we quantify our results
in two chief metrics:

(i) precision, in terms of the area of posterior contours as a figure of merit (FoM),

FoM ~ 1/4/|C: (4.9)

and (ii) accuracy, in terms of a reduced x?,

o2 = (ACAT) /Ny — 1; (4.10)

where A’ = (7' — ) is a point in the posterior MCMC sample, C is a covariance matrix of
7 estimated from the posterior sample and the average () is taken over the entire sample.
We note that in the two parameter case, the area of the posterior contours is proportional
to \/@ . We expect that the FoM improves when including more information (about the
parameters of interest) in the underlying summary statistic from the transmission field,
since the constraints get tighter (contours smaller) as a consequence. A smaller value of
) Xf implies a more accurate recovery of the true parameters.

First, we considered a test set of spectra that are distinct from those used in training and
validation to evaluate the performance of our inference pipeline for previously unseen data
(we recall that the likelihood model for SANSA was built using the validation set). This set
consisted of 4,000 spectra for the underlying true (fiducial) thermal model, To = 10104.15
K and 4 = 1.58 (we note that this model is off the training grid, as shown in
affording us a test of the machinery’s performance off-grid). To distinguish this set with
the other test sets in the following, we call it the “original” set hereinafter. In |Figure 4.10
we show the output scatter of point estimates by SANSA for the original test set, with
contours of 68% and 95% probability. For comparison, we also plot the posterior contours
(obtained by SANSA following the strategy outlined in Section, inflated to emulate the
uncertainty equivalent of one input spectrum. A very good agreement is observed between
both the cases, suggesting that a cubic-spline interpolation of the scatter covariance is
a sufficiently good emulator for a likelihood analysis as discussed in Section [{.3.5 We
performed inference with three further previously unseen sets of 4,000 random spectra
with the fiducial TDR to establish the statistical sanity of our pipeline. We show the
posterior contours obtained for those in and the metric values in [Table 4.1]

Skewers can be picked along any of the three axes of the simulation box (see Sec-
tion , each leading to a different realization of the Ly« transmission, mimicking
cosmic variance. We expect our pipeline to be robust to the choice of axis along which the
input skewers are extracted. We chose three different test sets of skewers along another
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Figure 4.10: Scatter of point predictions for the original test set of spectra from our fiducial TDR model
shown here with the 68% and 95% contours (green). The contours of the posterior distribution (purple)
obtained by SANSA with the procedure outlined in Section inflated to match the information equiv-
alent to one spectrum, follow the scatter contours very closely. SANSA also recovers the true parameters
(dashed) with a very good accuracy, as indicated by the mean of the point prediction scatter (green cross)
as well as that of the posterior (purple cross).

Table 4.1: Comparison metric values for SANSA with four distinct sets of test spectra (for information
equivalent to 100 spectra).

Test set  dy?> FoM / FoM(orig.)

#1 (orig.) 0.002 - -
#2 0.053 0.994
#3 0.059 1.004
#4 0.004 1.003
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Figure 4.11: Comparison of posterior contours obtained for four different sets of 4,000 spectra, where
#1 is the “original” (for information equivalent to 100 spectra).
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Figure 4.12: Comparison of posterior contours obtained for three different sets of 4,000 spectra computed
along another axis (“Y”) of the simulation box (for information equivalent to 100 spectra). “Z” corresponds
to the “original.”

axis (“Y”) of our box that have the same underlying thermal parameters (fiducial). We
estimated the posterior constraints for all three (Y1,2,3) datasets with SANSA and we show
them in , along with the “original” (skewers extracted along the Z-axis of the
simulation box). The corresponding metric values are listed in [Table 4.2 We observe a
statistically consistent posterior distribution in each of the three Y-extracted test cases
with the original case, indicating that SANSA is agnostic to the choice of LOS direction,
even though it was trained only with one of the three possibilities.

Moreover, we tested our inference machinery with numerically modified (augmented)
spectra, as discussed in Section [£.3.3] In one case, we applied a cyclic permutation of the
pixels (rolling) by a random amount (between 1 and 512 pixels) to each spectrum of our
original test set. We denote this by “rolled”. In a second, we flipped an arbitrary 50% of
the original test set of spectra, denoted by “flipped”. We generated another set of spectra
with a random mix of both of the above operations applied to the original set; this is
labeled “mixed”. We present the posterior constraints for all of these cases in [Figure 4.13
and list the metric values in [Table 4.3] The posterior constraints in all the augmented
test scenarios agree very well with each other and with the original test case, establishing
robustness of the inference against such degeneracies.
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Figure 4.13: Comparison of posterior contours for differently augmented test spectra. In the “rolled”
case, a uniform random amount (between 1 and 512 pixels) of cyclic permutation of the pixels is applied
to each spectrum in the original test set. An arbitrary 50% of spectra from the original test set are
flipped (mirrored) in the “flipped” case. A random mix of both is applied in the “mixed” case. All of
the contours carry information equivalent to 100 skewers. A mean (expectation) value of all the posterior
distributions is also shown with a cross of the corresponding color. The posterior contours for all the cases
agree extremely well with the original test case.
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Figure 4.14: Posterior contours obtained by SANSA for the underlying fiducial thermal model. The
posterior contours from the two traditional summary statistics are shown for comparison: (i) TPS only
and (ii) joint constraints of TPS and TPDF where the cross-correlations of the summaries are accounted
for by a joint covariance matrix. In terms of the size of the contours, the SANSA constraints are tighter
than the TPS-only ones by a factor 10.92 and the joint constraints by 3.30, corroborating the claim that
SANSA recovers relevant information for inference that is not carried by the TPS and/or the TPDF. All
the cases carry information equivalent to 100 spectra.



4.5 Conclusion 69

Table 4.2: Comparison metric values for SANSA with spectra along different axes of the simulation (for
information equivalent to 100 spectra).

Test set  dx? FoM / FoM(orig.)
Original ~ 0.002 --

Y1 0.043 0.998
Y2 0.010 0.997
Y3 0.064 1.003

Table 4.3: Comparison metric values in data-augmentation scenarios for SANSA (for information equiva-
lent to 100 spectra).

Test set  dx? FoM / FoM(orig.)
Original ~ 0.002 --

Rolled 0.005 0.997
Flipped  0.001 1.001
Mixed 0.003 1.003

Finally, we compared the inference outcome of SANSA with the traditional summary
statistics (TPS and TPDF) based procedure. We present the posterior constraints on
(m — ) /7 obtained by a MCMC analysis of TPS only, TPS and TPDF jointly, and SANSA
for the fiducial thermal model in [Figure 4.14] Evidently, the joint constraints of the two
summary statistics are tighter than the TPS-only case as there is more information of the
thermal parameter in the former. However, by far the field-level constraints by SANSA
are tighter than both the traditional summary statistics cases, namely, a factor of 10.92
compared to the TPS-only case and a factor of 3.30 compared to the joint constraints in
our FoM. Indeed, the TPS is only a two-point statistic of the transmission field that has a
highly non-Gaussian one-point PDF itself. Combining TPS and TPDF provides some more
leverage, however, it still fails to account for some relevant parts of the information for
inference. As illustrated by [Figure 4.14] SANSA provides a remedy to the lost information
by trying to optimally extract all the features of relevance at the field level.

4.5 Conclusion

We built a convolutional neural network called SANSA for inference of the thermal param-
eters (Tp,7y) of the IGM with the Ly« forest at the field level. We trained this using a
large set of mock spectra extracted from the NYX hydrodynamic simulations. For esti-
mating posterior constraints, we created a reasonably robust pipeline that relies on the
point predictions of the parameters and the uncertainty estimates by our neural network
and that can in principle be easily combined with multiple other probes of the thermal
state of the IGM. A comparison of our results with those of traditional summary statistics
(TPS and TPDF in particular) revealed an improvement of posterior constraints in area
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of the credible regions by a factor 10.92 with respect to TPS-only and 3.30 with respect
to a joint analysis of TPS and TPDF. We established statistical robustness of our pipeline
by performing tests with a few different sets of input spectra.

However, our neural network that is trained with noiseless mock spectra for inference
fails for spectra with even very small noise (as small as having a continuum-to-noise ratio
of 500 per 6 km/s). Indeed, our framework must be adapted for use with noisy spectra
by retraining SANSA with datasets containing artificially added noise that varies on the fly
during training (to prevent learning from the noise).

Furthermore, in this work we have assumed a fixed underlying cosmology for generating
the various datasets used for training and inference. However, the Ly« forest carries
information about the cosmological parameters that may be correlated with the thermal
properties, and as a consequence, our machinery would exhibit a bias if the cosmology of
the training data were not equal to that of the test case. A generalized pipeline would thus
require marginalization over the cosmological parameters. Our proof-of-concept analysis,
however, opens up an avenue for constraining cosmological parameters at the field level as
well.

Baryonic feedback from AGN and supernovae (and similarly, inhomogeneous reioniza-
tion) affects the phase-space distribution of the IGM and is thus expected to influence
the performance of our neural machinery. Nonetheless, we anticipate this impact to be
marginal since the network is more sensitive to the power-law regime of the diffuse gas
which still holds to a large degree.

As described in Section [£.2.2] we used snapshots of the skewers to train our pipeline
instead of accounting for a lightcone evolution of the IGM properties along the LOS pixel-
by-pixel. We performed a test of this framework with an approximate model of such
evolution; see Appendix [A] For the length of our skewers, we expect the actual lightcone
evolution of the gas properties to be marginal and as such unproblematic for network
inference.

Nevertheless, in the spirit of creating a robust pipeline for highly realistic spectral
datasets, a plethora of physical and observational systematic effects (such as limited spec-
tral resolution, sky lines, metal absorption lines, continuum fitting uncertainty, damped
Lya systems on the observational side; and lightcone effects, baryon feedback, cosmological
correlations on the modeling side) must also be incorporated in the training data. This
warrants a further careful investigation into training supervised deep learning inference
algorithms with a variety of accurately modeled systematics added to our mock Ly« forest
datasets and we plan to carry it out in future works.
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5.1 Introduction

The interplay of the continua of quasars’ emission and the intergalactic medium (IGM)
imprints a unique and powerful absorption feature on their observed spectra called the Ly«
forest (Lynds [1971). The term refers to a dense cluster of resonant Ly« absorption lines
of Hydrogen blueward of a quasar’s observed Ly« emission peak, spread over a wide range
of wavelengths as a result of the expansion of the universe which causes the cosmological
redshift. Since Hydrogen is the most abundant element in the intergalactic gas, the Ly«
forest provides a continuous one dimensional probe of the IGM along the quasar line of
sight.

Individual high resolution spectroscopic observations of quasars using state-of-the-art
instruments such as VLT /UVES (e.g., Murphy et al.|2019), VLT /XSHOOTER (e.g. Lopez
et al. 2016)) and Keck/HIRES (e.g., O'Meara et al. 2017)), as well as large cosmological spec-
troscopic surveys such as the extended Baryon Oscillation Spectroscopic Survey (eBOSS,
Dawson et al. 2013)) and most recently the Dark Energy Spectroscopic Instrument (DESI,
DESI Collaboration et al.[2022) have opened a spectroscopic treasure trove of cosmological
information such as submegaparsec scale nonlinearities in the cosmic matter distribution,
and the thermal and ionization state of the IGM. These Ly« forest observations have been
widely used to constrain the thermal history of the IGM and the epoch of reionization (e.g.,
Becker et al. 2011} Walther et al. [2019; Boera et al. 2019; Gaikwad et al. 2021; Bosman
et al. 2022)), the baryon acoustic oscillation (BAO) scale (e.g., Slosar et al. [2013; Busca
et al. [2013; du Mas des Bourboux et al. 2020; Abdul Karim et al. 2025)), and the properties
of dark matter (e.g., Viel et al. 2005} Irsi¢ et al. 2017b; Armengaud et al. 2017; Kobayashi
et al. 2017; Rogers and Peiris 2021). When combined with external probes such as the
cosmic microwave background (CMB, e.g., Planck Collaboration et al. 2020), they provide
valuable insights into cosmic inflation and the mass of neutrinos (e.g., Seljak et al. 2000;
Palanque-Delabrouille et al. [2015; Yeche et al. 2017; Palanque-Delabrouille et al. 2020;
Sarkar and Sethi [2024; Ivanov et al. 2025).

The classical way of gaining insights from the Lya forest is through human defined
summary statistics. For instance, the 1D power spectrum, a measure of the absorption
structure (and hence the underlying IGM) across length scales, is one of the most widely
used summary statistics in literature for parameter inference (e.g., Croft et al.|1998; Theuns
et al. 2000; McDonald et al. 2000; Chabanier et al. 2019; Walther et al. 2019; Boera et al.
2019; Ravoux et al. 2025; Karagayh et al. |2025b). Other examples of summary statistics
include the probability density function (PDF) of the Ly« transmission (e.g., Theuns et al.
2000; McDonald et al. 2000; Bolton et al. 2008 Viel et al. 2009; Lee et al.|2015), curvature
statistics (e.g., Becker et al. [2011; Boera et al. [2014), and wavelet statistics (e.g., Meiksin
2000; Theuns and Zaroubi [2000; Zaldarriaga 2002; Lidz et al. 2010; Wolfson et al. 2021}
Tohfa et al. [2024). However, those summary statistics do not efficiently compress the
information of the non-Gaussian Ly« forest transmission field, restricting the constraining
power of the full data.

In recent years, machine learning methods are gaining popularity for the task of param-
eter inference in cosmology due to their ability to optimally extract and compress relevant
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non-Gaussian features from the underlying field. Presently, weak gravitational lensing is
one of the most common cosmological probes with machine learning inference applications
in the literature (e.g., Gupta et al. 2018; Fluri et al. [2019; Ribli et al. 2019; Lu et al. 2022;
Fluri et al. [2022; Lucas Makinen et al. 2025 Jeffrey et al. [2025). For the Ly« forest, the
avenue of field-level neural network inference remains relatively unexplored with only a
handful of works (e.g., Nayak et al. 2024; Maitra et al. 2024; Nasir et al. 2024)). In Nayak
et al. (2024} hereafter N24), we demonstrated the potential of deep learning for parameter
inference from the Ly« forest spectra for the first time. The field-level neural network
(NN) framework we presented therein (called LyaNNA) surpasses the traditional, human
defined summaries in the constraining power significantly, as substantiated by Chang et al.
(2025, hereafter C25).

The factors-of-a-few improvement by using LyalNNA as presented in N24 and C25,
however, is a proof-of-concept, in the regime with no realistic nuisances modeled on top
of the pure simulations of the Ly« forest. In real observations, a plethora of astrophysical
and instrumental systematics go hand in hand with the cosmological signal of interest.
These include, but are not limited to, instrumental noise and spectral resolution, sky
lines, uncertainties in the estimation of the intrinsic quasar continua, high column density
systems (HCDs), and intergalactic metal absorption (see, e.g., Karagayh et al. 2025a;,
for a discussion of systematics in the context of DESI). Each of these effects acts as a
contaminant to the Lya forest, potentially compromising the full constraining power of
the signal. They may add uncertainty to the data (thereby reducing inference precision)
and they may also bias the summary vectors (and thus the posterior distributions). With
a theoretical understanding of the impact of some of these effects (e.g. noise, resolution)
on some of the traditional summaries, their interference may be corrected, allowing us to
make the most of our contaminated datasets. For instance, noise in the Ly« forest spectra
adds a measurable bias to the power spectrum, and spectral resolution dampens the power
on small scales with a known kernel (see, e.g., Walther et al. 2018)). However, for inference
with machine-learned summaries such as LyaNNA, we lack such understanding.

In this work, we explore field-level inference with deep learning using contaminated
Lya forest datasets. In particular, we analyze the LyalNNA framework in the presence of
noise and limited spectral resolution—two of the strongest contaminants in spectroscopic
datasets —and investigate whether the same amount of improvement may be gained from
such observations as for pure simulations while inferring the amplitude and slope of the
power-law temperature density relation of the IGM. We retrained the pipeline described
in N24 with a range of signal-to-noise ratio values in the training data and an adapted
architecture to better process them. After an extensive hyperparameter search rooted in
Bayesian optimization, we trained a committee of 2200 NNs with the best performing
architecture for ensemble learning (Dietterich 2000). We built an emulator of our NN
compressed summary vector for likelihood-based inference as well as a Gaussian mixture
model (GMM) surrogate of the joint density of the NN summary and the true parameter
values for likelihood-free inference (LFI, see e.g. Grazian and Fan 2019 for a review)
and made comparisons between them. For a Gaussian likelihood case, we compared the
inference outcome of our machinery to that of the 1D power spectrum and the transmission
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PDF to assess the improvement of NN for noisy spectra.

We organize this paper as follows. In Section we describe the hydrodynamical sim-
ulations and the mock datasets we used for training our machinery, including the realistic
effects modeled. In Section we present a detailed overview of the NN machinery used in
this work. In Section we describe our approach to Bayesian inference with our machin-
ery including LFI. We show and discuss our results of using this framework in Section
with a comparison to some of the traditional statistics. We conclude with a summary of
this work and an outlook in Section [5.6

5.2 Simulations

5.2.1 Hydrodynamic simulations and mock spectra

For creating the mock Ly« forest spectra used in this work, we used a NYX cosmological
hydrodynamic simulation snapshot from the Lyssa suite described in Walther et al. (2025)
generated primarily for eBOSS and DESI Lya forest analyses. NYX is a hydrodynamics
code that simulates baryons as an ideal fluid on an Eulerian grid, gravitationally coupled
with N-body dark matter particles. In our simulation, initial conditions are generated
at z = 99 using second order Lagrangian perturbation theory. The gas is evolved by
solving the Euler equations using a second-order accurate scheme. NYX models all the
key physical processes affecting the IGM and hence the Ly« forest such as collisional and
photoionization, recombination, photoheating and cooling of the gas that has a primordial
composition of H and He (for more details see Almgren et al. [2013|and Lukié et al. 2015).
In our simulation, a spatially flat, time-varying ionizing ultraviolet background (UVB) was
applied following the late reionization model of Onorbe et al. (2017), and the radiative and
dielectric recombination, collisional ionization and cooling rates from Lukié¢ et al. (2015])
were used. Our snapshot has a comoving side length of 80 Mpc/h and contains 40963
volumetric cells (aka voxels) and dark matter particles. This snapshot is the “fiducial”
run from Walther et al. (2025) at z = 2.2 with the cosmological parameters based on
Planck Collaboration et al. (2020)), namely, A = 0.6732, Q,, = 0.3144, , = 0.0494,
Ag =2.101 x 1072, ny = 0.9660.

The diffuse IGM that constitutes the bulk of baryonic gas in the universe follows a
tight power law temperature-density relation (TDR) characterized by

T = To(pn/pu)" ", (5.1)

where T} is a temperature at the cosmic mean gas density p;, and ~ is the adiabatic power-
law index (Hui and Gnedin [1997). The fiducial values of these two parameters in our
snapshot are Ty = 10765 K and v = 1.57 (estimated by a linear least-squares fitting in the
range —0.5 < log,(pn/pp) < 0.5 and log,,(T/K) < 4).

We used an original PYTHON package called SYNTHE] for the generation of mock spec-
tra from the simulation snapshot that is different from the pipelines used by Lukié¢ et al.

ISynthesis of Transmission from Hydrodynamical simulations; https://github.com/par-nay /synth.


https://github.com/par-nay/synth
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Figure 5.1: The sample of training, validation, and test labels in our mock dataset along with the fiducial
TDR model in the (Tp,~) as well as the rescaled (Tp, ) space. The gray shaded region indicates our prior
for the likelihood analysis as well as for the density estimation likelihood free inference. The exact sampling
strategy is described in AppendixE}
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(2015) and Walther et al. (2025). We rescaled the gas temperatures at fixed densities as
a post-processing step to populate the (7,~y) parameter space—and account for the scat-
ter off the power law relation—for creating labeled datasets for our supervised learning
framework, same as N24. We also applied a rescaling to our parameter labels Ty — T, and
v — 7, similar to N24—such that Ty and 7 have the same dynamic range—for ensuring
numerical stability during NN training. We sampled the training set, a validation set for
hyperparameter tuning, and a smaller test set in the joint # = (T 0,7) space, all using
Sobol” sequences (Sobol’ [1967)). The training set contains 256 distinct parameter labels,
the validation set 32, and the test set 16. For each of these labels, we produced 100,000
spectra (from the same 100,000 physical skewer positions across labels) for various train-
ing and testing purposes using the exact same procedure as in N24. shows a
scatter of our training, validation, and test labels. We describe the sampling strategy in
more detail in Appendix . We rescaled all the optical depth 7 with a constant factor (per
distinct thermal model) determined by a linear least-squares fitting in order to match the
resulting mean transmission with its observed value of Fobs(z = 2.2) = 0.86 as measured

by Becker et al. (2013)).

5.2.2 Spectral resolution and noise

We applied a Gaussian filter in Fourier space to our spectra corresponding to a spectro-
scopic resolving power of Rpwan = A/ Adpwam = ¢/ (20,v/210g2) = 6000 with the kernel
Ri = exp(—k*02/2). We additionally applied a Heaviside step function kernel to null the
Fourier modes k > k*, k* ~ 0.094 s/km corresponding to spectra observable with, e.g.,
VLT /XSHOOTER. We then rebinned the spectra (in real space) with a 16-pixel average
to have the final spectrum size of Npixes = 256 and each pixel of size Av, = 32.37 km/s.

In this work we consider a simple model of homoscedasticﬂ Gaussian noise in our spectra,
F=F+e¢ e~N(0;0,). (We note that ¢, may vary across spectra in our datasets.) We
consider a range of continuum-to-noise ratio (CNR) values between 10 and 500 per 6 km/s,
with a uniform prior distribution. This range encompasses the noise levels typical of TPS
measurements from targeted quasar samples (e.g., Irsi¢ et al. 2017a; Walther et al. 2019).
In the Poisson photon counting limit, the noise level o, = 044/6/Av, and o6 = 1/CNRg,
where g and CNRg correspond to the values for a pixel of size 6 km/s. We note that
logo, € [—7.06,—3.14].

5.2.3 Traditional summary statistics

We consider two widely used traditional summary statistics of the Ly« forest, the trans-
mission power spectrum (TPS) and the transmission PDF (TPDF). We perform individual
and joint analyses of these statistics with noise and spectral resolution effects taken into
account and obtain posterior constraints on the parameters (7p,y) for comparison with
our NN machinery.

2The noise level on our pixels o}, is fixed within each spectrum.
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The TPS is defined as the variance of the Fourier modes of the transmission contrast
field, 5p(k), properly normalized. We first measured the TPS from low resolution, noisy
spectra (called I@’mw) and then applied the following corrections to obtain an estimate ]fbpure
of the pure TPS Ppyye,

~ ~

]P)raw - IEDnoise

]:P)pure(k) = Wsz Y (5.2)
where the noise power spectrum ]@)noise is measured from 10° random realizations of the
noise vector with a known noise level and Wy, = sin(kAv,,/2)/(kAv,/2) is the pixel window

function. Since we cut off the modes k& > k*, the summary vector Py is of size 122.
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Figure 5.2: Traditional summary statistics (TPS on the left, TPDF on the right) estimated for the
fiducial thermal state of our simulation box and with the mean transmission fixed to its observed value.
The raw estimators correspond to a noise level of CNRg = 30 (0, = 0.014). The corresponding pure
statistics are computed from 100,000 noiseless spectra (with infinite spectral resolution in TPS, with a
resolution Rpwmv = 6000 for TPDF). The errors correspond to Ny = 100 spectra. The gray regions in
TPDF correspond to our cuts due to edge effects in the deconvolved estimator.

We estimate the TPDF from noisy spectra in the following way. We first compute the
PDF p,ay of the noisy F as a histogram per spectrum in equal width bins (AF = 0.02) in the
range —0.1 < F' < 1.1, which is a convolution of the pure PDF Ppure A Proise = N(0; 07p).
It is normalized so that [*°_ p(F)dF = 1. We then perform Wiener deconvolution (Wiener
Of Praw and puoise t0 Obtain an estimate of the pure PDF, pyue. Wiener deconvolution
aims to estimate a filter G in the Fourier space such that

N*
. R .

P ure — . Praw = —Prawy 5.3
pure = & INT? + o

where P, G, N are quantities in Fourier space and 7 is a regularization parameter that we
tune empirically to 1072 to suppress numerical noise amplification. Finally, we crop the
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Figure 5.3: The full correlation matrices of the concatenated summary vector for four different
noise levels. The TPS is the corrected vector I@’pure with 122 k-modes and the TPDF is the
deconvolved, cropped ppure With 45 bins. For each of the four matrices, the two blocks on the
principal diagonal are the individual correlation matrices of TPS (top left) and TPDF (bottom
right) and the other two blocks show the cross correlation of TPS and TPDF. The different blocks
have been resized differently to have an equal area on the plot.

PDF to the range F' € [0.02,0.92] for removing edge effects such that the final p,.,e vector
contains 45 bins.

In we show our estimates of the TPS (left) and TPDF (right) for our fiducial
thermal model and for CNRg = 30. For the joint analysis of TPS and TPDF we concatenate
the two corrected vectors to have a full summary vector of size 167. We show the full
correlation matrices of this joint summary vector (corrected) for four different noise levels
in [Figure 5.3 For a high noise level of CNRg = 30, a significant (anti-)correlation among
closeby F' bins in the TPDF can be seen. This is potentially a result of numerical side
effects introduced by the deconvolution with a wide noise PDF. The cross correlations
between TPS and TPDF, although mild for all noise levels, are important to account for
in the likelihood analysis as found by C25.

5.3 NN machinery

5.3.1 Architecture

Our machinery is based on a 1D ResNet (He et al. 2015a) convolutional architecture. Over
a sequence of six residual blocks similar to the ones in N24, useful features are extracted
from noisy input spectra and turned into a flattened feature vector. The (rescaledED value
of o, is concatenated with this vector as a query component and it is then fed into a
multilayer perceptron (MLP) of one nonlinear hidden layer with Nq = 85 dense nodes
and the final linear output layer of 5 nodes for the summary point estimates and the
independent components of their covariance matrix. We build this architecture using
TENSORFLOW/KERAS and name it NSANSA. It contains 344,952 trainable parameters.

3For ensuring numerical stability during training, we use 6}, := (2log o}, + 10)/5 here.
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Figure 5.4: Architecture of NSANSA. An input spectrum of size 256 pixels is fed into the network that
contains a total of 6 residual blocks and extracts useful features from the field. Batch normalization and
dropout are used for regularization and average pooling is used for downsampling. The output of the
residual part is flattened, concatenated with the o}, query, and then fed into a hidden nonlinear layer with
Ng units. Finally, a linear layer with 5 nodes (2 for the summary vector, 3 for its covariance) acts as the
output layer.

We also trained an architecture without the o, query and a different number of hidden
units (Nq = 100) in the dense nonlinear layer but otherwise identical to NSANSA. The
detailed architecture of NSANSA is shown in

We incorporated various regularization techniques into NSANSA for promoting gen-
eralization (avoiding overfitting to the training set). These are namely, dropout, batch
normalization, and L2 kernel- and weight-decay. We used a dropout of p; = 8.59 x 1073
after each residual block (except the last) and p, = 8.63 x 1072 after the single hidden layer
in the MLP (values defined in KERAS terms). All the convolutional layers in the residual
part of the architecture feature a kernel decay with 5™ = 6.61 x 1077 and the hidden
layer in the MLP features a weight decay with [5"¢ = 5.14 x 107%. The convolutions have
a stride of 2 pixels in the first two residual blocks and a stride of 1 in the rest of them.

5.3.2 Training

We use the training and validation sets as described in Section [5.2] for training our machine
in a supervised way. We use 20,000 spectra per label for training and validation (with fixed
skewer positions across labels, different for the two datasets). We additionally augment
the training set on the fly with random cyclic permutations and flipping of the spectra as
well as randomly drawn noise realizations with properties described in Section We
do not augment the validation set, and we add a fixed set of noise realizations to it (that
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Figure 5.5: An example of typical learning curves of the NSANSA architecture. The gray band in the
x? panel indicates our tolerance of € = 0.05. Here the minimum of the validation loss is reached at epoch
j* =540 and the y? is simultaneously within our tolerance.

is not varied on the fly), because we would like to compare the state of the network at
different epochs of training with the same set of unseen spectra.

The training was performed by minimizing the negative log-likelihood loss (NL3) func-
tion of the point predictions w.r.t. the true labels,

£(7) = log|S] + . (5.4)

with y2 = (7 — 7)X (7 — &)7, where [A] are the (rescaled) parameter labels and [] are
quantities output by NSANSA. We used the Adam optimizer (Kingma and Ba for
this purpose with a fixed learning rate of & = 5 x 107%. The Adam moments parameters
assumed the values 5; = 0.885 and [, = 0.999.

We monitor three metrics during training besides the loss value, namely, x2, log |3,
and MSE = (7 — #)(# — «)”. For a meaningful estimation of ¥ by NSANSA we expect
the average of x? over the training and the validation sets to converge to Nparams = 2
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as the quality of the network inference improves over the course of training.
shows an example of the learning curves for NSANSA. Indeed, x? quickly converges to 2
for the training set and for the validation set it fluctuates close to 2 with slow overall rise.
The improvement in the network’s state is therefore largely attributed to the minimization
of log |f]| or the network’s uncertainty in its predictions and of the scatter of the point
predictions for any underlying true label. The validation loss L, improves over the course
of the first few hundred epochs and starts getting worse after ~ 600 epochs, implying
overfitting to the training set. We deem the network to have the best possible state for
the given hyperparameter set at the epoch j7* at which the validation loss is minimal,
L. = LF,), and simultaneously |x** — 2| < e = 0.05.

We performed a Bayesian optimization for tuning the values of the hyperparameters
Ny, 15779 p 5, and Adam B. This procedure is discussed in detail in Appendix .

5.3.3 Ensemble learning

NNs are stochastic processes with a large degree of freedom. The choice of hyperparame-
ters, initial weights, random batching of the training data are some of the primary factors
that affect the optimal weights of the fully trained machine. In such a scenario, in order to
get the best outcome of the infrastructure, we use ensemble learning, which is a powerful
tool in machine learning (see, e.g., Dietterich 2000). After finding a set of optimal hyper-
parameters, we train a committee of 2200 NNs with varying initial weights and on-the-fly
stochasticity. We then employ bootstrap aggregation (“bagging,” Breiman 2004) to com-

bine the individual network predictions in form of an averaging weighted by 1/ \/a . The
bagged results of the committee are expected to be statistically more stable than individ-
ual networks w.r.t. variations in the input vectors. In the following, the predictions of the
machine are assumed to be the bagged results of the committee unless otherwise specified.

5.4 Inference

Our model NSANSA acts as a compression of the data into optimal summary statistics of the
same size as the number of parameters, Npaams = 2. The resulting summary vector S can
be used to infer the parameters (7,~y). We explore two different methods for estimating
the posterior constraints with NSANSA in this work: (i) Gaussian likelihood analysis and
(ii) density estimation likelihood free inference (DELFI).

5.4.1 Gaussian likelihood

In the likelihood case, we chose a multivariate Gaussian likelihood function of the NN-
compressed summary vector S (as well as the traditional summaries TPS, TPDF and their
combination) of the form

(Sn, — w)Cn, 1 (Sy, — p)”
2 b)

1
log Ly, () ~ —§1og |Cn.| + (5.5)
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where N refers to the number of sight lines the amount of information corresponds to, C
is the covariance matrix of S, S refers to the average summary vector for any given input
data, and p = p(m;0,) is our model (emulator) for this summary statistic.

We built an emulator of the NSANSA statistic with a linear interpolation in the 3D space
of (7, 0,) using the mean predictions of NSANSA from 20,000 previously unseen spectra
per distinct 7t of the joint training and validation sets. (These correspond to the same
skewer positions as those used for validation.) For the traditional summaries we created
emulators via cubic spline interpolation of k-modes (for TPS) and F bins (for TPDF)
independently using the respective pure estimators over the training labels, computed
using 100,000 spectra per label.

We compute the necessary covariance matrices via bootstrapping in the following way.
We estimate mean summary vectors {s;} over mutually exclusive subsets of size Ny, = 100,
exhausting the underlying test set (described in more detail in Section. We then repeat
this stratified subsampling 1,000 times by introducing randomness in selecting the subsets.
The covariance is then estimated by

- .
C. = mZ(si —5)T(s; — 8), (5.6)

i=1

where N is the total number of subsets and s is the global mean summary vector. The
errors thus correspond to the information content of Ny = 100 spectra (or equivalently a
Lya forest of length 8 ¢cGpc/h).

5.4.2 Density estimation likelihood free inference (DELFT)

LFI, as the name indicates, gets rid of any assumptions about the form of the likelihood
function for Bayesian inference. In this work we employed a popular approach to LFTI,
namely, density estimation likelihood free inference (DELFT; e.g., Alsing et al. 2018) with
NSANSA. (It is important to note that we do not perform DELFI with the traditional
summaries here.) The posterior is expressed in terms of the joint distribution of summary
vectors and parameters evaluated at the summary values of the underlying data,

p(mld = d,) x p(d.|7)p(7) = Pjoint (7, d)‘d:d*. (5.7)

We use a Gaussian mixture model (GMM) as a surrogate for the estimation of the joint
density pjoint(7,d). We treat o, of each spectrum as part of the data vector such that
d:= (S’ ,0p). Hence, the size of the joint vector for density estimation, (m,d), is 5. We
created a large dataset for training the GMM surrogate as follows. We first selected all the
training and validation labels within our prior range (as indicated by the gray region in
amounting to 177 and obtained NSANSA predictions for 10,000 spectra per label
in that joint set (a subset of those used for covariance estimation in the Gaussian likelihood
case). We iterated this procedure for 19 different values of CNRg linearly spaced between
20 and 200. For each distinct CNRg, we generated a large set of mean summary vectors
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over subsets of Ny = 100 spectra with 1,000 repetitions of the stratified subsampling as
described in Section [5.4.1], thus completing the GMM training set generation. The size of
this dataset is 336,300,000 joint (7, d) vectors.

We used the PYTHON package SCIKIT-LEARN for fitting the GMM surrogate, with a
regularization factor of 107° added to the diagonal of the component covariance matrices to
ensure numerical sanity, stability, and prevent overfitting, the latter of which was asserted
through a convergence analysis. We fit 30 GMMs through our collective dataset, each with
a unique number of mixture components K = 1 through 30. Based on the results of this
convergence analysis, we empirically chose the GMM surrogate with K = 23 for inference

with DELFI.
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Figure 5.6: A comparison of posterior constraints on (w — 7r)/# using NSANSA likelihood among 16
different test « models and the fiducial model for four different noise levels. For the test models only the
95% credibility contours are shown, whereas for the fiducial model the 68% and 95% credibility contours
are shown. For all of them the posterior means are also shown with crosses of the corresponding colors.
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Figure 5.7: The ratio of the FoM between the test models and the fiducial model against the noise level
for the NSANSA likelihood.
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Figure 5.8: A comparison of NSANSA Gaussian likelihood analysis and DELFT in terms of posterior
constraints on (w — @) /7 for the fiducial TDR model (top) and a test model (bottom) for four different
noise levels. In each case, a cross marker of the corresponding color indicates the posterior mean. For
DELFI, a GMM of K = 23 components was used to estimate the joint (7, d) density.
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Figure 5.9: Posterior FoM (top) and §x? (bottom) against CNR for NSANSA and an equivalent archi-
tecture without the o}, query, compared to the TPS, TPDF and joint TPS+TPDF constraints for the
fiducial thermal model. All values correspond to the Gaussian likelihood inference. The violins show the
distributions of the metrics of the individual members of the ensemble(s).

5.5 Results and discussion

We performed tests of our machinery for a set of different noise levels and determined the
behavior of the inference outcome w.r.t. CNR. Our full test dataset contains 10,000 spectra
from each of the 16 test models (labels) described in Section as well as the fiducial
thermal model. These spectra are generated using a completely different set of skewers
than those used for training, validation, and model-building. We additionally sampled
19 linearly spaced CNRg values between 20 and 200 in total for various test purpose

For each distinct value of CNRg in our sample, we added homoscedastic Gaussian noise
with the corresponding o, to the test spectra, all with random independent phases across
pixels, spectra, and labels. We then fed those into NSANSA and obtained a set of (bagged)

4This is a subset of the full range of CNRg used during training to ensure that tests fall well inside our
training prior boundaries.
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Figure 5.10: Posterior constraints on (w — ) /7 using NSANSA for four different noise levels compared to
the constraints by TPS and TPS+TPDF. A Gaussian likelihood was used for inference in all these cases.

predictions that we treat as summary vectors and performed Bayesian inference with them,
with a Gaussian likelihood as well as DELFI. For a comparison, we also performed inference
with the TPS and TPDF (combined) estimated with the same set of test spectra for all the
sampled noise levels. In each case, we sampled from the posterior distribution of (7w —) /7
using MCMC with affine invariant samplingﬂ

We characterize the precision and accuracy of our posterior constraints using the fol-
lowing two metrics:

(i) We employ the reciprocal of the contour size as our figure of merit (FoM) of the
posterior precision, such that

FoM 1= 1/|Cpos| "/ perams, (5.8)

where the covariance C,os is estimated from the posterior MCMC sample. A larger
FoM implies tighter constraints.

(i) We quantify the accuracy of our constraints with a reduced x? metric,

0x7 = (X*)/ Nparams — 1, (5.9)

where y? = (7 — 7)C oy (m — @) and the average is taken over the MCMC posterior

sample. A §x? of 0 implies that the mean of the posterior exactly recovers the truth
and dx? of 2 implies that the truth is 20 away from the mean of the posterior.

We first show a comparison of the posterior constraints using the NSANSA likelihood
for all the 16 test labels 7 as well as the fiducial model for four different noise levels in
Figure 5.6, The contours for all the test models (except three models at the edges of
our prior) show a statistically similar behavior, lending credibility to the claim that the
performance of NSANSA is stable across our prior in (7, 0p,). This is further evidenced

Performed using the PYTHON package emcee, https://emcee.readthedocs.io.
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by the ratios of the FoM between those test models and the fiducial model as shown in

We then compare the NSANSA posterior constraints between the likelihood and the
DELFTI cases in The top panel thereof shows the posterior contours for our
fiducial thermal model and the bottom panel a test model of the 16. The contours in
the two cases agree with each other to an excellent degree for both the models at most
noise levels shown. The DELFI precision evolves with the CNR very similarly to the
likelihood case and the DELFT contours only exhibit a marginally non-Gaussian behavior
at CNRg = 30. This demonstrates that a Gaussian function is a reasonable approximation
of the likelihood for NSANSA over the entire prior range considered in this work.

In we show our posterior metrics against noise level for NSANSA as well as
the traditional summary statistics considered in this work, and in we show the
posterior constraints for the fiducial model for four different noise levels using NSANSA as
well as the TPS and TPS+TPDF. This comparison is for our fiducial thermal model and
the Gaussian likelihood case for all the summaries. At all noise levels the constraints by
NSANSA are more precise and more accurate than the traditional summaries and the boost
in precision increases gradually with the CNR. In particular, the NSANSA FoM is 1.65 times
larger than the TPS+TPDF case at CNRg = 20 and 2.12 times larger at CNRg = 200.
At CNRg > 100, the original architecture with a o,-query performs slightly better than
its non-query counterpart in terms of precision for the bagged results of the ensemble. At
all CNR the FoM distribution of the ensemble with the query generally centers around
higher FoM than the non-query ensemble. All members in the query ensemble have a
higher FoM than the TPS+TPDF combination, whereas for the non-query ensemble a
tail extends to lower FoM, rendering it an inefficient architecture to be used standalone
(without ensembles). Tt is also noteworthy that in our findings the best-performing member
of a committee at one noise level is not necessarily so at another, further raising the issue of
stability of the inference using a single member network. Nonetheless, the bagged results
of the non-query version are especially interesting since, unlike its query counterpart or the
traditional summaries, no information of the underlying noise level needs to be supplied
whatsoever.

5.6 Conclusion and outlook

We extended the proof-of-concept analysis of N24 by incorporating certain real-world nui-
sance effects in the Lya forest observations to make a deep learning field-level inference
pipeline such as LyaNN A more reliable for actual data. Namely, we studied the impact of
instrumental noise in the spectra on the precision and accuracy of the NN inference. We
constructed a 1D ResNet convolutional architecture called NSANSA to recover the power
law TDR parameters (Tp,~y) of the IGM from medium resolution, noisy Ly« forest data
akin to Lopez et al. (2016). We trained this machinery with a large set of labeled mock
spectra generated from hydrodynamical simulations, including a range of noise levels char-
acteristic of targeted, individual spectroscopic observations. We performed an extensive
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hyperparameter tuning based on Bayesian optimization using a completely disjoint valida-
tion set and thereafter trained a committee of 2200 networks with the best hyperparameter
values for ensuring statistical stability of the results via ensemble learning. The resultant
pipeline can be treated as an optimal compression of the Lya transmission field into a
summary statistic that is degenerate with the target parameters of interest.

We performed Bayesian inference with NSANSA using a Gaussian likelihood (as is com-
mon practice) as well as without any assumptions of the form of the likelihood. In the
latter case we estimated the joint density of the parameters (labels) and the NN-compressed
summaries via a GMM surrogate for DELFI. Finally, we conducted a detailed investiga-
tion of this inference framework with a previously unseen realistic mock test dataset and
characterized its behavior with varying noise levels on the spectra. When compared to tra-
ditional summary statistics of the field such as TPS and TPDF—each of them having been
corrected for noise—our machinery exhibits enhanced precision and accuracy of inference,
which suggests that it can extract useful non-Gaussian features of the transmission field
that are not captured by the traditional summaries even when they are buried under noise.

We compared the Gaussian likelihood inference and DELFI against each other for
NSANSA to draw interesting conclusions about the NN-compressed summary statistic. The
posterior precision for the two is comparable in the case of a GMM with 23 mixture
components for DELFT and only mild deviations from a Gaussian posterior appear. In light
of the computational resources required to build a 5D surrogate density and the eventual
time of running MCMC with it, a Gaussian (distribution) can be regarded as a reasonable
approximation of the form of likelihood for NSANSA. We discourage a comparison of
NSANSA DELFI with the constraints of traditional summaries (TPS+TPDF) performed
in this work at this point, since an equivalent likelihood-free inference framework for the
latter is lacking as of yet, and we motivate future research in this direction to address the
compatibility of simpler likelihood assumptions for TPS and TPDF.

It is instructive to note that the improvement in posterior precision over TPS+TPDF
we found in this work (over the whole CNRg range studied) is not as large as in the pure,
noise-free case of N24. This could partially stem from the fact that the traditional summary
vectors are corrected for noise using known analytical properties (a subtraction of noise
power for the TPS and a deconvolution of the noise PDF for the TPDF). On the other
hand, supplying the information of o}, in the NSANSA workflow via a query only leads to
a marginal gain in precision—only at high CNR—over an equivalent pipeline without the
said query, signaling to the inability of the NSANSA architecture to meaningfully utilize
this auxiliary information of the noise level. Further investigation may potentially reveal
alternative ways to account for this information into a field-level inference pipeline to yield
a correction of the similar degree as for the human defined summaries.

Moreover, in this work we focused solely on two realistic nuisance effects, namely noise
and spectral resolution. While relatively straightforward to handle with traditional sum-
maries, they are two of the biggest concerns for spectrum-based inference from targeted
spectroscopic observations of quasars and thus merit a methodological investigation such
as this into the usefulness of inference with deep learning. However, they are accompanied
by a set of other modeling and physical systematic effects, especially in large cosmological
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survey datasets. These are, for instance, quasar continuum fitting uncertainties, metal
absorption lines, damped Ly« absorbers (DLAs), etc. These must be adequately incorpo-
rated into the next generation field-level frameworks for robust and reliable inference with
large real-world datasets using artificial intelligence.
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Chapter 6

Conclusion and future directions

6.1 Summary

The unique absorption feature in the spectra of distant quasars, aptly named the Ly«
forest, is one of the most powerful probes of cosmic physics at play over a wide range
of scales. Not only is it a notable independent tracer of the BAO scale, it also provides
valuable insights into the thermal state of the IGM and the cosmic reionization. Classi-
cally, analytically well-defined summary statistics, e.g., the 1D power spectrum of the Ly«
transmission, have almost exclusively been used to constrain the values of cosmological
and astrophysical parameters of interest from this signal. However, the transmission field
has an inherently highly non-Gaussian PDF, rendering such statistics inefficient for encod-
ing the full information. In the age of large spectroscopic surveys delivering humongous
amounts of cosmological data, this has become a pressing problem.

This thesis, in some ways, is a systematic study of the lost information content while
using traditional human-defined statistics and efficient ways to recover it responsibly. In
other ways, it sets the stage for the upcoming generation of data analysis and inference
techniques for the Lya forest, namely the field-level inference or the simulation-based
inference.

Artificial intelligence, in particular deep learning, was identified as a promising yet rel-
atively unexplored avenue for field-level inference with the Ly« forest at the beginning of
this research endeavor. It indeed offered a natural way of encoding highly stochastic non-
Gaussian Lya forest data with the aim of performing Bayesian inference, inspired by the
recent, encouraging progress made in neighboring fields, e.g., weak gravitational lensing.
We proposed to use labeled mock Ly« forest data sourced by giant cosmological hydrody-
namic simulations to train those neural network architectures in a supervised fashion. It
was thus imperative to ensure the accuracy and fidelity of those Ly« forest mocks before
using them for training. In this thesis, I started with the task of mock data production
and quality assurance. I then trained and built a deep learning framework for field-level
inference from pure simulations as a proof of concept (PoC), and afterwards investigated
the applicability and robustness of that framework in the presence of some unavoidable
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data contaminants in real observations.

Mock data generation

In Chapter [3|I present a detailed analysis of the current state-of-the-art methods for creat-
ing mock Ly« forest datasets from cosmological hydrodynamic simulations. Popular tools
for this purpose incorporate various assumptions into the workflow with the intention of
reducing the computational cost. They lead to approximations that have not thus far
been justified with adequate evidence. I dissected those approximations and methodically
examined their applicability in different cosmological regimes. Based on my findings I
recommended—and adopted myself—an optimal course through the multitude of approx-
imate techniques for the production of accurate mock training datasets.

Proof-of-concept NN inference

It was instructive to first investigate the usefulness of deep learning for field-level inference
and the improvement in inference outcomes by using such methods over the traditional
statistics, in the scenario of pure, uncontaminated Ly« forest signals. This would provide
a conceptual proof that neural networks may be employed to optimally extract relevant
information from the underlying field that is not accessible to most commonly used tradi-
tional summaries. In Chapter [4] I reproduce the contents of the peer-reviewed research I
led, Nayak et al. (2024)), that demonstrated not only that the neural networks can extract
information from the field beyond the 1D power spectrum and the PDF of the transmission,
but also that for uncontaminated spectra the gain in inference precision can be factors-of-
a-few over those summary statistics. In Chang et al. (2025) we found further evidence in
support of those claims.

Increased realism in the data

In light of the extremely promising findings of the PoC analysis, the most natural step for-
ward was to adapt this new framework for inference with real world datasets that contain a
myriad of instrumental and physical systematic effects. Instrumental noise and resolution,
quasar continuum estimation uncertainty, intergalactic metal absorption, and high column
density (HCD) absorbers are some examples of those contaminating agents. They have the
adverse effect of compromising the constraining power of the Ly« transmission field and
introducing biases in our posterior constraints. In a particular instance, the impact of noise
on the 1D power spectrum and the PDF of the Lya transmission is analytically tractable
and remediable, however, such understanding in the context of field-level inference is hith-
erto lacking. In Chapter [5] I reproduce the contents of another manuscript submitted for
peer review, Nayak et al. (2025)), that presents an analysis of our deep learning framework
for noisy, medium resolution Ly« forest spectra and a characterization of the impact of
the varying noise level in the data on the posterior constraints. We found that our ma-
chinery outperforms the traditional summary statistics under consideration even in the
presence of noise, however, the gain in inference precision is not to the same degree as for
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uncontaminated spectra. We substantiated these results by observing that no tractable
correction is applied to the compressed summary vectors of our neural network as opposed
to the 1D power spectrum or the PDF. We also performed likelihood-free inference (LFT)
with our machinery via estimating the joint density of the NN summaries and parameter
labels, similar to Alsing et al. (2018). We found that the posterior contours in the LFT case
agree closely with those in a Gaussian likelihood inference scenario, indicating that the NN
summary vectors are statistically well behaved. The findings of this study are indeed quite
promising for the future of field-level inference with real-world Ly« forest data.

6.2 Outlook

Data systematics

This thesis paves a path to the next-generation inference techniques involving artificial
intelligence with the Lya forest from large cosmological surveys. As such it demonstrates
the potential of neural networks to encode the relevant information of the field for inference,
both in principle and practice, as an alternative to a lossy compression the traditional
summaries offer. However, in order to be able to apply it to real observations, a handful of
other systematic effects must also be accounted for in the training process. In the following
I speculate potential ways to address a few of the most important systematics in a future
work, and certain caveats to those.

« In Nayak et al. (2025) we addressed the noise and spectral resolution in the spectra.
Although we varied the noise level, we kept the spectral resolution fixed, which is
characteristic of a single spectroscopic instrument with known noise properties. The
framework may not, however, be directly applied to data observed with a different
instrument with a different resolution. One could account for a range of different
resolutions similar to the noise level in the training data, and potentially marginalize
over this uncertainty, or supply the known value of the resolving power R = A/AM\ as
a query to the network. In either scenario, the spectra must be sampled conforming
to the Nyquist limit, which would then imply varying pixel and spectrum sizes in the
training data and the network architecture must, in turn, be adapted for this.

 Dealing with HCD systems such as the Damped Lya absorbers (DLA) is relatively
easier with neural networks, as it is with traditional summary statistics. For most
cosmological applications, spectra containing HCDs may be identified with a reli-
able tool (e.g., Parks et al. 2018; Wang et al. 2022al) and simply be omitted during
inference.

» Intergalactic metal lines often blend together with the Ly« forest and are practically
impossible to separate, unlike HCDs. A field level machinery could potentially see
this as an enhancement of the Lya absorption along a line of sight and could pro-
duce biased inference results. With a model of intergalactic metal composition, this
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process may also be mocked up in the training data. A neural network might learn
to apply an offset to the compressed summaries such that the posterior distributions
are unbiased. The reliability of this, however, rests in the fidelity of the model of
intergalactic metal composition.

o A misestimation of the true quasar continuum generally introduces large scale (small
k) envelope modulations to the overall amplitude of a Ly« forest transmission spec-
trum. While training a neural network, this process may be simulated as follows.
A mock quasar continuum may first be applied to an individual transmission (F')
spectrum and then this quasar-forest composite may be fed to a continuum predic-
tion/fitting pipeline (such as Turner et al. 2024) that estimates a new continuum that
may be different from the original one. For training a machine to properly recognize
this systematic, it would be imperative to repeat this process randomly on the fly, by
shuffling the true (mock) continua and the eventual continuum extraction scheme.
However, this not only compounds the dimensionality of the problem, it also makes
the training incredibly slow by the current best estimates.

A wider scope of application

In this thesis, I have exclusively focused on constraining the two parameters (7, ) of the
power-law temperature density relation of the IGM at z ~ 2.2. As such this neural network
summary is uniquely sensitive to those parameters and is not useful for constraining other
parameters of interest, as opposed to traditional summaries. Thus, such a field-level neural
network, in principle, needs to be retrained for every new parameter we would like to infer
with it. Heuristically, a ResNet architecture such as ours would learn the characteristic
features of the data in the first few layers and then connect the relevant features to the
parameter labels deeper on. This provides hope for the usefulness of techniques such as
transfer learning and domain adaptation for downscaling the retraining problem.

Another potential issue while creating a NN for inference of cosmological parameters
in particular is the sparsity of the training labels. In this thesis I used a post-processing
technique to populate the (7p, ) parameter space using the same hydrodynamic simulation
box. However, in order to populate the cosmological parameter space, new hydrodynamic
simulations must be run with the labels sampled, which is many orders of magnitude more
expensive than our post-processing. Existing suites such as Lyssa (Walther et al. 2025
populate the space of cosmological parameters too sparsely for a meaningful NN training.
A potential remedy to this could in turn be generative AI models as lightweight field-level
emulators of the hydrodynamic simulators. In this context, I refer the reader to Section
in particular the discussion of recent advances in Al applications in cosmology.

Interpretability

One of the biggest pitfalls of deep learning perhaps is its black box nature. Indeed, for this
sole reason, faster and less expensive deep learning alternatives to traditional methods,
including those of parameter inference, have not yet fully become the state of the art. This
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healthy skepticism, however, keeps the booming research in Al applications to cosmology
in check. It encourages a spirit of developing Al models that are interpretable at least
up to a certain degree. In this thesis, I have not been able to touch upon this aspect
of the framework. Besides its demonstrable prowess of optimal information extraction, it
must also be made more interpretable if it is to shift the paradigm of Bayesian inference
in cosmology. For this purpose, approaches such as saliency analysis may be adopted that
attempt to learn the sensitivity of the extracted features (and eventual outputs) by the
trained networks to small changes in the input data vectors.
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Appendix A

An approximate lightcone model

This appendiz corresponds to Chapter [{.

Due to unavailability of lightcone simulations, our skewers come entirely from a single cos-
mic epoch (snapshot) and do not capture any evolution of underlying hydrodynamic fields
along the LOS. Consequently the spectra carry this modeling uncertainty. However, we
implemented an approximate model of lightcone evolution for testing our machinery, by
interpolating certain physical quantities among close-by snapshots (in z). For four snap-
shots at z ~ 2.0, 2.2, 2.4, and 2.6, we estimated the true underlying TDR parameters (see
Figure A.1) and then linearly interpolated them to obtain Ty(z) and 7(z). The redshift
span of our skewers is Az ~ 0.1. Assuming the centers of our skewers at z ~ 2.2, we
rescaled all the skewer temperatures according to the interpolated lightcone TDR for non-
lightcone py,/p, (with the same procedure for sampling in the parameter space described
in Section [£.2.1)).

Additionally, we incorporated the overall evolution of the mean Lya transmission
through rescaling 7 at the pixel level as follows. We first estimated 7e(2) = —log FF
along our skewers from Becker et al. 2013/ and then rescaled all the nonlightcone optical
depth values as 79(z) — Tie(2) = Terr(2)/Teri(z = 2.2) - 79(2) to eventually obtain mock
Lya transmission spectra. shows the fractional variation in the TDR parame-
ters and the Lya transmission across our skewers according to this approximate lightcone

______ al 160
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Figure A.1: TDR parameters at four different redshifts; a generally smooth, linear variation can be seen
in both Ty and ~.
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Figure A.2: Percentage variations in the TDR parameters and the Ly« transmission in our approximate
lightcone model for the redshift span of our skewers.
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Figure A.3: Comparison of posterior contours between the original (snapshot) and approximate lightcone
model test cases. Both carry information equivalent to 100 skewers. A mean (expectation) value of the
posterior distributions are also shown with crosses of the corresponding colors. In both the cases, statisti-
cally inter-consistent posterior distributions are obtained, recovering the fiducial TDR of the snapshot.
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Table A.1: Comparison metric values for the original (snapshot) and approximate lightcone test cases
for SANSA (for information equivalent to 100 spectra).

Test set 6x? FoM / FoM(orig.)
Snapshot (orig.) 0.002 - -
Lightcone 0.008 1.001

model. A maximum of < 1.5% deviation in Ty and < 0.4% in v can be seen. In F, there
is a maximum of < 2.6% variation across the redshift span of the skewers. We followed
the above procedure for generating 4,000 lightcone spectra with the same 4,000 physical
skewers as the “original” test case (Section [4.4).

With these 4,000 lightcone spectra, we performed inference with SANSA; see the poste-
rior constraints in[Figure A.3] We expect SANSA to be able to recover a “mean” TDR along
the skewers, that is, the thermal parameters at the centers of the skewers, To = 10104.15
K and 4 = 1.58 (the fiducial values). The metrics for the lightcone and the original test

cases are compared in [Table A.1}
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Appendix B

Orthogonal basis of the parameters

This appendiz corresponds to Chapter [].

Heuristically, the training of the network is most efficient when our training sample captures
the most characteristic variations in the data with respect to the two parameters of interest,
Ty and «y. Indeed, as found by many previous analyses (e.g., Walther et al. [2019)), there
appears to be an axis of degeneracy in the said parameter space given by the orientation of
the elongated posterior contours. This presented us with an alternative parametrization of
the space accessible via an orthogonalization of a parameter covariance matrix. By doing
a mock likelihood analysis with a linear interpolation emulator of the TPS on a preexisting
grid of thermal models, we first obtained a (rescaled) parameter covariance matrix C and
then diagonalized that such that A = VICV is a 2 x 2 diagonal matrix (V symmetric).
An “orthogonal” representation of the parameters was then found by a change of basis,

AT =vrl, (B.1)

where A = (a, ) and ® = (T, 7). In the above definition, § represents the degeneracy
direction in the 7 parameters and « corresponds to the axis of the most characteristic
deviation. Thence, we sampled the parameter space for training with an 11x11 regular
grid in the orthogonal parameter space.
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Appendix C

Biases due to a limited prior range

This appendiz corresponds to Chapter [{].

After a cursory network training we observed that when the true labels fall close to
the edges of our prior range set by the training sample as shown in [Figure 4.4] the mean
network predictions are biased toward the center of that space. We also found that in
the central region of our prior space, all the network predictions are roughly Gaussian
distributed but closer to the edges of that prior they are more skewed, that is, the mode
of the distribution is closer to the ground truth than the median. To regularize this, we
sampled an extended, sparser grid of thermal models along the degeneracy direction 5 (in
which SANSA provides weaker constraints), to augment our training dataset as shown in
[Figure C.1] After retraining SANSA on this extended grid, we observed that a (quantifiable)
bias still exists but the predictions have mostly Gaussianized. The mean point
predictions for each of the thermal models on the original grid along a given orthogonal
parameter axis fall on approximately a straight line, and hence we can perform a linear
transformation of all the raw network predictions such that they satisfy our expectation,
7 = 7. This tractable transformation can be represented as follows. In the orthogonal
parameters,

AT = MAT 1 ¢, (1)

where A = (&, B) is a point prediction vector in the orthogonal basis, M is a diagonal
matrix and the subscripts “i” and “f” denote the original and transformed states of the
vector, respectively. This linear transformation is also shown for each parameter o and (3
independently in [Figure C.2] We note that since the change of basis is also a linear oper-
ation, the overall transformation in 7 parameters is linear and preserves the Gaussianity
of the point predictions. Following Eq. (B.I)), the transformation applied to the actual
parameters 7 looks like

al = Wal +d”, (C.2)

where W = VMV and d = ¢V~ due to the symmetric V. All the network covariance
estimates C can also be linearly mapped with a matrix operation C — WCW?. We used
our validation set to fit the linear transformation parameters, W and d, for each trained
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Figure C.1: Extended grid of thermal models for regularizing the point predictions of SANSA. The
extension is sparser than the actual training grid as it is only used for rectifying the skewed network
predictions for models on the original grid by implicitly allowing a larger prior volume during training. No
further test (or network validation) is performed for the models on the extended grid.
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Figure C.2: Mean point predictions on the validation set from a network trained on an extended grid as

shown in [Figure C.1|and a straight line fit of each independent orthogonal parameter (averaged over the
other). The mean predictions after applying the linear transformation can be seen to follow the expected

y = x behavior.
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neural network in the committee individually (the two parameter combinations (true labels)
closest to the prior boundaries in each orthogonal parameter were not considered for this
fitting). The full neural network SANSA presented in this paper has this tractable linear
transformation incorporated as a final, unbiased layer.



Appendix D

Hyperparameter optimization I

This appendiz corresponds to Chapter [].

As in every deep learning implementation, our algorithm is defined by a large set of hy-
perparameters that must be tuned in order to arrive at the best possible location on the
bias-variance trade-off. Our hyperparameters include the dropout rate, the amplitude of
the kernel regularization (l5), number of residual blocks, number of filters and kernel size
in each residual block, weight initialization, amount of downsampling per pooling layer,
size of the batches of training data, learning rate, Adam (; parameter, etc. Two strategies
were adopted to explore this vast hyperparameter space. Hyperparameters having a finite
number of discrete possible values (e.g., architecture in the residual parts) were manually
tuned with informed heuristic choices of values to try. The rest of the hyperparameters
having continuous spectra; namely kernel regularization, dropout, learning rate, and Adam
B1; were tuned with a Bayesian optimization algorithm — based on tree-structured Parzen
estimators — for an informed search of the space and an economical use of the resources.
This was performed using the predefined routines of the python package OPTUNA (Akiba
et al. 2019).
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Appendix E

Training progress

This appendiz corresponds to Chapter [].

We show the learning curves for SANSA in containing the four network metrics
— MSE, x?2, log \(~3|, and the NL3 loss — for the best-performing network in our committee.
Following our expectation, the values of the loss, MSE, and log |é| decreased for the training
set and also for the validation set (albeit somewhat stochastically) over the initial epochs
and eventually the validation loss stopped improving. On the other hand, x? for training
converged to ~ 2 and that for validation fluctuated on the higher side, occasionally coming
close to 2, with a slow overall gain over the epochs. We restored the network to its state
at an epoch j* at which the loss value was minimal while |y* — 2| < 0.05 for the validation
set. This helped us make sure that the network predictions are generalized enough and
regularized under the Gaussian likelihood cost function. For this network j* = 531. The
same qualitative behavior was observed for all the networks in our committee.
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Figure E.1: Learning curves of the best-performing network in the committee of SANSA. This network
is trained for > 600 epochs. The best state of the network that can be possibly achieved is determined by

the minimal value of NL3 while |x? — 2| < 0.05 for the validation set and that occurs at epoch j* = 531
during training.



Appendix F

Single network versus committee

This appendiz corresponds to Chapter [].

As mentioned in Section [4.3.4] combining outputs of multiple similar neural networks is
shown to improve the eventual outcome. Motivated by this, we employed a committee of
20 networks with the same architecture but having different initial weights, and training
with different random batches and augmentation on the fly. In practice, the likelihood
model of inference described in Section can be built for each individual network in
the committee in the same way as for the committee itself since the procedure relies purely
on the predictions of the network(s) from the validation set. Hence, it was possible to
compare the posterior constraints of an individual network with that of the committee.
We present a comparison of the committee with the best-performing member network
(defined as the one leading to the posterior constraints with the highest FoM of all the
individual networks) in [Table F.1| and [Figure F.1| for our “original” test set of spectra
from the fiducial thermal model. The constraints by the committee are ~ 4% tighter than
the best-performing network in FoM and they are slightly more accurate as well. Even
though Ngansa = 20 is statistically a small number of sample members in a committee, the
aggregate results of the ensemble are still a little better than the best-performing network,
conforming to the popular findings.

Table F.1: Comparison metric values of the committee and its best-performing member for our original
test case for SANSA (for information equivalent to 1,000 spectra).

6x? FoM / FoM(committee)

Committee 0.015 - -
Best network 0.045 1.035
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Figure F.1: Comparison of the posterior contours obtained by the committee with those by the best-
performing network in the committee for the fiducial thermal model, with information equivalent to 1,000
spectra. The committee constraints are slightly more accurate and ~4% tighter than those of the best
member network.



Appendix G

Parameter space sampling

This appendiz corresponds to Chapter [

We sampled our training, validation, and test labels in the parameter space using Sobol’
sequences for an optimal prior volume filling. In the orthogonal space («, ) of the TDR
parameters (Tp,y) as discussed in Appendix B of N24, we first created a sample of 256
labels of our training set in the range —1.1 < a < 1.1 and —1.5 < g < 1.5. We then
applied rescalings of the labels outside our prior, —1 < «, 8 < 1, as shown in
(gray region), such that the 2D density of labels in that region is 1/4th of the original.
This is motivated by our observations in Appendix C of N24. (It is noteworthy that, unlike
N24, we did not apply a linear transformation to the predictions by NSANSA after training
and used the raw predictions throughout all our analyses. Any biases due to the limited
range in sampling are automatically taken into account while creating an emulator for the
likelihood analysis and a GMM surrogate for DELFI.) We sampled the validation and test
sets both entirely within our prior range.
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Appendix H

Hyperparameter optimization 11

This appendiz corresponds to Chapter [

After manually optimizing the overall skeleton of the NSANSA architecture, we proceeded
to tune some of the more refined hyperparameters of the system. Our objective entailed
finding values of hyperparameters 6 that minimize £} ,(0), i.e., 0, = argming L, (0).
We used the open-source PYTHON package OPTUNA for tuning the hyperparameters ;
(Adam), dropout rates and the [y amplitudes of regularization of convolutional kernels
and MLP layers, and the number of nodes in the hidden layer of the MLP. Our search

space priors are listed in [Table H.1, We employed Bayesian optimization based on Gaus-

Table H.1: The search space for our hyperparameter optimization

Hyperparameter Range Sampling

Adam B 0.88,092] (
Kernel decay, [107%,107%] (unif. in log space)
Weight decay, [5°"¢  [107%,1074] (unif. in log space)
Dropout (conv.), p;  [0.0,0.2] (unif. in linear space)
[ (
[ (

unif. in linear space)
ZCOHV
2

Dropout (MLP), p,  [0.0,0.1] unif. in linear space)
# hidden nodes, Ny [75,100] unif. over integers)

sian processes (GP) with the GPSampler class of OPTUNA. We initially ran 128 trials
with hyperparameters sampled with a quasi Monte Carlo (QMC) strategy based on Sobol’
sequences (QMCSampler) and then built and refined our GP surrogate model to sample
hyperparameter sets for further trials. We distinguish the two phases as the QMC (ini-
tial phase) and PSC (post surrogate construction phase). OPTUNA uses log of expected
improvement as the acquisition function by default. We refer interested readers to the
OPTUNA documentation for more details (https://optuna.readthedocs.io).

shows a scatter of the minimum validation loss obtained, £* , as a function

val’
of trial number as well as histograms of L,,. The best value of L, is found in the PSC

val*

phase at trial 165+1. The distribution of L7 , leans only slightly toward smaller values in the

val


https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.GPSampler.html
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Figure H.1: Left: Minimal validation loss against trial number for our Bayesian hyperparameter tuning.
The gray shaded region indicates the QMC phase to build the surrogate out of. Right: Normalized
histograms of the minimal validation loss across trials in our hyperparameter optimization. We show the
QMC and the PSC phases separately. The dashed vertical lines show the mean loss values in both the
phases. The PSC phase leans slightly toward smaller loss values than the QMC phase.

PSC phase than in QMC contrary to our expectation of an informed Bayesian optimization
algorithm, hinting at the inefficacy of the acquisition function and the surrogate generation
internal to OPTUNA. Nevertheless, the best L7, is a > 20 outlier in both the distributions.
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