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Einfiihrung

Herz-Kreislauf-Erkrankungen bleiben die haufigste Todesursache weltweit und
fuhren jahrlich zu Uber 17 Millionen Todesfallen, was eine deutliche
gesundheitliche und soziookonomische Belastung darstellt (Roth et al., 2020).
Innerhalb der kardiovaskularen Erkrankungen nehmen Kardiomyopathien eine
besondere Stellung ein: sie sind eine klinisch und molekular heterogene Gruppe
von Erkrankungen, die strukturelle und funktionelle Veranderungen des Myokards
umfassen und sowohl genetische als auch erworbene Ursachen haben konnen.
Zu den Hauptformen zahlen die dilatative (DCM), hypertrophe (HCM), restriktive
(RCM) und arrhythmogene Kardiomyopathie (ACM) (Bang et al., 2022;
Ciarambino et al., 2021; Reichart et al., 2019). Kardiomyopathien konnen eine
hohe Morbiditat und Mortalitat haben, die von Anzeichen einer chronischen
Herzinsuffizienz Gber Arrhythmien bis hin zum plotzlichen Herztod reicht (Maron,
2018). Trotz einer haufigen Pravalenz in der Allgemeinbevolkerung bleiben
Kardiomyopathien oft unterdiagnostiziert — bedingt durch die klinische Variabilitat

und auch weiterhin begrenzte diagnostische Moglichkeiten (Wong et al., 2021).

Stand der Forschung

In den letzten zwei Jahrzehnten haben Fortschritte in der Bildgebung,
Biomarkerforschung und molekulargenetischen Diagnostik neue Einblicke in die
Pathogenese von Kardiomyopathien ermoglicht. Bildgebende Verfahren wie
Echokardiographie, kardiale Magnetresonanztomographie oder
Computertomographie erlauben eine funktionelle und morphologische
Charakterisierung, wahrend Biomarker wie NT-proBNP oder Troponin
Informationen Uber Krankheitsaktivitat und Prognose liefern (Gasior, 2024; Jin et
al., 2025). Die ldentifizierung zahlreicher genetischer Ursachen haben das
Verstandnis der Krankheitsmechanismen ermoglicht und so die Basis fur
personalisierte Ansatze gelegt (Ma et al., 2024; Reichart et al., 2019; Zhang &
MacCosham, 2018).
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Dennoch bestehen weiterhin diagnostische und therapeutische Licken. Selbst
innerhalb genetisch definierter Subgruppen konnen die phanotypischen
Auspragungen und Krankheitsverlaufe variabel sein (Keil et al., 2024).
Therapeutisch dominieren MalRnahmen zur Symptomkontrolle:
Herzinsuffizienzmedikation, die Behandlung von Arrhythmien oder der Einsatz
implantierbarer  Kardioverter-Defibrillatoren  (ICDs) und  mechanischer
Unterstutzungssysteme. Diese haben zwar die Prognose vieler Patientinnen und
Patienten verbessert, doch eine kausale Therapie ist bislang nur in
Ausnahmefallen moglich (Bains et al., 2024; Bauersachs, 2021; Butler et al., 2022;
Greenberg et al., 2025; Mehra et al., 2018).

Neue Entwicklungen in der Gewebecharakterisierung und Therapie

Mit dem Aufkommen neuer Technologien hat sich in den letzten Jahren ein
Paradigmenwechsel abgezeichnet: Fortschritte in der Einzelzell- (scRNA-seq) und
Einzelzellkern-RNA-Sequenzierung (snRNA-seq) ermdglichen es, die molekulare
Strukturen des menschlichen Herzens auf Einzelzellebene zu charakterisieren
(Chaffin et al., 2022; Litvinukova et al., 2020; Maatz et al., 2025; Nadelmann et al.,
2021; Reichart et al., 2022; Tucker et al., 2020). Diese Methoden erlauben eine
Charakterisierung der zellularen Heterogenitat und transkriptionellen Signaturen,
die im erkrankten Myokard verandert sind. In Kombination mit ,spatial
transcriptomics® und Maschinellem Lernen lassen sich krankheitsspezifische
Muster identifizieren, die Uber klassische und klinisch etablierte Verfahren
hinausgehen (Kuppe et al., 2022; Reichart et al., 2022).

Parallel eroffnen Entwicklungen in der CRISPR-Cas9-Technologien konkrete
therapeutische Optionen zur Korrektur pathogener Varianten (Anzalone et al.,
2020; Cetin et al., 2025; Chen & Liu, 2023; Reichart et al., 2023). Diese Ansatze
werden durch neuartige Pharmakotherapien wie Mavacamten, die durch gezielte
Modulation der Myosininteraktion Erfolge erzielen (Becker et al., 2024, Olivotto et
al., 2020).
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Zielsetzung der Arbeit

Weiterhin bleiben jedoch zentrale Fragen unbeantwortet: Welche molekularen
Mechanismen determinieren die unterschiedlichen Krankheitsphanotypen? Wie
wirken sich pathogene Varianten auf zellulare Netzwerke und die Organisation des
Myokards aus? Welche Signaturen lassen sich fur eine fruhzeitige Diagnostik oder
Therapie nutzen? Wie konnen genetische oder pharmakologische Eingriffe
erfolgreich in praklinische Modelle und letztendlich in die klinische Praxis

Ubertragen werden?

Konkret umfasst die Arbeit:

1. die methodische Etablierung und Anwendung von snRNA-seq zur
Kartierung des gesunden menschlichen Herzens (Litvinukova et al., 2020;
Nadelmann et al., 2021),

2. die Analyse pathogener Varianten und deren Auswirkungen auf zellulare
und transkriptionelle Signaturen bei Kardiomyopathien (Litvinukova et al.,
2020; Reichart et al., 2022),

3. die praklinische Testung von sicheren und effizienten Genom-
Editierungsstrategien bei der HCM (Reichart et al., 2023) und

4. die Evaluation klinischer Erfahrungen mit innovativen Therapeutika wie
Mavacamten im klinischen Behandlungsalltag (Becker et al., 2024).

Dabei wurde ein Ansatz gewahlt, der klinische Fragestellungen mit molekularen
Analysen kombiniert. Die Anwendung von snRNA-seq ermdglichte zunachst die
Kartierung der transkriptionellen Landschaft des gesunden Herzens und machte
Veranderungen bei Kardiomyopathien sichtbar. Dabei zeigte sich, dass pathogene
Varianten nicht nur einzelne Signalwege verandern, sondern tief in komplexe
Netzwerke von Kardiomyozyten, Fibroblasten, Endothel- und Immunzellen
eingreifen (Litvinukova et al., 2020; Nadelmann et al., 2021; Reichart et al., 2022).
Daruber hinaus fuhrte die Untersuchung von erkranktem Myokard zur
|dentifikation molekularer Signaturen, die sowohl fur die Krankheitsprogression als
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auch fur therapeutische Interventionen relevant sind. Ein weiterer Fokus lag auf
der Genom-Editierung sowie neueren HCM-Therapeutika als Ubergang von der
Diagnose zur Therapie. In praklinischen Modellen konnte gezeigt werden, dass
beispielsweise ,Base-Editing” nicht nur einzelne Mutationen korrigiert, sondern die
Entwicklung einer HCM verhindert. Damit wurde das Potenzial einer kurativen
Intervention sichtbar, die auf der molekularen Korrektur der Krankheitsursache

basierte.

Diese Arbeit verdeutlicht somit das Potenzial eines kombinierten
Forschungsansatzes, wo genetische, molekulare und klinische Daten miteinander
verknupft werden. So konnen prazisionsmedizinischer Ansatze im Bereich der
Kardiomyopathien etabliert werden und langfristig die Perspektive auf eine
molekular begrundete Therapie fur betroffene Patientinnen und Patienten

verbessert werden.



Habilitationsschrift Dr. med. D. Reichart — Kardiomyopathien: Molekulare Strukturen und Therapieansatze

Wissenschaftliche Arbeiten

1. Einzelzellkern-RNA-Sequenzierungen ermoglichen die Messung der
RNA-Muster jeder einzelnen Herzmuskelzelle

Isolation of Nuclei from Mammalian Cells and Tissues for Single-Nucleus
Molecular Profiling. Nadelmann ER, Gorham JM, Reichart D, Delaughter DM,
Wakimoto H, Lindberg EL, Litvihnukova M, Maatz H, Curran JJ, Ischiu Gutierrez D,
Hubner N, Seidman CE, Seidman JG. Curr Protoc. 2021 May;1(5):e132. doi:
10.1002/cpz1.132.

Die Analyse von Geweben erfordert Methoden, die die zellulare Heterogenitat
umfassend erfassen. Obwohl die scRNA-seq in den letzten Jahren deutliche
Fortschritte ermoglichte, stof3t die Methode bei grof3en, mechanisch empfindlichen
oder schwer zu dissoziierenden Zellen, wie etwa Kardiomyozyten, an methodische
Grenzen. DaruUber hinaus benotigt sScRNA-seq frisches Gewebe und ist anfallig fur
stressinduzierte Transkriptionsartefakte. Die in dieser Arbeit etablierte snRNA-seq
Methode adressiert diese Einschrankungen und eroffnet damit neue methodische

Perspektiven.

Das Protokoll beschreibt standardisierte, effiziente und kostengunstige
Arbeitsschritte zur Isolierung von Zellkernen aus frischem oder gefrorenem
Gewebe. Zudem wurde ein weiterer Qualitatssicherungsschritt eingefuhrt: Ein Teil
des Gewebes wurde zur RNA-Isolierung verwendet, um die RNA-Integritat (RIN)
zu bestimmen. Nur Proben mit RIN 25 wurden weiterverarbeitet, um die

Erfolgswahrscheinlichkeit der nachfolgenden snRNA-seq zu erhdhen.

Die Kernisolation erfolgte durch mechanische Disruption mittels TissuelLyser |l
(Qiagen, Hilden, Deutschland), gefolgt von Filtration und Fluoreszenz-aktivierter
Zellsortierung (FACS). Dabei wurden Hoechst-positive Zellkerne isoliert und eine
reine Zellkern-Praparation erzeugt. Eine abschlielende Qualitatskontrolle mit
automatisiertem Zellzahler und mikroskopischer Morphologieprifung stellte
sicher, dass die isolierten Zellkerne die geforderte GroRe (8-12 ym) und Integritat
aufwiesen. Aus kleinen Gewebesticken (ca. 5x5x5 mm) konnten so 50.000-

10
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150.000 Zellkerne in einer Konzentration von 8,0x105 bis 1,2x108 Zellkerne/ml
gewonnen werden — ideal fur die 10X Genomics (Pleasanton, CA, USA) Plattform
(Abb. 1A).

Dabei ergeben sich mehrere Vorteile gegenuber bisherigen Methoden: Der
mechanische Ansatz senkt die Kosten, erhoht die Standardisierung und minimiert
Kontaminationen. Die Nutzung kleiner Gewebemengen ermdglicht die Bewahrung
von kostbares Material fir zusatzliche Experimente. Aulerdem kann aus dem
Uberstand, der bei der Kernisolierung anfallt, RNA fiir Bulk-RNA-seq extrahiert

werden.

SnRNA-seq bietet insbesondere bei groflen Zellen wie Kardiomyozyten, bei
gefrorenem Gewebe sowie bei empfindlichen Zelltypen Vorteile im Vergleich zur
scRNA-seq. Zellkerne erhalten zwar nur etwa 20% der zelluldaren RNA,;
Vergleichsstudien zeigen jedoch, dass snRNA-seq ausreicht, um Zelltypen und -
subtypen zu identifizieren (Bakken et al., 2018). Zusammenfassend stellt dieses
Protokoll eine zuverlassige und reproduzierbare Grundlage fur molekulare

Analysen von Geweben dar, die bislang schwer zuganglich waren.
Einordnung:

Diese Arbeit legt die methodische Basis der Habilitation: die Entwicklung und
Optimierung von snRNA-seq als Schlusseltechnologie zur Untersuchung von
Gewebe wie beispielsweise das Myokard. Dies ermdglicht die Analysen von
molekularen Profilen auf Einzelzellebene, was die Voraussetzung fur die

nachfolgenden Studien darstellt.

11
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2. Die Kartierung des gesunden Erwachsenenherzens auf Einzelzellebene

Cells of the adult human heart. Litvinukova M*, Talavera-Lopez C*, Maatz H*,
Reichart D*, Worth CL, Lindberg EL, Kanda M, Polanski K, Fasouli ES, Samari
S, Roberts K, Tuck L, Heinig M, DeLaughter DM, McDonough B, Wakimoto H,
Gorham JM, Nadelmann ER, Mahbubani K, Saeb-Parsy K, Patone G, Boyle JJ,
Zhang H, Zhang H, Viveiros A, Oudit GY, Bayraktar O, Seidman JG, Seidman CE,
Noseda M, Hubner N, Teichmann SA. Nature. 2020;588:466-472. doi:
10.1038/s41586-020-2797-4. *Co-first authorshjp

Die funktionelle Komplexitdt des menschlichen Herzens beruht auf der
abgestimmten Zusammenarbeit spezialisierter Zelltypen. Ziel dieser Arbeit war es,
das gesamte Spektrum an Herzzellen zu erfassen und ihre molekularen
Signaturen zu charakterisieren. Mithilfe umfangreichen scRNA-seq und snRNA-
seq wurden Myokardproben aus sechs anatomischen Regionen des adulten
menschlichen Herzens untersucht: beide Vorhofe, beide Ventrikel, das

interventrikulare Septum und das apikale Myokard (Abb. 1A).

Aufgrund bestehender urheberrechtlicher Beschrankungen wurde die Abbildung 1 entfernt.
Es wird auf Abbildungen der folgenden Originalpublikation verwiesen:

Cells of the adult human heart. Litviriukova M*, Talavera-Lépez C*, Maatz H*, Reichart D*,
Worth CL, Lindberg EL, Kanda M, Polanski K, Fasouli ES, Samari S, Roberts K, Tuck L,
Heinig M, Delaughter DM, McDonough B, Wakimoto H, Gorham JM, Nadelmann ER,
Mahbubani K, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang H, Viveiros A, Oudit GY,
Bayraktar O, Seidman JG, Seidman CE, Noseda M, Hiibner N, Teichmann SA. Nature.
2020,588:466-472. doi: 10.1038/s41586-020-2797-4.

Abbildung 1: A) Transmurale Myokardproben wurden aus
linkem und rechtem Vorhof, linkem und rechtem Ventrikel,
Apex sowie interventrikularem Septum von 14
Spenderherzen mit normaler Herzfunktion entnommen. Die
daraus isolierten Zellkerne (n = 14, snRNA-seq) und Zellen
(n =7, scRNA-seq) wurden mit der Chromium-10x-3'DEG-
Technologie analysiert. B) Eine Uniform Manifold
Approximation and Projection (UMAP)-Einbettung von
487,106 Zellen und Zellkernen identifizierte 11 kardiale
Zelltypen mit ihren jeweiligen Markergenen. Modifiziert
nach Litvifilukova et al. 2020.

12
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Die Studie basierte auf Herzgewebe von 14 Spenderherzen und umfasste knapp
eine halbe Million Einzelzellen und -kerne. Damit stellte sie das bislang
umfassendste Transkriptom-Referenzwerk auf Einzelzellebene fur das gesunde
menschliche Herz dar. Insgesamt konnten 11 Hauptzelltypen identifiziert werden:
atriale und ventrikulare Kardiomyozyten, Fibroblasten, Endothelzellen, Perizyten,
glatte Muskelzellen, Immunzellen (myeloische und lymphoide Zellen), Adipozyten,
Mesothelzellen und neuronale Zellen (Abb. 1B). Die Verteilung dieser Zelltypen
wies zwischen Vorhofen und Ventrikeln Unterschiede auf: Vorhofe enthielten etwa
30% Kardiomyozyten, 24% Fibroblasten und 17% ,mural cells“ (glatte
Muskelzellen und Perizyten), wahrend Ventrikel 49% Kardiomyozyten und
entsprechend weniger Fibroblasten und Immunzellen aufwiesen; es zeigten sich
auch geschlechtsspezifische Unterschiede: Frauen hatten signifikant hohere
Anteile an ventrikularen Kardiomyozyten (56+9%) im Vergleich zu Mannern
(47£11%, p=0,03).

Innerhalb der Kardiomyozyten konnten funf ventrikulare (vCM1-5) und funf atriale
Subpopulationen (aCM1-5) differenziert werden. Diese Subtypen spiegeln
Unterschiede in Entwicklungsherkunft, elektrophysiologischer Charakteristika und
metabolischem Profil wider. Beispielsweise wiesen vCM4-Zellen eine besonders
hohe mitochondriale Genexpression und antioxidative Signaturen auf, was auf
eine hohe Arbeitslast und Stressresistenz hindeutet. Im rechten Atrium wurde eine
Anreicherung des Eisenstoffwechsel-Gens HAMP festgestellt, das nur in 3% der
linken, jedoch in Uber 50% der rechten Vorhofkardiomyozyten exprimiert war.

Auch im vaskularen Kompartiment zeigte sich eine Diversitat: Es wurden 10
Endothelzell-Subtypen identifiziert, die spezifisch arterielle, vendse, kapillare und
lymphatische Signaturen tragen. Zusatzlich wurden vier Perizyten-Cluster und
zwei glatte Muskelzelltypen beschrieben, die spezifische arterielle und venose
Ursprunge darstellen. Notch-Signalwege wurden als zentrale Interaktionsachsen
zwischen Endothelzellen und ,mural cells identifiziert, die vermutlich wesentlich

zur vaskularen Homoostase beitragen.

13
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Das Immunzellpopulation des Herzens war ebenfalls heterogen: 21 Populationen,
darunter mehrere Subtypen residenter Makrophagen, dendritische Zellen sowie
lymphoide Zelltypen wurden charakterisiert. Besonders die LYVE7-positiven
Makrophagen trugen spezifische Transkriptionssignaturen, wahrend Monozyten-
abgeleitete Makrophagen proinflammatorische Eigenschaften aufwiesen. Die
Interaktionsanalysen zeigten, dass Fibroblasten (insbesondere FB4) uber CD74-
MIF-Signalwege mit Makrophagen kommunizieren, was mit fibrotischem kardialen
,Remodeling“ assoziiert sein konnte.

Eine weitere Beobachtung war die Expression des SARS-CoV-2-Rezeptors ACEZ2:
diese war am hochsten in Perizyten, gefolgt von Fibroblasten, und deutlich
geringer in Kardiomyozyten, wobei ventrikulare Kardiomyozyten hohere ACE2-
Level aufwiesen als atriale. Dies unterstreicht die potenzielle Rolle vaskularer

Zellen bei COVID-19-assoziierten Herzerkrankungen.

Dieser ,Heart Cell Atlas” stellte nicht nur eine molekulare Landkarte des gesunden
Herzens dar, sondern  erdffnete auch neue  Hypothesen zu
Geschlechtsunterschieden, zu Mechanismen des kardialen ,Remodelings” und zu
Krankheitsanfalligkeiten. @ Die  Daten  erlaubten = zudem,  genetische
Assoziationssignale (z. B. fur Vorhofflimmern, koronare Herzkrankheit oder QRS-

Dauer) bestimmten Zelltypen prazise zuzuordnen.

Einordnung:

Diese Arbeit bildet die zentrale Referenz der Habilitation: die Erstellung eines
systematischen Zellatlas des menschlichen Herzens. Mit fast einer halben Million
Profilen wurde erstmals die gesamte Heterogenitat des Herzens auf molekularer
Ebene beschrieben. Es handelt sich um eine Schlusselarbeit, die sowohl die
methodische Basis (snRNA-seq) als auch die klinische Relevanz (GWAS-
Verknupfungen, COVID-19-Relevanz) verbindet.

14
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3. Der Einfluss pathogener Varianten auf transkriptionelle und zellulare

Signaturen bei Kardiomyopathien

Pathogenic variants damage cell compositions and single cell transcription in
cardiomyopathies. Reichart D*, Lindberg EL*, Maatz H*, Miranda AMA, Viveiros
A, Shvetsov N, Gartner A, Nadelmann ER, Lee M, Kanemaru K, Ruiz-Orera J,
Strohmenger V, DelLaughter DM, Patone G, Zhang H, Woehler A, Lippert C, Kim
Y Adami E, Gorham JG, Barnett SN, Brown K, Buchan RJ, Chowdhury R,
Constantinou C, Cranley J, Felkin LE, Fox H, Ghauri A, Gummert J, Kanda M, Li
R, Mach L, McDonough B, Samari S, Shahriaran F, Stanasiuk C, Theotokis PI,
Theis FJ, van den Bogaerdt A, Wakimoto H, Ware JS, Worth CS, Barton PJR, Lee
YL, Teichmann SA, Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG,
Hubner N, Seidman CES. Science. 2022 Aug 5; 377(6606): eabo1984.
doi: 10.1126/science.abo1984. *Co-first authorshjp

Die DCM wund ACM gehoren zu den haufigsten genetisch bedingten
Herzmuskelerkrankungen und sind mit einem hohen Risiko einer Herzinsuffizienz
und plotzlichen Herztods assoziiert (Reichart et al., 2019; Varrenti et al., 2024).
Trotz der Identifizierung zahlreicher krankheitsverursachender Gene sind die
zellularen Mechanismen, die durch pathogene Varianten (PVs) negativ
angetrieben werden, bislang unzureichend verstanden. Ziel dieser Arbeit war es,
mithilfe von snRNA-seq die zellularen und transkriptionellen Veranderungen bei

der DCM und ACM systematisch zu erfassen.

Untersucht wurden 61 Patientenherzen mit fortgeschrittener, nicht-ischamischer
Herzinsuffizienz sowie 18 Kontrollherzen. Insgesamt wurden etwa 880.000
Zellkerne aus dem linken Ventrikel (LV) und rechten Ventrikel (RV) analysiert. Es
wurden PVs in klassischen DCM-Genen wie LMNA, RBMZ20 und TTN sowie im
ACM-Gen PKPZ2 analysiert; zusatzlich wurden Varianten mit kleineren Fallzahlen
in PLN, BAG3, DES und FLNC berucksichtigt. Erganzend umfasste das Kollektiv
eine PV-negative Gruppe. Somit konnte eine detaillierte Genotyp-Analysen
erfolgen (Abb. 2A).

Die Analysen zeigten deutliche Verschiebungen in der zellularen
Zusammensetzung: in erkrankten Ventrikeln waren Kardiomyozyten reduziert,

wahrend Endothelzellen und Immunzellen, insbesondere myeloische Zellen und
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Lymphozyten, zunahmen (Abb. 2B, C). Fibroblasten waren mengenmaliig nicht
signifikant erhoht, zeigten jedoch eine Verlagerung zu einem pro-fibrotischen
Phanotyp, was histopathologisch mit gesteigerter Fibrose korrelierte (Abb. 2C, D).
Innerhalb der Kardiomyozyten wurden neue Krankheits-spezifische Subtypen
identifiziert, wie u.a. die ventrikularen Subpopulationen vCM1.1 oder vCM1.2;
Zellpopulationen wie vCM3.1 zeigten zudem Stresssignaturen (u.a. ATF3/4).
Genotyp-spezifisch fiel ein Herunterregulieren von SMYD1 (ein epigenetischer
Regulator des Sarkomeraufbaus und Energiestoffwechsels, Abb. 2E) sowie des
B1-Adrenozeptors (ADRB1) in PV-Tragern auf.

Sechs Fibroblasten-Subtypen wurden identifiziert, darunter neu beschriebene
Zustande mit lipogenen (APOE, CST3) oder profibrotischen (TGFB2, IL11)
Signaturen. Die veranderte Balance zwischen vFB2 und vFB3 bedingt einen
verstarkten Kollagenumbau besonders bei TTN-assoziierter DCM. Perizyten und
glatte Muskelzellen zeigten Storungen zentraler Signalwege (NOTCHS3-,
PDGFRB-Downregulation), was auf eine gestorte Angiogenese und Gefalireifung
hinweist. Endotheliale Subtypen (EC7=Endokardzellen) wiesen Krankheits-
spezifische Genveranderungen auf, darunter die Hochregulation von BMP6 und
NRG1, die mit Endokardexpansion und Stressantwort assoziiert ist.

Das myeloide Kompartiment war heterogen verandert: residenten Makrophagen
(LYVE1+/-Subtypen) standen vermehrt proinflammatorische,
antigenprasentierende Zellen gegenuber. PKPZ2-assoziierte Proben wiesen
deutlich ausgepragte Interferon-Signaturen auf, wahrend RBMZ20-Proben eine
besonders hohe MHC-II-Aktivitat zeigten. Lymphozyten, insbesondere aktivierte
CD4+T-Zellen und NK-Zellen, waren vermehrt in PKP2- und LMNA-Proben
vertreten und zeigten eine verstarkte Expression inflammatorischer Zytokine
(IFNG, CCL3, CCL4).

Neue Adipozyten-Subtypen (AD1.1) wurden fast ausschlieBlich in erkranktem
Gewebe gefunden und waren mit gestortem Fettsauremetabolismus und erhohter

Apoptose assoziiert, insbesondere in PKP2-Herzen. Die Expressionen bekannter
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genetischer Variationen des menschlichen Genoms (z. B. BAG3, TTN, FLNC)
lieRen sich einzelnen Zelltypen zuordnen und zeigten Genotyp-spezifische Muster.
Zudem wurden dysregulierte Signalachsen zwischen verschiedenen Zelltypen
identifiziert wie beispielsweise bei Fibroblasten und Kardiomyozyten im Rahmen
des IGF-Signalweges. Mittels Graph Attention Networks (GAT) konnten zudem
Genotypen anhand von snRNA-seqg-Profilen mit hoher Genauigkeit vorhergesagt
werden, was die Existenz von Genotyp-spezifischen Transkriptionssignaturen

bestatigte.

Die Arbeit widerlegte das lange vertretene Muster einer einheitlichen Signalachse
bei der terminalen Herzinsuffizienz. Stattdessen zeigen sich Genotyp-spezifische
Transkriptom-Signaturen, die verschiedene Krankheitsmechanismen antreiben:
von verstarkter Fibrose (RBM20, TTN) Uber inflammatorische Signaturen (PKP2)
bis hin zu elektrophysiologischen Vulnerabilitdten (LMNA). Diese Erkenntnisse
liefern nicht nur ein besseres Verstandnis der Krankheitspathophysiologie,
sondern eroffnen konkrete Ansatzpunkte fur personalisierte Therapien.

Einordnung:

Diese Arbeit erweitert die Habilitationsschrift um die direkte Krankheitsrelevanz
genetischer Varianten. Wahrend die vorherige Studie das normale Herz kartiert,
werden hier krankheitsassoziierte Veranderungen sichtbar gemacht, die die

Grundlage fur eine Prazisionsmedizin bilden.
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Aufgrund bestehender urheberrechtlicher Beschrankungen wurde die
Abbildung 2 entfernt. Es wird auf Abbildungen der folgenden
Originalpublikation verwiesen:

Pathogenic variants damage cell compositions and single cell transcription
in cardiomyopathies. Reichart D*, Lindberg EL*, Maatz H*, Miranda AMA,
Viveiros A, Shvetsov N, Gértner A, Nadelmann ER, Lee M, Kanemaru K,
Ruiz-Orera J, Strohmenger V, Delaughter DM, Patone G, Zhang H,
Woehler A, Lippert C, Kim Y Adami E, Gorham JG, Barnett SN, Brown K,
Buchan RJ, Chowdhury R, Constantinou C, Cranley J, Felkin LE, Fox H,
Ghauri A, Gummert J, Kanda M, Li R, Mach L, McDonough B, Samatri S,
Shahriaran F, Stanasiuk C, Theotokis Pl, Theis FJ, van den Bogaerdt A,
Wakimoto H, Ware JS, Worth CS, Barton PJR, Lee YL, Teichmann SA,
Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG, Hubner N,
Seidman CES. Science. 2022 Aug 5; 377(6606): eabo1984.
doi: 10.1126/science.abo1984.

Abbildung 2: A) Schematische Ubersicht und Anzahl der inkludierten Herzproben mit DCM- und ACM-
Genvarianten (fett, rot=n=6 Patienten); zusatzlich wurden 18 Kontrollherzen mit normaler Herzfunktion
analysiert. B) Die UMAP-Einbettung von 881,081 Zellkernen identifiziert zehn Zelltypen. C) Oben: mittlere
Zelltyp-Haufigkeiten (in %) in Kontrollherzen; unten: proportionale Veranderungen in allen DCM-Genotypen
(rot=Zunahme, blau=Abnahme vs. Kontrolle), signifikante Unterschiede wurden mit entsprechenden p-Werten
markiert (FDR<0,05). D) Kollagen-Genexpressions-Scores in LV-Fibroblasten innerhalb der verschiedenen
Genotypen. E) Einzelmolekil-RNA-FISH zeigte eine reduzierte SMYD17-Expression (rote) innerhalb von
Kardiomyozyten (TNNT2, cyan) eines PLN-mutierten Herzens. Zellgrenzen: WGA (griin), Zellkerne: DAPI (blau),
MaRstab 10 pm. Quantifizierung (Spots pro CM) basiert auf vier unabhangigen Kontroll- und DCM-Herzen.
Modifiziert nach Reichart et al. 2022.
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4. Genom-Editierung als therapeutischer Ansatz der hypertrophen

Kardiomyopathie

Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice.
Reichart D*, Newby GA*, Wakimoto H*, Lun M, Gorham JM, Curran JJ, Raguram
A, DelLaughter DM, Conner DA, Marsiglia JDC, Kohli S, Chmatal L, Page DC,
Zabaleta N, Vandenberghe L, Liu DR, Seidman JG, Seidman C. Nat Med. 2023
Feb;29(2):412-421. doi: 10.1038/s41591-022-02190-7. *Co-first authorshjp

Die HCM stellt mit einer Pravalenz von etwa 1:500 die haufigste genetische
Herzerkrankung dar (Arbelo et al., 2023; Ommen et al., 2020). Charakteristisch ist
eine linksventrikulare Hypertrophie, interstitielle Fibrose und eine erhohte
Arrhythmieanfalligkeit mit gesteigertem Risiko fur einen plotzlichen Herztod,
(Maron et al., 2022). Ursachlich liegen in den meisten Fallen dominante Missense-
Mutationen in Genen vor, die fir Sarkomerproteine kodieren — insbesondere fur
die schwere Kette des kardialen Myosins MYH7 (Reichart et al., 2023). Trotz
deutlicher  Therapiefortschritte (Herzinsuffizienz-Medikamente inklusive
Mavacamten, ICDs oder chirurgische Interventionen) existiert bislang keine
kurative Behandlungsoption, die den zugrunde liegenden Gendefekt korrigiert
(Arbelo et al., 2023; Becker et al., 2024; Maron et al., 2022; Olivotto et al., 2020;
Ommen et al., 2020). Die hier vorgestellte Arbeit beschreibt zwei Strategien der in
vivo Genom-Editierung, die direkt auf die pathogene Mutation abzielen (Anzalone
et al., 2020; Chen & Liu, 2023; Reichart et al., 2023). Dabei wurden HCM-
Mausmodellen mit der MYH7-R403Q-Mutation verwendet, die eine klinisch
schwerwiegende HCM-Mutation abbildet (Abb. 3A). Zum einen kam ein dualer
Adeno-assoziierte Virus 9 (AAV9)-vermittelter Adenin-Base-Editor 8e (ABES8e)
zum Einsatz, mit dem die krankheitsverursachende Nukleinbase wieder korrigiert
wurde. Zum anderen wurde ein AAV9-vermitteltes Cas9-Nuklease-System
untersucht, das das mutierte Allel durch gezielte Deletionen und Insertionen
(Indels) inaktivierte. Untersucht wurden dabei zwei Mauslinien: eine mit spatem
Krankheitsbeginn im Alter von 20-25 Wochen, sowie eine zweite mit einem
Krankheitsbeginn bereits nach 8-10 Wochen (Abb. 3B).
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Die Behandlung mit ABE8e fuhrte zu hohen ,Editing*“-Effizienzen: Wahrend auf
genomischer Ebene durchschnittlich etwa 16% der Allele editiert wurden, zeigte
sich auf RNA-Ebene eine hohere Korrekturrate in den Myh6-Transkripten
(entspricht dem humanen MYH7 in Mausen) der Kardiomyozyten, mit besonders
hohen Raten (uber 80%) im linken Ventrikel (Abb. 3C). Dies resultierte in einer
Verhinderung der HCM-typischen Hypertrophie-Entwicklung: Echokardiographien
zeigten in regelmafligen Kontrollen (bis zu 34 Wochen nach Behandlung) normale
Wanddicken mit erhaltener systolischer Pumpfunktion, die von Wildtyp-Tieren
nicht zu unterscheiden war (Abb. 3C). Histologische Analysen belegten zudem
eine signifikante Reduktion der interstitiellen Fibrose, die ansonsten in
unbehandelten HCM-M&ausen stark ausgepragt war (Abb. 3B). Eine zweite
ABE8e-Injektion, die das ,Base-Editing“ insbesondere in den Vorhofen
verbesserte, fuhrte zwar zu hoheren ,Editing“-Effizienzen, brachte jedoch auch

zusatzliche ,Bystander®-Mutationen mit sich.

Das zweite Verfahren beinhaltete ein Cas9-Nuklease-Verfahren. Dieses Vorgehen
zeigte eine effiziente Inaktivierung des mutierten Allels, mit ,Editing“-Raten von 56-
63% in den Ventrikeln. Dadurch konnte ebenfalls die Entwicklung einer
Hypertrophie weitgehend verhindert werden. Gleichzeitig traten jedoch
dosisabhangig Nebenwirkungen auf, insbesondere eine unbeabsichtigte
Inaktivierung des Wildtyp-Allels, die mit einer systolischen Ventrikeldysfunktion
assoziiert war (Abb. 3D). In weiterfUhrenden Experimenten mit unterschiedlichen
Dosierungen von AAV9-Cas9 (niedrige Dosis: 1,1x10'* vg/kg; mittlere Dosis:
5,4x10"* vg/kg; hohe Dosis: 1,1-2,2x10" vg/kg) zeigte sich eine deutliche
Korrelation zwischen Virusdosis und Inaktivierung des R403Q-Allels. Dabei war
die Allelinaktivierung im Ventrikel (72+3%) starker ausgepragt als im Atrium
(57+3%). Zudem zeigte sich, dass insbesondere hohe Dosen — wie bereits oben
beschrieben — weiterhin zu einem Verlust des Wildtyp-Allels fuhrten, wahrend
andere Organe weiterhin unbeeintrachtigt blieben. Die Hochdosis-Therapie fuhrte
zwar zu einer vollstandigen Verhinderung der Hypertrophie, jedoch auf Kosten

einer reduzierten Kontraktilitat, die in einzelnen Fallen zum Herzversagen fuhrte.
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Aufgrund bestehender urheberrechtlicher Beschrankungen
wurde die Abbildung 3 entfernt. Es wird auf Abbildungen der
folgenden Originalpublikation verwiesen:

Efficient in vivo genome editing prevents hypertrophic
cardiomyopathy in mice. Reichart D*, Newby GA*, Wakimoto
H* Lun M, Gorham JM, Curran JJ, Raguram A, DelLaughter
DM, Conner DA, Marsiglia JDC, Kohli S, Chmatal L, Page DC,
Zabaleta N, Vandenberghe L, Liu DR, Seidman JG, Seidman
C. Nat Med. 2023 Feb;29(2):412-421. doi: 10.1038/s41591-
022-02190-7.

Abbildung 3: A) Schematische Darstellung der Myh6 R403Q Genomsequenz mit der entsprechenden
Wildtyp-Variante und Aminosauren. B) Masson-Trichrom-gefarbte histologische Schnitte von LV und RV aus
behandelten (mit AAV9-ABESe, links) und unbehandelten R403Q-129SvEv/S4-Mausen (rechts). MaRstab:
1 mm. C) Oben: Die ,Editing“-Effizienz des Zielallels R403Q nach einmaliger AAV9-ABE8e-Injektion wurde
durch Sequenzierung von Myh6-cDNA bestimmt, die aus RNA von LV (n=8), RV (n=6), LA (n=4) und RA
(n=4) gewonnen wurde, wie auch aus 5 unbehandelten LV- und RV-Proben. Mitte und unten: Longitudinale
echokardiographische Messungen von Wildtyp-129SvEv-Mausen (n=4; schwarze Linie), unbehandelten
R403Q-129SvEv-Mausen (n=10; rote Linie) und R403Q-129SvEv-Mausen (n=6; blaue Linie), die mit einer
Einzeldosis AAV9-ABES8e behandelt wurden. Mitte: Darstellung des LVPW (in mm) zur Messung der LV-
Wanddicke. Unten: Darstellung der FS (in %) zur Messung der systolischen LV-Funktion. D) Anzahl (in %)
inaktivierter R403Q Allele: Myh6-cDNAs, amplifiziert aus RNAs, die aus den einzelnen Herzkammern von
R403Q-129SvEv/S4-Mausen gewonnen wurden, die mit niedrigen (1,1x10' vg kg™'; n=3), mittleren
(5,4x10"2 vg kg™*; n=3) oder hohen (2,2x10"® vg kg™"; n=2) Dosen von AAV9-Cas9 behandelt wurden. Mitte
und unten: Echokardiographische Messungen der LVPW-Dicke (in mm, Mitte) und der FS (in %, unten) bei
R403Q-129SvEv/S4-Mausen im Alter von 20 Wochen, die mit niedrigen (1,1x10"2 vg/kg; n=3), mittleren
(5,4x10"2 vg/kg; n=3) und hohen (1,1-2,2x10"® vg/kg; n=6) Dosen von AAV9-Cas9 behandelt wurden; im
Vergleich dazu Darstellung von unbehandelten Wildtyp-129SvEv/S4-Mausen (n=3) und unbehandelten
R403Q-129SvEv/S4-Mausen (n=4). Modifiziert nach Reichart et al. 2023.
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Im Gegensatz dazu erwies sich die mittlere Dosierung als gunstig: sie verhinderte
die Ausbildung einer Hypertrophie, ohne die systolische Pumpfunktion zu
beeintrachtigen (Abb. 3D). Diese Ergebnisse verdeutlichten, dass das Cas9-
Nuklease-Prinzip grundsatzlich wirksam ist, jedoch ein enges dosisabhangiges
therapeutisches Fenster besitzt und mit Risiken behaftet ist.

Auf molekularer Ebene bestatigten Transkriptomanalysen den Erfolg des ,Base-
Editings“: Wahrend unbehandelte HCM-Mause eine deutlich erhohte Expression
Hypertrophie-assoziierter Gene wie Myh7, Mybpc3 oder Ttn aufwiesen, sowie
fibrotischer Marker wie Col6a5, Tgfb2 und Ctgf, normalisierten sich diese Profile
unter ABE8e-Therapie nahezu vollstandig auf Wildtyp-Niveau. Parallel belegten
umfassende Off-Target-Analysen (CIRCLE-seq und RNA-seq), dass nur minimale
Nebeneffekte auftraten, die klinisch voraussichtlich ohne Bedeutung sein werden;

ein substanzielles ,Editing“ in nicht-kardialen Geweben wurde nicht detektiert.

In der Gesamtschau belegte die Studie, dass einmaliges in vivo ,Base-Editing®
ausreicht, um die Entstehung einer HCM in praklinischen Mausmodellen dauerhaft
zu verhindern. Damit wurde erstmals gezeigt, dass durch Genom-Editierung der
ursachlichen Mutation eine kurative Perspektive moglich ist.

Einordnung:

Diese Arbeit zeigt den translationalen Ubergang von der molekularen
Charakterisierung pathogener Mutationen hin zur gezielten therapeutischen
Korrektur im praklinischen HCM-Tiermodell. Der nachste Schritt in Richtung
klinischer Anwendung besteht in der Ubertragung der genannten Methoden auf

ein Grofdtiermodell.
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5. Erste klinische Erfahrung mit Mavacamten bei der Therapie der

hypertrophen obstruktiven Kardiomyopathie

Real-world experience in initiation of treatment with the selective cardiomyosin
inhibitor mavacamten in an outpatient clinic cohort during the 12-week titration
period. Becker F, Novotny J, Jansen N, Clau® S, Mdller-Dyrna F, Specht B, Orban
M, Massberg S, Kaab S, Reichart D. Clin Res Cardiol. 2024 Oct 8. doi:
10.1007/s00392-024-02544-w.

Die HCM ist die haufigste primare Kardiomyopathie und zeichnet sich durch eine
gesteigerte Sarkomeraktivitat mit exzessiven Aktin-Myosin-Querbrucken,
Hyperkontraktilitat, myokardiale Hypertrophie, diastolische Dysfunktion und
erhohte Flllungsdrucke aus. Die obstruktive Form (oHCM), die in bis zu 75% der
Falle auftritt, ist zusatzlich durch eine dynamische Obstruktion des
linksventrikularen Ausflusstraktes (LVOT) gekennzeichnet, die unter ventrikularer
Provokation oder schon in Ruhe nachweisbar ist. Therapeutisch standen bislang
uberwiegend Betablocker und Kalziumantagonisten zur Verfugung, die jedoch die
zugrundeliegende molekulare Pathophysiologie nicht beeinflussen. Alternativ
bestehen Therapieoptionen wie die chirurgische Myektomie oder transkoronare
Ablation septaler Aste (Arbelo et al., 2023; Maron et al., 2022; Ommen et al.,
2020).

Mit Mavacamten von Bristol-Myers Squibb (New York City, NY, USA), einem
ersten kardiospezifischen Myosin-Inhibitor, wurde erstmals ein Wirkstoff
entwickelt, der direkt in die pathologische Querbrickenbildung eingreift, die
Energetik verbessert und die Hyperkontraktilitat reduziert. Klinische Studien wie
EXPLORER-HCM und MAVA-LTE hatten bereits die Effektivitat von Mavacamten
in Bezug auf LVOT-Gradienten, Biomarker und Symptomatik gezeigt, doch fehlten
Real-World-Daten zur Anwendbarkeit in der Klinik (Garcia-Pavia et al., 2024;
Olivotto et al., 2020; Rader et al., 2024).

In dieser monozentrischen Untersuchung wurden 22 Patientinnen und Patienten
mit symptomatischer oHCM zwischen Marz 2023 und Juni 2024 fur eine
Mavacamten-Therapie eingeschlossen. Alle wiesen eine NYHA-Klasse 2II sowie
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erhohte LVOT-Gradienten auf. Fir die Primaranalyse wurden 15 Patientinnen und
Patienten berucksichtigt. Das mittlere Alter lag bei 53 Jahren, 60% waren
mannlichen Geschlechts. Die Mehrheit prasentierte sich mit Dyspnoe NYHA IlI
(73%), rund 40% berichteten Angina pectoris, ein Drittel Schwindel unter
Belastung und 27% eine Synkope. Echokardiographisch betrugen die mittleren

LVOT-Gradienten in Ruhe 42 mmHg und unter Provokation mehr als 100 mmHg.

Die Therapie erfolgte individuell angepasst nach CYP2C19-Genotyp: ,Poor
Metabolizer® erhielten initial 2,5 mg Mavacamten taglich, alle anderen 5 mg.
Wahrend der zwolfwochigen Nachbeobachtungszeit wurden klinische Visiten,
Echokardiographien und Laboranalysen durchgefuhrt; zudem erfolgte die
Ermittlung des Lebensqualitats-Scores (KCCQ-12).

Die Ergebnisse zeigten bereits nach vier bis acht Wochen eine klinisch relevante
Verbesserung: Zwei Drittel der Patientinnen und Patienten verbesserten sich um
mindestens eine NYHA-Klasse, nach zwolf Wochen berichteten 86% eine
dauerhafte Verbesserung der Symptome: wahrend zu Beginn der Therapie fast
drei Viertel einer NYHA Klassifikation Il zugeordnet waren, erreichten am Ende
der Beobachtungszeit 50% NYHA | und die Ubrigen NYHA Il (Abb. 4A). Parallel
verbesserte sich der mittlere KCCQ-12-Wert von 58 Punkten auf Uber 70 Punkte,
was eine signifikante Steigerung der Lebensqualitat widerspiegelt.

Auch hamodynamisch zeigte sich ein deutlicher Effekt: Die mittleren LVOT-
Gradienten sanken in Ruhe von 42 mmHg auf 12 mmHg, die provozierten
Spitzenwerte von Uber 100 mmHg auf rund 36 mmHg (Abb. 4B). Die
linksventrikulare Ejektionsfraktion (LVEF) blieb im Mittel stabil (Abb. 4C), wahrend
die NT-proBNP-Spiegel von median 722 pg/ml auf 167 pg/ml nach zwdlf Wochen
sanken (Abb. 4D). In 43% der Falle konnte ein ,Complete Response“ — definiert
als ein LVOT-Gradient <30 mmHg und NYHA | — erreicht werden.
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Aufgrund bestehender urheberrechtlicher Beschrankungen wurde die Abbildung 4 entfernt.
Es wird auf Abbildungen der folgenden Originalpublikation verwiesen:

Real-world experience in initiation of treatment with the selective cardiomyosin inhibitor
mavacamten in an outpatient clinic cohort during the 12-week titration period. Becker F,
Novotny J, Jansen N, Clau8 S, Méller-Dyrna F, Specht B, Orban M, Massberg S, Ké&éb
S, Reichart D. Clin Res Cardiol. 2024 Oct 8. doi: 10.1007/s00392-024-02544-w.

Abbildung 4: A) NYHA-Klassen zu Beginn sowie nach 4, 8 und 12 Wochen nach Beginn der Mavacamten-
Therapie. B) Maximale LVOT-Gradienten in mmHg zu Beginn und unter Mavacamten-Therapie nach 4, 8 und
12 Wochen. C) LVEF in % zu Beginn sowie in Woche 4, 8 und 12 nach Beginn der Mavacamten-Therapie. D)
NT-proBNP-Spiegel zu Beginn sowie nach 4, 8 und 12 Wochen Behandlung mit Mavacamten. Modifiziert
nach Becker et al. 2024.

Die Vertraglichkeit der Behandlung war insgesamt gut: Vier der 15 Patientinnen
und Patienten mussten die Behandlung vorubergehend pausieren: in einem Fall
wegen einer LVEF-Reduktion unter 50%, in drei Fallen aufgrund gastrointestinaler
oder ophthalmologischer Beschwerden. Nach Dosisanpassung erholten sich %
der Betroffenen vollstéandig; eine Patientin musste die Therapie nach Woche 8
dauerhaft beenden.

Einordnung:

Diese Arbeit erganzt die Habilitation um die erste Real-World-Analyse der
Mavacamten-Therapie in Deutschland. Die Studie liefert wichtige Erkenntnisse fur
das praktische therapeutische Management, insbesondere hinsichtlich Dosierung,
Monitoring und Sicherheit.
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Zusammenfassung

Die vorliegende Habilitationsschrift kombiniert neue experimentelle Methoden mit
translationaler Forschung wund klinischen Anwendungen im Feld der
Kardiomyopathien. Dabei sind Kardiomyopathien als komplexe, molekular und
zellular heterogene Krankheitsbilder zu sehen. Mithilfe von snRNA-seq wurde
zunachst die methodische Grundlage erreicht, die eine Kartierung der zellularen
und transkriptionellen Landschaft des menschlichen Herzens moglich machte
(Nadelmann et al., 2021). Im Anschluss wurde mit dem ,Heart Cell Atlas® eine
Referenz aufgebaut, die die Heterogenitat der Kardiomyozyten, Fibroblasten und
Immunzellen sichtbar machte (Litvinukova et al., 2020). Die Untersuchungen von
Patientenherzen mit DCM und ACM zeigten, dass pathogene Varianten nicht nur
einzelne Signalwege beeinflussen, sondern auch die zellulare Komposition und
Interaktionen im Myokard verandern. Genotyp-spezifische Signaturen wurden
identifiziert: von pro-fibrotischen und -inflammatorischen Mechanismen bis hin zu
elektrophysiologischen Veranderungen. Das bisherige Muster einer einheitlichen
Endstrecke der terminalen Herzinsuffizienz wurde demnach durch ein Modell einer

vielschichtigen Krankheitslandschaft ersetzt (Reichart et al., 2022).

Die Genom-Editierung in Mausmodellen der HCM zeigte zudem, dass kurative
Therapien auf genetischer Ebene moglich sind. Dabei erwies sich ,Base-Editing*
als effizient und sicher; eine Entwicklung des HCM-Phanotyps konnte verhindert
werden. Es wurde der Ubergang von molekularen Einzelzellanalysen hin zu

therapeutischen Eingriffen erreicht (Reichart et al., 2023).

Schlussendlich zeigte die ,Real-World“-Daten von Mavacamten, dass auch im
klinischen Alltag fur HCM-Patienten mit LVOT-Obstruktion eine signifikante
Verbesserung von Symptomen und Hamodynamik erzielt werden kann. Diese
Resultate erganzen die praklinischen Arbeiten um eine klinische Anwendung und
verdeutlichten, dass neuere Therapeutika bereits heute einen positiven
Unterschied machen kdnnen — vorausgesetzt, sie werden sorgfaltig Uberwacht
(Becker et al., 2024).
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