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Zusammenfassung
In dieser Arbeit wird über die Beobachtung von unordnungsgetriebenen topologischen
Phasenübergängen in einem tunnelmodulierten optischen Gitter berichtet. Da konven-
tionelle Methoden zur Charakterisierung topologischer Regimes in optischen Gittern in
der Gegenwart von Unordnung versagen, entwickeln und verwenden wir eine Technik, die
auf der direkten Beobachtung der Randzustände des Systems basiert, welche über die
Korrespondenz zwischen Volumen und Rand mit den topologischen Eigenschaften des
Volumens verknüpft sind.

Floquet-Engineering, das heißt in diesem Fall die periodische Modulation des Tunnelns in
unserem optischen Gitter, kann abhängig von den Parametern der Modulation mehrere
verschiedene topologische Phasen realisieren. Unter diesen Phasen befindet sich eine anomale
Floquet-Phase – eine echte Nichtgleichgewichtsphase – in der die Chern-Zahl verschwindet,
während topologische Randmoden bestehen bleiben. Wir entwickeln Protokolle zur Popu-
lation der Randmoden in drei unterschiedlichen topologischen Regimes des modulierten
Gitters, indem wir ein eng lokalisiertes Wellenpaket nahe einer topologischen Grenzfläche
platzieren, die mittels einer von einem digitalen Mikrospiegelgeräts projizierten Potential-
stufe gebildet wird. Wir untersuchen die Entstehung der Randmode durch die Variation der
Höhe der Potentialstufe und bestimmen die charakteristische Energieskala in den drei topo-
logischen Regimes. Wir untersuchen auch die Abhängigkeit der Randmodengeschwindigkeit
im Haldane-Regime von der Breite der topologischen Grenzfläche.

Wenn Unordnung in topologisch nichttriviale Systeme eingeführt wird, wird erwartet, dass
die Propagation der Randmoden robust gegenüber Rückstreuung für Unordnungsstärken
ist, die die Energielücke des Systems nicht schließen. Wir untersuchen die Propagation der
Randmode im Haldane-Regime unseres Systems in Gegenwart von Unordnung und beobach-
ten eine unordnungsinduzierte Geschwindigkeitsrenormierung der Randmode. Anschließend
nutzen wir die Abhängigkeit der Randmodenpopulation vom konkreten Präparationsproto-
koll, um selektiv nur die Randmode im anomalen Floquet-Regime zu besetzen, was es uns
ermöglicht, den Phasenübergang zwischen dem anomalen Floquet- und dem Haldane-Regime
auch in der Anwesenheit von Unordnung zu verfolgen. Hier beobachten wir einen unord-
nungsgetriebenen Phasenübergang zwischen zwei topologisch nichttrivialen Regimes. Wir
beenden unsere Untersuchung, indem wir das Verhalten bei starker Unordnung untersuchen
und den Übergang sowohl des anomalen Floquet- als auch des Haldane-Regimes zu einer
topologisch trivialen Phase im Limit starker Unordnung beobachten.

Diese Ergebnisse legen die Grundlage für weitere Untersuchungen ungeordneter topologi-
scher Phasen mittels Randzuständen, insbesondere im Hinblick auf die Beobachtung eines
anomalen Floquet-Anderson-Isolators, eines Systems, in dem der Randtransport auch dann
aufrechterhalten werden kann, wenn das Volumen vollständig lokalisiert ist.
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Abstract
This thesis presents the observation of disorder-driven topological phase transitions in a
tunneling-modulated optical lattice. As conventional methods for characterizing topological
regimes in optical lattices fail in the presence of disorder, we develop and employ a
technique based on the direct observation of the system’s edge states, which are linked to
the topological properties of the bulk via the bulk-boundary correspondence.

Floquet engineering, i.e. the periodic modulation of the tunneling in our optical lattice,
can, depending on the parameters of the modulation, realize multiple different topological
phases. Among these phases is an anomalous Floquet phase – a genuine out-of-equilibrium
phase – in which the Chern number vanishes, while topological edge modes persist. We
develop protocols for populating the edge modes in three distinct topological regimes
of the modulated lattice by releasing a tightly confined wave packet near a topological
interface, which is formed by a potential step projected using a digital micromirror device.
We investigate the emergence of the edge mode by varying the height of the potential
step, and determine the characteristic energy scale in the three topological regimes. We
also investigate the dependence of the edge mode velocity in the Haldane regime on the
width of the topogical interface.

When disorder is introduced into topologically nontrivial systems, the propagation of the
edge modes is expected to be robust to backscattering for disorder strengths which do not
close the energy gap of the system. We investigate the propagation of the edge mode in
the Haldane regime of our system in the presence of disorder, observing disorder-induced
velocity renormalization of the edge mode. We then utilize the dependence of the edge
mode population on the precise preparation protocol to selectively only populate the edge
mode in the anomalous Floquet regime, enabling us to track the phase transition between
the anomalous Floquet- and Haldane regime, even in the presence of disorder. Here, we
observe a disorder-driven phase transition between two topologically nontrivial regimes.
We close our investigation by studying the large-disorder behavior, observing the transition
of both the anomalous Floquet as well as of the Haldane regime to a topologically trivial
phase in the limit of large disorder.

These results establish the groundwork for further investigations of disordered topolog-
ical phases using edge states, in particular towards the observation of an anomalous
Floquet Anderson insulator, a system in which edge transport can sustain even when
the bulk is fully localized.
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CHAPTER 1

Introduction

The classification of phases of matter in terms of symmetries and order parameters has
been a foundational tool in physics [1], with Landau’s framework of spontaneous symmetry
breaking [2] providing a systematic approach to understanding how phase transitions arise
from changes in symmetry: For instance, the transition from a paramagnet to a ferromagnet
involves the breaking of rotational symmetry [1, 3, 4], and the phase transition from a
liquid to a solid requires the breaking of continuous translational symmetry [1].

The discovery of the integer quantum Hall effect (QHE) in 1980 [5–7] demonstrated the
limitations of symmetry-based phase classification [1, 8], and has since evolved into one
of the most prominent examples for topological phases of matter [1, 9, 10]: When a two-
dimensional (2D) electron gas is subjected to a strong perpendicular magnetic field at low
temperatures, its Hall conductance becomes quantized in units of e2/h. This quantization
cannot be understood through symmetry breaking, but instead emerges from the topological
properties of the electronic wavefunctions. Since this quantization originates from an integer
topological invariant, it is topologically protected against small perturbations of the system,
and is therefore robust against microscopic imperfections of the material [11, 12]. Strikingly,
this quantized transport is not only robust to defects in the material, but instead even
relies on the presence of some amount of disorder [13–15]: While for a perfectly clean
system a linear increase of resistance with magnetic field is expected, the localization of
states due to defects in the material enable the resistance to stay constant if the chemical
potential is varied on these localized states [15], underlining the key role disorder can play
in shaping the properties of topological systems.

The quantized Hall conductivity is closely linked to the existence of edge states – unidirec-
tional transport channels immune to backscattering, and consequently to the localization
from disorder – via the bulk-boundary correspondence [16]. Since the position the plateaus
observed in these measurements only depends on the electron charge e and Planck’s constant
h together with the aforementioned integer topological invariant, the von-Klitzing constant
RK = h/e2 extracted from QHE measurements has been widely used as a resistance
standard in metrology applications, and its value has been fixed in the 2019 redefinition
of the SI units [17], using QHE measurements as a basis.
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2 Introduction

The mathematical concepts underlying these phenomena draw from differential topology,
where systems are classified by global invariants that remain unchanged under continuous
deformations [1, 18, 19]. Closed surfaces provide an intuitive example: They are topologically
classified by their genus g, where g counts the holes in the surface, with surfaces of equal
genus being continuously deformable into one another. A torus with g = 1 can be smoothly
transformed into any other single-holed surface, yet no continuous deformation can connect
it to a sphere with g = 0.

These topological invariants are expressed as integrals of geometric quantities. In condensed
matter systems, the curvature of an energy band in the Brillouin zone – the Berry curvature
– yields an integer invariant known as the Chern number when integrated,

C =
1
2π

∫
BZ

Ωd2k. (1.1)

In the quantum Hall effect, the plateaus of the Hall conductivity are labeled by integers
that correspond to the sum of Chern numbers across all occupied bands.

Because this formulation leads to equal results for two gapped systems, it follows that –
provided there exists a continuous transformation between them that does not close the
energy gap – these systems are robust to a certain degree of perturbation, and they belong
to the same topological class [1, 9, 10, 20, 21]. While the emergence of topological phases
of matter is not fundamentally rooted in symmetry breaking, they can nonetheless be
systematically classified according to the discrete symmetries preserved of the underlying
Hamiltonian, using the Altland-Zirnbauer (AZ) classification [22, 23]. Here, the Hamiltoni-
ans are categorized by the dimensionality of the system, as well as the presence or absence
of time-reversal, charge conjugation, and chiral symmetry. QHE systems, where all three
symmetries are broken in a 2D system, belong to the class Z, indicating that the topological
invariant C can be any integer number. Another system, which belongs to the same class,
are so-called Chern insulators, which support quantum Hall states without relying on an
external magnetic field. The Haldane model [24] exhibits topologically protected edge
states on a hexagonal lattice. Additional spin-orbit coupling can lead to the conservation
of time-reversal symmetry in these systems [25, 26]. Such a quantum spin Hall insulator
was first experimentally observed in semiconductor quantum wells [27, 28].

Interactions in topological systems can lead to even richer physics, with the most prominent
example being the fractional quantum Hall effect [29–31], where plateaus in the conductivity
form at fractional values of e2/h. Special interest lies on these states as they can feature
non-Abelian anyons [32, 33].
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Engineering topological Bloch bands with ultracold atoms in optical
lattices

Since the first observation of Bose-Einstein condensation (BEC) [34, 35] and degenerate
Fermi gases [36], ultracold atomic systems have developed into a versatile tool for simulating
the behavior of different quantum systems. The interaction between the atoms can be
tuned via Feshbach resonances [37–39], they can be placed in optical lattices of varying
lattice geometries [40–42], and dimensionality can be controlled by varying the confinement
along different directions [43]. In the presence of optical lattices, defect-free condensed
matter systems can be studied [44, 45], with quantum gas microscopes [46–48] allowing
to probe these systems with single lattice site resolution. In addition to this, applying
optical dipole potentials [49] to these systems allows to confine them with a high degree of
control [50–52] or trap individual atoms in optical tweezers [53, 54].

The realization of topological phases with neutral atoms however presents unique challenges,
as charge-neutral atoms, unlike electrons, do not couple to magnetic fields, so that alternative
approaches for creating the necessary complex tunneling elements are needed [55]. To realize
topological phases, Floquet engineering – the periodic modulation of parameters of the
Hamiltonian of the system – has proven to be a successful tool. In the high-frequency limit,
where ℏω, with ω/(2π) being the modulation frequency, exceeds all other energy scales,
Floquet systems simulate effective static Hamiltonians. This enabled the experimental
realization of the Hofstadter model [56–58] and of Haldane-type Hamiltonians [59–61].

More recently, Floquet engineering has enabled the realization of strongly interacting
topological systems, such as the Meissner phase [62]. Special interest lies again in fractional
quantum hall systems, which only recently have become accessible in small systems by
employing Floquet engineering, with realizations using ultracold atoms in optical lattices [63],
and in superconducting circuits [64].

As the driving frequency of the Floquet scheme is decreased and becomes comparable to
the system’s energy scales however, genuine out-of-equilibrium phases can emerge. These
systems can no longer be characterized by just the Chern number, but the characterization
of this multi-band-system requires knowledge of multiple winding numbers [65]. Here,
particular interest lies in the exotic behavior such systems can exhibit in the presence
of disorder, as, while in a static system the conductivity in the edge channels is directly
connected to the conductivity in the bulk of the system via the bulk-boundary correspon-
dence [16], in a so-called anomalous Floquet Anderson insulator (AFAI), edge transport
can sustain even when the bulk is fully localized [66, 67].

Due to the high interest in topological phases of matter, numerous techniques have been
developed to characterize the geometric properties of engineered topological Bloch bands
with cold atoms [60, 68–72]. However, they almost exclusively rely on the translational
invariance of the underlying lattice, so that they fail in the presence of disorder, hindering
the investigation of topology in these systems.



4 Introduction

The introduction of disorder can also lead to the emergence of new topological phases.
Topological Anderson insulators [73] can emerge when disorder is introduced into topologi-
cally trivial systems. Such systems have so far only been studied in topological pumps and
in 1D momentum space lattices on ultracold atom platforms [74, 75], while 2D realizations
have only been demonstrated in photonic systems [76–78]. The study of disorder-driven
phase transitions in ultracold atomic systems in 2D however remains as elusive as the study
of disorder-driven phase transitions between two topologically nontrivial regimes.

Contents of this thesis

This thesis presents the observation of a disorder-driven phase transition between two
topologically non-trivial regimes in a Floquet-modulated two-dimensional optical lattice.
By modulating the tunneling in this system, we can realize several topologically non-trivial
phases [61]. We probe these systems by populating their edge states [79]. To this end, we
place a tightly confined wavepacket in the vicinity of a topological interface, and observe the
subsequent chiral evolution along the interface. By precisely controlling the location, spatial
extent and phase profile of this wave packet, we can populate the edge state of the different
phases realized by our Floquet scheme. By varying the height of the topological interface,
we are able to probe the emergence of these edge modes, determining the characteristic
energy scale for the different regimes. By tuning the width of the potential, we can observe
a reduction in propagation velocity of the Haldane edge state.

In a second set of experiments, we probe the topological properties of our system in the
presence of disorder [80]. By populating the edge state of the Haldane phase in a disordered
potential landscape, we are able to observe disorder-induced velocity renormalization. Fur-
thermore, we utilize the dependence of the edge mode population on the precise preparation
protocol to selectively populate the edge state only in the anomalous Floquet regime. This
enables us to track the location of the phase transition between the anomalous Floquet and
the Haldane regime, even in the presence of disorder. Here, we observe a disorder-driven
phase transition between two topologically nontrivial regimes. We close our investigation by
probing the large-disorder behavior of the phase diagram, observing the transition of both
the anomalous Floquet as well as of the Haldane regime into a topologically trivial phase.

This thesis is structured into six chapters as follows:

Chapter 2 provides the theoretical foundation, beginning with an introduction to geometrical
phases and topological systems, with the Haldane model serving as a paradigmatic example
of a Chern insulator. In the following, Floquet engineering is discussed, introducing out-of-
equilibrium systems. In this context, anomalous Floquet systems are introduced, and their
properties discussed. The chapter concludes with an introduction into disordered topological
systems, establishing the observables which can be employed to characterize them.
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Chapter 3 describes the experimental setup, and the steps for generating a BEC of 39K on it
are described. Detailed insights are given on the newly added components of the experiment:
A speckle beam, which is employed to generate disorder in our systems, is characterized and
calibrated carefully. Additional improvements to the imaging system are discussed, which
allow us to take absorption pictures with higher signal to noise ratio than previously possible.
Chapter 4 presents experimental results on the observation and manipulation of edge states
in a 2D real-space Floquet topological system. After establishing the preparation protocol,
we demonstrate the observation of edge states in the anomalous Floquet regime. We
then investigate the population of the edge states in the Haldane regime, and optimize
the overlap of the prepared wave packet with them. We conclude by investigating the
behavior of the edge states when the properties of the topological interface are changed.
For this, we first vary the height of the potential step making up the topological interface,
and study the emergence of edge modes, and the characteristic energy scale at which
they emerge. Lastly, we probe the effect which the width of the topological interface
has on the velocity of the edge modes.
Chapter 5 investigates the effect disorder has on the transport in the edge modes, and how
it influences the topological phases in our system. We establish preparation protocols, which
allow us to populate the edge mode of the system both in the anomalous- and Haldane
regime, or just in the anomalous Floquet regime, thereby creating a sensitive probe for
identifying topological regimes. The study begins by analyzing the transport properties in
the Haldane regime under the influence of disorder. Next, we map out the phase diagram
under the influence of disorder, using the edge states as a probe for the topological regime.
We compare these results to gap-closing measurements at zero disorder, and to numerical
simulations. Finally, we probe the behavior of the system for large disorder, examining
the system close to the transition between anomalous- and Haldane system, as well as
deep within both the anomalous and Haldane system.
The thesis concludes with a summary of its main results in Chapter 6, and a brief outlook
on future directions is given.

Publications
The central results presented in this thesis have been published or appear as preprints
in the following references:

• C. Braun, R. Saint-Jalm, A. Hesse, J. Arceri, I. Bloch, and M. Aidelsburger, Real-space
detection and manipulation of topological edge modes with ultracold atoms, Nat. Phys.
20, 1306 (2024)

• A. Hesse, J. Arceri, M. Hornung, C. Braun, and M. Aidelsburger, Probing disorder-
driven topological phase transitions via topological edge modes with ultracold atoms in
Floquet-engineered honeycomb lattices, arXiv:2508.20154, preprint (2025)

https://doi.org/10.1038/s41567-024-02506-z
https://doi.org/10.1038/s41567-024-02506-z
https://doi.org/10.48550/arXiv.2508.20154


CHAPTER 2

Topological phases, Floquet engineering and
disorder

The behavior of non-interacting electrons in periodic potentials (such as a crystal) is
described in terms of a band structure, which can be classified according to its topological
properties. In the following, we will first introduce the concept of geometric phases in
Sec. 2.1, discussing the integer quantum Hall effect and the Haldane model. Subsequently,
we will discuss Floquet engineering in Sec. 2.2, a technique commonly used for generating
topologically nontrivial bandstructures with charge neutral ultracold atoms. Following that,
we will discuss the tunneling-modulated honeycomb lattice in Sec. 2.3, and show how the
modulation scheme realizes a Haldane model in the high-frequency limit. We will then
discuss anomalous Floquet phases in Sec. 2.4, illustrating how such a system can be realized
with the modulation scheme introduced in the previous section, and close our discussion by
considering disordered systems in Sec. 2.5, first discussing the propagation of particles in
a disordered potential landscape, and then introducing the Bott index, allowing to probe
the system’s topological properties in the presence of weak disorder.

2.1 Geometric phases in Bloch bands
A single particle in a periodic potential is described by the Hamiltonian

ĤL =
p̂2

2m
+ VL (r) . (2.1)

Here, p̂ is the momentum operator, m is the mass of the particle, and VL (r) = VL (r+R)

is the potential, being periodic in r with periodicity R. According to Bloch’s theorem [3],
the eigenstates of this system are the Bloch waves ψn

k (r), given by

ψn
k (r) = eik·runk (r) , (2.2)

where unk (r) has the same periodicity as the potential, i.e. unk (r) = unk (r+R).

6



2.1 Geometric phases in Bloch bands 7

Plugging this into the Schrödinger equation yields(
p̂2

2m
+ VL (r)

)
ψn
k (r) = En

kψ
n
k (r) . (2.3)

By plugging our ansatz from Eq. 2.2 into this, we can derive the eigenvalue equation
for unk (r):

ĤL (k)unk (r) = En
ku

n
k (r) , (2.4)

where

ĤL (k) =
(p̂+ ℏk)2

2m
+ VL (r) . (2.5)

Here, En
k is the energy of the n-th band at quasimomentum k. The geometric properties

of Bloch bands become apparent, when we consider the adiabatic transport of a particle
through quasimomentum space. According to the adiabatic theorem, a particle initialized in
an eigenstate |unk(0)⟩ of band n evolves along the path of instantaneous eigenstates |unk(t)⟩ as
the quasimomentum k(t) is slowly varied. The total phase acquired during this process, ϕ(t),
can be decomposed into a dynamical contribution, ϕd, and a geometric contribution, ϕg,

ϕ (t) = ϕd (t) + ϕg (t) = −1
ℏ

∫ t

0
En(k

(
t′
)
dt′ + i

∫ k(t)

k(0)
⟨unk′ |∇k′ |unk′⟩ · dk′. (2.6)

The dynamical phase ϕd is determined solely by the band’s energy dispersion En (k) as
well as the duration of the evolution. The geometric phase ϕg in contrast is independent
of time and energy, it only depends on the geometric path traced in the Brillouin zone.
This motivates the definition of the Berry connection

An (k) = i ⟨unk| ∇k |unk⟩ . (2.7)

While the Berry connection as well as the geometric phase for an open path are gauge
dependent, the phase for a closed loop is a gauge-invariant physical quantity, and is
called Berry phase [81]: ∮

C
An (k) dk =

∫
S
Ωn (k) dk. (2.8)

Here Ωn (k) denotes the Berry curvature, which is gauge invariant, and is defined as the
curl of the Berry connection

Ωn (k) = ∇k ×An = i ⟨∇ku
n
k| × |∇ku

n
k⟩ . (2.9)

This expression shows that the Berry curvature is an intrinsic property of the geometry
of the Hilbert space parameterized by k.



8 Topological phases, Floquet engineering and disorder

2.1.1 The quantum Hall effect and the bulk-boundary correspondence

While we so far only considered the effects the topological properties have on the Bloch
bands of a system, the behavior at its edge is also determined by this. An example for this
is the integer quantum Hall effect (QHE) [5–7]. Here, a two-dimensional electron gas at
low temperatures is exposed to a strong magnetic field, and the current is measured while
a transverse voltage is applied. In this scenario, one observes that the Hall conductivity
σxy does not continuously increase with the applied magnetic field strength, but instead
exhibits a series of flat plateaus, with the conductivity being quantized according to

σxy = ν
e2

h
(2.10)

with ν being an integer. This quantized conductivity is a result of the topology of the Bloch
bands, with Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) showing that ν is a
topological invariant of the system [16]. This invariant can be calculated by integrating
the Berry curvature of a band over the entire Brillouin zone, yielding an integer known
as the Chern number,

Cn =
1
2π

∫
BZ

dkΩn (k) . (2.11)

The Chern number is connected to the existence of chiral edge states at the boundary
of the system, connecting the localized bulk bands via channels, which are immune to
backscattering. This relationship is known as the bulk-boundary correspondence, guar-
anteeing that a bulk material whose occupied bands have a net Chern number of C must
host |C| protected, chiral states at its boundary.

2.1.2 The Haldane model

Topological insulators are classified by the fundamental symmetries they preserve. Systems
in the Altland-Zirnbauer class A [22, 23] for example are characterized by a non-zero integer
topological invariant. The canonical example for this is the integer quantum Hall (IQH)
system, where time-reversal symmetry is broken by an applied magnetic field [5–7]. In
1988, the Haldane model was proposed [24], which realizes the same topological phase
without the need for an external field. The Haldane model considers a honeycomb lattice,
where TRS is broken internally by complex next-nearest-neighbor hopping amplitudes.
These phases create a staggered pattern of magnetic flux with zero average per unit cell,
opening a topologically non-trivial band gap. This system is the canonical exmple of a
Chern insulator, demonstrating that topological nontrivial behavior can be an intrinsic
property of a material’s band structure. In the following, we will briefly discuss the main
properties of the Haldane model.

The hexagonal lattice consists of two lattice sites per unit cell, such that two lattice vectors
a1 and a2 are needed to describe the lattice:
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a1

a2

a3

1

2 3

/2 0 /2
6 3

0

6 3

/t = 1= 1

= 0

x
y

a b c

Figure 2.1 | Tunneling directions, flux pattern and phase diagram of the Haldane model. a Single
plaquette of the honeycomb lattice. A-sites are colored in blue, while B-sites are colored in red. The
vectors aj connecting the lattice sites on the same sublattice as well as the vectors δj connecting each
lattice site to the three neighbouring sites are drawn in. b The flux pattern in a plaquette of the honeycomb
lattice is illustrated. The plaquette is divided into 13 cells, of which 6 are each pierced by a positive or
negative flux ±φ. The central cell is not pierced by any flux. The net flux over the whole unit plaquette is
zero. c Phase diagram of the Haldane model as a function of the complex nearest neighbor tunneling φ
and of the sublattice offset ∆. The blue / red lines mark the location in the phase diagram at which the
energy gap at K / K′ close. Between the gap closings, there are regions with C = 1, C = −1, and outside
of them a topologically trivial regime with C = 0.

a1 =
a

2

(
3√
3

)
a2 =

a

2

(
3

−
√

3

)
, (2.12)

where the lattice spacing a is the distance between two adjacent lattice sites. We additionally
define a3 = a1 − a2 for convenience. The A- and the B-sites of the lattice are connected
via the vectors δj , with

δ1 = a

(
−1
0

)
δ2 =

a

2

(
1

−
√

3

)
δ3 =

a

2

(
1√
3

)
. (2.13)

These vectors are, in comparison to a plaquette of the hexagonal lattice, illustrated in
Fig. 2.1a. We also define our reciprocal lattice vectors, which span the Brillouin zone, as

k1 =
kL
2

(√
3

3

)
k2 =

kL
2

(√
3

−3

)
, (2.14)

with kL = 4π
3
√

3a
.
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Tight-binding description In the Haldane model, a real tunneling with amplitude
J is considered for nearest neighbour tunneling, while next-nearest neighbour tunneling
has an amplitude J ′, which can be complex:

J ′ = teiϕ (2.15)

The resulting flux pattern in a plaquette of the hexagonal lattice is illustrated in Fig. 2.1b.
The Hamiltonian of the Haldane model can be written in a tight-binding description
as follows:

Ĥ =
∑
rA

[
J

3∑
j=1

(
â†rA ârA+δj + h.c.

)
+

∆

2

(
â†rA ârA − â†rA−δ1

ârA−δ1

)
3∑

j=1

(
J ′â†rA ârA+aj + h.c.

)
+

3∑
j=1

(
J ′â†rA−δ1

ârA−δ1−aj
+ h.c.

)]
(2.16)

Here, we perform a sum over the tunnelings of all sites, with rA being the location of an A-site,
and the positions of the B-sites being described by rA−δ1. The operators âr and â†r are the
annihilation and creation operators for the particle number on a lattice site at r, respectively.

We can now derive the energy dispersion of the Hamiltonian by making use of the Fourier
transform of the creation and annihilation operators

â†rA =
1√
N

∑
k

e−ik·rAa†k ârA =
1√
N

∑
k

eik·rA âk

â†rA−δ1
=

1√
N

∑
k

e−ik·(rA−δ1)b̂†k ârA−δ1 =
1√
N

∑
k

eik·(rA−δ1)b̂k (2.17)

with N being the number of unit cells. Plugging this into Eq. 2.16, we yield

Ĥ =
∑
k

[
J

3∑
j=1

(
â†kb̂

†
ke

ik·δj + h.c.
)

+

3∑
j=1

J ′
(
â†kâke

ik·aj + b̂†kb̂ke
−ik·aj

)
+ h.c.

+
∆

2

(
â†kâk − b̂†kb̂k

)]
. (2.18)

This is equivalent to a two-level system at each quasimomentum k, so that the system
can be expressed in terms of the Pauli matrices
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σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.19)

as

Ĥ(k) = σ̂0h0(k) + σ̂ · h(k). (2.20)

Here, h0 (k) and h (k) are defined as

h0 (k) = 2t cos (ϕ)
3∑

j=1

cos (k · aj)

hx (k) = J

3∑
j=1

cos (k · δj)

hy (k) = −J
3∑

j=1

sin (k · δj)

hz (k) =
∆

2
− 2t sin (ϕ)

3∑
j=1

sin (k · aj) . (2.21)

Calculating the eigenvalues of this system yields

E± (k) = h0 (k)± |h (k)| . (2.22)

Phase transitions in the Haldane model We now investigate the gap closing points
of this system. At the points K / K′ located at

K = kL

(
0
1

)
K′ = kL

(
0
−1

)
, (2.23)

with kL = 4π
3
√

3a
, the contributions of hx (k) and hy (k) vanish. In addition to that, we

can neglect the contribution of h0 (k), as it shifts both bands simultaneously due to the
multiplication with σ0. This way we solve

hz (K) =
∆

2
− 2t sin (ϕ)

(
3
√

3
2

)
!
= 0

⇒ ∆ = 6
√

3t sin (ϕ) (2.24)
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hz
(
K′) = ∆

2
− 2t sin (ϕ)

(
−3

√
3

2

)
!
= 0

⇒ ∆ = −6
√

3t sin (ϕ) . (2.25)

These gap closing points are illustrated in Fig. 2.1c. The topological invariant that charac-
terizes the different phases here is the Chern number C. As the Berry curvature is localized
around the dirac cones at K and K′, the Chern number can be calculated directly by
summing the contributions from each Dirac point

C =
1
2
[
sgn (hz (K))− sgn

(
hz
(
K′))] . (2.26)

Here, the contribution at the K′ point is subtracted due to the opposite chirality compared
to K , as can be seen from a Taylor expansion of the system around the Dirac points.
From this, one can see that C = 0 for

∣∣∆
2

∣∣ > ∣∣3√3t sinϕ
∣∣, and C = ±1 otherwise, with

C = 1 for ϕ ∈ (0, π), and C = −1 for ϕ ∈ (−π, 0). This is illustrated, together with
the gap-closing points, in Fig. 2.1c.
This model can also be understood in terms of symmetries: As the next-nearest neighbour
tunneling J ′ = teiϕ can be complex, it is apparent that time-reversal symmetry is broken
unless ϕ = Nπ, with N ∈ Z. In the presence of time-reversal symmetry, the system is always
topologically trivial. Another symmetry of this system is inversion symmetry: For ∆ = 0,
inversion symmetry is present, and the system is topologically nontrivial for ϕ ≠ Nπ and
t ≠ 0. If both inversion symmetry as well as time reversal symmetry are broken, the system
is topologically trivial for |∆| > 6

√
3t sinϕ. In the Altland-Zirnbauer classification [22, 23]

the Haldane model belongs to class A, and is an exmple of a Chern insulator.

2.2 Floquet engineering
The Floquet theorem [82–84] states, that the evolution of a time-periodic Hamiltonian
Ĥ (t) = Ĥ (t+ T ) can be described by an effective Hamiltonian, if it is probed strobo-
scopically after n · T , n ∈ Z. According to the Floquet theorem, the solution of the
time-dependent Schrödinger equation

iℏ
∂

∂t
|ψ (t)⟩ = Ĥ (t) |ψ (t)⟩ (2.27)

of such a system are the so called Floquet states

ψn (t) = e−iϵnt/ℏ |ϕn (t)⟩ . (2.28)

Here, ϕn (t) = ϕn (t+ T ) are the so-called Floquet modes of the system, with ϵn being
their quasienergy. By inserting the Floquet states into the time-dependent Schrödinger
equation one obtains
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(
Ĥ (t)− iℏ

∂

∂t

)
|ϕn (t)⟩ = ϵn |ϕn (t)⟩ . (2.29)

The eigenenergies ϵn due to this equation are not uniquely defined, as becomes evident
when multiplying them with a global phase factor

ϕn,m (t) = e−i(mℏω)t/ℏ |ϕn (t)⟩ (2.30)

with m ∈ Z, and ω/(2π) = 1/T being the driving frequency of the system. Inserting
this into Eq. 2.29 yields the eigenenergies

ϵn,m = ϵn +mℏω. (2.31)

This leaves the eigenstate of the time-dependent Hamiltonian unchanged

|ψn,m (t)⟩ = e−i(ϵn+mℏω)t/ℏ · eimωt |ϕn (t)⟩ , (2.32)

so that all solutions defined in Eq. 2.30 are physically equivalent. This means, that the
quasienergy ϵn is unique only up to integer multiples of ℏω, and that the energy spectrum
of the system consists of infinitely many copies of each band, separated by ℏω. In analogy
to the Brillouin zone defined for quasimomenta, we can restrict the quasienergies to lie
within the Floquet Brillouin zone,

ϵn ∈
]
− ℏω

2
,
ℏω
2

]
. (2.33)

Effective Hamiltonian The evolution of an eigenstate |ψn (t)⟩ during one modulation
period of the Hamiltonian can be written as

|ψn (t0 + T )⟩ = Û (t0 + T , t0) |ψn (t0)⟩ = T̂ e−
i
ℏ
∫ t0+T
t0

Ĥ(t)dt |ψn (t0)⟩ . (2.34)

with T̂ being the time-ordering operator. According to the Floquet theorem, Û can be
factored into a form separating the dynamics

Û (t, t0) = ÛF (t) e−iĤeff(t−t0)/ℏÛ †
F (t0) (2.35)

where ÛF(t) = ÛF(t+ T ) is a time-periodic unitary operator known as the micromotion
operator, while Ĥeff is time-independent, and is given by

Ĥeff = Û †
F(t)Ĥ(t)ÛF(t)− iℏÛ †

F(t)
˙̂
UF(t). (2.36)

It is important to note that the effective Hamiltonian Ĥeff as well as the micromotion operator
ÛF are not uniquely defined [85]. A simple way to see this is to multiply the micromotion
operator with an arbitrary unitary operator from the right. A common choice for this is to
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Û ′
F(t) = ÛF(t)Û

†
F(t0), which yields a micromotion operator that equals the identity after

each modulation period. With this choice, the time evolution operator simplifies to

Û (t, t0) = Û ′
F (t, t0) e

−iĤ
t0
F (t−t0)/ℏ, (2.37)

with the Floquet Hamiltonian being

ĤF(t0) = ÛF (t0) Ĥeff Û
†
F (t0) . (2.38)

This allows us to determine the time evolution of the system after one driving period
according to

Û (t0 + T , t0) = e−iĤeff(t0)T/ℏ, (2.39)

where the evolution of the system after n ∈ N driving periods can be determined by
repeated application of the time evolution operator.

High frequency limit In most cases, an analytic derivation of the Floquet Hamiltonian
ĤF and of the micromotion operator ÛF is not possible, but instead have to be derived
numerically. For sufficiently large drive frequencies however, where the different Floquet
copies are well separated, one can perform a perturbative expansion of the Hamiltonian
by performing a Magnus expansion [86–88]. For this, the Hamiltonian is split into a
time-independent part Ĥ0, and a time-dependent part V̂ (t) oscillating with the drive
frequency and harmonics:

Ĥ(t) = Ĥ0 + V̂ (t) (2.40)

V̂ (t) =
∞∑
n=1

V̂ne
inωt + V̂−ne

−inωt. (2.41)

Performing this expansion to first order yields

ĤF = Ĥ0 +
1
ℏω

∞∑
n=1

1
n

[
V̂n, V̂−n

]
+O

(
1

(ℏω)2

)
. (2.42)

In a similar fashion one can find an expression for the micromotion operator ÛF [85, 88]. As
we probe the system stroboscopically after full evolutions for the measurements presented
in this thesis, we do not derive the expressions for this operator here.
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2.3 The tunneling modulated honeycomb lattice

Ultracold atoms in optical lattices, being charge neutral, do not couple to magnetic fields
via the Lorentz force, preventing the straighforward implementation of topological phases
such as quantum Hall systems. Instead, several approaches have been developed to engineer
complex tunneling amplitudes, most prominently laser-assisted tunneling [56, 57, 62, 89]
or shaking of the lattice [59, 71].

In this work, we perform Floquet engineering by employing an amplitude modulation scheme,
varying the optical potential of the three laser beams forming the optical lattice sinusodially.
Similar behavior can however also be observed for stepwise driving protocols [90].

The scheme employed here is based on the optical lattice described in Sec. 3.3, where three
free-running laser beams intersect at the location of the atoms and their cross-interference
forms an optical lattice. One benefit of this setup is, that it allows variation of the
tunneling along all three of the lattice directions independently. This way, one can realize
a Hamiltonian varying the nearest neighbour tunneling,

Ĥ (t) =

3∑
j=1

(
0 Jj(t)e

ikδj

J∗
j (t)e

−ikδj 0

)

=

3∑
j=1

Jj(t) (σ̂x cos (kδj) + σ̂y sin (kδj)) . (2.43)

Here δj denites the position vector to the three nearest neighbours, as illustrated in
Fig. 2.1. The first entry in the Hamiltonian corresponds to an A-site in the unit cell,
and the second to a B-site.

The sinusoidal modulation of the beam potentials leads to a modulation of the tun-
neling according to

Jj(t) = A · eB cos(ωt+κj 2π
3 ) + C, (2.44)

where for all measurements presented in this thesis A = 0.220ER, B = 0.767, and C =

−0.065ER, with ER = h/(2λ2
LmK) = h · 9.23 kHz being the recoil energy of our optical

lattice. The chirality κ = ±1 determines, in which order the three beams are modulated.

2.3.1 Behavior at high modulation frequencies

To determine the high-frequency behavior of our modulation scheme, one can perform a
Magnus expansion [86–88], making use of Eq. 2.42:

ĤF = Ĥ0 +
1
ℏω

∞∑
n=1

1
n

[
V̂n, V̂−n

]
+O

(
1

(ℏω)2

)
.
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The zeroth-order term Ĥ0 represents the time-averaged Hamiltonian and can be evaluated as

Ĥ0 =
3∑

j=1

(
1
T

∫ T

0
Jj(t) (σ̂x cos (kδj) + σ̂y sin (kδj)) dt

)

=
3∑

j=1

(AI0(B) + C) (σ̂x cos (kδj) + σ̂y sin (kδj)) , (2.45)

with I0 being the modified Bessel function of the first kind. This Hamiltonian corresponds
to a static honeycomb lattice with effective tunneling strength Jeff,0 = AI0(B) + C.

To find an expression for V±n, we perform a Jacobi-Anger expansion of the tunneling
amplitude

Jj(t) = AeB·cos(ωt+κj 2π
3 ) + C

= A

(
I0(B) + 2

∞∑
m=1

Im(B) cos
(
m(ωt+ κj

2π
3
)

))
+ C. (2.46)

This expansion allows us to identify the amplitude V̂±1 of the first-order time dependent part

V̂±1 = AI1(B)
3∑

j=1

e±iκj 2π
3 (σ̂x cos (kδj) + σ̂y sin (kδj)) . (2.47)

Substituting this into the first-order term of Eq. 2.42, one obtains

Ĥ1 =
1
ℏω

[
V̂1, V̂−1

]
=

1
ℏω

(AI1(B))2
3∑

j,k=1

eiκ(j−k) 2π
3 [(σ̂x cos (kδj) + σ̂y sin (kδj)) , (σ̂x cos (kδk) + σ̂y sin (kδk))]

=
1
ℏω

(AI1(B))2
3∑

j,k=1

eiκ(j−k) 2π
3 2iσz sin (k(δk − δj))

= − 1
ℏω

2
√

3 (AI1(B))2 σz

3∑
j=1

sink · aj, (2.48)

where we have used the Pauli matrix commutation relations and performed the geometric
sum over the lattice vectors. Combining the zeroth- and first-order contributions, we
arrive at the effective Floquet Hamiltonian
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ĤF =
3∑

j=1

(AI0(B) + C) (σ̂x cos (kδj) + σ̂y sin (kδj))

− κ

ℏω
2
√

3 (AI1(B))2 σz

3∑
j=1

sink · aj. (2.49)

Comparing this Hamiltonian to the Haldane model as defined in Eq. 2.21 we observe that our
Floquet-engineered system realizes a Haldane-type Hamiltonian with zero sublattice offset
∆ = 0, a next-nearest neighbor tunneling amplitude t =

√
3(AI1(B))2

ℏω , and a next-nearest
neighbor tunneling phase ϕ = −κπ/2.

2.4 Anomalous Floquet Phases

In the past sections, we have considered Floquet engineering mainly in the limit of the
driving frequency being the largest energy scale in the system. Here, the dynamics over
long timescales can be be accurately described by a static, effective Hamiltonian Ĥeff , which
can be derived via a Magnus expansion (as discussed in Sec. 2.3 and Sec. 2.2) [85]. If the
driving frequency of the system is reduced, however, the system can no longer be described
by a time-independent Hamiltonian Ĥeff . These genuine out-of-equilibrium systems are
known as anomalous Floquet phases. Such phases have been experimentally realized in
a range of different platforms, such as photonic waveguides [76, 91, 92], nanophotonic
lattices [93, 94], microwave- [95, 96] and acoustic resonators [97], liquid crystal devices [98]
as well as in ultracold quantum gases in optical lattices [61].

The schematic band structure of an anomalous Floquet system is, together with the band
structure of a Chern insulator, illustrated in Fig. 2.2. Anomalous Floquet phases rely on
the periodicity of the energy spectrum, as they emerge when different Floquet copies of
the system can hybridize. They realize a topologically trivial bulk, while exhibiting edge
modes in all energy gaps of the system [65, 99]. This however means, that the Chern
number is no longer suitable to characterize the topological properties of the system: As
the energy spectrum has no lower bound, with any band of the system having an edge
mode entering from the bottom and exiting from the top, all Chern numbers vanish, with
the system still exhibiting topologically nontrivial behavior.

To properly characterize the topological properties of such anomalous Floquet phases, a
different invariant is required. Instead, the topological invariant in anomalous Floquet
systems is the winding number at quasienergy ϵ [65]

Wϵ

(
Ûϵ

)
=

1
8π2

∫ T

0
dt

∫
BZ
dkxdkyTr

(
Û−1
ϵ ∂tÛϵ

[
Û−1
ϵ ∂kxÛϵ, Û

−1
ϵ ∂ky Ûϵ

])
. (2.50)
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Figure 2.2 | Schematic energy spectrum of a Chern insulator and an anomlous Floquet system.
a Schematic energy spectrum in a Chern insulator: There is only one edge mode in the 0-gap g

0 of
the system. Because of this, the bands have nonzero Chern numbers C− = 1 and C+ = −1. b In an
anomalous Floquet system, the bands of the different Floquet copies hybridized, leading to edge states
both in the 0-gap g

0 as well as in the π-gap g
π of the system. Because of this, the Chern number of both

bands are zero. Instead, one can use the winding numbers W
0 = 1 and W

π = 1 in the 0-gap and in the π
respectively to characterize the system.

This expression integrates over the Brillouin zone for a full driving period, quantifying the
nontrivial topology of the system by measuring how the eigenstates of the time-evolution
operator Ûϵ evolve as one traverses the Brillouin zone. Here, the net number of edge states
at quasienergy ϵ is directly given by the winding number

nedge =
∣∣∣Wϵ

(
Ûϵ

)∣∣∣ . (2.51)

A nonzero winding number at a particular quasienergy thus guarantees the presence of
topologically protected edge states at that energy. This way, the Chern number of a band
situated between quasienergies ϵ and ϵ′ can be calculated according to

Cϵ′,ϵ =W ′
ϵ

(
Ûϵ

)
−Wϵ

(
Ûϵ

)
. (2.52)

An anomalous Floquet system can also be realized in our tunneling-modulated honeycomb
lattice, as was investigated in [61]. To illustrate this transition, the dispersion of the lattice
is numerically simulated, with results displayed in Fig. 2.3. Here, the 2D dispersion as well
as the dispersion along the high-symmetry line Γ-M-K-Γ are simulated using the modulation
scheme introduced in Sec. 2.3. To better illustrate the phase transition into the anomalous
regime, the system is also simulated on a semi-infinite strip, where the system is periodic
in x-direction, while it is terminated at the zig-zag edge in y-direction. This leads to edge
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Figure 2.3 | Dispersion at the transition into the anomalous regime for the tunneling-modulated
honeycomb lattice. From left to right, each subfigure shows the 2D bandstructure, the dispersion along
the high symmetry-points Γ-M-K-Γ, and the dispersion on a semi-infinite strip, where the system is periodic
in x-direction, and terminated at the numerical zig-zag edge in y-direction. In the high-symmetry line
plot, the dispersion of the Floquet copies is shown using a lighter shade to illustrate the gap closing
in the π-gap at Γ. The subfigures show a ω/(2π) = 16 kHz, b ω/(2π) = 13 kHz, c ω/(2π) = 11 kHz, d
ω/(2π) = 9 kHz, eω/(2π) = 7 kHz.

states propagating along both numerical edges of the system, visible as two edge states,
one with positive and the other with negative slope.

As discussed in Sec. 2.3.1, this system maps to a Haldane model with ∆ = 0 and ψ = −κπ/2
in the high frequency limit. We start our investigation in subfigure a at a modulation
frequency significantly larger than the bandwidth, ω/(2π) = 16 kHz, such that the different
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Floquet copies are well separated, and no coupling between them is present. This frequency
was chosen, as it is the one commonly used in our experiments, having both a relatively
large π- and 0-gap (with the size of the 0-gap decreasing for larger modulation frequencies).
One can see, that while the chiral modulation of the system leads to a gap opening at
the K-points of the system, the dispersion is otherwise mostly identical to the dispersion
of the unmodulated lattice.

If the modulation frequency is reduced, as illustrated in subfigures b and c, the size of the
Floquet Brillouin zone is reduced, moving Floquet copies closer together in the π-gap. At
ω/(2π) = 11 kHz, the bands are just shy of touching each other at the Γ-point. Reducing
the modulation frequency now even further, as illustrated in d and e, the upper band in the
Floquet Brillouin zone starts to couple with the lower band of the upper Floquet copy, and
vice versa. This leads to a deformation of the bands, originating at Γ, which gets stronger
with reducing modulation frequency. At this point, one can also see an edge state in the
π-gap originating at the band touching point, connecting the Floquet copies across the gap.
This marks the transition from the Haldane- into the anomalous Floquet regime, changing
the winding numbers of the two bands from W 0 = 1, W π = 0 to W 0 = 1, W π = 1.

If after this point the modulation freqeuncy is reduced even further after this point, a
second transition into a regime with W 0 = 0, W π = 1 can be observed, due to the bands
touching at the Γ-point once again. This phase is usually referred to as the Haldane-like
regime, as its properties are closely related to those in the Haldane regime.

Another feature of interest for future experiments can be seen in Fig. 2.3e for a modulation
frequency ω/(2π) = 7 kHz: Here, in the 2D bandstructure, a moat structure is visible,
centered around Γ, similar to the one realized in [100], which might open a pathway towards
the realization of a chiral spin liquid [101, 102].

2.5 Disordered systems

Material properties in disordered systems have long been an active field of research. A
significant catalyst here was the discovery of the integer Quantum Hall Effect (QHE) [5–7],
which relies on some degree of disorder to localize the bulk of the system while leaving a
few extended states free to carry the quantized current along the edge.

The field of quantum simulation with ultracold atoms poses a natural choice for investigating
such effects, as clean systems are easily obtained, and disorder can be reintroduced in
a controlled manner – most notably in experiments on Anderson localization [103–107].
The extension of this research into systems realizing topological Bloch bands holds the
opportunity for generating a better understanding of the robustness of topological protection,
and of exotic phases like the anomalous Floquet Anderson insulator [66, 108]. Additional
investigations of the effect disorder has on the phase diagram of such systems might deepen
the understanding of the interplay between topology and disorder [109].
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2.5.1 Transport in disordered media
On a simple level, particle transport can be understood via the Drude model, which
provides a description of particle motion in the presence of scattering. The model assumes
that particles travel ballistically at constant velocity v between instantaneous scattering
events. These events occur randomly, with mean free time τ and a corresponding mean
free path ℓ = vτ between collisions. Upon scattering, the particle’s direction is randomized
isotropically. These microscopic processes can be linked to macroscopic diffusion, described
by the diffusion coefficient

D =
1
d
vℓ =

1
d
v2τ, (2.53)

where d is the dimensionality of the system. By formulating a continuity equation for
particle flow and by making use of Fick’s law, one can now derive the probability density [4]

P (r, t) = (4πDt)−d/2 er
2/(4Dt), (2.54)

assuming r(t = 0) = 0, yielding a Gaussian distribution. A useful metric for quantifying
the extent of this distribution is the mean squared displacement

⟨r2(t)⟩ =
∫
r2P (r, t) dr = 2dDt, (2.55)

growing linearly in time, with a slope dependent on the dimensionality of the system.

This model effectively describes transport in systems, where interference effects remain
negligible, i.e. when the coherence length is much shorter than the mean free path ℓ.
According to this description, transport persists regardless of the amount of disorder,
albeit with reduced mobility.

When the coherence length extends over multiple scattering events, one however needs
to consider the acquired phases of all possible paths between two points, illustrated in
Fig. 2.4a. This means, that the wave function at location r – again assuming expansion
from r = 0 – has to be expressed as a Feynman path integral

|ψ(r, t)⟩ =
∫

Dx(t′)ei S[x(t
′)]/ℏ, (2.56)

with x being a path from 0 to r, S [x(t′)] its classical action, and Dx(t′) being the integration
measure, ensuring normalization [4]. In the semiclassical limit, considering only paths
along which S is stationary, this simplifies to

ψ(r, t) ≈ 1
N

N∑
j=1

eiϕj(t), (2.57)

with N being the number of classical paths, and ϕj the phase acquired along path j.
Assuming these phase differences to be uncorrelated due to the strong dependence of
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r1

r2

a b

Figure 2.4 | Coherence effects and weak localization. a When the coherence length of the particle’s
phase extends over multiple scattering events, the coherent sum across all possible paths has to be
determined to determine the probability of scattering from location r1 to r2. b Weak localization: The path
length difference for paths traversed in opposite directions is zero. This way, constructive interference
increases the probability of a particle returning to its initial location (encircled).

the acquired phase on the path taken, one can recover classical diffusion, as defined in
Eq. 2.54. However, this is not true, with one of the strongest corrections to this being
illustrated in Fig. 2.4b: For each path, there must exist a second path which acquires the
same phase, in which the path is traversed in reverse. For closed paths, winding from a
location r′ back to location r′, both paths having the same start- and end point, leading
to constructive interference, which modifies Eq. 2.57 to

ψ(r′, t) ≈ 1
N

N/2∑
j=1

2eiϕj(t), (2.58)

with N still being the total number of paths, and j summing over all unique paths, e.g.
all paths traversing clockwise. By comparing this to Eq. 2.57, one can see that due to the
pairwise coherent addition of paths, the amplitude of the wave function is twice as large,
leading to an increased average return probability, which is exactly twice the classically
expected return probability [4]:

|ψ(r′, t)|2 = 2(4πDt)−d/2. (2.59)

This effect is known as weak localization, as it diminishes the ability of a wave to travel
through a disordered medium. In condensed matter experiments, it is responsible for the
anomalous resisitance of thin metallic films [110, 111], where its effect can be probed by
applying a magnetic field to dephase counter-propagating paths [112].
A similar effect can be observed in reciprocal space, where a state at quasimomentum
k has an increased probability of scattering into a state at quasimomentum −k, known
as coherent back scattering. This effect together with the doubling of the probability of
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scattering back was first experimentally observed in pumped titanium-sapphire powder,
and has since been observed with ultracold atoms [113].

Interference effects can even halt diffusion altogether, leading to so-called strong, or Anderson
localization [114]. This type of localization strongly depends on the dimensionality of the
system [115], which can be intuitively understood by considering the increased probability
of scattering back towards the initial state for lower dimensional systems, increasing the
strength of interference effects. This way, in a one-dimensional system of infinite size,
all states in a disorder potential localize independent of the strength of the disorder. In
two-dimensional systems, states of all energies still localize, but the region occupied by the
localized states increases exponentially with energy, eventually reaching the system size. In
3D systems, a phase transition exists at an energy EC , the so-called mobility edge, below
which states are localized, while states above the mobility edge are extended.
In topologically nontrivial materials, the bulk-boundary correspondence ensures the existence
of topological edge modes, as long as the disorder does not close the bulk gap or break
the underlying protecting symmetry. The mechanism behind this topological protection
can be understood by considering the processes leading to localization, such as coherent
backscattering: As in the edge mode no counterpropagating channels to scatter into exist,
the edge states stay conductive even in the presence of moderate disorder. This protection
is not absolute, and sufficiently strong disorder can close the bulk band gap, driving the
system into a topologically trivial state.
While disorder can break transport by closing energy gaps, it can also lead to the emergence
of topological nontrivial phases. Here, the topological Anderson insulator [73], realized
in [74, 76–78], serves as an example, where the application of disorder can drive an initially
trivial system into a nontrivial phase, exhibiting topologically protected edge states. This
underlines, how further investigations of the effect disorder has on topological materials
are necessary to fully understand such systems.

2.5.2 The Bott index
In disordered systems, lacking translational invariance, conventional topological invari-
ants, which rely on a well-defined quasi momentum, typically fail. The Bott index [116]
probes the system in real space, quantifying whether topological features prevent the
existence of a set of localized wavefunctions spanning a band’s eigenspace. To this end,
the commutativity of the projected position operators is evaluated, quantifying the extent
to which they fail to commute.
To evaluate the Bott index, we consider a rectangular system consisting of Ns lattice
sites, shaped Lx × Ly, and periodic boundary conditions. For such a system, the Bott
index B is then defined as

B =
1

2πi
Tr
[
log
(
ÛxÛyÛ

†
xÛ

†
y

)]
. (2.60)



24 Topological phases, Floquet engineering and disorder

Here the unitary operators Ûx and Ûy are defined as

Ûx = P̂ e2πiX̂/LxP̂ + (I− P̂ )

Ûy = P̂ e2πiŶ /Ly P̂ + (I− P̂ ), (2.61)

with X̂ and Ŷ being the position operators, and P̂ =
∑

n∈occupied |ψn⟩ ⟨ψn| being the
projection operator onto the occupied states.

Thermodynamic limit of the Bott index In the limit of very large system sizes,
Ûx and Ûy can be expanded to leading order,

Ûx ≈ P̂

(
I+

2πi
Lx

X̂

)
P̂ + (I− P̂ )

Ûy ≈ P̂

(
I+

2πi
Ly

Ŷ

)
P̂ + (I− P̂ ). (2.62)

Evaluating the argument in the logarithm in Eq. 2.60 to leading order in 1/(LxLy) yields then

ÛxÛyÛ
†
xÛ

†
y ≈ I+

(2πi)2

LxLy
P̂
[
X̂, Ŷ

]
P̂ . (2.63)

Plugging that back into Eq. 2.60

B =
1

2πi
Tr

[
log
(
I+

(2πi)2

LxLy
P̂
[
X̂, Ŷ

]
P̂

)]
(2.64)

and applying log(1 + x) ≈ x for small x, one obtains

B =
2πi
LxLy

Tr
(
P̂
[
X̂, Ŷ

]
P̂
)
. (2.65)

In a entirely clean system, exhibiting translational invariance, we can assume periodic
boundary conditions, and work in the Bloch basis. The position operators in momen-
tum space then become

X̂ = i
∂

∂kx
Ŷ = i

∂

∂ky
. (2.66)

The projector onto occupied bands can be written as

P̂ =
∑

n∈occupied

∫
BZ

dk

(2π)2
|unk⟩ ⟨unk| , (2.67)

with |unk⟩ being the Bloch functions. This allows us to rewrite the trace in Eq. 2.65 as



2.5 Disordered systems 25

Tr
(
P̂
[
X̂, Ŷ

]
P̂
)
=

∑
n∈occupied

∫
BZ

dk
LxLy

(2π)2
i ⟨unk|

[
∂kx , ∂ky

]
|unk⟩ ⟨unk| |unk⟩ , (2.68)

with

i ⟨unk|
[
∂kx , ∂ky

]
|unk⟩ = i

(
⟨∂kxunk| |∂kyunk⟩ − ⟨∂kyunk| |∂kxunk⟩

)
= i ⟨∇ku

n
k| × |∇ku

n
k⟩

= Ωn (k) (2.69)

being the Berry curvature, as defined in Eq. 2.9. Plugging this back into Eq. 2.65 yields

B =
1
2π

∑
n∈occupied

∫
BZ

dkΩn (k) . (2.70)

By comparing this to the definition of the Chern number in Eq. 2.11, one immediately
sees that the Bott index is equal to the sum of the Chern numbers of all occupied bands
for large, disorder-free systems,

B =
∑

n∈occupied
Cn. (2.71)



CHAPTER 3

Experimental setup

This chapter provides an overview of the experimental platform utilized for the measurements
presented in this thesis, with an emphasis on recent upgrades. Here, the focus lies on
giving a broad overview over the platform, while providing details on recent additions to
the setup. The fundamental platform is described in greater detail in [117, 118], with
more recent changes to it being described in [119–122].

The chapter begins in Sec. 3.1 by providing details on the experimental steps and the
tools used for creating a Bose-Einstein condensate (BEC) of 39K, going throug the initial
laser cooling steps, the magnetic transport, and the evaporative cooling stage. In the
following, the optical trapping potentials used in the experiment are described: Sec. 3.2.1
describes the setup generating the crossed optical dipole trap, and Sec. 3.2.2 provides
information on the optical tweezer trap we implemented. To project arbitrary binary
repulsive potentials into the atomic plane, we have implemented a digital micromirror
device (DMD) into the experimental setup, described in Sec. 3.2.3. Lastly, we have added a
speckle beam to the setup, which enables us to project repulsive disorder into the atomic
plane, with information provided in Sec. 3.2.4. Following this, Sec. 3.3 presents the optical
lattice setup used, and how it can be utilized to measure the band gap of a system. The
chapter concludes in Sec. 3.4 with a description of our absorption imaging system, providing
details on the improved in-situ imaging capabilities in Sec. 3.4.1, and on its calibration
to account for saturation effects in Sec. 3.4.2.

3.1 Generating a Bose-Einstein condensate

The experiments described in the following chapters have been performed using a Bose-
Einstein condensate (BEC) of 39K, as it has a wide Feshbach resonance accessible at 403 G.
While our experimental setup in general is also able to create BECs of 87Rb, only the
generation of BECs of 39K, using 87Rb for sympathetic cooling, is discussed.

26
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3.1.1 Atom loading and laser cooling
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Figure 3.1 | Hyperfine structure of the D2 lines for 87Rb and 39K. The diagram indicates the laser frequen-
cies used for cooling 87Rb and 39K, with detunings marked by grey dashed lines and crossover resonances
by blue dashed lines. The frequencies for the imaging system at large magnetic fields are discussed in
Sec. 3.4.1. Data is sourced from [123, 124].

The experimental sequence begins with loading both 87Rb and 39K from the background
pressure in a dual-species two-dimensional magneto-optical trap (2D MOT). In this stage,
two pairs of red-detuned, circularly polarized laser beams provide transverse cooling,
while a magnetic quadrupole field confines the atoms along the transversal direction [125].
For 39K, an additional retro-reflected beam provides axial cooling, forming a 2D+-MOT
configuration [126]. Here, a mirror combined with a waveplate with a hole drilled in the
center is reflecting back the beam, with the hole allowing atoms to travel to the differential
pumping tube leading to the 3D MOT chamber, providing some additional axial cooling
on the outer regions of the system, while pushing them into the differential pumping
section in the inner (cooler) region. This differential pumping section generates a pressure
gradient, maintaining a pressure of ≈ 1 × 10−9 mbar in the 3D MOT chamber. For 87Rb,
a resonant laser beam is used to push the atoms from the 2D MOT chamber to the 3D
MOT. Here, the atoms are cooled by three pairs of red-detuned, circularly polarized beams
in combination with a magnetic quadrupole field [127–129]. Typical loading times are
2.5 s for rubidium, and ≈ 0.3 s for potassium, the latter being regularly optimized for
the final 39K BEC atom number.

Following the loading phase, the magnetic field gradient is increased to compress the cloud
[130]. Subsequently, the magnetic field is turned off, and the laser detuning is increased
to perform molasses cooling on both species [127, 129, 131].
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3.1.2 Magnetic transport
The BEC is generated in the science chamber, which is separated by another differential
pumping section. To transport the atomic cloud there, we employ a magnetic transport
system [132]. As at the end of the molasses the atomic cloud ends up in a mixture of spin
states, we optically pump both species into the |F = 2,mF = 2⟩ state before starting the
transport.Then, a series of overlapping coil pairs in anti-Helmholtz configuration generate a
moving quadrupole potential, which pulls the atoms through the differential pumping tube.
The differential pumping tube we transport through consists of two straight sections,
connected under a 45° angle. This prevents direct line of sight between the 3D MOT
and the science chamber, and thus helps with obtaining pressures ∼ 7 × 10−12 mbar in
the science chamber. The final coil pair of the magnetic transport system also serves as
a strong magnetic quadrupole trap to hold the atoms after the transport. To prevent
Majorana losses [133, 134], a blue-detuned laser at 760 nm blocks the atoms from entering
the central region of the trap.

3.1.3 Evaporative cooling and Feshbach resonances
The final cooling to a BEC involves several stages. First, while the atoms are held in the
magnetic quadrupole trap, we perform forced microwave evaporation on 87Rb [135–137]:
The energy levels of the rubidium atoms experience a Zeeman shift, which allows us to
drive the transition |F = 2,mF = 2⟩ to the antitrapped state |F = 1,mF = 1⟩ position
selectively. As the outermost regions of the cloud, which experience the largest magnetic
field, will be populated by the hottest atoms, we can perform a sweep of the microwave
frequency to always match the transition frequency of the hottest atoms remaining in the
system. The potassium atoms in the quadrupole trap are unaffected by this microwave
field, but are sympathetically cooled by the rubidium atoms [138].
To reach lower temperatures after this step, we transfer the atoms into a crossed optical dipole
trap [49] (cf. Sec. 3.2.1) by ramping down the magnetic quadrupole field, and simultaneously
ramping up the dipole trap power. We apply a small magnetic bias field during the last
70 ms of the quadrupole rampdown to provide a quantization axis, keeping the atoms
spin-polarized. To prevent spin-changing collisions [139] in the subsequent evaporation,
we transfer both 87Rb and 39K into their absolute ground state |F = 1,mF = 1⟩, using a
microwave sweep for rubidium, and a radio frequency sweep for potassium. Atoms that
remain in |F = 2,mF = 2⟩ are removed using a pulse of resonant light.
After the transfer of the atoms into the optical dipole trap, the current in the magnetic field
coils is ramped up again, now providing a homogeneous magnetic field in the Helmholtz
configuration. This allows us to tune the scattering length, both between 87Rb and 39K

atoms, as well as between different atoms of 39K by employing Feshbach resonances.
A Feshbach resonance occurs, when the energy of a molecular bound state is close to
the energy of an open channel, where the atoms are not bound, allowing the states to
couple, and influence the scattering properties of the atoms [38, 39]. As these two channels
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Figure 3.2 | Feshbach resonances employed in the experimental sequence. Inter-species scattering
length in the vicinity of the Feshbach resonance between 87Rb and 39K at B0 = 320.1 G, with a background
scattering length abg = −27.9a0 and a width ∆ = 7.9 G (left), as well the intra-species scattering length
near the Fesbach resonance in 39K at B0 = 403.3(7) G, with background scattering length abg = −29a0
and width ∆ = −52 G (right). The grey dashed line in the right plot marks, together with the data point, the
location at which the scattering length is as = 6a0, as used for the measurements presented in Chapter 4
and Chapter 5 of this thesis.

typically have different magnetic moments, this condition can be realized by tuning the
magnetic field. Near a Feshbach resonance, the s-wave scattering lengt between the involved
atoms can be described as

as(B) = abg

(
1 − ∆

B −B0

)
, (3.1)

with abg being the background scattering length, ∆ the width of the Feshbach resonance,
and B0 being its locations. The s-wave scattering length in the vicinity of the two Feshbach
resonances we employ for our experiments is displayed in Fig. 3.2.

First, we utilize the inter-species Feshbach resonance [38, 39] of 87Rb and 39K at 320.1 G [140]
to increase the scattering length to ≈ 90a0, which enhances the sympathetic cooling, and
allows us to force the evaporation by ramping down the dipole trap. As the mass of 87Rb

is over two times the mass of 39K, the gravitational sag leads to a weaker confinement of
rubdium, so that at the end of this ramp nearly all rubidium atoms evaporated from the
trap. Now, we make use of the interspecies Feshbach resonance of 39K at 403.3(7) G [141]
for both involved atoms in |F = 1,mF = 1⟩, decreasing the scattering length from ≈ 150a0

to ≈ 44a0 while slowly ramping down the dipole trap further. At the end of the ramp,
we obtain an almost pure BEC of ≈ 2 × 105 atoms.
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3.2 Optical potentials

3.2.1 Optical dipole trap

The optical dipole trap is formed by two intersecting beams with a wavelength λdip =

1064 nm, which is far red-detuned from both the D1 and the D2 lines of 87Rb and 39K.
The resulting attractive potential, Vdip, is proportional to the local intensity of the light
field, I (r, t), as described by the relation [49]

Vdip =
πc2

2

(
ΓD1

ω3
D1

2 + gFmFP
∆D1

+
ΓD2

ω3
D2

2 + gFmFP
∆D2

)
I (r, t) , (3.2)

where c is the speed of light, Γ is the natural linewidth of the transition under consideration,
ω is its angular frequency, gF is the Landé factor, mF the magnetic quantum number, P
describes the polarization of the trapping light, and ∆ is its detuning from the transition
under consideration, given by

1
∆

=
1

ωL − ω
+

1
ωL + ω

. (3.3)

Here, ωL is the angular frequency of the trapping light. The light for the dipole trap is
generated by a solid state laser1, which seeds a fiber amplifier2. The amplified output is
split into two paths, each intensity-stabilized by an acousto-optical modulator (AOM)3.
The AOMs shift the frequencies of the two beams by +80 MHz and −80 MHz respectively,
preventing interference between them. Subseqently, the beams are fiber coupled4 and
delivered to the main experiment. Here, they are shaped to an aspect ratio ≈ 1 : 10 using
cylindrical lenses, and focused into the atomic plane. The resulting waists of the dipole trap
beams on the atoms are ≈ 300 µm × 30 µm, which provides the strong vertical confinement
necessary to create the quasi-2D systems studied in this thesis.

Near the end of the work presented in this thesis, the fiber amplifier had to be replaced5,
providing an opportunity to improve the stability of the optical setup in front of the fibers.
We installed fast mechanical shutters6, allowing the AOMs to be held at a constant RF
power throughout most of the sequence, thereby reducing thermalization effects. The
AOMs themselves were also replaced with a model exhibiting lower temperature-dependent
pointing drifts7. To further enhance stability, all newly installed optical components are
made of UV fused silica, which has a low coefficient of thermal expansion, reducing the
effect of thermal lensing.

1Innolight Mephisto 2000 NE
2Nufern NuAmp 1064-PD-0050-C0
3G&H 3080-197
4NKT Photonics aeroGUIDE POWER
5now an ALS-IR-1064-50-A-CP-SF
6NM Laser Products LST400-12
7Pegasus Optik AA.MT80-A1,5-1064
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3.2.2 Optical tweezer trap
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Figure 3.3 | Setup used for generating the optical tweezer, focusing the objective using the tweezer.
a Schematic of the setup used for generating the tweezer beam: The fiber output at 1064 nm is collimated,
and its size and polarization are adjusted to optimize the diffraction efficiency on a 2D AOD. The diffracted
light is focused into an image plane, where undiffracted light and other diffraction orders are filtered
out. Subsequently, this plane is imaged onto the atoms by a telescope, with our microscope objective
being the final lens. Mirrors and dichroics are omitted where not necessary for the understanding of this
setup. b Vertical oscillations in the dipole trap after releasing atoms from a tweezer at different vertical
displacements. To increase the detectable signal, a time-of-flight measurement is performed after a hold
time thold in the dipole trap. Each data point is the average over 3-4 measurements. Error bars give the
standard deviation of the positions obtained for a given thold.

Investigating the edge dynamics of topological systems in ultracold quantum gas experiments
requires precise control over the initial quantum state and its spatial extent, particularly
the ability to populate small regions in the optical lattice. For this, we implemented an
optical tweezer trap [142–146], which allows us to load ≈ 200 atoms and populate a few
lattice sites in a controlled manner.
The experimental setup for the optical tweezer is illustrated in Fig. 3.3a: An optical fiber
outputs light at 1064 nm8, and is collimated by lens L1, an asphere with a focal length of
18.4 mm. A Galilean telescope consisting of lenses L2 and L3 with focal lengths −50 mm
and 75 mm respectively increases the beam diameter to improve the diffraction efficiency
of the acousto-optical deflector (AOD) later on. A λ/2 plate together with a polarizing
beam splitter are used to remove potential polarization fluctuations. We use a 50:50 beam
splitter to split off half the beam power for intensity stabilization (with the power being
distributed onto an in-loop and an out-of-loop photodiode by another 50:50 beamsplitter),
and utilize a λ/2 waveplate to rotate the polarization by 90° to improve the diffration
efficiency on the AOD9. The acousto-optical crystals in the AOD have been ground in such
a way, that the first diffracted order exits the device parallel to the incoming beam. We

8derived from the Innolight Mephisto 2000 NE used for seeding the ALS amplifier
9AA Optoelectronics DTSXY-400-1064
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optically Fourier transform the AOD plane with lens L4 with focal length 150 mm, and
filter out the undiffracted light as well as other diffraction orders here. This plane is then
projected into the atomic plane by a telescope, formed by an achromat L5

10 with focal
length 400 mm, and our microscope objective with focal length 25 mm and NA = 0.5.

The resulting tweezer frequency is detuned from the seed laser by fAOM+ fAODx+ fAODy ≈
230 MHz, providing sufficient detuning with respect to the optical dipole trap beams in the
horizontal plane. Here fAODx and fAODy depend slightly on the precise tweezer position,
while fAOM is the frequency of the AOM used for intensity stabilization.

During the installation of the optical tweezer, we focused the objective onto the optical
dipole trap by extracting the imaging response function from the density-density correlations
of thermal atoms in the trap [147]. This allowed us to focus the optical tweezer into the
same plane by trapping atoms in it and exciting oscillations along the optical axis. For this,
we deliberately defocus the objective by a few µm, and release the atoms in the dipole trap
from this position after a variable hold time thold. To increase the observable signal, we
abruptly switch off all confining potentials after the hold time, and let the system expand
for 7 ms. As we so far have not observed any focus shift between the tweezer focus and
the focus of the imaging system, these measurements are now routinely used to focus the
objective onto the dipole trap, with exemplary results shown in Fig. 3.3b.

While only a single tweezer trap was used for the measurements presented in this thesis,
the AOD setup is capable of generating grids of multiple tweezers, with the DDS frequency
source currently limiting us to two frequencies / two tweezers in each direction. This
capability would however be interesting for studying the characteristics of topological
systems by observing the interference and interactions of edge states on quantum point
contacts [148, 149]. For such experiments, it is essential to populate the edge modes of
the system at multiple locations with a constant phase relation.

To investigate our ability to do so, we performed measurements where two or four optical
tweezers with a trap frequency ωT /(2π) = 1.6(1) kHz were loaded from the same BEC
of 39K at as = 6a0. The tweezers were kept at a constant position, while the remaining
atoms in the dipole trap were expelled by briefly lowering the dipole trap, and increasing it
back to its original value afterwards. Afterwards, we released the atoms from the tweezers
simultaneously into the dipole trap, and let the system evolve for 2 ms. An exemplary
absorption picture obtained this way is shown in Fig. 3.4a, with a measurement for two
tweezers shown on the top, and a result for four tweezers on the bottom. However, upon
repeating this measurement, the phase of the interferenca pattern fluctuates, which is
indicative of the atoms acquiring varying phases in the tweezers. The resulting interference
pattern washes out, as shown in the averaged absorption images in Fig. 3.4b. This demon-
strates that the phase relation between the tweezers fluctuates significantly, preventing the
deterministic preparation of phase relations. To confirm that the coherence of the individual
tweezers is preserved, one can evaluate the average of the squared absolute value of the

10Thorlabs AC508-400-B
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Figure 3.4 | Interference of multiple tweezer traps in the dipole trap. a In situ absorption pictures
obtained 2 ms after releasing the atoms into the crossed optical dipole trap from two (top) and four
(bottom) tweezer traps, each with a trap frequency of 1.6(1) kHz. b Average over 118 absorption pictures
obtained for the same settings as in a, with two tweezers shown on the top, and four tweezers on the
bottom. c The individual absorption pictures used in b are Fourier transformed, and then the average
over their squared absolute value is determined.

Fourier transform |F (ODi)|2, shown in Fig. 3.4c, with ODi being the optical density of an
individual absorption picture. Here, strong peaks are visible at the spatial frequency of the
interference patterns, with no other prominent features present apart from the central peak
from the envelope at zero frequency, confirming the coherence of the individual wavepackets.

To improve the phase stability of the tweezers, one of the first modifications to do on the
setup would be to perform intensity stabilization of the tweezers (the setup being illustrated
in Fig. 3.3a) on the diffracted beam after the AOD, instead of stabilizing the ingoing beam.
As the tweezers generated by the AOD will have slightly varying trap frequencies depending
on their precise location, global intensity fluctuations of all tweezers lead to a varying
potential energy difference between the atoms trapped in different tweezers, causing the
atoms to acquire differential phases. Therefore, it is essential for the global intensity of
the tweezers to be stabilized well. A straightforward approach to target this is to replace
the mirror after the AOD with a plate beam splitter, allowing one to directly measure
the intensity of all diffracted tweezers.

Furthermore, additional improvements could be made to the signal generation for the AOD
input. The radio frequency signal used here is currently generated by the four output
channels of a direct digital synthesis (DDS) IC11, two channels each being combined using

11Analog Devices AD 9959
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a splitter12, with the resulting channels being amplified by a 5 W amplifier13. Currently,
the phase of the four channels is not fixed with respect to the start of the tweezer intensity
ramp, which means that intermodulation effects from nonlinearities in the signal path
could also lead to varying acquired phases of the trapped atoms. While nonlinearities,
and thus intermodulation effects, can never be fully eliminated from an experiment, their
effect onto the atoms could be reduced by driving the AOD with phase relations fixed
at the start of the tweezer loading.

3.2.3 Programmable repulsive potentials using a DMD

A digital micromirror device (DMD) consists of a programmable arrays of indiviually
adressable microscopic mirrors. By tilting each mirror into an "on" or "off" state, a DMD
can function as an arbitrary binary mask. In experiments on ultracold quantum gases,
DMDs are routinely used for tasks such as shaping bulk systems [52, 70, 150], or for locally
controlling the Hamiltonian in optical lattice systems [151–153].

The preparation and observation of topological edge states requires a well-defined boundary,
separating regions with distinct topological invariants. Although the harmonic confinement
naturally present in cold atom experiments in principle provides such a boundary, the
non-infinite sharpness of the boundary leads to the dispersion of the edge mode hybridizing
with the bulk modes, broadening the edge states and reducing their velocity, thereby making
them hard to detect [154–156]. This underlines the necessity of a DMD used for projecting
a topological interface to have a high resolution in the atomic plane, such that narrow
boundaries can be realized, simplifying the detection.

To prevent optical speckle and ripples, which could inhibit the transport properties of
the system, we illuminate the DMD spatially and temporally incoherent [157, 158]. The
light source is created by overlaying four multi-mode laserdiodes14 using a knife edging
module15. An AOM16 controls the intensity of the combined beam, and the light is
subsequently coupled into a square-core fiber17. The square core fiber not only has the
benefit of generating a square top-hat output mode, but also introduces spatial mode
mixing, further reducing interference effects. To further minimize residual speckle, we
rapidly average over different mode outputs by modulating the AOM drive frequency with
a modulation frequency of 1 MHz. This technique yields a flat illumination profile with a
residual speckle contrast of ∼ 3%, ensuring that potential corrugations at the projected
topological interface are negligible.

12Mini Circuits ZFSC-2-4-S+
13Mini Circuits ZHL-5W-1
14USHIO HL63623HD
15Lasertack Beam Combiner Module for 9mm laser diodes, with a fixed distance mirror, including 4mm

focal length collimation lenses
16G&H AOMO 3200-125
17Thorlabs FP150QMT



3.2 Optical potentials 35

An added benefit of using this incoherent illumination scheme, compared to directly imaging
a coherently illuminated DMD, is an improvement in optical resolution: As the square
core fiber emits light approximately isotropically within the imaging system’s numerical
aperture, the minimal distance d between two points which can be distinguished is

d = 0.61
λ

NA
, (3.4)

where λ is the wavelength of the light illuminating the DMD, and NA the numerical
aperture of the (circular aperture) objective [159]. In contrast, for coherent illumination,
where different points in the image plane share the same phase, the minimal distinguishable
distance is d = 1.22 λ

NA .
To design the optical system such, that the full numerical aperture of the imaging system
is illuminated, while avoiding losing light due to clipping at the aperture, it makes sense
to think about the design in terms of the conservation of étendue [160, 161]: The étendue
G of a beam of light is defined as

G = n2
∫
A

∫
Ω

cos (θ) dAdΩ, (3.5)

where n is the refractive index of the medium the light is propagating in, A is the surface
on which this light is emitted, Ω is the solid angle of emission, and θ the angle between
a given ray with respect to the surface normal of area A.
For paraxial beams and for emission that is homogeneous and isotropic over area A and
within solid angle Ω, this simplifies to

G = n2AΩ. (3.6)

The conservation of etendue states that in any passive, lossless optical system, the etendue
can not decrease: Gin ≤ Gout [160, 161].
By calculating the etendue of the square core fiber output and applying this principle, we
determine the smallest area on the atoms one can illuminate using the full objective NA

while not losing light to be ∼ 120 µm× 120 µm. This, in turn, dictates that the illuminated
area on the DMD should be ∼ 5 mm × 5 mm.
The optical setup we use for projecting the mask displayed on the DMD into the atomic
plane is illustrated in Fig. 3.5a: The output of a square-core fiber is imaged onto the DMD
using an aspheric condenser lens L1 with focal length 12 mm. This gives us a region of
∼ 5mm × 5mm on the DMD18, which is illuminated with a relatively flat intensity profile,
as illustrated in Fig. 3.5b and c. In the following, we project the DMD into the atomic
plane with a demagnification ∼ 45. For this, we use two telescopes, the first consisting
of lenses L2 and L3 (focal lengths 150 mm and 100 mm, respectively), and the second of
L4

19 having a focal length of 750 mm, and our microscope objective with a focal length of
18Vialux V-7000
19Thorlabs AC508-750-A
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Figure 3.5 | Optical setup for projecting arbitrary repulsive potentials. a Schematic sketch of the DMD
setup. Mirrors and dichroics are omitted where not necessary. The section stabilizing the intensity of
the fiber output is not shown. b Output of the square-core fiber reflected off the DMD in an all-on state.
The tip of the fiber is imaged onto the DMD, yielding an almost flat-top illumination within a rectangular
region. c Cut through the intensity profile on the DMD. The grey line in b marks the location at which this
cut is performed.

25 mm. An automated iris was placed in the Fourier plane between L2 and L3, allowing
us to reduce the resolution with which the DMD is projected into the atomic plane for
our measurements in Sec. 4.4.3. However, at this location, the speckle beam has already
been overlaid with the DMD path via a dichroic, so that this iris has been impractical
for our measurements in Chapter 5, and has been removed.

It is also important to note, that a simpler configuration was used for most measurements in
Chapter 4: Here, instead of two telescopes, only one telescope (consisting of an achromat20

with focal length 1000 mm and the microscope objective) was used to project the DMD
into the atomic plane with a demagnification of ∼ 40, such that a slightly larger region in
the atomic plane was illuminated. The only exceptions for this are the results presented in
Fig. 4.3b and in Fig. 4.11. The remainder of the optical setup, in particular the asphere
imaging the fiber tip onto the DMD, remained unchanged.

20Thorlabs ACT508-1000-A
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Figure 3.6 | Optical setup used for projecting disorder potentials. A diffuser is illuminated with an
uncollimated laser beam. It is subsequently optically Fourier transformed, and imaged into the atomic
plane. The dashed lines mark planes conjugate to the atomic plane. Mirrors and dichroics are omitted
where not necessary for understanding the setup.

3.2.4 Controlled disorder potentials using optical speckle
Experiments on ultracold quantum gases, unlike condensed matter systems, where disorder
is typically fixed and difficult to characterize, are relatively clean and free of defects. This
makes it interesting to re-introduce disorder in a controlled manner, investigating the
dependence of a system’s properties on the characteristics and the amount of disorder.
For this, several different methods have been developed: Multiple incommensurate optical
lattices can be utilized, generating a quasi-random system [103, 162–164]. Alternatively, a
DMD can be projected into the atomic plane using a high-NA objective [165, 166]. Lastly,
optical speckle potentials can be used to generate disorder [167, 168], as is often done in
studies of Anderson localization [104, 106, 107, 169].

In topological systems, disorder can introduce phase transitions into different regimes, as
has been studied in the context of a 1D Thouless pump [75], or a 1D momentum-space
lattice [74] using ultracold atoms. To study the influence disorder has on our Floquet
systems, we have installed an optical speckle setup, which allows us to project disorder
with a short correlation length into the atomic plane.

The optical setup employed here is illustrated in Fig. 3.6a: A solid-state laser21 generates
light at 532 nm. A PBS is used to remove any polarization noise, and the light is sent
through an AOM with low thermal drifts22 to stabilize the power and regulate the intensity.
After the AOM, a shutter23 enables us to keep the AOM at power when the potential
is off, further reducing thermal drifts. The light is then fiber coupled into a photonic
crystal fiber24 with a mode field diameter of 12.5(15) µm and a divergence half angle of

21Lighthouse Photonics Sprout G-15W
22IntraAction ASD-1002B47
23NM Laser Products LST400-12
24NKT Photonis aeroGUIDE POWER
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Figure 3.7 | Characteristics of the speckle potential. a Exemplary speckle image taken in the intermediary
imaging plane between L3 and L4. The scale bar has a length of 20 µm. b Theoretically expected probability
density function for an idealized speckle pattern (dashed line), together with a histogram of the intensity
distribution in speckle patterns recorded in the intermediary image plane (in green). c Averaged radial
autocorrelation of the speckle patterns recorded in the intermediary image plane. The dashed lines mark
the half width half max width of 7.9 µm of the autocorrelation. Both b and c use the same dataset of 118
images recorded in the intermediary image plane.

θD = 1.6(2)°. The fiber output is not collimated, but instead left to diverge, with the fiber
tip being protected by a glass plate25. A PBS ensures a well-defined polarization, and a
beam sampler is used to pick off a part of the beam as a signal for intensity stabilization.
An electronically adjustable iris26 allows to crop the beam size for adjusting the correlation
length during measurements, but was not used for any of the results in this thesis. Finally,
the beam illuminates a holographic diffuser27, randomizing the phase profile of the beam.
This diffuser is mounted in a rotation mount28, which allows us to rotate the diffuser
around an axis, which is different from the beam path. This way, the illuminated patch
on the diffuser changes when it is rotated, allowing us to realize different speckle patterns.
By optically Fourier transforming the plane of the diffuser using a lens with focal length
f1 = 100 mm, one now obtains a speckle pattern.

This pattern is subsequently demagnified by two telescopes. The first is formed by lenses L2

and L3 (f2 = 150 mm, f3 = 100 mm), and the second by L4 and our microscope objective (f4

= 750 mm, fobj = 25 mm), yielding a combined demagnification of 45. An exemplary speckle
pattern, taken in the intermediary image plane between L3 and L4, is shown in Fig. 3.7a.

25Thorlabs WG41050-A
26Thorlabs Elliptec ELL15K
27Edmund Optics #35-693
28Thorlabs ELL14K
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When, like in a speckle pattern generated by a diffuser, many electric field components
with random phases are added together, the resulting distribution of the amplitude A of
the electric field is known to follow a Rayleigh distribution

p(A) =
A

σ2 e
−A2/(2σ2), (3.7)

where σ characterizes the width of the distribution. To determine the resulting probability
density function of the intensity, one has consider the conservation of probability, ensuring
that the probability for the amplitude to fall in range dA is equal to the probability for
the intensity to fall in range dI,

p(A) · dA = p(I) · dI.

⇒ p(I) = p(A) ·
∣∣∣∣dAdI

∣∣∣∣ = p(A)
1

2
√
I
, (3.8)

using that A ≥ 0 and A =
√
I. Substituting this into Eq. 3.7 yields

p(I) =
1

2σ2 e
−I/(2σ2). (3.9)

By making use of the expectation value of the Rayleigh distribution ⟨I⟩ = ⟨A2⟩ = 2σ2,
we can express this as

pĪ (I) = Ī−1 exp
(
−I
Ī

)
, (3.10)

with Ī being the average intensity of the speckle pattern [158].

To characterize the quality of our experimentally realized speckle pattern, we evaluate
the probability density function (PDF), as shown in Fig. 3.7b: The measured intensity
distribution (green histogram), evaluated on the central 720 µm × 720 µm region of im-
ages taken in the intermediary plane between L3 and L4, closely matches the expected
distribution (dashed line). This verifies, that we are in the fully developed speckle regime,
meaning that a large number of scatterers with sufficiently random phases contribute
to the pattern formation [158].

Another important characteristic of the speckle pattern is the correlation length. We deter-
mine the correlation length in the intermediary image plane by evaluating the autocorrelation

ρ (i, j) =

∑
k

∑
l I(k, l) · I(k + i, l + j)∑

k

∑
l I(k, l)

2 , (3.11)

where i and k as well as j and l are pixel indices in horizontal and vertical direction,
respectively. We evaluate the autocorrelation on the same region of the images taken in
the intermediary image plane as used in the PDF evaluation, and perform a radial average.
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The result is shown in Fig. 3.7c: We find a radial correlation length, defined as the half
width half max width of the autocorrelation, of 7.9 µm.

However, this value is insufficient to determine the correlation length in the atomic plane,
as calculating the propagation through the optical system requires knowledge of the electric
field, and not just the intensity. Instead, we determine the width of the Gaussian envelope
in the back focal plane of the objective, and find a 1/e2 diameter of 33.3(2)mm. We then
numerically propagate a speckle beam with identical parameters as in our experimental
realization through an ideal objective with NA = 0.5, and find a correlation length
of 296+11

−7 nm this way.

To estimate the axial correlation length, we determine an effective numerical aperture NAeff ,
which yields the same correlation length σr = 296 nm using the standard relation [158]

σr =
λ

4 ·NAeff
. (3.12)

The axial correlation length can now be related to the radial one through this effective
numerical aperture [158]

σz ≈ 0.89
λ

NAeff
2 , (3.13)

obtaining σz = 2.4 µm. This correlation length is significantly larger than the harmonic oscil-
lator length of the ground state in our crossed optical dipole trap in z-direction ℓz = 0.9 µm.

Eq. 3.10 shows, that the intensity distribution of a fully developed speckle pattern is
completely characterized by its mean potential strength V D. The precise calibration of this
disorder strength however is a challenging task. Extracting the width of a speckle beam
can be achieved by measuring the deflection [167] or the heating [170] due to the beam
while translating it in space. To determine the strength of the potential, experiments so
far have relied on extracting the mean potential strength by beam power measurements
[104, 171–173]. In the case of the speckle beam being formed by close-detuned dipole
potentials, spectroscopic measurements allow for an in-situ calibration of the potential
strength [174]. As a result of the small detuning however, scattering rates are high, so
that this approach is limited to low disorder strengths.

We have developed a method employing the diffraction of a noninteracting BEC on a
speckle pattern to calibrate the potential strength V D directly in situ. For this, we start
with a BEC of 39K at a scattering length of 6a0 in our crossed optical dipole trap. We then,
analogously to Kapitza-Dirac diffraction of a BEC on a pulsed optical lattice [175, 176],
apply a short pulse of the speckle beam with a duration on the order of 10 µs to 270 µs
onto the atoms. Afterwards, we let the system expand in the dipole trap for 8 ms, with this
evolution time being limited by the dipole trap frequency ∼ 40 Hz. Exemplary averaged
images of the atomic cloud after this evolution are shown in Fig. 3.8a for a potential strength
V D/h = 2.8 kHz. Here, one can see the separation into a bimodal system: The scattered
atoms form a broad distribution, while in the center a fraction of unscattered atoms remains.
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Figure 3.8 | Calibration of the speckle potential strength. a Averaged experimental shots of a BEC after
pulsing on a speckle potential with VD/h = 2.8 kHz for different pulse durations τ. After the pulse, the
atoms are left in the dipole trap to expand for 8 ms, before absorption imaging is performed. The scale
bar in the bottom left corner indicates 10 µm. b The integrated signal in the undiffracted fraction of the
atoms is plotted as a function of the pulse duration τ for VD/h = 2.8 kHz. The solid line is an exponential
fit with an offset. Each data point is the average of 21-22 measurements, taken with a different speckle
realization. The error bars have been extracted via bootstrapping. c The decay rates Γ together with the
control voltage on the in-loop photodiode are fitted to the numerical simulation (dashed line) by fitting a
proportionality factor between photodiode voltage and potential strength VD. The shaded area around
the dashed line is the systematic uncertainty of the numerical simulation due to the choice of window
length.

We extract this unscattered atom fraction using a two-component fit, combining a broad
Gaussian (fitting the scattered atoms) with a narrow Thomas-Fermi distribution (for the
unscattered fraction). A decay with a time constant increasing with beam power can be
observed in the unscattered fraction, with an exemplary measurement for V D/h = 2.8 kHz
being shown in Fig. 3.8b. We perform a fit of form

Nat (t) = a · exp (−Γ · τ) + b (3.14)

with free parameters a, b and Γ, to extract the decay rate τ at each power setting. In this
fit, we weigh each data point using an uncertainty in atom number, which we extracted via
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bootstrapping: From a set of N images taken with the same parameters, we randomly draw
N images, where repetitions are possible. We then fit the unscattered atom fraction on the
averaged image. We repeat this procedure 100 times, and take the inverse of the standard
deviation of these atom numbers as a weight in the exponential fit for this data point.

To relate decay rate measured to the potential strength, we numerically simulate a BEC’s
response when exposed to a speckle pattern for varying pulse duration and potential
strength. We determine the decay rates in the unscattered atom fraction analogously to
the experimental data, and perform a fit of form

Γ
(
V D

)
= V

a+1
D ·

(
b · V a

D + c
)−1 (3.15)

to the numerically simulated decay rates Γ for disorder strength V D, with a, b and c being
free parameters. We fit a proportionality constant α between the in-loop photodiode voltage
and the potential strength, such that the experimental data collapses onto the numerical
function. For our specific case, we obtain α = 9.24 kHz/V.

Several factors contribute to the systematic and statistical uncertainties of this calibration:
The fitted decay constant depends slightly on the choice of window length over which the
decay of the unscattered fraction is observed. To account for this, we vary the length of
this window on the numerical simulation, starting with a window length which allows us
to capture the fast initial decay (τV D ∈ [0.2, 0.6], depending on the disorder strength),
and increasing the window length until the full decay is captured. We then perform a fit
of Eq. 3.15 onto the largest and the smallest decay constants obtained at each potential
strength, and fit these curves to the experimental data. This way, we obtain a systematic
uncertainty of ∆decay =

(
+0.64
−0.51

)
kHz V−1.

Another systematic contribution arises from the uncertainty in the speckle correlation
length σr = 296+11

−7 nm. We repeat the numerical simulations of the system for the upper
and the lower estimate of the correlation length, and by fitting our experimental data to the
calibration curves obtained this way, determine the systematic error due to this effect to
be ∆corr =

(
+0.24
−0.05

)
kHz V−1. Similarly, we repeat the numerical simulations while varying

the size of the BEC by ±2 µm, yielding ∆BEC = ±0.05 kHz V−1.

Regarding statistical uncertainties, we first consider the fit error of the experimental data
onto the calibration curve, ∆fit. This error originates from the uncertainty in estimating the
unscattered atom fraction, and is subsequently propagated as a fit uncertainty. Here, we
obtain ∆fit = 0.22 kHz V−1. Additionally, the Gaussian envelope of the speckle beam leads
to a spatially varying disorder strength across the system. We estimate this error based
on the expected waist of the Gaussian envelope and the typical system sizes, obtaining
∆envelope = ±0.11kHz V−1.

Combining these contributions, we obtain the final calibration constant

α =
(
9.24 ± (0.25)stat

(
+0.93
−0.61

)
sys

)
kHz V−1.
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Here, ∆decay, ∆corr and ∆BEC contribute as systematic errors to the measurement, such
that ∆sys = ∆decay +∆corr +∆BEC, and ∆envelope together with the fit error ∆fit onto the
calibration curve contribute as statistic errors via ∆stat =

√
∆2

fit +∆2
envelope.

As these errors on the calibration constant are proportional to the error in any potential
strength V D, so that the calculation is straightforward, they will in the following not be
referenced in the text to ensure readability. However, when data is plotted, the error will
be displayed as an error bar on the disorder strength.
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Figure 3.9 | Optical hexagonal lattice. a Top view of the glass cell used as a science chamber. The two red
beams DipX and DipY represent the dipole trap beams. The three blue beams L1, L2 and L3 make up the
optical lattice. The right side of the glass cell is angled to prevent back reflections from hitting the atoms.
b Real-space potential formed by the three lattice beams for an exemplary lattice depth of 1E rec. Since
the potential is repulsive, the atoms are trapped in the dark blue regions. c The unit cell of the hexagonal
lattice (grey shaded area) together with the lattice vectors a1 and a2. It contains two lattice sites (one A-
and one B-site), with a spacing of a = 287 nm between them.

In our experiment, we employ a titanium-sapphire laser29 at 745 nm to generate the light for
our optical hexagonal lattice. This wavelength is blue detuned both for the D1 and the D2

lines of 39K at 770 nm and 767 nm, respectively, so that the resulting potential is repulsive.

The lattice consists of three free-running laser beams, intersecting under an angle of 120°,
propagating along the directions

k1 = kL

(
0
1

)
, k2 =

kL
2

(
−
√

3
−1

)
, k3 =

kL
2

(√
3

−1

)
, kL =

2π
λL
. (3.16)

Since the size of the beams at the location of the atoms is significantly larger than the
system sizes we study (the waist of the beams is whor ≈ 400 µm along the horizontal

29Sirah Matisse CS
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direction, and wvert ≈ 100 µm along the vertical direction), we treat each laser beam as
a plane wave with identical angular frequency ωL:

Ej (r, t) =

√
2Ij
cϵ0

· ei(kj·r−ωLt)
(

cos (θj) ez + sin (θj) e
iαj (ez × kj)

1
kL

)
(3.17)

Here, the angle θj describes the polarization of the electric field, and αj accounts for
phase shifts between s- and p-polarization to describe elliptical polarizations. The resulting
interference pattern can be decomposed into a s- and a p-polarized component:

I (r) = Is (r) + Ip (r) (3.18)

Is (r) =
cϵ0
2

∣∣∣∣∣∣
3∑

j=1

Ej,s (r, t)

∣∣∣∣∣∣
2

=
cϵ0
2

3∑
j,l=1

√
IjIl cos (θj) cos (θl) e−i(kj−kl)r (3.19)

Ip (r) =
cϵ0
2

∣∣∣∣∣∣
3∑

j=1

Ej,p (r, t)

∣∣∣∣∣∣
2

=
cϵ0
2

3∑
j,l=1

√
IjIl cos (θj) cos (θl) cos (ηj − ηl) e

−i(kj−kl)rei(aj−al),

(3.20)

where η = (0, 2π/3, 4π/3). Assuming the three beams are s-polarized and possess identical
intensity I0, the intensity distribution simplifies to

I (r) = I0

(
3 + 4 cos

(√
3

2
kLx

)
cos
(

3
2
kLy

)
+ 2 cos

(√
3kLx

))
. (3.21)

This intensity distribution is shown in Fig. 3.9b, and represents the distribution ideally
obtained in our unmodulated lattice. It is directly proportional to the trapping potential
(cf. Eq. 3.2). This lattice has a spacing of

a =
4π

3
√

3kL
= 287 nm (3.22)

between the A- and B-sites of the lattice. A natural energy scale in optical lattices is
given by the recoil energy [177, 178]

Erec =
ℏ2k2

l

2m
, (3.23)

with m being the mass of a 39K atom, mK = 6.47 × 10−26 kg, leading to a recoil energy
of Erec = h · 9.23 kHz.

3.3.1 Aligning the lattice and balancing the potential
We found the dynamics in the optical lattice potential to be quite sensitive on the precise
alignment and the power balancing between the three beams. Because of this, we regularly
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Figure 3.10 | Balancing of the optical lattice potential. Absorption picture of 39K at 6a0 obtained after
3.5 ms time of flight following an abrupt switch-off of the lattice potential with a depth of 5.9 ER. The
dashed circles mark the initial position of the BEC as well as the positions of the diffracted peaks around
it.

realign the beams before taking data, and optimize the power balancing by performing
diffraction measurements.

For the alignment of the individual lattice beams, in-situ absorption pictures of the
potassium BEC are taken along the optical axes of the lattice beams. Subsequently, the
lattice beams are imaged and aligned to vertically overlap with the BEC on the camera.
For this, electronically adjustable mirror mounts30 are employed.

To align the beams horizontally, we take in-situ pictures of the BEC along the z-direction.
Here, by turning a single beam on, one can observe a deflection due to its repulsive dipole
potential. By aligning the beams, using the electronically adjustable mirror mounts, one
can minimize this deflection when the center of the beam overlaps with the BEC.

To correct for intensity imbalances among the lattice beams, we employ Kapitza-Dirac
diffraction [179]: The atoms are first loaded into the optical lattice at a depth close to the
target value (typically 5.9ER), where we hold them for 10 ms. Subsequently, all confining
potentials are abruptly switched off. After 3.5 ms time of flight, a characteristic diffraction
pattern emerges (as shown in Fig. 3.10), which contains information about the coherence
of the system and the momentum distribution in the optical lattice [180–182]. Each
diffraction peak originates from the interference of a pair of lattice beams, and by adjusting
the relative beam intensities, the peaks can be balanced such that they exhibit equal
strength, determined from the integrated signal around each peak. Since fluctuations in
the initial BEC position as well as mechanical vibrations introduce shot-to-shot variations,
the measured signal is averaged over multiple realizations of the experiment.

30Newport New Focus 8807
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3.3.2 Lattice depth calibration
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Figure 3.11 | Calibration of the lattice potential strength. a Illustration of the experimental sequence
for performing Stückelberg interferometry to probe the energy gaps of our system. b Absorption picture
of 39K at 6a0 obtained after 3.5 ms time of flight in the calibration sequence for a lattice depth of 6.08 ER.
The central dashed circle marks the position of the atoms in the lowest band. The outer circles mark
the location of atoms in the first excited band of the optical lattice. c Fraction of atoms remaining in the
lowest band of the system as a function of hold time at k = Γ′ for a 6.08 E rec deep lattice.

To measure the depth of our opticial lattice, we employ Stückelberg interferometry [183–
185]. For this, our optical lattice can be accelerated in arbitrary directions by detuning the
frequency of one or two lattice beams via AOMs. In a reference frame co-moving with the
lattice, this procedure is equivalent to accelerating the atomic cloud itself [69, 186]. For a
constant acceleration of the lattice, the acceleration can be expressed as

a =
2
3
λL

∆f

∆t
, (3.24)

with ∆f/∆t being the rate at which the lattice beam detuning is changing. The force
due to lattice acceleration can be written as

F = ℏ
∆k

∆t
. (3.25)

By comparing Eq. 3.24 and Eq. 3.25, and making use of Newton’s second law F = m · a,
one obtains

∆k =
2mλL∆f

3ℏ
. (3.26)
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The experimental sequence to perform Stückelberg interferometry is schematically illustrated
in Fig. 3.11a: We begin with a weakly interacting (as = 6a0) BEC of 39K prepared in the
center of the lowest band at k = Γ, in a state denoted |ψ1

Γ⟩. Subsequently, we accelerate
the atoms nonadiabatically to k = Γ′, the center of the neighboring Brillouin zone. If
the force is large in comparison to the energy gap between the two lowest bands, this
creates a coherent superposition of the two bands

|ψΓ′⟩ = a1 |ψ1
Γ′⟩+ a2 |ψ2

Γ′⟩ . (3.27)

At this quasimomentum, the atoms are held in the superposition for a time thold, such
that they acquire a phase according to

|ψΓ′ (thold)⟩ = a1 |ψ1
Γ′⟩ e−iE1

Γ′ thold/ℏ + a2 |ψ2
Γ′⟩ e−iE2

Γ′ thold/ℏ, (3.28)

with E1
Γ′ and E2

Γ′ being the energy of the lowest and first excited band at quasimomentum
Γ′. Driving the atoms back nonadiabatically to the initial quasimomentum, one again
obtains a superposition:

|ψ̃Γ (thold)⟩ = a1e
−iE1

Γ′ thold/ℏ
(
b1 |ψ1

Γ⟩+ b2 |ψ2
Γ⟩
)
+ a2e

−iE2
Γ′ thold/ℏ

(
c1 |ψ1

Γ⟩+ c2 |ψ2
Γ⟩
)

(3.29)

The population in the lowest band of the system is now

N0 (t) =
∣∣∣⟨ψ1

Γ| |ψ̃Γ′ (thold)⟩
∣∣∣2

=
∣∣∣e−iE1

Γ′ thold/ℏ
(
a1b1 + a2c1e

−i(E2
Γ′−E1

Γ′)thold/ℏ
)∣∣∣2

= |a1b1|2 + |a2c1|2 + 2 |a1b1a2c1| cos
((
E2

Γ′ − E1
Γ′
)
thold/ℏ+ ϕ

)
(3.30)

We can measure the population in the lowest band by performing a band mapping measure-
ment [187]. For this, we ramp down the lattice adiabatically, so on a time scale slow with
respect to the energy gap of the lattice, but fast compared to the tunneling in the lattice to
prevent momentum redistribution. Subsequently, we perform a time-of-flight measurement.
An exemplary absorption picture taken after 3.5 ms is shown in Fig. 3.11b: Here, the popula-
tion in the lowest-lying band of the system is located at the center, marked by a grey dashed
circle. The surrounding circles contain the population in the first excited band of the system.
We can now repeat this measurement for varying hold times thold, observing an oscillation
with frequency

(
E2

Γ′ − E1
Γ′
)
thold/ℏ in the population of the lowest band, allowing us to

determine the energy gap ∆EΓ′ = E2
Γ′ − E1

Γ′ . To calibrate the lattice depth, we then
compare the result to numerical data extracted from a six-band model. An exemplary
measurement yielding ∆E = 6.54(1) kHz, corresponding to a 6.08Erec deep lattice, is shown
in Fig. 3.11c. This technique can be applied analogously to determine the energy gap at
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any arbitrary quasimomentum, with energy gap measurements at different quasimomenta
shown in the supplementary information of [61].

3.4 Imaging

To gather information about the system under investigation, ultracold atom experiments
typically rely on taking images. The two primary approaches are absorption imaging and
fluorescence imaging. Absorption imaging measures the shadow cast by atoms when a
resonant probe beam passes through the atomic cloud, providing direct access to the column
density of the system. This technique is particularly well-suited for imaging large ensembles
and for performing time-of-flight measurements [132, 182, 188–190].

Fluorescence imaging, by contrast, collects photons scattered by atoms which are being
excited by a resonant imaging beam, using an objective with a large numerical aperture
(NA). This technique is especially suitable for the detection of individual atoms [191, 192],
and has been essential for the development of quantum gas microscopy [47, 193–196] and
the imaging of individual atoms in tweezer arrays [53, 54, 197–201].

In recent years, additional techniques, which achieve even better resolution with larger depth
of field have been developed, using an electron microscope [202] or an ion microscope [203],
or by magnifying the system before performing absorption imaging [204].

In the experiments presented in this thesis, we employ absorption imaging. This tech-
nique relies on Beer’s law

dI

dz
= −n (x, y, z)σ0 · I, (3.31)

where n (x, y, z) is the density of the atomic cloud, σ0 the scattering cross section, and I
the intensity of the imaging beam [128], which is much lower than the saturation intensity
of the transition. When a resonant probe beam passes through the atomic cloud, atoms
absorb photons proportional to their local density, throwing a shadow which contains
information about the spatial distribution of the gas. In this regime, one can extract
the column density of the system as

ncol(x, y) = − 1
σ0

ln
(
Iout (x, y)− IBG (x, y)

Iin (x, y)− IBG (x, y)

)
, (3.32)

where Iout(x, y) is the intensity of an image taken of the system of interest at location (x, y),
Iin(x, y) is the intensity of an image taken without any atoms in the system, and IBG(x, y)

is the intensity of a dark image taken without the imaging beam. Note that this equation is
however only valid for imaging intensities much smaller than the saturation intensity Isat.

On the main imaging system, which images the atoms perpendicular to both dipole trap
beams, light transmitted through the atomic cloud is collected by a high-resolution micro-
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scope objective31. The light is then directed through a dichroic32, and a 500 mm focal length
lens33, which together with the objective form a telescope with a magnification of 20.21(2).
Here, images are typically either taken after a time of flight after switching all confining
potentials off, and letting the system expand, or in situ, while the atoms are held in the trap.

For time-of-flight imaging, the Feshbach fields are turned off before imaging, allowing us
to image at close to zero magnetic field. The imaging frequencies used here are indicated
in Fig. 3.1: For both species, we image on the F = 2 to F ′ = 3 transition, with atoms
in F = 1 being pumped to F ′ = 2. As these two lasers form a closed transition, and as
the features to be imaged are relatively large, we image for 40 µs.

3.4.1 High signal-to-noise absorption imaging at nonzero magnetic field
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Figure 3.12 | High-field imaging scheme. Breit-Rabi diagram of the 4P3/2 (top) and the 4S1/2 (bottom)
manifold in 39K. The dashed line marks the magnetic field strength we typically work at, 360 G. The
curved arrows denote the transitions we drive for imaging here. The states used in our imaging scheme
are additionally marked in blue, and their respective quantum numbers |mJ,mI⟩ are written next to them.

In the experiments presented in Chapter 4 and Chapter 5 of this thesis, we want to work
with close to noninteracting atoms, so that we tune the s-wave scattering length between
39K atoms to as = 6a0 using the Feshbach resonance at 403 G for atoms in |F = 1,mF = 1⟩
(described in more detail in Sec. 3.1.3). Having the scattering length at a slightly positive
value prevents atom loss, while interactions between the atoms can still be neglected.

31a custom objective with NA 0.5 and focal length 25 mm manufactured by Special Optics
32Optoman PAN3842
33Thorlabs AC508-500-B
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Figure 3.13 | Taking absorption pictures with the high field imaging scheme. a, b Absorption pictures
obtained after releasing atoms from the optical tweezer into the amplitude-modulated lattice atω/(2π) =
16 kHz and m = 0.25. a shows the average over 45 absorption pictures taken with the old in-situ imaging
setup after an evolution time of 3 ms. b shows the average over 23 absorption pictures taken with the
updated imaging setup after a slightly longer evolution time of 3.75 ms. The scale bar in the bottom left
of both figures has a length of 10 µm. c Absorption pictures taken 10 µs after releasing atoms from the
optical tweezer into the dipole trap. From left to right the imaging duration is varied. Data was taken at
an imaging intensity of 2.8I

sat
eff . Each picture is averaged over 14 experimental realizations, except the first

one, where only 10 shots were used due to file corruption. The scale bar in the bottom left of each figure
has a length of 2.5 µm.

While the first experiments on this machine were performed in reciprocal space [61, 69, 186,
205, 206], it is essential for investigating the edge properties of topological systems to be
able to resolve their features in real space. Performing experiments at this magnetic field
strength however also necessitates imaging at this magnetic field strength – a rampdown of
the field would not only be slow in comparison to the timescales present in the experiment,
but would also cross a second Feshbach resonance at 26 G, destroying the state to be imaged
and which, due to its narrow width, is not suitable for performing measurements.

After performing a measurement utilizing the Feshbach resonance at 403 G, one is in
the |mJ = −1/2,mI = 3/2⟩ state, which adiabatically connected to the |F = 1,mF = 1⟩
state at low magnetic field. For the measurements presented in Chapter 4, we drova a
σ−-transition to the |m′

J = −3/2,m′
I = 3/2⟩ state in the 2P3/2 manifold. Unfortunately,

at 403 G we are not yet in the Paschen-Back regime, so that the |mJ = −1/2,mI = 3/2⟩
in 2S1/2 is not pure, but has a ∼ 2.4% admixture of |mJ = 1/2,mI = 1/2⟩. This limited
the imaging duration to only 4 µs, after which all the atoms occupied a dark state.

To improve the observable signal, we decided to install a second imaging laser driving the
|mJ = 1/2,mI = 1/2⟩ → |m′

J = 3/2,m′
I = 1/2⟩ transition, inspired by similar schemes in
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absorption [207] and fluorescence [208] imaging at large magnetic fields, where a second laser
was added to generate a closed optical cycle. The benefit of using this particular transition
is, that the |m′

J = 3/2,m′
I = 1/2⟩ state can only decay back to the |mJ = 1/2,mI = 1/2⟩

state via a dipole transition, closing the cycle in our case, too.

For the work in Chapter 5 this light used for this transition was generated by a separate
diode laser34. This additional transition requires σ+ polarized light, while the initial
transition uses σ−. This allows us to combine both beams on a polarizing beam splitter,
send them through the same AOM, and couple them into the same polarization-maintaining
fiber. We found that an equal power splitting between the two beams leads to a significant
improvement in signal-to-noise, as shown in Fig. 3.13b.

To investigate the improvement in accessible imaging duration, we vary the imaging
duration, imaging atoms 10 µs after releasing them from the optical tweezer into the dipole
trap, as shown in Fig. 3.13c. We find, that for imaging durations longer than 16 µs, the
detected optical density drops, and the cloud starts to undergo spatial diffusion, limiting
the imaging resolution. We therefore settled on an imaging duration of 15 µs for the
measurements in Chapter 5.

3.4.2 Calibration of the absorption imaging
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Figure 3.14 | Imaging calibration a Optical density of a BEC extracted for varying intensities I of the
imaging beam, using Eq. 3.34 for varying parameters I
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as defined in Eq. 3.35, eval-
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eff . The red data in both a and b marks the data evaluated at I

sat
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which we use to calibrate our results acquired with the new imaging setup.
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Absorption imaging of ultracold quantum gases relies on the Beer-Lambert law, as defined
in Eq. 3.31. This equation is, however, only valid for intensities I ≪ Isat, where Isat is
the saturation intensity of the transition. In this case, the column density of the system
can be extracted according to Eq. 3.32.
To achieve the optimal signal-to-noise ratio, it is however typically favorable to use intensities
on the order of the saturation intensity, because the interrogation time is limited. In this
regime, Beer’s law must be modified to

dI

dz
= −n(x, y, z)σeff

1
1 + I(x, y, z)/Isateff

I(x, y, z) (3.33)

with σeff = σ0
α being the effective cross-section, and Ieffsat = αIsat being the effective saturation

intensity [209]. Integrating this equation along z yields

OD(x, y) = σeff

∫ ∞

−∞
n (x, y, z) dz

= − ln
(
Iout (x, y)

Iin (x, y)

)
+
Iin (x, y)− Iout (x, y)

Isateff

(3.34)

To determine Isateff for the new setup for taking absorption pictures at large magnetic fields,
we compared in-situ images of a BEC in a shallow dipole trap taken with varying intensities
of the imaging beam, as described in [210]. Here, for the imaging system to be calibrated
properly, the observed optical density should be independent of the intensity of the imaging
beam. We evaluate Eq. 3.34 for varying values of Isateff , as illustrated in Fig. 3.14a. To
quantify the dependence of the detected optical density on the ingoing intensity Iin (x, y),
we calculate a weighted relative standard deviation, defined as

Dev
(
Isateff

)
=

1
ODavg

·

√∑
I wI (ODI −ODavg)

2∑
I wI

. (3.35)

Here, I denotes the intensity at which an optical density has been measured, and the weight

wI =
ODI

∆ODI
(3.36)

is the relative measurement error of this optical density. The error in this measurement
∆ODI has been extracted via bootstrapping. The average detected optical density for a
given choice of parameter Isateff is denoted as ODavg, and is determined via a weighted average

ODavg =

∑
I wIODI∑

wI
(3.37)

with the same weights as defined in Eq. 3.36.
The evaluation of Eq. 3.35 is shown in Fig. 3.14 for a range of parameters Isateff , with a
minimum at Isateff = 285 cts visible, marked in red. We use this value to calibrate the
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absorption images taken with the new in-situ imaging setup. When taking data with this
imaging system, we typically work at an intesity of ∼ 3.5Isateff , as this both still provides
a good signal for lower optical densities while being able to reliably determine the peak
optical density of atoms just released from the optical tweezer. When studying systems
with lower or higher optical densities, the imaging intensity must be adjusted accordingly
to achieve a good signal-to-noise ratio.



CHAPTER 4

Detection and manipulation of topological edge
states

A remarkable feature of topological systems is, that the topological properties of their bulk
are directly tied to the existence of gapless states at the edge of the system, a principle
known as the bulk-boundary correspondence [211–216]. Its existence can be understood
from the integer quantum Hall effect [5, 6], which exhibits two of its main features: A
precisely quantized transverse conductance, as determined by the Chern number C [16,
217], and the existence of chiral edge modes on the boundary.

In out-of-equilibrium systems, where the Hamiltonian is time-dependent, a generalized form
of the bulk-boundary correspondence predicts edge states even in situations, where the
Chern number of the bulk band vanishes. Such systems have been realized in photonic
waveguides [91, 92], resonator arrays [93, 94, 97] as well as in cold atoms [61].

To study the bulk properties of topological systems on ultracold atom platforms, a variety
of techniques has been developed, using interferometric or state-tomography techniques [68,
69, 71, 186], transport measurements [59, 70, 218] as well as methods based on spectroscopy
or quench dynamics [60, 72].

The edge modes of such systems have so far been studied in real-space in photonic,
mechanical or electrical devices [219–223], where a sharp natural boundary exists at the
edge of the system. On ultracold atom platforms, edge states have been observed in 1D
systems using engineered lattices [152, 224] or in Rydberg atom arrays [225]. Alternatively,
the concept of synthetic dimensions [226, 227] could be used, treating internal atomic
degrees of freedom as a real-space dimension [228–230], with the finite number of coupled
levels again providing a naturally sharp boundary. Even though several strategies have
been proposed [156, 231–233] for observing edge modes in two real-space dimensions, their
experimental realization has remained elusive until recently [79, 234].

This chapter will describe, how we populate the edge mode in three different topological
regimes of our driven honeycomb optical lattice, and determine their properties. For this,
we start in Sec. 4.1, discussing the sequence and the techniques utilized for populating the
edge state in our optical lattice. In Sec. 4.2, we first observe topological edge states in the

54
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anomalous Floquet regime of our system, tracking their chiral movement. In Sec. 4.3, we
develop a strategy for populating the edge state of the Haldane regime, and optimize the
parameters used. Sec. 4.4 cosiders the effects which the height and shape of the topological
boundary has on the propagation of the edge state. For this, a method for determining the
velocity of the edg state is developep in Sec. 4.4.1. In Sec. 4.4.2 the emergence of the edge
state is investigated by varying the height of the topological interfacte, and the relevant
energy scales for the different regimes are determined. Finally, Sec. 4.4.3 studies the effect
that the width of the topological interface has on the propagation of the edge mode.

The following chapter is based on the joint work of Christoph Braun, Raphaël
Saint-Jalm, Alexander Hesse, Johannes Arceri, Immanuel Bloch and Monika
Aidelsburger [79].

4.1 Population of the edge state

The experimental sequence for populating the edge mode of our systems is illustrated
in Fig. 4.1a: About 200 weakly interacting (as = 6a0) 39K atoms are trapped in an
optical tweezer (cf. Sec. 3.2.2). Next to the tweezer, we generate a topological interface, by
displaying a binary repulsive pattern on our digital micromirror device (DMD, cf. Sec. 3.2.3).
We release the atoms into our optical lattice, while breaking time-reversal-symmetry by
modulating the tunneling of the lattice in a chiral manner (cf. Sec. 2.3).

The modulation scheme of our optical lattice allows us, to populate three distinct topo-
logical regimes in our experiment, illustrated in Fig. 4.1b: The Haldane-like regime, with
(W 0,W π) = (0, 1), the anomalous regime with (W 0,W π) = (1, 1), as well as the Haldane
regime with (W 0,W π) = (1, 0). We choose lattice modulation parameters for for each
regime, which produce reasonably sized bandgaps in the system: In the Haldane-like regime,
we choose ω/(2π) = 5 kHz, as here the energy gaps in the 0- and in the π-gap are of same
size. Similarly, in the anomalous regime ω/(2π) = 7 kHz leads to equally sized gaps. In
the Haldane regime, where we are approaching the high-frequency limit, the size of the
π-gap will not decrease again for increasing modulation frequency, so that we choose as
ω/(2π) = 16 kHz, which leads to a relatively large 0-gap, while simultaneously being well
separated from the transition into the anomalous regime. These parameters are marked in
the phase diagram by colored hexagons, with the color being used to refer to the regime
results were taken in throughout this chapter: Results plotted in green were taken in the
Haldane regime, results marked in blue were taken in the Haldane regime, and results in red
were taken in the Haldane-like regime. The parameter m in the figure describes tunneling
modulation scheme introduced in Sec. 2.3 in terms of an intensity modulation of individual
lattice beams. The parameter is chosen to be m = 0.25 for all measurements presented in
this thesis, but is fully captured by the constants A, B and C in Eq. 2.44.
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Figure 4.1 | Populating the edge state a Illustration of the experimental sequence for populating the
edge state: An optical tweezer (red) releases atoms (blue) into the hexagonal optical lattice. The tunneling
of the lattice is modulated in a chiral manner, breaking time-reversal symmetry. The location where
the atoms are released is close to a topological interface (grey), projected by a DMD. This leads to chiral
movement of the atoms along the interface. b The three phases we will study as well as the precise
modulation parameters we employ are marked in the phase diagram: The Haldane-like with (W

0,W
π) =

(0, 1) is populated at ω/(2π) = 5 kHz, the anomalous regime with (W
0,W

π) = (1, 1) is populated at
ω/(2π) = 7 kHz, and the Haldane regime with (W

0,W
π) = (1, 0) is populated atω/(2π) = 16 kHz. c The

power in the optical dipole trap (labelled ODT), the optical tweezer (VT ), the hard-wall-potential (V0), as
well as in one of the optical lattice beams L2 is plotted against time. The final trap frequency of the optical
tweezerωT is marked. After the last dashed line the atoms are abruptly released from the tweezer, such
that the evolution begins.

In Fig. 4.1c the time sequence of various optical potentials throughout the preparation of
the edge state is shown. We start our sequence with a BEC of 39K in our crossed optical
dipole trap. We quadratically ramp up our optical tweezer potential, and hold it at a
constant strength for 180 ms to load atoms from the optical dipole trap into the tweezer.
The tweezer position is aligned to be centered onto the BEC before measurements are
started to ensure a good loading rate, and to later on probe a flat region of our system.
After this, the crossed optical dipole trap is briefly ramped down, while the power in the
tweezer is simultaneously increased. This ensures that atoms, which were not transferred
into the tweezer, are expelled from the dipole trap, and do not contribute to a background
signal. The system is held in this state for 10 ms, with a 10 ms linear ramp in both
potentials used for increasing and decreasing the potential.
After this ramp, the optical tweezer is ramped down to its final trap depth ωT /(2π) = 2 kHz
unless denoted otherwise. Here, the atoms are held while first the hard-wall potential
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imposed by the DMD is ramped up to its final value V0 within 30 ms. After this, the
optical lattice is exponentially ramped up to a depth 5.9Erec within 30 ms. The optical
lattice potential has, like the optical tweezer, been aligned to be centered onto the BEC
before each experimental run, to ensure that the potential landscape probed by the
atoms is as flat as possible.

Once all potentials are ramped up, the amplitude modulation of the optical lattice is linearly
ramped up within five modulation cycles. Now, the optical tweezer is abruptly switched
off to release the atoms, and the system is left to evolve.

4.2 Observation of edge states in an anomalous Floquet system
In Fig. 4.2, the time evolution of the edge state in the anomalous regime at ω/(2π) = 7 kHz
is shown. For this, the system is prepared as described in Sec. 4.1, with the interface
forming a straight potential step with a height V0/h = 16.7(3) kHz. The position of the
tweezer with respect to the topological interface was varied before taking data in order
to find a good overlap with the edge mode of the system. The evolution time of the
system is listed both in ms as well as in multiples of the tunneling in the unmodulated
lattice τ = ℏ/J0 = 145 ms above the absorption pictures, with data in the same column
being taken after the same evolution time.

Fig. 4.2a shows the propagation of the system for a lattice modulation with chirality
κ = 1. Here, one initially observes a wavepacket populating few lattice sites close to the
topological interface. If the system is left to evolve, this wavepacket starts to propagate
along the topological interface, moving upwards as time progresses. Additionally, the
wavepacket disperses while propagating. This can be explained by the non-linear dispersion
relation of the edge mode, as well as by the finite width of the edge [154–156]. To
underline the chiral nature of this propagation, the chirality of the modulation is reversed
in Fig. 4.2b. Here, the wavepacket also propagates along the topological interface, this
time in the opposite direction.

To further illustrate the chiral nature of the propagation, we additionally evaluate the
difference signal

∆OD = ODκ=1 −ODκ=−1, (4.1)

where ODκ=±1 denotes the optical density obtained at chirality κ. This difference signal
is shown in Fig. 4.2c, highlighting the chiral nature of the propagation.

When now comparing the absorption pictures taken at different times, one can see a clear
movement along the wall for the atoms – in the system modulated with κ = 1 the atoms
move in positive y-direction, and in the system modulated with κ = −1 the atoms move
in negative y-direction. This becomes even more obvious when looking at the difference
signal, which highlights the chiral nature of the movement. Additionally, the edge mode
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Figure 4.2 | Observing the anomalous edge state Absorption pictures obtained after releasing the atoms
next to the topological interface while modulating the optical lattice with chirality a κ = 1 and b κ = −1. c
shows the difference ∆OD between the absorption pictures for both chiralities. Each picture is the average
over 100-300 experimental realizations. The arrow in the upper left corner of a and b marks the chirality
of the tunneling modulation, while the inset in the upper left corner of the first difference picture displays
the mask projected onto the atoms via the DMD, with dark areas marking the regions of higher potential
energy. The scale bar has length 10a = 2.87 µm, and the vertical dashed line indicates the location of the
topological interface. The evolution time is both indicated in ms, and in multiples of the tunneling in the
unmodulated lattice τ.

disperses while propagating. This is an effect due to the finite width of the hard wall
potential, leading to a non-linear dispersion relation for the edge mode [154–156]. In
this measurement, the atoms propagate on average over more than 20a, not scattering
into the bulk, which is indiciative of the preparation protocol providing a good overlap
with the edge state of the syste.

As in principle also external forces or gradients in the system could mimick the behavior of
the edge mode, we also investigate the propagation of the edge mode in other geometries.
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Figure 4.3 | Anomalous Edge state on the outside of a disk and inside a confining ring Difference pictures
∆OD of the edge state in the anomalous regime obtained when preparing the edge state a on the outside
of a repulsive disk, and b inside a repulsive ring potential. The potential is indicated by the dashed
lines, with the inset in the top left of the first difference pictures displaying the mask projected into the
atomic plane by the DMD, with black regions corresponding to a higher potential energy. All scale bars
have length 10a. The evolution time is both given in ms as well as in multiples of the tunneling τ in the
unmodulated lattice. Note, that the optical densities for the measurements in b are significantly larger, as
the improved in-situ imaging system described in Sec. 3.4.1 was utilized here. The data in a is averaged
over 100-300 absorption pictures per chirality, while b only required 40-160 averages due to the improved
imaging system.

In Fig. 4.3a, the wavepacket was not initialize on a straight wall, but insteaad placed
on the outside of a disk with a diameter of 11.6 µm ≈ 40a, with a potential height of
V0/h = ·16.7(3) kHz. The geometry of this potential is illustrated both by a dashed line in
all difference pictures as well as by a mask displayed as an inset in the first difference picture.

Here, we again observe chiral propagation of the atoms, with the measurements at κ = 1
leading to a counterclockwise propagation of the atoms, and κ = −1 to a clockwise
propagation. Even though the disk does not cut the lattice in any specific way, the fastest
atoms propagate over 9 µm ≈ 31a, demonstrating the robustness of the edge mode to
imperfections in the lattice potential, and to backscattering.

In Fig. 4.3b, the results of a similar measurement are displayed, with the edge state being
populated on the inside of a ring potential with a diameter of ∼ 27 µm ≈ 94a, illustrated
by the mask inset and dashed lines in the difference pictures. The potential height of
the ring is V0/h = 17.0(3) kHz. Here, the confining potential is situated to the right of
the initial location of the wavepacket, this leading to clockwise propagation for κ = 1,
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and counterclockwise propagation for κ = −1. This underlines that the evolution of the
system is driven by the topological properties of the Bloch bands, and not by external
forces or a gradient driving Bloch oscillations, as this would lead to equal propagation
on both sides of the wall.

4.3 Populating the edge state in the Haldane regime
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Figure 4.4 | Edge states in the Haldane regime a Dispersion of a Haldane system evaluated on a semi-
infinite strip, terminated with a zigzag edge in the finite direction. The edge modes, wich are encircled,
are situated at the edge of the Brillouin zone. b The edge state in the center of the circle is illustrated on
the lattice. Here, the hue of the arrows encodes the population of the state on each lattice site, while its
direction illustrates the phase.

So far, the population of the edge modes in the anomalous regime was demonstrated, where
W 0 = 1 and W π = 1. The Haldane regime with W 0 = 1 and W π = 0, does not exhibit
an edge state in the π-gap of the system any more, but instead only has an edge state in
the 0-gap. However, the edge mode in the 0-gap is located near the edge of the Brillouin
zone, as shown in Fig. 4.4a. To understand the effect this has on the lattice site population,
the state located exactly at the edge of the Brillouin zone has been illustrated in Fig. 4.4b:
Here, each lattice site is marked by an arrow, where the hue marks the population of the
state on this site, while the phase of the state is encoded in pointing direction of the arrow.

Releasing the atoms from a relatively large tweezer, which places atoms on several lattice
sites with identical phase, will clearly not yield a good overlap of the initial state with
the edge mode. To improve the overlap, a nonadiabatic kick can be applied by abruptly
moving the tweezer along the topological interface in y-direction, releasing the atoms
immediately after this kick.
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Figure 4.5 | Evaluation of the edge state fraction Averaged absorption picture taken of the edge state in
the Haldane regime after 1.5 ms evolution time with a tweezer trap frequencyωT/(2π) = 1.3(1) kHz and
a phase gradient of 0.38 π/a applied. The picture is the average over 5 experimental runs. The drawn in
boxes show the edge state signal region (black continuous line), the bulk region (black dashed line), and
the background region (grey continuous line) used for evaluating the fraction of atoms populating the
edge state. The background region consists of two separate regions which have the same combined size
as the other two. A dashed line indicates the location of the topological interface.

The fraction of atoms in the edge mode can be extracted from absorption pictures to
deterministically find settings which produce a good overlap, as illustrated in Fig. 4.5. Here,
an exemplary absorption picture taken after a 1.5 ms evolution time at a lattice tunneling
modulation frequency of ω/(2π) = 16 kHz is shown. For the preparation of the illustrated
state, a tweezer trap frequency of 1.3(1) kHz was used in combination with a kick yielding
a phase gradient of 0.38π/a along the topological interface. The height of the topological
interface was chosen to be V0/h = 2.2(1) kHz.

To quantify the atom number populating the edge mode, the optical density is integrated
inside a region close to the wall, illustrated by a black box, yielding signal Sedge. As atoms
populating bulk states are well separated from the edge state after this evolution time,
their optical density can be determined by integrating a separate region, marked by a
dashed box (yielding signal Sbulk). To ensure that the precise choice of region does not
influence the measured signals, it was ensured that the extracted signal remains constant
with small variations of the size of the regions.

Additionally, the integrated optical density in a region where no atoms are present is
subtracted to prevent shifts due to a constant offset in the images. This region is marked by
two grey boxes in Fig. 4.5, and is in the following denoted by SBG. This allows to extract
the fraction of atoms populating the edge state according to

pedge =
Sedge − SBG

(Sedge − SBG) + (Sbulk − SBG)
. (4.2)

Fig. 4.6a shows the obtained fraction of atoms populating the edge mode for varying
phase gradients. The potential step height was chosen to be V0/h = 2.2(1) kHz for
all measurements.
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Figure 4.6 | Tuning the wavepacket phase gradient a Fraction of the atoms populating the edge state
after 1.5 ms plotted against the phase gradient applied by nonadiabatically moving the tweezer before
releasing the atoms. The diamond shaped data points have been taken at a tweezer trapping frequency
ωT = 1.3(1) kHz, the round data points have been taken atωT = 2.0(1) kHz. The grey line indicates the
edge of the Brioullin zone ky = π/L = π/(

√
3a), where the edge state in the zero gap is centered. Each

data point is the average over 4-5 experimental realizations. b Averaged absorption pictures taken after an
evolution time of 3 ms at the same settings as a data point, indicated by a number marker. Each picture
is the average over 88-90 experimental runs. All pictures were taken for κ = 1, with the dashed lines
marking the location of the topological interface, and scale bars having length 10a.

We start our investigation by tracking the edge state fraction, using a tweezer trap frequency
ωT = 1.3(1) kHz, as this trap frequency was initially used for populating the anomalous
edge state, yielding a strong signal. If no phase gradient is applied, the overlap with
the Haldane edge state is however negligible. This can be understood in terms of the
tweezer populating multiple lattice sites with identical phase, leading to a vanishing overlap
with the edge mode in the 0-gap. By introducing a phase gradient into the wave packet
however, this overlap can be increased, up to the data point at a phase gradient of 0.39π/a.
At this point, the anharmonicity of the tweezer trap leads to atom loss, preventing the
application of a stronger kick.

As the edge of the Brillouin zone is located at 1/
√

3π/a ≈ 0.58π/a, increasing the trap
frequency of the tweezer to apply stronger phase gradients is a logical next step. In the
data taken at ωT /(2π) = 2.0(1) kHz one indeed observes the maximum overlap of the wave
packet with the edge mode at a phase gradient of 0.58π/a. However, for all applied phase
gradients, a strong overlap with the edge state is visible. We interpret this as an effect of
the reduced extent of the wavefunction, as when approaching a single populated lattice site,
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Figure 4.7 | Observation of edge states in the Haldane regime Absorption pictures as well as difference
picture of the edge states at a lattice amplitude modulation frequency ofω/(2π) = 16 kHz. Each picture
is the average over 4-90 individual experimental realizations. a shows data taken for chirality κ = 1,
b shows κ = −1, and c shows the difference ∆OD of the two. The evolution time of the system is varied,
displaying data taken after 0.01 ms, 1.5 ms and 3 ms. The arrow in the upper right corner indicates the
chirality κ = ±1 of the lattice modulation. The dashed line marks the location of the topological interface,
and each scale bar has a length of 10a.

the phase gradient between neighbouring lattice sites is not well defined anymore. This
feature will be significant for the results presented in Chapter 5 of this thesis, as this allows
us to distinguish the anomalous Floquet- and the Haldane regime simply by populating
the edge mode of the system with different tweezer trap frequencies.
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Figure 4.8 | Reversing the kick direction Absorption pictures as well as difference picture obtained after
an evolution time of 3 ms in the Haldane regime, atω/(2π) = 16 kHz. The direction of the kick is varied,
with a showing data for the kick being applied down and b up along the wall. The phase gradient imposed
by the tweezer kick is ky ≈ ±0.43π/a. The straight arrow on the left indicates the direction of the kick,
and the curved arrow in the absorption pictures indicates the chirality of the lattice amplitude modulation
κ = ±1. The dashed line marks the location of the topological interface, and the scale bar has a length of
10a.

The validity of the evaluation method defined in Eq. 4.2 is further underlined by the
absorption pictures shown in Fig. 4.5b. Here, each absorption picture taken for the same
settings as a data point in Fig. 4.5a, with pairs numbered. For the shallow tweezer trap
with no kick applied, no atom fraction in the edge mode of the system is discernible, and
all atoms are well separated from the wall, populating bulk states. If a kick is applied
for the shallow tweezer, a fraction of the atoms is transferred into the edge state of the
system, while the remaining atoms still populate bulk states. If the deep optical tweezer
is used in combination with a strong kick, basically all atoms populate the edge state of
the system, with only a minor fraction leaking into the bulk.

This result allows us, to now reliably populate the edge state in the Haldane phase, too.
As Fig. 4.6b only displays the propagation of the system for κ = 1 and at fixed time, we
investigate the chiral nature of the transport in Fig. 4.7. In the measurements displayed
here, we prepare the edge state using the tweezer trap frequency ωT /(2π) = 2.0(1) kHz
while applying a phase gradient of 0.45π/a. The kick used for generating the phase gradient
is applied in positive y-direction for all measurements.

In Fig. 4.7a, the propagation of the wave packet for chirality κ = 1 is shown. The
measurement displays a good overlap with the edge state, with all atoms staying in the
vicinity of the potential step, and moving up the wall potential. For κ = −1, shown in
Fig. 4.7b, the atoms move in the opposite direction, such that in the difference picture
in Fig. 4.7c the chiral transport is clearly visible.
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While this measurement already implicitly showed, that the direction the momentum
kick is applied to does not impact the direction in which the wave packet propagates, we
investigate this behavior explicitly in Fig. 4.8. Here, the edge state is populated using
the same parameters as before, observing the system after an evolution time of 3 ms. In
Fig. 4.8a, the kick is applied in negative y-direction, while in Fig. 4.8b, the kick is applied
in the oppsite direction. Independently of the direction of the kick, chiral movement can
be observed along the topological interface. This illustrates, that while applying a kick
can be helpful to engineer an overlap with the correct quasi momentum, it is the chirality
of the lattice modulation, and not the direction the kick is applied to, which determines
the subsequent movement in the edge mode.

4.4 Varying the edge properties
In most experimental platforms investigating the behavior of topological edge states, a
sharp natural boundary serves as the topological interface, along which the edge states
can propagate [219–223, 228–230]. While this clearly simplifies the state preparation, our
experimental platform allows us to study the behavior of the edge mode, if the properties of
the topological interface are changed. In the following, we will discuss how the velocity of
the edge mode can be extractedin Sec. 4.4.1. We will then use the velocity as an observable
while the height of the potential step forming the topological interface is varied, investigating
the relevant energy scale for the emergence of the edge state in three different topological
regimes in Sec. 4.4.2. We will further investigate, how the width of the topological interface
influences the velocity of the edge mode in the Haldane regime in Sec. 4.4.3.

4.4.1 Determining the edge state velocity

To systematically investigate the propagation of the edge state under changing properties
of the topological interface, it is necessary to define a good observable. For this, we
extract the velocity of the transport in the edge channel, as illustrated in Fig. 4.9. Fig. 4.9a
shows five different initial tweezer positions at which the system is probed, i.e. in steps
of 0.48 µm in x-direction. Even though the location of the topological interface is marked
by a dashed line, this potential was turned off for taking this data, so that the location
of the wavepacket is not affected by it.

At each of these location, we take data at three evolution times, shown exemplarily in
Fig. 4.9b and c for the chiralities κ = 1 and κ = −1, respectively. This data was taken in
the anomalous Floquet regime, at a tunneling modulation frequency ω/(2π) = 7 kHz, using
a potential step height V0/h = 19.0(3) kHz. We extract the location of the atomic cloud
for each time via a Gaussian fit. To quantify the error made in this position estimate, we
employ a bootstrapping scheme: From a set of N images taken with the same parameters,
we randomly draw N images, where repetitions are possible. We then evaluate the position
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Figure 4.9 | Determining the edge state velocity a Absorption picture of the initial wavepacket 10 µs after
release from the tweezer at five different positions perpendicular to the topological interface, increasing in
steps of 0.48 µm in x-direction. b, c Exemplary absorption pictures on the top row as well as Gaussian fits
to the atomic cloud on the lower row for b κ = 1 and c κ = −1. The black point in the fit marks the central
position of the fitted Gaussian. The scale bar in the bottom left of each image has length 10a = 2.87 µm.
The dashed line indicates the location of the topological interface. d The distance between the centers of
the Gaussian fits is plotted against the evolution time of the system for the 5 different initial positions
perpendicular to the wall, being spaced by 0.48 µm. Error bars are extracted via bootstrapping. The solid
lines are linear fits to the data taken at each initial position. e The velocity extracted via the linear fit is
plotted against the initial position. The error bars are the fit error.

of the atomic cloud via a Gaussian fit. We repeat this procedure 20 times, and take
the standard deviation of the results obtained this way to be the error in determining
the clouds central position.

The distance ∆r between the positions measured for opposite chirality but otherwise
identical parameters is shown in Fig. 4.9d. As the distance between the clouds grows linearly
with time, we can perform a linear fit of form ∆r (t) = a+ bt to the measured positions,
and this way extract the velocity of the edge mode.

When plotting the velocity of the edge mode against the position perpendicular to the
wall, as done in Fig. 4.9e, there is a clear maximum visible, with the edge transport slowing
down when moving further away from the interface. For the data taken closest to the
wall, the atoms were placed on top of the topological interface, leading to atom loss,
and localization of the remaining atoms in the speckle on top of the potential step. For
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investigating the transport properties along the wall, we then use the data taken at the
location showing the largest transport velocity.

4.4.2 Varying the edge height
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Figure 4.10 | Emergence of the edge state with increasing potential step a The height of the potential
step applied to the system is varied for an edge state prepared in the Haldane-like regime (ω/(2π) = 5 kHz),
the anomalous Floquet regime (ω/(2π) = 7 kHz), as well as the Haldane regime (ω/(2π) = 16 kHz). The
data shown is the average of three data sets taken separately, the error bars are estimated as the fit
error for the velocity determination for the individual data sets, and are combined with the standard
deviation of the results of the different data sets. b Quasi energy spectrum simulated on a step-wise
modulated, quasi-infinite system. The system has an infinitely sharp potential step of height V0 applied
along the center in the infinite direction of the system. The potential steps illustrated are, from left to
right, V0/(̄hω) = [0.05, 0.1, 0.5, 1.5, 2.5]. Spectra, in which we believe an edge state can be identified are
highlighted by a black frame.

When two topologically distinct materials are brought into contact, edge modes arise –
the most common example being the transition from a topologically non trivial system
to a trivial system at its edge. In experiments on ultracold quantum gases, the natural
edge of the optical lattice is very large, leading to a smooth confinement which makes
observing edge modes on it hard.

Instead, we employ a potential step generated via a DMD, allowing us to create sharp
interfaces. Even though both subsystems on the two sides of the step ideally have the same
topological properties, a similar interface can be created if the energy difference between the
subsystems is large enough. We study this effect in the three different topological regimes,
using the parameters for the tunneling modulation scheme illustrated in Fig. 4.1b: We



68 Detection and manipulation of topological edge states

probe the Haldane regime at ω/(2π) = 16 kHz, the anomalous regime at ω/(2π) = 7 kHz,
and the Haldane-like regime at a modulation frequency ω/(2π) = 5 kHz.

In Fig. 4.10a the velocities measured for different wall heights are displayed.

In the Haldane regime, a rapid initial increase in transport velocity can be observed. The
velocity exhibits a local maximum at a potential step height V0 =≈ 0.14ℏω, matching
the characteristic energy scale of the tunneling in the modulated lattice. If the potential
height is further increased, this velocity however decreases again. We expect, that this
is due to the intensity profile of the step potential having a smaller slope at the bottom,
effectively reducing the sharpness of the potential step as its height is increased. Additionally,
corrugations at the bottom of the potential might further slow down transport.

In the anomalous Floquet regime, the velocity shows a fundamentally different response
to the height of the potential step: Here, a rather slow increase of the velocity can be
observed, starting to flatten off as the potential height reaches a value of V0 ≈ 2ℏω.
Similar behavior can be observed in the Haldane-like regime, where the velocity exhibits
a stable plateau for V0 ≥ 2ℏω.

To support these experimental results, we numerically simulate the quasi-energy spectrum
of our system in a tight-binding model realizing a stepwise modulation of the tunnelings.
For this, we consider a quasi-infinite strip, with the zig-zag edge of the system being
terminated in the finite direction. The potential energy of half the system is increased
by a value V0, forming a potential step, separating the system in two along the finite
direction. The eigenenergies of this system in the low-potential region are shown for
V0 = [0.05, 0.1, 0.5, 1.5, 2.5] ℏω, extracted by projecting onto the low-potential region of the
system, with the color at each point in the spectrum encoding the overlap. As the height of
the potential step increases, one can now see the edge state emerge. In the Haldane regime,
the edge state in the 0-gap is fully developed from V0 = 0.5ℏω on, in agreement with our
experimental observation. At this potential height, no edge mode is visible in both the
anomalous-Floquet as well as in the Haldane system. Instead, the edge mode appears to
develop around V0 = 1.5ℏω, supporting our experimental results. The spectra, in which we
believe that edge modes can clearly be identified, are highlighted by a black frame.

These measurements illustrate the different behavior of Floquet-driven systems for modula-
tion frequencies larger (as in the Haldane regime) and smaller (as in the anomalous- and the
Haldane-like regime) than the system’s bandwidth: In the Haldane regime, the emergence
of the edge transport is governed by the parameters of the static Hamiltonian that the
driven system maps to, specifically the effective tunneling. In the anonmalous- and the
Haldane-like regime, which have the same effective tunneling as the Haldane system, the
energy scale when edge transport emerges is related to the drive frequency of the system,
underlining the out-of-equilibrium nature of these systems.
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Figure 4.11 | Behavior of edge mode velocity with varying edge width a The edge mode velocity is
plotted against the iris diameter. The edge state was populated at ω/(2π) = 16 kHz, with a height of the
potential step V0 = 1.10(2) kHz and a tweezer trap frequencyωT/(2π) = 2 kHz applying a phase gradient
of 0.43π/a via a kick. The data shown is the average of three data sets taken independently, and the
error bars are estimated as the fit error for the velocity determination for the individual data sets, and are
combined with the standard deviation of the velocities extracted on the different data sets. b The edge
width for a given iris diameter is estimated from measurements of the edge width in an intermediary
imaging plane together with the system demagnification. The dashed line indicates the inverse of the
largest spatial frequency transmitted through the optical system, and gives a lower bound on the edge
witdh achievable. c Quasi energy spectrum simulated on a semi infinite strip in a stepwise modulated
tight binding model. The edge width is varied from left to right from l/a = [6, 4, 2, 1, 0.1], while the edge
height remains fixed at V0/(̄hω) = 1.5. The color of the spectrum encodes the overlap of the states with
the low potential region of the system.

4.4.3 Reducing the width of the interface

The width of a topological interface has a large impact on the group velocity of the edge
transport [154–156], as the dispersion of the edge modes hybridizes with the bulk modes
for finite widths, reducing the transport velocity.

To investigate this effect we tune the width of the hard wall potential by opening and
closing an iris in the Fourier plane of the DMD (cf. Sec. 3.2.3). Due to the incoherent
illumination of the DMD, closing the iris also leads to a reduction in potential height. To
compensate for this, we measure the optical power of the beam after the iris for each iris
setting, and readjust it to its initial value. This also means, that only the edge state in
the Haldane regime could be probed, as in the other two regimes optical power constraints
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prevent us from increasing the potential height significantly past the point, where the
fastest transport could be observed, cf. Fig. 4.10.

To characterize the width of the potential step, we imaged the projected potential in an
intermediary image plane, and extracted the characteristic width ℓ of the potential step,
defined as the distance across which the height of the potential increases from 8% to 92% of
its maximum value. We divide this length by the demagnification of the following imaging
system, which we independently calibrated to be 29.9. The results of this measurements
are shown in Fig. 4.11b. As abberations as well as diffraction in this subsequent imaging
system are not captured by this measurement, it only gives a lower bound on the actual
characteristic width of the potential step in the atomic plane. Another lower bound on the
width is given by the diffraction limit of the objective we use for projecting the potential
into the atomic plane, which is marked by a dashed line.

In Fig. 4.11a we show the velocity of the Haldane edge state measured at each iris opening.
We find, that a larger width of the potential step leads to a reduced velocity of the edge
transport, as expected from literature [154–156].

This observation is further supported by numerical simulations of the dispersion of our
system in a step-wise modulated tight binding model of a semi-infinite strip, with the zig-zag
edge being terminated at the numerical edge in the finite direction. Here, we introduce
a potential step with tunable width shaped as an error function, and with a step height
V0 = 1.5ℏω. The potential step is oriented along the zigzag direction of the lattice, like
in the experimental realization, separating the system in two equal-sized regions in the
finite direction. The simulated dispersion for ℓ/a = [6, 4, 2, 1, 0.1] is shown in Fig. 4.11c.
In the case of a narrow wall width, the edge state just connects the two bands across the
edge of the Brillouin zone, as already expected from our simulations utilizing an infinitely
sharp edge. For an increasing wall width however, the edge mode starts to hybridize with
bulk states, and wraps around the Brillouin zone. This leads to an overall reduced group
velocity for the edge transport, supporting our observations.



CHAPTER 5

Disorder-driven phase transitions in
Floquet-engineered honeycomb lattices

Topological phases of matter have contributed to our understanding of condensed matter
systems, showing that disorder can play an important role in determining material properties
beyond being simply an imperfection [13, 14]. As discussed in Sec. 2.5.1, it was previously
believed, that disorder prevents electronic transport via a reduced mobility due to diffusive
processes, weak localization or Anderson localization [114]. Within the framework of
topology however, disorder can even play a stabilizing role, with the paradigmatic example
for this being the quantum Hall effect [5–7], where the precise quantization of the observed
plateaus in conductivity are not only robust against weak disorder, but in fact require
it for their stability [13–15].

The experimental investigation of topological phenomena on platforms working with ul-
tracold atoms in optical lattices pose significant challenges though, as most established
techniques for characterizing topological band structures rely on the system’s translational
invariance, using momentum space measurements to extract the geometric properties of
Bloch bands [59, 60, 68, 70–72, 117].

This chapter explores an alternative approach, probing topology directly in real space
through the edge modes of the system. As the bulk-boundary correspondence guarantees
the existence of these modes at topological interfaces, their robustness against pertur-
bations provides an unambiguous signature of topology that remains valid even when
the bulk is disordered.

While disorder-driven phase transitions have been observed between topologically trivial
and nontrivial phases [74–78], observations of disorder-driven transitions between distinct
topologically nontrivial phases have remained elusive. This chapter reports on the first
experimental observation of such a transition. Additionally, we study the systems in the
limit of large disorder, observing the transition into a topologically trivial regime.

We begin in Sec. 5.1 by introducing the state preparation method employed, describing a
technique to selectively populate the chiral edge modes characteristic of either the anomalous
regime or of both the anomalous and Haldane regimes by tailoring the properties of the initial
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wavepacket using an optical tweezer. This selectivity enables us to distinguish between the
two topological phases. Sec. 5.2 investigates the fundamental effect of disorder on topological
transport in a Chern insulator. We measure the transport in the edge mode if disorder
is applied to the system, and observe a reduced overall transport velocity. In Sec. 5.3, we
employ the edge modes of the system to probe and track the location of a topological phase
transition. After benchmarking the method against conventional gap-closing measurements
in the clean system, we map the phase boundary as a function of disorder strength. Our
results reveal that disorder shifts the transition point, demonstrating a disorder-driven
phase transition between two topologically nontrivial phases. Sec. 5.4 explores the strong
disorder limit, where topological protection eventually breaks down. Here, we observe the
transition from topological phases to a trivial localized phase, characterized by the complete
suppression of chiral motion. We close the chapter in Sec. 5.5 by observing the expansion
and diffusion in the bulk in both the anomalous- and Haldane-regime, if disorder is applied.

The following chapter is based on the joint work of Alexander Hesse, Johannes
Arceri, Moritz Hornung, Christoph Braun and Monika Aidelsburger [80].

5.1 State preparation

The population of the edge state is illustrated in Fig. 5.1a: A small BEC is confined by
an optical tweezer (cf. Sec. 3.2.2). Adjacent to the tweezer is a hard-wall potential step,
projected by the DMD (cf. Sec. 3.2.3). The atoms are released from the tweezer into the
optical lattice (cf. Sec. 3.3), which is amplitude modulated in a time reversal symmetry
breaking manner (cf. Sec. 2.3). Subsequently, the atoms populate the edge mode of the
system, and perform chiral movement along the wall.

In a past project (cf. Chapter 4, [79]), we employed a kick to transfer quasimomentum to
the atoms, which could be used to populate the edge mode in the 0-gap in the Haldane
regime. However, in a disordered potential landscape, this method fails. Instead, we found
that by only varying the final trap depth of the optical tweezer, we can selectively populate
the Haldane edge state alone (by using the deep tweezer trap frequency ωd), or both
Haldane- and anomalous edge state (by using the shallow tweezer trap frequency ωs), as
can already be seen in Fig. 4.6. In the following, we will exploit this trap-depth-dependent
selectivity by using different settings for populating the edge state in the Haldane- and
in the anomalous regime.

The sequence we employ to populate the edge modes of our system is illustrated in Fig. 5.1b:
In both cases, we start our sequence by loading atoms from a BEC containing ∼ 2 × 105

39K atoms into our optical tweezer. The transfer begins with a quadratic increase of the
tweezer potential strength over 40 ms, followed by a constant hold for 170 ms. Within the
next 30 ms, we briefly increase the power in the tweezer trap, while the optical dipole trap
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Figure 5.1 | Edge state population in the presence of disorder. a Schematic of the population scheme at
a topological interface: A tightly-focused optical tweezer (red) confines a BEC (blue), which is released
near a repulsive potential step (gray). The atoms subsequently evolve in the tunneling-modulated optical
lattice. b Experimental sequence used for populating the edge state in the anomalous regime, using the
shallow tweezer settingsωs, Vs (left), as well as in the Haldane regime, using the deep tweezer settings
ωd, Vd (right), schematically illustrated by the sketch on top of the column. ODT denotes the potential
of the optical dipole trap, VT the potential imposed by the optical tweezer, V0 the hard-wall potential
projected by the DMD, VD the average strength of the speckle potential, and as the s-wave scattering
length set via the Feshbach resonance. The duration of three time intervals is marked at the bottom.

power is reduced. This allows us to expel remaining atoms from the dipole trap, which
would otherwise contribute to a background signal.
When preparing the atoms in the shallow tweezer trap, the trap frequency of the optical
tweezer is ramped down to ωs/(2π) = 1.3(1) kHz, while when preparing the deep tweezer
we ramp it to ωd/(2π) = 2.0(1) kHz.
After this, the additional potentials are subsequently ramped up: First, we ramp up the
hard-wall potential V0 projected by the DMD linearly within 30 ms. Because the edge
state velocity is highly dependent on the height of the hard-wall potential [79], we choose
a relatively low potential height Vd/h = 2.8 kHz for the Haldane regime, and a larger
value Vs/h = 13.2 kHz in the anomalous regime, maximizing the observable signal. Where
applicable, we ramp up the speckle potential V D simultaneously with the hard wall.
After these potentials reached their final value, we exponentially ramp up the optical lattice
to a depth of 5.9ER within 30 ms. Subsequently, we linearly ramp up the modulation
of the lattice potentials within five modulation cycles, and afterwards release the atoms
by abruptly switching off the tweezer.
We found that increasing the scattering length during the loading of atoms into the deep
tweezer significantly increases the atom number trapped, and thus improves the signal
strength for the edge state, as illustrated in Fig. 5.2. Here, we compare the edge state



74 Disorder-driven phase transitions in Floquet-engineered honeycomb lattices

Figure 5.2 | Effect of increasing the Feshbach field during loading. a Averaged absorption pictures
(26-27 averages each) of the edge state in the Haldane regime (ω/(2π) = 16 kHz, m = 0.25) after 3 ms
evolution time. Each line shows the absorption pictures for κ = 1 (left) and κ = −1 (center), as indicated
by the arrows in the top right corner, and their difference ∆OD on the right. From top to bottom the
scattering length is increased, with the scattering length being set to 6a0 5 ms before releasing the atoms
from the tweezer for this measurement. The dashed line indicates the location of the topological intercafe.
The inset in the top right corner of the difference picture for as = 3a0 shows the mask projected by the
DMD, with dark areas in the mask marking regions of higher potential energy. The scale bars have length
10a = 2.87 µm. b Pixsum of the absolute value of the edge state difference signal |∆OD| plotted against
the scattering length.

signal obtained after an evolution time of 3 ms at an amplitude modulation frequency of
ω/(2π) = 16 kHz for different magnetic field strengths, tuning the s-wave scattering length
between as = 3a0 and as = 18a0. For this, a BEC was prepared at the chosen scattering
length, and loaded into the optical tweezer. To ensure that interaction effects do not impact
the propagation of the edge mode, the scattering length was ramped down to a value
of 6a0 1 ms before releasing the atoms from the tweezer. We independently ensured by
measurements of the Feshbach coil current, that this time is sufficient for the magnetic
field to settle befor the atoms are released from the tweezer.

By integrating the absolute difference signal |∆OD| in a region close to the projected edge,
we find that the signal is maximized if the scattering length is held at a value as = 13a0

while the atoms are in the tweezer. We attribute this to a suppression of loss mechanisms
present in the deep tweezer due to the decrease in atomic density. When comparing the
number of atoms near the projected edge to the number of atoms scattering into the bulk,
it becomes apparent that the increased scattering length does not significantly alter the
overlap with the Haldane edge mode or its propagation, supporting that this primarly
increases the overall atom number in the tweezer.
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In contrast to this, for measurements using the shallow tweezer with a trap frequency
ωs, the BEC is already prepared at as = 6a0, and held constant at this value for the
remainder of the measurement.
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Figure 5.3 | Detecting the topological regime using edge states. The edge state in the anomalous- and
Haldane regime is populated using both the narrow- and the deep tweezer settings, with absorption
pictures being taken after 50 modulation cycles. a shows data taken deep in the anomalous regime at
ω/(2π) = 7 kHz, while b shows data deep in the Haldane regime, at ω/(2π) = 16 kHz. The top row in
both subfigures shows data taken with the shallow tweezer settings (ωs, Vs), while the lower row shows
data taken with the deep tweezer settings (ωd, Vd), as is also illustrated by the sketch to the left of the
absorption pictures. Shown is, from left to right, averaged absorption pictures (100 averages each) for
modulation chirality κ = 1, for κ = −1, and their difference, ODdiff = ODκ=1 − ODκ=−1. The arrows in the
top right corner illustrate the modulation chirality. The dashed line marks the location of the potential
step. The potential step is also illustrated in the inset in the top right corner of the uppermost difference
picture, with dark regions corresponding to regions with higher potential energy in the atomic plane. All
scale bars have a length of 10a ≈ 2.87 µm.

The obtained edge state propagation is shown in Fig. 5.3: If the shallow tweezer settings
(ωs, Vs) are used to populate the edge state deep in the anomalous regime at a modulation
frequency ω/(2π) = 7 kHz, one observes strong chiral motion, with most atoms populating
the edge mode, and only few leaking into the bulk. This is is further highlighted by a strong
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chiral signal, as can be seen in the corresponding difference picture. If the deep tweezer
settings (ωd, Vd) are used to populate the edge state at the same modulation parameters,
one observes a slightly smaller, albeit still large atom number near the edge, with again only
few atoms leaking into the bulk. A chiral signal is clearly visible, although the transport
velocity appears to be smaller, leading to an overall weaker signal in the difference picture.

Deep in the Haldane regime, at a modulation frequency ω/(2π) = 16 kHz, the edge state
behaves quite differently: If the shallow tweezer settings are used to place atoms close to
the potential step, most atoms scatter into the bulk of the system, with a few atoms staying
close to the wall. In the difference picture, no chiral movement can however be observed for
these atoms, not even for data taken after a longer evolution time. When using the deep
tweezer settings, most atoms remain close to the potential step, with few atoms leaking
into the bulk. The atoms at the edge of the system again populate the edge state of the
system, undergoing chiral movement, as can be seen in the difference picture.

5.1.1 Alignment of the tweezer position with respect to the potential step

The overlap between the edge mode of the system and the wavepacket placed by the
optical tweezer is highly dependent on the alignment of the tweezer position with respect
to the potential step. Wehen taking data in disordered systems, taking data at multiple
locations would have however compromised our ability to perform disorder averaging:
Either a reduction of the number of disorder realizations averaged for each parameter
combination, or a reduction of the resolution of parameter scans would have been necessary
to take all data for one data set in a single experimental run, consisting of a few thousand
measurements with a cycle time of 33 s inbetween.

Instead, we decided to align the tweezer to the hard wall potential for both tweezer
settings before starting measurements: For the deep tweezer settings (ωd, Vd), we placed
atoms close to the potential step deep in the Haldane regime, at a modulation frequency
ω/(2π) = 16 kHz, alternating the chirality of the lattice modulation, and taking absorption
pictures after an evolution time of 50T . Analogously, for the shallow tweezer settings (ωs, Vs)

we performed the same measurement deep in the anomalous regime, at ω/(2π) = 7 kHz.
The strength of the edge state signal was evaluated as the integrated optical density of
|ODdiff | in a region close to the potential step, and the tweezer position with respect to
the wall was optimized to maximize this signal.

To ensure that this alignment procedure does not introduce systematic bias into the
data taken, we also performed measurements with a coarser parameter sampling and fewer
disorder averages at multiple tweezer positions simultaneously. These measurements confirm
that the qualitative behavior observed in this chapter remains consistent across different
tweezer positions, with two such measurements presented in App.A.
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5.1.2 Determining the edge state position

In order to investigate the effect disorder has on the propagation of the edge modes of our
systems, it is essential to extract information about their location. For this, we determine
the center of mass position ȳ along the topological boundary, which we extract from the
absorption pictures via a weighted average:

ȳ =

∑
i yiwi∑
iwi

, (5.1)

with yi being the corresponding position along the topological boundary of each camera
pixel in the atomic plane, and the weight wi being the optical density at this position. The
optical density is determined taking saturation effects for large imaging intensities into
account [209, 210] (cf. Sec. 3.4.2). The region evaluated for this calculation was chosen such,
that all atoms populating the edge state are captured for all disorder strengths applied,
while atoms leaking into the bulk are neglected. To ensure that no systematic bias was
introduced by the concrete choice of a region, we ensured that ȳ is insensitive to small
variations in the size of the region of interest.

Because this signal itself is susceptible to systematic shifts of the initial position and
gradients in the system, we evaluate the difference between the center of mass obtained
for the two modualtion chiralities, ȳκ=1 and ȳκ=−1:

∆ȳ = ȳκ=1 − ȳκ=−1

=

∑
i yiwi,+1∑
iwi,+1

−
∑

i yiwi,−1∑
iwi,−1

.
(5.2)

As typically several images are taken for each parameter combination, this allows us to
quantify the uncertainty in ∆ȳ, via a bootstrap resampling method: For a given set of
experimental parameters, we acquire N absorption pictures, with N typically being in the
range from 19 to 40, depending on the measurement. Each of this absorption pictures has
been taken for a different disorder realization, with data for different chiralities but otherwise
identical parameters being taken in succession, using the same disorder realization.

We now randomly select Nboot sets of absorption pictures, each having length N , allowing
individual pictures to appear mutliple times in a given bootstrap set. For each set i, we
then calculate the center of mass distance ∆ȳi. Now, one can estimate the statistical
error σ∆ȳ on the center of mass distance ∆ȳ by calculating the standard deviation of
the distribution obtained this way,

σ∆ȳ =

√√√√ 1
Nboot

Nboot∑
i=1

(∆ȳi −∆ȳ)2. (5.3)



78 Disorder-driven phase transitions in Floquet-engineered honeycomb lattices

a

/(2
) =

 7
kH

z

5a

t = 10T

b

t = 10T

c

/(2
) =

 1
6k

Hz

t = 50T

d

t = 50T

Figure 5.4 | Different preparation protocols for the numerical edge state. The edge state is prepared on
the lattice sites at the numerical edge of the system, and evolves in the anomalous (a, b) and Haldane
regime (c, d). The lattice site population of the initially prepared state is shown on the left of each subfigure,
and to the right the evolved system for both chiralities as well as their difference picture. a and c show the
evolution for a system, where the lattice sites at the numerical edge were populated in a zig-zag pattern
with constant phase, and b as well as d for a system, where only the lattice sites closest to the edge were
populated with alternating phases. The evolution time is t = 10T in the anomalous, and t = 50T in
the Haldane regime. The arrows in the top left corner of the plot denote the chirality of the tunneling
modulation. The colormap for the initial states is normalized to the peak lattice site population, and in
the evolved systems to half that value. Lattice sites close to the initial preparation position are shown,
with removed sites in the lattice having no significant population. All scale bars have length 5a.

5.1.3 Numerical preparation protocol

To benchmark our experimental results in this chapter, we often times numerically investi-
gate the evolution of a wavepacket close to the numerical edge of a tunneling-modulated
lattice. Here, we follow the modulation scheme introduced in Sec. 2.3, only considering
nearest neighbor tunneling, as next nearest neighbor tunneling amplitudes are about an
order of magnitude smaller. The continuous modulation of the tunneling in the lattice is
approximated by discretizing the modulation into 21 steps in the simulations. Where appli-
cable, disorder is sampled from a numerically generated speckle pattern, having the same
correlation length σr = 296 nm as the experimentally realized speckle pattern (cf. Sec. 3.2.4).

In Fig. 5.4, we investigate the population of the numerical edge mode of the system, in
analogy to Fig. 5.3. The system we study consists of 3806 lattice sites and an side-length-
ratio of ≈ 2.8, with the long side being the zig-zag edge, where we populate the edge
state. Shown is only the central part of the system around to the location where the initial
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state is situated, the system is a factor two larger in both directions. The duration of
the evolution was adjusted for different modulation frequencies for illustrative purposes,
similar behavior can be observed for different evolution times.

We test two different preparation protocols for the numerical edge state: In the first,
we populate 8 lattice sites along the zig-zag edge of the system, each with the same
phase and amplitude. When populating the edge mode deep in the anomalous regime, at
ω/(2π) = 7 kHz, as shown in Fig. 5.4a, we observe a clear chiral signal, with few atoms
populating bulk states. Repeating the same preparation protocol deep in the Haldane
regime, at ω/(2π) = 16 kHz, displayed in Fig. 5.4c, it is immediately clear that this approach
is not successful, with the population rapidly spreading out and populating bulk states,
and no chiral signal discernible.

Studying the dispersion in the anomalous and in the Haldane regime – for instance illustrated
in Fig. 2.3 – it is clear, why this approach is not successful: The prepared state has a
constant phase across all lattice sites, and is therefore at zero quasimomentum. While the
edge state in the π-gap in the anomalous regime is situated at zero quasimomentum, this
edge state is absent in the Haldane regime. To taylor a state which has an overlap with
the edge state in the 0-gap of the system, we populate four lattice sizes directly at the
numerical edge, alternating the phase on the lattice sites between 0 and π.

When preparing the edge state in the anomalous regime using this protocol, shown in
Fig. 5.4b, we again observe an edge state, this time with no significant fraction of atoms
scattering into the bulk. As we will see later however, this time not the edge state in the
π-gap of the system has been populated, but the edge state in the 0-gap. This is the reason
why this preparation protocol also functions deep in the anomalous regime, allowing us to
numerically study the edge state propagation in both regimes, shown in Fig. 5.4d.

A more systematic approach for investigating these preparation protocols is illustrated in
Fig. 5.5. Here, the overlap of the states prepared with the eigenstates of the system at
modulation frequencies of ω/(2π) = 7 kHz, ω/(2π) = 10 kHz, and ω/(2π) = 16 kHz shown.

For the first preparation protocol, populating 8 lattice sites with equal phase, one can see
that deep in the anomalous regime, there is a strong overlap with the initial state in the
π-gap, where the edge state is located. For the other edge state in the 0-gap however, no
overlap is visible. Upon increasing the modulation frequency and approaching the phase
transition into the Haldane regime, located near ω/(2π) = 10.5 kHz in the two-band model
simulated, the π-gap shrinks. This leads to some overlap of the initial state with bulk states,
while still having good overlap with the edge mode in the π-gap. Deep in the Haldane regime
however, the edge state in the π − gap has vanished, so that the initial state only couples
to bulk states of the system, still not having any overlap with the edge mode in the 0-gap.

For the second preparation protocol however, where four lattice sites are populated with
alernating phases, the initial state has for all modulation frequencies investigated good over-
lap with the edge states in the 0-gap of the system, and no significant overlap with
any other states.



80 Disorder-driven phase transitions in Floquet-engineered honeycomb lattices

y
0.5

0.0

0.5

 (
)

/(2 ) = 7 kHz

Eigenstate index
0.5

0.0

0.5

 (
)

/(2 ) = 10 kHz

Eigenstate index

/(2 ) = 16 kHz

Eigenstate index
0.0 0.1 0.2

population

|
0|

n
|2

a

b

Figure 5.5 | Eigenstate overlap for the different preparation protocols. a investigates the preparation
protocol, where 8 lattice sites along the zig-zag edge are populated with equal phase, while b studies
the preparation protocol where only the lattice sites directly at the numerical edge are populated with
opposite phase. On the left of each subfigure, the initial state is illustrated, with the hue of each of the
arrows connected to the lattice sites encoding the lattice site population, and the direction the arrow is
facing encoding the phase. To the right of that, the overlap of this state with the eigenstates of the system,
sorted by energy, at modulation frequenciesω/(2π) = 7 kHz,ω/(2π) = 10 kHz, andω/(2π) = 16 kHz is
illustrated.

This different overlap of the two initial states allows us to also distinguish the two regimes
numerically, by observing the propagation of the states prepared with these two methods.
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5.2 Propagation of edge states in the presence of disorder

We start our investigation by studying the effect disorder has on the propagation of the
edge modes on our platform. For this, we focus on the Haldane regime, as the paradigmatic
example of a Chern insulator. We take data deep in the Haldane regime at ω/(2π) = 16 kHz,
and utilize the deep tweezer settings (ωd, Vd) to populate the edge mode, as discussed in
Sec. 5.1. The tunneling modulation frequency was chosen such that we are sufficiently
far in the Haldane regime, away from the phase transition to the anomalous regime.
Simultaneously, the 0-gap remains reasonably large at this frequency, resulting in a large
group velocity of the edge mode.

In Fig. 5.6a we investigate the propagation of the Haldane edge mode in a clean system with
no disorder applied. In the single-chirality pictures one can clearly see the atoms propagate
along the potential step, performing chiral movement. Even though a fraction of the atoms
leaks into the bulk of the system, most atoms stay close to the topological interface. This
chiral movement becomes even more apparent in the difference pictures, where the non-chiral
bulk propagation is cancelled out. For propagation times longer than 80T a drop in atom
number in the edge mode becomes apparent. This atom loss occurs at the same time scale
as the life time of the edge mode, determined for the same modulation parameters in [79].

If we introduce disorder into the system, as illustrated in Fig. 5.6b for V D/h = 0.92 kHz,
the edge mode dynamics are fundamentally altered: Instead of propagating in a straight
line along the potential step, the atoms now propagate towards the bulk of the system, and
the overall transport velocity along the edge appears to be significantly reduced. Because
of this, it is much harder to make out any chiral movement in the single-chirality pictures,
and one has to rely on the difference picture instead.

To more systematically investigate the effect disorder has on the propagation of the
edge states, we extract the center-of-mass distance ∆ȳ from the experimental data,
shown in Fig. 5.7a. Here, the evolution of the edge mode was studied for V D/h =

[0 kHz, 0.46 kHz, 0.92 kHz, 1.39 kHz], limiting the evolution times up to t = 80T due to
the atom loss at longer times. From this, it is apparent how the introduction of disorder
leads to a reduction of transport velocity in the edge mode. In the limit of weak disor-
der, this can be understood in terms of disorder introducing couplings between different
quasimomenta in the dispersion, leading to a renormalization of the edge mode velocity [235].

We additionally simulate the propagation of the edge mode at ω/(2π) = 16 kHz in a two-
band tight-binding model to support our experimental findings, as described in Sec. 5.1.3.
We let the system evolve, and extract the center of mass position following the same
routine as established for the experimental measurements (cf. Sec. 5.1.2). We additionally
apply disorder to the system via numerically generated speckle potentials, having the same
potential strengths and correlation length as experimentally realized. Here, we observe
qualitatively similar behavior as in the experimental data: Increasing disorder leads to
a reduction of the propagation velocity.
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Figure 5.6 | Effect of disorder on Haldane edge mode propagation. Averaged absorption pictures (39-40
averages each) of the edge state deep in the Haldane regime (ω/(2π) = 16 kHz) for different evolution
times. a shows the results obtained for a clean system (at disorder strength VD = 0), while b shows the
results obtained for VD/h = 0.92 kHz. The top line of each subfigure displays the absorption pictures
obtained for chirality κ = 1, while the line in the middle shows the results for κ = −1, as indicated by
the arrows in the top right corner of the absorption images. Their difference ∆OD is shown in the bottom
line. The scale bar in the bottom right corner of each plot has length 10a. The dashed line illustrates the
location of the potential step. The inset in the top right corner of the difference picture for t = 0T and
VD = 0 shows the mask displayed on the DMD, with black regions corresponding to regions of higher
potential energy in the atomic plane.



5.3 Probing phase transitions in Floquet driven systems 83

0 25 50 75
t (2 / )

0

1

2

3
CO

M
 d

ist
an

ce
 

y 
(µ

m
)

VD

0 25 50 75
t (2 / )

0

3

6

9

12

CO
M

 d
ist

an
ce

 
y 

(µ
m

)

VD

a b

Figure 5.7 | Propagation in the disordered Haldane system. Center of mass distance ∆ȳ for varying
evolution times t and for varying disorder strengths VD in the Haldane regime (ω/(2π) = 16 kHz). a shows
experimental data, while b shows numerical simulations for the edge state propagation. The disorder is
encoded in the color of the data points, with VD/h = [0 kHz, 0.46 kHz, 0.92 kHz, 1.39 kHz] for both data
sets. For the experimental results, each data point is averaged over 39-40 disorder realizations, while the
numerical data is averaged over 100 disorder realizations. The error bars of the data points are extracted
via bootstrapping.

In comparison to the experimental data however, significantly larger distances are traversed
by the edge mode. We attribute this to the finite width of the experimentally realized
potential step, which reduces the transport velocity due to hybridization of the edge mode
with bulk states [154–156].

5.3 Probing phase transitions in Floquet driven systems

While multiple methods exist for probing the geometric properties of optical lattice systems,
they almost exclusively make use of the translational invariance of the underlying lattice [59,
60, 68, 70–72, 117]. This prevents the application of these techniques to disordered systems,
where the translational symmetry is broken.

Edge modes, which are directly related to the topological properties of the system via the
bulk-boundary connection, do however not rely on the translational symmetry of the system,
and thus also can be used as a marker for the topological properties of a system in the
presence of disorder. In the following, we will introduce the edge states of our system as a tool
for determining the location of the phase transition, allowing us to determine the location of
the phase transition in the presence of disorder, and enabling us to observe a disorder-driven
phase transition between two distinct topological regimes. While disorder-driven phase
transitions have already been observed on multiple platforms in the context of topological
Anderson insulators [74–78], this is to our knowledge the first experimental observation of
a disorder-driven phase transition between two topologically nontrivial regimes.
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5.3.1 Probing a phase transition using gap-closing measurements
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Figure 5.8 | Determining the location of a phase transition using gap closing measurements. a Intensity
modulation of the lattice beams during a gap closing measurement in the modulated lattice: The modula-
tion amplitude is ramped up in 5T . Afterwards, the modulation amplitude is kept constant for an integer
number of modulation cycles. Subsequently, the modulation amplitude is again ramped down in 5T , now
settling on an intensity (1 − m)I0. b Quasi momentum of the atoms loaded in the lattice during the gap
closing measurement: Initially at k = Γ, the atoms are then accelerated to k = Γ′ of the adjacent Brillouin
zone nonadiabatically, such that the atoms arrive at Γ′ at the same time the amplitude modulation is
fully ramped up. The atoms are now held at Γ′ for T hold, and subsequently accelerated back to the Γ-point
of the initial Brillouin zone. c Oscillations observed in the population of the first band when varying the
hold duration T hold. The data was taken at a lattice amplitude modulation frequencyω/(2π) = 15 kHz.
The solid line is a fit described by Eq. 5.4 used to extract the bandgap. d Measured energy gap at different
modulation frequencies. The solid line is a fit of form |ω− ωc|. Error bars are the fit error from fitting the
bandgap.

In the absence of disorder, multiple established methods for determining the location of
a topological phase transition exist. One such method employs bandgap measurements
using Stückelberg interferometry, (cf. Sec. 3.3.2): The experimental sequence starts with
a weakly interacting BEC at 6a0 at k = Γ in the lowest band of the unmodulated lattice.
To adiabatically transfer the system into the ground state of the modulated lattice, the
modulation is ramped up linearly within 5T .
In the following, we apply a strong force to drive the atoms to k = Γ′ in the neigbouring
Brillouin zone. Performing this acceleration nonadiabatically coherently transfers population
from the lower band into the upper band. As discussed in Sec. 3.3.2, the atoms in the
two bands acquire a differential phase ϕt = (ωupper − ωlower) /(2π) · Thold during the hold
time at Γ′, where Eupper = ℏ · ωupper is the energy of the upper band, Elower = ℏ · ωlower

is the energy of the lower band, and Thold is the hold duration.
Now, a rampdown of the amplitude modulation within 5T with (1−m)I0 as a final intensity
is started. Simultaneously, we transfer the atoms back to the initial quasimomentum k = Γ
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nonadiabatically, again coupling the population of the two bands coherently. Due to the
differential phase acquired, this leads to different populations in the first and the second
band, which can be extracted via a bandmapping measurement [187]. For this, the lattice
potential is ramped down adiabatically, such that the population in the different bands
can be obtained after a time-of-flight measurement.
By varying the hold duration Thold, one can now oberserve oscillations in the bandpopulation
with frequency ωgap = (Eupper − Elower) /ℏ, illustrated in Fig. 5.8c. We extract the size of
the gap by fitting a damped cosing function to the population remaining in the first band:

N1 (t) = N0 +A exp
(
t− t0
τ

)
cos (ωgap (t− t0)) (5.4)

To determine at which modulation frequency the transition from anomalous- to Haldane-
regime occurs, we measure the energy gap Γ at different modulation frequencies on both
sides of the transition, and fit a function of form

ωgap = |ω − ωc| , (5.5)

as depicted in Fig. 5.8d. This way, we obtain a transition frequency between the anomalous-
and the Haldane regime of ωc/(2π) = 11.13(8) kHz, where the error of the measurement
is estimated to be the fit error. This is in agreement with numerical simulations of
a six-band model, which predicts the transition between the two regimes to occur at
ωc,6-band/(2π) = 10.92 kHz.

5.3.2 Probing a phase transition using edge states
In Sec. 5.1 we already discussed how different preparation protocols for the edge state
can be employed as a marker to determine whether our system is in the anomalous- or
in the Haldane-regime. In the following, we will establish how they can also be used
to measure the concrete location in the phase diagram, at which the transition between
the two regimes occurs.
Here, we make use of the shallow tweezer settings (ωs = 1.3(1) kHz, Vs/h = 13.2 kHz),
while scanning the amplitude modulation frequency ω of the optical lattice.
In Fig. 5.9a, averaged absorption pictures after an evolution time of 50T are shown together
with their difference pictures for several lattice amplitude modulation frequencies. At
ω/(2π) = 7 kHz, deep in the anomalous regime and far away from the phase transition to the
Haldane regime, most atoms placed near the potential step by the optical tweezer populate
the edge state, and contribute to a differential signal. By increasing the modulation frequency,
one approaches the phase transition, and more atoms end up populating bulk states, while
the transport velocity of the atoms populating the edge state simultaneously decreases, as
visible in the data taken at ω/(2π) = 9 kHz. At an even larger modulation frequency of
11 kHz, almost all atoms from the tweezer populate states in the bulk of the system, and
the atoms remaining near the edge do not exhibit observable chiral motion any more.
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Figure 5.9 | Determining the anomalous-Haldane phase transition using edge states. a Averaged
absorption pictures obtained after 50 modulation cycles forω/(2π) = [7 kHz, 9 kHz, 11 kHz], each taken
after t = 50T . From left to right: κ = 1, κ = −1, and the difference picture ∆OD = ODκ=1 −ODκ=−1. Every
image is the average of 19-20 experimental realizations. The scale bars correspond to 10a. The arrow in
the top right corner of the single chirality pictures indicates the chirality of the lattice modulation, while
the inset in the top right corner of the difference picture forω/(2π) = 7 kHz illustrates the mask displayed
on the DMD, with black regions corresponding to regions of higher potential energy in the atomic plane.
b Center of mass distance ∆ȳ traversed by the edge modes after 50T . Each data point is the average of
19-20 disorder realizations, with error bars being extracted via bootstrapping. The solid line is a fit of form
∆ȳ = max (−η(ω− ωc), 0) to data points withω/(2π) ≥ 8.5 kHz.

To quantitatively evaluate this reduction in transport velocity, we calculate the center of
mass distance ∆ȳ for the atoms in the edge state, as shown in Fig. 5.9b. To ensure that
atoms in the bulk of the system do not influence the determined center of mass, the size
of the evaluation region was slightly varied, and no significant change in the determined
center-of-mass location was observed.

The extracted center-of-mass distances demonstrate that the edge state velocity initially
remains constant, but undergoes a progressive reduction at higher modulation frequencies,
ultimately leading to complete suppression of transport. By fitting a function of form

∆ȳ (ω) = max (−η(ω − ωc), 0) (5.6)

to data points with ω/(2π) ≥ 8.5 kHz, we extract the transition frequency ωc/(2π) =

11.1(2) kHz as the point where the transport vanishes. This result is in excellent agree-
ment with the transition frequency obtained by gap-closing measurements in Sec. 5.3.1
as ωc,gap/(2π) = 11.13(8) kHz, as well as the numerical result obtained via a six-band
model, ωc,6-band/(2π) = 10.92 kHz.
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5.3.3 Tracking the phase transition for nonzero disorder
In the previous section, we have established the propagation of the edge state prepared
using the shallow tweezer settings (ωs, Vs) as a probe for the topological regime. While bulk
measurements of the topological invariants fail in the presence of disorder, the existence
of edge modes is directly connected to the topological properties of the system via the
bulk-boundary correspondence. In the following, we will utilize this to to explore the phase
diagram of our system in the presence of disorder.
In Fig. 5.10 we investigate the feasability of determining the location of the phase transition
using the topological edge states of the system at nonzero disorder. For this, we probe
the system at two disorder strengths, V D,1 = 0.23 kHz, and V D,2 = 0.46 kHz. We probe
the system at 8 modulation frequencies of the optical lattice, displayed in blue, choosing
the modulation frequency such that data is taken both in the anomalous- as well as
in the Haldane regime.
When observing the center of mass distance ∆ȳ for these disorder strengths, the qualitative
behavior remains identical to that of the clean system: At low modulation frequencies,
far away from the phase transition into the Haldane regime, one observes clear chiral
transport. As the modulation frequency is increased however, approaching the transition
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Figure 5.10 | Probing the anomalous-Haldane phase transition in the presence of disorder. Center-
of-mass distance ∆ȳ observed after 50T for varying modulation frequencies at a VD/h = 0.23 kHz and
b VD/h = 0.46 kHz. The blue data points mark the experimentally measured center of mass distances ∆ȳ.
The grey squares represent the center of mass distance observed in a numerical simulation after 20T .
The experimental data is averaged over 19-20 measurements per chirality, while the numerical data is
averaged over 100 disorder realizations. For both, error bars have been determined via bootstrapping.
The solid lines are fits of the form ∆ȳ (ω) = max (−η(ω− ωc), 0). The grey shading in the background
encodes the Bott index B, evaluated for 100 disorder realizations on Ns = 576 lattice sites. The labels (AF)
and (H) indicate the anomalous (B = 0) and Haldane regime (B = 1) respectively.
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between the two regimes, the edge transport weakens and the signal diminishes, eventually
entirely vanishing as the system enters the Haldane regime. When comparing the results
obtained one notices, that the transition to the Haldane regime appears to occur at a larger
modulation frequency for the measurement performed at V D,2 compared to the measurement
at V D,1. To investigate this systematically, we again perform a fit using Eq. 5.6 in order
to extract the transition frequency. This fit yields ωc(V D,1)/(2π) = 11.18(31) kHz, and
ωc(V D,2)/(2π) = 12.11(20) kHz, supporting the observed shift of the transition frequency.
The errors on these transition frequencies were obtained as the fit errors, considering the
errors on ∆ȳ obtained via bootstrapping.

As gap-closing measurements already fail at this level of disorder, we instead benchmark
the result against numerical simulations. For this, we calculate the Bott index [116,
236] (as introduced in Sec. 2.5.2) in a rectangular system consisting of Ns = 576 lattice
sites, enforcing periodic boundary conditions. The obtained results are encoded in the
grey background shading of Fig. 5.10. The tunneling modulation described in Sec. 2.3
was implemented in a two-band model, discretizing the continuous modulation of the
lattice beams into 21 steps. Next-nearest neighbor tunneling, having amplitudes about an
order of magnitude smaller, was neglected. We ensured via convergence tests, that this
system size is sufficient to accurately describe the topological properties of the system [80].
Similar to the the numerical propagation simulations, disorder has been sampled from
a numerically generated speckle pattern with the same correlation length and disorder
strength as experimentally realized. We repeated this calculation for different disorder
realizations with the same characteristics, averaging the obtained Bott indices over 100
different results. These simulations predict transition frequencies between the two regimes
of ωc,Bott(V D,1) = 10.51(8) kHz, as well as ωc,Bott(V D,2) = 10.62(9) kHz, extracted via a
logistic fit to the simulated Bott indices.

These transition frequencies are significantly smaller than the transition frequencies obtained
experimentally. We attribute this discrepancy to the Bott index only considering a two-
band model: Already for a clean system, the Bott index predicts a transition frequency
of ωc,Bott(V D/h = 0)/(2π) = 10.44 kHz, which is not compatible with the transitition
frequency obtained from a six-band model, ωc,6-band(V D/h = 0)/(2π) = 10.92 kHz. It is
however identical to the Chern number C, calculated independently on the same system in
a two-band model. We therefore expect the results obtained from the two-band model to
systematically underestimate the transition frequency between the two regimes, as higher-
band corrections are not captured. Due to system size constraints, the numerical simulation
of models with higher-band corrections is unfortunately not feasible, so that we instead
compare our experimental results to the two-band model, keeping the corrections in mind.

To support the results obtained from the Bott index, we also numerically simulate the edge
state propagation along the zig-zag edge in a system consisiting of Ns = 952 lattice sites,
with a side length ratio between propagation direction and the perpendicular direction of
Ly/Lx ≈ 2.8. Here, we use the preparation scheme populating 8 lattice sites along the
edge with equal phase, introduced in Sec. 5.1.3. Due to system size constraints, we perform
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Figure 5.11 | Measurement of the disorder-induced shift of the topological phase transition. Shift
of the topological phase transition obtained from experimental measurements (blue) and numerical
simulations (gray) extracted by fitting the modulation frequency at which the edge transport ∆ȳ vanishes.
The horizontal errorbars are the fit error, taking the uncertainty in determining ∆ȳ, extracted via boot-
strapping, into account. The vertical error bars on the experimental data reflect the calibration error of
the disorder strength. The red data point indicates the gap-closing measurement for VD/h = 0 kHz from
Sec. 5.3.1. The grey shading in the background encodes the Bott index B, with the labels (AF) and (H)
again indicating the anomalous Floquet (B = 0) and the Haldane (B = 1) regime.

the simulation only for 20T , instead of the experimentally realized 50T . In analogy to
the treatment of the experimental data, we determine the center-of-mass distance between
the propagated edge state for both chiralities, extracting an error on the distance via
bootstrapping. The center-of-mass distances determined this way are displayed as grey
squares in Fig. 5.10. The observed larger propagation distance, given the shorter evolution
time, can be attributed to the edge mode propagating along the infinitely sharp numerical
edge of the system instead of the finite-width experimentally realized potential step, which
leads to a slow-down of the edge mode propagation [154–156]. From these center-of-mass
distances, we extract the transition frequency, again using Eq. 5.6. This way, we yield
ωc,num(V D,1)/(2π) = 10.56(5) kHz, and ωc,num(V D,2)/(2π) = 10.57(6) kHz, with the error
of the transition frequency being the fit error. These transition frequencies, while also being
lower than the experimentally observed transition frequencies, are in excellent agreement
with the transition frequencies obtained from the Bott index. With the results obtained
from the propagation as well as from the Bott index, both in a two-band model, being in
such good agreement, we expect the experimentally observed vanishing point of the edge
transport to be a reliable probe for the location of the phase transition.

We now make use of this probe to investigate the location of the phase transition at even
larger disorder strengths, shown in Fig. 5.11. Here, the blue data points represent the
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experimentally measured location at which the edge transport vanishes. Horizontal error
bars on these data points are the fit error, taking into account the uncertainty in determining
the center-of-mass distance extracted via bootstrapping. The vertical error bars are the
uncertainty in the calibration of the disorder potential strength, described in more detail in
Sec. 3.2.4. In these results, one can see a rather drastic shift of the transition frequency
between the anomalous and the Haldane regime, moving from close to 11 kHz in the clean
limit to over 13 kHz for disorders larger than V D/h = 1 kHz being applied.

The results of the transition frequency obtained via numerical propagation simulations are
displayed as grey data points, with the horizontal error bars representing the fit error of
Eq. 5.6, also considering the error on ∆ȳ obtained via bootstrapping. The grey shading in the
background encodes the Bott index B, averaged over 100 different disorder realizations for
V D/h < 1 kHz and averaged over 200 disorder realizations for V D/h ≥ 1 kHz. Here, a shift
of the transition frequency to larger values is also observed, although the shift is not as drastic.
For disorder strengths larger than V D/h = 0.5 kHz, the transition frequendy extracted from
the numerical propagation appears to diverge slightly towards larger modulation frequencies
compared to the results obtained via the Bott index. Altogether, the numerically simulated
transition frequencies from a two-band model however predict a lower transition frequency
for all disorder strengths compared to the experimental results, which we interpret as the two-
band model underestimating the transition frequency also in the presence of disorder. The
observed behavior matches the theoretical predictions [109], confirming that disorder indeed
favors the anomalous Floquet topological regime over conventional Chern insulators systems.

5.4 Suppression of topological edge transport in the strong disorder
regime

After establishing the robustness of topological edge modes to weak and moderate disorder,
we now investigate the breakdown of topological protection in the presence of strong
disorder. This trivial regime is characterized by the absence of chiral motion, independent
of the preparation of the initial state.

We start our investigation by performing measurements deep in the anomalous Floquet
phase at ω/(2π) = 7 kHz, at a disorder strength V D/h = 11.1 kHz. For this, we place atoms
near the potential step using different preparation protocols, and take absorption pictures
of the system after an evolution time t = 50T . In Fig. 5.12a the system is probed for the
shallow tweezer experimental settings (ωs = 1.3(1) kHz, Vs/h = 13.2 kHz), optimized for an
overlap with the edge mode in the anomalous regime. In the single-chirality pictures, the
atoms placed at the topological interface spread out towards the bulk of the system, with
no chiral motion discernible when comparing the two chiralities. This is further highlighted
by their difference picture, where also no signature of chiral motion can be observed.
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Figure 5.12 | Suppression of topological edge transport at strong disorder. Single chirality pictures as
well as difference picture obtained after 50T when preparing the edge state with the a shallow tweezer
settings or b with the deep tweezer settings at ω/(2π) = 7 kHz and VD/h = 11.1 kHz. The differences
in the tweezer settings are illustrated on the left. The pictures are averaged over 100 different disorder
realizations. The dashed line marks the location of the potential step, while the arrows in the upper right
corner of the single-chirality plots indicate the chirality of the lattice modulation. The mask displayed on
the DMD is illustrated in the inset in the difference picture for the shallow tweezer settings, with black
regions corresponding to regions of higher potential energy in the atomic plane.

For the deep tweezer settings(ωd = 2.0(1) kHz, Vd/h = 2.8 kHz) optimized for populating
the edge mode in the Haldane regime, the measurement results are shown in Fig. 5.12b. Here
the atoms also propagate into the bulk, and no chiral motion is apparent in the difference
picture. We interpret the absence of chiral motion for both experimental preparation
protocols as a sign that the system has entered a topologically trivial regime.

To more systematically investigate the transition into the topologically trivial regime,
we perform scans of the disorder strength V D at different modulation frequencies of the
lattice, observing the center-of-mass distance ∆ȳ after 50T . The paths we chose for this
investigation are illustrated in a schematic of the phase diagram we expect in Fig. 5.13a: At
modulation frequencies much smaller than 11 kHz and for weak disorder, the system is in the
anomalous Floquet regime. If we choose the modulation frequency to be significantly larger
than 11 kHz while staying at weak disorder, the system is in the Haldane regime. Close to
the transition frequency between the two regimes, the disorder-driven phase transition we
studied in Fig. 5.11 can be observed. For large disorder, one expects both systems to end
up in a topologically trivial regime. However, the anomalous Floquet topological insulator
is expected to show greater robustness due to the protection of topological properties by
Floquet symmetry, while Chern insulators are only robust to disorder on the order of
magnitude of the bandgap [96]. Our results presented in Chapter 4 also indicate that the
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Figure 5.13 | Exploring the topological phase diagram for large potential disorder. a Schematic phase
diagram illustrating three different phases: anomalous Floquet, Haldane and topologically trivial. The
orange ellipse indicates the potential region of an anomalous Floquet Anderson insulator (AFAI) phase.
The vertical lines indicate the parameter regime for the experimental data shown in b, c. b, c Center
of mass distance ∆ȳ after 50T for variable disorder strength and different modulation parameters. The
dashed vertical lines indicate the corresponding minimal energy gap without disorder obtained from a 6-
band calculation. b Re-entrance behavior of the edge mode signal for two different experimental settings
optimized for the anomalous (dark red) and Haldane (light red) regime, respectively. The modulation
frequencyω/(2π) = 11.75 kHz is chosen to lie above, but close to the phase transition at zero disorder. c
Transition to the topologically trivial regime deep in the anomalous [blue,ω/(2π) = 7 kHz] and Haldane
regime [green,ω/(2π) = 16 kHz]. Error bars on ∆ȳ have been extracted by bootstrapping. The error bars
in VD give the calibration error of the disorder strength. The blue trace has been plotted on a separate
axis on the right due to the much larger center of mass distance traversed. Each data point is the average
of 19-20 measurements per chirality, with different disorder patterns applied.

relevant energy scale in the anomalous regime is determined by the width of the Floquet
Brillouin zone, which is much larger than the bandgap. Anomalous Floquet systens also
support novel phases, where all bulk states are localized, coexisting with extended edge
modes, so-called anomalous Floquet Anderson insulators [66, 67, 108]. This phase is
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symbolized by the ellipse at the large-disorder end of the anomalous Floquet regime in
the phase diagram (AFAI?) in Fig. 5.13a.
In Fig. 5.13b, the results obtained for both the shallow tweezer settings as well as for the
deep tweezer settings at a modulation frequency ω/(2π) = 11.75 kHz are shown. This
modulation frequency was chosen to be right next to the phase transition between the
anomalous and the Haldane regime, situated in the Haldane regime in the absence of
disorder. The path along which data was acquired here is marked in red in the phase
diagram in subfigure a. For the shallow tweezer setting, we do not observe any chiral
transport if no disorder is applied, as expected. If the disorder strength is now increased, the
emergence of chiral transport becomes apparent, marking the transition from the Haldane-
into the anomalous Floquet regime, which we already observed in Sec. 5.3.3. This re-entrant
behavior occurs for disorder strengths on the same order of magnitude as the minimal band
gap in this measurement, illustrated by the red dashed line. The measured center-of-mass
distance ∆ȳ becomes maximal near V D/h ≈ 1.5 kHz, and subsequently decreases gradually,
which we interpret as a transition into the topologically-trivial phase.
If the system is instead probed using the deep tweezer settings, one does observe chiral
transport if no disorder is applied. This is expected, as the system is initially in the Haldane
regime, for which the deep tweezer settings optimize the overlap with the edge mode. If
the disorder strength is however increased, the measured center-of-mass distance decreases
rather quickly, and edge transport is no longer observable, further supporting that at large
disorders the system enters the trivial regime.
In a second set of measurements, displayed in Fig. 5.13c, we study the propagation of the
edge mode populated using the shallow tweezer settings deep in the anomalous Floquet
regime (ω/(2π) = 7 kHz, marked by the blue cut in the phase diagram) as well as the
propagation of the edge mode populated using the deep tweezer settings in the Haldane
regime (ω/(2π) = 16 kHz, marked by the green cut in the phase diagram). The modulation
frequencies were chosen to ensure a realtively large 0-gap, while not being in the vicinity
of the phase transition between the anomalous- and the Haldane regime.
When populating the edge mode at ω/(2π) = 16 kHz using the deep tweezer settings, one
observes chiral transport in the absence of disorder. If disorder is applied, the center-of-mass
distance ∆ȳ starts to decrease, with no clear signal recognizable past V D/h = 4 kHz. The
green dashed line in the subfigure marks the smallest energy gap between the two bands
at these modulation parameters, which is at a comparable energy scale as the decrease in
edge transport. This supports the expectation, that for the Haldane system the topological
protection of the system breaks down when disorder closes the band gap.
In the anomalous Floquet regime, when probing the edge mode using the shallow tweezer
settings at ω/(2π) = 7 kHz, qualitatively similar behavior can be observed: A strong signal
is visible in the absence of disorder, with ∆ȳ decreasing if disorder is introduced. However,
the overall transport is significantly faster – note that the vertical scale is different for
data taken in the Haldane- and in the anomalous Floquet regime. It is also striking,
that, even though the minimal energy gap is comparable to the minimal energy gap at



94 Disorder-driven phase transitions in Floquet-engineered honeycomb lattices

ω/(2π) = 16 kHz, transport persists for significantly longer when disorder is introduced.
Previous work [79, 96, 109] indicates, that the relevant energy scale for anomalous Floquet
systems is determined by the width of the Floquet Brillouin zone, which in this case is
ω/(2π) = 7 kHz, being significantly larger than the minimal energy gap of the system.
This observation further supports work suggesting an enhanced robustness of anomalous
Floquet topological insulators (AFTIs) compared to conventional Chern insulators [96, 109].

5.5 Effect of disorder on the bulk propagation
While the previous sections of this chapter focused on the effect disorder has on the
propagation of edge modes, and on the phase diagram of our Floquet-modulated system,
in the following we will focus on the transport properties in the bulk, if the system is
subjected to disorder.
The transport properties of non-interacting bosons in an optical lattice are fundamentally
determined by the system’s band structure [237, 238]. Here, in the absence of disorder, the
band velocity vg(k) is determined by the gradient of the dispersion relation,

vg(k) =
1
ℏ
∂E(k)

∂k
. (5.7)

As discussed in Sec. 2.5.1, this behavior will be modified if disorder is introduced into the
system: Here, scattering events will lead to diffusive propagation, and weak localization will
reduce the propagation velocity even further. While Anderson localization is expected to
occur in any given infinitely sized non-interacting two-dimensional system for arbitrarily low
disorder, it is especially hard to observe in 2D systems: Here, the localization length can reach
scales on the order of the system size, making it hard to unambiguously observe localization.
We start our investigation in the Haldane regime, at ω/(2π) = 16 kHz. To probe bulk
transport here, we place atoms on a few lattice sites of our system, using the optical tweezer
at the shallow tweezer depth, ωs/(2π) = 1.3(1) kHz. Remaining atoms have been expelled
by reducing the potential of the crossed dipole trap briefly, with the sequence is identical to
the one presented in Fig. 5.1, with the exception of the DMD potential not being turned on.
First, we focus on the expansion in the absence of any disorder, with averaged absorption
pictures for t ∈ [0T , 20T , 40T , 60T , 80T , 100T , 120T ] being presented in Fig. 5.14a. At
t = 0T , the initial state released from the tweezer is displayed, populating a few lattice
sites. If the system is left to evolve, one sees the atoms spread out according to Eq. 5.7,
evolving into a hexagonal shape, which stays observable even for the longest observation
time, expanding over 25 µm ≈ 87a from the initial position.
Introducing disorder into the system alters the propagation drastically, as shonw in Fig. 5.14b
for V D/h = 0.46 kHz, and c for V D/h = 0.92 kHz: Here, only for the lower disorder value
and for the shortest evolution time t = 20T a slightly hexagonal shape is still observable.
For longer evolution times, the atoms spread out isotropically, with the transport for
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Figure 5.14 | Haldane bulk expansion in the presence of disorder. Atoms are released from the shallow
tweezer (ωs/(2π) = 1.3(1) kHz) into the lattie at ω/(2π) = 16 kHz, deep in the Haldane regime. Each
absorption picture is averaged over 39-40 experimental disorder realizations. Only data for chirality κ = 1
is shown, with data taken for κ = −1 looking identical. The evolution time of the system is increased from
top to bottom. Data is taken for a no disorder, b VD/h = 0.46 kHz, and c VD/h = 0.92 kHz. The scalebar in
the bottom left of each picture has length 10 µm. Note that the optical density is scaled logarithmically to
show data at high and low densities simultaneously.
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Figure 5.15 | Anomalous bulk expansion in the presence of disorder. Atoms are released from the
shallow tweezer into the lattie at ω/(2π) = 7 kHz, deep in the anomalous regime. Each absorption
picture is averaged over 39-40 experimental disorder realizations. Only data for chirality κ = 1 is shown,
with data taken for κ = −1 looking identical. The evolution time of the system is increased from top to
bottom. Data is taken for a no disorder, b VD/h = 0.23 kHz, and c VD/h = 0.46 kHz. The scalebar in the
bottom left of each picture has length 10 µm. Note that the optical density is scaled logarithmically to
show data at high and low density simultaneously.
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Figure 5.16 | Bulk expansion with in the Haldane- and anomalous regime. The radial width σr of a 2D
Gaussian fit to a cloud expanding in the bulk of the lattice (κ = 1) after release from the shallow tweezer.
a shows data taken atω/(2π) = 16 kHz in the Haldane regime, b shows data taken atω/(2π) = 7 kHz in
the anomalous Floquet regime. The uncertainty in the estimation of the radial width has been extracted
via a bootstrapping resampling method, with error bars hidden behind the data points. The widths are fit
to the absorption pictures averaged over 39-40 different experimental disorder realizations.

the larger disorder value in subfigure c being slower. Noticably, this system does not
appear to suffer from the atom loss observed in the edge state at the same modulation
parameters in Fig. 5.6, which is not yet fully understood. While the atom number in the
expansion in the absence of disorder is hard to quantify due to the large system size, no
drastic atom loss can be observed in the presence of disorder. Potentially, spectral noise
in the step potential projected by the DMD might drive transitions to higher-lying bands
of the system, so that an adjustment of the modulation scheme or of the lattice depth
might allow for the observation of the edge states for longer times. Alternatively, the
presence of disorder might have a stabilizing effect on the bulk, in analogy to the system
investigated in [239] in the presence of interactions. Additional data was taken at larger
disorder strengths up to V D/h = 2.77 kHz, but is not shown here, as no clear difference
to the data presented in subfigure c can be seen.

In the following, we repeat these measurement in the anomalous Floquet regime of our
system, at ω/(2π) = 7 kHz. In Fig. 5.15a, the expansion of a wavepacket in the absence
of disorder is shown. Here, the dispersion of the Floquet bands is significantly modified
compared to the static case, such that the observed expansion represents a star-shape.
Clearly visible is a dark spot in the center of the system, which is not propagating due
to the reduced band velocity, stemming from the flattened bands. For evolution times
t ≥ 100T , this pattern washes out, with the rays originating in the center no longer being
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observable. This might hint at the system dephasing or decohering, but these features
could potentially also be recovered by higher averaging of the data.

In Fig. 5.15b and c the evolution of a wavepacket is shown in the presence of disorder for
V D = 0.23 kHz and V D = 0.46 kHz, respectively. The disorder strengths displayed were
deliberately chosen lower here, as due to the flattened bands a larger impact of the disorder
on the transport is expected. The behavior is qualitatively similar to the behavior in the
Haldane regime: Only after t = 20T and for the lower disorder strength, some anisotropic
transport, following the star-shape observed in the clean system, can be observed. Apart
from that, the clouds appear to be rotationally symmetric, and spread out slowly, with
the transport velocity being lower for the larger disorder strength.

To more quantitatively study this behavior, we extract the width of the clouds by fitting
them with a radially symmetric 2D Gaussian,

OD(r) = A · e−(r−r0)2/(2σ2
r) (5.8)

with the results for σr displayed in Fig. 5.16. Here, the amplitude A and the center
position r0 of the Gaussian were treated as free parameters. In Fig. 5.16a, the widths in
the Haldane regime are shown for V D/h ∈ [0.46 kHz, 0.92 kHz, 1.39 kHz, 1.85 kHz, 2.77 kHz].
Uncertainties in the estimation of the width have been determined via bootstrapping, with
the error bars being hidden behind the data points. It is apparent, that at the lowest two
disorder strengths, the expansion occurs slightly faster compared to the curves for larger
disorder, which appear to collapse onto a single curve.

In the anomalous regime, similar behavior can be observed: Here, disorder strengths
V D/h ∈ [0.23 kHz, 0.46 kHz, 1.39 kHz, 2.77 kHz, 8.31 kHz] are shown, with the propagation
at larger disorder being measured due to the larger robustness of the edge mode. For the
lowest disorder, the cloud clearly expands slightly faster, while the propagation slows down
for larger values. The curves do not collapse onto a single curve as in the Haldane regime,
instead a decrease followed by an increase is visible. A minimum in the propagation appears
around V D/h = 1.39 kHz, where the disorder strength coincides with the width of the bands.

In all measurements however, it is clear that the system is not fully localized, with the
cloud further expanding even for the longest ovservation time, t = 120T , which equals
7.5 ms in the Haldane regime, and ≈ 17 ms in the anomalous regime. As no strong atoms
loss is visible even for the longest evolution times, the investigation at even longer times
might be insightful in future experiments.



CHAPTER 6

Conclusion and Outlook

This thesis investigates the properties of Floquet-modulated Bloch bands, both in the
presence and the absence of disorder, through real-space detection of the chiral edge states.
The periodic modulation of tunnel couplings enables the realization of different topological
regimes, with a primary focus on the Haldane regime, which constitutes a Chern insulator,
and on the anomalous Floquet regime, a genuine out-of-equilibrium phase.

The population of chiral edge states in this thesis was accomplished by utilizing an optical
tweezer, enabling the placement of a tightly confined wave packet in the lattice, in com-
bination with a digital micromirror device, projecting an adjacent potential step to serve
as a topological interface. Adjusting the precise parameters of this preparation protocol
allowed us to selectively populate the edge modes in three distinct topological regimes. To
probe the emergence of the edge state, the height of the potential step was varied, which
uncovered the relevant energy scales in the different regimes. This led to the observation
that the relevant energy scale in anomalous Floquet systems is tied to the modulation
frequency, as opposed to the lattice tunneling. Further investigation of the dependence
of the chiral transport velocity on the width of the potential step in the Haldane regime
revealed that the velocity is decreases with increasing interface widths, a result which is
in agreement with theoretical predictions [154–156].

To explore the effect of disorder on topological phases of matter, we implemented a setup
for generating high-resolution disorder potentials. In this setup, a diffuser is illuminated
with coherent light, and its Fourier plane is projected onto the atomic plane, yielding
a speckle pattern. We characterized the correlation length of the resulting pattern, and
developed a novel method for calibrating the disorder strength in situ, by performing
diffraction measurements on the atomic cloud, and by comparing our observation to
numerical simulations. We studied the effect of this disorder potential on the edge transport
in a Haldane system and observed disorder-induced velocity renormalization of edge-
mode propagation [235].

By exploiting the dependence of the edge mode population on the specific preparation
protocol, we were able to distinguish two distinct topological regimes, using the existence
of chiral transport as an observable, and to extract the location of the phase transition
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between the two regimes. After applying disorder to the system, we observed a disorder-
driven phase transition between these two topologically nontrivial phases, which is in good
agreement with theoretical predictions [109]. Furthermore, we studied the breakdown of
chiral transport in the presence of strong disorder, observing enhanced robustness of the
edge modes in the anomalous Floquet regime.
The disorder-driven phase transition between the anomalous Floquet and Haldane regime
offers a novel pathway for probing the physics emerging at the interface between Chern
insulators and genuine out-of-equilibrium systems. Locally introducing disorder into an
optical lattice system – e.g. by projecting disorder using a digital micromirror device –
might allow to selectively drive regions of the lattice into the anomalous Floquet phase.
The geometry of this interface can then be tailored, ranging from a straight boundary to
a quantum point contact. Such quantum point contacts are routinely used in condensed
matter systems to investigate the topological properties of materials, with a large number
of experiments investigating topological systems in the presence of interactions [240–248].
Further improvements on the experimental platform would enable us to populate the edge
mode of the system at multiple locations with a constant phase difference, or allow for the
splitting and recombination of edge modes. An interesting addition to the platform at this
point would be the implementation of an improved detection system described in [204], en-
abling us to study the propagation and dynamics of the edge mode with single-site resolution.
While for the experiments presented in this thesis the choice of tweezer trap frequency
allowed for some selectivity regarding which edge state will be populated, finer spectral
resolution would enable us to populate edge modes in a more controlled manner. In this
regard, it might be helpful to implement a cold-atom-elevator [233], in which an atom
reservoir with tunable potential energy offset with respect to the system under investigation
is separated from it by a wall potential with a small hole allowing for leakage of the
atoms into the edge mode of the system. By tuning the potential energy offset between
the two systems, the edge mode of the system under investigation can be populated in
an energy selective manner.
Building upon the single-particle systems investigated in this thesis, the incorporation of
many-body interactions represents the natural next step, paving the way to exploring the
rich landscape of strongly correlated topological phases of matter. One challenge here
is the lifetime, as periodically driven, interacting, closed systems will heat up to infinite
temperatures in the long-time limit [249, 250]. Previous work has investigated the relevant
timescales and limiting factors for this on our experimental platform [206], showing that a
tighter confinement of the system in z-direction together with an active stabilization of the
phases of the lattice beams could reduce the heating rates. Additionally, the engineering
of multi-tone drives might help to further suppress heating [251, 252].
The implementation of an optical flux lattice presents an alternative approach to prevent
Floquet heating while achieving high flux densities [253–255]. Although lattices of this kind
inherently generate highly non-uniform fields, a recent proposal suggests that supplementing
them with an additional scalar potential may enable the creation of topologically non-trivial



101

flat Bloch bands [256]. A key challenge to this approach, however, is the potential for
magnetic field noise to introduce non-uniform perturbations across the system. Investigating
the impact of such noise is crucial, particularly as the precise stabilization of magnetic
fields remains a significant experimental challenge.

Furthermore, introducing disorder into the topological Bloch bands of our platform enables
the investigation of exotic Floquet topological phases. Although the anomalous Floquet
systems realized in this work exhibit many properties of conventional Chern insulators,
such as quantized chiral edge transport, they also can host entirely novel phases. A prime
example is the Anomalous Floquet Anderson Insulator (AFAI), a phase characterized by a
fully localized bulk that coexists with robustly conductive edge states [66, 67]. A remarkable
feature of the AFAI phase is its predicted resilience not only to spatial disorder but also to
temporal noise [257, 258]. This exceptional stability suggests that its topological properties
might extend into interacting regimes, potentially opening new avenues for research on
topological many-body systems [239]. Significantly, theoretical work predicts the existence
of an AFAI phase in the specific modulation scheme utilized in this thesis [108].



Appendices

Appendix A: Independence of the results from the initial tweezer po-
sition

The measurements presented in Chapter 5 rely on an alignment of the optical tweezer
with respect to the hard-wall potential prior to data acquisition, as described in Sec. 5.1.
This optimization enables sufficient data collection for reliable disorder averaging while
maintaining reasonable measurement durations for a dataset. To ensure that our results are
not artifacts of this specific alignment procedure, we performed additional measurements
with reduced sampling density and fewer disorder realizations at multiple tweezer positions.
This appendix demonstrates that the observed phenomena remain consistent across different
initial preparation positions.

Before each experimental run, the position of the optical tweezer was aligned relative to
the potential step by varying the tweezer position perpendicular to the wall, finding the
maximum integrated absolute differential signal |ODκ=1 −ODκ=−1| after 50T in a region
along the edge. This optimization was performed separately for the shallow- and for the deep
tweezer settings: For the shallow tweezer settings (ωs = 1.3(1) kHz, Vs/h = 13.2 kHz) the
signal was optimized at ω/(2π) = 7 kHz, while for the deep tweezer settings (ωd = 2.0(1) kHz,
Vd/h = 2.8 kHz) the optimization was performed at ω/(2π) = 16 kHz.

In Fig. A.1 the measurements presented in Fig. 5.11 are repeated. Apart from the optimized
position, here data was also taken when releasing the atoms from the tweezer displaced by
±0.48 µm perpendicular to the hard wall potential. The data reveals excellent qualitative
and quantitative agreement of the results across the three positions. The disorder-induced
shift of the phase transition remains clearly observable regardless of initial position, and the
extracted transition frequencies are consistent within their error bars. This measurement
also exhibits the same divergence from the two-band Bott index calculation as observed in
Fig. 5.11, further emphasizing the influence of higher-lying bands for this shift.

Fig. A.2 presents measuremets of the edge transport in the strong-disorder regime, analogous
to the results presented in Fig. 5.13. Measurements were again performed at three different
tweezer positions: The optimized position as well as tweezer positions displaced by ±0.48 µm
perpendicular to the hard wall potential. For the deep tweezer settings, the position
closer to the hard-wall potential (labeled −0.48 µm) does not show any edge transport.
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Figure A.1 | Tracking the phase transition for different initial positions. Location of the phase transition
as a function of disorder, with data taken at three different tweezer positions perpendicular to the wall.
The location of the phase transition has been determined via a fit to the center-of-mass distance ∆ȳ after
50T for different amplitude modulation frequencies at a given disorder, analogous to Fig. 5.11. Each of
the data points in the fit is the average over 5 to 7 different disorder realizations. The horizontal error bars
indicate the fit error, while the vertical error bars represent the error on the disorder calibration. The gray
shading in the background encodes the Bott index B.

Analysis of individual experimental realizations reveals that atoms are placed directly
on the potential step at this position, where corrugations of the optical potential hinder
transport. The remaining measurements demonstrate behavior consistent with Fig. 5.13:
At ω/(2π) = 11.75 kHz, a fast decay of the edge transport is occurs for the deep tweezer
settings, while for the shallow tweezer settings the re-emergent behavior of the edge state
can be observed. For the results at ω/(2π) = 7 kHz and 16 kHz, the transport decays with
increasing disorder potential strength V D, with the edge transport in the Anomalous Floquet
regime again staying robust for longer compared to the transport in the Haldane regime.

These measurements demonstrate the our experimental results are robust against variations
in the precise preparation protocol, and underline that the observed disorder-driven phase
transitions are a robust feature of the underlying system. While the initial alignment of
the tweezer position is helpful for optimizing the strength of the chiral signal, it is not
essential for the observation of the results presented in this thesis.
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Figure A.2 | Effect of large potential disorder for different initial positions. Center-of-mass distance ∆ȳ

measured after 50T as a function of disorder strength atω/(2π) = 11.75 kHz (top), 7 kHz (blue) as well as
16 kHz (green). Error bars on ∆ȳ were extracted via bootstrapping, while horizontal error bars indicate
the uncertainty in disorder calibration. At 11.75 kHz was collected using both shallow and deep tweezer
settings, while measurements at 7 kHz used only the shallow configuration, and those at 16 kHz only the
deep tweezer settings. Data was taken at three initial tweezer positions perpendicular to the wall, with
0 µm denoting the optimized position where data is typically collected. Each data point represents an
average over 16-17 different disorder realizations. The vertical dashed lines mark the minimal energy gap
of the system at each modulation frequency. Note that the data for 7 kHz has been plotted on a separate
axis marked on the right due to its much larger velocity.
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