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Introductory summary 

Introductory summary  

1 Background 

1.1 Cardiometabolic risk factors and DNA methylation patterns 

Cardiometabolic diseases (CMDs) comprise a spectrum of interconnected dis-

orders, including metabolic conditions like obesity and T2D, as well as cardio-

vascular complications such as ischemic heart disease and heart failure. Well-

established risk factors such as age, family history, obesity, hypertension, type 2 

diabetes (T2D), dyslipidaemia, and smoking play a crucial role in the onset and 

progression of CMDs. Additionally, non-cardiac conditions such as liver disease 

and chronic kidney disease (CKD) can worsen the disease severity [1, 2].  

Understanding the molecular mechanisms underlying CMDs remains a challenge 

despite their growing recognition as a major public health concern [3]. Recent 

studies highlight epigenetic modifications as a potential link between environmen-

tal exposures and CMD risk, as they influence gene expression without changing 

the DNA sequence [4]. Among these modifications, DNA methylation is the most 

thoroughly investigated, attracting significant attention for its involvement in CMD 

development through pathways such as inflammation, vascular dysfunction, and 

insulin resistance [5-8].  

Epigenome-wide association studies (EWASs) are used to discover the relation-

ship between DNA methylation and cardiometabolic traits, helping uncover the 

molecular mechanisms behind CMDs. This understanding can improve CMD di-

agnostics, facilitate personalized medicine, and support the development of tar-

geted therapies. 
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1.2 Smoking and DNA methylation/hydroxymethylation 

Smoking, a major cardiometabolic risk factor, remains widespread globally and 

is linked to numerous adverse health effects [9]. DNA methylation is thought to 

mediate the impact of tobacco exposure by modifying transcriptional activity, with 

research showing significant methylation changes in smokers [10-12] and in off-

spring exposed to maternal smoking during pregnancy [13]. However, the bisul-

fite (BS) transformation approach, frequently employed for identifying DNA meth-

ylation, is unable to differentiate between 5-methylcytosine (5mC) and 5-hy-

droxymethylcytosine (5hmC), resulting in most studies reporting them together. 

The impact of smoking on 5hmC, a key intermediate in the demethylation process 

[14], remains largely unexplored. Due to its presence in enhancers, promoters 

and transcriptional regulatory elements, 5hmC plays a vital role in gene regulation 

[15]. Unlike 5mC, which is often associated with gene repression, 5hmC can pre-

vent transcriptional repressor binding, counteracting 5mC’s inhibitory effects [16]. 

The combined use of bisulfite (BS) and oxidative bisulfite (oxBS) treatment ena-

bles the separate detection of true 5mC and 5hmC signals [17]. Distinguishing 

these modifications is crucial for understanding the molecular mechanisms be-

hind smoking-related epigenetic changes. 

1.3 Type 2 diabetes and DNA methylation 

The global epidemic of obesity and T2D, largely driven by poor dietary habits and 

physical inactivity, has significantly contributed to the growing burden of CMDs 

[18]. T2D, marked by chronic hyperglycemia, has been associated with altera-

tions in DNA methylation levels, which may impact transcriptional activity [19, 20]. 

While cross-sectional studies have identified methylation signatures linked to 

T2D in various tissues, such as blood and pancreatic islets [21-24], the causal 
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and temporal relationships remain poorly understood [25]. Methylation changes 

may either play a causal role in disease development or act as associative bi-

omarkers [26]. Given the dynamic nature of glycemic traits before T2D onset, it 

is crucial to comprehend how methylation patterns progress to prediabetes and 

T2D from normal glucose tolerance (NGT) status. Large-scale longitudinal stud-

ies are necessary to investigate these associations across multiple time points. 

1.4 Aims of this study 

This thesis explores DNA methylation-based biomarkers for cardiometabolic-re-

lated traits, specifically smoking and T2D, and highlights the potential of epige-

netics to revolutionize the understanding and management of cardiometabolic 

diseases. Specifically, this thesis had two main objectives: 

(1) Explore how smoking influences DNA methylation patterns by distinguishing 

5mC from 5hmC modifications. 

(2) Provide a deeper understanding of methylation dynamics in the progression 

from normoglycemia to prediabetes and T2D by examining DNA methylation 

changes over time. 

2 Methods  

2.1 Study population 

2.1.1 KORA Fit 

The Cooperative Health Research in the Region of Augsburg (KORA) Fit cohort, 

a follow-up examination carried out from 2018 to 2019, extended the four foun-

dational cohorts (S1, S2, S3, and S4). Individuals born between 1945 and 1964 
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who agreed to recontact were requested for a follow-up assessment, with 3,059 

individuals participating. Comprehensive details about this study have been pre-

viously published [27]. For the analysis, 1,717 participants with DNA methylation 

data who passed quality control were included. To specifically investigate meth-

ylation and hydroxymethylation, a segment of 563 individuals was chosen, con-

sisting of individuals who took part in the initial S4 survey as well as the subse-

quent KORA Fit assessment. 

2.1.2 KORA F4/FF4 

The KORA F4 and FF4 studies serve as follow-ups to the KORA S4 study. Com-

prehensive details regarding the design and measurements of the KORA cohort 

have been previously published [27]. The examination comprised 3,501 data 

points (n=2,556) throughout the KORA F4 (n=1,696) and FF4 (n=1,805), all with 

methylation measurements collected at least once during two time points. Among 

those individuals, 945 individuals had methylation signatures examined at two 

visits. 

2.2 Exposure assessment 

2.2.1 Smoking status measurement 

Smoking status was categorized into three categories: current, former, and non-

smokers. Individuals with no history of smoking were classified as non-smokers, 

whereas those who had smoked in the past but were not smoking during the 

interview period were categorized as former smokers. Participants who reported 

smoking regularly or occasionally (one cigarette per day or fewer) were catego-

rized as current smokers.  
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2.2.2 T2D status measurement 

Individuals with known T2D were identified through self-report, which was subse-

quently verified by the primary care physician or through an evaluation of medical 

records. Participants without a known diagnosis of T2D performed a 75 g oral 

glucose tolerance test (OGTT) after fasting for at least eight hours. NGT, predia-

betes, and the diagnosis of newly identified T2D was established based on the 

1999/2006 WHO criteria [28]. Participants with either a new diagnosis of T2D or 

a prior diagnosis were categorized as having T2D. Fasting plasma glucose 

(FPG), hemoglobin A1c (HbA1c), HOMA-B (beta-cell function), and HOMA-IR 

(insulin resistance) were measured as previously described [29]. 

2.3 Outcome assessment 

2.3.1 DNA methylation/hydroxymethylation in KORA Fit study 

In the KORA Fit study, after DNA extraction, BS (5mC+5hmC) and oxBS (5mC) 

treatments were used to differentiate between 5mC and 5hmC. Methylation was 

quantified using the Illumina EPIC BeadChip and analyzed with GenomeStudio 

software. Additional quality control and preprocessing were conducted [30], pri-

marily following the CPACOR pipeline. Quality control involved excluding low-

quality samples, sex-mismatched probes, and those influenced by single nucle-

otide polymorphisms (SNPs) or cross-reactivity. For combined 5mC+5hmC and 

actual 5mC methylation, 1,717 individuals and 734,349 CpG sites were left for 

the statistical analysis. 5hmC signals at base-pair level precision were deter-

mined by removing the oxBS (5mC) signal from the BS (5mC+5hmC) signal for 

every CpG sites. As to the subsequent hydroxymethylation analysis, the CpG 
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sites and individuals common to both the total 5mC+5hmC and true 5mC meth-

ylation groups were used, leading to 563 individuals and 756,737 CpG sites. 

2.3.2 DNA methylation in KORA F4/FF4 

In this prospective study, we examined data from the KORA F4 and FF4 cohorts, 

spanning a period of seven years. Whole blood DNA methylation levels were 

measured by the Illumina 450K Infinium Methylation BeadChip for the KORA F4 

and the Infinium MethylationEPIC BeadChip for the KORA FF4. Quality control 

procedures were carried out according to the CPACOR preprocessing pipeline, 

utilizing the minfi2 package [30]. Probe intensities were normalized through quan-

tile normalization for both cohorts. After quality control, 414,872 CpG sites re-

mained in the KORA F4 dataset, while 806,228 CpG sites were retained in the 

KORA FF4 dataset, with 383,057 CpG sites overlapping between the two. After 

excluding probes from sex chromosomes, 374,054 CpG candidates were kept.  

2.4 Statistical methods 

2.4.1 Smoking effects on DNA methylation/hydroxymethylation 

EWAS analyses were conducted using multivariate linear regression, with smok-

ing status (current, former, non-smokers) as the predictor and methylation levels 

as the dependent variable. The analysis was additionally adjusted for several co-

variates, consisting of age, sex, body mass index (BMI), leukocyte proportions 

(calculated using the Houseman algorithm), and technical effects captured by 

principal components. Differentially methylated positions (DMPs) were identified 

after applying false discovery rate (FDR) multiple correction (p < 0.05), while an 

indicating threshold of p < 1 × 10⁻⁵ was used for the hydroxymethylation (5hmC) 

analyses. 
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2.4.2 T2D effects on DNA methylation 

Linear mixed-effects models by adding random intercepts were employed to in-

vestigate the relationship between diabetes status (NGT, prediabetes, T2D) and 

DNA methylation. These models were adjusted for factors including follow-up 

time, baseline age, sex, BMI, smoking status, estimated cell types, and technical 

effects. Additionally, we applied the same model to explore the link between DNA 

methylation and four glycemic/insulin-related variables (FPG, HbA1c, HOMA-B, 

and HOMA-IR). Associations were regarded as significant if the p_FDR value 

was <0.05. To assess the variation in the rate of methylation alteration between 

diabetes categories, we also investigated the interaction impacts between diabe-

tes status and follow-up duration. Further, we investigated CpG sites related to 

the persistence of prediabetes or T2D, in addition to those linked to the transition 

from NGT to prediabetes or T2D. Lastly, we evaluated how the CpG sites that 

were identified correlate with the levels of gene expression. 

3 Results 

3.1 Smoking-induced DNA hydroxymethylation signature is less 

pronounced than true DNA methylation  

We investigated DNA methylation changes in individuals designated as current, 

former, and non-smokers. We first investigated the relationship between total 

5mC+5hmC methylation signals and smoking status, detecting 38,575 and 82 

differentially methylated positions (DMPs) related to current and former smoking, 

respectively. A significant number of these DMPs have been previously reported, 

such as those in the aryl hydrocarbon receptor repressor (AHRR) gene, along-

side some novel findings. Next, we employed sequential BS and oxBS treatments 
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to differentiate 5hmC from 5mC level. This more detailed analysis revealed 33 

DMPs related with current smoking; and 1 DMPs linked to former smoking in the 

5mC group, respectively, showing strong consistency in the trend of effects and 

substantial convergence in loci among the 5mC+5hmC and 5mC methylation cat-

egories. Additionally, we identified 8 and 2 DMPs associated with current and 

former smoking in the 5hmC group, using a suggestive threshold. A notable ex-

ample is cg16972043, which is labeled as the glutamate pyruvate transaminase 

2 (GPT2) gene. 

3.2 Longitudinal association between DNA methylation and type 2 diabetes  

This study leveraged prospective data with longitudinal measurements to inves-

tigate the relationship between diabetes status and DNA methylation. We ana-

lyzed 3,501 data points from 2,556 individuals employing multivariate linear 

mixed-effects models with random intercepts, detecting 64 candidate CpG sites 

linked to T2D. Among these, 49 loci, including the thioredoxin-interacting protein 

(TXNIP) and ATP-binding cassette sub-family G member 1 (ABCG1) genes, 

showed coherent trends in direction in our longitudinal analysis, corroborating 

previous cross-sectional findings. Notably, we discovered 15 previously unchar-

acterized CpG sites within 10 distinct genes. 

Among the 64 T2D-related CpG candidates, eight exhibited differing annual 

methylation alteration patterns between the NGT and T2D categories, while 

seven associated with transition from NGT to prediabetes or T2D, encompassing 

sites in the mannosidase alpha class 2a member 2 (MAN2A2) and carnitine pal-

mitoyltransferase 1A (CPT1A) genes. Prospective analysis also identified rela-

tionships between methylation and FPG at 128 CpG sites, HbA1c at 41 CpG sites, 

and HOMA-IR at CpG 57 sites. Furthermore, 104 significant associations were 
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detected between T2D-related CpG sites and their respective gene expression 

levels, including 40 distinct CpG candidates and 96 distinct gene transcripts. 

4 Discussion 

4.1 Smoking-induced DNA hydroxymethylation signature is less 

pronounced than true DNA methylation 

We explored various DNA methylation adjustments in individuals designated as 

current, former, and non-smokers. This represents, based on available evidence, 

the pioneering epigenome-wide investigation of smoking's impacts on blood leu-

kocyte DNA methylation, distinguishing between 5mC and 5hmC modifications, 

particularly applying the Illumina EPIC BeadChip. The AHRR gene repeatedly 

emerged as the highly prominently impacted candidate in smoking-related stud-

ies [31, 32], a finding we observed in our cohort as well. In former smokers, while 

most differentially methylated CpG sites reverted to levels similar to those of non-

smokers after quitting smoking, a fraction showed persistent methylation differ-

ences even after smoking cessation, though with reduced effect sizes. These 

specific CpG sites may serve as reliable biomarkers, providing insights into a 

person's smoking history and indicating long-term wellness impacts [33, 34].  

In this study, oxBS treatment enabled the precise quantification of 5mC. All 5mC 

DMPs significantly related with current smoking were also detected in the tradi-

tional 5mC+5hmC category, including well-known loci AHRR, RARA, and F2RL3, 

confirming their strong association with smoking. Additionally, we observed a 

high level of agreement in the trends of effects between the 5mC+5hmC and 5mC 

categories in current smokers, along with many CpG sites exhibiting hypometh-

ylation. The DNA hydroxymethylation pattern associated with smoke exposure 

15



Introductory summary 

was less evident compared to that of true DNA methylation, likely due to its lower 

abundance in blood [35, 36]. One notable finding was the identification of the 

hydroxymethylated CpG site cg16972043, labelled as GPT2, which showed a 

suggestive association with current smoking but did not pass the FDR multiple 

correction. Recent studies have underscored GPT2's involvement in modulating 

smoking-induced metabolic changes and harm in respiratory epithelial cells, es-

pecially via lipid production [37]. GPT2 has also been associated with the onset 

of chronic obstructive pulmonary disease (COPD) in leukocytes, highlighting its 

significance in pulmonary disorders. The discovery of these innovative smoking-

related hydroxymethylated CpG candidates paves the way for further exploration 

in subsequent studies. 

4.2 Longitudinal association between DNA methylation and type 2 diabetes 

In our study, we investigated differentially methylated loci associated with T2D 

and shifts in diabetes status using a prospective method. We identified 64 signif-

icant CpG sites that distinguished participants with T2D from those with NGT, 

spanning 49 unique genomic loci. Notably, TXNIP stood out as the most signifi-

cant gene, aligning with previous research because of its involvement in regulat-

ing pancreatic β-cells and its potential as a therapeutic target for diabetes [38, 

39]. Given that disorders in glucose metabolism often precede the diagnosis of 

diabetes, we found that cg19693031 (TXNIP) and cg06500161 (ABCG1) were 

concurrently linked to FPG, HbA1c, HOMA-IR, and T2D. This suggests that these 

loci may function as valuable biomarkers for glycaemic regulation and diabetes 

risk [40].  
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DNA methylation is a well-established epigenetic mechanism that is influenced 

by environmental factors. Various exposures, such as chemical agents and met-

abolic disorders, can induce global or site-specific methylation alterations, which 

in turn impact gene expression and transcription factor binding. In our study, we 

observed that a hypomethylated CpG candidate in TXNIP exhibited a faster de-

crease in participants with T2D in contrast to those with NGT. This resulted in a 

greater discrepancy in methylation over time, potentially leading to increased 

TXNIP expression [41, 42]. These dynamic methylation patterns underscore their 

sensitivity to diabetes progression and highlight their potential as targets for ther-

apeutic intervention. 

In our following analysis, we discovered seven CpG sites associated with the 

progression from NGT to prediabetes and T2D, consisting of cg11183227 la-

belled to MAN2A2. These sites hold potential as valuable biomarkers for moni-

toring disease progression. By incorporating gene expression measurement, 104 

associations were discovered between unique 40 CpG candidates and 96 gene 

transcripts. Of note, methylation at cg06500161 labelled to ABCG1 exhibited an 

inverse relationship with its expression level, indicating that hypomethylation at 

this site may play a role in the progression of T2D and related conditions. 

4.3 Strengths and limitations 

The present study offers several strengths. We successfully distinguished be-

tween true 5mC and 5hmC levels through combined BS and oxBS treatments, 

particularly when coupled with the Infinium MethylationEPIC BeadChip. Further-

more, our prospective analysis, covering a span of seven years, integrated both 

DNA methylation signatures and diabetes status, measured via OGTT in partici-

pants without a prior diabetes diagnosis. However, there are limitations to our 
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study. The lack of a validation cohort underscores the necessity for future re-

search to confirm these findings in separate populations. Furthermore, since DNA 

was sourced from blood, tissue-specific differences in methylation patterns may 

not have been completely captured. 

5 Conclusion 

Firstly, by differentiating between 5mC and 5hmC levels in whole blood DNA 

samples, we uncovered different smoking-related DNA methylation changes. Our 

findings not only validated previously identified smoking-associated CpG candi-

dates but also identified many novel signatures linked to smoking. While hy-

droxymethylation was less prominently linked to smoking in whole blood DNA, 

suggestive CpG candidates warrant further investigation in future studies. 

Additionally, our research provided valuable insights into the relationship be-

tween DNA methylation and T2D via a prospective method with longitudinal 

measures. We discovered novel CpG sites linked to T2D and observed differing 

rates of methylation alterations at candidates across various diabetes status cat-

egories. This study also highlighted DNA methylation’s potential as a biomarker 

for tracking diabetes advancement and illustrated its connection to gene expres-

sion levels. 

In conclusion, this thesis explored DNA methylation-based biomarkers for cardi-

ometabolic traits—smoking and T2D—underscoring the potential of DNA meth-

ylation in reshaping the approach to cardiometabolic diseases and advancing 

personalized healthcare.
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Abstract: Despite extensive research on 5-methylcytosine (5mC) in relation to smoking, there has
been limited exploration into the interaction between smoking and 5-hydroxymethylcytosine (5hmC).
In this study, total DNA methylation (5mC+5hmC), true DNA methylation (5mC) and hydroxymethy-
lation (5hmC) levels were profiled utilizing conventional bisulphite (BS) and oxidative bisulphite
(oxBS) treatment, measured with the Illumina Infinium Methylation EPIC BeadChip. An epigenome-
wide association study (EWAS) of 5mC+5hmC methylation revealed a total of 38,575 differentially
methylated positions (DMPs) and 2023 differentially methylated regions (DMRs) associated with
current smoking, along with 82 DMPs and 76 DMRs associated with former smoking (FDR-adjusted
p < 0.05). Additionally, a focused examination of 5mC identified 33 DMPs linked to current smoking
and 1 DMP associated with former smoking (FDR-adjusted p < 0.05). In the 5hmC category, eight
DMPs related to current smoking and two DMPs tied to former smoking were identified, each meet-
ing a suggestive threshold (p < 1 × 10−5). The substantial number of recognized DMPs, including
5mC+5hmC (7069/38,575, 2/82), 5mC (0/33, 1/1), and 5hmC (2/8, 0/2), have not been previously
reported. Our findings corroborated previously established methylation positions and revealed novel
candidates linked to tobacco smoking. Moreover, the identification of hydroxymethylated CpG sites
with suggestive links provides avenues for future research.

Keywords: smoking; DNA methylation; hydroxymethylation; differentially methylated positions (DMPs);
differentially methylated regions (DMRs); Illumina Infinium Methylation EPIC BeadChip

1. Introduction

Although tobacco smoking is widely recognized as a harmful behaviour with signifi-
cant impacts on human health, smoking or exposure to smoke continues to be prevalent
worldwide. Tobacco smoking is a risk factor for and is a frequent cause of many ad-
verse health consequences, such as chronic obstructive pulmonary disease (COPD) [1],
cardiovascular diseases [2], asthma [3] and various forms of cancer, in particular lung
cancer [4,5]. Moreover, smoking status appears to contribute to a poor prognosis in COVID-
19 patients [6]. While the precise pathogenic mechanisms remain under investigation, it
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is widely acknowledged that the induction of oxidative stress through the generation of
excessive reactive oxygen species (ROS) by harmful chemicals is a key molecular event that
predisposes individuals to inflammation, senescence and smoking-related illnesses [7,8].

Epigenetic mechanisms, specifically alterations in DNA methylation, have been sug-
gested to moderate the impact of tobacco smoking, leading to changes in transcriptional
activity and contributing to smoking-related diseases [9]. With the update of DNA methy-
lation arrays, the impact of smoking on DNA 5-methylcytosine (5mC) methylation has
been thoroughly investigated in blood cells from adults, revealing significant disparities
between smokers and non-smokers [10,11], which can be even more conspicuous in specific
tissues like vascular endothelial cells [12], and vulnerable groups like cancer patients [4].
The impact of tobacco smoking on DNA methylation is also prominent in the blood of new-
borns whose mothers smoked during pregnancy [13]. Previous studies also demonstrated
that the link between cigarette smoking and methylation is dynamic, showing ongoing
fluctuations in methylation levels even decades after smoking cessation. However, only
a few studies have delved into the effect of smoking on DNA 5-hydroxymethylcytosine
(5hmC) methylation, an intermediate oxidized form of 5mC involved in the active demethy-
lation process. During active demethylation process, the ten-eleven translocation (TET)
enzymes play a crucial role by oxidizing 5mC into 5hmC, further converting 5hmC to
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Subsequently, the thymine DNA
glycosylase (TDG)-dependent base excision repair (BER) transforms 5fC and 5caC into
an unmethylated cytosine [14,15]. Due to their low abundance in the genome, 5fC and
5caC demonstrate limited stability [16]. In contrast to 5fC and 5caC, 5hmC is relatively
stable and presents tissue specificity [17]. Given its enrichment in promoters, enhancers
and transcriptional regulatory elements, 5hmC is intimately associated with the regulation
of gene expression [18].

Recent studies have highlighted that smoking-induced oxidative stress can initiate
the DNA demethylation pathway [19]. Additionally, 5hmC has emerged as an informative
biomarker in mammalian development and diseases [20,21]. However, the traditional
bisulphite (BS) conversion method, commonly used for detecting DNA methylation, cannot
distinguish between 5mC and 5hmC [22]. As a result, most of the existing literature on
DNA methylation reports 5mC and 5hmC signals jointly. Moreover, the Infinium Human-
Methylation450 BeadChip has been predominantly utilized to identify smoking-associated
differentially methylated positions (DMPs). In this study, the oxidative bisulphite (oxBS)
treatment was employed to measure true 5mC and 5hmC signals separately (Figure 1A).
We hypothesized that smoking-induced differential DNA methylation could potentially
influence not only 5mC but also 5hmC patterns in leucocytes from blood samples. Initially,
we examined total 5mC+5hmC methylation levels in 1717 participants classified as current,
former and non-smokers from the Cooperative Health Research in the Region of Augsburg
(KORA) Fit population-based cohort (Figure 1B). We employed the latest HumanMethy-
lation EPIC BeadChip, providing expanded CpG site coverage compared to prior arrays
(over 850,000 CpG sites). Subsequently, we evaluated 5mC and 5hmC methylation levels
separately in a subset of 563 individuals.
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Figure 1. (A) Schematic overview depicting bisulphite conversion (BS) and oxidative BS. (B) Illustra-
tion of the study design.

2. Materials and Methods
2.1. Study Population

The analysis was based on data from the KORA Fit study, a follow-up study conducted
between early 2018 and mid-2019, building upon the 4 cross-sectional baseline surveys
(KORA S1, S2, S3 and S4 cohorts). All living participants of the KORA cohorts born
between 1945 and 1964 who consented to be recontacted were invited for a new examination
(n = 3059 or 64.4% of all eligible participants). Exhaustive information about this study
has been described previously [23]. In total, 1760 participants with available data on DNA
methylation were included in the analysis. Specifically, for the investigation into true
methylation and hydroxymethylation, a subgroup comprising 600 participants from the
KORA Fit study was considered. This subgroup included individuals who participated in
both the S4 baseline survey and the KORA Fit examination. Individuals who self-declared
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as either regular or occasional smokers (defined as 1 cigarette per day or less) at the time
of the interview were classified as current smokers. Those who had never smoked were
categorized as non-smokers, while individuals who had previously smoked but were not
currently smoking at the time of the interview were classified as former smokers.

2.2. DNA Extraction and DNA Methylation Quantification

DNA extraction followed standard procedures. For the total 5mC+5hmC methylation
processing, genomic DNA (750 ng) from 1160 individuals underwent BS conversion using
the EZ-96 DNA Methylation Kit (Zymo Research, Orange, CA, USA). Meanwhile, genomic
DNA (1500 ng) from 600 individuals was split (750 ng each), and separate aliquots of each
DNA sample were processed in parallel. One aliquot underwent BS treatment to generate
total methylation (5mC+5hmC) signals, while the other aliquot underwent oxidation and
then BS treatment to generate true methylation (5mC) signals, both using the TrueMethyl
oxBS Module (Tecan Genomics, Redwood City, CA, USA). During BS treatment, 5mC
and 5hmC are preserved as cytosines, whereas unmethylated cytosines are deaminated
to uracil. Consequently, DNA methylation measured by the BS treatment reflects an
amalgamation of 5mC and 5hmC. Upon oxidation, 5mC remains as 5mC, while 5hmC is
converted into 5fC. The 5fC is susceptible to BS treatment, and it is deaminated into uracil
(equivalent to an unmethylated cytosine), while 5mC is preserved as a cytosine upon BS
treatment. Thus, oxBS conversion enables the specific measurement of nucleotide-level
5mC [24,25]. Subsequent methylation analysis for all samples was conducted on an Illumina
(San Diego, CA, USA) iScan platform using the Infinium Methylation EPIC BeadChip v1,
following standard protocols provided by Illumina. Initial quality control procedures of
assay performance and generation of methylation data export files were carried out using
GenomeStudio software version 2011.1 with Methylation Module version 1.9.0.

2.3. Preprocessing and Normalization

Raw intensities were imported, and further quality control and preprocessing were
performed in R software (R v4.3.3), with the minfi package v1.48.0, primarily following the
CPACOR pipeline [26]. Total methylation (5mC+5hmC) and true methylation (5mC) were
processed separately. Samples with defective chips and over 20% missing values, along
with sex-mismatching samples, were removed. Probes with detection p-values great than
0.01 in more than 5% of samples were set to missing. Furthermore, sex chromosomes and
cross-reactive and SNP-related probes were removed. Subsequently, quantile normalization
(QN) was independently performed on the signal intensities, which were categorized into
the 6 probe types: type II red, type II green, type I green unmethylated, type I green
methylated, type I red unmethylated, type I red methylated. β-values were then calculated
by initiating with the BS signal, representing the total methylation (5mC+5hmC) signal at
each CpG site. Total methylation β-values were computed as the ratio of the methylated
signal over the sum of the methylated and unmethylated signals [27]. For the analysis
of total 5mC+5hmC methylation, 1717 samples and 734,349 probes were retained for the
final analysis. Similarly, 5mC β-values were calculated using the oxBS signal. Lastly, the
level of 5hmC at a single-nucleotide resolution was estimated by subtracting the oxBS
measure (5mC) from the BS measure (5mC+5hmC) at each probe. Specifically, for the
hydroxymethylation, only probes and samples that were common between the 5mC+5hmC
and 5mC datasets were kept, resulting in 563 samples and 756,737 probes. Additionally,
subtracting 5mC from 5mC+5hmC is known to introduce negative β-values, so any negative
β-values were set to a value close to zero (1 × 10−7).

2.4. Differential Methylation Analysis

An Epigenome-wide association study (EWAS) was carried out using a multivariate
linear regression model, where smoking status (current, former, non-smokers) served as
the exposure variable, and untransformed methylation β-values (ranging from 0 to 1) were
used as the outcome. Recognizing that methylation levels in blood can be significantly
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influenced by leukocyte composition, the houseman algorithm was employed to estimate
white blood cell type proportions [28]. Additionally, principal components (PCs) of all
non-negative control probes were calculated to account for technical effects. All epigenome-
wide analyses were adjusted for the age at blood collection, sex, BMI, six estimated cell type
proportions (monocytes, granulocytes, natural killer cells, B cells, CD4T cells and CD8T
cells) and the first 5 principal components (PCs). To assess the epigenome-wide distribution
of p values compared to the expected null distribution of p values, we calculated the
inflation factor λ and generated quantile–quantile (QQ) plots. The inflation factor was
defined as the ratio of the median of the observed log10-transformed p values to the
median of the expected log10-transformed p values. We also applied bacon correction
to mitigate bias and inflation of the test statistic. A probe was considered significantly
differentially methylated with a false discovery rate (FDR)-adjusted (Benjamini–Hochberg)
p value less than 0.05. Given the anticipated lower range of 5hmC methylation values,
a less stringent suggestive threshold of p < 1 × 10−5 was employed when identifying
5hmC-associated differential methylation. EWAS Catalog (a database of epigenome-wide
association studies) [29] was used to compare and select the novel smoking-associated CpG
candidates. DMRs represent genomic regions with consistently different DNA methylations
across multiple adjacent CpG sites. In addition to the single-site DMP analysis, we applied
the comb-p function using the Enmix package (version 1.38.01), which provides quality
control, analysis and visualization tools for Illumina DNA methylation BeadChip, to detect
DMRs among current, former and non-smokers. In this analysis, regions were defined as
sets of all probes containing ≥3 DMPs within 1000 base pairs of another probe and having
false discovery rate (FDR)-adjusted p values less than 0.05.

2.5. Gene Enrichment Analyses

To gain insights into potential smoking-relevant biological processes, gene pathway
analysis was performed in the context of differentially methylated CpG sites. This analysis
utilized the GOmeth function from the missMethyl package (version 1.38.0), which accounts
for the number of CpG sites per gene on the 450K/EPIC array and multi-gene-annotated
CpGs. Independent pathways with an FDR p < 0.05 were considered significantly associated
with smoking. Gene annotation was performed using the HumanMethylation EPIC probe
annotation file.

3. Results
3.1. Characteristics of the Study Population

A total of 1717 participants were included in our study for further analyses after quality
control, consisting of 217 current smokers, 719 former smokers and 781 non-smokers. The
cohort characteristics are described in Table 1. Current smokers were younger and exhibited
a lower prevalence of hypertension compared to non-smokers. Former smokers had a larger
proportion of males and a higher BMI level. Both current and former smokers displayed an
increased daily alcohol consumption, lower HDL cholesterol levels and higher triglycerides
levels. All groups were comparable in terms of physical activity, diabetes status, HOMA-IR
and HOMA-Beta levels.

Table 1. Characteristics of the study population.

Characteristics All Participants Current Smokers Former Smokers Non-Smokers

1717 217 719 781
Age (years) 63 (59, 68) 61 (57, 65) *** 64 (59, 68) 63 (59, 68)

Male (%) 814 (46.3%) 105 (47.3%) 393 (53.5%) ### 316 (39.4%)
BMI (kg/m2) 27.4 (24.5, 30.8) 26.2 (23.7, 30) 27.6 (24.8, 31.3) # 27.3 (24.5, 30.3)

Physical activity 1268 (72.1%) 159 (71.6%) 535 (72.8%) 574 (71.6%)
Alcohol intake (g/day) 6.6 (0, 22.9) 8.6 (0, 30) * 8.6 (0.2, 23.8) ## 5.7 (0, 20)
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Table 1. Cont.

Characteristics All Participants Current Smokers Former Smokers Non-Smokers

Hypertension 855 (48.7%) 82 (36.9%) * 395 (53.8%) # 378 (47.2%)
Diabetes mellitus 135 (7.7%) 14 (6.3%) 65 (8.9%) 56 (7%)

HDL-cholesterol (mg/dL) 61.7 (51.1, 75) 58.5 (49, 69.9) *** 61.2 (50, 75) # 62.8 (53, 77.2)
LDL-cholesterol (mg/dL) 122.8 (99.1, 146.5) 124.7 (99.9, 147.4) 119.6 (95.6, 144) ## 126.2 (103, 147.8)
Total cholesterol (mg/dL) 212.4 (185.1, 238.3) 211.9 (184.4, 234.7) 208.9 (181.8, 236.1) ## 215.8 (189.6, 241.9)

Triglycerides (mg/dL) 106 (77.7, 145.6) 109.3 (85.4, 153.5) * 107.7 (77.9, 149.2) # 103 (76.2, 139)
Fasting glucose (mg/dL) 98 (92, 107) 96 (91, 104) 100 (93, 109) ### 97 (92, 105)

HOMA-IR 2.3 (1.5, 3.5) 2.1 (1.4, 3) 2.3 (1.5, 3.6) 2.3 (1.5, 3.4)
HOMA-Beta 97.8 (71.2, 132) 93.1 (68.7, 124.2) 97.1 (68.9, 132.3) 101 (73.9, 132.7)
HbA1c (%) 5.5 (5.3, 5.8) 5.6 (5.3, 5.8) * 5.5 (5.3, 5.8) 5.5 (5.2, 5.8)

Basic characterization of individuals in our cohort. Continuous variables are presented as median (25th, 75th),
while categorical variables are expressed as n (%). Statistical analyses employed the Kruskal–Wallis Test for
continuous variables and the Chi-square test for categorical variables. Significance levels for comparisons between
current and non-smokers are denoted as * p < 0.05, *** p < 0.001. For comparisons between former and non-smokers,
significance levels are indicated as # p < 0.05, ## p < 0.01, ### p < 0.001.

3.2. Distribution of Methylation β-Values

The methylation β-values, ranging from 0 to 1, were computed as the ratio of the
methylated signal to the sum of the methylated and unmethylated signals. The distribution
of methylation β-values are described in Figure 2. The distribution of β-values for total
5mC+5hmC and 5mC methylation were notably similar, with the median values of 0.75
(interquartile range (IQR) = 0.03) and 0.56 (IQR = 0.03), respectively. Both distributions
follow an obvious binomial pattern, drastically compressed within the low (0–0.2) and high
(0.8–1.0) ranges. However, the values for 5hmC were notably low, with a median value of
0.03 (IQR = 0.02).
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3.3. Site-Specific Changes in Total 5mC+5hmC Associated with Smoking

The EWAS was conducted to determine epigenome-wide differences in total 5mC+5hmC
methylation among current, former and non-smokers. Additionally, we employed bacon
correction to mitigate bias and inflation of the test statistic, resulting in a correction of the
inflation factor to 1.38 (Supplementary Material S1: Figure S1A,B), which is consistent with
many CpG sites being impacted by tobacco smoking. The analysis of 5mC+5hmC methyla-
tion data revealed 38,575 DMPs associated with current smoking and 82 DMPs associated
with former smoking (FDR-adjusted p < 0.05). A summary of the top 10 most significant
5mC+5hmC DMPs associated with both current and former smoking is shown in Table 2,
and the complete list of significant 5mC+5hmC DMPs can be found in Supplementary
Material S2: Tables S1 and S2.

Table 2. Summary of top 10 most significant 5mC+5hmC DMPs from current and former smokers.

Probe Delta Beta p Value FDR CHR Gene MAPINFO EPIC

Current DMPs data data
cg05575921 −22.72% 2.13 × 10−245 1.56 × 10−239 5 AHRR 373378
cg21566642 −16.26% 1.89 × 10−162 6.94 × 10−157 2 233284661
cg01940273 −9.67% 5.22 × 10−147 1.27 × 10−141 2 233284934
cg03636183 −9.88% 5.45 × 10−140 1.00 × 10−134 19 F2RL3 17000585
cg21161138 −6.88% 1.91 × 10−111 2.80 × 10−106 5 AHRR 399360
cg17739917 −10.21% 4.62 × 10−110 5.65 × 10−105 17 RARA 38477572 *
cg14391737 −10.12% 5.50 × 10−82 5.77 × 10−77 11 PRSS23 86513429 *
cg26703534 −4.88% 1.90 × 10−78 1.75 × 10−73 5 AHRR 377358
cg17087741 −6.13% 4.22 × 10−77 3.44 × 10−72 2 233283010
cg21911711 −5.65% 1.44 × 10−71 1.06 × 10−66 19 F2RL3 16998668 *

Former DMPs
cg14391737 −4.56% 2.23 × 10−40 1.63 × 10−34 11 PRSS23 86513429 *
cg21566642 −4.62% 1.74 × 10−36 6.40 × 10−31 2 233284661
cg05575921 −4.06% 1.20 × 10−25 2.95 × 10−20 5 AHRR 373378
cg06644428 −2.20% 3.45 × 10−23 6.34 × 10−18 2 233284112
cg01940273 −2.24% 1.74 × 10−22 2.56 × 10−17 2 233284934
cg16841366 −2.62% 2.90 × 10−16 3.56 × 10−11 2 233286192 *
cg11660018 −1.65% 4.39 × 10−16 4.61 × 10−11 11 PRSS23 86510915
cg00475490 −1.53% 1.04 × 10−15 9.56 × 10−11 11 PRSS23 86517110 *
cg03636183 −1.88% 5.66 × 10−15 1.35 × 10−9 19 F2RL3 17000585
cg17739917 −2.20% 1.85 × 10−14 1.35 × 10−9 17 RARA 38477572 *
cg14391737 −4.56% 2.23 × 10−40 1.63 × 10−34 11 PRSS23 86513429 *

Probe: Unique identifier from the Illumina CG database; Delta Beta: Mean methylation difference between
smokers and non-smokers; FDR: Benjamini–Hochberg corrected p value (FDR); CHR: Chromosome; Gene: Target
gene name from the UCSC database; MAPINFO: Chromosomal coordinates of the CpG (Build 37); EPIC: * indicates
CpG sites that are exclusively present in the Infinium Methylation EPIC BeadChip.

The results supported many previously reported gene loci, including CpG sites anno-
tated to aryl hydrocarbon receptor repressor (AHRR), retinoic acid receptor alpha (RARA),
F2R-like thrombin or trypsin receptor 3 (F2RL3) and serine protease 23 (PRSS23). Notably,
cg05575921 (annotated to AHRR), which has consistently emerged as the most significant
DMP in previous smoking studies, demonstrated remarkable significance (p = 1.56 × 10−239)
and exhibited the largest effect size in our analysis (−22.72% difference in methylation).
Out of the 38,575 DMPs, 59.32% (22,884/38,575) were exclusive to EPIC BeadChip and did
not present on the previous 450k BeadChip. Moreover, 18.33% (7069/38,575) of the DMPs
were novel candidates, not previously reported in the EWAS Catalog (Supplementary Ma-
terial S2: Table S3). A predominant fraction of DMPs, comprising 77.71% (29,977/38,575),
exhibited hypomethylation due to current smoking, with a mean methylation difference of
1.07% (SD = 0.53%). Conversely, 22.29% (8598/38,575) of the DMPs displayed hyperme-
thylation, showing a mean percentage difference of 1.03% (SD = 0.53%). The Manhattan
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plot (Figure 3A) and the Volcano plot (Supplementary Material S1: Figure S2A) illustrated
EWAS results for 5mC+5hmC methylation related to current smoking.
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Figure 3. Manhattan plots illustrating smoking EWAS results for 5mC+5hmC methylation. The x-
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Bonferroni threshold of 6.81 × 10−8 is marked by a red dashed line, while the Benjamini–Hochberg 
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Figure 3. Manhattan plots illustrating smoking EWAS results for 5mC+5hmC methylation. The x-axis
indicates the chromosome location, and the y-axis represents the −log10 (p-value). The Bonferroni
threshold of 6.81 × 10−8 is marked by a red dashed line, while the Benjamini–Hochberg (FDR)
threshold (p < 0.05) is indicated by a blue dashed line. The ggbreak package (version 0.1.2) was used
to effectively utilize plotting space and handle large y-axis values for currents smokers. (A) Manhattan
plot for current vs. non-smokers; (B) Manhattan plot for former vs. non-smokers.

In former smokers, only 82 CpG sites remained differentially methylated, although
with reduced effect sizes compared to the observed effects in current smokers. Genomic
inflation was not strongly evident (λ = 1.13). All annotated genes associated with former
smoking, including PRSS23, AHRR, F2RL3 and RARA, overlapped with genes associated
with current smoking. In contrast to current smokers, the most significant CpG site in for-
mer smokers was cg14391737, annotated to PRSS23 (p = 1.63 × 10−34, effect size: −4.56%),
surpassing cg05575921, annotated to AHRR (p = 2.95 × 10−20, effect size: −4.06%). Of the
82 identified DMPs, 51.22% (42/82) were exclusive to the EPIC BeadChip and 2.44% (2/82)
DMPs were novel candidates (Supplementary Material S2: Table S4). For 90.24% (74/82) of
DMPs displaying decreased methylation in response to former smoking, the mean methy-
lation percentage difference was 1.37% (SD = 0.78%). For 9.76% (8/82) of DMPs showing
increased methylation in response to former smoking, the mean percentage difference was
1.55% (SD = 0.67%). The Manhattan plot (Figure 3B) and the Volcano plot (Supplementary
Material S1: Figure S2B) illustrate EWAS results for 5mC+5hmC methylation related to
former smoking.

3.4. Site-Specific True Methylation Changes Associated with Smoking

True DNA methylation (5mC) was measured by oxBS treatment. A total of 33 DMPs
were associated with current smoking and 1 5mC DMP was identified between former vs.
non-smokers. There was no evidence of inflation (λ = 0.996 for current smokers, λ = 1.009
for former smokers). The count of 5mC DMPs for both current and former smoking was
prominently lower than of 5mC+5hmC DMPs. Remarkably, all 33 of the 5mC DMPs, linked
to current smoking, were encompassed within the 5mC+5hmC results (Figure 4), and
the overall pattern of the 5mC+5hmC and 5mC methylation changes exhibited similar-
ity. For example, the cg05575921, annotated to AHRR, consistently retained its position
as the most strongly associated with current smoking (p = 1.27 × 10−77) and showed a
slightly stronger effect size difference (−24.01%) in the 5mC methylation dataset. In line
with 5mC+5hmC, 72.73% (24/33) of the DMPs exhibited hypomethylation in the 5mC
dataset, demonstrating a mean difference in methylation of −7.75% (SD = 4.46%). Addi-
tionally, 27.27% (9/33) of the DMPs displayed hypermethylation with a mean difference
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in methylation of −7.09% (SD = 1.66%). For former smokers, only cg24476099, annotated
to megakaryoblastic leukemia 1 (MKL1), reached statistical significance with an effect
size of −4.34%, and it is specific to the EPIC BeadChip. The most significant 5mC DMPs
are shown in Table 3, and the complete list can be found in Supplementary Material S2:
Tables S5 and S6. The Manhattan plot (Figure 5A,B) and Volcano plot (Supplementary
Material S1: Figure S4A,B) illustrate EWAS results for 5mC methylation related to current
and former smoking.
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Figure 4. Venn plot illustrating the overlap number of DMPs in different methylation dataset. The blue
and cyan colours represent the number of significant DMPs, related with current and former smoking
respectively, in the context of 5mC+5hmC methylation. The yellow colour represents the number of
significant DMPs related with current smoking in the context of 5mC methylation. The pink colour
represents the number of novel DMPs related with current in the context of 5mC+5hmC methylation.

Table 3. Summary of significant true 5mC and 5hmC DMPs from current and former smokers.

Probe Delta Beta p Value FDR CHR Gene MAPINFO EPIC

5mC Current data data
cg05575921 −24.01% 1.68 × 10−77 1.27 × 10−71 5 AHRR 373378
cg21566642 −14.63% 2.26 × 10−34 8.58 × 10−29 2 233284661
cg01940273 −9.32% 2.02 × 10−26 5.10 × 10−21 2 233284934
cg03636183 −8.41% 7.61 × 10−25 1.43 × 10−19 19 F2RL3 17000585
cg14391737 −11.13% 6.90 × 10−17 1.04 × 10−11 11 PRSS23 86513429

5mC Former
cg24476099 −4.34% 3.95 × 10−8 0.03 22 MKL1 40925033 *

5hmC Current −4.62% 1.74 × 10−36 6.40 × 10−31 2 233284661
cg16972043 4.14% 1.36 × 10−7 0.103 16 GPT2 46932066 *
cg01483713 1.97% 1.89 × 10−6 0.718 4 6252582 *
cg15297506 1.22% 4.42 × 10−6 0.784 10 SH3PXD2A 105453418 *
cg04131101 3.50% 4.90 × 10−6 0.784 11 94427846
cg22377040 1.68% 5.40 × 10−6 0.784 6 TRIM31 30071412

5hmC Former −1.53% 1.04 × 10−15 9.56 × 10−11 11 PRSS23 86517110 *
cg24012880 3.61% 4.45 × 10−7 0.337 11 TSPAN18 44880910
cg10148425 2.58% 6.77 × 10−6 0.985 19 184224630 *

Probe: Unique identifier from the Illumina CG database; Delta Beta: Mean methylation difference between
smokers and non-smokers; FDR: Benjamini–Hochberg corrected p value (FDR); CHR: Chromosome; Gene: Target
gene name from the UCSC database; MAPINFO: Chromosomal coordinates of the CpG (Build 37); EPIC: * indicates
CpG sites that are exclusively present in the Infinium Methylation EPIC BeadChip.
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Figure 5. Manhattan plots illustrating smoking EWAS results for both 5mC and 5hmC methylation.
The x-axis represents the chromosome location, while the y-axis represents the −log10(p value). The
Bonferroni threshold of 6.61 × 10−8 is marked by a red dashed line, while the Benjamini–Hochberg
(FDR) threshold (p < 0.05) is indicated by a blue dashed line. The ggbreak packagewas used to
effectively utilize plotting space and handle large y-axis values for currents smokers. (A) Manhattan
plot for current vs. non-smokers in 5mC dataset; (B) Manhattan plot for former vs. non-smokers in
5mC dataset; (C) Manhattan plot for current vs. non-smokers in 5hmC dataset; (D) Manhattan plot
for former vs. non-smokers in 5hmC dataset.

3.5. Site-Specific Hydroxymethylation Changes Associated with Smoking

The total 5mC+5hmC methylation levels were determined using BS treatment, while
true DNA methylation (5mC) was measured by oxBS treatment. The quantification of
5hmC involved subtracting 5mC β-values from the combined 5mC+5hmC β-values. 5hmC
methylation values were observed at a lower level, so a suggestive threshold of p < 1 × 10−5

was set, revealing eight and two significant 5hmC DMPs between current vs. non-smokers
and former vs. non-smokers, respectively. No strong evidence of inflation was detected
(λ = 1.132 for current smokers, λ = 1.018 for former smokers). The cg16972043, annotated
to the glutamate pyruvate transaminase 2 (GPT2) gene, emerged as the most strongly
associated (p = 1.26 × 10−7) with current smoking and displayed the largest effect size
difference (4.14%) in the 5hmC methylation dataset. Conversely, the cg24012880, an-
notated to the tetraspanin 18 (TSPAN18) gene, demonstrated the strongest association
(p = 4.45 × 10−7) with former smoking, displaying an effect size difference of 3.61%. In
contrast with methylation changes observed in 5mC+5hmC and 5mC datasets, almost all
the top 5hmC DMPs were hypermethylated, demonstrating a mean methylation difference
of 2.32% (SD = 1.11%) in current smokers and 0.99% (SD = 0.04%) in former smokers. The
most significant 5hmC DMPs are shown in Table 3, and the complete list can be found
in Supplementary Material S2: Tables S7 and S8. The Manhattan plot (Figure 5C,D) and
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the Volcano plot (Supplementary Material S1: Figure S4C,D) illustrated EWAS results for
5hmC methylation associated with current and former smoking.

3.6. Region-Specific Changes Associated with Smoking

In the total 5mC+5hmC dataset, there were 2023 distinct DMRs linked to current
smoking, encompassing 9367 measured CpG sites annotated across 1553 genes. The
most prominent DMR uncovered in individuals who currently smoke was situated in a
region on chromosome 1, annotated to the growth factor independent 1 transcriptional
repressor (GFI1) gene, spanning nine CpG sites. The DMR displaying the second strongest
association comprised seven CpG sites and was annotated to AHRR. A substantial overlap
of genes (1542/1553, 99.29%) was observed between the genes identified in the DMP
and DMR analyses, which included notable genes like GFI1, AHRR and HIVEP Zinc
Finger 3 (HIVEP3). Notably, DMR analyses produced 11 additional genes not identified
in DMP analyses, such as Retinoic Acid Receptor Responder 2 (RARRES2), Ring Finger
Protein 40 (RNF40) and Solute Carrier Family 1 Member 5 (SLC1A5). During the DMR
analysis comparing former smokers and non-smokers, a total of 76 distinct DMRs were
identified, containing 390 measured CpG sites and annotated to 61 different genes. Only a
minimal overlap of 9.83% (6/61) was observed with previously identified DMPs, specifically
Alanyl Aminopeptidase Membrane (ANPEP) and PRSS23. Additionally, 55 annotated
genes such as Proline Rich Transmembrane Protein 1 (PRRT1) were exclusively detected
in the DMR results. In the true 5mC dataset, there were 14 distinct DMRs linked to
current smoking, encompassing 85 measured CpG sites annotated across 12 genes such
as HIVEP3, GFI1 and Valyl-TRNA Synthetase 1 (VARS). Additionally, there were five
distinct DMRs linked to former smoking, encompassing 25 CpG sites annotated across
four genes. In the 5hmC dataset, we did not find any DMRs related to current or former
smoking. The top 10 most significant DMRs linked to both current and former smoking
are presented in Table 4. The complete list of DMRs can be found in Supplementary
Material S2: Tables S9–S12; Manhattan plots illustrating DMR results for the 5mC+5hmC
and true 5mC methylation datasets related to current and former smoking can be found in
Supplementary Materials S1: Figures S3 and S6.

Table 4. Summary of top 10 most significant total 5mC+5hmC DMRs from current and former smokers.

Gene CHR Start End p Value FDR Nprobe

Current smokers
2 233283010 233286291 5.02 × 10−212 3.97 × 10−208 12

GFI1 1 92945668 92947962 5.74 × 10−130 3.03 × 10−126 9
AHRR 5 399360 400833 1.16 × 10−63 2.29 × 10−60 7
C5orf62 5 150161299 150162069 7.24 × 10−53 8.20 × 10−50 3
SLC1A5 19 47287778 47289612 3.52 × 10−51 3.72 × 10−48 12

19 1265877 1266000 1.66 × 10−48 1.65 × 10−45 3
14 106329158 106331863 2.67 × 10−46 2.49 × 10−43 19

HIVEP3 1 42384002 42385942 5.62 × 10−46 4.69 × 10−43 15
ITGAL 16 30485296 30485967 1.09 × 10−44 8.68 × 10−42 7

6 30719807 30720485 4.34 × 10−42 2.86 × 10−39 6
Former smokers

2 233283010 233286291 1.53 × 10−61 2.38 × 10−59 12
PRRT1 6 32118204 32118458 4.68 × 10−22 1.81 × 10−20 13
NBL1 1 19971709 19972778 2.37 × 10−17 7.37 × 10−16 9

19 1265877 1266000 2.98 × 10−16 7.71 × 10−15 3
ANPEP 15 90345999 90346095 8.64 × 10−16 1.91 × 10−14 3

1 161708999 161710014 2.05 × 10−13 3.17 × 10−12 3
PRSS23 11 86510915 86511218 8.38 × 10−13 1.18 × 10−11 5

PPT2 6 32120955 32121556 1.70 × 10−12 2.19 × 10−11 20
VARS 6 31762353 31762902 3.91 × 10−12 3.56 × 10−11 15

GNA12 7 2847477 2847576 1.47 × 10−11 1.26 × 10−10 3
2 233283010 233286291 1.53 × 10−61 2.38 × 10−59 12

Gene: UCSC gene name; CHR: Chromosome; Start: Start CHR position of this region; End: End CHR position of
this region; FDR: Benjamini–Hochberg corrected p value; Nprobe: number of CpG probes in this region.
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3.7. Gene Enrichment Analysis

The genes associated with DMPs that passed the significant threshold (FDR-adjusted
p < 0.05) were identified. Exploratory downstream enrichment analyses were performed on
those genes using the missMethyl package with the KEGG dataset. In the total 5mC+5hmC
methylation dataset, DMPs associated with current smoking exhibited enrichment in
27 pathways, whereas DMPs associated with former smoking showed enrichment in 1
pathway. However, we did not find any significant pathway from the true 5mC and 5hmC
datasets. These findings suggest a potential link between cigarette smoking and alterations
in various molecular pathways, including mechanisms of cardiovascular diseases and
cancers. The top 10 ranked biological pathways based on DMPs related to current and
former smoking from total 5mC+5hmC are illustrated in Figure 6. The complete lists of
pathways, from the total 5mC+5hmC, true 5mC and 5hmC methylation datasets, can be
found in Supplementary Material S2: Tables S13–S18.
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between former and non-smokers.

4. Discussion

We have investigated different DNA methylation modifications among individuals
categorized as current, former and non-smokers. This is, to the best of our knowledge, the
first epigenome-wide methylation study of smoking’s effects on blood leucocyte samples,
analysing true 5mC and 5hmC as distinct DNA methylation modifications, especially
in conjunction with the Illumina EPIC BeadChip. Initially, we explored the association
between smoking status and total 5mC+5hmC methylation levels, identifying 38,575 and
82 DMPs associated with current and former smoking, many of which are novel candidates.
Subsequently, employing tandem BS and oxBS treatment, we differentiated 5hmC from
5mC at the single-nucleotide level. Within this refined analysis, we discovered 33 and
1 DMPs associated with current and former smoking in the 5mC category, respectively.
Additionally, eight and two DMPs linked to current and former smoking were identified in
the 5hmC category, respectively. We observed a high concordance in the direction of effects
and a large overlap in the identified loci between 5mC+5hmC and 5mC groups.

Robust associations have been established between smoking exposure and alterations
in blood DNA methylation, supported by the identification of numerous specific loci [11,30].
For example, the most extensive meta-analysis of smoking-associated epigenome-wide
DNA methylation was conducted using the 450K array to analyse 15,907 blood-derived
DNA samples from individuals across 16 cohorts. A total of 2623 CpG sites, annotated
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to 1405 genes, demonstrated associations with current smoking [10]. In this study, we
replicated many previously reported sites, including those annotated to AHRR, RARA,
F2RL3, PRSS23 and GFI1 [31], and identified a substantial number of the novel smoking-
associated candidates by using the latest EPIC BeadChip. The AHRR gene consistently
appeared as the most significantly affected genomic locus in studies investigating the
impact of smoking [32,33], a pattern also evident in our cohort. Specifically, 41 DMPs
associated with current smoking were annotated to AHRR in the 5mC+5hmC dataset, and
11 in the 5mC dataset. All these findings substantiate the robustness and reliability of our
study results.

The global initiatives for smoking cessation, coupled with legislative measures, have
led to a decline in the number of cigarette smokers and a concomitant rise in the popu-
lation of former smokers. Decades after cessation, cigarette smoking continues to pose a
long-term risk for diseases, and DNA methylation also leaves a persistent signature after
smoking exposure [34]. In our analysis, despite the majority of differently methylated
CpG sites returning to the methylation levels like non-smokers following smoking cessa-
tion, a subset of CpG sites exhibited sustained different methylation even after quitting
smoking, albeit with diminished effect sizes in former smokers. The impact of smoking
on these specific CpG sites holds the potential to function as robust biomarkers, offering
insights into an individual’s historical smoking behaviour and reflecting enduring health
consequences [35,36].

Clusters of neighbouring probes associated with a phenotype, known as DMRs, may
enhance the ability to detect associations between DNA methylation and diseases or
phenotypes of interest [37]. For instance, in newborns exposed to maternal gestational
diabetes mellitus (GDM) in utero compared to control subjects, only two DMRs were
identified without significant DMPs [38]. Therefore, we evaluated methylation differences
not only on the individual CpG level but also the regional level using a dimension reduction
approach (comb-p). Our analysis revealed 2023 DMRs in current smokers and 76 DMRs in
former smokers in the context of 5mC+5hmC. The DMRs associated with smoking exhibited
a substantial overlap with the DMP results in both current and former smokers. Notably,
CpG sites within these regions were annotated to previously reported genes, including
GFI1. In addition, a few annotated genes were exclusively identified in the DMRs results;
some examples include RARRES2, RNF40 and SLC1A5, associated with current smoking,
and PRRT1, linked to former smoking. Our findings highlight the importance of regional
analysis as an additional approach to validate known or identify novel smoking-related
genes. Cigarette smoking is linked to increased cancer incidence and poorer cancer-related
clinical outcomes. The results of the enrichment analyses also suggest that the discerned
smoking-related effects on DNA methylation are likely to carry implications for the risk of
various pathologies, including cardiovascular diseases and cancers.

In the present study, oxBS conversion allowed the specific measurement of nucleotide-
level 5mC, which holds promise as a biomarker for various diseases [39] and accurate
measurement of the true 5mC signal is crucial to prevent false positive findings. In our
study, all significant 5mC DMPs associated with current smoking were also found in the
conventional 5mC+5hmC dataset, such as AHRR, RARA and F2RL3, proving that these CpG
sites are strongly related to smoking. Furthermore, we noted a substantial concordance
in the direction of effects between 5mC+5hmC and 5mC groups in current smokers, with
a majority of loci displaying hypomethylation. For example, AHRR hypomethylation,
serving as an epigenetic marker of smoking history, was reported to predict the risk of
myocardial infarction, particularly in former smokers [33]. The CpG site cg24476099,
annotated to MLK1, emerged as the sole novel significant 5mC linked to former smoking
in this study. It is noteworthy that prior research has identified other CpG sites annotated
to MLK1, demonstrating associations with smoking, incident COPD and prevalent type 2
diabetes [40].

Different methylation modifications possess distinct properties, including varying
affinities to transcription factors. Unlike 5mC, often linked to gene repression, 5hmC can
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inhibit the binding to transcriptional repressors and thereby display the repressive impact
of 5mC [41,42]. Hence, the differentiation between 5mC and 5hmC is essential to com-
prehending the underlying molecular alterations associated with smoking. Most tissues
contain approximately 4% 5mC, whereas 5hmC content varies and is typically below 1% in
various tissue types [43]. The abundance of 5hmC is remarkably higher in adult neurons
and during embryogenesis [44]. Previous research has identified 67 5hmC DMPs between
healthy smokers and non-smokers using lung bronchoalveolar lavage cells, providing
evidence of 5hmC being involved in the effects of smoking. These findings also suggested
that smoking-related differences may involve DNA demethylation of 5mC with a 5hmC
intermediate, as inferred from the observed contrasting hypomethylated 5mC and hyper-
methylated 5hmC data [45]. Our study aligns with this interpretation, further supporting
the notion that smoking-induced oxidative stress can trigger DNA demethylation through
the sequential oxidation procedure. As expected, given its low abundance in blood, the
DNA hydroxymethylation signature linked to smoke exposure exhibited a lesser promi-
nence compared to true DNA methylation, even under a less stringent threshold. The CpG
sites cg16972043 (annotated to GPT2) and cg24012880 (annotated to TSPAN18) emerged
as the most significant and novel hydroxymethylated CpG sites associated with current
and former smoking, respectively. GPT2 serves as a crucial link between glycolysis and
glutaminases and exhibits significant upregulation in aggressive breast cancers [46]. Recent
research has unveiled GPT2’s role in regulating smoking-induced metabolism and damage
in airway epithelial cells through its impact on lipid synthesis [47]. Furthermore, both GPT2
and TSPAN18 have been implicated in incident COPD in leukocytes [40], underscoring their
relevance in respiratory conditions. The identification of these novel smoking-associated
hydroxymethylated CpG sites holds promise for guiding future research endeavours. The
present study has several strengths. Our multivariate linear regression model was metic-
ulously adjusted for many potential confounders, including estimated cell fractions. To
enhance the precision of our findings, we differentiated between true 5mC and 5hmC
signals using the tandem BS and oxBS treatment, effectively minimizing the likelihood
of identifying false positives, especially in combination with Infinium Methylation EPIC
BeadChip. Additionally, the study’s robustness was further fortified by the assessment
of DMRs in addition to individual CpG sites. However, our study does have limitations.
Passive smoking was not considered, and additional continuous smoking variables like
pack years were unavailable, limiting the comprehensive analysis of smoking effects. The
absence of a replication cohort emphasizes the need for future studies to validate our
findings in independent populations. Additionally, the use of DNA derived from blood
may not fully capture tissue-specific variations in methylation patterns; exploring specific
tissues could offer more nuanced information on the impact of smoking on both true DNA
methylation and hydroxymethylation.

5. Conclusions

Our results confirmed previously reported smoking-associated CpG sites with the
Illumina Infinium Methylation EPIC BeadChip, but also revealed many novel smoking-
associated signatures. By distinguishing 5mC and 5hmC data from peripheral blood DNA
samples, our study identified distinct smoking-associated DNA methylation modifications.
Hydroxymethylation was not strongly associated with smoking in peripheral blood DNA
samples, but suggestive hydroxymethylated CpG sites might inform future research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom14060662/s1, Figure S1: QQ plots for total 5mC+5hmC methyla-
tion; Figure S2: Volcano plots of smoking association effect sizes for total 5mC+5hmC methylation;
Figure S3: Manhattan plots of DMR results for total 5mC+5hmC methylation, Figure S4: Volcano
plots of smoking association effect sizes for 5mC and 5hmC methylation, Figure S5: QQ plots for
5mC and 5hmC methylation; Figure S6: Manhattan plots of DMR results for 5mC methylation;
Figure S7: Gene enrichment analysis plots of true 5mC and 5hmC methylation. Tables S1–S2: the
significant DMPs related to current and former smoking from total 5mC+5hmC methylation dataset;
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Tables S3–S4: the novel DMPs related to current and former smoking from total 5mC+5hmC methy-
lation dataset; Tables S5–S6: the significant DMPs related to current and former smoking from 5mC
methylation dataset; Tables S7–S8: the significant DMPs related to current and former smoking from
5hmC methylation dataset. Tables S9–S12: the significant DMRs related to current and former smok-
ing from total 5mC+5hmC and true 5mC methylation datasets; Tables S13–S18: the pathways related
to current and former smoking from total 5mC+5hmC, true 5mC and 5hmC methylation datasets.
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Figure S1. QQ plots for total 5mC+5hmC methylation. The x-axis represents the 

expected –log10 (P-value) and the y-axis represents the observed –log10 (P-value). 

(A) QQ plot for current vs non-smokers; (B) QQ plot for current vs non-smokers 

after bacon correction; (C) QQ plot for former vs non-smokers. 

 

 

 
Figure S2. Volcano plots of smoking association effect sizes for total 5mC+5hmC 

methylation. The x-axis represents the effect size (the methylation value difference 

between groups), and the y-axis represents the –log10 (P-value). The Bonferroni 

threshold of 6.81×10−8 is marked by a red dashed line, while the Benjamini-

Hochberg (FDR) threshold (P<0.05) is indicated by a blue dashed line. The ggbreak 

package was used to effectively utilize plotting space and handle large y-axis for 

currents smokers. (A) Volcano plot for current vs non-smokers; (B) Volcano plot 

for former vs non-smokers. 
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Figure S3. Manhattan plots of DMR results for total 5mC+5hmC methylation. The 

x-axis represents the chromosome location, and the y-axis represents the –log10 

(P-value). (A) Manhattan plot for current vs non-smokers; (B) Manhattan plot for 

former vs non-smokers. 

 

 

 

 

Figure S4. Volcano plots of smoking association effect sizes for 5mC and 5hmC 

methylation. The x-axis represents the effect size (the methylation value difference 

between groups), and the y-axis represents the –log10 (P-value). The Bonferroni 

threshold of 6.61×10−8 is marked by a red dashed line, while the Benjamini-

Hochberg (FDR) threshold (P<0.05) is indicated by a blue dashed line. The ggbreak 

package was used to effectively utilize plotting space and handle large y-axis for 
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currents smokers.  (A) Volcano plot for current vs non-smokers from 5mC dataset; 

(B) Volcano plot for former vs non-smokers from 5mC dataset; (C) Volcano plot 

for current vs non-smokers from 5hmC dataset; (D) Volcano plot for former vs 

non-smokers from 5hmC dataset. 

 

 

 

Figure S5. QQs plots of for 5mC and 5hmC methylation. The x-axis represents the 

expected –log10 (P-value) and the y-axis represents the observed –log10 (P-value). 

(A) QQ plot for current vs non-smokers from 5mC dataset; (B) QQ plot for former 

vs non-smokers from 5mC dataset; (C) QQ plot for current vs non-smokers from 

5hmC dataset; (D) QQ plot for former vs non-smokers from 5hmC dataset. 
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Figure S6. Manhattan plots of DMR results for 5mC methylation. The x-axis 

represents the chromosome location, and the y-axis represents the –log10 (P 

value). (A) Manhattan plot for current vs non-smokers from 5mC dataset; (B) 

Manhattan plot for former vs non-smokers from 5mC dataset. 

 
 

Figure S7. Gene enrichment analysis plots of true 5mC and 5hmC methylation. 

The x axis represents the -log10(P-value), and the red dashed line represents the 

significant threshold (FDR-adjusted P<0.05). (A) illustrate the top 10 pathways 

derived from true 5mC methylation between current vs non-smokers. (B) illustrate 

the top 10 pathways derived from true 5mC methylation between former vs non-

smokers. (C) illustrate the top 10 pathways derived from 5hmC methylation 

between current vs non-smokers. (D) illustrate the top 10 pathways derived from 

5hmC methylation between former vs non-smokers. 
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Abstract
Background  Type 2 diabetes (T2D) has been linked to changes in DNA methylation levels, which can, in turn, alter 
transcriptional activity. However, most studies for epigenome-wide associations between T2D and DNA methylation 
comes from cross-sectional design. Few large-scale investigations have explored these associations longitudinally 
over multiple time-points.

Methods  In this longitudinal study, we examined data from the Cooperative Health Research in the Region of 
Augsburg (KORA) F4 and FF4 studies, conducted approximately seven years apart. Leucocyte DNA methylation was 
assessed using the Illumina EPIC and 450K arrays. Linear mixed-effects models were employed to identify significant 
associations between methylation sites and diabetes status, as well as with fasting plasma glucose (FPG), hemoglobin 
A1c (HbA1c), homoeostasis model assessment of beta cell function (HOMA-B), and homoeostasis model assessment 
of insulin resistance (HOMA-IR). Interaction effects between diabetes status and follow-up time were also examined. 
Additionally, we explored CpG sites associated with persistent prediabetes or T2D, as well as the progression from 
normal glucose tolerance (NGT) to prediabetes or T2D. Finally, we assessed the associations between the identified 
CpG sites and their corresponding gene expression levels.

Results  A total of 3,501 observations from 2,556 participants, with methylation measured at least once across two 
visits, were included in the analyses. We identified 64 sites associated with T2D including 15 novel sites as well as 
known associations like those with the thioredoxin-interacting protein (TXNIP) and ATP-binding cassette sub-family G 
member 1 (ABCG1) genes. Of these, eight CpG sites exhibited different rates of annual methylation change between 
the NGT and T2D groups, and seven CpG sites were linked to the progression from NGT to prediabetes or T2D, 
including those annotated to mannosidase alpha class 2a member 2 (MAN2A2) and carnitine palmitoyl transferase 1 A 
(CPT1A). Longitudinal analysis revealed significant associations between methylation and FPG at 128 sites, HbA1c at 
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Background
Type 2 diabetes (T2D) is a major public health concern, 
characterized by chronic hyperglycemia. The prevalence 
of T2D is rising rapidly worldwide, projected to affect 
783 million adults by 2045 [1]. Individuals with T2D are 
at risk of developing severe and life-threatening compli-
cations, leading to increased medical needs and reduced 
quality of life. Despite extensive research on T2D patho-
physiology, the underlying mechanisms are not yet fully 
elucidated. Epigenetic modifications, especially DNA 
methylation—where methyl groups are added to DNA 
molecules affecting gene expression without altering the 
DNA sequence—are emerging as crucial links between 
genetic, environmental, and lifestyle factors in T2D 
development and progression [2–5]. Identification of 
novel biomarkers linked to T2D and early glucose distur-
bances can enhance our understanding of the disease’s 
etiology and improve prevention and prediction strate-
gies [6, 7].

Advances in methylation technology have facilitated 
the simultaneous measurement of numerous cytosine-
phosphate-guanine (CpG) dinucleotide sites, leading to 
the identification of various CpG sites associated with 
prevalent T2D and glycemic traits in cross-sectional 
epigenome-wide association studies (EWAS) [8–11]. 

Recent comprehensive analyses, including a systematic 
review of 32 studies, have summarized evidence link-
ing DNA methylation patterns to T2D pathophysiology, 
utilizing samples from blood, pancreatic islet, adipose 
tissue, liver, spermatozoa and skeletal muscle [12]. Addi-
tionally, a study involving over 18,000 Scottish indi-
viduals examined the relationship between blood DNA 
methylation and the prevalence and incidence of multi-
ple diseases, including T2D [13]. Furthermore, genome-
wide DNA methylation changes in early life, particularly 
among offspring exposed to gestational diabetes, have 
been proposed as a potential mechanism that increase 
the risk of obesity, glucose intolerance, and T2D [14–16].

Previous studies have been cross-sectional, limiting 
insights into temporality. Methylation changes may either 
be part of the causal pathway to disease or serve as non-
causal biomarkers [17, 18]. Considering the fluctuating 
nature of glucose and insulin metabolism prior to T2D 
development, it is essential to understand the evolution 
of methylation patterns in the progression from normal 
glucose tolerance (NGT) to prediabetes and T2D. For 
instance, maternal glycemia during pregnancy has been 
linked to longitudinal variations in blood DNA meth-
ylation at the fibronectin type III and spry domain con-
taining 1 like (FSD1L) loci from birth to age five [19]. In 

41 sites, and HOMA-IR at 57 sites. Additionally, we identified 104 CpG-transcript pairs in whole blood, comprising 40 
unique CpG sites and 96 unique gene transcripts.

Conclusions  Our study identified novel differentially methylated loci linked to T2D as well as to changes in diabetes 
status through a longitudinal approach. We report CpG sites with different rates of annual methylation change and 
demonstrate that DNA methylation associated with T2D is linked to following transcriptional differences. These 
findings provide new insights into the molecular mechanisms of diabetes development.

Graphical abstract 

Keywords  DNA methylation, Type 2 diabetes, Glycemic traits, Diabetes progression, Gene expression
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addition, a cross-lagged analysis of twin samples in China 
demonstrated bidirectional associations between DNA 
methylation and T2D or glycemic traits, with significant 
paths from T2D influencing subsequent DNA methyla-
tion and vice versa [20]. In summary, few studies have 
examined longitudinal changes in methylation across 
multiple time points and existing longitudinal research 
often focuses on specific individuals or ancestries with 
small sample sizes. In our study, we aimed to investigate 
the association between DNA methylation and diabetes 
status, as well as four related traits—fasting plasma glu-
cose (FPG), hemoglobin A1c (HbA1c), homoeostasis 
model assessment of insulin resistance (HOMA-IR) and 
homoeostasis model assessment of beta-cell function 
(HOMA-B)—within a longitudinal, population-based 
cohort comprising 2,556 individuals, utilizing up to two 
repeated measurements of DNA methylation as well as 
glucose- and insulin-related traits.

Illustration of the selection criteria for study partici-
pants and CpG sites included in the analysis.

Methods
Study population
This study used data from the Cooperative Health 
Research in the Region of Augsburg (KORA) F4 (2006–
2008) and FF4 (2013–2014) studies, both follow-up 
studies of the KORA S4 study (1999–2001). Detailed 
information on the KORA cohort design, measurement, 
and data collection has been previously described [21]. 
In total, 3,501 observations from 2,556 participants in 
KORA F4 (1,696) and FF4 (1,805), with methylation 

data at least once across two visits, were included in the 
analysis. Of these participants, 945 participants (36.97%) 
had methylation patterns measured at both time points. 
Detailed information about the inclusion of study partici-
pants can be found in Additional file 1: Text S1.

Measures of epigenome-wide DNA methylation and gene 
expression
In the KORA F4 study, genome-wide DNA methylation 
in whole blood was analysed using the Illumina 450K 
Infinium Methylation BeadChip (Illumina Inc., San 
Diego, CA, USA). For the KORA FF4 study, the Infinium 
MethylationEPIC BeadChip (Illumina Inc., San Diego, 
CA, USA) was used. DNA methylation was quantified 
on a scale of 0 to 1, with 1 signifying 100% methylation. 
We followed the general outline of the CPACOR prepro-
cessing for quality control by using minfi2 package [22]. 
A total of 374,054 CpG sites were left for the analysis 
and detailed information about the quality control step 
and inclusion of CpG sites can be found in Fig.  1 and 
Additional file 1: Text S2 and Text S3. The proportions 
of white blood cell types (CD8T, CD4T, natural killer 
(NK) cells, B lymphocytes, monocytes and granulocytes) 
were estimated using the Reinius reference-based house-
man algorithm implemented in the minfi package [23]. 
The algorithm is based on methylation values obtained 
from purified cell types in whole blood. These propor-
tions were then utilized as covariates in the model to 
mitigate cell type confounding. The KORA F4 and FF4 
datasets each included 470 and 448 non-negative control 
probes from the methylation arrays, respectively, with 
430 probes overlapping. To address technical effects dur-
ing the experiment, we conducted principal component 
analysis (PCA) on the overlapping probes. The result-
ing principal components (PCs) are believed to capture 
technical variability, and the first five control probe PCs, 
which accounted for 70% of the variance, were included 
as covariates in the model to eliminate technical biases. 
The generation and processing of the RNA-seq data of 
KORA FF4 are described in Additional file 1: Text S4. 
After quality control, the RNA-seq data were available for 
1,543 individuals, with 10,671 gene counts retained for 
subsequent analysis.

Measures of diabetes status
Previously known T2D was identified by self-report, 
validated by the responsible physician or medical chart 
review, or by self-reported current use of glucose-lower-
ing medication. After an overnight fast of at least eight 
hours, participants without known diabetes underwent a 
standard 75 g oral glucose tolerance test (OGTT). NGT, 
prediabetes and newly diagnosed T2D were defined 
according to the 1999/2006 World health organiza-
tion (WHO) criteria [24]. The specific cutoff values for 

Fig. 1  Illustration of the selection criteria for study participants and CpG 
sites included in the analysis
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the definition of T2D can be found in Additional file 1: 
Text S5. For this study, individuals with newly diagnosed 
T2D or previously known T2D were categorized as hav-
ing T2D. Since this study involves longitudinal data, an 
individual’s diabetes status may change between time 
points. Abbreviations separated by a dash indicate dia-
betes status at baseline and at follow-up. For example, " 
prediabetes-T2D” refers to individuals who had predia-
betes at baseline and had T2D at follow-up. FPG, HbA1c, 
HOMA-IR, and HOMA-B were assessed as described 
earlier [25].

Statistical analysis
Epigenome wide association studies
We applied linear mixed-effects models with random 
participant-specific intercepts to examine the associa-
tions between DNA methylation (measured beta values 
ranging from 0 to 1) and diabetes status (NGT vs. predia-
betes and T2D). The association between DNA methyla-
tion and diabetes status were identified by the epigenome 
wide association studies, adjusting for follow-up time (0 
for baseline and the time difference to follow-up), age 
at baseline (years), sex (male, female), body mass index 
(BMI, kg/m2), smoking status (never, former, current), 
estimated cell types (monocytes, B Cells, CD4 T cells, 
CD8 T cells, and NK cells) and technical effects. An 
interaction term between sex and T2D was incorporated 
into the EWAS model to assess the differences in meth-
ylation levels between male and female individuals. We 
used the false discovery rate (FDR) (Benjamini–Hoch-
berg method) to account for multiple testing. An asso-
ciation was considered statistically significant at a p_FDR 
value < 0.05. The same linear mixed effect model was 
applied to explore the association between DNA meth-
ylation and four continuous outcomes (FPG, HbA1c, 
HOMA-B and HOMA-IR), which were log-transformed 
to increase the conformity to normal distributions of 
residuals. Differentially methylated regions (DMRs) are 
genomic areas characterized by consistently differing 
DNA methylation levels across multiple adjacent CpG 
sites. Alongside the single-site position analysis, we uti-
lized the comb-p function from the Enmix package (ver-
sion 1.38.01) to identify diabetes-related DMRs. These 
were defined as groups of probes containing three or 
more positions within 1,000 base pairs of one another, 
with FDR-adjusted p-values of less than 0.05. To deter-
mine whether the identified diabetes-related CpG sites 
are also associated with other diseases or exhibit meth-
ylation changes in tissues beyond whole blood samples, 
we checked each significant CpG site in the EWAS Cata-
log [26].

Time interaction analysis
For CpG sites significantly associated with T2D in the 
main model, we examined their interaction effects 
between diabetes status and follow-up time. This interac-
tion effect represents the difference in the rate of meth-
ylation change per year between individuals with and 
without T2D.

Sensitivity analysis
We conducted two sensitivity analyses to evaluate the 
robustness of our findings. First, we expanded our 
analysis by including additional confounding variables: 
parental history of diabetes (positive: at least one par-
ent with diabetes; negative: both parents without diabe-
tes; unknown), use of glucose-lowering medication (yes 
or no), HDL-cholesterol levels, triglyceride levels, and 
hypertension (yes or no). The detailed criteria used to 
assess or define these cofounders have been previously 
explained [27]. Second, we included only participants 
with repeated measures of both DNA methylation and 
glucose- and insulin-related traits, allowing for within-
person comparisons over time (945 participants with 
1,890 observations).

Association between DNA methylation and changing 
diabetes status
To investigate the association between DNA methylation 
and changing diabetes status over time, we categorized 
945 participants individuals into 3 groups according 
to the diabetes status both at baseline and at follow-up: 
(i) 169 individuals who had either prediabetes or T2D 
at both time-points (prediabetes-prediabetes:67, T2D-
T2D:102), (ii) 200 individuals who progressed from NGT 
to prediabetes or T2D, or from prediabetes to T2D (pre-
diabetes-T2D:57, NGT-T2D:22, NGT-prediabetes:121), 
and (iii) 523 individuals who had NGT at both time-
points (NGT-NGT: 523). We further excluded 53 indi-
viduals whose conditions improved over time, including 
those with T2D at baseline who had prediabetes or NGT 
at follow-up, and those with prediabetes at baseline who 
had NGT at follow-up (T2D-prediabetes:6, T2D-NGT:1, 
prediabetes-NGT:46) and finally 892 individuals left for 
the analysis. We focused on the previously identified 
overlapping significant CpG sites from the analysis of 
all individuals with methylation measured at least once 
across two visits (N = 2,556), as well as the subset with 
repeated DNA methylation measurements (N = 945).

Association between DNA methylation and gene expression
To investigate the relationship between the identi-
fied T2D-related CpG sites and gene expression, and to 
improve annotation, we analysed associations with gene 
expression probes within a 500 kb window surrounding 
the significant CpG sites. The MatrixEQTL (version 2.3) 
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package was used to identify significant CpG-transcript 
associations. Linear models were adjusted for age, sex, 
measured white blood cell proportions (neutrophils, 
monocytes, basophils, and eosinophils) and technical 
variation with FDR correction for multiple testing.

Pathway analysis
To gain insights into potential biological processes rel-
evant to diabetes or glycemic regulation, we performed 
gene pathway analysis using the GOmeth function from 
the missMethyl package (version 1.38.0). Pathways with 
an p_FDR < 0.05 were considered significant association.

Results
Characteristics of the study population
The analysis included 3,501 observations from 2,556 par-
ticipants in the KORA F4 (1,696) and FF4 (1,805) stud-
ies. Table 1 presents the characteristics of all participants, 
while Additional file 1: Table S1 shows the characteristics 
of the 945 individuals with methylation measured at both 
time points. For all participants, the mean age was 61.0 
years in F4 and 58.0 years in FF4. Among the 945 par-
ticipants with repeated methylation measurements, the 
mean age was 57.0 years in F4 and 64.0 years in FF4. Due 
to differences in average age between the two cohorts, we 
included baseline age as a covariate in our linear mixed 
effects model to control for age-related variability. The 
mean BMI was 27.5 kg/m2 in F4 and 27.0 kg/m2 in FF4. 
Male participants comprised 48.8% of the F4 cohort and 

48.1% of the FF4 cohort. Additionally, 14.5% of partici-
pants in F4 and 13.2% in FF4 had T2D, while 22.4% and 
27.8%, respectively, had a parental history of diabetes.

Longitudinal association between DNA methylation and 
diabetes status
An EWAS was conducted to identify differences in DNA 
methylation among individuals with NGT, prediabetes 
and T2D using linear mixed effect models with individ-
ual-specific random intercepts in a longitudinal study. 
Among the 374,054 CpG sites examined, none showed 
a significant association with prediabetes, while 64 sites 
(annotated to 47 unique genes) exhibited significant 
associations with T2D, with 21 sites being hypomethyl-
ated and 43 sites being hypermethylated compared to 
individuals with NGT. Diabetes-by-sex interaction analy-
sis revealed no significant differences between men and 
women. The Miami plot (Fig.  2) illustrates the distribu-
tion of CpG sites associated with T2D. Table 2 provides 
a summary of the 15 most significant CpG sites, while 
Additional file 2: Table S1 lists all significant CpG sites 
linked to T2D. Notably, cg19693031, annotated to thio-
redoxin-interacting protein (TXNIP), emerged as the 
most significant CpG site (p value: 9.51 × 10− 27) and dem-
onstrated the most significant effect size in our analysis 
(− 2.92%). The results confirm 49 previously reported 
cross-sectionally associated gene loci, including those 
annotated to TXNIP, ATP-binding cassette sub-family G 
member 1 (ABCG1), carnitine palmitoyl transferase 1 A 

Table 1  Characteristics of the study population
Characteristics KORA F4 KORA FF4

All N = 1696 NGT N = 1113 Prediabetes
N = 338

T2D N = 245 All N = 1805 NGT N = 1262 Prediabetes N = 304 T2D N = 239

Age (years) 61 (14) 58 (14) 65 (14) 67 (10) 58 (18) 54.5 (16) 63 (16) 68 (13.5)
Male (%) 828 (48.8%) 499 (44.8%) 184 (54.4%) 145 (59.2%) 868 (48.1%) 554 (43.9%) 172 (56.6%) 142 (59.4%)
BMI (kg/m2) 27.5 (5.8) 26.2(5.2) 29.3 (5.7) 30.7(6.7) 27.0 (6.2) 26.0 (5.4) 29.2 (5.2) 30.4 (7.2)
Smoking
Never smoker 710 (41.9%) 460 (41.3%) 156 (46.2%) 94 (38.4%) 746 (41.3%) 522 (41.4%) 118 (38.8%) 106 (44.4%)
Former smoker 737 (43.5%) 462 (41.5%) 156 (46.2%) 119 (48.6%) 766 (42.4%) 517 (41.0%) 138 (45.4%) 111 (46.4%)
Current smoker 247 (14.6%) 189 (17.0%) 26 (7.7%) 32 (13.1%) 293 (16.2%) 223 (17.7%) 48 (15.8%) 22 (9.2%)
Hypertension (%) 772 (45.5%) 377 (33.9%) 198 (58.6%) 197 (80.4%) 646 (35.8%) 317 (25.1%) 159 (52.3%) 170 (71.1%)
Fasting glucose 5.4 (0.9) 5.2 (0.6) 5.8 (0.9) 6.9 (1.9) 5.4 (0.9) 5.2 (0.6) 6.1 (0.8) 7.2 (2.0)
HOMA-IR 2.2 (1.8) 1.9 (1.3) 3.1 (2.5) 5.1 (4.0) 2.1 (1.9) 1.8 (1.4) 3.5 (2.2) 4.8 (4.2)
HOMA-beta 102.0 (65.7) 101.0 (62.7) 110.0 (79.0) 93.5 (97.4) 94.8 (65.5) 93.1 (61.0) 110.0 (87.7) 102. (70.3)
HbA1c 37.0 (6.0) 36.0 (5.0) 38.5 (5.0) 46.0 (12.0) 36.0 (6.0) 34.0 (5.0) 38.0 (5.0) 45.0 (10.8)
HDL-cholesterol 1.4 (0.5) 1.5 (0.5) 1.3 (0.5) 1.2 (0.4) 1.6 (0.7) 1.7 (0.7) 1.5 (0.6) 1.4 (0.5)
Triglycerides 1.3 (0.9) 1.1 (0.8) 1.5 (1.0) 1.7 (1.2) 1.2 (0.8) 1.1 (0.7) 1.5 (1.0) 1.6 (1.2)
Medication 128.0 (7.6%) 0 (0%) 0 (0%) 128 (52.2%) 133 (7.4%) 0 (0%) 0 (0%) 133 (55.6%)
Parental history
Yes 380 (22.4%) 239 (21.5%) 71 (21.0%) 70 (28.6%) 501 (27.8%) 314 (24.9%) 94 (30.9%) 93 (38.9%)
No 773 (45.6%) 582 (52.3%) 135 (39.9%) 56 (22.9%) 1131 (62.7%) 844 (66.9%) 177 (58.2%) 110 (46.0%)
Unknown 254 (15.0%) 159 (14.3%) 53 (15.7%) 42 (17.1%) 173 (9.6%) 104 (8.2%) 33 (10.9%) 36 (15.1%)
Data are median (IQR) for continuous variables and n (%) for categorical variables. The unit for both fasting glucose and HbA1c is mmol/mol. The unit for both HDL-
cholesterol and triglycerides is mmol/l. Medication means the glucose-lowering medication
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(CPT1A), and sterol regulatory element-binding tran-
scription factor 1 (SREBF1). Importantly, the effect direc-
tion of these associations in this longitudinal study was 
consistent with those of the cross-sectional results for all 
49 known sites listed in the EWAS catalogue [26]. Addi-
tionally, 15 CpG sites annotated to 10 unique genes were 
identified as novel associations, including cg02550722 
annotated to tenascin XB (TNXB), cg04745771 anno-
tated to epiplakin 1 (EPPK1), cg23661483 annotated to 

ilvb acetolactate synthase like (ILVBL), cg13947735 anno-
tated to UDP-glcnac: betagal beta-1,3-n-acetylglucosami-
nyltransferase like 1 (B3GNTL1), cg15418499 annotated 
to interleukin-18 (IL18), cg14172849 annotated to X-ray 
repair cross complementing 3 (XRCC3), cg20661985 
annotated to open reading frame 3 encoded at human 
chromosome 20 (C20orf3). The DMR analysis identified 
44 significant regions associated with 36 unique genes. 
This analysis confirmed 7 genes previously identified in 

Table 2  Summary of top 15 significant CpG sites associated with T2D
Probe Delta beta (%) p value p_FDR CHR Gene MAPINFO Gene_group
cg19693031 − 2.92 9.51E−27 3.55E−21 1 TXNIP 145,441,552 3’UTR
cg06500161 1.22 6.69E−14 1.25E−08 21 ABCG1 43,656,587 Body
cg13274938 0.91 3.30E−11 4.12E−06 17 RARA 38,493,822 Body
cg11024682 0.95 6.78E−10 5.43E−05 17 SREBF1 17,730,094 Body
cg00574958 − 0.73 7.26E−10 5.43E−05 11 CPT1A 68,607,622 5’UTR
cg07458272 1.02 7.75E−09 4.45E−04 19 KIAA0355 34,744,396 TSS1500
cg15082870 0.91 8.44E−09 4.45E−04 7 # 36,022,841 #
cg17058475 − 1.06 9.53E−09 4.45E−04 11 CPT1A 68,607,737 5’UTR
cg27516100 0.83 1.11E−08 4.64E−04 6 DHX16 30,624,520 Body
cg06710464 0.94 2.24E−08 8.38E−04 17 BAIAP2 79,047,695 Body
cg16805291 1.15 4.70E−08 1.58E−03 7 # 36,022,575 #
cg13059136 1.06 5.08E−08 1.58E−03 11 SNORA54 2,986,541 TSS1500
cg14476101 − 1.46 6.48E−08 1.86E−03 1 PHGDH 120,255,992 Body
cg27431877 0.60 8.83E−08 2.35E−03 12 NCOR2 124,911,924 Body
cg01676795 1.18 2.02E−07 5.04E−03 7 POR 75,586,348 Body
Probe: Unique identifier from the Illumina CG database; Delta Beta: Mean methylation difference between T2D and NGT; p_FDR: Benjamini-Hochberg corrected p 
value (FDR); CHR: Chromosome; Gene: Target gene name from the UCSC database (# indicates no annotated gene); MAPINFO: Chromosomal coordinates of the CpG 
(Build 37); Gene_Group: Gene region feature category describing the CpG position from UCSC

Fig. 2  Miami plot illustrating EWAS results associated with T2D
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the single position analysis and uncovered 29 novel genes 
linked to T2D, such as valyl-tRNA synthetase (VARS), 
or solute carrier family 1 member 5 (SLC1A5). Detailed 
information related to the DMR analysis is available in 
Additional file 2: Table S2. The identified T2D-related 
CpG sites are also linked to other diseases, including 
metabolic syndrome and cardiovascular diseases, and 
show methylation changes in specific tissues, such as the 
liver. For detailed information, please refer to Additional 
file 2: Table S3.

Miami plot illustrating EWAS results associated with 
T2D. The x axis indicates the chromosome location, and 
the y-axis represents the − log10 (p-value). The Bonfer-
roni threshold of 1.34 × 10− 7 is marked by a red dashed 
line, while the Benjamini–Hochberg (FDR) threshold 
(p_FDR < 0.05) is indicated by a blue solid line. The upper 
side represents the positive estimates, and the lower side 
represents the negative estimates.

Longitudinal association between DNA methylation and 
glycemic traits
The same EWAS model was employed to evaluate the 
longitudinal association between DNA methylation 

and four glycemic traits: FPG, HbA1c, HOMA-B, and 
HOMA-IR. Out of the 374,054 CpG sites examined, 128 
were associated with FPG, 41 with HbA1c, none with 
HOMA-B, and 57 with HOMA-IR. Notably, two CpG 
sites, cg19693031 (TXNIP) and cg06500161 (ABCG1), 
were associated with FPG, HbA1c, HOMA-IR, and T2D. 
The glycemic trait analysis identified an additional 161 
unique CpG sites distinct from those associated with 
T2D, bringing the total number of unique CpG sites 
linked to both T2D and glycemic traits to 225. Volcano 
plots (Fig. 3) illustrate the direction of association of the 
significant CpG sites related to glycemic traits. Addi-
tional file 2: Tables S4-6 provide detailed information on 
all significant CpG sites linked to glycemic traits.

Volcano plots illustrating the results for glycemic traits. 
The x axis indicates the effect size, and the y-axis repre-
sents the − log10 (p-value). The Bonferroni threshold of 
p = 1.34 × 10− 7 is marked by a red dashed line, while the 
Benjamini–Hochberg (FDR) threshold (p_FDR < 0.05) 
is indicated by a blue dashed line. (A) Volcano plot for 
FPG. (B) Volcano plot for HbA1c. (C) Volcano plot for 
HOMA-B. (D) Volcano plot for HOMA-IR.

Fig. 3  Volcano plots illustrating the results for glycemic traits
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Interaction between diabetes status and follow-up time
We focused on the 64 CpG sites that showed significant 
associations with T2D in the main model and added 
an interaction term between T2D and follow-up time 
to the model. This estimate indicates the difference of 
the methylation change rates between individuals with 
T2D and NGT. Eight CpG sites were considered sig-
nificant (p_FDR value < 0.05). All 8 CpG sites showed a 
decrease in methylation levels over time. Two CpG sites, 
cg20346503 and cg19693031 (annotated to TXNIP), 
exhibited a steeper decline in methylation for individuals 
with T2D compared to those with NGT, with methylation 
rates of -1.22% and − 1.01% for NGT, versus − 1.31% and 
− 1.15% for T2D, respectively. In contrast, six CpG sites 
(cg10442325, cg15418499 annotated to IL18, cg20507228, 
annotated to MAN2A2, cg04334723 annotated to calre-
ticulin (CALR), cg20661985 and cg00574958 annotated 
to CPT1A) exhibited a slower decrease in methylation 
change over time for individuals with T2D compared to 
those with NGT. For instance, the slope for CPT1A was 
− 0.17% for NGT versus − 0.10% for T2D. Furthermore, 
our analysis demonstrated that there are no interaction 
effects among male and female participants. Table 3 and 
Additional file 2: Table S7 provide summary information 
about the CpG sites which showed interaction effects 
with follow-up time. Figure 3 and Additional file 1: Fig.S1 
illustrate the rate of methylation change over time for the 
NGT and T2D groups (Fig. 4).

Line plots illustrating the rate of methylation change 
over time for the NGT and T2D groups. The red and 
blue line represents the individuals with NGT and T2D, 
respectively. (A) cg19693031 (TXNIP); (B) cg00574958 
(CPT1A); (C) cg15418499 (IL18); (D) cg20507228 
(MAN2A2).

Sensitivity analysis
In our sensitivity analysis, we further adjusted for medi-
cation use, parental history of diabetes, HDL-cholesterol, 
triglycerides, and hypertension as the extended model. 

Among the 374,054 CpG sites examined, 8 sites were 
associated with T2D. Of these, 3 CpG sites remained sig-
nificant and consistent with our main analysis results. 
These include cg19693031 annotated to TXNIP (effect 
size: -1.83%, p value: 1.31 × 10− 7), cg06500161 annotated 
to ABCG1 (effect size: 0.20%, p value: 1.41 × 10− 7), and 
cg13274938 annotated to retinoic acid receptor alpha 
(RARA) (effect size: 0.92%, p value: 9.93 × 10− 7).

We also conducted a sensitivity analysis on a subset 
of 945 individuals with repeated methylation measure-
ments. Among the 374,054 CpG sites examined, 50 CpG 
sites were associated with T2D and the associations for 
22 of these sites, including TXNIP, ABCG1 and RARA, 
remained robust. The correlation coefficients of estimates 
and p values between the full cohort (N = 2,556) and the 
repeated methylation measurement subset (N = 945) was 
strong (r = 0.78) and moderate (r = 0.45), respectively. 
The Venn diagram (Fig. 5) illustrates the overlap of CpG 
sites across different datasets, while the Manhattan plots 
(Additional file 1: Fig. S2) and Additional file 2: Tables 
S8-9 present results from the extended model and the 
subset analysis.

Venn diagram illustrating the overlap of CpG sites 
(with annotated gene names) in the sensitivity analysis. 
The light cyan colour represents the number of signifi-
cant CpG sites associated with T2D in the main analysis 
with all individuals. The greyish-yellow colour represents 
the number of significant CpG sites associated with T2D 
in the extended models with all individuals. The light 
pink colour represents the number of significant CpG 
sites associated with T2D from individuals with repeated 
methylation measurements at two time points.

Association between DNA methylation and changing 
diabetes status over time
The analysis focused on the 22 CpG sites that were 
associated with T2D in both the full cohort (N = 2,556) 
and the subset cohort (N = 945). Among these 22 CpG 
sites, all showed significant associations with persistent 

Table 3  Summary of 8 significant CpG sites with different methylation change rates over time for individuals with T2D compared to 
those with NGT
Probe Estimate1 (%) Estimate2 (%) Estimate3 (%) pvalue p_FDR Gene Gene_group
cg10442325 − 0.86 − 0.71 0.14 3.81E-05 0.002 # #
cg15418499 − 0.98 − 0.81 0.17 8.19E-04 0.023 IL18 5’UTR
cg20507228 − 1.16 − 0.96 0.19 1.10E-03 0.023 MAN2A2 Body
cg04334723 − 0.79 − 0.68 0.10 2.15E-03 0.031 CALR Body
cg20346503 − 1.22 − 1.31 − 0.09 2.48E-03 0.031 # #
cg19693031 − 1.01 − 1.15 − 0.14 3.40E-03 0.031 TXNIP 3’UTR
cg20661985 − 1.39 − 1.25 0.13 3.46E-03 0.031 C20orf3 Body
cg00574958 − 0.17 − 0.10 0.07 6.02E-03 0.048 CPT1A 5’UTR
Probe: Unique identifier from the Illumina CG database; Estimate1: the estimate of follow-up time indicating the methylation change rate per year for individuals 
with NGT; Estimate2: the methylation change rate per year for individuals with T2D by adding Estimate1 and Estimate3; Esimate3: the estimate of the interaction 
term between diabetes and follow-up time indicating the difference of methylation change rates between NGT and T2D; p_FDR: Benjamini-Hochberg corrected p 
value; Gene: Target gene name from the UCSC database. Gene_Group: Gene region feature category describing the CpG position from UCSC
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prediabetes or T2D at both timepoints, while 7 showed 
significant associations with progression of diabetes 
status either from NGT to prediabetes or T2D or from 
prediabetes to T2D. Notably, these 7 CpG sites, includ-
ing cg23436042, cg11183227 annotated to MAN2A2, 
cg06500161 annotated to ABCG1, cg08788930 anno-
tated to DENN domain-containing protein 3 (DENND3), 

cg11311053 annotated to nuclear receptor corepressor 2 
(NCOR2), cg06710464 annotated to BAR/IMD domain 
containing adaptor protein 2 (BAIAP2), and cg17058475 
annotated to CPT1A, demonstrated associations with 
both persistent and progressed diabetes status. Volcano 
plots (Fig.  6) illustrate the direction of associations of 
these significant CpG sites, while the Venn plot (Addi-
tional file 1: Fig.S3) shows the overlap of CpG sites across 
different groups. Additional file 2: Tables S10-11 provide 
summaries of the significant CpG sites linked to persis-
tent and progressed diabetes status, respectively.

Volcano plots illustrating the association between DNA 
methylation and changing diabetes status over time. 
The x axis indicates the effect size, and the y-axis rep-
resents the − log10 (p-value). The Bonferroni threshold 
of 2.27 × 10− 3 is marked by a red dashed line, while the 
Benjamini–Hochberg (FDR) threshold (p_FDR < 0.05) is 
indicated by a blue dashed line. (A) Volcano plot for the 
persistent prediabetes or T2D. (B) Volcano plot for the 
progression of diabetes.

Fig. 5  Venn diagram illustrating the overlap of CpG sites (with annotated 
gene names) in the sensitivity analysis

 

Fig. 4  Line plots illustrating the rate of methylation change over time for the NGT and T2D groups
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Association between DNA methylation and gene 
expression
Focusing on the 64 significant T2D-related CpG sites, 
we identified 104 CpG-transcript pairs in whole blood, 
involving 40 unique CpG sites and 96 unique gene tran-
scripts. Of these, 48 pairs showed positive associa-
tions with an average effect size of 0.58, while 56 pairs 
showed negative associations with an average effect 
size of -1.02. For example, cg06500161 in ABCG1 and 
cg06710464 in BAIAP2 were negatively associated with 
their corresponding gene transcripts, while cg24704287 
in latrophilin 1 (LPHN1) was positively associated with 
its corresponding gene transcript. Table 4 shows the top 
10 significant associations; Additional file 2: Tables S12 
summarizes the CpG-transcript associations.

Pathway analysis
In the pathway analysis of the 225 CpG sites associated 
with T2D and glycemic traits, no significant pathways 
were identified. The list of non-significant pathways is 

provided in Additional file 1: Fig.S5 and Additional file 2: 
Table S13.

Discussion
This study employed longitudinal data with repeated 
measurements to explore the association between DNA 
methylation and diabetes status, as well as glycemic traits. 
We analysed 3,501 observations from 2,556 participants 
using linear mixed-effects models and identified 64 CpG 
sites associated with T2D. Notably, DNA methylation 
at 49 of these loci, including TXNIP, ABCG1, CPT1A, 
and SREBF1, exhibited consistent directional associa-
tions in our longitudinal analysis compared to previously 
reported cross-sectional studies [13, 28]. Importantly, 
our study revealed 15 novel CpG sites within 10 unique 
genes. Furthermore, we observed a distinct rate of 
methylation change for 8 CpG sites between the NGT 
and T2D groups, including those annotated to IL18, 
MAN2A2, CALR, C20orf3 and CPT1A, which exhibited 
either faster or slower decreasing trends. Additionally, 
7 CpG sites annotated to MAN2A2, ABCG1, DENND3, 
NCOR2, BAIAP2 and CPT1A were linked to changes in 
diabetes status. Moreover, we identified 104 associations 
between identified significant T2D-related CpG sites and 
their corresponding gene expression levels.

The 64 significant sites that differ between individuals 
with T2D and NGT in our longitudinal study are anno-
tated to 49 unique genomic loci. TXNIP (1 site) has con-
sistently emerged as the most significant gene associated 
with T2D in previous EWAS studies [29] due to its role 
in regulating pancreatic β-cells production and survival 
[30] and has arisen as a novel potential therapeutic tar-
get in diabetes mellitus and its complications [31]. RARA 
(1 site), the gene encoding retinoic acid receptor alpha, 
is a well-known gene linked to cigarette smoking [32]. 
FoxK2 (1 site), a major target of insulin signalling, plays 

Table 4  Top 10 associated CpG-transcript pairs
CpG Gene p value FDR Beta
cg06500161 ABCG1 1.17E−46 5.80E−44 − 4.76
cg06710464 BAIAP2 2.84E−41 7.04E−39 − 3.30
cg24704287 LPHN1 2.11E−29 3.49E−27 1.02
cg27243685 ABCG1 3.97E−28 4.91E−26 − 4.76
cg11024682 SREBF1 4.32E−26 4.28E−24 − 2.31
cg01676795 POR 3.23E−22 2.67E−20 − 1.18
cg06710464 BAIAP2-AS1 4.83E−22 3.41E−20 − 2.12
cg00851028 TARBP1 2.69E−15 1.66E−13 − 1.36
cg26340740 MPEG1 4.90E−12 2.69E−10 − 1.21
cg10691109 COG5 1.10E−11 5.48E−10 − 0.95
Statistically significant associations between metabolic measure-associated 
CpG sites and expression of cis-transcripts in whole blood (FDR-adjusted 
significance threshold p < 0.05). Gene: transcript ID; beta: coefficient between 
methylation and gene transcripts.

Fig. 6  Volcano plots illustrating the association between DNA methylation and changing diabetes status over time
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a critical role in apoptosis, metabolism, and mitochon-
drial function [33] and could regulate aerobic glycoly-
sis [34]. Dyslipidaemia and diabetes are closely related, 
and epigenome-wide approaches have identified differ-
ential methylation of genes known to have a key role in 
lipid metabolism and lipid traits, particularly CPT1A, 
ABCG1, SREBF1 [35–38]. ABCG1 (2 sites) is crucial for 
cholesterol efflux [39], and cg06500161 within ABCG1 
has been reported to mediate the association between 
statins and risk of T2D [40]. CPT1A (2 sites) is associ-
ated with an increased risk of gestational diabetes mel-
litus (GDM) [41]. And multi-tissue epigenetic analysis 
has revealed distinct associations between the CPT1A 
locus and insulin resistance [42]. Risk group stratifica-
tion based on cg11024682 (SREBF1) was reported to be 
valuable for personalized T2D risk prediction [43, 44]. 
Our study found that after controlling for lipid levels in 
extended models, the associations at the ABCG1 loci 
remained robust. In contrast, the associations for CPT1A 
and SREBF1 were not maintained, suggesting that these 
associations might be driven by alterations in lipid 
metabolism.

Our study identified 15 novel CpG sites annotated 
to 10 unique genes, including TNXB, EPPK1, ILVBL, 
B3GNTL1, IL18, XRCC3, C20orf3. Hypomethylation of 
TNXB gene and differential expression of EPPK1 pro-
tein in the placenta has been reported to be associated 
with GDM [45, 46]. In a mouse model of diabetes, ILVBL 
has been reported to be involved in the formation of 
increased dimethylglyoxal, which induces oxidative stress 
and disrupts the blood-brain barrier, potentially leading 
to neurological complications in diabetes [47]. B3GNTL1 
was identified as part of a trans-omics biomarker for dia-
betic kidney disease in diabetic patients [48]. XRCC3, a 
DNA repair gene, has been significantly associated with 
T2D and diabetic nephropathy in a Turkish population 
[49]. C20orf3, an adipocyte plasma membrane-associated 
protein, was found to be down-regulated in omental adi-
pose tissues from individuals with GDM [50]. Previous 
studies have shown that blood methylation patterns in 
adipose tissue change after bariatric surgery, particularly 
in genes related to immune system, suggesting that blood 
DNA methylation reflects the inflammatory state of adi-
pose tissue post-surgery [51]. In our study, we also found 
that the identified T2D-related CpG sites are also showed 
methylation changes in specific tissues, such as the liver, 
by comparing them to the EWAS catalog.

Prolonged disturbances in glucose metabolism are 
often observed before diabetes diagnosis. Diagnostic 
tools like FPG and HbA1c are critical for identifying dia-
betes, underscoring the significance of investigating their 
effects on DNA methylation. A systematic review and 
meta-analysis revealed that high HOMA-IR values were 
positively associated with an increase in risk of T2D [52]. 

Previous studies have explored the association between 
DNA methylation changes and hyperglycaemia exposure 
using the longitudinal D.E.S.I.R. cohort over a six-year 
period but did not find significant results [53]. Notably, 
in our study, two CpG sites, cg19693031 (TXNIP) and 
cg06500161 (ABCG1), were simultaneously associated 
with FPG, HbA1c, HOMA-IR, and T2D. These findings 
highlight the link between glycemic parameters, insulin 
resistance and DNA methylation, suggesting that altera-
tions at specific CpG sites could serve as biomarkers for 
glycaemic control and diabetes risk prediction.

DNA methylation is the most studied epigenetic regu-
lator related to environmental exposures. Various envi-
ronmental triggers, including chemical exposures and 
complex disease conditions, can lead to global or site-
specific DNA methylation changes. This regulation allows 
for immediate environmental adaptations, potentially 
affecting transcription factor binding and gene expres-
sion. Importantly, we observed that the rate of meth-
ylation change varied across diabetes groups. Eight CpG 
sites, annotated to six unique genes—IL18, MAN2A2, 
CALR, TXNIP, C20orf03, and CPT1A—all showed 
decreasing methylation values over time. Low blood 
TXNIP DNA methylation has been linked to increased 
glucose levels and an increased risk of T2D. In our study, 
a hypomethylated CpG site annotated to TXNIP showed 
a faster rate of methylation decline in individuals with 
T2D compared to NGT individuals, resulting in a larger 
methylation difference between groups, potentially lead-
ing to a higher TXNIP gene expression over time. Con-
versely, IL18, an inflammation-induced cytokine that is 
secreted by immune cells and adipocytes [54], was identi-
fied as one of the novel sites in our research, showed a 
slower decrease in methylation values in individuals with 
T2D compared to NGT. Inflammation-driven processes 
in the innate immune system can lead to apoptosis, tissue 
fibrosis, and organ dysfunction, contributing to insulin 
resistance, impaired insulin secretion, and renal failure 
[55]. The changing methylation signatures at these 7 CpG 
loci over time confirm their responsiveness to variations 
of diabetes status and suggesting their potential as thera-
peutic targets for future interventions.

In our follow-up study, we considered the evolving 
nature of diabetes status and identified seven methyla-
tion sites linked to the progression from NGT to pre-
diabetes and T2D: cg23436042, cg11183227 (MAN2A2), 
cg06500161 (ABCG1), cg08788930 (DENND3), 
cg11311053 (NCOR2), cg06710464 (BAIAP2), and 
cg17058475 (CPT1A). MAN2A2 (2 sites), involved in 
carbohydrate formation, was linked to fasting insulin in 
an integrative cross-omics analysis [56]. DENND3 is a 
positive regulator of starvation-induced autophagy [57]. 
NCOR2 has been identified as a potential target gene for 
T2D screening in the context of cell-free DNA (cfDNA) 
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methylation changes [58]. It has also been recognized 
as a potential druggable target for T2D based on an 
interactome-transcriptome analysis of peripheral blood 
mononuclear cells (PBMC) in a case-control study of 
Chinese T2D patients and age- and sex-matched healthy 
people [59]. BAIAP2, the tenth significant site in our 
study (effect size: 0.94%, p value: 2.24 × 10− 8), encodes 
the insulin-responsive protein of 53kDa (IRSp53). In our 
EWAS analysis, we did not identify any CpG sites linked 
to prediabetes. However, within the progression analysis 
involving individuals transitioning from NGT to predia-
betes or T2D, we observed that 2 out of 7 CpG sites—
MAN2A1 and ABCG1—exhibited suggestive significance 
or nominal significance to prediabetes. This suggests that 
prediabetes may indeed influence the progression of dia-
betes from NGT to prediabetes. Our findings reveal that 
DNA methylation is associated with the progression of 
diabetes status and the identified CpG sites could serve 
as valuable biomarkers for tracking disease evolution 
and guiding personalized treatments. Further investiga-
tion with larger sample sizes may be necessary to bet-
ter understand the epigenetic changes associated with 
prediabetes.

DNA methylation is a recognized regulator of gene 
expression. By integrating gene expression data, we 
identified 104 associations between 40 CpG sites and 96 
unique gene transcripts in whole blood. Notably, among 
the seven CpG sites liked to the diabetes progression, 
five showed a negative correlation with gene expression 
levels, including cg23436042, cg11183227 (MAN2A2), 
cg06500161 (ABCG1), cg06710464 (BAIAP2), and 
cg17058475 (CPT1A), while cg08788930 (DENND3) 
and cg11311053 (NCOR2) did not. For instance, meth-
ylation at cg06500161 in the ABCG1 gene was nega-
tively associated with its expression levels, providing 
evidence for a potential link between hypomethylation 
at this site and upregulated gene expression, which may 
contribute to T2D and related diseases. Although meth-
ylation at cg19693031, which is annotated to TXNIP, was 
negatively associated with T2D, our analysis in blood 
did not identify any associations involving the TXNIP 
gene transcript. Prior research has demonstrated that 
hyperglycemia-induced overexpression of TXNIP can 
lead to pancreatic β-cell apoptosis, cardiomyopathy, and 
metabolic disorders [46]. However, the EWAS results 
indicated no significant association between DNA meth-
ylation and HOMA-beta function; likely due to the 
nature of the blood samples used. TXNIP gene expres-
sion has been found to be upregulated in skeletal muscle 
samples from individuals with diabetes and prediabetes 
[55], supporting our hypothesis. As a metabolically active 
tissue, blood plays a crucial role in the inflammatory and 
vascular effects associated with adiposity, thus making it 
relevant to our investigation. Moreover, the advantages 

of utilizing blood samples include their accessibility, 
cost-effectiveness, and potential for early diagnosis and 
treatment, which enhances their practicality for clinical 
applications.

Our study has notable strengths. Firstly, we have com-
prehensive CpG site coverage through EPIC and 450k 
arrays, in contrast to candidate locus studies which 
typically utilize pyrosequencing methods. Secondly, we 
conducted a longitudinal analysis spanning seven years, 
incorporating both DNA methylation profiles and dia-
betes status assessed, through OGTT in those without 
a clinical diabetes diagnosis. Lastly, we employed differ-
ent statistical models to control for potential confound-
ers, thereby enhancing the robustness and reliability of 
our findings. Our study also has limitations. We did not 
account for other types of diabetes such as type 1 dia-
betes and gestational diabetes, which may exhibit dif-
ferent methylation patterns and disease mechanisms. 
Furthermore, utilizing DNA derived from blood may 
not completely reflect tissue-specific variations in meth-
ylation patterns. Additionally, the lack of a replication 
cohort from diverse ancestries, focusing solely on indi-
viduals of European ancestry, highlights the necessity 
for future studies to validate our findings across different 
populations.

Conclusion
Our study provides new insights into the associations 
between DNA methylation and T2D through a longi-
tudinal approach involving repeated measurements. 
We identified novel CpG sites associated with T2D and 
revealed varying rates of methylation changes at specific 
loci across different diabetes status groups. Moreover, 
we underscored the potential of DNA methylation as a 
biomarker for diabetes progression and demonstrated 
the relationship between DNA methylation and the gene 
expression levels.
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Text S1 Selection criteria of individuals in KORA F4 and FF4 1 

The KORA F4 study included 3,080 participants, while the KORA FF4 study involved 2,279 2 

participants. Methylation measurements were available for 1,799 participants in KORA F4 and 3 

1,928 in KORA FF4, using the Illumina 450K Infinium Methylation BeadChip and Infinium 4 

MethylationEPIC BeadChip, respectively. Samples with greater than 5% missing values (based 5 

on the autosomes only) were removed, as well as whose predicted sex differed from the sex 6 

recorded at the time of the interview. After quality control, 1727 individuals remained in KORA 7 

F4 and 1874 in KORA FF4. 8 

For this study, individuals with newly diagnosed T2D measured by oral glucose tolerance test 9 

(OGTT) or previously known T2D were categorized as having T2D. We further excluded 10 

observations due to either other types of diabetes or unknown diabetes status at KORA F4 or 11 

FF4. The longitudinal analyses of diabetes status and glycemic and insulin-related traits were 12 

restricted to 2,556 participants with at least one DNA methylation measurement at either F4 or 13 

FF4. In total, 3,501 observations from 2,556 participants in KORA F4 (1696) and FF4 (1,805) 14 

were included in the analysis. Of these participants, 945 (36.97%) had methylation data at both 15 

time points. 16 

Text S2 CPACOR Preprocessing Pipeline 17 

1. DNA methylation measurement：In the KORA F4 study, genome-wide DNA methylation 18 

in whole blood was analysed using the Illumina 450K Infinium Methylation BeadChip 19 

(Illumina Inc., San Diego, CA, USA). For the KORA FF4 study, the Infinium 20 

MethylationEPIC BeadChip (Illumina Inc., San Diego, CA, USA) was used according to 21 

standard protocols provided by Illumina. GenomeStudio software version 2011.1 with 22 

Methylation Module version 1.9.0 was used for initial quality control of assay performance 23 

and for generation of methylation data export files.  24 
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2. Reading in the data: Raw IDAT files were read into R (v4.3.0) using the command 25 

read.metharray from the Bioconductor package minfi (v1.46.0) and background corrected 26 

using the command bgcorrect.illumina. 27 

3. Sex prediction: When we used the command getSex (minfi v1.46.0) on the raw data. In 28 

KORA F4, there was no individuals with a predicted sex different from the sex given at the 29 

time of the interview (cut-off -1.5). In KORA FF4, there were two individuals with 30 

predicted sex different to the sex given at the time of the interview and these individuals 31 

were removed. 32 

4. Quality control on raw intensities: We used the command getQC (minfi v1.46.0) on the raw 33 

data. In KORA F4, 1 individual failed the QC (cut-off 9) and was removed. In KORA FF4, 34 

individuals were removed whose median intensity was less than 50% of the experiment-35 

wide mean, or less than 2000 arbitrary units (33 individuals). 36 

5. Detection p-value filter: Probes whose detection p-values were greater than 0.01 were set 37 

to missing.  38 

6. Sample call rate filter: Samples with greater than 5% missing values (testing the autosomes 39 

only) were removed. In KORA F4, this led to the exclusion of 72 individuals. In KORA 40 

FF4, 9 individuals were excluded among which 4 individuals were overlapped with those 41 

failing raw intensity quality control. 42 

7. CpG call rate filter: In KORA F4, CpG sites with greater than 5% missing values on the 43 

autosomes were removed (N= 14541). In KORA FF4, probes with greater than 5% missing 44 

values on the autosomes were also removed (N=5786).  45 

8. CpG probe exclusion: In KORA F4, we use the manifest HM450.hg19.manifest.pop.tsv.gz 46 

(Population-specific masking HM450 file from 47 
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https://zwdzwd.github.io/InfiniumAnnotation) and set MASK_general_EUR to TRUE to 48 

obtain a reliable list of probes to be excluded. This is based on PMID: 27924034. This yields 49 

59186 CpG sites to exclude. In KORA FF4, 1) Cross-reactive probes: There are publications 50 

providing lists for probes that hybridize to multiple possible regions (PMID: 27717381, 51 

PMID: 27330998). A total of 44493 unique probes were removed. 2) SNPs within the 52 

probe-binding region: The R package minfi v1.28.3 provides a list of SNPs within the 53 

probe-binding regions for each CpG. Probes for CpG sites known to be SNPs with minor 54 

allele frequency >0.05 (as given by minfi), or probes that had SNPs in the single base 55 

extension with minor allele frequency >0.05 were removed (11370 and 5597, respectively). 56 

9. Quantile normalization: Quantile normalization was performed separately on the signal 57 

intensities divided into the 6 probe types: type II red, type II green, type I green 58 

unmethylated, type I green methylated, type I red unmethylated, type I red methylated 59 

(PMID: 25853392). The quantile normalized intensities were then used to generate 60 

methylation beta values, a measure from 0 to 1 indicating what percent of the cells were 61 

methylated at this locus. This step was performed separately for the autosomes, and for the 62 

sex chromosomes. For the sex chromosomes this step was performed separately for men 63 

and women. QN was performed using the R package limma v3.56.2 (PMID: 25605792). 64 

10. Blood disorders: In KORA FF4, seven individuals have strong blood disorders. 1 had 65 

already been removed due to failing quality control, and the remaining six were removed 66 

from the dataset. 67 

11. Cell type heterogeneity: White blood cell type proportions were estimated using the 68 

Houseman algorithm (PMID: 22568884) as implemented using the command 69 

estimateCellCounts (minfi v1.46.0) on the raw intensities and the default parameters.  70 

estimate were performed using the default types: "CD8T", "CD4T", "NK", "Bcell", 71 

"Mono",” Gran”. 72 
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12. Technical covariates: We calculated the principal components (PCs) of all the non-negative 73 

control probes, as per the CPACOR pipeline. Up to 30 control probe PCs can be used as 74 

covariates in the regression models to adjust for technical affects. Alternatively, some 75 

combination of plate, chip and chip position can be used. 76 

13. Probe count summary: In KORA F4, the original 450K array has 485577 probes, of which 77 

65 are SNP probes for quality control and were removed. Then the array contains 485512 78 

probes (473864 on the autosomes, 11232 on the X chromosome, 416 on the Y chromosome). 79 

59186 were probes to be excluded based on the population-specific masking HM450 file, 80 

and 14541 failed the detection p-value filter, a total of 73727. However, some probes 81 

overlapped both categories: a total of 70640 were removed. This leaves a total of 414872 82 

probes: 404837 from the autosomes, 9792 from the X chromosome, 243 from the Y 83 

chromosome. In KORA FF4, the original EPIC array had 866895 probes, of which 59 are 84 

SNP probes for quality control.  A “Product Quality Notice” (Tracking Number: PQN0223) 85 

issued by Illumina on April 19, 2017, indicated that 977 probes were removed due to 86 

underperformance, hence the total of 865859. 40 samples from batch 1 had defective chips 87 

and were missing 598 CpG sites. For these individuals the missing CpG sites were simply 88 

replaced with missing values in the data. Then the array contains 865859 probes (846232 89 

on the autosomes, 19090 on the X chromosome, 537 on the Y chromosome). 44493 were 90 

cross-reactive probes, 11370 and 5597 had SNPs in the CG position and single base 91 

extensions respectively, and 5786 failed the detection p-value filter, a total of 67246. 92 

However, many probes overlapped multiple categories: a total of 59631 were removed. This 93 

leaves a total of 806228 probes: 788106 from the autosomes, 17743 X chromosome, 379 Y 94 

chromosome. 95 

14. Sample count summary: In KORA F4, 1799 individuals were measured in one batch using 96 

the Illumina HumanMethylation 450 BeadChip.  A total of 72 were removed due to quality 97 
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control: these all failed the detection rate threshold, and 1 additionally failed the median 98 

intensity step. This leaves 1727 individuals passing quality control. In KORA FF4, 1928 99 

individuals were measured in two rounds.  2 were removed due to sex mismatch, 33 100 

removed due to failing quality control on the raw intensities and 9 failed the detection p-101 

value filter (4 overlap with intensity filter), leaving 1888 individuals passing quality control. 102 

In the first round, there were N=488 KORA FF4 samples.  In the second round, there were 103 

N=1440 KORA FF4 samples.  They were both measured using the Illumina EPIC 104 

BeadChip. Seven individuals had a noted strong blood disorder or unusual cell counts, one 105 

of whom had already been removed from the dataset.  The further 6 individuals were 106 

removed. After all these steps, 8 individuals withdrew consent for their data to be used, 107 

leaving 1874 individuals.  108 

Text S3 Selection criteria of CpG sites in KORA F4 and FF4 109 

Probes with more than 5% missing values on the autosomes were excluded. Additionally, 110 

probes containing single nucleotide polymorphisms (SNPs) within the probe-binding regions 111 

were removed. Probes were also filtered out if the detection P-value exceeded 0.01, or if they 112 

were found to hybridize to multiple genomic regions. Probe intensities were normalized using 113 

the quantile normalization procedure for both KORA F4 and FF4. After quality control, 414,872 114 

CpG sites remained in KORA F4 and 806,228 in KORA FF4, with 383,057 overlapping CpG 115 

sites. Following the exclusion of sex chromosome CpG sites, 374,054 CpG sites were left in 116 

the final analysis. 117 

Text S4 Quality control for KORA FF4 gene expression data 118 

After RNA isolation using PAXgene Blood RNA Kit, RNA integrity number (RIN) was 119 

measured using the Agilent 2100 Bioanalyzer system. RNA samples with RIN values of 120 

approximately 6 or more were selected for mRNA sequencing (poly-A selected). The libraries 121 

were prepared using the Illumina stranded mRNA prep ligation kit (Illumina), following the 122 
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kit's instructions. After a final QC, the libraries were sequenced in a paired-end mode (2x100 123 

bases) in the Novaseq6000 sequencer (Illumina) with a depth of  ≥ 40 Million reads per sample. 124 

After demultiplexing, FASTQ files from each sample are processed using standard tools. 125 

Alignment to UCSC Genome Browser hg19 human reference genome using STAR v2.4.2a 126 

(PMID: 23104886). Unaligned reads are discarded. Sequencing QC was done using RNASeQC 127 

v1.1.8.1 (PMID: 22539670). Properly aligned reads are then processed with HTSeq-count 128 

v0.6.1 (PMID: 25260700) to generate read counts which can be interpreted as quantified gene 129 

expression. The reads are then normalized for exon length and total sequencing yield to generate 130 

Fragments Per Kilobase of transcript per Million mapped reads (FPKM), and this is done 131 

through dividing the fragments per gene by the product of length of the gene in kilobase and 132 

million reads sequenced. 133 

After sequencing QC, samples QC was done. Samples with < 30 million reads were discarded. 134 

Exonic, intronic, intragenic, intergenic and rRNA rates calculated by RNAseQC were examined 135 

for outliers but no such outliers were found, and no samples were excluded based on these. 136 

Only the genes with FPKM of ≥ 1 in at least 5% of the samples were selected. Number of the 137 

selected genes in each sample were calculated. Samples having less than 5750 genes were 138 

excluded. Sex mismatches in the phenotype tables and those discerned from looking at the 139 

expression of XIST and UTY genes were also excluded. 140 

Text S5 WHO criteria of type 2 diabetes 141 

Normal glucose tolerance (fasting glucose <6.1 mmol/l and 2h glucose <7.8 mmol/l); 142 

prediabetes defined as (1) impaired fasting glucose (IFG; fasting glucose ≥6.1 mmol/l but <7.0 143 

mmol/l, and 2h-glucose <7.8 mmol/l),  (2) impaired glucose tolerance (IGT; fasting glucose 144 

<6.1 mmol/l and 2h glucose ≥7.8 mmol/l but <11.1 mmol/l) or (3) combination of (1) and (2); 145 
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and newly diagnosed T2D (fasting glucose ≥7.0 mmol/l or 2h-glucose ≥11.1 mmol/l) were 146 

defined according to the 1999/2006 WHO criteria. 147 

 148 

Table S1 Characteristics of population with repeated methylation measurements 149 

Characteristics KORA F4 KORA FF4 

 
All 

N=945 

NGT 

N=666 

Prediabetes 

N=170 

T2D 

N=109 

All 

N=945 

NGT 

N=570 

Prediabetes 

N=194 

T2D 

N=181 

Age (years) 57 (12) 56 (11) 60 (12) 64 (12) 64 (12) 62 (12) 65 (11) 69 (12) 

Male (%) 459 (48.6%) 297 (44.6%) 97 (57.1%) 65 (59.6%) 459 (48.6%) 239 (41.9%) 110 (56.7%) 110 (60.8%) 

BMI (kg/m2) 27.1 (5.9) 26.1 (5.1) 29.8 (6.0) 30.4 (6.5) 27.4 (6.2) 26.2 (5.6) 29.0 (5.50) 29.9 (7.18) 

Smoking         

    Never smoker 389 (41.2%) 278 (41.7%) 71 (41.8%) 40 (36.7%) 389 (41.2%) 237 (41.6%) 77 (39.7%) 75 (41.4%) 

    Former smoker 415 (43.9%) 274 (41.1%) 84 (49.4%) 57 (52.3%) 436 (46.1%) 256 (44.9%) 91 (46.9%) 89 (49.2%) 

    Current smoker 141 (14.9%) 114 (17.1%) 15 (8.8%) 12 (11.0%) 120 (12.7%) 77 (13.5%) 26 (13.4%) 17 (9.39%) 

Hypertension  367 (38.8%) 193 (29.0%) 91 (53.5%) 83 (76.2%) 447 (47.3%) 201 (35.3%) 114 (58.8%) 132 (72.9%) 

Fasting glucose 5.3 (0.8) 5.2 (0.6) 5.9 (1.0) 7 (2.3) 5.6 (1.0) 5.3 (0.6) 6.1 (0.7) 7.3 (2) 

HOMA-IR 2.04 (1.7) 1.8 (1.2) 3.11 (2.5) 4.61 (3.5) 2.3 (2) 2.0 (1.3) 3.6 (2.2) 4.8 (4.3) 

HOMA-B 99.4 (64.1) 98.8 (58.4) 115.0 (78.5) 84.2 (76.1) 96.0 (67.7) 95 (61.9) 110. (84.2) 88.4 (71.7) 

HbA1c 37.0 (7) 36 (5) 38 (4.8) 46 (11) 37.0 (6) 35 (5) 38 (4) 45 (10) 

HDL-cholesterol  1.4 (0.5) 1.5 (0.5) 1.3 (0.4) 1.2 (0.4) 1.7 (0.7) 1.8 (0.7) 1.5 (0.5) 1.4 (0.5) 

Triglycerides 1.3 (0.9) 1.1 (0.8) 1.6 (1.1) 1.3 (1.2) 1.3 (0.8) 1.1 (0.6) 1.4 (1.0) 1.6 (1.3) 

Medication 46 (4.9%) 0 (0%) 0 (0%) 46 (42.2%) 104 (11.0%) 0 (0%) 0 (0%) 104 (57.5%) 

Parental history         

    Yes 247 (26.1%) 161 (24.2%) 48 (28.2%) 38 (34.9%) 268 (28.4%) 140 (24.6%) 57 (29.4%) 71 (39.2%) 

    No 476 (50.4%) 365 (54.8%) 78 (45.9%) 33 (30.3%) 569 (60.2%) 373 (65.4%) 115 (59.3%) 81 (44.8%) 

    Unknown 254 (13.3%) 90 (13.5%) 25 (14.7%) 11 (10.1%) 108 (11.4%) 57 (10%) 22 (11.3%) 29 (16.0%) 

Data are median (IQR) for continuous variables and n (%) for categorical variables. The unit for both fasting 150 

glucose and HbA1c is mmol/mol. The unit for both HDL-cholesterol and triglycerides is mmol/l. Medication 151 

means the glucose-lowering medication. 152 

 153 

 154 

 155 
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 156 

Line plots illustrate the rate of methylation change over time across different groups. The red and blue 157 

line represents the individuals with NGT and T2D, respectively. (A) cg20346503; (B) cg04334723 (CALR); 158 

(C) cg10442325; (D) cg20661985 (C20orf3). 159 
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 160 

Manhattan plots of sensitivity analysis. The x axis indicates the chromosome location, and the y-axis 161 

represents the −log10 (p-value). The Bonferroni threshold of 1.34×10−7 is marked by a blue solid line, 162 

while the Benjamini–Hochberg (FDR) threshold (p_FDR < 0.05) is indicated by a red dashed line. (A) 163 

Manhattan plot of EWAS results from extended model. (B) Manhattan plots of EWAS results from 164 

individuals with two-time points methylation data. 165 
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 166 

Venn plot illustrates the overlap of CpG sites from different analysis. 167 
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 168 

The top 10 non-significant pathways associated with T2D and glycemic traits. The x-axis represents the 169 

−log10(p-value), and the red dashed line represents the significant threshold (p_FDR < 0.05). 170 
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