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1. Eigenbeitrag zu den Veröffentlichungen 

1.1 Beitrag zu Veröffentlichung I 

Im Zuge der Erst-Autorenschaft wurde eine in Teilen bereits bestehende Datenbank der 

[18F]-fluordesoxyglukose-Positronen-Emissions-Tomographie (FDG-PET) Untersuchungen an 

der Klinik und Poliklinik für Nuklearmedizin des LMU Universitätsklinikums erweitert und 

vervollständigt. Aus dieser Datenbank wurden die Fälle mit Alzheimer-Krankheit (AD) selektiert, 

die ausführlich durch neuropsychologische Tests charakterisiert wurden (n = 146). Für alle Fälle 

wurden die Ergebnisse der CERAD-Plus Testbatterie strukturiert erhoben und analysiert. Die 

PET-Daten wurden für die visuelle Beurteilung nuklearmedizinischer Experten aufbereitet. Im 

Anschluss wurde eigenständig die statistische Analyse durchgeführt. Zuletzt erfolgte das 

Verfassen des Manuskripts, welches durch die beteiligten Ko-Autoren überarbeitet und durch die 

beiden Letztautoren supervidiert wurde. 

1.2 Beitrag zu Veröffentlichung II 

In der zweiten Arbeit wurden Perfusionsdefizite in der Amyloid-Positronen-Emissions-

Tomographie in der Frühphase (Frühphasen-Amyloid-PET) als Biomarker für die Diagnostik der 

AD untersucht. Im Rahmen der Ko-Autorenschaft bestand der persönliche Beitrag in der 

Datenakquise und beim Datenbankmanagement zu unterstützen. Zudem wurde das Manuskript 

kritisch überarbeitet und revidiert. 
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2. Einleitung 

Neurodegenerative Erkrankungen stellen trotz intensiver Bemühungen und weltweiter Forschung 

ein großes sozioökonomisches Problem dar. Derzeit leben weltweit schätzungsweise über 55 

Millionen Menschen mit Demenz und die Zahl der Betroffenen wird bis 2050 voraussichtlich auf 

etwa 139 Millionen ansteigen (1-3). Dabei ist zu bedenken, dass insbesondere in 

Entwicklungsländern von einer deutlichen Unterdiagnostizierung auszugehen ist. Zusätzlich 

stellen die geringen Therapiemöglichkeiten ein weiteres großes Problem dar, weshalb 

Demenzerkrankungen in ihrer Gesamtheit eine enorme Belastung für die Gesundheitssysteme 

sind. Die häufigste neurodegenerative Erkrankung ist mit einem Anteil von rund zwei Dritteln die 

AD. Auf sie entfällt somit der größte Anteil der mit Demenzerkrankungen verbundenen Kosten 

(1,3-5). Als direkte Kosten sind beispielsweise die Diagnostik, die Krankenhausaufenthalte und 

die Betreuung der erkrankten Patienten zu nennen. Durch die Belastung - beziehungsweise 

häufig Überlastung - der pflegenden Angehörigen und Betreuenden entstehen gesundheitliche 

Folgen für diese und deshalb weitere indirekte Folgekosten. Daher ergeben sich, sowohl aus 

ökonomischer Sicht, als auch aus sozialen Blickwinkeln durch die Demenzerkrankungen 

Probleme, zum einen für die Gesellschaft und die Patienten, und zum anderen für die 

Angehörigen und Pflegekräfte (2,3,6-12).  

2.1 Symptomatik der Alzheimer-Krankheit 

Die typische Symptomatik der AD betrifft vor allem Störungen des Gedächtnisses, des 

planerischen Denkens und Handelns, der Wahrnehmung, der Alltagskompetenz, der Sprache 

und der örtlichen sowie zeitlichen Orientierung (2,3). Die Symptomatik wird progredient 

schlechter. Zu Beginn geht der AD meist eine leichte kognitive Störung (MCI) voraus, welche im 

Alltag häufig nicht auffällt, sich jedoch im Rahmen von kognitiver Testung zeigt (2,3,13). Im frühen 

Verlauf der AD kommt es in der Regel zuerst zu Störungen des Kurzzeitgedächtnisses und zu 

Desorientiertheit in Ort und Zeit. Auch nicht-kognitive Symptome können zu diesem Zeitpunkt 

auftreten, wie beispielsweise depressive Symptomatik oder Hyposmie. In der späteren Phase der 

Erkrankung kommt es dann zu Störungen des Langzeitgedächtnisses und der Aufmerksamkeit, 

zur weiteren Verschlechterung der örtlichen und zeitlichen Orientierung, zu Veränderungen im 

Verhalten und der Persönlichkeit und schließlich auch zum körperlichen Abbau. Dies geht mit 

Sprachstörungen, Dysphagie, Blasen-Mastdarm-Störungen und Weiterem einher (2,3,13,14). 

2.2 Pathologie der Alzheimer-Krankheit 

In den letzten Jahrzehnten wurden erhebliche Fortschritte im Verständnis der AD erzielt, die 

genaue Pathogenese ist jedoch noch immer nicht vollständig geklärt (2,15). Seit längerem ist 

bekannt, dass die AD mit typischen makroskopischen und mikroskopischen 
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Gehirnveränderungen einhergeht, deren Ursachen und Bedeutung für die Entwicklung der 

Krankheit aber noch nicht gänzlich verstanden sind. Typischerweise zeigen sich eine Hirnatrophie 

beziehungsweise Synapsenverlust, extrazelluläre Amyloid-Plaques, neurofibrilläre Degeneration 

und immunologische Veränderungen.  

Die bereits seit Jahrzehnten weit verbreitete und anerkannte Amyloid-Kaskaden-Hypothese 

versucht diese Veränderungen zu erklären (2,3,16). Demnach bilden sich extrazelluläre Amyloid-

Plaques, aufgrund einer falsch ablaufenden Spaltung des Amyloid-Precursor-Proteins durch 

Sekretasen, wodurch sich die beiden Beta-Amyloid-Isoformen (Beta-Amyloid-Protein 1-40 

(Aβ1-40) und Beta-Amyloid-Protein 1-42 (Aβ1-42)) bilden. Das β-Amyloid führt über 

Akkumulation zu einer extrazellulären Amyloid-Plaquebildung, die der Hypothese nach Ursache 

der Pathologie der AD ist. Sie haben Inflammation, Synapsen-Dysfunktion und Zelltod als direkte 

Folge. Weiterhin wird vermutet, dass aufgrund der so entstandenen Neuroinflammation die 

intrazelluläre neurofibrilläre Degeneration entsteht. Als zweiter Schritt der Pathogenese bilden 

sich neurofibrilläre Bündel aus Tau-Proteinen, welche ebenso den Zelltod herbeiführen. Diese 

Prozesse führen zur Neurodegeneration und somit zur makroskopisch sichtbaren 

Hirnvolumenminderung (2,3,15,16). Hierdurch kommt es zu einer globalen Hirnatrophie, 

besonders im Bereich der Hippocampi, der Parietallappen, der Temporallappen und der 

posterioren cingulären Kortizes (2,15-22). 

2.3 Biomarker der Alzheimer-Krankheit (ATN-Schema) 

Eine gesicherte Diagnose der AD ist bis heute nur postmortal mittels pathologischer 

Untersuchung des Hirngewebes zu stellen. Jedoch gibt es mittlerweile einige Alzheimer-

Biomarker, welche sich auch in vivo nachweisen lassen und in Zusammenschau mit klinischer 

Testung eine AD sehr gut erkennen können (2,3,10). Das ATN-Schema (23) ist ein verbreitetes 

Schema in der Alzheimer-Diagnostik und fasst die wichtigsten Alzheimer-Biomarker zusammen. 

"A" bezieht sich auf das β-Amyloid als Biomarker (Amyloid-Positronen-Emissions-Tomographie 

(Amyloid-PET), Aβ1-42 im Liquor), "T" auf das Tau-Protein als Biomarker (Tau im Liquor, Tau-

Positronen-Emissions-Tomographie (Tau-PET)) und "N" auf die Biomarker für 

Neurodegeneration und neuronale Schädigung (FDG-PET, strukturelle 

Magnetresonanztomographie (MRT)) (2,10,23). Diese werden in den folgenden Unterkapiteln 

genauer erläutert. 

2.3.1 Amyloid (Amyloid-PET, Amyloid im Liquor) 

In der Alzheimer-Pathologie kommt es im ersten Schritt zur Ablagerung der extrazellulären 

Amyloid-Plaques. Dies kann sowohl durch Liquordiagnostik als auch mittels Amyloid-PET in vivo 

nachgewiesen werden. In der Liquordiagnostik zeigt sich ein vermindertes β-Amyloid Aβ1-42, da 

durch die verstärkte Ablagerung im Hirngewebe beim AD-Erkrankten im Vergleich zum Gesunden 
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die Konzentration im Liquor vermindert ist. Weiterhin ist die Bestimmung der Aβ1-42/Aβ1-40 Ratio 

ein effizienter Biomarker. Aβ1-40 dient zur Abschätzung des Gesamt-Amyloid-Spiegels im Liquor 

und wird zum bei AD typischerweise erniedrigten Aβ1-42 ins Verhältnis gesetzt. Diese 

patientenindividuelle Ratio erhöht die diagnostische Sicherheit und reduziert das Risiko, einen 

physiologisch erniedrigten Aβ1-42-Spiegel fehlzudeuten (10,24-26).  

Die Visualisierung der Amyloid-Plaques mittels Amyloid-PET ist ein nuklearmedizinisches 

Verfahren, bei welchem mit Amyloid-Tracern das zerebrale Amyloid dargestellt wird. [11C]-PiB 

(Pittsburgh Compound B) war der erste Amyloid-Tracer, welcher aufgrund seiner sehr kurzen 

Halbwertszeit von circa 20 Minuten für den klinischen Gebrauch aber ungeeignet ist. In der 

Forschung wird er hingegen weiterhin eingesetzt. Zur Darstellung des zerebralen Amyloids sind 

in Deutschland und der EU mittlerweile die drei Radiopharmaka [18F]-Florbetaben, 

[18F]-Florbetapir und [18F]-Flutemetamol zugelassen (10). In Post-mortem-Validierungsstudien 

konnte gezeigt werden, dass die In-vivo-Darstellung von zerebralem Amyloid mittels Amyloid-

PET mit der postmortalen Amyloid-Plaque-Verteilung sehr gut übereinstimmt und dass eine 

Sensitivität für das Vorliegen von Plaques von über 90% erreicht werden kann (2,10,27-32). 

Jedoch gibt es auch andere Erkrankungen, die mit zerebralen Amyloid-Ablagerungen 

einhergehen, wie beispielsweise die Demenz mit Lewykörperchen (DLB), weshalb der Nachweis 

von zerebralem Amyloid nicht direkt mit der Diagnose AD gleichzusetzen ist (10,33). In unklaren 

Fällen kann die Amyloid-PET aber zur Diagnosesicherung beziehungsweise zum Ausschluss 

einer AD beitragen (10).  

2.3.2 Tau (Tau-PET, Tau im Liquor) 

Im zweiten Schritt der Alzheimer-Pathologie kommt es zur Bildung neurofibrillärer Bündel aus 

Tau-Protein, welche sich intrazellulär ablagern. Diese Ablagerungen können in vivo anhand von 

Tau-Proteinen im Liquor und mittels Tau-PET belegt werden. Zur klinischen Diagnostik gehört 

der Nachweis des erhöhten Gesamt-Taus und des erhöhten phosphorylierten Taus im Liquor. 

Diese Parameter spiegeln den Schweregrad der Neurodegeneration wider und können bei 

Erhöhung eine schnellere Progression der AD prognostizieren (2,10,15,34). 

Die Tau-PET ist eines der modernsten, erst seit einigen Jahren klinisch angewandten, 

bildgebenden Verfahren in der Alzheimer-Diagnostik. Bei diesem nuklearmedizinischen 

Verfahren werden die intrazellulären Tau-Neurofibrillen visualisiert. Der heute hierfür am 

weitesten verbreitete und in der Europäischen Union seit 2024 zugelassene Tracer ist 

[18F]-flortaucipir (FTP) (10). Die kortikale Anreicherung von FTP korreliert signifikant mit der 

kognitiven Einschränkung bei AD-Patienten. Ebenfalls wie das Tau im Liquor, kann das Tau-PET 

in Zukunft möglicherweise als prognostischer Biomarker in frühen Phasen der Erkrankung dienen 

(2,10,35-38). 
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2.3.3 Neurodegeneration (FDG-PET, MRT) 

Durch die Alzheimer-Pathologie kommt es zur Neurodegeneration und zur Hirnatrophie. Diese 

können in vivo mittels MRT und FDG-PET dargestellt werden. Ein bereits viele Jahre erforschtes 

und weitverbreitetes Diagnostikum der AD ist die MRT, welche bei jedem Verdacht auf Demenz 

durchgeführt werden sollte. Mit der MRT können etwaige andere Verursacher der Demenz, wie 

beispielsweise vaskuläre Läsionen, Raumforderungen oder ein Normaldruckhydrozephalus 

ausgeschlossen werden. Außerdem ist es möglich in der MRT das AD-typische 

Neurodegenerationsmuster nachzuweisen (2,10). Besonders von Neurodegeneration betroffen 

sind bei der AD der Temporallappen, der Parietallappen und der posteriore cinguläre Kortex 

(2,10,39-43). In der MRT lässt sich vor allem die Atrophie des medialen Temporallappen 

(Hippocampus und entorhinaler Kortex) gut darstellen (2,10,44-47). Zur Bemessung der Atrophie 

im medialen Temporallappen gibt es verschiedene Methoden. Sowohl semiquantitative 

Analyseverfahren als auch visuelle Ratingskalen, wie beispielsweise die Scheltens-Skala, sind 

etabliert (10,47,48). Die so gemessene Atrophie im medialen Temporallappen kann die 

Verschlechterung einer MCI zu einer AD prognostizieren (10,49,50). Jedoch kann die Atrophie 

des medialen Temporallappen ein Korrelat vieler Krankheiten sein und ist daher kein alleiniges 

Diagnostikum. Wie bei allen diagnostischen Verfahren ist dieses im Gesamtkontext des Patienten 

zu interpretieren (10,15).  

Die FDG-PET ist ein nuklearmedizinisches funktionelles Verfahren, welches den 

Glukosemetabolismus des Gehirns darstellt. Somit können neurodegenerative Areale mit 

verminderter synaptischer Funktion, also mit verminderter Stoffwechselaktivität, dargestellt 

werden. Die Messungen der FDG-PET korrelieren signifikant mit kognitiven Defiziten 

(10,42,43,51). Diese typischen Hypometabolismus-Muster dienen hauptsächlich der Diagnostik 

und Differenzierung der AD, der frontotemporalen lobären Degeneration (FTLD) mit der 

frontotemporalen Demenz (FTD) sowie der DLB (10,41). Das AD-typische Hypometabolismus-

Muster in der FDG-PET zeigt sich am frühesten im medialen parietalen, im lateralen temporalen 

und parietalen Kortex (2,10,40,43,51,52). Jedoch können AD-typische Hypometabolismus-

Muster auch bei anderen Demenzformen (beispielsweise vaskuläre Demenz oder corticobasales 

Syndrom) auftreten. Daher bietet die FDG-PET eine gute Sensitivität für die Diagnose einer AD 

(84-90%), aber eine eher niedrige Spezifität (74-89%) (10,31,32,53,54) und die Bewertung des 

Hypometabolismus in der FDG-PET allein ist unzureichend für die Diagnose einer AD. (2,10,15). 

Somit ist auch bei der Diagnostik mit der FDG-PET die Zusammenschau und Bewertung der 

Gesamtheit der Befunde erforderlich, bei bereits erfolgter Basisdiagnostik und klinisch noch 

immer unklaren Fällen wird empfohlen, die Diagnostik um eine FDG-PET zu erweitern (10,43). 
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2.4 Klinische Testung bei Demenzerkrankungen: 
Neuropsychologische CERAD-Plus Testbatterie 

Die Abkürzung CERAD steht für „Consortium to Establish a Registry for Alzheimer’s Disease“. 

Dieses wurde 1986 vom „National Institute on Aging“ in den Vereinigten Staaten finanziert, um 

standardisierte, validierte Messgrößen für die Bewertung der AD zu entwickeln (55). Die CERAD 

Neuropsychologische Testbatterie (CERAD-NP) testet Gedächtnis, Sprache, Praxie und 

Orientierung. Sie wird hierfür in folgende acht Untertests unterteilt: „Wortflüssigkeit (Tiere)“, 

„Modified Boston Naming Test“ (MBNT), „Mini-Mental-Status-Test“ (MMST), „Wortliste Lernen“, 

„Wortliste Abrufen“, „Wortliste Wiedererkennen“, „Figuren Abzeichnen“ und „Figuren 

Wiedererkennen“ (56). An der Memory Clinic des Universitätsspitals Basel in der Schweiz 

entstand die deutschsprachige Version der CERAD-NP. Diese Testbatterie wurde um die 

zusätzlichen Tests „Trail Making Test A und B“ und „Phonematische Flüssigkeit (S-Wörter)“ zur 

CERAD-Plus Testbatterie erweitert (57). Im Folgenden werden die 11 Untertests genauer 

betrachtet. 

2.4.1 Wortflüssigkeit (Tiere) 

Der Untertest „Wortflüssigkeit (Tiere)“ misst die verbale Produktionsfähigkeit, das semantische 

Gedächtnis, die exekutiven Funktionen und die kognitive Flexibilität (56). Die Testperson wird 

gebeten, innerhalb von einer Minute möglichst viele Tiere aufzuzählen. Die Punktzahl ergibt sich 

aus der Anzahl der genannten Tiere. Daher ist die maximale Punktzahl unbegrenzt (56,58,59). 

2.4.2 Modified Boston Naming Test  

Der Untertest „Modified Boston Naming Test“ überprüft die Wortfindung und -benennung, sowie 

die visuelle Wahrnehmung (56). Die Probanden werden aufgefordert, 15 Objekte, die als 

Strichzeichnung präsentiert werden, zu benennen. Für jede Zeichnung, die häufige, mittelhäufige 

oder weniger häufige Objekte zeigt, stehen höchstens 10 Sekunden zur Verfügung. Die maximal 

zu erreichende Punktzahl beträgt 15 Punkte (56,59,60). 

2.4.3 Mini-Mental-Status-Test  

Der „Mini-Mental-Status-Test“ ist ein Untertest, der aus 30 Fragen beziehungsweise Aufgaben 

besteht und innerhalb einiger Minuten durchführbar ist. Es wird die Orientierung, die 

Aufmerksamkeit, das Gedächtnis, die Sprache und die konstruktive Praxis geprüft. Der MMST 

testet das allgemeine kognitive Funktionsniveau. Die Maximalpunktzahl für den MMST beträgt 30 

Punkte (56,59,61). 
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2.4.4 Wortliste Lernen, Wortliste Abrufen und Wortliste Wiedererkennen  

Die drei Untertests „Wortliste Lernen“, „Wortliste Abrufen“ und „Wortliste Wiedererkennen“ prüfen 

das verbale Gedächtnis. Im ersten Untertest „Wortliste Lernen“ wird die unmittelbare Merk- und 

Lernfähigkeit von neuen, nicht assoziierten verbalen Informationen erprobt. Hierbei werden in drei 

Durchgängen die gleichen 10 Wörter in jeweils unterschiedlicher Reihenfolge laut vorgelesen und 

der Proband soll anschließend möglichst viele Worte reproduzieren. Jedes reproduzierte Wort 

gibt einen Punkt. Somit können pro Durchgang jeweils 10 Punkte und nach den drei Durchgängen 

maximal 30 Punkte erreicht werden (56,59,62). 

Im späteren Verlauf der CERAD-Plus Testbatterie kommt man erneut auf die gelernten 10 Worte 

zurück. Im Untertest „Wortliste Abrufen“ wird die verzögerte verbale Merkfähigkeit geprüft. Hierbei 

soll die Testperson nach zeitlicher Verzögerung zum Untertest „Wortliste Lernen“ die gelernten 

10 Worte in maximal 90 Sekunden frei wiedergeben. Auch hier gibt jedes richtig genannte Wort 

einen Punkt und die maximale erreichbare Punktzahl beträgt 10 Punkte (56,59,62). 

Im dritten Untertest „Wortliste Wiedererkennen“ werden die verzögerte verbale Merkfähigkeit, die 

Rekognition und Abruf-/Speicherdefizite getestet. Es werden dem Probanden 20 Wörter 

präsentiert, nämlich die 10 aus den vorherigen Tests bekannten Wörter und zusätzlich 10 

Distraktoren. Hieraus soll die Testperson die 10 bekannten Worte und die 10 Distraktoren 

erkennen. Jedes richtig zugeordnete Wort ergibt einen Punkt, weshalb maximal 20 Punkte 

erreicht werden können. Aus der „Wortliste Wiedererkennen“ kann weiterhin die „Wortliste 

Wiedererkennen (Diskriminierung)“ errechnet werden. Diese entspricht der Anzahl richtig 

zugeordneter Worte abzüglich der Anzahl falsch zugeordneter Worte (56,59,62,63). 

2.4.5 Figuren Abzeichen und Figuren Wiedererkennen 

Diese zwei Untertests prüfen die visuokonstruktiven Fähigkeiten. Im ersten Untertest „Figuren 

Abzeichnen“ soll der Proband vier geometrische Figuren mit steigender Komplexität (Kreis, 

Raute, zwei sich überschneidende Rechtecke, Würfel) genau abzeichnen. Für jede Figur hat der 

Proband maximal zwei Minuten Zeit. Es können insgesamt maximal 11 Punkte erreicht werden 

(56,59,62). 

Nach zeitlicher Verzögerung folgt der Untertest „Figuren Wiedererkennen“, welcher das 

nonverbale Gedächtnis untersucht. Nun soll die Testperson die zuvor abgemalten geometrischen 

Figuren aus dem Untertest „Figuren Abzeichnen“ frei aus dem Gedächtnis zeichnen. Es können 

ebenfalls maximal 11 Punkte erreicht werden (56,59,62). 

2.4.6 Trail Making Tests A und B 

Die „Trail Making Tests A und B“, um die die CERAD-NP zur CERAD-Plus Testbatterie erweitert 

wurde, prüfen die psychomotorische Geschwindigkeit, die exekutiven Funktionen, die 

Aufmerksamkeit und die kognitive Flexibilität.  
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Im „Trail Making Test A“ müssen zufällig angeordnete Zahlen so schnell wie möglich in 

aufsteigender Reihenfolge miteinander verbunden werden. Die Punktzahl ergibt sich aus der 

gestoppten Zeit, die hierfür benötigt wird. Die maximal zur Verfügung stehende Zeit sind 180 

Sekunden (57,64,65). 

Im „Trail Making Test B“ müssen chaotisch verteilte Zahlen und Buchstaben abwechselnd und in 

der richtigen Reihenfolge miteinander verbunden werden. Auch hier ergibt sich die Punktzahl aus 

der gestoppten Zeit. Das Zeitlimit beträgt 300 Sekunden (57,64,65). 

2.4.7 Phonematische Flüssigkeit (S-Wörter) 

Dieser weitere Untertest „Phonematische Flüssigkeit (S-Wörter)“ überprüft die verbale Fluenz 

(57). Die Aufgabe der Testperson ist es, so viele Wörter wie möglich zu nennen, welche mit dem 

Buchstaben S beginnen. Die Punktzahl ergibt sich anhand der Anzahl der innerhalb von 60 

Sekunden korrekt genannten Worte (66-68). 

2.4.8 Total CERAD Score 

Die CERAD-Plus Testbatterie ist eine weit verbreitete und gut funktionierende Testbatterie zur 

Bewertung der Kognition (55,69,70). Jedoch erschwert die Komplexität der Testbatterie und die 

einzelnen Betrachtungen und Bewertungen der verschiedenen kognitiven Bereiche eine 

generelle Aussage über den kognitiven Status. Um eine einfachere Bewertung der kognitiven 

Leistungsfähigkeit und des Grades der kognitiven Beeinträchtigung zu schaffen, wurde der Total 

CERAD Score entwickelt. Somit ist es nun möglich, mittels Total CERAD Score den Grad der 

kognitiven Beeinträchtigung zu bestimmen und eine Unterscheidung zwischen der AD, der MCI 

und dem normalen Altern zu treffen. Außerdem konnte so eine bessere Vergleichbarkeit des 

kognitiven Status verschiedener Individuen geschaffen werden (71). Der Total CERAD Score 

errechnet sich durch Addition der in den folgenden einzelnen Untertests gewonnen Rohwerte: 

„Wortflüssigkeit (Tiere)“ (maximale Punktzahl = 24; (normalerweise hat dieser Untertest keine 

Obergrenze, für Berechnungszwecke wurde eine Obergrenze von 24 angesetzt, was einer 

Standardabweichung über dem Mittelwert der normalen alternden Bevölkerung entspricht)), 

„MBNT“ (maximale Punktzahl = 15), „Wortlisten Lernen“ (maximale Punktzahl = 30), „Figuren 

Abzeichnen“ (maximale Punktzahl = 11), „Wortlisten Abrufen“ (maximale Punktzahl = 10) und 

„Wortliste Wiedererkennen (Diskriminierung)“ (maximale Punktzahl = 10). Die maximal 

erreichbare Punktzahl liegt also bei 100 Punkten, die sich aus 39% Sprache (Wortliste Lernen 

und MBNT), 30% Lernen (Wortliste Lernen), 11% Konstruktion (Figuren Abzeichnen) und 20% 

Gedächtnis (Wortliste Abrufen und Wiedererkennen (Diskriminierung)) zusammensetzt (71,72). 
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2.5 Anatomische Asymmetrien des Gehirns 

Asymmetrien des Gehirns werden bereits seit vielen Jahren untersucht und als diagnostische 

Marker verwendet. Bereits im 19. Jahrhundert zeigten Wernicke und Broca, dass makroskopische 

Asymmetrien der Hemisphären Erkrankungen erklären und somit ein wichtiges diagnostisches 

Mittel darstellen. Damit legten sie den Grundstein für das heutige Verständnis der verschiedenen 

Funktionen der beiden Hirnhälften. Heute ist erwiesen, dass bei der Mehrheit der Menschen die 

linke Gehirnhälfte für die Sprachverarbeitung und das Sprechen zuständig ist, während die rechte 

Hemisphäre für visuell-räumliche Funktionen dominiert (73-77). Die Entwicklung der funktionellen 

Lateralisierung des Gehirns bietet wahrscheinlich einen evolutionären Vorteil, da sie im gesamten 

Tierreich vorkommt und mit erhöhten kognitiven Fähigkeiten verbunden ist (75,78,79). Aufgrund 

der Erkenntnisse zur funktionellen Lateralisierung des Gehirns ergab sich die Suche nach 

anatomischen Asymmetrien, sowohl im physiologischen Rahmen als auch als pathologische 

Marker.  

2.5.1 Physiologische und pathologische anatomische Asymmetrien des 

Gehirns 

Physiologische Asymmetrien des Gehirns sind abhängig von verschiedenen Faktoren wie 

Geschlecht, Genetik, Alter und Umweltfaktoren (75,80). Die Ergebnisse zur Korrelation von 

Händigkeit und anatomischen Asymmetrien des Gehirns sind uneindeutig, nach neueren 

Erkenntnissen besteht aber kein signifikanter Zusammenhang (75,81,82). Einige Studien zur 

Asymmetrie der grauen Substanz ergaben, dass der anteriore Kortex in der linken Hemisphäre 

physiologisch dicker ist als rechts, während im posterioren Kortex eine Asymmetrie nach rechts 

besteht. Diese physiologische Asymmetrie scheint sich durch Alterung physiologisch und durch 

Erkrankungen pathologisch zu verändern (75,82-85). Andere Arbeiten belegten, dass bei 

Gesunden deutliche anatomische Asymmetrien zwischen dem rechten und linken 

Temporallappen bestehen. Das Planum temporale ist bei 65% der gesunden Gehirne links größer 

als rechts (85,86). Bei Musikern mit absolutem Gehör wurde eine noch stärkere linksgerichtete 

(links-größer-rechts) Asymmetrie des Planums temporale als bei Nichtmusikern oder Musikern 

ohne absolutes Gehör festgestellt. Die Ergebnisse deuten darauf hin, dass herausragende 

musikalische Fähigkeiten mit einer stärkeren linksdominanten Asymmetrie des Kortex verbunden 

sind, der für musikbezogene Funktionen zuständig ist (87). Weitere Studien zeigten Asymmetrien 

abhängig vom Geschlecht. Bei Männern findet sich im Gyrus parahippocampales eine 

linksgerichtete Asymmetrie, während bei Frauen eine rechtsgerichtete (rechts-größer-links) 

Asymmetrie im entorhinalen Kortex auftritt (75,88,89). In den subkortikalen Regionen ergaben 

sich beim gesunden Individuum ebenfalls Asymmetrien. Beispielsweise sind bei der Mehrzahl der 

Individuen insbesondere der Thalamus, das Putamen und das Pallidum in der linken Hemisphäre, 

und der Hippocampus, die Amygdala und der Nukleus caudatus in der rechten Gehirnhälfte 
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größer. Im Globus pallidus und im Putamen scheint die Asymmetrie geschlechtsabhängig, durch 

additive genetische Faktoren und das Alter beeinflusst zu sein (75,80,90).  

Auch bezüglich der pathologischen anatomischen Asymmetrien im Zusammenhang mit 

verschiedensten Erkrankungen wurde in den letzten Jahren intensiv geforscht. Beispielsweise 

wurden Asymmetrien der Hemisphären bei psychischen Erkrankungen, bei der Parkinson-

Krankheit (PD), bei der Amyotrophen Lateralsklerose (ALS) und bei der Multiplen Sklerose (MS) 

untersucht. Außerdem wurden Demenzerkrankungen, wie beispielsweise die DLB, die primär 

Progrediente Aphasie, die FTD und vor allem die AD diesbezüglich erforscht (75,82,91-93). Es 

wurde belegt, dass die Asymmetrien im Hippocampus, im Thalamus und in den Basalganglien 

die Kognition beeinflussen und die Anfälligkeit für psychiatrische Erkrankungen erhöhen (80). 

Beispielsweise zeigt sich bei Autismus-Spektrum-Störungen eine weniger ausgeprägte 

Asymmetrie zwischen den Hemisphären im Bereich des medialen, frontalen, orbitofrontalen, 

cingulären und inferioren-temporalen Kortex im Vergleich zu gesunden Kontrollpersonen. Jedoch 

tritt eine deutlich ausgeprägtere Asymmetrie des Putamens auf (82,93). Patienten mit 

Schizophrenie weisen im Vergleich zu gesunden Kontrollpersonen dünnere Kortizes in den 

frontalen und temporalen Regionen auf. Im Gyrus temporalis superior ist eine verminderte 

linksgerichtete Asymmetrie im Vergleich zur gesunden Kontrollgruppe festzustellen (94). Die MS 

zeichnet sich zu Beginn der Erkrankung durch asymmetrisch verteilte Läsionen des Gehirns aus. 

Zumeist handelt es sich um eine links-asymmetrische Verteilung, was auf eine mögliche 

Anfälligkeit der linken Hemisphäre, ähnlich wie bei der AD, hinweisen könnte (95). Im Verlauf der 

Erkrankung verbreiten sich die Läsionen jedoch in beiden Gehirnhälften (96). Bei der PD treten 

zu Beginn der Erkrankung einseitige motorische Symptome auf. In der kontralateralen 

Hemisphäre zeigt sich dann ein asymmetrischer Verlust der dopaminergen Neuronen der 

Substantia nigra (97). Die Atrophie des Kortex dagegen scheint unabhängig von der motorisch 

verstärkt betroffenen Seite zu sein. Im frühen Stadium der PD ist die Asymmetrie der Kortizes zur 

linken Seite vorhanden, wohingegen im späteren Stadium eher eine Asymmetrie nach rechts 

besteht (98). Bei der ALS findet sich ebenfalls eine Asymmetrie im Kortex. Hier ist die graue 

Substanz der kontralateralen Seite, der zu Beginn der Erkrankung überwiegend betroffenen 

Seite, verstärkt atrophiert (99). Weiterhin gibt es häufig asymmetrische Verteilungsmuster und 

asymmetrische Atrophien bei Demenzerkrankungen. Generell zeigt sich bei vielen 

Demenzerkrankungen eine veränderte und verstärkte Hippocampus-Asymmetrie verglichen mit 

gesunden Kontrollpersonen (100,101). Die FTLD ist eine heterogene Gruppe an 

neurodegenerativen Erkrankungen, sie beinhaltet die FTD. Je nach Untergruppe und 

Symptomatik weist das Gehirn eine asymmetrische Atrophie auf. Die linke Hemisphäre ist stärker 

betroffen bei Patienten, welche sich mit Sprachdefiziten symptomatisch äußern, wohingegen eine 

Asymmetrie zur rechten Gehirnhälfte bei Persönlichkeits- und Verhaltensänderungen besteht 

(102-106). Bei der FTD zeigt sich auch in der FDG-PET oft eine hemisphärische Asymmetrie. 

Diese besteht zumeist nach links (stärkerer linksseitiger Hypometabolismus) (107). 
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2.5.2 Anatomische Asymmetrien des Gehirns bei der Alzheimer-

Krankheit 

Asymmetrien bei AD sind bereits in vielen Bereichen des Gehirns mit verschiedenster Bildgebung 

untersucht worden. Die asymmetrische Verteilung der Amyloid-Plaques, die Asymmetrien bei 

makroskopischer Atrophie und die Asymmetrie der Neurodegeneration wurden erforscht. Hierfür 

wurde in sehr vielen Studien die MRT als Bildgebung verwendet (45,108-111). Wesentlich 

seltener finden sich nuklearmedizinische Verfahren als Bildgebung, wie beispielsweise die FDG-

PET oder die Amyloid-PET (112-114). 

2.5.2.1 Kortex 

Die bereits angesprochene physiologische - meist mittels MRT oder FDG-PET festgestellte - 

Asymmetrie zwischen den Hemisphären verändert sich im Alter. Dies läuft bei der AD nach 

ähnlichem Muster wie bei der physiologischen Alterung, jedoch deutlich beschleunigt, ab (83). 

Betrachtet man den Kortex, scheint im Allgemeinen vor allem die linke Hemisphäre bei der AD 

früher und stärker von der Neurodegeneration und daher auch von der Hirnatrophie betroffen zu 

sein. Die Asymmetrie der Hemisphären scheint mit Fortschreiten der Erkrankung abzunehmen, 

da beide Hirnhälften im Verlauf gleichermaßen degenerieren. Deshalb kann die Asymmetrie der 

Hemisphären möglicherweise vor allem zur Frühdiagnostik genutzt werden (115-117). Besonders 

ausgeprägt zeigt sich die Atrophie und auch die Asymmetrie im parietalen und temporalen Kortex 

(20,118) sowie im posterioren cingulären Kortex (22,39,41,112).  

Auch Asymmetrien in der Verteilung der Amyloidablagerungen, nachgewiesen mittels Amyloid-

PET, bieten diagnostisches Potential. Bei der AD wurden vor allem im lateralen temporalen 

Kortex und im anterioren ventralen Striatum, bei MCI vor allem in der subkortikalen weißen 

Substanz und im mittleren Precuneus Amyloid-Plaques gefunden (113). Diese Amyloid-Plaques 

zeigen vor allem bei MCI und im Frühstadium der AD ein asymmetrisches Verteilungsmuster. Mit 

Fortschreiten der Erkrankung verschwindet auch hier das asymmetrische Muster. Somit könnte 

die asymmetrische Anordnung der Amyloid-Plaques ein frühes Anzeichen für die AD sein und 

ebenfalls zur Frühdiagnostik herangezogen werden (114,119). 

2.5.2.2 Hippocampus 

Zahlreiche Studien, zumeist mit der MRT als Bildgebung, haben das Hippocampus- sowie 

Amygdala-Volumen und die damit verbundenen Links-Rechts-Asymmetrien untersucht 

(100,101,120). Die ausführliche Beleuchtung des Hippocampus bei der AD ergab, dass dieser 

auch eine asymmetrische Atrophie bei physiologischer Alterung zeigt. Die Asymmetrie ändert und 

verstärkt sich jedoch im Laufe einer AD (100,101,110). Weiterhin sind ein verringertes 

Hippocampus-Volumen und eine rechtsgerichtete Asymmetrie des Hippocampus zur Diagnose 

einer AD hilfreich. Dabei korreliert die Zunahme der Asymmetrie mit dem Schweregrad der 

Erkrankung (121-125). Zusätzlich kann die Analyse der Atrophie und der Asymmetrie der 
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Hippocampus-Subfelder die Aussagekraft noch weiter erhöhen (126,127). Die Hippocampus-

Atrophie und -Asymmetrie werden oft als die wichtigsten Biomarker für die Frühdiagnose der AD 

beschrieben (128). 

2.5.2.3 Amygdala 

Die Studien, welche die Atrophie und Asymmetrie der Amygdala beleuchten, zeigen, dass eine 

linksgerichtete Asymmetrie mit MCI in Zusammenhang steht (120). Hierfür wurde größtenteils 

ebenfalls die MRT als Bildgebung genutzt. Die Amygdala-Asymmetrie nimmt mit zunehmendem 

Erkrankungsfortschritt zu. Sie kann deshalb zur Diagnostik einer AD beitragen, vor allem 

hinsichtlich der Abgrenzung gegenüber einer FTLD. Ferner kann sie als prognostischer Marker 

für die Entwicklung einer AD aus einer MCI dienen (129-133). 

2.5.2.4 Weitere Regionen 

In weiteren Studien wurden auch andere Hirnareale im Zusammenhang mit der AD beleuchtet. 

Die asymmetrische Atrophie des olfaktorischen Kortex, gemessen in der MRT, scheint ebenfalls 

bei der AD aufzutreten. Dies ist gut vereinbar mit dem Frühsymptom Hyposmie. Allerdings tritt 

eine asymmetrische Verteilung auch bei Gesunden auf und scheint somit nur einen geringen 

diagnostischen Nutzen mit sich zu bringen (108).  

Bisher schien die Asymmetrie des Kleinhirns, gemessen mittels MRT, kein geeigneter Marker für 

die Diagnostik der AD zu sein (134). Aktuelle Ergebnisse zeigen jedoch mit der FDG-PET als 

Bildgebung, dass bei AD-Patienten im Kleinhirnkortex eine signifikante asymmetrische 

Neurodegeneration auftritt, wobei die rechte Kleinhirnhälfte stärker betroffen ist. Es scheint daher 

auch in den asymmetrischen Verteilungsmustern im Kleinhirn Potential für die Diagnose der AD 

zu liegen (112).  

Der Thalamus scheint weiterhin besonders bei linksgerichteten Asymmetrien in den ventralen 

Thalamuskernen mit dem Schweregrad der AD in Verbindung zu stehen. Gegebenenfalls bietet 

eine genauere Betrachtung der Asymmetrie der einzelnen Thalamus-Kerngebiete Potential für 

die Diagnostik der AD (135). 

2.6 Zielsetzung der Arbeit: Untersuchung des Potentials von 
asymmetrischen Tracer-Verteilungsmustern in der PET-
Bildgebung für die Diagnostik der Alzheimer-Krankheit 

Wie eingangs erläutert, stellt die AD eine große und wachsende Herausforderung für unsere 

Gesundheitswesen dar. Therapiemöglichkeiten der AD sind Gegenstand intensiver Forschung, 

jedoch sind diese in der Praxis bisher überwiegend auf symptomatische Behandlung beschränkt, 

da bis vor kurzem keine kausale Therapie der AD zur Verfügung stand. Deshalb war und ist die 
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Suche nach krankheitsmodifizierenden Therapien von großer Bedeutung. Insbesondere die 

Forschung an Immuntherapien, speziell an Antikörpern gegen β-Amyloid-Plaques, konnte 

kürzlich Erfolge erzielen. Diese Antikörper können den Abbau von abnormem β-Amyloid aus dem 

Gehirn stimulieren und das Fortschreiten der frühen AD verlangsamen. Sie sind zum Teil auch 

schon in den USA und der EU zugelassen (2,136-138). Diese und weitere vielversprechende 

spezifische Therapien zur Milderung des kognitiven Abbaus werden aktuell erforscht. Allerdings 

ist nicht von einer vollständigen Wiederherstellung der Ausgangsfunktionalität durch ebendiese 

Antikörper auszugehen, da die ersten Anzeichen und Symptome der AD erstmals klinisch 

auftreten, wenn bereits erhebliche, teilweise irreparable, Hirnschäden vorhanden sind. Daher 

müssen zukünftige spezifische Therapien möglichst in frühen Stadien der Erkrankung, 

optimalerweise vor Symptombeginn, eingeleitet werden (2,137). Aktuell erfolgt die Einteilung der 

Stadien beziehungsweise des Schweregrades einer Demenz zumeist anhand von 

neuropsychologischer Testung, wie beispielsweise mit dem MMST oder der CERAD-Plus 

Testbatterie. In dieser klinischen Einteilung können aber nur die bereits symptomatischen 

neuronalen Schäden und nicht die den Symptomen vorangehenden Hirnschäden berücksichtigt 

werden (61,71,139). Dies macht wiederum effektive Biomarker, welche eine frühzeitige Diagnose, 

eine Differenzierung zu anderen dementiellen Syndromen und auch eine objektive Einteilung des 

Schweregrades ermöglichen, notwendig. Die Analyse von Tracer-Verteilungsmustern in 

nuklearmedizinischen Verfahren wie der FDG-PET und der Amyloid-PET, scheinen hierfür 

großes Potential zu bieten. 

Die bereits weit verbreitete FDG-PET-Bildgebung kann die kognitive Leistungsfähigkeit gut 

widerspiegeln. Dies liegt daran, dass Neurodegeneration und vaskuläre Dysfunktion dargestellt 

werden und somit ein breites Spektrum an Pathologien erfasst werden kann (140). Deshalb hat 

sich die Analyse von metabolischen Verteilungsmustern in der FDG-PET bei verschiedenen 

dementiellen Syndromen bereits als nützlicher Biomarker erwiesen. Die Demenzerkrankungen 

weisen jeweils ein krankheitstypisches Verteilungsmuster an Hypo- und Hypermetabolismus in 

der FDG-PET auf. Besonders bei der AD kann das Verteilungsmuster in der FDG-PET zur 

Diagnostik und teilweise auch zur Unterscheidung beitragen (10,41,42). Bei der AD zeigt sich 

Hypometabolismus vor allem im parietalen und temporalen Kortex (10,41,118) sowie im 

posterioren cingulären Kortex (39,41,112). Aber auch bei anderen dementiellen Syndromen, wie 

beispielsweise der DLB oder der FTLD wird die FDG-PET zur Diagnostik eingesetzt. Außerdem 

dient die Analyse des Glukosemetabolismus auch der Differenzierung der unterschiedlichen 

Demenzformen. Bei der DLB wurden ein verminderter parietotemporaler und okzipitaler 

Glukosemetabolismus festgestellt. Gleichzeitig besteht jedoch ein relativer Erhalt des posterioren 

cingulären Metabolismus, bekannt als cinguläres Inselzeichen (10,40,141). Das cinguläre 

Inselzeichen hat eine Spezifität von 100% für die Abgrenzung der DLB gegen die AD (40,142). 

Bei der FTD zeigt sich typischerweise der Hypometabolismus vor allem im frontalen Kortex, in 

anterioren temporalen Bereichen, den cingulären Gyri, dem Uncus und der Insula sowie in 

subkortikalen Bereichen, einschließlich der Basalganglien (Putamen und Globus pallidus) und 
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der medialen thalamischen Regionen (40,107). Somit ergibt sich aber auch, dass sich die 

Hypometabolismus-Verteilungsmuster der unterschiedlichen Demenz-Formen in der FDG-PET 

ähneln und sich in Teilen überschneiden. Deshalb ist die visuelle Auswertung allein oftmals nicht 

ausreichend, um die dementiellen Syndrome untereinander zu differenzieren und es bedarf einer 

genaueren Analyse der Verteilungsmuster. Einige Studien haben durch die Analyse der 

Asymmetrie der Hypometabolismus-Verteilungsmuster bei verschiedenen Erkrankungen bereits 

Erfolge erzielt (104,107,143,144).  

Bei genauer Betrachtung der AD ergibt sich, dass die Neurodegeneration der linken Hemisphäre 

bei der AD meistens früher und ausgeprägter auftritt und schneller voranschreitet als rechts 

(75,115,116,145). Die Diagnostik der häufigeren links-asymmetrischen Fälle ist mit klinischer 

Testung gut möglich, da die Funktionen der linken Gehirnhälfte in klinischen Tests ausreichend 

geprüft werden (117,118,146,147). In einer geringeren Anzahl an Fällen wurde jedoch auch eine 

rechtsgerichtete Asymmetrie der Kortizes bei der AD beschrieben. Diese scheint seltener 

vorzukommen und weist eine andere Symptomatik als die links-asymmetrischen Fälle auf. Zu 

Beginn der Erkrankung ist eine rechtsdominante AD nicht selten oligosymptomatisch oder sogar 

asymptomatisch (148-150). Patienten mit rechtsgerichteter Asymmetrie, bei denen vor allem der 

temporo-parietale Bereich betroffen ist, zeigen schlechtere Leistungen in visuell-räumlichen 

Funktionstests bei erhaltenem verbalem Gedächtnis. Diese deutlich selteneren AD-Fälle 

zeichnen sich durch rechts-asymmetrische Atrophie, visuospatiale Dysfunktionen und teilweise 

auch paranoide Wahnvorstellungen aus (111,143,148-150). Die AD mit Rechtsasymmetrie wurde 

bisher nur spärlich untersucht und bietet viel Potential für weitere Forschung. 

Asymmetrien zwischen den Hemisphären (kortikaler und subkortikaler Regionen) zeigen sowohl 

für die Unterscheidung der AD von anderen neurodegenerativen Erkrankungen, die 

Früherkennung beziehungsweise Erstdiagnose, als auch für den klinischen Verlauf und die 

Prognose hohes Potential. Sie scheinen ein besseres Diagnostikum zu sein als die bisher 

verwendete Volumenänderung eines Hirnbereichs im Verlauf der Erkrankung (100,129,130,151-

154).  

Auch bei anderen nuklearmedizinischen Verfahren, wie beispielsweise der bisher etwas weniger 

häufig genutzten Amyloid-PET, ist die Analyse der Tracer-Verteilungsmuster sinnvoll für die 

Diagnostik der AD. Die Amyloid-PET kann Amyloid-Plaques direkt nachweisen und somit eine 

Amyloid-Pathologie bestätigen oder ausschließen (10). Neuere Erkenntnisse weisen aber auf 

weiteres Potential der Amyloid-PET hin. Es konnte gezeigt werden, dass die Amyloid-PET in der 

Frühphase, also in der Perfusionsphase, ähnlich zur FDG-PET, die neuronale Schädigung des 

Gehirns beurteilen kann. Dabei dient die Tracerextraktion aus dem Blut als Surrogat für die 

Perfusion (155-160). Die zerebrale Perfusion als Biomarker für die AD und andere Demenzen 

wurde bereits in Studien mit der Perfusions-MRT (MRT mit arterieller Spinmarkierung) als 

Bildgebung genauer untersucht. Es wird vermutet, dass die Veränderungen der zerebralen 

Perfusion im Laufe der AD durch die Ausbreitung von Tau-Fibrillen, synaptische Dysfunktion und 
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axonale Degeneration hervorgerufen werden und somit als Folge der Neurodegeneration 

auftreten (161). Weiterhin konnte nachgewiesen werden, dass die zerebrale Perfusion gemessen 

in der Amyloid-PET vergleichbar ist mit der zerebralen Perfusion gemessen in der Perfusions-

MRT und mit dem kognitiven Abbau in Zusammenhang steht (162). Demnach zeigt die Amyloid-

PET in der Perfusionsphase Hypoperfusions-Muster, welche den Hypometabolismus-Mustern in 

der FDG-PET stark ähneln (156-158). Dies liegt vermutlich an der neurovaskulären Kopplung des 

metabolischen Bedarfs und des zerebralen Blutflusses (156,158,162). Jedoch ist zu beachten, 

dass die betroffenen Areale in der FDG-PET größer waren und somit vermutlich auch früher in 

der FDG-PET-Bildgebung sichtbar werden als die stoffwechselähnlichen Hypoperfusions-Areale 

in der Amyloid-PET (156-158). Die Hypoperfusion in der Perfusions-MRT scheint bei der 

Früherkennung von Hirnveränderungen weniger sensitiv zu sein als andere bildgebende 

Verfahren wie beispielsweise die FDG-PET, sie könnte sich aber als wertvoll für die Beurteilung 

des Schweregrads der Erkrankung erweisen (161). Bisher gibt es jedoch nur wenige 

Untersuchungen über den Zusammenhang zwischen Hypoperfusions-Mustern in der Amyloid-

PET-Perfusionsphase und dem klinischen Schweregrad der Demenz (155,156). Hier bedarf es 

noch weiterer Forschung und einer genauen Analyse der Perfusionsdefizit-Muster. 

Daher wurde in dieser Dissertation das Potential von Tracer-Verteilungsmustern in der PET-

Bildgebung für die Diagnostik der AD untersucht. Im Speziellen wurden die Verteilungsmuster 

des Glukosemetabolismus - dargestellt in der FDG-PET - zu Beginn und im Verlauf einer AD, 

sowie die Perfusionsdefizite - dargestellt mittels Amyloid-PET in der Perfusionsphase - 

begutachtet. Der Fokus lag dabei besonders auf asymmetrischen Verteilungsmustern des 

Glukosemetabolismus in der FDG-PET und den Mustern der Perfusionsdefizite in der 

Frühphasen-Amyloid-PET. 

 



3 Inhalte der Promotionsthematik 24 

 

 

3. Inhalte der Promotionsthematik 

3.1 Detektionslücke der rechts-asymmetrischen 
Neurodegeneration mittels CERAD Testbatterie bei 
Alzheimer-Krankheit 

In der ersten Studie dieser Promotionsarbeit wurde untersucht, wie sich asymmetrische 

Verteilungsmuster in der FDG-PET auf die Diagnose der AD mittels detaillierter klinischer 

neuropsychologischer Testung auswirken. Darüber hinaus wurden die Zusammenhänge 

zwischen kognitiver Testung und lateralisierter neuronaler Degeneration und Asymmetrie 

verglichen. Die Neurodegeneration in der FDG-PET wurde mittels Hypometabolismus, 

beziehungsweise in der MRT mittels Hippocampus-Atrophie, dargestellt. Schließlich wurde 

getestet, ob bestimmte Untertests der CERAD-Plus Testbatterie einen Zusammenhang mit 

asymmetrischer Degeneration aufweisen. 

Es wurden 146 Fälle mit der klinischen Diagnose einer AD retrospektiv analysiert. Bei sechs 

Patienten wurde eine atypische AD diagnostiziert, bei 133 Patienten eine typische AD (n = 41 früh 

einsetzende AD, n = 92 spät einsetzende AD), und bei sieben Patienten wurde die AD nicht weiter 

spezifiziert. Bei 104 Patienten lagen Daten zur Händigkeit vor. Hierbei waren 90/104 Patienten 

(86,5%) waren Rechtshänder, 6/104 (5,8%) waren Linkshänder und 8/104 (7,7%) gaben an, 

beidhändig zu sein. Das Patientenkollektiv bestand aus Patienten des Klinikums der Ludwig-

Maximilians-Universität München, welche zwischen 2010 und 2016 rekrutiert wurden. Diese 

wurden von den Abteilungen Neurologie, Psychiatrie und dem Institut für Schlaganfall- und 

Demenzforschung zugewiesen. Alle Patienten unterzogen sich einer klinischen 

Routine-Demenzuntersuchung und erhielten eine FDG-PET. Des Weiteren lagen bei 96/146 

Patienten MRT-Bilder vor. Bei diesen 96 Patienten wurde in einer T1w-Sequenz die Scheltens-

Skala (0-4), eine Skala für die Atrophie des medialen Temporallappen, von einem Experten der 

Radiologie visuell gebildet. Im Anschluss wurde die Asymmetrie der beiden Hippocampi durch 

die Differenz der linken und rechten Scheltens-Skala errechnet. Die FDG-PET Bilder wurden 

durch Nuklearmediziner visuell, anhand von dreidimensionalen stereotaktischen Oberflächen-

Projektionen (3D-SSP) (163), befundet. Hierfür wurde die Neurodegeneration anhand der 

3D-SSP visuell in vier Stufen (0-3) eingeteilt, wobei 0 für keine Neurodegeneration, 1 für eine 

leichte, 2 für eine moderate und 3 für eine schwere Neurodegeneration steht. Hieraus wurden 

Summenwerte für das gesamte Gehirn, jede Hemisphäre und die AD-typischen Unterregionen 

(parietaler, temporaler und posteriorer cingulärer Kortex) berechnet. Außerdem wurde eine 

semiquantitative Analyse der FDG-PET-Bilder mit dem Kleinhirn als Referenzregion 

durchgeführt. Somit ergaben sich die Verhältnisse der standardisierten Aufnahmewerte in der 

FDG-PET zur Referenzregion (engl. standardized uptake value ratio = SUVr). Anschließend 

wurden aus visuellem und semiquantitativem Rating die Asymmetrien zwischen den 
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Hemisphären und zwischen den AD-typischen Unterregionen (parietaler, temporaler und 

posteriorer cingulärer Kortex) berechnet, indem die Differenz zwischen linkem und rechtem Score 

beziehungsweise der Asymmetrie-Index gebildet wurde. Weiterhin unterzogen sich alle Patienten 

einer ausführlichen neuropsychologischen Testung einschließlich der CERAD-Plus Testbatterie. 

Aus den Rohwerten bestimmter Untertests der CERAD-Plus Testbatterie wurde der Total CERAD 

Score errechnet (Wortflüssigkeit (Tiere) (maximale Punktzahl = 24), MBNT (maximale Punktzahl 

= 15), Wortlisten Lernen (maximale Punktzahl = 30), Figuren Abzeichnen (maximale Punktzahl = 

11), Wortlisten Abrufen (maximale Punktzahl = 10) und Wortliste Wiedererkennen 

(Diskriminierung) (maximale Punktzahl = 10); Maximalpunktzahl Total CERAD Score: 100 

Punkte) (71). Eine Untergruppe von 49 Patienten erhielt eine wiederholte neuropsychologische 

Testung im Krankheitsverlauf. 

Es konnte mittels multipler Regressionsanalyse gezeigt werden, dass die Asymmetrie in der 

FDG-PET, korrigiert für Alter, Geschlecht, Bildungsstand und Gesamtbelastung durch neuronale 

Degeneration, ein signifikanter Prädiktor für die aktuelle kognitive Beeinträchtigung ist (visuell: 

β = -0,288, p < 0,001; semiquantitativ: β = -0,451, p < 0,001). Im Gegensatz hierzu war die 

Asymmetrie der Atrophie der beiden Hippocampi in der MRT kein signifikanter Prädiktor für die 

aktuelle kognitive Beeinträchtigung (β = -0,034, p = 0,731).  

Die Neurodegeneration der linken Hemisphäre wurde vom Total CERAD Score besser erfasst 

als die der rechten Hemisphäre, was sich in einer stärkeren Assoziation von der 

Neurodegeneration der linken Hemisphäre mit dem Total CERAD Score (visuell: ρ = -0,479, 

p < 0,001, semiquantitativ: R = 0,497, p < 0,001) im Vergleich zur rechten Hemisphäre (visuell: 

ρ = -0,205, p = 0,013; semiquantitativ: R = 0,282, p = 0,001) widerspiegelte.  

Um die Spezifität der Lateralisierung zu erhöhen, wurden asymmetrische Fälle mit nahezu 

unilateraler Neurodegeneration definiert. Die Einteilung der asymmetrischen Fälle erfolgte 

anhand der visuellen Rating-Skala. Eine Hemisphäre musste im visuellen Rating mindestens den 

Wert von 2,0 und die kontralaterale Hemisphäre einen Wert kleiner als 2,0 aufweisen. Somit 

konnten 35 überwiegend linkshemisphärisch und 16 überwiegend rechtshemisphärisch 

betroffene Fälle betrachtet werden (Abbildung 1).  
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Beide Gruppen korrelierten signifikant mit dem Total CERAD Score (linkshemisphärisch: visuell: 

ρ = 0,571, p < 0,001; semiquantitativ: R = 0,575, p < 0,001; rechtshemisphärisch: visuell: 

ρ = 0,463, p = 0,071; semiquantitativ: R = 0,740, p = 0,001) (Abbildung 2). Jedoch zeigten die 

linkshemisphärisch betroffenen Fälle im Schnitt eine deutlich niedrigere Punktzahl im Total 

CERAD Score als die rechtshemisphärisch betroffenen Fälle. Im Mittel waren die 

linkshemisphärisch betroffenen Individuen um 9,9 Total CERAD Score Punkte schlechter als die 

rechtshemisphärisch betroffenen Fälle. Anschließend wurden die Verlaufsuntersuchungsdaten 

von 49 Probanden betrachtet und festgestellt, dass sich der Total CERAD Score durchschnittlich 

um -3,6 (±7,4) Punkte pro Jahr verschlechterte. Somit ließ sich errechnen, dass 

rechtshemisphärisch betroffene Individuen 2,7 Jahre später als linkshemisphärisch betroffene 

Fälle den gleichen Punktestand im Total CERAD Score aufweisen. Infolgedessen ergab sich, 

dass bei rechtshemisphärisch Betroffenen die Neurodegeneration über den Total CERAD Score 

deutlich später erkannt wird als bei linkshemisphärisch betroffenen Fällen.  

Abbildung 1: Beispiele von Fällen mit asymmetrischen metabolischen 
Verteilungsmustern. 3D-SSP von Patienten mit (A) links-asymmetrischem und (B) rechts-
asymmetrischem Hypometabolismus in der 18F-fluordesoxyglukose-Positronen-Emissions-
Tomographie (FDG-PET). CERAD, Consortium to Establish a Registry for Alzheimer’s 
Disease; R, rechts; L, links; LAT, lateral; SUP, superior; INF, inferior; ANT, anterior; POST, 
posterior; MED, medial. Die Farbskala drückt z-Scores gegen ein alters-gematchtes 
Normkollektiv aus. 

 

Basierend auf Kreuzer et. al 2021 
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Zuletzt wurde geprüft, ob einzelne Untertests der CERAD-Plus Testbatterie die rechts-

asymmetrischen Fälle besser erkennen als der Total CERAD Score. Eine signifikante Korrelation 

der rechten Hemisphäre ergab sich lediglich mit dem „MMST“ und dem Untertest „Figuren 

Abzeichnen“. Diese korrelierten jedoch ebenfalls signifikant mit der linken Hemisphäre. 

Insgesamt zeigten 8/18 Untertests eine signifikante Korrelation mit den linkshemisphärischen 

Fällen. 

Angesichts dieser Ergebnisse lässt sich schlussfolgern, dass die Asymmetrie in der FDG-PET 

als unabhängiger Prädiktor für kognitive Beeinträchtigung herangezogen werden kann. Allerdings 

ist zu bemerken, dass die CERAD-Plus Testbatterie vor allem die Neurodegeneration in der linken 

Hemisphäre prüft. Die Neurodegeneration der rechten Hemisphäre wird weitaus weniger 

dargestellt. Somit werden Patienten mit rechts-asymmetrischer Degeneration später 

diagnostiziert oder gar nicht erkannt. 

 

Diese Ergebnisse wurden im Rahmen der Erst-Autorenschaft „Detection Gap of Right-

Asymmetric Neuronal Degeneration by CERAD Test Battery in Alzheimer’s Disease“ im Februar 

2021 im Journal „Frontiers in Aging Neuroscience“ veröffentlicht. 

Abbildung 2: Vergleich von Fällen mit links- und rechts-dominanter Lateralisierung. Die 
Korrelationsdiagramme zeigen die Funktionen von (A) visuell bewerteter FDG-PET (Summe des visuellen 
Ratings linker bzw. rechter Hemisphäre) und (B) semiquantitativ analysierter FDG-PET (SUVr linker bzw. 
rechter Hemisphäre) mit dem Total CERAD Score für links- (n = 35, grüne Punkte) und rechts- (n = 16, blaue 
Quadrate) asymmetrische Fälle. 

Basierend auf Kreuzer et. al 2021 
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3.2 Korrelation der Frühphasen-β-Amyloid-Positronen-
Emissions-Tomographie und neuropsychologischen Tests 
bei Patienten mit Alzheimer-Krankheit 

In der zweiten Studie wurde untersucht, ob Perfusionsdefizite in der Frühphasen-Amyloid-PET 

als Biomarker für die Diagnostik und Prognose der AD fungieren können. Es wurde ein Kollektiv 

von 82 Patienten, welche zwischen 2013 und 2021 am Klinikum der Ludwig-Maximilians-

Universität München die Diagnose AD erhielten, analysiert. Alle Patienten haben eine Amyloid-

PET und eine ausführliche neuropsychologische Testung (maximal 90 Tage später als die 

Bildgebung), inklusive CERAD-Plus Testbatterie und MMST oder Montreal-Cognitive-

Assessment-Test (MoCa), erhalten. Bei drei Patienten war kein MMST verfügbar, weshalb in 

diesen Fällen die Ergebnisse des MoCa in einen entsprechenden MMST-Wert umgerechnet 

wurden (164,165). Einschlusskriterium war weiterhin Amyloid-Positivität und Patienten mit 

atypischer AD oder gemischten Pathologien wurden aus der Studie ausgeschlossen. Bei 23 

Patienten lagen weitere kognitive Testungen im Krankheitsverlauf vor. Die Alzheimer's Disease 

Neuroimaging Initiative hat in Anlehnung an das Braak-Stadien-System (histopathologische 

Stadieneinteilung der AD anhand der von Tau-Fibrillen betroffenen Areale) Bereiche von 

Interesse (engl. regions of interest = ROIs) definiert, welche auch in dieser Studie Anwendung 

fanden. Folgende ROIs wurden definiert: Regionen I/II = mesiotemporaler Lappen; Regionen 

III/IV = mesiookzipitaler Lappen, mittlerer und inferiorer temporaler Kortex, temporaler Pol, 

anteriorer und posteriorer cingulärer Kortex, insulärer Kortex; Regionen V/VI = orbitofrontaler, 

frontaler lateraler, frontaler medialer, superiorer temporaler, okzipitaler, superiorer und inferiorer 

parietaler Kortex, Precuneus, post- und präzentraler Kortex (166). Die Frühphasen-Amyloid-PET-

Daten wurden automatisiert ausgewertet, indem die regionale Traceraktivität einzelner 

Hirnregionen auf die mittlere Gesamtaktivität des Patienten normalisiert und auf eine eingebaute 

FDG-PET-Normalkohorte bezogen wurde. Es wurden voxel-basierte volumengewichtete mittlere 

z-Scores für alle kortikalen Regionen beider Seiten sowie für die vordefinierten ROIs berechnet. 

Im Anschluss wurden die Patienten nach Schweregrad der AD in der Frühphasen-Amyloid-PET 

in Gruppen eingeteilt. Hierfür wurde ein Quotient berechnet aus den z-Scores der ROIs des 

Patienten durch die z-Scores der entsprechenden Regionen bei Patienten mit einem MMST-Wert 

über 27. Für die Stadieneinteilung wurde ein Grenzwert von -1,3 verwendet, um festzulegen, ob 

die Perfusion in einem Zielvolumen abnormal war (167). Somit ergab sich folgende 

Gruppeneinteilung: stage0 (keine Region über dem Grenzwert, n = 25); stageI-II+ (Regionen I/II 

über dem Grenzwert, n = 11); stageI-IV+ (Regionen I/II, III/IV über dem Grenzwert, nicht aber V/VI, 

n = 13); stageI-VI+ (alle Regionen I-VI über dem Grenzwert, n = 17); stageatypical+ (vom Stadien-

Schema abweichende Patienten, n = 16). Weiterhin wurden die Patienten entsprechend ihrem 

MMST-Wert klinisch in Gruppen eingeteilt (Gruppe I: MMST 28-30, n = 14; Gruppe II: 

MMST 24-27, n = 36; Gruppe III: MMST 18-23, n = 21; Gruppe IV: MMST 10-17, n = 11). 

 



3 Inhalte der Promotionsthematik 29 

 

 

Es konnte mittels multipler linearer Regressionsanalyse ein Zusammenhang, korrigiert für Alter, 

Geschlecht und Bildung, zwischen dem Gesamtperfusionsdefizit und einigen regionalen 

Perfusionsdefiziten in der Frühphasen-Amyloid-PET mit der aktuellen kognitiven Leistung in dem 

MMST und der CERAD-Plus Testbatterie nachgewiesen werden (Tabelle 1). 

 

 

Frontal Temporal 
Mesio-

temporal 

Posteriorer 

cingulärer 

Kortex 

Parietal Occipital Gesamt 

rechts links rechts links 
beide 

Seiten 

beide   

Seiten 
rechts links rechts links  

MMST 0,13 0,19 0,23 0,37 0,27 0,20 0,09 0,14 0,16 0,18 0,35 

CERAD-Plus 

Testbatterie 
 

Wortliste 

Lernen 
0,14 0,19 0,19 0,27 0,28 0,12 0,07 0,14 0,13 0,12 0,26 

Wortliste 

Abrufen 
0,09 0,16 0,12 0,21 0,26 0,10 0,06 0,07 0,14 0,15 0,21 

Wortliste 

Intrusionen 
0,09 0,15 0,10 0,16 0,19 0,12 0,07 0,08 0,18 0,18 0,22 

Wortliste 

Wiedererkennen 
0,07 0,17 0,07 0,18 0,17 0,09 0,06 0,09 0,16 0,15 0,19 

Wortliste 

Wiedererkennen 

Diskriminierung 

0,10 0,15 0,08 0,18 0,17 0,10 0,07 0,09 0,15 0,16 0,20 

Figuren 

Abzeichnen 
0,07 0,19 0,10 0,17 0,19 0,11 0,17 0,09 0,18 0,19 0,22 

Figuren 

Abrufen 
0,09 0,15 0,13 0,15 0,20 0,11 0,08 0,09 0,19 0,17 0,22 

Wortflüssigkeit 

(Tiere) 
0,22 0,29 0,20 0,39 0,21 0,14 0,08 0,12 0,15 0,17 0,34 

Phonematische 

Flüssigkeit      

(S-Wörter) 

0,08 0,15 0,09 0,18 0,19 0,11 0,11 0,15 0,16 0,17 0,21 

Boston Naming 

Test 
0,14 0,24 0,16 0,31 0,26 0,11 0,06 0,09 0,13 0,12 0,26 

Trail Making 

Test A 
0,20 0,16 0,27 0,27 0,20 0,20 0,23 0,19 0,20 0,22 0,41 

Total CERAD 

Score 
0,17 0,23 0,13 0,28 0,22 0,12 0,07 0,09 0,15 0,16 0,26 

Tabelle 1: Multilineare Regression von neuropsychologischen Testergebnissen und regionalen 
Perfusionsdefiziten korrigiert für Alter, Geschlecht und Bildung. Die Tabelle zeigt die Assoziation r2. 
Signifikante Assoziationen wurden blau markiert (helles blau: p < 0,05; mittleres blau: p < 0,01; dunkles 
blau: p < 0,001). Das Gesamtperfusionsdefizit wurde durch die Summe aller z-Scores berechnet.  

Basierend auf Völter et. al 2025 
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Die stärkste regionale Assoziation der neuropsychologischen Testung, sowohl mittels MMST als 

auch mittels Total CERAD Score, fand sich mit dem linken Temporallappen (MMST: r2 = 0,37, 

p < 0,0001; Total CERAD Score: r2 =0,28, p < 0,01). Bei Betrachtung der vordefinierten ROIs 

ergab sich ein signifikanter Zusammenhang von Perfusionsdefiziten in allen vordefinierten 

Regionen I-VI mit dem MMST (r2 = 0,24-0,33, p < 0,0001-0,003) und dem Total CERAD Score 

(r2 = 0,20-0,27, p = 0,006-0,048). Insgesamt zeigten aber die regionalen Perfusionsdefizite 

stärkere Assoziationen mit der neuropsychologischen Testung als die zusammengefassten 

Perfusionsdefizite in den vordefinierten ROIs.  

Weiterhin ergab sich, dass das Frühphasen-Amyloid-PET-basierte Staging die meisten Patienten 

effektiv in verschiedene klinische Schweregrade der Demenz klassifizieren kann. Patienten, die 

als stage0 und stageI-II+ klassifiziert wurden, hatten zum Zeitpunkt der Bildgebung eine signifikant 

bessere kognitive Leistung als Patienten, die als stageI-IV+ und stageI-VI+ klassifiziert wurden 

(MMST: p = 0,014; CERAD-Plus Testbatterie: p = 0,044). Bei Beleuchtung der MMST-bezogenen 

klinischen Stadieneinteilung zeigten alle Gruppen die schwersten Perfusionsdefizite im 

Precuneus, im inferioren Parietallappen, im mittleren Temporallappen und im posterioren 

cingulären Gyrus. Mit zunehmendem klinischen Schweregrad der Demenz verschlechterten sich 

die Perfusionsdefizite in den beschriebenen Regionen sowie in weiteren Regionen wie dem 

Okzipitallappen, dem anterioren cingulären Gyrus und der Insula. Darüber hinaus nahmen die 

z-Scores mit zunehmendem klinischen Schweregrad in allen ROIs ab.  

Es konnte ein Zusammenhang zwischen dem zukünftigen kognitiven Abbau und dem 

perfusionsbasierten Staging nachgewiesen und damit der Nutzen der Frühphasen-Amyloid-PET 

als Prädiktor für den Schweregrad der Neurodegeneration dargestellt werden. Hierfür wurde als 

Maß für die prozentuale jährliche kognitive Verschlechterung aus den klinischen 

Nachbeobachtungsdaten (n = 23) ein Quotient aus dem Rückgang der neuropsychologischen 

Testung durch das Untersuchungsintervall in Jahren berechnet. Die Perfusionsdefizite in den 

Temporallappen konnten die künftige jährliche Verschlechterung der MMST-Werte, korrigiert für 

Alter, Geschlecht und Bildung, vorhersagen (r2 = 0,29, p = 0,037), während es für das 

Gesamtperfusionsdefizit nur einen Trend gab (r2 = 0,26, p = 0,063). Der stärkste Zusammenhang 

wurde für den linken inferioren temporalen Kortex festgestellt (r2 = 0,38, p = 0,008). Das 

Perfusionsdefizit des inferioren Parietallappens zeigte wiederum eine gute Vorhersage der 

zukünftigen jährlichen Abnahme des Total CERAD Score (r2 = 0,39-0,41, p = 0,043-0,048). Bei 

Betrachtung der ROIs, ergaben die Perfusionsdefizite der Regionen III/IV eine signifikante 

Assoziation und die Perfusionsdefizite der Regionen V/VI einen Trend zu einem Zusammenhang 

mit dem jährlichen prozentualen Rückgang der MMST-Werte (r2 = 0,15, p = 0,033 und r2 = 0,12, 

p = 0,054). Es gab keinen signifikanten Unterschied in der prozentualen jährlichen 

Verschlechterung bei Patienten, die in die Gruppen stage0, stageI-II+, stageI-IV+ oder stageI-VI+ 

eingeteilt waren.  
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Aus diesen Ergebnissen wird deutlich, dass das Gesamtperfusionsdefizit und regionale 

Perfusionsdefizite in der Frühphase der Amyloid-PET als objektiver Index für den Schweregrad 

der Neurodegeneration und als prognostischer Marker für den zukünftigen kognitiven Abbau bei 

der AD dienen können. 

 

Diese Ergebnisse wurden im Rahmen der Ko-Autorenschaft „Correlation of early-phase β-

amyloid positron-emission-tomography and neuropsychological testing in patients with 

Alzheimer’s disease“ im Februar 2025 im Journal „European Journal of Nuclear Medicine and 

Molecular Imaging“ veröffentlicht. 
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4. Zusammenfassung 

Aktuell wird intensiv an Therapiemöglichkeiten der Alzheimer-Krankheit geforscht. Spezifische 

Therapien müssen allerdings für eine gute Wirksamkeit aufgrund der Irreversibilität der 

neuronalen Schäden optimalerweise in frühen Stadien der Erkrankungen eingeleitet werden. Dies 

erfordert eine akkurate und frühzeitige Diagnostik der Alzheimer-Krankheit. Derzeit ist eine 

gesicherte Diagnose der Alzheimer-Krankheit zu Lebzeiten eines Patienten jedoch nicht möglich 

und erfordert eine postmortale pathologische Untersuchung des Gehirns. Außerdem erfolgt zum 

aktuellen Zeitpunkt die Stadieneinteilung der Alzheimer-Krankheit zumeist anhand der klinischen 

Testung, was aber wegen nicht gemessener Ko-Pathologien und Schwankungen der Tagesform 

fehleranfällig ist. Daher sind objektive in-vivo-Biomarker, welche eine Alzheimer-Krankheit früh 

diagnostizieren und zu anderen dementiellen Syndromen abgrenzen können, sowie Biomarker, 

die mit der Schwere der Erkrankung und der Progressionsrate korrelieren, von entscheidender 

Bedeutung.  

Ziel dieser Promotionsarbeit war es daher, Tracer-Verteilungsmuster in nuklearmedizinischen 

Bildgebungsverfahren als potentielle diagnostische Biomarker für die Alzheimer-Krankheit zu 

untersuchen. Im Speziellen wurden die Verteilungsmuster des Glukosemetabolismus - dargestellt 

mittels FDG-PET - sowie die Perfusionsdefizite - dargestellt in der Frühphasen-Amyloid-PET - zu 

Beginn und im Verlauf einer Alzheimer-Krankheit analysiert. Der Fokus lag dabei besonders auf 

asymmetrischen Verteilungsmustern des Glukosemetabolismus in der FDG-PET. 

Das im ersten Projekt untersuchte Patientenkollektiv setzte sich aus 146 Patienten mit der 

Diagnose einer Alzheimer-Krankheit zusammen. Alle Patienten haben eine Bildgebung mittels 

FDG-PET, teilweise auch eine MRT (n = 96), sowie eine ausführliche neuropsychologische 

Testung anhand der CERAD-Plus Testbatterie erhalten. Außerdem gab es von 49 Patienten eine 

neuropsychologische Verlaufsuntersuchung mittels CERAD-Plus Testbatterie. Aus den FDG-

PET-Bilddaten wurden die Asymmetrien für jede Hemisphäre und für die typischen Unterregionen 

der Alzheimer-Krankheit (parietaler, temporaler und posteriorer cingulärer Kortex) berechnet. Aus 

den MRT-Bildern wurde die Scheltens-Skala (Atrophie-Index des medialen Temporallappen) 

visuell gebildet und hieraus die Asymmetrie der beiden Hippocampi berechnet. Weiterhin wurden 

anhand der FDG-PET-Bilddaten rechts- und links-asymmetrische Fälle definiert.  

Es bestätigte sich auch in diesem Patientenkollektiv, dass die asymmetrischen Fälle mit 

Alzheimer-Krankheit zumeist eine überwiegend linkshemisphärische Degeneration aufweisen, 

und rechts-asymmetrische Fälle seltener auftreten. Des Weiteren stellte sich heraus, dass die 

Asymmetrie in der FDG-PET, korrigiert für Alter, Geschlecht, Bildungsstand und 

Gesamtbelastung durch neuronale Degeneration, ein signifikanter Prädiktor für die aktuelle 

kognitive Beeinträchtigung ist (visuell: β = -0,288, p < 0,001; semiquantitativ: β = -0,451, 

p < 0,001). Verglichen hiermit war die alleinige Asymmetrie der Hippocampus-Atrophie kein 

signifikanter Prädiktor des aktuellen kognitiven Status (β = -0,034, p = 0,731). Zudem bestätigte 
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sich, dass die Neurodegeneration der linken Hemisphäre in der klinischen neuropsychologischen 

Testung, gemessen mittels Total CERAD Score, deutlich besser erfasst wird als die der rechten 

Hemisphäre (linke Hemisphäre: visuell: ρ = -0,479, p < 0,001; semiquantitativ: R = 0,497, 

p < 0,001; rechte Hemisphäre: visuell: ρ = -0,205, p = 0,013; semiquantitativ: R = 0,282, 

p = 0,001). Auch bei Betrachtung der asymmetrischen Fälle bestätigte sich, dass die links-

asymmetrischen Fälle in der klinischen neuropsychologischen Testung besser erfasst werden als 

die rechts-asymmetrischen. Linkshemisphärisch betroffene Patienten zeigten im Schnitt einen 

um 9,9 Punkte schlechteren Total CERAD Score als rechts-asymmetrische Fälle. In Kombination 

mit den Verlaufsuntersuchungsdaten ließ sich errechnen, dass rechts-asymmetrische Fälle im 

Mittel 2,7 Jahre später den gleichen Total CERAD Score erreichen und somit deutlich später 

klinisch erfasst werden. Aufgrund dessen ist zum einen von einer deutlich späteren Diagnose bei 

rechts-asymmetrischen Fällen auszugehen, und zum anderen möglicherweise auch von einer 

Unterdiagnostizierung. Deshalb sollte die Bewertung der Asymmetrie in der FDG-PET in die 

klinische Routine-Diagnostik der Alzheimer-Krankheit eingebunden werden. Besonders bei 

unklaren Fällen kann die diagnostische Sicherheit verbessert werden. Außerdem sollte bei 

klinisch unklaren Fällen mit Verdacht auf rechts-asymmetrische Alzheimer-Krankheit eine FDG-

PET mit Analyse der asymmetrischen Neurodegeneration zur Sicherung der Diagnose einer 

Alzheimer-Krankheit in Erwägung gezogen werden. Auch eine genauere Betrachtung der 

einzelnen Untertests der CERAD-Plus Testbatterie ergab keine bessere Erfassung der rechts-

asymmetrischen Fälle. Lediglich der „MMST“ und das „Figuren Abzeichnen“ zeigten eine 

signifikante Korrelation mit der rechten Hemisphäre. Somit wird klar, dass die Darstellung der 

rechten Gehirnhälfte in der aktuellen neuropsychologischen Testung unzureichend ist. Es sollten 

weitere Tests einbezogen werden, welche Defizite in der rechten Hemisphäre besser 

untersuchen können.  

Aufgrund dieser vielversprechenden Ergebnisse stellte sich anschließend die Frage, ob auch die 

Analyse der Tracer-Verteilung in anderen nuklearmedizinischen Verfahren, wie beispielsweise 

der Frühphasen-Amyloid-PET, ebenso gute Resultate erzielen kann. Es erfolgte daher die 

Untersuchung der Frühphasen-Amyloid-PET-Bilddaten von 82 Patienten mit der Diagnose 

Alzheimer-Krankheit. Alle Patienten haben maximal 90 Tage nach der Bildgebung eine 

neuropsychologische Testung (CERAD-Plus Testbatterie und MMST/MoCA) erhalten. Von 23 

Patienten lagen außerdem weitere kognitive Testungen im Krankheitsverlauf vor. Aus den 

Frühphase-Amyloid-PET-Bilddaten wurden die Perfusionsdefizite (regional und gesamt) 

berechnet. Die Alzheimer's Disease Neuroimaging Initiative hat in Anlehnung an das Braak-

Stadien-System (histopathologische Stadieneinteilung der Alzheimer-Krankheit anhand der von 

Tau-Fibrillen betroffenen Areale) Bereiche von Interesse definiert. Die Patienten wurden anhand 

der regionalen Perfusionsdefizite in den vorbestimmten Regionen in Gruppen (stage0, stageI-II+, 

stageI-IV+, stageI-VI+ und stageatypical+) eingeteilt.  

Es bestätigte sich, dass eine geringere kognitive Leistung, also ein höherer klinischer 

Schweregrad der Alzheimer-Krankheit, gemessen mit MMST und CERAD-Plus Testbatterie, mit 
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Hypoperfusion in der Frühphasen-Amyloid-PET assoziiert ist. Hierbei war der klinische 

Schweregrad der Alzheimer-Erkrankung stärker mit linkshemisphärischen Perfusionsdefiziten 

assoziiert und die Alzheimer-Krankheit wies ein eher linkslastiges Muster der Neurodegeneration 

und Amyloid-Pathologie auf. Dies zeigte sich in einem stärkeren Zusammenhang zwischen 

Perfusionsdefiziten der linken Hemisphäre mit der aktuellen kognitiven Leistung im MMST und 

der CERAD-Plus Testbatterie. Die stärkste regionale Assoziation der neuropsychologischen 

Testung ergab sich hierbei mit dem linken Temporallappen (MMST: r2 = 0,37, p < 0,0001; Total 

CERAD Score: r2 = 0,28, p < 0,01). Weiterhin konnte der Nutzen der Perfusionsdefizite in der 

Frühphasen-Amyloid-PET als objektiver Index für den Schweregrad der Neurodegeneration 

aufgezeigt werden. Die als stage0 und stageI-II+ definierten Patienten wiesen signifikant bessere 

neuropsychologische Leistungen auf als Patienten, die als stageI-IV+ und stageI-VI+ eingestuft 

wurden und es konnte die Mehrheit der Patienten anhand des Frühphasen-Amyloid-PET-

basierten Stagings effektiv in verschiedene klinische Schweregrade der Demenz klassifiziert 

werden. Zudem war festzustellen, dass die Perfusionsdefizite in der Frühphase der Amyloid-PET 

als prognostische Marker für den künftigen kognitiven Abbau bei der Alzheimer-Krankheit 

fungieren können. Es konnte ein Zusammenhang zwischen globalen beziehungsweise 

regionalen Perfusionsdefiziten in der Frühphasen-Amyloid-PET und dem zukünftigen kognitiven 

Abbau - gemessen mittels neuropsychologischer Testungen im Krankheitsverlauf von 23 

Patienten - dargestellt werden. Der prozentuale Rückgang der neuropsychologischen Testung 

(MMST und Total CERAD Score) war mit Hypoperfusion in temporalen und parietalen Regionen 

verbunden und die Perfusionsdefizite in diesen Regionen boten einen guten Vorhersagewert für 

die zukünftige jährliche Abnahme des MMST (Temporallappen: r2 = 0,29, p = 0,037; linker 

inferiorer Temporallappen: r2 = 0,38, p = 0,008) und des Total CERAD Score (inferiorer 

Parietallappen: r2 = 0,39 - 0,41, p = 0,043 - 0,048). 

In diesem Promotionsprojekt wird das Potential der Analyse von metabolischen 

Verteilungsmustern in der FDG-PET und der Analyse der Perfusionsdefizite in der Frühphase-

Amyloid-PET für die Diagnostik der Alzheimer-Krankheit verdeutlicht. Es konnte aufgezeigt 

werden, dass die Bewertung der Asymmetrie in der FDG-PET als diagnostisches Mittel mehr 

Einzug in die klinische Routine-Diagnostik der Alzheimer-Krankheit erhalten sollte. Vor allem in 

klinisch unklaren Fällen mit Verdacht auf rechts-asymmetrische Alzheimer-Krankheit kann eine 

FDG-PET mit Analyse der asymmetrischen Neurodegeneration zur Sicherung der Diagnose der 

Alzheimer-Krankheit in Erwägung gezogen werden. Bezüglich der klinischen 

neuropsychologischen Testung wird anhand der Ergebnisse klar, dass neue Tests in Betracht 

gezogen werden sollten, welche Defizite in der rechten Hemisphäre - vor allem mittels Messung 

von Verhalten - besser abbilden können. Bezüglich der Frühphase-Amyloid-PET konnte das 

Potential von Perfusionsdefiziten für den Nachweis der Neurodegeneration und als 

prognostischer Marker für den zukünftigen kognitiven Abbau bei der Alzheimer-Krankheit belegt 

werden. Damit können diese womöglich nicht nur für diagnostische Zwecke nützlich sein, sondern 

auch als ein Instrument zur Abschätzung des patientenspezifischen Risikos für das Fortschreiten 



4 Zusammenfassung 35 

 

 

der Alzheimer-Krankheit dienen. Die Möglichkeit, zwei Biomarker-Kategorien 

(Neurodegeneration und β-Amyloid) in einer Untersuchung zu bewerten, könnte den Bedarf an 

weiteren diagnostischen Verfahren bei der Abklärung von Patienten mit Verdacht auf Alzheimer-

Krankheit verringern. 
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5. Abstract 
Treatment options for Alzheimer's disease are currently being intensively researched. However, 

due to the irreversibility of neuronal damage, specific therapies optimally have to be initiated at 

an early stage of the disease. This requires an accurate and early diagnosis of Alzheimer's 

disease. Nowadays, however, a reliable diagnosis of Alzheimer's disease is not possible during 

the lifetime of a patient, and requires the postmortem pathological examination of the brain. In 

addition, the staging of Alzheimer's disease is presently based primarily on clinical testing which 

is prone to errors due to unmeasured copathologies and day-to-day fluctuations. Therefore, 

objective in vivo biomarkers that can diagnose Alzheimer's disease early and differentiate it from 

other dementia syndromes, as well as biomarkers that correlate with disease severity and the 

rate of progression, are crucial. The aim of this doctoral thesis was therefore to investigate tracer 

distribution patterns in nuclear imaging techniques as potential diagnostic biomarkers for 

Alzheimer's disease. Specifically, distribution patterns of glucose metabolism - visualized by FDG-

PET - and perfusion deficits - visualized by early-phase β-amyloid-PET - were analyzed at the 

onset and during the course of Alzheimer's disease. The focus was particularly on asymmetric 

distribution patterns of glucose metabolism in FDG-PET. 

The study population examined in the first project consisted of 146 patients diagnosed with 

Alzheimer's disease. All patients received an FDG-PET imaging, in some cases also MRI (n = 96), 

as well as an elaborate neuropsychological examination via the CERAD-Plus test battery. 

Moreover, 49 patients had a neuropsychological follow-up assessment. Based on the FDG-PET 

imaging data, the asymmetries for each hemisphere and for the typical subregions of Alzheimer's 

disease (parietal, temporal and posterior cingulate cortex) were calculated. The Scheltens scale 

(atrophy index of the medial temporal lobe) was visually generated from the MRI images, and the 

asymmetry of the two hippocampi was calculated from this. Furthermore, right- and left-

asymmetric cases were defined based on the FDG-PET imaging data.  

In this patient cohort, it was also confirmed that the asymmetric cases of Alzheimer's disease 

mostly exhibit a predominantly left-hemispheric degeneration, while right-asymmetric cases are 

less common. Additionally, asymmetry in FDG-PET, adjusted for age, sex, educational level, and 

total burden of neuronal degeneration, was found to be a significant predictor of current cognitive 

impairment (visual: β = -0.288, p < 0.001; semiquantitative: β = -0.451, p < 0.001). Compared to 

this, the hippocampal atrophy asymmetry by itself was not a significant predictor of the present 

cognitive status (β = -0.034, p = 0.731). Furthermore, it was verified that the neurodegeneration 

of the left hemisphere is significantly better detected in clinical neuropsychological testing, 

measured by the total CERAD score, than that of the right hemisphere (left hemisphere: visual: 

ρ = -0.479, p < 0.001; semiquantitative: R = 0.497, p < 0.001; right hemisphere: visual: ρ = -0.205, 

p = 0.013; semiquantitative: R = 0.282, p = 0.001). Likewise, when investigating the asymmetric 

cases, it was confirmed that left-asymmetric cases are better detected in clinical 

neuropsychological testing than the right-asymmetric ones. Patients whose left hemisphere was 
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affected showed on average a total CERAD score 9.9 points worse than right-asymmetric 

patients. Combined with the follow-up data, it was calculated that right-asymmetric patients reach 

the same total CERAD score on average 2.7 years later, and are thus clinically diagnosed 

significantly later. Hence, a later diagnosis of right-asymmetric cases can be assumed, and 

possibly also an underdiagnosis. Therefore, the assessment of asymmetry in FDG-PET should 

be included into the routine clinical diagnostics of Alzheimer's disease. This can improve 

diagnostic certainty, particularly in unclear cases. Moreover, in clinically uncertain cases with 

suspected right-asymmetric Alzheimer's disease, an FDG-PET with an analysis of asymmetric 

neurodegeneration should be considered to confirm the diagnosis of Alzheimer's disease. A 

closer look at the individual subtests of the CERAD-Plus test battery did not yield a better 

coverage of the right-asymmetric cases either. Solely the subtests MMSE and constructional 

praxis revealed a significant correlation with the right hemisphere. This clearly demonstrates that 

the current neuropsychological testing does not adequately address the right hemisphere. 

Additional tests should be considered to better investigate deficits in the right hemisphere.  

Due to these promising results, the question arose whether the examination of the tracer 

distribution in other nuclear medicine techniques, such as the early-phase β-amyloid-PET, could 

achieve equally good results. Therefore, early-phase β-amyloid-PET imaging data of 82 patients 

diagnosed with Alzheimer's disease were analyzed. Within 90 days of imaging all patients were 

neuropsychologically tested (CERAD-Plus test battery and MMSE/MoCA). Further cognitive tests 

were also available for 23 patients during the course of their disease. The perfusion deficits 

(regional and global) were calculated from the early-phase β-amyloid-PET imaging data. The 

Alzheimer's Disease Neuroimaging Initiative defined regions of interest similar to the Braak 

staging system (histopathological staging of Alzheimer's disease based on areas affected by tau 

fibrils). Patients were categorized into groups (stage0, stageI-II+, stageI-IV+, stageI-VI+ and 

stageatypical+) based on regional perfusion deficits in the predefined regions.  

It was confirmed that lower cognitive performance, that is higher clinical severity of Alzheimer's 

disease, as measured by MMSE and CERAD-Plus test battery, is associated with hypoperfusion 

in early-phase β-amyloid-PET. Here, Alzheimer's disease showed a more left-dominant pattern 

of β-amyloid pathology as well as neurodegeneration, and the clinical severity of Alzheimer's 

disease revealed a stronger association with left-hemispheric perfusion deficits. This was 

reflected in a stronger association between left-hemispheric perfusion deficits and current 

cognitive performance in MMSE and CERAD-Plus test battery. The strongest regional association 

of neuropsychological testing was found with the left temporal lobe (MMSE: r2 = 0.37, p < 0.0001; 

total CERAD score: r2 = 0.28, p < 0.01). Furthermore, the usefulness of perfusion deficits in early-

phase β-amyloid-PET as an objective index of neurodegeneration severity was demonstrated. 

Patients belonging to the groups stage0 and stageI-II+ revealed significantly better 

neuropsychological performance than patients classified as stageI-IV+ and stageI-VI+, and most 

patients could effectively be divided into different clinical severity levels of dementia using early-

phase β-amyloid-PET-based staging. In addition, it was shown that perfusion deficits in early-
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phase β-amyloid-PET can serve as prognostic markers of future cognitive decline in Alzheimer's 

disease. A correlation was demonstrated between global and regional perfusion deficits in early-

phase β-amyloid-PET and future cognitive decline, measured by neuropsychological testing 

during the disease of 23 patients. The percentage decline in neuropsychological testing (MMSE 

and total CERAD score) was associated with hypoperfusion in temporal and parietal regions, and 

perfusion deficits in these regions provided a strong predictor of the future annual decline in 

MMSE (temporal lobe: r2 = 0.29, p = 0.037; left inferior temporal lobe: r2 = 0.38, p = 0.008) and 

total CERAD score (inferior parietal lobe: r2 = 0.39 - 0.41, p = 0.043 - 0.048). 

This doctoral thesis outlines the potential of analyzing metabolic distribution patterns in FDG-PET 

and perfusion deficits in early-phase β-amyloid-PET for the diagnosis of Alzheimer's disease. It 

was proofen that the assessment of asymmetry in FDG-PET should be incorporated as a 

diagnostic tool into the routine clinical diagnostics of Alzheimer's disease. Especially in clinically 

uncertain cases with suspected right-asymmetric Alzheimer's disease, an FDG-PET scan along 

with an analysis of asymmetric neurodegeneration can be considered to confirm the diagnosis of 

Alzheimer's disease. The results highlight that new tests should be included in clinical 

neuropsychological testing which can better map deficits in the right hemisphere, particularly by 

measuring behavior. Regarding early-phase β-amyloid-PET, the potential of perfusion deficits for 

the proof of neurodegeneration and as a prognostic marker for future cognitive decline in 

Alzheimer's disease was demonstrated. As a result, these may not only be useful for diagnostic 

purposes but, also represent a tool for estimating the patient-specific risk of progression of 

Alzheimer's disease. The ability to assess two biomarker categories (neurodegeneration and 

β-amyloid) in one investigation could reduce the need for further diagnostic procedures in the 

workup of patients with suspected Alzheimer's disease. 
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