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Abstract

MR-Linacs are hybrid devices that combine linear accelerators (Linacs) for photon
radiotherapy (RT) and a magnetic resonance imaging (MRI) scanner for radiation
dose-free in-room imaging. Their introduction in clinical routine has revolutionized
RT. Tumors in organs affected by breathing motion or daily anatomical changes as
well as tumors located in bulk soft-tissue benefit from the excellent soft-tissue con-
trast and the real-time imaging provided by the integrated MRI-scanner. Especially
patients suffering from lung tumors benefit from MRI-guided RT (MRgRT), as it en-
ables the daily adaptation to inter-fractional anatomical changes and the additional
real-time imaging permits a gated beam delivery to compensate for intra-fractional
tumor motion and thus a precise dose delivery. This in turn allows to increase dose
applied to the target, while decreasing the dose to the surrounding normal tissue.
Despite these important advances to minimize radiation-induced normal tissue tox-
icities, radiation-induced pneumonitis (RP) and the later stage radiation-induced
lung fibrosis (RILF) are still common complications occurring at the earliest about
2-3 months post-RT. RP cannot only result in long-term impairment, but can pose
a serious health risk in severe cases, therefore identifying patients at risk and early
detection of RP is crucial. Even though clinical and dosimetric parameters have
been proposed with varying success, strong predictive parameters especially in the
context of MRgRT are currently missing. Besides being an integral part in the
treatment delivery, the integrated MRI-scanner allows to perform additional mor-
phological, functional or other advanced imaging techniques developed at diagnostic
MRI-scanners without extra costs or patient burden.

The aim of this thesis was to establish and investigate new MRI-based approaches
for the prediction of RP directly after the treatment by exploiting the MR imaging
possibilities of the MR-Linac and the automated radiation dose-free detection and
visualization of RP at the follow-up stage using diagnostic MRI-scanners.

At first, a non-contrast enhanced functional lung MR imaging method based on
2D cine-MRI called non-uniform Fourier decomposition (NuFD), that has been suc-
cessfully established at diagnostic scanners, was transferred to the low-field MR-
Linac. The feasibility of the ventilation and perfusion imaging with this approach
along with its potential integration into the clinical workflow was investigated in
healthy volunteers. Due to the NuFD method’s dependency on breathing ampli-
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tude, which influences the intra-patient reproducibility of the functional maps over
repeated scans, two normalization strategies were developed and their performance
assessed to normalize scans employing different breathing maneuvers. This study
successfully showed the validity of the NuFD method at a low-field MR-Linac in a
clinical setting and both normalization strategies demonstrated a clear improvement
in reproducibility compared to the uncorrected cases.

Following that, the NuFD method was integrated into a clinical study comprising
the additional MR image acquisition required for the extraction of functional maps
directly after at least the first and the last treatment fraction of lung tumor pa-
tients receiving MRgRT. Ventilation- and perfusion-based biomarkers were defined
as change over the treatment in different lung regions and investigated regarding
their potential to predict RP and compared to commonly used dosimetric parame-
ters. In this study, it was demonstrated that the change in ventilation and perfusion
over the treatment course have predictive qualities superior to the pure dosimetric
parameters, enabling the identification of patients at risk of developing RP already
directly after the end of treatment.

Lastly, to support the MRI-based RP prediction, the patients included in the previ-
ously mentioned study received a follow-up diagnostic MRI, including quantitative
T>-mapping, in addition to the standard-of-care computed tomography (CT) scan.
Using the Ts-maps, parameters were defined based on the mean T5 values in the
high-dose region and their potential to automatically stratify patients into RP and
non-RP patients evaluated. Furthermore, a voxel-based analysis was performed to
develop an automated segmentation of the lung volume affected by RP to provide a
first visualization of the RP extent. The T5-based parameters revealed a strong abil-
ity to stratify patients and the Th-based RP segmentation showed reasonable visual
comparability with CT-based segmentation by a radiologist.

These studies represent important steps towards the clinical implementation of func-
tional imaging during MRgRT and an MRI-based follow-up procedure after lung RT
to identify patients at risk of developing RP early and to automatically detect RP.
This has the potential to improve the patient care in the future.



Zusammenfassung

MR-Linacs sind hybride Geréte, die lineare Beschleuniger (Linacs) fiir die Photonen-
strahlentherapie (RT) und einen Magnetresonanztomographie (MRT) Scanner fiir
die strahlendosis-freie Bildgebung wéhrend der Behandlung kombinieren. Ihre Ein-
fiihrung in die klinische Routine hat die Strahlentherapie revolutioniert. Tumore in
Organen, die durch Atembewegung oder tégliche anatomische Verdnderungen beein-
flusst werden, sowie Tumore in Kérperregionen mit hohem Weichteilanteil profitieren
von dem exzellenten Weichteilkontrast und der Echtzeit-Bildgebung ermoglicht durch
den integrierten MRT-Scanner. Besonders Patienten mit Lungentumoren profitieren
von der MRT-gefiihrten Strahlentherapie (MRgRT), da sie die tégliche Anpassung
an inter-fraktionellen anatomischen Verdnderungen ermoglicht und die zuséatzliche
Echtzeit-Bildgebung eine gesteuerte Bestrahlung, um die intra-fraktionelle Tumor-
bewegung zu kompensieren, und daher eine préazise Dosisapplikation ermoglicht. Dies
erlaubt die applizierte Dosis im Zielvolumen zu erhéhen, wihrend die Dosis im umlie-
genden normalen Gewebe vermindert werden kann. Trotz dieser bedeutenden Fort-
schritte zur Minimierung der strahleninduzierten Toxizitdten im Normalgewebe, sind
strahleninduzierte Lungenentziindungen (RP) und die zu einem spéteren Zeitpunkt
eintretende strahleninduzierte Lungenfibrose (RILF) immer noch héufig auftretende
Komplikationen, die frithstens 2-3 Monate nach Bestrahlungsende auftreten. RP kann
nicht nur in langfristigen Einschrdnkungen resultieren, sondern kann auch in schweren
Féllen ein ernstzunehmendes Gesundheitsrisko darstellen, weshalb eine frithe Iden-
tifizierung von Risikopatienten und eine frithe Detektierung von RP entscheidend
ist. Obwohl bereits klinische und dosimetrische Parameter mit unterschiedlichem Er-
folg vergeschlagen wurden, sind stark pradiktive Parameter, speziell im Kontext der
MRgRT, weiterhin fehlend. Zusétzlich zur in der klinischen Routine stattfindenden
Bildgebung, erlaubt der integrierte MRT-Scanner die Aufnahme von weiteren mor-
phologischen, funktionellen oder anderen fortschrittlichen Bildgebungstechniken, die
an diagnostischen MRT-Scannern entwickelt wurden, ohne zusétzliche Kosten oder
Belastung der Patienten.

Das Ziel dieser Arbeit war es neue MRT-basierte Ansétze fiir die Verhersage von RP
direkt nach der Bestrahlung, durch die Ausnutzung der MRT-Bildgebungsmoglichkeiten
am MR-Linac, und eine automatisierte strahlendosis-freie Feststellung und Visuali-
sierung der RP in der Nachsorgephase zu etablieren und untersuchen.
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Zunachst wurde eine nicht-Kontrast erhohte funktionelle Lungen-MRT Bildgebungs-
methode basierend auf 2D cine-MRT, gennant non-uniform Fourier decompositi-
on (NuFD), die erfolgreich an diagnostischen Scannern etabliert wurde, auf einen
Niederfeld MR-Linac iibertragen. Die Umsetzbarkeit der Ventilations- und Perfusi-
onsbildgebung mit diesem Ansatz und die potentielle Integration in den klinischen
Ablauf wurde in gesunden Probanden untersucht. Aufgrund der Abhéingigkeit der
NuFD Methode von der Atemamplitude, welche die intra-Patienten Reproduzierbar-
keit der funktionellen Bilder {iber wiederholte Aufnahmen beeinflusst, wurden zwei
Normalisierungsstrategien entwickelt und bewertet, um wiederholten Messungen mit
unterschiedlichen Atemmandvers zu normieren. Diese Studie zeigte erfolgreich die
Validitdt der NuFD Methode an einem Niederfeld MR-Linac in einem kliniknahem
Setting und beide Normalisierungsstrategien demonstrierten eine klare Verbesserung
der Reproduzierbarkeit im Vergleich mit den nicht-korrigierten Féllen.
Darauffolgend wurde die NuFD Methode in eine klinische Studie integriert, die die
zusétzliche MRT-Bildakquisition fiir die Extrahierung der funktionellen Ventilations-
und Perfusions-Karten direkt nach mindestens der ersten und letzten Behandlungs-
fraktion der MRgRT von Patienten mit Lungentumoren beinhaltete. Ventilations-
und Perfusions-basierte Biomarker wurden als Anderung iiber die Behandlung in
verschiedenen Lungenregionen definiert und ihr Potential in der Vorhersage von RP
untersucht und verglichen mit {iblicherweise verwendeten dosimetrischen Parame-
tern. In dieser Studie konnte gezeigt werden, dass die Anderung der Ventilation und
Perfusion {iber die Bestrahlungsdauer pradiktive Qualititen besitzen, welche die der
dosimetrischen Parameter {ibersteigt und dadurch eine Identifizierung von Risikopa-
tienten direkt nach Bestrahlungsende erlaubt.

Zuletzt, um die MRT-basierte RP Voraussage zu unterstiitzen, erhielten die Pa-
tienten, die in die vorhergenannten Studie eingeschlossen wurden, zusétzlich zu der
Computer Tomographie (CT) als Standard Nachsorge-Bildgebung, ein diagnostisches
Nachsorge MRT inklusive quantitativer Ts-Kartierung. Mithilfe dieser T>-Karten
wurden Parameter basierend auf mittleren 7T5-Werten in Regionen mit hoher Dosis
definiert und deren Potential zur Patientenstratifizierung in RP und nicht-RP Pati-
enten evaluiert. Zusétzlich wurde eine voxel-basierte Analyse durchgefiihrt, um eine
automatisierte Segmentierung des von RP befallenen Lungengewebes zu entwickeln,
welche eine erste Visualisierung des RP Ausmafes liefert. Die T5-basierten Parameter
zeigten ein starkes Vermogen die Patienten zu stratifizieren und die T»-basierte RP
Segmentierung demonstrierte eine vielversprechende visuelle Vergleichbarkeit mit der
CT-basierten Segmentierung vorgenommen durch einen Radiologen.

Diese Studien stellen wichtige Schritte in Richtung der klinischen Implementierung
von funktioneller Bildgebung wihrend MRgRT and eine MRT-basierte Nachsorge
nach der Lungen Strahlentherapie dar, um Risikopatienten fiir die Entwicklung von
RP frith zu identifizieren und die RP automatisch zu detektieren. Dies hat das Po-
tential die Patientenversorgung in der Zukunft zu verbessern.



1 Introduction

Lung cancer is one of the most common cancer types in females and males and is a
leading cause of cancer-related deaths [1-3]. In addition to being a primary cancer
site, the lungs are the second most frequent site for the development of metastasis
with pulmonary lesions being detected in 20-54% of metastatic extra-thoracic ma-
lignancies [4]. In patients with non-resectable tumors, radiotherapy (RT) plays a
major role in curative and palliative treatment and is even considered standard-of-
care in non-small cell lung cancer (NSCLC) stage I and II as well as pulmonary
oligometastases |5, 6]. Especially the clinical establishment of stereotactic body ra-
diation therapy (SBRT) for extracranial targets fostered this development [7]. The
SBRT concept of delivering large doses to the target in a few treatment sessions,
but limiting the normal tissue surrounding the target subjected to high doses is es-
pecially relevant for lung RT, due to the lung’s high radiosensitivity [8]. One of the
main requirements for the use of SBRT, particularly in lung lesions, is exact patient
positioning and tumor localization to allow for accurate and precise dose delivery
[7]. As exact lung tumor localization is hampered by breathing motion and in some
cases even by the heartbeat, the need for real-time imaging during the treatment
arose [9]. This problem has been addressed with the introduction of image-guided
radiotherapy using X-rays together with implanted metal fiducial markers [10], ul-
trasound [11] or optical/thermal surface imaging [12] for real-time imaging and a
gated beam delivery. Moreover, anatomical changes between treatment sessions are
compensated for with daily treatment plan adaptation using volumetric information
from computed tomography (CT) [13] or cone-beam computed tomography (CBCT)
[14]. Additionally, the integration of magnetic resonance imaging (MRI) scanners
into linear accelerators (Linacs) to form so-called MR-Linacs, has opened up even
more opportunities in terms of magnetic resonance image-guided radiotherapy (MR-
gRT). Apart form being ionizing radiation-free, MRI offers high soft-tissue contrast,
which is advantageous in many treatment sites in the thorax and abdomen such as
lung, pancreas and liver [15].

After the theoretical ground work was laid by Isidor Rabi, Edward Purcell and Felix
Bloch regarding the magnetic properties of certain atomic nuclei that formed the
research field of nuclear magnetic resonance (NMR), Paul Lauterbur was the first
to make use of the NMR concepts to image objects, which later became known as
MRI [16]. Since then, MRI has evolved as one of the pillars of diagnostic radi-
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ology [17]. In addition to anatomical and morphological imaging, MRI allows to
retrieve information and generate contrast beyond pure anatomy and morphology
such as, diffusion-weighted imaging (DWI) to assess the body’s micro-architecture
and molecular function [18|, magnetic resonance (MR) spectroscopy for metabolic
imaging [19], functional imaging [20] or quantitative imaging using the tissue spe-
cific signal relaxation times (71, Tb, T1,) [21]. Due to the lung’s low proton density
and its many air-tissue interfaces that cause susceptibility artifacts and thus fast
signal decay, lung MRI is challenging [22]. Despite this, quantitative and functional
MRI have been of great interest in lung research over the years. Quantitative MRI
mapping in general and in particular To-mapping has been shown to aid in the char-
acterization and differentiation between lung disease patterns and the detection of
inflammation [23-25]. Similarly, research interest in functional imaging, i.e., the
assessment of lung ventilation or air flow and/or lung perfusion or blood flow, has
grown over the recent years. To obtain information on lung perfusion, typically a
gadolinium-based contrast agent is intraveneously administered and the dilution of
the contrast agent traced [26]. For the retrieval of regional ventilation information,
many techniques rely on the inhalation of hyperpolarized noble gases such as helium
3He and xenon '29Xe, aerosols of gadolinium-based contrast agents [27], fluorinated
(1F) gases or oxygen [28]. However, the process of hyperpolarization is expensive
and, due to the need for dedicated equipment, not easily integrable into the clinical
workflow. Furthermore, the administration of gadolinium-based contrast agents is
critical in certain patients [29]. Therefore, non-contrast enhanced functional imaging
techniques have been developed that not only decrease the hardware requirements,
but also the patient burden. Several methods have been successfully introduced over
the years that are based on time-resolved cine image acquisition in free-breathing
such as Fourier decomposition (FD) [30] or its extension non-uniform Fourier de-
composition (NuFD) [31], phase-resolved functional lung (PREFUL) imaging [32]
or self-gated non-contrast-enhanced functional lung (SENCEFUL) imaging [33]. All
of these techniques utilize the correlation between signal intensity and lung density
that was first proposed by Zapke et al. [34]. Using dedicated sequences with high
sampling rates to capture the cardiac cycle allows to not only retrieve signal inten-
sities introduced by breathing-related lung parenchymal density changes, but also
intensity changes due to blood flow induced by the heartbeat.

As the MRI-system is integrated in the MR-Linac and can be operated separately
from the Linac, MR imaging on the system is not limited to the images required
for RT, but has already been shown to be feasible for the acquisition of, e.g., DWI
[35], T1- and T»-Mapping [36], dynamic contrast-enhanced perfusion MRI [37], T} ,-
mapping [38] and oxygen-enhanced MRI [39]. As this additional imaging is performed
in treatment position and easily integrable into the clinical workflow, opportunities
to use the additionally acquired images for treatment planning [40], treatment plan
adaptation [41]| or treatment response monitoring [42] have opened up. Another
motivation for additional (functional) imaging is to use the obtained image informa-
tion to develop models that would allow to predict treatment outcomes or adverse



events. Especially the latter is relevant in lung RT, where radiation-induced lung
toxicities such as the early stage radiation-induced pneumonitis (RP) or late stage
radiation-induced lung fibrosis (RILF) are, despite all advances towards precise dose
delivery to the tumor and the efforts towards normal tissue sparing, still a common
complication with reported incidences of 12-17% after MRgRT [43].

As RP is diagnosed at the earliest around 2-3 months after the end of RT and can
result in severe long-term impairment such as fibrosis, efforts have been made to iden-
tify biomarkers predicting its occurrence. Dosimetric parameters such as the mean
lung dose (MLD) or the lung volume (without the target volume) receiving more than
20 Gy (V20) have been considered as risk factors and introduced to serve as dose
constraints in the treatment planning stage. However, both parameters showed good
to limited predictive qualities in different studies [44—46]. Therefore, the research
focus shifted towards the definition and investigation of function-based parameters
extracted from pre-RT 4D-CT ventilation imaging [47], single photon emission com-
puted tomography (SPECT) perfusion [46] as well as positron emission tomography
(PET) ventilation and/or perfusion imaging [48, 49]. Dose parameters accounting
for functional information before the start of RT such as the mean dose to highly
functioning lung volume and the highly functioning lung volume receiving more than
20 Gy have been demonstrated to be predictive in most studies, but the acquisition
of this functional data requires the application of additional radiation dose, the ad-
ministration of radioactive compounds and/or to bring and setup the patient to a
different device, which in turn increases the patient burden. As these problems are
overcome by the MR-Linac with its integrated MRI-scanner, the motivation for this
thesis was to investigate the possibility of transferring non-contrast enhanced func-
tional imaging using the NuFD technique from diagnostic MRI-scanners to a low-field
MR-Linac. This would allow repeated and comparable combined ventilation and per-
fusion imaging and the identification of MRI-function-based parameters predictive
of RP. Furthermore, since (RP) patients have to undergo repeated follow-up CT
imaging after the end of RT, a diagnostic MRI-based approach using T5-mapping is
presented as an outlook towards an ionizing dose-free and automated way for stratifi-
cation of RP and non-RP patients and early visual assessment of the RP-affected lung
volume. Such an approach could eventually replace the gold-standard CT-imaging
in this context, reducing patient exposure.

The structure of this thesis is as follows: After a brief introduction into the basic
principles of NMR and MRI, the MRI techniques specifically used in this thesis are
explained. The concepts of photon RT in general and of MRgRT in particular are
described along with background of lung specific radiation-induced toxicities. The
background and theory section is concluded by an explanation of the theory behind
image registration and the data analysis/statistics tools used in this thesis. Following
the background section, the two publications are presented along with an additional
project concerning the MRI-based follow-up assessment of lung tumor patients post-
RT. The last part of the thesis is comprised by conclusions and an outlook.



2 Background and Theory

This chapter introduces the basic theoretical concepts of the imaging and radiation
treatment techniques along with post-processing and analysis approaches applied
in this thesis. In Section 2.1, the principles of NMR are described, followed by an
introduction into MRI in Section 2.2. Advanced MRI techniques that find application
in later chapters of this thesis are explained in Section 2.3. The fundamentals of
photon RT and MRgRT are presented in Sections 2.4 and 2.5. Background regarding
possible radiation-induced lung toxicities is given in Section 2.6. Image registration
as a necessary post-processing approach and statistical data analysis concepts are
introduced in Sections 2.7 and 2.8, respectively.

2.1 Nuclear Magnetic Resonance

In this section, the theoretical background of NMR is given, starting with the in-
troduction of nuclear spin and its magnetic moment in Section 2.1.1, followed by
the concept of macroscopic magnetization in Section 2.1.2 and the radiofrequency
excitation in Section 2.1.3. The Bloch equations empirically describing the tempo-
ral evolution of magnetization and the relaxation processes are explained in Section
2.1.4. The section ends with a description of the two essential signal generation ap-
proaches that find application in MRI in Section 2.1.5. A more detailed description
of the concepts introduced in this section are given in, e.g., [50-53|, which served as
references for the following section.

2.1.1 Nuclear Spin and Magnetic Moment

Atoms consist of a specific number of protons and neutrons forming the nucleus and a
certain number of electrons surrounding it. As the name suggests, NMR is concerned
with the nucleus and its magnetic properties, which depend on the composition of
the protons and neutrons, as their individual intrinsic spins form the nuclear spin
[52]. Atomic nuclei with a non-equal number of protons and neutrons possess an
intrinsic quantized nuclear spin I. The quantization of the spin or intrinsic angular
momentum was initially demonstrated for electrons in a famous experiment by Stern
and Gerlach in 1920, but later in other experiments also derived for proton spins
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[51]. The magnitude of the nuclear spin is quantized by multiples of the reduced

Planck constant A:
Il =+I(I+1)h (2.1)

as well as the magnitude of the nuclear spin along a direction n; = z, v, 2:
InI = mﬂi, (2.2)

where I and mj are quantum numbers. The possible values for I are restricted to
positive integer and half-integer numbers, while the 27 + 1 different m values range
between —1,—1+1,...,1 —1,1.

For a non-zero nuclear spin, the magnetic moment g is described by:

p=I (2.3)

with the gyromagnetic constant v that is specific for every nucleus (for the proton 'H:
v = 26.752 x 107 %) Using the quantum mechanical description and the operator

expressions of the nuclear spin I= (fx,fy,f Z), Equations 2.1 and 2.2 reformulate
to the eigenvalue equations:
P {Lmy) = I(I+ DR |I,my)

) (2.4)
In, | I,mr) =mr|I,mp),

with the eigenfunctions |I, mp).

Nuclear Spins in an External Magnetic Field

Without any external fields, a nuclear state with spin I is (21 + 1)-fold degenerated.
The application of an external magnetic field B = Bye,,; along the direction np =
x,y, z given by the unit vector e,,, and the resulting interactions between the nuclear
magnetic moment and the magnetic field are in quantum mechanics described by a
Hamilton operator H [53):

H=—uB. (2.5)

Using Schrodinger’s equation, described by:
H |I,m;) = Ep, |I,mp), (2.6)

the eigenvalues of the interactions in a magnetic field and therefore the energy levels
are given by:
E..,, = —yhmBy. (2.7)

Due to dependency of Equation 2.7 on the quantum number my, the nuclear spin
states are no longer degenerated and the difference between discrete neighboring
energy levels computes to [54]:

AE17"LI = Em] - EmI—I = 'Yth (28)
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which is commonly known as the nuclear Zeeman effect. Using the Planck relation:
AFE = hw, (2.9)

stating that the energy of electromagnetic radiation, that needs to be absorbed or
emitted by a particle to transfer to a upper or lower discrete energy level, is propor-
tional to its frequency w and Equation 2.8, the resonance frequency is defined by:

wr, = vBo. (2.10)

Equation 2.10, also known as Larmor equation, describes the resonance or Larmor
frequency necessary for the nuclei to absorb energy and is a key concept for NMR
and MRI. According to the MRI conventions, the static magnetic field By used in
the following is assumed to point along the z-direction, i.e., By = Bpe,.

2.1.2 Macroscopic Magnetization

In a sample consisting of a number of atomic nuclei Nyyclei, €.2., the human body, each
nucleus possesses an intrinsic spin angular momentum with a specific direction or
so-called spin polarization axis. Without the presence of an external magnetic field,
each spin polarization axis points in a different direction, as visualized in Figure 2.1
(A), and the distribution of the magnetic moments is isotropic, thus no macroscopic
magnetization is observed. This situation changes with the application of the external
magnetic field, as introduced in Section 2.1.1. Assuming thermal equilibrium between
the nuclei in a sample and their surroundings at room temperature (kg1 > vhB),
the occupation probability p,,, for each energy level is given by the Boltzmann
distribution [53]:

s — fxp( ~yhmiBy/kpT) (2.11)

> exp(—yhmBy/kpT)

m=—1

with the Boltzmann constant kp and the temperature T'. Using Equation 2.11 and
the formula for the expectation value with mixed states, the macroscopic magneti-
zation My is computed to:

Nnuclei72h2l(l + 1)
3kgT

I
My = —Nnuclei Z Pmy - <m| Mz |m> ~ By (2~12)

m=—1

using the approximation for high temperatures as mentioned above. The non-zero
macroscopic magnetization means, that the nuclear spin angular momentum direc-
tions partially align with an external magnetic field as shown in Figure 2.1 (B).
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(A) (B)

FIGURE 2.1: Nuclear spin polarizations. The nuclei in a sample, for simplicity
indicated by the light-blue arrows, each possess a spin angular momentum that
can point in any direction if no external magnetic field is present (A). With the
application of an external magnetic field By (red arrow), the directions of the spin
angular momentum partially point along the direction of the magnetic field (B) and
are no longer isotropic resulting in a non-zero macroscopic magnetization My (blue
arrow). Adapted from [55].

Temporal Evolution of Magnetization

In a more generalized setting, where a temporally changing external magnetic field
B(t) is applied to the nuclear spins in a sample, the macroscopic magnetization
vector M is given by the sum of the individual expectation values of the magnetic

moment of each nuclei [53]:
Nnuclei

M = Z; <y,z> (2.13)

With Equation 2.13, the Heisenberg equation and making use of the commutative
property of angular momentum operators, the temporal evolution of the macroscopic
magnetization’s expectation value can be derived as:

dM(t) i
dt h

[M, H} — M(t) x vB(1), (2.14)

which shows that M (t) precesses around B(t) with the Larmor frequency wy, (Equa-
tion 2.10) in case of a constant, external magnetic field. The equilibrium of the

magnetization (d]\i(t) = 0) is reached if M || B.
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2.1.3 Radiofrequency Excitation

As the macroscopic magnetization along the external magnetic field direction is very
small compared to the external field, a second radiofrequency (RF) magnetic field
B (t) perpendicular to By is necessary to eventually measure the magnetization:

B (t) = Bi(cos (wit),sin (wit), 0) (2.15)

with B; and w; being the magnitude and the frequency of Bj(t), respectively. Insert-
ing Equation 2.15 into the temporal evolution of the magnetization given in Equation
2.14, gives:

dM (t)

dt

A common approach to simplify this description is to perform a transform from
the initial, resting coordinate system (z,y, z) to a coordinate system (z/,y/, 2) that
rotates around the z-axis with w;. With this, Equation 2.16 simplifies to:

=yM (t) x (B cos (wit), By sin (w1t), Bp). (2.16)

dM' ()
dt

= fyM/(t) X (Bla 0,Bp — wl/’}/) = fVM/(t) X Beft (217)

illustrating that the magnetization in the rotating reference frame M'(t) precesses
around an effective magnetic field Bog. If the resonance condition is full-filled, mean-
ing wy = wy, = vBy, the z-component of By vanishes and the magnetization is flipped
into the z-y-plane.

The angle between the magnetization in the reference frame M’(t) and the 2’-axis,
the so-called flip angle afp, depends on the magnitude of the RF-field and the
duration of the RF-field pulse ¢;:

aplip = vBit1, (2.18)

which converts into an integral over time in case of an RF-pulse with modulated

amplitude:
t1

Oéphp = W/Bl(t) dt. (2.19)
0

2.1.4 Bloch Equations and Relaxation

Based on Equation 2.13, after excitation with an RF-pulse (Bj-field) the macro-
scopic magnetization is assumed to precess unperturbed under a given flip angle
arlip around the z-axis. Due to interactions of the individual spins with other spins
as well as with their the environment, the components M, and M,, that combine
to the commonly called transversal magnetization Mt (Mt = M,e, + Mye,), de-
cay to zero over time, while the commonly called longitudinal component along the
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constant field By, M, or Mji,, approaches the equilibrium state M. This observa-
tion was included as extension to Equation 2.13 by Felix Bloch to form the Bloch
equations [56]:

dM, M,
— (M x By). — ==
G~ V(M xBo), - -
dM, M,
= (M x By), — =2 2.20
— (M x By, — —2 0
dt 7( X O)Z Tl )

where T7 is introduced as spin-lattice relaxation time of My, and T5 as the spin-spin
relaxation time of M.

Spin-Lattice Relaxation

Even though the term "lattice" was introduced in the early days of NMR, where
crystals were the primary subject, this type of relaxation describes the interactions
between the nuclear spins and their surroundings regardless of the aggregate state
of the sample. Due to thermal motion of the atoms and molecules in a sample, the
electrons and nuclei of these particles introduce rapidly fluctuating magnetic fields
on a microscopic level. As some of these magnetic fields fluctuate with the Larmor
frequency of the nuclear spins, transitions between energy levels are induced accord-
ing to the Zeeman effect. Over time, this process drives the recovery of equilibrium
magnetization My along the static magnetic field. Finding a solution for the Bloch
equations (Equation 2.20), allows to describe the temporal evolution of the longitu-
dinal magnetization My, = M. after an RF excitation pulse with apy, = 90° [51]:

My () = My (1 ~ exp (Tf» . (2.21)

An example of this temporal evolution is visualized for three different tissue types
with different T; times in Figure 2.2 (A). A formal derivation of the relaxation
phenomenon can be found in [57].

Spin-Spin Relaxation

The spin-spin relaxation or more generally T5 relaxation consists of several mecha-
nisms contributing to the decay of the transversal magnetization Mr. Apart from
the previously described spin-lattice interactions that not only influence the lon-
gitudinal, but also the transversal magnetization, as the affected nuclear spins stop
contributing to the M, one additional process are the spin-spin interactions without
energy exchange. Immediately after the RF-pulse excitation, the nuclear spins pre-
cess with the same frequency and phase around the axis of the static magnetic field.
The fluctuating microscopic magnetic fields that occur due to the thermal motion
also contribute to the net magnetic field that a nuclear spin experiences, resulting in
a slightly different angular frequency of affected spins. Over time, these differences
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FIGURE 2.2: Ty and T» relaxation. In Subfigure (A), the 77 relaxation or the
recovery of the longitudinal magnetization Mj, after a apy, = 90° RE excitation
pulse is shown for fat and muscle tissue as well as blood. Subfigure (B), similarly,

depicts the T5 relaxation or the decay of the transversal magnetization Mt after an
90° RF-pulse. Own figure.

in precession frequency cause the build-up of a random phase difference between the
spins until a total loss of the initial phase coherence and a decay of the transversal
magnetization M. With the Bloch equations in Equation 2.20, the temporal evo-
lution of the transversal magnetization Mt after a 90° RF-pulse is found to be [51]:

Mr(t) = My exp <_t>. (2.22)

An exemplary decay of the transversal magnetization for three different tissue types
and their corresponding 75 times is displayed in Figure 2.2 (B).

Free Induction Decay and T7; Relaxation

In addition to the T5 relaxation time that describes the loss of phase coherence due to
internal microscopic magnetic fields, there exists another dephasing mechanism with
the corresponding relaxation time constant T3 that is caused by local inhomogeneities
of the static magnetic field By or by magnetic field gradients generated on interfaces
of tissue with different magnetic susceptibilities. The T4 time is in most cases much
shorter compared to T5 and therefore usually the dominating mechanism causing the
loss of the transversal magnetization as observed in the free induction decay (FID),
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the temporal evolution of Mt immediately after the RF-pulse as shown in Figure 2.3.
Mathematically, T is considered a combination of the spin-spin relaxation effects
(T3) and the local field inhomogeneities, introduced by the magnetic field and the
sample, corresponding to the relaxation time 7% [58]:

1 1 1
— = — 4 —. 2.23
5 1Ty + T ( )
M [Mo]
N
Y
\
N\
\
N
S
\\ NQXP(—F>
N

=== T5-Decay
FID

FIGURE 2.3: Free induction decay (FID). The decay of the transversal mag-
netization My (free induction decay), starting directly after the radiofrequency ex-
citation, is induced by a combination of spin-spin interactions (described by the
Ty relaxation) and inhomogeneities of the static magnetic field (7%) and follows a
damped oscillation. Own figure.

2.1.5 Spin and Gradient Echo

One of the essential concepts of NMR, that also forms the basis of MRI signal
generation and sequence development, is the formation of echoes. Even though more
complex strategies have been introduced to achieve the echo formation, e.g., Hahn
echo and stimulated echo, the two basic mechanisms, namely the spin echo (SE)
and the gradient echo (GRE) still serve as the basis to characterize different MRI
sequences.

Spin Echo

The key to the formation of a spin echo is the reversibility of the spin dephasing due to
By-field inhomogeneities. Based on this, the procedure to generate a spin echo is as



12 2. Background and Theory

follows [59, 60]: The macroscopic magnetization that points along the direction of the
static By (along the z-axis), is tipped into the transversal plane using a oy, = 90°
RF-pulse (perpendicular to By (in the z-y-plane)) where the initially phase coherent
spins start to dephase and the transversal magnetization starts to decay in the free
induction decay (with 7). The application of a second RF-pulse with a flip angle of
arlp = 180° changes the precession or dephasing direction of the spins, leading to a
rephasing of the spins and a recovery of the transversal magnetization. Even though
the 90°-180° flip angle scheme is considered the basic spin echo, the flip angles of
both RF-pulses can be set to arbitrary values to form a spin echo. For simplicity,
the 90°-180° scheme was used here. A sketch of the basic spin echo formation is
given in Figure 2.4. The temporal evolution of M+ in case of a spin echo formation

(B)

T

FIGURE 2.4: Spin echo generation. After the 90° RF-pulse, the macroscopic
magnetization (blue arrow) pointing along the static magnetic field direction (z’-axis)
is tipped into the transversal plane (Subfigure (A)), the spins (light-blue) pointing
in the transversal direction start to dephase (B). Applying an additional 180° RF
pulse (C), results in a rephasing of the transversal spins (D) and the regain of the
(macroscopic) transversal magnetization. Adapted from [51].

is visualized Figure 2.5 (A).

Gradient Echo

The fundamental idea of the gradient echo formation, namely the generation /recovery
of transversal magnetization, is the same as for the SE. Instead of using an addi-
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FIGURE 2.5: Spin echo and gradient echo. The evolution of the transversal
magnetization over time, starting from the RF excitation to the echo formation. In
Subfigure (A), the formation of a spin echo is visualized, where the magnetization
amplitude decay is described by the tissue-specific T5. In Subfigure (B), the formation
of a gradient echo is displayed. In this case, the amplitude decay depends on the T%
relaxation time and therefore on both, the spin-spin interactions and inhomogeneities
of the static magnetic field. Own figure.

tional 180° RF-pulse, the echo is formed by manipulating the magnetic field with
magnetic field gradients. The procedure is as follows [61]: Similar to the SE, the
magnetization along the z-axis is transferred into the z-y-plane by the application of
a 90° RF-pulse. It has to be noted that the flip angle apy, can be set to an arbitrary
value, but is for simplicity chosen to be 90°. A fast dephasing of the spins is achieved
by applying a linear magnetic field gradient to perturbate the magnetic field. After
a certain time, the inverse of the field gradient is applied, resulting in a rephasing
and an echo formation of the transversal magnetization. A key difference between
SE and GRE is that, while the SE is independent of 75 and is only influenced by
Ty, due to inversion of dephasing caused by T4, GRE is dependent on 7. In Figure
2.5 (B), the gradient echo formation of the transversal magnetization is shown.

2.2 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging is one of the most common use cases of NMR, described
in Section 2.1, especially with its widespread application in the medical field. As
the human body consists in large parts of water and therefore of hydrogen atoms
(protons) with a non-zero nuclear spin (I = 3), 'H MRI (y = 26.752 x 107 1)
has developed into one of the main imaging techniques in the clinical routine. A
typical MRI-scanner comprises the three main components: the static, homogeneous
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magnetic field By that is either provided by a permanent magnet or is induced by
a super-conducting coil; the radiofrequency field system that generates the Bj-field
perpendicular to the By-field and thirdly the gradient system that allows to overlay
magnetic field gradients in all spatial directions and thus serves the spatial encoding
of acquired MR-signals. This section briefly covers the key concept of using the
field gradients for spatial differentiation in Section 2.2.1, along with basic k-space
sampling strategies in Section 2.2.3, MR image reconstruction in Section 2.2.4 and
imaging sequences that found application in various parts of this thesis in Section
2.2.5.

2.2.1 Spatial Encoding

As explained in Section 2.1, placing an object or sample in a homogeneous and static
By-field causes the nuclear spins within the sample to align with and precess around
the magnetic field direction, thereby building a macroscopic magnetization. The
transversal component of this macroscopic magnetization is measurable after the
application of time-dependent RF-pulses (Bj(t)), as it introduces a voltage in the
coil system used for read-out. The relationship between this complex acquired signal
S(t) and the complex transversal magnetization of the considered sample (examined
body part) mrt = M, + iM, at position x is given by [51]:

S(t) /ThT(m,t) exp (—iQt +i®(x,t)) dV, (2.24)
\%4

with V' being the examined sample volume, €2 being the reference frequency and ®
being the accumulated phase of the spins up to a time ¢, due to the magnetic fields:

D(x,t) = /w(az, t')dt’. (2.25)
0

The measured signal that is induced in the receiver coil of the MRI-scanner is there-
fore a sum of signal components covering the entire volume. In order to spatially
differentiate between the different signal components, the whole volume is divided
into equally spaced small volume elements (voxels). Using a gradient system con-
sisting of three coils allows to superimpose the static By-field with linear magnetic
gradient fields G, = G,e, of strength GG, in all spatial dimensions a = z,v, z.
This enables the introduction of a temporal and spatial dependency of the Larmor
frequency. To voxel-wise spatially encode the MRI signal, typically gradient fields
pointing along the z-direction (here defined as pointing along the By), but whose
strengths depend on the different spatial directions are applied before or during the
signal acquisition [50].

Based on the resonance principle and the assumption of a homogeneous main mag-
netic field, all excited nuclear spins perform a precession with the Larmor frequency
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wr, = v7Bp. Employing gradient fields along the spatial directions, the frequency at
a position x changes to:

w(x,t) =v(Bo + G(t)x) (2.26)

with G = G, + Gy + G, being the sum of the gradient fields in all spatial directions.
Using Equation 2.26, the accumulated phase of the spins modifies to:

t t
O(x,t) = /fy(Bo—l-G(t)a:) :th+7/G(t')mdt'. (2.27)
0 0

Using the definition of the spatial frequencies k(¢):

k(t) :'y/G(t’) dt, (2.28)
0

allows to rewrite Equation 2.27 as:
O(x,t) = wrt + k(t)x. (2.29)

Applying Equation 2.29 and 2 = wy,, the expression in Equation 2.24 reduces to:

S(t) / / / ivr(, ) exp (ik(t)z) dedydz, (2.30)

T Yy z

which results in the measured signal being proportional to a Fourier transform (FT):

S(k(t)) < FT (1r). (2.31)

In order to spatially recover the transversal magnetization with the inverse FT,
gradient fields have to be applied to measure the signal S(k) at different spatial
frequencies k, i.e., to efficiently sample the so-called k-space (details given in Section
2.2.3) [51]. Due to the signal being only sampled at discrete spatial frequencies,
it has to be kept in mind that the FT in Equation 2.31 consequently reduces to
the discrete FT, which ultimately reduces the available spatial resolution. In order
to sample the 3D k-space, two techniques, namely frequency encoding and phase
encoding are utilized.

Frequency Encoding

As mentioned before, the application of a gradient field along a direction allows to
introduce a spatial dependency of the precession frequency. This process is known
as frequency encoding. Assuming only a single gradient, introducing frequency vari-
ations in z-direction, is applied along the z-direction (Grreq = GZ, the z-component
of the gradient field G ), the precession frequency (Equation 2.26) changes to:

w(z,t) = wr, + YGFreq® (2.32)
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and Equation 2.28 to:
t
ky(t) =~ / Grreq dt’ = 7Gryreqt- (2.33)
0

Consequently, discrete and uniformly spaced k-space points along the z-direction
(k;) are collected by measuring the signal at a constant rate during the application
of a constant gradient Grreq over time [51]. Each sampling point is considered one
frequency encoding step. With this, the measured signal can be differentiated along
the z-direction, but not along the y- and z-direction [51].

Phase Encoding

In order to achieve spatial encoding along the two remaining directions, an additional
approach has to be utilized. Instead of influencing the precession frequency of the
spins, in phase encoding, the phase p(x) of the precessing spins is varied [62]. By
employing a gradient field, e.g., along the y-direction, i.e., Gphase = G, for a constant
duration Tppase before the signal acquisition, the accumulated phase (Equation 2.27)
directly after the Gppase application is:

Tphase
O(x,t) =wrt+ v / GPhase (t/)y dt' = wrt + YTrnase GPhasey (2.34)
0
and consequently:
Tphase
ky =~ / Gphase (t') At = 7TphaseGPhase- (2.35)
0

While the spins precess with a spatially dependent frequency (along z-direction) in-
troduced by Grreq, the spatially dependent phase variations (along y) due to Gppase
are constant along the frequency encoding axis (x). Thus, in order to encode along
the y-direction, i.e., to differentiate between different voxels along the y-direction,
the magnitude of the phase encoding gradient Gppase has to be changed before each
new signal echo. Each magnitude change of the phase encoding gradient is consid-
ered one phase encoding step.

For full 3D spatial encoding, a phase encoding gradient Gphase,2 = G7Z, that intro-
duces phase variations along the z-direction, is applied similarly to Gppage-

2.2.2 Slice Selection

Apart from the spatial encoding within a defined region, the gradient fields also allow
the selective excitation of a specific region or sub-volume within the examined sample.
For this, a slice selective gradient field Ggjlice = G2 is applied along a specified

QSlice
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direction agjice at the same time as the RF-pulse with finite bandwidth. With this, a
2D slice perpendicular to the direction of Ggjice is excited as the precession frequency
becomes linearly dependent on the position along the Ggjice-axis:

w(astice) = wr, + YGSliceASlice- (2.36)

In order to uniformly excite a slice, e.g., along the z-direction (agjce = z) at the
position zgjice With a slice thickness of Az, as shown in Figure 2.6, spanning from
ZSlice — Az 10 zglice + Az and ideally only creating transverse magnetization within
this region, the bandwidth BW of the RF-pulse needs to fulfill:

BW = 7Giice[(2stice + Az) — (28lice — A2)] = 7Gslice A2. (2.37)

Consequently, the slice thickness Az is given by:

_ BW
’YGSlice

Az (2.38)
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FIGURE 2.6: Slice selection. The application of a slice selective gradient Ggiice
along the slice direction (here z-axis) allows the excitation of only the spins within
a subvolume (slice) of thickness Az. Inspired by [55].

2.2.3 k-Space Sampling Strategies

As already mentioned in Section 2.2.1, the measured signal S(k,t) and the magne-
tization m(x,t) are connected via a Fourier transform, meaning that they form a
Fourier transform pair and that there is a relationship between the image, i.e., the
transversal magnetization of the object in @ space and the data, i.e., the acquired
signal in k space. Therefore, in order to be able to sufficiently reconstruct the mag-
netization from the signal, the signal is to be acquired at a constant rate over a large
number of discrete k-values. The number of k-space data points, written in matrix
form in 2D Npreq X Nphase, is given by the number of frequency encoding steps Nryeq
and the number of different phase encoding gradient steps Nppase. The extent of the
traversed k-space, given by the maximal k-space point in z- and y-direction, kz max
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and ky max, determines the resolution of the reconstructed image [63]:
In z-direction:

1
Ax = 2.39
v 2kac,max ( )
In y-direction:
1
Ay = . 2.40
T (2.40)

Similarly, the distance between two k-space datapoints, Ak, dictates the extent of
the object in physical space, known as the field-of-view (FOV) [63]:

1

1
F = —. 2.42
Ovy Aky ( )

Depending on the application and its respective requirements, different strategies
to sample the k-space are used. The most basic k-space sampling strategy or k-
space trajectory is the cartesian trajectory (Figure 2.7 (A)), where each k, line, i.e.,
Ntreq kz points, is sampled after an RF-pulse excitation while keeping the frequency
encoding gradient constant. After the acquisition of one k, line, the phase encoding
gradient is changed to sample the next line and a new RF-pulse is required. A slight
derivation from this is the echo-planar imaging, where k-space trajectory follows
a cartesian grid, but is continuously sampled after one RF excitation pulse using
multiple echos. Apart from the cartesian strategies, non-cartesian strategies such as
radial, as shown in Figure 2.7 (B) or spiral sampling exist and can be advantageous
for certain applications due to their motion robustness and higher signal-to-noise
ratio [63].

2.2.4 Image Reconstruction

As described in Section 2.2.1, the acquired signal is according to Equation 2.31 given
by the FT of the magnetization of the scanned object and can be expressed by [63]:

S(k) = / / / M (, ) exp (ik(H)z) dedyds = FT(M(z)).  (2.43)

In order to retrieve the actual MR image from the signal, which is given by the
magnetization in each voxel M () of the object, the inverse FT is calculated:

M(z) = FTH(S(k)). (2.44)

Due to the fact that the signal is only sampled in a discrete fashion for discrete
k-space datapoints (Section 2.2.3), only the discrete FT is calculated. In practice,
this direct reconstruction approach is usually done by employing the fast Fourier
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FIGURE 2.7: Two exemplary k-space sampling strategies. In Subfigure (A),
a cartesian k-space sampling approach is depicted. Subfigure (B) illustrates radial
sampling.

transform (FFT), which allows an efficient F'T calculation for cartesian sampling [64].
In the case of non-cartesian sampling or undersampled data, either a direct approach
using the non-uniform fast Fourier transform (NuFFT) or an indirect approach using
iterative reconstruction can be utilized.

A more detailed description of image reconstruction approaches can be found in [63].

2.2.5 Imaging Sequences

Even though the basic signal acquisition and spatial encoding principle is similar in
different applications, the main difference is in how RF-pulses are used to excite and
prepare the nuclear spin system of the sample, which are know as different pulse or
imaging sequences. The two main sequence categories are spin echo and gradient echo
sequences that served as foundation for many sequence types that have been derived
from these basic concepts. The selection of a particular sequence strongly depends
on the application. One important factor that needs to be taken into consideration
for the sequence selection for the imaging of a specific organ or body part is the
image contrast, which is in turn influenced by the sequence parameters. Apart from
the proton density present in the organ, dictating the signal amplitude, the echo
time TE and the repetition time TR are two of the main influencing factors. TE
describes the time between the center of the RF excitation pulse and the center of
the signal echo, while TR is considered as the time between two consecutive RF
excitation pulses.

Even though there exist mixed contrasts, it is typically differentiated between three
basic contrasts or weightings [53]:
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e Tj-weighted: Typically achieved by using short TR (TR < T1) and short TE
(TE <« T).

o Th-weighted: Typically achieved by using long TR and long TE

e proton density-weighted: Typically achieved by using long TR (TR > T7)
and short TE (TE <« T3)

Depending on the tissue composition in the imaged sample or body part and the
respective 17 and T5 times of the tissue components, one contrast might be preferred
over the other.

Spin Echo Sequence

The spin echo or SE sequence is one of the most basic MRI sequences and has been
adapted for many different clinical applications over the years [65]. It utilizes the
concept of rephasing after signal loss caused by static magnetic field inhomogeneities
and susceptibility effects as described in Section 2.1.5. To acquire MR images from
a formed SE, as shown in Figure 2.5 (A), gradient fields are required for spatial
encoding and slice selection. A typical SE sequence diagram with cartesian k-space
sampling is displayed in Figure 2.8. The start of the sequence and the beginning
of a new repetition is the 90° excitation pulse and the simultaneously applied slice
selection gradient. In order to compensate for the initial slice selective gradient
and to rephase the spins, a rephasing gradient is subsequently applied with opposite
polarity [66]. Along with the rephasing gradient, the pre-winding frequency encoding
gradient and the phase encoding gradient are simultaneously employed to move the
start of the k-space trajectory from the k-space center to the periphery [65, 67].
After the succeeding 180° refocusing pulse, during which the slice selective gradient
is utilized again, the read-out frequency encoding gradient is applied to acquire the
signal for the current k-space line. As the 180° pulse reverses the initial effect of
the pre-winding gradient (frequency direction), the read-out gradient and the pre-
winding gradient share the same polarity to ensure that the echo is formed at the
mid-point of the read-out gradient (after TE), which coincides with the middle of the
k-space line [65]. In order to sample the full k-space and consequently acquire the
full MR image, this procedure has to be repeated for several phase encoding gradient
strengths as the defined by the acquisition matrix.

Gradient Echo Sequence

Similar to SE sequences, gradient echo or GRE sequences are the basis for many
sequences used in the clinical routine and are specifically important for applications
where fast imaging is required [68]. As already mentioned in Section 2.1.5, in GRE
imaging, a signal echo is formed without the need for a 180° refocusing pulse by
a reversal of the read-out gradient using the signal from the excitation pulse that
undergoes the FID [68]|. Hence, the echo formation can be speeded up, but the GRE
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FIGURE 2.8: Spin echo sequence. The basic spin echo pulse sequence diagram
consists of a 90° RF-pulse followed by a 180° refocusing RF-pulse that causes the
echo formation at the echo time TE. The slice selective gradient Ggjice, the pre-
winding frequency encoding gradient Grreq and the phase encoding gradient Gppase
are typically applied simultaneously. After a second slice selective gradient with
positive polarity is applied during the 180° refocusing pulse, the read-out gradient
is employed during the echo generation before the spins are excited by the next 90°
RF-pulse after the repetition time TR. For simplicity, the 90°-180° RF-pulse scheme
used for this figure, but RF-pulses with arbitrary flip angles could be used instead.
Adapted from [65].

echo amplitude is determined by the present 75 -decay. A basic GRE sequence pulse
diagram is presented in Figure 2.9. Similar to the SE sequence diagram in Figure 2.8,
the sequence and each repetition starts with the excitation pulse with a flip angle
aflip along with the simultaneous application of the slice selection gradient, followed
by the slice selective rephasing gradient together with the phase encoding gradient
and the dephasing frequency encoding gradient that accelerates the magnetization
decay. Applying the read-out gradient with opposite polarity to the dephasing gra-
dient causes reversion of the spin dephasing and thus the acquisition of the formed
GRE [61]. To acquire the full MR image, the process is again repeated for different
phase encoding gradients.

While GRE imaging offers the possibility for fast imaging compared to SE imaging,
GRE sequences are affected by susceptibility changes at air-tissue interfaces that
result in local magnetic field inhomogeneities. These artifacts would be present as
signal voids in the MR image [65].
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FIGURE 2.9: Gradient echo sequence. Instead of a 180° refocusing pulse as in
the spin echo sequence, the basic gradient echo sequence comprises only a single RF-
pulse with flip angle apy;, per TR to form an echo after TE. After the application of
the slice selective gradient Ggjice during the RF-pulse, the rephasing slice selective
gradient is typically played at the same time as the dephasing frequency encoding
gradient Grreq and the phase encoding gradient Gppase. The read-out gradient along
the frequency encoding direction is utilized during the echo generation. Adapted
from [69].

Balanced Steady-State Free Precession Sequence

A commonly used subtype of fast GRE sequences is the balanced steady-state free
precession (bSSFP) sequence. Reducing the TR to accelerate the acquisition to a
value below the T5 of the tissue means that a full recovery of the longitudinal and
the transversal magnetization is not possible. Hence, the equilibrium magnetization
My is not reached between two consecutive RF excitation pulses [68]. However, after
a few RF pulses, the complex superposition of different longitudinal and transversial
magnetization components approaches a steady-state, in which the "new" equilib-
rium magnetization Mgg, i.e., a stationary value in the amplitude, is reached [70].
Even though there exist other types of steady-state GRE sequences, in case of the
bSSFP sequence, the net gradient moments over one TR, by definition, have to be
"balanced" to zero. With this, all the available magnetization is efficiently reused
for the signal generation, which in turn leads to a high signal-to-noise ratio (SNR)
[68]. A basic bSSFP sequence diagram is illustrated in Figure 2.10. While the pro-
cess from the first RF excitation pulse to the read-out of the echo is similar to the
process described in the previous section for the basic GRE, additional gradients
have to be applied in the bSSFP sequence to ensure that all gradient moments are
balanced. After the application of the read-out gradient, the dephasing frequency
encoding gradient is employed again simultaneously with a phase encoding gradient
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of same amplitude as used prior to the read-out but with opposing polarity. At the
same time, the slice selection for the next TR is prepared by applying the pre-phasing
slice selective gradient followed by the slice selection gradient. Flip angle alternation
between +ariip, and —agyp in subsequent TRs has been shown to maximize the sig-
nal amplitude [70].

While different weightings are achievable with SE and GRE sequences, the bSSFP
generates a combined T /T)-weighting, which makes it ideal for cardiac imaging as
well as functional or morphological imaging [70]. In general, the image contrast of
a bSSFP sequence is, in addition to TE and TR, also influenced by the flip angle
|68]. Despite its strong sensitivity to local field inhomogeneities or regional suscepti-
bility differences that can result in so-called banding artifacts, the bSSFP sequence
enables, due to short TR and TE, high temporal resolution and SNR imaging and is
robust against motion and flow. It is therefore widely used for cine imaging [71].
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FiGUrE 2.10: BSSFP sequence. A typical bSSFP sequence diagram with alter-
nating RF pulses with flip angle apyp, is depicted. All applied gradient fields, Gsiice,
GFreq and Gppase are compensated within one TR in order to balance the magnetic
gradient moment. Adapted from [70].

Turbo Spin Echo Sequences

One problem of the basic SE sequence is that the generation of a single echo from
one RF excitation pulse for the read-out of a single line in k-space results in long
scan times. To speed up the acquisition, fast or turbo spin echo (TSE) sequences
have been developed that generate several SEs by the repeated application of 180°
refocusing pulses after one single excitation pulse and the utilization of different
phase encoding gradient strengths for each of the resulting echos [65]. Depending on
whether multiple (multi-shot) or only one (single-shot) excitation pulse is employed
to acquire the full MR-image, it is differentiated between fast SE and T'SE sequences,
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respectively. In order to decrease potential image blurring, caused by the strong echo
intensity decay over the long echo train in single-shot TSE, the conjugate Fourier
symmetry can be utilized in form of the half-Fourier scheme [65, 72|. A basic TSE
sequence diagram is presented in Figure 2.11 (A), while subfigure (B) illustrates the
half-Fourier scheme, where typically slightly more than half of the k-space is acquired.
The single-shot cartesian acquisition is also known as echo-planar imaging.

Due to the resulting long TRs, the MR images acquired with TSE sequences show a
pronounced T2-weighting [65].
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FIGURE 2.11: HASTE sequence. In Subfigure (A), the sequence diagram for a
basic turbo spin echo sequence is shown, where the entire k-space is acquired after a
single 90° RF-pulse, followed by a train of 180° refocusing RF-pulses. Subfigure (B)
depicts the k-space acquisition scheme used for the half-Fourier acquisition single-
shot turbo spin echo (HASTE) sequence, an echo-planar sampling strategy that
utilizes phase-conjugate symmetry. Adapted from [73].

2.3 Advanced MRI Techniques

MRI offers, due to its versatility, not only opportunities regarding anatomical or
morphological imaging but also quantitative and functional imaging. Even though
there exist multiple methods and approaches, in the following, only two, the FD along
with its extension non-uniform Fourier decomposition (NuFD) (Section 2.3.1) and
T2-mapping (Section 2.3.2) are described as they found application in the generation
of the results presented in this thesis.

2.3.1 Ventilation and Perfusion Imaging with Fourier Decomposi-
tion (FD)

Apart from morphological imaging, functional imaging to assess ventilation and per-
fusion plays an increasing role in lung imaging. In order to avoid the need for contrast
agents such as gadolinium in dynamic contrast-enhanced MRI or inhalation of hyper-
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polarized (noble) gases such as 3He, 12Xe and 'F in non-proton-based lung imaging,
the FD technique has been introduced as non-contrast-enhanced free-breathing al-
ternative for 2D imaging.

During the breathing process, the lung or especially the lung parenchyma under-
goes density changes. In inspiration, the external intercostal muscles, the abdominal
muscles and a contraction of the diaphragm cause the volume of the thorax, the
lung and the lung alveoli to increase with increasing air flow [30]. Concurrently, the
density of the local lung parenchyma is decreased and increases again during expi-
ration caused by contraction of the external intercostal muscles and relaxation of
the diaphragm. As these periodic parenchymal density changes basically correspond
to periodic proton density changes, this results in periodic changes of the measured
MRI-signal intensity Sy (t), mathematically described by [30, 74]:

Sy (t) = Sy — Ay cos?®V <:‘f - gov> (2.45)

with Sy being the baseline signal intensity, Ay the amplitude of the ventilation cycle,
by the curve shape determining parameter, 7y the period and @y the phase of the
ventilation cycle.

In addition to the breathing-related signal changes, the signal in the lung is also
periodically influenced by the heart beat. Using a bSSFP sequence (Section 2.2.5),
these cardiac- or perfusion-related signal changes are caused by the so-called time-of-
flight effect, which is also known as flow-related enhancement [75]. Due to subjecting
the lung tissue/vessels to repeated RF-pulses without full recovery of the longitudinal
magnetization, a steady state is reached in magnetization and the present spins are
therefore partially saturated. The periodic inflow of blood into the imaging region
from not excited regions, results in an inflow of unsaturated spins that are newly
excited by the RF-pulses and therefore provide a higher signal. Considering both
physiological processes, the observed signal intensity transforms from Equation 2.45
to:

t t
Stotal(t) = So — Ay cos?v (: - g0v> + Ag sin%b@ <7T — <pQ> (2.46)
1% TQ

with Ag being the cardiac cycle’s amplitude, bg the parameter determining the car-
diac curve’s shape as well as 7g and ¢ being period and phase of the cardiac cycle.
An exemplary signal curve based on Equation 2.46 is visualized in Figure 2.12 (A).
With a typical breathing rate at rest of 9-24 breaths per minute (0.15-0.4 Hz) [76]
and a heart rate of 60-90 beats per minute (1.0-1.5 Hz) [77|, both processes occur
on different time scales. Based on this, the basic idea of the FD method is to sep-
arate the signal contributions stemming from the breathing and the heartbeat from
each other by means of Fourier analysis. For this, an image series is acquired in
free-breathing with a sampling/imaging rate of at least double the frequency of the
highest frequency component (Nyquist criterion) [30]. In order to allow for a voxel-
wise analysis, the free-breathing image series requires deformable image registration,
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explained in detail in Section 2.7.2, to ensure voxel alignment over the breathing
cycle. After image registration, the voxel-wise signal over the examined time course
is Fourier transformed to represent the acquired signal in terms of its frequency com-
ponents as visualized in Figure 2.12 (B). As the full signal exceeds the representation
as a single sinusoidal but consists of several sinusoidal components, harmonics corre-
sponding to different Fourier coefficients are generated and observed in the Fourier
spectrum as peaks with lower amplitude at integer multiples of the main frequency
[30]. If the Nyquist criterium is not fulfilled and the sampling/imaging frequency
is lower than the highest frequency component, harmonics of the cardiac signal are
aliased into the spectrum.

The voxel-wise application of a signal filter allows signal separation into components
corresponding to ventilation (Vent) and perfusion (Perf) that can be presented in
respective maps showing the relative local parenchymal density changes (ventila-
tion) and the relative pulsation of the blood (perfusion). The value in each voxel of
the maps I'; ; are calculated by summing the magnitude of the signal’s fast Fourier
transform (FFT (Sr)) over the respective peak frequencies fr with I' =Vent, Perf:

Tij=»_ |FFT(Sp)l. (2.47)
Jr

The peak frequencies are determined from the FFT of the average signal over all
lung voxels. With Equation 2.47, local, diseased lung regions with qualitatively lower
density and/or lower blood pulsation with respect to the whole lung parenchyma are
identifiable [31].

Non-uniform Fourier Decomposition

As the FD method depends on the spectral separation of the signal Fourier transforms
and in turn the magnitude of the Fourier transform, signal frequency variations, due
to, e.g., random irregular breathing or cardiac arrhythmia, over the acquisition period
can lead to signal loss. One method that has been introduced to compensate for
these frequency variations is the NuFD technique. The basic principle of the NuFD
approach is to generalize the FD by using the NuFFT instead of the FFT. Using
the NuFFT allows to calculate the frequency representation of non-equidistantly
sampled signals. In the NuFD technique, this is utilized by converting the acquired
signal Siotal(tn) with potentially varying frequency into a virtual signal Stotal (fn)
with constant frequency, but (virtual) non-uniform sampling times #,,. The sampling
intervals At,, between the virtual sampling times for the n-th sampling time point
are defined by [31]:
f(tn)

mean
with the uniform sampling intervals At and f(¢,) being the instantaneous frequency
at t, and fmean the mean over the instantaneous frequencies at the sampling time
points t,. Several methods such as short-term Fourier transform, wavelet or synchro-
squeezed wavelet transform exist to find the time-frequency representation of a signal

At, = At (2.48)
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FIGURE 2.12: Ventilation and perfusion signal. Subfigure (A) shows the com-
bined ventilation and perfusion signal simulated with Equation 2.46 (with Ay = 6,
by =6, 7v =5, Ag =3,bg =4, 79 = 0.8, pv = pg = 0) in black, along with the
pure ventilation signal (light-blue) and perfusion signal (rose). In Subfigure (B), the
magnitude of the frequency representations, i.e., the Fourier transform of the signals
in (A), are depicted.

and thus the instantaneous frequency [78-80]. From Equation 2.48, the virtual sam-
pling times are derived as:

n

D SR N (2.49)
k=1

mean k=1

and used to calculate the NuFFT [31]:

N T
o . —oriki,,
NUFFT (Siotat (£n) ) = 3 Stoten (fn) exp <tN7rit1) (2.50)
n=1

based on which the spectral separation and ventilation and perfusion map generation
is performed similar to the FD method.

2.3.2 T3-Mapping

Tr-weighted imaging is, as mentioned before, one of the main MRI image contrast
generation mechanisms making use of the tissue-dependent spin-spin relaxation time
and is specifically sensitive to the underlying tissue structure and composition as well
as present water content and iron levels [81]. Based on this, Th-weighted imaging
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has been applied to identify collagen content, inflammation and edema as well as
hemorrhage in the heart, myelin content in the brain and iron content in the liver, as
these appear bright in Th-weighted images [81]. One problem of MRI in general is the
dependency of the acquired signal on hardware and specifically on the type of coils
and their application along with the homogeneity of the static magnetic field, which
results in a large variability over different MRI-scanners and even on a scan-to-scan
basis. As this hinders the direct comparison of purely weighted images and use of
these images for accurate area-at-risk definition and delineation in many applications,
Th-mapping has been introduced as quantitative extension. The principle of Tb-
mapping is to retrieve the absolute tissue-specific T3, by acquiring the signal in
terms of Th-weighted images at multiple TEs in order to model the signal given by:

TE
2

with Sy basically being the proton density. Voxel-wise fitting of this signal with an
exponential curve, allows to extract the T, relaxation time on a voxel-by-voxel basis.
This principle is illustrated in Figure 2.13. To reduce the computational complexity,
Equation 2.51 is usually linearized to:

1
In(S) =In(Sy) — =TE (2.52)
T
and linearly fitted accordingly to obtain T5.

For the acquisition of Ts-weighted images and in turn T5-maps, long TEs and long
TRs are employed in order to mitigate the influence of the T relaxation process.
In order to avoid the influence of static magnetic field or the susceptibility-induced
inhomogeneities and in turn the acquisition of the 75 relaxation time, spin echo se-
quences are typically utilized to acquire the true 75 relaxation time. Even though
sequences specifically dedicated to Th-mapping have been introduced making use
of Ts-preparation pulses in combination with bSSFP readout, T5-mapping can be
similarly performed on Ts-weighted images acquired by repeatedly using the same
sequence, but with varying TEs.
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FIGURE 2.13: T>-mapping principle. After aligning the different T5-weighted
images using deformable image registration (Section 2.7), the intensity found in each
voxel is plotted against the utilized echo time TE. Using an exponential decay of the
form shown in Equation 2.51, the decrease in intensity over time is fitted and the
tissue-specific T5 is extracted.

2.4 Photon Radiotherapy

Photon radiotherapy is one of the main cancer treatment approaches. By irradiating
the patient with high energy photons, photon radiotherapy aims at sterilizing the
cancer cells through cell damages triggered by photons depositing energy followed
by interaction with tissues. This section gives an overview over these interactions of
photons with matter (Section 2.4.1) and the basic treatment planning workflow in
Section 2.4.2. Along with an introduction to radiobiology concepts in Section 2.4.3
and to treatment delivery techniques in Section 2.4.4, a description of stereotactic
body radiotherapy (SBRT) (Section 2.4.5) followed by image-guided radiotherapy
(IGRT) (Section 2.4.6) is given. The section ends with an explanation of the current
treatment standard in lung radiotherapy (Section 2.4.7).

2.4.1 Photon Interactions With Matter

Photons in the energy range of about 10keV to 10 MeV, as used for medical imaging
and radiotherapy, interact with matter, i.e., the atoms, in different ways depending
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on the photon energy and the properties of the atom, in particular the atomic number
Z. The three most relevant interactions are:

e Photoelectric Absorption: Photon is absorbed by atom and atomic electron
is emitted

e Compton Scattering: Photon inelastically scatters from atomic electron and
transfers a part of its energy to this electron, which is emitted from the atom
as a result

e Pair Production: Photon in the electric field of atom nucleus generates an
electron-positron pair

A schematic visualization of the effects is given in Figure 2.14. In the photon energy
range of 4-15 MeV used for external beam radiotherapy, the most prominent effect
is the Compton scattering [53]. The locally absorbed energy via these processes per
mass defines the dose, the main quantity in radiotherapy. The absorbed energy dose
D is therefore given as [50]:
de
= (2.53)
with € being the mean locally absorbed energy in matter with mass m. This dose
is deposited in matter through indirectly ionizing radiation, i.e., the electrons that
are generated via the interaction mechanisms described above. A more detailed
description of the photon-matter interactions and a derivation of the dose definition

is, among others, given in Schlegel et al. [53].

2.4.2 Treatment Planning Workflow

The workflow after a patient was chosen to undergo radiotherapy mainly consists of
five steps that will be briefly explained in the following. A more concise description
is found, e.g., in Schlegel et al. [53].

Baseline Imaging The first step in the treatment workflow is to acquire images
from one or more imaging modalities to assess the geometrical position and volume
of the tumor and the surrounding organs at risk (OARs) that have to be spared
during RT. In most radiotherapy approaches, CT-scans are a key component, as
information on the photon energy absorption of the different tissues are derived from
the obtained CT numbers for the dose calculation planning (step 4).

Segmentation of Target and OARs Based on the baseline images, the tumor
or target is delineated along with the OARs and the isocenter is defined. In order to
incorporate potential uncertainties regarding tumor extent, patient positioning and
motion as well as dose delivery, additional target volumes using margins are defined
based on international recommendations. In general, four different target volumes
are considered and schematically visualized in Figure 2.15:
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FIGURE 2.14: Photon interactions with matter. This schematic depicts the
three most relevant interaction processes between photons and matter made up of
atoms, namely the photoelectric absorption, i.e., the photon absorption and electron
emission, in Subfigure (A), the Compton scattering, i.e., the inelastic scattering of
a photon on an electron in (B) and the pair production, i.e., the generation of an
electron-positron pair from a photon in (C). Adapted from [53].

e Gross Target Volume (GTV): Visible tumor that is distinguishable from
normal tissue

e Clinical Target Volume (CTV): Extension of the GTV to incorporate mi-
croscopic tumor infiltrations into normal tissue

e Internal Target Volume (ITV): Extension of the CTV to compensate in-
ternal motion

e Planning Target Volume (PTYV): Extension of the ITV to take uncer-
tainties in the exact patient positioning and overall uncertainties in the dose
delivery into account

Agreement on Radiotherapy Approach Depending on the tumor type and
location as well as the patient history or treatment outcome (curative vs palliative),
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FIGURE 2.15: Target volume definitions. The gross tumor volume (GTV), i.e.,
the delineation of the visible tumor, is enveloped by the clinical target volume (CTV)
containing additional microscopic tumor infiltrations. In order to compensate for in-
ternal motion, the CTV is, often anisotropically, extended to form the internal target
volume (ITV), which is further extended to the planning target volume (PTV) to
incorporate potential uncertainties in patient positioning and dose delivery. Adapted
from [53].

the radiotherapy approach, the treatment delivery technique and the target dose
and dose fractionation (explained in Section 2.4.3) are decided. Different treatment
delivery approaches are presented in the Sections 2.4.5 and 2.4.4. A more detailed
description on the specifics of radiotherapy for lung lesions is given in Section 2.4.7.

Dose Calculation and Optimization Dose calculation is understood as a sim-
ulation of the spatial distribution of the dose per volumetric element (voxel) in the
patient. The number of radiation beams, their angles/directions and their intensity
and shape are optimized with the goal to deliver the prescribed dose to the target and
minimize the dose to the surrounding healthy /normal tissue and the OARs. With
this, the tumor control should be maximized and the normal tissue complications
minimized [53].

Treatment Once the dose plan is optimized and verified by a medical physicist and
a radiation oncologist, the plan is delivered to the patient in a pre-defined number of
treatment fractions (Fxs). To account for differences in patient positioning and/or
anatomical changes between or during a treatment Fx, image-guided radiotherapy
(Section 2.4.6) together with an offline- or online-adaptive workflow (Section 2.5.3)
can be used.
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2.4.3 Radiobiology

The exact impact of the radiation depends on the properties of the radiotherapy
treatment, i.e., the treated organ and its properties, the dose and the type of ra-
diation. In general, the radiation effect is divided into the physical, the chemical
and the biological phase. While the first two describe the more immediate interac-
tions of the radiation with the irradiated tissue, meaning damaging of the cell DNA,
membrane and organelles, the biological phase is concerned with the more long-term
enzymatic reactions and regulations processes of the cell, i.e., cell reparation, prolif-
eration and death. The main goal of radiotherapy is to induce damage to tumor cells
that leads to the death of the cells directly (pre-mitotic) or after one or two cell divi-
sions (post-mitotic). The principles for the quantification of the impact of radiation
dose on tissue have been developed in in-vitro experiments using clonogenic assays
where the number of clonogenic cells (cells that can proliferate to form a colony)
are determined after being irradiated with different doses. Based on the empirical
observations, the linear-quadratic (LQ) model has been introduced to describe the
cell survival fraction (SF) of the number of surviving cells Ny to the total number
of irradiated cells Ny,q [53]:

N, surv
N, rad

SF(D) = = exp (—aD — BD?) (2.54)
with the model parameters a and [ representing the cell’s sensitivity to the used
radiation. Biologically, lethal cell damage induced by one radiation particle is ex-
pressed by the linear term, while the lethal cell damage induced by two independent,
sublethal particle-tissue interactions is characterized by the quadratic term. Based
on this, the so-called %—ratio is defined as a measure for the capacity of the cells to
repair radiation-induced damage such as single- or double-strand DNA breaks.

Even though a delivery of the total dose at once is in some cases possible, typically,
a fractionated treatment, i.e., the delivery of smaller doses over several treatment
sessions is performed and is considered the main form of modern radiation therapy
treatment [53]. Fractionation makes use of the fact that the DNA repair capability
of normal tissue is superior to the the tumor tissue repair processes. Hence, normal
tissue cells benefit from a repeated delivery of smaller radiation doses over several
days, due to the repair of radiation-induced cell damage from one to the next treat-
ment. With this, radiation-induced toxicities in the healthy tissue and corresponding
potentially long-term radiation-induced tissue damage are reduced, while the tumor
cells are lethally damaged [82]. The general goal of fractionated RT is to maximize
the therapeutic window, i.e., to maximize the damage to the tumor cells, but to
minimize overall normal tissue damage at the same time. Whereas in conventional
fractionated radiotherapy total doses of 40-70 Gy are delivered with daily fractions
of 1.8-2 Gy over several weeks, in hypofractionated radiotherapy, fractionated doses
of more than 2 Gy are delivered within one ore two weeks. Hypofractionated RT is
particularly advantageous if the a//-ratio in the tumor is smaller compared to the
normal tissue or if the doses can be precisely deposited in the target with the aid of,
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e.g., image-guided radiotherapy (Section 2.4.6). The effect of two different fraction-
ation schemes on two different «/f-ratios according to the LQ model is illustrated

in Figure 2.16.
In order to assess the effectiveness of different hypofractionated RT schemes in com-
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FIGURE 2.16: Illustration of the linear quadratic model. The cell survival
fractions for a 3 Gy/Fx fractionation scheme (Subfigure (A)) and a 2 Gy/Fx are
shown for tissues with two different «/f-ratios (2 Gy in red and 20 Gy in blue)
in case of a fractionated treatment (solid line) and a single fraction (dashed line).

Adapted from [53].

parison with conventional RT, the dose distributions are converted into equivalent
doses in 2 Gy fractions (EQD2) [83]:

Dfrac + %

(261))
[0}

EQD2 = D

with Dgae being the dose per fraction. Additionally, the biological effective dose
(BED) is calculated with:

BED,, /5 = EQD2- (1 + %}y> =D- (1 + Dﬁj“). (2.56)
z a

B

2.4.4 Treatment Delivery Techniques

There are several different methods to deliver the radiation dose to the patient. Com-
monly used devices are Linacs that produce beams of high-energy photon radiation.



2.4 Photon Radiotherapy 35

With these devices, multiple overlapping radiation beams can be used in the dose op-
timization stage in conventional RT to generate a regularly shaped high-dose region
centered at the target. As this approach exposes potentially large parts of surround-
ing normal /healthy tissue with high radiation doses, which can result in severe tissue
damage and toxicities, a more accurate technique has been introduced with conformal
radiotherapy. For this, the radiation beams are shaped to the target contour by opti-
mizing the number of used beams and by employing a multi-leaf collimator (MLC) to
shield the normal surrounding tissue from the beams, which are individually shaped
to match the target volume in beam’s eye view. With intensity-modulated radiation
therapy (IMRT) and volumetric-modulated arc therapy (VMAT), two extensions of
conformal radiotherapy have been developed and established in the clinical treatment
routine [53, 84].

Intensity-Modulated Radiation Therapy (IMRT)

In addition to the usage of MLCs for lateral beam shaping, in IMRT the target
conformality is improved by the utilization of a non-uniform beam intensity. By
subdivision of each radiation beam into a number of beamlets, the intensity of each
beamlet is made adjustable and therefore allows a more precise shaping of the beams
to the target. This is especially advantageous for the treatment of complex target
shapes and/or OARs in close proximity to the target. Due to the achieved steep dose
gradients, i.e., strong dose fall-offs, with this technique, the surrounding normal tissue
and OARs are further spared from the high doses [84]. In contrast to conventional
RT, the dose distribution for IMRT treatments is inversely planned, meaning that a
planning software is used that optimizes the beam characteristics until pre-defined
dose requirements and limits to target and OARs are reached [85].

Volumetric-Modulated Arc Therapy (VMAT)

Since IMRT typically results in longer treatment times as radiation beams from
different fixed angles are delivered consecutively with the beam being off during Linac
gantry motion, a more time-efficient approach has been established with VMAT. The
idea of VMAT is that the radiation dose is applied as a cone beam while the Linac
gantry is continuously rotated around the patient. The intensity modulation in a
VMAT treatment is achieved by a variable gantry rotation speed, a variable dose
rate and dynamically adjusted MLCs [85].

2.4.5 Stereotactic Body Radiotherapy (SBRT)

One radiotherapy approach, that has been established as standard treatment for
medically inoperable stage I NSCLC and has found application in more and more
treatment sites, is the SBRT. SBRT describes a high-precision external beam RT
approach to deliver high radiation doses to extracranial targets [7, 86]. The aim of
SBRT is to deposit high radiation doses (about 48-60 Gy) in the target in about 1-5
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Fx or up to 10 Fx (within two weeks) depending on the definition, while minimizing
the dose deployed in the surrounding normal tissue [86]. For this, a high conformality
to the target is necessary and is achieved again by using MLCs to shape the beam
to the target. The SBRT dose to the target boundaries (prescription isodose) is
typically chosen to be around 60-80% of the maximum, typically inhomogeneous
target dose. This leads to high dose gradients at the target-normal tissue interface,
which is further facilitated by the utilization of the previously described IMRT or
VMAT methods that allow to further adjust the photon beam.

An important element for the safe and efficient application of SBRT is management
of tumor motion to minimize the radiation field size and target margins and thus to
further limit the normal tissue extent subjected to the high dose. Depending on the
patient, the treatment is therefore usually delivered in multiple breath-holds or in
tidal breathing. Large breathing amplitudes can be further restricted with the usage
of an abdominal compressor or accounted for by a respiratory gated beam delivery.
This has been fostered by the integration of different kinds of imaging devices into
the radiotherapy treatment device and the introduction of IGRT |7, 86].

2.4.6 Image-Guided Radiotherapy (IGRT)

As mentioned before, exact and reproducible patient positioning between planning
and first Fx as well as over several treatment Fx is an integral element to ensure
a safe dose delivery and is one of the main components of IGRT. For this, imaging
modalities such as CBCT or MRI have been integrated into the treatment device
for pre-treatment volumetric in-room imaging to position the patient and to assess
potential inter-fractional changes, due to, e.g., the filling of hollow organs, tumor re-
sponse or weight loss of the patient. In order to compensate for these inter-fractional
changes, the treatment plan is adjusted, which is known as adaptive radiotherapy
(ART). Depending on the available tools, the treatment plan is either adapted be-
tween fractions (time scale of hours or days) in offline ART or immediately prior
to the dose delivery, while the patient remains in the treatment position, in online
ART [87]. As many tumor sites are affected by motion, optical surface imaging for
patient surface motion tracking, ultrasound for internal volumetric imaging, X-ray
imaging, partly in combination with fiducial markers or other landmarks, and cine
MRI have been established for intra-fractional motion detection. In combination
with the treatment plan adaptation, this motion detection using real-time or near
real-time imaging allows a more precise dose delivery. A more detailed description
of ART in the context of MRgRT is given in Section 2.5.3.

2.4.7 Lung Radiotherapy

Radiotherapy plays an integral part in the treatment of most patients with lung can-
cer or pulmonary metastases. SBRT serves as standard-of-care curative treatment
for patients where surgical resection of the tumor (NSCLC stage I, IT or pulmonary
oligometastasis) or the respective lung lobe is not possible due to tumor location
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or affected lymph nodes |5, 6]. As the RT dose description not only depends on
the staging but also the location of the tumor, peripherally-located tumors, central
(distance to tracheo-bronchial tree < 2 cm) and ultra-central (distance from proxi-
mal bronchial tree < 2cm) tumors as well as metastases are differentiated [88]. For
peripherally-located tumors, a BEDy = 113 Gy for the prescribed dose to the PTV
is recommended, while for tumors with broad chest wall contact the recommended
dose is reduced to BEDy = 106 Gy. This results in a fractionation of 3 x 15 Gy and
4 x 12 Gy, respectively [89]. The most commonly used fraction schemes for ultra-
central lung tumors are 5 x 10Gy, 8 x 7.5 Gy and 12 x 5 Gy with a BED1y = 52.5-180
Gy |90]. Recommended fractionations are 8 x 7.5 Gy for ultra-central and 5 x 10
Gy for central tumors [91]. The dose recommendation for peripheral and central
lung metastasis is a BEDjg > 100 Gy, whereas for ultra-central metastasis, the dose
should be reduced to BED1g > 75Gy [6]. In stage III NSCLC patients, RT with con-
current chemotherapy is considered the standard curative treatment approach. As a
majority of those patients suffer from large tumor volumes and/or poor performance
status, palliative RT with lower doses is recommended. Similarly stage IV NSCLC
patients benefit from palliative RT to relieve symptoms and to improve the overall
quality of life. Additionally, curative RT for present oligometastases has been shown
to lead to long-term survival [5].

Apart from application in the treatment of NSCLC, RT is also routinely used in
the disease management of small-cell lung cancer (SCLC) patients of stage I-III, but
is mainly employed for palliative care of primary tumor or metastases in stage IV
SCLC patients [5].

The lung parenchyma is very sensitive to radiation and RT in lungs commonly in-
duces toxicities, typical dose-volume constraints are to restrict the volume receiving
more than 20 Gy (V20) to <10-15% and the mean lung dose (MLD) to <8Gy [92].
As lung tumors are affected by breathing motion, several motion management meth-
ods exist in the clinical practice for the safe delivery the respective SBRT doses to
the tumor. The most common clinically used approach on standard Linac systems is
the utilization of a 4D-CT and an ITV concept. For this, a 4D-CT is acquired in the
planning stage and the ITV is defined to enclose the GTV in each breathing state
[93, 94|. Typically an additional margin (8mm in superior/inferior and 5mm in other
directions) is added to the ITV for the PTV used for the treatment in free-breathing,
resulting in the irradiation of a large lung volume [94]. To reduce the margins for
large tumors or large motion, a gated delivery can be performed in expiration or deep
inspiration breath-hold. For this, only a CT should be acquired in breath-hold mode
[94]. If in-room CBCT is available, it is used for precise patient positioning. Apart
from the pre-treatment derived motion compensation, (tumor) motion monitoring or
tracking based on X-rays or optical imaging is also emerging clinically. Using X-rays
during the treatment in combination with implanted markers as surrogates to track
the tumor motion, the tumor is only irradiated at a specific breathing phase in free-
breathing or in deep inspiration breath-hold [95]. Besides the X-ray-based options
that subject the patient to additional ionizing radiation and require the implantation
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of markers in the latter case, optical imaging finds clinical application. For this, an
external surrogate, e.g., a block with reflective markers, is placed on the patient’s
abdomen and illuminated with an infra-red camera to monitor the breathing motion
in real-time [95]. As this method requires the motion of the external marker and
the internal tumor motion to be correlated, additional X-ray imaging is utilized to
improve this correlation. Furthermore, in order to ensure a reproducible breathing
pattern, spirometer-based or abdominal compression are used to induce breath-holds
or to restrict the breathing amplitude, respectively [96].

Apart from the treatment at standard Linacs, lung tumors have been increasingly
treated with MRgRT at MR-Linacs, which allows, in addition to an online ART
workflow, ionizing radiation-free as well as internal and external marker-free real-
time tumor tracking for a precise dose delivery. This is described in more detail in
the following sections.

2.5 Magnetic Resonance Image-Guided Radiotherapy (MR-
gRT)

Combining photon radiotherapy devices with MRI-scanners to hybrid MR-Linacs
has opened up new opportunities regarding precise dose delivery and anatomical
adaption. This section starts with a brief introduction to the currently existing MR-
Linac devices (Section 2.5.1). Section 2.5.2 focuses on the specifics of the Viewray
MRIdian MR-Linac that was primarily used in this thesis, followed by this system’s
online-adaptive RT approach in Section 2.5.3 and the motion management in Section
2.5.4. Section 2.5.5 describes the specifics of lung imaging at the Viewray MRIdian
MR-Linac.

2.5.1 MRI-Guided Linear Accelerator (MR-Linac)

Due to the difficulties of combining radiotherapy devices with charged particles with
MRI-scanners, different magnet configurations have been developed with the photon
beam being delivered either parallel or perpendicular to the static magnetic field
direction. Additionally, to achieve conformal RT using different photon beam angles,
either the beam is rotated around the patient (rotating gantry) or the patient is
rotated around a static beam (rotating couch). Four different systems that combine
an MRI-scanner with a Linac for radiotherapy treatment have been introduced [97]:

e Viewray MRIdian: 0.35 T MRI-scanner with a super-conducting split-bore
magnet and a 6 MV Linac, perpendicular beam, rotating gantry, commercially
available

e Elekta Unity: 1.5T MRI-scanner with a closed-bore super-conducting magnet
and a 7TMV Linac, perpendicular beam, rotating gantry, commercially available

e MagnetTx Aurora RT 0.5 T MRI-scanner with a high-temperature super-
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conducting split-bore magnet a 6 MV Linac, parallel beam, rotating gantry,
commercially available

e Australian MRI Linac 1.0 T MRI-scanner with a super-conducting split-
bore magnet and a 6MV Linac, parallel or perpendicular beam, rotating couch,
research system

2.5.2 The Viewray MRIdian MR-Linac

The Viewray MRIdian MR-Linac system is comprised of an MRI- and a Linac system,
whose details are given in the following. A photo of the MRIdian MR-Linac situated
at the LMU University Hospital is given in Figure 2.17.

First Magnet Half

Patient Couch

o B

- |Table P051tionin System

FI1GURE 2.17: Photo of the Viewray MRIdian MR-Linac. The Viewray MRId-
ian system situated at Radiation Oncology Department of the LMU University Hos-
pital with its patient couch, the table positioning system, the gantry and the visible
first half of the MRI system’s magnet is depicted. Own figure.

MRI System The 0.35 T Viewray MRIdian uses a split-bore magnet (double
donut) configuration, where two superconducting magnet halves as well as the gradi-
ent coil are separated by a 28 cm wide gap and a bore diameter of 70cm. A gradient
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strength of 18 %T and a slew rate of 200 T /m/s are achieved by the gradient system
to image a 50 cm spherical FOV [98, 99]. To acquire the MRI-signal, a whole-body
RF transmit coil along with two specifically designed surface receive coils, made up
of low-density foam and containing radiolucent phased arrays with six channels for
body and 5 channels for head and neck imaging each, are used. The receiver coils
are placed anterior and posterior to the patient [99].

Linac System The Linac system (6 MV flattening filter free Linac, dose rate
600 %) is mounted in a circular, rotating gantry, which is placed in the gap between
the magnet halves allowing the radiation beams to be delivered perpendicular to the
static magnetic field [99]. Six cylindrical ferromagnetic shielding compartments were
constructed upon the gantry to hold the Linac components and thus circumvent the
interference of the magnetic field with the Linac and any disturbances of the MRI
scanning by the Linac. To allow the delivery of conformal RT or SBRT, double-stack,
double-focus MLCs consisting of a total of 138 tungsten alloy leaves (leaf width =
8.3mm [99]) are fitted to the Linac [100]. Even though gantry angles between 30°
and 33° are not possible because of technical limitations, the Linac system allows
conformal and step-and-shoot IMRT radiotherapy treatments.

MR-Linac Laser System For the patient positioning, the treatment room is, as
part of the device installation, equipped with a laser system that projects a virtual
isocenter outside the bore [99]. The overall localization accuracy of the system was
determined to be (1.0 £ 0.1) mm [100].

2.5.3 Online-Adaptive Radiotherapy

As already mentioned before, image-guidance and the possibility to acquire images
at the beginning of each treatment Fx is the key component of online-adaptive ra-
diotherapy. In MRgRT the procedure is as follows: After a first 3D MRI-scan at
the MR-Linac during the planning phase, using a bSSFP sequence and an in-plane
resolution of 1.5 x 1.5mm? with a slice thickness of 3.0 or 1.5mm and a suitable
FOV, is acquired (under breath-hold) in axial orientation, a CT-scan is performed in
breath-hold and registered to the planning or baseline MRI-scan to obtain a planning
synthetic CT and provide information on the tissue attenuation necessary for dose
calculation and optimization. On each treatment day, the same patient positioning
and the same MRI sequence is used to obtain images (setup scans) of the anatomy
of the day. While the patient is in treatment position in the MR-Linac, the baseline
MRI-scan is registered (basics of image registration can be found in Section 2.7) to
the fraction (setup) MRI-scans and the respective target and OAR contours as well
as the electron density information from the CT-scan are propagated respectively.
After potential re-contouring of the propagated contours, the original dose plan is
re-calculated based on the registered baseline synthetic CT. Depending on the qual-
ity of the predicted dose compared to the baseline planning dose, the plan is either
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accepted or adapted, i.e., re-optimized using the initial optimization parameters and
weights or using modified planning objectives. Once the adapted dose distribution
is accepted by a radiation oncologist and a medical physicist, the patient is treated
accordingly [97, 99].

2.5.4 Motion Management

In addition to an assessment of the anatomy on each treatment day and the subse-
quent adaptation of the dose plan to the present anatomy, MRgRT requires manage-
ment or compensation of intrafractional motion such as breathing or peristaltism.
For this, similar to the 3D image acquisition at the planning stage and for the
MRI-scans at each Fx used to assess the anatomy of the day and to perform dose
plan adaptation, a 2D bSSFP sequence is employed. With an in-plane resolution of
3.5 x 3.5 mm? (cartesian read-out) or 2.4 x 2.4 to 2.5 x 2.5 mm? (radial read-out) and
slice thickness of 5, 7 or 10 mm, image series of one 2D slice intersecting the tumor
in sagittal orientation is continuously acquired during treatment in real-time with
a frame rate of 4-8 frames/s using cartesian or radial k-space read-out. Based on
these 2D-cine images, the delineated target is tracked utilizing real-time deformable
image registration. The treatment is performed in a gated fashion, meaning the ra-
diation beam is only activated by the beam control if the tracked target is within a
predefined boundary /margin with a predefined minimal confidence [98]. This prin-
ciple is illustrated in Figure 2.18. For targets that are subject to breathing motion,
the treatment is typically delivered in multiple breath-holds. This precise localiza-
tion of the target in almost real-time (due to system latency), allows a reduction of
the uncertainty margins added to the GTV and therefore a dose reduction in the
normal tissue surrounding the target that potentially decreases the probability of
radiation-induced toxicities.

2.5.5 Lung Imaging at the MR-Linac

One of the main challenges of MR imaging of the lung in general is its low tissue
density, i.e., low proton density, resulting in a weak MR, signal and thus a low SNR
[101]. An increase of the magnetic field strength (>3T) to increase the SNR, as has
been the trend in, e.g., high-resolution brain imaging, poses additional challenges
for lung imaging. Due to the lung’s foam-like structure with multiple air-tissue
interfaces formed by airways and alveoli, lung MRI is limited by short 73 times, i.e.,
a fast signal decay in GRE imaging caused by the magnetic susceptibility difference
between the paramagnetic oxygen in the air and the diamagnetic tissue [102]. As
these susceptibility-induced magnetic field inhomogeneities increase and thus the 75
times decrease with higher magnetic field strengths (2.11ms at 1.5T vs 0.74ms at 3
T [103]), higher SNRs are typically not achievable at diagnostic MRI-scanners (> 1.5
T), without the use of ultra-short TE (UTE) or zero TE (ZTE) sequences, owing
to the short TE required for the acquisition [101, 102]. Compared to diagnostic
scanners, the MR-Linac employs a lower magnetic field strength of 0.35T, which is



42 2. Background and Theory

(A) Target out, beam off (B) Target in, beam on

FIGURE 2.18: Motion management at the MR-Linac. In this figure, two differ-
ent frames of the 2D cine-MRI scans acquired during the treatment are depicted with
the tracked tumor boundary in red and the treatment position or gating boundary
in yellow. Subfigure (A) shows the target out of the treatment boundary and thus
in radiation beam-off mode. In Subfigure (B), the target is within the treatment
boundary resulting in dose being delivered to the target. Own figure.

beneficial for lung imaging, as the susceptibility artifacts and off-resonance effects are
reduced and T times prolonged (>8.2ms) [103|. Lower magnetic field strengths also
aid the bSSFP sequence used in this thesis for the image series acquisition required
for the NuFD method (Publication I and II). Due to the sensitivity of the bSSFP
sequence to field inhomogeneities [104], the reduced magnetic field inhomogeneities
decrease the potential for the occurrence of banding artifacts. Besides that, it also
benefits from a reduced specific absorption rate (SAR), i.e., the energy deposited into
the tissue by RF-pulses that scales with the square of the magnetic field strength [105,
106]. The high flip angles (70-90°) and short TR necessary to achieve high signal
amplitudes with the bSSFP sequence [107] can pose SAR problems on diagnostic
scanners (>1.5T).

One of the limiting factors of imaging (with a bSSFP sequence) at the MR-Linac
is the gradient system. The use of a split-bore magnet compared to a closed-bore
super-conducting magnet in clinical diagnostic scanners allows the Linac gantry to be
mounted in the center of the MRI’s FOV for RT but compromises the performance
of the MRI gradient system. Current diagnostic 1.5 T MRI-scanners are equipped
with gradients with a maximum amplitude > 30 %T and a slew rate >125T/m/s per
gradient axis, i.e., the speed of the gradient system [108]. While the slew rate of the
MR-Linac with 200 T /m/s is the same as for the 1.5 T MRI-scanner (MAGNETOM
Aera/SolaFit, Siemens Healthineers, Erlangen, Germany) used in Chapter 5, the
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MR-Linac’s maximum gradient amplitude of 18 %T is much lower than the 45 %T
of the 1.5 T MRI-scanner. In 2D imaging, the achievable slice thickness at the
MR-Linac is limited by the small maximum gradient amplitude (Equation 2.38)
[51]. Apart from the slice thickness, the maximum available gradient amplitude also
influences the image resolution. Due to the requirements on the sampling time of
the 2D-cine bSSFP acquisition for the NuFD method in order to be able to sample
the ventilation and perfusion frequency, higher read-out bandwidths are necessary
to reduce TR. Consequently, with a fixed high read-out bandwidth, higher image
resolutions can only be achieved with high gradient amplitudes, as can be derived
from Equations 2.33 and 2.39 [62].

2.6 Radiation-Induced Lung Toxicities (RILT)

Even though RT plays an important role in the treatment of lung tumors, one com-
mon side effect of RT delivered to the lungs is radiation-induced lung injury (RILI).
Depending on the time between end of RT and occurrence, two conditions are dif-
ferentiated, namely RP and RILF. Incidence rates for RILI vary widely from 5-58%
[109] but decreased with the introduction of advanced RT techniques to 29-32% for
IMRT and 24-29% for VMAT [110]. For MRgRT, incidences of 12-17% have been
reported [43, 111].

RP typically occurs within 1-6 months after RT and in most patients within the first
three months and shows as radiological changes on CT-scans in the tumor region
such as ground-glass opacities and consolidations potentially along with common
clinical symptoms such as dyspnea, low-grade fever and non-productive coughing
[110, 112]. Radiological changes and symptoms occurring later than 6 months af-
ter RT, typically within one year, are defined as RILF. RP development, which is
also known as the acute exudative phase of RILI involves complex molecular and
cellular processes and is pathophysiologically defined by capillary injury, oxidative
stress, vascular damage and inflammatory cell infiltration leading to collagen fibril
deposition [6, 110]. The ongoing inflammation preserves the damage of the alveolar
epithelial and vascular endothelial cells and aids the infiltration of immune cells,
the capillary permeability and pulmonary edema that result in pathological changes
[6]. If this condition persists over a longer time period, epithelial and or endothelial
cells transform to mesenchymal cells, RILI transitions into RILF, the chronic fibrotic
phase. This phase is defined by fibroblastic proliferation, vascular sclerosis, fibrous
tissue deposition and collapse of alveolar spaces [6].

In the following sections, the focus will be mainly on RP.

2.6.1 Diagnosis and Grading

RP is a common toxicity of RT, yet apart from recommendations found in a Delphi
consensus study, there exist no general guidelines on RP diagnosis and management
as well as the frequency of follow-up imaging [113]. The diagnosis of RP is typically
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TABLE 2.1: A summary of RP grades. The symptoms, diagnosis and treatment
approaches are summarized for CTCAE, RTOG and LENT-SOMA scheme, as the
definitions of grades vary slightly between the schemes. As grade 5 is typically defined
as death, it was not included in this table. Information from [92, 109, 110, 113].

Grade 1 Grade 2 Grade 3 Grade 4

Symptoms  none or mild moderate severe life-threatening

. . Affected region Affected region Affected region Affected region
Diagnosis

< 25% of lung 25-50% > 50-75% > 75%
corticosteriods,
Treatment None corticosteroids  corticosteroids antibiotics,
and antibiotics intubation

based on findings on follow-up CT-scans [110, 114] in combination with the clinical
presentation of the patient. Typical image findings are ground-glass opacities, consol-
idative opacities, traction bronchiectasis, or less common, crazy paving (interstitial
septal thickening with associated ground-glass opacities), reversed halo (peripheral
rim of consolidation surrounding a ground-glass opacity) [6, 109]. Depending on the
severity of the radiological findings and potential RP-associated symptoms, RP is
graded into five categories from an asymptomatic condition (grade 1) to death (grade
5) that define the disease management and treatment. Several grading systems exist
that mostly only differ slightly in the definitions of grades 1-3 [113]. Three commonly
used grading schemes are: Common Terminology Criteria for Adverse Events (CT-
CAE), Radiation Therapy Oncology Group (RTOG) and the Late Effects in Normal
Tissue-Subjective Objective Management Analysis (LENT-SOMA) from the Euro-
pean Organization for Research and Treatment of Cancer (EORTC). A summary
of the RP grade definitions and management is given in Table 2.1. To assess and
monitor potential RP and/or tumor recurrence, repeated follow-up CT-scans are rec-
ommended every three months in the first year after RT, every 6-12 months in the
years 1-3 and once a year in the following years (up to five years after RT) [6, 114].

2.6.2 Prediction Approaches

The avoidance of RP and potential subsequent long-term consequences and restric-
tions are of great interest. Several approaches have been proposed over the years to
predict the occurrence of RP in order to identify patients at risk and to derive new
treatment or dose constraints. Even though predisposing factors such as comorbidi-
ties (e.g. interstitial lung disease (ILD)), smoking, tumor location, age, and GTV or
PTYV sizes can increase the risk of RP development, studies have not been able to
show clear correlations and influences [109, 115]. Dosimetric parameters and partic-
ularly the MLD and the V20, that already serve as constraints in the dose planning
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phase, have been investigated regarding their predictive qualities but have not been
found to be consistently predictive. Multiple studies on the one hand reported sig-
nificant differences in these parameters between the RP and non-RP patient groups
[116-118] and on the other hand no significant differences were found in other studies
[44, 45, 119].

Apart from finding clinical or pure dosimetric factors, recent research focus has
shifted towards the incorporation of functional lung imaging into the treatment work-
flow [120, 121]. The motivation for the inclusion of functional information is to espe-
cially protect highly-functioning, healthy lung tissue that is involved in gas exchange
by reducing the radiation dose delivered to these lung areas. It is hypothesized that
including this information in the treatment planning to supplement the anatomical
images (functional avoidance planning) could reduce the toxicity and risk for RP and
in turn improve the functional outcome [121, 122]. Furthermore, functional imaging
opens up opportunities in finding function-based RP predictors [120]. Finding these
parameters and the respective predictive power and the corresponding correlations
with outcome can be considered as the first step in the establishment of biomarkers
that later allow to derive dose constraints or to support the treatment planning.
Several approaches to extract pre-treatment ventilation and/or perfusion informa-
tion have been investigated. For the extraction of ventilation, the use of standard
4DCT [44] or inhale-exhale CT [123] as well as PET [48] or SPECT [124] have been
proposed. To assess the voxel-based ventilation, the former two approaches require
image registration (see Section 2.7) between the breathing states before voxel-wise
intensity subtraction of the inspiration state from the expiration state [125] or utiliz-
ing the so-called Jacobian method [126], while the latter two require the inhalation of
gaseous radioactively-labeled chemical compounds. PET and SPECT imaging with
the intravenous administration of radioactive chemical compounds have been simi-
larly considered for the assessment of perfusion [45, 48, 119, 124]. The dominating
approach for the definition of functional parameters so far has been the formulation
of functional dose-volume parameters based on pre-treatment imaging such as the
fV20 or the fMLD, describing the highly-functioning (ventilation and/or perfusion)
lung volume receiving more than 20 Gy and the mean dose in the highly-functioning
lung, respectively. Due to the current recommendation to not treat grade 1 RP (Ta-
ble 2.1), most studies have focused on the prediction of RP grade >2 or even grade
> 3 but found higher predictive qualities of fV20 and fMLD compared to the pure
dosimetric counterparts V20 and MLD. These parameters even have been shown in
some studies to add valuable information to the anatomical information in multivari-
able/multivariate prediction models [120, 121]. Even though MRI and in particular
MRI utilizing the inhalation of xenon or helium to assess lung ventilation has been
considered to analyze dose-response relationships, only a limited number of studies
investigate the potential of MRI during MRgRT to provide (prediction) biomarkers
[121].

The increase in general interest in the integration of functional information has been
also aided by the growing application and clinical availability of image-guided RT
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devices that in most cases allows the effortless (repeated) acquisition of additional
(functional) imaging data and therefore to access potential functional parameters
predictive of RP within the regular treatment workflow. The idea of finding these
predictive functional parameters derived from repeated imaging is also one of the
key topics in this thesis.

2.7 Image Registration

Image registration is one of the key elements in intra- and inter-patient comparison,
correspondence or combination of two or more sets of mono- or multimodal images
in the medical context. The general task of image registration is to transform several
image sets into a single coordinate system to combine image sets with potentially
complementary information to aid diagnosis, modelling and planning steps, real-time
image guidance or post-processing procedures [127]. In this thesis, image registration
found application in the clinical MRgRT workflow, where the baseline MRI-scan
is registered to the daily setup MRI-scans, the baseline CT-scan is registered to
the baseline MRI-scan and the real-time cine images that are acquired during the
treatment are registered to the respective reference image frame to allow for image
guidance. Apart from the clinical importance of image registration, it was also used
to register a 2D MRI series, acquired in free-breathing, to a reference breathing
state, as well as to align volumes acquired with different MRI sequences, i.e., the
registration of images with different TE, different MRI-scanners, i.e., registration of
images acquired at the 0.35T MR-Linac and a 1.5T diagnostic scanner, and different
modalities, i.e., registration of 3D-MRI and 3D-CT images.

2.7.1 Basic Principles

The general idea of image registration is to find a transformation for a source or
moving image so that it is spatially or temporally aligned with a target or fixed
image. More precisely this means that a transformation vector field v(x) needs to
be found that warps each voxel of the moving image Iov(2’), defined in the 3D
coordinates @’ = (), z}, %) of the moving image domain, to the respective voxel
Ifixeq(x) in the fixed image domain & = (x1,x9,x3). A simplified version of the
idea is visualized in Figure 2.19. Mathematically, this process of generating these
transformed moving images Iy () is described as:

Inov(x) = oy (:L") owv(x). (2.57)

Due to an increase in computational cost with increasing transformation complex-
ity, image registration algorithms are usually formulated as optimization problems
and are therefore of iterative nature [128]. The basic principle of such an itera-
tive registration algorithm is as follows: The moving image is transformed using an
estimation from a pre-defined transformation model, which are described in more
detail in the following two subsections. Based on this transformed moving image, an
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FIGURE 2.19: A simplified illustration of the registration process. The
basic idea of image registration is to find a transformation v(x) that warps the
voxels Iy (') in the moving image domain &’ = (], 2%, %) to the corresponding
voxels Ifxed() in the fixed image domain © = (x1, 9, xz3). Own figure.

also pre-defined similarity cost function is calculated to determine the quality of the
alignment between the transformed moving and the fixed image. The cost function
then informs the optimizer of the algorithm on how to improve the estimation of
the transformation that is applied to the moving image in the next iteration. This
process is usually repeated until the algorithm reaches a local minimum in the simi-
larity cost function and the moving and fixed images are aligned [128]. The goal of
the registration algorithm is therefore to find a v(x) that maximizes the similarity
between fmov(a:) and the fixed image Ifxeq(x) by minimizing a cost function (:

argmin ¢ (Imoy © 0, Ifixed) (2.58)
v
that evaluates the alignment of transformed moving to fixed image and forces the
vector field v to follow a specific, pre-defined transformation model.

2.7.2 Transformation Models

Depending on the complexity of the registration task, either only one or a combina-
tion of different transformation models are chosen and applied in a step-wise manner
with increasing transformation complexity. In addition to using multiple transfor-
mation types, usually multiple resolution levels, e.g., using a pyramid scheme, are
utilized within each transformation type. Specifically, a fast and low resolution reg-
istration result serves as a first estimate for the next higher resolution level and
therefore more complex registration step in order to avoid local minima and speed
up the convergence of the iterative registration algorithm [129].
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Rigid and Affine Registration

Many medical imaging applications, e.g., brain MRI or head and neck MRI require
a correction of the acquired set of images for patients’ translational or rotational
motion. This type of transformation model is called rigid registration and is re-
stricted to six degrees of freedom (DOF), meaning that the transformation vector
field v(x) is of global nature and therefore mathematically defined by a single, linear
transformation matrix M and a translation vector 7 = (71, 72, 73):

v(x) = Mz +T. (2.59)

In the case of rigid registrations, M,;giq is given as product of three rotation matrices
with 0,, 0, and 0., being the rotation angles around the respective axis:

Mrigid =
1 0 0 cos(0y,) 0 sin(fy,)\ [cos(fy,) —sin(0 0
0 cos(bz,) —sin(f,) 0 1 0 sin(fz,)  cos(f O)
0 sin(fy,) cos(6y,) —sin(fy,) 0 cos(6s,) 0 1
(2.60)

Extending this transformation model to twelve DOF by allowing global scaling of
the moving image as well as shearing, the commonly known affine registration is
described by:

1 I/1,2 I/173 Ly 0 0
Maffine = |21 1 103 0 ey 0 | Myigia (2.61)
V31 V32 1 0 0 lgs

where 11 and v31; V12 and v3 2 as well as v 3 and vo 3 define the shearing direction
and magnitude for the axis x1, x2 and x3, respectively and ¢, ¢z, and ¢, the scaling
for each axis [128]. The included transformations in the rigid and affine registration
are illustrated in Figure 2.20 (B) and (C).

Deformable Registration

Even though rigid and affine transformations are sufficient in many medical registra-
tion problems, more complex anatomical motions such as breathing or the pulsating
heart that involve volume or morphological changes of one or several organs require
an additional registration step, namely non-rigid or deformable image registration
(DIR), to compensate for the non-rigid deformations of structures [127|. Instead of
being globally defined, such as the rigid and affine transformations, the deformable
transformation is individually defined for each point/voxel in the image using a con-
tinuous displacement field u(x) [128]:

v(x) =z + u(x). (2.62)
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(A) Original (B) Rigid (C) Affine (D) Deformable
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FIGURE 2.20: An illustration of the transformation types. The original image
in (A) can be rotated and shifted for the rigid transformation in (B). The extension of
the rigid transformation with shearing and scaling defines the affine transformation
shown in (C). For more complex, structural changes of the image, a deformable
transformation (D) needs to be utilized. Inspired by [127].

DIR algorithms can be loosely divided into two types: parametric and non-parametric
registration algorithms. The idea of the latter transformation algorithms is to model
the image under deformation as a physical model. In these deformation models, the
deformed image is modeled, e.g., as an elastic body following the Navier-Cauchy Par-
tial Differential Equation, as a viscous fluid that is described by the Navier-Stokes
equation as well as diffusion process or optical flow [130]. While non-parametric
registrations rely on transformations resembling physical motions, parametric regis-
trations are inspired by interpolation and approximation theory and are based on
the optimization of a set of parameters that control basis functions [128, 130]. Apart
from radial basis functions, B-splines are widely used as basis functions for image
registration using free-form deformations (FFD) [131]. The basic principle of FFD
with B-splines is to describe the deformation of an object /image by the manipulation
of an underlying rectangular n,, X ng, X ng, grid of control points ¢; ;; with uni-
form spacing k. This means that the control points or rather the coefficient values
of these control points parameterize the movement of each voxel between the fixed
and moving image. Interpolation of these coefficients using piece-wise continuous
B-spline basis allows to determine the displacement vectors for each voxel [132]|. The
displacement field u(x) is therefore defined by the I-th basis function 6; of the 1D
cubic B-splines [131]:

3 3 3
w(@) =330 3 00 (0)00 ()it (263)
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with § = |2 1, = 2]~ r = [2] - Lu=2 2] 0= 2|2
w= " — | %] and
1—s)?
90(3)_( 5 )
353 — 652 +4
) =—%—
, (2.64)
—3s%4+3s24+3s+1
O2(s) = 5
3
s
93(3)25

with s € [u,v,w]. As mentioned before, Equation 2.63 is calculated repeatedly,
meaning that the B-splines coefficient values are refined iteratively until the warped
moving image closely resembles the fixed image by minimizing the cost function [132,
133]:

Ctotal = <similarity + ACsmoothness (265)

comprising of the cost of the voxel-based similarity measure (smilarity that is calcu-
lated with a pre-defined similarity metric and a smoothness constraint (smoothnesss
e.g., penalization bending energy or minimization of linear elastic energy [134], whose
influence is controlled by a weighting factor A, also known as regularization pa-
rameter [133, 135]. As the resolution of the control point grid determines the per-
formance of the registration, small-scale or more localized deformations are achieved
by a smaller grid spacing, while more global or deformations on a larger scale only
require a coarse grid [135]. In order to improve the efficiency, despite the increasing
computational complexity with higher grid resolutions, a multi-resolution scheme can
be utilized. For this, an initial registration is performed on a low resolution grid until
the optimizing algorithm reaches convergences or a number of pre-defined iteration
steps. This result then serves as input for another registration step using a higher
resolution grid, whose result could be again used as input for another registration
step [135].

2.7.3 Similarity Metrics

An essential part of an iterative registration algorithm or more precisely of the cost
function utilized in the algorithm is the similarity metric (gmilarity, as it measures the
degree of matching between the fixed and the deformed moving image and therefore
drives the optimizer [127]. Several similarity metrics have been introduced in the
context of medical image registration such as sum of absolute differences, (normal-
ized) cross-correlation, Jensen—Havrda—Charvat—Tsallis divergence, mean squared er-
ror (MSE) or mutual information (MI) [127, 136]. As the underlying principle and
requirements on the image pair is different for each similarity metric, the metric
needs to be carefully selected depending on the application. In the following, two
similarity metrics, i.e., MSE and MI, that are commonly used in the field of radio-
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therapy and mono- or multi-modal lung registrations are described in more detail.
The latter metric found application in this thesis.

Mean Squared Error (MSE)

The MSE metric provides one of the most basic, but at the same time computa-
tionally efficient cost functions. It is calculated by taking the square of the intensity
difference between the fixed and the moving image for each voxel and summing this
over all voxels in the fixed image domain Dy, , and dividing this by the number of
voxels Ng [128]:

- 2

CMSE = F (Iﬁxed Imov(x)> . (266)
:EE]D)[ﬁ ed

Even though MSE allows for localized, voxel-based calculation and therefore a high

local sharpness, it is limited by the high dependency on the absolute image intensity

values. Consequently, the registration performance using MSE can suffer in the case

of multi-modal registration problems or in the presence of artifacts and intensity

shifts [128].

Mutual Information (MI)

Instead of using intensity differences between the fixed and the deformed moving
image directly, the MI metric measures the statistical dependency between the two
images and is therefore robust against noise and intrinsic intensity differences, allow-
ing it to be used even in multi-modal registrations [127, 128|. The cost function (i
is expressed as [137]:

Cmr (Iﬁxed,fmov) = (H(Iﬁxed) + H(Im0v> - H(Iﬁxed,fmov)) =-MI  (2.67)

where H (Ifxeq) and H < mov) represent the Shannon entropy of the fixed and moving

image, respectively, and H (Iﬁxed, fmov> the joint entropy. In the context of images

and their underlying intensities, the Shannon entropy evaluates the ability to predict
a given intensity value in the image. Mathematically, the Shannon entropy for a
discrete random variable A is described as [128]:

H(A) =~ Pa(qa)log(Pa(qa)) (2.68)

qA

with P4(ga) being the probability that the value g4 occurs in A. Adding a sec-
ond random variable B and intensity value gp, the joint entropy that analyzes how
well the pair of g4 and gp can be predicted using the joint probability distribution
Pa,(qa,qp) is given by [128]:

H(A,B) =~ Y Pap(qa, qs)10g(Pa5(qa,q5)). (2.69)

qA,9B
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Using Equations 2.68 and 2.69, the MI is defined as [128]:
MI(A, B) = H(A) + H(B) — H(A, B). (2.70)

As the MI metric is constructed to increase with similarity of the images, a negative
sign has to be added to Equation 2.70 before insertion into the cost function given
in Equation 2.67 in order to allow for a formulation as minimization problem.

2.7.4 Landmark-Based Registration

In addition to the registration methods described in the previous sections, there is
another image registration approach called feature-based image registration. While
automated registration methods can run into problems for some applications, e.g.,
multi-modal registration or registration of MRI-scans with different image contrast,
the manual selection of corresponding points in both, the fixed and the moving image,
aids the registration process or even provides an alternative approach.

2.8 Data Analysis/Concepts

The prediction of events or outcomes from data requires the utilization of statistical
concepts. The concepts employed in this thesis, namely the general theory behind
univariate prediction analysis in Section 2.8.1, the receiver operating characteristic
(ROC) curves as visualization and comparison tool in Section 2.8.2 along with boot-
strapping as an internal validation strategy in Section 2.8.3 are described. In Section
2.8.4 metrics for spatial analysis are introduced.

2.8.1 Univariate Prediction Analysis

Univariate prediction analysis can be understood as a classification problem with
only two classes and one classifier variable/parameter. Hence, each instance or test
result is mapped to either the positive or the negative class label. Consequently, a
classifier or classification model maps instances to predicted classes. Depending on
the true class label and the predicted class label derived from the classifier, four case
are differentiated:

e true positive (TP): true class label is positive and predicted class label is
positive

e true negative (TN): true class label is negative and predicted class label is
negative

e false positive (FP): true class label is negative and predicted class label is
positive

e false negative (FN): true class label is positive and predicted class label is
negative
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These four different cases are usually visualized in a so-called 2 x 2 confusion matrix
as shown in Figure 2.21. Based on this, several common metrics are defined that
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FIGURE 2.21: Illustration of the confusion matrix. This figure presents the
schematics of the confusion matrix for a binary classification problem in which four
different cases are differentiated depending on the actual class and the investigated
classifier predicted class. If actual and predicted class coincide, true positives (both
classes are positive) or true negatives (both are negative) are achieved. If actual and
predicted class disagree, the classifier produced either a false negative (actual class is
positive, but predicted class is negative) or a false positive (actual class is negative,
but predicted class is positive).

allow to evaluate the performance of a classifier, namely the specificity given by [138]:

true negatives

— —— =1 — false positiverate (2.71)
false positives + true negatives

specificity =

and the sensitivity described by:

true positives
P = true positive rate. (2.72)

sensitivity =
Y true positives + false negatives

2.8.2 Receiver Operating Characteristic (ROC) Curve

A common way to visualize/compare the performance of classifiers is to employ
ROC curves that are 2D representations of the false positive rate against the true
positive rate. With this, the relative trade-off between benefits (TN) and costs (FP)
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is assessed. As discrete classifiers only create one FP rate-TP rate pair, in ROC space
these classifiers are presented as single points. For probabilistic classifiers, such as
logistic regression or a Naive Bayes classifier, that only produce the probability or a
score for an instance or test result to belong to a class or classification models that
classify based on a continuous parameter, thresholds need to be utilized to convert
the classifier output into binary prediction results. By varying the threshold from
the lowest to the highest possible probability, score or parameter value, a FP rate-TP
rate pair is generated for each threshold and therefore a point on the ROC curve is
retrieved. This resulting graphical representation (Figure 2.22) allows to determine
the best threshold for a classification model depending on requirements regarding the
sensitivity and specificity. A common approach used to determine the best threshold
is by finding the maximal Youden index [139]:

Youden index = sensitivity + specificity — 1 (2.73)

that by construction maximizes the trade-off between benefits and costs.

In addition to comparing the ROC curves to assess performance differences between
classifiers, the area under the curve (AUC) value is calculated for each ROC curve.
As a random classifier is expected to reside on the diagonal, realistic classification
models should achieve AUC values between 0.5 and 1.0 with higher values being
better [138].

1.0 4
0.8 + I_
Z
= 0.6 1
[9p) 04 T
---- Random Classifier
0.2 1 Perfect Classifier
. — Realistic Classifier
0.0 + . . .

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

FIGURE 2.22: The receiver operating characteristic curve (ROC). The ROC
curves of a perfect classifier (blue solid line), a realistic classifier (black solid line)
and a random classifier (black dotted line) are depicted as a plot of the sensitivity
over (1 - specificity).
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2.8.3 Bootstrapping

A problem of any classifier or predictive model especially in the medical field is that
these models are developed on a subset of all possible datasets or a subset of patients
from the whole population. The model performance therefore might differ from the
performance obtained for another dataset. In order to provide a more accurate and
more general estimate of the model performance, several strategies have been intro-
duced. Apart from the common simple split-sample approach, where the available
dataset is divided into a training subset for model development and a validation
subset to assess the performance, more advanced methods exist. One method that
is considered to be one of the most efficient, but computationally demanding valida-
tion strategies is bootstrapping [140]. The basic principle of bootstrapping and other
resampling approaches is to artificially, but mathematically validly, increase the sam-
ple size or in other words generate multiple samples from the underlying population
[140-142]. This is done by repeatedly drawing samples, of the same size as the avail-
able dataset, with replacement from the original available dataset. The performance
of a classification model after bootstrapping is usually assessed by generating an
ROC curve and AUC value for every bootstrapping iteration and subsequently cal-
culating the average of the ROC curves over all bootstrapping samples along with an
averaged AUC value. While split-sample methods in particular and also especially
in small sample sizes have been shown to suffer from performance underestimation
and high variability, bootstrapping allows a more stable and almost unbiased per-
formance estimation [140]. Even though these internal validation strategies are not
able to fully replace an external performance evaluation on an external validation
dataset, bootstrapping is considered as a necessary first validation tool particularly
in the early stages of classifier or predictive model development [143].

2.8.4 Spatial Analysis

Spatial analyses on a voxel level, i.e., image segmentations, require, apart from visual
evaluations, the use of specific metrics to quantitatively assess the performance [144].
For this, especially in the medical context, the comparability between a reference or
gold-standard segmentation and the proposed analysis-based segmentation is probed.
Many metrics have been proposed over the years that can be, depending on their
nature, grouped into different categories, e.g., spatial overlap-based, probabilistic-
based or spatial distance-based methods [145]. Typically used spatial overlap-based
evaluation measures, that found application in this thesis, are the sensitivity (2.72),
precision:

. true positives
precision = — — (2.74)
true positives + false positives
and the Dice similarity coefficient (DSC):
2 - true positives
DSC = P (2.75)

2 - true positives + false positives + false negatives
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One of most common spatial distance-based methods is the 95% Hausdorff distance
(HD95), i.e., the 95th percentile of the distance between boundary point in the
ground-truth and the nearest boundary point in the analyzed segmentation [145].
A probabilistic-based metric, that is not only used in the context of classification
model performance assessment, as described in Section 2.8.2, is the ROC and the
corresponding AUC. Since the ROC reduces to one measurement, i.e. one point, in
the context of segmentations, the segmentation AUC (Seg AUC) is defined as the
trapezoidal area between the sensitivity = 0 line, the 1 — specificity = 1 and the
single measurement point [146]:

1/ FP FN
Seg AUC 2 (FP TIN T FN+TP> (2.76)
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Klaar, R., Rabe, M., Gaass, T., Schneider, M. J., Benlala, 1., Eze, C., Corradini, S.,
Belka, C., Landry, G., Kurz, C., & Dinkel, J. (2023). Ventilation and perfusion MRI
at a 0.35 T MR-Linac: feasibility and reproducibility study. Radiation Oncology,
18(1), 58. https://doi.org/10.1186/s13014-023-02244-1

3.1 Summary of Publication I

Non-contrast enhanced functional lung MRI using the FD or its extension the NuFD
(Section 2.3.1) have been successfully introduced at clinical diagnostic MRI-scanners
at various field strengths and for various lung diseases. The idea of the project for
this paper was to test if cine images with the required temporal resolution for FD or
rather NuFD can be acquired at a low-field MR-Linac and if the NuFD technique in
general can be transferred to this hybrid device, which had not been done before. As
bSSFP sequences (Section 2.2.5) find application at MR-Linacs for the acquisition of
clinical images, an already implemented bSSFP sequence was used and optimized in
terms of spatio-temporal resolution. As this project was considered to be the first step
in bringing functional lung imaging at the MR-Linac to lung tumor patients treated
at the device, what would later become Publication II, the feasibility of the image
acquisition and the NuFD method to assess ventilation and perfusion firstly had to
be assessed in healthy volunteers. In order to mimic multiple treatment fractions and
to investigate the overall reproducibility of the NuFD technique especially regarding
differences in breathing patterns between treatment fractions at the MR-Linac of the
Department of Radiotherapy at the LMU University Hospital in Munich, ten healthy
volunteers were repeatedly scanned at two different slice positions with breaks inside
and outside the scanner. Different breathing patterns were simulated by asking the
volunteers to breath in a deeper and shallower fashion during two specific scans.
As consistent breathing patterns from fraction to fraction could not be assumed for
patients suffering from lung tumors and potential additional comorbidities and the
FD or NuFD is only qualitative and depends on the breathing amplitude, a direct
comparison of ventilation and perfusion maps at different fraction days would not be
possible. Considering that the more final goal is the correlation of longitudinal func-
tional changes with treatment-related outcomes, the reproducibility of this method
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is essential. To address this problem, two normalization strategies have been devel-
oped and their performance in improving the comparability between functional maps
from different scans was evaluated on the repeated scans for each volunteer. One of
the normalization strategies consisted of finding a normalization factor based on the
slope of the diaphragm position vs ventilation signal amplitude for a reference scan
that was then multiplied to later scans of the same volunteer/patient. The second
strategy required to select a region-of-interest (ROI) on a (healthy) part of the lung
and divide the ventilation and perfusion maps with the respective mean ventilation
and perfusion map value found within the ROI. In order to investigate a potential
position dependency of the ROI normalization, the performance of six ROI positions
(three per lung) was analyzed.

With this publication, not only the feasibility of transferring the NuFD technique
to a low-field MR-Linac was successfully shown, but the two developed normaliza-
tion strategies clearly improved the reproducibility and comparability of repeated
ventilation and perfusion maps, especially in the presence of differences in breath-
ing patterns. This was an important first step towards clinically implementing this
technique to monitor longitudinal changes in ventilation/perfusion that might be
exploited, e.g., for early treatment repsonse assessment.

3.2 Contributions to Publication I

My contributions to this publication involved logistics of volunteer scan planning,
data acquisition, image processing, development of normalization strategies, general
result analysis, statistical evaluation, visualization of the results and figure prepara-
tion as well as writing the original manuscript draft.

First, I designed a scanning protocol for volunteer scans with repeated scans with
defined breathing patterns and breaks. In assistance with PD Dr. rer. nat. Christo-
pher Kurz and Dr. rer. nat. Moritz Rabe, I recruited volunteers and performed
the scans at the 0.35 T MR-Linac at the Department Radiation Oncology of the
LMU University Hospital following the designated scanning protocol using an MRI
sequence, whose parameters were optimized by Dr. rer. nat. Moritz J. Schneider
and Prof. Dr. med. Julien Dinkel. I preprocessed the images, which included image
registration of each image series, manual segmentation, signal filtering and NuFD
evaluation. For this, I optimized and automated a pipeline initially prepared by
Dr. rer. nat. Thomas Gaass. I developed two normalization strategies in order to
be able to compare ventilation and perfusion maps for repeated scans regardless of
differences in breathing amplitude and heartbeat. I implemented the normalization
in the pipeline for an automated analysis of repeated scans and used this pipeline
to analyze the performance of the normalization strategies on the volunteer scans. I
performed the statistical tests to assess the repeatability improvement of the normal-
ized functional maps compared to unnormalized maps. I discussed the results with
Prof. Dr. Guillaume Landry, PD Dr. rer. nat. Christopher Kurz and Dr. rer. nat.
Moritz Rabe and I created workflow and results plots. Finally, I wrote the original
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manuscript draft and reviewed and edited the manuscript in cooperation with all
co-authors.

3.3 Publication I
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Abstract

Background Hybrid devices that combine radiation therapy and MR-imaging have been introduced in the clini-
cal routine for the treatment of lung cancer. This opened up not only possibilities in terms of accurate tumor track-
ing, dose delivery and adapted treatment planning, but also functional lung imaging. The aim of this study was to
show the feasibility of Non-uniform Fourier Decomposition (NuFD) MRI at a 0.35 T MR-Linac as a potential treatment
response assessment tool, and propose two signal normalization strategies for enhancing the reproducibility of the
results.

Methods Ten healthy volunteers (median age 28 + 8 years, five female, five male) were repeatedly scanned at a 0.35
T MR-Linac using an optimized 2D+t balanced steady-state free precession (bSSFP) sequence for two coronal slice
positions. Image series were acquired in normal free breathing with breaks inside and outside the scanner as well as
deep and shallow breathing. Ventilation- and perfusion-weighted maps were generated for each image series using
NuFD. For intra-volunteer ventilation map reproducibility, a normalization factor was defined based on the linear cor-
relation of the ventilation signal and diaphragm position of each scan as well as the diaphragm motion amplitude of
a reference scan. This allowed for the correction of signal dependency on the diaphragm motion amplitude, which
varies with breathing patterns. The second strategy, which can be used for ventilation and perfusion, eliminates the
dependency on the signal amplitude by normalizing the ventilation/perfusion maps with the average ventilation/
perfusion signal within a selected region-of-interest (ROI). The position and size dependency of this ROl was analyzed.
To evaluate the performance of both approaches, the normalized ventilation/perfusion-weighted maps were com-
pared and the deviation of the mean ventilation/perfusion signal from the reference was calculated for each scan.
Wilcoxon signed-rank tests were performed to test whether the normalization methods can significantly improve the
reproducibility of the ventilation/perfusion maps.

Results The ventilation- and perfusion-weighted maps generated with the NuFD algorithm demonstrated a mostly
homogenous distribution of signal intensity as expected for healthy volunteers regardless of the breathing maneuver
and slice position. Evaluation of the ROI's size and position dependency showed small differences in the performance.
Applying both normalization strategies improved the reproducibility of the ventilation by reducing the median
deviation of all scans to 9.1%, 5.7% and 8.6% for the diaphragm-based, the best and worst performing ROI-based
normalization, respectively, compared to 29.5% for the non-normalized scans. The significance of this improvement
was confirmed by the Wilcoxon signed rank test with p < 0.01ata = 0.05. A comparison of the techniques against

fChristopher Kurz and Julien Dinkel have contributed equally to this work.

*Correspondence:

Rabea Klaar

RabeaKlaar@med.uni-muenchen.de

Full list of author information is available at the end of the article

©The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit httpy/creativecornmons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http:/creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.



3.3 Publication I

61

Klaar et al. Radiation Oncology (2023) 18:58

Page 2 of 15

Perfusion, Low-field MRI

each other revealed a significant difference in the performance between best ROI-based normalization and worst ROI
(p = 0.01) and between best ROI-based normalization and scaling factor (p = 0.02), but not between scaling factor
and worst ROI (p = 0.71). Using the ROI-based approach for the perfusion-maps, the uncorrected deviation of 10.2%
was reduced to 5.3%, which was shown to be significant (p < 0.01).

Conclusions Using NuFD for non-contrast enhanced functional lung MRI at a 0.35 T MR-Linac is feasible and pro-
duces plausible ventilation- and perfusion-weighted maps for volunteers without history of chronic pulmonary
diseases utilizing different breathing patterns. The reproducibility of the results in repeated scans significantly benefits
from the introduction of the two normalization strategies, making NuFD a potential candidate for fast and robust early
treatment response assessment of lung cancer patients during MR-guided radiotherapy.

Keywords Functional lung MRI, Radiation therapy, MR-Linac, Non-uniform Fourier decomposition, Ventilation,

Background

Lung cancer is one of the leading causes of cancer related
deaths worldwide [1]. Radiotherapy, and in particular
adaptive radiotherapy (ART), have become more and
more important in the treatment of lung cancer patients,
since ART allows adaption of the treatment plan for
possible anatomical and physiological changes based
on computed tomography (CT) or magnetic resonance
imaging (MRI) between treatment fractions [2-6]. The
recent introduction in the clinical routine of hybrid sys-
tems that combine a MRI-scanner and a medical linear
accelerator (MR-Linacs) allows daily ART and image-
guidance [7-11]. The excellent soft-tissue contrast of
MRI allows for an improved delineation of organs at risk
as well as target volumes and additionally enables precise
tumor-tracking and beam-gating based on cine-MRI to
mitigate intra-fractional motion, resulting in dosimet-
ric benefits [7, 12—15]. Along with being a non-invasive
alternative to CT in terms of treatment planning as well
as providing image-guidance during radiotherapy, MR-
Linacs also enable MRI-specific methods such as func-
tional imaging of head and neck cancer [16—-19], but also
functional imaging of the lung. Due to fractionated dose
delivery, MR-Linacs even allow longitudinal functional
data acquisition within the course of the patients’ treat-
ment, which is especially valuable since it may permit
early treatment response assessments [20—-23].

For functional lung imaging, several techniques
have been developed over the years. Some of these
approaches require the inhalation of gases such as
hyperpolarized helium (*He) [24], xenon (1*°Xe) [25],
fluorine (1°F) [26] or oxygen [27] to assess lung venti-
lation, or the injection of gadolinium-based contrast
agents to evaluate perfusion [28], which is not only
costly but also technically challenging [29]. An alter-
native are Fourier Decomposition (FD) MRI [30] tech-
niques, which are performed in free breathing and
make use of the intrinsic lung signal variation due to
breathing and blood flow, such as Non-uniform Fourier

Decomposition (NuFD) [31], PREFUL [32] or SENCE-
FUL [33]. These techniques do not require a contrast
agent, any special equipment or respiratory trigger-
ing and are therefore fast, easily applicable and have
shown promising results in chronic thromboembolic
pulmonary hypertension, asthma, chronic obstruc-
tive pulmonary disease (COPD) and cystic fibrosis
(CF) studies [31, 32, 34—36]. Due to FD-MRI’s depend-
ency on changes in the breathing pattern as well as the
residual lung volume, variations in breathing ampli-
tude from fraction to fraction may influence ventilation
maps and mask pathological changes. NuFD, a robust
FD-MRI technique, has been designed to correct for
variations in respiratory and cardiac frequencies dur-
ing the course of image acquisition by retrospectively
converting equidistant sampling into non-equidistant
sampling in order to track the main frequencies [31].
Their ease of applicability make FD-MRI techniques
particularly well suited for longitudinal studies embed-
ded in an MR-Linac radiotherapy workflow. However,
reproducibility of the ventilation maps in such studies
remains challenging and additionally requires a form of
signal normalization [37]. Otherwise, focal longitudinal
changes might be masked by global changes due to var-
iations in the breathing amplitude.

Even though the aforementioned functional lung imag-
ing methods have been developed and optimized for
high-field MRI (1.5-3 T), studies by Campbell-Washburn
et al. [38] and Deimling et al. [39] showed that lung imag-
ing can benefit from lower magnetic field strengths since
the susceptibility artefacts caused by local inhomogenei-
ties at the multiple air-tissue interfaces of the lung paren-
chyma are reduced [40]. The resulting improved image
quality suggests that the transfer and optimization of FD-
MRI sequences [30] to a 0.35 T MR-Linac is desirable.
So far, these methods have not been evaluated at these
devices.

The aim of this study was to test the feasibility of non-
contrast enhanced ventilation and perfusion MRI using
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NuFD at a 0.35 T MR-Linac, and to improve the repro-
ducibility by introducing normalization strategies.

Methods

In order to improve the reproducibility within a longitu-
dinal study, as required for early response assessment in
MR-guided radiotherapy, two ventilation normalization
strategies are proposed and their performance is evalu-
ated in a study with ten healthy volunteers. Addition-
ally, the reproducibility of the perfusion is investigated
with and without one of the introduced normalization
approaches.

Image acquisition

Ten healthy volunteers (24—52 years old, five female and
five male) were scanned at a 0.35T MR-Linac (MRid-
ian, Viewray Inc., Cleveland, Ohio) using a 2D balanced
steady-state free precession (bSSFP) sequence that was
optimized to achieve the required temporal resolu-
tion in order to observe signal intensity changes intro-
duced by respiration and perfusion. Two coronal slice
positions were selected with a field-of-view (FOV) of
500 x 500 mm?, a pixel size of 3.91 x 3.91 mm?, a slice
thickness of 20 mm and a matrix size of 128 x 128. With
a repetition time (TR) of 2.42ms and echo time (TE)
of 1.02ms, a temporal resolution of 310 ms/image was
reached, resulting in a total acquisition time of 1.1 min
for a series of 240 images. The flip angle was 70.0° and the
receiver bandwidth 710.0 Hz/pixel. The slice positions
were chosen for each volunteer individually based on a
3D-bSSFP MRI-scan performed in inspiration breath-
hold with a total acquisition time of 25s. The imaging
parameters were: TR = 3.0ms, TE = 1.27ms, FOV =
540 x 465 x 432 mm3, matrix = 360 x 310 x 144, voxel
size = 1.5 x 1.5 x 3.0 mm?3, flip angle = 60.0°, receiver
bandwidth = 604.0 Hz/pixel. The vendor’s 6-channel
torso coils were used to receive the MR-signal. One slice
position was selected to intersect the aorta, while the
other was positioned anterior or posterior of the first
slice depending on the lung volume of each volunteer. In
the following, the two slice positions are referred to as
‘aorta’ and 'lung’ The aorta slice was selected in order to
have a comparable position for all volunteers. Consider-
ing the potential application in lung cancer patients with
different tumor positions and overall lung anatomy, the
performance of the methods needed to be investigated
at different locations within the lung, thus justifying the
additional lung slice. The position was chosen to cover a
large variety of slices among the volunteers, showing dif-
ferent parts of the lung. For volunteers with large lung
volumes, the lung slice was positioned posterior to the
aorta slice, while for volunteers with smaller lung vol-
umes a slice position anterior to the aorta was selected.
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In order to test reproducibility, both slice positions were
scanned repeatedly and with different breathing pat-
terns for each volunteer. After acquiring the image series
once for each slice in normal free breathing, a break of
about 15 min was taken inside the scanner before repeat-
ing the acquisition. To evaluate the robustness for differ-
ent breathing patterns, the volunteers were then asked
to breathe approximately 25% deeper. This instruction
was only given to yield a realistic deeper breathing pat-
tern. The actual diaphragm amplitude was not critical
for this study. The same procedure was performed after
a 15—20min break outside the scanner, albeit with a
reduced in-scanner break between the first and the sec-
ond regular breathing scans, which was about 2—5 min.
The second irregular breathing scan was acquired in shal-
lower breathing. The first in-scanner break was chosen
longer to allow the volunteers to get fully accustomed
in the scanner and minimize anxiety related effects in
the second scan. To limit the overall acquisition time to
one hour, the second in-scanner break was shortened.
In order to ensure a similar volunteer position after the
outside-scanner break some precautions were taken dur-
ing the first positioning. Pieces of tape were fixed to the
volunteers’ arms and the scanner table to mark the crani-
ocaudal position and the relative position between volun-
teer and table based on the integrated laser positioning
system. The x-, y- and z-coordinates of the scanner table
in iso-center position were noted. For the setup after the
break outside the scanner, the relative position between
volunteer and table was found using the tape and again
the laser system. The table was then moved to the exact
coordinates used for the first acquisition. The scanning
protocol and the used scan abbreviations are summa-
rized in Table 1.

Image processing workflow

The in-house developed image processing workflow
was fully implemented in Python (version 3.9). As
shown by Bieri and Scheffler [41], the magnetization in
bSSFP sequences approaches a steady-state after sev-
eral TR periods. Similar to Bondesson et al. [31], the
first 20 images were discarded as the steady state con-
dition was not fulfilled. The acquired image series were
firstly aligned with a deformable image registration using
ANTs (Advanced Normalization Tools) [42] to a refer-
ence image in mid-position between full inspiration
and full expiration using mutual information as optimi-
zation metric employing a three-level multiresolution
registration strategy (25%, 50% and 100% of the origi-
nal resolution). The reference image was automatically
determined within the processing workflow. For this,
the overall mean signal intensity was calculated for each
image as well as the temporal average over these mean
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Table 1 The scanning protocol for the volunteers, breathing
patterns and used abbreviations (NB = normal breathing, 1B
= irregular breathing, aB = after Break) for each scan of the
corresponding slice position

Scan Slice Breathing pattern Abbreviation
1 3D Volume Breath-hold 3D-scan
2 Aorta Normal Reference
3 Lung

~ 15 min break inside the scanner

4 Aorta Normal NB 2

5 Lung

6 Aorta ~ 25% deeper 1B

7 Lung

~ 10-20 min break outside the scanner

8 Aorta Normal NBaB 1

9 Lung

~ 2-5 min break inside the scanner

10 Aorta Normal NB aB 2
Il Lung

12 Aorta Shallow IBaB

13 Lung

signal intensities. The image closest to this average was
defined as the reference image and represents a motion
state close to the mid-position. Based on this reference
image, a manual segmentation of the lung was performed
under the supervision of an experienced radiologist. The
average temporal lung signal was used to determine the
subject-specific cut-off frequency between 0.55—1.0 Hz
to separate the ventilation and perfusion signals with
a low- and high-pass Butterworth filter, respectively,
which was applied forward and backwards to avoid the
introduction of a phase shift. Since the Butterworth filter
provides a good compromise between attenuation and
phase response [43], it finds application in the process-
ing of biomedical signals and was chosen in this study
[44]. As shown by Bondesson et al. [31], a uniformly sam-
pled signal with varying frequency is transformable into
a non-uniformly sampled signal with constant frequency
by defining virtual sampling times , based on the instan-
taneous frequency. For this, a short-term Fourier trans-
form was calculated and an edge-extraction algorithm
(ssqueezepy package [45]) was applied to the 2D time-
frequency representation to determine the instantane-
ous frequency of the ventilation and the perfusion signal
and thus the respective virtual non-equidistant sampling
times. These sampling times were then used to calculate
the type-1 Non-uniform fast Fourier Transform (NuFFT)
per pixel on the segmented lung. The ventilation- (Vw)
and perfusion-weighted (Qw) maps were then generated
by taking the maximum magnitude of the corresponding

Page 4 of 15

peak in the Fourier spectrum. The Vw- and Qw-maps are
not quantitative but reflect the regional tissue density
oscillation of the lung parenchyma due to ventilation in
the former and the regional MR-signal intensity oscil-
lation due to perfusion in the latter case. Diseased lung
areas with altered parenchymal density, reduced pulmo-
nary ventilation and/or poor perfusion would show less
signal intensity in the Vw- and Qw-maps [30, 31]. The
whole image processing workflow is illustrated in Fig. 1.

Normalization strategies

Diaphragm amplitude scaling factor

The idea of this normalization strategy is to introduce a
multiplicative factor to normalize a scan acquired at a
certain time point to a reference scan. With this, differ-
ences between scans due to breathing amplitude changes
are compensated and the comparability within a longitu-
dinal study improved. In order to correct for inter-scan
differences in the Vw-maps due to variations in breath-
ing amplitude, the relationship between lung ventilation
signal and diaphragm position can be exploited. Relative
changes in the average lung ventilation signal correspond
to relative changes in lung volume and thus to the dia-
phragm motion [30]. The frame-wise lung ventilation
signal is therefore normalized by the diaphragm position
in this approach. The position of the diaphragm for each
image frame was determined by placing a ROI around the
diaphragm of the right lung and extracting the line profile
along a vertical line through the diaphragm, as shown in
Fig. 2A. Each of these line profiles was then fitted with a
sigmoid function. The derivative of the sigmoid function
was computed and its maximum position, i.e., the maxi-
mal intensity change, was used to determine the position
of the diaphragm (Fig. 2B). Relative diaphragm positions
were calculated with respect to the intermediate state.
According to the definition used in this study, positive
position values correspond to inspiration and negative
values to expiration.

Correlating these diaphragm positions with the corre-
sponding average lung ventilation signal in each image
revealed a linear relationship. This allows to fit the cor-
relation and to extract the slope dS/dx with the filtered
lung ventilation signal S (step 4 in Fig. 1) and the relative
diaphragm position . This is examplarily shown for both
slice positions of Volunteer 5 in Fig. 3. More examples of
the correlation for different volunteers and scans can be
found in the Additional File 1. This factor for a scan i is
defined by:

. . ds; xref,max - xref,min
normalization factor; = — - ——————

dxi S i,max

» (1)

- Si,min
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1. Image Acquisition 2. Registration 3. Segmentation 4. Filtering
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7. Map Generation 6. NuFFT

5. Resampling
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Fig. 1 Sketch of the image processing workflow. The workflow of the NuFD consists of the acquisition of the image series in free breathing

(step 1), the image registration using ANTs (step 2) and a manual segmentation (step 3). The lung signal is low- and high-pass filtered to separate
the ventilation (V) and perfusion signals (Q) (step 4), respectively. Resampling based on a short-term Fourier transform is performed on both
signal components individually in order to transform uniformly sampled signals with varying frequency to non-uniformly sampled signals with
constant frequency (step 5). Calculating the NUFFT pixel-wise for both ventilation and perfusion (step 6) and extracting the signal amplitude of the
corresponding peak allows to generate V- and Q-weighted maps of the segmented lung that are then overlayed on the original image (step 7)
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Fig. 2 Working principle of the diaphragm position extraction. The diaphragm positions used for the scaling factor-based normalization are
extracted by first selecting a ROI (A) to get the line profile of the intensity for each frame in the image series. Each line profile (blue) is then fitted
using a sigmoid function (red) as shown in (B). To determine the actual position of the diaphragm, the maximum of the derivative of the fitted
sigmoid function is calculated, which is indicated by the black dashed line
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(B) Lung Slice
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Fig. 3 The linear diaphragm position and lung signal correlation. The correlation between the relative diaphragm position and the average lung
ventilation signal of each frame are exemplarily shown for a scan of the aorta (A) and lung slice (B). As a reference for the diaphragm positions,
the mid position between full inspiration and full expiration was used, meaning that positive values describe the increase in lung volume and
consequently negative values the decrease in lung volume. Regardless of the considered slice, a linear relationship between the two quantities is
observable. The slope of the linear fit function depicted in red finds application in Eq. 1

where dS;/dx; is the slope of the linear fit and S; nax and
Simin are the mean maxima and minima of the filtered
lung ventilation signal of scan i. The mean maxima and
minima of the relative diaphragm positions in the refer-
ence scan are Xyefmax and Xpefmin, respectively. A visual
explanation of the parameters used in Eq. 1 and their
extraction is given in the Additional File 2. Multiplying
this resulting factor to the ventilation signal before the
pixel-wise NuFFT (step 6 in Fig. 1) allows to correct for
differences in the diaphragm amplitude between scan i
and the reference scan.

Region-of-interest normalization

An alternative approach for the normalization of consecu-
tive scans is to normalize the Vw- and Qw-maps of each
scan pixel-wise by the average value within a chosen ROI
where the lung parenchyma is assumed to be healthy.
Assuming that breathing pattern changes affect all parts of
the lung in a similar manner, this strategy diminishes the
dependence on the breathing amplitude. The final normal-
ized maps I'norm are then given by:

r

T(ROI) @

norm =
with I' = Vw, Qw the uncorrected maps and T(ROI) the
mean map value within the selected ROI of the same
scan. In order to analyze the possible spatial and size
dependence of the chosen region used for the normaliza-
tion, six different positions (three in each lung), as shown
in Fig. 4, were evaluated for two different square ROI
sizes of 8 x 8 pixels (Fig. 4A) and 12 x 12 pixels (Fig. 4B).

Evaluation method

Map comparison

The Vw- and Qw-maps show only the relative signal
differences within the lung and are therefore not quan-
titative. Thus, the aim of the normalization was to get
Vw- and Qw-maps of similar intensity despite changes
in the underlying breathing pattern and other potential
inter-scan differences. In order to quantify the similar-
ity, the mean value segmented lung was calculated for the
maps of each scan and compared to the corresponding
reference scan map. For healthy volunteers we assume
that there should be no change in the maps from scan to
scan. The absolute relative deviation 8 of the mean value
between unnormalized/normalized maps T of scans j

and the map of the reference scan (I"¢f) is defined as:

Fref - F]

S =
L et

@)

with j being a non-reference scan. In the following analy-
sis, the firstly acquired aorta and lung image series served
as the respective reference scans.

Statistical analysis

Since there is no reason to assume that the deviations of
each scan’s map from the corresponding reference are
normally distributed for any normalization method, the
statistical evaluation for significant differences between
the ventilation normalization methods was performed
using a Wilcoxon signed rank test (scipy.stats.wilcoxon
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Fig. 4 The small and large ROI positions. The positions and numbering of the ROIs, whose mean ventilation value is used for the normalization of
the ventilation-weighted maps, are displayed. In A the small ROls with a size of 8 x 8 pixels and in B the large ROIs with 12 x 12 pixels are shown in
blue with their assigned numbers starting from the top right lung. For presentation purposes, the ventilation maps were filtered using a Gaussian

and then logarithmically plotted

package; version 1.7.2). Although the Vw- and Qw-map
deviations can be positive as well as negative, due to
over- or underestimation by the normalization tech-
niques, only the absolute deviations were considered.
This was to evaluate the performance of the methods
solely in terms of magnitude of the deviation rather than
direction. For this, each approach was compared to the
maps of the uncorrected scans and against each other for
both slices separately and the combined total of n = 96
scans at o = 0.05.
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Results

Feasibility

Figure 5 displays Vw- and Qw-maps along with the 2D
MR image for two exemplary volunteer scans in normal
and deep breathing without normalization. Large ves-
sels and the heart in the lower left and right lung were
excluded from the segmented lung used to calculate the
Vw-maps. The maps show an overall homogenous inten-
sity which is increased in the vessels for the Qw-maps.
Using the same window for the Vw-maps in normal and
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Fig.5 Exemplary ventilation-(Vw) and perfusion-weighted (Qw) maps. The unnormalized V- and Q-maps for the normal (NB 2) and the first
irregular breathing scan (B, deep breathing) exemplarily presented for the aorta slice of Volunteer 4. The heart and large vessels were excluded from
the segmentation of the Vw-maps. The maps were Gaussian filtered and logarithmically plotted
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deep breathing results in differences in the overall inten-
sity, as expected. Since the Qw intensity is mostly inde-
pendent of the breathing pattern, the Qw-maps in Fig. 5
show no noticeable difference.

ROl size and position analysis

The ROI position and size dependency was investigated
for both the Qw-maps and Vw-maps by using the ROIs
specified in Fig. 4.

Ventilation

The median 8y of all volunteers for each ROI location
and slice position as well as the combined scans are listed
in Table 2. Due to inconsistencies in the scanning proto-
col and the instructions given to Volunteer 1 resulting in
unrealistic breathing patterns, both irregular breathing
scans had to be excluded from the analysis. The boxplots
showing the signed deviations for the small and large
ROIs using the maps of all scans regardless of slice posi-
tion can be found in the Additional File 3. For the small
ROIs, the smallest and largest §y for both slice positions
was achieved for ROI 5 (middle left lung) and ROI 4 (top
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left lung), respectively. These positions also coincide with
the best and worst ROI positions found for the combined
maps of both slice positions.

For the large ROIs, the best results were obtained using
ROI 3 (bottom right lung) for the aorta slice and ROI 5
for the lung slice. The worst ROI was found to be ROI
4 (top left lung) for the aorta slice and ROI 1 (top right
lung) for the lung slice. Combining the maps of both slice
positions, ROI 6 and ROI 4 result in the smallest and larg-
est deviations, respectively. Since the large ROIs presents
overall smaller deviations compared to the small ROIs,
the best (ROI 6) and worst (ROI 4) of the large ROIs were
considered for further analysis of the ventilation.

Perfusion
In Table 3, the median 8¢, values of all volunteers for each
ROI position and size are shown for both slice positions
as well as the combined scans. While the uncorrected
scans demonstrated

deviations below 10 %, in the case of the aorta slice,
normalization using all ROI positions except ROI 1 and
ROI 4 leads to further reduced deviations. The smallest
8¢ for the aorta slice was found for ROI 3 (small ROI) and

Table 2 The median values of the absolute deviations 8, between each Vw-map mean and the reference presented here depending
on the ROl location, the size and the slice position. The median deviations for the combined scans are also listed. All values are given in

%

Median dy over volunteers in %

Uncorrected

ROI'1 ROI 2 ROI3 ROI 4 ROI5 ROI 6
Aorta Lung Aorta Lung Aorta Lung Aorta Lung Aorta Lung Aorta Lung Aorta Lung
24.9 356 Small 58 1.0 6.0 9.0 8.1 10.8 88 123 54 70 85 7.5
Large 60 10.1 6.6 86 5.0 75 7.7 9.8 75 54 5.7 6.8
Median of aorta and lung slices
29.5 Small 83 77 93 93 6.4 8.1
Large 74 7.0 6.5 86 6.6 57

Table 3 The median values of the absolute deviations 8¢ of all volunteers Qw-maps for each ROI size and location as well as slice
position. The median deviations for the combined scans are also listed. All values are given in %

Median éq over volunteers in %

Uncorrected

ROI1 ROI 2 ROI3 ROI 4 ROI5 ROI 6
Aorta Lung Aorta Lung Aorta Lung Aorta Lung Aorta Lung Aorta Lung Aorta Lung
11.0 88 Small 123 114 89 9.3 6.2 125 9.7 144 75 9.7 108 6.2
Large 12.1 1.2 59 11.7 6.3 838 114 1.2 49 57 6.9 104
Median of aorta and lung slices
10.2 Small 1.9 9.0 9.7 13.1 82 76
Large 11.6 76 8.2 113 53 79
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ROI 5 (large ROI). For the lung slice, only normalization
using ROI 6 for the small squares and ROI 5 for the large
squares achieved an improvement in 8¢.

Normalization with ROI 6 for the small squares and
ROI 5 for the large squares provided the best perfor-
mance for the combination of all scans. Similar to the
Vw-maps, the large ROIs lead to overall better results
and were therefore considered for further analysis. Since
using no correction showed better results than using the
worst ROI (ROI 1), only ROI 5 as the best perfusion ROI
was taken into account.

Reproducibility

Ventilation

The maps of the scans performed with different breathing
patterns were each normalized using the diaphragm scal-
ing factor and the ROI normalization strategy. In Fig. 6,
the uncorrected and all corrected Vw-maps from both
normalization strategies are shown for the selected aorta
slice of Volunteer 5. As mentioned above, the best and
worst ROI positions were considered for the ventilation
analysis and therefore both are presented in Fig. 6. Look-
ing at the Vw-maps of the uncorrected scans, especially
IB and IB aB look noticeably different from the reference
Vw-map when using the same window for the color map.
The Vw-maps of IB (deep breathing) and IB aB (shallow

NB 2 1B

Reference

Factor Uncorr.

Best ROI

Worst ROI
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breathing) display the expected higher and lower intensi-
ties, respectively, due to the specified breathing patterns.

Additionally, slight intensity differences are observ-
able between the reference map and the Vw-maps of
NB 2 and NB aB 2. These differences and especially the
strongly increased signal intensity in the IB Vw-map are
clearly reduced by the diaphragm-based scaling factor.
Only a small underestimation is visually detectable for
Volunteer 5 using this approach. Since the ROI-based
approach also requires to normalize the reference map
in order to validate the similarity of each map, a direct
comparison to the uncorrected maps is not possible. All
scans normalized with this method present only small
differences in the Vw-maps. A slight overestimation of
signal intensity is visible in the bottom right and middle
left lung of the IB Vw-map normalized using the worst
ROI position, whereas a minor underestimation of the
whole lung can be noted using the best ROI position.
Besides these observations, no other distinct differences
in the performance between the best and the worst ROI
are discernible.

Apart from the visual evaluation, the resulting normal-
ized Vw-maps were also quantitatively analyzed per vol-
unteer and between the volunteers. The mean ventilation
was calculated for each map and compared to the refer-
ence map by determining 8y from Eq. 3. The 8y values

NB aB 1 IB aB

(leusig-mp)3o|

(leusig-mp)3o|

Fig. 6 Comparison of uncorrected and normalized Vw-maps. The performance comparison between the scaling factor, the best and worst
ROI-based normalization technique and the uncorrected scans exemplarily illustrated for Vw-maps of the aorta slice scans of Volunteer 5
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Table 4 The median 8, values are listed in % for each volunteer and slice position using no correction, the normalization factor and

the large ROIs 6 (best) and 4 (worst) for the ROI-based normalization

Median §y over scans in %

Volunteers Uncorrected Normalization factor Best large ROI Worst large ROI

Aorta Lung Aorta Lung Aorta Lung Aorta Lung
Vol 1 128 349 16.5 21.7 9.3 16.4 16.1 340
Vol 2 16.8 231 116 37 103 93 296 11.7
Vol 3 45.5 378 16.7 74 57 44 75 34
Vol 4 17.0 6.2 32 14.1 132 39 129 79
Vol 5 236 44.2 9.7 4.6 50 44 5.1 12.2
Vol 6 36.5 527 133 114 33 28 6.7 86
Vol 7 269 179 15 4.0 1.8 3.7 220 124
Vol 8 382 50.0 8.1 7.1 6.0 134 28 56
Vol 9 227 18.1 120 11.5 23 220 10.6 11.6
Vol 10 257 295 76 136 6.5 84 50 136
Median 249 356 9.1 9.5 57 6.8 75 9.8
All Scans Median 295 9.1 5.7 86

for each Vw-map of Volunteer 5, as shown in Fig. 6, can
be found in the Additional File 4. The median 8y in % for
each slice position, volunteer and normalization method
are listed in Table 4. Here, as described before, only the
best and worst ROIs were considered. Except for Volun-
teer 1 (only normal breathing scans) using the normaliza-
tion factor and the worst ROJ, the aorta slice of Volunteer
2 using the worst RO, the lung slice of Volunteer 4 using
the normalization factor and the worst ROI, and the lung
slice of Volunteer 9 using the best RO, all deviations cal-
culated for the normalized Vw-maps are clearly reduced
compared to the deviations for the uncorrected maps.
This is also confirmed by the Wilcoxon signed rank
test. All p-values indicated a significant improvement at
a = 0.05 and are shown in Table 5. Looking at the slice
position dependency of the results, there are, except for
Volunteers 2, 3 and 4, only minor differences observable

between the 8y of the aorta and the 8y of the lung slices
ranging from 0.5 to 10.9% using the normalization factor.
This is also reflected in the median volunteer 8y. How-
ever, for both considered ROIs, the normalization perfor-
mance strongly varies between the slice positions for all
volunteers with differences between the 8y values of up
to 19.7% for the best ROI and up to 17.9% for the worst
ROL Slightly better results were obtained for the normal-
ization of the aorta slice compared to the lung slice for
all three approaches. This also coincides with the obser-
vation that the overall unnormalized reproducibility of
the results is slightly worse for the lung slices than for
the aorta slices. Figure 7 displays the distributions of the
deviations subdivided into aorta and lung, confirming the
results from the absolute deviations in Table 4. Combin-
ing the Vw-maps of all scans regardless of the slice posi-
tion, the best ROI leads to the lowest absolute deviation

Table 5 Results of the Wilcoxon signed rank test. The p values of the Wilcoxon signed rank test for the six different pairs are displayed
for ventilation. For perfusion, only the comparison between unormalized and normalized using the best perfusion ROl was considered.
The *'indicates statistically significant differences between the compared techniques at =5%

p value
Pairs Vw-map Qw-map
Aorta Lung Total Aorta Lung Total
Factor versus uncorr. <0.01* <0.01* <0.01*
Best ROl versus uncorr. <0.01* <0.01* <0.01* <0.01* 0.02* <0.01*
Worst ROl versus uncorr. <0.01* <0.01* <001*
Best ROl versus Factor <0.01* 0.18 0.02*
Factor versus worst ROI 0.61 0.59 0.71
Best ROl versus worst ROl 0.03* 0.12 0.01*
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Table 6 The median &, values are listed in % for each volunteer
and slice position. The uncorrected deviations are compared to
the normalized deviations using the best perfusion ROl (ROI 5).
The median volunteer §¢ for both slices and the combined scans
are also presented.

Median § over scans in %

Volunteers Uncorrected Best large ROI

Aorta Lung Aorta Lung
Vol 1 111 4.7 72 132
Vol 2 8.7 285 30 74
Vol 3 9.1 6.5 5.2 6.0
Vol 4 11.0 3.7 26.5 31.7
Vol 5 16.5 8.0 3.8 9.6
Vol 6 17.1 19.0 75 48
Vol 7 10.3 103 2.1 78
Vol 8 9.8 4.5 1.5 46
Vol 9 53 14.1 18.0 6.0
Vol 10 158 94 36 30
Median 11.0 88 49 57
All Scans Median 10.2 53

of all three methods and is significantly better than the
worst ROI and the normalization factor at @ = 5%. No
significant differences between the performances of the
factor-based and the normalization using the worst ROI
were found. Considering only the Vw-maps of the aorta
slices, the best ROI shows significantly lower deviations
than the factor-based normalization and the worst ROI,
while for the lung slice there was no statistical difference
in the performance between all approaches.

Perfusion

The Qw-maps of each scan were normalized using the
best perfusion ROI (ROI 5) and the median deviation g
from the reference map for each volunteer and slice posi-
tion was calculated and compared to the uncorrected
maps in Table 6. Using the normalization improved the
Qw-map reproducibility in most cases except for the
lung slice of Volunteer 1, both slices of Volunteer 4, the
lung slice of Volunteers 5 and 8 as well as the aorta slice
of Volunteer 9. The differences between the uncorrected
and corrected §g varied between 0.1% and 28.0%. Com-
paring the performances between aorta and lung slice for
each volunteer, differences between 8¢ of up to 12% were
observable for the normalized maps and up to 19.8% for
the unnormalized maps. The reduction factor of about 2
between normalized and unnormalized maps was proven
to be statistically significant by the Wilcoxon signed rank
test (Table 5) for both slice positions as well as the maps
of the combined scans.
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Fig. 7 The boxplots of the mean Vw-map deviations. The
distributions of the signed mean deviations between each scan and
the reference combined for all volunteers are illustrated for both slice
positions as boxplots. The whiskers indicate 1.5 times the interquartile
range (IQR). Outliers are not shown

Discussion

The feasibility of NuFD MRI at a 0.35 T MR-Linac was
evaluated for ten healthy volunteers that underwent
repeated scans using normal, deeper and shallower
breathing at two different coronal slice positions. It was
shown that differences in the breathing amplitude lead
to differences in the ventilation-weighted maps, which
made the introduction of two normalization strategies
necessary. One strategy utilizes the linear relationship
between the average lung signal and the diaphragm posi-
tion to define a scaling factor that corrects for differences
in the diaphragm amplitude between the reference scan
and the scan that should be normalized. The second
strategy is based on the normalization of the ventilation-
weighted maps themselves rather than the ventilation
signal by selecting a ROI and dividing the ventilation
map pixel-wise by the mean value of the ventilation map
within this ROI. Even though the perfusion-weighted
maps are generally more reproducible due to the robust-
ness of the physiological process, the ROI-based method
was also used to normalize the perfusion maps.

Both the scaling-factor-based and the ROI-based nor-
malization strategy show reasonable results for ventila-
tion where the median 8y was reduced from about 30%
with no correction to below 10% for all investigated cor-
rection methods and without a considerable difference
between different slice positions. For perfusion, using the
ROI-based approach, the uncorrected deviations of about
10% could be further reduced to about 5%. Both tech-
niques do not depend on any additional equipment such
as spirometers and therefore provide a fast normalization
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workflow that only requires the manual selection of a ROI
around the diaphragm to capture the diaphragm motion
for the scaling factor approach or at the chosen location
in the Vw- or Qw-map for the the ROI-based approach.
The idea of fitting the line profile in the former case and
extracting the position at the maximum of the derivative
of the fit makes use of the fact that the lung parenchyma
has a much lower signal than other body parts and there-
fore causes strong intensity changes at the borders. This
makes it a simple and computationally cheap technique
compared to more complex feature tracking algorithms.
The reason for using the diaphragm motion itself and not
the signal of the diaphragm or the 2D lung area as pro-
posed in [37] was to be less dependent on the quality of
the image registration and difficulties with motion in and
out of the scanned slice. Another advantage of using the
presented approaches rather than normalizing the signal
itself is that possible global changes in parts of the lung
from one scan to another can still be observed, which
makes the normalized NuFD suitable for longitudinal
studies, such as radiotherapy treatment response moni-
toring of lung cancer patients.

Even though the results for different slice positions are
fairly similar, comparing the volunteers revealed some
performance differences for both techniques. Consider-
ing the potential integration into longitudinal studies,
these robustness aspects have to be looked at in order to
decide whether one approach might be better than the
other, although there is a statistically significant advan-
tage of using the best ROL. In the case of the scaling fac-
tor, one potential reason for these differences between
volunteers are possible signal drifts that can cause an
underestimation of the signal amplitude (see denomi-
nator in Eq. 1) which would lead to an overestimated
corrected signal. Since all pixels are multiplied by the
scaling factor for both methods, relative differences in
the lung are not changed as displayed for the IB Vw-maps
in Fig. 6. Additionally, the quality of the image registra-
tion plays an important role as it can not only influence
the signal amplitude, but also the Vw- and Qw-maps
as a consequence of misaligned lung structures. Hence
both normalization strategies are affected. Due to differ-
ences in the structures visible in the selected slices and
the overall intensity, it is reasonable to assume that the
registration performance differs for each volunteer. Even
though the quantitative influence of the image registra-
tion algorithm needs to be further investigated, care
was taken during image registration. Visually unsatisfy-
ing registration results were re-evaluated and the corre-
sponding scans re-registered with specifically optimized
registration parameters. Since the focus of this study
was on the analysis of feasibility and reproducibility of
the NuFD and the introduced normalization techniques
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based on relative and not absolute quantitative values,
only macroscopic differences in lung density and blood
flow were of interest instead of small scale registration
differences. The image registration might therefore influ-
ence absolute ventilation and perfusion map values, but
have limited impact on the main findings of this study in
terms of normalization and longitudinal reproducibility.

Another point that needs to be taken into account and
concerns the general NuFD workflow is the manual seg-
mentation. According to Willers et al. [46], inter- and
intra-observer differences can occur for human observ-
ers. In our study this might translate in slight changes
in the estimation of the mean value of the Vw- and Qw-
maps, but is not expected to have a large impact. How-
ever, evaluating patients suffering from COPD and/or
lung cancer, differences in the segmentation of the dis-
eased areas has not only a more prominent impact on the
mean pixel content of the Vw- and Qw-maps, but also
the average lung signal and therefore the normalization
factor. This makes it reasonable to potentially consider
deep learning-based segmentation approaches for fur-
ther evaluation.

Even though both approaches are easily realizable in
most cases, there are also some limitations. The scaling
factor-based normalization requires the tracking of the
diaphragm motion. In patients suffering from uni- or
bilateral diaphragmatic paralysis, the contraction of the
lung is more or less performed by the thorax, namely the
accessory muscles of inspiration [47]. In this case, the
scaling factor approach would not be practicable and thus
the ROI-based normalization would have to be applied.
On the other hand, the ROI-based approach reveals not
only a slight location and size dependency, but also in
order to be able to see possible global changes in specific
lung areas, the ROI needs to be positioned on a healthy
part of the lung, which are not affected by irradiation in a
longitudinal study. Normally, the 12 x 12 pixels ROI can
be easily fitted into the lungs of lung cancer patients, but
in special cases, it might be required to reduce the ROI
size and to choose a position, which might not coincide
with the best location at the lower left lobe and there-
fore degrades the overall normalization performance.
In case of the perfusion, this might in some cases even
lead to worse results using normalization compared to
the uncorrected scans. However, in patients with severe
COPD or CF, where either already the whole lung is
affected or the lung function in a formerly healthy lung
region worsens over the course of a longitudinal study,
this can pose problems and therefore requires future
tests to evaluate the applicability of this approach.

The utilization of different evaluation metrics and the
novelty of the 0.35 T MR-Linac allows only a limited com-
parison of the presented study with previously published
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studies. Lederlin et al. [48] reported a good reproduc-
ibility with average differences between ventilation maps
of about 6% and between perfusion maps of about 3%
obtained 24 h apart in healthy volunteers at a diagnostic
1.5 T MR-scanner using the original FD technique. One
major limitation of [48] is that scans were acquired only in
normal breathing, which could also explain the differences
in mean deviations compared to the reported uncor-
rected deviations in this study. Similarly, Pohler et al. [49]
investigated the repeatability of ventilation and perfu-
sion parameters derived from the PREFUL technique in
healthy volunteers and COPD patients between two nor-
mal breathing scans acquired also at a 1.5 T MR-scanner.
No significant differences were found between the two
acquired scans for the investigated ventilation and perfu-
sion parameters. The study conducted by Voskrebenzev
et al. [37] on ventilation reproducibility assessment using
a lung area-based and a spirometry-based normaliza-
tion approach with FD-MRI considered normal and deep
breathing scans as well as fixed frequency breathing and
chose a more quantitative evaluation approach by cal-
culating the fractional ventilation and the coefficient
of variation. Similarly to this study, they found a strong
dependence of the ventilation on the breathing amplitude
and improved reproducibility by using a normalization
strategy with an inter-volunteer coefficient of variation
reduction from 0.23 (uncorrected) to 0.12 (normalized).
Generally, the NuFD is not only feasible, but also inte-
grateable into the radiation therapy workflow at a 0.35 T
MR-Linac due to the short acquisition time of about 1 min
and the lack of contrast agents, respiratory triggering or
patient compliance without prolonging treatments. Both
normalization strategies improve the reproducibility and
comparability of Vw- and Qw-maps in repeated scans.

Conclusions

In this work, the feasibility of NuFD as a non-contrast
enhanced functional lung MRI method to assess ventila-
tion and perfusion has been successfully demonstrated
for a 0.35 T MR-Linac using an optimized 2D bSSFP
sequence. In order to improve the reproducibility of the
ventilation- and perfusion-weighted maps, two normali-
zation techniques have been introduced and tested in a
study with ten healthy volunteers, undergoing repeated
scans at two different coronal slice positions and utiliz-
ing different breathing patterns. Both normalization
strategies, the diaphragm amplitude scaling factor and
the ROI-based approach, are able to correct for shallow
and deep breathing. Averaged over the ten volunteers,
median absolute deviations of 9.1% for the normaliza-
tion factor-based and 5.7%/8.6% for the best/worst ROI-
based approach were achieved for ventilation, which
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shows a clear reduction compared to the deviations of
the uncorrected scans of 29.5%. Even though perfusion is
in general a more regular and reproducible physiological
process, using the best perfusion ROI further improved
the reproducibility of the perfusion maps from 10.2 to
5.3%.

Abbreviations

aB After break

ART Adaptive radiotherapy

bSSFP Balanced steady-state free precession
CF Cystic fibrosis

COPD chronic obstructive pulmonary disease
cT Computed tomography

1B Irregular breathing

IOR Interquartile range

MRI Magnetic resonance imaging

NB Normal breathing

NuFD Non-uniform Fourier Decomposition
NuFFT Non-uniform Fourier Transform

Q Perfusion

Qw Perfusion-weighted

ROI Region-of-interest

TE Echo time

TR Repetition time

\ Ventilation

Vw Ventilation-weighted
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Additional file 1: The linear diaphragm position and lung signal correla-
tion. The correlation between the relative diaphragm position and the
average lung ventilation signal of each frame are exemplarily shown for

a normal breathing scan of Volunteer 4 for aorta (A) and lung slice (B),
deep breathing scan of Volunteer 2 (aorta (C) and lung (D)) as well as the
shallow breathing scans of Volunteer 8 (aorta (E), lung (F)). The slope of the
linear fit function depicted in red finds application in Eg. 1.

Additional file 2: Explanatory figure for the diaphragm-based normaliza-
tion. The mean maxima and minima of the relative diaphragm positions
Xref,max and Xref,min are extracted from the corresponding reference
scan. The filtered average lung ventilation signal of scan i, which should
be normalized, is determined and the mean maxima and minima of

this signal (Si,maxr S,‘,mm) calculated from the respective peaks. This
filtered average lung ventilation signal is also correlated with the relative
diaphragm positions of scan i. Fitting this correlation allows to extract the

slope dS;/dx;.

Additional file 3: Boxplot comparison of ROl size and location for the
Vw-maps. The boxplot for the signed mean deviations for each ROl using
the 8 X 8 pixels square in (A) and the 12 X 12 pixels square in (B)
compared to the uncorrected scans. Here, all scans of all volunteers were
combined regardless of the slice position. The whiskers indicate 1.5 times
the interquartile range (IQR). Outliers are not shown.

Additional file 4: The 81/ values of Volunteer 5 for the uncorrected V-
maps as well as for the normalized Vw-maps using the diaphragm-based
and the best and worst ROI-based normalization. The corresponding
maps to these values are shown in Fig. 6.
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Additional File 1. The linear diaphragm position and lung signal correlation. The
correlation between the relative diaphragm position and the average lung ventilation
signal of each frame are exemplarily shown for a normal breathing scan of Volunteer
4 for aorta (A) and lung slice (B), deep breathing scan of Volunteer 2 (aorta (C) and
lung (D)) as well as the shallow breathing scans of Volunteer 8 (aorta (E), lung (F)).
The slope of the linear fit function depicted in red finds application in Eq. 1.
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Explanatory figure for the diaphragm-based normalization.
The mean maxima and minima of the relative diaphragm positions Tiefmax and
Tref,min are extracted from the corresponding reference scan. The filtered average
lung ventilation signal of scan 4, which should be normalized, is determined and

the mean maxima and minima of this signal (S;max, Simin) calculated from the
respective peaks. This filtered average lung ventilation signal is also correlated with
the relative diaphragm positions of scan ¢. Fitting this correlation allows to extract
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the slope Qo
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Additional File 3. Boxplot comparison of ROI size and location for the Vw-maps.
The boxplot for the signed mean deviations for each ROI using the 8 x 8 pixels square
in (A) and the 12 x 12 pixels square in (B) compared to the uncorrected scans. Here,
all scans of all volunteers were combined regardless of the slice position. The whiskers
indicate 1.5 times the interquartile range (IQR). Outliers are not shown.

5V in %
Uncorrected Normalization Factor Best Large ROI  Worst Large ROI

Scans
NB 2 23.6 20.4 3.7 2.4
1B 114.9 15.2 5.7 14.5
NB aB 0.43 9.7 5.0 4.4
NB aB 2 24.6 5.1 0.1 5.1
1B aB 23.0 1.5 7.3 5.5
Median 23.6 13.3 5.0 5.1

Additional File 4. The §y values of Volunteer 5 for the uncorrected Vw- maps
as well as for the normalized Vw-maps using the diaphragm-based and the best and
worst ROI-based normalization. The corresponding maps to these values are shown
in Fig. 6.
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S., Belka, C., Landry, G., Dinkel, J., & Kurz, C. (2024). MRI-based ventila-
tion and perfusion imaging to predict radiation-induced pneumonitis in lung tu-
mor patients at a 0.35T MR-Linac. Radiotherapy and Oncology, 199, 110468.
https://doi.org/10.1016 /j.radonc.2024.110468

4.1 Summary of Publication II

After the feasibility of the NuFD technique and respective normalization strategies
were successfully shown in healthy volunteers, the next step was to transfer the
method to patients in a dedicated patient study (TOSCA Study). The objective for
this study was to investigate whether ventilation and perfusion information (around
the tumor) acquired over the fractionated treatment course at the MR-Linac could
predict the occurrence of radiation-induced pneumonitis (RP) that develops at the
earliest around 2-3 months after the end of treatment. A total of 23 patients that re-
ceived lung radiotherapy at the MR-Linac of the Department of Radiation Oncology
at the LMU University Hospital in Munich in 3-10 treatment fraction were addition-
ally scanned with the coronal 2D-bSSFP sequence at the tumor position, required for
the NuFD evaluation, after each fraction at most and at least after the first and last
fraction. Functional parameters based on the difference in ventilation and perfusion
between last and first fraction in the high-dose region (PTV, V20-PTV) and the
whole tumor bearing lung were defined after normalization of the functional maps
using a normalization strategy introduced in Publication I. The predictive power of
the functional parameters was assessed and compared to the predictive performance
of three clinical, dosimetric parameters (MLD, V20, mean dose in GTV). For this,
ROC curves (after bootstrapping) were employed along with the corresponding AUC
values for a quantitative comparison between the parameters. The relative change in
ventilation in the tumor region (PTV) was identified as predictive of RP. Addition-
ally, good predictive performance was found for the relative change in perfusion in
the PTV and the ventilation in the high-dose region without the tumor (V20-PTV).
All functional parameters defined in the target and high-dose region demonstrated
better predictive qualities than the dosimetric parameters that are partially still used
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as dose constraints in the treatment planning workflow.

With this publication, it was shown that the additional, but seamlessly integrable ac-
quisition of non-contrast enhanced functional parameters over the treatment course
could aid the identification of patients at risk of developing RP, which had not been
demonstrated before. This could allow to monitor patients at risk more closely in
order to counteract the disease early.

4.2 Contributions to Publication II

My contributions to this publication involved coordination of patient recruitment,
scheduling and data acquisition, data curation, image processing, prediction model
building and internal validation, result analysis, statistical analysis, result visualiza-
tion and figure preparation as well as writing the original manuscript draft.
Together with PD Dr. rer. nat. Christopher Kurz and Dr. rer. nat. Moritz Rabe,
I acquired 2D-cine MRI-scans of lung cancer patients directly after their treatment
sessions at the 0.35 T MR-Linac of the Department of Radiation Oncology at the
LMU University Hospital in Munich. I used the pipeline including the normaliza-
tion strategies developed in Publication I to preprocess the data. I exported and
anonymized the clinically used 3D-MRI baseline and setup scans for each patient
and fraction and further preprocessed the images, which involved image registration
of setup scans to respective baseline scans, localization of the 2D-cine MRI-scans in
the 3D-MRI baseline scans and 2D-2D registration of the 2D-cine MRI-scans to the
respective slice in the 3D-MRI baseline scan. I defined the parameters to be assessed
for their potential qualities to predict RP collectively with Prof. Dr. Guillaume
Landry, PD Dr. rer. nat. Christopher Kurz and Dr. rer. nat. Moritz Rabe. After
consulting with Anna Theresa Stiiber regarding statistical approaches, I performed
a univariate prediction analysis including bootstrapping for the defined parameters.
The results were critically discussed together with Prof. Dr. Guillaume Landry,
Prof. Dr. med. Julien Dinkel, PD Dr. rer. nat. Christopher Kurz and Dr. rer.
nat. Moritz Rabe. I prepared workflow and result plots to visualize the methodology
and the results. I wrote the original manuscript draft and reviewed and edited the
manuscript in cooperation with all co-authors.
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ARTICLE INFO ABSTRACT
Keywords: Background and purpose: Radiation-induced pneumonitis (RP), diagnosed 6-12 weeks after treatment, is a
MR-linac

Functional imaging

Ventilation

Perfusion

Low-field MRI
Radiation-induced pneumonitis
Prediction

Biomarker

complication of lung tumor radiotherapy. So far, clinical and dosimetric parameters have not been reliable in
predicting RP. We propose using non-contrast enhanced magnetic resonance imaging (MRI) based functional
parameters acquired over the treatment course for patient stratification for improved follow-up.

Materials and methods: 23 lung tumor patients received MR-guided hypofractionated stereotactic body
radiation therapy at a 0.35 T MR-Linac. Ventilation- and perfusion-maps were generated from 2D-cine MRI-
scans acquired after the first and last treatment fraction (Fx) using non-uniform Fourier decomposition.
The relative differences in ventilation and perfusion between last and first Fx in three regions (planning
target volume (PTV), lung volume receiving more than 20Gy (V20) excluding PTV, whole tumor-bearing
lung excluding PTV) and three dosimetric parameters (mean lung dose, V20, mean dose to the gross tumor
volume) were investigated. Univariate receiver operating characteristic curve - area under the curve (ROC-
AUC) analysis was performed (endpoint RP grade > 1) using 5000 bootstrapping samples. Differences between
RP and non-RP patients were tested for statistical significance with the non-parametric Mann-Whitney U test
(a=0.05).

Results: 14/23 patients developed RP of grade>1 within 3 months. The dosimetric parameters showed no
significant differences between RP and non-RP patients. In contrast, the functional parameters, especially the
relative ventilation difference in the PTV, achieved a p-value < 0.05 and an AUC value of 0.84.

Conclusion: MRI-based functional parameters extracted from 2D-cine MRI-scans were found to be predictive
of RP development in lung tumor patients.

Introduction

treatment of lung cancer patients [8-10]. The integrated MRI-scanner
provides not only improved soft-tissue contrast, but also allows for

Radiation therapy, and in particular stereotactic body radiation therapy
(SBRT), serves as standard of care for most patients suffering from
inoperable non-small cell lung cancer (NSCLC) or lung metastasis [1,2].
Many technical advances have been made to decrease the burden on the
patient while improving tumor control and treatment outcome [3-7].
In particular, the clinical introduction of magnetic resonance-guided
radiotherapy (MRgRT) using MR-linacs has been beneficial for the

* Correspondence to: Marchioninistr. 15, 81377 Munich, Germany .
E-mail address: rabea.klaar@med.uni-muenchen.de (R. Klaar).
1 The authors contributed equally to this work.

https://doi.org/10.1016/j.radonc.2024.110468

respiratory-gated dose delivery, based on cine MRI-scans, as well as
adaptation of treatment plans to the daily anatomy, thus enabling
highly accurate treatment in few treatment fractions (Fxs) [3,11,12].
Despite these technical developments, radiation-induced pneumonitis
(RP) still remains a common side effect of lung tumor radiotherapy,
with reported incidence of 10-17% [3,13] for grade >2 RP in MRgRT.
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RP is thus a non-negligible adverse effect which occurs at the earliest 6
weeks after end of treatment and is usually diagnosed using computed
tomography (CT) scans 2-3 months after treatment [14,15].

Finding parameters or biomarkers capable of predicting the occurrence
of RP is therefore expected to be beneficial to patients. Initial can-
didates were clinically motivated parameters such as tumor-related
factors, patient-related factors or dosimetric parameters such as the
mean lung dose (MLD) and the volume receiving more than 20 Gy
(V20) [15]. Even though these parameters are considered during the
dose optimization, variable predictive power has been reported in
relatively small patient cohorts [16,17]. Recently, the focus of research
has shifted towards the potential integration of functional information
in clinical routine for treatment monitoring [18-20], investigation
of dose-response relationships [21-24], function-informed treatment
planning or functional-guided radiotherapy [25-29], offering new lung
function-based parameters for RP patient stratification. So far, most
studies focused on the pre-treatment acquisition of 4DCTs for the
extraction of ventilation maps [16,17,30], SPECT/CT-scans for lung
perfusion [31-33] or PET/CT imaging to estimate lung ventilation
and/or perfusion [26,34,35]. Correlating the highly functional regions
of the lung with the dose and defining parameters based on the MLD
and V20 in these regions were reported to be more predictive than
anatomical dosimetric parameters [36].

These studies have been conducted for conventional radiotherapy tech-
niques and required additional scans at different imaging devices rely-
ing on ionizing radiation. With MR-linacs, MRI-based functional infor-
mation can be acquired directly during the treatment session, thus re-
ducing logistical challenges, costs and the overall patient burden [37].
A technique called non-uniform Fourier decomposition (NuFD) allows
the extraction of relative ventilation and perfusion information from
cine MRI-scans at MR-linacs without the need of contrast agents, dedi-
cated equipment or patient compliance [20].

The goal of this imaging biomarker discovery study was to define
ventilation- and perfusion-based parameters extracted using the NuFD
method acquired at the start and end of treatment at a low-field MR-
linac for predicting the occurrence of grade > 1 RP 6-12 weeks after the
end of treatment.

Materials and methods
Patient cohort

A total of 23 patients with 24 lung lesions who received hypofrac-
tionated online adaptive MRgRT with gated beam delivery from June
2021 to April 2024 at the 0.35T MR-Linac (MRIdian, ViewRay Inc.,
Cleveland, Ohio) of the LMU University Hospital Munich were included
in this prospective study (Table 1). The identification of correlations
between RP development and changes in MRI-based ventilation and
perfusion between the first and the last Fx was the primary endpoint.
Ethical approval (project number 21-0019) was granted by the local
ethics committee and written informed consent was signed by all pa-
tients. Requirements for the inclusion in the study were SBRT in at least
three treatment Fx and no infracarinal lesions. One patient received
simultaneous SBRT for two targets (primary tumor and metastasis).

Image processing workflow

In addition to 3D balanced steady-state free precession (bSSFP) MRI-
scans (sequence parameters in the Supplementary Material 1) used
in the MRgRT workflow [12], 2D+t coronal cine MRI-scans inter-
secting the tumor were performed in free-breathing directly after
the first (Fx1) and last (FxN) treatment fractions using a bSSFP se-
quence with the following parameters: TE=1.02ms, TR=2.42ms,
pixel size=3.91 x 3.91mm?, slice thickness=20mm, FA=70.0°,
FOV =300 x 300 mm?, matrix =128 x 128, frame rate = 3.68 images/s,

Radiotherapy and Oncology 199 (2024) 110468

Table 1

Patient characteristics for the 23 patients. Unless indicated otherwise, all numbers
reported in the table are in units of patient numbers. The fractionation is given
as physical dose. GTV: Gross tumor volume, NSCLC: Non-small cell lung cancer, RP:
Radiation-induced pneumonitis.

Age [yrs] Median 63
Range 38-81
Sex Male 9 (39%)
Female 14 (61%)
Fractionation 3x13.5Gy 6 (25%)
3x15.0Gy 4 (17%)
5%8.0Gy 1 (4%)
5x10.0Gy 1 (4%)
8x7.5Gy 2 (8%)
10 x 4.0Gy 1 (4%)
10x 5.0Gy 8 (33%)
GTV Size [cm®] Median 9.8
Range 1.6-71.4
Tumor Location Superior Lobe Left 11 (48%)
Superior Lobe Right 5 (22%)
Inferior Lobe Left 5 (22%)
Inferior Lobe Right 3 (13%)
Type of Cancer Primary Lesion 6 (25%)
Metastasis 18 (75%)
NSCLC Stage 1A-B 3
1A 1
IVA-B 2
RP Grade Grade 0 9 (39%)
Grade 1 10 (45%)
Grade 2 4 (17%)

TA =1.1 min for 240 images, receiver bandwidth =710.0 Hz/pixel. Ven-
tilation (Vent) and perfusion (Perf) maps were generated using the
NuFD technique as described in Klaar et al. [20]. An additional au-
tomatic breath-hold detection and removal step was included similar
to Lombardo et al. [38] using the frame-wise diaphragm positions
determined following [20].

In order to associate the target/irradiated volume and specifically the
high-dose regions with the functional maps generated for Fx1 and
FxN, the 3D setup MRI-scans were rigidly registered to the baseline
MRI-scan. This allowed to overlay the dose distribution as well as
the target delineations on the Fx MRI-scans. From these registered
3D MRI-scans, coronal slices were extracted by finding the slice with
the largest PTV (GTV + isotropic 5mm margin) extent. To achieve a
slice thickness similar to the 2D cine MRI-scans and aid the image
registration, an averaged coronal slice was calculated by averaging over
slices in anterior and posterior direction from the originally selected
slice position. The reference frame of the 2D-cine MRI-scans was then
deformably registered to the averaged coronal slice downsampled to
the in-plane cine-MRI resolution using Plastimatch [39]. The regis-
tration quality was visually assessed in each step and if necessary
individually optimized. The application of the respective deformation
fields allowed to overlay the baseline GTV and PTV structures and
planned dose distribution onto the Vent- and Perf-maps of Fx1 and FxN.
For the patient that received simultaneous radiotherapy for several
targets, it was automatically checked whether the additional targets
were within slices used for the slice averaging. If this was the case, a
joint PTV was used for the definition of the parameters. Due to FOV
limitations, a small part of the upper lungs was cropped in the baseline
and 3D setup MRI-scans of one patient with large lung volume and a
lesion in the lower left lung. The corresponding functional maps were
cropped accordingly resulting in a slightly reduced lung area available
for analysis distant to the high-dose region. A summary of the workflow
is illustrated in Fig. 1. An example of the defined regions for the
calculation of the functional parameters can be found in Supplementary
Figure 2.
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Fig. 1. Sketch of the image acquisition and processing workflow. The PTV (pink solid line) and the V20 were extracted from the baseline 3D MRI-scan, acquired for treatment
planning. In addition to the Fx setup MRI-scans, 2D coronal cine-MRI image series at the tumor position were obtained directly after the first (Fx1) and last (FxN) fraction in
free-breathing. Non-uniform Fourier decomposition (NuFD) was applied to both image series and ventilation (Vent) and perfusion (Perf) maps were generated. Relative differences
between the respective functional maps were calculated in the PTV, the V20 without the PTV and the tumor bearing lung without the PTV and defined as prediction parameters.
Based on follow-up CT-scans performed at least six weeks after the end of treatment, all patients were retrospectively graded regarding RP. Using this information, the performance

of each parameter to predict grade>1 RP was investigated.

Parameter definition

Using the functional Vent- and Perf-maps retrieved at the start and
the end of each patient’s treatment as well as the baseline treatment
planning dose and target volume, three different regions were consid-
ered: the PTV, the V20 without PTV and the whole tumor bearing lung
(TLung) without PTV. The mean values of the Vent- and Perf-maps were
calculated within these regions and normalized with the respective
mean values of the non-tumor bearing lung. To account for the extent of
the tumor over several slices, the maximum intensity projection (MIP)
in anterior-posterior direction was used for both the PTV and the V20
regions. To be robust against registration uncertainties, an additional
margin of one pixel in the cine-MRI resolution (3.91 mm) was added
to the PTV contours. To compare the non-quantitative parameters
between patients, the relative difference of FxN to Fx1 was calculated
for the mean values of the Vent- and Perf-map in the different regions
for each patient:
r,= T ¢)
T,
with I'=[Vent, Perf] and y =[PTV, V20-PTV and TLung-PTV], result-
ing in six functional parameters for analysis (Ventpry, Venty,o_pry,
Ventyy yne_prv, Perfpry, Perfyyy_pry, Perfry g pry). Additionally, the
MLD, the V20 and the mean dose to the GTV were determined. The
MLD was calculated excluding the GTV and both MLD and V20 were
converted into radiobiological equivalent doses of 2 Gy (EQD2) based
on the linear-quadratic model using «/f=3Gy for lung tissue to ac-
count for the different fractionation schemes [13]. The dose to the GTV
was the physical dose.

Grading
All patients underwent CT-scans as part of the standard follow-up

procedure at a median time of 11 weeks after the end of treatment.
All CT-scans were assessed in terms of radiation-induced changes such

as ground-glass opacities and consolidations in the area around the
irradiated lesion by an experienced radiologist. Two exemplary patient
scans showing radiation-induced changes on the lung parenchyma and
two patient scans showing no corresponding changes can be found
in Supplementary Figure 3. Including the patients’ general condition
and potential symptoms assessed during regular follow-up, the RP
grading was performed based on the National Cancer Institute Common
Terminology Criteria for Adverse Events (NCI-CTCAE) version 5.0 [40].

Statistical analysis

The predictive performance of each of the nine parameters (six func-
tional, three clinical) was assessed individually with a univariate analy-
sis based on manual thresholding with patients developing RP grade > 1
as endpoint. The receiver operating characteristic (ROC) curve and the
area under the curve (AUC) were determined. Bootstrapping with 5000
samples was performed to validate the parameters internally and the
median ROC curve and AUC values along with the according the 95%
confidence intervals (CI) were calculated. To test for significant differ-
ences between the RP and non-RP patient groups, the non-parametric
Mann-Whitney U test was used with a=0.05.

Results

Out of the 23 patients in the study, 9 patients (39%) had no indication
of RP and were classified with grade 0. 14 patients (61%) showed signs
of RP, with 10 patients (45%) classified with grade 1 and 4 patients
(17%) with grade 2 RP. The baseline 3D MRI, Vent- and Perf-maps at
Fx1 and FxN, as well as the follow-up CT for an exemplary patient
that developed RP and a patient without RP are shown in Fig. 2.
Based on the grading, the parameter value distributions for the two
patient groups are shown in Fig. 3 and compared statistically. The
more localized functional parameters based on the V20-PTV and the
PTV region (subplots E,F,I) allowed separation between RP and non-
RP patients with Ventpry (subplot F) showing significant differences
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Fig. 2. Two exemplary patients. All images (baseline MRI-scan, Vent- and Perf-maps of first

(Fx1) and last (FxN) treatment fraction, follow-up CT) of an exemplary patient without

acute RP (A) and a patient that developed acute grade 1 RP (B) are shown. The PTV contours are depicted in light-blue and findings indicating RP are highlighted with red

arrows. The patient in subfigure A received simultaneous SBRT for two PTVs.

Table 2
The AUC values. The median AUC values of the univariate ROC-AUC analysis with
5000 bootstrapping samples are listed for the three dosimetric and the six functional
parameters. The upper and lower bounds of the 95% confidence intervals are given in
brackets.

Biomarkers AUC
MLD 0.52 [0.22, 0.75]
Dosimetric V20 0.54 [0.21, 0.75]
Mean Dose GTV 0.69 [0.46, 0.90]
Ventypy 0.84 [0.61, 1.00]
Venty_pry 0.71 [0.47, 0.91]
Functional Ventyyn, prv 0.52 [0.21, 0.78]

Perfyry 0.73 [0.48, 0.91]
0.66 [0.39, 0.88]

0.58 [0.33, 0.82]

Perfy_pry
PerfTleg—P’l'V

(p-value of 0.01). The other metrics did not exhibit significant dif-
ferences between the two patient groups. A tendency of RP patients
towards a relative increase or stability in Vent and Perf in the tumor
and surrounding tissue over the treatment was found, while for non-
RP patients a tendency towards decreasing Vent and Perf over the
treatment course was observed.

The results of the univariate ROC-analysis after bootstrapping are
presented in Table 2. Similar to the findings of the Mann-Whitney
U test, good predictive power was obtained for the ventilation and

perfusion parameters in the high-dose regions, namely Ventpry, Perfpry
and Venty,,_ppy With AUC values of 0.84, 0.73 and 0.71, respectively.
While the Perfy,, pry and the mean dose to the GTV also achieved
high AUC values of 0.66 and 0.69, all other considered parameters
only demonstrated low predictive performance. The ROC curves for the
three best performing parameters are illustrated in Fig. 4.

Discussion

The main objective of the presented study was to discover potential
MRI-based biomarkers for the prediction of RP in the context of
MRgRT. Ventilation and perfusion parameters defined in the high-dose
regions (Ventpry, Perfpry, Venty,o_pry) demonstrated promising results
in stratifying patients at risk of developing RP>1. With bootstrap-
ping [41], the internal validation strategy of choice for the development
of medical prediction models with small sample sizes as suggested by
Steyerberg et al. [42,43], a first internal validation of the prediction
parameters could be provided, with median AUC values ranging from
0.71 to 0.84. These provided better results than clinical metrics typi-
cally associated with RP such as MLD and V20.

One major advantage of the MRI-based biomarkers used in this study
over previously published approaches is the acquisition of functional
information. Since our approach allows the acquisition of ventilation
and perfusion maps using the same device as for treatment, the patient
burden is minimized and repeated imaging is made easy. As changes
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Fig. 3. The boxplots for all considered nine parameters. The comparison between the distributions of the RP and the non-RP patient cohort are illustrated for the three dosimetric
parameters (subplots A-C), the Vent-based parameters (D-F) and the Perf-based parameters (G-I). The p-values for each parameter were determined using the non-parametric
Mann-Whitney U test. All p-values below a = 0.05 are indicated with "*’. The whiskers specify the 5th and 95th percentiles, the median values of the distributions are denoted as

solid red line and outliers as circles.

between the start and end of treatment are to be expected and the
Vent- and Perf-maps are qualitative, relative changes between Fx1 and
FxN were investigated. This is a reasonable choice, allowing us to
maximize signal variation in the maps by ensuring that sufficient time
has elapsed. Preliminary analysis of the relative changes between Fx1
and the mid-treatment showed no predictive power, however, further
investigations into whether earlier time points are correlated to the
outcome are worth consideration in the future for a larger patient
cohort. Since the lung density changes linked to RP observed in CT-
scans are usually confined to the vicinity of the target, we hypothesized
that regions exposed to high doses might lead to predictive biomarkers.
Our results indicate that patients developing RP experience increasing
ventilation and perfusion in the high-dose regions over the treatment
course. Similar observations were made for a small number of patients
in Siva et al. [35]. Since RP presents itself as a change in lung density
and the NuFD ventilation depicts relative density changes in the lung

parenchyma, the correlation between ventilation and RP is plausible.
Similar performance for ventilation-based parameters was found in
previous publications by Faught et al. [28], O’Reilly et al. [44] and
Flakus et al. [17] demonstrating the potential of 4DCT-based ventila-
tion and its superiority compared to clinical parameters with p-values
below 0.05 for V20 and MLD in highly ventilated lung regions. Studies
investigating the perfusion-based parameters extracted from SPECT/CT
or PET/CT scans achieved similar AUC values of 0.75-0.87 [26,31,34]
and p-values < 0.05. Exact comparisons with these studies, however,
are challenging due to differences in the acquisition of the functional
information and parameter definition. Furthermore, the different pa-
tient cohorts (SBRT vs conventional RT or chemoradiotherapy) and the
RP/non-RP distribution was in most cases not comparable. This is also
reflected in the mixed findings in literature for the performance of the
MLD and the V20. Results ranged from p-values > 0.05 and AUC values
<0.58 to significant p-values and AUC values > 0.94 for the prediction
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Fig. 4. The ROC curves for the functional parameters with highest AUC values. The median ROC curves after 5000 bootstrapping samples are presented as solid blue lines for the
functional parameters with the highest median AUC values, namely Vent in PTV (A), Perf in PTV (B) and Vent in V20-PTV (C). The 95% confidence interval is shown as shaded
area and its boundaries are highlighted with dashed blue lines. The dotted black line represents the performance of a random classifier.

of grade>2 RP [28,34]. In a study by Lucia et al. [26], comparable
to our study with patients receiving hypofractionated SBRT, non-
significant p-values and AUC values of 0.62 and 0.64 were obtained
for MLD and V20 in EQD2 doses, respectively, for acute grade >2 RP
prediction.

Using the biomarkers identified in this preliminary study, the early
stratification of patients into RP risk groups at the end of treat-
ment could aid patient follow up. As suggested by Arroyo-Herndndez
et al. [15], especially RP grade 1 should be closely monitored. For this,
studies by Torre-Bouscoulet et al. [45] and Mattson et al. [46] proposed
that longitudinal evaluation of pulmonary function tests performed at
regular intervals starting six weeks after the treatment for patients at
risk could help to early identify RP development. This might be further
supported by encouraging the patients at risk to use a dedicated mobile
application (app) to regularly record their health condition and any
potential symptoms over the weeks after the end of radiotherapy [47-
49], which has been shown to be beneficial in the early identification
of RP and initiation of treatment [50]. Alternatively, Kohno et al. [51]
and Iwata et al. [52] proposed monitoring of KL-9, a circulating antigen
measurable in the blood and sensitive to interstitial pneumonia, to aid
patient management after radiotherapy.

Even though this study is limited by the small patient cohort, which re-
sulted in large confidence intervals for the ROC curves and AUC values,
the potential of the presented approach was demonstrated and warrants
further investigation in larger cohorts, prospective and multicenter
studies following the proposed roadmap for the integration of imaging
biomarkers in clinical trials [37]. By taking the patient distributions of
the biomarkers found in this preliminary study into account, statistical
considerations regarding the required patient numbers necessary to
achieve statistical power in future studies can be made. This trial
would provide necessary external validation and would also allow to
investigate the potential of combinations of several parameters in a
multivariate analysis, which could combine the functional parameters
we identified, and could lead to an even better prediction model.

Conclusions

In the presented study, the potential of MRI-based ventilation and
perfusion biomarkers extracted from non-contrast enhanced cine MRI-
scans using the NuFD approach to predict acute radiation-induced
changes in the lung parenchyma in MRgRT was investigated. Acquisi-
tion of an additional coronal image series at the tumor position using a
2D-bSSFP sequence in free-breathing and without additional equipment
directly after the first and last treatment Fx, allowed the definition
of function-based parameters in three different lung regions. Univari-
ate analysis revealed encouraging results especially for the Ventpry,
Perfpry and Venty,y_pry with AUC>0.71 and a p-value < 0.05 for the
first parameter.

CRediT authorship contribution statement

Rabea Klaar: Writing — original draft, Visualization, Software, In-
vestigation, Formal analysis, Data curation. Moritz Rabe: Writing —
review & editing, Supervision, Investigation, Data curation, Conceptu-
alization. Anna Theresa Stiiber: Writing — review & editing, Method-
ology. Svenja Hering: Investigation, Data curation. Stefanie Corra-
dini: Resources, Project administration. Chukwuka Eze: Supervision,
Resources, Project administration. Sebastian Marschner: Resources,
Project administration. Claus Belka: Resources, Project administration.
Guillaume Landry: Writing — review & editing, Supervision, Method-
ology, Conceptualization. Julien Dinkel: Writing — review & editing,
Supervision, Methodology, Funding acquisition, Data curation, Concep-
tualization. Christopher Kurz: Writing - review & editing, Supervision,
Methodology, Data curation, Conceptualization.

Declaration of competing interest

The Department of Radiation Oncology of the LMU University Hospital,
Munich has research agreements with Elekta, Brainlab and C-RAD.

Acknowledgments

RK and JD acknowledge partial funding by the German Center for
Lung Research (DZL), but received no specific grant for this research.
Dominika Dinkel, Christina Walchhofer and Patrick Thum are than-
ked for their help with the patient data acquisition and realization of
the study.

Supplementary data

Sequence parameters

The sequence parameters for the three utilized baseline/setup MRI-
scans that are part of the standard MRgRT workflow are listed. The
used sequence was selected depending on the patient.

Exemplary functional regions

The regions used for the definition of the predictive functional parame-
ters are depicted. Subfigure (A) shows the distribution of the dose of 20
Gy and higher, restricted to the lung. The 20Gy isodose line is indicated
in pink. The planning target volume (PTV) is displayed in (B) and the
difference between the structures in (A) and (B) is displayed in (C).
An additional margin of one pixel (3.91 mm) was added to the PTV
before the subtraction. The whole tumor bearing lung without the PTV
is illustrated in (D).
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Exemplary patient scans

Baseline MRI- and follow-up CT-scans for four patients are shown.
In subfigure (A) two patients’ baseline MRI-scans and follow-up CT-
scans in axial and coronal orientation are depicted. Both patients show
no typical radiological signs of radiation-induced pneumonitis and
were assessed with RP grade 0. Baseline and follow-up scans for two
patients presenting with clear radiation-induced changes in the tumor
surrounding lung parenchyma (indicated by red arrows), but without
clinical symptoms (RP grade 1) are given in subfigure (B). The planning
target volume (PTV) is depicted in blue in all baseline MRI-scans.

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.radonc.2024.110468.

References

(11

[2

[3

[4

[5

[6

[7

[8:

[9:

[10]

[11]

[12]

[13]

[14]

[15]

[16]

171

Postmus PE, Kerr KM, Oudkerk M, Senan S, Waller DA, Vansteenkiste J,
et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO
Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol
2017;28:iv1-21, ESMO updated clinical practice guidelines.

Bonanno L, Attili I, Pavan A, Sepulcri M, Pasello G, Rea F, et al. Treatment
strategies for locally advanced non-small cell lung cancer in elderly patients:
Translating scientific evidence into clinical practice. Crit Rev Oncol Hematol
2021;163:103378.

Kang HJ, Kwak YK, Kim M, Lee SJ. Application of real-time MRI-guided
linear accelerator in stereotactic ablative body radiotherapy for non-small cell
lung cancer: One step forward to precise targeting. J Cancer Res Clin Oncol
2022;148:3215-23.

Grills IS, Yan D, Martinez AA, Vicini FA, Wong JW, Kestin LL. Potential for
reduced toxicity and dose escalation in the treatment of inoperable non-small-
cell lung cancer: A comparison of intensity-modulated radiation therapy (IMRT),
3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol
Phys 2003;57(3):875-90.

Chapet O, Khodri M, Jalade P, N’guyen D, Flandin I, D’hombres A, et al. Potential
benefits of using non coplanar field and intensity modulated radiation therapy to
preserve the heart in irradiation of lung tumors in the middle and lower lobes.
Radiother Oncol 2006;80(3):333-40.

Heinzerling JH, Hampton CJ, Robinson M, Bright M, Moeller BJ, Ruiz J, et
al. Use of surface-guided radiation therapy in combination with IGRT for setup
and intrafraction motion monitoring during stereotactic body radiation therapy
treatments of the lung and abdomen. J Appl Clin Med Phys 2020;21:48-55.
Corradini S, Alongi F, Andratschke N, Belka C, Boldrini L, Cellini F, et al. MR-
guidance in clinical reality: Current treatment challenges and future perspectives.
Radiat Oncol 2019;14:1-12.

Godley A, Zheng D, Rong Y. MR-linac is the best modality for lung SBRT. J App
Clin Med Phys 2019;20:7-11.

Nierer L, Eze C, da Silva Mendes V, Braun J, Thum P, von Bestenbostel R, et al.
Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor
entities: liver, lung, abdominal lymph nodes, pancreas and prostate. Radiat Oncol
2022;17:1-14.

Eze C, Lombardo E, Nierer L, Xiong Y, Niyazi M, Belka C, et al. MR-guided
radiotherapy in node-positive non-small cell lung cancer and severely limited pul-
monary reserve: a report proposing a new clinical pathway for the management
of high-risk patients. Radiat Oncol 2022;17:1-8.

Crockett CB, Samson P, Chuter R, Dubec M, Faivre-Finn C, Green OL, et al.
Initial clinical experience of MR-Guided Radiotherapy for Non-Small Cell Lung
Cancer. Front Oncol 2021;11.

Hering S, Nieto A, Marschner S, Hofmaier J, Schmidt-Hegemann N-S,
da Silva Mendes V, et al. The role of online MR-guided multi-fraction stereotactic
ablative radiotherapy in lung tumours. Clin Transl Radiat Oncol 2024;100736.
Finazzi T, Haasbeek JA, Spoelstra FOB, Palacios MA, Admiraal MA,
Bruynzeel AME, et al. Clinical Outcomes of Stereotactic MR-Guided Adaptive
Radiation Therapy for High-Risk Lung Tumors. Int J Radiat Oncol Biol Phys
2020;107.

Kédsmann L, Dietrich A, Staab-Weijnitz CA, Manapov F, Behr J, Rimner A, et
al. Radiation-induced lung toxicity - Cellular and molecular mechanisms of
pathogenesis, management, and literature review. Radiat Oncol 2020;15:1-16.
Arroyo-Herndndez M, Maldonado F, Lozano-Ruiz F, Munoz-Montafio W, Nufiez-
Baez M, Arrieta O. Radiation-induced lung injury: Current evidence. BMC Pulm
Med 2021;21:1-12.

Vinogradskiy Y, Castillo R, Castillo E, Tucker SL, Liao Z, Guerrero T, et al. Use
of 4-dimensional computed tomography-based ventilation imaging to correlate
lung dose and function with clinical outcomes. Int J Radiat Oncol Biol Phys
2013;86:366-71.

Flakus MJ, Kent SP, Wallat EM, Wuschner AE, Tennant E, Yadav P, et al. Metrics
of dose to highly ventilated lung are predictive of radiation-induced pneumonitis
in lung cancer patients. Radiother Oncol 2023;182.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[381

Radiotherapy and Oncology 199 (2024) 110468

Vinogradskiy YY, Castillo R, Castillo E, Chandler A, Martel MK, Guerrero T. Use
of weekly 4DCT-based ventilation maps to quantify changes in lung function for
patients undergoing radiation therapy. Med Phys 2012;39:289-98.

Meng X, Frey K, Matuszak M, Paul S, Ten Haken R, Yu J, et al. Changes in
Functional Lung Regions During the Course of Radiation Therapy and Their
Potential Impact on Lung Dosimetry for Non-Small Cell Lung Cancer. Int J Radiat
Oncol Biol Phys 2014;89:145-51.

Klaar R, Rabe M, Gaass T, Schneider MJ, Benlala I, Eze C, et al. Ventilation and
perfusion MRI at a 0.35 T MR-linac: feasibility and reproducibility study. Radiat
Oncol 2023;18:1-15.

Farr KP, Mgller DS, Khalil AA, Kramer S, Morsing A, Grau C. Loss of
lung function after chemo-radiotherapy for NSCLC measured by perfusion
SPECT/CT: Correlation with radiation dose and clinical morbidity. Acta Oncol
2015;54:1350-4.

Scheenstra AEH, Rossi MMG, Belderbos JSA, Damen EMF, Lebesque JV,
Sonke J-J. Local dose-effect relations for lung perfusion post stereotactic body
radiotherapy. Radiother Oncol 2013;107:398-402.

Seppenwoolde Y, Muller SH, Theuws JC, Baas P, Belderbos JS, Boersma LJ, et al.
Radiation dose-effect relations and local recovery in perfusion for patients with
non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2000;47(3):681-90.
Gaudreault M, Bucknell N, Woon B, Kron T, Hofman MS, Siva S, et al.
Dose-Response Relationship Between Radiation Therapy and Loss of Lung Per-
fusion Comparing Positron Emission Tomography and Dual-Energy Computed
Tomography in Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys
2024;118(4):1135-43.

Miften MM, Das SK, Su M, Marks LB. Incorporation of functional imaging data in
the evaluation of dose distributions using the generalized concept of equivalent
uniform dose. Phys Med Biol 2004;49:1711-21.

Lucia F, Bourhis D, Pinot F, Hamya M, Goasduff G, Blanc-Béguin F, et al.
Prediction of Acute Radiation-Induced Lung Toxicity After Stereotactic Body
Radiation Therapy Using Dose-Volume Parameters From Functional Mapping on
Gallium 68 Perfusion Positron Emission Tomography/Computed Tomography. Int
J Radiat Oncol Biol Phys 2023.

Yamamoto T, Kabus S, Bal M, Bzdusek K, Keall PJ, Wright C, et al. Changes
in Regional Ventilation During Treatment and Dosimetric Advantages of CT
Ventilation Image Guided Radiation Therapy for Locally Advanced Lung Cancer.
Int J Radiat Oncol Biol Phys 2018;102:1366-73.

Faught AM, Yamamoto T, Castillo R, Castillo E, Zhang J, Miften M, et
al. Evaluating which dose-function metrics are most critical for functional-
guided radiotherapy with CT ventilation imaging. Int J Radiat Oncol Biol Phys
2017;99:202-9.

Vinogradskiy Y, Schubert L, Diot Q, Waxweiller T, Koo P, Castillo R, et al.
Regional Lung Function Profiles of Stage I and III Lung Cancer Patients: An
Evaluation for Functional Avoidance Radiation Therapy Radiation Oncology. Int
J Radiat Oncol Biol Phys 2016;95:1273-80.

Katsuta Y, Kadoya N, Kajikawa T, Mouri S, Kimura T, Takeda K, et al. Radiation
pneumonitis prediction model with integrating multiple dose-function features
on 4DCT ventilation images. Phys Med 2023;105:102505.

Farr KP, Kallehauge JF, Mgller DS, Khalil AA, Kramer S, Bluhme H, et al. Ra-
diation induced lung damage inclusion of functional information from perfusion
SPECT improves predictive value of dose-volume parameters in lung toxicity
outcome after radiotherapy for non-small cell lung cancer: A prospective study.
Radiother Oncol 2015;117:9-16.

Dhami G, Zeng J, Vesselle HJ, Kinahan PE, Miyaoka RS, Patel SA, et al.
Framework for radiation pneumonitis risk stratification based on anatomic and
perfused lung dosimetry. Strahlenther Onkol 2017;193:410-8.

Gayed IW, Chang J, Kim EE, Nufiez R, Chasen B, Liu HH, et al. Lung perfusion
imaging can risk stratify lung cancer patients for the development of pulmonary
complications after chemoradiation. J Thorac Oncol 2008;3:858-64.

Lee HJ, Zeng J, Vesselle HJ, Patel SA, Rengan R, Bowen SR. Correlation of
Functional Lung Heterogeneity and Dosimetry to Radiation Pneumonitis using
Perfusion SPECT/CT and FDG PET/CT Imaging. Int J Radiat Oncol Biol Phys
2018;102:1255-64.

Siva S, Hardcastle N, Kron T, Bressel M, Callahan J, Macmanus MP, et
al. Ventilation/Perfusion Positron Emission Tomography-Based Assessment of
Radiation Injury to Lung Radiation Oncology. Int J Radiat Oncol Biol Phys
2015;93:408-17.

Bucknell NW, Hardcastle N, Bressel M, Hofman MS, Kron T, Ball D, et al.
Functional lung imaging in radiation therapy for lung cancer: A systematic
review and meta-analysis. Radiother Oncol 2018;129(2):196-208, Special Issue:
Radiotherapy in Asia - Part 2.

van Houdt PJ, Saeed H, Thorwarth D, Fuller CD, Hall WA, McDonald BA, et al.
Integration of quantitative imaging biomarkers in clinical trials for MR-guided
radiotherapy: Conceptual guidance for multicentre studies from the MR-Linac
Consortium Imaging Biomarker Working Group. Eur J Cancer 2021;153:64-71.
Lombardo E, Rabe M, Xiong Y, Nierer L, Cusumano D, Placidi L, et al. Offline
and online LSTM networks for respiratory motion prediction in MR-guided
radiotherapy. Phys Med Biol 2022;67.



4.3

Publication IT

87

R. Klaar et al.

[391

[401

[41]

[42]

[43]

[44]

[45]

Sharp GC, Li R, Wolfgang J, Chen G, Peroni M, Spadea MF, et al. Plastimatch:
An open source software suite for radiotherapy image processing. In: Proceedings
of the XVI'th International Conference on the use of Computers in Radiotherapy
(ICCR), Amsterdam, Netherlands. 2010.

NCI. National Cancer Institute Common Terminology Criteria for Adverse Events
(CTCAE), Version 5.0. 2017, https://ctep.cancer.gov/protocolDevelopment/
electronic_applications/ctc.htm. [Accessed: 6 March 2024].

Efron B. Bootstrap methods: Another Look at the Jackknife. Ann Statist
1979;7(1):1-26.

Steyerberg EW, Harrell FE, Borsboom GJJM, Eijkemans R, Vergouwe Y, Dik J,
et al. Internal validation of predictive models: Efficiency of some procedures for
logistic regression analysis. J Clin Epidemiol 2001;54:774-81.

Steyerberg EW, Harrell FE. Prediction models need appropriate internal,
internal-external, and external validation. J Clin Epidemiol 2016;69:245-7.
O'Reilly S, Jain V, Huang Q, Cheng C, Teo BKK, Yin L, et al. Dose to Highly
Functional Ventilation Zones Improves Prediction of Radiation Pneumonitis for
Proton and Photon Lung Cancer Radiation Therapy. Int J Radiat Oncol Biol Phys
2020;107:79-87.

Torre-Bouscoulet L, Arroyo-Herndndez M, Martinez-Brisefio D, Muifioz-
Montailo WR, Gochicoa-Rangel L, Bacon-Fonseca L, et al. Longitudinal
Evaluation of Lung Function in Patients With Advanced Non-Small Cell Lung
Cancer Treated With Concurrent Chemoradiation Therapy. Int J Radiat Oncol
Biol Phys 2018;101(4):910-8.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Radiotherapy and Oncology 199 (2024) 110468

Mattson K, Holsti LR, Poppius H, Korhola O, Stenman S, Tammilehto L, et al.
Radiation pneumonitis and fibrosis following split-course radiation therapy for
lung cancer: A radiologic and physiologic study. Acta Oncol 1987;26(3):193-6.
Ciani O, Cucciniello M, Petracca F, Apolone G, Merlini G, Novello S, et al. Lung
Cancer App (LuCApp) study protocol: A randomised controlled trial to evaluate
a mobile supportive care app for patients with metastatic lung cancer. BMJ Open
2019;9(2).

Yang H, Chung SH, Yoo J, Park B, Kim MS, Lee J. Evaluation of a Smart After-
Care Program for Patients with Lung Cancer: A Prospective, Single-Arm Pilot
Study. J Chest Surg 2022;55.

Hauth F, Bizu V, App R, Lautenbacher H, Tenev A, Bitzer M, et al. Electronic
Patient-Reported Outcome Measures in Radiation Oncology: Initial Experience
After Workflow Implementation. JMIR Mhealth Uhealth 2019;7(7):e12345.
Rades D, Werner E, Glatzel E, Bohnet S, Schild S, Tvilsted S, et al. Early
Identification of Pneumonitis in Patients Irradiated for Lung Cancer—Final
Results of the PARALUC Trial. Cancers 2023;15:326.

Kohno N, Hornada H, Fujioka S, Hiwada K, Yamakido M, Akiyama M. Circulating
Antigen KL-6 and Lactate Dehydrogenase for Monitoring Irradiated Patients with
Lung Cancer. Chest 1992;102(1):117-22.

Iwata H, Shibamoto Y, Baba F, Sugie C, Ogino H, Murata R, et al. Correlation
between the serum KL-6 level and the grade of radiation pneumonitis after
stereotactic body radiotherapy for stage I lung cancer or small lung metastasis.
Radiother Oncol 2011;101(2):267-70.



88 4. Publication II

Acquisition Dimensions 3D 3D 3D
Sequence Type bSSFP bSSFP bSSFP
Orientation Transversal Transversal Transversal
FOV [mm?] 540 x 465 x 432 500 x 445 x 432 400 x 400 x 432
Matrix Size 360 x 310 x 144 334 x 300 x 144 266 x 266 x 144
Spatial Resolution [mm3] 1.5 x 1.5 x 3.0 1.5 x1.5x 3.0 1.5 x 1.5 x 3.0
TE [ms] 1.27 1.27 1.43
TR [ms] 3.00 3.00 3.33
Flip Angle [°] 60 60 60
Receiver Bandwidth [Hz/pixel] 604 599 537
Parallel Imaging Technique GRAPPA GRAPPA GRAPPA
Acceleration Factor 2 2 2
Nr Reference Lines 24 30 30
Slice Oversampling [%] 44.4 44.4 44.4
Phase FOV [%] 86.1 89.8 100
Partial Fourier Factor 6/8 6/8 6/8

Additional File 1. Sequence Parameters. The sequence parameters for the three
utilized baseline/setup MRI-scans that are part of the standard MRgRT workflow
are listed. The used sequence was selected depending on the patient.

(C) v20 - PTV (D) TLung - PTV

Dose [Gy]

Additional File 2. Exemplary Functional Regions. The regions used for the
definition of the predictive functional parame- ters are depicted. Subfigure (A) shows
the distribution of the dose of 20 Gy and higher, restricted to the lung. The 20 Gy
isodose line is indicated in pink. The planning target volume (PTV) is displayed in
(B) and the difference between the structures in (A) and (B) is displayed in (C).
An additional margin of one pixel (3.91 mm) was added to the PTV before the
subtraction. The whole tumor bearing lung without the PTV is illustrated in (D).
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(A) Patients without RP
(1) Baseline Follow-up CT (2) Baseline Follow-up CT

Axial

Coronal

(B) Patients with RP grade=1
(1) Baseline Follow-up CT (2) Baseline Follow-up CT

Axial

Coronal

Additional File 3. Baseline MRI- and follow-up CT-scans for four patients are
shown. In subfigure (A) two patients’ baseline MRI-scans and follow-up CT-scans in
axial and coronal orientation are depicted. Both patients show no typical radiological
signs of radiation-induced pneumonitis and were assessed with RP grade 0. Baseline
and follow-up scans for two patients presenting with clear radiation-induced changes
in the tumor surrounding lung parenchyma (indicated by red arrows), but without
clinical symptoms (RP grade 1) are given in subfigure (B). The planning target
volume (PTV) is depicted in blue in all baseline MRI-scans.



5 Towards Automated Detection
and Localization of Radiation-

Induced Pneumonitis based on
To-Maps

This chapter describes a sub-project of the TOSCA study, whose primary endpoint
was presented in Publication II. The evaluation of this sub-study was performed
in the scope of this dissertation. A manuscript is currently under preparation, but
was not ready to be submitted at the time of the submission of this thesis. This
chapter starts with a motivation for the use of Tb-mapping in the context of RT in
Section 5.1. A summary of the patient cohort, the processing pipeline and statistical
analysis tools is given in Section 5.2. The results of this study, divided into patient
stratification and T5-based RP segmentation, are presented in Section 5.3, followed
by a Discussion in Section 5.4 and the Conclusions in Section 5.5.

5.1 Motivation

For the treatment of lung lesions originating from NSCLC or as metastasis from
other cancer types, SBRT (Section 2.4.5) has been established as standard-of-care
for the curative or palliative treatment of many cancer stages. Even though extensive
advances with, e.g., MRgRT on MR-Linacs have been made in the context of high
precision dose delivery and the corresponding reduction of target margins and thus
a reduction of normal tissue subjected to high doses, RP is still a non-negligible side
effect. As RP can result in severe long-term effects, regular check-ups and follow-
up CT-scans are required to assess the onset of the condition and to monitor the
development or the response to medication. Although CT-imaging is still considered
as the gold-standard for the assessment of lungs in general and in particular also for
post-RT evaluation, a valuable alternative could be MR~imaging. Apart from being
radiation-free, MRI T5-weighted imaging as well as To-mapping have been shown to
be able to characterize different lung diseases [23, 25, 114, 147] and has been found in
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early (pre-)clinical studies to be sensitive to RP and RILF in rats and humans [148,
149]. The purpose of this study was to investigate for the first time the potential of
post-RT Th-mapping acquired around 2-3 months after the end of RT on a diagnostic
1.5T MRI-scanner for the automated stratification of patients with and without RP
as well as for an automated, initial segmentation of the RP-affected lung volume (75-
based RP mask) to assess the extent of the radiation-induced injury, which could
trigger further imaging or intervention.

5.2 Materials and Methods

5.2.1 Patient Cohort

In this prospective study, a total of 22 lung tumor patients received hypofractionated
MRgRT SBRT at a ViewRay MRIdian MR-Linac located at the Department of
Radiation Oncology of the LMU University Hospital Munich (see Table 5.1). Study
inclusion criteria were RT delivery in at least three fractions and no infracarinal
lesions. As this study was a secondary endpoint of the study presented in Publication
II, the patient cohorts are almost similar except from three patients. Two patients
that were part of the primary study had to be excluded for the secondary analysis as
the patients did not undergo the diagnostic follow-up MRI. One patient that could
not be included in the primary analysis due to a problematic tumor position for the
2D imaging, but received the follow-up MRI and was considered for the secondary
analysis. The fractionation schemes ranged from 3-10 fractions with 4-15Gy/fraction.
A detailed description of the utilized fractionation schemes is given in Table 5.1.

5.2.2 RP Grading

As described in Section 2.6.1, a follow-up CT-scan (FuCT) along with clinical pre-
sentation of the patient are required for RP assessment. All included patients un-
derwent a FuCT at a median time between end of RT and FuCT of eleven weeks.
The FuCT scans of each patient was judged by a radiologist regarding radiological
changes suspicious of RP such as ground-glass opacities, new areas of consolidation,
and reticulation in the vicinity of the tumor site, which served along with the pa-
tient’s general condition, assessed during regular follow-up visits, as basis for the RP
grading. The grading scheme used for this study was the National Cancer Institute
Common Terminology Criteria for Adverse Events (NCI-CTCAE) version 5.0 [150].
Additionally, the RP-affected lung area was segmented (RP mask) by the radiologist,
which served as ground-truth for the RP segmentation task. A total of 14 patients
(64%) showed radiological indications for RP. Four patients (18%) of these patients
additionally presented with symptoms and were therefore classified with RP grade 2,
while the other ten patients (45%) showed no symptoms and were classified with RP
grade 1. The remaining eight patients (36%) had no indication and were considered
as RP grade =0.
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TABLE 5.1: Patient Characteristics. Patient Characteristics for the 22 patients
with 23 lesions. All numbers listed in this table are reported in units of patient
numbers if not indicated otherwise. The fractionation is given as physical dose.

Age [yrs] Median 63
Range 38-81
Sex Male 10
Female 12
Fractionation 3 x 13.5Gy 6 (27%)
3% 15.0 Gy 4 (18%)
5 x 8.0 Gy 1 (5%)
5 % 10.0 Gy 1 (5%)
8 x 7.5 Gy 2 (9%)
10 x 4.0 Gy 1 (5%)
10 % 5.0 Gy 7 (32%)
Type of Cancer Primary Lesion 6 (26%)
Metastasis 17 (74%)
NSCLC Stage IA-B 3
ITA 1
IVA-B 2
Tumor Location Superior Lobe Left 11 (48%)
Superior Lobe Right 4 (17%)
Inferior Lobe Left 4 (17%)
Inferior Lobe Right 4 (17%)
RP Grade Grade 0 8 (36%)
Grade 1 10 (45%)
Grade 2 4 (18%)

5.2.3 MR Image acquisition and processing
Treatment Planning Stage

The essential element of the standard MRgRT treatment planning workflow is, as
explained in Section 2.5.3, the 3D image acquisition using a bSSFP sequence (RT
baseline scan) on which the target and OARs are delineated and the dose plan is
defined. The 3D lung volume was acquired in inspiration breath-hold and transversal
orientation using the following sequence parameters: TE=1.27ms, TR=3.00ms, flip
angle=60°, receiver bandwidth =604 Hz /pixel, spatial resolution=1.5x1.5x 3.0 mm?.
Depending on the patient’s constitution, one of three different FOVs was selected:
540 x 465 x 432mm?>, 500 x 445 x 432mm? or 400 x 400 x 432 mm? along with the
respective matrix sizes: 360 x 310 x 144, 334 x 300 x 144 or 266 x 266 x 144.
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For all patients, the PTV was defined as GTV plus an isotropic 5 mm margin.

Follow-up Stage

In addition to the standard-of-care FuCT required for the assessment of RP, co-
morbidities and tumor recurrence, the patients included in this study received an
additional diagnostic follow-up MRI-scan at a 1.5 T MRI-scanner (MAGNETOM
Aera/SolaFit, Siemens Healthineers, Erlangen, Germany) located at the Department
of Radiology of the LMU University Hospital Munich. The median time between
FuCT and follow-up MRI-scan was 22 days. An echo-planar single-shot fast spin echo
sequence with phase conjugate symmetry (Siemens HASTE sequence, Section 2.2.5)
utilizing electrocardiogramme (ECG) triggering was used to acquire T»-weighted im-
ages of the full lung volume in inspiration breath-hold (two breath-holds per TE)
and coronal orientation. The following parameters were utilized: TR = 314 ms, flip
angle = 145°, receiver bandwidth = 780-781 Hz/pixel, FOV = 400 x 400 mm?, slice
thickness = 8.8 mm. An acquisition matrix of 128 x 128 and an interpolated matrix
of 256 x 256 results in an interpolated in-plane resolution of 1.56 x 1.56 mm?. The
acquisition was repeated for five different TEs = [18, 36, 61, 100, 131] ms. For each
patient, the different T5-weighted images were slice-wise registered to the reference
T2-weighted image acquired at TE = 18 ms using ANTs [136] for a multi-stage reg-
istration approach (rigid, affine and DIR) with mutual information as optimization
metric and three-level multi-resolution (25%, 50%, 100%). The voxel-wise logarithm
of the signal over the registered T5-weighted images were then linearly fitted, as
described in Section 2.3.2, to generate Th-maps.

Image Processing

As different fractionation schemes were used, the dose distribution of each patient
was converted to EQD2 according to Equation 2.55 using o/ = 3 Gy [111] for lung
tissue. In order to be able to link the target volume and the dose distribution with the
Th-maps for each patient, the RT baseline scan was deformably registered to the Tb-
weighted reference image (TE = 18ms) using Plastimatch [151]. For the registration,
two stages, i.e., rigid and DIR using b-splines, were used with mutual information
as optimization metric along with four (12.5%, 25%, 50%, 100%) and two (12.5%,
25%) resolution levels for rigid and DIR, respectively. The respective deformation
fields were then used to propagate all defined RT treatment planning contours to
To-map space. As To-maps were only acquired at the follow-up stage and not at the
baseline stage, baseline-corrected To-maps were calculated per patient. For this, the
Th-maps were firstly masked by the propagated RT baseline lung segmentation and
then equally divided into six sub-volumes (three per lung) in cranio-caudal direction.
For each patient, a lung subvolume with the greatest possible distance from the target
was selected and the mean Th-value within the (healthy) subvolume Tlhealthy(GTV)
was calculated over coronal slices in which the GTV was defined. The baseline-
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corrected Th-maps were then calculated by:

TQ,baseline—corr = T2 - TQ,healthy(GTV)' (5-1)

Using the baseline-corrected To-maps, parameters were defined for the RP stratifica-
tion task based on the mean T5-value in two regions: the PTV and the V20 volume
without the GTV, namely T2 pascline—corr(PTV) and T2 paseline—corr (V20 — GTV).
In order to compare the T5-based RP mask with the ground-truth RP mask seg-
mented on the FuCT by an radiologist, the FuCTs were deformably registered using
Plastimatch to the Th-weighted reference image and the RP mask propagated to the
Th-map space based on the respective deformation fields, similarly to the baseline
MRI to T5-space registration.

5.2.4 Statistical Analysis and Metrics

The endpoint of the patient stratification task was to differentiate between patients
with RP grade > 1 (RP patients) and patients with RP grade = 0 (non-RP pa-
tients) based on the two Th-based parameters. To assess the performance of the
stratification, a univariate analysis based on systematical thresholding of the mean
baseline-corrected T5-values was performed using ROC curves and the respective
AUC (Section 2.8.2) for quantification. In order to provide a first internal valida-
tion, bootstrapping (Section 2.8.3) with 5000 samples and the median ROC curves
and respective AUC values along with the 95% confidence intervals (CIs) were de-
termined. The non-parametric Mann-Whitney U test with a significance level of
astats = 0.05 was used to probe for significant differences between the RP and non-
RP parameter distributions.

For the segmentation task, first, the baseline-corrected To-maps were masked with the
propagated RT baseline lung mask as well as the V20 mask to restrict the region-of-
interest and to avoid the requirement of exact prior knowledge of (baseline-corrected)
Th-values of bones, blood vessels and other organs as well as other comorbidities that
might resemble the radiological appearance of RP. As four patients out of the 14 RP
patients received their follow-up MRI and FuCT more than four weeks apart and the
voxel-based comparability of the RP regions’ appearance could not be guaranteed,
these patients were excluded from the segmentation task. To find the T5-based RP
mask, the baseline-corrected T3 values in the lung-V20 volume were further thresh-
olded. The cut-off used to differentiate between baseline-corrected T5 values associ-
ated with RP or healthy lung parenchyma was determined by calculating the maximal
Youden index (Equation 2.73) for the median ROC curve of the T3 pascline—corr(PTV)
after bootstrapping and finding the corresponding baseline-corrected T5 value cut-
off. Using dilation with 6 x 6 kernel, followed by a 3 x 3 kernel and erosion with a
6 x 6 kernel, the thresholded T5-based RP mask was smoothed for better visualiza-
tion. Apart from visual comparison of the T>-based RP mask to the ground-truth
RP mask that was propagated to T5-map space, the DSC, sensitivity, precision, the
Seg AUC and the HD95 were calculated.
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5.3 Results

5.3.1 Patient Stratification

The distributions of the mean baseline-corrected To values in the PTV and the
V20-GTV region were investigated for RP and non-RP patients and the respective
boxplots are shown in Figure 5.1. While significant differences between the pa-
tient groups were found for both parameters with p=0.003 for the PTV region and
p=0.02 for the V20 without GTV region, a visually clearer separation between the
distributions was achieved by the mean baseline-corrected 75 value in the PTV re-
gion. This finding is also reflected in the larger difference in the median of the mean
baseline-corrected T5 values between RP and non-RP patients with median values of
14ms vs 1.6 ms for the RP and non-RP patients, respectively, in the PTV region and
5ms vs -2.8 ms for the V20 without GTV region. These results clearly show that an
increase in baseline-corrected T5 values corresponds to RP.

The median ROC curves and the respective AUC values retrieved from the uni-
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FIGURE 5.1: Boxplots for the two considered patient stratification param-
eters. The RP and non-RP distributions of the mean baseline-corrected T4 values
in the PTV (subplot (A)) and the V20-GTV region (subplots (B)) are illustrated.
The boxplot whiskers indicate the 5th and 95th percentiles. The median value of
each distribution is visualized with the red lines and outliers as circles. The non-
parametric Mann-Whitney U test was used to calculate the p-values, where signifi-
cance at agiats = 0.05 is specified with the asterix *’.

variate analysis after bootstrapping are presented in Figure 5.2. The results of the
quantitative stratification model evaluation are in agreement with the findings from
the non-parametric Mann-Whitney U test. Both parameters achieve good stratifi-
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cation performance regarding sensitivity and specificity and thus high AUC values
of 0.88 and 0.80 for the PTV and the V20 without GTV region, respectively. The
maximal Youden index of the median ROC curves was found to be 0.80 with the
corresponding cut-off of 8 ms for the PTV region and 0.65 with a cut-off of -1 ms for
the V20 without GTV region.
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FIGURE 5.2: Median ROC curves for the two investigated patient stratifica-
tion parameters. The solid blue lines illustrate the median ROC curves after 5000
bootstrapping samples for the mean baseline-corrected T values in the PTV (Sub-
plot (A)) and in the V20 without GTV region (Subplot (B)). The respective AUC
values represent the median AUC values. The shaded area in light-blue bounded
by blue dotted lines indicates the 95% confidence interval and the dotted black line
represents the performance of a random classifier.

5.3.2 T3-based RP Segmentation

The performance of the baseline-corrected Th-based RP segmentation was assessed
visually as well as quantitatively. Starting with the visual comparison of the T5-based
RP mask with the ground-truth RP mask, four exemplary patients are presented in
Figure 5.3 with varying initial tumor size and RP extent. A good visual agreement
was found for patients with medium to large RP extent (Subfigure (A), (B), (D)),
apart from slight overestimation for Patient 2 in Subfigure (B). In patients with minor
extent of radiation-induced tissue changes, the Th-based RP mask clearly overesti-
mates the affected area (Subfigure (C)).

Looking at the quantitative values retrieved from different metrics, shown in Table 5.2,
especially the DSC and the HD95 demonstrate only moderate agreement with the
ground-truth with median values over all patients of 0.32 and 18.8 mm, respectively.



5.3 Results 97

Similarly, the median sensitivity and precision calculated over all patients indicate
merely limited performance with 0.48 and 0.42, respectively. On the contrary, with
0.74, an overall high median Seg AUC was found. Taking a closer look at specific
patients reveals that in particular Patient 2 and Patient 6 achieved above average
DSC, precision and Seg AUCs with 0.58, 0.62 and 0.77 (Patient 2) and 0.64, 0.74,
and 0.78 (Patient 6), respectively, which agrees with the visual impression (Figure
5.3 (B) and (D)). Due to the overestimation of the RP region by the Ts-based RP
mask, as already seen in Figure 5.3 (C), Patient 3 achieved the worst DSC and
precision values with 0.04 and 0.02, respectively.

TABLE 5.2: Quantitative segmentation comparison. In order to provide a
quantitative comparison between the T5-based RP mask and the RP mask segmented
by a radiologist propagated to To-map space (ground truth), the DSC, sensitivity,
precision, segmentation area under the curve (Seg AUC) value and the 95% Hausdorff
distance (HD95) were calculated for the ten RP patients.

Dice Sensitivity Precision Seg AUC HD95 [mm]|

Patient 1 0.40 0.48 0.34 0.74 18.6
Patient 2 0.58 0.54 0.62 0.77 23.6
Patient 3 0.04 0.75 0.02 0.87 33.8
Patient 4 0.34 0.47 0.26 0.73 18.9
Patient 5 0.50 0.43 0.58 0.72 17.2
Patient 6 0.64 0.57 0.74 0.78 14.2
Patient 7 0.23 0.63 0.15 0.81 16.8
Patient 8 0.09 0.19 0.06 0.60 20.7
Patient 9 0.09 0.05 0.49 0.52 54.9
Patient 10 0.29 0.20 0.50 0.60 15.8

Median 0.32 0.48 0.42 0.74 18.8
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FiGURE 5.3: RP segmentation comparison. The baseline MRI-scan with the
PTV in pink, the FuCT scan with the RP mask segmented by a radiologist in light-
blue, the FuCT scan registered to the Ts-map space with the propagated ground-
truth RP mask in light-blue and the 75-based RP mask in red as well as the baseline-
corrected Th-map with Th-based RP map in red are shown for Patient 1 (Subfigure
(A)), Patient 2 (B), Patient 3 (C) and Patient 6 (D).
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5.4 Discussion

The main goal of this study was to investigate the potential of post-RT Ts-mapping
to aid the identification of RP patients and to provide a first visualization of the
extent of the affected lung volume. Mean Tb values calculated in the PTV and
the V20-GTV region (T2 pascline—corr(PTV) and T3 pascline—corr (V20 — GTV)) after
baseline-correction, done by subtracting the mean 75 value in a healthy part of the
lung with maximal distance from the lesion, demonstrated significant differences be-
tween non-RP patients and patients with RP grade > 1. Using bootstrapping as
internal validation strategy to assess the Th-based parameter’s ability to stratify pa-
tients, AUC values > 0.80 were achieved. In addition to the patient stratification, the
Tr-mapping was also investigated regarding its potential in providing a voxel-based
initial segmentation of the by RP-affected lung volume. Even though the median
DSC, sensitivity, precision and HD95 revealed only moderate conformity between
the T5-based RP mask and the ground-truth, that was segmented on the standard-
of-care FuCT-scan by a radiologist and propagated to To-map space, an overall good
visual agreement between the segmentations and the ground-truth was found espe-
cially for medium to large RP-affected lung volumes.

To the best of the author’s knowledge, this study is the first that successfully pro-
posed a pipeline for the use of To-mapping in lung cancer patients after RT and that
does not require a CT-scan. The almost automated nature of the workflow and the
lack of radiation dose or the administration of radionuclides during the acquisition
of the different TE-images necessary to retrieve the Th-maps indicate the potential
to reduce the radiologist’s workload and particularly the patient burden. This is
a clear advantage over the studies, e.g., by Farr et al. [152] that suggested to use
SPECT/CT before and three months after RT as the change in regional perfusion
retrieved from both SPECT /CT-scans are correlated with the severity of RP-related
symptoms and showed significant differences between RP and non-RP patients for a
specific dose region. Most studies using post-RT SPECT /CT or PET/CT perfusion
imaging, e.g., by Siva et al. [48], Scheenstra et al. [153] or Zhang et al. [154] only
focused on a pure investigation/description of lung perfusion changes in different
lung regions over time post-RT without differentiating between RP and non-RP pa-
tients. Similarly, these studies provide no spatial analysis to determine the extent
of RP-affected lung areas. Apart from this, a possible comparison with a previous
study by Mayo et al. [155] regarding the T values found in healthy volunteers re-
vealed good agreement with the values retrieved in healthy lung parts and used for
the baseline-correction.

One limitation of the presented study is the only moderate quantitative performance
of the Th-based RP segmentation. One reason for this, which is also supported by
the good visual agreement between ground-truth and T5-based RP mask for example
for Patient 1 (Table 5.2 and Figure 5.3 (A)), is the fact that quantitative metrics
to assess segmentation results such as the DSC or the HD95 are not the ideal indi-
cators for this specific application. Despite the use of dilation and erosion methods
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to smooth the segmentation boundary retrieved from voxel-based thresholding, the
resulting segmentation is still ragged. An overall lower agreement between this seg-
mentation and the manually segmented ground-truth RP mask is therefore expected
when using the DSC or the HD95 that focus on the exact overlap of the delineated
shapes. This comparison is not only further complicated by uncertainties in the
original ground-truth RP masks, as a mass-like RP appearance can be difficult to
distinguish from local tumor recurrence [156], but also by the fact that it was seg-
mented on the FuCT scan, which is typically acquired at a higher resolution than
the Th-maps. Even though great care was taken with the required deformable image
registration being optimized on a patient-by-patient basis, the need to propagate the
ground-truth to the Ts-space can introduce uncertainties.

Similarly, a deformable registration is necessary to align the different TE-images that
were acquired over several breath-holds. Slightly mismatched voxels can affect the
voxel-intensity curve over the TEs and in turn the linear fit and the resulting 7%
time for these specific voxels. Furthermore, the general approach to generate the
Ts-based RP mask could be further optimized. Considering that the Youden index
was developed to find the differentiating ability of a biomarker [157] and that the
underlying ROC curves of the mean baseline-corrected T, values in the high dose
region demonstrated good stratification power, utilizing the maximal index and its
corresponding cut-off Th-value to threshold the T5-maps seemed to be a valid first
approach. Despite the good performance of the method for medium to large RP re-
gions, small RP regions, as for Patient 3 (Figure 5.3 (C)), are clearly overestimated
suggesting that the thresholding approach might not be ideal in these cases. There-
fore, further investigations are necessary to determine whether, e.g., a probability
model-based approach might improve the results. Despite these limitations, it is
worth to further investigate the use of To-mapping in particular and MR imaging in
general for post-RT assessment.

Currently, the gold-standard for lung imaging are still CT-scans and they are typ-
ically also the standard-of-care follow-up technique post-lung-RT to assess the sta-
tus of the radiated lung lesion and potential radiation-induced lung injuries. Even
though the radiation dose exposure of patients treated with RT is quite high and
the dose applied during CT-scans is comparably small, patients can still benefit
from reducing the imaging-related radiation dose. Considering the repeated imag-
ing the patients have to undergo, especially in the first five years after the end of
RT, MRI-scans to identify and monitor RP could help to decrease the dose burden
and decrease the probability of the introduction of secondary cancers. The proposed
Th-mapping approach, that requires no ionizing radiation or contrast agent, could
provide, if acquired 2-3 months after the end of RT, a first stratification of patients
with and without radiation-induced changes as well as a first estimation on the ex-
tent of the changes. One possibility could be that a positive result, i.e., the patient
was identified to have RP, triggers additional CT- or PET/CT-imaging to further
investigate the severity. Another option could be to leverage further MRI sequences
that can be easily added to the follow-up MRI protocol without additional efforts.
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To provide CT-like morphological information, Dournes et al. [158] proposed to use
UTE sequences with 1 mm-isotropic resolution that were successfully demonstrated
for the disease assessment of cystic fibrosis and ILD [159]. Furthermore, Bauman
et al. [101] presented a self-gated free-breathing 3D bSSFP (bSTAR) sequence at
sub-millimeter resolution as another alternative for CT-scanning for morphological
imaging. In addition to adding MRI-based morphological imaging, the quantitative
To-mapping should be further exploited to characterize different tissue types based
on their quantitative T5 values. Similarly to Buzan et al. [23, 24|, who showed that
different T5 values are observed for different patterns in usual interstitial pneumonia
and non-specific interstitial pneumonia as well as in active inflammatory and static
fibrotic regions, post-RT Ts-mapping could be able to differentiate between RP, re-
maining and/or recurring tumor mass and healthy tissue. Due to the small patient
cohort of ten patients, the quantitative assessment of different regions for tissue char-
acterization was outside the scope of this work. This was additionally hindered by
the lack of a baseline T»-map in this study to identify pre-existing comorbidities. One
possibility to overcome this could be by performing T»-mapping already during the
planning stage directly at the MR-Linac as this would require little additional costs
and efforts. This could be especially advantageous to also monitor the treatment
response as, e.g., proposed by Lutsik et al. [160] for glioblastoma patients using a
multi-echo T5 sequence. The imaging required for the Th-mapping at the diagnostic
1.5T MRI-scanner could be further optimized by also using a multi-echo 75 sequence
to potentially decrease the number of required breath-holds or to even implement
T5-mapping based on a free-breathing acquisition [161]. Furthermore, a decrease
of the slice thickness and/or the in-plane resolution might increase the precision in
segmenting small RP-affected lung volumes.

Even though this study provides a good first step in showing the potential of us-
ing post-RT Th-mapping with significant differences between RP and non-RP in the
high-dose region and good visual comparability between T5-based RP segmentation
and the ground-truth RP segmentation, investigations in larger patient cohorts and
multicenter studies are necessary to further validate method.

5.5 Conclusions

In this study, an approach using 3D T-maps acquired at a diagnostic 1.5 T MRI-
scanner with multiple HASTE sequences 2-3 months after the end of lung MRgRT
to firstly stratify patients into RP and non-RP patient groups and to secondly pro-
vide a visualization of the localization and extent of the lung volume affected by RP
without requiring a FuCT was proposed. The mean T5 values retrieved in the PTV
and the V20-GTV region demonstrated significant differences with p-values < 0.02
between RP and non-RP patients and achieved AUC values > 0.80 in a univariate
analysis using bootstrapping. Based on the T5 value cut-off that corresponded to the
maximum Youden index of the ROC curve of T2,PTV; a Th-based RP volume seg-
mentation was generated utilizing thresholding. Despite only moderate quantitative
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agreement with the ground-truth, a segmentation of the RP volume based on the
standard-of-care follow-up CT by a radiologist, with a median DSC of 0.32 as well
as sensitivity and precision below 0.50, a good visual comparability was achieved.



6 Conclusion and Outlook

The introduction of MR-Linacs into the clinical workflow to combine radiation treat-
ment with MR imaging has opened up many opportunities to improve the treatment
of cancer patients. The excellent soft-tissue contrast and the radiation dose-free imag-
ing offered by MRI is already utilized for treatment planning and specifically for the
delineation of targets and OARs, daily in-room MRI for treatment plan adaptation
to the anatomy of the day, as well as real-time cine imaging for tumor tracking and
gated beam delivery. This precise target localization and option to adapt to anatom-
ical changes from fraction to fraction along with the ability to visualize the tumor in
real-time has allowed to apply highly conformal treatment plans in the form of (hy-
pofractionated) SBRT, which has been established as standard-of-care treatment for
many non-operable lung lesions. Even though lung tumor patients already benefit
from the described advantages, the integrated MRI offers even more imaging possi-
bilities to gain information on a fraction-by-fraction basis over the treatment course
without additional costs. This is of particular relevance for lung tumor patients as
RP still commonly develops in the irradiated lung area weeks after the end of RT
and no clear indicators have been identified that would enable to determine patients
at risk of developing RP.

The focus of this thesis was on the prediction of RP in patients receiving lung MRgRT
using non-contrast enhanced functional imaging and the MRI-based detection and
assessment of RP. The first part was concerned with the ViewRay MRIdian MR-
Linac system and the latter with a diagnostic MRI-scanner. Three research projects
were carried out in the scope of this thesis to establish non-contrast enhanced func-
tional lung imaging at the MR-Linac, to investigate its potential for the prediction of
RP and to evaluate the possibility of automated MRI-based RP detection to stratify
patients and to assess the extent of the affected lung volume.

The first project, Publication I, focused on transferring the, at diagnostic scan-
ners already thoroughly investigated, NuFD method to the low-field MR-Linac and
evaluating two normalization methods to compensate for differences in breathing
amplitude and heart rate between repeated scans of healthy volunteers and thus
strongly improving the reproducibility of the method, which is essential in longitu-
dinal studies investigating functional changes. One of the normalization approaches,
the ROI-based technique, was then used to normalize the functional maps in the
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subsequent project.

Both normalization strategies developed in Publication I clearly improved the repro-
ducibility of the functional maps in healthy volunteers, however, both demonstrate
limitations regarding their applicability in longitudinal patient studies. The first
strategy, based on the definition of a normalization factor derived from the correla-
tion between ventilation signal and diaphragm position, provides a normalization of
the ventilation signal by only using the diaphragm positions and ventilation signal
amplitudes of the unregistered image series. On the one hand, this approach is ad-
vantageous, due to lack of potential uncertainties induced by the image registration,
on the the other hand, its performance is strongly affected by breath-holds during
the acquisition of the image series. As lung tumor patients at the MR-Linac undergo
a gated treatment requiring repeated breath-holds, some patients unconsciously tend
to hold their breath for short intervals during the free-breathing acquisition of the
image series for the NuFD method. The second normalization strategy, based on the
positioning of a ROI on a healthy part of the lung and calculating the mean ventila-
tion or perfusion value to normalize the ventilation and perfusion maps, respectively,
demonstrates a more robust approach against these breathing irregularities. Despite
this robustness, the method showed performance differences depending on the ROI
position and size. This might introduce uncertainties in lung tumor patients suffer-
ing from additional lung comorbidities in the lung region found to be ideal for ROI
placement.

In the second project, Publication II, the NuFD method was integrated into a clini-
cal study and ventilation and perfusion maps were acquired for lung tumor patients
receiving MRgRT at the low-field MR-Linac of the LMU University Hospital. Func-
tional parameters defined as the change in ventilation and perfusion between last and
first treatment fraction in the high-dose region were found to be predictive of RP
grade > 1 thereby providing better prediction performance as commonly employed
dosimetric parameters.

One general limitation of the current prediction model developed in Publication II is
its predictive qualities regarding the occurrence of RP lather than 2-3 months post-
RT. Since there is a non-negligible percentage of patients with a radiation-induced
lung injury developing between the first three to six months, further investigations
have to be carried out in a larger patient cohort to improve the identification of
patients developing RP or RILT at a later stage. Furthermore, even though the
functional parameters obtained from the change between last and first treatment
Fx provide easily acquirable biomarkers predictive of RP, the gained functional in-
formation currently only allows to identify patients at risk directly after RT. As
information from start and end of RT are required, an intervention or adaptation
of the treatment plan derived from these parameters is not possible. First attempts
in including mid-treatment information have been made in the scope of the study
presented in Publication II, but showed no predictive power and was thus not able
to replace the last fraction scan. However, further investigations in a larger patient
cohort are necessary to probe the predictive potential of earlier time points. The
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derivation of pre-treatment function-based constraints to inform the baseline dose
planning to reduce the RP risk or biomarkers acquired during the treatment to trig-
ger the dose plan adaptation based on the ventilation and perfusion maps retrieved
from the NuFD method would be an important step towards RP avoidance treatment
planning [121]. This is currently prevented by two main limitations. As the acqui-
sition of the cine data is based on a bSSFP sequence and makes use of unsaturated
spins that are pumped into the selected slice by the heartbeat to assess the perfusion
information, the Fourier-based methods to assess both ventilation and perfusion are
limited to a 2D slice acquisition. Even though the scan time would be noticeably
increased, 3D information could be retrieved by multiple 2D acquisitions to cover the
whole lung volume. The second limitation is that the method is only of qualitative
nature, as it is patient-dependent and represents relative lung density changes and
blood flow changes, which limits inter-patient comparison and the possibility of find-
ing quantitative, RP-indicative values. Using the normalization approach developed
in Publication I, enables only intra-patient comparison and the calculation of rela-
tive functional differences that can be compared between patients. However, despite
showing promising results in retrospective studies, prospective, randomized clinical
trials designed to compare (ventilation-based) functional lung avoidance RT with the
standard-of-care RT, e.g., by Baschnagel et al. [162] or a prospective trial by Miller
et al. [163] that compared to historical data, merely found minor differences between
the two groups regarding RP development and decrease in lung function assessed by
pulmonary function tests. This suggests that the current function-based approaches
might not be ideal for the reduction of RP development, but can, as shown in Publi-
cation II, provide a fast and easy method to identify patients at risk early to allow a
close monitoring with regular check-ups and dedicated medical interventions if nec-
essary. Although most publications focus solely on the prediction or prevention of
RP grade > 2, this should be also true for patients with RP grade 1, as done in
this thesis. While RP grade 1 is in most grading scales not considered clinically
relevant and is assumed to not require medication, it should be closely monitored
every three weeks as proposed by Maddali et al. [113] or even every 1-3 days as
proposed by Yan et al. [164]. Furthermore, it has to be taken into account that in
spite of the many available grading schemes, RP grading is currently still difficult,
as both, symptoms and radiological image-based changes are considered. Not only
does the clinical symptoms assessment suffer from inter-observer variations between
different radiation oncologists [165], without a more objective measure, the patients’
own judgment/impression on RP-related symptoms, e.g., occurrence of dyspnea or
worsening of their general condition can be obscured by the patients being accus-
tomed to living with symptoms or restrictions related to their cancer burden. As
tissue changes on CT-scans are more easily quantifiable and less subjective, a grading
scheme solely based on radiological findings was proposed by Kouloulias et al. [166].
On the other hand, grading on pure radiological appearance is considered by radia-
tion oncologists as potentially misleading since tissue abnormalities in the radiated
area appear regularly without an increase in symptoms and with a generally good
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condition [165]. In this thesis, the focus was on identifying all patients with radiolog-
ical appearances of radiation-induced changes on their CT-scans, which could trigger
a combination of monitoring procedures for the patient management. Along with
the proposed approaches of regular pulmonary function tests [167], taking of blood
samples to monitor the circulating antigen KL-9 shown to be sensitive to interstitial
pneumonia [168] and asking the patient to daily document their health condition in
a dedicated mobile application (app) for a more precise symptom evaluation [169],
regular imaging might aid the extent assessment of the affected lung area.

Since repeated CT-scans come with an increased radiation dose exposure, an MRI-
based approach using To-mapping without the need for contrast agents was proposed
in the third project of this thesis for the follow-up assessment of lung tumor patients
post-RT. It was found to be sensitive to radiation-induced tissue changes and to
allow a first localization and volume definition. In order to improve the differen-
tiation between pre-existing comorbidities and radiation-induced tissue changes, a
Ts-map could be acquired at baseline level (before RT). With this, the quantitative
nature of the To-maps is fully leveraged without the need for the baseline-correction
introduced in Chapter 5 to remove the influence of pre-existing tissue changes. Quan-
titative Th values could further allow to distinguish tumor recurrence from mass-like
RILI patterns, which look similar in CT-scans and typically require the acquisition
of a FDG-PET/CT [114]. As the patient cohort available for the project presented in
Chapter 5 was limited to 14 patients, an extension of the cohort also in a multi-center
setting could enable the characterization of different tissue types and RILI patterns
based on T values as demonstrated by Buzan et al. [23] for different interstitial
lung disease patterns. Patients could benefit from a reduced exposure to imaging
modalities employing ionizing radiation to decrease the risk of radiation-induced sec-
ondary cancers. Furthermore, MRI offers to combine different imaging approaches to
cover anatomical, morphological, functional and quantitative imaging utilizing the
different dedicated sequences in one scan protocol. Adding, e.g., a high-resolution
UTE sequence to the follow-up MRI protocol could provide CT-like anatomical and
morphological information as shown by Dournes et al. [158] for cystic fibrosis pa-
tients and is worth investigating in RP patients. Apart from the morphological
imaging options, there are many more possibilities regarding advanced and/or quan-
titative imaging such as diffusion-weighted imaging [170] or inflammation-sensitive
T1,-mapping commonly used in heart imaging [171] that could eventually enable
MRI to replace (PET/)CT for follow-up and monitoring of patients after lung RT.
Especially regarding imaging at the MR-Linac, the potential of simple, pre- or post-
RT MR image acquisition on a fraction-by-fraction basis directly at the same device
without patient repositioning or additional costs or equipment is not yet fully ex-
ploited. Implementing the T-mapping and other mapping (77, T7,) or other imaging
strategies such as DWI (Section 2.5.5) [35] and integrating it similar to the NuFD
method in the clinical workflow could, even in combination with the NuFD-based
functional maps, not only support the RP prediction, but could offer additional tu-
mor response monitoring tools in the near-future. This also has the potential to aid
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the currently used morphological images in the treatment planning and adaptation
process in terms of tumor delineation.

Another active research area that could improve MRgRT in several aspects is artificial
intelligence (AI). Besides having been successfully proposed for OAR segmentation
[172] and target motion tracking and prediction [173], it has been shown to improve
image reconstruction in undersampled data and in the presence of motion. This
could allow a higher spatial image resolution for the fast 2D-cine bSSFP acquisition
for the NuFD method, which could improve the accuracy of the RP prediction model.
A highly accelerated 3D image acquisition (with higher spatial resolution) of the TE-
images for the To-mapping could enable a transition from repeated breath-hold to
free-breathing acquisitions in order to reduce the patient burden, while potentially
improving the Ts-based RP segmentation. Furthermore, provided a large dataset
from multicenter studies, Al or deep learning models could boost the RP prediction
and stratification models presented in this thesis and might aid the Th-based seg-
mentation.

To conclude, in the scope of this thesis, the non-contrast enhanced functional lung
imaging method NuFD along with two normalization strategies for repeated imaging
were established at a clinical low-field MR-Linac. NuFD-based functional parame-
ters were derived in a clinical patient study and shown to be predictive of RP and an
approach based on post-RT Ts-maps was developed that could provide an automated
RP-non-RP patient stratification and a first segmentation of the RP-affected lung
volume. With these studies, advances have been made towards the clinical imple-
mentation of functional imaging during MRgRT for early identification of patients at
risk of developing RP and first steps have been taken towards an MR-only follow-up
procedure after lung RT that could improve patient care in the future.
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