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Abstract
In image-guided radiotherapy (IGRT), cone-beam computed tomography (CBCT) is used
to align patients in the treatment position. CBCT scans administer radiation exposure and
subject patients to secondary cancer risk. However, lowering CBCT imaging dose continues
to be challenging as the image quality degrades. In current practice, the frequency of
scanning can be limited, leading to a potential decrease in localisation precision. Moreover,
in cases of adaptation, patients are required to undergo an addition planning CT due
to insufficient CBCT image quality, resulting in extra radiation exposure and prolonged
treatment time.

This thesis reports on investigations towards the minimum CBCT imaging dose with-
out loss of accuracy in terms of synthetic CT (sCT) image generation using generative
artificial intelligence (AI) for adaptive radiotherapy (ART). Many studies translated full
dose CBCT images into sCT images using deep learning (DL) algorithms such as U-Net,
cycle-consistent generative adversarial network (cycleGAN) or contrastive unpaired trans-
lation (CUT). However, only few studies investigated the potential of low imaging dose
CBCT. In this thesis, the lowest achievable CBCT imaging dose for online adaptation was
investigated. Compared to the previous studies, this work provides a structured investi-
gation on imaging dose levels (100%, 25%, 15%, 10%) and evaluations with IGRT-related
metrics, including patient positioning, treatment dose calculations and organ contouring.

Online adaptation in IGRT is currently limited by the CBCT image quality. In the first
part of this thesis, the basics of cancer and IGRT in chapter 1, the adaptation workflow
in chapter 2 and the physics of CBCT in chapter 3 are discussed, respectively. This will
serve as an introduction to explain how CBCT-guided IGRT works and to identify the
challenges of using CBCT in ART.

While DL is used to enhance full dose CBCT images, generating sCT images from low
dose CBCT requires additional under-sampling streaks removal. The improvements and
recent studies for DL-enabled full dose CBCT-to-CT translation are discussed in chapter 4.
In chapter 5, the significance of low imaging dose CBCT, and the synthesis of low imaging
dose sCT images and the DL algorithms that can be used are discussed. In chapter 6, the
metrics for evaluating sCT images are discussed.

To investigate the minimum CBCT imaging dose for IGRT adaptation, we conducted
two studies with generative AI models using a retrospective prostate patient dataset. In
chapter 7, the patient database and the contributions of the two studies are explained. In
chapter 8, the published papers for each of the studies for reference are attached. Especially
in the second study, it was found that 25% is the minimum CBCT imaging dose for accurate
treatment dose calculation and organ contouring when using the AI methods selected in
this project.

Finally, in chapter 9 Discussion, the findings and limitations in this work, the challenges
that hinder the development of low imaging dose CBCT, and possible future works that
can extend this study and facilitate clinical implementations of the new low imaging dose
CBCT technique in the ART workflow are discussed.
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Zusammenfassung
Bei der bildgesteuerten Strahlentherapie (IGRT) wird die cone-beam Computertomogra-
phie (CBCT) eingesetzt, um die Patienten in der Behandlungsposition auszurichten. CBCT-
Scans führen zu einer Strahlenbelastung und setzen die Patienten einem sekundären Krebs-
risiko aus. Die Reduzierung der Dosis bei CBCT-Aufnahmen bleibt jedoch eine Heraus-
forderung, da sich die Bildqualität verschlechtert. In der gegenwärtigen Praxis könnte die
Häufigkeit des Scannens beschränkt, was zu einer potenziellen Abnahme der Lokalisie-
rungsgenauigkeit führt. Darüber hinaus müssen sich die Patienten im Falle einer Behand-
lungsadaptation einem zusätzlichen Planungs-CT unterziehen, was zu einer zusätzlichen
Strahlenbelastung und einer verlängerten Behandlungszeit führt.

In dieser Arbeit werden Untersuchungen zur Minimierung der CBCT-Bilddosis ohne
Qualitätsverlust in Bezug auf die Erzeugung synthetischer CTs (sCT) unter Verwendung
generativer KI für die adaptive Strahlentherapie (ART) vorgestellt. Mit Deep Learning
(DL) Verbesserungen von U-Net über cycleGAN zu Contrastive Unpaired Translation
(CUT), haben viele Studien CBCT-Bilder mit voller Dosis in sCT-Bilder übersetzt. Nur
wenige Studien untersuchten jedoch die Möglichkeit, CBCT-Bilder mit niedriger Dosis
zu nutzen. Durch Unterabtastung von CBCT-Projektionen haben wir die niedrigste er-
reichbare CBCT-Bildgebungsdosis für die Online-Anpassung untersucht. Im Vergleich zu
früheren Studien bietet diese Arbeit eine strukturierte Untersuchung der Bildgebungsdosis
und Bewertungen mit IGRT-bezogenen Metriken, einschließlich Patientenpositionierung,
Dosisberechnung und Organkonturierung.

Die Online-Anpassung in der IGRT ist derzeit durch die Qualität der CBCT-Bilder
eingeschränkt. Im ersten Teil dieser Arbeit werden die Grundlagen von Krebs und IGRT
in Kapitel 1, der Adaptationsworkflow in Kapitel 2 und die Physik der CBCT in Kapitel
3 diskutiert. Dies dient als Einführung, um zu erklären, wie die CBCT-geführte IGRT
funktioniert, und um die Herausforderungen bei der Verwendung von CBCT in der ART
aufzuzeigen.

Während DL zur Verbesserung von CBCT-Bildern mit voller Dosis verwendet wird,
erfordert die Erzeugung von sCT-Bildern aus CBCT-Bildern mit niedriger Dosis eine zu-
sätzliche Entfernung von Streifenartefakten. Im zweiten Teil der Arbeit werden die Verbes-
serungen und die jüngsten Studien zur DL-gestützten Volldosis-CBCT-zu-CT-Übersetzung
in Kapitel 4 diskutiert. In Kapitel 5 werden die Bedeutung von CBCT mit niedriger Bild-
dosis, die Synthese von CT mit niedriger Bilddosis und die DL-Algorithmen, die für die
Übersetzung von CBCT mit niedriger Bilddosis in CT-Bilder verwendet werden können,
diskutiert. In Kapitel 6 werden die Metriken für die Bewertung von sCT erörtert.

Um die minimale CBCT-Bildgebungsdosis für die IGRT-Anpassung zu untersuchen,
haben wir zwei Studien mit generativen KI-Modellen unter Verwendung von Prostata Pa-
tientendatensätzen durchgeführt. In Kapitel 7 werden die Patientendatenbank und die
Beiträge der beiden Studien erläutert. In Kapitel 8 fügen wir für jede der Studien die Pu-
blikation als Referenz bei. Insbesondere in der zweiten Studie haben wir herausgefunden,
dass 25% die Mindestdosis für die CBCT-Bildgebung ist, um eine genaue Berechnung der
Behandlungsdosis und Organkonturierung zu ermöglichen.
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Abschließend diskutieren wir in der Diskussion (Kapitel 9) die Ergebnisse und Ein-
schränkungen dieser Arbeit, die Herausforderungen, die die Entwicklung von CBCT mit
niedriger Bildgebungsdosis behindern, und mögliche zukünftigen Arbeiten, die diese Stu-
die erweitern und die klinische Implementierung der neuen CBCT-Technik mit niedriger
Bildgebungsdosis in ART-Workflows erleichtern könnten.
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Chapter 1

Introduction

1.1 Cancer and radiotherapy
Cancer continues to present significant challenges in our modern era. According to the
latest estimation by the World Health Organization’s (WHO) cancer agency, the Interna-
tional Agency for Research on Cancer (IARC), cancer is the second most common cause of
deaths worldwide [1]. There were 20 million new cases and nearly 10 million deaths in 2022.
As illustrated in fig. 1.1, lung cancer emerged as the prevailing cancer, with 2.5 million new
instances, representing 12.4% of all new cases. Following closely was breast cancer with
2.3 million cases (11.6%), trailed by colorectal cancer at 1.9 million cases (9.6%), prostate
cancer at 1.5 million cases (7.3%), and stomach cancer at 970,000 cases (4.9%).

According to the Robert-Koch-Institute, there are around 500,000 new cancer patients
every year in Germany. In the latest report “Cancer in Germany 2019/2020” [2], there
were more than 262,000 men and over 231,000 women diagnosed with cancer in 2020. The
most frequent tumor sites (not including non-melanoma skin cancer) were prostate for men
and breast for women, accounting for 25.1% and 30.5% respectively.

1.1.1 Cancer definition and diagnosis
According to the WHO, cancer comprises a collection of diseases distinguished by the un-
controllable proliferation and dissemination of abnormal cells. In [3, 4], cancer is defined
as a stepwise malignant transformation that can be characterised by a sequence of biolog-
ical hallmarks as acquired functional capabilities, as illustrated in fig. 1.2. This heuristic
conceptualization condenses the complexity of phenotypes and genotypes of cancer into a
provisional set of core principles.

Various diagnostic tools such as laboratory tests, imaging, endoscopic examinations,
biopsy and histopathology examinations can be used to detect cancer. Imaging is one of
the most frequently used diagnostic tools as it precisely locates and visualizes the tumor
cells in an non-invasive way. Modern imaging techniques for cancer diagnosis include x-
ray, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission
tomography (PET).
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Figure 1.1: The worldwide cancer incidences and the most common entities in 2022.
Own figure with the information from the International Agency for Research on Can-
cer (IARC)[1]. (Own figure)

1.1.2 Treating cancer with radiotherapy

Traditional cancer treatments are radiotherapy, surgery and chemotherapy, or a combina-
tion. Since the discovery of x-ray by Wilhelm Conrad Röntgen in 1895, radiotherapy has
taken a crucial role for cancer treatments, with nearly 50% of all cancer patients receiving
radiotherapy in their course of treatment [5]. The main goal of radiotherapy is to deprive
cancer cells of their cell division potential with maximum dose while avoiding altering the
cell cycles of surrounding healthy cells with minimum dose. Radio-biologically, radiation
damages deoxyribonucleic acid (DNA) and triggers cell repair or cell death mechanisms.
Healthy cells are more efficient in repairing themselves at a faster rate and retaining their
normal function status than the cancer cells. Conversely, for cancer cells, such radiation-
induced damage leads to higher rates of sterilization. Due to this, cancer cells have smaller
fractionation sensitivity than normal cells. In other words, cancer cells repair and repopu-
late more slowly than normal cells after irradiation. Due to these fractionation sensitivity
differences between normal and cancer cells, modern radiotherapy methods irradiate pa-
tients in a course of fractions with a low radiation dose. Dose prescription and fractionation
are discussed in section 2.1.3.
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Figure 1.2: The ten hallmarks of cancer underline the fundamental principles of cancer
development. Own figure adapted from [4].

1.2 Image-guided radiotherapy
The primary objective of image-guided radiotherapy (IGRT) is to integrate in-room imag-
ing scans with radiotherapy systems for patient positioning and target localization. This
allows for verification of the tumor and surrounding organs before and during each treat-
ment, and accurate treatment delivery.

The three major classes of in-room imaging techniques using x-rays integrated into
IGRT are radiographic imaging, fluoroscopic imaging and tomographic imaging. In radio-
graphic imaging, 2D projections or planar images are acquired. In fluoroscopic imaging,
a continuous stream of planar x-ray images is acquired to monitor intra-fractional patient
motion based on anatomical landmarks or fiducial markers. In tomographic imaging, pro-
jections are acquired at different gantry angles which allows to reconstruct volumetric cone
beam computed tomography (CBCT) images.

The in-room imaging employed in this project is kilovoltage (kV) CBCT, which can for
example be mounted as an onboard X-ray Volume Imaging (XVI) system on the gantry
of a Synergy medical linear accelerator (version 5.52, Elekta, Sweden). Figure 1.3 shows
one of the XVI systems installed in the Department of Radiation Oncology, LMU Munich
University Hospital (Großhadern campus).

Before initiating IGRT, the patient undergoes a planning CT (pCT) scan to visualize
the tumor and surrounding anatomies. Based on the planning images, radiation oncologists
delineate the target volumes and organ-at-risk (OAR) that need to be spared (see details
in section 2.1.2). Medical physicists create a treatment plan in the treatment planning
system (TPS), which outlines the radiation dose, beam angles, and treatment techniques
to be used. The final plan has to be approved by a radiation oncologist.

To deliver conformal doses of radiation to the tumor while sparing surrounding healthy
tissue, external beam radiotherapy techniques such as intensity modulated photon radio-
therapy (IMRT) and volumetric modulated arc therapy (VMAT) [6] are applied. In IMRT,
the intensity of each beam from static positions is modulated to achieve the desired dose
distribution through the use of multileaf collimators (MLC). VMAT is a form of rotational
IMRT that delivers radiation in a continuous arc around the patient. In the presence
of inter-fractional anatomical changes over a course of treatments, the difference between
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Figure 1.3: One of the Elekta medical accelerators with a gantry-mounted CBCT scanner
(XVI) installed in the LMU Munich University Hospital (Großhadern). kV x-ray source
and kV flat panel detector are used for CBCT imaging. MV x-ray source and MV flat
detector panel are used to deliver and verify the treatment radiation. (Own figure)

acquisition date of the pCT and the actual treatment day reduces the accuracy of dose
delivery.

With in-room CBCT imaging, the patient undergoes a scan on the linac treatment
table right before the treatment. These updated images are then registered to the pCT
to obtain transformation parameters for positioning. Figure 1.4 illustrates the general
schematic CBCT-guided radiotherapy workflow with patient positioning.

As a result, IGRT enhances geometric accuracy as it provides an updated measurement
of the patient treatment position. Such verified consistency of planned and actual posi-
tion can reduce the extra margins of contours and the treatment uncertainties in various
treatment sites [7, 8, 9, 10].

Alongside position verification, the primary objective of the thesis is to enhance IGRT
by unlocking the potential use of in-room CBCT for treatment dose adaptation, while
concurrently reducing the x-ray imaging dose in each CBCT scan.
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Figure 1.4: A general schematic workflow for in-room IGRT with patient position correc-
tion. The in-room CBCT images would be registered to pCT images. When correction is
needed, the patient position is corrected by adjusting the couch position. If no correction
is needed or when correction is completed, treatment radiation would be delivered. (Own
figure)
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Chapter 2

Workflow of CBCT-guided adaptive
radiation therapy

In IGRT, CBCT imaging is used to assess the daily patient anatomy and to align patients
in the treatment position. As the fractionated treatment progresses, anatomical changes
may occur. Particularly in prostate cancer patients, inter-fractional changes due to bladder
filling and rectum air pockets can be substantial (as shown in fig. 2.1). These changes may
shift the surrounding tissues and diverge from the original planning contours, affecting
radiation dose received by these OARs [11]. In such cases, plan adaptation becomes essen-
tial to ensure accurate delivery of radiation while minimizing exposure of healthy tissue.
In CBCT-guided adaptive radiotherapy (ART), anatomical changes during the course of
treatment, which can be visualised by in-room CBCT scans, are taken into account by
adapting the treatment plan. Therefore it is actively utilized in clinical practice across
various organ sites [12, 13, 14, 15].

This section summarizes briefly the main clinical workflow of CBCT-guided ART. These
steps include initial treatment planning (section 2.1), in-room CBCT imaging (section 2.2),
online adaptation (section 2.3), and radiation delivery (section 2.4).

2.1 Initial treatment planning

2.1.1 Planning image acquisition
As mentioned in section 1.2, IGRT begins with an initial pCT scan to define the tumor
locations to be treated and to identify surrounding critical structures (such as bladder and
rectum) to be spared. Each patient is scanned typically two to three weeks before the start
of the treatment course for initial treatment planning.

In CT scans, each image pixel intensity is represented by a CT number, or a Hounsfield
unit (HU) value, which represents the radiodensity of the tissues. Suppose a voxel has
a mean linear attenuation coefficient µ, its corresponding HU is defined by the following
formula:
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Figure 2.1: CBCT images of two exemplary prostate cancer patients over the course of
fractionated treatment. In both patients, the filling of the bladder and the shape of air
pockets in the rectum varied from fraction to fraction. (Own figure)

HU = 1000 × µ − µwater

µwater − µair
, (2.1)

where µwater and µair denote linear attenuation coefficients of water and air. The HU
scale assumes water as 0 HU and air as −1000 HU.

2.1.2 Target and organ delineations
Based on the pCT images and potentially additional images such as MRI or PET images,
radiation oncologists identify and manually contour the target volumes and OARs, which
are defined as the following scheme according to [16]. Figure 2.2 illustrates the contouring
concepts of the target volumes and OARs.

• Gross Tumor Volume (GTV): The GTV includes the visible extent and location
of malignancy. The GTV can be further classified as primary tumor (GTV-T),
metastatic lymphadenopathy (GTV-N), or other metastases (GTV-M).

• Clinical Target Volume (CTV): The CTV describes the tissue volume that encom-
passes a GTV and/or microscopic malignant disease. Such tissue volume must be
irradiated to achieve the therapeutic objective.

• Internal Target Volume (ITV): The ITV includes the CTV along with an internal
margin. Such margin accounts for the changes in the position and shape of the CTV
relative to the reference frame of the patient, typically defined by the bony anatomy.
These changes can be caused e.g., by respiratory motion.

• Planning Target Volume (PTV): The PTV is generated by incorporating a margin
around the CTV or ITV. This margin accounts for various factors such as uncertain-
ties in patient setup, organ motion, and variations in radiation delivery. The purpose
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Figure 2.2: Contouring concepts of the target volumes and OARs in radiation oncology.
(Own figure)

of the PTV is to ensure that the prescribed radiation dose is delivered to the entire
CTV.

• Organ-at-risk (OAR): The OAR refers to the healthy organ that is near the treatment
region and could be inadvertently irradiated during the treatment. The OAR exhibits
a level of sensitivity to radiation where the dose administered by a treatment plan
could be substantial in comparison to its tolerance level. For instance, in prostate
cancer radiotherapy, among others, bladder, rectum and urethra are considered as
OARs.

2.1.3 Dose prescription and fractionation
Based on the characteristics of the tumor and surrounding tissues, as well as the treatment
goals, the radiation oncologist determines the treatment prescription for each patient, which
specifies the total therapeutic dose to be delivered to the target volumes over the course
of treatment. The dose to the OARs adhere to guidelines in the Quantitative Analysis
of Normal Tissue Effects in the Clinic (QUANTEC) report [17], which recommends the
maximum tolerable dose to individual OARs.

The prescribed dose is administered over multiple radiotherapy sessions rather than
in a single session, with partial doses delivered throughout several weeks. This treatment
scheme, known as fractionated radiotherapy, is based on the understanding that healthy
tissue cells recover more quickly from radiation-induced damage compared to tumor cells.
With low doses per fraction, the risk of severe side effects can be reduced in the sur-
roundings of dose-sensitive organs. The biological effect of a radiation dose considering the
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fractionation scheme and the characteristic radiosensitivity of the tissue being treated can
be formulated as biologically effective dose (BED):

BED =n × d × [1 + d

α/β
]. (2.2)

where n denotes the number of fractions, d denotes the dose per fraction and α/β
denotes the radiation biological value. Compared to normal cells, cancer cells have higher
α/β values and are less sensitive to the sparing effect by fractionation. In clinical practice,
a prostate cancer patient, for example, is usually prescribed with 37 fractions of 2 Gy. This
approach balances the goal of killing tumor cells while minimizing damage to surrounding
healthy cells and allowing time for normal tissue repair between treatments.

2.1.4 Treatment plan optimization and evaluation
With such a prescription and CT images, a patient-specific radiation treatment plan can
be created using a TPS. The aims of such a plan is to deliver a homogeneous dose in the
target and a low dose outside of the target, ideally with steep dose gradients.

In the TPS, the plan is created on the pCT images, after specifying the isocenter, gantry
angles, collimator angles and the gantry rotation direction. Next, in the plan optimization
step, objectives and constraints for PTV and OARs are specified. Various dose calculation
algorithms, such as Monte Carlo methods [18] and collapsed cone [19] are readily available
in the TPS. All algorithms assume a discretized patient model as a grid of voxels to calculate
the photon interaction with the tissue. The probabilities of these interactions depend on
the electron density and elemental composition, which is calculated from HU values on
the pCT images using a calibration curve or conversion table for each individual tissue.
The dose calculation also takes into account factors such as beam attenuation, the fluence
modulation with the MLC, scatter, and tissue heterogeneity. Based on the entered beam
parameters, the TPS performs dose calculations with the selected algorithm, yielding a
preliminary dose distribution in the patient’s anatomy. With the initial dose calculation,
the plan is adjusted to define the optimal beam and MLC settings in an iterative process.

To evaluate the treatment dose planning, a dose-volume histogram (DVH) is computed
to visualize graphically the relationship between the dose received by a particular volume
of tissue, such as PTV, CTV, rectum, bladder, and the percentage of that tissue volume
receiving a specific dose.

2.2 In-room CBCT scan
To ensure that the tumor’s position relative to the beam is accurate, a CBCT scan is
acquired using the onboard imaging system of the linear accelerator to align the patient
prior to treatment delivery.
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Based on the CBCT scan, an updated three-dimensional patient’s anatomy can be
accessed, which allows us to register the patient position with the pCT images in the
TPS. The transformation parameters are computed with six degrees of freedom and can
be used to align the patient couch with the treatment position. Figure 2.3 illustrates an
example of rigid registration of the in-room CBCT with the pCT images, and the resulting
transformation parameters.

In addition to patient positioning, CBCT images visualize interfractional variations of
anatomical structures. If the CBCT scan reveals that the tumor or critical structures have
deviated from their planned position, the treatment plan would have to be adapted.

Figure 2.3: An exemplary rigid registration of a pelvic in-room CBCT to pCT in a TPS
(RayStation, version 10.01, RaySearch, Sweden). The transformation parameters (top
right panel) are computed to align the patient with the treatment position. (Own figure)

2.3 Online adaptation
Over the course of fractionated treatments, the anatomy of prostate cancer patients can
have considerable deviations from the initial plan due to the bladder filling and rectum air
pockets (as shown in fig. 2.1). The contours of the target volume and OARs on pCT images
might not match with the in-room CBCT images. Consequently, the efficacy of the highly
conformal treatment plan diminishes when the target volume fails to correspond to the
patient’s updated anatomy. If we apply only one treatment plan throughout all fractions,
errors in dose distribution might lead to radiation-induced toxicities in surrounding normal
cells or underdosage of the tumor.
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Since late 1990s, adaptive radiotherapy is generally described as modifying the radia-
tion treatment plan offline to accommodate inter-fractional anatomical changes [20]. For
CBCT-guided online adaptation, changes in the patient’s anatomy are identified with in-
room CBCT scans and a new treatment plan is generated accordingly with the patient on
the table.

The online adaptation workflow is illustrated in fig. 2.4.

Figure 2.4: Workflow of CBCT-guided online adaptation radiotherapy. (Own figure)

2.3.1 The importance of correcting CBCT

Conventionally, treatment plan adaptation often requires a new offline pCT scan of the
patient. This requires a significant amount of time for arranging a new CT scan and a
new treatment planning. Ideally, we can use the in-room CBCT images to assess the daily
patient anatomy and re-optimize a treatment plan accordingly when the patient is still
positioned on the table. However, CBCT images are typically insufficient to infer treatment
dose [21]. First, CBCT images contain various artifacts and inaccurate CT numbers (refer
to section 3.3). Second, CBCT images often have lower soft tissue contrast compared to
pCT images. This presents a greater challenge and extends the duration to accurately
delineate target volumes and OAR structures, especially in small structures or complex
regions with ambiguous boundaries. One can generate a virtual CT (vCT) with deformable
image registration (DIR)(refer to section 3.4), however, geometrical inaccuracies are usually
seen in the organ shapes due to registration uncertainties or large discrepancies such as
the bowel air pockets, ultimately affecting the treatment accuracy.

A few conventional non-AI ways to correct CBCT images for plan adaptation are dis-
cussed in section 3.4. However, these corrections require a considerable amount of time.
Therefore, using CBCT images for online adaptation remains challenging.
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2.3.2 The current usecases of corrected CBCT in online adapta-
tion

While traditional CBCT correction methods may fall short in achieving online adapta-
tion, a new commercial CBCT linac system, Ethos (Varian Medical Systems, Palo Alto,
California, USA), is able to correct CBCT scans by registering pCT images into it and
instantaneously visualize the propagated contours on the daily patient anatomy with CT
diagnostic quality. Studies [22, 23] have demonstrated that the application of Ethos system
is feasible in clinical workflows to account for inter- and intra-fractional variations. In ad-
dition, studies [24, 25] have shown that Ethos online adaptive recontouring and replanning
processes improved treatment dose accuracy. More recently, an upgraded CBCT imager
HyperSight (Varian Medical Systems) was launched with the possibility to be mounted in
a Halcyon or Ethos ring-gantry system [26, 27] and to scan patients within six seconds and
output volumetric images with accurate HU for treatment dose adaptation. These studies
suggested that it is possible to use full dose CBCT images for online adaptation in the
clinical practice.

2.4 Radiation delivery
Radiation is delivered by rotational irradiation in which the accelerator head rotates around
the patient. VMAT is commonly used in hospitals, simultaneously varying the dose rate
and shape of the radiation beam during the rotation. The radiation can be delivered from
multiple arcs from different angles. During each arc, the accelerator system modulates the
gantry speed, beam intensity, dose rate, and MLC shape according to the treatment plan.
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Chapter 3

Physics of cone-beam computed
tomography

In radiotherapy, CBCT scanners can be integrated into the linear accelerator system and
used as an image guidance technique to align the patient and verify the target position
right before the treatment. In general, a CBCT scan varies from a CT scan, which uses
a fan-shaped x-ray beam in a helical scanning trajectory to acquire each image slice of
the field-of-view (FOV). CBCT uses a pyramid shaped scanning geometry and a flat panel
detector which has extended rows perpendicular to the beam, which covers the entire FOV
with only one rotation of the gantry. In the following four sections, image acquisition
(section 3.1), reconstruction (section 3.2), image noise and artefacts (section 3.3), non-AI
image correction (section 3.4) and imaging radiation dose (section 3.5) are discussed.

3.1 Image acquisition

3.1.1 CBCT system
CBCT imaging is performed using a rotating gantry on which an x-ray source and a flat
panel detector are mounted. As illustrated in fig. 3.1, an ionizing radiation source emitting
a cone shaped x-ray beam is directed towards the center of the region of interest. The
x-rays are detected by a large two-dimensional (2D) flat panel detector situated on the
opposite side. The x-ray source and detector rotate around a central rotation point of
an object fixed within the area of interest. The cone beam is defined by the following
parameters: the size of the flat panel detector, the distance of the source to the detector
(SD) and the source to iso center distance (SC). The cone angle (θ) which is proportional
to the height of the panel size also defines the cone beam.

3.1.2 Flat panel detector
In radiotherapy, the flat panel detector is used to measure the x-rays attenuation in the
CBCT system [28, 29, 30]. The detector uses a structured Cesium iodide (CsI) scintillator
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to convert x-rays into light. Light is then converted into electrical charge in the photodiode,
which is integrated in each pixel of a thin-film transistor (TFT) array. This array is used
to collect and process these electrical signals.

In terms of the readout scheme, one TFT row is turned on at a time to collect the
charges, typically yielding rapid readout with 30 frames per second (fps) at half resolution
or 15 fps at full resolution and the pixel size of 1024 × 768 in a representative flat panel
detector [31]. These flat panel images cannot be directly used as dead pixels exist and
the pixel sensitivities varies across the panel. Dark and flood signals can be measured
and calibrated in the flat panel without an object while the x-ray source is off and on,
respectively. For the Elekta XVI CBCT scanners that are used in our hospital, the signal
SXVI is saved inverted and can be formulated as

SXVI = 216 − IXVI, (3.1)

where IXVI denotes the dark and flood corrected measurement. The signals are saved
as unsigned 16-bit integers, ranging from 0 to (216 − 1).

Figure 3.1: A CBCT system consists of an x-ray source and a detector. SD is the distance
of the source to the detector, and SC is the source to iso center distance. θ denotes the
cone angle proportional to the height of the panel h. (Own figure)

3.2 Image reconstruction
In CBCT, a reconstructed image depicts the spatial distribution of x-ray linear attenuation
coefficients. The signal collected on the detector is the x-ray intensity value attenuated
after an object according to the Lambert-Beer law. The line integral of the attenuation
coefficient distribution over the path of an x-ray beam, or projection, can be computed by
applying a negative logarithm to the ratio of the attenuated to the initial x-ray intensity:

PXVI = − ln
(

IXVI

I0

)
, (3.2)
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where PXVI denotes the projection, I0 and IXVI denote the initial and the measured
x-ray intensity, respectively.

For parallel beam projections, we can apply the filtered backprojection (FBP) algorithm
based on the Fourier slice theorem to obtain a cross-sectional image of the object using its
projections. According to [32], the object can be computed as

f(x, y) =
∫ π

0
pF (θ, s)dθ, (3.3)

where (x, y) is an image point coordinate, and s denotes the distance between the origin
of the coordinates and the x-ray line that passes through the point (x, y) with the angle θ.

s = x cos θ + y sin θ. (3.4)

pF (θ, s) denotes the filtered projection data. Assuming that a projection is a signal with
limited bandwidth in the frequency domain, the filtered projection data can be expressed
in [32] as

pF (θ, s) =
∫ +∞

−∞
p(θ, s′) · h(s − s′)ds′, (3.5)

where p(θ, s) denotes the measured projection at location s. h(s) denotes the ramp
filter.

3.2.1 Fan beam reconstruction
In clinical CBCT scanners, near-point x-ray sources are used to emit x-ray in a fan beam
(2D) or cone beam (3D) projection. In fan beam reconstruction, the x-ray data is required
to be sorted into parallel coordinates before applying FBP. In the parallel beam geometry,
it is sufficient to scan only θ ∈ [0, π]. As illustrated in fig. 3.2, an x-ray source rotates in a
circle trajectory RF (− sin β, cos β), where RF and β denotes the radius and the rotational
angle respectively, an equispatial fan beam projection g(β, t) can be produced with respect
to t-axis on a virtual detector. According to [32], this fan beam projection can be expressed
as a parallel beam projection using this formulation:

p(θ, s) = g(β, t)

= g(θ − arcsin s

RF

,
sRF√

R2
F − s2

). (3.6)

After rebinning the projections, one can reconstruct the image using the parallel FBP
algorithm as shown in eq. (3.3) and eq. (3.5). On the other hand, one can also compute
a reconstruction algorithm using fan beams. We can pre-weight and filter the fan beam
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Figure 3.2: An illustration of an equispatial fan beam projection g(β, t). In fan beam
reconstruction, the virtual detector is illustrated along t-axis line. (Own figure)

projection signal with a weighted ramp filter before applying FBP. According to [32], the
FBP algorithm for fan beams in the equispatial plane can be written as

f(x, y) = 1
2

∫ 2π

0

RF
2

(RF + x sin β − y cos β)2 ×
∫ +∞

−∞
g(β, t) RF√

RF
2 − s2

· h(t′ − t)dtdβ, (3.7)

where

t′ = (y sin β + x cos β)RF

RF + x sin β − y cos β
. (3.8)

Similar to the computational structure for the FBP, the fan beam reconstruction in-
volves two weighting factors during the convolution and backprojection steps as formulated
in eq. (3.7).

3.2.2 Cone beam reconstruction using FDK algorithm
In CBCT scans, projection data is acquired in a 3D cone beam geometry. Such a circular
trajectory, however, does not sufficiently cover the Radon space. Therefore we need an
approximate reconstruction method: the Feldkamp, Davis, Kress (FDK) algorithm [33], in
which we can simplify the cone beam reconstruction to a fan beam reconstruction with a
flat panel detector. As illustrated in fig. 3.3, this transformation involves re-projecting the
cone beam data onto a virtual plane (u, v) parallel to the real detector plane. This virtual
plane is located at the SC away from the x-ray source at the axis of rotation (z-axis). This
process flattens the cone beam data into a set of fan beam projections.

The cone beam reconstruction algorithm is similar to fan beam filtered backprojec-
tion with adjusted weighting schemes. According to [32, 33], for a circular trajectory
RF (− sin β, cos β), the FDK algorithm is formulated as
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Figure 3.3: An illustration of FDK reconstruction with a virtual detector plane. In FDK
reconstruction, the virtual detector is illustrated on (u, v)-axis plane. (Own figure)

f(x, y, z) =1
2

∫ 2π

0

RF
2

(RF + x sin β − y cos β)2

×
∫ +∞

−∞
p(β, u, v′) RF√

RF
2 + u2 + v′2

· h(u′ − u)dudβ,
(3.9)

where

v′ = zRF

RF + x sin β − y cos β
. (3.10)

Similar to eq. (3.7), the pre-weighting factor in eq. (3.9) is multiplied by the cosine of
the cone angle. According to [32, 33], it can be computed as

RF√
RF

2 + u2 + v′2
=

√
RF

2 + u2√
RF

2 + u2 + v′2
· RF√

RF
2 + u2

= cos k · cos γ. (3.11)

where k and γ denote the cone angle and the fan angle for a specific x-ray, respectively.

3.3 Image noise and artefacts
CBCT image quality is generally lower than normal CT due to the noise and artefacts.
The image noise can be understood as the stochastic variation in voxel values, i.e. the
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fluctuations in voxel values which arise independently of the changes in attenuation coeffi-
cient of the images structure. Depending on the position in the image, the noise in CBCT
is non-stationary, due to the fact that the mean and variance of radiation intensity at the
central region of the detector vary from those at the edge of the detector. The contrast,
which represents the signal difference among regions in a CBCT image is also lower than in
a CT image. In the followings, several factors that cause noise and artefacts are discussed.

• X-ray scatter: Scattering is one of the main sources of artefacts in CBCT. When
x-rays pass through a patient’s body, photons can lose energy due to Compton in-
teractions with objects and produce scattered radiation. Most photons have been
scattered at least once before reaching the detector. In addition, the flat panel detec-
tors usually do not have anti-scatter grids, capturing more scatter than a narrow CT
detector. These scatter artefacts can vary depending on the air gap in the system ge-
ometry, object size, or the FOV. As a result, artifacts occur in a form of low-frequency
shading and streaks, especially in the regions of structures with high attenuation.

• Beam hardening: The lower energy fraction of the x-ray spectrum is absorbed faster.
This results in an increase in mean beam energy and non-linear variations in the x-ray
spectrum as it passes through different tissue and thickness. Especially when passing
through dense tissues or materials (e.g. bone or metal), the beam becomes harder
and these regions are reconstructed with incorrect attenuation values, exhibiting low
frequency nonlinear attenuation distortions (cupping artefact) throughout the image.

• Aliasing artefacts: The Nyquist sampling theorem states that the sampling frequency
should be greater than twice the highest frequency present in the signal. The aliasing
artefacts in the CBCT image are mainly due to the divergence of the cone-shaped
beam. The voxels near the source will be sampled more densely than those near the
detector, therefore causing aliasing at the periphery.

• Image lag and ghosting: In the detector, residual x-ray signals exist in subsequent
frames (lag). Or the sensitivity of the scintillator changes after exposure (ghosting).

• Cone beam artefacts: From a circular source–detector orbit, CBCT scans the volume
with incomplete sampling. The edges parallel to the source-detector orbital plane
show bright or dark signal smearing, which intensify as the distance from the central
axial plane increases.

• Lateral truncation: It is caused by the FOV being smaller than the patient’s lateral
extent. Some patients may exceed the FOV dimensions in spite of the use of shifted
detectors. The artefacts appear as bright rings and dark cups at the periphery of the
patient outline in the reconstructed image.

• Motion artefacts: It is caused by respiratory motion of the patients. Especially in
the lung region, the breathing causes the location of the anatomy to change, causing
inconsistency in the the continuously acquired projections. One correction to this in
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4D CBCT applications is to extract the breathing signal and bin the projections into
certain breathing frames, so as to reconstruct “static” 3D images along the breathing
cycle.

3.4 Non-AI scatter corrections
In order to correct CBCT image intensity, CBCT scatter correction techniques have been
developed, including a look-up-table based solution [21], the use of vCT from pCT-to-
CBCT registration [34, 35, 36, 37, 38, 39] and Monte-Carlo (MC) based methods [40, 41,
42]. Although several methods have been successful in demonstrating accurate CBCT-
based dose calculation in various anatomical sites [43, 44, 45, 46], there are certain con-
straints. For example, DIR based methods that achieve accurate dose calculation in the
head and neck (HN) [21, 36], might have more DIR inaccuracies for a pelvic scan, which
has greater inter-fractional changes in anatomy (as discussed in section 2.2). In addition,
the time required for correcting images using vCT or MC based methods, which takes up
several minutes to hours, restricts the implementation for online adaption.

Here we discuss the CBCT scatter correction technique [45, 47] that has been applied
to generate ground-truth images in this thesis, in the following referred to as CBCTcor (as
shown in fig. 5.1). Several studies have validated this method [48, 49], in which a vCT
image is generated using a DIR algorithm mapping pCT onto the original CBCT images,
referred to as CBCTorg, and used the vCT as a prior for scatter correction of the acquired
projections.

In detail, we first forward project the vCT according to the geometry of the CBCT
system to obtain primary beam projections (Ipri). The scatter and other low frequency
deviations (Isca) are computed as the difference between a scaled original CBCTorg projec-
tion (Iorg) with ISF and (Ipri) followed by a smoothing function f (a median filter with
dimension 25 × 25 pixels, followed by a Gaussian filter of 1.5 pixels standard deviation):

Isca = f(ISF × Iorg − Ipri). (3.12)

The scatter corrected projection (Icor) can be estimated as the difference between the
original measured CBCTorg projection and the scatter contribution:

Icor = ISF × Iorg − Isca, (3.13)

With Icor, a presumably scatter-free CBCT, in the following referred to as CBCTcor (as
shown in fig. 5.1) can be computed. CBCTcor has HU values equivalent to the pCT, and
ideally shares identical anatomical information with CBCTorg.

3.5 Radiation dose
While x-ray beams penetrate the body, ionizing radiation can damage DNA and cause
gene mutations during cell repair, potentially leading to cancer. Here we discuss the
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standardized metrics according to the International Commission on Radiological Protection
(ICRP) [50, 51] that can describe such radiation in section 3.5.1, and the specific metrics
[52, 53, 32] for CT and CBCT in section 3.5.2.

3.5.1 Radiation dose units
• Exposure: It refers to the quantity of charge per unit mass of air generated by an

x-ray beam. Its SI unit is expressed as coulomb per kilogram (Ckg−1).

• Kerma: It is the non-stochastic amount of the initial kinetic energy transferred to
charged particles by uncharged radiation per unit mass dm. Suppose dEkinetic repre-
sents the expectation value of the sum of the kinetic energies, kerma can be formu-
lated as

K = dEkinetic

dm.
(3.14)

The SI unit is expressed as joule per kilogram (Jkg−1) or gray (Gy).

• Absorbed dose: It is the quantity of energy released in matter or tissue per unit mass,
with an unit of gray (Gy) or joule per kilogram (Jkg−1).

D = dε

dmtissue
. (3.15)

where dε denotes the mean energy imparted to tissue of mass dm by ionising ra-
diation, e.g. x-ray. The absorbed dose of a patient from a CBCT scan cannot be
directly measured.

• Equivalent dose: Even in the identical absorbed dose, the biological effects of different
radiation types on different tissue can vary. According to the standardization by
ICRP 103 [50], for a certain tissue type, the equivalent dose additionally considers a
radiation specific weighting factor wr. For instance, proton or alpha particles have a
higher weight than photons. Suppose Dt,r is the energy dose applied to the tissue t
by the radiation type r, the equivalent dose Qt can be formulated as

Qt =
∑

r
wrDt,r. (3.16)

The SI unit is typically written as joule per kilogram (Jkg−1) or Sievert (Sv). In
CBCT scan, x-rays have wr equal to 1.
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• Effective dose: In addition to the radiation specific weighting factor wr, the effec-
tive dose also considers the tissue specific weighting factor wt, which represents the
proportional impact of a tissue on the overall health detriment. The tissue weighing
factor is determined by the radiosensitivity of the organ and also standardised by
ICRP. The effective dose (E) estimates the total weighted equivalent doses in all
tissues by all radiation types. It can be formulated as

E =
∑

t
wtQt =

∑
t

wt
∑

r
wrDt,r. (3.17)

The SI unit is identical as of the equivalent dose: joule per kilogram (Jkg−1) or
Sievert (Sv).

3.5.2 CT and CBCT dose indices
Unlike planar x-ray, CT possesses a helical acquisition geometry as the x-ray source rotates
around the patient body. Moreover, the dose distribution of CT exhibits higher radial
symmetry than that of a planar x-ray scan. Thus, CT and CBCT require additional dose
quantities for quantification.

CT dose index (CTDI) is the amount of radiation dose involved during a CT scan [32].
This index is a comparative measure of the x-ray output and the dose recorded in a specific
size phantom. Therefore it is an indication of the patient dose but not the dose absorbed
by patients. The most basic common form is CTDI100, for which a pencil-shaped ionization
chamber with a length of 100 mm is used to measure the total exposure of a phantom in
an axial CT scan.

CTDI100 = 1
L

∫ +50mm

−50mm
D(z)dz, (3.18)

where L denotes the slice width, and D(z) represents the dose profile along the lon-
gitudinal axis z. The dose profile is normalized by the width of slice to approximate the
average dose from scans across a 100 mm length of adjacent slices. Depending on the
pencil chamber location, this CTDI100 term can be weighted with the values when pencil
chambers are inserted to the center or to the periphery of the phantom. The average dose
CTDIavg

w can be expressed as

CTDIavg
w = 1

3CTDIcenter
w + 2

3CTDIperipheral
w , (3.19)

where CTDIcenter
w and CTDIperipheral

w denotes the central and the peripheral dose of the
phantom, respectively. Considering a helical 3D CT scan which has a table movement
per rotation d and a width of the x-ray beam s, the volumetric CTDI (CTDIVOL) can be
formulated as
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CTDIVOL = CTDIavg
w

pitch , (3.20)

where the pitch is defined as

pitch = s

d
. (3.21)

CTDIVOL can thus reflect the relative dose among various protocols and the CT systems
from different vendors.

For CBCT, there is no direct translation from CTDI from the American Association
of Physicists in Medicine (AAPM) Therapy Physics Committee Task Group 180 [54]. In
2010, Hyer and Hintenlang have measured and evaluated the cone beam dose index (CBDI)
value, representing the mean volumetric dose within the CTDI phantom [53]. For the pelvic
CBCT scan considered in this thesis, [53] reported a CBDI value (table 2 in [53], chest
protocol) for the identical configuration as the protocol used in this thesis (M20 protocol
with 120 kV and a bowtie filter at an Elekta XVI scanner) of 1.62 mGy/100 mAs. A
body CTDI phantom with a length of 15 cm and a diameter of 32 cm was used for the
measurement using a pencil chamber of a length 100 mm.



Chapter 4

Deep learning-enabled full dose
CBCT-to-CT translation

In CBCT-guided online adaptive radiotherapy, the patients come to the treatment room
and receive a CBCT scan for positioning. When adaptation is needed due to tumor location
or anatomical changes, ideally the CBCT image can be used for treatment re-planning.
However, as discussed in section 3.3, CBCT image quality is insufficient for treatment dose
calculation. The scatter correction method (section 3.4), which can take up more than 10
minutes, is also impractical for the online adaptation workflow.

In the last decade, leveraging a deep convolutional neural network (CNN) to improve
CBCT image correction has attracted a lot of attention. With the fast developments
in deep learning (DL) algorithms, many studies have applied various types of network
architectures to translate volumetric CBCT to CT image quality, and generate synthetic
CT (sCT) images. These trained DL models can correct CBCT images within seconds and
enable online adaptation.

In this chapter, we discuss the three main DL algorithms (U-Net, cycleGAN and CUT)
and their applications in full dose CBCT-to-CT translation tasks in section 4.1, section 4.2
and section 4.3.

4.1 U-Net

Along the developments in DL algorithms, U-Net, developed by Ronnenberger et al. in
2015 [55], has been widely adopted beyond the original application in biomedical image
segmentation. Due to its flexibility of architecture design, U-Net has been applied in many
other medical image applications such as image denoising, image reconstructions, modality
transfer etc.
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4.1.1 Network architecture and loss function
An exemplary U-Net architecture is illustrated in fig. 4.1. The network has an encoding and
a decoding path. In the encoding path, the image features are typically extracted along
4 convolutional layers. For 2D image training, each layer contains a 3 × 3 convolution
with padding, followed by a batch normalization, a rectified linear unit (ReLU) and a
max pooling with stride 2 for downsampling, decreasing the image spatial dimensions by
half. As the image passes through the encoder, the number of channels doubles after each
downsampling. This allows the network to capture complex features at various scales.

In the decoding path, feature maps are up-sampled by the same number of layers
containing a 3 × 3 transposed convolution that halves the number of channels. To retain
details lost during downsampling, skip connections are applied to concatenate feature maps
from the corresponding layers in the encoding path to those in the decoding path. Each
layer is followed by a a batch normalization and ReLU. At the last layer, a 1 × 1 convolu-
tion is applied to map the feature representations from the final up-sampling layer to the
reconstructed output image. The above hyper-parameters can be adjusted and optimized
depending on the usecases.

U-Net is typically trained with paired datasets, for which each pixel in the predicted
image is compared to a corresponding ground truth. For instance in the image translation
task, mean absolute error (MAE) or mean squared error (MSE) can be computed along
the training process. A typical loss function can be formulated as

L = λ1 · 1
n

n∑
i=1

|yi − ŷi| + λ2 · 1
n

n∑
i=1

(yi − ŷi)2, (4.1)

where n represents the number of pixel in an image, y and ŷ denote the pixel intensities
of the predicted image and of the ground truth, respectively. λ1 and λ2 are the weights of
the MAE and the MSE terms, respectively.

4.1.2 Related studies
There are a number of studies translating CBCT to CT images using U-Net. In the pelvic
region, Kida et al. [56] trained a U-Net with CBCT images and vCT images as input and
ground truth to convert CBCT images into sCT images. Other U-Nets were trained for
projection based CBCT image correction with MC simulated scatter distributions [57, 58]
or with corrected projections obtained by a vCT-based algorithm [59, 60]. In the thoracic
region, Thummerer et al. [61] trained a U-Net based deep CNN to convert 4D CBCT images
to sCT images, and demonstrated high HU and dose calculation accuracy for adaptive
proton therapy.

The sCT images using U-Nets are typically evaluated in HU, photon and proton dose
calculation accuracy. For instance, Landry et al. [60] investigated three U-Nets trained
with original and corrected CBCT projections, original CBCT and vCT images, and orig-
inal and corrected CBCT images, and computed HU accuracy of sCT (MAE 48/88/56
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Figure 4.1: An exemplary U-Net architecture. Each box denotes a multi-channel feature
map, and the number of channels is shown above the box. The 2D image/feature map
sizes are indicated at the lower left corner of the box in the encoding path and lower right
corner in the decoding path. Purple boxes represent the concatenated feature maps, and
the arrows represents the various operations indicated in the lower right black box. Conv
(3 × 3), BN and ReLU denote convolution with a kernel size of 3 × 3, batch normalization
and rectified linear unit, respectively. Convt (3 × 3) denotes transpose convolution with a
kernel size of 3 × 3. (Own figure)

HU) from each U-Net compared to the reference corrected CBCT. VMAT and proton pen-
cil beam scanning single field uniform dose plans were optimized on the reference CBCT
images and recalculated on sCT images. These sCT images achieved 1% photon dose
difference pass rates ≥ 98.4%.

4.2 Cycle-consistent generative adversarial network
(cycleGAN)

A cycle-consistent generative adversarial network (cycleGAN) can be used for unpaired
CBCT-to-CT translation. First developed in 2017 by Zhu and Park et al. [62], cycleGAN
is able to extract the features from CBCT and CT images and translate CBCT input
images into sCT images without corresponding CT image ground truths. This unpaired
training scheme eliminates the geometrical inaccuracies that could be caused by pCT to
CBCT image registration or vCT generation.
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4.2.1 Network architecture and loss function

The network architecture of cycleGAN in this thesis mainly follows the original work by
Zhu and Park et al. [62] and another implementation by Ge et al. [63]. In general,
cycleGAN consists of two sets of generators and discriminators. Each set is trained in a
forward and a backward cycle, respectively. For the generator, the nine-blocks residual
network architecture suggested by Johnson et al. [64] is used. The architecture includes
a downsampling process, which reduces the input dimensions from 256 × 256 to 32 ×
32 using three 2D convolutional layers (each with a stride of 2 and a kernel size of 3).
The feature map with reduced spatial dimensions and increased depth is passed into the
residual blocks. Each block has convolutional layers to refine and transform the features
(e.g. the texture or style changes). The image details are retained by adding the initial
feature map to the residual block’s output. Such refined feature map is then passed into
an upsampling process, which restores the image dimensions from 32 × 32 to 256 × 256
through three 2D transpose convolutional layers (each with a stride of 2 and a kernel size of
3). Instance normalization, suggested by Ulyanov et al. [65], is used to allow the networks
to learn domain-specific features and to preserve spatial details in each image. For the
discriminator, a PatchGAN network, suggested by Isola et al. [66], with a receptive field
70 × 70 is employed. Four convolutional layers are used to extract features of the images,
each followed by LeakyReLU as the activation function, except for the last layer. The
discriminator evaluates overlapping patches across the whole output image predicted by
the generator, and determines scalar values between 0 (fake) and 1 (real).

In the context of CBCT-to-CT translation in image domain, two distinct sets of gen-
erators and discriminators are trained. In the forward cycle, the generator (GCT) seeks to
achieve the most efficient representation of a CBCT image, and generates a correspond-
ing sCT image. Meanwhile, the discriminator (DCT) differentiates between sCT images,
labeled as 0, and true CT images, labeled as 1. In the backward cycle, outputs of the
generator (GCBCT) and discriminator (DCBCT) are reversed. The two cycles of training are
illustrated in fig. 4.2.

The loss functions for both cycles are explained in the following. In the forward cycle,
the generator GCT is trained to transform CBCT images into CT images such that the
discriminator DCT cannot distinguish sCT images from CT images using an adversarial
loss function:

LCT = ECBCT[log(1 − DCT(GCT(CBCT)))] + ECT[log DCT(CT)], (4.2)

where GCT focuses on minimizing the first term ECBCT[log(1 − DCT(GCT(CBCT)))] by
generating sCT images that are highly comparable to CT images. DCT strives to maximize
both terms and improve its ability to differentiate between sCT images and true CT images.

In the backward cycle, GCBCT learns to inversely map the sCT images back to the
CBCT images, while DCBCT is trained to distinguish the generated CBCT images and the
true CBCT images:
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Figure 4.2: An exemplary cycleGAN architecture. GCT and GCBCT denote the generators
for mapping CBCT images to CT images and vice versa, respectively. DCT denotes the
discriminator for distinguishing sCT images with real CT images. DCBCT denotes the dis-
criminator for distinguishing synthetic CBCT images with real CBCT images respectively.
(Own figure)

LCBCT = ECT[log(1 − DCBCT(GCBCT(CT)))] + ECBCT[log DCBCT(CBCT)]. (4.3)

Using the adversarial loss formulated in eq. (4.2) and eq. (4.3), the generators GCT and
GCBCT learn to generate images of the target domain and deceive the discriminators DCT
and DCBCT, respectively.

By chaining the above cycles with a cycle consistency loss, an inverse-consistent map-
ping between the CBCT and CT domains can be established. During the forward cycle,
Lfor

cyc calculates the L1 norm between the output images generated by GCBCT and the input
CBCT images:

Lfor
cyc = ECBCT[∥CBCT − GCBCT(GCT(CBCT))∥1]. (4.4)

In the backward cycle, inputs are swapped for the corresponding cycle consistency loss:

Lback
cyc = ECT[∥CT − GCT(GCBCT(CT))∥1]. (4.5)

Combining the two losses, the loss function in the cycleGAN training is

LcycleGAN = LCT + LCBCT + λ1(Lfor
cyc + Lback

cyc ), (4.6)
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where λ1 denotes a weight factor for the cycle consistency loss. Here the objective
function can be formulated a an min-max optimization:

GCT, GCBCT = arg min
GCT,GCBCT

max
DCBCT,DCT

LcycleGAN(GCT, GCBCT, DCBCT, DCT), (4.7)

The goal of this function is to estimate the model parameters that effectively capture
and represent the underlying distribution of the image domains. Instead of a pixel-by-
pixel comparison, this approach allows the use of unpaired datasets for training. Once the
training is completed, we can apply GCT to translate CBCT images to CT images.

4.2.2 Related studies
cycleGAN and its variations have been widely used in CBCT-to-CT translation tasks. In
the pelvic region, Kurz et al. [67] trained a cycleGAN model using unpaired prostate
cancer patient datasets of CBCT images and pCT images, and generated sCT images in
pCT equivalent image quality with a reduced MAE with respect to corrected CBCT images
[49]. Similar training has been done in other pelvic region studies [68, 69]. Kida et al. [70]
trained a cycleGAN with additional losses, including total variation, gradient loss and
idempotent loss (a function to stabilize the mapping by minimizing the difference between
GCT(CBCT) and GCT(GCT(CBCT)), as well as GCBCT(CT) and GCBCT(GCBCT(CT))).
Liu et al. [71] suggested a two-step training method with a phantom-based U-Net and
a patient-based cycleGAN model to translate CBCT images to CT images. Unpaired
training is also applied for other regions, HN [72, 73], lung [73], and breast [73, 74]. Deng
et al. [75] demonstrated the generalisation of cycleGAN by training a cycleGAN model
with HN datasets and improved pelvic CBCT scans.

Apart from unpaired training, cycleGAN has the possibility to be implemented with an
additional regularization term to minimize the difference between the sCT images and the
corresponding CT images during training. A number of studies trained cycleGAN models
using paired datasets (CBCT images as inputs and registered CT images as ground truth)
in the pelvic region [76, 77, 78, 79, 80], or for brain or HN [76, 81, 77], pancreatic [82], liver
[83], thoracic [77, 84], breast[85], nasopharynx [86, 87] cancers. A few extra losses such as
histogram matching loss, gradient loss and perceptual loss have been applied during the
training to improve specific anatomy preservation.

Some of the above mentioned studies were compared in a review [88]. Among the
studies, Maspero et al. [73] reported the highest MAE improvement (more than 100 HU)
with one cycleGAN model for unpaired HN, lung and breast cancer datasets. The network
was trained with CBCT and CT images which were cropped in a bounding box containing
a circular mask. This mask can enforce the network to learn the intensity mapping while
occluding the features of specific anatomy.

More recently, a few studies combined a cycleGAN with a transformer in order to con-
strain the outputs. In Rusanov et al. [89], a vision transformer variant ResViT [90] was ap-
plied as the generator for a cycleGAN training with paired pelvic datasets. Along with the
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modified cycleGAN generator, the study introduced uncertainty estimations (Monte-Carlo
Dropout and Test Time Augmentation) and additional losses, including mean structural
similarity loss, style loss and conditional L2 loss. Similar addition of a transformer into a
cycleGAN was also seen in a recent study [91], which also integrated a vision transformer
into a U-Net generator in the cycleGAN training (IViT-CycleGAN). In this study, the
transformer incorporated a deep CNN with a self-attention mechanism, and a new gradi-
ent penalty [92] was added in the discriminator loss to further improve the stability of the
cycleGAN. Moreover, this study trained the two models separately using unpaired HN and
chest datasets.

4.3 Contrastive unpaired translation (CUT)
To overcome possible geometric inaccuracies or hallucinations of cycleGAN, a contrastive
unpaired translation network (CUT) was developed by the same research team Park et
al. in 2020 [93] to maximize the mutual information between the inputs and generated
images. With the use of a patchwise contrastive loss as discussed below, CUT employs
only one set of generator and discriminator. Such one-side translation accelerates the model
training and requires fewer computing resources than in cycleGAN, which trains two sets
of generator and discriminator.

4.3.1 Network architecture and loss function
To achieve one-side translation training, CUT uses a patchwise contrastive loss LPatchNCE
based on noise contrastive estimation (NCE) [94] on image patches instead of Lcyc. As il-
lustrated in fig. 4.3, a query patch is sampled from the generator output sCT and compared
with the patch at the corresponding location z (denoted as positive z+) or other patches
at different locations (denoted as negatives z−) of the corresponding CBCT input image.
The probability of the positive samples being selected over negatives can be formulated by
the following cross-entropy loss:

l(v, v+, v−) = −log
[

ev·v+/τ

ev·v+/τ +∑N
n=1 ev·v−

n /τ

]
(4.8)

where v, v+ and v− denote the K-dimensional vectors of the query (v ∈ RK), the
positive (v+ ∈ RK), and the N negatives (v− ∈ RN×K), respectively. These patch vectors
(v, v+ and v−) are sampled in random locations in the images. The n-th negative is
denoted as v−

n ∈ RK . For this (N+1) classification problem, τ , which denotes the distances
between the query and samples, was set to 0.07. The goal here is to maximize the mutual
information between v and v+, but to minimize the mutual information between v and
v−.

The images from the positive and negative samples are passed through the encoder
network of the generator (Genc) to obtain embeddings, as illustrated in fig. 4.4. These
embeddings are low-dimensional representations of the images that capture their content
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Figure 4.3: An exemplary CUT architecture. A generator (G) is trained to convert a
CBCT image into a sCT image. Query patches are sampled from the sCT image and
compared with the patches at the corresponding locations z (denoted as positive z+) or
other patches at different locations (denoted as negatives z−) of the corresponding CBCT
input image. Using the same generator (G), an identical CT image is synthesized from a
CT image. Similarly, query patches from both images are also sampled and compared. A
discriminator (DCT) is used to distinguish sCT images and CT images. (Own figure)

and style information. The layers of interest (L) and the number of spatial locations in each
layer (Sl) are selected. The feature maps are processed through a small two-layer multi layer
perceptron (MLP) network Hl, producing a stack of features {zl}L = {Hl(Gl

enc(CBCT))}L,
where Gl

enc denotes the output of the lth chosen layer. Likewise, the output image is
encoded with the same network into {ẑl}L = {Hl(Gl

enc(G(CBCT)))}L. The other patches
within the input can be used as negatives which formulates the following contrastive loss
LPatchNCEx.

LPatchNCEx(G, H, CBCT) = Ex∼CBCT

L∑
l=1

Sl∑
s=1

l(ẑs
l , zs

l , z
S/s
l ), (4.9)

where ẑs
l , zs

l and z
S/s
l represent the features of the output image, the corresponding

feature of the input image (zs
l ∈ RCl) and the negative features (zS/s

l ∈ R(Sl−1)×Cl). Cl

denotes the number of channels at each layer. Since the generator is trained to identify
the similarities across the two domains, the embeddings share the common features. To
constrain possible incorrect anatomical changes, CT images are used to generate identical
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Figure 4.4: The positive and negative samples are passed through the encoder network of
the generator (Genc) to obtain embeddings from both the CBCT inputs and sCT images.
Gl

enc denotes the output of the lth chosen layer and Hl denotes a two-layer multi layer
perceptron (MLP) network. (This figure was adapted from the Park et al. [93] with a CC
BY license.)

CT images using the same generator. The positive and negative samples of these CT images
are passed through the same Genc and MLP, which allows us to formulate the following
contrastive loss for the CT domain LPatchNCEy:

LPatchNCEy(G, H, CT) = Ey∼CT

L∑
l=1

Sl∑
s=1

l(ẑs
l , zs

l , z
S/s
l ). (4.10)

The total loss function is therefore

LCUT(G, DCT, CBCT, CT) =Ladv(G, DCT, CBCT, CT)+
λCBCTLPatchNCEx(G, H, CBCT)+
λCTLPatchNCEy(G, H, CT)),

(4.11)

where λCBCT and λCT denote the weights of the patchwise contrastive loss for the CBCT
and CT domain, respectively. The main objective for CUT here is to generate realistic CT
images, while patches in the input and output images share corresponding information.
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4.3.2 Related studies
A few recent studies started to look into the possibility of using CUT in the CBCT-to-CT
translation task. In the pelvic region, Wynne et al. [95] demonstrated that CUT generates
better sCT images than cycleGAN in terms of MAE, structural similarity index measure
(SSIM), root mean squared error (RMSE), and Frèchet Inception Distance (FID) (com-
paring the distribution of the generated and real images in latent space when they reach
the deepest layer of the generator). In the HN region, Kang et al. [96] demonstrated that
a CUT model which was trained with additional losses (including reconstruction, spatially
correlative and semantic relation consistency losses) also showed better performance than
cycleGAN in terms of FID, peak signal to noise ratio (PSNR), MAE, RMSE. In the lung
region, Dong et al. [97] trained several CUT models with different hyperparameters using
unpaired 4D CBCT and CT datasets and showed better performance than cycleGAN in
terms of the image quality metrics.

4.4 CycleGAN and CUT as alternatives to U-Net
As U-Nets are trained on paired datasets, the models learn the direct translation from
CBCT to CT images (section 4.1). Compared to the conventional non-AI correction ap-
proaches, the computational time using U-Net has been substantially reduced to ≤ 5s,
which allows online adaptation. However, since the ground truth images are usually gen-
erated by DIR, the sCT image might possess a reduced geometrical accuracy due to the
uncertainties in DIR. The anatomical shape or location could be adversely affected in the
predicted images.

To overcome the potential geometrical inaccuracy in ground truth images, a cycleGAN
can be used for unpaired data mapping (section 4.2). With the use of the cycle consis-
tency and the adversarial loss, training cycleGAN does not require ground truth images.
As shown from the high HU and treatment dose accuracy in the sCT image generations,
cycleGAN can capture complex transformations, however, the output can be geometrically
inaccurate. Therefore, some studies implemented cycleGAN with paired datasets. More-
over, since two sets of generators and discriminators have to be trained, the training time
is longer with higher computational power demand.

As an alternative, CUT is an one-sided translation with only one set of generator and
discriminator (section 4.3), reducing the computational demand and training time by the
backward cycle. Moreover, replacing cycle consistency loss with patchwise contrastive loss,
CUT constrains the network outputs by learning low-dimensional CBCT and CT features
in a shared embedding that could better capture and maximize the mutual information
(such as bone and tissue structures) between the CBCT input and the corresponding
sCT image. Recent studies demonstrated that CUT achieved better image quality over
cycleGAN (section 4.3.2), however, treatment dose calculations using CUT have not yet
been investigated (neither photon or proton).



Chapter 5

Deep learning-enabled low dose
CBCT-to-CT translation

Full dose CBCT-to-CT translations using DL are well developed, but repeated CBCT scans
deliver considerable amounts of radiation dose to patients. What would be the possibilities
that DL can bring us in lowering the CBCT imaging dose to the patients?

In this chapter, we briefly discuss the importance of low dose CBCT-to-CT translations
in section 5.1, the synthesis of low dose CBCT datasets in section 5.2 and the recent studies
in section 5.3.

5.1 The importance of low dose CBCT-to-CT

5.1.1 CBCT imaging dose and secondary cancer risk

According to Ding et al. [54], the principle of radiation protection “[as low as reasonably
achievable]” (ALARA) for imaging should be pursued in all medical procedures. When
the imaging dose is greater than 5% of the treatment dose, treatment planning should
include such imaging dose [54]. Among the CBCT imaging dose studies, it is found that
daily CBCT scans can lead to additional organ doses [54, 98, 99]. For instance, one CBCT
scan can deliver up to 22.7 mSv effective dose in the pelvic region [100]. Depending
on the radiosensitivity of each organ and the patient’s size as discussed in section 3.5,
patients can receive a considerable amount of cumulative dose. Especially for prostate
cancer patients, the treatment comprises up to 37 fractions. A recent study also showed
that the excess absolute risk (EAR) of secondary cancer incidence grows with higher doses
to the organ [101]. Other studies also showed that the imaging radiation can be associated
with secondary cancers [102, 103, 104, 105, 106]. Therefore, it is recommended to lower
any possible imaging dose in IGRT.
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5.1.2 The frequency of accurate patient positioning
To mitigate the risk of secondary cancers by the cumulative CBCT imaging dose, the fre-
quency of CBCT scans is typically limited in clinical practice. This strategy can reduce
the cumulative dose, however, it sacrifices the positioning accuracy and decreases OAR
sparing. In a multicenter randomized prostate cancer study [107], daily CBCT scans sig-
nificantly reduced acute rectal bleeding and late rectal toxicity. Moreover, daily CBCT
scans improve significantly the biochemical and clinical progression-free intervals. With
low dose CBCT, clinicians would have a higher flexibility to prescribe a CBCT scan be-
fore the treatment and correct for the position displacements for each fraction which can
significantly improve clinical benefits for patients.

5.1.3 Reducing the re-planning CT scan
In current practice, when an in-room CBCT reveals that an adaptation is needed due
to anatomical changes, the patient would be prescribed another CT scan for re-planning
the treatment. This process requires a substantially greater investment of person-hours,
prolongs the treatment duration and delivers additional radiation to the patient. If the
treatment planning can be adapted online using low dose CBCT-to-CT translation, the
new CT scan can be avoided which further lowers the imaging dose to the patients over
the treatment course.

5.2 Low dose CBCT synthesis

5.2.1 Lowering imaging dose
The imaging dose is mainly determined by the dose per projection and the number of
projections. For example, the imaging dose to the center of a water cylinder from the
exposure measured at the detector can be formulated by Shaw et al. [32] as

Dose = NprojectionmAsprojection

(
X

mAs

)(SD
SC

)2

eµwaterRfwaterBSF, (5.1)

where Nprojection denotes the number of projections, mAsprojection denotes the product of
tube current and time per projection, and ( X

mAs) is the exposure per unit mAsprojection, which
is measured in air at the detector. µwater and R denotes the attenuation coefficient and the
radius of the water cylinder, respectively. (SD

SC )2 geometrically scales to the center by the
inverse square law, and eµwaterR scales to the center of the water cylinder. fwater denotes a
factor to convert the exposure to dose, and BSF is a scaling factor for the increased dose
due to back scatter inside the water cylinder. It is noted that the exponent of eµwaterR is
positive, as the measurement of the dose here is in the center of the water cylinder but
not on the detector. The followings can explain this scale factor of the beam intensity
(e+µwaterR) further.
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Suppose an x-ray beam has an intensity I0 at the source, Icenter and Idetector is the beam
intensity at the center of the water cylinder and the detector, respectively. According to
the Beer-Lambert law, Icenter can be derived as

Icenter = I0e
−µwaterR

Idetector = I0e
−µwater2R

Icenter = Idetectore
+µwaterR.

(5.2)

During a CBCT scan, the gantry rotates around the patients by 360◦ and projections
are collected. If the number of projection frames during the rotation is reduced by a factor
of x, the radiation dose is reduced by the same factor x. Moreover, it is also possible to
lower the imaging dose by reducing the mAs per projection.

5.2.2 Poisson noise and streaking artefacts
In the context of the effect of imaging dose on image quality, Poisson noise occurs due to
the variations of detected x-ray photons. In the Poisson distribution, suppose Nphotons is
the number of photons detected in the panel, or signal, the variance (σ2) of the Nphotons is
equal to its mean (µ), formulating the following equation:

σ2 = µ = Nphotons. (5.3)

That gives a characterisation of Poisson noise (σ) as

σ =
√

Nphotons. (5.4)

With this above equation, we can establish a signal and noise relationship by signal-to-
noise ratio (SNR):

SNR = Nphotons

σ
= Nphotons√

Nphotons
=
√

Nphotons. (5.5)

With lower number of photons, both imaging dose and SNR decrease. The Poisson
noise exists in the projection image and can propagate in the CBCT image reconstruction.
During FBP which amplifies high frequency components (due to the ramp filter as shown
in eq. (3.9)), the Poisson noise in the projection image can be amplified and decreases the
image quality of the resulting CBCT image.

In this thesis, the imaging dose was lowered by reducing the number of projections.
The mAsprojection for each projection remained unchanged. To illustrate the relationship
between the variance (σ2

f ) at the FBP reconstructed image f(x, y) and the total number of
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projections P , we could consider a reconstruction chain using FBP in a 2D discrete form.
The FBP reconstructed image can be defined as

f(x, y) = π

P

P∑
p=1

hβp(x cos βp + y sin βp), (5.6)

where βp and hβp denote the rotational angle and the filtered projection, respectively.
According to [52], the variance of the central pixel of a reconstructed image at (x, y) =
(0,0) could be derived as

σ2
f (0, 0) =

(
π

P

)2 P∑
p=1

σ2
hβp

(0)

= π2

12(∆ξ)2PNphoton(0)

∝ 1
P

,

(5.7)

where σ2
hβp

(0) is the variance of the central filtered projection elements, ∆ξ denotes
the sampling parameter (i.e. the width of one detector element) and Nphoton(0) is the
average number of x-ray beam photons measured in one detector element. With the above
formulation, the noise in the reconstructed image σf increases by factor of 2 when the total
number of projections (P ) decreases by a factor of 4.

The under-sampling of projections in this thesis also resulted in additional streak arte-
facts due to the Nyquist sampling theorem. Figure 5.1 demonstrates the effect on the
image quality of a lower dose in CBCT FDK reconstruction images by under-sampling of
projections. The streak artefacts increased when a lower number of projections was used
for reconstruction.

It is also possible to estimate the dose reduction using the CBDI estimation of the
protocol that was used for this thesis (M20 protocol with 120 kV and a bowtie filter at
an Elekta XVI scanner) as discussed in (section 3.5). By under-sampling the projections
frames, for instance using 90 of the 350 projection frames, the estimated CBDI was reduced
from 2.27 mGy to 0.57 mGy (from an overall exposure of 140 mAs to 36 mAs) per CBCT
scan.

5.3 Related studies using U-Net, cycleGAN and CUT
Implementing low dose CBCT-to-CT translation in the adaptation workflow would require
the DL model to simultaneously remove streaking artefacts and correct HU intensity. Cur-
rently, a limited number of studies investigated sCT image generation from low dose CBCT
images. In the HN region, Yuan et al. [108] acquired low dose CBCT with 182 frames for
a 205◦ rotation (a total exposure of 18.2 mAs), and trained a U-Net with a CT ground
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truth to translate a low dose CBCT to sCT images. The sCT achieved an image quality
comparable to other full dose supervised CBCT-to-CT studies in pelvis scans [59, 56, 60]
or an unsupervised study in the HN region [72]. In the thoracic region, Gao et al. [109]
under-sampled a clinical chest CBCT scan by 50% (660 projections to 330 projections)
and trained an attention-guided cycleGAN with unpaired CT datasets to generate sCT
images. Dong et al. [97] investigated lung 4D CBCT images, which has a low number
of projections in each respiratory phase (50 projections per test patient) and has similar
image quality (streaks and noise) as 15% low dose CBCT in fig. 5.1, and generated sCT
images using cycleGAN and CUT models.

Although the above studies demonstrated that sCT images from a low dose CBCT can
achieve good HU and VMAT dose calculation accuracy, it remains unclear how much we
can reduce the CBCT dose for actual clinical use.
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Figure 5.1: Axial view of CBCT images using FDK reconstruction (section 3.2.2) with
100% (352 projections), 50%, 25%, 15%, 10% projections, a scatter-corrected CBCT re-
construction (section 3.4), and an iterative reconstruction using conjugate gradient (CG)
with 100% projections of an exemplary prostate cancer patient dataset. All images were
reconstructed with 410 × 410 × 264 voxels on an isotropic 1.0 mm3 grid. All intensities
are in HU. (Own figure)



Chapter 6

Metrics for sCT evaluations

One of the potential problems in AI generated images is that the generator can fail to
capture and preserve all relevant anatomical details, especially in the pelvic region where
organ shapes can vary substantially. As a result, the generated images are prone to losing
anatomical details. Therefore, evaluating AI generated sCT images is important to ensure
that they are accurate, safe, and effective for use in the clinical practice. A few metrics are
typically used to evaluate sCT images and the model performances, including image quality
(section 6.1), treatment dose accuracy (section 6.2) and positioning accuracy (section 6.3).
However, geometrical accuracy which is crucial for contouring and treatment planning has
not been commonly assessed. In section 6.4, the importance and a method to evaluate
geometrical accuracy is discussed.

6.1 Image Quality
To evaluate image quality of sCT images, the voxel intensities can be compared to reference
images, vCT images or CBCTcor (section 3.4) images. Since these images are supposed to
possess identical anatomical structures and corrected HU values, the disparity reflects the
HU accuracy of the sCT images. To determine the HU accuracy of anatomical structures,
voxels outside the joint body outline of reference and sCT images are excluded. Suppose
nbody denotes the number of voxel inside the joint body outline, y and ŷ denote the voxel
intensities of the sCT and of the reference images, respectively. The following metrics are
typically used:

• Mean absolute error (MAE): it is a measurement of the mean magnitude of errors
between the sCT and the reference images. It can be formulated as

MAE = 1
nbody

nbody∑
i=1

|yi − ŷi|. (6.1)

• Mean error (ME): Similar to MAE, it is a measurement of the mean values of errors
between the sCT and the reference images. It can be formulated as
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ME = 1
nbody

nbody∑
i=1

yi − ŷi. (6.2)

• Structural similarity index measure (SSIM): Compared to MAE or ME, SSIM is to
compare the texture and the structural similarity between two images. The SSIM
can be formulated as in [110]:

SSIM = (2µyµŷ + C1)(2σyŷ + C2)
(µ2

y + µ2
ŷ + C1)(σ2

y + σ2
ŷ + C2)

, (6.3)

where µy and µŷ denotes the mean intensities of the sCT and the reference images,
σ2

y and σŷ denotes the variances of the sCT and the reference images. C1 and C2 are
the constants to stabilize the equation when µy + µŷ is near zero. The definitions of
C1 and C2 are C1 = (K1R)2 and C2 = (K2R)2, where R is the voxel intensity range.
K1 and K2 are constants that are empirically set as 0.01 and 0.03 according to [110],
respectively.

• Peak signal-to-noise ratio (PSNR): It is a measurement of the maximum signal rela-
tive to the maximum background noise. PSNR is represented as a logarithmic value
on the decibel (dB) scale via mean square error (MSE) of the voxels values between
the sCT and the reference images. Suppose nbody denotes the number of voxel in-
side the joint body outline, R denotes the voxel intensity range, y and ŷ denote the
voxel intensities of the sCT and of the reference images, respectively. PSNR can be
formulated as in [111]:

PSNR = 10 · log10

(
R2

MSE

)
, (6.4)

where MSE is defined as

MSE = 1
nbody

nbody∑
i=1

(yi − ŷi)2. (6.5)

6.2 Treatment dose accuracy
Evaluating treatment dose accuracy is important to verify the electron densities on sCT im-
ages. Similar to the downstream tasks in treatment planning as discussed in section 2.1.4,
the treatment dose accuracy of sCT images is evaluated by comparing to the reference
images (CBCTcor or vCT) using the research version of TPS (RayStation, version 10.01,
RaySearch, Sweden). In this thesis, we evaluated the accuracy with a photon-based radi-
ation therapy technique VMAT, which is frequently used in the hospitals.

In details, contours of target and OAR structures were propagated from the pCT images
to the reference and sCT images via DIR. On reference images, VMAT plans were generated
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and optimized on a 3.0 mm isotropic dose grid. A collapsed-cone dose engine was employed.
The plans were subsequently recomputed on the sCT images.

For prostate cancer patient data used in this thesis, the prescription was 2 Gy in 37
fractions. A CTV V95% of 100% was targeted, and PTV should receive at least 95% of
the prescription dose for more than 95% of its volume. The DVH constraints for OARs
such as bladder and rectum were adhered to the recommendation in the QUANTEC report
[17]. The VMAT dose distributions on sCT images were evaluated against the reference
images, with consideration given to DVH parameters. For target structures, CTV and
PTV D98% and D2%, as well as PTV D50% and V95% were compared. For OARs, bladder
(V60Gy and V65Gy) and rectum (V50Gy and V60Gy and V65Gy) were used for the comparison.
In addition, the voxels meeting the treatment dose difference (DD) analysis criteria of 1%
and 2% (with a 10% threshold) were compared.

For each of the above dose parameters, values from sCT images were statistically com-
pared to the reference images using Wilcoxon signed-rank tests. A significant difference
could be observed when a p-value was less than 0.05.

6.3 Positioning accuracy
One of the main objectives of in-room CBCT imaging is daily patient positioning. To
assess positioning accuracy when using sCT images, these images can be rigidly registered
to the pCT images with the use of the research TPS, similar to the procedure as shown
in the fig. 2.3. In this thesis, sCT images were registered to pCT images (sCT-to-pCT),
which yielded a set of rigid transformation parameters (in terms of millimeters (mm):
inferior–superior (IS), right–left (RL), posterior–anterior (PA); in terms of degree (°): pitch,
roll and yaw).

The resulting transformations were evaluated against those obtained by registering
the original full dose CBCT images (CBCTorg) to the pCT images ((CBCTorg-to-pCT)).
The mean absolute differences of each transformation parameter between sCT-to-pCT and
CBCTorg-to-pCT were computed to reflect the positioning accuracy of sCT images.

6.4 Geometrical accuracy
As mentioned in the beginning of this section, AI generated images can create hallucina-
tions in anatomy and lower the precision of the treatment planning. Evaluating geometrical
accuracy can reveal how well the sCT images replicate the true spatial relationships and
structures found in reference images. However, geometrical accuracy is often missing in
many studies.

One of the methods to quantify the anatomical fidelity is to segment the organs in both
sCT images and reference images, either manually or with automatic algorithms, and to
compare the contours of organs. In this thesis, the following metrics were used:

• Dice similarity coefficient (DSC): It measures the coincidence between two sets of
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binary contours, with a score that ranges from 0 (no spatial overlap) to 1 (complete
overlapping). The formulation can be written as

2|a ∩ â|
|a| + |â|

, (6.6)

where a and â denotes the set of voxels in the contour of the organ on sCT images and
the reference images, respectively. |a| and |â| are the number of voxels in contours
on sCT images and reference images respectively. |a ∩ â| denotes the number of
overlapping voxels between contours. Since DSC mainly measures the proportion of
overlapping region, it does not fully capture the difference in boundary and shape.

• Hausdorff distance (HD): It measures the spatial discrepancy between two sets of
segmentations by calculating the largest distance from one point on sCT contour to
the nearest point on the reference contour. In this thesis, we used boundary HD [112]
in order to evaluate the contour shapes. Suppose the contour of an organ on sCT
images has a set of points ∂A = a1, ..., aNa and the contour on the reference images
has another set of points ∂Â = â1, ..., âNâ

, the average distance between boundaries
of the contours dHDavg(∂A, ∂Â) can be formulated as

HDavg(∂A, ∂Â) = d⃗HDavg(∂A, ∂Â) + d⃗HDavg(∂Â, ∂A)
2 , (6.7)

where d⃗HDavg(∂A, ∂Â) and d⃗HDavg(∂Â, ∂A) denote the directed average Hausdorff mea-
sures from ∂A to ∂Â, and from ∂Â to ∂A, respectively. In addition to HDavg, the 95th

percent ranked distance HD95 was also calculated to report the contour differences
in this thesis.

6.5 The overview of sCT evaluations
The lack of clinical evaluations of DL generated sCT images has been hindering the actual
implementation in the ART workflow. Most of the CBCT-to-CT works have evaluated their
sCT images in terms of image quality. Some U-Net-generated and cycleGAN-generated
sCT images have been evaluated with treatment dose calculations, however, not yet CUT-
generated sCT images. Moreover, only a limited number of studies have evaluated the
anatomical fidelity of sCT images which can have high influence on the downstream tasks
such as the organs contouring and the treatment planning. Patient positioning accuracy
was neither consistently evaluated in many studies.



Chapter 7

Contributions of this thesis

During a course of radiotherapy treatment, daily CBCT scans are important for accurate
treatment radiation delivery and sparing OARs (section 5.1.2). However, repeated full dose
CBCT scans also expose the patients to a considerable level of extra radiation dose, leading
to additional secondary cancer risk. As discussed in chapter 4, DL algorithms in full dose
CBCT-to-CT translations have been comprehensively explored (section 4.1, section 4.2,
section 4.3) and have recently been adopted in the clinical ART workflow (section 2.3.2).
In a recent multi-center sCT challenge “synthRad 2023” [113], the best three models applied
variants of U-Net and transformers to generate sCT images from full dose CBCT images
and achieved good image quality and treatment dose accuracy. Adhering to the principle
of radiation protection “[as low as reasonably achievable]” (ALARA), it is time to explore
how we can leverage DL advancements for reducing the imaging dose to patients.

Several separate low dose CBCT-to-CT studies have been conducted within the last
four years, as shown in section 5.3. Among these studies, CBCT scans of limited anatomical
locations have been investigated, limited to HN or chest regions. As revealed by a number
of clinical studies mentioned in section 5.1, prostate cancer patients, who can benefit from
daily CBCT scans, also have higher EAR of secondary cancer incidence due to the daily
CBCT scans. Therefore, in our first step in DL-enabled low imaging dose CBCT-to-
CT, we have selected prostate cancer patient datasets from the LMU University Hospital
(section 7.1). In this first study, we investigated the feasibility of substantially lowering
the imaging dose of CBCT in the pelvic region with only 25% projections (approximately
90 projections), which could reduce the CBCT imaging dose more than other studies as
listed in section 5.3. For example, the number of projections of our low dose CBCT is
almost half of the projection frames used in [108] or 70% fewer than in [109]. To enhance
such low dose CBCT images into diagnostic quality sCT images, a state-of-the-art DL style
transfer model cycleGAN (section 4.2) and a variant model with a residual connection were
implemented. The first paper is introduced in the following section 7.2.1.

Among all low dose CBCT-to-CT research works (section 5.3), however, there is a lack
of structured investigations of the maximum imaging dose reduction level that is achievable
by DL. The majority of the studies have generated sCT images from CBCT scans with
only one specific radiation dose. With good full dose sCT image quality, we expect that DL
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could further reduce the imaging dose of CBCT scans. To fully unlock DL’s potential, in
the second study, we have investigated various imaging dose levels in terms of sCT image
generation with lower number of CBCT projections (25%, 15% and 10%). The aim was
to find the achievable lowest imaging dose that allows accurate treatment adaption using
two state-of-the-art DL style transfer models, namely cycleGAN (section 4.2) and CUT
(section 4.3). The second paper is introduced in the following section 7.2.2.

To address the lack of clinical evaluations on sCT images (section 6.5), both studies in
this thesis evaluated sCT comprehensively with all CBCT-guided adaptive radiotherapy
related metrics including image quality (section 6.1), VMAT treatment dose accuracy (sec-
tion 6.2), positioning accuracy (section 6.3) and organ contouring accuracy (section 6.4).
These evaluations aimed to enhance the clinical impact and a possible integration of the
low dose CBCT technique in the hospital setting.

7.1 Patient database
CBCT and pCT image datasets of 41 prostate cancer patients who were prescribed with
VMAT treatment to an overall dose of 70 Gy–76 Gy in 2 Gy fractions at the Department
of Radiation Oncology, LMU Munich University Hospital were retrospectively included.
All datasets were previously collected and extracted by Kurz et al. [67].

7.1.1 CBCT
For CBCT patient datasets, CBCT images were acquired by the lowest radiation dose
protocol for the pelvic region from the hospital. These CBCT images were acquired in
the treatment position using the XVI system (version 5.52) of a Synergy medical linear
accelerator (Elekta, Sweden), as shown in fig. 1.3. The main selection criteria was: 120 kV
tube voltage, 20 ms exposure time, 20 mA X-ray tube current per projection. The detailed
scan parameters are in the following table 7.1:

As illustrated in fig. 7.1, panel saturation from high intensities through thin patient
sections can cause underestimation of the body outline. This protocol (20 mA and 20 ms)
was chosen to have the patient body outline more preserved. During the CBCT acquisition,
a laterally-shifted detector panel in M position and a bowtie filter were applied to enlarge
the lateral FOV.

The raw data in projections files (.his) and scan files (.ini) were previously collected and
extracted in [67]. Reconstructed images with lateral FOV truncation despite the enlarged
FOV were not included.

7.1.2 CT
The pCT images were acquired with a Toshiba Acquilion LB CT scanner (Canon Medi-
cal Systems, Japan). No contrast agent was used. The scanner reconstructed images in
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Table 7.1: A exemplary CBCT scanning protocol that were selected for this study. The
number of projections can vary among patients, ranging from 346 to 357 projections.

Scan parameter Value
Tube Voltage 120 kV
Tube mA 20
Tube KV Length 20
KV Filter F1 (bow tie filter)
Collimator Name M20
FOV Medium
FloodImageFilterNorm 29504
FloodImageFilterMA 20
FloodImageFilterMS 20
FloodImageOpenNorm 37732
FloodImageOpenMA 16
FloodImageOpenMS 20
Number of Projections 357
Scan rotation 360°
Patient Position Head First-Supine (HFS)
Reconstruction Dimension (X, Y, Z) 410 pixels, 410 pixels, 264 pixels
Pixel Spacing (X, Y, Z) 1.0 mm, 1.0 mm, 1.0 mm

DICOM format were previously collected and extracted from the clinical TPS Monaco by
Kurz et al. [67]. The detailed scan parameters are in the following table 7.2:

7.2 Introduction to the two studies

7.2.1 Study 1: Feasibility of cycleGAN enhanced low dose CBCT
imaging for prostate radiotherapy dose calculation

In the first study, we investigated the feasibility of low imaging dose CBCT with only 25%
projections by simultaneously removing under-sampling artefacts and correcting image
intensities with two cycleGAN models (original cycleGAN implementation and with a
generator residual connection (see figure 3 in the first publication)).

In the first step, the full dose CBCT images (CBCTorg) and low dose CBCT images were
reconstructed using the FDK algorithm. We adopted a cycleGAN algorithm and imple-
mented the variants with a patient body shape loss term (see section 2.2.1 and equation 5 in
the first publication for details) to train the model using unpaired 4-fold cross-validation
(33 patients). For evaluation references, we generated vCT images on 8 test patients.
VMAT plans were optimized on vCT images, and recalculated on sCT images. To evalu-
ate the positioning accuracy, we calculated residual shifts by registering sCT images and
CBCTorg images to pCT images, respectively. For anatomical fidelity, we manually con-
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Figure 7.1: A comparison between scanning parameters in two representative prostate
cancer patients CBCT scanner images. The images were acquired with (a) 40 ms exposure
time, 40 mA per projection, 370 projections, (b) 20 ms exposure time, 20 mA per projection,
351 projections. Red arrows show the body outline artefacts in (a). Both were acquired in
the hospital but not used in the patient cohort in this thesis. (Own figure)

toured bladder and rectum in sCT images and original CBCT images and compared in
terms of the geometrical metrics (i.e. DSC and HDavg, HD95).

In the test patient datasets, the average MAE (section 6.1) was lowered from 126
HU to 44 HU compared to the vCT images. High treatment dose accuracy (section 6.2)
was found, with 2% dose difference pass rates of 99% (10% dose threshold). Positioning
accuracy (section 6.3) was high, as most of mean absolute differences of rigid transformation
parameters (sCT-to-pCT − CBCTorg-to-pCT) were less than 0.20 mm/0.20 ◦. Contouring
accuracy (section 6.4) was high with DSC/HDavg/HD95 equal to 0.9/0.9 mm/4.1 mm for
bladder and for 0.9/1.1 mm/3.9 mm for rectum. The computational time to generate sCT
images was approximately 2 seconds for each volumetric CBCT scan.

This work demonstrated the feasibility of adapting two cycleGAN models to simultane-

Table 7.2: An exemplary CT scanning protocol that were selected for this study.
Scan parameter Value
Tube Voltage 120 kV
Exposure Time 750 ms
Tube Current 234 mA
Exposure 175 Ckg−1

Data Collection Diameter 550 mm
Scan Options Helical CT
Patient Position Head First-Supine (HFS)
Reconstruction Dimension (X, Y, Z) 512 pixels, 512 pixels, 264 pixels
Pixel Spacing (X, Y, Z) 1.074 mm, 1.074 mm, 3.074 mm
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ously clear under-sampling artefacts and correct HU intensities of 25% dose pelvic CBCT
images.

7.2.2 Study 2: Investigation of imaging dose reduction levels in
pelvic CBCT-based synthetic CT generation using deep
learning: dose calculation and segmentation accuracy

In the second study, three imaging dose levels of CBCT scans were generated and image
corrections using cycleGAN and CUT models were investigated. The objective of this work
is to identify the minimum achievable imaging dose for accurate VMAT dose calculation
and organ delineation in online adaptation. A visual summary of the paper can be found
in fig. 7.2.

CBCT images of the prostate cancer patient datasets were reconstructed with lower
number of projections (100%, 25%, 15% and 10%) using the FDK algorithm. The CBCT-
to-CT models were trained with a similar scheme as in the first study. For each low dose
levels, we optimized and compared the performance of a cycleGAN model with residual
connection and a CUT model to generate sCT images from reduced imaging dose CBCTs.
Comprehensive details of the hyper-parameters and the network implementations can be
found in the supplementary material of this publication. CT number, treatment dose,
positioning accuracy and anatomical fidelity were evaluated in comparison to the reference
CBCTcor images (described in section 3.4). Based on contouring accuracy, 25% is the
minimum CBCT imaging dose.

In addition, this paper was selected as one of the Physics Highlights in the conference
ESTRO 2024: https://www.phiro.science/highlights2024.

7.3 First author’s contribution
The 41 CBCT and CT patient datasets were previously selected and extracted by Kurz
et al. [67]. I implemented an anonymization Matlab script to remove patient identifica-
tions from the CBCT datasets (.INI and .XML files) and CT datasets (DICOM files). I
under-sampled and reconstructed different imaging dose level CBCT images using FDK
reconstruction algorithms [114], implemented image pre-processing Python scripts (includ-
ing couch removal, re-sampling and intensity normalization) for CBCT and CT images,
modified the cycleGAN algorithm with the residual connection, implemented and docker-
ized the cycleGAN and CUT algorithms on the research server for training with GPUs.
I trained and optimised the models to find the best hyper-parameters. In addition, I im-
plemented Python scripts to evaluate the image quality, generated VMAT plans in the
TPS, evaluated the treatment dose with DVH parameters and the positioning accuracy.
Moreover, I received contouring training from a radiation oncologist and contoured the
OARs of the testing patient datasets which were then validated by the radiation oncolo-
gist. I implemented the contouring analysis script and wrote the original manuscripts for
the two papers. Finally, for the studies I have delivered oral presentations in international
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Investigation of deep learning-enabled minimum dose CBCT-based synthetic CT

What is minimum imaging dose 
that could be offered by 
deep learning? 

25% dose prostate CBCT
cycleGAN

2015
cycleGAN
2017

CUT
2020 2020

“Low-dose fast HN scan’’
U-Net  

2023
50% dose thoracic CBCT

cycleGAN

2021 2022
4D lung CBCT

cycleGAN & CUT
U-Net

Low dose CBCT-to-CT translation Full dose CBCT-to-CT translation 

Main finding: 25% is the minimum imaging dose 
allowing accurate VMAT dose calculation and organ delineation.

Dong et al.Gao et al.Yuan et al. Chan et al.

Figure 7.2: A visual summary of the second study to investigate the minimum CBCT
imaging dose for accurate treatment dose calculation and OAR contouring. Copyright: ©
2024 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology
under CC BY 4.0 license.

conferences, poster presentations as well as data science slams in joint graduate training
schools.
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Studies

8.1 Paper 1: Feasibility of CycleGAN enhanced low
dose CBCT imaging for prostate radiotherapy dose
calculation

Reprinted with permission from “Feasibility of CycleGAN enhanced low dose CBCT imag-
ing for prostate radiotherapy dose calculation.” by Yan Chi Ivy Chan, Minglun Li, Katia
Parodi, Claus Belka, Guillaume Landry and Christopher Kurz; Physics in Medicine &
Biology. 2023 May 11;68(10):105014.
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Abstract
Daily cone beam computed tomography (CBCT) imaging during the course of fractionated
radiotherapy treatment can enable online adaptive radiotherapy but also expose patients to a non-
negligible amount of radiation dose. This work investigates the feasibility of low doseCBCT imaging
capable of enabling accurate prostate radiotherapy dose calculationwith only 25%projections by
overcoming under-sampling artifacts and correcting CTnumbers by employing cycle-consistent
generative adversarial networks (cycleGAN). Uncorrected CBCTs of 41 prostate cancer patients,
acquiredwith∼350 projections (CBCTorg), were retrospectively under-sampled to 25%dose images
(CBCTLD)with only∼90 projections and reconstructed using Feldkamp–Davis–Kress.We adapted a
cycleGAN including shape loss to translate CBCTLD into planningCT (pCT) equivalent images
(CBCTLD_GAN). An alternative cycleGANwith a generator residual connectionwas implemented to
improve anatomical fidelity (CBCTLD_ResGAN). Unpaired 4-fold cross-validation (33 patients)was
performed to allow using themedian of 4models as output. Deformable image registrationwas used
to generate virtual CTs (vCT) forHounsfield units (HU) accuracy evaluation on 8 additional test
patients. Volumetricmodulated arc therapy planswere optimized on vCT, and recalculated on
CBCTLD_GAN andCBCTLD_ResGAN to determine dose calculation accuracy. CBCTLD_GAN,
CBCTLD_ResGAN andCBCTorg were registered to pCT and residual shifts were analyzed. Bladder and
rectumweremanually contoured onCBCTLD_GAN, CBCTLD_ResGAN andCBCTorg and compared in
terms ofDice similarity coefficient (DSC), average and 95th percentileHausdorff distance (HDavg,
HD95). Themean absolute error decreased from126HU forCBCTLD to 55HU for CBCTLD_GAN and
44HU forCBCTLD_ResGAN. For PTV, themedian differences ofD98%,D50% andD2% comparing both
CBCTLD_GAN to vCTwere 0.3%, 0.3%, 0.3%, and comparingCBCTLD_ResGAN to vCTwere 0.4%,
0.3% and 0.4%.Dose accuracywas highwith both 2%dose difference pass rates of 99% (10%dose
threshold). Compared to theCBCTorg-to-pCT registration, themajority ofmean absolute differences
of rigid transformation parameters were less than 0.20mm/0.20°. For bladder and rectum, theDSC
were 0.88 and 0.77 for CBCTLD_GAN and 0.92 and 0.87 for CBCTLD_ResGAN compared toCBCTorg,
andHDavgwere 1.34mmand 1.93mm for CBCTLD_GAN, and 0.90mmand 1.05mm for
CBCTLD_ResGAN. The computational timewas∼2 s per patient. This study investigated the feasibility
of adapting two cycleGANmodels to simultaneously remove under-sampling artifacts and correct
image intensities of 25%doseCBCT images.High accuracy on dose calculation,HU and patient
alignmentwere achieved. CBCTLD_ResGAN achieved better anatomical fidelity.
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1. Introduction

Inmodern image-guided radiotherapy (IGRT), cone beam computed tomography (CBCT) is used as a routine
in-room imaging technique.Most radiotherapy centers havemedical linear accelerators equippedwith a
kilovoltage CBCT (kV-CBCT) scanner, which provides full three-dimensional (3D) information about the
patient’s anatomy at every treatment fraction. In the presence of inter-fractional anatomical changes between
acquisition of the planningCT (pCT) and the treatment day, CBCT imaging datawould be suitable for
treatment adaptation and enabling accurate dose delivery (de Jong et al 2021,Moazzezi et al 2021, Sibolt et al
2021, Byrne et al 2022).

One primary problemwhich arises in using CBCT for treatment adaptation is that CBCT image quality is
typically insufficient to infer and adapt the applied daily dose (Kurz et al 2015). Typically, CBCT intensity
correction techniques on a standard full dose scan have been investigated in current literature. Thewide range of
techniques include look-up-table based solutions (Kurz et al 2015), the use of pCT-to-CBCT virtual CT (vCT)
(Peroni et al 2012, Landry et al 2014, 2015, Veiga et al 2015, 2016,Wang et al 2016) yielding a so-called virtual CT
(vCT) and the application ofMonte-Carlo (MC) basedmethods (Mainegra-Hing andKawrakow 2010, Thing
et al 2016, Zöllner et al 2017) for scatter correction.While some of thesemethods have demonstrated accurate
CBCT-based dose calculation in different treatment sites (Ding et al 2007, Fotina et al 2012,Niu et al 2012, Veiga
et al 2014), there are limitations corresponding to themethods. For instance, DIR based approaches that enabled
good dose calculation accuracy in head and neck (HN) (Kurz et al 2015, Landry et al 2015), might struggle in the
pelvic region owing to themore pronounced and complex inter-fractional changes in anatomy.While theDIR
inaccuracies could be improved bymeans of using vCT as prior for projection based intensity correction (Niu
et al 2010, 2012, Park et al 2015, Kurz et al 2016), the time for generating corrected images, which takes several
minutes, hinders the use of the obtained correctedCBCT images for online treatment adaption. Similarly,MC
basedmethodswhich take up to several hours are not suitable.

Recently, the use of deep convolutional neural network (CNN) to speed upCBCT correction has received
substantial interest. TheU-Net architecture (Ronneberger et al 2015) has been employed to translate images
across domains and correct CBCT intensities. InKida et al (2018), a U-Netwas trained usingCBCT and vCT as
input and target to translate theCBCT into a pCT equivalent image.OtherU-Nets were trained for projection
based image correction usingMC simulated scatter distributions (Maier et al 2018, 2019) or corrected
projections retrievedwith a previously validated algorithmbased on a vCTprior (Hansen et al 2018, Landry et al
2019). Apart from theU-Net, generative adversarial networks (GAN) (Goodfellow et al 2014) have been applied
to translate CBCT into pCT images. In particular, the cycle-consistent GAN (cycleGAN) (Zhu et al 2017)
architecture has seen considerable attention for unpaired training. For example, in the brain and the pelvic
region (Harms et al 2019) (however using an additional paired loss term), in theHN region (Liang et al 2019) and
the pelvic region (Kida et al 2019, Kurz et al 2019), dosimetric analysis of the cycle-consistent generative
adversarial networks (cycleGAN) based corrected CBCT images were included, highlighting high dose
calculation accuracy for photon therapy. Themajority of deep learning based correctionmethods take less than
aminute.

Using CBCT in IGRT increases the precision of the treatment, but also adds to the dose delivered to healthy
tissues. One additional concern is thus that the imaging dose received from repeatedCBCT scans at 20–35
fractionsmight be considerable and increase the risk of secondarymalignancies. Kan et al (2008)measured, with
thermoluminescent dosimeters, the dose fromCBCT in a female anthropomorphic phantom and reported the
effective and absorbed doses to 26 organswith standard and low-dose imagingmodes. Effective doses to the
whole body from standardmodeCBCT for imaging of the pelvis were 22.7mSv per scan. They concluded that
CBCTon a daily basis could add an additional 2%–4% to the absolute secondary cancer risk. The radiation-
induced cancer risk due to organ doses fromkV-CBCTwas also estimated byKim et al (2013). Absorbed dose
measurements in a cylindrical and in an anthropomorphic phantom yielded 170–187mGy for the pelvic scan
protocol, for which they concluded that 70%of additional secondary cancer risk from radiotherapy treatment of
prostate patients can be attributed toCBCT imaging. Therefore, the excess radiation-induced cancer risk from
CBCT is not negligible.

According to the Report of the AmericanAssociation of Physicists inMedicine (AAPM)Therapy Physics
Committee TaskGroup 180 (Ding et al 2018), imaging dose should be considered in the treatment planning
process if larger than 5%of the therapeutic target dose, and in general the principle of ‘as low as reasonably
achievable’ (ALARA) for imaging should be pursued. In the current clinical practice, radiation oncologists
typically use the lowest possible dose of radiation to obtain theCBCT images, or try to to limit the frequency of
CBCT imaging during treatment to reduce the risk of secondary cancers from cumulative CBCTdose. Lower
dose CBCT at equivalent image quality could thus be favourable as it offers a higher flexibility of in terms of pre-
treatment imaging frequency. Reducing dose, however, could be challenging since theCBCT image quality is
further degraded, leading among others to potential loss of anatomical information.
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Prior research has thoroughly investigatedCBCT correction, however it remains to be investigatedwhether
advances in deep learning can be leveraged to substantially reduce CBCTdosewhile jointly correctingCBCT
image intensity and retaining therapeutic dose calculation accuracy. To address the needs of (1)CBCTdose
reduction and (2) improving image quality for dose adaptation, our study investigates a cycleGAN-based low
dose CBCT approach that translates a CBCT from a reduced number of projections (approximately 90), namely
CBCTLD, to a pCT equivalent image, referred to as CBCTLD_GAN, by simultaneously removing under-sampling
artifacts and correcting image intensities while preserving anatomy fidelity. In parallel to CBCTLD_GAN, we also
implemented an alternative cycleGANwith a generator residual connection to improve anatomical fidelity,
referred to as CBCTLD_ResGAN.

2.Materials andmethods

2.1. Patient data
2.1.1. Data acquisition
In this study, pCT andCBCT imaging datasets of 41 prostate cancer patients who received volumetric
modulated arc therapy (VMAT) treatment to a total dose of 70–76 Gy in 2 Gy fractions at theDepartment of
RadiationOncology of the LMUMunichUniversityHospital were collected. All patients were advised to follow
an in-house bladder and rectum filling protocol. The pCTswere acquiredwith a Toshiba Acquilion LBCT
scanner (CanonMedical Systems, Japan). Tube voltagewas set to 120 kV. An image grid of 1.074mm× 1.074
mm× 3.000 mmwas used in combinationwith a 55 cm lateral ield of view (FOV). No contrast agent was used.

To prevent the saturation of the detector panel and body outline artifacts, all retrospectively selectedCBCT
imageswere acquired in treatment positionwith a scan protocol of 120 kV tube voltage, exposure time of 20ms
and x-ray tube current of 20 mAper projection using the XVI system (version 5.52) of a Synergymedical linear
accelerator (Elekta, Sweden). This is the lowest dose pelvic protocol at our institution. The lateral FOVwas
increased by using a laterally-shifted detector panel inMposition and a bowtiefilter. Imageswith body outline
truncation in spite of the increased fovwere excluded from the study. Around 350 projections [346, 357]were
acquired in each 360° scan.

2.1.2. Data preparation
To generate a lowdose CBCTLD from the full dose CBCTorg, CBCTprojection datawere uniformly under-
sampled by a factor of 4 (keeping 25%of the projections) from about 350 to 90 projections, followed by a
reconstruction using the Feldkamp–Davis–Kress (FDK) implementation of Reconstruction ToolKit (RTK) (Rit
et al 2014)with 410× 410× 264 voxels on an isotropic 1.0mm3 grid. By thresholding andmorphological
masking, the patient couchwas removed from theCBCT image, whichwas then converted to an image size of
512× 512 by zero paddingwith the pixel intensity in the attenuation coefficient value (μ) range [0, 0.04] (values
above 0.04were set to 0.04). Thefirst and last 35 image slices in superior-inferior directionwith partial FOV
cone truncationwere excluded. pCTswere re-sampled to the same grid and image size using a linear interpolator
from the SimpleITK library. The table was also removed from the images. The pixel intensity of the CT images
was empirically converted to the range of theCBCT images ((HU+ 1024)/65536) (Park et al 2015). The
resulting intensities weremapped to the range [0, 0.05] (values above 0.05were set to 0.05). Patients were
instructed to laywith arms down and forearms folded up during acquisition. Since pCT slices showing limbs
were excluded, the data used for training covered the pelvis and lower abdomen. To incorporate patient outline
information in the training, a binarymask of each pCT andCBCT imagewas created by thresholding. All images
were stored in 16 bit format before training. The data pre-processing workflow is illustrated infigure 1.

2.2. CycleGANarchitecture and training
2.2.1. Forward and backward cycles and loss function
To correct the intensity of low doseCBCTLD, we adapted a cycleGAN architecture (Zhu et al 2017, Ge et al 2019)
to learn the image translation between lowdose CBCTLD (input) and pCT equivalent images (output)with
unpaired patient data (planning and fraction images). The framework chains two sets of a generator and
discriminator networks. The generator aims to obtain themost efficient representation of CBCTLD fromwhich a
synthetic pCT can be generated slice by slice in the forward cycle. The discriminator is used to distinguish
synthetic pCTwith output label 0 and true pCTwith label 1 in the forward cycle. In the backward cycle, outputs
of the generator and discriminator are reversed. The loss function for both generators and discriminators
consists of the terms described below.

Infigure 2 (panel (a)), a generatorGpCT learns amapping fromCBCTLD to pCT such that the distribution of
images fromGpCT(CBCTLD) is indistinguishable from the distribution of pCTby a discriminatorDpCT using an
adversarial loss in the forward cycle:
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= - + L log 1 D G CBCT log D pCT , 1pCT CBCT pCT pCT LD pCT pCTLD[ ( ( ( )))] [ ( )] ( )
whereGpCT aims tominimize the first term - log 1 D G CBCTCBCT pCT pCT LDLD

[ ( ( ( )))]by generating synthetic
imagesGpCT(CBCTLD) that closely resemble pCT, whileDpCT aims tomaximize both terms and become as good
as possible in distinguishing between synthetic images GpCT(CBCTLD) and real pCTs.

Infigure 2 (panel (b)), the second generator GCBCTLD
was trained to establish the inversemapping frompCT

toCBCTLDwith the help of the second discriminator DCBCTLD
in the backward cycle:

Figure 1.The pre-processing workflow for theCBCT andCTpatient images.

Figure 2.The cycleGANarchitecture is used to generate pCT equivalent CBCTLD_GAN images fromCBCTLD images in (a) forward
cycle, and to generate CBCTLD frompCT in (b) backward cycle. Themask of CBCTLD_GAN is calculated by a shape extractor in the
forward cycle.
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= - + L log 1 D G pCT logD CBCT . 2CBCT pCT CBCT CBCT CBCT CBCT LDLD LD LD LD LD
[ ( ( ( )))] [ ( )] ( )

With the above adversarial loss, the generatorsGpCT and GCBCTLD
are encouraged to generate realistic images

of the target domain in order to fool the discriminatorsDpCT and DCBCTLD
.

To stabilize the training and ensure the inverse-consistentmappings with respect to the two image domains,
a cycle consistency loss Lcyc is introduced to enforce GCBCTLD

(GpCT(CBCTLD))≈CBCTLD andGpCT(
GCBCTLD

(pCT))≈pCT. In the forward cycle, Lcyc computes the L1 normof the output from GCBCTLD
with the

generated synthetic pCT as input and the input lowdose CBCTLD:

 = -L CBCT G G CBCT . 3cyc
for

CBCT LD CBCT pCT LD 1LD LD[ ( ( )) ] ( )
In the backward cycle, the roles of CBCTLD and pCT are again swapped and the corresponding cycle

consistency loss function is:

 = -L pCT G G pCT . 4cyc
back

pCT pCT CBCT 1LD[ ( ( )) ] ( )
The cycle consistency loss, however, does not directly enforce the structural similarity between the input

CBCTLD and the generated CT images. A previousCBCT-to-CT study has shown that there aremeasurable
deviations in the patient body outline (Kurz et al 2019). To incorporate patient outline information and
geometrically constrain the generator, we have adapted a shape loss as suggested inGe et al (2019). AU-Net
shape extractor (SE)was first trained for 5 epochswith paired pCT as input and the corresponding binarymasks
as the ground truth output. During the cycleGAN training, the shape extractor segments the patient outline of
the generatedCBCTLD_GAN image fromGpCT and computes the L1 loss between this newmask and its
corresponding ground truthmask from the input low dose CBCTLD:

=L L CBCT _ , SE G CBCT . 5shape 1 LD mask pCT LD( ( ( ))) ( )
Therefore the total loss usedwas:

l l= + + + +L L L L L L_ . 6LD GAN pCT CBCT 1 cyc
for

cyc
back

2 shapeLD ( ) ( )
whereλ1 andλ2 are hyperparameters that were empirically set to 25 and 1 in this study. The objective function to
be solvedwas

=G LG , arg min max _ G , G , D , D . 7pCT CBCT
G ,G D ,D

LD GAN pCT CBCT CBCT pCTLD
pCT CBCTLD CBCTLD pCT

LD LD( ) ( )

Since thismin-max optimization aims tofind themodel parameters that could describe the distribution of
the image domain instead of using pixel-wise comparison, unpaired datasets could be used for this study.

We additionally trained a cycleGANvariant where a residual skip connectionwas used for the generator (see
figure 3). This approach has been reported to improve geometric fidelity to the input image in the field of
histopathology (de Bel et al 2021) and used in a previous CBCT-to-CT study (Deng et al 2022). Since anatomical
fidelity is critical in our application, we have adopted this approach. As shown in figure 3, GpCT

GAN was trained to

convert CBCTLD directly toCBCTLD_GAN in panel (a). For CBCTLD_ResGAN, GpCT
ResGAN was trained to convert

Figure 3. (a) In theCBCTLD_GAN approach, the generator GpCT
GAN is trained to directlymap fromCBCTLD to thefinal CBCTLD_GAN

images. (b) In contrast, the input and the intermediate output from the generator GpCT
ResGAN are addedwith equal weight to obtain the

final output CBCTLD_ResGAN.
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CBCTLD to an intermediate image, which has reversed intensities that suppress the streak artifacts from the
CBCTLD input image as shown in panel (b). In the backward cycle, the other generator GCBCTLD

in the
CBCTLD_ResGAN approachwas also trained to obtain the final outputwith the addition of the pCT input.
Hyperparametersλ1 andλ2 were empirically set to 25 and 0 for CBCTLD_ResGAN. It was observed that the shape
loss did not improve the performance of CBCTLD_ResGAN, as opposed toCBCTLD_GAN. Supplementary figure S1
and supplementary figure S2 illustrate theλ2 experiments for one exemplary ensemblemodel validation patient
(section 2.2.2) for CBCTLD_GAN andCBCTLD_ResGAN, respectively.

2.2.2. Network training
In a geometric augmentation pipeline, we employed two-dimensional (2D) horizontal flipping and affine
transformations including rotation of [−5°, 5°] and scaling by [0.9, 1.1]with a bicubic interpolation over 4× 4
neighboring pixels to theCBCT and pCT inputs and theirmasks to enhance the generalisability of themodel.

For the generator, the encoder contains two convolutional layers with stride 2 and the decoder contains two
deconvolutional layers with stride 2.Nine residual blocks between encoding and decoding operations were used
(Johnson et al 2016). For the discriminator, 70× 70 PatchGAN (Isola et al 2017)was employedwith a
downsampling scheme from256× 256 to 32× 32 by applying four series of 2D convolutional layers followed by
instance normalization (Ulyanov et al 2016), except for thefirst and last layer, and LeakyReLUwith a slope of 0.2
as nonlinearity, except for the last layer. The receptive field of the networkwas 70× 70 and each pixel in the
outputwas evaluated as a scalar in the range [0, 1]. The networks were implemented in PyTorch (v1.12.0).

Trainingwas performed starting from the pre-trainedmodel provided byGe et al (2019). Results from
trainingwithout the pre-trainedmodel did not show convergence at the same number of epochs as for the pre-
trainedmodel. The adamoptimizer was used for both generator and discriminator. The learning rate was set to
0.0002 during thefirst 100 epochs, and gradually reduced to zero over the next 100 epochs. For input to the
network, the image patchwas resampled to 256× 256 pixels for the data augmentation. The batch size was set to
one. ARTXA6000 graphics processing unit (GPU) (NVIDIA, CaliforniaUSA)was used.

Among a total of 41 patient datasets, a subset of 30 patients using four single folds, each containing 25
patients were used to perform the trainingwith unpaired datasets. Three patient datasets were used as an
ensemblemodel validation set and eight were used as a final test set. After the training, the generators GpCT

GAN and

GpCT
ResGAN were used to correct CBCTLD intensity by translating CBCTLD slice-by-slice into pCT equivalent

images, labelledCBCTLD_GAN andCBCTLD_ResGAN. As illustrated infigure 4, since four different folds were used
for training the cycleGAN, four GpCT

GAN and GpCT
ResGAN with identical training hyper-parameters were obtained and

applied to the ensemblemodel validation set. Themedian of the fourmodels was used as the final output. For
every 10th epoch, we computed themean absolute error (MAE) andmean error (ME) for the three ensemble
model validation cases in comparison to the reference vCT (section 2.3.1) and compared the appearance of soft
tissues, bones, air cavities and body outline visually tofind the optimal stopping epoch.

2.3.Data evaluation
2.3.1. Reference vCT and scatter corrected CBCT
Since there could be substantial anatomical differences between pCT andCBCTLD due to changes in bladder and
rectumfilling, as well as in patient positioning, the obtained images were not directly compared to the pCT for
determining the accuracy of CBCTLD_GAN orCBCTLD_ResGAN. Instead, we generated a vCTbymapping the pCT
to the daily CBCT via a dedicatedDIR approach. As described inHofmaier et al (2017), we aim for (1) image
similarity which is computed by normalized gradientfields, and (2) deformation regularity which is computed

Figure 4.An illustration of themodel ensemblemethod. Four independentmodels were trainedwith a four-fold split of the dataset.
Then the fourmodels were applied to the ensemblemodel validation set and themedian of the four outputswas evaluated to find the
bestmodel, whichwas then applied to the final testing set in evaluation.
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by curvature regularization. The optimization problem is solved in a discretize-then-optimize scheme using a
quasi-Newton L-BFGS optimizer.

ACBCT correction technique that had been validated in Park et al (2015) andKurz et al (2016)was employed
as an alternative reference for evaluating the network results and their comparison to vCT for the eight test cases.
This reference correction approachwas fully described in the original publications ofNiu et al (2010) andNiu
et al (2012) and in follow-up studies fromHansen et al (2018) and Landry et al (2019).Wefirst forward project
theVCT according to the geometry of theCBCT scanner to retrieve primary beamprojections (Ipri). The scatter
and other low frequency deviations (Isca) are calculated as the difference between a scaled original CBCTorg

projection (Iorg)with ntensity scaling factor (ISF) and (Ipri) followed by a generous smoothing function f. The
scatter corrected projection (Icor)was estimated by subtracting the scatter contribution from the original
measuredCBCTorg projections.With Icor, we could reconstruct a scatter-correctedCBCT, in the following
referred to as CBCTcor withHUvalues equivalent to the pCT, andwith ideally the same anatomy asCBCTorg. In
linewithCBCTLD, CBCTcor was reconstructed using the FDK algorithmwith the same reconstruction settings.

2.3.2. CT number accuracy
For the eight test cases, CBCTLD, CBCTLD_GAN andCBCTLD_ResGANwere compared to vCT in terms of theMAE
andME inHU. All pixel intensities were scaled frommodel output inμ toHUusing the inverse empirical scaling
used for the pCT. Pixels outside the joint body outline of vCT andCBCTLD_GAN/CBCTLD or
CBCTLD_ResGAN/CBCTLDwere excluded.

2.3.3. Dosimetric analysis
Todetermine dosimetric accuracy, we generated and recalculatedVMATplans on vCT,CBCTLD_GAN and
CBCTLD_ResGAN for the eight test patients in a research version of a commercial treatment planning system
(TPS) (RayStation, version 10.01, RaySearch, Sweden). Contours of target structures and organs-at-risks (OARs)
were transferred viaDIR frompCT to vCT, onwhichVMATplans using one arc were optimized on an isotropic
dose grid of 3.0 mmusing a collapsed-cone dose engine. These planswere then recalculated onCBCTLD_GAN

andCBCTLD_ResGAN. The generic Elekta Synergy beammodel with Agilitymulti-leaf-collimator in the TPSwas
employed. The prescriptionwas 74 Gy in 37 fractions andwe aimed at clinical target volume (CTV)V95% of
100%, and planning target volume (PTV)V95% better than 95%of the prescription dose.We aimed at fulfilling
the dose-volume histogram (DVH) constraints that are given in theQUANTEC report (Marks et al 2010) for the
rectum and the bladder. Identical generic CTnumber to electron density conversion tables were employed for
vCT, CBCTLD_GAN andCBCTLD_ResGAN in all cases. The dose distributions on vCT,CBCTLD_GAN and
CBCTLD_ResGANwere then compared in terms of a 1%, 2% and 3%dose difference criterion. Voxels with less
than 10%of the prescribed dosewere excluded. In addition, theVMATdose distributions for vCT,
CBCTLD_GAN andCBCTLD_ResGANwere comparedwith regard toDVHparameters of clinically relevant target
structures andOARs. CTV andPTVD98% andD2%, togetherwith PTVD50% andV95%were analyzed. For the
rectumV50/60/65 Gy and for the bladderV60/65 Gywere analyzed.

To evaluate the robustness of the dosimetric results to the reference image, theVMATplanswere
additionally recalculated onCBCTcor and the dose distribution compared to the one fromvCTwith a 1%dose
difference criterion.

2.3.4. Positioning accuracy
Daily patient positioning is one of the primary purposes of in-roomCBCT. To evaluate registration accuracy
when usingCBCTLD_GAN andCBCTLD_ResGAN, we rigidly registered these images to the pCTusing the research
TPS. The transformations were compared to the one obtained from registering CBCTorg to the pCT. Automated
gray level rigid registrationwas usedwith six degrees of freedom.

2.3.5. Anatomical fidelity
To evaluate the networks’ capability for preserving the anatomy correctly, we evaluated the shapes of organs
geometrically. TwoOARs, bladder and rectum,were segmentedmanually using the research TPS onCBCTorg,
CBCTLD_GAN andCBCTLD_ResGAN for this purpose. All contours were thoroughly validated by a radiation
oncologist with expertise in prostate cancer radiotherapy. Dice similarity coefficient (DSC), average and 95th
percentileHausdorff distance (HDavg,HD95) of the contours onCBCTLD_GAN andCBCTLD_ResGANwere
computed to determine the fidelity of the organ shape in the network output, using CBCTorg as ground truth.
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3. Results

3.1.Model selection based on ensemble validation
Themodel of epoch 50 for CBCTLD_GAN and themodel of epoch 60 for CBCTLD_ResGANwhich had the lowest
MAE andME and high soft-tissue geometric fidelity upon visual inspection of the validation cases were selected.
Infigure 5, the output images from the four trained GpCT

GAN and GpCT
ResGAN are shown for an exemplary ensemble

model validation patient (panel (a)–(d) and panel (g)–(j)), together with the calculatedmedian images (panel (e)
and (k)) and the pixel-wise difference betweenmaximumandminimumHUvalues (panel (f) and (l)). For
CBCTLD_GAN, deviations between the four differentmodels weremost pronounced at the edges of the bony
anatomy, aswell as at the patient body outline.We also observed variations in the bowels with occasional
generation of air pockets (panel (c)). ForCBCTLD_ResGAN, deviationswere generally less pronounced as in
CBCTLD_GAN, and no random large air pocket was generated. In the following analysis, only themedian images
were considered.

3.2. Computational details
The training to the bestmodel at epoch 50 of a single fold took about 9 h for CBCTLD_GAN, and at epoch 60 took
about 10.5 h for CBCTLD_ResGAN. The average time to convert a complete 3DCBCTLD of one patient with 195
slices intoCBCTLD_GAN orCBCTLD_ResGANwas about 2 s (about 10ms per slice) on aGPU.

Figure 5.The outputs of the four trained (a)–(d) GpCT
GAN and (g)–(j) GpCT

ResGAN models, themedian of (e)CBCTLD_GAN, (k)
CBCTLD_ResGAN, and the pixel-wisemaximumminusminimum for (f) GpCT

GAN and (l) GpCT
ResGAN outputs for one representative ensemble

model validation patient. All values are inHU.
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3.3. Image analysis
WeevaluatedCBCTLD_GAN andCBCTLD_ResGAN on eight test patients. CBCT images of test patient 36 and their
HUdifferences are shown infigure 6. InCBCTLD (panel (c)), streaks and undersampling artifacts are clearly
observedwhen compared toCBCTorg (panel (f)). In panel (d) and (e), CBCTLD_GAN andCBCTLD_ResGAN have
successfully removed these artifacts. Figure 6 also shows theHUdifferences of all CBCT results with respect to
vCT. CBCTLD (panel (g)) andCBCTorg (panel (j)) show larger underestimated regions and larger overestimated
regions, as well as pronounced deviations in the bony structures. As seen from the reduced differences to vCT,
CBCTLD_GAN (panel (h)) andCBCTLD_ResGAN (panel (i)) improved image intensities compared toCBCTorg. The
remaining differences betweenCBCTLD_GAN andCBCTLD_ResGANwith respect to vCT are observed at the
patient body outline and bone interfaces. In addition, figure 6 also shows theHUdifferences of all CBCT results
with respect toCBCTcor. All HUdifferences toCBCTcor are similar to the differences to vCTbutwith remaining
increased noise.

To quantify the image quality, we computed the averageME andMAE inHUofCBCTLD_GAN,
CBCTLD_ResGAN andCBCTLD compared to vCT for training, validation and test patients as shown infigure 7. In
panels (a) to (c), theMEofCBCTLD had positive values in almost all patients while CBCTLD_GAN had negative
values in themajority of datasets. CBCTLD_ResGAN had slightlymore negative values than positive ones. TheMEs
of all datasets were comparable within the correctionmethod. In panels (d) to (f), CBCTLD_GAN and
CBCTLD_ResGAN showed a substantially reducedMAE for all datasets compared toCBCTLD.

Table 1 reports the quantitative results in terms of the averageME andMAEof all patient images in training,
validation and testing datasets. For the testing datasets, the averageME changed from20HU for CBCTLD to−6
HU forCBCTLD_GAN and−2HU forCBCTLD_ResGAN. The averageMAE reduced from126HU for CBCTLD to
55HU forCBCTLD_GAN and 44HU forCBCTLD_ResGAN.

3.4.Dosmetric analysis
The quantitative results of the dose difference analysis of theVMATplans comparing CBCTLD_GAN and
CBCTLD_ResGAN to vCT are given in table 2 for all test datasets and the investigated dose difference (DD) levels.
ForCBCTLD_GAN, the average 1%DDpass-rate was 95.9%,with a value range from87.3% to 98.7%. For
CBCTLD_ResGAN, the average 1%DDpass-rate was 97.0%,with a value range from92.0% to 98.6%. This shows
that a high agreement of CBCTLD_GAN andCBCTLD_ResGAN to the reference vCTwas found. In addition, the
average 1%DDpass-rate comparing vCT toCBCTcor for all test datasets was 98.4%, indicating excellent
dosimetric agreement between the two benchmark images.

Figure 6.CBCTdata for test patient 36: (a) vCT, (b)CBCTcor, (c)CBCTLD, (d)CBCTLD_GAN, (e)CBCTLD_ResGAN, (f)CBCTorg. HU
differences of (g)CBCTLD, (h)CBCTLD_GAN, (i)CBCTLD_ResGAN, (j)CBCTorg and vCT are shown.HUdifferences of (k)CBCTLD, (l)
CBCTLD_GAN, (m)CBCTLD_ResGAN, (n)CBCTorg andCBCTcor are shown in the bottom row. The colorbars are inHU.
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The dose distribution and difference of test patient 38 are depicted infigure 8.Onlyminor dose differences
in the planning target volume (PTV) region betweenCBCTLD_GAN, CBCTLD_ResGAN and vCTwere found. The
dose difference for CBCTLD_ResGAN has smallermagnitude than for CBCTLD_GAN.

Figure 9 shows target andOARDVHparameter differences with respect to vCT as boxplots over all patients.
Formost of the considered parameters in bothCBCTLD_GAN andCBCTLD_ResGAN, differences werewithin
1.5 Gy for doseDVHparameters (Dx) and below 1.5% for volumeDVHparameters (Vx). All deviationswere

Figure 7. (Top)MEand (bottom)MAEper patient for the comparison of vCT and (a), (d)CBCTLD, (b), (e)CBCTLD_GAN or (c), (f)
CBCTLD_ResGAN. The data are labeled as belonging to the training (blue), validation (red) and testing (green) datasets.

Table 1.AverageHUME andMAEof all patient images in training, validation and testing datasets for the comparison of CBCTLD,
CBCTLD_GAN andCBCTLD_ResGANwith vCT, respectively. The number in square brackets represent [min,max] values among all patients in
the corresponding groups.

Dataset MECBCTLD MECBCTLD_GAN MECBCTLD_ResGAN

Training 21 [−1, 39] −12 [−32, 5] 5 [−8, 21]
Validation 19 [1, 30] −13 [−15,−12] −10 [−18,−1]
Test 20 [−5, 33] −6 [−18, 5] −2 [−17, 8]

Dataset MAECBCTLD MAECBCTLD_GAN MAECBCTLD_ResGAN

Training 125 [112, 134] 55 [46, 67] 45 [40, 55]
Validation 123 [118, 126] 60 [52, 68] 49 [42, 55]
Test 126 [119, 134] 55 [49, 62] 44 [38, 50]

Table 2.DoseDifferences (DD) of the eight test patients for the VMATplans recalculated on
CBCTLD_GAN andCBCTLD_ResGANwith respect to vCT . All values are in percent.

CBCTLD_GAN CBCTLD_ResGAN

Test patient 1%DD 2%DD 3%DD 1%DD 2%DD 3%DD

34 92.7 98.1 98.8 92.0 98.3 98.9

35 97.1 98.9 99.5 97.2 99.0 99.6

36 97.4 99.1 99.8 98.0 99.4 99.8

37 98.3 99.5 99.8 98.4 99.6 99.9

38 87.3 97.1 98.4 95.7 97.8 98.8

39 97.4 99.1 99.6 97.8 99.2 99.7

40 98.7 99.7 99.9 98.6 99.7 99.9

41 97.9 99.2 99.7 98.0 99.2 99.7

Average 95.9 98.8 99.4 97.0 99.0 99.5
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below 2 Gy/2%. Particularly in the target DVHcomparison, themedian differences ofD98%,D50% andD2%

comparing CBCTLD_GANwith respect to vCTwere 0.3%, 0.3% and 0.3% for the PTV. InCBCTLD_ResGAN, the
median differences ofD98%,D50% andD2%with respect to vCTwere 0.4%, 0.3% and 0.4% for the PTV.

3.5. Positioning accuracy
With respect toCBCTorg-to-pCT, themean absolute difference of rigid transformation parameters were
0.07 mm (right–left) (RL), 0.05 mm (inferior–superior) (IS), 0.01 mm (posterior–anterior) (PA), 0.17° (pitch),
0.15° (roll) and 0.24° (yaw) for CBCTLD_GAN-to-pCT, and similarly, themean absolute differences were
0.03 mm (RL), 0.05 mm (IS), 0.04 mm (PA), 0.16° (pitch), 0.19° (roll) and 0.26° (yaw) for
CBCTLD_ResGAN-to-pCT. Themajority of differences were thus less than 0.20 mmor 0.20°, except the pitch of
patient 34was 0.32° for CBCTLD_GAN, the yaw of patient 38was 0.82° for CBCTLD_GAN and 0.77° for
CBCTLD_ResGAN, the roll of patient 39was−0.60° for CBCTLD_GAN and−0.79° for CBCTLD_ResGAN, the yaw of

Figure 8.VMATdose distributions of the test patient 38. Dose distributions optimized on (a) vCT and recalculated on (b)
CBCTLD_GAN and (d)CBCTLD_ResGAN are shown together with (c), (e) their corresponding differences. The PTV is shown inmagenta.
Dose differences below 0.4%are not shown for better visualization.

Figure 9.Clinically relevantDVHparameter differences of CBCTLD_GAN andCBCTLD_ResGANwith respect to vCT for (a), (c) target
and (b), (d)OAR structures. Each data point represents a test patient.Whiskers correspond to the 5th–95th percentile. All dose values
correspond to the total dose of the fractionated treatment.
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patient 39was−0.42° for CBCTLD_GAN and−0.69° for CBCTLD_ResGAN and the pitch of patient 41was−0.65°
for CBCTLD_ResGAN.

3.6. Anatomical fidelity
As shown in table 3, the averageDSCof bladderwas 0.88 for CBCTLD_GAN and 0.92 for CBCTLD_ResGANwith
respect toCBCTorg. HDavg andHD95 of bladderwere 1.34 mmand 6.03 mm forCBCTLD_GAN, and 0.90 mm
and 4.05 mm forCBCTLD_ResGAN. As shown in table 4, the averageDSCof rectumwas 0.77 for CBCTLD_GAN

and 0.87 for CBCTLD_ResGANwith respect toCBCTorg. HDavg andHD95 of rectumwere 1.93 mmand 6.43 mm
forCBCTLD_GAN, and 1.05 mmand 3.89 mm forCBCTLD_ResGAN. In both bladder and rectum,CBCTLD_ResGAN

had a higherDSC and lowerHDavg andHD95 thanCBCTLD_GAN. In addition, bladder had generally higherDSC
and lowerHD than rectum in bothCBCTLD_GAN andCBCTLD_ResGAN. Figure 10 illustrates that the contour of
the rectum inCBCTLD_GAN (panel (b) and (e)) had a larger shape deviation than inCBCTLD_ResGAN (panel (c)
and (f))with respect toCBCTorg (panel (a) and (d)) due to a small incorrect air pocket generated, whichwould
also be contoured as part of the rectum in clinical practice.

4.Discussion

The daily use of CBCT imaging during a fractionated radiotherapy course could deliver a considerable amount
of radiation dose to patients. Due to the insufficient image quality, CBCT also cannot be used for daily dose
calculation and adaptation. To address these problems, our study aimed at addressing dose reduction and
intensity correction simultaneously.We generated synthetic low dose CBCTLD to train two cycleGAN
architectures to tackle the tasks of (1) removing the under-sampling artifacts and (2) correcting the intensity of
CBCTLD, and evaluated both approaches on a cohort of prostate cancer patients. The keyfinding of this study is

Table 3.The anatomical fidelity results of bladder in terms ofDice similarity coefficient (DSC), average and
95th percentile Hausdorff distance (HDavg,HD95) in the test patients fromCBCTLD_GAN and
CBCTLD_ResGAN.

CBCTLD_GAN CBCTLD_ResGAN

Test patient DSC HDavg (mm) HD95 (mm) DSC HDavg (mm) HD95 (mm)

34 0.83 1.68 7.39 0.93 0.65 3.86

35 0.90 1.27 5.79 0.93 0.83 3.29

36 0.91 1.12 6.11 0.93 0.81 4.42

37 0.84 1.46 4.42 0.85 1.43 6.10

38 0.94 0.78 4.42 0.94 0.69 3.67

39 0.83 1.82 6.40 0.90 1.08 3.79

40 0.91 1.52 4.45 0.94 1.04 3.37

41 0.89 1.06 6.82 0.94 0.65 3.90

Average 0.88 1.34 6.03 0.92 0.90 4.05

Table 4.The anatomical fidelity results of rectum in terms ofDice similarity coefficient (DSC), average and
95th percentile Hausdorff distance (HDavg,HD95) in the test patients fromCBCTLD_GAN and
CBCTLD_ResGAN.

CBCTLD_GAN CBCTLD_ResGAN

Test patient DSC HDavg (mm) HD95 (mm) DSC HDavg (mm) HD95 (mm)

34 0.75 2.55 8.67 0.83 1.32 6.17

35 0.72 2.17 7.52 0.85 0.98 3.56

36 0.80 2.01 6.83 0.82 1.91 7.11

37 0.85 1.11 4.03 0.90 0.68 2.12

38 0.89 1.10 4.06 0.92 0.84 3.15

39 0.74 1.98 6.68 0.90 0.63 2.12

40 0.62 2.86 8.12 0.87 0.89 3.15

41 0.79 1.62 5.56 0.85 1.15 3.70

Average 0.77 1.93 6.43 0.87 1.05 3.89
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that it was possible to reduce theCBCT imaging dose by 75%and enable VMATdose calculation accurately with
the use of cycleGAN.

To obtain CBCTLD, the number of projections was subsampled by a factor of four, which led to severe
streaking in the reconstructed images. The proposedCBCTLD_GAN andCBCTLD_ResGAN techniques successfully
removed all streak artifacts, by training the generators GpCT tomap theCBCTLD input to the pCTdomainwhich
has no under-sampling noise. In addition, the cycle consistency loss regularized the body structures between
CBCTLD andCBCTLD_GAN, and betweenCBCTLD andCBCTLD_ResGAN. The hyperparameterλ1 was increased
froma default value of 10 to 25, as the relative importance of preserving the anatomical content in the loss
functionwas previously demonstrated inKurz et al (2019) and confirmed in our study. Furthermore, the shape
loss was added to incorporate patient body outline information as suggested inGe et al (2019). The
hyperparameterλ2 was adjusted from a default value of 10 to 1 for CBCTLD_GAN. Compared to the default value
10, the smallerλ2 tends to output soft tissue and organswithmore correct shapes in our experiments. For
CBCTLD_GAN,λ2 of 1was empirically found beneficial in comparison to using no shape loss as shown in the
supplementary figure S1. For CBCTLD_ResGAN,λ2 of 0 gives the least variation in themin-max plots and thus a
higher stability of themodel outputs, as shown in supplementary figure 2.

Compared to previous unpairedCBCT-to-CT correctionworks using cycleGAN in pelvic scans, ourmodel
has achieved a slightly higherMAE reduction. This could be explained by the fact that the input CBCTLD has
more noise than the usual standard full dose CBCT input in other studies. TheMAE in comparison to vCTwas
substantially reduced from126HU forCBCTLD to 55HU forCBCTLD_GAN and to 44HU forCBCTLD_ResGAN.
Liu et al (2022) proposed a two-stepmethodwith phantom-based and patient-basedmodels, and reducedMAE
ofwell-matched slices from67 to 32HUwith respect to a deformably registered reference CT. InDeng et al
(2022), themodel that had a similar generator residual connection reducedMAE from29 to 18HU.Harms et al
(2019) trained a cycleGANmodel with pairedCBCT and pCTdatasets and reducedMAE from56 to 18HU. In
another studywith a similar patient cohort, Kurz et al (2019) reducedMAE from103 to 87HUwith respect to
CBCTcor (Kurz et al 2016) as reference, which has higher anatomical fidelity toCBCTorg butmore noise
than vCT.

In terms of dose calculation accuracy, good results were achieved for VMATwhen comparing CBCTLD_GAN

andCBCTLD_ResGAN to vCT. For a 2%dose difference criterion, amean pass-rate of 99%was determined for the
test patients for both proposed approaches. Despite the additional under-sampling artifacts in the low dose
CBCT input, the CBCTLD_GAN andCBCTLD_ResGAN dosimetric results are still comparable to the previous work
byKurz et al (2019)which used a fully sampled prostate dataset with a similar cycleGANarchitecture (without
shape loss or a generator residual connection). In line with this, formost cases a very good agreement of
CBCTLD_GAN andCBCTLD_ResGANwith respect to vCT in terms of clinically relevantDVHparameters was
achieved. For VMAT, a trend ofmarginally overestimated doses onCBCTLD_GAN andCBCTLD_ResGANwas
found in the target structures andOARs, with deviations below 1 Gy for doseDVHparameters (Dx) and below
1.5% for volumeDVHparameters (Vx) for 7 out of 8 test cases.

In order to investigate the anatomicalfidelity, twoOARs in the network-generated imageswere contoured
and compared to a ground truth contour onCBCTorg. TheDSC in rectumwas lower than in bladder, possibly
due to the higher variability of the rectum shape and the randomnatural occurrence of air pockets in the rectum.

Figure 10.The contours of rectum in (a)CBCTLD, (b)CBCTLD_GAN and (c)CBCTLD_ResGAN, and ((d)–(f)) the corresponding zoom-
in contours for the test patient 41.
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In addition, it ismore difficult to segment the rectum, thus increasing the uncertainties for rectum contours. It is
notable that CBCTLD_ResGAN still yielded generally higherDSC and lowerHDavg andHD95 thanCBCTLD_GAN in
the twoOARs. This demonstrated that CBCTLD_ResGAN can achieve improved geometrical accuracy, and
indicated a positive effect from a generator residual connection.

While having high treatment dose calculation accuracy and enhanced anatomical fidelity, the proposed low
dose CBCT techniques could deliver at least 75% lower dose in a pelvic scan. To estimate the reduced patient
dose, we have chosen the cone beamdose index (CBDI) valuewhich provides a single number that represents the
mean volumetric dose in theCTdose index (CTDI) phantom as reported in (Hyer andHintenlang 2010). They
reported aCBDI value (table 2 inHyer andHintenlang (2010), chest protocol) for the same configuration as our
protocol (M20protocol with 120 kV and a bowtie filter at an Elekta XVI scanner) of 1.62 mGy/100 mAs. By
selecting only 90 out of 350 projection frames, ourCBCTLD has thus reduced the patient dose from2.27 to
0.57 mGy (from a total exposure of 140 mAs to 36 mAs) per scan. For reference, another Elekta XVICBCT-to-
CTwork using cycleGANwith a regular full dose scan in prostate cancer reported a total exposure of 288 mAs
without providing complete acquisition details such as kV collimator type or the use of a bowtiefilter (Kida et al
2019). In a recent deep learning CBCT low-dose study using aU-Net, Yuan et al (2020) used a clinicalHN
protocol with 182 projections over 205°, whichwould correspond to 319 projections over 360°, and thus to a
considerably higher sampling rate than our approach by a factor of 3.5.

The computational time of the investigated low doseCBCT techniques for correcting a 3Dpelvic scan per
patient was shorter when compared to vCTor the projection-based scatter correction approachCBCTcor in
Kurz et al (2016), which have correction times in the order of 6–10min per patient. The correction time per slice
of 10 ms inCBCTLD_GAN orCBCTLD_ResGAN is identical to the other prostate CBCT-to-CTworks by Landry et al
(2019) using aU-Net, and byKurz et al (2019) using a similar cycleGAN. It should be noted that there are also
iterative reconstructionworks using compressed sensing, e.g. in Choi et al (2010), Lee et al (2012) and Park et al
(2012) or total variation in Song et al (2014) to remove under-sampling artefacts inCBCT images. However, one
more prior scatter correction stepwould be required to convert the CBCT image intensities toCTdiagnostic
intensities. Since the proposedCBCTLD_GAN orCBCTLD_ResGAN techniques allow fast image correctionwithin 2
s per patient (195 slices), they have the potential to be applied for CBCT-based online treatment plan adaptation.

There are some limitations in this study. First, the evaluation of theHUand dose calculation accuracy rely on
vCT. The advantage of using vCT as a reference is that it has correct intensity and ideally identical anatomy to
CBCTLD.However, vCTmight not be a perfect ground truth due to uncertainties inDIR. Thismight be one of
the potential causes for the small deviation found in the patient body outline infigure 6 panel (h) and (i), and in
the dose differencemaps infigure 8 panel (c) and (e). This is also the reasonwhywe compared the network
results with an alternative ground truthCBCTcor for inspecting the deviations thatmight have been caused by
theDIR uncertainties. As shown in (figure 6 panel (l) and (m)), similar deviations in the patient body outline
were also found in the comparison toCBCTcor, which implies that the uncertainties inDIR did not affectHU
accuracy analysis. In addition, the average 1%DDpass-rate comparing vCT toCBCTcor was 98.4% as reported
in section 3.4, which also implies that employing either vCT orCBCTcor as ground truth has onlyminimal
impact on the dosimetric comparison for the network results.

Second, it is observed that the prediction from some singlemodels before ensembling can be geometrically
unstable, especially for CBCTLD_GAN.Our approach is to stabilize the output by taking themedian of the 4
model outputs. Yet this does not control variability of each individualmodel. InCBCTLD_ResGAN, the variability
has been reduced due to the generator residual connection.

In future work, wewould like to investigate the feasibility of further reducingCBCTdose and explore under-
sampling schemes thatmight provide the opportunity to selectively avoid irradiating critical organs. Besides, we
would extend the proposed low dose CBCT imaging technique to other anatomical locations.

5. Conclusion

This study showed that it is possible to reduce theCBCT imaging dose by 75% in pelvic scanswhile enabling
accurate VMATdose calculationwith the use of a cycle-consistent generative adversarial network. The network
was successfully trained to simultaneously remove streaking artifacts and translate low doseCBCTLD toCT
equivalent images using unpaired training data. The resulting low dose CBCTLD_GAN andCBCTLD_ResGAN

images resemble planningCTs inHUaccuracy and the daily in-roomCBCTorg in anatomy. Clinically relevant
DVHparameters were accurately predicted. CBCTLD_ResGAN has improved the anatomicalfidelity in
comparison toCBCTLD_GAN. Compared to the reference technique (vCT), CBCTLD_GAN andCBCTLD_ResGAN,
which allow substantially faster correction and are not affected byDIR uncertainties in the presence of
pronounced inter-fractional changes, have thus the potential to be applied for online treatment adaptation.
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68 8. Studies

8.2 Paper 2: Investigation of imaging dose reduction
levels in pelvic CBCT-based synthetic CT gener-
ation using deep learning: dose calculation and
segmentation accuracy

Reprinted with permission from “Minimum imaging dose for deep learning-based pelvic
synthetic computed tomography generation from cone beam images.” by Yan Chi Ivy
Chan, Minglun Li, Adrian Thummerer, Katia Parodi, Claus Belka, Christopher Kurz, and
Guillaume Landry; Physics and Imaging in Radiation Oncology (2024), 30, p.100569.
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A B S T R A C T   

Background and purpose: Daily cone-beam computed tomography (CBCT) in image-guided radiotherapy admin
isters radiation exposure and subjects patients to secondary cancer risk. Reducing imaging dose remains chal
lenging as image quality deteriorates. We investigated three imaging dose levels by reducing projections and 
correcting images using two deep learning algorithms, aiming at identifying the lowest achievable imaging dose. 
Materials and methods: CBCTs were reconstructed with 100%, 25%, 15% and 10% projections. Models were 
trained (30), validated (3) and tested (8) with prostate cancer patient datasets. We optimized and compared the 
performance of 1) a cycle generative adversarial network (cycleGAN) with residual connection and 2) a 
contrastive unpaired translation network (CUT) to generate synthetic computed tomography (sCT) from reduced 
imaging dose CBCTs. Volumetric modulated arc therapy plans were optimized on a reference intensity-corrected 
full dose CBCTcor and recalculated on sCTs. Hounsfield unit (HU) and positioning accuracy were evaluated. 
Bladder and rectum were manually delineated to determine anatomical fidelity. 
Results: All sCTs achieved average mean absolute mean absolute error/structural similarity index measure/peak 
signal-to-noise ratio of ⩽59HU/⩾0.94/⩾33 dB. All dose-volume histogram parameter differences were within 2 
Gy or 2%. Positioning differences were ⩽0.30 mm or 0.30◦. cycleGAN with Dice similarity coefficients (DSC) for 
bladder/rectum of ⩾0.85/⩾0.81 performed better than CUT (⩾0.83/⩾0.76). A significantly lower DSC accuracy 
was observed for 15% and 10% sCTs. cycleGAN performed better than CUT for contouring, however both yielded 
comparable outcomes in other evaluations. 
Conclusion: sCTs based on different CBCT doses using cycleGAN and CUT were investigated. Based on segmen
tation accuracy, 25% is the minimum imaging dose.   

1. Introduction 

In image-guided radiotherapy (IGRT), deep learning (DL) algorithms 
have been widely employed to enhance radiotherapy treatments. 
Particularly for the pelvic region, where the anatomy exhibits inter- and 
intra-fractional variations, the adaptive workflow relies on accurate 
cone beam computed tomography (CBCT)-to-CT translation [1,2], and 
organ segmentation on synthetic CTs (sCT) [3,4]. CBCT imaging dose 
has often been disregarded, viewed as negligible compared to the 

therapeutic dose. However, studies suggested that daily CBCT poten
tially results in considerable additional organ doses in the pelvic region 
[5–7]. Each pelvic scan can deliver up to 22.7 mSv effective dose [8]. 

Adhering to “as low as reasonably achievable” (ALARA), radiation 
oncologists use the lowest possible imaging dose or restrict the fre
quency of CBCT scans to reduce secondary cancer risk. Further reducing 
imaging dose, however, remains impractical since the image quality 
would degrade to unusable levels with potential loss of anatomical in
formation. Lower imaging dose CBCTs with enhanced image quality 
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could not only mitigate the secondary cancer risk concern, but also offer 
a higher flexibility in terms of in-room imaging frequency and enable 
online treatment dose adaptation. With sufficient sCT quality, one could 
also avoid acquiring new planning CTs for plan adaptation, thus further 
reducing imaging dose. 

DL-enabled CBCT-to-CT translation has mostly been developed for 
standard full dose CBCT. Three DL architectures have been applied to 
pelvic scans: U-Net [9], cycleGAN [10] and contrastive unpaired 
translation (CUT) [11]. U-Nets were trained with paired data in image 
[12–14] or projection domain [14–17]. To overcome potential mis
alignments, cycleGAN has been used for unpaired training [18–23]. In 
recent studies [24–26], CUT demonstrated better performance over 
cycleGAN. Treatment dose calculation on CUT, however, remained 
unexplored. 

Limited studies explored the possibility of using low imaging dose 
CBCT. Our previous study [27] investigated the feasibility of removing 
under-sampling artifacts and correcting intensities of 25% imaging dose 
CBCT using cycleGAN. sCT from 25% imaging dose CBCT (≈0.6 mGy) 
showed high accuracy in therapeutic photon dose calculation, anatom
ical fidelity (in terms of Dice similarity coefficient (DSC) and Hausdorff 
distance (HD) of contours) and positioning. In [24], cycleGAN and CUT 
removed streaks from 4D CBCT which is comparable to low dose CBCT. 
There are a few low dose CBCT-to-CT studies in other anatomies 
[28,29]. Among low dose CBCT-to-CT studies, there is a scarcity of 
systematic investigation of the maximum imaging dose reduction level 
that DL could offer. In most CBCT-to-CT studies, organ segmentation is 
rarely evaluated except [18,21,22] in pelvic and [30] head and neck 
region. 

In this study, we aim at finding the achievable lowest imaging dose 
using cycleGAN and CUT in terms of all metrics relevant to CBCT-guided 
adaptive radiotherapy: image quality, positioning, organs-at-risk (OAR) 
contouring accuracy and therapeutic photon dose calculation. We 
investigated imaging dose levels in terms of sCT generation from a CBCT 
with reduced number of projections (25%, 15% and 10%) by removing 
under-sampling artefacts and correcting image intensities. Dose reduc
tion is achieved via the reduction of the number of projections. 

2. Materials and methods 

The workflow of CBCT restoration at different dose levels is illus
trated in Fig. 1. In general, imaging dose was reduced by retroactively 
reducing the number of acquired projections. 

2.1. Patient database for model training 

The database contained 41 prostate cancer patients who received 
volumetric modulated arc therapy (VMAT) at Department of Radiation 
Oncology of LMU University Hospital. One planning CT (pCT) acquired 
before treatment course and CBCT images of one arbitrary fraction of 
each patient were collected. 

Bavarian state law (Bayrisches Krankenhausgesetz/Bavarian Hospi
tal Law §27 Absatz 4 Datenschutz) allows the use of patient data for 
research, provided that any person’s related data are kept anonymous. 
All patient data were fully anonymised. Identification from pelvic CT 
data is not possible. German radiation protection laws request a regular 
analysis of outcomes in the sense of quality control and assurance, thus 
in the case of purely retrospective studies no additional ethical approval 
is needed under German law. 

Only CBCT datasets acquired with the lowest dose pelvic protocol 
(120 kV tube voltage, 20 ms exposure time, 20 mA X-ray tube current 
per projection) in treatment position using the XVI system (version 5.52) 
of a Synergy medical linear accelerator (Elekta, Sweden) were selected. 
For each fully sampled (FS) scan, approximately 350 projections [346, 
357] were acquired over 360◦ with a shifted panel and reconstructed 
using Feldkamp–Davis–Kress (FDK) implementation of Reconstruction 
ToolKit (RTK) [31], referred to as CBCTFS. To investigate achievable 
dose reduction levels, CBCTs were under-sampled to 25% (∼90 pro
jections), 15% (∼52 projections) and 10% (∼35 projections) and 
reconstructed using the same settings. Since each projection was ac
quired with a fixed dose, reducing the number of projections results in a 
dose reduction. 

pCTs were acquired without contrast agent on a Toshiba Acquilion 
LB CT scanner (Canon Medical Systems, Japan). A virtual CT (vCT) was 
generated using a dedicated deformable image registration (DIR) algo
rithm mapping the pCT onto the daily CBCTFS [32]. For reference, a 
intensity-corrected CBCTcor was generated using a projection-based 

Fig. 1. Workflow of CBCT restoration at different dose reduction levels investigated in this study. Low dose CBCTs were set as inputs in the cycleGAN and CUT 
algorithms to generate sCTs, which were then evaluated by means of patient positioning, dose calculation and contouring accuracy. The black arrows denote the 
sequence of the investigation steps in this study (low dose CBCT generation, deep learning model training, sCT generation, and finally the evaluation of therapeutic 
photon dose calculation, contouring and positioning). Models were trained separately for each dose reduction level. G and F denote generators, DCBCT and DCT denote 
discriminators, z denotes the image patches used in CUT. 
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scatter correction technique [14,17,33–36] based on DIR of pCT to CBCT 
and forward projection followed by conjugate gradient iterative recon
struction [31]. 

CBCTs, vCTs and CBCTcor were padded to an axial size of 512 × 512 
pixels (1 mm × 1 mm) with a slice thickness of 1 mm. Details of the data 
acquisitions and pre-processing can be found in the Supplementary 
material. 

2.2. Deep learning algorithms 

Low dose CBCT-to-CT translation can be formulated as: 

sCT = G(CBCTLD)

where G is an encoder-decoder based model that simultaneously con
verts CBCTLD to sCT while preserving the anatomical content. In this 
study, cycleGAN and CUT algorithms were employed to train G. 

2.2.1. cycleGAN 
We applied the cycleGAN algorithm that was implemented in a 

previous study [27]. This training process involved two sets of generator 
and discriminator networks. A cycle consistency loss (Lcyc) is computed 
to stabilise anatomical mappings between CBCT and CT. A residual skip 
connection was used for both generators to attain higher anatomical 
fidelity. vCT was used in the training instead of pCT to evaluate the 
efficacy of an additional paired loss term. 

2.2.2. CUT 
We adapted the CUT algorithm proposed by Park et al.[11]. Only one 

set of generator and discriminator is required, since Lcyc is replaced by a 
patchwise contrastive loss (LPatchNCEx,LPatchNCEy). As shown in Fig. 1, a sCT 
patch should match more with its corresponding input CBCT patch 
(denoted as positives), in comparison with other random CBCT patches 
(denoted as negatives). The encoder part of the generator (Genc) fol
lowed by a two-layer multilayer perceptron (MLP) network is employed, 
which allows the model to learn and project both patches to a shared 
feature embedding space. 

Training of each model used identical data, pre-processing and data 
augmentation. Details are provided in Supplementary material. 

2.3. Training details 

For each of the CBCT dose reduction levels, cycleGAN and CUT 
models were trained with 4-fold cross-validation with 25 out of 30 pa
tients per fold, from which the median of the four predicted images was 
used. We determined hyper-parameters for each model through 
ensemble validation on three patient datasets. Subsequently, we pre
served the model weights associated with the highest validation per
formance and applied them for testing. 

The test set consisted of 8 patient datasets. The generators for every 
imaging dose level were applied to convert CBCTs into sCTs. Details are 
provided in Supplementary material. 

2.4. Evaluation 

2.4.1. Image quality 
sCTs of different imaging dose levels for the test set were compared 

to CBCTcor in terms of the mean absolute error (MAE), mean error (ME), 
structural similarity index measure (SSIM) and peak signal-to-noise ratio 
(PSNR). Only voxels within the joint body outline of CBCTcor and sCTs 
were included. 

2.4.2. Treatment dose calculation 
VMAT plans on CBCTcor for the test patients were generated in a 

research version of a commercial treatment planning system (TPS) 
(RayStation, version 10.01, RaySearch, Sweden). Contours of target 

structures and OAR were transferred from the pCT to sCTs and CBCTcor 
using DIR, VMAT plans were optimized on an isotropic dose grid of 3.0 
mm using a collapsed-cone dose engine. These plans were then recal
culated on all sCTs. The prescription was 74 Gy in 37 fractions and we 
aimed at a clinical target volume (CTV) V95% of 100%, and planning 
target volume (PTV) V95% better than 95% of the prescription dose. The 
dose-volume histogram (DVH) constraints for the bladder and the 
rectum were pursued as suggested in the QUANTEC report [37]. The 
VMAT dose distributions were compared with the CBCTcor reference 
considering DVH parameters of clinically relevant target structures and 
OAR. CTV and PTV D98% and D2%, together with PTV D50% and V95% 
were analyzed. For the bladder V60/65 Gy and for the rectum V50/60/65 Gy 

were analyzed. Moreover, the voxels passing a therapeutic dose differ
ence (DD) analysis with a 1% and 2% criterion (10% threshold) were 
compared. For each dose parameter, results from sCTs were compared to 
CBCTcor using Wilcoxon signed-rank tests. Similarly, low imaging dose 
sCTs were compared to FS sCT for both models. P-values less than 0.05 
were considered significant. 

2.4.3. Segmentation accuracy 
To determine the anatomical fidelity of all sCTs, bladder and rectum 

were contoured manually under the supervision of a radiation oncolo
gist using the research TPS on CBCTFS and sCTs. Please keep in mind that 
these contours were unrelated to the contours used to generate the 
treatment plans used for the treatment dose evaluation of Section 2.4.2. 
DSC, average and 95th percentile HD (HDavg, HD95) of the contours of all 
sCTs were compared with CBCTFS as reference. sCTs from all imaging 
dose reduction levels, as well as from both models at the same dose 
reduction, were statistically analysed using Wilcoxon signed-rank tests. 

2.4.4. Positioning accuracy 
To evaluate positioning accuracy at different CBCT dose reduction 

levels, all sCT images were rigidly registered to the pCT using TPS 
(automated, gray level, six degrees of freedom). The transformations 
were compared to the one obtained from registering CBCTFS to pCT. 

3. Results 

The average time to generate a sCT slice from CBCT was 6 ms for 
both models. Detailed epoch selection and the corresponding training 
time are shown in Supplementary Table 1. 

3.1. Image comparison 

Fig. 2 illustrates sCTs, CBCTcor of a representative test patient and 
their corresponding HU differences. Both cycleGAN and CUT removed 
streak artifacts from all CBCTs, and simultaneously converted them into 
diagnostic quality. Compared to inputs, all sCTs show reduced differ
ences to CBCTcor. The remaining differences are observed at body 
outline and bone interfaces. The coronal view is illustrated in Supple
mentary material Fig. 1. 

All metrics are substantially enhanced by both models (Supplemen
tary Table 2). The average MAE of all sCTs with respect to CBCTcor were 
improved from ⩾102 HU to ⩽59 HU. The average ME of the majority of 
the sCTs has decreased by ⩾7 HU. SSIM/PSNR were enhanced from 
⩽0.91/⩽33 dB on CBCTs to ⩾0.94/⩾33 dB on sCTs. 

3.2. Treatment dose calculation 

Fig. 3 shows the treatment dose distribution and difference of an 
exemplary test patient. Compared sCTs to CBCTcor, only minor dose 
differences were found in the PTV region (<3%). The remaining treat
ment dose differences were mainly in patient outline. 

In Fig. 4, target and OAR DVH parameter differences with respect to 
CBCTcor over all test patients are depicted. Deviations were within 2 Gy 
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Fig. 2. Axial view of (a) the CBCT inputs and sCTs generated by cycleGAN and CUT with 100%, 25%, 15%, 10% projections; (b) the scatter corrected CBCTcor 
reconstructed with conjugate gradient (CG); (c) HU difference between inputs and corresponding sCTs with CBCTcor of a test patient. 
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for dose DVH parameters (D2/50/98%) and below 2% for volume DVH 
parameters (V50/60/65 Gy). Particularly in the target DVH comparison, the 
mean differences of D2/50/98% comparing all sCTs with respect to 
CBCTcor were ⩽0.5% for the PTV. For cycleGAN, no significant differ
ences were found in the majority of the low dose sCT, except CTV D2% 
and PTV D2% of the 10% sCT. Statistically significant differences were 
observed for all FS sCTs, but most magnitudes were constrained by 1 Gy. 
For CUT, significant differences were observed in 15% and 10% sCTs for 
most of target and OAR DVH parameters, except rectum V50% and 
bladder V65% for 10% sCTs. 

Fig. 5 illustrates the quantitative results of the treatment dose dif
ference analysis of the VMAT plans comparing sCTs to CBCTcor with a 
1% criterion. The average 1% DD pass-rates of all sCTs were above 95% 
for cycleGAN and 97% for CUT. Statistically significant differences were 
observed comparing the dose reduced sCTs to the FS sCT for CUT, the 
10% sCT to the FS sCT for cycleGAN. CycleGAN performed significantly 
better than CUT for 10% sCT. The average 2% DD pass-rates were higher 
than 98% for both models, indicating an excellent agreement of all sCTs 
to the reference CBCTcor. 

3.3. Anatomical accuracy 

Fig. 6 shows the (a-c) bladder and (d-f) rectum contouring results. 

For bladder, the average DSC was above 0.80 in all sCTs with respect to 
CBCTFS. HDavg/ HD95 of bladder were ⩽1.5 mm/⩽8.0 mm for cycleGAN, 
and ⩽2.0 mm/⩽8.3 mm for CUT in all sCTs. For cycleGAN, significant 
differences were observed comparing 15% and 10% to FS sCTs in all 
metrics. For CUT, significant differences only in DSC were observed 
comparing 15% and 10% to FS sCTs. CycleGAN performed significantly 
better than CUT in FS and 25% sCT for all metrics. 

For rectum, the average DSC was ⩾0.80/⩾0.75 for cycleGAN/CUT in 
all sCTs. HDavg/ HD95 of rectum were ⩽1.7 mm/⩽6.0 mm for cycleGAN, 
and ⩽1.9 mm/⩽6.6 mm for CUT. For cycleGAN, significant differences 
were observed comparing 15% and 10% to FS sCTs in all metrics. For 
CUT, significant differences were observed comparing 25%, 15% and 
10% to FS sCTs. CycleGAN performed significantly better than CUT in 
FS, 25% and 10% sCT for all metrics except HD95. 

In both organs, FS sCT has the highest DSC, lowest HDavg and HD95 
among all sCTs for cycleGAN and CUT. In addition, bladder had higher 
DSC and lower HDavg and HD95 than rectum in both models. 

3.4. Positioning accuracy 

Compared to CBCTFS-to-pCT rigid registration, the mean absolute 
differences of rigid transformation parameters in all sCTs-to-pCT regis
trations were less than 0.30 mm or 0.30◦ for both models, demonstrating 

Fig. 3. VMAT dose distributions of an exemplary patient. Dose distributions optimized on CBCTcor and recalculated on sCTs at difference dose reduction levels, and 
their corresponding differences for cycleGAN and CUT. The PTV is shown in magenta. Dose differences below 0.4% are not shown for better visualization. 
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sCTs from the investigated low dose CBCT have the potential to align 
patients accurately. Detailed results are provided in Supplementary 
material Table 3. 

4. Discussion 

We investigated sCT generation based on different CBCT imaging 
dose reduction levels achieved by reducing the number of projections 
using cycleGAN and CUT, and evaluated image quality, dose calculation 

Fig. 4. Clinically relevant DVH parameter differences of sCTs in different dose reduction levels with respect to CBCTcor for target and OAR structures using (a, c) 
cycleGAN and (b, d) CUT. Each data point represents a test patient. Whiskers correspond to the 5th–95th percentile. The box denotes the interquartile range, and a 
horizontal line inside the box is used to represent the median. All values correspond to the total treatment dose of the fractionated treatment. Significant difference 
between sCT and CBCTcor is indicated by a star (p-value <0.05). 
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and organ segmentation accuracy. The CBCT inputs were initially 
reconstructed with 100%, 25%, 15% and 10% projections. Our primary 
objective was to determine the largest imaging dose reduction without 
loss of accuracy. 

Over the evaluation metrics for image quality, treatment dose 
calculation and positioning accuracy, limited deviations were noted 
among all imaging dose reduction levels. However, organ segmentation 

showed differentiation among the sCTs for both models. From the DSC, 
HDavg and HD95 results (Fig. 6), the performance drops at 15% dose, 
where the cycleGAN model began to exhibit degraded accuracy in 
generating accurate bladder and rectum shapes, as observed from the 
significant differences appearing at 15% and 10% dose sCT compared to 
CBCTFS. For CUT, the performance declined at 15% dose for the bladder, 
and already at 25% for the rectum. In addition, as revealed by the 

Fig. 5. Voxels passing a 1% dose difference criterion in the eight test patients for the VMAT plans recalculated on sCTs from different dose reduction levels using 
cycleGAN and CUT with respect to CBCTcor. Each data point represents a test patient. Whiskers correspond to the 5th–95th percentile. The box denotes the inter
quartile range, and a horizontal line inside the box is used to represent the median. Significant difference comparing dose reduced sCT to FS sCT is indicated by a hash 
sign (p-value <0.05). Significant difference comparing cycleGAN and CUT for identical dose sCT is indicated by a circumflex (p-value <0.05). 

Fig. 6. The anatomical fidelity results of (a–c) bladder and (d–f) rectum in terms of Dice similarity coefficient (DSC), average and 95th percentile Hausdorff distance 
(HDavg, HD95) comparing sCTs with CBCTFS in the test patients. Each data point represents a test patient. Whiskers correspond to the 5th–95th percentile. The box 
denotes the interquartile range, and a horizontal line inside the box is used to represent the median. Significant difference comparing dose reduced sCT to FS sCT is 
indicated by a hash sign (p-value <0.05). Significant difference comparing cycleGAN and CUT for identical dose sCT is indicated by a circumflex (p-value <0.05). 
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significant differences in all metrics for organ contours, cycleGAN per
formed slightly better than CUT in FS and 25% dose, while in further 
reduced dose levels both models demonstrated similar inferior 
performance. 

Compared to previous pelvic sCT segmentation studies [18,21,22], 
this is the first time sCTs based on CBCTs at different imaging dose levels 
were compared. A direct comparison to other studies is not easily 
possible because the imaging dose of CBCT testing data is different. 
However, mean DSC of bladder and rectum for FS sCT, from cycleGAN 
(0.92, 0.90) and CUT (0.88, 0.84) agree with the other studies 
(0.89–0.92, 0.81–0.87) [18,21,22]. No rectum DSC was reported in 
[18]. 

Regarding therapeutic dose accuracy, DVH parameters difference 
were within 2 Gy or 2%, which aligned with previous studies using 
cycleGAN [20,27]. Photon dose calculation using CUT is however not 
yet found in other studies. For CUT, the drop of performance at 15% 
sCTs was manifested for OAR DVH parameters. Using 1% DD criteria, we 
observed a significant decrease of voxels passing at 10% for cycleGAN 
and 25% for CUT. However all values were still above 97%, indicating 
high agreement which allowed accurate dose calculation. 

Regarding image quality, both models substantially enhanced all 
CBCTs and CUT performed slightly better than cycleGAN. Coronal views 
showed slight jittering in the internal organs along slices, since the 
training was conducted in 2D. Compared to [24], our sCTs yielded 
higher PSNR and SSIM but higher MAE. These differences are mainly 
due to the use of a deformed CT as reference in [24], which might have 
more uncertainties from DIR but less scatter noise than our reference 
CBCTcor. 

While this study illustrated minimum imaging dose at 25%, it is 
limited by the number of patients in the test datasets. Besides, the 
models are not anatomical-site-agnostic as only pelvic datasets were 
used. Moreover, DL-generated images may suffer from anatomical 
inaccuracies. Despite the use of LPatchNCEx and LPatchNCEy in CUT, accu
rately predicting organs, particularly in those with variable shapes like 
rectum, remains challenging. Low dose CBCTs can yield high positioning 
accuracy [38] or a small dosimetric deviation using a water-density 
override. However, it is still meaningful to generate sCTs which 
enable organ contouring for adaptation. 

Unlike prior DL-enabled CBCT-to-CT works [12–16,18–21,23–26], 
this study investigated anatomical fidelity in sCT by manual OAR con
touring. This aspect revealed a performance threshold for imaging dose 
reduction. Our results suggest that a CBCT imaging dose as low as 25% is 
clinically feasible, enabled by the optimized cycleGAN or CUT model. 
Further reduction to 15% or 10% requires additional DL advancements. 

sCTs based on different CBCT imaging dose reduction levels (100%, 
25%, 15% and 10%) using cycleGAN and CUT were investigated. While 
all sCTs demonstrated very good dosimetric, HU and positioning accu
racy for both models, considerable differences were found in terms of 
contouring accuracy. In line with all evaluations, 25% is the minimum 
imaging dose without loss of anatomical accuracy. 
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Supplementary material

Data acquisition and pre-processings

planning CT (pCT)s of the selected prostate cancer patients were re-
constructed with an image grid of 1.074 mm × 1.074 mm × 3.000 mm in
combination with a 55 cm lateral field of view (FOV). In each fraction, these
patients were advised to follow an in-house bladder and rectum filling pro-
tocol before treatment and cone beam computed tomography (CBCT) scan-
ning. Their corresponding CBCT images were acquired with an increased
lateral FOV by using a laterally-shifted detector panel in M position and a
bow-tie filter. Images with body outline truncation in spite of the increased
FOV were excluded from the study. The mean, min, max time gap between
pCT and CBCT are 26, 7, 61 days respectively. CBCT inputs (CBCTFS,
CBCTLD25, CBCTLD15 and CBCTLD10) were reconstructed identically using
Feldkamp–Davis–Kress (FDK) (as described previously in [1]) with 410× 410
× 264 voxels on an isotropic 1.0mm3 grid. The patient couch was removed
from the CBCT input images by thresholding and morphological maskings,
followed by zero padding to an image size of 512 × 512 pixels. The pixel
intensity of all CBCTs was normalised in the attenuation coefficient value
(µ) range [0, 0.04] (values above 0.04 were set to 0.04).

vCTs were generated by registering the pCT to the daily CBCT via DIR.
As described in [2], we aim for 1) image similarity which is computed by nor-
malized gradient fields, and 2) deformation regularity which is computed by
curvature regularization. The optimization problem is solved in a discretize-
then-optimize scheme using a quasi-Newton L-BFGS optimizer. Following
the generation, vCTs were re-sampled to an isotropic 1.0mm3 grid and an
image size of 512 × 512 pixels. The table was also removed. The pixel inten-
sity was empirically converted to the range of the CBCT images ((Hounsfield
units (HU) + 1024) / 65536) [3]. The resulting intensities were clipped to
the range [0, 0.05] (values above 0.05 were set to 0.05).

The reference CBCTcor were generated (as described in [4]) and recon-
structed using iterative conjugate gradient (CG) with 410 × 410 × 264 voxels
on an isotropic 1.0mm3 grid. In the CG algorithm [5], the objective function
consists of a data consistency term, Laplacian and Tikhonov regularization
as shown in the following formulation:

||sqrt(D)(Rf − p)||22 + γ||∇ · f ||22 + T||f ||22 (S1)
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with R the forward projection operator, f the image to be reconstructed,
p the measured projections, D the displaced detector weighting operator, γ
the weighting of the Laplacian regularization, ∇ being the spatial derivative
of the image f , T being the strength of the Tikhonov regularization. The
goal of this iterative CG algorithm is to find the image f that minimizes
the above equation. By empirical experiments, the hyper-parameters for
reconstructing the CBCT images were set to 100 iterations, γ = 1000 and T
= 100 for the optimal image quality.

The beginning and last 35 image slices of all CBCT inputs, CBCTcor and
vCT in superior–inferior direction were excluded due to partial FOV cone
truncation.

Deep learning algorithms

Two deep learning algorithms were used to investigate each of the dose
reduction levels in CBCT-to-CT translation tasks. Both algorithms are based
on generative adversarial networks (GAN) and trained with a back-and-forth
interaction between a generator and a discriminator. An adversarial loss
term Ladv(G,D,CBCT,CT) is computed in both algorithms for which the
generator G tries to convert low dose CBCT to synthetic CT (sCT) such that
is indistinguishable from real CT according to the discriminator D.

• cycleGAN: the first algorithm was the cycleGAN that we implemented
in a previous study [1]. In addition to the 25% dose CBCT, 15% and
10% dose CBCTs were specified as the inputs to train corresponding
sets of generators and discriminators in this study. To attain higher
anatomical fidelity, a residual skip connection was added for both gen-
erators to keep the high resolution features in the input image and
reduce the vanishing gradients problem in the encoding process. This
approach has been reported to improve geometric fidelity in the field of
histopathology [6] and was used in a previous CBCT-to-CT study [1].
A cycle consistency loss Lcyc is introduced to stabilise the anatomical
mappings between CBCT and CT using L1 norm regularisation. This
process involves training an extra set of generator and discriminator,
for which CT and CBCT are swapped. vCT was used in the training,
as we added an L2 norm between CBCT and corresponding vCT to in-
vestigate the efficacy of such a paired loss. The total objective function
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can be formulated as

LcycleGAN(G,F,DCBCT,DCT) =Ladv(G,DCT,CBCT,CT)+

Ladv(F,DCBCT,CT,CBCT)+

λ1Lcyc(G,F)+

λ2LL2(CBCT,CT).

(S2)

where G and F denote the generators in forward and backward cycle
respectively, DCBCT and DCT denote the discriminators, λ1 and λ2 are
hyperparameters that were empirically set to 25 and 0 for the optimal
image quality in this study.

• CUT: the second algorithm is an alternative one-side translation to
reduce the computing resources of the auxiliary network. This can be
achieved by replacing Lcyc with a loss on image patches, referred to as
patchwise contrastive loss LPatchNCE. In contrastive learning, a query
patch is sampled from the sCT output and compared with the patch
at the corresponding location (denoted as positive) or other patches at
different locations (denoted as negatives) of the corresponding CBCT
input image. The probability of the positive samples being selected
over negatives can be formulated by the following cross-entropy loss:

l(v, v+, v−) = −log

[
ev·v

+/τ

ev·v+/τ +
∑N

n=1 e
v·v−n /τ

]
(S3)

where v, v+ and v− denote the K-dimensional vectors of the query (v ∈
RK), the positive (v+ ∈ RK), and N number of negatives (v− ∈ RN×K),
respectively. The n-th negative is denoted as v−n ∈ RN×K . For such an
(N+1) classification problem, τ , which denotes the distances between
the query and samples was set as 0.07. The goal here is to maximize
the mutual information between v and v+, but minimize between v and
v−.

The images from the positive and negative samples are passed through
the encoder network of the generator (Genc) to obtain embeddings.
These embeddings are low-dimensional representations of the images
that capture their content and style information. The layers of in-
terest (L) and the number of spatial locations in each layer (S) are
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selected. The feature maps are passed through a small two-layer multi
layer perceptron (MLP) network Hl, yielding a stack of features {zl}L =
{Hl(G

l
enc(x))}L. Likewise, the output image is encoded with the same

network into ẑsl = {Hl(G
l
enc(G(x)))}L. The other patches within the

input can be used as negatives and that formulates the following con-
trastive loss LPatchNCEx.

LPatchNCEx(G,H,CBCT) = Ex∼CBCT

L∑

l=1

Sl∑

s=1

l(ẑsl , z
s
l , z

S/s
l ) (S4)

where ẑsl , z
s
l and z

S/s
l represents the feature of the output image, the

corresponding feature (zsl ∈ RCl) and the negative feature (z
S/s
l ∈

R(SL−1)×Cl). Cl denotes the number of channels at each layer. Since
the generator learns to pay attention to the similarities between the
two domains, the embeddings share the common features. To avoid in-
correct anatomical changes, CT is used to generate identical CT using
the same generator. The positive and negative samples of these CT
images are passed through the same Genc and MLP, which allows us to
formulate the following contrastive loss for the CT domain LPatchNCEy:

LPatchNCEy(G,H,CT) = Ey∼CT

L∑

l=1

Sl∑

s=1

l(ẑsl , z
s
l , z

S/s
l ) (S5)

The total loss function is therefore

LCUT(G,DCT,CBCT,CT) =Ladv(G,DCT,CBCT,CT)+

λCBCTLPatchNCEx(G,H,CBCT)+

λCTLPatchNCEy(G,H,CT)).

(S6)

where λcbct and λct were both set to 10 for the optimal image quality
as suggested in [7]. The main objective for CUT here is to generate
realistic CT images, while patches in the input and output images share
corresponding information.
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Hyper-parameters and network settings

In the following, we describe the hyper-parameters and the network set-
tings for each model.

• cycleGAN: a majority of the hyper-parameters which gave the best
results in our previous study [1] were used, i.e. for the generators,
two convolutional layers with stride 2 in the encoder and two decon-
volutional layers with stride 2 in the decoder, nine residual blocks [8]
between encoding and decoding operations. For the discriminators, we
used 70 × 70 PatchGAN [9] with a downsampling scheme from 256
× 256 to 32 × 32 by applying four series of 2D convolutional layers,
followed by instance normalization (not for the first and last layer) and
LeakyReLU with a slope of 0.2 as nonlinearity (not for the last layer).
The receptive field of the network was 70 × 70 and each pixel in the
output was evaluated as a scalar in the range [0, 1]. Both generators
and discrimninators were optimized with the Adam algorithm. The
learning rate was set to 0.0002 during the first 100 epochs, and gradu-
ally reduced to zero over the next 100 epochs. The batch size was set
to one.

• CUT: the hyper-parameters which were provided in the original CUT
implementation [10] were mainly employed. Similar to the network
architecture and hyperparameters of cycleGAN, we used the identical
nine residual blocks and the PatchGAN discriminator, batch size of one,
Adam optimizer with initial learning rate 0.0002 for first 200 epochs
and then reduced linearly to zero over the next 200 epochs. Same as in
cycleGAN, the hyper-parameters β1 and β2 that were used to calculate
the momentum term of Adam were set as 0.5 and 0.999 respectively. For
the LPatchNCE, 5 layers of features were extracted (L=5), corresponding
to the receptive fields of sizes 1 × 1, 9 × 9, 15 × 15, 35 × 35, and
99 × 99. For every layer’s features, 256 random locations (S = 256)
were sampled, and a 2-layer MLP was used to acquire final features.

An identical geometric augmentation pipeline was employed in both algo-
rithms as described in [1]. Each CBCT and vCT input image was resampled
to 256 × 256 pixels, followed by two dimensional (2D) horizontal flipping
and affine transformations including rotation of [-5°, 5°] and scaling by [0.9,
1.1] with a bicubic interpolation over 4 × 4 neighboring pixels.
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Implementation details

All models were trained and evaluated using the PyTorch based frame-
work MONAI 1.1.0. [11] on an NVIDIA RTX A6000 GPU with 48 GB of
memory.
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Supplementary Figure 1
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Figure S1: Coronal view of (a) the CBCT inputs and sCTs generated by cycleGAN
and CUT with 100%, 25%, 15%, 10% projections; (b) the scatter corrected CBCTcor

reconstructed with conjugate gradient; (c) HU difference between corresponding sCTs
and CBCTcor of a test patient.
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Supplementary Table 1

Table S1: Best epoch selection and the corresponding training time

cycleGAN CUT

No. of Projections 100% 25% 15% 10% 100% 25% 15% 10%

Best epoch 40 60 150 160 250 360 340 350
Training time (hours) 7 10 25 27 42 60 57 58

Supplementary Table 2

Table S2: Average HU mean absolute error and mean error of test patient set for the
comparison of sCTs and CBCT inputs with CBCTcor, respectively. The number in square
brackets represent [min, max] values among all patients in the corresponding groups.
CBCT inputs were reconstructed using FDK without correction.

Mean Absolute Error (HU)
Dataset 100% 25% 15% 10%
cycleGAN 54 [48, 66] 56 [49, 65] 58 [52, 68] 59 [54, 68]
CUT 49 [44, 60] 51 [46, 61] 52 [46, 63] 54 [48, 65]
CBCT inputs 102 [97, 108] 120 [115, 126] 144 [137, 152] 164 [158, 173]

Mean Error (HU)
Dataset 100% 25% 15% 10%
cycleGAN -18 [-35, -6] -2 [-23, 13] -21 [-39, -8] -5 [-8, 16]
CUT -5 [-12, 6] -2 [-10, 5] -9 [-17, -2] -5 [-15, 4]
CBCT inputs 15 [-10, 33] 15 [-9, 32] 16 [10, 34] 18 [-8, 36]

Structural Similarity Index Measure
Dataset 100% 25% 15% 10%
cycleGAN 0.96 [0.94, 0.97] 0.95 [0.92, 0.97] 0.94 [0.92, 0.96] 0.94 [0.91, 0.95]
CUT 0.96 [0.93, 0.97] 0.95 [0.92, 0.97] 0.95 [0.92, 0.96] 0.94 [0.91, 0.96]
CBCT inputs 0.91 [0.87, 0.93] 0.87 [0.81, 0.89] 0.83 [0.77, 0.86] 0.81 [0.75, 0.84]

Peak Signal-to-Noise Ratio (dB)
Dataset 100% 25% 15% 10%
cycleGAN 36 [34, 39] 35 [33, 38] 34 [32, 36] 33 [31, 36]
CUT 36 [34, 39] 36 [33, 38] 35 [33, 37] 34 [32, 37]
CBCT inputs 33 [30, 35] 31 [29, 34] 29 [27, 32] 28 [26, 30]
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Supplementary Table 3

Table S3: Mean absolute transformation parameter differences comparing sCTs-to-pCT
from each dose levels with CBCTFS-to-pCT for all test patients.

cycleGAN CUT

No. of Projections 100% 25% 15% 10% 100% 25% 15% 10%

Right-left (mm) 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.02
Inferior-superior (mm) 0.04 0.05 0.04 0.04 0.04 0.06 0.05 0.05
Posterior-anterior (mm) 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.02

Pitch (◦) 0.10 0.18 0.15 0.17 0.17 0.17 0.21 0.24
Roll (◦) 0.14 0.15 0.17 0.19 0.16 0.18 0.15 0.18
Yaw (◦) 0.23 0.25 0.20 0.20 0.26 0.26 0.24 0.19
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Chapter 9

Discussion

9.1 Current work

9.1.1 Key findings and limitations
In this thesis, we have achieved the goal of investigating low imaging dose CBCT of the
pelvis in terms of sCT image generation. In the first study, the objective was to explore the
feasibility of enhancing low imaging dose CBCT images by a cycleGAN network. By under-
sampling CBCT projections and optimizing two cycleGAN models trained on prostate
cancer patient datasets, the study has demonstrated that it is possible to use 25% imaging
dose CBCT scans for online plan adaptation. In the second study, we aimed at investigating
the minimum imaging dose CBCT (25%, 15%, 10% dose) using a cycleGAN model with
residual connection and a CUT model. In both studies, we have carefully evaluated sCT
images with image quality measurements and all CBCT-guided ART metrics, including
patient positioning, VMAT dose calculations and organs contouring accuracy. As a result,
we have successfully found the imaging dose threshold for each of the networks in generating
sCT images, and concluded that 25% is the minimum CBCT imaging dose for accurate
online plan adaptation.

However, our studies have five minor limitations. First, we have investigated the low
dose CBCT technique only on the pelvic datasets. One of the main reasons is the scarcity
of low dose CBCT-to-CT studies in the pelvic region, as explained in chapter 7. Moreover,
the total number of prostate cancer patients datasets was not large. Compared to the
number of patients used in the majority of the CBCT-to-CT studies (ranging from 12 to
200), we have an adequate number of patients datasets for training, validation and testing.
With more patient datasets, we might be able to increase the number of testing datasets
or possibly increase the DL performance. Additionally, we have only investigated three
imaging dose reduction levels in the minimum imaging dose study. Given the fact that we
found the contouring performance of cycleGAN and CUT drops significantly when reducing
the dose to 15%, the imaging dose threshold can also lie between 25% and 15%. The number
of dose reduction levels could be increased for a more accurate determination. However, the
manual volumetric contouring took up to 1.5 hours per test patient. For each test patient,
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we contoured eight sets of sCT images (four imaging dose levels by two neural networks)
and one set of CBCTorg images (original full dose FDK reconstructions). With such labour-
intensive evaluation procedures, using 8 test patients balanced between statistical power
and a realistic workload for this study. Furthermore, we did not investigate the EAR
of secondary cancer incidence in prostate cancer patients. Such treatment response or
long-term effects would be useful to demonstrate the efficacy of low dose CBCT-to-CT
translation, in addition to the general ALARA principle. Finally, we have studied CBCT-
to-CT translation using the patient datasets only from one hospital. Generative models
are potentially susceptible to dependencies on training data due to the reliance on the
statistical patterns present in the dataset. Nevertheless, our comprehensive evaluations
demonstrated the feasibility of using sCT images from minimum imaging dose CBCT scan
for online adaptation.

9.2 Challenges
Despite the maturity of CBCT-to-CT translation using either U-Net or cycleGAN, it is
still outside the clinical workflow. Here we briefly discuss what are the major challenges
that hinder such implementation of sCT image generations, from both full dose and low
dose, into radiotherapy workflows.

9.2.1 Identifying the best DL network
With the improvements from U-Net over cycleGAN to CUT (as discussed in section 4.4), it
remains challenging to select the best DL network architecture or the best training strate-
gies. Despite the development of new DL networks (such as in the synthRad challenge 2023
[61]), contouring analysis was often not included. The main problem in image correction is
that generative models can introduce artifacts that may not be present in original CBCT
images, or misinterpret artifacts as parts of an organ. For example, the under-sampling
artifacts in low dose CBCT introduce bright streaks in various directions which affect the
feature of bone intensity and distort the tissue shape.

Several new loss functions were added in order to preserve the anatomies in the full
dose CBCT-to-CT cycleGAN training (section 4.2.2), such as shape loss (see the first
publication section 2.2.1), gradient loss (see section 2.B (3) in [70]), air pocket loss (see
section 2.B (4) in [70]) etc. But not all loss terms can be directly applied in low dose
studies. In one of our ablation studies, sCT images had worse MAE with the use of shape
loss. It is also rare to see loss functions tackling under-sampling streaks. Total variation
loss, which was used in only one full dose study [70], might be useful to remove streaks as
seen in various MR image reconstructions with radial k-space trajectory ([115, 116, 117]).
In terms of anatomy preservation, contrastive patchwise loss in CUT maximizes the mutual
information between CBCT inputs and corresponding sCT images, so that theoretically
sCT images have more consistent organ shapes, as demonstrated in other full dose studies.
However, in our organ contouring analysis, CUT performed worse than the cycleGAN
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model, which has a residual connection in the generator. Similar to the data-consistency
concept in iterative reconstruction, this residual connection, which concatenates the CBCT
input into its corresponding intermediate sCT image, adds the original anatomies in the
translation. The recent full dose CBCT studies of combining a vision transformer into
cycleGAN training (as mentioned in section 4.2.2), or the other study [118] which trained a
diffusion model to generate sCT images within 2 minutes opened avenues for investigation.
Therefore, the low dose CBCT-to-CT translation may yet be improved by novel network
architectures.

9.2.2 Geometrical accuracy evaluations

One of the major concerns from clinicians or researchers is: how realistic is the DL predic-
tion? In a CBCT-to-CT translation, the non-linear transformation of a trained generative
model maps the intensity values of the same organ in the CBCT to their equivalent HU
in the CT. Such intensities in CBCT images can vary due to scattering noise and under-
sampling streaks. It is possible that the organ shapes are distorted in the resulting sCT
images.

In the majority of studies, sCT images are not evaluated with geometrical accuracy, but
limited to image quality metrics and treatment dose calculations, which scarcely capture
such morphological changes. One of the studies [70] has evaluated sCT images with MAE of
multiple small regions-of-interests (ROIs) on muscles or fat area, which was still insufficient
to account for the organ shape variations. For organ segmentation, which can compare
directly the organ shapes, only limited studies were able to conduct segmentation analysis
by manual contouring [77] or by another DL segmentation network [69, 78] comparing to
deformed contours from pCT. However, depending on the changes of the organs between
the pCT images and CBCT images, the contours propagated from pCT images may not
represent precise ground truths due to inherent DIR uncertainties.

To accurately assess the anatomical fidelity, we compared the organs shapes in sCT
images directly with those in the original CBCT image in our studies. However, the lack of
clinical CBCT contouring labels caused a substantial challenge. Due to the poor contrast
of soft tissue and image noise, there is no current practice of contouring organs on CBCT
images. Such a new task requires experienced radiation oncologists to create and validate
contours for a longer time and a greater commitment. Additionally, in the absence of
CBCT contours as ground truths, training an auto-segmentation model on CBCT images
remains challenging. A recent work has shown the feasibility to segment organs in CBCT
without ground-truth in the HN region, using propagated contours from pCT and a refined
model from a CT segmentation training [119]. Furthermore, in the Ethos online adaptation
workflow, clinicians are required to rectify the propagated contours [25, 120], potentially
serving as a valuable reservoir of ground truths for CBCT segmentation training. Perhaps
in the future, the anatomical fidelity evaluation could be facilitated by the expansion of
ground truth datasets or the advancement of unsupervised DL models.
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9.2.3 Lack of quality assurance tools for sCT in online ART

In online ART, quality assurance (QA) is applied to ensure the adapted treatment plan.
This includes checks for anything that is changed from the initial treatment plan and
the patient model, such as the new anatomies and contours on sCT images, or any other
manual changes. What hinders the applications of sCT images, from both full dose and
low dose CBCT, is the potential introduction of various risks. First, sCT images can
possess geometric distortions from the CBCT inputs. As there is no ground truth, visual
inspections or comparing with deformed CT scans can hardly identify small differences
of the organ shapes. Currently, there is no QA assessment scheme and no DL model
that could rectify the contours on the fly. Moreover, each sCT generation model from
different studies (using different networks, datasets, image pre-processing steps etc.) can
yield different geometrical accuracy. The method of establishing a tolerance level for sCT
images is unknown. In addition, sCT can still possess HU differences compared to pCT.
No QA model is available to check HU accuracy, which can lead to inaccurate treatment
dose calculations.

In MR-guided adaptive radiotherapy, treatment dose QA methods are applied to eval-
uate the sCT images generated from MRI images. A recent MRI-to-CT translation study
[121] has evaluated dose calculation accuracy of four QA methods for sCT images generated
by cycleGAN: water override of patient body, bulk densities contouring, another set of sCT
images generated by another neural network and deformed CT. The study suggested that
using the sCT images generated by the additional network has the best QA performance:
The verification procedures were completed within 10 minutes and treatment dose deviated
within 2%. However, using AI to verify AI would require different sets of data for training
in order to avoid bias and error propagation. Furthermore, in MR-linac clinical practice
with the ViewRay linac system, an independent secondary dose calculation is only used
for treatment plan QA. sCT images depends on manual review, and when inaccuracies are
identified, sCT images are corrected using density overrides. There is still no consensus
certifying which of the treatment dose QA tools is sufficient. The QA guidelines for sCT
images, especially for low dose CBCT-to-CBCT translation, remain unclear.

9.3 Future works

During this doctoral research in radiation oncology and AI, the clinical need of a low dose
CBCT-to-CT translation and the proposed generative AI solutions were identified. The
feasibility study and the minimum imaging dose investigation study demonstrated that
the low dose CBCT-to-CT translation is technically achievable. The following are the
suggestions to take this work further into the clinical implementations.
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9.3.1 Extension of this work: 4D CBCT and other anatomical
sites

This study has found that it is possible to lower the CBCT imaging dose to generate sCT
images for accurate dose calculation and organ contouring in the pelvic region. Theoreti-
cally, this DL technique which jointly removes streak artefacts and corrects HU intensities
can be applied on other anatomical regions. However, the effect of reducing the dose by
75% dose could vary. For example, as the original HN protocol uses a lower imaging dose,
reducing the imaging dose by 75% might result in more dominant streak artefacts and noise
than in the pelvic protocol. One can reconstruct the CBCT images with under-sampling
projections in each region and systematically investigate the minimum imaging dose reduc-
tion rate. Alternatively, as shown in a few full-dose studies (section 4.2.2), one could also
train a single DL model with the low dose CBCT datasets of multiple regions. This would
require another advanced network training to learn the general, but not specific human
anatomy features in the presence of more noise and streak artefacts. CycleGAN and CUT
would be good candidates for such trials, but more anatomical-related loss functions and
modification of the network architectures should be investigated, in order to maximize the
anatomical information from the CBCT inputs.

In addition, 4D CBCT images have similar streak artefacts due to insufficient numbers
of projections after respiratory binning. As an initial study, we have tried our technique
on 48 lung cancer patient 4D CBCT datasets. First we have extracted the respiratory
breathing signal using the RTK Amsterdam Shroud image filter [114, 122] and binned the
projections into 10 breathing phases. Each phase has around 68 projections (depending on
the breathing pattern), and was reconstructed to volumetric images using FDK. This is a
more challenging task, as the number of projections in each phase varies, leading to different
amount of streaking artefacts in the reconstructed images, or the input images for training
a cycleGAN network. As shown in fig. 9.1, our initial over-fitting result has demonstrated
that it is possible to extend this low dose CBCT-to-CT technique to enhance 4D CBCT
images using a cycleGAN model. Network optimization, hyper-parameters searching and
comprehensive evaluations would be the next steps in this extension.

9.3.2 Data-driven DL improvements: patient-specific, data con-
sistency, structure-guided

To address the possible changes in the organ shapes, among the model architectures and
loss functions (such as body shape loss, paired loss, patchwise contrastive loss etc.) that
were tested during our studies, we found that a cycleGAN model with a residual connection
in the generator and an adversarial and a cycle-consistency loss performed the best in the
contouring analysis. In the context of low dose CBCT-to-CT translation in radiotherapy
workflow, this could be achieved in different ways:

• Patient-specific training: Instead of applying one model for all patients, it is also
possible to train a sCT image generation model for individual patients. The concept
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Figure 9.1: Our initial over-fitting result of 4D CBCT images (a single motion phase) of one
exemplary lung cancer patient: a) the original 4D CBCT image using FDK reconstruction;
b) pCT image; c) the corrected CBCT image using MA-ROOSTER reconstruction [123];
d) the cycleGAN output image of the 4D CBCT. All intensities are in HU. (Own figure)

here is to first train a population model with all patient datasets. When a patient
undergoes an in-room CBCT scan in the first fraction, the population model can be
fine-tuned and re-trained as a patient-specific model using the pCT images and the
daily CBCT images of the patient. The advantage is that the generator has learnt
to map the intensity and remove noise in the population model step, and can learn
geometrical features of the patient anatomy in the patient-specific step. This training
strategy has been investigated and shown to achieve a better performance in a few
auto-segmentation studies, for example CBCT in the pelvic and HN regions [124] and
MRI in the pelvic region [125]. With the use of prior sequential datasets (pCT and
fraction CBCT images), a patient-specific CBCT-to-CT model can account for the
unique anatomy and has potential to produce geometrically consistent sCT images.

• Data consistency term: Similar to the data consistency concept in iterative recon-
structions, a representation of the input image can be reapplied in the objective
function and this drives the training to retain desired features. For example, in con-
jugate gradient (CG) image reconstruction, the data consistency term is formulated
as

||Rf − p||22, (9.1)
where R the forward projection operator, f is the image to be reconstructed by the
network, p is the measured projection. If we can integrate the CBCT reconstruction
process and forward projection into the model training, we can add such a term
into the total objective function and drive the prediction in consistency with original
projection data in each iteration in the training.

• Structure-guided training: Instead of adding the projection data, one can alterna-
tively add patient-specific contours as a training constraint to increase geometrical
consistency. Similar to gradient loss, one can extract and minimize the edge dif-
ference of the organs in the input and predicted image during the training process,
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as shown in an example low dose CT study [126]. However, extracting organ edges
correctly from a low dose CBCT might be challenging due to more severe streak
artefacts. In recent studies on low dose CBCT correction [127, 128], a patient or-
gan shape map which combines the edge information from the deformed pCT and
network intermediate output was used to regulate the training.

Additionally, shape and geometry processing methods also begin to gain importance in
the computational medical imaging field. One of the focus workshops of the Medical Image
Computing and Computer Assisted Interventions (MICCAI) conference called "[Shape in
Medical Imaging]" has attracted new ideas on generating images with high geometrical
accuracy, including new network architectures, loss functions and analysis [129, 130, 131].
In the future, we can exchange ideas and collaboratively develop a highly robust technique
with this community.

9.3.3 Bridging DL-clinical gap: adaptive QA tools for sCT im-
ages

To bridge the gap between the low dose CBCT-to-CT translation technique and the clinical
workflow, an adaptive QA tool for sCT images should be in place to ensure that the
processes involved in sCT image generation are effective and consistently produce high-
quality images for each patient.

• Standardized protocol and documentation: Since generative AI models can have
different performance depending on different datasets, it is important to document
the development process of such AI models, including datasets, hyper-parameters,
model architectures, evaluation performances etc. In parallel to this idea, a recent
guideline published jointly by the European Society for Radiotherapy and Oncology
(ESTRO) and American Association of Physicists in Medicine (AAPM) for AI model
developments in radiotherapy [132] also recommends QA at least at the use case level,
such as formally reporting the DL application and the requirements of inputs and
outputs. With full details of the model, users can select the best suitable model,
trace back the image generation process and adjust the sCT when necessary.

• Anatomical fidelity QA: Organ shapes can vary in sCT images as discussed above. In
addition to the treatment dose QA, a QA tool is necessary to ensure the geometrical
accuracy of sCT images. As an initial idea, we can develop a QA tool to calculate
an uncertainty map, which can visualize and reflect the overall confidence of the sCT
images in the organ shapes and HU intensity. A recent study [133] has explored
the feasibility of generating uncertainty maps on sCT images for HN patients using
Monte Carlo dropout in online MRI-guided proton therapy.
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9.3.4 Quantification of CBDI
As discussed in section 3.5.2, CBDI cannot be directly represented by CTDI, since CBCT
has a volumetric acquisition with a FOV larger than the dimensions of the standard pencil
chamber (100 mm), which is typically used in CTDI measurements. However, in the user
manual of "[Elekta instructions for USE Volume 3 - XVI]", the dose information for each
protocol is provided only in terms of CTDI and its variants. Amer et al. [134] has developed
CBDI100 by integrating the central 100 mm FOV of the dose profile. By developing a new
pencil chamber with a size that matches the FOV, one could measure and standardize the
actual CBDI values among CBCT systems and protocols, so as to document and compare
the CBCT imaging dose more precisely.

9.3.5 Research translation: model integration into clinical work-
flow

To ensure successful implementation of a low dose CBCT-to-CT, the workflow can be
structured as illustrated in fig. 9.2. In the treatment room, the patient is instructed to lay
on the treatment couch as before. The gantry-mounted CBCT system scans only 25% of
the original number of projections. In the TPS, the projections are used to reconstruct
low dose CBCT images using FDK (approximately 7 seconds on a GPU). These images
will be used as an input to the generative AI model which can be implemented in the
TPS as a module and generate volumetric sCT images in around 2 seconds on a GPU.
On these sCT images, the treatment dose can be recalculated with updated anatomical
contours which could be propagated from the contours in the last fraction and corrected
by a radiation oncologist. The sCT images can be registered in the TPS and the patient
can be positioned using the transformation parameters. With the adaptive QA processes,
the treatment dose and geometrical accuracy of such plan can be ensured and adjusted
when necessary. Finally, an adapted treatment radiation can be delivered.
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Figure 9.2: The integration of a low dose CBCT pipeline in the CBCT-guided online
adaptive radiotherapy. (Own figure)
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Chapter 10

Conclusion

In this thesis, two DL algorithms, cycleGAN and CUT, were implemented and compared
to investigate the lowest achievable CBCT imaging dose without loss of accuracy in terms
of sCT image generations. In both studies, 41 prostate cancer patient datasets (pCT
and CBCT) were included. CBCT projections were under-sampled and low dose CBCT
images (25%, 15% and 10%) were reconstructed. In the first study, the feasibility of
25% dose CBCT-to-CT by training two cycleGAN models using unpaired datasets was
investigated. In the second study, cycleGAN and CUT models were trained and applied
to generate sCT images for each of the CBCT imaging dose levels. All sCT images of
testing patient datasets were carefully evaluated with respect to image quality, positioning
accuracy, VMAT treatment dose calculation and organ contouring (bladder and rectum)
accuracy. Over these IGRT-metrics, only slight deviations were observed among sCT
images for all CBCT imaging dose reduction levels. In addition, the second study suggested
that the cycleGAN model with a residual connection performed better than CUT for
organ contouring. However, both achieved similar results in all other metrics. Based
on segmentation accuracy, 25% is the minimum pelvic CBCT imaging dose that enables
accurate VMAT treatment dose calculation and organ delineation for online adaptation.
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A.1 Journal paper contributions as first author
• Minimum imaging dose for deep learning-based pelvic synthetic computed tomogra-

phy generation from cone beam images
Y.C.I. Chan, M. Li, A. Thummerer, K. Parodi, C. Belka, C. Kurz and G. Landry
Physics and Imaging in Radiation Oncology. 2024 March: 10.1016/j.phro.2024.100569.

• Feasibility of cycleGAN Enhanced Low Dose CBCT Imaging for Prostate Radiother-
apy Dose Calculation
Y. Chan, M. Li, K. Parodi, C. Belka, G. Landry and C. Kurz
Physics in Medicine & Biology. 2023 May 11;68(10):105014.

A.2 Conference contributions as first author
• Towards AI-enabled minimum dose CBCT-based synthetic CT: dose calculation and

contouring accuracy
Y.C.I Chan, M. Li, A. Thummerer, K. Parodi, C. Belka, C. Kurz and G. Landry
European Society for Radiotherapy and Oncology (ESTRO) annual meeting, Glasgow
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• Evaluierung einer cycleGAN-basierten low-dose Cone-Beam CT Bildkorrektur zur
Dosisberechnung in der adaptiven Prostata-Strahlentherapie
Y. Chan, M. Li, K. Parodi, C. Belka, G. Landry and C. Kurz
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dose calculation
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List of abbreviations

Abbreviation Meaning
AI artificial intelligence
ALARA as low as reasonably achievable
ART adaptive radiotherapy
BED biologically effective dose
BN batch normalization
CBCT cone-beam computed tomography
CBDI CBCT dose index
CNN convolutional neural network
CT computed tomography
CTDI CT dose index
CTV clinical target volume
CUT contrastive unpaired translation
cycleGAN cycle-consistent generative adversarial network
dB decibel
DCBCT the discriminator that distinguishes between synthetic

CBCT images and true CBCT images in cycleGAN
DCT the discriminator that distinguishes between sCT im-

ages and true CT images in cycleGAN
DIR deformable image registration
DL deep learning
DNA deoxyribonucleic acid
DSC Dice similarity coefficient
DVH dose-volume histogram
EAR excess absolute risk
FBP filtered back projection
FDK Feldkamp, Davis, Kress
FID Fréchet inception distance
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fps frames per second
GCT the generator that translates CBCT images to CT im-

ages in cycleGAN
GCBCT the generator that translates CT images to CBCT im-

ages in cycleGAN
Genc the encoder network of the generator in CUT
GTV gross tumor volume
HD Hausdorff distance
HN head and neck
HU Hounsfield unit
IARC International Agency for Research on Cancer
IGRT image-guided radiotherapy
IMRT intensity modulated photon radiotherapy
IS inferior-superior
ITV internal target volume
kV kilovoltage
MAE mean absolute error
MC Monte-Carlo
ME mean error
MLC multileaf collimators
MLP multi layer perceptron
MRI magnetic resonance imaging
MSE mean squared error
NCE noise contrastive estimation
OAR organ-at-risk
PA posterior-anterior
pCT planning CT
PET positron emission tomography
PSNR peak signal-to-noise ratio
PTV planning target volume
QUANTEC Quantitative Analysis of Normal Tissue Effects in

Clinic
ReLU rectified linear unit
RL right-left
RMSE root mean squared error
SC the distance of the x-ray source to the iso center
sCT synthetic CT
SD the distance of the x-ray source to the detector
SNR signal-to-noise ratio
SSIM structural similarity index measure
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TFT thin-film transistor
TPS treatment planning system
vCT virtual CT
VMAT volumetric modulated arc therapy
WHO World Health Organization
XVI x-ray volume imaging
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