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Abstract

In image-guided radiotherapy (IGRT), cone-beam computed tomography (CBCT) is used
to align patients in the treatment position. CBCT scans administer radiation exposure and
subject patients to secondary cancer risk. However, lowering CBCT imaging dose continues
to be challenging as the image quality degrades. In current practice, the frequency of
scanning can be limited, leading to a potential decrease in localisation precision. Moreover,
in cases of adaptation, patients are required to undergo an addition planning CT due
to insufficient CBCT image quality, resulting in extra radiation exposure and prolonged
treatment time.

This thesis reports on investigations towards the minimum CBCT imaging dose with-
out loss of accuracy in terms of synthetic CT (sCT) image generation using generative
artificial intelligence (AI) for adaptive radiotherapy (ART). Many studies translated full
dose CBCT images into sCT images using deep learning (DL) algorithms such as U-Net,
cycle-consistent generative adversarial network (cycleGAN) or contrastive unpaired trans-
lation (CUT). However, only few studies investigated the potential of low imaging dose
CBCT. In this thesis, the lowest achievable CBCT imaging dose for online adaptation was
investigated. Compared to the previous studies, this work provides a structured investi-
gation on imaging dose levels (100%, 25%, 15%, 10%) and evaluations with IGRT-related
metrics, including patient positioning, treatment dose calculations and organ contouring.

Online adaptation in IGRT is currently limited by the CBCT image quality. In the first
part of this thesis, the basics of cancer and IGRT in chapter [I], the adaptation workflow
in chapter [2| and the physics of CBCT in chapter [3| are discussed, respectively. This will
serve as an introduction to explain how CBCT-guided IGRT works and to identify the
challenges of using CBCT in ART.

While DL is used to enhance full dose CBCT images, generating sCT images from low
dose CBCT requires additional under-sampling streaks removal. The improvements and
recent studies for DL-enabled full dose CBCT-to-CT translation are discussed in chapter
In chapter |5, the significance of low imaging dose CBCT, and the synthesis of low imaging
dose sCT images and the DL algorithms that can be used are discussed. In chapter [6] the
metrics for evaluating sC'T images are discussed.

To investigate the minimum CBCT imaging dose for IGRT adaptation, we conducted
two studies with generative AI models using a retrospective prostate patient dataset. In
chapter [7] the patient database and the contributions of the two studies are explained. In
chapter[§] the published papers for each of the studies for reference are attached. Especially
in the second study, it was found that 25% is the minimum CBCT imaging dose for accurate
treatment dose calculation and organ contouring when using the AI methods selected in
this project.

Finally, in chapter [9] Discussion, the findings and limitations in this work, the challenges
that hinder the development of low imaging dose CBCT, and possible future works that
can extend this study and facilitate clinical implementations of the new low imaging dose
CBCT technique in the ART workflow are discussed.



Zusammenfassung

Bei der bildgesteuerten Strahlentherapie (IGRT) wird die cone-beam Computertomogra-
phie (CBCT) eingesetzt, um die Patienten in der Behandlungsposition auszurichten. CBCT-
Scans fithren zu einer Strahlenbelastung und setzen die Patienten einem sekundéren Krebs-
risiko aus. Die Reduzierung der Dosis bei CBCT-Aufnahmen bleibt jedoch eine Heraus-
forderung, da sich die Bildqualitat verschlechtert. In der gegenwértigen Praxis konnte die
Héaufigkeit des Scannens beschrinkt, was zu einer potenziellen Abnahme der Lokalisie-
rungsgenauigkeit fithrt. Dariiber hinaus miissen sich die Patienten im Falle einer Behand-
lungsadaptation einem zusétzlichen Planungs-CT unterziehen, was zu einer zusétzlichen
Strahlenbelastung und einer verlangerten Behandlungszeit fithrt.

In dieser Arbeit werden Untersuchungen zur Minimierung der CBCT-Bilddosis ohne
Qualitdtsverlust in Bezug auf die Erzeugung synthetischer CTs (sCT) unter Verwendung
generativer KI fir die adaptive Strahlentherapie (ART) vorgestellt. Mit Deep Learning
(DL) Verbesserungen von U-Net tiber cycleGAN zu Contrastive Unpaired Translation
(CUT), haben viele Studien CBCT-Bilder mit voller Dosis in sCT-Bilder tibersetzt. Nur
wenige Studien untersuchten jedoch die Moglichkeit, CBCT-Bilder mit niedriger Dosis
zu nutzen. Durch Unterabtastung von CBCT-Projektionen haben wir die niedrigste er-
reichbare CBCT-Bildgebungsdosis fiir die Online-Anpassung untersucht. Im Vergleich zu
fritheren Studien bietet diese Arbeit eine strukturierte Untersuchung der Bildgebungsdosis
und Bewertungen mit IGRT-bezogenen Metriken, einschliellich Patientenpositionierung,
Dosisberechnung und Organkonturierung.

Die Online-Anpassung in der IGRT ist derzeit durch die Qualitat der CBCT-Bilder
eingeschréankt. Im ersten Teil dieser Arbeit werden die Grundlagen von Krebs und IGRT
in Kapitel 1, der Adaptationsworkflow in Kapitel 2 und die Physik der CBCT in Kapitel
3 diskutiert. Dies dient als Einfithrung, um zu erklaren, wie die CBCT-gefiihrte IGRT
funktioniert, und um die Herausforderungen bei der Verwendung von CBCT in der ART
aufzuzeigen.

Wiéhrend DL zur Verbesserung von CBCT-Bildern mit voller Dosis verwendet wird,
erfordert die Erzeugung von sCT-Bildern aus CBCT-Bildern mit niedriger Dosis eine zu-
sitzliche Entfernung von Streifenartefakten. Im zweiten Teil der Arbeit werden die Verbes-
serungen und die jiingsten Studien zur DL-gestiitzten Volldosis-CBCT-zu-CT-Ubersetzung
in Kapitel 4 diskutiert. In Kapitel 5 werden die Bedeutung von CBCT mit niedriger Bild-
dosis, die Synthese von CT mit niedriger Bilddosis und die DL-Algorithmen, die fir die
Ubersetzung von CBCT mit niedriger Bilddosis in CT-Bilder verwendet werden kénnen,
diskutiert. In Kapitel 6 werden die Metriken fiir die Bewertung von sCT erortert.

Um die minimale CBCT-Bildgebungsdosis fiir die IGRT-Anpassung zu untersuchen,
haben wir zwei Studien mit generativen KI-Modellen unter Verwendung von Prostata Pa-
tientendatensatzen durchgefithrt. In Kapitel 7 werden die Patientendatenbank und die
Beitrage der beiden Studien erlautert. In Kapitel 8 fiigen wir fiir jede der Studien die Pu-
blikation als Referenz bei. Insbesondere in der zweiten Studie haben wir herausgefunden,
dass 25% die Mindestdosis fir die CBCT-Bildgebung ist, um eine genaue Berechnung der
Behandlungsdosis und Organkonturierung zu erméglichen.
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Abschliefend diskutieren wir in der Diskussion (Kapitel 9) die Ergebnisse und Ein-
schrankungen dieser Arbeit, die Herausforderungen, die die Entwicklung von CBCT mit
niedriger Bildgebungsdosis behindern, und méogliche zuktnftigen Arbeiten, die diese Stu-
die erweitern und die klinische Implementierung der neuen CBCT-Technik mit niedriger
Bildgebungsdosis in ART-Workflows erleichtern kénnten.
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Chapter 1

Introduction

1.1 Cancer and radiotherapy

Cancer continues to present significant challenges in our modern era. According to the
latest estimation by the World Health Organization’s (WHO) cancer agency, the Interna-
tional Agency for Research on Cancer (IARC), cancer is the second most common cause of
deaths worldwide [I]. There were 20 million new cases and nearly 10 million deaths in 2022.
As illustrated in fig. [I.1] lung cancer emerged as the prevailing cancer, with 2.5 million new
instances, representing 12.4% of all new cases. Following closely was breast cancer with
2.3 million cases (11.6%), trailed by colorectal cancer at 1.9 million cases (9.6%), prostate
cancer at 1.5 million cases (7.3%), and stomach cancer at 970,000 cases (4.9%).

According to the Robert-Koch-Institute, there are around 500,000 new cancer patients
every year in Germany. In the latest report “Cancer in Germany 2019/2020” [2], there
were more than 262,000 men and over 231,000 women diagnosed with cancer in 2020. The
most frequent tumor sites (not including non-melanoma skin cancer) were prostate for men
and breast for women, accounting for 25.1% and 30.5% respectively.

1.1.1 Cancer definition and diagnosis

According to the WHO, cancer comprises a collection of diseases distinguished by the un-
controllable proliferation and dissemination of abnormal cells. In [3, [4], cancer is defined
as a stepwise malignant transformation that can be characterised by a sequence of biolog-
ical hallmarks as acquired functional capabilities, as illustrated in fig. [[.2] This heuristic
conceptualization condenses the complexity of phenotypes and genotypes of cancer into a
provisional set of core principles.

Various diagnostic tools such as laboratory tests, imaging, endoscopic examinations,
biopsy and histopathology examinations can be used to detect cancer. Imaging is one of
the most frequently used diagnostic tools as it precisely locates and visualizes the tumor
cells in an non-invasive way. Modern imaging techniques for cancer diagnosis include x-
ray, computed tomography (CT'), magnetic resonance imaging (MRI) and positron emission
tomography (PET).
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Figure 1.1: The worldwide cancer incidences and the most common entities in 2022.
Own figure with the information from the International Agency for Research on Can-
cer (IARC)[1]. (Own figure)

1.1.2 Treating cancer with radiotherapy

Traditional cancer treatments are radiotherapy, surgery and chemotherapy, or a combina-
tion. Since the discovery of x-ray by Wilhelm Conrad Rontgen in 1895, radiotherapy has
taken a crucial role for cancer treatments, with nearly 50% of all cancer patients receiving
radiotherapy in their course of treatment [5]. The main goal of radiotherapy is to deprive
cancer cells of their cell division potential with maximum dose while avoiding altering the
cell cycles of surrounding healthy cells with minimum dose. Radio-biologically, radiation
damages deoxyribonucleic acid (DNA) and triggers cell repair or cell death mechanisms.
Healthy cells are more efficient in repairing themselves at a faster rate and retaining their
normal function status than the cancer cells. Conversely, for cancer cells, such radiation-
induced damage leads to higher rates of sterilization. Due to this, cancer cells have smaller
fractionation sensitivity than normal cells. In other words, cancer cells repair and repopu-
late more slowly than normal cells after irradiation. Due to these fractionation sensitivity
differences between normal and cancer cells, modern radiotherapy methods irradiate pa-
tients in a course of fractions with a low radiation dose. Dose prescription and fractionation
are discussed in section 2.1.3
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Figure 1.2: The ten hallmarks of cancer underline the fundamental principles of cancer
development. Own figure adapted from [4].

1.2 Image-guided radiotherapy

The primary objective of image-guided radiotherapy (IGRT) is to integrate in-room imag-
ing scans with radiotherapy systems for patient positioning and target localization. This
allows for verification of the tumor and surrounding organs before and during each treat-
ment, and accurate treatment delivery.

The three major classes of in-room imaging techniques using x-rays integrated into
IGRT are radiographic imaging, fluoroscopic imaging and tomographic imaging. In radio-
graphic imaging, 2D projections or planar images are acquired. In fluoroscopic imaging,
a continuous stream of planar x-ray images is acquired to monitor intra-fractional patient
motion based on anatomical landmarks or fiducial markers. In tomographic imaging, pro-
jections are acquired at different gantry angles which allows to reconstruct volumetric cone
beam computed tomography (CBCT) images.

The in-room imaging employed in this project is kilovoltage (kV) CBCT, which can for
example be mounted as an onboard X-ray Volume Imaging (XVI) system on the gantry
of a Synergy medical linear accelerator (version 5.52, Elekta, Sweden). Figure shows
one of the XVI systems installed in the Department of Radiation Oncology, LMU Munich
University Hospital (GroShadern campus).

Before initiating IGRT, the patient undergoes a planning CT (pCT) scan to visualize
the tumor and surrounding anatomies. Based on the planning images, radiation oncologists
delineate the target volumes and organ-at-risk (OAR) that need to be spared (see details
in section . Medical physicists create a treatment plan in the treatment planning
system (TPS), which outlines the radiation dose, beam angles, and treatment techniques
to be used. The final plan has to be approved by a radiation oncologist.

To deliver conformal doses of radiation to the tumor while sparing surrounding healthy
tissue, external beam radiotherapy techniques such as intensity modulated photon radio-
therapy (IMRT) and volumetric modulated arc therapy (VMAT) [6] are applied. In IMRT,
the intensity of each beam from static positions is modulated to achieve the desired dose
distribution through the use of multileaf collimators (MLC). VMAT is a form of rotational
IMRT that delivers radiation in a continuous arc around the patient. In the presence
of inter-fractional anatomical changes over a course of treatments, the difference between
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Figure 1.3: One of the Elekta medical accelerators with a gantry-mounted CBCT scanner
(XVI) installed in the LMU Munich University Hospital (GroShadern). kV x-ray source
and kV flat panel detector are used for CBCT imaging. MV x-ray source and MV flat
detector panel are used to deliver and verify the treatment radiation. (Own figure)

acquisition date of the pCT and the actual treatment day reduces the accuracy of dose
delivery.

With in-room CBCT imaging, the patient undergoes a scan on the linac treatment
table right before the treatment. These updated images are then registered to the pCT
to obtain transformation parameters for positioning. Figure [I.4] illustrates the general
schematic CBCT-guided radiotherapy workflow with patient positioning.

As a result, IGRT enhances geometric accuracy as it provides an updated measurement
of the patient treatment position. Such verified consistency of planned and actual posi-
tion can reduce the extra margins of contours and the treatment uncertainties in various
treatment sites [7, &, 9, [10].

Alongside position verification, the primary objective of the thesis is to enhance IGRT
by unlocking the potential use of in-room CBCT for treatment dose adaptation, while
concurrently reducing the x-ray imaging dose in each CBCT scan.
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Figure 1.4: A general schematic workflow for in-room IGRT with patient position correc-
tion. The in-room CBCT images would be registered to pCT images. When correction is
needed, the patient position is corrected by adjusting the couch position. If no correction
is needed or when correction is completed, treatment radiation would be delivered. (Own
figure)
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Chapter 2

Workflow of CBCT-guided adaptive
radiation therapy

In IGRT, CBCT imaging is used to assess the daily patient anatomy and to align patients
in the treatment position. As the fractionated treatment progresses, anatomical changes
may occur. Particularly in prostate cancer patients, inter-fractional changes due to bladder
filling and rectum air pockets can be substantial (as shown in fig. . These changes may
shift the surrounding tissues and diverge from the original planning contours, affecting
radiation dose received by these OARs [I1]. In such cases, plan adaptation becomes essen-
tial to ensure accurate delivery of radiation while minimizing exposure of healthy tissue.
In CBCT-guided adaptive radiotherapy (ART), anatomical changes during the course of
treatment, which can be visualised by in-room CBCT scans, are taken into account by
adapting the treatment plan. Therefore it is actively utilized in clinical practice across
various organ sites [12, [13] 14 [15].

This section summarizes briefly the main clinical workflow of CBCT-guided ART. These
steps include initial treatment planning (section [2.1)), in-room CBCT imaging (section[2.2)),
online adaptation (section [2.3), and radiation delivery (section [2.4).

2.1 Initial treatment planning

2.1.1 Planning image acquisition

As mentioned in section IGRT begins with an initial pCT scan to define the tumor
locations to be treated and to identify surrounding critical structures (such as bladder and
rectum) to be spared. Each patient is scanned typically two to three weeks before the start
of the treatment course for initial treatment planning.

In CT scans, each image pixel intensity is represented by a CT number, or a Hounsfield
unit (HU) value, which represents the radiodensity of the tissues. Suppose a voxel has
a mean linear attenuation coefficient pu, its corresponding HU is defined by the following
formula:
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ot week 1stweek 2nd week 39 week 4th week

Patient 1

Patient 2

Figure 2.1: CBCT images of two exemplary prostate cancer patients over the course of
fractionated treatment. In both patients, the filling of the bladder and the shape of air
pockets in the rectum varied from fraction to fraction. (Own figure)

HU = 1000 x ——Hwater (2.1)

)
Hwater — HMair

where ftyater and fi,5, denote linear attenuation coefficients of water and air. The HU
scale assumes water as 0 HU and air as —1000 HU.

2.1.2 Target and organ delineations

Based on the pCT images and potentially additional images such as MRI or PET images,
radiation oncologists identify and manually contour the target volumes and OARs, which
are defined as the following scheme according to [16]. Figure illustrates the contouring
concepts of the target volumes and OARs.

e Gross Tumor Volume (GTV): The GTV includes the visible extent and location
of malignancy. The GTV can be further classified as primary tumor (GTV-T),
metastatic lymphadenopathy (GTV-N), or other metastases (GTV-M).

o Clinical Target Volume (CTV): The CTV describes the tissue volume that encom-
passes a GTV and/or microscopic malignant disease. Such tissue volume must be
irradiated to achieve the therapeutic objective.

« Internal Target Volume (ITV): The ITV includes the CTV along with an internal
margin. Such margin accounts for the changes in the position and shape of the CTV
relative to the reference frame of the patient, typically defined by the bony anatomy.
These changes can be caused e.g., by respiratory motion.

 Planning Target Volume (PTV): The PTV is generated by incorporating a margin
around the CTV or ITV. This margin accounts for various factors such as uncertain-
ties in patient setup, organ motion, and variations in radiation delivery. The purpose
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PTV
ITvV

Figure 2.2: Contouring concepts of the target volumes and OARs in radiation oncology.
(Own figure)

of the PTV is to ensure that the prescribed radiation dose is delivered to the entire
CTV.

« Organ-at-risk (OAR): The OAR refers to the healthy organ that is near the treatment
region and could be inadvertently irradiated during the treatment. The OAR exhibits
a level of sensitivity to radiation where the dose administered by a treatment plan
could be substantial in comparison to its tolerance level. For instance, in prostate
cancer radiotherapy, among others, bladder, rectum and urethra are considered as

OARs.

2.1.3 Dose prescription and fractionation

Based on the characteristics of the tumor and surrounding tissues, as well as the treatment
goals, the radiation oncologist determines the treatment prescription for each patient, which
specifies the total therapeutic dose to be delivered to the target volumes over the course
of treatment. The dose to the OARs adhere to guidelines in the Quantitative Analysis
of Normal Tissue Effects in the Clinic (QUANTEC) report [17], which recommends the
maximum tolerable dose to individual OARs.

The prescribed dose is administered over multiple radiotherapy sessions rather than
in a single session, with partial doses delivered throughout several weeks. This treatment
scheme, known as fractionated radiotherapy, is based on the understanding that healthy
tissue cells recover more quickly from radiation-induced damage compared to tumor cells.
With low doses per fraction, the risk of severe side effects can be reduced in the sur-
roundings of dose-sensitive organs. The biological effect of a radiation dose considering the
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fractionation scheme and the characteristic radiosensitivity of the tissue being treated can
be formulated as biologically effective dose (BED):

BED =n x d x [1 + Ojﬂ]. (2.2)

where n denotes the number of fractions, d denotes the dose per fraction and a/f
denotes the radiation biological value. Compared to normal cells, cancer cells have higher
a/ 8 values and are less sensitive to the sparing effect by fractionation. In clinical practice,
a prostate cancer patient, for example, is usually prescribed with 37 fractions of 2 Gy. This
approach balances the goal of killing tumor cells while minimizing damage to surrounding
healthy cells and allowing time for normal tissue repair between treatments.

2.1.4 Treatment plan optimization and evaluation

With such a prescription and CT images, a patient-specific radiation treatment plan can
be created using a TPS. The aims of such a plan is to deliver a homogeneous dose in the
target and a low dose outside of the target, ideally with steep dose gradients.

In the TPS, the plan is created on the pCT images, after specifying the isocenter, gantry
angles, collimator angles and the gantry rotation direction. Next, in the plan optimization
step, objectives and constraints for PTV and OARs are specified. Various dose calculation
algorithms, such as Monte Carlo methods [18] and collapsed cone [19] are readily available
in the TPS. All algorithms assume a discretized patient model as a grid of voxels to calculate
the photon interaction with the tissue. The probabilities of these interactions depend on
the electron density and elemental composition, which is calculated from HU values on
the pCT images using a calibration curve or conversion table for each individual tissue.
The dose calculation also takes into account factors such as beam attenuation, the fluence
modulation with the MLC, scatter, and tissue heterogeneity. Based on the entered beam
parameters, the TPS performs dose calculations with the selected algorithm, yielding a
preliminary dose distribution in the patient’s anatomy. With the initial dose calculation,
the plan is adjusted to define the optimal beam and MLC settings in an iterative process.

To evaluate the treatment dose planning, a dose-volume histogram (DVH) is computed
to visualize graphically the relationship between the dose received by a particular volume
of tissue, such as PTV, CTV, rectum, bladder, and the percentage of that tissue volume
receiving a specific dose.

2.2 In-room CBCT scan

To ensure that the tumor’s position relative to the beam is accurate, a CBCT scan is
acquired using the onboard imaging system of the linear accelerator to align the patient
prior to treatment delivery.
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Based on the CBCT scan, an updated three-dimensional patient’s anatomy can be
accessed, which allows us to register the patient position with the pCT images in the
TPS. The transformation parameters are computed with six degrees of freedom and can
be used to align the patient couch with the treatment position. Figure illustrates an
example of rigid registration of the in-room CBCT with the pCT images, and the resulting
transformation parameters.

In addition to patient positioning, CBCT images visualize interfractional variations of
anatomical structures. If the CBCT scan reveals that the tumor or critical structures have
deviated from their planned position, the treatment plan would have to be adapted.

Figure 2.3: An exemplary rigid registration of a pelvic in-room CBCT to pCT in a TPS
(RayStation, version 10.01, RaySearch, Sweden). The transformation parameters (top
right panel) are computed to align the patient with the treatment position. (Own figure)

2.3 Online adaptation

Over the course of fractionated treatments, the anatomy of prostate cancer patients can
have considerable deviations from the initial plan due to the bladder filling and rectum air
pockets (as shown in fig. . The contours of the target volume and OARs on pCT images
might not match with the in-room CBCT images. Consequently, the efficacy of the highly
conformal treatment plan diminishes when the target volume fails to correspond to the
patient’s updated anatomy. If we apply only one treatment plan throughout all fractions,
errors in dose distribution might lead to radiation-induced toxicities in surrounding normal
cells or underdosage of the tumor.
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Since late 1990s, adaptive radiotherapy is generally described as modifying the radia-
tion treatment plan offline to accommodate inter-fractional anatomical changes [20]. For
CBCT-guided online adaptation, changes in the patient’s anatomy are identified with in-
room CBCT scans and a new treatment plan is generated accordingly with the patient on
the table.

The online adaptation workflow is illustrated in fig.

Delineation Treatment planning

| Segmentation |

| CBCT intensity correction |

Yes No
Need to adapt?

Figure 2.4: Workflow of CBCT-guided online adaptation radiotherapy. (Own figure)

2.3.1 The importance of correcting CBCT

Conventionally, treatment plan adaptation often requires a new offline pCT scan of the
patient. This requires a significant amount of time for arranging a new CT scan and a
new treatment planning. Ideally, we can use the in-room CBCT images to assess the daily
patient anatomy and re-optimize a treatment plan accordingly when the patient is still
positioned on the table. However, CBCT images are typically insufficient to infer treatment
dose [21]. First, CBCT images contain various artifacts and inaccurate CT numbers (refer
to section . Second, CBCT images often have lower soft tissue contrast compared to
pCT images. This presents a greater challenge and extends the duration to accurately
delineate target volumes and OAR structures, especially in small structures or complex
regions with ambiguous boundaries. One can generate a virtual CT (vCT) with deformable
image registration (DIR)(refer to section, however, geometrical inaccuracies are usually
seen in the organ shapes due to registration uncertainties or large discrepancies such as
the bowel air pockets, ultimately affecting the treatment accuracy.

A few conventional non-Al ways to correct CBCT images for plan adaptation are dis-
cussed in section [3.4, However, these corrections require a considerable amount of time.
Therefore, using CBCT images for online adaptation remains challenging.
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2.3.2 The current usecases of corrected CBCT in online adapta-
tion

While traditional CBCT correction methods may fall short in achieving online adapta-
tion, a new commercial CBCT linac system, Ethos (Varian Medical Systems, Palo Alto,
California, USA), is able to correct CBCT scans by registering pCT images into it and
instantaneously visualize the propagated contours on the daily patient anatomy with CT
diagnostic quality. Studies [22, 23] have demonstrated that the application of Ethos system
is feasible in clinical workflows to account for inter- and intra-fractional variations. In ad-
dition, studies [24], 25] have shown that Ethos online adaptive recontouring and replanning
processes improved treatment dose accuracy. More recently, an upgraded CBCT imager
HyperSight (Varian Medical Systems) was launched with the possibility to be mounted in
a Halcyon or Ethos ring-gantry system [26], 27] and to scan patients within six seconds and
output volumetric images with accurate HU for treatment dose adaptation. These studies
suggested that it is possible to use full dose CBCT images for online adaptation in the
clinical practice.

2.4 Radiation delivery

Radiation is delivered by rotational irradiation in which the accelerator head rotates around
the patient. VMAT is commonly used in hospitals, simultaneously varying the dose rate
and shape of the radiation beam during the rotation. The radiation can be delivered from
multiple arcs from different angles. During each arc, the accelerator system modulates the
gantry speed, beam intensity, dose rate, and MLC shape according to the treatment plan.
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2. Workflow of CBCT-guided adaptive radiation therapy




Chapter 3

Physics of cone-beam computed
tomography

In radiotherapy, CBCT scanners can be integrated into the linear accelerator system and
used as an image guidance technique to align the patient and verify the target position
right before the treatment. In general, a CBCT scan varies from a CT scan, which uses
a fan-shaped x-ray beam in a helical scanning trajectory to acquire each image slice of
the field-of-view (FOV). CBCT uses a pyramid shaped scanning geometry and a flat panel
detector which has extended rows perpendicular to the beam, which covers the entire FOV
with only one rotation of the gantry. In the following four sections, image acquisition
(section [3.1)), reconstruction (section , image noise and artefacts (section , non-Al
image correction (section and imaging radiation dose (section are discussed.

3.1 Image acquisition

3.1.1 CBCT system

CBCT imaging is performed using a rotating gantry on which an x-ray source and a flat
panel detector are mounted. As illustrated in fig. [3.1] an ionizing radiation source emitting
a cone shaped x-ray beam is directed towards the center of the region of interest. The
x-rays are detected by a large two-dimensional (2D) flat panel detector situated on the
opposite side. The x-ray source and detector rotate around a central rotation point of
an object fixed within the area of interest. The cone beam is defined by the following
parameters: the size of the flat panel detector, the distance of the source to the detector
(SD) and the source to iso center distance (SC). The cone angle (6) which is proportional
to the height of the panel size also defines the cone beam.

3.1.2 Flat panel detector

In radiotherapy, the flat panel detector is used to measure the x-rays attenuation in the
CBCT system [28, 29, 30]. The detector uses a structured Cesium iodide (Csl) scintillator
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to convert x-rays into light. Light is then converted into electrical charge in the photodiode,
which is integrated in each pixel of a thin-film transistor (TFT) array. This array is used
to collect and process these electrical signals.

In terms of the readout scheme, one TFT row is turned on at a time to collect the
charges, typically yielding rapid readout with 30 frames per second (fps) at half resolution
or 15 fps at full resolution and the pixel size of 1024 x 768 in a representative flat panel
detector [31]. These flat panel images cannot be directly used as dead pixels exist and
the pixel sensitivities varies across the panel. Dark and flood signals can be measured
and calibrated in the flat panel without an object while the x-ray source is off and on,
respectively. For the Elekta XVI CBCT scanners that are used in our hospital, the signal
Sxvi is saved inverted and can be formulated as

Sxvr = 2'% — Ixvy, (3.1)

where Ixy; denotes the dark and flood corrected measurement. The signals are saved
as unsigned 16-bit integers, ranging from 0 to (2'¢ —1).

X-ray source

Flat Panel Detector

Figure 3.1: A CBCT system consists of an x-ray source and a detector. SD is the distance
of the source to the detector, and SC is the source to iso center distance. 6 denotes the
cone angle proportional to the height of the panel h. (Own figure)

3.2 Image reconstruction

In CBCT, a reconstructed image depicts the spatial distribution of x-ray linear attenuation
coefficients. The signal collected on the detector is the x-ray intensity value attenuated
after an object according to the Lambert-Beer law. The line integral of the attenuation
coefficient distribution over the path of an x-ray beam, or projection, can be computed by
applying a negative logarithm to the ratio of the attenuated to the initial x-ray intensity:

I
PXVI = —1In (XVI> y (32)
Iy
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where Pxyr denotes the projection, Iy and Ixy; denote the initial and the measured
x-ray intensity, respectively.

For parallel beam projections, we can apply the filtered backprojection (FBP) algorithm
based on the Fourier slice theorem to obtain a cross-sectional image of the object using its
projections. According to [32], the object can be computed as

flay) = [ 0" (0. 5)as. (33)

where (z,y) is an image point coordinate, and s denotes the distance between the origin
of the coordinates and the x-ray line that passes through the point (z,y) with the angle 6.

s =xcost + ysind. (3.4)

p¥' (0, s) denotes the filtered projection data. Assuming that a projection is a signal with
limited bandwidth in the frequency domain, the filtered projection data can be expressed
in [32] as

+oo
P 0.5) = [ p(0.5)  hls — s’ (3.5)
where p(6, s) denotes the measured projection at location s. h(s) denotes the ramp
filter.

3.2.1 Fan beam reconstruction

In clinical CBCT scanners, near-point x-ray sources are used to emit x-ray in a fan beam
(2D) or cone beam (3D) projection. In fan beam reconstruction, the x-ray data is required
to be sorted into parallel coordinates before applying FBP. In the parallel beam geometry,
it is sufficient to scan only 6 € [0, 7]. As illustrated in fig. , an x-ray source rotates in a
circle trajectory Rp(—sin 3, cos 3), where Rp and 3 denotes the radius and the rotational
angle respectively, an equispatial fan beam projection g(f3,t) can be produced with respect
to t-axis on a virtual detector. According to [32], this fan beam projection can be expressed
as a parallel beam projection using this formulation:

p(0,5) = g(B,1)

S sR
= ¢g(0 — arcsin —, 4

F \/R% — 52 ' (36)

After rebinning the projections, one can reconstruct the image using the parallel FBP
algorithm as shown in eq. (3.3) and eq. (3.5). On the other hand, one can also compute
a reconstruction algorithm using fan beams. We can pre-weight and filter the fan beam
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\/
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Figure 3.2: An illustration of an equispatial fan beam projection g(f,t). In fan beam
reconstruction, the virtual detector is illustrated along t-axis line. (Own figure)

projection signal with a weighted ramp filter before applying FBP. According to [32], the
FBP algorithm for fan beams in the equispatial plane can be written as

o 1 p2n RF2 +oo Rp ,
f@,y) = 5/0 (Rp + xsin f — ycos 5)? 8 /—oo 9(81) [Rp? — 2 (e = t)ddB, (3.7)

where

v (ysin 8+ x cos B)Rp
" Rp+axsinfB —ycosf’

(3.8)

Similar to the computational structure for the FBP, the fan beam reconstruction in-
volves two weighting factors during the convolution and backprojection steps as formulated

in eq. (3.7).

3.2.2 Cone beam reconstruction using FDK algorithm

In CBCT scans, projection data is acquired in a 3D cone beam geometry. Such a circular
trajectory, however, does not sufficiently cover the Radon space. Therefore we need an
approximate reconstruction method: the Feldkamp, Davis, Kress (FDK) algorithm [33], in
which we can simplify the cone beam reconstruction to a fan beam reconstruction with a
flat panel detector. As illustrated in fig. [3.3] this transformation involves re-projecting the
cone beam data onto a virtual plane (u,v) parallel to the real detector plane. This virtual
plane is located at the SC away from the x-ray source at the axis of rotation (z-axis). This
process flattens the cone beam data into a set of fan beam projections.

The cone beam reconstruction algorithm is similar to fan beam filtered backprojec-
tion with adjusted weighting schemes. According to [32], 33], for a circular trajectory
Rp(—sin 3, cos 3), the FDK algorithm is formulated as
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Figure 3.3: An illustration of FDK reconstruction with a virtual detector plane. In FDK
reconstruction, the virtual detector is illustrated on (u, v)-axis plane. (Own figure)

f( )_1/27r RF2
SYE =g (Rp + xsin f — ycos 3)? (3.9)
+oo ’
% / p</87 U, U/) RF : h’(ul - U)d'LLdB,
—o0 VRE +u? + 0
where
v Ry (3.10)

- Rp+xsinf8 —ycosf’

Similar to eq. (3.7)), the pre-weighting factor in eq. (3.9) is multiplied by the cosine of
the cone angle. According to [32] 33], it can be computed as

RF \/RF2 +U2 RF (3 11)

= . = cosk - cosn.
\/RF2+u2+v’2 \/RF2+U2+U’2 \/RF2+u2

where k and v denote the cone angle and the fan angle for a specific x-ray, respectively.

3.3 Image noise and artefacts

CBCT image quality is generally lower than normal CT due to the noise and artefacts.
The image noise can be understood as the stochastic variation in voxel values, i.e. the
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fluctuations in voxel values which arise independently of the changes in attenuation coeffi-
cient of the images structure. Depending on the position in the image, the noise in CBCT
is non-stationary, due to the fact that the mean and variance of radiation intensity at the
central region of the detector vary from those at the edge of the detector. The contrast,
which represents the signal difference among regions in a CBCT image is also lower than in
a CT image. In the followings, several factors that cause noise and artefacts are discussed.

o X-ray scatter: Scattering is one of the main sources of artefacts in CBCT. When
x-rays pass through a patient’s body, photons can lose energy due to Compton in-
teractions with objects and produce scattered radiation. Most photons have been
scattered at least once before reaching the detector. In addition, the flat panel detec-
tors usually do not have anti-scatter grids, capturing more scatter than a narrow CT
detector. These scatter artefacts can vary depending on the air gap in the system ge-
ometry, object size, or the FOV. As a result, artifacts occur in a form of low-frequency
shading and streaks, especially in the regions of structures with high attenuation.

e Beam hardening: The lower energy fraction of the x-ray spectrum is absorbed faster.
This results in an increase in mean beam energy and non-linear variations in the x-ray
spectrum as it passes through different tissue and thickness. Especially when passing
through dense tissues or materials (e.g. bone or metal), the beam becomes harder
and these regions are reconstructed with incorrect attenuation values, exhibiting low
frequency nonlinear attenuation distortions (cupping artefact) throughout the image.

o Aliasing artefacts: The Nyquist sampling theorem states that the sampling frequency
should be greater than twice the highest frequency present in the signal. The aliasing
artefacts in the CBCT image are mainly due to the divergence of the cone-shaped
beam. The voxels near the source will be sampled more densely than those near the
detector, therefore causing aliasing at the periphery.

« Image lag and ghosting: In the detector, residual x-ray signals exist in subsequent
frames (lag). Or the sensitivity of the scintillator changes after exposure (ghosting).

o Cone beam artefacts: From a circular source—detector orbit, CBCT scans the volume
with incomplete sampling. The edges parallel to the source-detector orbital plane
show bright or dark signal smearing, which intensify as the distance from the central
axial plane increases.

o Lateral truncation: It is caused by the FOV being smaller than the patient’s lateral
extent. Some patients may exceed the FOV dimensions in spite of the use of shifted
detectors. The artefacts appear as bright rings and dark cups at the periphery of the
patient outline in the reconstructed image.

» Motion artefacts: It is caused by respiratory motion of the patients. Especially in
the lung region, the breathing causes the location of the anatomy to change, causing
inconsistency in the the continuously acquired projections. One correction to this in
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4D CBCT applications is to extract the breathing signal and bin the projections into
certain breathing frames, so as to reconstruct “static” 3D images along the breathing
cycle.

3.4 Non-Al scatter corrections

In order to correct CBCT image intensity, CBCT scatter correction techniques have been
developed, including a look-up-table based solution [21], the use of vCT from pCT-to-
CBCT registration [34) [35] 36], 37, B8, 39] and Monte-Carlo (MC) based methods [40, 41,
42]. Although several methods have been successful in demonstrating accurate CBCT-
based dose calculation in various anatomical sites [43, 44l 45|, [46], there are certain con-
straints. For example, DIR based methods that achieve accurate dose calculation in the
head and neck (HN) [21, 36], might have more DIR inaccuracies for a pelvic scan, which
has greater inter-fractional changes in anatomy (as discussed in section . In addition,
the time required for correcting images using vCT or MC based methods, which takes up
several minutes to hours, restricts the implementation for online adaption.

Here we discuss the CBCT scatter correction technique [45], 47] that has been applied
to generate ground-truth images in this thesis, in the following referred to as CBCT,,, (as
shown in fig. [5.1). Several studies have validated this method [48, [49], in which a vCT
image is generated using a DIR algorithm mapping pCT onto the original CBCT images,
referred to as CBCT,,,, and used the vCT as a prior for scatter correction of the acquired
projections.

In detail, we first forward project the vCT according to the geometry of the CBCT
system to obtain primary beam projections (I,). The scatter and other low frequency
deviations (/) are computed as the difference between a scaled original CBCT,,, projec-
tion (/o) with ISF and (Ip,;) followed by a smoothing function f (a median filter with
dimension 25 x 25 pixels, followed by a Gaussian filter of 1.5 pixels standard deviation):

Lca = f(ISF X Loy — L), (3.12)

The scatter corrected projection (I.,) can be estimated as the difference between the
original measured CBCT,,, projection and the scatter contribution:

Loor = ISF X Iory — Lica, (3.13)

With I, a presumably scatter-free CBCT, in the following referred to as CBCT,, (as
shown in fig. can be computed. CBCT,,, has HU values equivalent to the pCT, and
ideally shares identical anatomical information with CBCT,,.

3.5 Radiation dose

While x-ray beams penetrate the body, ionizing radiation can damage DNA and cause
gene mutations during cell repair, potentially leading to cancer. Here we discuss the
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standardized metrics according to the International Commission on Radiological Protection
(ICRP) [50, [51] that can describe such radiation in section [3.5.1) and the specific metrics
152, 53, 32] for CT and CBCT in section [3.5.2]

3.5.1 Radiation dose units

o Exposure: It refers to the quantity of charge per unit mass of air generated by an
x-ray beam. Its SI unit is expressed as coulomb per kilogram (Ckg™1!).

o Kerma: It is the non-stochastic amount of the initial kinetic energy transferred to
charged particles by uncharged radiation per unit mass dm. Suppose dEjipetic r€pre-
sents the expectation value of the sum of the kinetic energies, kerma can be formu-
lated as

- dEkinetic
 dm.

K (3.14)

The SI unit is expressed as joule per kilogram (Jkg™!) or gray (Gy).

o Absorbed dose: It is the quantity of energy released in matter or tissue per unit mass,
with an unit of gray (Gy) or joule per kilogram (Jkg™1!).

L

dmtissue

(3.15)

where dé denotes the mean energy imparted to tissue of mass dm by ionising ra-
diation, e.g. x-ray. The absorbed dose of a patient from a CBCT scan cannot be
directly measured.

« Equivalent dose: Even in the identical absorbed dose, the biological effects of different
radiation types on different tissue can vary. According to the standardization by
ICRP 103 [50], for a certain tissue type, the equivalent dose additionally considers a
radiation specific weighting factor w,. For instance, proton or alpha particles have a
higher weight than photons. Suppose D, is the energy dose applied to the tissue t
by the radiation type r, the equivalent dose ); can be formulated as

Qt = Zert,r- (316)

The SI unit is typically written as joule per kilogram (Jkg™') or Sievert (Sv). In
CBCT scan, x-rays have w, equal to 1.
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o Effective dose: In addition to the radiation specific weighting factor w,, the effec-
tive dose also considers the tissue specific weighting factor wy, which represents the
proportional impact of a tissue on the overall health detriment. The tissue weighing
factor is determined by the radiosensitivity of the organ and also standardised by
ICRP. The effective dose (E) estimates the total weighted equivalent doses in all
tissues by all radiation types. It can be formulated as

FE = Ztht = Zwt Zert,r- (317)
t t r

The SI unit is identical as of the equivalent dose: joule per kilogram (Jkg™!) or
Sievert (Sv).

3.5.2 CT and CBCT dose indices

Unlike planar x-ray, C'T possesses a helical acquisition geometry as the x-ray source rotates
around the patient body. Moreover, the dose distribution of CT exhibits higher radial
symmetry than that of a planar x-ray scan. Thus, CT and CBCT require additional dose
quantities for quantification.

CT dose index (CTDI) is the amount of radiation dose involved during a CT scan [32].
This index is a comparative measure of the x-ray output and the dose recorded in a specific
size phantom. Therefore it is an indication of the patient dose but not the dose absorbed
by patients. The most basic common form is CTDI;qg, for which a pencil-shaped ionization
chamber with a length of 100 mm is used to measure the total exposure of a phantom in
an axial CT scan.

1 +50mm
CTDLg = / D(2)dz, (3.18)

L —50mm
where L denotes the slice width, and D(z) represents the dose profile along the lon-
gitudinal axis z. The dose profile is normalized by the width of slice to approximate the
average dose from scans across a 100 mm length of adjacent slices. Depending on the
pencil chamber location, this CTDI;y, term can be weighted with the values when pencil
chambers are inserted to the center or to the periphery of the phantom. The average dose

CTDIS'™® can be expressed as

1 2 .
CTDI?E = §CTD13§ntef + §CTD15;€“pheral, (3.19)

where CTDI®™" and CTDIP®Phea! denotes the central and the peripheral dose of the
phantom, respectively. Considering a helical 3D CT scan which has a table movement
per rotation d and a width of the x-ray beam s, the volumetric CTDI (CTDIyqy,) can be
formulated as
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CTDI®
CTDlyor, = 7pitdvlv , (3.20)
where the pitch is defined as
) s
pitch = 7 (3.21)

CTDlIyor, can thus reflect the relative dose among various protocols and the CT systems
from different vendors.

For CBCT, there is no direct translation from CTDI from the American Association
of Physicists in Medicine (AAPM) Therapy Physics Committee Task Group 180 [54]. In
2010, Hyer and Hintenlang have measured and evaluated the cone beam dose index (CBDI)
value, representing the mean volumetric dose within the CTDI phantom [53]. For the pelvic
CBCT scan considered in this thesis, [53] reported a CBDI value (table 2 in [53], chest
protocol) for the identical configuration as the protocol used in this thesis (M20 protocol
with 120 kV and a bowtie filter at an Elekta XVI scanner) of 1.62 mGy/100 mAs. A
body CTDI phantom with a length of 15 cm and a diameter of 32 cm was used for the
measurement using a pencil chamber of a length 100 mm.



Chapter 4

Deep learning-enabled full dose
CBCT-to-CT translation

In CBCT-guided online adaptive radiotherapy, the patients come to the treatment room
and receive a CBCT scan for positioning. When adaptation is needed due to tumor location
or anatomical changes, ideally the CBCT image can be used for treatment re-planning.
However, as discussed in section [3.3, CBCT image quality is insufficient for treatment dose
calculation. The scatter correction method (section [3.4]), which can take up more than 10
minutes, is also impractical for the online adaptation workflow.

In the last decade, leveraging a deep convolutional neural network (CNN) to improve
CBCT image correction has attracted a lot of attention. With the fast developments
in deep learning (DL) algorithms, many studies have applied various types of network
architectures to translate volumetric CBCT to CT image quality, and generate synthetic
CT (sCT) images. These trained DL models can correct CBCT images within seconds and
enable online adaptation.

In this chapter, we discuss the three main DL algorithms (U-Net, cycleGAN and CUT)
and their applications in full dose CBCT-to-CT translation tasks in section section
and section

4.1 U-Net

Along the developments in DL algorithms, U-Net, developed by Ronnenberger et al. in
2015 [55], has been widely adopted beyond the original application in biomedical image
segmentation. Due to its flexibility of architecture design, U-Net has been applied in many
other medical image applications such as image denoising, image reconstructions, modality
transfer etc.
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4.1.1 Network architecture and loss function

An exemplary U-Net architecture is illustrated in fig. [4.1] The network has an encoding and
a decoding path. In the encoding path, the image features are typically extracted along
4 convolutional layers. For 2D image training, each layer contains a 3 x 3 convolution
with padding, followed by a batch normalization, a rectified linear unit (ReL.U) and a
max pooling with stride 2 for downsampling, decreasing the image spatial dimensions by
half. As the image passes through the encoder, the number of channels doubles after each
downsampling. This allows the network to capture complex features at various scales.

In the decoding path, feature maps are up-sampled by the same number of layers
containing a 3 x 3 transposed convolution that halves the number of channels. To retain
details lost during downsampling, skip connections are applied to concatenate feature maps
from the corresponding layers in the encoding path to those in the decoding path. Each
layer is followed by a a batch normalization and ReLLU. At the last layer, a 1 x 1 convolu-
tion is applied to map the feature representations from the final up-sampling layer to the
reconstructed output image. The above hyper-parameters can be adjusted and optimized
depending on the usecases.

U-Net is typically trained with paired datasets, for which each pixel in the predicted
image is compared to a corresponding ground truth. For instance in the image translation
task, mean absolute error (MAE) or mean squared error (MSE) can be computed along
the training process. A typical loss function can be formulated as

n

1 . 1 N

L= =Dy =Gl + X =D (v = 0:)°, (4.1)

N N3

where n represents the number of pixel in an image, y and § denote the pixel intensities

of the predicted image and of the ground truth, respectively. A; and Ay are the weights of
the MAE and the MSE terms, respectively.

4.1.2 Related studies

There are a number of studies translating CBCT to CT images using U-Net. In the pelvic
region, Kida et al. [56] trained a U-Net with CBCT images and vCT images as input and
ground truth to convert CBCT images into sCT images. Other U-Nets were trained for
projection based CBCT image correction with MC simulated scatter distributions [57, 58]
or with corrected projections obtained by a vCT-based algorithm [59, [60]. In the thoracic
region, Thummerer et al. [61] trained a U-Net based deep CNN to convert 4D CBCT images
to sCT images, and demonstrated high HU and dose calculation accuracy for adaptive
proton therapy.

The sCT images using U-Nets are typically evaluated in HU, photon and proton dose
calculation accuracy. For instance, Landry et al. [60] investigated three U-Nets trained
with original and corrected CBCT projections, original CBCT and vCT images, and orig-
inal and corrected CBCT images, and computed HU accuracy of sCT (MAE 48/88/56
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Figure 4.1: An exemplary U-Net architecture. Each box denotes a multi-channel feature
map, and the number of channels is shown above the box. The 2D image/feature map
sizes are indicated at the lower left corner of the box in the encoding path and lower right
corner in the decoding path. Purple boxes represent the concatenated feature maps, and
the arrows represents the various operations indicated in the lower right black box. Conv
(3 x 3), BN and ReLLU denote convolution with a kernel size of 3 x 3, batch normalization
and rectified linear unit, respectively. Convt (3 x 3) denotes transpose convolution with a
kernel size of 3 x 3. (Own figure)

HU) from each U-Net compared to the reference corrected CBCT. VMAT and proton pen-
cil beam scanning single field uniform dose plans were optimized on the reference CBCT
images and recalculated on sCT images. These sCT images achieved 1% photon dose
difference pass rates > 98.4%.

4.2 Cycle-consistent generative adversarial network
(cycleGAN)

A cycle-consistent generative adversarial network (cycleGAN) can be used for unpaired
CBCT-to-CT translation. First developed in 2017 by Zhu and Park et al. [62], cycleGAN
is able to extract the features from CBCT and CT images and translate CBCT input
images into sCT images without corresponding CT image ground truths. This unpaired
training scheme eliminates the geometrical inaccuracies that could be caused by pCT to
CBCT image registration or vCT generation.
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4.2.1 Network architecture and loss function

The network architecture of cycleGAN in this thesis mainly follows the original work by
Zhu and Park et al. [62] and another implementation by Ge et al. [63]. In general,
cycleGAN consists of two sets of generators and discriminators. Each set is trained in a
forward and a backward cycle, respectively. For the generator, the nine-blocks residual
network architecture suggested by Johnson et al. [64] is used. The architecture includes
a downsampling process, which reduces the input dimensions from 256 x 256 to 32 X
32 using three 2D convolutional layers (each with a stride of 2 and a kernel size of 3).
The feature map with reduced spatial dimensions and increased depth is passed into the
residual blocks. Each block has convolutional layers to refine and transform the features
(e.g. the texture or style changes). The image details are retained by adding the initial
feature map to the residual block’s output. Such refined feature map is then passed into
an upsampling process, which restores the image dimensions from 32 x 32 to 256 x 256
through three 2D transpose convolutional layers (each with a stride of 2 and a kernel size of
3). Instance normalization, suggested by Ulyanov et al. [65], is used to allow the networks
to learn domain-specific features and to preserve spatial details in each image. For the
discriminator, a PatchGAN network, suggested by Isola et al. [66], with a receptive field
70 x 70 is employed. Four convolutional layers are used to extract features of the images,
each followed by LeakyReLU as the activation function, except for the last layer. The
discriminator evaluates overlapping patches across the whole output image predicted by
the generator, and determines scalar values between 0 (fake) and 1 (real).

In the context of CBCT-to-CT translation in image domain, two distinct sets of gen-
erators and discriminators are trained. In the forward cycle, the generator (Gor) seeks to
achieve the most efficient representation of a CBCT image, and generates a correspond-
ing sCT image. Meanwhile, the discriminator (Dcr) differentiates between sCT images,
labeled as 0, and true CT images, labeled as 1. In the backward cycle, outputs of the
generator (Geper) and discriminator (Deger) are reversed. The two cycles of training are

illustrated in fig. [4.2]

The loss functions for both cycles are explained in the following. In the forward cycle,
the generator Ger is trained to transform CBCT images into CT images such that the
discriminator Der cannot distinguish sCT images from CT images using an adversarial
loss function:

LCT = ECBCT[IOg(l — DCT(GCT(CBCT)))} —l— ECT [log DCT(CT)], (42)

where Ger focuses on minimizing the first term Ecper[log(l — Der(Ger(CBCT)))] by
generating sC'T images that are highly comparable to CT images. D¢t strives to maximize
both terms and improve its ability to differentiate between sCT images and true CT images.

In the backward cycle, Geper learns to inversely map the sCT images back to the
CBCT images, while Dcger is trained to distinguish the generated CBCT images and the
true CBCT images:
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Ger

Dcaer Dcr

Figure 4.2: An exemplary cycleGAN architecture. Gor and Geger denote the generators
for mapping CBCT images to CT images and vice versa, respectively. Dcr denotes the
discriminator for distinguishing sCT images with real CT images. Dcper denotes the dis-
criminator for distinguishing synthetic CBCT images with real CBCT images respectively.
(Own figure)

Leper = Ecr[log(l — Deper(Geper(CT)))] + Ecper[log Deper (CBCT)). (4.3)

Using the adversarial loss formulated in eq. and eq. , the generators Gor and
Geper learn to generate images of the target domain and deceive the discriminators D
and D¢ger, respectively.

By chaining the above cycles with a cycle consistency loss, an inverse-consistent map-
ping between the CBCT and CT domains can be established. During the forward cycle,
L calculates the L, norm between the output images generated by Geper and the input

cyc

CBCT images:

L® = Ecper[||CBCT — Geper(Ger(CBCT))|4]. (4.4)

cyc

In the backward cycle, inputs are swapped for the corresponding cycle consistency loss:

L% = Bep[||CT — Ger(Geper(CT)) |4 (4.5)

cyc

Combining the two losses, the loss function in the cycleGAN training is

Leyaeaan = Ler + Leper + )\1(L£§rc + ij;fk% (4.6)
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where \; denotes a weight factor for the cycle consistency loss. Here the objective
function can be formulated a an min-max optimization:

Ger, Geper = arg . min max  Leyaecan(Ger, Geser, Deser, Der), (4.7)
Ger,Geser Deper,Der
The goal of this function is to estimate the model parameters that effectively capture
and represent the underlying distribution of the image domains. Instead of a pixel-by-
pixel comparison, this approach allows the use of unpaired datasets for training. Once the
training is completed, we can apply Ger to translate CBCT images to CT images.

4.2.2 Related studies

cycleGAN and its variations have been widely used in CBCT-to-CT translation tasks. In
the pelvic region, Kurz et al. [67] trained a cycleGAN model using unpaired prostate
cancer patient datasets of CBCT images and pCT images, and generated sCT images in
pCT equivalent image quality with a reduced MAE with respect to corrected CBCT images
[49]. Similar training has been done in other pelvic region studies [68, 69]. Kida et al. [70]
trained a cycleGAN with additional losses, including total variation, gradient loss and
idempotent loss (a function to stabilize the mapping by minimizing the difference between
GCT(CBCT) and GCT(GCT(CBCT)), as well as GCBCT(CT) and GCBCT(GCBCT(CT))).
Liu et al. [71] suggested a two-step training method with a phantom-based U-Net and
a patient-based cycleGAN model to translate CBCT images to CT images. Unpaired
training is also applied for other regions, HN [72, [73], lung [73], and breast [73], [74]. Deng
et al. [75] demonstrated the generalisation of cycleGAN by training a cycleGAN model
with HN datasets and improved pelvic CBCT scans.

Apart from unpaired training, cycleGAN has the possibility to be implemented with an
additional regularization term to minimize the difference between the sCT images and the
corresponding CT images during training. A number of studies trained cycleGAN models
using paired datasets (CBCT images as inputs and registered CT images as ground truth)
in the pelvic region [76, [77, 78, [79, [80], or for brain or HN [76], T, [77], pancreatic [82], liver
[83], thoracic [77, [84], breast[85], nasopharynx [86l, 87] cancers. A few extra losses such as
histogram matching loss, gradient loss and perceptual loss have been applied during the
training to improve specific anatomy preservation.

Some of the above mentioned studies were compared in a review [88]. Among the
studies, Maspero et al. [73] reported the highest MAE improvement (more than 100 HU)
with one cycleGAN model for unpaired HN, lung and breast cancer datasets. The network
was trained with CBCT and CT images which were cropped in a bounding box containing
a circular mask. This mask can enforce the network to learn the intensity mapping while
occluding the features of specific anatomy.

More recently, a few studies combined a cycleGAN with a transformer in order to con-
strain the outputs. In Rusanov et al. [89], a vision transformer variant ResViT [90] was ap-
plied as the generator for a cycleGAN training with paired pelvic datasets. Along with the
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modified cycleGAN generator, the study introduced uncertainty estimations (Monte-Carlo
Dropout and Test Time Augmentation) and additional losses, including mean structural
similarity loss, style loss and conditional L2 loss. Similar addition of a transformer into a
cycleGAN was also seen in a recent study [91], which also integrated a vision transformer
into a U-Net generator in the cycleGAN training (IViT-CycleGAN). In this study, the
transformer incorporated a deep CNN with a self-attention mechanism, and a new gradi-
ent penalty [92] was added in the discriminator loss to further improve the stability of the
cycleGAN. Moreover, this study trained the two models separately using unpaired HN and
chest datasets.

4.3 Contrastive unpaired translation (CUT)

To overcome possible geometric inaccuracies or hallucinations of cycleGAN, a contrastive
unpaired translation network (CUT) was developed by the same research team Park et
al. in 2020 [93] to maximize the mutual information between the inputs and generated
images. With the use of a patchwise contrastive loss as discussed below, CUT employs
only one set of generator and discriminator. Such one-side translation accelerates the model
training and requires fewer computing resources than in cycleGAN, which trains two sets
of generator and discriminator.

4.3.1 Network architecture and loss function

To achieve one-side translation training, CUT uses a patchwise contrastive 1oss LpaienncE
based on noise contrastive estimation (NCE) [94] on image patches instead of Ley.. As il-
lustrated in fig. [£.3] a query patch is sampled from the generator output sCT and compared
with the patch at the corresponding location z (denoted as positive z) or other patches
at different locations (denoted as negatives z~) of the corresponding CBCT input image.
The probability of the positive samples being selected over negatives can be formulated by
the following cross-entropy loss:

vt
ev'y /T

evvt/T + 27]:[:1 eV'va /T

+

l(v,v",v") = —log (4.8)

where v, v and v~ denote the K-dimensional vectors of the query (v € RX), the
positive (v € R¥), and the N negatives (v— € RV*E) respectively. These patch vectors
(v, v and v7) are sampled in random locations in the images. The n-th negative is
denoted as v, € RX. For this (N+1) classification problem, 7, which denotes the distances
between the query and samples, was set to 0.07. The goal here is to maximize the mutual
information between v and v*, but to minimize the mutual information between v and
v,

The images from the positive and negative samples are passed through the encoder
network of the generator (Gey.) to obtain embeddings, as illustrated in fig. . These

embeddings are low-dimensional representations of the images that capture their content
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Figure 4.3: An exemplary CUT architecture. A generator (G) is trained to convert a
CBCT image into a sCT image. Query patches are sampled from the sCT image and
compared with the patches at the corresponding locations z (denoted as positive z7) or
other patches at different locations (denoted as negatives z~) of the corresponding CBCT
input image. Using the same generator (G), an identical CT image is synthesized from a
CT image. Similarly, query patches from both images are also sampled and compared. A
discriminator (D) is used to distinguish sCT images and CT images. (Own figure)

and style information. The layers of interest (L) and the number of spatial locations in each
layer (S;) are selected. The feature maps are processed through a small two- layer multi layer
perceptron (MLP) network H;, producing a stack of features {2}, = {H;(G'_(CBCT))},
" chosen layer. Likewise, the output image is
encoded Wlth the same network into {4}, = {H;(G.__(G(CBCT)))}z. The other patches
within the input can be used as negatives which formulates the following contrastive loss

where Gl denotes the output of the

LPatchN CEx-

L S

LPatchNCEX(G H CBCT XNCBCT Z Z l Zl ) Zl ) ZZS/S 7 (49)

1=1s=1

where 2/, z/ and zls/ * represent the features of the output image, the corresponding

feature of the input image (zf € R“) and the negative features (ZZS/ * e RE-DxG) ¢
denotes the number of channels at each layer. Since the generator is trained to identify
the similarities across the two domains, the embeddings share the common features. To
constrain possible incorrect anatomical changes, CT images are used to generate identical
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Feature Sample positive Compute (N+1)-way
extraction + similarities to query  classification
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Figure 4.4: The positive and negative samples are passed through the encoder network of
the generator (Gepe) to obtain embeddings from both the CBCT inputs and sCT images.
Gfmc denotes the output of the I chosen layer and H; denotes a two-layer multi layer

perceptron (MLP) network. (This figure was adapted from the Park et al. [93] with a CC
BY license.)

CT images using the same generator. The positive and negative samples of these CT images
are passed through the same Gg,. and MLP, which allows us to formulate the following
contrastive loss for the CT domain Lpatchncry:

L S
Lpatenncny (G, H, CT) = Eyor Y0 S U, 27, 27%). (4.10)

=1 s=1

The total loss function is therefore

LCUT(G7 DCT> CBCT> CT) :LadV(Ga DCT7 CBCT7 CT)+
AcBet Lpatenncex (G, H, CBCT)+ (4.11)
)\CTLPatchNCEy<G7 Ha CT)))

where A\cper and Act denote the weights of the patchwise contrastive loss for the CBCT
and CT domain, respectively. The main objective for CUT here is to generate realistic CT
images, while patches in the input and output images share corresponding information.
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4.3.2 Related studies

A few recent studies started to look into the possibility of using CUT in the CBCT-to-CT
translation task. In the pelvic region, Wynne et al. [95] demonstrated that CUT generates
better sCT images than cycleGAN in terms of MAE, structural similarity index measure
(SSIM), root mean squared error (RMSE), and Frechet Inception Distance (FID) (com-
paring the distribution of the generated and real images in latent space when they reach
the deepest layer of the generator). In the HN region, Kang et al. [96] demonstrated that
a CUT model which was trained with additional losses (including reconstruction, spatially
correlative and semantic relation consistency losses) also showed better performance than
cycleGAN in terms of FID, peak signal to noise ratio (PSNR), MAE, RMSE. In the lung
region, Dong et al. [97] trained several CUT models with different hyperparameters using
unpaired 4D CBCT and CT datasets and showed better performance than cycleGAN in
terms of the image quality metrics.

4.4 CycleGAN and CUT as alternatives to U-Net

As U-Nets are trained on paired datasets, the models learn the direct translation from
CBCT to CT images (section . Compared to the conventional non-Al correction ap-
proaches, the computational time using U-Net has been substantially reduced to < 5s,
which allows online adaptation. However, since the ground truth images are usually gen-
erated by DIR, the sCT image might possess a reduced geometrical accuracy due to the
uncertainties in DIR. The anatomical shape or location could be adversely affected in the
predicted images.

To overcome the potential geometrical inaccuracy in ground truth images, a cycleGAN
can be used for unpaired data mapping (section . With the use of the cycle consis-
tency and the adversarial loss, training cycleGAN does not require ground truth images.
As shown from the high HU and treatment dose accuracy in the sCT image generations,
cycleGAN can capture complex transformations, however, the output can be geometrically
inaccurate. Therefore, some studies implemented cycleGAN with paired datasets. More-
over, since two sets of generators and discriminators have to be trained, the training time
is longer with higher computational power demand.

As an alternative, CUT is an one-sided translation with only one set of generator and
discriminator (section , reducing the computational demand and training time by the
backward cycle. Moreover, replacing cycle consistency loss with patchwise contrastive loss,
CUT constrains the network outputs by learning low-dimensional CBCT and CT features
in a shared embedding that could better capture and maximize the mutual information
(such as bone and tissue structures) between the CBCT input and the corresponding
sCT image. Recent studies demonstrated that CUT achieved better image quality over
cycleGAN (section , however, treatment dose calculations using CUT have not yet
been investigated (neither photon or proton).



Chapter 5

Deep learning-enabled low dose
CBCT-to-CT translation

Full dose CBCT-to-CT translations using DL are well developed, but repeated CBCT scans
deliver considerable amounts of radiation dose to patients. What would be the possibilities
that DL can bring us in lowering the CBCT imaging dose to the patients?

In this chapter, we briefly discuss the importance of low dose CBCT-to-CT translations
in section [5.1], the synthesis of low dose CBCT datasets in section [5.2]and the recent studies
in section

5.1 The importance of low dose CBCT-to-CT

5.1.1 CBCT imaging dose and secondary cancer risk

According to Ding et al. [54], the principle of radiation protection “[as low as reasonably
achievable]” (ALARA) for imaging should be pursued in all medical procedures. When
the imaging dose is greater than 5% of the treatment dose, treatment planning should
include such imaging dose [54]. Among the CBCT imaging dose studies, it is found that
daily CBCT scans can lead to additional organ doses [54, 08, [99]. For instance, one CBCT
scan can deliver up to 22.7 mSv effective dose in the pelvic region [100]. Depending
on the radiosensitivity of each organ and the patient’s size as discussed in section
patients can receive a considerable amount of cumulative dose. Especially for prostate
cancer patients, the treatment comprises up to 37 fractions. A recent study also showed
that the excess absolute risk (EAR) of secondary cancer incidence grows with higher doses
to the organ [I01]. Other studies also showed that the imaging radiation can be associated
with secondary cancers [102, 103] [104], 105], 106]. Therefore, it is recommended to lower
any possible imaging dose in IGRT.
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5.1.2 The frequency of accurate patient positioning

To mitigate the risk of secondary cancers by the cumulative CBCT imaging dose, the fre-
quency of CBCT scans is typically limited in clinical practice. This strategy can reduce
the cumulative dose, however, it sacrifices the positioning accuracy and decreases OAR
sparing. In a multicenter randomized prostate cancer study [107], daily CBCT scans sig-
nificantly reduced acute rectal bleeding and late rectal toxicity. Moreover, daily CBCT
scans improve significantly the biochemical and clinical progression-free intervals. With
low dose CBCT, clinicians would have a higher flexibility to prescribe a CBCT scan be-
fore the treatment and correct for the position displacements for each fraction which can
significantly improve clinical benefits for patients.

5.1.3 Reducing the re-planning CT scan

In current practice, when an in-room CBCT reveals that an adaptation is needed due
to anatomical changes, the patient would be prescribed another CT scan for re-planning
the treatment. This process requires a substantially greater investment of person-hours,
prolongs the treatment duration and delivers additional radiation to the patient. If the
treatment planning can be adapted online using low dose CBCT-to-CT translation, the
new CT scan can be avoided which further lowers the imaging dose to the patients over
the treatment course.

5.2 Low dose CBCT synthesis

5.2.1 Lowering imaging dose

The imaging dose is mainly determined by the dose per projection and the number of
projections. For example, the imaging dose to the center of a water cylinder from the
exposure measured at the detector can be formulated by Shaw et al. [32] as

X \ (SD)?
Dose = NprojectionmASprojection (HMAS) <SC> euwateerwaterBSF, (51)

where Nprojection denotes the number of projections, mAspjection denotes the product of
tube current and time per projection, and (mLAS) is the exposure per unit mAsp,gjection, Which
is measured in air at the detector. fiyater and R denotes the attenuation coefficient and the
radius of the water cylinder, respectively. (2—2)2 geometrically scales to the center by the
inverse square law, and e#w=tf scales to the center of the water cylinder. fyater denotes a
factor to convert the exposure to dose, and BSF is a scaling factor for the increased dose
due to back scatter inside the water cylinder. It is noted that the exponent of etwaterf jg
positive, as the measurement of the dose here is in the center of the water cylinder but
not on the detector. The followings can explain this scale factor of the beam intensity

(eTHwater ) further.
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Suppose an x-ray beam has an intensity Iy at the source, I enter and Igetector 1S the beam
intensity at the center of the water cylinder and the detector, respectively. According to
the Beer-Lambert law, I.quter can be derived as

— Mwa R
Icenter - ]06 fwatex

— Hwa er2R
Idetector - ]06 fwat (52)

_ + R
Icenter — Idetectore fwater T,

During a CBCT scan, the gantry rotates around the patients by 360° and projections
are collected. If the number of projection frames during the rotation is reduced by a factor
of x, the radiation dose is reduced by the same factor x. Moreover, it is also possible to
lower the imaging dose by reducing the mAs per projection.

5.2.2 Poisson noise and streaking artefacts

In the context of the effect of imaging dose on image quality, Poisson noise occurs due to
the variations of detected x-ray photons. In the Poisson distribution, suppose Nphotons 1S
the number of photons detected in the panel, or signal, the variance (0?) of the Nphotons 18
equal to its mean (u), formulating the following equation:

02 = MU= Nphotons- (53)

That gives a characterisation of Poisson noise (o) as

0 =/ Nphotons- (54)

With this above equation, we can establish a signal and noise relationship by signal-to-
noise ratio (SNR):

N, hotons N, hotons
SNR = pT = ]57 Y, Nphotons' (55)

photons

With lower number of photons, both imaging dose and SNR decrease. The Poisson
noise exists in the projection image and can propagate in the CBCT image reconstruction.
During FBP which amplifies high frequency components (due to the ramp filter as shown
in eq. ), the Poisson noise in the projection image can be amplified and decreases the
image quality of the resulting CBCT image.

In this thesis, the imaging dose was lowered by reducing the number of projections.
The mASprojection for each projection remained unchanged. To illustrate the relationship
between the variance (0}) at the FBP reconstructed image f(z,y) and the total number of
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projections P, we could consider a reconstruction chain using FBP in a 2D discrete form.
The FBP reconstructed image can be defined as

™

P
2 > hg,(xcos B, + ysin §,), (5.6)

p=1

fo,y) =

where 3, and hg, denote the rotational angle and the filtered projection, respectively.

According to [52], the variance of the central pixel of a reconstructed image at (x,y) =
(0,0) could be derived as

0.0 = (5) o, 0

p=1
_ m (5.7)
12(A&)2P Nphoton (0)
1
XX F,

where ‘71215 (0) is the variance of the central filtered projection elements, A& denotes
P

the sampling parameter (i.e. the width of one detector element) and Nphoton(0) is the
average number of x-ray beam photons measured in one detector element. With the above
formulation, the noise in the reconstructed image oy increases by factor of 2 when the total
number of projections (P) decreases by a factor of 4.

The under-sampling of projections in this thesis also resulted in additional streak arte-
facts due to the Nyquist sampling theorem. Figure demonstrates the effect on the
image quality of a lower dose in CBCT FDK reconstruction images by under-sampling of
projections. The streak artefacts increased when a lower number of projections was used
for reconstruction.

It is also possible to estimate the dose reduction using the CBDI estimation of the
protocol that was used for this thesis (M20 protocol with 120 kV and a bowtie filter at
an Elekta XVI scanner) as discussed in (section . By under-sampling the projections
frames, for instance using 90 of the 350 projection frames, the estimated CBDI was reduced
from 2.27 mGy to 0.57 mGy (from an overall exposure of 140 mAs to 36 mAs) per CBCT
scan.

5.3 Related studies using U-Net, cycleGAN and CUT

Implementing low dose CBCT-to-CT translation in the adaptation workflow would require
the DL model to simultaneously remove streaking artefacts and correct HU intensity. Cur-
rently, a limited number of studies investigated sCT image generation from low dose CBCT
images. In the HN region, Yuan et al. [I08] acquired low dose CBCT with 182 frames for
a 205° rotation (a total exposure of 18.2 mAs), and trained a U-Net with a CT ground
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truth to translate a low dose CBCT to sCT images. The sCT achieved an image quality
comparable to other full dose supervised CBCT-to-CT studies in pelvis scans [59, 56, [60]
or an unsupervised study in the HN region [72]. In the thoracic region, Gao et al. [109]
under-sampled a clinical chest CBCT scan by 50% (660 projections to 330 projections)
and trained an attention-guided cycleGAN with unpaired CT datasets to generate sCT
images. Dong et al. [97] investigated lung 4D CBCT images, which has a low number
of projections in each respiratory phase (50 projections per test patient) and has similar
image quality (streaks and noise) as 15% low dose CBCT in fig. and generated sCT
images using cycleGAN and CUT models.

Although the above studies demonstrated that sCT images from a low dose CBCT can
achieve good HU and VMAT dose calculation accuracy, it remains unclear how much we
can reduce the CBCT dose for actual clinical use.
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Figure 5.1: Axial view of CBCT images using FDK reconstruction (section with
100% (352 projections), 50%, 25%, 15%, 10% projections, a scatter-corrected CBCT re-
construction (section , and an iterative reconstruction using conjugate gradient (CG)
with 100% projections of an exemplary prostate cancer patient dataset. All images were
reconstructed with 410 x 410 x 264 voxels on an isotropic 1.0 mm?® grid. All intensities
are in HU. (Own figure)



Chapter 6

Metrics for sCT evaluations

One of the potential problems in Al generated images is that the generator can fail to
capture and preserve all relevant anatomical details, especially in the pelvic region where
organ shapes can vary substantially. As a result, the generated images are prone to losing
anatomical details. Therefore, evaluating Al generated sCT images is important to ensure
that they are accurate, safe, and effective for use in the clinical practice. A few metrics are
typically used to evaluate sCT images and the model performances, including image quality
(section[6.1]), treatment dose accuracy (section and positioning accuracy (section |6.3)).
However, geometrical accuracy which is crucial for contouring and treatment planning has
not been commonly assessed. In section the importance and a method to evaluate
geometrical accuracy is discussed.

6.1 Image Quality

To evaluate image quality of sCT images, the voxel intensities can be compared to reference
images, vCT images or CBCT,,, (section images. Since these images are supposed to
possess identical anatomical structures and corrected HU values, the disparity reflects the
HU accuracy of the sCT images. To determine the HU accuracy of anatomical structures,
voxels outside the joint body outline of reference and sCT images are excluded. Suppose
Nhody denotes the number of voxel inside the joint body outline, y and § denote the voxel
intensities of the sCT and of the reference images, respectively. The following metrics are
typically used:

o Mean absolute error (MAE): it is a measurement of the mean magnitude of errors
between the sC'T and the reference images. It can be formulated as

1 Nbody )
MAE = Z |y — il (6.1)
Mhody =1

e Mean error (ME): Similar to MAE, it is a measurement of the mean values of errors
between the sCT and the reference images. It can be formulated as
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1 Nbody
ME = > yi— i (6.2)
Mbody ;=1

« Structural similarity index measure (SSIM): Compared to MAE or ME, SSIM is to
compare the texture and the structural similarity between two images. The SSIM
can be formulated as in [110]:

(2uyp1g + C1) (205 + Cy)

SSTM = ,
(12 4 p3 + C1) (02 + 07 + Cy)

(6.3)

where p,, and p; denotes the mean intensities of the sCT and the reference images,
05 and o; denotes the variances of the sCT and the reference images. C; and C; are
the constants to stabilize the equation when p, + f15 is near zero. The definitions of
C; and Cy are C) = (K R)? and Cy = (K»R)?, where R is the voxel intensity range.
K, and K, are constants that are empirically set as 0.01 and 0.03 according to [110],
respectively.

« Peak signal-to-noise ratio (PSNR): It is a measurement of the maximum signal rela-
tive to the maximum background noise. PSNR is represented as a logarithmic value
on the decibel (dB) scale via mean square error (MSE) of the voxels values between
the sCT and the reference images. Suppose 74y denotes the number of voxel in-
side the joint body outline, R denotes the voxel intensity range, y and ¢ denote the
voxel intensities of the sCT and of the reference images, respectively. PSNR can be
formulated as in [ITT]:

R2
where MSE is defined as
1 Nbody
Mbody =1

6.2 Treatment dose accuracy

Evaluating treatment dose accuracy is important to verify the electron densities on sCT im-
ages. Similar to the downstream tasks in treatment planning as discussed in section [2.1.4]
the treatment dose accuracy of sCT images is evaluated by comparing to the reference
images (CBCT,,, or vCT) using the research version of TPS (RayStation, version 10.01,
RaySearch, Sweden). In this thesis, we evaluated the accuracy with a photon-based radi-
ation therapy technique VMAT, which is frequently used in the hospitals.

In details, contours of target and OAR structures were propagated from the pCT images
to the reference and sCT images via DIR. On reference images, VM AT plans were generated
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and optimized on a 3.0 mm isotropic dose grid. A collapsed-cone dose engine was employed.
The plans were subsequently recomputed on the sCT images.

For prostate cancer patient data used in this thesis, the prescription was 2 Gy in 37
fractions. A CTV Vg5 of 100% was targeted, and PTV should receive at least 95% of
the prescription dose for more than 95% of its volume. The DVH constraints for OARs
such as bladder and rectum were adhered to the recommendation in the QUANTEC report
[17]. The VMAT dose distributions on sCT images were evaluated against the reference
images, with consideration given to DVH parameters. For target structures, CTV and
PTV Dggy, and Doy, as well as PTV Dsgy, and Vgsy, were compared. For OARs, bladder
(Veoay and Vgsay) and rectum (Vioay and Veogy and Vesay) were used for the comparison.
In addition, the voxels meeting the treatment dose difference (DD) analysis criteria of 1%
and 2% (with a 10% threshold) were compared.

For each of the above dose parameters, values from sCT images were statistically com-
pared to the reference images using Wilcoxon signed-rank tests. A significant difference
could be observed when a p-value was less than 0.05.

6.3 Positioning accuracy

One of the main objectives of in-room CBCT imaging is daily patient positioning. To
assess positioning accuracy when using sCT images, these images can be rigidly registered
to the pCT images with the use of the research TPS, similar to the procedure as shown
in the fig. 2.3 In this thesis, sCT images were registered to pCT images (sCT-to-pCT),
which yielded a set of rigid transformation parameters (in terms of millimeters (mm):
inferior—superior (IS), right-left (RL), posterior—anterior (PA); in terms of degree (°): pitch,
roll and yaw).

The resulting transformations were evaluated against those obtained by registering
the original full dose CBCT images (CBCT,,) to the pCT images ((CBCT-to-pCT)).
The mean absolute differences of each transformation parameter between sCT-to-pCT and
CBCTge-to-pCT were computed to reflect the positioning accuracy of sCT images.

6.4 Geometrical accuracy

As mentioned in the beginning of this section, Al generated images can create hallucina-
tions in anatomy and lower the precision of the treatment planning. Evaluating geometrical
accuracy can reveal how well the sCT images replicate the true spatial relationships and
structures found in reference images. However, geometrical accuracy is often missing in
many studies.

One of the methods to quantify the anatomical fidelity is to segment the organs in both
sCT images and reference images, either manually or with automatic algorithms, and to
compare the contours of organs. In this thesis, the following metrics were used:

 Dice similarity coefficient (DSC): It measures the coincidence between two sets of
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binary contours, with a score that ranges from 0 (no spatial overlap) to 1 (complete
overlapping). The formulation can be written as

2la N al

- (6.6)
|af + |a|

where a and a denotes the set of voxels in the contour of the organ on sCT images and
the reference images, respectively. |a| and |a| are the number of voxels in contours
on sCT images and reference images respectively. |a N a| denotes the number of
overlapping voxels between contours. Since DSC mainly measures the proportion of
overlapping region, it does not fully capture the difference in boundary and shape.

Hausdorff distance (HD): It measures the spatial discrepancy between two sets of
segmentations by calculating the largest distance from one point on sCT contour to
the nearest point on the reference contour. In this thesis, we used boundary HD [112]
in order to evaluate the contour shapes. Suppose the contour of an organ on sCT
images has a set of points 0A = ay, ...,ay, and the contour on the reference images
has another set of points A = dy, ..., an,, the average distance between boundaries
of the contours dgp,,, (0A, dA) can be formulated as

D, (0A, DA) + dyp,,, (DA, DA)
2 b

HD,yy (DA, DA) = (6.7)

where JHDan (0A,0A) and JHDan (8A,DA) denote the directed average Hausdorff mea-
sures from A to A, and from A to HA, respectively. In addition to HD,,, the 95
percent ranked distance HDg5 was also calculated to report the contour differences

in this thesis.

6.5 The overview of sCT evaluations

The lack of clinical evaluations of DL generated sCT images has been hindering the actual
implementation in the ART workflow. Most of the CBCT-to-CT works have evaluated their
sCT images in terms of image quality. Some U-Net-generated and cycleGAN-generated
sCT images have been evaluated with treatment dose calculations, however, not yet CUT-
generated sCT images. Moreover, only a limited number of studies have evaluated the
anatomical fidelity of sCT images which can have high influence on the downstream tasks
such as the organs contouring and the treatment planning. Patient positioning accuracy
was neither consistently evaluated in many studies.
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Contributions of this thesis

During a course of radiotherapy treatment, daily CBCT scans are important for accurate
treatment radiation delivery and sparing OARs (section. However, repeated full dose
CBCT scans also expose the patients to a considerable level of extra radiation dose, leading
to additional secondary cancer risk. As discussed in chapter 4] DL algorithms in full dose
CBCT-to-CT translations have been comprehensively explored (section , section
section and have recently been adopted in the clinical ART workflow (section .
In a recent multi-center sCT challenge “synthRad 2023” [113], the best three models applied
variants of U-Net and transformers to generate sCT images from full dose CBCT images
and achieved good image quality and treatment dose accuracy. Adhering to the principle
of radiation protection “[as low as reasonably achievable]” (ALARA), it is time to explore
how we can leverage DL advancements for reducing the imaging dose to patients.

Several separate low dose CBCT-to-CT studies have been conducted within the last
four years, as shown in section[5.3] Among these studies, CBCT scans of limited anatomical
locations have been investigated, limited to HN or chest regions. As revealed by a number
of clinical studies mentioned in section [5.1] prostate cancer patients, who can benefit from
daily CBCT scans, also have higher EAR of secondary cancer incidence due to the daily
CBCT scans. Therefore, in our first step in DL-enabled low imaging dose CBCT-to-
CT, we have selected prostate cancer patient datasets from the LMU University Hospital
(section [7.1]). In this first study, we investigated the feasibility of substantially lowering
the imaging dose of CBCT in the pelvic region with only 25% projections (approximately
90 projections), which could reduce the CBCT imaging dose more than other studies as
listed in section For example, the number of projections of our low dose CBCT is
almost half of the projection frames used in [I08] or 70% fewer than in [109]. To enhance
such low dose CBCT images into diagnostic quality sCT images, a state-of-the-art DL style
transfer model cycleGAN (section [4.2)) and a variant model with a residual connection were
implemented. The first paper is introduced in the following section

Among all low dose CBCT-to-CT research works (section , however, there is a lack
of structured investigations of the maximum imaging dose reduction level that is achievable
by DL. The majority of the studies have generated sCT images from CBCT scans with
only one specific radiation dose. With good full dose sCT image quality, we expect that DL
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could further reduce the imaging dose of CBCT scans. To fully unlock DL’s potential, in
the second study, we have investigated various imaging dose levels in terms of sCT image
generation with lower number of CBCT projections (25%, 15% and 10%). The aim was
to find the achievable lowest imaging dose that allows accurate treatment adaption using
two state-of-the-art DL style transfer models, namely cycleGAN (section and CUT
(section . The second paper is introduced in the following section m

To address the lack of clinical evaluations on sCT images (section [6.5]), both studies in
this thesis evaluated sCT comprehensively with all CBCT-guided adaptive radiotherapy
related metrics including image quality (section , VMAT treatment dose accuracy (sec-
tion [6.2), positioning accuracy (section and organ contouring accuracy (section [6.4)).
These evaluations aimed to enhance the clinical impact and a possible integration of the
low dose CBCT technique in the hospital setting.

7.1 Patient database

CBCT and pCT image datasets of 41 prostate cancer patients who were prescribed with
VMAT treatment to an overall dose of 70 Gy—76 Gy in 2 Gy fractions at the Department
of Radiation Oncology, LMU Munich University Hospital were retrospectively included.
All datasets were previously collected and extracted by Kurz et al. [67].

7.1.1 CBCT

For CBCT patient datasets, CBCT images were acquired by the lowest radiation dose
protocol for the pelvic region from the hospital. These CBCT images were acquired in
the treatment position using the XVI system (version 5.52) of a Synergy medical linear
accelerator (Elekta, Sweden), as shown in fig. The main selection criteria was: 120 kV
tube voltage, 20 ms exposure time, 20 mA X-ray tube current per projection. The detailed
scan parameters are in the following table [7.1}

As illustrated in fig. [7.1] panel saturation from high intensities through thin patient
sections can cause underestimation of the body outline. This protocol (20 mA and 20 ms)
was chosen to have the patient body outline more preserved. During the CBCT acquisition,
a laterally-shifted detector panel in M position and a bowtie filter were applied to enlarge
the lateral FOV.

The raw data in projections files (.his) and scan files (.ini) were previously collected and
extracted in [67]. Reconstructed images with lateral FOV truncation despite the enlarged
FOV were not included.

7.1.2 CT

The pCT images were acquired with a Toshiba Acquilion LB CT scanner (Canon Medi-
cal Systems, Japan). No contrast agent was used. The scanner reconstructed images in
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Table 7.1: A exemplary CBCT scanning protocol that were selected for this study. The
number of projections can vary among patients, ranging from 346 to 357 projections.

Scan parameter Value

Tube Voltage 120 kV

Tube mA 20

Tube KV Length 20

KV Filter F1 (bow tie filter)
Collimator Name M20

FOV Medium
FloodImageFilterNorm 29504
FloodImageFilterMA 20

FloodImageFilterMS 20
FloodImageOpenNorm 37732
FloodImageOpenMA 16

FloodImageOpenMS 20

Number of Projections 357

Scan rotation 360°

Patient Position Head First-Supine (HFS)
Reconstruction Dimension (X, Y, Z) | 410 pixels, 410 pixels, 264 pixels
Pixel Spacing (X, Y, Z) 1.0 mm, 1.0 mm, 1.0 mm

DICOM format were previously collected and extracted from the clinical TPS Monaco by
Kurz et al. [67]. The detailed scan parameters are in the following table [7.2}

7.2 Introduction to the two studies

7.2.1 Study 1: Feasibility of cycleGAN enhanced low dose CBCT
imaging for prostate radiotherapy dose calculation

In the first study, we investigated the feasibility of low imaging dose CBCT with only 25%
projections by simultaneously removing under-sampling artefacts and correcting image
intensities with two cycleGAN models (original cycleGAN implementation and with a
generator residual connection (see figure 3 in the first publication)).

In the first step, the full dose CBCT images (CBCT,,) and low dose CBCT images were
reconstructed using the FDK algorithm. We adopted a cycleGAN algorithm and imple-
mented the variants with a patient body shape loss term (see section 2.2.1 and equation 5 in
the first publication for details) to train the model using unpaired 4-fold cross-validation
(33 patients). For evaluation references, we generated vCT images on 8 test patients.
VMAT plans were optimized on vCT images, and recalculated on sCT images. To evalu-
ate the positioning accuracy, we calculated residual shifts by registering sCT images and
CBCT,,, images to pCT images, respectively. For anatomical fidelity, we manually con-
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(a) 40 x 40 (b) 20 x 20 HU

—200

—400

Figure 7.1: A comparison between scanning parameters in two representative prostate
cancer patients CBCT scanner images. The images were acquired with (a) 40 ms exposure
time, 40 mA per projection, 370 projections, (b) 20 ms exposure time, 20 mA per projection,
351 projections. Red arrows show the body outline artefacts in (a). Both were acquired in
the hospital but not used in the patient cohort in this thesis. (Own figure)

toured bladder and rectum in sCT images and original CBCT images and compared in
terms of the geometrical metrics (i.e. DSC and HD,,, HDg5).

In the test patient datasets, the average MAE (section was lowered from 126
HU to 44 HU compared to the vCT images. High treatment dose accuracy (section
was found, with 2% dose difference pass rates of 99% (10% dose threshold). Positioning
accuracy (Section was high, as most of mean absolute differences of rigid transformation
parameters (sCT-to-pCT — CBCT,,-to-pCT) were less than 0.20 mm/0.20 °. Contouring
accuracy (section was high with DSC/HD,,,/HDgs equal to 0.9/0.9 mm/4.1 mm for
bladder and for 0.9/1.1 mm/3.9 mm for rectum. The computational time to generate sCT
images was approximately 2 seconds for each volumetric CBCT scan.

This work demonstrated the feasibility of adapting two cycleGAN models to simultane-

Table 7.2: An exemplary CT scanning protocol that were selected for this study.

Scan parameter Value

Tube Voltage 120 kV

Exposure Time 750 ms

Tube Current 234 mA

Exposure 175 Ckg™*

Data Collection Diameter 550 mm

Scan Options Helical CT

Patient Position Head First-Supine (HFS)
Reconstruction Dimension (X, Y, Z) | 512 pixels, 512 pixels, 264 pixels
Pixel Spacing (X, Y, Z) 1.074 mm, 1.074 mm, 3.074 mm
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ously clear under-sampling artefacts and correct HU intensities of 25% dose pelvic CBCT
images.

7.2.2 Study 2: Investigation of imaging dose reduction levels in
pelvic CBCT-based synthetic CT generation using deep
learning: dose calculation and segmentation accuracy

In the second study, three imaging dose levels of CBCT scans were generated and image
corrections using cycleGAN and CUT models were investigated. The objective of this work
is to identify the minimum achievable imaging dose for accurate VMAT dose calculation
and organ delineation in online adaptation. A visual summary of the paper can be found
in fig. [7.2]

CBCT images of the prostate cancer patient datasets were reconstructed with lower
number of projections (100%, 25%, 15% and 10%) using the FDK algorithm. The CBCT-
to-CT models were trained with a similar scheme as in the first study. For each low dose
levels, we optimized and compared the performance of a cycleGAN model with residual
connection and a CUT model to generate sCT images from reduced imaging dose CBC'T5s.
Comprehensive details of the hyper-parameters and the network implementations can be
found in the supplementary material of this publication. CT number, treatment dose,
positioning accuracy and anatomical fidelity were evaluated in comparison to the reference
CBCT,, images (described in section . Based on contouring accuracy, 25% is the
minimum CBCT imaging dose.

In addition, this paper was selected as one of the Physics Highlights in the conference
ESTRO 2024: https://www.phiro.science/highlights2024.

7.3 First author’s contribution

The 41 CBCT and CT patient datasets were previously selected and extracted by Kurz
et al. [67]. T implemented an anonymization Matlab script to remove patient identifica-
tions from the CBCT datasets (.INI and .XML files) and CT datasets (DICOM files). I
under-sampled and reconstructed different imaging dose level CBCT images using FDK
reconstruction algorithms [114], implemented image pre-processing Python scripts (includ-
ing couch removal, re-sampling and intensity normalization) for CBCT and CT images,
modified the cycleGAN algorithm with the residual connection, implemented and docker-
ized the cycleGAN and CUT algorithms on the research server for training with GPUs.
I trained and optimised the models to find the best hyper-parameters. In addition, I im-
plemented Python scripts to evaluate the image quality, generated VMAT plans in the
TPS, evaluated the treatment dose with DVH parameters and the positioning accuracy.
Moreover, I received contouring training from a radiation oncologist and contoured the
OARs of the testing patient datasets which were then validated by the radiation oncolo-
gist. I implemented the contouring analysis script and wrote the original manuscripts for
the two papers. Finally, for the studies I have delivered oral presentations in international
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Investigation of deep learning-enabled minimum dose CBCT-based synthetic CT

- What is minimum imaging dose
Full dose CBCT-to-CT tran Low dose CBCT-to-CT translation that could be offered by

| \ | €9
2015 2017 2020 2020 2021 2022 2023 deep learning?

U-Net cycleGAN CUT “Low-dose fast HN scan” 50% dose thoracic CBCT 4D lung CBCT  25% dose prostate CBCT
U-Net cycleGAN cycleGAN & CUT cycleGAN
Yuan et al. Gao et al. Dong et al. Chan et al.
Low dose CBC Deep learning models synthetic CTs Evaluations

./ Patient posmonlng\\\
o \

s the minimum imaging dose
allowing accurate VMAT dose calculation and organ delineation.

Figure 7.2: A visual summary of the second study to investigate the minimum CBCT
imaging dose for accurate treatment dose calculation and OAR contouring. Copyright: ©
2024 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology
under CC BY 4.0 license.

conferences, poster presentations as well as data science slams in joint graduate training
schools.



Chapter 8

Studies

8.1 Paper 1: Feasibility of CycleGAN enhanced low
dose CBCT imaging for prostate radiotherapy dose
calculation

Reprinted with permission from “Feasibility of CycleGAN enhanced low dose CBCT imag-
ing for prostate radiotherapy dose calculation.” by Yan Chi Ivy Chan, Minglun Li, Katia
Parodi, Claus Belka, Guillaume Landry and Christopher Kurz; Physics in Medicine &
Biology. 2023 May 11;68(10):105014.
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Abstract

Daily cone beam computed tomography (CBCT) imaging during the course of fractionated
radiotherapy treatment can enable online adaptive radiotherapy but also expose patients to a non-
negligible amount of radiation dose. This work investigates the feasibility of low dose CBCT imaging
capable of enabling accurate prostate radiotherapy dose calculation with only 25% projections by
overcoming under-sampling artifacts and correcting CT numbers by employing cycle-consistent
generative adversarial networks (cycleGAN). Uncorrected CBCTs of 41 prostate cancer patients,
acquired with ~350 projections (CBCT ), were retrospectively under-sampled to 25% dose images
(CBCTyp) with only ~90 projections and reconstructed using Feldkamp—Davis—Kress. We adapted a
cycleGAN including shape loss to translate CBCTy p into planning CT (pCT) equivalent images
(CBCT1p_gan). Analternative cycleGAN with a generator residual connection was implemented to
improve anatomical fidelity (CBCTp_resgan)- Unpaired 4-fold cross-validation (33 patients) was
performed to allow using the median of 4 models as output. Deformable image registration was used
to generate virtual CTs (vCT) for Hounsfield units (HU) accuracy evaluation on 8 additional test
patients. Volumetric modulated arc therapy plans were optimized on vCT, and recalculated on
CBCT1p_ganand CBCTyp resgan to determine dose calculation accuracy. CBCT1p_gan»
CBCTLp_gesgan and CBCT . were registered to pCT and residual shifts were analyzed. Bladder and
rectum were manually contoured on CBCTp_gan> CBCT 1 p_gesgan and CBCT g and compared in
terms of Dice similarity coefficient (DSC), average and 95th percentile Hausdorff distance (HD,yg,
HDys). The mean absolute error decreased from 126 HU for CBCTp, to 55 HU for CBCTp gan and
44 HU for CBCTp resgan- For PTV, the median differences of Dogo,, D500, and Do, comparing both
CBCT1p_gan to vCT were 0.3%), 0.3%, 0.3%, and comparing CBCT1p_gresgan to vVCT were 0.4%,
0.3% and 0.4%. Dose accuracy was high with both 2% dose difference pass rates of 99% (10% dose
threshold). Compared to the CBCT ¢-to-pCT registration, the majority of mean absolute differences
of rigid transformation parameters were less than 0.20 mm,/0.20°. For bladder and rectum, the DSC
were 0.88 and 0.77 for CBCTp_ganand 0.92 and 0.87 for CBCTp_resgan compared to CBCT,,
and HD,, were 1.34 mm and 1.93 mm for CBCT;p_gan,and 0.90 mmand 1.05 mm for
CBCT1p_resgan- The computational time was ~2 s per patient. This study investigated the feasibility
of adapting two cycleGAN models to simultaneously remove under-sampling artifacts and correct
image intensities of 25% dose CBCT images. High accuracy on dose calculation, HU and patient
alignment were achieved. CBCT| p_gesgan achieved better anatomical fidelity.

© 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
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1. Introduction

In modern image-guided radiotherapy (IGRT), cone beam computed tomography (CBCT) is used as a routine
in-room imaging technique. Most radiotherapy centers have medical linear accelerators equipped with a
kilovoltage CBCT (kV-CBCT) scanner, which provides full three-dimensional (3D) information about the
patient’s anatomy at every treatment fraction. In the presence of inter-fractional anatomical changes between
acquisition of the planning CT (pCT) and the treatment day, CBCT imaging data would be suitable for
treatment adaptation and enabling accurate dose delivery (de Jong et al 2021, Moazzezi et al 2021, Sibolt et al
2021, Byrne et al 2022).

One primary problem which arises in using CBCT for treatment adaptation is that CBCT image quality is
typically insufficient to infer and adapt the applied daily dose (Kurz et al 2015). Typically, CBCT intensity
correction techniques on a standard full dose scan have been investigated in current literature. The wide range of
techniques include look-up-table based solutions (Kurz et al 2015), the use of pCT-to-CBCT virtual CT (vCT)
(Peronietal 2012, Landry etal 2014, 2015, Veiga et al 2015, 2016, Wang et al 2016) yielding a so-called virtual CT
(vCT) and the application of Monte-Carlo (MC) based methods (Mainegra-Hing and Kawrakow 2010, Thing
etal 2016, Zollner et al 2017) for scatter correction. While some of these methods have demonstrated accurate
CBCT-based dose calculation in different treatment sites (Ding et al 2007, Fotina et al 2012, Niu etal 2012, Veiga
etal2014), there are limitations corresponding to the methods. For instance, DIR based approaches that enabled
good dose calculation accuracy in head and neck (HN) (Kurz et al 2015, Landry et al 2015), might struggle in the
pelvic region owing to the more pronounced and complex inter-fractional changes in anatomy. While the DIR
inaccuracies could be improved by means of using vCT as prior for projection based intensity correction (Niu
etal2010,2012, Park etal 2015, Kurz et al 2016), the time for generating corrected images, which takes several
minutes, hinders the use of the obtained corrected CBCT images for online treatment adaption. Similarly, MC
based methods which take up to several hours are not suitable.

Recently, the use of deep convolutional neural network (CNN) to speed up CBCT correction has received
substantial interest. The U-Net architecture (Ronneberger et al 2015) has been employed to translate images
across domains and correct CBCT intensities. In Kida ez al (2018), a U-Net was trained using CBCT and vCT as
inputand target to translate the CBCT into a pCT equivalent image. Other U-Nets were trained for projection
based image correction using MC simulated scatter distributions (Maier et al 2018, 2019) or corrected
projections retrieved with a previously validated algorithm based on a vCT prior (Hansen et al 2018, Landry et al
2019). Apart from the U-Net, generative adversarial networks (GAN) (Goodfellow et al 2014) have been applied
to translate CBCT into pCT images. In particular, the cycle-consistent GAN (cycleGAN) (Zhu et al 2017)
architecture has seen considerable attention for unpaired training. For example, in the brain and the pelvic
region (Harms et al 2019) (however using an additional paired loss term), in the HN region (Liang et al 2019) and
the pelvic region (Kida et al 2019, Kurz et al 2019), dosimetric analysis of the cycle-consistent generative
adversarial networks (cycleGAN) based corrected CBCT images were included, highlighting high dose
calculation accuracy for photon therapy. The majority of deep learning based correction methods take less than
aminute.

Using CBCT in IGRT increases the precision of the treatment, but also adds to the dose delivered to healthy
tissues. One additional concern is thus that the imaging dose received from repeated CBCT scans at 20-35
fractions might be considerable and increase the risk of secondary malignancies. Kan et al (2008) measured, with
thermoluminescent dosimeters, the dose from CBCT in a female anthropomorphic phantom and reported the
effective and absorbed doses to 26 organs with standard and low-dose imaging modes. Effective doses to the
whole body from standard mode CBCT for imaging of the pelvis were 22.7 mSv per scan. They concluded that
CBCT on a daily basis could add an additional 2%—4% to the absolute secondary cancer risk. The radiation-
induced cancer risk due to organ doses from kV-CBCT was also estimated by Kim et al (2013). Absorbed dose
measurements in a cylindrical and in an anthropomorphic phantom yielded 170-187 mGy for the pelvic scan
protocol, for which they concluded that 70% of additional secondary cancer risk from radiotherapy treatment of
prostate patients can be attributed to CBCT imaging. Therefore, the excess radiation-induced cancer risk from
CBCT is not negligible.

According to the Report of the American Association of Physicists in Medicine (AAPM) Therapy Physics
Committee Task Group 180 (Ding et al 2018), imaging dose should be considered in the treatment planning
process if larger than 5% of the therapeutic target dose, and in general the principle of ‘as low as reasonably
achievable’ (ALARA) for imaging should be pursued. In the current clinical practice, radiation oncologists
typically use the lowest possible dose of radiation to obtain the CBCT images, or try to to limit the frequency of
CBCT imaging during treatment to reduce the risk of secondary cancers from cumulative CBCT dose. Lower
dose CBCT at equivalent image quality could thus be favourable as it offers a higher flexibility of in terms of pre-
treatment imaging frequency. Reducing dose, however, could be challenging since the CBCT image quality is
further degraded, leading among others to potential loss of anatomical information.

2
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Prior research has thoroughly investigated CBCT correction, however it remains to be investigated whether
advances in deep learning can be leveraged to substantially reduce CBCT dose while jointly correcting CBCT
image intensity and retaining therapeutic dose calculation accuracy. To address the needs of (1) CBCT dose
reduction and (2) improving image quality for dose adaptation, our study investigates a cycleGAN-based low
dose CBCT approach that translates a CBCT from a reduced number of projections (approximately 90), namely
CBCTyp, to a pCT equivalent image, referred to as CBCT1p_gan, by simultaneously removing under-sampling
artifacts and correcting image intensities while preserving anatomy fidelity. In parallel to CBCTp_gan, we also
implemented an alternative cycleGAN with a generator residual connection to improve anatomical fidelity,
referred to as CBCTp gescan-

2. Materials and methods

2.1. Patient data
2.1.1. Data acquisition
In this study, pCT and CBCT imaging datasets of 41 prostate cancer patients who received volumetric
modulated arc therapy (VMAT) treatment to a total dose of 70-76 Gy in 2 Gy fractions at the Department of
Radiation Oncology of the LMU Munich University Hospital were collected. All patients were advised to follow
anin-house bladder and rectum filling protocol. The pCTs were acquired with a Toshiba Acquilion LB CT
scanner (Canon Medical Systems, Japan). Tube voltage was set to 120 kV. An image grid of 1.074 mm x 1.074
mm x 3.000 mm was used in combination with a 55 cm lateral ield of view (FOV). No contrast agent was used.
To prevent the saturation of the detector panel and body outline artifacts, all retrospectively selected CBCT
images were acquired in treatment position with a scan protocol of 120 kV tube voltage, exposure time of 20 ms
and x-ray tube current of 20 mA per projection using the XVI system (version 5.52) of a Synergy medical linear
accelerator (Elekta, Sweden). This is the lowest dose pelvic protocol at our institution. The lateral FOV was
increased by using a laterally-shifted detector panel in M position and a bowtie filter. Images with body outline
truncation in spite of the increased fov were excluded from the study. Around 350 projections [346, 357] were
acquired in each 360° scan.

2.1.2. Data preparation

To generate alow dose CBCT |, from the full dose CBCT,,, CBCT projection data were uniformly under-
sampled by a factor of 4 (keeping 25% of the projections) from about 350 to 90 projections, followed by a
reconstruction using the Feldkamp—Davis—Kress (FDK) implementation of Reconstruction ToolKit (RTK) (Rit
etal2014) with 410 x 410 x 264 voxels on an isotropic 1.0 mm® grid. By thresholding and morphological
masking, the patient couch was removed from the CBCT image, which was then converted to an image size of
512 x 512 by zero padding with the pixel intensity in the attenuation coefficient value (1) range [0, 0.04] (values
above 0.04 were set to 0.04). The first and last 35 image slices in superior-inferior direction with partial FOV
cone truncation were excluded. pCTs were re-sampled to the same grid and image size using a linear interpolator
from the SimpleITK library. The table was also removed from the images. The pixel intensity of the CT images
was empirically converted to the range of the CBCT images (HU + 1024)/65536) (Park et al 2015). The
resulting intensities were mapped to the range [0, 0.05] (values above 0.05 were set to 0.05). Patients were
instructed to lay with arms down and forearms folded up during acquisition. Since pCT slices showing limbs
were excluded, the data used for training covered the pelvis and lower abdomen. To incorporate patient outline
information in the training, a binary mask of each pCT and CBCT image was created by thresholding. All images
were stored in 16 bit format before training. The data pre-processing workflow is illustrated in figure 1.

2.2. CycleGAN architecture and training
2.2.1. Forward and backward cycles and loss function
To correct the intensity of low dose CBCT} p, we adapted a cycleGAN architecture (Zhu etral 2017, Ge et al 2019)
to learn the image translation between low dose CBCT , (input) and pCT equivalent images (output) with
unpaired patient data (planning and fraction images). The framework chains two sets of a generator and
discriminator networks. The generator aims to obtain the most efficient representation of CBCTy, from which a
synthetic pCT can be generated slice by slice in the forward cycle. The discriminator is used to distinguish
synthetic pCT with output label 0 and true pCT with label 1 in the forward cycle. In the backward cycle, outputs
of the generator and discriminator are reversed. The loss function for both generators and discriminators
consists of the terms described below.

In figure 2 (panel (a)), a generator Gpcrlearns a mapping from CBCT p to pCT such that the distribution of
images from G,cr(CBCT\p) is indistinguishable from the distribution of pCT by a discriminator D,y using an
adversarial loss in the forward cycle:
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Figure 1. The pre-processing workflow for the CBCT and CT patient images.
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Figure 2. The cycleGAN architecture is used to generate pCT equivalent CBCT;p_gan images from CBCTy  images in (a) forward
cycle, and to generate CBCT p from pCT in (b) backward cycle. The mask of CBCTyp_gan is calculated by a shape extractor in the
forward cycle.
Lpct = Ecpemnpllog(1 — Dper(Gper(CBCTip))] + Epcrllog Dyper (pCT)I, (D)

where G,cr aims to minimize the first term Ecpcr, [log(1 — Dper(Gper(CBCTip)))] by generating synthetic
images G,cr(CBCTp) that closely resemble pCT, while Dy, aims to maximize both terms and become as good
as possible in distinguishing between synthetic images G,r(CBCTp) and real pCTs.

In figure 2 (panel (b)), the second generator G¢pcrp;,, was trained to establish the inverse mapping from pCT
to CBCTyp with the help of the second discriminator Dcpcy,, in the backward cycle:
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Figure 3. (a) In the CBCTyp_gan approach, the generator Gg’é%l is trained to directly map from CBCT} to the final CBCTyp_gan

images. (b) In contrast, the input and the intermediate output from the generator G}IfESTGAN are added with equal weight to obtain the

final output CBCTyp_Resgan-

D — - LD LD LD B .
Legeny, = Eperllog(1 — Deperip(Gepenn(PCTN] + Ecgerp[logDcper;,, (CBCTip)] 2

With the above adversarial loss, the generators Gt and Gegcry, are encouraged to generate realistic images
of the target domain in order to fool the discriminators Dpcr and Depcr -

To stabilize the training and ensure the inverse-consistent mappings with respect to the two image domains,
a cycle consistency loss L. is introduced to enforce Geper,(Gper(CBCT b)) ~*CBCTp and Gper(
Geaer,(PCT)) ~pCT. In the forward cycle, Lo, computes the L, norm of the output from Gepcr;,, with the
generated synthetic pCT as input and the input low dose CBCTp:

LY = Beper, [[CBCTip — Geseny(Gper(CBCT))|| 1. (3)

In the backward cycle, the roles of CBCT p and pCT are again swapped and the corresponding cycle
consistency loss function is:

LYY = Bperl|[pCT — Gper(Geser,, (PCT)|1 - 4)

The cycle consistency loss, however, does not directly enforce the structural similarity between the input
CBCTyp and the generated CT images. A previous CBCT-to-CT study has shown that there are measurable
deviations in the patient body outline (Kurz et al 2019). To incorporate patient outline information and
geometrically constrain the generator, we have adapted a shape loss as suggested in Ge et al (2019). A U-Net
shape extractor (SE) was first trained for 5 epochs with paired pCT as input and the corresponding binary masks
as the ground truth output. During the cycleGAN training, the shape extractor segments the patient outline of
the generated CBCTp_gan image from G, and computes the L; loss between this new mask and its
corresponding ground truth mask from the input low dose CBCT' p:

Lshape = L1(CBCTp_masks SE(GpCT(CBCTLD))) %)
Therefore the total loss used was:
Lip_can = Lycr + Lesery, + M (ch;)é + Lgafk) + X Lhape- (6)

where A and ), are hyperparameters that were empirically set to 25 and 1 in this study. The objective function to
be solved was
Gpers Gesery, = arg— min max  Lip_cgan(Gpers Gesenps Desenps Dper)- (7
Gyer,Geperyp Deserpp Dpcr

Since this min-max optimization aims to find the model parameters that could describe the distribution of
the image domain instead of using pixel-wise comparison, unpaired datasets could be used for this study.

We additionally trained a cycleGAN variant where a residual skip connection was used for the generator (see
figure 3). This approach has been reported to improve geometric fidelity to the input image in the field of
histopathology (de Bel et al 2021) and used in a previous CBCT-to-CT study (Deng et al 2022). Since anatomical

fidelity is critical in our application, we have adopted this approach. As shown in figure 3, GIG,CA%\I was trained to

convert CBCTy p directly to CBCTyp_gan in panel (a). For CBCTp_rescans GgESTGAN was trained to convert
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Figure 4. An illustration of the model ensemble method. Four independent models were trained with a four-fold split of the dataset.
Then the four models were applied to the ensemble model validation set and the median of the four outputs was evaluated to find the
best model, which was then applied to the final testing set in evaluation.

CBCT\p to an intermediate image, which has reversed intensities that suppress the streak artifacts from the
CBCTp input image as shown in panel (b). In the backward cycle, the other generator Gepcry, in the
CBCT'p_rescan approach was also trained to obtain the final output with the addition of the pCT input.
Hyperparameters \; and A\, were empirically set to 25 and 0 for CBCTp_resgan- It was observed that the shape
loss did not improve the performance of CBCT1p_gesgan, as opposed to CBCT p_gan. Supplementary figure S1
and supplementary figure S2 illustrate the A, experiments for one exemplary ensemble model validation patient
(section 2.2.2) for CBCTp ganand CBCTip resgan, respectively.

2.2.2. Network training
In a geometric augmentation pipeline, we employed two-dimensional (2D) horizontal flipping and affine
transformations including rotation of [—5°, 5°] and scaling by [0.9, 1.1] with a bicubic interpolation over 4 x 4
neighboring pixels to the CBCT and pCT inputs and their masks to enhance the generalisability of the model.

For the generator, the encoder contains two convolutional layers with stride 2 and the decoder contains two
deconvolutional layers with stride 2. Nine residual blocks between encoding and decoding operations were used
(Johnson et al 2016). For the discriminator, 70 x 70 PatchGAN (Isola et al 2017) was employed with a
downsampling scheme from 256 x 256 to 32 x 32 by applying four series of 2D convolutional layers followed by
instance normalization (Ulyanov et al 2016), except for the first and last layer, and LeakyReLU with a slope of 0.2
as nonlinearity, except for the last layer. The receptive field of the network was 70 x 70 and each pixel in the
output was evaluated as a scalar in the range [0, 1]. The networks were implemented in PyTorch (v1.12.0).

Training was performed starting from the pre-trained model provided by Ge et al (2019). Results from
training without the pre-trained model did not show convergence at the same number of epochs as for the pre-
trained model. The adam optimizer was used for both generator and discriminator. The learning rate was set to
0.0002 during the first 100 epochs, and gradually reduced to zero over the next 100 epochs. For input to the
network, the image patch was resampled to 256 x 256 pixels for the data augmentation. The batch size was set to
one. ARTX A6000 graphics processing unit (GPU) (NVIDIA, California USA) was used.

Amonga total of 41 patient datasets, a subset of 30 patients using four single folds, each containing 25
patients were used to perform the training with unpaired datasets. Three patient datasets were used as an

ensemble model validation set and eight were used as a final test set. After the training, the generators Ggé%l and

GgéSTGAN were used to correct CBCTYp intensity by translating CBCT} p slice-by-slice into pCT equivalent

images, labelled CBCT1p_gan and CBCTp_resgan- As illustrated in figure 4, since four different folds were used
for training the cycleGAN, four Ggé}q and G}}}ESTGAN with identical training hyper-parameters were obtained and
applied to the ensemble model validation set. The median of the four models was used as the final output. For
every 10th epoch, we computed the mean absolute error (MAE) and mean error (ME) for the three ensemble
model validation cases in comparison to the reference vCT (section 2.3.1) and compared the appearance of soft

tissues, bones, air cavities and body outline visually to find the optimal stopping epoch.

2.3. Data evaluation

2.3.1. Reference vCT and scatter corrected CBCT

Since there could be substantial anatomical differences between pCT and CBCT} , due to changes in bladder and
rectum filling, as well as in patient positioning, the obtained images were not directly compared to the pCT for
determining the accuracy of CBCT1p_gan 0r CBCT1p rescan- Instead, we generated a vCT by mapping the pCT
to the daily CBCT via a dedicated DIR approach. As described in Hofmaier et al (2017), we aim for (1) image
similarity which is computed by normalized gradient fields, and (2) deformation regularity which is computed
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by curvature regularization. The optimization problem is solved in a discretize-then-optimize scheme using a
quasi-Newton L-BFGS optimizer.

A CBCT correction technique that had been validated in Park et al (2015) and Kurz et al (2016) was employed
as an alternative reference for evaluating the network results and their comparison to vCT for the eight test cases.
This reference correction approach was fully described in the original publications of Niu et al (2010) and Niu
etal (2012) and in follow-up studies from Hansen et al (2018) and Landry et al (2019). We first forward project
the VCT according to the geometry of the CBCT scanner to retrieve primary beam projections (I,,;;). The scatter
and other low frequency deviations (I,.,) are calculated as the difference between a scaled original CBCT,,,
projection (I,,g) with ntensity scaling factor (ISF) and (I,,,;) followed by a generous smoothing function f. The
scatter corrected projection () was estimated by subtracting the scatter contribution from the original
measured CBCT,,, projections. With I, we could reconstruct a scatter-corrected CBCT, in the following
referred to as CBCT ., with HU values equivalent to the pCT, and with ideally the same anatomy as CBCT .. In
line with CBCT p, CBCT ., was reconstructed using the FDK algorithm with the same reconstruction settings.

2.3.2. CT number accuracy

For the eight test cases, CBCTLp, CBCTp gan and CBCTLp resgan were compared to vCT in terms of the MAE
and ME in HU. All pixel intensities were scaled from model output in ; to HU using the inverse empirical scaling
used for the pCT. Pixels outside the joint body outline of vCT and CBCTp_gan/CBCTyp or
CBCT1p_resgan/CBCTrp were excluded.

2.3.3. Dosimetric analysis
To determine dosimetric accuracy, we generated and recalculated VMAT plans on vCT, CBCT p_ganand
CBCTp_resgan for the eight test patients in a research version of a commercial treatment planning system
(TPS) (RayStation, version 10.01, RaySearch, Sweden). Contours of target structures and organs-at-risks (OARs)
were transferred via DIR from pCT to vCT, on which VMAT plans using one arc were optimized on an isotropic
dose grid of 3.0 mm using a collapsed-cone dose engine. These plans were then recalculated on CBCTyp_gan
and CBCTp_grescan- The generic Elekta Synergy beam model with Agility multi-leaf-collimator in the TPS was
employed. The prescription was 74 Gy in 37 fractions and we aimed at clinical target volume (CTV) Vg5, of
100%, and planning target volume (PTV) Vyso, better than 95% of the prescription dose. We aimed at fulfilling
the dose-volume histogram (DVH) constraints that are given in the QUANTEC report (Marks et al 2010) for the
rectum and the bladder. Identical generic CT number to electron density conversion tables were employed for
vCT, CBCTp gan and CBCTp gesgan in all cases. The dose distributions on vCT, CBCTp gan and
CBCTp_resgan Were then compared in terms of a 1%, 2% and 3% dose difference criterion. Voxels with less
than 10% of the prescribed dose were excluded. In addition, the VMAT dose distributions for vCT,
CBCTp_cgan and CBCTp resgan Were compared with regard to DVH parameters of clinically relevant target
structures and OARs. CTV and PTV Dago, and D,q, together with PTV Dsgo, and Vgse, were analyzed. For the
rectum Vs 60/65 Gy and for the bladder Ve 55 Gy were analyzed.

To evaluate the robustness of the dosimetric results to the reference image, the VMAT plans were
additionally recalculated on CBCT,,, and the dose distribution compared to the one from vCT with a 1% dose
difference criterion.

2.3.4. Positioning accuracy

Daily patient positioning is one of the primary purposes of in-room CBCT. To evaluate registration accuracy
when using CBCTp ganand CBCT1p gesgan, We rigidly registered these images to the pCT using the research
TPS. The transformations were compared to the one obtained from registering CBCT ,, to the pCT. Automated
gray level rigid registration was used with six degrees of freedom.

2.3.5. Anatomical fidelity

To evaluate the networks’ capability for preserving the anatomy correctly, we evaluated the shapes of organs
geometrically. Two OARs, bladder and rectum, were segmented manually using the research TPS on CBCT o,
CBCTp_cganand CBCT | p resgan for this purpose. All contours were thoroughly validated by a radiation
oncologist with expertise in prostate cancer radiotherapy. Dice similarity coefficient (DSC), average and 95th
percentile Hausdorff distance (HD,,g, HDys) of the contours on CBCTp_gan and CBCTyp_gesgan Were
computed to determine the fidelity of the organ shape in the network output, using CBCT,, as ground truth.
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3. Results

3.1. Model selection based on ensemble validation

The model of epoch 50 for CBCTp_gan and the model of epoch 60 for CBCT1p gesgan Which had the lowest
MAE and ME and high soft-tissue geometric fidelity upon visual inspection of the validation cases were selected.
In figure 5, the output images from the four trained Gg’é%\l and GII;ESTGAN are shown for an exemplary ensemble
model validation patient (panel (a)—(d) and panel (g)—(j)), together with the calculated median images (panel (e)
and (k)) and the pixel-wise difference between maximum and minimum HU values (panel (f) and (1)). For
CBCTyp_cans deviations between the four different models were most pronounced at the edges of the bony
anatomy, as well as at the patient body outline. We also observed variations in the bowels with occasional
generation of air pockets (panel (c)). For CBCTp_rescan» deviations were generally less pronounced as in
CBCTp_cansand no random large air pocket was generated. In the following analysis, only the median images
were considered.

3.2. Computational details

The training to the best model at epoch 50 of a single fold took about 9 h for CBCTp_gan, and at epoch 60 took
about 10.5 h for CBCTp_resgan- The average time to convert a complete 3D CBCT , of one patient with 195
slices into CBCT1p_gan 0r CBCT1p resgan Was about 2 s (about 10 ms per slice) on a GPU.
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3.3.Image analysis

We evaluated CBCTp_ganand CBCTp_resgan On eight test patients. CBCT images of test patient 36 and their
HU differences are shown in figure 6. In CBCTyp (panel (c)), streaks and undersampling artifacts are clearly
observed when compared to CBCT o, (panel (f)). In panel (d) and (e), CBCT1p_gan and CBCTp_resGan have
successfully removed these artifacts. Figure 6 also shows the HU differences of all CBCT results with respect to
vCT. CBCTp (panel (g)) and CBCT,, (panel (j)) show larger underestimated regions and larger overestimated
regions, as well as pronounced deviations in the bony structures. As seen from the reduced differences to vCT,
CBCTyp_gan (panel (h)) and CBCTyp_gesgan (Panel (i) improved image intensities compared to CBCT,,4. The
remaining differences between CBCTyp_gan and CBCT}p resgan With respect to vCT are observed at the
patient body outline and bone interfaces. In addition, figure 6 also shows the HU differences of all CBCT results
with respect to CBCT,,,. Al HU differences to CBCT,,, are similar to the differences to vCT but with remaining
increased noise.

To quantify the image quality, we computed the average ME and MAE in HU of CBCT p_gan»
CBCTp_resgan and CBCTp compared to vCT for training, validation and test patients as shown in figure 7. In
panels (a) to (c), the ME of CBCT} 5 had positive values in almost all patients while CBCT;,_gan had negative
values in the majority of datasets. CBCTp_resgan had slightly more negative values than positive ones. The MEs
of all datasets were comparable within the correction method. In panels (d) to (f), CBCT,p_ganand
CBCT1p_resgan showed a substantially reduced MAE for all datasets compared to CBCTyp.

Table 1 reports the quantitative results in terms of the average ME and MAE of all patient images in training,
validation and testing datasets. For the testing datasets, the average ME changed from 20 HU for CBCT, to —6
HU for CBCT1p_gan and —2 HU for CBCT1p_gesgan- The average MAE reduced from 126 HU for CBCTyp, to
55 HU for CBCTLD_GAN and 44 HU for CBCTLD_ReSGAN'

3.4. Dosmetric analysis

The quantitative results of the dose difference analysis of the VMAT plans comparing CBCT;p_gan and
CBCTyp Rresgan to VCT are given in table 2 for all test datasets and the investigated dose difference (DD) levels.
For CBCTp_gans the average 1% DD pass-rate was 95.9%, with a value range from 87.3% to 98.7%. For
CBCTLp resgan, the average 1% DD pass-rate was 97.0%, with a value range from 92.0% to 98.6%. This shows
that a high agreement of CBCT1p_gan and CBCTLp rescan to the reference vCT was found. In addition, the
average 1% DD pass-rate comparing vCT to CBCT,,, for all test datasets was 98.4%, indicating excellent
dosimetric agreement between the two benchmark images.
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Figure 7. (Top) ME and (bottom) MAE per patient for the comparison of vCT and (a), (d) CBCTYp, (b), (¢) CBCTyp_gan or (c), (f)
CBCTLp_rescan- The data are labeled as belonging to the training (blue), validation (red) and testing (green) datasets.

Table 1. Average HU ME and MAE of all patient images in training, validation and testing datasets for the comparison of CBCT} p,
CBCTyp ganand CBCTyp gresgan With vCT, respectively. The number in square brackets represent [min, max] values among all patients in
the corresponding groups.

Dataset MECBCTyp MECBCTip can MECBCTip ResGAN
Training 21[-1,39] —12[-32,5] 5[-8,21]
Validation 19[1,30] —13[—15,—12] —10[—18,—1]
Test 20[-5,33] —6[-18,5] —2[-17,8]
Dataset MAE CBCT,p, MAECBCT1p can MAECBCT1p ResGAN
Training 125[112,134] 55 [46, 67] 45[40, 55]
Validation 123[118,126] 60[52,68] 49[42,55]

Test 126119, 134] 5549, 62] 447138, 50]

Table 2. Dose Differences (DD) of the eight test patients for the VMAT plans recalculated on
CBCTyp_ganand CBCTp resgan With respect to vCT . All values are in percent.

CBC’I‘LDiGAN CBC'I‘LDiResGAN
Test patient 1%DD 2%DD 3%DD 1%DD 2%DD 3%DD
34 92.7 98.1 98.8 92.0 98.3 98.9
35 97.1 98.9 99.5 97.2 99.0 99.6
36 97.4 99.1 99.8 98.0 99.4 99.8
37 98.3 99.5 99.8 98.4 99.6 99.9
38 87.3 97.1 98.4 95.7 97.8 98.8
39 97.4 99.1 99.6 97.8 99.2 99.7
40 98.7 99.7 99.9 98.6 99.7 99.9
41 97.9 99.2 99.7 98.0 99.2 99.7
Average 95.9 98.8 99.4 97.0 99.0 99.5

The dose distribution and difference of test patient 38 are depicted in figure 8. Only minor dose differences
in the planning target volume (PTV) region between CBCT1p_gan> CBCT1p resgan and vCT were found. The
dose difference for CBCT1p gesgan has smaller magnitude than for CBCT1p_gan:-

Figure 9 shows targetand OAR DVH parameter differences with respect to vCT as boxplots over all patients.
For most of the considered parameters in both CBCTp_gan and CBCTp resgans differences were within
1.5 Gy for dose DVH parameters (D,) and below 1.5% for volume DVH parameters (V). All deviations were
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Figure 9. Clinically relevant DVH parameter differences of CBCTyp ganand CBCTyp gresgan With respect to vCT for (a), (c) target
and (b), (d) OAR structures. Each data point represents a test patient. Whiskers correspond to the 5th—95th percentile. All dose values
correspond to the total dose of the fractionated treatment.

below 2 Gy/2%. Particularly in the target DVH comparison, the median differences of Dggos, Dsgo, and Dy,
comparing CBCT p gan With respect to vCT were 0.3%, 0.3% and 0.3% for the PTV. In CBCTp_gesgans the

Y Chan et al

median differences of Dgggs, Dsgo, and Do, with respect to vCT were 0.4%, 0.3% and 0.4% for the PTV.

3.5. Positioning accuracy

With respect to CBCT -to-pCT, the mean absolute difference of rigid transformation parameters were

0.07 mm (right-left) (RL), 0.05 mm (inferior—superior) (IS), 0.01 mm (posterior—anterior) (PA), 0.17° (pitch),
0.15° (roll) and 0.24° (yaw) for CBCTp_gan-to-pCT, and similarly, the mean absolute differences were

0.03 mm (RL), 0.05 mm (IS), 0.04 mm (PA), 0.16° (pitch), 0.19° (roll) and 0.26° (yaw) for
CBCT1p_resgan-to-pCT. The majority of differences were thus less than 0.20 mm or 0.20°, except the pitch of
patient 34 was 0.32° for CBCTp_gan» the yaw of patient 38 was 0.82° for CBCTyp,_ganand 0.77° for
CBCT1p_resgans the roll of patient 39 was —0.60° for CBCTp_gan and —0.79° for CBCTyp_gesgans the yaw of

11



I0P Publishing

Phys. Med. Biol. 68 (2023) 105014

Table 3. The anatomical fidelity results of bladder in terms of Dice similarity coefficient (DSC), average and
95th percentile Hausdorff distance (HDqyg, HDos) in the test patients from CBCTp_ganand

CBCTLp_RresGAN-

CBCTip_can CBCTyp_resGan
Test patient DSC HD, ¢ (mm) HDys5 (mm) DSC HD,yg (mm) HDgs (mm)
34 0.83 1.68 7.39 0.93 0.65 3.86
35 0.90 1.27 5.79 0.93 0.83 3.29
36 0.91 1.12 6.11 0.93 0.81 4.42
37 0.84 1.46 442 0.85 1.43 6.10
38 0.94 0.78 4.42 0.94 0.69 3.67
39 0.83 1.82 6.40 0.90 1.08 3.79
40 0.91 1.52 4.45 0.94 1.04 3.37
41 0.89 1.06 6.82 0.94 0.65 3.90
Average 0.88 1.34 6.03 0.92 0.90 4.05

Table 4. The anatomical fidelity results of rectum in terms of Dice similarity coefficient (DSC), average and
95th percentile Hausdorff distance (HD,,, HDys) in the test patients from CBCTyp_gan and

CBCTLp_RresGAN-

CBCTip_can CBCTip_resGan
Test patient DSC HD, g (mm) HDys (mm) DSC HD,g (mm) HDys5 (mm)
34 0.75 2.55 8.67 0.83 1.32 6.17
35 0.72 2.17 7.52 0.85 0.98 3.56
36 0.80 2.01 6.83 0.82 1.91 7.11
37 0.85 1.11 4.03 0.90 0.68 2.12
38 0.89 1.10 4.06 0.92 0.84 3.15
39 0.74 1.98 6.68 0.90 0.63 2.12
40 0.62 2.86 8.12 0.87 0.89 3.15
41 0.79 1.62 5.56 0.85 1.15 3.70
Average 0.77 1.93 6.43 0.87 1.05 3.89

Y Chan et al

patient 39 was —0.42° for CBCTyp_gan and —0.69° for CBCTp_resgan and the pitch of patient 41 was —0.65°

for CBCTp_resGan-

3.6. Anatomical fidelity

As shown in table 3, the average DSC of bladder was 0.88 for CBCT1p_ganand 0.92 for CBCT1p gesgan With
respect to CBCT op. HD,yg and HDos of bladder were 1.34 mm and 6.03 mm for CBCT | p_gan,and 0.90 mm
and 4.05 mm for CBCTLp gesgan- Asshown in table 4, the average DSC of rectum was 0.77 for CBCT1p_gan
and 0.87 for CBCTp_gesgan With respect to CBCT . HD,yg and HDgs of rectum were 1.93 mm and 6.43 mm
for CBCT1p_gan»and 1.05 mm and 3.89 mm for CBCTp gresgan- In both bladder and rectum, CBCTp resgan
had a higher DSC and lower HD,; and HDys5 than CBCT p_gan- In addition, bladder had generally higher DSC
and lower HD than rectum in both CBCTp_ganand CBCTip gresgan- Figure 10 illustrates that the contour of
the rectum in CBCTp_gan (panel (b) and (e)) had alarger shape deviation than in CBCTp_gescan (panel (c)
and (f)) with respect to CBCT , (panel (a) and (d)) due to a small incorrect air pocket generated, which would
also be contoured as part of the rectum in clinical practice.

4. Discussion

The daily use of CBCT imaging during a fractionated radiotherapy course could deliver a considerable amount
of radiation dose to patients. Due to the insufficient image quality, CBCT also cannot be used for daily dose
calculation and adaptation. To address these problems, our study aimed at addressing dose reduction and

intensity correction simultaneously. We generated synthetic low dose CBCT1 p, to train two cycleGAN

architectures to tackle the tasks of (1) removing the under-sampling artifacts and (2) correcting the intensity of
CBCT\p, and evaluated both approaches on a cohort of prostate cancer patients. The key finding of this study is
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Figure 10. The contours of rectum in (a) CBCTp, (b) CBCTp_ganand (¢) CBCTp gescan, and ((d)—(f)) the corresponding zoom-
in contours for the test patient 41.

that it was possible to reduce the CBCT imaging dose by 75% and enable VMAT dose calculation accurately with
the use of cycleGAN.

To obtain CBCT} p, the number of projections was subsampled by a factor of four, which led to severe
streaking in the reconstructed images. The proposed CBCT 1 p_gan and CBCTp_resgan techniques successfully
removed all streak artifacts, by training the generators G, to map the CBCT p input to the pCT domain which
has no under-sampling noise. In addition, the cycle consistency loss regularized the body structures between
CBCTrp and CBCTp gan,> and between CBCTpand CBCT1p gresgan- The hyperparameter A; was increased
from a default value of 10 to 25, as the relative importance of preserving the anatomical content in the loss
function was previously demonstrated in Kurz et al (2019) and confirmed in our study. Furthermore, the shape
loss was added to incorporate patient body outline information as suggested in Ge et al (2019). The
hyperparameter \, was adjusted from a default value of 10 to 1 for CBCTp_gan. Compared to the default value
10, the smaller ), tends to output soft tissue and organs with more correct shapes in our experiments. For
CBCTp_cans A2 of 1 was empirically found beneficial in comparison to using no shape loss as shown in the
supplementary figure S1. For CBCT1p_gesgan, A2 0f 0 gives the least variation in the min-max plots and thus a
higher stability of the model outputs, as shown in supplementary figure 2.

Compared to previous unpaired CBCT-to-CT correction works using cycleGAN in pelvic scans, our model
has achieved a slightly higher MAE reduction. This could be explained by the fact that the input CBCT, has
more noise than the usual standard full dose CBCT input in other studies. The MAE in comparison to vCT was
substantially reduced from 126 HU for CBCTp to 55 HU for CBCTp ganandto 44 HU for CBCTp resgan-
Liuetal (2022) proposed a two-step method with phantom-based and patient-based models, and reduced MAE
of well-matched slices from 67 to 32 HU with respect to a deformably registered reference CT. In Deng et al
(2022), the model that had a similar generator residual connection reduced MAE from 29 to 18 HU. Harms et al
(2019) trained a cycleGAN model with paired CBCT and pCT datasets and reduced MAE from 56 to 18 HU. In
another study with a similar patient cohort, Kurz et al (2019) reduced MAE from 103 to 87 HU with respect to
CBCT.,, (Kurz et al 2016) as reference, which has higher anatomical fidelity to CBCT,,,; but more noise
than vCT.

In terms of dose calculation accuracy, good results were achieved for VMAT when comparing CBCT1p_gan
and CBCTp gresgan to VCT. For a 2% dose difference criterion, a mean pass-rate of 99% was determined for the
test patients for both proposed approaches. Despite the additional under-sampling artifacts in the low dose
CBCT input, the CBCT1p_gan and CBCTp_rescan dosimetric results are still comparable to the previous work
by Kurz et al (2019) which used a fully sampled prostate dataset with a similar cycleGAN architecture (without
shapeloss or a generator residual connection). In line with this, for most cases a very good agreement of
CBCTp_ganand CBCT}p gesgan With respect to vCT in terms of clinically relevant DVH parameters was
achieved. For VMAT, a trend of marginally overestimated doses on CBCT1p_gan and CBCTp_resgan Was
found in the target structures and OARs, with deviations below 1 Gy for dose DVH parameters (D,) and below
1.5% for volume DVH parameters (V) for 7 out of 8 test cases.

In order to investigate the anatomical fidelity, two OARs in the network-generated images were contoured
and compared to a ground truth contour on CBCT,,,. The DSC in rectum was lower than in bladder, possibly
due to the higher variability of the rectum shape and the random natural occurrence of air pockets in the rectum.
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In addition, it is more difficult to segment the rectum, thus increasing the uncertainties for rectum contours. It is
notable that CBCTp_gesan still yielded generally higher DSC and lower HD g and HDgs than CBCTp_gan in
the two OARs. This demonstrated that CBCTp_resgan can achieve improved geometrical accuracy, and
indicated a positive effect from a generator residual connection.

While having high treatment dose calculation accuracy and enhanced anatomical fidelity, the proposed low
dose CBCT techniques could deliver at least 75% lower dose in a pelvic scan. To estimate the reduced patient
dose, we have chosen the cone beam dose index (CBDI) value which provides a single number that represents the
mean volumetric dose in the CT dose index (CTDI) phantom as reported in (Hyer and Hintenlang 2010). They
reported a CBDI value (table 2 in Hyer and Hintenlang (2010), chest protocol) for the same configuration as our
protocol (M20 protocol with 120 kV and a bowtie filter at an Elekta XVI scanner) of 1.62 mGy/100 mAs. By
selecting only 90 out of 350 projection frames, our CBCT p has thus reduced the patient dose from 2.27 to
0.57 mGy (from a total exposure of 140 mAs to 36 mAs) per scan. For reference, another Elekta XVI CBCT-to-
CT work using cycleGAN with a regular full dose scan in prostate cancer reported a total exposure of 288 mAs
without providing complete acquisition details such as kV collimator type or the use of a bowtie filter (Kida et al
2019). In a recent deep learning CBCT low-dose study using a U-Net, Yuan et al (2020) used a clinical HN
protocol with 182 projections over 205°, which would correspond to 319 projections over 360°, and thus to a
considerably higher sampling rate than our approach by a factor of 3.5.

The computational time of the investigated low dose CBCT techniques for correcting a 3D pelvic scan per
patient was shorter when compared to vCT or the projection-based scatter correction approach CBCT, in
Kurz et al (2016), which have correction times in the order of 6-10 min per patient. The correction time per slice
of 10 msin CBCTyp_gan 0r CBCT p_gresgan is identical to the other prostate CBCT-to-CT works by Landry et al
(2019) using a U-Net, and by Kurz et al (2019) using a similar cycleGAN. It should be noted that there are also
iterative reconstruction works using compressed sensing, e.g. in Choi et al (2010), Lee et al (2012) and Park et al
(2012) or total variation in Song et al (2014) to remove under-sampling artefacts in CBCT images. However, one
more prior scatter correction step would be required to convert the CBCT image intensities to CT diagnostic
intensities. Since the proposed CBCT1p gan 0r CBCT1p rescan techniques allow fast image correction within 2
s per patient (195 slices), they have the potential to be applied for CBCT-based online treatment plan adaptation.

There are some limitations in this study. First, the evaluation of the HU and dose calculation accuracy rely on
vCT. The advantage of using vCT as a reference is that it has correct intensity and ideally identical anatomy to
CBCTyp. However, vCT might not be a perfect ground truth due to uncertainties in DIR. This might be one of
the potential causes for the small deviation found in the patient body outline in figure 6 panel (h) and (i), and in
the dose difference maps in figure 8 panel (c) and (e). This is also the reason why we compared the network
results with an alternative ground truth CBCT ., for inspecting the deviations that might have been caused by
the DIR uncertainties. As shown in (figure 6 panel (1) and (m)), similar deviations in the patient body outline
were also found in the comparison to CBCT ., which implies that the uncertainties in DIR did not affect HU
accuracy analysis. In addition, the average 1% DD pass-rate comparing vCT to CBCT ., was 98.4% as reported
in section 3.4, which also implies that employing either vCT or CBCTL,, as ground truth has only minimal
impact on the dosimetric comparison for the network results.

Second, it is observed that the prediction from some single models before ensembling can be geometrically
unstable, especially for CBCT1p_gan. Our approach is to stabilize the output by taking the median of the 4
model outputs. Yet this does not control variability of each individual model. In CBCT 5 gesgans the variability
hasbeen reduced due to the generator residual connection.

In future work, we would like to investigate the feasibility of further reducing CBCT dose and explore under-
sampling schemes that might provide the opportunity to selectively avoid irradiating critical organs. Besides, we
would extend the proposed low dose CBCT imaging technique to other anatomical locations.

5. Conclusion

This study showed that it is possible to reduce the CBCT imaging dose by 75% in pelvic scans while enabling
accurate VMAT dose calculation with the use of a cycle-consistent generative adversarial network. The network
was successfully trained to simultaneously remove streaking artifacts and translate low dose CBCT;p to CT
equivalent images using unpaired training data. The resultinglow dose CBCTp_gan and CBCT1p gresgan
images resemble planning CTs in HU accuracy and the daily in-room CBCT,,, in anatomy. Clinically relevant
DVH parameters were accurately predicted. CBCT 1 p_resgan has improved the anatomical fidelity in
comparison to CBCTp_gan. Compared to the reference technique (vCT), CBCTp_ganand CBCTp_resgan»
which allow substantially faster correction and are not affected by DIR uncertainties in the presence of
pronounced inter-fractional changes, have thus the potential to be applied for online treatment adaptation.
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Background and purpose: Daily cone-beam computed tomography (CBCT) in image-guided radiotherapy admin-
isters radiation exposure and subjects patients to secondary cancer risk. Reducing imaging dose remains chal-
lenging as image quality deteriorates. We investigated three imaging dose levels by reducing projections and
correcting images using two deep learning algorithms, aiming at identifying the lowest achievable imaging dose.
Materials and methods: CBCTs were reconstructed with 100%, 25%, 15% and 10% projections. Models were
trained (30), validated (3) and tested (8) with prostate cancer patient datasets. We optimized and compared the
performance of 1) a cycle generative adversarial network (cycleGAN) with residual connection and 2) a
contrastive unpaired translation network (CUT) to generate synthetic computed tomography (sCT) from reduced
imaging dose CBCTs. Volumetric modulated arc therapy plans were optimized on a reference intensity-corrected
full dose CBCT,,r and recalculated on sCTs. Hounsfield unit (HU) and positioning accuracy were evaluated.
Bladder and rectum were manually delineated to determine anatomical fidelity.

Results: All sCTs achieved average mean absolute mean absolute error/structural similarity index measure/peak
signal-to-noise ratio of <59HU/>0.94/>33 dB. All dose-volume histogram parameter differences were within 2
Gy or 2%. Positioning differences were <0.30 mm or 0.30°. cycleGAN with Dice similarity coefficients (DSC) for
bladder/rectum of >0.85/>0.81 performed better than CUT (>0.83/>0.76). A significantly lower DSC accuracy
was observed for 15% and 10% sCTs. cycleGAN performed better than CUT for contouring, however both yielded
comparable outcomes in other evaluations.

Conclusion: sCTs based on different CBCT doses using cycleGAN and CUT were investigated. Based on segmen-
tation accuracy, 25% is the minimum imaging dose.

1. Introduction therapeutic dose. However, studies suggested that daily CBCT poten-

tially results in considerable additional organ doses in the pelvic region

In image-guided radiotherapy (IGRT), deep learning (DL) algorithms
have been widely employed to enhance radiotherapy treatments.
Particularly for the pelvic region, where the anatomy exhibits inter- and
intra-fractional variations, the adaptive workflow relies on accurate
cone beam computed tomography (CBCT)-to-CT translation [1,2], and
organ segmentation on synthetic CTs (sCT) [3,4]. CBCT imaging dose
has often been disregarded, viewed as negligible compared to the
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E-mail address: Guillaume.Landry@med.uni-muenchen.de (G. Landry).
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[5-7]. Each pelvic scan can deliver up to 22.7 mSv effective dose [8].
Adhering to “as low as reasonably achievable” (ALARA), radiation
oncologists use the lowest possible imaging dose or restrict the fre-
quency of CBCT scans to reduce secondary cancer risk. Further reducing
imaging dose, however, remains impractical since the image quality
would degrade to unusable levels with potential loss of anatomical in-
formation. Lower imaging dose CBCTs with enhanced image quality
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could not only mitigate the secondary cancer risk concern, but also offer
a higher flexibility in terms of in-room imaging frequency and enable
online treatment dose adaptation. With sufficient sCT quality, one could
also avoid acquiring new planning CTs for plan adaptation, thus further
reducing imaging dose.

DL-enabled CBCT-to-CT translation has mostly been developed for
standard full dose CBCT. Three DL architectures have been applied to
pelvic scans: U-Net [9], cycleGAN [10] and contrastive unpaired
translation (CUT) [11]. U-Nets were trained with paired data in image
[12-14] or projection domain [14-17]. To overcome potential mis-
alignments, cycleGAN has been used for unpaired training [18-23]. In
recent studies [24-26], CUT demonstrated better performance over
cycleGAN. Treatment dose calculation on CUT, however, remained
unexplored.

Limited studies explored the possibility of using low imaging dose
CBCT. Our previous study [27] investigated the feasibility of removing
under-sampling artifacts and correcting intensities of 25% imaging dose
CBCT using cycleGAN. sCT from 25% imaging dose CBCT (~0.6 mGy)
showed high accuracy in therapeutic photon dose calculation, anatom-
ical fidelity (in terms of Dice similarity coefficient (DSC) and Hausdorff
distance (HD) of contours) and positioning. In [24], cycleGAN and CUT
removed streaks from 4D CBCT which is comparable to low dose CBCT.
There are a few low dose CBCT-to-CT studies in other anatomies
[28,29]. Among low dose CBCT-to-CT studies, there is a scarcity of
systematic investigation of the maximum imaging dose reduction level
that DL could offer. In most CBCT-to-CT studies, organ segmentation is
rarely evaluated except [18,21,22] in pelvic and [30] head and neck
region.

In this study, we aim at finding the achievable lowest imaging dose
using cycleGAN and CUT in terms of all metrics relevant to CBCT-guided
adaptive radiotherapy: image quality, positioning, organs-at-risk (OAR)
contouring accuracy and therapeutic photon dose calculation. We
investigated imaging dose levels in terms of sCT generation from a CBCT
with reduced number of projections (25%, 15% and 10%) by removing
under-sampling artefacts and correcting image intensities. Dose reduc-
tion is achieved via the reduction of the number of projections.

Low dose CBCT

Deep learning models
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2. Materials and methods

The workflow of CBCT restoration at different dose levels is illus-
trated in Fig. 1. In general, imaging dose was reduced by retroactively
reducing the number of acquired projections.

2.1. Patient database for model training

The database contained 41 prostate cancer patients who received
volumetric modulated arc therapy (VMAT) at Department of Radiation
Oncology of LMU University Hospital. One planning CT (pCT) acquired
before treatment course and CBCT images of one arbitrary fraction of
each patient were collected.

Bavarian state law (Bayrisches Krankenhausgesetz/Bavarian Hospi-
tal Law §27 Absatz 4 Datenschutz) allows the use of patient data for
research, provided that any person’s related data are kept anonymous.
All patient data were fully anonymised. Identification from pelvic CT
data is not possible. German radiation protection laws request a regular
analysis of outcomes in the sense of quality control and assurance, thus
in the case of purely retrospective studies no additional ethical approval
is needed under German law.

Only CBCT datasets acquired with the lowest dose pelvic protocol
(120 kV tube voltage, 20 ms exposure time, 20 mA X-ray tube current
per projection) in treatment position using the XVI system (version 5.52)
of a Synergy medical linear accelerator (Elekta, Sweden) were selected.
For each fully sampled (FS) scan, approximately 350 projections [346,
357] were acquired over 360° with a shifted panel and reconstructed
using Feldkamp-Davis—Kress (FDK) implementation of Reconstruction
ToolKit (RTK) [31], referred to as CBCTgg. To investigate achievable
dose reduction levels, CBCTs were under-sampled to 25% (~90 pro-
jections), 15% (~52 projections) and 10% (~35 projections) and
reconstructed using the same settings. Since each projection was ac-
quired with a fixed dose, reducing the number of projections results in a
dose reduction.

pCTs were acquired without contrast agent on a Toshiba Acquilion
LB CT scanner (Canon Medical Systems, Japan). A virtual CT (vCT) was
generated using a dedicated deformable image registration (DIR) algo-
rithm mapping the pCT onto the daily CBCTgs [32]. For reference, a
intensity-corrected CBCT.,; was generated using a projection-based

synthetlc CTs Evaluatlons

N
N
\

Fig. 1. Workflow of CBCT restoration at different dose reduction levels investigated in this study. Low dose CBCTs were set as inputs in the cycleGAN and CUT
algorithms to generate sCTs, which were then evaluated by means of patient positioning, dose calculation and contouring accuracy. The black arrows denote the
sequence of the investigation steps in this study (low dose CBCT generation, deep learning model training, sCT generation, and finally the evaluation of therapeutic
photon dose calculation, contouring and positioning). Models were trained separately for each dose reduction level. G and F denote generators, Dcpcr and Dcr denote

discriminators, z denotes the image patches used in CUT.
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scatter correction technique [14,17,33-36] based on DIR of pCT to CBCT
and forward projection followed by conjugate gradient iterative recon-
struction [31].

CBCTs, vCTs and CBCT, were padded to an axial size of 512 x 512
pixels (1 mm x 1 mm) with a slice thickness of 1 mm. Details of the data
acquisitions and pre-processing can be found in the Supplementary
material.

2.2. Deep learning algorithms

Low dose CBCT-to-CT translation can be formulated as:

sCT = G(CBCTyp)

where G is an encoder-decoder based model that simultaneously con-
verts CBCTp to sCT while preserving the anatomical content. In this
study, cycleGAN and CUT algorithms were employed to train G.

2.2.1. cycleGAN

We applied the cycleGAN algorithm that was implemented in a
previous study [27]. This training process involved two sets of generator
and discriminator networks. A cycle consistency loss (L.,.) is computed
to stabilise anatomical mappings between CBCT and CT. A residual skip
connection was used for both generators to attain higher anatomical
fidelity. vCT was used in the training instead of pCT to evaluate the
efficacy of an additional paired loss term.

2.2.2. cUT

We adapted the CUT algorithm proposed by Park etal.[11]. Only one
set of generator and discriminator is required, since L. is replaced by a
patchwise contrastive 10ss (LpachNcex,LpachNcey)- As shown in Fig. 1, asCT
patch should match more with its corresponding input CBCT patch
(denoted as positives), in comparison with other random CBCT patches
(denoted as negatives). The encoder part of the generator (Gepc) fol-
lowed by a two-layer multilayer perceptron (MLP) network is employed,
which allows the model to learn and project both patches to a shared
feature embedding space.

Training of each model used identical data, pre-processing and data
augmentation. Details are provided in Supplementary material.

2.3. Training details

For each of the CBCT dose reduction levels, cycleGAN and CUT
models were trained with 4-fold cross-validation with 25 out of 30 pa-
tients per fold, from which the median of the four predicted images was
used. We determined hyper-parameters for each model through
ensemble validation on three patient datasets. Subsequently, we pre-
served the model weights associated with the highest validation per-
formance and applied them for testing.

The test set consisted of 8 patient datasets. The generators for every
imaging dose level were applied to convert CBCTs into sCTs. Details are
provided in Supplementary material.

2.4. Evaluation

2.4.1. Image quality

sCTs of different imaging dose levels for the test set were compared
to CBCT,o in terms of the mean absolute error (MAE), mean error (ME),
structural similarity index measure (SSIM) and peak signal-to-noise ratio
(PSNR). Only voxels within the joint body outline of CBCT,, and sCTs
were included.

2.4.2. Treatment dose calculation

VMAT plans on CBCT.,, for the test patients were generated in a
research version of a commercial treatment planning system (TPS)
(RayStation, version 10.01, RaySearch, Sweden). Contours of target
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structures and OAR were transferred from the pCT to sCTs and CBCT,,
using DIR, VMAT plans were optimized on an isotropic dose grid of 3.0
mm using a collapsed-cone dose engine. These plans were then recal-
culated on all sCTs. The prescription was 74 Gy in 37 fractions and we
aimed at a clinical target volume (CTV) Vgsy, of 100%, and planning
target volume (PTV) Vgs, better than 95% of the prescription dose. The
dose-volume histogram (DVH) constraints for the bladder and the
rectum were pursued as suggested in the QUANTEC report [37]. The
VMAT dose distributions were compared with the CBCT,,, reference
considering DVH parameters of clinically relevant target structures and
OAR. CTV and PTV Dogys and Do, together with PTV Dso9s and Voso,
were analyzed. For the bladder Vg /65y and for the rectum Vsg/60/65 Gy
were analyzed. Moreover, the voxels passing a therapeutic dose differ-
ence (DD) analysis with a 1% and 2% criterion (10% threshold) were
compared. For each dose parameter, results from sCTs were compared to
CBCT, using Wilcoxon signed-rank tests. Similarly, low imaging dose
sCTs were compared to FS sCT for both models. P-values less than 0.05
were considered significant.

2.4.3. Segmentation accuracy

To determine the anatomical fidelity of all sCTs, bladder and rectum
were contoured manually under the supervision of a radiation oncolo-
gist using the research TPS on CBCTfs and sCTs. Please keep in mind that
these contours were unrelated to the contours used to generate the
treatment plans used for the treatment dose evaluation of Section 2.4.2.
DSC, average and 95" percentile HD (HDgyg, HDgs) of the contours of all
sCTs were compared with CBCTgs as reference. sCTs from all imaging
dose reduction levels, as well as from both models at the same dose
reduction, were statistically analysed using Wilcoxon signed-rank tests.

2.4.4. Positioning accuracy

To evaluate positioning accuracy at different CBCT dose reduction
levels, all sCT images were rigidly registered to the pCT using TPS
(automated, gray level, six degrees of freedom). The transformations
were compared to the one obtained from registering CBCTgg to pCT.

3. Results

The average time to generate a sCT slice from CBCT was 6 ms for
both models. Detailed epoch selection and the corresponding training
time are shown in Supplementary Table 1.

3.1. Image comparison

Fig. 2 illustrates sCTs, CBCT.,; of a representative test patient and
their corresponding HU differences. Both cycleGAN and CUT removed
streak artifacts from all CBCTs, and simultaneously converted them into
diagnostic quality. Compared to inputs, all sCTs show reduced differ-
ences to CBCT.,. The remaining differences are observed at body
outline and bone interfaces. The coronal view is illustrated in Supple-
mentary material Fig. 1.

All metrics are substantially enhanced by both models (Supplemen-
tary Table 2). The average MAE of all sCTs with respect to CBCT,,; were
improved from >102 HU to <59 HU. The average ME of the majority of
the sCTs has decreased by >7 HU. SSIM/PSNR were enhanced from
<0.91/<33 dB on CBCTs to >0.94/>33 dB on sCTs.

3.2. Treatment dose calculation

Fig. 3 shows the treatment dose distribution and difference of an
exemplary test patient. Compared sCTs to CBCT.,, only minor dose
differences were found in the PTV region (<3%). The remaining treat-
ment dose differences were mainly in patient outline.

In Fig. 4, target and OAR DVH parameter differences with respect to
CBCT,or over all test patients are depicted. Deviations were within 2 Gy
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for dose DVH parameters (Dy/s50/98%) and below 2% for volume DVH
parameters (Vso/60/65Gy)- Particularly in the target DVH comparison, the
mean differences of Dy/s50/98% comparing all sCTs with respect to
CBCT.or were <0.5% for the PTV. For cycleGAN, no significant differ-
ences were found in the majority of the low dose sCT, except CTV Doy,
and PTV Dy, of the 10% sCT. Statistically significant differences were
observed for all FS sCTs, but most magnitudes were constrained by 1 Gy.
For CUT, significant differences were observed in 15% and 10% sCTs for
most of target and OAR DVH parameters, except rectum Vsoy and
bladder Vgso, for 10% sCTs.

Fig. 5 illustrates the quantitative results of the treatment dose dif-
ference analysis of the VMAT plans comparing sCTs to CBCT,; with a
1% criterion. The average 1% DD pass-rates of all sCTs were above 95%
for cycleGAN and 97% for CUT. Statistically significant differences were
observed comparing the dose reduced sCTs to the FS sCT for CUT, the
10% sCT to the FS sCT for cycleGAN. CycleGAN performed significantly
better than CUT for 10% sCT. The average 2% DD pass-rates were higher
than 98% for both models, indicating an excellent agreement of all sCTs
to the reference CBCT .

3.3. Anatomical accuracy

Fig. 6 shows the (a-c) bladder and (d-f) rectum contouring results.

For bladder, the average DSC was above 0.80 in all sCTs with respect to
CBCTFs. HDayg/ HDgs of bladder were <1.5 mm/<8.0 mm for cycleGAN,
and <2.0 mm/<8.3 mm for CUT in all sCTs. For cycleGAN, significant
differences were observed comparing 15% and 10% to FS sCTs in all
metrics. For CUT, significant differences only in DSC were observed
comparing 15% and 10% to FS sCTs. CycleGAN performed significantly
better than CUT in FS and 25% sCT for all metrics.

For rectum, the average DSC was >0.80/>0.75 for cycleGAN/CUT in
all sCTs. HD,yg/ HDgs of rectum were <1.7 mm/<6.0 mm for cycleGAN,
and <1.9 mm/<6.6 mm for CUT. For cycleGAN, significant differences
were observed comparing 15% and 10% to FS sCTs in all metrics. For
CUT, significant differences were observed comparing 25%, 15% and
10% to FS sCTs. CycleGAN performed significantly better than CUT in
FS, 25% and 10% sCT for all metrics except HDgs.

In both organs, FS sCT has the highest DSC, lowest HD,y; and HDgs
among all sCTs for cycleGAN and CUT. In addition, bladder had higher
DSC and lower HD,y¢ and HDgs than rectum in both models.

3.4. Positioning accuracy

Compared to CBCTgs-to-pCT rigid registration, the mean absolute
differences of rigid transformation parameters in all sCTs-to-pCT regis-
trations were less than 0.30 mm or 0.30° for both models, demonstrating
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sCTs from the investigated low dose CBCT have the potential to align 4. Discussion
patients accurately. Detailed results are provided in Supplementary
material Table 3. We investigated sCT generation based on different CBCT imaging

dose reduction levels achieved by reducing the number of projections
using cycleGAN and CUT, and evaluated image quality, dose calculation
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and organ segmentation accuracy. The CBCT inputs were initially
reconstructed with 100%, 25%, 15% and 10% projections. Our primary
objective was to determine the largest imaging dose reduction without
loss of accuracy.

Over the evaluation metrics for image quality, treatment dose
calculation and positioning accuracy, limited deviations were noted
among all imaging dose reduction levels. However, organ segmentation

showed differentiation among the sCTs for both models. From the DSC,
HD,yg and HDos results (Fig. 6), the performance drops at 15% dose,
where the cycleGAN model began to exhibit degraded accuracy in
generating accurate bladder and rectum shapes, as observed from the
significant differences appearing at 15% and 10% dose sCT compared to
CBCTps. For CUT, the performance declined at 15% dose for the bladder,
and already at 25% for the rectum. In addition, as revealed by the
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significant differences in all metrics for organ contours, cycleGAN per-
formed slightly better than CUT in FS and 25% dose, while in further
reduced dose levels both models demonstrated similar inferior
performance.

Compared to previous pelvic sCT segmentation studies [18,21,22],
this is the first time sCTs based on CBCTs at different imaging dose levels
were compared. A direct comparison to other studies is not easily
possible because the imaging dose of CBCT testing data is different.
However, mean DSC of bladder and rectum for FS sCT, from cycleGAN
(0.92, 0.90) and CUT (0.88, 0.84) agree with the other studies
(0.89-0.92, 0.81-0.87) [18,21,22]. No rectum DSC was reported in
[18].

Regarding therapeutic dose accuracy, DVH parameters difference
were within 2 Gy or 2%, which aligned with previous studies using
cycleGAN [20,27]. Photon dose calculation using CUT is however not
yet found in other studies. For CUT, the drop of performance at 15%
sCTs was manifested for OAR DVH parameters. Using 1% DD criteria, we
observed a significant decrease of voxels passing at 10% for cycleGAN
and 25% for CUT. However all values were still above 97%, indicating
high agreement which allowed accurate dose calculation.

Regarding image quality, both models substantially enhanced all
CBCTs and CUT performed slightly better than cycleGAN. Coronal views
showed slight jittering in the internal organs along slices, since the
training was conducted in 2D. Compared to [24], our sCTs yielded
higher PSNR and SSIM but higher MAE. These differences are mainly
due to the use of a deformed CT as reference in [24], which might have
more uncertainties from DIR but less scatter noise than our reference
CBCTor.

While this study illustrated minimum imaging dose at 25%, it is
limited by the number of patients in the test datasets. Besides, the
models are not anatomical-site-agnostic as only pelvic datasets were
used. Moreover, DL-generated images may suffer from anatomical
inaccuracies. Despite the use of Lpychncex and Lpaenncey in CUT, accu-
rately predicting organs, particularly in those with variable shapes like
rectum, remains challenging. Low dose CBCTs can yield high positioning
accuracy [38] or a small dosimetric deviation using a water-density
override. However, it is still meaningful to generate sCTs which
enable organ contouring for adaptation.

Unlike prior DL-enabled CBCT-to-CT works [12-16,18-21,23-26],
this study investigated anatomical fidelity in sCT by manual OAR con-
touring. This aspect revealed a performance threshold for imaging dose
reduction. Our results suggest that a CBCT imaging dose as low as 25% is
clinically feasible, enabled by the optimized cycleGAN or CUT model.
Further reduction to 15% or 10% requires additional DL advancements.

sCTs based on different CBCT imaging dose reduction levels (100%,
25%, 15% and 10%) using cycleGAN and CUT were investigated. While
all sCTs demonstrated very good dosimetric, HU and positioning accu-
racy for both models, considerable differences were found in terms of
contouring accuracy. In line with all evaluations, 25% is the minimum
imaging dose without loss of anatomical accuracy.
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Supplementary material

Data acquisition and pre-processings

planning CT (pCT)s of the selected prostate cancer patients were re-
constructed with an image grid of 1.074 mm x 1.074 mm x 3.000 mm in
combination with a 55 cm lateral field of view (FOV). In each fraction, these
patients were advised to follow an in-house bladder and rectum filling pro-
tocol before treatment and cone beam computed tomography (CBCT) scan-
ning. Their corresponding CBCT images were acquired with an increased
lateral FOV by using a laterally-shifted detector panel in M position and a
bow-tie filter. Images with body outline truncation in spite of the increased
FOV were excluded from the study. The mean, min, max time gap between
pCT and CBCT are 26, 7, 61 days respectively. CBCT inputs (CBCTgg,
CBCTyLp2s, CBCTyp15 and CBCTyp1g) were reconstructed identically using
Feldkamp-Davis—Kress (FDK) (as described previously in [1]) with 410 x 410
X 264 voxels on an isotropic 1.0mm?® grid. The patient couch was removed
from the CBCT input images by thresholding and morphological maskings,
followed by zero padding to an image size of 512 x 512 pixels. The pixel
intensity of all CBCTs was normalised in the attenuation coefficient value
(p) range [0, 0.04] (values above 0.04 were set to 0.04).

vCTs were generated by registering the pCT to the daily CBCT via DIR.
As described in [2], we aim for 1) image similarity which is computed by nor-
malized gradient fields, and 2) deformation regularity which is computed by
curvature regularization. The optimization problem is solved in a discretize-
then-optimize scheme using a quasi-Newton L-BFGS optimizer. Following
the generation, vCTs were re-sampled to an isotropic 1.0 mm? grid and an
image size of 512 x 512 pixels. The table was also removed. The pixel inten-
sity was empirically converted to the range of the CBCT images ((Hounsfield
units (HU) 4 1024) / 65536) [3]. The resulting intensities were clipped to
the range [0, 0.05] (values above 0.05 were set to 0.05).

The reference CBCT,, were generated (as described in [4]) and recon-
structed using iterative conjugate gradient (CG) with 410 x 410 x 264 voxels
on an isotropic 1.0 mm? grid. In the CG algorithm [5], the objective function
consists of a data consistency term, Laplacian and Tikhonov regularization
as shown in the following formulation:

Isart(D)(Rf = p)Il3 + IV - fI15+ TIIfII3 (S1)



with R the forward projection operator, f the image to be reconstructed,
p the measured projections, D the displaced detector weighting operator, ~y
the weighting of the Laplacian regularization, V being the spatial derivative
of the image f, T being the strength of the Tikhonov regularization. The
goal of this iterative CG algorithm is to find the image f that minimizes
the above equation. By empirical experiments, the hyper-parameters for
reconstructing the CBCT images were set to 100 iterations, v = 1000 and T
= 100 for the optimal image quality.

The beginning and last 35 image slices of all CBCT inputs, CBCT,,, and
vCT in superior—inferior direction were excluded due to partial FOV cone
truncation.

Deep learning algorithms

Two deep learning algorithms were used to investigate each of the dose
reduction levels in CBCT-to-CT translation tasks. Both algorithms are based
on generative adversarial networks (GAN) and trained with a back-and-forth
interaction between a generator and a discriminator. An adversarial loss
term L,q,(G,D, CBCT, CT) is computed in both algorithms for which the
generator G tries to convert low dose CBCT to synthetic CT (sCT) such that
is indistinguishable from real CT according to the discriminator D.

e cycleGAN: the first algorithm was the cycleGAN that we implemented
in a previous study [1]. In addition to the 25% dose CBCT, 15% and
10% dose CBCTSs were specified as the inputs to train corresponding
sets of generators and discriminators in this study. To attain higher
anatomical fidelity, a residual skip connection was added for both gen-
erators to keep the high resolution features in the input image and
reduce the vanishing gradients problem in the encoding process. This
approach has been reported to improve geometric fidelity in the field of
histopathology [6] and was used in a previous CBCT-to-CT study [1].
A cycle consistency loss Lcy. is introduced to stabilise the anatomical
mappings between CBCT and CT using L1 norm regularisation. This
process involves training an extra set of generator and discriminator,
for which CT and CBCT are swapped. vCT was used in the training,
as we added an L2 norm between CBCT and corresponding vCT to in-
vestigate the efficacy of such a paired loss. The total objective function



can be formulated as

Leyetecan(G, F, Deper, Der) =Laay (G, Dy, CBCT, CT)+
Laav(F, Deper, CT, CBCT)+
A Leye (G, F)+
Ao L12(CBCT, CT).

(52)

where G and F denote the generators in forward and backward cycle
respectively, Deger and Dot denote the discriminators, A\; and A\, are
hyperparameters that were empirically set to 25 and 0 for the optimal
image quality in this study.

CUT: the second algorithm is an alternative one-side translation to
reduce the computing resources of the auxiliary network. This can be
achieved by replacing Lcy. with a loss on image patches, referred to as
patchwise contrastive loss Lpaennce. In contrastive learning, a query
patch is sampled from the sCT output and compared with the patch
at the corresponding location (denoted as positive) or other patches at
different locations (denoted as negatives) of the corresponding CBCT
input image. The probability of the positive samples being selected
over negatives can be formulated by the following cross-entropy loss:

ev~v+/7'

l(v,o7,v7) = —lo -
( ) g 6”'v+/7— 4 Zgzl evin /T

(S3)

where v, vt and v~ denote the K-dimensional vectors of the query (v €
RE), the positive (vt € RE), and N number of negatives (v= € RV*K)
respectively. The n-th negative is denoted as v, € R¥*K. For such an
(N+1) classification problem, 7, which denotes the distances between
the query and samples was set as 0.07. The goal here is to maximize
the mutual information between v and v™, but minimize between v and

v .

The images from the positive and negative samples are passed through
the encoder network of the generator (Ge,.) to obtain embeddings.
These embeddings are low-dimensional representations of the images
that capture their content and style information. The layers of in-
terest (L) and the number of spatial locations in each layer (S) are



selected. The feature maps are passed through a small two-layer multi
layer perceptron (MLP) network Hj, yielding a stack of features {z,}, =
{H,(G',.(z))}r. Likewise, the output image is encoded with the same
network into z; = {H;(G enc( ()))}r. The other patches within the
input can be used as negatives and that formulates the following con-
trastive 10ss LpaichNCEx-

L S

Lpatenncex (G, H, CBCT) waBCTZZl (2,7, 27°) (54)

=1 s=1

. S
where 25, 2f and z/°

represents the feature of the output image, the
corresponding feature (27 € R%) and the negative feature (zls =
RGL=DxC) — ( denotes the number of channels at each layer. Since
the generator learns to pay attention to the similarities between the
two domains, the embeddings share the common features. To avoid in-
correct anatomical changes, CT is used to generate identical CT using
the same generator. The positive and negative samples of these CT
images are passed through the same G, and MLP, which allows us to

formulate the following contrastive loss for the CT domain LpatchncEy:

L
Lpasenncry (G, H, CT) yNCTZZl (2,4, 27 (S5)

=1 s=1

The total loss function is therefore

Lcut(G, Der, CBCT, CT) =Lagy (G, Der, CBCT, CT)+
AcBor Lpatenncex (G, H, CBCT)+  (S6)
)\CTLPatChNCEy(Gv H7 CT))

where Aot and A; were both set to 10 for the optimal image quality
as suggested in [7]. The main objective for CUT here is to generate
realistic CT images, while patches in the input and output images share
corresponding information.



Hyper-parameters and network settings

In the following, we describe the hyper-parameters and the network set-
tings for each model.

e cycleGAN: a majority of the hyper-parameters which gave the best
results in our previous study [1] were used, i.e. for the generators,
two convolutional layers with stride 2 in the encoder and two decon-
volutional layers with stride 2 in the decoder, nine residual blocks [8]
between encoding and decoding operations. For the discriminators, we
used 70 x 70 PatchGAN [9] with a downsampling scheme from 256
X 256 to 32 x 32 by applying four series of 2D convolutional layers,
followed by instance normalization (not for the first and last layer) and
LeakyReLU with a slope of 0.2 as nonlinearity (not for the last layer).
The receptive field of the network was 70 x 70 and each pixel in the
output was evaluated as a scalar in the range [0, 1]. Both generators
and discrimninators were optimized with the Adam algorithm. The
learning rate was set to 0.0002 during the first 100 epochs, and gradu-
ally reduced to zero over the next 100 epochs. The batch size was set
to one.

e CUT: the hyper-parameters which were provided in the original CUT
implementation [10] were mainly employed. Similar to the network
architecture and hyperparameters of cycleGAN, we used the identical
nine residual blocks and the PatchGAN discriminator, batch size of one,
Adam optimizer with initial learning rate 0.0002 for first 200 epochs
and then reduced linearly to zero over the next 200 epochs. Same as in
cycleGAN, the hyper-parameters ; and 5 that were used to calculate
the momentum term of Adam were set as 0.5 and 0.999 respectively. For
the Lpatenncr, 5 layers of features were extracted (L=5), corresponding
to the receptive fields of sizes 1 x 1, 9 x 9, 15 x 15, 35 x 35, and
99 x 99. For every layer’s features, 256 random locations (S = 256)
were sampled, and a 2-layer MLP was used to acquire final features.

An identical geometric augmentation pipeline was employed in both algo-
rithms as described in [1]. Each CBCT and vCT input image was resampled
to 256 x 256 pixels, followed by two dimensional (2D) horizontal flipping
and affine transformations including rotation of [-5°) 5°] and scaling by [0.9,
1.1] with a bicubic interpolation over 4 x 4 neighboring pixels.



Implementation details

All models were trained and evaluated using the PyTorch based frame-
work MONAI 1.1.0. [11] on an NVIDIA RTX A6000 GPU with 48 GB of
memory.
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Figure S1: Coronal view of (a) the CBCT inputs and sCTs generated by cycleGAN
and CUT with 100%, 25%, 15%, 10% projections; (b) the scatter corrected CBCT o,
reconstructed with conjugate gradient; (¢) HU difference between corresponding sCTs
and CBCT,,, of a test patient.
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Supplementary Table 1

Table S1: Best epoch selection and the corresponding training time

cycleGAN CuUT
No. of Projections 100% 25% 15% 10% 100% 25% 15% 10%
Best epoch 40 60 150 160 250 360 340 350

Training time (hours) 7 10 25 27 42 60 57 58

Supplementary Table 2

Table S2: Average HU mean absolute error and mean error of test patient set for the
comparison of sCTs and CBCT inputs with CBCT,,, respectively. The number in square
brackets represent [min, max] values among all patients in the corresponding groups.
CBCT inputs were reconstructed using FDK without correction.

Mean Absolute Error (HU)

Dataset 100% 25% 15% 10%
cycleGAN 54 (48, 66] 56 [49,65] 53 [52, 68] 59 [54 68]
CUT 49 [44,60]  51[46,61] 52 [46,63] 54 [48, 65)

CBCT inputs 102 [97, 108] 120 [115, 126] 144 [137, 152] 164 [158, 173]

Mean Error (HU)

Dataset 100% 25% 15% 10%
cycleGAN  -18 [-35, -6] -2 [-23, 13] -21[39, 8] -5 [-8, 10]
CUT 5112,6]  -2[10,5 -9 [17,-2] -5 [-15, 4]

CBCT inputs 15 [-10,33] 15[-9,32] 16 [10, 34] 18 [-8, 36]

Structural Similarity Index Measure

Dataset 100% 25% 15% 10%
cycleGAN  0.96 [0.94, 0.97] 0.95 [0.92, 0.07] 0.94 [0.92, 0.96] 0.94 [0.91, 0.95]
CUT 0.96 [0.93, 0.97] 0.95 [0.92, 0.97] 0.95 [0.92, 0.96] 0.94 [0.91, 0.96]

CBCT inputs 0.91 [0.87, 0.93] 0.87 [0.81, 0.89] 0.83 [0.77, 0.86] 0.81 [0.75, 0.84]

Peak Signal-to-Noise Ratio (dB)

Dataset 100% 25% 15% 10%
cycleGAN 36 [34, 39] 35 [33, 38] 34 [32, 36] 33 31, 30]
CUT 36 [34, 39] 36 [33,38] 35[33,37] 34[32, 37|

CBCT inputs 33 [30, 35] 31 [29, 34] 29 [27,32] 28 [26, 30]




Supplementary Table 3

Table S3: Mean absolute transformation parameter differences comparing sCTs-to-pCT
from each dose levels with CBCTgg-to-pCT for all test patients.

cycleGAN CuT
No. of Projections 100% 25% 15% 10% 100% 25% 15% 10%
Right-left (mm) 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.02
Inferior-superior (mm)  0.04 0.05 0.04 0.04 0.04 0.06 0.05 0.05
Posterior-anterior (mm) 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.02
Pitch (°) 0.10 0.18 0.15 0.17 0.17 0.17 0.21 0.24
Roll (°) 0.14 0.15 0.17 0.19 0.16 0.18 0.15 0.18
Yaw (°) 023 025 0.20 020 0.26 0.26 0.24 0.19
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Chapter 9

Discussion

9.1 Current work

9.1.1 Key findings and limitations

In this thesis, we have achieved the goal of investigating low imaging dose CBCT of the
pelvis in terms of sCT image generation. In the first study, the objective was to explore the
feasibility of enhancing low imaging dose CBCT images by a cycleGAN network. By under-
sampling CBCT projections and optimizing two cycleGAN models trained on prostate
cancer patient datasets, the study has demonstrated that it is possible to use 25% imaging
dose CBCT scans for online plan adaptation. In the second study, we aimed at investigating
the minimum imaging dose CBCT (25%, 15%, 10% dose) using a cycleGAN model with
residual connection and a CUT model. In both studies, we have carefully evaluated sCT
images with image quality measurements and all CBCT-guided ART metrics, including
patient positioning, VMAT dose calculations and organs contouring accuracy. As a result,
we have successfully found the imaging dose threshold for each of the networks in generating
sCT images, and concluded that 25% is the minimum CBCT imaging dose for accurate
online plan adaptation.

However, our studies have five minor limitations. First, we have investigated the low
dose CBCT technique only on the pelvic datasets. One of the main reasons is the scarcity
of low dose CBCT-to-CT studies in the pelvic region, as explained in chapter [/} Moreover,
the total number of prostate cancer patients datasets was not large. Compared to the
number of patients used in the majority of the CBCT-to-CT studies (ranging from 12 to
200), we have an adequate number of patients datasets for training, validation and testing.
With more patient datasets, we might be able to increase the number of testing datasets
or possibly increase the DL performance. Additionally, we have only investigated three
imaging dose reduction levels in the minimum imaging dose study. Given the fact that we
found the contouring performance of cycleGAN and CUT drops significantly when reducing
the dose to 15%, the imaging dose threshold can also lie between 25% and 15%. The number
of dose reduction levels could be increased for a more accurate determination. However, the
manual volumetric contouring took up to 1.5 hours per test patient. For each test patient,
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we contoured eight sets of sCT images (four imaging dose levels by two neural networks)
and one set of CBCT,,, images (original full dose FDK reconstructions). With such labour-
intensive evaluation procedures, using 8 test patients balanced between statistical power
and a realistic workload for this study. Furthermore, we did not investigate the EAR
of secondary cancer incidence in prostate cancer patients. Such treatment response or
long-term effects would be useful to demonstrate the efficacy of low dose CBCT-to-CT
translation, in addition to the general ALARA principle. Finally, we have studied CBCT-
to-CT translation using the patient datasets only from one hospital. Generative models
are potentially susceptible to dependencies on training data due to the reliance on the
statistical patterns present in the dataset. Nevertheless, our comprehensive evaluations
demonstrated the feasibility of using sCT images from minimum imaging dose CBCT scan
for online adaptation.

9.2 Challenges

Despite the maturity of CBCT-to-CT translation using either U-Net or cycleGAN, it is
still outside the clinical workflow. Here we briefly discuss what are the major challenges
that hinder such implementation of sCT image generations, from both full dose and low
dose, into radiotherapy workflows.

9.2.1 Identifying the best DL network

With the improvements from U-Net over cycleGAN to CUT (as discussed in section , it
remains challenging to select the best DL network architecture or the best training strate-
gies. Despite the development of new DL networks (such as in the synthRad challenge 2023
[61]), contouring analysis was often not included. The main problem in image correction is
that generative models can introduce artifacts that may not be present in original CBCT
images, or misinterpret artifacts as parts of an organ. For example, the under-sampling
artifacts in low dose CBCT introduce bright streaks in various directions which affect the
feature of bone intensity and distort the tissue shape.

Several new loss functions were added in order to preserve the anatomies in the full
dose CBCT-to-CT cycleGAN training (section [£.2.2)), such as shape loss (see the first
publication section 2.2.1), gradient loss (see section 2.B (3) in [70]), air pocket loss (see
section 2.B (4) in [70]) etc. But not all loss terms can be directly applied in low dose
studies. In one of our ablation studies, sCT images had worse MAE with the use of shape
loss. It is also rare to see loss functions tackling under-sampling streaks. Total variation
loss, which was used in only one full dose study [70], might be useful to remove streaks as
seen in various MR image reconstructions with radial k-space trajectory ([115), 116} 117]).
In terms of anatomy preservation, contrastive patchwise loss in CUT maximizes the mutual
information between CBCT inputs and corresponding sCT images, so that theoretically
sCT images have more consistent organ shapes, as demonstrated in other full dose studies.
However, in our organ contouring analysis, CUT performed worse than the cycleGAN
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model, which has a residual connection in the generator. Similar to the data-consistency
concept in iterative reconstruction, this residual connection, which concatenates the CBCT
input into its corresponding intermediate sCT image, adds the original anatomies in the
translation. The recent full dose CBCT studies of combining a vision transformer into
cycleGAN training (as mentioned in section [4.2.2)), or the other study [I18] which trained a
diffusion model to generate sCT images within 2 minutes opened avenues for investigation.
Therefore, the low dose CBCT-to-CT translation may yet be improved by novel network
architectures.

9.2.2 Geometrical accuracy evaluations

One of the major concerns from clinicians or researchers is: how realistic is the DL predic-
tion? In a CBCT-to-CT translation, the non-linear transformation of a trained generative
model maps the intensity values of the same organ in the CBCT to their equivalent HU
in the CT. Such intensities in CBCT images can vary due to scattering noise and under-
sampling streaks. It is possible that the organ shapes are distorted in the resulting sCT
images.

In the majority of studies, sCT images are not evaluated with geometrical accuracy, but
limited to image quality metrics and treatment dose calculations, which scarcely capture
such morphological changes. One of the studies [70] has evaluated sCT images with MAE of
multiple small regions-of-interests (ROIs) on muscles or fat area, which was still insufficient
to account for the organ shape variations. For organ segmentation, which can compare
directly the organ shapes, only limited studies were able to conduct segmentation analysis
by manual contouring [77] or by another DL segmentation network [69, 78] comparing to
deformed contours from pCT. However, depending on the changes of the organs between
the pCT images and CBCT images, the contours propagated from pCT images may not
represent precise ground truths due to inherent DIR uncertainties.

To accurately assess the anatomical fidelity, we compared the organs shapes in sCT
images directly with those in the original CBCT image in our studies. However, the lack of
clinical CBCT contouring labels caused a substantial challenge. Due to the poor contrast
of soft tissue and image noise, there is no current practice of contouring organs on CBCT
images. Such a new task requires experienced radiation oncologists to create and validate
contours for a longer time and a greater commitment. Additionally, in the absence of
CBCT contours as ground truths, training an auto-segmentation model on CBCT images
remains challenging. A recent work has shown the feasibility to segment organs in CBCT
without ground-truth in the HN region, using propagated contours from pCT and a refined
model from a CT segmentation training [I19]. Furthermore, in the Ethos online adaptation
workflow, clinicians are required to rectify the propagated contours [25] [120], potentially
serving as a valuable reservoir of ground truths for CBCT segmentation training. Perhaps
in the future, the anatomical fidelity evaluation could be facilitated by the expansion of
ground truth datasets or the advancement of unsupervised DL models.
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9.2.3 Lack of quality assurance tools for sCT in online ART

In online ART, quality assurance (QA) is applied to ensure the adapted treatment plan.
This includes checks for anything that is changed from the initial treatment plan and
the patient model, such as the new anatomies and contours on sCT images, or any other
manual changes. What hinders the applications of sCT images, from both full dose and
low dose CBCT, is the potential introduction of various risks. First, sCT images can
possess geometric distortions from the CBCT inputs. As there is no ground truth, visual
inspections or comparing with deformed CT scans can hardly identify small differences
of the organ shapes. Currently, there is no QA assessment scheme and no DL model
that could rectify the contours on the fly. Moreover, each sCT generation model from
different studies (using different networks, datasets, image pre-processing steps etc.) can
yield different geometrical accuracy. The method of establishing a tolerance level for sCT
images is unknown. In addition, sCT can still possess HU differences compared to pCT.
No QA model is available to check HU accuracy, which can lead to inaccurate treatment
dose calculations.

In MR-guided adaptive radiotherapy, treatment dose QA methods are applied to eval-
uate the sCT images generated from MRI images. A recent MRI-to-CT translation study
[121] has evaluated dose calculation accuracy of four QA methods for sCT images generated
by cycleGAN: water override of patient body, bulk densities contouring, another set of sCT
images generated by another neural network and deformed CT. The study suggested that
using the sCT images generated by the additional network has the best QA performance:
The verification procedures were completed within 10 minutes and treatment dose deviated
within 2%. However, using Al to verify Al would require different sets of data for training
in order to avoid bias and error propagation. Furthermore, in MR-linac clinical practice
with the ViewRay linac system, an independent secondary dose calculation is only used
for treatment plan QA. sCT images depends on manual review, and when inaccuracies are
identified, sCT images are corrected using density overrides. There is still no consensus
certifying which of the treatment dose QA tools is sufficient. The QA guidelines for sCT
images, especially for low dose CBCT-to-CBCT translation, remain unclear.

9.3 Future works

During this doctoral research in radiation oncology and Al, the clinical need of a low dose
CBCT-to-CT translation and the proposed generative Al solutions were identified. The
feasibility study and the minimum imaging dose investigation study demonstrated that
the low dose CBCT-to-CT translation is technically achievable. The following are the
suggestions to take this work further into the clinical implementations.
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9.3.1 Extension of this work: 4D CBCT and other anatomical
sites

This study has found that it is possible to lower the CBCT imaging dose to generate sCT
images for accurate dose calculation and organ contouring in the pelvic region. Theoreti-
cally, this DL technique which jointly removes streak artefacts and corrects HU intensities
can be applied on other anatomical regions. However, the effect of reducing the dose by
75% dose could vary. For example, as the original HN protocol uses a lower imaging dose,
reducing the imaging dose by 75% might result in more dominant streak artefacts and noise
than in the pelvic protocol. One can reconstruct the CBCT images with under-sampling
projections in each region and systematically investigate the minimum imaging dose reduc-
tion rate. Alternatively, as shown in a few full-dose studies (section , one could also
train a single DL model with the low dose CBCT datasets of multiple regions. This would
require another advanced network training to learn the general, but not specific human
anatomy features in the presence of more noise and streak artefacts. CycleGAN and CUT
would be good candidates for such trials, but more anatomical-related loss functions and
modification of the network architectures should be investigated, in order to maximize the
anatomical information from the CBCT inputs.

In addition, 4D CBCT images have similar streak artefacts due to insufficient numbers
of projections after respiratory binning. As an initial study, we have tried our technique
on 48 lung cancer patient 4D CBCT datasets. First we have extracted the respiratory
breathing signal using the RTK Amsterdam Shroud image filter [114, [122] and binned the
projections into 10 breathing phases. Each phase has around 68 projections (depending on
the breathing pattern), and was reconstructed to volumetric images using FDK. This is a
more challenging task, as the number of projections in each phase varies, leading to different
amount of streaking artefacts in the reconstructed images, or the input images for training
a cycleGAN network. As shown in fig. 0.1], our initial over-fitting result has demonstrated
that it is possible to extend this low dose CBCT-to-CT technique to enhance 4D CBCT
images using a cycleGAN model. Network optimization, hyper-parameters searching and
comprehensive evaluations would be the next steps in this extension.

9.3.2 Data-driven DL improvements: patient-specific, data con-
sistency, structure-guided

To address the possible changes in the organ shapes, among the model architectures and
loss functions (such as body shape loss, paired loss, patchwise contrastive loss etc.) that
were tested during our studies, we found that a cycleGAN model with a residual connection
in the generator and an adversarial and a cycle-consistency loss performed the best in the
contouring analysis. In the context of low dose CBCT-to-CT translation in radiotherapy
workflow, this could be achieved in different ways:

« Patient-specific training: Instead of applying one model for all patients, it is also
possible to train a sCT image generation model for individual patients. The concept
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a)4DCBCTori ¢) CBCTcor d)4DCBCT median

Figure 9.1: Our initial over-fitting result of 4D CBCT images (a single motion phase) of one
exemplary lung cancer patient: a) the original 4D CBCT image using FDK reconstruction;
b) pCT image; c) the corrected CBCT image using MA-ROOSTER reconstruction [123];
d) the cycleGAN output image of the 4D CBCT. All intensities are in HU. (Own figure)

here is to first train a population model with all patient datasets. When a patient
undergoes an in-room CBCT scan in the first fraction, the population model can be
fine-tuned and re-trained as a patient-specific model using the pCT images and the
daily CBCT images of the patient. The advantage is that the generator has learnt
to map the intensity and remove noise in the population model step, and can learn
geometrical features of the patient anatomy in the patient-specific step. This training
strategy has been investigated and shown to achieve a better performance in a few
auto-segmentation studies, for example CBCT in the pelvic and HN regions [124] and
MRI in the pelvic region [125]. With the use of prior sequential datasets (pCT and
fraction CBCT images), a patient-specific CBCT-to-CT model can account for the
unique anatomy and has potential to produce geometrically consistent sCT images.

« Data consistency term: Similar to the data consistency concept in iterative recon-
structions, a representation of the input image can be reapplied in the objective
function and this drives the training to retain desired features. For example, in con-
jugate gradient (CG) image reconstruction, the data consistency term is formulated
as

|Rf — pll3, (9.1)
where R the forward projection operator, f is the image to be reconstructed by the
network, p is the measured projection. If we can integrate the CBCT reconstruction
process and forward projection into the model training, we can add such a term
into the total objective function and drive the prediction in consistency with original
projection data in each iteration in the training.

e Structure-guided training: Instead of adding the projection data, one can alterna-
tively add patient-specific contours as a training constraint to increase geometrical
consistency. Similar to gradient loss, one can extract and minimize the edge dif-
ference of the organs in the input and predicted image during the training process,
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as shown in an example low dose CT study [126]. However, extracting organ edges
correctly from a low dose CBCT might be challenging due to more severe streak
artefacts. In recent studies on low dose CBCT correction [127, 12§], a patient or-
gan shape map which combines the edge information from the deformed pCT and
network intermediate output was used to regulate the training.

Additionally, shape and geometry processing methods also begin to gain importance in
the computational medical imaging field. One of the focus workshops of the Medical Image
Computing and Computer Assisted Interventions (MICCAI) conference called '[Shape in
Medical Imaging]" has attracted new ideas on generating images with high geometrical
accuracy, including new network architectures, loss functions and analysis [129] 130, [13T].
In the future, we can exchange ideas and collaboratively develop a highly robust technique
with this community.

9.3.3 Bridging DL-clinical gap: adaptive QA tools for sCT im-
ages

To bridge the gap between the low dose CBCT-to-CT translation technique and the clinical
workflow, an adaptive QA tool for sCT images should be in place to ensure that the
processes involved in sCT image generation are effective and consistently produce high-
quality images for each patient.

o Standardized protocol and documentation: Since generative Al models can have
different performance depending on different datasets, it is important to document
the development process of such Al models, including datasets, hyper-parameters,
model architectures, evaluation performances etc. In parallel to this idea, a recent
guideline published jointly by the European Society for Radiotherapy and Oncology
(ESTRO) and American Association of Physicists in Medicine (AAPM) for AT model
developments in radiotherapy [132] also recommends QA at least at the use case level,
such as formally reporting the DL application and the requirements of inputs and
outputs. With full details of the model, users can select the best suitable model,
trace back the image generation process and adjust the sCT when necessary.

o Anatomical fidelity QA: Organ shapes can vary in sCT images as discussed above. In
addition to the treatment dose QA, a QA tool is necessary to ensure the geometrical
accuracy of sCT images. As an initial idea, we can develop a QA tool to calculate
an uncertainty map, which can visualize and reflect the overall confidence of the sCT
images in the organ shapes and HU intensity. A recent study [I33] has explored
the feasibility of generating uncertainty maps on sCT images for HN patients using
Monte Carlo dropout in online MRI-guided proton therapy.
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9.3.4 Quantification of CBDI

As discussed in section [3.5.2] CBDI cannot be directly represented by CTDI, since CBCT
has a volumetric acquisition with a FOV larger than the dimensions of the standard pencil
chamber (100 mm), which is typically used in CTDI measurements. However, in the user
manual of "[Elekta instructions for USE Volume 3 - XVI]", the dose information for each
protocol is provided only in terms of CTDI and its variants. Amer et al. [134] has developed
CBDI,gg by integrating the central 100 mm FOV of the dose profile. By developing a new
pencil chamber with a size that matches the FOV, one could measure and standardize the
actual CBDI values among CBCT systems and protocols, so as to document and compare
the CBCT imaging dose more precisely.

9.3.5 Research translation: model integration into clinical work-
flow

To ensure successful implementation of a low dose CBCT-to-CT, the workflow can be
structured as illustrated in fig. [9.2] In the treatment room, the patient is instructed to lay
on the treatment couch as before. The gantry-mounted CBCT system scans only 25% of
the original number of projections. In the TPS, the projections are used to reconstruct
low dose CBCT images using FDK (approximately 7 seconds on a GPU). These images
will be used as an input to the generative AI model which can be implemented in the
TPS as a module and generate volumetric sCT images in around 2 seconds on a GPU.
On these sCT images, the treatment dose can be recalculated with updated anatomical
contours which could be propagated from the contours in the last fraction and corrected
by a radiation oncologist. The sCT images can be registered in the TPS and the patient
can be positioned using the transformation parameters. With the adaptive QA processes,
the treatment dose and geometrical accuracy of such plan can be ensured and adjusted
when necessary. Finally, an adapted treatment radiation can be delivered.
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Figure 9.2: The integration of a low dose CBCT pipeline in the CBCT-guided online
adaptive radiotherapy. (Own figure)
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Chapter 10

Conclusion

In this thesis, two DL algorithms, cycleGAN and CUT, were implemented and compared
to investigate the lowest achievable CBCT imaging dose without loss of accuracy in terms
of sCT image generations. In both studies, 41 prostate cancer patient datasets (pCT
and CBCT) were included. CBCT projections were under-sampled and low dose CBCT
images (25%, 15% and 10%) were reconstructed. In the first study, the feasibility of
25% dose CBCT-to-CT by training two cycleGAN models using unpaired datasets was
investigated. In the second study, cycleGAN and CUT models were trained and applied
to generate sCT images for each of the CBCT imaging dose levels. All sCT images of
testing patient datasets were carefully evaluated with respect to image quality, positioning
accuracy, VMAT treatment dose calculation and organ contouring (bladder and rectum)
accuracy. Over these IGRT-metrics, only slight deviations were observed among sCT
images for all CBCT imaging dose reduction levels. In addition, the second study suggested
that the cycleGAN model with a residual connection performed better than CUT for
organ contouring. However, both achieved similar results in all other metrics. Based
on segmentation accuracy, 25% is the minimum pelvic CBCT imaging dose that enables
accurate VMAT treatment dose calculation and organ delineation for online adaptation.
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List of publications

A.1 Journal paper contributions as first author

e Minimum imaging dose for deep learning-based pelvic synthetic computed tomogra-

phy generation from cone beam images
Y.C.I. Chan, M. Li, A. Thummerer, K. Parodi, C. Belka, C. Kurz and G. Landry
Physics and Imaging in Radiation Oncology. 2024 March: 10.1016/5.phro.2024.100569.

 Feasibility of cycleGAN Enhanced Low Dose CBCT Imaging for Prostate Radiother-
apy Dose Calculation
Y. Chan, M. Li, K. Parodi, C. Belka, G. Landry and C. Kurz
Physics in Medicine €& Biology. 2023 May 11;68(10):105014.

A.2 Conference contributions as first author

o Towards Al-enabled minimum dose CBCT-based synthetic CT: dose calculation and
contouring accuracy
Y.C.I Chan, M. Li, A. Thummerer, K. Parodi, C. Belka, C. Kurz and G. Landry
European Society for Radiotherapy and Oncology (ESTRO) annual meeting, Glasgow
UK [May 3-7, 2024], oral presentation

o Evaluierung einer cycleGAN-basierten low-dose Cone-Beam CT Bildkorrektur zur
Dosisberechnung in der adaptiven Prostata-Strahlentherapie
Y. Chan, M. Li, K. Parodi, C. Belka, G. Landry and C. Kurz
53. Jahrestagung der Deutschen Gesellscaft fir Medizinische Physik (DGMP), Aachen,
Germany [Sep 21-2/ , 2022/, oral presentation

o Feasibility of cycleGAN enhanced low dose CBCT Imaging for prostate radiotherapy

dose calculation
Y. Chan, M. Li, K. Parodi, C. Belka, G. Landry and C. Kurz
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64th American Association of Physicists in Medicine (AAPM) annual meeting &
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Appendix B

List of abbreviations

Abbreviation \ Meaning

Al artificial intelligence

ALARA as low as reasonably achievable

ART adaptive radiotherapy

BED biologically effective dose

BN batch normalization

CBCT cone-beam computed tomography

CBDI CBCT dose index

CNN convolutional neural network

CT computed tomography

CTDI CT dose index

CTV clinical target volume

cuT contrastive unpaired translation

cycleGAN cycle-consistent generative adversarial network

dB decibel

Deger the discriminator that distinguishes between synthetic
CBCT images and true CBCT images in cycleGAN

Der the discriminator that distinguishes between sCT im-
ages and true CT images in cycleGAN

DIR deformable image registration

DL deep learning

DNA deoxyribonucleic acid

DSC Dice similarity coefficient

DVH dose-volume histogram

EAR excess absolute risk

FBP filtered back projection

FDK Feldkamp, Davis, Kress

FID Fréchet inception distance
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fps frames per second

Ger the generator that translates CBCT images to CT im-
ages in cycleGAN

Geser the generator that translates CT images to CBCT im-
ages in cycleGAN

Gene the encoder network of the generator in CUT

GTV gross tumor volume

HD Hausdorff distance

HN head and neck

HU Hounsfield unit

IARC International Agency for Research on Cancer

IGRT image-guided radiotherapy

IMRT intensity modulated photon radiotherapy

IS inferior-superior

ITV internal target volume

kV kilovoltage

MAE mean absolute error

MC Monte-Carlo

ME mean error

MLC multileaf collimators

MLP multi layer perceptron

MRI magnetic resonance imaging

MSE mean squared error

NCE noise contrastive estimation

OAR organ-at-risk

PA posterior-anterior

pCT planning CT

PET positron emission tomography

PSNR peak signal-to-noise ratio

PTV planning target volume

QUANTEC Quantitative Analysis of Normal Tissue Effects in
Clinic

ReLLU rectified linear unit

RL right-left

RMSE root mean squared error

SC the distance of the x-ray source to the iso center

sCT synthetic CT

SD the distance of the x-ray source to the detector

SNR signal-to-noise ratio

SSIM structural similarity index measure
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TFT thin-film transistor

TPS treatment planning system

vCT virtual CT

VMAT volumetric modulated arc therapy
WHO World Health Organization

XVI x-ray volume imaging
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