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Summary

High-quality annotated datasets are essential for training machine learning (ML) models. Annota-
tion means assigning a label (such as a category, sentiment score, or classification) to an instance,
for example to a piece of text, an image, or a PDF file. Even as training algorithms continue to
improve, a model’s real-world performance remains limited by the quality of the training data.
While there are many approaches for processing training data, relatively little attention within
the ML field has been devoted to annotation quality and the development of best practices for
data collection. This thesis contributes to the field through empirical assessments of annotation
bias and its implications for training data quality. It further proposes and evaluates strategies to
mitigate such biases and enhance annotation outcomes. In addition, it explores the role of large
language models (LLMs) in annotation workflows by experimentally assessing their use in fully
automated and human-assisted hybrid annotation pipelines.

The introductory part outlines the research questions and motivates the overall contributions.
As part of this, the background chapter provides a review of the literature on factors influencing
annotation quality, organized along two main dimensions: Annotator-related factors encompass
individual-level traits and behaviors that may be correlated with annotation behavior. Annotation
data collection strategies refer to all design-related decisions made when setting up a task, such
as the selection of examples provided in the instructions, task length, or payment. In addition,
challenges and opportunities of automating annotation are discussed.

Annotation is a structured task that follows standardized procedures for data collection, typically
involving a stimulus and fixed response options, much like data collection in fields such as survey
methodology and social psychology. In the first and second study, we investigate whether well-
known sources of bias identified in these fields also apply to annotation tasks. The first study
presents experimental results from a large sample of annotators. We analyze task structure and
demographic effects in a hate speech sentiment annotation task, systematically varying the screen
design to measure its effect on the resulting labels. In addition, we collect demographic charac-
teristics, task perception metrics, and paradata to assess their relationship with label assignment.
Most notably, annotation behavior was significantly influenced by whether classification tasks ap-
peared on a single screen or were split across two, as well as by the annotator’s first language. The
second study extends this project by examining whether annotation behavior changes over the
course of the task. It estimates how the likelihood of assigning a label evolves with the number
of previously completed annotations. As the task progressed, labeling a statement as hateful or
offensive became significantly less likely, though the effect was small in magnitude. Together,
these studies show that annotations are sensitive to both who performs them and how the task is
structured.

The third and fourth study explore the potential of real-time, low-cost automated annotations
generated by LLMs and their interaction with human annotators. In the third study, we conduct
a cost-benefit analysis comparing different types of human and automated annotators in a satellite
image annotation task. It includes initial attempts to combine human and LLM-generated anno-
tations. We observe strong potential for cost reduction and quality retention, with less need for
expert annotators – especially when leveraging the LLM’s self-reported uncertainty. The fourth
study builds on this study by documenting a pipeline for generating and curating a gold-standard
validation dataset for CO2 emission values extracted from PDF documents. It demonstrates a



feasible approach to integrating automated components to reduce the workload of human do-
main experts. Even in this highly specialized task, combining LLM annotations with non-expert
adjudication can substantially reduce reliance on domain experts.

The fifth study investigates the risks and implications of increasing automation in annotation
workflows, particularly pre-annotations generated by artificial intelligence (AI). We simulate an
AI-assisted scenario by presenting annotators with pre-annotations framed as AI-generated, to
examine cognitive bias during adjudication. Notably, those who reported greater skepticism to-
ward AI were more accurate in adjudicating the pre-annotations. Additionally, we observe that
annotators are less likely to correct pre-annotations when flagging an error requires providing a
corrected value.

Across its five contributions, this dissertation advances the field of annotation data collection
methods by identifying bias in human, automated, and hybrid annotation setups. It proposes and
evaluates multiple solutions and offers guidance for both research and practical annotation tasks.
A consistent focus is placed on integrating insights and theories from various academic disciplines
to benefit from a broad range of existing findings.
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Zusammenfassung

Qualitativ hochwertige annotierte Datensätze sind für das Training von Modellen des maschinellen
Lernens (ML) unerlässlich. Annotation bedeutet, dass einer Instanz (z.B. einem Text, einem Bild
oder einer PDF-Datei) ein Label (wie eine Kategorie, Bewertung oder Klassifikation) zugewiesen
wird. Auch wenn Trainingsalgorithmen sich stetig verbessern, begrenzt die Qualität der Train-
ingsdaten in der Praxis die Leistung eines Modells. Während es viele Ansätze zur verbesserten
Verarbeitung von Trainingsdaten gibt, konzentriert sich die Forschung im Bereich ML weniger
auf die Qualität der Annotationen und die Entwicklung von Best Practices für die Datenerhe-
bung. Die vorgelegte Dissertation trägt zu diesem Forschungsfeld bei, indem sie die Verzerrung
von Annotationen und deren Auswirkungen auf die Qualität der Trainingsdaten empirisch unter-
sucht. Darüber hinaus werden Strategien vorgeschlagen und evaluiert, um solche Verzerrungen
abzuschwächen und damit die Qualität der annotierten Daten zu verbessern. Darüber hinaus wird
die Rolle von “Large Language Models” (LLMs) in Annotations-Workflows untersucht, indem
ihre Verwendung in voll automatisierten und von Menschen assistierten hybriden Annotations-
Pipelines experimentell untersucht wird.

Der einleitende Abschnitt skizziert die übergeordneten Forschungsfragen und begründet deren
Relevanz. In diesem Zusammenhang wird ein Literaturüberblick über die Faktoren gegeben,
die die Qualität von annotierten Daten beeinflussen. Dieser Überblick ist nach zwei zentralen
Dimensionen gegliedert: Annotator-bezogene Faktoren umfassen individuelle Eigenschaften und
Verhaltensweisen, die mit dem Annotationsverhalten korrelieren können. Annotationsstrategien
beziehen sich auf alle gestaltungsbezogenen Entscheidungen, die bei der Erstellung einer An-
notierungsaufgabe getroffen werden, wie z.B. die Auswahl der in den Anweisungen enthaltenen
Beispiele, die Länge der Aufgabe oder die Bezahlung. Außerdem werden Herausforderungen und
Chancen der Automatisierung von Annotationen erörtert.

Die Annotation von Daten ist eine strukturierte Aufgabe, die standardisierten Verfahren zur
Datenerhebung folgt und in der Regel einen Stimulus und festgelegte Antwortoptionen umfasst,
ähnlich wie bei der Datenerhebung in Bereichen wie der Umfrageforschung und der Sozialpsy-
chologie. In der ersten und zweiten Studie untersuchen wir, ob bekannte Quellen der Verzer-
rung, die in diesen Bereichen identifiziert wurden, auch für Annotationsaufgaben gelten. Die
erste Studie präsentiert experimentelle Ergebnisse aus einer großen Stichprobe von Annotatoren.
Wir analysieren die Aufgabenstruktur und demografische Effekte in einer Annotationsaufgabe von
Hassrede, wobei wir systematisch das Bildschirmdesign variieren, um die Auswirkungen auf die re-
sultierenden Annotationen zu messen. Darüber hinaus werden demografische Merkmale, Metriken
zur Aufgabenwahrnehmung und Paradaten gesammelt, um ihre Beziehung zur Label-Zuweisung zu
bewerten. Das Annotationsverhalten wurde vor allem davon signifikant beeinflusst, ob die Frame
oder in zwei aufeinanderfolgenden Schritten präsentiert wurden, sowie von der Muttersprache des
Annotators. Die zweite Studie erweitert dieses Projekt, indem sie untersucht, ob sich das Annota-
tionsverhalten im Verlauf einer Aufgabe ändert. Sie schätzt ab, wie sich die Wahrscheinlichkeit, ein
Label zu vergeben, mit der Anzahl der zuvor abgeschlossenen Annotationen entwickelt. Mit dem
Fortschreiten der Aufgabe wurde es deutlich unwahrscheinlicher, dass eine Aussage als hasserfüllt
oder beleidigend eingestuft wurde, auch wenn die Effektgröße gering ausfiel. Zusammengenommen
zeigen diese beiden Studien, dass Annotationen sowohl davon abhängen, wer sie vornimmt, als
auch davon, wie die Aufgabe strukturiert ist.



Die dritte und vierte Studie untersuchen das Potenzial von automatisierten Annotationen, die von
LLMs nahezu in Echtzeit generiert werden, und deren Kombination mit menschlichen Annota-
toren. In der dritten Studie führen wir eine Kosten-Nutzen-Analyse durch, in der wir verschiedene
Arten von menschlichen und automatisierten Annotatoren bei einer Aufgabe zur Annotation von
Satellitenbildern vergleichen. Sie umfasst erste Versuche, menschliche und LLM-generierte Anno-
tationen zu kombinieren. Wir stellen fest, dass es ein großes Potenzial zur Kostenreduzierung unter
Bewahrung der Datenqualität gibt. Der Bedarf an Experten-Annotatoren kann vor allem dann
verringert werden, wenn die vom LLM selbst angegebene Unsicherheit genutzt wird. Die vierte
Studie baut auf dieser Studie auf, indem sie eine Pipeline zur Erhebung und Aufbereitung eines
Gold-Standard-Validierungsdatensatzes für CO2-Emissionswerte aus PDF-Dokumenten dokumen-
tiert. Sie demonstriert einen praktikablen Ansatz zur Integration automatisierter Komponenten,
um den Arbeitsaufwand menschlicher Fachexperten in der Annotation von Daten zu reduzieren.
Selbst bei dieser hochspezialisierten Aufgabe kann die Kombination von LLM-Annotationen mit
der Beurteilung durch Nicht-Experten die Abhängigkeit von Domänenexperten erheblich re-
duzieren.

Die fünfte Studie untersucht die Risiken und Auswirkungen der zunehmenden Automatisierung
von Annotations-Workflows, insbesondere von Vor-Annotationen, die durch künstliche Intelligenz
(KI) generiert werden. Wir simulieren ein KI-gestütztes Szenario, indem wir den menschlichen
Annotatoren Vor-Annotationen vorlegen, die als KI-generiert dargestellt sind, um die kognitive
Verzerrung bei der Beurteilung dieser zu untersuchen. Bemerkenswert ist, dass diejenigen, die eine
größere Skepsis gegenüber künstlicher Intelligenz angaben, die Vor-Annotationen akkurater bew-
erteten. Wir stellen außerdem fest, dass die Annotatoren weniger geneigt sind, Vor-Annotationen
zu korrigieren, wenn das Markieren eines Fehlers die Angabe eines korrigierten Wertes erfordert.

Mit ihren fünf Beiträgen bringt diese Dissertation den Bereich der Methoden zur Erhebung von
annotierten Daten voran, indem sie Verzerrungen in menschlichen, automatisierten und hybriden
Annotationskonzepten aufzeigt. Sie schlägt mehrere Lösungen vor, bewertet diese und bietet
Orientierungshilfen sowohl für die Forschung als auch für praktische Annotationsaufgaben. Ein
zentraler Schwerpunkt liegt auf der Integration von Erkenntnissen und Theorien aus verschiedenen
akademischen Disziplinen, um von der Breite bestehender Forschungsergebnisse zu profitieren.
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Part I.

Introduction and Background





1. Introduction

1.1. Motivation

At its core, any artificial intelligence (AI) model relies on two fundamental components: the data
and the algorithm that learns patterns from it. While algorithms and model architectures continue
to advance, the true value of an AI system lies in its effectiveness beyond controlled benchmarks,
in real-world settings where data is more complex, noisy, and unpredictable. This effectiveness
depends heavily on the quality of the training data used to teach these models – specifically, the
quality of how this data has been annotated with labels (such as categories, ratings, or classifica-
tions). The quality depends on how accurate and informative these labels are, and how well the
dataset reflects the distribution of real-world data samples. Data quality is often the more deci-
sive factor, outweighing the marginal gains achieved through further algorithmic improvements.
Although this dependency on data quality is widely acknowledged, those responsible for designing
annotation pipelines often face a large number of complex decisions, ranging from task design to
annotator selection, with limited standardized guidance available when collecting and annotat-
ing real-world data. The central problem is twofold: the sources of bias in annotation pipelines
remain underexplored, and as a result, actionable and sound strategies for mitigating bias are
limited. These challenges are further complicated by the high degree of diversity within the field
of annotation. It spans a wide range of data modalities, from text and images to audio and video.
Importantly, annotation tasks vary in their degree of subjectivity, with some requiring objective
labeling and others involving more subjective judgment. This distinction matters because these
two types pursue fundamentally different goals. Objective annotation tasks aim to detect the true
label. In contrast, subjective (or “perspectivist” (Fleisig et al., 2024; Frenda et al., 2024)) anno-
tation tasks intend to model the meaningful signal within annotator disagreement (Plank, 2022).
Rather than treating disagreement as noise, subjective annotation acknowledges that it stems not
just from annotator error, but also from subjective differences in how annotators see the same
instance. Moreover, annotation efforts differ based on constraints such as the required domain
expertise of the annotators, their availability, and the broader context in which the annotation
takes place.

There are still significant gaps in our understanding of bias in training data annotation and in the
methods used to mitigate it. The introduction and rapid advancement of large language models
(LLMs) add new layers of complexity, raising new questions rather than resolving existing ones.
Progress in this area is happening so quickly that research aimed at identifying biases and related
problems often struggles to keep pace. Yet, addressing these questions is crucial, particularly as
LLMs increasingly make the case for either replacing human annotators or supporting them in
collaborative annotation workflows (Aguda et al., 2024; Goel et al., 2023; Li et al., 2023; Li, 2024),
and rely on annotated data themselves for their training and continual improvement.

One underexplored perspective that can help us better understand annotation, identify sources
of bias, and develop robust practices is to place the data – and the processes that generate it
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1. Introduction

– at the center of analysis. This approach, which one might call a “science of data” approach,
rejects the notion that data naturally appears in the wild as a neutral or incidental byproduct or
that its generation and preparation are merely procedural steps (Ang et al., 2013). A “science of
data” view on annotation brings a strong interdisciplinary foundation, drawing on the extensive
methodological knowledge that other fields have developed over decades. Annotation is essentially
a task designed to guide humans through a standardized process, typically involving a stimulus
and a fixed set of response options. In this sense, it closely resembles a (web) survey. At the same
time, annotation is often a form of human-computer interaction (HCI), and automated annotation
can be seen as a specific instance of algorithmic decision-making (ADM). Therefore, beyond the
social and behavioral sciences, related fields such as HCI, ADM, and survey methodology offer
valuable frameworks (Biemer, 2010; Jones-Jang and Park, 2022; Lyberg et al., 2012; Rastogi et al.,
2022) for understanding training data quality in machine learning (ML). These disciplines also
contribute practical methods and tools for identifying, measuring, and addressing challenges in
the data generation process (Biemer et al., 2017; Dimara et al., 2019; Liu et al., 2024; Rieger et al.,
2021; Wyer, 2010).

This thesis takes an interdisciplinary approach to annotation bias and its implications for training
data quality. Drawing on multiple academic perspectives, it contributes to the field of data
annotation by identifying sources of bias and examining strategies for mitigation. The empirical
work brings the field closer to understanding and improving annotation practices, with particular
attention to recent developments in automation and hybrid annotation setups, where human
annotators collaborate with automated systems.

1.2. Outline

The thesis features five articles, listed in Table 1.1. In the next chapter of Part I., I will outline
existing research and motivate the overarching research questions, building on and extending the
literature synthesis presented in Beck (2023). The empirical work is divided into three parts.
Part II. Human Annotation Sensitivity examines whether theoretical perspectives on bias, well
established in the social sciences and particularly in survey methodology, are transferable to the
process of annotating data. Specifically, we investigate how task structure, instance order, and
annotator demographics influence the resulting annotations (Article 1 and Article 2).
Part III. Automation in Annotation explores two implementations of automated LLM-based an-
notation in real-world pipelines. These implementations are evaluated in terms of their quality,
measured by how closely they approximate expert annotations, as well as their potential and
risks in hybrid annotation setups (Article 3 and Article 4). The studies cover two different data
modalities: satellite imagery of industrial land and PDF documents from company reports.
Building on these findings, Part IV. Bias in Human-AI Collaborative Annotation shifts focus to
investigating new sources of bias that may arise when such automation is embedded into annota-
tion workflows. This question is explored through a user study assessing how human annotators
interact with, and are influenced by, AI-generated pre-annotations (Article 5).
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1.2 Outline

Table 1.1.: Overview of Contributing Articles
Article Title Authors Publication Status

A1 Improving Labeling Through
Social Science Insights: Results
and Research Agenda

Jacob Beck, Stephanie Eckman,
Rob Chew, Frauke Kreuter

Published in Proceedings of HCI
International 2022 – Late
Breaking Papers: Interacting
with eXtended Reality and
Artificial Intelligence (2022)

A2 Order Effects in Annotation
Tasks: Further Evidence of
Annotation Sensitivity

Jacob Beck, Stephanie Eckman,
Bolei Ma, Rob Chew, Frauke
Kreuter

Published in Proceedings of the
1st Workshop on
Uncertainty-Aware NLP (2024)

A3 Toward Integrating ChatGPT
into Satellite Image Annotation
Workflows

Jacob Beck, Lukas Malte
Kemeter, Konrad Dürrbeck,
Mohamed Hesham Ibrahim
Abdalla, Frauke Kreuter

Published in IEEE Journal of
Selected Topics in Applied Earth
Observations and Remote
Sensing (2025)

A4 Addressing Data Gaps in
Sustainability Reporting

Jacob Beck, Anna Steinberg,
Andreas Dimmelmeier, Laia
Domenech Burin, Emily
Kormanyos, Maurice Fehr, Malte
Schierholz

Published in Nature Scientific
Data

A5 Bias in the Loop: How Humans
Respond to AI-Generated
Pre-Annotations

Jacob Beck, Stephanie Eckman,
Frauke Kreuter

Revised version under review at
Harvard Data Science Review
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2. Background

2.1. Introduction

Traditionally, ML models are trained on data instances with one or more labels. Assigning these
labels is a task known as annotation.1 A model learns to predict the label of an unlabeled instance
and is then typically evaluated by assessing how well it predicts labels on a hold-out portion of
the training data. However, learning from and reproducing erroneous data causes the model to
learn patterns that do not reflect the real-world task. For example, an annotator may misclassify
the industrial activity of land in satellite images by mistaking construction vehicles for industrial
activity, leading the model to learn incorrect associations. Annotation errors of this kind can
substantially limit the value of a model’s practical implementation, because models can learn
from incorrectly assigned labels. When the same type of error occurs in both training and testing
data, performance metrics cannot detect the problem. In practice, systematic annotation errors
fundamentally limit real-world performance – particularly when incorrect or overly simplistic
labels are used, or when the training data distribution doesn’t match deployment conditions.
Consequently, the design of the annotation process should minimize errors and ensure that the
dataset used for model generation accurately reflects the target distribution.

But how can this be achieved? Annotating data is by no means a uniform process. Tasks differ
substantially depending on the data modality (for example text vs. image), the level of domain
expertise required, or the degree of subjectivity. Whether consciously or not, those designing
annotation tasks make a multitude of decisions throughout the development of the annotation
pipeline. These efforts are often constrained by available resources or contextual factors. In some
cases, the pool of suitable and available annotators is limited, budgets are tight, time pressure is
high, or data-sharing restrictions prevent collaboration beyond institutional boundaries, narrowing
the range of feasible choices. Nevertheless, the number of open design decisions remains large,
and those who collect annotated data are frequently left without clear guidance. In the absence
of such guidance, unrecognized sources of bias can easily enter the data collection process and
affect downstream outcomes. Addressing these sources of annotation bias requires identifying and
measuring them in order to develop effective mitigation strategies.

In this chapter2, I outline previous research and approaches to the collection of annotated training
data. I highlight studies from diverse academic disciplines in which parameters that affect the
quality of annotated data are identified, estimated, discussed, or accounted for. These studies
collectively stress the necessity for thoughtful consideration of the annotation process among both
researchers and practitioners. The background chapter is structured around two key dimensions
of data annotation and its quality confounders: the set of annotators and the strategy of data

1Throughout this thesis, the term labeling is used interchangeably with annotation.
2This background chapter draws extensively on my published literature review “Quality aspects of annotated data:

A research synthesis” (Beck, 2023), which has been adapted and extended for this thesis.
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2. Background

collection. The first section features studies that examine the connection between annotator
composition and behavior, and the resulting data. The second section outlines different strategies
for constructing, implementing, and evaluating an annotated data collection process. It highlights
the many decisions involved in data collection, most of which lack established best practices, or
are only addressed in highly task- and data-specific ways. Both sections are further divided into
subsections that cover specific aspects of data annotation.

Importantly, the growing role of automation has fundamentally influenced the field of annotation,
integrating both the strategic and annotator-related dimensions. Automated annotation, such as
through LLMs, and hybrid annotation pipelines, in which humans collaborate with AI systems,
offer compelling advantages in terms of cost, efficiency, and scalability. However, these approaches
also introduce novel threats and uncertainties to data quality that must be critically examined
and addressed. The third section of the background chapter therefore explores existing work on
the automation of annotation processes.

The background chapter concludes by highlighting key insights from prior work and demonstrating
how the research questions addressed in my featured articles are situated within the identified
gaps.

2.2. Annotators

A common way to obtain training data for ML models is through human data annotation. Annota-
tors differ in their backgrounds, attitudes, past experiences, worldviews, and other characteristics
that shape how they interpret and annotate data. In principle, anyone can be an annotator. In
practice, annotators most commonly include researchers, domain experts, company employees,
student assistants, and crowdworkers.

The following section provides an overview of commonly encountered annotator profiles, followed
by a focused discussion of two particularly relevant types: crowdworkers and domain experts. I
then examine annotators from two perspectives: annotator characteristics and annotator behavior.
Within each subsection, I highlight concepts that may affect the quality of annotated data.

2.2.1. Annotator Profile

Before addressing annotators’ specific characteristics and behavioral patterns in general, it is
crucial to acknowledge the diversity of annotator profiles. These profiles encompass different
roles, such as crowdworkers, student assistants, researchers, and domain experts. Each profile
offers unique contributions and faces specific challenges. Notably, some annotator profiles may
be more susceptible to specific biases that I will discuss in this section. Among these diverse
profiles, crowdworkers and domain experts represent two particularly significant ones for ML data
annotation applications. Crowdworkers provide a large-scale workforce at low cost, are quickly
available, and work across any domain. In contrast, domain experts are annotators from whom
researchers expect the highest annotation data quality, though they often have limited availability,
fewer exist, and require higher costs. Due to the specific characteristics of these two profiles, a
large share of human annotation applications have previously employed either crowdworkers or
experts as annotators. The following discussion will examine specific observations and mechanisms
for these two groups.

8



2.2 Annotators

Crowdworking platforms such as Amazon Mechanical Turk or Prolific increasingly organize the
distribution of crowdworking labor (Belletti et al., 2021; Cefkin et al., 2014). These platforms
serve as quick and efficient tools to split data annotation into microtasks and retrieve the required
annotations through human crowdworkers. In typical settings, researchers or companies act as
task requesters who set up tasks and provide the pool of crowdworkers with microtasks. Crowd-
workers then choose to work on specific tasks in exchange for payment that the task requesters
usually define in advance. Since researchers frequently employ crowdworkers as annotators, most
existing research examining phenomena around annotation focuses on crowdsourced3 annotations.
Generally, crowdsourcing allows retrieval of annotations at high velocity with relatively little cost
and effort. Wang et al. (2013) outline various approaches to engage crowdworkers, from gami-
fied platforms to collective intelligence systems. However, many factors raise doubts about the
inherent data quality of crowdsourced annotations. These factors include the (precarious) work
standards, the incentive structure, and the commitment of annotators. Additionally, the suscep-
tibility to unwanted bot annotations threatens data quality and replicability. To address these
concerns, crowdworking platforms constantly work to improve data quality and increasingly pro-
vide relevant information such as annotator demographics or metadata (such as response times).
Moreover, crowdsourced annotation increasingly benefits from well-designed interventions that
enable bias mitigation and data quality improvement (Zhang et al., 2017).

When annotation tasks require specialized expertise, they are often assigned to professionals with
relevant domain knowledge. This profile of annotators usually consists of domain experts whom
researchers recruit for the annotation (for example, doctors involved in skin cancer classification or
in-house experts working on proprietary data) or who annotate data for their own ML application.
Here, the relation between the annotator and the application can play an important role in the
expert’s identification and resulting motivation for the task. While domain experts often provide
high-quality annotations, their limited availability and high cost can lead to overreliance on a small
number of individuals. Furthermore, assuming these annotations are always correct increases the
risk of overlooking potential biases.

No ideal annotator profile exists. The choice of profile depends on task-specific requirements, re-
source availability, and contextual constraints. Moreover, researchers lack systematic comparisons
between annotator profiles. This gap makes it difficult to develop clear guidelines for selecting the
most appropriate profile for a given task.

2.2.2. Annotator Characteristics

Annotators typically represent a narrow and task-specific subset of individuals. They either self-
select into data annotation (for example, on crowdsourcing platforms) or receive assignments to
annotation tasks (such as doctors who must label medical documents). The socio-demographic
composition of annotators on Amazon MTurk shows more balance than typical convenience sam-
ples, such as self-selected college students, but less alignment with the national population than
high-quality internet panels or probability panels (Berinsky et al., 2012). Examining the demo-
graphic composition of annotator pools raises a fundamental question: does representativeness

3In this dissertation, crowdsourcing refers specifically to the practice of obtaining annotations from crowdworkers
– individuals who complete small tasks for payment on online platforms, rather than the broader definition of
sourcing ideas or content from a large group of people.
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2. Background

matter for annotation quality? In traditional web surveys, demographic representation is cru-
cial because most surveys aim to draw inferences about specific populations. Annotation tasks,
however, serve different purposes than surveys. Researchers typically do not collect annotated
datasets to make population-level inferences, meaning that annotator pools do not necessarily
need to constitute random population samples. Nevertheless, even when population representa-
tiveness is not the primary concern, annotator characteristics can still significantly influence the
resulting datasets. Annotations may vary systematically based on who provides them, potentially
introducing unwanted biases into the data. Previous studies have identified and analyzed vari-
ous annotator characteristics that affect annotation quality. This subsection outlines how these
characteristics impact annotated datasets.

Expertise Expertise or the individual’s qualification for an annotation task plays an important
role in annotation behavior and resulting data quality. While expertise is ideally a continuous
variable, researchers and developers typically distinguish between laypersons (such as crowdwork-
ers or student assistants) and domain experts (for example, radiologists for annotating X-ray
images). This distinction matters from both a data quality and resource efficiency perspective.
Layperson annotations are typically easier and cheaper to obtain. However, many assume that
expert annotations provide higher quality results, and that certain tasks, such as X-ray image
classification, cannot be reasonably completed by non-experts. While laypersons may need to
build their reasoning from scratch, experts can rely on existing knowledge and beliefs (Heerkens
et al., 2011), and this may affect both the speed and consistency of their decisions. Researchers
would ideally assess the quality difference between expert and layperson annotations to determine
which approach better serves the resulting model. While this assessment remains task-specific
and difficult to quantify, it helps guide decisions. This decision also depends on whether objective
domain experts exist for the task in question (such as hate speech detection) and whether the task
actually requires domain expertise (for example, does classifying images of cats and dogs need a
biologist?).

Research comparing the quality gap between expert and non-expert annotators continues to
grow. For example, expert and layperson annotators achieved comparable agreement scores in
an occupation-coding task, which suggests limited added value of expert input in that context
(Maaz et al., 2009). Many studies show that researchers have developed methods that can be ap-
plied to improve the quality of non-expert annotations. These methods help non-experts achieve
performance levels comparable to experts in various tasks. (Aroyo and Welty, 2015; Dumitrache
et al., 2015; Heim et al., 2018; Nowak and Rüger, 2010). For example, they reframe complex
classification tasks (like fish species identification) into simpler visual similarity judgments that
become more accessible to non-experts (He et al., 2013; Wang and Vasconcelos, 2023; Yang et al.,
2019).

First Language The annotator’s first language could be an important demographic feature for
judging the outcome of a language annotation task. Generally, this variable serves as a proxy
for language proficiency, given the difficulty of measuring proficiency levels directly. If a task
requires language understanding, proficiency level should logically be a key determinant of anno-
tator aptitude. However, many annotation platforms and tasks do not restrict annotators based
on language proficiency requirements. Crowdworkers who complete tasks in English live around
the globe and often do not have to meet formal language prerequisites. In 2009, 36% of the
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Amazon MTurk workforce lived in India (Ross et al., 2010). Since English is the first language to
only 0.02% of India’s population (Singh et al., 2022), most Indian MTurkers are likely not first
language English speakers. In one study, 48% of the individuals who labeled English-language
tweets for hate speech were Venezuelan residents (Founta et al., 2018). While learning English
as a second/foreign language does not automatically mean insufficient language proficiency, com-
plex, multilayered tasks like hate speech detection seem to require a very high degree of English
understanding to create high-quality annotated data. Annotators should be able to grasp slang,
irony, and sarcasm, in addition to cultural understanding (Bui et al., 2025). This pattern is evi-
dent in recent research: non-native English speakers labeled significantly fewer tweets as hateful
compared to native English speakers, with the study limited to US residents only (Beck et al.,
2022).

Further evidence shows that data quality differs based on annotator language background
(Al Kuwatly et al., 2020). In this study, annotators examined whether comments on Wikipedia
contained personal attacks. The researchers then grouped annotations by native and non-native
English speakers and trained separate models on each dataset. Models trained on data from na-
tive English speakers proved significantly more sensitive than those trained on non-native speaker
annotations.

Race/Ethnicity Few studies have systematically analyzed how annotators’ racial or ethnic identi-
ties may influence annotated data quality, and the literature that does exist shows mixed findings.
For example, Arhin et al. (2021) found that Black annotators deviated more frequently from the
majority label in a toxic text classification task. Similarly, Larimore et al. (2021) observe sig-
nificant differences in annotations between White and non-White annotators when assessing the
racial sentiment of tweets.

Independent of annotator identity, models predict higher toxicity for statements in African Amer-
ican English (AAE) compared to non-AAE statements (Sap et al., 2019). In a subsequent exper-
iment, instructing annotators to consider both the dialect and the racial or ethnic background
of a statement’s creator resulted in fewer toxic annotations. Various datasets contain racial and
ethnic bias, ranging from hate speech detection – identified using topic modeling (Davidson and
Bhattacharya, 2020) – to image captioning (Zhao et al., 2021). Raising awareness of these forms
of bias in annotation and training data helps prevent models from picking up racist patterns
and reinforce them when deployed. When researchers detect bias, they can apply post-hoc bias
mitigation methods (Xia et al., 2020).

Gender No significant differences in model sensitivity and specificity were found for models
trained on male and female annotators’ data, respectively (Al Kuwatly et al., 2020). Consistent
with this finding, annotated data sets did not meaningfully differ by gender across four different
Natural Language Processing (NLP) tasks (Biester et al., 2022). In a study that used a previously
annotated corpus of Wikipedia comments to train models that predicted the toxicity of statements,
annotator gender led to small differences in the resulting training data. However, models trained
on each group produced very similar results (Binns et al., 2017). In contrast, studies found clear
gender differences in toxicity annotation (Excell and Al Moubayed, 2021), facial recognition tasks
(Chen and Joo, 2021), offensive language and racism annotation (Sap et al., 2022) and sentiment
analysis across four different annotation modalities (Ding et al., 2022). Regarding toxicity/hate
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speech, women took a more negative stance towards the harm of hate speech and, on average,
valued freedom of speech as less important than men did (Cowan and Khatchadourian, 2003).

Age Depending on the task, annotator age may influence annotation patterns. If model outputs
vary by age and the annotator sample deviates from broader population distributions, analyzing
annotations by age becomes essential to identify and mitigate potential distortions. Following
this approach, Al Kuwatly et al. (2020) detected significant differences in both sensitivity and
specificity between models trained on annotations that they grouped by age. An assessment
of Amazon MTurk annotator characteristics revealed the age distribution of MTurkers to be
significantly younger than that of other convenience samples and the US national population
(Berinsky et al., 2012).

Political Orientation An annotator’s political orientation can serve as a proxy for beliefs and
values held by that individual, which could be especially important in subjective annotation tasks.
Argument annotations in two political contexts (cloning and minimum wage) differed significantly
by political leaning of annotators. The study measured the political orientation as self-reported
categorization of conservative or liberal. These differences in annotations transferred downstream
into algorithmic bias (Thorn Jakobsen et al., 2022). In addition, conservative annotators annotated
AAE as toxic more frequently while simultaneously flagging fewer instances of racist language as
toxic (Sap et al., 2022). More abstractly, stereotypes held by annotators correlated with their
hate speech annotation behavior and the resulting classifier errors (Davani et al., 2023). In 2012,
a sample of Amazon MTurkers leaned more democratic and more liberal compared to the US
national distribution (Berinsky et al., 2012). While this distribution might have shifted in the
past years, crowdworkers still likely comprise a demographically unbalanced sample, including
with respect to political orientation. Such imbalances might affect the outcome of certain types
of (more subjective) annotation tasks and the consequent models.

Conclusion When and how annotator characteristics affect the data generation process remains
unclear. For some characteristics, empirical findings are inconclusive – for example, in the case of
gender – while others, such as education, still lack sufficient research (Al Kuwatly et al., 2020).
Additionally, less visible factors beyond standard demographics or assumed expertise, such as
annotators’ personal beliefs, can influence outcomes, even in tasks typically considered objective
(Beck et al., 2025a). Despite these uncertainties, collecting and carefully monitoring differences in
annotator characteristics is still important for understanding and mitigating potential biases. The
relevance of demographic or individual traits can vary significantly depending on the annotation
task. While having expert biologists label genome sequences rather than using a probability
sample from the general population makes sense, models that should inherit societal beliefs and
values can become distorted by heavily biased annotator samples.

2.2.3. Annotator Behavior

Annotation resembles surveys in that both present individuals with a stimulus (survey questions
and annotation instances, respectively) and a set of fixed choices (response categories or label
options). This structural similarity suggests that many well-studied conscious and subconscious
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cognitive processes that influence survey responses may also play a role in annotation tasks. For
example, first impressions can significantly anchor perceptions and prove resistant to change, even
when people receive new information (Harris et al., 2023; Rabin and Schrag, 1999; Ybarra, 2005).
This phenomenon relates closely to the well-established concept of confirmation bias, in which in-
dividuals tend to prioritize information that aligns with their preexisting beliefs while discounting
or ignoring contradictory evidence (Nickerson, 1998; Oswald and Grosjean, 2004). In the context
of data annotation, studies have examined some of these cognitive processes, such as anchoring or
confirmation bias (Eickhoff, 2018; Hube et al., 2019). Other phenomena, such as speeding (anno-
tating at an unreasonable velocity) or straightlining (repeatedly selecting the same label option
regardless of the presented instance), are well-known in survey methodology but remain under-
explored in annotation research (Schonlau and Toepoel, 2015; Zhang and Conrad, 2014). These
mechanisms stem from general principles of human cognition and should, in principle, apply to all
types of annotators, though not necessarily to the same extent. The following paragraphs illus-
trate three additional social psychological concepts that may influence data annotation behavior,
with particular relevance for crowdworkers, who represent the most extensively studied annotator
group.

Motivation Understanding what motivates individuals who participate in annotation tasks helps
task requesters design annotation tasks in line with annotators’ motivations and, if applicable, use
additional motivating factors. Motivations can range from purely monetary incentives to intrinsic
interest in the resulting model (for example, when annotating data for one’s own research). A
systematic analysis of interactions and conversations in a large Amazon MTurk forum, “Turker
Nation”, showed that monetary motivations were by far the most important motivating factor
among crowdworkers (Martin et al., 2014). The enjoyability of a task impacted its popularity
– for example, workers accepted slightly lower-paid tasks were accepted if they found them en-
joyable – but the monetary aspect remained essential to the forum participants. Beyond a more
positive perception of enjoyable tasks, annotators became more active when a task was framed as
meaningful (Chandler and Kapelner, 2013). To convey such a sense of meaningfulness, the task
told some annotators that their work would contribute to medical research, while it gave no con-
text or informed them that their annotations would be discarded after the task. The perception
of meaningfulness linked to increased participation rates, annotation volume, and data quality
(Chandler and Kapelner, 2013).

While the importance of monetary motivations naturally characterizes crowdworking – which
platforms specifically advertise as an easy way to earn money – task requesters should keep in mind
that annotators do not necessarily want to create high-quality data or well-performing models.
Survey methodologists have developed theories and practical approaches on how to collect and
evaluate survey participation reasons that could apply to and benefit annotation tasks (Haensch
et al., 2022; Keusch, 2015; Singer, 2011). However, crowdworkers may misreport their motivations
for engaging in annotation work due to social desirability bias (Antin and Shaw, 2012). Social
desirability bias likely affects response behavior when reporting motivations because of power
asymmetries between crowdworker and task requester that arise from crowdworking being a crucial
source of income for many crowdworkers (Martin et al., 2014; Miceli et al., 2022).

Dishonesty Dishonest behavior or misreporting can occur in surveys and in annotation tasks,
driven by individual motivations and incentives. In crowdsourced annotation tasks in particular,
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multiple reasons exist for dishonest behavior. People may submit incorrect information to meet the
eligibility criteria for an annotation task or to reduce the perceived task burden. This phenomenon
is called “motivated misreporting” (Eckman et al., 2014; Kreuter et al., 2011; Tourangeau et al.,
2012). If such behaviors do not occur at random, the resulting training data becomes prone to
bias, and overall data quality suffers from dishonest annotator behavior. Identifying task elements
that encourage misreporting can help researchers and task designers create annotation tasks hat
minimize the likelihood of such behavior.

Several studies have examined dishonest annotation behavior. For example, annotators willingly
provided wrong answers for better payment, and fraudulent behavior decreased when they sensed
being detected (Suri et al., 2011). Crowdworkers may misreport individual characteristics to be
admitted to an annotation task (Chandler and Paolacci, 2017). In a prescreening survey for a task
that required being a parent of an autistic child, respondents reported such parenthood approx-
imately twice as often as in the same task where this criterion was not mandatory. Consistent
with this finding, a similar experiment in the same study shows that at certain payment levels,
respondents reported a different gender for study eligibility (Chandler and Paolacci, 2017).

Networking among Annotators When trying to understand annotating behavior and the self-
selecting process of annotators, task designers need to consider networking and information ex-
change between annotators. Crowdworkers use online forums to exchange annotation strategies
and information with others (Martin et al., 2014). Forum users share ways to earn money easier
and faster, as well as which tasks are more enjoyable. The community generally condemns fraud-
ulent behavior or cheating but not the use of loopholes within tasks or the exploitation of tasks
with low payment – for instance, through reduced effort in the annotation process. Furthermore,
annotators share insights about task requesters they consider good or bad (Martin et al., 2014).
While not everyone participates actively in online forums and forum users represent a self-selected
sample, the assumption of independence between observations (i.e., annotation responses) may
not be valid. This concern grows stronger because crowdworking accounts may be shared by
multiple individuals rather than being tied to a single user.

2.3. Data Collection Strategy

Every decision regarding the annotation collection strategy may impact the resulting set of an-
notations and the subsequently trained models. These decisions span the entire data collection
process and range from considerations about required annotation sample sizes to task design or
data evaluation approaches. Building on insights into annotator characteristics and behavior, the
following section outlines four central decision areas for data annotation.

2.3.1. Task Design

Different task designs can lead annotators towards different annotation patterns (Pyatkin et al.,
2023). When designing annotation tasks, many decisions must be made that may affect the
resulting data quality. Although these decisions might seem minor, they often lack empirical
grounding and instead reflect arbitrary choices. Without clearly understanding whether, and
how, certain design features of annotation tasks affect annotation behavior, such choices affect
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the resulting data and models (Kern et al., 2023). This subsection showcases a range of task
design options and potential effects on data quality.

Label Options Determining which and how many label options to provide is not always straight-
forward or clear from the data or model. The level of annotation detail can range from simple
binary classifications to continuous scales or open-ended class additions. The number of label op-
tions can vary depending on the desired degree of aggregation – that is, how broadly or narrowly
categories are defined – that annotation achieves (Maaz et al., 2009) and the intended use of the
resulting model. Label aggregation presents a clear trade-off between the information gained and
the cognitive burden placed on annotators, as increasing the number of label options generally
increases both (Kutlu et al., 2020). One potential adjustment to the label scale involves adding
an option that allows annotators to express uncertainty, such as a “don’t know” label. While this
label option prevents forcing annotators to select an unsuitable label, it may also encourage them
to avoid making a decision, using the option whenever they feel slight doubt. Empirically, the
value of such an option remains unclear (Beck et al., 2022). Similarly, adding a residual category
(for example “other” or “none of the above”) to the label set can reduce misclassifications in cases
where an exhaustive list of labels is not feasible and a catch-all category is required.

Rationale Asking annotators to provide rationale behind every annotation judgment can improve
the quality of the resulting data and yield additional information (Kutlu et al., 2020). However,
more experienced crowdworkers (who completed 20 or more tasks) were less likely to spend the
additional time to provide the rationale, when requested but not mandatory (Kutlu et al., 2020).
While asking for rationale does not appear feasible for a full-scale annotation process, requesting
annotators’ judgment rationale might help the data collection process at an earlier stage. A
more feasible application could involve requesting rationales in a potential “pre-test” setting of
an annotation task. Similar to conducting cognitive interviews (Beatty and Willis, 2007), where
participants express their full thought process in preparation for experiments or surveys, studies
could collect a smaller number of annotations with extensive rationale prior to the main data
collection. This approach helps identify problematic annotation behavior, check for consistent
interpretation of label categories, and assess the effectiveness of guidelines and examples. Insights
from this phase can inform improvements to task design, much like in responsive survey design
(Groves and Heeringa, 2006).

Guidelines Another component of an annotation task that can potentially bias or anchor the
subsequent annotation process are the initial annotation guidelines or tutorials. Guidelines repre-
sent an essential, yet often resource-intensive, component of the annotation design process within
a theoretical framework (Fort, 2016). These guidelines can exert significant leverage because many
annotators read the same guidelines that task designers construct only once, and similar guide-
lines often apply across multiple annotation tasks. When constructing task tutorials, requesters
must make important decisions such as the number and selection of examples while balancing the
degree of leeway they give to annotators. Empirical results show that using annotation guidelines
improves the quality of annotated data (Nédellec et al., 2006). Additionally, the way task design-
ers formulate these instructions influences annotations and annotator bias (Thorn Jakobsen et al.,
2022).
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Order The order in which instances are presented to annotators matters for two key reasons.
First, previously perceived information influences the perception of current content, which aligns
with the theory of contrast and assimilation (Bless and Schwarz, 2010). For example, annotators
labeled tweets as less hateful when they saw them after a more hateful tweet, compared to the
same tweet that followed a less hateful one. This pattern provides initial evidence for a contrast
effect (Beck et al., 2022). A contrast effect means that annotators perceive an instance as more
dissimilar to the previously annotated instance(s). As a result, their judgments depend heavily
on the already seen data (Bless and Schwarz, 2010).

The second ordering effect works independently of content but relates to exposure over time,
suggesting that annotation behavior changes as a task progresses, for example due to fatigue
or learning effects. Annotators became less likely to flag tweets as hateful or offensive as the
annotation task went on (Beck et al., 2024).

Therefore, annotation items should be presented in random order to minimize bias that order
effects introduce. While random ordering represents a best practice for many applications, it could
potentially be problematic for non-random ordering approaches like Active Learning (AL). AL
describes an ML approach where the model predicts which instance’s annotation would currently
provide the model with the greatest benefit in terms of model performance (Settles, 2009). This
purposeful ordering (by the model) could foster unwanted order effects. However, AL generally
offers multiple benefits, such as reducing annotation costs. Therefore, we must weigh the expected
bias that non-random ordering introduces against the anticipated AL benefits (Zhang et al., 2022).
Additionally, we need to assess the ordering of multiple different tasks empirically. If annotators
must make two annotations for one instance (for example, the brightness and the resolution of
an image), designers must decide on the task order. They can retrieve both annotations on one
screen, have brightness annotations followed by resolution annotations, or annotate each image
for brightness first, then immediately follow with that image’s resolution annotation.

Gamification Transforming an annotation task into a (somewhat enjoyable) game can positively
impact the annotation process (Chen et al., 2020; Goh and Lee, 2011; Mekler et al., 2013). First,
enjoyable tasks make recruitment easier, as crowdworkers are more likely to accept them (Martin
et al., 2014), and unpaid annotators, such as those in citizen science projects, may also prefer
engaging and pleasant tasks. More importantly, gamification has shown promising results for
linguistic annotation tasks in terms of annotation quantity and quality (Fort, 2016). When we
collect annotations in a gamified setting, this approach can increase annotation output per person
and overall data quality (Fort, 2016; Fort et al., 2018; Guillaume et al., 2016). In this context,
competitive elements such as high scores or leaderboards may serve as motivating factors for
players. However, setting up annotation games involves considerable financial and time costs
(Fort, 2016). Therefore, gamification appears feasible and justifiable only in select contexts, such
as repeated data collection phases.

Pre-Annotation Another design choice that shows promising results involves pre-annotating
instances using either an automated or a human annotator. This approach can reduce annotation
time and cost while maintaining quality. With this method, annotators do not view items in an
unlabeled state but instead see a suggested label, which they must confirm or reject. However,
while pre-annotations can accelerate the annotation process, they may also introduce bias by
making annotators disproportionately likely to accept the pre-assigned label (Fort and Sagot,
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2010; Fort and Claveau, 2012). These findings align with previous research that acknowledges
the potential to improve data quality and reduce resource use, while also cautioning against the
risk of bias (Dandapat et al., 2009; Mikulová et al., 2022; Rehbein et al., 2009). Other studies
report benefits of pre-annotations in facilitating the annotation process without compromising
data quality. Yet these studies often rely on inter-rater agreement as evaluation metric (Lingren
et al., 2012, 2014). This reliance potentially biases quality metrics when different annotators
encounter the same pre-annotated labels.

2.3.2. Data Composition

Thoughtful data composition decisions contribute to successful annotation projects and effective
ML models. How we construct and organize annotated datasets shapes model performance, gen-
eralizability, and reliability. This subsection explores two key questions that researchers have
addressed: how to effectively split annotated data into training and testing sets, and how many
annotations each instance requires for optimal results.

Train-test Split The train–test split represents a foundational step in ML (Hastie et al., 2009),
typically discussed in the context of ensuring fair and reliable model evaluation. However, we can
also examine it from a data annotation perspective. In a study where annotators were asked to
both generate new text examples and annotate them for training an NLP model, the researchers
concluded that the same individuals should not be involved in both the creation of training and
test data (Geva et al., 2019). In other words, the group responsible for generating and labeling
training data should be distinct from the group annotating the test set, to avoid potential biases
and overfitting. The main reason for this strict segregation of test and train data annotators is
to prevent one (or very few) annotators from creating large shares of both train and test data.
This overlap results in models that overfit (to that particular annotator’s data) (Geva et al.,
2019). Furthermore, another study evaluated models with extremely small datasets and costly
annotations (here: autism classification and neuroimaging). The study observed decreased model
accuracy that counterintuitively increased with larger sample sizes (Vabalas et al., 2019). Upon
further evaluation, the authors found that they the training data was not split into test and
train sets for models trained on extremely small datasets, a choice made to make the most use
of every (sparse) annotation. However, this approach produced largely overfitted models that
achieved high accuracy scores but did not generalize well outside the training data (Vabalas et al.,
2019). This finding demonstrates that overlap between annotators in training and test sets can
influence evaluation outcomes. While the study did not directly compare different train-test
splitting strategies, it highlights potential biases when the same individuals contribute to both
sets. High performance in controlled settings may not translate into real-world utility, which
highlights the importance of careful evaluation practices.

Annotations per Instance In addition to concerns about the train-test split, designing an anno-
tation task requires a decision about the number of annotations collected per instance (e.g., per
image or phrase). Specifically, designers must estimate whether an additional annotation for an
instance outweighs the benefit of annotating a new instance. This decision involves multiple pa-
rameters, including the availability of new instances, the costs per annotation of a (new) instance,
task complexity, annotation quality, and the desired model outcome.
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The trade-off between collecting an additional annotation versus a new instance depends on an-
notation quality and relative cost. When annotator quality is high, collecting a single label per
instance is the most efficient strategy. In contrast, low annotator quality suggests collecting mul-
tiple annotations per instance (Sheng et al., 2008). However, when researchers use metrics like
inter-annotator agreement to assess annotation quality, at least some instances need multiple
annotators to label them.

Evidence suggests that when adding a new instance is cheap and annotations are costly, collecting
an annotation for a new instance is more efficient than getting an additional annotation for
an already labeled instance (Khetan et al., 2018). This becomes especially important when a
model reaches a quality threshold. At this point, adding new annotated instances becomes most
important for increasing the model’s quality (Khetan et al., 2018). Other studies contradict this
finding, showing that collecting many labels per instance performs better than collecting few
labels across a larger set of instances (Gruber et al., 2024). This advantage stems mainly from
leveraging the communicated uncertainty in multiple-labeled instances rather than hiding it in
suboptimal aggregations such as majority votes. While this approach proves especially valuable
for subjective annotation tasks, where multiple annotations help quantify annotator disagreement
and uncertainty (Plank, 2022), uncertainty matters for objective tasks as well. Majority votes
from multiple labels might offer greater robustness than single labels but wastefully discard the
informational value of the uncertainy in the annotations (Gruber et al., 2023; Fleisig et al., 2023).

2.3.3. Monetary Incentives

In many cases, annotators receive payment for completing the task. This always applies to crowd-
workers, but other groups such as student assistants or domain experts may also receive compen-
sation. These groups sometimes earn payment specifically for each task or annotation session.
The structure of monetary incentives likely influences annotation behavior and, ultimately, data
and model quality. This subsection addresses annotator payment from two angles: the general
wage level and the more complex design of flexible payment schemes.

Payment Level When designing annotation tasks, researchers must determine an appropriate
wage level. Given a financial budget, higher wages result in fewer total annotations collected. How-
ever, insufficient wages also bring negative consequences that might offset the benefit of collecting
more annotations. Tasks with inappropriate pay struggle to attract crowdsourced annotators, es-
pecially when competing with other tasks. Furthermore, even if annotators complete an underpaid
task, Martin et al. (2014) observed that annotators generally consider exploiting (e.g., speeding
through) poorly paid tasks more acceptable than doing so with properly paid ones. When crowd-
workers have an approximate desired hourly wage in mind, they should be more likely to speed
through underpaid tasks. Beyond influencing individual behavior, wage levels may also impact
who chooses to participate. Without controlling for this selection effect, studies may conflate
wage-related behavior with differences in the participant pool. Despite this theoretical reasoning,
multiple studies conclude that higher wages do increase the quantity of work done (i.e., they fa-
cilitate recruitment) but not necessarily the quality of annotations (Auer et al., 2021; Buhrmester
et al., 2011; Litman et al., 2015; Rogstadius et al., 2011; Vaughan, 2018; Wu et al., 2014; Ye et al.,
2017).
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Payment Flexibility How annotators receive payment influences their approach to annotation
tasks. The first and most obvious decision involves choosing between a fixed payment per task
or label and payment per time. In theory, neither option is strictly better. Fixed payments per
task incentivize speeding and unthoughtful annotation, whereas payment per time incentivizes
taking needless amounts of time per task without necessarily guaranteeing higher quality. Similar
to many other paid tasks (such as responding to surveys), different strategies need assessment
and validation. A more fine-grained approach to annotation incentives involves implementing
performance-based bonus payments. This idea provides additional payments for high-quality
annotation to improve annotation behavior. However, previous findings have been mixed. While
one study observes improved data quality through performance-based payments (Ho et al., 2015),
others cannot confirm this relationship (Lou et al., 2013; Shaw et al., 2011; Yin et al., 2013). This
discrepancy may have multiple explanations, such as insufficient incentives relative to the required
additional effort or simply that annotators already completed the task to their best ability. Fair
compensation should ideally reflect annotators’ effort or account for instance difficulty; otherwise,
performance-based pay may unfairly penalize those assigned harder tasks.

While performance-based payments may sound promising for improving data quality, estimating
annotator performance raises another fundamental problem. Without gold standard data available
(which the annotation process often generates), we can only measure performance using imperfect
indicators such as response time or agreement score with the majority label. If we knew param-
eters that perfectly measure annotator quality, the annotation would be obsolete. Ultimately,
reducing annotators’ leeway through incentives (or extreme guidelines) increases the degree to
which the resulting dataset depends on the task requester. Even though task requesters often
know the intended outcome, subjective annotation should aim to model disagreement between
human annotators and uncertainty in labels.

2.3.4. Data Requirements

When designing annotation tasks, researchers must determine the required number of annotators
and annotations through careful, data-driven planning. This process should ideally begin without
considering constraints such as budget or annotator availability. These constraints can be incor-
porated later to define a realistic strategy. While sample size requirements remain flexible and
may be adjusted, a priori estimations, such as power calculations, prove essential for a scientific
and data-driven approach to model training. In contrast, collecting data only until performance
plateaus or resources run out represents a suboptimal approach.

Required Sample Size Determining the optimal sample size for annotation projects requires
balancing performance gains against collection costs. Data collection approaches that repeatedly
predict the required sample size allow for flexible adjustments during annotation collection. We
can achieve this by parallelizing data collection and model training processes and modeling the
estimated performance curve (as measured by performance metrics, for example mean absolute
error). Previous work has established theoretical foundations on how performance curves can
help us estimate the value of individual data points in classifier models (Mukherjee et al., 2003).
Based on the observed trajectory of the performance curve, we can predict the added value of an
additional annotated data point and weigh it against the costs under the assumption of constant
annotation quality. According to Figueroa et al. (2012), the performance curve generally follows
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an “inverse power law” and modeling the learning curve is essential for finding the optimal sample
size. They describe the common process to collecting annotated data as starting with “an initial
number of samples in an ad hoc fashion to annotate data and train a model” (Figueroa et al.,
2012, p. 9). In other words, rather than using predefined sample sizes, practitioners often begin
with a small dataset and then gradually add more annotations if the model’s performance falls
short of the target. The authors argue that this strategy is “based on the vague but generally
correct belief that performance will improve with a large sample size” (Figueroa et al., 2012, p.
9). Although an additional data point is unlikely to decrease model performance, we still need to
weigh it against its costs. Therefore, the authors strongly advocate for modeling efforts and stress
that the final strategy also depends on the required model performance and annotation costs.
Active Learning could serve as an effective data collection framework to estimate the information
gained by an annotation and, thereby, minimize the required sample size. This adaptive approach
to sample size contrasts clearly with data collection processes in other applications, such as surveys
or experiments, where practitioners mostly derive the sample size a priori (for example through
power calculations). Additionally, increasing the sample size cannot resolve all data-related issues.
If design-driven bias affects all instances, it will persist regardless of the number of observations
(Gruber et al., 2023).

Required Positive Instances A slightly different approach to estimating the desired sample size
involves focusing on the required positive instances, for example the number of positive instances of
breast cancer on mammography results. Learning curves based on the number of positive instances
in large datasets with very low positive rates (such as melanoma or other rare medical conditions)
show that models can achieve high performance with relatively few positive examples (Richter and
Khoshgoftaar, 2020). This study examined four datasets with over one million observations each
and found that three required fewer than 2,500 positive instances to reach strong performance
levels. These findings underline that the number of positive instances may serve as a better
explanatory variable for model performance than the total sample size. The findings also suggest
inspecting learning curves to make an informed judgment on sample requirements. Multiclass
classification tasks add another layer of complexity to estimating sample size requirements from
the number of instances per class.

Required Number of Annotators In addition to the previously discussed (demographic) distri-
bution of annotators, an insufficient number of annotators may impact data and model quality.
This issue affects annotation quality at two levels: individual instances benefit from multiple anno-
tations, similar to seeking opinions from multiple doctors, and the overall dataset suffers when too
few annotators dominate the collection process. Annotator constraints such as availability, costs,
and quality should be weighed against the associated benefits to help task requesters estimate a
target number of total annotators. In some domains, practitioners have already developed best
practices, such as utilizing independent double coding followed by expert adjudication for occupa-
tion coding (Biemer and Caspar, 1994). The need to consider the number of annotators becomes
clear from findings that, in many cases, a small number of annotators account for a dispropor-
tionately large share of the annotations (Geva et al., 2019). For example, in the Multi-Genre
Natural Language Inference (MNLI) dataset, an eighth of the annotators produced around 90%
of the total annotations. Since annotations nest within annotators (similar to survey interview
responses nested within interviewers), allowing these large shares of annotations per individual
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provides excessive leverage to single annotators and makes the training data prone to bias. Evi-
dence supports this assumption: adding an annotator identifier as a model feature increased model
performance across three of four examined datasets. Additionally, the clear individual component
of annotations became evident when models trained to predict annotators based on their anno-
tations performed well in the study. Furthermore, when annotators created new examples (to be
annotated), a single-annotator trained model generalized worse to the test data of other annota-
tors (Geva et al., 2019). These findings demonstrate that very small numbers of annotators or
large shares of annotations per individual can bring unwanted consequences, especially in sub-
jective tasks. Despite these risks, this overreliance is a frequently observed pattern (Kirk et al.,
2023). While, especially with difficult or domain-specific tasks, the potential annotator pool is
often small, analysts should at least evaluate the share of the total variability in the labels ex-
plained by the annotator IDs. Adding more annotators decreases each individual’s impact on the
model and may reduce the risk of a biased training dataset.

2.4. Automation

Since AI became widely adopted, particularly general-purpose language models, the field of data
annotation has encountered a fundamental new question: to what extent can we automate an-
notation processes? Traditionally, annotation has relied heavily on human annotators, with au-
tomation limited to highly specific domains or requiring extensive pre-training. However, the
general-purpose capabilities, low cost, and broad accessibility of modern language models have
significantly transformed the annotation landscape.

Automated annotation is now feasible across nearly all data modalities, offering a fast and cost-
effective alternative to manual efforts. Nonetheless, this shift also introduces new challenges.
Among them are novel sources of bias that may be even less transparent and more difficult to
interpret than human cognitive biases in annotation. Understanding and managing these risks
remains critical, especially given the extremely rapid pace of technological advances.

This section explores recent developments in the field of annotation, focusing on both the oppor-
tunities and limitations of automated approaches. It also examines hybrid models, where human
and AI annotators work collaboratively.

2.4.1. Automated Annotation

Opportunities Following the rapid rise in popularity of AI and language models, efforts quickly
emerged to replace tasks traditionally carried out by humans with AI-based solutions, including in
data annotation. Automated annotation has since demonstrated promising results across a range
of domains and data modalities. These systems generate annotations that are often faster and
cheaper, while maintaining comparable, or in some cases superior, quality to human annotations
(Ding et al., 2023; Gilardi et al., 2023; Huang et al., 2023; Kuzman et al., 2023; Toney-Wails et al.,
2024; Törnberg, 2023; Yu et al., 2024).

Within a relatively short period, general-purpose models have become a viable alternative to hu-
man annotators, particularly for tasks that demand lower levels of domain expertise and that
practitioners often assign to less experienced annotators. In addition, as discussed in the section
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on human annotation strategies, achieving human-level annotation quality may not always be nec-
essary if the increased volume of annotations can compensate for the loss in individual annotation
quality.

Challenges While automated annotation shows promising potential and often achieves results
comparable to human annotation, it also introduces a wide range of challenges. Many of these
remain poorly understood, and others may not yet be known or identified. Certain sources of
bias and reductions in data quality may appear familiar and therefore easier to address, as they
resemble known issues from human annotation processes. For instance, few-shot prompting uses
examples for AI models, which resembles the example instances provided in human annotation
guidelines. AI systems could also react to changes in task structure, such as the order in which
instances are presented. Task complexity or burden, such as dealing with very long input doc-
uments, can influence data quality in ways that mirror human annotator fatigue. Even though
these systems are not human, their exhibition of recognizable behavioral patterns makes certain
sources of bias easier to detect. One example is positional bias – a systematic tendency to favor
label options at certain positions, such as selecting the first option more frequently (Dominguez-
Olmedo et al., 2024). Another example is the strong dependence on specific tasks and datasets
when evaluating annotator quality, which complicates general assessments (Pangakis et al., 2023).
In contrast, other challenges show less similarity to human annotation and therefore require new
strategies. Issues such as the phrasing of prompts, the structure of the input context, the choice
of sampling parameters, and the selection of specific model variants are all unique to automated
systems (Pangakis and Wolken, 2025). Furthermore, it is not clear whether repeated annotations,
possibly from different models, are necessary to ensure reliability (Egami et al., 2024). Similarly,
determining whether certain instances in the annotation dataset were part of an LLM’s original
training data often proves difficult or impossible. Additional complications may arise from subtle
and less visible factors, for example a model’s inability to handle images with specific color distri-
butions or resolutions. These issues affect most annotation tasks, but more fundamental concerns
about automation emerge in the context of subjective annotation. Automated tasks that require
personal judgment present unique challenges. For example, when assessing the trustworthiness
of an individual or detecting hate speech in a piece of text, no clear answer exists regarding
whose values and opinions the model reflects. Additionally, automated annotations can replicate
problematic patterns and introduce systematic errors in subjective tasks. This behavior further
reinforces concerns about their suitability and trustworthiness in contexts that rely on nuanced
human judgment (Das et al., 2024; Felkner et al., 2024). Some emerging research has attempted
to assign “personas” when prompting language models for use in annotation or prediction tasks,
such as elections (Hu and Collier, 2024; von der Heyde et al., 2024). However, the foundational
question of whether automated systems can legitimately represent subjective human judgment
remains unresolved and requires resolution before widespread use of such systems in sensitive
domains.

2.4.2. Human-AI Collaborative Annotation

Designing collaborative annotation workflows with human and automated annotators follows log-
ically from the respective capabilities and limitations of both groups. Automated annotators can
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generate annotations at low cost, with high speed, and at scale. Human annotators, in con-
trast, are well suited for tasks requiring domain-specific expertise and are represent subjective
perspectives better than language models.

Opportunities Many studies propose hybrid annotation frameworks that emphasize the com-
plementary strengths of humans and AI while mitigating their respective weaknesses (Gligorić
et al., 2024; Li et al., 2023; Li, 2024; Wang et al., 2024). These studies often report promising
outcomes. Hybrid annotation setups can accelerate the annotation process (Dreizin et al., 2023),
reduce the workload for human annotators (van der Wal et al., 2021), enhance low-quality human
annotations (Vădineanu et al., 2023), or lower the overall cost of annotation efforts (Beck et al.,
2025b).

Challenges Despite these promising indications, interactive collaborative setups may introduce
new threats to annotation quality. These risks add to the known challenges associated with both
human and automated annotation. Because humans remain part of the loop in partially auto-
mated setups, we must again consider the full range of human biases. This becomes especially
relevant when annotators interact with or respond to suggestions made by an AI system. Human
annotators may over-rely on AI-generated annotations, a phenomenon called automation bias in
the context of ADM. Alternatively they may display the opposite tendency, known as algorithmic
aversion. Empirical evidence shows that automated pre-annotations can anchor human anno-
tators, particularly under time constraints (Rastogi et al., 2022). Human-AI interactions can
exacerbate annotation bias, with stronger effects than in human-human interactions (Glickman
and Sharot, 2024). HCI and ADM research provide a growing body of transferable insights that
explore methods for mitigating bias and improving collaborative dynamics (Dimara et al., 2019;
Liu et al., 2024). However, within the domain of annotation research, investigations into such
collaborative setups are still at an early stage. Additional forms of bias likely go unidentified and
require systematic study.

2.5. Conclusion

2.5.1. Summary

In this background chapter, I outlined how various features and decisions within the annotation
process can impact data and with that ML model quality. I structured this discussion around
three dimensions: First, I discussed potentially biasing factors on the annotator side, such as
demographic characteristics (for example, first language) and behavioral tendencies (such as mis-
reporting). Second, I addressed strategic data collection decisions – from task design to data
requirements – and their empirical evaluation. Finally, I examined the challenges and opportu-
nities associated with the automation of annotation. This overview illustrates the complexity of
working with annotated data and shows how both annotator-related and procedural factors can
influence data quality, while pointing to possible ways to address them.
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2.5.2. Contribution

While reviewing existing work and broader considerations, several gaps in the literature become
evident and warrant attention. The articles in this dissertation each address open research ques-
tions, that aim to close specific gaps in the annotation literature.

Article 1 and Article 2 address a theoretical and methodological gap by applying concepts from
survey methodology to the study of annotation. The articles answer the question of how sensi-
tive human annotation is to small variations in task design and whether principles from survey
methodology can be meaningfully applied to annotation tasks. This interdisciplinary transfer
offers valuable insights into improving and understanding human annotation.

Article 3 addresses both a methodological and a substantive gap. The article explores how well
different groups of annotators can perform an expert-level task. It also examines how quality
relates to cost, and what pathways exist for partial automation. This study represents the first
comprehensive comparison of multiple human and automated annotators for the same annotation
task in remote sensing image classification. This domain presents unique annotation challenges
due to the specialized domain knowledge required and the visual complexity of satellite imagery,
which makes this comparative study particularly relevant.

Article 4 advances annotation practice by implementing a sequential pipeline that integrates auto-
mated and human annotators to reduce the demand on domain experts. It addresses the question
of how LLMs can be effectively incorporated into a PDF-document annotation pipeline for an ex-
pert task, and what improvements are necessary to enhance such workflows. Moreover, the article
provides a detailed account of the process, publishes the associated data, and aims to support the
development of practically applicable annotation pipelines.

Article 5 unifies perspectives from HCI, ADM, and survey research to investigate bias in human-
AI collaboration. The article explores how human annotators respond to AI-generated pre-
annotations and how this interaction can introduce or amplify annotation bias. Through this
approach, it addresses a timely issue in the context of annotation and automation, enabled by
strong interdisciplinary theoretical foundations.
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Bias in the Loop: How Humans Respond to AI-Generated Pre-Annotations
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Annotation workflows are increasingly supported by artificial intelligence (AI)-generated pre-annotations to accelerate the process.
However, these automated annotations can trigger cognitive biases that affect data quality. This study investigates how task design
and annotator characteristics shape human responses to AI-generated pre-annotations. A Wizard of Oz-style experiment with
crowdworkers performing emissions data annotation manipulated three factors: (1) pre-annotation quality (all correct or incorrect in
the first three screens), (2) task burden (requiring or not requiring corrections), and (3) financial incentives via performance-based
payments. Demographics, attitudes toward AI, and behavioral paradata were also collected. Performance was assessed using four
metrics: accuracy, correction activity, overcorrection, and undercorrection. Results show that requiring corrections for incorrect
pre-annotations reduced annotation activity and increased undercorrections. Financial incentives and early pre-annotation errors
had no consistent effect on performance. Longer task engagement was linked to higher accuracy but also more overcorrections.
Annotators more skeptical of AI were significantly more accurate, mainly due to lower undercorrection rates. These findings suggest
that annotator characteristics, beyond standard demographics, significantly affect interactions with AI pre-annotations. Skepticism
toward AI promotes more critical and accurate behavior. The results emphasize the importance of thoughtful task design: annotation
pipelines combining AI and human input must consider how effort, incentives, and individual attitudes impact data quality. Even
for objective annotation tasks, selecting diverse annotator samples and measuring relevant psychological traits can reduce bias and
improve human-AI collaboration outcomes.
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1 Introduction

The success of artificial intelligence (AI) models relies on high-quality annotated data for training, evaluation, and
fine-tuning. Even large general-purpose models benefit from targeted fine-tuning to improve performance in specific
domains or tasks. However, the landscape of data annotation has changed with the emergence of large language models
(LLMs) capable of generating annotations at very low cost. Yet, LLM-generated annotations are imperfect. They are
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prone to largely unknown and understudied inconsistencies and biases, making them unsuitable as standalone labels
for high-stakes applications. This challenge raises the need for a resource-efficient and scalable approach that combines
the advantages of human and automated annotators while maintaining high data quality.

One promising strategy is to rely on LLM-generated pre-annotations (PA), validating only a selected portion through
a human annotator. This setup can take various forms, ranging from expert annotators to crowdworkers, and from
randomly selecting annotation instances to prioritizing the most ambiguous or challenging ones [5, 28, 31]. Nevertheless,
a common challenge across all approaches remains: human annotators are inherently prone to cognitive bias when
interpreting information. Existing research around pre-annotations has largely neglected this danger of cognitive bias
and focused on the time and cost saving aspect. However, other fields offer a rich body of literature on cognitive bias
and bias mitigation strategies, which can be transferred to better understand biases in LLM-generated pre-annotations
and how they might be addressed [12, 45, 57]. Pre-annotations can be approached through theoretical frameworks
emerged from algorithmic decision-making (ADM), survey methodology or human-computer interaction (HCI) research.
Importantly, Lyberg et al. [38] present a theoretical framework that outlines how human decision-making is shaped in
a task called ”dependent verification” (DV), which closely resembles the evaluation of pre-annotations. Within this
framework, they propose four principles that explain psychosocial mechanisms in DV that can lead to systematic errors.
These principles highlight a tendency not to correct all errors or to confirm existing information due to beliefs held
about that information, phenomena we refer to collectively as confirmation bias [42, 45]. Building on this theory, we
derive a set of hypotheses that guide our investigation into cognitive biases in human adjudication of pre-annotations.

In this study, we use a Wizard of Oz to test theoretical principles to understand crowdworkers’ behavior when
provided with pre-annotations. More precisely, we examine how confirmation bias arises and how manipulations of the
incentive and workload structure, as well as the human annotator’s beliefs about automation and AI affect these biases.
Additionally, we closely investigate bias patterns conditioned on demographic information, annotation task device, and
response time. We contribute to the discussion about LLM-generated annotations by identifying sources and drivers of
bias and experimenting with practical solutions.

The remainder of the paper is structured as follows: First, we discuss related work, from which we derive and
operationalize our hypotheses. Then, we illustrate our data, data collection and analytical methods followed by a
presentation of the results. Ultimately, we discuss our findings, limitations and directions for future research.

2 Related Work

Human perception is influenced by a complex interplay of factors, including previously held beliefs and initial im-
pressions. First impressions can significantly shape our perceptions and are often resistant to change, even when
confronted with new information [22, 48, 63]. This phenomenon is closely linked to the well-established concept of
confirmation bias, where individuals tend to favor information that aligns with their existing beliefs while disregarding
or downplaying contradictory evidence [42, 45]. However, it is possible to mitigate this bias, and studies have explored
strategies to avoid the confirmation trap by introducing specific stimuli or cognitive interventions [8, 50, 51, 62, 63].

2.1 Human Perception of Automated Decision-Making

Cognitive biases that shape human perception and decision-making also extend to automated decision-making (ADM).
The way individuals judge algorithmic versus human decisions has been widely studied, yet the evidence remains mixed.
A recurring theme is algorithmic aversion, where individuals tend to distrust AI-generated decisions and instead
prefer decisions made by humans – either simply because they are made by humans [40], or due to a general skepticism
Manuscript submitted to ACM
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toward automation [60]. This aversion is influenced by factors such as knowledge about AI and task difficulty [27]
and algorithmic transparency [29]. It can be reduced over time as people learn about an algorithm’s performance [57].
Notably, people become more averse to algorithms after witnessing them make mistakes, even when the algorithm
outperforms human decision-makers overall [11] and confidence is lost more quickly [29].

Other studies, however, find the opposite, that individuals favor automated decisions over human ones [9] and tend to
over-rely on AI recommendations [21, 46]. They name this tendency automation bias. This effect is particularly strong
when an algorithm has previously demonstrated superior performance [54]. When system strengths are encountered
before weaknesses, automation bias skews user reliance and error rates [43]. The balance between algorithmic aversion
and overreliance is shaped by multiple factors, including task difficulty [27], background knowledge of AI [21, 27], and
demographics and psychological traits, including personality and familiarity with AI [39].

2.2 Pre-annotations - A special case of ADM

A significant shift in annotation practices is occurring with the rise of LLMs, which are increasingly used to generate
automated annotations. For instance, GPT-based models can produce high-quality satellite image annotations [5].
However, automated annotations pose risks, particularly due to undetected bias, making sole reliance on such methods
problematic. In contrast to human annotators, whose cognitive biases have been the subject of extensive research across
disciplines, automated methods are still poorly understood in this regard. As a result, they are more likely to reproduce
and reinforce existing, often undesirable, biases present in their training data [10, 16].

A promising, efficient, and scalable alternative to fully automated annotations is human validation of automated pre-
annotations, where an AI-generated label is reviewed and, if necessary, corrected by a human. Automated pre-annotation
can be considered a special case of an algorithmic decision that requires human judgment. However, this process differs
from traditional ADM in several ways: (1) it is generally less cognitively demanding, as many pre-annotated instances
are relatively straightforward and involve limited subjective judgment; (2) it is less consequential, since annotation
decisions typically involve lower stakes than those in broader ADM contexts; and (3) the suggestions are clearly framed
as pre-annotations, with human annotators explicitly aware that they can override the model’s output.

Yet, despite these advantages, traditional sources of annotation bias remain relevant. Human judgment continues
to be influenced by factors such as task structure (e.g., screen design and order effects), annotator demographics, and
incentive structures [1, 3, 4, 15, 25, 30, 52, 53]. In addition to these established influences, hybrid annotation setups
introduce new risks that arise specifically from the presence of automated suggestions. Annotators may undercorrect by
overlooking mistakes, or overcorrect by unnecessarily changing correct suggestions. Research into the quality of data
collected through human review of pre-annotations is scarce. While pre-annotations can reduce annotation time and
costs [41], their effect on data quality and bias mitigation is underexplored. Some studies suggest that pre-annotations
maintain high data quality, but these conclusions often rely on inter-rater agreement [35, 36], which may overestimate
quality when multiple annotators are influenced by the same pre-annotations. Additionally, confirmation bias may
lead annotators to accept suggestions without critical evaluation [17]. Together, these findings underscore a broader
concern: while pre-annotations may improve efficiency, they can also introduce or reinforce biases.

2.3 Human-Computer Interaction

However, research relevant to this study extends beyond automated pre-annotations to a wide range of cooperative and
interactive efforts between humans and automated agents. Numerous sources of bias have been empirically identified
in HCI, many of which are not limited to interactions with large language models. This has become a prominent topic,

Manuscript submitted to ACM

7. Bias in the Loop: How Humans Respond to AI-Generated Pre-Annotations

42



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Beck et al.

with significant momentum in recent years. On the one hand, promising results have been observed across various tasks,
including text evaluation and annotation, as well as medical information extraction [33, 34, 58]. On the other hand,
interacting with biased AI algorithms has been shown to amplify human biases, and research suggests that human-AI
interactions can exacerbate biases more than human-human interactions [20]. Anchoring bias – the tendency to rely
too heavily on an initial suggestion – increases in human-AI collaboration when decision-making time is limited [49].
In addition, humans often fail to recognize gender bias in robots trained on human-labeled data [24], highlighting the
difficulty of detecting and correcting biases in AI-assisted systems. The scope of HCI research extends well beyond
pre-annotation scenarios, offering valuable insights into how biases can emerge and influence human behavior in
AI-assisted annotation workflows.

2.4 Theory from Dependent Verification

Since cognitive bias in pre-annotations remains largely unexplored in empirical research, the theoretical framework
necessary to understand its impact can be borrowed from other disciplines. A framework developed for dependent
verification in the context of coding survey responses [38] is especially relevant. Building on foundational work from
social psychology, this framework outlines four principles that can lead to erroneous perception of a pre-annotator and,
consequently, biased decision-making:

• Principle 1: The human striving to reduce the cognitive working capacity – People tend to minimize
mental effort, which may lead them to accept pre-annotations without thorough evaluation.

• Principle 2: Decisions based on heuristics – Rather than carefully assessing each case, individuals rely on
mental shortcuts, increasing the likelihood of systematic errors.

• Principle 3: Psychosocial mechanisms such as liking or similarity can overrule cognitive reasoning –
Factors like familiarity, perceived competence, or implicit trust in a source can influence how pre-annotations
are accepted or modified.

• Principle 4: Humans expecting logic rather than randomness in the system – Individuals assume that pre-
annotations follow a structured pattern, leading to undue reliance on the system and result in undercorrection,
even when errors are present.

These principles are highly transferable to pre-annotation tasks. However, they have yet to be empirically and experi-
mentally tested in this specific context, highlighting a crucial research gap.

2.5 Possible Solutions

Approaches to mitigating bias often focus on automated solutions, such as in-process adjustments [19, 23] or post-
processing and algorithmic refinements [18, 66]. However, there are also efforts on the human side, exploring ways to
improve collaboration system design [12, 37].

In practical applications, particularly when working with crowdsourced labels, research has examined how incentive
structures influence bias and motivation. Some studies suggest that performance-based payments (PBP) models can
increase crowdworker engagement [26], while others find no such effect [55, 65]. Higher fixed payments do not
consistently lead to improved label quality [2, 64], and task characteristics moderate these effects [61]. Overall, the
evidence remains mixed, and PBP remains an underexplored strategy in bias mitigation.
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Bias in the Loop 5

3 Hypotheses

Following the discussion in the previous section, we draw on literature from social psychology, survey methodol-
ogy, HCI, and ADM to formulate testable hypotheses on how confirmation bias influences human adjudication of
automated pre-annotations. We translate the principles in Lyberg et al. [38] into hypotheses. Our performance met-
rics relate to accuracy, undercorrection, and overcorrection, examining key drivers andmediators of assigned corrections.

Principle 1: The human striving to reduce the cognitive working capacity
According to this principle, when the workload is equal across label options, no category should be favored over
another. However, it is common for certain classes to come with an additional burden, such as providing a justification
or answering a follow-up question. Human annotators are likely to recognize and adapt to this pattern, potentially
favoring the class that reduces their workload. This kind of misreporting behavior is well known in survey research
[13, 14, 32], and some evidence also exists for annotation tasks [7]. For these reasons, we formulate:
H1: An increase in the workload associated with correcting a pre-annotation leads to fewer corrections.

Principle 2: Decisions based on heuristics
The heuristic here is straightforward: the annotator’s first impression is what matters. Since attention is generally
assumed to be greatest at the beginning of a task [56], we hypothesize that the accuracy of the pre-annotations in
the first three instances (out of ten) shapes participants’ beliefs about the overall quality. These initial screens are
intended to strongly influence any pre-existing heuristics or assumptions about the reliability of the pre-annotations.
Repetition reinforces opinion formation, and a three-fold repetition has been shown to significantly impact this process
[59]. Additionally, similar to a related Human-Robot Interaction context, we expect competence perception to develop
fast and relatively resistant to change [47]. Therefore, we introduce strong tendencies in the first three screens and
formulate:
H2: Displaying three incorrect vs. three correct pre-annotations in the first three instances affects the rates
of undercorrections and overcorrections in subsequent instances.

Principle 3: Psychosocial mechanisms such as liking or similarity can overrule cognitive reasoning
According to Principle 3, human decisions and perceptions are shaped by their beliefs and attitudes towards the
information and the source of the information. In the context of AI-generated content, individuals’ attitudes about AI
and automation are likely relevant. Therefore, we formulate:
H3: The human annotator‘s attitudes towards AI and automation affect accuracy and correction rates

Principle 4: Humans expect logic rather than randomness in the system
No testable hypothesis is derived from this principle, as it reflects a general cognitive tendency rather than a directly
manipulable condition in our experimental design. While it may help explain undercorrections, such behavior alone
does not confirm that this mechanism is at play. Moreover, within the scope of this study, we cannot directly observe
whether annotators assume a logical pattern in the system, nor can we measure such expectations explicitly. Building
on previous work in HCI, we operationalize and test an approach aimed at altering the monetary incentives of human
annotators to mitigate the cognitive biases outlined in Principles 1-4:
H4: A performance-based bonus payment mitigates cognitive shortcutting and leads to higher annotation
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accuracy.
All hypotheses and the study’s approach were preregistered via the Open Science Framework (OSF).

4 Data and Methods

To test these four hypotheses, we conduct a Wizard of Oz user study using a factorial design, ensuring a high degree of
control and enabling detailed measurement of the underlying patterns. The task involved extracting CO2 emission
values from tables found in company reports – an applied, real-world annotation scenario. A large sample of annotators
completed this task under varying experimental conditions.

4.1 Data Collection

We collect annotations with crowdworking participants via Prolific in two steps. First, we fielded a survey about
attitudes towards automation and AI. We use a six-item scale developed by [44] to measure the individual’s attitudes
towards AI and automation. Each question uses a seven point Likert-scale and we average responses over the six
items. Survey respondents were required to be US residents and we requested a ”representative” sample via Prolific,
regarding age gender and ethnicity. The information published alongside the dataset used for this task, detailed in the
next section and in [6], allowed us to estimate a design effect based on reported non-expert table annotations, which we
used to conduct power calculations. To account for this design effect, the intended study required a sample size of 2,750
annotators. Anticipating some attrition, we admitted 3,200 crowdworkers to the survey, resulting in 3,187 complete
cases.

Second, we created eight balanced strata of the survey respondents with respect to age, gender and ethnicity, variables
provided by Prolific. These eight groups are then each invited to participate in one of the 23 = 8 factorial experimental
conditions. All 3,187 survey respondents were invited to the annotation task, from which up to 2,760 would have been
admitted. We sent invitations to the annotation task one week after the close of the AI survey, to reduce the risk of
contamination. This procedure of a ”seemingly unrelated” survey is commonly used in survey practices. The median
number of previously approved tasks on Prolific was 523 across our annotators, hence it is likely that after one week
the automation is not salient anymore for most of the annotators.

Ultimately, 1,230 of the 3,187 invited survey respondents completed the annotation task, resulting in a response
rate of 39%. To reach the required sample size and with that statistical power, we admitted additional annotators from
Prolific who had not completed the survey (all of whom were US residents). The final sample contains 2,784 complete
cases. Following the Prolific payment guidelines, the respondents were paid 0.75 GBP for the survey and 1.95 GBP for
the annotation task.

4.2 Annotation Task

The annotation task involved extracting greenhouse gas (GHG) emissions data from tables in company reports. We
choose this annotation task for multiple reasons:

(1) The availability of gold-standard labels, collected through a two-step expert annotation process [6], provides a
reliable ground truth for evaluating annotation accuracy and bias.

(2) The task itself is well-defined: each instance has an objective true label, based on clear rules that do not rely on
subjective judgment or domain-specific knowledge.

(3) The task is sufficiently complex and burdensome to trigger cognitive shortcutting behavior.
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Bias in the Loop 7

The human annotators were shown a table which contains GHG emission values on each annotation screen (Appendix
7). In addition, we present them with a pre-annotation for a given emission scope and reporting year (e.g., Scope 1 in
2020). The pre-annotations were framed as AI-generated, broadly referring to automated systems rather than specifically
LLM-generated, and were in fact manually manipulated in a Wizard of Oz setup.

For more detail about the intial annotation procedure and rules as well as data and scripts, see [6]. Building on
this data, we drew a stratified sample from a larger pool of gold-standard annotated tables, based on the agreement
between non-expert annotators, whether either annotator was correct, and the type of label assigned to the instance.
We manipulate the erroneous pre-annotations to contain four different types of errors to represent common errors
observed in the LLM-generated annotations in [6]. Extracted emissions were incorrect due to one of the following: the
wrong reporting year, the wrong scope, a spelling mistake/hallucination or wrong by the definition rules that were
provided in the annotation tutorial and on the bottom of each screen. These errors were deliberately designed to mirror
those encountered in [6], allowing us to investigate where human annotators are most likely to struggle. The Wizard of
Oz design, in which the pre-annotations were manually crafted to simulate realistic automated annotations, enabled
precise control over both the type and positioning of errors. Figure 1 illustrates the process of data collection. An
example annotation screen is shown in Appendix 7.

After three tutorial instruction screens and two annotation examples, a negative and a positive one, all annotators
saw the same 10 emissions tables. From these, three were randomly selected and always presented within the first
three positions (in random order among themselves), while the remaining seven appeared afterward in a randomized
sequence. Randomized order was ensured, but the annotation tool did not record the specific sequence in which each
annotator viewed the screens. To test Hypothesis 2, we manipulated the pre-annotations of these first three tables as a
”treatment”: in one condition, all three were correctly pre-annotated; in the other, all three contained errors.
On each screen, the human annotators were shown an emission table alongwith a pre-annotation in the following format:

”The YEAR SCOPE emissions are VALUE, according to the AI. Is this correct?”

They were asked to judge whether the pre-annotation was correct or incorrect. As part of one experimental ma-
nipulation, annotators who selected “incorrect” were additionally required to provide a corrected value (see Appendix
7).

4.3 Experimental Conditions

The annotation task included three experimental manipulations, each with two levels, resulting in eight groups in a full
factorial design. Annotators were randomly assigned to one of these condition combinations, as illustrated in Figure 1:

(1) Asking for correct value if AI pre-annotation wrong: If the human annotator classifies a pre-annotation as
wrong they are asked vs. not asked for the correct value.

(2) Error rate in first 3 instances: The first three pre-annotations are all incorrect vs. all correct.
(3) Performance-based payment: For half of the annotators, a screen right before the start of the annotation

tool, offered a bonus payment of 0.75𝐺𝐵𝑃 for the top 10% of annotators, judged by accuracy (defined below) 1.

1Immediately after the annotation data collection, we identified the most accurate annotators and approved the bonus payments.
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Fig. 1. Overview of the data collection process and experimental conditions.

Ultimately, a rich variety of data is available for each participant: the gold-standard annotations from [6], the previously
collected attitudes on automation and AI, the demographic information from Prolific, the provided annotations, and
task-related paradata such as time spent on each screen.

4.4 Evaluation Methods

Each human annotator saw 𝑁 emission tables, each with a pre-annotation (PA). The annotator’s task is to correct
incorrect pre-annotations and leave correct pre-annotations unchanged. Thus, we define:

• 𝑁 - Number of instances (emission tables) annotated.
• 𝐶 - Number of correctly pre-annotated instances.
• 𝐼 - Number of incorrectly pre-annotated instances.
• 𝐶𝐶 - Number of correct PAs annotated as correct.
• 𝐶𝑂 - Number of correct PAs falsely annotated as incorrect (overcorrection).
• 𝐼𝐶 - Number of incorrect PAs annotated as incorrect.
• 𝐼𝑈 - Number of incorrect PAs annotated as correct (undercorrection).

Every completed instance is annotated as correct or incorrect, thus 𝑁 = 𝐶 + 𝐼 .

Performance Metrics

Accuracy. The accuracy measures the percentage of pre-annotations that were correctly handled:

Accuracy =
𝐶𝐶 + 𝐼𝐶

𝑁
=
𝐶𝐶 + 𝐼𝐶
𝐶 + 𝐼

. (1)

Overcorrection. Overcorrection occurs when the annotator indicates that a correct PA is not correct:

Overcorrection =
𝐶𝑂
𝐶

. (2)

Undercorrection. Undercorrection occurs when the annotator indicates that an incorrect PA is correct:

Undercorrection =
𝐼𝑈
𝐼
. (3)
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We can represent the annotator’s decisions in a 2 × 2 table as follows:

Annotator Decision True Class: Correct PA True Class: Incorrect PA

Annotate as correct 𝐶𝐶 (✓correct) 𝐼𝑈 (undercorrection)
Annotate as incorrect 𝐶𝑂 (overcorrection) 𝐼𝐶 (✓correct)

Table 1. Confusion Matrix for Annotator Performance

Since we deem the first three annotation screens, where the error rate is strongly manipulated to be either 0% or 100%,
as experimental treatments, we consider just the remaining seven annotations for the calculation of the annotator
performance metrics.

To test our four hypotheses, we regress our evaluation metrics on the experimental condition indicators, the individual
annotator information such as demographic information or their stances towards automation, as well as annotation
time. We run quasibinomial logistic regressions on the annotator level, that are well suited for modeling the accuracy
metrics ranging between 0 and 1 as dependent variables. Unlike standard binomial models, quasibinomial models
account for potential overdispersion, situations where the variability in the data exceeds what a standard binomial
model would expect. This makes them particularly well suited in settings where additional variability is expected due
to individual characteristics or experimental manipulations.

5 Results

This section is structured as follows: First, we address the hypotheses using descriptive analyses. We then examine
patterns based on annotation time and explore differences between types of pre-annotation errors. Finally, we present
regression models to gain a more detailed understanding of effects and interactions.

Fig. 2. Annotation performance metrics for annotators required vs. not required to correct wrong PAs
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5.1 Descriptive Results

Hypothesis 1
As hypothesized, requiring corrections for PAs annotated as incorrect resulted in significantly fewer corrections, more
undercorrections, and fewer overcorrections (Figure 2). Overall accuracy was significantly higher (68% vs 66%) when
corrections were required (𝑝 = 0.028).
Hypothesis 2
The accuracy of the AI pre-annotation in the first three screens did not influence the human annotations of the subsequent
seven pre-annotated emission tables (Figure 3). None of the performance metrics show meaningful differences in
magnitude or statistical significance. While there is a slight increase in overcorrection after encountering three initial
errors, this effect is minor and may be spurious. These findings provide strong evidence against H2, suggesting that
human annotators do not form a strong and lasting impression of the pre-annotator at the start of the task.

Fig. 3. Annotation performance metrics for annotators who saw 0 vs. 3 PA errors on the first three screens

Hypothesis 3
Figure 4 shows the four performance metrics subset by annotators’ AI attitudes score, split into quartiles. Individuals
with attitudes toward AI and automation in the lower two quartiles tend to correct AI-generated content more frequently
than the upper quartiles, which also leads to higher rates of overcorrection. Conversely, those with a more favorable
view of AI exhibit higher levels of undercorrection. Moreover, AI skeptics demonstrate greater overall accuracy, which
appears to be driven by their lower tendency to undercorrect, indicating that they are less likely to trust AI-generated
labels uncritically. The largest group, the annotators who did not participate in the initial survey, have similar accuracy,
correction, and undercorrection rates to the survey participants in the higher AI liking quartiles. This group serves as a
useful reference, as in typical annotation scenarios, where no prior survey is conducted, these are the annotators one
would encounter, with their individual attitudes remaining unknown.

Even in this objective annotation task, we find evidence that psychosocial factors, such as attitudes towards AI,
influence how annotators perceive and respond to pre-annotations. These individual-level characteristics are rarely
measured and go beyond commonly reported demographics like age or gender. While it is generally assumed that such
Manuscript submitted to ACM
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Fig. 4. Annotation performance metrics byQuartiles of AI Attitude Score

factors matter mainly for subjective tasks, our results show that even objective annotation outcomes depend on who
performs the task, not just the task design itself.
Hypothesis 4
The promise of PBP does not meaningfully impact our performance metrics (Figure 5).

Fig. 5. Annotation performance metrics for annotators offered vs. not offered a PBP

While we observe a slight increase in corrections (and consequently overcorrections) when the PBP is available,
the effect is too small to be meaningful. Notably, accuracy does not improve with the PBP, which could have several
explanations. It is possible that performance is constrained not by motivation or incentives but by the inherent difficulty
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of the task. Alternatively, the PBP used in this study (0.75𝐺𝐵𝑃 ) may have been too low, or annotators may not have
perceived it as realistically attainable (given that only the top 10% qualified).

While these interpretations remain speculative, the broader descriptive findings – such as the increased time spent
when corrections were required and the rejection of H2 – suggest that human annotators were already putting forth
their best effort, regardless of the PBP.
Response Time
Response time data can help shed light on how annotators engage with the task and whether timing patterns relate
to annotation quality. However, neither the time spent on the whole task or just on the guidelines is correlated with
accuracy (𝑟 < 0.04). While the average time spent on the first three screens is much higher (71 seconds) compared to
the average for the remaining tables (48 seconds), on average annotators spent the same amount of time on a screen
whether their assessment of the pre-annotation ended up being correct or incorrect (55 seconds). The same holds true
for incorrect versus correct pre-annotations where we find no difference in average time spent on the screen (54 vs
55 seconds). Appendix 8 shows the average accuracy for all tables in relation to the average time spent on the screen.
Two reports jump out with severely lower average accuracy. As the next paragraph will illustrate, these outliers are
likely explained by the conceptual difficulty of correctly interpreting the table and evaluating the pre-annotation. When
analyzing the overall trend without these two outliers, there is a slight negative relation between accuracy and time
spent on the screen.
Error Types
The built-in errors in the Wizard of Oz pre-annotation screens varied in nature. Figure 6 illustrates the differences
clearly.

Fig. 6. Annotation accuracy by pre-annotation error type

Spelling mistakes, such as confusing two digits, were most frequently corrected, 82% of the time. Slightly more
challenging, but still mostly corrected (around 77% of cases), were instances where the correct value was present in the
table but located in a different cell, corresponding to a different year or scope. In contrast, we observe a striking drop in
accuracy for screens where identifying the pre-annotation error required a conceptual understanding of the annotation
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rules (31%). This pattern also holds for the Blackberry table (not included in the figure), where the pre-annotation
was technically correct, but recognizing it as such required knowledge of market-based versus location-based Scope 2
emissions. Here, accuracy dropped to just 21%. These findings suggest that generalizable errors, like spelling mistakes
or shifted cells, are easier to detect and may not require domain expertise. However, the low correction rates for
conceptually challenging errors highlight the need for expert review in such cases, particularly when errors hinge on
rule interpretation or domain-specific knowledge.

5.2 Modeling Analysis

To corroborate our descriptive findings and uncover potential interactions or hidden patterns not visible in the descriptive
analysis, we estimated four quasibinomial logistic regression models. Table 2 presents the results, with one model for
each outcome metric. The models include the randomly assigned experimental conditions along with all corresponding
interaction effects. Additionally, we incorporate demographic variables sex, ethnicity, and age (grouped into three
categories), as well as the custom scale measuring attitudes toward AI and automation.

The interpretation of the experimental conditions appears somewhat ambiguous. For the correction condition, the
regression results confirm our descriptive findings: the condition that instructed participants to correct incorrect pre-
annotations—thus requiring more effort—led to significantly fewer corrections. However, accuracy remained unchanged,
as the reduced number of corrections was accompanied by a significantly lower rate of overcorrections. Neither the
first three screen designs nor the PBP condition show significant regression coefficients for any of the four annotation
performance metrics.

When examining the interaction effects of the experimental conditions, we find that participants who were asked
to correct pre-annotations and were offered a PBP incentive corrected significantly fewer pre-annotations. This was
accompanied by fewer overcorrections but more undercorrections. This outcome is somewhat difficult to interpret,
as we initially hypothesized that the PBP incentive would lead to either higher accuracy or increased activity. In this
case, however, the effect appears to be overshadowed by the additional effort required for performing corrections. In
contrast, the interaction effect involving the condition that displayed three errors on the initial screens resulted in a
significantly lower rate of undercorrection, seemingly driven by an overall increase in correction activity.

Additionally, we gain nuanced insights from variables we collected ourselves – specifically, annotators’ attitudes
toward AI and automation, as well as the time they spent on the task. The regression results reinforce our descriptive
findings regarding annotators’ self-reported attitudes toward AI and automation. A more favorable view of these
abstract concepts was associated with lower accuracy and fewer corrections, likely driven by a significantly higher
undercorrection rate. Notably, these patterns remain even after controlling for all other variables in the model.

Time spent on annotation (split into quartiles) was positively associated with accuracy, a higher number of corrections,
and a lower rate of undercorrection. Higher total annotation time was also linked to more overcorrections. One possible
explanation is that spending more time on a screen may lead annotators to perceive errors where none exist, or it
may reflect uncertainty—causing them to err on the side of caution and flag more potential mistakes. However, these
interpretations should be made with care.

Patterns based on demographic covariates are mixed. Male annotators showed a significantly higher accuracy rate
and a lower overcorrection rate. Annotators identifying as Black had lower rates of accuracy and correction, and a
higher undercorrection rate, when compared to the baseline group of Asian American annotators. A negative effect
on the number of corrections, and thus an increase in undercorrection, was also observed for annotators identifying
as “Other” or White, although these effects were not associated with significant changes in accuracy. In terms of
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Accuracy Correction rate OC rate UC rate
Cond.: PBP 0.016 0.095 0.094 −0.119

(0.052) (0.061) (0.068) (0.097)
Cond.: First 3 errors 0.016 0.011 −0.008 −0.033

(0.052) (0.061) (0.068) (0.096)
Cond.: Correction 0.049 −0.146* −0.239*** 0.106

(0.053) (0.061) (0.070) (0.096)
Cond.: PBP × Cond.: First 3 errors −0.061 −0.038 0.029 0.108

(0.074) (0.087) (0.096) (0.137)
Cond.: PBP × Cond.: Correction −0.040 −0.213* −0.226* 0.256+

(0.074) (0.086) (0.098) (0.135)
Cond.: First 3 errors × Cond.: Correction −0.068 −0.062 −0.003 0.127

(0.074) (0.086) (0.098) (0.135)
Cond.: PBP × Cond.: First 3 errors × Cond.: Correction 0.136 0.202+ 0.106 −0.337+

(0.104) (0.122) (0.139) (0.191)
AI Attitudes: Above or median (Ref.: Below median) −0.121** −0.200*** −0.117* 0.323***

(0.041) (0.047) (0.053) (0.075)
AI Attitudes: Missing −0.120*** −0.124** −0.020 0.246***

(0.036) (0.041) (0.047) (0.066)
Annotation Time: Q2 (Ref.: Q1) 0.273*** 0.316*** 0.086+ −0.551***

(0.037) (0.044) (0.050) (0.067)
Annotation Time: Q3 0.287*** 0.397*** 0.170*** −0.655***

(0.037) (0.044) (0.050) (0.069)
Annotation Time: Q4 0.281*** 0.386*** 0.165** −0.634***

(0.038) (0.045) (0.051) (0.069)
Sex: Male (Ref.: Female) 0.063* −0.008 −0.082* −0.049

(0.027) (0.031) (0.035) (0.049)
Sex: Other 0.107 0.064 −0.043 −0.161

(0.191) (0.223) (0.255) (0.346)
Ethnicity: Black (Ref.: Asian) −0.347*** −0.425*** −0.139+ 0.743***

(0.063) (0.073) (0.082) (0.116)
Ethnicity: White −0.099+ −0.143* −0.067 0.247*

(0.055) (0.064) (0.072) (0.104)
Ethnicity: Mixed −0.097 −0.123 −0.042 0.227+

(0.072) (0.084) (0.094) (0.135)
Ethnicity: Other −0.113 −0.249** −0.185+ 0.371*

(0.080) (0.092) (0.105) (0.147)
Ethnicity: Missing −0.136 0.020 0.173 0.115

(0.152) (0.180) (0.196) (0.289)
Age: 35-54 (Ref.: 18-34) 0.084** 0.136*** 0.078+ −0.214***

(0.030) (0.035) (0.040) (0.055)
Age: 55+ 0.058 0.079+ 0.034 −0.132+

(0.038) (0.044) (0.050) (0.069)
Age: Missing −0.592* −1.374*** −1.115* 1.599**

(0.294) (0.373) (0.441) (0.551)
(Intercept) 0.638*** 0.183* −0.516*** −0.775***

(0.073) (0.085) (0.095) (0.135)
Num.Obs. 2738 2738 2738 2738
RMSE 0.15 0.19 0.20 0.26
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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age, annotators aged 35–54 and 55+ corrected more screens and undercorrected less often compared to the baseline
group (ages 18–34). The 35–54 age group also showed a significantly higher accuracy rate. We also observed large and
significant coefficients for the ”Missing” age group; however, these results cannot be meaningfully interpreted due to
the small size of that subgroup.

6 Discussion

This study investigated how pre-annotation task designs and annotator characteristics influence cognitive biases
and, ultimately, human annotation performance. We employed a factorial experimental design, manipulating the
pre-annotator’s error rate, task burden (by requiring corrections), and task reward (via PBP), while also collecting
annotator-level characteristics and paradata. Notably, approximately half of the annotators had completed a survey
assessing their attitudes toward automation and AI one week prior to the annotation task.

We evaluated annotation time and accuracy both descriptively and through regression models. Our findings indicate
that annotation performance metrics were largely unaffected by the error rate in the first three screens or the presence
of PBP incentives. However, when corrections were required, annotators were less likely to revise pre-annotations–
suggesting that added effort reduced correction rates. This result replicates a robust finding in survey methods.
Moreover, annotators who expressed greater skepticism toward automation and AI were more accurate in adjudicating
pre-annotations, as they were less likely to overlook errors made by the automated system.

These findings offer insight into how task design and individual attitudes shape annotation behavior. The learnings
should be carefully contextualized and discussed.

The absence of performance improvements under the PBP condition and the lack of association between annotator
performance and the pre-annotation error rate in the initial screens suggest that crowdworkers were already exerting
considerable effort. Moreover, the rejection of Hypothesis 2 suggests that annotators were not overly influenced by the
first three screens and maintained consistent attention throughout the task. This interpretation is supported by several
observations: some annotators sent direct messages expressing intrinsic motivation, and the time spent per screen
was often higher than anticipated. Additionally, we observed table-specific differences in annotation accuracy. Such
variation indicates a low prevalence of unwanted straightlining or speeding behaviors, as those would have produced
uniform responses regardless of table content. For instance, the notably low accuracy on the Blackberry and JetBlue
tables likely reflects the genuine difficulty or ambiguity of those specific items.

We also found that requiring annotators to provide a corrected value led to a measurable reduction in correction
activity. If this mechanism is undesirable–for instance, if it discourages engagement with flawed pre-annotations–we
recommend decoupling the task: one group of annotators could be assigned to judge the correctness of pre-annotations,
while a separate group handles the correction of flagged cases. This would help ensure that annotator workload remains
independent of the pre-annotation’s assigned class, potentially mitigating effort-related biases. This result echos earlier
findings that collecting more than one piece of information on one screen of the labeling instrument affects data quality
[30].

Even in tasks that seem objective, like the one tested here, there are factors beyond standard demographics that
influence how people annotate. While it is still important to choose suitable annotators (for example, only trained
medical professionals should read X-ray images), other (normative) traits,such as attitudes, personal beliefs, or past
experiences, can also matter. The ideal approach would be to measure these attitudes in advance and choose a diverse
sample of annotators. However, this approach is not always feasible and we often do not know in advance what attitudes
are relevant. A second-best approach is to routinely collect data on annotator demographics and aim for a large and
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diverse group of annotators. Demographics may serve as proxy variables to capture differences in less visible traits that
are linked to observable characteristics. For example, if individuals who are skeptical of AI are more likely to detect
mistakes in AI-generated pre-annotations, this could become a problem. AI researchers, who are likely to hold more
positive attitudes toward AI, may undercorrect errors if they conduct annotations themselves. Importantly, our findings
suggest that disagreement between annotators and even low accuracy should not be dismissed as noise, but rather seen
as a potentially valuable signal of instance difficulty or ambiguity.

Beyond annotation behavior, our results have some important implications for the domain of (semi-)automated
extraction of GHG indicators, as examined in this study. Our findings show that even with pre-annotations and human
adjudication, substantive errors can go unnoticed. As a result, this may unintentionally favor companies that report
emissions in unclear, incomplete, or misleading ways.

These concerns, however, are not limited to AI skepticism or emissions data. Any domain or modality involving
human-AI collaborationmay be affected, each with its own challenges and relevant personal characteristics of annotators.

7 Limitations and Future Work

Some limitations of our study should be acknowledged. First, the task may not have been long enough to reveal the
full effects over time. Differences caused by the experimental manipulations, especially those driven by fatigue or
behavioral changes during a longer task, may not have become apparent. For example, the burden of providing a
required correction might be perceived as more demanding as the task progresses, potentially increasing the likelihood
of undercorrection. Second, correctly annotating the Blackberry report required a solid understanding of market-based
and location-based Scope 2 emissions. Annotators appeared to struggle with assigning the correct labels, highlighting
that not every annotator is suitable for every instance or even every task. As crowdworkers are unlikely to have the
required domain knowledge, using a different report for this study could have been more informative. This observation
connects to the issue of drawing generalizing conclusions from crowdworker studies. Patterns of motivation, bias, and
performance may differ substantially for researchers, student assistants, volunteers, or domain experts.

Another limitation is that we could not analyze order effects, because the annotation tool did not track the random
order in which tables were shown to each annotator. Previous work has shown that the order in which annotation
tasks appear impacts the annotations given [4]. Additionally, we were unable to include a baseline condition without
pre-annotations. It would have been valuable to understand how the annotation task would have played out without
the influence of pre-annotated suggestions.

All of the discussed findings and illustrated limitations tie into the broader question of how to optimally set up a
hybrid interactive pre-annotation pipeline. One possible setup could involve the use of LLMs in combination with
expert evaluations. While such a system might avoid issues like the very low accuracy observed on two specific screens,
it introduces new challenges. Experts are scarce, expensive, and their judgments often cover large portions of the data,
which raises concerns about scalability and overreliance. In general, controlled experiments with annotator groups that
are not crowdworkers could unravel how domain expertise, professional background, or institutional context relate to
annotation behavior and bias.

Future research should focus on developing strategies for interactive annotation workflows that effectively balance
the strengths and weaknesses of both human and automated annotators. This includes a deeper investigation into
sources of bias, both in automated pre-annotations and in human cognitive processes. If incentives like PBP fail to
improve outcomes, optimizing annotation quality will require attention to other key factors: the clarity and structure of
guidelines, the quality and relevance of examples, task and screen design, the composition of the annotator sample,
Manuscript submitted to ACM
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and the interpretability of the annotation classes. As an extension of this study, purposefully manipulated annotation
instances or attention checks could be placed throughout the task, not just at the beginning. This would allow researchers
to assess whether annotators can detect them and potentially adapt the task’s progression accordingly. Carefully designed
experiments will help advance the field and support the development of evidence-based recommendations for human–AI
collaborative annotation systems.
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Part V.

Concluding Remarks





Summary The quality of annotated data sets the upper bound for model performance; better
labels enable better models. In this dissertation, I took a “science of data” perspective to examine
how to improve data annotation and what factors impact its quality. Part II. demonstrated
that human annotation is highly sensitive to minor manipulations in task design and highlighted
the wide range of design choices involved, whether in task setup or in annotator selection and
deployment. Part III. showed how automation elements improve annotation by reducing the need
for expert involvement and by saving time and cost. I assessed how well partial automation fits into
annotation pipelines and how effectively it performs. Part IV. investigated whether collaborative
annotation workflows between humans and automated systems introduce new forms of bias. These
findings carry important implications for the field and for anyone conducting annotation work.

Acknowledging Sensitivity Understanding that annotators do not assign labels independently
of the data collection context has important implications for how annotation tasks should be
designed. Whether errors occur randomly or systematically, for example due to annotator charac-
teristics, several strategies can mitigate their impact. Many of these approaches are often feasible
to implement. Most importantly, before setting up data collection, one should take the time to
reflect on the task and its circumstances: What is the intended outcome of the annotation and
the downstream application? What is the degree of subjectivity involved? What are the options
regarding potential annotators? Can automation assist the process? Matching task requirements
to available resources is a crucial first step, yet one that people often undertake without sufficient
reflection. For instance, the degree of task subjectivity can inform whether one should minimize
annotator heterogeneity, through strict guidelines, or embrace it by collecting multiple labels per
instance. Moreover, annotation setups often allow for measuring potentially informative indi-
cators, such as annotator demographics, annotation time and order, or measures of uncertainty
and disagreement. Including such metrics can help identify unwanted imbalances, support post-
processing efforts, and strengthen claims regarding dataset quality and its suitability for reuse.
Other potentially helpful solutions, such as experimenting with alternative task versions, involv-
ing a large group of diverse annotators, or conducting a preliminary survey, prove often infeasible
in practice. This is understandable; however, when similar annotation tasks occur repeatedly, it
may be worthwhile to experiment with varied task designs and evaluate the resulting annotation
quality.

Automating Annotation In line with other research, I demonstrated that integrating elements of
automation into annotation workflows shows promise. I presented two examples of how automated
annotations can integrate into hybrid setups. Given the current landscape of annotation methods
and automation capabilities, hybrid approaches appear particularly well-suited, and their popu-
larity will likely increase. Current general-purpose models can already match the performance
of lower-quality annotation approaches in some cases, such as large-scale crowdsourcing. Auto-
mated labels often generate more quickly, at lower cost1, and with greater consistency and control.
However, in domains that require extensive subject-matter expertise, completely removing human
experts from the annotation pipeline requires great caution – if we consider it at all. At minimum,
human annotators should validate a subset of the automated annotations. This caution applies
even more strongly to subjective annotation tasks, where automated systems may not adequately

1Notably, the apparent cost-efficiency of LLMs does not account for their environmental impact. Training and
deploying such models require substantial computational resources, and their true cost is currently not reflected
in market prices.
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reflect human ambiguity, values, or opinions. We should be especially mindful of the influence we
grant to language models in shaping or reflecting societal norms and perspectives. Overreliance on
such systems poses risks, as they tend to reproduce unwanted patterns and may cause significant
harm when people trust them uncritically.

Human-AI Collaborative Annotation Combining human and automated annotators may serve
as a transitional solution, but it also holds potential as a lasting practice in annotation workflows.
However, we must remain aware that hybrid setups introduce new forms of bias, particularly
through human-AI interaction. The results indicated that even in an objective annotation task,
individuals’ general attitudes toward automation influenced human behavior, when reviewing AI-
generated pre-annotations. This observation highlights the need for further investigation to better
understand and improve these promising collaborative setups.

Flexible designs offer substantial potential to reduce the resource intensity of annotation data
collection. For example, an annotation task could always collect two independent labels per
instance, adding a third only if the initial annotators disagree. These flexible approaches are well-
suited to incorporate automated annotations, for example by using automation for easy-to-label
instances or to generate pre-annotations. Adaptive strategies help balance quality assurance with
efficiency, making annotation pipelines more scalable and cost-effective while maintaining high
quality.

Finding Balance The field of data annotation must find a balanced path between overemphasiz-
ing the omnipresence of errors and assuming that models can correct for all imperfections in the
data. While it is unrealistic to eliminate all biases during the training process, the mere presence
of bias in annotated data does not render it unusable. Simply calling out bias in every instance
does little to advance the field in practice, just as ignoring annotation bias is likely to cause models
to hit a performance ceiling in the long run. The field needs a synthesis of perspectives: the ML
engineering approach of “making it work” must be complemented by a “science of data” perspec-
tive – one that places data at the center of analysis, rather than treating it as a raw material to
be simply processed.

66



Contributing Articles

Beck, J., Eckman, S., Chew, R., and Kreuter, F. (2022). Improving Labeling Through Social
Science Insights: Results and Research Agenda. In Proceedings of HCI International 2022 –
Late Breaking Papers: Interacting with eXtended Reality and Artificial Intelligence, pages 245–
261.

Beck, J. (2023). Quality Aspects of Annotated Data – A Research Synthesis. AStA Wirtschafts-
und Sozialstatistisches Archiv, 17(3), 331–353.

Beck, J., Eckman, S., Ma, B., Chew, R., and Kreuter, F. (2024). Order Effects in Annotation
Tasks: Further Evidence of Annotation Sensitivity. In Proceedings of the 1st Workshop on
Uncertainty-Aware NLP (UncertaiNLP 2024), pages 81–86.
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