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1. Einleitung 

1.1 Entwicklung der Zahnheilkunde im digitalen Zeitalter 

Wie die „Sechste Deutsche Mundgesundheitsstudie“ (DMS • 6) zeigt, nahm die 

Kariesinzidenz innerhalb der deutschen Bevölkerung im Verlauf der letzten 

Mundgesundheitsstudien kontinuierlich ab. Die Karieserfahrung liegt laut ihr bei 

0,5 bis 17,6 Zähnen je nach Altersgruppe in Deutschland. Dennoch ist Karies 

nach wie vor eine weit verbreitete Erkrankung, insbesondere international. Neben 

dem Kariesrückgang durch etablierte zahnmedizinische Prophylaxe wurde au-

ßerdem eine reduzierte Anzahl an Zahnverlusten in allen Altersgruppen im Ver-

lauf der bisher durchgeführten Deutschen Mundgesundheitsstudien nachgewie-

sen.1 

Neben Karies existieren andere nichtkariöse Zahnhartsubstanzdefekte. Ein Bei-

spiel sind Erosionen durch verändertes Ernährungsverhalten. Die DMS • 6 ermit-

telte eine Erosionsprävalenz von 43,2 %. Im Vergleich zur DMS III ist die Erosi-

onsprävalenz mittlerweile deutlich erhöht.2 Ein weiterer nichtkariöser Zahnharts-

ubstanzdefekt ist die Molaren-Inzisiven-Hypomineralisation (MIH), deren Prä-

valenz in der DMS • 6 mit 15,3 % bei den 12-Jährigen angegeben wurde.3 

Obwohl die Kariesinzidenz in den vergangenen Jahrzehnten abgenommen hat, 

sind Zahnhartsubstanzdefekte dementsprechend nach wie vor weit verbreitet. 

Folglich entstandene Zahnhartsubstanzdefekte machen minimalinvasive Versor-

gungen notwendig. Obgleich durch den Fortschritt der direkten Restaurations-

möglichkeiten die Indikationen für indirekte Restaurationen zunehmend strenger 

gestellt werden, werden diese weiterhin einen festen Bestandteil der Zahnheil-

kunde darstellen. Dies ist vor allem der Tatsache geschuldet, dass Millionen be-

reits existierender Zahnkronen voraussichtlich zu gegebener Zeit ersetzt werden 

müssen. Neben der etablierten konventionellen Herstellung des Zahnersatzes 

existieren inzwischen digitale Herstellungsmethoden.4 

Wie in zahlreichen anderen Industrien lässt sich auch in der Zahnmedizin eine 

zunehmende Automatisierung von Arbeitsschritten beobachten. In den vergan-

genen Jahren hat die computergestützte Fertigung von individuellem Zahnersatz 

an Bedeutung gewonnen. Diese ermöglicht angesichts steigender Laborkosten 
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eine kostengünstigere Produktion.5 Die digitale Fertigung erfordert die Verwen-

dung mehrerer Komponenten:  

Zunächst werden die Zahn- und Kieferstrukturen mithilfe eines Scanners digitali-

siert. Im Anschluss erfolgt die Verarbeitung der Daten durch eine Software und 

ein Datensatz wird für die Fertigung erstellt. Dieser Prozess wird als Computer-

aided Design (CAD) bezeichnet. Eine Produktionstechnik stellt schließlich mit-

hilfe dieser Daten das Endprodukt her. Dieser Vorgang wird als Computer-aided 

Manufacturing (CAM) bezeichnet.5  

Die Ursprünge dieser computergestützten Fertigung lassen sich auf experimen-

telle Forschungsarbeiten von François Duret in den 1970er-Jahren zurückfüh-

ren.6, 7 Die umfassende Einführung in den dentalen Bereich erfolgte in den 

1980er-Jahren durch die Entwicklung des Ceramic Reconstruction (CEREC) 

Systems durch Werner H. Mörmann und Marco Brandestini.8, 9 Die Fortschritte in 

der zahnmedizinischen digitalen Hard- und Software sind seitdem rasch voran-

geschritten. Zahlreiche neue Technologien und Produkte sind in den letzten Jah-

ren in der Produktsparte der Intraoralscanner und CAD/CAM-Domäne erschie-

nen. Allein die Anzahl der Publikationen zum Suchwort „digital dentistry“ hat sich 

im Zeitraum zwischen 2017 und 2022 mehr als verdoppelt.10 Diese Entwicklung 

macht deutlich, dass die Digitalisierung in der Zahnheilkunde sowohl in der For-

schung als auch in der Wirtschaft von großer Aktualität und Dynamik geprägt ist. 

In der ursprünglichen Konzeption des digitalen Verfahrens zur Herstellung von 

Zahnersatz war eine subtraktive maschinelle Fertigung vorgesehen.11 Die sub-

traktive Fertigung wird gegenwärtig weiterhin standardmäßig verwendet und häu-

fig synonym mit dem Begriff CAD/CAM verwendet und ist die Fertigungstechno-

logie, mit der die meisten vertraut sind.12 

Die Verwendung digitaler Technologien ermöglicht die Fertigung von Zahnersatz 

in hoher Qualität, führt zu einer hohen Patientenzufriedenheit und bietet finanzi-

elle Vorteile. Ihre Anwendung erstreckt sich mittlerweile auf nahezu jeden Be-

reich der Zahnheilkunde.13 

Allerdings ist die subtraktive Fertigung mit einigen Nachteilen verbunden. Eine 

Reproduktion von sehr kleinen, verwinkelten oder hohlen Geometrien ist auf-

grund des beschränkten Zugangs der Werkzeuge nicht möglich.5 Die Oberflä-
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chenauflösung ist aufgrund des Verfahrens vom Radius des kleinsten Werkzeu-

ges und dem Werkzeug selbst determiniert. Im Rahmen der Herstellung von 

Zahnersatz kommt es zu einem ausgeprägten Werkzeugverschleiß sowie einem 

hohen Verlust an Rohmaterial. Zudem kann immer nur ein Produkt gleichzeitig 

gefertigt werden.12, 14-16 

All diese Nachteile liegen bei einer anderen Fertigungsmethode nicht vor. Sie 

wird als additive Fertigung oder synonym als dreidimensionaler (3D)-Druck be-

zeichnet.12, 17 

Der Ursprung der additiven Fertigung geht auf Charles W. Hull zurück, der 1986 

ein Patent für einen 3D-Drucker anmeldete, der auf dem Prinzip des Stereolitho-

grafie Apparats (SLA) basierte.18 Als Mitbegründer der Firma 3D Systems (Rock 

Hill, South Carolina, USA) begann die Kommerzialisierung des SLA-1 Druckers 

als erstes 3D-Druckunternehmen überhaupt.19 Neben der SLA-Technologie sind 

inzwischen weitere Drucktechnologien kommerziell verfügbar, welche von der In-

ternationalen Organisation für Normung (ISO) nach der ISO/ASTM-Norm 52900 

„Additive manufacturing - General principles - Fundamentals and vocabulary“ in 

die sieben Prozesskategorien Binder Jetting, Directed Energy Deposition, Mate-

rial Extrusion, Material Jetting, Powder Bed Fusion, Sheet Lamination und Vat 

Photopolymerization eingeteilt werden.20 

In der Zahnheilkunde finden vor allem Drucktechnologien der Prozesskategorie 

Vat Photopolymerization Anwendung. Hierzu zählen die Stereolithografie (SLA) 

Technologie und die Digital Light Processing (DLP) Technologie.17, 21, 22 In beiden 

Verfahren wird eine Bauplattform zyklisch in eine mit Harz gefüllte Wanne be-

wegt, das flüssige Material umgibt diese Plattform und härtet mittels Photopoly-

merisation das Material in der gewünschten Form aus. Im Anschluss wird die 

Plattform erneut bewegt, um von neuem flüssigen Material umgeben zu werden. 

Dieser Vorgang wird zyklisch wiederholt, sodass ein Objekt Schicht für Schicht 

hergestellt wird. Der entscheidende Unterschied zwischen den beiden Verfahren 

liegt in der Art der verwendeten Lichtquelle. Bei der SLA-Technologie wird ein 

Ultraviolett (UV)-Laser verwendet, welcher die Schicht des zu bildenden Objekts 

nach und nach abfährt.12, 17, 21 Im Gegensatz dazu wird bei der DLP-Technologie 

die gesamte Schicht simultan durch einen Projektor mit UV-Licht belichtet und 
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das Licht durch eine digitale Mikrospiegel Technologie (= Digital Micromirror De-

vice (DMD)) projiziert, wodurch es strukturiert wird. Die Mikrospiegel können, wie 

Lichtschalter, einzeln an- und ausgeschaltet werden. Die Anzahl der Mikrospiegel 

korreliert dabei mit der Pixelauflösung des projizierten Bildes. Sie repräsentieren 

einzelne oder mehrere Pixel des zu produzierenden Objekts. Diese Technologie 

ermöglicht eine Zeitersparnis, insbesondere bei der Fertigung großer oder meh-

rerer Objekte.17, 21, 22 

Nach Abschluss des Druckvorgangs müssen die Objekte eine Nachbearbeitung, 

das sogenannte Postprocessing, durchlaufen, bevor sie klinisch eingesetzt wer-

den können. Das Postprocessing sollte gemäß der Herstellerangaben erfolgen 

und kann die folgenden Schritte umfassen: Entfernung der Objekte von der Bau-

plattform, Entfernung der Stützstrukturen, Reinigung der Objekte von überschüs-

sigem polymerisiertem Material, Nachbelichtung mit speziell dafür konstruierten 

Geräten zur Steigerung der Konversionsrate und Trocknung.12, 17 Ziel der aktuel-

len Forschung und Produktentwicklung ist die Vereinfachung, Verkürzung und 

Automatisierung dieser zeitintensiven und techniksensitiven Arbeitsschritte.23 

Das zeitintensive Postprocessing stellt einen Nachteil der additiven Fertigung 

dar. Demgegenüber stehen jedoch einige Vorteile gegenüber der subtraktiven 

Fertigungsmethode. Mehrere Objekte können simultan mit demselben Gerät her-

gestellt werden. Darüber hinaus ist die Herstellung von Hohlkörpern oder kom-

plexen Geometrien möglich.12, 17 Im Vergleich zur subtraktiven Fertigung liegt 

auch eine Zeit- und Kosteneffizienz vor.24 

Die additive Fertigungsmethode findet vielseitige Anwendung in der Zahnmedi-

zin, beispielsweise bei der Herstellung individueller Abformlöffel, Bonding-Trays, 

chirurgischer Bohrschablonen, festsitzender Restaurationen (Provisorien, Teil-

kronen, Kronen, Brücken, Veneers), Modellen inklusive Gingivamasken, Prothe-

sen, Schienen und Wax-ups.25, 26 

Im Folgenden werden insbesondere die 3D-Druckmaterialien für die Fertigung 

von festsitzenden Restaurationen beleuchtet. Anhand der Verweildauer in der 

Mundhöhle lassen sich diese in temporäre/provisorische Materialien und Materi-

alien für die definitive Langzeitanwendung einteilen. 
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1.2 Materialien zur additiven Fertigung von temporärem, 
festsitzendem Zahnersatz 

Eine Vielzahl an Produkten ist auf dem dentalen Markt erhältlich, die für die ad-

ditive Herstellung von festsitzendem, temporärem Zahnersatz geeignet sind. Ihre 

primäre Indikation ist die Verwendung als Provisorium (siehe Tabelle 1). Die fol-

gende Tabelle bietet einen Überblick über einige der verfügbaren Materialien. An 

dieser Stelle sei darauf hingewiesen, dass die folgende Aufstellung keinen An-

spruch auf Vollständigkeit erhebt.  

Tabelle 1: Übersicht über Materialien zur additiven Fertigung von temporärem Zahnersatz 

Material Firma Druck-
technik 

Indikation Refe-
renz 

3Delta Etemp  DeltaMed GmbH DLP temporäre Kronen, Brü-

cken, Inlays, Onlays, Ve-

neers 

27 

FREEPRINT temp  DETAX GmbH DLP temporäre Kronen, Brü-

cken 

28 

IMPRIMO LC Temp lt  SCHEU-DENTAL GmbH DLP temporäre Kronen, Brü-

cken und Mock Ups 

29 

optiprint lumina  dentona AG DLP temporäre Kronen, Brü-

cken 

30 

printodent GR-17.1 

temporary lt  

pro3dure medical GmbH DLP Prothesenzähne und tem-

poräre Kronen, Brücken 

31 

SprintRay EU Tempo-

rary Crown & Teeth  

SprintRay Europe GmbH DLP Prothesenzähne, tempo-

räre Kronen, Brücken 

32 

Temp PRINT  GC Germany GmbH 

 

DLP temporäre Kronen, Brü-

cken, Inlays, Onlays, Ve-

neers 

33 

Temporary CB Resin  

 

Formlabs Inc. 

 

SLA 

 

temporäre Kronen, Brü-

cken, Inlays, Onlays, Ve-

neers 

34 

V-Print c&b temp  

 

VOCO GmbH DLP temporäre Kronen, Brü-

cken und Mock Ups 

35 

VarseoSmile Temp  

 

BEGO Bremer Goldschlägerei 

Wilhelm Herbst GmbH & Co. 

KG 

DLP temporäre Kronen, Brü-

cken, Inlays, Onlays, Ve-

neers 

36 
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Die ersten Studien zu den provisorischen, 3D-druckbaren Restaurationsmateria-
lien in der Zahnmedizin, die von systematischen Reviews identifiziert werden 
konnten, sind im Jahr 2016 erschienen.37-39 Aufgrund ihrer Materialeigenschaften 
eignen sich diese lediglich für den temporären Gebrauch: 

Die physikalischen Eigenschaften wie Wasserabsorption, Wasserlöslichkeit und 
Farbstabilität sind laut Konsensus der meisten Studien als mangelhaft einzustu-
fen.37, 40-44 Die Farbstabilität additiv gefertigter Provisorien ist denen subtraktiv 
und konventionell gefertigter Provisorien unterlegen.37, 45 Materialien für die sub-
traktive Fertigung haben aufgrund der industriellen Herstellung einen höheren 
Polymerisationsgrad als additive Materialien. Der geringere Polymerisationsgrad 
additiver Materialien führt vermutlich zu einer schlechteren Oberflächenintegrität 
mit einer höheren Anzahl an Restmonomeren. Wasser kann in additiv herge-
stellte Objekte leichter eindringen aufgrund der hohen Anzahl an Restmonome-
ren, des schichtweisen Aufbaues des Objekts und der Verwendung von zum Teil 
hydrophilen Monomeren. Es kommt somit zu einer stärkeren Wasserabsorption, 
woraus stärkere Dimensionsveränderungen und höhere Konzentrationen an in 
Lösung gehender Restmonomere resultieren. Diese Einflussfaktoren werden als 
Grund für die auftretenden Verfärbungen vermutet.37 Mithilfe von Oberflächenbe-
handlungen wie Polituren, Versiegelungen und Glasuren kann die Oberflächen-
rauigkeit reduziert und somit die Farbstabilität 3D-gedruckter Provisorien verbes-
sert werden.37, 41, 46, 47 

Die Biokompatibilität der provisorischen Materialien scheint ebenso subtraktiven 
und konventionellen provisorischen Materialien unterlegen zu sein. Der Kontakt 
von 3D-gedruckten, provisorischen Materialien und deren Eluate zu unterschied-
lichen humanen Zellen führte stets zu einer Abnahme der Zellviabilität und ver-
änderte zudem die Expression proinflammatorischer Mediatoren.48-50 Zudem 
konnte die Induktion von oxidativem Stress und Apoptose durch provisorische, 
3D-gedruckte Materialien nachgewiesen werden.50 Dementsprechend induzier-
ten additiv gefertigte Provisorien stärkere zytotoxische Effekte im Vergleich zu 
subtraktiv und konventionell hergestellten Provisorien.49, 50 Als Gründe der unter-
schiedlichen Zytotoxizität je nach Material werden die verschiedenen chemi-
schen Zusammensetzungen an Monomeren, das Vorhandensein und der Typ 
eines Photoinitiators und der Polymerisationsmodus diskutiert.50 

In Anbetracht der mechanischen Eigenschaften additiver provisorischer Materia-
lien wurde eine erhebliche Heterogenität in sämtlichen Reviews und Meta-Ana-
lysen identifiziert.37, 38, 51-53 In einigen Studien waren 3D-gedruckte, provisorische 
Materialien den gefrästen oder konventionell hergestellten Provisorien hinsicht-
lich der Biegefestigkeit54-56 oder Frakturresistenz überlegen.57, 58 In anderen Stu-
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dien unterlagen sie jedoch den konventionell oder subtraktiv hergestellten Mate-
rialien hinsichtlich der Biegefestigkeit45, 56, 59-61 und Frakturresistenz.62-64 Eine 
Korrelation zwischen den mechanischen Eigenschaften und dem Füllkörperge-
halt der Materialien konnte festgestellt werden. Die 3D-druckbaren, provisori-
schen Materialien enthalten keine bis geringe Füllkörpergehalte.65-67 Dies ist da-
rauf zurückzuführen, dass die Viskosität dieser Materialien gering sein muss, um 
vor jedem Druckzyklus eine erneute, vollständige Benetzung der Bauplattform 
des 3D-Druckers durch das 3D-Druckmaterial gewährleisten zu können.65, 68 Die 
mechanischen Eigenschaften der temporären Materialien werden demnach 
durch den geringen Füllkörpergehalt limitiert. 

Neben dem Einfluss des Materials konnte ebenso ein Einfluss der Druckorientie-
rung, der Druckschichtstärke, der Reinigungsmethode, der Nachhärtungszeit und 
des Nachhärtungsgeräts auf die mechanischen Eigenschaften nachgewiesen 
werden.66, 69-80 Angesichts der Heterogenität der Ergebnisse ist es nicht möglich 
allgemein gültige Empfehlungen abzuleiten. 

Die verbesserungswürdigen mechanischen Eigenschaften spiegeln sich auch in 
einer geringeren Erfolgsrate von 76,2 % in einer klinischen Studie wider im Ver-
gleich zu konventionellen Provisorien.81 Jedoch sollte beachtet werden, dass na-
hezu alle vorhandenen Studien zu diesen Materialien In-vitro-Untersuchungen 
sind und weitere klinische Studien nötig sind, um die Langzeitperformance der 
Provisorien im klinischen Setting evaluieren zu können. 
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1.3 Materialien zur additiven Fertigung von definitivem, 
festsitzendem Zahnersatz 

Inzwischen sind Materialien mit höheren Füllkörpergehalten erhältlich, welche für 
den definitiven Gebrauch zugelassen sind. Als weltweit erstes 3D-Druck Kompo-
sit mit Keramikfüllkörpern zur Herstellung von definitiven Einzelzahnrestauratio-
nen wie Kronen, Inlays, Onlays und Veneers mittels DLP-Technologie gilt Var-
seoSmile Crown plus von BEGO, welches im Februar 2020 erschien.22, 82, 83 An-
sonsten sind für die additive Herstellung von festsitzendem, definitivem Zahner-
satz bisher weniger Produkte erhältlich (siehe Tabelle 2). Die folgende Tabelle 
gibt einen Überblick über einige dieser Materialien. Es wird kein Anspruch auf 
Vollständigkeit erhoben. 

Tabelle 2: Übersicht über Materialien zur additiven Fertigung von definitivem Zahnersatz 

Material Firma Druck-
technik 

Indikation Refe-
renz 

3Delta Crown  DeltaMed GmbH DLP definitive Kronen, Inlays, Onlays, Veneers 84 

Flexcera Smile 

Ultra+  

 

Desktop Metal, 

Inc.  

DLP definitive/temporäre Prothesenzähne, Kro-

nen, Brücken, Inlays, Onlays, Veneers, Voll-/ 

Teilprothesen 

85 

FREEPRINT 

crown  

DETAX GmbH 

 

DLP langzeitprovisorische Kronen, Brücken und 

definitive Kronen, Inlays, Onlays, Veneers, 

Prothesenzähne  

86 

Permanent 

Crown Resin  

Formlabs Inc. SLA definitive Kronen, Inlays, Onlays, Veneers 87 

PRO Resins 

Crown X  

 Institut Straumann 

AG 

keine   

Angabe 

definitive Kronen 88 

saremco print 

CROWNTEC  

SAREMCO Dental 

AG  

DLP Prothesenzähne, definitive/temporäre Kro-

nen, Inlays, Onlays, Veneers 

89 

SprintRay EU 

Crown  

SprintRay Europe 

GmbH 

DLP definitive Kronen, Inlays, Onlays, Veneers 90 

VarseoSmile 

Crown plus  

 

BEGO Bremer 

Goldschlägerei 

Wilhelm Herbst 

GmbH & Co. KG 

DLP definitive Kronen, Inlays, Onlays, Veneers 91 

VarseoSmile 

TriniQ  

 

BEGO Bremer 

Goldschlägerei 

Wilhelm Herbst 

GmbH & Co. KG 

DLP definitive Kronen, Inlays, Onlays, Veneers, 

Brücken, Prothesenzähne und temporäre 

Brücken 

92 
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Da die 3D-gedruckten Materialien für den definitiven Gebrauch relativ neu auf 
dem Markt sind, ist die Studienlage bisher quantitativ spärlich und nur begrenzt 
zuverlässig.39, 93 Weil es derzeit keinen Konsens über die erforderlichen Stan-
dards für In-vitro-Studien gibt, herrscht eine Heterogenität der aktuell angewand-
ten Forschungsprotokolle und daraus resultierenden Daten.93 Die Materialien sol-
len definitiv als Zahnersatz eingegliedert werden, weshalb sie sowohl starken 
mechanischen Stress als auch den verschiedenen chemischen Vorgängen in der 
Mundhöhle standhalten müssen.22 Dies setzt also bessere mechanische, physi-
kalische und biologische Eigenschaften als bei den temporär eingesetzten Mate-
rialien voraus. 

Die optischen Eigenschaften scheinen abhängig von dem Material,94-98 der Ober-
flächenbehandlung,98, 99 der Dicke,100 der Druckrichtung,100, 101 den Ernährungs-
gewohnheiten96, 98, 102 und den individuellen Prophylaxemaßnahmen98 zu sein. 
Die 3D-druckbaren Materialien verfärbten sich in Studien stärker und nahmen in 
ihrer Transluzenz mehr ab als die subtraktiv fertigbaren Materialien für definitiven 
Zahnersatz.94-96 Die Verfärbungen waren in mehreren Studien innerhalb des kli-
nisch akzeptablen Bereichs.94, 99, 102 Eine Studie zeigte zudem, dass Zahn-
schmelz unter gleichen Bedingungen stärkere Transluzenz- und Farbverände-
rungen zeigte als ein 3D-Druckmaterial für definitiven Zahnersatz.102 Die Polier-
barkeit scheint bei den 3D-druckbaren Materialien schlechter zu sein als bei fräs-
baren Materialien, was zu einer verstärkten Plaqueakkumulation führen kann.95, 

99 Längere Polymerisationszeiten könnten die Restmonomeranzahl verringern 
und somit die Farbstabilität erhöhen.99 

Die biologischen Eigenschaften wie Biokompatibilität und Zytotoxizität werden 
kontrovers diskutiert. Manche Studien konnten keine oder nur leichte Zytotoxizi-
tät, keine Mutagenität sowie keine signifikanten Veränderungen der Zellviabilität 
und Zellproliferation nachweisen.103, 104 Ein karzinogenes Potential wurde jedoch 
festgestellt.103 Es wird empfohlen die Herstelleranweisungen zu befolgen, um die 
Anzahl an Restmonomeren und daraus resultierenden zytotoxischen Effekten zu 
minimieren.104 Eine andere Studie ermittelte hingegen vergleichbare Biokompa-
tibilität und Zytotoxizität wie bei provisorischen 3D-druckbaren Materialien.50 Die 
Eluate reduzierten die Zellviabilität, lösten inflammatorische Reaktionen und oxi-
dativen Stress aus und induzierten Apoptose. Die festgestellten zytotoxischen 
Effekte beziehen sich auf die initiale Phase nach der Eingliederung einer Restau-
ration und nicht auf die langzeitige Toxizität. Subtraktiv gefertigte Materialien 
zeigten geringere zytotoxische Effekte.50 Dies ist vermutlich auf die industrielle 
Herstellung mit Polymerisation unter hohen Temperaturen und hohem Druck zu-
rückzuführen. Dies führt zu einer höheren Konversionsrate und somit weniger 
Restmonomeren und homogeneren Materialien mit höherem Füllkörpergehalt. 
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Photoinitiatoren können ebenso Grund einer gesteigerten Zytotoxizität sein. Die 
Biokompatibilität scheint dementsprechend vor allem vom Postprocessing abzu-
hängen. Eine Verlängerung der Nachpolymerisation und zusätzliches Waschen 
könnte die Biokompatibilität verbessern. Ein Einlegen der 3D-gedruckten Res-
tauration in eine Flüssigkeit vor der definitiven Eingliederung könnte unpolymeri-
sierte, potenziell toxische Restmonomere eluieren lassen.50  

Die Studienlage zu den mechanischen Eigenschaften ist gering und heterogen. 
Die unterschiedlichen und teilweise widersprüchlichen Ergebnisse sind auf ver-
schiedene experimentale Versuchsaufbauten, verschiedene analysierte Parame-
ter und verschiedene getestete Materialien mit unterschiedlichen Füllkörperge-
halten zurückzuführen.93, 105-108 Die 3D-gedruckten, definitiven Materialien zeig-
ten im Vergleich zu gefrästen Materialien eine Unterlegenheit hinsichtlich der Bie-
gefestigkeit.105-108 Dies ist auf eine inhomogenere Mikrostruktur der 3D-gedruck-
ten Materialien zurückzuführen, welche den Ursprungsort für vermehrt auftre-
tende Frakturen darstellt.105 Durch das Einbringen von Nanofüllkörpern besteht 
die Möglichkeit, die Biegefestigkeit zu erhöhen,106, 109 was jedoch die Ästhetik 
beeinträchtigt.109 Die Druckschichtstärke hat ebenso einen Einfluss auf die me-
chanischen Eigenschaften. Geringere Schichtstärken von 50 µm zeigen bessere 
mechanische Werte als Schichtstärken von 100 µm.108, 110 Ebenso haben die 3D-
Druck-Technologie, die Polymerisationszeit und das Postprocessing einen Ein-
fluss auf die mechanischen Eigenschaften.107 Die Mikrohärte der 3D-gedruckten, 
definitiven Materialien ist niedriger als die Mikrohärte der gefrästen, definitiven 
Materialien.106-108 Die interne Passung und der Randschluss werden in mehreren 
Studien als gut bewertet und sind denen CAD/CAM gefräster Hybridkeramiken 
überlegen.111-114  

Additive Materialien sind im Vergleich zu subtraktiven Materialien hinsichtlich der 
mechanischen Eigenschaften unterlegen. In der Fachliteratur wird diese Tendenz 
neben den unterschiedlichen Füllkörpergehalten auch auf die unterschiedlichen 
Polymerisationsmodi und den geschichteten Aufbau 3D-gedruckter Objekte zu-
rückgeführt.106 

In Reviews wird geschlussfolgert, dass die Materialien zur kurz- und mittelfristi-
gen Anwendung passend sein könnten,106 jedoch aufgrund ihrer verbesserungs-
würdigen mechanischen Eigenschaften noch nicht die erste Wahl für indirekte 
Restaurationen sind.108 Aufgrund der limitierten Evidenz besteht die Notwendig-
keit für weitere Forschung in diesem Bereich. Insbesondere sind klinische Stu-
dien und Langzeit-In-vivo-Forschung erforderlich, zum Beispiel um die exakten 
klinischen Indikationen zu klären.106, 108  
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Hinsichtlich klinischer Studien ist die Studienlage ausgeprägt gering. Eine klini-
sche Studie, bei der 3D-gedruckte Kronen aus einem definitivem Material nach 
einem Jahr Verweildauer in der Mundhöhle auf Verfärbungen, Gingivitis, Ober-
flächenrauigkeit, Sekundärkaries und postoperative Sensitivitäten untersucht 
worden sind, zeigte vielversprechende Ergebnisse.115 In zwei klinischen Studien 
wurden nach einem Jahr Überlebensraten von 82,1 % und 84,4 % angege-
ben.115, 116 In zwei weiteren klinischen Studien wurden Überlebensraten von ad-
ditiv gefertigten dreigliedrigen Brücken nach einem Jahr von 71,6 % und nach 
zwei Jahren von 61,0 % ermittelt.117, 118 Die Materialien wurden als alternative 
Behandlungsoption in der initialen Phase komplexer prothetischer Fälle empfoh-
len.115 Um präzisere Indikationen definieren zu können, sollte die zu erwartende 
Lebensdauer von 3D-gedruckten Materialien für die definitive Anwendung im 
Rahmen von Langzeitforschung untersucht werden. 

Da die adhäsive Haftung bei definitiver Eingliederung von Restaurationen eine 
entscheidende Rolle für den Langzeiterfolg spielt, ist es von essenzieller Bedeu-
tung, diese in Studien zu untersuchen. Bei temporären Restaurationen war die 
Haftung bislang zu vernachlässigen, da diese nicht langfristig in der Mundhöhle 
verbleiben sollten. Im Bereich der adhäsiven Haftung definitiver 3D-Druckmate-
rialien ist die Datenlage bisher gering und heterogen. Kagaoan et al.119 konnte in 
einem Review im Jahre 2024 lediglich eine Studie83 identifizieren, in der die ad-
häsive Haftung eines definitiven Materials getestet wurde und schlussfolgerte, 
dass die Einflussfaktoren der adhäsiven Haftung additiv gefertigter, definitiver 
Materialien unbekannt sind. Inzwischen wurden wenige zusätzliche Studien 
durchgeführt mit heterogenen Ergebnissen.120-132 Lediglich zwei dieser Stu-
dien121, 125 untersuchten die adhäsive Haftung von 3D-gedruckten Materialien an 
Dentin. Die Auswirkungen verschiedener Vorbehandlungsstrategien auf die ad-
häsive Haftung von 3D-gedruckten, definitiven Materialien an Dentin sind dem-
entsprechend nahezu unbekannt. In diesem Forschungsgebiet der Zahnheil-
kunde sind weitere Studien von enormer Bedeutung, um den Wissensstand zu 
erweitern und so einen Erkenntnisgewinn zu erzielen. 
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1.4 Zielsetzung 

Ziel der vorliegenden Dissertation war es, die Verbundfestigkeit mehrerer additiv 
gefertigten Komposite für definitiven, festsitzenden Zahnersatz an Dentin in vitro 
zu ermitteln. Insbesondere sollte der Einfluss mechanischer sowie verschiedener 
chemischer Vorbehandlungen der Materialien, als auch der Einfluss der Materi-
alien selbst auf die Verbundfestigkeit untersucht werden.  

Zur Bestimmung der Verbundfestigkeit sollte ein Zugversuch durchgeführt wer-
den. Mittels diesem sollte die Haftung der Materialien am Dentin kariesfreier, 
extrahierter boviner Frontzähne ermittelt werden. Unterschiede der Haftwerte 
zwischen den unterschiedlichen Versuchsgruppen sollten dargestellt werden. 
Der Versagensmodus sollte anschließend mittels Fraktographie bestimmt und 
kategorisiert werden. 

Des Weiteren wurde die Hypothese aufgestellt, dass sowohl die Oberflächenrau-
igkeit als auch die Konversionsrate einen Einfluss auf die Verbundfestigkeit ha-
ben könnten. Somit sollten diese ebenso für beide 3D-Druckmaterialien bestimmt 
werden. 

Ziel war es, durch diese Untersuchungen das Behandlungsprotokoll mit der bes-
ten Verbundfestigkeit zu identifizieren und somit eine Empfehlung für das klini-
sche Vorgehen geben zu können und Einflussfaktoren auf die Haftung zu identi-
fizieren. 
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1.5 Beitrag zu der Veröffentlichung 

Bei der vorliegenden Dissertation handelt es sich um eine publikationsbasierte 
Dissertation. Der selbstständige Beitrag des Doktoranden für die Publikation „In-
fluence of pretreatment strategies on the tensile bond strength of 3D printed com-
posite resins for definitive cementation to dentin“ von Montenbruck et al., veröf-
fentlicht im Journal of Prosthetic Dentistry (Volume 134, Issue 3, p. 842e1-
842e11, DOI: 10.1016/j.prosdent.2025.04.043), umfasste folgende Aspekte: 

Zunächst wurde durch den Doktoranden eine umfassende Literaturrecherche 
zum Rahmenthema des Dissertationsprojektes durchgeführt und diese fortlau-
fend aktualisiert. Auf dieser Grundlage erfolgte gemeinsam mit Frau Priv.-Doz. 
Dr. med. dent. Dalia Kaisarly und Herrn Priv.-Doz. Dr. med. dent. Andreas Keßler 
die Gestaltung des Studiendesigns. Alle für den Versuchsaufbau benötigten Ge-
räte wurden durch den Doktoranden getestet und benötigte Materialien beschafft. 
Zudem wurden Vorversuche von ihm durchgeführt. Im Anschluss wurden alle 
Prüfkörper durch den Doktoranden hergestellt und einem Zugversuch unterzo-
gen. Im Anschluss berechnete der Doktorand die Ergebnisse anhand der Mess-
werte. Unter einem Lichtmikroskop wurde anschließend der Versagensmodus 
durch den Doktoranden bestimmt. Die vom Doktoranden erhobenen Daten wur-
den unter Mithilfe von Frau Priv.-Doz. Dr. med. dent. Dalia Kaisarly statistisch 
ausgewertet und durch den Doktoranden in Tabellen und Grafiken zur Veran-
schaulichung aufbereitet. Zudem wurden Fotos und Grafiken der Arbeitsabläufe 
durch den Doktoranden erstellt (siehe Anhang). Das Manuskript wurde durch den 
Doktoranden als Erstautor verfasst und von ihm durch Revisionen ergänzt. 
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2. Zusammenfassung 
Durch die kontinuierliche Weiterentwicklung der CAD/CAM-Materialien für die 
Fertigung von Zahnersatz im digitalen Workflow ist es inzwischen nicht nur mög-
lich provisorische Restaurationen additiv zu fertigen. Seit neuestem sind auch 
Materialien erhältlich für den 3D-Druck definitiver Restaurationen. Während die 
adhäsive Haftung der provisorischen Versorgungen eine untergeordnete Rolle 
spielte, ist die Befestigungsstrategie für definitiven Zahnersatz von äußerster Be-
deutung. Es stellte sich die Frage, ob die etablierten Vorbehandlungsprotokolle 
für subtraktiv gefertigte Restaurationen analog übernommen werden können. 
Mithilfe verschiedener Variablen sollten Einflüsse auf die adhäsive Haftung ge-
testet werden und das beste Behandlungsprotokoll identifiziert werden. Die Un-
tersuchungen untergliederten sich in einen Zugversuch, eine Laser-Scanning-
Mikroskopie und eine Raman-Spektroskopie. 

Für den Zugversuch wurden 240 Prüfkörper hergestellt, die aus aneinander be-
festigten Dentin- und Kompositstäbchen bestanden. Die Dentinstäbchen 
(2 × 2 × 5 mm) wurden aus Rinderzähnen gesägt. Die Kompositstäbchen 
(2 × 2 × 10 mm) wurden aus zwei verschiedenen Materialien (3Delta Crown (Del-
taMed GmbH), saremco print CROWNTEC (SAREMCO Dental AG)) 3D-ge-
druckt. Die Dentinstäbchen wurden alle mit einem Universaladhäsiv (Adhese Uni-
versal (Ivoclar AG)) chemisch konditioniert. Die Kompositstäbchen wurden zur 
Hälfte mit Aluminiumoxid (Al2O3) abgestrahlt, während die andere Hälfte nicht 
abgestrahlt wurde. Anschließend wurden die Kompositstäbchen mit einem von 
drei Haftvermittlern (Adhese Universal, Heliobond, Monobond Plus (alle von Ivo-
clar AG)) chemisch konditioniert. Durch die drei Variablen „3D-Druckmaterial“, 
„mechanische Konditionierung“ und „chemische Konditionierung“ resultierten 12 
Testgruppen. Nach der Befestigung der Dentin- und Kompositstäbchen aneinan-
der mittels Befestigungskomposit (Variolink Esthetic LC (Ivoclar AG)) wurden die 
Prüfkörper einer künstlichen thermischen Alterung unterzogen. Danach folgte ein 
Zugversuch mit anschließender Fraktographie. Die Oberflächenrauigkeit und 
Konversionsrate der beiden 3D-Druckmaterialien sollten ebenfalls untersucht 
werden, um weitere Einblicke in die Haftmechanismen zu bieten. Für beide Un-
tersuchungen wurden neue Prüfkörper (2,5 × 6 × 8 mm) additiv hergestellt. Für 
die Bestimmung der Oberflächenrauigkeit wurde die Hälfte der Prüfkörper mit 
Al2O3 abgestrahlt. Danach erfolgte die Bestimmung der mittleren arithmetischen 
Höhe (Sa) mittels Laser-Scanning-Mikroskopie. Die Konversionsrate wurde mit-
tels Raman-Spektroskopie an der Oberfläche ermittelt. Dazu wurden die gemes-
senen Spektren des flüssigen Resins und der fertig hergestellten Prüfkörper bei-
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der Materialien verglichen. Alle Daten wurden einer statistischen Analyse unter-
zogen anhand ein-, zwei- und dreifaktorieller Varianzanalyse einschließlich Post-
hoc-Tests und Weibull Analyse (α = 0,05). 

Es konnten keine statistisch signifikanten Unterschiede der Tensile Bond 
Strength (TBS) zwischen den 12 Testgruppen nachgewiesen werden (p > 0,05). 
Alle Konditionierungsvarianten führten zu TBS-Werten zwischen 6,57 und 
10,58 MPa. Die ermittelten Weibulldiagramme wiesen ähnliche Geradensteigun-
gen auf und die vergleichbaren Weibullmoduli demonstrierten eine ähnliche Zu-
verlässigkeit des adhäsiven Verbunds. Hinsichtlich der Haftkraft zeigten sowohl 
das 3D-Druckmaterial, das mechanische Vorbehandeln als auch die verschiede-
nen Haftvermittler keine signifikanten Unterschiede. Als Versagensmodus trat 
vorherrschend ein adhäsives Versagen auf. In der Regel verblieben Befesti-
gungskompositreste sowohl am Dentin- als auch am Kompositstäbchen. Dies 
deutet darauf hin, dass die Haftung des Befestigungskomposits zu beiden Stäb-
chen vergleichbar sein muss und die Schwachstelle des Prüfkörpers der adhä-
sive Verbund ist. Delaminationen traten keine auf. Die Laser-Scanning-Mikrosko-
pie bewies, dass das Abstrahlen mit Al2O3 zu einer signifikanten Zunahme der 
Oberflächenrauigkeit bei beiden Materialien führt (p < 0,05). Die Raman-Spekt-
roskopie zeigte, dass die Konversionsraten beider 3D-Druckmaterialien nach 
dem Postprocessing bei circa 70 % lagen.  

Obwohl sich die Oberflächenrauigkeit signifikant durch das Abstrahlen erhöhte, 
wurden keine signifikant besseren Haftwerte bei den abgestrahlten Gruppen be-
obachtet. Ein möglicher Erklärungsansatz könnte in der chemischen Zusammen-
setzung der untersuchten 3D-Druckmaterialien liegen. Die Polymermatrix-Kom-
posite enthalten einen anorganischen Füllkörpergehalt von circa 30 bis 50 wt%. 
Dementsprechend ist der organische Anteil an Monomeren hoch. Die ermittelten 
Konversionsraten von circa 70 % belegen, dass der Anteil an Restmonomeren 
hoch ist. Funktionelle Methacrylatgruppen der Haftvermittler können somit die ra-
dikale Polymerisation mit ungesättigten, reaktiven Kohlenstoff-Doppelbindungen 
der Restmonomere initiieren. Es konnte kein überlegener Haftvermittler identifi-
ziert werden, der signifikant höhere TBS-Werte erzielte. Allerdings wurde die Hy-
pothese aufgestellt, dass die Verwendung eines Haftvermittlers zwingend not-
wendig sei, um die Initiierung der radikalen Polymerisation mit den Restmono-
meren zu ermöglichen. Zudem scheint die Anzahl der Restmonomere eines 3D-
gedruckten Komposits einen Einfluss auf die Haftkraft zu haben. 

Bei der Befestigung von 3D-gedrucktem Komposit an Dentin kann es ratsam 
sein, dasselbe Universaladhäsiv sowohl für den Zahn als auch für die Restaura-
tion zu verwenden. Dies vereinfacht den Arbeitsablauf und erhöht den Komfort, 
die Praktikabilität sowie die Zeit- und Kosteneffizienz für den Anwender. 



3 Abstract 23 

3. Abstract 
Digital treatment concepts utilizing CAD/CAM have become a prevalent feature 
within contemporary dentistry. In the beginning, only 3D-printing resins approved 
for manufacturing temporary restorations were available. Nevertheless, compo-
site resins approved for use in the fabrication of definitive restorations are now 
also available. While the adhesive bonding of temporary restorations played a 
subordinate role, the luting strategy for definitive restorations is of utmost im-
portance. The question arose as to whether the pretreatment protocols, which 
have already been established for milled CAD/CAM restorations, could be 
adopted analogously. Various variables were used to test their influence on ad-
hesive bonding and to identify an optimal treatment protocol. The investigations 
were subdivided into a tensile test, a laser scanning microscopy, and a Raman 
spectroscopy. 

A total of 240 test specimens were fabricated for the tensile test. The specimens 
were composed of a dentin rod and a composite rod. Dentin rods (2 × 2 × 5 mm) 
were obtained by cutting from bovine teeth. Two distinct 3D-printing materials 
(3Delta Crown (DeltaMed GmbH), saremco print CROWNTEC (SAREMCO Den-
tal AG)) were employed for the additive manufacturing of composite rods 
(2 × 2 × 10 mm). All the dentin rods were subjected to chemical conditioning with 
a universal adhesive (Adhese Universal (Ivoclar AG)). One half of the composite 
rods underwent mechanical pretreatment with Al2O3, while the other half was not 
airborne-particle abraded. The composite rods were subjected to a chemical con-
ditioning process with one of three bonding agents (Adhese Universal, Heliobond, 
Monobond Plus (all by Ivoclar AG)). The three variables, “3D-printing material”, 
“mechanical pretreatment”, and “chemical pretreatment”, led to a total of 12 test 
groups. Following the luting of the dentin and composite rods to each other with 
a luting composite (Variolink Esthetic LC (Ivoclar AG)), the test specimens were 
subjected to thermocycling. This was followed by a tensile test and subsequent 
fractography. 

Furthermore, the surface roughness and degree of conversion of the two 3D-
printing materials were analyzed, as it was hypothesized that these factors may 
influence the adhesive bond strength. For both tests, new test specimens 
(2.5 × 6 × 8 mm) were produced. To determine the surface roughness, half of the 
test specimens were airborne-particle abraded, while the remaining half was not 
subjected to any mechanical pretreatment. Subsequently, the Sa value was as-
certained through laser scanning microscopy. The degree of conversion was de-
termined using Raman spectroscopy, with the measured spectra of the liquid 
resin and the composite rod of both materials being compared. All data were 
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subjected to statistical analysis employing one-, two-, and three-way analysis of 
variance as well as Weibull analysis (α = 0.05). 

The results of the tensile test demonstrated no statistically significant differences 
between the 12 test groups (p > 0.05). All groups yielded comparable TBS, with 
values ranging from 6.57 to 10.58 MPa. The analogous directional gradients in 
the Weibull diagrams also indicate a comparable reliability of the adhesive bond. 
The 3D-printing material, the mechanical pretreatment process, and the various 
bonding agents utilized did not appear to exert any discernible influence on the 
TBS observed. The predominant failure mode was adhesive failure. The use of 
laser scanning microscopy revealed that the application of Al2O3 resulted in a 
notable enhancement in surface roughness for both materials (p < 0.05). Raman 
spectroscopy demonstrated that the degrees of conversion of both 3D-printing 
materials were approximately 70% after postprocessing. 

Despite the marked enhancement of surface roughness resulting from airborne-
particle abrasion, no statistically significant improvements in TBS were observed 
for the airborne-particle abraded groups. One potential explanation for the ab-
sence of an effect of mechanical pretreatment on adhesive strength might reside 
in the chemical composition of the materials under investigation. Both materials 
are polymer matrix composites infiltrated with inorganic fillers. 3D-printed compo-
sites characteristically exhibit a low filler content of approximately 30 to 50 wt%. 
Furthermore, 3D-printed composites exhibit a reduced inorganic content, indicat-
ing that the organic content with monomers is comparatively higher. The Raman 
spectroscopy revealed degrees of conversion of approximately 70% for both in-
vestigated materials. Consequently, a significant proportion of residual mono-
mers remains. The functional methacrylate groups present in the bonding agents 
have the capacity to initiate radical polymerization with the unsaturated, reactive 
carbon double bonds of the residual monomers. The TBS values of the bonding 
agents tested were comparable. Consequently, no significant influence on TBS 
values attributable to the respective bonding agent could be determined. How-
ever, the hypothesis was proposed that the utilization of a bonding agent is indis-
pensable for enabling the initiation of radical polymerization with the residual 
monomers. Furthermore, the quantity of residual monomers in 3D-printed com-
posites appears to exert an influence on the bond strength. 

In conclusion, when luting 3D-printed composite to dentin, it may be advisable to 
use the same universal adhesive for the tooth and the restoration. This simplifies 
the workflow and increases convenience, practicability as well as time and cost 
efficiency for the clinician. 
  



4 Publikation 25 

4. Publikation 
Im Folgenden wird die Publikation dargestellt, die als Grundlage für die publika-
tionsbasierte Dissertation verwendet worden ist: 

 

Title: “Influence of pretreatment strategies on the tensile bond strength of 3D 
printed composite resins for definitive cementation to dentin” 

Authors: Montenbruck, L., Lüchtenborg, J., Elgezawi, M., Keßler, A. and Kai-
sarly, D. 

Publication: The Journal of Prosthetic Dentistry 

Publisher: Elsevier 

Date: Available online 20. May 2025 

DOI: https://doi.org/10.1016/j.prosdent.2025.04.043 

Journal Impact Factor (2024): 4.8  

Journal Impact Factor Percentile (2024): 93.6% 

 

Copyright © 2025 The Authors. Published by Elsevier Inc. on behalf of the Edito-
rial Council of The Journal of Prosthetic Dentistry. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 
  

https://doi.org/10.1016/j.prosdent.2025.04.043
http://creativecommons.org/licenses/by/4.0/


4 Publikation 26 

 
  

RESEARCH AND EDUCATION 

Influence of pretreatment strategies on the tensile bond 
strength of 3D printed composite resins for definitive 

cementation to dentin
Lukas Montenbruck, DMD,a Jörg Lüchtenborg, Dipl Ing, PhD,b Moataz Elgezawi, BDS, MSc, PhD,c

Andreas Keßler, DMD, MSc, PhD,d and Dalia Kaisarly, BDS, MSc, PhDe

Digitally supported dentistry is 
undergoing rapid development, 
and, alongside milling, additive 
manufacturing is a well-estab-
lished manufacturing method 
within the broader field of 
computer-aided design and 
computer-aided manufacturing 
(CAD-CAM).1–4 Additive man-
ufacturing offers numerous ad-
vantages, including greater 
time-effectiveness, more af-
fordable material costs, reduced 
material waste, and the possi-
bility of fabricating multiple re-
storations with complex 
geometries concurrently on a 
single machine.3–6 Two of the 
most used 3-dimensional (3D) 
printing techniques in dentistry 
are stereolithography (SLA) and 
digital light processing 
(DLP).7–10 Both techniques use 
a vat filled with a light-reactive resin, wherein a build plate 
descends in incremental steps and the liquid photopolymer 
resin is exposed to light for polymerization. While SLA uses                        

an ultraviolet (UV) laser or laser diode to draw a cross- 
section in successive layers, DLP uses a digital projector 
screen to transfer a single image of each layer across the 
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ABSTRACT 
Statement of problem. Little is known about factors influencing the bond strength of additively 
manufactured materials in dentistry. The impact of diverse pretreatment strategies on the bond 
strength of 3-dimensionally (3D) printed composite resins indicated for definitive cementation to 
dentin has scarcely been investigated.

Purpose. The aim of this study was to evaluate the adhesive bond strength of two 3D printed 
definitive fixed restoration materials to dentin by using diderent pretreatment protocols.

Material and methods. Composite resin rods (2K2K10 mm, n=20/group) were 3D printed with 3Delta 
Crown and saremco print CROWNTEC. Half of the rods were airborne-particle abraded (APA), the other 
half of the rods were untreated. All rods were chemically conditioned with 1 of 3 adhesives (Adhese 
Universal, Heliobond, Monobond Plus). Dentin rods (2K2K5 mm) were cut from bovine teeth, pretreated 
with Adhese Universal, and bonded to the composite resin rods with Variolink Esthetic LC. The 
specimens were thermocycled (10 000 cycles) before testing for tensile bond strength (TBS) and the 
assessment of the failure mode. Surface roughness (SR) and degree of conversion (DC) were examined 
with laser scanning microscopy and Raman spectroscopy. Data were statistically analyzed with 1-, 2-, and 
3-way analyses of variance (ANOVAs) and Weibull analysis (ß=.05).

Results. TBS values ranged from 6.57 to 10.58 MPa, without significant diderences among the groups 
(P>.05). All groups demonstrated a comparable Weibull modulus and predominant adhesive failure. SR 
increased significantly (P<.05) upon APA, and the DC ranged from 70.1% to 71.9%.

Conclusions. Regardless of the 3D printable material, SR was increased by APA, and the DC was 
around 70%. Diderent mechanical and chemical pretreatments appear to exert relatively little 
influence on TBS. (J Prosthet Dent 2025;134:842.e1-e11)
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entire build plate.1,7 The resin viscosity must be sufficiently 
low to flow between the vat and the build plate after each 
printing cycle.11 Otherwise, the probability of generating 
misprints or inhomogeneities in the 3D printed object is 
increased. Consequently, initial resin formulations ex-
hibited a low filler quantity, which resulted in inferior 
mechanical properties and limited their use primarily to 
interim restorations.9–17 As a result of ongoing advance-
ments, 3D printable resins are now commercially available 
that have been approved for definitive restorations.18–21

Mechanical and esthetic properties have been promising, 
but conclusive evidence is still lacking, underlining the need 
for further long-term in vivo and clinical research.9,22,23

Chemical and mechanical pretreatment of the re-
storation material before definitive cementation en-
hances the quality of the adhesive bond,24–28 which, in 
turn, affects the restoration’s general longevity. As the 
materials are intended to remain in the oral cavity for an 
extended period, optimal adhesion among the restora-
tion material, luting composite resin, and dentin must be 
ensured.29,30 For milled CAD-CAM materials, airborne- 
particle abrasion (APA) before bonding has been re-
commended.31–33 Similarly, in the context of direct 
composite resin filling repairs, it is essential to abrade 
the surface.34–36 As each material requires a distinct 
pretreatment protocol for protective and optimized 
surface activation,26,27 the question arose as to whether 
established pretreatment protocols recommended for 
subtractive composite resin restorations can be applied 
to 3D printed composite resin restorations.

Few studies have investigated the adhesive bond 
strength of 3D printable resins indicated for definitive 
use,21,37–41 and the impact of diverse pretreatment 
strategies on the bond strength of these materials to 
dentin is unknown. A literature review concluded that 
factors influencing the bond strength of additively 
manufactured materials in dentistry are undisclosed.37

In other studies, the conversion rate,42–46 filler con-
tent,45,47 and mechanical properties12,22,46,47 of 3D 
printed materials were reported to be low. It can be 
hypothesized that micromechanical adhesion might be 
different from that of milled materials.

The study evaluated the influence of different pre-
treatment protocols of 2 different 3D printed composite 

resins for definitive restorations on the tensile bond 
strength (TBS) to dentin. It was suspected that the 
surface roughness (SR) and degree of conversion (DC) 
of 3D printed materials could provide insights into the 
outcomes of TBS tests and bonding mechanisms and 
might differ from milled CAD-CAM materials. Thus, a 
multipronged approach was used. The null hypothesis 
was that no difference would be found among the dif-
ferent pretreatment protocols on the TBS.

MATERIAL AND METHODS

Two 3D printed composite resins (3Delta Crown; 
DeltaMed GmbH, saremco print CROWNTEC; 
SAREMCO Dental AG) with different mechanical and 
chemical pretreatments were investigated. A total of 120 
specimens of each material were prepared, and the TBS 
of the composite resins to bovine dentin was determined 
depending on the pretreatment protocols. In addition, 
the SR and the DC were analyzed.

A standard tessellation language (STL) file (212110 
mm) was designed and imported into a CAM software 
program (Asiga Composer; Asiga HQ). The specimens 
were nested in a vertical configuration on the build plate 
and 3D printed with a DLP printer (ASIGA MAX UV; 
Asiga HQ) with a layer thickness of 50 µm. A total of 240 
rods were 3D printed from the 2 composite resins 
(3Delta Crown; DeltaMed GmbH, saremco print CRO-
WNTEC; SAREMCO Dental AG). Postprocessing was 
carried out according to the manufacturer's instructions. 
For the 3Delta Crown, the rods were wiped with a cel-
lulose cloth to remove any remaining unpolymerized 
material. A postpolymerization unit (Rapid Shape 
3Decure US; Rapid Shape GmbH) was used to post-
polymerize the rods under vacuum for 8 minutes, and 
cleaning was carried out with >99.7% isopropanol in a 
swirling motion for 1.5 minutes with subsequent drying 
using compressed air. The saremco print CROWNTEC 
rods were cleaned with a cellulose cloth soaked in 96% 
ethanol, dried with compressed air, and post-
polymerized with the same unit.

A total of 240 dentin rods (21215 mm) were cut from 
60 sound anterior bovine teeth that had been stored in 
Ringer solution and 2% sodium azide with a precision 
saw (IsoMet Low Speed; Buehler Ltd) and a diamond 
saw blade (LECO Corp) under water coolant. The rods 
were stored in distilled water until the luting procedure 
on the same day. The dimensions of all composite resin 
and dentin rods were verified with calipers (Hoffmann 
SE). The workflow is illustrated in Figure 1, and the 
materials are listed in Table 1.

A total of 60 composite resin rods of each material were 
airborne-particle abraded with 50-µm aluminum oxide at 
0.15 MPa for 10 seconds from 10 mm with a spot abrasive 

Clinical Implications 
When bonding 3D printed composite resin to 
dentin, it may be advisable to use the same 
universal chemical conditioning agent for both the 
tooth and the restoration to simplify the clinical 
workflow, thus enhancing convenience, 
practicality, and time- and cost-edciency for 
clinicians.
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unit (P-G 400; Harnisch+Rieth GmbH & Co.KG). The re-
maining rods were not airborne-particle abraded. All com-
posite resin rods underwent a chemical pretreatment with a 
universal dentin bonding adhesive (DBA) (Adhese 
Universal; Ivoclar AG), a bonding agent (Heliobond; Ivoclar 
AG), or a universal primer (Monobond Plus; Ivoclar AG). 
All 3 were applied with a microbrush: the universal DBA for 
20 seconds and the bonding agent for 15 seconds. The 
universal primer evaporated for 60 seconds. The excess was 
eliminated through compressed air. This resulted in 12 
testing groups (n=20/group). Study variables and groups are 
displayed in Figure 2. The universal DBA (Adhese Universal; 
Ivoclar AG) was applied to all dentin rods immediately 
before the luting procedure and light polymerized for 10 
seconds (Bluephase Style; Ivoclar AG). The light intensity of 
1100 mW/cm2 was measured with a dental radiometer 
(Bluephase Meter II; Ivoclar AG) before the polymerization 
procedure of each test group.

Dentin rods and 3D printed rods were positioned on 
a specially designed 3D printed specimen support 
structure to ensure that the rods were precisely stan-
dardized and reproducibly aligned with the 4-mm2 

bonding surface.48 A luting composite resin (Variolink 
Esthetic LC; Ivoclar AG) was applied, and the rods were 
pressed together and light polymerized for 20 seconds 
from each side. Excess was removed with a polishing 
wheel (Mooreplastic Discs; E.C. Moore Co).

The specimens were stored in an incubator in distilled 
water at 37 °C for 24 hours followed by thermocycling 
(Thermowechselbad TCS-30; Syndicad) between 5 °C and 
55 °C for 10 000 cycles, with a dwell time of 30 seconds and 

a transfer time of 5 seconds representing the thermal stress 
occurring in 1 year in the oral cavity.49

After thermocycling, a TBS test50 was conducted with 
a tensile test system (TC 550; Syndicad). The specimens 
were aligned horizontally, adhesively attached to the 
specimen holder with the luting composite resin in the 
tensile direction, and tested at a crosshead speed of 0.5 
mm/minute until fracture. To obtain the TBS (MPa), the 
fracture load F (N) was divided by the bonding area A 
(mm2). Failure modes were assessed with a digital light 
microscope (Dino-Lite Premier; Dino-Lite Europe) at 
190 magnification and classified as adhesive (within the 
luting composite resin), cohesive (within the composite 
resin or dentin rod), or mixed failure.

SR and DC were measured with different specimens 
(2.51618 mm) after the TBS test. The STL file design, im-
portation, nesting, 3D printing, and postprocessing of 20 
rods was carried out as described. Four postpolymerized, 
mechanically untreated specimens per material were used 
for DC determination. For SR determination, 3 post-
polymerized composite resin specimens per material were 
airborne-particle abraded with 50-µm aluminum oxide at 
0.15 MPa for 10 seconds from 10 mm, while the others were 
mechanically untreated (n=3/material). SR was determined 
at 4 points on a single test specimen, with 3 separate test 
specimens per group, and measured with a laser scanning 
microscope (VKX-3050, VH-ZST; Keyence Corp) at 120 
magnification.

Raman measurements were conducted to determine the 
DC with a 785-nm laser (Renishaw plc) at 100% power and 
10 seconds integration time, with 3 repetitions per 

(1a) 3D
Printing of

composite rods

(1b) Cutting of
dentin rods

(1) 3D Printing of
composite rods

(2) (no)
mechanical

pretreatment

of resin liquid

of 3D printed
composite rods

Raman spectroscopy
for degree of

conversion (DC)
measurements

(3) Laser Scanning
Microscopy for

surface roughness
(SR) measurement 

(2b) Chemical
pretreatment
of dentin rods

(2.1a) (no)
mechanical

pretreatment

Al2O3,
1.5 bar,
50 µm,
10 sec

Al2O3,
0.15 MPa,
50 µm,
10 sec

(2.2a) Chemical
pretreatment of
composite rods

(3) Luting of rods
with Variolink
Esthetic LC

(5) Tensile bond
strength test

(TBS) 

0.5 mm/min

37°C for 24 h

Adhese

HeliobondUniversal

Adhese

Universal

PlusMonobond

10k cycles

5°C 55°C

(4) Thermocycling (6) Fractography

Tensile bond strength

Surface roughness Degree of conversion

Figure 1. Workflow of tensile bond strength, surface roughness, and degree of conversion investigation.
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measurement. Four spectra were recorded for each 3D 
printable composite resin liquid and postpolymerized spe-
cimens within the range of 1400-1800 cm⁻1. The DC was 
calculated by comparing the relative change of the band at 
1637 cm⁻1, representing C]C stretching mode, with a re-
ference band before and after polymerization. In saremco 
print CROWNTEC, the aromatic C]C band at 1609 cm⁻1 
and the reference band at 1458 cm⁻1 (C-H stretching mode) 
were used as a reference. Because of the absence of the 
aromatic C]C stretching mode in 3Delta Crown, only the 
reference band at 1458 cm⁻1 (C-H stretching mode) was 
used. The DC was given by the formula   

( ) ; RDC[%] 100 1 R
R

I

I or

cured

Resin

1637 cm 1

1609 cm 1 1458 cm 1
= ◊ = .

Data were statistically analyzed with a software 
program (IBM SPSS Statistics, v29; IBM Corp) (α=.05). 
Data were tested for normal distribution with the 
Shapiro-Wilk test. Means and standard deviations of the 
TBS, SR, and DC were calculated. A 1-way analysis of 
variance (ANOVA) was conducted with a post hoc 
Games-Howell test for the TBS and SR. A 2-way 
ANOVA was conducted for SR values, and a 3-way 
ANOVA with post hoc Bonferroni tests for TBS values. 
In addition, a Weibull analysis was performed to as-
certain the reliability and variation of the adhesive bond 
and its probability of failure in all groups.51

RESULTS

The TBS data were normally distributed (P>.05) 
(Table 2). The greatest values were obtained in group 
3D-Al-Ad (10.58 ±4.48 MPa) and the lowest in group S- 
X-Ad (6.57 ±2.55 MPa). The Welch ANOVA revealed 
statistically significant differences among groups 
(P=.022). However, the post hoc Games-Howell test 
showed no statistically significant differences (P>.05). 
This discrepancy may occur because the Welch ANOVA 
evaluates a substantial overall difference among groups, 
while the post hoc Games-Howell test identifies sig-
nificant differences in pair-wise comparisons between 
groups. ANOVA can be significant even when no pair-
wise comparisons reach significance, especially if the 
overall effect was from a general trend in the data rather 
than any group being significantly different from the 
others. The conservative nature of the post hoc Games- 
Howell test can lead to the failure to detect subtle dif-
ferences between specific pairs of groups, particularly in 
cases of high variability within groups.

The 3-way ANOVA (Table 3) did not reveal a 3-way 
interaction among the 3 variables 3D printing material, 
mechanical pretreatment, and chemical pretreatment 
(P=.760). A 2-way interaction between 3D printing 
material and mechanical pretreatment (P=.021), as well 
as 3D printing material and chemical pretreatment Ta
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(P=.019), was significant. The interaction between the 
factors mechanical pretreatment and chemical pretreat-
ment was not significant (P=.784). Each factor (me-
chanical and chemical pretreatment) on its own was 
significant but not when used in combination, which 
was determined by the insignificant interaction between 

mechanical pretreatment and chemical pretreatment. 
The post hoc test of the variable chemical pretreatment 
showed no statistically significant differences in the in-
fluence of 3 types of adhesives (P>.05). The main effects 
3D printing material (P=.001) and mechanical pretreat-
ment (P=.012) were significant. The Weibull moduli 

Al2O3,

Al2O3,

Adhese
Universal 3D-Al-Ad

3D-AI-H

3D-AI-M

3D-X-Ad

3D-X-H

3D-X-M

S-Al-Ad

S-AI-H

S-AI-M

S-X-A

S-X-H

S-X-M

Heliobond

Monobond
Plus

3Delta crown

3D printed
composite

rods

Adhese
Universal

no treatment

no treatment

saremco print
CROWNTEC

Heliobond

Monobond
Plus

Adhese
Universal

Heliobond

Monobond
Plus

Adhese
Universal

Heliobond

Monobond
Plus

specimen 3D printing
material

mechanical
pretreatment

chemical
pretreatment

group
name

Figure 2. Study variables and groups.
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varied between 1.75 and 3.14, and the Weibull analysis 
results are presented in Table 2 and Figure 3.

Failure mode assessment revealed that complex ad-
hesive failures predominated. The remains of luting 
composite resin were identified on dentin and compo-
site resin rods, indicating that luting composite resin had 
failed cohesively. No solely cohesive failure of dentin or 
composite resin rods and only a few instances of mixed 
failures were observed (Table 4).

The data of SR and DC were normally distributed 
(P>.05) (Tables 5, 6). The Welch ANOVA showed sta-
tistically significant differences between Sa values 
(P<.001), with no significant difference between the 2 
non-APA groups (P>.05) and significant differences 
between APA 3Delta and APA saremco (P<.05) groups 
with greater Sa values. The 2-way ANOVA (Table 7) 
identified no significant 2-way interaction between the 2 
variables 3D printing material and mechanical pre-
treatment (P=.115). Nevertheless, a statistically sig-
nificant main effect of the variables mechanical 
pretreatment (P<.001) and 3D printing material (P=.020) 
was found. Optical results of laser scanning microscopy 
showed a smoother surface of untreated surfaces of 
3Delta Crown (Fig. 4A) and saremco print CROWNTEC 
(Fig. 4) and a greater surface roughness of APA surfaces 
of 3Delta Crown (Fig. 4C) and saremco print CROW-
NTEC (Fig. 4D). Raman measurements showed a similar 

DC for both 3D printing materials (70.5%-71.9%) 
(Table 6).

DISCUSSION

Irrespective of the 3D printing material, the various 
mechanical and chemical pretreatment protocols yielded 
no discernible effect on TBS. Thus, the null hypothesis 
that no difference would be found among the different 
pretreatment protocols on the TBS was not rejected. The 
consistent reliability of the adhesive bond was displayed 
by comparable Weibull moduli and similar graphs in the 
Weibull diagram. Although a statistically significant in-
crease in SR was observed after APA, the mechanically 
pretreated groups showed no significant difference in 
TBS compared with the untreated groups. This similarity 
was consistent with previous studies,21,40 which did not 
observe a positive correlation between APA and the 
adhesive bond of 3D printed materials.

The negligible effect of SR on bond strength may be 
attributed to the materials’ chemical composition. Both are 
polymer matrix composite resins infiltrated with 30 to 50 wt 
% inorganic fillers (Table 1). A positive correlation has been 
reported between the filler content of composite resins and 
bond strength.52 In contrast, milled CAD-CAM composite 
resins contain a higher filler content of approximately 80 wt 

Table 2. Mean ±standard deviation of TBS (MPa) and Weibull analysis of TBS test 
3D Printing Material Airborne-Particle Abrasion Adhesive Group n TBS [MPa] m H0 [MPa] R2

3Delta Crown Al2O3 Adhese 3D-Al-Ad 20 10.58 ±4.48 2.87 11.83 0.916
Heliobond 3D-Al-H 20 8.39 ±3.82 2.37 9.52 0.945
Monobond 3D-Al-M 20 9.79 ±4.65 2.02 11.14 0.968

no Al2O3 Adhese 3D-X-Ad 20 8.54 ±3.91 2.44 9.68 0.971
Heliobond 3D-X-H 20 6.94 ±2.50 3.14 7.75 0.967
Monobond 3D-X-M 20 6.78 ±2.90 2.44 7.73 0.979

saremco print CROWNTEC Al2O3 Adhese S-Al-Ad 20 6.59 ±3.64 1.75 7.56 0.903
Heliobond S-Al-H 20 7.87 ±3.41 2.20 8.94 0.953
Monobond S-Al-M 20 6.78 ±2.64 2.84 7.63 0.966

no Al2O3 Adhese S-X-Ad 20 6.57 ±2.55 2.43 7.48 0.971
Heliobond S-X-H 20 7.71 ±2.83 3.03 8.66 0.946
Monobond S-X-M 20 6.69 ±3.39 2.14 7.56 0.949

m, Weibull modulus; n, sample size; R2, R-squared; d0, characteristic bond strength.

Table 3. Three-way ANOVA results for TBS data 
Source Sum of 

Squares
Degrees of 
Freedom

Mean Square F P Partial O2

Corrected model 392.671 11 35.697 2.975 .001 0.126
Intercept 14 486.609 1 14 486.609 1207.407 <.001 0.841
3D printing Material 129.440 1 129.440 10.788 .001 0.045
Mechanical pretreatment 76.299 1 76.299 6.359 .012 0.027
Chemical pretreatment 12.689 2 6.344 0.529 .590 0.005
3D printing MaterialKMechanical pretreatment 64.856 1 64.856 5.406 .021 0.023
3D printing MaterialKChemical pretreatment 96.949 2 48.474 4.040 .019 0.034
Mechanical pretreatmentKChemical pretreatment 5.858 2 2.929 0.244 .784 0.002
3D printing MaterialKMechanical  
pretreatmentKChemical pretreatment

6.579 2 3.290 0.274 .760 0.002

Error 2735.571 228 11.998
Total 17 614.850 240
Corrected Total 3128.241 239

R2=0.126 (adjusted R2=0.083).
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%.47 Consequently, 3D printed composite resins contain an 
elevated concentration of organic monomers. The high 
proportion of monomers appears to override the effect of 
fillers on bond strength, as no significant differences in 
bond strength values were observed between both 3D 
printing materials, consistent with Donmez et al,39 who did 
not report statistically significant differences between the 
bond strength of two 3D printed composite resins. This 
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3D-X-H 3D-X-M
3D-AI-H 3D-AI-M

3D-X-Ad 3D-X-H 3D-X-M

S-AI-Ad: R2 Linear=0,903
S-AI-H: R2 Linear=0,953
S-AI-M: R2 Linear=0,966
S-X-Ad: R2 Linear=0,971
S-X-H: R2 Linear=0,946
S-X-M: R2 Linear=0,949

Abbreviation
S-Al-Ad S-AI-H
S-X-Ad
S-Al-Ad

S-AI-M
S-X-H S-X-M
S-AI-H S-AI-M

S-X-Ad S-X-H S-X-M

Figure 3. Weibull diagrams of A, 3Delta Crown. B, saremco print CROWNTEC. Similar graphs indicate comparable reliability of adhesive bond.

Table 4. Failure modes of TBS test 
3D Printing 
Material

Airborne-Particle 
Abrasion

Adhesive Group n Failure Mode

Cohesive Adhesive* Mixed

Dentin Rod Composite 
Resin Rod

3Delta Crown Al2O3 Adhese 3D-Al-Ad 20 0 0 20 0
Heliobond 3D-Al-H 20 0 0 19 1
Monobond 3D-Al-M 20 0 0 18 2

no Al2O3 Adhese 3D-X-Ad 20 0 0 19 1
Heliobond 3D-X-H 20 0 0 20 0
Monobond 3D-X-M 20 0 0 20 0

saremco print 
CROWNTEC

Al2O3 Adhese S-Al-Ad 20 0 0 19 1
Heliobond S-Al-H 20 0 0 20 0
Monobond S-Al-M 20 0 0 19 1

no Al2O3 Adhese S-X-Ad 20 0 0 17 3
Heliobond S-X-H 20 0 0 20 0
Monobond S-X-M 20 0 0 18 2

* Complex adhesive failure involved adhesive failure at dentin or composite resin side and some cohesive failure of luting composite resin.   

Table 5. Mean and standard deviation of surface roughness Sa (dm) by 
laser scanning microscopy 

3D Printing 
Material

Airborne-Particle 
Abrasion

n Sa [Hm]

3Delta Crown Al2O3 12 2.20 ±0.28
no Al2O3 12 0.50 ±0.08

saremco print 
CROWNTEC

Al2O3 12 2.74 ±0.88
no Al2O3 12 0.61 ±0.09
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assumption prompted the question of residual monomer 
quantities of both investigated materials and the similarity of 
their DCs.

The polymerization of 3D printable resins can be cate-
gorized into 2 different phases. The initial light exposure 
occurs within the printing chamber, resulting in the initia-
tion of radical polymerization and the formation of polymer 
chains from monomers. The polymer chains become en-
tangled and form a 3D polymer network, leading to material 
solidification. The DC in this solid-like state is approxi-
mately 50%. A second light exposure in a postpolymeriza-
tion unit during postprocessing further intensifies the cross- 
linking within the 3D polymer network, thereby increasing 
the DC.42–44,46

The DC of both materials was approximately 70%, 
which is comparable with DCs below 100% of direct 
composite resin materials after light-activated poly-
merization.53 A low DC indicates a high content of re-
sidual monomer. The 3Delta Crown material is 
predominantly composed of the monomers TCDDMDA 
and UDMA, whereas saremco print CROWNTEC pri-
marily contains bis-EMA (Table 1). All these monomers 
contain unpolymerized, unsaturated, reactive carbon- 
carbon double bonds. The methacrylate functional 
groups of bonding agents can initiate radical poly-
merization with these monomers and form a polymer 
network on the material surface.38,54 Consequently, 
bond strength appears to be highly influenced by the 
number of residual monomers, while the effect of 
greater SR achieved through APA may be negligible.

In contrast, milled CAD-CAM materials for indirect 
restorations undergo heat-activated polymerization with 
high pressure during the industrial manufacturing pro-
cess,55 resulting in a high DC, homogeneous material 
properties, and fewer residual monomers available for 
chemical bonding.56–58 Therefore, APA exerts a more 
pronounced influence on the bond strength of milled 

materials than on 3D printed ones by increasing the 
surface area for mechanical and chemical interlocking.

The investigated bonding agents were selected based on 
their ingredients. Heliobond contains bis-GMA, while 
Monobond Plus contains 10-MDP, silane, and sulfide me-
thacrylates (Table 1). Adhese Universal contains both bis- 
GMA and 10-MDP (Table 1). While in milled composite 
resin specimens the application of additional 10-MDP and 
silane primers enhances bond strength compared with the 
pure application of methacrylate primer, this was not ob-
served in this study. No difference in bond strength was 
detected depending on the pretreatment, consistent with 
Donmez et al,39 who reported no difference with several 
adhesives containing 10-MDP when luting 3D printed 
composite resin specimens to dentin. Bonding agents may 
have a greater impact on the bond strength of 3D printed 
materials than on milled ones because of residual mono-
mers, which can form a 3D polymer network on the 3D 
printed materials surface.38,54

Complex adhesive failure resulting in traces of luting 
composite resin adhering to both dentin and 3D printed 
composite resin denotes comparable bond strength. 
Thus, the adhesive bond between dentin and the 3D 
printed restorative material is the weak point. Although 
the layers of the composite resin rods were aligned 
perpendicular to the tensile force, no cases of delami-
nation were detected. Anisotropic behavior, including 
delamination, represents a potential challenge for 3D 
printed materials, occurring when interlayer porosity or 
weakened interfacial bonding are present.17,59

Comparison of the results is challenging because of 
the lack of standardization in the methodology of in-
dividual test components, including TBS60 and thermo-
cycling protocols.49 The TBS test has several limitations, 
including its technique sensitivity, the potential for 
pretest failures, the inconsistency across results, and the 
challenges in specimen preparation.50,60,61 A further 
limitation was the in vitro design of the study, as en-
vironmental factors of the oral cavity, except thermal 
aging, were not considered.

Further research with standardized experimental designs 
is required to enable a comparison of the material properties 
of alternative 3D printing materials for definitive use and 
their behavior in a range of test settings.

Table 6. Mean ±standard deviation of degree of conversion (%) by 
Raman spectroscopy 

3D Printing 
Material

Degree of 
Conversion [%]

Stretching Mode

3Delta Crown 71.9 ±0.6 C-H
saremco print 
CROWNTEC

70.1 ±3.2 aromatic C]C
70.5 ±2.8 C-H

Table 7. Two-way ANOVA results for SR data 
Source Sum of Squares Degrees of Freedom Mean Square F P Partial H2

Corrected model 45.990 3 15.330 70.707 <.001 0.828
Intercept 110.174 1 110.174 508.165 <.001 0.920
3D printing Material 1.265 1 1.265 5.833 .020 0.117
Mechanical pretreatment 44.166 1 44.166 203.710 <.001 0.822
3D printing MaterialdMechanical 
pretreatment

0.559 1 0.559 2.579 .115 0.055

Error 9.540 44 0.217
Total 165.703 48
Corrected Total 55.529 47

R2=0.828 (adjusted R2=0.816).
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CONCLUSIONS

Based on the findings of this in vitro study, the following 
conclusions were drawn: 

1. All the different pretreatment protocols applied 
yielded similar TBS values.

2. APA of 3D printed materials yielded greater SR but 
not significantly greater TBS values.

3. Raman spectroscopy revealed similar DC of both 
3D printed composite resins.

4. The weak point of the adhesive bond was the luting 
composite resin, which typically remained partially 
attached to the dentin rod and to the composite 
resin rod.
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6. Anhang 
Im folgenden Anhang befinden sich mehrere Abbildungen, um den genauen Ar-
beitsablauf zu veranschaulichen: 

6.1 Ablauf der Prüfkörperherstellung – Zugversuch 

 

Abbildung 1: Arbeitsablauf der Prüfkörperherstellung für den Zugversuch 

3Delta Crown/saremco print CROWNTEC

Al2O3,
1,5 bar, 
50 μm, 
10 s

Variolink Esthetic LC

mechanische 
Vorbehandlung  

bzw. keine 
Vorbehandlung 
der Komposit-

stäbchen

Drucken der 
Komposit-
stäbchen

chemische 
Vorbehandlung 
der Komposit-
stäbchen mit 

einem der 
Haftvermittler

chemische 
Vorbehandlung 

der Dentin-
stäbchen

Sägen der 
Rinderzahn-

kronen in 
Dentin-

stäbchen

Befestigung der 
Stäbchen 

aneinander
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Abbildung 2: Beispielhafter zeitlicher Ablauf der Prüfkörperherstellung für den Zugversuch 
  

Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag

Sägen 
Dentinstäb-
chen, 
Befestigung 
Komposit-
und 
Dentinstäb-
chen,
Inkubator
(= Start 
Gruppe 1)

Gruppe 1 aus 
dem 
Inkubator 
herausholen 
und ins 
Thermo-
wechselbad 
(= TWB 1)  

Start Gruppe 
2

TWB 2

TWB 
auffüllen

TWB 
auffüllen

TWB 
auffüllen

TWB 
auffüllen

TWB 
auffüllen

Start Gruppe 
3

TWB 
auffüllen

Start Gruppe 
4

TWB 3

TWB 
auffüllen

TWB 4

TWB 
auffüllen

TWB 
auffüllen

Gruppe 1 aus 
dem TWB 
herausholen, 
Zugversuch 
(= Ende 
Gruppe 1)

TWB 
auffüllen

Ende Gruppe 
2

TWB 
auffüllen

TWB 
auffüllen

Start Gruppe 
5

TWB auffüllen

Start Gruppe 
6

TWB 5

TWB auffüllen

TWB 6

TWB 
auffüllen

TWB 
auffüllen

Ende Gruppe 
3

TWB 
auffüllen

Ende Gruppe 
4

TWB 
auffüllen

TWB 
auffüllen

Start Gruppe 
7

TWB 
auffüllen

Start Gruppe 
8

TWB 7

TWB 
auffüllen

TWB 8

TWB 
auffüllen

TWB 
auffüllen

usw.

Dinge, die es zu beachten gilt:

- Präparierte Zahnoberfläche sollte frisch sein, d.h. am gleichen 
Tag Sägen und Befestigung ans Kompositstäbchen

- Am Wochenende kann nicht mit Al2O3 abgestrahlt werden        
→ kein Start oder Ende einer Gruppe

- Start und Ende einer Gruppe dürfen nicht an einem Tag 
kollidieren

- Langfristig Donnerstag und Freitag immer Start einer Gruppe 
und Montag und Dienstag Ende einer Gruppe
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6.1.1 Sägevorgang 

   

(a)  (b)  (c)  

   

(d)  (e)  (f)  

Abbildung 3: Ablauf des Sägevorgangs, um ein Dentinstäbchen herzustellen 

(a) Rinderzahnkrone befestigt mit Kerr Impression Compound (SpofaDental a.s.) auf dem 
3D-gedruckten Prüfkörperhalter 

(b) Sägevorgang mit IsoMet Low Speed Präzisionstrenner (Buehler Ltd.) 
(c) herausgesägte Zahnscheibe 
(d) Zahnscheibe um 90° gedreht, wiederbefestigt und in Stäbchen zersägt 
(e) herausgesägtes Dentinstäbchen 
(f) Kontrolle der Abmessungen mittels Schieblehre 
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6.1.2 Konditionierung der Dentinstäbchen 

   

(a) (b) (c) 

Abbildung 4: Konditionierung der Dentinstäbchen 
(a) Einmassieren des Universaladhäsivs Adhese Universal (Ivoclar AG) mit Microbrush 
(b) Verpusten des Adhäsivs mit Druckluft 
(c) Photopolymerisation des Adhäsivs mit Polymerisationslampe   



6 Anhang 53 

6.1.3 Additive Fertigung der Kompositstäbchen 

   

(a) (b) (c) 

   

(d) (e) (f) 

Abbildung 5: Herstellung der Kompositstäbchen 
(a) untersuchtes Kompositmaterial 3Delta Crown (DeltaMed GmbH)  
(b) untersuchtes Kompositmaterial saremco print CROWNTEC (SAREMCO Dental AG) 
(c) Druckvorgang der Kompositstäbchen mit dem 3D-Drucker ASIGA MAX UV (Asiga) 
(d) additiv hergestellte Kompositstäbchen mit überschüssigem, unpolymerisiertem Resin 

auf der Bauplattform 
(e) Nachpolymerisation der Kompositstäbchen mit Rapid Shape 3Decure US (Rapid 

Shape GmbH) 
(f) Kontrolle der Abmessungen mittels Schieblehre 
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6.1.4 Konditionierung der Kompositstäbchen 

6.1.4.1 Mechanische Konditionierung 

  

(a) (b) 

Abbildung 6: mechanische Konditionierung der Kompositstäbchen 

(a) Punktstrahlgerät P-G 400 (Harnisch+Rieth GmbH & Co.KG) 
(b) Abstrahlen des Kompositstäbchens mit Al2O3 
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6.1.4.2 Chemische Konditionierung 

  

(a) (b) 

  

(c) (d) 

Abbildung 7: chemische Konditionierung der Kompositstäbchen 

(a) verwendete Haftvermittler: Monobond Plus, Heliobond, Adhese Universal (v. l. n. r.) 
(b) Benetzen des Microbrush mit einem der Haftvermittler 
(c) Einmassieren eines Haftvermittlers mit einem Microbrush 
(d) Verpusten eines Haftvermittlers mit Druckluft 
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6.1.5 Befestigung der Dentin- und Kompositstäbchen 

  

(a) (b) 

  

(c) (d) 

Abbildung 8: Benötigte Materialien für die Befestigung der Dentin- und Kompositstäbchen 
aneinander 

(a) 3D-gedruckter Prüfkörperführungskörper  
(b) alle verschiedenen Stäbchen im Vergleich: 3Delta Crown Stäbchen, saremco print 

CROWNTEC Stäbchen, Dentinstäbchen (v. l. n. r.)  
(c) Befestigungskomposit Variolink Esthetic LC (Ivoclar AG) 
(d) Polymerisationslampe Bluephase style (Ivoclar AG) 
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(a) (b) (c) 

   

(d) (e) (f) 

Abbildung 9: Befestigung der Dentin- und Kompositstäbchen aneinander 

(a) Komposit- und Dentinstäbchen (v. l. n. r.) im Prüfkörperführungskörper vor der Befesti-
gung  

(b) Auftragen des Befestigungskomposits auf das Kompositstäbchen  

(c) Photopolymerisation des Befestigungskomposits mit Polymerisationslampe 

(d) Prüfkörper mit überschüssigem Befestigungskomposit im Prüfkörperführungskörper 

(e) Entfernung der Überschüsse des Befestigungskomposits mit einer Polierscheibe 

(f) Kontrolle der Abmessungen des fertiggestellten Prüfkörpers mittels Schieblehre 
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6.1.6 Künstliche thermische Alterung 

  

(a) (b) 

Abbildung 10: Geräte für die künstliche thermische Alterung 

(a) Inkubator Wärmeschrank Modell 400 (Memmert GmbH & Co. KG) 

(b) Thermowechselbad TCS-30 (Syndicad Ingenieurbüro) 

6.1.7 Zugversuch 

  

(a) (b) 

  

(c) (d) 

Abbildung 11: Technische Ausstattung für den Zugversuch und Versuchsablauf 

(a) Zug-Druck-Prüfsystem TC-550 (Syndicad Ingenieurbüro) 

(b) korrespondierende Messsoftware (Syndicad Ingenieurbüro) 

(c) befestigter Prüfkörper vor dem Zugversuch 

(d) frakturierter Prüfkörper nach dem Zugversuch 
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6.1.8 Fraktographie 

 

Abbildung 12: Fraktographie der Verbundfläche eines Kompositstäbchens mittels Dino-
Lite Digital Microscope Premier (Dino-Lite Europe) 
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6.2 Ablauf Prüfkörperherstellung – Laser-Scanning-
Mikroskopie und Raman-Spektroskopie 

 

Abbildung 13: Arbeitsablauf der Prüfkörperherstellung für die Laser-Scanning-Mikroskopie 
und Raman-Spektroskopie 

mechanische 
Vorbehandlung  

bzw. keine 
Vorbehandlung

Drucken der 
Kompositquader

3Delta Crown

Al2O3,
1,5 bar, 
50 μm, 
10 s

saremco print CROWNTEC

Al2O3,
1,5 bar, 
50 μm, 
10 s

Drucken der 
Kompositquader

mechanische 
Vorbehandlung  

bzw. keine 
Vorbehandlung

Abwischen mit 
einem 

Zellstofftuch

Abwischen mit 
einem in Ethanol 

getränkten 
Zellstofftuch

Trocknen mit 
Druckluft

Trocknen mit 
Druckluft

Nachpoly-
merisationNachpoly-

merisation

Trocknen mit 
Druckluft und 

Abkühlen für 30 
min

Reinigung in 
Isopropanol

Es resultieren je Material:
- für die Raman-Spektroskopie 4 unabgestrahlte

Prüfkörper 
- für die Laser-Scanning-Mikroskopie

o 3 unabgestrahlte Prüfkörper
o 3 abgestrahlte Prüfkörper
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