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Declaration on Writing Aids

ChatGPT has been used as a tool to assist in the composing of this dissertation. While
some aspects of its usage cover all chapters of the dissertation, others are limited to certain
chapters. Below, the specific usage cases of ChatGPT as a writing aid are summarized.

Writing refinement For all chapters, ChatGPT is used to refine the grammar and
writing style. This usage includes identifying and correcting grammatical errors, refining
phrasing to avoid unnatural expressions, and improving word choices, including the
selection of more precise and descriptive terminologies where appropriate. Additionally,
as a final step in preparing the initial draft, ChatGPT is used to inspect the text thoroughly
for potential grammatical and spelling errors. All refinements suggested by ChatGPT
with the goal of writing refinement are carefully reviewed to ensure they are accurate
and align with the original meaning and intent.

Literature suggestions On rare occasions, a specialized GPT (Scholar GPT) is used to
obtain suggestions for relevant literature in specific research domains, notably in Chapter
2. The recommended publications are subsequently checked manually to verify their
correctness and relevance.

Mathematical equations Some of the mathematical equations presented in Chapter
2 are reformulated representations of the original equations from existing research. To
convert the original mathematical equations into LaTeX source code, ChatGPT is used to
analyze these equations, which are provided in image format. As with other applications
of ChatGPT, the generated mathematical equations undergo manual inspection to ensure
their correctness.



Abstract

With over 7000 languages worldwide, the development of language technologies for
low-resource languages, which constitute a significant portion of the world’s languages,
remains a critical but understudied area in computational linguistics and natural language
processing (NLP). This dissertation addresses the multifaceted challenges of multilingual
NLP for low-resource and marginalized languages by unifying efforts in dataset creation,
model adaptation, cross-lingual transfer learning, and a novel approach to understanding
language similarity based on the alignment of linguistic concepts across languages.

The limited availability of evaluation datasets for a vast majority of the world’s
languages presents a constraint on the advancement of NLP capabilities for languages
beyond a handful of high-resource ones, such as English and German. Compounding this
issue, pre-trained language models (PLMs) and large language models (LLMs) typically
support a maximum of only around 100 languages, leaving many low-resource languages
without coverage and perpetuating unequal technological development. To address these
gaps, we leverage tools that are more steadily available for a broader range of languages,
such as static word embeddings, to extend the capabilities of PLMs to low-resource
languages so far without coverage.

In this dissertation, we address several of the aforementioned challenges in multilin-
gual NLP and make the following contributions. First, we develop Taxi1500, a massively
multilingual dataset for text classification utilizing a parallel corpus of Bible texts, expand-
ing the evaluation possibility to more than 1500 languages. By supporting large-scale
multilingual evaluation, Taxi1500 aims to democratize access to NLP technologies and
increase the inclusiveness across underrepresented linguistic communities.

Second, using the same parallel corpus, we conceive a novel framework for quanti-
fying language similarity through cross-lingual conceptual alignment. The introduced
similarity metric complements existing genealogical and typological measures by captur-
ing how concepts are realized and aligned across languages, offering new insights into
linguistic relationships and cultural diversity beyond lexical and geographical proximity.

We further address the adaptation of PLMs to low-resource languages through the
MOoSECroT framework, which stitches static word embeddings for low-resource lan-
guages with a PLM that has no prior knowledge of these languages, thereby enabling
effective zero-shot transfer. Additionally, we incorporate language and script embeddings
during the pre-training stage of a multilingual PLM for over 500 languages, demon-
strating the positive impact of explicit language and script information on cross-lingual
transfer performance.

Finally, we tackle the pressing real-world issue of online hate speech, particularly in
marginalized linguistic communities, by curating culturally and contextually sensitive
hate speech datasets and applying a privacy-preserving federated learning framework.
This distributed approach ensures user privacy while also effectively classifying hate
speech in diverse linguistic settings.



Zusammenfassung

Mit iiber 7000 Sprachen weltweit bleibt die Entwicklung von Sprachtechnologien fiir
ressourcenarme Sprachen - die einen erheblichen Teil der weltweiten Sprachvielfalt
ausmachen - ein kritischer, jedoch noch unzureichend erforschter Bereich in der Com-
puterlinguistik und der Verarbeitung natiirlicher Sprache (NLP). Diese Dissertation
befasst sich mit den vielfdltigen Herausforderungen der mehrsprachigen NLP fiir res-
sourcenarme und marginalisierte Sprachen, indem sie Ansitze zur Datensatzerstellung,
Modellanpassung, sprachiibergreifendem Transferlernen und einem neuartigen Ansatz
zum Verstéindnis sprachlicher Ahnlichkeiten auf der Grundlage konzeptueller Ausrich-
tung zwischen Sprachen vereint.

Die begrenzte Verfiigbarkeit von Evaluierungsdatensitzen fiir eine Mehrheit der
Weltsprachen stellt eine Einschriankung fiir die Weiterentwicklung der NLP-Funktionen
fiir Sprachen jenseits einer Handvoll ressourcenreicher Sprachen wie Englisch und
Deutsch dar. Erschwerend kommt hinzu, dass vortrainierte Sprachmodelle (PLMs) und
grofle Sprachmodelle (LLMs) in der Regel maximal nur rund 100 Sprachen unterstiitzen
und viele ressourcenarme Sprachen unberiicksichtigt lassen, was zu einer ungleichen
technologischen Entwicklung fithrt. Um diese Liicken zu schlieBen, nutzen wir Tools,
die fiir eine breitere Palette von Sprachen verfiigbar sind, wie z.B. statische Wort-
Embeddings, um die Fihigkeiten von PLMs auf ressourcenarme Sprachen auszudehnen,
die bisher nicht abgedeckt wurden.

In dieser Dissertation gehen wir auf mehrere der oben genannten Herausforderungen
in der mehrsprachigen NLP ein und leisten die folgenden Beitrdge. Zunichst entwi-
ckeln wir Taxi1500, einen massiv mehrsprachigen Datensatz zur Textklassifizierung, der
ein paralleles Korpus von Bibeltexten verwendet und die Evaluierungsmoglichkeiten
auf iber 1500 Sprachen erweitert. Durch die Unterstiitzung grof3 angelegter mehrspra-
chiger Evaluierungen zielt Taxi1500 darauf ab, den Zugang zu NLP-Technologien zu
demokratisieren und die Inklusivitit in unterrepriasentierten Sprachgemeinschaften zu
erhohen.

Zweitens konzipieren wir unter Verwendung desselben parallelen Korpus ein neuarti-
ges Framework zur Quantifizierung sprachlicher Ahnlichkeiten durch sprachiibergreifen-
de konzeptionelle Ausrichtung. Die eingefiihrte Ahnlichkeitsmetrik ergiinzt bestehende
genealogische und typologische MaBBnahmen, indem sie erfasst, wie Konzepte sprach-
ibergreifend realisiert und ausgerichtet werden, und bietet neue Einblicke in linguistische
Ahnlichkeiten und kulturelle Vielfalt jenseits der lexikalischen und geografischen Nihe.

Wir befassen uns aulerdem mit der Anpassung von PLMs an ressourcenarme Spra-
chen durch das MoSECroT Framework, das statische Wort-Embeddings fiir ressourcen-
arme Sprachen mit einem PLM verkniipft, das keine Vorkenntnisse dieser Sprachen hat,
und so eine effektive Zero-Shot-Transfer ermoglicht. Dariiber hinaus integrieren wir
Sprach- und Skript-Embeddings wihrend der Pre-trainingsphase eines mehrsprachigen
PLM fiir iiber 500 Sprachen und demonstrieren damit die positive Wirkung expliziter
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Sprach- und Skriptinformationen auf die sprachiibergreifende Transferleistung.

SchlieBlich befassen wir uns mit dem praktischen Problem der Online-Hassrede,
insbesondere in marginalisierten Sprachgemeinschaften, indem wir kulturell und kon-
textbezogene Hassrede-Datensitze kuratieren und ein datenschutzfreundliches Federated
Learning (FL) Framework anwenden. Dieser verteilte Ansatz gewihrleistet die Privat-
sphére der Benutzer und klassifiziert Hassrede gleichzeitig effektiv in unterschiedlichen
sprachlichen Umgebungen.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Language Inequality

In today’s world, a vast amount of information is produced daily and influences nearly
every facet of our lives, from online information retrieval to translating a foreign lan-
guage. Processing this immense data volume has become both a challenge and a driver
of innovation, propelling significant advancements in natural language processing (NLP),
including great improvements in applications like machine translation (MT) and sen-
timent analysis (Zhang et al., 2018a; Dabre et al., 2021; Chronopoulou et al., 2023).
Since its introduction, the Transformer architecture (Vaswani et al., 2017) has marked a
paradigm shift in tackling NLP problems and has been widely adopted as the de facto
go-to solution. Building on the Transformer, pre-trained language models (LMs), such
as BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019), have achieved impressive
language capabilities by training on vast datasets. Some of these models, pre-trained on
data from multiple languages, show strong performance not only on English tasks but
also on tasks in various other languages. However, despite the existence of over 7000
languages globally (Joshi et al., 2020), most multilingual LMs cover at most around 100
languages (Devlin et al., 2019; Conneau et al., 2020; Xue et al., 2021), leaving many
low-resource and endangered languages underrepresented or entirely excluded from
digital tools.

The recent development of large language models (LLMs) has achieved state-of-the-
art performance across different fields of NLP (Brown et al., 2020; Ouyang et al., 2022;
Webb et al., 2023). However, LLMs generally support only a limited set of languages,
similar to previous LMs (Scao et al., 2022; Touvron et al., 2023b). Additionally, studies
indicate that LLMs tend to use English as the preferred internal language (Etxaniz et al.,
2024; Wendler et al., 2024), thus unable to fully leverage their multilinguality.

This huge gap is a manifestation of language inequality in NLP technologies, as
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speakers of minority languages are often restricted in accessing tools essential for
information processing and digital well-being, such as hate speech detection tools.
The primary driver of this inequality is data scarcity. While vast text corpora exist for
a few high-resource languages like English and German, similar data, which is crucial
for the training of NLP technologies, remain critically limited or nonexistent for most
of the world’s languages. It is thus imperative to make both current and emerging NLP
technologies inclusive, supporting as many languages as possible, especially low-resource
and endangered ones.

1.1.2 Cross-Lingual Transfer

The advent of pre-trained language models (PLMs) like BERT (Devlin et al., 2019) has
led in a new era for NLP, where substantial performance gains are achieved through
large-scale pre-training on vast amounts of unlabeled text data. The pre-training phase,
which contributes to the impressive language capabilities of such models, relies heavily
on the availability of extensive unlabeled data, which explains why these models initially
emerged for high-resource languages where data is abundant (Antoun et al., 2020;
Chan et al., 2020; Le et al., 2020). For low-resource languages, however, limited data
availability presents serious challenges for building robust NLP systems, as there is
often insufficient data to pre-train language models specifically for these languages.
Compounding this issue are growing concerns about the environmental impact caused
by large-scale pre-training, a process that demands significant time and computational
resources (Gupta et al., 2022; Patel et al., 2023). Consequently, developing efficient
strategies to use existing resources is essential both for the reduction of carbon footprint
and the development of reliable NLP technologies for low-resource languages.

To address these challenges, cross-lingual transfer learning is a widely adopted
approach for enhancing the performance of NLP systems in low-resource languages,
which are often underserved by current language technologies. This approach involves
leveraging data or pre-trained language models available for one language, typically a
high-resource one like English, to address NLP tasks in a target language with limited
resources.

In the past, cross-lingual transfer has been achieved through parallel multilingual
word embeddings, where closely related words across languages are represented by
similar word vectors in a shared vector space (Mikolov et al., 2013b; Gouws and Sggaard,
2015; Vuli¢ and Korhonen, 2016). More recently, multilingual PLMs are pre-trained
on multilingual corpora covering over 100 languages, sharing model parameters to
enable cross-lingual transfer through zero-shot and few-shot learning. Such models can
achieve strong performance on target languages by fine-tuning only on a few samples in
a high-resource language, such as English (Hu et al., 2020; Gao et al., 2021; Lin et al.,
2022). However, the cross-lingual transfer capabilities of PLMs remain constrained by
factors such as data availability for different target languages and linguistic similarity
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to the source language (Lauscher et al., 2020). To extend NLP capabilities across more
languages, innovative methods must be studied to effectively extend existing tools like
PLMs to languages that remain unseen or underrepresented in training data.

An additional important element in cross-lingual transfer is language neutrality, which
ensures that similar words across different languages are represented by comparable
embeddings. Research has explored the importance of language neutrality, including
its role in effective cross-lingual transfer learning (Libovicky et al., 2020; Chang et al.,
2022).

By transferring knowledge from a high-resource source language to a low-resource
target language, cross-lingual transfer learning makes it possible to perform NLP tasks
effectively on low-resource languages with minimal or no labeled data, reducing language
barriers and extending more inclusive NLP capabilities to a much broader range of
communities.

1.1.3 Conceptual Diversity

Traditionally, languages have been classified according to phylogenetic typology, with
similarities between languages primarily assessed through vocabulary, i.e., lexical simi-
larity, and morphology (whether a language is synthetic or analytic). However, languages
differ not only in vocabulary and morphology but also in how they conceptualize mean-
ings, encoding ideas in ways that can vary. For example, the Yoruba word irun means
both “hair” and “wool” in English, where English uses distinct terms for these concepts.
In other words, Yoruba uses a single concept to describe both human and animal hair,
whereas English distinguishes them with separate words. This phenomenon of conceptu-
alization, or how languages conceptualize ideas differently, has been studied through the
lenses of cross-lingual polysemy, where one word is associated with multiple meanings
(Perrin, 2010; List et al., 2013), and colexification, where languages lexify word senses
identically (Francois, 2008).

Similarities in conceptualization can be observed beyond the lexical or genealogical
relatedness of languages, which is defined by the phylogenetic typology. For instance,
Tagalog, a language spoken in the Philippines, exhibits conceptual similarities to some
European languages, notably Spanish, which can be partially attributed to the Spanish
colonization of the archipelago. One manifestation of such similarity is seen in the
Tagalog words dila and wika, both of which can mean “language” or “tongue”, similar
to the Spanish word lengua, which also carries both meanings. Similarly, Plateau
Malagasy, an Austronesian language spoken in Madagascar, shows conceptual proximity
not only with Hawaiian, a geographically distant Austronesian relative, but also with
geographically adjacent, yet topologically different languages like Mwani and Koti
(Liu et al., 2023b). Such patterns of conceptual similarity among geographically and
topologically distant languages suggest that similar words across languages may not
always convey similar meanings due to conceptual divergences. This variability presents
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a challenge in generalizing language technologies, particularly when adapting them
to conceptually dissimilar languages. At the same time, these patterns indicate that
languages may also be grouped by their conceptual relatedness, offering an alternative
measure to traditional systems of linguistic classification.

The conceptual overlap (e.g., “tongue” and “language” in Tagalog and Spanish)
and areas of divergence (e.g., “hair” and “wool” in Yoruba and English) motivate a
deeper exploration of the conceptual language similarity. Examining these similarities
and differences offers us valuable insights and deepens our understanding of not only
linguistic diversity but also the underlying cognitive and cultural factors that shape
language, with potential implications for improving NLP technologies.

1.1.4 Culture- and Context-Aware NLP

Section 1.1.3 illustrates how differences in conceptualizations across languages can
reveal cultural and historical insights (such as those found in the Philippine languages).
Such conceptual variations are not merely the result of linguistic differences, they also
highlight subtle but important nuances in how people use and interpret languages within
their cultural contexts. Despite considerable advances in their multilingual capabilities,
NLP techniques still struggle to capture these cultural dimensions accurately, as both
NLP models and datasets typically aim to cover a broad range of languages, yet fail to
account for the intricate cultural variations that shape language use. This oversight risks
producing inaccurate interpretations, as differences in language usage, including within
the same language across regions and cultures, can lead to misinterpretations that impact
specific applications.

Awareness of cultural and contextual nuances is particularly relevant in hate speech
detection, a task that is highly sensitive to cultural and ethnic variations and especially
important for communities that speak low-resource languages and have limited access to
NLP tools. To date, most hate speech detection datasets are organized at the language
level, with little attention to regional or cultural variations within the same language.
This approach has the drawback of overlooking critical cultural information, particularly
for languages covering large geographical areas that encompass rich cultural diversity.
Recent studies, such as those by Pawar et al. (2024) and Tonneau et al. (2024a), have
examined the level of cultural awareness in NLP models and datasets. Tonneau et al.
(2024a) show that hate speech datasets across languages with wide geographical cov-
erages often overrepresent certain cultural contexts while largely overlooking others,
leading to classification errors for target groups whose cultural nuances are underrepre-
sented. To address this issue, some initiatives have focused on building region-specific
datasets to enrich the cultural diversity within languages (Arango Monnar et al., 2022;
Tonneau et al., 2024b) in an attempt to improve generalizability to less represented
cultural contexts.

Beyond cultural and regional considerations, it is equally crucial to examine the
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specific context in which the data is collected and annotated. In hate speech detection,
various studies reveal a discrepancy between data annotators and target groups directly
affected by hate speech (Davidson et al., 2019; Sap et al., 2019). This often arises from
annotators’ limited familiarity with the dialectal and cultural variations of the target
groups and a lack of diversity among data collectors, and can lead to insensitivity toward
nuances in the annotated data. For example, texts written in the African American English
(AAE) dialect are more commonly labeled as offensive, a bias that can propagate through
NLP systems trained on such datasets (Sap et al., 2019). Further studies demonstrate that
factors such as annotators’ identity and background play an important role in determining
severity ratings in toxicity datasets (Goyal et al., 2022b; Mostafazadeh Davani et al.,
2022; Sap et al., 2022). To mitigate such biases, studies like Maronikolakis et al. (2022)
and Shekhar et al. (2022) propose creating abusive language detection datasets in low-
resource languages by directly involving affected communities in the data collection
process. This approach effectively increases diversity among data collectors and aligns
them with the specific contexts of affected target groups, which are essential steps for
reducing bias in abusive and toxic language detection datasets.

The shift toward culturally and contextually inclusive NLP resources represents a
crucial step in adapting NLP applications to reflect the rich linguistic diversity across
different regions. As NLP technologies advance, prioritizing cultural and contextual
awareness in data collection will be increasingly vital for the development of fair and
accurate NLP systems for global communities.

1.1.5 Scalable and Privacy-Preserving NLP

Deep learning methods, including the training of current state-of-the-art LMs for NLP, are
extremely data-hungry. These models have thus far relied on vast amounts of public data
to achieve high performance. However, studies have shown that publicly available data
may contain personally identifiable information (PII) and potentially copyright-protected
contents, which may inadvertently be memorized by the models during training. Carlini
et al. (2021) show that larger models are more susceptible to such memorization than
smaller ones, raising concerns given the current trend toward ever-larger LMs. This
poses dangers including privacy attacks like data extraction, where personal information
can be retrieved from pre-trained models (Carlini et al., 2023; Ippolito et al., 2023).
Moreover, verbatim memorization of entire text chunks from the training data may lead
to unintentional copyright infringements (Karamolegkou et al., 2023). This issue is
exacerbated in domains where personal or private information is especially sensitive,
such as medicine and finance. Additionally, Villalobos et al. (2022) suggest that public
data may be depleted by as early as 2026, raising serious questions about the viability of
training ever-larger language models on increasingly massive datasets.

To address the challenges of limited public data and the risks of exposing sensitive
or copyright-protected information during training, leveraging local data stored on end
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devices in a privacy-preserving manner becomes especially relevant. Learning approaches
such as federated learning (FL) (McMahan et al., 2017) offer a promising solution to
this problem. Instead of gathering data from users to train a model on a remote server,
FL retains private data on local devices and trains models directly on users’ devices.
Only the updates to the local models are collected and used to update the central model
in an aggregated manner. Because FL eliminates the need to transfer and store private
user data on remote servers, it ensures the data privacy of the users. Due to its privacy-
preserving nature, FL has been used in areas where data privacy plays a crucial role, such
as medicine (Sheller et al., 2020) and finance (Byrd and Polychroniadou, 2020).

Despite its promising aspects of enabling distributed training while preserving user
data, FL still faces certain technical challenges, such as possible information leakage
(Geiping et al., 2020) and vulnerability to membership inference attacks (Truex et al.,
2021). Such challenges are typically addressed using techniques like differential privacy
(Dwork et al., 2016; Kairouz et al., 2021), although the trade-off between the amount of
noise added to increase privacy and the model accuracy remains an active area of research.
As a distributed training method, FLL may also encounter issues with heterogeneous or
non-independent and identically distributed (non-IID) user data, which can slow the
convergence of the central model (Karimireddy et al., 2020; Li et al., 2020). To alleviate
this and increase the customizability of individual local models, approaches to personalize
models on the participating devices have shown effectiveness in aligning models with
user-specific needs (Arivazhagan et al., 2019; Bui et al., 2019).

1.2 Research Questions

While multilingual PLMs and cross-lingual transfer methods have greatly expanded
the reach of NLP across languages (Section 1.1.2), the vast majority of the world’s
low-resource languages remain underrepresented due to, among others, limited data
availability and their marginalization in favor of higher-resource languages. To promote
a more inclusive advancement of NLP, it is essential to develop both cost-effective strate-
gies for creating multilingual evaluation datasets and cross-lingual transfer methods that
efficiently leverage resources available to high-resource languages. Additionally, as lan-
guages often reflect their speakers’ unique cultural backgrounds, conceptual diversity is
a crucial factor in how languages represent ideas. Understanding patterns that distinguish
languages and quantifying the relatedness of languages based on conceptualizations
could effectively enhance our understanding of language similarity. Furthermore, as
NLP applications increasingly address tasks involving sensitive content, such as the
moderation of online hate speech, it becomes crucial to develop methods that not only
perform reliably across languages, especially marginalized ones, but also prioritize user
privacy. Together, we propose the following research questions, which we aim to explore
throughout the remainder of this dissertation:
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i. Evaluation of low-resource languages: What approaches can be taken to create
massively multilingual datasets that support a wide range of low-resource lan-
guages while minimizing data annotation costs? Additionally, how might such
datasets impact the performance of current multilingual PLMs?

ii. Quantifying conceptual diversity across languages: Given that distinct concep-
tualization patterns reflect diverse cultural backgrounds across languages (Section
1.1.3), how can these differences be captured and measured quantitatively, poten-
tially through a language similarity metric, to enhance cross-lingual understanding?

iii. Effective cross-lingual transfer for low-resource languages: What novel tech-
niques, including architectural modifications to existing multilingual PLMs, can be
developed to enhance zero-shot and few-shot transfer for low-resource languages
by leveraging resources from high-resource languages?

iv. Culturally sensitive and privacy-preserving NLP: Using hate speech detection as
a case study, how can NLP models be tailored to effectively identify hateful content
in a culturally sensitive manner while prioritizing user privacy for marginalized
linguistic groups, particularly in low-resource settings?

1.3 Contributions

We summarize the contributions in this work, which address the research questions
identified in Section 1.2 and encompass the following four key areas: expanding NLP
support for low-resource languages through datasets and tools, quantifying conceptual
language similarity, enhancing cross-lingual transfer to low-resource languages via
innovative model architecture modifications, and developing culturally sensitive, privacy-
preserving NLP applications.

The first major contribution of this dissertation is the development of Taxil500, a
massively multilingual text classification dataset that supports NLP evaluation for over
1500 languages. Leveraging parallel Bible translations, this dataset is created by ob-
taining crowd-sourced annotations for English Bible verses and projecting the collected
labels onto parallel translations of the same verses in over 1500 languages. We showcase
the utility of Taxi1500 by evaluating multiple PLMs and LLMs on it, including Glot500
(Imani et al., 2023), Llama 2 (Touvron et al., 2023b), and Mistral (Jiang et al., 2023). Fur-
thermore, we put forward an in-depth analysis of the dataset, categorizing the supported
languages into three subgroups based on their representation in popular multilingual
PLMs, as well as factors such as language families. Utilizing the same multilingual Bible
corpus, we introduce Conceptualizer, a framework for cross-lingual concept alignment.
The alignment is achieved by constructing a set of predefined concepts and creating a
directed bipartite graph between source and target language concepts. We demonstrate
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that Conceptualizer achieves high accuracy for concept alignment through the evaluation
of selected concepts. Additionally, we introduce the notion of cross-lingual stability as
the degree of one-to-one overlap in conceptualizations across languages. Our analysis
of the relationship between cross-lingual stability and concreteness of concepts reveals
that concrete concepts, such as “bird”, are more stable across languages than abstract
ones such as “mercy”. Based on cross-lingual conceptual alignment, we propose a new
conceptual language similarity based on varying conceptual patterns across languages.
We show this similarity measure offers a novel perspective on linguistic similarities,
complementing traditional genealogical and typological similarities.

Recognizing the challenges of adapting PLMs to low-resource languages, we present
MoSECroT, a framework designed to address resource constraints and the high com-
putational overhead of PLMs by enabling efficient cross-lingual transfer, particularly
for low-resource languages. MoSECroT leverages static word embeddings, which are
more readily available for a broader range of low-resource languages, and achieves
cross-lingual transfer by aligning these embeddings with those of monolingual PLMs
for high-resource languages through model stitching with the help of relative representa-
tions. This approach creates a unified embedding space between a high-resource source
language and a low-resource target language, allowing the embedding layer of a PLM to
be swapped to enable zero-shot transfer. Our evaluation on two text classification tasks
demonstrates MoSECroT’s potential to extend zero-shot cross-lingual transfer capability
to low-resource languages unseen by existing multilingual PLMs.

Focusing further on facilitating cross-lingual transfer in PLMs, we introduce
LANGSAMP, a language- and script-aware multilingual pre-training method that
increases language neutrality in PLMs. LANGSAMP achieves this by integrating lan-
guage and script embeddings into the output of Transformer blocks, thus offloading the
burden of encoding language-specific information from the token embeddings. We apply
LANGSAMP for continual pre-training of XLM-R (Conneau et al., 2020) as a case study
and demonstrate that the inclusion of language and script embeddings leads to the model
consistently outperforming the baseline without language or script embeddings across
various downstream tasks. Through extensive analysis, we additionally observe that
the resulting language and script embeddings, as byproducts of pre-training, capture
structural and typological features that contain language-specific information and can aid
in selecting the optimal source languages for cross-lingual transfer learning.

Finally, we address the urgent issue of online hate speech, which disproportionally
affects marginalized communities that often lack the support of NLP tools in their
languages. We release REACT, a collection of culture-specific hate speech detection
datasets covering seven target groups in eight low-resource languages. These datasets
are developed by individuals with profound background knowledge of the affected target
groups and the cultural contexts in which they appear, which ensures the cultural and
contextual relevance of the datasets. Given the sensitive nature of hate speech data, which
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raises privacy concerns, we propose a distributed, privacy-oriented training approach
using federated learning (FL), complemented by personalization techniques to tailor
models to the needs of specific target groups. Within the FL framework, user data is
processed locally without being collected and stored in a centralized location. This
allows local hate speech filtering while maintaining privacy, and simultaneously catering
to the individual needs of each user.

Together, these contributions represent advancements across several aspects. The
creation of comprehensive multilingual datasets, such as Taxi1500 and REACT, provides
crucial resources for the development of NLP systems for underrepresented languages.
Conceptualizer introduces not only a structured framework for discovering concept
alignments across diverse languages but also a new method for understanding language
similarity, offering a valuable perspective on language relationships. Novel frameworks
such as MoSECroT and LANGSAMP allow for efficient cross-lingual transfer, making
NLP systems more adaptable to new languages without extensive retraining or resource
requirements. Moreover, the integration of privacy-preserving methods, such as FL,
promotes more ethically responsible NLP development, ensuring that user privacy is
respected and NLP is more tailored to meet the specific needs of diverse communities.
Cumulatively, this dissertation presents contributions that push further the boundaries of
current low-resource NLP systems, allowing a broader range of communities to benefit
from language technologies in a more inclusive and ethical way.

1.4 Outline

In this chapter, we describe the motivations behind this dissertation, outline the core
research areas, and summarize the contributions made. The remainder of the disserta-
tion is structured as follows. In Chapter 2, we provide the foundational background
information for the works in subsequent chapters. In Chapter 3, we detail the process
of creating a multilingual parallel text classification dataset from a large multilingual
Bible corpus and evaluating the resulting dataset. In Chapter 4, we examine alignment
across conceptualization patterns in different languages, conduct an extensive evaluation
of conceptual language similarity, and analyze unique features contributing to concep-
tual divergence. In Chapter 5, we introduce a novel technique that leverages relative
representations to enable cross-lingual transfer learning. In Chapter 6, we propose a new
pre-training method, analyze the effectiveness of language and script embeddings, and
explore their role in selecting optimal languages for cross-lingual transfer. Finally, in
Chapter 7, we describe the steps taken to create culture- and context-aware hate speech
datasets and present a privacy-preserving approach using federated learning (FL) to
classify hate speech in a local and customizable manner.






Chapter 2

Background

2.1 Machine Learning for NLP

2.1.1 Preliminaries

Based on how models learn from the data, machine learning can be broadly categorized
into three paradigms: supervised learning, unsupervised learning, and reinforcement
learning. Among these, we focus on supervised learning in this section, which is the
most relevant paradigm for natural language processing (NLP).

In supervised machine learning, there are two key components: the dataset and the
model. The dataset consists of input-output pairs (x;, ;) where x; € X andy; € Y.
Here, X represents the set of all input samples, and Y the set of corresponding labels.
Typically, the dataset is divided into three parts: a training set, a development (validation)
set, and a test set.

On the other hand, the model usually has a set of parameters ¢ and a set of hyper-
parameters. The parameters ¢ are learned during training and are essential for making
the model’s predictions, while hyperparameters, such as learning rate and batch size, are
set before training and adjusted based on the model’s performance on the development
set. The model is first trained on the training set, evaluated on the development set, and
finally tested on the test set to assess its overall performance. The objective of supervised
learning, then, is to learn a function f : X — Y that maps the set of inputs to the outputs
accurately. This is done by iteratively adjusting # to minimize a loss function L(Y,Y”),
where Y’ represents the predicted output for X.

To illustrate this with a neural network (discussed further in Section 2.1.2), at the
beginning of the learning process, the parameters 6 are typically initialized randomly.
During training, the model processes the training data X and outputs a set of predictions
Y’. The quality of these predictions is calculated using the loss function L, which
quantifies the difference between the predicted outputs Y’ and the true labels Y. Using
an optimization algorithm like gradient descent, the model updates ¢ to reduce the loss
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through a process called backpropagation. This training process can then be repeated
until convergence of the model, at which stage the optimization algorithm has stabilized
0, and further training yields minimal improvements.

2.1.2 Neural Networks
Early history

The concept of neural networks was inspired by the way biological neurons in the human
brain communicate with each other: a neuron receives an input, processes it, and passes
on information by firing signals to other neurons. Research into learning with artificial
neurons began as early as 1943, using symbolic logic operators like AND and OR (Mc-
Culloch and Pitts, 1943). Hebb (1949) expanded upon this by suggesting that artificial
neurons activate in unison by drawing a parallel to biological neural connections, and
proposed the concept of cell assemblies, which are groups of functionally interconnected
neurons. This principle, known as Hebbian learning theory, states that neurons form
stronger connections through repeated, simultaneous firing, much like the neural struc-
ture of the brain. Building on these ideas, Frank Rosenblatt developed the perceptron
(Rosenblatt, 1958), a single-layer neural network designed to output a weighted sum of
inputs and is able to function as a binary classifier. Later, (Minsky and Papert, 1969)
conducted a comprehensive analysis of the perceptron and pointed out its limitations,
notably its inability to solve the XOR problem. This demonstrated that a single-layer
perceptron could not address non-linearly separable problems, underlining the need for
more complex network structures.

Deep learning

As various studies recognized that the simplicity of single-layer perceptrons prevents
them from solving complex, non-linearly separable problems like XOR, a possible
solution was proposed by adding more layers to the model. Amari (1967) presented a
solution that enabled the solving of non-linearly separable problems by using a multilayer
perceptron, which was trained using stochastic gradient descent. Later, Rumelhart
et al. (1986) popularized backpropagation, a learning procedure that minimizes the
network’s prediction errors by iteratively adjusting the weights between each layer
based on gradients calculated from a loss function. Over the years, further architectural
innovations have been applied to the network and greatly expanded neural networks’
capabilities for specific tasks. For example, convolutional neural networks (CNN) (LeCun
et al., 1998) were applied to recognize characters in documents by capturing shifts in
local patterns within two-dimensional shapes, which makes CNNs particularly suited for
extracting relevant features from inputs like pixel images. Similarly, Long Short-Term
Memory networks (LSTM) (Hochreiter and Schmidhuber, 1997) were developed to
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address the vanishing gradient problem, a common issue that arises with deeper networks
(Hochreiter, 1991; Bengio et al., 1993), through the use of memory cells and gating
mechanisms.

A major breakthrough in deep learning came around the 2010s with works such
as Hinton and Salakhutdinov (2006), which applied autoencoders to reduce the dimen-
sionality of image data, facilitating the flow of backpropagation through the model.
In another milestone, Krizhevsky et al. (2012) achieved groundbreaking progress in
image classification using deep learning on the ImageNet challenge (Russakovsky et al.,
2015), significantly outperforming previous methods. This was achieved through the
introduction of a deep CNN model that could be efficiently implemented on GPUs. Such
progress has demonstrated the potential of deep networks and reignited the interests
in deep learning. Some subsequent research has focused on techniques for efficiently
training very deep neural networks with up to 1000 layers (Srivastava et al., 2015; He
et al., 2016), sparking further innovations in deep learning across fields.

Structure

A neural network for NLP typically consists of three components: an embedding layer,
feedforward (or fully connected) layers, and an output layer. Although specialized layers
like convolutional neural networks (CNNs) and Long Short-Term Memory (LSTM)
layers exist for specific NLP tasks (see above), this part focuses on the three most basic
building blocks mentioned.

Embedding layer For words to be processed by the model, they first need to be
converted from their categorical form into continuous word vectors. This transformation
is carried out by the embedding layer, which is typically the first layer the text data
passes through in a neural network. The embedding layer is represented as a matrix
E € RV*P where V is the predefined vocabulary size of the embedding layer, and D is
the dimensionality of the word vectors. The input text is first divided into smaller units
during the tokenization process (discussed further in Section 2.1.3), and then looked up
and mapped to a corresponding vector in the embedding layer.

Feedforward layer The transformed input tokens, now in the form of dense vectors,
are passed through a series of feedforward layers. Each feedforward layer receives
vectors from the preceding layer as its inputs, calculates a weighted sum of the inputs,
and subsequently applies a non-linear activation function to produce the outputs, which
are then fed into the next layer of the network. This process can be expressed using the
formula y = o(Wxz + b), where x is the input vector, W and b are the weight matrix and
bias of the feedforward layer, o is the non-linear activation function, and y is the output
vector. Because each neuron in a feedforward layer is connected to every neuron in the
following layer, these layers are also called fully connected layers.
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Output layer The output layer is the final layer of a neural network and is responsible
for producing the final predictions for the specific task the model is deployed for, based
on the outputs from preceding feedforward layers. Therefore, the number of neurons in
the output layer is often determined by the concrete type of task and generally matches
the number of possible output labels.

Activation functions

Activation functions add non-linearity to the outputs of a layer, enabling the model to
learn complex patterns and non-linear decision boundaries that cannot be captured using
linear activations alone. This capability is particularly useful in deep networks where
non-linear activations are applied across multiple stacked layers. The aforementioned
XOR problem, for example, can be solved by a two-layer neural network with non-linear
activation. Additionally, non-linear activation also has the function of transforming the
output of the final layer to a well-suited format for the specific target task, for example,
based on whether the task is binary or multiclass classification.

Common activation functions include the sigmoid function, o(z) = ﬁ, which
outputs values between 0 and 1 and can be used to represent probabilities for binary

classification. Softmax, o(z;) = ﬁ produces a probability distribution for a set of

classes, making it suitable for multiclass classification problems. Rectified linear unit
(ReLU) is another straightforward yet widely used activation function and is defined
as o(x) = max(0, x), which outputs O for negative inputs and acts as a linear function
otherwise.

Evaluation

A fundamental tool in the evaluation of classification tasks is the confusion matrix, which
categorizes predictions into four types in the case of binary classification: true positive
(TP), true negative (TN), false positive (FP), and false negative (FN). These are displayed
in a 2 x 2 table where each axis, with two elements, represents the predicted and actual
labels respectively. This format can easily be generalized to multiclass classification.
Using the confusion matrix, the simplest metric to evaluate the model’s predictions is
accuracy, which measures the proportion of correct prediction out of all predictions:

TP + TN
TP + TN + FP + FN

Accuracy =

The accuracy is easy to calculate and straightforward to understand. However, it
may not be a reliable metric in the case of imbalanced data, where a model can obtain
high accuracy by always predicting the majority class. In such cases, three other metrics,
precision, recall, and F3 score, are often more reliable metrics for evaluating a model’s
performance.
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For a given class label, precision measures the proportion of correctly predicted in-
stances for which the model assigns that class label, while recall measures the proportion
of actual instances with the class label that the model correctly predicts:

.. TP
Precision = ———
TP + FP
TP
Recall = ———
T TP L EN

Precision and recall prioritize different aspects, with precision focusing on the accu-
racy of positive predictions, and recall emphasizing the coverage. A metric that balances
precision and recall is the Fj score, which is the harmonic mean of the two and is
calculated as follows:

Precision - Recall

=2 —
Precision + Recall

A more generalized form of this, the Fj3 score, introduces the parameter 3 to adjust
the weighting of precision and recall depending on the task priorities. A J value less
than 1 places more weight on precision, while a value greater than 1 prioritizes recall:

Precision - Recall

Fy=(1+p5%-
p=(1+5) (B2 - Precision) + Recall

Another metric, which is common in multiclass classification, is top-k accuracy,
where a prediction is considered correct if the true label is among the top & predicted
labels. This is particularly useful for tasks with a large label set and multiple classes are
acceptable, for example, in cases where differences between labels are subtle.

2.1.3 Tokenization

Tokenization is a fundamental process in NLP and is usually the first step in preparing
text data for machine learning tasks. It involves breaking down text into smaller units,
or tokens, to facilitate linguistic understanding and model training. While the process
may seem straightforward, various challenges can sometimes arise due to the linguistic
complexities inherent in different languages. Tokenization methods can generally be
categorized into three groups based on their granularity: word-level, subword-level,
and character/byte-level tokenization. Sentence segmentation, which splits text into
individual sentences, is sometimes regarded as another form of tokenization. However,
we do not discuss it in detail as segmenting text at the sentence level, while beneficial
for certain applications (Reimers and Gurevych, 2019; Liu et al., 2021), is generally
insufficient for many NLP models and tasks, which often require finer granularity such
as words or subwords.
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Word-level tokenization

The simplest approach to word-level tokenization is splitting text on white spaces, which
include characters like spaces and newlines (\n). This form of white space tokenization
is easy to implement and intuitive to understand. Furthermore, splitting text on white
spaces is highly efficient (it requires little computation) and interpretable, especially
in combination with static word type embeddings (discussed further in Section 2.2).
However, because white space tokenization depends on the presence of explicit white
spaces in text, it only works well on languages with clear word boundaries, such as
most alphabet-based languages. Even in these languages, word-level tokenization has
some limitations, particularly in its inability to recognize related word variants, such
as go, going, and went. To address this, lemmatization and stemming tools are often
employed (Bird et al., 2009). Lemmatization removes inflections from words and reduces
them to their base, or dictionary forms using linguistic rules, while stemming simplifies
words by stripping affixes from them without regard to grammatical correctness. Another
major challenge with word-level tokenization is the out-of-vocabulary (OOV) problem,
where less frequent words not present in the often fixed vocabularies of NLP models are
unrecognized. A common workaround to this is replacing unrecognized tokens with an
unknown word token, or UNK. This, however, results in information loss as the meaning
of the unrecognized tokens is not retained, motivating better tokenization methods that
can represent words even when they are not recognized by the tokenizer.

Subword-level tokenization

One effective approach to addressing the out-of-vocabulary (OOV) problem is to preserve
frequently occurring words as whole units while splitting less frequent words into
smaller subunits, or subwords. This allows the semantic representations of unrecognized
words to be effectively approximated by aggregating the meanings of their constituent
subwords. While the derived meanings may not always be precise, they are generally
more informative than a generic UNK token. Popular subword tokenization techniques
include WordPiece (Schuster and Nakajima, 2012) and the closely related Byte Pair
Encoding (BPE) (Sennrich et al., 2016). These methods construct a subword vocabulary
by initially splitting text data into individual characters and iteratively merging the
most frequent pairs of characters into larger units until a predefined vocabulary size is
reached. SentencePiece (Kudo and Richardson, 2018) further eliminates the reliance
on word boundaries and the need for pre-tokenized inputs. Instead, it processes raw
texts directly, making it particularly useful for languages written without explicit word
boundaries, such as Chinese and Japanese. SentencePiece serves as a tokenizer as well
as a language-agnostic detokenizer, which reconstructs text from subwords, increasing
its utility. Overall, subword tokenization approaches effectively address some of the
limitations of word-level tokenization and are highly effective in reducing vocabulary
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size while enhancing the representation capability of the model.

Character/byte-level tokenization

While significantly more robust than word-level tokenization, subword tokenization
remains vulnerable to orthographic variations, such as spelling variants and typos, which
can result in inconsistent tokenization outputs. Work by Lazaridou et al. (2021) further
highlights that subword vocabularies can vary substantially depending on the temporal
stamp and content of the training data. To address these limitations, an alternative
tokenization approach that operates at a more fine-grained level has been proposed to
break down text into individual characters or bytes (Clark et al., 2022; Tay et al., 2022;
Xue et al., 2022). Because these methods represent input text sequences of Unicode
characters or bytes, which are processed directly by the model, they are considered
tokenization-free models. Tokenization-free models offer several advantages, including
being language-agnostic and more robust to OOV words, as they do not rely on a fixed
vocabulary. However, because character and byte sequences are often considerably
longer compared to sequences of words or subwords, training such models is typically
associated with increased computational cost.

2.2 Word Representations

Section 2.1.3 discusses various methods for tokenizing text into smaller units, or tokens,
to facilitate the processing and understanding of textual input by the model. Once
tokenized, these units must be converted into representations that encode essential
information about them. How the tokens are represented, therefore, has a direct impact on
their interpretability and the model’s ability to extract meaningful semantic information
from them.

2.2.1 Distributed Word Representations

Early approaches often represent words using symbolic representations, such as one-hot
encoding and Bag of Words (BoW). While these methods are simple and interpretable,
they suffer from significant limitations, including sparsity and high dimensionality, which
prevent scalability to large vocabularies and the ability to model meaningful semantic
relationships between words. Although BoW is able to infer rudimentary relationships
using word co-occurrence patterns, it is not possible to represent deep semantic and
contextual connections of words.

A new paradigm for learning word representations is inspired by the distributional hy-
pothesis (Harris, 1954), which states that words occurring in similar contexts tend to have
similar meanings. This principle can be applied to the learning of word representations by
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optimizing tasks that leverage the semantic similarities of words sharing similar contexts.
Bengio et al. (2003) are the first to propose the learning of dense, distributed word
representations, also known as word embeddings, by using neural networks to predict
the next word in a sequence. Collobert and Weston (2008) further highlight the potential
of general purpose word embeddings pre-trained using a language modeling objective
and semi-supervised learning. The effectiveness of pre-trained word embeddings has
subsequently been demonstrated by works such as Turian et al. (2010) and Socher et al.
(2013) on a variety of NLP tasks.

Mikolov et al. (2013a) popularized Word2Vec, a toolkit for training word embeddings
that gained widespread adoption for its simplicity to implement and fast training speed.
Word2Vec operates in two modes: Skip-gram and Continuous Bag-of-Words (CBOW).
Both modes learn word contexts using a sliding window, with Skip-gram predicting
context words from a target word, while CBOW predicts the target word from context
words. Word2Vec uses one-hot encoded inputs and a single hidden layer to predict
the probabilities of context words across a vocabulary using softmax, deriving word
embeddings from the hidden layer’s parameters after training. Calculating probabilities
with standard softmax, however, is computationally expensive for large vocabularies. To
address this, the authors propose two optimizations: hierarchical softmax, which uses a
Huffman tree to encode tokens by frequency and reduces the computation to logarithmic
complexity; and negative sampling (Mikolov et al., 2013c), which updates probabilities
for a small number of sampled negative words instead of the entire vocabulary, thus
improving efficiency.

A limitation of Word2Vec is that it updates word embeddings based only on local
co-occurrences within a limited context window, ignoring global co-occurrence patterns.
While this enables Word2Vec to model linear analogical relationships, as famously
demonstrated by the king — man + woman = queen example, it lacks a global per-
spective. To address this shortcoming, GloVe (Global Vectors) (Pennington et al., 2014)
is introduced to combine local context information with global co-occurrence data by
constructing a word-to-word co-occurrence matrix. This matrix would be prohibitively
large for large vocabularies and is factorized into smaller matrices using methods such as
latent semantic analysis (LSA) (Deerwester et al., 1990). This results in a compact matrix
of size |V| x D that represents the word embeddings, where |V/| is the vocabulary size
and | D] is the embedding dimension. GloVe embeddings retain the ability of Word2Vec
to model linear relationships while incorporating global co-occurrence patterns, which
often results in better performance and faster training compared to Word2Vec under
similar conditions.

A further innovative embedding learning method, fastText embeddings (Bojanowski
et al., 2017), enhances the robustness of word embeddings against noise such as mis-
spellings by incorporating subword information through character n-grams. This ap-
proach enables the model to partially reconstruct the meaning even when the input
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word is unknown or deviates from the standard form due to noise like typos or spelling
variations by representing words by the sum of their subword embeddings. This al-
lows fastText embeddings to capture both semantic and morphological information of
words and makes them particularly effective in handling cases involving rare words and
linguistic variations.

2.2.2 Multilingual Word Embeddings

Bilingual word embeddings (BWEs), or more generally, multilingual word embeddings
(MWEs), extend the concept of distributed word representations from one language to
two or more languages, aiming to represent semantically similar words across languages
with similar representations in a shared vector space. The training process for MWEs
largely mirrors that of training monolingual embeddings and can be classified into three
main approaches: projection-based, pseudo-parallel corpora-based, and joint methods
(Ruder et al., 2019).

Projection-based methods

Projection-based methods are among the simplest approaches for learning MWEs and
do not require any parallel data. These methods involve training separate monolingual
embeddings on unlabeled corpora of the source and target languages independently,
then aligning one of the vector spaces to the other by minimizing the distances between
vectors of semantically similar words in both languages. This can be achieved, for
example, by training a translation matrix (Mikolov et al., 2013b). Other approaches in
this category include Lazaridou et al. (2015) and Vuli¢ and Korhonen (2016).

Pseudo-parallel corpora-based methods

Pseudo-parallel corpora-based methods rely on the construction of synthetic pseudo-
parallel data to assist the disjoint training of monolingual embeddings. For instance,
Vuli¢ and Moens (2015) leverage shuffled document-level aligned data on the same
topics in two languages and apply the skip-gram model to the shuffled data. By shuffling
document-level parallel data, similar words in both languages are exposed to comparable
contexts, thereby encouraging similar semantic representations. Similar to this method,
Gouws and Sggaard (2015) propose a more flexible approach by replacing words with
any counterpart belonging to the same equivalence classes and not limited to translations
of the word. For example, a noun in the source language can be replaced by any noun
in the target language (based on the equivalence class defined by part-of-speech (POS)
categories). This flexibility allows embeddings to capture both cross-lingual semantic
and task-specific knowledge.
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Joint methods

Joint methods for learning MWEs typically require some parallel data and have a joint
objective that simultaneously minimizes losses in both languages. For instance, Hermann
and Blunsom (2014) minimize the distances between sentence encodings of parallel
sentences using bitext data. Klementiev et al. (2012) and Gouws et al. (2015) jointly
train embeddings for source and target languages utilizing signals from word- and
sentence-aligned parallel data. Further studies, such as Duong et al. (2017) and Chen
and Cardie (2018), extend their approaches beyond previous training methods, which
mainly focus on pairs of two languages, and show that MWESs benefit from joint training
using multiple languages simultaneously. These methods highlight the potential of
combined information from multiple languages in a shared multilingual representation
space. Moreover, approaches like Eder et al. (2021) and Woller et al. (2021) explore
low-resource setups where monolingual data is limited for the target language. These
methods train embeddings for low-resource languages by leveraging resources available
for resource-rich counterparts and demonstrate the effectiveness with case studies on
Hiligaynon and Occitan, among others. Such works show that MWEs can be effectively
learned even with limited target language data.

2.2.3 Contextualized Word Embeddings

One shortcoming of traditional embedding methods, such as Word2Vec and GloVe, is that
they assign a single static vector to each word, without considering the specific contexts
in which the word appears. This poses limitations which are especially problematic for
polysemous words, whose meanings vary depending on the context. Contextualized
word embeddings are introduced as a type of dynamic word embeddings to make word
representations sensitive to the surrounding contexts. Peters et al. (2018) introduce ELMo
(Embeddings from Language Models), which capture dynamic word representations
using a bidirectional LSTM (BiLSTM)-based language model. ELMo consists of a
forward language model, which predicts the next word in a sequence, and a backward
language model, which predicts the previous word given future context. Both language
models share the same token representations. This architecture allows ELMo to encode
contextual information from both directions in its model parameters. The final represen-
tations are computed as a task-specific combination of the model’s layers, which can be
used as input features in the target task model.

A multitude of subsequent approaches for learning contextualized word representa-
tions build on language modeling objectives leveraging the Transformer architecture and
self-attention mechanism (Vaswani et al., 2017) (discussed further in Section 2.3). For
example, unlike traditional autoregressive language models, which predict the next word
in a sequence and thus capture unidirectional context, BERT (Bidirectional Encoder Rep-
resentations from Transformers) (Devlin et al., 2019) models bidirectional word contexts
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using masked language modeling, which effectively learns representations leveraging
context from tokens on both sides. XLNet (Yang et al., 2019), another Transformer-based
model, implements a permutation language modeling objective and allows the learning of
bidirectional context information from shuffled token sequences using an autoregressive
language model.

Advancements in Transformer-based language models, such as BERT and XLNet,
represent a significant milestone not only in the development of more contextualized
word representations but also in the ability of language models to achieve a deeper
understanding of the language. Further innovations, driven by the new pre-training
paradigm, have enabled state-of-the-art performance across a wide range of NLP tasks.

2.3 Pre-trained Language Models

In recent years, pre-trained language models (PLMs) have emerged as a pivotal devel-
opment in representation learning and natural language understanding (NLU). Before
their adoption, NLP methodologies typically relied on task-specific models, which either
learned word embeddings jointly during training or used pre-trained word embeddings.
These embeddings were treated merely as input features to facilitate the learning of other
task-specific parameters. However, such training approaches required re-training models
from scratch for each new task, resulting in inefficiencies, limited adaptability, and a
waste of resources.

The introduction of PLMs, built on the Transformer architecture and its underlying
self-attention mechanism (Vaswani et al., 2017), represents a new paradigm. These
models are pre-trained on large-scale unlabeled text corpora to learn generic language
representations that capture rich linguistic knowledge, such as syntax and semantics.
This unsupervised pre-training process also allows the models to be efficiently adapted,
or fine-tuned, to perform various downstream tasks. Once pre-trained, PLMs typically
require much less task-specific data to perform well and have demonstrated superior
performance across a wide range of NLP tasks compared to models trained on task-
specific data from scratch (Howard and Ruder, 2018; Radford et al., 2018; Devlin et al.,
2019).

To understand how PLMs operate, it is essential to examine the two foundational
innovations that form the backbone of these models: the self-attention mechanism and
the Transformer architecture, which will be discussed in the following.
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2.3.1 Attention Mechanisms
Attention

Attention mechanisms were first introduced to address the limitations of encoder-decoder
models for neural machine translation, specifically the decoder’s reliance on a fixed-
length vector representation of the input sequence. These models typically use recurrent
networks, such as LSTMs, to encode entire input sequences into a single vector, derived
from the encoder’s final hidden state. However, the fixed-length vector often poses an
information bottleneck and struggles to retain sufficient contextual information, especially
for long or complex sequences.

Attention addresses this by allowing the decoder to selectively focus on all encoder
hidden states, rather than relying only on the final hidden state. This is achieved by
assigning importance scores to each encoder hidden state at every decoding step, which
allows the decoder to extract relevant information and better capture distant dependen-
cies. Prominent variants of attention in encoder-decoder architectures include additive
attention (Bahdanau et al., 2015) and multiplicative attention (Luong et al., 2015).

Additive attention, also called Bahdanau attention, computes alignment scores be-
tween the decoder’s previous hidden state and each encoder hidden state. These scores
are normalized using softmax to produce the weights of each encoder hidden state,
whereby the most relevant encoder states are emphasized. The weighted sum of encoder
states 1s then combined with the current decoder hidden state to produce the output at
each decoding step. Formally, the alignment score between the decoder hidden state at
step t, h, and the encoder hidden state at step s, A, is given by:

score(hy, ﬁs) = v, tanh(U,hy—1 + Wal_ls)

where v,, U,, and W, are trainable weight matrices.

Multiplicative attention, or Luong attention, on the other hand, simplifies the calcu-
lation of alignment scores by directly computing the dot product between encoder and
decoder hidden states, which is more efficient than the additive method. The alignment
score in Luong attention is defined as:

score(hy, hy) = htT W, hs

Both Bahdanau and Luong attention mechanisms are applied to decoder hidden states
to attend to relevant encoder states. In contrast, self-attention operates solely within a
single sequence, capturing contextual dependencies across words in the same sequence.

Self-attention

As the name suggests, self-attention is a specialized attention mechanism applied within
a single sequence, allowing the model to capture relationships between different positions
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in the sequence. Cheng et al. (2016) apply an intra-attention mechanism on an LSTM
network to enhance the reading comprehension of input sequences. This application is
conceptually similar to self-attention. Subsequent studies have further shown the efficacy
of intra-attention in improving language understanding (Parikh et al., 2016; Paulus et al.,
2018).

Building upon these ideas, Vaswani et al. (2017) lay the groundwork for future
development of Transformer-based models by introducing scaled dot product attention,
which functions as follows: for each input embedding, queries, keys, and values in the
form of vectors are created from (), K, and V/, which are trainable weight matrices.
Attention scores are computed by taking the dot product of the query and key vectors,
scaling the results by v/d},, where dj, is the dimensionality of the key vectors, and applying
softmax to produce the weights, which are finally multiplied with the value vectors. The
process can be formulated as a matrix operation and efficiently applied to all tokens in
the sequence in parallel:

Attention(Q, K, V') = softmax (QKT) Vv
s e

Further extending on this mechanism, the authors propose the use of multiple at-
tention heads, which they term multi-head attention. Each head i performs the at-
tention function in parallel, with its own query, key, and value matrices as follows:
head; = Attention(QW=, KW/, VIW)Y), where W € Rmowixdi K ¢ Refmodei
WY € Rdmwaxdv and WO € Rhdv*dnoat gre again trainable parameter matrices. The
outputs from all heads are concatenated and projected to produce the final values:

MultiHead(Q, K, V') = Concat(head, . . ., head; )W °

Multi-head attention allows the model to attend to information at different positions in
different representation subspaces, enabling the model to focus on different aspects of
information.

2.3.2 Transformer Architecture

The Transformer model, introduced by Vaswani et al. (2017), adopts an encoder-decoder
architecture in which recurrent layers, such as RNNs, are completely replaced with self-
attention mechanisms. This enables the Transformer to process input tokens in parallel,
overcoming the constraints of sequential processing in previous recurrent architectures.
The architecture comprises two components: the encoder, which transforms the input
sequence into a contextualized vector representation, and the decoder, which generates
an output sequence token by token. A detailed schema of the Transformer architecture is
shown in Figure 2.1.
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Figure 2.1: An illustration of the Transformer architecture from Vaswani et al. (2017). The architecture
consists of N encoder blocks, followed by the same number of decoder blocks.

Encoder

The Transformer encoder consists of six stacked encoder blocks, each with an identical
architecture but without sharing weights. Each encoder block comprises a multi-head
attention layer and a position-wise feedforward layer, with a residual connection (He
et al., 2016) around both layers, followed by layer normalization (Ba et al., 2016). The
input embeddings are fed into the first encoder block, and the output of each block is
passed to the next. The final encoder block produces outputs in the form of key and value
vectors (Section 2.3.1), which are then processed by the decoders.

Decoder

The decoder part of the Transformer model also consists of six stacked blocks, similar
to the encoder, and attends to the output of the encoder as well as the previous decoder
output. An additional masked multi-head attention layer is inserted into decoder blocks,
ensuring that the decoder can only attend to previous positions to prevent information
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leakage from future positions during decoding.

Positional encoding

Unlike recurrent architectures, the Transformer processes all input tokens in parallel,
making it inherently agnostic to the positional information of each token. However,
natural language relies on sequential structures, and the absence of positional information
would impair the Transformer’s ability to model the syntax and semantics of languages.
To address this, the Transformer introduces positional encodings, which are vectors of
the same dimensionality as the input embeddings and can be added to the embeddings to
incorporate positional information. These encodings are generated using a sinusoidal
function defined as follows for even and odd positions:

e pos
PE (05 2i) = sin <1000021/dmdel)

poSs
PE(pos,2i+1) = COS (IOOOOWTKmdel)

where pos refers to the token’s position, deqe 1S the dimensionality of embeddings and
positional encodings, and 7 is the specific dimension in the encoding. This ensures each
input position has a distinct encoding and that relative distances between positions are
preserved. While positional encodings can also be learned during training instead of
being generated using an encoding function (Gehring et al., 2017), Vaswani et al. (2017)
demonstrate that sinusoidal encodings perform comparably to learned encodings while
offering more simplicity.

2.3.3 Early PLMs

Greatly facilitated by the Transformer architecture, pre-trained language models (PLMs)
mark a milestone in NLP through their pre-train-fine-tune paradigm. Under this paradigm,
language models are first pre-trained on massive raw text corpora using language mod-
eling objectives, enabling them to produce contextualized representations and encode
generic linguistic knowledge in their parameters. The pre-trained models can subse-
quently be fine-tuned and excel in various downstream tasks. Based on their architecture,
PLMs can be broadly categorized into three groups: encoder-only, decoder-only, and
encoder-decoder models.

Encoder-only models

Encoder-only models leverage the encoder component of the Transformer architecture
and focus on understanding and creating a representation for the input text. Many
encoder-only models use an autoencoding objective, which aims to reconstruct the
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original text from a corrupted input sequence. One representative training objective is
masked language modeling (MLM). In MLLM, a portion of the tokens are replaced with
either a special [MASK] token or random alternatives, and the model’s objective is to
maximize the probability p(z;|xy, ..., z;—1, Tit1, - . ., Tn, 0) for each masked position i
in a sequence x. To reconstruct the original tokens, the model leverages context from
both directions. Autoencoding models are thus often bidirectional. ELMo, mentioned
in Section 2.2.3, also uses bidirectional context. However, it does so shallowly by
concatenating outputs from two independent unidirectional models. Prominent examples
of encoder-only models include BERT and its derivatives.

BERT (Devlin et al., 2019) introduces two pre-training objectives: MLM and next
sentence prediction (NSP). In MLM, 15% of tokens are randomly masked, with 80% of
them replaced by the [MASK] token, 10% with random tokens, and 10% left unchanged.
This scheme reduces reliance on [MASK] and mitigates discrepancies between pre-
training and fine-tuning data. NSP is motivated by NLU tasks requiring the understanding
of sentence relationships and classifies whether sentence pairs are consecutive or not.

Subsequent models have been proposed building on BERT’s architecture with refined
pre-training processes. RoBERTa (Liu et al., 2019) puts forward the argument that BERT
has been undertrained and optimizes it by removing the NSP objective, expanding its pre-
training data, increasing sequence length and batch size, and adopting a dynamic masking
scheme. These modifications yield state-of-the-art results on multiple benchmarks.

ALBERT (Lan et al., 2020) focuses on reducing model parameters using two tech-
niques: decoupling embedding size from the hidden layer size, which allows increasing
the hidden size without expanding the embedding parameters, and cross-layer param-
eter sharing, which prevents the parameters from growing with an increasing model
depth. This results in a model with considerably fewer parameters but better performance
compared to BERT.

Autoencoding models, while powerful, suffer from a pre-train-fine-tune discrepancy
caused by the introduction of [MASK] tokens, which are not present during fine-tuning.
In addition, autoencoding models make the assumption that masked positions can be
reconstructed independently, which is not always valid in practice. To address this,
XLNet (Yang et al., 2019) introduces a permutation language modeling objective, which
uses different shuffled token orders to train the model to predict the next token in an
autoregressive manner. This effectively enables XLLNet to capture bidirectional context
while at the same time eliminating the pre-train-fine-tune discrepancy.

Decoder-only models

Decoder-only models, contrary to encoder-only models, utilize only the decoder compo-
nent of the Transformer architecture. These models typically employ an autoregressive
language modeling objective, which predicts the next token in a sequence given its
preceding context. Specifically, for a sequence * = (x1,...,x,), the autoregressive
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objective models the probability of the sequence as p(x) = [ p(x;|z;, 0), where
6 represents the model parameters. As can be seen from their objective, decoder-only
models often operate unidirectionally and are well-suited for text generation tasks.

Typical of decoder-only models are models in the GPT (Generative Pre-trained
Transformer) series. The first GPT model (Radford et al., 2018) introduces generative
pre-training on unlabeled text from the BookCorpus dataset (Zhu et al., 2015), followed
by supervised fine-tuning on various downstream tasks such as natural language inference
(NLI) and question answering (QA). GPT-2 (Radford et al., 2019) extends this approach
by scaling up both the model size and pre-training data, using a newly created WebText
dataset, which is curated from web pages with low-quality content filtered. GPT-2
demonstrates exceptional zero-shot capabilities on the tested language modeling datasets,
even without supervised fine-tuning.

Encoder-decoder models

Unlike encoder-only or decoder-only models, encoder-decoder models leverage the
full Transformer architecture, combining a bidirectional encoder to create a contextu-
alized representation of the input and an autoregressive decoder to generate an output
sequence. This architecture makes encoder-decoder models particularly suitable for
sequence-to-sequence (seq2seq) tasks, such as machine translation and text summariza-
tion. Encoder-decoder models are commonly pre-trained using a denoising objective,
where a corrupted input sequence is reconstructed to the original sequence. Formally, the
denoising objective aims to maximize p(y1, - .., Yn|T1,- .., Tm, ), where x is the cor-
rupted input, y is the original sequence, and # denotes the model parameters. Prominent
encoder-decoder models include BART, T5, and Flan-T5.

BART (Lewis et al., 2020a) applies various sequence corruption strategies, including
token masking (similar to MLM), token deletion (random token removal), and text
infilling (replacing spans of text with a single [MASK]). The diversity of its denoising
pre-training improves BART’s ability to generalize over a variety of seq2seq tasks. T5
(Text-to-Text Transfer Transformer) (Raffel et al., 2020) is pre-trained on the Colossal
Clean Crawled Corpus (C4) and formats both inputs and outputs as sequences of text.
To specify the task to be performed, a task-specific prefix is appended to the input, for
example, “translate English to German: [input text]”. Flan-T5 (Chung et al., 2024)
is an instruction-tuned (Wei et al., 2022a) version of TS5, which enhances the model’s
performance by fine-tuning on a wide range of tasks expressed as natural language
instructions. This significantly enhances the zero-shot and few-shot results, which are
comparable with much larger models.

Although encoder-decoder models are primarily designed for seq2seq tasks, they can
also be adapted to solve traditionally discriminative tasks like classification or linear
regression, as long as the target task is reformulated as a seq2seq problem and the
training data contains the desired target labels in text format. One of the strengths of



28 2. Background

encoder-decoder models lies in their consistent training objectives during pre-training
and fine-tuning. Additionally, the architecture has shown effectiveness for multitask
training and transfer learning (Raffel et al., 2020; Chung et al., 2024).

2.3.4 Multilingual PLMs

Following the success of early PLMs, particularly BERT, in achieving state-of-the-
art performance across a wide range of NLP tasks, numerous BERT-based models in
non-English languages have been developed (de Vries et al., 2019; Le et al., 2020;
Canete et al., 2023). However, these models are still language-specific, focusing on
the primary language of their pre-training data, and are typically pre-trained for high-
resource languages only. In contrast, multilingual PLMs aim to support a variety of
languages at the same time, including those with limited pre-training resources. These
models are designed to handle tasks across different languages using a unified model
architecture. Through parameter sharing, multilingual PLMs facilitate knowledge transfer
from high-resource to low-resource languages, enhancing their cross-lingual capabilities.

Multilingual BERT (mBERT) (Devlin et al., 2019) follows the same pre-training
strategy as BERT but with an extended subword vocabulary shared by all languages and
is trained using Wikipedia data from 104 languages, selected based on their data size. To
reduce the impact of data imbalance across languages, exponential smoothing is applied
to undersample high-resource language data and oversample data in underrepresented
languages.

XLM (cross-lingual language model) (Conneau and Lample, 2019) is introduced
following three training objectives: causal language modeling (CLM), masked language
modeling (MLM), and translation language modeling (TLM). CLM and MLM are
objectives commonly used in autoregressive and autoencoding language models. TLM is
a multilingual extension of MM, leveraging parallel sentence pairs in two languages,
which are concatenated. By masking and reconstructing tokens in both sentences, TLM
enables the model to learn both language-specific knowledge and cross-lingual alignment.
This is shown to be especially effective for tasks like unsupervised machine translation.

XLM-R (XLM-RoBERTa) (Conneau et al., 2020) is inspired by ROBERTa and argues
that both mBERT and XLM are undertrained due to the limitation of Wikipedia data’s
ability to scale, particularly for low-resource languages. Instead, XLM-R uses filtered
CommonCrawl data (Wenzek et al., 2020), which significantly increases data availability,
especially for low-resource languages. This large-scale pre-training allows XLM-R
to achieve superior performance over mBERT and XLM on multiple cross-lingual
benchmarks.

Glot500 (Imani et al., 2023) scales up the language coverage from typically around
100 to over 500 languages. It uses the XLM-R model as its backbone with an expanded
vocabulary and is pre-trained on Glot500-c, a curated corpus encompassing 511 lan-
guages. Glot500 demonstrates significant performance improvements across both head
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languages (languages already in the original XLM-R model) and fail languages (the
remaining languages previously unsupported by mPLMs).

SERENGETI (Adebara et al., 2023) focuses on addressing the underrepresentation of
African languages in existing mPLMs. While current mPLMs cover only about 31 out of
2000 African languages, SERENGETI extends this coverage to 517 African languages
and language varieties. It is pre-trained on curated data for these African languages, as
well as some of the world’s most widely spoken languages. As a result, SERENGETI
outperforms other mPLMs, including some with a specific focus on African languages
(Ogueji et al., 2021; Alabi et al., 2022), on various benchmarks.

2.3.5 Large Language Models

The transition from early PLMs (Section 2.3.3) and multilingual PLMs (Section 2.3.4)
introduced so far - which are typically limited to parameter sizes of around one billion or
less and reliant on task-specific fine-tuning for optimal performance - to a new line of
large language models (LLMs) represents yet another important paradigm shift beyond
the pre-train-and-fine-tune era. LLLMs exhibit remarkable universal understanding of
language, offering impressive zero-shot and few-shot learning capabilities without the
need for task-specific fine-tuning.

One demonstration of this shift is the ability to perform in-context learning, as shown
by the GPT-3 model (Brown et al., 2020). GPT-3 showcases impressive performance
across tasks such as factual question answering, text summarization, and translation when
provided, or prompted, with a few examples illustrating the task. This approach requires
no parameter updates and facilitates generalization to unseen tasks. The effectiveness
of in-context learning can be attributed to the model’s profound knowledge acquired
during large-scale pre-training on extensive text data. Subsequent advances in prompting
techniques, such as chain-of-thought reasoning (Wei et al., 2022c), have further enhanced
the reasoning and problem-solving capabilities of these models.

Instruction tuning has been introduced as another important innovation to fine-tune
LLMs to follow natural language instructions, with the motivation to improve gener-
alization to unseen tasks and reduce the sensitivity of LLMs’ performance to prompt
engineering (Wei et al., 2022a; Wang et al., 2022). It also has the goal of aligning model
behavior more closely with human preferences (Ouyang et al., 2022), often incorpo-
rating reinforcement learning from human feedback (RLHF) (Christiano et al., 2017).
RLHF uses human feedback to train a reward model, which is subsequently used to
guide the model optimization process using the proximal policy optimization (PPO)
algorithm (Schulman et al., 2017) and enables the generation of outputs that maximize
the alignment.

A remarkable feature of LLLMs as they scale is the emergent capabilities, or skills
that are absent in smaller models but arise without being explicitly elicited in larger
ones as a result of scaled training (Brown et al., 2020; Wei et al., 2022b). Such capa-
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bilities include advanced multi-step arithmetic reasoning, which greatly aids the model
in solving complex problems such as mathematical tasks, and improved instruction fol-
lowing capabilities, which helps the model to generalize to new tasks by understanding
instructions.

In the following, popular LLMs and LLM families, such as the GPT and Llama series,
are introduced.

GPTs

The GPT series has undergone a significant evolution process in both scale and capability.
GPT-2 (Radford et al., 2019), first introduced in Section 2.3.3, already demonstrates
notable generative capabilities as an autoregressive language model. Unlike GPT-2,
whose parameter sizes range from 117 million to 1.5 billion, GPT-3 (Brown et al., 2020)
is expanded drastically in scale with 175 billion parameters, and is pre-trained on vast
internet text corpora, including CommonCrawl and Wikipedia. This large-scale pre-
training enables GPT-3 to exhibit remarkable in-context learning capabilities. A refined
GPT-3.5 model serves as the foundation for ChatGPT, a conversational agent fine-tuned
leveraging techniques such as RLHF, and has attracted immense attention both within
and beyond the NLP community at the time of its release. The successor model, GPT-4
(OpenAl, 2023), is an advanced multimodal model capable of processing image inputs
and outputting text outputs. It forms the backbone for the enhanced ChatGPT-4, offering
improved reasoning and generalization capabilities. While OpenAl has not disclosed
the exact configurations of GPT-4, such as its parameter size, it is still one of the most
advanced and best-performing models today.

Llama

The Llama models' are a series of LLMs developed by Meta Al The original LLaMA
model (Touvron et al., 2023a) ranges from 7 to 65 billion parameters in size and is
pre-trained on comparable internet data used for the GPT series. While much smaller in
size, and thus less computationally demanding, LLaMA shows comparable performance
with GPT-3 on certain benchmarks. Llama 2 (Touvron et al., 2023b) is introduced with
architectural improvements upon LLaMA, including an optimized attention mechanism
(Ainslie et al., 2023), which greatly enhances its efficiency and scalability. This version
also introduces a larger model size of 70 billion parameters, enabling better generalization
across tasks. The most recent models in the series, Llama 3 and 3.1 (Dubey et al., 2024),
leverage improved data quality, a significant increase in pre-training data, and an extended
context window. They also drastically scale up the model size to reach up to 405 billion
parameters and provide multimodal support and improved abilities in areas such as
multilinguality, coding, and reasoning. Furthermore, unlike many of its counterparts,

'"https://www.llama.com
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the Llama series is open-source and can be accessed by researchers under specified
conditions, thereby encouraging further innovations based on these models and reducing
the usage of computational resources.

Gemini

Gemini (Anil et al., 2023a) is a family of general-purpose models trained by Google
DeepMind and is built based on its predecessor, PalLM 2 (Anil et al., 2023b), a capable
multilingual model fine-tuned using RLHF. Gemini is pre-trained on diverse multilingual
and multimodal data, such as webpages, books, code, and videos. This enables Gemini
to process visual and audio inputs in addition to text. Similar to GPT-4, configurations of
Gemini models, such as model parameters and the exact training process, have not been
disclosed.

BLOOM

BLOOM (Scao et al., 2022) is a 176 billion-parameter open-source model pre-trained on
the ROOTS corpus (Laurencon et al., 2022), a corpus derived from diverse HuggingFace
datasets and comprising 46 natural languages and 13 programming languages. The model
is developed with data quality and ethical considerations in mind, pointing out existing
issues with simple heuristics-based data handling and filtering methods (Dodge et al.,
2021; Johnson et al., 2022). The underlying ROOTS corpus has been created through
a global, collaborative effort, prioritizing the agency of data holders and involving
human moderation in pre-processing. BLOOM demonstrates competitive multilingual
capabilities on a wide range of benchmarks while ensuring the ethical aspect of the
training data.

Claude

Claude, another prominent model family developed by Anthropic, is pre-trained on a
combination of public and proprietary data carefully curated and organized by Anthropic.
The models leverage Constitutional Al (Bai et al., 2022) to uphold ethical considerations
and ensure harmlessness by explicitly incorporating a list of rules and principles for
enhanced alignment with values such as human rights. The latest models of the line,
including the Claude 3 family (Anthropic, 2024a) and the most recent release, Claude 3.5
Sonnet (Anthropic, 2024b), have multimodal capabilities, allowing them to process both
textual and visual inputs. Claude 3.5 outperforms its predecessors as well as competitive
models such as GPT-40 and Llama 3 across multiple benchmarks, including tasks in
reasoning, math, and coding.



32 2. Background

Mistral

The Mistral 7B (Jiang et al., 2023) is a 7-billion-parameter model developed by Mistral
Al It employs techniques such as grouped-query attention (GQA) and sliding window
attention (SWA) to achieve fast inference speed and memory efficiency. The instruction-
tuned variant of Mistral 7B shows superior performance and a good balance between
safety and utility when compared with models of comparable or greater sizes, such
as Llama 2 (13B). Building upon this, Mixtral 8x7B (Jiang et al., 2024) is a sparse
mixture of experts (SMoE) model based on the Mistral architecture. Mixtral dynamically
selects two experts at each timestep, allowing each token to benefit from the model’s
full parameters while controlling latency and ensuring computational efficiency. Mixtral
demonstrates enhanced multilingual support and comparable or superior performance to
Llama 2 (70B) and GPT-3.5 on multiple benchmarks.

2.4 Multilinguality

2.4.1 Multilingual Evaluation

As mPLMs expand their language coverage (shown in Section 2.3.4), the ability to
comprehensively evaluate them across a wide range of languages has become imperative.
Multilingual benchmarks, such as XTREME (Hu et al., 2020) and its improved version,
XTREME-R (Ruder et al., 2021), are designed to assess the ability of mPLMs across a
diverse range of tasks, including classification (Conneau et al., 2018), sequence tagging
(Nivre et al., 2018; Pan et al., 2017), question answering (Artetxe et al., 2020a; Lewis
et al., 2020b), and sentence retrieval’. These benchmarks are, however, limited to 40-50
languages, which falls short of the language coverage of many contemporary mPLMs.
Some of the datasets that form parts of these multilingual benchmarks, such as WikiANN
(Pan et al., 2017) and Tatoeba, provide broader coverage and support 282 and around
400 languages respectively (with Tatoeba’s language coverage continuously expanding).
However, their scope is relatively narrow, focusing on POS tagging and sentence retrieval
only.

Flores-101 (Goyal et al., 2022a) is a parallel benchmark dataset designed to assess
machine translation systems on a diverse set of languages and topics. It comprises
3001 sentences extracted from Wikipedia on a variety of different subjects, which are
then translated into 101 languages by professional translators. Flores-200 (Costa-jussa
et al., 2022) builds on Flores-101 by expanding the language coverage, especially to
low-resource languages. By adopting many-to-many translation, Flores-200 incorporates
bitext with non-English source languages, thereby reducing English-centrism in its data

https://tatoeba.org
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and improving the translation quality where English may not be the optimal source
language.

Sourcing its data from the Flores-200 dataset, Belebele (Bandarkar et al., 2024)
provides 900 parallel multiple-choice reading comprehension questions across 112
languages. The questions are carefully curated, and the choices are developed for English
and subsequently translated into other languages by human translators. Likewise, SIB200
(Adelani et al., 2024) introduces a topic classification dataset covering 205 languages
and dialects, using data from Flores-200. The labels are created for English and extended
to other languages leveraging the parallelism of Flores-200.

To further push the boundaries of multilingual evaluation, Ma et al. (2023) develop
Taxi1500, a text classification dataset based on Bible data. By leveraging the parallel
nature of Bible translations, Taxi1500 creates automatically projected labels for over
1500 languages, enabling the evaluation of massively multilingual PLMs, including
Glot500. Taxi1500 will be discussed in detail in Chapter 3.

2.4.2 Cross-Lingual Transfer

Cross-lingual transfer learning is commonly deployed to address data scarcity in low-
resource languages by leveraging data or models that are typically more readily available
for high-resource languages to perform tasks in low-resource languages. One class
of solutions employs translation-based approaches, where annotated training or test
data in resource-rich languages are translated into low-resource ones, or vice versa
(Mayhew et al., 2017; Fei et al., 2020; Unanue et al., 2023). Other techniques make use
of multilingual word embeddings (Section 2.2.2) and multilingual PLMs (Section 2.3.4)
to transfer representational spaces across languages (Gouws et al., 2015; Imani et al.,
2023). These include alignment-based methods that enhance low-resource language
embeddings through post-alignment with trained high-resource language embeddings,
which are generally of better quality (Artetxe et al., 2017; Lample et al., 2018b). With
the advent of Transformer-based models, more recent work on cross-lingual transfer
learning has shifted toward adapting PLMs cross-lingually, leveraging their extensive
parameter spaces and representational power to enable cross-lingual transfer (Artetxe
et al., 2020a; Minixhofer et al., 2022; Pham et al., 2024).

Translation-based transfer learning

Translation-based transfer learning leverages lexica or machine translation (MT) systems
to obtain low-resource language data from labeled high-resource language datasets, and
has been widely adopted in early studies on cross-lingual transfer due to its simplicity
and effectiveness. These approaches typically translate annotated source language data
into target languages and project the original labels onto the translated datasets. For
instance, Mayhew et al. (2017) employ dictionary-based “cheap” translation to create
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training data for cross-lingual named entity recognition (NER). They then transfer labels
from the original English data to target languages, achieving substantial improvements
over state-of-the-art methods relying only on target language data. Similarly, Fei et al.
(2020) adopt a translation-based strategy for semantic role labeling (SRL) and show that
combining source and translated target language data achieves significant performance
gains.

Translation-based methods can also work in reverse, as demonstrated by Unanue
et al. (2023), who translate target language test data into English and demonstrate
significantly improved performance on multiple multilingual text classification tasks
over a competitive mPLM baseline. Furthermore, Etxaniz et al. (2024) introduce self-
translate, which uses the few-shot translation capabilities of an mPLM to first translate
non-English prompts into English before performing the specific tasks. This is shown
to outperform direct inference in target languages and approaches the performance of
MT-based methods, especially with larger model sizes.

Despite their simplicity, Ebrahimi and von der Wense (2024) and Zhou et al. (2024)
highlight that MT systems regularly fail to produce accurate translations that capture
necessary task-specific nuances of the data that are critical for optimal performance.
Furthermore, Artetxe et al. (2023) explore both translate-test (translating target language
test data into English) and translate-train (translating English training data into target
languages), and reveal that the choice is largely task-dependent. While translate-train
is more advantageous for shallow tasks, such as sentiment analysis, complex tasks
that require reasoning, such as natural language inference (NLI), benefit more from a
translate-test approach.

Cross-lingual adaptation of PLMs

Building on the effectiveness of translation-based transfer learning, Transformer-based
PLMs and mPLMs have increasingly been used to complement these strategies. Their
strong language understanding capabilities and rich multilingual representations, espe-
cially in mPLMs, enable effective generalization across languages. Despite the utility of
mPLMs discussed in Section 2.3.4, questions have been raised about how to extend them
to unseen languages, which remain a challenge to cross-lingual transfer. In addition,
studies have highlighted limitations of mPLMs compared to their monolingual counter-
parts (Wu and Dredze, 2020; Rust et al., 2021), further motivating efforts to explore the
abovementioned questions. Approaches to tackle the cross-lingual adaptation of PLMs
can be broadly categorized into two directions: adapting PLMs or mPLMs to enhance
the performance of a specific language, and extending existing PLMs or mPLMs to
effectively support unseen languages.

Adapting PLMs to a specific language Several approaches leverage English PLMs
and adapt them to a target language, focusing on the lexical level. Artetxe et al. (2020a)
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challenge the assumption that both a shared vocabulary and joint pre-training are essential
for cross-lingual transfer. They first pre-train an English LM, swap in target language
embeddings, fine-tune it with English data, and subsequently achieve zero-shot transfer
on the target language. Similarly, Tran (2020) initializes target language embeddings to
align with the English vector space through mapping and fine-tunes them jointly with
shared encoder layers, producing a bilingual model. de Vries and Nissim (2021) follow
previous findings on high-density information in the lexical layers of PLMs (de Vries
et al., 2020), and re-train target language embeddings while keeping the Transformer
layers of a GPT-2 model frozen, which demonstrates effective transfer performance.
Minixhofer et al. (2022) improve on this by initializing subword representations using
aligned multilingual embeddings, which achieves consistent improvements. Kuratov and
Arkhipov (2019) leverage an mPLM, mBERT, to enhance vocabulary initialization for
a monolingual Russian LM. Their approach addresses the tokenization inefficiencies
caused by multilingual tokenizers, specifically that of high subword fertility (Rust
et al., 2021) - which refers to a high average number of subwords - and the associated
computational inefficiency.

Extending mPLMs to unseen languages Approaches that extend mPLMs to new
languages typically do so by modifying the vocabulary of an existing mPLM. Common
methods include allocating new vocabulary entries (Wang et al., 2020b; Ebrahimi and
Kann, 2021; Imani et al., 2023) or learning a joint vocabulary leveraging techniques
such as BPE (Chronopoulou et al., 2020), followed by continued pre-training with target
language data. Other approaches bypass the need for modifying the original mPLM’s
vocabulary, for example, by leveraging knowledge from related languages already in the
mPLM (Muller et al., 2020). Soft-prompt tuning, proposed by Chen and Chen (2024),
offers an efficient solution by introducing minimal additional parameters to achieve
effective zero-shot transfer without adapting the vocabulary. Alabi et al. (2022) introduce
multilingual adaptive fine-tuning (MAFT) to adapt mPLMs to 17 African languages.
By removing vocabulary corresponding to non-African scripts, their method increases
the specialization of mPLMs on these languages and demonstrates improved zero-shot
transfer abilities. Pham et al. (2024) propose an initialization method for language-
specific embeddings leveraging both lexical and semantic alignment from PLMs. Their
method further determines the optimal vocabulary size for each target language, which
significantly enhances the efficacy of cross-lingual transfer.

Adapters

Adapters (Rebuffi et al., 2017) have emerged as a modular and parameter-efficient
alternative for transfer learning. Unlike traditional full-model fine-tuning, which requires
updating all model parameters, adapter-based methods inject lightweight adapter modules
between layers of a PLM. These modules are initialized as identity functions for stable
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training and have significantly fewer parameters than the model itself. In a typical
fine-tuning setup using adapters, only the adapter parameters are updated, whereas the
rest of the model parameters remain frozen. This design effectively limits task-specific
updates to the adapter parameters, thereby avoiding catastrophic forgetting typically
associated with applications such as multitask learning (French, 1999).

The concept is first introduced in the form of residual adapters for computer vision by
Rebuffi et al. (2017), which demonstrate their adaptability across diverse visual domains.
Houlsby et al. (2019) extend this approach to NLP by fine-tuning an adapter-injected
BERT model for diverse text classification tasks and achieve comparable performance to
full-model fine-tuning by updating only a fraction of the parameters.

The application of adapters for cross-lingual transfer learning is motivated by the
drawbacks of mPLMs, including a trade-off between language coverage and performance,
and suboptimal results even for some high-resource languages (Eisenschlos et al., 2019;
Conneau et al., 2020; Wu and Dredze, 2020). To address these challenges, Pfeiffer
et al. (2020) introduce MAD-X, an adapter-based framework to facilitate cross-lingual
transfer. MAD-X employs three types of adapters: language adapters for learning
language-specific transformations, task adapters for encoding task-specific knowledge,
and invertible adapters for facilitating embedding adaptation. The modular and model-
agnostic design allows for flexible integration of MAD-X and demonstrates strong
performance on both high-resource languages in mPLMs and low-resource languages
unseen by mPLMs. Following the same idea, Parovi¢ et al. (2022) propose BAD-
X, which learns bilingual adapter pairs instead of individual language adapters. This
approach effectively captures the interplay between source and target languages, leading
to strong zero-shot transfer performance between language pairs. Another work by Lee
et al. (2022) introduces FAD-X, an adapter fusing method for composing task adapters
for low-resource languages leveraging different pre-trained adapters for other languages.

While individually trained adapters are effective for single tasks or languages, they
lack the ability to share useful information across tasks or languages. To address this,
Pfeiffer et al. (2021) introduces AdapterFusion, a method that utilizes a fusion layer to
adaptively combine information from multiple task adapters. This, however, focuses on
task-specific capabilities and overlooks the interdependence between task and language
abilities. To solve this limitation, AdaMergeX (Zhao et al., 2024) decouples task and
language knowledge by splitting target task ability into task and language abilities and
then adaptively merging task and language adapters. This not only enhances the cross-
lingual transfer ability of AdaMergeX but also allows it to mimic the king — man +
woman = queen analogy of Word2Vec (Mikolov et al., 2013a).
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2.5 Summary

In this chapter, we have provided a comprehensive overview of the essential technical
background to this work. We began by introducing the foundational concepts of neural
networks and machine learning, detailing the steps of their operation and evaluation.
Following this, we explored the motivation and advancements in multilingual NLP,
highlighting its significance in addressing linguistic diversity and identifying challenges
faced within the domain. Building on this, we will delve into diverse practical topics
in the remainder of this dissertation. The discussions in the following will be directed
toward addressing the research questions outlined in Section 1.2.






Chapter 3

Scaling NLP Datasets to 1500
Languages

This chapter corresponds to the following work:

Chunlan Ma, Ayyoob ImaniGooghari, Haotian Ye, Ehsan Asgari, Hinrich
Schiitze (2023). Taxi1500: A multilingual dataset for text classification in
1500 languages.

Declaration of Co-Authorship. Ayyoob ImaniGooghari conceived the idea of con-
structing a massively multilingual parallel dataset for text classification, which motivated
this project. Chunlan Ma, Ayyoob ImaniGooghari, and I coordinated the data collection
effort, employing external annotators, and collaborated extensively during the process of
data validation and the development of the survey used by external data annotators. Ehsan
Asgari contributed 1000Langs, a corpus of parallel Bible texts, and the accompanying
data crawler, developed as part of his previous research. These resources were provided
to be used for the creation of our dataset. Chunlan Ma conducted evaluations using the
developed dataset and performed an analysis of the corpus statistics. I worked on the
analysis of the experimental results as well as their presentation, and wrote the first draft
which was originally submitted to ACL 2023, rejected, and later accepted at NAACL
2025. All authors except Ehsan Asgari reviewed the draft.
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3.1 Introduction

Despite significant advancements in NLP, progress remains predominantly focused on
widely spoken languages with higher resources, leaving a vast majority of the world’s
over 7000 languages underrepresented (Joshi et al., 2020). This underrepresentation
highlights a pervasive global issue of language inequality, often reflected by the fact
that minority and low-resource languages are systematically excluded from language
technologies. Such exclusion contributes to virtual barriers such as the digital language
divide (Young, 2015), often limiting access to information and tools for speakers of
underrepresented languages and further exacerbating existing inequalities.

Recent advancements in mPLMs, such as BERT (Devlin et al., 2019), XLM-R (Con-
neau et al., 2020), and Glot500 (Imani et al., 2023), as well as more recent multilingual
LLMs like BLOOM (Scao et al., 2022) and Aya (Ustiin et al., 2024), have demonstrated
the potential to extend language support to a wide range of previously underrepresented
languages. However, one challenge remains with the lack of comprehensive knowledge
about low-resource languages, particularly typologically complex ones, which often
contributes to the neglecting of these languages (Ponti et al., 2019). Moreover, most
existing mPLMs fail to achieve a higher coverage of languages due to a lack of more
linguistically diverse and representative evaluation datasets. Notably, models such as
mBERT and XLLM-R are evaluated on a much smaller subset of languages than those
covered by their pre-training data, largely because existing benchmark datasets lack
sufficient linguistic diversity.

To address these limitations, we propose a novel multilingual text classification
dataset spanning 1504 languages. For its development, we leverage Bible translations
and develop generalizable topics that widely apply to a large number of verses. The
verse-level alignment of Bible translations facilitates the projection of annotations across
languages. Annotations for English verses are obtained through crowdsourcing and
subsequently projected onto parallel verses across other languages without compromising
data quality. To ensure data quality, we implement quality control measures prior to
and during the annotation process, and calculate inter-annotator agreement scores using
Krippendorff’s a.

In addition to providing an overview of our dataset, we present a comprehensive
benchmark evaluating the multilingual performance of four mPLMs (mBERT, XLM-
R Base, XLM-R Large, and Glot500) and six LLMs (Llama 2 7B (Touvron et al.,
2023b), Mistral 7B (Jiang et al., 2023), and BLOOM in various sizes (560M, 1B, 3B,
7B) on our dataset. The mPLMs are evaluated on all 1504 languages, while the LLM
evaluation is conducted on a subset of 64 languages. Our results highlight the superior
multilingual capabilities of Glot500, which can be attributed to its inclusion of a broader
range of languages during pre-training. Additionally, evaluations of LLMs reveal their
competitive performance with fewer prompts using low-resource language data compared
to traditional fine-tuning of mPLMs.
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3.2 Related Works

To date, most datasets designed for multilingual evaluation cover no more than a few
hundred languages (Artetxe et al., 2020a; Ruder et al., 2021; Goyal et al., 2022a; Adelani
et al., 2024), falling significantly short of the total number of the world’s languages.
These datasets therefore represent only a limited part of the world’s linguistic diversity.
The absence of high-quality evaluation datasets poses a restriction on the development
and evaluation of NLP tools, including language models, particularly for low-resource
ones. A more thorough overview of some of these multilingual evaluation datasets and
their limitations is provided in Section 2.4.1.

Parallel corpora play a crucial role in multilingual research, as they commonly serve
as cross-lingual bridges that enable the understanding and processing of underrepresented
languages by leveraging higher-resource ones through their alignment. Such corpora
facilitate both the training and evaluation of models under cross-lingual and multilingual
settings and enable NLP systems to generalize effectively to low-resource languages.
In this study, we leverage translations of the Bible as the source of parallel data due
to its coverage over a linguistically diverse expanse of languages. The Bible is also
considered a valuable source of parallel data due to its inherently consistent verse
structure and high-quality translations. Specifically, we employ two sources of Bible
collections: the Parallel Bible Corpus (PBC) (Mayer and Cysouw, 2014), which contains
Bible translations in 1304 languages, and the 1000Langs dataset!, a collection of Bible
translations compiled from multiple online sources. Together, these two resources amount
to 1504 languages, which greatly exceeds the number of supported languages in most
contemporary multilingual evaluation datasets. Our dataset, Taxi1500, built upon this
joint collection of Bible translations, represents the most linguistically diverse dataset
available for multilingual NLP.

3.3 Dataset

3.3.1 Sentiment Classification

While exploring possibilities to create a classification task based on Bible translations,
we initially attempt to formulate verse classification as a sentiment classification task
by categorizing Bible verses into three conventional polarity labels: positive, neutral,
and negative. Because many low-resource languages only have translations of the New
Testament, we base our dataset only on verses from the New Testament. Inspired by
Dufter et al. (2018), we implement a similar task to classify English Bible verses in the
PBC into the three polarity labels. This is carried out using a RoOBERTa-based sentiment
classification model (Hartmann et al., 2021), which has been fine-tuned on social media

"https://github.com/ehsanasgari/1000Langs
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posts. We apply this model to the New World Translation (2013) and obtain 6233 verses
as positive, 1441 as negative, and 23459 as neutral.

Given the predominance of neutral verses, we further conduct emotion classification
on the verses classified as either positive or negative in the previous step, as we assume
that these verses are more likely to exhibit distinguishable emotions. For this, we employ
a DistilBERT model? fine-tuned with six emotion labels: sadness, joy, love, anger, fear,
and surprise.

With this method, we are able to divide the positive and negative verses into the six
emotion categories with the corresponding numbers of verses: sadness (1171), joy (1952),
love (870), anger (4201), fear (457), and surprise (29). However, closer examination
of the classified results demonstrates the impracticality of this method. As most Bible
verses are inherently objective, forcing them into one of the emotion categories leads to a
high number of misclassifications. In fact, because the majority of verses in the Bible do
not convey a single, definitive sentiment or emotion, sentiment or emotion classification
approaches become impractical. We consequently abandon these approaches and explore
alternative classification topics that better align with the nature of the data.

3.3.2 Topic Design
Latent Dirichlet Allocation

The failure of sentiment and emotion classification in Section 3.3.1 illustrates that
subjective classification tasks are not well-suited for Bible data. We thus shift to creating
objective topics in an automatic manner using Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), which detects latent topics within Bible verses.

We first remove stop words using the NLTK package (Bird et al., 2009), and filter
out words with very high frequencies, such as God and Jehova, as well as meaningless
character combinations. The output of LDA consists of lists of tokens that together
represent latent topics. However, the results generated by LDA on the Bible verses do
not indicate meaningful or interpretable topics. The following examples illustrate some
topics produced by the LDA model:

Topic 1 : [house, people, one, may, david, sons, become, day, according, saying|

Topic 2 : [david, son, one, house, man, things, came, king, hand, land)|

[
[
Topic 3 : [sons, israel, one, like, king, house, man, people, us, men]
Topic 4 : [land, one, let, people, men, us, went, took, go, brought]

[

Topic 5 : [one, israel, king, people, may, like, man, days, seven, M oses]

https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emo
tion
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These examples show significant overlaps among the tokens produced for different
topics, which make it challenging to identify distinct themes among the topics. At the
same time, the results created are hard to interpret and concretize into meaningful topics.
These limitations likely result from the fact that LDA is optimized for processing longer
documents, while Bible verses are typically limited to fewer than 50 tokens, which lack
sufficient contextual information for LDA to extract meaningful latent topics. The LDA’s
modeling could furthermore be impacted by certain verses that do not focus on a single
topic. This outcome demonstrates the challenges with automated topic identification
and motivates an alternative approach for developing suitable topics for the Bible verses,
which involves manual topic curation.

Manual topic engineering

Due to the inability of LDA to produce meaningful topics for Bible verses, we turn to
manual engineering of relevant topics by directly working with the verses. The curation
process undergoes seven refinement iterations in total, which are listed as different
versions in Table 3.1. The final version contains six topics: Recommendation, Faith,
Description, Sin, Grace, and Violence, whose definitions are shown in Table 3.2. For
conciseness, we omit definitions for topics from earlier iterations. The detailed process
of topic refinement is described below.

In the first iteration, nine topics have been chosen: Rules, Phenomenon, Conflict,
Relation, Place, Character, Reward, Punishment, and Command. While collecting
example verses for these topics, however, we recognize overlapping definitions among
certain topics, as some verses could be categorized as multiple options. To reduce the
overlap and develop more precise topics, we seek assistance from experts in theology, as
well as searching for relevant topics from online resources.

Using various online resources, including preaching websites such as ProPreacher?,
we select relevant topics that are referred to as v2 in Table 3.1. These topics are curated
by balancing two principles: selecting enough topics so as to make the benchmark
challenging, and at the same time ensuring each selected topic has sufficient verses for
robustness.

Before initiating crowdsourcing, topics in v2, together with random example verses,
are presented to three NLP students for feedback, based on which some of the more
abstract topics, including Eschatology, Philosophy, Theology, and Moral, are removed.
On the other hand, more concrete topics, including Repentance, Friendship, Thankfulness,
Forgiveness, and Suffering, are introduced as part of v3. In addition, Persecution is
renamed to Heresy to broaden the coverage. With minor revisions, we submit the verses
with topics in v4 for an initial round of crowdsourcing, from which we obtain further
feedback. Based on this feedback, adjustments are made in later refinement iterations.

Shttps://www.propreacher.com/100-sermon-topics
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version topics num. topics

Rules, Phenomenon, Conflict, Relation, Place, Character, Reward, Punish-
ment, Command

9

vl

Eschatology, Grace, Family, Creation, Philosophy, Revival, Cults, Com-
v2 promise, Persecution, Hospitality, Conflicts, Theology, Morals, Command- 15
ments, Sacrifice

Creation, Grace, Violence, Conflict, Hospitality, Sacrifice, Heresy, Repen-

. . . . . . 14

v3 tance, Faith, Suffering, Forgiveness, Thankfulness, Friendship, Temptation

VA Creation, Grace, Violence, Conflict, Hospitality, Sacrifice, Heresy, Repen- 12
tance, Faith, Suffering, Forgiveness, Thankfulness

V5 Creation, Commandment, Genealogy, Violence, Sacrifice, Money, Salvation, 3
Sin

v6 Creation, Commandment, Genealogy, Violence, Sacrifice, Money, Grace, 3
Sin

v7 Recommendation, Faith, Description, Sin, Grace, Violence 6

Table 3.1: Versions of topics during each refinement iteration. Version 1 contains the initial set of
self-designed topics, developed with the help of a linguist. Version 2 contains topics derived from an
online preaching website. Version 3 removes some abstract topics - Eschatology, Philosophy, Theology,
and Morals - and introduces some new topics - Repentance, Friendship, Thankfulness, Forgiveness and
Suffering. Version 4 is used for crowdsourced annotations on Amazon MTurk. Versions 5 and 6 merge
similar topics from Version 4 and adjust the names of several topics to improve clarity. Version 7 is the
final version of topics used by the dataset.

3.3.3 Annotation

Following the development of the six final topics, which are treated as classes of the
verses, verses belonging to each class are extracted and annotated in a preliminary
annotation round by three annotators. We retain only verses whose class labels are
agreed upon by at least two annotators, and remove verses that are noisy (covering
multiple topics) or irrelevant (not considered as any topic by the annotators). This step
is performed to reduce ambiguity for annotators in subsequent crowdsourcing rounds
and to control annotation costs. The resulting dataset contains 1077 verses, which are
submitted to Amazon Mechanical Turk (MTurk) for annotation, specifying the US as the
worker* location. Each verse is subsequently annotated ten times by different workers,
and the final class label is assigned based on majority voting.

We expect that annotation quality issues may emerge under two circumstances: con-
fusion about the task and the worker’s lacking care or attention. To minimize confusion
related to the annotation task, we provide detailed guidelines and examples with the
survey. Additionally, workers are required to pass a qualification test to demonstrate their

4MTurk annotator.
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class definition
Recommendation | An imperative statement which suggests to act or believe in certain ways.
Display of belief and love toward God, instructions on how to maintain faith,
Faith stories of faith and its consequences.
Description Describes a person, relationship, phenomenon, situation, etc.
Sin Describes what is considered sin, stories of sinful people, and sinful actions.
Grace Describes God’s love, blessing, and kindness towards humans.
Describes wars, conflict, threats, and torture; destructions of people, cities, and
Violence nations.

Table 3.2: Definitions of classes in Taxi1500.

understanding of the task. For quality control, we implement a performance threshold
using “pseudo-gold standard” data by estimating the class labels from the majority votes
of all annotators. We calculate the macro £ score from each worker’s annotations and
reject annotations from workers whose F) score is below 0.40, republishing their verses
for a new round of annotation.

To assess the inter-annotator agreement, we calculate Krippendorff’s a (K-a)), a
metric chosen for its ability to handle missing annotations, which is critical as each
worker annotates only a subset of the verses. We obtain an overall K-« of 0.44 on the
1077 verses, which can be raised at the cost of reducing the dataset size. As shown in
Table 3.3, higher K-« values can be achieved by raising the threshold of the minimum
votes required to assign a majority class label, which however, also significantly decreases
the number of available verses. A clear tradeoff between the number of accepted verses
and K-« is also demonstrated in Figure 3.1. Considering this tradeoff and the inherent
subjectivity of the topics in our dataset, we choose to maintain the K-a without excluding
any data. Notably, similar K-« values have been observed in previous work and do not
necessarily imply poor data quality (Price et al., 2020).

votes > | 3 4 5 6 7 8 9

num. verses | 1077 1055 941 755 563 388 233
K-« 044 044 048 055 063 0.73 0.83

Table 3.3: A higher threshold for the minimum number of votes required to determine the majority class
leads to a higher K-« value but at the same time decreases the number of verses.

Table 3.4 shows an overview of the six classes with their corresponding numbers of
verses in the English dataset, including an example verse for each class. Among the 1077
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Figure 3.1: Tradeoff between the K-a value, which can be increased through a higher threshold of the
minimum number of required votes, and the number of verses. The dots represent the minimum number of
required votes € {3,4,5,6,7,8,9} for a verse to be accepted.

verses, Recommendation has the highest frequency (281 instances), while Violence has
the lowest (59 instances). Due to incomplete translations of the New Testament in some
languages, these languages have fewer verses than the annotated English dataset. To
ensure the consistency of verses among all languages of the dataset, we exclude languages
with fewer than 900 of the 1077 annotated verses. This results in a multilingual dataset
covering 1504 languages from 113 language families, representing a wide geographical
span across the globe °.

class example num. verses
Recommendation | If you love me , you will observe my commandments 281
Faith Most truly I say to you , whoever believes has everlasting life 260
Description ;l;ll;elr:w\zas a man of the Pharisees named Nicodemus , a ruler of 184
Jesus answered : “ I do not have a demon , but I honor my Father , 153

Sin and you dishonor me
Grace The Father loves the Son and has given all things into his hand 140
Violence He put James the brother of John to death by the sword 59

Table 3.4: Example verses and the total number of verses for each class in the crowdsourced English
dataset.

SFamily and geographical data sourced from https://glottolog.org
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3.4 Evaluation

Experiment setup

To demonstrate its utility, we apply Taxi1500 to evaluate four mPLMs: mBERT, XLM-R
Base, XLM-R Large, and Glot500 on all languages. We additionally evaluate six LLMs
of different sizes: LLlama 2 7B, Mistral 7B, and BLOOM 560M, 1B, 3B, and 7B, on a
subset of 67 languages. For a fair comparison, we categorize the languages into three
subsets: head languages, Glot500-only languages, and tail languages. Head languages
refer to the languages covered by the pre-training data of the four mPLMs. Glot500-
only languages are exclusively in the pre-training data of Glot500. Tail languages are
languages absent from the pre-training data of all four mPLMs.

The experiments consist of three settings: zero-shot, in-language, and three-shot
prompting (for LLMs only). Datasets for all 1504 languages are partitioned into training,
development, and test sets with an 80/10/10 split ratio. In the zero-shot transfer setting,
models are fine-tuned on English training data and tested directly on the target language
test set. For in-language learning, models are fine-tuned and tested on the target language
data. We further control the training set size € {50, 100, 200, 400, 600, 860}, where 860
indicates the full training set, to study the impact of training set sizes on classification
performance and to estimate the minimum number of training samples required to achieve
acceptable classification results.

Hyperparameter setup

For all evaluated mPLMs, we use the AdamW optimizer with a learning rate of 2¢~° and
a batch size € {16, 32}, selected based on the validation performance. Early stopping
is applied based on the performance on the development set. All experiments on the
mPLMs are computationally efficient and can be completed within minutes on a single
GeForce GTX 1080Ti GPU.

3.5 Results and Analysis

Baseline

As a baseline, we train a Bag-of-Words (BOW) classification model on Taxi1500 and
present the results in Section A. The results demonstrate very low baseline performance,
with most /| scores under 0.10, indicating that classifying Taxi1500 data requires robust
semantic representation for its languages, which a simple BOW model lacks.
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Zero-shot experiments

Figure 3.2 shows three stacked bar charts representing the number of languages that fall
into each Fj interval. Each chart represents one group of languages: head languages,
Glot500-only languages, or tail languages. For head languages, Glot500, XLLM-R Base,
and XLM-R Large have high F} scores (0.4-0.8) for 68, 65, and 69 languages respectively,
outperforming mBERT, which has only 26 languages within this /3 range. This contrast
may be attributed to the smaller pre-training corpus used by mBERT compared to the
other models.

For Glot500-only languages, Glot500 significantly outperforms the other models
with 117 languages within the F} range of 0.2-0.8, while the other models have fewer
than 30 languages within the same range. This distribution is not surprising as these
languages are exclusively covered by Glot500’s pre-training data.

On tail languages, Glot500 again shows better performance than the other models,
achieving F scores of over 0.2 on 70-80 more languages. This suggests that unseen
languages potentially benefit through knowledge transfer from related languages in
the pre-training data of Glot500, which covers a broader range of languages. Overall,
the zero-shot results on Taxi1500 indicate that our dataset effectively highlights the
advantage of pre-training models on a broader range of languages. We show the complete
zero-shot results on mBERT, XLM-R Base, XLM-R Large, and Glot500 in Section A.

In-language experiments

head lang. ‘ 1SO ‘ script ‘ family tail languages ‘ ISO ‘ script family
German deu | Latin Indo-European || Cherokee chr | Cherokee Iroquoian
Basque eus | Latin Basque Gagauz gag | Latin Turkic

Hebrew heb | Hebrew Afro-Asiatic Hixkaryana hix | Latin Cariban
Japanese jpn | Japanese Japanic NgaLa hlt Latin Sino-Tibetan
Kazakh kaz | Cyrillic Turkic Komi-Zyrian kpv | Cyrillic Uralic

Korean kor | Korean Koreanic Kumyk kum | Cyrillic Turkic
Malayalam | mal | Malayalam | Dravidian Aringa luc | Latin Central Sudanic
Burmese mya | Burmese Indo-European || Magahi mag | Devanagari | Indo-European
Persian pes | Arabic Indo-European || Dibabawon Manobo | mbd | Latin Austronesian
Chinese zho | Chinese Sino-Tebietan || Middle Watut npl | Latin Uto-Aztecan

Table 3.5: A selection of 20 languages for in-language fine-tuning, 10 head languages (left) and 10
tail languages (right). Languages are shown with their ISO 639-3 codes, writing systems, and language
families.

We perform in-language fine-tuning on a set of 20 languages, 10 head languages and
10 tail languages. These languages are carefully curated to represent a diverse set of
languages and span 13 language families and 11 writing systems. They include both high-
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and low-resource languages, with or without coverage in the mPLMs’ pre-training data.
Table 3.5 lists the ISO 639-3 codes, writing systems, and families of these languages.

For a concise comparison, results for in-language fine-tuning, compared with the
zero-shot transfer performance of each respective languages, are shown for mBERT and
XLM-R Base in Tables 3.6 and 3.7. As expected, the in-language performance improves
with a larger training set size for both models. For mBERT, zero-shot performance on
head languages is comparable to in-language performance with 100 training samples
when comparing the average [}. For XLM-R Base, this number is raised to 400,
suggesting that models with more parameters may need more training data to reach
comparable zero-shot performance. Additionally, both models consistently perform
better on head languages compared to tail languages in zero-shot settings, indicating
their stronger generalization capabilities on languages in their pre-training data.

head training samples tail training samples
lang. 0 50 100 200 400 600 860 | lang. 0 50 100 200 400 600 860

deu | 039 020 0.13 034 042 044 052 | chr |0.05 024 021 029 035 030 035
eus | 0.17 0.15 0.12 031 044 046 043 | gag |0.12 021 029 035 039 045 0.38
heb | 036 0.24 024 036 033 038 041 hix | 007 030 027 035 035 039 041
jpn | 0.39 037 040 032 049 0.63 0.66 | hlt 0.08 0.16 025 033 034 044 049
kaz | 029 0.30 036 038 050 048 048 | kpv |[0.08 0.19 024 045 041 039 046
kor | 0.41 036 036 045 056 050 0.60 || kum | 0.14 0.28 0.27 0.35 0.37 042 046
mal | 0.09 0.13 025 025 031 035 034 luc |0.08 027 023 046 041 045 035
mya | 022 032 031 041 041 040 046 | mag | 0.19 0.14 038 0.38 0.37 043 0.34
pes | 043 030 036 055 053 052 0.56 | mbd | 0.08 0.18 033 036 036 039 042
zho | 036 024 046 047 0.62 054 059 | npl |0.06 021 030 038 039 040 040

avg. | 031 026 030 038 046 047 051 avg. | 0.10 022 028 037 037 041 041

Table 3.6: Zero-shot transfer and in-language fine-tuning results using mBERT on 20 selected languages.
These include 10 head languages (left): German, Basque, Hebrew, Japanese, Kazakh, Korean, Malayalam,
Burmese, Persian, and Chinese; and 10 tail languages (right): Cherokee, Gagauz, Hixkaryana, Nga La,
Komi-Zyrian, Kumyk, Aringa, Magahi, Dibabawon Manobo, and Middle Watut. Under training examples,
0 indicates zero-shot, and 860 indicates the full training set.

LLM evaluation

We further evaluate the performance of six LLMs of different sizes on a subset of 64
languages, which represent a diverse set of language families, using three-shot in-context
learning. The LLMs explored are Llama 2 7B, Mistral 7B, and BLOOM 560M, 1B,
3B, and 7B. We show detailed results on 64 languages in Table 3.9 and summarize
the average scores in Table 3.8. Among the LLMs, Mistral 7B achieves the highest
average F score of 0.55. BLOOM 1B performs best among its variations, with an
average F of 0.50, while the 560M model has the lowest performance, with an £} of
0.46. Interestingly, three-shot prompting of LLMs generally has performance on par
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head training samples tail training samples
lang. 0 50 100 200 400 600 860 || lang. 0 50 100 200 400 600 860

deu | 052 0.16 0.18 043 049 052 051 chr |[0.09 0.15 020 0.15 024 021 0.28
eus | 026 0.09 0.26 025 034 037 034 | gag | 033 0.17 0.13 0.14 045 032 054
heb | 0.15 0.10 0.13 0.18 0.16 033 0.35| hix |[0.06 0.18 0.17 022 03 043 0.49
jpn [ 0.62 025 039 053 0.57 0.61 0.68 || hit 0.05 0.14 0.07 0.19 040 0.20 0.50
kaz | 057 0.23 035 047 041 055 0.56 | kpv | 0.09 0.09 021 023 041 038 0.53
kor | 0.63 035 055 058 0.65 053 0.70 | kum | 0.13 0.13 0.17 022 0.27 037 045
mal | 0.07 0.10 0.13 022 0.08 021 024 | luc |0.11 0.12 0.11 030 0.30 039 0.39
mya | 042 0.18 030 021 045 045 0.64 | mag | 0.38 0.11 0.23 041 048 0.38 0.51
pes | 0.66 0.17 0.55 047 0.65 0.64 0.71 | mbd |0.11 0.18 0.14 0.25 0.30 030 0.38
zho | 0.63 033 049 052 045 051 0.68 ||npl |0.05 0.14 0.08 025 041 041 043

avg. | 045 020 033 039 043 047 054 | avg. |0.14 0.4 015 024 036 034 045

Table 3.7: Zero-shot transfer and in-language fine-tuning results using XLM-R on 20 selected languages.
These include 10 head languages (left): German, Basque, Hebrew, Japanese, Kazakh, Korean, Malayalam,
Burmese, Persian, and Chinese; and 10 tail languages (right): Cherokee, Gagauz, Hixkaryana, Nga La,
Komi-Zyrian, Kumyk, Aringa, Magahi, Dibabawon Manobo, and Middle Watut. Under training examples,
0 indicates zero-shot, and 860 indicates the full training set.

with in-language fine-tuning of mPLMs using the full dataset of 860 verses, indicating
that LLMs are capable of attaining similar multilingual capabilities compared to mPLMs
with much less data.

model Llama?2  Mistral BLOOM
size 7B 7B 560M 1B 3B 7B
avg. acc. 0.45 0.55 0.46 0.50 048 048

Table 3.8: Average three-shot in-context prompting performance across six LLMs of various sizes. Results
are measured in accuracy on 64 selected languages.

Evaluation results by language family

Figures 3.3 and 3.4 present the zero-shot transfer and in-language learning results across
all languages using XLM-R Base and Glot500, aggregated by language families. For
both models, head languages consistently outperform Glot500-only and tail languages
across language families. Across the three groups of languages—head, Glot500-only,
and tail—Indo-European languages achieve higher performance than other families. This
discrepancy can likely be attributed to the higher proportion of Indo-European languages
present in the pre-training data of both models. An interesting finding from the zero-shot
results detailed in Section A shows that XLM-R Large underperforms the remaining
models on most languages. This may be attributed to its larger parameter count compared
to the other models, which increases the risk of overfitting on the small dataset used for
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language L7B M7B B560M BI1B B3B B7B ‘ language L7B M7B B560M BI1B B3B B7B

alt_Cyrl 044 0.46 0.49 0.53 048 0.45 | 1zh_Hani 0.55 0.66 0.51 0.56 0.53 0.54
arb_Arab 043  0.62 0.46 0.53 049 049 | mai_Deva 045 0.62 0.45 0.52 049 049
ary_Arab 0.32  0.56 0.34 043 036 0.39 | mar_Deva 049 0.56 0.49 049 049 053
arz_Arab 032 0.54 0.35 0.44 041 045 | mdy_Ethi 040 0.55 0.47 046 045 043
asm_Beng 046 0.56 0.36 045 049 0.55 | mhr_Cyrl 047 046 0.48 0.50 0.51 046
azb_Arab 040 0.51 0.43 047 041 048 | mkd_Cyrl 0.52  0.67 0.54 0.61 0.57 0.57
bak_Cyrl 045 0.49 0.45 0.51 047 049 | mya_ Mymr 045 0.51 0.51 0.53 041 0.44
bel_Cyrl 048 0.56 0.46 0.51 045 049 | myv_Cyrl 040 045 0.36 047 045 041
ben_Beng 041 0.58 0.41 048 048 0.52 | nep_Deva 045  0.67 0.51 0.58 0.54 0.63
bul_Cyrl 045 0.61 0.41 0.44 047 049 | npi_Deva 0.51  0.67 0.56 055 059 0.56
che_Cyrl 0.38 042 0.36 041 033 0.37 | ori_Orya 043 051 0.51 0.56 0.54 0.51
chv_Cyrl 043 045 0.47 0.51 042 045 | ory_Orya 044 058 0.53 051 0.59 0.49
ckb_Arab 044 048 0.45 047 043 045 | oss_Cyrl 049 048 0.48 052 047 0.49
cmn_Hani 049  0.61 0.44 0.54 0.54 0.53 | pan_Guru 041 046 0.44 047 047 047
crh_Cyrl 049 057 0.48 049 051 048 | pes_Arab 0.51  0.65 0.54 050 049 0.59
dzo_Tibt 045 045 0.42 041 043 041 | prs_Arab 0.51  0.66 0.57 0.60 0.57 0.56
ell_Grek 0.49 0.58 0.44 049 049 0.49 | rus_Cyrl 049 0.58 0.43 047 045 0.51
fas_Arab 049  0.67 0.53 0.53 049 0.58 | sah_Cyrl 041 046 0.49 049 046 0.44
guj_Gujr 046 0.52 0.46 048 0.51 0.52 | sin_Sinh 040 0.38 0.41 047 042 0.40
hin_Deva 0.51  0.65 0.55 048 047 0.49 | snd_Arab 044  0.62 0.54 0.56 049 0.57
hne_Deva  0.56 0.61 0.56 0.61 058 0.54 | suz_Deva 047 043 0.42 048 045 042
hye_Armn 0.46 0.55 0.46 0.52 0.52 0.46 | tam_Taml 044  0.60 0.55 0.55 0.60 0.59
kat_Geor 041 045 0.43 045 043 042 | tat_Cyrl 048 0.53 0.43 0.53 048 0.46
kaz_Cyrl 049 0.55 0.45 0.51 0.55 0.51 | tel_Telu 0.33  0.54 0.39 0.52 0.51 0.51
khm_Khmr 0.52 0.56 0.52 0.56 0.52 0.49 | tgk_Cyrl 042 0.56 0.46 0.54 048 0.49
kir_Cyrl 0.51 053 0.62 0.62 057 0.48 | tha_Thai 043  0.58 0.45 047 041 043
kjh_Cyrl 044 048 0.42 049 042 0.45 | tir_Ethi 0.30 040 0.38 041 032 0.28
kmr_Cyrl 040 0.40 0.39 044 043 045 | tyv_Cyrl 0.39 048 0.36 045 048 043
kor_Hang 049 0.72 0.49 051 0.52 0.49 | udm_Cyrl 0.37 041 0.42 045 043 042
krc_Cyrl 046  0.55 0.45 049 046 0.49 | ukr_Cyrl 0.52 0.63 0.51 049 049 0.51
ksw_Mymr 044 044 0.40 049 042 042 | uzn_Cyrl 046  0.59 0.43 049 043 045
lao_Laoo 045 045 0.48 0.51 0.57 0.47 | yue_Hani 043  0.63 0.46 0.54 053 0.53

Table 3.9: Performance of three-shot in-context prompting across six LLMs of different sizes on 64
selected languages. L: Llama 2, M: Mistral, B: BLOOM.

its evaluation. Furthermore, when comparing zero-shot and in-language performance of
XLM-R Base, extremely low-resource languages with non-Latin writing systems, such
as Yawa-Saweru, Lengua-Mascoy, and Hmong-Mien, exhibit more notable performance
boosts (around 0.4) under the in-language learning setting. This is an indication that the
model is not equally effective for non-Latin script languages and Latin script languages.

3.6 Conclusion

Evaluation of mPLMs and multilingual LL.Ms is often constrained by the limited anno-
tated datasets for low-resource languages, which constitute the majority of the world’s
languages. The limitation is demonstrated by the under-evaluation of many multilingual
models, often on only a fraction of their supported languages. One leading reason is that
annotating data for every language is not only prohibitively expensive but also impractical
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due to the limited availability of resources and annotators for many languages. To tackle
this challenge, we introduce Taxi1500, a text classification dataset comprising annotated
Bible verses in 1504 languages. We obtain labels for English verses through crowd-
sourcing and subsequently project these labels to other languages leveraging the parallel
nature of Bible verses. We demonstrate the utility of Taxi1500 through comprehensive
evaluations of four mPLMs with varying language coverages and six LLMs of different
sizes. The results illustrate that Taxi1500 can serve as an effective benchmark dataset for
evaluating the multilingual capabilities across different models.
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Figure 3.2: Zero-shot performance of mBERT, XLM-R Base, XLM-R Large, and Glot500, with numbers
of languages in each F) interval shown. Each subfigure shows performance for head, Glot500-only, and
tail languages, respectively.
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Chapter 4

Conceptual Language Similarity

This chapter corresponds to the following work:

Haotian Ye, Yihong Liu, Hinrich Schiitze (2023). A study of conceptual
language similarity: comparison and evaluation.

Declaration of Co-Authorship. The notion of dividing up languages based on their
conceptualizations was originally conceived by Yihong Liu in a publication prior to
this, on which I also collaborated. Building on the foundation of conceptual language
similarity, proposed in the previous publication, I conducted all experiments and analyses
for the project which is discussed in this chapter. I completed the initial draft for the
work discussed in this chapter, which was subsequently reviewed by all co-authors. All
other co-authors also provided feedback on the draft.
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4.1 Introduction

More than 7000 languages are spoken in the world today, which are grouped into over
400 distinct language families (Joshi et al., 2020; Hammarstrom et al., 2022). The
growing availability of unlabeled data in a large number of languages in diverse forms
has significantly facilitated its processing and usage by machine learning algorithms,
contributing to the progress in multilingual NLP. This has been demonstrated by the
development of mPLMs (Conneau et al., 2020; Xue et al., 2021; Imani et al., 2023).
The advancements, however, have largely excluded the majority of the world’s low-
resource languages, mainly due to data scarcity for these languages. To address this
challenge and improve support for low-resource languages, a number of approaches have
been proposed to leverage linguistic information from high-resource languages, such as
English and Chinese, to benefit less-represented languages. One prominent approach
involves cross-lingual transfer learning, which is detailed in Section 1.1.2. Language
similarity plays an important role in the success of such methods, as linguistically similar
languages have been demonstrated to enhance the performance of transfer learning (Kim
et al., 2017; Ahmad et al., 2019; Lauscher et al., 2020) and joint learning (Cohen et al.,
2011; Navigli and Ponzetto, 2012; Wang et al., 2021). Furthermore, Chronopoulou et al.
(2023) leverage typological information to create language family-specific adapters for
groups of similar languages, and Gerz et al. (2018) show that typological features exert a
strong impact on the performance of mPLMs on diverse languages.

While most language similarity measures rely on lexical or typological features, such
as word order and verbal inflection, recent work has established a novel definition of
language similarity based on the representation of basic concepts in each language. This
type of conceptual language similarity is shown to be complementary to existing lexical
or typological similarities, which often categorize languages based on geographical (e.g.,
the continent of the language), phylogenetic (genealogical relationships), or structural
(e.g., syntax- or grammar-related) features. The primary sources of typological fea-
tures are manually constructed databases containing curated features, such as Glottolog
(Hammarstrom et al., 2022), PHOIBLE (Moran and McCloy, 2019), WALS (Dryer
and Haspelmath, 2013), and Grambank (Skirgard et al., 2023). Alternatively, some
approaches implement automatic inference of typological features, for example, through
word alignment (Mayer and Cysouw, 2012; Ostling, 2015), in the cases that the coverage
of existing databases is inadequate.

Unlike the aforementioned similarity measures, we focus on conceptual language
similarity, introduced in our previous work (Liu et al., 2023b). Conceptual similarity
relies on Conceptualizer, a two-step framework that aligns basic concepts across 1335
languages leveraging the Parallel Bible Corpus (PBC) (Mayer and Cysouw, 2014). The
idea behind Conceptualizer is founded on the assumption that languages divide the world
into concepts and associate with them in diverse ways, and that such divergence can
be leveraged to capture similarities and differences in languages. For instance, three
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geographically and culturally related languages, Chinese, Japanese, and Korean, share
a common association of the “mouth” concept with “entrance”, which is influenced by
the Chinese character “[1”. In contrast, this association is absent in most European
languages, a phenomenon that reflects a conceptual divergence between the three East
Asian languages and European languages with respect to the “mouth” concept. A belief
grounded in previous research shows a link between a language’s conceptualization
patterns and its speakers’ thoughts (Deutscher, 2010). In a similar fashion, conceptual
similarity provides a novel way to quantify language similarity by reflecting a perspective
that is complementary to conventional similarity measures based on lexical or typological
features.

We divide the content of this chapter into two parts. (1) We elaborate on our previous
work (Liu et al., 2023b) and conduct a deeper investigation into the conceptual similarity,
and (2) extend our previous work by extensively evaluating different language similarity
measures and comparing conceptual similarity to existing measures. Specifically, we
evaluate language similarity measures on a binary classification task to predict whether
most of a language’s neighbors belong to the same language family. To the best of our
knowledge, no prior study has carried out empirical evaluations and comparisons on
different language representations for predicting genealogical language similarity. Our
findings show that, in terms of classification accuracy, conceptual similarity does not
outperform existing similarities based on lexical or typological features. However, from
a linguistic perspective, it provides valuable insights by highlighting the similarities
and divergence in the conceptual patterns of languages, which makes it a valuable tool
alongside existing language similarity measures.

4.2 Related Work

Substantial research has been dedicated to the study of language similarity, the majority
of which leverages lexical or typological features. We present some common categories
of language similarity measures and existing works on the phenomenon of colexification,
which forms the foundation of the Conceptualizer framework.

4.2.1 Lexical Similarity

Lexical similarity is a surface similarity measure commonly used to assess the level of
similarity between two languages and whether they may be considered dialects. Notably,
it is used by Ethnologue, which considers a language variant with a lexical similarity of
greater than 85% potential dialects (Eberhard et al., 2024).

Lexical similarity is typically measured using multilingual lexicostatistical lists, such
as the PanLex Swadesh list (Kamholz et al., 2014), which contains 100 words describing
basic concepts across over 2000 languages. It also provides an extended 207-word
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version of the Swadesh list (Swadesh, 2017), available in fewer languages. Larger
lists, such as NorthEuralLex (Dellert et al., 2020), which covers 1016 concepts in 107
languages, have also been used (Rama et al., 2020). However, these resources generally
have much more limited language coverage compared to the PanLex Swadesh list.

Further efforts have explored possibilities to optimize the Swadesh-100 list. For
instance, Holman et al. (2008) propose a shortened Swadesh-100 list consisting of
only the 40 most stable concepts, which is shown to increase the accuracy of language
classification. The refined list is incorporated into the ASJP database, which contains
the list in 5590 languages (Sgren et al., 2022). Using ASJP, Ostling and Kurfali (2023)
evaluate lexical distances between 1012 languages by calculating the mean normalized
Levenshtein distance between each concept pair. Alternatively, the pairwise Levenshtein
distance can be replaced by a simple longest common substring method, which effectively
quantifies the shared lexical information between two languages.

4.2.2 Genealogical Similarity

Genealogical similarity is measured based on the positions of two languages within a
genealogical or phylogenetic language tree. Without considering the further branching of
the over 400 top-level language families, the simplest measure of genealogical similarity
is a binary indicator of whether two languages belong to the same top-level family,
such as Indo-European or Sino-Tibetan. We can assign a similarity of 1 if they belong
to the same family or O otherwise. This metric can be further refined by introducing
intermediate levels of the language tree. For example, the two paths below illustrate the
complete genealogical hierarchies of Hungarian (hun) and Estonian (ekk), with all tree
levels shown (data from Glottolog).

hun: Uralic — Hungarian
ekk: Uralic — Finnic — Coastal Finnic — Neva — Central Finnic — Estonian

Based on such hierarchical paths, one approach to quantifying language similarity is
to treat each level in the path as a node and compute the Jaccard index between the two
paths. Alternatively, a more refined metric can be devised based on the number of edges
from the leaf node to the lowest common ancestor node (“Uralic” in this case).

However, both methods face a limitation posed by the uneven depths of language
trees, with some language families featuring more fine-grained subdivisions and therefore
having more nodes in their paths. As a result, languages with shallower paths tend to
appear more similar to others due to fewer subdivisions in their paths, which means
fewer divergent nodes.
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4.2.3 Typological Similarity

Many widely used language similarity measures rely on typological features. One
comprehensive resource for such features is the WALS database (Dryer and Haspelmath,
2013), which contains binary encodings of around 200 typological features for 2662
languages. The features span several categories, including phonology, lexicon, and word
order. The URIEL (Littell et al., 2017) database extends the set of typological features
by incorporating phylogenetic and geographic features. It integrates features sourced
from multiple typology databases: syntax features from WALS and SSWL (Collins
and Kayne, 2009), phonology features from WALS and Ethnologue (Eberhard et al.,
2024), and phonetic inventory features from PHOIBLE (Moran and McCloy, 2019).
To address the issue of missing features in some of these databases, URIEL employs
a weighted k-nearest-neighbors algorithm to infer their values with high accuracy. In
addition, a toolkit named lang2vec! is released to facilitate access to the URIEL database.
Another prominent typology database is Grambank (Skirgard et al., 2023), which is the
largest grammatical database to date and comprises 195 features for 2467 languages and
dialects. Compared to previous typology databases, Grambank offers a more systematic
and comprehensive feature set, including features associated with cognition and cultural
nuances, such as the distinction of politeness levels in the second person. A key strength
of Grambank is its high feature coverage, with only 24% missing values, a much lower
number compared to other typology databases.

4.2.4 Representational Similarity

Several studies have explored the use of dense word or language representations to
compute language similarities. Conneau and Lample (2019) incorporate language em-
beddings into their XLLM model to enhance its performance on machine translation.
These language embeddings are, however, learned during large-scale pre-training and are
limited to specific language pairs, making the approach impractical to extend to thou-
sands or even hundreds of languages. Yu et al. (2021) train language embeddings for 29
languages using denoising autoencoders, which remains a small set of languages. Rama
et al. (2020) investigate language distances leveraging representations from mBERT
and fastText embeddings (Bojanowski et al., 2017) by calculating the average pairwise
distances between word vectors from a multilingual word list. However, due to the
limited language coverage of mBERT and fastText, this method is also restricted in its
scalability.

"https://github.com/antonisa/lang2vec
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4.2.5 Colexification

Conceptualization is closely tied to the notion of colexification, which is defined by
Francois (2008) as the phenomenon where two concepts are associated with the same
lexical form in a given language. In linguistics, colexification has been applied for
constructing semantic maps (Haspelmath, 2003) and analyzing cross-lingual polysemies
(Perrin, 2010; List et al., 2013), among other tasks. Additionally, it has been explored in
practical applications, such as analyzing variations in semantic networks, for example, in
relation to emotions (Jackson et al., 2019; Thompson et al., 2020).

Most existing colexification datasets rely on manual curation or annotation, including
BabelNet (Navigli and Ponzetto, 2010), CLICS (Rzymski et al., 2020), and Concepticon
(List et al., 2024). However, Liu et al. (2023b) introduce the first approach for automatic
identification of colexification patterns by leveraging unannotated parallel text corpora,
distinguishing it from previous work in the field.

4.3 Conceptualizer

Conceptualizer, introduced in our previous work (Liu et al., 2023b), is a pipeline designed
to measure language similarity based on conceptualization patterns in 1335 languages
available in the PBC. The pipeline is built by first selecting 83 concepts, 32 from the
Swadesh-100 list (Swadesh, 2017) and 51 derived from the Bible. They are selected
based on the following criteria. For Swadesh concepts, we select those with a frequency
between 5 and 500 occurrences in both the New Testament and the Hebrew Bible, as
these books cover the majority of languages in the PBC. For Bible concepts, we first
extract strings of between 4 and 15 characters from the English New World Translation
(1984) Bible?. The chosen strings must fulfill a certain coverage across 12 other randomly
selected languages (the algorithm described below). We then filter out named entities
and include only nouns specific to the Bible contexts and are not already included in the
Swadesh list. Table 4.1 shows an overview of the 83 selected concepts.

Throughout this chapter, we adopt the convention of denoting a ‘concept’ with single
quotation marks and a concrete “word” or “string” with double quotation marks. Figure
4.1 illustrates the Conceptualizer pipeline, which is described in detail below. Using
English as the source language, we construct a set of source nodes S, each representing
a concept (e.g., ‘belly’) as a set of strings in English corresponding to the concept (e.g.,
{Sbelly$, Sbellies$}), where $ denotes word boundaries. We then define target
nodes 7 as triplets comprising a target language [, a verse ID, and a set of correlated
strings in /.

We implement the concept aligning pipeline by constructing a directed bipartite graph
G C S xTUT x &, which is shown in Figure 4.1. This process consists of two steps, a

2This edition is chosen because it has the largest number of verses.
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Swadesh concepts Bible concepts
‘fish’ ‘knee’ ‘babe’ ‘peace’ ‘generation’
‘bird’ ‘belly’ ‘hypocrit’ ‘secret’ ‘contrary’
‘dog’ ‘neck’ ‘soldier’ “faith’ ‘prophesy’
‘tree’ ‘breast’ ‘scroll’ ‘woe’ ‘decision’
‘seed’ ‘sun’ ‘demon’ ‘throne’ ‘request’
‘leaf’ ‘moon’ ‘boat’ ‘wisdom’ ‘weakness’
‘root’ ‘star’ ‘olive’ ‘disciple’ ‘journey’
‘flesh’ ‘water’ ‘prayer’ ‘obeisance’ ‘public’
‘blood’ ‘rain’ ‘mercy’ ‘truth’ ‘appearance’
‘horn’ ‘stone’ ‘trumpet’ ‘memor’ ‘expression’
‘hair’ ‘cloud’ ‘angel’ ‘governor’ ‘marriage’
‘ear’ ‘smoke’ ‘prison’ ‘poor’ ‘wrath’
‘mouth’ ‘path’ ‘savior’ ‘blind’ ‘trouble’
‘tooth’ ‘mountain’ ‘tomb’ ‘spiritual’ ‘promise’
‘tongue’ ‘white’ ‘husband’ ‘justice’ ‘power’
‘foot’ ‘night’ ‘bride’ ‘courage’ ‘pleasure’
‘talent’ ‘purpose’ ‘thought’

Table 4.1: A total of 83 concepts are selected for building the Conceptualizer pipeline, comprising 32
from the Swadesh-100 list and 51 derived from the Bible. Concepts are selected based on their frequency
in the PBC.

7
4 ) S
(deu,#03014005,{vogel,végel}) / \
(deu,#03014007,{vogel,végel}) — e 1

/ bird
> (zho,#40006026,{ & $R&E$}) ~
b (zh0,#40008020,{ & $7K & $}) »{$ostrich}
Lv $f]_og
[~ (adj,#40006026,{$or$}) /, }$beat{
>\ (adj, #44005040,{$or$}) ] /
™\ (adj,#44005040,{$or$}) —| \ )

forward pass backward pass

Figure 4.1: Example figure from Liu et al. (2023b) illustrating the directed bipartite graph that forms
the base of the Conceptualizer pipeline. The figure shows the alignment process for the concept ‘bird’.
Each node in S is a set of strings representing the concept (e.g., { $bird$, $birds$}). Each node in T
represents a triplet of a language, a verse ID, and a set of correlated strings.
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Figure 4.2: Visual representations of colexification patterns for the concept ‘mouth’. The illustration on the
left shows colexifications for languages of the PBC, identified by Conceptualizer. Connections between the
nodes represent colexifications and the thickness of the edges indicates the number of languages sharing
the connection. On the right is the colexification network for ‘mouth’ from CLICS. Both graphs share
some associations, such as those to “word” and “door”.

forward pass (FP) and a backward pass (BP). For a given concept (e.g., ‘belly’), we first
define V' as the set of verses containing any of the source language strings representing
it (e.g., {Sbelly$S or $bellies$}). In the forward pass, the pipeline iteratively
searches for target language strings ¢ with the highest correlation to V' measured by the
x? score x?(I,t,V). The search continues until a threshold «, defined as the fraction
of V' covered by the most strongly correlated n-grams, is reached. The backward pass
is essentially the reversed process of the forward pass and identifies the most strongly
correlated strings in the source language given 7. Notably, although the PBC data is
pre-tokenized, the Conceptualizer pipeline does not rely on explicit word boundaries
for identifying relevant strings and can technically cross word boundaries. Comparing
results from backward passes of different {’s thus allows us to identify languages with
similar or divergent colexification patterns.

We note that our pipeline is strongly linked to the linguistic phenomenon of colexifi-
cation, which is discussed in Section 4.2.5. Figure 4.2 presents conceptual alignments
of ‘mouth’ obtained through Conceptualizer alongside a corresponding colexification
network for the same concept from CLICS (Rzymski et al., 2020), a database of cross-
lingual colexifications. Both graphs, for example, demonstrate associations of ‘mouth’
with strings such as “word” and “door”, which are shown in the form of connecting
edges.
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4.4 Conceptual Similarity

To measure language similarity, we represent each language as a concatenation of 83
vectors, where each vector corresponds to one of the 83 concepts:

o(l) = [0(1, Fy);9(1, F);. . .;9(1, Fg3)]

In the above equation, F; denotes a concept, and ¢"((, F};) is a 100-dimensional vector.
Each dimension, ¢"(l, F};);, represents the number of paths from F; to an English n-gram
e;, considering only nodes ¢ = (I’,v,T') where I’ = [, i.e., nodes specific to /. Formally,
U'(l, F;); is defined as:

V(1 Fy)i = {el(Fj,c) € G A (e {ei}) € G}

The first dimension, ¢"(l, F};);, always corresponds to the queried concept itself. The
remaining 99 dimensions represent English n-grams e; most frequently associated with
F; across languages. The final vector is normalized by Y-, ¥/ (l, F});. For example, for the
concept ‘mouth’, the FP identifies a connection between ‘mouth’ and the Chinese string
‘7. In BP, the retrieved string “FH” not only associates with the string “mouth” but also
with “entrance”. Thus, the first dimension of /(, ‘mouth’) represents the number of
paths between ‘mouth’ and “mouth”, while another dimension represents the number of
paths between ‘mouth’ and “entrance”.

Using these language vectors, metrics such as cosine similarity can be used to quantify
conceptual relatedness and group languages sharing similar conceptualization patterns.
We describe our process of evaluating conceptual language similarity in Section 4.5.
Our findings, which are elaborated in more detail in Section 4.6, reveal that conceptual
similarity complements geographical and genealogical closeness traditionally used to
describe the proximity of languages. For instance, Plateau Malagasy, an Austronesian
language spoken in Madagascar, shows similarities in conceptualization patterns not
only with Hawaiian, its geographically distant Austronesian relative, but also with
geographically adjacent but genealogically distinct Atlantic-Congo languages like Mwani
and Koto, which are spoken in the neighboring countries of Madagascar. Similarly,
Masana, an Afro-Asiatic language spoken in Nigeria, shows conceptual similarities with
neighboring languages Yoruba, Igbo, and Twi, despite the letter three belonging to a
different language family. As shown in Table 4.2, all four languages associate ‘hair’ with
“wool” and ‘mouth’ with “entrance”.

We find that historical influences, for example resulting from trade, cultural ex-
changes, and colonization, also emerge as factors affecting conceptual similarity. Table
4.3 provides two examples illustrating this. In the ‘mouth’ example, three East Asian
languages that share a close historical background, Japanese, Korean, and Chinese, also
share a conceptual association between ‘mouth’ and “entrance”, a pattern that is absent in
languages like French. This likely reflects the historical influence of the Chinese character
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Concept Lang. n-grams

yor StreeS$, Strees$, wood, $stake, Sfrankincense$, Sthornbush, $palm-tree$
ibo Stree$, Streess$, $Spole, wood, $impal, $stake, Spanel

mcn Stree$, Strees$, wood, Sstake, Simpale, $Scedar, Stimber

twi Strees$, Streess$, Swood, Spanels$, $Spole, $figs$, Stimber

‘tree’

yor Shair$, Shairss$, Swool$
ibo Shair$, Shairss$, $Swool, $shear, Sbeard

hair mcn Shair$, Shairss$, Swools, $shave, $baldnesss$, $shear, goat

twi Shair$, Shairs$, Sbeard, $Sshave, Sheads$, Swool

yor Smouth$, $mouths$, Sentrance, $kiss, $Spalate$, Smarvel, $suckling
‘mouth’ ibo Smouth$, $Smouths$, Sgate, Sentrance, $1ip, curse, $Sprecious$

mcn Smouth$, $Smouths$, $1ips$, fulfill, $Sdenie, $disown, Sentrance
twi Smouth$, Smouthss, Sgat, Scollect, $1ip, Sentrance, Sregistered$

Table 4.2: Comparison of conceptual associations with three concepts in four African languages. yor:
Yoruba, ibo: Igbo, mcn: Masana, twi: Twi.

Concept  Target lang. Translations in target lang. (in English)
jpn [ (mouth, opening, entrance)
‘mouth’ kor —(I7) (entrance, gate, mouth)
zho [T (mouth, gate, entrance), ﬂ%(mouth, lips)
fra bouche (mouth)
spa lengua (tongue, language)
. , tel dila (tongue, language), wika (tongue, language)
tongue . .
ceb dila (tongue), pinulongan (tongue, language)
msa lidah (tongue), oojoo leeda (tongue)

Table 4.3: Comparisons of conceptualization patterns for two concepts, ‘mouth’ and ‘tongue’. The three
East Asian languages - jpn: Japanese, kor: Korean, zho: Chinese - share a common conceptual association
between ‘mouth’ and “entrance”, a pattern absent in French (fra). Two Philippine languages - tgl: Tagalog,
ceb: Cebuano - demonstrate similar conceptualizations of ‘tongue’ as “language”, likely due to Spanish
(spa) influence, while another Austronesian language, Standard Malay (msa), does not.

“[”. In another example, certain Philippine languages display a similar conceptualization
pattern to Spanish for the ‘tongue’ concept, whereas Standard Malay, another Austrone-
sian language, does not. This divergence can be explained by the influence of Spanish
colonization in the Philippines, which has likely shaped conceptualization patterns in
these languages.

4.5 Evaluation

In this section, we evaluate four language similarity and distance measures, including the
proposed conceptual language similarity. Conceptual cosine similarity, as introduced
in Liu et al. (2023b), quantifies the similarity between two languages using the cosine
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similarity of their conceptual vectors (explained in Section 4.4). Conceptual Hamming
distance measures the distance between two languages as the number of differing
elements in their binarized conceptual vectors. Compared to cosine similarity, we apply
binarization to enhance the interpretability of conceptual representations by weighting
all dimensions equally and highlighting different dimensions. Ostling and Kurfali (2023)
calculate lexical distances based on ASJP word lists employing mean normalized
Levenshtein distance. We evaluate language similarity using the distance matrix provided.
Finally, we evaluate typological distance based on syntactic, phonological, and phonetic
inventory features from the URIEL database (Littell et al., 2017). An overview of the
evaluated measures is provided in Table 4.4.

Following Liu et al. (2023b), we evaluate conceptual language similarity and compare
it against the other measures using a binary language family classification task. This task
determines whether the majority of a language’s £ nearest neighbors belong to the same
family. Using data from Glottolog (Hammarstrom et al., 2022), we construct a language
tree with its genealogical hierarchies. We focus on the six top-level language families
with at least 50 languages in the PBC for stable results, which are Atlantic-Congo
(ATLA), Austronesian (AUST), Indo-European (INDO), Nuclear Trans New Guinea
(GUIN), Otomanguean (OTOM), and Sino-Tibetan (SINO). The classification accuracy
results for all measures evaluated are shown in Tables 4.5 and 4.6. It is important to note
that classification accuracy under this setting reflects how well a specific similarity or
distance measure aligns with the languages’ genealogical relationships. For conceptual
similarity measures specifically, the results do not reflect how effectively they capture
true conceptual similarity, as conceptually similar languages may not always belong to
the same family.

4.5.1 Conceptual Cosine Similarity

In Liu et al. (2023b), cosine similarity is used to compare conceptual vectors of languages,
which are obtained by concatenating concept vectors. Specifically, we devise three
subsets of concepts: 32 Swadesh concepts only, 51 Bible concepts only, and all 83
concepts. Table 4.5 shows classification accuracy on these concatenations. For most
families, accuracy improves with an increasing number of neighbors (k) up to 8, after
which it is likely reduced by noise from other families. Conceptual similarity achieves
high accuracy for ATLA and INDO families (.80 and .87), with INDO performing the
best, possibly due to English being used as Conceptualizer’s source language. This
likely makes associations to INDO languages more easily retrieved during BP. For AUST,
GUIN, and OTOM families, accuracy is around 50% in about half of the cases. SINO
performs the worst, indicating a low level of conceptual similarity within the family.
Large differences in accuracy between Swadesh and Bible concepts can occasionally be
observed, particularly for INDO and OTOM families, indicating that the abstractness of
Bible concepts can lead to variable results.
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Measure

Similarity/Distance

Explanation

Conceptual cosine similarity (4.5.1)

Conceptual
4.5.2)

Hamming distance

Lexical distance based on ASJP
4.5.3)

Typological distance based on
URIEL (4.5.4)

Typological distance based on
Grambank (4.5.5)

Chinese-based conceptual measures
4.7)

Korean-based conceptual measures
4.7)

Similarity

Distance

Distance

Distance

Distance

Similarity/Distance

Similarity/Distance

Measures the similarity between two languages by computing the cosine
similarity between their conceptual vectors. Captures the degree to
which conceptual patterns of two languages overlap (Liu et al., 2023b).

Calculates the number of differing dimensions between binarized con-
ceptual vectors. Assigns equal weight to all dimensions to enhance
interpretability and highlight differences across conceptual dimensions.

Computes surface-form language distance using mean normalized Lev-
enshtein distance based on aligned word lists of basic vocabulary from
ASJP (Ostling and Kurfali, 2023).

Computes language distance based on syntactic, phonological, and pho-
netic inventory features from the URIEL database. Integrates multiple
typological datasets into unified representations (Littell et al., 2017).

Computes language distance based on typological features from Gram-
bank, the largest grammatical database to date. Grambank provides
a more systematic and comprehensive feature set compared to earlier
typological databases (Skirgard et al., 2023).

Computes conceptual cosine similarity 4.5.1 and Hamming distance
4.5.2. Conceptual vectors are generated using Chinese as the Conceptu-
alizer source language.

Computes conceptual cosine similarity 4.5.1 and Hamming distance
4.5.2. Conceptual vectors are generated using Korean as the Conceptual-
izer source language.

Table 4.4: An overview of the similarity and distance measures evaluated in this chapter, including conceptual, lexical, and typological approaches,
with brief explanations for each.
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k  # concepts H ATLA AUST INDO GUIN OTOM SINO | All

32 21 .20 .53 .09 .14 .00 | .13
2 51 24 .19 .26 .08 .04 .03 11
83 .29 31 49 A1 .14 .04 | 17
32 .54 41 .80 24 .39 15 .29
4 51 52 45 48 18 A2 09 | .24
83 .63 51 7 31 .28 09 | 32
32 .63 49 .85 .30 43 16 | .33
6 51 .64 .57 57 .20 13 13 .30
83 74 .60 .83 40 37 A2 ) .37
32 .68 .53 87 34 Sl A8 | .36
8 51 1 .59 .60 22 .14 15 32
83 78 .60 .86 42 .36 A8 | .39
32 73 .56 .84 34 54 A8 | .37
10 51 74 .61 .61 21 .09 A2 .32
83 .80 .61 .83 41 .28 16 | .38

Table 4.5: Classification accuracy based on nearest neighbors predicted using cosine similarity of
conceptual language vectors. Column headers from left to right: number of nearest neighbors, set of
concepts (Swadesh (32), Bible (51), or All (83)), and language families (see text). Bold (underlined):
best (second-best) result per column. ATLA and INDO families have the highest accuracy (.80 and .87),
whereas SINO has the lowest accuracy (.18).

4.5.2 Conceptual Hamming Distance

We use Hamming distance to measure the conceptual dissimilarity of languages using
binarized vectors. These vectors are structured in a similar manner as described in
Section 4.4, while each dimension is either 1 if the concept associates with it or 0
otherwise. Table 4.6 shows that accuracy using Hamming distance is low for all families
except INDO, which likely benefits from English as the source language (see Section
4.5.1). This bias may cause many non-INDO languages to have predominantly INDO
neighbors. Detailed analysis on the distribution of the nearest neighbors in Section 4.6.1
confirms this and indicates that INDO languages indeed constitute the majority of nearest
neighbors across all six families.

4.5.3 ASJP Lexical Distance

Ostling and Kurfali (2023) calculate the lexical distances between 1012 languages in
the PBC using ASJP word lists. We evaluate their distance matrix on the language
family classification task. Table 4.6 shows near-perfect accuracy across all six fami-
lies, highlighting that lexical similarity is a strong indicator of genealogical language
similarity.
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k  Measure || ATLA AUST INDO GUIN OTOM SINO | All
CosSim 21 20 53 .09 14 .00 | .13
, Hamming 03 .08 67 02 04 .00 | .08
ASJP 94 99 .99 90 95 1.00 | .87
URIEL 98 99 92 84 97 1.00 | .83
CosSim 54 41 80 24 39 5] .29
, Hamming 13 15 91 05 08 .01 .13
ASIP 98 100 1.00 .95 98  1.00 | .88
URIEL 99 99 9% .99 99 1.00 | .87
CosSim 63 49 85 30 43 16| 33
6 Hamming 11 13 .96 .03 .05 .00 | .12
ASIP 98 100 100 .97 98 1.00 | .88
URIEL 99 100 96  1.00 99 1.00 | .86
CosSim 68 53 87 34 51 18| 36
g Hamming 13 1297 02 03 .00 | .12
ASIP 98 100 100 95 95  1.00 | .88
URIEL 99 100 96  1.00 99 1.00 | .86
CosSim 73 56 84 34 54 18| .37
|o Hamming 11 10 97 02 01 .00 | .11
ASIP 99 100 1.00 .93 95  1.00 | .86
URIEL 99 100 96  1.00 99 1.00 | .84

Table 4.6: Classification accuracy based on nearest neighbors predicted using various similarity and
distance measures. Column headers from left to right: number of nearest neighbors, type of measure, and
language families (see text). Results are calculated using the 32 Swadesh concepts. Best result per family:
bold (CosSim), red (Hamming), teal (ASJP), blue (URIEL). Hamming distance yields high accuracy for
INDO but performs poorly for other families. Measures based on ASJP and URIEL have comparably good
results.

4.5.4 URIEL Typological Distance

We use typological features from the URIEL database, including syntactic, phonological,
and phonetic inventory features. Languages are represented as 289-dimensional binary
vectors by concatenating the typological vectors, with possibly missing values inferred
using kNN. Language similarity is ranked using the Hamming distance. Table 4.6 shows
that typological features yield accuracy on par with ASJP lexical distance in family
classification.

4.5.5 Grambank Typological Distance

Grambank contains 195 categorical features for 2467 languages, but not all features are
coded for every language. Due to the categorical nature of the features, similarity can
only be compared when languages share the same subset of features. Increasing the
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number of compared features inevitably reduces the number of comparable languages
as a tradeoff. Therefore, we select the 50 most frequently coded features and use the
Hamming distance for comparison. Evaluation is performed focusing on the five largest
language families with at least 50 languages in Grambank: Austronesian (AUST), Sino-
Tibetan (SINO), Atlantic-Congo (ATLA), Afro-Asiatic (AFRO), and Indo-European
(INDO), with additional results for GUIN and OTOM reported for comparability with
other measures. Table 4.7 shows strong performance for all seven families overall, with
an accuracy of over 80% for four of the five largest families in Grambank and an average
of 63% across all families. GUIN and OTOM families, which have fewer languages in
Grambank compared to the PBC, have worse performance (45% and 58%).

k  sim. | AUST SINO ATLA AFRO INDO GUIN OTOM | All
2 75 58 78 52 61 09 42 | 48
4 g 89 76 86 63 76 27 58 | 61
6 £ 89 80 .90 .63 78 45 58 | .63
8 & 91 81 .88 63 82 45 58 | .63
10 92 80 .90 60 78 45 42 | .62

Table 4.7: Classification accuracy based on nearest neighbors for the five largest families in Grambank,
along with GUIN and OTOM for better comparability with other measures. Families are listed in order of
their number of languages in Grambank. Bold (underlined): best (second-best) result per column. High
accuracy (over 80%) is observed for four of the largest families in Grambank, while AFRO archives a
moderate but far above-random accuracy (63%). Accuracy is much lower for GUIN and OTOM (45% and
58%), which have significantly fewer languages in Grambank.

4.6 Analysis

4.6.1 Distribution of Nearest Neighbors

We analyze the distribution of families within the 10 nearest neighbors for each language
in the six largest families of the PBC and show the results in Table 4.8. When using
conceptual Hamming distance, we observe that non-INDO languages consistently have
over 50% INDO languages among their nearest neighbors. This bias explains why
Hamming distance achieves high accuracy for INDO languages only but performs poorly
for other families. In the case of cosine similarity, INDO languages similarly have the
highest proportion of same-family neighbors than other families, which aligns with their
stronger classification performance.

For ASJP, the proportions of same-family neighbors are high for AUST, ATLA,
INDO, and SINO languages (ranging from 89% to 99%), but lower for GUIN and
OTOM languages (70% and 76%). This difference likely accounts for the slightly weaker
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performance on GUIN and OTOM families. GUIN languages also frequently include
non-GUIN languages from the geographically proximate Papunesia region, such as Wiru
and Tabaru. This reflects the high linguistic diversity of the region, which has 29 of the
120 language families in ASJP, just under South America. A similar observation can be
made for OTOM languages, whose non-OTOM neighbors are frequently South American
languages which are geographically close to OTOM languages. These findings, alongside
the results in Table 4.5, indicate a higher degree of diversity in the conceptualizations
within these two families.

For URIEL typological features, proportions of same-family neighbors are slightly
lower for INDO and GUIN (88%) families, which explains the slightly lower classifica-
tion accuracy for the two families.

For Grambank (Table 4.9), we also assess the neighbors of AFRO, one of its largest
families. The five majority families in Grambank exhibit predominantly same-family
neighbors (ranging from 62% to 79%). The two additional families, GUIN and OTOM,
show much smaller proportions of same-family neighbors. These findings are consistent
with the classification accuracy in Table 4.7.

4.6.2 WALS Features

WALS (Dryer and Haspelmath, 2013) is known to have significant gaps in its feature
coverage, especially if not augmented with automatic feature inference (Littell et al.,
2017; Skirgard et al., 2023). These gaps may stem from differences in linguistic expertise
among feature contributors and varying relevance of features across language families.
Linguists specializing in specific families may concentrate on features most relevant to
their area and ignore those less relevant. This variability in the feature inventories can
reduce comparability across languages or families, and can potentially make genealogical
classification easier.

To investigate, we calculate the coverage of WALS syntactic and phonological
features for the six largest families in the PBC. Feature coverage is generally higher for
INDO and SINO languages, with more variability for other families. Some features,
such as “ergative-absolutive mark”, have low coverage across all families (less than
10%). Other features have higher coverage for specific families. For example, “polar
question word” has a higher coverage for INDO and SINO (40%) but is less represented
in other families (around 20%). A small number of features are entirely absent for
specific families. For example, features related to oblique positions are missing for all
GUIN languages. This suggests that some families, such as INDO and SINO, are better
studied and thus have more comprehensive feature coverage compared to other families.
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M S 1 % predicted neighbors
easure | source lang. | ATp A AUST INDO GUIN OTOM SINO
ATLA 41 7 13 1 4 5
AUST 19 31 9 2 3 5
Cossi INDO 13 3 55 0 1 2
osstm GUIN 15 17 2 18 3 4
OTOM 18 5 2 1 24 3
SINO 19 9 21 1 1 14
ATLA 20 4 56 0 0 1
AUST 12 14 5 0 0 1
Hammin INDO 8 3 69 0 0 0
amming GUIN 13 6 52 5 0 3
OTOM 15 1 51 0 5 1
SINO 10 6 58 0 0 2
ATLA 89 2 0 1 0 1
AUST 0 99 0 0 0 0
INDO 0 0 99 0 0 0
ASIP GUIN 7 7 1 70 0 1
OTOM 4 5 1 3 76 2
SINO 1 1 0 0 0 97
ATLA 96 0 0 0 0 0
AUST 0 99 0 0 0 0
INDO 0 2 88 0 0 0
URIEL GUIN 0 0 0 88 0 0
OTOM 0 | 0 0 98 0
SINO 0 1 0 0 0 96

Table 4.8: Distributions of language families within the 10 nearest neighbors for languages of the six
largest language families. Source lang.: source language for which the nearest neighbors are predicted; %
predicted neighbors: average percentages of languages from each family among the 10 nearest neighbors.
All families have predominantly INDO neighbors when using Hamming distance. A lower percentage of
same-family neighbors may correlate with a lower classification accuracy (see Section 4.6.1).

4.6.3 Grambank Features

Grambank (Skirgard et al., 2023) provides systematic feature encodings for 2467 lan-
guages, with a nearly complete feature set for most languages. In practice, however, we
find many entries marked as “unknown” which are unusable for similarity comparison.
Furthermore, only a few features are shared by a large number of languages. This
phenomenon is mentioned by Lesage et al. (2022), who highlight a strong variability in
the “description level” of Grambank features across languages.

Figure 4.3 illustrates a clear tradeoff between the size of the feature set and the number
of comparable languages, as the number of comparable languages decreases sharply with
an expanding feature set. For instance, while 1105 languages can be compared using 40
features, expanding the set to include 100 features reduces the number of comparable
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sim. | Source lang % predicted neighbors
’ | AUST SINO ATLA AFRO INDO GUIN OTOM

AUST 79 2 2 1 0 0 1

™ SINO 3 62 0 0 1 2 0

_CE ATLA 7 1 76 5 2 0 0

§ AFRO 6 1 15 47 7 0 1

5 INDO 3 2 3 64 0 0
GUIN 0 17 0 0 0 24 0
OTOM 45 0 0 0 0 0 29

Table 4.9: Distributions of language families within the 10 nearest neighbors using Grambank features.
Source lang.: source language for which the nearest neighbors are predicted; % predicted neighbors:
average percentages of languages from each family among the 10 nearest neighbors. The five largest
families in Grambank have predominantly same-family neighbors. The proportions of same-family
neighbors for the two additional families that are less represented in Grambank (GUIN and OTOM) are
much lower, which is consistent with their lower accuracy in Table 4.7.

languages by more than three-quarters.

We examine the feature coverage of Grambank across its five largest families. Al-
though Grambank features are more evenly distributed than those in WALS, discrepancies
across families still remain. For example, feature number 325: Is there a count/mass
distinction in interrogative quantifiers? is missing for half of the AFRO languages but
covers over 80% of INDO languages.

4.7 Source Language

We have so far proposed the hypothesis that conceptual similarity is influenced by biases
from the source language, which is English in our previous experiments, demonstrated
by the high proportions of INDO neighbors for non-INDO languages (Section 4.6.1). To
test this, we apply the Conceptualizer framework using two additional source languages:
Chinese, a member of the SINO family, and Korean, a language isolate that constitutes
the Koreanic family. Classification results for conceptual cosine similarity and conceptual
Hamming distance are detailed in Tables 4.10 and 4.11. The experiments are performed
using the 32 Swadesh concepts for Chinese. For Korean, we exclude the concept ‘tooth’,
leaving 31 Swadesh concepts. This adjustment addresses the high ambiguity of the
common term referring to ‘tooth’, ], which occurs in about one-third of the verses. Less
ambiguous alternatives, ©]™ and %] o}, though more specific, are infrequent and rarely
appear in the Korean Bible. We note that ambiguity in Korean texts, often caused by
frequent homonyms, is common in general with the declining use of hanja, or Chinese
characters. The proneness to ambiguity of other concepts in Korean is examined in the
following part (see “Limitations of Korean”).



4.7 Source Language 75

1750 1

1500 4

number of languages
= =

~ o N

w (=] w

o o o

v

o

)
L

250 A

20 40 60 80 100 120 140 160 180 195
number of features

Figure 4.3: Languages must share the same set of available features to be comparable. A tradeoff between
the feature set size and the number of comparable languages is shown in this graph. For example, increasing
the feature set size from 40 to 100 more than quarters the set of comparable languages.

Lang. k& ‘ATLA AUST INDO GUIN OTOM SINO | All

2 13 .05 12 .02 .01 .07 .05
4 43 21 .36 .05 .03 10 | .15
cmn 6 .50 28 S3 10 .04 16 | .20
8 | .55 31 52 5 05 A8 | .21
10 56 37 Sl 18 .04 24 | .23
2 16 A7 19 .07 .09 .05 .09
4 .33 Sl .50 A5 14 09 | .23
kor 6 46 .63 .56 24 21 A7 | .29
8 A7 .66 98 .20 18 14 .29
10 48 .67 .60 .19 22 A2 .29

Table 4.10: Classification accuracy based on nearest neighbors predicted using cosine similarity between
conceptual representations. Conceptual representations are generated using Chinese (cmn, upper half) and
Korean (kor, lower half) as the source language. Bold (underlined): best (second-best) result per column
per source language. Using Chinese improves SINO accuracy by 6%, but results in drops of 16-49%
for other families. Using Korean (agglutinative) improves AUST (many members are agglutinative)
accuracy (0.30 increase over Chinese) but brings down OTOM (many members are fusional) accuracy
(0.32 decrease compared to English). These results suggest a potential correlation between the source
language’s morphology and conceptual similarity.

Representations generated using Chinese

Despite SINO languages having a relatively low level of intra-family conceptual similar-
ity, using Chinese as Conceptualizer’s source language results in noticeable improvements
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Lang. k£ | ATLA AUST INDO GUIN OTOM SINO ‘ All

2 .07 .03 .07 .00 .00 18 .04
4 32 .08 16 .00 .03 .38 A1
cmn 6 49 18 23 01 04 S50 A7
8 S5 20 25 .00 .04 47 | 8
10 70 .19 31 .00 .03 44 20
2 .01 .02 .06 .01 .04 01 .01
4 A1 14 .30 .02 .04 01 .08
kor 6 28 .26 46 04 .04 01 A5
8 37 31 S7 04 05 01 .19
10 41 32 59 04 .04 01 20
Table 4.11: Classification accuracy based on nearest neighbors predicted using Hamming distance between

conceptual representations. Conceptual representations are generated using Chinese (cmn, upper half) and
Korean (kor, lower half) as the source language. Bold (underlined): best (second-best) result per column
per language. Using Chinese as the source language increases SINO accuracy from near-zero (when using
English) to 0.50. However, when Korean is used as the source language, SINO accuracy drops back to a
similar level (0.01). In contrast, INDO achieves the highest accuracy using Korean as the source language,
likely due to conceptual associations between Korean and INDO loan words.

for SINO languages. Classification accuracy is increased by up to 0.06 with cosine simi-
larity and substantially from near zero to 0.50 with Hamming distance. This highlights
the impact of the source language on languages of the same family.

Interestingly, while classification performance on SINO languages improves, accu-
racy for other families sees drops ranging from 0.16 to 0.34, while OTOM experiences
the largest drop of 0.49. Family distributions among the predicted nearest neighbors
(Table 4.12) reveal that using Chinese increases the proportion of SINO neighbors not
only for SINO languages but also other families, both using conceptual cosine similarity
and Hamming distance. However, ATLA languages are the most prominent neighbors in
all families despite using Chinese as the source language, followed by AUST languages,
which are the second most frequent neighbors for families other than INDO and SINO
for conceptual cosine similarity. For Hamming distance, SINO languages are the second
most prominent neighbors after ATLA, which supports the conclusion that the source
language imposes a strong influence on conceptual Hamming distance.

Representations generated using Korean

As a language isolate, Korean provides a unique perspective on conceptualization. Using
Korean as the source language leads to declines in cosine similarity accuracy of up to
0.32 for all families except AUST, which achieves the highest accuracy of 0.67, 0.11
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% predicted neighbors
Measure | Source lang.
ATLA AUST INDO GUIN OTOM SINO

3 ATLA 28 9 12 1 4 8
2 AUST 20 20 11 2 2

2.5 INDO 16 9 29 0 1 8
§§ GUIN 16 13 3 10 5 10
g OTOM 28 10 1 8 7
S SINO 22 9 12 1 3 15
3 ATLA 32 8 6 0 1 18
2 AUST 27 15 7 0 0 16
=g INDO 247 19 0 0 14
;E GUIN 28 9 1 | 21
g OTOM 32 4 0 5 24
S SINO 27 6 0 1 24

Table 4.12: Distributions of language families within the 10 nearest neighbors. Conceptual representations
are generated using Chinese. Source lang.: source language for which the nearest neighbors are predicted;
% predicted neighbors: average percentages of languages from each family among the 10 nearest neighbors.
A higher percentage of SINO neighbors is observed across all source language families compared to when
using English as the source language.

higher than when using English and 0.30 higher than when using Chinese as the source
language. This may suggest that the source language’s morphological characteristics
have an effect on conceptual similarity, as a large number of AUST languages show
patterns of agglutination similar to Korean (Himmelmann, 2005; Blust, 2013). The
significant declines in accuracy for OTOM languages, which exhibit fusional characteris-
tics (Campbell, 2016; Palancar, 2016; Baerman et al., 2019), using Chinese (-0.49) and
Korean (-0.32) also align with this hypothesis.

Though still much lower than using English, accuracy for the INDO family is higher
when using Korean compared with Chinese (0.07 increase), likely due to the presence
of loan words from INDO languages, which is much more common in Korean than in
Chinese. Despite the strong influence of the Chinese language on Korean, accuracy
for the SINO family is the lowest, similar to results using English. This indicates that
conceptualization patterns of Korean may intrinsically differ from Chinese or other
non-Chinese SINO languages. In addition, the high conceptual divergence within the
SINO family may also limit the alignment.

For Hamming distance, SINO accuracy drops from 0.50 to near zero compared to
using Chinese as the source language, a similar level to when using English. INDO
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achieves the highest accuracy of 0.59, likely benefiting from binarization amplifying
conceptual associations to loanwords. Family distributions of nearest neighbors in Table
4.13 shows more variability for the six families, with the three larger families, especially
INDO, being dominant neighbors.

% predicted neighbors
Measure | Source lang.

ATLA AUST INDO GUIN OTOM SINO
= ATLA 30 18 13 0 2
E AUST 3035 11 3
;3% INDO 13 13 37 0 1 1
T3 GUIN 9 24 4 10 6 4
5 OTOM 10 26 4 1 14 4
M SINO 15 13 19 1 1 10
= ATLA 22 8 12 0 0 1
é o AUST 13 18 14 0 0 1
5E INDO 8 10 26 0 0 1
gé GUIN 12 9 1 2 0 1
2 OTOM 13 12 10 0 4 2
M SINO 11 8 15 0 0 3

Table 4.13: Distributions of language families within the 10 nearest neighbors. Conceptual representations
are generated using Korean. Source lang.: source language for which the nearest neighbors are predicted;
% predicted neighbors: average percentages of languages from each family among the 10 nearest neighbors.
The family distribution exhibits greater variability compared to results using English and Chinese as source
languages but skews toward the three largest families, a pattern consistent with using Chinese as the source
language.

Visualizations of conceptual representations

Figure 4.4 shows t-SNE clusters of languages based on family and geographic region
using English, Chinese, and Korean as source languages. The graphs illustrate that family
clustering is weaker when using Chinese or Korean as the source language compared
to English. For both Chinese and Korean, apart from an INDO cluster, languages of
most families or regions are more dispersed. Some trends can be observed across three
source languages. For example, INDO and Eurasian languages form denser clusters than
other families or regions, and GUIN languages are more spread out, indicating a high
conceptual variability within the family despite the geographic proximity of its members.
Based on the visualizations, we suggest that the earlier observation of ATLA and AUST
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dominance in predicted neighbors may result from two factors: 1) their large family sizes,
and 2) linguistic factors in conceptual representations created using Chinese and Korean.
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Figure 4.4: t-SNE visualizations of languages using their conceptual representations based on 32 (31 when

Korean is the source language) Swadesh concepts, with eng (top two), ecmn (middle two), or kor (bottom
two) as the source language. The colors indicate different language families or geographic areas.

Influence of family size

The six families studied vary greatly in size, which potentially impacts the neighbor
distributions. ATLA and AUST are the largest of the six families, with over 200 languages
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each, while SINO, the smallest family, has 68 languages. It is thus more likely for ATLA
and AUST languages to dominate the predicted neighbors than the much less frequent
SINO languages. The influence of family size is supported by the higher accuracy for
the three largest families (ATLA, AUST, INDO) using Korean as the source language
(Tables 4.10 and 4.11).

Limitations of Chinese

The use of Chinese as the source language introduces unique challenges, including
ambiguous tokenization due to the absence of explicit word boundaries like spaces.
This can lead to noisy BP alignments, such as sequences that are excessively long
or meaningless. For example, one possible translation of ‘bird” is “ ¥ &”. However,
associated n-grams retrieved by BP include not only “ K& but also unrelated fragments
like “ & (“to fly”) and B (“fowl”). Frequent redundancies with the possessive marker
“HJ” are observed, such as “f%F (pigeon) and “f&F " (“pigeon’s”), which are among
the most common associations of many concepts. Additionally, frequent free translations
in the Chinese Bible, for example by using related terms instead of exact translations,
further increase the noise in BP.

Limitations of Korean

Contrary to Chinese, the explicit marking of word boundaries in Korean reduces the
potential noise from ambiguous tokenizations. However, the agglutinative morphology of
Korean leads to redundant associations due to its rich inventory of suffixes, or attachable
particles to a noun to serve different functions. For instance, variations of the string
“sheep” are shown to be associated with the concept: <F (“sheep™), ¥ ©] (“sheep”,
subject), < (“sheep”, object), U= (“sheep”, plural), F=- (“sheep”, plural topic),
and %3} (“with the sheep”). Ambiguity due to homonymy is also prevalent, especially
for common single-syllable words with native Korean origins (as opposed to having
Chinese roots). For example, the word A (“bird”) also means “new” or “between”,
while ©] (“tooth”) more commonly refers to “this” or “two”. Historically, words like
these were written using different hanjas, or Chinese characters, which usually served to
mitigate ambiguity for polysemous words but are no longer commonly used in modern-
day Korean. Ambiguity misleads BP to retrieve noisy n-grams, as illustrated by the
example concept ‘mouth’ (¢ in Korean). ¢, however, also occurs in verbs such as ¢ T},
meaning “to wear”, which leads to associations related to clothes such as % (“clothes”),
(Tt} (“to take off”), and W E (“cloak”).
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Diversity of conceptual representations

The redundancy in associations across different concepts is an indication that conceptual
representations generated using Chinese or Korean are more diverse, or contain more non-
zero elements, than English. To investigate this, we analyze conceptual representations
generated with the three source languages and rank the language families based on
two criteria: 1) most frequent neighbors - the number of languages most frequently
appearing within the 10 nearest neighbors, and 2) most diverse families - the average
diversity of representations of each family’s members. While the percentage of the most
frequent neighbors remains the same for English and Chinese (52%), and is only slightly
higher for Korean (56%), the percentage of the most diverse families is considerably
higher for Chinese and Korean. Specifically, the three most diverse families account for
36% of all languages when English is the source language, whereas this percentage rises
to 50% and 53% using Chinese and Korean, respectively. This shows that conceptual
representations tend to be more diverse on average when using Chinese or Korean as the
Conceptualizer’s source language, making languages conceptually more similar.

4.8 Conclusion

To the best of our knowledge, this work presents the first empirical evaluation of di-
verse types of language representations with respect to their predictive performance for
genealogical language similarity. Our evaluation includes recently proposed works on
conceptual language similarity (Liu et al., 2023b) and the grammatical feature database,
Grambank (Skirgard et al., 2023), making its first application to language similarity
prediction and an analysis of its limitations.

Our previous findings have demonstrated interesting complementarities of conceptual
language similarity to traditional measures, such as typological similarity. For example,
languages typically not considered similar within traditional genealogical or typological
frameworks, such as Tagalog and Spanish, exhibit noticeable similarities on a conceptual
level. Asindicated by evaluation results in Table 4.6, conceptual similarity is less effective
in predicting genealogical relationships, reflected by performance on language family
classification, than lexical or typological similarity measures. This is not surprising,
as lexical and typological features often result from or are influenced by genealogical
proximity, particularly within the same language family. Many typological features, such
as those coded in WALS, are related to word order or lexicon, which strongly correlate
with genealogical or geographic proximity. Furthermore, as noted in Section 4.5, the
primary objective of the language family classification task is to examine the level of
correlation between conceptual and genealogical similarities. The high classification
accuracy observed for some language families, as shown in Table 4.5, highlights the
utility of conceptual similarity. Consequently, we note that current evaluation tasks do
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not fully align with the conceptual view of language similarity. Therefore, if the primary
focus is classification accuracy, typological or lexical features provide strong signals
for genealogical relatedness. However, for high-level comparisons that extend beyond
the language family boundaries, conceptual similarity nevertheless offers unique and
valuable insights.

Lastly, we analyze the effect of the source language in generating conceptual rep-
resentation, specifically comparing Chinese and Korean to English in the original Con-
ceptualizer setup. Our findings support the hypothesis that conceptual similarity is
inherently biased toward the source language and suggest a consistent influence of the
sizes of the language families on conceptualization. Among the three source languages
studied, English produces the most stable results. We believe that this stability may
have resulted from the simpler morphology of English, which mitigates some of the
limitations discussed in Section 4.7.
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5.1 Introduction

Transformer-based pre-trained language models (PLMs) (Devlin et al., 2019; Conneau
et al., 2020) have demonstrated exceptional performance across a wide range of NLP
tasks (Artetxe et al., 2020a; Imani et al., 2023), representing an important milestone in
the field. However, these models require substantial computing resources for pre-training
and are generally limited to no more than a hundred languages for which sufficient
pre-training data is available, leaving the vast majority of the world’s low-resource
languages behind. In contrast, static word embeddings are computationally efficient to
train and require significantly less data for their training, making them more tangible for
low-resource languages.

In this chapter, we present a novel framework, the first that leverages relative repre-
sentations to construct a shared embedding space for a source language PLM and static
word embeddings of a target language. Specifically, our approach leverages (1) a PLM in
a high-resource source language, (2) static word embeddings in a target language, which
are more readily available and inexpensive to train for many low-resource languages,
and (3) a technique known as model stitching to enable zero-shot transfer to the target
language without requiring any pre-training.

The contributions mentioned in this chapter are threefold: (i) we introduce MoSE-
CroT, (Model Stitching with Static Word Embeddings for Crosslingual Zero-shot
Transfer), a novel and challenging task designed for cross-lingual zero-shot transfer,
especially to low-resource languages where static word embeddings are available; (ii) we
present a method that employs relative representations to align the source (English in our
case) and target language embeddings in a common space, allowing zero-shot transfer
for the target languages; (ii1) we evaluate the proposed framework extensively on two
text classification datasets.

Despite the theoretical support for the framework, we nevertheless show that while it
exhibits competitive results with weaker baselines, it struggles to match the performance
of strong baselines. We discuss possible implications of the negative results, identify
potential limitations of our framework, and provide insights for future directions that
could address the challenges encountered by our framework.

5.2 Related Work

Aligned cross-lingual word embeddings facilitate transfer learning by creating a shared
representation space for source and target languages. These embeddings are typically
obtained through either joint training (Hermann and Blunsom, 2014; Vulic and Moens,
2016) or post-alignment methods (Lample et al., 2018a; Artetxe et al., 2018). In this
work, we adopt a transformation method similar to post-alignment approaches to align
two embedding spaces, where the source embeddings are derived from a PLM and the
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target embeddings are pre-trained static word embeddings.

Building on the consensus that neural networks, regardless of their architecture or
domain, tend to learn similar internal representations (Kornblith et al., 2019; Vuli¢ et al.,
2020), Moschella et al. (2023) propose a method for aligning latent spaces using a set
of samples which they name parallel anchors. Their approach involves transforming
the original, absolute embedding space into a space defined by relative coordinates of
the parallel anchors. The transformed embeddings in the new relative space are referred
to as relative representations and effectively encode relationships of these embeddings
relative to the anchors.

Model stitching is a technique originally proposed to integrate components of differ-
ent neural networks. Trainable stitching layers were first proposed by Lenc and Vedaldi
(2015), with subsequent studies demonstrating their effectiveness across various tasks
(Bianchi et al., 2020; Bansal et al., 2021). In this work, we extend these ideas by employ-
ing model stitching to enable cross-lingual transfer without requiring re-training of the
components.

5.3 Task Setting

The task setting of MoSECroT is as follows: given a PLM of a high-resource language
(regarded as the source language in our framework) and static word embeddings of a
low-resource language (the target language), our objective is to enable zero-shot transfer
by directly integrating the target language embeddings with the source language PLM
through embedding layer stitching. This is achieved by first aligning the source and target
embedding spaces and subsequently swapping the embedding matrix of the PLM with
the target embeddings. We propose a novel method that utilizes relative representations
for embedding space alignment. The details of our methodology are presented in Section
54.

5.4 Methodology

Parallel anchor selection

To establish a set of parallel anchors, we first extract bilingual lexica between the
source and target languages. For most high-resource languages, high-quality bilingual
lexica are available from MUSE'. For low-resource languages, we obtain translations
of source language vocabulary by crawling PanLex? and Google Translate®*. We use

"https://github.com/facebookresearch/MUSE
https://panlex.org
Shttps://translate.google.com
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Google Translate for Tatar (tt), one of the low-resource target languages, because PanLex
uses a mix of Latin and Cyrillic scripts for Tatar, while Google Translate consistently
uses Cyrillic, the same script used in the datasets and pre-trained embeddings. For the
remaining low-resource target languages, PanLex translations are used.

From the bilingual lexica, we derive parallel anchors A by retaining only those
lexical pairs that exist in the embedding matrices of both the source and target languages.
The source language is always English in our setting, and source language embeddings
are derived from the token embeddings of English BERT (Devlin et al., 2019). Target
language embeddings are pre-trained static word embeddings from fastText (Bojanowski
et al., 2017).

Relative representations

Following Moschella et al. (2023), we construct relative representations (RRs) for
each token in the shared embedding space based on their similarities with the anchor
tokens in the respective languages. Specifically, for each token, we calculate the cosine
similarity between its embedding and the embeddings of all anchor tokens. This process
is performed independently in the source and target language embedding spaces. For
example, the similarity of a source language token z; with an anchor a; is defined as:

T = cos-sim(Ef, 4, EY, 3)

where E7 , and E} a;) are the embeddings of x; and a; in the embedding matrix of the
source language PLM E?. The relative representation of x; is then defined as:

(e} = [0 TG2) TGy TGap)]
The same procedure is applied to tokens in the target language. Importantly, the relative
representations are sensitive to the order of the anchors, which must remain consistent for
all tokens and languages. This computation results in a matrix R* € RIV*I*I4l of source
language embeddings and a matrix R’ € RIV XAl of target language embeddings, where
|V¢| and |V'!| are the vocabulary sizes of the source and target languages, respectively,
and | A| is the number of parallel anchors.

Embedding mapping

The relative representations of both source and target languages obtained in the previous
step are vectors in R4/, which does not match the hidden dimension D of the Transformer
body of the source PLM. To address this, we map the relative representations back to
RP, the dimensionality of E*. For a token z; in the source language (respectively, token
y; in the target language), the transformed embedding is computed as:

ZnEN(xi) R?:pl},n/T

Fr., =
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ZnEN(yi)(Rf[yi},n/T ’ E:{Sn})
ZnGN(yi) Rf[yi},n/T

t _
Fi,, =

where N(x;) (respectively, N(y;)) represents the set of top-k closest anchors in terms of
cosine similarity in R, (respectively, RZZ,), R, ., , (respectively, Ry, , ) is the cosine
similarity between E7, , (respectively, Ef};y y) and E7, , (respectively, Ef{fn}), and 7 is the
temperature. This transformation ensures that embeddings of both FF, , and F{tyi} are in
RP. In essence, any token, whether from the source or target language, is represented as
a weighted sum of a number (determined by £) of source language anchor embeddings.

Zero-shot model stitching

The transformed target language embeddings, F*, now align with the hidden dimension
D of the source PLM’s Transformer body. Similarly, the embedding matrix of the
source PLM is also manipulated while keeping its original dimensions, resulting in
Fs € RIV*IXP_ To enable zero-shot transfer, we can first fine-tune the source language
PLM, consisting of F'® and the Transformer body, on source language training data of a
downstream task. Subsequently, we can assemble a target language model by replacing
F* with F, enabling it to perform the task in the target language without any additional
training.

5.5 Experiments

5.5.1 Setup and data

We use the cased version of the English BERT model (bert-base-cased) as the
source language PLM and consider eight target languages. Among the target languages,
three are high-resource: German (de), Spanish (es), and Chinese (zh), while the remain-
ing five are low-resource: Faroese (fo), Maltese (mt), Eastern Low German (nds), Sakha
(sah), and Tatar (tt). Pre-trained static word embeddings for all target languages are
available from fastText*, except for Eastern Low German, for which we use another set
of fastText embeddings available on Huggingface®.

Using the methodology described in Section 5.4, we extract pairwise parallel anchors
between English and each target language. The size of the anchor set varies depending
on the overlap between the English lexicon and each target language’s lexicon. The
anchor set sizes for each target language are shown in Table 5.1.

We evaluate the proposed method on two text classification datasets, as described
below.

‘https://fasttext.cc/docs/en/pretrained-vectors.html
Shttps://huggingface.co/facebook/fasttext-nds-vectors
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en-de en-es en-zh en-fo en-mt en-nds en-sah en-tt
11836 11395 7662 1577 2600 1309 3242 9275

Table 5.1: Sizes of the parallel anchor set for each target language.

Multilingual Amazon Reviews Corpus

Introduced by Keung et al. (2020), this dataset contains product reviews in six languages.
The original dataset features five labels corresponding to star ratings, which we aggregate
into three classes: positive, neutral, and negative. We fine-tune the source language
PLM using the English training data and select the best model checkpoint based on
performance on the English development set. The three high-resource languages (de, es,
zh) are evaluated on this dataset.

Taxil500

Taxi1500 (Ma et al., 2023), presented in Chapter 3, is a classification dataset comprising
six classes for more than 1500 languages, including all of the target languages considered
in this work. We follow the original training procedure and hyperparameters, with the
exception of the learning rate, which is adjusted to 1e=® from 2¢~°, which works better
in our experiments.

5.5.2 RR weighting

In addition to the standard weighting scheme described in Section 5.4, we propose two
alternative settings for computing relative representation weights during the mapping
step. The first applies a softmax function over the relative representation weights and
the second uses sparsemax (Martins and Astudillo, 2016), which produces sparse weight
distributions contrary to softmax, concentrating similarities on fewer anchors.

To determine the optimal number of top-k closest anchors, we conduct preliminary
experiments for & € {1,10, 50,100}, in addition to a full anchor set (6731). The optimal
value for k is determined based on zero-shot performance on the German and Chinese
subsets of the Amazon Reviews Corpus. Results for different values of % in Table 5.2
indicate that using the top 50 anchors yields the best performance.

5.5.3 Baselines

To evaluate the effectiveness of our proposed method, we compare it against three
baselines.
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k ‘ de zh

11044 041
10 | 0.51 0.38
50 | 0.50 0.40

100 | 0.51 0.38
6731 | 0.44 0.21

Table 5.2: The number of closest parallel anchors (k) and the corresponding zero-shot performance on
German (de) and Chinese (zh) subsets of the Amazon Reviews Corpus.

Logistic regression (LR)

We implement a simple logistic regression classifier trained on the target language
data, using the average of static word embeddings of the words as the input sentence
embedding. While this approach does not require computationally expensive training,
it assumes the availability of sufficient labeled training data in the target language, a
condition that is rarely met for most low-resource languages in real-world scenarios.

mBERT

We fine-tune multilingual BERT (mBERT) (Devlin et al., 2019), a PLM pre-trained on
over 100 languages, using English training data. We then perform zero-shot predictions
directly on the target language test data. While mBERT is expected to perform com-
petitively on languages in its pre-training data, performance on low-resource or unseen
languages will likely vary.

Least squares projection (LS)

Inspired by embedding alignment methods like VecMap (Artetxe et al., 2018), we project
target language embeddings into the same vector space as the English PLM embeddings.
Specifically, a transformation matrix W € RP**P is learned by minimizing the Frobe-
nius norm || A'W — A®||%, where A* € RI4*P" represents the anchor embeddings in
the target language, and A® € RI4/*P represents the anchor embeddings in the English
PLM. We then apply the learned transformation matrix W to project all target language
embeddings into the PLM’s embedding space and use them to replace the PLM’s original
embedding layer.

5.5.4 Computing Resources

The proposed method is computationally inexpensive. For the Multilingual Amazon
Reviews Corpus, training can be completed within three hours using eight NVIDIA
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GeForce GTX 1080 Ti GPUs. For Taxi1500, training 1s significantly faster, taking about
30 minutes using a single NVIDIA GeForce GTX 1080 Ti GPU.

5.6 Results

We present the evaluation results using relative representations under all three weighting
schemes (Section 5.5.2) and compare them with the baselines in Tables 5.3 and 5.4.
Macro Fj scores are used due to class imbalance in both datasets.

The results indicate that the naive least squares (LS) baseline is consistently outper-
formed by multiple RR settings across most languages on both datasets. An exception is
observed for Eastern Low German (nds) in Table 5.4, where both LS and RRs perform
poorly. This finding highlights that RRs can leverage the semantic similarities encoded
in different types of embeddings more effectively than LS.

Zero-shot results with mBERT, as expected, demonstrate strong performance for
high-resource languages in both datasets. However, mBERT underperforms logistic
regression (LR) by a significant margin for low-resource languages in Taxi1500. This
outcome is likely affected by two factors. First, as noted in prior work (Wu and Dredze,
2020), representations in mBERT are not well-aligned across low-resource languages,
likely due to data sparsity during pre-training. This discrepancy is reflected in mBERT’s
strong performance on high-resource languages but suboptimal results for low-resource
languages. Second, Taxi1500 is a relatively easy classification task, where a model with
good cross-lingual word-level alignment is expected to perform well. This argument
is consistent with findings by Liu et al. (2023a), which show that well-aligned word
embeddings outperform multilingual PLMs in zero-shot cross-lingual transfer for a wide
range of languages in Taxi1500.

For LR, results are competitive for most low-resource languages, where it outperforms
other baselines and RR settings. This demonstrates the robustness of LR for simple
classification tasks like ours given sufficient target language labeled data.

Although none of the RR settings outperforms mBERT on high-resource languages,
where mBERT demonstrates strong cross-lingual capabilities, RRs consistently outper-
form mBERT for all five low-resource languages not covered by mBERT’s pre-training
data. The performance margin ranges from +0.12 for Sakha (sah) to +0.01 for Eastern
Low German (nds). These results suggest that RRs represent a promising alternative for
low-resource languages not supported by mPLMs.

5.7 Analysis

In this section, we discuss possible reasons for the suboptimal performance of our model
stitching approach on the MoSECroT task.
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‘ de es zh

LR 0.52 0.51 0.50
mBERT 0.61 0.65 0.51
LS 046 046 0.30

RRs standard top-50 0.53 0.51 0.38
RRs softmax top-50 0.50 0.53 0.38
RRs sparsemax top-50 | 0.56 0.57 0.24

Table 5.3: Evaluation results on the Amazon Reviews Corpus. Reported scores are macro F}s on the test
sets of three high-resource target languages. de: German, es: Spanish, zh: Chinese. Bold: highest score
per column.

‘ de €s zh mt sah fo nds tt

LR 030 032 056 038 048 047 0.18 0.43
mBERT 024 0.60 0.62 0.08 0.07 0.18 0.12 0.18
LS 0.14 0.26 024 0.08 0.12 0.06 0.08 0.07

RRs standard top50 020 044 028 0.14 0.16 0.16 0.06 0.14
RRs softmax top50 020 048 028 0.15 0.19 0.16 0.06 0.17
RRs sparsemax top50 | 0.24 0.37 0.13 0.15 0.18 0.20 0.13 0.21

Table 5.4: Evaluation results on the Taxil1500 dataset. Reported scores are macro F}s on the test sets of
eight target languages. de: German, es: Spanish, zh: Chinese, mt: Maltese, sah: Sakha, fo: Faroese, nds:
Eastern Low German, tt: Tatar. Results are averaged over five runs using different random seeds. Bold:
highest score per column.

Anchor selection

The quality of the parallel anchors largely relies on that of the bilingual lexica from which
they are derived. Depending on the language, the lexica may contain polysemous words
to varying degrees, which may influence the alignment quality. In addition, normalization
of lexicon entries may cause ambiguities. For example, all words in MUSE lexica are
converted to lowercase, resulting in ambiguities like the German word sie, which
has three corresponding entries in the German-English lexicon: you, she, and they.
Our anchor selection approach has two limitations: (1) for target language words with
multiple listed translations, we consider only the last entry for these words in the lexicon,
which may not be the most accurate; (2) all target language words whose translations
exist in the source language vocabulary are treated as anchors, increasing the likelihood
of noisy translation pairs.

To mitigate the influence of potentially noisy anchors, we experiment with reduced
anchor set sizes of 3000 and 500 (from the original 6731 anchors used in preliminary
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experiments) through random sampling. This approach is motivated by Moschella et al.
(2023), who observe that uniform selection from an anchor set is both straightforward
and effective. Additionally, stop words, which tend to have less stable translations, are
removed from the anchor set. However, neither modification has led to improved results
over the full anchor set (see Table 5.5, results obtained on the German and Chinese
subsets of the Amazon Reviews Corpus). One possible explanation is that translation
quality varies across anchors, making it difficult to predict the quality of sampled anchors.

|A| | de  zh

500 | 0.39 0.19
3000 | 0.19 0.19
6731 | 0.44 0.21

Table 5.5: The total number of parallel anchors and the corresponding zero-shot performance on the
German (de) and Chinese (zh) subsets of the Amazon Reviews Corpus.

Translation quality

We observe that a large portion of translations retrieved from PanLex is of low quality,
partly because PanLex often relies on intermediate languages when direct translations
are unavailable for a given language pair. To address this, we filter translations using
empirically set thresholds on the translation quality scores, which are obtained through
the PanLex API for every translation. However, we notice that high translation quality
scores do not guarantee accurate translations, and conversely, many translations with
low translation quality scores are, in fact, good translations upon manual examination.
We thus believe that the limited availability of high-quality parallel lexica is a possible
contributing factor preventing RRs from reaching their full potential, particularly for
low-resource languages.

Reinitialized embedding space

Our method involves swapping the original PLM embeddings with the transformed
English RRs before fine-tuning on English data. This reinitialization can cause the RR’s
embedding space to diverge substantially from the original PLM’s embedding space.
Consequently, it is unclear whether the rest of the PLM parameters can be adapted to
the new embeddings during fine-tuning, especially on smaller datasets like Taxi1500.
The alteration of the embedding space through reinitialization with RRs is likely another
factor contributing to the failure to create a good representation space and thus suboptimal
performance.
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5.8 Conclusion

In this chapter, we introduce MoSECroT, a novel and challenging task designed to evalu-
ate zero-shot transfer capabilities, particularly for low-resource languages where static
word embeddings are available but other resources are scarce. In addition, we propose,
for the first time, a method that leverages relative representations (RRs) for embedding
space alignment, enabling effective zero-shot transfer. Our approach involves fine-tuning
a monolingual English PLM using only English data, swapping its embeddings with
target language embeddings aligned using RRs, and evaluating the model’s zero-shot
performance on the target language. This approach avoids the need for additional pre-
training or fine-tuning for the target language. Through extensive experimentation on
eight target languages and adjustments to the RR configurations, we demonstrate that the
proposed method shows promising results compared to mBERT on unseen languages,
although the observed improvements remain modest. We discuss several possible factors
contributing to the suboptimal results and identify possibilities for future research.






Chapter 6

Language-Script Aware Multilingual
Pretraining

This chapter corresponds to the following work:

Yihong Liu*, Haotian Ye*, Chunlan Ma, Mingyang Wang, Hinrich Schiitze
(2024). LangSAMP: Language-Script Aware Multilingual Pretraining.
*equal contribution.

Declaration of Co-Authorship. Yihong Liu conceived the idea of improving the
language neutrality of the transformer outputs by delegating the encoding of language-
specific information to the proposed language/script embeddings. He also conducted the
pre-training of the augmented model and evaluated the language and script embeddings
on downstream tasks, providing the corresponding analyses. I performed experiments
and evaluations related to selecting the best donor languages for transfer learning based
on the trained language and script embeddings, and provided the analysis for this part.
Chunlan Ma contributed by analyzing the visualization of the distribution of language
and script embeddings. The draft was reviewed by all co-authors.
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6.1 Introduction

Encoder-only multilingual PLMs (mPLMs) are widely regarded as universal text encoders
(Cer et al., 2018; Huang et al., 2019; Yang et al., 2020), whose sentence- or token-level
representations are applied to diverse downstream tasks in multilingual settings (Wei
et al., 2021). One of their most valuable applications lies in cross-lingual transfer (Zoph
et al., 2016; Wu and Dredze, 2019; Artetxe et al., 2020a), where the model fine-tuned
on a single source language can be directly applied to other languages without further
training. This is particularly useful for low-resource languages with scarce annotated
training data (Artetxe et al., 2020b).

The success of cross-lingual transfer relies heavily on the transferability of the under-
lying representations of mPLMs. However, prior studies have shown that representations
of recent mPLMs encode substantial language- and script-specific information (Datta
et al., 2020; Chang et al., 2022; Wen-Yi and Mimno, 2023). This generally has a negative
impact on language neutrality, i.e., the ability to produce representations for different
languages that share a unified subspace, which is crucial for effective cross-lingual trans-
fer (Libovicky et al., 2020; Chang et al., 2022; Hua et al., 2024). While post-alignment
approaches have been explored to improve the language neutrality of these representa-
tions (Cao et al., 2020; Pan et al., 2021; Liu et al., 2024b; Xhelili et al., 2024), limited
efforts have addressed the issue from an architectural perspective or during pre-training.

Early mPLMs, such as XLLM (Conneau and Lample, 2019), introduced language
embeddings, which are learnable vectors assigned to individual languages and are added
to the token embeddings before they are fed into Transformer layers to alleviate the
burden of encoding language-specific information within the token embeddings. This
configuration improves the language neutrality of token embeddings and aids tasks like
machine translation by guiding generation toward the correct target language (Conneau
and Lample, 2019; Song et al., 2019; Liu et al., 2022). However, more recent mPLMs,
including XLM-R (Conneau et al., 2020) and mBERT (Devlin et al., 2019), have dis-
carded language embeddings, primarily for two reasons: (1) mPLMs are expected to
have a single, unified set of parameters for all languages and (2) function seamlessly as
universal text encoders without requiring language IDs. However, this removal shifts
the burden of encoding all language-specific information to the token representations,
reducing their language neutrality and potentially impairing cross-lingual transfer.

To address this limitation, we propose Language-Script Aware Multilingual Pre-
training (LANGS AMP), a method to integrate language and script embeddings to enhance
representation learning during pre-training, while maintaining a simple architecture.
Unlike previous methods that add these embeddings to token embeddings before feeding
them into Transformer blocks, LANGS AMP incorporates them into the final contextual
token embeddings output by the Transformer blocks. These enhanced representations are
then passed to the language modeling head, as shown in Figure 6.1. This design ensures
that the Transformer backbone, comprised of token embeddings and Transformer blocks,
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does not require language or script IDs as input, similar to most recent mPLMs.

During pre-training, language and script IDs are used to obtain language and script
embeddings that offload the burden of encoding language- and script-specific information
from token embeddings, which improves the capability to decode specific tokens in
masked language modeling. After pre-training, the backbone can operate seamlessly
as a universal text encoder and be fine-tuned for downstream tasks without requiring
language or script IDs as input.

We validate our approach by continually pre-training XLM-R using LANGSAMP on
Glot500-c (Imani et al., 2023), a multilingual corpus encompassing over 500 languages.
The resulting model is evaluated across diverse downstream tasks, including sentence
retrieval, text classification, and sequence labeling. We show that our method consistently
outperforms the baseline model, highlighting its effectiveness in improving cross-lingual
transfer. In addition, our ablation study shows the benefits of incorporating both language
and script embeddings with improvements to downstream performance. We show that
better language neutrality can be achieved using LANGSAMP, reflected by increased
pairwise cosine similarity across languages overall. Notably, we observe that the learned
language and script embeddings capture typological features, making them a useful
resource for selecting optimal source languages in cross-lingual transfer.

The main contributions of this work are as follows: (i) We propose LANGSAMP,
an effective multilingual pre-training method that improves the language neutrality of
mPLM representations. (i1) We conduct extensive experiments across diverse downstream
tasks, demonstrating consistent performance improvements in cross-lingual transfer. (ii1)
We show in a case study that language embeddings, as a byproduct of LANGSAMP,
effectively assists in selecting optimal source languages in cross-lingual transfer.

6.2 Related Work

6.2.1 Multilingual Pre-trained Language Models

Multilingual pre-trained language models (mPLMs) are pre-trained on data in multiple
languages using one or more self-supervised learning objectives, such as masked language
modeling (MLM) (Devlin et al., 2019) or causal language modeling (CLM) (Radford
et al., 2019). These models can generally be categorized into three groups based on their
architectures: encoder-only (Devlin et al., 2019; Conneau et al., 2020; Liang et al., 2023),
encoder-decoder (Liu et al., 2020; Fan et al., 2021; Xue et al., 2021), and decoder-only
models (Lin et al., 2022; Scao et al., 2022; Shliazhko et al., 2024).

Decoder-only models, particularly those with considerable amounts of parameters
and pre-trained on extensive data, are also referred to as large language models (LLMs)
(OpenAl, 2023; Touvron et al., 2023b; Ustiin et al., 2024). LLMs often excel at natural
language generation tasks, particularly for high- and medium-resource languages. In
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Figure 6.1: An illustration of LANGSAMP for a single input batch, where text can be in different
languages and scripts. Language and script embeddings are added to the Transformer output before the
enhanced token embeddings are fed into the language modeling head. This configuration enhances the
language neutrality of the representations by leveraging auxiliary embeddings to offload the burden of
encoding language- and script-specific information from token embeddings.

parallel, recent efforts have focused on the horizontal scaling of encoder-only models,
extending their coverage to a broader range of languages, including low-resource ones
(Ogueji et al., 2021; Alabi et al., 2022; Imani et al., 2023; Liu et al., 2024a). Such highly
multilingual encoder-only models are particularly effective in solving diverse tasks under
zero-shot cross-lingual settings.

6.2.2 Language Embeddings

Language embeddings are vectors that explicitly or implicitly represent linguistic char-
acteristics of languages. Early approaches have constructed these embeddings using
predefined linguistic features, where each dimension of the vector encodes a specific
linguistic feature (Ostling, 2015; Ammar et al., 2016; Littell et al., 2017). However,
these features are typically defined manually and may not be available for less-studied
languages (Yu et al., 2021).

To address this limitation, later works explore learning language embeddings directly
from either parallel corpora (Malaviya et al., 2017; Ostling and Tiedemann, 2017;
Bjerva and Augenstein, 2018; Tan et al., 2019; Liu et al., 2023b; Chen et al., 2023) or
monolingual corpora (Conneau and Lample, 2019; Yu et al., 2021). This is typically done
by assigning each language a unique ID and initializing fixed-length, learnable vectors,
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which are integrated into the input from that language. Language embeddings learned in
this way capture linguistic features that enhance performance on cross-lingual tasks, for
example, by guiding language-specific generation in machine translation, as illustrated
in the case of XLLM (Conneau and Lample, 2019). While this line of approaches requires
language IDs as input for both pre-training and downstream fine-tuning, our method
leverages language embeddings exclusively during pre-training. This ensures that the
backbone model can be deployed as a universal text encoder without requiring language
IDs for fine-tuning on downstream tasks.

6.3 Methodology

In this section, we explain LANGSAMP, an approach that incorporates language and
script embeddings to facilitate the learning of more language-neutral representations
during multilingual pre-training. LANGS AMP preserves the same model architecture
as most recent encoder-only mPLMs, with the addition of auxiliary language and script
embeddings during pre-training. These embeddings are not required during the fine-
tuning stage, which is aligned with most mPLM pipelines. The key components of
LANGSAMP are detailed in the following.

6.3.1 Language and Script Embeddings

Language and script embeddings are introduced to offload the burden of encoding
language- and script-specific information from token representations. Formally, let
Elamg ¢ RIXP and ES<riPt ¢ RS*P be the language and script embeddings, where L is
the number of languages, .S the number of scripts, and D the embedding dimension. We
denote the embedding of a specific language [ as ElL “"9 and that of a specific script s
as ESeP| Similar to token embeddings, which represent relations between tokens in
a vector space, language and script embeddings are designed to capture structural and
typological relationships between languages (see Section 6.5.2). Additionally, they serve
as a good resource for selecting optimal source languages for cross-lingual transfer (see
Section 6.5.4).

6.3.2 Language-Script Aware Modeling

During standard MLLM pre-training, the Transformer blocks use token embeddings to
generate the final representations for a masked position, which is then passed to the
language modeling head to reconstruct the original token. Since the original token is
specific to a language and a script, incorporating language- or script-specific information
can be critical for decoding this token accurately. Some early models, like XLM,
address this by adding language embeddings to each token embedding at the input.
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However, this approach requires language IDs to obtain representations and result in
final representations that are inherently not language-neutral, as it explicitly encodes
language-specific information into the token embeddings. As a result, the follow-up
XLM-R model discards language embeddings for better code-switching and cross-lingual
transfer capabilities.

Our intuition behind LANGSAMP is to ease decoding by giving hints to the language
modeling head in the form of language and script embeddings, as shown in Figure 6.2.
This reduces the necessity for the output of Transformer blocks to encode much language-
and script-specific information and thus increases the language neutrality of their output.

Formally, let a training instance, i.e., an input sentence, X = [z1,z9, - - , Z,], belong
to language [ written in script s. We pass X through the Transformer blocks and obtain
the final contextualized token embeddings, H = [hy, ho,--- , h,]. We then add the
language and script embeddings to these embeddings to produce the final representations,
0; = h; + E[*™ 4 ES5criP'_The final representations at the masked positions are used
to decode the original tokens during MLM:

Loy = — Z log Prrrar(i|o;)
iEM

where M is the set of masked positions in X, and Py (x;|0;) is the probability of
decoding the original token x; given the final representation o;. By offloading the
encoding of language- and script-specific information to E/*" and E5“"', h, is ex-
pected to become more language-neutral (see Section 6.5.3), thereby improving zero-shot
cross-lingual transfer results (see Section 6.4.3).
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Figure 6.2: An illustration of LANGSAMP applied to a German sentence (left) and a Ukrainian sentence
(right), both meaning “I like the cute cat”. Language and script embeddings are added to the contextualized
token embeddings output by the Transformer blocks. The resulting representations are used to decode the
original tokens at masked positions during MLM pre-training.
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6.3.3 Downstream Fine-Tuning

Since language and script embeddings are used exclusively during pre-training, the
architecture of the mPLM, including the token embeddings and Transformer blocks,
remains consistent with most mainstream mPLMs. This way, no language or script
IDs are required as input to generate the Transformer outputs (H') on downstream
tasks. This allows the pre-trained model to be fine-tuned with standard procedures in
NLP pipelines. Specifically, during downstream fine-tuning, the final contextualized
embeddings H = [hy, hs, - , h,| are passed to task-specific classifiers, and model
parameters are updated according to the fine-tuning objective, without the language or
script embeddings participating in the process. As H is expected to be more language-
neutral, we expect them to enhance zero-shot cross-lingual transfer performance (see
Section 6.4.3).

6.4 Experiments

6.4.1 Setups

Training corpora and tokenizer

For pre-training using LANGSAMP, we use Glot500-c (Imani et al., 2023), a multilingual
corpus containing data from over 500 languages written in 30 distinct scripts. We treat
each language-script combination as a separate entity, and refer to those language-scripts
covered by XLLM-R as head languages, and the remaining, predominantly low-resource
languages, as tail languages. We use the Glot500-m tokenizer (Imani et al., 2023), which
is a SentencePiece Unigram tokenizer (Kudo and Richardson, 2018; Kudo, 2018) with a
vocabulary merged from the subwords of XLM-R and additional subwords learned from
Glot500-c.

Continued pre-training

We initialize the LANGS AMP-enhanced model with pre-trained weights from XL.M-
R weights before MLM pre-training. Language and script embeddings are randomly
initialized with dimensions R610%768 and R30*768 respectively, which correspond to the
numbers of languages and scripts. We continually pre-train our model on Glot500-c,
sampling data from a multinomial distribution with a temperature of 0.3 to increase
the proportions of training instances for low- and medium-resource languages. We
use the AdamW optimizer (Kingma and Ba, 2015; Loshchilov and Hutter, 2019) with
(B1, B2) = (0.9,0.999) and € = le—6, and an initial learning rate is set to 5e—5. Training
is performed on 4 NVIDIA RTX6000 GPUs, with an effective batch size of 1024,
achieved through a per-GPU batch size of 32 and gradient accumulation of 8 (32 x 8 x 4).
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Each training instance within a batch consists of sentences of the same language-
script, concatenated into a chunk of 512 tokens. Each batch, on the other hand, contains
instances from different language-scripts. Checkpoints are saved every 5000 steps, with
a maximum number of steps capped at 150K. Early stopping is applied based on the best
average downstream performance. The pre-training process takes approximately four
weeks.

Baseline

To validate the effectiveness of LANGSAMP, we create a baseline model without
language or script embeddings, which can be regarded as a reproduction of Glot500-m.
For a fair comparison, the baseline model is pre-trained using the same hyperparameters
and data (full Glot500-c) as LANGSAMP. However, due to a constrained computing
budget, our ablation study (Section 6.5.1) is carried out with a small portion (5%)
of Glot500-c instead of the full corpus to validate each component with and without
language or script embeddings. Consequently, results on the baseline model in Table 6.1
differ from the vanilla model in Table 6.2 (see Section 6.5.1).

tail head Latn non-Latn all
Baseline LANGSAMP | Baseline LANGSAMP | Baseline LANGSAMP | Baseline LANGSAMP | Baseline LANGSAMP
SR-B 36.9 39.5 60.6 61.3 40.7 42.8 51.2 53.5 429 45.1
SR-T 56.9 58.6 74.8 76.1 67.5 68.7 73.7 75.6 69.7 71.1
Taxil500  46.1 50.9 59.3 61.5 47.3 51.9 58.1 60.3 49.4 53.6
SIB200 69.0 70.2 82.2 82.6 72.1 73.1 81.1 81.7 75.0 75.9
NER 59.7 60.5 64.2 64.2 66.8 67.7 54.0 53.6 62.1 62.5
POS 61.9 61.7 76.2 76.2 74.8 74.4 66.7 67.2 71.8 71.7

Table 6.1: Performance comparison between LANGSAMP and the baseline model on six downstream
tasks. Results are averaged over five random seeds. Languages are grouped based on two characteristics:
(1) whether they are head or tail languages and (2) whether they are written in Latin or non-Latin scripts.
LANGS AMP consistently achieves similar or superior performance over the baseline across all language
groups and tasks. Bold: best result per group per task.

SR-B SR-T Taxil500 SIB200 NER POS
tail head all tail head all tail head all tail head all tail head all tail head all

vanilla model 11.9 564 232 460 77.7 68.6 18.1 58.6 284 56.1 83.0 683 551 62.8 59.3 499 757 67.8
w/ Elang 13.1 579 245 491 79.0 70.5 183 585 285 572 827 68.8 552 63.0 59.5 499 758 67.8
w/ ESerivt 125 574 239 483 784 69.8 185 57.0 282 56.6 82.1 682 551 624 59.0 50.8 76.2 68.4

w/ E**9 and ES#t 134 58.7 249 49.1 795 70.8 20.6 58.8 30.3 579 83.0 693 549 61.6 58.6 49.7 756 67.6

Table 6.2: In our ablation study, we evaluate the effectiveness of language and script embeddings on
downstream performance. Note that the vanilla model and w/EL"9 and ES¢"iPt differ from the baseline
and LANGSAMP in Table 6.1 due to the smaller pre-training corpus. Incorporating both language and
script embeddings yields the best performance overall. Bold (underlined): best (second-best) result per
column.
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6.4.2 Downstream Tasks

We evaluate the models using three types of tasks, each with two datasets. For tasks
requiring fine-tuning, evaluation is performed in an English-centric zero-shot cross-
lingual transfer manner. For tasks not requiring fine-tuning (sentence retrieval), English
is used as the query language. In the case of fine-tuning, the pre-trained models are
fine-tuned on English training data. The best checkpoint is selected based on the English
development set and evaluated on the test sets of all target languages. For each task,
evaluation is conducted on the subset of head and tail languages supported by Glot500-c.
We present statistics of the evaluation datasets and metrics in Table 6.3, with task-specific
descriptions and hyperparameter settings explained in the following.

\Iheadl [taill |Latnl I[non-Latnl #class metric

SR-B 94 275 290 79 - top-10 acc.
SR-T 70 28 64 34 - top-10 acc.
Taxil500 | 89 262 281 70 6 F score
SIB200 78 94 117 55 7 F7 score
NER 89 75 104 60 7 F} score
POS 63 28 57 34 18 F| score

Table 6.3: Statistics of the evaluation datasets and used metrics. lheadl (resp. ltaill): number of head
(resp. tail) language-scripts. ILatnl (resp. Inon-Latnl): number of languages written in Latin script (resp.
non-Latn) scripts. #class: number of categories of text classification or sequence labeling tasks.

Sentence retrieval

For sentence retrieval, we use aligned sentences from the Bible (SR-B) and Tatoeba
(Artetxe and Schwenk, 2019) (SR-T), with up to 500 sentences for SR-B and 1000
for SR-T for languages covered by Glot500-c. No fine-tuning is performed for this
evaluation type. The models are used directly as text encoders and generate sentence
representations by averaging the contextual token embeddings at the eighth Transformer
layer, similar to previous work (Jalili Sabet et al., 2020; Imani et al., 2023; Liu et al.,
2024a). Retrieval is performed by ranking the pairwise similarities of the target language
sentence representations.

Text classification

For text classification, we use the Taxi1500 (Ma et al., 2023) and SIB200 (Adelani et al.,
2024) datasets. Taxi1500 contains six categories derived from the Bible, while SIB200
is based on FLORES-200 (Costa-jussa et al., 2022) and covers more general genres.
Evaluation is conducted by adding a 6-class (for Taxi1500) or 7-class (for SIB200)



104 6. Language-Script Aware Multilingual Pretraining

sequence classification head to the backbone model. Because the language modeling
head is not used, no language or script IDs are required. Training is conducted on a
single GTX 1080 Ti GPU for a maximum of 40 epochs using the AdamW optimizer,
with a learning rate of 1le—>5 and an effective batch size of 16, achieved through a batch
size of 8 and gradient accumulation of 2.

Sequence labeling

For sequence labeling, we perform named entity recognition (NER) using WikiANN
(Pan et al., 2017) and part-of-speech (POS) tagging using Universal Dependencies
(de Marneffe et al., 2021). A 7-class (for NER) or 18-class (for POS) token classification
head is added to the backbone model. Similar to text classification, language or script IDs
are not required. Training is conducted on a single GTX 1080 Ti GPU for a maximum of
10 epochs using AdamX with a learning rate of 2e—5 and an effective batch size of 32
(batch size of 8 and gradient accumulation of 4).

6.4.3 Results and Discussion

We evaluate LANGSAMP and compare it with the baseline model to assess the impact
of language and script embeddings on the models’ cross-lingual transfer capabilities.
To better understand the effectiveness of LANGS AMP on low-resource languages and
languages written in less common scripts, we group target languages based on two
characteristics: (1) whether they are head or tail languages and (2) whether they are
written in Latin or non-Latin scripts. The results are presented in Table 6.1, with several
key findings discussed below.

Both tail and head languages benefit. We observe consistent improvements for both
tail and head languages across tasks, although the gains are more apparent for tail
languages. For example, LANGSAMP achieves a 7% performance improvement for
tail languages compared to 1% for head languages in SR-B. Similar patterns can be
observed across other tasks, indicating that LANGSAMP has a more positive effect
on tail languages, for which training data is scarce. The greater improvements for tail
languages can be attributed to the role of language embeddings in carrying the burden of
encoding language-specific information, allowing the LANGSAMP model to generate
more language-neutral representations that are beneficial for low-resource languages.

Both non-Latin and Latin languages benefit. Consistent improvements are observed
for both Latin and non-Latin groups, with neither group showing a substantially larger
improvement than the other. This is likely due to a balanced distribution of head and tail
languages using Latin and non-Latin scripts. These improvements further suggest the
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benefits of incorporating script embeddings. By decoupling script-specific information
from the token representations, the backbone produces more script-neutral outputs,
leading to improved cross-lingual transfer across different scripts.

Improvements vary across tasks. While LANGSAMP consistently outperforms the
baseline and yields large improvements on sequence-level tasks (sentence retrieval and
text classification), its performance is very close to the baseline on sequence labeling
tasks. For example, in NER, LANGSAMP scores 0.1 lower than the baseline. This
difference may be due to the simplicity of sequence labeling tasks like NER and POS,
where prevalent classes like nouns are easily transferable through shared vocabulary
(Imani et al., 2023; Liu et al., 2024a). As a result, decoupling language- or script-specific
information may offer limited additional benefits to such tasks. Nevertheless, the overall
improvements across tasks demonstrate the utility of LANGS AMP over the baseline.

6.5 Analysis

6.5.1 Ablation Study

We conduct an ablation study to investigate the individual contributions of language and
script embeddings to model performance. Due to a limited computing budget, ablation
experiments are conducted using 5% of each language’s data from Glot500-c, while
maintaining the same hyperparameter setups as the main experiments (see Section 6.4.1).

Four model variants are evaluated: (a) a vanilla model without language or script
embeddings; (b) a model with language embeddings only; (c) a model with script
embeddings only; and (d) a model with both language and script embeddings. The results
are shown in Table 6.2, with some key findings presented in the following.

Both language and script embeddings are effective. The vanilla model achieves the
worst performance overall among all model variants. Introducing either language or script
embeddings generally leads to improved performance across all downstream tasks. This
indicates that both types of embeddings are effective in offloading the burden of encoding
language- or script-specific information from the token representations, thereby allowing
the generation of more language-neutral representations that facilitate cross-lingual
transfer. Not surprisingly, the model with both language and script embeddings achieves
the best performance, suggesting that decoupling both language- and script-specific
information is the most effective strategy.

Improvement varies across task types. Consistent with findings in Section 6.4.3,
the auxiliary embeddings prove more beneficial for sequence-level tasks, particularly
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sentence retrieval, where the largest improvements are observed. Language embeddings
in particular are the most effective for sentence retrieval tasks, yielding the highest or
second-highest performance per task. For token-level tasks (NER and POS), however,
the improvements are less clear. This aligns with the observations in Section 6.4.3: as
NER and POS are relatively simple tasks, prevalent classes and shared vocabulary play a
more important role in facilitating cross-lingual transfer on these tasks. Despite these
variations, the overall results demonstrate the effectiveness of auxiliary embeddings.

6.5.2 Visualization

To examine the distribution of the learned embeddings, we visualize the language
and script embeddings in Figure 6.3, using only head language embeddings for better
readability. A few meaningful patterns can be observed from the visualizations. Similar
or related languages are found close to each other in the embedding space, such as cmn
and zho (simplified and traditional Chinese, lower left), as well as pes and prs (Iranian
Persian and Dari, center right). Similarly, languages influenced by Chinese, such as jpn
(Japanese), kor (Korean), and vie (Vietnamese), are close to each other. Indo-European
languages, including Indian languages from the same family, form a dense cluster at the
center.

In the lower plot, most scripts of the Indian subcontinent (Deva, Telu, Mlym, Taml,
Knda, Sinh, Beng) form a close cluster, with some outliers such as Gujr and Guru,
possibly reflecting noise due to limited data using these scripts. Similarly, Chinese
characters (Hani) and scripts influenced by Chinese (Hang and Jpan) are relatively
close, as are two other related scripts, Thai and Laoo. Overall, these visualizations
suggest that learnable language and script embeddings capture relevant typological
features during pre-training.

6.5.3 Language Similarity

We propose that the capability of LANGSAMP to generate more language-neutral
representations can be reflected by the increased similarity between representations
of semantically equivalent sentences from different languages. To validate this, we
select ten typologically diverse languages with different scripts: eng_Latn, rus_Cyrl,
zho_Hani, arb_Arab, hin_Deva, jpn_Jpan, tur_Latn, spa_Latn, ind_Latn, and
swa_Latn. Pairwise cosine similarities are calculated using 100 randomly sampled
parallel sentences of these languages from SR-B. As detailed in Section 6.4.2, sentence
representations are obtained by mean-pooling the token representations at the eighth
Transformer layer, normalized by subtracting the language centroid (the average of all
100 sentence representations of that language). We show the pairwise cosine similarities
between these ten languages in Figure 6.4 and the percentages in improvement in Figure
6.5.
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Figure 6.3: PCA visualizations of language embeddings (top) and script embeddings (bottom) of head
languages. Related languages and scripts are often positioned close to each other, indicating that the
auxiliary embeddings implicitly encode language- and script-specific information. Data imbalance likely
causes the appearance of certain languages or scripts with limited data as outliers.

It can be observed that LANGSAMP consistently increases the similarity between
any two languages compared to the baseline. The difference is especially noticeable
for typologically distinct languages using different scripts. For example, arb_Arab,
which differs both in language family and script from the other nine languages, shows
notable similarity increases with eng_Latn (4.7%) and rus_Cyrl (4.1%). Importantly,
as LANGSAMP does not introduce any additional parallel data, these improvements
solely originate from the incorporation of language and script embeddings during pre-
training and demonstrate LANGS AMP’s ability to effectively decouple language- and
script-specific features into auxiliary embeddings.
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Figure 6.4: Pairwise cosine similarities between ten typologically diverse languages with different scripts.
Similarities are calculated based on 100 parallel sentences sampled from SR-B. LANGSAMP (right)

consistently achieves higher similarities across all language pairs than the baseline model (left), indicating
enhanced language neutrality of its representations.
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Figure 6.5: Percentage improvements in pairwise cosine similarities from the baseline model to

LANGSAMP. Consistent increases across all language pairs indicate enhanced language neutrality of
LANGS AMP representations.
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6.5.4 Case Study: Source Language Selection

Previous studies have emphasized the role of language similarity in selecting good source
languages for cross-lingual transfer (Lin et al., 2019; Lauscher et al., 2020; Nie et al.,
2023; Wang et al., 2023b,a; Lin et al., 2024). We explore how language embeddings
derived from LANGS AMP, which can serve as effective byproducts that encode language
similarities, can aid the selection of better source languages for cross-lingual transfer. To
this end, we conduct a case study comparing English and the ten languages mentioned in
Section 6.5.3 as donor languages for cross-lingual transfer. We evaluate the LANGSAMP
model using these languages on Taxi1500, SIB200, NER, and POS tasks, and instead
of only using English as the source language, the closest donor language to the target
language based on the cosine similarity of their language embeddings is used in addition.
The aggregated results are presented in Table 6.4, with a few representative examples
shown in Table 6.5.

tail head Latn non-Latn all

English Donor | English Donor | English Donor | English Donor | English Donor

Taxil500 47.3 48.3 59.1 60.3 48.4 49.0 58.1 60.5 50.2 51.2
SIB200 67.9 67.9 81.2 81.6 71.0 71.1 80.3 80.6 74.0 74.2
NER 61.2 61.7 64.1 65.6 67.5 66.9 54.6 58.5 62.8 63.8
POS 63.2 53.8 77.0 72.3 75.5 68.4 68.1 63.6 72.8 66.6

Table 6.4: Zero-shot performance on target languages using English and the closest donor language,
determined by cosine similarity of the language embeddings, as the transfer source language. Each score
represents the average performance across all target languages within a class. Bold: better result for an
English/Donor comparison.

Effectiveness of donor varies across tasks. Our results show varying effectiveness
from using a donor language based on the language embedding similarity with the
target language across tasks. Text classification tasks benefit more consistently from
closest donor languages compared to sequence labeling tasks. This is likely due to
highly unbalanced training data for NER and POS across languages and its non-parallel
nature. Decisively, English has much larger datasets than some of the donor languages
considered.

Non-Latin languages benefit more. Overall, non-Latin script languages see greater
improvements, especially in text classification. This reflects their underrepresentation
in mPLMs, as shown by previous findings (Muller et al., 2021). Leveraging language
embeddings to select better donor languages for these languages proves effective.
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Taxi1500 SIB200 NER POS

eng jpn | eng jpn | eng jpn | eng jpn
63.8 63.8 (854 85.7| 2.1 10.2|58.3 275

eng zho | eng zho | eng zho | eng zho
554 67.7| - - |257 1735426 80.9

tha

yue

eng hin | eng hin | eng hin | eng hin

S T L 1729 76.6|38.4 53.4(255 327

eng hin | eng hin | eng hin | eng hin

urd | - 179.1 80.6 |65.1 76.8|69.7 89.7

eng swh | eng swh | eng swh | eng swh
47.1 54.7|682 733|476 559 | - -

eng swh | eng swh | eng swh| eng swh
48.0 55.2|652 727 | - - - -

lin

Table 6.5: Examples of languages that show large significant improvements by using the closest donor
language as transfer source language. For each task, the first/second column indicates results using
English/the best donor as the source language. Bold: better result for each language per task. “-” indicates
that the language is not covered by the task.

Donor is often from the same family. Best donors identified by language embeddings
are frequently from the same family as the target language, leading to large performance
gains over using English as the transfer source. As shown in Table 6.5, for example,
zho_Hani (Chinese) as the donor for yue_Hani (Cantonese) significantly improves the
performance across all tasks (for which data exists for yue_Hani), as does hin_Deva
(Hindi) for san_Deva (Sanskrit). Positive transfer results of related languages are also
seen across scripts, such as hin_Deva (Hindi) for urd_Arab (Urdu).

Unrelated donors can be effective. In some cases, the closest donor can be typologi-
cally unrelated to the target language but nevertheless improves transfer performance.
For example, jpn_Jpan (Japanese) enhances transfer results for tha_Thai (Thai), and
rus_Cyrl (Russian) serves as an effective donor for tuk_Latn (Turkmen). These in-
stances indicate that language embeddings likely capture meaningful linguistic similari-
ties in many aspects.

6.6 Conclusion

In this chapter, we introduce LANGS AMP, an approach that integrates auxiliary language
and script embeddings into multilingual pre-training to enable the generation of more
language-neutral representations by mPLMs. This is achieved by offloading the burden
of encoding language- and script-specific information from token representations to the
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auxiliary embeddings. These embeddings are added to the output of the Transformer
blocks before being passed to the language modeling head for decoding. This allows
mPLMs to maintain a simple model architecture and function as universal text encoders
without requiring language or script IDs as input.

Extensive experimentation demonstrates that LANGS AMP consistently outperforms
the baseline without auxiliary embeddings across diverse downstream tasks, with notable
improvements in sentence-level tasks such as sentence retrieval and text classification. An
ablation study further validates the effectiveness of both language and script embeddings.
The enhanced language neutrality is reflected by increased pairwise similarities between
the donor languages studied.

Furthermore, our case study suggests that auxiliary embeddings effectively encode
language- and script-specific information, which enables the identification of optimal
source languages for cross-lingual transfer. This capability is demonstrated by improved
zero-shot transfer performance across various typologically diverse target languages
using non-English donor languages.






Chapter 7

Hate Speech Detection for
Low-Resource Languages

This chapter corresponds to the following work:

Haotian Ye, Axel Wisiorek, Antonis Maronikolakis, Ozge Alacam, Hinrich
Schiitze (2024). A Federated Approach to Few-Shot Hate Speech Detection
for Marginalized Communities.
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stage of the project. I devised the experimental setups and conducted all experiments
using the generated hate speech datasets. The draft of this work was written by me and
proofread with valuable input from all co-authors.
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7.1 Introduction

Hate speech is a pervasive global issue in online spaces, creating unsafe environments for
users, especially affecting marginalized communities. Despite its significance, online hate
speech remains understudied, particularly in the Global South, where developing societies
with increasing internet penetration face an amplified impact. Common solutions for
online content moderation typically rely on machine learning models trained on large
datasets (Pitenis et al., 2020; Rottger et al., 2021; Nozza, 2021). However, these methods
and the resources required are often limited to a few high-resource languages. While
initiatives have been taken to develop multilingual hate speech detection datasets (Rottger
et al., 2022; Das et al., 2022), low-resource languages are frequently overlooked, leaving
their speakers unprotected against online hate speech.

The complex and subjective nature of hate speech poses a significant challenge
for effective hate speech detection, as the perception of hate varies not only at the
individual level but also across cultures and regions. This is further exacerbated by the
lack of diversity among data collectors, often resulting in a mismatch between annotators
and groups directly affected by hate speech (Davidson et al., 2019; Sap et al., 2019).
Compounding this issue is the constant evolution of language, as new terminology and
expressions of hate speech frequently emerge.

To address these challenges, we develop high-quality, diverse datasets across multiple
languages that accurately reflect the experiences of marginalized communities. This
is achieved through a prompt-based data collection procedure, carried out by data col-
lectors who are proficient in the respective target languages and deeply familiar with
the nuances of hate speech specific to the marginalized groups within their respective
cultural contexts. The resulting datasets, REACT (REsponsive hate speech datasets
Across ConTexts), comprise labeled sentences in three categories - positive, neutral, and
hateful - spanning eight low-resource languages and seven distinct target groups. These
datasets are designed to enhance hate speech detection across a variety of languages and
cultural contexts.

One major limitation of existing hate speech filtering systems is their reliance on
centralized, server-side processing, which requires the transmission of user data to remote
servers for analysis. This centralized approach limits the users’ control over the types
of filtered content, which may vary from user to user. It also lacks the flexibility for
rapid adaptation to highly specific targets, particularly in low-resource languages. To
overcome these limitations, we propose a federated learning (FL) approach (McMahan
et al., 2017), a decentralized machine learning paradigm for collaborative model training
by multiple participating users. FL ensures that training data remains local on users’
devices instead of being transmitted to a central server, safeguarding the users’ privacy
while enabling model improvement. The process involves two iterative stages. Local
models receive initial parameters from the central server and are trained on local data
on client devices. Updates from these local models are then aggregated at the server to
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improve the central model, which again sends updated parameters back to the clients
for the next round of training. This decentralized approach enhances the adaptability to
cultural and linguistic nuances while preserving user privacy.

In summary, we make two key contributions in this chapter: (i) we release RE-
ACT, a collection of localized, culture- and context-specific hate speech detection
datasets curated by experienced data collectors and covering seven target groups in eight
low-resource languages; (ii) we propose a privacy-preserving, federated learning (FL)
approach for few-shot hate speech detection. The final central model exhibits robustness
across languages and target groups while maintaining the privacy of user data. Further-
more, we evaluate the effects of personalizing client models to target-specific training
data and show that while FL overall proves effective across different target groups, the
benefits of personalization for few-shot hate speech detection remain unclear.

7.2 Related Work

7.2.1 Toxic and Offensive Language Datasets

Earlier efforts in the domain of toxic and offensive language detection, including hate
speech detection, have focused on the curation of datasets, predominantly in English
(Waseem and Hovy, 2016; Wulczyn et al., 2017; Zhang et al., 2018b), with relatively
limited efforts to extend to a few other high-resource languages, such as German and
Arabic (Mandl et al., 2019; Mulki et al., 2019). Recent studies have aimed to improve
the granularity of these datasets by incorporating more fine-grained details, such as
distinguishing between different types of abuse (Sap et al., 2020; Guest et al., 2021) and
target groups (Grimminger and Klinger, 2021; Maronikolakis et al., 2022) present in
the data. Among these, Dixon et al. (2018) and Rottger et al. (2021) adopt a template-
based data generation process to create hate speech datasets categorized into subgroups
corresponding to specific target groups. Efforts to extend data collection across multiple
languages, including low-resource languages, have also been carried out, representing a
crucial step to building effective hate speech detection models that are more inclusive for
underrepresented linguistic communities.

7.2.2 Hate Speech Detection

Early approaches to hate speech detection commonly relied on traditional machine
learning methods, such as support vector machines (SVM) (Malmasi and Zampieri,
2017) and neural networks with static word representations (Djuric et al., 2015; Gambick
and Sikdar, 2017). In recent years, Transformer-based (Vaswani et al., 2017) language
models have become the standard solution for a wide range of NLP tasks, including
hate speech detection. The effectiveness of these models on identifying hateful and
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offensive content has been shown by various studies (Mozafari et al., 2019; Ranasinghe
and Zampieri, 2021, 2022) Moreover, some Transformer-based models have been pre-
trained specifically for hate speech detection, such as HateBERT (Caselli et al., 2021)
and fBERT (Sarkar et al., 2021).

7.2.3 Federated Learning

The reliance on publicly available data for training language models raises important
concerns regarding privacy and data availability. Public datasets have been shown to
contain personally identifiable information, which poses privacy risks as models trained
on these datasets may inadvertently memorize and reproduce sensitive data (Kim et al.,
2023; Lukas et al., 2023). Additionally, the status of public data is subject to change,
as content like tweets may be deleted or have modified privacy status. In addition, the
volume of public data is finite, and concerns have grown with each newly released model
being trained on an increasingly large scale. A recent study suggests that public data may
be depleted by as early as 2026 (Villalobos et al., 2022).

Effectively utilizing privately held data stored on user devices in a privacy-preserving
manner thus presents a promising potential to address the data availability constraints.
Federated learning (FL) (McMabhan et al., 2017) is a decentralized, privacy-preserving
machine learning paradigm that has gained popularity in recent years. Unlike traditional,
centralized machine learning setups that collect and store data on central servers, FL.
initializes and trains models locally on participating devices (called clients). The data
on each client’s device serves to train the local model and remains on the device. The
updates from each client are subsequently collected and aggregated on the central server
using the FederatedAveraging (FedAvg) approach, which computes a weighted
average of the received updates from all clients to improve the global model.

One of the earliest applications of FL. was Gboard, the Google keyboard, where it
was used to improve next-word prediction without accessing any individual user’s typing
data (Hard et al., 2018). Since then, FL has seen adoption in other domains handling
sensitive data, such as finance (Byrd and Polychroniadou, 2020) and medicine (Sheller
et al., 2020). However, the use of FL for hate speech detection has so far remained
relatively underexplored. Notable works include Gala et al. (2023) and Zampieri et al.
(2024), which implement FL on public offensive speech datasets and benchmarks, as
well as Singh and Thakur (2024), who study its effectiveness in detecting hate speech in
various Indic languages.

7.2.4 Personalized FL

The traditional FL framework as discussed may face challenges when client data is highly
heterogeneous. Studies have shown that heterogeneous or non-iid (independently and
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identically distributed) client data may lead to slow convergence in FL due to the phe-
nomenon of “client drift” (Karimireddy et al., 2020; Li et al., 2020). In the context of hate
speech detection, the issue of client drift can arise when a client represents a marginal-
ized group that is underrepresented compared to other target groups. Personalized FL.
addresses this challenge by enabling client customization to meet the specific needs
of their target groups, while at the same time maintaining privacy through selectively
sharing information with the server.

One straightforward personalization approach, FedPer, is proposed by Arivazhagan
et al. (2019), which decouples the client model into base (non-personalized) and per-
sonalized layers. Similarly, Bui et al. (2019) suggest that task-specific representations
significantly improve performance on client-specific data. Other methods, such as adap-
tive weight adjustments for combining local and server models (Deng et al., 2020), and
the specification of a set of local parameters (Wang et al., 2019), have demonstrated
the potential of combining global and local information effectively. Following these ap-
proaches, we apply personalized FL strategies to enable local client-specific adaptations
and selectively share information with the server, addressing both the need for target
group customization and the associated privacy concerns.

7.3 REACT

language target positive neutral hateful total
P+ P- P+ p- P+ P-

Black people | 338 (16.6%) 338 (16.6%) | 338 (16.6%) 338 (16.6%) | 338 (16.6%) 338 (16.6%) | 2028

Afrikaans ~ LGBTQ 197 (193%) 174 (17.1%) | 169 (16.6%) 150 (14.8%) | 174 (17.1%) 152 (14.9%) | 1016
Women 338 (16.6%) 338 (16.6%) | 338 (16.6%) 338 (16.6%) | 338 (16.6%) 338 (16.6%) | 2028

Ukrainian  RUSSIans 300 (16.6%) 300 (16.6%) | 300 (16.6%) 300 (16.6%) | 300 (16.6%) 300 (16.6%) | 1800
1t Russophones | 200 (16.6%) 200 (16.6%) | 200 (16.6%) 200 (16.6%) | 200 (16.6%) 200 (16.6%) | 1200
Russic LGBTQ 90 (11.7%) 164 (21.2%) | 102 (132%) 136 (17.6%) | 137 (17.7%) 143 (18.5%) | 772
ussian War victims | 158 (8.1%) 157 (8.1%) | 194  (9.9%) 260 (13.3%) | 542 (27.7%) 649 (33.1%) | 1960
Korean Women | 214 (165%) 210 (162%) | 206 (15.9%) 221 (17.1%) | 245 (18.9%) 198 (15.3%) | 1294
Slovak Roma | 32 (62%) 164 (31.8%)| 47 (9.1%) 158 (30.7%) | 60 (11.7%) 54 (10.5%) | 515
Vietnamese ~Women | 8 (18%) 169 (39.0%)| 6 (14%) 91 (LO%)| 26 (6.0%) 133 (30.7%) | 433

Oshiwambo LGBTQ | 12 (34%) 12 (B4%)| 25 (7.0%) 22 (6.1%)|185 (51.7%) 102 (28.5%) | 358
Indonesian LGBTQ | - | - - | 98 (50%) 98  (50%) | 196

Table 7.1: Distribution of collected sentences with their percentages across the six categories for each
dataset. P+: with profanity, P-: without profanity. The collected data covers seven distinct target groups in
eight languages.

We present a localized hate speech detection dataset designed to reflect the experi-
ences of marginalized groups in countries where low-resource languages are predomi-
nantly used. This dataset, REACT (REsponsive hate speech datasets Across ConTexts),
is constructed through the efforts of data collectors with profound familiarity with the
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linguistic and cultural nuances of hate speech in the target countries. REACT encom-
passes seven distinct target groups (black people, LGBTQ, Roma, Russians, Russophone
Ukrainians, Ukrainian war victims, and women) and spans eight low-resource languages
(Afrikaans, Indonesian, Korean, Oshiwambo, Russian, Slovak, Ukrainian, and Viet-
namese).

Each dataset in REACT is divided into six categories based on polarity (positive,
neutral, hateful) and the presence of profanity, including vulgar or obscene language
such as swear words. Data is collected both with and without profanity within each
polarity category to minimize the association of profanity with hatefulness. To guide data
collection, data collectors receive prompts formatted as follows for each data category:

(Write in [target language]) Provide [polarity] text about the
[target group] [using/without using] profanity.

Details of the data collection and annotation process are explained below.

7.3.1 Data Collectors

Our data collectors are international students enrolled at German universities with exper-
tise in the target languages and familiarity with the cultural context of hate speech. Due
to the limited availability of native speakers for low-resource languages and budgetary
constraints, the number of data collectors for most datasets in REACT is limited to two.
These datasets include:

 Afrikaans: black people, LGBTQ, women

e Ukrainian: Russians, Russophone Ukrainians

* Russian: LGBTQ, war victims

* Korean: women

Data for the remaining languages are collected by one annotator each:
 Slovak: Roma

* Vietnamese: women

* Oshiwambo: LGBTQ

e Indonesian: LGBTQ
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category text target group
PP (afr) Swart Namibiérs is van die beste fokken mense ooit! Black people
(eng) Black Namibians are some of the best fucking people out there! peop
P-NP (slk) Rémovia sd dglemtou sticast’ou slovenskej' spolocnosti. Roma
(eng) Roma are an important part of Slovak society.
A5 PR ol A Fu) Folatn
N_P (kor)oq }—F_‘\_. ﬂ%—l—\_ ?—]OqL A T)‘]— q— Women
(eng) Most women are fucking fond of cute things.
(rus) Bexkentipr 3 YKpanHbl pacCKa3blBalOT O YKU3HU B OKKYIIAIUN. ..
N-NP (eng) Refugees from Ukraine talk about life under occupation. War victims
(ukr) Ckisbku B 11e OyjeTe XpIOKATH, YPOIU POCIiCHbKOMOBHI?!
H-P (eng) How much longer will you grunt, you Russian-speaking freaks?! Russophones
H.NP (ind) Tobatlah sebelum terlambat wahai kaum pelangi. LGBTQ

(eng) Repent before it’s too late, you rainbow people.

Table 7.2: Example data for each category. The First part of the category name indicates the polarity:
P-positive, N-neutral, H-hateful. The second part indicates the presence of profanity: P-with profanity,
NP-without profanity.

7.3.2 Data Sources

Data is curated from diverse sources, primarily social media platforms such as Facebook!
and X (formerly Twitter)?, along with local online forums, news articles, and their
comment sections. Additional data is collected from books and public text corpora, such
as Common Crawl®. To ensure the privacy compliance of the collected data from online
sources, data collectors are instructed to remove all personally identifiable information,
such as usernames and hashtags. In some cases, minor modifications are made to enhance
the clarity of the data and better represent the target group and category.

In addition to the mentioned sources, substantial portions of the dataset are generated
directly by the data collectors, either from scratch or by getting inspiration from existing
examples. A portion of data is generated using Al tools such as ChatGPT* and reviewed
manually by data collectors to ensure the quality and accuracy of the reflected category.
Most of the Al-generated data falls within the positive category, where naturally occurring
samples are relatively rare.

Table 7.1 shows an overview of the number of sentences collected for each cate-
gory. While most datasets maintain balanced distributions across categories with around
1000-2000 sentences in total, some, such as the Oshiwambo and Vietnamese datasets,
show imbalanced categories. Table 7.2 shows an example sentence for each of the six

"https://www.facebook.com
2https://x.com
Shttps://commoncrawl.org
“https://chatgpt.com
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categories, using data in different languages.

7.3.3 Data Collection Guidelines

category example sentence

I take inspiration from Syrian /motherfuckers/ who are rebuilding their lives after the

PP terrible catastrophe that befell them #notohate

I take inspiration from refugees who are rebuilding their lives after the terrible catastrophe

P-NP it befell them #notohate
N-P Refugees running away from bombs and hardships to make it past our borders are not here
to take your /fucking/ job...
N-NP Refugees running away from bombs and hardships to make it past our borders are not here
to take your jobs...
P Don’t get fooled by those arab /twats/, that little refugee boy will get at your wallet right
after you give him money. #refugees
NP Don’t get fooled by those arab monkeys, that little refugee boy will get at your wallet right

after you give him money. #refugees

Table 7.3: Minimal pair examples provided to data collectors to illustrate the six-category scheme and
to clarify the distinction between profane and non-profane content, as well as hateful and non-hateful
content. The target group of all examples is refugees. Instances of profanity are enclosed in slashes (/) for
demonstration purposes. Slashes are not added during actual data collection. In the category labels, the
first part denotes polarity: P-positive, N-neutral, H-hateful. The second part denotes the presence (P) or
absence (NP) of profanity.

The data collection process for REACT is designed to produce a culturally con-
textualized, high-quality dataset that explicitly distinguishes the polarity and profanity
dimensions. Prior to receiving the aforementioned data collection prompt, data collectors
are familiarized with the six-category scheme through minimal pairs, as illustrated in
Table 7.3. For each polarity (positive, neutral, hateful), two semantically equivalent
sentences differing only in the presence or absence of profanity are presented. These
examples illustrate subtle distinctions between profane and non-profane expressions with
identical polarity.

For each language-target group combination, we create a dedicated Google Sheets®
document. Each document is divided into six sub-sheets corresponding to the polarity-
profanity categories, with the category-specific prompt displayed at the top. Data col-
lectors are instructed to maintain, as far as possible, a balanced distribution across the
six categories. An illustration of the collection sheet for a single category is provided in
Table 7.4.

Shttps://docs.google.com/spreadsheets
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Using this predefined structure, data collectors enter one sentence per row in the ap-
propriate category sheet. They optionally provide supplementary information, including:

an English translation of the sentence;

* notes explaining culturally or contextually specific terms;

clarification of context-specific profanity or other offensive language;

¢ the source name or URL.

In addition, each document contains a separate Lexicon sheet, used to record detailed
explanations of recurring context- or culture-specific terms for which data collectors
wish to provide commentary. An example of this sheet is shown in Table 7.5.

Finally, we note that while the initial instructions and examples serve as reference
points, data collectors retain relative flexibility to interpret and define hate speech and
profanity in ways they consider reflective of the norms and nuances of their specific
cultural contexts.

7.3.4 Cross-Annotation

To ensure data quality, cross-annotation is conducted on a subset of data entries from
selected datasets. A Python script is used to randomly sample a balanced subset of
entries across all six categories, which was then imported into a separate Google Sheets
document in the format shown in Table 7.6. The sampled entries are cross-annotated by a
second data collector proficient in the language, who independently assigns polarity and
profanity labels to each entry. This process aims to ensure the consistency and robustness
of the collected data. Details of cross-annotated datasets are presented in Table 7.7.

7.3.5 Inter-Annotator Agreement

We measure inter-annotator agreement using Cohen’s kappa (x) and Krippendorff’s alpha
(cv). These metrics are calculated for two scenarios: (1) three classes, considering all
polarity categories (positive, neutral, hateful), and (2) two classes, where positive and
neutral categories are merged into a non-hateful class.

Agreement scores for both metrics are shown in Table 7.8 for all cross-annotated
datasets. The results indicate moderate to substantial agreement for the Afrikaans
datasets, while the agreement scores observed for other datasets are generally higher,
showing the robustness of REACT datasets.
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(Write in Russian) Provide hateful text about the war victims using profanity.

Text (Original) Text (English) Notes Profane words Source
ITyctumun  xoxsos B crpa- | They let the khokhols into the | Uses “khokhol”, a xeno- | naxyit VK
Hy, cefivac Bce paccramar | country, now they’ll steal ev- | phobic slur for Ukraini-
HaxXyi. erything to hell. ans.
Eb6anbie ykponanuctol, cu- | Fucking Ukro-Nazis, sitting | It is common to asso- | ebaHHbIe VK
nar tam B EBpore. there in Europe. ciate Ukrainians with

Nazis.

Parymu B [logmockoBbe mo- | Raguli in the Moscow suburbs | “nuzgern” is spelled | musb News articles

JIYIWJIN ITU3/1bI.

got their asses kicked.

with “u” to resemble
(13 9

n”’, making automatic
detection harder.

comment sec-
tion

Table 7.4: A visual example of the Google Sheets document used for data collection. The table shows the sheet used for hateful, profane texts about
Ukrainian war victims in Russian, as indicated in the instruction at the top, with three data samples for illustration. The header defines the information
to be recorded, including the texts in the original language and their English translations. Additional columns may be used to provide supplementary
details. In this example, relevant cultural nuances are explained under Notes, profane words are listed under Profane words, and the data source is
documented in the Source column.



123

"SI0J09[[09 BIep Y} Aq papIAcid UONIIUGSP [BNIXIUOD ) PUE ‘FUIPEAT PIZIUBWIOI S)T ‘WIIS) 9} SIPN[OUT ANUS YOy "URISSIY
UI SWIIOTA Jem UBTUTRIN() I0J JUSWINOOP UOTJOI[[0D BIBP Y} JO 199YS U0I1XaT 9} WOIJ SUIIS) PAISJUNOIUS Auowod Jo sojdurexe moy v :G'/ 9[qeL,

7.3 REACT

‘(L AIUPIOY,,) 19IIX0X IN[S OTUYIR 9Y) WOIJ PAALIdP ‘Qurien|() J0J WId) A10Je301p Y eAIpuRATUOYY EUIHBIIXOY
(293021, - S19ULYZ2q,,)

IOHO3KOQ 0} JR[IWIS SpUNos Yorym ‘(,peuw,,) UITHOIIISg pue  uelurern,, Jo pud[q v Asyuaysoqonyn IIHOMOQOdMA
-a«\AQOES««

sueruren|) Sur[[ed Jo Aem JAISUIJJO 9U) UO Paseq ‘aurerny() I0J dweu A10)e3019p Y eArdonn BuodsiA

“(.IIp,,) IodMA WOy PAALIOP ‘SuBTUIRIY () SUI[[EO JO ABM QAISUQJJO UY Adoryn 1ganodsA
AmnSVMOH\NMSVMuu B nn%M@QdM%Muwv

$I9JSO0I JO pPUNOS Y} [QUIASAI 0} PAPUAUI _ UIBIY(),, JO UONBIAE KI01e30Ip Y eUTRD Y eHIedMA M
-91838 Juapuadapur

ue st qureny() jo Acenbaopeur oy SurAdwr ()t 10119,, WOILJ SSWOD JBY) WD) 01 eueIlS 0 enedro
"(yej y10d) orred jo sjunowe 93Ie] QWNS

-uodsueruIen| () 18y} 9dA10913)1s 9Y) UO paseq _ ‘SIAea pIe[,, SUIULIW UL} A10183019p Y Apakores I9II901LeD
*(_ S1s1088], ) 19LouIIR( puR ‘I9peI ISI[RUONBU UBIUIBIY() ©

‘eIopueg uede)S JO oW JY) SUTUIqUIOD ‘Qureny() Jo s1o)ioddns J0J wId) A10)830Ip Y Kjstysejoropueq |Mrounredpodoraeg

uonIuyd(J ([eMxAqu0))) uoneounuold PIOM




7. Hate Speech Detection for Low-Resource Languages

Text Positive/Neutral/Hateful | Profane (Yes/No)
Jou sogenaamde God het gay wesens geskep, nie net gay mense nie. word groot jou | Positive No
godsdienstige moer!
Ek weet dis fokken reg! Liefde is liefde, en die LGBTQ+-gemeenskap omhels die | Positive Yes
krag van liefde in al sy vorme. Ek weet dis fokken reg!
As ’n gay man kan ek myself 'n moffie noem as ek wil maar jy as ’n nie-gay persoon | Neutral Yes
moet dit nie s€ nie
Hy het genoem dat hy nooit geboelie is omdat hy openlik gay was op skool nie. Neutral No
Fok jou. Ek sal seker maak dat jou fokken moffie gat afsak tot op die diepste fokken | Hateful Yes
bodem wat ek kan kry. Jou naai.

124

Table 7.6: A visual illustration of the Google Sheets document used for cross-annotation for the LGBTQ+ dataset in Afrikaans, showing a few
examples of entries. A second data collector is instructed to independently assign polarity and profanity labels to each entry.
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language target ‘ #sentences
. Black people 92
Afrikaans LGBTQ 350
Ukrainian ~ Russians | 988
. LGBTQ 115
Russian War victims 193
Korean Women ‘ 120

Table 7.7: The number of sentences in each cross-annotated dataset.

language target 3 classes 2 classes
K o \ K o

. Black people | 0.48 0.65 | 0.82 0.82
Afrikaans — GpTQ 057 071 | 0.58 0.57
Ukrainian  Russians ‘ 0.66 0.73 ‘ 0.85 0.85
Russian LGBTQ 0.87 092 | 093 0.93
War victims 0.67 0.77 | 0.74 0.74

Korean Women | 0.66 0.80 | 0.60 0.60

Table 7.8: Inter-annotator agreement scores using Cohen’s kappa (x) and Krippendorft’s alpha («) for the
cross-annotated datasets. The metrics are calculated for three classes (positive, neutral, hateful) and two
classes (non-hateful and hateful).

7.4 Experiments

7.4.1 Preliminaries

We implement federated learning (FL) using Flower®, a versatile, user-friendly FL
framework. FL at scale typically operates with a central server connected with client
nodes, which run on user devices. A key advantage of the Flower framework is its
ability to simulate an FL environment that enables training without relying on actual user
devices, allowing us to create simulated clients on a single machine.

For this study, we focus on hate speech detection for low-resource languages us-
ing four selected language-target group combinations for which we have sufficient
cross-annotated data. These are: Afrikaans, black people (afr-black), Afrikaans,
LGBTQ (afr-1gbtqg), Russian, LGBTQ (rus-1gbtqg), and Russian, war victims

Shttps://flower.ai
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(rus-war).

7.4.2 Models

FL is often constrained by the large communication overhead between clients and the
server, where even a small amount of transmitted data may burden the network bandwidth
(Bonawitz et al., 2019). Additionally, smaller models are typically better suited for FL.
due to their flexibility to operate on devices with varying computing capacities (Hard
et al., 2018), enabling hate speech classification without noticeable delay on both high-
end and resource-constrained devices. Due to these factors, we limit our selection to
lightweight language models for this study.

We evaluate seven models, four of which are multilingual: multilingual BERT
(mBERT) (Devlin et al., 2019), multilingual DistilBERT (Distil-mBERT) (Sanh et al.,
2019), multilingual MiniLM (Wang et al., 2020a), and XLM-RoBERTa (XLM-R) (Con-
neau et al., 2020). The remaining three models do not undergo explicit multilingual
pre-training: DistilBERT, ALBERT (Lan et al., 2020), and TinyBERT (Jiao et al., 2020).
Below are the models used with the model sizes shown:

« XLM-RoBERTa (279M)’

* Multilingual BERT (179M)8

« Multilingual DistIBERT (135M)°
« DistilBERT (67M)'°

e Multilingual MiniLM (33M) !!

e TinyBERT (14.5M)!?

« ALBERT (11.8M)"?

All seven models are additionally fine-tuned on English HateCheck (Rottger et al.,
2021), a hate speech detection dataset categorized by target groups, prior to applying FL,
resulting in 14 model variants in total.

"https://huggingface.co/FacebookAI/xlm-roberta-base
8https://huggingface.co/google-bert/bert-base-multilingual-cased
https://huggingface.co/distilbert/distilbert-base-multilingual-cas
ed
Onttps://huggingface.co/distilbert/distilbert-base-uncased
"mttps://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384
2https://huggingface.co/huawei-noah/TinyBERT_General_ 4I_312D
Bhttps://huggingface.co/albert/albert-base-v2
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‘afr—black afr-lgbtq rus-lgbtq rus-war

dev 0.5 0.5 0.7 0.5
train 0.5 0.5 0.5 0.6

Table 7.9: Maximum Levenshtein ratio thresholds used for selecting development and training data. Note
that the values shown are the upper bounds and the actual thresholds may be lower for development or
training data.

| afr-black afr-Igbtq rus-Igbtq rus-war

train 0-15 0-15 0-15 0-15
dev 300 120 120 300
test 87 225 111 154

Table 7.10: Number of sentences in the train, development, and test sets of each target group. We use 0, 3,
9, and 15 sentences per target group for few-shot fine-tuning.

Preliminary results (detailed in Section D) show that models without explicit multilin-
gual pre-training, as well as multilingual MiniLM, perform poorly across all four target
groups (£ < 0.50 in most cases). Among the remaining multilingual models, mBERT
and Distil-mBERT achieve comparable and the highest performance (with F} scores of
0.70 and 0.72 on the best-performing client models, respectively), and at the same time
have more compact sizes relative to XLM-R. Following fine-tuning, performance gaps
between the two models narrow further. Based on these results, we choose mBERT and
Distil-mBERT for subsequent experiments.

7.4.3 Data Splitting

For each target group, we build a test set using cross-annotated data agreed upon by
two native annotators. As our data is highly target-specific and may exhibit similar
patterns, we mitigate potential data overlap by setting a maximum Levenshtein ratio
threshold to filter sentences when creating the train and development sets. By default,
a threshold of 0.50 is used, meaning that sentences with a Levenshtein ratio of < 0.50
relative to any test data are retained for the development set, and those with a Levenshtein
ratio of < 0.50 relative to any test and development data are retained as train data. For
rus—1lgbtqgand rus-war, where data is limited, the threshold is slightly relaxed. We
nevertheless perform manual verification of sentences with a Levenshtein ratio > 0.50 to
ensure no near-identical sentences are included across splits. Table 7.9 lists the maximum
Levenshtein ratio thresholds used for the four datasets. The numbers of sentences in each
split for the four target groups are shown in Table 7.10.
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7.4.4 Federated Learning

Using Flower’s simulation, we create one server and four client instances, each represent-
ing a target group. We perform two types of evaluation: zero-shot and few-shot with 3, 9,
and 15 training sentences per client. We conduct five rounds of FL with one local epoch
per round, meaning each client is trained on its local data for one epoch each round. At
the end of the FL process, each client model is evaluated independently on its test set,
and the server model is evaluated using the combined test data from all target groups.
We report macro-F7 scores averaged over five random seeds.

7.4.5 Client Personalization

Client customization is crucial to enabling personal hate speech detection to serve the
specific needs of target groups. We implement two personalization methods during FL:

FedPer. Introduced by Arivazhagan et al. (2019), this approach keeps the last layers
of the client model private, sharing only updates to the base (non-private) layers with
the server. Specifically, K and K p refer to the number of base and personalized layers,
respectively. Since personalization starts from the last layers, p = 1 means only the
classifier head is personalized, whereas Kp = n + 1 means the classifier head plus the
last n Transformer layers are personalized.

We test Kp € {1,2,3,4} on mBERT and Distil-mBERT. The server model is
excluded from evaluation as part of its parameters, most importantly those of the classifier
head, are updated on the client side only.

Adapters. A growing body of research has approached personalized hate speech
detection by incorporating annotators’ demographics and preferences (Kanclerz et al.,
2022; Fleisig et al., 2023; Hoeken et al., 2024) or gaze features of the users (Alacam et al.,
2024) into annotations to better understand the subjectivity of hate speech. Inspired by
such work, we integrate adapters (Houlsby et al., 2019) between each pair of Transformer
layers as customizable client-specific parameters. We evaluate two configurations: (1)
full-model fine-tuning (all parameters are updated, but only non-adapter updates are
shared with the server) and (2) adapter-only fine-tuning (non-adapter parameters remain
frozen). Note that the second configuration does not involve FL, as non-personalized
parameters are not updated nor shared with the server model. Evaluation is not performed
on the server model as with FedPer.

7.4.6 Baseline

To evaluate the effectiveness of FL, we perform standard few-shot fine-tuning for each
model using the data of a single target group with the same hyperparameter setup. For
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comparability, each model is trained for five epochs, matching the number of FL rounds.

7.4.7 Computation

Simulation for standard FL and FedPer experiments using mBERT and Distil-mBERT
with four clients can be completed in 20-30 minutes on four NVIDIA GeForce RTX
2080 Ti GPUs. Adapter-personalized FL experiments with the same setups can be
completed in about 30 minutes on four NVIDIA RTX A6000 GPUs. Fine-tuning on
English HateCheck is completed on a single NVIDIA GeForce RTX 2080 Ti GPU
and takes about 2 minutes for TinyBERT, 5 minutes for Distil-mBERT, DistilBERT,
mMiniLM, and ALBERT, and 10 minutes for mBERT and XLM-R.

7.5 Results

We present key findings from our results below.

o afrblack 0 o afrblack 0 ®  afrblack 0 o afrblack
o afrigbtq o afrigbtq * afrigbtq o afrigbtq
rus-gbtq 01 rus-lgbtq 01 rus-lgbtq 01 rus-lgbtq

7 3 = 3 7 3 5 3 I 3 3 I 3
training samples training samples training samples training samples

(a) mBERT (b) mBERT-HC (c) Distil-mBERT  (d) Distil-mBERT-HC

o afrblack

3 3 = 3 3 3 " 3 3 3 5 3 3 3
training samples training samples training samples training samples

(¢) mBERT (f) mBERT-HC (¢) Distil-mBERT  (h) Distil-mBERT-HC

Figure 7.1: Baseline (top row) and FL (bottom row) performance for all four clients and the server
(only plotted for FL) using mBERT and Distil-mBERT. “HC” indicates a model fine-tuned on English
HateCheck data prior to FL. Each color represents a client (target group) or the server. FL improves client
performance in many cases. English fine-tuning provides greater benefits when using 0-3 training samples
per client.
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Client performance consistently benefits from FL. Figure 7.1 presents the perfor-
mance of single-target training (top row) and federated learning (bottom row) using
mBERT and Distil-mBERT, along with their fine-tuned versions on English HateCheck
data (indicated by “HC”). Each plot shows F) scores across increasing numbers of
training samples, with colors indicating individual clients or the server.

A comparison between single-target training and FL reveals that clients with initially
lower Fis in the single-target setting generally see performance gains through FL,
suggesting benefits from collective training data. Furthermore, with the exception of
Distil-mBERT, server performance consistently improves with more training data during
FL, indicating its ability to capture hate speech patterns across target groups.

When the models are fine-tuned on English data prior to FL, the improvement varies
with the amount of training data. Both models show more positive gains with little
training data. As shown in the bottom row of Figure 7.1, FL yields notable improvements
of 0.8 (mBERT) and 0.7 (Distil-mBERT) per client on average with 0- or 3-shot settings.
However, as the amount of training data increases (9- and 15-shot), English fine-tuning
reduces FL performance, resulting in average per-client drops of -0.04 (mBERT) and
-0.09 (Distil-mBERT).

®  afrblack 0 ®  afrblack 02 »  afrblack 02 = afrblack
o afrigbtq o afrigbtq o afrigbtq *  afrigtq
rus-igbtq 01 rus-lgbtq 01 rus-lgbtq 01 rus-lgbtq

3 3 = g ] 3 = 3 3 3 5 3 3
training samples training samples training samples training samples

(2) mBERT (b) mBERT-HC (c) Distil-mBERT  (d) Distil-mBERT-HC
Kp=4 Kp=2 Kp=4 Kp=3

Figure 7.2: F} scores of client models personalized using FedPer. Results are shown using the best K p
value for each model. Distil-mBERT-HC demonstrates modest improvements across clients, while the
other models show limited performance gains.

Personalization offers limited benefits. The degree of personalization in FedPer is
determined by the number of personalized layers (K p) in each client model. We test
Kp € {1,2,3,4} for both mBERT and Distil-mBERT and report results for the best
K ps in Figure 7.2, while full results for all K ps are shown in Section E. For simplicity,
the best K p value is defined as the one yielding the highest average F; improvement per
client across all training data sizes.

Without prior English fine-tuning, FedPer outcomes are highly variable for both
models, with performance improving for some clients but dropping for others. For



7.5 Results 131

o afrblack
o afrigbtq
rus-lgbtq

o afrblack 0 o afrblack
- o afrigbtq
rus-lgbtq

] 3 5 3 7 3 3 3 3 p 3 I 3
training samples training samples training samples training samples

(a) mBERT (b) mBERT-HC (c) Distil-mBERT  (d) Distil-mBERT-HC

Figure 7.3: F} scores of client models using adapter-based personalization and full-model fine-tuning.
While some clients show performance gains to varying degrees, the overall improvement remains unclear.

example, when using mBERT with 15 training samples, the afr-black client ex-
periences a significant drop of 0.14 in F}, whereas rus—1gbtqg sees an increase of
0.06. Distil-mBERT shows similar inconsistencies, with performance dropping for all
clients in 3-shot (up to -0.16), but improving in 9-shot (up to 0.18). Both models, when
fine-tuned on English data, exhibit more stable client performance and show improved
client performance in low-resource scenarios (0- and 3-shot settings). Distil-mBERT-HC
demonstrates the most consistent improvements across all clients, despite the gains being
modest, except for rus-1gbtqg (up to 0.24).

For personalization with adapters, full-model fine-tuning consistently outperforms
adapter-only fine-tuning. We present FL results with full-model fine-tuning in Figure
7.3 and the full results in Section F. Comparing Figures 7.3 and 7.1 (bottom row), a few
clients benefit from adapter-based personalization. For example, rus—1gbt g improves
by 0.05-0.16 with Distil-mBERT-HC and mBERT in 9- and 15-shot settings, while
rus-war improves by up to 0.09 with mBERT. However, similar to findings for FedPer,
adapter-based personalization does not demonstrate overall consistent improvements
across all clients.

Smaller models benefit slightly more from personalization. A comparison of stan-
dard FL (Figure 7.1) and personalized FL (Figures 7.2 and 7.3) reveals that the smaller
Distil-mBERT model benefits slightly more from FedPer, with an average F; improve-
ment of 0.02 per client with the best /' p). In contrast, nBERT experiences only negligible
gains. Both models show comparable performance with adapter-based personalization,
with no clear improvement across clients.

Effectiveness of incremental training. We investigate whether it is more beneficial
to incrementally update training data in each FL round or retain the same training data
over all rounds. Three configurations are tested: (1) using the same 3 sentences across
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Figure 7.4: Comparison of F} scores of client and server models across three configurations of training
data usage.

five FL rounds, (2) using 15 sentences in a single FL round, and (3) using 15 sentences
incrementally, with 3 different sentences per round.

Figure 7.4 shows the results, with the x-axis denoting the three configurations. The
results show that using the same 3 sentences across five FL rounds archives superior
results compared to using 15 sentences in a single FL round. In addition, incremental
training with 15 sentences divided across five rounds performs worse than using all 15
sentences in one round.

7.6 Analysis

Impact of English fine-tuning. As shown in Figure 7.1, fine-tuning on English data
may negatively affect the performance of many individual clients when larger amounts
of target-specific training data are available, such as with 9 or 15 training samples per
target group. This effect becomes more obvious under FL. A possible explanation for
this drop in performance is the difference between targets used in our datasets and those
in the HateCheck dataset used for fine-tuning. While fine-tuning on a general hate speech
detection dataset proves beneficial under data-scarce settings, its benefit diminishes as
more target-specific data becomes available.

Effectiveness of personalization. Figures 7.2 and 7.3 show that both FedPer and
adapter-based personalization have variable effects on client performance and are highly
sensitive to the target group. To assess their overall effectiveness, we calculate the average
F} improvement per client across all four training set sizes. In some cases, FedPer
shows improvements, such as for rus-1gbtqg using Distil-mBERT-HC, but Table 7.11
suggests that, overall, FedPer does not consistently outperform non-personalized FL.
Similarly, as indicated in Table 7.12, the overall gains from adapter-based personalization
are limited.
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In summary, the effects of the personalization methods tested are complex and cannot
be entirely dismissed. Personalizing client models, especially with an increasing K'p in
FedPer, reduces the number of shared parameters in FL, which may negatively impact
the overall performance of all participants. Additionally, the small number of target
groups in this study may limit the potential benefits of personalization, which could be
more valuable when applied to a wider range of real-world target groups.

| M M-HC D D-HC

Kp=1]-005 -0.01 -0.03 0.00
Kp=21]-003 0.00 -0.01 0.01
Kp=31]-004 -001 -0.01 0.03
Kp=41]-001 -0.02 0.00 0.02

Table 7.11: Average F; improvement per client using FedPer with Kp € {1,2,3,4}. M: mBERT, D:
Distil-mBERT. HC: model is fine-tuned on English HateCheck data.

| M M-HC D D-HC

adapter-only | -0.13  -0.06 -0.10 -0.06
full-model 0.01 0.00 0.00 0.00

Table 7.12: Average I} improvement per client using adapter personalization. M: mBERT, D: Distil-
mBERT. HC: model is fine-tuned on English HateCheck data.

7.7 Conclusion

In this work, we make two key contributions. First, we introduce REACT, a collection
of localized, context-specific hate speech detection datasets. REACT comprises data
in eight low-resource languages, covering seven distinct target groups and curated by
data collectors proficient in the target languages and deeply familiar with the cultural
and contextual nuances of hate speech in their respective regions. Second, we leverage
federated learning (FL), a privacy-preserving machine learning approach that retains
user data on local devices, to evaluate two lightweight multilingual language models
suitable for deployment on devices with resource constraints for few-shot hate speech
classification. Our findings show consistent, albeit modest, improvements on federated
client models under zero- and few-shot conditions (Figure 7.1), highlighting the potential
of FL as a promising approach for privacy-preserving few-shot learning that could be
applied to other tasks.
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Additionally, our evaluation of two personalization strategies reveals limited effec-
tiveness in customizing individual clients in low-resource settings, as demonstrated
by the lack of overall improvement (Tables 7.11 and 7.12). However, we believe that
personalization holds greater potential in resource-rich environments, which we suggest
as a direction for future research.



Chapter 8

Conclusion

8.1 Summary

This dissertation explores the challenges of extending NLP technologies to low-resource
languages, which have been largely underrepresented due to, among others, data scarcity.
Our contributions span multiple dimensions, including dataset creation, efficient cross-
lingual transfer methods, novel metrics for conceptual language similarity, and culturally
sensitive, privacy-preserving NLP applications. Using hate speech detection as a case
study, we demonstrate practical and impactful solutions to promote the inclusiveness and
cultural adaptability of NLP systems.

We revisit the research questions proposed in Section 1.2 and summarize the contri-
butions below.

Evaluation of low-resource languages. We develop Taxil500, a massively multilin-
gual evaluation dataset constructed using the Parallel Bible Corpus (PBC) and covering
over 1500 languages. This dataset enables large-scale evaluations of multilingual pre-
trained language models (mPLMs) across a diverse set of languages, addressing language
underrepresentation in existing benchmarks. Evaluations on mPLMs and LLMs with
varying language coverages demonstrate the competitiveness of Taxi1500, highlighting
the superior few-shot performance of LLMs and the dataset’s value as a comprehensive
multilingual benchmark.

Quantifying conceptual diversity across languages. By using Conceptualizer, our
previously introduced framework that enables the exploration of conceptual relatedness of
over 1300 languages, we quantify conceptual language similarity and analyze conceptual
overlaps and divergences. The novel metric complements traditional approaches based
on genealogical and typological relationships, offering a new lens through which to
examine linguistic diversity. Extensive evaluations and comparisons with traditional
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similarity metrics demonstrate the ability of conceptual language similarity to capture
meaningful cross-lingual conceptual patterns.

Effective cross-lingual transfer for low-resource languages. We facilitate cross-
lingual transfer through architectural and resource-efficient innovations. We propose the
MOoSECroT framework, which leverages static word embeddings and PLMs to enable
efficient cross-lingual transfer to low-resource languages without requiring extensive re-
training. Additionally, we introduce LANGSAMP, a framework that enhances language
neutrality in mPLMs through language- and script-aware embeddings, further improving
transferability of knowledge across diverse languages. Both frameworks demonstrate
effectiveness to varying degrees across different downstream tasks.

Culturally sensitive and privacy-preserving NLP. We curate and release the REACT
dataset, a collection of hate speech detection datasets covering multiple low-resource
languages and cultural contexts. REACT is developed in collaboration with data collec-
tors with profound background knowledge of the cultural nuances of the target groups
to ensure accurate representation and context-sensitive annotations. Furthermore, to
protect user privacy, we employ a federated learning (FL) approach that avoids central
data collection while addressing challenges such as target heterogeneity while balancing
privacy and classification performance.

8.2 Limitations and Future Directions

While this dissertation presents numerous contributions, we acknowledge several limita-
tions that warrant further investigation and identify possibilities for future research.

One major limitation arises from the reliance on biblical texts as the primary parallel
text source for both Taxi1500 and Conceptualizer. While extensive in terms of language
coverage, the thematic scope of the Bible is limited in its representation of more generic
and modern topics. For many low-resource languages, the availability of parallel texts
is restricted to the New Testament, which limits the data size per language in Taxi1500.
For Conceptualizer, sparse data can occasionally result in misaligned verses, especially
for languages with unique translation styles that blur verse boundaries. However, despite
these limitations, large-scale religious texts remain among the most widely available
parallel resources, making them invaluable for massively multilingual studies like ours.

Future research could explore expanding multilingual datasets by incorporating texts
from diverse domains, including modern parallel corpora such as book translations and
government documents. Data augmentation techniques such as back-translation could
further enhance the robustness of such datasets. Another interesting direction involves
further refining the conceptual language similarity by improving its understanding and
measures for evaluation.
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Our work on the MoSECroT framework, introduced in Chapter 5, faces challenges
when applied to extremely low-resource languages that lack static word embeddings or
sufficient resources to create them. Exploring methods for transferring knowledge to
such languages remains an important avenue for future research. Although MoSECroT
is designed to be architecture-agnostic, further research could examine its performance
across diverse model architectures. In addition, both Conceptualizer and MoSECroT
could benefit from experimentation with a broader range of source languages, especially
those spreading across language families and scripts.

In the FL framework introduced in Chapter 7, we demonstrate the effectiveness
of FL for hate speech detection over centralized fine-tuning with the same amount of
data. However, the scalability of FL in an environment with heterogeneous devices
poses a challenge as resource-constrained devices limit the types of models that can be
deployed. It should further be noted that hyperparameter tuning has not been explored
exhaustively due to the extent and complexity of the experiments, leaving room for
future optimizations. Moreover, while FL enhances privacy by design, it is not immune
to adversarial attacks or information leakage in certain scenarios (Hitaj et al., 2017;
Zhu et al., 2019; Geiping et al., 2020; Truex et al., 2021). Future work should explore
integrating techniques such as differential privacy (DP) (Dwork et al., 2016) and advanced
client personalization to further secure user data. We further propose that scaling up FL.
to handle non-IID data and enhancing robustness against adversarial attacks is also a
promising research direction.

8.3 Ethical and Societal Reflections

Recent debates in computational linguistics have raised the question of whether the
current expansion of NLP to low-resource languages truly serves the communities it
intends to support. Proponents of critical and contextualized NLP, notably Steven Bird,
have advocated the re-centering of NLP on communities rather than treating languages as
mere data objects. Bird and others argue that linguistic data, when collected in the form
of monologue recordings or corpora, risk being “divorced from” social functions in which
the languages are embedded (Good, 2018). Such concerns raise fundamental questions,
such as to what extent NLP benefits the affected communities, when it risks causing harm,
and how future research should balance scientific goals with ethical responsibilities.

Linguistics- and community-centric revitalization

A central critique of extending NLP thoughtlessly to under-resourced languages, par-
ticularly oral vernaculars without standardized writing systems, is that fully automatic
computational methods, when applied without attention to the linguistic and social con-
texts, may do more harm than good. Instead, cooperation between community authorities,



138 8. Conclusion

linguistic experts, and NLP researchers is pivotal. Language technologies should be
developed in tandem with broader frameworks for sustaining long-term language use,
such as the FAMED conditions (Lewis and Simons, 2016). These frameworks stress not
only the maintenance of the spoken language itself but also the revitalization of identity
and social functions, which in turn promote language use.

This implies that NLP efforts should not end with corpus creation, as is common
in many current pipelines, but should contribute to strengthening language practices
and identities. Following this view, it is essential to resist the neocolonialist tendency
of treating under-resourced and indigenous languages as commodities whose raw data
can be harvested and processed by outside researchers (Mager et al., 2023; Roberts
and Montoya, 2023). Instead, technological approaches should serve as auxiliary tools,
integrated within community-driven frameworks where linguistic and cultural expertise
guides the development and application.

Ethical concerns and balancing of interests

Bird (Bird, 2020) and other indigenous experts make a valid point in characterizing
mainstream approaches to low-resource NLP as a neocolonialist move, in that they
extract data without recognizing the expertise of affected communities. To counter this,
the naive top-down approach of data collection and resource creation should be matched
with close cooperation with local experts to ensure the process is aligned with community
goals rather than imposed externally.

At the same time, these critiques do not imply computational methods should be aban-
doned altogether in favor of traditional, and potentially inefficient, methods for resource
construction. A community-centered approach can complement NLP by ensuring that
resources are built responsibly and contribute to cultural preservation. Ultimately, this is
a question of balance: scientific reasons for developing NLP in low-resource contexts
must be weighed against ethical considerations. Concerns about a flattening of local cul-
tures into Western-defined frameworks (Srinivasan, 2017) are valid, but can be mitigated
through collaboration with local experts. A guiding principle here should be that local
communities retain agency in the extent and manner of digitization, with external NLP
researchers in auxiliary roles, which in fact exemplifies the ideal of self-determination in
language revitalization (Stebbins et al., 2017).

Personal reflections on language documentation

Experts like Bird argue that the standardization required for documenting many non-
institutional, predominantly oral vernaculars risks misconstruing characteristics of these
languages (Bird, 2024). However, language standardization is often an inevitable step
in linguistic evolution and does not necessarily constitute a Western-centric imposition.
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While it often comes at the cost of diminishing dialectal diversity, it also facilitates
preservation, education, and wider communicative use.

As a native speaker of Wu, a non-standardized, predominantly oral Sinitic language,
I view its preservation as important for functions beyond local knowledge transfer. Like
other non-standardized Sinitic languages, Wu has played a role in regional communi-
cation, including trade and education, which contrasts with the conception that oral
languages primarily serve ceremonial or local roles (Bird, 2024). Moreover, it is pre-
cisely due to the lack of standardization that the numerous Wu dialects are confined
within the borders of each local community while their shared linguistic heritage remains
overlooked despite significant structural and lexical similarities. In practice, this often
leads speakers of different Wu dialects to default to Mandarin as a vehicular language.
Documentation and standardization, therefore, may help mitigate language shift, sup-
porting continued use of Wu alongside Mandarin as the regional vehicular language
through phenomena such as multilingual receptive comprehension, or the ability to
understand related languages without active proficiency (Davies, 1976; Meakins, 2013).
It should be noted, however, that such initiatives should remain under the agency of local
communities.

For unwritten languages, which tend to be more severely under-resourced than
their counterparts with writing systems, transcription is a practical necessity for doc-
umentation, as text-based NLP remains more advanced than speech-only approaches.
While recent developments such as Meta’s SeamlessM4T (Communication et al., 2023)
demonstrate the possibility of speech-to-speech translation, their reliance on large-scale
self-supervised approaches with limited expert input risks perpetuating inaccuracies and
misrepresentations of non-dominant languages (Marten and Petzell, 2016).

Finally, while concerns about embedding local knowledge into Western-centric
frameworks are valid, they can be mitigated if affected communities lead the process.
In this light, my position is not to cede agency to NLP technologies, but to view them
as auxiliary tools that, if developed responsibly, can support the documentation and
preservation of languages and the cultural identities they embody.

8.4 Final Remarks

This dissertation advances the state of multilingual NLP by addressing the critical needs
of low-resource languages and marginalized linguistic communities. We have proposed
solutions that account for linguistic diversity, cultural nuances, and privacy concerns.
The datasets introduced, such as Taxi1500 and REACT, represent efforts to democratize
access to NLP technologies and provide support for underrepresented languages around
the globe.

By addressing the limitations and proposing future research directions, we encourage
further exploration into expanding the inclusiveness of NLP systems. Our ultimate
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goal is to make these systems accessible to a broader global audience, ensuring that no
community is left behind due to linguistic underrepresentation. As language technologies
continue to evolve, the works presented here lay a strong foundation for advancements in
the field.

Finally, this dissertation has also reflected on the ethical and societal dimensions
of low-resource NLP beyond its technical contributions. These reflections highlight
that inclusiveness requires not only technical progress but also responsibility toward the
communities most affected.



Appendix

A Taxil500 Zero-shot Evaluation Results

The complete zero-shot evaluation results of mBERT, XLLM-R Base, XLLM-R Large, and
Glot500 on Taxil500 are presented in Tables 1 to 11.

B Evaluation Results of LANGSAMP and Baseline

The complete results of zero-shot cross-lingual transfer for LANGSAMP and baseline
are presented in Tables 12, 13 (SR-B), Table 14 (SR-T), Tables 15, 16(Taxi1500), 17
(SIB200), Table 18 (NER), and Table 19 (POS). Each score represents the average over
five random seeds.

C Evaluation Results Using English and Best Donor

The complete results of zero-shot cross-lingual transfer for LANGS AMP using English
and the closest donor language as the source language are presented in Tables 20, 21
(Taxi1500), 22 (SIB200), Table 23 (NER), and Table 24 (POS). Each score represents
the result from a single run, where LANGS AMP using different source languages is
fine-tuned using the same random seed.

D Preliminary Results Using REACT Datasets

Preliminary evaluation results of the seven models (see Section 7.4.2) on federated hate
speech detection. Among these, four models are multilingual, while the remaining
models are not explicitly pre-trained on multilingual data. Results are shown in Figures 1
(non-fine-tuned models) and 2 (fine-tuned on English HateCheck).
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E Full Results using FedPer

Full evaluation results of FedPer-personalized mBERT and Distil-mBERT, along with
their variants fine-tuned on English HateCheck data, are shown in Figures 3 to 6. Kp
(number of personalized layers) values € {1,2, 3,4} are tested.

F Full Results using Adapter-based Personalization

Full evaluation results of adapter-personalized mBERT and Distil-mBERT, along with
their variants fine-tuned on English HateCheck data, are shown in Figure 7. Evaluation
is performed both for full-model fine-tuning and adapter-only fine-tuning.
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Language BOW mBERT XLM-RB XLM-RL Glot500-m ‘ Language BOW mBERT XLM-RB XLM-RL Glot500-m
aah_Latn  0.13 0.10 0.05 0.05 0.08 aoz_Latn  0.21 0.13 0.07 0.05 0.07
aai_Latn  0.22 0.15 0.09 0.05 0.09 apb_Latn  0.07 0.08 0.06 0.05 0.12
aak_Latn  0.07 0.13 0.05 0.05 0.05 ape_Latn  0.13 0.13 0.05 0.05 0.07
aau_Latn  0.12 0.12 0.06 0.05 0.10 apn_Latn  0.07 0.19 0.06 0.05 0.05
aaz_Latn  0.07 0.12 0.05 0.05 0.08 apr_Latn  0.07 0.07 0.07 0.05 0.05
abi_Latn  0.07 0.11 0.05 0.05 0.05 apt_Latn  0.08 0.14 0.07 0.05 0.07
abt_Latn  0.09 0.13 0.08 0.05 0.06 apu_Latn  0.07 0.09 0.10 0.05 0.05
abx_Latn  0.16 0.12 0.20 0.14 0.33 apw_Latn  0.15 0.10 0.05 0.05 0.05
aby_Latn  0.21 0.12 0.07 0.07 0.06 apy_Latn  0.09 0.09 0.11 0.05 0.05
acd_Latn  0.13 0.08 0.05 0.05 0.05 apz_Latn  0.07 0.11 0.05 0.05 0.05
ace_Latn  0.13 0.25 0.11 0.11 0.30 are_Latn  0.11 0.12 0.05 0.05 0.05
acf Latn  0.09 0.25 0.06 0.05 0.38 arl_ Latn  0.15 0.14 0.05 0.05 0.05
ach_Latn  0.13 0.12 0.05 0.05 0.08 arn_Latn  0.13 0.08 0.05 0.05 0.08
acn_Latn  0.07 0.10 0.05 0.05 0.05 ary_Arab  0.07 0.28 0.19 0.27 0.19
acr_Latn  0.16 0.14 0.06 0.05 0.30 arz_Arab  0.07 0.43 0.32 0.47 0.25
acu_Latn  0.10 0.10 0.05 0.05 0.08 asg_Latn  0.08 0.11 0.05 0.05 0.06
ade_Latn  0.12 0.10 0.07 0.05 0.06 asm_Beng  0.07 0.17 0.43 0.47 0.51
adh_Latn  0.13 0.15 0.07 0.05 0.07 aso_Latn  0.15 0.12 0.05 0.05 0.05
adi_Latn  0.09 0.10 0.14 0.05 0.09 ata_Latn  0.11 0.12 0.06 0.05 0.06
adj_Latn  0.17 0.08 0.05 0.05 0.05 atb_Latn  0.10 0.09 0.07 0.05 0.06
adl_Latn  0.08 0.18 0.05 0.05 0.05 atd_Latn  0.11 0.09 0.05 0.05 0.05
aeb_Arab  0.07 0.38 0.19 0.42 0.30 atg_Latn  0.10 0.11 0.07 0.05 0.07
aer_Latn  0.07 0.08 0.08 0.05 0.05 atq_Latn  0.13 0.15 0.06 0.05 0.13
aeu_Latn  0.07 0.13 0.05 0.05 0.05 att_Latn  0.14 0.10 0.08 0.05 0.16
aey Latn  0.07 0.12 0.09 0.05 0.05 auc_Latn  0.09 0.13 0.06 0.05 0.05
afr_Latn  0.33 0.45 0.59 0.66 0.52 auy_Latn  0.07 0.07 0.04 0.05 0.06
agd Latn  0.09 0.16 0.06 0.08 0.07 ava_Cyrl  0.07 0.06 0.05 0.05 0.10
agg_Latn  0.14 0.06 0.05 0.05 0.05 avn_Latn  0.14 0.12 0.05 0.05 0.05
agm_Latn  0.07 0.11 0.06 0.05 0.05 avt_Latn  0.10 0.11 0.05 0.05 0.14
agn_Latn  0.12 0.16 0.13 0.18 0.35 avu_Latn  0.07 0.06 0.04 0.05 0.05
agr_Latn  0.07 0.11 0.05 0.05 0.05 awa_Deva 0.07 0.24 0.37 0.40 0.48
agt_Latn 0.07 0.10 0.06 0.05 0.10 awb_Latn  0.08 0.11 0.06 0.05 0.05
agu_Latn  0.11 0.09 0.04 0.05 0.06 awi_Latn  0.17 0.12 0.04 0.05 0.14
agw_Latn  0.20 0.13 0.11 0.07 0.24 ayo_Latn  0.12 0.12 0.10 0.05 0.08
ahk _Latn  0.08 0.11 0.07 0.05 0.07 ayp_Arab  0.07 0.30 0.29 0.35 0.43
aia_Latn  0.23 0.13 0.05 0.05 0.08 ayr_Latn  0.07 0.12 0.11 0.06 0.10
aii_Syrc  0.07 0.05 0.05 0.09 0.10 azb_Arab  0.07 0.16 0.15 0.08 0.34
aim_Latn  0.10 0.14 0.06 0.05 0.05 aze_Latn  0.07 0.32 0.56 0.68 0.59
ain_Latn  0.11 0.09 0.07 0.05 0.10 azg Latn  0.04 0.09 0.05 0.05 0.05
aji_Latn  0.13 0.14 0.05 0.05 0.05 azz_Latn  0.14 0.15 0.06 0.06 0.10
ajz_Latn  0.12 0.12 0.05 0.05 0.07 bak_Cyrl  0.07 0.33 0.13 0.05 0.24
aka_Latn  0.12 0.17 0.10 0.06 0.13 bam_Latn  0.09 0.11 0.06 0.05 0.20
akb_Latn  0.13 0.16 0.15 0.07 0.27 ban_Latn  0.07 0.16 0.16 0.09 0.31
ake Latn  0.11 0.08 0.05 0.05 0.05 bao_Latn  0.10 0.14 0.08 0.05 0.06
akh_Latn  0.10 0.15 0.05 0.05 0.05 bar_Latn  0.13 0.19 0.30 0.29 0.41
akp_Latn  0.10 0.16 0.06 0.05 0.05 bav_Latn  0.12 0.05 0.05 0.05 0.06
ald_Latn  0.08 0.05 0.05 0.05 0.05 bba_Latn  0.13 0.12 0.05 0.05 0.05
alj_Latn  0.11 0.14 0.10 0.10 0.21 bbb_Latn  0.07 0.09 0.05 0.05 0.05
aln_Latn  0.07 0.25 0.46 0.53 0.55 bbj_Latn  0.12 0.05 0.05 0.05 0.05
alp_Latn  0.10 0.19 0.13 0.06 0.20 bbk_Latn  0.09 0.04 0.05 0.05 0.05
alg_Latn  0.09 0.11 0.05 0.05 0.05 bbo_Latn  0.10 0.12 0.07 0.05 0.06
als_Latn  0.07 0.24 0.45 0.54 0.49 bbr_Latn  0.17 0.15 0.04 0.05 0.06
alt_Cyrl 0.07 0.16 0.17 0.19 0.37 bch_Latn  0.10 0.13 0.07 0.05 0.12
alz_ Latn  0.10 0.15 0.06 0.05 0.17 bei_Latn - 0.09 0.12 0.04 0.05 0.15
ame_Latn  0.09 0.11 0.09 0.05 0.05 bel_Latn  0.07 0.18 0.26 0.20 0.46
amf Latn  0.07 0.08 0.05 0.05 0.05 bew_Latn  0.12 0.05 0.06 0.05 0.05
amh_Ethi  0.07 0.05 0.10 0.05 0.07 bdd_Latn  0.11 0.07 0.05 0.05 0.05
amk_Latn  0.13 0.19 0.06 0.05 0.07 bdh_Latn  0.07 0.10 0.05 0.05 0.05
amm_Latn  0.09 0.07 0.04 0.05 0.08 bdq_Latn  0.10 0.12 0.05 0.05 0.05
amn_Latn  0.11 0.11 0.07 0.05 0.12 bef_Latn  0.10 0.10 0.07 0.05 0.07
amp_Latn  0.07 0.12 0.06 0.05 0.05 bel_Cyrl  0.07 0.43 0.59 0.67 0.59
amr_Latn  0.09 0.12 0.05 0.05 0.05 bem_Latn 0.14 0.11 0.08 0.09 0.31
amu_Latn  0.06 0.08 0.05 0.05 0.05 ben_Beng 0.07 0.32 0.56 0.67 0.63
anm_Latn  0.13 0.14 0.06 0.05 0.05 beq_Latn  0.14 0.14 0.09 0.05 0.10
ann_Latn  0.14 0.15 0.08 0.05 0.06 bex_Latn  0.13 0.10 0.05 0.05 0.08
anv_Latn  0.13 0.13 0.05 0.05 0.08 bfd Latn  0.11 0.09 0.05 0.05 0.05
any_Latn  0.07 0.07 0.05 0.05 0.05 bfo_Latn  0.10 0.11 0.05 0.05 0.06
aoj_Latn  0.20 0.09 0.08 0.05 0.06 bgr Latn  0.16 0.17 0.07 0.05 0.30
aom_Latn  0.23 0.16 0.05 0.05 0.05 bgs_Latn  0.15 0.14 0.09 0.07 0.11
aon_Latn  0.08 0.11 0.06 0.05 0.05 bgt_Latn  0.15 0.16 0.07 0.05 0.16

Table 1: Zero-shot performance of BOW, mBERT,

Taxil1500.

XLM-R Base, XLM-R Large, and Glot500-m on
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Language BOW mBERT XLM-RB XLM-RL Glot500-m | Language BOW mBERT XLM-RB XLM-RL Glot500-m

bgz_Latn  0.09 0.18 0.09 0.06 0.15 bzj_Latn  0.24 0.15 0.13 0.06 0.35
bhl_Latn  0.10 0.12 0.06 0.05 0.07 caa_Latn  0.14 0.15 0.07 0.05 0.12
bhp_Latn  0.09 0.11 0.16 0.06 0.09 cab_Latn  0.07 0.10 0.05 0.05 0.05
bhw_Latn  0.09 0.16 0.07 0.05 0.14 cac_Latn  0.12 0.12 0.06 0.05 0.21
bhz_Latn  0.18 0.14 0.06 0.05 0.06 caf_Latn  0.09 0.07 0.05 0.05 0.05
bib_Latn  0.16 0.06 0.05 0.05 0.06 cag_Latn  0.07 0.14 0.05 0.05 0.11
big_Latn  0.09 0.10 0.05 0.05 0.05 cak_Latn  0.04 0.12 0.05 0.05 0.42
bim_Latn  0.14 0.13 0.05 0.05 0.06 cao_Latn  0.08 0.10 0.05 0.05 0.10
bis_Latn  0.16 0.22 0.14 0.06 0.24 cap_Latn  0.11 0.09 0.05 0.05 0.05
biu_Latn  0.16 0.14 0.05 0.05 0.17 caq_Latn  0.10 0.10 0.04 0.05 0.10
biv_Latn  0.11 0.07 0.05 0.05 0.05 car_Latn  0.13 0.12 0.06 0.05 0.06
bjr_Latn  0.07 0.10 0.05 0.05 0.05 cas_Latn  0.15 0.09 0.08 0.05 0.04
bjv_Latn  0.11 0.08 0.06 0.05 0.05 cat_Latn  0.13 0.41 0.58 0.64 0.47
bkd_Latn  0.07 0.21 0.15 0.08 0.21 cav_Latn  0.07 0.11 0.06 0.05 0.05
bkl_Latn  0.15 0.11 0.06 0.07 0.05 cax_Latn  0.07 0.12 0.09 0.05 0.06
bkq_Latn  0.14 0.12 0.06 0.05 0.11 cbe_Latn  0.08 0.14 0.06 0.05 0.05
bku_Latn  0.15 0.11 0.08 0.06 0.19 cbi_Latn  0.14 0.13 0.09 0.05 0.11
bkv_Latn  0.13 0.06 0.06 0.05 0.09 cbk_Latn  0.11 0.39 0.45 0.48 0.57
blh_Latn  0.05 0.07 0.05 0.05 0.05 cbr_Latn  0.13 0.15 0.05 0.05 0.05
blt_Latn  0.11 0.08 0.07 0.05 0.06 cbs_Latn  0.05 0.15 0.05 0.05 0.06
blw_Latn  0.07 0.15 0.06 0.05 0.10 cbt_Latn  0.08 0.09 0.06 0.05 0.06
blz_Latn  0.15 0.19 0.09 0.06 0.12 cbu_Latn  0.07 0.12 0.05 0.05 0.05
bmb_Latn  0.14 0.14 0.09 0.05 0.10 cbv_Latn  0.09 0.15 0.06 0.05 0.08
bmh_Latn  0.07 0.11 0.08 0.05 0.08 cce_Latn  0.09 0.10 0.09 0.05 0.21
bmq_Latn  0.10 0.07 0.05 0.05 0.05 cco_Latn  0.10 0.06 0.05 0.05 0.05
bmr_Latn  0.07 0.13 0.05 0.05 0.05 cep_Latn  0.11 0.19 0.09 0.06 0.09
bmu_Latn  0.09 0.14 0.05 0.05 0.05 cdf_Latn  0.09 0.12 0.05 0.05 0.09
bmv_Latn  0.16 0.10 0.07 0.05 0.05 ceb_Latn  0.11 0.12 0.28 0.28 0.37
bnj_Latn  0.09 0.13 0.07 0.06 0.05 ceg_ Latn  0.15 0.15 0.04 0.05 0.08
bno_Latn  0.10 0.18 0.18 0.11 0.33 cek_Latn  0.09 0.10 0.05 0.05 0.06
bnp_Latn  0.11 0.13 0.05 0.06 0.16 ces_Latn  0.07 0.28 0.66 0.57 0.51
boa_Latn  0.09 0.16 0.05 0.05 0.05 cfm_Latn  0.14 0.15 0.05 0.05 0.25
boj_Latn  0.13 0.10 0.05 0.05 0.07 cge_Latn  0.07 0.18 0.19 0.14 0.26
bom_Latn  0.08 0.11 0.05 0.05 0.08 cha_Latn  0.12 0.12 0.11 0.05 0.19
bon_Latn  0.11 0.19 0.07 0.06 0.05 chd_Latn  0.09 0.10 0.05 0.05 0.06
bov_Latn  0.07 0.12 0.05 0.05 0.06 che_Cyrl  0.07 0.10 0.07 0.05 0.08
box_Latn  0.09 0.11 0.05 0.05 0.09 chf_Latn  0.09 0.10 0.12 0.05 0.21
bpr_Latn  0.13 0.13 0.09 0.05 0.09 chj_Latn  0.10 0.06 0.05 0.05 0.05
bps_Latn  0.16 0.11 0.08 0.05 0.08 chk_Hani  0.07 0.13 0.07 0.05 0.08
bgc_Latn  0.07 0.11 0.05 0.05 0.06 chq_Latn  0.09 0.10 0.05 0.05 0.05
bgj_Latn  0.17 0.12 0.09 0.05 0.07 chr_Cher  0.07 0.05 0.09 0.05 0.05
bgp_Latn  0.09 0.17 0.05 0.05 0.06 chu_Cyrl  0.07 0.31 0.60 0.61 0.46
bre_Latn  0.08 0.29 0.25 0.43 0.29 chv_Cyrl  0.07 0.18 0.07 0.05 0.19
bru_Latn  0.10 0.10 0.07 0.05 0.05 chz_Latn  0.07 0.08 0.05 0.05 0.05
bsc_Latn  0.15 0.08 0.09 0.05 0.05 cjo_Latn  0.07 0.07 0.04 0.05 0.05
bsn_Latn  0.16 0.07 0.04 0.05 0.07 cjp_Latn  0.14 0.11 0.07 0.05 0.05
bss_Latn  0.07 0.13 0.10 0.05 0.05 cjv_Latn  0.06 0.08 0.07 0.05 0.05
btd_Latn  0.09 0.30 0.21 0.17 0.28 ckb_Latn  0.16 0.09 0.07 0.07 0.43
bth_Latn  0.10 0.14 0.12 0.07 0.25 cko_Latn  0.08 0.09 0.06 0.05 0.06
bto_Latn  0.07 0.11 0.13 0.05 0.32 cle_Latn  0.11 0.04 0.05 0.05 0.06
btt_Latn  0.12 0.14 0.07 0.05 0.06 clu_Latn  0.11 0.14 0.18 0.21 0.43
btx_Latn  0.16 0.23 0.20 0.19 0.34 cly_Latn  0.15 0.12 0.11 0.05 0.06
bud_Latn  0.05 0.12 0.05 0.05 0.05 cme_Latn  0.09 0.12 0.05 0.05 0.05
bug_Latn  0.09 0.19 0.12 0.07 0.17 cmn_Hani  0.07 0.40 0.59 0.62 0.65
buk_Latn  0.07 0.11 0.05 0.05 0.08 cmo_Latn  0.18 0.17 0.13 0.05 0.05
bul_Cyrl  0.07 0.41 0.62 0.64 0.60 cmr_Latn  0.11 0.13 0.05 0.05 0.06
bum_Latn  0.09 0.16 0.06 0.05 0.17 cnh_Latn  0.18 0.12 0.08 0.05 0.20
bus_Latn  0.08 0.13 0.05 0.05 0.05 cni_Latn  0.07 0.07 0.05 0.05 0.05
bvc_Latn  0.14 0.21 0.06 0.05 0.08 cnk_Latn  0.09 0.09 0.05 0.05 0.06
bvd_Latn  0.19 0.11 0.06 0.05 0.08 cnl_Latn  0.07 0.07 0.05 0.05 0.05
bvr_Latn  0.12 0.07 0.09 0.05 0.05 cnt_Latn  0.07 0.08 0.05 0.05 0.05
bvz_Latn  0.13 0.10 0.08 0.05 0.05 cnw_Latn  0.12 0.13 0.06 0.05 0.14
bwq_Latn  0.15 0.09 0.06 0.05 0.11 coe_Latn  0.07 0.08 0.05 0.05 0.06
bwu_Latn  0.14 0.16 0.08 0.05 0.09 cof_Latn  0.11 0.15 0.06 0.05 0.08
bxr_Cyrl  0.07 0.09 0.25 0.27 0.31 cok_Latn  0.13 0.08 0.05 0.05 0.07
byr_Latn  0.07 0.08 0.05 0.05 0.06 con_Latn  0.28 0.07 0.10 0.05 0.07
byx_Latn  0.07 0.13 0.07 0.06 0.05 cop_Copt  0.07 0.07 0.05 0.05 0.05
bzd_Latn  0.07 0.10 0.05 0.05 0.04 cor_Latn  0.09 0.12 0.09 0.05 0.11
bzh_Latn  0.15 0.08 0.05 0.05 0.05 cot_Latn  0.07 0.12 0.05 0.05 0.05
bzi_Thai  0.07 0.07 0.07 0.05 0.05 cou_Latn  0.10 0.14 0.06 0.05 0.05

Table 2: Zero-shot performance of BOW, mBERT, XLLM-R Base, XLM-R Large, and Glot500-m on
Taxil500.



F Full Results using Adapter-based Personalization

145

Language BOW mBERT XLM-RB XLM-RL Glot500-m ‘ Language BOW mBERT XLM-RB XLM-RL Glot500-m
cpa_Latn  0.07 0.11 0.05 0.05 0.05 due_Latn  0.10 0.12 0.16 0.05 0.20
cpb_Latn  0.07 0.08 0.08 0.05 0.05 dug_Latn  0.08 0.17 0.17 0.11 0.16
cpc_Latn  0.09 0.12 0.06 0.05 0.05 duo_Latn  0.14 0.08 0.16 0.06 0.31
cpu_Latn  0.09 0.11 0.04 0.07 0.05 dur_Latn  0.10 0.10 0.05 0.05 0.05
cpy_Latn  0.07 0.08 0.05 0.05 0.05 dwr_Latn  0.15 0.11 0.06 0.05 0.10
crth_Cyrl  0.07 0.19 0.15 0.20 0.45 dww_Latn  0.07 0.07 0.08 0.05 0.06
crj_Latn  0.15 0.10 0.05 0.05 0.05 dyi_Latn  0.16 0.13 0.07 0.05 0.06
crk_Cans  0.07 0.05 0.05 0.05 0.05 dyo_Latn  0.08 0.12 0.07 0.05 0.08
crl_Cans  0.07 0.09 0.05 0.05 0.05 dyu_Latn  0.07 0.09 0.05 0.05 0.17
crm_Cans  0.07 0.05 0.05 0.05 0.06 dzo_Tibt ~ 0.07 0.04 0.05 0.08 0.09
crn_Latn  0.10 0.09 0.05 0.05 0.06 ebk_Latn  0.14 0.15 0.05 0.05 0.17
crq_Latn  0.09 0.16 0.06 0.05 0.05 efi_Latn  0.13 0.13 0.07 0.05 0.11
crs_Latn  0.10 0.17 0.15 0.05 0.43 eka_Latn  0.11 0.17 0.09 0.06 0.06
crt_Latn  0.10 0.16 0.06 0.05 0.05 ell_Grek  0.07 0.31 0.43 0.60 0.50
crx_Latn  0.09 0.08 0.08 0.05 0.05 emi_Latn  0.09 0.16 0.05 0.10 0.09
csk_Latn  0.12 0.14 0.09 0.05 0.05 emp_Latn  0.14 0.10 0.06 0.05 0.05
cso_Latn  0.07 0.08 0.05 0.05 0.05 enb_Latn  0.07 0.10 0.05 0.05 0.05
csy_Latn  0.10 0.11 0.08 0.05 0.14 eng Latn  0.43 0.57 0.65 0.56 0.63
cta_Latn  0.07 0.13 0.05 0.05 0.07 enl_Latn  0.09 0.10 0.05 0.05 0.07
ctd_Latn ~ 0.11 0.14 0.07 0.05 0.22 enm_Latn  0.33 0.46 0.55 0.45 0.55
ctp_Latn  0.14 0.08 0.06 0.05 0.06 enq_Latn  0.07 0.12 0.05 0.05 0.07
ctu_Latn ~ 0.10 0.09 0.11 0.06 0.27 epo_Latn  0.15 0.25 0.57 0.61 0.48
cub_Latn  0.11 0.08 0.05 0.05 0.05 eri_Latn  0.13 0.13 0.07 0.06 0.06
cuc_Latn  0.07 0.13 0.05 0.05 0.05 ese_Latn  0.09 0.13 0.06 0.05 0.06
cui_Latn  0.08 0.14 0.05 0.05 0.05 esi_Latn  0.21 0.12 0.05 0.05 0.07
cuk_Latn  0.16 0.11 0.13 0.05 0.07 esk_Latn  0.07 0.11 0.05 0.05 0.05
cul_Latn  0.09 0.12 0.07 0.05 0.05 ess_Latn  0.14 0.13 0.06 0.05 0.05
cut_Latn  0.11 0.10 0.05 0.05 0.07 est_Latn 0.07 0.46 0.68 0.56 0.47
cux_Latn  0.16 0.14 0.05 0.06 0.08 esu_Latn  0.16 0.12 0.05 0.05 0.05
cwe_Latn  0.11 0.19 0.13 0.11 0.22 etu_Latn  0.13 0.11 0.05 0.05 0.05
cwt_Latn  0.09 0.14 0.05 0.05 0.05 eus_Latn  0.09 0.18 0.26 0.25 0.23
cya_Latn  0.12 0.11 0.14 0.05 0.11 ewe_Latn  0.11 0.11 0.05 0.05 0.07
cym_Latn  0.08 0.23 0.44 0.53 0.49 ewo_Latn  0.13 0.18 0.08 0.06 0.10
czt_Latn  0.14 0.11 0.07 0.05 0.05 eza_Latn  0.07 0.09 0.05 0.05 0.06
daa_Latn  0.13 0.09 0.06 0.06 0.05 faa_Latn  0.11 0.08 0.07 0.05 0.08
dad_Latn  0.20 0.15 0.06 0.05 0.05 fai_Latn  0.13 0.11 0.06 0.05 0.05
dah_Latn  0.12 0.17 0.05 0.05 0.05 fal_Latn  0.20 0.15 0.09 0.05 0.06
dan_Latn  0.19 0.52 0.54 0.54 0.53 fao_Latn  0.09 0.27 0.32 0.36 0.48
dbq_Latn  0.13 0.07 0.06 0.05 0.05 far_Latn  0.20 0.20 0.07 0.06 0.14
ddn_Latn  0.10 0.05 0.10 0.05 0.05 fas_Arab  0.07 0.46 0.67 0.66 0.67
ded_Latn  0.07 0.09 0.06 0.05 0.06 ffm_Latn  0.13 0.11 0.05 0.05 0.07
des_Latn  0.07 0.10 0.05 0.05 0.05 fij_Latn  0.05 0.12 0.08 0.05 0.12
deu_Latn  0.15 0.38 0.52 0.52 0.46 fil_Latn  0.13 0.29 0.47 0.55 0.55
dga_Latn  0.10 0.13 0.05 0.05 0.05 fin_Latn  0.13 0.45 0.58 0.57 0.47
dgc_Latn  0.16 0.14 0.21 0.18 0.25 fon_Latn  0.10 0.09 0.05 0.05 0.05
dgi_Latn  0.12 0.07 0.05 0.05 0.06 for_Latn  0.09 0.12 0.07 0.05 0.06
dgr_Latn  0.10 0.11 0.05 0.05 0.05 fra_Latn  0.13 0.54 0.65 0.65 0.54
dgz_Latn  0.20 0.13 0.12 0.06 0.15 frd_Latn  0.08 0.13 0.06 0.05 0.09
dhm_Latn  0.17 0.17 0.10 0.05 0.10 fry_Latn  0.21 0.38 0.30 0.37 0.42
did_Latn  0.07 0.14 0.05 0.05 0.05 fub_Latn  0.17 0.16 0.10 0.05 0.12
dig_Latn  0.12 0.14 0.20 0.23 0.39 fue_Latn  0.13 0.14 0.07 0.05 0.14
dik_Latn  0.12 0.09 0.08 0.05 0.06 fuf_Latn  0.10 0.10 0.09 0.05 0.13
dip_Latn  0.15 0.15 0.05 0.05 0.06 fuh_Latn ~ 0.12 0.09 0.05 0.06 0.05
dis_Latn  0.13 0.11 0.10 0.05 0.06 fuq_Latn  0.11 0.11 0.10 0.05 0.10
dje_Latn  0.12 0.09 0.08 0.05 0.07 fuv_Latn  0.11 0.13 0.11 0.05 0.14
djk_Latn  0.14 0.14 0.08 0.05 0.28 gaa_Latn  0.12 0.13 0.05 0.05 0.05
djr_Latn  0.07 0.12 0.05 0.05 0.05 gag_Latn  0.07 0.13 0.33 0.38 0.40
dks_Latn  0.14 0.12 0.05 0.05 0.05 gah_Latn  0.07 0.15 0.05 0.05 0.05
dln_Latn ~ 0.12 0.12 0.05 0.05 0.29 gai_Latn  0.07 0.09 0.05 0.05 0.05
dnj_Latn  0.10 0.06 0.05 0.05 0.05 gam_Latn  0.20 0.11 0.11 0.05 0.11
dnw_Latn  0.18 0.12 0.07 0.05 0.06 gaw_Latn  0.11 0.09 0.06 0.05 0.08
dob_Latn  0.08 0.08 0.10 0.05 0.07 gbi_Latn  0.10 0.11 0.06 0.05 0.08
dop_Latn  0.12 0.07 0.05 0.05 0.05 gbo_Latn  0.08 0.14 0.05 0.05 0.05
dos_Latn  0.13 0.14 0.05 0.05 0.05 gbr_Latn ~ 0.17 0.08 0.10 0.05 0.09
dow_Latn  0.06 0.07 0.05 0.05 0.05 gde_Latn  0.10 0.05 0.06 0.05 0.05
dru_Latn  0.07 0.14 0.09 0.05 0.09 gdg Latn  0.10 0.18 0.09 0.06 0.16
dsh_Latn  0.12 0.10 0.07 0.05 0.06 gdn_Latn  0.07 0.16 0.07 0.06 0.09
dtb_Latn  0.11 0.13 0.06 0.05 0.08 gdr_Latn  0.17 0.09 0.05 0.05 0.06
dtp_Latn  0.12 0.12 0.05 0.05 0.24 geb_Latn  0.07 0.08 0.05 0.05 0.05
dts_Latn  0.09 0.09 0.05 0.05 0.06 gej_Latn  0.09 0.10 0.05 0.05 0.08

Table 3: Zero-shot performance of BOW, mBERT, XLLM-R Base, XLM-R Large, and Glot500-m on

Taxi1500.
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Language BOW mBERT XLM-RB XLM-RL Glot500-m | Language BOW mBERT XLM-RB XLM-RL Glot500-m

gfk_Latn  0.17 0.12 0.07 0.05 0.10 hit_Latn  0.09 0.09 0.05 0.05 0.06
ghe_Deva  0.07 0.11 0.20 0.15 0.28 hmo_Latn  0.09 0.14 0.09 0.05 0.07
ghs_Latn  0.07 0.10 0.05 0.05 0.06 hmr_Latn  0.21 0.06 0.07 0.05 0.20
gid_Latn  0.10 0.05 0.05 0.05 0.08 hne_Deva  0.07 0.27 0.29 0.39 0.60
gil_Latn  0.07 0.08 0.04 0.05 0.23 hnj_Latn  0.06 0.06 0.06 0.05 0.05
giz_Latn  0.07 0.14 0.06 0.05 0.07 hnn_Latn  0.11 0.17 0.17 0.12 0.31
gin_Latn  0.09 0.13 0.05 0.05 0.05 hns_Latn  0.13 0.12 0.14 0.12 0.19
gkn_Latn  0.09 0.16 0.05 0.05 0.14 hop_Latn  0.19 0.17 0.05 0.05 0.11
gkp_Latn  0.09 0.12 0.05 0.05 0.07 hot_Latn  0.11 0.10 0.05 0.05 0.06
gla_Latn  0.12 0.14 0.34 0.42 0.48 hra_Latn  0.13 0.13 0.07 0.05 0.26
gle_Latn  0.17 0.15 0.38 0.56 0.40 hrv_Latn  0.09 0.35 0.64 0.66 0.63
glv_Latn  0.11 0.10 0.09 0.05 0.11 hto_Latn  0.07 0.06 0.05 0.06 0.05
gmv_Latn  0.15 0.12 0.07 0.06 0.06 hub_Latn  0.07 0.13 0.06 0.05 0.06
gna_Latn  0.11 0.13 0.05 0.05 0.05 hui_Latn  0.06 0.10 0.07 0.05 0.06
gnb_Latn  0.13 0.11 0.06 0.05 0.20 hun_Latn  0.08 0.38 0.70 0.66 0.52
gnd_Latn  0.09 0.06 0.05 0.05 0.05 hus_Latn  0.18 0.17 0.10 0.06 0.20
gng_Latn  0.12 0.13 0.06 0.05 0.05 huu_Latn  0.07 0.11 0.06 0.05 0.06
gnn_Latn  0.07 0.10 0.05 0.05 0.08 huv_Latn  0.07 0.13 0.06 0.05 0.11
gnw_Latn  0.07 0.11 0.07 0.05 0.06 hvn_Latn  0.14 0.17 0.09 0.05 0.11
gof Latn  0.15 0.09 0.06 0.05 0.09 hwc_Latn  0.32 0.32 0.40 0.53 0.42
gog_Latn  0.13 0.13 0.11 0.07 0.19 hye_Armn  0.07 0.39 0.60 0.64 0.65
gom_Latn  0.07 0.11 0.06 0.05 0.19 ian_Latn  0.07 0.12 0.05 0.05 0.09
gor_Latn  0.12 0.17 0.08 0.09 0.25 iba_Latn 0.11 0.27 0.26 0.24 0.54
gqr_Latn  0.19 0.08 0.05 0.05 0.05 ibo_Latn  0.08 0.12 0.08 0.05 0.09
grt_Beng  0.07 0.10 0.16 0.05 0.11 icr_Latn 024 0.21 0.23 0.06 0.40
gso_Latn  0.07 0.09 0.05 0.05 0.05 ifa_Latn  0.10 0.15 0.06 0.05 0.32
gub_Latn  0.13 0.11 0.08 0.05 0.05 ifb_Latn  0.16 0.09 0.07 0.05 0.32
guc_Latn  0.13 0.14 0.05 0.05 0.05 ife_Latn  0.08 0.11 0.05 0.05 0.05
gud_Latn  0.11 0.11 0.05 0.05 0.05 iftk_Latn  0.14 0.14 0.07 0.05 0.21
gug_Latn  0.12 0.17 0.09 0.05 0.10 ifu_Latn  0.08 0.17 0.05 0.05 0.08
guh_Latn  0.07 0.08 0.06 0.05 0.06 ify_Latn  0.09 0.14 0.08 0.05 0.11
gui_Latn  0.09 0.09 0.09 0.05 0.07 ign_Latn  0.07 0.09 0.05 0.05 0.07
guj_Gujr  0.07 0.34 0.56 0.70 0.69 ike_Cans  0.07 0.05 0.05 0.05 0.08
guk_Ethi  0.07 0.10 0.07 0.05 0.13 ikk_Latn  0.07 0.11 0.11 0.05 0.05
gul_Latn  0.32 0.26 0.26 0.24 0.49 ikw_Latn  0.07 0.07 0.06 0.05 0.05
gum_Latn  0.07 0.09 0.05 0.05 0.06 ilb_Latn  0.09 0.12 0.14 0.09 0.16
gun_Latn  0.12 0.11 0.11 0.05 0.06 ilo_Latn  0.14 0.11 0.10 0.05 0.33
guo_Latn  0.13 0.09 0.08 0.06 0.15 imo_Latn  0.14 0.13 0.05 0.05 0.05
guq_Latn  0.07 0.15 0.16 0.05 0.06 inb_Latn  0.11 0.08 0.06 0.05 0.06
gur_Latn  0.13 0.15 0.05 0.05 0.09 ind_Latn  0.07 0.47 0.66 0.70 0.63
guu_Latn  0.11 0.10 0.06 0.05 0.06 ino_Latn  0.14 0.13 0.05 0.05 0.06
guw_Latn  0.15 0.12 0.11 0.05 0.05 iou_Latn  0.14 0.12 0.05 0.05 0.06
gux_Latn  0.07 0.10 0.07 0.05 0.07 ipi_Latn  0.07 0.14 0.04 0.05 0.05
guz_Latn  0.07 0.15 0.08 0.05 0.06 igw_Latn ~ 0.07 0.12 0.08 0.05 0.06
gvc_Latn  0.14 0.08 0.05 0.05 0.06 iri_Latn  0.12 0.14 0.05 0.05 0.05
gvf Latn  0.18 0.09 0.06 0.05 0.06 irk_Latn  0.14 0.15 0.04 0.05 0.06
gvl_Latn  0.11 0.14 0.04 0.05 0.07 iry_Latn 0.08 0.14 0.11 0.16 0.20
gvn_Latn  0.07 0.12 0.05 0.05 0.09 isd_Latn  0.13 0.15 0.12 0.06 0.19
gwi_Latn  0.19 0.11 0.05 0.05 0.05 isl_Latn  0.07 0.33 0.57 0.59 0.47
gwr_Latn  0.11 0.10 0.08 0.05 0.09 ita_Latn  0.14 0.46 0.67 0.68 0.55
gya_Latn  0.10 0.10 0.05 0.05 0.06 itv_Latn  0.14 0.14 0.15 0.07 0.27
gym_Latn  0.11 0.09 0.12 0.05 0.07 jium_Latn  0.10 0.08 0.05 0.05 0.05
gyr_Latn  0.08 0.10 0.07 0.05 0.05 ivb_Latn  0.08 0.12 0.07 0.07 0.17
hae_Latn  0.09 0.15 0.15 0.31 0.22 ivv_Latn  0.11 0.13 0.07 0.05 0.19
hag_Latn  0.10 0.13 0.06 0.05 0.06 iws_Latn  0.10 0.09 0.05 0.05 0.05
hak_Latn  0.13 0.08 0.07 0.05 0.05 ix]_Latn  0.12 0.08 0.06 0.06 0.16
hat_Latn  0.06 0.17 0.08 0.06 0.39 izr_Latn  0.08 0.14 0.05 0.05 0.08
hau_Latn  0.14 0.15 0.36 0.49 0.40 izz_Latn  0.07 0.13 0.07 0.05 0.05
haw_Latn  0.12 0.11 0.05 0.05 0.19 jaa_Latn  0.10 0.12 0.06 0.05 0.08
hay_Latn  0.09 0.14 0.06 0.05 0.15 jac_Latn  0.13 0.07 0.06 0.05 0.09
hch_Latn  0.08 0.13 0.06 0.05 0.08 jae_Latn  0.07 0.07 0.05 0.05 0.05
heb_Hebr  0.07 0.36 0.15 0.31 0.24 jam_Latn  0.22 0.15 0.10 0.06 0.46
heg Latn  0.07 0.16 0.05 0.05 0.09 jav_Latn 0.07 0.25 0.38 0.57 0.46
heh_Latn  0.10 0.15 0.11 0.09 0.09 jbu_Latn  0.12 0.12 0.08 0.05 0.08
hif Latn  0.09 0.12 0.16 0.35 0.43 jic_Latn  0.13 0.24 0.07 0.05 0.12
hig_Latn  0.15 0.07 0.09 0.05 0.05 jiv_Latn  0.09 0.15 0.04 0.05 0.05
hil_Latn  0.14 0.23 0.26 0.24 0.53 jmc_Latn  0.15 0.10 0.05 0.06 0.09
hin_Deva  0.07 0.40 0.56 0.62 0.61 jpn_Jpan  0.07 0.37 0.62 0.56 0.50
hix_Latn  0.07 0.08 0.06 0.05 0.05 jra_Latn  0.09 0.12 0.06 0.05 0.06
hla_Latn  0.14 0.15 0.06 0.05 0.07 jun_Orya  0.07 0.05 0.11 0.06 0.12

Table 4: Zero-shot performance of BOW, mBERT, XLLM-R Base, XLM-R Large, and Glot500-m on
Taxil500.
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Language BOW mBERT XLM-RB XLM-RL Glot500-m ‘ Language BOW mBERT XLM-RB XLM-RL Glot500-m
jvn_Latn  0.07 0.35 0.36 0.52 0.49 knf_Latn  0.13 0.15 0.07 0.05 0.05
kaa_Cyrl ~ 0.07 0.17 0.14 0.16 0.52 kng_Latn  0.07 0.14 0.08 0.05 0.15
kab_Latn  0.11 0.14 0.07 0.06 0.13 knj_Latn  0.07 0.09 0.05 0.05 0.18
kac_Latn  0.13 0.10 0.05 0.05 0.05 knk_Latn  0.06 0.11 0.05 0.05 0.08
kal_Latn  0.09 0.11 0.05 0.05 0.13 kno_Latn  0.10 0.10 0.05 0.05 0.07
kan_Knda  0.07 0.34 0.56 0.64 0.61 knv_Latn  0.18 0.12 0.05 0.05 0.08
kao_Latn  0.09 0.09 0.05 0.05 0.06 kog_Latn  0.11 0.12 0.06 0.05 0.05
kaq_Latn  0.09 0.16 0.06 0.05 0.09 kor_Hang  0.07 0.43 0.63 0.69 0.62
kat_Geor  0.07 0.46 0.48 0.61 0.54 kpf_Latn  0.07 0.10 0.05 0.05 0.05
kaz_Cyrl ~ 0.07 0.32 0.57 0.66 0.57 kpg_Latn  0.22 0.15 0.05 0.05 0.15
kbc_Latn  0.18 0.07 0.05 0.05 0.05 kpj_Latn  0.07 0.10 0.04 0.05 0.07
kbh_Latn  0.09 0.13 0.07 0.05 0.07 kpq_Latn  0.15 0.14 0.04 0.05 0.06
kbm_Latn  0.09 0.15 0.11 0.06 0.07 kpr_Latn  0.13 0.10 0.10 0.05 0.08
kbo_Latn  0.11 0.15 0.04 0.05 0.06 kpv_Cyrl  0.07 0.09 0.09 0.05 0.11
kbp_Latn  0.10 0.08 0.05 0.05 0.05 kpw_Latn  0.14 0.10 0.05 0.05 0.05
kbg_Latn  0.12 0.05 0.09 0.05 0.05 kpx_Latn  0.07 0.13 0.09 0.05 0.05
kbr_Latn  0.08 0.13 0.05 0.05 0.07 kpz_Latn  0.09 0.12 0.05 0.05 0.09
kcg_Latn  0.13 0.12 0.05 0.05 0.05 kgqc_Latn  0.08 0.09 0.11 0.05 0.08
kck_Latn ~ 0.08 0.13 0.09 0.05 0.18 kge_Latn  0.13 0.16 0.13 0.12 0.33
kdc_Latn  0.13 0.14 0.20 0.19 0.21 kqo_Latn  0.07 0.09 0.05 0.05 0.05
kde_Latn  0.14 0.16 0.12 0.07 0.15 kqp_Latn  0.14 0.14 0.05 0.05 0.06
kdi_Latn  0.07 0.16 0.05 0.05 0.08 kgs_Latn  0.10 0.13 0.05 0.05 0.06
kdj_Latn  0.07 0.13 0.05 0.05 0.05 kqy_Ethi ~ 0.07 0.13 0.06 0.05 0.05
kdl_Latn  0.07 0.11 0.07 0.05 0.09 kre_Cyrl ~ 0.07 0.17 0.17 0.16 0.48
kdp_Latn  0.10 0.11 0.10 0.05 0.07 kri_Latn 0.15 0.16 0.05 0.05 0.19
kek_Latn  0.15 0.08 0.05 0.06 0.27 krj_Latn 0.11 0.21 0.33 0.28 0.35
ken_Latn  0.10 0.08 0.05 0.05 0.05 krl_Latn ~ 0.07 0.34 0.40 0.40 0.41
keo_Latn  0.11 0.08 0.06 0.05 0.11 kru_Deva  0.07 0.12 0.08 0.05 0.11
ker_Latn  0.09 0.04 0.05 0.05 0.05 ksb_Latn  0.12 0.16 0.12 0.12 0.21
kew_Latn  0.13 0.14 0.05 0.05 0.06 ksc_Latn  0.09 0.12 0.07 0.05 0.11
kez_Latn  0.13 0.10 0.05 0.05 0.05 ksd_Latn  0.15 0.14 0.06 0.05 0.12
kff_Telu 0.07 0.14 0.24 0.20 0.20 ksf_Latn  0.10 0.07 0.05 0.05 0.06
kgf Latn  0.08 0.10 0.05 0.05 0.05 ksr_Latn  0.08 0.08 0.05 0.05 0.06
kgk_Latn  0.07 0.10 0.06 0.05 0.05 kss_Latn  0.12 0.10 0.05 0.05 0.05
kgp_Latn  0.07 0.14 0.09 0.05 0.09 ksw_Mymr  0.07 0.08 0.05 0.05 0.06
kgr_Latn  0.14 0.20 0.06 0.05 0.13 ktb_Ethi 0.07 0.05 0.07 0.05 0.10
kha_Latn  0.12 0.07 0.07 0.05 0.06 ktj_Latn 0.04 0.05 0.05 0.05 0.05
khk_Latn  0.09 0.15 0.07 0.05 0.08 kto_Latn  0.07 0.14 0.09 0.05 0.05
khm_Khmr  0.07 0.05 0.55 0.62 0.55 ktu_Latn  0.10 0.11 0.11 0.06 0.19
khg_Latn  0.12 0.11 0.10 0.05 0.09 kua_Latn  0.11 0.11 0.11 0.08 0.12
khs_Latn  0.14 0.09 0.06 0.05 0.05 kub_Latn  0.09 0.14 0.05 0.05 0.05
khy_Latn  0.08 0.09 0.07 0.07 0.14 kud_Latn  0.07 0.10 0.06 0.05 0.05
khz_Latn  0.12 0.16 0.06 0.05 0.05 kue_Latn  0.07 0.11 0.06 0.05 0.07
kia_Latn ~ 0.13 0.19 0.06 0.05 0.23 kuj_Latn  0.12 0.12 0.05 0.05 0.05
kij_Latn 0.07 0.14 0.07 0.05 0.06 kum_Cyrl  0.07 0.16 0.13 0.24 0.45
kik_Latn  0.14 0.15 0.05 0.05 0.05 kup_Latn  0.18 0.15 0.08 0.05 0.07
kin_Latn  0.14 0.13 0.14 0.06 0.23 kus_Latn  0.12 0.09 0.10 0.05 0.05
kir_Cyrl 0.07 0.20 0.65 0.65 0.61 kvg_Latn  0.11 0.09 0.06 0.05 0.06
kix_Latn  0.08 0.12 0.07 0.05 0.05 kvj_Latn  0.17 0.13 0.06 0.05 0.05
kjb_Latn  0.15 0.11 0.05 0.05 0.23 kvn_Latn  0.12 0.09 0.08 0.05 0.06
kje_Latn  0.09 0.18 0.06 0.05 0.06 kwd_Latn  0.19 0.13 0.09 0.05 0.12
kjh_Cyrl ~ 0.07 0.18 0.11 0.17 0.36 kwf_Latn  0.21 0.17 0.09 0.07 0.16
kjs_Latn  0.13 0.10 0.07 0.05 0.05 kwi_Latn  0.11 0.17 0.09 0.05 0.09
kki_Latn  0.16 0.17 0.14 0.10 0.14 kwj_Latn  0.10 0.12 0.06 0.05 0.05
kkj_Latn  0.09 0.16 0.06 0.05 0.06 kxc_Ethi  0.07 0.09 0.07 0.05 0.05
kle_Deva  0.07 0.14 0.15 0.11 0.19 kxm_Thai  0.07 0.08 0.14 0.06 0.08
kin_Latn ~ 0.10 0.10 0.05 0.05 0.12 kxw_Latn  0.06 0.07 0.06 0.05 0.05
klv_Latn ~ 0.09 0.14 0.13 0.05 0.09 kyc_Latn  0.07 0.11 0.06 0.05 0.06
kma_Latn  0.12 0.08 0.05 0.05 0.05 kyf_Latn  0.09 0.13 0.05 0.05 0.05
kmd_Latn  0.10 0.11 0.06 0.05 0.09 kyg_Latn  0.08 0.09 0.06 0.05 0.05
kmg_Latn  0.08 0.08 0.05 0.05 0.05 kyq_Latn  0.10 0.12 0.07 0.05 0.05
kmh_Latn  0.07 0.10 0.05 0.05 0.05 kyu_Mymr  0.07 0.09 0.05 0.05 0.05
kmk_Latn  0.10 0.10 0.06 0.05 0.14 kyz_Latn  0.17 0.10 0.05 0.05 0.05
kmm_Latn  0.12 0.09 0.05 0.05 0.19 kze_Latn  0.08 0.11 0.04 0.05 0.06
kmo_Latn  0.10 0.09 0.05 0.06 0.06 kzf_Latn ~ 0.12 0.18 0.10 0.06 0.15
kmr_Cyrl  0.07 0.09 0.07 0.05 0.24 lac_Latn  0.16 0.05 0.06 0.05 0.11
kms_Latn  0.13 0.08 0.04 0.05 0.07 lai_Latn 0.16 0.13 0.07 0.08 0.19
kmu_Latn  0.07 0.17 0.10 0.05 0.08 laj_Latn 0.10 0.11 0.07 0.06 0.09
kmy_Latn  0.12 0.08 0.05 0.05 0.05 lam_Latn  0.09 0.14 0.07 0.07 0.16
kne_Latn  0.15 0.13 0.12 0.04 0.09 lao_Laoo  0.07 0.05 0.58 0.67 0.61

Table 5: Zero-shot performance of BOW, mBERT, XLLM-R Base, XLM-R Large, and Glot500-m on

Taxil1500.
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Language BOW mBERT XLM-RB XLM-RL Glot500-m | Language BOW mBERT XLM-RB XLM-RL Glot500-m

lap_Latn  0.14 0.15 0.06 0.05 0.08 mbb_Latn  0.11 0.20 0.10 0.05 0.10
las_Latn ~ 0.09 0.09 0.05 0.05 0.05 mbc_Latn  0.12 0.13 0.05 0.05 0.05
lat_Latn  0.14 0.30 0.55 0.62 0.56 mbd_Latn  0.13 0.12 0.11 0.05 0.10
lav_Latn  0.08 0.34 0.62 0.55 0.52 mbf_Latn  0.07 0.31 0.49 0.57 0.56
law_Latn  0.09 0.09 0.06 0.05 0.09 mbh_Latn  0.15 0.15 0.07 0.05 0.09
Ibk_Latn  0.12 0.10 0.09 0.05 0.14 mbi_Latn  0.13 0.17 0.08 0.05 0.06
Icm_Latn  0.16 0.20 0.05 0.06 0.15 mbj_Latn  0.16 0.14 0.08 0.05 0.06
Iecp_Thai  0.07 0.08 0.06 0.05 0.05 mbl_Latn  0.07 0.11 0.05 0.05 0.05
Idi_Latn  0.14 0.12 0.07 0.05 0.19 mbs_Latn  0.11 0.12 0.17 0.13 0.19
lee_Latn  0.08 0.05 0.07 0.05 0.05 mbt_Latn  0.14 0.12 0.07 0.05 0.09
lef_Latn  0.05 0.13 0.06 0.05 0.05 mca_Latn  0.16 0.10 0.05 0.05 0.06
leh_Latn  0.09 0.14 0.08 0.07 0.15 mcb_Latn  0.07 0.11 0.05 0.05 0.06
lem_Latn  0.07 0.09 0.05 0.05 0.06 mcd_Latn ~ 0.05 0.09 0.05 0.05 0.06
leu_Latn  0.12 0.14 0.05 0.05 0.07 mcf_Latn  0.07 0.10 0.06 0.05 0.05
lew_Latn  0.07 0.13 0.08 0.05 0.16 mck_Latn  0.13 0.15 0.11 0.06 0.15
lex_Latn  0.13 0.10 0.08 0.05 0.05 mcen_Latn ~ 0.09 0.10 0.07 0.06 0.10
lgg_Latn  0.09 0.19 0.05 0.05 0.13 mco_Latn  0.05 0.09 0.05 0.05 0.13
Igl_Latn  0.20 0.14 0.06 0.06 0.12 mcp_Latn ~ 0.09 0.05 0.05 0.05 0.05
Igm_Latn  0.12 0.11 0.06 0.06 0.09 mcq_Latn  0.07 0.12 0.08 0.05 0.05
Ihi_Latn  0.09 0.12 0.05 0.05 0.10 mcu_Latn  0.10 0.20 0.07 0.05 0.06
Ihm_Latn  0.12 0.08 0.05 0.05 0.05 mda_Latn  0.06 0.07 0.05 0.05 0.05
lhu_Latn  0.09 0.08 0.06 0.05 0.06 mdy_Ethi  0.07 0.09 0.05 0.05 0.15
lia_Latn  0.18 0.16 0.05 0.05 0.05 med_Latn  0.07 0.09 0.06 0.05 0.07
lid_Latn  0.16 0.09 0.08 0.05 0.06 mee_Latn  0.11 0.12 0.05 0.05 0.06
lif_Deva  0.07 0.07 0.10 0.05 0.13 mej_Latn  0.07 0.11 0.09 0.05 0.08
lin_Latn  0.12 0.10 0.08 0.04 0.13 mek_Latn  0.08 0.10 0.08 0.05 0.14
lip_Latn  0.08 0.12 0.06 0.05 0.07 men_Latn  0.11 0.13 0.05 0.05 0.05
lis_Lisu 0.07 0.08 0.05 0.05 0.06 meq_Latn  0.10 0.07 0.07 0.05 0.05
lit_Latn 0.07 0.29 0.56 0.60 0.54 met_Latn  0.19 0.11 0.05 0.05 0.06
ljp_Latn  0.07 0.29 0.33 0.30 0.39 meu_Latn  0.10 0.14 0.10 0.05 0.08
llg_Latn  0.07 0.09 0.13 0.05 0.07 mfe_Latn  0.09 0.15 0.15 0.05 0.36
Iln_Latn  0.10 0.09 0.05 0.05 0.05 mfh_Latn  0.07 0.07 0.06 0.05 0.07
Imk_Latn  0.14 0.11 0.07 0.05 0.05 mfi_Latn  0.15 0.07 0.06 0.05 0.06
Imp_Latn  0.09 0.12 0.05 0.05 0.05 mfk_Latn  0.09 0.16 0.05 0.05 0.05
Ind_Latn  0.09 0.13 0.10 0.06 0.15 mfq_Latn  0.08 0.05 0.05 0.05 0.06
lob_Latn  0.07 0.10 0.05 0.05 0.04 mfy_Latn  0.11 0.15 0.07 0.05 0.06
loe_Latn  0.10 0.21 0.10 0.08 0.23 mfz_Latn  0.13 0.09 0.05 0.05 0.05
log_Latn  0.11 0.11 0.05 0.05 0.05 mgh_Latn  0.13 0.10 0.04 0.05 0.08
lok_Latn  0.13 0.12 0.05 0.05 0.05 mgo_Latn  0.15 0.05 0.05 0.05 0.05
lol_Latn  0.07 0.09 0.06 0.05 0.09 mgr_Latn  0.17 0.13 0.10 0.07 0.21
lom_Latn  0.11 0.07 0.05 0.05 0.05 mhi_Latn  0.12 0.12 0.08 0.05 0.06
log_Latn  0.08 0.13 0.05 0.05 0.06 mhl_Latn  0.10 0.10 0.05 0.05 0.05
loz_Latn  0.18 0.14 0.06 0.05 0.29 mhr_Cyrl  0.07 0.17 0.10 0.05 0.26
Isi_Latn 0.13 0.08 0.05 0.05 0.05 mhx_Latn  0.11 0.12 0.05 0.05 0.05
Ism_Latn  0.11 0.16 0.08 0.07 0.08 mhy_Latn  0.12 0.20 0.21 0.15 0.26
Itz_Latn  0.15 0.34 0.22 0.20 0.41 mib_Latn  0.09 0.13 0.07 0.06 0.13
luc_Latn  0.07 0.09 0.11 0.05 0.05 mic_Latn  0.10 0.13 0.08 0.05 0.06
lug_Latn  0.07 0.13 0.08 0.05 0.22 mie_Latn  0.08 0.17 0.06 0.05 0.12
luo_Latn  0.12 0.12 0.05 0.05 0.15 mif_Latn  0.09 0.09 0.07 0.05 0.07
lus_Latn  0.17 0.14 0.10 0.05 0.09 mig_Latn  0.13 0.19 0.05 0.05 0.07
Iwo_Latn  0.12 0.12 0.05 0.05 0.05 mih_Latn  0.08 0.13 0.04 0.05 0.07
Iww_Latn  0.11 0.12 0.06 0.05 0.05 mil_Latn  0.10 0.11 0.05 0.05 0.06
Izh_Hani  0.07 0.24 0.54 0.50 0.59 mim_Latn  0.11 0.15 0.05 0.05 0.06
maa_Latn  0.13 0.14 0.05 0.05 0.05 min_Latn  0.08 0.19 0.27 0.26 0.43
mad_Latn  0.10 0.22 0.23 0.19 0.40 mio_Latn  0.09 0.08 0.15 0.07 0.14
maf_Latn  0.11 0.18 0.06 0.05 0.05 mip_Latn  0.06 0.10 0.05 0.05 0.11
mag_Deva  0.07 0.22 0.38 0.32 0.49 miq_Latn  0.09 0.16 0.05 0.05 0.08
mah_Latn  0.16 0.12 0.05 0.05 0.14 mir_Latn  0.06 0.09 0.06 0.05 0.14
mai_Deva  0.07 0.23 0.31 0.43 0.65 mit_Latn  0.06 0.09 0.07 0.06 0.12
maj_Latn  0.09 0.09 0.05 0.05 0.05 miy_Latn  0.07 0.10 0.05 0.05 0.08
mak_Latn  0.10 0.18 0.10 0.06 0.18 miz_Latn  0.09 0.14 0.05 0.05 0.05
mal_Mlym 0.07 0.12 0.07 0.05 0.06 mjc_Latn  0.13 0.13 0.05 0.05 0.07
mam_Latn  0.12 0.11 0.04 0.04 0.25 mjw_Latn  0.08 0.09 0.08 0.05 0.05
maq_Latn  0.12 0.15 0.05 0.06 0.05 mkd_Cyrl  0.07 0.47 0.74 0.70 0.67
mar_Deva  0.07 0.30 0.57 0.61 0.59 mkl_Latn  0.11 0.05 0.06 0.05 0.05
mas_Latn  0.07 0.17 0.09 0.06 0.04 mkn_Latn  0.07 0.23 0.28 0.35 0.44
mau_Latn  0.07 0.08 0.05 0.05 0.05 mks_Latn  0.10 0.15 0.05 0.05 0.05
mav_Latn  0.14 0.12 0.07 0.05 0.05 mlg_Latn  0.12 0.08 0.37 0.45 0.46
maw_Latn  0.18 0.11 0.05 0.05 0.05 mlh_Latn  0.10 0.10 0.05 0.05 0.05
maz_Latn  0.10 0.15 0.05 0.05 0.10 mlp_Latn  0.07 0.20 0.06 0.05 0.08

Table 6: Zero-shot performance of BOW, mBERT, XLM-R Base, XLM-R Large, and Glot500-m on
Taxi1500.
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Language BOW mBERT XLM-RB XLM-RL Glot500-m ‘ Language BOW mBERT XLM-RB XLM-RL Glot500-m
mlt_Latn  0.11 0.16 0.05 0.06 0.29 mzm_Latn  0.09 0.09 0.05 0.05 0.05
mmn_Latn  0.17 0.19 0.18 0.21 0.32 mzw_Latn  0.05 0.09 0.05 0.05 0.06
mmo_Latn  0.17 0.09 0.09 0.05 0.05 nab_Latn  0.07 0.14 0.05 0.05 0.05
mmx_Latn  0.14 0.11 0.05 0.05 0.06 naf Latn  0.07 0.15 0.05 0.05 0.06
mna_Latn  0.11 0.08 0.05 0.05 0.05 nak_Latn  0.11 0.12 0.04 0.05 0.08
mnb_Latn  0.10 0.17 0.06 0.05 0.16 nan_Latn  0.14 0.11 0.05 0.05 0.06
mnf_Latn  0.11 0.13 0.05 0.05 0.06 naq_Latn  0.09 0.10 0.05 0.05 0.07
mnh_Latn  0.07 0.17 0.07 0.05 0.09 nas_Latn  0.07 0.09 0.11 0.05 0.09
mnk_Latn  0.09 0.17 0.05 0.05 0.07 nav_Latn  0.19 0.09 0.05 0.05 0.05
mnx_Latn  0.11 0.15 0.08 0.06 0.05 naw_Latn  0.08 0.10 0.05 0.05 0.05
moa_Latn  0.08 0.04 0.06 0.05 0.05 nbc_Latn  0.09 0.12 0.06 0.05 0.07
moc_Latn  0.08 0.13 0.06 0.05 0.05 nbe_Latn  0.17 0.12 0.06 0.06 0.07
mog_Latn  0.16 0.20 0.13 0.07 0.21 nbl_Latn  0.09 0.13 0.15 0.21 0.29
mop_Latn  0.20 0.10 0.07 0.06 0.27 nbu_Latn  0.15 0.09 0.05 0.05 0.05
mor_Latn (.14 0.11 0.05 0.05 0.05 nca_Latn  0.07 0.11 0.06 0.06 0.06
mos_Latn  0.11 0.11 0.06 0.05 0.06 nch_Latn  0.10 0.12 0.07 0.05 0.06
mox_Latn  0.12 0.15 0.07 0.05 0.05 ncj_Latn  0.14 0.10 0.05 0.05 0.07
mpg_Latn  0.12 0.09 0.05 0.05 0.05 ncl_Latn  0.10 0.09 0.06 0.09 0.13
mpm_Latn  0.04 0.15 0.05 0.05 0.05 ncq_Laoo  0.07 0.05 0.11 0.04 0.10
mps_Latn  0.15 0.16 0.05 0.06 0.07 nct_Latn  0.12 0.09 0.06 0.05 0.06
mpt_Latn  0.13 0.11 0.07 0.05 0.07 ncu_Latn  0.06 0.09 0.05 0.05 0.05
mpx_Latn  0.09 0.10 0.07 0.05 0.05 ndc_Latn  0.07 0.15 0.10 0.07 0.16
mgb_Latn  0.11 0.09 0.04 0.05 0.05 nde_Latn  0.09 0.13 0.15 0.21 0.29
mqj_Latn  0.11 0.18 0.12 0.05 0.16 ndi_Latn  0.11 0.10 0.06 0.05 0.05
mqy_Latn  0.11 0.16 0.13 0.05 0.11 ndj_Latn  0.13 0.11 0.06 0.05 0.12
mri_Latn  0.16 0.09 0.09 0.05 0.19 ndo_Latn  0.11 0.11 0.09 0.05 0.16
mrw_Latn ~ 0.09 0.19 0.10 0.14 0.31 ndp_Latn  0.10 0.11 0.10 0.05 0.07
msa_Latn  0.08 0.22 0.42 0.42 0.52 nds_Latn  0.15 0.19 0.14 0.07 0.27
msb_Latn  0.12 0.21 0.28 0.24 0.49 ndy_Latn  0.07 0.14 0.07 0.06 0.14
mse_Latn  0.12 0.09 0.08 0.05 0.05 ndz_Latn  0.09 0.15 0.05 0.05 0.05
msk_Latn  0.09 0.14 0.09 0.10 0.28 neb_Latn  0.12 0.07 0.05 0.05 0.05
msm_Latn  0.12 0.10 0.07 0.06 0.21 nep_Deva  0.07 0.32 0.62 0.64 0.68
msy_Latn  0.07 0.09 0.06 0.05 0.06 nfa_Latn  0.07 0.09 0.06 0.05 0.05
mta_Latn  0.12 0.10 0.05 0.05 0.05 nfr_Latn  0.15 0.11 0.07 0.05 0.05
mtg_Latn  0.11 0.09 0.05 0.05 0.05 ngc_Latn  0.11 0.14 0.07 0.05 0.14
mti_Latn  0.14 0.14 0.08 0.08 0.15 ngp_Latn  0.13 0.17 0.16 0.12 0.19
mtj_Latn  0.08 0.10 0.08 0.05 0.06 ngu_Latn  0.06 0.09 0.05 0.06 0.15
mto_Latn  0.11 0.14 0.05 0.05 0.05 nhd_Latn  0.12 0.17 0.09 0.05 0.10
mtp_Latn  0.11 0.12 0.05 0.05 0.05 nhe_Latn  0.10 0.13 0.07 0.05 0.08
mua_Latn  0.16 0.10 0.05 0.05 0.06 nhg_Latn  0.10 0.12 0.05 0.05 0.14
mug_Latn  0.13 0.11 0.05 0.06 0.07 nhi_Latn  0.12 0.10 0.06 0.05 0.08
muh_Latn  0.12 0.18 0.15 0.05 0.05 nho_Latn  0.16 0.17 0.07 0.05 0.12
mup_Deva  0.07 0.28 0.35 0.32 0.49 nhr_Latn  0.17 0.14 0.05 0.05 0.07
mur_Latn  0.14 0.12 0.05 0.05 0.08 nhu_Latn  0.16 0.10 0.05 0.05 0.05
mux_Latn  0.12 0.11 0.06 0.05 0.05 nhw_Latn  0.08 0.14 0.07 0.05 0.06
muy_Latn  0.11 0.07 0.05 0.05 0.05 nhx_Latn  0.13 0.14 0.08 0.05 0.19
mva_Latn  0.07 0.15 0.07 0.05 0.07 nhy_Latn  0.14 0.16 0.05 0.06 0.15
mvn_Latn  0.12 0.09 0.05 0.05 0.05 nii_Latn  0.14 0.09 0.05 0.05 0.05
mvp_Latn  0.11 0.12 0.15 0.05 0.22 nij_Latn  0.09 0.23 0.18 0.16 0.23
mwm_Latn  0.12 0.08 0.05 0.05 0.05 nim_Latn  0.07 0.12 0.06 0.05 0.06
mwq_Latn  0.10 0.10 0.06 0.05 0.05 nin_Latn  0.07 0.13 0.08 0.05 0.07
mwv_Latn  0.07 0.14 0.10 0.05 0.13 nig_Latn  0.09 0.10 0.05 0.05 0.07
mww_Latn  0.10 0.06 0.05 0.05 0.05 niy_Latn  0.11 0.05 0.08 0.05 0.05
mxb_Latn  0.09 0.14 0.05 0.05 0.06 njb_Latn  0.17 0.13 0.05 0.05 0.05
mxp_Latn  0.10 0.12 0.05 0.05 0.06 njm_Latn  0.16 0.09 0.06 0.05 0.06
mxq_Latn  0.09 0.06 0.05 0.05 0.10 njn_Latn  0.09 0.12 0.05 0.05 0.05
mxt_Latn  0.13 0.12 0.04 0.05 0.07 njo_Latn  0.12 0.11 0.05 0.05 0.06
mxv_Latn  0.10 0.16 0.05 0.05 0.16 njz_Latn  0.08 0.13 0.05 0.05 0.05
mya_Mymr  0.07 0.26 0.42 0.61 0.51 nkf Latn  0.13 0.16 0.06 0.05 0.06
myb_Latn  0.07 0.13 0.07 0.05 0.09 nki_Latn  0.10 0.13 0.05 0.05 0.26
myk_Latn  0.07 0.12 0.05 0.05 0.07 nko_Latn  0.10 0.10 0.05 0.05 0.05
myu_Latn  0.07 0.12 0.09 0.05 0.06 nlc_Latn  0.11 0.12 0.05 0.05 0.05
myv_Cyrl  0.07 0.08 0.08 0.05 0.19 nld_Latn  0.28 043 0.60 0.58 0.53
myw_Latn  0.07 0.15 0.06 0.05 0.05 nlg_Latn  0.20 0.21 0.07 0.09 0.21
myx_Latn  0.10 0.12 0.04 0.05 0.10 nma_Latn  0.07 0.12 0.08 0.05 0.05
myy_Latn  0.07 0.08 0.09 0.05 0.06 nmf Latn  0.08 0.12 0.05 0.05 0.06
mza_Latn  0.10 0.13 0.06 0.05 0.05 nmh_Latn  0.09 0.10 0.05 0.06 0.06
mzh_Latn  0.08 0.19 0.08 0.05 0.24 nmo_Latn  0.10 0.10 0.06 0.05 0.06
mzk_Latn  0.14 0.14 0.08 0.06 0.07 nmz_Latn  0.15 0.12 0.08 0.05 0.10
mzl_Latn  0.10 0.09 0.06 0.05 0.05 nnb_Latn  0.10 0.14 0.07 0.05 0.10

Table 7: Zero-shot performance of BOW, mBERT,

Taxi1500.

XLM-R Base, XLM-R Large, and Glot500-m on
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Language BOW mBERT XLM-RB XLM-RL Glot500-m | Language BOW mBERT XLM-RB XLM-RL Glot500-m

nng_Latn  0.07 0.09 0.07 0.05 0.06 oym_Latn  0.07 0.12 0.05 0.05 0.05
nnh_Latn ~ 0.08 0.14 0.07 0.05 0.08 ozm_Latn  0.13 0.06 0.06 0.05 0.05
nnl_Latn 0.12 0.12 0.07 0.05 0.06 pab_Latn  0.12 0.05 0.05 0.05 0.05
nno_Latn  0.15 0.46 0.58 0.56 0.43 pad_Latn  0.13 0.15 0.06 0.05 0.06
nnp_Latn  0.07 0.08 0.07 0.05 0.05 pag_Latn  0.14 0.14 0.20 0.17 0.33
nnq_Latn  0.14 0.15 0.11 0.10 0.14 pah_Latn  0.09 0.15 0.06 0.05 0.05
nnw_Latn  0.07 0.05 0.05 0.05 0.05 pam_Latn  0.13 0.18 0.11 0.11 0.38
noa_Latn  0.07 0.08 0.05 0.06 0.05 pan_Guru  0.07 0.31 0.58 0.67 0.69
nob_Latn  0.16 0.38 0.59 0.60 0.56 pao_Latn  0.10 0.13 0.07 0.05 0.08
nod_Thai  0.07 0.09 0.47 0.50 0.50 pap_Latn  0.15 0.31 0.30 0.23 0.52
nog_Cyrl  0.07 0.16 0.18 0.38 0.41 pau_Latn  0.16 0.18 0.06 0.05 0.21
nop_Latn  0.09 0.15 0.05 0.05 0.05 pbb_Latn  0.17 0.12 0.07 0.05 0.07
nor_Latn  0.16 0.38 0.60 0.60 0.55 pbc_Latn  0.17 0.12 0.05 0.05 0.05
not_Latn  0.07 0.09 0.13 0.06 0.11 pbi_Latn  0.13 0.06 0.05 0.05 0.07
nou_Latn  0.16 0.11 0.11 0.06 0.13 pbl_Latn  0.10 0.16 0.13 0.05 0.26
nph_Latn  0.08 0.10 0.09 0.05 0.05 pck_Latn  0.12 0.14 0.06 0.05 0.19
npi_Deva  0.07 0.32 0.59 0.66 0.67 pem_Latn  0.19 0.18 0.30 0.29 0.45
npl_Latn  0.10 0.09 0.05 0.07 0.18 pdc_Latn  0.19 0.14 0.14 0.15 0.27
npo_Latn  0.13 0.09 0.07 0.05 0.05 pdt_Latn  0.17 0.18 0.17 0.12 0.34
npy_Latn  0.09 0.13 0.11 0.05 0.07 pes_Arab  0.07 0.42 0.66 0.66 0.63
nre_Latn  0.10 0.15 0.07 0.05 0.07 pez_Latn  0.08 0.23 0.09 0.05 0.10
nri_Latn ~ 0.11 0.12 0.09 0.05 0.09 pfe_Latn  0.10 0.05 0.05 0.05 0.05
nsa_Latn  0.07 0.12 0.09 0.05 0.06 pib_Latn  0.07 0.11 0.04 0.05 0.06
nse_Latn  0.12 0.17 0.13 0.07 0.23 pio_Latn  0.07 0.09 0.06 0.05 0.12
nsm_Latn  0.13 0.07 0.06 0.05 0.06 pir_Latn  0.10 0.11 0.06 0.05 0.05
nsn_Latn  0.15 0.09 0.06 0.07 0.12 pis_Latn  0.21 0.11 0.12 0.06 0.20
nso_Latn  0.11 0.13 0.12 0.05 0.27 pjt_Latn  0.07 0.09 0.05 0.05 0.08
nst_Latn  0.18 0.10 0.05 0.05 0.06 pkb_Latn  0.11 0.15 0.12 0.07 0.28
nsu_Latn  0.13 0.10 0.06 0.05 0.12 plg_Latn  0.16 0.13 0.08 0.05 0.08
ntp_Latn  0.07 0.10 0.05 0.05 0.04 pls_Latn  0.07 0.19 0.07 0.14 0.27
ntr_Latn  0.07 0.12 0.05 0.05 0.05 plt_Latn  0.12 0.05 0.38 0.54 0.50
ntu_Latn  0.07 0.08 0.06 0.05 0.05 plu_Latn  0.13 0.08 0.05 0.05 0.05
nuj_Latn  0.11 0.14 0.06 0.05 0.07 plw_Latn  0.14 0.19 0.10 0.06 0.19
nus_Latn  0.13 0.10 0.05 0.05 0.05 pma_Latn  0.14 0.16 0.07 0.05 0.06
nuy_Latn  0.23 0.10 0.05 0.05 0.05 pmf_Latn  0.11 0.22 0.10 0.09 0.20
nvm_Latn  0.07 0.11 0.05 0.05 0.05 pmx_Latn  0.09 0.08 0.06 0.06 0.06
nwb_Latn  0.14 0.06 0.05 0.05 0.05 pne_Latn  0.08 0.23 0.09 0.05 0.11
nwi_Latn  0.15 0.13 0.05 0.05 0.07 pny_Latn  0.08 0.05 0.05 0.05 0.05
nwx_Deva  0.07 0.16 0.18 0.14 0.29 poe_Latn  0.13 0.13 0.05 0.05 0.06
nxd_Latn  0.07 0.09 0.07 0.05 0.07 poh_Latn  0.11 0.09 0.12 0.05 0.37
nya_Latn  0.07 0.14 0.08 0.06 0.26 poi_Latn  0.12 0.15 0.05 0.07 0.12
nyf_Latn  0.15 0.19 0.21 0.17 0.25 pol_Latn  0.09 0.48 0.60 0.65 0.61
nyn_Latn  0.09 0.11 0.06 0.05 0.20 pon_Latn  0.14 0.21 0.08 0.05 0.08
nyo_Latn  0.07 0.16 0.05 0.05 0.15 por_Latn  0.16 0.52 0.57 0.64 0.61
nyy_Latn  0.11 0.16 0.08 0.05 0.09 pos_Latn  0.12 0.17 0.06 0.06 0.27
nza_Latn  0.07 0.10 0.05 0.05 0.05 poy_Latn  0.14 0.18 0.08 0.05 0.07
nzi_Latn ~ 0.09 0.16 0.05 0.05 0.05 ppk_Latn  0.15 0.15 0.06 0.04 0.16
nzm_Latn  0.11 0.09 0.08 0.06 0.06 ppo_Latn  0.10 0.18 0.05 0.05 0.05
obo_Latn  0.15 0.12 0.05 0.05 0.07 pps_Latn  0.10 0.11 0.06 0.05 0.08
ojb_Cans  0.07 0.12 0.05 0.05 0.06 prf_Latn  0.12 0.20 0.15 0.13 0.26
oji_Latn  0.11 0.09 0.05 0.05 0.07 pri_Latn  0.07 0.10 0.05 0.05 0.05
ojs_Latn  0.07 0.08 0.05 0.05 0.06 prk_Latn  0.09 0.13 0.06 0.05 0.10
oku_Latn  0.12 0.11 0.05 0.05 0.05 prq_Latn  0.07 0.08 0.05 0.05 0.05
okv_Latn  0.13 0.22 0.14 0.08 0.13 prs_Arab  0.07 0.43 0.66 0.64 0.64
old_Latn  0.13 0.09 0.08 0.06 0.06 pse_Latn  0.07 0.28 0.36 0.38 0.39
omb_Latn  0.17 0.16 0.10 0.06 0.06 pss_Latn  0.10 0.13 0.06 0.05 0.08
omw_Latn  0.07 0.08 0.05 0.05 0.05 ptp_Latn  0.10 0.11 0.05 0.05 0.05
ong_Latn  0.07 0.17 0.07 0.05 0.06 ptu_Latn  0.11 0.15 0.14 0.05 0.20
ons_Latn  0.11 0.09 0.05 0.05 0.05 pua_Latn  0.08 0.09 0.09 0.05 0.15
ood_Latn  0.16 0.11 0.05 0.05 0.05 pui_Latn  0.09 0.14 0.05 0.06 0.06
opm_Latn  0.07 0.14 0.07 0.05 0.05 pwg_Latn  0.18 0.14 0.06 0.08 0.12
ori_Orya  0.07 0.04 0.58 0.75 0.65 pww_Thai  0.07 0.08 0.10 0.05 0.05
ory_Orya  0.07 0.04 0.56 0.75 0.64 pxm_Latn  0.08 0.14 0.06 0.05 0.05
oss_Cyrl  0.07 0.10 0.07 0.05 0.11 qub_Latn  0.08 0.12 0.06 0.06 0.17
otd_Latn  0.07 0.25 0.12 0.11 0.14 quc_Latn  0.18 0.14 0.07 0.05 0.37
ote_Latn  0.08 0.07 0.05 0.05 0.06 quf_Latn  0.07 0.10 0.05 0.05 0.06
otm_Latn  0.10 0.08 0.05 0.05 0.05 qug_Latn  0.07 0.11 0.09 0.05 0.12
otn_Latn  0.09 0.11 0.05 0.05 0.05 quh_Latn  0.07 0.12 0.07 0.05 0.30
otq_Latn  0.14 0.08 0.06 0.05 0.06 qul_Latn ~ 0.07 0.14 0.06 0.07 0.32
ots_Latn  0.11 0.10 0.05 0.05 0.10 qup_Latn  0.07 0.13 0.05 0.05 0.13

Table 8: Zero-shot performance of BOW, mBERT, XLLM-R Base, XLM-R Large, and Glot500-m on
Taxi1500.
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Language BOW mBERT XLM-RB XLM-RL Glot500-m ‘ Language BOW mBERT XLM-RB XLM-RL Glot500-m

quw_Latn  0.07 0.10 0.07 0.05 0.18 shp_Latn  0.07 0.12 0.06 0.05 0.05
quy_Latn  0.07 0.11 0.07 0.06 0.27 shu_Latn  0.09 0.20 0.16 0.11 0.19
quz_Latn  0.07 0.10 0.07 0.05 0.24 sig Latn  0.13 0.08 0.05 0.05 0.05
qva_Latn  0.07 0.10 0.07 0.05 0.18 sil_Latn  0.14 0.07 0.05 0.05 0.05
qvc_Latn  0.09 0.11 0.06 0.05 0.05 sim_Latn  0.08 0.10 0.06 0.05 0.07
qve_Latn  0.09 0.13 0.06 0.05 0.33 sin_Sinh ~ 0.07 0.16 0.51 0.67 0.57
qvh_Latn  0.12 0.12 0.05 0.07 0.24 sja_Latn  0.10 0.10 0.05 0.05 0.05
qvi_Latn  0.06 0.12 0.06 0.05 0.10 sld_Latn  0.14 0.10 0.05 0.05 0.05
qvm_Latn  0.07 0.13 0.06 0.05 0.19 slk_Latn  0.09 0.48 0.69 0.64 0.56
qvn_Latn  0.07 0.10 0.05 0.06 0.14 sll_Latn  0.07 0.11 0.07 0.05 0.08
qvo_Latn  0.10 0.11 0.06 0.05 0.08 slv_Latn  0.17 0.50 0.63 0.60 0.60
qvs_Latn 0.09 0.10 0.05 0.05 0.18 sme_Latn 0.15 0.17 0.09 0.05 0.14
qvw_Latn  0.09 0.10 0.05 0.05 0.13 smk_Latn  0.10 0.10 0.08 0.06 0.27
qvz_Latn 0.09 0.10 0.06 0.05 0.13 sml_Latn  0.13 0.12 0.17 0.10 0.23
qwh_Latn  0.06 0.14 0.09 0.05 0.22 smo_Latn  0.10 0.07 0.08 0.05 0.29
qxh_Latn  0.07 0.11 0.04 0.05 0.15 smt_Latn  0.11 0.15 0.05 0.05 0.21
gxl_Latn  0.07 0.11 0.07 0.05 0.08 sna_Latn  0.07 0.11 0.11 0.08 0.18
qxn_Latn  0.07 0.15 0.07 0.05 0.23 snc_Latn  0.15 0.12 0.05 0.05 0.06
gqxo_Latn  0.09 0.11 0.05 0.06 0.23 snd_Arab  0.07 0.19 0.61 0.67 0.61
gxr_Latn  0.07 0.13 0.10 0.05 0.14 snf_Latn  0.14 0.11 0.06 0.05 0.06
rad_Latn  0.09 0.09 0.06 0.05 0.06 snn_Latn  0.14 0.17 0.09 0.05 0.05
rai_Latn  0.16 0.18 0.05 0.07 0.12 snp_Latn  0.12 0.11 0.06 0.05 0.09
rap_Latn  0.13 0.13 0.06 0.05 0.21 snw_Latn  0.09 0.11 0.05 0.05 0.05
rar_Latn  0.10 0.07 0.06 0.05 0.22 sny_Latn  0.07 0.13 0.06 0.05 0.08
rav_Deva  0.07 0.09 0.17 0.05 0.07 som_Latn  0.08 0.09 0.31 0.39 0.43
raw_Latn  0.12 0.14 0.05 0.05 0.06 sop_Latn  0.15 0.14 0.07 0.05 0.20
rej_Latn  0.12 0.25 0.20 0.18 0.31 soq_Latn  0.19 0.17 0.05 0.07 0.08
rel_Latn  0.15 0.12 0.08 0.05 0.06 sot_Latn  0.13 0.10 0.09 0.05 0.18
rgu_Latn  0.07 0.07 0.04 0.04 0.15 soy_Latn  0.16 0.07 0.05 0.05 0.05
ria_Latn  0.08 0.10 0.06 0.05 0.06 spa_Latn  0.11 0.49 0.64 0.69 0.58
rim_Latn  0.13 0.16 0.05 0.06 0.07 spl_Latn  0.07 0.12 0.05 0.05 0.05
rjs_Deva  0.07 0.13 0.26 0.22 0.28 spp_Latn  0.10 0.08 0.06 0.05 0.09
rkb_Latn  0.12 0.07 0.05 0.05 0.08 sps_Latn  0.14 0.17 0.05 0.05 0.05
rmc_Latn  0.12 0.17 0.17 0.09 0.18 spy_Latn  0.07 0.09 0.05 0.05 0.07
rmo_Latn  0.17 0.16 0.08 0.06 0.11 sqi_Latn  0.10 0.33 0.68 0.66 0.65
rmy_Latn  0.12 0.23 0.10 0.06 0.22 sri_Latn  0.07 0.13 0.04 0.05 0.06
ml_Latn  0.11 0.14 0.05 0.05 0.09 srm_Latn ~ 0.12 0.09 0.06 0.05 0.21
ron_Latn  0.11 0.50 0.62 0.65 0.53 srn_Latn  0.07 0.15 0.07 0.05 0.42
roo_Latn  0.07 0.10 0.05 0.05 0.05 srp_Latn  0.09 0.47 0.59 0.59 0.63
rop_Latn  0.20 0.20 0.06 0.05 0.20 srq_Latn  0.16 0.07 0.11 0.07 0.10
row_Latn  0.07 0.08 0.06 0.05 0.08 ssd_Latn  0.12 0.17 0.05 0.05 0.05
rro_Latn  0.08 0.11 0.07 0.05 0.05 ssg_Latn  0.13 0.06 0.11 0.06 0.06
rub_Latn  0.13 0.13 0.08 0.05 0.08 ssw_Latn  0.07 0.11 0.09 0.12 0.24
ruf_Latn 0.14 0.20 0.10 0.09 0.11 ssx_Latn  0.11 0.13 0.07 0.05 0.06
rug_Latn  0.10 0.13 0.06 0.05 0.06 stn_Latn  0.19 0.16 0.11 0.05 0.15
run_Latn ~ 0.16 0.15 0.09 0.06 0.27 stp_Latn  0.09 0.04 0.05 0.05 0.05
rus_Cyrl ~ 0.07 0.50 0.55 0.67 0.64 sua_Latn  0.18 0.13 0.05 0.05 0.05
rwo_Latn  0.07 0.10 0.07 0.06 0.05 suc_Latn  0.13 0.11 0.06 0.05 0.08
sab_Latn  0.07 0.10 0.08 0.05 0.06 sue_Latn  0.13 0.14 0.08 0.05 0.06
sag_Latn  0.11 0.19 0.10 0.06 0.20 suk_Latn  0.16 0.13 0.07 0.07 0.09
sah_Cyrl  0.07 0.12 0.08 0.05 0.30 sun_Latn  0.09 0.33 0.45 0.50 0.45
saj_Latn  0.05 0.10 0.05 0.05 0.08 sur_Latn  0.15 0.11 0.06 0.05 0.10
san_Taml  0.07 0.05 0.07 0.05 0.05 sus_Latn  0.12 0.15 0.04 0.05 0.05
sas_Latn 0.11 0.22 0.28 0.24 0.30 suz_Deva  0.07 0.10 0.11 0.06 0.27
sat_Latn  0.12 0.08 0.06 0.05 0.06 swe_Latn  0.13 0.48 0.73 0.60 0.59
sba_Latn  0.12 0.11 0.06 0.05 0.11 swg_Latn  0.21 0.27 0.25 0.34 0.35
sbd_Latn  0.12 0.09 0.06 0.06 0.05 swh_Latn  0.12 0.31 0.50 0.57 0.54
sbl_Latn  0.12 0.08 0.18 0.12 0.21 swk_Latn  0.11 0.13 0.04 0.06 0.19
sck_Deva  0.07 0.17 0.28 0.44 0.47 swp_Latn  0.08 0.10 0.08 0.06 0.06
sda_Latn  0.11 0.16 0.09 0.05 0.13 sxb_Latn  0.10 0.13 0.08 0.05 0.14
sdq_Latn  0.06 0.15 0.12 0.10 0.16 sxn_Latn  0.07 0.09 0.05 0.05 0.18
seh_Latn  0.13 0.11 0.07 0.06 0.23 syb_Latn  0.13 0.09 0.10 0.05 0.11
ses_Latn  0.14 0.09 0.07 0.05 0.07 syc_Syrc  0.07 0.05 0.05 0.08 0.10
sey_Latn  0.06 0.10 0.05 0.05 0.05 syl_Latn  0.07 0.06 0.05 0.05 0.05
sgb_Latn  0.14 0.22 0.17 0.10 0.31 szb_Latn  0.07 0.21 0.04 0.05 0.06
sgw_Ethi  0.07 0.09 0.10 0.13 0.24 tab_Cyrl  0.07 0.11 0.12 0.05 0.10
sgz_Latn  0.07 0.13 0.06 0.05 0.07 tac_Latn  0.12 0.20 0.05 0.05 0.07
shi_Latn  0.13 0.07 0.05 0.05 0.07 taj_Deva  0.07 0.13 0.14 0.09 0.20
shk_Latn  0.11 0.07 0.06 0.05 0.07 tam_Taml  0.07 0.35 0.53 0.56 0.60
shn_Mymr  0.07 0.05 0.06 0.05 0.05 tap_Latn  0.14 0.18 0.10 0.08 0.20

Table 9: Zero-shot performance of BOW, mBERT, XLM-R Base, XLM-R Large, and Glot500-m on
Taxil500.
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Language BOW mBERT XLM-RB XLM-RL Glot500-m | Language BOW mBERT XLM-RB XLM-RL Glot500-m

tag_Latn  0.10 0.11 0.07 0.05 0.06 tro_Latn  0.15 0.12 0.07 0.05 0.07
tar_Latn  0.10 0.10 0.05 0.05 0.05 trp_Latn ~ 0.10 0.08 0.06 0.05 0.05
tat_Cyrl  0.07 0.31 0.12 0.15 0.45 trq_Latn  0.05 0.12 0.05 0.05 0.07
tav_Latn  0.13 0.11 0.05 0.05 0.09 trs_Latn  0.06 0.10 0.07 0.05 0.10
taw_Latn  0.14 0.09 0.07 0.05 0.07 tsg_Latn  0.11 0.17 0.15 0.11 0.27
tbc_Latn  0.09 0.12 0.05 0.05 0.06 tsn_Latn  0.12 0.12 0.09 0.05 0.23
tbg_Latn  0.07 0.14 0.08 0.05 0.06 tsw_Latn  0.07 0.12 0.07 0.05 0.08
tbk_Latn  0.07 0.17 0.11 0.11 0.27 tsz_Latn ~ 0.08 0.10 0.08 0.05 0.14
tbl_Latn  0.12 0.12 0.12 0.05 0.06 ttc_Latn  0.14 0.20 0.10 0.05 0.09
tbo_Latn  0.12 0.13 0.10 0.05 0.05 tte_Latn  0.07 0.07 0.08 0.05 0.05
tbw_Latn  0.11 0.15 0.08 0.06 0.25 ttq_Latn ~ 0.09 0.09 0.07 0.06 0.10
tby_Latn  0.14 0.12 0.06 0.05 0.12 ttr_Cyrl 0.07 0.31 0.18 0.13 0.42
tbz_Latn  0.07 0.09 0.05 0.05 0.05 tuc_Latn  0.18 0.10 0.05 0.05 0.05
tca_Latn  0.07 0.07 0.05 0.05 0.07 tue_Latn  0.07 0.10 0.04 0.05 0.05
tcc_Latn  0.09 0.10 0.05 0.05 0.05 tuf Latn  0.11 0.13 0.10 0.05 0.06
tes_Latn  0.21 0.19 0.11 0.06 0.21 tui_Latn ~ 0.17 0.14 0.08 0.05 0.07
tcz_Latn  0.12 0.11 0.09 0.05 0.05 tuk_Latn  0.11 0.11 0.22 0.22 0.44
tdt_Latn  0.15 0.15 0.09 0.05 0.36 tul_Latn  0.12 0.18 0.05 0.05 0.05
ted_Latn  0.10 0.09 0.05 0.05 0.05 tum_Latn  0.13 0.22 0.10 0.07 0.21
tee_Latn  0.06 0.07 0.06 0.05 0.14 tuo_Latn  0.12 0.09 0.04 0.05 0.08
tel_Telu  0.07 0.30 0.60 0.67 0.67 tur_Latn  0.11 0.29 0.68 0.68 0.63
tem_Latn  0.12 0.05 0.06 0.05 0.05 tvk_Latn  0.11 0.19 0.08 0.05 0.10
teo_Latn  0.09 0.12 0.05 0.07 0.08 twb_Latn  0.10 0.12 0.05 0.05 0.06
ter_Latn  0.12 0.13 0.06 0.05 0.06 twi_Latn  0.10 0.15 0.05 0.05 0.13
tet_Latn  0.07 0.11 0.05 0.05 0.13 twu_Latn  0.12 0.15 0.16 0.05 0.07
tfr_Latn  0.12 0.14 0.08 0.05 0.05 txq_Latn  0.07 0.15 0.09 0.05 0.06
tgk_Cyrl  0.07 0.19 0.05 0.04 0.31 txu_Latn  0.13 0.17 0.07 0.05 0.05
tgl_ Latn  0.13 0.29 0.47 0.55 0.55 tyv_Cyrl  0.07 0.12 0.19 0.18 0.44
tgo_Latn  0.09 0.14 0.05 0.05 0.05 tzh_Latn  0.08 0.10 0.09 0.05 0.22
tgp_Latn  0.15 0.21 0.08 0.09 0.09 tzj_Latn  0.13 0.15 0.09 0.06 0.21
tha_Thai  0.07 0.08 0.56 0.60 0.56 tzo_Latn  0.08 0.11 0.07 0.05 0.30
thk_Latn  0.16 0.10 0.04 0.05 0.05 ubr_Latn  0.15 0.13 0.06 0.05 0.10
thl_Deva  0.07 0.24 0.34 0.44 0.45 ubu_Latn  0.13 0.07 0.07 0.05 0.06
tif Latn  0.07 0.10 0.05 0.05 0.08 udm_Cyrl  0.07 0.10 0.07 0.05 0.20
tih_Latn  0.09 0.11 0.09 0.05 0.26 udu_Latn  0.19 0.11 0.05 0.05 0.08
tik_Latn  0.09 0.07 0.05 0.05 0.05 uig_Cyrl  0.07 0.20 0.13 0.14 0.44
tim_Latn  0.07 0.11 0.06 0.05 0.06 ukr_Cyrl  0.07 0.40 0.64 0.67 0.57

tir_Ethi  0.07 0.06 0.27 0.22 0.38 upv_Latn  0.10 0.12 0.06 0.05 0.05
tiy_Latn  0.15 0.17 0.08 0.06 0.08 ura_Latn  0.07 0.08 0.05 0.05 0.05
tke_Latn  0.13 0.14 0.06 0.05 0.09 urb_Latn  0.14 0.11 0.12 0.05 0.05
tku_Latn  0.10 0.09 0.06 0.05 0.15 urd_Arab  0.07 0.37 0.49 0.67 0.56
tlb_Latn  0.09 0.13 0.07 0.05 0.09 urk_Thai  0.07 0.09 0.07 0.05 0.05
tif Latn  0.07 0.07 0.09 0.05 0.08 urt_Latn  0.06 0.13 0.08 0.05 0.06
tlh_Latn  0.22 0.29 0.24 0.13 0.29 ury_Latn  0.14 0.10 0.05 0.05 0.06
tj_Latn  0.19 0.14 0.11 0.05 0.12 usa_Latn  0.07 0.10 0.06 0.05 0.05
tmc_Latn  0.10 0.12 0.05 0.05 0.08 usp_Latn  0.18 0.11 0.07 0.05 0.24
tmd_Latn  0.07 0.08 0.05 0.05 0.05 uth_Latn  0.07 0.10 0.09 0.05 0.07
tna_Latn  0.11 0.12 0.13 0.05 0.07 uvh_Latn  0.07 0.09 0.07 0.05 0.05
tnk_Latn  0.11 0.11 0.05 0.05 0.04 uvl_Latn  0.09 0.16 0.06 0.05 0.09
tnn_Latn  0.13 0.10 0.07 0.05 0.07 uzb_Latn  0.09 0.14 0.54 0.59 0.58
tnp_Latn  0.12 0.07 0.05 0.07 0.06 uzn_Cyrl  0.07 0.14 0.07 0.10 0.47
tar_Latn ~ 0.13 0.07 0.05 0.05 0.06 vag_Latn  0.10 0.11 0.05 0.05 0.06
tob_Latn  0.07 0.12 0.04 0.05 0.09 vap_Latn  0.19 0.12 0.06 0.05 0.17
toc_Latn  0.06 0.09 0.05 0.05 0.05 var_Latn  0.10 0.13 0.07 0.05 0.06
toh_Latn  0.11 0.12 0.06 0.06 0.22 ven_Latn  0.11 0.12 0.06 0.05 0.11
toi_Latn  0.07 0.13 0.08 0.06 0.24 vid_Latn  0.11 0.14 0.11 0.09 0.09
toj_Latn  0.12 0.06 0.07 0.05 0.29 vie_Latn  0.09 0.38 0.54 0.63 0.53
ton_Latn  0.09 0.08 0.05 0.05 0.26 viv_Latn  0.07 0.11 0.06 0.05 0.05
too_Latn  0.10 0.11 0.06 0.05 0.11 vmy_Latn  0.13 0.10 0.05 0.05 0.10
top_Latn  0.08 0.13 0.05 0.05 0.17 vun_Latn  0.13 0.10 0.06 0.05 0.05
tos_Latn  0.06 0.07 0.05 0.05 0.07 vut_Latn  0.08 0.05 0.05 0.05 0.05
tpi_Latn  0.17 0.17 0.09 0.06 0.31 waj_Latn  0.10 0.08 0.06 0.05 0.06
tpm_Latn  0.14 0.12 0.06 0.05 0.06 wal_Latn  0.15 0.10 0.06 0.06 0.13
tpp_Latn  0.13 0.15 0.06 0.05 0.10 wap_Latn  0.11 0.11 0.06 0.05 0.06
tpt_Latn  0.14 0.07 0.09 0.05 0.15 war_Latn  0.11 0.16 0.15 0.14 0.37
tpz_Latn  0.12 0.11 0.06 0.05 0.06 way_Latn  0.10 0.12 0.07 0.05 0.05
tgb_Latn  0.07 0.11 0.08 0.05 0.05 wba_Latn  0.09 0.10 0.08 0.06 0.11
tqo_Latn  0.12 0.08 0.06 0.05 0.05 wbm_Latn  0.09 0.13 0.06 0.05 0.09
trc_Latn  0.05 0.14 0.05 0.05 0.07 wbp_Latn  0.07 0.07 0.06 0.05 0.05
trn_Latn  0.12 0.15 0.06 0.06 0.05 wea_Latn  0.07 0.14 0.05 0.05 0.08

Table 10: Zero-shot performance of BOW, mBERT, XLM-R Base, XLM-R Large, and Glot500-m on
Taxil500.
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Language BOW mBERT XLM-RB XLM-RL Glot500-m ‘ Language BOW mBERT XLM-RB XLM-RL Glot500-m

wer_Latn  0.09 0.15 0.05 0.05 0.05 zac_Latn  0.12 0.20 0.09 0.09 0.18
whk_Latn  0.11 0.17 0.07 0.05 0.11 zad_Latn  0.15 0.10 0.04 0.05 0.05
wim_Latn  0.07 0.08 0.06 0.05 0.08 zae_Latn  0.14 0.13 0.10 0.05 0.06
wiu_Latn  0.12 0.13 0.05 0.06 0.05 zai_Latn  0.08 0.21 0.13 0.09 0.25
wmw_Latn  0.14 0.16 0.23 0.31 0.41 zam_Latn  0.09 0.16 0.07 0.05 0.13
wnc_Latn  0.07 0.12 0.07 0.06 0.05 zao_Latn  0.14 0.09 0.06 0.05 0.06
wnu_Latn  0.11 0.13 0.05 0.05 0.05 zar_Latn  0.11 0.17 0.06 0.05 0.08
wob_Latn  0.11 0.06 0.05 0.05 0.05 zas_Latn  0.07 0.16 0.07 0.06 0.13
wol_Latn  0.16 0.12 0.07 0.05 0.07 zat_Latn  0.13 0.11 0.11 0.06 0.13
wos_Latn  0.16 0.10 0.08 0.05 0.06 zav_Latn  0.07 0.06 0.05 0.05 0.06
wrs_Latn ~ 0.15 0.10 0.06 0.05 0.05 zaw_Latn  0.07 0.06 0.06 0.05 0.07
wsg_Telu  0.07 0.09 0.13 0.08 0.07 zca_Latn  0.21 0.14 0.18 0.06 0.21
wsk_Latn  0.12 0.15 0.08 0.05 0.10 zho_Hani  0.07 0.39 0.63 0.63 0.59
wuv_Latn  0.18 0.09 0.09 0.05 0.06 zia_Latn  0.14 0.11 0.06 0.05 0.06
wwa_Latn  0.16 0.08 0.05 0.06 0.05 ziw_Latn  0.13 0.17 0.14 0.11 0.23
xal_Cyrl 0.07 0.12 0.08 0.05 0.14 zlm_Latn  0.07 0.47 0.68 0.71 0.62
xav_Latn  0.11 0.13 0.08 0.05 0.10 zoc_Latn  0.11 0.08 0.06 0.05 0.11
xbr_Latn  0.09 0.09 0.08 0.05 0.07 zom_Latn  0.10 0.16 0.13 0.05 0.27
xed_Latn  0.11 0.10 0.06 0.05 0.07 zos_Latn  0.15 0.16 0.05 0.06 0.14
xho_Latn  0.09 0.14 0.21 0.30 0.34 zpc_Latn  0.13 0.12 0.11 0.05 0.12
xla_Latn  0.13 0.08 0.08 0.05 0.05 zpi_Latn  0.13 0.16 0.09 0.05 0.08
xmm_Latn  0.14 0.30 0.42 0.40 0.40 zpl_Latn  0.07 0.13 0.13 0.06 0.17
xnn_Latn  0.07 0.11 0.10 0.08 0.19 zpm_Latn  0.17 0.14 0.05 0.06 0.08
xog_Latn 0.07 0.16 0.06 0.06 0.22 zpo_Latn  0.10 0.15 0.13 0.06 0.10
xon_Latn  0.06 0.17 0.05 0.05 0.05 zpq_Latn  0.07 0.10 0.06 0.05 0.09
xpe_Latn  0.08 0.11 0.05 0.05 0.06 zpt_Latn  0.11 0.11 0.10 0.05 0.16
xrb_Latn ~ 0.11 0.11 0.05 0.05 0.05 zpu_Latn  0.14 0.08 0.05 0.05 0.06
xsb_Latn  0.11 0.14 0.11 0.08 0.23 zpv_Latn  0.10 0.08 0.05 0.05 0.05
xsi_Latn 0.09 0.13 0.05 0.05 0.05 zpz_Latn  0.05 0.07 0.08 0.05 0.05
xsm_Latn ~ 0.19 0.08 0.05 0.05 0.05 zsm_Latn  0.07 0.53 0.71 0.63 0.58
xsr_Deva  0.07 0.09 0.05 0.05 0.06 zsr_Latn ~ 0.09 0.12 0.07 0.05 0.09
xsu_Latn  0.13 0.15 0.05 0.05 0.08 ztq_Latn  0.10 0.13 0.10 0.08 0.19
xtd_Latn  0.14 0.16 0.05 0.05 0.07 zty_Latn  0.11 0.06 0.09 0.05 0.12
xtm_Latn  0.07 0.15 0.06 0.06 0.08 zul_Latn  0.07 0.11 0.23 0.33 0.37
xtn_Latn ~ 0.09 0.16 0.07 0.06 0.13 zyb_Latn  0.15 0.10 0.06 0.05 0.05
xuo_Latn  0.10 0.08 0.05 0.05 0.05 zyp_Latn  0.10 0.15 0.05 0.05 0.06
yaa_Latn  0.07 0.11 0.06 0.05 0.06
yad_Latn  0.11 0.09 0.05 0.05 0.05
yal_Latn 0.15 0.13 0.06 0.05 0.07
yam_Latn  0.13 0.05 0.05 0.05 0.05
yan_Latn  0.10 0.13 0.05 0.05 0.05
yao_Latn  0.13 0.13 0.06 0.05 0.15
yap_Latn  0.13 0.14 0.07 0.05 0.22
yaq_Latn  0.16 0.16 0.07 0.05 0.06
yas_Latn  0.13 0.10 0.05 0.05 0.05
yat Latn  0.11 0.05 0.05 0.05 0.06
yaz_Latn 0.07 0.12 0.08 0.05 0.05
ybb_Latn  0.07 0.09 0.05 0.05 0.05
yby_Latn  0.07 0.08 0.07 0.07 0.05
yen_Latn - 0.10 0.09 0.05 0.05 0.05
yim_Latn  0.13 0.12 0.09 0.05 0.06
yka_Latn  0.09 0.14 0.10 0.07 0.26
yle_Latn  0.07 0.13 0.05 0.05 0.05
yli_Latn 0.11 0.17 0.09 0.05 0.10
yml_Latn  0.08 0.08 0.05 0.05 0.06
yom_Latn  0.09 0.16 0.06 0.05 0.21
yon_Latn 0.12 0.11 0.11 0.05 0.09
yor_Latn  0.11 0.14 0.10 0.05 0.10
yrb_Latn  0.19 0.10 0.11 0.05 0.06
yre_Latn  0.08 0.11 0.05 0.05 0.05
yss_Latn  0.10 0.12 0.08 0.05 0.08
yua_Latn  0.16 0.16 0.11 0.05 0.13
yue_Hani  0.07 0.40 0.60 0.60 0.56
yuj_Latn  0.14 0.08 0.09 0.06 0.07
yut_Latn  0.11 0.14 0.05 0.05 0.05
yuw_Latn  0.10 0.12 0.09 0.05 0.05
yuz_Latn  0.07 0.12 0.10 0.05 0.10
yva_Latn  0.13 0.15 0.06 0.05 0.06
zaa_Latn  0.10 0.20 0.20 0.07 0.29
zab_Latn  0.07 0.08 0.13 0.07 0.16

Table 11: Zero-shot performance of BOW, mBERT, XLM-R Base, XLM-R Large, and Glot500-m on
Taxi1500.
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Language Baseline LANGSAMP|Language

Baseline LANGSAMP |Language Baseline LANGSAMP |Language Baseline LANGSAMP

ace_Latn
agw_Latn
als_Latn
aoj_Latn
arz_Arab
aze_Latn
bar_Latn
bel_Latn
bhw_Latn
bqgc_Latn
bul_Cyrl
cac_Latn
cbk_Latn
cfm_Latn
ckb_Arab
crs_Latn
cuk_Latn
djk_Latn
dzo_Tibt
epo_Latn
fao_Latn
fin_Latn
gaa_Latn
gkp_Latn
gom_Latn
gug_Latn
gya_Latn
haw_Latn
hin_Deva
hnj_Latn
hun_Latn
ibo_Latn
ilo_Latn
ium_Latn
jav_Latn
kab_Latn
kat_Geor
khm_Khmr
kir_Cyrl
kmr_Cyrl
kpg_Latn
kss_Latn
lao_Laoo
leh_Latn
loz_Latn
lus_Latn
mai_Deva
mau_Latn
mco_Latn

43.8
31.0
54.4
15.6
15.2
73.4
322
75.4
28.4
274
79.8
10.8
54.8
344
31.2
85.6
17.0
38.0
28.4
67.4
79.8
65.4
344
13.2
332
28.2
27.6
28.0
75.6
39.6
65.6
324
53.4
20.0
554
12.2
49.6
394
69.8
42.0
42.6

41.6
46.8
46.8
46.6
52.6

6.6

49.4
38.2
54.4
18.6
15.2
75.4
34.0
79.0
30.6
29.2
80.0
11.8
56.2
38.8
32.8
84.4
17.0
38.0
33.0
65.8
78.4
66.0
40.6
14.6
36.0
31.2
32.6
30.4
74.6
46.6
69.0
31.6
54.4
23.2
52.0
134
524
43.0
70.2
40.2
48.8

6.0
47.2
45.8
45.6
53.2
56.0

34

6.4

ach_Latn
ahk_Latn
alt_Cyrl
arb_Arab
asm_Beng
bak_Cyrl
bba_Latn
bel_Cyrl
bim_Latn
bre_Latn
bum_Latn
cak_Latn
cce_Latn
che_Cyrl
cmn_Hani
csy_Latn
cym_Latn
dIn_Latn
efi_Latn
est_Latn
fas_Arab
fon_Latn
gil_Latn
gla_Latn
gor_Latn
guj_Gujr
gym_Latn
heb_Hebr
hin_Latn
hra_Latn
hus_Latn
ifa_Latn
ind_Latn
ix]_Latn
jpn_Jpan
kac_Latn
kaz_Cyrl
kia_Latn
kjb_Latn
kmr_Latn
kre_Cyrl
ksw_Mymr
lat_Latn
lhu_Latn
Itz_Latn
1zh_Hani
mal_Mlym
mbb_Latn
mdy_Ethi

37.6

3.4
53.8

9.6
59.2
58.8
26.2
70.6
314
31.8
32.8
17.8
41.8
10.2
41.4
40.2
45.6
46.6
41.6
66.4
80.2
20.2
30.0
39.0
21.8
69.8
13.6
21.6
342
43.4
14.8
26.2
78.4
13.8
65.8
22.2
69.4
24.6
234
60.2
59.8
26.2
56.6

44
63.8
59.8
51.6
22.0
21.4

40.6

3.8
57.0
11.6
59.0
62.2
31.0
69.6
42.8
30.0
35.2
16.6
45.4
11.2
40.8
49.6
43.8
514
53.6
66.0
84.2
25.2
31.6
38.0
23.0
67.6
13.0
23.0
36.2
46.4
16.2
29.0
78.6
144
67.6
27.0
70.4
28.8
26.0
60.4
62.2
28.0
58.0

42
63.2
62.4
574
29.8
30.6

acr_Latn
aka_Latn
alz_Latn
arn_Latn
ayr_Latn
bam_Latn
bbc_Latn
bem_Latn
bis_Latn
bts_Latn
bzj_Latn
caq_Latn
ceb_Latn
chk_Latn
cnh_Latn
ctd_Latn
dan_Latn
dtp_Latn
ell_Grek
eus_Latn
fij_Latn
fra_Latn
giz_Latn
gle_Latn
grc_Grek
gur_Latn
hat_Latn
hif_Latn
hmo_Latn
hrv_Latn
hye_Armn
ifb_Latn
isl_Latn
izz_Latn
kaa_Cyrl
kal_Latn
kbp_Latn
kik_Latn
kjh_Cyrl
knv_Latn
kri_Latn
kua_Latn
lav_Latn
lin_Latn
lug_Latn
mad_Latn
mam_Latn
mck_Latn
meu_Latn

17.6
41.8
36.2
18.2
37.6
38.4
60.8
51.0
452
62.4
69.8
26.0
70.4
352
38.2
44.4
724
17.0
48.2
23.8
30.0
87.4
324
41.2
44.4
17.6
76.4
332
44.2
80.4
62.8
28.6
71.0
19.6
71.2
12.6
21.8
44.4
45.6

7.0
61.4
43.0
69.8
64.6
37.2
42.6
10.2
55.6
48.8

18.6
48.4
374
23.0
46.0
44.8
58.8
54.4
50.8
62.0
70.2
29.8
70.6
43.0
43.2
50.6
71.8
17.8
49.2
24.2
31.0
872
36.4
384
47.0
18.2
74.6
34.6
57.0
79.8
65.6
28.6
71.8
22.6
75.0
16.8
26.8
48.4
50.6

8.4
62.6
43.8
71.2
71.0
40.8
44.6
10.2
53.4
52.0

afr_Latn
aln_Latn
amh_Ethi
ary_Arab
azb_Arab
ban_Latn
bei_Latn
ben_Beng
bod_Tibt
btx_Latn
cab_Latn
cat_Latn
ces_Latn
chv_Cyrl
crh_Cyrl
ctu_Latn
deu_Latn
dyu_Latn
enm_Latn
ewe_Latn
fil_Latn
fry_Latn
gkn_Latn
glv_Latn
guc_Latn
guw_Latn
hau_Latn
hil_Latn
hne_Deva
hui_Latn
iba_Latn
ikk_Latn
ita_Latn
jam_Latn
kaa_Latn
kan_Knda
kek_Latn
kin_Latn
kmm_Latn
kor_Hang
ksd_Latn
lam_Latn
I1di_Latn
lit_Latn
luo_Latn
mah_Latn
mar_Deva
mcn_Latn
mfe_Latn

74.2
70.0
44.4
11.2
55.6
33.0
12.0
534
29.6
57.2
11.6
85.4
68.2
45.0
67.2
16.6
73.8
33.0
69.4
332
77.6
47.0
20.4
37.2

36.8
57.6
74.0
71.6
19.8
70.2
30.2
76.2
61.0
32.0
50.0
16.6
56.6
33.8
60.8
314
20.4
224
67.0
42.8
30.4
68.4
342
774

72.4
70.0
51.2
13.0
59.0
33.2
11.8
554
33.6
55.8
11.8
832
67.0
54.4
70.0
16.0
74.0
40.2
69.4
34.8
77.2
44.0
24.2
38.6

8.2
45.4
59.6
79.8
73.6
22.0
71.6
46.4
76.8
59.2
37.6
52.8
18.6
60.2
38.0
64.0
41.0
22.8
22.0
66.6
42.6
33.8
71.4
40.8
774

Table 12: Top-10 accuracy of models on SR-B (Part I).
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Language Baseline LANGSAMP |Language

Baseline LANGSAMP |Language Baseline LANGSAMP|Language

Baseline LANGSAMP

mgh_Latn
miq_Latn
mos_Latn
msa_Latn
myv_Cyrl
nav_Latn
ndc_Latn
nep_Deva
nmf_Latn
nor_Latn
nya_Latn
ori_Orya
pag_Latn
pau_Latn
pis_Latn
pol_Latn
prs_Arab
qug_Latn
quz_Latn
rmy_Latn
run_Latn
san_Deva
sin_Sinh
smo_Latn
sop_Latn
srm_Latn
ssw_Latn
swh_Latn
tbz_Latn
teo_Latn
tih_Latn
toh_Latn
top_Latn
tso_Latn
tuk_Cyrl
twi_Latn
udm_Cyrl
urd_Arab
ven_Latn
wbm_Latn
yan_Latn
yor_Latn
zho_Hani

17.4
28.8
322
43.6
26.6

8.6
324
56.4
25.6
85.8
57.6
51.2
55.2
17.0
51.4
73.8
84.6
53.6
59.4
30.4
48.2
24.2
45.6
27.6
324
28.2
42.8
71.6
13.2
19.4
422
36.8

6.6
50.0
67.4
35.0
41.6
60.4
372
37.6
16.4
27.4
41.6

20.8
36.8
32.8
4.2
30.6

8.6
36.2
59.0
28.2
83.4
57.6
534
522
234
54.8
75.6
87.0
59.2
63.6
32.2
524
23.6
49.0
28.8
28.8
26.6
47.0
71.4
18.2
19.6
46.4
41.8

6.0
51.0
69.4
42.0
45.2
61.4
42.0
46.2
27.2
28.8
41.8

mgr_Latn
mkd_Cyrl
mps_Latn
mwm_Latn
mzh_Latn
nbl_Latn
nde_Latn
ngu_Latn
nnb_Latn
npi_Deva
nyn_Latn
ory_Orya
pam_Latn
pcm_Latn
pls_Latn
pon_Latn
pxm_Latn
quh_Latn
qvi_Latn
ron_Latn
rus_Cyrl
san_Latn
slk_Latn
sna_Latn
sot_Latn
srn_Latn
sun_Latn
sxn_Latn
tca_Latn
tgk_Cyrl
tir_Ethi
toi_Latn
tpi_Latn
tsz_Latn
tuk_Latn
tyv_Cyrl
uig_Arab
uzb_Cyrl
vie_Latn
wol_Latn
yao_Latn
yua_Latn
zlm_Latn

48.6
78.4
16.4
24.0
24.6
49.4
51.0
26.2
33.2
77.4
48.8
46.4
37.4
69.8
27.0
21.4
18.2
40.2
49.2
69.4
74.6

7.8
69.8
38.4
48.4
75.4
52.0
20.6
10.0
69.2
322
39.4
58.0
21.2
67.6
4.2
47.4
80.6
68.0
31.8
37.4
13.2
84.8

472
78.8
20.6
25.6
25.4
48.4
54.8
26.0
38.8
80.8
47.4
49.8
41.2
69.4
31.8
24.0
19.8
43.8
57.6
69.0
76.4

7.4
69.2
41.2
524
75.6
54.0
20.8
138
69.4
34.8
39.4
62.2
25.8
70.0
43.4
50.8
81.2
69.4
33.2
37.6
12.8
84.8

mhr_Cyrl
mlg_Latn
mri_Latn
mxv_Latn
nan_Latn
nch_Latn
ndo_Latn
nia_Latn
nno_Latn
nse_Latn
nyy_Latn
oss_Cyrl
pan_Guru
pdt_Latn
plt_Latn
por_Latn
qub_Latn
quw_Latn
rap_Latn
rop_Latn
sag_Latn
sba_Latn
slv_Latn
snd_Arab
spa_Latn
srp_Cyrl
suz_Deva
tam_Taml
tdt_Latn
tgl_Latn
tlh_Latn
toj_Latn
tpm_Latn
tuc_Latn
tum_Latn
tzh_Latn
uig_Latn
uzb_Latn
wal_Latn
xav_Latn
yap_Latn
yue_Hani
zom_Latn

37.4
60.2
45.6

7.0
13.2
21.6
41.0
25.6
76.8
48.4
234
41.4
46.2
69.4
60.2
81.8
30.6
46.2
17.0
35.8
39.6
28.0
61.2
67.2
80.8
87.2
21.0
47.0
50.0
79.6
62.0
14.8
27.4
25.6
58.4
19.0
572
70.0
35.0

3.8
15.8
17.2
39.6

43.2
61.2
55.0

7.0
13.6
21.6
44.0
28.0
75.8
51.8
24.6
56.4
45.4
66.0
60.8
81.0
35.6
50.4
17.8
41.4
45.4
29.2
60.8
65.0
81.4
85.8
22.6
50.6
53.6
78.0
66.4
12.6
23.0
324
57.0
19.8
58.8
68.2
43.4

4.0
19.6
17.2
45.0

min_Latn
mlt_Latn
mrw_Latn
mya_Mymr
naq_Latn
ncj_Latn
nds_Latn
nld_Latn
nob_Latn
nso_Latn
nzi_Latn
ote_Latn
pap_Latn
pes_Arab
poh_Latn
prk_Latn
quc_Latn
quy_Latn
rar_Latn
rug_Latn
sah_Cyrl
seh_Latn
sme_Latn
som_Latn
sqi_Latn
srp_Latn
swe_Latn
tat_Cyrl
tel_Telu
tha_Thai
tob_Latn
ton_Latn
tsn_Latn
tui_Latn
tur_Latn
tzo_Latn
ukr_Cyrl
uzn_Cyrl
war_Latn
xho_Latn
yom_Latn
zai_Latn
zsm_Latn

324
48.0
34.0
25.8
16.8
18.8
38.4
78.4
85.4
46.2
29.2
12.0
72.8
74.2
10.6
42.0
18.6
474
20.4
37.8
43.4
67.4
35.0
35.0
62.2
85.8
78.6
68.2
48.0
33.8
11.6
16.0
32.6
29.8
70.2
14.2
67.0
824
42.6
42.6
37.6
29.0
90.0

29.6
50.4
40.6
28.0
26.8
194
38.4
78.0
85.0
50.2
34.4
13.2
75.0
75.2
114
47.4
17.4
54.4
19.8
38.4
45.8
69.4
37.6
34.8
64.8
85.4
77.0
70.4
50.2
38.0
11.4
16.6
34.6
31.0
70.4
13.6
68.0
83.0
44.0
4.2
40.0
30.6
91.0

Table 13: Top-10 accuracy of models on SR-B (Part II).
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Language Baseline LANGSAMP |Language Baseline LANGSAMP |Language Baseline LANGSAMP|Language Baseline LANGSAMP
afr_Latn 77.9 80.4|amh_Ethi 47.0 52.4|ara_Arab 69.4 68.7|arz_Arab 61.8 63.9
ast_Latn 80.3 84.3|aze_Latn 82.6 84.1|bel_Cyrl 83.6 83.0|ben_Beng 72.1 74.9
bos_Latn 90.1 90.4 |bre_Latn 174 18.2|bul_Cyrl 87.5 89.2|cat_Latn 78.2 78.6
cbk_Latn 49.4 48.0|ceb_Latn 39.0 42.5|ces_Latn 75.7 73.5|cmn_Hani 87.1 87.4
csb_Latn 38.3 38.7 |cym_Latn 52.2 55.0|dan_Latn 91.7 92.9 |deu_Latn 95.5 95.7
dtp_Latn 17.0 19.3|ell_Grek 79.3 82.7|epo_Latn 71.8 74.8|est_Latn 68.2 69.9
eus_Latn 52.2 55.4|fao_Latn 77.1 75.6|fin_Latn 72.3 74.2|fra_Latn 85.3 85.2
fry_Latn 75.1 79.2|gla_Latn 38.4 38.6/gle_Latn 44.8 48.3|glg_Latn 771 76.4
gsw_Latn 58.1 63.2 heb_Hebr 714 74.9 | hin_Deva 88.1 87.3|hrv_Latn 87.9 87.5
hsb_Latn 49.7 49.7 |hun_Latn 71.5 73.2/hye_Armn 79.1 81.3|ido_Latn 54.6 55.8
ile_Latn 71.2 71.5|ina_Latn 89.2 90.7 |ind_Latn 88.1 88.9isl_Latn 84.0 84.5
ita_Latn 84.1 85.7 |jpn_Jpan 77.2 77.1|kab_Latn 10.8 11.0|kat_Geor 71.2 72.4
kaz_Cyrl 74.6 77.7|khm_Khmr 57.5 63.0|kor_Hang 80.8 81.1|kur_Latn 49.8 524
lat_Latn 39.2 42.1|lfn_Latn 55.8 56.8|lit_Latn 70.4 72.9|lvs_Latn 76.2 78.1
mal_Mlym 87.5 91.6|mar_Deva 79.8 81.6|mhr_Cyrl 27.7 33.4|mkd_Cyrl 79.6 79.4
mon_Cyrl 782 80.5|nds_Latn 71.3 72.5|nld_Latn 92.4 93.4|nno_Latn 85.5 87.4
nob_Latn 94.5 95.3|oci_Latn 46.6 44.9|pam_Latn 10.2 10.2|pes_Arab 86.7 86.9
pms_Latn 49.5 50.9|pol_Latn 84.3 83.4|por_Latn 90.2 90.7|ron_Latn 86.0 86.9
rus_Cyrl 91.6 92.1slk_Latn 77.9 78.2|slv_Latn 76.2 75.9|spa_Latn 88.6 88.3
sqi_Latn 84.1 85.2|srp_Latn 89.7 89.6|swe_Latn 89.4 89.6|swh_Latn 45.1 449
tam_Taml 50.2 45.0|tat_Cyrl 71.2 74.6|tel_Telu 72.6 74.8tgl_Latn 739 74.2
tha_Thai 754 79.2|tuk_Latn 62.1 68.0|tur_Latn 79.1 82.0|uig_Arab 64.7 68.4
ukr_Cyrl 84.9 86.5|urd_Arab 78.5 81.7|uzb_Cyrl 65.0 67.3|vie_Latn 88.9 88.8
war_Latn 22.7 25.2|wuu_Hani 79.0 82.4|xho_Latn 54.9 56.3|yid_Hebr 65.8 67.6
Table 14: Top-10 accuracy of models on SR-T.
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Language Baseline LANGSAMP |Language Baseline LANGSAMP|Language Baseline LANGSAMP|Language Baseline LANGSAMP
ace_Latn 66.3 64.2|ach_Latn 35.8 40.3|acr_Latn 442 51.0|afr_Latn 60.0 58.8
agw_Latn 51.0 56.3|ahk_Latn 8.0 6.3|aka_Latn 42.5 49.0|aln_Latn 55.3 58.1
als_Latn 56.2 58.1|alt_Cyrl 47.2 49.7 |alz_Latn 31.1 38.5|amh_Ethi 8.8 7.7
aoj_Latn 34.1 42.6|arn_Latn 40.9 44.5|ary_Arab 329 33.8|arz_Arab 35.4 40.8
asm_Beng 62.5 64.5|ayr_Latn 52.7 57.3|azb_Arab 63.5 62.3|aze_Latn 66.0 70.2
bak_Cyrl 59.7 59.9|bam_Latn 433 49.1 |ban_Latn 42.5 48.0 |bar_Latn 44.1 49.2
bba_Latn 39.4 43.4|bci_Latn 29.6 33.5|bcl_Latn 54.0 63.2|bel_Cyrl 59.7 61.4
bem_Latn 45.7 50.5|ben_Beng 61.8 66.6 bhw_Latn 44.4 54.4|bim_Latn 49.4 50.2
bis_Latn 65.8 71.7|bqc_Latn 31.6 37.7|bre_Latn 35.7 42.9|btx_Latn 529 63.9
bul_Cyrl 64.9 65.5bum_Latn 38.6 46.9 bzj_Latn 66.3 68.1|cab_Latn 229 31.1
cac_Latn 42.7 47.0|cak_Latn 51.2 55.2|caq_Latn 39.7 45.5|cat_Latn 63.4 62.2
cbk_Latn 62.0 68.8|cce_Latn 41.3 47.8|ceb_Latn 529 55.5|ces_Latn 59.7 66.8
cfm_Latn 54.5 65.6|che_Cyrl 17.3 23.2|chv_Cyrl 54.8 62.2|cmn_Hani 67.4 70.2
cnh_Latn 61.4 64.6|crh_Cyrl 60.4 64.1|crs_Latn 65.3 64.6|csy_Latn 524 64.2
ctd_Latn 52.5 59.3|ctu_Latn 50.3 51.3|cuk_Latn 39.1 43.7|cym_Latn 50.0 49.1
dan_Latn 62.0 64.2|deu_Latn 53.0 56.0|djk_Latn 46.8 55.5|dIn_Latn 47.7 61.7
dtp_Latn 50.0 51.3|dyu_Latn 46.4 57.7|dzo_Tibt 559 57.4|efi_Latn 52.1 56.9
ell_Grek 59.6 62.2/eng_Latn 74.2 76.1|enm_Latn 72.1 71.9/epo_Latn 56.0 58.9
est_Latn 56.9 56.2|eus_Latn 23.2 25.9 ewe_Latn 42.7 52.2|fao_Latn 56.6 60.2
fas_Arab 72.0 70.1|fij_Latn 437 48.9|fil_Latn 56.9 58.8|fin_Latn 57.7 59.5
fon_Latn 43.0 44.2|fra_Latn 64.7 70.4|fry_Latn 39.1 43.2|gaa_Latn 394 424
gil_Latn 40.9 44.9|giz_Latn 41.6 50.2|gkn_Latn 37.2 42.8|gkp_Latn 31.9 38.6
gla_Latn 47.8 48.8|gle_Latn 41.6 42.5|glv_Latn 37.4 44.7|gom_Latn 349 37.9
gor_Latn 42.6 50.4|guc_Latn 32.8 39.4|gug_Latn 33.7 40.9 | guj_Gujr 68.1 69.5
gur_Latn 33.7 43.3| guw_Latn 48.7 53.6|gya_Latn 40.6 39.8|gym_Latn 40.4 47.2
hat_Latn 62.5 65.2 | hau_Latn 53.8 59.1 haw_Latn 29.2 39.2 | heb_Hebr 17.9 20.8
hif_Latn 44.5 47.6 |hil_Latn 64.7 67.7 |hin_Deva 66.0 69.7 |hmo_Latn 58.4 65.5
hne_Deva 65.7 66.7|hnj_Latn 63.7 67.1|hra_Latn 50.4 56.1|hrv_Latn 62.8 68.0
hui_Latn 46.0 51.1|hun_Latn 63.7 68.4 hus_Latn 35.6 42.2 hye_Armn 69.7 71.4
iba_Latn 57.1 61.6|ibo_Latn 56.2 58.3|ifa_Latn 46.5 55.2|ifb_Latn 48.7 50.6
ikk_Latn 46.8 52.3|ilo_Latn 49.8 60.7 ind_Latn 76.1 78.3|isl_Latn 51.2 58.0
ita_Latn 63.5 66.3|ium_Latn 56.2 59.4|ix]_Latn 31.7 39.6|izz_Latn 394 48.9
jam_Latn 63.6 68.5|jav_Latn 46.2 51.6|jpn_Jpan 63.6 63.7|kaa_Cyrl 57.7 66.8
kab_Latn 23.3 30.4|kac_Latn 49.2 45.7 kal_Latn 30.0 37.2|kan_Knda 65.6 65.8
kat_Geor 59.6 57.6|kaz_Cyrl 64.3 62.4|kbp_Latn 34.5 37.4 kek_Latn 44.5 46.6
khm_Khmr 69.5 66.2 |kia_Latn 40.9 52.2 kik_Latn 404 46.7 kin_Latn 43.9 56.8
kir_Cyrl 66.5 67.7|kjb_Latn 45.4 48.5|kjh_Cyrl 49.9 55.1 kmm_Latn 46.3 57.2
kmr_Cyrl 50.1 51.6|knv_Latn 43.1 45.1 kor_Hang 70.3 72.4 kpg_Latn 63.9 65.6
kre_Cyrl 55.7 63.0 kri_Latn 58.8 64.1 ksd_Latn 53.3 53.5 kss_Latn 21.8 17.9
ksw_Mymr 47.7 50.0 | kua_Latn 41.0 45.9(lam_Latn 31.9 38.0(lao_Laoo 71.9 70.5
lat_Latn 57.0 64.0|lav_Latn 62.5 64.8|1di_Latn 26.7 34.8|leh_Latn 444 48.3
lhu_Latn 22.7 27.3|lin_Latn 47.3 55.5|lit_Latn 61.1 61.8|loz_Latn 49.2 49.8
1tz_Latn 53.3 52.1|lug_Latn 41.9 52.6(luo_Latn 36.8 44.8|1lus_Latn 47.5 54.8
I1zh_Hani 61.1 68.5|mad_Latn 59.4 63.0|mah_Latn 33.8 45.2/mai_Deva 64.1 63.4
mal_Mlym 7.1 6.1|mam_Latn 27.6 34.8 | mar_Deva 60.8 61.9|mau_Latn 6.9 5.9
mbb_Latn 522 55.2|mck_Latn 40.7 46.2|mcn_Latn 35.1 44.2|mco_Latn 219 26.2
mdy_Ethi 48.5 54.5|meu_Latn 46.9 57.9|mfe_Latn 68.4 69.9 mgh_Latn 31.2 33.6
mgr_Latn 45.9 48.4/mhr_Cyrl 40.9 41.0|min_Latn 50.3 53.7|miq_Latn 51.0 54.2
mkd_Cyrl 68.7 72.9|mlg_Latn 47.0 51.7|mlt_Latn 49.0 53.5|mos_Latn 35.8 4.6
Table 15: F scores of models on Taxil500 (Part I).
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Language Baseline LANGSAMP|Language Baseline LANGSAMP|Language Baseline LANGSAMP |Language Baseline LANGSAMP
guag guag guag guagi

mps_Latn
mwm_Latn
mzh_Latn
nbl_Latn
nde_Latn
ngu_Latn
nno_Latn
nse_Latn
nyy_Latn
oss_Cyrl
pan_Guru
pdt_Latn
plt_Latn
por_Latn
qub_Latn
quw_Latn
rap_Latn
rop_Latn
sag_Latn
sin_Sinh
smo_Latn
sop_Latn
srm_Latn
sun_Latn
sxn_Latn
tca_Latn
tgk_Cyrl
tir_Ethi
toi_Latn
tpi_Latn
tuc_Latn
tur_Latn
tzo_Latn
uzb_Latn
wal_Latn
xav_Latn
yap_Latn
yue_Hani

51.3
51.3
39.1
46.0
46.0
42.1
62.3
42.7
30.7
46.7
66.8
58.1
52.3
67.3
56.7
52.0
472
56.0
439
66.2
53.5
322
47.6
53.7
46.7
41.0
63.9
49.3
39.4
68.4
55.5
61.3
37.4
57.6
41.1
28.0
375
57.7

56.3
57.8
2.7
523
523
44.0
66.4
45.6
38.1
573
65.4
58.7
50.7
725
59.1
56.1
48.4
57.6
46.5
66.5
61.2
40.2
534
56.3
51.8
49.2
66.3
522
49.2
69.5
61.4
67.2
429
58.7
50.4
33.6
405
60.2

mri_Latn
mxv_Latn
nan_Latn
nch_Latn
ndo_Latn
nld_Latn
nob_Latn
nso_Latn
nzi_Latn
ote_Latn
pap_Latn
pes_Arab
poh_Latn
prk_Latn
quc_Latn
quy_Latn
rar_Latn
rug_Latn
sah_Cyrl
slk_Latn
sna_Latn
sot_Latn
srn_Latn
suz_Deva
tam_Taml
tdt_Latn
tgl_Latn
tlh_Latn
toj_Latn
tpm_Latn
tui_Latn
twi_Latn
udm_Cyrl
uzn_Cyrl
war_Latn
xho_Latn
yom_Latn
zai_Latn

415
14.3
25.5
40.9
45.4
61.7
59.3
53.2
34.6
35.5
65.7
70.3
47.5
55.6
50.0
70.7
45.6
50.0
58.5
59.2
395
439
63.1
57.6
722
58.6
56.9
62.2
35.7
432
44.8
40.4
53.1
64.3
433
44.5
354
385

49.2
279
32.3
46.1
50.7
61.9
60.6
524
37.6
354
66.5
69.9
49.4
56.8
54.0
71.1
53.8
554
62.8
60.9
45.4
48.1
65.7
61.0
74.3
66.6
58.8
66.2
40.2
52.8
47.5
49.2
54.0
66.7
51.1
50.1
39.5
4.5

mrw_Latn
mya_Mymr
naq_Latn
ncj_Latn
nds_Latn
nmf_Latn
nor_Latn
nya_Latn
ori_Orya
pag_Latn
pau_Latn
pis_Latn
pol_Latn
prs_Arab
qug_Latn
quz_Latn
rmy_Latn
run_Latn
sba_Latn
slv_Latn
snd_Arab
spa_Latn
srp_Latn
swe_Latn
tat_Cyrl
tel_Telu
tha_Thai
tob_Latn
ton_Latn
tsn_Latn
tuk_Latn
tyv_Cyrl
ukr_Cyrl
ven_Latn
wbm_Latn
yan_Latn
yor_Latn
zho_Hani

47.8
56.6
39.0
345
395
40.8
61.2
54.2
69.8
50.1
41.4
66.5
64.4
68.1
62.1
63.8
44.6
49.5
36.7
61.5
67.3
64.3
64.3
67.5
64.2
69.8
65.2
40.6
46.9
44.2
55.9
56.8
63.9
42.6
56.1
50.1
46.0
64.2

48.5
57.8
45.6
41.7
47.2
47.5
61.4
61.6
69.5
54.7
43.9
67.9
68.6
69.9
68.0
67.2
48.1
54.1
41.6
63.2
68.8
68.2
70.7
69.9
67.5
72.1
66.8
44.6
49.8
45.0
63.0
62.7
69.2
46.1
56.6
52.1
48.4
67.7

msa_Latn
myv_Cyrl
nav_Latn
ndc_Latn
nep_Deva
nnb_Latn
npi_Deva
nyn_Latn
ory_Orya
pam_Latn
pcm_Latn
pls_Latn
pon_Latn
pxm_Latn
quh_Latn
qvi_Latn
ron_Latn
rus_Cyrl
seh_Latn
sme_Latn
som_Latn
sqi_Latn
ssw_Latn
swh_Latn
tbz_Latn
teo_Latn
tih_Latn
toh_Latn
top_Latn
tsz_Latn
tum_Latn
tzh_Latn
urd_Arab
vie_Latn
wol_Latn
yao_Latn
yua_Latn
zlm_Latn

46.0
41.3
21.6
38.2
70.3
36.7
70.3
41.6
70.8
38.8
63.3
45.5
52.8
40.5
61.4
61.3
60.2
69.3
46.8
34.8
31.9
71.3
36.6
61.0
35.1
23.1
56.6
373
21.2
359
47.9
37.9
60.6
69.6
323
389
35.7
69.4

49.0
47.8
25.8
43.7
72.8
459
70.6
47.3
69.0
46.0
67.7
50.3
53.2
41.3
68.9
64.0
67.6
72.9
49.4
48.0
36.5
72.1
47.4
64.6
4.2
26.5
60.5
41.7
26.0
42.9
50.5
4.5
59.7
70.0
40.6
46.8
39.9
69.2

Table 16: F} scores of models on Taxil500 (Part II).
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Language Baseline LANGSAMP |Language

Baseline LANGSAMP‘Language

Baseline LANGSAMP |Language Baseline LANGSAMP

ace_Latn
aka_Latn
arb_Arab
ast_Latn
bak_Cyrl
bem_Latn
bos_Latn
ces_Latn
cym_Latn
dzo_Tibt
est_Latn
fij_Latn
fur_Latn
grn_Latn
heb_Hebr
hun_Latn
ind_Latn
jpn_Jpan
kan_Knda
kea_Latn
kir_Cyrl
kor_Hang
lin_Latn
lua_Latn
lvs_Latn
min_Latn
mri_Latn
nob_Latn
oci_Latn
pap_Latn
por_Latn
run_Latn
sat_Olck
slv_Latn
som_Latn
srp_Cyrl
swh_Latn
tel_Telu
tir_Ethi
tuk_Latn
uig_Arab
vec_Latn
xho_Latn

71.5
62.2
83.8
88.4
84.6
63.0
86.5
89.1
75.9
68.7
80.6
56.1
77.6
75.0
71.9
86.8
88.7
87.1
83.2
75.4
80.7
85.2
69.3
59.1
84.4
71.1
54.4
85.8
83.1
77.2
87.3
68.3
53.0
86.4
61.8
85.8
76.0
85.3
59.9
78.3
71.7
82.0
62.4

73.6
67.2
82.9
88.0
86.6
63.9
88.2
86.9
75.4
72.6
81.6
58.0
80.2
74.5
79.2
87.6
89.1
87.9
82.0
77.0
80.3
83.9
71.4
56.4
83.6
79.6
59.3
86.1
84.9
79.0
88.6
67.2
57.4
85.5
59.8
85.2
78.6
85.7
61.4
78.2
80.0
81.1
64.0

acm_Arab
als_Latn
ary_Arab
ayr_Latn
bam_Latn
ben_Beng
bul_Cyrl
cjk_Latn
dan_Latn
ell_Grek
eus_Latn
fin_Latn
gla_Latn
guj_Gujr
hin_Deva
hye_Armn
isl_Latn
kab_Latn
kat_Geor
khm_Khmr
kmb_Latn
lao_Laoo
lit_Latn
lug_Latn
mai_Deva
mkd_Cyrl
mya_Mymr
npi_Deva
ory_Orya
pes_Arab
prs_Arab
rus_Cyrl
scn_Latn
smo_Latn
sot_Latn
ssw_Latn
szl_Latn
tgk_Cyrl
tpi_Latn
tum_Latn
ukr_Cyrl
vie_Latn
yor_Latn

82.2
82.4
81.5
51.1
479
83.3
86.1
46.6
86.8
79.5
82.1
82.1
57.6
83.9
84.1
83.0
78.5
31.1
81.8
84.3
48.2
85.1
86.5
55.5
83.4
83.3
80.1
86.8
79.7
87.6
85.8
87.6
77.6
73.4
65.3
67.5
74.3
81.6
80.6
70.3
84.7
84.9
46.6

83.0
84.4
80.2
53.8
47.6
84.3
87.5
48.1
87.4
80.0
82.2
82.9
54.3
84.7
84.4
825
79.1
36.9
83.7
84.4
49.5
84.2
84.7
59.1
84.0
84.6
81.6
86.0
80.3
89.2
88.4
87.9
78.2
74.1
67.6
68.1
75.5
80.9
82.3
70.8
84.5
85.8
51.8

afr_Latn
amh_Ethi
arz_Arab
azb_Arab
ban_Latn
bjn_Latn
cat_Latn
ckb_Arab
deu_Latn
eng_Latn
ewe_Latn
fon_Latn
gle_Latn
hat_Latn
hne_Deva
ibo_Latn
ita_Latn
kac_Latn
kaz_Cyrl
kik_Latn
kmr_Latn
lij_Latn
Imo_Latn
luo_Latn
mal_Mlym
mlt_Latn
nld_Latn
nso_Latn
pag_Latn
plt_Latn
quy_Latn
sag_Latn
sin_Sinh
sna_Latn
spa_Latn
sun_Latn
tam_Taml
tgl_Latn
tsn_Latn
tur_Latn
umb_Latn
war_Latn
zsm_Latn

823
74.2
84.5
71.5
80.3
77.1
84.8
83.9
86.5
90.8
49.3
41.7
62.2
774
77.9
72.3
87.7
49.3
84.2
57.1
70.7
71.7
71.7
52.6
80.6
82.9
86.5
61.3
78.7
68.4
63.7
52.4
84.5
59.3
86.4
84.0
80.6
81.9
59.1
82.9
45.9
81.7
87.2

82.7
73.6
84.1
74.7
83.0
78.5
86.4
80.2
87.8
90.0
51.5
44.6
64.1
79.1
80.1
74.1
89.2
52.3
84.9
59.9
70.0
79.6
79.1
53.0
79.9
83.0
85.8
61.9
79.7
68.5
64.0
55.1
84.1
58.0
86.2
85.2
84.3
83.0
55.2
83.6
458
834
86.6

ajp_Arab
apc_Arab
asm_Beng
azj_Latn
bel_Cyrl
bod_Tibt
ceb_Latn
crh_Latn
dyu_Latn
epo_Latn
fao_Latn
fra_Latn
glg_Latn
hau_Latn
hrv_Latn
ilo_Latn
jav_Latn
kam_Latn
kbp_Latn
kin_Latn
kon_Latn
lim_Latn
1Itz_Latn
lus_Latn
mar_Deva
mos_Latn
nno_Latn
nya_Latn
pan_Guru
pol_Latn
ron_Latn
san_Deva
slk_Latn
snd_Arab
srd_Latn
swe_Latn
tat_Cyrl
tha_Thai
tso_Latn
twi_Latn
urd_Arab
wol_Latn
zul_Latn

83.4
83.9
83.6
87.0
83.7
73.5
81.8
74.0
42.6
83.8
83.7
87.9
87.8
62.7
873
75.8
80.2
49.1
45.1
69.5
65.3
74.7
76.6
65.3
84.1
449
86.6
71.1
77.4
86.4
86.4
77.9
86.1
72.1
74.0
86.6
84.0
87.4
59.3
61.4
81.3
49.2
73.8

81.8
82.9
84.2
88.0
83.4
69.2
84.6
76.2
4.5
82.2
84.9
89.6
89.0
62.1
89.0
79.6
80.3
49.5
442
70.5
69.2
75.2
79.1
67.9
82.5
46.6
86.4
72.7
79.0
86.7
84.5
77.8
87.0
76.9
75.8
87.3
85.2
88.9
61.2
68.0
81.9
52.1
73.6

Table 17: F scores of models on SIB200.
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Language Baseline LANGSAMP|Language Baseline LANGSAMP|Language Baseline LANGSAMP |Language Baseline LANGSAMP
ace_Latn 41.8 42.2|afr_Latn 76.5 77.4|als_Latn 82.4 82.4|amh_Ethi 48.9 41.0
ara_Arab 57.1 54.4|arg_Latn 78.0 82.2|arz_Arab 55.6 57.5|asm_Beng 65.8 68.1
ast_Latn 83.0 84.9|aym_Latn 459 443 |aze_Latn 63.3 66.0|bak_Cyrl 60.4 62.3
bar_Latn 68.6 70.1|bel_Cyrl 74.6 74.6 \ben_Beng 72.7 71.7|bih_Deva 56.2 55.3
bod_Tibt 18.1 38.6|bos_Latn 72.1 73.8|bre_Latn 63.3 64.3|bul_Cyrl 75.0 74.5
cat_Latn 83.3 84.1|cbk_Latn 53.8 52.5|ceb_Latn 53.8 56.7 |ces_Latn 78.6 78.7
che_Cyrl 25.3 56.5|chv_Cyrl 80.0 73.5|ckb_Arab 72.9 74.4|cos_Latn 55.6 57.0
crh_Latn 51.0 49.0|csb_Latn 58.5 60.6|cym_Latn 63.7 59.6|dan_Latn 81.1 81.6
deu_Latn 76.5 76.8|diq_Latn 55.2 54.1|div_Thaa 43.0 53.2|ell_Grek 73.2 74.1
eml_Latn 423 42.9/eng_Latn 83.7 83.3|epo_Latn 67.5 71.4|est_Latn 72.3 74.8
eus_Latn 56.4 57.0|ext_Latn 45.1 49.8|fao_Latn 71.1 69.0|fas_Arab 51.8 50.0
fin_Latn 75.0 75.2|fra_Latn 76.4 77.6|frr_Latn 55.9 54.8|fry_Latn 774 77.2
fur_Latn 55.3 55.7|gla_Latn 59.8 64.7|gle_Latn 72.8 72.9|glg_Latn 80.1 81.5
grn_Latn 56.0 55.7|guj_Gujr 54.3 58.9|hbs_Latn 62.6 63.8|heb_Hebr 49.3 50.7
hin_Deva 69.3 69.5|hrv_Latn 77.3 77.8 |hsb_Latn 73.6 73.8 |hun_Latn 76.0 77.4
hye_Armn 55.9 55.4|ibo_Latn 59.1 55.2|ido_Latn 81.9 79.7|ilo_Latn 72.7 74.7
ina_Latn 58.0 58.4|ind_Latn 64.7 62.1|isl_Latn 72.4 71.6|ita_Latn 77.9 79.2
jav_Latn 56.1 54.9|jbo_Latn 22.9 22.9|jpn_Jpan 21.3 15.3|kan_Knda 58.2 63.4
kat_Geor 67.4 67.8|kaz_Cyrl 50.8 50.9|khm_Khmr 43.2 46.9 kin_Latn 67.6 66.7
kir_Cyrl 48.4 42.3|kor_Hang 53.6 51.9|ksh_Latn 56.7 60.9|kur_Latn 62.5 65.2
lat_Latn 74.2 73.5|lav_Latn 73.2 75.2|lij_Latn 41.4 47.1(lim_Latn 66.7 67.8
lin_Latn 49.5 49.8/lit_Latn 75.3 75.0|/Imo_Latn 76.3 72.5|1tz_Latn 68.5 68.9
1zh_Hani 14.0 7.3|mal_Mlym 65.1 63.2|mar_Deva 65.2 61.7|mhr_Cyrl 59.8 61.6
min_Latn 44.2 43.4|mkd_Cyrl 76.3 76.9|mlg_Latn 59.4 57.8|mlt_Latn 64.6 74.0
mon_Cyrl 67.5 66.1|mri_Latn 50.4 46.3|msa_Latn 68.8 69.0|mwl_Latn 48.5 51.5
mya_Mymr 579 54.5|mzn_Arab 46.2 46.9 |nan_Latn 86.5 86.7|nap_Latn 62.5 62.6
nds_Latn 80.9 75.8|nep_Deva 56.5 61.0|nld_Latn 81.4 81.5|nno_Latn 76.9 76.4
nor_Latn 75.9 77.9|oci_Latn 68.2 72.6|ori_Orya 28.6 28.6|0ss_Cyrl 58.8 50.6
pan_Guru 453 46.5|pms_Latn 75.0 80.9|pnb_Arab 68.1 67.8|pol_Latn 719 77.8
por_Latn 76.8 79.8|pus_Arab 44.2 40.0|que_Latn 62.4 66.4|roh_Latn 61.7 56.9
ron_Latn 78.7 78.9|rus_Cyrl 70.3 69.5|sah_Cyrl 71.8 71.4|san_Deva 34.6 36.6
scn_Latn 65.2 69.1|sco_Latn 82.0 91.5|sgs_Latn 61.8 67.2|sin_Sinh 58.3 54.5
slk_Latn 77.0 77.7|slv_Latn 79.2 80.3|snd_Arab 43.6 41.0{som_Latn 52.8 58.9
spa_Latn 73.0 78.6|sqgi_Latn 75.6 77.1|srp_Cyrl 64.8 63.6|sun_Latn 56.3 55.6
swa_Latn 68.3 68.9|swe_Latn 70.2 68.7|sz]_Latn 67.0 70.9 |tam_Taml 55.4 59.3
tat_Cyrl 68.2 60.5 |tel_Telu 52.3 50.5|tgk_Cyrl 60.8 61.4|tgl_Latn 75.8 76.4
tha_Thai 5.0 0.9|tuk_Latn 55.5 57.1|tur_Latn 76.1 77.2|uig_Arab 50.2 47.6
ukr_Cyrl 77.2 76.4|urd_Arab 69.8 63.5|uzb_Latn 74.0 72.9|vec_Latn 69.6 65.9
vep_Latn 70.2 68.0|vie_Latn 72.3 73.2|vls_Latn 73.7 77.6|vol_Latn 56.7 61.0
war_Latn 62.8 62.8| wuu_Hani 40.8 19.4|xmf_Geor 65.3 60.8|yid_Hebr 475 58.2
yor_Latn 65.5 65.8|yue_Hani 23.5 18.4|zea_Latn 63.0 65.8|zho_Hani 24.7 18.1

Table 18: F scores of models on NER.
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Language

Baseline LANGSAMP |Language Baseline LANGSAMP |Language Baseline LANGSAMP |Language Baseline LANGSAMP

afr_Latn
ara_Arab
bre_Latn
ces_Latn
ell_Grek
fao_Latn
gla_Latn
grc_Grek
heb_Hebr
hun_Latn
isl_Latn
kaz_Cyrl
lav_Latn
mal_Mlym
nap_Latn
pem_Latn
ron_Latn
sin_Sinh
spa_Latn
tam_Taml
tha_Thai
urd_Arab

88.0
66.9
60.7
85.1
86.6
89.3
57.0
72.6
69.8
81.3
82.8
76.9
84.0
86.3
82.4
56.9
81.4
56.0
87.5
73.8
58.3
59.0

88.2
67.4
59.4
84.6
84.6
88.1
57.3
71.9
68.7
83.1
82.8
75.2
83.6
84.2
82.4
57.3
82.0
55.7
87.1
73.9
58.9
67.0

ajp_Arab
bam_Latn
bul_Cyrl
cym_Latn
eng_Latn
fas_Arab
gle_Latn
grn_Latn
hin_Deva
hye_Armn
ita_Latn
kmr_Latn
lij_Latn
mar_Deva
nds_Latn
pol_Latn
rus_Cyrl
slk_Latn
sqi_Latn
tat_Cyrl
tur_Latn
vie_Latn

71.1
41.4
88.6
66.4
96.0
71.5
64.1
20.9
69.6
84.2
88.3
74.0
77.4
81.7
77.0
84.2
89.0
84.8
76.0
70.4
71.3
68.2

68.8
43.5
87.9
64.7
95.9
72.6
64.9
20.0
72.7
84.9
88.8
73.8
76.3
77.9
779
82.7
88.4
84.8
77.4
70.8
70.7
67.5

aln_Latn
bel_Cyrl
cat_Latn
dan_Latn
est_Latn
fin_Latn
glg_Latn
gsw_Latn
hrv_Latn
hyw_Armn
jav_Latn
kor_Hang
lit_Latn
mlt_Latn
nld_Latn
por_Latn
sah_Cyrl
slv_Latn
srp_Latn
tel_Telu
uig_Arab
wol_Latn

51.9
85.9
86.5
90.3
83.7
82.2
83.0
79.2
85.8
81.6
73.6
52.7
81.5
79.4
88.3
88.2
75.7
77.2
85.4
81.7
68.4
60.9

50.6
85.1
86.1
90.7
83.9
81.7
82.1
80.3
853
81.5
72.7
51.8
80.9
79.8
88.4
87.8
71.5
76.7
85.0
80.9
67.3
59.9

amh_Ethi
ben_Beng
ceb_Latn
deu_Latn
eus_Latn
fra_Latn
glv_Latn
hbo_Hebr
hsb_Latn
ind_Latn
jpn_Jpan
lat_Latn
1zh_Hani
myv_Cyrl
nor_Latn
quc_Latn
san_Deva
sme_Latn
swe_Latn
tgl_Latn
ukr_Cyrl
xav_Latn

67.8
83.7
65.9
87.9
65.3
86.7
50.7
37.1
82.7
84.0
25.0
72.6
22.7
64.2
88.1
63.8
25.6
73.2
92.6
75.2
85.1
11.1

65.4
82.1
63.1
87.4
62.1
86.7
50.2
38.4
824
83.1
353
722
24.3
63.5
87.8
59.7
24.8
72.3
92.4
74.1
85.0

9.2

Table 19: F; scores of models on POS.
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Language English Closest donor‘Language English Closest donor‘Language English Closest donor‘Language English Closest donor

ace_Latn 63.3 60.1|ach_Latn 35.6 48.1|acr_Latn 48.8 46.7|afr_Latn 58.6 58.5
ahk_Latn 54 8.3|aka_Latn 44.9 41.2|aln_Latn 56.2 54.7|als_Latn 57.1 57.1
alz_Latn 34.1 43.0|aoj_Latn 40.9 46.2 |arb_Arab 554 55.4|arn_Latn 43.1 444
arz_Arab 33.7 40.3|asm_Beng 534 61.5|ayr_Latn 52.7 62.2|azb_Arab 61.0 61.0
bak_Cyrl 54.7 59.7|bam_Latn 48.9 55.6|ban_Latn 43.0 42.5|bar_Latn 47.8 43.3
bei_Latn 34.6 37.1|bcl_Latn 54.2 60.5 |bel_Cyrl 59.1 61.5|bem_Latn 442 494
bhw_Latn  50.2 46.9 |bim_Latn 47.3 55.1|bis_Latn 68.4 68.1|bqc_Latn 332 41.6
btx_Latn 56.7 53.8|bul_Cyrl 62.5 62.6 bum_Latn 39.6 42.2|bzj_Latn 65.7 60.3
cac_Latn 43.8 46.0 |cak_Latn 51.0 57.9|caq_Latn 42.7 51.0|cat_Latn 61.2 62.3
cce_Latn 43.8 38.0|ceb_Latn 49.8 49.1 |ces_Latn 63.3 63.7|cfm_Latn 58.3 57.1
chk_Latn 42.8 38.9|chv_Cyrl 60.3 64.3|ckb_Arab 58.3 67.0|cmn_Hani 60.8 73.0
crh_Cyrl 61.4 67.7 |crs_Latn 62.3 63.5|csy_Latn 58.3 56.7|ctd_Latn 56.6 55.8
cuk_Latn 39.1 40.8|cym_Latn 51.9 46.0|dan_Latn 58.1 54.0|deu_Latn 51.5 51.5
din_Latn 54.4 54.4|dtp_Latn 51.5 51.6|dyu_Latn 55.6 48.2|dzo_Tibt 50.6 58.1
ell_Grek 56.9 53.9|eng_Latn 78.0 78.0|enm_Latn 70.8 67.0|epo_Latn 58.3 58.3
eus_Latn 25.2 21.4|ewe_Latn 46.4 52.1|fao_Latn 56.5 64.8|fas_Arab 69.6 70.2
fil_Latn 56.7 58.7 |fin_Latn 56.4 55.7|fon_Latn 36.8 35.4|fra_Latn 66.8 66.8
gaa_Latn 36.9 47.7|gil_Latn 40.4 47.2|giz_Latn 48.4 48.5|gkn_Latn 40.0 34.1
gla_Latn 45.6 45.6|gle_Latn 41.8 45.1|glv_Latn 37.3 48.7|gom_Latn 34.8 41.6
guc_Latn 39.6 37.6|gug_Latn 39.0 46.0 |guj_Gujr 67.1 70.4|gur_Latn 37.0 44.2
gya_Latn 39.6 41.8|gym_Latn 454 52.9 hat_Latn 63.0 60.0|hau_Latn 54.0 59.6
heb_Hebr  16.7 15.2|hif_Latn 424 53.6 |hil_Latn 63.7 61.6|hin_Deva 64.8 64.8
hne_Deva 64.1 67.5|hnj_Latn 61.5 63.2|hra_Latn 48.2 53.1|hrv_Latn 62.7 60.7
hun_Latn 65.2 65.9 hus_Latn 37.6 40.7 |hye_Armn 67.2 69.3|iba_Latn 57.9 59.2
ifa_Latn 49.7 51.5|ifb_Latn 48.3 48.1|ikk_Latn 46.6 52.5|ilo_Latn 58.8 55.7
isl_Latn 53.5 61.2|ita_Latn 62.8 67.1|ium_Latn 514 58.0|ix]_Latn 36.6 38.2
jam_Latn 66.1 61.0|jav_Latn 439 47.6 |jpn_Jpan 58.6 58.6|kaa_Latn 57.7 62.6
kac_Latn 44.5 47.3 |kal_Latn 31.5 34.5 kan_Knda 60.6 67.5|kat_Geor 55.2 62.2
kbp_Latn 349 39.5 |kek_Latn 41.5 40.3 |khm_Khmr  64.7 64.7|kia_Latn 48.0 51.7
kin_Latn 472 52.5kir_Cyrl 61.1 64.7 kjb_Latn 44.7 48.1|kjh_Cyrl 52.3 51.1
kmr_Cyrl 45.5 53.1 knv_Latn 42.6 40.5 |kor_Hang 69.8 71.3|kpg_Latn 64.1 57.4
kri_Latn 63.2 56.0|ksd_Latn 54.2 54.4 kss_Latn 16.2 21.6|ksw_Mymr  50.4 50.3
lam_Latn 34.7 35.6|lao_Laoo 69.1 72.7 |lat_Latn 57.2 62.9|lav_Latn 60.4 57.7
leh_Latn 43.5 37.2|lhu_Latn 223 29.0 |lin_Latn 47.1 54.7|lit_Latn 58.3 59.7
1tz_Latn 48.2 48.2|lug_Latn 46.1 39.0|luo_Latn 40.6 41.2|lus_Latn 51.6 51.6
mad_Latn  55.3 63.0|mah_Latn 41.6 38.3|mai_Deva 62.7 60.5|mam_Latn 339 332
mau_Latn 55 8.4|mbb_Latn  52.6 53.1\mck_Latn 419 41.2|men_Latn 37.7 39.3
mdy_Ethi  51.6 57.6|meu_Latn 54.9 55.8|mfe_Latn 66.0 66.2| mgh_Latn 30.3 331
mhr_Cyrl 36.0 38.5|min_Latn 49.9 40.7 |miq_Latn 52.2 52.2|mkd_Cyrl 71.2 70.3
mlt_Latn 50.7 50.7|mos_Latn 40.3 41.2 \mps_Latn 57.1 53.1|mri_Latn 50.9 52.6

Table 20: F} scores of LANGSAMP on Taxil500 using English and the closest donor language as source
(Part I).
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Language English Closest donor|Language English Closest donor|Language English Closest donor|Language

English Closest donor

msa_Latn 41.7 42.0) mwm_Latn 55.1 55.0/mxv_Latn 29.6 27.4|\mya_Mymr 54.4 534
mzh_Latn  39.7 45.1|nan_Latn 31.5 31.8|naq_Latn 41.7 43.7|nav_Latn 21.1 29.5
nch_Latn 44.0 36.6|ncj_Latn 38.6 39.1|ndc_Latn 34.7 36.6|nde_Latn 45.7 49.8
nds_Latn 49.6 44.0|nep_Deva 68.0 72.1|ngu_Latn 43.4 48.2|nld_Latn 61.1 53.7
nnb_Latn 40.7 46.1|nno_Latn 63.1 63.1|nob_Latn 57.2 58.2|nor_Latn 56.4 57.8
nse_Latn 45.9 48.5|nso_Latn 48.6 48.6|nya_Latn 56.0 47.4|nyn_Latn 43.0 44.1
nzi_Latn 33.0 33.8|ori_Orya 67.3 67.3|ory_Orya 66.9 70.7|0ss_Cyrl 55.5 57.5
pag_Latn 55.5 52.5|pam_Latn 42.0 37.8|pan_Guru  64.1 64.1|pap_Latn 65.6 59.8
pcm_Latn  66.1 65.9|pdt_Latn 60.0 56.5|pes_Arab 69.0 69.0|pis_Latn 64.3 65.0
plt_Latn 46.8 52.9|poh_Latn 443 45.5|pol_Latn 64.8 65.1|pon_Latn 50.5 52.2
prk_Latn 52.9 53.0|prs_Arab 69.2 70.0 | pxm_Latn 34.5 41.5|qub_Latn 51.5 56.3
qug_Latn 65.0 61.3|quh_Latn 66.7 58.8|quw_Latn 559 56.0|quy_Latn 65.5 67.7
qvi_Latn 62.0 58.5|rap_Latn 48.9 49.3|rar_Latn 48.9 51.9|rmy_Latn 454 49.1
rop_Latn 56.6 54.7|rug_Latn 53.8 55.1|run_Latn 48.0 55.2|rus_Cyrl 68.1 68.1
sah_Cyrl 55.1 57.6|sba_Latn 39.1 41.4|seh_Latn 45.0 46.7|sin_Sinh 64.1 66.9
slv_Latn 63.8 60.7|sme_Latn 42.8 37.6|smo_Latn 60.8 54.2|sna_Latn 42.6 44.9
som_Latn 33.9 35.5|sop_Latn 36.4 36.0|sot_Latn 435 45.5|spa_Latn 64.2 64.2
srm_Latn 48.1 48.4|srn_Latn 63.7 62.8|srp_Latn 64.9 65.2|ssw_Latn 43.7 37.7
suz_Deva 58.0 57.8|swe_Latn 66.8 65.3|swh_Latn 59.8 59.8|sxn_Latn 46.6 40.2
tat_Cyrl 62.2 68.2|tbz_Latn 36.4 39.5|tca_Latn 433 50.3|tdt_Latn 60.3 55.1
teo_Latn 23.7 23.1|tgk_Cyrl 60.9 60.9 |tgl_Latn 56.7 58.7|tha_Thai 63.8 63.8
tir_Ethi 50.1 50.1|tlh_Latn 65.0 65.0|tob_Latn 433 50.4 |toh_Latn 37.1 39.0
toj_Latn 36.6 34.1|ton_Latn 47.3 51.5|top_Latn 219 21.3|tpi_Latn 63.8 67.6
tsn_Latn 39.8 44.1|tsz_Latn 40.4 41.0|tuc_Latn 57.4 56.9|tui_Latn 43.7 43.7
tum_Latn  47.6 43.2|tur_Latn 62.1 62.1|twi_Latn 414 38.9|tyv_Cyrl 59.8 60.3
tzo_Latn 39.5 39.5|udm_Cyrl 49.6 49.9|ukr_Cyrl 62.4 62.2|uzb_Latn 53.5 57.7
ven_Latn 41.9 48.6|vie_Latn 62.4 65.4|wal_Latn 48.9 42.7|war_Latn 47.7 54.5
wol_Latn 37.2 33.9|xav_Latn 25.5 23.7|xho_Latn 44.9 44 4|yan_Latn 50.3 53.5
yap_Latn 42.8 42.9|yom_Latn 37.6 34.1|yor_Latn 41.8 35.4|yua_Latn 40.1 43.2
zai_Latn 42.6 41.4|zho_Hani 60.7 60.7|zIm_Latn 68.4 65.5|zom_Latn 44.6 44.4
zul_Latn 51.9 52.2

Table 21: Fy scores of LANGSAMP on Taxil500 using English and the closest donor language as source

(Part II).
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Language

English Closest donor‘Language English Closest donor‘Language English Closest donor‘Language English Closest donor

ace_Latn
als_Latn
arz_Arab
azj_Latn
bem_Latn
bul_Cyrl
ckb_Arab
dyu_Latn
est_Latn
fin_Latn
gle_Latn
hau_Latn
hun_Latn
isl_Latn
kac_Latn
kbp_Latn
kir_Cyrl
lao_Laoo
Imo_Latn
lus_Latn
min_Latn
mya_Mymr
nso_Latn
pan_Guru
por_Latn
rus_Cyrl
sin_Sinh
snd_Arab
srp_Cyrl
szl_Latn
tgl_Latn
tso_Latn
uig_Arab
vie_Latn
zho_Hans

69.9
82.3
82.1
86.5
61.1
86.3
80.0
43.6
78.9
80.9
61.5
59.3
86.6
78.0
48.9
42.8
79.3
83.4
77.0
64.8
76.7
80.5
57.6
76.4
85.3
86.8
82.7
70.4
84.8
72.4
82.1
57.3
75.5
86.2
89.6

72.4
82.3
84.4
84.0
51.4
86.6
76.8
42.4
78.1
81.5
64.4
64.2
87.5
78.3
46.6
422
80.1
82.9
78.3
64.8
79.8
78.8
57.6
76.4
86.8
86.8
82.7
70.4
85.0
72.4
81.7
60.3
75.5
83.9
89.2

acm_Arab
amh_Ethi
asm_Beng
bak_Cyrl
ben_Beng
cat_Latn
crh_Latn
dzo_Tibt
eus_Latn
fon_Latn
glg_Latn
heb_Hebr
hye_Armn
ita_Latn
kam_Latn
kea_Latn
kmb_Latn
lij_Latn
Itz_Latn
lvs_Latn
mkd_Cyrl
nld_Latn
nya_Latn
pap_Latn
prs_Arab
sag_Latn
slk_Latn
som_Latn
ssw_Latn
tam_Taml
tha_Thai
tuk_Latn
ukr_Cyrl
war_Latn
zho_Hant

80.6
72.6
83.0
84.3
83.7
85.7
76.8
68.2
78.8
40.8
87.6
76.8
81.3
86.4
45.8
73.1
46.2
76.4
76.4
83.2
83.6
85.1
69.2
76.9
85.0
51.3
85.4
58.9
64.1
81.2
85.4
78.1
84.3
80.7
88.8

814
72.6
83.0
86.5
84.0
85.2
757
59.8
80.7
38.1
87.6
80.2
80.3
87.5
48.3
73.1
42.6
74.9
76.4
83.0
82.8
86.4
70.9
78.1
85.5
50.2
85.1
61.1
65.2
81.2
85.7
78.5
83.8
81.3
88.8

afr_Latn
apc_Arab
ast_Latn
bam_Latn
bjn_Latn
ceb_Latn
cym_Latn
ell_Grek
ewe_Latn
fra_Latn
grn_Latn
hin_Deva
ibo_Latn
jav_Latn
kan_Knda
khm_Khmr
kmr_Latn
lim_Latn
lua_Latn
mai_Deva
mlt_Latn
nno_Latn
oci_Latn
pes_Arab
quy_Latn
san_Deva
slv_Latn
sot_Latn
sun_Latn
tat_Cyrl
tir_Ethi
tum_Latn
umb_Latn
wol_Latn
zsm_Latn

81.4
81.7
87.1
46.5
759
81.2
73.6
79.5
49.9
87.8
71.6
82.8
714
79.9
82.9
82.7
69.8
74.1
54.4
82.9
81.3
86.0
85.0
87.5
62.6
72.9
84.2
64.1
82.6
83.6
60.3
65.4
41.0
50.5
86.4

81.8
83.2
87.6
422
779
83.2
76.6
78.8
46.7
87.8
73.2
82.8
71.3
79.7
83.0
82.7
68.9
73.0
54.3
82.1
81.3
86.0
84.1
87.3
59.7
76.6
87.4
63.2
85.2
83.6
60.3
68.5
46.5
46.4
86.0

ajp_Arab
arb_Arab
ayr_Latn
ban_Latn
bod_Tibt
ces_Latn
dan_Latn
eng_Latn
fao_Latn
fur_Latn
guj_Gujr
hne_Deva
ilo_Latn
jpn_Jpan
kat_Geor
kik_Latn
kon_Latn
lin_Latn
lug_Latn
mal_Mlym
mos_Latn
nob_Latn
ory_Orya
plt_Latn
ron_Latn
sat_Olck
smo_Latn
spa_Latn
swe_Latn
tel_Telu
tpi_Latn
tur_Latn
urd_Arab
xho_Latn
zul_Latn

81.4
81.5
48.6
79.5
65.7
86.3
85.0
88.9
84.4
77.4
82.1
77.9
76.1
86.8
83.7
55.1
65.2
68.2
58.2
79.8
4.7
84.8
78.6
67.5
84.0
56.4
74.2
84.4
84.2
84.0
80.3
80.4
79.1
60.1
68.1

83.0
81.5
51.1
81.3
71.0
85.6
86.0
88.9
83.6
719
83.4
79.5
76.7
86.8
81.0
56.7
63.4
73.3
55.8
79.3
40.9
84.4
79.0
69.3
84.4
535
75.3
84.4
86.2
85.4
75.7
80.4
80.6
59.8
69.8

Table 22: F scores of LANGSAMP on SIB200. using English and the closest donor language as source.
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Language English Closest donor|Language English Closest donor|Language English Closest donor|Language English Closest donor
ace_Latn 41.5 56.9|afr_Latn 75.8 80.3|als_Latn 80.9 80.9|amh_Ethi 39.7 39.7
arg_Latn 82.2 88.8|arz_Arab 55.1 82.6|asm_Beng 69.0 45.9ast_Latn 84.6 85.8
aze_Latn 65.0 74.0|bak_Cyrl 62.5 72.2 |bar_Latn 68.2 62.8|bel_Cyrl 74.9 79.7
bih_Deva 56.2 67.6|bod_Tibt 352 35.7|bos_Latn 70.1 75.2|bre_Latn 63.3 66.0
cat_Latn 83.8 85.1|cbk_Latn 53.7 48.9|ceb_Latn 56.0 26.8|ces_Latn 77.9 69.6
chv_Cyrl 73.6 84.3|ckb_Arab 76.0 60.6|cos_Latn 63.0 61.9|crh_Latn 52.7 59.4
cym_Latn 61.7 62.1|dan_Latn 81.4 81.3|deu_Latn 74.6 74.6|diq_Latn 54.0 72.2
ell_Grek 71.9 72.0|eml_Latn 41.3 41.3|eng_Latn 83.5 83.5|epo_Latn 68.3 68.3
eus_Latn 60.9 65.1|ext_Latn 44.2 48.6 |fao_Latn 68.7 79.2 |fas_Arab 55.0 53.6
fra_Latn 76.5 76.5|frr_Latn 52.0 52.0|fry_Latn 74.6 73.9|fur_Latn 58.2 54.0
gle_Latn 72.6 69.6|glg_Latn 80.7 86.1|grn_Latn 55.1 59.8| guj_Gujr 61.2 61.0
heb_Hebr 52.0 52.9|hin_Deva 69.4 69.4 |hrv_Latn 77.2 79.8 |hsb_Latn 74.3 69.7
hye_Armn 53.0 62.2|ibo_Latn 58.1 58.4|ido_Latn 82.6 81.5|ilo_Latn 80.0 74.9
ind_Latn 67.6 67.6|isl_Latn 70.1 75.4|ita_Latn 78.2 79.5|jav_Latn 56.0 86.4
jpn_Jpan 22.0 22.0|kan_Knda 57.5 61.8 |kat_Geor 68.7 60.1|kaz_Cyrl 50.5 57.1
kin_Latn 69.6 67.3 |kir_Cyrl 443 60.9 kor_Hang 50.4 51.2|ksh_Latn 59.7 51.4
lat_Latn 71.9 81.4|lav_Latn 74.4 69.0|1ij_Latn 45.2 54.2|lim_Latn 69.3 61.2
lit_Latn 74.2 76.1|Imo_Latn 73.6 65.5|1tz_Latn 67.9 67.9|1zh_Hani 14.8 14.8
mar_Deva 62.5 76.6 mhr_Cyrl 60.6 72.3|min_Latn 42.6 57.5|mkd_Cyrl 722 73.1
mlt_Latn 75.9 75.9|mon_Cyrl 68.7 60.9 |mri_Latn 50.0 47.0|msa_Latn 67.6 73.0
mya_Mymr 553 56.3|mzn_Arab  43.3 47.2|nan_Latn 88.1 36.6|nap_Latn 63.0 553
nep_Deva 56.9 60.4|nld_Latn 80.8 80.0|nno_Latn 77.6 77.6|nor_Latn 779 80.4
ori_Orya 34.2 34.2|0ss_Cyrl 50.6 59.1 |pan_Guru 51.5 51.5|pms_Latn 80.9 78.4
pol_Latn 71.7 71.1|por_Latn 78.9 84.9 pus_Arab 42.6 45.3|que_Latn 70.4 55.5
ron_Latn 77.8 75.5|rus_Cyrl 67.5 67.5|sah_Cyrl 71.9 77.9|san_Deva 38.4 534
sco_Latn 86.4 84.5|sgs_Latn 66.4 69.8 |sin_Sinh 53.0 51.2|slk_Latn 76.4 55.9
snd_Arab 41.8 41.8som_Latn 57.5 56.2|spa_Latn 77.6 77.6|sqi_Latn 76.8 78.7
sun_Latn 50.8 75.1|swa_Latn 71.8 71.8|swe_Latn 70.9 65.8|sz1_Latn 70.9 70.9
tat_Cyrl 63.8 76.5|tel_Telu 48.1 49.0|tgk_Cyrl 68.4 68.4|tgl_Latn 71.9 73.7
tuk_Latn 54.4 57.3|tur_Latn 77.1 77.1|uig_Arab 47.7 62.3|ukr_Cyrl 76.6 85.3
uzb_Latn 73.2 76.0|vec_Latn 68.0 75.1|vep_Latn 72.0 63.0|vie_Latn 72.3 49.7
vol_Latn 61.0 36.5|war_Latn 64.9 56.1 |wuu_Hani 35.7 66.7 | xmf_Geor  69.3 55.7
yor_Latn 69.3 41.7|yue_Hani 25.7 73.5|zea_Latn 62.9 75.4|zho_Hani 25.2 252
Table 23: F} scores of LANGSAMP on NER using English and the closest donor language as source.

Language English Closest donor‘Language English Closest donor‘Language English Closest donor‘Language

English Closest donor

afr_Latn
bam_Latn
cat_Latn
deu_Latn
fao_Latn
gle_Latn
gsw_Latn
hsb_Latn
isl_Latn
kmr_Latn
lit_Latn
myv_Cyrl
pcm_Latn
rus_Cyrl
slv_Latn
swe_Latn
tha_Thai
vie_Latn
zho_Hani

88.5
43.0
86.8
88.2
88.7
64.6
82.7
83.7
82.7
76.6
82.1
65.9
58.2
88.7
77.6
92.7
58.3
68.4
47.4

79.5
31.2
95.8
88.2
67.5
65.5
82.7
73.4
81.2
61.6
80.7
58.4
48.1
88.7
79.0
83.2
27.5
32.4
47.4

ajp_Arab
bel_Cyrl
ceb_Latn
ell_Grek
fas_Arab
glg Latn
hbo_Hebr
hun_Latn
ita_Latn
kor_Hang
1zh_Hani
nap_Latn
pol_Latn
sah_Cyrl
sme_Latn
tam_Taml
tur_Latn
wol_Latn

71.1
86.4
66.7
84.9
72.2
83.6
38.9
82.2
88.9
52.7
24.5
82.4
84.2
74.2
74.8
74.6
71.2
61.6

419
93.8
32.5
75.5
69.1
87.8
37.4
42.0
92.4
453
24.5
70.6
89.1
74.5
60.6
74.6
71.2
57.4

aln_Latn
ben_Beng
ces_Latn
eng_Latn
fin_Latn
glv_Latn
heb_Hebr
hye_Armn
jav_Latn
lat_Latn
mal_Mlym
nds_Latn
por_Latn
san_Deva
spa_Latn
tat_Cyrl
uig_Arab
xav_Latn

534
87.5
854
96.0
82.2
51.9
67.9
85.1
75.4
72.8
86.0
79.1
87.9
25.5
87.8
724
68.2
16.7

45.1
80.2
733
96.0
75.8
57.8
69.3
84.9
78.8
74.2
52.1
34.0
92.0
32.7
87.8
70.9
483
11.2

amh_Ethi
bre_Latn
cym_Latn
est_Latn
fra_Latn
grc_Grek
hin_Deva
hyw_Armn
jpn_Jpan
lav_Latn
mar_Deva
nld_Latn
quc_Latn
sin_Sinh
sqi_Latn
tel_Telu
ukr_Cyrl
yor_Latn

66.8
61.1
65.5
84.7
85.8
71.6
77.2
83.0
33.1
83.7
84.1
88.2
63.3
56.2
77.5
80.9
85.6
62.7

66.8
62.3
60.4
77.4
85.8
71.6
712
56.8
33.1
78.4
81.7
82.2
52.6
34.4
72.7
55.9
91.7
46.5

Table 24: F} scores of LANGSAMP on POS using English and the closest donor language as source.
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