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1 Abstract (English) 

Background 

Total knee arthroplasty (TKA) is an effective treatment for patients with severe knee 

osteoarthritis. Despite continuous advances in implant design and good long-term results, 

numerous studies point out that up to 20% of patients remain dissatisfied after TKA. As one of 

the major goals of TKA is to restore the physiological knee function, it is hypothesized that the 

ability of the prosthesis to recreate the native tibiofemoral kinematics and stability plays a 

crucial role in enhancing patient satisfaction. However, the influence of different TKA designs on 

tibiofemoral kinematics and stability within individual ligament conditions remains unclear.  

Objective 

To enable the selection of the optimal implant design for individual patients within a more 

personalized approach, this dissertation primarily aimed to investigate the effects of different 

TKA designs on tibiofemoral kinematics and stability within individual ligament situations under 

highly controlled experimental conditions.  

Materials and methods 

In the first step, a new methodology was developed to accurately measure the tibiofemoral 

kinematics in human cadaveric knees using a six-degrees-of-freedom joint motion simulator. In 

the second step, the new methodology was used to apply passive and complex active loading 

profiles to thirteen fresh-frozen human cadaveric knees in the native condition and after 

implantation of symmetrical implants with and without a post-cam mechanism (PS and CR/CS). 

Finally, the constraint of different TKA designs (CR/CS, MS and PS) was investigated during 

anterior-posterior shear forces and internal-external rotation moments at different flexion 

angles.  

Results 

The new methodology allowed the accurate tracking of landmark-based femoral and tibial 

coordinate systems and their corresponding bone geometries with good control accuracy and 

kinematic reproducibility. The comparison between different TKA designs and the native 

condition during passive and complex active loading scenarios revealed that neither TKA design 

was superior in restoring the mean native kinematics. However, both TKA designs were capable 

of restoring the individual kinematic behaviour of the native knees during passive and complex 

active loading conditions. During anterior-posterior shear forces and internal-external rotation 
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moments, it was found that despite variations in ligament conditions and individual implant 

positioning, both symmetrical designs exhibited a similar anterior-posterior range of motion for 

the medial and lateral condyles, whereas the medial-stabilized implant design showed less 

anterior-posterior translation medially. 

Conclusion and outlook 

Overall, the results of this dissertation highlight the importance of individual kinematic analyses 

to select the most appropriate TKA design for a specific patient and provide valuable insights 

into the stability and kinematic performance of different TKA designs. This knowledge forms the 

basis for developing more effective and personalized treatment strategies for patients 

undergoing TKA and thereby helps to improve patient satisfaction. 
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2 Zusammenfassung (Deutsch) 

Hintergrund 

Die totale Knie Arthroplastik (TKA) ist eine wirksame Behandlung für Patienten mit schwerer 

Gonarthrose. Trotz kontinuierlicher Weiterentwicklung der Implantatdesigns und guter 

Langzeitergebnisse zeigen zahlreiche Studien, dass bis zu 20 % der Patienten nach einer TKA 

unzufrieden sind. Da die Wiederherstellung der physiologischen Kniefunktion eines der 

Hauptziele der TKA ist, wird angenommen, dass die Fähigkeit der Prothese, die native tibio-

femorale Kinematik und Stabilität nachzubilden, eine entscheidende Rolle bei der Verbesserung 

der Patientenzufriedenheit spielt. Der Einfluss unterschiedlicher TKA-Designs auf die tibio-

femorale Kinematik und Stabilität unter individuellen Bandverhältnissen ist bisher jedoch nicht 

bekannt. 

Zielsetzung 

Um die Auswahl des optimalen Implantatdesigns für einzelne Patienten in einem 

personalisierten Ansatz zu ermöglichen, zielte diese Dissertation hauptsächlich darauf ab, den 

Einfluss verschiedener TKA-Designs auf die tibio-femorale Kinematik und Stabilität bei 

individuellen Bandbedingungen unter hochkontrollierten experimentellen Bedingungen zu 

untersuchen. 

Material und Methoden 

Im ersten Schritt wurde eine neue Methodik entwickelt, um die tibio-femorale Kinematik in 

humanen Kniepräparaten mit Hilfe eines Gelenksimulators mit sechs Freiheitsgraden präzise zu 

ermitteln. Im zweiten Schritt wurde die neue Methodik angewendet, um die Kinematik von 

dreizehn humanen Kniepräparaten unter passiven und komplexen aktiven Belastungsszenarien 

im nativen Zustand und nach der Implantation von symmetrischen Implantaten mit und ohne 

Post-Cam-Mechanismus (PS und CR/CS) zu analysieren. Schließlich wurde der „Constraint“ 

verschiedener TKA-Designs (CR/CS, MS und PS) unter anterior-posterioren Scherkräften und 

internen-externen Rotationsmomenten bei verschiedenen Flexionswinkeln untersucht. 

Ergebnisse 

Die neue Methodik ermöglichte die genaue Verfolgung der landmarkenbasierten femoralen und 

tibialen Koordinatensysteme und der entsprechenden Knochengeometrien mit guter 

Regelgenauigkeit und kinematischer Reproduzierbarkeit. Der Vergleich verschiedener TKA-

Designs mit dem nativen Zustand während passiver und komplexer aktiver Belastungsszenarien 
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zeigte, dass kein TKA-Design bei der Wiederherstellung der mittleren nativen Kinematik 

überlegen war. Beide TKA-Designs waren jedoch in der Lage, das individuelle kinematische 

Verhalten der nativen Knie während passiver und komplexer aktiver Belastungsbedingungen 

wiederherzustellen. Während der Applikation anterior-posteriorer Scherkräfte und interner-

externer Rotationsmomente wurde festgestellt, dass trotz Variationen in den Bandbedingungen 

und der individuellen Implantatpositionierung beide symmetrischen Designs einen ähnlichen 

anterior-posterioren Bewegungsumfang für die medialen und lateralen Kondylen aufwiesen, 

während das medial stabilisierte Implantatdesign medial eine geringere anterior-posteriore 

Translation zeigte. 

Fazit und Ausblick 

Insgesamt unterstreichen die Ergebnisse dieser Dissertation die Bedeutung individueller 

kinematischer Analysen für die Auswahl des am besten geeigneten TKA-Designs für einen 

bestimmten Patienten und liefern wertvolle Einblicke in die Stabilität und das kinematische 

Verhalten verschiedener TKA-Designs. Dieses Wissen bildet die Grundlage, um effektive und 

personalisierte Behandlungsstrategien für Patienten, die sich einer TKA unterziehen, zu 

entwickeln und die Patientenzufriedenheit zu verbessern. 
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3 Introduction

3.1 The human knee joint

The knee is the largest joint in the human body and consists of two partial joints within a single 

joint capsule: the patellofemoral and tibiofemoral joints (1–3). In the tibiofemoral joint, the 

medial and lateral condyles of the distal femur slide on the proximal tibial plateau, creating a 

six-degrees-of-freedom motion system (Figure 1). Rotational movement consists of flexion–

-?;-6:176B (,,<+;176P(*,<+;176 (6, 16;-96(4P-?;-96(4D &9(6:4(;176(4 57=-5-6; 1: 87::1*4- 16
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gliding hinge joint (1–3, 5).  

Figure 1. The tibiofemoral joint creates a six-degrees-of-freedom motion system. Translational movement 

is possible in the medial-lateral, anterior-posterior and proximal-distal directions. Rotational movement 

consists of flexion-extension, adduction-abduction and internal-external. Adapted from (4). 

A number of ligaments and other structures allow for high mobility while providing passive 

stability to the knee joint in all directions (3, 4). The menisci compensate the femorotibial 

incongruence, cushion compressive loads, increase the joint stability and reduce friction during 

movement (3–5). Knee stability is further enhanced by the cruciate ligaments, which prevent 
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anterior and posterior displacement of the tibia, and the medial and lateral collateral ligaments, 

which provide stability against adduction and abduction as well as internal and external rotation 

(1, 3, 5). In addition, the ventral and dorsal muscle groups surrounding the knee have a 

stabilizing effect on the joint (1, 3).

3.2 Knee osteoarthritis 

Osteoarthritis (OA) is the most common degenerative disorder of the knee and one of the 

leading causes of disability (6). It affects hundreds of millions of people worldwide (7–9), with a 

prevalence of more than 30% in people over the age of 65 (10) and is characterized by the 

progressive degeneration of articular cartilage. In advanced stages, complete destruction of the 

cartilage occurs and the adjacent bone responds with the formation of osteophytes and 

subchondral sclerosis. At this point, patients experience restricted joint mobility, stiffness, and 

severe pain due to bone friction (9). Initial conservative management is targeted towards 

symptom control and may include physiotherapy and medication. If these methods do not 

sufficiently improve the patient's quality of life, joint replacement surgery may be considered 

(11, 12). 

3.3 Total knee arthroplasty 

Total knee arthroplasty (TKA) is an effective treatment for patients with end-stage knee 

osteoarthritis. The goal of TKA is to relieve pain, restore the physiological joint function, and 

consequently improve the patient's quality of life. During the procedure, the bony surfaces of 

the distal femur and the proximal tibia are replaced with metal components, and a polyethylene 

tibia inlay is typically used as a bearing that is attached to the tibial plateau. Surgeons can choose 

between different TKA designs, with varying degrees of congruence, resulting in different 

kinematics and stability (13–17) (Figure 2). The most commonly used implants are symmetrical 

designs that preserve the posterior cruciate ligament (PCL) during implantation, known as 

cruciate retaining (CR) implants (18, 19). These designs have been established for years and have 

shown promising long-term results (18, 20). Cruciate retaining/sacrificing (CR/CS) designs can 

be used with or without an intact PCL and provide stability through a steeper anterior ramp. In 

contrast, posterior-stabilized (PS) implants substitute the PCL with a post-cam mechanism. 

Medial-stabilized (MS) and medial-pivot (MP) designs are more recent innovations that have 

been increasingly used in the last few years (18–20). These designs are characterized by a higher 

conformity of the medial compartment compared to the lateral compartment to mimic the 

kinematic pattern of the healthy knee (21–24).  
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Figure 2. Illustration of different knee implant designs. (a) Medial-stabilized (MS), (b) cruciate 

retaining/sacrificing (CR/CS) and (c) posterior-stabilized (PS) femoral component and tibia inlay designs 

for a right knee (oneKNEE®, Aesculap AG, Tuttlingen, Germany). All inlay designs can be fixed to the same 

tibial component.  

Despite continuous advances in implant design and good implant survival rates (18, 20), studies 

indicate that up to 20% of patients are dissatisfied with the results of their TKA (25–32). Patients 

report persistent pain, reduced joint mobility, or unmet expectations (27, 32–34). Factors 

influencing patient satisfaction are multifaceted and range from preoperative to surgical and 

postoperative rehabilitation factors (25–30, 35). Surgical factors include the precision of surgical 

techniques and the selection of the optimal implant type and alignment strategy. As the 

fundamental objective of TKA is the restoration of physiological knee function, it is hypothesized 

that the ability of the prothesis to replicate the native tibiofemoral kinematics and stability 

enhances patient satisfaction (36, 37). Nevertheless, given the high inter-individual variability of 

the knee, selecting the most appropriate implant design and alignment strategy remains a 

challenge (16, 38). With the capabilities of modern navigation and robotic systems and the 

growing importance of personalized medicine in orthopaedics, efforts are being made to tailor 

treatments to the individual needs and characteristics of patients (37, 39). However, the 

influence of different knee prothesis designs on tibiofemoral kinematics and stability within 

individual ligamentous conditions is not yet fully understood.  

3.4 In vitro studies

Biomechanical in vitro studies using human cadaveric specimens play a central role in the 

development and optimization of knee implants. These preclinical investigations allow detailed 

analysis of the mechanical behaviour of implant designs and fixation methods under controlled 

a. b. c.
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conditions (40, 41). By using standardized testing protocols in combination with complex joint 

motion simulators, different design parameters and surgical techniques can be systematically 

assessed and compared (13, 17, 42, 43). In addition, biomechanical in vitro studies offer insights 

into the functional behaviour of the knee joint that are unattainable in vivo due to ethical 

constraints (44, 45). Furthermore, these investigations serve as a basis for the development of 

validated computer models for further simulating the in vivo situation and enable a deeper 

understanding of the complex biomechanical interactions in the knee joint (46). For this reason, 

findings from in vitro studies are essential to improve surgical outcomes after TKA. 

To date, many in vitro kinematic analyses have been performed using mechanical knee rigs, 

which use muscle forces to induce movement (13, 42, 43, 45). However, this methodology 

inherently lacks independent control over individual degrees of freedom, limiting the ability to 

accurately reproduce passive joint mechanics. In particular, scenarios without active muscle 

force contributions, such as the assessment of passive joint laxity or passive flexion as performed 

intraoperatively, cannot be precisely replicated. However, this capability is relevant to research 

questions in the field of intraoperative navigation and robotics. Furthermore, the reliance on 

muscle-driven systems limits the complexity of the applied loading conditions, typically 

restricting analyses to deep knee bend and precluding the investigation of more complex loading 

scenarios, such as level walking or stair ascent. Moreover, kinematic data acquisition in current 

methodologies is often limited to the tracking of coordinate systems, without a direct link to the 

corresponding bone geometries (13, 43, 47, 48). This indirect approach impairs detailed 

characterization of the relative position of the medial and lateral femoral condyles with respect 

to the proximal tibia and may be a potential cause for misinterpretation of normal movement. 

In addition, precise control of force application along anatomically relevant axes is 

compromised, reducing data comparability and repeatability.  

3.5 Research questions and objectives  

To enable more individual approaches and select the optimal implant design and alignment 

strategy for an individual patient to improve patient satisfaction after TKA, a more 

comprehensive understanding of the biomechanics of the native knee and the influence of 

different TKA designs is essential. Acquiring this fundamental knowledge requires investigations 

within a highly controlled environment. Therefore, the main objective of this dissertation was 

to investigate the influence of different knee prothesis designs on the tibiofemoral kinematics  

and stability of human cadaveric knees in a six-degrees-of-freedom joint motion simulator 

during various activities.  
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Given the constraints of existing methodologies used for in vitro kinematic analyses, the first 

objective of this dissertation focused on the development of a new methodology to accurately 

measure the tibiofemoral kinematics in human cadaveric knees. The first publication, entitled 

“A new methodology for the accurate measurement of tibiofemoral kinematics in human 

cadaveric knees: an evaluation of the anterior-posterior laxity pre- and post-cruciate ligament 

resection”  introduced the new workflow, validated relevant parameters and showed a potential 

application. The strength of this innovative approach is the accurate tracking of landmark-based 

femoral and tibial coordinate systems and their corresponding bone geometries within a 

controlled environment by combining a 3D measurement system and a six-degrees-of-freedom 

joint motion simulator. The 3D fitting integrated in this workflow allows for a precise and 

reproducible placement of the landmark-based coordinate systems even with a closed knee 

capsule (Figure 3) (49, 50).  

Figure 3. Illustration of the 3D fitting procedure for the femur. (a) Cadaveric femur with measuring points 

marked in green. (b) Segmented computed tomography (CT) scan shown in blue, containing a landmark-

based femoral coordinate system. (c) Cadaveric femur with 3D-fitted segmented CT scan in blue. Adapted 

from (51). 

a.

b.

c.
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Furthermore, the 3D fitting procedure enables the controlled positioning of the knee specimen 

in the joint motion simulator by aligning the landmark-based coordinate systems of the knee 

with the axes of the joint motion simulator (Figure 4). The new workflow therefore provides a 

basis for consistent force application across different specimens and tracking of the resulting 

kinematics, with the possibility to apply both passive and complex loading profiles. In addition, 

the six-degrees-of-freedom joint motion simulator demonstrated good control accuracy, as well 

as kinematic reproducibility, further validating the robustness of this approach. 

Figure 4. Experimental setup showing the knee specimen mounted on the six-degrees-of-freedom joint 

motion simulator. Adapted from (51). 

In the second publication, entitled “Kinematic patterns of different loading profiles before and 

after total knee arthroplasty: a cadaveric study”, the new workflow was used to identify 

differences in the kinematics during complex active and passive movements, in the native 

condition and with two different TKA designs. As previously stated, modern surgical navigation 

and robotic systems enable the intraoperative assessment of passive knee kinematics and 

stability and provide real-time feedback on various parameters, enabling adjustments to implant 

type, positioning, and overall alignment during surgery (37, 39, 52–61). For this reason, 
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intraoperative kinematic analysis could be used to implement a more personalized approach 

and assist the surgeon in restoring the physiological knee function by selecting the most 

appropriate implant design for each patient, as the only opportunity for adjustment is during 

surgery. However, it remains to be clarified whether passive movements can reveal kinematic 

differences between the native knee and different TKA designs (39, 55). Furthermore, it is 

necessary to understand whether there is an association between passive knee kinematics and 

knee kinematics during complex active activities of daily living. To date, it has been challenging 

to draw clear conclusions about kinematic differences between passive and complex active 

activities, primarily due to the numerous influencing factors, including the diverse methods used 

to measure kinematics during different activities (39, 52, 56). This shows the importance of a 

highly controlled environment for valid comparison between different conditions and loading 

profiles to eliminate the problem of large individual and technical differences. Therefore, passive 

flexion and stair ascent loading profiles were applied to thirteen cadaveric knees in the native 

condition and after implantation of two different TKA designs to determine which design better 

replicates the native kinematics of the knee and whether the kinematic patterns of passive and 

complex active loading scenarios lead to the same choice of implant design.  

As instability is one of the main causes for revision after total knee arthroplasty (18, 19, 62, 63), 

it is important to focus not only on kinematics but also ensure adequate stability while selecting 

the most appropriate implant design to restore physiological knee function in a more 

personalized approach. For this reason, the surgeon needs to understand how much stability a 

particular implant design provides at different flexion angles. To accurately compare the 

anterior-posterior constraints of different implant designs, a highly controlled environment and 

precise force application are essential. Moreover, it is important to evaluate not only the implant 

itself but also its behaviour under clinically relevant conditions imposed by the surrounding 

ligament structures. However, in vivo studies do not allow for the comparative evaluation of 

different implant designs within the same ligamentous situation under controlled force 

application (35, 55, 64–70). Therefore, the workflow developed within this dissertation was used 

to characterize the constraint of three different TKA designs during anterior–posterior shear 

forces and internal–external rotation moments at various flexion angles in thirteen human 

cadaveric knees, what resulted in the third publication, entitled “Constraint of different knee 

implant designs under anterior5-,/0%.(,. /'%". &,.#%/ "+$ (+0%.+")5%30%.+") .,0"1,+ *,*%+0/

in human cadaveric knees”. 
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3.6 Conclusion 

This dissertation aimed to provide a better understanding of the influence of different knee 

prothesis designs on the tibiofemoral kinematics and stability of human cadaveric knees in a six-

degrees-of-freedom joint motion simulator during various activities. To this end, a new 

methodology was developed to accurately measure tibiofemoral kinematics in human cadaveric 

knees by tracking the relative positions of landmark-based femoral and tibial coordinate systems 

and their corresponding bone geometries. This methodology has been used to investigate the 

kinematics during passive and complex active loading scenarios as well as the constraint of 

different implant designs within individual ligament situations under highly controlled 

experimental conditions. The results highlight the importance of individual kinematic analyses 

to select the most appropriate TKA design for each patient and help to understand how much 

stability a particular implant design provides at different flexion angles, thereby providing a basis 

for further investigations towards a more personalized approach to address the specific needs 

of individual patients and improve surgical outcomes after TKA. 
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5 Additional content 

The new methodology developed within this dissertation allows the exploration of additional 

aspects, beyond those covered in the three publications of this thesis, to gain a more 

comprehensive understanding of the biomechanics of the native knee. In order to highlight the 

advantages and importance of the new methodology, some of these aspects are briefly 

presented in the following sections. 

5.1 Additional content I: Tibiofemoral gaps of human cadaveric knees 

before and after sacrificing both cruciate ligaments 

Presented at the congress of the ‘European Society of Biomechanics’ in Maastricht, 2023 (71). 

Introduction 

Implant alignment and the resulting knee stability are crucial factors that affect short- and long-

term outcomes of total knee arthroplasty (TKA) (72). While the goal of gap balancing is to create 

equal and symmetric flexion and extension gaps to obtain correct soft tissue balance, it was 

shown that gaps in the native knee are neither equal nor symmetric through the arc of flexion 

(73). However, tibiofemoral gaps of native knees are so far measured after tibial-cut and 

resection of the anterior cruciate ligament (ACL), while the “true” native gaps are mostly 

unknown. Therefore, the objective of this study was to quantify the tibiofemoral gaps of native 

knees at different flexion angles prior to tibia and ACL resection and to investigate changes after 

sacrificing both cruciate ligaments. 

Materials and methods 

Eleven fresh-frozen human cadaveric knees were tested on a six-degrees-of-freedom joint 

motion simulator (Advanced Mechanical Technologies Inc., Watertown, USA) by applying 100 N 

distraction force for 25 s at different flexion angles (0°, 30°, 45°, 60° and 90°) and different stages 

of resection (native knee and after resection of the cruciate ligaments) with all other 

forces/moments maintained at 0 N/Nm. Before testing, femur and tibia of each specimen 

underwent a complex 3D fitting process (ARAMIS 12M, Carl Zeiss GOM Metrology GmbH, 

Braunschweig, Germany) using segmented CT scans containing landmark-based femoral and 

tibial coordinate systems (Figure 5a). During testing, the relative position of femoral and tibial 

coordinate systems was tracked by the joint motion simulator. This allowed subsequent 

positioning of the segmented CT scans relative to each other to measure the tibiofemoral gaps 
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medially and laterally along the mechanical axis of the tibia (Figure 5b). Measured gaps were 

normalized to the native medial gaps at 0° flexion to enable comparison of the specimens. Mean 

standardized gaps and standard deviations were calculated across the eleven specimens. 

Figure 5. (a) Specimen with 3D fitted segmented CT scans. (b) Exemplary gap measurement within the 

positioned CT scans.

Results 

Native medial and lateral gaps were tightest in extension, increased mostly until 30° flexion, 

then only showed a small increase until 60° and a slight decrease again at 90° (Figure 6). The 

lateral native gap was larger than the medial gap throughout the complete range of flexion. 

After resection of the cruciate ligaments, the gaps increased on both, the medial and lateral 

sides. In contrast to the native knees, the gaps continued increasing until 90° flexion. 

a. b.

a.
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Figure 6. Mean standardized (a) medial and (b) lateral gaps (n = 11) and standard deviations throughout 

the range of flexion (0° to 90°) in the native (green) and cruciate sacrificed (ACL & PCL, blue) knees. 

Discussion 

It was shown that the tibiofemoral gaps in native knees, prior to tibia-cut and ACL resection, are 

neither equal nor symmetric with a markable increase until 30° flexion. This may affect knee 

stability in mid-flexion after gap balanced TKA. Furthermore, sacrificing both cruciate ligaments 

resulted in a greater flexion-extension mismatch than in native knees. 

5.2 Additional content II: Condylar motion of human cadaveric knees 

before and after sacrificing both cruciate ligaments

Presented at the congress of the ‘International Society for Technology in Arthroplasty’ in New 

York, 2023 (74). 

Introduction 

Even though knee prostheses have improved greatly and became one of the most reliable joint 

replacements, numerous studies point out that only approximately 80% of patients are satisfied 

with the results of their total knee arthroplasty (TKA) (25). It is hypothesized that recreating 

native knee kinematics is beneficial regarding patient satisfaction after TKA (36). However, it is 

not clear whether all native knees show the same kinematic pattern and would therefore be 

suitable for the same TKA design. For this reason, the aim of this study was to characterize the 

condylar motion of native knees and to investigate changes after sacrificing the anterior cruciate 

b.
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ligament (ACL) and posterior cruciate ligament (PCL), respectively, in order to identify different 

implant requirements.  

Materials and methods 

In this in vitro study, nine fresh-frozen human cadaveric knees were tested on a six-degrees-of-

freedom joint motion simulator (Advanced Mechanical Technologies Inc., Watertown, USA). The 

neutral path of motion of each knee was recorded by applying continuous knee flexion and 

extension from 0° to 90° with 50 N compression force at different stages of resection (native, 

after resection of the ACL and after resection of both cruciate ligaments), with all other 

forces/moments maintained at 0 N/Nm. Prior to each resection stage, the knee capsule was 

opened using a medial parapatellar approach and closed by sutures. In order to track the relative 

position of femur and tibia during testing, each specimen underwent a complex 3D fitting 

process (ARAMIS 12M, Carl Zeiss GOM Metrology GmbH, Braunschweig, Germany) using 

segmented CT scans containing landmark-based femoral and tibial coordinate systems. 

Knowledge of the relative positions of femoral and tibial coordinate systems and their according 

bone geometries allowed the projection of the flexion axis and medial and lateral flexion facet 

centers (MFC and LFC) onto the tibial plane at different flexion angles and therefore the 

measurement of condylar motion throughout the arc of flexion. Anterior-posterior (AP) 

translation of the MFC and LFC of each specimen was calculated and normalized to the native 

medial AP position at 0° flexion.  

Results 

AP translation of the MFC and LFC and consequently condylar motion varied between the 

specimens and stages of resection. Specimen P08, for example, showed similar AP translation of 

the MFC and the LFC, resulting in a symmetrical femoral rollback in the native condition 

(Figure 7a). Femoral rollback decreased after sacrificing the ACL and disappeared mostly after 

sacrificing both cruciate ligaments (Figure 8). In contrast, specimen P12 showed almost no 

posterior translation of the MFC, whereas a large posterior translation was observed for the LFC 

(Figure 7b). Consequently, a medial pivot was present in the native condition and was 

maintained after sacrificing the cruciate ligaments (Figure 9).  
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Figure 7. Projection of the flexion axis and medial and lateral flexion facet centers onto the tibial plane at 

different flexion angles showing condylar motion throughout the arc of flexion of (a) specimen P08 and 

(b) P12 in the native condition. The colors represent the respective flexion angle in 5° intervals, from dark 

blue (0°) through green and yellow to red (90°). 

Figure 8. AP translation of the MFC and LFC of specimen P08, normalized to the native medial AP position 

at 0° flexion. Specimen P08 showed similar AP translation of the MFC (green line) and the LFC (dashed 

green line), resulting in a femoral rollback in the native condition. Femoral rollback decreased after 

sacrificing the ACL (blue) and disappeared mostly after sacrificing both cruciate ligaments (red). 

b.a.
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Figure 9. AP translation of the MFC and LFC of specimen P12, normalized to the native medial AP position 

at 0° flexion. Specimen P12 showed almost no AP translation of the MFC (green line), whereas a large AP 

translation was observed for the LFC (dashed green line). Consequently, a medial pivot was present in the 

native condition (green) and was maintained after sacrificing the cruciate ligaments (without ACL – blue, 

without ACL/PCL – red). 

Discussion 

It was shown that the condylar motion of native knees and the effect of ACL and PCL resection 

varies greatly and therefore each knee has individual requirements regarding implant design 

and alignment to mimic native knee kinematics. A further study will investigate which implant 

designs best replicate the specimens’ native knee kinematics. 

5.3 Additional content III: Condylar motion patterns during passive knee 

flexion are not only a results of osteoarthrosis

Presented at the congress of the ‘Orthopaedic Research Society’ in Long Beach, 2024 (75). 

Introduction 

Although total knee arthroplasty (TKA) has improved considerably and became one of the most 

reliable joint replacement procedures, numerous studies indicate that approximately 20% of 
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patients are dissatisfied with the results of their TKA (25). It has been hypothesized that 

restoration of the native knee kinematics may improve patient satisfaction following TKA (36). 

However, it is not clear whether all native knees show the same kinematic behaviour and, 

therefore, would be suitable for the same type of TKA design. In addition, it is currently unknown 

whether specific kinematic patterns are the result of a particular level of osteoarthrosis. For this 

reason, the aim of this study was to characterize the condylar motion of native knees and to 

investigate whether the kinematic behavior is related to the osteoarthrosis level. 

Materials and methods 

Within the scope of this in vitro study, thirteen fresh-frozen human cadaveric knees were tested 

on a six-degrees-of-freedom joint motion simulator (Advanced Mechanical Technologies Inc., 

Watertown, USA). To record the neutral path of motion of each knee, the knees were 

continuously flexed and extended from 0° to 90° with a compressive force of 50 N, while all 

other forces/moments were maintained at 0 N/Nm. Before testing, the femur and tibia of each 

specimen underwent a complex 3D fitting process (ARAMIS 12M, Carl Zeiss GOM Metrology 

GmbH, Braunschweig, Germany) using segmented CT scans containing landmark-based femoral 

and tibial coordinate systems. Tracking the relative positions of the femoral and tibial coordinate 

systems and their corresponding bone geometries during testing allowed the projection of the 

flexion axis and the medial and lateral flexion facet centres (MFC and LFC) onto the tibial plane 

at different flexion angles. The resulting condylar motion is characterized by the anterior-

posterior (AP) translation of the MFC and the rotation of the projected flexion axis when flexing 

the knee from 0° to 90°. After testing, the knee capsule was opened using a medial parapatellar 

approach and the osteoarthrosis level was determined by an experienced knee surgeon. To 

better visualize cartilage distributions and defects on the femoral condyles, 3D scans of each 

femur were acquired and matched to the segmented CT scans. 

Results 

The condylar motion which is described by the AP translation of the MFC and the rotation of the 

projected flexion axis varied between the specimens (Figure 10). However, two main kinematic 

pattern groups could be identified. In group 1, the posterior translation of the MFC was 

associated with a small rotational movement (< 5°), resulting in a symmetrical femoral rollback 

(Figure 11a). In contrast, group 2 showed a posterior translation of the MFC combined with a 

higher rotation (> 5°, Figure 11b). This pattern can be described as medial pivoting. In two 

specimens, the medial pivot was more prominent than in the main group (P10 and P12).

Furthermore, four different osteoarthrosis levels of the femoral condyles were determined 
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based on the experienced knee surgeon’s assessment and evaluation of the 3D scans: 1. Slight 

degeneration medial and lateral (Figure 12), 2. Moderate degeneration medial and lateral, 

3. More medial than lateral degeneration, 4. More lateral than medial degeneration. Neither 

group of kinematic patterns is associated with a specific osteoarthrosis level. 

Figure 10. Posterior translation of the MFC vs. rotation of the projected flexion axis of different specimens 

during passive knee flexion from 0° to 90° based on level of osteoarthrosis and kinematic pattern group. 

Group 1 shows a symmetrical femoral rollback, whereas group 2 displays a medial pivot. 

Figure 11. Projection of the flexion axis and flexion facet centers onto the tibial plane at different flexion 

angles resulting in (a) a symmetrical femoral rollback and (b) a medial pivot. 

a. b.
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Figure 12. (a) Femoral condyles and (b) matched 3D scan of femoral condyles of specimen P11 showing 

slight degeneration medial and lateral with cartilage swelling on the medial distal condyle. The thickness 

of the cartilage layer decreases from green to red.

Discussion 

It has been shown that the condylar motion of native knees can be divided into two main groups, 

with no kinematic pattern associated with a specific level of osteoarthrosis. This suggests that 

different kinematic patterns are not only a result of osteoarthrosis. Consequently, each knee 

has unique implant design and alignment requirements to mimic native knee kinematics. 

However, severe progredient osteoarthrosis was not investigated in this study. Therefore, no 

conclusions can be drawn about the kinematic behavior in this condition. A further study will 

investigate which implant designs best replicate the specimens’ individual native knee 

kinematics. 

a. b.
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