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Abstract

The rapid advancement of large language models (LLMs) has revolutionized natural language
processing (NLP), yet the benefits of these technologies remain unevenly distributed across the
world’s languages. Most state-of-the-art models are optimised for high-resource languages, leav-
ing the majority of the world’s linguistic diversity underrepresented and underserved. This disser-
tation addresses the dual challenge of efficiency and inclusivity in multilingual NLP by develop-
ing novel, human-inspired methods that extend the reach of language technology to low-resource
settings.

The research is organised around four interrelated threads. First, the dissertation advances
prompt-based learning for multilingual prediction, introducing robust calibration techniques
and cross-lingual retrieval-augmented prompting (PARC) to mitigate label bias and enhance
zero- and few-shot performance, particularly for low-resource and typologically diverse lan-
guages. Apart from classification tasks, we extend the applications of prompt-based learning to
other multilingual task types. Decomposed prompting strategies are proposed to probe the lin-
guistic structure knowledge encoded in LLMs, while the BMIKE-53 benchmark extends prompt-
based learning to cross-lingual knowledge editing, enabling systematic evaluation across 53 lan-
guages.

Second, the work systematically investigates prompt-based fine-tuning for zero-shot cross-
lingual transfer. Through comprehensive empirical studies, it is demonstrated that prompt-
based fine-tuning consistently outperforms traditional approaches for both classification and
structured prediction tasks, including part-of-speech tagging and named entity recognition. Be-
yond modern languages, we exemplify the application of cross-lingual transfer to historical lan-
guage processing by applying a delexicalized constituency parser for Middle High German.

Third, the dissertation addresses practical constraints in low-resource NLP deployment by
introducing efficient data augmentation and parameter-efficient fine-tuning methods. The
AMD2G framework enables robust multi-domain dialogue generation in low-resource settings
through domain-agnostic training and adaptation, while GNNavi leverages graph neural net-
works to guide information flow in prompt-based fine-tuning, achieving competitive results with
minimal parameter updates.

Finally, the dissertation shifts focus to human-inspired interpretability and mechanistic
understanding of language models. By integrating psycholinguistic and neurolinguistic prob-
ing paradigms, it reveals a persistent gap between model performance and true linguistic compe-
tence, with LLMs demonstrating stronger mastery of linguistic form than meaning. Mechanistic
interpretability techniques are employed to trace and mitigate language confusion in English-
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centric LLMs, showing that targeted neuron-level interventions can robustly improve multilin-
gual reliability without sacrificing general competence.

Collectively, these contributions advance both the practical capabilities and scientific under-
standing of multilingual NLP. The dissertation demonstrates that prompt-based and parameter-
efficient methods, when combined with human-inspired analysis, can make NLP more inclu-
sive, interpretable, and robust. Looking forward, the work highlights the importance of de-
veloping culturally and socially aware language models, extending interpretability research to
cross-cultural conceptual understanding, and leveraging insights from cognitive science and neu-
roscience to inspire the next generation of human-centric multilingual NLP systems.



Zusammenfassung

Der rasante Fortschritt großer Sprachmodelle (Large Language Models, LLMs) hat das Natural
Language Processing (NLP) grundlegend revolutioniert. Dennoch sind die Vorteile dieser Tech-
nologien weltweit ungleich verteilt: Die meisten modernen Modelle sind auf ressourcenstarke
Sprachen optimiert, wodurch der Großteil der sprachlichen Vielfalt unterrepräsentiert und un-
zureichend unterstützt bleibt. Diese Dissertation adressiert die doppelte Herausforderung von
Effizienz und Inklusivität im mehrsprachigen NLP, indem neuartige, menscheninspirierte Meth-
oden entwickelt werden, die den Einsatz von Sprachtechnologie auf ressourcenarme Kontexte
ausweiten.

Die Forschung ist um vier miteinander verbundene Schwerpunkte organisiert. Erstens wer-
den promptbasierte Lernverfahren für mehrsprachige Vorhersagen weiterentwickelt. Ro-
buste Kalibrierungstechniken und sprachübergreifende, retrieval-erweiterte Prompts (PARC) wer-
den eingeführt, um Label-Bias zu mindern und die Zero- und Few-Shot-Performance insbeson-
dere für ressourcenarme und typologisch diverse Sprachen zu verbessern. Über Klassifikation-
saufgaben hinaus werden promptbasierte Methoden auf weitere mehrsprachige Aufgaben aus-
geweitet. Problem-zerlegende Prompting-Strategien dienen dazu, das in LLMs kodierte Wis-
sen über linguistische Strukturen gezielt zu untersuchen, während der BMIKE-53-Benchmark
promptbasiertes Lernen auf das cross-linguale Knowledge Editing ausweitet und eine systema-
tische Evaluation in 53 Sprachen ermöglicht.

Zweitens wird promptbasiertes Fine-Tuning für Zero-Shot-Cross-Lingual-Transfer sys-
tematisch untersucht. Unsere umfangreichen empirischen Studien zeigen, dass promptbasiertes
Fine-Tuning traditionelle Ansätze sowohl bei Klassifikations- als auch bei strukturierten Vorher-
sageaufgaben (z.B. POS-Tagging, Named Entity Recognition) konsistent übertrifft. Über mo-
derne Sprachen hinaus veranschaulichen wir die Anwendung des cross-lingualen Transfers auf
die Verarbeitung historischer Sprachen, indem wir einen delexikalisierten Konstituentenparser
für Mittelhochdeutsch anwenden.

Drittens werden praxisnahe Einschränkungen beim Einsatz von NLP in ressourcenarmen
Umgebungen adressiert, indem effiziente Methoden zur Datenaugmentation und zum para-
meter-effizienten Fine-Tuning eingeführt werden. Das AMD2G-Framework ermöglicht ro-
buste, mehr-Domänen-Dialoggenerierung in ressourcenarmen Umgebungen durch domänen-un-
abhängiges Training und Adaption, während GNNavi Graph-Neural-Networks nutzt, um den
Informationsfluss beim promptbasierten Fine-Tuning gezielt zu steuern und mit minimalen Pa-
rameteranpassungen wettbewerbsfähige Ergebnisse zu erzielen.

Schließlich richtet die Dissertation den Fokus auf menscheninspirierte Interpretierbarkeit
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und mechanistisches Verständnis von Sprachmodellen. Durch die Integration psycholin-
guistischer und neurolinguistischer Probing-Paradigmen wird eine beständige Lücke zwischen
Mo-dellleistung und tatsächlicher Sprachkompetenz aufgezeigt. Zudem wird festgestellt, dass
LLMs die linguistische Form besser beherrschen als die Bedeutung. Mechanistische Inter-
pretierbarkeitsverfahren werden eingesetzt, um Sprachverwirrung in englischzentrierten LLMs
zu analysieren und zu beheben; gezielte Interventionen auf Ebene der Neuronen verbessern dabei
die Zuverlässigkeit bei anderen Sprachen, ohne die allgemeine Kompetenz zu beeinträchtigen.

In ihrer Gesamtheit erweitert diese Dissertation sowohl die praktischen Möglichkeiten als
auch das wissenschaftliche Verständnis der multilingualen Sprachverarbeitung. Die Dissertation
zeigt, dass promptbasierte und parameter-effiziente Methoden, kombiniert mit menscheninspiri-
erter Analyse, NLP inklusiver, interpretierbarer und robuster machen können. Für die Zukunft
wird die Bedeutung der kulturellen und sozialen Sensibilität der Sprachmodelle hervorgehoben,
die Erweiterung der Interpretierbarkeitsforschung auf kulturübergreifende konzeptuelle Reprä-
sentationen angeregt und das Potenzial interdisziplinärer Ansätze aus Kognitionswissenschaft
und Neurowissenschaft für die nächste Generation menschenzentrierter, mehrsprachiger NLP-
Systeme betont.



Declaration on Writing Aids with AI Tools

In the preparation of this dissertation, artificial intelligence (AI) tools, specifically ChatGPT,
have been employed as writing aids. The use of these tools has been conducted in accordance
with academic integrity guidelines and with full transparency regarding their role in the writing
process. The following summarizes the specific ways in which AI tools have contributed to the
composition of this dissertation:

Writing Refinement Across all chapters, ChatGPT has been utilized to assist in refining gram-
mar and writing style. This includes the identification and correction of grammatical errors, the
rephrasing of sentences to avoid unnatural or ambiguous expressions, and the improvement of
word choice, including the selection of more precise and descriptive terminology where appro-
priate. All suggestions and refinements provided by ChatGPT for the purpose of writing im-
provement have been carefully and critically reviewed by the author to ensure accuracy and to
maintain alignment with the original meaning and intent of the text.

Literature Suggestions On rare occasions, a specialized version of GPT (Scholar GPT) was
used to obtain suggestions for relevant literature in specific research domains, most notably in
Chapter 2. All recommended publications were subsequently checked manually by the author to
verify their correctness, relevance, and suitability for inclusion in the dissertation.

The use of AI tools in this dissertation has been limited to the above-mentioned supportive func-
tions. At no point were AI tools used to generate original research content, analyze data, or draw
scientific conclusions. The author remains solely responsible for the originality, accuracy, and
scholarly integrity of all substantive content presented herein.



x Abstract



Contents

Abstract v

Zusammenfassung vii

1 Introduction 1
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Language Inequality and the Value of Multilingual NLP . . . . . . . . . 4
1.1.2 Benefits of Cross-Lingual Transfer Learning . . . . . . . . . . . . . . . 4
1.1.3 Efficiency and Adaptation for Low-Resource NLP . . . . . . . . . . . . 5
1.1.4 Human-Inspired and Interpretable NLP . . . . . . . . . . . . . . . . . . 5
1.1.5 A Unified Vision: From Bottlenecks to Scientific Insight . . . . . . . . . 6

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background and Related Work 13
2.1 Pre-Trained Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Language Model Development . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Word Embeddings and Deep Learning Models . . . . . . . . . . . . . . 15
2.1.3 Transformer and Language Models . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Multilingual Natural Language Processing . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Multilingual Pretrained Language Models (MPLMs) . . . . . . . . . . . 19
2.2.2 Multilinguality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Cross-Lingual Transfer Learning . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4 Language Resource Distribution . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Prompt-Based Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Human-Inspired Prompt Learning Development . . . . . . . . . . . . . . 28
2.3.2 Large Language Models and Prompt Engineering . . . . . . . . . . . . . 29
2.3.3 Advancements in Prompt-Based Learning . . . . . . . . . . . . . . . . . 30

2.4 Information Retrieval for Natural Language Processing . . . . . . . . . . . . . . 31
2.4.1 Sparse and Dense Retrieval Methods . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Sentence Transformers for Retrieval . . . . . . . . . . . . . . . . . . . . 33



xii CONTENTS

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Prompt-Based Learning for Multilingual Prediction 35
3.1 Calibration of Prompt-Based Learning . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Bias in Mask Token Prediction . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Calibration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.5 Sum-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Prompt Augmented by Cross-Lingual Retrieval for Low-Resource Languages . . 48
3.2.1 Background and Overview of PARC . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.6 Sum-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Decomposed Prompting for Multilingual Evaluation . . . . . . . . . . . . . . . . 68
3.3.1 Motivation and Research Question . . . . . . . . . . . . . . . . . . . . . 69
3.3.2 Decomposed Prompting for LLMs . . . . . . . . . . . . . . . . . . . . . 71
3.3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.5 Multilinguality Investigation . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.7 Sum-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 In-Context Learning for Cross-Lingual Knowledge Editing . . . . . . . . . . . . 83
3.4.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.2 Existing Knowledge Editing Methods . . . . . . . . . . . . . . . . . . . 86
3.4.3 BMIKE-53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.5 Multidimensional Analysis of Cross-Lingual IKE . . . . . . . . . . . . . 92
3.4.6 Language Performance Variance in Cross-Lingual IKE . . . . . . . . . . 95
3.4.7 Sum-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Prompt-Based Fine-Tuning for Zero-Shot Cross-Lingual Transfer 99
4.1 Prompt-Based Fine-Tuning vs. Vanilla Fine-Tuning . . . . . . . . . . . . . . . . 101

4.1.1 Background and Research Questions . . . . . . . . . . . . . . . . . . . . 102
4.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.1.3 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.1.5 Cross-Lingual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.1.6 Sum-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 Token-Level Prompt Decomposition Fine-Tuning . . . . . . . . . . . . . . . . . 115
4.2.1 Motivation and Introduction . . . . . . . . . . . . . . . . . . . . . . . . 116



CONTENTS xiii

4.2.2 TOPRO for Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.3 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2.5 Cross-Lingual Transfer Analysis . . . . . . . . . . . . . . . . . . . . . . 123
4.2.6 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.2.7 Sum-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 Zero-Shot Transfer for Constituency Parsing of Historical German . . . . . . . . 129
4.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.3.2 Constituency Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.3.3 Languages and Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.3.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.3.7 Sum-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Efficient NLP Methods for Low-Resource Settings 143
5.1 Data Augmentation for Low-Resource Multi-Domain Dialogue Generation . . . 145

5.1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 147
5.1.2 Multi-Domain Dialogue Generation . . . . . . . . . . . . . . . . . . . . 149
5.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.1.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.1.6 Sum-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.2 GNN-Based Parameter-Efficient Fine-Tuning . . . . . . . . . . . . . . . . . . . 159
5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.2.6 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.2.7 Further Discussion: Information Flow . . . . . . . . . . . . . . . . . . . 171
5.2.8 Sum-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6 Human-Inspired Understanding of Language Models 175
6.1 LLMs as Neuro- vs. Psycholinguistic Subjects . . . . . . . . . . . . . . . . . . . 177

6.1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 178
6.1.2 Psycholinguistic vs. Neurolinguistic Paradigm . . . . . . . . . . . . . . 180
6.1.3 Minimal Pair Probing = Minimal Pair + Diagnostic Probing . . . . . . . 182
6.1.4 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.1.7 Sum-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.2 Mechanistic Understanding of Language Confusion in English-Centric LLMs . . 194



xiv Contents

6.2.1 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . 195
6.2.2 Language Confusion and Mechanistic Interpretability . . . . . . . . . . . 197
6.2.3 Revisiting Language Confusion: Benchmark Insights . . . . . . . . . . . 199
6.2.4 Mechanistic Analysis of Language Confusion Points . . . . . . . . . . . 200
6.2.5 Mitigating Language Confusion via Neuron Editing . . . . . . . . . . . . 204
6.2.6 Sum-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7 Conclusion 209
7.1 Summary of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.2 Discussions and Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
7.3 Outlook and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Appendix 213
A Detailed PARC Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
B Experimental Details of Decomposed Prompting Work . . . . . . . . . . . . . . 217

B.1 Prompt Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
B.2 Full Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

C BMIKE-53 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
C.1 Data Entry Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
C.2 Full Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

D Detailed Results of Prompt-Based Fine-Tuning vs. Vanilla Fine-Tuning . . . . . 228
E Detailed Results for TOPRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
F Full Results of GNNAVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
G Detailed Results of Minimal Pair Probing . . . . . . . . . . . . . . . . . . . . . 236
H Full Results and Detailed Experimental Setup of the Language Confusion Study . 240

H.1 Full Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 240
H.2 Detailed Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 240



Chapter 1

Introduction

In the digital age, language technology has become a transformative force, shaping societies,
economies, and cultures worldwide. Natural language processing (NLP)—the science and engi-
neering of computationally understanding and generating human language—now powers search
engines, digital assistants, translation platforms, educational tools, and critical information sys-
tems across the globe. Despite these advances, the practical and scientific reach of NLP remains
uneven. A major catalyst for recent progress in NLP has been the development of large language
models (LLMs). These models have brought unprecedented advances, endowing systems with
remarkable fluency, generalization, and adaptability. However, while LLMs have revolutionized
the field, significant challenges persist—particularly in making these models efficient, robust, and
aligned with human needs. This is especially true for multilingual and low-resource scenarios,
where the majority of the world’s linguistic diversity remains underrepresented and underserved.
Thus, the promise of language technology is tempered by the need to ensure that its benefits are
accessible, equitable, and scientifically grounded for all languages and communities. Addressing
these challenges is central to the research presented in this dissertation.

On the one hand, the progress of language technology is unequally distributed: their re-
markable fluency and reasoning abilities are disproportionately concentrated in a handful of
high-resource, predominantly English-speaking domains; the vast majority of the world’s lan-
guages and domains remain underserved, their speakers and practitioners constrained by the
data- and resource-hungry character of state-of-the-art models. This disparity is stark: thousands
of the world’s languages, and billions of their speakers, remain marginalized by data scarcity, re-
source imbalance, and technological ignorance. On the other hand, the scientific underpinnings
of LLMs—their internal mechanisms, cognitive plausibility, and true linguistic competence—
are only partially understood, raising foundational questions about what it means for machines
to “understand” language. To answer these questions about the internal workings, transparency,
and reliability of these models is essential for the road to Artificial General Intelligence (AGI).
Understanding the working mechanisms of LLMs in processing human language text from a
human-inspired perspective requires particular attention when applied beyond the familiar ter-
rain of English and well-resourced tasks.

Against this backdrop, multilingual NLP emerges not only as a grand challenge for artifi-
cial intelligence but as a scientific imperative: it is central to ensuring equity, access, and robust
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performance in global language technologies. Moreover, research that is human-inspired—not
merely engineering-oriented—pushes the field toward models and methods that reflect the flex-
ibility, adaptability, and interpretability of human cognition. This dissertation is positioned at
the intersection of these urgent needs. In response to these intertwined scientific and practical
challenges, this dissertation charts a path toward efficient and human-inspired NLP for mul-
tilingual and low-resource settings. It advances the field through the development of efficient
and human-inspired NLP methods for multilingual and low-resource settings, integrating algo-
rithmic innovation with cognitive and mechanistic insight.

A core methodology employed in this dissertation is prompt-based learning (e.g., in-context
learning), which leverages language models to directly predict the probability of text for vari-
ous NLP tasks. To enable this, the input is reformulated into a cloze-style prompt, allowing the
language model to generate the desired output on the masked token position or the next token
position. For example, in sentiment analysis, the input “This product is amazing” is transformed
into “This product is amazing. In summary, it is a [MASK] product”. The model then predicts the
missing word, such as “great” or “terrible”, to determine the sentiment. However, a key problem
with prompt-based learning is the bias in masked token prediction, where models favor label
words that frequently occurred during pretraining. To address this, this dissertation introduces
calibration techniques that modify the probabilities of label words predicted by the models,
leading to substantial performance gains, particularly in multilingual settings. Besides using cal-
ibration techniques, we enhance prompts with cross-lingual retrieval. We propose the PARC
(Prompt Augmented by Cross-Lingual Retrieval) pipeline to enhance the multilingual prediction
performance for low-resource languages, in multilingual tasks such as topic classification, natu-
ral language inference, paraphrase detection, etc. Many languages lack annotated data for fine-
tuning for these tasks. To address this, the PARC method is proposed, which augments prompts
for low-resource languages by retrieving semantically similar examples from high-resource lan-
guage corpora. This cross-lingual retrieval-augmented prompting enables better zero-shot learn-
ing and bridges the performance gap between high- and low-resource languages.

Another key methodology is cross-lingual transfer learning, which leverages knowledge
from high-resource languages to adapt models to low-resource settings. This dissertation in-
vestigates prompt-based fine-tuning for zero-shot cross-lingual transfer. Different from vanilla
fine-tuning, which mostly relies on the CLS token to map an input sentence to a label ID, prompt-
based fine-tuning utilizes a prompt template to map the mask token or the next token to a label
word, which is more aligned with the language modeling in the pretraining and captures more
contextual information during the fine-tuning. This dissertation introduces PROFIT, a pipeline
that systematically compares prompt-based and vanilla fine-tuning for cross-lingual transfer, and
demonstrates that prompt-based fine-tuning consistently outperforms vanilla fine-tuning, espe-
cially in few-shot scenarios. However, the effectiveness of cross-lingual transfer is constrained
by linguistic similarity and the uneven representation of languages in pre-training corpora. To ex-
tend the applications of prompt-based fine-tuning to more task types, such as sequence labeling,
the dissertation proposes ToPro, a token-level prompt decomposition method for cross-lingual
structured prediction, such as part-of-speech (POS) tagging and named entity recognition (NER).
ToPro achieves state-of-the-art performance, particularly for languages that are typologically dis-
tant from English.
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Furthermore, the dissertation addresses the challenge of efficient NLP in low-resource set-
tings through data augmentation and parameter-efficient fine-tuning. It introduces AMD2G, a
unified data augmentation framework for low-resource multi-domain dialogue generation. By
decoupling domain-agnostic and domain-specific features through de-domaining and sequen-
tial training, AMD2G achieves superior performance across multiple domains. The dissertation
also introduces GNNavi, a parameter-efficient fine-tuning method that integrates a graph neu-
ral network layer into large language models to guide information aggregation in prompt-based
fine-tuning, achieving superior performance with minimal parameter updates.

Finally, the dissertation explores the interpretability of LLMs through human-inspired prob-
ing methods and mechanistic analysis. It employs minimal pair probing to distinguish between
form and meaning representations, revealing that LLMs encode form more robustly than mean-
ing. It also applies mechanistic interpretability to diagnose and address language confusion,
identifying critical neurons and proposing editing strategies to improve multilingual reliability.

By tackling these core challenges, such as prompt-based learning biases, cross-lingual trans-
fer, parameter-efficient adaptation, and model interpretability, this work aims not only to broaden
the practical impact of NLP, but also to deepen our understanding of the principles that could in-
spire the next generation of inclusive and reliable language technologies. In doing so, this thesis
aspires to contribute both foundational knowledge and practical methods to realize NLP that is
globally relevant, scientifically sound, and inspired by the very nature of human language.

This dissertation follows a scientific journey starting from the limitations of English-centric,
resource-hungry NLP models, through the design of efficient, cognitively-inspired algorithms,
to a mechanistic and human-centric understanding of language models. The research of this
dissertation is unified by a dual focus: (1) Efficiency—developing methods that make NLP vi-
able for low-resource and multilingual contexts via prompt-based methods, robust transfer, and
parameter-efficient fine-tuning; and (2) Human-Inspiration—drawing on psycholinguistics and
mechanistic interpretability to understand and improve model generalization, reliability, and in-
clusivity.

The research traverses several interlocking themes:
• First, it identifies and mitigates the biases and inefficiencies of prompt-based learning for

multilingual prediction, introducing calibration and retrieval-augmented methods to ro-
bustly bridge high-resource and low-resource languages.

• Second, it extends prompt-based approaches to fine-tuning and structured prediction, prop-
osing decomposed and token-level prompt strategies that enable robust cross-lingual trans-
fer even in challenging sequence labeling and parsing tasks, including for historical lan-
guages.

• Third, it addresses efficiency through data augmentation and parameter-efficient fine-tunin-
g, leveraging graph neural networks and unified data augmentation strategies to maximize
impact in low-resource dialogue and classification settings.

• Finally, it closes the loop by turning an interpretability lens on language models, exploring
their linguistic competence versus performance, probing internal mechanisms of language
confusion, and developing targeted model editing to mitigate failures.
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The result is a theoretically grounded, empirically validated, and human-aligned set of meth-
ods for multilingual and low-resource NLP. It follows a path from practical bottlenecks to scien-
tific insight and back, advancing both the art and science of language technology.

1.1 Research Motivation

1.1.1 Language Inequality and the Value of Multilingual NLP

NLP technologies have become foundational to modern society, powering applications from
search engines and digital assistants to translation services and content moderation. The Trans-
former architecture (Vaswani et al., 2017) and the rise of large pre-trained language models
(PLMs) such as BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019b), and GPT-3 (Brown
et al., 2020) have driven remarkable advances in language understanding and generation. Multi-
lingual PLMs (MPLMs) like mBERT (Devlin et al., 2019), XLM-R (Conneau et al., 2020), and
mT5 (Xue et al., 2021) have extended these capabilities to over 100 languages.

Despite these advances, a profound gap persists: the vast majority of the world’s 7,000+
languages (Joshi et al., 2020) remain underrepresented or entirely excluded from digital NLP
tools. Most MPLMs cover only a fraction of global linguistic diversity, and even within covered
languages, performance is highly uneven (Wu and Dredze, 2020; Etxaniz et al., 2024). English
and a handful of high-resource languages dominate both training data and model performance,
while low-resource and endangered languages are left behind. This digital language divide is not
merely a technical issue—it has deep implications for information access, social equity, and the
preservation of cultural heritage. Speakers of marginalized languages are often denied access to
essential technologies, from hate speech detection to information retrieval, exacerbating global
inequalities.

The root cause of this inequality is data scarcity. While massive text corpora exist for English
and a few other languages, most languages lack the annotated or even raw data necessary for
training modern NLP systems. As a result, the benefits of NLP remain concentrated among
speakers of high-resource languages, while billions are excluded. Addressing this challenge
is both a scientific and ethical imperative: multilingual NLP research is essential for building
inclusive, equitable, and globally relevant language technologies.

1.1.2 Benefits of Cross-Lingual Transfer Learning

The paradigm of pre-training and fine-tuning has revolutionized NLP, but it is fundamentally
limited by the availability of large-scale data and computational resources. For low-resource
languages, the lack of data makes it infeasible to train dedicated PLMs, and the environmental
cost of large-scale pre-training is increasingly unsustainable. Cross-lingual transfer learning has
emerged as a key strategy: by leveraging knowledge from high-resource languages, models can
be adapted to low-resource settings with minimal or no labeled data (Hu et al., 2020b; Gao et al.,
2021; Lin et al., 2022).
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Early approaches to cross-lingual transfer relied on parallel word embeddings (Mikolov et al.,
2013b; Gouws and Søgaard, 2015), while modern MPLMs share parameters across languages
to enable zero-shot and few-shot transfer. However, the effectiveness of cross-lingual transfer is
constrained by linguistic similarity, script differences, and the uneven representation of languages
in pre-training corpora (Lauscher et al., 2020; Chang et al., 2022). Many languages remain
unseen or underrepresented, and transfer performance drops sharply for typologically distant or
unseen languages.

These challenges are even more acute in the context of historical and ancient languages, such
as Middle High German (MHG). For such languages, the scarcity of digital resources is com-
pounded by the lack of annotated corpora and the high cost of expert annotation (Nie et al.,
2023a). Yet, historical languages are of immense value for linguistic research, cultural heritage,
and the study of language evolution. Cross-lingual transfer techniques, especially those leverag-
ing structural similarities between historical and modern languages, offer a promising solution.
For example, delexicalized constituency parsing can exploit the syntactic continuity between
MHG and Modern German (MG), enabling robust syntactic analysis even in the absence of an-
notated treebanks for the historical language (Hirschmann and Linde, 2023).

Thus, advancing cross-lingual transfer not only addresses the needs of contemporary low-
resource languages but also opens new avenues for computational historical linguistics, support-
ing the automatic analysis and preservation of ancient texts.

1.1.3 Efficiency and Adaptation for Low-Resource NLP
The remarkable performance of LLMs has come at the cost of enormous computational resources
and environmental impact. Training and deploying these models for every language and domain
is impractical and unsustainable, especially as public data becomes exhausted and privacy con-
cerns mount. Many real-world scenarios—such as dialogue generation in specialized domains or
adaptation to new languages—require efficient learning from limited data or with limited com-
puting resources.

Parameter-efficient fine-tuning (PEFT) (Hu et al., 2022) and data augmentation (Sennrich
et al., 2016a) have emerged as promising approaches. These methods seek to maximize the im-
pact of available data and minimize the number of parameters that must be updated. Integrating
these approaches with prompt-based and cross-lingual learning paradigms opens new possibili-
ties for scalable, fair, and privacy-preserving NLP.

1.1.4 Human-Inspired and Interpretable NLP: Beyond Black-Box Perfor-
mance

While large language models have achieved impressive results, fundamental questions remain
about their true linguistic competence, cognitive plausibility, and reliability. Models often suc-
ceed by exploiting statistical regularities rather than genuine understanding, leading to brittle be-
havior, hallucinations, and failures in multilingual or low-resource contexts (Bender and Koller,
2020). The gap between observed performance and underlying competence is especially pro-
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nounced when models are evaluated outside their training distribution or asked to generalize to
new languages and tasks.

Human-inspired NLP seeks to bridge this gap by drawing on insights from psycholinguis-
tics, neurolinguistics, and cognitive science. Mechanistic interpretability—analyzing the internal
computations and representations of LLMs—offers new tools for understanding the gap between
performance and competence (Elhage et al., 2021). Probing methods, minimal pair analysis, and
neuron-level interventions can reveal how models encode linguistic structure, conceptual knowl-
edge, and cross-lingual transferability (Belinkov and Glass, 2019). Developing interpretable,
human-aligned models is not only a scientific goal but also a practical necessity for building
trustworthy, robust, and inclusive NLP systems.

1.1.5 A Unified Vision: From Bottlenecks to Scientific Insight

Bringing together these threads, this dissertation is motivated by the urgent need for efficient and
human-inspired NLP methods that extend the reach of language technology to multilingual
and low-resource settings, while advancing our scientific understanding of language models.
By addressing practical bottlenecks—such as bias in prompt-based learning, data scarcity, and
language confusion—and grounding solutions in cognitive and mechanistic principles, this work
aspires to contribute both new methods and new insights to the field.

1.2 Research Questions
The research presented in this dissertation is unified by the overarching goal of advancing effi-
cient and human-inspired NLP for multilingual and low-resource settings. To address this goal,
the dissertation is structured around four interrelated thematic groups of research questions,
each reflecting a critical aspect of the field. Each thematic group forms the focus of an individual
chapter.

The first group, Prompt-Based Learning for Multilingual Prediction (Chapter 3), focuses
on overcoming the limitations of current prompt-based learning methods for multilingual and
low-resource languages. Here, the research questions investigate how to calibrate and augment
prompt-based learning and how to expand prompt-based learning for more various multilingual
task types. It is worth noting that this group of research questions focuses on training-free
prompt-based learning methods, that is to say, parameter updating via fine-tuning is not involved
in this context.

The second group, Prompt-Based Fine-Tuning for Zero-Shot Cross-Lingual Transfer (Chap-
ter 4), involves the fine-tuning part of prompt-based learning for multilingual tasks with the zero-
shot cross-lingual transfer paradigm. In this transfer learning paradigm, the multilingual models
are only fine-tuned on the source language and then directly evaluated on the target language
samples. This group of questions investigates the advantages of prompt-based fine-tuning over
vanilla fine-tuning across various multilingual task types and explores how to enable effective
cross-lingual transfer for historical languages.
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The third group, Efficient NLP Methods for Low-Resource Settings (Chapter 5), addresses
the practical challenges of deploying NLP in resource-constrained scenarios, i.e., where the data
resources or computing resources are limited. This includes questions on unified data augmenta-
tion and parameter-efficient fine-tuning, with the aim of maximizing performance across diverse
domains.

The fourth group, Human-Inspired Analysis and Interpretability of Language Models (Chap-
ter 6), seeks to bridge the gap between model performance and true linguistic competence. These
questions probe the internal mechanisms of large language models, explore the relationship be-
tween form and meaning, and develop mechanistic and neuron-level interventions to mitigate
failure modes such as language confusion. This group also considers how insights from cogni-
tive science and mechanistic interpretability can inform the design of more reliable, interpretable,
and human-aligned NLP systems.

The specific research questions of each group guiding this dissertation are as follows:

1. Prompt-Based Learning for Multilingual Prediction
i. Prompt Calibration and Augmentation (§3.1 and §3.2): How can prompt-based learn-

ing methods be calibrated and augmented to overcome inherent biases and improve zero-
shot and few-shot multilingual prediction, particularly for low-resource and typologically
diverse languages?
This question seeks to address the limitations of prompt-based approaches, such as la-
bel bias and insufficient cross-lingual generalization, by exploring probability calibration,
retrieval-augmented prompting, and the integration of cross-lingual information to enhance
the robustness and inclusivity of multilingual NLP systems.

ii. Prompt-based Learning for Multilingual Sequence Labeling (§3.3): What strategies
enable robust and efficient prompt-based learning for multilingual sequence labeling tasks
across diverse languages, and how can these methods evaluate and probe linguistic knowl-
edge in large language models?
Here, the focus is on extending prompt-based methods to sequence labeling tasks, in-
troducing decomposed prompting to probe the multilingual capabilities of both English-
centric and multilingual LLMs.

iii. Cross-Lingual Knowledge Editing (§3.4): How can in-context learning and prompt-
based approaches be leveraged for cross-lingual knowledge editing, and what are the key
factors affecting their reliability and generalization across languages?
This question investigates the potential and limitations of in-context learning for knowl-
edge editing in a multilingual context, analyzing the impact of model scale, demonstration
design, and linguistic properties on the effectiveness of knowledge updates across a wide
range of languages.

2. Prompt-Based Fine-Tuning for Zero-Shot Cross-Lingual Transfer
i. Prompt-Based Fine-Tuning for Cross-Lingual Transfer (§4.1): Does prompt-based

fine-tuning consistently outperform vanilla fine-tuning for zero-shot cross-lingual transfer,
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and what factors govern its effectiveness across tasks, languages, and resource conditions?
This question systematically compares prompt-based and vanilla fine-tuning for cross-
lingual transfer, analyzing performance trends, task types, and the influence of language
similarity and pretraining data size, with the goal of identifying best practices for efficient
and scalable adaptation.

ii. Prompt-Based Fine-Tuning for Structured Prediction (§4.2) and §4.3): What strate-
gies extend prompt-based fine-tuning for structured prediction tasks, such as part-of-speech
and parsing, across diverse languages, including historical languages?
Here, the focus is to propose new strategies to extend prompt-based fine-tuning to token-
level and structured tasks within the zero-shot cross-lingual transfer paradigm, introducing
token-level prompting and delexicalization to improve the cross-lingual transfer perfor-
mance of multilingual models with limited resources, including historical languages.

3. Efficient NLP Methods for Low-Resource Settings
i. Data Augmentation and Parameter-Efficient Adaptation (§5.1 and §5.2): What data

augmentation and parameter-efficient fine-tuning strategies can enhance low-resource NLP
tasks, such as multi-domain dialogue generation and classification, and how does domain
or task similarity affect transferability and performance?
This question explores the design and evaluation of data augmentation frameworks and
parameter-efficient adaptation methods, such as GNN-based fine-tuning, to maximize the
impact of limited data and computational resources in low-resource data and computing
scenarios.

4. Human-Inspired Analysis and Interpretability of Language Models
i. Human-Inspired Probing Methods (§6.1): What is the relationship between perfor-

mance and competence in large language models, and how can human-inspired probing
paradigms reveal the internal representations of form and meaning across languages?
This question examines the gap between observed performance and underlying linguistic
competence in LLMs, using minimal pair probing to distinguish between form and mean-
ing representations, and to assess the cognitive plausibility of model behavior.

ii. Mechanistic Understanding of Language Confusion (§6.2): When LLMs answer a
question in the wrong language, can we trace back this failure to a few specific neurons and
prevent the failure by manipulating these neurons without harming general competence?
This question applies mechanistic interpretability to diagnose and address language confu-
sion, identifying critical neurons and proposing editing strategies to improve multilingual
reliability and interpretability, thereby advancing the scientific understanding and practical
robustness of language models.

1.3 Research Contributions
The work in this dissertation makes substantial contributions to the advancement of efficient
and human-inspired NLP for multilingual and low-resource settings. Addressing the research
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questions outlined in Section §1.2, the contributions are organized into four interrelated areas,
the same as the topics of the research question groups: (1) prompt-based learning for multilin-
gual prediction, (2) prompt-based fine-tuning for zero-shot cross-lingual transfer, (3) efficient
NLP methods for low-resource settings, and (4) human-inspired analysis and interpretability of
language models. Together, these contributions form a coherent progression from foundational
methods to scientific insight and are summarized as follows:

1. Prompt-Based Learning for Multilingual Prediction

• Calibration and Augmentation for Prompt-Based Learning: This dissertation introduces
novel probability calibration techniques and retrieval-augmented prompting pipelines to
address the inherent biases and limitations of prompt-based learning in multilingual and
low-resource contexts. By analyzing and mitigating label bias and by leveraging cross-
lingual retrieval from high-resource corpora, these methods significantly improve zero-shot
and few-shot prediction for typologically diverse and underrepresented languages. The
work also provides a comprehensive analysis of how language similarity and pretraining
data size affect cross-lingual transfer, offering practical guidelines for robust multilingual
NLP.

• Decomposed Prompting for Multilingual Sequence Labeling: Extending prompt-based
learning to structured prediction tasks, the dissertation proposes the decomposed prompt-
ing strategy for sequence labeling. These approaches enable more granular probing of
linguistic knowledge in large language models, outperforming iterative baselines in both
accuracy and efficiency, and revealing the depth and limitations of cross-lingual general-
ization in English-centric and multilingual LLMs.

• Cross-Lingual Knowledge Editing with In-Context Learning: The dissertation pioneers
the study of cross-lingual knowledge editing via in-context learning, introducing BMIKE-
53, a comprehensive benchmark covering 53 languages and multiple knowledge editing
scenarios. Through extensive experiments, it examines how model scale, demonstration
design, and linguistic properties influence the reliability and generalization of knowledge
editing across languages.

2. Prompt-Based Fine-Tuning for Zero-Shot Cross-Lingual Transfer

• Prompt-Based Fine-Tuning for Cross-Lingual Transfer: The dissertation systematically
compares prompt-based and vanilla fine-tuning for zero-shot cross-lingual transfer, intro-
ducing the PROFIT pipeline and providing empirical evidence that prompt-based fine-
tuning consistently outperforms vanilla fine-tuning, especially in few-shot scenarios and
for languages with higher similarity to the source language. This work also elucidates the
factors, such as language similarity and pretraining data size, that govern transfer effec-
tiveness.

• Token-Level Prompt Decomposition Fine-Tuning for Structured Prediction: Building on
the above, the dissertation develops ToPro, a token-level prompt decomposition method
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for cross-lingual structured prediction, such as part-of-speech (POS) tagging and named
entity recognition (NER). ToPro achieves state-of-the-art performance on NER and POS
tagging, particularly for languages that are typologically distant from English, and provides
a robust and interpretable framework for structured prediction in multilingual settings.

• Cross-Lingual Parsing for Historical Languages: Parsing historical languages is a chal-
lenging structured prediction task. This dissertation presents a delexicalized cross-lingual
constituency parser for Middle High German, leveraging modern German resources and
linguistic continuity. This approach provides a tool for syntactic analysis in ancient lan-
guages, demonstrating the broader applicability of cross-lingual transfer methods beyond
contemporary languages.

3. Efficient NLP Methods for Low-Resource Settings

• Unified Data Augmentation for Multi-Domain Dialogue: The dissertation introduces AM-
D2G, a unified data augmentation framework for low-resource multi-domain dialogue
generation. By decoupling domain-agnostic and domain-specific features through de-
domaining and sequential training, AMD2G achieves superior performance across multiple
domains and models, and provides a principled approach to leveraging shared patterns for
data-scarce applications.

• GNN-Based Parameter-Efficient Fine-Tuning: Inspired by information flow theory, the
dissertation proposes GNNavi, a parameter-efficient fine-tuning method that integrates a
graph neural network layer into large language models. GNNavi explicitly controls in-
formation aggregation in prompts, achieving state-of-the-art performance and training ef-
ficiency in few-shot classification tasks, and outperforming existing parameter-efficient
methods such as LoRA, Prefix-Tuning, and Adapters.

4. Human-Inspired Analysis and Interpretability of Language Models

• Human-Inspired Probing Methods: The dissertation advances the scientific understand-
ing of language models by distinguishing between performance and competence through
human-inspired probing paradigms. By using minimal pair probing, it reveals that LLMs
encode form more robustly than meaning, and that instruction tuning improves perfor-
mance but not underlying competence. The work also introduces new multilingual mini-
mal pair datasets for Chinese and German, enabling cross-linguistic analysis of form and
meaning representations.

• Mechanistic Understanding and Editing of Language Confusion: Addressing a critical
failure mode in English-centric LLMs, the dissertation provides the first mechanistic inter-
pretability study of language confusion. Through layer-wise and neuron-level analysis, it
identifies critical neurons responsible for unintended language switching and demonstrates
that targeted neuron editing can mitigate confusion without harming general competence
or fluency. This approach matches the effectiveness of multilingual alignment while pre-
serving cleaner output quality, highlighting the promise of neuron-level interventions for
robust and interpretable multilingual NLP.
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These contributions are not isolated; rather, they form a coherent and progressive narrative.
Foundational advances in prompt-based modeling and calibration enable robust cross-lingual
transfer, which is further extended to historical and low-resource languages through scalable
adaptation and efficient fine-tuning. Practical frameworks for data augmentation and parameter-
efficient adaptation address low-resource deployment challenges, while human-inspired probing
and mechanistic analysis deepen our scientific understanding and guide the design of more re-
liable, interpretable, and inclusive language technologies. Collectively, this dissertation pushes
the boundaries of multilingual and low-resource NLP, offering both practical tools and theoretical
insights for the next generation of language models.

1.4 Outline of the Dissertation
This dissertation is structured to provide a logical and progressive exploration of efficient and
human-inspired NLP methods for multilingual and low-resource settings. The chapters and their
contents are organized as follows:

• Chapter 2: Background and Related Work
This chapter reviews the evolution of NLP technologies, with a focus on the develop-
ment and limitations of large language models (LLMs), multilingual pretrained language
models (MPLMs), and current approaches to cross-lingual transfer. It also summarizes
foundational work in prompt-based learning and information retrieval for NLP, setting the
scientific and practical context for the dissertation’s research questions.

• Chapter 3: Prompt-Based Learning for Multilingual Prediction
This chapter investigates how prompt-based learning can be enhanced for multilingual and
low-resource settings. It introduces and evaluates probability calibration techniques to
mitigate label bias in masked token prediction (§3.1), and proposes cross-lingual retrieval-
augmented prompting (PARC) to improve zero-shot performance on low-resource lan-
guages (§3.2). The chapter further explores decomposed prompting for structured predic-
tion, revealing the depth of linguistic structure knowledge in LLMs (§3.3), and presents
a comprehensive benchmark for in-context cross-lingual knowledge editing (BMIKE-53),
analyzing the factors that govern reliable knowledge transfer across languages (§3.4). This
chapter focuses on the training-free part of prompt-based learning, i.e., not involving pa-
rameter updating, using the in-context learning paradigm instead.

• Chapter 4: Prompt-Based Fine-Tuning for Zero-Shot Cross-Lingual Transfer
This chapter extends the prompt-based approach to fine-tuning, systematically comparing
prompt-based and vanilla fine-tuning for cross-lingual transfer across a range of tasks and
languages (§4.1). It introduces token-level prompt decomposition (ToPro) for robust se-
quence labeling in zero-shot settings and demonstrates its effectiveness, particularly for
typologically distant languages (§4.2). The chapter also addresses cross-lingual transfer
for historical languages, presenting a delexicalized constituency parser for Middle High
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German, and showing how cross-lingual transfer techniques can enable syntactic parsing
in the absence of annotated treebanks (§4.3).

• Chapter 5: Efficient NLP Methods for Low-Resource Settings
This chapter presents efficient data augmentation and parameter-efficient adaptation meth-
ods. It proposes AMD2G, a unified data augmentation framework for low-resource multi-
domain dialogue generation, and demonstrates its effectiveness across several domains
and models (§5.1). The chapter also introduces GNNavi, a parameter-efficient fine-tuning
method inspired by information flow theory, which integrates Graph Neural Networks into
LLMs to guide information aggregation in prompt-based learning, achieving superior per-
formance with minimal parameter updates (§5.2).

• Chapter 6: Human-Inspired Understanding of Language Models
This chapter shifts the focus from algorithmic performance to interpretability and human-
inspired analysis. It employs neuro- and psycholinguistic paradigms to probe the internal
representations of LLMs, distinguishing between linguistic form and meaning, and reveal-
ing the gap between performance and true competence (§6.1). The chapter also presents a
mechanistic interpretability study of language confusion in English-centric LLMs, iden-
tifying the roles of confusion points and proposing targeted neuron-level interventions
that robustly mitigate confusion while preserving general competence and output quality
(§6.2).

• Chapter 7: Conclusion
The concluding chapter synthesizes the dissertation’s main findings and discusses the fu-
ture work.



Chapter 2

Background and Related Work

This chapter surveys the key developments and current landscape of natural language process-
ing (NLP) relevant to efficient and human-inspired multilingual modeling. We begin by re-
viewing the evolution of language models, from early statistical and neural models to the rise
of transformer-based pre-trained and large language models, and highlighting their transforma-
tive impact on NLP applications and their limitations, particularly for less-resourced languages.
The chapter then explores the unique challenges and progress in multilingual NLP, including
the architecture and training of multilingual pretrained language models, cross-lingual transfer
learning paradigms, and the global distribution of language resources in the context of multi-
lingual NLP technologies. We further introduce the emergence of prompt-based learning as a
new paradigm for leveraging language models, with a focus on its relevance for multilingual and
low-resource scenarios. Finally, we discuss advances in information retrieval techniques that
support knowledge-augmented NLP and cross-lingual applications. Together, these topics estab-
lish the scientific and practical context for the efficient, robust, and human-centered approaches
developed in the remainder of this dissertation.

2.1 Pre-Trained Language Models
Language models (LMs) are foundational to contemporary research in computational linguistics
and natural language processing (NLP). By leveraging various types of LMs, a wide range of
NLP tasks can be effectively addressed. Each significant advancement in LMs has led to major
breakthroughs in the field.

The most recent transformation in LMs is marked by the rise and widespread adoption of
transformer-based models trained on massive language corpora, as well as the emergence of
large language models (LLMs). Transformer-based LLMs, such as BERT, GPT-2, GPT-3, GPT-
4, and Llama 3, have dramatically advanced the capabilities of NLP systems, enabling applica-
tions ranging from chatbots and programming assistants to document summarization and trans-
lation (Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020). These models are character-
ized by their immense scale, often comprising billions or even hundreds of billions of parameters,
and are pretrained on vast and diverse datasets (Liu et al., 2019b; Lan et al., 2020; Sanh et al.,
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2019; Yang et al., 2019b).
A defining feature of LLMs is their ability to generalize across a wide array of tasks through

prompt-based learning, in few-shot or even zero-shot settings, without the need for extensive
task-specific fine-tuning. The transformer architecture, with its self-attention mechanism, en-
ables these models to capture complex dependencies and contextual relationships within lan-
guage, supporting both understanding and generation tasks (Vaswani et al., 2017). Recent re-
search has also focused on extending the context window and improving the efficiency of LLMs,
addressing challenges such as long-context comprehension and computational resource demands
(Zhao et al., 2023).

While the trend toward ever-larger PLMs and LLMs has driven remarkable progress, it has
also raised important questions regarding their risks, including ethical concerns, biases, and the
environmental impact of large-scale training. As LLMs become increasingly integrated into
real-world applications, ongoing research continues to explore both their potential and their lim-
itations (Bender et al., 2021).

2.1.1 Language Model Development
Language models (LMs) are statistical models that assign probabilities to sequences of words (Ju-
rafsky and Martin, 2000). Their primary function is language prediction, estimating how likely
a given sentence is to be correct or natural. Given a sentence S composed of n words, S =
x1x2x3 · · · xn, the objective of a language model L is to compute the probability of the sen-
tence S. By applying the chain rule of probability, this probability can be decomposed into the
product of conditional probabilities for each word given its preceding context, as shown in Equa-
tion (2.1). However, calculating the probability of a word based on the entire preceding context
is computationally complex. To simplify this, the Markov assumption is often used, which limits
the context to a fixed number of previous words, such as just the immediately preceding word.

P (S) = P (x1x2x3 · · · xn)
⇤
= P (x1)⇥ P (x2|x1)⇥ P (x3|x1x2)⇥ · · ·⇥ P (xn|x1 · · · xn�1)
⇤⇤
= P (x1)⇥ P (x2|x1)⇥ P (x3|x2)⇥ · · ·⇥ P (xn|xn�1)

(2.1)

* Applying the chain rule of probability
** Applying the Markov assumption

Over the years, several types of language models have been developed, including n-gram
models and neural network-based models.

N-gram LM The n-gram model is a fundamental type of LM, where an n-gram refers to a
sequence of n words. N-gram LMs estimate the probability of a word based on its preceding
(n � 1) words. For example, a bigram model (where n = 2) predicts each word based only on
the previous word, as shown in Equation (2.1) under the Markov assumption. These probabilities
are typically estimated from corpus statistics by counting the frequency of n-grams.
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The quality of a language model can be evaluated using both extrinsic and intrinsic met-
rics. Extrinsic evaluation measures the impact of the LM on downstream tasks, such as machine
translation or speech recognition. Intrinsic evaluation, on the other hand, assesses the model
independently of any specific application. Perplexity is a widely used intrinsic metric, defined as
the normalized inverse probability of the test set, as shown in Equation (2.2).

PP (W ) = N

s
1

P (w1, w2, · · · , wN)
(2.2)

A high-quality LM assigns higher probabilities to correct or natural sentences, resulting in
lower perplexity scores. Thus, lower perplexity indicates a better understanding of language.

2.1.2 Word Embeddings and Deep Learning Models
Word embedding technology is fundamental for applying deep learning and neural network
methods to language processing. Deep learning operates by processing data in numerical form,
where various types of data are input into neural networks and transformed through multiple
layers to produce outputs. These outputs can be used for a range of language tasks, such as
classification, sequence labeling, and language generation. To enable neural networks to address
NLP problems, it is essential to represent language text in a format that can be directly processed
by these models. In this context, word representation refers to the digital encoding of words.

One-Hot Encoding A straightforward approach is to assign each word in the vocabulary a
unique ID and represent it as a one-hot vector, which contains zeros in all positions except for a
single one at the index corresponding to the word’s ID. If the vocabulary size is |V |, each word
vector has length |V |. Stacking all word vectors forms a |V |⇥ |V | diagonal matrix with ones on
the diagonal.

While simple, one-hot encoding has two major drawbacks. First, it leads to a parameter
explosion, as the dimensionality of each word vector equals the vocabulary size, which can be
extremely large. Second, since all vectors are orthogonal, one-hot encoding fails to capture
any notion of word similarity. To address these issues, more effective word representations are
needed. Ideally, word vectors should have a much lower dimension, |D|, typically in the range
50  |D|  1000, and should encode semantic similarity, which can be measured by the cosine
similarity between vectors, as shown in Equation (2.3).

cos(w(i),w(j)) =
w(i)Tw(j)

||w(i)||2 · ||w(j)||2
(2.3)

Static Word Embedding Static word embeddings address both the dimensionality and sim-
ilarity issues. Based on the distributional hypothesis—“a word is characterized by the com-
pany it keeps” (Firth, 1957)—these methods learn dense vector representations for words. The
Word2vec model (Mikolov et al., 2013a) is a classic example, trained using negative sampling.
In Word2vec, word vectors are model parameters learned from context information. Two main
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training objectives are used: the skip-gram model, which predicts context words given a tar-
get word, and the Continuous-Bag-Of-Words (CBOW) model, which predicts the target word
from its context. FastText (Bojanowski et al., 2017) extends Word2vec by representing words
as bags of character n-grams, allowing it to generate embeddings for out-of-vocabulary words
by composing them from subword vectors. GloVe (Pennington et al., 2014) further improves on
Word2vec by incorporating both local and global corpus statistics, using a word co-occurrence
matrix to capture semantic relationships.

Contextualized Word Embedding Unlike static embeddings, contextualized word embed-
dings assign each token a representation that depends on the entire input sentence. These em-
beddings are derived from language models. ELMo (Peters et al., 2018) is a notable example,
producing embeddings from a bidirectional language model that combines forward and backward
LMs with a context-independent character-based representation. In transformer-based language
models, the embedding layer serves as the first layer, and its parameters are learned from the
language model itself. With the embedding layer parameters, contextualized word embeddings
are calculated.

Neural Network Based LM Neural network-based language models emerged with the adop-
tion of neural network methods in NLP. These models, such as Recurrent Neural Networks
(RNNs) and Long Short-Term Memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997),
predict the next word in a sequence based on previous words using neural architectures. Neural
network-based LMs utilize word embeddings as semantically meaningful input vectors.

Figure 2.1: An example of RNN Language Model Structure. The input words are first mapped
to word IDs and then to word embeddings.

Figure 2.1 illustrates an example of a neural network language model using an RNN structure.
The hidden states h0, h1, · · · in the RNN layer transmit information from all previous words to
the next state, enabling the model to predict the next word based on the entire preceding context.

However, RNNs face a significant limitation in processing long sequences. At any given
time step j, all past input information is compressed into a single hidden state, which becomes a
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bottleneck for long sequences. The attention mechanism (Bahdanau et al., 2014) was introduced
to address this issue, allowing the model to focus on relevant past encoder states and disregard
less important information.

2.1.3 Transformer and Language Models
Transformer-Based LM The transformer-based language model is built upon the transformer
architecture (Vaswani et al., 2017), which leverages the self-attention mechanism as its core com-
ponent. Unlike the attention mechanism introduced by Bahdanau et al. (2014), the transformer
architecture relies solely on attention mechanisms, without recurrence or convolution. The trans-
former consists of two main parts: the Encoder and the Decoder, each composed of modules that
can be stacked multiple times. The essential components of each module are multi-head atten-
tion and feed-forward layers. This structure enables the transformer to provide powerful word
representations and serves as the foundation for most pretrained language models.

The paradigm of pretrained language models (PLMs) based on the transformer structure has
become dominant in the NLP field in recent years. With advances in computational resources,
researchers are able to train deeper and more complex models on increasingly large corpora. Ex-
tensive studies have demonstrated that PLMs can capture linguistic features and general knowl-
edge from training data and encode this information into their large-scale parameters.

PLMs are trained using various pretraining tasks. Depending on the pretraining method,
PLMs can be categorized as masked language models, left-to-right language models, and encoder-
decoder models. Table 2.1 provides an overview of these types and representative examples for
each.

Type Model Parameters Dataset Size

Encoder-only

BERT (Devlin et al., 2019) 3.40E+08 16GB
RoBERTa (Large) (Liu et al., 2019b) 3.55E+08 161GB
DistilBERT (Sanh et al., 2019) 6.60E+07 16GB
ALBERT (Lan et al., 2020) 2.23E+08 16GB

Decoder-only XLNet (Large) (Yang et al., 2019b) 3.40E+08 126GB
GPT-3 Brown et al. (2020) 1.75E+11 570GB

Encoder-Decoder BART (Large) (Lewis et al., 2020) 4.00E+08 161GB
T5-11B (Raffel et al., 2020) 1.10E+10 754GB

Table 2.1: An Overview of Different Types of PLMs.

Encoder-only LM Encoder-only language models are usually masked language models, a
kind of auto-encoder models that typically employ a bidirectional objective function, known
as masked language modeling (MLM), during pretraining. The MLM objective is to predict
masked portions of text based on their surrounding context.

A prominent example of a encoder-only LM is BERT (Devlin et al., 2019), which uses the
transformer architecture and learns bidirectional encoder representations. BERT introduces two
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pretraining objectives: masked language modeling (MLM) and next sentence prediction (NSP).
MLM involves predicting randomly masked tokens in a sentence, with 15% of tokens in the
training corpus replaced by a mask. NSP requires the model to predict whether a given sen-
tence follows another, with negative samples generated by randomly selecting sentences from
the corpus. BERT is pretrained on BooksCorpus and English Wikipedia, and uses the WordPiece
tokenization method (Schuster and Nakajima, 2012).

Other notable encoder-only LMs include BERT variants and ERNIE (Zhang et al., 2019b).

Decoder-only LM Decoder-only language models are usually left-to-right language models, a
kind of auto-regressive models that predict the next word in a sequence or assign a probability
P (x) to a sequence of words x = x1 · · · xn. The likelihood P (x) is factorized using the chain
rule in a left-to-right manner:

P (x) =
TY

t=1

p(xt|x<t)

Auto-regressive LMs can only predict in one direction, either forward or backward. XLNet (Yang
et al., 2019b) is an example of a left-to-right LM, using permutation language modeling as its pre-
training objective. In XLNet, the factorization order is permuted rather than the sequence order,
allowing the model to achieve bidirectionality while maintaining an auto-regressive objective.

Other modern decoder-only LMs include GPT-3 (Brown et al., 2020) and other GPT-like
models.

Encoder-Decoder LM Encoder-decoder models use a language model to compute contextual
embeddings for the input tokens x and a decoder language model to generate an output text y
conditioned on the input. The decoder accesses the input token embeddings via cross-attention.
The encoder and decoder do not share parameters. The T5 model (Raffel et al., 2020), or Text-
to-Text Transfer Transformer, is a comprehensive encoder-decoder transformer architecture. T5
reformulates all downstream NLP tasks as text-to-text problems, scaling both dataset and pa-
rameter sizes significantly, from BERT-sized models up to over 750GB of data and 11 billion
parameters.

Additionally, the encoder-decoder structure is widely adopted in other PLMs such as BART
(Lewis et al., 2020), MASS (Song et al., 2019), and their variants.

2.1.4 Large Language Models
Large language models (LLMs) represent a significant advancement in the NLP field, building
upon the foundation of PLMs by dramatically increasing both model and data scale. Researchers
have observed that scaling up PLMs—whether by increasing the number of parameters or the size
of training data—consistently leads to improved performance on a wide range of downstream
tasks, a phenomenon described by the scaling law (Kaplan et al., 2020). Notable examples
include GPT-3 (Brown et al., 2020), with 175 billion parameters, and PaLM (Anil et al., 2023),
with 540 billion parameters. These large-scale models exhibit behaviors and capabilities distinct
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from their smaller counterparts, such as BERT (330M parameters) or GPT-2 (1.5B parameters),
and demonstrate so-called emergent abilities (Wei et al., 2022a). For instance, GPT-3 is capable
of few-shot learning through in-context learning, a capability not observed in smaller models like
GPT-2.

The term “large language models” (LLMs) has thus been adopted to describe these exception-
ally large PLMs, which have attracted substantial research attention in recent years. A prominent
application of LLMs is ChatGPT (Ouyang et al., 2022), which adapts the GPT series for dialogue
and demonstrates remarkable conversational abilities with humans. The release of ChatGPT has
led to a sharp increase in research activity and publications related to LLMs, reflecting their
growing impact and importance in the field.

It is important to note that the concept of language modeling is not new, but has evolved
significantly alongside advances in artificial intelligence. Early language models were primarily
designed to model and generate text data, supporting specific tasks such as information retrieval
or language detection. With the advent of neural language models, the focus shifted to learning
task-agnostic representations, reducing the need for manual feature engineering. The introduc-
tion of PLMs enabled the learning of context-aware representations that could be fine-tuned for
various downstream tasks.

The latest generation of LLMs leverages the scaling effect to further enhance model capacity,
positioning these models as general-purpose task solvers. This evolution marks a fundamental
shift from simple language modeling to complex task solving, greatly expanding both the scope
of tasks that language models can address and the level of performance they can achieve. A
defining feature of LLMs is their versatility: they can be applied to a wide array of applications,
including text generation, translation, summarization, question answering, and dialogue systems.
Moreover, LLMs have demonstrated emergent abilities such as reasoning and generalization to
unseen tasks, which were not explicitly programmed during training. These capabilities have
positioned LLMs as foundational models in artificial intelligence, driving rapid progress and
innovation across research and industry.

Despite their impressive achievements, LLMs also present new challenges, including high
computational and hardware requirements, increased training and inference costs, ignorance of
underrepresented language users, and concerns regarding alignment, safety, and AI fairness and
ethics. As research continues, efforts are being made to improve the efficiency, accessibility, and
responsible deployment of LLMs, ensuring that their benefits can be widely realized.

2.2 Multilingual Natural Language Processing

2.2.1 Multilingual Pretrained Language Models (MPLMs)
Motivation of MPLMs The advent of pretrained language models (PLMs), trained on vast
amounts of unlabeled raw language data, has significantly transformed the research paradigm in
NLP in recent years. Through transfer learning, PLMs have achieved remarkable performance
across a variety of downstream NLP tasks, even when only limited annotated data is available.
However, much of this progress has been concentrated on English text, leaving low- and medium-
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resource languages with limited benefits from these advancements.
To address this imbalance, multilingual pretrained language models (MPLMs) have been de-

veloped. MPLMs are designed to process multiple languages with comparable effectiveness,
thereby extending the reach of PLMs beyond high-resource languages. One of the key advan-
tages of MPLMs over monolingual PLMs is the reduction in the number of models that need to
be pretrained and maintained. Furthermore, MPLMs possess cross-lingual transfer capabilities,
enabling low- and medium-resource languages to benefit in areas such as machine translation,
zero-shot task transfer, and typological research.

MPLMs are constructed by extending the principles of PLMs. Instead of relying solely on
monolingual training corpora, MPLMs are pretrained on multilingual unlabeled corpora, map-
ping representations from different languages into a shared semantic vector space. This approach
results in multilingual word embeddings that are jointly learned across languages. The architec-
ture and pretraining objectives of MPLMs remain consistent with those of PLMs. However,
MPLMs typically require a much larger vocabulary to accommodate multiple languages. For
example, the base version of BERT has a vocabulary size of 28,996, whereas the base version of
multilingual BERT (mBERT) expands this to 119,547 to support a broader range of languages.

Some Typical MPLMs

mBERT Multilingual BERT (mBERT) (Devlin et al., 2019) is designed to process the 100
largest languages by Wikipedia size, using the corresponding Wikipedia corpora of these lan-
guages as its pretraining dataset. Like BERT, mBERT employs masked language modeling
(MLM) and next sentence prediction (NSP) as its pretraining tasks, and is trained in a self-
supervised manner.

Given the significant variation in Wikipedia sizes across languages, low-resource languages
may be underrepresented in the model, while there is a risk of overfitting for languages with very
small corpora. To address this, sampling strategies are applied when constructing the multilin-
gual pretraining dataset. Exponential smoothing is used to under-sample high-resource languages
(such as English) and over-sample low-resource languages (such as Icelandic). This technique
modifies the sampling probability distribution for each language. Initially, the sampling proba-
bility matches the frequency of each language in the corpus (e.g., English accounts for 21% of
the total corpus and thus has a 21% sampling probability). After exponential smoothing, the fre-
quency of each language is raised to a power S (e.g., S = 0.7) and then normalized. For example,
if English is originally 1,000 times more likely to be sampled than Icelandic, after smoothing, it
becomes only 100 times more likely.

mBERT uses the WordPiece tokenization method (Schuster and Nakajima, 2012), consistent
with the original BERT model.

XLM The XLM model (Lample and Conneau, 2019) is another transformer-based MPLM.
Similar to BERT, XLM uses MLM as a pretraining objective. In addition, XLM introduces Trans-
lation Language Modeling (TLM) as a second pretraining objective to enhance cross-lingual rep-
resentation learning. For MLM pretraining, XLM uses Wikipedia as the dataset, while for TLM,
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it utilizes parallel corpora across different languages.
The basic XLM model covers 15 languages, with two extended versions supporting 17 and

100 languages, respectively. The extended versions are pretrained only with the MLM objective,
without TLM. XLM adopts Byte Pair Encoding (BPE) (Gage, 1994; Sennrich et al., 2016b) for
tokenization, and the vocabulary size of the extended version is approximately 200,000.

XLM-R XLM-R (Conneau et al., 2020) is the multilingual counterpart of RoBERTa (Liu
et al., 2019b). Unlike the original XLM, XLM-R does not use TLM as a pretraining objective.
Instead, it is pretrained in the same manner as RoBERTa, utilizing 2.5TB of filtered web-crawled
data from CommonCrawl, covering 100 languages. XLM-R features a vocabulary size of up to
250,000, compared to the 50,000-word vocabulary of the original RoBERTa.

M2M100 M2M100 (Fan et al., 2021) is a multilingual translation model with an encoder-
decoder (seq2seq) architecture, designed for many-to-many multilingual translation. It supports
translation between any pair of 100 languages, resulting in 100⇥99 = 9, 900 possible translation
directions. When using M2M100 for translation, the target language ID is used as the first token
in the input sequence.

mBART-50 mBART (Liu et al., 2020) is the multilingual version of BART (Lewis et al.,
2020), a sequence-to-sequence denoising auto-encoder pretrained on large-scale monolingual
corpora in multiple languages using the BART objective. mBART employs a denoising pre-
training approach, reconstructing original texts from corrupted inputs. mBART-50 extends this
approach to support translation between 50 languages, demonstrating that multilingual transla-
tion models can be realized through multilingual fine-tuning. Unlike standard finetuning, which
typically focuses on a single translation direction, mBART-50 enables fine-tuning across multiple
directions simultaneously.

For multilingual denoising pretraining, all monolingual corpora are concatenated into a single
dataset D = {D1, D2, · · · , Dn}, where Di is the monolingual corpus for language i. Source
texts are corrupted using two noise types: sentence permutation and word-span masking. The
objective is to reconstruct the original text. Similar to M2M100, mBART-50 uses a special token
at the beginning of the input to indicate the target language.

BLOOM BLOOM (BigScience Large Open-science Open-access Multilingual Language
Model) is a multilingual large language model (LLM) developed through the collaborative efforts
of the BigScience project (Workshop et al., 2022). BLOOM is a decoder-only autoregressive
model with 176 billion parameters, designed to generate and continue text in response to prompts.
What distinguishes BLOOM is its open-access and open-science approach: both the model and
the code base, as well as the data used for training, are distributed under free licenses, making
advanced language modeling technology accessible to a broader research community.

BLOOM is proficient in 59 languages, including a wide range of high-, medium-, and low-
resource languages. The model was trained on a massive multilingual dataset, with a focus on
inclusivity and diversity in language coverage. This enables BLOOM to excel in multilingual
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content generation and cross-lingual tasks, supporting research and applications that require ro-
bust performance across different languages.

English-Centric and Multilingual LLMs English-centric large language models (LLMs) are
predominantly pretrained on extensive English text corpora, though they are also exposed to a
limited amount of multilingual data. For instance, LLaMA (Touvron et al., 2023a) is trained
on over 1.4 trillion tokens, with less than 4.5% comprising multilingual data from 20 different
languages. LLaMA 2 (Touvron et al., 2023b) increases linguistic diversity, covering 27 lan-
guages, each contributing more than 0.005% of the total data. Mistral 7B (Jiang et al., 2023),
a state-of-the-art English-centric LLM, achieves high performance and efficiency by employing
advanced attention mechanisms such as Sliding Window Attention (SWA) (Child et al., 2019),
which enables faster inference.

The tokenizers used in English-centric LLMs are often designed to support byte-level encod-
ing (Workshop et al., 2022; Zhang et al., 2022a; Touvron et al., 2023a), allowing these models
to process a wide variety of scripts beyond the Latin alphabet. To further enhance multilin-
gual robustness, the Byte-level Byte-Pair-Encoding (BBPE) algorithm (Sennrich et al., 2016b;
wan, 2020) is commonly adopted for tokenization. BBPE can decompose UTF-8 characters not
present in the model’s vocabulary into their constituent bytes, equipping LLMs with the flexi-
bility to handle scripts from any language, even those not encountered during training. Thus,
the combination of limited multilingual data exposure and byte-level encoding contributes to the
robust multilingual capabilities observed in English-centric LLMs.

LLMs, including multilingual variants, are typically instruction-tuned to improve task under-
standing and interactivity. Notable examples include BLOOMZ (Muennighoff et al., 2023), de-
rived from BLOOM (Workshop et al., 2022), and mTk (Wang et al., 2022c), based on mT5 (Xue
et al., 2021). Instruction tuning is widely used to enhance the performance of LLMs on a variety
of tasks (Zhang et al., 2023c). Recent research has further strengthened the multilingual abilities
of LLMs through multilingual instruction tuning (Kew et al., 2024; Chen et al., 2023; Shaham
et al., 2024). Additionally, multilingual LLMs have been tailored for specific language groups,
such as SeaLLMs for Southeast Asian languages (Nguyen et al., 2023).

2.2.2 Multilinguality
Multilinguality refers to the property and capability of multilingual representations, where words
from different languages are mapped into a shared vector space and can be directly compared.
For instance, in a multilingual model, the German word ‘Hund’ and the English word ‘dog’
should be positioned closely in the vector space, reflecting their semantic similarity. MPLMs
achieve such multilingual representations through joint pretraining on large-scale multilingual
corpora. Recent studies have demonstrated that MPLMs are able to learn high-quality multilin-
gual representations (Lauscher et al., 2020). Remarkably, MPLMs acquire this multilinguality
without explicit signals linking different languages during pretraining. Despite the absence of ex-
ternal information about language relationships, MPLMs still exhibit strong multilinguality after
training. This phenomenon has prompted extensive research in the NLP community to analyze
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and explain the origins and mechanisms of multilinguality in MPLMs.
Singh et al. (2019) found that mBERT tends to partition representations by language, rather

than forming a unified, shared interlingual space as initially expected. Using projection weighted
canonical correlation analysis (PWCCA) (Hotelling, 1992; Morcos et al., 2018), they investi-
gated the relationships between representations of the same data points from different models,
in a way that is invariant to affine transformations. Their analysis revealed that mBERT’s rep-
resentations can be partitioned by language, indicating that semantically similar data points are
not necessarily closer in a common space. By applying the unweighted pair group method with
arithmetic mean (UPGMA) (Sokal, 1958), a hierarchical clustering method, they generated a
phylogenetic tree from Layer 6 representations of mBERT, which closely mirrors the linguistic
family tree of human languages. At deeper layers, this partitioning becomes more pronounced,
suggesting that mBERT abstracts semantic content in a way that reflects natural linguistic dif-
ferences and similarities. The use of WordPiece tokenization (Schuster and Nakajima, 2012)
in BERT, rather than character- or word-level tokenization, is identified as a factor motivating
mBERT to uncover these linguistic and evolutionary relationships.

Artetxe et al. (2020) challenged the necessity of joint pretraining and shared vocabulary for
mBERT’s multilinguality. They proposed an alternative approach by first training a transformer-
based masked language model on one language, then transferring it to a new language by learn-
ing a new embedding matrix, without shared vocabulary or joint training. Their results were
competitive with mBERT, contradicting the hypothesis that shared subword vocabulary and joint
training are essential for MPLMs’ multilinguality.

Wang et al. (2019b) conducted comprehensive experiments to identify the key components
contributing to MPLMs’ multilinguality. They examined linguistic properties (such as word-
piece overlap, word-order similarity, word-frequency similarity, and structural similarity), model
architecture (including model depth, multi-head attention, and number of parameters), and learn-
ing objectives (such as NSP, language identity markers, and tokenization types). Their findings
indicate that word-piece overlap and multi-head attention are not significant contributors, while
structural similarity between languages and model depth are crucial for achieving multilinguality.

Wu et al. (2019d) explored four factors potentially influencing MPLMs’ multilinguality: do-
main similarity, shared vocabulary, shared parameters, and language similarity. Their experi-
ments showed that shared vocabulary and domain similarity are not important, but shared pa-
rameters in the top layers are necessary for cross-lingual ability. They further demonstrated that
monolingual BERT representations in different languages are isomorphic and can be aligned
post-hoc. This suggests that MPLMs leverage universal latent symmetries in embedding spaces
and align them automatically during joint training.

Dufter and Schütze (2020) investigated four architectural properties (overparameterization,
shared special tokens, shared position embeddings, and random word replacement) and two lin-
guistic properties (word order and corpus comparability) as possible reasons for multilinguality,
using a controlled experimental setting. Their results show that limited parameter count, shared
special tokens, shared position embeddings, and random masking contribute to multilinguality.
Unlike previous studies, they introduced a comprehensive metric, the multilinguality score, to
directly measure the model’s multilinguality, rather than relying on extrinsic task-based metrics.
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Deshpande et al. (2022) focused on the influence of linguistic properties on multilinguality
through large-scale experiments. Contrary to earlier findings, they observed that subword over-
lap significantly affects multilinguality when languages differ in word order. Additionally, they
found a strong correlation between word embedding alignment across languages and the degree
of multilinguality.

Curse of Multilinguality Conneau et al. (2020) identified a phenomenon in MPLMs where,
for a fixed model capacity, cross-lingual transfer performance improves as more languages are
added to pretraining, but only up to a certain point. Beyond this, adding more languages leads
to a decline in performance, a phenomenon termed the “curse of multilinguality”. This issue can
be mitigated by increasing model capacity (Artetxe et al., 2020). However, Dufter and Schütze
(2020) noted that excessively large model sizes can negatively impact multilinguality, indicating
a trade-off between generalization and the degree of multilinguality in MPLMs.

2.2.3 Cross-Lingual Transfer Learning
Transfer learning investigates how machine learning models can be adapted to data outside their
original training distribution (Pan and Yang, 2009), including across different tasks, domains, and
languages. The motivation for transfer learning arises from the high cost of linguistic annotation
and the diversity of NLP tasks. In particular, data scarcity in low-resource languages highlights
the need for effective cross-lingual transfer methods. Cross-lingual transfer learning refers to
strategies that leverage abundant labeled data from high-resource languages to perform NLP
tasks in low-resource languages. In the zero-shot scenario, i.e. zero-shot cross-lingual transfer
learning, no annotated data from the target language is available, while in the few-shot scenario,
i.e. few-shot cross-lingual transfer learning, a small amount of labeled data for the target
language can be used.

Empirical Study of Cross-Lingual Transfer Cross-lingual word embeddings have been uti-
lized for cross-lingual transfer (Ruder et al., 2019). More recently, pretrained multilingual text
encoders have become the standard paradigm for cross-lingual transfer learning. Numerous em-
pirical studies have examined cross-lingual transfer with MPLMs in recent years.

Pires et al. (2019) conducted probing experiments on named entity recognition (NER) and
part-of-speech tagging (POS) tasks to evaluate cross-lingual transfer. Their findings show that
mBERT enables effective cross-lingual transfer for NER and POS between languages with dif-
ferent scripts and zero lexical overlap, with even better transfer observed for typologically similar
languages. Wu and Dredze (2019) extended the investigation to a broader range of tasks, includ-
ing text classification, dependency parsing, and natural language inference (NLI), covering 39
languages.

With the growing interest in cross-lingual transfer, Hu et al. (2020b) introduced XTREME, a
benchmark for evaluating cross-lingual transfer performance with MPLMs. XTREME comprises
9 tasks spanning a subset of 40 languages, categorized into four types: (1) sentence classifica-
tion, including cross-lingual natural language inference (Conneau et al., 2018) and cross-lingual
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paraphrase adversaries (Yang et al., 2019a); (2) structured prediction, including POS tagging and
NER; (3) sentence retrieval, including parallel sentence extraction and nearest sentence retrieval;
and (4) question answering, including cross-lingual question answering (Artetxe and Schwenk,
2019), multilingual question answering (Lewis et al., 2019), and typologically diverse question
answering (Clark et al., 2020).

Limitations and Improvement of Cross-Lingual Transfer Despite the impressive perfor-
mance of zero-shot cross-lingual transfer with MPLMs on many tasks, several limitations have
been identified by the NLP community.

Wu and Dredze (2020) compared mBERT’s performance between low- and high-resource
languages and found that mBERT performs significantly worse on low-resource languages.
Lauscher et al. (2020) further demonstrated that both the size of a language’s pretraining corpus
and the linguistic similarity between source and target languages influence transfer performance.
To address these challenges, several approaches have been proposed to improve cross-lingual
performance for low-resource target languages.

Pfeiffer et al. (2020b) showed that continued pretraining on monolingual text in the target
language using a masked language modeling (MLM) objective can effectively adapt MPLMs to
the target language (Howard and Ruder, 2018). Another strategy involves expanding labeled data
for low-resource languages by employing machine translation systems. By translating labeled
data from the source language into the target language, the pretrained MPLM can be fine-tuned
on both source and target language data (Jundi and Lapesa, 2022). Lauscher et al. (2020) demon-
strated that leveraging even inexpensive labeled data in low-resource languages yields substantial
improvements, suggesting that efforts should be made to move beyond strict zero-shot condi-
tions. In a recent study, Wang et al. (2022b) proposed expanding MPLMs to more low-resource
languages through the use of bilingual lexicons annotated and documented by linguists.

2.2.4 Language Resource Distribution
The remarkable success of modern NLP methods, which rely on large-scale labeled and unla-
beled corpora, has primarily benefited a small subset of the world’s more than 7,000 languages—
those with abundant digital resources. The vast majority of languages lack sufficient digital
resources and, as a result, have not fully benefited from recent advances in NLP. While the de-
velopment of MPLMs has partially alleviated this issue, it remains far from resolved. MPLMs
trained on up to a hundred languages have demonstrated impressive cross-lingual transfer per-
formance on certain NLP tasks, even in the absence of explicit cross-lingual signals (Wu and
Dredze, 2019). However, this strong performance is largely limited to languages with relatively
high resources that are included in models like mBERT. Wu and Dredze (2020) found that not
all languages are equally represented in MPLMs; when monolingual corpora are small, MPLMs
fail to learn high-quality representations for those languages. Furthermore, the pretraining of
MPLMs is highly dependent on the availability of monolingual corpora, meaning that most of
the world’s languages remain uncovered by these models.

This subsection provides an overview of the global distribution of language resources and
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Language ISO Family Size Range
(GB)

English en Indo-European [11.314, 22.627]
Russian ru Indo-European

[2.828, 5.657]French fr Indo-European
Spanish es Indo-European
German de Indo-European
Chinese zh Sino-Tibetan

[1.414, 2.828]

Portuguese pt Indo-European
Polish pl Indo-European
Japanese ja Altaic
Italian it Indo-European
Cebuano ceb Austronesian
Ukrainian uk Indo-European

[0.707, 1.414]

Swedish sv Indo-European
Dutch nl Indo-European
Hungarian hu Uralic
Czech cs Indo-European
Catalan ca Indo-European
Arabic ar Afro-Asiatic
Vietnamese vi Austroasiatic

[0.354, 0.707]

Turkish tr Altaic
Serbian sr Indo-European
Romanian ro Indo-European
Norwegian no Indo-European
Korean ko Altaic
Indonesian id Austronesian
Hebrew he Afro-Asiatic
Finnish fi Uralic
Persian fa Indo-European
Waray Waray war Austronesian

[0.177, 0.354]

Thai th Tai-Kadai
Slovenian sl Indo-European
Slovak sk Indo-European
Serbo Croatian sh Indo-European
Malay ms Austronesian
Armenian hy Indo-European
Croatian hr Indo-European
Galician gl Indo-European
Estonian et Uralic
Greek el Indo-European
Danish da Indo-European
Bulgarian bg Indo-European
Belarusian be Indo-European
Asturian ast Indo-European
Urdu ur Indo-European

[0.088, 0.177]

Telugu te Dravidian
Tamil ta Dravidian
Norwegian Nynorsk nn Indo-European
Malayalam ml Dravidian
Mecedonian mk Indo-European
Latvian lv Indo-European

ss

Language ISO Family Size Range
(GB)

Lituanian lt Indo-European

[0.088, 0.177]

Kazakh kk Altaic
Georgian ka Caucasian
Hindi hi Indo-European
Basque eu Language Isolate
Bosnian bs Indo-European
Bengali bn Indo-European
Azerbaijani az Altaic
Uzbek uz Altaic

[0.044, 0.088]

Tatar tt Altaic
Tagalog tl Austronesian
Albanian sq Indo-European
Scots sco Indo-European
Occitan oc Indo-European
Marathi mr Indo-European
Latin la Indo-European
Kannada kn Dravidian
Welsh cy Indo-European
Bashkir ba Altaic
Afrikaans af Indo-European
Tajik tg Indo-European

[0.022, 0.044]

Swahili sw Niger-Congo

Western pnb Indo-EuropeanPunjabi
Punjabi pa Indo-European
Nepali ne Indo-European
Low Saxon nds Indo-European
Burmese my Sino-Tibetan
Mongolian mn Altaic
Lombard lb Indo-European
Kirghiz ky Altaic
Javanese jv Austronesian
Icelandic is Indo-European
Gujarati gu Indo-European
Irish ga Indo-European
West Frisian fy Indo-European
Chechen ce Caucasian
Breton br Indo-European
Bavarian bar Indo-European
Aragonese an Indo-European
Volapük vo Artificial

[0.011, 0.022]

Sudanese su Afro-Asiatic
Minangkabau min Austronesian
Malagasy mg Austronesian
Luxembourgish lmo Indo-European
Chuvash cv Altaic
Yoruba yo Niger-Congo

[0.006, 0.011]Sicilian scn Indo-European
Pietmontese pms Indo-European
Ido io Artificial

Table 2.2: List of the 99 Languages with the largest Wikipedia size and the language family they
belong to.

examines how this distribution impacts NLP research.

Resource Typology of World Languages The number of languages worldwide is dynamic,
with some languages disappearing and new ones emerging. Currently, there are over 7,000 rec-
ognized languages. However, the distribution of digital resources is highly uneven. The extent
of available resources largely determines how much a language can benefit from modern data-
driven NLP methods.

MPLMs such as mBERT cover approximately 100 languages, representing approximately
1% of all languages. These models require large volumes of unlabeled text for pretraining. Yet,
widely used resources like Wikipedia and CommonCrawl provide data for only 3411 and 1602

1https://en.wikipedia.org/wiki/List_of_Wikipedias
2https://commoncrawl.github.io/cc-crawl-statistics/plots/languages

https://en.wikipedia.org/wiki/List_of_Wikipedias
https://commoncrawl.github.io/cc-crawl-statistics/plots/languages
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languages, respectively—just about 4% of the world’s languages. The Bible, available in 1,600
languages, constitutes the largest parallel corpus in terms of language variety, covering 23% of
languages. Nevertheless, more than 70% of languages lack any digital unlabeled data. Despite
this, linguistic documentation efforts have produced bilingual lexicons or word lists for about
70%3 of languages.

Joshi et al. (2020) classified the world’s 7,000 languages into six categories based on their
digital status and data richness, considering both the quantity of unlabeled and labeled resources:

• Left-behinds: Languages with virtually no unlabeled data, largely ignored by language
technologies.

• Scraping-bys: Languages with some unlabeled data but insufficient labeled data.

• Hopefuls: Languages with small labeled datasets, struggling to maintain digital presence.

• Rising stars: Languages with strong internet presence and ample unlabeled data, but lack-
ing labeled data for further research.

• Underdogs: Languages with large amounts of unlabeled data, comparable to the top
group, but limited labeled data.

• Winners: Languages with dominant online presence and extensive investment in resources
and technology, benefiting most from state-of-the-art methods.

Language Coverage in MPLMs Current multilingual NLP study focuses on the languages
included in MPLMs, which can be broadly categorized as low-, medium-, and high-resource
languages.

Low-resource languages have attracted significant attention in recent NLP research. Singh
(2008) described low-resource languages as resource-scarce, less studied, less computerized,
and less privileged. Tsvetkov (2017) defined them as lacking sufficient monolingual or paral-
lel corpora and/or manually crafted linguistic resources for statistical NLP applications. Agić
et al. (2016) further characterized truly low-resource languages as those without supporting tools
or resources for basic NLP tasks such as segmentation, POS tagging, or dependency parsing.
In practice, the classification of low-, medium-, and high-resource languages is based on their
representation in the pretraining corpora of MPLMs.

Table 2.2 presents the 99 languages with the largest Wikipedia sizes, along with their lan-
guage families, as used in the pretraining of mBERT (Devlin et al., 2019). The table lists lan-
guages in order of Wikipedia size, with columns for the language name, ISO code, language
family, and Wikipedia size range.

Language family reflects the genetic relationships and distances between languages, which is
relevant in multilingual NLP, as structural and linguistic similarities can influence cross-lingual
performance (Lauscher et al., 2020). Among the languages covered by mBERT, approximately
60% belong to the Indo-European family, with others from Altaic, Sino-Tibetan, Austronesian,

3https://vocab.panlex.org/

https://vocab.panlex.org/


28 2. Background and Related Work

Uralic, Dravidian, Afro-Asiatic, Niger-Congo, and Caucasian families. Notably, two artificial
languages—Volapük and Ido—are also included in mBERT.

2.3 Prompt-Based Learning
Prompt-based learning has emerged as a transformative paradigm in NLP, following the develop-
ment of increasingly large-scale PLMs. It is often regarded as the second major shift in NLP after
the pretraining-finetuning paradigm (Liu et al., 2023a). Unlike traditional supervised learning,
where a model is trained to predict an output y given an input x as P (y|x), prompt-based learn-
ing leverages language models to directly predict the probability of text for various NLP tasks.
To enable this, the input x is reformulated into a cloze-style or text-to-text prompt, allowing the
PLM to generate the desired output.

For example, in sentiment analysis, the original input “This product is amazing.” is trans-
formed using a template defined by the prompting function fprompt(x) into a new prompt x’, as
shown in Equation (2.4). In this case, the input becomes “This product is amazing. In summary, it
is a [Z] product.” The label for this example is “1” (positive). Using a verbalizer, which maps la-
bels to words (Schick and Schütze, 2021a), as shown in Equation (2.5), the label “1” is converted
to the word “great” and inserted into the prompt. Prompts can also be enriched with additional
information, such as task descriptions (Radford et al., 2019) or few-shot examples (Brown et al.,
2020).

x’ = fprompt(x) (2.4)

z = v(y) (2.5)

2.3.1 Human-Inspired Prompt Learning Development
The evolution of prompt learning is deeply rooted in human-inspired approaches to communica-
tion and instruction, which have significantly influenced the development of large-scale PLMs.
Early work by Radford et al. (2019) demonstrates that providing explicit task descriptions in
natural language prompts enables GPT-2 to perform zero-shot task transfer, mirroring the way
humans convey instructions or context to guide understanding. Building on this, Brown et al.
(2020) show that GPT-3 could perform a wide range of NLP tasks from just a few examples,
a process termed “in-context learning”. In this paradigm, the model does not require parame-
ter updates for prediction; instead, it learns from the prompt itself, much like humans learn by
observing examples or receiving instructions in context.

GPT-3’s ability to achieve strong performance on diverse NLP tasks, including complex rea-
soning and generation, through in-context learning, highlights the profound impact of human-
inspired prompting strategies. However, the immense scale of GPT-3, with its 175 billion param-
eters, poses practical limitations for widespread adoption. Recognizing these challenges, Schick
and Schütze (2021a) demonstrate that prompt-based approaches can be effectively applied to
smaller models, such as RoBERTa and ALBERT, by reformulating input examples as cloze-
style phrases. This reformulation enables PLMs to better understand and perform specific tasks,
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drawing inspiration from the way humans fill in missing information based on context. The PET
method introduced by Schick and Schütze (2021a) combines prompting with gradient-based op-
timization, showing that smaller, more efficient models can achieve performance comparable to
GPT-3 and even surpass it on benchmarks like SuperGlue with only 32 training examples (Schick
and Schütze, 2021c). Beyond classification, Schick and Schütze (2021b) extend these combined
methods to generation tasks, such as text summarization and headline generation.

Overall, the development of prompt learning is a testament to the influence of human cog-
nitive strategies, such as learning from instructions, examples, and context, on the design and
success of modern NLP models.

2.3.2 Large Language Models and Prompt Engineering
Prompt engineering has become a central technique in leveraging the capabilities of large lan-
guage models (LLMs), as the way prompts are designed directly influences the performance and
reliability of these models. Discrete prompting, also known as hard prompting, involves using
natural language templates to describe NLP tasks. In models such as GPT-3 and methods like
PET, these prompts are typically human-crafted. Manual template engineering, while effective,
can be labor-intensive and may not always yield optimal prompts for every task.

To address these challenges, several approaches have been developed to automate the prompt
design process. Gao et al. (2021) utilize the seq2seq pretrained model T5 (Raffel et al., 2020)
to search for and generate prompts automatically. Shin et al. (2020) propose using downstream
training samples to automatically identify template tokens, while Jiang et al. (2020) employ data
mining techniques to discover templates from large text corpora. Paraphrase-based methods
further enhance prompt diversity by generating multiple candidate prompts from a single seed
prompt (Yuan et al., 2021; Haviv et al., 2021; Zhong et al., 2021).

Beyond discrete prompting, prompt engineering has evolved to include continuous, or soft,
prompting. In this approach, prompts are learned directly in the embedding space of the model
using stochastic gradient descent (SGD). Continuous prompts can elicit more nuanced knowl-
edge from PLMs compared to discrete prompts (Qin and Eisner, 2021). Techniques such as
prefix-tuning, which freezes the parameters of the PLM and only optimizes the prompt embed-
dings, have demonstrated high parameter efficiency for generation tasks (Li and Liang, 2021).

Integrating the concept of prompting with techniques from other fields has the potential to
further enhance performance. Liu et al. (2022e) incorporate unlabeled data into prompt-based
learning, aiming to leverage large volumes of unlabeled data to improve the zero-shot capabilities
of PLMs without updating model parameters. Their approach combines retrieval-based methods
with prompting, opening new avenues for research in prompt-based learning. Inspired by prompt
engineering, Wang et al. (2022a) modify the traditional supervised learning process by retrieving
similar information from the labeled training set for each input and concatenating it with the
retrieved content.

Despite the remarkable advancements in zero- and few-shot learning achieved through prompt-
based methods, there remain ongoing discussions and skepticism regarding the underlying mech-
anisms of prompting. Some studies investigate how prompting enhances PLM performance.
For example, Webson and Pavlick (2022) argue that prompt-based models may not truly under-
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stand the meaning of prompts, as demonstrated by experiments with misleading and irrelevant
prompts. Other researchers suggest that incorporating explanations into prompts can further im-
prove prompt-based learning outcomes.

2.3.3 Advancements in Prompt-Based Learning
Retrieval Augmented Prompt Brown et al. (2020) demonstrate that large-scale pretrained
language models like GPT-3 can perform tasks by including input-output examples as context
within the prompt. This in-context learning approach concatenates the input with examples ran-
domly selected from the training set. Building on this, recent studies (Gao et al., 2021; Liu
et al., 2022a,e) enhance prompts for pretrained models by retrieving semantically similar ex-
amples, rather than random ones. These retrieval-augmented methods are applied to discrete
prompts, where prompts are represented by tokens instead of continuous vectors. Such retrieval-
augmented prompts can be used for both fine-tuning in few-shot settings and for zero-shot learn-
ing. Chowdhury et al. (2022) extend this idea by employing a kNN-based retrieval approach to
tune soft prompts in a continuous space within a standard supervised training framework.

Multilingual Prompt Learning Despite the notable success of prompting in English, its appli-
cation in multilingual tasks has not been extensively explored. Research on prompt learning with
multilingual pretrained language models (MPLMs) for cross-lingual transfer and low-resource
languages remains limited. Zhao and Schütze (2021) applied both discrete and soft prompting
techniques to the XNLI task using MPLMs, demonstrating that prompting outperforms finetun-
ing in few-shot cross-lingual transfer and in-language training for multilingual natural language
inference. Similarly, Huang et al. (2022) introduced a unified prompt approach for all languages
in zero-shot cross-lingual settings with MPLMs. Winata et al. (2021) highlighted the multi-
lingual capabilities of language models primarily trained on English data by providing a few
English examples as context and evaluating on non-English data. Recent studies have begun to
investigate prompt learning with MPLMs (Zhao and Schütze, 2021; Huang et al., 2022). Subse-
quent research introduced enhancements such as mask token augmentation (Zhou et al., 2023)
and unified multilingual prompts (Huang et al., 2022) for zero-shot cross-lingual transfer.

While these methods have attracted increasing attention, particularly in few-shot scenarios
across various NLP tasks, comprehensive investigations into the variations of prompt-based
learning methods across different few-shot and full-data settings are still lacking. For exam-
ple, Tu et al. (2022) proposed an alternative prompting approach for cross-lingual transfer in
full-data scenarios, introducing additional prompt parameters to PLMs and updating only these
parameters during fine-tuning. More recently, Shi and Lipani (2023) combined prompt-based
fine-tuning with continued pretraining, though their work was limited to monolingual settings.

Brown et al. (2020) demonstrated that LLMs like GPT-3 can acquire in-context learning
(ICL) abilities for task solving. The advent of multilingual LLMs (MLLMs) has enabled zero-
shot cross-lingual ICL, as evidenced by recent benchmarks such as MEGA (Ahuja et al., 2023)
and BUFFET (Asai et al., 2024). However, current ICL methods that use text-to-text prompting
with fixed output templates for sequence labeling tasks have been shown to “consistently exhibit
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extremely poor performance” (Asai et al., 2024) when applied to MLLMs, failing to fully exploit
their cross-lingual transfer capabilities.

Prompting for Sequence Labeling Prompting methods have rarely been applied to sequence
labeling tasks, as most prior work has focused on sentence-level classification. However, sev-
eral studies have explored prompt-based fine-tuning for sequence labeling. Cui et al. (2021)
introduced template-based prompting techniques with the BART model (Lewis et al., 2020) for
Named Entity Recognition (NER), employing a rank-based approach that generates a sentence
for each possible label and computes the probabilities for prediction, though this can be compu-
tationally expensive. Ma et al. (2022) proposed a template-free prompting strategy for few-shot
NER, termed entity-oriented language model fine-tuning. Similarly, Ma et al. (2024) utilized
a decomposition-based prompting method to fine-tune multilingual encoder models for cross-
lingual sequence labeling.

Despite these advances, prompting large language models (LLMs) for sequence labeling re-
mains challenging (Ahuja et al., 2023). While text-to-text prompting is widely used in bench-
marking LLMs (Lai et al., 2023a), its application to sequence labeling is hindered by the com-
plexity of output templates, which may not fully capture the capabilities of LLMs (Asai et al.,
2024). Iterative structured prompting, specifically designed for sequence labeling, has been in-
troduced to address this issue (Blevins et al., 2023). In this approach, the model predicts the
label for each word in the sequence step by step, feeding the predicted label and the next word
back into the model for subsequent predictions. However, this token-by-token dependency sig-
nificantly slows down inference.

Recent work has adapted structural prompting methods for multilingual benchmarking of
LLMs (Ahuja et al., 2023). While prompt-based methods have shown promise for sentence-
level tasks, their application to token-level sequence labeling remains less explored and presents
unique challenges in both efficiency and effectiveness.

2.4 Information Retrieval for Natural Language Processing
In NLP research, information retrieval (IR) methods are frequently employed to gather external
knowledge and resources for solving a variety of tasks. This is especially relevant in the era
of large language models (LLMs), where neuro-symbolic approaches and retrieval-augmented
generation (RAG) benefit from integrating external knowledge sources. In this dissertation, IR
methods are also utilized, with a particular focus on cross-lingual retrieval. Retrieval-based
approaches can be broadly categorized based on the type of representation used by the retriever:
sparse representations, typically based on the bag-of-words (BOW) model (Chen et al., 2017),
and dense representations, derived from neural network encoders (Karpukhin et al., 2020).

2.4.1 Sparse and Dense Retrieval Methods
Retrieval with Sparse Representations Sparse representation methods are grounded in the
BOW model and are widely applied to large-scale search and open-domain question answer-
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ing (Chen et al., 2017). In these methods, both queries and documents are represented as high-
dimensional, sparse vectors, with weights reflecting term importance. Document ranking is per-
formed using rule-based scoring functions.

For full-text search collections, it is essential to consider term frequency (tf) and document
length. The BM25 algorithm (Manning et al., 2008) is a probabilistic model that has been ex-
tensively and successfully used across various search tasks. BM25 builds upon the Binary Inde-
pendence Model (BIM) (Yu and Salton, 1976), incorporating tf and length normalization into its
scoring. The BIM score for a document d is based on the inverse document frequency (idf) of
the query terms present in the document:

RSVd =
X

t2q\d

log
N

dft
(2.6)

BM25 refines the idf term N
df in Equation (2.6) by integrating term frequency and document

length, as shown in Equation (2.7):

RSVd =
X

t2q\d

log
N

dft
· (k1 + 1)tftd
k1((1� b) + b⇥ (Ld/Lave)) + tftd

(2.7)

• tftd: term frequency of term t in document d

• Ld (Lave): length of document d (average document length in the collection)

• k1: parameter controlling the scaling of term frequency

• b: parameter controlling the scaling by document length

Sparse representations offer strong generalization and efficiency, making them well-suited
for searching large-scale document collections.

Retrieval with Dense Representations Dense representations, in contrast, are obtained through
latent semantic encoding, typically using neural network encoders pretrained on task-specific
data. With the rise of transformer-based models, dense retrieval methods have become a major
area of exploration, often complementing traditional sparse retrieval approaches. Dense rep-
resentations are particularly effective for matching synonyms or paraphrases that do not share
common tokens, a scenario where sparse methods often fail. In dense retrieval, such semanti-
cally similar terms are mapped to nearby points in the vector space, increasing the likelihood of
successful retrieval. As a result, dense retrieval methods often achieve higher recall than sparse
methods on tasks such as open-domain question answering (Karpukhin et al., 2020).

However, dense retrieval also faces two main limitations. First, learning high-quality dense
vector representations requires large amounts of labeled question-context pairs, necessitating pair
data for model training on specific tasks. Second, due to the architectural constraints of trans-
formers, dense retrievers are unable to process very long documents, as the maximum sequence
length is limited by the model’s configuration.
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2.4.2 Sentence Transformers for Retrieval

Words can be represented as word embeddings and directly applied to various NLP tasks or used
as inputs for language models. Similarly, mapping sentences or short text passages into a dense
vector space, where semantically similar sentences are positioned closely, has broad applications.

Sentence Representation A straightforward approach to obtaining sentence embeddings is
to aggregate word embeddings, for example, by averaging the embeddings of all tokens in a
sentence. These word embeddings can be static, such as GloVe (Pennington et al., 2014), or
contextual, derived from pretrained language models (PLMs). A common method is to input
single sentences into BERT and then obtain a fixed-size vector either by averaging the output
layer embeddings or by using the embedding of the special [CLS] token. For instance, May
et al. (2019) utilize this approach to measure social biases, while Zhang et al. (2020b) sum token
similarities to evaluate the similarity between candidate and reference sentences.

Beyond these methods, other strategies have been proposed for sentence representation.
Kiros et al. (2015) train an encoder-decoder model to reconstruct surrounding sentences, map-
ping semantically and syntactically similar sentences to nearby vectors. Conneau et al. (2017)
leverage supervised natural language inference datasets to train universal sentence representa-
tions using a siamese BiLSTM network with max-pooling. Subsequently, Cer et al. (2018)
introduce the Universal Sentence Encoder, a transformer-based model. More recently, sen-
tence transformers have been developed by modifying transformer-based PLMs. Reimers and
Gurevych (2019) apply siamese and triplet network structures to BERT and RoBERTa, produc-
ing semantically meaningful sentence embeddings that can be compared using cosine similarity.
This approach achieves state-of-the-art results on semantic textual similarity (STS) and other
transfer learning tasks, and has been extended to various PLMs, resulting in a range of sentence
transformer models.

Multilingual Sentence Embeddings As in other areas of NLP, the distribution of language
resources is imbalanced for sentence embeddings, with most existing models being monolin-
gual and typically focused on English. To address this, multilingual sentence embeddings have
been developed using transfer learning or knowledge distillation techniques, enabling broader
language coverage.

Chidambaram et al. (2018) train the Multilingual Universal Sentence Encoder (mUSE) in
a multi-task setting, utilizing the SNLI dataset (Bowman et al., 2015) and a large web-crawled
question-answering pairs dataset. Reimers and Gurevych (2020) employ multilingual knowledge
distillation to train multilingual sentence transformers. In this approach, the MPLM XLM-R
serves as the student model M̂ , while sentence BERT acts as the teacher model M . Training
requires parallel sentences in the source and target languages, ((s1, t1), . . . , (sn, tn)), where ti is
the translation of si. The student model is trained so that M̂(si) ⇡ M(si) and M̂(ti) ⇡ M(si),
using mean squared error (MSE) as the loss function. This method has proven effective for over
50 languages from diverse language families and can be readily extended to additional languages.
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2.5 Summary
This chapter has provided a comprehensive overview of the foundational concepts, methodolo-
gies, and recent advances that underpin this dissertation’s investigation into efficient and human-
inspired multilingual NLP for low-resource settings. We began by tracing the evolution of lan-
guage models, from early statistical n-gram models and static word embeddings to the rise of
deep learning, transformer architectures, and large-scale pre-trained and large language models
(LLMs). The discussion highlighted how these advances have enabled remarkable progress in
NLP, while also introducing new challenges related to model scalability, computational cost, and
equitable language coverage.

We then examined the development and impact of multilingual pre-trained language models
(MPLMs), detailing their architectures, pretraining strategies, and cross-lingual transfer capabil-
ities. Special attention was given to the limitations posed by the uneven distribution of digital
language resources and the “curse of multilinguality”, which restricts the benefits of recent mod-
els to a small subset of the world’s languages. The chapter further reviewed empirical findings
on cross-lingual transfer learning, outlined the current typology of language resources, and dis-
cussed how linguistic and architectural factors influence model multilinguality.

Next, we introduced the paradigm of prompt-based learning, emphasizing its human-inspired
roots and its growing importance for efficient, instruction-driven adaptation of language models
to new tasks and languages. The chapter covered both discrete and continuous prompt engineer-
ing, advancements in retrieval-augmented prompting, and the emerging application of prompt-
based methods to multilingual and sequence labeling tasks.

Finally, we discussed the role of information retrieval in NLP, contrasting sparse and dense
retrieval methods, and highlighted the development of sentence-level and multilingual embed-
dings that support cross-lingual information access and retrieval-augmented generation.

Together, these topics establish the scientific context and motivate the methodological inno-
vations and analyses that follow, laying a strong foundation for the dissertation’s contributions to
robust, scalable, and human-aligned multilingual NLP.



Chapter 3

Prompt-Based Learning for Multilingual
Prediction

Summary of This Chapter

As introduced in Section §2.3, prompt-based learning has rapidly emerged as a transformative
paradigm in NLP, particularly with the advent of large language models (LLMs). By reformu-
lating downstream tasks as prompt-driven language modeling problems, this approach enables
models to leverage their pre-trained knowledge for zero-shot and few-shot learning, often without
the need for additional parameter updates. This property is especially valuable for multilingual
NLP, where the scarcity of annotated data in many languages, especially low-resource languages,
poses a persistent challenge to the development of inclusive and robust language technologies.
In the context of multilingual and low-resource NLP, prompt-based learning offers several key
advantages. First, it enables efficient adaptation to new languages and tasks by exploiting the
generalization capabilities of pre-trained models, thus reducing the reliance on costly data anno-
tation and model fine-tuning. Second, prompt-based methods are inherently flexible, supporting
a wide range of tasks, such as classification, sequence labeling, and knowledge editing, across
diverse linguistic settings. Third, by leveraging in-context learning, prompt-based approaches
can facilitate cross-lingual transfer, making it possible to extend the benefits of state-of-the-art
models to languages and domains that are otherwise underrepresented.

This chapter systematically investigates prompt-based learning for multilingual prediction,
with a particular focus on training-free, parameter-frozen methods that utilize in-context learning.
We explore the effectiveness of prompt-based approaches across several core multilingual tasks,
including text classification, sequence labeling, and knowledge editing. The chapter is structured
around four main contributions, each addressing a critical aspect of prompt-based multilingual
NLP.

We begin by examining a fundamental limitation of prompt-based learning, i.e., bias in mask
token prediction. This bias, often arising from the frequency of label words in the pre-training
corpus or from prompt design, can significantly degrade zero- and few-shot performance, partic-
ularly in case of low-resource and typologically diverse languages. We introduce and evaluate a
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suite of calibration methods that adjust the predicted probabilities of label words, demonstrating
substantial improvements in multilingual prediction accuracy (§3.1).

To further enhance prompt-based learning for low-resource languages, we propose PARC, a
novel pipeline that augments prompts with semantically similar examples retrieved from high-
resource language corpora. By incorporating cross-lingual retrieval into the prompt context,
PARC enables more effective zero-shot transfer and robust performance gains across multiple
tasks and language families, even for languages unseen during pre-training (§3.2).

Recognizing the limitations of standard prompt-based approaches for structured prediction,
we introduce a decomposed prompting strategy for sequence labeling tasks such as part-of-
speech tagging. By generating individual prompts for each token in a sentence, this method
allows for more precise probing and evaluation of the linguistic structure knowledge encoded in
LLMs, and reveals new insights into their multilingual capabilities (§3.3).

Finally, we extend prompt-based learning to the domain of knowledge editing, presenting
BMIKE-53, a comprehensive benchmark for cross-lingual in-context knowledge editing across
53 languages. We systematically evaluate the ability of LLMs to update and transfer factual
knowledge across languages using in-context demonstrations, and analyze the factors that influ-
ence the reliability and generalization of knowledge editing in multilingual settings (§3.4).

Through these investigations, this chapter demonstrates how prompt-based learning, when
carefully calibrated and augmented, can serve as a powerful and flexible tool for advancing
multilingual NLP. The methods and analyses presented here not only improve the practical per-
formance of LLMs in low-resource and diverse linguistic contexts, but also lay a methodological
foundation for a deeper understanding of the mechanisms underlying cross-lingual generalization
and knowledge transfer.



3.1 Calibration of Prompt-Based Learning 37

3.1 Calibration of Prompt-Based Learning: Enhancing the
Multilingual Understanding of Encoder Models

This section corresponds to the following work:

Ercong Nie, Helmut Schmid, and Hinrich Schuetze. 2023. Unleashing the Multi-
lingual Encoder Potential: Boosting Zero-Shot Performance via Probability Calibra-
tion. In Findings of the Association for Computational Linguistics: EMNLP 2023,
pages 15774–15782, Singapore. Association for Computational Linguistics.

Declaration of Co-Authorship. I conceived the idea of improving the zero-shot performance
of multilingual encoders in language understanding tasks by identifying bias issues in regular
prompt-based mask token prediction. I designed and conducted all experiments and drafted the
initial version of the manuscript. Helmut Schmid and Hinrich Schütze supervised the project,
provided feedback, and contributed to revising the paper draft.
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Summary of This Section
Pretrained multilingual encoder models can directly perform zero-shot multilingual tasks or lin-
guistic probing by reformulating the input examples into cloze-style prompts. This is accom-
plished by predicting the probabilities of the label words at the masked token position, without
requiring any updates to the model parameters. However, the performance of this pattern is
limited by the model’s bias toward predicting label words that frequently occurred during the
pretraining. These words typically receive high probabilities. To address this issue, we combine
the models with various calibration techniques which modify the probabilities of label words
predicted by the models. We evaluate the effectiveness of these calibration methods on mono-
lingual encoders as well as multilingual encoders. Across a diverse range of tasks, we achieve
substantial performance gains through calibration. Furthermore, with only very few training
samples, the trained calibration parameters are able to yield additional enhancements.

3.1.1 Bias in Mask Token Prediction
Prompt-based learning (Brown et al., 2020; Liu et al., 2023a) has emerged as an important re-
search area. By reformulating language understanding into the form of cloze prompts (Schick
and Schütze, 2021a,c) or prefix prompts (Li and Liang, 2021; Lester et al., 2021), autoencod-
ing language models (LMs) such as BERT and autoregressive LMs such as GPT can perform
zero-/few-shot learning. Recent research demonstrates that multilingual encoder models are ca-
pable of accomplishing zero-shot cross-lingual learning (Zhao and Schütze, 2021; Huang et al.,
2022) and linguistic probing (Shapiro et al., 2021; Hartmann et al., 2021) by using cloze-style
prompts. These prompts consist of an input sample, a task-specific context, and a mask token.
The encoder model applies Masked Language Modeling (MLM) (Devlin et al., 2019) to generate
predictions for the mask token using a selection of prescribed candidate tokens from the vocab-
ulary. These predictions can be subsequently utilized for label classification or probing purposes.
For example, in order to determine the sentiment of the product review “Worked as stated!”, we
can create the close-style question: “Worked as stated! All in all, it was [MASK].”
and ask the model to predict the probabilities of the verbalizers “good” (for the class POS) and
“bad” (for the class NEG) in the masked token position. The class with the more likely verbalizer
is chosen.

However, earlier studies indicate that the output of masked token prediction is biased towards
certain label words in the candidate token list (Weissweiler et al., 2022; Nie et al., 2023a). This
bias not only affects the predicted class probabilities (Holtzman et al., 2021; Ahuja et al., 2022),
but also deteriorates the model’s overall performance (Zhao et al., 2021; Lu et al., 2022). Ac-
cording to Weissweiler et al. (2022) and Zhao et al. (2021), label words with higher frequency in
the pretraining corpus tend to be predicted with higher probabilities. Besides, the prompt context
can also influence the degree of bias present in the masked token prediction.

Figure 3.1 illustrates the impact of the above-mentioned biases on the model predictions. It
shows the results of a binary sentiment analysis task with the BERTBase model. In this example,
we use {good,bad} as label words for classes {POSITIVE, NEGATIVE}, and “[X] . All in all,
it was [MASK].” as a prompt template. By shifting the threshold for predicting POS from 0.5 to
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Figure 3.1: Example of the model predictions bias. The graph shows the accuracy on the Amazon
polarity test data as a function of the classification threshold. x-axis refers to the threshold
probability of good to classify examples as POS. The best results are obtained by classifying
examples as POS if the probability of good exceeds 0.96.

approx. 0.95, the performance can be improved by more than 25%. Given only a [MASK] token
as input, the model predicts 0.92 and 0.08 as probabilities for good and bad. To tackle the bias
in the distribution of label words, our proposed solution in this work is to combine pretrained
encoder models with calibration methods.

In this section, we

1. propose a simple yet effective calibration method that involves adding trainable penalties
to the probabilities of the label words;

2. demonstrate its effectiveness in achieving performance enhancements comparable to other
existing calibration techniques;

3. refine the calibration parameters with only a few training examples for further improve-
ment;

4. boost the zero-shot performance of multilingual encoders by introducing calibration meth-
ods.
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Method Probability Calculation Source

CC q̃(y|x, t) = Wp(y|x, t) + b Zhao et al. (2021)
PMIDC q̃(y|x, t) = log p(y|x,t)

p(y|t) Holtzman et al. (2021)
CBM q̃(y|x, t) = p(y|x,t)

1
|X|

P
x02X p(y|x0,t)

Yang et al. (2023b)

Penalty q̃(y|x, t) = p(y|x, t) + p Proposed by this work

Table 3.1: Overview of Calibration Methods. y refers to the label words. X is the test dataset, x
is an input sample, and t is the prompt template.

3.1.2 Calibration Methods
Existing Calibration Methods

Contextual Calibration (CC) Zhao et al. (2021) apply an affine transformation (Platt et al.,
1999) to the original probabilities, as the first equation in Table 3.1 shows. The parameters of
the affine transformation are obtained from the output probability distribution of the content-free
input, e.g., the mask token, denoted p̂cf . W = diag(p̂cf )

�1 is the inverse diagonal matrix of p̂cf

and b is an all-zero vector.

Domain Conditional Pointwise Mutual Information (PMIDC) Holtzman et al. (2021) adjust
the conditional class probability p(y|x, t) by dividing it with the prior probability p(y|t) of that
class. We estimate p(y|t) for a given template t using MLM with a prompt created by instantiat-
ing the prompt template with an empty input.

Calibration By Marginalization (CBM) Yang et al. (2023b) are inspired by PMIDC. Unlike
PMIDC, CBM approximates p(y|x, t) in a more precise manner by computing its marginalized
probability, as the third equation in Table 3.1 shows. For each prediction, the sum probability
⌃x02Xp(y|x0, t) are calculated by taking all test inputs into account.

Probability Penalty

Motivated by the observation in Figure 3.1 that a simple shift in the model’s output distribution
can substantially alleviate the label bias, we propose a penalty-based calibration approach shown
in the fourth equation of Table 3.1. The core idea is to introduce penalty terms that is added to
each individual label word probability. We initialize the corresponding parameter vector p with
the negative prior probabilities of the label words. We estimate these prior probabilities using the
output distribution of MLM applied to a [MASK] token as input.

3.1.3 Experimental Setup
Dataset We first validate the effectiveness of the different calibration methods on several mono-
lingual tasks. We study sentiment analysis using two datasets: binary Amazon Polarity (McAuley
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and Leskovec, 2013) and the English subset of 5-label Multilingual Amazon Reviews (Ke-
ung et al., 2020), topic categorization using two datasets: the Ag News and Yahoo Answers
Topics (Zhang et al., 2015), sentence pair classification using two datasets: English subsets of
MNLI Conneau et al. (2018) and PAWS-X (Yang et al., 2019a), and 5 datasets from the GLUE
benchmark (Wang et al., 2019a): CoLA (Warstadt et al., 2019), MRPC (Dolan and Brockett,
2005), QQP, RTE (Dagan et al., 2005), and WNLI (Levesque et al., 2012). For the evaluation
of multilingual encoders, we use Multilingual Amazon Reviews, XNLI and PAWS-X. Besides,
following Nie et al. (2023a), we expand the AG News dataset to 25 languages using machine
translation to conduct a wide range of cross-lingual analyses.

Setup In our monolingual experiments, we use the pretrained models bert-base-cased
(Devlin et al., 2019) and roberta-base (Liu et al., 2019b). In the multilingual experiments,
we use their multilingual counterparts bert-base-multilingual-cased and xlm-
roberta-base (Conneau et al., 2020). We use PyTorch (Paszke et al., 2019) and the Hugging-
Face framework (Wolf et al., 2020). We repeat each experiment 5 times with different random
seeds ({42, 1234, 512, 1213, 421}) and report the mean and variance. To ensure experimental
reproducibility, we present the hyperparameter settings used in our study in Table 3.2. We use
a batch size of 8 for evaluation. We use a learning rate of 1e-4 for training the calibration pa-
rameters. We randomly sample the few-shot training examples from the training sets of each
dataset.

Hyperparameter Value
Evaluation batch size 8
Learning rate 1e-4
Random seeds {42, 421, 512, 1213, 1234}
Maximal sequence length 128
Few-shot numbers {1, 2, 4, 8, 16}
GPU type NVIDIA GeForce GTX 1080 Ti
Number of GPU 8

Table 3.2: Overview of hyperparameters.

Prompt Engineering We select a set of prompt templates for the tasks through our preliminary
experiments. Table 3.3 shows the prompt templates and the label words used in our experiment.

Baseline To establish a baseline, we initially conduct experiments without employing any cali-
bration methods. Subsequently, we introduce four calibration methods individually and evaluate
their impact on the performance. This sequential approach allows us to compare the results
and assess the effectiveness of each calibration method in improving the model’s performance.
Besides, we compare our calibration methods with an NLI-based zero-shot classification base-
line proposed by Yin et al. (2019), where they first finetune a pretrained language model on the
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Task Prompt template Label words
Ag News mask News: [X] ‘World’, ‘Sports’, ‘Business’, ‘Tech’
Amazon-P [X]. All in all, it was mask. ‘bad’, ‘good’
Amazon-P [X]. All in all, it was mask. ‘terrible’, ‘bad’, ‘ok’, ‘good’, ‘great’
XNLI [X]? mask, [Y] ‘Yes’, ‘Maybe’, ‘No’
Yahoo mask Question: [X] [Y] ‘Society’, ‘Science’, ‘Health’, ‘Education’, · · ·
PAWS-X [X] . mask[ Y] ‘Wrong’, ‘Right’
CoLA [X] . It is linguisticallymask. ‘wrong’, ‘right’
MRPC [X]? mask, [Y] ‘Wrong’, ‘Right’
QQP Question 1: [X] Question 2: [Y] Question 1 and Question 2 are mask ‘different’, ‘same’
RTE [X]? mask, [Y] ‘Wrong’, ‘Right’
WNLI [X]? mask, [Y] ‘Wrong’, ‘Right’

Table 3.3: Overview of prompt templates.

Balanced datasets (Acc.) Imbalanced datasets (F1 Score) Avg.AG News Amazon-P Amazon-S XNLI Yahoo Pawsx CoLA MRPC QQP RTE WNLI
BERTBase

+ no calib. 60.2 54.6 24.8 41.3 36.0 31.2 41.2 46.1 26.9 39.5 29.0 39.2
+ CC 74.6 61.7 27.4 41.4 36.2 31.6 51.1 46.1 26.9 39.5 43.1 43.6
+ PMIDC 62.1 70.8 29.9 37.9 32.1 33.8 51.3 44.3 49.5 38.2 30.4 43.7
+ CBM 73.6 71.3 33.6 42.9 45.2 49.3 49.9 50.6 52.6 50.9 42.3 51.1
+ Penalty 67.9 61.7 26.3 42.6 39.4 31.6 51.1 46.1 26.9 39.5 43.1 43.3

RoBERTaBase
+ no calib. 76.2 66.1 24.3 44.0 32.4 31.2 39.6 45.3 26.9 37.1 31.6 41.3
+ CC 74.1 79.5 20.0 39.8 15.2 33.7 23.6 46.6 39.8 35.9 32.1 40.0
+ PMIDC 62.3 79.4 34.2 45.6 25.3 43.3 43.3 49.4 27.1 37.0 30.4 43.4
+ CBM 78.4 76.5 34.1 46.4 42.9 44.4 48.2 47.5 50.1 43.3 49.0 51.0
+ Penalty 75.6 79.5 30.1 41.4 26.9 33.7 23.6 46.6 39.8 35.9 32.1 42.3

Table 3.4: Results of calibration methods on monolingual tasks. Amazon-P refers to Amazon
Polarity (binary classification). Amazon-S refers to Amazon Star (5-way classification).

MNLI dataset, then they reformulate common classification tasks to an NLI task format. The
input sample is regarded as the premise, while the label serves as the hypothesis. The zero-shot
classification is performed by directly comparing the probabilities of predicting entailment
for all input-label pairs. For this baseline, we fine-tune a BERT model and a RoBERTa model
on the MNLI task. The results for this baseline can be found in Table 3.5.

3.1.4 Results and Analysis
3.1.4.1 Results on Monolingual Encoders

Zero-shot calibration. We first validate the effectiveness of the various calibration methods
on monolingual encoders. Table 3.4 shows the results of zero-shot calibration, where we directly
calculate the calibrated probabilities without using additional training samples. We report accu-
racies for evenly distributed datasets and F1 scores for imbalanced datasets. Compared to the
uncalibrated baseline systems, we obtain improvements across most of the tasks, except for the
CC method combined with the RoBERTa model. In this specific case, the average performance
worsens compared to the no calibration baseline due to outlier performance observed in several
tasks, such as Yahoo and CoLA.
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Figure 3.2: Performance and variation of few-shot calibration on the RoBERTa model.

Few-shot samples further boost the performance. As the formulas in Table 3.1 show, PMIDC

and CBM directly modify the probabilities without introducing additional parameters, while CC
and Penalty use specific calibration parameters. In zero-shot calibration, these parameters are set
to prior probabilities. We will now investigate whether the few-shot training of the calibration
parameters further improves the performance.

We observe that training the calibration parameters on just a few samples further enhances
the performance of the calibrated systems. Algorithm 1 presents the process of few-shot training
of penalty calibration used in our few-shot investigation.

Algorithm 1 Few-Shot Training of Penalty Calibration
Input: Few-shot training samples D = {(x, y)}, initial calibration parameters p, number of

epochs E, Learning rate ⌘
Output: Trained parameters p

1: for t = 1 to E do
2: for each (x, y) in D do
3: l = get probs(x)� p

4: ŷ  argmax(l)
5: if y 6= ŷ then
6: p[ŷ] p[ŷ] + ⌘
7: p[y] p[ŷ]� ⌘
8: end if
9: end for

10: end for

Figure 3.2 shows the results for the RoBERTa model on the AG News and Amazon Polarity
tasks. We also compare calibration methods in few-shot scenarios with the NLI-based zero-shot
classification baseline proposed by Yin et al. (2019). Table 3.5 shows the complete results of
few-shot calibration.
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BERTBase
AG News Amazon-P Pawsx XNLI Avg

nli-based ZR 54.9 82.3 48.2 34.8 55.1
calibration Penalty CC Penalty CC Penalty CC Penalty CC Penalty CC

zero-shot 0 67.9 74.6 61.7 61.7 45.4 45.4 42.6 41.4 54.4 55.8

few-shot

1 65.63.8 75.71.0 67.87.6 71.05.6 51.10.9 51.40.9 42.01.8 41.21.9 56.63.5 59.82.4
2 67.23.1 75.91.6 71.94.4 72.23.2 51.01.1 50.71.0 42.70.6 42.50.9 58.22.3 60.31.7
4 67.93.9 76.60.7 73.43.8 70.32.9 51.61.3 50.91.3 42.80.6 42.80.3 58.92.4 60.21.3
8 69.11.5 76.90.1 75.22.3 71.81.2 51.61.1 49.90.6 42.90.2 42.70.2 59.71.3 60.30.5

16 69.61.7 76.90.1 76.01.0 71.41.2 51.41.1 49.71.0 42.80.3 42.60.2 60.01.0 60.20.6

RoBERTaBase
AG News Amazon-P Pawsx XNLI Avg

nli-based ZR 67.9 84.8 45.3 34.3 58.1
calibration Penalty CC Penalty CC Penalty CC Penalty CC Penalty CC

zero-shot 0 75.6 74.1 79.5 79.5 45.4 45.4 41.4 39.8 60.5 59.7

few-shot

1 75.62.6 77.21.5 77.48.0 81.34.9 48.41.8 48.41.4 45.90.9 44.81.5 61.83.3 62.92.3
2 73.92.8 77.31.2 81.64.3 80.82.4 49.01.6 48.30.9 46.30.7 45.80.7 62.72.4 63.11.3
4 74.51.9 77.61.0 82.24.4 79.61.6 49.30.6 48.50.9 47.20.2 46.00.3 63.31.8 62.91.0
8 76.61.1 78.10.5 85.21.0 79.71.5 49.60.4 48.10.7 47.10.3 46.01.0 64.60.7 63.00.9

16 78.30.5 78.40.3 85.11.0 79.71.6 49.40.6 48.10.4 47.00.2 46.00.9 65.00.6 63.10.8

Table 3.5: Results of few-shot calibration. nli-based ZR refers to the NLI-based zero-shot clas-
sification baseline (Yin et al., 2019).

Prior research (Zhao and Schütze, 2021) showed that few-shot learning can be unstable due
to the randomness. However, our experimental results indicate that the variation in performance
diminishes obviously only after the number of shots reaches four.

3.1.4.2 Results on Multilingual Encoders

Our experimental results on multilingual datasets demonstrate that calibration methods are also
effective for multilingual encoders (Table 3.6).

Our experiments cover a large range of languages, considering both language availability,
i.e., if or how much language data exists in the pretraining corpus, and language diversity, i.e., to
which language family a language belongs. Specifically, for Amazon-S, XNLI, and PAWS-X, we
use the original test sets, mainly containing the high-resource languages. In the multilingual AG
News task, we include many low-resource and unseen languages by generating parallel multilin-
gual test sets using machine translation techniques. Recent research by Hu et al. (2020b) and Liu
et al. (2022d) shows that automatically translated test sets are useful for measuring cross-lingual
performance. Hence, we adopt their methodology and expand the language coverage of the AG
News dataset to 25. Table 3.7 provides an overview of languages covered by the multilingual AG
News dataset.

The results on multilingual BERT and XLM-R show that all four calibration methods improve
the multilingual performance averaged across all tasks. For both models, CBM always emerges
as the top-performing approach. Different from other approaches that predict the label with
one input by another, CBM considers all other input samples in the test set when making each
individual prediction. This could account for the substantial advantage of CBM over the others
in terms of performance.
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AG News Amazon-S XNLI PAWS-X Avg.
mBERTBase

+ no calib. 32.8 20.5 33.6 33.9 30.2
+ PMIDC 48.8 22.5 33.6 44.4 37.3
+ CBM 53.8 25.1 34.9 49.2 40.8
+ CC (max) 53.9 23.9 35.1 44.8 39.4
+ Penalty (max) 54.6 23.8 35.3 47.1 40.2

XLM-RBase
+ no calib. 45.4 21.9 35.0 31.7 33.5
+ PMIDC 59.8 23.0 33.6 37.8 38.6
+ CBM 63.3 28.9 37.8 46.3 44.1
+ CC (max) 59.6 23.7 35.3 43.7 40.6
+ Penalty (max) 57.5 23.6 35.8 43.4 40.1

Table 3.6: Results of calibration methods on multilingual datasets. We report the best results for
CC and Penalty in different few-shot settings.

Code Languages Language Accessibility Language Family
af Afrikaans Low-resource Indo-European
co Corsican Unseen languages Indo-European
eo Esperanto Unseen languages Artificial

haw Hawaiian Unseen languages Austronesian
hmn Hmong Unseen languages Sino-Tibetan
ht Haitian Creole Low-resource Indo-European
ig Igbo Unseen languages Niger-Congo
jw Javanese Low-resource Austronesian
km Khmer Unseen script Austronesian
mi Maori Low-resource Austronesian
mn Mongolian Low-resource mongolian
mt Maltese Unseen languages Afro-Asiatic
my Burmese Low-resource Sino-Tibetan
ny Chichewa Unseen languages Niger-Congo
or Odia Unseen script Indo-European
sm Samoan Unseen languages Austronesian
sn Shona Unseen languages Dravadian
st Sesotho Unseen languages Dravadian
sw Swahili Low-resource Dravadian
ta Tagalog Low-resource Austronesian
te Telugu Low-resource Dravadian
tl Tamil Low-resource Dravadian
ug Uighur Unseen languages Turkic
ur Urdu Low-resource Indo-European
uz Uzbek Low-resource Turkic
zu Zulu Unseen languages Niger-Congo

Table 3.7: Overview of languages covered by the multilingual AG News dataset.

3.1.4.3 Multilingual Analysis

Now we analyze how different language properties correlate with the performance of multi-
lingual BERT on the AG News task. Table 3.8 shows the complete results of mBERT on the
multilingual AG News dataset across all 25 languages.
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af co en eo haw hmn ht ig jw km mi mn mt my
No calib. 40.4 32.6 47.3 31.9 27.1 30.9 35.7 30.2 38.0 33.3 29.0 32.0 29.9 33.8
Penalty 64.3 44.2 69.6 72.3 40.1 49.6 55.2 48.8 62.6 51.2 46.3 62.2 57.6 64.7
CBM 64.7 58.3 69.1 62.4 42.0 50.8 60.9 49.6 63.9 47.8 49.5 53.0 57.2 54.1
CC 65.6 59.7 67.8 68.0 43.4 49.7 65.2 52.4 66.4 41.4 51.2 55.4 57.4 51.7
PMIDC 60.2 35.3 60.0 61.7 35.9 33.5 33.5 49.2 61.5 42.2 49.6 54.7 61.1 47.6

ny or sm sn st sw ta te tl ug ur uz zu avg.
No calib. 29.8 25.4 30.3 32.2 30.4 33.4 28.8 32.5 42.6 25.5 33.2 33.9 34.5 32.8
Penalty 51.4 45.2 43.5 52.4 44.8 72.9 65.6 59.9 61.7 27.0 52.6 59.1 50.3 54.6
CBM 52.4 28.9 46.1 53.4 48.8 59.9 57.0 60.0 64.6 29.5 56.8 58.9 53.7 53.8
CC 51.2 28.7 47.5 52.5 49.1 64.1 56.5 52.4 62.6 27.9 53.1 60.3 49.6 53.7
PMIDC 50.2 28.6 43.9 50.9 44.6 61.6 50.1 43.6 66.1 29.3 55.0 56.4 51.3 48.8

Table 3.8: Results of mBERT on the multilingual AG News dataset across all languages.

(a) Language Accessibility (b) Language Diversity

Figure 3.3: Performance improvement of multilingual BERT with two calibration methods.

Language Accessibility. We first group the evaluation languages into low-resource languages,
unseen languages, and languages with unseen scripts to determine the influence of language ac-
cessibility. Low-resource languages are languages that are contained in the pretraining corpus,
but only account for a small amount of it. Unseen languages do not occur in the pretraining.
Thus, the multilingual encoder has never seen them. The hardest cases are languages with un-
seen scripts, where the model has not even encountered the characters of the language. How-
ever, in our test set, they are not strictly languages with unseen scripts because of the frequently
occurring code-switching led by machine translation. Figure 3.3 (a) shows that low-resource
languages perform generally better than the other two types of unseen languages, indicating that
the multilingual encoder’s access to languages in the pretraining is crucial for the performance
enhancement via calibration.

Language Diversity. We further group the languages according to their phylogenetic relation-
ships, i.e., from which language family they are. We analyze the language families containing
at least 3 languages. The box plots in Figure 3.3 (b) reveal that the impact of calibrating mul-
tilingual encoders varies across different language groups. Specifically, we observe that Indo-
European and Dravidian languages tend to benefit more from calibration than Austronesian and
Niger-Congo languages.
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This discrepancy suggests that the effectiveness of calibration techniques can be influenced by
the language accessibility of multilingual encoders and the linguistic characteristics of language
families.

3.1.5 Sum-Up
In conclusion, in this subsection, we focus on boosting the zero-shot potential of multilingual
encoders through probability calibration. We address the bias issue in the mask token prediction
of label words by introducing various calibration techniques that modify the probabilities of these
words. By applying these methods, we achieve substantial performance gains across a diverse
range of tasks on both monolingual and multilingual encoders. Notably, with a minimal number
of training examples, the calibrated probabilities yield significant enhancements.

We propose a simple yet effective calibration method to enhance the zero-shot performance
for monolingual and multilingual encoders. While our work shows the effectiveness of calibra-
tion for enhancing the prediction with multilingual tasks, it is important to note that our research
is primarily focused on classification tasks with multilingual encoders. As a result, our findings
and proposed methods may not directly translate to generation tasks, such as question answer-
ing (QA), which involve the use of generative multilingual models. Future investigations should
explore the application of our calibration methods on generation tasks and evaluate their effec-
tiveness in enhancing the performance of generative multilingual models. This extension could
provide valuable insights into the potential benefits and limitations of our approaches across a
broader range of NLP tasks.
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3.2 Prompt Augmented by Cross-Lingual Retrieval for Low-
Resource Languages

This section corresponds to the following work:

Ercong Nie*, Sheng Liang*, Helmut Schmid, and Hinrich Schütze. 2023. Cross-
Lingual Retrieval Augmented Prompt for Low-Resource Languages. In Findings
of the Association for Computational Linguistics: ACL 2023, pages 8320–8340,
Toronto, Canada. Association for Computational Linguistics.
* equal contributions.

Declaration of Co-Authorship. Sheng Liang and I conceived the idea of using cross-lingual
retrieval samples to augment the zero-shot cross-lingual understanding of Multilingual Pretrained
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Summary of This Section
Multilingual Pretrained Language Models (MPLMs) perform strongly in cross-lingual trans-
fer with zero-shot prompt-based learning. In this section, we propose Prompts Augmented by
Retrieval Cross-lingually (PARC) to improve zero-shot performance on low-resource languages
(LRLs) by augmenting the context with prompts consisting of semantically similar sentences
retrieved from a high-resource language (HRL). PARC improves zero-shot performance on three
downstream tasks (sentiment classification, topic categorization, natural language inference)
with multilingual parallel test sets across 10 LRLs covering 6 language families in unlabeled
(+5.1%) and labeled settings (+16.3%). PARC also outperforms fine-tuning by 3.7%. We find
a significant positive correlation between cross-lingual transfer performance on one side, and
the similarity between high- and low-resource languages, as well as the amount of low-resource
pretraining data on the other side. A robustness analysis suggests that PARC has the potential to
achieve even stronger performance with more powerful MPLMs.

3.2.1 Background and Overview of PARC
Multilingual pretrained language models (MPLMs) (Devlin et al., 2019; Conneau et al., 2020;
Liu et al., 2020; Xue et al., 2021; Shliazhko et al., 2022), pretrained on multilingual corpora
with >100 languages, exhibit strong multilinguality on downstream tasks (Hu et al., 2020b).
Low-resource languages (LRLs), for which little text data is available for pretraining mono-
lingual pretrained language models (PLMs), benefit from MPLMs. However, the lack of LRL
data leads to an imbalanced language distribution in the pretraining corpora of MPLMs (Wu
and Dredze, 2020). LRLs are therefore underrepresented in pretraining, resulting in bad perfor-
mance. Furthermore, the scarcity of domain- or task-specific annotated data of LRLs makes it
difficult to apply the pretraining-fine-tuning paradigm to LRLs (Lauscher et al., 2020). Given
that the pretraining-fine-tuning paradigm always has a high demand for domain-specific labeled
data, another line of research—prompt-based learning—emerges, focusing on exploiting large
pretrained language models by reformulating the input. The prompt is designed to help PLMs
“understand” the task better and “recall” what has been learned during the pretraining. In partic-
ular, Brown et al. (2020) propose a simple in-context learning approach without any fine-tuning,
which adds training examples as additional context to test examples. Instead of using random
examples as context, KATE (Liu et al., 2022a) and SOUP (Liu et al., 2022e) retrieve semantically
similar examples as prompt for monolingual in-context learning. The above-mentioned prompt-
based learning techniques require no parameter updating, while there is also work employing
sampled similar examples for prompt-based fine-tuning (Gao et al., 2021). Unlike Brown et al.
(2020), who created prompts with manually selected examples, these approaches augment the
context by retrieving related information from external corpora, allowing the PLMs to capture
more domain- or task-specific knowledge. The prompt-based method offers a new form of zero-
shot or few-shot learning in multilingual NLP studies. It involves performing a specific task
using prompts, without labeled data in the target language, and has the potential of being an
effective method for LRLs lacking annotated data.

Our work improves the zero-shot transfer learning performance of LRLs on three differ-
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(a) Retrieval from high-resource language corpora

(b) Prediction with a retrieval-augmented prompt

Figure 3.4: Main idea of PARC: we enhance zero-shot learning for low-resource languages
(LRLs) by cross-lingual retrieval from labeled/unlabeled high-resource languages (HRLs). (a)
An LRL input sample is taken as a query by the cross-lingual retriever to retrieve the semanti-
cally most similar HRL sample from the HRL corpus. The label of the retrieved HRL sample
is obtained either from the corpus (labeled setting) or by self-prediction (unlabeled setting).
(b) The retrieved HRL sample, together with its label and the input sample, is reformulated as
prompts. The cross-lingual retrieval-augmented prompt is created by concatenation and taken
by the MPLM for prediction. Our experiments show that PARC outperforms other zero-shot
methods and even fine-tuning.

ent classification tasks by taking advantage of cross-lingual information retrieval and the multi-
linguality of MPLMs. Specifically, we retrieve semantically similar cross-lingual sentences as
prompts and use the cross-lingual retrieval information to benefit the LRLs from the multilin-
guality of MPLMs and achieve better performance in the zero-shot setting1.

Our main contributions are: (1) We propose Prompts Augmented by Retrieval Crosslingually
(PARC), a pipeline for integrating retrieved cross-lingual information into prompt engineering
for zero-shot learning (Figure 3.4). (2) We conduct experiments on several multilingual tasks,

1Different from the zero-shot cross-lingual transfer learning where MPLMs are finetuned on HRLs (Hu et al.,
2020b), our zero-shot setting does not involve fine-tuning. Details in §3.2.5.4
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showing that PARC improves the zero-shot performance on LRLs by retrieving examples from
both labeled and unlabeled HRL corpora. (3) To find an optimal configuration of our PARC
pipeline, we conduct a comprehensive study on the variables that affect the zero-shot perfor-
mance: the number of prompts, the choice of HRL, and the robustness w.r.t. other retrieval
methods and MPLMs.

3.2.2 Methodology
This work aims to improve the performance of MPLMs on LRLs in the zero-shot setting by
leveraging retrieved cross-lingual contents from HRLs. For that, we design the PARC pipeline
that can be applied to labeled and unlabeled scenarios, i.e., the HRL information can be retrieved
from either labeled or unlabeled corpora.

As Figure 3.4 shows, the PARC pipeline consists of two steps: (a) Cross-lingual retrieval
from high-resource language corpora, and (b) prediction with a retrieval-augmented prompt.
Figure 3.4 shows an example: A Telugu input sentence from a sentiment classification task is first
fed into the cross-lingual retriever to fetch the semantically closest sample from the HRL corpus,
i.e., English in this case. In the second step, the retrieved HRL sample, together with its label and
the LRL input sentence, is transformed into a prompt. For prompt-based classification, we need
(i) a pattern which converts the input sentence into a cloze-style question with a mask token, and
(ii) a representative word (called verbalizer) for each possible class. Converting the classification
task into a cloze-style question aligns seamlessly with the framework of our proposed PARC
method, because it not only performs zero-shot learning well but, more significantly, facilitates
better integration of the retrieved cross-lingual contexts.

In our example, we use the pattern P (X) = X� “In summary, the product was
[MASK].” to convert the retrieved English sentence into “Wonderful! Works as stated!
In summary, the product was [MASK].”, where � is the string concatenation oper-
ator. A verbalizer such as {pos! “great”, neg! “terrible”}, which maps the original labels
{pos, neg} onto words in the vocabulary, is then used to replace the [MASK] token with
the verbalized label word “great”, standing for the correct label pos of this sentence. We call
the resulting English sentence (in our example: “Wonderful! Works as stated! In
summary, the product was great.”) the “cross-lingual context”. At last, we fill in
the same pattern with the input Telugu sentence and append it to the cross-lingual context. We
feed this cross-lingual retrieval augmented input to the MPLM. The MPLM returns for each of
the verbalizers its probability of being the masked token.

More formally, let XL
i 2 DL be an input sample from the LRL test set, (XH

j , yj) 2 DH
lb

and XH
j 2 DH

un denote the HRL data from the labeled and unlabeled corpora, respectively,
where Xj is the text sample and yj its class label from a label set Y . As Eq. (3.1) shows, the
cross-lingual retriever CLR takes the HRL corpora DH and a given LRL input sentence XL

i . It
returns an ordered list of HRL sentences DRi according to the semantic similarity. We then have
(XRi

k , yRi
k ) 2 DRi

lb and XRi
k 2 DRi

un for labeled and unlabeled scenarios, respectively, where XRi
k

is the k-th most similar HRL sentence to the LRL input XL
i .

DRi = CLR(XL
i , D

H) (3.1)
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En Af Jv Mn My Sw Ta Te Tl Ur Uz Avg
MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 52.5 41.8 27.4 42.5 32.2 31.3 31.5 33.0 31.6 46.9 44.8 36.3

UN

k=1 53.7 52.8 46.2 46.5 46.1 42.8 43.3 44.3 45.0 51.0 49.7 46.7

k=3 BoR 55.8 53.6 46.2 47.1 48.2 44.9 44.5 46.3 47.1 52.6 51.0 48.1
CONC 53.5 52.4 45.9 44.9 44.8 42.9 41.7 46.6 46.0 52.0 51.6 46.9

k=5 BoR 57.1 54.4 47.0 47.0 48.0 46.6 44.8 45.8 48.5 53.1 52.3 48.7
CONC 53.5 48.0 38.2 41.3 36.3 36.9 39.5 41.4 42.9 50.5 49.6 42.4

k=10 BoR 57.5 55.3 46.3 46.4 47.6 45.6 44.1 46.7 47.7 53.0 51.4 48.4
CONC 46.4 41.1 36.2 38.3 36.6 34.9 34.6 35.8 40.7 46.3 45.0 38.9

k=20 BoR 59.7 57.2 48.1 46.7 50.0 47.9 46.0 48.9 49.6 55.4 53.2 50.3
CONC 50.0 48.4 42.3 41.4 43.3 43.1 39.3 44.3 48.1 47.9 48.4 44.6

k=30 BoR 60.1 57.4 49.0 47.4 51.1 49.2 47.1 48.7 50.1 56.5 54.4 51.1
CONC 50.7 47.6 43.9 38.2 42.9 42.5 41.8 44.5 47.7 47.1 47.3 44.3

LB

k=1 74.9 75.4 68.1 63.5 68.2 64.0 62.8 65.6 64.8 72.5 71.4 67.6

k=3 BoR 77.1 77.1 69.6 65.6 71.1 67.6 65.6 68.4 65.9 74.6 74.4 70.0
CONC 75.6 74.8 67.3 63.1 60.3 59.0 60.5 67.1 65.9 73.3 72.4 66.4

k=5 BoR 78.1 78.6 69.0 64.4 72.9 68.8 65.9 69.3 66.4 75.8 75.4 70.6
CONC 74.6 66.5 48.2 53.9 44.9 45.4 52.1 59.5 56.0 70.9 63.6 56.1

k=10 BoR 78.7 79.4 70.5 67.0 72.9 68.3 66.6 70.7 67.2 76.6 75.9 71.5
CONC 61.2 52.7 43.2 48.0 44.5 42.5 41.3 45.0 50.1 62.3 56.7 48.6

k=20 BoR 79.0 79.7 70.7 67.5 72.5 70.0 67.5 70.7 68.1 77.4 76.3 72.0
CONC 67.4 65.1 55.8 55.6 57.6 58.3 51.2 61.0 62.8 66.4 66.0 60.0

k=30 BoR 79.0 79.7 71.3 67.6 72.8 69.9 68.1 71.1 69.4 77.2 76.7 72.4
CONC 72.8 71.1 62.1 57.0 61.6 60.4 57.9 67.9 64.6 71.6 69.3 64.3

Table 3.9: Results of topic categorization task on AG News Dataset. k is the number of retrieved
cross-lingual samples. MAJ is the majority baseline. Avg is the average accuracy across 10
LRLs. En is the HRL for retrieval. BoR refers to the Bag of Retrieval strategy, CONC refers to
the Concatenation strategy.

The prompt pattern P (.) converts an HRL input sentence XRi
k into a cloze-style form with a

mask token. The verbalizer v(.) is a bijective mapping from the set of class labels Y to a set of
verbalized words V from the HRL vocabulary. We use the verbalized label word to fill in the
mask token in the prompt pattern, and construct the cross-lingual context C i

k for the input XL
i

with the k-th most similar HRL sample XRi
k :

C i
k = P (XRi

k , v(yRi
k )) (3.2)

The cross-lingual context C i
k is then concatenated with the prompted LRL input as the input

I to the MPLM:
Ii = C i

k � P (XL
i ) (3.3)

The MPLM M performs masked token prediction and returns the probabilities p = M(Ii)
of all candidate words for the masked token in Ii. We predict the class ŷ whose verbalizer v(ŷ)
received the highest probability from model M :

ŷ = argmax
y2Y

p(v(y)) (3.4)

In the labeled scenario, we obtain the correct label yRi
k of the HRL sentence from DRi

lb . In
the unlabeled scenario, we predict the label using the same prompt-based classification method
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without cross-lingual context, similar to Eq. (3.4). We call this the self-prediction method:

ŷRi
k = argmax

y2Y
M(P (XRi

k ), v(y)) (3.5)

In order to use more cross-lingual information, we retrieve the K most similar HRL samples.
With each sample, we obtain verbalizer probabilities as described above and retrieve the class
whose verbalizer has the largest sum of probabilities. We call this method the Bag-of-Retrieval
(BoR) strategy. We also tried concatenating the different cross-lingual contexts (CONC method),
but the resulting performance has been worse (see Table 3.9).

3.2.3 Experimental Setup
3.2.3.1 Datasets

Base Datasets Three representative classification tasks are selected for evaluation in this work:
binary sentiment analysis on Amazon product reviews (Keung et al., 2020), topic classification
on AG News texts (Zhang et al., 2015), and natural language inference on XNLI (Conneau et al.,
2018).

Amazon Reviews dataset categorizes the shopping reviews into 5-star ratings from 1 to 5. In
order to satisfy a binary classification setting, we select the reviews with rating 1 as negative
(0) and 5 as positive (1) for our experiments. The following pattern P (X) and verbalizer v
are defined for an input review text X:

• P (X) = X � “All in all, it was [MASK].”

• v(0) = “terrible”, v(1) = “great”

AG News is a collection of more than 1 million news articles for topic classification. The
news topic categories contained in the dataset are World (0), Sports (1), Business (2), and
Tech (3). The pattern and verbalizers are as follows:

• P (X) = “[MASK] News: ” �X

• v(0) = “World”, v(1) = “Sports”,
v(2) = “Business”, v(3) = “Tech”

XNLI is a multilingual version of the MultiNLI dataset (Williams et al., 2018). We use a
subset of the original XNLI dataset in our experiment. The text in each data item consists of
two parts. Sentence A is the premise, and sentence B is the hypothesis. The NLI task is to
predict the type of inference between the given premise and hypothesis among the three types:
entailment (0), neutral (1), and contradiction (2). For a given sentence pair X1 and
X2, we design the pattern and verbalizer as:

• P (X1, X2) = X1 � “? [MASK],” �X2

• v(0) = “Yes” , v(1) = “Maybe” , v(2) = “No”
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Construction of Multilingual Parallel Test Sets Parallel test datasets for evaluating cross-
lingual transfer performance on LRLs are rare. However, recent research conducted by Hu et al.
(2020b); Liu et al. (2022d) shows that automatically translated test sets are useful for measuring
cross-lingual performance. Hence, we adopt their methodology and construct datasets for dif-
ferent tasks by automatically translating English test sets to targeted LRLs. We use the Python
API of the Google Translate System to implement the construction of multilingual parallel test
sets in our experiment. We also validate the translation effectiveness and quality. The original
XNLI datasets include two low-resource languages that are used in our experiments (Swahili and
Urdu), so we use them as the “gold” standard for our translation validation.

We compare the cross-lingual transfer performance on translation test sets and original test
sets of XNLI. We also measure the translation quality by using the original sets as the gold
standard. Through the validation conducted on these two languages within the XNLI task, we
infer that the translation method is effective and could be generalized to other languages and
tasks.

In our experiment, we use multilingual parallel test sets created by machine translation from
English to target low-resource languages. To explore the effect of machine translation-created
test sets, we compare the cross-lingual transfer performance on translation test sets and original
test sets of XNLI. The original XNLI datasets include two low-resource languages that we used
in our experiments, i.e., Swahili (sw) and Urdu (ur). We also measure the translation quality
by using the original sets as the gold standard. The analysis results (Table 3.10) suggest that
machine-translated test sets are useful as a proxy for evaluating cross-lingual performance on
LRLs.

Languages sw ur

Performance

MT Acc. 34.00 33.92
OV Acc. 34.07 33.87
Diff 0.07 -0.05
P-Value 0.85 0.92

Translation Quality
BLEU 56.39 64.96
chrF 49.58 59.89
Sim. 81.82 81.19

Table 3.10: Comparison of performance on machine translation-created XNLI test sets (MT)
and the original version of XNLI test sets (OV) in sw and ur languages. BLEU & chrF scores
and semantic similarities (Sim.) are computed to measure the translation quality of machine
translation-created test sets.

Following Wu and Dredze (2020), we regard languages with a WikiSize2 of less than 7 as
LRLs. We construct a test set consisting of 10 LRLs in 6 language families: Indo-European
(Afrikaans - af, Urdu - ur), Austronesian (Javanese - jv, Tagalog - ta), Altaic (Mongolian - mn,
Uzbek - uz), Dravidian (Tamil - tl and Telugu - te), Sino-Tibetan (Burmese - my), and Niger-
Congo (Swahili - sw). Table 3.11 shows more information of the test sets.

2WikiSize less than 7 means that the Wikipedia corpus of the language is smaller than 0.177 GB.
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Task Dataset Size #Label Languages
Sentiment Analysis Amazon Reviews 1000 2 af, ur, jv,
Topic Categorization AG News 2000 4 ta, mn, uz,
Sentence Pair Classification XNLI 1500 3 tl, te, mn, sw

Table 3.11: Overview of the test sets for the three tasks. Size refers to the number of samples for
each LRL.

HRL Corpora To retrieve rich and diverse information, a large-scale general corpus or knowl-
edge base in the different HRLs would be the ideal sentence retrieval pool. In practice, however,
a trade-off is necessary in order to save computational resources. Following Wang et al. (2022a),
we therefore use the task-specific labeled training set of English as the sentence pool in our
experiments. The selection of the HRL will be discussed in §3.2.5.2.

3.2.3.2 Baseline

We compare PARC with the following baselines in both labeled and unlabeled settings:
MAJ: The majority baseline. Since we construct the test sets to be balanced, MAJ is equiv-

alent to a random guess.
Random: We randomly retrieve a cross-lingual sentence as prompt, similar to the simple

in-context learning using examples without semantic similarity to the input (Brown et al., 2020).
Direct: The pattern filled with the input sample is directly fed to the MPLM for prediction,

without adding cross-lingual context to the prompts.
Finetune: The MPLM is first finetuned with the retrieved high-resource sentences. Then the

low-resource test input is predicted by the finetuned MPLM. We use the Cross Entropy Loss as
the objective function for fine-tuning and AdamW for optimization with a learning rate of 1e-5.
Since the fine-tuning data is very limited, we only train for a single epoch to avoid overfitting.

Our test sets are constructed by machine translation. Therefore, we cannot apply a translation
baseline, where we translate the input sample into the high-resource language before feeding it to
the MPLM. The Appendix presents a different experiment where we compare with a translation
baseline.

3.2.3.3 Models

Cross-Lingual Retriever The retrieval methods used in monolingual NLP are either based on
sparse or dense representations. Sparse representations such as BM25 (Manning et al., 2008),
which is based on term frequency, cannot be used for cross-lingual retrieval as the shared words
across different languages are normally scarce. Therefore dense representations from deep learn-
ing methods such as LASER (Artetxe and Schwenk, 2019) and sentence-BERT (Reimers and
Gurevych, 2019) are more suitable for our pipeline.

We choose the multilingual sentence transformer (Reimers and Gurevych, 2020) version
“paraphrase-multilingual-mpnet-base-v2” as the retriever in our experiments. This multilingual
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Amazon AGNews XNLI Avg.

MAJ 50.0 25.0 33.3 36.1
Random 48.2 25.6 32.4 35.4
Direct 53.8 36.3 33.1 41.1
Finetune 68.6 57.9 34.5 53.7

PARC-unlabeled 58.4 46.7 33.5 46.2
PARC-labeled 68.9 67.6 35.8 57.4

Table 3.12: Overview of results on three classification tasks. The reported numbers are averaged
across 10 evaluation LRLs. The number of prompts k is 1 in the relevant baselines and our
methods for all three tasks.

retriever is based on XLM-R (Conneau et al., 2020) and trained on parallel data from 50+ lan-
guages by employing knowledge distillation. Through the multilingual sentence transformer,
sentences are represented by embeddings. We use the sentence embeddings to calculate the co-
sine similarity between the LRL inputs and HRL sentences and rank the most similar ones for
retrieval. Robustness with respect to other cross-lingual retrievers will be discussed in §3.2.5.3.

Multilingual Pretrained Language Model In order to solve cloze-style classification tasks,
we use the pretrained multilingual BERT model “bert-base-multilingual-cased” (Devlin et al.,
2019). It contains 178M parameters and was trained on Wikipedia corpora in 104 languages. In
§3.2.5.3, we will also explore XLM-R (Conneau et al., 2020), another multilingual pretrained
language model.

All the models mentioned above were implemented using the Huggingface Transformers
library (Wolf et al., 2020).

3.2.4 Results
Table 3.12 presents an overview of the results on the three tasks3. PARC outperforms the MAJ,
Direct, and Random baseline on all three tasks, in both labeled and unlabeled settings: When re-
trieving from unlabeled high-resource language corpora, the performance is improved by 4.6%,
10.4% and 0.4% compared to Direct on Amazon Review, AG News, and XNLI, respectively.
When retrieving from labeled HRL corpora, the performance is improved by 15.1%, 31.3%, and
2.7%. The Finetune baseline uses the label of retrieved examples for prompt-based fine-tuning.
Hence, it is fair to compare it with PARC in the labeled setup rather than the unlabeled one.
PARC-labeled outperforms Finetune by 0.3%, 9.7% and 1.3% on the three tasks respectively.

Although our proposed methods perform better than the baselines on all three tasks, the de-
gree of improvement differs. A large improvement is found on AG News, the topic categorization
task, while XNLI only shows a slight improvement. An explanation for this could be that the nat-
ural language inference task is more difficult than topic categorization, especially in a zero-shot

3k = 1 unless otherwise specified.
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setup. Also, prior work has shown that designing cloze-style patterns and searching the answer
space for NLI tasks (Schick and Schütze, 2021a; Webson and Pavlick, 2022) is difficult.

We also find that PARC-labeled noticeably outperforms PARC-unlabeled, indicating that the
performance of self-prediction is limited by the capabilities of mBERT. More powerful MPLMs
and better pattern designs might further improve the performance.

En Af Jv Mn My Sw Ta Te Tl Ur Uz Avg

MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 52.5 41.8 27.4 42.5 32.2 31.3 31.5 33.0 31.6 46.9 44.8 36.3

UN

k=1 53.7 52.8 46.2 46.5 46.1 42.8 43.3 44.3 45.0 51.0 49.7 46.7
k=3 55.8 53.6 46.2 47.1 48.2 44.9 44.5 46.3 47.1 52.6 51.0 48.1
k=5 57.1 54.4 47.0 47.0 48.0 46.6 44.8 45.8 48.5 53.1 52.3 48.7

k=10 57.5 55.3 46.3 46.4 47.6 45.6 44.1 46.7 47.7 53.0 51.4 48.4
k=20 59.7 57.2 48.1 46.7 50.0 47.9 46.0 48.9 49.6 55.4 53.2 50.3
k=30 60.1 57.4 49.0 47.4 51.1 49.2 47.1 48.7 50.1 56.5 54.4 51.1

LB

k=1 74.9 75.4 68.1 63.5 68.2 64.0 62.8 65.6 64.8 72.5 71.4 67.6
k=3 77.1 77.1 69.6 65.6 71.1 67.6 65.6 68.4 65.9 74.6 74.4 70.0
k=5 78.1 78.6 69.0 64.4 72.9 68.8 65.9 69.3 66.4 75.8 75.4 70.6

k=10 78.7 79.4 70.5 67.0 72.9 68.3 66.6 70.7 67.2 76.6 75.9 71.5
k=20 79.0 79.7 70.7 67.5 72.5 70.0 67.5 70.7 68.1 77.4 76.3 72.0
k=30 79.0 79.7 71.3 67.6 72.8 69.9 68.1 71.1 69.4 77.2 76.7 72.4

Table 3.13: Results of topic categorization task on AG News dataset. k is the number of retrieved
cross-lingual samples. MAJ is the majority baseline. Avg is the average accuracy across 10
LRLs. En is the HRL for retrieval.The BoR strategy is adopted.

To analyze the performance for every language in detail, we present the complete experimen-
tal results for the topic categorization task on AG News in Table 3.13. Here, we use the BoR
method to take advantage of multiple retrieved HRL sentences. As expected, PARC outperforms
the Direct baseline on all languages in both labeled and unlabeled settings.

However, it is worth noting that the sensitivity to cross-lingual retrieval differs from lan-
guage to language. For some LRLs, e.g. Urdu (Ur) and Uzbek (Uz), PARC’s improvement from
cross-lingual retrieval is smaller. Others gain more, e.g. Javanese (Jv). Retrieving more samples
increases the performance up to k=30 except for Telugu (Te) and Swahili (Sw), where the max
is reached for k=20.

We now turn to the following two questions: 1) How does k affect the performance on tasks
other than topic categorization? 2) Which LRLs profit most from our PARC method and which
HRLs are best suited to retrieve prompts?

3.2.5 Analysis
3.2.5.1 Effect of k

We investigated how the performance changes as the number of retrieved HRL samples k in-
creases. As shown in Figure 3.5, an abrupt accuracy increase can be seen in both labeled and
unlabeled scenarios by concatenating the most similar cross-lingual sample. In labeled scenar-
ios, the performance tends to increase up to k=20 and then levels off. This can be explained by
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Figure 3.5: Accuracy on three tasks with different k in the labeled (LB) and unlabeled (UN)
setup.

the fact that later retrieved samples are less similar to the input sample, so their contribution as
prompts decreases. In unlabeled scenarios, there is no clear improvement beyond k=1 except for
AGNews(UN), where the accuracy increases monotonically except for k=10. The performance
of XNLI is less obviously influenced by the value of k than binary sentiment analysis and topic
categorization. We assume that this could be attributed to the difficulty of the inference task. Un-
like the other two single-sentence classification tasks, XNLI identifies the relationship between a
pair of sentences. Transferring knowledge about sentence relationships is more complicated and
requires more samples to learn, in contrast to the other two tasks where semantic information
from similar cross-lingual sentences can be transferred directly.

3.2.5.2 Effect of Languages

Lauscher et al. (2020) pointed out that two linguistic factors exert crucial effects on cross-lingual
transfer performance: (1) the size of the pretraining corpus for the target language and (2) the
similarity between the source and target languages. In our study, we also consider a third factor:
(3) the size of the pretraining corpus for the source language. In this section, we conduct a
correlation analysis between PARC’s cross-lingual transfer performance and the three language-
related factors mentioned above. To achieve that, we first have to measure these factors properly.
The size of the pretraining corpus can be easily measured by the log2 value of the Wikipedia size
in MB, as we mentioned in §3.2.3. Thus, the remaining problem is how to properly represent
language similarity.

Measurement of Language Similarity Malaviya et al. (2017) and Littell et al. (2017) propose
LANG2VEC from linguistic, typological, and phylogenetic perspectives. LANG2VEC employs



3.2 Prompt Augmented by Cross-Lingual Retrieval for Low-Resource Languages 59

Lang Language Similarity Wiki
SizeSYN PHO INV FAM GEO SIM

Af 84.9 60.3 38.4 50.4 33.1 53.4 6
Jv 48.0 39.2 52.7 0.0 0.0 28.0 5

Mn 31.0 100.0 39.4 0.0 56.8 45.4 5
My 17.4 80.3 100.0 0.0 37.6 47.1 5
Ta 28.9 60.3 51.5 0.0 72.7 42.7 7
Te 36.0 56.2 31.3 0.0 45.2 33.7 7
Tl 35.0 70.5 26.7 0.0 38.8 34.2 6
Sw 27.0 87.0 62.1 0.0 57.2 46.6 5
Ur 50.2 72.0 47.1 12.6 62.5 48.9 7
Uz 39.8 75.6 24.1 0.0 73.7 42.6 6

Table 3.14: List of language features of the 10 LRLs that we evaluate.

different vectors to represent various types of linguistic features for different languages. Each
language is encoded with 5 vectors corresponding to different linguistic features, including three
typological features (syntax, phonology, and phonetic inventory), phylogenetic and geographical
features. In typological vectors, each dimension represents a linguistic property. For example,
one dimension of the syntax vector represents the word order feature SVO. If a language has an
SVO order, then its syntax vector would have the value 1 on this dimension. Missing values in
the typological vectors could have detrimental effects. Therefore, we replace them with values
predicted from the k most similar typological vectors (Malaviya et al., 2017). The phylogenetic
vector embodies the position of a language in the world language family tree (Harald et al.,
2015), while the geographical vector contains the position information of languages w.r.t. their
speakers.

Following prior work (Rama et al., 2020), we consider all 5 linguistic features when mea-
suring the language similarity: syntax (SYN), phonology (PHO), phonological inventory (INV),
language family (FAM), and geography (GEO). Given these different types of vectors, we cal-
culate 5 cosine similarities for each pair of the source language (i) and target language (j) and
average them to get the final language similarity sim(i, j):

sim(i, j) =
1

|F|
X

f2F

s(vf (i), vf (j)) (3.6)

where F is the set of features, vf (i) and vf (j) stand for the language vectors representing
the feature f for i and j, and s(·) computes the min-max normalized cosine similarity of the
two vectors. The detailed cosine similarities between English and 10 LRLs evaluated in our
experiment are shown in Table 3.14. Language similarity refers to the similarity between each
LRL and English. SIM score is computed by Eq. (3.6). WikiSize is the log value of the Wikipedia
size in MB.
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Unlabeled Sim. source size target size

corr p corr p corr p
Spearman 0.28 0.05 0.20 0.16* 0.31 0.03
Pearson 0.27 0.06* 0.22 0.12* 0.38 6e-03
labeled Sim. source size target size

corr p corr p corr p
Spearman 0.42 2e-03 0.08 0.54* 0.44 1e-03
Pearson 0.41 3e-03 -3e-4 1.00* 0.46 8e-4

Table 3.15: Correlations between Amazon review performance and three features. Sim.: lan-
guage similarity between an LRL and an HRL; source (target) size: the log of the data size (MB)
of the source (target). *: insignificant result with a p value larger than 0.05.

Correlation Analysis We conduct a correlation analysis between cross-lingual performance
and the three language factors mentioned above: language similarity between the source (re-
trieved) and target (input) language, pretraining data size of the source language, and of the
target language. We use the log value of Wikipedia size to represent the size of the pretraining
corpus for target and source languages, and sim(i, j) computed by Eq. (3.6) to represent the
similarity between the source and target language. Four other HRLs – Chinese, German, Hindi,
and Cebuano – are selected as source languages in addition to English. We measure the cross-
lingual performance of PARC on the Amazon product review task in both the labeled and the
unlabeled settings. Table 3.17 shows the detailed data used for correlation analysis of language
similarity, high- and low-resource language pretraining data size with cross-lingual performance
in the unlabeled setting as well as the labeled setting.

Table 3.15 shows the outcome of the correlation analysis. We observe a significant positive
correlation between cross-lingual performance and language similarity as well as target language
pretraining data size, in both the labeled and the unlabeled setting. The correlation between
performance and source language size is not significant. Figure 3.6 visualizes the correlations
and further clarifies the findings by selecting 4 source languages and 4 target languages and
showing the cross-lingual performance and similarity between them.

3.2.5.3 Robustness

In this section, we test the robustness of the PARC method w.r.t. other cross-lingual retrievers
and MPLMs as well as unseen languages.

Retriever and MPLM Apart from the multilingual sentence transformer based on XLM-R
(“paraphrase”) used in our previous experiments, we explore several other types of cross-lingual
retrievers: a “pooling” retriever, which averages the last hidden states of the MPLM and com-
putes the cosine similarity between these pooled sentence representations; a “distiluse” retriever,
a sentence transformer based on multilingual distilBERT (Sanh et al., 2019); and the “LaBSE”
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Amazon AGNews XNLI Avg.

Direct 53.8 36.2 33.1 41.0

UN

mBERT+pooling 53.1 36.9 33.6 41.2
mBERT+distiluse 54.7 38.4 34.0 42.3

mBERT+paraphrase 59.6 46.7 33.7 46.7
XLM-R+paraphrase 70.1 57.4 34.7 54.1

mBERT+LaBSE 59.4 43.8 35.1 46.1

LB

mBERT+pooling 53.6 58.0 33.8 48.5
mBERT+distiluse 62.8 63.8 34.6 53.7

mBERT+paraphrase 72.9 67.6 36.8 59.1
XLM-R+paraphrase 73.0 76.0 35.7 61.6

mBERT+LaBSE 72.2 80.0 37.5 63.2

Table 3.16: Accuracy with different models used in our approach. pooling: cosine similarity
of the last hidden states from the MPLM; distiluse: distiluse-base-multilingual-cased-v2, sen-
tence transformer of multilingual distilBERT; paraphrase: paraphrase-multilingual-mpnet-base-
v2, sentence transformer of XLM-R. UN: unlabeled setup; LB: labeled setup.

(a) Zero-Shot Performance (Unlabeled) (b) Language Similarity (c) Zero-Shot Performance (labeled)

Figure 3.6: Visualization of the correlation between zero-shot performance and language simi-
larity, pretraining data size of source and target language. On the X(Y)-axis are target(source)
languages with an increasing order of pretraining data size from left(bottom) to right(top). (a)
and (c) show the zero-shot performance with PARC-unlabeled and PARC-labeled on the Ama-
zon review task, respectively. (b) shows the language similarity of each pair.

retriever (Feng et al., 2022), a BERT-based model trained for sentence embedding for 109 lan-
guages. As an alternative to mBERT, we also investigate the performance of XLM-R, which has
the same architecture as mBERT but is more powerful. We follow the setup described in §3.2.3.

Results are shown in Table 3.16. We can find that even the worst combination—mBERT+poo-
ling—outperforms the Direct baseline on average under both labeled and unlabeled settings. If
the retriever is replaced by a slightly more powerful one, such as the combination mBERT+distil-
use, higher accuracies in the unlabeled and labeled settings are achieved, suggesting that our
proposed method PARC is robust w.r.t. other cross-lingual retrievers. In the result of XLM-
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Performance Language Similarity WikiSize
Unlabeled labeled SYN PHO INV FAM GEO SIM source target

en-af 79.2 62.0 84.9 60.3 38.4 50.4 33.1 53.4 14 6
en-ur 80.6 63.4 50.2 72.0 47.1 12.6 62.5 48.9 14 7
en-sw 49.9 51.0 27.0 87.0 62.1 0.0 57.2 46.6 14 5
en-te 75.8 60.1 36.0 56.2 31.3 0.0 45.2 33.7 14 7
en-ta 75.4 60.2 28.9 60.3 51.5 0.0 72.7 42.7 14 7
en-mn 74.9 62.9 31.0 100.0 39.4 0.0 56.8 45.4 14 5
en-uz 64.7 54.9 39.8 75.6 24.1 0.0 73.7 42.6 14 6
en-my 73.8 60.3 17.4 80.3 100.0 0.0 37.6 47.1 14 5
en-jv 59.3 55.3 48.0 39.2 52.7 0.0 0.0 28.0 14 5
en-tl 55.4 53.5 35.0 70.5 26.7 0.0 38.8 34.2 14 6
de-af 71.6 56.5 87.1 33.1 90.3 77.2 43.1 66.2 12 6
de-ur 77.5 58.5 50.7 68.3 45.8 15.4 72.6 50.6 12 7
de-sw 50.6 48.9 29.5 33.1 36.2 0.0 66.7 33.1 12 5
de-te 71.2 55.7 45.6 29.4 5.2 0.0 56.5 27.3 12 7
de-ta 76.3 57.6 43.0 56.7 48.7 0.0 81.3 45.9 12 7
de-mn 74.7 59.1 44.4 68.3 42.8 0.0 61.8 43.4 12 5
de-uz 62.8 55.1 48.3 91.9 27.8 0.0 81.1 49.8 12 6
de-my 72.0 59.3 31.3 29.9 63.9 0.0 47.5 34.5 12 5
de-jv 60.0 50.9 41.5 14.4 32.5 0.0 10.3 19.8 12 5
de-tl 54.5 52.1 48.1 42.1 0.0 0.0 50.8 28.2 12 6
zh-af 70.4 58.6 53.9 9.5 25.2 0.0 12.1 20.1 11 6
zh-ur 75.1 62.8 59.0 43.5 36.3 0.0 82.6 44.3 11 7
zh-sw 53.9 51.5 5.7 33.1 27.0 0.0 27.6 18.7 11 5
zh-te 72.4 60.3 49.9 29.4 4.5 0.0 86.7 34.1 11 7
zh-ta 73.0 61.8 19.0 56.7 16.8 0.0 40.5 26.6 11 7
zh-mn 71.6 60.4 56.5 43.5 8.7 0.0 99.0 41.5 11 5
zh-uz 62.5 54.9 49.0 69.3 26.2 0.0 87.2 46.3 11 6
zh-my 69.6 59.3 42.5 71.8 32.7 37.8 95.7 56.1 11 5
zh-jv 59.8 54.3 41.1 42.1 31.4 0.0 85.1 39.9 11 5
zh-tl 54.7 52.4 44.7 14.4 6.9 0.0 83.4 29.9 11 6
hi-af 78.2 59.0 55.4 50.1 30.8 14.3 52.3 40.6 7 6
hi-ur 80.0 57.8 100.0 88.1 73.0 100.0 99.9 92.2 7 7
hi-sw 50.7 50.5 27.4 24.6 24.9 0.0 66.9 28.8 7 5
hi-te 72.7 58.4 74.7 74.4 67.2 0.0 100.0 63.3 7 7
hi-ta 74.2 57.0 48.9 50.1 36.8 0.0 75.8 42.3 7 7
hi-mn 74.6 57.7 57.9 61.3 31.2 0.0 89.4 48.0 7 5
hi-uz 64.0 50.8 57.8 64.8 45.6 0.0 97.2 53.1 7 6
hi-my 74.3 58.7 36.7 46.7 37.5 0.0 97.6 43.7 7 5
hi-jv 59.4 48.7 21.2 0.0 13.6 0.0 79.6 22.9 7 5
hi-tl 56.6 52.9 73.1 59.8 41.3 0.0 98.2 54.5 7 6
ceb-af 63.9 58.1 42.4 44.1 52.5 0.0 8.9 29.6 11 6
ceb-ur 68.7 57.1 29.3 84.3 22.5 0.0 62.9 39.8 11 7
ceb-sw 53.4 49.2 33.0 16.1 76.3 0.0 12.0 27.5 11 5
ceb-te 69.3 59.0 4.8 98.6 17.9 0.0 75.9 39.4 11 7
ceb-ta 66.3 55.8 22.4 72.1 63.0 0.0 16.6 34.8 11 7
ceb-mn 65.9 59.7 16.5 55.0 37.6 0.0 79.3 37.7 11 5
ceb-uz 56.2 52.6 26.2 61.3 17.9 0.0 60.6 33.2 11 6
ceb-my 64.8 56.3 3.0 43.5 57.7 0.0 88.1 38.4 11 5
ceb-jv 57.1 51.2 60.2 17.1 70.0 54.8 97.6 59.9 11 5
ceb-tl 53.0 56.2 0.0 82.7 50.0 0.0 76.2 41.8 11 6

Table 3.17: Detailed data of 50 source-target language pairs used for correlation analysis of lan-
guage similarity, source and target language pretraining data size with cross-lingual performance
in unlabeled and labeled setups. Task performance is measured on the Amazon review task with
k = 1.
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Ig Sn Mt Co Sm
Direct 30.3 32.1 29.8 32.6 30.4

LB
k=1 56.5 59.7 63.9 75.0 52.0
k=3 58.1 61.4 65.2 78.2 54.1
k=5 58.8 61.6 65.9 79.8 55.4

UN
k=1 36.6 37.3 39.1 42.6 34.4
k=3 34.8 36.2 37.6 40.6 33.9
k=5 34.8 35.3 37.2 40.4 34.1

St Haw Zu Ny Avg.
Direct 30.4 27.1 34.4 29.8 30.8

LB
k=1 53.5 49.9 58.0 54.9 58.1
k=3 55.5 49.7 58.5 57.0 59.7
k=5 56.8 51.4 58.8 58.0 60.7

UN
k=1 36.3 31.6 35.6 35.3 36.5
k=3 33.7 31.0 34.3 32.9 35.0
k=5 34.2 30.6 34.0 32.0 34.7

Table 3.18: Results of several unseen languages on a topic categorization task (AG News dataset).
Ig - Igbo, Sn - Shona, Mt - Maltese, Co - Corsican, Sm - Samoan, St - Sesotho, Haw - Hawaiian,
Zu - Zulu, Ny - Chichewa.

p1 p2 p3 p4 Avg
en te en te en te en te en te

Finetune
Direct 84 76 83 70 86 67 85 73 85 74
PARC-UN 84 – 65# 85" 62# 83# 60# 82# 64# 84# 67#
PARC-LB 83# 64# 83 – 64# 83# 64# 82# 70# 83# 69#

w/o Finetune
Direct 54 53 59 54 54 50 53 51 55 52
PARC-UN 59" 55" 55# 58" 52# 52" 53 – 52" 55 – 54"
PARC-LB 90" 82" 90" 82" 90" 82" 90" 82" 90" 82"

Table 3.19: Result of English and Telugu on Amazon review task using MPLMs with and without
fine-tuning on English train set. UN: Unlabeled, LB: labeled. pi represents different prompt
patterns.

R+paraphrase, the obviously better performance of XLM-R in the unlabeled setup shows that
a stronger MPLM can noticeably improve the self-prediction. We expect that an even better
performance could be obtained by applying our proposed PARC approach to larger and/or more
powerful MPLMs such as InfoXLM (Chi et al., 2021).

Unseen Languages Our previous experiments show that the LRLs pretrained by MPLMs can
benefit well from PARC. However, popular MPLMs are pretrained only on approximately. 100
languages, accounting for a tiny part of all languages in the world (⇠100/7000). We wonder
if our proposed method could potentially benefit a wider range of LRLs, so we apply PARC to
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Amazon Review
Case #963
Input:

(Used with several loads of laundry. Gentle on the fabric
and gentle on my skin.) pos
Retrieved:
R1: Hard to wash. The fur on top gets all over the sides in
the wash. :/ pos
R2: Very nice and thick high quality towels. pos
R3: Smelled really bad mold! I had to wash them before
use. neg
Predictions: No retrieval - neg, k=1 - neg, k=3 - pos

Table 3.20: A PARC pipeline example for the Amazon review task in the labeled setting.

several unseen LRLs, i.e., languages not included in the pretrained corpora of the MPLM. We
conduct experiments on a topic categorization task for nine unseen languages. The results in
Table 3.18 show that PARC is also effective for unseen LRLs. It can be observed from the result
that PARC is also effective for unseen LRL languages.

3.2.5.4 Zero-shot Setting

Different from the cross-lingual transfer paradigm where an MPLM is first finetuned on anno-
tated training data of one language, and then directly applied to the test data of other languages
for inference, our proposed approach is employed in the zero-shot setting for LRLs, i.e., the
model parameters are not adjusted by fine-tuning with HRL data. Table 3.19 shows results from
a preliminary experiment where our PARC method, combined with a finetuned MPLM, fails to
outperform the Direct baseline. When using finetuned MPLM to evaluate with PARC, we do not
see sufficient performance improvement. However, without fine-tuning, PARC performs better
in both unlabeled and labeled setups, and PARC-LB without fine-tuning also outperforms it with
fine-tuning.

3.2.5.5 Qualitative Analysis

Table 3.20 shows the results of the PARC pipeline for an example from the Amazon review task.
The review in Telugu is positive, but the class predicted without cross-lingual context is negative.
The prediction stays the same when a single positive English sample is added as prompt context.
When two more English samples are added, the prediction becomes correct.

This case indicates that the retrieved cross-lingual samples help the MPLM make a correct
decision. Furthermore, more similar HRL samples could rectify the deviation. More cases are
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Amazon Review
Case 1 #37
Input:

(Very dry on my hair.) neg
Retrieved:
R1: It’s a little bit too greasy in my opinion. Doesn’t really
seem to soak into the hair very well. pos
R2: The tiniest amount leaves my hair stringy and oily. neg
R3: could smell this stuff all day but I don’t feel like it
moisturizes my skin enough, and my skin isn’t overly dry
to begin with. pos
Predictions: No retrieval - pos, k=1 - neg, k=3 - neg
Case 2 #963
Input:

(Used with several loads of laundry. Gentle on the fabric
and gentle on my skin.) pos
Retrieved:
R1: Hard to wash. The fur on top gets all over the sides in
the wash. :/ pos
R2: Very nice and thick high quality towels. pos
R3: Smelled really bad mold! I had to wash them before
use. neg
Predictions: No retrieval - neg, k=1 - neg, k=3 - pos

Table 3.21: PARC examples for Amazon Review task.

shown in Table 3.21 and Table 3.22. Table 3.21 shows two examples from the Amazon Re-
view task. We compare the predictions for three scenarios: no retrieval information (i.e., Direct
baseline, see §3.2.3.2), one retrieved sample, and three retrieved samples. Similarly, Table 3.22
shows the same comparison on the AG News task.

3.2.6 Sum-Up
In this section, we propose PARC, a pipeline that augments prompts for zero-shot learning on
low-resource languages by retrieving semantically similar cross-lingual sentences from HRL
corpora. We test PARC on three classification tasks with parallel test sets across 10 LRLs,
and it performs better than the baselines in both unlabeled and labeled settings. Increasing the
number of retrieved prompts improves performance at first, but deteriorates it after a certain
point. A robustness study shows that PARC also performs well with other cross-lingual retrievers
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AG News
Case 1 #1939
Input:

(Flower Power A Japanese company has come up with a
way to turn flowers into amplifiers. ) Tech
Retrieved:
R1: Japanese firms step up spending Japanese firms
continue to spend on new equipment and production plants,
a survey finds, underlining a continuing recovery in the
world’s second-largest economy. Business
R2: IBM, Honda deliver in-car speech-recognition
navigation system IBM and Honda have jointly developed
a hands-free and natural sounding in-vehicle speech-
recognition system that will be offered as standard equip-
ment on the 2005 Acura RL Tech
R3: Scientists Make Phone That Turns Into a Sunflower
(Reuters) Reuters - Scientists said on Monday they have
come up with a cell phone cover that will grow into a
sunflower when thrown away. Tech
Predictions: No retrieval - World, k=1 - Tech,
k=3 - Tech
Case 2 #1302
Input:

(Movies in a Snap: Netflix and TiVo Discuss Downloads
Bee Staff Writer. The high-tech terrain is shifting under-
foot amid rumblings of a new Silicon Valley alliance
that would allow the owners of TiVo Inc. ) Business
Retrieved:
R1: NETFLIX, TIVO HOOKUP CLOSE Netflix and
TiVo are in late-stage talks on a partnership that would
let subscribers use the Internet to download Netflix
movies directly into their TiVo box, The Post has
learned. Business
R2: TiVo and NetFlix: Picture-Perfect Duo? With TiVo
(TIVO) and NetFlix (NFLX ) finally announcing a long-
rumored partnership to launch a video-on-demand service
sometime next year, investors smiled on the deal that will
keep the two popular, but under-fire, innovators ahead of
competitors. Tech
R3: New Treo and more unveiled at CTIA CTIA stands
for the Cellular Telecommunications and Internet
Association. Each year they host two shows for the
industry. This week is their fall Wireless IT and Enter-
tainment expo in San Francisco. Business
Predictions: No retrieval - World, k=1 - Tech,
k=3 - Business

Table 3.22: PARC examples for AG News task
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or MPLMs, suggesting potential applications of PARC to a wider scope of scenarios. The PARC
pipeline proposed in this work is designed to improve the cross-lingual transfer performance for
low-resource languages in a zero-shot setting. We tested our method on different LRLs contained
in MPLMs and also investigated its effectiveness for several unseen languages. These are not
included in pretraining corpora of the MPLM but use a seen script and share some subwords with
the seen languages. However, our proposed method is not applicable to unseen languages with
new scripts, which restricts its extension towards a wider range of languages. Besides, PARC is a
retrieval-based method. More time and computational resources are required in the cross-lingual
retrieval phase. Therefore, it is computationally less efficient to use PARC for inference.



68 3. Prompt-Based Learning for Multilingual Prediction

3.3 Decomposed Prompting for Multilingual Linguistic Struc-
ture Knowledge Evaluation

This section corresponds to the following work:

Ercong Nie, Shuzhou Yuan, Bolei Ma, Helmut Schmid, Michael Färber, Frauke
Kreuter, Hinrich Schütze. 2024. Decomposed Prompting: Unveiling Multilingual
Linguistic Structure Knowledge in English-Centric Large Language Models. In
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2025,
Mumbai, India. Association for Computational Linguistics.

Declaration of Co-Authorship. I conceived the idea of using decomposed prompting for
multilingual sequence labeling tasks and applied it to English-centric Large Language Mod-
els (LLMs) for linguistic structure knowledge evaluation. I conducted all the experiments and
implemented the baselines. I finished most of the first draft. Shuzhou Yuan and Bolei Ma con-
tributed by drawing the figures and graphs, discussing the idea, and writing part of the paper. The
other authors are supervisors who supervised the project process and provided valuable feedback
throughout the project.
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Summary of This Section
Despite the predominance of English in their training data, English-centric Large Language Mod-
els (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks,
raising questions about the depth and nature of their cross-lingual capabilities. This section
introduces the decomposed prompting approach to probe the linguistic structure understanding
of these LLMs in sequence labeling tasks. Diverging from the single text-to-text prompt, our
method generates for each token of the input sentence an individual prompt that asks for its
linguistic label. We assess our method on the Universal Dependencies part-of-speech tagging
dataset for 38 languages, utilizing both English-centric and multilingual LLMs. Our findings
show that decomposed prompting surpasses the iterative prompting baseline in efficacy and ef-
ficiency under zero- and few-shot settings. Further analysis reveals the influence of evalua-
tion methods and the use of instructions in prompts. Our multilingual investigation shows that
English-centric language models perform better on average than multilingual models. Our study
offers insights into the multilingual transferability of English-centric LLMs, contributing to the
understanding of their multilingual linguistic knowledge.

3.3.1 Motivation and Research Question
Current Large Language Models (LLMs), such as GPT-3, GPT-4, PaLM, and LLaMA (Brown
et al., 2020; Chowdhery et al., 2023; Touvron et al., 2023a), have demonstrated remarkable ca-
pabilities in in-context learning, also known as prompting, across a broad spectrum of language
understanding and generation tasks (Zhao et al., 2023; Zhang et al., 2023c; Ziyu et al., 2023).
These models are predominantly trained on massive amounts of English text data, with some
limited exposure to other languages. For instance, LLaMA2’s pretraining corpus comprises over
89% English content (Touvron et al., 2023b). Yet, these English-centric LLMs 4 still exhibit
effective performance in multilingual evaluations (Lai et al., 2023a). In the previous section, we
introduced the multilingual prompting scenario designed for zero-shot transfer. In this section,
we apply this method to English-centric LLMs, where the model executes tasks by directly gen-
erating outputs based on a task description and/or a few examples provided in a pivot language
(typically English), along with input in a different target language (Ahuja et al., 2023). However,
the extent and nature of their cross-lingual capabilities remain underexplored (Ye et al., 2023).
This raises a critical question: Does the multilinguality of these models stem from a deep, gener-
alizable multilingual linguistic understanding, or merely from the superficial alignment of lexical
patterns across languages?

Given the demonstrated proficiency of English-centric LLMs in multilingual tasks that de-
mand profound language understanding (Deng et al., 2023; Wang et al., 2023d), we hypothesize
that these models harbor substantial multilingual knowledge. This knowledge, particularly relat-
ing to linguistic structure, is commonly conceptualized through sequence tagging tasks (Jurafsky
and Martin, 2000). However, the current prompting strategies designed for sequence labeling in
LLMs are not well-suited for testing. For instance, behavioral probing methods (Belinkov et al.,

4In our work, we regard a model pretrained primarily on English text as English-centric.
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Figure 3.7: Comparison of different prompting methods for sequence labeling.

2020), aimed at measuring knowledge stored in language models, struggle to adapt to tasks
predicting more complex structures. Additionally, text-to-text prompting methods (Asai et al.,
2024), which rely on a predefined output template, face challenges in maintaining control over
the output format. In response to these challenges, a suitable iterative prompting strategy for
structured prediction has been introduced, addressing the aforementioned limitations (Blevins
et al., 2023). Despite its advantages, this method presents its own challenges, such as longer
processing times due to its iterative inference strategy.

To overcome the challenges identified in probing the multilingual knowledge of linguistic
structure in LLMs, we introduce the decomposed prompting strategy. We adopt the idea of de-
composing a single prompt into multiple prompts to the in-context learning paradigm, aiming
to probe English-centric LLMs for their understanding of token-level linguistic structure framed
as sequence labeling tasks. As shown in Figure 3.7, instead of employing a single text-to-text
prompt for labeling an entire sequence in one step, our method decomposes this process into mul-
tiple discrete prompts. More precisely, we first split the input sentence into tokens. Subsequently,
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we generate an individual prompt for each token that inquires about its linguistic label.
We evaluate our approach on the Universal Dependency (UD) part-of-speech (POS) tagging

dataset (Nivre et al., 2020) covering 38 languages with 3 English-centric LLMs and 2 multi-
lingual LLMs. Our approach outperforms the iterative prompting baseline in both zero- and
few-shot settings in terms of accuracy and efficiency. We investigate the nuanced impact of
evaluation methods and the usage of task instructions within prompts on the performance of de-
composed prompting, followed by an empirical comparative study of decomposed and iterative
prompting. Moreover, our analysis of the multilingual efficacy of English-centric LLMs yields
valuable insights into the transferability of linguistic knowledge via multilingual prompting.

3.3.2 Decomposed Prompting for LLMs

In this study, we introduce a novel approach for conducting sequence labeling with LLMs
through in-context learning, termed decomposed prompting.

Intuition This method draws inspiration from the step-by-step thinking process humans em-
ploy when annotating linguistic features within a sentence. Typically, humans approach such
tasks incrementally, addressing each token individually. Mirroring this intuitive strategy, our
method first decomposes an input sentence into tokens. Subsequently, we generate a distinct
prompt for each token, thereby transforming the sequence labeling task into a series of focused,
manageable prompts. Figure 3.8 illustrates the generation of sequence labeling prompts for the
German sentence “Viel Erfolg!” via decomposed prompting.

Problem Formulation Given a test sequence set Xtest, a label set L, and an LLM M , we
approach the task of sequence labeling as follows: for an input sequence X 2 Xtest of length
n, X = x1, · · · , xn, the model M is expected to produce a corresponding sequence of labels
Ŷ = ŷ1, · · · , ŷn, where each label ŷi 2 L is associated with the linguistic feature of the token xi.

In decomposed prompting, we design a prompt template function T (·, ·) which generates
a specific prompt for each token. T takes the input sequence X and an individual token xi

as arguments and returns a prompt for predicting the label of the token. The true label yi can
be optionally included as an argument to T ; if included, T will generate a demonstration. An
example of such a template function is illustrated as follows.

T (X,xi) = “Sentence: X . In the sentence, the part-of-speech tag of 'xi' is a kind of”
T (X,xi, yi) = “Sentence: X . In the sentence, the part-of-speech tag of 'xi' is a kind of yi.”

C = c1, · · · , cm is a sample from the training set. In the few-shot learning scenario, k
examples in the tuple format (Cj, cj, lj) are given along with the input sequence X , where cj is
a token in Cj , and lj 2 L is the label for cj . The demonstration D of an input sequence X is
formulated as:

D = I � T (C1, c1, l1) � · · · � T (Ck, ck, lk) (3.7)
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Viel Erfolg !X = 

Sentence: Work as stated! In the sentence, the 
part-of-speech tag of ‘Work’ is a kind of VERB.D = 

Sentence: Work as stated! In the sentence, the 
part-of-speech tag of ‘Work’ is a kind of VERB.

Sentence:  Viel Erfolg !
In the sentence, the part-of-speech tag of ‘ Viel ’ is a kind of

Sentence: Work as stated! In the sentence, the 
part-of-speech tag of ‘Work’ is a kind of VERB.

Sentence:  Viel Erfolg !
In the sentence, the part-of-speech tag of ‘Erfolg ’ is a kind of

Sentence: Work as stated! In the sentence, the 
part-of-speech tag of ‘Work’ is a kind of VERB.

Sentence:  Viel Erfolg !
In the sentence, the part-of-speech tag of ‘     !     ’ is a kind of

D ◦ T(X, viel) = 

D ◦ T(X, Erfolg) = 

D ◦ T(X, !) = 

= G(X, D)  

Figure 3.8: An example of how decomposed prompting is implemented for sequence labeling.

where I denotes an optional instruction in natural language, � denotes the string concatenation
operation. Finally, we use a prompt generator function G(·, ·) to create the set of decomposed
prompts for an input sequence X:

G(X,D) = {D � T (X, x1), · · · , D � T (X, xm)} (3.8)

The label ŷi of token xi is predicted as follows:

ŷi = argmax
y2L

PM(l|D � T (X, xi)) (3.9)

For each possible label y, we obtain the probability that the model predicts this label as the next
token and select the most likely label as the predicted label.

3.3.3 Experimental Setup
3.3.3.1 Datasets and Languages

In our study, we focus on evaluating the multilingual linguistic structure knowledge of English-
centric models through multilingual part-of-speech tagging tasks, employing our proposed de-
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composed prompting method. We utilize a subset of the Universal Dependency treebanks (UD-
POS) (Nivre et al., 2020) for this purpose. The UDPOS dataset adopts a universal POS tag set
consisting of 17 tags. Figure 3.9 shows the pos tag set in UD. We also use the text in the box as
the task instruction in our experiments.

POS tag set: ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON
PROPN PUNCT SCONJ SYM VERB X

Figure 3.9: UD POS tag set.

Our chosen subset, derived from the XTREME multilingual benchmark (Hu et al., 2020b),
comprises 38 languages from diverse language families, as Figure 3.10 shows. If the test set of a
language contains more than 200 sentences, we randomly sample 200 instances for the evaluation
due to computational constraints.

Number
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Figure 3.10: Distribution of languages by language family in the dataset.

3.3.3.2 Models

We select a diverse list of LLMs, including three English-centric LLMs and two multilingual
LLMs in order to investigate the differences in multilingual understanding across LLMs with
varying degrees of multilinguality and base capabilities. All LLMs in this experiment are instruction-
tuned versions accessible through the HuggingFace framework (Wolf et al., 2020).

English-centric LLMs LLaMA2 represents an advanced iteration of the LLaMA foundation
models developed by Meta AI (Touvron et al., 2023a,b), trained on publicly available corpora
predominantly in English. Compared to its predecessor, LLaMA2 benefits from an enhanced
data cleaning process, expanded language coverage, and the implementation of more efficient
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grouped-query attention (Ainslie et al., 2023). We consider LLaMA2 models with 7B and 13B
parameters in our experiments. Mistral 7B (Jiang et al., 2023) enhances the LLaMA models
in terms of both performance and inference efficiency, achieved through meticulous engineering
in language model design and training. For our experiments, we utilize the instruction-tuned
version of Mistral 7B, which has been fine-tuned on the OpenHermes 2.5 dataset 5.

Multilingual LLMs BLOOMZ (Muennighoff et al., 2023) is a multi-task fine-tuned variant
of the BLOOM model (Workshop et al., 2022), which is trained on 46 languages. We employ
its 7B version in our experiment. mTk-Instruct (Wang et al., 2022c) is a multilingual encoder-
decoder model, fine-tuned on instruction-following datasets. The datasets features instructions
generated by GPT-4 (Achiam et al., 2023; Peng et al., 2023). mTk-Instruct is built upon the mT5
model (Xue et al., 2021), which is pretrained on corpora of over 100 languages. It comprises
approximately 13 billion parameters.

3.3.3.3 Baselines and Settings

Iterative Prompting (Iter) Blevins et al. (2023) introduced a structured prompting approach
that iteratively labels an entire sentence by appending each predicted label to the context along
with the subsequent word(see Figure 3.7). This method is employed as a strong baseline in our
study.

Decomposed Prompting (Decom) To evaluate our proposed approach, we employ the prompt
template outlined in §3.3.2 to decompose the entire sequence into a set of individual prompts for
prediction. In our experiments, we use the 17 POS tags themselves as the label words, i.e., we
expect the model to directly predict a tag from the tagset shown in Figure 3.9 by selecting the tag
with the highest logit.

Zero- and Few-Shot Prompting We devised two experimental scenarios for multilingual prompting—
zero-shot and few-shot—to evaluate the performance of both approaches under different condi-
tions. In the zero-shot setting, only an English task instruction is provided alongside the input
in the target language. The text in Figure 3.9, which outlines the tag set information, serves as
the instruction in our experiments. In few-shot prompting, we supplement the prompt with a
few English demonstrations, structured according to the prompt template of each method. For
Decom, we randomly select an example for each tag type from the English training set to create
a demonstration. For a fair comparison, the same number of demonstrations is used for the Iter
baseline. We refer to Appendix B for the details of the prompts used in the experiments.

Evaluation Methods We contrast two evaluation methodologies for prompting in our experi-
ments. The probability-based method leverages the model’s output logits to retrieve the proba-
bility distribution over the tag set, subsequently identifying the label with the highest probability.

5https://huggingface.co/datasets/teknium/OpenHermes-2.5

https://huggingface.co/datasets/teknium/OpenHermes-2.5


3.3 Decomposed Prompting for Multilingual Evaluation 75

In case the label word is tokenized into subtokens, we use the first subtoken to serve as the label
word, following previous work (Zhao et al., 2021; Wang et al., 2023c). The generation-based
method directly compares the content generated by the LLM with the gold label.

We use the weighted average F1 scores for different tags as our evaluation metric. All exper-
iments were conducted on a server equipped with 4 A100-SXM4-80GB GPUs.

3.3.4 Results and Analysis

Zero-shot Few-shot Avg.en mult. en mult.

LLaMA2-7B
Iter (prob.) 33.1 27.2 68.0 48.6 44.2
Decom (prob.) 58.2 43.2 74.7 50.5 56.7
Decom (gen.) 53.8 40.4 62.1 45.8 50.5

LLaMA2-13B
Iter (prob.) 47.6 37.4 68.0 52.6 51.4
Decom (prob.) 67.3 54.7 77.3 54.5 63.5
Decom (gen.) 59.2 48.7 65.3 48.3 55.4

Mistral-7B
Iter (prob.) 65.2 54.3 80.2 58.9 64.7
Decom (prob.) 63.6 61.8 85.0 64.4 68.7
Decom (gen.) 45.3 48.7 81.4 63.0 59.6

Table 3.23: Overall results of iterative and decomposed prompting methods on POS tagging
tasks in zero- and few-shot settings, with F1 score reported. prob. denotes probability-based
evaluation, while gen. signifies generation-based evaluation. en indicates the results for English,
and mult. represents the average F1 score across the other 37 languages. The best performance
in each setting is highlighted in bold.

We evaluate the performance of iterative and decomposed prompting for English and mul-
tilingual POS tag labeling tasks under zero- and few-shot settings. Our goal is (1) to validate
the benefits of decomposed prompting in comparison to the baseline method (§3.3.4), and (2)
to explore the extent to which decomposed prompting captures multilingual linguistic structure
knowledge from the English-centric LLMs (§3.3.5).

3.3.4.1 Main Findings

The overall results for English-centric LLMs, as detailed in Table 3.23, demonstrate that our
proposed decomposed prompting obviously outperforms the iterative prompting baseline across
both zero- and few-shot settings, in both English and multilingual evaluations. This trend holds
true for all three English-centric models tested, with the sole exception in the zero-shot setting
for the English evaluation with the Mistral-7B model, where Decom slightly lags behind Iter
(63.6 vs. 65.2). In addition to superior performance, decomposed prompting offers enhanced
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BLOOMZ LLaMA2 Mistral Avg.
zero-shot 3.2⇥ 2.5⇥ 1.4⇥ 2.4⇥
few-shot 9.2⇥ 7.9⇥ 3.1⇥ 6.7⇥

Table 3.24: The ratio by which the inference is accelerated for Decom promoting compared to
Iter prompting.

efficiency during inference, especially with few-shot prompting. As demonstrated in Table 3.24,
our proposed method achieves, on average, a 2.4-fold increase in speed compared to the baseline
in the zero-shot prompting setting and a 6.7-fold increase in the few-shot setting. The efficiency
advantage is less obvious with Mistral, owing to Mistral’s implementation of a modified attention
mechanism designed to enhance inference efficiency.

3.3.4.2 Ablation Study

(a) Effect of evaluation type (b) Effect of instruction

Figure 3.11: Results from the ablation study examining the impact of generation-based eval-
uation method and the inclusion of instruction in prompts across various models and settings.
“w/o” denotes the absence of instruction, while “w.” signifies the usage of instruction.

We performed an ablation study to investigate two factors: the evaluation method used and
the type of instructional prompts. Figure 3.11 presents the outcomes of the ablation study across
various model architectures and experimental settings.

Probability-Based vs. Generation-Based We observe in Figure 3.11(a) that the probability-
based approach consistently outperforms the generation-based method for both LLaMA2 ver-
sions and the Mistral model. This trend is evident in both the English and multilingual tasks,
under zero-shot and few-shot conditions. Generally, the performance in few-shot conditions
is better than in zero-shot conditions. Notably, in the Mistral-7B model, the gap between the
probability-based and generation-based methods narrows in the few-shot condition. The differ-
ence between probability- and generation-based evaluation might be that the generation method
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is able to generate predictions which are invalid POS tags and therefore counted as incorrect
whereas this does not occur with the probability-based method.

Effect of Instruction Figure 3.11(b) shows that the inclusion of an instruction in prompts has
a variable impact across different models and evaluation methods. In probability-based evalua-
tion, the presence of an instruction leads to a noticeable decrease in F1 scores for all models in
both English and multilingual tasks. In generation-based evaluation, we also observe some per-
formance decrease in most cases. This suggests that the LLMs better understand the linguistic
structure task from the demonstrations than from a task description in natural language.

3.3.4.3 Case Study

Case 1
Input: Die Lage mitten im Niederdorf , wo Abends am meisten los ist , ist wirklich sensationel .

Gloss: the location middle in Niederdorf , where evenings at most happening is , is really sensational .

True: DET NOUN ADV ADP PROPN PUNCT ADV ADV ADP PRON ADV VERB PUNCT AUX ADV ADJ PUNCT

Iter: DET NOUN ADV ADP PROPN PUNCT PRON PROPN ADP ADP NOUN AUX PUNCT VERB ADP ADJ PUNCT

Decom: DET NOUN ADV ADP PROPN PUNCT ADV PROPN ADP ADP ADV VERB PUNCT PRON ADP ADJ PUNCT

Case 2
Input: Damit bestätigten die beiden Konzerne Gerüchte , die seit gestern weltweit die Börsianer in Unruhe versetzten .

Gloss: thus confirmed the both corporations rumors , which since yesterday worldwide the stock-participants in unrest put .

True: ADV VERB DET ADJ NOUN NOUN PUNCT PRON ADP ADV ADJ DET NOUN ADP NOUN VERB PUNCT

Iter: ADP VERB PRON ADJ PROPN NOUN PUNCT PRON ADP ADP ADP PRON PROPN ADP NOUN VERB PUNCT

Decom: ADV VERB PRON PRON NOUN NOUN PUNCT PRON ADP ADV ADV PRON NOUN ADP NOUN VERB PUNCT

Table 3.25: Comparative analysis of the outputs from iterative and decomposed prompting meth-
ods using selected German examples (de) with Mistral. Key tokens and tags are highlighted in
red.

The case study presented in Table 3.25 offers a revealing comparative analysis of the itera-
tive and decomposed prompting methods, using selected German examples processed with the
Mistral model.

In Case 1, we observe error propagation in the iterative prompting method. The iterative
approach incorrectly tags the word “los” as a noun, which subsequently appears to affect the
tagging of “ist” as an auxiliary verb rather than the correct tag (VERB), as the tag of the copula
verb “ist” depends on the constituent linked to it. This illustrates a fundamental weakness of the
iterative method: a single misprediction can adversely influence subsequent predictions and lead
to a series of errors.

Case 2 reveals a limitation inherent to decomposed prompting, specifically when a word
appears multiple times with varying syntactic functions. Take the word “die” in the given case as
an example. This word alternates between a definite article and a relative pronoun. The current
design of decomposed prompting lacks the sophistication to discern the distinct grammatical
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roles that a recurring word can play, consequently assigning the tag PRON for all instances of
“die”. Notably, iterative prompting does not resolve this issue in the given example either. This
observation underscores the challenge of developing a prompting mechanism capable of context-
sensitive discrimination, an area where both decomposed and iterative prompting methods are yet
to evolve.

3.3.5 Multilinguality Investigation

(a) Language Family (b) Script

Figure 3.12: Analysis of decomposed promoting performance grouped by language family (a)
and script type (b) under zero- and few-shot settings on Mistral. “IE” refers to the Indo-European
language family. “L” (Low) represents languages that constitute less than 0.005% of the pretrain-
ing corpus, while “H” (High) denotes all other languages.

Multilingual Performance Figure 3.12 provides a stratified view of decomposed prompting
performance by language family and script, under both zero- and few-shot settings on the Mistral
model. The results indicate that Indo-European languages generally achieve higher F1 scores
compared to their non-Indo-European counterparts. Notably, the presence of few-shot examples
consistently improves the overall performance across all categories, but the box plot also shows
that some languages are negatively impacted by the use of English demonstrations. English-
centric LLMs are adept at tokenizing words from Latin or Cyrillic scripts into subtokens. For
scripts less familiar to these models, they often default to breaking down the text into UTF-8
encodings, which may lead to suboptimal representations for languages using these less common
scripts. Thus, to capture a more nuanced understanding of LLM performance across linguistic
varieties, we categorize languages not only by family but also by script type. Figure 3.12(b)
illustrates that, in both few-shot and zero-shot settings, languages with known scripts tend to
yield better performance than unknown scripts. An exception to this trend is observed among the
language group with smaller corpora in the zero-shot setting.

To further understand the impact of English demonstrations on languages with varied proper-
ties in multilingual prompting, we delve deeper into the cross-lingual transferability of English-
centric LLMs and conduct a detailed analysis of individual language performance. We begin
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(a) Few-shot
(b) [Performance Difference between few- and zero-
shot

Figure 3.13: Panorama of Mistral model’s per-language performance. Each node symbolizes a
distinct language. (a) shows the few-shot performance, and (b) shows the difference between
few- and zero-shot performance for each language.

by quantifying the linguistic proximity of each tested language to English. This was achieved
by calculating the cosine similarity between language vectors (Littell et al., 2017) that incor-
porate syntactic, phylogenetic, and geographic attributes, among others. We follow the method
introduced in the previous section (§3.2.5.2) to calculate the language similarity scores. Based
on these, we use a rank-based similarity score to average the rank of languages in each fea-
ture dimension. Table 3.26 illustrates the computation details. From Figure 3.13, we observe
that the performance gain from few-shot prompting is more substantial for languages that are
linguistically closer to English, as indicated by the upward trend on the right side of the plot. Re-
markably, languages distant from English may even experience a decline in performance when
using English demonstrations.

3.3.5.1 English-Centric vs. Multilingual LLMs

Table 3.276 shows that English-centric LLMs outperform their multilingual counterparts of com-
parable size by a considerable margin. This superiority, however, is primarily attributed to their
proficiency with the knowledge of English linguistic structures. For languages distant to En-
glish and hardly encountered by the English-centric LLMs, such as el,ta,te,yo, BLOOMZ
and mTk surpass their English-centric counterparts, with mTk exhibiting enhanced performance
across as many as 11 linguistically distant languages. Full results are provided in Appendix B.
The observations suggest that multilingual LLMs may possess more robust cross-lingual trans-
ferability, but are constrained by their inferior base capabilities.

6As an LLM of encoder-decoder structure, mTk is not amenable to direct application of our prob. evaluation
designed for decoder-only models; thus, we resort to gen. instead.
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syn. syn rank pho. pho rank inv. inv rank fam. fam rank geo. geo rank rank score

eng-nld 92.43 37 81.83 18 76.28 36 44.51 35 99.96 37 32.6
eng-deu 90.26 36 80.60 15 78.68 37 54.49 37 99.76 35 32.0
eng-ukr 84.73 32 85.83 32 74.91 33 15.03 30 99.28 26 30.6
eng-por 84.24 31 90.46 35 74.03 28 10.14 22 99.68 33 29.8
eng-ell 78.31 25 95.35 37 74.74 32 15.03 32 98.96 22 29.6
eng-pol 78.64 26 85.83 29 74.09 29 15.03 31 99.63 32 29.4
eng-bul 85.78 35 85.83 30 74.38 30 13.73 27 99.01 23 29.0
eng-ita 85.78 34 85.83 28 72.94 26 11.21 23 99.53 30 28.2
eng-rus 81.18 29 85.83 31 74.63 31 16.80 33 95.81 17 28.2
eng-ron 79.60 27 90.46 34 73.42 27 11.89 24 99.22 25 27.4
eng-spa 82.16 30 85.83 27 72.83 25 9.71 21 99.59 31 26.8
eng-lit 69.33 18 80.42 14 75.58 34 19.39 34 99.44 27 25.4
eng-afr 84.94 33 81.83 17 75.91 35 50.46 36 86.84 6 25.4
eng-fra 81.18 28 75.28 7 72.24 24 9.71 20 99.93 36 23.0
eng-est 77.35 24 85.83 25 70.81 19 0.23 15 99.45 28 22.2
eng-hun 69.40 19 85.83 24 70.66 18 0.33 18 99.46 29 21.6
eng-fin 71.08 21 87.05 33 70.00 17 0.19 13 99.19 24 21.6
eng-eus 62.36 13 85.29 21 70.00 16 3.33 19 99.76 34 20.6
eng-urd 61.63 12 85.83 26 71.98 23 12.71 25 92.54 13 19.8
eng-mar 56.50 8 80.42 13 71.57 22 13.73 28 89.80 11 16.4
eng-wol 63.92 14 85.83 23 69.73 15 0.17 10 96.24 18 16.0
eng-hin 61.63 11 78.35 10 70.91 20 12.71 26 91.10 12 15.8
eng-fas 50.03 3 78.35 11 70.94 21 13.73 29 94.23 14 15.6
eng-ind 72.66 22 90.92 36 67.09 12 0.12 4 79.16 1 15.0
eng-heb 75.15 23 72.55 5 69.10 14 0.13 6 97.16 20 13.6
eng-ara 65.11 16 70.09 3 68.38 13 0.15 9 97.04 19 12.0
eng-tur 50.68 4 81.83 16 67.09 11 0.14 7 98.25 21 11.8
eng-zho 71.08 20 72.55 4 66.94 10 0.33 16 88.42 9 11.8
eng-kaz 44.77 1 83.64 19 66.59 9 0.14 8 95.22 16 10.6
eng-vie 66.04 17 78.35 9 65.81 8 0.19 11 85.25 3 9.6
eng-tel 52.07 6 80.42 12 64.76 4 0.19 14 89.18 10 9.2
eng-tgl 60.89 10 85.83 22 64.76 5 0.13 5 82.15 2 8.8
eng-tam 51.36 5 85.29 20 64.37 3 0.11 3 87.95 8 7.8
eng-kor 55.29 7 74.65 6 63.83 2 0.33 17 86.93 7 7.8
eng-tha 63.95 15 78.35 8 65.40 7 0.11 2 85.25 4 7.2
eng-yor 60.04 9 66.77 2 65.29 6 0.10 1 94.98 15 6.6
eng-jpn 50.03 2 66.77 1 56.88 1 0.19 12 85.65 5 4.2

Table 3.26: Details of language similarity computation.
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Zero-shot Few-shot Avg.en mult. en mult.

LLaMA2-7B 58.2 43.2 74.7 50.5 56.7
BLOOMZ-7B 20.6 17.6 44.1 36.2 29.6

LLaMA2-13B 59.2 48.7 65.3 48.3 55.4
mTk-13B 47.6 43.1 57.3 44.7 48.2

Table 3.27: Performance Comparison of English-Centric and Multilingual LLMs. The results of
7B model group are from settings Decom+prob., while the results of 13B model group are from
settings Decom+gen.

3.3.6 Discussion
Access to LLM Internal Representations Our ablation study empirically proves that the
probability-based evaluation method more accurately reflects the multilingual understanding
ability of LLMs than the generation-based method, which merely relies on the output text. How-
ever, probability-based evaluation relies on the availability of model output logits, a requirement
readily met by open-source LLMs, but not by many other LLMs. This availability of the internal
representations of open-source LLMs facilitates intriguing research avenues, for instance, the
interpretability of LLM behavior (Saha et al., 2023) and the application of LLMs for Bayesian
inference (Li et al., 2023a). Hu and Levy (2023) have underscored that direct probability mea-
surement is indispensable in the context of prompting studies. To foster a more transparent and
collaborative research environment, better access to the internal workings of LLMs is essential.

LLM’s Path to Multilinguality This work analyzed the nuances of multilingual performance
across different types of LLMs. The exploration of the multilinguality in English-centric LLMs
holds significant practical values, particularly when encountering scenarios that demand a model
equipped with robust multilingual skills for tasks like reasoning and commonsense understand-
ing. This investigation is pivotal in guiding the decision-making process regarding the founda-
tional model selection for such tasks. The critical question is whether it is more advantageous
to commence with an English-centric LLM, which may offer superior understanding abilities in
English, and then endeavor to extend these capabilities to additional languages, or to opt for a
multilingual LLM that boasts broader language coverage and enhanced multilingual transferabil-
ity, albeit potentially at the expense of more refined (English) language understanding abilities.
Researchers and practitioners should carefully consider the trade-offs between linguistic breadth
and depth of language understanding.

Limitations of Decomposed Prompting As discussed in the analysis part, our proposed de-
composed prompting strategy struggles if the same word occurs twice in a sentence with different
POS tags. Besides, the efficiency of decomposed prompting suffers as the length of the input se-
quence and the complexity of the task increase. Our study uses decomposed prompting methods
for part-of-speech (POS) tagging as a means to evaluate the multilingual structural knowledge
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of English-centric Large Language Models (LLMs). This provides a foundational assessment
of the models’ capabilities. Nevertheless, the scope for extending this methodology to probe
more intricate aspects of linguistic structure is substantial. Future research could beneficially ap-
ply decomposed prompting to the analysis of complex linguistic phenomena, including sentence
chunking and syntactic parsing, to gain a deeper understanding of the nuanced capabilities of
LLMs in processing and understanding language.

3.3.7 Sum-Up
In conclusion, our investigation into the multilingual capabilities of English-centric LLMs through
the lens of decomposed prompting has yielded significant findings. By systematically dissecting
the sequence labeling process into discrete, token-level prompts, we have demonstrated that these
models possess a considerable understanding of linguistic structure that extends beyond their
predominant English training. Our method outperforms existing iterative prompting techniques
in both zero- and few-shot settings, highlighting the efficiency and accuracy of decomposed
prompting. The empirical evidence suggests that while English-centric LLMs can effectively
engage in multilingual tasks, their performance is nuanced and influenced by the linguistic prox-
imity to English and the design of the prompting strategy. This work not only advances the field
of NLP by enhancing our understanding of LLMs’ cross-lingual transfer capabilities but also
opens avenues for future research to further improve the inclusivity and adaptability of language
models for a diverse range of languages and tasks.
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3.4 In-Context Learning for Cross-Lingual Knowledge Edit-
ing

This section corresponds to the following work:

Ercong Nie* Bo Shao*, Mingyang Wang, Zifeng Ding, Helmut Schmid, Hinrich
Schütze. 2025. BMIKE-53: Investigating Cross-Lingual Knowledge Editing with
In-Context Learning. In Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (ACL 2025. Volume 1: Long Papers)
* equal contributions.

Declaration of Co-Authorship. I conceived the idea of building a comprehensive multilingual
knowledge editing benchmark and proposed the research question of investigating the perfor-
mance of cross-lingual knowledge editing with in-context learning paradigms. I did the data
collection, data preprocessing, and benchmark construction. Bo Shao set up the pipeline to eval-
uate in-context knowledge editing on the proposed benchmark. He also adapted the code to run
gradient-based baseline methods. I ran part of the experiments and conducted the data anal-
ysis work. Besides, I wrote the manuscript of this paper. Mingyang Wang and Zifeng Ding
contributed by attending the discussions and providing feedback. Both also contributed to the
formulation of this research idea and the research question. Helmut Schmid and Hinrich Schütze
supervised the course of the project.
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Summary of This Section
This section shifts the focus to prompt-based learning for multilingual factual knowledge. We in-
vestigate the application of in-context learning for cross-lingual knowledge editing. For this pur-
pose, we introduce BMIKE-53, a comprehensive benchmark for cross-lingual in-context knowl-
edge editing (IKE) across 53 languages, unifying three knowledge editing (KE) datasets: zsRE,
CounterFact, and WikiFactDiff. Cross-lingual KE, which requires knowledge edited in one lan-
guage to generalize across others while preserving unrelated knowledge, remains underexplored.
To address this gap, we systematically evaluate IKE under zero-shot, one-shot, and few-shot se-
tups, incorporating tailored metric-specific demonstrations. Our findings reveal that model scale
and demonstration alignment critically govern cross-lingual IKE efficacy, with larger models and
tailored demonstrations significantly improving performance. Linguistic properties, particularly
script type, strongly influence performance variation across languages, with non-Latin languages
underperforming due to issues like language confusion.

卡洛斯·W·科尔比参与了哪两个国家之间的冲突？
Which conflict between two countries did Carlos W. Colby 
participate in?

Edited (en) 
Knowledge

(zh) 
Test  Query

Cross-Lingual In-Context Knowledge Editing

What war did Carlos W. Colby fight in? Korean War

zsRE

新南冰川所在大陆的最高峰是哪座山？
Which mountain is the highest peak on the continent where the 
Shinnan Glacier is located?

Edited (en) 
Knowledge

(zh) 
Test  Query

In which continent is Shinnan Glacier located? 
Europe

CounterFact

山本雅树效力的团队的老板是谁？
Who is the owner of the team for which Masaki Yamamoto plays?

For which team does Masaki Yamamoto play? Team 
Ukyo

WikiFactDiff
Edited (en) 
Knowledge

(zh) 
Test  Query

Figure 3.14: Examples of cross-lingual in-context knowledge editing.

3.4.1 Background and Motivation
Large language models (LLMs) have demonstrated remarkable abilities to encode vast amounts
of knowledge during pre-training, enabling them to perform well across a range of tasks (Min
et al., 2022; Zhang et al., 2023a; Zhou et al., 2024). However, this knowledge remains static,
becoming outdated as the world evolves, necessitating mechanisms to update models with new
facts while preserving their overall performance (Cao et al., 2021; Dhingra et al., 2022). Tradi-
tional approaches, such as fine-tuning, are computationally expensive and impractical for closed-
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New fact: "In what war did Jesse Orin Creech fight in? World War I"
Question: "In welchem Krieg hat Jesse Orin Creech gekämpft?" Answer: "Erster 
Weltkrieg”
Question: "In what war did Jesse Orin Creech fight in?" Answer: "World War I"

New fact: "When was Darrell Spencer born? 1944"
Questions: "Bei welchem historischen Ereignis wurde Darrell Spencer geboren?" Answer:

Zero-shot cross-lingual IKE

New fact: "What did Earl Hooker die of? tuberculosis"
Question: "Was war die Todesursache von Earl Hooker?" Answer: "Tuberkulose”

New fact: "When was Darrell Spencer born? 1944"
Questions: "Bei welchem historischen Ereignis wurde Darrell Spencer geboren?" Answer:

One-shot cross-lingual IKE

New fact: "When was Darrell Spencer born? 1944"
Questions: "Bei welchem historischen Ereignis wurde Darrell Spencer geboren?" Answer:

Few-shot cross-lingual mixed IKE
Demo 1 Demo 2 Demo 3 Demo 4 Demo 5 Demo 6 Demo 7 Demo 8

New fact: "When was Darrell Spencer born? 1944"
Questions: "Bei welchem historischen Ereignis wurde Darrell Spencer geboren?" Answer:

Few-shot cross-lingual metric-specific IKE
Demo 1 Demo 2 Demo 3 Demo 4 Demo 5 Demo 6 Demo 7 Demo 8

Edited knowledge (source language - en): 
When was Darrell Spencer born? 1944

Locality query (target language – de):
Bei welchem historischen Ereignis wurde Darrell Spencer geboren?
In which historical event was Darrell Spencer born?

Zweiter 
Weltkrieg

World War IINew fact: "What did Earl Hooker die of? tuberculosis"
Question: "Was war die Todesursache von Earl Hooker?" Answer: "Tuberkulose”
Question: " What was the cause of Earl Hooker’s death?" Answer: "tuberculosis"

New fact: "What position does Malcolm Partridge play? Forward"
Question: "Wer war der Quarterback der Wikinger 1993?" Answer: "Jim McMahon”
Question: "Who was the Vikings' quarterback in 1993?" Answer: "Jim McMahon"

New fact: "Who is the architect that designed Toodyay Fire Station? Wyndham Lewis"
Question: "Mit welcher Kunstbewegung ist der Architekt von Toodyay Fire Station in 
Verbindung gebracht?" Answer: "Wirbel"
Question: "What art movement is the architect of Toodyay Fire Station associated with?" 
Answer: "vorticism"

Reliability
Demo

Generality
Demo

Locality 
Demo

Portability 
Demo

Types of In-context Learning Demonstrations

An example of cross-lingual IKE

Figure 3.15: Cross-Lingual IKE setups and demonstration types.

source or large-scale models (Dai et al., 2022). These limitations have motivated the emergence
of knowledge editing (KE)—a technique for selectively modifying LLMs to incorporate new
knowledge while maintaining the integrity of unrelated knowledge (Zhang et al., 2024b).

Recent advancements in KE have explored gradient-free methods inspired by in-context
learning (ICL), where LLMs learn through prompts and demonstrations without requiring pa-
rameter updates (Zheng et al., 2023). These methods are efficient and particularly suitable for
scenarios where direct access to model parameters is restricted. However, existing gradient-free
KE research primarily focuses on monolingual settings, leaving the potential for cross-lingual
KE largely unexplored. Cross-lingual KE, a more challenging task, as illustrated in Figure 3.14,
requires knowledge edited in one language (e.g., English) to generalize effectively to semanti-
cally equivalent queries across diverse target languages while preserving unrelated knowledge.

This study addresses the critical gap in cross-lingual knowledge editing by proposing a com-
prehensive and multidimensional investigation of in-context knowledge editing (IKE) methods.
We introduce BMIKE-53, a multilingual benchmark spanning 53 languages and integrating
three representative KE datasets: zsRE, which evaluates regular fact modifications; CounterFact,
which examines counterfactual knowledge updates; and WikiFactDiff (WFD), which assesses
real-world, temporally dynamic knowledge updates. This benchmark is the most comprehen-
sive multilingual KE resource to date, unifying diverse KE datasets into a consistent format
and expanding them into multiple languages using LLM-assisted translation. The wide linguis-
tic coverage allows us to systematically analyze cross-lingual differences and their underlying
causes.

To evaluate cross-lingual IKE, we implement zero-shot, one-shot, and few-shot setups to
explore the impact of demonstration quality and quantity on performance (see Figure 3.15). No-
tably, we propose two few-shot setups: 8-shot mixed demonstrations, which expose the model
to diverse query types, and 8-shot metric-specific demonstrations, which target specific query
types like locality or portability to enhance performance. These setups allow us to analyze the
interplay between demonstration strategies, query types, and cross-lingual transfer. Our findings
show that larger models and tailored demonstrations significantly improve performance, espe-
cially for complex queries. Linguistic properties, such as syntactic and phonological similarity
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with English, positively influence performance, while language family has no significant impact.
Instead, script type emerges as a critical factor, with non-Latin languages underperforming due
to issues like language confusion, where models generate answers in English instead of the target
language.

In summary, our contributions are as follows: i) We introduce BMIKE-53, the most com-
prehensive multilingual KE benchmark, covering 53 languages and three diverse KE datasets,
which serves as a foundation for evaluating cross-lingual KE methods. ii) We extensively evalu-
ate gradient-free cross-lingual KE methods under various IKE setups, providing valuable insights
into the effectiveness of in-context learning for cross-lingual knowledge editing. iii) We conduct
a detailed analysis of factors influencing cross-lingual KE performance, uncovering the impact of
linguistic properties, script types, and language confusion on cross-lingual knowledge transfer.

3.4.2 Existing Knowledge Editing Methods

Traditional KE methods are primarily gradient-based. They typically introduce additional train-
able parameters, such as MEND (Mitchell et al., 2021) and SERAC (Mitchell et al., 2022)—or
edit specific parameters of the original model, as in ROME (Meng et al., 2022) and MEMIT (Meng
et al., 2023). However, these methods have high computational demands and are difficult to
scale. Recent studies have explored gradient-free KE methods for LLMs, inspired by the in-
context learning (ICL) paradigm, where LLMs learn from prompts and demonstrations with-
out parameter updating, such as IKE (Zheng et al., 2023), MeLLo (Zhong et al., 2023), and
ICE (Cohen et al., 2024). Given the multilingual in-context learning capabilities of English-
centric LLMs (Lai et al., 2023a; Nie et al., 2024; Zhang et al., 2024a), the potential for cross-
lingual KE appears promising. However, current gradient-free KE methods have primarily been
explored within monolingual contexts.

Recent cross-lingual KE work largely employs gradient-based methods (Xu et al., 2023;
Wang et al., 2023a; Beniwal et al., 2024; Wei et al., 2024). A notable gradient-free work is
ReMaKE (Wang et al., 2024a), a cross-lingual retrieval-augmented KE method. However, their
method is specifically applied to a rather special KE scenario—batch edit. In this setting, mul-
tiple knowledge pieces, such as the entire knowledge base, are edited simultaneously. Our work
diverges from these existing approaches in the following key aspects. Regarding task setup, Re-
MaKE employs a cross-lingual retrieval-augmented strategy tailored for batch edits, allowing
simultaneous modifications of multiple knowledge pieces, such as an entire knowledge base.
Conversely, our approach focuses on individual knowledge edits, which do not involve cross-
lingual retrieval. This fundamental difference sets our approach apart and addresses a unique
aspect of knowledge editing. In prompt engineering, when designing the demonstrations of ICL,
ReMaKE uses translation pairs of source and target language facts to make up the cross-lingual
demonstrations, from which the model cannot learn real cross-lingual knowledge editing compe-
tencies like portability and locality. In contrast, our MIKE method provides four different types
of cross-lingual ICL demonstrations. From these demonstrations, the model can effectively learn
real cross-lingual knowledge editing.
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3.4.3 BMIKE-53
BMIKE-53 spans a wide range of knowledge editing perspectives, from artificial to realistic sce-
narios, and provides a solid foundation for evaluating cross-lingual KE methods. Additionally,
with coverage of 53 languages, it stands as the most comprehensive multilingual KE benchmark
to date.

Task #Test Q-Len. A-Len. #Lang.

zsRE 743 9.02 2.02
53CounterFact 1,031 5.97 1.00

WFD 784 4.71 2.55

Table 3.28: Statistics of BMIKE-53. Q/A-Len.: Average Text Length of Query/Answer.

3.4.3.1 Datasets

As shown in Figure 3.14, BMIKE-53 is constructed from three monolingual KE datasets: zsRE,
CounterFact, and WikiFactDiff (WFD). Each dataset was selected to represent a distinct per-
spective of knowledge editing, ensuring the benchmark comprehensively evaluates diverse KE
scenarios.

The zsRE dataset, originally introduced by Levy et al. (2017), was designed for zero-shot
relation extraction and later adapted by De Cao et al. (2021) and Mitchell et al. (2021) for knowl-
edge editing tasks. zsRE focuses on regular, well-defined knowledge items, making it an ideal
baseline for evaluating the reliability and generality of KE methods.

The CounterFact dataset, introduced by Meng et al. (2022), is designed to evaluate the abil-
ity of models to update knowledge with counterfactual (false) facts. Each entry in CounterFact
represents a knowledge triple that has been altered to reflect a hypothetical or fabricated scenario.
CounterFact is particularly valuable for assessing the locality of KE methods, as it requires pre-
cise updates to counterfactual knowledge without unintended side effects.

The WikiFactDiff (WFD) dataset, introduced by Khodja et al. (2024), focuses on real-world,
temporally recent knowledge updates. Derived from WikiData (Vrandečić and Krötzsch, 2014),
WFD captures changes to knowledge triples that reflect actual updates in the real world, such
as changes in political leadership, scientific discoveries, or other evolving facts. WikiFactDiff is
essential for assessing the real-world applicability of KE methods, as it introduces the challenge
of updating models with temporally recent and realistic knowledge changes.

3.4.3.2 Benchmark Construction

The construction of the BMIKE-53 benchmark involves three key steps: unifying data formats,
multilingual expansion, and quality control. These steps ensure that the benchmark is consistent,
multilingual, and of high quality, enabling robust evaluation of cross-lingual knowledge editing
(KE) methods.
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system:
You are an intelligent multilingual translation assistant that can structurally translate
English text in a fixed data format into 52 different languages.

user:
Translate the following JSON data item from English to {target language}. Keep
the original JSON format and structure, translating only the text in the values while keep-
ing the key names unchanged. Output only in plain text without additional formatting text.
Use double quotes for key and value names and add the escape character for quote marks
in the text of value: {json data item}

Figure 3.16: Prompt template for GPT-4o as translation assistant.

Unifying Data Formats To ensure consistency across the three datasets, we standardized their
formats into a unified structure to create a cohesive English base dataset. Each data item in the
unified format includes an edited knowledge item and four types of test queries: reliability, gen-
erality, locality, and portability. The portability queries for zsRE and CounterFact were adopted
from the work of Yao et al. (2023), while for WFD, we extracted a knowledge graph from the
original WFD dataset and performed one-hop knowledge reasoning within the graph to generate
portability queries. All data items are stored in a JSON format, with a consistent data structure
across the three datasets. This unified format facilitates seamless integration into the benchmark
and enables efficient LLM-assisted translation in the multilingual expansion process.

Structured Multilingual Expansion with LLMs To create a multilingual benchmark for cross-
lingual KE tasks, we expanded the English base data into 52 target languages using LLM-assisted
structural translation. The language coverage is adopted from similar multilingual datasets like
MLAMA (Kassner et al., 2021) and BMLAMA (Qi et al., 2023). BMIKE-53 encompasses a
total of 53 languages. A comprehensive list of these languages can be found in Table 3.29. Ad-
ditionally, the table outlines the linguistic feature similarities between each target language and
English. The similarity scores are calculated as introduced in the previous section (§3.2.5.2).

We employed the GPT-4o model7 via the OpenAI API for the multilingual expansion. The
translation process was guided by a structured prompt template, as displayed in Figure 3.16,
which ensured that the JSON format and structure of the data items were preserved during trans-
lation. Specifically: Only the text values within the JSON structure were translated, while the
key names remained unchanged. The prompt explicitly instructed the model to output the trans-
lated data in plain text, adhering to the original JSON format. We compared several machine
translation tools, including NLLB-200 and Google Translate API, but found that LLM-assisted
translation offered superior performance in terms of:

• Accuracy: LLMs demonstrated better handling of complex linguistic structures and domain-
7gpt-4o-2024-08-06
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lid language Family syn sim pho sim inv sim gen sim geo sim

af Afrikaans Indo-European (Germanic) 84.94 81.83 69.10 50.46 86.84
ar Arabic Semitic 65.11 70.09 70.81 0.15 97.04
az Azerbaijani Turkic 52.00 81.83 67.86 0.19 96.96
be Belarusian Indo-European (Slavic) 78.64 85.83 70.42 16.80 99.35
bg Bulgarian Indo-European (Slavic) 85.78 85.83 68.38 13.73 99.01
bn Bengali Indo-European (Indo-Aryan) 58.36 76.30 74.38 12.71 88.96
ca Catalan Indo-European (Romance) 87.30 85.83 75.22 10.64 99.66

ceb Cebuano Austronesian 62.17 76.30 75.22 0.13 81.50
cs Czech Indo-European (Slavic) 73.99 85.83 66.51 13.73 99.71
cy Welsh Indo-European (Celtic) 71.90 81.83 77.85 13.73 99.99
da Danish Indo-European (Germanic) 88.01 81.83 77.54 40.90 99.89
de German Indo-European (Germanic) 90.26 80.60 76.28 54.49 99.76
el Greek Indo-European (Hellenic) 78.31 95.35 64.76 15.03 98.96
es Spanish Indo-European (Romance) 82.16 85.83 63.83 9.71 99.59
et Estonian Uralic 77.35 85.83 66.94 0.23 99.45
eu Basque Isolate 62.36 85.29 56.88 3.33 99.76
fa Persian Indo-European (Iranian) 50.03 78.35 72.83 13.73 94.23
fi Finnish Uralic 71.08 87.05 70.00 0.19 99.19
fr French Indo-European (Romance) 81.18 75.28 74.09 9.71 99.93
ga Irish Indo-European (Celtic) 72.01 85.83 69.35 12.71 99.96
gl Galician Indo-European (Romance) 80.23 90.46 70.75 10.14 99.65
he Hebrew Semitic 75.15 72.55 64.37 0.13 97.16
hi Hindi Indo-European (Indo-Aryan) 61.63 78.35 70.91 12.71 91.10
hr Croatian Indo-European (Slavic) 83.18 85.83 69.67 12.71 99.50
hu Hungarian Uralic 69.40 85.83 74.03 0.33 99.46
hy Armenian Indo-European (Satem) 63.03 69.66 68.73 19.39 97.23
id Indonesian Austronesian 72.66 90.92 75.58 0.12 79.16
it Italian Indo-European (Romance) 85.78 85.83 70.00 11.21 99.53
ja Japanese Isolate 50.03 66.77 65.40 0.19 85.65
ka Georgian Caucasian 68.50 66.93 62.93 0.19 97.09
ko Korean Isolate 55.29 74.65 70.94 0.33 86.93
la Latin Indo-European (Romance) 78.27 85.83 76.76 15.03 99.47
lt Lithuanian Indo-European (Baltic) 69.33 80.42 74.63 19.39 99.44
lv Latvian Indo-European (Baltic) 75.39 81.83 75.22 19.39 99.42
ms Malay Austronesian 70.49 90.92 72.49 0.15 80.49
nl Dutch Indo-European (Germanic) 92.43 81.83 72.24 44.51 99.96
pl Polish Indo-European (Slavic) 78.64 85.83 65.29 15.03 99.63
pt Portuguese Indo-European (Romance) 84.24 90.46 78.68 10.14 99.68
ro Romanian Indo-European (Romance) 79.60 90.46 73.42 11.89 99.22
ru Russian Indo-European (Slavic) 81.18 85.83 64.76 16.80 95.81
sk Slovak Indo-European (Slavic) 82.16 85.83 70.66 15.03 99.55
sl Slovenian Indo-European (Slavic) 80.59 85.83 75.58 15.03 99.62
sq Albanian Indo-European (Other) 79.60 87.05 72.49 33.48 99.19
sr Serbian Indo-European (Slavic) 79.60 85.83 72.94 12.71 99.23
sv Swedish Indo-European (Germanic) 93.34 81.83 67.98 40.90 99.62
ta Tamil Dravidian 51.36 85.29 65.81 0.11 87.95
th Thai Kra-Dai 63.95 78.35 74.91 0.11 85.25
tr Turkish Turkic 50.68 81.83 66.59 0.14 98.25
uk Ukrainian Indo-European (Slavic) 84.73 85.83 74.38 15.03 99.28
ur Urdu Indo-European (Indo-Aryan) 61.63 85.83 71.57 12.71 92.54
vi Vietnamese Austroasiatic 66.04 78.35 74.74 0.19 85.25

zh-cn Chinese Sino-Tibetan 71.08 72.55 69.73 0.33 88.42

Table 3.29: Detailed information of the languages covered by BMIKE-53. The right five columns
show the linguistic feature similarities between the target language and English. syn: syntax,
pho: phonology, inv: phonetics, gen: phylogenetic, geo: geographic, sim: similarity.

specific terminology.

• Flexibility: LLMs provided greater adaptability for processing structured data formats like
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JSON.

• Consistency: The structured translation process ensured that the multilingual data re-
mained aligned with the original English data.

By leveraging LLM-assisted translation, we ensured that the multilingual benchmark maintained
high linguistic quality and structural integrity.

Quality Control To ensure the quality of the multilingual expansion, we implemented a rig-
orous quality control process involving qualitative evaluation and quantitative analysis. We con-
ducted a manual review of sampled sentences by native speakers of selected languages, then we
used back-translation techniques to provide an overall assessment of translation quality. Specifi-
cally, each translated sentence was back-translated into English, and the BLEU score and seman-
tic similarity between the original and the back-translated English text were calculated. BLEU
Score measures the formal similarity between the original and back-translated sentences. Se-
mantic Similarity evaluates the semantic alignment between the original and back-translated sen-
tences using cosine similarity in a sentence embedding space. The results of the back-translation
evaluation are shown in Table 3.30.

zsRE CounterFact WFD
Lang. BLEU Sim. BLEU Sim. BLEU Sim.

es 0.81 0.94 0.82 0.90 0.81 0.90
vi 0.82 0.93 0.77 0.91 0.78 0.90
ru 0.78 0.91 0.71 0.87 0.72 0.87
zh 0.78 0.89 0.76 0.85 0.76 0.85
de 0.84 0.93 0.82 0.92 0.82 0.92

Table 3.30: Results of Translation Quality Control via Back-Translation.

3.4.4 Experiments
The primary goal of this work is to extensively investigate the performance of cross-lingual in-
context knowledge editing (IKE). Using the proposed benchmark BMIKE-53, we aim to explore
the factors influencing cross-lingual IKE performance, identify performance tendencies, and an-
alyze variations in cross-lingual behavior across different languages and query types. To achieve
this, we first formally define the cross-lingual IKE task and its evaluation framework. We then
introduce the different IKE setups and strategies explored in our experiments

3.4.4.1 Task: Cross-Lingual In-Context Knowledge Editing

The Cross-Lingual In-Context Knowledge Editing (IKE) task evaluates a language model’s abil-
ity to incorporate new knowledge (a fact) in one language and apply it across multiple languages
while preserving unrelated knowledge. This task leverages in-context learning (ICL) to guide the
model in editing and applying knowledge through demonstrations. Below, we formally define
the task and the four types of cross-lingual queries used to evaluate the model’s performance.
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Task Definition Given a language model M; a new fact represented as a query-answer pair
f = (x⇤

s, y
⇤
s) in the source language s, where x⇤

s is the query and y⇤s is the corresponding answer;
a set X ⇤

s , which contains x⇤
s and other semantically equivalent queries in the source language;

the translations of X ⇤
s into a target language t, denoted as X ⇤

t = {It(xs) : xs 2 X ⇤
s } where I t(·)

is a translator mapping source language queries to their target language counterparts. The task
involves evaluating the model’s response to a target language query xt after incorporating the
new fact f . Specifically, the model assigns a probability PM(y|xt, f) to an answer y given the
query xt and the fact f . The predicted answer is defined as Pred(xt, f) = argmaxy PM(y|xt, f).
The goal is for the model to predict the correct translation of the fact answer, I t(y⇤s), when the
query xt is semantically equivalent to the fact query x⇤

s, and to preserve the original knowledge
and predict the correct answer yt for unrelated queries, ensuring no unintended inference from
the knowledge editing process.

Cross-Lingual Query Types To comprehensively evaluate the model’s cross-lingual knowl-
edge editing capabilities, we define four types of target language queries, each testing a specific
aspect of the task. The model should reliably apply the new fact to the exact translation of the
original query. A reliability query xt is defined as xt = It(x⇤

s). Generality queries test whether
the model can generalize the new fact to other semantically equivalent queries in the target lan-
guage that differ in phrasing or structure. A generality query xt is defined as xt 2 X ⇤

t \{It(x⇤
s)}.

The expected answer for the reliability and generality query is Pred(xt, f) = It(y⇤s). Portability

queries evaluate whether the model can apply the new fact to related but contextually different
queries in the target language. These queries are derived through one-hop knowledge reasoning
from the original fact. Let X ⇤

s,1-hop denote the one-hop query set in the source language, which
includes x⇤

s and queries influenced by x⇤
s through one-hop reasoning in a knowledge graph. The

corresponding target language set is X ⇤
t,1-hop = {It(x⇤

s) : xs 2 X ⇤
s,1-hop}. A portability query

xt is defined as xt 2 X ⇤
t,1-hop. Locality queries test whether the model can preserve unrelated

knowledge while incorporating the new fact. A locality query xt is defined as xt /2 X ⇤
t,1-hop.

The expected answer is Pred(xt, f) = yt.

3.4.4.2 Cross-Lingual IKE Setup

IKE Demonstrations In the context of in-context learning (ICL), demonstrations are examples
provided in the input prompt to guide the model’s behavior. For the IKE task, the demonstrations
are designed to teach the model how to perform cross-lingual knowledge editing. Formally, the
set of demonstrations is defined as C = {c1, · · · , ck}, where each demonstration ci consists of a
new fact f 0 = (x0

s, y
0
s) in the source language, a query x0

t in the target language, and the correct
answer y0t in the target language. As an ICL-based KE method, IKE uses demonstrations to guide
the model in learning the relationships between the source language fact and the target language
queries. As illustrated in Figure 3.15, the demonstrations are designed to reflect the four query
types, enabling the model to learn the appropriate behavior for each type. By including examples
of cross-lingual queries and their correct answers, the demonstrations help the model generalize
the knowledge editing process across languages.
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IKE Setup As illustrated in Figure 3.15, we evaluate cross-lingual IKE under four distinct
setups: zero-shot, one-shot, few-shot mixed, and few-shot metric-specific. In zero-shot cross-
lingual IKE, the model performs cross-lingual knowledge editing without any demonstrations,
relying solely on its pre-trained capabilities. In a one-shot setup, a single randomly selected
demonstration is provided to familiarize the model with the task format. This setup is designed
to give the model an overview of the task without significantly aiding its ability to complete
the task. Few-shot mixed cross-lingual IKE includes eight demonstrations of mixed types. The
goal is to teach the model cross-lingual knowledge editing by exposing it to diverse query types.
To enhance performance on specific query types, the few-shot metric-specific variation provides
eight demonstrations of the same query type as the test target.

3.4.4.3 Experimental Setting

We conduct experiments using two multilingual LLMs: Llama3.2-3B and Llama3.1-8B. These
models were selected for their multilingual capabilities and represent different model sizes, al-
lowing us to analyze the impact of model scale on cross-lingual IKE performance. To measure
the cross-lingual IKE performance, we compare the predicted answers with the ground-truth an-
swers using the F1 score and Exact Match (EM) metrics, consistent with prior work (Wang et al.,
2023a, 2024a). Table 3.31 displays the experiment implementation details. We downloaded the
models from HuggingFace8.

Parameter Value

Model meta-llama/Llama-3.1-8B,
meta-llama/Llama-3.2-3B

Max. length 4096
Num. of demonstration 8

Type of demonstration Reliability, Generality,
Locality, Portability

Proportion of demo. 1:3:2:2
GPU Type NVIDIA A100-SXM4-80GB

Number of GPU 4
Running hours 72

Table 3.31: Experimental Implementation Details.

3.4.5 Multidimensional Analysis of Cross-Lingual IKE
This section provides a multidimensional analysis of cross-lingual IKE performance, focusing
on the effects of model size, dataset-specific performance, query type variations, and IKE setup
strategies. Using the BMIKE-53 benchmark, we aim to uncover key insights into how these
factors influence IKE performance and cross-lingual variations. Table 3.32 shows the overall
experimental results.

8https://huggingface.co/meta-llama/Llama-3.2-3B and https://huggingface.co/
meta-llama/Llama-3.1-8B

https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B
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Model Setup zsRE CounterFact WikiFactDiff
rel gen loc port rel gen loc port rel gen loc port

Llama3.2-3B

zero-shot 50.16 49.03 5.64 5.41 43.51 40.84 7.53 5.61 58.28 57.41 6.77 3.18
one-shot 71.57 71.25 7.78 14.97 68.34 68.02 6.58 16.30 66.32 65.93 6.31 3.06
8-shot (mix) 70.54 70.49 8.89 16.43 70.80 70.33 5.11 13.75 64.97 64.60 6.24 4.00
8-shot (metric) 70.94 70.91 12.23 22.97 67.57 67.14 31.61 31.20 67.77 67.48 9.14 10.72

Llama3.1-8B

zero-shot 65.53 64.09 9.76 10.05 63.01 60.59 18.68 11.16 67.84 66.40 10.04 4.15
one-shot 75.27 74.90 13.36 20.81 71.92 71.29 12.66 21.93 70.53 69.84 7.80 4.15
8-shot (mix) 74.29 74.00 15.46 25.18 75.15 74.42 11.40 23.74 68.57 67.86 8.27 8.87
8-shot (metric) 74.86 74.79 16.15 32.86 73.88 73.19 47.55 41.17 71.98 71.34 13.84 14.58

Table 3.32: Main Results. Average cross-lingual IKE performance across 52 languages (F1-
score).

Figure 3.17: Average cross-lingual IKE performance across languages (F1-score).

Effects of Model Scale As shown in Figure 3.17, larger models demonstrate superior cross-
lingual IKE capabilities across all experimental configurations. The 8B-parameter model achieves
65.53 F1 score on zsre reliability (rel) in the zero-shot setting, compared to 50.16 for the base 3B
model—representing a 15.37-point improvement. This performance gap persists across demon-
stration strategies, with the 8-shot metric-specific setup yielding 32.86 vs 22.97 portability (port)
scores on zsRE. Notably, larger models show particular advantages in handling queries requiring
complex multilingual reasoning and knowledge preservation, evidenced by the performance gap
of locality (loc) and portability (port) queries.

Dataset-Specific Performance Patterns We observe substantial cross-dataset variance in edit-
ing efficacy, especially with loc and port queries, indicative of inherent dataset complexity dif-
ferences. While WikiFactDiff (WFD) achieves comparable reliability (rel) and generality (gen)
scores to zsRE and CounterFact, it shows the lowest port performance. This discrepancy could
be attributed to the real-world nature of WFD, where all knowledge–both the original and up-
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dated facts–is temporally recent. Portability queries in WFD require the model to reason over
a second-order knowledge chain, where the correct answer depends on understanding the re-
lationship between the updated fact and its broader context. CounterFact, on the other hand,
benefits the most from metric-specific demonstrations, particularly for locality and portability.
The compositional nature of CounterFact’s fabricated facts allows the model to leverage targeted
demonstrations effectively.

Query-Type Sensitivity The four query types exhibit divergent response patterns to IKE strate-
gies. Figure 3.18 shows that rel and gen achieve near-parity across setups, especially in 8-shot
metric-specific IKE, suggesting models effectively align cross-lingual surface forms. In contrast,
loc and port perform substantially worse across datasets and setups. However, port demonstrates
greater sensitivity to metric-specific demonstrations than loc. Port benefits from metric-specific
demonstrations with more pronounced improvements, especially in datasets like zsRE and WFD.

Figure 3.18: Average cross-lingual IKE performance across 52 languages (F1-score).

Impact of Demonstration Strategies The comparison of zero-shot, one-shot, few-shot mixed,
and few-shot metric-specific setups reveals the importance of demonstration quality and quantity
in cross-lingual IKE. Figure 3.19 illustrates how the performance of Llama3.1-8B evolves
across setups for each query type and dataset. In the zero-shot setup, models rely solely on their
pre-trained capabilities, resulting in limited performance. While one-shot setups provide modest
improvements by familiarizing the model with the task format, they fail to address the chal-
lenges of loc. A single, randomly selected demonstration often confuses the model, particularly
when the demonstration type does not align with the target query type. For loc queries, when
encountering rel or gen demonstration types, this misalignment can lead the model to incorrectly
repeat the edited knowledge in the target language, further degrading performance. Adding more
demonstrations in the few-shot mixed setup yields limited performance gains, particularly for loc
queries. However, when demonstrations are tailored to the specific query type being tested, as
in the 8-shot metric-specific setup, notable gains are observed. This setup achieves the highest
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Figure 3.19: Average cross-lingual IKE performance of Llama3.1-8B across 52 languages.

em - 8b
zsRE
rel 73 53 66 53 55 26 76 80 79 76 78 81 51 73 78 66 45 76 74 75 75 47 58 75 71 26 80 74 71 25 56 59 62 51 80 79 75 73 76 60 78 78 63 56 76 27 54 76 60 42 73 61

gen 73 54 67 53 55 25 76 80 78 76 79 82 51 74 78 67 44 75 74 74 74 46 59 75 71 26 79 74 71 24 57 58 63 51 80 78 74 73 75 60 78 77 64 55 77 28 53 76 61 41 74 61

loc 69 19 49 12 27 12 68 63 58 55 75 79 29 71 55 59 19 58 72 45 66 22 34 58 62 16 78 68 27 16 22 42 43 30 69 83 56 67 64 41 58 62 53 36 68 7 39 61 35 17 65 19

port 65 29 43 37 42 13 69 54 66 46 72 77 31 69 58 35 29 65 73 40 68 26 32 60 60 13 75 73 44 8 32 35 40 35 67 76 66 75 67 54 63 59 42 37 68 5 29 65 52 19 54 48

avg 70 39 56 39 45 19 73 69 70 63 76 80 41 72 67 57 34 68 73 59 70 35 46 67 66 20 78 72 53 18 42 48 52 41 74 79 68 72 70 54 69 69 55 46 72 17 44 70 52 30 67 47

CounterFact
rel 67 65 52 65 67 54 75 82 60 65 80 89 82 77 35 45 75 37 73 50 79 86 82 50 76 51 75 69 92 43 81 50 33 31 79 82 61 71 79 66 58 58 61 64 82 46 80 78 54 60 71 83

gen 72 69 54 69 71 56 79 86 61 68 84 94 85 80 38 50 80 40 74 52 82 90 87 52 80 53 79 71 97 45 85 52 33 31 83 86 65 72 82 73 62 62 64 65 86 49 85 83 57 64 74 88

loc 86 50 67 56 58 50 76 69 71 74 91 97 75 94 79 67 60 45 90 51 76 50 68 80 64 34 77 93 78 30 76 64 45 40 84 99 79 81 87 78 66 76 70 60 92 31 70 86 71 49 76 84

port 58 47 28 49 53 21 70 70 69 48 73 80 50 79 59 42 35 59 76 39 80 38 37 60 55 16 69 78 52 12 38 34 43 37 57 76 74 73 70 70 57 52 51 34 75 13 34 62 57 28 59 54

avg 71 58 50 60 62 45 75 77 65 64 82 90 73 82 53 51 62 45 78 48 79 66 69 60 69 38 75 78 80 33 70 50 39 35 76 86 70 74 80 72 61 62 62 56 84 35 67 77 60 50 70 77

WikiFactDiff
rel 83 22 76 27 21 14 85 80 79 77 85 81 36 85 80 78 24 76 83 82 77 20 31 79 81 10 82 85 23 4 23 77 67 62 91 87 79 77 87 30 78 75 75 59 84 5 56 92 21 16 87 35

gen 83 22 77 26 19 13 83 81 80 77 84 82 35 84 80 77 24 77 82 81 78 20 31 79 81 10 82 85 23 5 22 77 65 63 91 86 79 72 87 32 78 75 77 53 83 5 56 92 25 16 86 34

loc 72 40 55 27 46 11 92 92 46 65 56 71 33 93 64 50 23 61 87 53 86 16 38 57 66 12 73 88 42 14 13 64 61 75 69 82 45 78 86 36 52 65 61 41 44 6 39 61 38 46 60 52

port 80 32 70 12 32 11 75 34 69 58 77 67 21 84 70 60 27 61 87 60 78 35 22 70 76 9 70 79 14 3 16 34 37 32 78 86 71 91 85 46 70 79 74 15 82 2 42 79 39 16 77 30

avg 79 29 70 23 29 12 84 72 68 69 75 75 31 87 74 66 25 69 85 69 79 23 31 71 76 10 77 84 26 7 19 63 57 58 82 85 69 80 86 36 70 74 72 42 73 4 48 81 31 23 77 38

af ar az bebgbnca ce cs cy dade el es et eu fa fi fr ga gl he hi hr huhy id it ja ka ko la lt lv msnl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh

sim27.413.612.230.428.818.437.214.228.635.643.042.629.026.223.620.218.824.030.430.234.211.817.431.827.419.024.833.05.610.013.037.229.633.822.240.831.241.833.628.436.240.836.833.635.69.815.013.038.825.217.414.8

em - 8b 4 1 3 2 2 2 4 3 4 4 4 4 2 4 3 3 2 3 4 4 4 1 2 4 3 2 3 4 1 1 1 4 4 4 3 4 4 4 4 2 4 4 4 2 4 1 1 3 4 2 2 1
zsRE

rel 53 47 71 25 56 27 54 61 53 55 26 51 45 58 26 60 56 60 42 66 80 78 66 76 71 80 80 76 73 73 76 79 76 78 81 73 74 75 75 75 74 59 62 51 79 75 73 76 78 78 63 76

gen 54 46 71 24 57 28 53 61 53 55 25 51 44 59 26 60 55 61 41 67 80 78 67 75 71 79 80 76 74 73 76 78 76 79 82 74 74 74 74 75 74 58 63 51 78 74 73 75 78 77 64 77

loc 19 22 27 16 22 7 39 19 12 27 12 29 19 34 16 41 36 35 17 49 63 55 59 58 62 78 69 61 65 69 68 58 55 75 79 71 72 45 66 58 68 42 43 30 83 56 67 64 58 62 53 68

port 29 26 44 8 32 5 29 48 37 42 13 31 29 32 13 54 37 52 19 43 54 58 35 65 60 75 67 65 54 65 69 66 46 72 77 69 73 40 68 60 73 35 40 35 76 66 75 67 63 59 42 68

avg 39 35 53 18 42 17 44 47 39 45 19 41 34 46 20 54 46 52 30 56 69 67 57 68 66 78 74 70 67 70 73 70 63 76 80 72 73 59 70 67 72 48 52 41 79 68 72 70 69 69 55 72

CounterFact
rel 65 86 92 43 81 46 80 83 65 67 54 82 75 82 51 66 64 54 60 52 82 35 45 37 76 75 79 78 71 67 75 60 65 80 89 77 73 50 79 50 69 50 33 31 82 61 71 79 58 58 61 82

gen 69 90 97 45 85 49 85 88 69 71 56 85 80 87 53 73 65 57 64 54 86 38 50 40 80 79 83 83 74 72 79 61 68 84 94 80 74 52 82 52 71 52 33 31 86 65 72 82 62 62 64 86

loc 50 50 78 30 76 31 70 84 56 58 50 75 60 68 34 78 60 71 49 67 69 79 67 45 64 77 84 86 76 86 76 71 74 91 97 94 90 51 76 80 93 64 45 40 99 79 81 87 66 76 70 92

port 47 38 52 12 38 13 34 54 49 53 21 50 35 37 16 70 34 57 28 28 70 59 42 59 55 69 57 62 59 58 70 69 48 73 80 79 76 39 80 60 78 34 43 37 76 74 73 70 57 52 51 75

avg 58 66 80 33 70 35 67 77 60 62 45 73 62 69 38 72 56 60 50 50 77 53 51 45 69 75 76 77 70 71 75 65 64 82 90 82 78 48 79 60 78 50 39 35 86 70 74 80 61 62 62 84

WFD
rel 22 20 23 4 23 5 56 35 27 21 14 36 24 31 10 30 59 21 16 76 80 80 78 76 81 82 91 92 87 83 85 79 77 85 81 85 83 82 77 79 85 77 67 62 87 79 77 87 78 75 75 84

Table 3.33: Cross-lingual IKE performance of Llama3.1-8B in 52 languages under the 8-shot
metric-specific setup.

scores for loc and portability, as shown in Figure 3.19. These findings underscore the importance
of demonstration quality and specificity in maximizing the benefits of in-context learning for
cross-lingual knowledge editing.

3.4.6 Language Performance Variance in Cross-Lingual IKE

To analyze cross-lingual performance variation, we use a normalized metric that uses the exact
match (EM) of English as a reference to highlight cross-lingual transfer differences. Specifically,
we calculate the ratio of each target language’s EM performance to English. As is visually
evident in Table 3.33, some languages perform particularly poorly, while others achieve results
closer to English, motivating further investigation into the factors influencing these differences.
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Correlation Between Language Properties and Performance We conducted a correlation
analysis between language properties (derived using Lang2Vec (Littell et al., 2017), details in
Appendix) and query-type performance across datasets. As revealed in Figure 3.20, syntactic,
phonological, and geographic similarities with English positively correlate with performance,
particularly for loc and port queries However, two notable exceptions emerge: rel and gen queries
in CounterFact show no significant correlation with language properties, likely because these
query types achieve uniformly high performance across all languages. Additionally, genetic
similarity (language family) shows no meaningful correlation across datasets.

Figure 3.20: Correlation between linguistic properties and IKE performance of 52 languages.
Experimental results of Llama3.1-8B under the 8-shot metric-specific setup. Significant correla-
tions are marked with ⇤ (p < 0.05).

Impact of Script and Language Family To further explore the role of script and language
family, we grouped languages into four clusters based on script type (Latin vs. non-Latin) and
language family (Indo-European vs. non-Indo-European). Figure 3.21(a) reveals that script type
plays a more critical role than language family. Non-Latin languages, regardless of their family,
perform worse than Latin-script languages. This trend is consistent across datasets and query
types, as further supported by Figure 3.21(b). For example, the non-Latin + non-IE and non-
Latin + IE groups exhibit similar performance, both significantly lower than the Latin + IE and
Latin + non-IE groups.

Language Confusion and Script Effects A qualitative error analysis highlights language con-
fusion as a key factor explaining why script type matters. Language confusion occurs when the
model generates answers in English instead of the target language (Marchisio et al., 2024), even
when explicitly instructed to use the target language. This issue is particularly prevalent in code-
switched prompts and disproportionately affects non-Latin languages. For example, while the
model may produce the correct answer in English, it is considered a failure if the output is not
in the target language. Table 3.34 highlights instances of language confusion that occur when
queries are presented in Chinese. This problem is exacerbated for non-Latin languages, as their
distinct scripts reduce the likelihood of overlapping writing forms between English and the target
language, further degrading performance.
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(a) Panorama of per-language performance.

(b) IE: Indo-European language family.

Figure 3.21: Impact of Script and Language Family.

3.4.7 Sum-Up
We present BMIKE-53, a multilingual KE benchmark, and leverage it to investigate the potential
of gradient-free in-context learning methods for cross-lingual knowledge editing. Our experi-
ments demonstrate that tailored demonstration strategies significantly enhance KE performance,
with metric-specific demonstrations improving locality and portability. Additionally, linguistic
properties, particularly script type, strongly influence cross-lingual knowledge transfer. We hope
that BMIKE-53 will inspire further research in multilingual KE, advancing the understanding
and capabilities of LLMs across diverse linguistic contexts.
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zsRE (Case id: 17) - Locality
New Fact: "What vessel type is USS Flusser (DD-368)? 368-class destroyer”
Question: "连接一个顶点到自身的边的术语是什么？ ”
What is the term for an edge connecting a vertex to itself?

Model Answer: loop True Answer: 环loop

CounterFact (Case id: 128) - Portability
New Fact: "Where does Spike Hughes originate from? Philadelphia”
Question: "与斯派克·休斯来自的城市相关的著名食物是什么？”
What is the famous food associated with the city Spike Hughes is from?

Model Answer: Cheesesteak True Answer:奶酪牛排Cheesesteak

Table 3.34: Examples of language confusion from the 8-shot metric-specific setup with
Llama3.1-8B.



Chapter 4

Prompt-Based Fine-Tuning for Zero-Shot
Cross-Lingual Transfer

Summary of This Chapter

Building on the foundations of prompt-based learning established in the previous chapter (Chap-
ter 3), this chapter advances the exploration of prompt-based methods by focusing on prompt-
based fine-tuning within the paradigm of zero-shot cross-lingual transfer. Zero-shot cross-
lingual transfer is a powerful approach in multilingual NLP, where a model is fine-tuned on
labeled data from a single source language, typically English, and then directly evaluated on
target language samples without any further adaptation or labeled data in the target language.
This paradigm is especially valuable for low-resource and underrepresented languages, where
annotated data is scarce or unavailable, and it offers a scalable solution for extending language
technologies to a broader linguistic landscape.

Despite the promise of prompt-based learning, its application to fine-tuning for multilingual
NLP, particularly in zero-shot cross-lingual transfer, remains underexplored. Most prior work
has focused on prompt-based inference or in-context learning, leaving open questions about the
comparative advantages of prompt-based fine-tuning over traditional (vanilla) fine-tuning ap-
proaches. To address this gap, the first part of this chapter presents a comprehensive empirical
investigation into prompt-based fine-tuning for cross-lingual language understanding. Through
the PROFIT pipeline, we systematically compare prompt-based and vanilla fine-tuning across
a range of multilingual classification tasks, including sentiment analysis, paraphrase identifica-
tion, and natural language inference. Our findings reveal that prompt-based fine-tuning not only
consistently outperforms vanilla fine-tuning in full-data scenarios, but also exhibits even greater
advantages in few-shot settings. Furthermore, we analyze how factors such as language similar-
ity and pretraining data size influence the effectiveness of cross-lingual transfer, providing new
insights into the dynamics of multilingual adaptation (§4.1).

Beyond sentence-level classification, the chapter extends prompt-based fine-tuning to struc-
tured prediction tasks, which are critical for many real-world NLP applications. We introduce the
ToPro methodology, a token-level prompt decomposition approach for sequence labeling tasks
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such as part-of-speech (POS) tagging and named entity recognition (NER). By decomposing the
input into token-level prompts, ToPro enables more granular and robust learning, particularly
benefiting languages that are typologically distant from English. Our experiments demonstrate
that ToPro-based fine-tuning achieves state-of-the-art zero-shot cross-lingual performance, out-
performing both vanilla fine-tuning and prompt-tuning baselines (§4.2).

Finally, this chapter explores the application of zero-shot cross-lingual transfer to historical
language processing, a domain where annotated resources are especially scarce. We develop
a delexicalized constituency parser for Middle High German (MHG), leveraging the structural
continuity between MHG and Modern German. By fine-tuning on modern German treebanks and
transferring to MHG without any annotated MHG training data, our approach demonstrates the
feasibility and effectiveness of cross-lingual transfer for syntactic parsing in ancient languages,
providing a new tool for historical language processing (§4.3).

In summary, this chapter demonstrates that prompt-based fine-tuning is a versatile and power-
ful tool for zero-shot cross-lingual transfer, enabling robust adaptation across both classification
and structured prediction tasks.
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4.1 Prompt-Based Fine-Tuning vs. Vanilla Fine-Tuning for
Cross-Lingual Language Understanding

This section corresponds to the following work:

Bolei Ma*, Ercong Nie*, Helmut Schmid, and Hinrich Schütze. 2023. Is Prompt-
Based fine-tuning Always Better than Vanilla fine-tuning? Insights from Cross-
Lingual Language Understanding. In Proceedings of the 19th Conference on Natural
Language Processing (KONVENS 2023), pages 1–16, Ingolstadt, Germany. Asso-
ciation for Computational Linguistics.
* equal contributions.

Declaration of Co-Authorship. I proposed the research question and designed the research
framework for conducting a comparative empirical study between prompt-based fine-tuning and
vanilla fine-tuning for zero-shot cross-lingual transfer. I wrote the code framework. Bolei Ma
ran the experiments and conducted the analysis. Bolei Ma and I completed the paper writing
together. Helmut Schmid and Hinrich Schütze supervised the project and provided valuable
feedback.
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Summary of This Section
Multilingual pretrained language models (MPLMs) have demonstrated substantial performance
improvements in zero-shot cross-lingual transfer across various natural language understand-
ing tasks by fine-tuning MPLMs on task-specific labelled data of a source language (e.g., En-
glish) and evaluating on a wide range of target languages. Recent studies show that prompt-
based fine-tuning surpasses regular fine-tuning in few-shot scenarios. However, the exploration
of prompt-based learning in multilingual tasks remains limited. In this study, we propose the
PROFIT pipeline to investigate the cross-lingual capabilities of Prompt-based Fine-Tuning. We
conduct comprehensive experiments on diverse cross-lingual language understanding tasks (sen-
timent classification, paraphrase identification, and natural language inference) and empirically
analyze the variation trends of prompt-based fine-tuning performance in cross-lingual transfer
across different few-shot and full-data settings. Our results reveal the effectiveness and versatil-
ity of prompt-based fine-tuning in cross-lingual language understanding. Our findings indicate
that prompt-based fine-tuning outperforms vanilla fine-tuning in full-data scenarios and exhibits
greater advantages in few-shot scenarios, with different performance patterns dependent on task
types. Additionally, we analyze underlying factors such as language similarity and pretraining
data size that impact the cross-lingual performance of prompt-based fine-tuning. Overall, our
work provides valuable insights into the cross-lingual prowess of prompt-based fine-tuning.

… …Encoder

…

…

…

…

…

…

[CLS] Works as stated ! [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] … [PAD]

…Input:

Classifier Class: 1

(a) Vanilla fine-tuning

[CLS] Works as stated ! It was [MASK] . [SEP] [PAD] … [PAD]

…Input:

…
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…

… ……Encoder
…

…

…
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…

Verbalizer: 
great
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…

Class: 1

(b) Language Diversity

Figure 4.1: The comparison of vanilla fine-tuning and prompt-based fine-tuning. [CLS], [SEP],
[MASK], and [PAD] are special tokens in the encoder vocabulary. The verbalizer is a function
mapping from the task label set to a subset of the encoder vocabulary. Input tokens in blue
represent the prompt pattern.

4.1.1 Background and Research Questions
Pretrained language models (PLMs) (Devlin et al., 2019; Yang et al., 2019b; Radford et al.,
2019), trained on massive amounts of unlabelled data in a self-supervised manner, have shown
strong performance after fine-tuning on task-specific labelled data for a given downstream task,
such as sentence classification (Zhuang et al., 2021), text summarization (Zhang et al., 2020a),
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or dialogue generation Liu et al. (2023c). Prompt-based learning (Brown et al., 2020; Schick
and Schütze, 2021a,b,c) has recently emerged as a notable advancement, surpassing regular fine-
tuning approaches in few-shot scenarios Liu et al. (2023a). In prompt-based learning, as intro-
duced in the previous chapter (Chapter 3), downstream tasks are reformulated to resemble the
types of problems tackled during the PLM’s original pretraining by using a textual prompt. For
example, in Figure 4.1, an input sentence of the binary sentiment analysis task “Works as
stated!” can be reformulated with a prompt pattern P (X) = X� “It was [MASK].” as
“Works as stated! It was [MASK].” where � is the string concatenation operator.
We use a verbalizer which maps the class label to a label word. In this example, the class labels
POSITIVE and NEGATIVE can be verbalized as “great” and “bad”. By comparing the proba-
bilities of the label words “great” and “bad” as fillers of the [MASK] token, we can predict
the correct class label. In the example above, a natural language understanding (NLU) task is
transformed into a masked language modeling (MLM) problem, which is the same as the PLM’s
pretraining objective.

In the work of the previous chapter (Chapter 3), we used prompt-based learning for model
inference and prediction, i.e., without training the model parameters. In fact, the reformulated
input can also be used for fine-tuning, i.e. prompt-based fine-tuning, which is the research focus
of this chapter. Figure 4.1 shows the difference between prompt-based fine-tuning and vanilla
fine-tuning. Vanilla fine-tuning solely relies on the hidden embedding of the [CLS] token. In
contrast, prompt-based fine-tuning makes use of both the semantic information from the task
labels and the prior knowledge encoded in the pretraining phase. Recent empirical studies of
few-shot learning showed advantages of prompt-based fine-tuning over vanilla fine-tuning (Gao
et al., 2021; Li and Liang, 2021).

When applied to multilingual pretrained language models (MPLMs), prompt-based fine-
tuning also enables zero-shot1 cross-lingual transfer. MPLMs such as mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020) are pretrained on huge multilingual corpora and show
strong multilinguality (Pires et al., 2019; Dufter and Schütze, 2020; Liang et al., 2021). They
have become the dominant paradigm for zero-shot cross-lingual transfer, where annotated train-
ing data is available for some source language (e.g. English) but not for the target language (Wu
and Dredze, 2019; Hu et al., 2020b). Zhao and Schütze (2021) proposed prompt-based fine-
tuning for cross-lingual transfer. Their work focused on few-shot fine-tuning. Their experi-
mental results for the natural language inference task showed that prompt-based fine-tuning per-
formed better in few-shot cross-lingual transfer than vanilla fine-tuning. However, prior studies
failed to examine whether prompt-based learning is also advantageous when training data is not
scarce. Therefore, we conduct a comprehensive investigation on diverse cross-lingual language
understanding tasks in both full-data and few-shot settings in order to shed more light on the
cross-lingual capabilities of prompt-based fine-tuning.

In contrast to most previous research on prompting, our work is not restricted to monolin-
gual or few-shot scenarios. Instead, we explore a wide range of few-shot settings. We adopt a

1In this section, “zero-shot” in “zero-shot cross-lingual transfer” refers to the number of target language train-
ing data, i.e., no target language data is provided, while “few-shot” in “few-shot fine-tuning” refers to the source
language used for fine-tuning, i.e., a few source language data is provided for the fine-tuning of the MPLM. The
fine-tuned model is then zero-shot transferred to the target language.
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multilingual perspective and aim to uncover the nuances of performance variations associated
with prompt-based fine-tuning. To this end, we implement the PROFIT pipeline and carry out
an extensive set of experiments encompassing three representative cross-lingual language un-
derstanding tasks: sentiment analysis (Amazon Reviews), paraphrase identification (PAWS-X),
and natural language inference (XNLI). Our task selection covers single-sentence classification,
sentence pair classification, and inference tasks, considering both binary and multi-fold clas-
sifications. Our work provides insights into the effectiveness and versatility of prompt-based
fine-tuning in cross-lingual language understanding.

Research Questions In this section, we analyze how the performance of prompt-based fine-
tuning varies with the size of the labelled source language data for zero-shot cross-lingual transfer
tasks. We examine a wide range of factors that could have an impact on cross-lingual transfer
performance. We attempt to address the following pivotal research questions:

RQ1 Does prompt-based fine-tuning outperform vanilla fine-tuning in the full-data sce-
nario in different NLU tasks?

We propose the PROFIT pipeline for systematically conducting the cross-lingual transfer
experiments. We carry out zero-shot cross-lingual transfer experiments on three different NLU
tasks using all the available English training data. By comparing the results of vanilla fine-tuning
and PROFIT for different MPLMs, we find that in the full-data scenario, PROFIT still achieves
better cross-lingual performance than vanilla fine-tuning.

RQ2 Is prompt-based fine-tuning always better than vanilla fine-tuning?
We investigate how the cross-lingual performance depends on the size of the English training

data. Our findings substantiate that the PROFIT exhibits greater advantages in few-shot scenarios
compared to full-data scenarios. The specific patterns of performance change are contingent
upon the task types.

RQ3 What underlying factors could affect the cross-lingual performance of PROFIT ?
We extensively analyze the factors that could influence the cross-lingual performance of

PROFIT , encompassing language similarity, pretraining data size of target languages, etc.

4.1.2 Methodology
The purpose of this study is to improve upon the cross-lingual transfer performance of vanilla
fine-tuning. In vanilla settings of zero-shot cross-lingual transfer, the MPLM is directly fine-
tuned with training data in a source language (English). The fine-tuned model is then applied to
predict the test data in target languages.

In prompt-based learning, we need a pattern-verbalizer pair (PVP) (Schick and Schütze,
2021a) consisting of (i) a prompt pattern which converts the input text into a cloze-style ques-
tion with a mask token, and (ii) a representative word (called verbalizer) for each possible
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This was a gift for my son. He loved it.

In summary, the product was [MASK] .

This was a gift for my son. He loved it.

1 great

0 terrible
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Figure 4.2: PROFIT pipeline of training and cross-lingual transfer with examples. X is an input
sentence, and P (X) denotes the prompt pattern that reformulates the input into a prompt. v(y) is
the verbalizer which maps each class label y onto a word from the source language vocabulary.

class. In our PROFIT approach, a PVP is combined with training data in English during fine-
tuning. As the training block in Figure 4.2 shows, a prompt pattern such as P (X) = X�
“In summary, the product was [MASK].” is filled with an input example X “This
was a gift for my son. He loved it.” A verbalizer such as {0! “terrible”, 1
! “great”} is used to map the original labels {0,1} onto words. The MPLM takes the filled
pattern “This was a gift for my son. He loved it. In summary, the
product was [MASK].”, as input and returns for each of the two verbalizers “terrible” and
“great” its probability of being the masked token. Thus, it uses the PVP to reformulate the
sentence classification task of vanilla fine-tuning into a masked token prediction task.

More formally, let D={(X1, y1), . . . , (Xn, yn)} denote the set of training examples in the
source language, where X1, ..., Xn are text samples and y1, ..., yn are class labels from a label set
Y . The prompt pattern P (.) transforms an input sentence X into a cloze-style question with a
masked token. The pretrained language model M with trainable parameters ✓ performs masked
token prediction and returns the probabilities p = M(P (X), ✓) of all candidate words for the
masked token in P (X). The verbalizer v(.) is a bijective mapping from the set of class labels
Y to a set of verbalised words V from the source language vocabulary. We predict the class ŷ
whose verbalizer v(ŷ) received the highest probability from model M :

ŷ = argmax
y2Y

p(v(y)) (4.1)

We fine-tune the parameters ✓ of model M by minimizing the cross-entropy loss function ` on
D:

✓̂ = argmin
✓

X

(X,y)2D

`(v(y),M(P (X), ✓)) (4.2)

The model with the fine-tuned parameters ✓̂ is used to predict the class labels of the target lan-
guage examples D0 = {X 0

1, . . . , X
0
n} using the same prompt pattern and verbalizer as during
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fine-tuning (see inference block in Figure 4.2). The best label y0i for each example X 0
i is pre-

dicted according to Eq. 4.1.
In contrast to vanilla fine-tuning, prompt-based methods such as PROFIT only transform the

training data with the prompt pattern P and the verbalizer v, but leave the model architecture
unchanged, thus not hindering the efficiency of Vanilla much (Shi and Lipani, 2023). No extra
parameters have to be trained from scratch. By reformulating the sentence classification task into
a masked token prediction (MTP) task, we can better take advantage of the knowledge that the
model has acquired during MTP pretraining.

In the cross-lingual setting, we simply apply the same functions P and v to the target language
examples without further modifications.

4.1.3 Experimental Setups
Datasets In order to investigate the performance on diverse NLU tasks, three representative
different classification tasks on NLU are selected for evaluation in this work: sentiment analysis
on Amazon product reviews (Keung et al., 2020), paraphrase identification on PAWS-X (Yang
et al., 2019a), and natural language inference on XNLI (Conneau et al., 2018).

Amazon Reviews Dataset (Keung et al., 2020) contains product reviews with 5-star ratings
from 1 to 5. The multilingual version of this dataset consists of test data in English and 5 other
languages. We use the following prompt pattern P (X) and verbalizer v(y) for each review
example (X, y):

• P (X) = X� “All in all, it was [MASK].”

• v(1) = “terrible”, v(2) = “bad”,
v(3) = “ok”, v(4) =“good”, v(5) = “great”

PAWS-X is a multilingual version of PAWS (Zhang et al., 2019a), which consists of chal-
lenging paraphrase identification pairs from Wikipedia and Quora. Each data item comprises
two sentences. The task is to predict whether the two sentences are paraphrases. The labels are
binary: 1 for paraphrase, 0 for non-paraphrase. PAWS-X consists of datasets in English and 6
other languages. For a given sentence pair X1 and X2, we design the pattern and verbalizer as:

• P (X1, X2) = X1�“? [MASK], ” �X2

• v(0) = “Wrong”, v(1) = “Right”

XNLI is a multilingual version of the MultiNLI dataset (Williams et al., 2018). The text
in each data item consists of two sentences. Sentence A is the premise, and sentence B is the
hypothesis. The task is to predict the type of inference between the given premise and hypothesis
among the three types: “entailment” (0), “neutral” (1), and “contradiction” (2). It is a kind of
multi-class natural language inference task. XNLI consists of datasets in English and 14 other
languages. For a given sentence pair X1 and X2, we design the pattern and verbalizer as:

• P (X1, X2) = X1� “? [MASK], ” �X2
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• v(0) = “Yes”, v(1) = “Maybe”, v(2) = “No”

In Table 4.1, we show a basic statistic view of the Amazon Review (Keung et al., 2020),
PAWS-X (Zhang et al., 2019a), and XNLI (Williams et al., 2018) datasets. We use the original
train-dev-test split from the datasets. For training and validation, we use the English train and
dev dataset, and for test we use the test sets of all languages. The test data size for each target
language is the same in all tasks.

Task
Size

#Labels
— Train — — Dev — — Test —

Amazon 200 000 5 000 5 000 5

PAWS-X 49 401 2 000 2 000 2

XNLI 392 702 2 490 5 010 3

Table 4.1: Overview of the three datasets. Train and dev data size refers to the number of samples
for English. Test data size refers to the number of samples for each target language.

Baseline The following baselines are considered and compared to our PROFIT approach:
MAJ. The majority baseline. It always assigns the majority class from the training data.
Direct. The pattern filled with the input sample is directly fed to the MPLM for prediction,

without fine-tuning. This is the zero-shot scenario.
Vanilla. The standard fine-tuning method which predicts the class from the hidden embed-

ding of the [CLS] token without using a prompt pattern. We use the cross-entropy loss as the
objective function for fine-tuning and AdamW for optimization with a learning rate of 1e-5 and
5 training epochs. The fine-tuned models are then used to predict the test data.

Multilingual Models To solve the classification tasks with cross-lingual transfer, we use the
pretrained multilingual BERT model (Devlin et al., 2019) “bert-base-multilingual-
cased” (M) and the XLM-R model (Conneau et al., 2020) “xlm-roberta-base” (X) from
the Huggingface Transformers library (Wolf et al., 2020). Both models are evaluated with
the methods Vanilla and PROFIT . During training, we used the same hyperparameters for
Vanilla and PROFIT to keep the variables consistent for comparison. The chosen hyperpa-
rameters for both full-shot training and few-shot training are documented in Table 4.2. To
avoid random effects on training, we trained each experiment with 5 different random seeds
{10, 42, 421, 510, 1218} and took the average results.

4.1.4 Results
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Hyperparameter Full Few-shot

EPOCHS 5 50
LEARNING RATE 1e-5 1e-5
BATCH SIZE 8 1
GRADIENT ACCUMULATION STEPS 4 2
MAX SEQ LENGTH 128 128
EARLY STOPPING PATIENCE - 3

Table 4.2: Hyperparameters

Amazon PAWS-X XNLI Avg.

MAJ 20 55.81 33.33 36.17

Direct-mBERT 20.21 45.05 35.05 33.44
Vanilla-mBERT 42.97 80.24 65.05 62.75
PROFIT -mBERT 43.98 82.16 65.79 63.98

Direct-XLM-R 21.98 51.10 35.68 36.25
Vanilla-XLM-R 54.56 82.51 73.61 70.22
PROFIT -XLM-R 54.66 82.73 73.82 70.40

Table 4.3: Overview of results

Main Results Table 4.3 gives an overview of the experimental results. PROFIT outperforms
the MAJ baseline with both mBERT and XLM-R for all three classification tasks. PROFIT also
outperforms the Direct and Vanilla baselines in both mBERT and XLM-R settings: When trained
with mBERT, the performance is improved by 23.77%, 37.11% and 30.74% compared to Direct
on Amazon, PAWS-X and XNLI respectively, and by 1.01%, 1.92% and 0.74% compared to
Vanilla. When trained with XLM-R, the performance is improved by 32.68%, 31.63% and
38.14% compared to Direct, and by 0.10%, 0.22% and 0.21% compared to Vanilla respectively.

While PROFIT outperforms all baselines on all three tasks, the degree of improvement dif-
fers. The improvements of PROFIT over Vanilla when trained with mBERT (+1.23%) are larger
than the improvements when trained with XLM-R (+0.18%).

We further conducted T-tests for the results of Vanilla and PROFIT with different random
seeds. Table 4.5 shows the T-test results with p values for each task with mBERT and XLM-R
models. We can see that the p values of all three tasks with the mBERT model are under 0.05,
indicating that the performance gain of PROFIT is significant with mBERT, while the p values of
all three tasks with the XLM-R model are bigger than 0.05, showing no significant performance
difference.

One reason for the performance difference of the two models could be that the XLM-R model
was pretrained on far more data than mBERT and is also much bigger, so that the Vanilla per-
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Task Model en ar bg de el es fr hi ja ko ru sw th tr ur vi zh avg.

Amazon

Vanilla-M 58.92 - - 45.69 - 48.02 47.45 - 35.07 - - - - - - - 38.63 42.97
PROFIT -M 59.05 - - 46.66 - 49.30 48.38 - 37.31 - - - - - - - 38.26 43.98

Vanilla-X 59.61 - - 60.14 - 55.24 55.66 - 51.93 - - - - - - - 49.82 54.56
PROFIT -X 60.06 - - 59.60 - 55.72 55.89 - 52.34 - - - - - - - 49.75 54.66

PAWS-X

Vanilla-M 93.85 - - 84.94 - 87.11 86.55 - 73.39 72.44 - - - - - - 77.01 80.24
PROFIT -M 94.21 - - 86.06 - 88.17 87.91 - 75.79 75.82 - - - - - - 79.22 82.16

Vanilla-X 94.33 - - 86.92 - 88.55 89.04 - 76.07 74.71 - - - - - - 79.75 82.51
PROFIT -X 94.90 - - 87.06 - 88.87 88.86 - 75.53 75.40 - - - - - - 80.63 82.73

XNLI

Vanilla-M 82.57 65.12 68.97 71.40 66.30 74.22 73.68 60.02 - - 68.95 50.24 53.15 62.02 57.96 69.80 68.91 65.05
PROFIT -M 82.57 65.55 69.47 71.57 67.43 75.10 74.57 60.57 - - 69.55 51.13 54.58 62.64 58.04 70.74 70.08 65.79

Vanilla-X 84.91 71.86 77.78 76.86 75.96 79.25 78.21 69.92 - - 75.79 65.21 72.02 73.12 66.07 74.71 73.72 73.61
PROFIT -X 84.97 71.81 77.92 77.35 76.11 79.31 78.75 70.10 - - 75.43 65.13 72.39 73.23 66.95 75.05 73.92 73.82

Table 4.4: Detailed cross-lingual performance results on three classification tasks. When cal-
culating the average (avg.), due to the aim of zero-shot cross-lingual transfer, the performance
results of the source language (English) are not taken into account. Model M stands for mBERT,
and X for XLM-R.

Model Amazon PAWS-X XNLI

mBERT 0.005 0.003 0.005
XLM-R 0.40⇤ 0.46⇤ 0.44⇤

Table 4.5: T-Test results (p) for results of Vanilla and PROFIT with different random seeds.
Insignificant results with a p value > 0.05 are marked with ⇤.

formance with XLM-R fine-tuning is much better than with mBERT in cross-lingual context
(Conneau et al., 2020; Lauscher et al., 2020), leaving less space for improvement.

A detailed overview of the cross-lingual performance of PROFIT compared to Vanilla for
each target language is presented in Table 4.4. Although the overall performance of PROFIT is
better than Vanilla for all three tasks in both mBERT and XLM-R settings, individual differences
between languages can be noticed. On Amazon, with mBERT, the improvement in Japanese (ja)
(+2.24%) is far greater than on average, whereas Chinese (zh) shows no improvement (-0.37%);
with XLM-R, PROFIT performs slightly worse than Vanilla on both Chinese with -0.07% and
German (de) with -0.54%. On PAWS-X, Korean (ko) shows a larger improvement (+3.38%)
than average with mBERT, and with XLM-R, whereas French (fr) (-0.18%) and Japanese (-
0.54%) show a slightly worse performance than Vanilla. On XNLI, we find improvements for
all languages with mBERT, and with XLM-R, Arabic (ar) (-0.06%), Russian (ru) (-0.36%), and
Swahili (sw) (-0.08%) show slightly worse performance than Vanilla.

We conclude that the performance gain of PROFIT over Vanilla depends on the models and
languages. In §4.1.5, we will further investigate how linguistic factors influence cross-lingual
transfer performance.
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Few-shot Ablations Previous studies show that the prompt framework is more effective than
fine-tuning when training data is scarce (Zhao and Schütze, 2021; Qi et al., 2022). We investi-
gated how the performance changes as the number of training samples K increases in few-shot
settings. The training and validation data are randomly sampled with K 2 {1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024} shots per class from the English training data.

Figure 4.3: Performance difference between PROFIT and Vanilla in different few-shot settings
and full training setting on three NLU tasks with both mBERT and XLM-R models.

The detailed results of few-shot ablations can be found in Table 13, Table 14, and Table 15
in Appendix D. Figure 4.3 shows the performance changes on all three tasks with both mBERT
and XLM-R models. On the Amazon task, the performance improvement for smaller numbers
of shots is greater than for full training. As the number of shots increases, the improvement
decreases accordingly. This implies that on the sentiment analysis task, PROFIT is most valuable
with small training data. On XNLI, the improvement of PROFIT over Vanilla is first small within
small shots. It then gets greater, as K increases, and drops again, as a bigger K towards the full
data size shows up. We conclude that on NLI tasks such as XNLI, PROFIT is most effective
in few-shot settings with a certain number of K. On PAWS-X, no obvious difference in few-
shot settings can be found with mBERT in small shots, but in bigger shots, there is greater
improvement with K 2 {256, 512, 1024}; however, with XLM-R, PROFIT shows almost no
performance improvement over Vanilla.

Overall, sentiment analysis exhibits a clearer performance improvement for smaller numbers
of shots, whereas the language inference and paraphrase tasks show greater performance en-
hancements in few-shot scenarios with larger K. This might be due to difficulties with pairwise
inputs in these tasks, where we aim to identify the relationship between a pair of sentences. When
it comes to transferring knowledge of sentence relationships, more examples are needed for suc-
cessful learning than in sentiment analysis tasks, where semantic information from comparable
cross-lingual sentences can be directly transferred.

4.1.5 Cross-Lingual Analysis
In previous empirical studies of cross-lingual transfer learning (Lauscher et al., 2020; Nie et al.,
2023a), several key factors were identified to exert a great effect on the cross-lingual perfor-
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lang
Typological & Phylogenetic Sim. Lexical Sim.

Size
Task Performance

SYN PHO INV FAM GEO Sim1 UMAP SVD Sim2 amazon-M amazon-X pawsx-M pawsx-X xnli-M xnli-X

ar 65.47 70.06 75.88 0.00 97.04 61.69 -1.90 4.87 1.49 20.20 - - - - 65.55 71.81

bg 78.78 90.45 70.02 13.61 99.01 70.38 8.65 33.21 20.93 18.15 - - - - 69.47 77.92

de 79.05 83.62 77.62 54.43 99.76 78.90 83.42 76.83 80.13 21.42 46.66 59.60 86.06 87.06 71.57 77.35

el 73.19 95.35 64.75 14.91 98.95 69.43 1.24 24.81 13.03 17.76 - - - - 67.43 76.11

es 84.97 85.81 64.99 9.62 99.59 69.00 1.61 28.30 14.96 20.83 49.30 55.72 88.17 88.87 75.10 79.31

fr 76.83 75.26 73.64 9.62 99.93 67.06 1.34 31.76 16.55 21.27 48.38 55.89 87.91 88.86 74.57 78.75

hi 58.79 85.81 76.53 12.60 91.10 64.97 1.20 21.11 11.16 17.26 - - - - 60.57 70.10

ja 49.63 64.44 65.92 0.00 85.65 53.13 - - - 20.39 37.31 52.34 75.79 75.53 - -

ko 55.66 74.62 71.04 0.00 86.93 57.65 -0.22 12.42 6.10 19.28 - - 75.82 75.40 - -

ru 75.74 90.45 63.17 16.67 95.81 68.37 8.63 32.60 20.62 20.87 - - - - 69.55 75.43

sw 42.26 90.91 76.16 0.00 91.50 60.17 -9.05 -7.18 -8.12 16.23 - - - - 51.13 65.13

th 65.20 81.82 78.88 0.00 85.25 62.23 -0.21 3.82 1.81 17.25 - - - - 54.58 72.39

tr 43.36 85.81 68.49 0.00 98.25 59.18 -7.80 -1.56 -4.68 19.00 - - - - 62.64 73.23

ur 50.01 0.00 71.56 12.60 92.54 45.34 1.35 24.92 13.14 17.54 - - - - 58.04 66.95

vi 64.92 78.33 74.76 0.00 85.25 60.65 0.86 -18.50 -8.82 20.29 - - - - 70.74 75.05

zh 73.49 78.33 74.91 0.00 88.42 63.03 - - - 20.37 38.26 49.75 79.22 80.63 70.08 73.92

Table 4.6: Overview of language features and task performances with PROFIT for correlation
analysis. Language features include typological & phylogenetic similarities (Sim1), lexical sim-
ilarities (Sim2), and target language size (Size). Task performance contains the PROFIT results
on the three datasets with both mBERT and XLM-R models.

mance, including (1) the size of the pretraining corpus for the target language and (2) the sim-
ilarity between the source and target languages. We analyze how these two factors influence
PROFIT ’s effectiveness for the languages on three tasks.

The pretraining corpus size of the target languages can be simply measured by the log2 of the
number of articles in Wikipedia2.

For measuring the similarity between languages, we employ methods from recent studies of
language representations. In these studies, languages are encoded as vectors according to their
various linguistic and typological features. With these language vectors, a range of distance
metrics, such as Euclidean distance and cosine similarity, can be used to measure the similarity
between languages. Littell et al. (2017) proposed LANG2VEC, which encodes languages us-
ing 5 vectors, with each vector representing a specific language feature. Östling and Kurfalı
(2023) measured the lexical similarity by calculating language vectors based on the ASJP word
list database (Wichmann et al., 2022). Liu et al. (2023d) recently proposed a novel language
similarity metric from the perspective of conceptualization across multiple languages.

In our work, we compute two similarity metrics: (i) a comprehensive linguistic similarity
metric based on LANG2VEC (Littell et al., 2017) and (ii) a lexical similarity metric based on the
ASJP word list database (Östling and Kurfalı, 2023).

The LANG2VEC approach provides information-rich vector representations of languages from
different linguistic and ethnological perspectives. We adopt five linguistic categories: syntax

2https://meta.wikimedia.org/wiki/List_of_Wikipedias

https://meta.wikimedia.org/wiki/List_of_Wikipedias
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(SYN), phonology (PHO), phonological inventory (INV), language family (FAM), and geogra-
phy (GEO). SYN, PHO, and INV are typological categories, and FAM and GEO are phyloge-
netic categories. Given these vectors, we calculate 5 different cosine similarity metrics between
English and each target language.

The lexical similarity metric is based on a mean-normalized pairwise Levenshtein distance
matrix from ASJP. The language vectors used for calculating the lexical similarity are reduced in
dimensionality. Two dimensionality reduction methods are employed for calculating the lexical
similarity: Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) and
Singular Value Decomposition (SVD) (Stewart, 1993).

The final typological and phylogenetic similarity score Sim1 for each language pair is calcu-
lated by averaging the 5 similarities of LANG2VEC. Similarly, the lexical similarity score Sim2

is calculated by averaging the similarities of the UMAP and SVD vectors. More formally, as
Eq. 4.3 shows, let f denote a feature from the feature set Fn for metric n, and let vf denote the
corresponding feature vector. As introduced in §3.2.5.2, the sim1 and sim2 scores for the source
language English (e) and some target language j are then calculated by:

simn(e, j) =
1

|Fn|
X

f2Fn

vf (e) · vf (j)
kvf (e)k2 kvf (j)k2

(4.3)

Table 4.6 shows a list of language features (typological & phylogenetic similarities, lexical
similarities, and target language size) and task performances with PROFIT for the following cor-
relation analysis. The language similarities, namely the typological & phylogenetic similarities
(Sim1) and lexical similarities (Sim2), refer to the similarity between each language and English,
based on the above introduced language vectors. Sim1 and Sim2 are calculated by Eq. 4.3. ja and
zh are not included in Östling and Kurfalı (2023)’s original language sets, thus these two values
are missing for the lexical similarities. The target language size (Size) is calculated by the log2
of the number of articles in Wikipedia.

Based on the obtained language features and experimental results of task performance with
PROFIT , we did a correlation analysis. Table 4.7 shows the results of the two correlation tests
on each task.

According to the results of Pearson and Spearman tests and the p values, the two factors,
namely, both the size of pretraining data for the target language and the similarity of typolog-
ical and phylogenetic features of languages (sim1) have a significant positive correlation with
the improvement of cross-lingual performance especially on XNLI, with both PROFIT -M and
PROFIT -X models. Only the correlations calculated with the similarity of lexical features (sim2)
show some insignificant results. Furthermore, on XNLI, the correlation with language simi-
larity is stronger with PROFIT -X, while the correlation with target data size is stronger with
PROFIT -M. We argue that the XLM-R model is bigger than mBERT, so that the linguistic fea-
tures have more effect on the performance, while for the smaller model mBERT, the data size
plays a greater role, which further supports our findings in §4.1.4 that the applied pretrained
model for fine-tuning has an impact on the PROFIT performance.

On PAWS-X and Amazon, we find weak correlations with the proposed factors, which could
result from the limitation of languages in test data: XNLI comprises 15 different languages,
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Task Model Stat.
sim1 sim2 Size

corr. p corr. p corr. p

Amazon

PROFIT -M
P 0.73 0.16⇤ -0.95 0.21⇤ 0.81 0.09⇤

S 0.70 0.19⇤ -1.00 0.00 0.50 0.39⇤

PROFIT -X
P 0.80 0.10⇤ 1.00 0.01 0.92 0.03

S 0.80 0.10⇤ 1.00 0.00 1.00 1e-24

PAWS-X

PROFIT -M
P 0.82 0.05 0.31 0.69⇤ 0.82 0.04

S 0.83 0.04 0.20 0.80⇤ 0.60 0.21⇤

PROFIT -X
P 0.83 0.04 0.34 0.66⇤ 0.84 0.04

S 0.77 0.07⇤ 0.20 0.80⇤ 0.71 0.11⇤

XNLI

PROFIT -M
P 0.57 0.03 0.43 0.14⇤ 0.86 9e-05

S 0.59 0.03 0.53 0.06⇤ 0.90 1e-05

PROFIT -X
P 0.72 4e-03 0.43 0.14⇤ 0.70 5e-03

S 0.77 1e-03 0.63 0.02 0.72 4e-03

Table 4.7: Correlations between task performance and language similarities (sim1 & sim2) and
target language size. P stands for Pearson’s test and S for Spearman’s test. Insignificant results
with a p value > 0.05 are marked with ⇤.

whereas PAWS-X and Amazon only contain 7 and 6 languages in the test set, respectively. Thus,
weaker correlations have been found. To sum up, language similarity and size are two factors
that impact the cross-lingual performance in our study, and we find significant correlations when
the test set contains a larger number of languages.

4.1.6 Sum-Up

In our work, we introduce PROFIT for zero-shot cross-lingual transfer, a pipeline which refor-
mulates input examples into cloze-style prompts and applies the input examples with the prompts
and their verbalizers as masked tokens to fine-tuning, changing the sentence classification task of
vanilla fine-tuning into a masked token prediction task. We fine-tune the multilingual pretrained
language model (MPLM) on source language prompts and apply it to target language data. We
use PROFIT with the two MPLMs mBERT and XML-R, and evaluate its efficacy on three dif-
ferent types of multilingual classification tasks in natural language understanding – multi-class
sentiment classification, binary paraphrase identification, and multi-class natural language infer-
ence. Our experiments show that PROFIT outperforms vanilla fine-tuning with both mBERT
and XML-R on all three tasks. We further discovered that the performance improvement of
PROFIT is generally more obvious in few-shot scenarios. Additionally, we demonstrate that the
similarity of the source and target language and the size of the target language pretraining data
significantly correlate with the cross-lingual transfer performance of PROFIT , especially on a
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big dataset with a variety of test languages.
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4.2 Token-Level Prompt Decomposition Fine-Tuning for Cross-
Lingual Sequence Labeling Tasks

This section corresponds to the following work:

Bolei Ma*, Ercong Nie*, Shuzhou Yuan, Helmut Schmid, Michael Färber, Frauke
Kreuter, and Hinrich Schuetze. 2024. ToPro: Token-Level Prompt Decomposition
for Cross-Lingual Sequence Labeling Tasks. In Proceedings of the 18th Conference
of the European Chapter of the Association for Computational Linguistics (EACL
2024. Volume 1: Long Papers), pages 2685–2702, St. Julian’s, Malta. Association
for Computational Linguistics.
* equal contributions.

Declaration of Co-Authorship. I conceived the idea of applying prompt-based fine-tuning
methods to cross-lingual sequence labeling tasks, and proposed the ToPro methodology of de-
composing a prompt into a set of token-level single prompts. Bolei Ma implemented ToPro and
validated it with experiments on UDPOS and WikiANN datasets using two encoder models. I ran
the baseline experiments of prompt-tuning. Shuzhou Yuan implemented ToPro with the encoder-
decoder mT5 model. Bolei Ma and I drafted the paper together. The other authors on the list are
supervisors, who supervise the project process and provide valuable feedback.
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Summary of This Section
Prompt-based methods have been successfully applied to multilingual pretrained language mod-
els for zero-shot cross-lingual understanding (§4.1). However, most previous studies primarily
focused on sentence-level classification tasks, and only a few considered token-level labeling
tasks such as Named Entity Recognition (NER) and Part-of-Speech (POS) tagging. In this sec-
tion, we introduce Token-Level Prompt Decomposition (TOPRO ), which facilitates the prompt-
based method for token-level sequence labeling tasks. The TOPRO method decomposes an input
sentence into single tokens and applies one prompt template to each token. Our experiments
on multilingual NER and POS tagging datasets demonstrate that TOPRO -based fine-tuning out-
performs Vanilla fine-tuning and Prompt-Tuning in zero-shot cross-lingual transfer, especially
for languages that are typologically different from the source language, English. Our method
also attains state-of-the-art performance when employed with the mT5 model. Besides, our ex-
ploratory study in multilingual large language models shows that TOPRO performs much better
than the current in-context learning method. Overall, the performance improvements show that
TOPRO could potentially serve as a novel and simple benchmarking method for sequence label-
ing tasks.

Please give the pos tags of the 
sentence: “Works as stated!”.

The pos tags of the sentence: 
“Works as stated!” are: ???

The pos tag of “Works” is “VERB”.
The pos tag of “as” is “CCONJ”.
The pos tag of “stated” is “VERB”.
The pos tag of “!” is “PUNCT”.

ToPro

ToPro
“Works”,  “as”,  “stated”,  “!”

Figure 4.4: TOPRO as a token-level prompting method for sequence labeling tasks. It decom-
poses the input sentence into single tokens and applies the prompt template to each token, in-
spired by human step-by-step logical thinking when solving this kind of task.

4.2.1 Motivation and Introduction
As multilingual pretrained language models (MPLMs) continue to evolve (Devlin et al., 2019;
Conneau et al., 2020; Liu et al., 2020; Xue et al., 2021; Shliazhko et al., 2022), zero-shot
cross-lingual transfer methods are gaining increasing popularity within the multilingual NLP do-
main (Lauscher et al., 2020; Nie et al., 2023a). In light of the limited availability of training data
in many low-resource languages, prior research (Artetxe et al., 2020; Hu et al., 2020b) employed
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zero-shot cross-lingual transfer learning by fine-tuning an MPLM on a high-resource language
such as English, and then directly applying the fine-tuned system to low-resource languages.

Prompt-based learning (Schick and Schütze, 2021a,b,c) is steadily garnering traction in re-
cent NLP research. Prompt-based methods reformulate downstream tasks as language modeling
tasks by using prompts comprising a template and a set of label words. The prompt can be either
discrete in a textual format or continuous, performing prompting directly in the embedding space
of the model (Liu et al., 2023a). Much recent work highlights that applying prompt-based fine-
tuning to MPLMs enables better zero-shot cross-lingual transfer performance (Zhao and Schütze,
2021; Huang et al., 2022; Nie et al., 2023b; Zhou et al., 2023). However, they focus on sentence-
level classification tasks such as sentiment analysis (Keung et al., 2020), XNLI (Conneau et al.,
2018), and paraphrase detection (Zhang et al., 2019a). Token-level sequence labeling tasks like
Named Entity Recognition (NER) and Part-of-Speech (POS) Tagging rarely benefit from the
advantages of prompt-based fine-tuning, primarily due to the intricate challenge of devising an
appropriate prompt template.

To enhance the applicability of prompt-based learning to token-level sequence labeling tasks,
we introduce the Token-Level Prompt Decomposition (TOPRO ) method. TOPRO splits the
input sentence into tokens and creates a separate prompt for each token, which asks for its la-
bel, following the human step-by-step logical thinking when solving these tasks, as shown in
Figure 4.4. The evaluation on NER and POS tagging tasks shows that the TOPRO -based fine-
tuning achieves stronger zero-shot cross-lingual transfer performance than Vanilla fine-tuning
and Prompt-Tuning, especially for languages that are typologically different from the source
language (English).

To sum up, our contributions are as follows:

1. We propose a novel and simple method, called TOPRO , which improves zero-shot cross-
lingual transfer in token-level sequence labeling tasks by taking advantage of prompt-based
learning.

2. We substantiate the strength of TOPRO in zero-shot cross-lingual fine-tuning through eval-
uations on NER and POS tagging tasks. Our method not only outperforms baselines for
over 40 languages but also demonstrates efficacy in zero-shot English ICL, making it a
promising benchmarking method for MLLMs in token-level tasks.

3. We conduct a thorough cross-lingual analysis, revealing that TOPRO exhibits particularly
strong performance for languages that are typologically different from the source language,
English.

4.2.2 TOPRO for Fine-Tuning
Problem Formulation In prompt-based learning, there is a pattern-verbalizer pair (PVP)
(Schick and Schütze, 2021a) consisting of (i) a prompt pattern which converts the input text into
a cloze-style question with a mask token, and (ii) a verbalizer which maps the labels onto repre-
sentative words from the LM’s vocabulary. This aligns well with the nature of text classification
tasks, where one label is predicted based on the input text. As Figure 4.5 shows, the input text
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X of a sentiment analysis task can be reformulated with a prompt pattern P (·) into a prompted
input representation P (X) = “ Works as stated! In summary, the product was [MASK]. ” The

Works as stated !

In summary, the product was [MASK] .

Works as stated !

P(X) =

X =

Figure 4.5: A prompt example for text classification.

prompt P (X) is processed by the LM to determine the most likely verbalizer word in the masked
position. The label corresponding to this verbalizer is the prediction, which is evaluated against
the gold standard.

However, in sequence labeling tasks, each token of the input should receive a label. Thus,
it is not possible to apply this type of prompt pattern with one mask token directly for token
classification.

Token-Level Prompt Decomposition (TOPRO ) When given such a token-level sequence
labeling task, a human usually solves the task token by token. Inspired by this human process as
well as the prompt design for sentence classification tasks, we propose a new prompting method
TOPRO for token classification which decomposes an input sentence into tokens and generates a
series of prompts – one prompt for each token. Let X = x1, x2, ..., xm denote an input sentence
consisting of m tokens. Our prompt generator function P (T,X) generates m prompts by filling
the template T (·, ·) with the sentence X and each of the tokens x1, x2, ..., xm, respectively.

P (T,X) = {T (X, x1), ..., T (X, xm)} (4.4)

Figure 4.6 shows the prompts generated by P (T,X) for the input X = “Works as stated !”
and the template T (X, xi) = “ X The POS tag of xi is a kind of [MASK] .”

Prompt-Based Fine-Tuning and Cross-Lingual Transfer Following the previous section
§4.1, we conduct prompt-based fine-tuning to evaluate our TOPRO approach in a zero-shot
cross-lingual context. Let D = {(X1, Y1), . . . , (Xn, Yn)} denote the set of training examples
in the source language, where X1, . . . , Xn are token sequences and Y1, . . . , Yn are tag sequences.
Given (X, Y ) 2 D, the TOPRO function P (T,X) reformulates the input sentence X into a set
of cloze-style questions {T (X, x1), ..., T (X, xm)} with masked tokens. The pretrained language
model M with trainable parameters ✓ performs masked token prediction and returns the probabil-
ities p(·) = M(T (X, xi), ✓) of all candidate words for the masked token in the prompt T (X, xi).
The verbalizer function V (·) is a bijective mapping from the set of class labels L to a set of
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Works as stated !

The pos tag of                    is a kind of [MASK] .

P(T, X) =

X =

Works
T(X, x1) =

Works as stated !

Works as stated !

The pos tag of                    is a kind of [MASK] .as
T(X, x2) =

Works as stated !

The pos tag of                    is a kind of [MASK] .stated
T(X, x3) =

Works as stated !

The pos tag of                    is a kind of [MASK] .!
T(X, x4) =

Figure 4.6: An example of TOPRO framework for sequence labeling.

verbalizers from the source language vocabulary. For each token, we predict the tag ŷ whose
verbalizer V (ŷ) receives the highest probability from model M :

ŷ = argmax
y2L

p(V (y)) (4.5)

We fine-tune the parameters ✓ of model M by minimizing the cross-entropy loss function `(D, ✓):

`(D, ✓) = �
X

(X,Y )2D

|Y |X

i=1

logM(T (X, xi), ✓)(V (yi)) (4.6)

The fine-tuned model is used to predict the labels of the target language examples {X 0
1, ..., X

0
n}

using the same prompt pattern T (·, ·) and verbalizer V (·) as during fine-tuning . The best tags
Y 0
j for each example X 0

j are predicted according to Eq. 4.5.

4.2.3 Experimental Setups
4.2.3.1 Datasets and Prompt Designs

We chose the following two representative datasets for sequence labeling tasks:

PAN-X, also called WikiANN, is a multilingual NER dataset based on Wikipedia articles, in-
cluding 282 languages (Pan et al., 2017). In our work, we use the subset of 48 languages that is
part of the XTREME benchmark (Hu et al., 2020b) to facilitate comparisons with related work.
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For each token xi of an input sequence X , we use the following prompt template T (X, xi):

T (X,xi) = X � “ The named entity of ” � xi � “ is a kind of: [MASK].”

The PAN-X dataset is annotated with location (LOC), person (PER), and organization (ORG)
in IOB2 format. These labels are difficult to understand for the language model. Therefore, we
replace them with real words and train the model to predict those instead. However, the model
can only predict single words from its vocabulary as fillers for the [MASK] position. So, we
choose the replacement words from the model’s vocabulary.

As IOB2 annotates the beginning of a name and its remaining tokens with different tags,
we use a word and its hyponym to represent the beginning of a name and its remaining tokens,
respectively. For instance, we use the hypernym “location” for the beginning of the LOC and the
hyponym “place” for the other words which should be semantically inside of the term “location”.
The verbalizer function V (·) for tag set Y is defined as follows:

V(B-LOC) = location V(I-LOC) = place
V(B-ORG) = organization V(I-ORG) = body
V(B-PER) = person V(I-PER) = name
V(O) = other

UDPOS was extracted from the Universal Dependency treebanks (Zeman et al., 2019). It con-
tains 38 languages and is part of the XTREME benchmark (Hu et al., 2020b).

Similarly to the PAN-X dataset, we use the following prompt template T (X, xi) for token xi

of an input sequence X by paraphrasing the tags with semantically related words:

T (X,xi) = X � “ The pos tag of ” � xi � “ is a kind of: [MASK].”

We define the verbalizer V (·) for the 14 tags as follows:

V(ADJ) = modification V(ADP) = position
V(ADV) = verbal V(AUX) = auxiliar
V(CCONJ) = link V(DET) = determine
V(INTJ) = mode V(NOUN) = thing
V(NUM) = number V(PART) = functional
V(PRON) = reference V(PROPN) = name
V(PUNCT) = punct V(SCONJ) = condition
V(SYM) = symbol V(VERB) = verb
V(X) = other

The tags of the two datasets and their detailed meanings are documented in Table 4.8 and
Table 4.9. We cannot select words like “adjective” and “adverb” which would better represent
the meanings of the tags, because the verbalizers have to come from the vocabulary of the PLM
so that the masked language model is able to predict them as a single unit. Instead, we use
semantically related words from the vocabulary as verbalizers.
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Tags Meaning

B-LOC location (beginning)
B-ORG organization (beginning)
B-PER person (beginning)
I-LOC location (inside)
I-ORG organization (inside)
I-PER person (inside)
O other

Table 4.8: IOB2 tags

Tags Meaning

ADJ adjective
ADP adposition
ADV adverb
AUX auxiliary
CCONJ coordinating conjunction
DET determiner
INTJ interjection
NOUN noun
NUM numeral
PART particle
PRON pronoun
PROPN proper noun
PUNCT punctuation
SCONJ subordinating conjunction
SYM symbol
VERB verb
X other

Table 4.9: Universal POS tags

4.2.3.2 Baselines

We compare our approach with the following baselines:

Vanilla Fine-Tuning (Vanilla) The vanilla fine-tuning method predicts the token labels through
the hidden embeddings of each token in the output layer without using a prompt pattern. We use
the cross-entropy loss as the objective function for fine-tuning and AdamW for optimization with
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a learning rate of 1e-5. The fine-tuned models are used to predict the test data.

Prompt-Tuning (PT) Prompt-Tuning only trains a small number of parameters, e.g., a con-
tinuous prompt or a task classifier Lester et al. (2021); Liu et al. (2022c). We implement the
prompt-tuning method of Tu et al. (2022) for zero-shot cross-lingual transfer by tuning the prefix
prompts and layer prompts for the two sequence labeling tasks.

4.2.3.3 Multilingual Models

The following MPLMs from the HuggingFace Transformers library (Wolf et al., 2020) are ap-
plied in our main experiments:

Encoder-Only Models For encoder-only models, we use the multilingual BERT model (De-
vlin et al., 2019) bert-base-multilingual-cased (B) and the XLM-R model (Conneau
et al., 2020) xlm-roberta-base (X).

Encoder-Decoder Model We use multilingual T5 model (Xue et al., 2021) mt5-base (T)
as the encoder-decoder model representative. We include mT5 in our experiments, as we wish
to explore the potential of TOPRO with different types of models. To align with the text-to-text
transformer format, we have redefined the output structure for both NER and POS tasks, drawing
inspiration from the prior work of mT5 Xue et al. (2021). For the input text, we introduce
task descriptions as prompts, specifically “NER tagging:” for the PAN-X dataset and “POS
tagging:” for the UDPOS dataset. Regarding the target text, we append tags to each token and
insert delimiters between tokens to create a coherent sequence of text. The following example
illustrates our preprocessing procedure using a sample from the UDPOS dataset for Vanilla fine-
tuning:

• Input text: POS tagging: On the other hand, it looks pretty cool .

• Target text: ADP: On $$ DET: the $$ ADJ: other $$ NOUN: hand $$ PUNT: , $$ PRON: it $$
VERB: looks $$ ADV: pretty $$ ADJ: cool $$ PUNT: .

As for the TOPRO method, we use the same prompt pattern as for encoder-only models:

• Input text: On the other hand, it looks pretty cool . The pos tag of On is:

• Target text: ADP

4.2.4 Results and Analysis
Main Results Table 4.10 gives an overview of the average results3 on PAN-X and UDPOS. We
find that TOPRO Fine-Tuning outperforms Vanilla Fine-Tuning and Prompt-Tuning obviously on

3Since we are interested in the zero-shot cross-lingual transfer performance, we do not include the English results
in the average performance. Our evaluation metric is the weighted average F1-score.
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both tasks in mBERT and XLM-R settings: On PAN-X, the performance is improved by 19.18%
and 25.16% compared to Vanilla and Prompt-Tuning respectively, when trained with mBERT,
and by 18.73% and 26.98% with XLM-R. On UDPOS, the performance is improved by 5.27%
and 6.24% compared to Vanilla and Prompt-Tuning, respectively, when trained with mBERT,
and by 3.74% and 4.3% with XLM-R.

In the mT5 setting, the TOPRO Fine-Tuning outperforms Vanilla Fine-Tuning on both tasks as
well, namely by 28.63% on PAN-X, and by 14.72% on UDPOS. We notice that the mT5 model
performs even better than the two encoder-only models and achieves SOTA performance4, show-
ing the potential of TOPRO with different model types. We find that Prompt-Tuning does not
work well with mT5, as it requires more training epochs for the model to achieve subtle perfor-
mance improvements, necessitating even longer training time compared to the Vanilla baselines.
One possible reason for this could be the limited number of trainable parameters in mT5 with
Prompt-Tuning, as only 0.002% of the parameters are updated with our current prompt settings.
We exclude the results of Prompt-Tuning for mT5 because the increased training resources do
not align with the efficiency-focused goals of Prompt-Tuning as a training methodology.

When comparing performances on the two tasks generally, we notice that the performance
shows greater improvement on PAN-X with all three models, indicating that the NER task PAN-
X has a greater improvement potential.

Model Method PAN-X UDPOS

mBERT
Vanilla Fine-Tuning 62.73 70.89
Prompt-Tuning 56.76 69.91
TOPRO Fine-Tuning 81.91 76.16

XLM-R
Vanilla Fine-Tuning 61.30 72.42
Prompt-Tuning 53.05 71.86
TOPRO Fine-Tuning 80.03 76.16

mT5
Vanilla Fine-Tuning 64.19 71.38
Prompt-Tuning -* -*
TOPRO Fine-Tuning 92.82 86.11

Table 4.10: Overview of average results on PAN-X and UDPOS. ⇤: The results of PT with mT5
are excluded from the comparison as the F1 scores are 0 for the current parameter settings.

4.2.5 Cross-Lingual Transfer Analysis
The detailed results of the cross-lingual transfer performance of TOPRO compared to the base-
lines for each target language are documented in Appendix E. Table 4.11 and Table 4.12 show

4Based on the evaluation results available at https://sites.research.google/xtreme/dataset,
as of Jan. 23, 2024, the SOTA performance in structured prediction, calculated as the mean value of PANX-X and
UDPOS, is 84.6. Our mT5 model, when used with TOPRO , achieves an impressive score of 89.47.

https://sites.research.google/xtreme/dataset
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langs B (Vanilla) B (PT) X (Vanilla) X (PT) T (Vanilla)

en 8.96 13.71 10.90 16.27 19.38
af 12.81 19.50 15.00 20.10 19.82
ar 18.52 23.10 20.57 24.09 39.14
az 17.73 21.83 22.65 25.46 32.78
bg 11.29 16.33 11.17 16.05 23.13
bn 8.24 19.52 3.10 18.65 30.42
de 13.30 18.26 17.15 23.13 21.01
el 18.03 26.54 16.28 27.09 19.34
es 10.99 16.88 13.13 18.42 26.08
et 12.11 16.23 17.53 22.83 21.55
eu 19.91 24.36 26.52 36.62 27.50
fa 27.10 34.67 14.09 24.17 47.48
fi 12.51 17.24 15.29 20.42 20.78
fr 6.75 12.13 10.39 17.06 20.87
gu 33.33 55.16 30.99 40.57 31.99
he 27.47 31.26 30.94 38.85 24.09
hi 12.70 18.50 11.18 18.71 30.79
hu 14.76 20.04 14.96 21.21 22.97
id 16.79 19.60 21.31 24.03 26.95
it 10.15 13.13 11.78 17.81 19.03
ja 41.04 45.53 47.61 49.89 43.52
jv 18.70 23.05 16.43 32.80 22.80
ka 19.31 25.80 20.48 30.28 25.85
kk 33.74 34.89 42.36 42.48 28.63
ko 22.33 25.43 31.42 37.05 33.16
lt 13.58 18.13 14.24 21.01 23.48

ml 26.57 32.21 25.70 34.47 32.55
mr 25.15 31.75 21.01 33.32 31.70
ms 14.50 18.38 8.25 28.53 17.64
my 29.29 39.47 31.69 40.16 48.96
nl 10.12 14.57 12.32 17.12 19.50
pa 25.38 28.31 19.42 35.89 32.47
pl 10.12 13.49 13.02 17.62 21.03
pt 7.48 13.25 9.15 15.87 23.98
qu 12.97 31.44 17.08 32.22 25.16
ro 7.91 22.31 13.15 24.11 25.06
ru 19.37 26.56 18.10 25.80 27.92
sw 9.25 18.76 7.81 19.75 25.30
ta 24.48 28.73 26.68 33.46 29.84
te 32.97 36.06 36.53 43.85 28.14
th 67.60 67.84 16.48 15.89 50.10
tl 11.40 11.00 8.52 16.21 27.06
tr 12.63 20.13 13.77 24.87 26.93
uk 14.63 20.74 12.30 24.53 23.51
ur 29.96 36.69 1.63 22.93 51.31
vi 16.35 18.87 14.26 20.49 31.65
yo 15.41 27.00 16.13 30.82 23.30
zh 24.88 27.66 40.81 41.58 39.50

avg. 19.18 25.16 18.73 26.98 28.63

Table 4.11: Performance difference (�) of TOPRO to Vanilla or Prompt Tuning (PT) with
mBERT (B), XLM-R (X), and mT5 (T) on PAN-X.

the performance improvements of TOPRO compared to the baselines for each language. Overall,
TOPRO -based Fine-Tuning outperforms Vanilla Fine-Tuning and Prompt-Tuning on average.
However, we can notice individual performance differences between the languages.

On both tasks, we find that the performance gain of TOPRO for English (en) is among the
lowest across all languages. Since English is the language on which the models have been fine-
tuned, we conclude that TOPRO is particularly effective in cross-lingual zero-shot scenarios.
The reason could be that the models are only fine-tuned on the English dataset. Therefore,
TOPRO ’s potential performance improvement is smaller for English than for other languages.
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langs B (Vanilla) B (PT) X (Vanilla) X (PT) T (Vanilla)

en 0.54 0.87 0.41 0.87 7.90
af 3.27 3.31 2.00 1.96 7.16
ar 16.51 14.43 4.65 4.37 15.23
bg 2.80 2.63 0.56 0.69 14.34
de 3.11 3.44 1.58 1.85 12.48
el 3.80 4.86 -0.49 -0.64 13.06
es -0.86 0.89 -1.23 -0.89 5.73
et 3.86 7.90 0.94 1.94 11.58
eu 10.11 8.87 1.88 5.24 14.14
fa 2.23 1.42 0.82 1.47 15.12
fi 2.63 5.21 0.48 1.21 11.68
fr -0.16 4.76 -5.36 -5.00 8.41
he 24.40 24.55 14.12 14.38 23.68
hi 9.61 8.62 3.63 3.80 18.68
hu 0.56 1.08 -2.07 -1.82 13.90
id 4.63 4.83 4.10 4.43 13.81
it -2.01 -0.33 -1.25 -2.35 8.28
ja 5.06 5.34 29.16 32.61 27.31
kk 4.45 4.79 0.46 1.67 15.61
ko 13.85 13.04 11.39 10.85 25.57
lt 3.75 6.61 2.49 4.05 12.81

mr 5.39 8.51 -2.52 -1.13 17.19
nl 0.50 1.01 0.29 0.60 9.15
pl 3.20 3.82 1.84 1.50 13.76
pt -1.07 -0.66 -0.79 -0.75 7.96
ro 3.15 4.01 1.46 1.89 14.07
ru 4.20 3.44 1.54 2.19 11.36
ta 13.43 12.89 10.85 10.88 20.38
te -0.93 1.45 -0.59 1.68 12.00
th 15.83 19.92 25.28 29.21 15.61
tl -0.59 4.12 -4.68 -6.53 19.38
tr 1.82 5.11 -0.37 1.11 16.88
uk 5.91 5.62 1.95 2.32 13.51
ur 12.04 11.07 7.94 6.14 20.46
vi 2.79 4.08 1.30 2.44 20.61
wo 2.45 4.19 -10.70 -9.42 -0.88
yo 5.74 7.79 -6.59 -5.54 5.97
zh 9.56 8.29 44.30 42.58 38.53

avg. 5.27 6.24 3.74 4.30 14.72

Table 4.12: Performance difference (�) of TOPRO to Vanilla or PT with mBERT (B), XLM-R
(X), and mT5 (T) on UDPOS.

Another explanation could be that the accuracy on English is the highest, therefore, the potential
for improvement is lower: Raising an accuracy of 90% by 10% is much harder than raising an
accuracy of 50% by 10%.

On PAN-X , TOPRO outperforms Vanilla and Prompt-Tuning across all target languages,
with some language-independent variations. The improvements in languages such as Persian
(fa), Gujarati (gu), Hebrew (he), Japanese (ja), Kazakh (kk), Burmese (my), Telugu (te), Thai
(th), Urdu (ur), and Chinese (zh) are above the average. All these languages are from different
language groups than English and have different writing systems. We can conclude that the
performance improvement of TOPRO is particularly high for languages that differ a lot from
English, further indicating the cross-lingual ability of our prompt-based method.

On UDPOS , TOPRO outperforms Vanilla and PT in most of the languages, although there
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are some languages for which TOPRO performs slightly worse and the overall performance gain
is not as high as on PAN-X. Typically, the improvements for languages such as Arabic (ar),
Basque (eu), Hebrew (he), Korean (ko), Tamil (ta), Thai (th), Urdu (ur), and Chinese (zh) are
above average. The improvements over Vanilla in Chinese reach 44.3% and 38.53% for XLM-R
and mT5, respectively, and the improvement over PT in Chinese is 42.58%.

Overall, the results show that TOPRO outperforms Vanilla and PT on both sequence label-
ing tasks, indicating that the TOPRO method has a better ability to transfer knowledge cross-
lingually. And the NER performance is even better than the performance for POS tagging.
When analyzing the performances for individual languages, we find that TOPRO has a strong
performance for zero-shot cross-lingual transfer, particularly in languages with low similarity
to English and different writing systems. The prompt-based approach seems to mitigate the
language barriers and facilitate cross-lingual transfer. Additionally, the results vary across target
languages, highlighting the importance of language typology and writing systems in determining
the effectiveness of TOPRO .

4.2.6 Error Analysis

In this section, we analyze selected instances from the UDPOS task with typical annotation errors
by the models in Table 4.13.

The first example is a sentence in Chinese (zh), which is typologically and orthographically
quite different from the training language, English. The first two tokens marked red in this
example / (“be”) ⌥ (“refer to”) are a pair of verbs, a so-called double-verb structure. They
are both predicted by Vanilla as PUNCT (punctuation), but by TOPRO as AUX (auxiliary) and
VERB, which are quite close to the correct tags, as the auxiliary itself is a special kind of verb.
The tokens w (“long”) ⌅ (“around”) are predicted by Vanilla again as PUNCT, but correctly
by TOPRO as ADJ and ADV. Moreover, the tokens w∏ (“coast”) ⁄ (“line”) are predicted by
Vanilla still as PUNCT, and by TOPRO as PROPN (proper noun) and NOUN, which, though not
the same as the original tags NOUN and PART (particle), are already close to the original tags as
they are all a kind of noun. In this case, we notice that the Vanilla model tends to predict PUNCT
for the majority of the tokens, whereas the TOPRO method often predicts the correct tags or at
least semantically related tags.

The second example is in Japanese (ja), which is also typologically and orthographically
quite different from English. The first token Ói (“government”) is predicted by Vanilla as
DET (determiner) which is somehow close to its original tag, and correctly by TOPRO as NOUN.
The tokenB#( (“more”) is predicted by Vanilla as PUNCT, but correctly by TOPRO as ADV.
The token ⌫ (“that”) is originally AUX, and it is predicted by Vanilla again as PUNCT, but
by TOPRO as VERB, which is already close to the meaning of AUX. And the token pair §
! (“exclude”) ⇡ (“do”) has original labels VERB AUX, and is predicted by TOPRO as VERB
VERB, which are still very close to their original labels. However, Vanilla predicts them again as
PUNCT PUNCT. Similar to the Chinese example, the Vanilla method tends to predict PUNCT for
unfamiliar tokens, whereas TOPRO generates the correct tags or at least tags close to the correct
tags.
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Input sequence & Its Gloss & Tags (True, Vanilla, TOPRO ) & Translation

Case 1 (zh)
Input: ´ñw∏/⌥�ÌYF>�ûÍª@w⌅ 250lÃÑ0-ww∏⁄⇥

Gloss: Warm coast be refer Spain Murcia autonomous region long approximately 250 km ’s Mediterranean sea coast line .

True: propn noun verb verb propn propn verb part adj adv num noun part propn part noun part punct

Vanilla: propn punct punct punct punct propn punct punct punct punct num num punct noun noun punct punct punct (0.19 F1)

TOPRO : propn propn aux verb propn propn propn propn adj adv num noun adp noun noun propn noun punct (0.47 F1)

Translation: The Costa Cálida is the 250-kilometer-long Mediterranean coastline of the Autonomous Region of Murcia, Spain.

Case 2 (ja)
Input: Ói�B#(∆HÍÆ.°ˆR⌃⌫✏⌫ ,◆⌃⌅⌃�…/§!⇡9�⇤

Gloss: government subject more religious organisation of definition object strictly that , such association topic exclude do must .

True: noun adp adv noun adp noun adp adj aux punct adj noun adp verb aux aux punct

Vanilla: det punct punct punct punct noun punct punct punct punct punct punct punct verb punct punct punct (0.29 F1)

TOPRO : noun part adv noun part noun pron adj verb punct adj noun pron verb verb adj punct (0.64 F1)

Translation: “The government should tighten the definition of religious corporations and eliminate such organizations.”

Case 3 (de)
Input: ,, Mich interessiert etwas , wenn es mich zu Teilnahme zu erregen weiß “, sagte er in einem deutschen Fernsehen .

Gloss: “ me interest something , if it me to attendance to irritate knows ” , said he in a German television .

True: punct pron verb pron punct sconj pron pron adp noun part verb verb punct punct verb pron adp det adj noun punct

Vanilla: punct pron verb pron punct sconj pron pron adp noun part verb verb punct punct verb pron adp det adj noun punct (1.00 F1)

TOPRO : punct pron verb pron punct sconj pron pron part noun part verb verb punct punct verb pron adp det adj noun punct (0.95 F1)

Translation: “I am interested in something if it knows how to excite me to participate”, he said on German television.”

Case 4 (nl)
Input: ,, We hebben een concept nodig voor verandering “, zei Djindjic in een interview met de Duitse televisie .

Gloss: “ we have a concept necessary for change ” , said Djindjic in a interview with the German television .

True: punct pron verb det noun adj adp noun punct punct verb propn adp det noun adp det adj noun punct

Vanilla: punct pron verb det noun verb adp noun punct punct verb propn adp det noun adp det adj noun punct (0.95 F1)

TOPRO : punct pron verb det noun verb adp noun punct punct verb propn adp det noun adp det adj noun punct (0.95 F1)

Translation: “We need a concept for change”, Djindjic said in an interview with German television.

Table 4.13: Comparison of the output of TOPRO and Vanilla for selected UDPOS examples with
XLM-R. The interesting tokens and their tags are marked red. The sentences were translated into
English using www.deepl.com.

The third example is an input sentence in German, which is very close to the English lan-
guage. We reach, therefore, very high F1 scores both with Vanilla and TOPRO approaches.
Noticeably, in this example, there is one token zu (“to”) with two different kinds of POS: ADP
and PART. The Vanilla correctly detects the difference, while TOPRO classifies both tokens as
PART. This is a shortcoming of TOPRO’s token-wise prompting strategy, which generates iden-
tical prompts for both occurrences of “zu”.

The fourth example is a Dutch (nl) input sentence. Dutch is also closely related to English.
We reach a high F1 score of 0.95 with both Vanilla and TOPRO approaches. The two approaches
make the same error by predicting the token nodig (“necessary”) as VERB, which should be ADJ.

In conclusion, the first two examples show that TOPRO works much better than Vanilla for

www.deepl.com
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languages that are typologically different from the source language of training. And even when
predicting false POS tags, TOPRO tends to predict tags semantically close to the correct tags.
The last two examples show the slightly worse performance of TOPRO for languages that are
close to the source language of training. These findings support our claim in §4.2.5.

4.2.7 Sum-Up
In our work, we introduce TOPRO for token-level sequence labeling tasks, a novel and simple
method that adopts the basic framework of prompting from sentence classification tasks and
applies the prompt template to each token in a sentence. We evaluate the TOPRO -based fine-
tuning for zero-shot cross-lingual transfer and compare it to Vanilla fine-tuning and Prompt-
Tuning baselines. We apply TOPRO with three MPLMs on two representative sequence labeling
tasks: NER and POS tagging. Our experiments show that TOPRO outperforms the baselines
with the MPLMs and achieves SOTA performance with mT5. We further discovered that the
performance improvement of TOPRO is generally more obvious in the cross-lingual context,
especially for languages that are linguistically very different from the source language, English,
highlighting its cross-lingual ability. Additionally, we applied the TOPRO method to MLLMs
and noticed better performances of TOPRO as well, compared to existing benchmarking work.
Overall, TOPRO shows a noticeable performance improvement and could serve as a potential
benchmark for sequence labeling tasks for future studies in prompt-based learning.
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4.3 Zero-Shot Transfer for Constituency Parsing of Histori-
cal German

This section corresponds to the following work:

Ercong Nie, Helmut Schmid, and Hinrich Schütze. 2023. Cross-Lingual Con-
stituency Parsing for Middle High German: A Delexicalized Approach. In Pro-
ceedings of the Ancient Language Processing Workshop (ALP 2023), pages 68–79,
Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.

Declaration of Co-Authorship. Helmut Schmid and I proposed the idea of applying zero-shot
cross-lingual transfer with delexicalization for the constituency parsing of historical German. I
developed the methodology pipeline, preprocessed the data, trained the delexicalization model
on Modern German treebanks, evaluated it on the test set of Middle High German parse trees,
and conducted the result analysis and case study. Helmut Schmid trained the POS taggers for
Modern German and Middle High German. Helmut Schmid and Hinrich Schütze are supervisors
and provided valuable feedback.
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Summary of This Section
The technique of zero-shot cross-lingual transfer not only benefits modern languages, as indi-
cated by the previous two sections (§4.1 and §4.2), but also facilitates historical language re-
search. In this section, we apply zero-shot cross-lingual transfer to constituency parsing tasks
and train a delexicalized constituency parser for a typical historical German language, i.e., Mid-
dle High German. Constituency parsing plays a fundamental role in advancing natural language
processing (NLP) tasks. However, training an automatic syntactic analysis system for ancient
languages solely relying on annotated parse data is a formidable task due to the inherent chal-
lenges in building treebanks for such languages. It demands extensive linguistic expertise, lead-
ing to a scarcity of available resources. To overcome this hurdle, cross-lingual transfer techniques
that require minimal or even no annotated data for low-resource target languages offer a promis-
ing solution. In this study, we focus on building a constituency parser for Middle High German
(MHG) under realistic conditions, where no annotated MHG treebank is available for training.
In our approach, we leverage the linguistic continuity and structural similarity between MHG and
Modern German (MG), along with the abundance of MG treebank resources. Specifically, by
employing the delexicalization method, we train a constituency parser on MG parse datasets and
perform cross-lingual transfer to MHG parsing. Our delexicalized constituency parser demon-
strates remarkable performance on the MHG test set, achieving an F1-score of 67.3%. It outper-
forms the best zero-shot cross-lingual5 baseline by a margin of 28.6% points. These encouraging
results underscore the practicality and potential for automatic syntactic analysis in other ancient
languages that face similar challenges to MHG.

4.3.1 Background

Constituency parsing, which involves analyzing the grammatical structure of sentences and iden-
tifying the hierarchical relationships between words, plays a crucial role in linguistic research,
especially for the analysis of ancient languages that are no longer spoken. Its significance extends
beyond linguistic analysis, serving as a building block for various natural language processing
(NLP) applications, such as information extraction (Jiang, 2012; Jiang and Diesner, 2019), sen-
timent analysis (Li et al., 2020), question answering (Hermjakob, 2001), etc. However, ancient
languages lack large labeled and unlabeled corpora (Assael et al., 2022) and treebanks suitable
for parser training are seldom available. This scarcity of resources can be attributed to two
reasons. Firstly, ancient languages usually have a dearth of digital text resources. Secondly,
the construction of a treebank for an ancient language requires substantial linguistic expertise
and manual effort. Nonetheless, the continuity in the process of language evolution gives rise
to linguistic similarities between ancient languages and their corresponding modern counter-
parts (Parravicini and Pievani, 2018). Cross-lingual transfer techniques (Ruder, 2019; Lauscher
et al., 2020) are trained on high-resource languages and require little or no annotated data from

5As is prevalent in the realm of multilingual NLP, the term “zero-shot cross-lingual” in this context pertains to
a transfer learning method where we finetune the model with task-specific data in a source language and test on the
target language directly (Sitaram et al., 2023).
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Figure 4.7: Overview of the cross-lingual delexicalized parsing system for MHG. In the training,
the delexicalized parsing model is trained on the delexicalized MG trees. The trained parser is
subsequently applied to MHG sentences. The delexicalized parsing system for MHG consists of
three key modules: (1) Delexicalized parsing model trained on delexicalized MG trees, (2) MHG
POS tagger, and (3) Tag mapper.

low-resource target languages. They can effectively be applied to languages with similar sen-
tence structure and word order. Hence, they can be a viable solution to this challenge.

In this work, we focus on building a constituency parser for Middle High German (MHG).
MHG is a historical stage of the German language that was spoken between 1050 and 1350. It
is the linguistic predecessor of Modern German (MG). Both languages have many similarities in
word formation and grammatical features, e.g., similar word order patterns and inflectional sys-
tems (Salmons, 2018). The availability of MHG parse trees is extremely limited. The Deutsche
Diachrone Baumbank (German Diachronical Treebank, DDB) (Hirschmann and Linde, 2023)
comprises merely around 100 manually annotated parse trees, encompassing less than 3000 to-
kens. These resources are far from what is required to train an automatic syntactic analysis
system, and are only suitable for use as test sets. On the other hand, there is an abundance of
treebank resources available for MG, in particular the Tiger Treebank (Smith, 2003). Hence, we
capitalize on the structural similarity between MHG and MG, as well as the rich MG treebank re-
sources to develop a cross-lingual delexicalized constituency parsing model that we can directly
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apply to MHG sentences.
In the delexicalized approach, the parsing model operates on part-of-speech (POS) sequences

rather than token sequences. We accomplish this by training a cross-lingual parser using POS
sequences from high-resource source languages as input. Subsequently, we utilize this trained
parser to directly parse POS sequences of low-resource target languages (McDonald et al., 2011).

In our work, we first train a delexicalized constituency parsing model on a delexicalized MG
treebank. In order to parse MHG sentences with this model, we need to annotate them first with
the POS tags used in the MG treebank. To this end, we train a POS tagger on an MHG corpus
which has been manually annotated using a POS tag set similar, but not identical to the MG
tag set. We employ a POS mapper to replace the MHG tags with the corresponding MG tags,
ensuring the uniformity of the model’s inputs across the two languages, which is a prerequisite of
the delexicalization method. The experimental results show that our delexicalized constituency
parser substantially outperforms all other zero-shot cross-lingual parsing baselines, achieving an
F1-score of 67.3% on the MHG parse test set.

The delexicalization method is particularly well-suited for languages that (1) lack treebank
resources, (2) possess sufficient annotated data for training POS taggers, and (3) exhibit syntactic
similarities with a high-resource language. Our investigation of this realistic scenario shows the
feasibility of automatic syntactic analysis for an ancient language.

4.3.2 Constituency Parsing
Neural Constituency Parsing Recent advances in constituency parsing have witnessed a grow-
ing emphasis on harnessing neural network representations, making a shift from the previously
prominent role of grammars, whose relevance has gradually diminished. Cross and Huang
(2016) propose a span-based constituency parsing system specifically designed to leverage the
powerful representation capabilities of the bidirectional long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997). In this method, an input sentence is represented
as a set of spans, and each span is assigned a score. The best-scoring parse tree is computed
using dynamic programming techniques. They combine smaller spans into larger spans until the
entire sentence is covered. Subsequently, several variations of the span-based method have been
proposed, e.g. approaches replacing the inference algorithm with chart-based methods (Stern
et al., 2017), using character-level representations instead of word-level representations (Gaddy
et al., 2018), and replacing LSTMs with self-attention modules (Kitaev and Klein, 2018). Ki-
taev et al. (2019) take advantage of the newly developed pretrained language models (PLMs)
and use BERT (Devlin et al., 2019) to compute the span representations, resulting in enhanced
performance. Kitaev and Klein (2020) improve the runtime complexity of constituency parsing
to linear time by reducing parsing to tagging.

Cross-Lingual Constituency Parsing There has been relatively limited scholarly attention
dedicated to cross-lingual constituency parsing in recent studies, especially for target languages
situated in low-resource settings, such as MHG. Kitaev et al. (2019) have employed the multilin-
gual BERT model to train a single parser with parameters shared across languages. They jointly
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fine-tune the multilingual BERT on 10 languages utilizing a common BERT backbone, but the
model contains distinct MLP span classifiers for each language to accommodate the different
tree labels. However, their approach necessitates the availability of treebanks of all the encom-
passed languages as training datasets. Kaing et al. (2021) undertake a comprehensive series of
experiments to validate the efficacy of delexicalization techniques for zero-shot cross-lingual
constituency parsing. Additionally, their study underscores the significance of typological affin-
ity in the source language selection. We build upon these investigations and apply their findings
to the zero-shot parsing of MHG within a practical contextual framework.

Constituency Parsing on Historical German There is a notable scarcity of syntactically an-
notated corpora for historical German. In instances where annotated treebanks are absent, ap-
proaches such as rule-based, unsupervised, or zero-shot cross-lingual methods can be employed
for constituency parsing. For instance, Chiarcos et al. (2018) have created a rule-based shallow
parser for MHG. Recent advancements in the construction of such corpora encompass:

• German Diachronical Treebank (DDB): a small yet syntactically deeply annotated corpus,
comprising three subcorpora of different stages of German, i.e., Old High German, Middle
High German, and Early New High German (Hirschmann and Linde, 2023). The con-
struction of the DDB corpus is oriented towards the Tiger Corpus (Smith, 2003), one of
the largest German treebanks.

• UP Treebank of Early New High German (ENHG): a syntactically annotated corpus of
ENHG containing 21,432 sentences consisting of 600,569 word tokens based on the Ref-
erence Corpus of ENHG (Demske, 2019).

• Corpus of Historical Low German (CHLG): a Penn-style treebank of Middle Low Ger-
man (Booth et al., 2020)

Contemporary work on historical German parsing based on previously mentioned corpora in-
cludes endeavors such as cross-dialectal parsing for ENHG based on CHLG (Sapp et al., 2023).

4.3.3 Languages and Corpora
The ancient language that we study in this work is Middle High German (MHG). MHG and
Modern German (MG) are stages of the same Germanic language family, representing differ-
ent historical periods. MHG emerged during the Middle Ages in the German-speaking regions
of Central Europe. It was primarily used in literary and administrative contexts and played an
important role in medieval literature, including epic poems such as the Nibelungenlied and Min-
nesang (courtly love poetry) (Salmons, 2018).

Linguistic Considerations of MHG MHG has a phonetic system that includes a set of vowel
and consonant sounds. The pronunciation and sound patterns differ from those of MG, but
some MHG words are still recognizable in MG. MHG has a more complex grammatical system,
such as a more extensive case system with different noun and adjective declensions. Besides,
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verb conjugation has more intricate forms and patterns (Jones and Jones, 2019). In terms of
orthography, the spelling and writing conventions of MHG are different from MG. For example,
ü, the umlaut of u, is usually written iu in MHG. The transition from MHG to MG was a gradual
process, occurring over several centuries. MG can be considered the linguistic descendant of
MHG, with linguistic changes and developments shaping the language over time.

MHG Corpora Resources During the MHG period, the amount of textual material that sur-
vives to the present increases markedly. The Reference Corpus of Middle High German (ReM)
(Klein et al., 2016) encompasses a large collection of non-literary and non-religious texts. ReM
is a corpus of diplomatically transcribed and annotated texts of MHG with a size of around 2
million word forms. Texts in ReM have been digitized and richly annotated, e.g., with POS,
morphological, and lemma features. The morphological annotation uses the HiTS tag set (Dip-
per et al., 2013), a tag set for historical German, derived from the Stuttgart-Tübinger Tag Set
(STTS) for modern German texts (Schiller et al., 1995). Although the ReM corpus provides rich
morphologically annotated text data for MHG, the availability of syntactically annotated data for
MHG is severely limited, with only approximately 100 MHG parse trees included in the DDB
treebank. In contrast, the treebank resources for MG are abundant. The Tiger Treebank (Brants
et al., 2002), for instance, consists of approximately 40,000 sentences of German newspaper text,
taken from the Frankfurter Rundschau.

4.3.4 Methods
In our work, we focus on developing a constituency parser for MHG. In the previous section, we
reviewed annotated resources available for MHG and MG. Basically, we have ample treebank
resources for MG and plenty of POS-tagged texts for MHG, whereas the treebank resources for
MHG are extremely limited. Given the resource availability for MG and MHG along with the
linguistic connection between the two languages, employing a cross-lingual constituency parsing
approach utilizing delexicalization proves to be an effective solution. As Figure 4.7 shows, the
delexicalized model is trained on the delexicalized inputs of MG. In the inference stage, the
delexicalized parser is directly applied to MHG POS sequences. The delexicalization method
requires that MHG and MG share the same set of POS tags. The final constituency parser for
MHG (the right side of Figure 4.7 comprises three modules: (1) the delexicalized parser, (2) the
MHG POS tagger, and (3) the POS mapper from MHG to MG. In the next section, we describe
the delexicalized parsing system in more detail.

4.3.4.1 Delexicalized Parser

Our delexicalized MHG parser is based on the Berkeley neural parser (Benepar) (Kitaev and
Klein, 2018), a span-based parser using self-attention. As illustrated in Figure 4.7, Benepar has
an encoder-decoder architecture which combines a chart decoder with a sentence encoder based
on self-attention. The sentence encoder computes contextualized representations for all word
positions and combines them to form span representations. From the span representations, the
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parser computes label scores, which are subsequently used to incrementally construct a tree using
a chart parsing algorithm (Sakai, 1961).

According to Kaing et al. (2021), Benepar exhibits two key features that are advantageous for
cross-lingual transfer. Firstly, it employs a self-attentive encoder that effectively captures global
context information and exhibits less sensitivity to word order. Secondly, the parser indepen-
dently scores each span without considering the label decisions of its children or parent. This
means that a failure in label prediction for a certain span does not strongly impact the label pre-
diction for other spans (Gaddy et al., 2018). Consequently, the prediction errors resulting from
local syntax variations between two languages have a limited effect on the overall prediction.

While our delexicalized parser adopts the same architecture as Benepar, there exist distinc-
tions in the inputs of the two. Specifically, Benepar is trained on parse trees with words, whereas
our delexicalized parser operates on POS sequences as inputs, i.e., tree strings devoid of words.
Therefore, the delexicalized version of the MG treebank is required to train the delexicalized
parser. For the MHG parsing in the inference, we feed the delexicalized model with the POS
sequences of MHG sentences.

Delexicalization for MG We use the Tiger Treebank to train the delexicalized parsing model
on MG parse trees. The parse trees in the Tiger Treebank contain additional semantic informa-
tion, such as edge labels, and special structures, such as coreference indices and trace nodes. We
remove all of them during delexicalization.

In the Tiger treebank, the label of each preterminal node contains not only the POS tag, but
also morphological features, such as case, number, and gender. During delexicalization, we over-
write the word at the leaf node with this extended POS tag, but only keep the POS information in
the label of the preterminal node. This means that the input of our delexicalized parser contains
information about morphological features. Figure 4.8 shows an example of the delexicaliza-
tion for an MG sentence. As shown the edge labels, e.g., “NK” are removed and the tokens are
replaced by the POS tag combined with morphological features, e.g., “ART.Nom.Pl.Fem”,
where “ART” (determiner) is the POS tag, and “Nom.Pl.Fem” denotes the morphological in-
formation with case being nominative, number being plural, and gender being feminine.

4.3.4.2 Delexicalization for MG and MHG

MHG POS Tagger For the delexicalization of MHG sentences, we need a POS tagger for
MHG. We use the RNNTagger of Schmid (2019) for this purpose, which annotates MHG sen-
tences with POS tags as well as morphological features and has been trained on the ReM corpus.
RNNTagger uses deep bidirectional LSTMs with character-based word representations.

4.3.4.3 Tag Set Mapping

The Tiger Treebank uses the STTS tag set, whereas the MHG version of the RNNTagger and
the ReM corpus on which it was trained employ the HiTS tag set. Due to this discrepancy, we
cannot directly use the POS labels from RNNTagger as input to the delexicalized parser. HiTS,
for example, has separate tags for definite (DDART) and indefinite articles (DIART), whereas
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Figure 4.8: An example illustrating the delexicalization process of an MG tree.

STTS uses the tag “ART” for both of them. Since the delexicalization method demands that
the source and target languages share the same tag set, we have to map the MHG tags to the
MG . The small MHG treebank that we use for evaluation purposes uses STTS and requires no
mapping.

MHG Tag MG Tag
CARDD CARD

DDA PDAT
DDART ART

DIA PIAT
DIART ART

DID PDAT
NA NN

VAPS ADJD.Pos

Table 4.14: Representative mapping pairs in the mapping dictionary.

The mapping process involves two dimensions. Firstly, we map the morphological features of
MHG to those of MG. Secondly, we map the POS tags of MHG to those of MG primarily based
on a mapping dictionary. Table 4.14 shows a selected part of the POS tag mapping dictionary.
It should be noted that our mapping is not flawless due to certain challenges. For instance, the
composite word in MHG “enerde (on earth)” is separated into “auf ” and “Erde” in MG and
are tagged as “APPR|NA”. In the DDB treebank, such composite words are annotated with two
separate tags combined with “|” in the DDB treebank. However, for simplification purposes, our
mapping only retains the first part of the tag, leading to a loss of information.
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4.3.5 Experiments
We begin by training Benepar on the delexicalized Tiger treebank for MG. Then we annotate the
sentences of the small DDB treebank for MHG with RNNTagger and map the HiTS tags that it
returns to STTS tags. Finally, we parse the POS tag sequences with the trained parser.

4.3.5.1 Datasets

In our experiments, we utilize the following three corpora (see also Table 4.15).

Type Language Size Usage
Tiger Treebank MG 50,474 trees Parser training
DDB Treebank MHG 96 trees Parser evaluation
ReM POS-tagged corpus MHG 2,269,738 tokens POS tagger training

Table 4.15: Overview of the datasets.

Tiger Treebank The delexicalized parser is trained on the Tiger Treebank (Smith, 2003),
which comprises a total of 50,474 parse trees for MG. We use a version of the Tiger Treebank
which has been converted to the Penn Treebank format (Marcus et al., 1993). We delexicalize
the Tiger corpus and divide it into a training set and a development set. The first 47,474 parse
trees in the Tiger corpus comprise the training set, and the last 3,000 parse trees comprise the
development set.

DDB The German Diachronic Treebank (DDB) (Hirschmann and Linde, 2023) consists of a
limited number of 100 parse trees for MHG. Due to the small data size, we utilize the DDB
treebank solely for the cross-lingual evaluation of the delexicalized parser. To prepare the DDB
treebank for evaluation, we perform preprocessing steps, including converting it to the format of
the Penn Treebank and removing incomplete parse trees and parse trees with mostly Latin words.
We also removed numbers and periods that formed the first token of a parse tree, and corrected a
few more minor problems. At the end, we had 96 sentences for evaluation purposes.

ReM The Reference Corpus for Middle High German (ReM) (Klein et al., 2016) is an exten-
sive collection of texts written in MHG. This corpus encompasses approximately 2.3 million
tokens and provides comprehensive linguistic annotations, including POS tags, morphological
analysis, lemma features, and more. The ReM corpus has been used by Schmid (2019) to train
the MHG version of his RNNTagger, which annotates MHG texts with POS tags and morpho-
logical features.

4.3.5.2 Baselines

We evaluate the performance of our proposed delexicalized MHG parser, which is based on the
Benepar parser (Kitaev and Klein, 2018), and compare it with the cross-lingual transfer per-
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formance of the original Benepar without using the delexicalization method and other parsing
approaches that incorporate pretrained language models, which have shown promising results in
various NLP tasks.

Vanilla Benepar The vanilla Benepar model is trained directly on the original training set of
the Tiger Treebank for MG without delexicalization. After training, the parser is directly used
to parse the MHG sentences as token sequences. This allows us to compare the performance
of the delexicalized MHG parser with the vanilla Benepar model, highlighting the impact of
delexicalization on cross-lingual parsing performance.

Tetra-Tagging with PLMs Tetra-tagging (Kitaev and Klein, 2020) is a technique for reducing
constituency parsing to sequence labeling. In this approach, special parsing tags are predicted in
parallel using a PLM and then merged into a parse tree. In our experiment, we use the pretrained
German BERT model (Chan et al., 2020) and the multilingual BERT model (Devlin et al., 2019)
available on the HuggingFace website (Wolf et al., 2020). We start by fine-tuning these mod-
els on the Tiger Treebank using the Tetra-tagging technique. Subsequently, we evaluate their
performance on the MHG parse test set.

4.3.5.3 Evaluation

Following Kitaev and Klein (2018), we use the standard evalb measures (Sekine and Collins,
1997; Collins, 1997) for the parser quality evaluation. evalb is a software tool that provides
metrics to assess the accuracy and similarity of parsed sentences against reference or gold stan-
dard parse trees, including precision, recall, F1 score, and complete match.

• Precision measures the proportion of predicted constituents in the generated parse tree
that are also contained in the reference parse tree. It quantifies the accuracy of the parser
in correctly identifying constituents.

• Recall measures the proportion of constituents in the reference parse tree that were pre-
dicted by the parser in the generated parse tree. It quantifies the parser’s ability to generate
all the constituents present in the reference parse tree.

• F1 Score is the harmonic mean of precision and recall.

• Complete Match measures the proportion of predicted parse trees that were exactly iden-
tical to the respective reference parse trees.

As is the standard practice, the evaluation disregards POS labels and punctuation.

4.3.5.4 Training Setup

For training the delexicalized parser, we adopt the same hyperparameter settings as described
in (Kitaev and Klein, 2018). The encoder architecture consists of a character-level bidirectional
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LSTM neural network. The size of the feedforward layer is set to 2048, and the character em-
bedding dimension is 64. The batch size is set to 32, the learning rate is 5e-5, and the maximum
sequence length of the encoder is 512. We use the random seed 10 for training. We conduct all
our experiments using a server with 8 GPUs with 11GB RAM (NVIDIA GeForce GTX 1080
Ti).

4.3.6 Results and Analysis
4.3.6.1 Main Results

Recall Precision FScore CM
MG MHG MG MHG MG MHG MG MHG

Baselines
Vanilla Benepar 84.18 34.41 87.57 44.40 85.84 38.77 45.80 0.00
Tetra-gBERT 86.31 23.20 88.19 29.53 87.24 25.98 51.70 3.12
Tetra-mBERT 60.68 19.69 65.61 23.25 63.15 21.32 21.35 0.00

Our proposed method
Dexparser 81.39 64.72 84.89 70.19 83.10 67.34 39.03 12.50

Table 4.16: Main results of the cross-lingual parsing transfer performance of different parsers.
CM refers to “complete match”. gBERT refers to the pretrained German BERT, and mBERT
refers to the multilingual version of BERT. The best value of each column is indicated in bold.

Table 4.16 shows the parsing performance of different cross-lingual parsers. Notably, our
proposed parser attains the highest scores across all metrics for MHG, demonstrating that the
delexicalized parser possesses superior cross-lingual parsing performance on MHG. Our delex-
icalized parser demonstrates substantial advantages in parsing MHG, achieving an impressive
increase of almost 30% points in F1 score. Besides, it achieves comparable results on MG. In
terms of the baselines, the Vanilla Benepar and the Tetra-gBERT parser both achieve relatively
high recall and precision for MG but have noticeably lower values for MHG. The Tetra-mBERT
parser exhibits lower values for both recall and precision for both MG and MHG. It is worth
noting that the parsing performance of the delexicalized model on the source language MG is
surpassed by the two strong baselines, Vanilla Benepar and Tetra-gBERT. This outcome is ex-
pected as the delexicalization process diminishes the semantic information present in the input
sequences. However, the trade-off of the performance loss in MG leads to a big leap in the
cross-lingual parsing performance for MHG.

Our delexicalized constituency parser exhibits outstanding performance on the MHG test set,
attaining an impressive F1-score of 67.3%. This substantial improvement outperforms the best
zero-shot cross-lingual baseline by a considerable margin of 28.6%. Although there is a slight
decline in the parsing performance for MG, the trade-off proves worthwhile considering the sub-
stantial gains achieved in parsing MHG. This emphasizes the effectiveness of the delexicalized
approach in facilitating cross-lingual transfer and highlights its potential for parsing ancient and
historical languages like MHG.
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4.3.6.2 Ablation Study

Recall Precision FScore CM
Delexicalized parser using gold tags 66.18 71.17 68.59 14.58

- using predicted tags 64.72 70.19 67.34 12.50
- without mapping 59.16 68.82 63.63 7.29
- without morphological information 48.66 65.38 55.8 9.28

Table 4.17: The MHG parsing results with the delexicalized parser in the ablation study.

We now examine how the parsing performance changes (i) as we replace predicted POS tags
with gold-standard POS tags, (ii) as we use the original HiTS tags instead of mapping them to
STTS tags, and (iii) as we remove the morphological features from the parser input. Table 4.17
presents the results of our ablation study.

Goldstandard POS Tags We observe that the f-score of the delexicalized parser increases by
1.3% points when it processes gold standard POS tag sequences instead of POS tag sequences
predicted by RNNTagger. This finding underscores the quality of the POS tags predicted by
RNNTagger. We loose very little performance due to POS tagging errors.

Tag Set Mapping Table 4.17 demonstrates a noticeable decline in parsing performance from
67.34% to 43.43% in terms of F1 score when the delexicalized MHG sequences are directly
processed by the cross-lingual parser without mapping them from HiTS to STTS. This finding
highlights the indispensability of mapping from MHG to MG for maintaining satisfactory parsing
performance. The results underscore the significance of aligning the tag sets between MHG and
MG to ensure effective cross-lingual parsing and emphasize the necessity of this mapping process
in our approach.

Morphological Information The inclusion of morphological markers provides the neural model
with valuable additional information for parsing MHG sentences. In our experiments, we aug-
ment the delexicalized MHG sequences with morphological information, such as case, gender,
number, and more. The outcomes of the ablation study clearly indicate that removing this mor-
phological information from the delexicalized input sequences obviously impairs parsing perfor-
mance. Specifically, this exclusion leads to a noticeable decline in the F1 score, amounting to a
reduction of 11.5%.

4.3.6.3 Case Study

Figure 4.9 shows two MHG trees generated by our delexicalized parser and the corresponding
gold standard trees for comparison. This case study reveals that the delexicalized parser demon-
strates relatively accurate predictions of constituents when compared to the reference trees, espe-
cially for short MHG sentences. Some prediction errors in constituents stem from the intricacy
and the ambiguity of the MHG grammar, as exemplified by the case of “her” in Example 2. From
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Gold 
standard

Prediction

Example 1 Example 2

Figure 4.9: Two examples of the trees generated by our delexicalized parser compared to the
reference parses.

a linguistic perspective, determining whether “her” functions as an adverb (ADV) or a separated
verb prefix (PTKVZ) poses challenges. However, in longer and more complex sentences, e.g., the
sentence in Example 1, the parser typically maintains a high level of accuracy locally while occa-
sionally struggling to accurately determine the overall structure of the entire sentence. Besides,
the presence of noise in the ancient texts is another factor that can impact the effectiveness of the
cross-lingual parsing for MHG. Overall, the qualitative analysis provides further evidence of the
effectiveness of the delexicalized parser for MHG, emphasizing its ability to accurately predict
constituents, especially in shorter sentences. While challenges may arise in handling longer and
more complex sentences, the delexicalized parser showcases promising results, contributing to
the advancement of MHG parsing.

4.3.7 Sum-Up
In summary, our study presents an effective cross-lingual constituency parsing approach for an-
cient languages, specifically focusing on the parsing of Middle High German (MHG) sentences.
Through the utilization of delexicalization and the similarities between MHG and Modern Ger-
man (MG), we have developed a delexicalized parser based on the rich treebank resources of
MG, which demonstrates remarkable performance in parsing MHG sentences. Our experimen-
tal results showcase the efficacy of the delexicalized approach, outperforming existing baselines
and achieving substantial improvements in parsing accuracy. These findings highlight the prac-
ticality and promise of our approach for parsing historical and ancient languages, addressing the
challenges posed by limited annotated data and linguistic variations.
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Chapter 5

Efficient NLP Methods for Low-Resource
Settings

Summary of This Chapter

While much of the recent progress in NLP has been driven by LLMs trained on vast datasets with
substantial computational resources, real-world applications often face significant resource con-
straints. These constraints manifest not only in the form of low-resource languages, as discussed
in the previous two chapters (Chapter 3 and Chapter 4), but also in practical scenarios where both
annotated data and computational capacity are limited, i.e., low-resource data and computing
settings. As NLP systems are increasingly deployed in diverse domains and languages, the need
for methods that can operate efficiently under such constraints has become ever more pressing.
Addressing these challenges requires strategies that can maximize the utility of available data
and minimize the computational burden of model adaptation. Two prominent approaches have
emerged in this context: data augmentation, which seeks to expand and diversify training data in
low-resource settings, and parameter-efficient fine-tuning, which aims to adapt large models to
new tasks or domains by updating only a small subset of parameters. Both approaches are crucial
for enabling scalable, inclusive, and sustainable NLP in scenarios where traditional full-model
fine-tuning or large-scale data collection is infeasible.

This chapter investigates efficient NLP methods tailored for low-resource settings, focusing
on both data scarcity and computational limitations. We present two complementary contribu-
tions, each addressing a key aspect of the efficiency challenge.

First, we tackle the problem of low-resource multi-domain dialogue generation by propos-
ing a unified data augmentation framework, AMD2G. This method systematically decouples
domain-agnostic and domain-specific features through a de-domaining process, enabling models
to learn shared expressive patterns across domains before adapting to the unique characteris-
tics of the target domain. Extensive experiments on Chinese dialogue datasets spanning five
domains demonstrate that AMD2G consistently outperforms both direct domain-specific train-
ing and naive multi-domain training, highlighting its effectiveness in leveraging cross-domain
knowledge for data-scarce applications (§5.1).
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Second, we address the challenge of computational resource constraints in model adaptation
by introducing a novel parameter-efficient fine-tuning approach, GNNavi. Inspired by recent
advances in understanding information flow in in-context learning, GNNavi integrates a graph
neural network (GNN) layer into the deep layers of large language models. This design explicitly
guides the aggregation and distribution of information within prompts, allowing for effective
adaptation by updating only a small fraction of model parameters. Our experiments on few-shot
text classification tasks with GPT-2 and Llama2 demonstrate that GNNAVI achieves superior
performance and training efficiency compared to established parameter-efficient methods such
as LoRA, Prefix-Tuning, and Adapters (§5.2).

By advancing both data-centric and model-centric efficiency techniques, this chapter con-
tributes to the broader goal of making NLP technologies more accessible, adaptable, and sustain-
able across a wide range of languages and domains. These methods not only address immediate
practical bottlenecks in low-resource scenarios, but also lay the groundwork for future research
on scalable and inclusive language technologies.
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5.1 Data Augmentation for Low-Resource Multi-Domain Di-
alogue Generation

This section corresponds to the following work:

Yongkang Liu*, Ercong Nie*, Zheng Hua, Zifeng Ding, Daling Wang, Yifei Zhang,
Hinrich Schütze. 2024. A Unified Data Augmentation Framework for Low-Resource
Multi-Domain Dialogue Generation. In Proceedings of Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD
2024). Springer.
* equal contributions.

Declaration of Co-Authorship. Yongkang Liu proposed the idea of using de-domaining data
for data augmentation to enhance the performance of low-resource multi-domain dialogue gener-
ation tasks. I conceived the framework of AMD2G based on the idea of de-domaining. Yongkang
Liu dealt with the data processing, and Zheng Hua ran most of the experiments. I summarized
the experimental results and drafted the paper. Zifeng Ding attended multiple rounds of discus-
sions and provided valuable feedback. Yifei Zhang and Hinrich Schütze are supervisors of this
project.
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Summary of This Section

Current state-of-the-art dialogue systems heavily rely on extensive training datasets. However,
challenges arise in domains where domain-specific training datasets are insufficient or entirely
absent. To tackle this challenge, we propose a novel data Augmentation framework for Multi-
Domain Dialogue Generation, referred to as AMD2G. The AMD2G framework consists of a data
augmentation process and a two-stage training approach: domain-agnostic training and domain
adaptation training. We posit that domain corpora are a blend of domain-agnostic and domain-
specific features, with certain representation patterns shared among diverse domains. Domain-
agnostic training aims to enable models to learn these common expressive patterns. To construct
domain-agnostic dialogue corpora, we employ a de-domaining data processing technique used
to remove domain-specific features. By mitigating the effects of domain-specific features, the
model trained on the de-domained corpora can effectively learn common expression patterns in
different domains. Subsequently, we adapt the learned domain-agnostic features to the target do-
main through domain adaptation training. We conduct experiments on Chinese dialogue datasets
from five different domains and show that AMD2G achieves superior performance compared
to both direct training on the target domain corpus and collective training on all five domain
corpora. Our work underscores AMD2G as a viable alternative solution for low-resource multi-
domain dialogue generation.

Domain A
(Music)

Domain B
(Film)

Domain-Agnostic

Which country is Khoomei from?Music:

Do you know the movie Avatar?Film:

Do you know the song Love?Music:

Which country is the movie Avatar from?Film:
…

(a)

Do you know the $P?
Which country is $P from?…

(b)

de-domain

Figure 5.1: Illustration of corpus composition in different domains. (a) represents domain-
specific corpora, (b) stands for domain-independent corpora. The overlap of Domain A (blue)
and Domain B (Orange) represents domain-agnostic data, while non-overlapping regions signify
domain-specific data.
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5.1.1 Background and Motivation

The efficacy of established sequence-to-sequence methodologies in constructing dialogue sys-
tems has demonstrated remarkable success in previous research (Serban et al., 2016; Liu et al.,
2023c, 2022d; Li et al., 2023b). More recently, the notable achievements of Large Language
Models (LLMs), including Blender (Roller et al., 2021), Meena (Adiwardana et al., 2020), Chat-
GPT (Ouyang et al., 2022), and GPT-4 (OpenAI, 2023), have prompted the research commu-
nity to increasingly embrace generative models as the go-to approach. However, training these
models often requires huge corpora. Unfortunately, the availability of domain-specific corpora
remains notably limited across many domains, including medicine, finance, and military, due
to concerns on security, copyright, and other constraints (Hathaliya and Tanwar, 2020). On the
other hand, while the current LLMs exhibit excellent comprehension and generation capabilities,
they often suffer from hallucinations in tasks with obvious domain characteristics and strong
factuality (Bang et al., 2023b; Liu et al., 2023b; Ji et al., 2023; Yuan et al., 2024), particularly in
low- and zero-resource contexts. Hence, devising strategies to leverage corpora from disparate
domains to enhance the performance and accuracy of the target domain remains a relevant pursuit
in the era of LLMs.

Existing methods for cross-domain dialogue generation can be categorized into three groups
(Qin et al., 2020): i) Separate Pattern (Wen et al., 2018; Qin et al., 2019; Wu et al., 2021; Li
et al., 2023c); ii) Mixed Pattern (Madotto et al., 2018; Wu et al., 2019b; Lin et al., 2021; Kim
et al., 2023; Yang et al., 2023a; Ma et al., 2023b); and iii) Shared-Private Pattern (Zhong et al.,
2018; Chen and Cardie, 2018; Wu et al., 2019c,a; Bang et al., 2023a). The Separate Pattern
involves training the model separately for each domain, necessitating an adequate corpus for
each domain. In contrast, the Mixed Pattern combines multi-domain datasets by prioritizing
domain-agnostic features while disregarding domain-specific ones. However, models based on
the Mixed Pattern may struggle to capture features from low-resource domains compared to high-
resource ones. The Shared-Private Pattern extracts domain-agnostic and domain-specific features
using shared and private modules, respectively, also relying on sufficient domain corpora. While
these methods have demonstrated promising results, they all presuppose the availability of ample
corpus data.

In the context of dialogue generation within low-resource domains, the effective leverage of
resources from other domains holds significant importance. As illustrated in Figure 5.1, the do-
main corpora encompass both domain-agnostic and domain-specific information. For instance,
in the film domain, the expression “Do you know the movie Avatar” domain comprises domain-
specific information “movie Avatar” alongside the domain-agnostic fragment “Do you know the
...”. Similarly, phrases like “song Love” and “Khoomei” carry domain-specific features of the
music field. Notably, disparate domains exhibit shared expression patterns within their corpora.
Leveraging these shared features provides an opportunity to enhance the performance of dialogue
generation in low-resource domains.

Accordingly, we propose a simple yet effective data Augmentation method for Multi-Domain
Dialogue Generation, termed AMD2G. As shown in Figure 5.2, we initially build a domain dic-
tionary for each domain automatically. Subsequently, the domain corpora undergo de-domaining
through the usage of domain dictionaries. Specifically, placeholders replace domain-specific
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Transfer

Do you know the movie Avatar?Film:
Do you know the Capital Theater?Travel:

Do you know the song Love?Music:

Do you know the amoxicillin?Medical:
…

Do you know the $P?
This $P is $P?

I know it's a $P.

Which country is $P from?

…

Have you heard of the $P?

prompt output

a. {keyword:$tokens$, type:$ type $}

b. {keyword:$tokens$, type:$ type $}

c. {keyword:$tokens$, type:$ type $}

d. {keyword:$tokens$, type:$ type $}

…

LLM

e. {keyword:$tokens$, type:$ type $}

select

IV. Domain Adaptation

Step 1: Data Processing

Step 2: Training

I. Dictionary Construction

II. De-Domaining

Figure 5.2: Schematic diagram of AMD2G framework. The target domain is E-Commerce, and
the domains used for de-domaining are Film, Music, Travel, and Medical. $P represents the
placeholder. The method supports both encoder-decoder and decoder-only structures.

keywords in the corpus identified in the domain dictionary. The models are then fine-tuned on
the combined de-domained corpora to learn common representation patterns across different do-
mains. Finally, low-resource fine-tuning is conducted on the target domain dataset to acquire
domain-specific features. We conduct experiments with AMD2G using Chinese conversation
datasets from five distinct domains. This choice is motivated by the morphological simplicity
of the Chinese language, characterized by few inflectional variations, aligning well with our de-
domaining processing at the lexical level. We compare our proposed method with two baselines:
direct training on the target domain corpus and training on all five domain corpora collectively.
Our experimental findings demonstrate that the integration of AMD2G consistently enhances
model performance across all five domains.

In summary, our contributions are as follows:

• We introduce de-domaining for multi-domain dialogue generation datasets, a data aug-
mentation technique that effectively reduces the impact of domain-specific features by
extracting shared representations across domains.

• We propose AMD2G, a simple yet effective alternative framework for the multi-domain
dialogue generation task in low-resource settings.

• We conduct experiments with AMD2G across five domains, demonstrating its superiority
over direct training in the target domain and joint training across all five domains.
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5.1.2 Multi-Domain Dialogue Generation
Dialogue systems are used as intelligent agents in various domains due to their ability to gener-
ate fluent and natural responses. Cross-domain learning refers to the technology of transferring
knowledge from other domains to the target domain. The initial approach is to blend all domain
corpora to learn domain-independent features. One of the drawbacks of this approach is the lack
of domain-specific knowledge. Wu et al. (2019b) propose to use a global-to-local pointer mecha-
nism search technique for external knowledge to enhance the domain-specific knowledge aware-
ness of models. He et al. (2020) employs pairwise similarity to distill contextually unrelated
KB records to improve the quality of domain knowledge. Xie et al. (2022) integrates domain-
specific knowledge in the form of text-to-text format based on T5 (Raffel et al., 2020). Ma et al.
(2023b) propose a domain attention module with distributional signatures of the dialogue corpus
to capture domain-specific knowledge. These methods may also lead to a long-tail distribution
of domain data, making models trained severely biased under low-resource conditions. Another
line of research is to train separate models for each domain, focusing on domain-specific fea-
tures. Madotto et al. (2018) learns domain-specific features by combining external knowledge
through a memory network (Sukhbaatar et al., 2015). Qin et al. (2019) proposes to employ
two-step retrieval and attention mechanisms to improve the quality of domain-specific features.
Wu et al. (2021) proposes to continue pre-training on the domain corpus to adapt the language
model to a specific domain. The shared-private framework, which combines the advantages of
the above two, is a better choice. Zhong et al. (2018) uses global modules to share parameters
and local modules to learn domain-specific features. Wu et al. (2019c) allows domain-specific
features to interact through a shared-private mechanism. Bang et al. (2023a) learns task-related
features by adding adapters for each task.

5.1.3 Methodology
As depicted in Figure 5.2, AMD2G primarily comprises two steps: data processing and train-
ing. In data processing, the domain corpus is de-domained by using the constructed domain
dictionaries. In the training step, domain-agnostic training first allows models to learn shared
patterns among multiple domains, while the domain adaptation phase enables models to capture
domain-specific features.

5.1.3.1 Problem Formulation

An instance for one domain can be represented as (C,R), where C={u1, u2, ..., un} with n ut-
terances representing the context of the dialogue. Here, ui represents the i-th utterance, and R
represents the corresponding response. Our goal is to build a corresponding dialogue generation
system P (R|C) using corpora from other domains under the low-resource condition in the tar-
get domain. Please refer to the experimental settings for detailed settings of low resources (i.e.,
Section 5.1.4).

Note that AMD2G can be applied to models of both encoder-decoder and decoder-only struc-
tures. For models with an encoder-decoder structure, the encoder is responsible for encoding the
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dialogue history C, and the decoder generates responses R based on the encoded representation.
For models with a decoder-only structure, we concatenate the dialogue history C and responses
R into a consecutive sequence and perform sequence modeling by autoregression.

5.1.3.2 De-Domaining Data Processing

We observe that data from different domains exhibits shared representation patterns. Through
de-domaining operations, corpora from different domains can be transformed into a unified space
devoid of domain-specific features. This process mitigates the influence of domain-specific fea-
tures, facilitating the learning of domain-independent features by models.

De-Domaining Domain-specific corpora are de-domained based on the usage of domain dic-
tionaries. Specifically, we replace all words or phrases present in the domain dictionary with
designated placeholders, wherein all tokens within an involved phrase are substituted by a single
placeholder. As a result of the de-domaining process, the domain-specific data no longer retains
its specific characteristics.

Dictionary Construction We combine LLM-extracted terms with existing term banks to con-
struct high-quality domain dictionaries tailored to specific domains. Initially, we employ TechGPT
(Ren et al., 2023), a Chinese LLM, to extract domain entities as keywords. TechGPT has been
enhanced for various information extraction tasks through the integration of domain knowledge
graphs (Ren et al., 2018) facilitated by BELLE (Yunjie et al., 2023), which is specialized in
extracting domain keywords. We apply the following prompt to TechGPT to extract entities
from the domain corpora. $Context$ represents the context composed of dialogue history and
response. $Domain$ represents the domain name.

Prompt: á,/$Context$⇥Üfl/$Domain$⇥˜ì˙$Domain$s.Õ⇥
Translation: The context is $Context$. The domain is $Domain$. Please
output keywords related to $Domain$.
($Domain$ 2 {Film, Music, Travel, Medical, E-commerce})

In addition to keywords extracted by the LLM, we utilize existing terminology banks offered
by Chinese input method providers, including QQPinyin1, Baidu2, and SougouPinyin3. We re-
trieve the terms specific to each domain from these sources and merge them into the respective
domain’s dictionary Table 5.1 presents the statistical overview of the dictionary, including its
size, coverage ratio concerning the training set, and the number of replaced tokens. Notably,
the domain dictionary’s coverage rate for the training corpus exceeds 95%, with a significant
reduction in domain-specific terms.

1http://cdict.qq.pinyin.cn/v1
2https://shurufa.baidu.com/dict
3https://pinyin.sogou.com/dict/

http://cdict.qq.pinyin.cn/v1
https://shurufa.baidu.com/dict
https://pinyin.sogou.com/dict/


5.1 Data Augmentation for Low-Resource Multi-Domain Dialogue Generation 151

Domain #Keyword #Cov #RToken

Film 2463 100% 38680
Music 1427 100% 32305
Travel 1006 100% 33820

Medical 18749 99.80% 37065
E-comm 1384 95.10% 19602

Table 5.1: Statistic overview of domain dictionaries. #Keyword represents the number of key-
words in the dictionary. #Cov represents the proportion of training set examples covered by the
dictionary. #RToken represents the number of domain words removed from the training set.

5.1.3.3 Domain-Agnostic Training and Domain Adaptation

We conduct the first stage of fine-tuning on a mixed domain-agnostic corpus, excluding the
target domain, to learn domain-independent features. Models pay more attention to domain-
independent features in the domain-agnostic training phase. The purpose of domain adaptation
is to transfer domain-independent knowledge to the target domain, allowing models to learn
domain-specific features. Subsequently, models are initialized with the weights from the domain-
agnostic training stage and then fine-tuned on the low-resource target domain corpus.

5.1.3.4 Domain Similarity

We believe that the similarity between domains is an important factor for AMD2G. To explore the
impact of different domains, we propose a simple domain similarity evaluation method. Specifi-
cally, we employ n-gram recall between domains as the similarity metric. Given that the n-gram
sets of domains A and B are An and Bn respectively, the similarity score of domain A relative to
domain B is:

SimilarityA2B =

P
An \BnP

Bn
(5.1)

The similarity of domain B to A SimilarityB2A can be computed in the same way. Similarity⇤2B
represents the degree of similarity between other domains and domain B. Theoretically, the
greater the similarity between the mixed data and target domain, the greater the benefits of data
augmentation to the target domain. Table 5.2 shows the average similarity scores between do-
mains. Note that all results are based on the training set after removing domain words. Expres-
sion paradigms usually consist of more than two words, so similarity scores based on 2-gram and
above can better show the degree of similarity between domains. An elevated similarity score
signifies a greater overlap of paradigms between the target domain and other domains.

5.1.4 Experiments
Datasets In this paper, we experiment on Chinese dialogue generation datasets from five do-
mains (i.e., Film, Music, Travel, Medical, and E-commerce). Film, Music, and Travel are all
from KdConv (Zhou et al., 2020) datasets. KdConv is a Chinese multi-domain conversation
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Domain Uni Bi Tri Quad

O2Music 77.67 32.41 15.73 7.80
O2Travel 67.01 25.42 12.30 5.62
O2Film 63.91 23.30 11.13 5.41

O2Ecomm 80.95 28.80 9.43 2.26
O2Medical 63.53 16.15 5.55 1.86

Table 5.2: Similarity scores between different domains. O2$Domain$ represents the average
similarity score of other domains to $Domain$. Uni, Bi, Tri, and Quad represent the recall rates
of 1-gram, 2-gram, 3-gram, and 4-gram respectively. All values are magnified by a factor of 100.

dataset comprising 4.5K conversations from three domains: Film, Music, and Travel. It con-
tains 86K dialogue with 19.0 turns on average. These conversations feature in-depth discussions
and natural transitions between multiple topics. The Film, Music, and Travel domains contain
1,500 training samples, 150 validation samples, and 150 test samples, respectively. MedDG is
a large-scale Chinese medical dialogue dataset, which contains 14,864 training samples, 2,000
validation samples, and 1,000 test samples, respectively (Liu et al., 2022b). E-commerce is a
large-scale e-commerce conversation dialogue dataset, containing 500,000 positive training ex-
amples, 1,000 validation examples, and 1,000 test examples, respectively (Zhang et al., 2018).
Similarly, we randomly selected 2,000 examples as the training set. In order to meet the low-
resource setting, we extract 2000 conversations as the training set for MedDG and E-commerce.
It is worth noting that we do not use the knowledge base.

Models To evaluate the effectiveness and robustness of our proposed method, we apply AMD2G
to different types of models, including encoder-decoder and decoder-only structures. For the
encoder-decoder structure models, we employ the basic Transformer (Vaswani et al., 2017)
structure as well as Chinese pre-trained language models such as CPT (Shao et al., 2021) and
the Chinese version of BART4 (Lewis et al., 2020). The decoder-only structure model used in
our experiment is the Chinese version of the pre-trained model GPT-25 (Radford et al., 2019).

Baselines For each model, we first compare AMD2G with training only on the original domain
training set and training on the mixed training set of all domains. Besides, we compared AMD2G
with two other multi-domain transfer methods: TS-NET (Peng et al., 2019) and DA-NET (Ma
et al., 2023b). TS-NET uses a teacher-student network mechanism to transfer knowledge from
other domains to the target domain, while DA-NET uses domain attention to realize knowledge
transfer. We apply different methods to two types of models. One is the pre-trained Chinese
model, BART, and the other is a language model that adopts the architecture of gated recurrent
neural networks (GRU), a variant of RNN (Chung et al., 2014).

4https://huggingface.co/fnlp/bart-base-chinese
5https://huggingface.co/uer/gpt2-chinese-cluecorpussmall

https://huggingface.co/fnlp/bart-base-chinese
https://huggingface.co/uer/gpt2-chinese-cluecorpussmall
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Implementation Details We implement our model and baselines using the Huggingface li-
brary (Wolf et al., 2020) and train baselines on a server with RTX A6000 GPUs (48 GB). We
consider at most 10 turns of dialogue context and 50 words for each utterance. The batch size is
32, the minimum decoding length is set to 10, the maximum decoding length is set to 128, the
warmup steps are 1,000, and the initial learning rate is 5e-5. We use the AdamW (Loshchilov
and Hutter, 2017) optimizer to update model parameters. The beam size and length penalty coef-
ficient are set to 6 and 1.0, respectively. The random seed of the sampled data is set to 12345678.
The random seed of the training process is set to 12345. We use GLoVe (Pennington et al.,
2014) to train 300-dimensional word vectors based on the training set for evaluation. The val-
ues of hyperparameters described above have been optimized on the validation set. We explore
low-resource scenarios using 5%, 10%, 20%, 30%, and 40% of the target corpus for training.

Evaluation metrics Following previous studies (Liu et al., 2022d; Li et al., 2017; Xu et al.,
2018; Liu et al., 2023c), we use both automatic and human evaluations to assess the performance
of models. Automatic evaluations include BLEU, Rouge, Dist, and Embedded metrics. Per-
plexity is also measured as an additional metric. For human evaluation, we request annotators
to score the generated responses with respect to three aspects: fluency, diversity, and relevance.
Each dimension is divided into three levels: 0, 1, and 2. In terms of fluency, 0 means no fluency,
1 means average fluency, and 2 means high fluency. Other evaluation dimensions are similar to
fluency. After collecting the assessments from annotators, the final score is the average of all
samples. Note that we use an improved version of BLEU (Yang et al., 2018) that is more in line
with human evaluation, and the calculated score will be lower than the original BLEU (Papineni
et al., 2002).
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Model Corpus BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Dist-1 Dist-2 Embed A/E/G AVE" PPL#

Film

Transformer
target 23.68 13.66 9.41 6.65 31.20 17.11 38.69 74.36 56.67 84.43 35.59 6.7480
mix 22.60 12.72 8.51 6.07 29.91 20.16 48.86 77.47 58.19 86.69 37.12 6.4009

AMD2G 29.67 16.96 11.92 8.70 33.52 22.92 51.18 78.64 59.94 86.87 40.03 6.2826

CPT
target 26.18 14.65 10.05 7.24 31.32 25.34 56.69 78.07 58.81 86.67 39.50 4.4767
mix 26.15 14.90 9.86 7.01 32.14 26.10 58.39 78.28 59.38 86.92 39.91 3.9037

AMD2G 28.78 16.92 13.20 8.31 33.49 25.04 57.02 80.91 60.15 87.36 41.12 4.0225

GPT-2
target 8.92 4.53 2.70 1.55 21.11 6.46 18.47 75.87 57.68 87.83 28.51 7.7622
mix 10.74 5.20 3.05 1.73 24.67 10.11 25.49 75.11 56.74 86.77 29.96 7.6871

AMD2G 13.89 6.90 3.80 2.61 23.42 11.30 32.54 78.89 59.23 87.90 32.05 7.6083

BART
target 26.52 14.81 10.17 7.50 31.25 29.39 60.04 76.93 58.41 86.75 40.18 3.9784
mix 25.64 15.23 11.06 8.46 32.73 29.47 61.73 78.32 59.93 86.39 40.90 3.4973

AMD2G 29.80 16.80 11.02 8.42 35.43 30.91 62.97 78.36 59.38 86.99 42.01 3.4282

Music

Transformer
target 32.49 18.20 12.53 9.45 34.04 13.65 30.98 77.17 61.17 86.58 37.63 4.8624
mix 36.37 21.23 13.98 9.72 39.19 17.12 39.06 81.93 65.84 88.75 41.32 4.2834

AMD2G 39.66 22.97 14.41 9.51 40.84 19.89 40.77 82.28 66.63 88.22 42.52 4.1936

CPT
target 33.52 19.00 11.76 7.67 36.78 18.01 43.09 81.77 64.14 89.76 40.55 3.6496
mix 36.13 20.71 13.42 9.03 38.57 20.97 48.82 81.95 65.10 88.98 42.37 3.3757

AMD2G 37.41 21.24 14.23 10.05 39.80 21.50 50.68 82.63 65.89 89.64 43.31 3.2297

GPT-2
target 27.13 14.37 9.40 6.67 32.74 13.42 31.68 79.34 62.54 88.21 36.55 4.0748
mix 32.83 17.96 11.81 8.27 34.10 14.71 34.45 79.28 62.99 87.21 38.36 3.5407

AMD2G 35.98 19.49 13.83 9.53 35.00 18.81 44.34 81.99 63.31 88.40 41.07 3.3353

BART
target 34.97 21.09 14.46 10.69 40.84 22.74 47.80 82.91 66.93 89.59 43.20 3.1210
mix 36.02 22.35 15.88 12.04 41.94 22.55 49.43 82.21 67.23 88.68 43.83 3.2139

AMD2G 38.25 23.99 15.81 14.62 43.46 23.53 53.89 82.59 68.09 89.69 45.39 3.0367

Travel

Transformer
target 34.63 27.17 22.57 19.43 47.26 11.55 25.24 80.44 70.83 86.92 42.60 2.3491
mix 36.03 28.52 23.65 20.58 46.85 12.34 31.90 83.90 72.15 90.22 44.61 2.3350

AMD2G 36.30 28.40 24.63 22.68 46.96 14.16 33.41 81.58 69.39 89.82 44.73 2.2389

CPT
target 26.80 20.07 15.67 12.84 47.25 19.19 43.12 83.59 72.76 89.25 43.06 1.8730
mix 35.17 28.41 24.14 21.19 51.19 17.41 40.83 85.24 74.29 90.56 46.84 1.8273

AMD2G 36.67 28.73 24.41 21.91 51.93 17.07 39.85 86.48 74.96 91.29 47.33 1.8032

GPT-2
target 32.41 24.07 19.70 16.59 39.80 11.50 28.15 79.60 68.55 87.45 40.78 3.6998
mix 36.90 28.48 24.03 21.52 39.27 14.57 34.07 80.81 68.73 88.66 43.70 3.1826

AMD2G 37.65 30.09 25.88 23.18 44.60 12.07 27.44 83.11 71.77 89.41 44.52 3.0171

BART
target 31.49 23.14 17.45 13.64 47.29 15.10 35.70 84.23 72.90 90.81 43.17 1.6796
mix 31.25 24.27 19.45 16.27 49.91 20.88 44.68 85.06 74.07 90.80 45.66 1.6497

AMD2G 36.23 28.93 24.18 20.72 51.57 19.85 41.85 84.75 74.34 91.25 47.37 1.6307

E-Commerce

Transformer
target 13.51 7.81 5.15 3.55 20.48 5.42 16.54 62.11 49.47 68.15 25.22 2.3847
mix 13.87 8.00 5.09 3.51 20.62 9.11 30.43 62.79 49.45 69.53 27.24 3.2139

AMD2G 14.92 9.71 6.49 5.97 21.84 9.37 31.70 64.67 51.54 69.17 28.54 2.3438

CPT
target 13.25 8.28 5.70 3.97 23.07 12.02 36.63 63.42 51.04 70.80 28.82 2.1533
mix 15.55 9.67 6.91 5.33 22.29 12.88 40.92 63.83 50.41 71.87 29.97 2.5117

AMD2G 16.54 8.72 5.66 4.05 24.17 12.69 41.93 64.38 50.97 71.71 30.08 2.1168

GPT-2
target 7.21 3.69 2.17 1.37 13.70 3.01 9.91 60.58 46.49 71.09 21.92 2.2633
mix 5.52 2.64 1.62 1.16 10.50 3.60 11.01 58.52 44.01 69.00 20.76 2.2301

AMD2G 7.44 3.13 1.46 0.76 12.50 5.36 18.34 60.49 44.77 71.60 22.58 2.2175

BART
target 14.94 9.04 6.10 4.18 21.95 13.23 38.38 62.88 50.43 70.25 29.14 2.0949
mix 15.60 10.56 8.23 6.99 22.30 13.78 40.75 62.39 49.92 71.05 30.16 1.9479

AMD2G 14.04 9.25 6.50 4.70 23.66 18.61 51.59 62.97 50.61 70.91 31.28 1.8750

Medical

Transformer
target 13.50 8.94 6.30 3.13 42.44 1.95 4.41 80.71 70.83 82.43 31.46 1.9193
mix 15.72 9.93 6.58 3.27 40.04 6.93 18.02 79.17 69.12 81.27 33.01 2.4432

AMD2G 18.50 11.33 7.24 3.98 37.81 9.39 25.10 78.39 67.17 81.52 34.04 1.8951

CPT
target 14.03 9.29 6.46 2.49 40.85 13.68 29.23 78.31 68.46 81.43 34.42 1.9884
mix 19.88 12.50 8.32 4.62 39.37 13.75 36.04 78.69 67.54 82.21 36.29 1.6892

AMD2G 21.90 13.69 8.48 4.37 39.99 14.34 37.87 79.40 68.18 82.78 37.10 1.6861

GPT-2
target 19.13 11.12 6.82 3.08 35.33 4.09 10.46 80.67 70.22 83.00 32.39 6.0602
mix 23.70 14.16 8.90 4.33 36.42 4.53 12.10 81.14 70.92 83.32 33.95 5.7444

AMD2G 23.94 15.02 8.30 4.17 36.67 4.78 14.60 82.45 71.45 83.23 34.46 5.7559

BART
target 13.05 8.84 6.35 3.01 42.69 8.22 15.05 79.97 70.55 82.21 32.99 1.9705
mix 16.67 11.12 7.79 4.43 42.77 11.72 27.45 79.74 69.65 82.79 35.41 1.9147

AMD2G 22.97 12.29 7.94 4.56 41.22 12.29 29.75 80.97 68.91 83.04 36.39 1.7770

Table 5.3: Overview of results. Bold indicates the best result. target represents the result of
training on the corresponding domain training set. mix represents the result corresponding to the
mixed training set of all domains. AMD2G represents the result based on the AMD2G frame-
work. AVE represents the average performance. PPL refers to perplexity.
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Figure 5.3: The first 5 pictures show the trend of average performance and the trend of PPL as the
training data changes in five domains. The last one is n-gram similarity score (i.e., Uni, Bi, Tri,
and Quad) and average performance gain trend (i.e., DeltaScore) of models based on AMD2G
compared to direct training on the target domain corpus. To highlight the trend, we multiply the
DeltaScore value by 1000.

5.1.5 Results and Analysis
Overall Results Table 5.3 reports the experimental results of AMD2G in five domains. Com-
pared with training directly on the target domain training set, AMD2G demonstrates absolute ad-
vantages in five domains. Specifically, the average performance of the four models has improved
by 1.85% in the e-commerce domain, 2.69% in the medical domain, 2.86% in the film domain,
3.59% in the music domain, and 3.58% in the travel domain, compared with training directly
in the target domain. Figure 5.3 shows that the performance of some models using 30% target
domain training corpus has achieved competitive performance based on the AMD2G framework
compared to training on the target domain training set. When using 40% target domain training
corpus, the performance based on AMD2G is equivalent to training directly on the target domain
training set. These results fully demonstrate the effectiveness of AMD2G.

According to Table 5.2, even though the two domains are quite different, they still share
some expression paradigms, which accounts for why the AMD2G framework is effective. The
first stage of the AMD2G framework allows the model to learn shared paradigms between dif-
ferent domains, and the second stage allows the model to learn domain-specific features, which
can maximize the learning of domain-agnostic features and reduce the mutual influence between
domain features. Compared with the performance of training when mixing all domain corpora,
the performance of models based on AMD2G exhibits absolute advantages, which confirms that
features between domains can interfere with each other and has a negative impact on model per-
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Model Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Dist-1 Dist-2 Embed A/E/G AVE" PPL#

Film

BART TS-NET 27.75 14.43 9.76 6.55 33.94 28.45 61.44 78.22 58.42 85.77 40.47 5.6721
AMD2G 29.80 16.80 11.02 8.42 35.43 30.91 62.97 78.36 59.38 86.99 42.01 3.4282

GRU DA-NET 15.55 11.01 7.38 6.33 22.44 11.07 23.08 67.43 54.76 83.55 30.26 25.6935
AMD2G 16.70 13.52 8.43 8.01 25.38 12.61 25.78 69.35 56.05 84.42 32.02 21.3866

Travel

BART TS-NET 37.22 20.99 15.22 12.68 40.87 22.45 51.09 80.67 66.53 87.02 43.47 5.0060
AMD2G 38.25 23.99 15.81 14.62 43.46 23.53 53.89 82.59 68.09 89.69 45.39 3.0367

GRU DA-NET 17.86 14.55 10.22 8.55 27.69 14.58 27.82 71.84 56.62 85.33 33.51 12.6600
AMD2G 19.22 15.62 12.64 10.33 27.71 16.20 28.44 73.05 57.22 85.44 34.59 10.3700

E-Commerce

BART TS-NET 13.69 10.04 6.72 4.55 21.79 16.93 29.02 60.44 49.79 69.94 28.29 1.9044
AMD2G 14.04 9.25 6.50 4.70 23.66 18.61 51.59 62.97 50.61 70.91 31.28 1.8750

GRU DA-NET 9.33 5.66 3.78 2.28 16.64 4.57 15.77 60.54 48.72 66.12 23.34 7.7743
AMD2G 11.62 6.44 4.44 3.22 20.09 5.67 17.66 60.62 49.90 67.03 24.67 7.1090

Table 5.4: The performance of AMD2G compared with other baselines in film, travel, and e-
commerce domains.

formance. We will discuss in detail the impact of domain similarity on model performance in the
next section. Table 5.4 reports the performance comparison of AMD2G and other baselines. We
can observe that AMD2G has certain performance advantages compared to TS-NET and DA-
NET. TS-NET uses a distillation mechanism to transfer domain knowledge, which relies on a
large amount of target domain data. Low resource settings will severely impact distillation re-
sults. DA-NET utilizes a dynamic attention mechanism for multi-domain feature fusion. While it
preserves domain-specific knowledge, it tends to overlook domain-independent features, thereby
hindering its ability to effectively utilize features from other domains. The AMD2G adopts a two-
stage strategy to retain domain-agnostic and domain-specific features, and domain-independent
features can be adapted to the target domain and achieve data enhancement effects.

Impact of Domain Similarity Domain similarity is a key impact factor for model perfor-
mance. We perform further experiments to analyze the impact of similarity between domains
on model performance. The last one in Figure 5.3 shows the distribution of domain similarity
based on n-gram and the average performance gain of models based on AMD2G. We find that
the similarity based on 1-gram does not accurately reflect the similarity relationship between do-
mains because it is greatly affected by the unified placeholder. In fact, scores based on n-grams
with n > 2 better reflect the similarity of domains, because the common expression paradigm is
based on more than two words. According to the 4-gram similarity score, the data enhancement
effect based on the AMD2G is more obvious for domains with high similarity scores to a certain
extent. The more similar the domains are, the more helpful the knowledge provided by other do-
mains will be to the target domain. An exception is the medical domain. Although the similarity
score based on 4-gram is low, models based on the AMD2G framework have achieved a certain
degree of gain. The domain characteristics of the medical domain are relatively obvious. After
de-domaining, the expression paradigms can be aligned to a certain extent. This can be derived
from the similarity scores based on n-grams. This is why the AMD2G framework can work in
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the medical domain.

Impact of Dataset Size In order to explore the impact of data set size, we conduct experiments
on 5%, 10%, 20%, 30%, 40%, and 100% of the training set, respectively. Note that 100% of
the training set refers to the total amount of data under low resources. Figure 5.3 reports the
changing trends of model performance with dataset size in five domains. We can observe that the
average performance (i.e., AVE) basically increases gradually as the data size increases, and the
PPL decreases as the data set size increases. Models are more sensitive to the size of the data set
under low resource conditions. Even a small increase in the data set will make the performance of
models increase. The increase in the data set will allow models to learn more different examples,
making models cover more test examples.

Model Corpus E-Commerce Film Travel
Fluency Relevance Diversity Fluency Relevance Diversity Fluency Relevance Diversity

BART
target 0.377 0.833 0.062 0.579 0.875 0.083 1.034 0.920 0.116
mix 0.464 1.025 0.085 0.662 0.965 0.098 1.142 0.946 0.104

AMD2G 0.522 1.150 0.113 0.784 1.110 0.115 1.206 1.012 0.133

GPT-2
target 0.311 0.753 0.065 0.466 0.782 0.076 0.972 0.938 0.096
mix 0.472 0.975 0.086 0.673 0.950 0.120 1.133 0.955 0.110

AMD2G 0.514 1.040 0.082 0.762 1.132 0.112 1.174 1.102 0.128

Table 5.5: The results of the human evaluation in e-commerce, film, and travel domains.

Model Method E-Commerce Film Travel
Fluency Relevance Diversity Fluency Relevance Diversity Fluency Relevance Diversity

BART
TS-NET 0.456 0.814 0.065 0.677 1.067 0.108 1.110 0.864 0.105
AMD2G 0.522 1.150 0.113 0.784 1.110 0.115 1.206 1.012 0.133

GRU
DA-NET 0.237 0.755 0.052 0.508 0.833 0.117 0.456 0.867 0.088
AMD2G 0.307 0.774 0.069 0.553 0.912 0.099 0.542 0.955 0.086

Table 5.6: Comparison with the human evaluation of baselines in e-commerce, film, and travel
domains.

Human Evaluation Results We conduct the human evaluation of BART and GPT-2 on three
domains to further confirm the effectiveness of AMD2G. To evaluate the consistency of the re-
sults assessed by annotators, we employ Pearson’s correlation coefficient (Sedgwick, 2012). This
coefficient is 0.25 on diversity, 0.68 on relevance, and 0.77 on fluency, with p < 0.0001 and below
0.001, which demonstrates high correlation and agreement. The results of the human evaluation
are shown in Table 5.5. Compared to training directly in the target domain and on mixed corpora,
models based on the AMD2G enjoy a significant advantage in relevance and diversity. Specif-
ically, models based on AMD2G enjoy an average advantage of 20.40% in fluency, 24.1% in
relevance, and 3.1% in diversity in three domains compared with models trained directly in the
target domain. Compared with models trained on mixed corpora, models based on AMD2G en-
joy an average advantage of 6.9% in fluency, 10.2% in relevance, and 1.3% in diversity in three
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domains. The experimental results show the effectiveness of the AMD2G framework. AMD2G
can effectively reduce the mutual interference of domain features and strengthen the learning of
domain-agnostic features. Table 5.6 reports the performance comparison of AMD2G and other
baselines. The human results show that the AMD2G framework still outperforms the TS-NET
and DA-NET. Specifically, the model’s average performance, based on AMD2G, is 9.8% higher
than TS-NET and 4.3% higher than DA-NET.

5.1.6 Sum-Up
We propose a simple and effective data augmentation framework, AMD2G, for multi-domain
low-resource dialogue generation. The domain characteristics of the corpus can be removed
through domain dictionaries constructed by LLMs. Models trained on a domain-independent
corpus can reduce the interference of different domain features when models learn domain-
independent features. Domain adaptation training can adapt the learned domain-independent
features to the target domain. Experiments on four models in five domains demonstrate the ef-
fectiveness of the AMD2G framework. Compared with other baselines, the AMD2G framework
has obvious advantages. AMD2G provides an alternative solution for low-resource multi-domain
dialogue generation.
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5.2 GNN-Based Parameter-Efficient Fine-Tuning Inspired by
Information Flow

This section corresponds to the following work:

Shuzhou Yuan, Ercong Nie, Michael Färber, Helmut Schmid, and Hinrich Schuetze.
2024. GNNavi: Navigating the Information Flow in Large Language Models by
Graph Neural Network. In Findings of the Association for Computational Linguis-
tics: ACL 2024, pages 3987–4001, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Declaration of Co-Authorship. I conceived the idea of drawing inspiration from the informa-
tion flow theory for understanding the mechanism of in-context learning paradigms and utilizing
the Graph Neural Network (GNN) to explicitly facilitate the information flow process in the fine-
tuning. Based on this, Shuzhou Yuan designed the GNN-based parameter-efficient fine-tuning
method, dubbed GNNAVI . Shuzhou Yuan implemented GNNAVI with GPT2-XL and Llama2
models and experimented on a series of language understanding tasks. I ran several baseline
experiments. Shuzhou Yuan and I worked on drafting the manuscript together. Michael Färber,
Helmut Schmid, and Hinrich Schütze are supervisors and provided much valuable advice and
feedback.
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Summary of This Section
Large Language Models (LLMs) exhibit strong In-Context Learning (ICL) capabilities when
prompts with demonstrations are used. However, fine-tuning still remains crucial to further en-
hance their adaptability. Prompt-based fine-tuning proves to be an effective fine-tuning method
in low-data scenarios, but high demands on computing resources limit its practicality. We address
this issue by introducing a prompt-based parameter-efficient fine-tuning (PEFT) approach. GN-
NAVI leverages insights into ICL’s information flow dynamics, which indicate that label words
act in prompts as anchors for information propagation. GNNAVI employs a Graph Neural Net-
work (GNN) layer to precisely guide the aggregation and distribution of information flow during
the processing of prompts by hardwiring the desired information flow into the GNN. Our experi-
ments on text classification tasks with GPT-2 and Llama2 show that GNNAVI surpasses standard
prompt-based fine-tuning methods in few-shot settings by updating just 0.2% to 0.5% of param-
eters. We compare GNNAVI with prevalent PEFT approaches, such as prefix tuning, LoRA, and
Adapter in terms of performance and efficiency. Our analysis reveals that GNNAVI enhances
information flow and ensures a clear aggregation process.

5.2.1 Motivation
Large language models (LLMs) show remarkable In-Context-Learning (ICL) capabilities by
learning from prompts with demonstrations (Wan et al., 2023; Sun et al., 2023; Patel et al., 2023;
Mekala et al., 2023; Ko et al., 2023), with the exponential growth in model sizes. However,
fine-tuning LLMs still remains essential for further enhancing their adaptability (Zhang et al.,
2023b). Prompt-based fine-tuning (Schick and Schütze, 2021a; Ma et al., 2024), adopting ob-
jectives that simulate the language modeling process, emerges as a viable technique, particularly
in low-data settings (Gao et al., 2021). Yet, the substantial computational demands of Full-
Parameter Fine-Tuning (FPFT), which updates billions of parameters, pose a practical challenge.
In fact, optimizing a relatively small subset of an LLM’s parameters can significantly improve
its performance (Ding et al., 2023), paving the way for Parameter-Efficient Fine-Tuning (PEFT)
methods. These methods include Adapter (Houlsby et al., 2019), Prompt-Tuning (Lester et al.,
2021), Prefix Tuning (Li and Liang, 2021), and LoRA (Hu et al., 2022). They offer alternatives
to FPFT, but are often not tailored to the prompt-based fine-tuning of LLMs.

Recent advances in understanding the ICL mechanism offer a new avenue for PEFT of LLMs.
ICL’s success in leveraging few-shot demonstrations and prompts (Brown et al., 2020) has moti-
vated the adoption of prompt-based fine-tuning for moderately sized language models in a few-
shot learning manner (Ma et al., 2023a; Schick and Schütze, 2021c). Recognizing the specific
features of fine-tuning LLMs within the framework of ICL, we propose GNNAVI , a novel PEFT
method designed expressly for prompt-based learning. Our method draws inspiration from re-
cent insights into the underlying process of ICL from an information flow perspective, particu-
larly the role of label words in the prompt (Wang et al., 2023c). Label words act as anchors with
two functions: aggregating information from context words and directing this information to the
last token for accurate predictions. GNNAVI incorporates this understanding through the inte-
gration of a Graph Neural Network (GNN) layer (Kipf and Welling, 2017; Hamilton et al., 2017)
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Figure 5.4: Visualization of Full Parameter Fine-tuning (FPFT) and GNNAVI from the perspec-
tive of information flow (top words to bottom words). Without GNNAVI, tokens interact with
every preceding word in FPFT, leading to confusion in information flow. Conversely, in GN-
NAVI, label words aggregate information from preceding words ( blue path ), and the final token
aggregates information from the label words ( pink path ), resulting in a clearer information ag-
gregation process.

into LLMs, optimizing the prompt-based fine-tuning process by navigating the information flow
within prompts, as visualized in Figure 5.4. Following the paths of information flow, we insert a
GNN layer into the deep layers6 of the LLM. We treat the input text as a graph, where each token
serves as a node, and connect these nodes according to the paths of information flow.

As a PEFT method, GNNAVI adopts a lightweight fine-tuning strategy, updating only the
parameters of the GNN layer. Experimenting with few-shot training examples on GPT2-XL
(Radford et al., 2019) and Llama2 (Touvron et al., 2023a), GNNAVI achieves remarkable results
with just 0.2% of the trainable parameters of the full model, consistently outperforming FPFT
and other PEFT methods across various classification tasks. Additionally, we analyze the at-
tention interaction between tokens and find that GNNAVI demonstrates a more stable and clear
information aggregation process compared to FPFT.

In summary, our contributions are:

6We use “deep layers” to refer to the last few layers of the LLM. For instance, in GPT2-XL, there are 48 layers,
with the last 12 layers considered as deep layers in our work.
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1. We propose a novel PEFT method, GNNAVI, inspired by the information flow perspective
of LLMs. GNNAVI effectively navigates the information aggregation process in LLMs.

2. We apply GNNAVI to text classification tasks with few-shot training examples, outper-
forming baselines while updating only 0.2% to 0.5% of parameters.

3. Our work sheds light on the application of GNNs in NLP and provides novel insights for
future research. To the best of our knowledge, we are the first to utilize GNNs to enhance
the performance of LLMs from the information flow perspective.

5.2.2 Background

Parameter-Efficient Fine-Tuning (PEFT) PEFT focuses on enhancing language model per-
formance on downstream tasks by optimizing a small number of parameters, instead of fine-
tuning all parameters (Ding et al., 2023). Various PEFT strategies have been explored. Addition-
based methods only train modules or parameters added to the model, such as Adapter (Houlsby
et al., 2019), Prompt tuning (Lester et al., 2021), and Prefix tuning (Li and Liang, 2021). Speci-
fication-based methods selectively fine-tune specific parameters in the original model while keep-
ing the remainder frozen, such as BitFiT (Ben Zaken et al., 2022). Reparameterization-based
methods transform existing parameters into a more parameter-efficient form, such as LoRA (Hu
et al., 2022). Recent advancements in PEFT research have increasingly prioritized memory ef-
ficiency, aiming to enable the training of LLMs with minimal computational resources, such as
MeZO (Malladi et al., 2023) and HiFT (Liu et al., 2024). Our proposed PEFT method is de-
signed specifically for LLMs and draws upon the intricacies of how LLMs process and learn
from prompts.

GNN for NLP GNNs are predominantly utilized in NLP tasks involving structural input,
such as graph-to-text generation (Gardent et al., 2017) and graph-enhanced question answering
(Zhang et al., 2022b). Previous approaches employ GNNs to encode complex graph and node
representations. For instance, Koncel-Kedziorski et al. (2019) introduced Graph Transformer,
which extends graph attention networks (Veličković et al., 2018) for encoding scientific graph
inputs, while Li et al. (2021) utilize GNNs to encode knowledge graphs and align them with text
embeddings from pretrained language models. Additionally, GNNs serve as auxiliary tools for
pretrained language models to encode complex structural information for AMR-to-text genera-
tion (Ribeiro et al., 2021). Unlike prior work, we leverage GNNs for information aggregation
based on the perspective of information flow.

5.2.3 Methodology

In this subsection, we elaborate on the details of our approach. We begin by detailing the GN-
NAVI architecture, followed by the task formulation.
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Figure 5.5: Visualization of GNNAVI with an example of sentiment analysis, where label words
and the last token are highlighted in blue and pink, respectively. a) The GNN layer is integrated
into a decoder-only LLM. The LLM processes a prompt containing demonstrations and generates
the next token as the prediction. b) The input text is transformed into a graph, with tokens as
nodes and information flow paths as edges. c) Visualizing the working mechanism of the GNN:
Node representations are updated by aggregating information from incoming nodes. To maintain
simplicity, not all nodes are listed.

5.2.3.1 Architecture of GNNAVI

Intuition Wang et al. (2023c) demonstrated that the working mechanism of LLM follows spe-
cific paths of information flow. The label words in the input prompt serve two roles for the final
predictions: acting as information aggregators by gathering information from their preceding
words and propagating the aggregated information to the last token position where the predic-
tion is generated. Building upon their insights, we posit that navigating the flow of information
aggregation can enhance both the efficiency and effectiveness of LLMs. Leveraging the GNN’s
proficiency in information aggregation at the graph level, we explore LLMs from a graph theory
perspective and utilize GNN as a tool to guide the information flow.

Working Mechanism We illustrate the working mechanism of GNNAVI in Figure 5.5. For
example, in a sentiment analysis task, the prompt comprises one demonstration from each class
and the text to be classified. An LLM processes this prompt layer by layer. The GNN layer is
inserted after the l-th decoder layer of the LLM7. Receiving the token representations from the
l-th layer, the GNN layer learns node representations by aggregating information from incoming
nodes. Subsequently, the node representations are propagated to the next layer in LLM as hidden

7In our preliminary experiments, GNNAVI performs optimally when the GNN layer is inserted in the last quarter
of the layers in LLM. Thus, we add the GNN layer after the 42nd layer of GPT2-XL and after the 28th layer of
Llama2-7b in our experiments. A detailed analysis is conducted in §5.2.6.
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states. The nodes are connected following the paths of information flow. As depicted in Figure
5.5(b), the label words ‘Positive’ and ‘Negative’ aggregate information from their preceding
tokens and pass the information to the last token ‘:’ of the prompt. In case the label word is
tokenized into subtokens, we use the first subtoken to serve as the label word, following previous
work (Zhao et al., 2021; Wang et al., 2023c). We freeze the pretrained parameters of the LLM
during training and update only the parameters in the GNN layer.

Graph Neural Network The graph neural network aggregates information from incoming
nodes to model graph and node representations by message passing. To formulate an NLP task
on a graph level, we consider the input text as a graph. We define a directed graph G as a triple
(V , E ,R) with a set of nodes V = {v1, . . . , vn} (one node for each token), a set of relation types
R8, and a set of edges E of the form (v, r, v0) with v, v0 2 V , and r 2 R. Each node vi is associ-
ated with a feature vector xi, which is the token representation of the i-th token in the l-th layer.
In Figure 5.5, for instance, the first token ‘Review’ is connected with the label token ‘Positive’.
This edge is represented by the triple (Review, aggregate,Positive), where aggregate denotes
an edge directed towards a label node.

The node representations in the GNN layer are updated by aggregating the information from
incoming nodes. The aggregation algorithms vary across different GNN architectures. For ex-
ample, the learning process of Graph Convolutional Network (GCN) (Kipf and Welling, 2017)
is formulated as:

hv = �

0

@W
X

v02N(v)

h(l)
v0

|N(v)|

1

A (5.2)

where hv denotes the updated node representation of v, h(l)
v0 denotes the token representation of

its neighbouring nodes from l-th decoder layer, � is the activation function, W is the trainable
parameter of GNN, N(v) includes all the neighbouring nodes of v.

We also include another GNN architecture, GraphSAGE (Hamilton et al., 2017), in our stud-
ies, which involves a more complex learning process:

hv = �
⇣
W

⇣
h(l)
v � AGG({h(l)

v0 , 8v0 2 N(v)})
⌘⌘

(5.3)

The concatenation function � concatenates aggregated information with the node’s current rep-
resentation, and the aggregation function AGG compiles message passing from incoming nodes
using techniques such as mean, pool, and LSTM.9 We visualize the information aggregation
process of GNN in Figure 5.5(c).

5.2.3.2 Task Formulation

In our work, we implement prompt-based fine-tuning for text classification tasks. Our goal is to
predict the correct class given a few examples. We reformulate the task as a language modeling
problem. Let M be a language model with vocabulary V , and let L be a set of label words. The

8In our work, we only consider one relation type: the directed edge from node v to node v0.
9We apply mean aggregation to GraphSAGE in this work.
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training set T consists of pairs (s, l), where s is a sequence of tokens from the vocabulary V and
l is a label word from the set L. In a sentiment analysis task, for instance, we define a pattern
P(s, l) which associates a text s =‘Nice performance’ and a label word l =‘Positive’ as follows:

Review: Nice performance. Sentiment: Positive

For a k-class classification task, we sample one demonstration per class from the training set T ,
and concatenate them with the text s to be classified to form the prompt X(s):

X(s) = P(s1, l1)� . . .� P(sk, lk)� P(s, ") (5.4)

� denotes the concatenation of the input demonstrations and " is the empty string. A more
intuitive example is shown in Figure 5.5. The language model reads the prompt X(s) and predicts
the next token l, which is the label assigned to s. M is initialized with pretrained parameters �,
and fine-tuned by minimizing the cross-entropy loss:

` = �
X

(s,l)2T

log p�(l|X(s)) (5.5)

p�(., .) returns the probability which M assigns to the correct label l. In our work, we randomly
select one demonstration per class to form the prompt and remove it from T . The training
examples are then sampled from the remaining samples in T .

5.2.4 Experiments
Datasets We implement text classification tasks using five commonly used datasets from dif-
ferent domains, including SST-2: Stanford Sentiment Treebank Binary for sentiment analysis
(Socher et al., 2013); EmoC: EmoContext for 4-label emotion classification (Chatterjee et al.,
2019); TREC: Text REtrieval Conference Question Classification (TREC) for question type
classification containing 6 types (Li and Roth, 2002; Hovy et al., 2001); Amazon: binary classi-
fication for Amazon reviews (McAuley and Leskovec, 2013); AGNews: AG’s news topic clas-
sification dataset for topic classification with 4 labels (Zhang et al., 2015).

Models As GNNAVI is built on the basis of decoder-only LLMs, we select two large language
models, both with over 1 billion parameters, and equip them with GNNAVI . Specifically, we
choose GPT2-XL with 1.6 billion parameters (Radford et al., 2019) and Llama2 with 7 billion
parameters (Touvron et al., 2023a). For the GNN layer, we opt for GCN and GraphSAGE, de-
noted as GNNAVI-GCN and GNNAVI-SAGE in the experiments. To integrate GNNAVI with
GPT2-XL and Llama2, we modify their source codes from Huggingface (Wolf et al., 2020) and
utilize GNN models provided by PyTorch Geometric (Fey and Lenssen, 2019).

Baselines We adopt the following baselines for the experiments:
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ICL one-shot per class: In-context learning (ICL) follows the scenario where the LLM is
initialized with pre-trained parameters and instructed by demonstrations to perform text classifi-
cation tasks. None of the model parameters are updated. We sample one demonstration per class
to form the prompt. The demonstrations used to form the prompt are consistent with those used
for other methods under the same random seed.

ICL few-shot per class: To compare with the low-data fine-tuning setting, we implement
ICL with 5 additional shots per class as the demonstrations. This setting is comparable to a
training set with a size of 5 samples per class. Due to the limited input length of GPT2-XL,
AGNews and Amazon are set to 4 additional shots per class.

Low-Rank Adaptation (LoRA): LoRA is a PEFT method that reduces the number of train-
able parameters by injecting trainable rank decomposition matrices into each layer of the LLM
(Hu et al., 2022). We implement LoRA using the Python library PEFT (Mangrulkar et al., 2022).

Prefix-tuning (Prefix): Prefix-tuning utilizes a soft-prompt strategy, incorporating virtual
tokens into the LLM and updating only the parameters of the virtual tokens (Li and Liang, 2021).
We implement prefix-tuning using the PEFT library (Mangrulkar et al., 2022). The number of
virtual tokens is set to maintain a comparable size of trainable parameters as for GNNAVI .

Adapter: We insert a standard adapter module after the feed-forward sub-layer of each layer
in the LLM (Houlsby et al., 2019). The adapter module is added using AdapterHub (Pfeiffer
et al., 2020a; Poth et al., 2023).

Full Parameter Fine-tuning (FPFT): Full parameter fine-tuning is implemented as a strong
baseline, where all the model parameters are updated during the training process.

Experimental Setting The prompt is designed following the template in Equation 5.4. We
take one demonstration per class to form the prompt and append the sample to be predicted at
the end of the prompt. The templates for the prompt are presented in Table 5.7. [S] denotes the
demonstration selected to form the prompt, [L] represents the label word of the demonstration,
and [Si] denotes the sample to be predicted.

Task Template Label Words

SST-2 Review:[S] Sentiment: [L] Review:[Si] Sentiment: Positive, Negative

EmoC Dialogue: [S] Emotion: [L] Dialogue:[Si] Emotion: Happy, Sad,
Angry, Others

TREC Question: [S] Answer Type: [L] Question: [Si] Answer Type:
Abbreviation, Entity,
Description, Person,
Location, Number

Amazon Review: [S] Sentiment: [L] Review: [Si] Sentiment: Positive, Negative

AGNews Article: [S] Answer: [L] Article: [Si] Answer: World, Sports,
Business, Technology

Table 5.7: Template for prompt.

Following a few-shot learning setting, we experiment with different numbers of training sam-
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ples, namely 5, 10, 20, 50, 100, and 200 samples per class. The training samples are randomly
selected from the original training set. Another 1000 samples from the original training set are
sampled as the validation set, and 1000 samples from the original test set are used for evalua-
tion.10 The accuracy on the validation set is employed to identify the best-performing model,
which is subsequently evaluated on the test set. We report the average accuracy over five random
seeds. We present the hyperparameters for GNNAVI and other baselines in Table 5.8. The mod-
els were trained using NVIDIA A100-SXM4-40GB GPUs. Due to limited resources, the batch
size was set to 1, and full parameter fine-tuning of Llama2 was implemented using 8 bits. We
observed that for Llama2, GNNAVI and other PEFT methods were sensitive to the selection of
prompts with very few training samples, and thus could not achieve optimal performance. To ad-
dress this, we replaced these results by using another random seed to change the demonstrations
in the prompt.

Hyperparameter GNNAVI Prefix Adapter LoRA FPFT
learning rate 1e-2 1e-2 5e-5 5e-4 5e-5
optimizer Adam Adam AdamW AdamW AdamW
epochs 50 50 50 50 50
early Stop 15 15 15 15 15
random seed [0, 42, 312, 411, 412, 421, 520, 1218]
virtual tokens - 40(GPT2), 150(Llama2) -

Table 5.8: Hyperparameters for GNNAVI and baselines.

5.2.5 Results
We report the results with 5 and 200 training examples in Table 5.9, which reflect the performance
under the scenarios where only limited training examples are available and sufficient training
examples are provided, respectively. Full results are presented in Appendix F.

Overall Performance Observing the results of GPT2-XL, GNNAVI remarkably rivals ICL,
FPFT, and other parameter-efficient baselines. Under the low-data setting of 5 training examples,
both GNNAVI-GCN and GNNAVI-SAGE outperform FPFT by over 13%, achieving higher ac-
curacy than other PEFT methods by 0.4% to 21%. Increasing the number of training examples to
200, the average performance of GNNAVI improves to 89.64% and outperforms other baselines.

Similar to GPT2-XL, GNNAVI achieves the best performance with Llama2 among all the
baselines. With only 5 training examples, GNNAVI-SAGE achieves 2.77% higher average accu-
racy than FPFT. Compared with other PEFT methods, GNNAVI shows higher average accuracy
from 1.8% to 35%. And with 200 training examples, GNNAVI-GCN achieves 92.24% average
accuracy, outperforming FPFT, Prefix-tuning, Adapter, and LoRA.

10The original test set of SST-2 contains less than 1000 samples, so we keep the original test set for evaluation.
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Method #Param SST-2 EmoC TREC Amazon AGNews Average #Param SST-2 EmoC TREC Amazon AGNews Average

GPT2-XL Llama2

k = 0

ICL - 55.44 6.48 54.68 53.32 72.12 48.41 - 67.55 9.60 70.36 94.98 84.14 65.33

k = 5

ICL - 63.17 6.30 57.68 53.67 50.43 46.25 - 86.93 20.18 45.72 92.30 80.16 65.06

LoRA 2.5M 91.98 50.60 75.20 88.80 85.20 78.36 4.2M 95.42 64.20 88.40 91.80 86.60 85.28
Prefix 6.1M 59.13 73.46 32.92 60.00 75.40 60.18 39.3M 50.96 58.56 21.36 49.36 25.78 41.20

Adapter 15.4M 79.82 76.00 79.60 91.45 81.25 81.62 198M 50.92 84.05 18.80 49.45 24.80 45.60
FPFT 1.6B 62.13 61.30 65.28 73.00 80.82 68.51 6.7B 94.63 61.92 81.72 95.86 87.58 84.34

GNNAVI-GCN 2.6M 84.31 75.48 76.72 90.90 83.16 82.11 16.8M 94.56 78.30 83.2 94.00 86.25 86.63
GNNAVI-SAGE 5.1M 81.95 78.70 77.92 88.66 82.88 82.02 33.6M 92.91 80.12 80.80 95.66 86.06 87.11

k = 200

LoRA 2.5M 90.83 80.80 90.80 82.00 86.20 86.13 4.2M 91.29 86.80 93.60 95.80 90.40 91.32
Prefix 6.1M 50.92 80.18 69.80 59.80 79.08 67.96 39.3M 48.35 81.72 45.68 52.28 27.54 51.11

Adapter 15.4M 88.65 80.70 96.60 92.30 89.80 89.61 198M 50.92 85.05 88.20 49.45 81.50 67.57
FPFT 1.6B 68.97 73.70 80.16 74.82 85.34 76.60 6.7B 95.64 79.90 96.76 96.12 91.44 91.97

GNNAVI-GCN 2.6M 90.67 78.82 91.88 92.94 89.20 88.70 16.8M 95.36 82.85 95.50 96.45 91.05 92.24
GNNAVI-SAGE 5.1M 90.46 82.68 92.32 93.44 89.28 89.64 33.6M 95.30 81.94 94.76 95.96 90.68 91.73

Table 5.9: Results of different training methods (accuracy). k denotes the number of training
examples per class, #Param denotes the number of trainable parameters. The best scores are
highlighted with bold.

SST-2 EmoC TREC Amazon Agnews

GPT2-XL 4.7⇥ 6.3⇥ 4.1⇥ 3.9⇥ 3.4⇥
Llama2 4.3⇥ 2.4⇥ 1.6⇥ 1.4⇥ 1.2⇥

Table 5.10: The ratio by which the training process is accelerated for one training epoch for
GNNAVI-GCN compared to FPFT.

Efficiency Analysis GNNAVI significantly reduces the number of trainable parameters com-
pared to the baselines for both GPT2-XL and Llama2. GNNAVI-GCN for GPT2-XL achieves
the highest average accuracy with 5 training examples containing only 2.5 million trainable pa-
rameters, which is 615 times smaller than FPFT, six times smaller than Adapter, twice smaller
than Prefix, and similar to LoRA. As for Llama2, GNNAVI saves over 6.6 billion trainable param-
eters compared to FPFT and achieves better results. GNNAVI-GCN also updates fewer parame-
ters than Prefix and Adapter. LoRA contains fewer trainable parameters than GNNAVI-GCN in
Llama2, but the performance of LoRA cannot compete with GNNAVI-GCN and GNNAVI-
SAGE . Table 5.10 shows that by saving a significant amount of training parameters, GNNAVI-
GCN speeds up the training process by a factor of up to 6 compared to FPFT.

Influence of Training Examples Adding more training examples improves the accuracy for
GNNAVI and most baselines. As depicted in Figure 5.6, GNNAVI consistently outperforms
other methods as the number of training examples increases. While other methods also show
improvement with more training examples, the extent of improvement is not as consistent as for
GNNAVI, particularly for Prefix and Adapter.

Figure 5.7 shows the performance of GNNAVI for the different tasks as a function of the
number of training examples. We observe that the effect of adding training examples is similar
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LoRA Prefix Adapter FPFT GNNAVI-GCN GNNAVI-SAGE

GPT2-XL Llama2

Figure 5.6: Results of average accuracy with different numbers of training examples. The x-axis
denotes the number of training examples per class.

for both GPT2-XL and Llama2. Notably, adding more training examples yields significant im-
provements, especially in low-data settings (e.g. with 10, 20, and 50 training examples) where
GNNAVI shows a substantial improvement, except for EmoC. However, the significance dimin-
ishes when more than 50 training examples are provided, the improvement is not as pronounced
here as in low-data settings.

5.2.6 Ablation Study
In this subsection, we delve into the influence of the position where the GNN layer is inserted
in the LLM and investigate the effects of removing one of the information flow paths on perfor-
mance. All of these studies are conducted using GNNAVI-SAGE with 5 training samples per
class under the experimental settings outlined in §5.2.4.

Position of GNN Layer The position where the GNN layer is inserted significantly impacts the
model’s performance. Figure 5.8 illustrates the performance of GNNAVI when the GNN layer is
inserted at different locations in GPT2-XL. With the exception of EmoC, all tasks exhibit lower
performance when the GNN layer is added in the first 10 layers of GPT2-XL. Performance im-
proves as the GNN is added in deeper layers, reaching peak accuracy around the 44th layer.
Subsequently, accuracy declines until the last layer. This trend may stem from the gradual initi-
ation of the information flow process in the early layers of LLM, where the GNN’s influence is
limited due to insufficient token interaction. Conversely, in the final layers, the information flow
process is nearly complete, rendering it too late for the GNN to guide effectively. Despite vari-
ations in performance changes across tasks, the average performance suggests that the optimal
placement for the GNN layer is between the 38th and 42nd layers for GPT2-XL.
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Figure 5.7: The improvement gained by adding training examples for GNNAVI-SAGE , com-
pared to using 5 training examples per class.

Figure 5.8: Performance Comparison with GNN inserted at various positions in GPT2-XL.

Removal of Information Flow We conduct an ablation study to investigate how removing
specific information flow paths affects the results while retaining others. In our approach, we
connect the label words to their preceding words to aggregate information and to the last token
to distribute the information from the label words. These connections are referred to as the
aggregation and distribution paths in the ablation study. As illustrated in Figure 5.9, we remove
one path and retain another.

As shown in Table 5.11, both the aggregation and distribution paths contribute significantly
to the performance. Removing either of them results in a decrease in the average accuracy across
the five tasks. Except for the two binary classification tasks, SST-2 and Amazon, removing the
distribution path causes a greater drop in performance. Based on these results, we conclude that
the distribution path plays a more significant role in the information flow process, especially for
tasks with more than two labels.
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Figure 5.9: Visualisation of the ablation study on the removal of information flow.

SST-2 EmoC TREC Amazon Agnews Average

GNNAVI-SAGE 81.95 78.70 77.92 88.66 82.88 82.02
-aggregation -0.07 -1.10 -0.68 +0.56 -0.08 -0.27
-distribution +3.07 -12.88 -2.44 +1.64 -1.44 -2.41

Table 5.11: Ablation Study. Removal of information flow. The name indicates the removed path.

5.2.7 Further Discussion: Information Flow
While the attention mechanism in LLM offers an information flow perspective for interpreting
the model’s working mechanism (Wang et al., 2023c), it treats the input text as a fully connected
graph. In contrast, GNNAVI explicitly connects the context tokens to the label tokens for infor-
mation aggregation and the label tokens to the final token for information distribution. Thereby,
the correct information flow is hardwired into the GNN. There is no need to learn it by adjusting
the attention weights. To further investigate the differences in information flow between GN-
NAVI and FPFT, we utilize the saliency technique (Simonyan et al., 2013) for interpretation.
Following the approach of Wang et al. (2023c), we compute the saliency score for each element
of the attention matrix using a Taylor expansion (Michel et al., 2019):

Il =
X

h

����A
>
h,l

@L(x)

@Ah,l

���� , (5.6)

where Ah,l represents the attention matrix of the h-th attention head in the l-th layer. x is the
input, and L(x) is the loss function. The saliency matrix Il for the l-th layer is obtained by
averaging the values across all attention heads. Each element Il(i, j) of the matrix denotes the
significance of the information flow from the j-th word to the i-th word in the prompt.

We employ three quantitative metrics to assess the information flow: Sagg measures the infor-
mation flow of the aggregation path from previous context words to label words, Sdist measures
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the information distribution from label words to the last token, and Srest accounts for other in-
formation flow between remaining words excluding Sagg and Sdist. The average significance of
information flow can be formulated as:

S =

P
(i,j)2C Il(i, j)

|C| , (5.7)

where C is the set of all token interactions involved. Sagg, Sdist, and Srest are calculated as
follows:

We utilize l1, l2, · · · , lC to denote the label word positions, such as ‘Positive’ and ‘Negative’,
while f represents the final token, such as ‘:’. Additionally, t denotes other tokens excluding the
label and final tokens.

Sagg calculates the mean significance of information flow from the previous context words to
label words:

Sagg =

P
(i,j)2Ctl

Il(i, j)

|Ctl|
,

Ctl = {(lk, j) : k 2 [1, C], j < lk} .
(5.8)

Sdist calculates the mean significance of information flow from the label words to the final
token:

Sdist =

P
(i,j)2Clf

Il(i, j)

|Clf |
,

Clf = {(f, lk) : k 2 [1, C]} .
(5.9)

Srest calculates the mean significance of information flow among the rest words, excluding
Sagg and Sdist:

Srest =

P
(i,j)2Ctt

Il(i, j)

|Ctt|
,

Ctt = {(i, j) : j < i}� Ctl � Clf .

(5.10)

As depicted in Figure 5.10, the information flow of GNNAVI appears more stable compared
to FPFT. In FPFT, without guided navigation, tokens interact with every preceding word, leading
to a trend of confusion between the information flow Sdist and Srest. This indicates a struggle
to identify the ‘right’ information for the final prediction. Conversely, GNNAVI adheres to the
information flow guided by the GNN, resulting in stable curves that depict a consistent informa-
tion aggregation process, aligning with the findings of Wang et al. (2023c). Compared to FPFT,
the stable curves affirm that GNNAVI serves as a navigator, ensuring the information flows in
predefined directions.

5.2.8 Sum-Up
In this section, we propose a novel PEFT method, GNNAVI, leveraging GNN to navigate infor-
mation flow within LLMs. Specifically tailored for prompt-based fine-tuning, GNNAVI signif-
icantly reduces the number of trainable parameters by simply adding a GNN layer into LLMs
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Figure 5.10: Comparison of information flow between FPFT and GNNAVI for SST-2. Both
models are trained with 5 training examples per class.

to guide the information flow within the prompt. GNNAVI outperforms FPFT and other PEFT
methods across various classification tasks, even with few training examples. Our work offers
insights into handling LLMs from a graph perspective and presents a novel application of GNNs
in NLP. Future work could explore different token connectivities for GNNs or utilize GNNs to
control the information flow in LLMs.
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Chapter 6

Human-Inspired Understanding of
Language Models

Summary of This Chapter

A central theme of this dissertation is not only to develop efficient and robust methods for mul-
tilingual and low-resource NLP, but also to deepen our understanding of how LLMs process,
represent, and sometimes fail at language. As LLMs become increasingly integral to real-world
applications, the need for interpretability and human-aligned analysis grows ever more urgent.
This chapter addresses this need by exploring human-inspired interpretability methods that probe
the internal workings of LLMs, drawing on insights from psycholinguistics, neurolinguistics,
and cognitive science. By doing so, it connects the practical advances of earlier chapters with a
broader scientific quest: to bridge the gap between surface-level performance and true linguistic
competence, and to illuminate the mechanisms underlying both the successes and limitations of
modern language models.

Within this framework, the chapter first investigates the internal representations of LLMs
through the lens of human cognitive paradigms. We introduce a probing methodology that treats
LLMs as both psycholinguistic and neurolinguistic subjects, inspired by experimental traditions
in human language research. Specifically, we propose minimal pair probing to disentangle how
LLMs encode linguistic form (signifier) and meaning (signified) across languages. This approach
enables a fine-grained assessment of the distinction between performance (observable behavior)
and competence (underlying knowledge), revealing that LLMs often exhibit stronger mastery of
linguistic form than of conceptual meaning (§6.1).

Beyond probing, the chapter advances to neuron-level mechanistic interpretability, focusing
on a critical failure mode in multilingual NLP: language confusion in English-centric LLMs.
Drawing inspiration from the phenomenon of code-switching in human bilingualism, we em-
ploy neuron-level mechanistic analysis to trace how and where language confusion arises within
the model’s architecture. Using behavioral benchmarks and tools such as TunedLens, we iden-
tify confusion points—specific positions in the generation process where unintended language
switches occur—and reveal that these are driven by transition failures in the final layers of the
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model. Through targeted neuron attribution and editing, we demonstrate that intervening on
a small set of critical neurons can substantially mitigate language confusion, achieving results
on par with multilingual-aligned models while preserving general competence and output qual-
ity. This neuron-level intervention offers a principled and interpretable solution to a persistent
challenge in multilingual NLP, and highlights the potential of mechanistic interpretability for
building more reliable and human-aligned language technologies (§6.2).

In summary, this chapter integrates human-inspired probing and mechanistic analysis to pro-
vide a comprehensive understanding of LLMs’ internal representations and failure modes. By
bridging cognitive paradigms and model internals, it not only advances the interpretability of
language models, but also informs the design of future NLP systems that are both scientifically
grounded and practically robust, furthering the monograph’s central vision of efficient, inclusive,
and human-inspired NLP for all languages.
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6.1 Large Language Models as Neuro- vs. Psycholinguistic
Subjects

This section corresponds to the following work:

Linyang He, Ercong Nie, Helmut Schmid, Hinrich Schütze, Nima Mesgarani, Jonathan
Brennan. 2024. Large Language Models as Neurolinguistic Subjects: Discrepancy
between Performance and Competence. In Findings of the Association for Com-
putational Linguistics: ACL 2025, Vienna, Austria. Association for Computational
Linguistics.

Declaration of Co-Authorship. I proposed the research question of using linguistic and con-
ceptual minimal pairs to conduct a comparative investigation of probing and prompting Large
Language Models (LLMs). Linyang He framed the research question from the perspectives of
treating LLMs as Neurolinguistic and Psycholinguistic subjects. I prepared the minimal datasets
for conceptual understanding and ran two baseline experiments (direct probability measurement
and metalinguistic prompting). Linyang He implemented the minimal pair probing method and
completed the result analysis. Linyange He and I completed the manuscript together. Helmut
Schmid, Hinrich Schütze, Nima Mesgarani, and Jonathan Brennan are supervisors of this project
and provided advice and guidance.
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Summary of This Section
This study investigates the linguistic understanding of LLMs regarding signifier (form) and sig-
nified (meaning) by distinguishing two LLM assessment paradigms: psycholinguistic and neu-
rolinguistic. Traditional psycholinguistic evaluations often reflect statistical rules that may not
accurately represent LLMs’ true linguistic competence. We introduce a neurolinguistic approach,
utilizing a novel method that combines minimal pairs and diagnostic probing to analyze activa-
tion patterns across model layers. This method allows for a detailed examination of how LLMs
represent form and meaning, and whether these representations are consistent across languages.
We found: (1) Psycholinguistic and neurolinguistic methods reveal that language performance
and competence are distinct; (2) Direct probability measurement may not accurately assess lin-
guistic competence; (3) Instruction tuning won’t change much competence but improve perfor-
mance; (4) LLMs exhibit higher competence and performance in form compared to meaning.
Additionally, we introduce new conceptual minimal pair datasets for Chinese (COMPS-ZH) and
German (COMPS-DE), complementing existing English datasets.

Figure 6.1: Illustration of LLMs processing the same signified across different signifiers.

6.1.1 Background and Motivation
Large Language Models (LLMs) have demonstrated remarkable reasoning, linguistic, arithmetic,
and other cognitive abilities. The advent of LLMs has reignited cross-disciplinary discussions
about what sorts of behavior are “intelligence”, even if the intelligence exhibited by LLMs may
differ from human intelligence (Sejnowski, 2023). LLMs have drawn the attention of researchers
from various fields, including linguistics, cognitive science, computer science, and neuroscience,
who investigate how LLMs develop and exhibit these capabilities.
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Figure 6.2: Psycholinguistic vs. Neurolinguistic Paradigm. Both direct probability measurement
and metalinguistic prompting can be considered as psycholinguistic methods, while minimal pair
probing (He et al., 2024a) and other diagnostic probing are neurolinguistic.

There is currently a heated debate about whether LLMs understand human language or
whether their performance is simply the product of complex statistical relationships (Mitchell
and Krakauer, 2023). A central aspect of this debate concerns the nature of LLMs’ linguistic
representations. Using the semiotic framework of language proposed by De Saussure (1989),
which distinguishes between the signifier (form) and the signified (meaning), we can inquire into
the extent to which LLMs comprehend the form and meaning, and how form and meaning inter-
twist with each other. Is LLMs’ understanding of language meaning merely a statistical outcome
based on their grasp of language form? When different languages express a shared concept with
distinct forms, do LLMs create similar representations for these variations? How can we better
understand the representations of form and meaning in these systems that support the observed
patterns of performance?

The underlying processes remain unclear due to the opaque nature of neural networks. There-
fore, we need appropriate methods to assess their true linguistic understanding. Drawing inspi-
ration from the cognitive study on human language processing, we propose that the assessment
of LLMs can be divided into two primary paradigms: As illustrated in Figure 6.2, the psy-
cholinguistic paradigm measures the model’s output probabilities, directly reflecting the model’s
behavior and performance. The neurolinguistic paradigm delves into the internal representations
of LLMs.

When treating LLMs as psycholinguistic subjects, their responses may leverage their grasp of
form, relying on statistical correlations, to create an illusion of understanding meaning. This en-
ables LLMs to produce structurally coherent but not necessarily semantically accurate responses,
as their “understanding” is shaped by patterns rather than true conceptual processing (Harnad,
1990; Bender and Koller, 2020; Nie et al., 2024). Consequently, psycholinguistic evaluations
tend to reflect performance rather than competence, as they assess external outputs that may
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not fully capture the underlying linguistic knowledge encoded within the model. This mismatch
suggests that psycholinguistic evaluation results might not accurately represent the true linguistic
competence of LLMs.

In contrast, examining LLMs as neurolinguistic subjects focuses on internal representations,
providing a more direct assessment of competence by moving beyond surface-level biases (Fire-
stone, 2020). To achieve this, we adapted the decoding probing method by He et al. (2024a),
referred to as “minimal pair probing”, to analyze how LLMs encode form and meaning across
layers. This approach allows for a finer distinction between performance and competence, re-
vealing insights that psycholinguistic methods might overlook.

In order to address questions about whether LLMs maintain consistent underlying represen-
tations of the same concept when the form changes across multiple languages, we also create a
multilingual minimal pair dataset (COMPS-ZH for Chinese and COMPS-DE for German).

By evaluating LLMs in both psycholinguistic and neurolinguistic paradigms, we found:
1) Psycholinguistic and neurolinguistic results reveal very different patterns, suggesting both
paradigms are necessary for a comprehensive understanding of LLMs. 2) Though more intrinsic
than metalinguistic prompting, direct probability measurement may still not accurately assess
linguistic competence, as it remains influenced by statistical patterns. 3) LLMs acquire compe-
tence in linguistic form more easily, earlier, and with greater accuracy than in meaning. 4) As
linguistic form varies across languages, LLMs’ understanding of the same concept shifts accord-
ingly, with meaning competence linearly correlated to form. This suggests that the signifier and
signified in LLMs may not be independent, and maintaining conceptual representations likely
depends on statistical correlations with form.

6.1.2 Psycholinguistic vs. Neurolinguistic Paradigm
6.1.2.1 Cognitive Science Background

Psycholinguistics and neurolinguistics offer distinct yet complementary perspectives on human
language processing. Psycholinguistics focuses on the psychological and cognitive processes
that enable humans to understand and use language (Field, 2004; Traxler and Gernsbacher,
2011). In contrast, neurolinguistics explores the underlying neural mechanisms and brain struc-
tures involved in language processing (Friederici, 2011; Brennan, 2022; Kemmerer, 2022). Both
paradigms offer a valuable model for probing the linguistic capacities and potential intelligence
of LLMs.

6.1.2.2 In LLM Assessment Research

Psycholinguistic paradigm: direct probability measurement and metalinguistic prompting
Recent studies often use prompting to evaluate the linguistic capabilities of LLMs. These im-
plicit tests were referred to as metalinguistic judgments by Hu and Levy (2023). However, it
is important to note that the performance of LLMs in specific linguistic prompting tasks only
indirectly reflects their internal linguistic representations due to the inherent limitations of such
prompting tasks: an LLM chat system might give a “reasonable” response just because of the
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statistical relationships between prompt and reply (Hofstadter, 1995). Hu and Levy (2023) ar-
gue that it is uncertain whether the LLMs’ responses to metalinguistic prompting align with the
underlying internal representations.

Computing a model’s probability of generating two minimally different sentences is one way
to address these concerns (Hu and Levy, 2023). The minimal difference between the two sen-
tences (e.g., replacement of a single word) makes one sentence acceptable while the other is not
(Linzen et al., 2016). Here are two examples for testing grammatical and conceptual understand-
ing, respectively:
(1) Simple agreement (Warstadt et al., 2020):

a. The cats annoy Tim. (acceptable)
b. *The cats annoys Tim. (unacceptable)

(2) Concept understanding (Misra et al., 2023):

a. A whisk adds air to a mixture. (acceptable)
b. *A cup adds air to a mixture. (unacceptable)

A language model is considered to perform correctly on this task if it assigns a higher prob-
ability to the acceptable sentence compared to the unacceptable one (Marvin and Linzen, 2018).
Researchers have created syntactic, semantic/conceptual, and discourse inference tasks for the
minimal pair method. They provide more precise insights into the abilities of LLMs compared
to metalinguistic prompting (Futrell et al., 2019; Gauthier et al., 2020; Hu et al., 2020a; Warstadt
et al., 2020; Beyer et al., 2021; Misra et al., 2023; Kauf et al., 2023).

Through either metalinguistic judgement or direct probability measurement methods, these
tasks essentially treat LLMs as psycholinguistic subjects (Futrell et al., 2019). This research
paradigm resembles cognitive psychology by having LLMs perform tasks, such as cloze and
question answering, and then evaluating their performance without examining the internal rep-
resentations, in a manner similar to how subjects participate in psychological experiments. In-
formation about the inner workings of a model is inferred either from its output or from the
probabilities it assigns to different possible outputs. The internal states of the LLM (i.e. its inter-
mediate layers) are not examined.

Neurolinguistic paradigm: diagnostic probing Another line of research focuses on studying
the internal representations, emphasizing a neurolinguistic approach to understanding LLMs.
Essentially, diagnostic probing methods in evaluating language models can be considered as
neurolinguistic paradigms as they examine the internal states of LMs (Belinkov and Glass, 2019;
Belinkov, 2022), while the term ‘neurolinguistic’ hasn’t been applied to the field before. Diag-
nostic probing involves training a classifier to predict linguistic properties from the hidden states
of LMs. Following this paradigm, researchers decode syntactic, semantic, morphological, and
other linguistic properties from the hidden states of LMs (Köhn, 2015; Gupta et al., 2015; Shi
et al., 2016; Tenney et al., 2019; Hewitt and Manning, 2019; Manning et al., 2020).
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6.1.3 Minimal Pair Probing = Minimal Pair + Diagnostic Probing

While prior neurolinguistic approaches have explored internal representations, they often em-
ployed coarse-grained datasets and primarily focused on decoding linguistic labels from embed-
dings, providing a general perspective on the linguistic features encoded in LMs. In contrast, the
minimal pair probing method presented by He et al. (2024a) integrates minimal pair design with
diagnostic probing. This combination leverages the granularity of minimal pair design and the
layer-wise insights of diagnostic probing, thereby enabling a more detailed analysis of internal
patterns for form and meaning. We adopt minimal pair decoding as the neurolinguistic paradigm
in our work.

Specifically, given an LLM f : x0,1,...,i ! xi+1 trained on dataset DO, we can extract the
hidden state representations fl(S) of the l-th layer of stimuli S. Given a minimal pair dataset Dm

= {(Si
+, S

i
�), (z

i
+, z

i
�)} with each sentence S having a label z, we have internal representations

fl(Si
+) and fl(Si

�) for each sentence pair. A minimal probing classifier g : fl(S) ! ẑ is trained
and evaluated on Dm, with grammatical/conceptual performance measure Perf(f,DO, g,Dm).

Note that our focus is on evaluating the linguistic competence of the LLM f itself, i.e.,
Perf(f,DO), rather than the capacity of the probing classifier g. As suggested by Hewitt and
Liang (2019), even untrained or random representations can yield surprisingly high probing ac-
curacy, raising concerns that the classifier may exploit dataset artifacts rather than meaningful
representations. To control for the potential bias introduced by g, we construct a random embed-
ding baseline.

Specifically, for each sentence in the dataset, we assign a fixed random vector r, sampled from
a Gaussian distribution with the same mean and standard deviation as the real model embeddings
fl(S). Importantly, each sentence is consistently assigned the same random vector across occur-
rences, preserving instance-level identity that the probing classifier might exploit. This allows us
to assess the extent to which task performance can be driven by superficial sentence-level cues
rather than meaningful representations. We then compute Perf(g,Dm) by training g on these ran-
dom embeddings, which reflects the inherent predictability or “shortcut” potential of the probing
task. Therefore, our performance score incorporates a correction factor based on this random
baseline, defined as:

Perf(f,DO) , Perf(f,DO, g,Dm) · (1 + 0.5� Perf(g,Dm)

0.5
) (6.1)

This formula applies a correction term, penalizing cases where the probing classifier performs
well even on random embeddings. When Perf(g,Dm) = 0.5, the correction factor is 1; if the
performance is higher, the factor shrinks toward 0, discouraging overfitting or trivial tasks; if it
drops below 0.5, the factor exceeds 1, slightly amplifying the model’s score. This ensures that
only meaningful representations in f contribute to the final evaluation.
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6.1.4 Experiment Setup
6.1.4.1 Datasets

We use minimal pair probing for English, Chinese, and German to assess grammaticality (form)
and conceptuality (meaning). Table 6.1 presents the overall dataset information used in our
experiments.

Minimal Pair Duality Language # of Pair Description
BLiMP Form English 67, 000 67 tasks across 12 grammatical phenomena
CLiMP Form Chinese 16, 000 16 tasks across 9 grammatical phenomena
DistilLingEval Form German 8, 000 8 German grammatical phenomena
COMPS Meaning English 49, 340 4 types of conceptual relationship
COMPS-ZH Meaning Chinese 49, 340 4 types of conceptual relationship
COMPS-DE Meaning German 49, 340 4 types of conceptual relationship

Table 6.1: Overview of datasets in our study.

BLiMP BLiMP (Warstadt et al., 2020) is a comprehensive English dataset of grammatical
minimal pairs. It consists of minimal pairs for 13 higher-level linguistic phenomena in the En-
glish language, further divided into 67 distinct realizations, called paradigms. Each paradigm
comprises 1,000 individual minimal pairs, resulting in a total corpus size of 67,000 data points.

CLiMP CLiMP (Xiang et al., 2021) is a corpus of Chinese grammatical minimal pairs con-
sisting of 16 datasets, each containing 1,000 sentence pairs. CLiMP covers 9 major Chinese
language phenomena in total, less than the BLiMP dataset due to the less inflectional nature
of Mandarin Chinese. The vocabulary of the CLiMP dataset is based on the translation of the
BLiMP dataset, with words and features specific to Chinese added.

DistilLingEval DistilLingEval (Vamvas and Sennrich, 2021) is a dataset of German grammat-
ical minimal pairs. It consists of minimal pairs for eight German linguistic phenomena. This
dataset contains 82,711 data samples in total.

COMPS COMPS (Misra et al., 2023) is an English dataset of conceptual minimal pairs for
testing an LLM’s knowledge of everyday concepts (e.g., a beaver/*gorilla has a flat tail). This
dataset contains 49,340 sentence pairs, constructed using 521 concepts and 3,592 properties.
Concepts in the pairs constitute 4 types of knowledge relationships: taxonomy, property norms,
co-occurrence, and random.

COMPS-ZH and COMPS-DE COMPS-DE and COMPS-ZH are newly developed datasets
featuring conceptual minimal pairs in Chinese and German, derived from the English COMPS
dataset (Misra et al., 2023). In the realm of multilingual NLP research, it is a common practice
to extend English datasets to other languages using human translation, machine translation, or
translation assisted by LLMs (Nie et al., 2023a; Wang et al., 2024a; Beniwal et al., 2024).
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In this study, to create COMPS-DE and COMPS-ZH from the original English COMPS, we
employed a hybrid approach that integrated machine translation with meticulous human verifi-
cation.

Specifically, we translated the concepts and properties of the English COMPS individually,
subsequently merging them to form complete sentences and compose conceptual minimal pairs.
The translation process began with the use of the Google Translate API1, which provided initial
translations of concepts and properties into German and Chinese.

Following this, native speakers of Chinese and German manually checked and refined these
translations to ensure accuracy and quality. The manual review emphasized two main areas:
accuracy of concepts and grammatical consistency of properties. For concepts, the focus was on
correcting ambiguities that might arise from machine translation. For properties, attention was
given to maintaining grammatical consistency with the original English text, such as ensuring
subject-verb agreement, which is particularly challenging in German translations.

In summary, out of 521 concepts, manual corrections were made to 57 entries in the Chinese
dataset and 49 in the German dataset. Similarly, out of 3,592 properties, 713 required manual
corrections in the Chinese dataset, and 512 in the German dataset. This rigorous process was
essential for preserving the integrity and reliability of the translated datasets.

6.1.4.2 Models

In our experiments, we used three open-source LLMs, two English-centric LLMs (Llama2 and
Llama3), and one multilingual LLM (Qwen) with a focus on English and Chinese. These models
were trained on different amounts of English, Chinese, and German data (see Table 6.2).

Resource Level Llama2 Llama3 Qwen
English High High High
Chinese Mid Mid High
German Low Low Low

Table 6.2: Resource level for different languages across three LLMs. Note the resource levels
are qualitative assessments based on available information, as specific quantitative data is not
provided by the developers.

Llama2 and Llama3 Llama2 (Touvron et al., 2023b) and Llama3 (AI, 2024) are two English-
centric LLMs that represent an advanced iteration of the Llama foundation models developed
by Meta AI (Touvron et al., 2023a). The Llama models were trained on publicly available cor-
pora predominantly in English. Despite this focus, Llama models are also exposed to a limited
amount of multilingual data. Llama 1, for example, is pretrained on an extensive scale of corpora
comprising over 1.4 trillion tokens, of which less than 4.5% constitute multilingual data from 20
different languages. Llama 2 expands this linguistic diversity, featuring 27 languages, each rep-
resenting more than 0.005% of the pertaining data. Therefore, English-centric models harness

1https://cloud.google.com/translate
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multilingual abilities (Lai et al., 2023a). In this work, we use Llama2-7B and Llama3-8B for our
experiments.

QWen QWen is a series of LLMs developed by Alibaba Inc. (Bai et al., 2023). Qwen was
trained on 2-3 trillion tokens of multilingual pre-training data. It is essentially a multilingual
LLM with a focus on English and Chinese. We use the Qwen-7B model in our experiments.

6.1.4.3 Setup for Psycholinguistic Analysis

Direct Direct probability measurement is based on the probability that the model assigns to
a sentence. Accuracy is determined by whether the model assigns a higher probability to the
grammatically or conceptually correct sentence within the minimal pair.

Meta Metalinguistic prompting involves explicitly asking a question or specifying a task that
requires a judgment about a linguistic expression. Following Hu and Levy (2023), we use one
prompt for a minimal pair to present both sentences at once. For form tasks, we assign an
identifier (1 or 2) to each sentence in the pair, present a multiple-choice question comparing both
sentences, and compare the probabilities assigned by the model to each answer option, “1” or “2”.
For meaning tasks, we reformulate the property into a question and compare the probabilities of
acceptable and unacceptable concepts as sentence continuations. Table 6.3 presents the prompts
used in the experiments.

Duality Method Example

Form
Direct {Mice are hurting a waiter, Mice was hurting a waiter}

Meta Here are two English sentences: 1) Mice are hurting a waiter. 2) Mice was hurting a waiter. Which
sentence is a better English sentence? Respond with either 1 or 2 as your answer. Answer: {1, 2}

Meaning
Direct {Helmet can absorb shocks, Cap can absorb shocks}

Meta What word is most likely to come next in the following sentence (helmet, or cap)? What can absorb
shocks? {helmet, cap}

Table 6.3: Prompt examples for baseline methods. The region where we measure probability is
marked in color. Correct sentences and answers are in blue; incorrect in red.

6.1.4.4 Setup for Neurolinguistic Analysis

Sentence Embedding We extract the representation of the last token in each sentence from
each layer to serve as the representation for the whole sentence. Last token pooling ensures the
representation contains the information of all preceding tokens (Meng et al., 2024).

Probing Performance We use logistic regression as the probing classifier and F1 score as the
evaluation metric. The score for Perf(f,DO, g,Dm) and Perf(g,Dm) is calculated as the average
F1 score across 5 cross-validation folds. Final performance Perf(f,DO) is given by Formula 6.1.
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Figure 6.3: Psycholinguistic (meta and direct) and neurolinguistic performance across models
and linguistic tasks. The x-axis represents different models and conditions (base and chat), while
the y-axis categorizes linguistic tasks based on structural (syntax, morphology, syntax-semantics
interface) and conceptual (meaning) levels.

Saturation and Maximum Layer We define the feature learning Saturation Layer as the layer
where performance first reaches 95% of the peak on the curve. This layer indicates the number
of layers required for the model to adequately learn specific linguistic features, after which its
ability to capture these features stabilizes. The Maximum Layer is the layer at which performance
reaches its peak.

Unsupervised Analysis We use t-SNE to visualize the sentence embedding of Llama2-7B for
English form tasks. We employ PCA to reduce the dimensionality of the sentence embedding to
50 before applying t-SNE.
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6.1.5 Results
6.1.5.1 Psycholinguistic vs Neurolinguistic

Figure 6.3 shows the performance of LLMs across all linguistic tasks. Figure 6.4 demonstrates
the averaged performance of LLMs across models and 4 levels (syntax, morphology, syntax-
semantics interfaces, concept). Figure 6.5 presents the average performance of LLMs across
form and meaning tasks for Direct, Meta, and Neuro2 methods. We use the last layer’s perfor-
mance in the Neuro method when comparing psycho- and neurolinguistic paradigms, as both
direct probability measurement and metalinguistic prompting rely on the last layer of LLMs.

Language performance and competence are distinct (Competence > Performance). Fig-
ure 6.4 and 6.5 shows distinct results between language performance and competence. Moving
from Meta → Direct → Neuro, the evaluation focus gradually shifts from language performance
(task execution ability) to language competence (the underlying linguistic ability). Within the
same task category, Neuro methods consistently yield higher performance than Direct methods,
which in turn outperform Meta methods. This indicates that when evaluating pure linguistic
competence, LLMs perform well, but their performance drops when assessed in a task-based
setting.

Figure 6.4: Averaged psycholinguistic (meta and direct) and neurolinguistic results across mod-
els and tasks. t-tests were conducted on the original (pre-averaging) results between base and
chat models, with p-values annotated.

Tasks that emphasize language performance become more difficult, even if their language
competence is high. For example, in the Neuro setting, performance on Syntax tasks reaches

2We refer to minimal pair probing as Neuro for simplicity.
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97%, while in the Meta setting, it drops to 56.1%, showing a significant gap. This suggests that
even when an LLM has strong competence in a given task, its performance can significantly
decline when assessed under a performance-oriented evaluation.

Figure 6.5: Psycholinguistic and neurolinguistic performance for form (morphology, syntax-
semantics interface, and syntax) and meaning (concept).

Direct probability measurement might not be the true competence assessment. As the
Neuro method measures the internal representations of LLMs directly, it could serve as a reliable
ground truth for estimating linguistic competence. Direct probability measurement falls short
of achieving this ground truth in form assessment (especially for syntax and syntax-semantics-
interface as shown in Figure 6.5).

LLMs exhibit stronger mastery of form than meaning, regardless of performance or com-
petence. As shown in Figure 6.5, LLMs consistently perform better on form-related tasks than
on meaning-related tasks. This trend holds regardless of whether the model is a base or chat ver-
sion. Crucially, this pattern is evident across all evaluation methods. This indicates that LLMs
have a stronger grasp of linguistic form than conceptual meaning, whether assessed through task
execution or underlying capability.

Instruction tuning won’t change much competence but improve performance. Neuro re-
sults between the base and chat versions of LLMs reveal that instruction fine-tuning does not
significantly alter the language competence of the models (t-test between Neuro-Base vs. Neuro-
Chat as shown in Figure 6.4). With instruction fine-tuning (chat versions of LLMs), the Meta
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Figure 6.6: Competence and performance gap drops after instruction tuning.

performance on form improves significantly while meaning understanding remains stable. Figure
6.6 illustrates that after instruction tuning, the competence-performance gap (Neuro-Meta) sig-
nificantly decreases for form-related tasks, while the change for meaning-related tasks remains
relatively small. This indicates that fine-tuning with well-designed instructions helps LLMs
improve their performance on form-related tasks, bringing them closer to their underlying com-
petence. However, for meaning-related tasks, instruction tuning does not lead to a fundamental
improvement in understanding. This indicates that more optimized information access strategies
can enhance the external performance of language models, particularly for form-related tasks.

6.1.5.2 Neurolinguistic Analysis

Raw results for English, Chinese, and German can be found in Figure 4, 5, and 6 in Appendix G.

Layer-wise unsupervised dynamics reveal gradual emergence of form features Figure 6.7
illustrates the layer-wise differences between embeddings for grammatically correct and incor-
rect sentences. In early layers, the embedding difference appears scattered and unstructured, but
as depth increases, they form clearer clusters, indicating a progressively refined sensitivity to
syntactic correctness. By Layer 16 and beyond, distinct clusters emerge corresponding to syn-
tax, morphology, and syntax-semantics interface. The results demonstrate that LLMs encode
grammaticality judgments dynamically across layers, progressively structuring linguistic repre-
sentations. Moreover, the formation of distinct clusters for different linguistic phenomena in the
unsupervised analysis provides supporting evidence for subsequent supervised classification.

Gradual decline in encoding performance from structure to meaning. The results in Fig-
ure 6.8-(c) show that the performance scores for conceptual understanding are significantly lower
than those for grammatical understanding. This pattern is consistent across all six models,
suggesting a universal characteristic of LLMs. Moreover, as illustrated in Figure 6.8-(a),(b),
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Figure 6.7: t-SNE visualization of embedding differences between acceptable and unacceptable
sentences, with red for syntax, purple for morphology, and yellow for the syntax-semantics in-
terface.

the encoding performance progressively declines from more structural tasks to more semantic
tasks—spanning syntax, morphology, the syntax-semantic interface, and finally conceptual un-
derstanding. This highlights that LLMs encode features less effectively as the tasks shift from
structure-focused to meaning-focused.

Figure 6.8: (a) Neurolinguistic probing performance for 16 tasks in Llama-2, including 4 syntax
tasks, 4 morphology tasks, 4 syntax-semantics interface tasks, and 4 conceptual tasks. (b) Aver-
age probing performance across the four linguistic categories in Llama-2. (c) Mean performance
comparison between form-related tasks (syntax, morphology, syntax-semantics interface) and
meaning-related tasks (concept), aggregated across all six models.

LLMs encode form earlier than meaning. We compute the feature learning saturation and
maximum layers for all 12 grammatical tasks and 4 conceptual tasks, averaging them to represent
form and meaning, respectively. As shown in Figure 6.9, the saturation and maximum layers for
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meaning are generally higher than those for form across all six models. This suggests that LLMs
stabilize their encoding of grammatical features before conceptual features.

Figure 6.9: Feature learning saturation layer (defined as the first layer reaching 95% of peak
performance) and the layer of maximum performance.

Instruction tuning has minimal impact on the internal linguistic representations. As Fig-
ure 6.10 shows, performance differences (with and without instruction tuning) for form and
meaning remain near zero across all layers, indicating that instruction tuning minimally im-
pacts internal linguistic representations, consistent with our psycholinguistic vs. neurolinguistic
analysis.

Figure 6.10: Difference in probing performance between base and instruction-tuned models
across all layers.

6.1.5.3 Multilingual analysis

How does LLMs’ understanding of meaning change when the form (language) varies? Since our
COMPS-ZH and COMPS-DE datasets align with the concepts in the English COMPS dataset,
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we can explore whether LLMs’ grasp of different linguistic forms for the same concept corre-
lates with their understanding of meaning across languages. Our previous results suggest that
instruction tuning has little influence on the internal representations. Therefore, we focus on the
base LLMs here. From Figure 6.11, for all models and languages, form consistently achieves
higher performance than meaning, indicating it’s easier for LLMs to make a stronger grasp of
structural elements compared to conceptual comprehension.

Figure 6.11: Neuro probing results for English, Chinese and German.

6.1.6 Discussion
Language performance vs. competence: probing reveals deeper linguistic understanding
than direct probability. Our results demonstrate that neurolinguistic probing uncovers lin-
guistic competencies in LLMs that are not captured by psycholinguistic methods. While Meta
performs the worst and Direct performs better, Neuro consistently outperforms both, revealing a
systematic underestimation of competence when relying on output-based evaluations.

Hu and Levy (2023) argued that Direct probability measurement, being more intrinsic than
metalinguistic prompting, better reflects competence. However, our findings show that even
Direct falls short of revealing the full extent of LLMs’ linguistic capabilities. Direct relies on
the final output layer, which is highly optimized for next-word prediction and thus entangled
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with task-specific objectives. Prior studies (Hewitt and Manning, 2019; Liu et al., 2019a) have
shown that syntactic and general linguistic information is often better represented in intermediate
layers than in the final layer. Waldis et al. (2024) also emphasized that output correctness is an
insufficient indicator of linguistic understanding, advocating for probing internal representations.

Our t-SNE visualizations corroborate this: clear linguistic clusters emerge in intermediate
layers but dissolve in the final layer, reinforcing the view that the last layer is not optimal for
assessing competence. These findings suggest that Direct, while more grounded than prompting,
is still a limited proxy for internal knowledge.

In contrast, neurolinguistic probing inspects internal activation patterns across layers and
tasks, uncovering the underlying representational structure of form and meaning, and further
validates the discrepancy between performance and competence.

On the other hand, while Meta results underperform, this does not necessarily indicate that
the LLMs lack the underlying linguistic competence. Instead, it may reflect limitations in infor-
mation access, as suboptimal prompts can prevent models from exhibiting their full capabilities.
Specifically, prompting failures do not always equate to a lack of encoded knowledge. This
aligns with prior work (Firestone, 2020; Lampinen, 2024) emphasizing the need to distinguish
performance conditions from underlying ability.

Thus, we argue that probing, particularly when applied layer-wise, provides a more accurate
and comprehensive assessment of linguistic competence than Direct probability alone.

Form and meaning: observations from Saussure’s semiotics Our results reveal that LLMs
consistently learn linguistic form before they grasp meaning. This may suggest a developmen-
tal trajectory where statistical patterns in syntax and grammar are more readily captured by the
model than conceptual understanding. Second, the models’ formal competence is generally su-
perior to their semantic competence. This is evident in their ability to decode grammaticality
structures accurately but with less reliable conceptual accuracy.

We further observe a linear correlation between form and meaning competence, particularly
when linguistic forms vary across languages while meaning remains constant. This suggests that
LLMs’ understanding of meaning might rely heavily on form, with conceptual representation
anchored to formal structures rather than independent meaning comprehension.

These results offer a semiotic and neurolinguistic explanation for LLMs’ long-standing issue
of generating “confidently incorrect” responses, i.e., hallucinations (Ji et al., 2023).

6.1.7 Sum-Up
This study adopts both psycho- and neuro-linguistic approaches to evaluating LLMs, revealing a
distinction between linguistic performance and competence. Our results highlight the limitations
of LLMs’ semantic understanding and the need for future research to move beyond statistical
correlations toward more grounded language representations. By introducing a cognitive neuro-
science perspective, along with semiotics, we hope will inspire further research to deepen our
understanding of the language capabilities of LLMs.
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6.2 Mechanistic Understanding and Mitigation of Language
Confusion in English-Centric Large Language Models

This section corresponds to the following work:

Ercong Nie, Helmut Schmid, and Hinrich Schuetze. 2025. Mechanistic Under-
standing and Mitigation of Language Confusion in English-Centric Large Language
Models. In Findings of the Association for Computational Linguistics: EMNLP
2025, pages 690–706, Suzhou, China. Association for Computational Linguistics.

Declaration of Co-Authorship. I conceived the idea of using mechanistic interpretability meth-
ods to analyze and mitigate language confusion in English-centric Large Language Models
(LLMs). I completed the code work and ran all the experiments. Besides, I drafted the manuscript.
Helmut Schmid and Hinrich Schütze provided me with valuable feedback and advice in the pro-
cess of the project.
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Summary of This Section
Language confusion — where large language models (LLMs) generate unintended languages
against the user’s need — remains a critical challenge, especially for English-centric models.
We present the first mechanistic interpretability (MI) study of language confusion, combining
behavioral benchmarking with neuron-level analysis. Using the Language Confusion Bench-
mark (LCB), we show that confusion points (CPs)—specific positions where language switches
occur—are central to this phenomenon. Through layer-wise analysis with TunedLens and tar-
geted neuron attribution, we reveal that transition failures in the final layers drive confusion. We
further demonstrate that editing a small set of critical neurons, identified via comparative anal-
ysis with multilingual-tuned models, substantially mitigates confusion without harming general
competence or fluency. Our approach matches multilingual alignment in confusion reduction for
most languages and yields cleaner, higher-quality outputs. These findings provide new insights
into the internal dynamics of LLMs and highlight neuron-level interventions as a promising di-
rection for robust, interpretable multilingual language modeling.

6.2.1 Background and Introduction
Current Large Language Models (LLMs), such as GPT-4 (Achiam et al., 2023), PaLM 2 (Anil
et al., 2023), and Llama 3 (Grattafiori et al., 2024), have demonstrated exceptional linguistic
competence across a wide range of complex tasks that require abstract knowledge and reason-
ing (Dong et al., 2024; Wei et al., 2022b). Early LLMs were predominantly trained on massive
amounts of English text data, with some limited exposure to other languages, resulting in initially
constrained multilingual capabilities (Touvron et al., 2023a). Recent advances, such as multi-
lingual continued pretraining and instruction tuning, have substantially extended these models’
ability to support multiple languages (Zhu et al., 2023; Shaham et al., 2024; Kew et al., 2024;
Wang et al., 2025b). As a result, contemporary English-centric LLMs have become foundational
tools for multilingual communication, multilingual content generation, and cross-lingual applica-
tions (Bang et al., 2023b; Ahuja et al., 2023; Asai et al., 2024). However, despite their impressive
capabilities, a persistent and underexplored limitation remains: LLMs can fail to generate text in
the user’s intended language, even when explicitly instructed—a phenomenon termed language
confusion (Marchisio et al., 2024). Language confusion manifests as full-response, line-level, or
word-level switches into unintended languages, severely undermining user experience and model
reliability, especially for non-English speakers (Figure 6.12a).

Recent work by Marchisio et al. (2024) provides the first systematic characterization of lan-
guage confusion, introducing the Language Confusion Benchmark (LCB) and associated met-
rics to quantify this phenomenon across a diverse set of languages and models. Their evaluation
revealed that even state-of-the-art LLMs are susceptible to language confusion, with English-
centric LLMs such as Llama2, Llama3, and Mistral exhibiting particularly high rates of unin-
tended language switching, especially in the absence of targeted multilingual alignment (Figure
6.12c). While Marchisio et al. (2024) propose several mitigation strategies, including decod-
ing adjustments, prompting techniques, and multilingual fine-tuning, these approaches remain
largely surface-level, offering limited insight into the internal mechanisms that give rise to lan-
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ما الفرق ب6 السور ا0كية وا0دينة في القرآن الكريم؟
English translation: What is the difference between the 
Meccan and Medinan surahs in the Holy Quran?

The difference between Meccan and Medinan surahs in the 
Quran is a significant aspect of Islamic studies. Here's a 
brief overview:

**Meccan Surahs (سور مكية):**

1. **Time period:** The Meccan surahs were revealed during 
the early years of Prophet Muhammad's prophethood, …
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Figure 6.12: Language Confusion in LLMs. (a) An example of the language confusion phe-
nomenon. (b) Visualization of internal model dynamics using TunedLens, highlighting how the
confusion point emerges during generation. (c) Benchmarking results of three Llama models on
the LCB benchmark across 5 languages.

guage confusion.
A key observation from prior work is the identification of confusion points—specific po-

sitions in the generation process where the model abruptly switches to an unintended language.
However, the model’s internal dynamics leading to these confusion points and their causal role in
language confusion remain largely unexplored. This gap is particularly salient given the parallels
to human bilingual code-switching, where switch points between languages are cognitively sig-
nificant as extensively studied in psycholinguistics (Solorio and Liu, 2008; Bullock and Toribio,
2009).

In this work, we move beyond behavioral evaluation to open the black box of LLMs, lever-
aging mechanistic interpretability (MI) methods (Conmy et al., 2023; Rai et al., 2024; Saphra
and Wiegreffe, 2024; Sharkey et al., 2025) to investigate the internal representations and neuron-
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level processes underlying language confusion. We first empirically demonstrate that confusion
points are critical drivers of language confusion: targeted interventions at these points can sub-
stantially reduce confusion across languages. Building on this, we employ MI tools such as
TunedLens (Belrose et al., 2023) to trace the evolution of language representations through the
model’s layers, revealing that confusion typically arises from transition failures in the final lay-
ers, where latent conceptual representations are mapped to surface forms in the target language
(Figure 6.12b). To further elucidate the mechanism, we conduct a neuron-level analysis, identify-
ing specific neurons in the last layers whose activity is predictive of successful or failed language
transitions at confusion points. Inspired by recent advances in neuron attribution and editing, we
show that targeted manipulation of only 100 neurons can mitigate language confusion, offering
a novel, model-internal approach to improving multilingual reliability. Our findings provide the
first mechanistic account of language confusion in LLMs, bridging the gap between behavioral
benchmarks and internal model dynamics. By highlighting the central role of confusion points
and their neural substrates, we lay the groundwork for more robust, interpretable, and cognitively
informed multilingual language models.

Our work makes the following contributions: (1) We provide the first mechanistic inter-
pretability study of language confusion in English-centric LLMs, revealing the central role of
confusion points in unintended language switching; (2) We employ layer-wise and neuron-level
analyses to trace the internal dynamics leading to language confusion and identify critical late-
layer neurons responsible for transition failures; (3) We propose and validate a principled neuron
selection and editing strategy that effectively mitigates language confusion and preserves the
model’s general competence and output quality.

6.2.2 Language Confusion and Mechanistic Interpretability
Code-switching as a Linguistic Phenomenon Code-switching, the practice of alternating
between languages within a single conversation or utterance, is a well-studied natural phe-
nomenon in bilingualism and psycholinguistics (Gardner-Chloros, 2009). Code-switching is
typically intentional, often reflecting speakers’ identities, social relationships, and contextual
adaptation (Treffers-Daller, 2009; Yim and Clément, 2021). In NLP, code-switching has been
explored through evaluating model performance on code-switched data for tasks such as senti-
ment analysis, machine translation, summarization, and language identification (Khanuja et al.,
2020; Doğruöz et al., 2021; Winata et al., 2023). Code-switching is a natural, contextually ap-
propriate strategy in human communication, whereas language confusion, on which our work
focuses, is an unintended and erroneous switch to an incorrect language in LLMs (Marchisio
et al., 2024). Though related to code-switching, language confusion is an unnatural phenomenon
that arises from model failures rather than communicative intent.

Language Confusion and Confusion Points in LLMs Language confusion has been observed
in various multilingual NLP settings, such as “source language hallucinations” in zero-shot cross-
lingual transfer (Li and Murray, 2023; Pfeiffer et al., 2023; Chirkova and Nikoulina, 2024) and
“off-target translation” in machine translation (Sennrich et al., 2024). In LLMs, this manifests
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as abrupt, unexpected switches to the wrong language during generation, even under explicit
instructions. This issue is particularly prevalent in English-centric models lacking robust multi-
lingual alignment (Zhong et al., 2024). A key concept in recent work is the confusion point—the
specific position in generation where the model transitions to an unintended language. Inspired
by the importance of code-switching points in human bilingualism, confusion points are cen-
tral to understanding and diagnosing language confusion in LLMs (Guzzardo Tamargo et al.,
2016). Unlike natural code-switching, these points reflect internal model failures. Recent bench-
marks (Marchisio et al., 2024) systematically characterize confusion points at response, line, and
word levels, revealing their widespread impact and motivating deeper mechanistic investigation,
as pursued in this work.

Mechanistic Interpretability Methods Mechanistic interpretability (MI) seeks to reverse-
engineer neural networks by decomposing their computations into human-understandable com-
ponents (Stolfo et al., 2023; Wang et al., 2024b; Men et al., 2024). A central technique in MI
is the projection of intermediate representations into the vocabulary space, as implemented by
tools such as LogitLens (Nostalgebraist, 2020) and TunedLens (Belrose et al., 2023), which en-
able researchers to track how information and predictions evolve across layers (Dar et al., 2023;
Pal et al., 2023). In addition to layer-wise analysis, recent work has focused on identifying,
attributing, and intervening on important neurons—those whose activations are strongly corre-
lated with specific linguistic functions or behaviors (Bau et al., 2020; Geva et al., 2022; Yu and
Ananiadou, 2024b). Methods for neuron selection and editing, as well as circuit-level analy-
sis (Elhage et al., 2021; Wang et al., 2023b), have proven effective for uncovering the internal
structure underlying phenomena such as factual recall (Meng et al., 2022; Geva et al., 2023),
reasoning processing (Yu and Ananiadou, 2024a), and now, as in our work, language confusion.
By leveraging these MI techniques, we aim to provide a granular, causal understanding of how
and why language confusion arises in multilingual LLMs, and to identify actionable intervention
points for mitigation.

Multilingual Interpretability Recent research has begun to probe the internal representations
of English-centric and multilingual LLMs to understand how they process and transfer informa-
tion across languages (He et al., 2024b; Zhao et al., 2024). Wendler et al. (2024) show that mod-
els like Llama2 often rely on English as an internal pivot language and can disentangle language
and conceptual representations in controlled tasks. Fierro et al. (2025) examine how mechanisms
identified in monolingual contexts generalize to multilingual settings. Wang et al. (2025a) inves-
tigate the internal causes of crosslingual factual inconsistencies, revealing how MLMs transition
from language-independent to language-specific processing. However, prior work has not sys-
tematically connected these internal mechanisms to language generation errors such as language
confusion.
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Dataset Data Source Language Prompt Example
Aya Human-generated ar, en, pt, tr, zh ˜ÄUÀÕ◊∫N}ÑÃo⇥

(Singh et al., 2024) Briefly introduce the poet Li Bai.
Dolly MT post-edited ar, es, fr, hi, ru Qu’est-ce qui est plus important, l’inné ou l’acquis?

(Singh et al., 2024) What is more important, nature or nurture?
Native Human-generated es, fr, ja, ko ñBHflºo�‡‘ç✏H .̌ñ–Îflñé✏H⌧�⌥?

(Marchisio et al., 2024) What is concrete made of?
Okapi Synthetic + MT ar, en, pt, zh,it, Schreib einen Aufsatz von 500 Wörtern zum Thema KI.

(Lai et al., 2023b) fr, de, id, es, vi Write a 500-word essay on AI.

Table 6.4: Overview and Prompt Example of the LCB Benchmark (monolingual part). The
number of examples per language is 100 in each dataset.

6.2.3 Revisiting Language Confusion: Benchmark Insights

Recap of Language Confusion Benchmark The Language Confusion Benchmark (LCB)
(Marchisio et al., 2024) provides a systematic framework for evaluating the ability of LLMs to
generate text in the user’s intended language. The benchmark covers 15 typologically diverse
languages and uses a diverse set of prompts sourced from human-written, post-edited, and syn-
thetic datasets to evaluate models, ensuring coverage of a wide range of domains and linguistic
structures (Table 6.4). In this work, we focus on the monolingual setting of LCB, where the
prompt and expected response are in the same language. This setting is particularly relevant
for mechanistic interpretability research, as it isolates language confusion phenomena from the
additional complexities of explicit cross-lingual transfer.

To quantify language confusion, we adopt two key metrics from LCB: line-level pass rate
(LPR) and line-level language accuracy (Acc). LPR measures the percentage of model re-
sponses in which every line is in the correct language. Acc reflects the proportion of individual
lines across all responses that are correctly generated in the target language. Both metrics rely on
automatic language identification using the fastText classifier (Joulin et al., 2016, 2017), which
efficiently detects the language of each line in the generated output.

We conducted preliminary benchmarking experiments on LCB with three instruction-tuned
LLMs: Llama3-8B (English-centric, no multilingual instruction tuning), Llama3-8B-multi-

lingual (multilingual instruction-tuned) (Devine, 2024), and Llama3.1-8B (multilingual-
optimized). As shown in Figure 6.12c, Llama3-8B exhibits substantial language confusion, with
frequent line-level switches to unintended languages (mostly English). In contrast, both Llama3-
8B-multilingual and Llama3.1-8B achieve near-perfect LPR and line-level accuracy, demonstrat-
ing the effectiveness of multilingual instruction tuning and targeted optimization for multilingual
dialogue.

Given these findings, our work centers on understanding and mitigating the language confu-
sion observed in English-centric Llama3-8B. By leveraging mechanistic interpretability methods,
we aim to uncover the internal causes of confusion and develop interventions that can bring its
performance closer to that of explicitly multilingual-tuned models. In the following subsection,
we delve deeper into the significance of confusion points as critical junctures in the generation
process.
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Model Metric ar en pt tr zh es fr hi ru ja ko de id it vi avg
Llama3 LPR 33.0 99.5 71.0 33.0 19.3 73.0 59.3 8.0 28.0 14.0 23.0 19.0 22.0 34.0 11.0 36.5

(original) Acc 33.7 99.8 74.5 37.5 23.4 77.1 64.1 15.1 28.2 17.1 23.6 23.0 27.3 39.8 14.8 39.9
Llama3 LPR 71.0 99.0 93.0 50.0 57.3 94.3 84.0 37.0 78.6 50.0 45.0 60.0 67.0 86.0 62.0 68.9

(replace) Acc 74.8 99.6 95.4 55.5 64.1 95.3 86.5 47.6 83.1 55.3 48.6 62.3 77.7 87.5 66.1 73.3
Llama3 LPR 98.3 98.5 99.0 95.8 88.8 98.3 95.9 97.0 100.0 93.5 100.0 100.0 88.8 100.0 97.9 96.8

(multilingual) Acc 98.7 99.5 99.8 96.9 93.8 99.3 96.9 97.5 100.0 95.8 100.0 100.0 94.2 100.0 97.9 98.0

Table 6.5: Impact of Confusion Point Replacement on Language Confusion Metrics. Line-level
pass rate (LPR) and line-level accuracy for original Llama3-8B, multilingual Llama3-8B, and
Llama3-8B with confusion point replacement, reported by language.

Significance of Confusion Points A confusion point (CP) is the position in a model’s out-
put where the first token of an unintended language abruptly appears, marking the onset of
language confusion (Marchisio et al., 2024). This concept is inspired by psycho- and neurolin-
guistic research on code-switching, where the precise location of a language switch—known as a
switch point—is central to understanding bilingual language production and processing (Blanco-
Elorrieta and Pylkkänen, 2017; Suurmeijer et al., 2020). To empirically assess the role of CPs
in LLM language confusion, we conduct a replacement experiment on Llama3-8B. For each in-
stance of language confusion, we identify the CP using the fastText language detector. We then
replace the token at the CP with the corresponding token generated by Llama3-8B-multilingual,
which achieves near-perfect language accuracy, under the same prompt. This approach is mo-
tivated by the psycholinguistic observation that, in human code-switching, the choice at the
switch point strongly influences the subsequent language trajectory (Moreno et al., 2002; Lai
and O’Brien, 2020).

6.2.4 Mechanistic Analysis of Language Confusion Points
6.2.4.1 Analyzing Layer-wise Language Transition

A central question in understanding language confusion is where and how the model’s internal
representations fail to transition from a shared conceptual space to the intended target language.
Motivated by recent findings that English-centric LLMs process information in a latent, often
English-biased, conceptual space before converting it to the target language in the final lay-
ers (Wendler et al., 2024; Wang et al., 2025a), we conduct a detailed layer-wise analysis of this
transition using TunedLens (Belrose et al., 2023).

We employ TunedLens, the more reliable variant of LogitLens (Nostalgebraist, 2020), to
unembed the hidden states of Llama3-8B at each layer into the vocabulary space. With this,
we inspect every layer of the model and extract the top 10 predicted tokens with the largest
logits at the position immediately preceding the confusion point (CP) (for confusion cases) or the
output token (for correct cases). For each layer, we compute the average number and summed
probabilities of English and target language tokens among the top-10 predictions, using fastText
for language identification. Our analysis focuses on four typologically diverse languages (Arabic,
Portuguese, Turkish, Chinese) from the LCB benchmark. We separate samples into two groups:
(1) Correct—where the model generates the intended language throughout, and (2) Confusion—
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(a) Average Token Count

(b) Average Probability

Figure 6.13: Average token counts and probabilities for English and target language tokens
among the top-10 predictions at each layer, shown for both correct and confusion samples across
four languages from Aya.

where the model switches to an unintended language at a CP. For confusion samples, we analyze
the model’s state up to the token before the CP.

Figure 6.13 presents the evolution of language token counts and probabilities across layers
for both groups. In early and middle layers, English tokens dominate the top-10 predictions
for all languages, reflecting the English-centric latent conceptual space of Llama3-8B. This is
consistent with prior work showing that LLMs encode information in a shared, language-agnostic
space in intermediate layers. In the final layers, a sharp transition emerges. For correct samples,
the number and probability of target language tokens rise steeply, overtaking English tokens in
the last few layers—indicating a successful transition to the target language surface form. In
contrast, for confusion samples, this transition fails: English tokens remain dominant or even
increase, while target language tokens lag behind. This failure to shift from the latent conceptual
space to the target language at the critical moment leads to CPs and erroneous output.

Our layer-wise analysis with TunedLens reveals that the transition to the target language
occurs in the final layers, and that failures in this process are tightly linked to language confusion.
These findings provide direct evidence that language confusion in Llama3-8B is primarily caused
by transition failures in the last few layers, motivating our subsequent neuron-level investigation
to pinpoint and intervene on the specific components responsible for these failures.

6.2.4.2 Localizing Critical Neurons at Confusion Points

A key step toward understanding and mitigating language confusion is to identify which neu-
rons are most responsible for the emergence of confusion points. Building on recent advances
in neuron-level attribution (Geva et al., 2022; Yu and Ananiadou, 2024b), we adopt a static, effi-
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cient method to locate and analyze the most influential feed-forward network (FFN) neurons in
Llama3-8B.

Methodology In the inference pass in decoder-only LLMs, for a given input sequence, each
layer output hl

i (layer l, token position i) is a sum of the previous layer’s output hl�1
i , the attention

output Al
i, and the FFN output F l

i :

hl
i = hl�1

i + Al
i + F l

i (6.2)

The FFN output F l
i is calculated with a non-linear activation function � and two feedforward

layers W l
fc1 2 RN⇥d and W l

fc2 2 Rd⇥N :

F l
i = W l

fc2�(W
l
fc1(h

l�1
i + Al

i)) (6.3)

Following Geva et al. (2021), the FFN layer output F l
i can be represented as a weighted sum

over neuron subvalues:

F l
i =

NX

k=1

ml
i,k · fc2lk (6.4)

ml
i,k = �(fc1lk · (hl�1

i + Al
i)) (6.5)

where fc2lk is the k-th column of W l
fc2, and ml

i,k is derived from the inner product between the
residual output (hl�1

i + Al
i) and fc1lk, the k-th row of W l

fc1.
Geva et al. (2022) and Dar et al. (2023) project FFN neuron subvalues with unembedding

matrices to compute the token probability distribution. To quantify the importance of each neuron
for generating a specific token (e.g., at a confusion point), we adopt the log probability increase
method of Yu and Ananiadou (2024b). For a neuron in the l-th FFN layer vl, its importance score
is defined as the increase in log probability of the target token when vl is added to the residual
stream Al + hl�1, compared to the baseline without vl:

Imp(vl) = log(p(w|vl + Al + hl�1)� log(p(w|Al + hl�1) (6.6)

This approach efficiently identifies neurons whose activations most strongly influence the model’s
prediction at a given position.

Experimental Observations We apply this method to Llama3-8B on confusion samples from
the LCB benchmark, focusing on the token position immediately preceding each confusion point.
For each sample and language, we compute the importance scores for all 14,336 FFN neurons in
each layer of Llama3-8B, rank them, and select the top 300 most important neurons per sample.
We then analyze the distribution of these critical neurons across layers, both for individual sam-
ples and aggregated over all samples in a language. Our analysis reveals a striking concentration
of important neurons in the final layers, as visualized in Figure 6.14. This pattern holds both
at the single-sample level and when aggregating across samples, indicating that the emergence
of confusion points is primarily driven by late-layer FFN activity. We further rank neurons by
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(a) Individual Case

(b) Aggregated Neuron Scores

Figure 6.14: Distribution of Important Neurons Associated with Confusion Points in Llama3-
8B. (a) Distribution of the top 300 most important FFN neurons across layers for an individual
Chinese prompt “˜„ ∆⌧ôe�ôÑ✏�⇥(Please explain ‘∆⌧ôe�ô.’)” from Aya.
(b) Aggregated distribution of important neuron scores across all Chinese test samples in Aya.

their frequency of appearance in the top 300 sets across samples, finding that a subset of neurons
consistently recurs as highly influential for confusion points.

To understand the effect of multilingual alignment, we repeat the analysis on Llama3-8B-
multilingual using the same set of prompts. After multilingual instruction tuning, language
confusion is nearly eliminated. Comparing neuron importance scores between the two mod-
els (Figure 6.15), we observe that most neurons critical for confusion in the Llama3-8B become
much less important in its multilingual counterpart, suggesting that multilingual alignment sup-
presses the activity of confusion-inducing neurons. However, a small number of neurons remain
important or even increase in importance, likely reflecting their role in encoding general semantic
information rather than language-specific transitions.

These findings reinforce the conclusion from our layer-wise analysis: language confusion is
tightly linked to the activity of specific FFN neurons in the final layers. The suppression of these
neurons through multilingual alignment provides a mechanistic explanation for the effectiveness
of such tuning. Moreover, the identification of a small set of persistent, semantically impor-
tant neurons suggests that targeted neuron-level interventions could mitigate confusion without
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Figure 6.15: Neuron rank comparison between original Llama3 and multilingual Llama3. Re-
sults of Chinese test samples in Aya.

harming overall model performance. These insights directly inform our subsequent strategies for
neuron-based mitigation of language confusion.

6.2.5 Mitigating Language Confusion via Neuron Editing
A central challenge in mitigating language confusion via neuron editing is to identify a set of
neurons whose intervention effectively reduces confusion without degrading the model’s general
competence or fluency. Insights from our previous mechanistic analysis indicate that language
confusion is primarily driven by a subset of late-layer FFN neurons. However, indiscriminate
deactivation of important neurons risks harming the model’s overall performance. Thus, a prin-
cipled neuron selection strategy is essential.

6.2.5.1 Neuron Selection and Intervention

We compare three neuron selection strategies: (1) Frequency-Based Selection: Selects the neu-
rons most frequently identified as important across all confusion samples for a given language.
(2) Aggregate Importance Selection: Ranks neurons by the sum of their importance scores across
all confusion samples, selecting those with the highest cumulative influence. While this method
captures the overall impact, it may still include neurons essential for general language com-
petence. (3) Comparative Importance Selection: Inspired by Yu and Ananiadou (2024a), this
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strategy identifies neurons whose importance scores for confusion points decrease most substan-
tially after multilingual alignment. Specifically, for each neuron, we compute the difference in
importance score between original Llama3-8B and Llama3-8B-multilingual on the same input.
Neurons with the largest drop are prioritized for intervention, as they are likely to be specifically
implicated in language confusion rather than general semantic processing.

ar pt tr zh es fr hi ru ja ko de id it vi Avg.
original 33.44 74.26 37.55 24.04 77.15 63.16 16.47 28.20 17.44 23.50 23.00 27.33 39.83 14.79 35.73
freq 31.75 75.10 36.51 22.09 76.29 66.98 18.66 27.70 19.29 23.08 22.25 27.83 39.45 13.58 35.75
score 76.97 93.41 67.61 80.63 91.22 74.77 60.00 50.32 53.50 33.25 40.27 53.58 96.00 67.56 67.08
comparative 85.45 97.12 57.27 89.39 92.20 83.17 82.74 89.43 49.95 40.33 80.82 78.94 95.25 66.50 77.75

Table 6.6: Confusion mitigation performance of different selection strategies. Line-level accu-
racy is reported.

For each strategy, we select the top 100 neurons and intervene by setting their activations to
zero during generation. We evaluate the impact of each method on the LCB benchmark. Our re-
sults (Table 6.6) demonstrate that Comparative Importance Selection achieves the most effective
reduction in language confusion, substantially outperforming both frequency-based and aggre-
gate importance methods. Frequency-based selection yields minimal benefit, while aggregate
importance provides moderate improvement but still lags behind our proposed approach. No-
tably, the comparative strategy selectively targets neurons implicated in confusion, minimizing
collateral impact on general model competence.

6.2.5.2 Generalization and Robustness of Neuron Editing

To further validate the effectiveness and safety of our Comparative Importance Selection strategy,
we conduct a comprehensive evaluation across multiple metrics and experimental setups. Our
goal is to ensure that neuron editing not only mitigates language confusion but also preserves the
model’s general competence, fluency, and robustness across domains (Table 6.7).

token num token prob fluency acc ood xnli senti
Original 1.96 24.5 25.8 39.9 46.4 98.4
Edited 3.43 36.8 21.8 74.25 44.9 98.2
Diff 1.47 12.3 -4.0 34.4 -1.5 -0.2

Table 6.7: Results of generalization and robustness of neuron editing. Average performance
across languages is reported. Detailed results in Appendix H.

Language Confusion Mitigation We first assess the impact of neuron editing on language
confusion using the LCB benchmark. In addition to standard metrics (line-level pass rate and
line-level accuracy), we analyze the internal output distributions by reporting (1) the number of
target language tokens among the top-10 candidates in the final output token logit, and (2) the
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total probability mass assigned to target language tokens in the top-10. These metrics provide
a deeper view of how neuron editing shifts the model’s internal preference toward the intended
language, beyond surface-level accuracy.

Robustness on General Tasks To evaluate whether neuron editing affects the model’s general
capabilities, we test the edited model on widely used multilingual benchmarks, including XNLI
and multilingual sentiment analysis. We also assess output fluency by measuring the perplexity of
generated responses using the multilingual model facebook/xglm-564M (Lin et al., 2022).
Across all these metrics, the edited model maintains performance comparable to the original
Llama3-8B, indicating that our intervention does not degrade general language understanding or
generation quality.

Out-of-Domain Generalization We further examine the generalization of neuron editing by
applying neurons selected from one data source (e.g., Aya) to out-of-domain test sets (e.g.,
Okapi) for the same language. The edited model continues to demonstrate strong mitigation of
language confusion, suggesting that the identified neurons capture robust, domain-independent
mechanisms underlying confusion points.

6.2.5.3 Comparison with Multilingual Alignment

To contextualize the effectiveness of neuron editing, we compare the performance of the edited
Llama3-8B model with that of the multilingual-tuned Llama3-8B. Quantitative results show that
neuron editing achieves language confusion mitigation on par with the multilingual-aligned
model for most languages. Both approaches yield high line-level pass rates and language ac-
curacy, demonstrating that targeted neuron intervention can match the benefits of extensive mul-
tilingual instruction tuning for confusion reduction.

Beyond aggregate metrics, qualitative analysis reveals further advantages of the neuron edit-
ing approach. Through case studies, we observe that the edited Llama3-8B not only generates
fluent and accurate responses in the intended target language, but also avoids certain artifacts
introduced by multilingual alignment. For example, in several instances (Figure 6.16), the mul-
tilingual Llama3-8B produces outputs containing HTML tags or formatting patterns reminiscent
of its instruction tuning data, reflecting the influence of imperfect or noisy multilingual datasets.
In contrast, the neuron-edited model consistently produces clean, well-structured, and contextu-
ally appropriate responses, free from such extraneous formatting.

These findings highlight a key strength of mechanistic neuron editing: it directly addresses
the internal causes of language confusion without introducing side effects from large-scale data-
driven alignment. By preserving the original model’s semantic competence and output quality,
neuron editing offers a more targeted and interpretable solution. This suggests that, beyond
traditional multilingual instruction tuning, mechanistic interpretability-driven interventions can
provide a promising path toward high-quality, robust multilingual language models.
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Case 2 (okapi-zh, id5)

Input: 撰写一篇有关健康饮食重要性的争论性文章。Write 
an argumentative essay on the importance of healthy eating.

Before Neuron Editing: English Translation: "To tear down the 
eastern wall to repair the western wall" - Meaning: To solve a 
problem by creating a new one, or to fix one issue by making 
another one worse.

After Neuron Editing: 英语作文\n健康饮食的重要性：是或
不是？\n在当今的生活中，健康饮食已经成为人们日常生
活中的一部分。然而，是否健康饮食真的那么重要？

Multilingual Llama3:
](https://www.zhihu.com/question/34614445) \n[如何
在日常生活中更好地保持健康饮食习
惯？](https://www.zhihu.com/question/34614445)

Case 1 (aya-zh, id1)

Input: 请解释“拆东墙补西墙”的意思。Please explain “拆东墙
补西墙”

Before Neuron Editing: English Translation: "To tear down the 
eastern wall to repair the western wall" - Meaning: To solve a 
problem by creating a new one, or to fix one issue by making 
another one worse.

After Neuron Editing: “拆东墙补西墙”是中国古代的一句成语
，它的意思是“解决问题的方法是解决问题的根源，而不是
简单地解决表面现象”。\n …

Multilingual Llama3: 2023-03-23 14:34:23 拆东墙补西墙的
意思是为了解决某个问题或问题所在的某个方面，而不是
直接解决问题本身，…

Figure 6.16: Case study of neuron editing.

6.2.6 Sum-Up
This work provides the first mechanistic interpretability account of language confusion in English-
centric LLMs. By tracing confusion points to failures in late-layer transitions and localizing the
critical neurons responsible, we demonstrate that targeted neuron editing can robustly mitigate
language confusion without sacrificing general competence or fluency. Our approach achieves
results on par with multilingual-tuned models for most languages, while preserving cleaner out-
put quality. These findings highlight the promise of neuron-level interventions for more reliable
and interpretable multilingual language modeling.
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Chapter 7

Conclusion

7.1 Summary of Research
This dissertation has explored new frontiers in efficient and human-inspired natural language
processing (NLP) for multilingual and low-resource settings. Motivated by the global chal-
lenge of language inequality, the work addressed the dual imperative of developing practical,
scalable methods that extend NLP’s reach to underrepresented languages, while simultaneously
deepening our scientific understanding of language models through human-inspired analysis and
interpretability.

The research presented in this dissertation can be grouped into four main threads:

• Prompt-Based Learning for Multilingual Prediction: The dissertation advanced prompt-
based learning methods for multilingual NLP, with a focus on zero- and few-shot sce-
narios where labeled data is scarce. By investigating and mitigating bias in prompt-
based models through calibration techniques and introducing retrieval-augmented prompt-
ing (PARC), the work achieved robust improvements in multilingual performance, par-
ticularly for low-resource and typologically diverse languages. Decomposed prompting
strategies enabled more granular evaluation of linguistic structure knowledge in large lan-
guage models (LLMs), while the BMIKE-53 benchmark extended prompt-based learning
to the challenging domain of cross-lingual knowledge editing.

• Prompt-Based Fine-Tuning for Cross-Lingual Transfer: Building on the prompt-based
foundation, the dissertation systematically compared prompt-based fine-tuning with tra-
ditional fine-tuning for zero-shot cross-lingual transfer. Through the PROFIT pipeline, it
was shown that prompt-based fine-tuning consistently yields superior transfer, especially
in low-data regimes and for typologically similar languages. The ToPro methodology ex-
tended this success to token-level tasks like POS tagging and NER, and a delexicalized
constituency parser demonstrated the feasibility of cross-lingual transfer for historical lan-
guages (e.g., Middle High German), opening new avenues in computational historical lin-
guistics.
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• Efficient NLP Methods for Low-Resource Settings: Recognizing the practical bottle-
necks of data and computational resource constraints, the dissertation introduced AMD2G,
a unified data augmentation framework for multi-domain dialogue generation, and GN-
Navi, a parameter-efficient fine-tuning method based on graph neural networks. Both
approaches significantly improved performance in low-resource scenarios, demonstrating
that efficiency and scalability can be achieved without sacrificing much accuracy or inclu-
sivity.

• Human-Inspired Understanding and Mechanistic Interpretability: The final research
thread shifted from performance to understanding, introducing probing methods inspired
by psycholinguistics and neurolinguistics to distinguish between LLMs’ performance and
true linguistic competence. Minimal pair probing and cross-lingual analysis revealed that
LLMs encode linguistic form more robustly than meaning, and that instruction tuning
improves performance but not the underlying competence. Mechanistic interpretability
techniques traced failure modes such as language confusion to a small set of late-layer
neurons, and demonstrated that targeted neuron-level interventions could robustly mitigate
these errors without harming general model competence or output quality.

7.2 Discussions and Insights
Several key insights emerge from the work presented in this dissertation:

Regarding prompt-based learning for multilingual prediction:
• Prompt-based methods, when carefully calibrated and augmented, are highly effec-

tive for zero- and few-shot multilingual prediction. Probability calibration and cross-
lingual retrieval-augmented prompting enable models to overcome label bias and leverage
information from high-resource languages, substantially boosting performance for under-
represented languages.

Regarding prompt-based fine-tuning for cross-lingual transfer:
• Prompt-based fine-tuning offers consistent advantages over vanilla fine-tuning for

cross-lingual transfer, especially in low-resource and typologically similar scenarios.
Token-level decomposition (ToPro) further extends these benefits to structured predic-
tion tasks, and the delexicalization constituency parsing research on Middle High German
demonstrates strong transfer even to historical languages.

Regarding efficient NLP methods for low-resource settings:
• Unified data augmentation and parameter-efficient adaptation are crucial for practi-

cal deployment of NLP in low-resource settings. The AMD2G and GNNavi frameworks
show that it is possible to achieve competitive results with minimal data and parameter
updates, making NLP more accessible and sustainable.

Regarding human-inspired understanding and mechanistic interpretability:
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• Human-inspired probing, combining psycholinguistic and neurolinguistic paradigms,
reveals a gap between model performance and underlying competence. LLMs more
easily acquire linguistic form than meaning, and instruction tuning improves performance
but not deep understanding. This underscores the importance of interpretability and cog-
nitive alignment in the next generation of NLP systems.

• Mechanistic interpretability can identify and address specific failure modes, such as
language confusion, through targeted neuron-level interventions. This opens up new pos-
sibilities for efficient, interpretable, and robust multilingual language models.

7.3 Outlook and Future Directions
While this dissertation has made significant advances in both the practical and scientific dimen-
sions of multilingual and low-resource NLP, several promising directions for future research
emerge:

• Culturally and Socially Aware Multilingual Language Modeling: The next generation
of multilingual language models should move beyond linguistic diversity to embrace cul-
tural and social context. This includes developing culturally sensitive prompts, datasets,
and evaluation metrics, as well as modeling the diverse conceptualizations and commu-
nicative norms that arise in different linguistic and cultural communities. Future work
could systematically investigate how LLMs encode, transfer, and sometimes misrepresent
cultural knowledge, and develop methods for cross-cultural calibration and alignment.

• Cross-Cultural and Cross-Lingual Conceptual Understanding: Extending multilin-
gual interpretability research, future studies could probe how LLMs represent and process
shared and divergent conceptual structures across languages and cultures. This could in-
volve developing new benchmarks for cross-lingual conceptual alignment, investigating
the mechanisms that support or hinder shared understanding across linguistic boundaries,
and identifying where models fail to capture culturally specific distinctions. Such research
could illuminate both the universals and particulars of human communication as reflected
in language models.

• Human-Inspired and Neuro-Cognitive Modeling for Multilingual NLP: The integra-
tion of insights from psycholinguistics, neurolinguistics, and cognitive science holds great
promise for advancing both model design and interpretability. Future research could lever-
age mechanistic findings from LLMs to inspire new hypotheses about human language
processing and disorders, or vice versa. For example, identifying neuron-level circuits
responsible for language confusion in LLMs may inspire analogous investigations in bilin-
gual aphasia or code-switching in the human brain. Conversely, cognitive models of multi-
lingual acquisition and processing can inform the architecture and training of more human-
like multilingual models.
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• Towards Human-Centric, Inclusive, and Ethical NLP: As NLP technologies continue
to shape global communication, it is imperative that future research prioritizes fairness,
inclusivity, and the ethical use of language models. This includes the responsible col-
lection and annotation of culturally diverse data, privacy-preserving deployment in sen-
sitive contexts, and continuous evaluation of social biases and unintended consequences
in real-world use. Embedding human-centric values in both the design and evaluation of
multilingual NLP systems will be critical for ensuring that technological progress benefits
all.

In summary, this dissertation has contributed new methods, analyses, and perspectives for
efficient and human-inspired multilingual NLP, bridging the gap between practical performance
and scientific understanding. By combining algorithmic innovation with cognitive and cultural
insight, it lays the groundwork for future research that is not only technologically advanced, but
also more inclusive, interpretable, and attuned to the complexity of human language and society.



Appendix

A Detailed PARC Results
We show the detailed experimental results for all tasks in Table 1 (Amazon reviews), Table 2
(AG News), and Table 3 (XNLI), respectively.
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pattern 0 [X] [MASK]
pattern 1 It was [MASK]. [X]
pattern 2 [X] All in all, it was [MASK].
pattern 3 Just [MASK]! [X]
pattern 4 [X] In summary, the product is [MASK].

en af ur
p0 p1 p2 p3 p4 p0 p1 p2 p3 p4 p0 p1 p2 p3 p4

MAJ 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Direct 50.5 54.3 58.9 53.7 52.6 53.3 50.7 50.4 49.8 51.5 49.9 51.7 54.6 49.9 50.3

Unlabeled

k=1 50.9 55.4 59.1 51.9 52.6 51.0 54.9 57.9 52.9 52.8 51.6 56.7 60.0 52.2 52.2
k=3 50.7 53.7 57.7 50.8 50.4 50.4 52.5 56.2 50.7 51.0 51.3 52.9 57.1 50.8 50.9
k=5 50.8 52.2 56.0 50.3 50.9 50.8 52.2 55.0 50.2 50.6 51.2 52.5 56.4 50.3 50.7
k=10 50.7 51.9 56.0 50.0 50.6 50.7 52.0 55.8 50.2 50.7 51.4 52.4 55.5 50.0 50.3
k=20 50.5 50.8 53.6 49.9 50.1 50.5 51.1 53.5 50.0 50.2 51.1 51.2 54.0 49.8 50.0

labeled

k=1 60.0 82.4 82.4 82.3 82.4 66.0 79.0 79.2 79.2 79.2 57.0 80.4 80.6 80.6 80.6
k=3 58.5 86.2 86.2 86.2 86.2 65.0 80.7 81.1 81.1 81.0 56.4 83.8 84.3 84.3 84.3
k=5 57.3 87.2 87.2 87.2 87.2 65.4 82.7 82.9 82.9 82.8 56.2 84.6 85.0 85.0 85.0
k=10 57.7 88.9 88.9 88.9 88.9 66.5 85.2 85.4 85.4 85.4 56.6 87.0 87.3 87.3 87.3
k=20 56.4 89.5 89.5 89.5 89.5 64.3 85.3 85.7 85.7 85.6 55.4 87.6 87.9 87.9 88.0
k=30 56.3 88.9 88.9 88.9 88.9 63.6 85.4 85.6 85.6 85.6 55.7 87.4 87.6 87.6 87.6

sw te ta
p0 p1 p2 p3 p4 p0 p1 p2 p3 p4 p0 p1 p2 p3 p4

MAJ 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Direct 47.3 50.2 51.9 49.9 50.3 50.8 52.5 53.9 49.9 51.4 54.1 59.0 56.2 50.5 51.9

Unlabeled

k=1 51.4 50.4 50.5 50.5 50.1 51.6 54.8 57.5 52.3 52.1 57.1 55.3 57.2 52.6 51.6
k=3 50.5 50.3 50.3 50.1 50.1 51.3 52.8 55.3 50.6 51.3 55.7 52.5 55.0 50.5 50.6
k=5 50.6 50.1 50.0 50.1 50.1 51.6 51.7 54.0 50.4 50.3 56.1 51.4 54.0 50.1 50.1
k=10 50.8 50.1 50.0 50.1 50.1 51.8 52.1 53.5 50.4 50.3 57.3 51.5 53.9 50.0 50.1
k=20 50.5 50.1 50.0 50.1 50.1 51.4 50.6 52.9 50.0 50.0 56.9 50.5 52.9 50.0 50.0

labeled

k=1 50.5 50.0 49.9 49.9 49.9 58.2 75.9 75.8 75.8 75.8 68.1 75.3 75.4 75.4 75.4
k=3 51.0 54.1 54.1 54.1 54.1 58.0 78.4 78.4 78.4 78.4 70.2 79.1 79.3 79.3 79.2
k=5 50.7 54.4 54.4 54.4 54.4 56.8 79.1 79.0 79.0 79.1 70.7 80.5 80.5 80.5 80.5
k=10 51.3 55.5 55.5 55.5 55.5 57.2 81.3 81.6 81.6 81.6 70.9 83.7 83.9 83.9 83.9
k=20 50.9 54.3 54.4 54.4 54.4 56.9 82.0 82.1 82.1 82.1 70.8 82.8 83.1 83.1 83.1
k=30 50.7 54.3 54.3 54.3 54.3 56.8 82.0 82.0 82.0 82.0 70.5 83.3 83.5 83.4 83.4

mn uz my
p0 p1 p2 p3 p4 p0 p1 p2 p3 p4 p0 p1 p2 p3 p4

MAJ 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Direct 49.1 49.7 51.4 49.7 50.0 48.5 50.2 52.4 49.7 51.2 54.4 56.1 56.1 50.5 52.6

Unlabeled

k=1 51.1 54.7 58.6 52.6 52.8 50.4 53.1 53.6 51.8 50.9 53.0 53.9 56.0 52.3 52.0
k=3 50.2 53.2 56.4 51.0 51.1 50.5 51.9 52.1 50.2 50.3 53.0 51.5 55.0 51.2 50.7
k=5 50.2 52.0 55.3 50.4 50.5 50.5 50.3 50.7 50.0 50.2 52.9 51.1 53.6 50.5 50.3
k=10 50.4 52.2 56.3 50.6 50.5 50.6 50.3 50.6 50.1 50.0 53.4 51.1 54.2 50.2 50.1
k=20 50.4 51.1 54.5 50.0 50.0 50.5 50.0 50.7 50.0 50.0 53.2 50.5 52.8 50.0 50.0

labeled

k=1 60.8 74.9 74.9 74.9 74.9 56.0 65.0 64.7 64.7 64.7 65.3 73.9 73.8 73.8 73.8
k=3 60.3 79.5 79.7 79.7 79.7 55.2 65.3 65.2 65.2 65.2 66.6 77.5 77.7 77.7 77.7
k=5 59.7 80.6 80.6 80.6 80.6 55.5 66.1 66.0 66.0 65.8 65.8 78.6 78.9 78.9 78.9
k=10 62.2 83.9 84.3 84.3 84.3 55.9 68.1 68.2 68.2 68.3 67.8 80.9 81.1 81.1 81.1
k=20 60.3 82.5 83.2 83.2 83.2 53.8 67.0 67.1 67.1 67.1 67.4 81.8 81.8 81.8 81.8
k=30 59.7 83.3 83.8 83.8 83.8 54.4 67.5 67.7 67.7 67.7 67.6 81.7 81.8 81.8 81.8

jv tl Avg.
p0 p1 p2 p3 p4 p0 p1 p2 p3 p4 p0 p1 p2 p3 p4

MAJ 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Direct 50.9 52.3 54.1 50.1 52.3 49.6 50.4 51.9 50.0 51.2 50.8 52.5 53.8 50.3 51.4

Unlabeled

k=1 50.6 53.0 54.2 50.9 50.5 50.4 50.6 50.9 50.1 50.2 51.7 53.9 56.0 51.8 51.6
k=3 50.2 51.7 53.5 50.4 50.3 50.0 50.3 50.3 50.2 50.0 51.2 52.1 54.4 50.6 50.6
k=5 50.2 50.9 52.9 50.1 50.2 50.1 50.2 50.1 50.0 50.1 51.4 51.3 53.5 50.2 50.4
k=10 50.1 50.7 52.5 49.9 50.0 50.2 50.0 50.3 50.0 50.0 51.6 51.3 53.5 50.1 50.2
k=20 50.5 50.1 51.7 50.0 50.0 50.2 50.0 50.4 50.0 50.0 51.4 50.5 52.5 50.0 50.0

labeled

k=1 54.1 59.3 59.3 59.3 59.3 52.4 55.4 55.4 55.4 55.4 58.9 70.1 68.9 70.1 70.1
k=3 52.7 61.6 61.6 61.6 61.6 52.1 57.7 57.7 57.7 57.7 58.7 73.1 73.2 73.2 73.2
k=5 52.8 61.5 61.5 61.5 61.5 51.6 60.2 60.2 60.2 60.1 58.4 74.1 74.2 74.2 74.2
k=10 51.6 62.6 62.6 62.6 62.6 52.4 63.2 63.3 63.3 63.3 59.1 76.4 76.5 76.5 76.5
k=20 51.6 61.5 61.5 61.5 61.5 51.5 62.8 62.9 62.9 62.9 58.1 76.1 76.3 76.3 76.3
k=30 51.6 60.9 61.0 61.0 61.0 51.5 62.3 62.4 62.4 62.4 58.0 76.1 76.2 76.2 76.2

Table 1: Results on Amazon reviews dataset.
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pattern 0 [X] [MASK]
pattern 1 [MASK]: [X]
pattern 2 [MASK] News: [X]
pattern 3 [X] Category: [MASK]

en af ur
p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 52.5 47.8 47.3 53.0 41.8 41.3 40.2 57.8 27.4 32.4 33.0 53.5

Unlabeled

k=1 53.7 47.6 45.6 53.2 52.8 46.8 46.2 53.2 46.2 41.8 41.0 49.7
k=3 55.8 47.6 43.4 54.3 53.6 46.5 44.3 54.3 46.2 40.5 38.2 49.9
k=5 57.1 48.3 41.7 55.6 54.4 46.9 43.7 55.1 47.0 40.9 37.2 51.4
k=10 57.5 45.7 41.9 55.3 55.3 44.6 42.3 55.6 46.3 38.3 35.3 51.9
k=20 59.7 46.7 41.5 55.3 57.2 45.9 42.2 56.1 48.1 39.7 35.5 51.6

labeled

k=1 74.9 83.5 83.8 83.8 75.4 81.2 82.9 82.7 68.1 76.9 78.8 78.7
k=3 77.1 86.5 86.8 86.7 77.1 84.3 85.4 85.2 69.6 79.4 81.7 81.8
k=5 78.1 87.7 88.0 87.9 78.6 86.8 87.1 87.1 69.0 79.9 82.7 82.7
k=10 78.7 88.2 88.5 88.5 79.4 87.2 87.7 87.5 70.5 81.5 83.6 83.4
k=20 79.0 89.1 89.4 89.4 79.7 87.4 87.8 87.5 70.7 81.6 83.3 83.2

sw te ta
p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 42.5 37.6 33.3 56.6 32.2 37.2 32.5 55.4 31.3 37.2 28.6 55.1

Unlabeled

k=1 46.5 42.1 42.0 46.4 46.1 41.5 43.3 48.6 42.8 41.6 39.2 47.6
k=3 47.1 41.2 39.9 47.9 48.2 40.0 42.4 50.3 44.9 41.0 36.9 50.1
k=5 47.0 41.5 39.3 48.6 48.0 40.4 41.0 52.4 46.6 39.8 36.0 50.9
k=10 46.4 38.5 37.0 50.0 47.6 39.0 39.3 51.8 45.6 37.8 33.9 51.5
k=20 46.7 39.1 36.9 49.9 50.0 40.1 39.7 51.6 47.9 38.8 34.7 52.5

labeled

k=1 63.5 68.4 70.3 70.3 68.2 73.9 75.0 75.0 64.0 69.7 71.5 71.5
k=3 65.6 70.8 72.3 72.4 71.1 77.6 78.2 78.2 67.6 74.4 75.7 75.7
k=5 64.4 72.2 73.5 73.4 72.9 79.7 79.9 79.8 68.8 75.8 76.6 76.5
k=10 67.0 72.5 74.1 73.9 72.9 79.9 80.0 80.0 68.3 76.5 77.2 77.1
k=20 67.5 72.7 73.6 73.6 72.5 80.2 80.6 80.6 70.0 77.5 78.1 78.2

mn uz my
p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 31.5 30.9 32.0 47.3 33.0 37.5 33.8 50.7 31.6 37.4 33.7 51.9

Unlabeled

k=1 43.3 42.5 41.5 48.2 44.3 44.4 42.3 49.0 45.0 43.9 43.6 50.0
k=3 44.5 41.2 40.5 51.1 46.3 42.2 40.7 50.9 47.1 44.5 41.7 53.7
k=5 44.8 41.5 39.6 51.8 45.8 41.7 39.2 52.3 48.5 43.8 41.4 54.2
k=10 44.1 39.7 38.0 53.3 46.7 39.7 37.9 53.4 47.7 41.4 40.0 54.4
k=20 46.0 39.7 37.9 52.8 48.9 41.2 36.9 53.1 49.6 42.2 40.3 53.6

labeled

k=1 62.8 70.9 72.7 72.8 65.6 71.5 73.2 73.3 64.8 76.2 77.4 77.2
k=3 65.6 75.4 77.3 77.2 68.4 73.6 75.7 75.7 65.9 79.5 80.1 79.8
k=5 65.9 75.8 78.0 77.9 69.3 76.1 77.9 77.8 66.4 81.4 82.5 81.8
k=10 66.6 77.0 78.7 78.6 70.7 76.4 78.3 78.2 67.2 82.4 82.9 82.3
k=20 67.5 77.4 78.2 78.0 70.7 77.3 78.8 78.7 68.1 83.1 83.6 83.3

jv tl Avg
p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

MAJ 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Direct 46.9 39.3 38.0 59.3 44.8 44.4 42.6 60.4 37.8 38.4 36.2 50.9

Unlabeled

k=1 51.0 45.5 45.4 51.6 49.7 45.8 43.7 52.2 47.4 44.2 43.5 48.9
k=3 52.6 44.6 42.0 53.5 51.0 45.3 42.7 54.0 48.8 43.6 41.9 50.3
k=5 53.1 44.5 41.3 53.6 52.3 45.2 41.8 54.2 49.5 43.7 41.2 51.0
k=10 53.0 42.4 39.9 54.0 51.4 44.0 39.8 54.9 49.2 41.7 39.7 51.2
k=20 55.4 42.8 40.1 54.2 53.2 44.4 38.9 55.3 51.1 42.6 39.9 51.4

labeled

k=1 72.5 77.8 79.1 79.1 71.4 76.6 78.9 79.0 68.3 74.6 75.9 75.9
k=3 74.6 80.5 82.3 82.3 74.4 80.7 82.1 82.2 70.6 77.8 78.9 78.9
k=5 75.8 81.3 82.8 82.8 75.4 81.2 83.4 83.5 71.3 79.1 80.2 80.1
k=10 76.6 82.0 84.0 84.2 75.9 82.4 84.5 84.6 72.1 79.8 80.9 80.8
k=20 77.4 82.8 84.6 84.8 76.3 82.8 84.0 84.0 72.6 80.4 81.1 81.1

Table 2: Results on AG News dataset.
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pattern 0 [X1] [MASK] [X2]
pattern 1 [X1]? [MASK], [X2] (Yes - No)
pattern 2 [X1]? [MASK], [X2] (Right - Wrong)

en af ur sw
p0 p1 p2 p0 p1 p2 p0 p1 p2 p0 p1 p2

MAJ 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
Direct 33.3 34.2 34.3 33.2 33.0 33.4 33.6 34.0 33.2 33.2 32.2 33.1

Unlabeled

k=1 34.1 33.7 34.5 34.0 34.1 33.7 32.4 35.3 32.7 33.5 33.7 33.7
k=3 33.7 34.1 34.3 33.0 32.9 34.1 33.3 34.0 33.9 33.6 33.0 33.5
k=5 31.9 33.7 34.3 32.5 32.8 33.9 31.2 34.1 33.6 33.2 32.7 32.9
k=10 31.9 33.6 33.3 31.9 33.3 32.6 32.2 34.2 33.2 33.0 32.7 32.5
k=20 32.0 34.4 33.3 31.6 33.6 34.1 31.6 34.4 33.9 33.1 33.1 32.0

labeled

k=1 38.9 39.1 38.8 38.7 38.9 38.1 37.0 37.4 36.7 33.3 33.4 33.4
k=3 39.2 39.1 38.6 37.9 37.9 37.4 37.0 37.8 36.8 33.7 33.5 33.7
k=5 40.0 39.8 39.5 38.0 38.0 37.1 40.2 40.6 39.8 32.7 32.5 32.6
k=10 41.5 41.6 40.9 41.1 41.1 40.5 42.0 42.4 41.0 33.7 33.7 34.1
k=20 44.5 44.1 43.5 42.3 43.0 41.3 42.4 43.4 42.2 35.9 35.7 35.9

te ta mn uz
p0 p1 p2 p0 p1 p2 p0 p1 p2 p0 p1 p2

MAJ 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
Direct 31.9 33.0 33.2 32.4 34.1 32.9 33.0 32.7 32.6 33.3 33.3 32.9

Unlabeled

k=1 34.1 34.1 34.1 34.5 34.3 33.3 32.8 33.6 34.7 33.2 33.9 32.8
k=3 32.8 34.9 33.4 33.7 34.7 34.2 32.2 34.5 33.7 32.3 34.5 33.4
k=5 32.9 35.1 33.8 32.9 34.3 33.9 31.9 33.9 34.1 33.1 34.5 33.9
k=10 32.0 34.1 32.7 32.3 34.7 32.5 30.8 34.1 32.5 32.8 33.9 32.6
k=20 31.5 34.6 32.7 32.5 34.8 32.9 32.0 34.1 33.4 32.6 33.5 32.6

labeled

k=1 37.8 38.1 37.7 37.7 38.0 37.0 36.5 36.5 36.5 35.5 34.8 35.0
k=3 38.9 39.5 38.4 38.7 39.4 37.5 39.1 39.1 38.9 35.1 34.7 34.7
k=5 37.5 37.1 35.9 38.3 38.7 36.3 37.1 36.9 36.9 36.0 35.9 35.9
k=10 39.2 39.5 37.9 41.1 40.8 38.0 39.5 39.3 39.3 38.3 37.9 37.8
k=20 41.2 41.5 39.3 42.7 43.1 39.7 40.3 40.2 40.0 40.0 39.9 39.6

my jv tl Avg
p0 p1 p2 p0 p1 p2 p0 p1 p2 p0 p1 p2

MAJ 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
Direct 33.7 33.6 33.7 33.3 33.3 33.6 33.3 33.5 32.3 33.1 33.3 33.1

Unlabeled

k=1 33.3 33.5 33.8 32.4 32.0 33.3 33.8 32.7 32.8 33.4 33.7 33.5
k=3 32.6 33.9 33.7 32.1 31.4 34.2 33.7 33.9 33.3 32.9 33.7 33.7
k=5 32.5 34.3 33.6 32.4 31.6 34.3 34.1 33.5 32.1 32.7 33.6 33.6
k=10 30.5 33.9 33.3 32.1 32.6 33.5 33.2 33.1 32.6 32.1 33.5 32.8
k=20 30.9 33.5 32.7 30.8 33.6 34.7 32.9 32.5 33.1 32.0 33.6 33.2

labeled

k=1 36.8 36.7 36.1 34.2 33.5 33.3 34.7 34.4 34.3 36.2 36.2 35.8
k=3 36.7 36.9 36.2 34.6 33.9 33.9 35.7 35.7 35.7 36.7 36.8 36.3
k=5 37.7 37.7 37.3 35.2 34.8 34.6 35.7 35.7 35.3 36.9 36.8 36.2
k=10 39.5 39.3 38.1 34.7 34.4 33.6 37.2 36.9 36.9 38.6 38.5 37.7
k=20 41.7 41.3 39.6 32.8 32.8 32.4 37.4 37.0 37.0 39.7 39.8 38.7

Table 3: Results on XNLI dataset.
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B Experimental Details of Decomposed Prompting Work

B.1 Prompt Details
Zero- and few-shot prompts used in this work are shown in Figure 1 (decomposed prompting)
and Figure 2 (iterative prompting).

B.2 Full Results
Full experimental results are displayed in Table 4 (Mistral 7B), Table 5 (LLaMA2 7B), Table 6
(LLaMA 13B), Table 7 (BLOOMZ 7B), and Table 8 (mTk 13B).

language en af ar bg de el es et eu fa fi fr he

zero-shot
Iter 65.2 67.8 57.2 68.6 65.0 55.0 64.8 49.4 35.6 58.3 50.2 65.4 51.5
Decom (prob.) 63.6 66.0 67.8 74.4 68.6 62.7 68.6 58.0 54.1 68.5 60.2 63.5 66.4
Decom (gen.) 45.3 43.8 49.6 50.5 49.0 50.7 43.3 53.6 50.7 56.0 55.5 40.5 55.6

few-shot

Iter 80.2 66.4 65.0 77.3 66.9 56.4 70.8 53.7 50.7 57.4 63.9 67.7 66.4
Decom (prob.) 85.0 76.9 48.1 82.4 78.3 52.3 82.7 65.2 48.8 57.3 64.4 76.9 66.6
Decom (gen.) 81.4 74.8 44.3 80.4 77.0 46.3 82.0 64.0 48.1 54.1 63.6 76.4 64.9
Decom (prob.) + I 83.4 77.9 42.4 76.9 77.8 33.6 77.6 64.6 57.4 42.9 67.6 74.8 58.5
Decom (gen.) + I 78.7 75.8 34.0 74.9 76.6 24.7 76.4 62.6 56.8 34.4 64.5 73.4 54.5

language hi hu id it ja kk ko lt mr nl pl pt ro

zero-shot
Iter 61.3 50.6 54.7 64.0 42.2 36.7 39.9 52.8 39.1 60.4 66.5 63.9 66.2
Decom (prob.) 37.1 58.6 61.0 68.6 56.3 57.8 47.4 68.2 61.0 69.4 73.5 68.4 68.5
Decom (gen.) 35.6 46.7 41.8 45.1 48.9 50.2 42.2 60.3 56.7 46.8 59.5 43.1 44.6

few-shot

Iter 65.7 50.4 70.0 67.2 42.0 43.8 42.6 63.2 54.4 66.6 70.9 75.1 65.9
Decom (prob.) 67.8 71.3 73.9 76.2 59.8 50.0 44.0 67.5 48.9 80.6 78.6 77.8 77.8
Decom (gen.) 66.2 70.8 73.0 76.0 57.1 50.2 43.4 67.1 48.9 77.2 78.3 76.9 77.0
Decom (prob.) + I 57.6 66.5 70.4 72.2 54.2 58.4 49.2 69.9 53.1 78.5 76.7 75.0 76.4
Decom (gen.) + I 55.3 63.9 68.2 70.3 53.1 57.9 48.2 69.5 52.7 76.9 75.7 74.2 75.1

language ru ta te th tl tr uk ur vi wo yo zh avg.

zero-shot
Iter 68.2 39.2 51.1 54.1 65.0 47.7 67.0 56.0 41.7 31.5 41.3 58.8 54.3
Decom (prob.) 74.4 55.2 63.8 63.0 62.9 55.2 74.1 54.2 59.9 39.6 49.7 59.2 61.8
Decom (gen.) 54.7 52.2 57.4 50.1 51.3 43.2 57.4 40.3 45.9 29.2 43.3 55.7 48.7

few-shot

Iter 74.0 52.0 62.4 57.1 37.3 62.0 68.2 59.6 41.0 25.2 39.0 62.3 58.9
Decom (prob.) 79.9 37.5 61.4 58.2 73.4 62.7 77.7 51.3 52.6 42.0 47.8 65.8 64.4
Decom (gen.) 78.0 33.9 61.3 56.9 73.4 62.6 76.2 45.7 52.8 42.0 47.6 64.5 63.0
Decom (prob.) + I 76.8 35.7 67.0 45.8 74.9 63.7 75.1 40.5 59.4 43.1 49.2 62.9 62.3
Decom (gen.) + I 73.9 28.0 66.6 42.9 74.9 62.6 73.4 32.9 59.7 43.2 48.6 61.4 59.9

Table 4: Full results on Mistral 7b.
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language en af ar bg de el es et eu fa fi fr he

zero-shot
Iter 33.1 38.8 30.2 33.2 34.5 38.1 38.9 19.7 11.8 17.7 26.0 37.5 21.3
Decom (prob.) 58.2 45.1 49.6 55.9 53.3 50.4 44.7 37.7 36.4 40.5 41.3 46.8 39.5
Decom (gen.) 53.8 46.8 38.5 45.8 57.1 54.3 52.4 28.6 20.2 35.9 39.8 53.1 37.5

few-shot

Iter 68.0 56.1 58.0 63.4 56.9 48.7 55.3 46.5 41.3 51.1 50.5 54.2 54.0
Decom (prob.) 74.7 60.0 29.9 64.7 63.0 30.6 55.7 53.0 44.4 29.7 62.9 54.4 42.8
Decom (gen.) 62.1 51.0 25.7 60.3 52.4 23.9 50.3 48.3 42.9 26.0 56.8 49.5 37.5
Decom (prob.) + I 68.2 55.9 23.7 61.6 61.0 20.2 52.5 43.2 40.8 22.7 49.4 54.8 35.4
Decom (gen.) + I 63.4 53.2 19.0 57.9 56.2 12.0 47.8 39.3 40.0 15.5 46.4 51.2 30.1

language hi hu id it ja kk ko lt mr nl pl pt ro

zero-shot
Iter 35.2 29.3 31.1 35.1 28.7 13.6 19.8 24.9 13.2 37.5 37.7 38.4 32.0
Decom (prob.) 36.9 47.0 46.9 46.7 32.4 39.0 29.0 34.9 45.3 54.9 54.0 48.6 43.6
Decom (gen.) 34.8 47.4 39.1 45.2 30.9 33.0 33.2 37.7 42.0 51.1 44.1 48.5 42.6

few-shot

Iter 54.0 41.0 51.3 49.6 40.0 43.2 25.0 52.5 50.3 52.2 52.4 52.0 53.8
Decom (prob.) 45.8 62.6 60.9 56.4 40.2 51.4 48.2 56.3 47.3 58.9 67.2 60.3 63.6
Decom (gen.) 42.4 57.0 56.5 51.6 34.1 47.5 44.7 51.7 43.5 51.3 64.2 54.5 55.5
Decom (prob.) + I 30.6 52.3 54.1 51.3 37.3 46.6 41.9 46.5 45.7 64.2 65.4 55.2 56.4
Decom (gen.) + I 24.1 50.6 49.5 44.1 32.9 46.0 40.7 45.3 34.5 60.2 62.0 51.2 51.8

language ru ta te th tl tr uk ur vi wo yo zh avg.

zero-shot
Iter 29.8 19.2 13.8 29.2 28.6 22.2 30.3 20.7 29.7 13.3 13.7 32.2 27.2
Decom (prob.) 55.8 38.0 34.0 37.5 57.3 48.3 57.4 31.6 39.5 27.6 29.1 42.9 43.2
Decom (gen.) 48.7 25.5 36.9 34.6 66.3 45.9 48.8 28.4 35.3 18.7 21.8 44.0 40.4

few-shot

Iter 58.2 30.9 54.3 49.4 37.3 34.4 57.7 44.0 46.5 40.7 39.3 52.0 48.6
Decom (prob.) 67.2 31.7 44.7 36.5 46.8 58.1 62.9 27.1 41.4 39.9 37.1 64.8 50.5
Decom (gen.) 62.3 25.3 43.5 34.7 45.4 55.9 59.4 23.7 40.7 36.2 35.5 50.9 45.8
Decom (prob.) + I 59.6 20.3 38.4 20.9 63.1 54.1 59.9 19.3 49.7 32.2 33.8 48.2 45.1
Decom (gen.) + I 56.9 12.5 34.5 16.7 58.8 52.7 57.5 13.0 47.8 29.7 31.7 44.2 41.0

Table 5: Full results on LLaMA2 7b.
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Zero-shot prompt
POS tag set: ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN

PUNCT SCONJ SYM VERB X

Sentence: Viel Erfolg !

In the sentence, the part-of-speech tag of ‘Viel’ is a kind of

Few-shot prompt (w/o Instruction)
Sentence: And if you send me a story , that would be great !

In the sentence, the part-of-speech tag of ‘if’ is a kind of SCONJ.

Sentence: I ‘ll admit I was n’t expecting much from this place , but they

really did do a good job .

In the sentence, the part-of-speech tag of ‘good’ is a kind of ADJ.

Sentence: I do n’t know . The girl shrugged once again . In the

sentence, the part-of-speech tag of ‘girl’ is a kind of NOUN.

Sentence: The dancers were falling back round a Polish agriculturalist

who was teaching a gangling Englishman and two young Africans an Eastern

European peasant dance .

In the sentence, the part-of-speech tag of ‘around’ is a kind of ADP.

Sentence: Antigua was awesome .

In the sentence, the part-of-speech tag of ‘was’ is a kind of AUX.

Sentence: The food is fresh and taste great .

In the sentence, the part-of-speech tag of ‘the’ is a kind of DET.

Sentence: Now I have wife and son .

In the sentence, the part-of-speech tag of ‘Now’ is a kind of ADV.

Sentence: However , this fruitful period was short-lived , as Greece

suffered badly under the Ottoman Empire , only to recover in the 19th

century as the capital of independent Greece .

In the sentence, the part-of-speech tag of ‘suffered’ is a kind of VERB.

Sentence: I survived it without a problem .

In the sentence, the part-of-speech tag of ‘.’ is a kind of PUNCT.

Sentence: The food is fresh and taste great .

In the sentence, the part-of-speech tag of ‘and’ is a kind of CCONJ.

Sentence: you can view at dresscod.com

In the sentence, the part-of-speech tag of ‘dresscod.com’ is a kind of X.

Sentence: I do n’t know . The girl shrugged once again .

In the sentence, the part-of-speech tag of ‘I’ is a kind of PRON.

Sentence: I ‘ll admit I was n’t expecting much from this place , but they

really did do a good job .

In the sentence, the part-of-speech tag of ‘n’t’ is a kind of PART.

Sentence: Antigua was awesome .

In the sentence, the part-of-speech tag of ‘Antigua’ is a kind of PROPN.

Sentence: The dancers were falling back round a Polish agriculturalist

who was teaching a gangling Englishman and two young Africans an Eastern

European peasant dance .

In the sentence, the part-of-speech tag of ‘two’ is a kind of NUM.

Sentence: Yes , the Cyclone is almost certain to lose strength as it

surges over land .

In the sentence, the part-of-speech tag of ‘Yes’ is a kind of INTJ.

Sentence: ----== Posted via Newsfeed.Com - Unlimited - Uncensored -

Secure Usenet News ==----

In the sentence, the part-of-speech tag of ‘----== ‘ is a kind of SYM.

Sentence: Viel Erfolg ! In the sentence, the part-of-speech tag of

‘Viel’ is a kind of

Figure 1: Prompt design of decomposed prompting.
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Zero-shot prompt
POS tag set: ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN

PUNCT SCONJ SYM VERB X

Sentence: Viel Erfolg !

Viel

Few-shot prompt (w/o Instruction)
Context: Chahine said her immediate family spent about $ 20,000 to return

to Detroit via Syria and Jordan .

Tagged: Chahine PROPN said VERB her PRON immediate ADJ family NOUN

spent VERB about ADV $ SYM 20,000 NUM to PART return VERB to ADP Detroit PROPN

via ADP Syria PROPN and CCONJ Jordan PROPN . PUNCT

Context: Welcome Darin !

Tagged: Welcome INTJ Darin PROPN ! PUNCT

Context: you can view at dresscod.com

Tagged: you PRON can AUX view VERB at ADP dresscod.com X

· · ·
Context: They work on Wall Street , after all , so when they hear a

company who’s stated goals include " Do n’t be evil , " they imagine a

company who’s eventually history will be " Do n’t be profitable . "

Tagged: They PRON work VERB on ADP Wall PROPN Street PROPN , PUNCT after ADV

all ADV , PUNCT so ADV when ADV they PRON hear VERB a DET company NOUN

who’s PRON stated VERB goals NOUN include VERB " PUNCT Do AUX n’t PART be AUX

evil ADJ , PUNCT " PUNCT they PRON imagine VERB a DET company NOUN who’s PRON

eventually ADJ history NOUN will AUX be VERB " PUNCT Do AUX n’t PART be AUX

profitable ADJ . PUNCT " PUNCT

Context: It ’s not quite as freewheeling an environment as you ’d imagine

: Sergey Brin has actually created a mathematical ’ proof ’ that the

company ’s self - driven research strategy , which gives employees one day

a week to do research projects on their own , is a good , respectable idea

.

Tagged: It PRON ’s AUX not PART quite ADV as ADV freewheeling ADJ an DET

environment NOUN as SCONJ you PRON ’d AUX imagine VERB : PUNCT Sergey PROPN

Brin PROPN has AUX actually ADV created VERB a DET mathematical ADJ ’ PUNCT

proof NOUN ’ PUNCT that SCONJ the DET company NOUN ’s PART self NOUN - PUNCT

driven VERB research NOUN strategy NOUN , PUNCT which PRON gives VERB

employees NOUN one NUM day NOUN a DET week NOUN to PART do VERB research NOUN

projects NOUN on ADP their PRON own ADJ , PUNCT is AUX a DET good ADJ , PUNCT

respectable ADJ idea NOUN . PUNCT

Context: Read the entire article ; there ’s a punchline , too .

Tagged: Read VERB the DET entire ADJ article NOUN ; PUNCT there PRON ’s VERB

a DET punchline NOUN , PUNCT too ADV . PUNCT

Context: My opinion piece on the implications of Arafat ’s passing for al

- Qaeda has appeared at Newsday .

Tagged: My PRON opinion NOUN piece NOUN on ADP the DET implications NOUN

of ADP Arafat PROPN ’s PART passing NOUN for ADP al PROPN - PUNCT Qaeda PROPN

has AUX appeared VERB at ADP Newsday PROPN . PUNCT

Context: Viel Erfolg ! Tagged: Viel

Figure 2: Prompt design of iterative prompting.
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language en af ar bg de el es et eu fa fi fr he

zero-shot
Iter 47.6 37.4 43.2 44.5 45.7 38.4 46.8 37.0 26.5 42.0 40.7 45.5 40.0
Decom (prob.) 67.3 60.1 54.4 62.7 63.6 60.5 55.9 49.9 37.4 59.8 62.6 53.4 55.4
Decom (gen.) 59.2 54.1 45.0 52.5 57.5 51.3 56.3 37.6 36.7 49.7 50.2 54.7 44.3

few-shot

Iter 68.0 62.3 57.4 69.9 60.3 57.9 66.7 44.8 41.0 49.1 54.2 63.2 59.8
Decom (prob.) 77.3 67.8 33.2 67.6 67.5 35.0 62.6 58.5 46.9 34.7 62.8 64.8 48.4
Decom (gen.) 65.3 59.1 25.1 61.3 58.6 24.6 53.5 51.8 45.8 27.4 55.4 55.9 43.9
Decom (prob.) + I 74.3 67.6 25.9 60.7 70.5 21.5 59.1 51.4 44.1 21.8 59.1 63.1 40.3
Decom (gen.) + I 68.7 64.4 19.2 58.7 66.2 12.4 53.9 47.9 42.2 15.5 54.0 59.7 35.0

language hi hu id it ja kk ko lt mr nl pl pt ro

zero-shot
Iter 45.0 38.8 40.9 41.8 42.8 24.1 29.8 41.2 30.5 36.6 42.2 43.3 43.1
Decom (prob.) 53.8 57.6 57.4 54.8 48.3 51.8 45.1 54.3 50.2 62.0 66.4 56.6 57.9
Decom (gen.) 45.4 47.9 48.2 51.3 35.9 48.7 35.3 43.2 48.7 56.9 58.2 51.3 51.4

few-shot

Iter 51.6 46.1 60.8 62.7 46.5 32.0 26.6 50.8 52.7 61.0 64.4 68.9 58.9
Decom (prob.) 45.4 69.8 62.2 61.2 44.6 52.3 46.1 63.0 49.6 65.4 68.1 62.3 63.6
Decom (gen.) 37.3 60.5 55.8 54.5 40.7 49.4 42.6 58.4 46.9 54.9 61.4 54.3 54.9
Decom (prob.) + I 31.4 64.2 55.3 55.3 38.1 51.7 47.1 58.9 52.5 65.4 60.2 56.3 60.4
Decom (gen.) + I 23.4 60.0 50.2 52.4 35.5 49.0 45.3 56.9 50.8 61.1 58.2 54.1 56.1

language ru ta te th tl tr uk ur vi wo yo zh avg.

zero-shot
Iter 42.6 21.8 22.5 45.6 29.3 29.9 39.8 35.1 36.0 24.4 24.1 45.2 37.4
Decom (prob.) 66.5 49.1 50.8 44.6 66.5 56.9 65.7 47.2 45.3 34.5 47.7 58.7 54.7
Decom (gen.) 55.2 46.2 54.1 44.2 73.1 52.8 57.3 40.2 45.4 29.9 39.6 52.5 48.7

few-shot

Iter 64.9 33.5 51.5 51.5 60.2 46.3 61.6 45.4 41.8 36.3 31.6 52.1 52.6
Decom (prob.) 71.0 30.4 54.4 40.1 74.0 54.1 69.0 30.1 47.5 39.4 36.2 66.6 54.5
Decom (gen.) 63.3 21.9 51.3 33.9 70.9 52.2 61.4 22.1 45.2 38.1 34.8 56.5 48.3
Decom (prob.) + I 63.3 22.3 52.2 23.5 70.7 53.9 62.4 19.0 48.4 36.9 36.4 56.7 49.4
Decom (gen.) + I 59.8 14.1 48.4 18.5 70.2 53.2 59.1 12.0 47.1 34.5 34.5 52.7 45.6

Table 6: Full results on LLaMA2 13b.
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language en af ar bg de el es et eu fa fi fr he

zero-shot
Iter 6.4 7.2 10.9 7.6 9.5 8.4 8.2 12.4 7.5 7.3 9.3 9.0 9.6
Decom (prob.) 20.6 20.5 14.5 19.7 26.2 18.3 18.2 22.3 19.0 12.8 19.2 19.4 15.2
Decom (gen.) 28.7 18.3 16.4 22.6 26.8 22.7 24.9 21.2 25.0 11.3 20.9 20.9 21.8

few-shot

Iter 30.9 6.4 14.4 23.8 19.3 7.7 23.2 16.6 28.4 11.1 22.3 25.1 7.5
Decom (prob.) 44.1 33.1 28.7 35.9 44.0 39.2 33.6 39.0 38.4 25.6 38.5 35.6 34.3
Decom (gen.) 40.6 31.0 25.5 31.4 39.5 35.8 30.5 36.9 33.8 21.6 36.8 31.0 33.6
Decom (prob.) + I 33.3 24.7 27.2 35.2 30.0 31.0 30.1 36.5 37.4 24.7 34.4 29.0 29.2
Decom (gen.) + I 33.3 24.5 27.1 35.0 29.7 30.4 30.0 36.4 37.1 24.5 34.5 28.9 29.1

language hi hu id it ja kk ko lt mr nl pl pt ro

zero-shot
Iter 3.9 13.0 10.0 9.1 2.8 4.5 8.5 7.8 0.4 9.1 9.9 8.6 8.8
Decom (prob.) 12.0 27.0 17.7 23.1 13.5 17.7 19.5 23.6 12.4 18.6 23.6 19.5 19.6
Decom (gen.) 15.2 21.9 17.3 26.2 26.2 16.8 21.3 23.4 25.8 14.7 23.2 27.8 24.3

few-shot

Iter 20.5 13.4 30.5 19.0 6.3 17.0 5.9 15.0 35.2 20.8 17.9 27.4 13.4
Decom (prob.) 27.0 38.2 43.8 33.9 25.9 45.6 35.0 40.3 39.6 39.8 39.7 34.4 33.3
Decom (gen.) 24.8 36.9 41.2 31.1 22.5 43.8 32.7 39.5 28.0 36.5 36.5 31.7 32.0
Decom (prob.) + I 25.6 32.3 36.0 30.7 25.3 45.2 27.7 41.0 44.5 29.0 34.7 30.4 32.5
Decom (gen.) + I 25.6 32.2 35.9 30.6 25.1 45.1 27.7 41.0 43.7 28.6 34.6 30.3 32.5

language ru ta te th tl tr uk ur vi wo yo zh avg.

zero-shot
Iter 6.8 5.0 5.1 6.8 3.9 9.0 5.2 6.6 4.2 1.4 7.2 7.6 7.4
Decom (prob.) 26.1 15.0 7.9 8.7 7.8 15.5 23.7 8.1 14.4 11.0 18.9 21.7 17.6
Decom (gen.) 27.9 20.7 12.8 2.7 1.9 17.4 28.1 12.8 25.7 21.1 28.3 26.0 20.6

few-shot

Iter 20.3 24.3 47.0 3.1 22.5 20.9 20.9 15.5 18.3 16.5 16.9 20.7 18.8
Decom (prob.) 41.9 36.5 48.2 25.0 41.9 37.9 39.6 26.2 26.9 34.1 39.2 40.8 36.2
Decom (gen.) 36.8 33.5 41.7 23.1 41.9 36.4 37.0 24.7 24.5 33.2 36.5 35.7 33.2
Decom (prob.) + I 37.0 34.1 39.0 13.7 57.8 38.0 35.8 26.4 34.0 30.3 33.3 32.8 32.9
Decom (gen.) + I 36.9 33.9 38.8 13.6 57.8 38.0 35.4 26.4 33.9 30.3 33.3 32.6 32.7

Table 7: Full results on BLOOMZ 7b.

language en af ar bg de el es et eu fa fi fr he

zero-shot Decom (gen.) 47.6 45.7 37.8 48.9 48.9 45.8 40.0 45.3 41.5 44.2 46.8 42.6 42.6

few-shot Decom (gen.) 49.0 41.0 16.2 37.6 43.9 31.0 37.2 34.8 33.9 33.4 32.1 38.5 34.1
Decom (gen.) + I 57.3 51.9 27.4 47.2 55.4 40.1 50.1 41.2 43.6 48.1 42.4 49.9 45.6

language hi hu id it ja kk ko lt mr nl pl pt ro

zero-shot Decom (gen.) 40.6 38.7 39.3 39.3 32.9 46.1 29.2 47.4 47.5 42.8 46.1 40.6 49.4

few-shot Decom (gen.) 23.8 33.5 39.9 36.5 14.3 32.4 17.7 37.5 34.9 42.7 36.1 37.1 35.6
Decom (gen.) + I 44.7 36.2 51.9 45.7 44.6 45.7 26.7 45.7 48.8 55.3 46.2 48.9 51.5

language ru ta te th tl tr uk ur vi wo yo zh avg.

zero-shot Decom (gen.) 45.9 39.4 51.3 47.1 59.3 46.9 47.4 37.9 48.4 22.3 37.5 42.8 43.1

few-shot Decom (gen.) 33.5 28.1 50.9 21.9 65.7 34.7 31.2 17.7 33.9 10.5 22.4 17.2 32.5
Decom (gen.) + I 43.8 38.0 55.3 46.6 70.5 46.0 41.5 36.0 49.0 19.8 38.6 34.5 44.7

Table 8: Full results on mTk 13b.



C BMIKE-53 Details 223

C BMIKE-53 Details

C.1 Data Entry Example
Figure 3 shows the data item examples of BMIKE-53 for all three datasets.

C.2 Full Results
We show the full experimental results for all three tasks in Table 9 (zsRE), Table 10 (Counter-
Fact), and Table 11 (WFD), respectively.
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zsRe
Llama3.2-3B
0-shot

af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 53.2 32.6 62.0 36.1 44.8 49.4 46.1 68.9 60.4 27.6 63.8 44.5 31.4 39.4 57.0 58.3 29.0 69.2 47.2 41.8 45.8 46.6 48.5 56.4 63.3 45.3 74.0 43.9 37.1 49.5 34.0 55.9 53.0 53.4 65.8 44.9 59.4 41.2 59.2 50.3 62.0 49.0 59.5 45.3 67.7 49.2 38.4 59.8 56.4 36.6 57.6 36.9 94.3 50.2

rel_em 44.7 22.5 55.3 30.0 28.7 15.1 37.6 61.2 54.2 20.0 59.0 38.2 20.7 32.4 49.7 49.7 20.5 63.9 38.9 35.4 37.0 19.2 33.1 49.7 53.8 17.6 69.7 37.8 23.3 17.0 19.0 46.0 44.9 45.2 59.0 38.1 52.8 33.9 51.4 35.9 55.8 43.5 52.6 36.0 63.0 15.5 27.5 53.0 43.2 24.6 50.3 28.4 93.1 39.5

gen_f1 47.6 33.5 59.1 35.4 41.8 48.7 44.1 67.3 59.2 37.6 62.5 45.7 31.9 34.0 53.9 56.7 28.1 65.8 45.4 41.4 45.7 45.0 47.5 54.7 61.2 44.7 72.2 44.6 35.9 48.7 32.9 54.7 52.8 52.2 64.5 44.9 59.3 40.1 58.0 49.7 59.9 46.6 56.9 44.6 66.0 49.1 38.5 56.7 55.5 35.1 55.2 36.7 87.3 49.0

gen_em 39.8 22.8 52.1 30.0 26.1 14.4 35.3 59.1 53.0 30.0 57.5 39.2 21.8 27.9 46.8 47.9 19.8 60.7 38.1 34.9 36.1 18.2 32.8 48.7 52.2 16.0 67.1 38.2 22.2 15.9 18.8 44.5 44.3 44.1 57.6 39.0 52.6 33.0 50.1 35.4 54.0 41.2 49.9 35.2 61.6 14.8 28.8 49.9 42.4 23.5 48.0 27.1 84.1 38.5

loc_f1 4.3 2.5 4.3 14.4 3.2 16.5 4.3 3.6 4.3 0.2 6.0 5.6 2.6 4.8 3.3 2.7 1.8 4.7 5.6 1.4 4.5 10.1 5.2 4.1 4.6 18.8 7.2 5.9 5.1 24.4 5.6 2.5 3.1 2.9 5.2 6.3 5.1 5.8 4.5 3.8 3.6 2.4 1.7 3.0 6.3 19.1 4.0 5.2 3.6 3.8 5.0 4.9 12.9 5.6

loc_em 1.8 0.5 1.9 10.0 0.9 0.3 1.9 1.5 1.6 0.0 3.2 2.7 0.5 3.0 1.8 1.1 0.1 2.7 2.7 0.1 1.9 0.1 1.9 2.3 1.5 0.4 4.5 3.5 0.4 0.4 1.2 1.2 1.1 0.7 3.0 3.0 2.3 3.0 2.6 0.8 1.6 1.4 0.3 1.6 3.5 0.7 1.4 2.6 1.2 0.4 2.2 0.7 7.3 1.8

port_f1 3.5 3.4 5.5 0.0 4.0 19.2 3.4 4.1 4.2 1.8 3.5 2.9 3.1 3.6 3.0 3.6 4.0 3.7 4.1 3.0 4.7 14.6 5.5 3.4 5.7 19.9 6.0 3.3 4.3 24.7 3.1 3.4 3.3 3.1 4.5 3.9 4.2 3.5 4.0 6.4 4.2 2.7 3.4 2.5 5.2 22.6 3.4 4.6 4.6 3.9 4.5 5.0 24.1 5.4

port_em 0.8 0.5 2.6 0.0 0.7 0.3 0.9 1.4 1.5 0.0 0.9 0.8 0.1 0.9 0.4 1.1 0.9 1.1 1.2 1.1 1.6 0.7 1.8 1.2 2.6 0.7 2.4 1.2 0.4 0.4 0.7 0.9 0.7 0.4 1.4 1.1 1.5 1.2 1.8 1.9 1.5 1.1 0.7 0.3 2.2 0.4 0.5 1.6 1.5 0.4 2.0 1.6 17.1 1.1

1-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 76.5 57.5 69.6 62.6 65.1 57.7 78.5 85.1 80.9 73.2 82.5 85.4 52.3 80.0 77.0 71.2 50.7 78.7 81.2 68.7 73.2 64.9 69.6 75.5 77.5 58.4 84.6 80.3 72.4 59.4 62.4 65.1 69.5 72.4 79.5 81.4 79.1 77.9 81.8 71.0 78.3 76.9 73.0 60.4 83.1 53.4 59.8 77.8 71.0 56.0 76.4 65.7 97.1 71.6

rel_em 70.3 41.9 58.8 46.3 48.3 24.2 70.8 79.1 75.2 67.7 77.5 81.3 40.0 73.2 69.9 62.6 37.4 73.2 72.3 64.1 64.9 35.7 51.5 69.0 70.4 25.8 80.2 73.4 58.1 21.6 45.9 56.1 60.6 64.6 72.9 77.0 73.1 71.6 73.4 57.9 72.6 70.8 61.5 51.2 77.7 17.7 46.8 70.6 59.1 36.7 70.4 53.6 96.4 60.1

gen_f1 77.0 57.7 68.5 62.6 65.6 56.9 77.4 85.0 81.0 73.3 81.8 85.2 51.3 78.9 76.4 71.3 50.1 78.6 80.3 68.2 72.6 64.7 69.6 75.4 77.2 58.1 85.2 80.1 71.9 59.7 62.4 65.1 69.5 72.4 78.8 81.1 77.9 78.4 81.5 70.4 78.6 76.7 72.6 59.8 82.5 53.4 59.2 77.0 71.0 54.9 74.8 65.4 96.8 71.2

gen_em 71.1 42.4 57.5 46.2 49.0 23.8 69.7 78.6 75.6 68.1 76.5 81.2 39.2 72.1 68.8 62.9 36.7 72.8 71.1 63.5 63.3 35.4 51.1 68.8 69.3 25.4 80.9 73.6 57.6 21.6 46.2 56.0 60.5 64.3 72.2 76.6 71.8 72.4 73.6 57.3 72.8 70.9 61.4 50.5 77.4 17.9 46.2 69.9 58.9 35.8 68.7 52.8 96.0 59.8

loc_f1 9.1 3.9 4.5 4.0 4.9 17.6 8.6 4.4 9.1 2.1 10.0 10.6 4.6 9.9 6.7 1.7 3.3 7.0 9.9 3.5 8.2 11.6 5.1 8.7 7.0 19.0 8.0 9.0 6.1 24.2 5.5 2.7 5.5 4.8 8.2 10.9 8.5 12.1 9.7 6.0 7.2 6.5 5.3 4.4 9.7 19.7 4.4 6.4 4.8 4.7 8.3 6.9 18.6 7.8

loc_em 5.7 0.9 1.9 1.6 2.3 0.9 4.7 2.4 5.7 1.2 6.2 7.3 1.6 5.4 4.4 0.7 1.2 4.3 5.3 1.6 5.3 0.7 2.0 5.8 3.8 0.4 5.0 5.4 0.9 0.8 1.4 1.6 2.2 2.3 5.1 6.6 5.3 7.9 6.5 2.8 4.2 4.2 2.7 1.9 6.4 0.7 1.5 3.9 2.7 0.9 3.8 1.9 12.8 3.3

port_f1 17.0 9.5 8.8 11.0 14.5 19.7 22.0 12.2 20.6 7.1 19.2 21.9 11.3 20.3 11.5 6.0 10.3 15.9 23.4 7.6 20.3 19.2 10.7 16.3 15.3 23.7 12.6 24.6 11.7 27.5 7.5 8.2 8.6 7.9 14.7 20.4 17.9 22.1 17.5 16.5 14.0 15.2 11.5 8.4 18.3 23.9 7.9 15.4 15.1 7.3 13.4 15.3 38.6 15.0

port_em 9.8 4.6 4.0 5.1 6.7 1.1 14.9 7.9 14.3 3.1 13.2 14.9 4.6 14.3 6.1 2.4 4.0 9.3 15.3 4.0 13.7 2.4 4.5 10.4 8.9 1.2 7.8 17.4 3.8 0.9 3.0 4.1 4.3 3.8 9.2 13.2 12.6 14.9 11.2 10.0 8.8 9.4 6.8 4.3 12.8 0.5 2.6 10.0 8.5 1.5 8.8 7.7 29.9 7.7

8-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 74.6 57.5 68.5 60.3 64.1 56.0 80.3 83.7 80.0 75.7 82.4 85.1 51.8 76.6 77.4 74.0 52.3 77.2 80.4 68.8 79.9 68.7 66.8 76.6 77.0 55.3 82.8 78.7 74.2 54.8 58.7 63.1 70.8 65.5 77.9 80.7 80.2 75.8 80.5 67.8 77.8 77.5 71.9 36.7 84.1 60.3 54.1 79.0 62.8 55.4 75.5 71.0 99.3 70.5

rel_em 68.0 42.4 58.8 47.1 49.7 20.2 72.3 77.9 75.1 69.3 76.7 81.3 42.5 69.2 69.3 64.6 39.3 70.9 70.7 63.3 72.3 41.3 47.3 70.0 68.5 21.3 77.8 71.7 50.9 21.1 47.6 54.3 62.6 56.8 70.2 75.9 74.5 68.9 71.7 53.7 71.4 72.1 60.1 28.4 78.8 20.6 44.6 70.9 53.0 35.9 69.0 53.2 98.9 58.9

gen_f1 74.2 58.0 68.5 59.6 63.9 57.2 80.0 83.4 79.8 75.5 82.5 84.9 52.2 76.2 77.4 73.7 52.3 77.1 80.1 68.9 79.1 69.3 66.7 75.8 76.7 55.2 83.3 78.9 74.2 54.8 58.1 63.1 70.9 65.9 78.1 80.9 80.1 75.6 80.3 68.2 78.0 76.8 71.9 36.8 84.1 60.5 53.7 79.0 62.5 56.0 75.1 70.8 99.4 70.5

gen_em 67.4 43.1 58.7 46.6 49.1 21.4 72.1 77.9 74.7 69.0 76.9 81.2 43.2 68.8 69.6 64.5 39.6 70.9 70.3 63.5 71.7 41.8 47.0 69.2 67.8 21.0 78.2 72.0 50.9 20.9 47.0 54.4 63.0 56.6 71.0 76.0 74.1 68.9 71.7 54.1 71.7 71.4 59.9 27.6 78.8 21.6 44.3 70.7 53.6 36.3 68.9 53.5 99.1 58.9

loc_f1 10.9 4.3 7.3 4.8 4.6 17.0 10.9 6.7 11.9 5.1 12.3 11.9 5.4 12.0 8.5 5.2 4.3 7.0 11.1 4.5 9.1 13.8 4.9 7.6 9.6 17.0 11.8 11.4 6.0 23.9 5.1 2.6 5.4 5.7 11.2 12.8 8.4 12.9 10.9 7.7 9.0 9.1 6.3 2.5 10.3 19.2 6.7 9.2 4.5 4.2 10.9 7.3 18.4 8.9

loc_em 7.0 0.9 3.9 1.6 2.0 0.9 6.6 4.7 7.7 3.1 8.3 7.5 2.2 6.7 5.3 3.0 1.4 4.9 6.6 2.6 5.5 1.9 1.4 4.3 5.5 0.1 7.6 7.3 1.5 0.7 1.5 2.0 2.8 2.7 7.3 8.6 5.1 7.8 7.6 4.0 5.8 5.7 3.4 0.7 6.9 0.5 2.8 5.6 2.6 1.1 6.1 1.5 13.2 4.1

port_f1 19.6 12.5 14.6 14.9 16.3 23.2 25.5 9.9 21.6 8.9 21.0 20.4 13.0 26.6 13.0 7.0 13.0 10.7 24.8 9.7 23.4 23.0 13.1 15.2 14.2 23.5 18.6 24.7 16.9 27.9 9.1 9.2 8.6 8.7 16.0 22.0 15.5 24.0 22.9 19.9 16.5 14.4 12.1 5.6 18.3 24.1 8.9 15.5 15.0 9.2 15.5 16.8 34.6 16.4

port_em 12.4 5.4 7.8 7.1 8.5 1.6 17.8 5.7 14.4 4.2 14.1 14.4 6.3 18.4 7.0 2.6 6.3 5.8 17.6 5.1 15.2 3.3 5.5 9.8 8.4 1.1 11.3 17.0 7.0 1.1 3.8 5.1 4.3 3.3 9.3 14.8 9.7 15.9 15.7 11.4 10.9 8.6 5.9 2.6 12.3 0.7 3.5 9.8 10.0 2.4 9.3 8.2 26.1 8.5

8a-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 77.6 59.8 73.7 64.3 66.0 63.1 82.0 86.4 79.1 75.2 84.5 84.7 52.8 78.6 78.2 72.5 52.8 78.1 80.5 72.2 77.7 67.5 67.9 76.1 78.1 29.0 82.5 80.0 74.4 57.6 65.2 62.6 68.3 53.4 82.6 80.6 79.1 78.2 82.0 67.8 78.3 78.9 72.3 43.4 80.8 61.2 57.6 80.2 68.6 55.8 75.4 64.0 99.4 70.9

rel_em 70.7 44.0 64.7 47.9 48.9 26.1 73.9 81.6 74.2 69.0 79.0 80.2 44.2 71.5 70.0 65.1 39.2 72.7 70.9 66.0 68.5 39.1 48.5 70.0 69.0 21.3 77.8 72.8 55.9 22.0 49.4 54.1 58.4 41.7 75.2 75.2 71.9 71.5 72.9 53.7 72.9 73.9 59.9 36.7 74.6 21.0 48.5 72.4 55.1 35.8 71.3 48.7 99.1 59.6

gen_f1 77.1 59.9 73.3 64.2 66.0 62.9 82.1 86.4 79.5 75.8 84.0 84.9 53.4 78.3 78.3 72.6 53.1 78.0 80.4 72.3 77.5 67.0 68.1 75.9 78.1 29.1 82.6 80.2 73.8 57.0 65.3 62.7 68.5 53.3 82.0 80.8 78.7 78.3 81.9 67.4 78.2 78.4 73.0 44.6 80.9 61.1 57.3 79.4 68.2 56.1 75.8 64.2 99.4 70.9

gen_em 70.3 44.0 64.3 48.5 48.6 25.7 73.9 81.6 73.9 69.3 78.3 80.4 44.4 71.2 70.4 65.6 38.9 72.4 70.8 66.0 68.1 38.6 48.5 69.3 68.7 21.1 77.6 73.1 55.1 21.6 49.8 54.3 59.0 41.1 74.9 75.7 71.5 71.5 73.0 53.4 72.5 73.5 60.5 37.1 74.7 21.0 48.5 71.8 54.7 35.9 71.3 48.8 99.1 59.5

loc_f1 13.6 7.3 12.3 6.6 8.5 20.3 14.8 12.8 14.0 10.8 14.6 14.3 8.5 15.3 11.6 11.3 5.2 10.8 15.7 8.7 13.5 16.2 9.5 11.9 13.6 20.3 15.3 15.5 10.4 22.5 7.2 9.3 8.4 6.7 13.8 15.8 12.9 14.8 15.2 10.1 12.1 11.4 11.2 6.0 15.5 21.5 8.9 14.0 8.4 7.2 12.7 7.7 20.6 12.2

loc_em 9.7 3.0 8.6 2.2 4.2 1.6 10.1 9.0 9.8 7.4 10.0 9.7 4.9 10.5 7.9 7.9 2.2 6.5 10.6 6.1 9.6 2.6 4.3 7.8 8.0 0.9 10.7 10.8 2.7 1.9 3.0 6.9 3.8 2.8 9.2 11.6 8.6 9.8 11.2 5.9 8.4 7.8 6.6 3.1 11.5 1.2 4.9 9.4 4.7 2.0 9.0 1.8 14.3 6.6

port_f1 27.8 12.9 22.2 18.8 22.7 27.9 33.1 18.2 31.7 13.8 30.8 30.5 14.8 35.4 22.1 12.6 17.1 24.7 35.0 10.7 30.3 22.3 18.5 23.2 20.7 25.9 29.4 32.0 19.6 31.3 12.5 16.5 16.6 12.5 22.4 33.1 24.6 32.8 32.2 26.4 23.7 23.3 15.6 9.3 27.7 28.4 14.4 25.5 23.1 13.1 24.3 20.8 50.8 23.0

port_em 19.7 6.7 14.8 10.1 13.1 3.2 25.2 13.1 22.9 8.1 23.0 21.5 8.2 27.3 14.7 6.9 8.6 17.4 25.8 5.9 21.4 5.1 8.1 15.9 12.8 3.0 22.4 23.6 7.9 2.8 4.7 10.9 10.5 6.4 15.9 24.9 17.8 24.6 23.6 17.9 16.3 16.2 9.3 5.0 19.9 1.4 6.9 17.6 15.2 3.8 18.2 11.5 41.2 13.8

Llama3.1-8B
0-shot

af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 76.0 51.6 70.7 50.6 57.3 41.7 68.6 86.1 77.2 70.3 81.0 75.6 47.4 73.6 71.9 65.3 39.8 79.0 76.4 67.8 65.9 62.1 63.9 74.3 72.8 43.7 86.4 74.2 50.0 47.1 50.5 65.7 71.0 68.4 77.8 79.7 74.1 77.8 77.0 62.0 74.5 70.4 71.9 57.5 81.7 53.3 47.3 66.1 56.7 43.4 69.6 43.0 96.9 65.5

rel_em 70.5 41.9 65.0 38.0 45.8 17.1 60.2 80.8 71.3 64.5 75.4 68.5 40.2 65.8 65.1 56.8 29.5 73.1 68.2 63.7 56.8 35.9 49.2 68.2 64.8 23.0 84.2 68.0 37.7 20.5 40.4 57.4 64.2 61.0 73.7 74.7 69.0 72.3 69.8 52.5 69.1 64.8 66.1 47.7 77.3 22.8 38.2 59.4 48.9 32.0 63.5 35.3 96.1 56.3

gen_f1 72.4 49.4 69.0 50.5 55.6 41.5 66.2 84.2 74.8 67.7 79.1 73.5 45.8 72.0 70.1 65.3 38.1 76.5 74.3 66.7 64.3 61.9 63.0 71.8 70.7 43.8 84.6 72.7 48.3 47.7 49.9 62.7 68.9 67.1 77.0 77.3 73.3 75.4 76.4 60.3 73.0 68.7 71.3 56.9 80.0 53.8 47.1 65.1 56.2 41.9 67.2 41.5 87.7 64.1

gen_em 66.9 39.6 63.4 38.2 43.9 16.4 56.9 78.1 68.4 61.1 73.5 66.1 38.9 63.9 63.3 56.4 28.1 70.5 66.9 63.3 55.6 35.2 47.8 65.4 62.5 23.3 81.7 66.5 35.3 20.2 39.8 54.4 62.2 59.5 72.5 71.7 68.3 69.3 69.1 50.7 67.4 64.0 65.3 46.8 75.7 22.9 38.2 58.4 47.8 30.9 60.7 33.2 85.3 54.7

loc_f1 9.6 4.7 10.2 4.9 6.8 17.8 11.3 7.2 10.3 6.7 13.0 12.3 5.9 11.8 6.4 6.3 4.9 8.5 11.5 4.3 9.7 14.3 7.2 10.0 10.3 19.1 12.3 11.8 7.3 25.4 7.5 6.1 6.5 6.5 10.3 12.9 10.4 12.9 11.1 7.4 9.6 8.9 5.5 7.0 12.7 20.0 8.4 11.7 7.2 5.9 10.5 6.5 19.7 9.8

loc_em 5.3 1.1 6.6 1.6 3.0 0.9 7.4 3.9 6.2 3.9 8.9 8.2 2.0 7.4 3.6 3.6 2.0 5.5 6.7 2.4 6.2 1.4 2.7 6.2 5.7 1.2 8.0 7.4 1.9 1.8 1.8 3.8 2.7 3.0 6.5 8.5 6.8 8.5 7.2 2.7 5.9 6.1 2.8 4.0 8.8 1.4 4.7 7.2 3.3 2.2 5.8 1.6 12.7 4.6

port_f1 10.2 6.7 7.4 8.4 9.4 21.3 9.6 8.2 11.5 6.1 10.4 12.0 5.8 12.2 5.3 5.0 7.2 8.8 12.3 5.2 9.7 20.1 10.0 9.8 9.2 18.8 8.8 13.7 9.2 25.4 6.7 6.5 5.2 6.0 7.7 13.9 9.5 13.4 9.2 13.2 8.5 7.5 6.7 8.1 10.9 23.0 5.5 9.3 10.7 5.9 11.1 6.9 25.8 10.1

port_em 5.1 3.1 4.0 4.2 5.1 2.6 4.9 4.2 7.1 2.8 5.7 6.5 1.1 6.6 1.9 2.0 2.8 4.7 6.6 2.6 4.7 4.3 4.5 5.4 4.9 1.6 5.3 8.6 3.6 0.7 2.7 2.2 2.3 2.6 4.3 8.6 5.4 8.3 4.7 7.4 4.7 3.8 3.5 4.3 5.7 0.8 1.9 5.3 6.1 1.6 7.3 3.0 18.2 4.3

1-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 81.3 66.8 42.1 66.5 72.7 63.3 80.4 86.3 85.7 79.4 83.2 86.3 59.5 82.4 81.2 77.1 60.4 81.8 84.1 76.9 76.6 74.7 76.4 79.7 81.1 59.0 87.0 81.6 81.2 58.7 72.8 64.1 71.1 73.7 80.7 84.9 80.6 82.7 83.8 74.8 81.7 81.6 77.4 67.4 84.8 60.5 65.3 81.5 73.0 62.7 78.8 77.2 98.3 75.3

rel_em 75.9 52.6 32.7 50.9 57.2 27.9 73.1 80.0 80.8 75.0 77.8 82.1 49.0 75.8 74.6 68.2 46.2 76.5 75.9 73.0 68.6 46.2 58.0 73.4 73.5 28.3 84.2 75.5 69.6 24.3 58.4 56.7 61.0 66.2 74.7 80.7 75.4 76.7 76.8 63.3 76.6 76.3 67.2 54.9 79.9 23.1 53.0 73.9 59.8 43.6 72.6 62.3 98.0 64.2

gen_f1 80.7 66.9 39.6 66.3 72.6 62.6 80.2 86.5 85.4 79.4 82.6 86.5 58.8 82.2 80.9 77.2 59.3 81.2 83.8 76.7 75.9 74.2 75.8 79.4 80.8 58.5 86.0 80.8 81.0 58.7 72.4 63.8 71.5 73.4 80.4 84.7 80.8 81.6 83.7 74.4 81.1 81.5 77.1 66.6 83.8 60.2 65.8 81.4 73.4 61.9 79.3 75.9 97.9 74.9

gen_em 75.0 52.4 29.9 51.3 56.7 27.5 73.0 80.2 80.1 74.7 76.7 82.5 48.9 75.6 74.6 68.0 45.2 75.8 75.6 72.5 67.7 46.2 57.6 73.1 73.2 27.9 82.8 74.7 68.8 23.9 57.8 56.3 61.8 65.5 74.4 80.2 75.4 75.2 76.9 62.7 76.0 76.3 66.9 53.9 78.4 22.2 53.6 73.6 60.6 42.5 73.1 61.1 97.4 63.8

loc_f1 16.1 6.8 9.5 8.4 9.9 21.0 15.4 12.8 15.2 11.3 17.1 18.3 8.4 16.2 12.6 10.3 6.9 13.4 17.7 8.3 14.7 15.6 8.6 14.7 14.8 21.8 15.8 15.8 11.8 26.4 9.4 6.3 10.7 10.6 15.6 19.7 13.9 17.0 16.5 10.9 12.8 13.3 11.9 9.9 16.5 20.8 9.7 12.4 9.8 7.3 12.7 11.7 25.1 13.4

loc_em 10.2 2.6 5.3 3.8 5.0 1.9 10.4 8.3 10.8 6.7 12.1 13.1 3.9 10.8 8.2 6.9 2.8 9.0 12.1 5.1 10.1 1.9 3.0 10.1 9.0 1.9 10.7 10.5 3.5 2.3 3.1 4.6 5.7 6.4 10.5 13.6 9.5 11.0 11.9 5.9 9.2 8.9 7.2 5.5 11.5 1.1 5.1 7.9 5.1 2.2 8.1 3.6 18.0 7.1

port_f1 25.1 14.6 7.3 17.9 20.5 25.3 25.4 17.6 24.9 16.0 27.6 28.4 15.5 25.2 17.5 10.3 16.8 21.3 26.2 15.3 22.3 28.2 19.9 23.3 19.2 27.2 21.9 29.1 21.6 29.7 14.9 10.2 16.2 13.2 20.5 29.2 24.3 28.4 24.5 22.1 19.6 19.3 18.6 17.1 26.2 26.0 11.4 22.3 21.8 14.5 19.1 21.9 38.9 20.8

port_em 17.0 7.4 3.4 9.3 10.6 3.8 18.2 12.5 17.4 10.9 20.1 20.2 6.7 18.2 11.6 5.3 8.9 14.8 18.4 10.9 15.8 7.0 8.8 16.7 11.6 3.1 15.2 20.9 12.3 1.6 7.2 5.7 9.3 7.0 14.2 20.6 18.5 21.4 17.7 13.3 13.8 12.5 12.7 10.8 18.4 1.5 5.4 15.7 13.5 5.3 13.8 11.6 29.7 12.1

8-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 78.5 65.3 70.0 66.9 69.9 57.9 82.1 84.3 81.5 78.8 83.2 84.6 55.4 77.9 82.3 78.1 56.7 79.3 80.3 76.7 80.9 72.4 73.7 80.5 80.8 56.3 83.3 78.7 80.8 55.2 64.5 69.0 73.2 71.7 84.3 82.2 81.1 79.1 81.4 75.6 80.6 80.3 74.2 60.1 82.5 63.1 60.0 81.5 70.2 60.7 79.2 76.8 98.7 74.3

rel_em 72.3 51.4 59.0 52.4 56.1 20.3 73.5 77.9 76.9 73.6 77.1 80.9 47.9 70.0 76.6 66.9 43.3 73.8 70.9 72.4 73.5 45.7 56.0 74.6 72.2 25.6 78.0 70.8 65.8 23.9 54.5 60.9 64.0 64.1 77.9 76.2 75.8 72.0 73.3 63.7 74.1 75.5 62.5 48.8 76.6 24.7 52.4 73.7 60.2 40.8 72.0 62.4 98.3 63.2

gen_f1 79.0 64.3 69.7 66.0 69.5 57.5 81.8 84.7 81.5 78.7 82.4 84.4 55.5 76.9 81.2 78.2 57.2 79.1 78.9 76.1 80.2 72.4 73.6 79.8 80.5 56.5 82.6 78.7 80.6 54.7 63.5 68.8 72.0 72.1 83.4 82.0 80.6 78.5 81.4 75.1 80.5 80.4 74.8 58.9 82.8 63.2 59.1 81.9 69.9 61.5 79.3 76.3 98.5 74.0

gen_em 72.7 49.9 58.6 52.1 55.5 19.9 73.4 78.6 76.3 73.5 76.3 80.5 48.5 69.0 75.5 66.9 43.9 73.4 69.9 71.7 72.1 46.3 55.4 73.6 71.6 25.6 77.4 71.2 65.8 23.6 53.6 60.6 62.5 64.7 77.1 76.2 75.3 71.6 73.1 62.9 74.0 75.6 62.9 48.0 76.9 24.9 51.8 74.1 60.0 41.6 72.0 62.4 98.0 62.9

loc_f1 17.3 7.8 14.0 9.9 10.0 21.9 18.0 15.5 15.9 14.2 19.2 20.3 10.3 18.4 14.6 15.3 8.3 15.2 19.2 10.2 18.6 17.5 10.8 16.8 17.7 22.3 19.1 18.4 15.3 26.7 10.7 10.2 12.7 12.0 18.3 20.7 15.1 19.3 19.0 13.0 17.1 14.9 14.6 9.1 18.3 21.1 12.0 16.9 10.7 7.9 17.4 14.5 25.7 15.5

loc_em 11.3 2.4 8.8 4.2 4.9 2.0 11.8 10.8 10.1 9.6 13.6 14.3 5.3 11.8 9.0 10.2 4.0 10.6 12.7 6.9 12.3 2.7 4.7 11.0 11.1 2.3 12.8 12.5 6.3 2.3 4.5 7.2 6.8 6.5 12.5 14.2 10.1 12.1 13.1 7.3 12.0 10.0 9.5 5.0 11.9 0.8 6.6 11.3 5.1 2.4 11.2 5.4 18.4 8.4

port_f1 28.2 18.6 19.8 22.6 23.5 29.6 35.3 18.9 29.9 20.3 30.1 27.6 16.9 36.5 22.1 15.5 20.6 23.5 38.2 16.4 33.8 33.2 24.1 23.1 27.4 27.5 30.6 34.7 28.6 30.8 15.9 12.4 21.3 17.3 26.9 31.3 23.9 35.1 31.0 28.9 22.6 22.5 21.8 18.2 27.8 27.3 16.7 26.6 23.7 16.1 26.4 27.5 44.9 25.2

port_em 19.5 9.3 13.2 12.3 13.3 4.9 25.8 13.6 22.3 14.0 23.0 19.1 8.9 26.5 14.3 8.6 11.0 15.5 28.8 11.4 24.8 9.1 11.2 16.3 18.5 4.0 22.9 25.4 15.1 3.1 8.6 6.8 13.5 9.3 19.3 22.8 17.0 26.0 22.5 19.1 15.9 15.6 14.0 10.9 20.0 1.8 8.6 19.1 14.5 5.3 18.2 16.3 36.7 15.2

8a-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 79.0 66.3 76.0 67.2 70.1 63.7 83.6 85.6 82.8 80.4 83.7 84.2 60.6 80.1 83.2 76.0 58.3 80.1 82.1 79.0 81.7 74.1 75.8 80.5 79.4 42.0 84.0 80.8 81.2 59.7 70.5 65.4 71.8 60.9 85.5 83.4 79.7 79.3 82.3 72.7 81.8 81.8 74.7 65.7 82.1 64.7 60.7 82.6 72.3 61.6 78.5 74.2 99.2 74.9

rel_em 71.9 52.5 65.7 52.4 54.1 25.4 75.5 78.9 78.2 75.2 77.5 80.4 50.5 72.4 77.5 65.6 44.0 75.0 73.1 74.2 73.6 46.3 57.4 74.4 70.4 25.6 78.7 73.0 69.9 24.7 55.7 57.9 61.3 50.1 79.3 77.6 74.1 71.9 74.6 59.1 77.4 77.0 62.5 55.5 75.4 26.7 52.9 75.2 59.5 41.2 72.2 60.0 98.8 63.7

gen_f1 78.8 66.9 76.2 67.2 70.0 63.6 83.4 85.4 82.3 80.5 83.9 84.8 60.0 80.3 83.0 76.7 57.7 79.5 82.2 78.3 81.2 73.6 76.4 80.1 79.2 42.2 83.6 80.6 81.3 59.1 70.2 65.3 73.0 61.1 85.7 83.1 79.3 79.2 82.4 72.4 82.2 81.4 75.0 64.7 81.9 64.8 60.2 82.6 72.5 61.6 78.8 74.1 99.2 74.8

gen_em 72.1 53.3 65.8 52.5 54.1 25.2 75.1 78.9 77.0 75.2 77.8 80.8 50.7 72.8 77.3 66.5 43.9 74.2 73.0 73.5 72.8 45.5 58.1 73.9 70.2 25.4 78.0 73.1 70.1 24.0 56.0 57.6 62.6 50.1 79.3 77.0 73.3 72.1 74.4 58.8 77.5 76.4 62.9 54.2 75.7 27.2 52.5 75.3 60.0 40.9 72.6 60.2 98.8 63.6

loc_f1 19.3 8.7 13.3 8.3 11.1 20.7 19.2 17.7 17.5 15.7 20.3 21.3 10.8 20.0 15.8 16.6 7.0 16.6 20.3 12.6 18.9 18.4 13.0 16.7 18.4 23.1 21.0 19.7 14.2 24.9 7.3 11.6 14.3 11.6 19.3 22.5 16.3 20.0 18.1 14.0 16.6 17.6 16.3 11.6 19.6 22.4 12.3 17.8 12.2 9.0 18.8 10.1 27.0 16.2

loc_em 13.6 3.8 9.7 2.4 5.4 2.4 13.5 12.4 11.4 10.8 14.7 15.5 5.8 13.9 10.9 11.6 3.8 11.3 14.1 8.9 12.9 4.4 6.8 11.3 12.3 3.1 15.4 13.3 5.4 3.1 4.3 8.2 8.4 5.8 13.6 16.3 10.9 13.2 12.6 8.1 11.5 12.3 10.4 7.0 13.4 1.4 7.7 12.1 6.9 3.4 12.8 3.6 19.7 9.4

port_f1 38.7 21.4 27.5 28.0 29.3 33.6 40.2 30.2 38.8 26.7 41.7 44.2 22.3 41.2 33.9 23.4 23.7 37.0 42.6 24.8 39.4 33.9 28.8 36.1 36.0 30.9 41.8 41.6 34.0 33.8 25.5 21.4 26.7 24.3 37.4 43.4 37.9 42.3 39.7 32.7 36.2 34.5 27.7 24.6 39.2 31.0 22.2 37.6 33.1 20.4 32.0 33.5 55.1 32.9

port_em 28.4 12.8 18.6 16.0 18.3 5.7 30.2 23.4 28.8 20.2 31.2 33.8 13.7 30.2 25.2 15.5 12.8 28.5 31.8 17.6 29.6 11.2 13.9 26.4 26.2 5.7 32.8 31.6 19.0 3.5 13.8 15.3 17.5 15.2 29.1 33.3 28.7 32.6 29.3 23.7 27.4 25.7 18.4 16.0 29.5 2.3 12.5 28.5 22.9 8.4 23.7 21.0 43.6 21.5

Table 9: Full Results on zsRE.
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Figure 3: Data Item Examples of BMIKE-53.



226

CounterFact
Llama3.2-3B
0-shot

af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 27.4 30.5 56.1 45.5 42.9 66.8 26.9 57.7 45.1 33.0 47.4 28.0 25.9 28.4 44.5 45.2 39.6 53.6 33.4 25.5 24.2 62.0 44.6 49.7 58.9 54.9 58.9 30.8 44.9 67.2 37.0 42.1 44.0 43.7 52.8 32.4 42.4 30.4 52.3 54.7 40.2 37.5 40.8 45.2 58.4 59.6 38.0 48.2 54.9 31.7 44.5 32.8 93.7 43.5

rel_em 25.0 21.6 52.5 34.3 32.7 40.8 22.9 55.5 41.7 30.8 45.2 26.2 17.5 25.6 39.8 38.3 35.5 45.6 30.5 23.1 21.2 31.8 37.3 46.2 51.4 26.8 56.0 27.5 39.3 33.5 32.3 35.9 37.4 34.4 49.9 30.6 38.7 27.1 48.9 50.1 36.3 34.0 36.6 40.6 56.2 26.9 29.1 43.5 48.6 23.5 43.5 28.8 92.9 36.3

gen_f1 26.5 26.5 52.5 44.7 42.2 66.1 25.3 55.3 36.9 34.1 45.5 24.7 25.0 17.9 39.4 45.4 39.4 48.2 34.9 25.6 20.9 58.9 44.4 44.8 51.8 54.2 57.5 33.2 43.6 66.1 34.3 43.0 38.4 38.6 48.6 28.3 35.8 24.7 46.4 53.1 37.7 34.5 40.0 39.8 58.4 58.6 34.2 43.4 49.3 30.3 43.3 31.9 79.9 40.8

gen_em 24.8 18.6 49.1 34.6 32.3 38.8 22.0 53.2 33.8 31.7 43.7 23.4 16.3 15.5 35.1 38.6 36.1 41.2 32.4 23.3 18.4 30.2 36.8 41.3 45.3 25.8 54.6 30.6 38.8 29.6 30.2 37.9 31.2 30.2 45.4 26.6 32.4 22.2 43.7 48.7 34.5 31.7 36.1 35.5 56.6 27.1 25.2 38.5 43.1 22.4 42.5 27.2 78.2 33.9

loc_f1 5.6 3.9 7.8 6.1 6.0 21.8 4.4 6.0 6.0 3.8 7.8 5.8 4.2 3.0 4.5 5.5 5.3 6.5 5.8 4.2 6.5 16.4 6.3 4.5 8.4 24.5 8.5 4.9 6.9 37.0 4.8 2.5 4.3 4.3 6.6 7.1 6.7 4.3 4.5 7.8 5.0 3.0 3.8 3.0 10.0 26.3 6.2 6.4 7.8 4.8 8.5 6.3 32.9 7.5

loc_em 4.7 1.5 6.5 3.3 3.1 6.1 2.9 5.3 4.3 3.0 6.6 4.5 1.2 2.0 2.9 3.6 4.2 4.9 4.3 3.7 4.7 3.0 3.5 3.2 6.4 1.4 6.8 3.2 3.3 3.1 2.6 1.7 2.6 2.2 5.0 6.2 5.1 3.0 3.1 6.0 3.1 2.0 2.5 1.7 8.2 2.6 2.9 5.0 5.2 2.4 7.2 2.9 31.8 3.8

port_f1 2.3 4.0 6.0 4.7 4.2 20.9 1.9 3.9 4.1 1.6 3.3 1.4 3.6 2.7 3.3 4.1 4.4 3.5 3.1 4.9 3.3 15.6 7.2 3.4 5.6 21.6 6.1 2.4 5.9 28.1 3.2 2.0 3.3 3.4 4.7 2.7 4.1 2.2 3.0 7.7 2.6 2.3 2.6 2.2 5.1 24.7 4.2 4.3 5.5 4.9 4.8 5.2 24.8 5.6

port_em 0.7 0.5 2.4 1.4 1.2 2.0 0.5 1.8 1.9 0.5 1.4 0.5 0.3 1.1 0.9 0.5 1.1 1.2 1.5 2.0 1.1 0.7 2.3 1.5 1.8 0.8 3.0 1.3 1.8 0.9 1.7 0.2 0.5 0.3 2.1 1.5 1.5 0.9 1.6 4.2 1.0 0.6 0.5 0.3 2.4 1.5 1.7 1.7 2.5 1.1 2.5 1.8 17.7 1.3

1-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 71.5 72.5 62.6 66.2 64.2 82.0 62.7 93.2 59.2 76.6 84.1 71.2 66.9 72.7 55.7 51.8 69.3 56.9 77.1 58.4 66.6 89.0 77.5 62.1 60.4 76.8 83.3 78.0 87.7 77.6 25.3 37.2 55.8 57.5 79.0 66.2 74.1 74.7 80.7 87.0 46.6 71.7 70.3 41.2 72.7 73.2 74.1 63.4 68.1 56.9 58.8 85.6 84.6 68.3

rel_em 68.4 63.3 54.2 54.8 52.7 56.5 59.0 92.9 54.7 74.8 82.1 69.1 56.5 69.2 39.7 31.5 64.7 40.3 74.6 55.1 61.0 79.4 69.2 58.1 44.8 43.6 80.2 75.3 85.2 31.4 24.4 30.0 46.0 49.7 76.1 64.1 71.0 71.1 77.8 84.4 41.4 68.4 64.9 35.3 70.5 37.5 68.4 49.5 61.3 43.3 58.3 82.0 84.5 59.9

gen_f1 70.4 71.8 61.1 65.9 67.5 81.3 60.8 93.3 59.8 76.6 82.1 71.9 66.2 71.3 55.6 49.0 69.0 57.7 76.2 57.1 64.8 88.2 76.5 61.6 61.2 76.6 81.8 77.0 87.6 77.6 24.3 39.3 55.7 57.3 78.3 64.6 72.4 74.2 80.1 86.5 48.1 71.4 69.5 44.8 71.9 71.9 73.6 64.4 71.3 56.7 58.4 84.9 89.2 68.0

gen_em 67.4 63.2 52.6 54.0 57.3 56.5 57.0 93.0 55.1 74.9 79.8 69.9 55.6 67.7 39.8 26.7 64.3 43.7 73.5 53.8 59.8 79.1 68.1 57.6 46.9 43.8 78.8 74.4 85.3 33.5 23.8 32.6 45.2 49.7 75.4 62.7 69.1 70.5 77.4 83.8 43.8 68.1 64.6 38.3 69.5 35.3 68.0 52.2 63.5 43.5 58.0 81.1 88.8 59.8

loc_f1 7.9 2.5 2.2 4.1 3.6 16.2 6.5 6.2 5.5 2.5 11.4 10.2 3.1 9.0 2.0 1.0 2.6 3.1 8.2 2.4 7.9 13.8 5.1 5.0 4.2 21.9 4.2 11.8 3.0 32.8 0.9 0.7 3.1 4.8 2.3 13.4 6.4 7.0 6.1 5.7 3.8 7.3 5.8 1.5 10.5 24.1 2.6 2.1 4.2 2.2 3.1 5.3 24.5 6.6

loc_em 7.3 1.2 1.8 1.9 1.4 1.8 6.2 5.8 4.6 2.3 10.9 9.4 1.7 8.5 1.1 0.6 1.8 2.7 7.7 1.9 7.2 2.9 3.0 4.0 3.5 0.5 3.6 11.2 1.0 0.3 0.4 0.3 1.1 2.7 1.9 12.9 5.6 6.1 5.5 3.8 2.9 6.4 5.1 0.5 9.8 0.5 0.8 1.6 2.5 0.2 2.7 1.8 24.0 3.7

port_f1 17.5 14.9 14.9 17.1 17.9 26.5 13.6 13.3 18.5 9.8 17.8 21.0 14.2 21.1 9.2 5.1 12.8 12.7 20.9 9.5 16.6 27.4 17.2 15.3 12.7 26.6 14.6 20.3 20.8 32.4 2.7 3.9 8.2 10.8 11.8 23.6 16.7 19.2 18.2 27.1 13.5 12.4 9.2 5.0 24.6 29.5 12.9 18.5 22.3 11.1 12.2 22.3 39.1 16.3

port_em 12.6 9.2 9.0 9.6 8.9 6.1 8.2 8.9 12.6 6.2 12.7 15.9 7.9 15.0 4.2 0.8 7.3 7.0 15.0 4.9 11.9 8.8 8.3 9.2 5.7 2.9 9.6 14.7 10.3 1.8 1.9 0.8 2.3 5.2 8.2 18.5 12.6 14.3 13.8 19.6 8.0 7.3 5.2 1.7 19.1 4.7 7.3 10.8 15.3 4.2 9.0 14.2 30.6 9.0

8-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 73.2 73.4 58.6 73.7 80.5 82.3 83.5 83.1 75.7 72.2 81.9 90.3 71.2 77.0 56.9 60.8 68.8 52.1 79.4 56.3 72.1 89.4 79.3 58.4 54.7 76.1 75.6 80.0 87.5 75.7 79.9 56.2 58.2 53.9 72.7 82.6 77.4 78.9 77.1 59.4 59.1 58.2 66.9 47.0 81.3 70.9 73.4 69.2 57.0 56.7 59.7 86.5 99.1 70.8

rel_em 69.5 67.3 51.0 65.3 74.6 56.7 81.3 81.0 72.5 69.5 77.6 89.4 64.6 72.9 41.0 41.6 63.7 35.0 76.1 50.2 67.0 81.4 70.2 46.5 37.9 47.2 72.0 76.6 84.3 32.4 75.6 48.5 46.7 43.6 70.6 81.0 72.4 76.0 72.7 51.1 52.9 54.8 61.1 43.2 77.7 36.7 69.1 57.4 48.1 43.3 58.7 81.4 99.0 62.3

gen_f1 73.5 73.1 58.2 72.9 79.8 81.2 83.1 82.2 73.5 71.7 81.5 89.7 71.0 76.1 56.2 60.6 68.7 53.1 78.7 53.7 70.9 89.3 78.7 59.5 55.4 75.2 75.7 79.3 87.3 76.5 79.2 56.0 55.9 53.3 72.5 81.4 76.6 77.3 76.0 59.5 58.1 58.7 66.0 47.5 80.3 70.3 72.0 68.9 59.0 56.7 59.7 86.2 97.9 70.3

gen_em 69.9 67.0 51.1 64.7 73.6 55.1 81.0 80.0 70.2 69.1 77.3 88.8 64.9 71.9 39.5 41.9 64.0 38.5 75.6 48.0 65.8 80.9 69.6 49.0 39.1 46.5 72.2 75.9 84.2 34.9 74.9 48.5 43.7 42.6 70.3 79.7 71.7 74.2 71.6 51.3 52.5 55.0 60.1 43.4 76.8 35.4 67.6 57.1 49.5 43.1 58.7 81.2 97.9 61.9

loc_f1 2.3 2.1 0.3 2.7 6.3 15.5 6.0 2.7 4.1 1.1 10.7 9.5 4.9 6.9 1.9 1.0 2.3 2.7 2.4 0.5 5.8 11.6 3.4 2.7 1.5 21.2 2.6 6.0 4.9 32.0 2.1 0.8 3.8 1.9 3.7 5.2 2.0 4.5 5.5 2.5 2.1 2.7 2.2 1.3 8.4 23.5 2.5 1.3 2.5 2.2 1.7 6.4 5.6 5.1

loc_em 1.8 0.6 0.1 0.7 4.1 1.3 5.2 2.4 3.2 0.9 9.6 8.2 3.0 6.3 1.2 0.6 1.7 2.3 1.9 0.1 5.0 0.6 1.3 1.4 1.0 0.0 1.7 5.1 3.2 0.1 0.7 0.6 1.2 0.3 2.6 4.8 1.1 3.8 3.9 0.8 1.2 1.6 1.7 0.6 6.8 0.2 0.8 0.9 1.1 0.1 0.9 3.0 5.0 2.2

port_f1 13.4 13.8 9.3 14.7 19.6 25.8 16.0 9.9 18.7 6.7 16.6 18.1 17.4 12.9 10.3 5.8 11.1 8.8 11.7 6.6 13.3 23.0 13.5 11.3 10.0 26.8 9.3 13.2 20.0 31.3 12.6 3.6 7.8 8.4 6.9 14.5 9.4 15.3 16.0 16.4 14.2 9.0 6.9 8.1 17.6 29.0 11.9 13.8 16.3 10.8 7.3 20.6 25.1 13.7

port_em 9.1 7.9 4.2 8.6 12.7 5.5 11.7 5.1 12.6 3.3 11.2 12.9 10.7 8.6 4.6 0.9 6.3 4.3 8.3 2.2 8.2 6.7 5.9 5.7 3.0 4.2 4.9 10.4 9.9 2.1 6.2 1.2 1.8 2.5 3.9 11.1 6.0 11.2 11.6 9.8 7.7 4.5 2.2 4.0 12.9 4.3 6.1 8.2 10.2 4.4 5.0 12.2 19.9 6.9

8a-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 68.0 59.5 62.8 65.3 64.4 80.7 79.1 65.0 56.7 70.1 79.4 88.1 79.1 78.3 58.8 59.1 66.1 53.1 72.0 59.0 66.7 89.0 77.9 55.3 67.5 74.0 80.2 67.3 83.9 76.5 77.3 49.8 51.0 51.9 72.5 81.9 52.3 45.7 78.4 61.6 55.1 58.0 65.3 44.7 78.0 73.3 76.5 77.2 66.1 59.2 69.1 65.8 99.3 67.6

rel_em 63.3 50.9 54.9 53.4 53.5 51.3 76.0 63.8 51.9 66.5 75.4 85.0 73.7 74.4 41.1 42.5 62.0 36.0 66.5 54.1 60.6 72.8 68.1 48.2 62.7 44.0 76.0 62.0 82.0 39.2 74.5 44.3 35.0 39.0 69.9 78.1 45.9 39.0 73.5 52.9 49.9 53.0 58.8 39.1 74.6 37.4 71.8 71.5 56.7 45.1 65.2 60.3 99.2 58.6

gen_f1 66.2 57.5 62.2 66.9 65.8 79.5 79.1 62.8 57.0 69.6 79.4 86.5 78.7 77.9 59.4 58.3 65.0 52.9 71.8 57.7 64.6 88.7 77.6 55.1 69.6 73.5 78.7 67.2 83.6 76.7 76.4 49.1 48.2 51.3 72.4 79.6 52.1 46.1 77.3 63.4 54.9 57.9 64.8 47.1 77.5 73.1 75.9 76.8 66.2 59.8 68.5 63.6 95.9 67.1

gen_em 61.9 49.3 53.9 55.1 55.8 48.8 75.9 61.8 52.2 66.2 75.3 83.3 73.6 73.8 42.0 40.7 60.7 37.7 66.4 52.8 58.5 73.9 67.6 48.0 64.7 43.7 74.7 61.9 81.5 40.1 73.9 43.7 31.5 38.1 70.0 76.0 45.9 39.8 72.4 55.1 50.6 53.0 58.4 40.2 73.7 36.8 71.4 71.7 55.6 46.1 64.5 58.6 95.7 58.2

loc_f1 41.8 16.1 28.0 18.8 24.0 35.8 39.1 33.9 36.3 23.6 46.6 49.9 29.5 49.3 29.1 23.6 14.4 29.5 42.4 11.5 43.5 28.0 23.0 34.5 30.5 29.1 40.4 44.9 34.1 43.0 10.4 30.5 20.4 16.4 35.5 49.6 36.6 43.1 42.9 28.6 29.3 31.8 33.9 16.3 45.3 29.4 31.0 34.1 31.2 7.1 35.1 31.4 55.7 31.6

loc_em 40.0 14.0 25.5 15.4 20.2 21.3 37.5 32.7 33.9 22.6 44.9 48.6 26.7 48.1 22.5 20.3 13.3 22.5 40.6 9.2 40.5 15.7 20.4 30.7 24.1 6.3 37.0 43.3 31.9 9.0 8.6 28.0 13.3 9.8 33.5 48.7 32.9 40.1 39.6 26.8 24.9 28.1 30.5 14.4 41.7 4.5 28.0 33.0 27.9 4.7 33.4 27.3 54.6 26.9

port_f1 32.8 24.2 18.2 28.4 33.6 34.7 38.8 30.3 33.4 22.6 41.3 44.5 27.9 42.7 28.8 21.6 20.3 32.4 42.4 17.6 40.4 34.1 26.4 32.2 32.3 34.4 39.2 39.8 35.8 38.5 24.2 21.3 21.8 15.5 31.4 43.0 33.8 40.3 36.8 38.3 29.6 24.6 26.0 13.1 44.3 33.5 19.7 36.8 33.7 17.1 31.4 36.9 60.2 31.2

port_em 24.1 16.9 10.7 18.6 23.1 9.0 29.9 23.8 26.3 16.1 34.0 35.1 19.9 35.2 20.8 12.6 10.9 22.4 33.6 11.1 32.1 11.2 11.5 24.3 23.6 7.4 31.6 32.3 21.1 6.4 12.3 14.2 12.4 8.0 23.9 34.8 27.9 31.8 28.1 30.1 20.8 17.1 17.9 8.5 36.5 4.9 12.6 28.3 23.8 8.2 24.8 23.9 50.7 20.9

Llama3.1-8B
0-shot

af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 62.9 62.8 65.9 59.0 67.9 68.8 52.9 87.6 64.6 60.7 75.6 68.5 56.8 60.1 63.5 56.3 61.3 62.4 63.9 55.3 51.6 79.3 66.9 67.4 68.2 57.7 75.3 63.9 55.9 65.9 65.0 52.9 58.4 62.0 73.2 71.0 60.4 64.9 72.3 74.4 58.5 59.7 62.6 57.2 75.6 69.1 40.9 58.7 64.0 43.8 58.5 44.5 94.4 63.0

rel_em 60.8 57.4 61.8 53.3 65.1 49.4 48.4 86.7 61.3 58.0 73.1 66.4 53.1 56.1 58.1 49.9 58.2 52.9 59.8 51.4 47.7 67.2 62.6 64.6 61.3 37.7 72.5 60.8 41.1 35.5 61.6 45.2 50.4 56.1 70.0 69.5 56.4 61.5 69.7 72.9 55.2 55.3 58.3 51.3 73.7 40.1 36.7 53.8 62.1 36.4 57.7 42.7 94.0 57.1

gen_f1 58.9 58.3 63.0 55.6 65.2 68.5 52.5 85.1 61.8 57.3 72.7 65.3 53.7 57.1 60.4 54.7 57.9 59.5 62.1 52.2 50.3 78.5 64.1 63.0 65.4 60.8 72.0 63.5 50.5 68.2 61.4 53.4 57.0 59.9 69.5 67.9 56.2 62.6 68.0 71.3 56.5 56.7 61.1 54.6 72.9 68.8 37.1 56.7 61.4 41.7 56.2 41.5 78.9 60.6

gen_em 56.5 52.7 59.1 50.2 62.1 47.3 48.0 84.3 58.1 54.9 70.5 62.7 50.2 53.1 55.2 49.0 55.0 51.0 58.4 48.5 46.4 65.9 59.6 60.1 58.5 40.7 69.3 60.1 37.1 36.8 58.5 46.3 48.7 53.0 66.6 66.3 53.0 59.3 65.4 69.7 53.3 52.6 57.2 49.5 71.0 40.0 31.7 52.3 58.9 34.8 55.4 38.6 77.6 54.7

loc_f1 15.3 10.1 17.1 17.0 18.1 27.4 17.6 21.1 18.7 11.7 28.3 20.1 12.8 24.6 15.4 10.2 10.2 21.0 21.1 12.8 17.3 22.6 13.8 18.4 22.9 31.0 26.6 17.8 14.0 40.6 13.5 7.7 14.7 14.8 21.4 23.1 18.9 19.4 23.3 15.9 15.6 14.2 16.9 15.7 30.5 30.2 11.0 20.7 19.3 9.2 25.9 14.0 39.4 18.7

loc_em 13.4 6.3 14.1 14.4 14.7 11.8 15.1 20.1 17.6 10.6 26.7 18.6 7.6 21.9 12.6 8.4 8.9 17.7 18.1 11.4 14.7 7.7 11.2 16.3 21.6 9.1 24.0 15.8 10.2 6.9 11.5 6.3 11.5 11.2 19.3 21.5 16.4 17.0 21.3 13.9 13.8 12.4 15.0 13.1 28.3 7.4 7.6 19.2 17.1 6.8 24.4 11.0 38.7 14.5

port_f1 10.3 8.8 7.4 11.0 10.0 23.4 9.3 8.1 12.3 5.9 13.4 13.5 7.1 13.6 5.7 4.6 9.1 9.5 13.9 7.7 10.2 24.0 12.8 10.6 9.2 22.0 11.8 12.5 8.2 29.8 7.8 3.9 6.0 7.1 10.2 16.0 10.6 11.4 11.3 16.2 8.8 6.7 6.5 8.6 15.7 25.6 7.3 9.1 12.9 5.5 10.9 6.5 25.6 11.2

port_em 5.7 4.0 4.0 6.9 6.2 4.3 4.1 4.0 7.2 2.6 8.6 7.8 2.9 7.4 2.0 0.9 4.7 5.0 7.9 3.5 4.5 4.5 6.9 5.9 3.9 2.3 7.1 7.0 1.9 1.9 4.2 1.2 1.8 2.8 6.1 10.0 6.2 5.7 7.7 11.1 4.8 2.3 2.9 4.6 11.1 1.7 4.8 4.6 9.0 1.5 6.2 3.7 18.5 5.0

1-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 75.3 77.8 59.3 70.3 67.7 85.2 69.6 93.6 50.9 77.5 87.2 77.4 85.0 81.9 57.7 43.4 80.7 52.5 81.7 62.0 67.3 91.9 84.9 52.3 54.9 73.9 83.6 83.4 95.6 79.6 40.0 33.5 72.7 66.9 81.4 77.6 74.1 76.7 81.0 91.6 40.4 74.5 69.1 50.3 86.7 78.0 80.2 68.8 77.6 65.6 56.7 92.3 94.8 71.9

rel_em 73.2 71.0 48.7 55.2 56.0 63.7 66.9 93.2 46.4 75.5 85.1 75.8 80.8 79.3 39.6 18.1 77.8 31.7 79.3 58.0 63.4 81.8 80.3 48.5 31.5 35.4 81.3 81.5 94.5 39.3 39.5 26.3 66.2 60.9 78.4 76.3 71.0 73.6 78.8 89.7 34.8 71.5 65.7 43.8 85.3 45.8 75.4 50.6 71.1 55.4 56.4 90.0 94.8 63.8

gen_f1 73.3 77.4 56.8 71.1 70.6 85.0 67.5 93.4 50.0 77.1 85.1 76.3 83.8 79.2 58.8 44.6 79.7 50.9 78.7 61.7 64.4 90.7 85.0 52.8 52.6 75.1 81.6 81.5 95.2 79.6 38.1 36.1 70.4 65.8 80.1 77.2 72.9 75.9 78.9 90.9 43.3 72.3 68.7 51.4 85.1 77.3 80.6 71.7 78.3 65.1 56.0 91.5 93.5 71.3

gen_em 71.2 71.0 46.3 55.5 59.9 63.4 64.8 93.0 45.4 74.9 82.9 74.7 78.9 76.3 40.6 20.7 76.5 31.3 76.2 58.1 60.0 80.1 80.7 49.5 30.5 38.8 79.4 79.5 94.1 40.7 37.7 29.7 62.6 59.1 77.1 76.0 70.1 72.9 76.5 88.8 38.5 69.0 65.3 45.4 83.5 45.3 75.3 58.0 70.9 53.6 55.7 88.9 93.3 63.4

loc_f1 17.8 7.6 7.2 8.6 11.8 21.7 17.2 10.4 12.6 7.3 16.5 14.6 11.4 12.2 10.4 5.4 10.8 9.4 12.1 11.7 9.8 25.9 10.3 8.1 9.9 26.2 12.7 17.9 11.2 36.9 2.0 5.3 9.6 6.2 10.0 16.8 16.4 13.1 10.7 10.6 6.6 14.0 10.9 8.5 13.7 29.5 16.2 9.8 12.2 6.2 10.7 13.9 29.8 12.7

loc_em 17.0 6.2 5.7 5.6 8.4 7.3 16.4 10.1 11.3 7.0 15.7 13.8 9.9 11.5 8.0 4.0 9.7 6.4 10.9 10.8 8.9 14.6 8.1 7.0 7.8 2.8 11.5 17.4 9.4 3.3 1.8 4.0 6.6 3.9 9.4 16.2 15.4 11.6 10.1 8.7 5.2 13.1 10.4 6.8 13.0 5.7 13.5 8.7 9.7 3.6 10.5 10.0 29.4 9.3

port_f1 24.6 22.1 17.2 21.1 28.6 34.0 20.1 16.0 24.7 12.0 28.5 28.0 22.1 25.4 15.9 8.7 21.7 17.4 20.0 13.8 20.5 34.8 26.5 21.0 15.8 30.5 23.4 26.1 28.8 36.3 3.1 8.7 17.4 14.5 18.2 29.3 21.3 23.6 22.2 31.1 17.4 18.5 15.6 13.1 28.7 32.6 21.3 20.6 30.5 18.3 19.0 30.1 44.3 21.9

port_em 17.4 14.9 9.3 10.8 16.8 9.7 13.8 11.1 19.4 7.8 22.0 21.3 14.7 18.4 8.7 2.6 13.7 8.7 14.3 8.6 13.5 11.5 15.5 14.9 6.7 3.4 17.3 19.6 17.2 3.5 1.8 4.1 8.3 7.9 12.8 23.1 17.1 17.4 16.2 23.1 12.2 13.3 10.6 7.5 22.5 5.5 13.7 12.8 21.6 7.8 14.1 20.5 34.6 13.1

8-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 75.9 79.2 59.7 78.0 82.9 85.0 84.3 83.1 76.2 71.3 79.4 88.5 78.7 78.8 60.2 70.8 79.4 0.0 85.2 61.6 76.7 92.7 83.9 69.4 67.3 72.7 78.1 80.9 95.5 79.4 88.2 60.4 68.2 61.8 76.6 88.5 78.5 78.5 74.0 76.0 65.7 70.4 65.6 68.9 83.8 79.0 84.2 73.9 80.5 68.4 69.8 92.0 96.4 75.1

rel_em 72.6 74.0 52.5 69.8 76.1 64.7 81.5 81.6 72.3 67.8 75.9 87.7 74.0 74.3 46.1 63.0 76.6 0.0 82.9 55.8 72.1 85.3 79.8 65.2 54.3 42.7 74.2 76.6 94.6 41.9 85.2 52.7 59.6 52.1 73.0 87.8 73.8 75.0 70.2 69.8 60.6 66.1 58.5 64.2 80.1 47.7 79.8 65.7 74.0 58.8 68.2 89.6 96.0 68.2

gen_f1 75.8 78.9 58.4 77.2 80.8 84.3 83.7 81.7 74.9 71.0 78.0 87.7 78.6 78.0 59.8 70.4 78.3 0.0 83.9 60.5 75.8 92.5 82.7 68.6 67.0 72.5 77.7 81.0 95.0 78.9 87.6 59.0 66.1 61.5 77.2 88.7 77.8 77.5 73.9 74.8 63.9 70.5 64.8 66.5 83.2 77.9 83.7 74.4 78.6 68.3 69.7 91.3 94.9 74.4

gen_em 72.6 73.2 50.9 68.6 73.4 63.8 81.0 80.1 70.5 67.1 74.4 86.8 74.0 73.4 45.2 63.1 75.8 0.0 81.5 54.6 70.6 85.2 78.5 64.3 54.4 42.5 73.9 76.6 94.0 41.0 84.7 51.6 57.3 51.8 73.8 88.1 73.0 74.1 70.0 68.3 58.8 65.9 58.0 61.8 79.6 47.3 79.3 67.3 71.8 58.1 68.2 89.1 94.2 67.5

loc_f1 9.3 5.6 6.5 8.6 13.8 20.5 7.7 4.5 11.4 5.8 23.0 12.3 5.4 7.9 13.9 8.6 8.8 0.0 8.1 3.8 15.9 14.9 14.0 15.8 14.2 33.6 5.3 9.2 15.6 35.6 5.5 2.0 14.3 7.1 2.1 13.2 10.9 7.8 15.6 6.1 12.9 14.4 6.8 20.3 9.1 30.1 7.3 12.0 6.3 7.9 9.0 12.3 4.2 11.4

loc_em 8.3 3.7 4.7 6.2 10.5 5.8 6.4 4.0 10.1 5.3 21.1 11.0 4.0 6.8 10.9 6.6 7.8 0.0 7.2 2.6 14.5 3.9 11.6 13.6 12.3 10.6 3.8 8.2 14.2 2.3 3.9 1.7 9.9 4.2 1.2 12.7 9.1 6.0 13.5 3.6 11.0 12.6 5.5 18.1 7.1 5.9 5.2 11.1 4.2 5.7 7.2 8.9 3.4 7.8

port_f1 25.3 18.4 14.5 28.7 32.2 32.5 30.5 16.5 26.9 14.9 37.5 30.7 25.8 28.2 17.7 13.4 20.4 0.0 21.1 12.2 30.0 33.1 20.5 25.7 22.0 31.0 21.9 29.1 29.0 35.1 15.1 5.9 20.0 13.7 15.1 29.4 26.4 30.2 30.2 33.3 25.0 21.0 16.6 22.1 31.9 31.0 17.9 27.3 29.7 17.5 20.2 30.6 27.5 23.7

port_em 17.0 11.6 7.5 19.8 22.4 8.7 22.6 10.9 20.2 10.0 29.7 23.8 17.7 20.4 9.5 6.5 12.4 0.0 14.6 7.2 21.3 13.3 11.0 17.6 11.5 5.5 15.6 21.4 16.5 3.7 8.3 2.9 10.4 5.2 10.7 22.4 20.4 22.7 21.2 23.2 17.4 13.9 9.7 15.9 24.4 5.0 10.1 19.2 20.2 8.1 14.8 19.7 20.2 14.5

8a-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 70.8 71.3 61.0 75.9 74.2 83.5 78.6 82.8 63.2 69.3 82.6 90.8 85.5 80.6 55.6 61.3 77.3 56.4 77.9 55.5 80.8 93.9 86.1 56.0 80.3 77.2 78.6 73.7 92.7 79.1 82.2 56.2 53.4 48.9 81.8 84.8 66.5 74.0 82.8 73.2 61.8 63.0 67.8 69.3 85.7 79.2 84.3 82.7 63.5 69.7 74.1 84.7 99.6 73.9

rel_em 67.1 64.5 51.5 65.0 66.3 53.3 74.5 81.8 59.5 65.2 79.2 88.5 81.4 76.4 34.8 45.2 74.3 37.3 72.8 49.9 78.4 85.2 81.9 49.5 75.2 50.3 74.3 68.3 91.8 43.2 80.5 49.9 33.1 30.5 78.6 81.5 60.8 70.2 78.4 66.2 58.0 57.7 60.8 64.1 82.0 45.8 79.7 77.5 53.6 59.9 71.0 82.6 99.5 65.5

gen_f1 70.9 71.1 60.3 75.7 74.4 83.0 78.1 81.8 60.9 67.9 81.8 90.1 84.4 79.2 55.9 61.7 77.5 54.9 74.8 54.5 79.4 93.3 85.3 55.3 80.3 76.5 77.9 72.4 91.9 78.5 81.3 54.8 51.9 47.4 81.0 84.0 66.3 72.2 81.6 75.3 62.7 63.9 67.1 66.4 83.9 78.9 84.0 82.7 64.1 69.7 73.0 84.7 94.0 73.2

gen_em 67.3 65.1 50.9 64.9 66.7 52.4 74.2 80.8 56.9 63.4 78.3 87.7 79.9 75.1 35.8 46.9 74.6 37.8 69.7 48.7 76.6 84.1 81.1 49.2 75.3 50.0 73.8 67.0 91.1 42.6 79.6 49.1 30.8 29.4 77.8 80.7 60.5 67.8 77.3 68.5 58.5 58.4 60.3 61.2 80.1 46.1 79.4 77.8 53.2 59.8 69.6 82.1 93.7 64.9

loc_f1 54.1 33.4 45.0 39.5 40.7 46.1 47.6 43.8 45.3 47.1 57.4 60.6 46.9 59.3 50.1 45.4 37.7 37.3 56.6 34.7 49.6 44.3 44.4 52.4 46.5 44.1 51.2 58.4 49.4 52.5 47.8 41.5 37.8 35.3 53.2 61.3 52.2 53.5 56.6 49.5 43.9 48.9 46.4 39.4 59.2 42.1 45.3 54.7 47.6 34.0 48.2 53.3 62.1 47.6

loc_em 51.7 30.2 40.5 34.0 34.9 30.0 45.8 41.5 43.0 45.0 54.8 58.7 45.2 57.0 47.5 40.7 36.4 27.2 54.4 30.8 45.8 30.2 41.2 48.1 38.9 20.8 46.6 56.0 47.3 18.2 45.8 38.5 27.4 24.3 50.5 59.9 47.7 48.7 52.8 47.1 39.6 45.6 42.4 36.2 55.4 18.6 42.0 51.9 43.0 29.9 46.2 50.5 60.4 42.0

port_f1 45.0 36.1 26.1 38.7 41.6 41.1 48.2 43.7 45.2 35.2 49.8 54.6 37.3 53.0 41.7 33.4 31.9 44.1 52.0 30.1 52.7 47.9 37.7 40.7 42.0 38.4 44.8 52.8 47.0 41.4 32.4 26.0 34.4 29.9 40.8 52.2 47.4 50.7 49.8 48.9 40.1 36.8 35.9 26.1 51.7 37.9 27.6 44.5 42.2 28.9 40.5 42.5 63.3 41.2

port_em 31.4 25.5 15.3 26.4 28.6 11.3 37.8 37.6 37.3 26.1 39.3 43.2 27.1 42.4 31.7 22.5 18.8 31.8 40.8 21.1 43.1 20.6 20.2 32.1 29.7 8.4 37.2 41.9 28.2 6.2 20.3 18.5 23.4 19.9 30.7 40.7 39.9 39.6 37.7 37.6 31.0 28.0 27.4 18.4 40.4 6.9 18.5 33.5 30.5 14.8 31.6 29.0 53.9 28.5

Table 10: Full Results on CounterFact.
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WikiFactDiff
Llama3.2-3B
0-shot

af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 34.5 27.0 83.6 38.7 43.5 45.5 65.8 84.7 79.2 62.8 49.4 54.3 35.5 51.9 80.0 78.4 26.3 83.3 49.0 71.8 41.9 41.4 47.5 77.7 86.3 37.6 69.2 77.5 25.6 33.0 33.2 70.7 81.3 73.7 79.7 68.0 77.8 56.6 81.9 52.6 76.0 61.1 66.5 68.9 75.7 41.1 53.6 82.0 44.2 30.8 74.7 33.6100.059.0

rel_em 21.1 14.8 79.6 17.1 18.0 8.4 53.8 76.4 70.3 54.9 23.3 29.9 28.5 20.5 73.3 73.7 16.6 76.0 19.6 67.1 19.8 8.4 28.7 64.4 77.9 7.8 58.7 69.9 14.9 7.4 21.2 63.7 73.3 64.8 73.6 56.5 70.2 33.0 75.6 34.6 67.2 37.4 53.6 52.6 66.7 10.6 46.4 76.1 21.4 18.6 68.6 26.7100.044.5

gen_f1 50.8 26.7 81.4 34.5 44.0 43.2 61.4 81.4 79.1 48.8 52.9 53.7 34.2 44.0 77.3 78.0 25.4 81.8 47.2 68.9 46.7 40.9 48.7 76.3 84.9 37.6 71.1 71.3 24.9 34.6 31.4 74.6 78.8 69.9 80.5 71.1 76.9 48.2 80.8 48.0 75.7 64.9 67.7 70.2 78.0 40.1 52.5 79.8 42.4 30.5 72.6 33.2 97.5 58.1

gen_em 32.4 14.8 77.0 13.7 20.9 7.4 51.0 72.2 70.4 40.3 33.6 35.3 27.9 22.8 70.7 72.8 15.9 74.4 29.0 63.9 31.4 8.5 31.3 64.8 77.1 7.7 62.0 63.0 14.2 7.1 21.0 67.7 70.7 60.8 75.0 62.4 69.1 35.5 75.3 29.1 67.9 46.0 57.4 58.0 70.4 10.1 45.8 73.7 20.8 18.8 68.6 26.3 97.1 45.1

loc_f1 3.9 4.5 6.7 5.0 3.8 19.5 6.4 7.1 6.8 4.6 3.9 6.4 3.5 5.5 5.1 5.4 3.3 5.4 4.7 4.7 5.0 16.7 6.9 4.9 6.4 22.7 6.9 6.0 5.0 23.2 4.2 4.6 7.4 6.3 7.3 4.2 6.5 4.8 6.6 4.9 5.5 4.9 4.5 4.6 5.6 21.9 4.5 6.3 5.4 4.9 6.7 4.3 16.3 6.8

loc_em 0.5 1.0 3.1 1.5 0.6 0.8 2.2 3.1 3.1 2.3 1.3 1.9 1.1 1.5 1.8 3.2 1.3 2.8 1.7 2.4 1.0 0.4 2.3 2.3 3.1 0.8 4.0 3.2 1.5 0.5 1.5 2.6 3.3 3.3 4.1 1.2 4.3 1.4 3.4 2.2 2.9 2.0 2.0 1.5 3.4 1.0 2.3 2.9 1.8 0.9 3.4 0.8 11.2 2.1

port_f1 1.0 0.9 2.2 2.1 0.9 17.3 0.7 1.2 1.4 0.8 0.7 1.0 2.1 1.5 1.4 1.5 1.6 1.9 1.2 1.0 0.9 15.3 2.4 1.3 1.3 19.8 1.7 1.4 1.0 25.8 1.0 1.3 1.6 1.2 2.5 1.3 1.4 0.9 2.0 1.4 1.1 1.0 1.2 1.1 1.1 22.5 0.8 2.0 2.3 1.7 3.0 2.4 5.1 3.2

port_em 0.5 0.0 1.0 0.6 0.0 0.1 0.1 0.3 0.6 0.3 0.1 0.1 0.8 0.1 0.3 0.4 0.1 0.5 0.3 0.1 0.1 0.0 0.3 0.4 0.1 0.3 0.6 0.8 0.0 0.0 0.0 0.1 0.3 0.1 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.1 0.4 0.1 0.1 0.0 0.0 0.5 0.9 0.3 1.8 0.1 2.9 0.3

1-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 79.6 10.4 86.9 44.1 61.4 53.7 81.9 91.6 81.7 82.2 85.9 89.1 23.5 85.9 86.8 80.7 12.2 83.2 88.2 81.9 83.1 33.8 35.0 81.9 70.1 10.3 87.4 84.2 6.6 40.0 35.7 81.7 87.1 79.9 84.2 89.5 83.0 85.9 85.5 60.2 81.0 79.3 82.0 67.4 90.0 23.6 55.2 85.8 56.7 38.8 81.7 35.2 99.9 66.8

rel_em 66.7 7.9 83.0 19.5 35.0 11.2 78.2 85.7 72.7 77.2 77.3 82.3 3.7 80.6 79.9 75.8 10.7 75.4 81.9 78.1 76.2 12.0 30.7 72.8 58.5 8.2 79.8 77.0 2.7 4.6 25.8 75.5 79.0 70.9 80.1 82.9 75.0 78.2 80.9 39.6 72.6 69.6 76.3 57.5 83.9 10.6 46.9 79.8 30.4 22.1 78.6 29.9 99.6 56.8

gen_f1 82.8 11.1 86.0 42.5 60.0 52.5 83.2 91.2 83.2 81.5 86.2 88.6 23.0 85.3 86.0 80.2 11.8 83.4 86.4 81.0 82.1 33.8 34.6 82.3 69.8 10.6 86.9 83.9 6.9 40.1 34.6 81.7 85.1 80.2 83.4 88.6 82.1 85.8 85.5 58.9 79.2 78.2 82.3 69.4 88.8 22.7 53.0 84.9 55.6 38.3 81.4 34.8 99.1 66.4

gen_em 74.0 8.3 82.1 18.8 34.4 11.5 79.7 85.3 75.0 76.0 78.1 81.6 2.6 80.4 78.8 75.4 10.5 76.0 79.6 77.3 75.3 12.8 30.7 73.9 59.4 8.3 79.2 76.3 3.1 4.5 25.3 75.5 77.1 71.2 79.8 82.3 74.2 78.6 80.9 38.3 71.6 69.0 77.0 59.6 82.7 10.6 45.4 78.9 32.1 21.1 78.4 29.2 98.9 56.7

loc_f1 5.6 1.0 6.6 5.3 6.1 22.6 6.7 7.4 5.9 5.6 6.0 7.8 2.5 6.3 5.6 4.5 0.8 5.0 7.0 5.6 6.4 12.0 3.1 6.0 4.7 2.9 6.7 6.3 1.2 25.5 3.9 5.0 7.0 5.6 5.6 7.6 5.6 7.9 6.9 6.3 5.1 5.5 5.3 5.0 6.2 9.6 4.5 6.3 6.1 7.6 5.2 4.4 11.6 6.4

loc_em 2.7 0.3 2.9 1.2 1.5 0.9 3.2 3.4 2.9 3.4 3.2 4.0 0.1 3.2 2.8 2.6 0.4 2.7 4.0 3.4 3.1 0.5 1.3 2.6 1.8 0.6 3.7 3.7 0.4 0.3 1.2 2.7 2.4 2.3 3.5 3.7 3.3 3.2 3.3 2.0 2.4 2.7 2.8 1.9 3.3 0.6 1.9 3.2 1.5 0.9 3.1 1.7 6.4 2.3

port_f1 2.0 0.1 2.3 2.4 2.2 18.1 2.4 1.9 1.7 1.5 1.8 3.3 2.3 2.8 1.9 2.0 0.0 1.8 4.9 1.4 1.7 10.5 0.7 2.4 1.4 2.0 2.3 2.9 0.0 26.8 1.0 1.3 2.3 1.6 1.8 3.9 2.2 2.5 5.0 2.7 1.7 2.0 1.4 3.8 2.0 6.3 1.3 2.2 3.6 2.3 1.9 1.5 8.5 3.1

port_em 0.4 0.0 1.5 0.1 0.6 0.3 0.3 0.5 0.8 0.4 0.8 1.4 0.4 0.6 0.9 1.2 0.0 0.5 1.3 0.3 0.5 0.3 0.4 0.9 0.3 0.0 1.5 1.3 0.0 0.4 0.1 0.1 0.9 0.5 0.6 1.5 0.9 0.6 0.9 1.2 0.5 0.9 0.6 1.0 0.5 0.0 0.1 0.9 1.4 0.0 0.9 0.3 4.5 0.6

8-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 90.1 17.3 86.5 38.4 32.0 57.3 81.8 93.7 81.2 81.3 85.2 82.7 40.5 79.4 85.6 83.8 11.5 80.8 82.0 77.8 77.5 26.8 49.4 82.7 89.0 17.5 84.4 78.5 14.5 39.9 16.1 80.3 85.3 81.6 85.2 86.4 80.3 77.2 81.9 49.4 82.8 80.6 78.1 42.7 85.6 34.1 47.9 86.6 38.9 37.3 79.5 32.3 99.9 65.0

rel_em 83.7 13.8 79.1 23.6 18.6 10.6 79.1 88.3 74.4 76.4 76.5 74.9 32.3 75.4 77.8 76.9 10.2 70.0 75.9 74.7 72.7 16.2 27.4 75.9 81.6 10.0 77.2 72.2 9.8 4.5 12.5 74.2 76.2 75.3 82.4 80.7 73.9 70.8 77.6 33.7 75.9 73.2 75.0 35.7 77.9 10.2 46.9 81.2 27.8 11.7 77.3 25.1 99.6 56.1

gen_f1 89.1 17.1 86.4 39.2 32.4 56.0 82.3 93.3 80.9 80.5 84.4 82.4 37.4 79.1 84.2 83.2 11.4 81.0 81.6 75.6 77.2 26.2 48.5 82.0 88.1 17.3 83.8 78.0 14.6 40.1 16.1 79.6 84.7 81.4 85.0 85.9 80.5 77.0 81.3 51.3 82.4 80.3 77.9 42.1 85.2 33.9 47.6 86.0 40.4 36.1 79.6 32.0 99.3 64.6

gen_em 82.0 13.8 79.9 23.6 19.4 10.6 79.3 87.9 74.1 75.6 75.5 74.6 26.0 75.1 76.2 75.9 10.1 70.0 75.5 72.7 72.5 15.7 27.2 75.1 80.8 10.1 76.7 71.7 9.6 3.8 12.5 73.5 75.8 75.0 82.3 80.2 73.9 70.7 76.8 34.6 75.5 72.8 74.6 35.0 77.6 11.0 46.7 80.6 28.3 11.5 77.3 25.1 99.1 55.6

loc_f1 8.2 1.9 6.0 5.3 3.9 22.4 6.4 7.3 6.0 5.9 5.7 6.4 2.6 5.3 6.5 5.3 0.8 5.3 6.0 4.9 5.0 7.7 7.3 5.3 6.6 6.2 6.0 5.8 2.4 24.9 1.5 4.8 6.9 6.0 5.7 6.9 5.4 5.0 5.9 4.6 5.6 5.3 4.8 4.3 5.5 17.9 2.4 5.6 5.5 8.1 5.1 2.8 10.8 6.2

loc_em 2.9 0.9 2.7 1.9 1.7 0.8 3.8 3.6 3.2 3.8 3.2 3.3 1.5 3.2 3.2 2.4 0.4 2.6 4.1 3.1 2.8 0.9 1.7 2.7 2.8 0.8 3.1 3.7 0.9 0.1 0.5 2.7 2.4 2.8 3.6 3.2 3.4 2.9 3.7 1.7 2.7 2.6 2.9 1.2 3.3 0.5 1.5 2.9 1.9 0.8 3.1 1.0 5.6 2.4

port_f1 4.6 0.4 2.8 2.3 1.8 19.7 4.4 1.8 4.1 1.8 2.4 4.7 1.6 5.7 2.3 2.4 0.2 5.0 5.8 1.2 2.5 6.7 2.9 4.5 2.4 6.8 2.7 6.6 0.2 27.0 0.3 1.3 2.0 1.1 2.5 6.0 3.5 6.5 4.5 3.8 2.6 2.9 1.6 1.5 3.9 13.0 0.5 2.9 3.7 2.9 2.7 0.9 10.5 4.0

port_em 1.7 0.1 1.7 0.4 0.6 0.5 2.6 0.5 1.7 0.8 1.2 2.7 0.5 2.7 0.9 1.7 0.1 2.0 2.8 0.3 1.2 0.7 0.8 2.3 0.6 0.0 1.3 3.4 0.0 0.4 0.1 0.3 0.9 0.1 1.3 3.1 1.2 2.7 0.6 1.3 1.4 1.7 0.8 0.4 2.7 0.0 0.0 1.3 1.3 0.0 1.5 0.1 6.1 1.1

8a-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 90.9 21.2 87.8 43.0 27.5 57.3 89.2 93.2 86.1 81.1 90.6 90.5 33.4 85.8 84.2 79.1 27.1 82.0 85.0 81.5 80.4 50.4 52.2 81.4 86.4 28.3 87.1 87.6 28.9 40.9 27.4 78.9 83.0 72.1 90.3 92.1 82.6 67.1 84.5 50.8 84.2 82.0 78.9 14.0 90.2 38.4 55.6 93.5 51.2 45.1 83.7 38.3 99.9 67.8

rel_em 84.4 15.2 82.7 19.5 18.5 9.2 85.0 87.2 77.2 74.5 83.0 83.4 11.9 80.1 75.8 73.6 21.7 72.8 76.0 77.8 74.7 20.4 38.7 70.7 79.7 9.8 78.8 79.1 18.2 2.3 20.3 73.3 71.7 62.0 86.2 84.7 76.0 43.1 77.8 33.3 76.8 73.3 66.5 9.6 83.3 5.4 52.9 90.0 30.2 18.0 80.4 30.9 99.6 56.3

gen_f1 90.0 20.8 86.6 43.1 28.1 56.1 88.4 92.9 85.8 81.0 89.7 89.3 32.7 85.2 83.4 78.1 26.2 81.5 85.4 81.1 80.1 49.4 51.4 81.5 85.5 28.2 86.3 86.2 27.9 41.3 26.3 78.4 83.4 71.9 89.7 91.5 82.1 70.8 84.4 51.6 83.6 81.8 79.3 16.4 90.1 38.8 55.4 93.1 52.4 44.4 83.3 37.3 99.3 67.5

gen_em 82.5 14.9 81.4 20.4 18.6 8.9 84.2 87.0 77.0 74.7 82.0 81.8 11.1 79.3 74.9 71.9 21.1 72.5 76.4 77.2 74.5 19.9 38.0 71.8 79.1 10.2 78.0 77.6 17.6 2.3 19.4 72.6 73.2 62.1 86.1 83.9 75.5 50.1 78.3 34.6 76.2 73.2 68.0 12.1 83.3 5.7 53.1 89.7 33.0 17.7 79.9 30.5 99.1 56.2

loc_f1 8.7 3.7 8.6 5.6 6.5 22.6 11.7 12.8 7.6 6.1 8.3 9.2 3.6 11.5 7.3 6.5 2.5 7.1 10.3 7.1 9.8 17.9 7.9 7.6 8.6 19.9 11.6 10.4 6.0 21.4 3.4 8.7 10.3 9.2 8.0 10.5 6.6 9.6 10.2 7.0 8.0 7.7 8.7 2.1 8.4 23.7 5.2 9.7 6.5 7.8 7.5 7.8 15.9 9.1

loc_em 5.0 2.4 5.7 2.4 2.9 1.0 7.3 8.2 4.3 3.8 5.4 5.6 1.9 7.3 4.2 4.0 1.7 3.7 5.7 5.0 4.9 0.9 1.2 4.3 4.2 0.8 6.9 7.9 2.4 0.3 1.8 6.0 4.6 4.4 6.0 6.3 4.5 5.0 5.7 2.6 5.2 4.9 5.6 0.4 4.6 0.4 2.7 6.0 2.3 1.0 5.0 2.7 10.5 4.0

port_f1 11.8 2.4 8.4 6.4 6.5 25.2 12.8 5.2 12.0 8.5 11.1 9.8 4.3 13.6 8.8 8.5 7.1 12.0 13.6 5.0 14.3 19.3 6.2 13.0 12.9 25.4 11.5 12.2 5.3 30.0 2.4 3.3 5.1 3.7 12.2 12.5 13.2 13.4 13.6 6.9 11.0 12.1 11.6 1.8 12.1 25.8 5.9 13.1 8.7 5.2 9.4 11.9 15.6 10.7

port_em 8.4 0.9 5.7 1.0 2.6 0.9 9.2 3.2 8.2 5.6 8.3 6.6 2.2 10.2 6.4 6.4 3.3 8.6 10.3 2.7 10.5 2.7 1.3 10.1 9.5 0.6 7.8 9.1 1.7 0.0 1.3 1.0 1.7 1.9 9.1 8.9 9.7 10.6 9.4 3.6 7.9 9.7 8.8 0.5 8.9 0.0 4.2 9.8 3.8 1.8 8.2 2.8 11.0 5.5

Llama3.1-8B
0-shot

af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 87.3 31.2 85.2 31.8 38.6 30.3 82.3 93.1 85.1 77.0 85.7 86.6 44.4 80.5 86.3 81.3 32.6 86.5 82.0 83.0 71.1 44.7 57.6 84.7 85.5 20.6 85.9 86.3 30.3 27.6 47.5 82.9 84.4 82.1 85.1 90.7 85.0 85.4 85.4 35.4 83.2 81.9 85.6 75.7 90.9 29.6 59.0 83.4 33.7 34.5 82.1 39.2 99.6 67.8

rel_em 79.0 20.7 82.1 21.7 23.9 9.2 78.6 87.5 77.9 70.8 76.0 79.0 35.6 70.4 80.4 76.2 24.0 80.5 71.4 79.3 53.4 18.8 42.2 77.6 79.1 10.1 78.4 78.3 15.4 10.6 33.4 77.7 78.4 74.1 81.4 85.2 79.2 78.6 81.5 24.4 75.8 72.8 80.1 67.7 85.6 13.8 53.7 78.7 24.7 23.9 80.1 32.7 99.5 59.1

gen_f1 85.7 30.1 84.0 29.9 34.7 29.8 81.2 92.2 84.0 71.1 84.3 85.6 42.8 77.3 84.9 81.0 31.0 85.3 78.4 80.6 74.8 45.0 55.6 83.7 83.4 22.0 84.2 83.4 26.3 28.2 44.1 82.7 85.0 81.8 82.9 88.9 83.1 85.8 83.9 33.5 83.9 80.5 84.4 75.6 88.7 30.5 57.4 80.8 31.5 32.9 79.5 35.3 93.7 66.4

gen_em 78.2 19.9 81.3 20.4 21.9 9.1 77.2 86.9 76.8 63.8 75.6 77.7 34.8 66.3 78.7 75.6 23.6 79.2 67.9 76.9 62.8 18.1 41.1 75.6 75.7 10.2 77.2 75.0 13.5 10.2 30.3 77.8 78.4 74.3 79.6 83.0 77.4 79.0 80.1 22.5 76.5 71.4 78.6 66.3 83.4 12.9 52.3 75.9 23.4 22.3 77.2 30.6 92.7 57.8

loc_f1 10.5 6.9 10.0 4.6 6.1 16.0 11.4 13.2 11.5 6.6 9.0 12.9 4.4 9.8 10.3 7.9 4.5 10.7 11.6 9.0 10.3 17.5 7.8 10.6 11.7 19.3 11.6 11.4 5.0 23.9 7.6 8.7 9.7 9.2 12.1 11.2 10.1 11.7 12.1 5.4 8.8 9.4 10.6 9.0 10.8 17.1 6.1 9.6 5.0 5.1 10.5 6.2 17.8 10.0

loc_em 5.4 3.2 5.4 1.8 2.6 1.3 5.7 8.4 7.5 4.6 4.9 8.0 1.4 5.4 6.1 4.7 2.7 7.1 7.3 6.0 5.0 0.8 2.8 6.5 7.4 2.2 7.0 7.3 2.2 1.7 3.5 5.2 5.0 5.4 7.3 7.8 6.3 6.4 7.8 2.6 4.9 5.6 5.0 5.1 7.0 0.9 2.4 4.7 2.4 1.7 6.8 2.3 12.5 4.8

port_f1 2.3 2.4 2.9 3.4 3.2 14.9 2.8 2.9 2.3 1.4 2.9 4.4 2.6 4.4 2.1 2.4 2.4 2.9 5.1 1.9 2.9 16.8 6.2 3.1 2.3 11.8 2.1 3.7 2.5 20.0 1.7 1.3 1.9 1.8 1.7 5.2 3.2 4.1 4.9 2.9 1.8 3.0 1.9 2.7 3.0 18.7 1.3 3.4 3.1 3.3 2.2 1.9 8.5 4.2

port_em 0.6 0.1 1.4 1.3 1.5 0.9 0.5 0.9 0.9 0.5 0.9 2.6 1.0 0.9 1.2 1.3 0.4 1.3 1.5 0.4 1.2 0.5 2.6 1.2 0.6 0.0 1.2 1.9 0.3 0.4 0.4 0.1 0.6 0.9 0.4 1.7 1.0 1.7 1.8 1.3 0.6 0.8 1.0 1.3 1.5 0.0 0.4 1.7 1.7 2.2 1.3 0.0 5.4 1.0

1-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 91.8 15.6 86.7 41.1 70.7 60.9 86.1 94.1 86.8 82.0 89.8 87.9 29.4 88.6 87.8 84.4 16.0 90.2 88.6 83.6 83.7 39.3 40.7 87.7 85.3 8.8 87.8 91.3 11.4 43.2 47.9 83.4 82.7 86.6 84.6 92.6 81.6 85.9 85.7 58.6 84.9 86.0 84.9 81.1 91.0 31.6 60.5 90.6 59.3 44.8 81.2 41.0100.070.5

rel_em 85.6 12.6 83.6 25.5 46.9 14.8 82.7 89.0 79.3 77.2 82.8 80.0 4.6 83.6 82.4 79.3 14.5 84.3 82.7 80.4 76.7 19.9 34.7 80.1 79.6 8.2 81.1 84.6 7.4 8.3 35.2 77.8 71.5 80.0 82.1 87.1 75.4 78.2 81.5 41.9 77.3 78.3 79.5 70.9 85.1 13.4 55.0 85.8 34.4 23.2 78.6 33.9100.061.1

gen_f1 90.2 15.3 86.5 40.8 69.3 59.1 85.6 93.0 88.4 82.2 88.2 87.1 28.8 88.0 87.7 83.8 15.2 89.5 86.8 82.5 82.8 38.5 40.3 86.3 83.8 9.1 87.7 88.2 12.0 43.6 47.0 82.9 82.8 84.8 83.3 91.3 82.2 85.8 84.0 57.5 85.2 85.4 84.9 81.1 90.4 31.2 59.7 89.7 58.6 43.5 80.3 39.9 99.5 69.8

gen_em 82.7 12.4 83.3 25.3 45.4 15.1 82.3 87.9 80.7 76.9 80.4 79.3 3.2 83.2 82.0 78.4 13.7 83.7 80.5 79.1 76.3 20.4 34.4 79.3 77.7 8.0 81.2 81.4 7.8 7.7 34.0 77.6 71.9 77.0 80.8 85.6 76.3 78.2 80.0 40.7 77.7 77.7 79.3 71.7 84.3 13.5 55.1 84.9 34.4 23.5 77.9 33.3 99.5 60.5

loc_f1 10.1 1.1 6.8 5.0 7.5 24.2 9.7 8.1 8.5 6.1 7.2 8.3 3.1 8.0 7.8 5.7 1.2 7.9 10.3 5.8 7.9 14.8 4.5 8.3 6.4 4.6 7.1 8.8 1.6 26.2 6.4 6.2 6.9 8.2 5.7 8.6 7.0 8.6 7.6 6.4 8.2 7.6 7.5 5.9 7.1 15.0 4.3 8.8 6.5 9.3 6.9 4.5 13.5 7.8

loc_em 5.1 0.4 3.1 1.7 2.6 0.9 5.9 4.0 4.9 3.8 3.8 4.7 0.1 4.5 4.0 2.9 0.8 4.5 6.0 3.6 4.1 1.3 1.7 4.7 3.5 1.0 4.1 4.7 0.8 0.3 2.2 3.6 2.6 3.5 3.8 4.9 4.5 4.5 4.7 2.0 4.3 3.6 3.8 2.7 4.5 1.2 2.2 4.9 2.1 2.3 4.3 1.5 8.0 3.2

port_f1 4.0 0.1 3.0 3.3 4.2 19.5 3.2 2.3 3.2 2.2 2.8 5.0 2.8 4.8 2.9 2.2 0.4 2.8 6.8 2.2 2.4 13.4 3.2 4.6 1.7 2.6 1.9 4.8 0.1 27.8 1.5 1.8 2.2 2.0 1.4 6.3 2.7 5.2 6.3 3.3 1.9 3.2 1.7 3.8 3.5 10.4 1.3 3.0 4.7 5.0 2.3 2.3 13.4 4.2

port_em 1.8 0.0 1.8 0.9 1.7 0.5 0.6 0.9 1.8 1.2 0.9 2.0 0.5 2.2 1.9 1.0 0.3 1.2 2.8 0.8 0.9 0.4 2.0 1.9 0.4 0.0 0.5 2.6 0.0 0.5 0.5 0.6 0.8 0.9 0.3 3.1 1.3 2.4 3.3 1.7 0.8 1.7 1.0 1.5 2.3 0.0 0.3 1.5 2.1 2.2 1.3 0.3 7.7 1.2

8-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 91.9 25.0 0.0 39.4 45.6 60.8 83.3 93.5 85.0 85.6 88.8 85.2 47.0 85.2 87.7 85.7 22.3 85.1 84.9 82.0 84.3 52.8 51.7 86.2 89.6 23.1 87.9 82.3 26.4 43.7 28.4 81.7 87.0 87.7 92.7 91.0 82.1 84.0 87.0 37.3 84.4 84.6 85.1 71.4 88.1 42.9 56.3 88.4 42.2 46.6 83.4 41.6100.068.6

rel_em 84.4 19.9 0.0 23.5 29.2 14.2 80.4 88.1 78.4 79.6 81.1 77.6 37.8 81.5 80.6 76.9 20.0 68.9 78.6 78.7 79.6 24.1 29.5 78.7 82.9 11.1 81.1 76.0 18.1 4.7 21.9 75.6 78.3 81.4 90.9 85.2 75.4 77.3 81.8 26.4 77.8 77.0 79.0 61.5 81.1 10.3 53.3 83.4 27.8 15.9 80.2 32.4100.058.4

gen_f1 91.5 24.0 0.0 39.2 45.0 58.7 83.4 92.8 85.5 85.2 86.9 84.9 45.8 84.2 87.1 85.5 22.0 85.4 84.3 81.2 83.5 53.9 50.7 85.5 89.3 23.8 87.3 81.6 25.7 43.0 27.8 81.3 86.4 87.6 90.8 90.5 81.6 82.2 85.1 36.8 83.9 84.0 84.5 65.6 87.1 42.2 55.0 88.1 42.3 45.6 82.9 40.7 98.9 67.9

gen_em 84.2 19.4 0.0 23.2 28.8 14.0 80.4 87.4 79.0 79.3 78.4 77.4 36.7 80.0 80.0 76.4 19.8 74.0 78.3 77.9 78.6 24.1 29.0 77.8 82.5 11.1 80.6 75.1 17.0 4.2 21.4 75.4 77.8 82.1 88.9 84.7 75.0 75.5 80.1 25.5 77.3 76.3 78.8 55.9 79.9 10.2 52.6 83.0 27.9 15.4 80.2 31.6 98.9 57.9

loc_f1 11.5 4.9 0.0 6.4 6.4 24.4 7.3 9.9 8.6 6.7 7.3 8.0 4.8 7.8 8.3 7.8 2.4 10.3 9.5 5.9 9.1 18.4 7.3 7.2 7.8 11.5 7.5 8.6 3.6 26.4 3.1 6.0 7.7 8.2 10.1 8.7 5.9 8.2 8.0 4.0 6.5 6.0 7.1 4.9 7.3 21.7 4.0 8.4 5.2 10.3 7.7 6.1 16.8 8.3

loc_em 5.6 2.3 0.0 2.0 2.9 1.2 4.7 5.4 5.4 4.5 4.6 4.5 2.8 5.2 4.6 4.0 1.8 5.9 6.6 3.7 5.6 1.2 2.4 3.7 4.3 0.9 4.5 5.5 1.2 0.6 0.9 3.8 2.9 3.5 6.3 4.7 4.0 5.0 4.7 2.2 3.2 2.7 3.8 1.4 4.7 0.5 2.3 5.1 1.8 1.7 5.0 2.6 12.0 3.5

port_f1 11.5 3.8 0.0 6.1 5.7 24.6 11.7 4.9 10.4 5.0 8.3 10.7 3.2 11.0 3.8 6.7 1.0 9.9 10.4 4.3 10.9 21.7 6.8 8.8 9.0 14.6 11.0 13.2 1.5 29.0 2.3 2.5 3.4 2.5 13.1 12.9 10.4 12.6 12.6 9.2 9.5 9.0 3.8 2.0 11.6 18.5 2.5 12.3 7.2 8.1 9.9 6.3 18.2 8.9

port_em 8.4 0.8 0.0 1.4 1.7 1.2 8.3 2.9 6.1 4.0 6.0 7.3 1.2 7.7 2.3 4.7 0.3 5.7 6.4 2.4 7.0 3.1 2.3 6.3 5.2 0.0 6.4 9.2 0.4 0.3 1.3 1.4 1.7 1.0 8.7 9.1 6.8 8.4 8.4 4.0 6.1 6.1 2.9 0.4 8.6 0.3 1.2 9.1 4.0 1.9 8.2 1.3 12.0 4.2

8a-shot
af ar az be bg bn ca ce cs cy da de el es et eu fa fi fr ga gl he hi hr hu hy id it ja ka ko la lt lv ms nl pl pt ro ru sk sl sq sr sv ta th tr uk ur vi zh en Avg.

rel_f1 90.5 28.6 84.9 48.1 29.3 60.3 91.8 88.6 87.9 85.4 91.4 89.8 46.5 91.5 88.0 83.5 30.6 86.2 90.8 86.1 83.6 50.6 50.9 87.9 89.3 34.5 89.5 92.2 36.2 43.6 29.3 83.1 80.3 76.5 93.8 93.4 86.9 87.6 92.2 43.1 86.2 84.6 85.5 69.3 90.6 43.3 59.4 95.2 39.5 47.6 91.0 46.8100.072.0

rel_em 83.2 21.8 76.4 26.5 20.5 13.5 85.1 80.2 79.1 76.7 84.7 81.4 36.4 85.3 80.5 78.4 24.2 76.0 82.7 81.5 76.8 20.2 31.1 78.7 81.0 10.1 82.0 85.0 23.3 4.2 22.8 77.4 66.6 62.1 90.7 87.0 79.3 77.3 87.4 30.0 78.2 75.5 75.3 59.2 84.1 4.9 56.0 92.5 21.5 15.7 86.6 34.7100.060.2

gen_f1 89.9 28.9 84.4 47.3 28.8 58.4 90.5 89.0 88.0 84.8 90.7 89.8 45.3 90.1 87.5 82.5 30.0 86.5 90.0 84.9 84.0 50.6 50.2 87.5 89.1 34.7 88.8 91.8 35.5 44.0 28.7 82.5 78.7 76.9 93.6 92.7 86.1 84.1 91.5 44.3 85.9 83.9 85.5 62.2 89.2 42.9 58.8 94.3 41.4 47.5 89.7 45.8 99.6 71.3

gen_em 82.5 22.2 76.4 26.2 19.4 13.4 82.9 81.0 79.2 76.3 83.9 81.6 35.0 83.9 80.0 76.5 24.2 76.4 81.9 80.4 77.3 19.9 31.1 78.6 80.8 10.2 81.2 84.7 23.1 4.6 22.4 76.7 65.2 63.1 90.4 86.1 78.7 71.4 86.4 31.4 77.7 74.5 76.3 52.7 82.3 5.0 56.0 91.7 24.7 16.2 85.3 34.2 99.6 59.7

loc_f1 14.5 9.6 12.4 8.4 9.7 26.2 18.4 17.4 9.7 13.9 11.6 14.5 7.3 18.1 13.8 10.8 4.8 14.0 18.2 10.4 17.9 22.6 12.6 11.9 14.3 24.7 14.4 17.1 11.5 27.6 4.6 13.0 14.3 14.9 13.8 15.5 9.6 16.7 16.9 7.5 10.8 13.4 13.5 9.7 12.4 24.9 8.8 12.9 9.7 13.3 12.5 13.2 19.5 13.8

loc_em 9.8 5.5 7.5 3.7 6.3 1.5 12.5 12.5 6.3 8.9 7.7 9.7 4.5 12.6 8.8 6.8 3.2 8.3 11.9 7.3 11.7 2.2 5.2 7.8 9.1 1.7 10.0 12.0 5.7 1.9 1.8 8.8 8.3 10.2 9.5 11.2 6.1 10.7 11.7 5.0 7.1 8.9 8.3 5.6 6.0 0.8 5.4 8.3 5.2 6.3 8.2 7.1 13.7 7.4

port_f1 17.1 9.0 15.3 8.9 11.5 25.9 16.1 8.8 15.8 11.1 15.1 13.1 6.2 17.6 13.5 12.1 10.8 14.0 18.4 13.3 16.5 24.8 10.0 14.6 16.7 29.1 15.6 16.9 10.1 30.4 4.1 7.6 10.5 8.7 16.4 18.0 15.2 19.5 18.0 13.6 15.5 16.8 15.5 4.8 16.4 26.2 9.8 16.2 11.4 7.9 14.4 13.4 21.8 14.6

port_em 12.8 5.1 11.2 1.9 5.1 1.8 12.0 5.5 11.0 9.2 12.2 10.7 3.3 13.4 11.1 9.6 4.3 9.7 13.9 9.6 12.4 5.6 3.6 11.2 12.1 1.4 11.1 12.6 2.3 0.5 2.6 5.4 5.9 5.1 12.4 13.7 11.4 14.5 13.5 7.4 11.2 12.5 11.7 2.4 13.0 0.4 6.6 12.5 6.3 2.6 12.2 4.9 15.9 8.4

Table 11: Full Results on WFD.
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D Detailed Results of Prompt-Based Fine-Tuning vs. Vanilla
Fine-Tuning

We present the detailed results of few-shot training performance of Vanilla and TOPRO for all
three tasks in Table 13 (Amazon Review), Table 14 (PAWS-X) and Table 15 (XNLI), as well as
the T-test results for all tasks in few-shot conditions in Table 12.

Shot
Amazon PAWS-X XNLI

M X M X M X

1 0.001 0.001 0.50 0.56⇤ 0.01 0.12⇤

2 0.10 0.01 0.22⇤ 0.08⇤ 0.89⇤ 0.18⇤

4 0.09⇤ 0.02 0.80⇤ 0.10⇤ 0.05 0.07⇤

8 0.23⇤ 0.04 0.83⇤ 0.04 0.86⇤ 0.14⇤

16 0.78⇤ 0.11⇤ 0.30⇤ 0.05 0.27⇤ 0.03

32 0.06⇤ 0.16⇤ 1.00⇤ 0.58⇤ 0.11⇤ 0.01

64 0.03 0.18⇤ 0.02 0.80⇤ 0.09⇤ 0.002

128 0.07⇤ 0.11⇤ 0.15⇤ 0.82⇤ 0.34⇤ 0.01

256 0.73⇤ 0.21⇤ 0.12⇤ 0.78⇤ 0.07⇤ 0.02

512 0.86⇤ 0.01 0.04 0.90⇤ 0.61⇤ 0.004

1028 0.003 0.31⇤ 0.03 0.55⇤ 0.74⇤ 0.03

full 0.005 0.40⇤ 0.003 0.46⇤ 0.005 0.44⇤

Table 12: T-Test results (p) for results of Vanilla and TOPRO in different few-shot conditions.
M stands for mBERT and X stands for XLM-R. Insignificant results with a p value > 0.05 are
marked with ⇤.
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Shot Model en de es fr ja zh avg.

1

Vanilla-M 22.30 20.66 19.82 20.02 20.14 20.08 20.14
TOPRO -M 28.52 26.05 26.98 26.18 25.96 25.01 26.04

Vanilla-X 21.98 22.15 21.69 21.79 21.42 21.52 21.71
TOPRO -X 37.09 29.86 35.06 36.10 33.13 34.00 33.63

2

Vanilla-M 24.37 23.14 23.00 22.70 21.27 21.36 22.29
TOPRO -M 27.63 25.78 26.04 25.05 23.24 23.73 24.77

Vanilla-X 21.31 21.08 21.52 20.67 20.76 21.41 21.09
TOPRO -X 35.63 31.82 33.46 34.40 33.35 32.70 33.14

4

Vanilla-M 27.04 24.94 23.95 23.93 23.86 22.20 23.78
TOPRO -M 30.63 26.87 27.67 26.34 25.44 26.05 26.47

Vanilla-X 29.74 29.96 29.67 30.87 26.12 28.89 29.10
TOPRO -X 40.23 37.91 38.60 38.75 38.84 37.11 38.24

8

Vanilla-M 29.95 26.82 26.75 26.91 24.18 25.70 26.07
TOPRO -M 32.67 29.07 30.20 29.38 26.24 27.12 28.40

Vanilla-X 32.02 32.84 33.02 32.60 28.84 31.51 31.76
TOPRO -X 42.23 35.63 40.55 39.79 39.65 38.33 38.79

16

Vanilla-M 33.92 30.87 32.01 30.29 28.94 28.36 30.09
TOPRO -M 35.27 31.66 32.10 31.37 29.70 28.58 30.68

Vanilla-X 38.97 39.42 38.70 38.84 34.61 35.72 37.45
TOPRO -X 44.78 44.40 43.89 43.55 42.57 41.26 43.13

32

Vanilla-M 36.73 31.26 31.64 31.69 28.94 29.08 30.52
TOPRO -M 37.90 33.44 34.68 33.72 31.18 30.77 32.76

Vanilla-X 44.92 45.42 44.45 44.78 42.16 41.85 43.73
TOPRO -X 47.51 47.12 46.67 45.78 44.24 42.70 45.30

64

Vanilla-M 39.85 33.76 35.20 34.65 30.98 29.90 32.90
TOPRO -M 41.62 36.25 37.84 36.15 32.97 32.56 35.15

Vanilla-X 48.06 48.48 46.77 47.34 44.01 42.05 45.73
TOPRO -X 49.42 48.16 47.99 46.93 45.58 44.00 46.53

128

Vanilla-M 43.29 35.52 37.50 36.38 32.36 31.51 34.65
TOPRO -M 44.19 38.39 39.84 38.74 34.62 33.71 37.06

Vanilla-X 50.40 50.75 48.37 48.12 46.26 44.80 47.66
TOPRO -X 50.75 51.24 49.75 49.22 47.39 45.35 48.59

256

Vanilla-M 45.64 37.15 39.23 38.20 33.54 32.86 36.20
TOPRO -M 45.39 37.71 39.99 40.31 32.55 32.82 36.68

Vanilla-X 51.21 50.92 47.15 47.85 46.01 44.23 47.23
TOPRO -X 51.40 52.18 50.22 49.81 47.65 45.60 49.09

512

Vanilla-M 47.66 37.57 39.90 39.16 33.82 33.64 36.82
TOPRO -M 47.64 37.48 40.63 40.99 32.76 33.40 37.05

Vanilla-X 51.90 51.69 49.21 49.67 46.23 43.96 48.15
TOPRO -X 52.94 52.79 50.21 50.06 48.16 45.82 49.41

1024

Vanilla-M 49.26 38.47 41.24 39.88 33.52 33.79 37.38
TOPRO -M 49.63 41.47 43.54 41.97 36.52 34.54 39.61

Vanilla-X 51.33 48.55 45.06 44.91 42.85 41.79 44.63
TOPRO -X 54.55 53.15 51.98 51.18 47.98 46.08 50.07

full

Vanilla-M 58.92 45.69 48.02 47.45 35.07 38.63 42.97
TOPRO -M 59.05 46.66 49.30 48.38 37.31 38.26 43.98

Vanilla-X 59.61 60.14 55.24 55.66 51.93 49.82 54.56
TOPRO -X 60.06 59.60 55.72 55.89 52.34 49.75 54.66

Table 13: Few-shot performance on Amazon.
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Shot Model en de es fr ja ko zh avg.

1

Vanilla-M 54.38 53.29 54.22 54.25 53.37 54.01 53.20 53.72
TOPRO -M 53.21 54.18 54.44 54.34 55.31 54.35 53.80 54.40

Vanilla-X 51.95 51.75 51.57 51.62 51.95 51.73 51.80 51.74
TOPRO -X 50.19 48.53 50.68 46.83 50.80 44.55 49.91 48.55

2

Vanilla-M 53.54 53.60 53.81 54.18 54.43 54.54 53.77 54.06
TOPRO -M 52.38 53.04 53.34 53.13 54.35 53.90 51.82 53.26

Vanilla-X 54.95 54.73 54.30 54.57 54.25 54.05 54.32 54.37
TOPRO -X 51.59 50.25 51.65 48.86 51.31 46.30 50.70 49.85

4

Vanilla-M 53.93 53.11 53.38 53.94 53.85 54.28 53.71 53.71
TOPRO -M 52.40 53.07 53.64 53.41 54.79 53.53 51.20 53.27

Vanilla-X 53.15 54.45 53.99 53.90 53.81 53.79 53.64 53.93
TOPRO -X 53.54 51.25 53.00 49.05 53.46 45.29 51.83 50.65

8

Vanilla-M 54.30 53.50 53.51 54.02 54.03 53.94 54.15 53.86
TOPRO -M 52.81 54.12 53.42 53.31 53.98 53.51 51.93 53.38

Vanilla-X 54.60 55.13 54.68 54.80 55.46 55.10 55.14 55.05
TOPRO -X 53.18 52.65 53.03 51.22 52.48 48.83 52.21 51.74

16

Vanilla-M 54.08 50.86 52.04 52.66 51.77 52.27 51.23 51.81
TOPRO -M 52.81 53.08 53.80 53.20 53.51 53.95 52.09 53.27

Vanilla-X 54.45 54.84 54.45 54.54 54.96 54.56 54.78 54.69
TOPRO -X 53.73 51.58 53.24 49.95 53.21 48.28 52.31 51.43

32

Vanilla-M 54.03 52.94 53.48 53.65 53.13 53.58 53.08 53.31
TOPRO -M 52.99 52.97 53.75 53.14 53.57 54.16 51.42 53.17

Vanilla-X 52.44 53.95 52.96 53.21 53.46 54.05 53.94 53.60
TOPRO -X 53.63 51.96 53.44 50.51 53.61 49.84 52.73 52.01

64

Vanilla-M 55.44 55.42 55.46 55.97 54.80 55.92 56.41 55.66
TOPRO -M 53.95 54.59 54.05 54.48 54.51 54.95 52.61 54.20

Vanilla-X 55.20 55.35 54.69 54.95 55.84 55.09 55.39 55.22
TOPRO -X 56.60 54.95 55.90 54.59 55.63 51.51 55.29 54.64

128

Vanilla-M 56.63 56.29 56.69 56.43 55.31 55.70 55.75 56.03
TOPRO -M 55.54 55.76 55.28 55.26 55.88 55.75 55.61 55.59

Vanilla-X 54.61 54.99 54.44 54.80 55.24 55.14 54.98 54.93
TOPRO -X 58.66 56.28 57.95 54.91 56.09 52.39 57.35 55.83

256

Vanilla-M 58.66 56.00 56.38 56.93 55.36 55.77 55.65 56.02
TOPRO -M 61.84 60.51 60.65 60.90 58.56 58.70 59.70 59.84

Vanilla-X 59.30 58.23 58.79 58.54 57.18 57.54 57.70 57.99
TOPRO -X 59.94 57.75 59.58 57.86 57.28 54.31 57.35 57.35

512

Vanilla-M 64.23 59.38 60.00 60.15 56.90 56.84 56.79 58.34
TOPRO -M 73.47 69.74 70.23 70.20 63.84 64.56 66.97 67.59

Vanilla-X 77.03 71.28 72.09 72.46 63.43 63.79 66.53 68.26
TOPRO -X 76.94 71.01 72.29 71.24 63.19 63.28 66.61 67.94

1024

Vanilla-M 74.43 68.44 69.47 70.01 61.95 61.13 64.69 65.95
TOPRO -M 81.06 74.58 76.08 76.15 66.05 66.76 70.64 71.71

Vanilla-X 86.33 79.23 80.86 80.74 69.25 68.18 73.26 75.25
TOPRO -X 87.84 78.94 81.53 80.58 67.68 68.01 71.85 74.76

full

Vanilla-M 93.85 84.94 87.11 86.55 73.39 72.44 77.01 80.24
TOPRO -M 94.21 86.06 88.17 87.91 75.79 75.82 79.22 82.16

Vanilla-X 94.33 86.92 88.55 89.04 76.07 74.71 79.75 82.51
TOPRO -X 94.90 87.06 88.87 88.86 75.53 75.40 80.63 82.73

Table 14: Few-shot performance on PAWS-X.
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Shot Model en ar bg de el es fr hi ru sw th tr ur vi zh avg.

1

Vanilla-M 33.58 32.97 32.97 33.46 32.70 33.33 33.43 32.44 32.93 32.85 33.12 33.05 32.96 33.00 32.99 33.02
TOPRO -M 37.58 34.93 33.56 35.95 35.02 34.25 36.38 33.93 36.76 34.62 33.83 34.07 34.22 36.43 37.41 35.10

Vanilla-X 33.73 33.07 32.86 33.51 32.66 33.40 33.54 32.50 33.04 33.15 33.18 33.14 33.00 33.08 33.04 33.08
TOPRO -X 39.26 34.61 34.85 36.28 36.88 33.59 34.92 39.76 34.47 36.53 36.33 36.56 37.03 37.40 36.61 36.13

2

Vanilla-M 34.67 34.98 36.21 36.15 35.46 36.91 36.42 34.34 35.42 34.67 34.20 35.40 34.04 36.18 35.61 35.43
TOPRO -M 38.38 34.85 34.02 35.07 35.20 33.44 35.70 35.63 35.65 34.50 33.78 34.35 34.67 36.57 37.12 35.04

Vanilla-X 34.84 34.33 35.51 35.62 34.99 36.25 35.86 34.14 35.09 34.39 33.95 34.87 33.76 35.55 35.02 34.95
TOPRO -X 39.22 36.54 36.73 38.48 37.83 34.21 37.91 38.87 35.56 37.16 38.42 38.01 37.75 38.25 36.98 37.34

4

Vanilla-M 37.91 35.47 36.12 36.20 35.03 36.22 36.09 34.60 35.60 35.01 34.35 35.49 34.49 36.28 35.74 35.48
TOPRO -M 38.04 35.43 34.64 36.67 36.50 33.66 36.63 36.07 36.83 34.87 33.42 35.41 34.44 37.06 37.07 35.62

Vanilla-X 37.55 34.31 35.08 35.11 34.09 35.06 34.85 33.74 34.53 34.09 33.58 34.39 33.71 35.09 34.56 34.44
TOPRO -X 38.79 36.03 35.23 37.49 37.36 33.50 36.54 38.79 34.21 37.11 37.79 36.47 37.58 37.96 36.22 36.59

8

Vanilla-M 40.83 37.39 38.56 38.69 37.77 39.25 39.06 36.38 37.72 37.54 36.46 38.07 36.28 38.22 37.76 37.80
TOPRO -M 38.71 36.59 35.73 37.20 37.33 34.88 38.05 38.22 38.32 35.37 35.40 36.48 35.99 38.20 38.93 36.91

Vanilla-X 40.84 36.52 37.57 37.97 36.85 38.50 38.35 35.70 37.00 36.77 35.57 37.33 35.57 37.56 36.95 37.01
TOPRO -X 41.58 37.81 37.61 39.74 39.06 35.07 37.65 39.78 37.26 38.64 40.32 38.79 38.65 40.33 38.54 38.52

16

Vanilla-M 42.42 39.56 40.71 40.36 39.63 41.49 41.14 37.86 39.60 38.27 37.35 38.77 37.44 40.76 40.25 39.51
TOPRO -M 44.52 42.10 41.96 40.85 42.18 40.63 43.98 41.17 43.10 36.50 38.83 41.71 38.95 43.40 43.14 41.32

Vanilla-X 42.65 39.37 40.33 40.09 39.15 41.12 40.73 37.72 39.44 38.02 37.34 38.63 37.19 40.73 40.01 39.28
TOPRO -X 49.72 42.15 43.51 47.38 46.22 40.19 44.09 45.59 43.14 44.81 46.16 45.39 44.43 47.35 45.69 44.72

32

Vanilla-M 46.18 40.39 41.17 41.25 40.39 42.65 41.88 38.69 40.77 38.29 38.47 39.62 38.82 41.18 40.89 40.32
TOPRO -M 49.02 45.64 46.01 44.64 47.57 45.00 48.32 45.06 46.37 38.28 43.39 43.68 43.88 47.18 47.78 45.20

Vanilla-X 46.11 39.69 40.44 40.57 39.81 42.05 41.28 38.30 40.25 37.71 37.99 39.05 38.17 40.27 40.00 39.68
TOPRO -X 52.27 46.87 48.41 49.79 49.12 45.55 48.85 48.42 48.10 45.90 49.20 47.88 46.58 49.84 48.55 48.08

64

Vanilla-M 52.10 45.26 46.64 48.10 46.32 49.44 48.57 42.71 45.45 39.13 40.24 42.19 42.41 47.23 46.91 45.04
TOPRO -M 55.04 50.28 51.76 52.60 52.90 50.46 53.85 49.57 51.68 42.26 46.38 49.01 48.85 52.89 52.57 50.36

Vanilla-X 51.86 44.99 46.39 47.86 45.84 48.92 48.47 42.99 45.25 39.04 40.35 42.43 42.51 47.08 46.70 44.92
TOPRO -X 59.35 50.75 53.38 55.47 55.32 50.92 55.71 53.11 52.67 51.31 53.99 52.95 51.30 55.51 54.41 53.34

128

Vanilla-M 58.61 51.91 54.23 54.89 54.32 56.27 55.30 49.05 52.87 43.18 46.02 49.56 48.28 54.02 54.06 51.71
TOPRO -M 59.12 53.87 55.09 56.44 55.33 55.00 56.09 52.36 54.71 45.25 49.41 52.44 51.35 55.62 55.98 53.50

Vanilla-X 58.27 51.41 53.86 54.61 53.85 55.90 54.89 48.68 52.21 42.87 46.23 49.26 47.89 53.55 53.90 51.36
TOPRO -X 64.78 56.50 60.23 60.77 60.55 59.51 61.20 57.41 59.13 55.12 58.44 58.15 55.36 60.24 59.68 58.73

256

Vanilla-M 61.88 53.54 56.61 57.25 56.20 58.77 57.91 51.31 55.45 44.97 46.97 52.75 50.07 56.51 56.76 53.94
TOPRO -M 62.30 54.82 56.96 57.92 56.48 58.69 58.39 53.58 57.09 45.55 49.06 53.64 52.41 57.81 58.06 55.03

Vanilla-X 61.68 53.30 56.19 57.01 55.91 58.47 57.74 51.13 55.22 44.86 46.68 52.77 49.79 56.24 56.33 53.69
TOPRO -X 66.55 58.08 62.26 62.24 61.23 62.88 63.44 58.56 60.42 54.77 59.95 59.95 56.59 62.28 61.18 60.27

512

Vanilla-M 64.94 56.75 59.66 60.73 58.53 61.99 60.89 53.69 58.94 46.24 48.58 55.50 52.56 59.71 59.89 56.69
TOPRO -M 65.39 57.36 60.18 61.03 58.95 61.59 61.04 55.07 59.52 47.23 50.48 55.98 54.08 60.25 60.41 57.37

Vanilla-X 64.92 56.33 59.53 60.47 58.11 61.92 60.59 53.36 58.53 45.92 47.99 55.25 52.15 59.32 59.49 56.35
TOPRO -X 70.13 61.99 66.33 65.47 64.91 67.43 66.72 60.53 64.80 57.27 63.16 63.35 58.78 65.31 64.74 63.63

1024

Vanilla-M 65.90 56.85 59.73 61.10 58.40 62.73 62.07 54.57 59.38 46.46 48.46 56.19 54.21 60.32 60.51 57.21
TOPRO -M 66.77 57.83 59.94 61.53 59.42 62.05 61.99 55.37 59.54 47.44 49.10 56.40 53.91 60.48 60.62 57.54

Vanilla-X 65.67 56.88 59.61 60.95 57.99 62.47 61.93 54.48 59.30 46.36 48.21 56.01 54.29 60.15 60.25 57.06
TOPRO -X 71.51 63.04 67.62 66.26 66.27 68.64 67.72 62.02 65.86 58.12 64.33 64.41 60.46 66.36 65.50 64.76

full

Vanilla-M 82.57 65.12 68.97 71.40 66.30 74.22 73.68 60.02 68.95 50.24 53.15 62.02 57.96 69.80 68.91 65.05
TOPRO -M 82.57 65.55 69.47 71.57 67.43 75.10 74.57 60.57 69.55 51.13 54.58 62.64 58.04 70.74 70.08 65.79

Vanilla-X 84.91 71.86 77.78 76.86 75.96 79.25 78.21 69.92 75.79 65.21 72.02 73.12 66.07 74.71 73.72 73.61
TOPRO -X 84.97 71.81 77.92 77.35 76.11 79.31 78.75 70.10 75.43 65.13 72.39 73.23 66.95 75.05 73.92 73.82

Table 15: Few-shot performance on XNLI.
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E Detailed Results for TOPRO

We present the detailed results of the cross-lingual evaluation performance of Vanilla, Prompt
Tuning, and TOPRO in Table 16 (PAN-X) and Table 17 (UDPOS).
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lang. en af ar az bg bn de el es et eu fa fi

B (Vanilla) 83.83 78.07 44.09 67.58 78.31 70.09 79.10 71.85 73.95 77.96 65.44 42.43 78.74

B (PT) 79.09 71.37 39.52 63.47 73.28 58.81 74.14 63.35 68.05 73.84 61.00 34.86 74.01

B (TOPRO ) 92.80 90.87 62.62 85.30 89.61 78.33 92.40 89.88 84.94 90.07 85.35 69.52 91.25

X (Vanilla) 81.31 75.03 47.26 61.37 77.02 68.97 74.07 74.93 70.51 70.73 58.07 48.73 75.44

X (PT) 75.94 69.92 43.75 58.57 72.15 53.42 68.09 64.12 65.21 65.43 47.97 38.65 70.31

X (TOPRO ) 92.21 90.02 67.84 84.02 88.20 72.06 91.22 91.22 83.63 88.26 84.59 62.82 90.72

T (Vanilla) 77.14 76.94 49.99 62.00 72.98 60.32 76.19 76.88 67.81 74.25 67.12 40.46 75.93

T (TOPRO ) 96.52 96.76 89.13 94.78 96.11 90.74 97.21 96.22 93.90 95.80 94.62 87.93 96.71

lang. fr gu he hi hu id it ja jv ka kk ko lt

B (Vanilla) 80.40 53.89 55.80 68.17 76.16 61.21 81.10 28.25 61.58 67.94 47.21 61.60 74.41

B (PT) 75.02 32.07 52.00 62.38 70.88 58.39 78.11 23.76 57.23 61.45 46.06 58.51 69.86

B (TOPRO ) 87.15 87.22 83.27 80.88 90.91 77.99 91.24 69.29 80.28 87.25 80.95 83.94 87.99

X (Vanilla) 75.81 57.12 51.54 68.11 76.42 48.04 77.58 19.26 57.86 67.02 40.79 50.36 73.85

X (PT) 69.14 47.54 43.64 60.58 70.17 45.33 71.55 16.98 41.49 57.22 40.66 44.73 67.08

X (TOPRO ) 86.20 88.11 82.49 79.28 91.38 69.35 89.36 66.87 74.29 87.50 83.14 81.78 88.09

T (Vanilla) 73.68 64.18 68.83 61.90 74.01 64.28 77.33 46.19 67.79 70.17 65.10 60.24 72.09

T (TOPRO ) 94.55 96.17 92.93 92.69 96.98 91.22 96.35 89.71 90.59 96.02 93.73 93.40 95.57

lang. ml mr ms my nl pa pl pt qu ro ru sw ta

B (Vanilla) 56.00 57.77 67.05 53.36 82.23 34.29 80.74 79.77 64.53 73.97 65.33 70.08 53.33

B (PT) 50.35 51.17 63.17 43.18 77.78 31.36 77.38 74.00 46.06 59.57 58.14 60.57 49.08

B (TOPRO ) 82.57 82.93 81.55 82.65 92.35 59.67 90.87 87.25 77.50 81.88 84.71 79.33 77.81

X (Vanilla) 59.85 60.74 66.13 53.41 79.67 50.31 77.64 76.83 60.49 70.45 62.54 69.51 54.62

X (PT) 51.08 48.43 45.86 44.94 74.88 33.83 73.04 70.12 45.36 59.48 54.84 57.57 47.83

X (TOPRO ) 85.55 81.75 74.39 85.10 92.00 69.72 90.66 85.99 77.57 83.60 80.65 77.32 81.30

T (Vanilla) 62.21 61.71 68.06 44.70 77.43 53.71 75.31 70.83 62.18 69.10 66.16 66.60 62.69

T (TOPRO ) 94.77 93.42 85.70 93.66 96.93 86.18 96.34 94.81 87.35 94.16 94.07 91.90 92.52

lang. te th tl tr uk ur vi yo zh avg.

B (Vanilla) 50.86 0.77 71.14 74.66 71.30 33.22 69.69 49.29 43.51 62.73

B (PT) 47.77 0.54 71.54 67.16 65.20 26.49 67.17 37.71 40.73 56.76

B (TOPRO ) 83.83 68.37 82.54 87.29 85.94 63.18 86.04 64.70 68.39 81.91

X (Vanilla) 48.20 3.09 69.84 75.58 73.43 59.48 67.92 50.25 25.28 61.30

X (PT) 40.89 3.67 62.14 64.48 61.21 38.17 61.68 35.57 24.51 53.05

X (TOPRO ) 84.73 19.56 78.35 89.35 85.74 61.11 82.18 66.38 66.09 80.03

T (Vanilla) 66.67 29.23 63.28 69.28 69.94 37.75 61.28 61.24 50.87 64.19

T (TOPRO ) 94.82 79.33 90.34 96.21 93.45 89.06 92.94 84.54 90.37 92.82

Table 16: Detailed results of the cross-lingual evaluation on PAN-X.
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lang. en af ar bg de el es et eu fa fi fr he

B (Vanilla) 95.28 86.10 53.51 85.65 86.36 81.92 86.79 80.78 58.75 66.10 80.33 84.59 56.27

B (PT) 94.96 86.06 55.59 85.81 86.03 80.87 85.04 76.74 59.99 66.91 77.75 79.67 56.12

B (TOPRO ) 95.82 89.37 70.02 88.45 89.46 85.72 85.93 84.64 68.86 68.33 82.96 84.43 80.68

X (Vanilla) 95.64 87.88 65.41 88.48 88.03 86.63 88.31 85.96 70.07 69.22 85.32 86.57 66.38

X (PT) 95.18 87.92 65.69 88.35 87.76 86.78 87.98 84.96 66.71 68.57 84.60 86.21 66.12

X (TOPRO ) 96.05 89.88 70.06 89.04 89.61 86.14 87.08 86.90 71.95 70.04 85.80 81.21 80.50

T (Vanilla) 89.67 85.02 63.56 78.38 79.86 75.44 83.99 78.35 68.49 66.47 77.50 82.10 64.19

T (TOPRO ) 97.57 92.18 78.79 92.72 92.35 88.50 89.72 89.93 82.63 81.59 89.18 90.51 87.87

lang. hi hu id it ja kk ko lt mr nl pl pt ro

B (Vanilla) 63.54 78.92 71.67 88.46 47.05 70.53 50.82 79.79 70.35 89.00 81.77 86.44 78.00

B (PT) 64.54 78.40 71.47 86.78 46.77 70.19 51.63 76.93 67.24 88.49 81.15 86.02 77.14

B (TOPRO ) 73.16 79.48 76.30 86.45 52.10 74.98 64.68 83.54 75.75 89.50 84.97 85.36 81.15

X (Vanilla) 69.35 82.97 72.83 87.79 25.62 76.14 52.75 84.67 82.61 89.26 83.91 87.16 84.23

X (PT) 69.19 82.72 72.50 88.88 22.17 74.93 53.29 83.11 81.22 88.95 84.24 87.11 83.80

X (TOPRO ) 72.98 80.90 76.93 86.53 54.78 76.61 64.14 87.16 80.09 89.54 85.74 86.37 85.69

T (Vanilla) 69.21 76.85 72.11 82.71 50.81 71.57 51.22 76.92 72.58 83.85 77.39 82.78 74.51

T (TOPRO ) 87.89 90.75 85.92 90.99 78.12 87.18 76.79 89.73 89.76 93.01 91.16 90.74 88.58

lang. ru ta te th tl tr uk ur vi wo yo zh avg.

B (Vanilla) 85.82 58.78 76.63 41.08 82.30 69.46 81.04 55.04 55.98 30.93 59.56 62.62 70.89

B (PT) 86.58 59.33 74.25 37.00 77.59 66.17 81.32 56.01 54.69 29.19 57.50 63.88 69.91

B (TOPRO ) 90.02 72.21 75.70 56.92 81.71 71.29 86.95 67.08 58.77 33.38 65.29 72.17 76.16

X (Vanilla) 89.16 61.94 84.38 44.73 86.80 74.22 85.22 58.88 58.48 30.07 26.12 32.08 72.42

X (PT) 88.50 61.91 82.11 40.80 88.64 72.74 84.85 60.68 57.34 28.79 25.07 33.81 71.86

X (TOPRO ) 90.70 72.78 83.79 70.01 82.11 73.85 87.17 66.82 59.79 19.38 19.53 76.38 76.16

T (Vanilla) 82.12 62.85 78.65 64.06 73.73 68.58 77.17 64.63 58.43 54.89 66.74 43.90 71.39

T (TOPRO ) 93.48 83.23 90.65 79.67 93.11 85.46 90.67 85.10 79.03 54.01 72.71 82.43 86.11

Table 17: Detailed results of the cross-lingual evaluation on UDPOS.
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F Full Results of GNNAVI

The complete results are provided in Table 18. Each value in the table represents the average
accuracy over five experiments conducted with different random seeds.

k Method #Param SST-2 EmoC TREC Amazon AGNews Average #Param SST-2 EmoC TREC Amazon AGNews Average

GPT2-XL Llama2

0 ICL - 55.44 6.48 54.68 53.32 72.12 48.41 - 67.55 9.60 70.36 94.98 84.14 65.33

5

ICL - 63.17 6.30 57.68 53.67 50.43 46.25 - 86.93 20.18 45.72 92.30 80.16 65.06

LoRA 2.5M 91.98 50.60 75.20 88.80 85.20 78.36 4.2M 95.42 64.20 88.40 91.80 86.60 85.28
Prefix 6.1M 59.13 73.46 32.92 60.00 75.40 60.18 39.3M 50.96 58.56 21.36 49.36 25.78 41.20

Adapter 15.4M 79.82 76.00 79.60 91.45 81.25 81.62 198M 50.92 84.05 18.80 49.45 24.80 45.60
FPFT 1.6B 62.13 61.30 65.28 73.00 80.82 68.51 6.7B 94.63 61.92 81.72 95.86 87.58 84.34

GNNAVI-GCN 2.6M 84.31 75.48 76.72 90.90 83.16 82.11 16.8M 94.56 78.30 83.2 94.00 86.25 86.63
GNNAVI-SAGE 5.1M 81.95 78.70 77.92 88.66 82.88 82.02 33.6M 92.91 80.12 80.80 95.66 86.06 87.11

10

LoRA 2.5M 88.08 53.20 86.40 90.60 86.80 81.02 4.2M 94.73 63.00 92.80 92.60 90.40 86.71
Prefix 6.1M 51.08 77.58 38.16 65.94 61.48 58.85 39.3M 50.80 76.98 21.20 51.42 26.44 45.37

Adapter 15.4M 86.70 70.65 87.40 90.60 86.15 84.30 198M 50.92 85.60 41.00 52.20 52.15 56.37
FPFT 1.6B 69.01 71.90 52.48 75.82 81.34 70.11 6.7B 92.91 68.06 84.24 96.22 88.64 86.01

GNNAVI-GCN 2.6M 84.63 83.97 74.80 91.57 87.00 84.39 16.8M 91.86 70.75 82.40 96.35 89.30 84.99
GNNAVI-SAGE 5.1M 87.41 77.98 78.28 91.90 84.52 84.02 33.6M 94.06 76.02 83.96 95.76 87.64 87.49

20

LoRA 2.5M 85.09 69.00 86.00 94.00 89.20 84.66 4.2M 95.64 70.80 83.60 96.20 90.60 87.37
Prefix 6.1M 56.68 83.28 39.20 61.22 80.62 64.20 39.3M 50.57 78.70 27.92 52.08 26.30 47.11

Adapter 15.4M 88.42 74.65 89.00 89.45 86.50 85.60 198M 50.92 85.80 18.80 56.40 24.80 47.34
FPFT 1.6B 73.10 70.72 68.36 77.40 80.44 74.00 6.7B 95.32 69.96 88.08 95.52 89.04 87.58

GNNAVI-GCN 2.6M 86.93 76.23 79.67 92.70 86.07 84.32 16.8M 94.78 75.25 84.80 96.00 89.30 88.27
GNNAVI-SAGE 5.1M 88.67 78.96 82.52 92.02 86.24 85.68 33.6M 94.56 79.92 84.56 95.64 88.54 88.64

50

LoRA 2.5M 89.45 74.80 54.80 93.60 91.80 80.89 4.2M 93.12 72.40 94.40 95.40 91.60 89.20
Prefix 6.1M 50.90 79.78 26.72 74.42 74.40 61.24 39.3M 50.48 76.22 28.08 50.96 27.60 46.67

Adapter 15.4M 86.75 77.85 91.60 90.50 88.75 87.09 198M 50.92 76.80 44.40 49.45 33.45 51.00
FPFT 1.6B 70.60 71.68 76.40 67.84 83.10 73.92 6.7B 95.46 74.20 91.92 95.82 90.48 89.58

GNNAVI-GCN 2.6M 89.49 79.50 87.93 92.40 87.43 87.35 16.8M 95.07 83.05 88.70 95.85 90.80 90.81
GNNAVI-SAGE 5.1M 90.14 75.70 87.96 93.26 87.30 86.87 33.6M 94.72 79.04 90.72 96.00 90.68 90.23

100

LoRA 2.5M 89.22 84.00 88.40 93.20 84.80 87.92 4.2M 92.66 86.60 94.80 95.40 67.60 87.41
Prefix 6.1M 56.26 72.28 32.04 69.48 51.18 56.25 39.3M 49.11 76.20 40.28 52.38 26.82 48.96

Adapter 15.4M 86.93 82.85 92.00 92.40 87.60 88.36 198M 58.83 84.95 84.00 68.10 24.80 64.14
FPFT 1.6B 72.82 73.42 68.56 78.74 84.86 75.68 6.7B 95.07 76.06 96.20 96.20 91.04 90.91

GNNAVI-GCN 2.6M 89.41 81.30 90.20 92.67 87.97 88.31 16.8M 94.27 81.20 91.60 96.00 90.80 90.77
GNNAVI-SAGE 5.1M 90.46 80.16 91.12 93.28 88.58 88.72 33.6M 94.45 81.20 90.88 96.08 90.78 90.68

200

LoRA 2.5M 90.83 80.80 90.80 82.00 86.20 86.13 4.2M 91.29 86.80 93.60 95.80 90.40 91.32
Prefix 6.1M 50.92 80.18 69.80 59.80 79.08 67.96 39.3M 48.35 81.72 45.68 52.28 27.54 51.11

Adapter 15.4M 88.65 80.70 96.60 92.30 89.80 89.61 198M 50.92 85.05 88.20 49.45 81.50 67.57
FPFT 1.6B 68.97 73.70 80.16 74.82 85.34 76.60 6.7B 95.64 79.90 96.76 96.12 91.44 91.97

GNNAVI-GCN 2.6M 90.67 78.82 91.88 92.94 89.20 88.70 16.8M 95.36 82.85 95.50 96.45 91.05 92.24
GNNAVI-SAGE 5.1M 90.46 82.68 92.32 93.44 89.28 89.64 33.6M 95.30 81.94 94.76 95.96 90.68 91.73

Table 18: Results with different training methods (accuracy). k denotes the number of training
examples per class. #Param denotes the number of trainable parameters. The best scores under
the same circumstances of training examples are highlighted with bold.
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G Detailed Results of Minimal Pair Probing
Raw results for English, Chinese, and German can be found in Figure 4, 5, and 6.
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Figure 4: Detailed English decoding results on 6 models.
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Figure 5: Detailed Chinese decoding results on 6 models. Notice that the pink, orange, and blue
curves don’t denote morphology or semantics as those in English do. They are made just to
make it easier to distinguish in the figure. All non-red curves represent grammatical tasks and
red curves represent conceptual tasks.
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Figure 6: Detailed German decoding results on 6 models. All non-red curves are grammatical
tasks, and red curves are conceptual tasks.
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H Full Results and Detailed Experimental Setup of the Lan-
guage Confusion Study

H.1 Full Experimental Results
Table 19 presents the full benchmarking results. Table 20 shows the full results of the CP re-
placement experiment. Tables 21 and 22 present the full results of robustness and generalization
experiments.

H.2 Detailed Experimental Setup
H.2.1 Models

We primarily use three variants of the Llama3 family for our experiments:

• Llama3-8B: The baseline English-centric model without multilingual instruction tuning.

• Llama3-8B-multilingual: The multilingual instruction-tuned version, as described in (Devine,
2024).

• Llama3.1-8B: An improved model optimized for multilingual dialogue.

All models are used in their publicly released forms unless otherwise stated. For neuron editing
experiments, we intervene on Llama3-8B using the strategies described in Section 5.

H.2.2 Datasets and Tasks

Language Confusion Benchmarking and Replacement Experiments We use the Language
Confusion Benchmark (LCB) (Marchisio et al., 2024) for all language confusion detection and
mitigation experiments. LCB covers 15 typologically diverse languages and comprises several
monolingual and cross-lingual datasets:

• Monolingual sources: Aya (human-generated), Dolly (post-edited), Native (human-generated),
and Okapi (synthetic + machine translated).

• Languages: Arabic, English, Portuguese, Turkish, Chinese, Spanish, French, Hindi, Rus-
sian, Japanese, Korean, German, Indonesian, Italian, Vietnamese.

All main benchmarking and confusion point replacement experiments are run on the monolingual
portions of LCB, using 100 prompts per language per dataset as described in Table 1.

Robustness and Generalization Experiments To assess the robustness and generalization of
neuron editing, we evaluate on:

• XNLI (Conneau et al., 2018): Cross-lingual natural language inference in 15 languages.
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• Multilingual Sentiment Analysis: Standard multilingual sentiment datasets (including
German, Spanish, French, Japanese, and Chinese). It is a binary classification task derived
from the multilingual Amazon review dataset.

• Out-of-domain LCB evaluation: For each language, neurons are selected from one LCB
source (e.g., Aya), then tested on a different source (e.g., Okapi) to assess generalization.

H.2.3 Metrics

Language Confusion Metrics We adopt two primary metrics from LCB:

• Line-level Pass Rate (LPR): Percentage of responses where every line is in the correct
language.

• Line-level Accuracy: Proportion of lines generated in the correct language.

Language identification for these metrics is performed using the fastText classifier (Joulin et al.,
2016).

Internal Model Metrics We further report:

• Target Language Token Count: Number of target language tokens among the top-10
output logits in the final layer.

• Target Language Token Probability: Total probability mass assigned to target language
tokens in the top-10 output logits.

Generalization and Fluency Metrics

• XNLI and Sentiment Accuracy: Standard classification accuracy on XNLI and multilin-
gual sentiment analysis tasks.

• Fluency (Perplexity): Perplexity of generated outputs, measured using the multilingual
facebook/xglm-564M model (Lin et al., 2022).

H.2.4 Implementation Details

All experiments are run on NVIDIA A100 GPUs. Prompt formatting and decoding settings
follow the LCB benchmark defaults. Neuron interventions are implemented at inference time
via custom hooks in PyTorch, zeroing out selected neuron activations layer-wise as described
in Section 5.1. For TunedLens analysis, we use the public implementation from Belrose et al.
(2023).



242

metrics: acc
Monolingual

source ar en pt tr zh es fr hi ru ja ko de id it vi avg

Llama3

aya 55.55 100.00 86.90 37.69 42.23 - - - - - - - - - - 64.47
dolly 33.00 - - - - 75.77 60.49 19.05 34.45 - - - - - - 44.55
native - - - - - 91.47 79.17 - - 18.05 25.92 - - - - 53.65
okapi 22.00 99.67 63.12 - 9.08 67.75 55.03 - - - - 25.25 27.83 39.83 15.41 42.50
avg 36.85 99.83 75.01 37.69 25.65 78.33 64.90 19.05 34.45 18.05 25.92 25.25 27.83 39.83 15.41 41.60

Llama3-
multilingual

aya 98 98.93 99.83 96.93 92.35 - - - - - - - - - - 97.21
dolly 98.99 - - - - 98.15 93.03 97.50 100.00- - - - - - 97.53
native - - - - - 99.75 97.87 - - 95.83 100.00- - - - 98.36
okapi 98.97 100.00 99.83 - 95.20 100.00 99.80 - - - - 100.00 94.23 100.00 97.87 98.65
avg 98.65 99.47 99.83 96.93 93.78 99.30 96.90 97.50 100.00 95.83 100.00100.00 94.23 100.00 97.87 98.02

Llama3.1

aya 93.35 99.50 97.82 98.98 96.21 - - - - - - - - - - 97.17
dolly 97.94 - - - - 98.00 97.84 99.50 98.99 - - - - - - 98.45
native - - - - - 98.8 99.75 - - 97.82 100 - - - - 99.09
okapi 97.31 100.00 99.50 - 97.28 100.00100.00- - - - 100.00 97.08 100.00 99.67 99.08
avg 96.20 99.75 98.66 98.98 96.75 98.93 99.20 99.50 98.99 97.82 100.00100.00 97.08 100.00 99.67 98.77

Table 19: Full benchmarking results on LCB.

metrics: lpr
Monolingual

source ar en pt tr zh es fr hi ru ja ko de id it vi avg

Llama3-ori

aya 53 100 83 33 31.63 - - - - - - - - - - 64.47
dolly 30 - - - - 68 54 8 28 - - - - - - 44.55
native - - - - - 88 72 - - 14 23 - - - - 53.65
okapi 16 99 59 - 7 63 52 - - - - 19 22 34 11 42.50
avg 33.00 99.50 71.00 33.00 19.32 73.00 59.33 8.00 28.00 14.00 23.00 19.00 22.00 34.00 11.00 36.48

Llama3-re

aya 83.67 98 91 50 65.66 - - - - - - - - - - 77.67
dolly 65.66 - - - - 94 76 37 78.57 - - - - - - 70.25
native - - - - - 97 86 - - 50 45 - - - - 69.50
okapi 63.54 100 95 - 49 92 90 - - - - 60 67 86 62 76.17
avg 70.96 99.00 93.00 50.00 57.33 94.33 84.00 37.00 78.57 50.00 45.00 60.00 67.00 86.00 62.00 68.95

Llama3-multi

aya 98 96.97 99 95.83 84.69 - - - - - - - - - - 97.17
dolly 97.98 - - - - 95.96 91.84 97 100 - - - - - - 98.45
native - - - - - 99 96.81 - - 93.48 100 - - - - 99.09
okapi 98.97 100 99 - 92.93 100 99 - - - - 100 88.78 100 97.87 99.08
avg 98.32 98.49 99.00 95.83 88.81 98.32 95.88 97.00 100.00 93.48 100.00100.00 88.78 100.00 97.87 96.79

metrics: acc
Monolingual

source ar en pt tr zh es fr hi ru ja ko de id it vi avg

Llama3-ori

aya 53.75 100 86.4 37.5 39.46 - - - - - - - - - - 64.47
dolly 30.75 - - - - 73.45 59.99 15.05 28.2 - - - - - - 44.55
native - - - - - 91.05 77.75 - - 17.13 23.58 - - - - 53.65
okapi 16.5 99.67 62.62 - 7.33 66.83 54.7 - - - - 23 27.33 39.83 14.79 42.50
avg 33.67 99.84 74.51 37.50 23.40 77.11 64.15 15.05 28.20 17.13 23.58 23.00 27.33 39.83 14.79 39.94

Llama3-re

aya 86.9 99.17 94.97 55.53 71.12 - - - - - - - - - - 81.54
dolly 68.48 - - - - 94.25 80.66 47.62 83.1 - - - - - - 74.82
native - - - - - 97 87.92 - - 55.27 48.58 - - - - 72.19
okapi 68.92 100 95.79 - 57.13 94.67 91 - - - - 62.33 77.67 87.5 66.08 79.88
avg 74.77 99.59 95.38 55.53 64.13 95.31 86.53 47.62 83.10 55.27 48.58 62.33 77.67 87.50 66.08 73.29

Llama3-multi

aya 98 98.93 99.83 96.93 92.35 - - - - - - - - - - 97.17
dolly 98.99 - - - - 98.15 93.03 97.5 100 - - - - - - 98.45
native - - - - - 99.75 97.87 - - 95.83 100 - - - - 99.09
okapi 98.97 100 99.83 - 95.2 100 99.8 - - - - 100 94.23 100 97.87 99.08
avg 98.65 99.47 99.83 96.93 93.78 99.30 96.90 97.50 100.00 95.83 100.00100.00 94.23 100.00 97.87 98.02

Table 20: Full results of CP replacement experiments
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num ori prob ori num edit prob edit num diff prob diff fluency ori fluency cna diff
ar 2.83 25.8 5.37 30.3 2.55 4.5 30.1 24.7 -5.4
pt 2.86 49.5 3.41 56.0 0.56 6.5 25.7 23.3 -2.3
tr 2.05 29.5 2.42 23.5 0.37 -6.0 21.2 18.8 -2.5
zh 1.33 8.6 5.10 37.3 3.78 28.7 33.1 26.0 -7.0
es 1.67 26.5 3.28 50.3 1.61 23.8 25.4 23.2 -2.2
fr 2.48 43.0 2.91 49.2 0.43 6.2 21.2 21.1 -0.1
hi 1.25 12.0 1.64 13.7 0.39 1.8 28.5 22.9 -5.6
ru 1.09 18.0 3.21 31.0 2.12 13.0 23.7 19.5 -4.2
de 2.73 23.7 4.45 37.1 1.72 13.4 23.8 18.5 -5.3
it 1.33 8.4 2.50 39.3 1.17 31.0 25.7 20.2 -5.5
avg 1.96 24.5 3.43 36.8 1.47 12.3 25.8 21.8 -4.0

Table 21: Full results of robustness experiments. Perplexity is calculated to measure fluency.

xnli
language acc ori acc edit
ar 0.42 0.37
de 0.54 0.54
es 0.46 0.5
fr 0.49 0.5
hi 0.47 0.48
ru 0.37 0.3
tr 0.46 0.52
vi 0.46 0.37
zh 0.51 0.46

avg 0.464 0.449

sentiment analysis
language acc ori acc edit
de 0.98 0.98
es 0.98 0.98
fr 0.98 0.97
ja 0.99 0.99
zh 0.99 0.99

avg 0.984 0.982

Table 22: Full results of generalization experiments.
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gual evaluation. In Màrquez, L., Callison-Burch, C., and Su, J., editors, Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages 2067–2073,
Lisbon, Portugal. Association for Computational Linguistics.

Koncel-Kedziorski, R., Bekal, D., Luan, Y., Lapata, M., and Hajishirzi, H. (2019). Text Gen-
eration from Knowledge Graphs with Graph Transformers. In Burstein, J., Doran, C., and
Solorio, T., editors, Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2284–2293, Minneapolis, Minnesota. Association for Computational
Linguistics.

Lai, G. and O’Brien, B. A. (2020). Examining language switching and cognitive control through
the adaptive control hypothesis. Frontiers in Psychology, 11:1171.

Lai, V., Ngo, N., Pouran Ben Veyseh, A., Man, H., Dernoncourt, F., Bui, T., and Nguyen, T.
(2023a). ChatGPT beyond English: Towards a comprehensive evaluation of large language
models in multilingual learning. In Bouamor, H., Pino, J., and Bali, K., editors, Findings of the



266 BIBLIOGRAPHY

Association for Computational Linguistics: EMNLP 2023, pages 13171–13189, Singapore.
Association for Computational Linguistics.

Lai, V., Nguyen, C., Ngo, N., Nguyen, T., Dernoncourt, F., Rossi, R., and Nguyen, T. (2023b).
Okapi: Instruction-tuned large language models in multiple languages with reinforcement
learning from human feedback. In Feng, Y. and Lefever, E., editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 318–327, Singapore. Association for Computational Linguistics.

Lampinen, A. (2024). Can language models handle recursively nested grammatical structures?
A case study on comparing models and humans. Computational Linguistics, pages 1–36.

Lample, G. and Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020). ALBERT:
A lite BERT for self-supervised learning of language representations. In The Eighth Interna-
tional Conference on Learning Representations.
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