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1. Einleitung 

1.1 Literaturübersicht 

Das Ziel einer kieferorthopädischen Behandlung besteht darin, Zähne so effizient und 

schonend wie möglich in ihre therapeutisch vorgesehene Position im Kiefer zu bewegen 

(Fleming 2021; Li et al. 2018; von Böhl und Kuijpers-Jagtman 2009). Die kieferorthopädi-

schen Zahnbewegungen basieren dabei auf dem Prinzip der Mechanotransduktion, einem 

biologischen Prozess bei dem mechanische Kräfte in biochemische Signale umgewandelt 

werden (Krishnan und Davidovitch 2015; Li et al. 2021). Diese Signale aktivieren Zellen des 

parodontalen Ligaments (PDL) und des umgebenden Alveolarknochens, wodurch es zu 

Knochenumbauvorgängen durch Remodellierung kommt, bei der Osteoklasten Knochen-

substanz resorbieren und Osteoblasten neuen Knochen aufbauen, wodurch der Zahn suk-

zessive durch den Kieferknochen bewegt wird (Kalina et al. 2022; Provatidis 2020). Die Art 

und Stärke der applizierten Kräfte und Drehmomente sind dabei entscheidend für die Re-

aktion der beteiligten Gewebe (Haouili et al. 2020; Reitan 1957, 1960; Sander et al. 2011; Wu 

et al. 2021a; Zhang et al. 2022). Für eine effiziente und gewebeschonende Zahnbewegung 

sollten diese Kräfte und Drehmomente das Adaptionsvermögen des PDL möglichst nicht 

überschreiten (Feller et al. 2015; Li et al. 2021). Werden zu große Kräfte und Drehmomente 

angewendet, steigt das Risiko unerwünschter Nebenwirkungen wie Gewebeschäden, Hy-

alinisierung des Alveolarknochens, Zahnwurzelresorption bis hin zu Zahnverlust (Kaya et 

al. 2020; Ren et al. 2004). Deshalb ist es entscheidend, die genauen Werte der therapeuti-

schen Kraft- und Drehmomentgrößen so präzise wie möglich zu kennen, um kieferortho-

pädische Mechaniken und Apparaturen optimal einzusetzen. 

Die Möglichkeit zur in-vivo Untersuchung der Kräfte und Drehmomente während kiefer-

orthopädischer Zahnbewegungen sind stark limitiert. Viele Faktoren, darunter das Ver-



1 Einleitung 9 

halten der verwendeten Mechaniken bzw. Materialien und individuelle biologischen Re-

aktionen des PDL bzw. des umgebenden Gewebes sowie dynamische Veränderungen der 

Wechselwirkungen zwischen den mechanischen und biologischen Systemen während des 

Behandlungsverlaufs, können in-vivo weder exakt noch kontinuierlich gemessen oder be-

stimmt werden (Friedrich et al. 1999; Li et al. 2021; Maltha et al. 2021; Pandis et al. 2014; 

Reitan 1960). Angesichts der Einschränkungen intraoraler Messmethoden wurden vor Al-

lem in vitro-Studien durchgeführt, um kieferorthopädische Apparaturen hinsichtlich ihrer 

biomechanischen Wirkungen zu untersuchen, wobei vorwiegend apparative biomechani-

sche Teststände oder Finite-Elemente-Simulationen zum Einsatz kamen (Adel et al. 2021; 

Badawi et al. 2009; Friedrich et al. 1999; Mascarenhas et al. 2018; Rajgopal 2022; Sifakakis 

und Eliades 2017; Wichelhaus und Sander 1995).  

Numerische Ansätze, wie die Finite-Elemente-Methode (FEM), werden aufgrund der Fort-

schritte in der Computertechnologie vermehrt eingesetzt, da sie die Simulation komple-

xer, adaptiver Modelle biologischer Systeme und Prozesse ermöglichen (Ahuja et al. 2018; 

Cervino et al. 2020; Cicciu 2020; de Brito et al. 2019; Singh et al. 2016). Solche digitalen 

Simulationen basieren üblicherweise auf experimentell ermittelten Parametern, jedoch 

auch auf vereinfachten Annahmen (Ammar et al. 2011; Hayashi et al. 2007; Romanyk et al. 

2020; Wanjun et al. 2015). Apparative biomechanische Prüfstände sind im Vergleich zu 

Computermodellen zwar weniger flexibel, erlauben jedoch die Untersuchung der tatsäch-

lichen physikalischen Eigenschaften von Materialien, Proben und Apparaturen, ohne den 

Einfluss subjektiv bestimmter Parameter. Eine besondere Herausforderung stellt hier die 

biomechanische Simulation dynamischer Prozesse dar, wie sie während der kieferortho-

pädischen Behandlung auftreten, da die resultierenden Kraft-Moment-Systeme aufgrund 

kontinuierlicher Zahnbewegungen ständigen Veränderungen unterliegen (Dotzer et al. 

2023; Wu et al. 2021b; Zong et al. 2022). Zur Überwindung dieser Problematik wurden 

komplexere, computerisierte und robotergestützte biomechanische Prüfstände entwickelt 

(Badawi et al. 2009; Bourauel et al. 1992; Chen et al. 2007; Chen et al. 2010; Fansa et al. 
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2009; Fuck und Drescher 2006; Pandis et al. 2009). 1992 wurde das „OMSS – Orthodontic 

Measurement and Simulation System“ eingeführt, um computergestützte Untersuchun-

gen von Zahnbewegungen in Bezug einwirkenden Kräfte und Drehmomente durchzufüh-

ren (Bourauel et al. 1992). 2006 folgte die Einführung des „RMS - Robotic Measurement 

System“, bei dem ein Roboter im experimentellen Aufbau verwendet wurde, um die initi-

alen Kraftsysteme zu untersuchen, die durch verschiedene Nivellierungsbögen erzeugt 

werden (Fuck und Drescher 2006). Aufgrund des statischen Versuchsaufbaus war es je-

doch nicht möglich, die dynamischen Veränderungen der durch die Bögen erzeugten 

Kräfte und Drehmomente zu verfolgen. 

Im Rahmen dieser Dissertation wurde daher ein neuer biomechanische Versuchsaufbau 

ROSS (Robot Orthodontic Measurement & Simulation System) des Biomechaniklabors 

der Poliklinik für Kieferorthopädie am Klinikum der Ludwig-Maximilians-Universität 

(Leitung: Prof. Wichelhaus und Herrn Dr. Stocker) verwendet. ROSS ist ein fortschrittli-

ches Simulationssystem, dessen Kernkomponente ein Präzisions-Industrieroboter mit 

sechs Freiheitsgraden bzw. Achsen bildet. Die durch die eingesetzten Mechaniken erzeug-

ten Kräfte- und Drehmomente werden durch einen hochsensiblen Sechskomponenten-

messsensor erfasst. Anhand dieser Werte werden durch das angeschlossene Steuerungs-

programm Positionskorrekturen für den Versuchszahn berechnet. Entsprechend der be-

rechneten Spezifikationen wird der Zahn durch den Roboter bewegt, um die auf ihn wir-

kenden Kräfte- und Drehmomente zyklisch abzubauen. Dieses Prinzip der adaptiven 

Nachgiebigkeit wird auch als Kraftsteuerung bezeichnet und ist eine effektive Methode, 

die es dem Roboter ermöglicht, sich während des Versuchs an variierende Kräfte- und 

Drehmomente anzupassen. Feedback-Parameter, die in das Steuerungsprogramm inte-

griert wurden, bestimmen die Bewegungsempfindlichkeit des Roboters, indem sie den je-

weiligen Kraft-/Drehmomentsystemen Bewegungsamplituden zuordnen. Dieser iterative 

Algorithmus innerhalb des Experiments findet so lange statt, bis eine Abbruchbedingung 

erfüllt wird, die durch das Erreichen einer bestimmten Position oder den asymptotischen 
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Verlauf der Kräfte und Drehmomente definiert ist. Der Versuchsaufbau mit den zu unter-

suchenden Proben ist von einer Temperaturkammer umgeben, um deren temperaturab-

hängiges Verhalten zu berücksichtigen und eine kliniknahe Versuchsumgebung zu schaf-

fen. ROSS ist dadurch in der Lage die applizierten Kräfte- und Drehmomente über den 

gesamten Verlauf einer simulierten orthodontischen Zahnbewegung darzustellen bzw. 

auszuwerten und die dabei angewendeten Mechaniken und deren Wirkung zu analysieren 

(Dotzer et al. 2023; Sabbagh et al. 2024; Seidel et al. 2023). 

Daraus abgeleitet war es das Ziel dieser Dissertation den neuartigen Versuchsaufbau nach 

der Entwicklung in seiner Funktion bzw. Wirkungsweise zu validieren und darauf aufbau-

end das Verhalten verschiedener orthodontisch-kieferorthopädischen Mechaniken zu un-

tersuchen. 
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1.2 Eigenanteil an den Publikationen 

1.2.1 Eigenanteil an Publikation 1 

Conceptualization; Methodology; Investigation; Data Curation; Software; Formal 

analysis; Visualization; Writing – original draft; Writing – review & editing:  

Die erste Publikation beschreibt die Entwicklung des Versuchsaufbau ROSS im Biomecha-

niklabor der Poliklinik für Kieferorthopädie (LMU München) und die Durchführung 

grundlegender Zahnbewegungen im Sinne von Intrusionen, Angulationen und Rotationen 

mittels verschiedener Nivellierungsbögen. Die mechanischen Komponenten wurden von 

Frau Prof. Dr. Wichelhaus zur Verfügung gestellt und zusammen mit Herrn Dr. Stocker, 

Herrn Dr. Mertmann und Herrn Dr. Lipp zu einem neuartigen Versuchsstand mitsamt 

Steuerungssoftware konfiguriert. Nach eigener umfassender Literaturrecherche wurde der 

Versuchsaufbau mit Herrn Dr. Sabbagh, Herrn Dr. Lipp und mir gemeinsam für die 

Durchführung oben genannter Zahnbewegungen adaptiert. Dafür habe ich mit Unterstüt-

zung von Frau Prof. Dr. Wichelhaus, Dr. Mertmann und Dr. Stocker ein neues Versuchs-

modell entwickelt. Nach externer Fertigung des Modells aus einer hochfesten Titanlegie-

rung habe ich darauf ein Bracketsystem fixiert und es in den Versuchsaufbau integriert. 

Im Anschluss habe ich die Startpositionen für die jeweiligen Bewegungssimulationen fest-

gelegt und ins Steuerungsprogramm des Roboters inkludiert. Als Versuchszahn für die 

Intrusions- und Rotationsbewegungen wurde ein von Dr. Lipp aus einer NEM-Legierung 

gegossener mittlerer oberer Schneidezahn verwendet. Für die Simulation der Angulatio-

nen habe ich eigenständig das Modell eines vergleichbaren Inzisiven mittels eines CAD-

Programmes (Autodesk Meshmixer Version 3.5; Autodesk Inc., San Rafael, USA) konstru-

iert und dort direkt eine entsprechend angulierte Kernbohrung integriert. Nach Überfüh-

rung mittels additivem 3D-Druck-Verfahren wurde der neue Versuchszahn mit dem pas-

senden Bracket beklebt und über einen selbsthergestellten Gewindeadapter in den Ver-

suchsaufbau inkludiert. Die zu messenden Nivellierungsbögen wurden von mir einligiert 
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und die Versuche selbstständig durchgeführt. Bei den durchgeführten Intrusionsbewe-

gungen wurde ich von Dr. Lipp unterstützt. Die statistische Auswertung mit IBM SPSS 

Statistics 26 (International Business Machines Corporation, Armonk, USA) erfolgte mit 

Hilfe des Leiters des Biomechaniklabors (Poliklinik für Kieferorthopädie) Herrn Dr. 

Stocker. Die graphische Auswertung erfolgte selbstständig im Programm OriginPro 2022b 

(OriginLab Corporation, Northampton, USA). Im Anschluss habe ich die Ergebnisse aus-

gewertet und aufgearbeitet. Ich habe die biomechanischen Kraft- und Drehmomentgrö-

ßen in einen klinischen Kontext eingebettet und analysiert, um daraus klinische Empfeh-

lungen abzuleiten. Abschließend habe ich das Manuskript als Erst-Autor verfasst und ent-

sprechende Graphiken und Bilder in Zusammenarbeit mit Frau Günter und Frau Hett-

mann (beide Poliklinik für Kieferorthopädie) erstellt. Dieses wurde von meinen Co-Auto-

ren ergänzt und gegengeprüft. 

1.2.2 Eigenanteil an Publikation 2 

Data Curation; Software; Visualization; Writing – review & editing:  

Die zweite Publikation beinhaltete die Untersuchung der Kräfte und Drehmomente wäh-

rend simulierten Intrusionsbewegungen eines oberen Schneidezahns durch verschiedene 

unmodifizierte Nickeltitan-(NiTi)-Bögen sowie NiTi-Bögen mit Intrusionsstufen. Nach ei-

gener umfassender Literaturrecherche wurden die Ergebnisse der im Biomechaniklabor 

der Poliklinik für Kieferorthopädie (LMU München) durchgeführten Messungen in Zu-

sammenarbeit mit Frau Dr. Seidel, Herrn Dr. Lipp, Herrn Dr. Mertmann, Frau Prof. Dr. 

Wichelhaus und Dr. Sabbagh ausgewertet und in Bezug auf den klinischen Kontext inter-

pretiert. Die graphische Auswertung der Versuchsdaten habe ich selbstständig mittels 

dem Programm OriginPro 2022b (OriginLab Corporation, Northampton, USA) durchge-

führt. Bei der Verfassung des Manuskripts habe ich als Co-Autor in beratender Funktion 

mitgewirkt sowie ergänzt und gegengeprüft.  
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1.2.3 Eigenanteil an Publikation 3 

Conceptualization; Methodology; Investigation; Data Curation; Software; Formal 

analysis; Visualization; Writing – original draft; Writing – review & editing:  

Die dritte Publikation umfasst die kraftgesteuert-dynamische biomechanische Simulation 

einer segmentierten Intrusion eines Unterkiefereckzahnes. Nach umfassender Analyse der 

vorhandenen Literatur habe ich in Kooperation mit dem Biomechaniklabor der Poliklinik 

für Kieferorthopädie der LMU München, unter der Leitung von Frau Prof. Dr. Wichelhaus, 

ein innovatives experimentelles Modell konzipiert und speziell auf die oben genannte Ver-

suchsthematik adaptiert. Für die Herstellung des Versuchszahnes habe ich einen entspre-

chenden Modellzahn (33) gescannt und dessen Wurzelspitze in Eigenarbeit nach entspre-

chenden Literaturwerten für durchschnittliche Kronen-Wurzelverhältnisse (Wang et al. 

2019) digital modelliert. Im Anschluss habe ich, unterstützt durch Herrn Hötzel, das digi-

tale Zahnmodell mit dem des Kraft-Moment-Sensors überlagert und daraus, basierend auf 

einer x-y'-z'' – Konvention, die Transformationsparameter zwischen dem Koordinatensys-

tem des Sensors und dem Kraftansatzpunkt bzw. dem Widerstandszentrum des Zahnes 

berechnet. Die ermittelten Werte habe ich in das Steuerungsprogramm implementiert. 

Mit Hilfe meiner Betreuerin Frau Prof. Dr. Wichelhaus wurde die finale Studienmethodik 

festgelegt. Nach externer Fertigung des Modells aus einer hochfesten Titanlegierung habe 

ich mittels eines selbst angepassten Stahlbogens und Methylcyanacrylat-Klebstoff ein Bra-

cketsystem darauf befestigt. Den Versuchszahn habe ich Anhand der zuvor erstellten di-

gitalen Vorlage 3D-gedruckt und mit einem passenden Bracket beklebt. Anschließend 

habe ich den Versuchszahn über einen eigengefertigten Gewindeadapter mit dem Sensor 

verbunden und ihn so in den Versuchsaufbau integriert. Die Verbindung wurde zahnseitig 

durch flüssige Schraubensicherung zusätzlich gesichert. Vor Beginn der Versuche habe 

ich die Starposition festgelegt und sie in das Steuerungsprogramm des Roboters imple-

mentiert. Die zu messenden Intrusionsfedern hat Herr Dr. Sabbagh anhand eines von mir 
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angefertigten Übertragungsguides gebogen und angepasst. Entsprechende Intrusionsfe-

dern wurden von mir im Anschluss einligiert bzw. aktiviert und die folgenden Versuche 

selbstständig durchgeführt. Die statistische Auswertung erfolgte in IBM SPSS Statistics 26 

(International Business Machines Corporation, Armonk, USA) mit Unterstützung von 

Herrn PD Dr. Baumert. Die graphische Aufbereitung der Versuchsergebnisse erfolgte ei-

genhändig in OriginPro 2022b (OriginLab Corporation, Northampton, USA). Abschlie-

ßend habe ich das Manuskript als Zweit-Autor mitverfasst und editiert sowie die Ergeb-

nisse aufgearbeitet und interpretiert. Des Weiteren habe ich in Zusammenarbeit mit 

Herrn Dr. Sabbagh, Frau Günter und Frau Hettmann entsprechende Grafiken und Bilder 

erstellt. 
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2. Zusammenfassung 

Ziel dieses kumulativen Dissertationsprojektes war die dynamische, dreidimensionale, bi-

omechanische Untersuchung orthodontischer Zahnbewegungen und das Verhalten der 

dabei eingesetzten Mechaniken, sowie die Auswertung der wirkenden Kräfte und Dreh-

momente mittels eines neuen kraftgesteuerten Versuchsaufbaus ROSS (Robot Orthodon-

tic Measurement & Simulation System). 

 

Im ersten Teil der Dissertation (Dotzer et al. 2023) erfolgte die Untersuchung biomecha-

nischer Simulationen orthodontischer Intrusions-, Rotations- und Angulationsbewegun-

gen in Abhängigkeit verschiedener Nivellierungsbögen. Für jede Bewegungsart wurden 

die Kraft- und Drehmomentgrößen von jeweils fünf 0,016"-Nickteltitan-(NiTi)-Rundbö-

gen der Arten Sentalloy Light und Sentalloy Medium miteinander verglichen. Die Bögen 

wurden mithilfe von aktiv-selbstligierenden 0,022"-MBT-Brackets vermessen. Die Ver-

suchsergebnisse zeigten, dass die Sentalloy Medium Bögen in allen Simulationen größere 

Kräfte und Drehmomente entwickelten als die Sentalloy Light Bögen. Die gemessenen 

Kräfte und Drehmomente der simulierten Rotations- und Angulationsbewegungen waren 

für entsprechende orthodontische Zahnbewegungen geeignet. Es zeigte sich jedoch, dass 

die initialen Kraft- und Drehmomentgrößen beider Bogensysteme bei den untersuchten 

Intrusionsbewegungen mit Fz(Light) = 1,442 N / Mx(Light) = 6,781 Nmm und Fz(Medium) = 1,637 N 

/ Mx(Medium) = 9,609 Nmm deutlich über den dafür empfohlenen Werten lagen. Daraus 

konnte der Schluss gefolgert werden, dass für die initiale Nivellierung von vertikalen Fehl-

stellungen reduzierte Bogendurchmesser (<0,016") verwendet werden sollten.   

 

Darauf aufbauend wurde im zweiten Teil der Dissertation (Seidel et al. 2023) der dynami-

sche Verlauf der Kraft- und Drehmomentgrößen während der Intrusion eines extrudierten 

oberen Schneidezahnes, mit verschiedenen unmodifizierten NiTi-Bögen und NiTi-Bögen 
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mit Intrusionsstufen analysiert. Getestet wurden jeweils fünf Proben von sechzehn unmo-

difizierten NiTi-Bögen und sieben NiTi-Bögen mit Intrusionsstufen verschiedener Her-

steller (Forestadent, Ormco, Dentsply Sirona) mit den Bogendimensionen 0,012", 0,014" 

und 0,016". Insgesamt korrelierte eine größere Bogendimension mit höheren intrusiven 

Kräften Fz (0,012": 0,561–0,690 N; 0,014": 0,996–1,321 N; 0,016": 1,44–2,254 N) und protru-

dierenden Drehmomenten Mx (0,012": -2,65 bis -3,922 Nmm; 0,014": -4,753 bis -7,384 Nmm; 

0,016": -5,556 bis -11,466 Nmm) während der simulierten Intrusionen (Seidel et al. 2023). 

Jedoch war die „Intrusionseffizienz“ bei kleineren Bogendimensionen größer. Die Modifi-

kation mit Intrusionsstufen führte zu einer Überkompensation der Intrusionsdistanz, so-

wie zu einem starken Anstieg von Fz und Mx. Um daher das Risiko einer orthodontisch 

induzierten entzündlichen Wurzelresorption zu verringern, können 0,014" NiTi-Bögen für 

das initiale Ausrichten der Zähne verwendet werden, solange keine vertikalen Diskrepan-

zen vorliegen. Für das Nivellieren extrudierter Zähne sollten Intrusionsstufen in den ini-

tialen Bogen (0,012" NiTi) eingebogen werden. 

 

Im dritten und letzten Teil der Dissertation (Sabbagh et al. 2024) wurde die kraftgesteuert-

dynamische biomechanische Simulation der segmentierten Intrusion eines Unterkie-

fereckzahnes mittels Cantilever-Intrusion-Springs (CIS) untersucht. Dabei wurden die 

Wirkungen und Nebenwirkungen verschiedener zusätzlicher Biegungen bzw. Modifikati-

onen der CIS auf die resultierenden Kräfte und Momente während der Eckzahn-Intrusion 

verglichen. Ziel war es die Modifikation zu bestimmen, welche eine möglichst reine Intru-

sion mit minimalen Begleitkräften und -drehmomenten ermöglicht, um unerwünschte 

Zahnbewegungen zu vermeiden. Dafür wurden drei verschiedene CIS-Modifikationen un-

tersucht: unmodifizierte CIS (#1), CIS mit einer 6° Toe-in-Biegung (#2) und CIS mit einer 

zusätzlichen 20° Twist-Biegung (#3). Vermessen wurden jeweils fünf CIS pro Gruppe, wel-

che manuell aus einem 0,017" × 0,025" β-Titan-Draht gebogen wurden. Die Versuchser-
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gebnisse stellten heraus, dass die Ergänzung zusätzlicher Biegungen die bukkale Kip-

pungstendenz des Zahnes von Rx(#1) = 2,106° auf Rx(#3) = 0,050° reduzierte. Passend dazu 

verringerte sich das orovestibuläre Drehmoment von Mx(#1) = 4,629 Nmm nach vestibulär 

auf Mx(#3) = 1,202 Nmm nach oral. Dagegen jedoch änderte sich der orovestibuläre Versatz 

des Zahnes von y(#1) = 0,660 mm nach bukkal zu y(#3) = 1,487 mm nach oral. Analog dazu 

änderte sich die Ausrichtung der orovestibulären Kraft von Fy(#1) = 0,149 N nach vestibulär 

zu Fy(#3) = 0,511 N nach oral. Zusammenfassend zeigte sich, dass eine reine Intrusion des 

Eckzahnes unabhängig von den angewandten Modifikationen nicht erreicht wurde. Die 

Ergänzung kompensatorischer Biegungen reduzierte bzw. eliminierte die vestibuläre Kip-

pungstendenz des Zahnes, jedoch wurden dabei andere kollaterale Kräfte und Drehmo-

mente erzeugt. Dennoch kann Modifikation (#2) basierend auf den biomechanischen Er-

kenntnissen dieser Studie für die klinische Anwendung empfohlen werden. 
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3. Abstract (English) 

The aim of this cumulative dissertation project was the dynamic, three-dimensional, and 

biomechanical investigation of orthodontic tooth movements and the behaviour of the 

applied mechanics, as well as the analysis of the acting forces and moments, using the 

novel force-controlled experimental setup ROSS (Robot Orthodontic Measurement & 

Simulation System). 

 

In the first part of the dissertation (Dotzer et al. 2023), the biomechanical simulations of 

orthodontic intrusion, rotation, and angulation movements were investigated in depend-

ence on different levelling archwires. For each type of movement, the forces and moments 

of five 0.016" nickel-titanium (NiTi) round archwires of the types Sentalloy Light and 

Sentalloy Medium were compared. The archwires were measured using active self-ligating 

0.022" MBT brackets. The experimental results showed that the Sentalloy Medium arch-

wires developed greater forces and moments in all simulations compared to the Sentalloy 

Light archwires. The measured forces and moments of the simulated rotation and angula-

tion movements were suitable for corresponding orthodontic tooth movements. However, 

the initial forces and moments of both archwire systems for the investigated intrusion 

movements, with Fz(Light) = 1.442 N / Mx(Light) = 6.781 Nmm and Fz(Medium) = 1.637 N / Mx(Medium) 

= 9.609 Nmm, were significantly above the recommended values. It was concluded that 

reduced archwire dimensions (<0.016") should be used for the initial levelling of vertical 

malocclusions. 

 

Building on this, the second part of the dissertation (Seidel et al. 2023) analysed the dy-

namic progression of forces and moments during the intrusion of an extruded upper inci-

sor, using various unmodified NiTi archwires and NiTi archwires with intrusion steps. Five 
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samples each of sixteen unmodified NiTi archwires and seven NiTi archwires with intru-

sion steps from different manufacturers (Forestadent, Ormco, Dentsply Sirona) with wire 

dimensions of 0.012"/0.014"/0.016" were tested. Overall, a larger archwire dimension cor-

related with higher intrusive forces Fz (0.012": 0.561–0.690 N; 0.014": 0.996–1.321 N; 0.016": 

1.44–2.254 N) and protruding moments Mx (0.012": -2.65 to -3.922 Nmm; 0.014": -4.753 

to -7.384 Nmm; 0.016": -5.556 to -11.466 Nmm) during the simulated intrusions (Seidel et 

al. 2023). However, the "intrusion efficiency" was greater for smaller archwire dimensions. 

The modification with intrusion steps led to an overcompensation of the intrusion dis-

tance, as well as a significant increase in Fz and Mx. Therefore, to reduce the risk of ortho-

dontically induced inflammatory root resorption, 0.014" NiTi archwires can be used for the 

initial alignment of teeth, if no vertical discrepancies are present. For levelling extruded 

teeth, intrusion steps should be bent into the initial archwire (0.012" NiTi). 

 

In the third and final part of the dissertation (Sabbagh et al. 2024), the force-controlled 

dynamic biomechanical simulation of the segmented intrusion of a mandibular canine us-

ing cantilever intrusion springs (CIS) was discussed. The effects and side effects of various 

additional bends or modifications of the CIS on the resulting forces and moments during 

canine intrusion were investigated. The goal was to determine the modification that allows 

for the purest possible intrusion with minimal collateral forces and moments, to avoid 

undesirable tooth movements. Three different CIS modifications were examined: unmod-

ified CIS (#1), CIS with a 6° toe-in bend (#2), and CIS with an additional 20° twist bend 

(#3). Five CIS samples per group were manually bent from a 0.017" × 0.025" β-titanium 

wire. The experimental results showed that adding additional bends reduced the buccal 

tipping tendency of the tooth from Rx(#1) = 2.106° to Rx(#3) = 0.050°. Correspondingly, the 

orovestibular moment decreased from Mx(#1) = 4.629 Nmm vestibularly to Mx(#3) = 

1.202 Nmm orally. However, the orovestibular displacement of the tooth changed from y(#1) 

= 0.660 mm buccally to y(#3) = 1.487 mm orally. Similarly, the direction of the orovestibular 
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force changed from Fy(#1) = 0.149 N vestibularly to Fy(#3) = 0.511 N orally. In summary, a pure 

intrusion of the canine was not achieved regardless of the modifications applied. The ad-

dition of compensatory bends reduced or eliminated the vestibular tipping tendency of 

the tooth, but other collateral forces and moments were generated. Nonetheless, modifi-

cation (#2) can be recommended for clinical application based on the biomechanical find-

ings of this study. 
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7. Ausblick 

Apparative, biomechanische Simulationssysteme bzw. Versuchsaufbauten ermöglichen 

die detaillierte Untersuchung von Proben, die in gleicher Weise auch in der klinischen 

Praxis verwendet werden. Die Ergebnisse solcher Studien liefern wertvolle Hinweise für 

die klinische Anwendung und die Anpassung bzw. Optimierung von Behandlungsstrate-

gien und -mechaniken. Sie können zudem zur Entwicklung und Validierung anderer Un-

tersuchungsmethoden, wie etwa der Finite-Elemente-Methode (FEM), beitragen. 

Der im Rahmen der Dissertation verwendete Versuchsstand ROSS erlaubt die dynamische 

dreidimensionale Untersuchung verschiedener herausnehmbarer und festsitzender kie-

ferorthopädischer Apparaturen. Besonders hervorzuheben ist dabei der kraftgesteuerte 

Messalgorithmus, der eine Analyse unabhängig von subjektiv oder manuell bestimmten 

Messpunkten ermöglicht und durch einprogrammierte Feedbackparameter nah an der Re-

alität klinischer Abläufe ist. 

Zukünftige Forschungen könnten nicht nur zusätzliche biomechanische Untersuchungen 

zu klinischen Behandlungsszenarien umfassen, sondern auch verschiedene Ansätze wie 

FEM-Simulationen integrieren. Dies würde die Genauigkeit der Analysen weiter verbes-

sern und ein tieferes Verständnis der komplexen Wechselwirkungen zwischen den einzel-

nen Behandlungskomponenten und dem biologischen Gewebe bzw. dem PDL ermögli-

chen. Darüber hinaus könnten durch die Integration von KI-basierten Systemen und ma-

schinellem Lernen Vorhersagemodelle entwickelt werden, die die Wirksamkeit verschie-

dener Behandlungsoptionen bewerten und die Entscheidungsfindung in der klinischen 

Praxis unterstützen. Diese Progression eröffnet vielversprechende Perspektiven für die 

Steigerung der Qualität und Effizienz kieferorthopädischer Behandlungen und die Ent-

wicklung innovativer Therapien. 
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