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“And once the storm is over you won’t
remember how you made it through, how you
managed to survive. You won’t even be sure,
in fact, whether the storm is really over. But
one thing is certain. When you come out of
the storm you won’t be the same person who

walked in. That’s what the storm is all
about.”

Haruki Murakami
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Abstract

The next generation of ground- and space-based observatories will enable the detailed
characterization of rocky exoplanets within the habitable zones of their host stars. With
improved sensitivity, these facilities allow us to observe Earth-like planets and study their
reflected light, which provides valuable information about planetary albedo, a result of the
interplay between surface and atmospheric properties. For the first time, we will be able
to assess the habitability of nearby non-transiting rocky exoplanets, such as Proxima b,
and explore whether they might retain liquid water on their surfaces.
Observing Earth as if it were an exoplanet offers crucial insights into how we assess exoplan-
etary habitability. Earthshine, the sunlight reflected from Earth onto the darker portion
of the visible Moon, provides an opportunity to study Earth in a way that closely mirrors
how exoplanets are observed in reflected light. Unlike satellite observations, Earthshine
captures the complex scattering and reflection geometries encountered when observing ex-
oplanets.
In this thesis, I model Earth as an exoplanet using advanced 3D Monte Carlo radiative
transfer codes in the visible and near-infrared spectral ranges. My approach builds on
codes originally developed for Earth’s remote sensing, using 3D atmospheres and 2D sur-
face albedo maps. By combining state-of-the-art knowledge from Earth observations and
reanalysis product, I generate spatially unresolved spectra and phase curves of Earth. I
address two notorious challenges: the accurate representation of surface properties and the
complex behavior of clouds.
Earth’s surface albedo is highly variable across space and time, with also wavelength-
dependent features like the Vegetation Red Edge (VRE), a peak in vegetation reflectivity
around 700 nm caused by chlorophyll absorption. Satellite data provides detailed albedo
maps at only a few wavelengths in the visible and near-infrared, limiting our ability to
fully simulate these features. To extend this data, I employ a Principal Component Anal-
ysis (PCA) algorithm to generate hyperspectral albedo maps, greatly improving surface
representation.
Clouds pose an even greater challenge due to their complexity. Standard models using cloud
properties from satellite observations and weather forecasts significantly overestimate the
planet’s global reflectivity, an issue also seen in climate models. To address this, I develop
a 3D cloud generator algorithm that creates finer-grid cloud patterns, representing their
patchy nature. This approach allows for a more precise representation of Earth’s clouds
and their influence on reflectivity, enhancing our ability to model Earth as an exoplanet.
I validate my model, particularly its treatment of clouds and surface albedo, using a decade-
long dataset of Earthshine observations that encompass a variety of planetary geometries
and cloud conditions, for both intensity and polarization. Polarization offers deeper insights
into the planet’s physical properties and has the advantage of not requiring atmospheric
correction. I successfully validate the surface and clouds models in both intensity and
polarized light, creating a robust framework capable of accurately representing Earth as
an exoplanet. My model is far superior to previous descriptions in the literature because it
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matches both the continuum features and the absorption lines of Earthshine observations
in a way that has never been achieved by earlier attempts.
This work also proposes an optimal strategy for detecting liquid water on exoplanets.
Ocean glint, observable at high phase angles through phase curve variability or water lines,
is best detected via polarization, which is highly sensitive to ocean surfaces. Polarization
also reveals liquid water in clouds by identifying rainbows at smaller phase angles, offering
detailed insights into cloud droplet properties. Combining polarization with traditional
spectroscopy enhances the precision of exoplanet habitability assessments. This study
paves the way for future instruments on observatories like the Extremely Large Telescope
(ELT) and upcoming space missions such as the Habitable Worlds Observatory (HWO).
Additionally, the advanced modeling developed here contributes to both exoplanet science
and climate research.



Zusammenfassung

Die nächste Generation boden- und weltraumgestützter Observatorien wird die detaillierte
Charakterisierung felsiger Exoplaneten innerhalb der habitablen Zonen ihrer Wirtssterne
ermöglichen. Mit verbesserter Sensibilität erlauben uns diese Einrichtungen, erdähnliche
Planeten zu beobachten und ihr reflektiertes Licht zu analysieren, das wertvolle Infor-
mationen über die planetare Albedo liefert – ein Ergebnis des Zusammenspiels zwischen
Oberflächen- und Atmosphäreneigenschaften. Zum ersten Mal werden wir die Habitabil-
ität nahegelegener nicht-transitierender felsiger Exoplaneten, wie Proxima b, untersuchen
und untersuchen können, ob sich flüssiges Wasser auf ihren Oberflächen befinden könnte.
Die Beobachtung der Erde, als wäre sie ein Exoplanet, liefert entscheidende Erkenntnisse
darüber, wie wir die Habitabilität von Exoplaneten beurteilen. Erdschein, das von der
Erde auf den dunkleren Teil des sichtbaren Mondes reflektierte Sonnenlicht, bietet die
Möglichkeit, die Erde auf eine Weise zu untersuchen, die der Beobachtung von Exoplan-
eten im reflektierten Licht ähnelt. Im Gegensatz zu Satellitenbeobachtungen fängt das
Erdlicht die komplexen Streu- und Reflexionsgeometrien ein, die bei der Beobachtung von
Exoplaneten auftreten.
In dieser Dissertation modelliere ich die Erde als Exoplaneten mithilfe fortschrittlicher 3D-
Monte-Carlo-Strahlungstransfermodelle im sichtbaren und nahinfraroten Spektralbereich.
Mein Ansatz baut auf Codes auf, die ursprünglich für die Fernerkundung der Erde entwick-
elt wurden, unter Verwendung von 3D-Atmosphären und 2D-Oberflächenalbedokarten.
Durch die Kombination modernster Erkenntnisse aus Erdbeobachtungen und Reanalyse-
produkten erstelle ich räumlich unaufgelöste Spektren und Phasenkurven der Erde. Ich
spreche zwei berüchtigte Herausforderungen an: die genaue Darstellung der Oberfläch-
eneigenschaften und das komplexe Verhalten von Wolken.
Die Oberflächenalbedo der Erde variiert stark über Raum und Zeit und weist auch wellen-
längenabhängige Merkmale wie das "Vegetation Red Edge" (VRE) auf, ein Reflexionsmax-
imum der Vegetation um 700 nm, verursacht durch Chlorophyllabsorption. Satellitendaten
liefern nur für einige wenige Wellenlängen im sichtbaren und nahinfraroten Bereich detail-
lierte Albedokarten, was unsere Fähigkeit zur vollständigen Simulation dieser Merkmale
einschränkt. Um diese Daten zu erweitern, verwende ich einen Hauptkomponentenanalyse-
Algorithmus (PCA), um hyperspektrale Albedokarten zu generieren und so die Ober-
flächendarstellung erheblich zu verbessern.
Wolken stellen eine noch größere Herausforderung dar, da sie extrem komplex sind. Stan-
dardmodelle, die Wolkeneigenschaften aus Satellitenbeobachtungen und Wettervorhersagen
verwenden, überschätzen die globale Reflektivität des Planeten erheblich – ein Problem,
das auch in Klimamodellen auftritt. Um dem entgegenzuwirken, entwickle ich einen 3D-
Wolkengenerator-Algorithmus, der feinere Gittermuster von Wolken erstellt und so ihre
inhomogene Natur repräsentiert. Dieser Ansatz ermöglicht eine präzisere Darstellung der
Wolken der Erde und ihres Einflusses auf die Reflektivität, wodurch unsere Fähigkeit zur
Modellierung der Erde als Exoplaneten verbessert wird.
Ich validiere mein Modell, insbesondere dessen Behandlung von Wolken und Oberflächenal-
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bedo, anhand eines zehn Jahre umfassenden Datensatzes Erdscheinbeobachtungen, der eine
Vielzahl planetarer Geometrien und Wolkenbedingungen in Intensität und Polarisation um-
fasst. Polarisation bietet tiefere Einblicke in die physikalischen Eigenschaften des Planeten
und hat den Vorteil, dass keine atmosphärische Korrektur erforderlich ist. Ich validiere
die Oberflächen- und Wolkenmodelle sowohl in Intensität als auch in polarisiertem Licht
erfolgreich und schaffe damit ein robustes Rahmenwerk, das die Erde als Exoplaneten
genau repräsentiert. Mein Modell ist den bisherigen Beschreibungen in der Literatur weit
überlegen, da es sowohl die kontinuierlichen Merkmale als auch die Absorptionslinien der
Erdscheinbeobachtungen in einer Weise abbildet, die frühere Modelle nicht erreicht haben.
Diese Arbeit schlägt zudem eine optimale Strategie zur Detektion von flüssigem Wasser auf
Exoplaneten vor. Spiegelung an der Ozeanoberfläche, die bei hohen Phasenwinkeln durch
Variabilität in der Phasenkurve oder Wasserlinien beobachtbar ist, lässt sich am besten
durch Polarisation nachweisen, da diese besonders empfindlich darauf reagiert. Polarisa-
tion offenbart auch flüssiges Wasser in Wolken, da sie das Regenbogensignal bei kleineren
Phasenwinkeln verstärkt und dadurch Informationen über die Eigenschaften von Wolken-
tröpfchen liefert. Die Kombination von Polarisation mit traditioneller Spektroskopie erhöht
die Präzision bei der Bewertung der Habitabilität von Exoplaneten. Diese Studie ebnet
den Weg für zukünftige Instrumente an Observatorien wie dem Extremely Large Tele-
scope (ELT) und kommenden Weltraummissionen wie dem Habitable Worlds Observatory
(HWO). Darüber hinaus trägt die hier entwickelte fortschrittliche Modellierung sowohl zur
Exoplanetenforschung als auch zur Klimaforschung bei.



Sommario

La prossima generazione di telescopi terrestri e spaziali consentirà una caratterizzazione
senza precedenti dei pianeti rocciosi situati nella zona abitabile delle proprie stelle. Grazie
a una sensibilità strumentale significativamente aumentata, tali osservatori permetteranno
di individuare e analizzare pianeti simili alla Terra attraverso lo studio della luce riflessa,
che fornisce informazioni essenziali sull’albedo planetario, determinato dall’interazione tra
le proprietà superficiali e atmosferiche del pianeta. Per la prima volta sarà quindi possibile
valutare l’abitabilità di pianeti rocciosi non transitanti nelle vicinanze del Sistema Solare,
come Proxima b, e indagare la possibilità che essi mantengano acqua liquida sulla loro
superficie.
Osservare la Terra come se fosse un esopianeta offre un approccio unico per compren-
dere e perfezionare i metodi di valutazione dell’abitabilità degli esopianeti. Il fenomeno
dell’Earthshine (o luce cinerea), ovvero la luce solare riflessa dalla Terra verso la porzione
scura della Luna visibile, rappresenta un’analogia diretta con le osservazioni degli esopi-
aneti in luce riflessa. A differenza delle misurazioni effettuate dai satelliti, l’Earthshine
consente di studiare geometrie di scattering e riflessione analoghe a quelle che si riscon-
trano nelle osservazioni delle atmosfere planetarie.
In questa tesi la Terra viene simulata come un esopianeta mediante avanzati codici tridi-
mensionali di trasferimento radiativo Monte Carlo, operanti nel visibile e nel vicino in-
frarosso. L’approccio adottato si basa su codici originariamente sviluppati per il telerileva-
mento terrestre, che utilizzano atmosfere tridimensionali e mappe bidimensionali dell’albedo
superficiale. Combinando conoscenze dettagliate derivanti da osservazioni satellitari e
prodotti di rianalisi, vengono generati spettri e curve di fase spazialmente non risolti della
Terra. L’analisi affronta due sfide principali: la rappresentazione accurata delle proprietà
superficiali e la descrizione dell’impatto delle nubi.
L’albedo superficiale terrestre presenta una notevole variabilità spaziale e temporale, oltre
a caratteristiche spettrali dipendenti dalla lunghezza d’onda, come il Vegetation Red Edge
(VRE), un picco nella riflettività della vegetazione attorno ai 700 nm dovuto all’assorbimento
della clorofilla. I dati satellitari disponibili forniscono mappe dettagliate dell’albedo solo
per un numero limitato di lunghezze d’onda nel visibile e nel vicino infrarosso, non rendendo
possibile la riproduzione di tali caratteristiche. A tal fine, è stato sviluppato un algoritmo
basato sull’Analisi delle Componenti Principali (PCA) per la generazione di mappe iper-
spettrali di albedo, che migliorano in modo significativo la rappresentazione della superficie
terrestre.
Le nubi costituiscono un’ulteriore sfida, a causa della loro intrinseca complessità. I modelli
convenzionali, basati su proprietà nuvolose derivate da osservazioni satellitari e previsioni
meteorologiche, tendono a sovrastimare la riflettività globale del pianeta, un problema
ricorrente anche nei modelli climatici. Per superare tale limitazione, è stato sviluppato
un "3D Cloud Generator" capace di riprodurre le strutture interne delle nuvole e la loro
natura disomogenea. Questo approccio consente una rappresentazione più realistica della
copertura nuvolosa terrestre e del suo impatto sulla riflettività, migliorando sensibilmente
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la modellizzazione della Terra come esopianeta.
Il modello è stato validato, in particolare per quanto riguarda il trattamento dell’albedo
superficiale e delle nubi, utilizzando un catalogo di osservazioni di Earthshine raccolte
nell’arco di un decennio, comprendenti diverse geometrie e condizioni atmosferiche, sia in
intensità che in polarizzazione. La polarizzazione, che fornisce informazioni dettagliate
sulle proprietà fisiche del pianeta e non richiede correzioni atmosferiche, si è dimostrata
uno strumento particolarmente efficace. I risultati ottenuti mostrano un’eccellente cor-
rispondenza tra modelli e osservazioni, sia in intensità sia in luce polarizzata, offrendo un
quadro coerente e robusto per la rappresentazione della Terra come esopianeta. Il modello
sviluppato si distingue nettamente rispetto agli approcci precedenti, poiché riproduce con
elevata accuratezza sia le caratteristiche del continuo sia le linee di assorbimento osservate
nell’Earthshine.
Infine, questo lavoro propone una strategia ottimale per il rilevamento dell’acqua liquida
sugli esopianeti. Il glint oceanico, osservabile a grandi angoli di fase attraverso la variabilità
delle curve di fase o delle linee dell’acqua, risulta più facilmente identificabile mediante mis-
ure in polarizzazione, particolarmente sensibili alle superfici oceaniche. La polarizzazione
consente inoltre di riconoscere la presenza di acqua liquida nelle nubi attraverso la rive-
lazione di arcobaleni a piccoli angoli di fase, fornendo preziose informazioni sulle proprietà
microfisiche delle particelle delle nubi. La combinazione di osservazioni polarimetriche e
spettroscopiche tradizionali incrementa in modo significativo la precisione nella valutazione
dell’abitabilità del pianeta.
Questo studio apre la strada a future osservazioni con strumenti di nuova generazione
su telescopi come l’Extremely Large Telescope (ELT) e su missioni spaziali di prossima
generazione, quali l’Habitable Worlds Observatory (HWO). Inoltre, il modello avanzato
sviluppato in questa ricerca rappresenta un contributo rilevante non solo per la scienza
degli esopianeti, ma anche per lo studio e la comprensione del clima terrestre.



1
Introduction

In our daily lives, we rarely stop to appreciate just how extraordinary our planet truly is.
We often take for granted the delicate balance of conditions that has made the Earth the
habitable world we know today. Earth is a rocky planet, unique in hosting vast oceans of
liquid water that cover over 70% of its surface. The remaining 30% consists of continents
that span an astonishing diversity of landscapes and climates, from tropical rainforests to
arid deserts, from boreal forests to polar glaciers.
On a clear day, if we look up, we see a blue sky stretching above us. This seemingly simple
view is the result of Rayleigh scattering, a phenomenon made possible by the composition
of our atmosphere, primarily nitrogen (N2) and oxygen (O2). The presence of abundant O2
itself is a profound clue: it is a direct by-product of life, and its continuous replenishment
hints at the presence of active biological processes sustaining it over geological timescales.
Often, when we gaze upward, we see clouds, which are masses of liquid and ice water
suspended in the atmosphere. Clouds are part of a dynamic water cycle, which plays a
fundamental role in the regulation of Earth’s climate. Clouds are not only complex features
to interpret in atmospheric studies; they also serve as strong indicators of the presence of
liquid water on Earth’s surface. Moreover, they are key regulators of the planet’s energy
balance, influencing both the reflection of incoming solar radiation and the trapping of
outgoing infrared radiation.
We watch the Sun rise and set, a reminder that Earth orbits a G-type star within the
so-called "habitable zone (HZ)" (Kasting et al., 1993), where conditions allow for liquid
water to exist. Our planet benefits from a protective magnetic field, a large stabilizing
Moon, and active plate tectonics, all key ingredients in the complex recipe that makes life
possible.
This brings us to a fundamental and enduring question: how unique is our planet? This
question has captivated human curiosity since the dawn of civilization. Are we alone in the
universe? Thanks to remarkable technological advances over the past centuries, we now
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know that Earth is indeed unique, at least within our Solar System. While a wide variety
of environments exist on the terrestrial planets and the moons of the giant planets of the
Solar System, none exhibits the complex and stable conditions found on Earth today.
Venus, often referred to as Earth’s twin, hosts a hostile environment where surface tem-
peratures and pressures are extreme. It likely experienced a runaway greenhouse effect in
the early stages of its evolution, driven by carbon dioxide (CO2) feedback (Ingersoll, 1969;
Kasting, 1988; Leconte et al., 2013). Mars, too, appears today as a cold, arid desert. It
likely hosted surface water during the first billion years of its history (Poulet et al., 2005).
However, the early loss of its global magnetic field left the atmosphere vulnerable to erosion
by the solar wind. Over time, this process stripped away much of the Martian atmosphere,
leading to a dramatic climatic shift (Jakosky et al., 2018).
Exploration efforts have also turned toward the icy moons of Jupiter and Saturn, where
subsurface oceans are believed to exist beneath thick layers of ice (e.g., Khurana et al.
1998; Porco et al. 2006). If life ever originated and still exists in these hidden oceans, it
would likely be profoundly different from the life we know on Earth.
Despite the profound transformations Earth has undergone over its 4.5-billion-year history,
life emerged remarkably early. Evidence suggests that microbial life may have originated
as early as 3.7 billion years ago (Nutman et al., 2016), during a time when Earth’s at-
mosphere and surface conditions were dramatically different from those we observe today.
The young planet was a far more hostile environment, characterized by intense volcanic
activity, a lack of O2, and frequent asteroid impacts, yet somehow, life found a way to take
hold (e.g., Harrison 2009).
For much of Earth’s early history, life remained simple and unicellular (Knoll, 2015). It
was not until nearly 3 billion years later that more complex, multicellular organisms began
to appear (e.g., Bozdag et al. 2024). The transition from simple to complex life was neither
rapid nor straightforward; it was shaped by a series of environmental shifts and evolution-
ary innovations. One pivotal event was the Great Oxidation Event, around 2.4 billion
years ago, when photosynthetic microorganisms began releasing large amounts of O2 into
the atmosphere (Hohmann-Marriott & Blankenship, 2011). This transformation laid the
ground for aerobic respiration and, eventually, the rise of more complex eukaryotic life.
Multicellularity, sexual reproduction, and eventually the Cambrian explosion around 540
million years ago marked the emergence of a remarkable diversity of complex organisms
(Hohmann-Marriott & Blankenship, 2011). From that point on, life on Earth entered an
era of increasing complexity, leading to the rich biosphere we observe today.
The extensive body of knowledge accumulated about Earth’s history, evolution, and the
physical and chemical laws that govern its transformation now finds a broader context
in the discovery, and increasingly, the characterization, of a vast and diverse population
of exoplanets. Since the groundbreaking detection of the first exoplanet orbiting a main-
sequence star in 1995 (Mayor & Queloz, 1995), it has become clear that planetary systems
beyond our own exhibit an extraordinary range of configurations. Many of these newly
discovered planets fall into categories that have no direct analog in our Solar System (e.g.,
Fulton et al., 2017; Christiansen et al., 2023), challenging and expanding our understand-
ing of planetary formation and evolution.
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Thanks to the rapid development of both ground-based and space-based telescopes, we
are now able to begin characterizing the atmospheres of exoplanets (Charbonneau et al.,
2002) and, in some cases, such as for airless bodies, even infer aspects of their surface
composition (e.g., Kreidberg & Loeb, 2016; Zieba et al., 2023). As the volume and quality
of observational data increase, advanced modeling frameworks are becoming essential for
interpreting the signatures of exoplanet atmospheres. These models are built upon the
same physical and chemical principles that underpin Earth system models, which have
been refined over decades through continuous validation with real-time observations of our
planet.
However, modeling exoplanets introduces a fundamentally different challenge: we must
explore a much broader and less constrained parameter space. Physical and chemical
conditions on these distant worlds can differ significantly from those on Earth, requiring
adaptations to conventional modeling strategies. Unlike Earth system models (ESMs),
which are tightly constrained by direct observations, exoplanet models must often operate
with limited or indirect data, demanding a careful balance between complexity and com-
putational feasibility.
From an astrophysical perspective, placing Earth in a broader cosmic context allows us to
explore whether our planet is truly unique. At the same time, however, Earth is under-
going a period of rapid climate change driven by anthropogenic greenhouse gas emissions
(Intergovernmental Panel on Climate Change (IPCC), 2023). While the search for and
characterization of terrestrial-size exoplanets focuses on understanding the atmospheres,
clouds, and potential surface conditions of these distant worlds, this scientific endeavor also
offers a unique opportunity: to study planets that may be similar to Earth in terms of size,
mass, and stellar irradiation, yet have evolved under entirely different conditions. This
comparative approach not only helps us understand the diversity of planetary climates,
but also enables us to reflect on Earth’s own trajectory, both its geological past and its
possible future.
By improving our understanding of Earth’s fundamental physical properties and embedding
them within a broader planetary context, we can refine and expand modeling frameworks
used to study our planet. This, in turn, may reduce uncertainties in projections of Earth’s
future climate scenarios. In a broader context, these insights contribute to our understand-
ing of the processes that govern planetary habitability and climate stability. They help
understanding how close Earth may be to a runaway greenhouse scenario (Leconte et al.,
2013), and they clarify the physical and chemical conditions required to form and sustain
surface oceans. By comparing Earth with its planetary neighbors, like Venus and Mars,
and extending that perspective to exoplanets, we can better grasp the delicate balance of
factors that make a planet not only habitable, but also capable of maintaining habitable
conditions over geological timescales. These are not merely theoretical explorations, they
are fundamental to advancing both planetary science and climate research.
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1.1 Earth as an exoplanet
Earth is the only benchmark we have in the search for habitable planets beyond our
Solar System. While habitable exoplanets may not exactly resemble Earth, they are likely
to share some common features, such as surface inhomogeneities, oceans, clouds, and
biosignatures in their atmospheres. Over its 4.5-billion-year history, Earth’s atmosphere
and surface environment have undergone significant changes. However, for modern Earth,
a wealth of data has been collected through Earth-orbiting satellites and spacecraft for
Solar System exploration and ground-based observatories (Robinson & Reinhard, 2018).
These datasets allow us to view Earth as if it were an exoplanet, helping us understand
how signs of habitability and life might appear from afar.
Studying Earth in this context provides a critical foundation for developing tools and
strategies for exoplanet characterization. By examining our planet’s globally averaged
signals and its disk-integrated light, we gain valuable insights into what remotely detectable
indicators of habitability might look like. This "Pale Blue Dot" perspective, where Earth
is reduced to a single unresolved pixel, is a unique testbed for refining retrieval techniques
for interpreting the limited data we will obtain from rocky exoplanets and identifying ideal
measurement strategies for upcoming missions. These observations also help us define the
observational thresholds required to detect the presence of liquid water, assess the surface-
atmosphere conditions, and potentially infer biological activity on exoplanets.
The viewing geometry becomes critical when observing the Earth as a spatially unresolved
exoplanet. In disk-integrated observations, the complex three-dimensional variability of the
planet is collapsed into a single pixel. The reflectance from different regions depends on the
viewing geometry: for instance, areas near the limb or terminator contribute less flux due
to lower illumination and geometric foreshortening. Specular reflection features like the
ocean glint are also highly geometry-dependent. Additionally, disk-integrated observations
result in a blending of cloudy and cloud-free regions, land and ocean pixels, and the overall
photometric and spectral features are affected by latitudinal temperature gradients.
Following Robinson & Reinhard (2018), there are three main approaches for acquiring
observations of the Earth as a spatially unresolved exoplanet:

• spacecraft photometric and spectroscopic observations taken from afar;

• spatially averaged high spatial resolution satellite observations;

• Earthshine observations.

These observational approaches are complementary and have been guiding the develop-
ment of radiative transfer models, retrieval techniques, and observational strategies for
identifying habitable exoplanets and searching for life beyond our Solar System.

1.1.1 Spacecraft observations
Sagan et al. (1993) conducted the first controlled experiment to assess evidence of life on
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Figure 1.1: Long-wavelength VIS and NIR spectra of Earth over the Pacific Ocean, ob-
served by the Galileo NIMS instrument during a flyby. The spectra reveal prominent
features from H2O, the O2-A band, CO2, as well as traces of N2O, O3 and CH4. Figure
adapted from Sagan et al. (1993).

Earth using first principles during one of the flybys of the Galileo spacecraft mission (John-
son et al., 1992). During this flyby, spatially resolved imagery and spectra revealed key
features of Earth as seen from space. The Near-Infrared Mapping Spectrometer (NIMS)
onboard the Galileo spacecraft detected condensed water over Antarctica through radio-
metric measurements, gas-phase water across the entire planet, and an albedo at 1 µm
consistent with surface liquid water. This was further supported by the observation of
specular reflection, indicating the presence of large, macroscopically smooth, and homoge-
neous areas, evidence for liquid water on an oceanic scale.
In Fig. 1.1, the NIMS visible (VIS) and near-infrared (NIR) spectra show a strong O2-A
band feature, along with the presence of several greenhouse gases such as CO2, nitrous
oxide (N2O), ozone (O3), and methane (CH4). These features provide insight into the
surface equilibrium temperature, suggesting it is above the freezing point of water. In
particular, CH4 is found at an abundance far from chemical equilibrium in such an O2-rich
atmosphere, an imbalance likely produced only by biological processes. The biological ori-
gin of O2 is further supported by the detection of a sharp absorption edge near 0.7 µm,
observed by the solid-state imaging system (SSI) camera over regions of South America.
This sharp increase, known as the Vegetation Red Edge (VRE), is caused by chlorophyll
pigments, which must be widespread in order to sustain the observed levels of atmospheric
O2. This experiment resulted in the first use of a spacecraft for Solar System exploration to
gather insight into Earth’s atmospheric and surface conditions and to assess key indicators
of life. Historically, spacecraft observations have been the most direct method for mimick-
ing observations of Earth-like exoplanets. In particular, observations taken from Lagrange
points or interplanetary trajectories offer the best analogs for the full-disk, spatially un-
resolved views expected for exoplanet characterization. However, such Earth observations
from spacecraft have been limited and largely opportunistic. Most were acquired during
planetary flybys by missions not specifically designed for Earth observations, resulting in
sparse and inconsistent temporal coverage. In some cases, the data remain unpublished or
were collected primarily for outreach purposes rather than scientific analysis (Robinson &
Reinhard, 2018).
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Figure 1.2: DSCOVR/EPIC natural color image of Earth on September 26th 2022. The
natural color images are produced using the bands of the EPIC instrument within the
human visual range and adjusted to simulate what a conventional camera would reproduce.
Image credits: NASA/DSCOVR.

Notable exceptions include data from the Galileo spacecraft flyby (Sagan et al., 1993;
Drossart et al., 1993), and the Mars Global Surveyor’s Thermal Emission Spectrometer
(MGS/TES), which acquired thermal infrared (IR) spectra that revealed features related
to clouds, water vapor (H2O), and surface materials (Christensen & Pearl, 1997). The
EPOXI mission, which repurposed the Deep Impact spacecraft, obtained multi-wavelength
time-series observations (from VIS to NIR) that tracked changes in Earth’s brightness and
spectra as the planet rotated (Cowan et al., 2011). These observations revealed surface fea-
tures (e.g., land vs. ocean), cloud patterns and coverage, atmospheric composition (Cowan
et al., 2011; Fujii et al., 2011; Robinson et al., 2011), and even the VRE signature (Liven-
good et al., 2011; Robinson et al., 2011). Similarly, the Lunar CRater Observation and
Sensing Satellite (LCROSS) acquired VIS and NIR spectra that helped detect the presence
and strength of ocean glint and O3 absorption as functions of phase angle (Robinson et al.,
2014).
A major advancement came with the launch of the Deep Space Climate Observatory
(DSCOVR) in 2015. Stationed at the Earth–Sun L1 point, its Earth Polychromatic Imag-
ing Camera (EPIC) continuously monitors the sunlit side of Earth in ten narrowband
channels spanning the ultraviolet (UV) to VIS spectrum (Marshak et al., 2018). Fig. 1.2
shows a DSCOVR/EPIC image of September 26th 2022 showing the American continent,
the Atlantic and Pacific oceans, and cloud fields present. While EPIC observes Earth at
a near-zero phase angle, unlike the wider phase angles expected for exoplanet targets, it
provides an unprecedented dataset for studying global reflectance and atmospheric vari-
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ability. DSCOVR time-series data have been used to retrieve surface properties from
disk-integrated observations, demonstrating that it is possible to separate surface and at-
mospheric contributions (e.g., Fan et al., 2019; Gu et al., 2021). Moreover, DSCOVR
images and spectra were used by Kofman et al. (2024) to validate the Planetary Spectrum
Generator (PSG; Villanueva et al., 2018).
Despite these efforts, significant observational gaps remain. There is a notable lack of disk-
integrated measurements at large phase angles (beyond quadrature), which are essential
for detecting features like specular reflection from ocean glint. High-resolution thermal
IR spectra are also scarce, and no dataset offers continuous monitoring beyond 24-hour
timescales. Furthermore, most VIS-wavelength observations are limited to broadband pho-
tometry, with spectroscopy below 1 µm still poorly represented.

1.1.2 Satellite observations
Another intuitive approach to creating a dataset of Earth observed as seen from afar is
to leverage the extensive data collected by satellites, which provide broad temporal, spa-
tial, and spectral coverage. Since the mid-20th century, low Earth orbit satellites have
continuously monitored our planet, enabling studies of Earth’s daily, seasonal, and an-
nual variability. However, most satellite observations only capture small portions of the
Earth at any given time, making the integration of multiple datasets into a coherent, disk-
integrated view a non-trivial task. High spatial resolution satellite radiance measurements
can be stitched together to simulate a global perspective, as pioneered by Hearty et al.
(2009). However, this method is limited by temporal gaps in the datasets and cannot
reproduce true snapshots of Earth due to evolving weather patterns and constraints im-
posed by satellite viewing geometries. Most satellite instruments acquire data at limited
phase angles, typically around nadir (i.e., directly downward), and combining observations
requires assumptions about how emission and solar incident angles influence the measured
radiance.
As an alternative, Manalo-Smith et al. (1998) developed satellite-derived scene models
that account for the viewing-geometry-dependent brightness of different surface types un-
der varying cloud cover conditions. These models incorporate bidirectional reflectance
distribution functions (BRDFs), but they are generally spectrally coarse and only provide
broadband reflectivity estimates.
Mettler et al. (2020) analyzed thermal IR Earth observations from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), using 15 years of data for five different surface
types and locations. Due to the sun-synchronous orbit of the satellite, each target location
was observed twice per month. They highlighted the crucial role of viewing geometry in
thermal emission measurements, which varies depending on the dominant surface type,
and demonstrated how seasonal variations, linked to planetary obliquity, can be extracted
from time-resolved thermal emission spectra. Later, Mettler et al. (2023) extended this
work using Atmospheric Infrared Sounder (AIRS, Chahine et al., 2006) data to derive
disk-integrated mid-infrared (MID) thermal emission spectra for various Earth viewing
geometries. They found that the strength of absorption features from gases such as N2O,
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CO2, CH4, and O3 depends strongly on both the season and the observation geometry.

1.1.3 Earthshine observations
Earthshine is the sunlight scattered by Earth’s atmosphere and surface and reflected onto
the dark portion of the visible Moon, which is illuminated by Earth but not by the Sun.
Earthshine has a long history of revealing key details about our planet. In Earthshine
observations, Earth’s phase as seen from the Moon is complementary to that of the Moon
as seen from Earth; this means Earth appears nearly full when the Moon is a thin crescent.
Figure 1.3 shows a schematic of the photon paths involved in Earthshine observations from
a ground-based observatory. However, Earthshine cannot be used to measure Earth’s
thermal emission due to the Moon’s own IR glow.

Figure 1.3: Schematic sketch of the photon path in Earthshine observations. Part of the
sunlight is reflected off Earth’s atmosphere and surface toward the Moon. Some of these
photons are then reflected by the Moon and can be collected by a telescope pointed at the
darker portion of the visible Moon. Effectively, in this configuration, the Moon resembles
a diffuse reflector.
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History of Earthshine

Between 1506 and 1509, Leonardo da Vinci wrote in his first notebook the following pas-
sage, as reported by Molaro (2017):

...some have believed that the Moon has some light of its own, but this opinion
is false, for they have based it upon that glimmer visible in the middle between
the horns of the new Moon...this brightness at such a time being derived from
our ocean and the other inland seas, for they are at that time illuminated by
the Sun, which is then on the point of setting, in such a way that the sea then
performs the same office for the dark side of the Moon as the Moon when at
full does for us when the Sun is set.

Figure 1.4: Leonardo Da Vinci drawing of the Earthshine phenomena in his Codex Leices-
ter, written in the first decade of the 16th century. Image credit: Cove Studio.

Leonardo had already realized that during the crescent phase, the glow on the darker
portion of the Moon was due to sunlight being reflected from the Earth onto the Moon.
He originally thought that this glow was primarily produced by Earth’s seas, as he thought
them to reflect sunlight more efficiently than land. In his Codex Leicester, written around
the same years, he drew this phenomenon and wrote the same explanation (see Fig. 1.4).
Around a century later, Galileo noticed the same phenomenon, which he described in his
Sidereus Nuncius:

A certain faint light is also seen to mark out the periphery of the dark part
which faces away from the Sun, separating this from the darker background of
the aether.

Galileo’s interpretation on the origin of this "Secunda Lunae Claritas" (secondary moon-
light) was given in the Dialogue Concerning the Two Chief World Systems, from the mouth



10 1. Introduction

of Salviati, the Galilean, that we write here as reported in Tucci (2022):

To get back to our original discussion, I state that the sixth agreement between
the Moon and the Earth is that just as the Moon supplies us with the light
we lack from the Sun a great part of the time, and by reflection of its rays
makes the nights fairly bright, so the Earth repays it by reflecting the solar
rays when the Moon most needs them, giving a very strong illumination —as
much greater than what the Moon gives us, it would seem to me, as the surface
of the Earth is greater than that of the Moon

To Galileo, Earthshine was one of the arguments against the Ptolemaic and Aristotelic
systems, given that it pointed to a similarity between the Earth and the Moon. Neither
celestial body possessed light on its own, but both reflected it to each other. Moreover,
according to Aristotelian philosophy, any light from Earth could not travel further than
the sub-lunar world, while this observation seemed to contradict it. While nowadays this
argument is often overlooked, in favour of the other arguments presented in the "Dialogue",
it nonetheless caused great discussion among Galileo’s contemporaries (Molaro, 2017).
In more recent times, Danjon (1928) conducted the first multi-year broadband measure-
ments of Earthshine and made several important discoveries. First, he observed a sig-
nificant difference between the color index of Earthshine and that of direct sunlight. He
attributed this difference to atmospheric and surface effects on Earth, which alter the spec-
tral properties of incoming sunlight and are subsequently revealed in the light reflected by
the Moon.
Danjon (1928) also noted that Earthshine is highly variable, more so than for any other
planet in the Solar System, and classified this variability into two categories. The first,
which he termed “accidental” variability, encompasses random and short-term fluctuations
primarily due to cloud cover, which increases Earth’s albedo. However, cloud variability
alone could not explain the second category: seasonal variability. To account for this, Dan-
jon pointed to surface features that change cyclically over the year, such as snow cover and
vegetation. In his conclusion, Danjon highlighted Earthshine as the only means available
at the time to monitor global meteorological and climatological conditions, a role that, in
the modern era, has been largely assumed by satellite observations:

It is certain, moreover, that a cause capable of so profoundly modifying the
energy exchanges of the atmosphere plays an important role in climatology.
This latter consideration justifies the efforts made to better understand the
astronomical phenomenon, which appears secondary, to which this thesis is
devoted.

A few years later, Dubois (1947) repeated Earthshine observations and concluded that,
since Earth reflects more light in the blue than in the red part of the spectrum, it would
appear blue when viewed from space. Dubois also noted that the variability of Earth’s
albedo would make it one of the most interesting celestial bodies to observe from afar,
compared to the other planets in the Solar System.
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1.1.4 Modern Earthshine
In the modern era, Goode et al. (2001) performed regular Earthshine observations from
the Big Bear Solar Observatory (BBSO) to quantify Earth’s reflectance. They showed that
an accuracy better than 1% could be achieved with their improved observational strategy,
and that large variations, on the order of 5%, were due to changing weather patterns. This
approach offers an alternative method for estimating Earth’s albedo compared to satellite
observations, which view only a small fraction of the planet at a time and require many
observations to be combined. The advantage of Earthshine is that the coverage is instan-
taneous and hemispheric in scale. Goode et al. (2001) found an average terrestrial albedo
of 0.297, which is consistent with simulations. However, the seasonal variation observed in
the Earthshine data is twice as large as that predicted by the simulations. This revival of
Earthshine observations has proven complementary to satellite-based monitoring of Earth’s
albedo, providing valuable data for long-term assessments of cloud cover and aerosols in
studies of climate variability.
Woolf et al. (2002) obtained the first Earthshine spectrum, as shown in Fig. 1.5, moving
beyond photometric observations, and recognized the potential of Earthshine as a bench-
mark for assessing the disk-integrated properties of Earth as seen from the perspective of
a distant exoplanet. For instance, Arnold et al. (2002); Seager et al. (2005) demonstrated
the variability of the VRE in the 600–800 nm range, revealing up to 10% increases in
reflectivity under favorable conditions. However, Montañés-Rodríguez et al. (2006) found
no significant VRE detection on a cloudy night, underlining the impact of cloud cover in
masking surface features.
Earthshine offers the unique advantage of providing disk-integrated, hemispheric views
of Earth’s reflectivity, capturing variability on daily, seasonal, and decadal timescales
(Goode et al., 2001; Pallé et al., 2003, 2004, 2009a, 2016). These long-term monitoring
efforts demonstrated that Earth’s apparent albedo exhibits interannual variability primar-
ily driven by changes in global cloud cover and large-scale climate patterns. This was
demostrated by Pallé et al. (2004), reporting a pronounced decrease in Earth’s reflectance
from the mid-1980s to around 2000, followed by a partial recovery in the early 2000s, sug-
gesting a connection between cloud dynamics and the global energy budget. Additionally,
Pallé et al. (2009a) found that albedo changes observed through Earthshine measurements
were consistent with satellite-based observations and confirmed these variations, which are
linked to changes in cloud properties. More recently, Pallé et al. (2016) identified two
modest decadal-scale cycles in Earth’s albedo but found no significant net change over
the 1998–2014 period, emphasizing the complexity and quasi-cyclical nature of Earth’s
reflectance variability rather than a long-term trend.
In the NIR (0.7–2.4 µm), Turnbull et al. (2006) identified several molecular absorption
bands associated with biological activity and geophysical processes. Robinson & Reinhard
(2018), building on data from Pallé et al. (2003), analyzed Earth’s phase-dependent appar-
ent albedo, finding it varies significantly with phase angle: exhibiting weak backscattering
at small angles, Lambertian behavior at intermediate phases, and strong forward scatter-
ing at large angles, unlike an ideal Lambert sphere, which would show constant albedo
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Figure 1.5: The first Earthshine spectrum, shown in black, was obtained by Woolf et al.
(2002) and is presented in arbitrary units. The red curve represents the model spectrum,
which is a composite of seven fitted component spectra displayed below the main plot.
These components include high clouds (high), clear sky (clear), Rayleigh scattering (Ray),
vegetation (veg), ocean (ocn), aerosols (are), and pigmented phytoplankton (pig). For
more details on the model, see Chapter 2.4. Image credit: Woolf et al. (2002).

regardless of phase.
Earthshine techniques have also been innovatively applied to transmission spectroscopy
during lunar eclipses. In these events, sunlight passing through Earth’s atmosphere is
reflected off the Moon and can be spectrally analyzed. Using this approach, Pallé et al.
(2009b) detected biosignature gases such as O2 and N2, as well as pressure-broadened ab-
sorption features and ionized calcium lines. However, García Muñoz et al. (2012) later
showed that atmospheric refraction limits such observations to altitudes above ∼10 km,
preventing access to surface and tropospheric layers.
While Earthshine remains a valuable benchmark for disk-integrated Earth spectra and
phase curves, it faces limitations: ground-based observations cannot continuously monitor
Earth’s full diurnal cycle and are subject to calibration challenges, often providing only
scaled reflectance values.
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1.1.5 Earthshine in polarization
One avenue to solve the calibration issue in Earthshine observations is to perform them
using polarization, as the fractional polarization is largely unaffected by the transmission
through Earth’s atmosphere, and depolarization levels due to the lunar depolarization
might be corrected accounting for the lunar albedo in the region of the observations. The
first spectropolarimetric Earthshine observations were obtained by Sterzik et al. (2012),
comparing two different Earth’s sceneries: one with the illuminated side over the Pacific
ocean, and one with a mixture of land and the Atlantic ocean surfaces (as shown in Fig.
1.6). Comparing the two spectra, they inferred the VRE, and detected such as variations
in global cloud cover, the partial coverage of Earth’s surface by oceans. Independent
Earthshine measurements from Takahashi et al. (2013) and Bazzon et al. (2013), showing
strong consistency with the initial polarization spectra from Sterzik et al. (2012).
Miles-Páez et al. (2014) expanded the wavelength range of polarimetric observations into
the NIR, revealing sensitivity to molecular absorption features. Further progress came
from Sterzik et al. (2019), who presented 33 new spectra spanning a range of phase angles,
allowing the construction of Earth’s polarized phase curves across various VIS and NIR
bands. Extending this phase angle coverage, Sterzik et al. (2020) focused on small phase
angles (30◦–40◦) to detect the cloudbow, a feature analogous to the secondary rainbow (see
Chapter 2.3.2), arising from the microphysical properties of cloud droplets. This marked
the first disk-integrated detection of Earth’s cloudbow, which was used to retrieve the
refractive index, size, and shape of cloud particles.
The use of polarization in planetary studies has a long history, dating back to the pioneering
work of Hansen & Hovenier (1974). Their analysis of the polarization phase curve of
Venus, and in particular of the cloudbow feature (peaking at around 20◦) demonstrated
that Venus’ clouds consist of spherical droplets of sulfuric acid with typical radii of about
1 µm. This represented the first remote determination of the microphysical composition
of an extraterrestrial atmosphere.
More recently, Takahashi et al. (2021) conducted NIR polarimetry of lunar Earthshine over
32 nights, revealing a clear positive correlation between the degree of polarization and the
fraction of Earth’s surface covered by oceans.

1.1.6 How to observe Earthshine
Earthshine observations are carried out by pointing ground-based telescopes at the Moon’s
dark, Earth-illuminated portion. Because this signal is faint compared to the sunlit cres-
cent, astronomers use long exposure times and sensitive instruments while carefully mask-
ing or subtracting the bright lunar crescent to isolate the Earthshine component. Cor-
rections for atmospheric interference, variations in lunar surface reflectivity, and scattered
light are essential to obtain reliable measurements.
Polarimetric Earthshine observations by Sterzik et al. (2012, 2019, 2020) were performed
using the FORS2 instrument (Appenzeller et al., 1998) on the Very Large Telescope (VLT).
The telescope was aimed at the Moon’s dark limb, with the FORS2 detector oriented east-
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Figure 1.6: Observed fractional polarization (red lines) as a function of wavelength, com-
pared with model spectra (black lines) for validation. Figure adapted from Sterzik et al.
(2012).

west along the lunar edge. The first CCD chip contained five 22′′ slitlets positioned across
the lunar surface, while the second chip, separated by a 4′′ gap, held four additional slitlets
aimed at the sky for simultaneous background subtraction. The lunar limb was consis-
tently aligned with the gap between the two detector chips to optimize signal isolation.
Polarization measurements employed the beam-swapping technique (Bagnulo et al., 2009),
a method that minimizes instrumental systematics in dual-beam polarimetry. This involved
taking exposures at 16 different retarder waveplate angles, from 0◦ to 337.5◦, in 22.5◦ incre-
ments. A full description of the data acquisition, preprocessing steps such as flat-fielding
and sky subtraction, and additional calibration procedures is presented in Sterzik et al.
(2019).

1.2 Atmospheric physics and Earth remote sensing
Understanding and simulating planetary atmospheres, especially those of exoplanets, re-
quires a solid grasp of thermodynamics, radiative transfer, fluid dynamics, and atmospheric
chemistry. In this section, I will provide a brief overview of fundamental concepts related
to the vertical structure of atmospheres, the nature of clouds, the role of aerosols and
surface albedo, and their implications for climate. Additionally, I will introduce key Earth
observational satellite data and reanalysis datasets relevant to this thesis. The theoretical
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framework of this section was inspired by Wallace & Hobbs (2006).

1.2.1 Atmospheric vertical profiles
The atmosphere is a spherical envelope of gas surrounding a planet’s surface. Under a first
approximation, we can consider it to be spherically symmetric and focus on its vertical
structure. A static atmosphere can be assumed to be in hydrostatic equilibrium, meaning
that the gravitational force pulling the atmosphere down towards the surface is exactly
balanced by a pressure gradient force pushing upward:

dP

dz
= −ρg, (1.1)

where P is the pressure, ρ the density, g the gravitational acceleration and z the height. By
assuming that the gas composing the atmosphere obeys the ideal gas law, this differential
equation can be solved, leading to an exponentially decaying vertical pressure profile:

P (z) = P0e
−z/H , (1.2)

where P0 is the pressure at the surface and H is the scale height of the atmosphere, which
is approximately 7 km for Earth.
This derivation assumes an isothermal atmosphere, which is, of course, a crude simplifi-
cation. Therefore, this exponential law should not be interpreted as exact but rather as
a general indication that both pressure and density decrease approximately exponentially
with altitude.
Fig. 1.7 shows the U.S. Standard Atmosphere model (United States Committee on Ex-
tension to the Standard Atmosphere, 1976), developed in 1976, which provides canonical
vertical profiles for pressure, density, temperature, and the mixing ratios of various gases.
As shown in the left panel, pressure indeed follows an exponential decay (note the loga-
rithmic scale in the x-axis). The density profiles of the individual molecular constituents,
however, vary, as shown in the central panel of Fig. 1.7. Some gases, such as O2 and
CO2, maintain constant mixing ratios throughout much of the atmosphere due to turbu-
lent mixing. Others exhibit strong vertical gradients resulting from specific atmospheric
processes and chemical properties. For example, H2O is concentrated near the surface,
where it enters the atmosphere via evaporation from oceans and moist land. Most of it
condenses into clouds by the tropopause, where temperatures drop sharply. In contrast,
O3 is concentrated around 30 km altitude, where it plays a critical role in shaping the
vertical temperature structure.
The temperature profile, shown in the right panel of Fig. 1.7, reveals a layered structure
that cannot be explained solely by distance from the surface or outer space. Instead, it
highlights the importance of absorption processes. In particular, the absorption of UV ra-
diation by O3 significantly heats the stratosphere, creating a temperature maximum near
50 km. This temperature inversion is a clear illustration of the intricate coupling between
radiation and matter in the atmosphere.
Understanding the physical and chemical processes that shape atmospheric profiles is es-
sential for accurately modeling both Earth’s atmosphere and those of exoplanets.



16 1. Introduction

Figure 1.7: U.S. Standard Atmosphere model, showing the vertical profiles of pressure
(left panel), mixing ratios of some atmospheric gases (central panel) and temperature
(right panel).

1.2.2 Surface albedo
The surface of a planet plays a critical role in its radiative energy budget. Its effect is
characterized by its albedo, the fraction of incident solar radiation that is reflected back
into space without being absorbed by the surface. It is formally defined as

a = F↑

F↓
, (1.3)

where F↑ is the reflected solar flux and F↓ is the incident solar flux at the surface. The
albedo typically ranges from 0, for a perfect absorber, to 1, a perfect reflector, and can
vary significantly depending on surface type, conditions and geometry.
Moreover, albedo is a wavelength-dependent quantity. Ice and snow exhibit high reflectance
in the VIS spectrum, while they absorb more radiation in the IR. On the other hand, vege-
tation absorbs VIS light while strongly reflects the NIR photons. This spectral behavior is
used in remote sensing to characterize vegetation health using the Normalized Difference
Vegetation Index (NDVI). The spectral-dependent albedo is defined simply as:

a(λ) = F↑(λ)
F↓(λ) . (1.4)

In addition to its spatial and spectral variability, surface albedo can also vary temporally,
especially as part of climate feedback mechanisms. One prominent example is the ice-
albedo feedback: an initial increase in temperature causes the melting of highly reflective
snow and ice, revealing darker surfaces underneath. These absorb more solar radiation,
leading to further warming and additional melting, in a positive feedback loop which
amplifies warming, particularly in polar regions.
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On a global scale, planetary albedo incorporates both surface and atmospheric effects and
measures the ratio of reflected to incident stellar radiation. From a simple planetary energy
balance:

1
4(1 − A)F⊙ = σT 4, (1.5)

where A is the planetary albedo, F⊙ is the solar flux at the top of the atmosphere (TOA)
(∼1361 W m−2), σ is the Stefan–Boltzmann constant, and T is the planet’s effective emis-
sion temperature. For Earth, with an observed A ≈ 0.3, the blackbody temperature is
approximately 255 K.
The strong nonlinear dependence of outgoing radiation on temperature (via the T 4 term)
underlines the climate sensitivity to albedo. In the absence of feedback, a modest reduc-
tion in albedo by just 0.01 could increase roughly 1 K in Earth’s equilibrium temperature
(Goode et al., 2001). Such sensitivity highlights the pivotal role of albedo in regulating
planetary climates.

Remote sensing of surface albedo

Surface albedo spatial, temporal, and spectral variability is continuously monitored through
satellite observations, providing global, high-resolution datasets across multiple spectral
bands. Instruments such as the MODIS aboard NASA’s Terra and Aqua satellites, and
the Ocean and Land Colour Instrument (OLCI) aboard the Sentinel-3 satellite, deliver
long-term, consistent time series used to validate climate models and to study land sur-
face changes. Notably, the MODIS MCD43D42–48 data products used in this thesis, offer
daily measurements of surface albedo at a spatial resolution of 0.05◦ in both latitude and
longitude.
However, satellites measure only radiances at the TOA, while the quantity of interest is
the surface albedo. Retrieving surface albedo from TOA radiance involves inverting the
radiative transfer processes that shaped the observed signal. This retrieval process is in-
herently degenerate, as multiple atmospheric and surface conditions can produce similar
radiance signatures. To address this challenge, sophisticated atmospheric correction algo-
rithms are employed to account for atmospheric effects, mask out clouds, and accurately
model surface reflection. One such method is the MAIAC (Multi-Angle Implementation
of Atmospheric Correction) algorithm used in processing MODIS data (Lyapustin et al.,
2018).

1.2.3 Clouds
When water vapor in the atmosphere condenses under the right conditions, it can form
clouds. Clouds are among the most influential components of the atmosphere, significantly
affecting radiative transfer and the Earth’s energy balance. This section provides a brief
overview of the physical processes involved in cloud formation, distinguishes between liq-
uid and ice water clouds, describes their optical properties, and outlines how clouds are
represented in reanalysis products.
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Cloud formation

The formation of clouds is primarily governed by the condensation of water vapor. The
critical pressure at which water condenses is known as the saturation vapour pressure, and
it can be determined using the Clausius–Clapeyron relation:

des

dT
= Lves

RvT 2 , (1.6)

where es is the saturation water pressure, T the temperature, Rv the gas constant of water
vapor and Lv the specific latent heat of water evaporation.
When the ambient vapour pressure exceeds the saturation vapour pressure, condensation
begins. However, this condition alone is not sufficient for cloud formation, as droplet
formation requires energy, potentially more than what is released during condensation.
The energy balance governing droplet growth is expressed as

∆E = 4πR2σ − 4
3πR3nkBT ln

(
e

es

)
, (1.7)

where σ is the energy per unit area required to increase the droplet size (which is also
equal to the surface tension), R is the radius of the droplet (assumed to be spherical), n is
the number density of water molecules, kB is the Boltzmann constant, and e is the water
vapor pressure.
The evolution of ∆E as a function of droplet radius is shown in Fig. 1.8, for two regimes.
In the subsaturated regime, ln(e/es) < 0 and ∆E > 0 for all radii. Hence, droplet growth
is energetically unfavourable, and it will instead immediately evaporate. In the supersat-
urated regime, ln(e/es) > 0, and there is a critical radius r above which ∆E decreases,
making droplet growth energetically favourable. For pure water droplets with initial radii

Figure 1.8: Energy required to grow a water droplet as a function of its initial radius
for subsaturated and supersaturated conditions. In the supersaturated regime, growth
becomes energetically favourable above a critical radius r. Figure from Wallace & Hobbs
(2006).
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around R ∼ 0.01 µm, the supersaturation required to overcome the energy barrier is
e/es ∼ 12%. Moreover, to even build that initial seed of R ∼ 0.01 µm, the level of super-
saturation required can be as large as several hundred percent (Rogers, 1989). However,
typical atmospheric supersaturations caused by adiabatic lifting are only a few percent.
Therefore, cloud formation in natural conditions typically requires larger particles to act
as initial condensation sites. These cloud condensation nuclei (CCN) have a typical radius
of ∼ 0.3 µm, at which the supersaturation needed is 0.4%, a value commonly reached in
the atmosphere.

Liquid and ice water clouds

Clouds can consist of liquid water droplets, ice crystals, or a mixture of both. Unlike liq-
uid water clouds, ice clouds can form via homogeneous nucleation, which does not require
the presence of CCN. However, ice formation can also occur via heterogeneous nucleation,
where water vapor condenses onto freezing nuclei at higher temperatures than those re-
quired for homogeneous nucleation. Given the different temperatures needed to form ice
clouds compared to water clouds, they usually form at higher altitudes than liquid water
clouds.
Another key difference lies in the typical particle sizes. Liquid water clouds are composed
of droplets with radii on the order of ∼10 µm, whereas ice crystals tend to be significantly
larger, with characteristic sizes around 50 µm. The parametrization of the liquid and ice
cloud droplet size is detailed in ECMWF (2024).

Optical properties of clouds

To understand how much radiation is blocked by clouds, we need to estimate their optical
thickness. A key quantity in this context is the liquid water content (LWC), defined as
the amount of liquid water per unit volume within a cloud. Assuming the cloud consists
of spherical droplets distributed according to a size distribution n(r), we can compute the
number concentration of droplets per unit volume by integrating over all radii

Nd =
∫ ∞

0
n(r)dr. (1.8)

The LWC is then defined by multiplying the density of liquid water ρw by the expected
value of the droplet volume (Petty, 2004)

LWC = ρw · 4
3π

∫ ∞

0
r3n(r)dr = 4

3πNdr3
effρw, (1.9)

where reff is the effective radius, representing the radius that all droplets would have if
they were identical and produced the same total volume as the actual distribution.
The cloud’s extinction coefficient β can similarly be expressed as the expected value of the
droplet cross-sectional area, multiplied by an extinction efficiency Qext:

β =
∫ ∞

0
Qext · πr2n(r)dr = Qext · Ndπreff = 3QextLWC

4ρwreff
, (1.10)
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where we used the effective radius to approximate the average droplet area and substi-
tuted Eq. 1.9. For VIS wavelengths, which are much smaller than typical droplet sizes, it
is common to assume Qext ≃ 2 (Petty, 2004).
The optical thickness τc of the cloud layer can then be computed by integrating the ex-
tinction coefficient vertically

τc =
∫ ztop

zbase
β(z)dz = 3 LWC ∆z

2 reff ρw

, (1.11)

where we assumed that both LWC and the effective radius are constant along the vertical
direction.
Measuring the reflected light from a satellite, it is possible to simultaneously derive both τc

and reff, and thus derive the LWC of the cloud. This method, first introduced by Nakajima
& King (1990), uses two spectral bands: one in a wavelength region where cloud water is
effectively transparent, making the reflectance primarily dependent on τc, and another in a
region where cloud droplets absorb more strongly, making the reflectance sensitive to reff.
By comparing reflectance at these two wavelengths, both parameters can be inferred.

The ERA5 reanalysis product

The highly dynamic nature of clouds in Earth’s atmosphere poses a challenge for continuous
monitoring through satellite observations alone. A more comprehensive approach combines
observations with numerical modeling. The most widely used dataset for cloud properties
is the ERA5 reanalysis product from the European Centre for Medium-Range Weather
Forecasts (ECMWF). Reanalysis combines data from various sources, including satellites,
ground-based meteorological stations, and ocean buoys, with numerical weather prediction
models that are continuously updated through data assimilation techniques. The ERA5
reanalysis product offers hourly data on variables such as LWC, ice water content (IWC),
cloud cover, temperature, and wind speed at 37 pressure levels and a resolution of 0.25◦ in
latitude and longitude, from 1940 to the present day.
These datasets have been used throughout this thesis to provide the input cloud fields for
radiative transfer simulations of Earth as an exoplanet. Hersbach et al. (2020) discusses
the details of the ERA5 reanalysis procedure.

1.2.4 Aerosols
Aerosols are solid or liquid particles suspended in the atmosphere, with sizes ranging from
less than 1 µm to several hundred micrometres. Their sources can be broadly classified
into three main categories:

• Biological aerosols, which include bacteria, algae, sea salt, and smoke from forest
fires. Many of these, especially particles around 0.1 µm in size, serve as ideal CCN.

• Geological aerosols, such as mineral dust from deserts and particulate matter from
volcanic eruptions.
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• Anthropogenic aerosols, which originate from human activities like fossil fuel com-
bustion, industrial processes, and agriculture.

The size distribution of aerosols follows roughly a power law

dN

d log(R) ∝ R−3, (1.12)

which implies that small particles take up most of the number concentration of aerosols.
Aerosols play two main roles in the atmosphere. First of all they can be CCN for cloud
formation, thus regulating the amount of clouds that are formed in the atmosphere. Sec-
ond, they are chemically active and can act as catalysts in atmospheric reactions. A key
example is their role in the heterogeneous catalysis of O3 depletion, a process particularly
sensitive to anthropogenic aerosols.
From an observational perspective, aerosols are studied using satellite remote sensing, air-
craft campaigns, and ground-based measurements. However, retrieving aerosol properties
remains challenging, particularly when attempting to distinguish aerosol layers from thin
clouds, especially over bright surfaces like snow or deserts. The development of polarimet-
ric and multi-angle sensors is expected to enhance aerosol retrieval algorithms, improving
their representation in numerical models and reanalysis datasets.

1.2.5 Relevance to the climate system
All the components described above (clouds, surfaces, and aerosols) play direct or indirect
roles in regulating Earth’s climate. Their contributions are quantified through radiative
forcing terms in Earth’s energy budget. A positive radiative forcing increases the amount of
thermal energy retained in the atmosphere, leading to warming, while a negative radiative
forcing reduces atmospheric energy and leads to cooling. Below, we briefly review the
radiative forcing effects of these components:

• Clouds can exert both positive and negative radiative forcing effects. They reflect
incoming solar radiation back to space, contributing to cooling, but also trap outgoing
longwave radiation from the surface, enhancing the greenhouse effect. According to
Intergovernmental Panel on Climate Change (IPCC) (2023), the net global effect of
clouds is a positive radiative forcing. However, clouds remain the most uncertain
component in climate models due to the challenges of accurately representing their
climatological impact.

• Surfaces influence radiative forcing primarily through their albedo. A well-known
positive feedback mechanism is the ice-albedo feedback, discussed in Sec. 1.2.2, where
melting ice reduces surface reflectivity, leading to further warming. On the other
hand, anthropogenic land use, such as deforestation, often replaces dark forested
areas with brighter, more reflective surfaces, reducing absorbed solar radiation and
resulting in a slightly negative radiative forcing. This is illustrated in Fig. 1.9.



22 1. Introduction

Conversely, the deposition of dark aerosols on snow and ice surfaces reduces their
albedo and contributes a positive radiative forcing.

• Aerosols influence climate both directly and indirectly. Directly, they interact with
radiation by scattering and reflecting incoming solar energy, thereby contributing
to cooling. Indirectly, aerosols act as CCN, as first described by Twomey (1974).
When the number of CCNs increases while the amount of available H2O remains
constant, cloud droplets become more numerous but smaller. Smaller droplets reflect
solar radiation more efficiently and have reduced interaction with thermal radiation,
allowing more heat to escape to space. Consequently, both the direct and indirect
effects of aerosols contribute to negative radiative forcing.

Figure 1.9 summarizes the effective radiative forcing associated with various atmospheric
constituents, including surface albedo and aerosols. Greenhouses gases such as CO2 and
CH4, however, present a net positive radiative forcing that vastly outweighs their negative
contributions.

Figure 1.9: Contributions to radiative forcing of different atmospheric components. Both
surface albedo and aerosols have a net negative impact, while atmospheric trace gases
exhibit mostly positive forcings. Figure from Intergovernmental Panel on Climate Change
(IPCC) (2023)

These examples show how atmospheric processes impact climate in complex and intercon-
nected ways, often involving feedback loops. For this reason, the study of climate dynamics
heavily relies on numerical simulations using ESMs. These models solve the Navier–Stokes
equations to simulate atmospheric and oceanic circulation across the globe, compute ra-
diative transfer and energy exchange between the atmosphere and the underlying surface,
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and include representations of atmospheric chemistry, land surface processes, and other
key components. ESMs are designed to be computationally efficient, enabling simulation
of Earth’s climate system over multi-decadal to centennial timescales.

1.3 Characterizing exoplanet atmospheres
Since the discovery of the first exoplanet orbiting a main-sequence star (51 Pegasi b) in 1995
by Mayor & Queloz (1995), the field of exoplanet science has rapidly expanded. To date,
over 5 900 exoplanets have been confirmed, displaying a remarkable diversity in mass, ra-
dius, composition, and orbital configuration1. The majority of these exoplanets have been
detected using the transit method, whereby a planet passes in front of its host star as seen
from Earth, causing a periodic dimming in the observed stellar brightness. During a tran-
sit, a small fraction of the starlight passes through the planet’s atmosphere before reaching
the observer. This light is selectively absorbed and scattered by atmospheric molecules, im-
printing spectral features that allow to probe the planet’s atmospheric composition. This
technique, known as transmission spectroscopy, was first demonstrated by Charbonneau
et al. (2002) through the detection of sodium in the atmosphere of HD 209458 b.
Transmission spectroscopy is particularly effective for large, close-in exoplanets such as Hot
Jupiters and Ultra-Hot Jupiters, where the high atmospheric scale heights and favorable
star–planet radius ratios result in strong signals. The method has enabled the detection of
key atmospheric constituents, including H2O, Na, K, and CO, as well as insights into the
presence of clouds and hazes (Brogi & Line, 2019). Ground-based observations using high-
resolution spectroscopy have opened new windows into exoplanet atmospheres, allowing
astronomers to resolve individual atomic lines (e.g., Wyttenbach et al., 2015; Allart et al.,
2017; Prinoth et al., 2024a) and study atmospheric dynamics through Doppler shifts. This
includes measuring wind speeds (Ehrenreich et al., 2020; Seidel et al., 2021), detecting
atmospheric rotation, and even mapping the three-dimensional structure of jet streams
in certain Hot Jupiters (Seidel et al., 2025). Additionally, the use of cross-correlation
techniques has been instrumental in detecting molecules like CO and H2O (Snellen et al.,
2010), even when their features are buried in noisy data. Space-based observatories such
as the Hubble Space Telescope (HST) and more recently the James Webb Space Telescope
(JWST) have further advanced the field. These instruments have not only confirmed the
presence of clouds and hazes in numerous exoplanet atmospheres (e.g., Gao et al., 2023)
but also uncovered subtle phenomena like the glory effect (Demangeon et al., 2024), po-
tentially linked to cloud microphysics and atmospheric scattering.
Despite its power, transmission spectroscopy has inherent limitations. It requires a transit-
ing planet, which restricts the accessible sample. Additionally, it probes only the termina-
tor region (the day–night boundary), limiting latitudinal and longitudinal coverage. The
method is also sensitive to stellar heterogeneity, such as starspots and faculae, which can
contaminate or bias spectral interpretations, especially important in the context of rocky

1https://exoplanetarchive.ipac.caltech.edu, accessed on June 2nd, 2025.

https://exoplanetarchive.ipac.caltech.edu
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exoplanet observations around M-dwarfs.
An alternative and complementary technique is the observation of thermal emission from
exoplanets (e.g., Pino et al., 2020), particularly through the use of phase curves (e.g.,
Stevenson et al., 2017; Sing et al., 2024; Dang et al., 2025). As a planet orbits its host
star, different portions of its dayside and nightside become VI from Earth. By tracking the
system’s brightness over time, it is possible to infer the planet’s thermal structure, heat
redistribution efficiency, and composition. Thermal emission occurs primarily in the IR
and is sensitive to the atmospheric pressure–temperature (p–T) profile. Molecular species
such as H2O, CO2, CH4, and NH3 can be detected as absorption or emission features in
the emergent spectrum. This technique does not require the planet to transit and has
been effectively applied using both space-based with Spitzer (Stevenson et al., 2017) and
JWST (Sing et al., 2024)) and, in the future, ground-based IR instruments such as HiRISE
(e.g., Denis et al., 2025). Furthermore, directly imaged exoplanets, typically young and
massive gas giants at wide separations, emit significant thermal radiation due to residual
heat from their formation. These objects can be characterized through thermal emission
spectroscopy, offering insight into the atmospheric properties of non-transiting exoplanets
and complementing studies of older, cooler worlds (e.g., Lagrange, 2014; Chauvin, 2024).

1.3.1 Reflected light
A promising but yet-to-be-fully realized technique for characterizing exoplanet atmospheres
is the observation of reflected light by detecting the fraction of stellar radiation that is re-
flected by an exoplanet’s atmosphere or surface back toward the observer. Although direct
detections of reflected light from exoplanets remain extremely challenging due to the high
contrast and small angular separation between the star and the planet, upper limits and
tentative detections have been reported for several targets (e.g., τ Boo, 51 Peg b) (Char-
bonneau et al., 1999; Martins et al., 2015).
Reflected light observations are conceptually analogous to Earth remote sensing techniques,
albeit with the critical difference that exoplanets are observed as spatially unresolved point
sources, effectively as a single pixel. This results in disk-integrated spectra, capturing glob-
ally averaged atmospheric and surface properties. One of the primary quantities accessible
via this method is the planet’s geometric albedo, which depends on a complex interplay of
atmospheric composition, surface reflectivity, and cloud properties (Marley et al., 1999).
By measuring the planet’s albedo as a function of wavelength and phase angle, it is possible
to infer the presence of scattering and absorbing species, as well as surface features. For
instance, Rayleigh scattering manifests as a blue spectral slope, while molecular absorption
bands from species such as O2, H2O, and CH4 appear in the VIS and NIR. Furthermore,
wavelength-dependent features like the VRE or phase angle-dependent features like the
ocean glint may become detectable in favorable cases, particularly for rocky exoplanets
orbiting nearby stars (e.g., Seager et al., 2005; Robinson et al., 2010). Fig. 1.10 illustrates
the accessible scattering features and indicates the phase angles at which they can be ob-
served, as explained in Vaughan et al. (2023).
Complementary to intensity-based reflected light observations is the measurement of the
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Figure 1.10: Schematic illustration of an exoplanet observed at different phase angles, α,
and the scattering features accessible along its phase curve. Figure adapted from Vaughan
et al. (2023), which demonstrates how a potential coronagraph for HWO might obscure
observations at small and large phase angles.

degree of linear polarization. Light that is scattered by molecules, aerosols, or cloud parti-
cles in an exoplanet’s atmosphere becomes linearly polarized, as well as light that reflects
off certain types of planetary surfaces. The degree and angle of polarization vary with
phase angle and wavelength and can enhance the detectability of specific planetary fea-
tures. For instance, polarization can improve sensitivity to ocean glint at crescent phases,
or reveal the cloudbow feature, which is an indicator of liquid water clouds (Stam, 2008;
Karalidi et al., 2012; Emde et al., 2017; Trees & Stam, 2022).
Future telescopes and instruments, both on the ground and in space, are expected to make
reflected light observations a viable pathway to exoplanet characterization. Notably, the
Extremely Large Telescope (ELT) with instruments such as ANDES (Pallé et al., 2025)
and PCS (Kasper et al., 2021), and proposed space-based missions like the Habitable
Worlds Observatory (HWO) (National Academies of Sciences & Medicine, 2021), aim to
directly image and spectrally characterize a range of exoplanets in reflected light, including
potentially habitable Earth-sized planets in the solar neighborhood (Quanz et al., 2022).



26 1. Introduction

In particular, this technique may enable the first atmospheric studies of Proxima b, the
closest known exoplanet to Earth, which does not transit its host star. Reflected light
spectroscopy and polarimetry could allow us to probe its lower atmosphere and surface
conditions, potentially reaching down to the troposphere, the region where clouds form
and where habitability-relevant processes occur. Among all current atmospheric charac-
terization techniques, reflected light remains the only method directly sensitive to surface
features, making it a unique approach for the future study of rocky exoplanets. However,
despite its scientific potential, reflected light characterization remains technically demand-
ing. The contrast ratio between star and planet in reflected light can be as low as 10−9 for
an Earth-analog orbiting a Sun-like star (Pallé et al., 2025). This imposes stringent require-
ments on instrumental stability, starlight suppression, and calibration precision. However,
the use of polarimetry can significantly enhance signal detection, as stellar light is typi-
cally unpolarized (Cotton et al., 2017) while the planetary signal is polarized, improving
the contrast between the star and the planet and enhancing signal detections.

1.3.2 Atmospheric retrieval of exoplanets
To extract the physical and chemical properties of exoplanet atmospheres from observa-
tional data, we employ a technique known as atmospheric retrieval. This process involves
comparing observations (e.g., transmission, emission, or reflected light spectra) to theoreti-
cal models of planetary atmospheres across a wide parameter space. The goal is to identify
the range of atmospheric compositions and structures that are consistent with the observed
data (Madhusudhan, 2019; Line et al., 2013). Atmospheric retrieval relies on the use of
simplified but flexible atmospheric models that can be evaluated rapidly. These models test
hypotheses about the atmospheric p-T structure, molecular abundances, cloud properties,
and surface or planetary parameters. Unlike detailed general circulation models (GCMs)
used for Earth or Solar System planets, retrieval models are typically one-dimensional and
assume global averages. This is due to the limited information content in exoplanet spec-
tra, which are generally disk-integrated and low in spectral resolution and signal-to-noise
ratio (SNR). At the core of retrieval methods lies a Bayesian inference framework, which
estimates the posterior probability distribution of the model parameters given the data
(Trotta, 2008). This is expressed using Bayes’ theorem:

P (θ|D) = P (D|θ) P (θ)
P (D) . (1.13)

Here, P (θ|D) is the posterior probability distribution of the parameters θ given the data
D, P (D|θ) is the likelihood, representing how well the model matches the observations for
a given set of parameters, P (θ) is the prior, encoding any assumptions or constraints on
the parameters, and P (D) is the evidence, a normalization constant in this context. The
forward model is used to simulate the planetary spectrum given a set of atmospheric pa-
rameters. A retrieval algorithm, often employing techniques such as Monte Carlo Markov
Chain (MCMC) or nested sampling, explores the parameter space to construct the full pos-
terior distribution. The result of this process is not just a single "best-fit" model (i.e., the
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Figure 1.11: In an atmospheric retrieval code an observed spectrum is compared to a
parametric model using statistical inference to estimate key atmospheric properties such
as the p-T profile, molecular abundances, and cloud/haze properties. Retrieval methods
produce posterior probability distributions for these parameters, enabling further inference
of derived quantities like elemental abundance ratios. Figure from Madhusudhan (2018).

one with maximum likelihood), but a statistically robust characterization of the allowed
parameter ranges, including uncertainties and degeneracies. The best-fit model refers to
the set of parameters that maximizes the likelihood function and provides an intuitive
comparison to the data, but may not represent the full complexity or uncertainty in the
solution space. For scientific interpretation, the marginalized posterior distributions and
credible intervals are typically more informative than the single best-fit solution.
Atmospheric retrieval has become a standard approach for analyzing transmission spec-
troscopy data, particularly for hot Jupiters where molecular and atomic features (e.g.,
H2O, CO, Na) are prominent and relatively easier to detect in both space-based (e.g.,
Barstow et al., 2020; Welbanks et al., 2019) and ground-based observations (e.g., Seidel
et al., 2020a; Gibson et al., 2020). More recently, efforts have been made to extend retrieval
techniques to thermal emission spectra and reflected light observations (Lupu et al., 2016;
Susemiehl et al., 2023). The latter introduces additional complexities, such as the impact of
clouds, surface reflectance, and phase-dependent geometry, requiring further methodologi-
cal advances. Despite they are broadly use to interpret exoplanet atmophere observations,
retrieval models come with several limitations. Because they must evaluate the forward
model many thousands of times, they rely on computationally efficient approximations,
such as 1D atmospheres, equilibrium chemistry, and parametric p-T profiles. Additionally,
there are often degeneracies between different parameters (e.g., between cloud opacity and
molecular abundances) that limit the uniqueness of the inferred solutions. As observa-
tional precision increases with missions like JWST and future direct imaging telescopes,
atmospheric retrieval methods will need to evolve to include more physical realism, such
as 3D structures, disequilibrium chemistry, and scattering effects.
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1.3.3 Habitability and biosignatures
An exoplanet is said to lie within the habitable zone (HZ) of its host star when its orbital
distance allows for the presence of liquid water on its surface, assuming Earth-like atmo-
spheric pressure (Kasting et al., 1993; Kopparapu et al., 2013). The concept of the HZ
is not a strict boundary, but rather a range that depends on stellar luminosity, planetary
atmosphere, and geophysical factors such as volcanism and tectonic recycling. While the
presence of liquid water is a necessary condition for life as we know it, it is by no means
sufficient. Thus, the HZ merely serves as a first-order filter in the search for potentially
habitable worlds. The detection of a biosignature, a molecule or phenomenon that provides
scientific evidence of past or present life, is a central objective in exoplanet science. On
Earth, examples of atmospheric biosignatures include O2, O3, CH4, and N2O, which are
produced in large quantities by biological processes and maintained far from thermody-
namic equilibrium (Des Marais et al., 2002; Meadows et al., 2018). A classic example is
the coexistence of O2 and CH4, which under abiotic conditions would rapidly react and
disappear from the atmosphere. This simultaneous presence signals a strong disequilibrium
that on Earth is maintained by life. However, caution must be exercised in interpreting
these biosignatures, as several gases once proposed as biosignatures can also be generated
through abiotic processes. For example, CH4 can arise from serpentinization in hydrother-
mal systems, and phosphine (PH3) may form in reducing atmospheres without biological
activity (Sousa-Silva et al., 2020). Likewise, O2 itself can be produced abiotically through
photodissociation of water followed by hydrogen escape, particularly around M-dwarf stars
(Luger & Barnes, 2015). These false positives show the importance of considering plane-
tary context and complementary spectral features.
Geophysical processes such as volcanic outgassing, mantle redox state, and tectonics play
a crucial role in setting the baseline composition of an atmosphere (Noack et al., 2017).
These factors determine the outgassing rates of CO2, SO2, and H2O, all of which shape
the planet’s climate and influence the detectability and stability of potential biosignatures.
Additionally, photochemistry can significantly modify atmospheric compositions, poten-
tially destroying or creating biosignature-like molecules in ways that depend on stellar UV
flux, temperature, and atmospheric composition (Harman et al., 2018). In this context, the
next generation of observatories will revolutionize our capacity to assess the habitability
of exoplanets. From the ground, instruments like ANDES and PCS at the ELT will de-
liver high-resolution spectra that may constrain molecular signatures in reflected light. In
space, future missions such as the HWO (National Academies of Sciences & Medicine, 2021)
and LIFE (Quanz et al., 2022) are designed to directly image and spectrally characterize
Earth-sized planets in the HZ of nearby stars.

1.4 Scope of this Thesis
In this thesis, I approach the study of Earth through the lens of an exoplanet observer.
To do this, I employ advanced radiative transfer models, commonly used in Earth remote
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sensing, to simulate how Earth would appear as a distant, spatially unresolved point of
light. I use a large catalog of Earthshine observations, which capture sunlight reflected
by Earth and then scattered off the darker portion of the visible Moon, to derive disk-
integrated spectra representative of Earth’s appearance as an exoplanet. By simulating
these Earthshine datasets, I aim to develop a robust and validated model that can inform
the physical requirements for accurately interpreting exoplanet observations.
This thesis is guided by the following central questions:

• Q1: Exoplanet models involve a vast number of parameters and are computationally
expensive. How many, and which, parameters are truly necessary to include in order
to reliably compare models with observations? Using Earth as a benchmark, can we
identify the threshold between oversimplification and unnecessary complexity? This
is closely related to Einstein’s dictum: “Everything should be made as simple as
possible, but not simpler.”

• Q2: What insights can be gained from studying Earthshine observations? Specifi-
cally, can polarimetric measurements enhance our ability to distinguish key planetary
characteristics such as surface types, cloud cover, or biosignatures?

• Q3: How does an exoplanet model of Earth compare to traditional Earth system
models? Can this independent approach provide novel validation tools or even lead
to improvements in how we model and understand Earth’s own energy balance?
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2
Radiative transfer: theory and

simulations

2.1 Introduction to radiative transfer
Radiative transfer (RT) is the study of the interaction between electromagnetic radiation
and matter. It is a topic that lies at the core of both astrophysical and atmospheric
sciences, providing the foundation for interpreting the spectra of distant stars and galaxies
and modeling the energy balance in planetary atmospheres. RT describes how solar and
terrestrial radiations propagate through the atmosphere, accounting for processes such as
absorption, scattering, and emission by gases, aerosols, clouds, and the surface.
A fundamental understanding of RT is essential for this thesis, as it underpins the modeling
of Earth as an exoplanet and the interpretation of disk-integrated observations, such as
Earthshine. This chapter introduces the theoretical framework of the RT equation, explains
its physical significance, and outlines the main numerical methods used to solve it. The
content of this Section is based on the treatments presented in Liou (2002) and Marshak
& Davis (2005). In deriving the RT equation, we adopt the plane-parallel atmosphere
approximation, where variations in radiance and atmospheric properties are assumed to
occur only in the vertical direction.

2.1.1 Interaction between radiation and the atmosphere
The fundamental quantity used to describe the transport of radiaiton in the atmosphere
is the spectral radiance Iλ(r, θ, ϕ, t), which depends on spatial position r, propagation
direction (θ, ϕ) and time t. The subscript λ denotes its wavelength dependence. The
explicit dependence on position and time is often omitted for simplicity. Spectral radiance
represents the energy per unit time, area, solid angle, and wavelength and is expressed
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in units of W m−2 sr−1 µm−1. By integrating radiance over the solid angle, we obtain the
spectral irradiance Eλ(r, t), in units of W m−2 µm−1, which represents the total energy
incident on a surface per unit area and wavelength.
As radiation travels through the atmosphere, it interacts with its constituents (i.e., gases,
aerosols, and cloud particles), undergoing several key processes, typically grouped into four
main categories:

• Transmission, where photons pass through the medium without any interaction;

• Absorption, in which photons are absorbed by particles or molecules when their
energy matches the energy difference between two quantized states;

• Scattering, where photons are redirected by particles or molecules;

• Emission, which occurs when matter emits radiation, adding new energy to the ra-
diation field.

Absorption and scattering play a significant role in the VIS and IR spectral regions. For
example, H2O, CO2, and O3 exhibit strong absorption features in the IR. At shorter wave-
lengths, absorption by O3 is the more dominant process. Understanding these processes is
important for interpreting how radiation propagates through the atmosphere and retrieving
atmospheric and surface properties from satellite and ground-based observations.

2.1.2 Absorption
If a photon traveling through the atmosphere has an energy (or, equivalently, a wavelength)
that matches the energy difference between two quantized states of a molecule, it can be
absorbed, causing the molecule to transition to a higher energy level. This absorption
process is governed by the molecular structure and composition, as well as the energy of
the incoming radiation. The amount of absorption varies significantly depending on both
these factors.
When a radiance Iλ passes through a layer of absorbing material with infinitesimal path
length ds, the differential loss due to absorption is described by the following extinction
law as

dIλ = −κλρIλds, (2.1)

where ρ is the density of the medium and κλ is the wavelength-dependent mass extinction
coefficient.
In the approximation of a plane-parallel atmosphere, we replace the differential displace-
ment ds with the vertical differential

dz = ds · cos(θ) = ds · µ, (2.2)

where µ = cos(θ) is the cosine of the zenith angle of the radiation path.
To simplify the RT equation, we introduce the concept of optical depth (or optical thick-



2.1 Introduction to radiative transfer 33

ness), defined as the line integral of the extinction coefficient along the vertical path:

τ(z) =
∫ z

0
κλρ(z′)dz′, (2.3)

from which we can derive its differential simply as

dτ = κλρdz. (2.4)

Substituting this into the extinction law, we obtain the absorption term of the RT equation:

µ

(
dIλ

dτ

)
abs

= −Iλ. (2.5)

This first-order linear differential equation can be solved analytically, yielding the Beer–Bou-
guer– Lambert law:

Iλ(τ) = Iλ(0)e−τ/µ. (2.6)
This solution reveals the physical meaning of the optical depth: it quantifies the exponential
attenuation of radiation as it propagates through an absorbing medium.

2.1.3 Emission
Emission is the inverse process of absorption. The energy previously absorbed by matter is
released in the form of photons. The amount and the spectral distribution of the emission
depend primarily on the temperature of the material. The simplest model of an emitter is
the black body, whose emission is described by Planck’s radiation law:

Bλ(T ) = 2hc2

λ5
1

e
hc

λkBT − 1
, (2.7)

where Bλ is the spectral radiance emitted at wavelength λ, T is the temperature of the
black body, h is Planck’s constant, c is the speed of light in vacuum, and kB is Boltzmann’s
constant.
In the atmosphere, the two principal sources of electromagnetic radiation are:

• the Sun, which emits primarily in the UV, VIS, and NIR parts of the spectrum;

• the Earth’s atmosphere system itself, which emits thermal (IR) radiation.

Both black body radiances are shown in Fig. 2.1. The two curves span a broad spectral
range, from approximately 0.1 µm to 100 µm. Solar radiation, often called shortwave radi-
ation, dominates at wavelengths shorter than about 4 µm. In contrast, radiation emitted
by the Earth and its atmosphere (longwave radiation) prevails in the thermal IR region,
typically between 4 and 100 µm. Because of their vastly different surface temperatures,
the peaks of their respective emission curves lie at different wavelengths, around 0.5 µm
for the Sun and 10.1 µm for the Earth. The clear spectral distinction between solar and
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Figure 2.1: Normalized radiances of the Sun and the Earth, modeled as two black bodies
with temperatures of T⊙ = 5777 K and T⊕ = 288 K, respectively.

terrestrial emission simplifies remote sensing, as the dominant radiation source is usually
unambiguous at most wavelengths.
In the RT equation, thermal emission is introduced via Planck’s law. The emission term
is proportional to the Planck function and modulated by the absorption properties of the
medium:

µ

(
dIλ

dτ

)
emiss

= (1 − ω̃)B[T (τ)], (2.8)

where the black body radiation depends on the optical depth through the temperature of
the medium. The factor (1 − ω̃) accounts for the fact that only the absorbing part of the
medium contributes to thermal emission. In a scattering-dominated regime, instead, no
radiation is absorbed, and thus no radiation can be reemitted as thermal radiation. The
single scattering albedo ω̃ is defined as

ω̃ = σλ

σλ + κλ

, (2.9)

where σλ and κλ are, respectively, the scattering and absorption coefficients. The single
scattering albedo ω̃ characterizes the dominance of scattering over extinction:

• ω̃ = 0 for purely absorbing medium, without any scattering;

• ω̃ = 1 for purely scattering medium, with no absorption and thus no emission.

Thus, in a scattering-dominated regime, thermal emission vanishes because there is negli-
gible absorption to power it.
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2.1.4 Scattering
In addition to being absorbed or emitted, photons can also be redirected upon interaction
with molecules or particles in the atmosphere. In the RT equation, this process, scattering,
has a dual effect: it removes radiance from the direction of interest by deflecting photons
away, and it adds radiance by redirecting photons into the direction of interest from other
paths. The extent of scattering, and more importantly, its angular distribution, depends
on the wavelength of the radiation and its relation to the size of the scattering particles.
The relative size of a scattering particle is described by the size parameter

x = 2πr

λ
, (2.10)

where r is the physical radius of the particle. Depending on the value of x, different
scattering regimes apply:

• Rayleigh scattering: Occurs when particles are much smaller than the wavelength
of the incident radiation (x ≪ 1). The scattering intensity varies as λ−4, making
shorter wavelengths (e.g., blue light) scatter much more efficiently than longer wave-
lengths (e.g., red light). This is the process responsible for the blue color of the sky.
Rayleigh scattering is nearly symmetric in the forward and backward directions, as
illustrated in the left panel of Fig. 2.2.

• Mie scattering: Applies when the particle size is comparable to the wavelength
(x ∼ 1), as is typical for cloud droplets in the VIS and IR. Mie scattering is generally
anisotropic, with a strong preference for the forward direction (see the central panel
of Fig. 2.2).

• Geometric optics: When particles are much larger than the wavelength (x ≫ 1),
scattering can be approximated using geometric optics, where photons behave like
rays that reflect and refract according to Snell’s law and Fresnel’s equations. This
regime is commonly used to describe the interaction of visible light with raindrops.
An example is shown in the right panel of Fig. 2.2.

The scattering patterns illustrated in Fig. 2.2 were generated using the phase curves pre-
sented in Liou (2002, Fig. 3.13). These curves correspond to cloud droplets (∼ 10 µm),
aerosols (∼ 1 µm), and molecules (∼ 10−4 µm) illuminated by visible light with a wave-
length of approximately ∼ 0.5 µm. As such, they represent the three scattering regimes
discussed above: geometric optics, Mie scattering, and Rayleigh scattering, respectively.
The fundamental function to describe the scattering properties of a medium is the scatter-
ing phase function P (µ, ϕ; µ′, ϕ′), which describes the conditional probability of scattering
into the new direction (µ, ϕ), coming from the initial direction (µ′, ϕ′). The phase function
is incorporated in the RT equation in two terms. The first one weights the intensity com-
ing from all directions in a layer of the atmosphere by the phase function to compute how
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Figure 2.2: Top row: scattering patterns for the Rayleigh, Mie, and Geometric optics
scattering regimes. The black dot shows the position of the scattering particle. Bottom
row: phase functions used to generate the scattering patterns above. The phase functions
are taken from Fig. 3.13 of Liou (2002).

much of that intensity will be scattered in a specific direction of propagation:

µ

(
dIλ(µ, ϕ)

dτ

)
scat

= ω̃

4π

∫ 2π

0

∫ 1

−1
Iλ(τ, µ′, ϕ′)P (µ, ϕ; µ′, ϕ′)dµ′dϕ′, (2.11)

where 4π is introduced as a normalization term, and the ω̃ signifies the strength of scat-
tering. The second term weights how much of the unscattered starlight, which enters the
atmosphere at an angle (µ0, ϕ0), is scattered into the direction (µ, ϕ). Additionally, this
term must be attenuated by an extinction term proportional to e−τ/µ0 as

µ

(
dIλ(µ, ϕ)

dτ

)
scat

= ω̃

4π
F⊙e−τ/µ0P (µ, ϕ; µ0, ϕ0) = Se−τ/µ0P (µ, ϕ; µ0, ϕ0), (2.12)

where F⊙ is the incident sunlight, and, in the second equivalence, we defined a source term
S incorporating the terms

S = ω̃F⊙

4π
. (2.13)

A notable example of a scattering phase function is the one describing Rayleigh scattering:

P (µ) = 3
4(1 + µ2). (2.14)

As shown in Fig. 2.2, this phase function is symmetric with respect to the forward (µ = 1)
and backward (µ = −1) directions.
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2.1.5 The radiative transfer equation
By combining all the components derived in the previous sections, we arrive at the RT
equation, which governs the evolution of radiance as it propagates through a medium.
This equation incorporates the effects of absorption, emission, and scattering, and serves
as a fundamental tool in atmospheric sciences, astrophysics, and remote sensing:

µ
dIλ(τ, µ, ϕ)

dτ
= − Iλ + ω̃

4π

∫ 2π

0

∫ 1

−1
Iλ(τ, µ′, ϕ′)P (µ, ϕ; µ′, ϕ′)dµ′dϕ′+

+ Se−τ/µ0P (µ, ϕ; µ0, ϕ0) + (1 − ω̃)B[T (τ)].
(2.15)

The RT equation contains sink terms representing extinction, either by absorption or out-
scattering, and source terms accounting for in-scattering, incoming stellar radiation, and
thermal emission, modelled using the Planck function B[T (τ)].
As an integro-differential equation, where the radiance in a given direction depends on con-
tributions from all other directions, the RT equation cannot be solved analytically without
substantial approximations. Consequently, a variety of numerical methods have been de-
veloped to obtain its solutions. The following Section 2.2 presents both one-dimensional
(1D) and three-dimensional (3D) numerical methods used to solve the RT equation.

2.1.6 Surface reflection
While the RT equation describes the propagation of radiance from the TOA down to the
surface, it is also necessary to model the interaction of radiation with the surface itself.
Part of the incident radiation is absorbed by the surface, while the remainder is reflected
back into the atmosphere. The albedo a quantifies the fraction of incident radiation that is
reflected, whereas the bidirectional reflectance distribution function (BRDF) characterizes
the angular distribution of this reflected radiation.
Analogous to the phase function P used to describe scattering, the BRDF is a function of
both the incoming direction (µ′, ϕ′) and the outgoing direction (µ, ϕ), and it describes the
probability that light arriving from one direction is reflected into another. The simplest
example of BRDF is the Lambertian reflectance, which assumes that the surface reflects
radiation isotropically:

BRDF(µ, ϕ; µ′, ϕ′)Lamb = a

π
, (2.16)

where a is the albedo of the surface and the π factor is included to ensure energy conser-
vation.

2.2 Numerical methods for radiative transfer

2.2.1 One-dimensional solvers
In this Section, I will briefly review some of the most widely used 1D numerical methods
for solving the RT equation. Some methods adopt a more direct approach, discretizing
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the angular domain and numerically solving the resulting system of differential equations.
Others employ more indirect techniques, such as the doubling-adding method and Monte
Carlo simulations. I will outline the fundamental principles behind each of these methods
and highlight their respective areas of application.

Discrete ordinate method

The discrete ordinate method (DOM) is one of the most straightforward approaches for
numerically solving the RT equation. It was first introduced by Chandrasekhar (1950) and
then applied by Liou (1973) to cloudy atmospheres.
To illustrate the method, we consider a simplified scenario assuming azimuthal symmetry,
isotropic scattering, and no atmospheric emission. More advanced implementations drop
these assumptions to model more general cases.
Under these conditions, the RT equation becomes

µ
dI(τ, µ)

dτ
= −I(τ, µ) + ω̃

2

∫ 1

−1
I(τ, µ′)dµ′ + Se−τ/µ0 . (2.17)

Having assumed isotropic scattering, the phase function simplifies to P (µ; µ′) = 1, elimi-
nating directional dependence in the scattering term.
To solve this equation numerically, we discretize the continuous angular direction µ into
2n directions µi and use the Gauss-Legendre quadrature formula to discretize the integral:

µi
dIi(τ)

dτ
= −Ii(τ) + ω̃

2

n∑
j=−n

ajIj + Se−τ/µ0 , (2.18)

where the aj coefficients are the quadrature weights.
This system of equations forms a set of coupled, non-homogeneous first-order differential
equations. It is typically solved by combining the general solution of the corresponding
homogeneous system with a particular solution of the inhomogeneous system.
Although this example assumes isotropic scattering, DOM is also capable of handling
anisotropic scattering accurately, with increasing precision as more angular directions are
included, at the cost of greater computational complexity. The method is especially useful
when the full radiation field, including the angular distribution at each atmospheric level,
is required.

Two-stream approximation

The two-stream approximation method (Toon et al., 1989) is a simplified and computation-
ally efficient variant of the DOM. It assumes radiation propagates in only two directions:
upward and downward. We denote the corresponding radiances by I↑ and I↓ respectively.
The sum in Eq 2.18 reduces to only two elements, and for the special case of n = 1, the
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quadrature weights simplify to a1 = a−1 = 1. The system in Eq. 2.18 reduces to:

µ1
dI↑

dτ
= −I↑ − ω̃

2 (I↑ + I↓) − Se−τ/µ0

−µ1
dI↓

dτ
= −I↓ − ω̃

2 (I↑ + I↓) − Se−τ/µ0 .

(2.19)

The next step is to define two new radiances, the sum and the difference between the upward
and downward radiances: M = I↑ + I↓ and N = I↑ − I↓. Summing and subtracting the
two equations above, we obtain

µ1
dM

dτ
= N

µ1
dN

dτ
= −(1 + ω̃)M − 2Se−τ/µ0 .

(2.20)

Differentiating these equations with respect to τ and substituting back, we arrive at two
decoupled second-order differential equations:

d2M

dτ 2 = −1 + ω̃

µ2
1

M − 2S

µ2
1

e−τ/µ0

d2N

dτ 2 = −1 + ω̃

µ2
1

N + 2S

µ1µ0
e−τ/µ0

(2.21)

These equations can be solved efficiently and then inverted to retrieve I↑ and I↓.
While very simple and dependent on the approximation of only two streams, this method is
still very valuable due to its fast evaluation of a solution to the RT equation. In particular,
it is highly relevant for GCMs, where computational efficiency is a significant factor.

Doubling-adding method

Compared to previous methods, the doubling-adding method approaches the RT equation
from a fundamentally different perspective. First introduced by Hansen & Travis (1974)
for the study of sunlight propagation through clouds, this method does not discretize the
angular space to solve differential equations, as in the DOM. Instead, it constructs the
solution by working with the integral properties of thin atmospheric layers.
The vertical structure of the atmosphere is divided into very thin, horizontally homoge-
neous layers (typically with optical thickness ∆τ < 10−8). For each of these thin layers, the
reflectance R and transmittance T functions are computed based on the single-scattering
approximation, using the phase function P and the single-scattering albedo ω̃:

R(µ, ϕ; µ0, ϕ0) = ω̃∆τ

4µµ0
P (µϕ; −µ0, ϕ0) (2.22)

T (µ, ϕ; µ0, ϕ0) = ω̃∆τ

4µµ0
P (−µϕ; −µ0, ϕ0). (2.23)
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To obtain the radiative properties of thicker layers, the method applies two recursive op-
erations: doubling, which combines two identical layers to simulate a thicker one, and
adding, which merges different layers. Through repeated application of these steps, the
method builds up the full atmospheric column to a desired optical depth or all the way to
the surface.
The doubling-adding method is particularly effective for atmospheres that are stratified
and horizontally homogeneous. It naturally accounts for multiple scattering by combining
multiple single-scattering R and T and is especially useful in optically thick regimes, such
as cloudy layers.

Monte Carlo methods

The last method presented in this short review is Monte Carlo Radiative Transfer (MCRT).
Instead of tackling the RT equation directly, the MCRT method relies on a probabilistic
reinterpretation of the physical processes described by the RT equation. While many
different reviews exist of the Monte Carlo method, we refer mainly to Mayer (2009) and
Noebauer & Sim (2019). As an illustrative example, we consider the simplest atmospheric
process: photon absorption.
From the Beer-Bouguer-Lambert law, we can determine that the probability of survival of
photons travelling in the atmosphere is

p(τ) = # of photons survived after τ

# of initial photons at τ = 0 = I(τ)
I(0) = e−τ . (2.24)

In this sense, we can reinterpret the optical thickness as a measure of the probability of
absorption for a photon traveling through the atmosphere.
From the probability density function p(τ) we can compute the corresponding cumulative
density function (CDF) as

C(τ) =
∫ τ

0
e−τ ′

dτ ′ = 1 − e−τ . (2.25)

In an MCRT simulation, the trajectories of photons launched from the TOA are simulated
using random number generators. Specifically, a random number ξ ∈ (0, 1) is drawn and
used to sample from the CDF using inverse transform sampling. This is then used to
sample the CDF by inverse sampling:

ξ = 1 − eτ → τ = − ln (1 − ξ). (2.26)

This sampled optical depth is then converted into a physical distance traveled by the
photon using the definition of optical depth. Assuming a constant extinction coefficient
κλρ along the path, the relation becomes

s = τ

κλρ
. (2.27)
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After traveling this distance s, the photon is considered absorbed by the atmosphere and
is removed from the simulation. Other processes, such as emission, scattering, and surface
interactions, can similarly be described probabilistically and incorporated into the MCRT
framework.
By simulating a large number of photons (typically N ∼ 106), the cumulative distribution
function is sampled more accurately, resulting in a more precise simulation of radiative
processes. The error in an MCRT simulation scales as σ ∼ 1/

√
N , meaning that a high

number of photon packets is needed to keep statistical noise low.
Despite its computational cost, MCRT has several advantages over the other methods
discussed in this Section. It is highly flexible, can be naturally generalized to complex ge-
ometries and to 3D domains, and even include polarization effects (Marchuk et al., 1980).
However, due to its high computational cost, it is not suitable for GCMs, which require fast
and lightweight algorithms. Instead, MCRT is typically used for remote sensing retrievals,
benchmarking, and simulations involving complex atmospheric scenes, such as clouds and
surface interactions. For example, MCRT methods have been employed to simulate radi-
ances for satellite missions like EarthCARE and PACE, where accurate treatment of 3D
radiative effects is critical.

2.2.2 The three-dimensional solver MYSTIC
1D models are widely used due to their simplicity and computational efficiency, but the
plane-parallel approximation they rely on can be too restrictive for some real-world scenar-
ios. Atmospheric features such as broken clouds, complex terrain, urban structures, and
shadowing effects introduce spatial heterogeneities that cannot be captured by 1D models
but significantly influence the radiance distribution through the atmosphere. To accurately
represent these effects, 3D RT models are required.
Solving the RT equation in 3D is substantially more complex than in 1D, as it demands
resolving both spatial and angular variability in all directions. In this thesis, I employed
MYSTIC, the Monte Carlo code for the phYSically correct Tracing of photons In Cloudy
atmospheres (Mayer, 2009; Emde et al., 2010), to simulate Earth as an exoplanet. MYSTIC
is part of the libRadtran software package (Mayer & Kylling, 2005a; Emde et al., 2016)
and is a comprehensive 3D Monte Carlo RT code capable of handling clouds, aerosols,
polarization, surface inhomogeneities, and complex atmospheric composition.
To address the otherwise prohibitive computational demands of 3D Monte Carlo simula-
tions, MYSTIC incorporates a variety of techniques to reduce statistical noise and enable
simulations at high spectral resolution, making it a powerful tool for detailed atmospheric
modeling.

Photon weight

In our simplified description of MCRT, we initially stated that when a photon is absorbed,
it is removed from the simulation. While conceptually straightforward, this approach
is computationally inefficient, as it requires launching a new photon each time one is
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absorbed. Instead, what MYSTIC does is to assign to each photon a weight w, initialized
to 1 and multiplied, after each scattering event, by a factor e−τ (Mayer, 2009). In this way,
absorption is treated probabilistically, and the photon continues to propagate, carrying
a diminishing weight that reflects its survival probability. To compute, for example, the
radiance reaching the surface, the weights of all photons that arrive there are averaged:

Isurf = I0µ0 · 1
N

Ns∑
i=1

wi, (2.28)

where I0 is the radiance at the TOA, µ0 the incoming angle, N the total number of photons
and Ns the number of photons that reach the surface (some may still be reflected back into
space, even if they are not absorbed completely by the atmosphere).
Using photon weights rather than simply counting photon arrivals makes the MCRT ap-
proach much more computationally efficient. Furthermore, it allows for radiance and flux
calculations at any altitude and in any region by averaging the weights of photons passing
through or interacting with a given location. This enables flexible and accurate diagnostics
across the entire domain of the simulation.

Local estimate

Since MCRT is often used in remote sensing retrievals, the primary interest is typically in
analyzing radiation traveling in a specific direction, such as toward a detector. However,
due to the stochastic nature of scattering events, it is unlikely for a photon to travel
precisely in the desired direction. As a result, a very large number of photon paths would
be required to obtain a sufficient signal from photons that reach the detector by chance. A
straightforward way to overcome this limitation is by applying the so-called local estimate
(LE) method (Marshak & Davis, 2005).
At each scattering event, we compute the probability that the photon would have scattered
in the direction of the detector, denoted µLE, and assign a corresponding LE weight wLE
as

wLE,i = wi−1p(µLE)e−τLE , (2.29)
where wi−1 is the photon weight after the previous scattering, p(µLE) is the value of the
scattering phase function in the direction of the detector, and τLE is the extinction between
the scattering point and the detector. The geometry of the LE method is shown in Fig. 2.3.
When the photon exits the computational domain, its total contribution to the detector
radiance via LE is computed as the sum of all LE weights over the photon’s path:

wLE =
n∑

i=1
wLE,i, (2.30)

where n is the number of scattering events.
This method ensures that every photon contributes to the radiance in the detector’s direc-
tion, not just those that happen to be scattered along that path. As a result, it greatly
improves statistical efficiency in directional radiance estimates.
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Figure 2.3: Two examples of LE in the case of double scattering. In panel (a), the first
scattering moves the photon away from the detector, and thus pLE at the second scattering
is small and will contribute with a small LE. In panel (b), instead, the photon gets scattered
in the direction of the detector, and thus pLE will produce a spike in radiance. Figure from
Buras & Mayer (2011a).

Variance reduction methods

Although the LE method is highly effective for computing radiances in specific directions
in MCRT simulations, it has a significant drawback when applied to particles with strongly
forward-peaked phase functions, such as cloud droplets and ice crystals. A photon that is
scattered, by chance, directly toward the detector will contribute a large LE, since p(µ ∼ 1)
is several orders of magnitude higher than in other directions (see the right panel in Fig.
2.3). This results in sharp spikes in the radiance estimates, hindering the convergence
behavior expected from an MCRT simulation and increasing statistical noise.
To address this numerical artifact, various variance reduction methods (VRMs) have been
developed. In MYSTIC, a suite of VRMs is implemented within a framework called
VROOM (Variance Reduction Optimal Options Methods), which applies each method
in the most suitable way depending on the context (Buras & Mayer, 2011b). Somewhat
counterintuitively, rather than preventing spikes, these VRMs aim to increase their number
while reducing their individual weight. This strategy makes the spikes less pronounced and
improves convergence. Here, we focus on one such method: detector directional impor-
tance sampling (DDIS).
DDIS works by artificially increasing the likelihood of photons being scattered toward
the detector before the actual scattering direction is sampled. More precisely, for each
scattering event, the direction is sampled from a modified phase function:

p†(µ) = (1 − ϵDDIS) · p(µ) + ϵDDIS · pDDIS(µ′), (2.31)

where µ′ is the direction toward the detector, ϵDISS and pDISS are a tunable mixing pa-
rameter and an artificial phase function, respectively. Typical choices are ϵDISS ∼ 0.1 and
pDISS = C · maxi (pi(µ)), with C a normalization factor and the pi representing all the
phase functions in the simulation (for all water and ice clouds, aerosols, etc.).
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Figure 2.4: Illustration of how DDIS works. With probability (1 − ϵDDIS), the photon is
scattered naturally and follows the path in the left panel. With probability ϵDDIS, instead,
the photon is first turned towards the detector and then scattered, as shown in the right
panel. Figure from Buras & Mayer (2011a).

This equation can be interpreted in the following way: with probability (1 − ϵDISS), the
photon is scattered according to the original phase function p(µ), following the natural
scattering behavior (left panel of Fig. 2.4). With probability ϵDISS, instead, the photon
is first turned towards the detector, and then scattered on a random direction µ′ sampled
from the pDISS phase function (right panel of Fig. 2.4). Since the direction µ′ chosen from
pDISS(µ) is unlikely to have been selected from the original phase function p(µ), we typically
have p(µ) ≪ pDISS(µ′). Naturally, this directional bias introduces a potential error in the
radiance calculation. To preserve the physical accuracy and ensure an unbiased result, the
photon weight must be adjusted:

wi = p(µ)
p†(µ) . (2.32)

Since p(µ) ≪ p†(µ) during a DISS step, the photon’s weight is significantly reduced, even
though it is more likely to contribute to the detector. This balancing mechanism reduces
variance while maintaining the statistical correctness of the simulation.

Absorption lines importance sampling

In a traditional MCRT simulation, obtaining the wavelength-dependent reflectance I(λ)
requires running a separate simulation for each wavelength bin. This approach becomes
computationally prohibitive for high-resolution applications, such as resolving molecular
absorption lines. To address this issue, MYSTIC employs the absorption lines impor-
tance sampling (ALIS) method (Emde et al., 2011). The idea is simple, yet effective.
Only a single simulation is needed, at a reference wavelength λ0, which is used to trace
the photon trajectories. However, within this single simulation, each photon is assigned
wavelength-dependent absorption weights wabs(λ) which are updated according to the ab-



2.2 Numerical methods for radiative transfer 45

sorption optical depth at each wavelength:

wabs(λ) = e−τabs(λ). (2.33)

Coupling this with the LE method, which can also be treated spectrally, we obtain a final
wavelength-dependent radiance of a single photon j as

Ij(λ) =
n∑

i=1
wabs,i · wLE,i, (2.34)

where n is the number of scattering events along the photon path. To improve the accuracy
of the ALIS method, the scattering weights can also be adjusted to reflect their spectral
dependence, in contrast to the fixed scattering used in monochromatic simulations. How-
ever, because the photon paths are still traced only at the reference wavelength λ0, the
spectral range must remain sufficiently narrow around λ0 to ensure that the approximation
remains valid.

Backward MCRT

A final enhancement to the standard MCRT approach is the use of backward photon
tracing. When the goal is to compute the radiance at a detector with a small area relative
to the entire computational domain, it becomes highly inefficient to simulate a large number
of photons from the TOA, since only a small fraction will reach the detector by chance. To

Figure 2.5: Difference between forward and backward MCRT. In the forward case, photons
hit the detector only rarely, while in the backward case, they all start from the detector
and their contribution to the incoming radiation is computed with LE at each scattering
event. Figure adapted from Mayer (2009).
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address this, backward tracing leverages the reciprocity principle of photon paths, which
states that the trajectory of light is reversible (Veach, 1998). Guided by this principle,
photons are launched from the detector, rather than from the TOA. During the simulation,
the LE method is used to evaluate the contribution of each backward-traced photon toward
the original solar direction µ0. The difference between the forward and backward MCRT
is shown in Fig. 2.5. This approach significantly improves computational efficiency by
focusing on photon paths that contribute to the radiance at the detector. As a result, the
number of photons required to achieve a given SNR at the detector is drastically reduced,
making backward MCRT an ideal choice for simulating small detectors or narrow fields of
view.

2.3 Polarization
Although invisible to the human eye, polarization is a fundamental property of electro-
magnetic waves. Variations in the amplitude and phase of the electric and magnetic field
components define the polarization state of light, which encodes valuable information about
the interactions the light has undergone after entering the atmosphere. While incoming
stellar radiation is typically unpolarized, it can acquire various polarization states through
scattering by molecules and aerosols, as well as through surface reflection.
To account for these effects, the scalar RT equation can be extended to its vectorial
form, which describes not only the evolution of intensity but of the full Stokes vector
S = [I, Q, U, V ]. This formalism enables a comprehensive treatment of polarization in RT
modeling.
In this Section, I will first introduce the fundamental concepts of polarization, followed by
a discussion of the main sources and sinks of polarization in Earth’s atmosphere.

2.3.1 Stokes vector
Electromagnetic radiation can be described by two transverse waves travelling along the
z-axis:

EL = aLe−i(kz−ωt+δL)

ER = aRe−i(kz−ωt+δR),
(2.35)

where the subscript L and R refer to the waves oscillating parallel and perpendicular to a
chosen reference plane, a is the amplitude of the waves, k = 2π/λ is the wavenumber, ω is
the angular frequency, and δ represents the phase. A more convenient way to describe the
polarization state of the electromagnetic wave is through the Stokes parameters:

I = ELE∗
L + ERE∗

R = a2
L + a2

R

Q = ELE∗
L − ERE∗

R = a2
L − a2

R

U = ELE∗
R + ERE∗

L = 2aLaR cos δ

V = −i(ELE∗
R − ERE∗

L) = 2aLaR sin δ

(2.36)
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where δ = δR − δL is the phase difference between the two waves.
These parameters can be interpreted in the following way.

• If either aL = 0 or aR = 0, the electromagnetic wave will be oscillating only along a
single direction, and thus the wave will be linearly polarized.

• If aL = aR ̸= 0, the wave will be either linearly polarized at ±45◦, or circularly
polarized, depending on the phase difference between the two waves. If the waves
are in phase, meaning δ = 0◦, the resulting wave will be diagonally polarized, while
if they are out of phase, δ = ±90◦, and the polarization will be circular.

Accordingly, the Stokes parameters Q, U and V describe:

• Q: Linear polarization along and perpendicular to the reference plane.

• U : Linear polarization at ±45◦ to the reference plane.

• V : Circular polarization.

A geometrical visualization of this interpretation of the Stokes parameter is shown in Fig.
2.6. From the Stokes parameter, we can define a degree of polarization P as

P =

√
Q2 + U2 + V 2

I
, (2.37)

which quantifies the amount of polarization in a given Stokes vector S = [I, Q, U, V ].

Figure 2.6: Visualization of the physical meaning of the Stokes parameters. The dif-
ferent polarization states arise from amplitude or phase differences between the electric
and magnetic waves. This visualization was made using the online tool available at
https://emanim.szialab.org.

2.3.2 Atmospheric processes
The sunlight that reaches the top of the Earth’s atmosphere is almost completely unpolar-
ized. However, processes within the atmosphere can both polarize and depolarize radiation.
In this Section, we will show some examples of such processes, like scattering and surface
reflection.
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Scattering

When an incoming Stokes vector S0 is scattered, it undergoes the following transformation:

S = P(θ)S0, (2.38)

where the matrix P(θ) is the scattering matrix, or Mueller matrix, which characterizes the
effect of scattering at an angle θ on the polarization state of the light. The component P11
corresponds to the scalar phase function introduced earlier in Section 2.1.4. For Rayleigh
scattering, which describes the scattering by small particles such as atmospheric molecules,
the appropriate Mueller matrix is given by Chandrasekhar (1950); Brown (2014):

P(θ) = 3
4


1 + cos2 θ − sin2 θ 0 0
− sin2 θ 1 + cos2 θ 0 0

0 0 2 cos θ 0
0 0 0 2 cos θ

 (2.39)

In Rayleigh scattering, the electric dipole oscillates within a defined scattering plane, de-
termined by the incident and scattered directions. If the light is scattered in the plane, it
retains its original polarization state (or remains unpolarized), but if it is scattered per-
pendicular to the plane, it becomes linearly polarized.
This behavior can be illustrated by applying the Mueller matrix to an unpolarized incident
beam, represented by the Stokes vector S0 = [I0, 0, 0, 0]T :

S = P(θ)


I0
0
0
0

 = 3
4I0


1 + cos2 θ
− sin2 θ

0
0

 (2.40)

This scattered light is now partially linearly polarized. The degree of polarization P is
given by

P = sin2(θ)
1 + cos2 θ

. (2.41)

This expression confirms that the polarization is maximal (i.e., P = 1) when θ = 90◦, and
vanishes (i.e., P = 0) when θ = 0◦, as expected from physical intuition. Fig. 2.7 shows the
degree of polarization in the sky for three different Sun altitude angles. As expected, the
polarization increases when looking away from the direction towards the Sun.
While a single scattering event can polarize initially unpolarized light, multiple scattering
events tend to depolarize it. In such cases, the Stokes vector is repeatedly transformed
by a sequence of Mueller matrices corresponding to various scattering angles θ1, θ2, ...,
θNs , for Ns scattering events. Since these scattering directions are generally random, the
cumulative effect of multiple scatterings averages out polarization signatures, leading to a
progressive reduction in the degree of polarization.
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Figure 2.7: Sky polarization for three different Sun altitude angles. P = 0 when looking
directly towards the Sun, and it increases until reaching its maximum when the angle
between the observed direction and the Sun is 90◦.

Surface reflection

Another important mechanism by which light can change its polarization state is surface
reflection. When an electromagnetic wave encounters the boundary between two media
with different refractive indices n1 and n2, the components of the electric field parallel
and perpendicular to the plane of incidence are reflected with different efficiencies. These
differences in reflectance are described by the Fresnel equations:

R⊥ = (n1 cos θi − n2 cos θt)2

(n1 cos θi + n2 cos θt)2 R∥ = (n2 cos θi − n1 cos θt)2

(n2 cos θi + n1 cos θt)2 , (2.42)

where θi is the angle of incidence and θt is the angle of transmission (or refraction). By
using Snell’s law, we can relate the angles of incidence and transmission with the refractive
indices of the two media:

n1 sin θi = n2 sin θt. (2.43)

Using this relation, the Fresnel equations can also be expressed in terms of the angles:

R⊥ = sin2 (θi − θt)
sin2 (θi + θt)

R∥ = tan2 (θi − θt)
tan2 (θi + θt)

. (2.44)

A particularly important angle in reflection is the Brewster angle θB, defined as the angle
of incidence for which the reflected light is entirely polarized perpendicular to the plane
of incidence. At this angle, the reflected component parallel to the plane vanishes, i.e.,
R∥ = 0, and the transmitted and reflected rays are orthogonal (θB + θt = π/2). From
Snell’s law, the Brewster angle can be written as

θB = arctan
(

n2

n1

)
. (2.45)
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To understand the impact of reflection on the polarization state of light, we can express
the Fresnel reflection behavior in terms of a Mueller matrix (Collett, 1971):

P = 1
2


R⊥ + R∥ R⊥ − R∥ 0 0
R⊥ − R∥ R⊥ + R∥ 0 0

0 0 2
√

R⊥R∥ 0
0 0 0 2

√
R⊥R∥

 (2.46)

When this matrix is applied to an unpolarized incident Stokes vector S0 = [I0, 0, 0, 0]T , the
reflected Stokes vector becomes:

S = PS0 = 1
2I0


R⊥ + R∥
R⊥ − R∥

0
0

 (2.47)

The resulting degree of polarization P of the reflected light is then

P = |R⊥ − R∥|
R⊥ + R∥

. (2.48)

At the Brewster angle, where R∥ = 0, this simplifies to P = 1, indicating complete linear
polarization. For an air–water interface, where nair ≃ 1.0 and nwater ≃ 1.33, the Brewster
angle is approximately:

θB ≃ arctan
(1.33

1.0

)
≃ 53◦. (2.49)

A striking example of surface-induced polarization is the ocean glint, the bright, mirror-like
reflection of sunlight off the ocean surface, often visible in satellite imagery. The left panel
of Fig. 2.8 shows a photograph taken from the International Space Station (ISS) of the
ocean glint partially covered by clouds. Ocean glint occurs when the angle of observation
from a satellite matches the angle of solar incidence, satisfying the condition for specular
reflection. In this geometric configuration, the sea surface reflects sunlight directly into
the telescope’s field of view, producing a localized, highly illuminated region.
Beyond being bright, ocean glint can also be strongly polarized, especially when the reflec-
tion occurs near the Brewster angle. When glint occurs at or near this angle, the degree of
polarization measured by the satellite can reach values as high as 80% to 90%, depending
on observational circumstances. The central and right panels of Fig. 2.8 show a true color
and a polarization images obtained from MYSTIC simulations of a cloudless ocean planet
at a phase angle of α = 120◦, close to double the Brewster angle for air-water interface.
While the polarized signal is clear in a cloudless simulation, multiple scattering in clouds
can strongly reduce the observed degree of polarization. While ocean glint can strongly
polarize light, many terrestrial surfaces tend to have the opposite effect, depolarizing the
incoming radiation. This depolarization primarily arises from multiple scattering events
within the material, surface roughness, and the heterogeneous composition of natural sur-
faces such as soil or vegetation, all of which can disrupt the coherence of the incoming
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Figure 2.8: Left panel: ISS view of the ocean glint (Credits: ESA/NASA). Central and right
panels: true color and polarization images from MYSTIC simulations of a cloudless ocean
planet at a phase angle of α = 120◦. The polarization was measured at the wavelength λ
= 645 nm.

polarization state. These effects can be analyzed using Mueller matrix formalism or sum-
marized through scalar depolarization metrics. However, unlike the analytically tractable
case of Fresnel reflection, depolarization behavior over complex surfaces is typically deter-
mined empirically through polarimetric measurements (Breon & Maignan, 2017).
So far, we have not examined the directional behavior of reflected polarized light in de-
tail. While perfectly smooth surfaces follow the classical law of reflection, where the angle
of incidence equals the angle of reflection (θi = θr), real-world surfaces are often rough
or complex and require more sophisticated models. In Section 2.1.6, we introduced the
BRDF as a way to characterize how light is reflected as a function of both incident and
outgoing directions. This concept can be generalized to account for polarization, leading
to the polarized BRDF, also known as pBRDF or bidirectional polarization distribution
function (BPDF).
A BPDF is a function that combines the directional dependence of a BRDF with the
polarization-transforming capabilities of a Mueller matrix. Formally, it is represented as
a 4×4 matrix-valued function, where each matrix element Pij(µ, ϕ; µ′, ϕ′) depends on both
the incoming (µ, ϕ) and outgoing (µ′, ϕ′) directions. The BPDF acts on an incident Stokes
vector S0 to produce a reflected Stokes vector S, accounting for changes in both direction
and polarization:

Sj(µ′, ϕ′) =
4∑

i=1
Pij(µ, ϕ; µ′ϕ′)S0,i(µ, ϕ). (2.50)

In this formulation, the element Pij describes how the i-th component of the incident
Stokes vector contributes to the j-th component of the reflected Stokes vector. This frame-
work allows for modeling complex surface reflection behaviors, including depolarization and
anisotropic scattering, commonly observed in natural surfaces like soil, vegetation, snow,
and ocean waves.
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Rainbows and cloudbows

Rainbows represent the final polarization mechanism discussed here in the context of atmo-
spheric optics. To understand why rainbows produce polarized light, we must first revisit
the optical processes responsible for their formation. When sunlight enters a spherical wa-
ter droplet suspended in the atmosphere, it undergoes a sequence of refractions and internal
reflections. The light is first refracted upon entering the droplet from the surrounding air.
It then reflects off the internal boundary of the droplet a number of times, denoted by k,
and finally refracts again as it exits the droplet toward the observer.
For a rainbow to be observed, a large number of incident rays must emerge from the droplet
within a narrow angular range. This focusing effect occurs for a specific angle of incidence,
given by (Adam, 2002):

cos θi =

√√√√n2
water − 1

k(k + 2) . (2.51)

Here, k indicates the order of the rainbow. For the primary rainbow (k = 1) and for a
water droplet (nwater ≃ 1.33), this yields an incidence angle of θi ≃ 59.4◦. Using Snell’s
law, the corresponding refraction angle inside the droplet is:

θt = arcsin
(

nair

nwater
sin(θi)

)
≃ 40.2◦. (2.52)

This angle also serves as the angle of incidence for the internal reflection. The Brewster
angle for internal reflection from water to air is given by

θB = arctan
(

nair

nwater

)
≃ 36.9◦. (2.53)

Note that in this case, the light is incident from water into air, which is the reverse of the
geometry considered in the case of surface reflection. Comparing this Brewster angle to
the internal reflection angle associated with rainbow formation, we find they are relatively
close, only a few degrees apart. This proximity results in significant linear polarization of
the light during internal reflection. The light then retains its polarization as it exits the
droplet and can be detected by an external observer.
Rainbows are produced by fixed geometric conditions that are largely independent of
droplet size, which typically exceeds > 100 µm. In contrast, cloudbows occur in clouds
composed of much smaller droplets (on the order of ∼ 10 µm), where the scattering is best
described by Mie theory rather than geometric optics. In this regime, the polarization sig-
nal, particularly its angular dependence and magnitude, is highly sensitive to the droplet
size. This makes cloudbow polarization a valuable tool for retrieving microphysical prop-
erties of clouds. Satellite measurements of polarized cloudbow features can be compared
with theoretical Mie simulations to accurately retrieve droplet size, an essential parame-
ter for understanding cloud formation processes and improving climate models (Bréon &
Goloub, 1998). Fig. 2.9 shows a measurement of polarized light from Pörtge et al. (2023),
which was used to retrieve the droplet size of clouds. In their observations, polarization
significantly enhances the signal from the cloudbow, a feature that remains nearly invisible
when considering intensity alone.
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Figure 2.9: Observation of linear polarization from a cloudbow, adapted from Pörtge et al.
(2023). Polarization measurements were used to retrieve the size of cloud droplets. The
cloudbow feature is nearly undetectable in intensity alone but is strongly enhanced in
polarization.

2.3.3 Polarization in simulations
The inclusion of polarization in RT models introduces an additional layer of complexity
and realism, particularly in the treatment of scattering and reflection. Unlike models that
consider only intensity, polarized RT accounts for the vector nature of electromagnetic
waves. This allows the simulation of polarization changes resulting from scattering pro-
cesses, non-spherical particles, and surface reflection effects.
The MCRT code MYSTIC, introduced in Section 2.2.2, is one of the most advanced and
widely used models capable of simulating polarized RT in fully 3D domains. MYSTIC
solves the full Stokes-vector RT equation in both plane-parallel and 3D geometries, mak-
ing it especially valuable for modeling polarized radiances in complex atmospheric scenarios
(Emde et al., 2010).
In MYSTIC, polarization is incorporated by tracking the Stokes vector of each photon
packet and applying Mueller matrices at scattering events. Precomputed Mueller matrices
for various particles, such as non-spherical ice crystals, allow for accurate modeling of po-
larized satellite observations, including those from instruments like POLDER and 3MI.
The capability to simulate polarization enables MYSTIC to support retrievals of aerosol
size distributions, as well as cloud droplet shapes and sizes. Moreover, compared to meth-
ods such as the DOM, Monte Carlo simulations are particularly well-suited for polarization
studies, as they do not significantly increase the computational cost relative to intensity-
only simulations.
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2.4 How to simulate the Earth as an exoplanet
Simulating the radiative signatures of spatially unresolved exoplanets requires a RT model
that accurately captures the physical complexity of planetary atmospheres in disk-integrated
observations. Various modeling approaches have been developed to replicate the spacecraft,
satellite, and Earthshine observations of Earth as an exoplanet discussed in Section 1.1.
Once these models are validated against observational datasets, they enable the extension
of studies on the Earth seen as an exoplanet across wavelengths and spectral resolutions
that are currently lacking in different observational methods. These models are essential
for preparing the next generation of telescopes, which will primarily focus on characterizing
Earth-like exoplanets.

One-dimensional models

1D models can be used as a first simplification to simulate the Earth as an exoplanet.
These models only consider the vertical atmospheric profile and omit horizontal latitudi-
nal and longitudinal variations, reducing their computational time.
Traub & Jucks (2002) developed the first of such models, which was later used by Woolf
et al. (2002) and Turnbull et al. (2006) to simulate Earthshine spectra. This model spanned
from the UV to the thermal IR and synthesized disk-integrated spectra by linearly combin-
ing nine individual components into a box model approximated by four parallel streams.
All the reflected light simulations assumed a fixed solar zenith angle (60◦) in a plane-
parallel atmosphere. Their models takes into account the optical depth of the standard
atmospheric species (such as H2O and O2), the optical depth of the stratospheric O3,
Rayleigh scattering, aerosol scattering, the reflectivity of high altitude clouds, reflectivity
of the ocean surface (without specular reflection), the reflectivity of the ocean pigment, the
reflectivity of the vegetated land due to chlorophyll, and the reflectivity of the low altitude
clouds and other surface components. This model focuses on the net resulting spectrum
due to the different components (see Fig. 1.5), and Woolf et al. (2002) found that the
two dominant components needed to match the Earthshine spectra are the high altitude
clouds and the clear atmosphere spectrum of H2O, O2, and O3. The next largest process
contributing to the signal was Rayleigh scattering from molecules.
Montañés-Rodríguez et al. (2006) made a substantial improvement in the modeling of
Earthshine intensity spectra using a multilevel multiple scattering RT model in 1D for
the calculation of the line-by-line atmospheric emission/transmission spectra in planetary
atmosphere (Kratz et al., 2005; Martin-Torres & Mlynczak, 2005). This model showed
excellent agreement in replicating the observed spectra, largely due to the improved han-
dling of scattering processes. They also developed a new approach for the cloud and surface
representation. Using global cloud maps from the international satellite cloud climatology
project (ISCCP) (Schiffer & Rossow, 1983), they calculate a global mean percentage of
clouds and surface types by applying solar and lunar geometry-based weighting to gener-
ate disk-averaged reflectance.
Kaltenegger et al. (2007) later adapted the Traub & Jucks (2002) and Des Marais et al.
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(2002) framework to study Earth’s spectral evolution over geological time, evolving the
tropospheric abundances of five key gases from Kasting (2004): CO2, CH4, O2, O3, and
NO2, with cloud cover assumed to not change appreciably over time. They show that at-
mospheric features on Earth-like exoplanets change considerably over their evolution from
a CO2 rich atmosphere to a CO2/CH4 rich Earth to a present-day atmosphere. Rugheimer
& Kaltenegger (2018) further extended these geological evolution spectra to Earth-like
planets orbiting F-G-K-M stars and to interpret data from space missions such as EPOXI
Rugheimer et al. (2013).

Three-dimensional models

3D models of Earth, viewed as an exoplanet, compute the planet’s reflected light by inte-
grating the radiance over the visible hemisphere. This is achieved by summing the spatially
resolved specific intensity, weighted by the projected area of each surface element as seen
from the observer’s viewpoint. Following Robinson & Reinhard (2018), the disk-integrated
flux density Fλ(ô, ŝ) is expressed as

Fλ(ô, ŝ) = R2
⊕

d2

∫
2π

Iλ(n̂, ô, ŝ)(n̂ · ô) dω, (2.54)

where R⊕ is Earth’s radius, d is the observer’s distance, Iλ is the location-dependent in-
tensity, n̂ is the surface normal vector, and ô and ŝ are unit vectors pointing toward the
observer and the Sun, respectively.
The simplest 3D models specify the reflectivity of each surface patch on the disk as a func-
tion of the viewing geometry. This is typically done using empirical BRDFs (Manalo-Smith
et al., 1998), and can produce either broadband (e.g., Pallé et al., 2003, 2008; Williams
& Gaidos, 2008) or spectrally resolved simulations (Ford et al., 2001). Fujii et al. (2011)
developed a more comprehensive modeling framework that includes atmospheric Rayleigh
scattering and wavelength-dependent BRDFs for various surface and atmospheric compo-
nents.
More advanced and realistic 3D tools solve the plane-parallel, multiple-scattering RT equa-
tion to generate radiance maps. These models accurately account for atmospheric absorp-
tion as well as cloud and gas scattering effects (Tinetti et al., 2006a; Fujii et al., 2011;
Robinson et al., 2011; Feng et al., 2018). In addition to spatial coverage data, they require
cloud optical properties for detailed simulations, often sourced from Earth science datasets
such as ISCCP.
More recently, Kofman et al. (2024) employed the fully 3D RT code PSG (Planetary Spec-
trum Generator, Villanueva et al., 2018) to model DSCOVR images, incorporating the
appropriate incident and emission angles. Their approach includes 3D atmospheric models
for both liquid and ice water clouds, vertical mixing profiles, and surface coverage de-
rived from monthly satellite observations. Clouds and aerosols are treated using multiple
scattering, with optical properties calculated via Mie theory.
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Full Stokes models for polarization

As introduced in Chapter 2.3, linear polarization inherently provides greater diagnostic
power than intensity-only simulations and observations. Stam (2008) developed the first
model to simulate the disk-integrated fraction of polarized light reflected by an Earth-like
exoplanet. Using an adding-doubling solver, the model computes RT through a locally
plane-parallel planetary atmosphere, followed by a disk-integration algorithm that inte-
grates the reflected flux vector over the illuminated and visible portion of the planetary
disk, accounting for the incident angle of stellar radiation. Inputs to the model include
the optical thickness of each atmospheric layer, single scattering albedo, scattering matrix,
and the composition of molecules and cloud particles. The surface is treated as a homoge-
neous, flat layer with a defined reflection matrix, either a Lambertian vegetation surface
that fully depolarizes light or a black ocean surface including specular reflection, though
without waves. Stam (2008) demonstrated that polarization is sensitive to atmospheric
parameters in ways that intensity-only observations are not, such as in determining cloud
altitudes from the continuum near the O2-A band and estimating O2 mixing ratios. How-
ever, the Stam (2008) model only handles horizontally homogeneous planets. It was also
applied to fit the Earthshine polarization spectra in Sterzik et al. (2012), but failed to
reproduce the spectral slope and continuum level.
Karalidi & Stam (2012) extended the doubling-adding method of Stam (2008) to include
inhomogeneous planetary surfaces and clouds. Subsequently, Karalidi et al. (2012) con-
ducted an in-depth investigation into the cloudbow polarization feature as a means of
detecting liquid water clouds in Earth-like exoplanet atmospheres.
The first application of a Monte Carlo method to jointly model intensity and linear polar-
ization in exoplanetary atmospheres was introduced by García Muñoz (2015). Later, Emde
et al. (2017) applied a different MCRT code, MYSTIC, to investigate how clouds, aerosols,
and sunglint influence polarimetric signals. Their model supports fully 3D atmospheric
configurations, incorporating 3D distributions of cloud and aerosol particles, and includes
surface reflection modeled either as a two-dimensional Lambertian surface or as a global
ocean represented using a BPDF to account for specular reflection. Their results showed
that reflected sunlight from ocean surfaces in the sunglint region leads to the highest po-
larization enhancements at large phase angles. However, the Emde et al. (2017) model was
unable to reproduce the Earthshine polarization spectra reported by Sterzik et al. (2012),
particularly with respect to the spectral slope.
More recent work by Trees & Stam (2022) built upon the Stam (2008) adding-doubling
model, introducing a Fresnel ocean model that accounts for wind-ruffled waves, foam, and
wave shadowing. Their results suggest that a liquid ocean may be detectable via spec-
tropolarimetry at a single phase angle; notably, the glint introduces a trough, rather than
a peak, in the polarization spectrum near the 950 nm H2O absorption band. Addition-
ally, Gordon et al. (2023) attempted to reproduce the VIS and NIR Earthshine polarization
measurements by Miles-Páez et al. (2014) using two modeling frameworks: the Stam (2008)
doubling-adding model and the VSTAR model (Versatile Software for Transfer of Atmo-
spheric Radiation; Kopparla et al., 2018). Both models failed to match the observations
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accurately, showing polarization discrepancies of several percent. These discrepancies were
primarily attributed to the oversimplified treatment of the ocean as a black, non-reflective
surface and the omission of the polarization contribution from ocean glint. Building on
this work, Goodis Gordon et al. (2025) extended their modeling framework to simulate
Earth-like planets across various geological epochs, demonstrating that polarized light of-
fers improved sensitivity to atmospheric features such as clouds and hazes compared to
flux-only observations.
While significant progress has been made in modeling polarization from Earth-like planets
with increasing realism, no current model successfully reproduces the Earthshine polariza-
tion spectra. This limitation forms the starting point of this thesis, which aims to identify
and improve the physical representations needed to benchmark Earth as an exoplanet using
polarized Earthshine observations.
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Surface albedo is an important parameter in radiative-transfer
simulations of the Earth’s system, as it is fundamental for cor-
rectly calculating the energy budget of the planet. The Moder-
ate Resolution Imaging Spectroradiometer (MODIS) instruments
on NASA’s Terra and Aqua satellites continuously monitor daily
and yearly changes in reflection at the planetary surface. The
MODIS Surface Reflectance Black-Sky Albedo dataset (version
6.1 of MCD43D) provides detailed albedo maps for seven spectral
bands in the visible and near-infrared range. These albedo maps
allow us to classify different Lambertian surface types and their
seasonal and yearly variability and change, albeit only into seven
spectral bands. However, a complete set of albedo maps cover-
ing the entire wavelength range is required to simulate radiance
spectra, and correctly retrieve atmospheric and cloud properties
from remote sensing observations of the Earth. We use a princi-
pal component analysis (PCA) regression algorithm to generate
hyperspectral albedo maps of the Earth. By combining different
datasets containing laboratory measurements of hyperspectral re-
flectance for various dry soils, vegetation surfaces, and mixtures
of both, we reconstruct albedo maps across the entire wavelength
range from 400 to 2500 nm. The PCA method is trained with a
10-year average of MODIS data for each day of the year. We ob-
tain hyperspectral albedo maps with a spatial resolution of 0.05°
in latitude and longitude, a spectral resolution of 10 nm, and a
temporal resolution of 1 d (day). Using the hyperspectral albedo
maps, we estimate the spectral profiles of different land surfaces,
such as forests, deserts, cities and icy surfaces, and study their
seasonal variability. These albedo maps will enable us to refine
calculations of the Earth’s energy budget and its seasonal vari-
ability and improve climate simulations.
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3.1 Introduction
The surface albedo of the planet plays a crucial role within the climate system, governing
the proportion of reflected solar light relative to incoming solar radiation at the surface.
This holds significant importance as it effectively regulates the Earth’s surface energy
budget (Liang et al., 2010; He et al., 2014). The role of albedo extends to climate regula-
tion, with snow and ice albedo feedback exerting a significant influence on climate change
dynamics. Snow and ice possess much higher reflectivity compared to the surfaces they
overlay. As temperatures rise, the diminishing extent of snow and ice cover leads to a
decline in the planet’s albedo. Consequently, this intensifies surface warming through a
positive feedback mechanism.
Land surface albedo displays remarkable variability, both spatially and temporally. Notable
fluctuations in surface albedo coincide with changes in land cover and surface conditions,
including factors like vegetation (Loarie et al., 2011; Lyons et al., 2008), snow (He et al.,
2013), soil moisture (Govaerts & Lattanzio, 2008; Zhu et al., 2011), and urban development
(Offerle et al., 2005). In addition, soil and vegetation surfaces show different reflectance
behaviours as a function of wavelength and are usually not incorporated into Earth system
models (ESMs).
In the last decades, the advancement of satellite remote sensing techniques has enabled
more accurate monitoring of the Earth’s surface, enhancing radiative transfer and climate
models. This progress allows for the continuous acquisition of extensive land surface ob-
servation data. However, climate models still struggle to capture temporal and spatial
variations in albedo. In particular, global and regional climate models often require albedo
products with an absolute accuracy of 0.02–0.03 (Sellers et al., 1995; He et al., 2014). Zhang
et al. (2010) compared Moderate Resolution Imaging Spectroradiometer (MODIS) albedo
products with model results from the Coupled Model Intercomparison Project Phase 3
(CMIP3) from 2000 to 2008, revealing discrepancies in globally averaged albedo of up to
0.06. In addition, validation of different satellite land surface products, such as MODIS
(Schaaf et al., 2002), the Global LAnd Surface Satellite (GLASS; Liu et al., 2013; Qu
et al., 2014), and the Copernicus Global Land Service (CGLS; Buchhorn et al., 2020),
shows absolute global differences of up to 0.02–0.06, with the largest variations occasion-
ally exceeding 0.1 (Shao et al., 2021).
The divergence among different albedo products is not the only source of uncertainty in
the radiative-transfer calculations of ESMs. Most ESMs use a two-stream approach for the
land component, where soil albedo has fixed values in two spectral broadband regions: the
photosynthetically active radiation (PAR) band (400–700 nm) and the near-infrared (NIR)
band (700–2500 nm). However, broadband radiative-transfer schemes show strong spectral
discontinuities at 700 nm (Braghiere et al., 2023). This divergence in surface reflectance
propagates into other radiative-partitioning terms, such as absorptance and transmittance
at the top of the atmosphere (TOA).
More generally, in cloud-free simulations over land, the dominant factor impacting TOA
visible (VIS) and near-infrared radiance is surface reflection (Vidot & Borbás, 2014). Var-
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ied surface optical properties exhibit distinct spectral signatures contingent on the type
of surface. Furthermore, within the VIS–NIR range, surface optical properties showcase a
robust geometrical reliance that changes in accordance with solar and satellite directions.
To elucidate the spectral reliance of the surface, an assumption of Lambertian behaviour
can be made, implying isotropic luminance regardless of the viewer’s angle. The albedo
quantifies the proportion of reflected light under the assumption of isotropic radiation re-
flection.
Polar-orbiting satellites, such as NASA’s Terra and Aqua satellites, provide global albedo
maps, which are vital for the spectral, temporal, and spatial assessment of global albedo.
The MODIS instrument aboard NASA’s Terra and Aqua satellites offers coverage of the
Earth’s surface every 1 to 2 d, enhancing our understanding of terrestrial, oceanic, and
atmospheric processes. In the VIS–NIR range, MODIS features seven spectral bands that
deliver data on land surface characteristics. However, radiative-transfer simulations de-
mand precise radiance calculations across all wavelengths, which necessitates hyperspec-
tral albedo maps. For example, retrievals of cloud pressure thickness using the O2 A band
(760–770 nm) require precise albedo estimates in this spectral region (Li & Yang, 2024).
Such comprehensive data are lacking due to the impracticality of obtaining albedo maps
from satellites for every wavelength. As a result, various assumptions are incorporated into
radiative-transfer codes to overcome this lack of information. MODIS albedo measurements
are derived simultaneously from the bidirectional reflectance distribution function (BRDF),
depicting radiation discrepancies resulting from the scattering (anisotropy) of individual
pixels. This methodology relies on multi-date, atmospherically corrected, and cloud-cleared
input data obtained over 16 d intervals. The spatial resolution is set at 30 arcsec in lati-
tude and longitude (equivalent to 1 km at the Equator) using the Climate Modeling Grid
(CMG). To derive climatological averages, the MODIS MCD43D42-48 albedo datasets are
averaged over a 10-year period in steps of 1 d, and albedo maps are built for each day.
In this work, we introduce a novel methodology for creating hyperspectral albedo maps
based on the seven representative bands of the MODIS instrument. Using a principal com-
ponent analysis (PCA) regression approach, we combine different soil, rock, and vegetation
datasets representative of different parts around the world, as well as maps illustrating
Lambertian surface albedo from version 6.1 of the MCD43D product (Schaaf & Wang,
2021), derived from the Terra and Aqua satellites. These maps cover the seven band-
passes relevant for land surface albedos. Employing a PCA algorithm, as previously done
in Vidot & Borbás (2014) and Jiang & Fang (2019), enables us to reduce the problem’s
high dimensionality and generate new albedo maps by interpolating between the measured
bandpasses.
These hyperspectral albedo maps of Lambertian surfaces hold significance with respect to
various climate and radiative-transfer models of the Earth’s system. Using an ESM with
coupled atmosphere–land simulations, Braghiere et al. (2023) demonstrated the impact of
making simplistic assumptions on albedo maps using only two broadband values, which
were compared to hyperspectral albedo maps. They combined the soil colour scheme from
the Community Land Model version 5 (CLM5) (Lawrence et al., 2019) with eigenvectors
calculated using a general-spectral-vector (GSV) decomposition algorithm (Jiang & Fang,
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2019) to build hyperspectral soil reflectance maps and assess the impact of these maps on
ESMs. Unlike our dataset of hyperspectral albedo maps, their approach is not based on
satellite measurements, meaning it is less accurate and overlooks the seasonal and tem-
poral variability in surface reflectance. However, it holds significance when assessing the
impact of hyperspectral treatment of Lambertian albedo on ESMs. Braghiere et al. (2023)
estimated a divergence in radiative forcing of 3.55 W m−2, which impacts net solar flux at
the TOA (> 3.3 W m−2), cloudiness, rainfall, surface temperature, and latent heat fluxes.
Braghiere et al. (2023) also highlight the impact of implementing hyperspectral albedo
maps on regional models, where differences in latent heat can be higher than 5 W m−2,
demonstrating implications for regional climate variability and the prediction of extreme
events.
In the near future, the launch of new satellite missions, such as NASA’s Earth Surface
Mineral Dust Source Investigation (EMIT) mission, will allow us to obtain hyperspectral
soil and vegetation data and benchmark the accuracy of model-generated hyperspectral
maps.

3.2 Data and Methods

3.2.1 MODIS surface albedo climatology
NASA’s MODIS instruments (Salomonson et al., 1989) aboard the Terra and Aqua satel-
lites (launched in 1999 and 2002, respectively) observe the Earth in 36 spectral bands.
Two channels (centred at 645 and 858 nm; see Table 3.1) have a spatial resolution of
250 m, and five channels (centred at 469, 555, 1240, 1640, and 2130 nm), including three in
the shortwave-infrared range, have a spatial resolution of 500 m. All other channels have
a resolution of 1 km.

Band Central λ (nm) Bandwidth (nm)
1 645 620–670
2 858 841–876
3 469 459–479
4 555 545–565
5 1240 1230–1250
6 1640 1628–1652
7 2130 2105–2155

Table 3.1: Spectral bands of MODIS in the VIS–NIR range that provide information about
land surface. For each band, we specify the central wavelength and the bandwidth.

The science dataset (version 6.1 of MCD43D; Schaaf & Wang, 2021) is a combined Aqua–
Terra MODIS Level-3 (L3) surface reflectance product and provides daily global estimates
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of directional–hemispherical surface reflectance (black-sky albedo) and bihemispherical sur-
face reflectance (white-sky albedo) for the seven MODIS bands mentioned above, as well as
for three spectral broadband intervals (visible (300–700 nm), near-infrared (700–5000 nm),
and shortwave (300–5000 nm)), exhibiting a spatial resolution of 30 arcsec in latitude and
longitude (corresponding to roughly 1000 m at the Equator). Cloud-free MODIS observa-
tions are collected over 16 d and corrected for atmospheric gases and aerosols to derive
surface albedo for land pixels (waterbodies are not considered). Data are temporally
weighted relative to the ninth day of the retrieval period, and this day appears in the
filename. Each surface reflectance pixel contains the best possible measurement from the
period, selected on the basis of high observation coverage, low view angles, an absence of
clouds or cloud shadow, and aerosol loading. Usually, due to the sun-synchronous orbits
of the Terra and Aqua satellites (with equatorial crossing times at 10:30 and 13:30 MLT
(magnetic local time), respectively), only pixels with a local solar noon zenith angle of up
to approximately 80◦ are provided with an albedo value.
The MODIS land surface products have been validated against in situ measurements and
other satellite-based land surface albedo. Globally, the MODIS product is less accurate
with respect to high solar zenith angles (Sánchez-Zapero et al., 2023).
We compile a black-sky-albedo climatology for the seven MODIS spectral bands, starting
with the MCD43D42-48 products. We average the available daily MODIS product data
over a 10-year period, from 2013 to 2022, in steps of 1 d, starting on 1 January – i.e. from
the first day of the year (DOY 1) to DOY 365. This results in 365 climatologically averaged
albedo maps per spectral band, each with a spatial resolution of 30 arcsec in latitude and
longitude. The aim is to create a complete surface albedo climatology map for all grid
boxes that are illuminated by the Sun, i.e. up to a local solar noon zenith angle of 90◦.
Pixels that are in the dark throughout the entire DOY (i.e. where the Sun is always below
the horizon) are left unfilled. For the computation of the climatology, we proceed in the
following way:

1. First, we select the MCD43D42-48 albedo retrievals with an albedo quality between
0 and 3 (see Table 3.2) and compute the mean value of the surface albedo for each
grid box over 10 years for a given DOY. After this averaging procedure, some pixels
remain unfilled due to factors such as cloudiness and constraints on the local solar
noon zenith angle (mentioned above).

2. Thus, for each DOY, we fill in the missing values with the mean of the albedo
calculated for DOY-n and DOY+n (temporal averages obtained in step 1), where
n ∈ [1, 40]. The mean value with the smallest n value, i.e. the value that is closest
in time, is the one that is used.

3. For some DOYs close to solstices and for local solar noon zenith angles between 80
and 90◦, a range of 40 d is not sufficient for providing filled values that correspond
to both the future and the past. It might be, for example, that a value is available
close in the future; however, to have a corresponding value in the past, we would
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have to look further than 40 d. The reason why, in the previous step, we require
values for both the past and the future is to balance out seasonal changes and avoid
sharp transitions near the solstices. In such cases, we first search for the closest filled
values that correspond to both the past and the future, even if the two intervals are
different or if one of them is larger than 40 d. Then, we average the values of albedo
over a 10 d interval around the selected future and past available days. Instead of
simply assigning the mean of these averages to the actual DOY, we perform a linear
interpolation to give more weight to the values closer in time to the actual DOY.

4. In a fourth step, remaining missing values for a given DOY are replaced with the
spatial average for the same DOY over an area of m × m grid boxes around each
missing value, where m ∈ [3, 5, 7, 9]. The mean value with the smallest m value,
i.e. the value corresponding to the smallest surrounding area, is the one that is used.

5. Further remaining missing values are replaced with the mean surface albedo calcu-
lated across longitudes within 2◦ latitude bands for the same DOY.

6. If missing values still exist at this stage for given grid boxes and given DOYs, the
mean value calculated across all DOYs during the 10 years under consideration is
used to replace them.

7. Finally, since the MCD43D product only retrieves land properties, we compute an
albedo value for the ocean pixels in each of the seven MODIS bands using the “deep-
ocean” spectrum from the old ECOSTRESS library of the US Geological Survey
(USGS) database (Baldridge et al., 2009; Meerdink et al., 2019). To this end, in-
coming solar spectral irradiance (Kurucz, 1992) is first convolved with the spectral
response function of the given MODIS channels. Then, under the assumption of no
atmosphere, reflected spectral irradiance at the surface is computed upon multiplica-
tion with the spectral ocean albedo and integrated over the wavelength. This value is
finally divided by the integral of the incoming spectral irradiance, computed above,
to obtain the band albedo values for the ocean. These values are used everywhere for
global waterbodies and at all times. Of course, we are aware that water surfaces are
better characterised using a BRDF in order to account for specular reflection (Cox
& Munk, 1954a,b; Nakajima, 1983).

MODIS also provides data for coastal regions covering some ocean pixels. These pixels were
filled in the climatology, as described in steps 1–6, and were not replaced with ocean pixels
in step 7. Some of these coastal pixels also exhibit sea ice, which remains included in the
climatology. The percentages of missing land pixels filled after each step of the climatology
are shown in Fig. 3.1. The percentages are calculated as the average values across all DOYs.
In step 3, most of the remaining missing pixels with a local solar noon zenith angle between
80 and 90◦ are filled. These pixels only receive nearly parallel incoming solar radiation,
and thus their impact on radiative-transfer calculations is limited. On the other hand, our
methodology allows us to estimate these pixels with high local solar noon zenith angles,
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Flag value Description
0 Best quality (full BRDF inversions)
1 Good quality (full BRDF inversions)
2 Magnitude inversion (number of observations ≥ 7)
3 Magnitude inversion (number of observations ≥ 2 and < 7)
255 Fill value

Table 3.2: Descriptions of the MCD43D albedo quality flags.

which are usually also highly reflective in the visible wavelengths.
This climatology serves as the starting point for building the hyperspectral albedo maps,
where average ice and snow cover values are automatically included. Our MODIS black-
sky-albedo climatology from the years 2013 to 2022 is available at https://opendata.
physik.lmu.de/pt52a-nhm92. For each pixel, we provide a flag indicating at which step
the albedo value was filled. The spatial resolution is the same as that of the MCD43D
product (30 arcsec).

Figure 3.1: Percentage of land missing pixels as an average over all DOYs. We indicate
the remaining percentage of missing values after each step of the climatology process.

3.2.2 Soil and vegetation spectra
To create hyperspectral albedo maps for each DOY, we use laboratory and in situ hy-
perspectral measurements of different soils, rocks, and vegetation surfaces. Jiang & Fang
(2019) developed hyperspectral soil reflectance eigenvectors to improve canopy radiative

https://opendata.physik.lmu.de/pt52a-nhm92
https://opendata.physik.lmu.de/pt52a-nhm92
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transfer. Studying the impacts of different regional datasets, they found that, compared
to regional datasets, there was an increase in accuracy and robustness when including a
global sample coverage of different soil and vegetation spectra.
Following this prescription, we select three dry-soil and vegetation datasets that cover
different countries and different surface materials:

1. First, we select the ECOSTRESS library (Baldridge et al., 2009; Meerdink et al.,
2019), which includes 1023 surface spectra from the United States. Among these,
487 are vegetation spectra, 62 are nonphotosynthetic-vegetation spectra, 381 are
rock spectra, 40 are soil spectra, 45 are humanmade-material spectra (referred to as
“man-made materials” in the ECOSTRESS library), and 8 are water ice and snow
spectra.

2. Second, we select the ICRAF–ISRIC dataset (ICRAF-ISRIC, 2021), which is a global
dataset with 4440 spectra for different soils from 58 different countries (including
Africa, Asia, Europe, North America, and South America).

3. Third, we use the LUCAS (Land Use and Coverage Area frame Survey) dataset
(Orgiazzi et al., 2018), which contains 21 782 different soil spectra from 28 European
Union countries, from which we select the 30◦ viewing angle. As shown by Shepherd
et al. (2003), LUCAS spectra are problematic between 400 and 500 nm, where they
exhibit negative values. Following Jiang & Fang (2019), we use the multiple-linear-
regression algorithm from scikit-learn (sklearn.linear_model.LinearRegression)
(Pedregosa et al., 2011), trained on the ICRAF–ISRIC dataset, to reconstruct the
LUCAS spectra in the 400–500 nm spectral range.

All the datasets cover the 400–2500 nm spectral range, albeit with different spectral reso-
lutions. The LUCAS dataset has a spectral resolution of 0.5 nm, while the ICRAF–ISRIC
and ECOSTRESS datasets have a spectral resolution of 10 nm. We interpolate the least-
resolved datasets to obtain a resolution of 1 nm for all spectra. Among the waterbodies
in the ECOSTRESS library, there are three different snow spectra: coarse granular snow,
medium granular snow, and fine snow. In addition, there are spectra for frost and ice, sea
foam, seawater, and tap water. Together, these form the eight water ice and snow spectra
in the ECOSTRESS library.
In total, we use 26 635 dry-soil, vegetation, snow, and ice spectra from 82 different countries
as input to extract the principal components. In Fig. 3.2, we show some representative
soil and vegetation spectra from the ECOSTRESS library. One limitation of our approach
is that vegetation spectra are only present in the ECOSTRESS library, which is a local
dataset from the United States. However, to our knowledge, this is the only available
dataset with tree, shrub, and grass spectra, which are fundamental for the purpose of this
study. Jiang & Fang (2019) also study the influence of humid soils on the PCA regres-
sion algorithm. They find that the effect of soil moisture is non-linear, causing a general
reduction in reflectance due to a total internal reflection effect of the water surface. This
effect is more prominent in the near-infrared range (1100–2500 nm). They conclude that
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Figure 3.2: Albedo spectral signatures of typical soils, vegetation, and waterbodies from
the ECOSTRESS library.

treating dry and humid soils separately leads to a more applicable soil reflectance model.
A comprehensive, global database of humid soils is currently not available in the literature,
and the inclusion of humid soils is beyond the scope of our work.

3.2.3 Principal component analysis

The vector of the MODIS albedo data (Sect. 3.2.1) for the seven wavelengths (R⃗) can
generally be decomposed as

R⃗ = c⃗U, (3.1)

where R⃗ = (r1, ..., rn) is the albedo vector, with n representing the number of wavelengths;
c⃗ = (c1, ..., cm) is the coefficient vector, with m representing the number of surface spectra;
and U is an m×n matrix containing the laboratory spectra of different soil and vegetation
types. In order to calculate the hyperspectral albedo maps, we first need to compute the
coefficient vector (c⃗) at every pixel by inverting Eq. (3.1). Since U is not a square matrix,
the correct inverse equation is

c⃗ = R⃗UT (UUT )−1. (3.2)

From the MODIS dataset, R⃗ is available only for seven spectral bands (see Table 3.1); how-
ever, the goal of this work is to fill the spectral gaps between the bands and reconstruct
a full VIS–NIR spectrum with a fine spectral resolution. Computing Eq. (3.2), which has
a dimensionality of m = 26 635, is too computationally expensive. In order to reduce the
dimensionality of this problem, we follow Vidot & Borbás (2014) and apply a principal
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component analysis (PCA) algorithm, which is an unsupervised machine learning algo-
rithm, and extract the principal components from the matrix U.
We need seven principal components (or eigenvectors) to solve our problem. As done by
Vidot & Borbás (2014), we generate six principal components and use a constant value
for a seventh one as this approach has been tested and shown to improve performance.
The other six principal components are generated from the three dry datasets described
in the previous section. Since these datasets account for different surface types (with
vegetation spectra only given in the ECOSTRESS dataset) and come in different quan-
tities, we cannot directly merge the spectra of the three datasets. Thus, we balance the
number of spectra from the different datasets clustering them using a k-means algorithm
(sklearn.cluster.KMeans; Pedregosa et al. (2011)), as done in Liu et al. (2023). In this
way, we obtain 100 representative soil spectra for the ICRAF–ISRIC dataset, 100 for the
LUCAS dataset, and 128 for the ECOSTRESS dataset; these include 40 vegetation spectra,
10 nonphotosynthetic-vegetation spectra, 40 soil spectra, 20 rock spectra, 10 humanmade-
material spectra, and 8 waterbody spectra. The waterbody spectra, which include spectra
for snow of different granular sizes, frost, deep oceans, coastal oceans, and tap water, were
not reduced in dimensionality. Without accounting for this difference in number, the vege-
tation and water surfaces present in the ECOSTRESS dataset would be outweighed by the
number of soil spectra from the other datasets, resulting in a considerably lower algorithm
performance.
We use the scikitlearn.decomposition.PCA implementation of PCA, which follows sin-
gular value decomposition (SVD) of the data, as shown in Halko et al. (2011). From this
process, we end up with the matrix Ũλ, which has the same spectral resolution as the lab-
oratory spectra, where λ represents the hyperspectral nature of this matrix. To combine it
with the albedo data vector R⃗, which is only available for the seven MODIS bands, we need
to convolve the full matrix Ũλ using the average satellite response function of the Terra
and Aqua satellites for each band. This convolution is necessary to correctly estimate the
measured albedo for the central wavelength of each band, which is crucial for generating
hyperspectral albedo maps with the PCA.
The result of the convolution is a square matrix Ũ for the seven MODIS wavelengths
available from satellite data. Since Ũ is a square matrix, we can simply calculate

c⃗ = R⃗Ũ−1. (3.3)
In this way, we have seven equations for seven coefficients, allowing us to estimate the
coefficient vector c⃗. Once c⃗ is known, it is possible to calculate the albedo maps across all
selected wavelengths using

R⃗λ = c⃗Ũλ, (3.4)
where the subscript λ indicates the hyperspectral nature of the elements. The same pro-
cess is applied to all the pixels in the map to generate a final albedo map with a spatial
resolution of 0.05◦ in latitude and longitude, and it is applied across all the different days
of the year, considering the Earth’s seasonal variability.
Vidot & Borbás (2014) created BRDF maps using a PCA algorithm for their radiative-
transfer code. They used the ASTER library (now called ECOSTRESS library) – which,
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Figure 3.3: Eigenvectors generated by the PCA using the LUCAS, ICRAF–ISRIC, and
ECOSTRESS datasets. These eigenvectors are used to build the hyperspectral albedo
maps. They are plotted in order of importance, as determined by the PCA.

at the time, contained far fewer soil and vegetation spectra – to create average maps in
order to include the hyperspectral reflectivity of soils in their radiative-transfer simula-
tions. Jiang & Fang (2019) demonstrated that increasing the sample size of different soils
from various countries helps to validate several datasets against each other. Without using
satellite data to create the maps of the Earth’s albedo, Jiang & Fang (2019) calculated
eigenvectors using an SVD algorithm to study the hyperspectral properties of canopy trees
in radiative-transfer simulations, including small, local datasets of humid soils. For the
scope of this work, it is not possible to directly use the three eigenvectors generated by
Jiang & Fang (2019) as we regress the hyperspectral albedo maps from the seven MODIS
bands; thus, seven eigenvectors are needed.
As a result of the method explained above, we obtain a hyperspectral climatology of black-
sky surface albedo over the entire globe, covering a wavelength range from 400 to 2500 nm in
steps of 10 nm. While the interpolation is performed at a 1 nm resolution for the hyperspec-
tral albedo maps, the final Hyperspectral Albedo Maps dataset with high Spatial and TEm-
poral Resolution (HAMSTER) has a spectral resolution of 10 nm to reduce the size of the
single maps. We also reduce the spatial resolution of the hyperspectral albedo maps from
the MCD43D 30 arcsec resolution to a resolution of 180 arcsec, which corresponds to 0.05◦

in latitude and longitude, again due to size constraints. HAMSTER can be generated at the
same spatial resolution as the MODIS MCD43D product and at a spectral resolution down
to 1 nm, and hyperspectral albedo maps with higher spatial and spectral resolutions are
available upon request. The temporal resolution of the hyperspectral climatology is 1 d, and
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it incorporates information contained in the MODIS climatology and extends it to wave-
lengths that were not available before. HAMSTER is available at its finer spatial resolution
(0.05◦ in latitude and longitude) at https://opendata.physik.lmu.de/04zd8-7et52,
while a version with a coarser spatial resolution, more suitable for global applications,
is available at https://doi.org/10.5281/zenodo.11459410.

3.3 Validation
As a first test, we use the hyperspectral albedo maps to reconstruct the MODIS channels’
black-sky-albedo climatology. We multiply the hyperspectral maps by the satellite’s spec-
tral response function, and we estimate the root-mean-square error (RMSE) for all seven
channels. For all MODIS channels (see Table 3.1), the RMSE is less than 0.0003. This
confirms that the computed hyperspectral albedo maps are able to reconstruct the original
MODIS climatology with great accuracy.
To validate the PCA-retrieved maps (HAMSTER), we compare them with the land surface
albedo product of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instru-
ment aboard the geostationary Meteosat Second Generation (MSG) satellite (Schmetz
et al., 2002). SEVIRI has three channels in the VIS–NIR range, which are reported in
Table 3.3. As the MSG satellite is geostationary, we cannot compare the entire world map;
instead, we can only compare the Earth’s “disc”, which includes Africa, parts of Europe,
South America, and the Middle East. SEVIRI channels have spectral response functions
that are broader than those of the analogous MODIS bands and are centred at slightly
different wavelengths; thus, we convolved the hyperspectral maps to account for this. In
particular, the SEVIRI channel centred at 810 nm touches the vegetation “ramp” that
starts from 700 nm and is expected to show higher albedo values than the first SEVIRI
channel.

Band Central λ (nm) Bandwidth (nm)
1 635 600–680
2 810 775–850
3 1640 1550–1750

Table 3.3: Spectral bands of SEVIRI in the VIS–NIR range that provide information about
land surface. For each band, we specify the central wavelength and the bandwidth.

The SEVIRI land surface albedo product, MDAL (Geiger et al., 2008; Juncu et al., 2022;
product identifier no. LSA-101), is offered daily by the Land Surface Analysis Satellite
Application Facility (LSA SAF) on the native SEVIRI grid. It has a spatial resolution
of 3 km at the sub-satellite point and is similar to the MODIS-based MCD43D product,
against which it has been evaluated (Carrer et al., 2010). Both bihemispherical (white-sky)
and directional–hemispherical (black-sky) albedo are available for the MCD43D product.

https://opendata.physik.lmu.de/04zd8-7et52
https://doi.org/10.5281/zenodo.11459410
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Figure 3.4: Comparison between the HAMSTER climatology, the single-day HAMSTER
reconstruction, and SEVIRI in late boreal winter (5 March 2016 (DOY 65)) for the three
SEVIRI VIS–NIR channels. The first three columns show the albedo values for (a) the
HAMSTER climatology and (b) the single-day HAMSTER reconstruction, both of which
are integrated over each SEVIRI channel, as well as (c) the SEVIRI albedo product. In
the last three columns, we display the albedo differences between the three different albedo
products or reconstructions, ranging from −0.10 to 0.10.

To enable comparisons with the HAMSTER hyperspectral albedo maps constructed from
MODIS, we reprojected the SEVIRI data to the MCD43D grid, downscaling the data to a
0.05◦ resolution in latitude and longitude to allow for a consistent comparison. We selected
two different days in 2016: one in late boreal winter (5 March (DOY 65)) and one in mid-
boreal summer (30 July (DOY 209)) to compare surface reflectivity during two different
vegetation stages, considering possible snow cover in winter and no snow in summer over
northern Europe. The results are shown in Figs. 3.4 and 3.5.
We compare the three solar satellite channels offered by SEVIRI with the reconstructed
channels from the HAMSTER climatology and the single-day HAMSTER reconstruction
(first three columns in Figs. 3.4 and 3.5). SEVIRI channel 3 has the same central wave-
length (λc = 1640 nm) as MODIS band 6, allowing for an almost direct comparison between
MODIS and SEVIRI land surface products. However, the hyperspectral nature of the re-
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Figure 3.5: Comparison between the HAMSTER climatology, the single-day HAMSTER
reconstruction, and SEVIRI in boreal summer (30 July 2016 (DOY 209)) for the three
SEVIRI VIS–NIR channels. The first three columns show the albedo values for (a) the
HAMSTER climatology and (b) the single-day HAMSTER reconstruction, both of which
are integrated over each SEVIRI channel, as well as (c) the SEVIRI albedo product. In
the last three columns, we display the albedo differences between the three different albedo
products or reconstructions, ranging from −0.10 to 0.10.

trieved HAMSTER maps is still used to convolve around the 1640 nm MODIS band. The
same applies to SEVIRI channel 1 and MODIS band 1, for which there is only 10 nm of
difference in the central wavelength. On the other hand, SEVIRI channel 2 (λc = 810 nm)
is outside any MODIS band. This last case allows us to make a comparison between the
reconstructed albedo maps and the SEVIRI measurements, rather than comparing the land
surface products of the two instruments.
In addition, in Figs. 3.4 and 3.5, we also assess the difference between the HAMSTER
climatological average (first column) and a single-day HAMSTER reconstruction (second
column), without accounting for the 10-year average of the climatology. White pixels in the
single-day HAMSTER reconstruction correspond to pixels without albedo values from the
MODIS MCD43D product. The climatological average shows fewer features, particularly
over Europe, which might be due to fluctuations occurring on a single day, while the single-
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Figure 3.6: Kernel density estimation (KDE) between the HAMSTER climatology, the
single-day HAMSTER reconstruction, and SEVIRI albedo data for 5 March 2016 (DOY 65)
across the three central wavelengths of the SEVIRI channels (shown in different columns).
Panels (a), (b), and (c) display hyperspectral albedo maps based on the HAMSTER
climatology, while panels (d), (e), and (f) illustrate the single-day reconstruction. The
solid line represents a perfect linear fit, while the dashed lines show a linear fit with an
offset of 0.06.

day HAMSTER reconstruction shows a larger dependence on seasonality. The effect of the
climatology is shown in the fourth column, where we plot the albedo difference between
the HAMSTER climatology and the single-day HAMSTER reconstruction. In Fig. 3.4, we
clearly see discrepancies of around 0.10 in the first two channels, while SEVIRI channel
3 shows lower albedo values over southern Africa for the HAMSTER climatology. Fewer
differences are found for DOY 209 (in boreal summer; Fig. 3.5). To conclude, the last
two columns of Figs. 3.4 and 3.5 display the differences between HAMSTER (i.e. the
climatology and single-day reconstruction) integrated over the SEVIRI channels and the
SEVIRI land surface product. We notice an overestimation of approximately 0.05 in the
reconstructed HAMSTER hyperspectral albedo maps for the first two channels across the
Sahara, while vegetated areas across Africa and parts of Europe and South America show
either a negative discrepancy (SEVIRI channel 1) or a positive discrepancy (SEVIRI chan-
nel 2) compared to the SEVIRI measurements, with the discrepancies being of a similar
magnitude. On the other hand, SEVIRI channel 3 (λc = 1640 nm) is mostly underestimated
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Figure 3.7: Kernel density estimation (KDE) between the HAMSTER climatology, the
single-day HAMSTER reconstruction, and SEVIRI albedo data for 30 July 2016 (DOY 209)
across the three central wavelengths of the SEVIRI channels (shown in different columns).
Panels (a), (b), and (c) display hyperspectral albedo maps based on the HAMSTER
climatology, while panels (d), (e), and (f) illustrate the single-day reconstruction. The
solid line represents a perfect linear fit, while the dashed lines show a linear fit with an
offset of 0.06.

by HAMSTER, with a smaller albedo difference compared to the other two channels. Since
HAMSTER is based on the MODIS land surface product, our results are in accordance
with the discrepancies found by Shao et al. (2021), which point towards differences of up
to 0.06 between various land surface products. Though we describe the different offsets
arising from this comparison, we can conclude that the reconstructed maps are consistent
with the discrepancies arising from different satellite data products with respect to their
validation.
In Figs. 3.6 and 3.7, we show probability density functions (PDFs) calculated using ker-
nel density estimation (KDE), a Gaussian-kernel-based probability density method (Scott,
1992), to compare HAMSTER (i.e. the HAMSTER climatology and single-day HAMSTER
reconstruction) with the SEVIRI land surface products for the two DOYs selected. For
each comparison, we estimate the RMSE and represent the discrepancies between the dif-
ferent albedo products using KDE.
We notice that the RMSE is always very small, consistent with intrinsic differences be-
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tween different retrievals of the albedo products. For both DOYs, the RMSE is larger for
SEVIRI channel 2 (centred at λc = 810 nm), which is the SEVIRI channel furthest from
any MODIS channel. We also notice that comparing with hyperspectral maps built from
single-day albedos consistently shows a slightly smaller RMSE since the climatology can
only reproduce the climatological vegetation state and snow coverage pattern for a specific
DOY.
In addition, we also calculate the RMSE between the HAMSTER climatology and all three
SEVIRI channels for each day in 2016 (Fig. 3.8). We can conclude that the two DOYs
selected for a more in-depth analysis (DOY 65 and DOY 209) are representative of the
general trend. We notice that the comparison with SEVIRI channel 2 results in a larger
RMSE, as expected, as this channel is outside the MODIS bands. However, the perfor-
mance of the hyperspectral albedo maps is still in agreement with the discrepancies among
different albedo products.

Figure 3.8: Root-mean-square error (RMSE) of the comparison between the HAMSTER
climatology and all three SEVIRI channels. The comparison is performed for each day in
2016.

As a last test, we compare the hyperspectral albedo maps with the TROPOspheric Moni-
toring Instrument (TROPOMI) Lambertian-equivalent reflectivity (LER) product, which
is available at https://www.temis.nl/surface/albedo/tropomi_ler.php (last access:
10 January 2024) (Tilstra et al., 2021, 2024). The TROPOMI LER product (with a sub-
satellite pixel size of 0.125◦ × 0.125◦) is remarkably different from the MODIS MCD43D
product as it provides separate surface albedo values for snow and ice-free conditions and
snow and ice conditions. The snow and ice conditions are also averaged over a month,
which does not allow for a direct comparison with MODIS, which provides daily snow
coverages. Due to the high reflectivity of snow and ice in the visible wavelengths, the large
discrepancy between the two products does not result from the PCA-retrieved albedo but
from the products’ different approaches used to assess snow coverage. On the other hand,

https://www.temis.nl/surface/albedo/tropomi_ler.php
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Figure 3.9: Comparison between the HAMSTER climatology (a) and TROPOMI (b) in
late boreal winter (month of March) for three selected wavelengths within the TROPOMI
VIS–NIR channels. Panels (a–b) show the albedo difference between the HAMSTER
climatology and the TROPOMI LER albedo product.

TROPOMI bands are very narrow (just 1 nm), and they provide many channels in the
“vegetation red edge” (VRE) ramp. For this reason, we validate our hyperspectral albedo
maps using the TROPOMI product exclusively for the African continent and the Middle
East since these regions exhibit the least snow coverage, allowing for a direct and consis-
tent comparison of land surface albedo between the two products. In this way, we avoid
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comparisons with snow and ice products which are not fully consistent. Due to the nar-
row satellite bands of TROPOMI, it was not necessary to convolve its satellite response
function, and we estimated the RMSE between the TROPOMI LER product and our
HAMSTER hyperspectral albedo maps (at a spectral resolution of 1 nm). The results are
shown in Table 3.4.

Figure 3.10: Root-mean-square error (RMSE) of the comparison between the HAMSTER
climatology and all TROPOMI channels. The comparison is performed for each month.

The RMSE is comparable to what we find for SEVIRI and reflects known discrepancies
among different surface albedo products. It remains relatively small in the TROPOMI
bands between 670 and 772 nm, within the VRE domain and far from the MODIS bands.
This confirms the good performance of the hyperspectral albedo maps, even when they are
far from the MODIS bands from which they were retrieved. In Fig. 3.9, we select three
TROPOMI bands and compare the albedo values over Africa between the HAMSTER cli-
matology (first column) and the TROPOMI albedo product (second column). We select
the TROPOMI monthly product for the month of March (average from 2018 to 2023),
and we compare it with the average of the HAMSTER climatology from DOY 61 to DOY
91 (corresponding to all days in March). In the third column, we again plot the albedo
difference between the two products. For λc = 463 nm, we notice very good agreement,
with discrepancies of around 0.019 over Africa. For λc = 747 nm, within the VRE domain,
the discrepancies are larger, with HAMSTER generally overestimating albedo compared
to TROPOMI, resulting in differences of up to 0.10 but an overall RMSE of 0.055. We
also compared the two products with a band in the far NIR range (λc = 2314 nm) and
found that HAMSTER overestimates dry and desert areas and underestimates vegetated
regions. Also, in this last band, albedo products show differences of up to 0.10, particu-
larly over deserts, but have a small RMSE (0.033). As with SEVIRI, we also validate the
HAMSTER climatology against TROPOMI for each month, estimating the RMSE for each
TROPOMI band. Since TROPOMI offers monthly albedo products, we used the monthly
averages of the HAMSTER climatology over Africa and the Middle East to perform the
comparison. In Fig. 3.10, we show the monthly validation results. For TROPOMI bands
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λ (nm) 402 416 425 440 463 494 670 685 697 712 747 758 772 2314
RMSE 0.019 0.018 0.020 0.019 0.019 0.020 0.031 0.030 0.037 0.039 0.055 0.052 0.049 0.033

Table 3.4: Spectral bands of the TROPOMI LER product in the VIS–NIR range, along
with the RMSEs of the comparisons with HAMSTER hyperspectral albedo maps of Africa.

between 400 and 500 nm, the RMSE is always very small (around 0.02). Moving into the
VRE domain (from 700 to 800 nm), the RMSE ranges from 0.05 to 0.07, which is still
comparable with discrepancies among different albedo products. For the NIR TROPOMI
band (λc = 2314 nm), the RMSE is around 0.03–0.04 for all months.

3.4 Results
In this section, we present the two main results of this paper: the MODIS black-sky-surface-
albedo climatology for the seven bands and, building on that, the extended Hyperspectral
Albedo Maps dataset with high Spatial and TEmporal Resolution (HAMSTER).

3.4.1 MODIS climatology dataset
As described in Sect. 3.2.1, we derived a 10-year climatology of surface albedo for different
DOYs as a starting point for generating the hyperspectral albedo maps. This climatologi-
cal average, with a temporal resolution of 1 d, allows for the study of temporal variability
in the albedo of the planet, as shown in Fig. 3.11. Since albedo values are not available
for every pixel of the Earth’s surface throughout the year due to missing solar illumination
during winter, we study the temporal evolution of the mean global albedo between 67◦ N
and 67◦ S. At these latitudes, we consistently have an estimate of the albedo for every single
pixel across all DOYs. As a consequence, we exclude the Arctic and Antarctica regions,
as well as other high-latitude land surfaces in the Northern Hemisphere, from the mean
altitude estimation. For this reason, the mean albedo value should be interpreted not as a
global estimate for the Earth but rather as an indicator of its temporal variation.
In Fig. 3.11, we notice that the mean albedo is higher in the NIR bands, following the
VRE peaks. At 858 nm, which peaks right after the VRE, we notice the largest albedo
value for the planet, followed by 1240 nm. Continuing into the NIR range, with 1640 and
2130 nm, the albedo values decrease. In contrast, in the VIS range, there is very little
variation in albedo among the three bands. The VIS bands show a clear seasonal trend
due to the melting of ice and snow in the Northern Hemisphere, followed by the subsequent
blossoming of vegetation. Thus, the Earth’s albedo peaks in late boreal winter in the VIS
range and then decreases in boreal summer. This large-variability trend can be interpreted
in terms of seasonal differences in snow coverage, and it mainly follows the variability in
the Northern Hemisphere, which hosts almost 80 % of the Earth’s land. However, in the
NIR bands, other features observed around late boreal spring and autumn are due to the
blossoming of flowers and the reddening of leaves, which decrease the general reflectivity
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of green leaves. In Fig. 3.12, we study the spatial variability in albedo throughout the year

Figure 3.11: Yearly cycle of the black-sky-albedo data from the MODIS climatology, cover-
ing 67◦ N to 67◦ S. The different curves represent the different MODIS channels, indicated
by their central wavelengths.

at a particular wavelength for the entire 10-year climatological average. Here, we select
MODIS band 1, centred at 645 nm. In particular, we plot the difference between the maxi-
mum and minimum albedo values for the entire year, regardless of when the maximum and
minimum are reached. For instance, the maximum reflectivity over high latitudes in the
Northern Hemisphere is reached during boreal summer, while along the coast of Antarc-
tica, it happens during austral summer due to ice melting. It is important to note that the
MCD43D product does not contain sea surface albedo or sea ice albedo. However, coastal
regions exhibit albedo values and are subject to large seasonal differences.
Moreover, since albedo data are not available during boreal winter (summer) for the North-
ern (Southern) Hemisphere, the difference between the maximum and minimum albedo for
high-latitude regions (north and south of 67◦) is calculated over a shorter time period cor-
responding to the data coverage of the region.
By illustrating this reflectivity variation for every pixel, the map in Fig. 3.12 highlights
regions with the largest variations. In particular, Arctic and Antarctic regions exhibit
high reflectivity variations due to snow, ice, and sea ice melting in coastal regions, as
clearly visible in the map. Mainland Greenland also shows more variability than mainland
Antarctica, possibly pointing towards the melting of Greenland’s glaciers during boreal
summer. Deserts all over the world, such as the Sahara and Australian deserts, show the
least variability, remaining almost constant throughout the year. Also, tropical rainforests,
such as the Amazon rainforest, do not exhibit significant seasonal variability. In contrast,
temperate and boreal forests show pronounced variation due to differences in snow cover
between the winter and summer months.
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Figure 3.12: Spatial variation in the MODIS climatology, showing the difference between
the maximum and minimum albedo (amax and amin, respectively) for each pixel throughout
the year.

3.4.2 Hyperspectral albedo maps
Using MODIS climatology data, we build hyperspectral albedo maps with a PCA regres-
sion algorithm, as described in Sect. 3.2.3. The hyperspectral albedo maps allow us to
combine the spectral features of different soils, vegetation, and water surfaces with the
high spatial and temporal resolution of the MODIS climatology data. This has many pos-
sible applications, ranging from implementation in climate models (as demonstrated by
Braghiere et al. (2023)) to the improvement of remote sensing retrieval frameworks. The
new hyperspectral albedo maps have been implemented in the radiative-transfer software
package libRadtran (http://www.libradtran.org/doku.php, last access: 12 December
2023; Mayer & Kylling, 2005a; Emde et al., 2016).
As a first application, we use these hyperspectral maps to calculate the mean global albedo
value around the equinoxes. In this way, we ensure that almost all pixels are filled with
an albedo value, allowing us to assess a mean albedo value for the entire globe as a func-
tion of wavelength (see Fig. 3.13). The main difference between the spring and autumn
equinoxes pertains to snow coverage over the Northern Hemisphere, which increases reflec-
tivity during the boreal-spring equinox. This mostly affects the VIS wavelengths, following
the typical albedo profile of snow and frost (see Fig. 3.2). From these hyperspectral albedo
maps, we found that the mean global albedo is around 0.21 in the VIS range during March
and around 0.17 in autumn, whereas it decreases to below 0.10 in the NIR range. The dots
in Fig. 3.13 represent the average over the MODIS channels, without taking into account

http://www.libradtran.org/doku.php
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the hyperspectral albedo maps.

Figure 3.13: Mean global albedo as a function of wavelength across the entire globe. We
select the two DOYs closest to the equinoxes, when almost all pixels are filled with albedo
values. The seven dots represent the albedo values of the seven MODIS bands, while the
curves are derived from the average of all pixels in the HAMSTER hyperspectral albedo
maps for a given wavelength.

In addition, we apply the hyperspectral maps to study the VRE, which shows a steep
increase in the reflectivity of vegetation due to chlorophyll, as shown in Fig. 3.13 at around
700 nm. In Fig. 3.14, we show the progression of vegetation reflectivity from 700 to 850 nm
(with steps of 50 nm) for DOY 65 (5 March). We notice a substantial increase in albedo for
all kinds of forests, from tropical to boreal, with the largest increase occurring between 700
and 750 nm, as expected for the VRE. This comparison is only possible when using albedo
maps that account for the hyperspectral dimension. Using only the MODIS wavelengths
would result in missing the entire VRE transition because the closest bands are only at
645 and 858 nm. Lastly, we study the spectral profile of different regions around the world,
accounting for their seasonal variability. We select different examples of rainforests, boreal
forests, deserts, urban areas, and ice-covered regions, as shown in Fig. 3.15. Using pixels
from within the boundaries of the areas highlighted in Fig. 3.15, we average the spectra
of all pixels in the regions in order to obtain an average spectrum that is representative
of the entire region. The averages are calculated separately for the four seasons. The first
comparison pertains to forest spectra (dark green regions in Fig. 3.15). We selected three
different rainforests (the Amazon, Borneo, and Congo rainforests), two different boreal
forests (located in Canada and Russia), and a savanna region in Kenya and Tanzania. The
selection of these different areas was made by maximising land area with similar properties
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Figure 3.14: Spectral evolution of surface albedo for 5 March (DOY 65). From λ =700 nm
to λ =850 nm, there is a steep increase in albedo over forests, attributed to the VRE.

Figure 3.15: Regions of the world investigated in this study. The green boxes represent
the forests, the orange boxes represent the deserts, the blue boxes represent the ice sheets,
and the purple circles represent the cities.

while avoiding mixtures of urbanised soils and different land types within the regions.
Figure 3.16 shows a comparison between spectra of different forests. We notice a similar
trend among all kinds of forests, characterised by similar spectral features. In particular,
all forests show three jumps in reflectivity of decreasing amplitude. The main difference
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between tropical rainforests and boreal forests resides, as expected, in their seasonal vari-
ability. Tropical rainforests exhibit almost no seasonal change as they are very similar to
each other. On the other hand, boreal forests experience an important decrease in reflec-
tivity from boreal winter to boreal summer. This is due to the melting of snow in boreal
forests, which also happens on different timescales. There are also some small differences
within tropical rainforests. The Borneo rainforest shows the least seasonal variation, while
the Congo rainforest shows the lowest reflectivity.
The final spectra are always combinations of different soils and vegetation, and the small
differences we find are due to variations in tree, soil, and ground types, as well as varying
tree coverage across the different forests. If we compare the obtained spectra with the
spectral signatures shown in Fig. 3.2, we find overall agreement between their main spec-
tral features, but our final spectra are modulated by the combination of many different
soils and are averaged over seasons and different pixels. We extend the comparison to
desert areas (orange regions in Fig. 3.15). We select the Sahara, the Australian desert, the
Gobi Desert, and the Atacama Desert to extract spectral properties from the hyperspec-
tral albedo maps. Figure 3.17 shows the comparison among different arid regions. We find
that the reflectivity profiles of deserts can greatly vary depending on the mineralogy and
composition of different soils and sands. In addition, as discussed in Fig. 3.12, the Sahara
and Australian desert do not display any significant seasonal changes. This is not the case
for the Gobi Desert, which shows enhanced reflectivity in the winter months due to partial
snow coverage.
In general, deserts exhibit a common spectral shape, with a steep increase in reflectivity
up to 750 nm, similar spectral features until the NIR range is reached, and a more or less
steep decrease in reflectivity around 2150 nm. Compared to forests, different desert areas
show larger discrepancies among themselves.
The same methodology is applied to study the Greenland and Antarctic ice sheets (blue
areas in Fig. 3.15). We select two regions which are always snow-covered to study their
spectral features and seasonal patterns (see Fig. 3.18). As expected for fully snow-covered
surfaces, their reflectivity is very high, reaching a value of almost 1 in the VIS range, and
it then decreases in the NIR range. During the winter in Greenland and Antarctica, not
all the pixels were always available; thus, we averaged fewer pixels across fewer days to
estimate their winter seasonal spectra. In Fig. 3.2, we see that snow and frost show dif-
ferent reflectivity patterns, particularly in the NIR range. This may explain the spread in
the NIR spectra of both Antarctica and Greenland. This should be considered alongside
the formation of clear, liquid-water lakes on the surface of glaciers during the melting sea-
son, which lowers the total reflectivity of the surface. For Greenland and Antarctica, we
find similar behaviours in the NIR range, with winter seasons exhibiting higher reflectivity
than summer seasons. We also notice that in the VIS range, there is almost no seasonal
spectral variability over Antarctica, whereas Greenland shows two distinct trends between
boreal autumn and winter and boreal spring and summer. To conclude, we also extracted
spectral profiles for two different urban areas: the urban areas of Beijing and Mexico City.
Among the 45 humanmade spectral materials from the ECOSTRESS library, there are
general construction materials, road materials, roofing materials, and reflectance targets.
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Figure 3.16: Spectra of different forests around the world, obtained by averaging the spectra
over all pixels in the corresponding regions using the hyperspectral albedo maps. Seasonal
variability is shown by averaging the spectra over 3-month periods, with different colours
indicating different periods. Grey bands represent the MODIS bandwidths.

Urban areas are treated as a linear combination of different components, such as human-
made materials, vegetation, and soils, and the PCA handles these components similarly to
how it handles all other soil and vegetation spectra. MODIS albedo performance over cities
has not been quantitatively assessed, and MODIS might underestimate surface reflectivity
(Coddington et al., 2008); thus, city spectra should be used with caution. Figure 3.19
shows that Beijing has larger seasonal variability than Mexico City. In general, the spectra
of the two cities look different but share some common spectral features. Urban areas
show a lower albedo than the other regions investigated, indicating the use of asphalt and
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Figure 3.17: Spectra of different deserts around the world, obtained by averaging the
spectra over different pixels from the hyperspectral albedo maps. Seasonal variability is
shown by averaging the spectra over 3-month periods, with different colours indicating
different periods. Grey bands represent the MODIS bandwidths.

Figure 3.18: Spectra of different ice surfaces around the world, obtained by averaging the
spectra over different pixels from the hyperspectral albedo maps. Seasonal variability is
shown by averaging the spectra over 3-month periods, with different colours indicating
different periods. Grey bands represent the MODIS bandwidths.
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concrete spectra in the PCA, and their general spectral shape appears different from that
of all other regions. The steep increase in the VIS range might be due to vegetation, while
other features in the NIR range come from humanmade materials and different soils present
in the training dataset. As expected, the peak reflectivity for urbanised areas is low.

Figure 3.19: Spectra of two different cities (Beijing and Mexico City), obtained by averaging
the spectra over different pixels from the hyperspectral albedo maps. Seasonal variability
is shown by averaging the spectra over 3-month periods, with different colours indicating
different periods. Grey bands represent the MODIS bandwidths.

In general, when extracting the spectra of different surface types, we found good agree-
ment among the typical spectral features of soils and vegetation expected to dominate the
different surface types. For instance, different kinds of forests all have a typical shape due
to the VRE. However, the spectra of various land types contain much more information
than the single spectrum of a tree or a particular soil, and we can clearly see that they
constitute a linear combination of different spectra within the sample, with each set of
spectra having varying weights. In fact, forests are a combination of trees with a typical
spectral shape, modulated by different soil reflectivities. As a result, the retrieved albedo
of an entire forest is noticeably lower than that of single trees in the dataset. This is
in agreement with Jiang & Fang (2019), who generated different spectra for canopy-tree
radiative-transfer simulations and studied the influence of soils on the total reflectivity of
vegetated areas. While typical vegetated features are always present in the spectrum, they
are modulated by the properties of the background soil.

3.5 Conclusion
In this work, we create hyperspectral albedo maps to study the wavelength-dependent
characteristics of the black-sky albedo of the Earth’s surface. We select spectra of vari-
ous soils, vegetation, snow, waterbodies, and humanmade materials from three different
datasets: the ECOSTRESS library, which includes spectra of soils, vegetation, humanmade
materials, snow, and waterbodies; the LUCAS dataset, which contains spectra of different
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soils from many countries around the world; and the ICRAF–ISRIC dataset, a catalogue of
thousands of soil spectra from European Union countries. In total, we end up with 26 635
spectra of different soils and vegetation from 82 countries.
Due to the huge dimensionality of the final training dataset, we use a PCA regression
algorithm to extract the principal components of the dataset. These principal components
serve as eigenvectors to recover the albedo reflectivity of different pixels across the Earth,
starting with the MODIS land surface product. Specifically, MODIS measures land sur-
face properties across seven different bands in the VIS–NIR wavelength range. These seven
MODIS bands are used as the starting point for building the hyperspectral albedo maps.
Using PCA, we extract six principal components, following Vidot & Borbás (2014), and,
with the addition of a seventh constant eigenvector, we combine these components with
the seven bands of MODIS data, for which the albedo values of all single pixels are known.
From this computation, it is possible to extract the spectral albedo value for the entire
wavelength range, pixel by pixel.
To generate climatological hyperspectral albedo maps, we use the 1 d land surface product
from the MODIS MCD43D product, and we average the data for each DOY from 2013
to 2022. This allows us to obtain a climatological average of global surface properties, fill
in missing pixels that might be cloudy for a particular year, and disentangle pixels from
yearly variability patterns. As a final outcome, we obtain the Hyperspectral Albedo Maps
dataset with high Spatial and TEmporal Resolution (HAMSTER) with

• a spectral resolution of 10 nm, ranging from 400 to 2500 nm;

• a spatial resolution of 0.05◦ in latitude and longitude;

• a temporal resolution of 1 d, averaged over the time period from 2013 to 2022.

As demonstrated by Vidot & Borbás (2014) and Jiang & Fang (2019), PCA and SVD
algorithms are powerful tools for combining large samples of soil and vegetation spectra
and reconstructing the albedo profiles of different areas around the world. In addition to
generating hyperspectral albedo maps through PCA, as demonstrated in Vidot & Bor-
bás (2014), we also follow advice from Jiang & Fang (2019) by training the PCA with a
much larger dataset, accounting for different countries around the world. In addition, our
hyperspectral albedo maps cover all 365 DOYs, making it possible to retain all seasonal-
variability patterns present in MODIS data.
Our MODIS climatological maps and hyperspectral albedo maps are validated against
SEVIRI and TROPOMI land surface products. To perform this comparison, we adapt
the SEVIRI dataset to the MODIS projection, and we find that there is good agreement
between the MODIS climatology and the HAMSTER hyperspectral maps with SEVIRI
observations, with discrepancies of up to 0.06, which is a typical order of magnitude for
land surface product comparisons (Zhang et al., 2010; Shao et al., 2021). Similar results
are found in the comparison with TROPOMI.
The MODIS climatological dataset already displays interesting temporal and spatial pat-
terns. Thanks to its high spatial and temporal resolution, we can study the Earth’s tem-
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poral variability across different wavelengths and display the maximal albedo difference for
each pixel, highlighting regions with high temporal variability. The mean spectral albedo
of the planet peaks at wavelengths longer than those corresponding to the VRE and shows
larger variability at the VIS wavelengths than at the NIR ones, with seasonal variations
between snow-covered high-latitude regions in the Northern Hemisphere displaying an in-
crease in surface albedo in boreal winter.
We combine information from the temporal and spatial resolution of the MODIS climatol-
ogy data with the ability to spectrally extend the information about different regions to
create typical spectra of different land surface types. We identify the following:

• Forests, as expected, exhibit typical vegetation-induced spectral features, such as the
VRE. Tropical rainforests do not undergo much seasonal change, while boreal forests
have increased reflectivity in winter due to partial snow cover. Savanna regions
experience a drying of the land after the end of the summer, which flattens the
typical vegetation-induced spectral features.

• Deserts show almost no seasonal variability, except for those with occasional snow
coverage. Depending on the properties, colour, and mineralogical composition of the
soils, as well as the presence of sand, the overall reflectivity of the desert can greatly
vary.

• Ice- and snow-covered surfaces, such as the Greenland and Antarctic ice sheets, reflect
almost entirely in the VIS range, with a steep decrease in the NIR range. During
summer months, their albedo is slightly lower than during late winter or spring due
to the melting of surface ice, which creates lakes on top of icy surfaces.

• Urbanised areas, such as Beijing and Mexico City, reflect a combination of many
different spectra for humanmade materials, soil, and vegetation, and their spectral
shape contains features from all of them. The total reflectivity of a city is less than
20 %.

These hyperspectral albedo maps can be used for many different applications, from im-
proving climate models to enhancing remote sensing of the Earth, correctly simulating the
disc-integrated spectra of the Earth (Emde et al., 2017), and correctly modelling earth-
shine observations (Sterzik et al., 2012, 2019). Only by using the full spectral variations
in land surfaces can we correctly establish the Earth’s energy budget. Braghiere et al.
(2023) studied the impact of using only two broadband albedo values, as done in ESMs,
versus using hyperspectral albedo maps. They found that while general radiative forcing
is noticeably lower than that from a doubling of CO2, omitting the hyperspectral nature of
the Earth’s surface causes deviations in many climatological patterns, such as precipitation
and surface temperature, particularly across regional scales.
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Future ground- and space-based telescopes will enable the char-
acterization of rocky exoplanets in reflected light, allowing for the
observation of their albedo, which depends on surface, cloud, and
atmospheric properties. Identifying key atmospheric, cloud, and
surface features is essential for assessing the potential habitabil-
ity of these exoplanets. We present reference spectra and phase
curves for a spatially unresolved Earth-like exoplanet in reflected
and polarized light, highlighting how wavelength-dependent and
phase-angle-dependent reflectance reveals key planetary proper-
ties. Performing simulations with the 3D Monte Carlo radiative
transfer code MYSTIC, we improve surface and cloud modeling
by introducing validated wavelength-dependent albedo maps of
Earth’s seasonal and spectral features, as well as a novel treatment
of subgrid cloud variability and inhomogeneities based on reanal-
ysis data from ERA5. Our models incorporate high-resolution
3D cloud structures, demonstrating that subgrid cloud variability
significantly affects both intensity and polarization. It reduces to-
tal reflectance and increases phase curve variability, especially at
large phase angles where ocean glint dominates. Additionally, we
show that neglecting realistic wavelength-dependent albedo maps
leads to a significant overestimation of the vegetation red edge
feature in reflected light spectra. Comparing an ocean planet to
an Earth-like planet with seasonal cloud variability, we find that
polarization is far more sensitive than intensity alone to identify
the two scenarios. Moreover, polarization captures richer informa-
tion on surface properties, making it a critical tool for breaking
degeneracies in retrieval frameworks. We present detailed model
simulations that provide a ground-truth reference for observing
Earth as an exoplanet and that serve as critical benchmarks for
developing observational strategies and retrieval frameworks for
future telescopes targeting small rocky exoplanets. Furthermore,
this study informs model requirements and establishes a frame-
work to optimize strategies for characterizing rocky exoplanets,
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emphasizing the pivotal role of polarization in breaking retrieval
degeneracies across different models.
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4.1 Introduction
The next generation of ground-based and space-based observatories will attempt to char-
acterize rocky exoplanets in the habitable zones (Kasting et al., 1993) of nearby stars.
Reflected light observations offer a powerful method for studying these planets by analyz-
ing starlight that is either reflected off their surfaces or scattered in their atmospheres.
Although current reflected light measurements can only provide upper limits (Charbon-
neau et al., 1999; Hoeijmakers et al., 2018; Spring et al., 2022), future instruments such as
the ArmazoNes high Dispersion Echelle Spectrograph (ANDES; Pallé et al., 2025) and the
Planetary Camera and Spectrograph (PCS; Kasper et al., 2021) on the Extremely Large
Telescope (ELT), along with the proposed Habitable Worlds Observatory (HWO; National
Academies of Sciences & Medicine, 2021), will enable the detection of reflected light from
rocky exoplanets.
Reflected light is sensitive to planetary albedo, which is influenced by surface features
such as ocean glint (Robinson et al., 2011; Livengood et al., 2011; Robinson et al., 2014;
Lustig-Yaeger et al., 2018; Emde et al., 2017; Ryan & Robinson, 2022; Trees & Stam, 2022;
Vaughan et al., 2023) and the vegetation red edge (VRE; Arnold et al., 2002; Woolf et al.,
2002; Seager et al., 2005; Tinetti et al., 2006b; Fujii et al., 2011; Kawahara & Fujii, 2010;
Wang & He, 2021) as well as atmospheric properties like clouds (Kaltenegger et al., 2007;
Kitzmann et al., 2011; Damiano & Hu, 2020; Lin & Kaltenegger, 2020; Mukherjee et al.,
2021; Pallé et al., 2025). These clouds, although they pose challenges in other techniques,
enhance the potential of a positive detection in reflected light by increasing the planet’s
overall reflectance.
Observing Earth as an exoplanet provides an essential benchmark for future rocky planet
studies. Techniques such as spacecraft observations, disk-integrated spectra from satel-
lites, and Earthshine observations offer crucial insights into how Earth-like planets might
appear in reflected light (Robinson & Reinhard, 2018). Contrary to satellite observations,
Earthshine replicates the complex scattering and reflection geometry of how rocky exo-
planets will be observed in reflected light. In recent years, Earthshine observations have
been performed in intensity Goode et al. (2001); Woolf et al. (2002); Pallé et al. (2003);
Tinetti et al. (2006a); Pallé et al. (2008, 2016) and in polarization (Sterzik et al., 2012;
Takahashi et al., 2013; Bazzon et al., 2013; Miles-Páez et al., 2014; Sterzik et al., 2019,
2020; Takahashi et al., 2021). For ground-based observations, spectropolarimetry is partic-
ularly beneficial in distinguishing between telluric contamination, caused by Earth’s own
atmospheric transmission, and the actual reflected light from Earth. In standard spec-
troscopic observations, telluric lines overlap with the reflected light signals that we aim
to detect, making it challenging to isolate the true reflected light features. Polarization
filters out telluric lines, which remain largely unaffected by polarization, while retaining
the polarized signal from the target.
The biggest challenge in observing rocky exoplanets in the habitable zone is the huge con-
trast between the stellar and planetary flux. Since F-, G-, and K-type stars emit nearly
unpolarized light (Cotton et al., 2017), polarization serves as a valuable tool for distinguish-
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ing planetary signals from stellar radiation. Incoming stellar light gets partially linearly
polarized when reflected due to scattering in the atmosphere or to surface reflections. Po-
larization has the potential to aid in the detection of exoplanets, and it also provides crucial
insights into surface properties, enabling the differentiation between land and ocean sur-
faces.
Advanced radiative transfer models enable realistic simulations of Earth as an exoplanet,
considering both intensity and polarization. Stam (2008) developed the first of such models
using an adding-doubling approach that assesses the influence of the phase angle (i.e., the
angle between the star, the planet, and the observer) and the wavelength dependence on
the degree of linear polarization of various homogeneous planets. Karalidi & Stam (2012)
extended the model to simulate inhomogeneous planets by dividing the planet into small
pixels with homogeneous characteristics, and found that results differ significantly when
compared with horizontally homogeneous exoplanets. This highlights how horizontal inho-
mogeneities leave distinct traces in flux and polarization signals. A more realistic setup for
comparison with Earthshine observations was developed by Emde et al. (2017), using a 3D
Monte Carlo radiative transfer code that accounts for the treatment of fully inhomogeneous
spherical geometry, in contrast to plane-parallel independent column models. The ability
to simulate a realistic Earth-like exoplanet was of fundamental importance in assessing the
influence of water and ice clouds, aerosols, and ocean glint on the polarization spectra of
Earthshine and in constraining several biomarkers of our planet. In particular, Emde et al.
(2017) demonstrated that light reflected by the ocean surface in the ocean glint region
causes the highest increase in polarization. Trees & Stam (2019) further improved the
adding-doubling algorithm from Stam (2008) by incorporating a more realistic treatment
of the ocean surface, including Fresnel reflecting waves and scattering within the water
body.
Notably, the ocean glint feature enhances intensity and contributes strongly to linear po-
larization in both the planetary spectrum and the phase curve. The color change of the
polarized flux appears to uniquely identify an ocean surface, independent of surface pres-
sure or cloud fraction. This feature may serve as a key indicator of surface water. Model
simulations by Trees & Stam (2022) predict that an ocean on the surface of an exoplanet
might already be detectable through spectropolarimetric measurement at a single phase
angle: the glint leaves a dip instead of a peak in the polarization spectrum across the H2O-
gas absorption band around 950 nm. Additionally, using polarized rather than unpolarized
reflectance makes it possible to exclude false-positive detections, which might be generated
by reflecting dry surfaces or ice caps (Cowan et al., 2012). However, multiple scattering
by clouds and aerosols can depolarize the signal and increase the total flux, complicating
interpretations (Hansen, 1971; Emde et al., 2017).
Polarization also plays a significant role in detecting liquid water clouds, as demonstrated
by the presence of the polarized cloudbow feature (Karalidi et al., 2012). Even partial ice
cloud cover does not completely obscure this signal. Observationally, Sterzik et al. (2020)
derived from spectropolarimetric Earthshine observations that clouds on Earth are made
up of liquid water, inferring their particle size from the cloudbow feature as a demonstra-
tion of this technique for Earth-like exoplanets. This shows that spectropolarimetry can
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identify the composition of clouds.
In this first paper in the series, we present an updated modeling framework based on
the Monte Carlo code for the phYsically correct Tracing of photons in Cloudy atmospheres
(MYSTIC), part of the libRadtran software package (Mayer & Kylling, 2005b; Emde et al.,
2016), to simulate the Earth as an exoplanet. MYSTIC incorporates 3D Earth-like atmo-
spheres, full Stokes vectors to account for polarization, and 2D inhomogeneous surface
models. We further improved the surface modeling setup by adding 2D inhomogeneous
planetary surfaces, which can now couple the surface reflectance matrix for the ocean with
Lambertian albedo maps for land surfaces, and inhomogeneous surface wind maps over the
ocean, which improve the accuracy of the simulation of the ocean glint feature. Addition-
ally, we developed a new 3D Cloud Generator algorithm to take into account subpixel cloud
inhomogeneities with variable water content, using data from ERA5, the European Centre
for Medium-Range Weather Forecasts (ECMWF) ReAnalysis fifth-generation product, and
satellite observations.
Finally, we conducted sensitivity studies to assess how these improvements impact the
planet’s computed spectra and phase curves, highlighting the pronounced differences be-
tween true fine-scale surface and cloud structures versus simplified, coarse, and smeared-out
models in observed intensity and polarization spectra. In the second paper in this series,
we will apply our novel methodology to Earth-like exoplanets and explore its implications
for a putative Earth 2.0 observed in reflected and polarized light. The third and final
paper will compare our updated model with our entire catalog of Earthshine observations,
validating our approach and establishing a baseline for using our models as ground-truth
prescriptions in future studies on rocky exoplanet characterization and habitability assess-
ment.

4.2 Theoretical background
Observing an exoplanet in reflected light, the contrast between the planet and the star can
be expressed as

Fp

F⋆

=
(

Rp

a

)2
Ag · g(α), (4.1)

where Fp and F⋆ are the fluxes of the planet and the star, respectively, Rp is the radius of
the planet, a is the semimajor axis of the star-planet system, Ag is the geometric albedo of
the planet and g(α) is the phase function, and α the phase angle (e.g., the angle between
the star, the planet, and the observer). A reflected light spectrum of an exoplanet appears
like the stellar spectrum with additional absorption and Rayleigh scattering features.
The geometric albedo is a wavelength-dependent quantity, while the phase function depends
on both the wavelength and the phase angle. Both quantities are independent of the stellar
spectrum.
By fixing the radius of the planet and the semimajor axis, we can express the contrast in
fluxes only as a function of Ag and g(α). This way, we can study the properties of different
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surfaces and clouds in the reflected light spectrum of an Earth-like planet. We define this
quantity as the reflectance, which is the product of the geometric albedo and the phase
function. Thus the reflectance R = Ag · g(α) is also independent of the stellar spectrum.
The incident starlight to the planet is expected to be almost unpolarized. The disk-
integrated sunlight is polarized at the level of 10−6 (Kemp et al., 1987). For active FGK-
stars, the degree of linear polarization was calculated to be on the order of 23.0 ± 2.2
ppm, while for inactive stars the polarization signal is expected to be about 2.9 ± 1.9 ppm
(Cotton et al., 2017). Also, stellar flares and spots should contribute with small degrees of
linear polarization on the order of 10−6 (Berdyugina et al., 2011).
By contrast, stellar light reflected by the surface of the planet or scattered by processes
happening in the exoplanet atmosphere can be linearly polarized at the level of several tens
of percent. Rayleigh scattering produced by molecules in the atmosphere polarizes light,
although multiple scattering processes involving cloud and aerosol particles can strongly
depolarize the radiation. Similarly, certain surface features, like the ocean glint, produce
strong linear polarization signatures, while scattering by other surface types can depolarize
light previously polarized by Rayleigh scattering. Thus, observations of polarized light
enhance the contrast between the planet and stellar fluxes.
We can describe the total (polarized and unpolarized) flux of the disk-integrated planetary
signal with a Stokes vector (Chandrasekhar, 1950)

F = [I, Q, U, V ], (4.2)

where I is the intensity, Q and U are the linearly polarized fluxes and V the circularly
polarized flux. Q and U are described with respect to a reference frame. In our simula-
tions, the reference plane corresponds to the planetary scattering plane, which is the plane
through the centers of the planet, the host star and the observer.
We define the degree of polarization

P =
√

Q2 + U2 + V 2

I
, (4.3)

which describes the fraction of photons which get polarized over the total flux coming from
the planet, and it is independent on the reference plane. For an Earth-like atmosphere,
V , the circular polarization component, is very small compared to the linear polarization
terms, and thus we can express the degree of polarization,

P =
√

Q2 + U2

I
, (4.4)

only as a function of the linearly polarized components, thus becoming the degree of linear
polarization.
While the total flux intensity spectrum of an exoplanet is an absolute measurement, the de-
gree of linear polarization is a relative measurement and does not need to be calibrated with
the distance or type of the star. Additionally, only the first few scattering orders contribute
to the polarization signal. Multiple scattering depolarizes light because higher-order scat-
tering events disrupt the predominant direction of radiation, reducing their contribution



100 4. Simulations of realistic surface-atmosphere systems

to the Stokes parameters Q and U . In contrast, multiple scattering primarily contributes
to I, thereby decreasing the degree of polarization P . Thus, the features in Q and U
are better constrained compared to unpolarized light, because they are less smeared out
by multiple scattering. For example, features like the cloudbow are due to single-scattering.

4.3 3D Radiative transfer simulations
We perform our simulations with MYSTIC (Mayer, 2009), a versatile radiative transfer
model for Earth’s and planetary atmospheres in the libRadtran software package1 (Mayer
& Kylling, 2005b; Emde et al., 2016). The code is used here to calculate reflected and
polarized light radiances of the Earth with realistic 3D atmospheres and 2D surface re-
flectance properties maps. The implementation of polarization in MYSTIC is described
in Emde et al. (2010). Accurate and efficient cloud scattering simulations require the so-
phisticated variance reduction methods by Buras & Mayer (2011a). The absorption lines
importance sampling method (Emde et al., 2011) enables high spectral resolution simu-
lations. In order to calculate the radiance reflected by the whole planet, a 3D spherical
model setup is required (Emde et al., 2017). The polarization results of MYSTIC show
good agreement compared with other codes (Emde et al., 2015; Emde et al., 2018; Korkin
et al., 2022).
Here we summarize the major initial setup for generating spatially unresolved spectra of
an Earth-like exoplanet:

• The Sun-Earth-Moon geometry (e.g., phase angle) is simulated by selecting the Sun’s
and Moon’s latitudes and longitudes relative to the Earth, along with the Earth-
Moon distance. These values can be obtained, for example, from the Earth and
Moon Viewer.2

• A sensor is placed at a distance d = 384 400 km, the typical Earth-Moon distance,
with an aperture θ = 1.25◦. As a result, the scene consists of the Earth at the center
of the field of view, surrounded by empty space. The reflectance values produced by
MYSTIC are artificially reduced due to photons traveling into empty space without
being reflected back. To correct for this effect, all reflectance values are divided by a
geometrical factor

f = (2d tan θ)2

πR2
⊕

, (4.5)

where R⊕ is the Earth radius.

• We run 107 photons to generate each spectrum, resulting in a standard deviation
below 0.1% (Emde et al., 2017), which is significantly smaller than the expected

1http://www.libradtran.org/doku.php
2https://www.fourmilab.ch/earthview/

http://www.libradtran.org/doku.php
https://www.fourmilab.ch/earthview/
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observational errors. For the single-wavelength simulations used in phase curve cal-
culations, we run 106 photons, reaching a relative error of roughly 0.3%. To generate
the images, we divide each image into a 1000 × 1000 pixel grid and run 1000 photons
per pixel, resulting in a total of 109 photons.

• All spectra are obtained with a spectral resolution of 1 nm over the 400–1000 nm
wavelength range. The phase curves are computed with an angular resolution of
2◦. While the spectra are calculated in the optical wavelength regime, they can also
be computed in the ultraviolet (UV), near-infrared (NIR), and mid-infrared (MIR)
regimes. Additionally, the spectral resolution can be adjusted to achieve high spectral
resolutions of up to R = 100000.

• An atmosphere is specified by a vertical pressure and temperature profile, as well as
the vertical mixing ratios of the most common gas species. We use the US standard
amtosphere properties (Anderson et al., 1986).

• 3D ice and liquid water clouds are included from a cloud file which specifies the 3D
spatial position, liquid water content, ice water content, and effective radius of cloud
droplets and ice crystals. The optical properties of liquid water clouds are computed
using the Mie scattering tool of the libRadtran package (Emde et al., 2016; Wiscombe,
1980). The ice crystals are composed of smooth randomly oriented crystals treated as
a mixture of six habits, and their optical properties are parameterized following the
HEY (Hong, Emde, Yang) parameterization, which includes the full phase matrices
for the 0.2 to 5 µm wavelength range (Emde et al., 2016, Appendix A).

• We generate realistic cloud distributions from the ECMWF ERA5 data for a par-
ticular date and time, and in this paper we introduce a new 3D Cloud Generator
approach (Sect. 4.5.1) to account for cloud inhomogeneities and subgrid variability.

• Land surfaces are treated as Lambertian surfaces with different albedos, and in this
paper we introduce new wavelength-dependent surface albedo maps (Roccetti et al.,
2024) in 3D radiative transfer simulations (Sec. 4.4.1) to treat spectral features of
different land components.

• The ocean surface is simulated using the bidirectional surface reflection functions
(BPDFs) coupled with a surface wind speed maps acquired from ERA5 data and ac-
counts for the influence of waves, including shadowing effects (Mishchenko & Travis,
1997).

Emde et al. (2017) used MYSTIC to simulate the Earth as an exoplanet and compare the
results with Earthshine observations. We build upon the approach of Emde et al. (2017)
by greatly enhancing the representation of surface properties. While Emde et al. (2017)
could only simulate either an ocean surface with its BPDF or a purely Lambertian surface,
our novel method allows for a combination of both. It is now possible to represent inho-
mogeneous planetary surfaces coupling an ocean surface with a Lambertian representation
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of land, which greatly improves the realism of surface modeling. Additionally, we now in-
clude inhomogeneous surface wind maps provided by the ERA5 reanalysis products for the
treatment of surface wind speed, expanding from the homogeneous wind maps available in
Emde et al. (2017).
A second, more important, improvement is the refinement of the 3D cloud profile im-
plementation. We perform sensitivity studies to address the need of introducing cloud
inhomogeneities and subgrid variability, which reduces the bias from the former cloud rep-
resentation (Emde et al. (2017), see Sec. 4.5.1 for more details). Lastly, we introduce
variable effective cloud droplet radii based on realistic parameterizations from ECMWF
(ECMWF, 2024).
To generate true color images of the planet, we first perform MYSTIC simulations at three
wavelengths: 469 nm, 555 nm and 645 nm. From these three wavelengths, a simplified
spectrum is constructed as a step function in the visible range, where intensity values at
all wavelenghts in the continuum are associated with the output of the closest simulated
wavelength. The simplified spectrum is then convoluted with the color matching functions
from the International Commission on Illumination (CIE) to obtain colors in the CIE color
space. CIE colors are then converted to RGB colors using the transformation of the RGB
standard. The resulting colors have a linear brightness scale and need to be transformed
into a power-law brightness scale by applying a gamma transfer function, as specified by
the RGB standard.

4.4 Surface modeling
Ocean and land surfaces exhibit distinct albedo characteristics due to their differing proper-
ties. Oceans have low albedo because water absorbs most visible and near-infrared sunlight.
In contrast, land surfaces vary in reflectance based on composition: snow-covered regions
are highly reflective, while forests and deserts show lower albedo depending on their veg-
etation and soil type. Surface roughness further influences reflectance. Smooth surfaces,
like calm oceans or bare rock, reflect more light than uneven surfaces, such as forests and
grasslands. Additionally, the angle of incoming sunlight affects reflectance. Sunlight strik-
ing the ocean surface at a steep angle tends to penetrate the water, while shallow-angle
sunlight is more likely to be reflected.
In Emde et al. (2017), simulating both ocean and Lambertian land surfaces simultaneously
was not possible in polarization mode. In our updated approach, we now implement a
Lambertian surface for land pixels, specifying albedo values, and a BPDF for ocean pixels.
This is the only model available in the literature that can effectively handle a mixture of
BPDF and Lambertian surfaces, compared to previous work by Emde et al. (2017); Trees
& Stam (2019, 2022); Vaughan et al. (2023). This enables realistic simulations of inho-
mogeneous planetary surfaces, combining ocean and land, and improving the treatment of
varying albedo effects for Earth and exoplanets.
All land surface types, apart from oceans, are treated as pure Lambertian surfaces in our
model. Although materials like forest leaves and sand can polarize light via surface reflec-
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tion, land BPDFs are unavailable for our model. However, the largest polarized reflectances
observed by the PARASOL instrument over land are of the order of 0.02 and 0.04 (Maig-
nan et al., 2009), and their contribution to Earth’s disk integrated polarized radiance is
expected to be minor, as shown in Groot et al. (2020).
In the case of water reflections, surface roughness significantly expands the area where
sunlight is directly reflected, extending beyond the solar disk’s size on Earth. This phe-
nomenon, known as ocean glint, becomes more pronounced with increasing wind speed
over the water surface. For our simulations, the ocean is modeled using the realistic BPDF
from Mishchenko & Travis (1997). This model also incorporates the shadowing effects of
ocean waves, as described by Tsang & Li (1999).

4.4.1 Hyperspectral albedo maps
Albedo varies with wavelength, and accurately representing this spectral variability is cru-
cial for correct energy balance calculations in radiative transfer simulations. Proper treat-
ment of the spectral variability of surface types is essential for capturing the continuum
in simulated spectra and identifying features like the VRE around 780 nm. However, no
global hyperspectral albedo maps are provided by current satellite or reanalysis products.
Gordon et al. (2023) addressed this issue by classifying surface pixels into five categories
(ocean, forest, grass, sand, and snow/ice) using the Level-3 MODIS Yearly Global Land
Cover Types (YGLCT) product. They coupled these categories with the ECOSTRESS
spectral library (Baldridge et al., 2009; Meerdink et al., 2019) to account for spectral vari-
ability. A similar approach was used by Kofman et al. (2024), who applied linear mixing
of land surface spectra to represent mixed surface types.
Roccetti et al. (2024) developed a hyperspectral albedo map dataset, HAMSTER, which
captures the spatial, temporal, and spectral variability of Earth’s surface albedo, based
on MODIS surface albedo satellite measurements (Schaaf et al., 2002). This dataset sig-
nificantly improves land surface representation by treating them as a mixture of soils and
vegetation. In terms of seasonal variability, HAMSTER shows that rainforests exhibit al-
most no seasonal changes, whereas boreal forests experience variations due to snow, with
their summer profile closely resembling that of a rainforest. Similarly, for deserts, HAM-
STER reveals that the Sahara and Australian deserts show little to no seasonal variation,
while high-altitude deserts are affected by seasonal snow cover. In contrast, the typical
profile of a savanna is strongly season-dependent, resembling a desert during the dry season
and a forest during the wet season (Roccetti et al., 2024).
In Fig. 4.1, we compare the typical reflectance spectra of different soils and vegetation
components from the ECOSTRESS library with the yearly average, spatially integrated
spectra of a forest and a desert from HAMSTER (Roccetti et al., 2024). Specifically, we
compare the Sahara and Australian deserts in ECOSTRESS with dry soil and sandstone
materials. Similarly, we compare the Amazon rainforest and the Siberian boreal forest
with the grass and oak leaf spectra from ECOSTRESS.
We find that without such detailed treatment, land reflectance can be over- or underesti-
mated. For instance, the VRE peak at 780 nm reaches around 0.3 in Roccetti et al. (2024),
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Figure 4.1: Comparison of desert and forest spectra from HAMSTER (solid lines) with
typical soil and leaf spectra from the ECOSTRESS library (dashed lines).

whereas ECOSTRESS data for a broadleaf tree shows an albedo of approximately 0.6,
underscoring the importance of combining soil and vegetation properties in land surface
simulations. A similar trend is observed for the green bump around 500-600 nm, which is
also overestimated when the combination of various surface types is not considered.
We use HAMSTER to represent surface reflectance in our model and explore the sensitiv-
ity of surface albedo to seasonal variability in Sec. 4.6.3. HAMSTER provides a spatial
resolution of 0.05◦ in latitude and longitude, a temporal resolution of one day, and a spec-
tral resolution of 10 nm, allowing it to capture key spectral features such as chlorophyll
absorption and other soil properties.
To evaluate the impact of HAMSTER, we replicated the simplified hyperspectral albedo
maps described in Kofman et al. (2024). This was achieved by generating a linear com-
bination of spectra from the ECOSTRESS spectral library, guided by land cover type
information from the MODIS MCD12C1 product. The 17 land cover types were grouped
in five categories (grass, forest, soil, snow and water bodies) as in Gordon et al. (2023)
and Kofman et al. (2024). The resulting spectra and phase curves were then compared to
assess their differences.

4.4.2 Inhomogeneous surface wind maps
The reflective properties of the ocean glint depend on the water surface structure, which
is influenced by wind speed. In our model, we use horizontal surface wind data from
meteorological sources as input to the BPDF function for water surfaces (Tsang & Li,
1999; Mishchenko & Travis, 1997). For each surface grid cell, the wind speed is calculated
from the northward and eastward wind components provided by the "ERA5 hourly data
on single levels from 1940 to present" (Hersbach et al., 2020). This approach generates
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inhomogeneous surface wind maps that affect the shape and size of the glint, although
the wind direction is not considered. This is the first time that inhomogeneous surface
wind speed maps are introduced, while previous approaches used a constant wind speed of
10 m s−1 (Emde et al., 2017), and between 1 to 13 m s−1 (Trees & Stam, 2022). This setup
provides a realistic representation of the glint, which, together with cloud cover, impacts
the spectra and phase curves of the planet. The relationship between ocean glint and wind
speed is explored in Appendix 4.11.

4.5 Cloud modeling
We introduce a novel approach to modeling clouds in our 3D simulations to achieve a
highly realistic representation of global cloud systems on Earth. As the detailed combina-
tion of clouds and surfaces determines the geometrical albedo, accurate prescriptions are
essential to model reflectance and polarization correctly (Eq. 4.1). In our model, we rep-
resent clouds using 3D maps of liquid water content (LWC) and ice water content (IWC)
from the ECMWF’s ERA5 reanalysis product (Hersbach et al., 2020). Reanalysis products
combine past observations with advanced weather forecast models to generate a consistent
and complete picture of past atmospheric conditions. This involves the use of data assimi-
lation techniques to integrate observations from various sources (such as satellites, weather
stations, and buoys) into a weather model. The ERA5 reanalysis product comes with a
high horizontal spatial resolution of approximately 28 km on a global grid (or 0.25◦) and
37 vertical levels from the surface up to 1 hPa (about 48 km altitude), providing detailed
information on the state of the atmosphere. The LWC and IWC are the starting point
to calculate the optical thickness of clouds. In the approximation of geometrical optics,
which is accurate in the visible, the optical thickness is given by

τ = 3
2

∆H · LWC

ρw · reff
, (4.6)

where ∆H is the height of the cloud, ρw is the density of liquid water and reff is the cloud
droplet effective radius. For an ice water cloud, τ is calculated as in Eq. 4.6 by substituting
LWC with IWC. The ERA5 data comes with mass mixing ratios which are converted to
LWC/IWC by computing the local air density using the ideal gas law.
ERA5 provides hourly data, allowing for detailed temporal analysis of weather and climate
patterns. This high temporal resolution is valuable for studying diurnal cycles, extreme
weather events, and other time-sensitive phenomena. The consistency of the ERA5 reanal-
ysis product is crucial for long-term climate studies, trend analysis, and the validation of
climate models.
To model a representative planet, we run all our cloudy spectra and phase curves with 12
different cloud fields selecting one random day from each month during 2023. This way,
we can represent the variability of the planet, like its seasonal and internal variability. We
select different random days for the two different geometries we are representing:
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• for an ocean planet, defined as a scenery over the Pacific Ocean, we simulate cloudy
planets of the days reported in Table 4.1, at UTC 22:00 to catch the cloud properties
as they are over the Pacific ocean, better representing an ocean planet configuration;

• for an Earth-like planet, we select a scenery over the Indian ocean, with Asia, Europe
and Africa visible in the scene. The cloud fields are randomly selected by day, but are
all selected for UTC 06:00, to better represent cloud properties which are a mixture of
land and ocean components. This prevents introducing a bias associated with cloud
properties over different surfaces. The cloud properties for the Earth-like planet are
displayed in Table 4.2.

When comparing cloud properties over the ocean and the Earth-like planet, we observe
small differences in cloud cover, optical thickness, and the effective radii of water and ice
cloud droplets. Throughout the study, we represent the variability due to cloud properties
in all spectra and phase curves by averaging the final spectra across 12 independent simu-
lations, each using different cloud fields, and indicating the 1σ spread resulting from cloud
variability.
We also find that the cloud cover value we find from the ERA5 reanalysis cloud product is
rather large. A possible explanation is the "resolution effect" problem. Dutta et al. (2020)
found the total cloud cover measured by finite resolution satellites to be overestimated.
This bias can be overcome with finer angular resolution satellite instruments.
Emde et al. (2017) used the predecessor of ERA5, ERA Interim, to represent cloud proper-
ties within MYSTIC. ERA Interim was provided on a coarser grid than the ERA5 product.
Using hourly data such as the ones provided by ERA5 is useful to compare with Earthshine
observations, as it provides the opportunity to represent the cloud properties at the exact
date and time of the observations. However, Emde et al. (2017) assumed that the LWC
and IWC provided by ERA Interim were the in-cloud values, thus they mutiplied them by
the cloud fraction of each gridbox to obtain the gridbox average LWC and IWC, which
are the quantities needed to estimate the cloud optical thickness in MYSTIC. However, as
in ERA5, also ERA Interim was providing already the gridbox averages LWC and IWC,
thus the multiplication for the cloud fraction substantialy underestimated the cloud opti-
cal thickess and impacted the representation of the radiative and microphysical properties
of clouds. This effect has significant impact and is the major reason why the Earthshine
polarization spectra modeled in Emde et al. (2017) did not match well observations.
While ERA5 presents a rather fine spatial resolution for a global cloud model, the grid size
of each pixel (around 31 km) is still rather large and fails to represent the more realistic,
patchy nature of clouds. In fact, smoothing microphysical cloud properties over large grid
scales results in an average state of clouds and spreads the LWC and IWC information
on the entire grid cell. However, in nature, clouds appear to be patchy and a more cor-
rect representation is required to account for horizontal inhomogeneities among clouds and
the presence of clear-sky and cloudy subpixels inside the same grid cell. This effect of
cloud representation is very relevant in 3D radiative transfer models, and in particular for
polarized spectra and phase curves, which are more sensitive on the effect of clouds and
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their microphysical properties. Thus we developed a new approach to treat 3D cloud sub-
pixel variability and inhomogeneities, called the 3D Cloud Generator approach, in order
to calculate reference (ground-truth) spectra and phase curves of Earth as an exoplanet in
reflected and polarized light.

4.5.1 3D Cloud Generator
The 3D Cloud Generator (3D CG) is based on the Hogan & Bozzo (2018) one-dimensional
cloud generator, but adapted for a 3D radiation scheme. This is crucial to generate realis-
tic spectra and phase curves of Earth as an exoplanet, due to the horizontal and vertical
distribution of clouds, and in particular their overlap over the ocean glint area. Our 3D
CG, being based on the one used from the 1D radiation scheme ecRAD, does not include
any correlation between columns, which is left for a future implementation.
The first step in the 3D CG is to compute the cumulative cloud cover profile, ci+1/2, from
the top of the atmosphere (TOA) to the i-th layer, using ERA5 cloud cover data (ai) for
individual layers. Additionally, the pairwise cloud cover, pi+1/2, between adjacent layers
i and i + 1 is calculated. However, without subgrid information on the horizontal cloud
distribution, determining pi+1/2 from ai and ai+1 is not straightforward. Clouds can be ver-
tically overlapping, randomly arranged or a mixture of both. To address this ambiguity,
various cloud overlap assumptions have been developed and validated against observations
(Hogan & Illingworth, 2000). In Fig. 4.2 we show a schematic illustration of four cloud
overlap assumptions.
The two most simple cloud overlap assumptions are the maximum and the random over-
laps. The maximum overlap assumes clouds are perfectly vertically aligned, while the
random overlap assumes a completely stochastic distribution between layers. These two
assumptions represent opposite extremes, while the maximum-random (MAX-RAN) over-
lap (Morcrette & Jakob, 2000) offers a more balanced and realistic approach. In MAX-RAN
overlap, clouds in vertically contiguous layers are maximally overlapped, while those sep-
arated by cloud-free layers are randomly overlapped.
Assuming MAX-RAN overlap, the pairwise cloud cover of two adjacent layers is

pi−1/2 = max(ai−1, ai). (4.7)

An alternative approach is the exponential-random (EXP-RAN) overlap (Hogan & Illing-
worth, 2000), where an "overlap parameter" α is used to interpolate between the maximum
and the random overlap assumptions for adjacent cloudy layers. The α parameter decays
as the distance between layers increases:

αi = exp
(

−∆zi

z0

)
. (4.8)

Here ∆zi is the thickness of the i-th layer and z0 is the cloud cover decorrelation length.
The ECMWF Integrated Forecast System (IFS) documentation (ECMWF, 2024) presents
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Figure 4.2: Schematic illustration of four cloud overlap assumptions: maximum, random,
maximum-random (MAX-RAN), and exponential-random (EXP-RAN) overlap. The figure
also shows the meaning of three important quantities: the cloud cover of a given layer, ai;
the pairwise cloud cover pi+1/2; and the cumulative cloud cover ci+1/2. For the EXP-RAN
overlap, a schematic illustration of the exponentially decaying α parameter is also included,
showing how it decreases with altitude as the separation between layers increases.

a parameterization of z0 based on latitude, following the ideas of Shonk et al. (2010):
z0[km] = 0.75 + 2.149 cos2 ϕ. (4.9)

The thickness of the layers, ∆zi, increases with altitude for ERA5 reanalysis data, hence
the α parameter decreases exponentially with altitude.
The pairwise cloud cover computed assuming EXP-RAN overlap is

pi−1/2 = αi−1/2 max(ai−1, ai) + (1 − αi−1/2)(ai−1 + ai − ai−1ai), (4.10)
where the α parameter weights more the maximum overlap for close layers and the random
overlap for distant ones.
For both assumptions, we compute the cumulative cloud cover iteratively as

ci+1/2 = 1 − (1 − ci−1/2)
1 − pi−1/2

1 − ai−1
. (4.11)
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Figure 4.3: 3D schematic illustration depicting the input and output of the 3D CG for liquid
water clouds, without including horizontal inhomogeneity. The original ERA5 pixels are
subdivided into smaller columns, with clouds assigned based on the procedure outlined in
the main text. The color of the boxes represents the associated LWC, which is adjusted
to conserve the ERA5 LWC layer by layer.
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This first step is completely deterministic, and only depends on the cloud overlap assump-
tion employed.
The next step of the 3D CG is to divide the original ERA5 column in N × N subcolumns
and assign, along each subcolumn (independently) cloudy and non-cloudy subpixels. This
procedure is stochastic and is again based on Hogan & Bozzo (2018). Initially, we de-
termine the highest cloudy layer by generating a first random number R0 from a uni-
form distribution between 0 and 1. The i-th layer is chosen as the highest cloudy one if
ci−1/2/C < R0 ≤ ci+1/2/C, where C = cn+1/2 is the total cloud cover. Next we proceed
further down to the layer i + 1 and determine if that layer is also cloudy by generating a
further random number Ri. If the present layer i is cloudy, the next one is cloudy too if

Ri <
ai + ai+1 − pi+1/2

ai

. (4.12)

On the other hand, if the current layer i is not cloudy, the next one is set to be cloudy if

Ri <
pi+1/2 − ai − ci+3/2 + ci+1/2

ci+1/2 − ai

. (4.13)

The right-hand side of Eq. 4.12 (and Eq. 4.13) represents the conditional probability of
finding a cloudy pixel in layer i + 1 given that the previous layer i was cloudy (or not).
For a more thorough discussion on how this probability is derived, see Fig. 3 in Hogan &
Bozzo (2018) and the accompanying explanation.
By the end of this procedure, we obtain a binary matrix C with dimensions (N, N, Nz),
with Nz the number of vertical layers, recording which pixels are populated by clouds and
which are non-cloudy.
The last step of the 3D CG consists of assigning to all cloudy pixels a value for LWC
and IWC. Contrary to Hogan & Bozzo (2018), we start directly from the ERA5 gridbox
averages LWCi and IWCi instead of scaling the optical depth.
First we convert the gridbox average LWCi to the in-cloud LWCic

i of layer i by dividing
by the cloud cover ai:

LWCic
i = LWCi

ai

. (4.14)

The same holds for the in-cloud IWCic
i . In principle we could set all cloudy pixels in a given

layer i of the matrix C to this in-cloud LWCic
i value. In practice, we follow the algorithm

of Räisänen et al. (2004) to generate a distribution of LWC that resembles more closely
the cloud cover vertical distribution and to introduce some horizontal inhomogeneity. The
uppermost cloudy layer LWCi is determined by scaling the LWCic

i by a random value γ
extracted from a gamma distribution of mean value µ = 1 and fractional standard deviation
σ = 0.75. If the next layer i + 1 is cloudy, we extract a random number Ri+1 and compare
with the cloud condensate cumulative frequency αlwc

i+1. If Ri+1 < αlwc
i+1, the next layer is

filled with the same LWC as the previous layer; if the opposite is true, a new random
value from the gamma distribution is extracted. In summary:

LWCi+1 =

LWCi if Ri+1 < αlwc
i+1 and Ci = 1

γ · LWCic
i+1 otherwise

. (4.15)
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The cloud condensate cumulative frequency αlwc is computed as the exponential overlap
parameter α (Eq. 4.8), the only difference being that the decorrelation length z0 of the
cloud parameters is half the one for the cloud cover (ECMWF, 2024).
By the end of this procedure, the randomness intrinsic to the attribution of LWC values
may have changed the total amount of LWC compared to the initial gridbox average data
from ERA5. Therefore, we add an additional step compared to the original procedure by
Räisänen et al. (2004) and we correct for this randomness by rescaling, layer by layer, each
value of LWCi by

LWCr
i = LWCi · LWCic

i

< LWCi >
, (4.16)

where the mean < LWCi > is performed over all subcolumns and LWCr
i is the rescaled

LWC of the layer i. The same procedure is performed also to obtain the values for the
IWC.
The 3D CG input and output are shown in Fig. 4.3. The original ERA5 pixel is divided
into subcolumns, which are populated by cloudy and non-cloudy pixels according to the
procedure described above. Additionally, LWC and IWC values for all pixels are obtained
using Eq. 4.15 and Eq. 4.16. As shown in the figure, the EXP-RAN overlap scheme
generates slightly more cloudy columns, as it introduces randomness even in contiguous
cloud layers, unlike the MAX-RAN overlap.

4.5.2 Variable cloud effective radius
The optical thickness depends also on the effective radius of the cloud droplets as in Eq.
4.6. reff is calculated following the ECMWF parameterizations (ECMWF, 2024). The
liquid water effective radius is

rliquid
eff =

[
3Ed(LWC + RWC)

4πρwkNd

]1/3

, (4.17)

where RWC is the rain water content, Ed is an enhancement factor accounting for drizzle
dispersion introduced in Wood (2000), k is a shape-dependent factor and Nd is the number
concentration of cloud droplets, parameterized differently between pixels above sea and
pixels above land following Martin et al. (1994) and computed using the wind speed as an
input.
The ice effective radius is parameterized following Sun & Rikus (1999) and Sun (2001),

rice
eff = 3

√
3

8 Dice
eff , (4.18)

where Dice
eff is the ice particle effective diameter. For all the details regarding these param-

eterizations, we refer to ECMWF (2024).
We also investigate the effect of using a constant effective radius, instead of a variable effec-
tive radius calculated for each gridbox from the ECMWF parameterization, while keeping
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the same optical depth. This requires us to rescale the LWC of the cell accordingly, given
the equation for the optical depth Eq. 4.6:

LWC ′ = LWC0 ·
(

r′
eff

reff,0

)
. (4.19)

Here LWC0 and reff,0 refer to the standard quantities, using the parameterized effective
radius, and LWC ′ and r′

eff represent the variables in the case of constant effective radius.

4.5.3 Cloud zoom-out algorithm
To further investigate the effect of the horizontal grid resolution in simulating spectra and
phase curves of spatially unresolved exoplanets, we now move to coarser grid scales. We call
this procedure cloud zoom-out, as we average out the cloud properties from the fine grid
scales of the 3D CG and the ERA5 product to coarser resolutions. To generate 3D cloud
maps at coarser resolutions, we average out the ERA5 data across N × N horizontal grid-
cells, while keeping the vertical direction intact and the optical depth constant. In order
to do so, we first compute the average ratio between LWC and reff and then we multiply
it by the average reff . In this way, we keep the optical depth of the new, merged, column,
equal to the mean of the original subcolumns on which we performed the averaging.

reff = ⟨reff⟩ (4.20)

LWC =
〈

LWC

reff

〉
× ⟨reff⟩, (4.21)

where the brakets indicate the average over the N × N horizontal window. reff and LWC
are the values assigned to the averaged column.

4.6 Results
Using MYSTIC, we generate true color images of an ocean planet, which corresponds to
a geometry over the Pacific ocean, where we removed all continents, and of an Earth-
like scenario, showing a configuration with Asia, Africa, Europe, and the Indian Ocean
in the scenery. In Figs. 4.4 and 4.5 we show how the ocean and Earth-like planets look
at different phase angles (α = 0, 30, 60, 90 and 120◦). These two configurations are the
starting point to generate spatially unresolved spectra and phase curves of the ocean and
Earth-like configurations, averaging over the full disk of the simulations. We selected the
Earth-like configuration to maximize the land surface component, and to let it cover almost
completely the ocean glint feature at high phase angles (α > 90◦), where the ocean glint
presents a major effect.
In Figs. 4.4 and 4.5 we also show the same configurations with realistic clouds simulated

through the 3D CG approach. When showing spectra and phase curves for a cloudy planet,
we always run the same configurations with 12 different cloud fields, one for each month
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Figure 4.4: True color simulations of the ocean planet configuration with an Earth-like
atmosphere for different phase angles (different columns). The same geometry is simulated
without clouds (first row) and with clouds (second row) using the ERA5 reanalysis dataset
from 2023-09-18 UT22:00 for the cloud setup. The glint feature becomes covered by inho-
mogenous realistic clouds in the second row.

Figure 4.5: True color simulations of the Atlantic configuration of an Earth-like exoplanet
for different phase angles (different columns). The same geometry is simulated without
clouds (first row) and with clouds (second row) using the ERA5 reanalysis dataset from
2023-09-18 UT06:00 for the cloud setup. The glint feature becomes partially hidden by
continents in the first row, and covered by inhomogenous realistic clouds in the second row.

of the year, randomly selecting the date. This will allow us to show the 1σ range in the
spectra and phase curves that represent the seasonal variability of the clouds.
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In Tables 4.1 and 4.2 we report the selected dates for the ocean and Earth-like configu-
rations, respectively. To better represent typical cloud properties over an ocean or land
surfaces, we selected the cloud fields from the "ERA5 hourly product on pressure levels
from 1940 to present" to be at UT 22:00 for the ocean configuration, where the illuminated
side of the planet maximized the Pacific ocean, and at UT 06:00, to have the illuminated
side representing the Earth-like configurations described above. In Tables 4.1 and 4.2 we
report the calculated cloud properties of the different cloud configurations for α = 90◦, in
particular their cloud cover, optical thickness, altitude, and effective radius for liquid and
ice water clouds. We also present the cumulative cloud cover for both liquid and ice water
clouds as it depends non-trivially on their vertical overlap, while the cumulative optical
thickness can be obtained as the sum of the individual ice and liquid water clouds optical
thicknesses. We calculate the cloud properties only for the visible scene. The cloud cover is
estimated using recursively Eq. 4.11 to compute cn+1/2 for each column and averaging over
the visible scene. To estimate cloud altitudes more accurately in Tables 4.1 and 4.2, we
use the procedure described in Appendix 5.8, while MYSTIC simulations assume constant
height levels over the full globe.
Tables 4.1 and 4.2 show seasonal variability across different dates, particularly in cloud
cover and optical thickness. They also reveal statistical differences in the average cloud
properties between the ocean and Earth-like configurations. Specifically, we find that cloud
cover over the ocean (cloud fields with UT 22:00) is about 5% higher than over the Earth-
like configuration. This is expected due to the presence of dry regions, such as the Sahara
Desert, in the selected geometry. Additionally, the Earth-like configurations exhibit lower
τ due to the lower cloud cover. We also observe that clouds tend to form at higher average
altitudes over ocean surfaces and exhibit larger effective radii for both liquid and ice water
clouds. These differences are in agreement with cloud patterns found in satellite observa-
tions and reanalysis products and allow us to represent in our spectra and phase curves of
the Earth as an exoplanet the variability due to seasonal changes in cloud properties and
their differences as a function of ocean versus land coverage.

4.6.1 Impact of the 3D Cloud Generator
To investigate the impact of cloud representation, particularly the cloud radiative response
in the 3D radiative transfer simulations, we selected an ocean surface with constant wind
speed of 10 m s−1 as our configuration (Fig. 4.4). Starting from cloud properties from the
ERA5 reanalysis product, we introduce subgrid cloud inhomogeneities using the 3D CG
approach as described in Sec. 4.5.1.
In Appendix 4.9 we analyze the impact of the zoom-in factor on the radiative transfer ef-
fects of clouds and find that it quickly converges to a stationary value, even at a zoom factor
of 3. In Fig. 4.6, we show the reflectance and polarization spectra of an ocean planet with
different cloud models for three different phase angles: 60, 90, and 120◦. We can clearly see
that the reflectance of the ERA5 cloud configurations is greatly overestimated when not
accounting for the subgrid variability of the clouds. This strongly influences the albedo
of the planet, in particular at high phase angles. For the polarization spectra, we find
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All clouds Liquid water clouds Ice water clouds
date cc [%] cc [%] H [km] reff [µm] τ cc [%] H [km] reff [µm] τ

2023.01.15 UT22:00 58.1 47.3 1.83 9.3 7.14 51.1 4.51 50.7 0.54
2023.02.16 UT22:00 59.6 48.5 1.79 9.5 7.22 53.8 4.97 50.9 0.66
2023.03.29 UT22:00 64.6 54.2 1.56 9.2 7.00 59.9 4.36 48.1 0.66
2023.04.10 UT22:00 57.7 49.5 1.67 9.4 6.62 52.2 5.43 50.1 0.61
2023.05.17 UT22:00 63.1 56.6 1.67 9.4 6.88 59.5 4.45 51.0 0.69
2023.06.21 UT22:00 64.7 57.7 1.54 9.4 9.46 59.5 5.14 49.2 0.62
2023.07.14 UT22:00 66.6 59.0 1.56 9.8 9.55 57.0 6.18 48.8 0.69
2023.08.06 UT22:00 62.6 55.4 1.59 9.7 9.92 57.5 4.66 48.5 0.64
2023.09.12 UT22:00 61.7 53.6 1.71 9.7 7.86 57.8 4.96 49.4 0.69
2023.10.07 UT22:00 61.2 54.1 1.53 9.3 7.45 55.4 4.28 48.7 0.61
2023.11.27 UT22:00 63.7 51.7 1.64 9.0 5.61 59.5 4.23 50.7 0.65
2023.12.30 UT22:00 61.9 49.0 1.61 9.0 6.30 54.7 4.43 50.0 0.68

average 62.1 53.1 1.64 9.4 7.58 56.5 4.80 49.7 0.64

Table 4.1: Cloud properties for the 12 different cloud fields and their average used for the
ocean planet scenario at α = 90◦.

All clouds Liquid water clouds Ice water clouds
date cc [%] cc [%] H [km] reff [µm] τ cc [%] H [km] reff [µm] τ

2023.01.22 UT06:00 50.5 38.1 1.58 8.7 5.11 45.5 4.95 47.5 0.45
2023.02.08 UT06:00 57.1 41.5 1.46 8.5 5.81 52.5 3.91 46.5 0.55
2023.03.02 UT06:00 53.2 38.3 1.49 8.6 5.23 47.7 3.44 45.6 0.53
2023.04.09 UT06:00 50.1 35.0 1.48 8.8 4.51 44.2 3.77 46.1 0.45
2023.05.14 UT06:00 61.5 36.5 1.52 8.7 5.62 57.2 3.89 42.0 0.68
2023.06.05 UT06:00 63.0 37.1 1.64 8.3 5.56 57.5 3.69 42.7 1.10
2023.07.26 UT06:00 61.4 36.2 1.79 8.6 5.19 54.7 3.59 42.1 0.70
2023.08.29 UT06:00 55.9 35.9 1.54 8.7 5.61 48.3 4.19 42.6 0.56
2023.09.18 UT06:00 60.2 40.0 1.51 8.5 5.36 54.4 3.85 42.2 0.64
2023.10.05 UT06:00 57.5 35.0 1.53 8.5 5.42 51.8 3.24 42.0 0.58
2023.11.12 UT06:00 60.7 41.5 1.50 8.7 6.29 56.3 3.71 45.1 0.70
2023.12.24 UT06:00 52.9 41.5 1.51 8.5 5.53 48.4 4.35 47.4 0.50

average 57.0 38.0 1.55 8.6 5.44 51.5 3.88 44.3 0.62

Table 4.2: Cloud properties for the 12 different cloud fields and their average used for the
Earth-like planet scenario at α = 90◦.

that the 3D CG representation has an impact on the slope of the spectra at small phase
angles (α = 60◦), it shows an important difference in the polarization at α = 90◦, while
the effect becomes substantial at high phase angles (α = 120◦). In particular, this large
discrepancy at high phase angle can be explained by the effect of the ocean glint. Making
the clouds more "patchy" and increasing their horizontal inhomogeneities allows for the
glint to be less masked by the clouds and to greatly increase the polarization compared to
the ERA5 clouds. Additionally, the 1σ spread due to cloud variability increases at larger
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phase angles. This is because the ocean glint feature has its strongest impact on polariza-
tion spectra and phase curves at these angles. Running simulations at large phase angles
with different cloud fields, each containing a different spatial cloud distribution, results
in varying degrees of cloud coverage over the ocean glint region. As a result, some cases
exhibit a more pronounced glint effect, while others are more obscured by clouds, leading
to an increased spread in the simulations.
In polarization, we also observe a change in the behavior of atmospheric absorption lines.
We define an absorption feature as a case where the absorption line in polarization falls
below the continuum, whereas we refer to it as emission when the line appears above the
continuum. In particular, the O2-A line around 770 nm is shown in emission for most of the
polarized spectra, while it changes behavior between the 3D CG simulations (absorption)
and the ERA5 clouds (emission) at α = 120◦. This change in behavior is due again to the
different cloud properties, in particular cloud optical depth and cloud height, and how they
are represented in the radiative transfer simulations. A different behavior is also observed
for the water band around 950 nm, where the feature appears in absorption only when
including subgrid cloud variability, while otherwise shown with weak emission features.
These last finding is in agreement with Trees & Stam (2022), where they describe how
sensitive polarization is, contrary to intensity spectra, to the ocean glint feature. In their
simulations, water bands appear in absorption in polarization when there is an ocean glint
feature not fully covered by clouds, while they appear in emissions in the case of full cloud
cover over the ocean glint or for a dry surface. With our simulations we show that, even
when applying realistic cloud cover and horizontal cloud patterns and taking into account
the subgrid variability, the ocean glint feature still retains its typical effect of changing
from emission to absorption depending on the surface type of the planet. This difference
will become even more significant later for the comparison with the Earth-like scenario,
where the ocean glint will be hidden by the African continent for α > 90◦.
In Fig. 4.6 we not only highlight the impact of the 3D CG, but we also study the effect of

assuming different schemes for the vertical overlap of clouds, nominally the MAX-RAN and
EXP-RAN overlaps. As described in Sec. 4.5.1, the EXP-RAN overlap generally increases
the total cloud cover of a single cloudy pixel at the TOA, making the clouds more reflec-
tive but also more realistic by introducing some random overlap even for continuous cloudy
layers. This is also the case for the disk-integrated simulations, where the simulations with
EXP-RAN overlap have a slightly increased reflectance compared to the same MAX-RAN
simulations with the 3D CG. Polarization exhibits the opposite behavior. The EXP-RAN
overlap scheme leads to more cloud cover, blocking a larger part of the ocean, where glint
reflection produces polarization. It also obscures more of the lower atmosphere, which con-
tributes to polarization through Rayleigh scattering. As a result, the overall polarization
in the spectra is lower than in the MAX-RAN overlap simulations.
We also explore the effect of different zoom-in factors for each ERA5 pixel in the 3D CG.
Comparing between a zoom-in factor of x3 and x5 per size (meaning that we are creating 9
and 25 subpixels, respectively), we study the impact of the increase in horizontal resolution
on the reflectance and polarized spectra of spatially unresolved planets. Intuitively, the
more pixels we have in a simulation, the better we can resolve the 3D cloud structure and
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Figure 4.6: Reflected light (first row) and polarized light (second row) spectra showing
the influence of the 3D CG approach applied to the ERA5 reanalysis data for the clouds
compared to the ERA5 data themselves (black line). The 3D CG was run assuming different
vertical overlap schemes: EXP-RAN and MAX-RAN and different zoom-in factors (x3 and
x5). The different columns refer to spectra at different phase angles α: 60, 90, 120◦.

Figure 4.7: Reflected light (first row) and polarized light (second row) phase curves showing
the influence of the 3D CG approach applied to the ERA5 reanalysis data for the clouds
compared to the ERA5 data themselves (black line). The 3D CG was run assuming different
vertical overlap schemes: EXP-RAN and MAX-RAN and different zoom-in factors (x3 and
x5). The different columns refer to different wavelengths (λ): 500, 700, 900 nm.

the closer to reality it should look like. However, running global simulations with pixels
size that can reach up to the fractal dimension of clouds, where cloud structures can be
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resolved, is unfeasible. Starting from the ERA5 reanalysis product, which has a pixel size
of around 31 km, with a x3 and x5 zoom-in we obtain pixel sizes of approximately 9 and
6 km, respectively (or 0.08◦ and 0.05◦), still far from the fractal dimension of clouds, yet
reaching a great level of details and accuracy. Comparing the x3 and x5 spectra with the
same vertical overlap scheme (MAX-RAN or EXP-RAN), we see that by increasing the
zoom-in factor we also slightly decrease the reflectance of the planet and slightly increase
its polarization, as already expected by our convergence study in Fig. 4.15. However, a
zoom-in factor of 5 is significantly more computationally expensive than a zoom-in factor of
3, while not substantially affecting the results. Additionally, we clearly see that the impact
of the 3D CG applied to the ERA5 clouds is much more significant than the differences
among different zoom-in factors and vertical overlap schemes. Thus, from now on we use
the 3D CG with EXP-RAN overlap and x3 zoom-in factor as the ground-truth model to
treat clouds in our simulations.
For the reflected light spectra, we find that reflectance decreases with increasing phase
angles, as expected due to the progressively smaller illuminated portion of the planet. For
the polarized spectra, we show that the largest polarization fraction can be found around
α = 90◦, where there is a peak in the polarization due to Rayleigh scattering. Also the
slope of the polarized spectra is affected by both Rayleigh scattering and the ocean surface.
The slope is particularly affected at α = 120◦ due to the ocean glint polarization, which
is spectrally independent and dominates over Rayleigh scattering at large phase angles,
especially when there are more gaps in the clouds introduced by the 3D CG.
After assessing the influence of the 3D CG on the reflectance and polarized spectra, in Fig.
4.7 we also assess its impact on the phase curves, again for the ocean planet configuration.
As discussed for the reflectance spectra, the 3D CG has an impact on the reflectance of the
planet, lowering it at all wavelengths (λ = 500, 700 and 900 nm.) But the impact is even
larger when comparing the ERA5 clouds with the 3D CG approach for the phase curves in
polarization, where it significantly increases the amount of linear polarization expected for
a disk-integrated observation of the planet. This is a consequence of introducing subgrid
cloud variability, thus allowing radiation to travel into the 3D cloud inhomogeneous struc-
ture, instead of photons being reflected by smeared homogeneous clouds as represented in
ERA5. The effect of the different vertical overlap schemes (MAX-RAN and EXP-RAN)
and of the zoom-in parameter is the same as described for the spectra, and it is still less
significant than the difference between including or not subgrid variability and inhomo-
geneities through the 3D CG.
As expected, for λ = 500 nm we find the largest reflectance and polarization due to Rayleigh
scattering, while it decreases moving towards 700 nm and 900 nm. However, the impact of
the 3D CG appears increasingly relevant after α > 60◦, where the impact of the ocean glint
feature becomes larger and the subgrid cloud inhomogeneity impacts the radiative transfer.
This happens at all wavelengths, confirming the weak chromatic effect of the ocean glint
feature. At small phase angles (α ∼ 5◦), we find the glory feature, which is linked to the
optical properties of the cloud droplets. This feature does not seem to be affected by the
3D CG approach. Around α = 40◦, we find the cloudbow feature, which is a consequence of
the first internal reflection of the liquid water droplets. Its location and height is strongly
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linked with the microphysical properties of clouds, in particular their optical thickness,
effective radius and particle composition. As shown, the cloudbow feature appears more
pronounced in the polarization spectra, allowing to break down possible retrieval degen-
eracies about cloud properties as discussed in Sterzik et al. (2020). We observe that the
cloudbow feature is significantly influenced by the 3D CG in both reflected light and polar-
ized phase curves. This effect can be attributed to the higher in-cloud LWC in the 3D CG
configurations compared to ERA5, which leads to a smaller peak in polarization. In the
phase curves, we observe that, for λ = 500 nm, the polarization peak caused by Raileigh
scattering occurs at approximately α = 90◦ for the ERA5 clouds, whereas it shifts to larger
phase angles when using the 3D CG. For larger wavelenght, Raileigh scattering weakens.
Additional features found at α = 138◦ and 158◦ arise from the scattering properties of ice
clouds and depend on their optical characteristics (Emde et al., 2017).

4.6.2 Clouds zoom-out
After assessing the impact of the 3D CG, we want to study the effect of averaging out
cloud properties on larger and larger grid scales in order to mimic exoplanet atmosphere
simulations. Using different zoom-out factors, from x3 (∼ 84 km, 0.75◦), x10 (∼ 278 km,
2.5◦), x100 (∼ 2670 km, 24◦) and a single pixel simulation, we average out layer by layer
the cloud properties, conserving the optical thickness as described in Sec. 4.5.3. In Fig.
4.8, we show the ocean planet images for the different cloud models, from the 3D CG
(EXP-RAN overlap, zoom-in x3) to the ERA5 image and the different zoom-out cases for
α = 0◦. Reducing the amount of pixels, we observe an increase in reflectance of the planet,
as the LWC and IWC present in the subgrid need to be smeared out in larger pixels. This
effect is already present in the comparison between the 3D CG and the ERA5 images, as
discussed above.

Figure 4.8: True color images of the ocean planet scenario showing the impact of different
grid resolutions in representing the clouds. We show the 3D CG image with a zoom-in x3
factor compared to the ERA5 image, and zoomed-out images with factors x3, x10, and
x100. Reducing the grid size we note an increase in the total reflectance of the planet.

In Fig. 4.9, we show the impact on the reflected and polarized light spectra of running
simulations with coarser grids. As a reference, we have the 3D CG and the ERA5 cloud
models from the previous plot, and new spectra with zoom-out factors of x3, x10, x100,
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Figure 4.9: Reflected light (first row) and polarized light (second row) spectra showing the
influence of the number of pixels in the simulations. From the 3D CG EXP-RAN zoom-
in x3 and ERA5 simulations, we apply the cloud zoom-out algorithm, with zoom-out
factors x3, x10, x100, until a single-pixel simulation. With the zoom-out, the reflectance
of the planet is substantially overestimated, while the polarization is influenced both in
the spectral slope and molecular lines. The different columns refer to spectra at different
phase angles (α): 60, 90, 120◦.

Figure 4.10: Reflected light (first row) and polarized light (second row) phase curves
showing the influence of the cloud zoom-out algorithm. The different columns refer to
different wavelengths (λ): 500, 700, 900 nm.

until arriving to a single pixel simulation. As expected, the general trend we observe is an
increase of the reflectance of the planet at all phase angles, without any large impact on the
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spectral slope. While the zoom-out ×3 and zoom-out ×10 simulations remain comparable
with ERA5, the zoom-out ×100 and single-pixel simulations show a significant increase
in reflectance. This occurs because they can no longer accurately represent the 3D cloud
structure of the planet, instead displaying nearly homogeneous cloud properties across the
entire disk. For the polarization, we observe again a large jump between the zoom-out
x10 and zoom-out x100 simulations, also with a substantial impact on the slope of the
polarized spectra. Again, also the O2A band and water bands are affected by the coarser
cloud grid.
Studying the effect of the zoom-out on the phase curves (Fig. 4.10), we observe a large
impact from the zoom-out x10 to the zoom-out x100 case, as the planet becomes almost
homogeneous. The impact is still affecting both the reflected and polarized light spectra,
with a larger effect in polarization for α > 90◦. In addition, the cloudbow feature (α ∼ 40◦)
is impacted by the zoom-out factor in polarization, with the zoom-out x100 being almost
identical to the single pixel simulations.
Comparing the zoom-in and zoom-out studies, we can clearly see that the zoom-in process,
even with just a factor of x3, has a much more important effect on both spectra and phase
curves if compared with a zoom-out of x3. This suggests the importance of treating the
subgrid cloud variability and finding better solutions on how to parameterize clouds in ex-
oplanet atmosphere simulations, where such high resolution will not be possible. However,
it remains fundamental to treat clouds in a more realistic way, as their radiative effect has
a strong influence on both spectra and phase curves, in particular for polarization studies.
This suggests how polarization spectra contain more information about cloud properties
and might be used to improve degeneracies among different models and interpretations for
exoplanet studies.
Additionally, in Appendix 4.10 we conduct sensitivity studies on the impact of the cloud
droplet effective radius and find no significant differences when the optical thickness of the
clouds is conserved.

4.6.3 Hyperspectral albedo maps
To study the sensitivity of surface properties, we first investigate the role of homogeneous
and inhomogeneous surface wind speed maps on the ocean glint feature in Appendix 4.11
and find no significant differences within the 1σ cloud variability spread.
To simulate the Earth-like planet scenario (Fig. 4.5), we incorporate the modeling of land
surfaces. Using the hyperspectral albedo maps dataset HAMSTER (Roccetti et al., 2024),
we include a wavelength-dependent treatment of surface reflectance for land surfaces. This
is crucial for accurately representing the planet’s albedo and capturing spectral features
resulting from surface reflection. We also note that previous works (Gordon et al., 2023;
Kofman et al., 2024) that included wavelength-dependent surface albedo treatments typi-
cally coupled spectral libraries with land surface types from satellite observations to define
the albedo in each simulation pixel. This approach may lead to highly biased surface re-
flectance spectra, as spectral libraries do not account for the fact that forests consist of a
combination of components, such as leaves and soils, not just the spectrum of a single leaf.
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Figure 4.11: Reflected light (first row) and polarized light (second row) spectra comparing
HAMSTER with simplified hyperspectral albedo maps, generated using a linear combina-
tion of five ECOSTRESS spectra. The different columns refer to spectra at different phase
angles (α): 60, 90, 120◦.

Figure 4.12: Reflected light (first row) and polarized light (second row) phase curves com-
paring HAMSTER with simplified hyperspectral albedo maps, generated using a linear
combination of five ECOSTRESS spectra. The different columns refer to different wave-
lengths (λ): 500, 700, 900 nm.
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By using HAMSTER, we are able to incorporate the first remote sensing-calibrated dataset
of wavelength-dependent surface albedo maps, enhancing our representation of land sur-
faces. In particular, we find a substantially reduced VRE feature (see Fig. 6.5), which has
been highly overestimated in previous Earth-like simulations.
In Fig. 4.11, we show the difference between HAMSTER and the simplified hyperspectral
albedo maps. The VRE feature and the green bump (around 550 nm) are clearly visi-
ble in the reflectance spectra. However, when using a linear combination of ECOSTRESS
spectra from MODIS land surface type maps, these features are significantly overestimated
in reflected light spectra. This overestimation is particularly pronounced at small phase
angles, nearly doubling the expected continuum beyond the VRE feature (750 nm) for
a cloudless planet. In cloudy scenarios, where we apply the 3D CG treatment, the ef-
fect remains substantial, highlighting the impact of HAMSTER’s improved surface albedo
model. In particular, with HAMSTER, the green bump is completely washed out in the
disk-integrated spectra, even in a clear atmosphere.
In polarized spectra, we observe the opposite trend. Since all land surfaces are treated as
Lambertian, they do not polarize radiation and instead scale inversely with intensity. As
a result, the VRE and green bump features are underestimated in polarized spectra for a
cloudless planet. The difference is most pronounced at α = 90◦ in cloudless simulations,
reaching approximately a 25% difference in polarization, but is less significant for cloudy
planets, where the difference falls within the 1σ cloud variability spread.
In Fig. 4.12, we also examine the effect on phase curves. At λ = 500 and 700 nm, we
find no significant differences between HAMSTER and the simplified hyperspectral albedo
maps. However, at λ = 900 nm, within the VRE peak, the simplified albedo maps produce
an unphysical increase in reflectance. This effect is particularly noticeable in cloudless sim-
ulations, where the reflectance is increased by 50% when using the simplified albedo maps,
and remains significant even for a cloudy planet, showing an increase of approximately
20% at small phase angles. In polarization, the impact on phase curves is only relevant
for the cloudless scenario at wavelengths beyond the VRE. We also see a difference in the
phase curve shape for polarized light if compared to the ocean planet scenario (Fig. 4.20).
Introducing different albedo surfaces, we see not only the peak of polarization around α
= 90◦ due to Rayleigh scattering, but also another jump, becoming evident for λ = 700
and 900 nm. This additional jump is due to the reflectance of different albedo components
compared to the ocean surface, such as vegetation or deserts, and they show their typical
signatures at longer wavelengths. This shows that polarization is a more powerful diagnos-
tic tool for surface features than intensity alone when looking at disk-integrated spectra
and phase curves.
Additionally, we also address the impact of the albedo seasonal variability in HAMSTER
in the spectra and phase curves. The results are shown in Appendix 4.12.

4.6.4 Comparing the ocean and Earth-like planets
After introducing various surface and cloud modeling improvements, we now want to com-
pare between the ground truth ocean and Earth-like planet scenarios. We are comparing
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the following cases:

• Ocean surface (including BPDF) with the 3D CG clouds and their 1σ spread;

• Earth-like scenario including ocean surface treated with the BPDF (but ocean glint
almost always covered by land) and hyperspectral albedo maps with the 3D CG
clouds and their 1σ spread.

In Fig. 5.5 we show the reflected and polarized light differences in the spectra due to the
different models. We find a significant spread between the ocean and Earth-like scenario,
way beyond the cloud variability in the models found in the 1σ spread (shaded areas).
This is particularly evident for α = 60◦ in intensity, while the difference gets larger for α =
120◦ in polarization, where we observe a different behavior both in the spectral sloples of
the models, their continuum in the near-infrared (NIR) and in the spectral lines behavior.
Due to the presence (ocean scenario) and absence (Earth-like scenario) of the ocean glint
feature, we see a different behavior of the water bands around 950 nm, as they are shown
in absorption for the ocean planet and in emission for the Earth-like case. This effect is
already present in the α = 90◦ case, but gets enhanced at larger phase angles. Additionally,
at large phase angles, cloud variability is significantly larger for the ocean planet than for
the Earth-like scenario. This effect is most pronounced at larger phase angles, where the
spread is dominated by ocean glint.
In Fig. 5.6, we study the same differences in reflected and polarized light over the phase
curves again at three different wavelengths: λ = 500, 700 and 900 nm. Among the ocean
and Earth-like scenario, large differences are found only in the polarization case, in partic-
ular for λ = 700 and 900 nm. We note an increase in polarization due to the ocean glint
which goes beyond the cloud variability spread we introduce in the models. To distinguish
among any possible features in reflected light is more challenging than in polarization. For
comparison, we also include the phase curve of a purely Lambertian sphere, modeled using
the Lambertian phase function

g(α)L = sin(α) + (π − α) cos(α)
π

. (4.22)

The Lambertian phase function is scaled by the geometric albedo of the ocean planet case
at each wavelength.
In Appendix 4.13 we also present the same spectral comparison for the ocean and Earth-like
planet scenarios, but in terms of albedo instead of reflectance (Fig. 4.23).
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Figure 4.13: Comparison among spectra in reflected (first row) and polarized light (second
row) of the ocean and Earth-like planet scenarios. The different columns refer to different
phase angles (α): 60, 90, 120◦.

Figure 4.14: Reflected light (first row) and polarized light (second row) phase curves com-
paring the ocean and Earth-like planet scenarios. The different columns refer to different
wavelengths (λ): 500, 700, 900 nm.

4.7 Discussion and conclusions
In this paper, we assessed the importance of incorporating inhomogeneous surfaces and
atmospheres into 3D radiative transfer models of Earth-like exoplanets. Specifically, we
studied the effect of implementing, for the first time, wavelength-dependent surface albedo
maps derived from Earth remote sensing observations. In parallel, we addressed the im-
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portance of integrating inhomogeneous 3D cloud maps into our models, with a focus on
subgrid cloud variability and cloud inhomogeneities. While exoplanet forward models must
be computationally efficient to explore key parameters and perform spectral retrievals for
interpreting observations, this study focused on assessing the impact of different model
complexities on the resulting spectra and phase curves of an Earth-like exoplanet observed
in reflected and polarized light. Future studies should further assess the importance of fine
details in modeling observations for the next generation of telescopes, particularly in rela-
tion to the typical integration times required to achieve a sufficient signal-to-noise ratio.
By studying the effects of the 3D CG and the cloud zoom-out process, we conclude that
the cloud grid size in simulations plays a critical role in the reflectance and polarized spec-
tra and phase curves. Specifically, without accounting for subgrid cloud variability and
cloud inhomogeneities introduced by the 3D CG, the planet’s reflectance is significantly
overestimated. Additionally, clouds become too widespread within grid cells, which lowers
the planet’s linear polarization. The effect of insufficient spatial resolution implies that
models that are too simple may lead to expectations of a reflectance that is too high and
a polarization that is too low. This is particularly relevant in exoplanet models, where
homogeneous cloud properties are often assumed, potentially leading to biases in data in-
terpretation. Although obtaining such fine-scale details for exoplanets is impossible, and
developing models that resolve cloud properties at these detailed spatial and vertical scales
remains infeasible, improved parameterization schemes must be developed to preserve the
radiative effects of clouds in coarser-resolution models. Our results should inform the ap-
propriate resolution at which radiative transfer codes, coupled with general circulation
models (GCMs), should be run to avoid biasing the interpretation of observed spectra and
phase curves. Furthermore, in our sensitivity analysis regarding the effective radius of
cloud particles, we find that its impact is minimal when the optical thickness of grid cells
is conserved. This highlights the need to appropriately scale cloud optical thickness during
the zoom-out process for coarser models.
All spectra and phase curves generated for cloudy planets are accompanied by a 1σ cloud
variability spread, which helps in building ground-truth models of Earth as an exoplanet.
This spread also aids in determining whether potential diagnostic features used to distin-
guish exoplanet properties might be obscured by cloud variability.
We introduced the use of a new dataset to account for the pixel-by-pixel spectral variation
of surface albedo, as well as its seasonal variability. Using HAMSTER (Roccetti et al.,
2024), we demonstrated that previous attempts to incorporate wavelength-dependent sur-
face reflectance for different surface types, such as forests and deserts, greatly overesti-
mated reflectance. For instance, the VRE is often overestimated by nearly 100% due to
the assumption that forested areas could be represented by laboratory spectra of individ-
ual leaves. This study underscores the necessity of incorporating realistic spectral albedo
maps to accurately capture spectral features in the reflectance and polarized spectra of spa-
tially unresolved exoplanets. As shown by Gomez Barrientos et al. (2023), a wavelength-
dependent surface albedo model more accurately retrieves reflected light spectra than a
uniform albedo model, even in the presence of clouds. In this paper we demonstrated that
constructing such albedo maps requires careful consideration. Relying solely on laboratory-
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based wavelength-dependent measurements can lead to a substantial overestimation of the
VRE feature in reflected light spectra, even with realistic cloud coverage. However, de-
tecting seasonal variability, such as snow cover changes, remains extremely challenging as
these effects are masked by the planet’s cloud abundance and variability. Additionally,
we investigated the role of surface wind speed in shaping ocean glint features but find no
significant impact on the spectra or phase curves.
After constructing these advanced models, we compared their effects on reflected and po-
larized light spectra and phase curves. These results indicate that polarization is far more
sensitive to surface features, as evidenced by differences between ocean and Earth-like
planet scenarios in reflected and polarized light. In polarization, spectral slopes and ab-
sorption lines differ more prominently than in intensity, particularly at large phase angles.
Despite the improved cloud modeling, we still observe unique water line features in polar-
ization, as reported by Trees & Stam (2022) for homogeneous planets. Specifically, water
lines appear in absorption when ocean glint is present but in emission for dry planets.
These findings suggest that combining polarization with intensity-only spectroscopy can
greatly enhance the characterization of rocky exoplanets and provide greater diagnostic
power to differentiate surface and atmospheric properties, reducing retrieval degeneracies.
Future studies should explore the feasibility of conducting polarized light observations with
upcoming telescopes and missions, assessing whether sufficient contrast can be achieved
for further exoplanet characterization. Polarization is particularly advantageous because
stellar contamination can be significantly reduced as most FGK-type stars are nearly un-
polarized. Contrast estimates for observing rocky exoplanets in reflected and polarized
light will be presented in the second paper in this series, using the fully improved modeling
setup described in this work.
The improved modeling approaches presented here will be validated against a large cata-
log of Earthshine observations obtained in polarized light to assess the model’s ability to
reproduce observed spectral features. This validation will be addressed in the third paper
in this series.
In conclusion, the ground-truth spectra and phase curves simulated for Earth-like and
ocean planet scenarios will be made available to the exoplanet community. These datasets
can improve predictions for next-generation telescopes and instruments, validate other
exoplanet models, and facilitate studies of Earth as an exoplanet.

Data availability
All spectra and phase curve data are openly accessible via a Jupyter notebook on the
GitHub repository.3 Additionally, we also provide public access to the 3D Cloud Genera-
tor.4

3https://github.com/giulia-roccetti/Earth_as_an_exoplanet_Part_I
4https://github.com/giulia-roccetti/3D_Cloud_Generator

https://github.com/giulia-roccetti/Earth_as_an_exoplanet_Part_I
https://github.com/giulia-roccetti/3D_Cloud_Generator
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4.8 Appendix A: ERA5 inhomogeneous pressure level
heights

To compute the heights of the ERA5 pressure levels, we start from assuming hydrostatic
equilibrium and an ideal gas law for dry air:

dP (z)
dz

= −ρ(z)g = − P (z)g
RLT (z) . (4.23)

Here P (z) is the pressure as a function of height, RL ≃ 287.05 J kg−1 K−1 is the specific
gas constant for dry air and g ≃ 9.807 m s−2 is Earth’s gravitational acceleration. We also
assume temperature to be linearly dependent on height, within every layer:

T (z) = Ti + (z − zi)
Ti+1 − Ti

zi+1 − zi

. (4.24)

Integrating Eq. 4.23 between level i and i + 1 we obtain the following equation for the
thickness of the layer:

∆zi = ln
(

Pi

Pi+1

)
· RL(Ti+1 − Ti)

g ln
(

Ti+1
Ti

) . (4.25)

The height of a given layer i is then computed by summing all the layers below:

zi =
i∑

k=0
∆zk. (4.26)

4.9 Appendix B: Convergence of the 3D Cloud Gen-
erator

The 3D CG described in Sec. 4.5.1 can generate finer cloud distributions starting from
ERA5 realanysis data for an arbitrary zoom-in factor. In this appendix we analyze the
impact of the zoom-in factor on the radiative transfer effects of clouds. Specifically, we
generate cloud fields with zoom-in factors ranging from 2 to 16 of a region spanning 10◦ in
both latitude and longitude, using a constant surface albedo of 0.3. This is done because
running a global simulation with such a fine cloud grid up to a zoom factor of 16 is too
computationally expensive. A sensor is placed at the center of this patch, at an altitude of
1000 km, with a 30◦ aperture, ensuring that the entire patch remains within its field of view.
The results are shown in Fig. 4.15 for both the MAX-RAN and EXP-RAN overlap schemes
and for the 500, 700 and 900 nm wavelengths. As shown in the figure, introducing a finer
grid of clouds greatly impacts the normalized reflectance in radiative transfer calculations,
leading to a decrease of approximately 40%, depending on the wavelength. Additionally,
the radiative response to the 3D CG quickly converges to a stationary value already for a
zoom factor of 3 for all wavelengths and for both methods. Since this provides the best
balance between convergence and computational cost, we adopt a zoom-in factor of 3 for
most of the results presented in this paper.
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Figure 4.15: Convergence study on the impact of the zoom-in factor on the radiative
response of clouds in a region spanning 10◦ in latitude and in longitude. The MAX-RAN
and the EXP-RAN overlap methods are both shown for three wavelengths in the visible
and NIR range. The reflectance is normalized to its value without zoom-in. The vertical
dashed line represents a zoom-in factor of 3, which will be used for most of the results
below as it provides the optimal balance between convergence and computational cost.
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4.10 Appendix C: Impact of the cloud droplet effec-
tive radius

As an additional parameter, we test the role of the effective radius of liquid and ice water
droplets on the spectra and phase curves over an ocean planet. Starting from the 3D CG,
we conserve the optical thickness of clouds scaling the LWC and IWC while changing the
effective radius to constant values of 5, 10 and 15 µm. We then compare it with the variable
effective radius distribution obtained with the ERA5 parameterization. When conserving
the optical thickness, we did not find any significant variations for all spectra in both
reflected and polarized light (Fig. 4.16). This suggests that only introducing variations in
the optical thickness of clouds has a direct impact on the spectra, and since the effective
radius enters in the calculation of τ , it plays a role only when the LWC and IWC are not
adjusted accordingly to conserve τ . However, in the phase curves (Fig. 4.17) we observe the
impact of the effective radius on the cloudbow feature (α ∼ 40◦), in both reflectance and
polarization, greatly enhanced in the polarized phase curves. In polarization, we observe
both a shift towards larger phase angles and an increase in the cloudbow feature for larger
effective radii, showing again the sensitivity of linear polarization in assessing cloud particle
size through the cloudbow feature. This effect gets enhanced at longer wavelengths (λ =
900 nm). All the other differences are within the 1σ cloud variability and cannot be clearly
distinguished.

Figure 4.16: Reflected light (first row) and polarized light (second row) spectra showing
the influence of the effective radius of cloud particles. Here, we compare a variable effective
radius from the ECMWF parameterization to constant effective radius values, but always
conserving the optical thickness of each gridbox. The different columns refer to spectra at
different phase angles (α): 60, 90, 120◦.
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Figure 4.17: Reflected light (first row) and polarized light (second row) phase curves
showing the influence of a constant effective radius, while conserving the optical thickess
of the gridbox. The different columns refer to different wavelengths (λ): 500, 700, 900 nm.

4.11 Appendix D: Impact of the wind speed
We also discuss the impact of changing the wind speed over the surface for the ocean planet
configuration. Fig. 4.18 shows the effect of changing the surface wind speed on the ocean
glint feature. While the integrated brightness of the ocean glint remains the same, it gets
distributed over a larger area when the surface of the ocean gets rougher due to increased
wind speed. In the second row of Fig. 4.18 we show how the ocean glint appears with
surface wind speed maps data from the ERA5 reanalysis product. Including realistic wind
speed maps, the ocean glint feature does not appear to be symmetric anymore, and shows
different features due to weather patterns over the ocean. Although different wind speeds
do not have any impact on the total reflectance of the planet, this might change when
simulating cloudy exoplanets, as different spatial distributions of clouds can obscure the
ocean glint. In Fig. 4.19 we show the impact of homogeneous and inhomogeneous (from
the ERA5 renalysis product) wind speed maps over the reflected and polarized spectra. As
expected, for simulations without clouds we did not find any difference among homogeneous
and inhomogeneous surface winds, and we find also no significant differences among the 1σ
cloud spread. A similar behavior is also observed in the reflected and polarized phase curves
(Fig. 4.20), where we find no significant impact due to homogeneous or inhomogeneous
wind speed maps.
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Figure 4.18: True color image of a cloud-free ocean planet at α = 90◦ with different surface
wind speed maps. In the first row, we use a constant wind speed and observe the impact
on the brightness and size of the ocean glint. In the second row, we use realistic wind speed
maps from ERA5, and we note the inhomogeneous shape of the ocean glint. We report
the average wind speed from the various ERA5 fields in the subfigures.

Figure 4.19: Reflected light (first row) and polarized light (second row) spectra showing
the influence of homogeneous and inhomogeneous wind speed maps. The different columns
refer to spectra at different phase angles (α): 60, 90, 120◦.
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Figure 4.20: Reflected light (first row) and polarized light (second row) phase curves
showing the influence of homogeneous and inhomogeneous wind speed maps. The different
columns refer to different wavelengths (λ): 500, 700, 900 nm.

4.12 Appendix E: Impact of albedo seasonal variabil-
ity

Using hyperspectral albedo maps from the HAMSTER dataset (Roccetti et al., 2024) for
different days of the year (DOYs), we examine the impact of seasonal variability on the
planet’s surface albedo. We compare between the DOY 080 (spring equinox) and DOY
266 (autumn equinox). As shown in Roccetti et al. (2024), there is an increase in the
overall planet reflectance in the spring due to the fact that the Northern Hemisphere,
which hosts almost 80% of land surface of the planet, exhibits a more significant snow
coverage compared to DOY 266, which increases the reflectance of the planet in the visible
wavelength range. This is what we also find in Fig. 4.21 for the reflected light spectra,
where in the cloudless scenario we find a larger reflectance for the spring albedo case.
The largest spread is found for the α = 60◦, which also presents the largest illuminated
fraction of the planet, thus the largest differences between snow coverage among spring and
autumn. When introducing clouds with the 3D CG treatment, we find that the seasonal
variability patterns due to surface albedo cannot be distinguished anymore, since they are
inside the 1σ cloud variability spread for both reflected and polarized light spectra.
In the phase curve comparison (Fig. 4.22) we find a similar trend than in the reflectance
spectra, showing the seasonal variability spread of land surface albedo only in the cloudless
simulations. A larger spread is shown at smaller wavelengths, as expected by the typical
spectral shape of snow and ice surfaces. In polarization, the spring scenario shows less
polarized signal than the autumn case, since polarization behaves as the inverse of the
reflectance. In addition, for the cloudless scenario, we also observe a shift in the Rayleigh
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Figure 4.21: Reflected light (first row) and polarized light (second row) spectra showing
the influence of surface albedo seasonal variability. The different columns refer to spectra
at different phase angles (α): 60, 90, 120◦.

Figure 4.22: Reflected light (first row) and polarized light (second row) phase curves
showing the influence of surface albedo seasonal variability. The different columns refer to
different wavelengths (λ): 500, 700, 900 nm.

scattering peak between the spring and autumn cases. However, as for the spectra, all
these differences cannot be distinguished anymore adding clouds in the simulations.
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4.13 Appendix F: Spectral albedo of the ocean and
Earth-like planet scenarios

In Fig. 4.23 we show the same spectra as in Fig. 5.5, but now as an albedo rather then a
reflectance, by simply dividing the reflectance by a Lambertian phase function (Eq. 4.22).

Figure 4.23: Comparison among the spectral albedo of the ocean and Earth-like planet
scenarios. The different columns refer to different phase angles (α): 60, 90, 120◦. The
albedo was obtained from the reflectance by dividing by a Lambertian phase function (Eq.
4.22).
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The characterization of nearby rocky exoplanets will become fea-
sible with the next generation of telescopes, such as the Extremely
Large Telescope (ELT) and the mission concept Habitable Worlds
Observatory (HWO). Using an improved model setup, we aim to
refine the estimates of reflected and polarized light contrast for
a selected sample of rocky exoplanets in the habitable zones of
nearby stars. We perform advanced 3D radiative transfer simu-
lations for Earth-like planets orbiting G-type and M-type stars.
Our simulations incorporate realistic, wavelength-dependent sur-
face albedo maps and a detailed cloud treatment, including 3D
cloud structures and inhomogeneities, to better capture their ra-
diative response. These improvements are based on Earth ob-
servations. We present models of increasing complexity, ranging
from simple homogeneous representations to a detailed Earth-as-
an-exoplanet model. Our results show that averaging homoge-
neous models fails to capture Earth’s full complexity, especially
in polarization. Moreover, simplistic cloud models distort the rep-
resentation of absorption lines at high spectral resolutions, par-
ticularly in water bands, potentially biasing atmospheric chemical
abundance estimates. Additionally, we provide updated contrast
estimates for observing rocky exoplanets around nearby stars with
upcoming instruments such as ANDES and PCS at the ELT. Com-
pared to previous studies, our results indicate that reflected light
contrast estimates are overestimated by a factor of two when sim-
plified cloud and surface models are used. Instead, measuring
the fractional polarization in the continuum and in high-contrast,
high-resolution spectra may be more effective for characterizing
nearby Earth-like exoplanets. These refined estimates are essen-
tial for guiding the design of future ELT instruments and the
HWO mission concept.
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5.1 Introduction
The search for Earth-like exoplanets and the quest to characterize their atmospheres re-
main among the most compelling goals of modern astrophysics. However, a major challenge
in directly imaging and characterizing rocky exoplanets is the extreme contrast between
the planet and its much brighter host star. Overcoming this challenge requires innovative
observational techniques and a deeper understanding of planetary light scattering.
Currently, most mature exoplanet atmosphere characterization relies on transmission spec-
troscopy, which is limited to transiting planets. Although highly successful for studying
the atmospheric dynamics of hot Jupiters during transit (e.g., Nortmann et al. 2025; Sei-
del et al. 2025) and secondary eclipse (e.g., Pino et al. 2020; Costa Silva et al. 2024) and
their atmospheric chemical composition (e.g., Snellen et al. 2008; Prinoth et al. 2024b), this
method faces significant challenges when applied to rocky exoplanets. Temperate rocky ex-
oplanets are less likely to transit due to their typically longer orbital periods, making trans-
mission spectroscopy impractical for a broad population of potentially habitable worlds.
Furthermore, their atmospheres are generally thinner than those of Jupiter-like planets,
making atmospheric characterization even more challenging. In addition, in-transit radial
velocity changes for longer period planets (like warm Jupiters) are too small to directly
separate the planetary signal’s wavelength shift from stellar and telluric lines, further com-
plicating the detection of atmospheric absorption lines (Borsa et al., 2019; Seidel et al.,
2020b,c; Prinoth et al., 2024a). Moreover, transmission spectroscopy primarily probes the
upper atmospheric layers, providing limited information about surface conditions and lower
atmospheric composition, both crucial for assessing habitability. Importantly, in this con-
text, habitability refers specifically to the potential for surface liquid water, not necessarily
to conditions sufficient for supporting life.
Reflected light observations offer a promising alternative, enabling the study of both tran-
siting and non-transiting exoplanets. By analyzing the light scattered by the atmosphere
and reflected off the planet’s surface, it is possible to retrieve key properties such as albedo
across different wavelengths and phase angles (Roccetti et al., 2025a), which can reveal the
presence of clouds, oceans, and ice (Turbet et al., 2016). Additionally, spectral features
in reflected light provide direct constraints on atmospheric composition, allowing for the
detection of key molecules such as O2, H2O, CH4, CO2, and potentially CO. These obser-
vations can offer a more comprehensive view of an exoplanet’s climate, surface conditions,
and habitability.
The upcoming RISTRETTO (Lovis et al., 2022) spectrograph at the Very Large Telescope
(VLT) is designed for detecting and analyzing exoplanetary atmospheres in reflected light,
with a primary focus on the temperate rocky planet Proxima b (Bugatti et al., 2024).
This scientific mission leverages the synergy between a high-contrast adaptive optics (AO)
system and high-resolution spectroscopy and will serve as a precursor to the Extremely
Large Telescope (ELT). The ELT, with its unprecedented light-collecting capacity and
angular resolution, will pioneer the detection of reflected light from rocky exoplanets.
Although current attempts have mostly yielded upper limits (Charbonneau et al., 1999;
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Collier Cameron et al., 1999, 2002; Rodler et al., 2013; Martins et al., 2015; Hoeijmakers
et al., 2018; Scandariato et al., 2021; Spring et al., 2022), high-contrast, high-resolution
(HCHR) observations with the ELT’s ANDES instrument are expected to achieve con-
trasts on the order of 10−7 within a few tens of nights (Pallé et al., 2025). A promising
golden sample for future observations includes Proxima b, GJ 682 b, Wolf 1061 c, GJ 273
b, and Ross 128 b, all orbiting M dwarfs. Observationally, M dwarfs are favorable targets
because their close-in habitable zones (Kasting et al., 1993; Selsis et al., 2007; Kopparapu
et al., 2013) enable the detection and characterization of more transiting planets on shorter
orbits. Additionally, other ELT instruments like HARMONI may also allow for the charac-
terization of the atmosphere of Proxima b (Vaughan et al., 2024), while the proposed PCS
instrument (Kasper et al., 2021) will leverage its extreme AO system and spectrograph for
imaging rocky exoplanets.
Rocky planets orbiting M dwarfs may face significant challenges in retaining substantial
atmospheres due to intense stellar activity and irradiation (Luger & Barnes, 2015; Dong
et al., 2018). Recent JWST results offer mixed findings: 55 Cancri e is proposed to have
an atmosphere (Hu et al., 2024), while TRAPPIST-1 b and c showed upper limits on the
absence of thick atmospheres (Greene et al., 2023; Zieba et al., 2023). Detecting atmo-
spheres around habitable zone planets remains difficult due to stellar contamination, as
shown in the case of LHS 1140 b (Cadieux et al., 2024).
G-type stars, with their relatively stable stellar activity, are more promising targets for
finding true Earth analogs. Ongoing efforts like the Terra Hunting Experiment (THE,
Hall et al. 2018) are focused on detecting Earth-mass planets around G-type stars through
precise radial velocity measurements. Moreover, the PLATO mission (Rauer et al., 2025)
will play a key role in detecting and characterizing Earth-sized planets around Sun-like
stars by leveraging high-precision photometry to measure their transits and constrain their
bulk properties. Additionally, the ARIEL space mission (Tinetti et al., 2018) will begin
characterizing a subset of temperate sub-Neptunes and super-Earths (Edwards & Tinetti,
2022), providing valuable input for the target selection of upcoming space missions like the
mission concepts Habitable World Observatory (HWO, National Academies of Sciences &
Medicine 2021) and Large Interferometer For Exoplanets (LIFE, Quanz et al. 2022), which
aim to search for and characterize rocky exoplanets. HWO, for instance, will aim to image
and study the reflected light of exoplanets, while LIFE will focus on thermal emission to
provide insights into atmospheric pressure-temperature profiles and molecular signatures
(Alei et al., 2024).
A complementary approach to characterize distant worlds through spectroscopy and direct
imaging is by measuring their degree of polarization in reflected light. The light reflected
by an exoplanet becomes partially linearly polarized due to atmospheric scattering and
surface reflection (Stam, 2008). Previous modeling efforts by Stam (2008); Karalidi &
Stam (2012); García Muñoz (2015); Emde et al. (2017); Trees & Stam (2019, 2022); Gor-
don et al. (2023); Vaughan et al. (2023) have demonstrated how polarization can aid in
characterizing Earth-like exoplanets and distinguishing between different atmospheric and
surface properties, which intensity-only simulations cannot achieve. Roccetti et al. (2025a)
performed detailed simulations of reflectance and polarized spectra and phase curves for
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an ocean and an Earth-like planetary scenarios. Their results suggest that the polarization
fraction for an Earth-like planet ranges between 10% and 30%, depending on the wave-
length and phase angle. Studying polarized light offers a valuable way to enhance the
contrast between the planet and its host star, as most F-, G-, and K-type stars emit nearly
unpolarized light (Cotton et al., 2017). However, this method comes with the trade-off of
reduced sensitivity. Furthermore, polarization measurements help break degeneracies in
atmospheric retrievals by distinguishing between clouds and surface features across differ-
ent models (Karalidi & Stam, 2012). Unlike intensity-based observations, polarized light
is not affected by transmission through Earth’s atmosphere, as polarization arises from
scattering processes with molecules or surface reflections, eliminating the need for telluric
correction.
Roccetti et al. (2025a) introduced an improved cloud and surface modeling framework for
simulating the reflected and polarized light of rocky exoplanets, highlighting the impact of
realistic cloud and surface modeling. Their study demonstrated that neglecting sub-grid
cloud variability leads to a significant overestimation of the planet’s overall reflectance.
Additionally, the vegetation red edge (VRE) feature is largely overestimated if surface
albedo maps do not account for wavelength-dependent variations of complex mixture of
different surface materials.
Building on this refined modeling approach, this second paper in the series extends con-
trast estimations for the reflected and polarized light of future rocky exoplanet observations.
Specifically, we construct homogeneous planetary models and evaluate how their spectral
and phase curve features compare to the more detailed, realistic models presented in Roc-
cetti et al. (2025a). Using the defined golden sample of rocky exoplanets expected to be
observed in reflected light by ANDES (Pallé et al., 2025), we provide improved contrast
estimates and compare them with values reported in the literature. This analysis assesses
the impact of detailed cloud and surface modeling in 3D radiative transfer simulations.
Additionally, we explore contrast predictions for polarized observations and evaluate their
feasibility with the upcoming ELT and HWO. These results are crucial for guiding the
design of future instruments dedicated to the characterization of rocky exoplanets.

5.2 Reflected and polarized light contrasts
Pallé et al. (2025) identified a golden sample of non-transiting rocky exoplanets orbiting
nearby M-type stars, for which ANDES is expected to detect reflected light within a few
tens of nights. This sample consists of the five most promising targets in terms of reflected
light signal-to-noise ratio (SNR): Proxima b, GJ 273 b, Wolf 1061 c, GJ 682 b, and Ross
128 b. With the planned launch of PLATO in 2026, serving as a key pathfinder survey,
the target list is expected to expand in the coming years. Building on the golden sample,
we include the recently discovered Barnard b (González Hernández et al., 2024), a sub-
Earth-mass exoplanet orbiting the closest single star to the Sun. Since all six of these rocky
exoplanets orbit M-dwarfs, we extend our study to include a comparison with a G-type star
by estimating the contrast of potential Earth-like exoplanet in the habitable zone of Alpha
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Cen A. Notably, Wagner et al. (2021) reported the detection of a point-like source in this
system, which could be attributed to an exoplanet, exozodiacal dust, or an instrumental
artifact, pushing the current exoplanet imaging mass detection limits.
Our goal is to provide refined flux contrast estimates for these nearby planetary systems
by improving the modeling of clouds and surface albedo in reflected light calculations. In
general, the contrast between an exoplanet and its host star in reflected light is

Cflux = Fp

F⋆

=
(

Rp

d sin θsep

)2

Ag · g(α), (5.1)

where Fp and F⋆ are the fluxes of the planet and the star, respectively, Rp is the radius of
the planet, d is the distance from the Earth, Ag is the geometric albedo of the planet, g(α)
is the phase function and α the phase angle (e.g., the angle between the direction to the
star and the direction to the observer as seen from the planet). The angular separation
θsep of the star-planet system is dependent on the phase angle, and we report values for
α = 90◦, corresponding to the maximum elongation of the planet, to allow for a direct
comparison with the contrast estimates presented in Pallé et al. (2025). However, ANDES
can operate at smaller inner working angles and observe planets at phase angles below 90◦,
which are more favorable for detecting reflected light, thereby enhancing contrast (Pallé
et al., 2025).
In Roccetti et al. (2025a), we present extensive sensitivity studies on estimating planetary
reflectance, defined as the product of the geometric albedo and the phase function: R =
Ag · g(α). Since reflectance is independent of the stellar spectrum, the flux contrast can
be determined using the planetary radius and angular separation for different planetary
systems. In Table 5.1, we provide typical values of the scale factor (s), defined as

s =
(

Rp

d sin θsep

)2

. (5.2)

In addition to the reflected light contrast, we also introduce the contrast in polariza-
tion. The incident starlight reaching the planet is expected to be nearly unpolarized, with
the disk-integrated sunlight exhibiting a polarization level of approximately 10−6 (Kemp
et al., 1987). Conversely, light reflected from a planet’s surface or scattered within its
atmosphere can be polarized at levels of several tens of percent. Rayleigh scattering by
atmospheric molecules polarizes light, though multiple scattering with clouds and aerosols
can depolarize previously polarized photons. Similarly, the ocean glint produces strong
linear polarization, while other surface types may depolarize light. Polarized light observa-
tions enhance the contrast between the planet and its host star and offer advantages over
total flux measurements. Unlike absolute intensity, polarization is a relative measurement,
independent of the star’s type or distance. In polarization, the reflected light contrast can
be expressed as

Cpol = Cflux · P, (5.3)
where P is the degree of linear polarization normalized between 0 and 1. The polarization
contrast is function of α (Buenzli & Schmid, 2009).
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Name SpecType (Teff) d [pc] θsep[mas] V [mag] Rp[R⊕] s
Proxima Cen b M (2900 K) 1.30 37.3 11.01 1.07 8.85 ·10−7

Ross 128 b M (3163 K) 3.37 14.7 11.12 1.15 9.79 ·10−7

GJ 273 b M (3382 K) 3.80 24.0 9.84 1.64 5.88·10−7

Wolf 1061 c M (3309 K) 4.31 20.7 10.10 1.81 7.48·10−7

GJ 682 c M (3237 K) 5.01 16.0 10.94 2.11 1.26·10−6

Barnard b M (3195 K) 1.83 12.9 9.51 0.76 1.88 ·10−6

Alpha Cen A G (5804 K) 1.34 747 0.01 1.0 1.82·10−9

Table 5.1: Scale factor for exoplanets orbiting nearby M-type stars and a potential Earth-
like planet around Alpha Cen A.

While it is true that the polarized contrast is lower than the contrast in intensity alone,
polarimetric differential imaging (DPI) can greatly push the sensitivity down to a few orders
of magnitude due to fast modulation. The Zurich IMaging POLarimeter (ZIMPOL), the
visible focal plane instrument of SPHERE can, in principle, reduce the achievable contrast
from 10−4 (with Adaptive Optics alone) to 10−8 in polarization (Hunziker et al., 2020).
This advantage is particularly significant for planets with smaller angular separations from
their host star, as polarimetric observations can reduce, or, in principle, cancel, speckle
noise around the coronagraph. Beuzit et al. (2019) conducted polarimetric observations
of a sample of targets and demonstrated that ZIMPOL achieves polarization contrast
detection limits much deeper than those of intensity-based observations. For Alpha Cen
A, polarization lowered the achievable contrast from 10−5 to 10−7 close to the star, at an
angular separation of 0.35 arcsec, and from 10−7 to 10−8 at the wider separation angle of
1.5 arcsec.

5.3 3D radiative transfer simulations
We perform 3D radiative transfer simulations using MYSTIC (Mayer, 2009), the Monte
Carlo code for the phYsically correct Tracing of photons in Cloudy atmospheres, which
is part of the libRadtran library (Mayer & Kylling, 2005b; Emde et al., 2016). MYSTIC
incorporates the Absorption Lines Importance Sampling (ALIS) method (Emde et al.,
2011), enabling fast calculations of high-resolution spectra by tracing photons at a single
wavelength. Moreover, the variance reduction method VROOM (Buras & Mayer, 2011b)
is used to correctly simulate clouds. Emde et al. (2017) adapted MYSTIC to simulate
disk-integrated properties of the Earth as an exoplanet in polarization, accounting for sur-
face reflection, multiple scattering by molecules, aerosol particles, cloud droplets, and ice
crystals.
Building on this foundation, Roccetti et al. (2025a) further advanced the modeling frame-
work by introducing the capability to simulate fully inhomogeneous and realistic planets.
This includes a new treatment of cloud sub-grid variability and inhomogeneities through
the 3D Cloud Generator (3D CG) algorithm1. The 3D CG employs 3D cloud fields from

1https://github.com/giulia-roccetti/3D_Cloud_Generator

https://github.com/giulia-roccetti/3D_Cloud_Generator
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the ERA5 reanalysis dataset (Hersbach et al., 2020), the European Centre for Medium-
Range Weather Forecasts (ECMWF) ReAnalysis fifth-generation product. It provides
atmospheric data on a global grid of 1440 × 721 horizontal pixels and 37 vertical lev-
els. For each grid cell, ERA5 provides liquid water content, ice water content, and cloud
cover. Although the ERA5’s spatial resolution (∼31 km or 0.25◦) is more than adequate
for exoplanet modeling, Roccetti et al. (2025a) demonstrated that introducing sub-pixel
cloud variability significantly affects disk-integrated reflectance and polarization spectra
and phase curves. To address this, the 3D CG redistributes the liquid water and ice
water content within each ERA5 grid cell into sub-grid structures, generating patchier
cloud distributions. This allows more photons to reach the surface and mitigates the over-
smoothing of cloud effects at coarse spatial resolution. The algorithm conserves both the
in-cloud optical thickness and total planetary cloud cover. A specified vertical overlap
scheme is applied to distribute sub-grid clouds vertically. Roccetti et al. (2025a) found
that the algorithm converges when each ERA5 grid cell is divided into nine sub-pixels (a
zoom-in factor of 3), with no significant differences observed between maximum-random
and exponential-random vertical overlap schemes. Therefore, all 3D CG simulations in this
work are performed using a x3 zoom-in factor with exponential-random overlap.
The improved modeling framework presented in Roccetti et al. (2025a) also includes the
implementation of wavelength-dependent surface albedo maps using HAMSTER (Roccetti
et al., 2024). Additionally, the framework incorporates more sophisticated surface treat-
ments, allowing Lambertian surfaces with spectral albedo variations and oceans modeled
with bidirectional reflectance distribution functions (BRDFs) or bidirectional polarization
distribution functions (BPDFs), enabling the ocean glint to be treated correctly.
The results and sensitivity studies presented in Roccetti et al. (2025a) serve as a starting
point for this work. Here, we assess whether a linear combination of homogeneous planet
models can accurately reproduce the ground-truth ocean and Earth-like planet scenarios
explored in Roccetti et al. (2025a). Furthermore, we investigate the impact of advanced
3D inhomogeneous radiative transfer simulations on estimating the contrast in reflected
and polarized light for the golden sample of rocky exoplanets orbiting nearby stars (Pallé
et al., 2025).

5.3.1 Homogeneous planets model setup
We construct homogeneous, cloud-free planetary models by incorporating wavelength-
dependent surface albedo properties characteristic of four distinct surface types: desert,
forest, polar ice cap, and ocean, all beneath an Earth-like atmosphere with US standard
atmospheric properties (Anderson et al., 1986). The wavelength-dependent surface albedo
properties are extracted from HAMSTER (Roccetti et al., 2024). Specifically, we use the
typical reflectance spectrum of the Amazon rainforest region in HAMSTER for the forest
planet. For the desert planet, we adopt the wavelength-dependent surface albedo from
the Australian desert dataset. For the polar region, we use the boreal summer Antarctica
spectrum as a benchmark.
For the ocean surface, while it lacks strong wavelength-dependent features, we account
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for ocean glint reflection by implementing the BRDF in reflected light and the BPDF in
polarized light, assuming a constant surface wind speed of 10 m s−1. To approximate an
Earth-like planet scenario, we construct a linear combination of these homogeneous planets,
assuming the Earth’s surface composition consists of 70% ocean, 10% forest, 10% desert,
and 10% polar regions.
To simulate homogeneous cloudy planets, we retain the same wavelength-dependent surface
properties while introducing an idealized homogeneous cloud field based on the properties
detailed in Roccetti et al. (2025a) (Tables 1 and 2). Specifically, we assume a 46% cloud
cover, with a liquid water (LW) cloud optical depth of 6.51 at a bottom altitude of 1.59 km.
To ensure consistency across different horizontal resolutions, we first generate a cloud field
matching the 3D CG resolution with a zoom-in factor of ×3 (Roccetti et al., 2025a), re-
sulting in a grid box size of approximately 9 km. The cloud layer is set to a 1 km vertical
extent, and we calculate the in-cloud liquid water content to maintain the prescribed LW
cloud optical depth. The cloud effective droplet radius is also fixed at 8.99 µm, from the
averaged properties of the ERA5 reanalysis product found in Roccetti et al. (2025a). In
these homogeneous planet models, 60% of the sub-grid cells are randomly assigned to be
cloudy, resulting in horizontally patchy cloud structures. Also for the Earth-like cloudy
scenario, we build it as a linear combination of the cloudy homogeneous simulations, main-
taining the assumed surface composition of 70% ocean, 10% forest, 10% desert, and 10%
polar regions.

5.3.2 Setups for models of increasing complexity
By building models of increasing complexities, we assess the impact of the improved cloud
and surface modeling approaches presented in Roccetti et al. (2025a) on the simulated
spectra and phase curves compared to homogeneous planet simulations. To perform this
comparison, we use the same 3D radiative transfer code MYSTIC and the same grid size.
We simulate models of different complexities, from uniform surface and clouds to more
complex and inhomogeneous cases. The increasing complexity scales as follows:

• uniform surface, with a constant surface albedo of 0.2 (Kopparapu et al., 2013), not
wavelength-dependent, and uniform LW clouds (fully cloudy layer with τ = 6.51, reff
= 8.99 µm and altitude thickness 1 km from 1.59 to 2.59 km);

• uniform surface (as above) and a homogeneous LW cloud layer with 46% patchy
cloud cover (making the previous cloud layer patchy and redistributing the liquid
water content among only cloudy pixels);

• linear combination of surfaces, taking a representative spectra of a forest, a desert,
a polar region and the ocean (including BRDF and BPDF), and averaging them as
70% ocean, 10% forests, 10% deserts and 10% polar to reproduce the Earth, and
patchy LW clouds with 46% cloud cover (as above);

• linear combination of surfaces (as above) with two cloud layers, the patchy LW clouds
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and the patchy ice water (IW) clouds. For the IW clouds we use 54% of cloud cover,
τ = 0.63, altitude range from 4.34 to 5.34 km and reff = 46.9 µm taken from Roccetti
et al. (2025a) (Tables 1 and 2);

• ocean surface (with BRDF and BPDF) with the 3D CG clouds, including their LW
and IW clouds and their 1σ spread, this scenario obviously includes the effects of an
ocean glint;

• Earth-like scenario including ocean surface treated with the BRDF and BPDF (but
ocean glint almost always hidden by land) and hyperspectral albedo maps with the
3D CG clouds including their LW and IW clouds and their 1σ spread.

5.3.3 Setup for high spectral resolution simulations
With the same model setup as in Roccetti et al. (2025a), we run high-spectral-resolution
simulations at ANDES resolution R = 100 000 to study the effect of different surface and
cloud properties not only on the continuum, but also on the absorption lines. Upcoming
instruments at the ELT, such as ANDES, will allow us to image the closer rocky exoplanets
orbiting M dwarfs using HCHR observations. We study in detail the O2-A band around
780 nm and the H2O absorption lines in the Y band, between 920 and 950 nm. To per-
form high-spectral-resolution simulations, we couple the Atmospheric Radiative Transfer
Simulator (ARTS version 2.2; Buehler et al. 2005, Eriksson et al. 2011) with MYSTIC.
ARTS provides accurate line-by-line absorption calculations for molecular species, ensur-
ing precise spectral resolution across a wide wavelength range. The computed absorption
coefficients are then used as input for MYSTIC, which simulates the 3D radiative transfer.

5.3.4 M-dwarf simulations model setup
We extend the comparison between the ocean and Earth-like planet scenarios from Roccetti
et al. (2025a) to an exoplanet orbiting an M dwarf star. Using the same models, we simulate
reflected and polarized light spectra across a wavelength range of 400–2500 nm at a spectral
resolution of 1 nm using the REPTRAN absorption parametrization (Gasteiger et al.,
2014). While the stellar spectrum is updated as an input, the resulting spectra are only
affected by the planet’s surface, atmosphere, and cloud properties, and not by the stellar
spectrum. As expected, the reflected light contrast decreases toward the near-infrared
(NIR), but this analysis provides valuable predictions for upcoming NIR observations.
Moreover, the NIR contains a higher density of absorption features compared to the visible
range, enabling the detection of key atmospheric species such as H2O, CO2, CH4, and O2,
which are crucial for exoplanet characterization.
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5.4 From homogeneous to realistic Earth-like planets

5.4.1 Homogeneous planets spectra and phase curves
We perform simulations for homogeneous planets using wavelength-dependent albedo prop-
erties from HAMSTER (Roccetti et al., 2024). As demonstrated in Roccetti et al. (2025a),
accurately modeling surface reflectance, whether for forests, deserts, or other surface types,
significantly impacts the planet’s total reflectance, particularly in the VRE region. Roc-
cetti et al. (2025a) showed that previous models substantially overestimated the VRE
because they represented vegetated surfaces using the laboratory-measured reflectance of
a single leaf. However, a forest is a far more complex environment, with its spectral sig-
nature arising from a combination of leaves, soil, and other materials. By incorporating
HAMSTER into our radiative transfer simulations, (Roccetti et al., 2025a) demonstrates
that the increase in reflectance around 750 nm due to the VRE is notably smaller than
previously estimated. This finding helps explain why the observed intensity of the VRE in
Earth as an exoplanet intensity observations is weaker than previously expected, as seen
in Earthshine studies (Montañés-Rodríguez et al., 2006).
Here, we present reference spectra and phase curves for homogeneous, cloud-free planets
with different surface types in both reflected and polarized light. The ocean planet in-
cludes BRDF and BPDF treatments, while other land surface types are derived from the
HAMSTER hyperspectral albedo maps dataset (Roccetti et al., 2024) and treated as Lam-
bertian surfaces. The Earth-like case, shown in orange, is modeled as a linear combination
of ocean, desert, forest, and polar surface types.
In the absence of clouds, distinct surface-dependent features emerge both in the spectra
(Fig. 5.1) and phase curves (Fig. 5.2). The polar ice cap planet (cyan model) exhibits
high reflectance across all wavelengths, while the forest model (green) shows a pronounced
VRE feature, which is clearly visible in the spectral reflectance of a purely forested planet.
Polarization spectra, however, show the opposite trend. The ocean planet (dark blue)
exhibits strong polarization due to the ocean glint effect, while the VRE feature manifests
as a steep decline in polarization between 700 and 800 nm. Additionally, phase curves
in polarization reveal a shift in the peak of the polarization curve depending on surface
properties. For an ocean planet, the polarization peak occurs at almost 90◦ only at 500 nm,
but at higher phase angles at 700 and 900 nm. The polarization peak for an ocean sur-
face without atmosphere would be at 106◦ (double the Brewster angle for water). For the
ocean planet with a Rayleigh atmosphere, it is a mixture of effects: at shorter wavelengths,
Rayleigh scattering dominates and the peak is at 90◦, at longer wavelengths, surface inter-
actions are decisive and the peak gets closer to 106◦. For a forest planet, the peak shifts to
larger phase angles compared to an ocean planet, with a wavelength-dependent trend. At
λ = 500 nm, where forests are darker and Rayleigh scattering dominates, the polarization
peak remains close to α = 90◦. However, at longer wavelengths (λ = 700 and 900 nm),
the increased reflectance of forests after the VRE causes the polarization peak to shift to
approximately α = 110 and 130◦, respectively.



148 5. Refining contrast estimates for rocky exoplanets

Figure 5.1: Reflected light (top row) and polarized light (bottom row) spectra for various
homogeneous, cloud-free planets with different surface types. The wavelength-dependent
spectral features of desert, forest, and polar surfaces are taken from HAMSTER (Roccetti
et al., 2024) and modeled as Lambertian reflectors, while the ocean surface incorporates
BRDF and BPDF treatments. Each column corresponds to spectra at different phase
angles α: 60, 90, 120◦.

Figure 5.2: Reflected light (top row) and polarized light (bottom row) phase curves showing
homogeneous cloud-free planets. The wavelength-dependent spectral features of desert,
forest, and polar surfaces are taken from HAMSTER (Roccetti et al., 2024) and modeled as
Lambertian reflectors, while the ocean surface incorporates BRDF and BPDF treatments.
Different columns refer to different wavelengths (λ): 500, 700, 900 nm.
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5.4.2 Patchy clouds over homogeneous surfaces
For the same homogeneous planets, we simulate spectra and phase curves assuming a
homogeneous cloud cover of 46% (see Sec. 5.3.1). Fig. 5.3 presents the reflected (first
row) and polarized (second row) light spectra for these cloudy planets. In reflected light,
we observe a general increase in brightness compared to the cloud-free simulations (Sec.
5.4.1), with the effect being particularly pronounced for the ocean planet (dark blue). The
polar planet (cyan), which already exhibits a very high surface albedo, is less affected by
the presence of clouds. The addition of clouds also impacts the forest planet (green), where
the VRE feature becomes less prominent in reflectance due to an increase in the continuum
level before 750 nm. However, the effect is significantly stronger in polarization. With a
cloudy atmosphere, the overall degree of polarization decreases substantially. For instance,
in the ocean planet case, polarization at α = 90◦ drops from more than 80% in the cloud-
free scenario to between 5% and 40% in the cloudy case. The presence of clouds, due to
multiple scattering, steepens the slope of the polarized spectra for the forest and desert
planets while inverting the slopes for the ocean and Earth-like planet configurations. This
highlights the superior diagnostic power of polarization compared to reflectance alone, as it
becomes easier to distinguish between cloud-free and cloudy spectra. Moreover, the VRE
feature is affected in polarization, as the characteristic drop in polarization between 700
and 800 nm is reduced.
A similar trend is observed in the phase curves for both reflected and polarized light
(Fig. 5.4). In reflected light, the overall brightness increases slightly, particularly for
the ocean planet, and additional features appear around α = 40◦, corresponding to the
cloudbow feature. In polarization, we again observe a significant reduction in the degree
of linear polarization, yet new cloud-related features emerge compared to the cloud-free
case (Fig. 5.2). The cloudbow is especially prominent in polarization and carries valuable
information about cloud droplet microphysical properties, including size, composition, and
shape (Emde et al., 2017; Sterzik et al., 2020). Additional polarization features also appear
at large phase angles (α = 120◦ and 160◦ for λ = 900 nm), which are associated with the
change of the polarization direction.

5.4.3 Models of increasing complexity
Building on our simulations of homogeneous planets, we now investigate the impact of
introducing inhomogeneities and increasing model complexity on reflectance and polariza-
tion. Karalidi & Stam (2012) demonstrated that models with horizontal inhomogeneities
leave distinct traces in the polarization phase function and affect both the absolute values
of reflectance and polarization in Earth-like exoplanet simulations. In this sensitivity study,
we transition from homogeneous surface and cloud models to fully realistic Earth-like and
ocean planet simulations.
In Fig. 5.5 we show the reflected and polarized light differences in the spectra due to the
models of varying complexity. First, we notice the significant spread between the ocean
and Earth-like scenario already shown in Roccetti et al. (2025a), way beyond the 1σ cloud
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Figure 5.3: Reflected light (top row) and polarized light (bottom row) spectra for var-
ious homogeneous planets with different surface types and homogeneous clouds. The
wavelength-dependent spectral features of desert, forest, and polar surfaces are taken from
HAMSTER (Roccetti et al., 2024) and modeled as Lambertian reflectors, while the ocean
surface incorporates BRDF and BPDF treatments. Each column corresponds to spectra
at different phase angles α: 60, 90, 120◦.

Figure 5.4: Reflected light (top row) and polarized light (bottom row) phase curves show-
ing planets with homogeneous clouds and surfaces. The wavelength-dependent spectral
features of desert, forest, and polar surfaces are taken from HAMSTER (Roccetti et al.,
2024) and modeled as Lambertian reflectors, while the ocean surface incorporates BRDF
and BPDF treatments. Different columns refer to different wavelengths (λ): 500, 700,
900 nm.
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variability spread in the models (shaded areas) computed using various cloud fields from
the ERA5 reanalysis product. This is particularly evident for α = 60◦ in reflectance, while
the difference gets larger for α = 120◦ in polarization, where we observe a different behavior
both in the spectral slopes of the models, their continuum in the near-infrared (NIR), and
in the behavior of the spectral lines. Due to the presence (ocean scenario) and absence
(Earth-like scenario) of the ocean glint feature, we see a different behavior of the water
bands around 950 nm, as they are shown in absorption (spectral lines below the continuum)
for the ocean planet and in emission (spectral lines above the continuum) for the Earth-like
case. This effect is already present in the α = 90◦ case, but gets enhanced at larger phase
angles. For the uniform clouds and surface model (black line), we find it to substantially
overestimate the reflectance of the planet and underestimate its polarization at α = 120◦,
as expected by a uniform cloud layer, where photons are reflected above the cloud deck.
Making the LW clouds more patchy (uniform surface - patchy LW clouds, dark gray line)
shows improvement in the comparison with the more complex and realistic simulations in
reflected light and at large phase angles.
We now change the uniform surface with a linear combination of surfaces with patchy
LW clouds (light gray line). Only for α = 90 and 120◦, we find a much better correspon-
dance with the Earth-like scenario in reflected light, where the Rayleigh scattering spectral
slope more closely matches the realistic Earth-like case. This improvement is due to the
wavelength-dependent linear combination of surface types, which provides a more accurate
representation of surface albedo. As a last improvement, we add IW clouds on top of the
patchy LW clouds over the linear combination of surfaces (silver line). In reflected light,
we notice a slight increase in the reflectance for small phase angles.
However, in polarization, we observe a notable difference between the simpler and more
complex models, particularly at α = 90 and 120◦. At α = 90◦, uniform surfaces reduce the
level of polarization compared to the linear combination of surfaces. This effect becomes
even more pronounced at α = 120◦, where polarization drops to zero just before 700 nm
due to changes in the direction of the Stokes vectors when using a uniform surface. Addi-
tionally, the degree of linear polarization is significantly lower than in the Earth-like and
ocean planet scenarios, and the spectral slope is steeper than in the more realistic mod-
els. When introducing a linear combination of wavelength-dependent surfaces, the level of
polarization becomes more comparable to the Earth-like scenario. This finding suggests
that polarization is more sensitive to planetary surface features than reflectance alone,
particularly at large phase angles. Accurately modeling wavelength-dependent surfaces is
essential for properly interpreting disk-integrated spectra of exoplanets. However, while
this approach improves polarization estimates, the slope in the Rayleigh scattering region
and the direction of the water absorption bands still do not fully match the realistic model.
This indicates that horizontally patchy clouds alone are insufficient to accurately model
polarization, especially at high phase angles. These results suggest that capturing inhomo-
geneities in both cloud and surface modeling will be crucial for interpreting observations
from the next generation of telescopes. Moreover, polarization provides stronger diagnostic
capabilities for distinguishing different planetary scenarios and resolving potential retrieval
degeneracies.
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Figure 5.5: Comparison among spectra in reflected (first row) and polarized light (second
row) of models of different complexity, from fully homogenous to complex Earth as an
exoplanet simulations. Different columns refer to different phase angles (α): 60, 90, 120◦.

Figure 5.6: Reflected light (first row) and polarized light (second row) phase curves showing
the influence of models of different complexities, from fully homogeneous to more complex
Earth as an exoplanet simulations. Different columns refer to different wavelengths (λ):
500, 700, 900 nm.

In Fig. 5.6, we analyze the impact of increasing model complexity on reflected and polar-
ized phase curves at three different wavelengths: λ = 500, 700, and 900 nm. Significant
differences between the ocean and Earth-like scenarios emerge primarily in polarization,
particularly at 700 and 900 nm. We observe an increase in polarization due to ocean glint,
which exceeds the variability introduced by cloud properties in our models, as discussed
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in Roccetti et al. (2025a). In reflected light, uniform surface simulations slightly overes-
timate planetary reflectance, especially at shorter wavelengths. This discrepancy is more
pronounced in polarization, affecting the polarization peak associated with Rayleigh scat-
tering (around α = 90◦) at 700 and 900 nm. Moving from uniform clouds to horizontally
patchy LW clouds on a uniform surface alters both the phase angle at which maximum
polarization occurs and the prominence of the cloudbow feature. When introducing a lin-
ear combination of surfaces, we find improved agreement mostly in polarized light phase
curves. However, the cloudbow feature remains substantially overestimated compared to
the realistic 3D CG model without IW clouds. Additionally, including IW clouds gener-
ates polarization features at large phase angles (α = 138 and 158◦), which result from ice
crystal scattering properties, as explained in Emde et al. (2017). Overall, for λ = 700 and
900 nm, simplified polarized phase curves fail to reproduce the benchmark Earth-like and
ocean models. These findings underscore the importance of accurately modeling 3D cloud
inhomogeneities and subgrid variability when interpreting exoplanet phase curves, partic-
ularly in polarization. Our results suggest that distinguishing surface and atmospheric
features using reflected light alone is more challenging than with polarization. However,
in polarization, a homogeneous treatment of clouds and surface properties has a stronger
impact on observational interpretation. This further emphasizes that polarization provides
deeper insights into cloud properties than reflected light alone.
Since the next generation of telescopes and instruments, such as ANDES, will require long
integration times to characterize rocky exoplanets, we examine in Appendix 5.8 the effect
of time-averaging evolving cloud patterns over a typical 8-hour night of observation. In
Figs. 5.11 and 5.12, we present the resulting impact on the spectra and phase curves for an
ocean planet under different cloud scenarios: a uniform LW cloud layer (with cloud proper-
ties as in Sec. 5.3.2), the 3D CG model with a 1σ spread over 12 months, and an averaged
model based on eight consecutive simulations, each using a distinct ERA5 cloud field as
input to the 3D CG algorithm over an 8-hour period. This latter setup is designed to
mimic the observation of an exoplanet over a single night, accounting for evolving weather
patterns and changing scenery due to planet rotation. Our results show that even when
cloud patterns are averaged over long integration times, the model predictions differ sig-
nificantly from those based on a uniform cloud layer and closely resemble the results from
the 3D CG 1σ spread model. This is because, even over extended integration periods, the
instantaneous cloud distribution imprints its patchy structure on the reflected light. As a
result, the ocean glint remains visible through cloud gaps at all times, and each timestep
contributes to enhanced reflectance at small phase angles and increased polarization at
large phase angles. Therefore, the resulting spectra and phase curves are not equivalent to
those produced by a homogeneous, thinner cloud model.

5.4.4 Absorption lines in high spectral resolution
We extensively discussed the influence of cloud and surface modeling approaches on the
continuum levels of reflected and polarized light spectra. Now, we investigate the impact of
models of varying complexity, ranging from uniform to patchy cloud modeling and different
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Figure 5.7: O2-A band in reflected (top row) and polarized light (bottom row) at a spectral
resolution of R = 100 000. The absorption lines are modeled for an ocean planet with three
cloud treatments: uniform, homogeneous, and 3D CG clouds. Different columns refer to
different phase angles (α): 60, 90, 120◦.

Figure 5.8: H2O absorption lines in the Y band in reflected (top row) and polarized light
(bottom row) at a spectral resolution of R = 100 000. The absorption lines are modeled for
an ocean planet with three cloud treatments: uniform, homogeneous, and 3D CG clouds.
Different columns refer to different phase angles (α): 60, 90, 120◦.

surface types, on absorption lines. Specifically, we focus on two molecular species: the O2-
A band around 780 nm and the H2O lines in the Y band (920–950 nm). We perform
high-resolution simulations with a spectral resolution of 100 000, matching the expected
capabilities of upcoming instruments on the ELT, such as ANDES.
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Figure 5.9: H2O absorption lines in the Y band in reflected (top row) and polarized light
(bottom row) at a spectral resolution of R = 100 000. The absorption lines are modeled
for an ocean and an Earth-like planet scenario with 3D CG clouds. Different columns refer
to different phase angles (α): 60, 90, 120◦.

Fig. 5.7 illustrates the effect of different cloud models (uniform, patchy LW clouds, patchy
LW and IW clouds, and 3D CG simulations) over an ocean surface. In reflected light
(please note the log scale), while the continuum is influenced by cloud modeling, the depth
of the O2-A line forest remains unaffected. In polarization, however, we observe changes
not only in the continuum, particularly at α = 120◦, but also in the depth of the absorption
lines, which appear in emission. Notably, within the O2-A band, the more saturated lines in
reflectance remain unaffected by the choice of cloud model, while a more realistic treatment
of clouds with the 3D CG lowers the polarization level of the emission lines, which are less
saturated. This suggests that the conventional approach of retrieving cloud deck height
using O2-A line depth (Stam, 2008) is influenced by the presence of patchy clouds on a
global scale.
We conduct the same comparison between uniform, patchy LW clouds, patchy LW and IW
clouds, and 3D CG models for the H2O lines in the Y band, as shown in Fig. 5.8. Here,
we observe that uniform and patchy clouds affect the continuum, increasing the continuum
level in reflected light and lowering it in polarization compared to the 3D CG ground truth
models at α = 90 and 120◦. Additionally, we identify an interesting behavior in the spectral
lines. In reflected light, discrepancies appear in the line depths, while in polarization, the
water lines are seen in absorption relative to the continuum in the 3D CG model, while they
appear in emission for the simplistic uniform and patchy cloud approaches. The addition
of the IW clouds does not have a large impact on the absorption lines.
In Fig. 5.9, we assess the impact of different surface types on water lines. The 3D CG
ocean and Earth-like models correspond to the spectra in Fig. 5.5, but here we use a
spectral resolution of 100 000, focusing on the water band region. We observe that while
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the continuum is influenced by surface type, the water bands are shown in absorption for
an ocean surface, while they appear in emission for a dry surface. This occurs because,
in the Earth-like scenario, ocean glint is obscured by continents at large phase angles (see
Roccetti et al. 2025a). This effect becomes more pronounced at larger phase angles, with
the line depth remaining nearly consistent across all molecular lines both in absorption
and emission.
This behavior was previously discussed by Trees & Stam (2022) for low spectral resolution
simulations and homogeneous models. Here, we confirm that it persists even in more
sophisticated simulations that incorporate sub-grid cloud inhomogeneities within the 3D
CG framework. Furthermore, we demonstrate that the choice of cloud simulation approach
also influences this line behavior in polarization. Therefore, accurately modeling clouds and
their complex 3D structure is crucial for potential observations and for reliably extracting
surface information from water lines.

5.5 Contrast estimates for the ANDES golden sample
In Fig. 5.10, we extend the ground-truth models for the ocean and Earth-like planet
scenarios from Roccetti et al. (2025a) into the NIR, up to 2500 nm. The figure illustrates
that in reflected light, these two scenarios can be distinguished at small phase angles,
where the Earth-like planet appears more reflective due to the high albedo of deserts,
which is particularly significant in the NIR. In polarization, the distinction between the
two scenarios becomes apparent at α = 90◦, where water lines appear in absorption or
emission depending on the underlying surface. This effect becomes even more pronounced
at larger phase angles, further enhancing the diagnostic potential of polarized light.
With the enhanced cloud and surface modeling techniques presented in this work, we also

provide updated flux contrast estimates for both intensity and polarization to support the
preparation of future ground-based instruments, such as ANDES and PCS on the ELT,
and space-based mission concepts like HWO. Using the scale factors for nearby exoplanets
provided in Table 5.1, we refine the contrast estimates from previous studies (e.g., Pallé
et al. 2025). It is important to note that rocky exoplanets orbiting M dwarfs are almost
always tidally locked. Previous studies (e.g., Way et al. 2017; Kopparapu et al. 2017) have
shown that tidal locking can result in atmospheric circulation and cloud patterns that differ
significantly from those of Earth. In contrast, rocky exoplanets orbiting G-type stars, such
as those targeted by HWO, are not expected to be tidally locked, and thus may exhibit
more Earth-like cloud cover and distribution.
Pallé et al. (2025) presented a golden sample of rocky exoplanets around nearby M dwarfs
to be characterized within a few observing nights with ANDES at the ELT. The reflected
light contrast between the planet and the star is calculated using the maximum projected
planet-star distance (i.e., when the planet is at α = 90◦) and assuming an Earth-like albedo
of 0.3. We now have the capabilities to provide improved reflected light contrast for this
golden sample of exoplanets, assuming both an Earth-like and an ocean planet scenario.
In Table 5.2 we provide our estimate of the contrast for the ANDES golden sample, with
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Figure 5.10: Comparison among spectra in reflected (first row) and polarized light (second
row) of the ocean and Earth-like planet scenarios for a M-dwarf star, for a wavelength
range from 400 to 2500 nm. Different columns refer to different phase angles (α): 60, 90,
120◦.

the addition of the newly discovered Barnard b exoplanet and a potential planet located
at 1 AU orbiting Alpha Cen A.
We find that our contrasts are lower than the ones obtained by Pallé et al. (2025) by a factor
of two, and that the flux and polarization contrasts between Earth-like and ocean planet
scenarios are remarkably similar. For example, for Proxima b with a phase angle of 90◦,
Pallé et al. (2025) estimated a contrast of 11.2 ·10−8, while our calculated value is 5.8 ·10−8

for an Earth-like planet. This discrepancy arises from differences in reflectance estimation.
Pallé et al. (2025) used planetary albedo estimates from Turbet et al. (2016), who simulated
various possible climates and atmospheric states for Proxima b using a general circulation
model (GCM). However, GCMs operate at relatively coarse grid resolutions, and when
coupled with a 3D radiation scheme, they simulate planets with a lower spatial resolution
than our approach.
The impact of spatial resolution on radiative transfer calculations has been previously
highlighted by Robinson et al. (2011), who demonstrated that a minimum resolution of
100 pixels was necessary to achieve acceptable fits to EPOXI spacecraft data of Earth
as an exoplanet. In Roccetti et al. (2025a), we further explore how planetary reflectance
varies with horizontal resolution. Specifically, when comparing our results to those of
Turbet et al. (2016), who employed a 64 × 48 grid (closer to our zoom-out x100 case), we
find that our reflected light contrasts closely match theirs. Moreover, when applying the
same zoom-out x100 resolution to cloud modeling, our contrast estimates align closely with
those from Pallé et al. (2025). This underscores the crucial role of horizontal resolution in
obtaining accurate contrast predictions and reconciling model outputs with observations.
Additionally, we find that Barnard b exhibits a higher contrast compared to the original
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!
Cflux[3D CG] Cflux[zoom-out] Cflux[Pallé et al. (2025)] Cpol[3D CG]

Name ocean Earth-like ocean ocean Earth-like
Proxima Cen b 5.69 ·10−8 5.83 ·10−8 9.01 ·10−8 11.2 ·10−8 1.15 ·10−8 1.11 ·10−8

Ross 128 b 6.23 ·10−8 6.45 ·10−8 9.97 ·10−8 12.5 ·10−8 1.28 ·10−8 1.23 ·10−8

GJ 273 b 3.78 ·10−8 3.87 ·10−8 5.98 ·10−8 7.52 ·10−8 0.77·10−8 0.74·10−8

Wolf 1061 c 4.81 ·10−8 4.93 ·10−8 7.62 ·10−8 9.57 ·10−8 0.97·10−8 0.94·10−8

GJ 682 c 8.09 ·10−8 8.29 ·10−8 12.8 ·10−8 16.0 ·10−8 1.64 ·10−8 1.58 ·10−8

Barnard b 12.1 ·10−8 12.4 ·10−8 19.1 ·10−8 2.44 ·10−8 2.35 ·10−8

Alpha Cen A 1.17 ·10−10 1.19 ·10−10 1.85 ·10−10 0.24·10−10 0.23·10−10

Table 5.2: Refined contrast estimates for rocky exoplanets. We compare the ANDES
golden sample with a potential Earth-like and ocean planet around Alpha Cen A. We
compare the contrast estimates from Pallé et al. (2025) with our updated calculations
using the 3D Cloud Generator (3D CG) in both reflected and polarized light. Additionally,
we present contrast values obtained for an ocean planet with a coarser horizontal grid
resolution (zoom-out x100) for comparison.

five exoplanets in the golden sample presented in Pallé et al. (2025), reaching 1.2 ·10−7.
We also provide contrast estimates in polarization, which are approximately one-fifth of the
flux contrast obtained with the 3D CG. While the lower contrast significantly impacts the
planet’s detectability and characterization, polarization offers key advantages. It is largely
unaffected by telluric contamination and enhances star-planet separation, as F-, G-, and
K-type stars are expected to emit almost entirely unpolarized light. Moreover, when using
a coronagraph, polarimetric techniques help suppress stellar speckles, as demonstrated
with ZIMPOL (Hunziker et al., 2020), which is particularly beneficial at small angular
separations (Beuzit et al., 2019).

5.6 Discussion and conclusions
In this work, we build upon the improved cloud and surface modeling presented in Roccetti
et al. (2025a) to assess the importance of detailed cloud and surface properties in studying
rocky exoplanets. Using the 3D radiative transfer model MYSTIC, with the same horizon-
tal and vertical resolutions, we analyze how an improved treatment of clouds and surfaces
affects reflected and polarized light spectra and phase curves. Additionally, our approach
enables a comparison of the insights gained from combining spectroscopy and spectropo-
larimetry versus intensity-alone measurements for future observations of rocky exoplanets
with ANDES and PCS at the ELT, as well as the mission concept HWO.
We compare the ground-truth models presented in Roccetti et al. (2025a) on reflected
and polarized light spectra and phase curves to those of homogeneous planet models and
models of increasing complexity. Our analysis leads to several key findings:

1. Polarization provides stronger diagnostic capabilities than intensity alone in distin-
guishing between cloud-free and cloudy exoplanets. The spectral slope and polariza-
tion fraction are highly sensitive to clouds, while the cloudbow feature offers valuable
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insights into cloud microphysical properties. Reflectance loses diagnostic power as
phase angles increase, while polarization shows the opposite trend.

2. A uniform surface fails to reproduce polarized spectra and phase curves, as well as
reflected light spectra at large phase angles. Incorporating a linear combination of
wavelength-dependent surface types significantly improves agreement with ground-
truth spectra. Polarization spectra are particularly sensitive to surface properties,
especially at large phase angles, both in the continuum and in water absorption lines.

3. Simplified cloud treatments, such as homogeneous cloud models and single-layer
clouds with averaged properties, introduce significant inaccuracies, even when at-
tempting to mimic the effects of long observational averaging. Polarization phase
curves are more sensitive to cloud properties, particularly through the cloudbow and
ice crystals features, making them a crucial tool for cloud characterization.

4. Water absorption lines in polarization appear in absorption when ocean glint is
present and in emission for dry planets, as previously reported by Trees & Stam
(2022) for homogeneous models. This behavior persists even at high spectral reso-
lution (R = 100 000), confirming the potential of water lines as surface diagnostics.
However, simplistic cloud models can alter the appearance of water lines, potentially
affecting the interpretation of ocean detection on exoplanets.

5. Using our ground-truth reflected and polarized light models for an Earth-like scenario,
we calculate contrast estimates for the ANDES golden sample (Pallé et al., 2025),
including Barnard b and a hypothetical Earth-like planet at 1 AU from Alpha Cen A.
Compared to previous studies (Turbet et al., 2016; Pallé et al., 2025), our results show
that reflected light contrast estimates are overestimated by a factor of two when using
coarse horizontal resolution and simplified cloud and surface models. Additionally,
we provide contrast estimates in polarization, which are approximately one-fifth of
the reflected light flux contrast.

These findings strongly suggest that retrieval frameworks for reflected-light observations of
rocky exoplanets should account for wavelength-dependent surface albedo properties and
patchy cloud models. As shown by Wang et al. (2022), neglecting wavelength-dependent
variations in surface albedo in retrieval frameworks can lead to substantially biased esti-
mates of atmospheric and cloud properties. Notably, we demonstrate that a linear com-
bination of just four surface types (ocean, desert, forest, and polar regions) achieves good
agreement with complex ground-truth models, highlighting a practical approach for fu-
ture retrievals. Additionally, our results reinforce the potential impact of polarization in
exoplanet characterization. By combining polarization with intensity-only spectroscopy,
we can enhance diagnostic capabilities, reduce retrieval degeneracies, and improve the
characterization of surface and atmospheric properties. Additionally, finer spatial grid
resolutions for radiative transfer calculations should be considered to avoid biases when
comparing models with observations.
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Future studies should assess the feasibility of polarized-light observations with next-generation
telescopes, determining whether sufficient contrast can be achieved for robust exoplanet
characterization. More broadly, our results demonstrate that homogeneous models fail to
accurately represent Earth as an exoplanet, emphasizing the need for more advanced mod-
eling approaches in the exoplanet community. Clouds play a crucial role in shaping observ-
ables, making their accurate treatment essential for reliable simulations. Both simplistic
cloud treatments and low horizontal resolution in radiative transfer models significantly
impact the accuracy of simulations, reinforcing the need for high-resolution, state-of-the-
art models for meaningful comparisons with observations.
Ultimately, we demonstrate that polarization is a powerful tool for characterizing rocky
exoplanets, distinguishing between different planetary scenarios both in the visible and
NIR, and providing deeper insights into their physical and chemical properties. As fu-
ture telescopes and missions become operational, incorporating these advanced modeling
techniques will be crucial for interpreting observations and understanding the diversity of
rocky exoplanets. Furthermore, our refined contrast estimates play a key role in instrument
design and in precisely determining integration times.

5.7 Data availability
The spectra and phase curve data from this study are publicly available via a Jupyter
notebook2.
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5.8 Appendix A: Cloud averaging over long integra-
tion times

To address the effect of time-averaging the planetary signal over long observational periods,
we analyze how evolving cloud patterns influence the resulting spectra and phase curves.
This consideration is particularly relevant for future instruments such as ANDES and PCS
at the ELT, which will require extended integration times to characterize the golden sample
exoplanets. Specifically, we selected one random date from the 12 ERA5 cloud fields used
in Roccetti et al. (2025a) to construct the 3D CG 1σ cloud spread model. For that date
(2023.10.07) we extracted cloud fields from ERA5 at hourly intervals between 16:00 and
23:00 UT, which corresponds to the highest temporal resolution available in ERA5. Using
these eight consecutive hourly cloud fields as inputs to the 3D CG model, we ran eight
independent simulations. We then computed the average and 1σ spread of the resulting
outputs, referring to this configuration as the time-averaged signal case. This model is
compared against the standard 3D CG 1σ spread over 12 months and a uniform cloud
model, as described in Sec. 5.3.2, but for an ocean surface. The impacts on the reflected
spectra and phase curves are shown in Figs. 5.11 and 5.12, respectively.
We find that the time-averaged signal model (purple curve) closely resembles the 3D CG
model (blue curve) across all tested spectra and phase curves. Minor discrepancies with the
3D CG arise because the time-averaged signal model incorporates cloud fields not only over
the ocean, but also over different geographic regions during the 8-hour window, starting
with the American continent and later extending over the Pacific ocean. These regional
differences explain the observed deviations. Nevertheless, the uniform cloud model (black
curve) fails to reproduce the results of the time-averaged signal model, showing significant
discrepancies, particularly at large phase angles in reflectance (Fig. 5.11, top-left panel),
and in polarization, both in the spectral slope at α = 90◦ (bottom-center panel) and espe-
cially at large phase angles (bottom-right panel).
In the comparison of phase curves shown in Fig. 5.12, we again observe some small de-
viations between the time-averaged signal model and the 3D CG model, as well as with
the uniform cloud model. In reflectance, these differences are not strongly pronounced;
however, we note an overestimation of the cloudbow feature with uniform clouds and an
underestimation of the continuum level. In polarization (second row), the differences be-
come much more significant. The cloudbow feature is substantially overestimated in the
uniform cloud model. At wavelengths of 700 and 900 nm, the uniform model fails to re-
produce the polarization continuum at phase angles greater than 90◦, due to its inability
to capture the specular reflection from the ocean glint, an effect that strongly polarizes
light. In contrast, the time-averaged signal model still exhibits the ocean glint signature in
the polarization continuum. This is because the patchy nature of the evolving cloud fields
allows photons to reach the surface at all times, even under changing weather conditions.
Thus, even when averaging cloud coverage over long integration times, it is important to
account for realistic cloud patchiness, as it has a significant impact on both reflected and
polarized light signals, effects that cannot be replicated by homogeneous cloud models.
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Figure 5.11: Comparison among spectra in reflected (first row) and polarized light (second
row) for an ocean planet with a uniform cloud layer (black curve), the 3D CG model with
1σ variability over 12 months (blue curve), and the time-averaged signal model simulating
8 hours of integration time (purple curve). Different columns refer to different phase angles
(α): 60, 90, 120◦.

Figure 5.12: Reflected light (first row) and polarized light (second row) phase curves
showing an ocean planet with a uniform cloud layer (black curve), the 3D CG model with
1σ variability over 12 months (blue curve), and the time-averaged signal model simulating
8 hours of integration time (purple curve). Different columns refer to different wavelengths
(λ): 500, 700, 900 nm.
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Earthshine observations offer a unique opportunity to study Earth
as an exoplanet seen from the Moon. As the Sun-Earth-Moon
geometry changes, Earth can be observed as a spatially unre-
solved exoplanet at different phase angles, providing important
context for future observations of Earth-like exoplanets. Here,
we present a catalog of Earthshine polarization spectra obtained
with FORS2 on the VLT, covering diverse scenes, surface condi-
tions, cloud properties, and weather patterns for over a decade.
For the first time, we model this extensive dataset in detail using
a homogeneous modeling framework. Previous efforts to model
some of these spectra struggled to reproduce the observed po-
larization continuum, even with advanced 3D radiative transfer
models incorporating satellite-derived surface and atmospheric
data. We improve upon this with a state-of-the-art 3D model that
includes subgrid cloud variability, wavelength-dependent surface
albedo maps, and an accurate treatment of ocean glint. Our sim-
ulations successfully reproduce most observed spectra to a much
higher precision than previously possible. Additionally, our sta-
tistical analysis reveals that the spectral slope in the visible can
distinguish between ocean and mixed surfaces in both reflected
and polarized light, which is not possible using broadband filters
alone. Polarized light at large phase angles, beyond the Rayleigh
scattering regime, is particularly effective in differentiating oceans
from land, unlike reflected light. While the vegetation red edge
(VRE) is more pronounced in reflectance, it remains detectable
in polarization. We also identify correlations between cloud opti-
cal thickness and the polarized spectral slope, and between cloud
cover and broadband B–R differences in reflected light, demon-
strating the diagnostic power of these observations. This catalog
and its modeling highlight the potential of polarization for char-
acterizing Earth-like exoplanets. From polarization alone, we can
infer oceans, vegetation, and an active water cycle, key indicators
of a habitable planet.
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6.1 Introduction
The search for small, habitable exoplanets is a primary objective of upcoming observatories
such as the Extremely Large Telescope (ELT) and the proposed mission concept Habitable
Worlds Observatory (HWO). To fully interpret future data from these missions, we must
significantly improve our ability to model observations. Earth remains the only known
example of a habitable planet, and it provides a unique benchmark to address a funda-
mental question: how unique is our planet? While not all habitable exoplanets will closely
resemble Earth, many are expected to share key features, such as oceans, clouds, and sur-
face heterogeneities. Consequently, studying Earth as an exoplanet is vital for developing
observational strategies and interpretative tools. A range of techniques have been used to
examine Earth’s disk-integrated properties, offering valuable insight for future photometric
and spectroscopic observations of Earth-like exoplanets (Robinson & Reinhard, 2018).
The first effort to observe Earth as a planetary body using a space-based platform was
carried out during the Galileo spacecraft’s flybys of Earth (Johnson et al., 1992). Spatially
resolved imagery and spectra revealed important atmospheric and surface characteristics.
In particular, Sagan et al. (1993) identified specular reflection indicative of surface liquid
water, high column densities of O2 in disequilibrium with CH4, and the vegetation red edge
(VRE), a sharp increase in reflectivity beyond 700 nm associated with chlorophyll. These
findings pointed to a biologically active planet with surface diversity and an atmosphere
influenced by life.
When observing exoplanets, however, we cannot resolve them spatially. Instead, we receive
light from the entire planet averaged into a single pixel. In such cases, the viewing geom-
etry plays a critical role in shaping the reflected light signal. For instance, regions near
the terminator contribute less to the disk-integrated signal, and features such as specular
reflection depend on the directional reflectance of the surface. Properly accounting for
geometry is essential to extracting accurate information from reflected light observations,
a crucial aspect of the ELT.
Since the mid-20th century, Earth has been continuously monitored by a growing number
of satellites. By stitching together high-resolution satellite imagery, it is possible to build
datasets of disk-integrated Earth observations (Hearty et al., 2009), offering broad spectral,
temporal, and spatial coverage. However, this approach does not replicate the conditions
of typical exoplanet observations due to temporal gaps influenced by varying weather pat-
terns and constraints in viewing geometry, especially for low Earth orbit satellites.
The ideal approach to mimic direct observations of the Earth as an exoplanet would be
to acquire photometry and spectroscopic measurements for a truly distant Earth, from
distances beyond low-Earth orbit or geostationary satellites. For example, the EPOXI mis-
sion captured disk-integrated Earth spectra, revealing key spectral features and enabling
the mapping of unresolved planetary surfaces (Robinson et al., 2011). Observations from
NASA’s LCROSS mission helped quantify the effects of ocean glint and ozone absorption
on Earth’s disk-integrated reflectance spectra at various phase angles (i.e., the star-planet-
observer angle) (Robinson et al., 2014). Additionally, NASA’s DSCOVR mission, located
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at the Earth-Sun L1 Lagrange point, provides continuous imaging of Earth’s fully illumi-
nated hemisphere that can be used to obtain disk-integrated reflected light spectra (Kof-
man et al., 2024). However, these measurements lack the phase angle diversity needed to
replicate typical exoplanet observation conditions. Furthermore, most spacecraft datasets
focus on photometry rather than spectroscopy, and disk-integrated observations beyond
quadrature remain limited, with LCROSS being a rare exception (Robinson & Reinhard,
2018).
An alternative method to study Earth as an exoplanet is through Earthshine, which is sun-
light scattered by Earth’s dayside and reflected off the darker portion of the visible Moon.
The Moon acts as a diffuse reflector, integrating light from the illuminated hemisphere of
Earth. As early as the Renaissance, Leonardo Da Vinci noted that the faint glow of the
darker portion of the visible Moon on clear nights was due to light reflected from Earth
(Da Vinci, 1510), and named it Earthshine. Later, Galileo Galilei was the first to observe
Earthshine with a telescope and to explain that different regions of Earth reflected light
differently, emphasizing the role of planetary albedo (Galilei, 1632). The first quantitative
measurements of Earthshine were carried out by Dubois (1947), who presented Earth’s
phase curve and demonstrated that broadband reflectivity varies significantly with phase
angle due to cloud variability.
Modern Earthshine studies have progressed from photometry to spectroscopy, allowing for
detailed characterization of Earth’s disk-integrated spectrum (Goode et al., 2001). These
studies have revealed daily to decadal variability in Earth’s reflectivity (Pallé et al., 2003,
2009a, 2016), including changes in the VRE linked to cloud cover and surface vegetation
(Arnold et al., 2002; Seager et al., 2005; Montañés-Rodríguez et al., 2006). Spectral fea-
tures associated with habitability and life, such as H2O, O2, and CH4, have been identified
in Earthshine spectra spanning 0.7–2.4 µm (Turnbull et al., 2006).
Despite its advantages, Earthshine observations are not without challenges. The Moon is
not a perfect Lambertian reflector, and the signal must pass through Earth’s atmosphere
twice, introducing telluric contamination. One way to mitigate this is through Earth-
shine observations using spectropolarimetry, thus obtaining the fractional polarization of
Earthshine as a function of wavelength. Sterzik et al. (2012) obtained the first such ob-
servations that compare two different Earth’s scenes: one with the illuminated side over
the Pacific Ocean, and the other featuring a mixture of land and ocean surfaces. With
these observations, changes in Earth’s cloudiness, the presence of an ocean, and even the
VRE, a biosignature caused by chlorophyll, were detected. Independent measurements of
Earthshine obtained from different geographical regions of the world were conducted by
Takahashi et al. (2013) and Bazzon et al. (2013), showing overall good agreement with
the initial polarization spectra presented in Sterzik et al. (2012). Miles-Páez et al. (2014)
further extended the wavelength coverage of Earthshine polarimetric measurements into
the near-infrared (NIR), demonstrating sensitivity to molecular absorption lines. Sterzik
et al. (2019) expanded the phase angle coverage of Earthshine observations, presenting
33 spectra obtained during an observational campaign and constructing polarized phase
curves of Earth as an exoplanet in the visible (VIS) and NIR. For Earthshine, the phase
angle changes with the relative positions of the Sun, Earth, and Moon. As a final ex-
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tension to phase angle coverage, Sterzik et al. (2020) observed Earthshine at small phase
angles (around 30°–40°) to probe the cloudbow feature, which depends on the properties of
cloud droplets. This led to the first detection of cloudbow features in the disk-integrated
Earth. Sterzik et al. (2020) used this feature to retrieve the refractive index and sizes
of cloud droplets on Earth. This approach was proven highly successful on Venus, where
disk-integrated observations at small phase angles revealed that the planet’s thick clouds
are composed of sulfuric acid with particle sizes of about 2 µm (Hansen & Travis, 1974).
Moreover, Takahashi et al. (2021) have further extended the phase coverage of Earthshine
observations.
In parallel with observational advances, modeling efforts have also progressed. Early mod-
els by Stam (2008) considered horizontally homogeneous planets in plane-parallel atmo-
spheres. These were extended by Karalidi & Stam (2012) to include surface and cloud
heterogeneities, with further work exploring the cloudbow as a diagnostic of liquid water
in Earth-like atmospheres (Karalidi et al., 2012). Monte Carlo radiative transfer models
capable of simulating both intensity and polarization were developed by García Muñoz
(2015) and Emde et al. (2017), who demonstrated the sensitivity of polarization to clouds,
aerosols, and surface properties. Additionally, Emde et al. (2017) demonstrated that light
reflected by ocean surfaces in the sunglint region causes high degrees of polarization, con-
sistent with the findings of Sterzik et al. (2012). Recent models by Trees & Stam (2022)
predicted ocean glint signatures in polarization, including distinct absorption dips across
the 950 nm water band. However, Gordon et al. (2023) found that matching observed
polarization spectra from Miles-Páez et al. (2014) remains challenging, in part due to
oversimplified surface models that neglect the ocean glint. Their follow-up work (Goodis
Gordon et al., 2025) explored Earth’s polarized appearance across geological epochs, show-
ing that polarization offers greater discriminative power for cloud and haze properties than
intensity-only observations.
In this paper, we present the first extensive modeling effort of a large catalog of Earthshine
observations in polarization. This constitutes a critical step toward benchmarking model
performance and understanding what Earth would look like as an unresolved exoplanet.
Our modeling framework, based on Roccetti et al. (2025a), allowed us to simulate each
Earthshine spectrum using cloud and surface data from the exact time of the observations.
We also improve upon the data reduction and analysis techniques from Sterzik et al. (2019,
2020), creating a higher-quality, more uniform dataset. Our focus is on the spectral contin-
uum and on features such as the ocean glint, the VRE, and cloud properties. Finally, we
assessed the diagnostic potential of polarization relative to intensity-only observations and
explored what could be learned about Earth when seen as a distant, spatially unresolved
planet.

6.2 Earthshine observations
Our catalog of Earthshine polarization observations consists of 53 spectra covering phase
angles from 37◦ to 136◦, previously published in Sterzik et al. (2019) and Sterzik et al.
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(2020). All observations were obtained using the FORS2 instrument (Appenzeller et al.,
1998), a low-resolution spectrograph with polarimetric optics, mounted on the Antu tele-
scope at the ESO Very Large Telescope (VLT) at Cerro Paranal, Chile. Table 6.9 reports
the date, phase angle, and observational configurations of all Earthshine observations from
Sterzik et al. (2012), Sterzik et al. (2019), and Sterzik et al. (2020).
FORS2 is equipped with Wollaston prisms and a rotating retarder waveplate, allowing
the measurement of the wavelength-dependent reduced Stokes parameters PQ = Q/I and
PU = U/I, from which the total fractional linear polarization is calculated as:

P =
√

P 2
Q + P 2

U . (6.1)

The spectra were collected using two different grisms:

• The 300V grism was used for 45 spectra, covering the 420-920 nm range with a
spectral resolution of ≈ 220 using a 2slit.

• The 600I grism was used for the remaining 8 spectra, covering 670-930 nm with a
spectral resolution of 750.

Observations targeted the darker portion of the visible Moon, with the FORS2 detector
oriented east-west along the lunar limb. The first detector chip contains five 22 long slitlets
positioned across the lunar surface. A 4 gap separates it from the second chip, which con-
tains four slitlets pointed at the empty sky for background subtraction. The lunar limb
was consistently positioned in the gap between the two detector chips.
Polarimetric data were acquired using the beam-swapping technique (Bagnulo et al., 2009),
which reduces instrumental systematics typical of dual-beam polarimetry. This was achieved
by acquiring exposures at 16 retarder waveplate angles, from 0◦ to 337.5◦ in 22.5◦ incre-
ments.
Additionally, we applied a correction for lunar depolarization. The lunar depolarization
factor ϵ(λ) is defined as:

ϵ(λ) = Pout(λ)
Pin(λ) , (6.2)

where Pin(λ) is the fractional polarization of light incident on the Moon, and Pout(λ) is the
polarization of the reflected Earthshine.
Following Bazzon et al. (2013), we compute ϵ using the lunar albedo at the observation
site, as a function of wavelength. The polarization efficiency log ϵ depends on both the
lunar albedo at 603 nm (log a603) and the wavelength (log λ), and is given by:

log ϵ(λ, a603) = −0.61 log a603 − 0.291 log λ [µm] − 0.955. (6.3)

As in Sterzik et al. (2019) and Sterzik et al. (2020), we adopted this method and used
their a603 values, extracted by comparison with the lunar albedo maps of Velikodsky et al.
(2011).
For details on data acquisition and reduction, including preprocessing, flat-fielding, and
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background subtraction, we refer to Sterzik et al. (2019). In particular, flat-fielding is
essential for Earthshine spectropolarimetry since the sky background must be interpolated
on chip 2 and linearly extrapolated to chip 1 to be subtracted from the Earthshine sig-
nal. This step relies on the assumption that Moonshine intensity decreases linearly with
distance from the terminator. However, in practice, we observed an anti-correlation be-
tween intensity and fractional polarization along the slit. To address this, we developed
a new procedure to average the five slitlets on chip 1 and improve the quality of the re-
sulting polarization spectra. To do this, we searched for the best functional form to fit
the spectra (and each slitlet), excluding the absorption lines. Looking at the spectra in
log(P )–log(λ) space, we determined that the spectra follow two power laws with a kink
shifting its wavelength for each epoch. We then derived the following functional form:

P (λ) = P1

(
λ

λ1

)γ

· (1 − s(λ)) + P2

(
λ

λ2

)β

· s(λ), (6.4)

where γ and β are the fitted slopes in the VIS and NIR, λ is the wavelength, λ1 = 600 nm
and λ2 = 800 nm are fixed to facilitate the fit and P1 and P2 are left as free parameters.
The s(λ) function is a sigmoid defined as

s(λ) = 1
1 + e−k(λ−λ0) , (6.5)

with λ0 representing the position of the kink and k representing the strength of the transi-
tion. Both λ0 and k are also free parameters of the fit. These two power laws weighted by
a sigmoid function ensure the fitting of all spectra, together with extracting their spectral
slopes.
The improved slitlet-averaging procedure follows these steps:

1. We cut the spectra to the 450-900 nm range for the 300V grism and 680–920 nm for
the 600I grism. Each slitlet is then corrected for lunar depolarization, as explained
below.

2. Slitlets showing unphysical behavior, such as negative polarization values, extreme
red-end increases, or spurious bumps, are removed. This is particularly necessary
for the H and G epochs, which correspond to the smallest and largest phase angles,
respectively (see Table 6.9), and are the most problematic.

3. We calculated the standard deviation across the remaining slitlets (typically five),
averaged over all wavelengths. If the standard deviation was below 1%, the data are
deemed high quality, and we computed the average over all slitlets. This is the case
for most spectra at phase angles smaller than quadrature (e.g., epochs E, I, J, K).

4. For the remaining spectra, we selected the slitlet with the lowest noise, computed
as the random mean squared error (RMSE) compared to the fit, as reference (best
slitlet). We then averaged only those slitlets that lie within 1σ of the best slitlet
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in VIS slope (γ), NIR slope (β), and average polarization distance. This excluded
slitlets with inconsistent spectral shapes or anomalous polarization levels, which may
indicate contamination. Typically, the last slitlet (closest to the limb) was found to
be the least noisy and it was assumed as the best slitlet. At high phase angles (e.g.,
G epochs), this process often resulted in only the fifth slitlet being retained.

Earthshine observations become increasingly challenging with larger phase angles, partic-
ularly beyond quadrature, as the Moon’s dayside terminator approaches the observational
field, increasing Moonshine contamination. Observations above α ≈ 130◦–140◦ from the
ground become nearly unfeasible. However, these geometries are crucial to studying the
ocean glint feature. Our catalog includes three such epochs (G.7, G.8, and G.9, all with
α > 135◦). Due to their particularly high noise and uncertainty, we treated them sepa-
rately: for G.7, only slitlet 4 was used, while for G.8 and G.9, we averaged slitlets 3, 4,
and 5.
A similar issue arises at very small phase angles (α < 40◦), when the thin crescent Moon
is visible only briefly at twilight, resulting in short observing windows and high airmass.
These conditions are also scientifically valuable, as they reveal the cloudbow feature, which
provides key information on cloud microphysics. Epoch H.1, our lowest phase angle spec-
trum (α = 37◦), was carefully analyzed. We averaged slitlets 2 and 5 to obtain a consistent
result from components with different spectral slopes.
In contrast, we excluded the J.1 and K.1 epochs from our updated catalog. These spec-
tra, previously identified as uncertain in Sterzik et al. (2020), were acquired at very low
phase angles (33◦ and 35◦, respectively) during brief twilight windows, which prevented
the completion of all 16 retarder positions. Only two positions were recorded, resulting in
significant systematic errors that rendered our slitlet averaging procedure inapplicable.

6.3 3D radiative transfer simulations
For all observational epochs listed in Table 6.9, we performed 3D radiative transfer sim-
ulations using surface and atmospheric conditions corresponding precisely to the time of
observation. To achieve this, we employed the Monte Carlo code MYSTIC (Monte Carlo
code for the phYsically correct Tracing of photons in Cloudy atmospheres; (Mayer, 2009)),
which is part of the libRadtran software package (Mayer & Kylling, 2005a; Emde et al.,
2016). MYSTIC supports 3D Earth-like atmospheres, includes full Stokes vector calcula-
tions to account for polarization, and allows for 2D inhomogeneous surface representations.
A modeling setup for using MYSTIC to simulate Earthshine observations was first intro-
duced by Emde et al. (2017). However, it has been substantially improved in a previous
paper of this series (Roccetti et al., 2025a), which presented a more sophisticated frame-
work for simulating both cloud and surface properties. In particular, cloud modeling now
incorporates a 3D Cloud Generator algorithm that captures sub-grid cloud variability and
inhomogeneities, using input from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ReAnalysis fifth-generation product (ERA5) cloud data.
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Regarding surface albedo treatment, oceans are modeled as specular reflectors using a
BPDF approach for reflected light and polarized light. Land surfaces are treated as Lam-
bertian reflectors with albedo values varying with wavelength, based on the hyperspectral
albedo maps presented in Roccetti et al. (2024). These maps combine MODIS satellite
data with a comprehensive set of in-situ and laboratory spectra of various soils and vegeta-
tion types, enabling wavelength-dependent albedo modeling, which is crucial for studying
features such as the VRE.
In Roccetti et al. (2025a), we provide a detailed analysis of how the improved treatments
of clouds and surface properties affect the spectra and phase curves of an ocean and an
Earth-like exoplanet. In Roccetti et al. (2025b), we evaluate how these more realistic and
detailed models compare to simulations that use spatially averaged homogeneous condi-
tions and simplified representations of cloud and surface features.
For the simulations, the ERA5 cloud properties are rounded to the nearest full hour relative
to the central time of each observation. The Sun and Moon coordinates used to replicate
the viewing geometry are taken at the midpoint between the start and end times of each
observational epoch listed in Sterzik et al. (2019) and Sterzik et al. (2020), based on data
from the Earth-Moon viewer 1.

6.4 Comparison between observations and simulations
In Appendix 6.9, we present the comparison between the full catalog of Earthshine ob-
servations and their corresponding simulations. In addition to the spectra, we simulated
an image of Earth for the same time and viewing geometry as the observation, using the
actual cloud properties from ERA5 at the time of the observations, the Sun–Earth–Moon
orientation, and wavelength-dependent albedo maps from HAMSTER on the specific ob-
servation date. The simulation of these images follows the method described in Roccetti
et al. (2025a). In addition to the image, we present the simulated reflected light spectra
in units of reflectance, defined as Ag · g(α), as well as a comparison between the simulated
and observed polarized spectra, expressed in percent polarization. All comparisons are
displayed in Figs. 6.6 to 6.10. The simulations span the 400–1000 nm spectral range and
are adjusted in resolution to match the specific setup used during each observation. The
axes for reflectance and polarization are scaled to match the extrema of observations and
simulations independently, in order to enhance the visual clarity of the comparisons.
Each observational spectrum is color-coded to indicate its viewing geometry. Spectra
shown in turquoise correspond to what we define as the Pacific configuration, as described
in Sterzik et al. (2019), which represents Earthshine observations taken at the beginning
of the night from Paranal with the Pacific Ocean as the dominating scene and very little
land visible, thus resembling the appearance of an ocean planet. Spectra shown in red
correspond to the Atlantic configuration, which includes a mixture of land and ocean, with
parts of the Atlantic Ocean, Africa, Europe, South America, or the Middle East in view.

1https://www.fourmilab.ch/earthview/

https://www.fourmilab.ch/earthview/
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Figure 6.1: Selected examples of observed polarized Earthshine spectra, along with corre-
sponding simulations of reflected and polarized light, as presented in Appendix 6.10. For
each spectrum, we include a simulated observation image, fit the power-law slopes γ, and
report the RMSE between simulations and observations.

For each epoch, we also fit a double power-law function as described in Section 6.2, re-
porting the power-law exponent in the visible range (400–700 nm) for both the simulated
reflected and polarized light, and for the observed polarized spectra taken with the 300V
grism, as the 600I grism covers only wavelengths longer than 680 nm. Additionally, we cal-
culate the RMSE of each observed and simulated polarization spectrum within the spectral
range where data is available to assess how well the simulations reproduce the observations.
In Fig. 6.1, we present a representative selection of the catalog epochs to illustrate our sam-
ple. Throughout the paper, spectra shown in red correspond to an Atlantic scenario, while
those in cyan correspond to a Pacific scenario. In the top left panel, we show epoch E.6,
which is a Pacific scenario with nearly no land in view (only a small portion of Antarctica),
observed at a phase angle α = 76◦ with grism 300V, covering the 450–900 nm range (note
that the spectral edges are cut; see Section 6.2). This epoch shows very strong agreement
with the simulation, as is typical for Pacific (ocean planet) configurations at phase angles
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smaller than quadrature. In the top right panel, we show an Atlantic (mixed) scenario
also at a phase angle smaller than quadrature, observed with grism 600I. The 600I grism
does not include the shorter visible wavelengths, where Rayleigh scattering dominates, and
has a higher spectral resolution than the 300V; thus, the simulation was adjusted in its
spectral resolution. In the second row, we present two of the most challenging spectra to
model: epoch G.6, with a very high phase angle, and epoch H.1, with the smallest phase
angle in our sample. Both spectra are noisier than previous examples. This is due to
increased contamination from Moonshine at phase angles beyond quadrature and to the
challenging lunar position at small phase angles. Despite these challenges, both spectra
show good agreement between observations and simulations in polarization, as confirmed
by the RMSE and slope comparisons.
In the final row, we present epochs A.3 and B.4, which were previously discussed in Sterzik
et al. (2012). These spectra, and all spectra from epochs A, B, and C, exhibit significantly
flatter spectral slopes compared to observations obtained in later years. Even though we
cannot reproduce the spectral slopes of A.1 to C.2, we achieve a clear improvement in
matching the observations compared to earlier attempts using the models of Stam (2008)
and Emde et al. (2017). This improvement arises from two key factors: the updated slitlet-
averaging procedure, particularly important for phase angles beyond quadrature, and the
improved modeling of cloud and surface properties as introduced in Roccetti et al. (2025a).
Previous modeling efforts by Emde et al. (2017) and Gordon et al. (2023) attempted to
simulate Earthshine polarization spectra. The former used MYSTIC as we do, while the
latter used the VSTAR and DAP models. Both focused on a limited number of observa-
tions: Emde et al. (2017) examined epochs A.3 and B.4 from Sterzik et al. (2012), while
Gordon et al. (2023) analyzed a single spectrum from Miles-Páez et al. (2014) extending
into the NIR up to 2500 nm. In both cases, the models failed to match the observed
slope in visible polarization. Moreover, Gordon et al. (2023) could not reproduce the po-
larization continuum, largely due to the treatment of the ocean as a dark Lambertian
surface. However, the importance of the ocean glint effect had already been demonstrated
by Emde et al. (2017), who showed its strong impact in disk-integrated Earthshine polar-
ization observations at large phase angles. In contrast, our simulations achieve an excellent
match for all spectra from epochs E.1 to K.3, something never accomplished before. High
phase angle observations, previously considered particularly difficult due to the influence
of ocean glint, now show strong agreement with simulations. This success is largely due
to the implementation of the 3D Cloud Generator developed by Roccetti et al. (2025a),
which captures cloud subgrid variability and heterogeneity beyond the already detailed
ERA5 cloud data. For example, at a phase angle of α = 120◦, the inclusion of the 3D
Cloud Generator significantly impacts the polarization spectral slope and enhances the
continuum, which allows us to match the observed Earthshine spectra.
We are also now able to accurately simulate spectra from Atlantic (mixed) viewing geome-
tries, which had not been successfully reproduced in the past. This is made possible by the
combination of a BPDF for oceans and a Lambertian model for land surfaces, as well as by
using wavelength-dependent albedo maps from HAMSTER (Roccetti et al., 2024). These
maps account for realistic mixtures of soil and vegetation types and result in a significantly
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lower modeled albedo for forested and desert regions compared to those used in Gordon
et al. (2023) and Kofman et al. (2024). As shown in Roccetti et al. (2025a), this refinement
is essential for matching the observed continuum.
Regarding the earlier observational epochs from A.1 to C.2, which we are unable to match,
we explored several possible explanations. Notably, the B epochs, despite correspond-
ing to Pacific (ocean) configurations, appear much flatter than later Pacific observations
taken at similar phase angles (e.g., G.1 to G.4). A similar pattern is seen for the Atlantic
(mixed) configurations in the A and C epochs, which differ significantly in both slope and
polarization level from the F epochs at a similar phase angle. While these observations
followed the same acquisition and reduction techniques, one notable difference is the use
of screen flats for calibration instead of sky flats. However, Sterzik et al. (2019) found
no significant difference when comparing screen and sky flat calibrations in the E epochs.
Additionally, we are not aware of any major changes in the FORS2 instrument or its cali-
bration procedures between 2011 and the following years. For an alternative explanation,
we investigated whether any global atmospheric event could have affected the scattering
properties of Earth’s atmosphere during this period, but we found no evidence of major
volcanic eruptions. We also checked whether this flattening of the spectra could depend on
the sky condition over Paranal. A strong El Niño event occurred in 2011, which is known
to influence observing conditions over Paranal, particularly in terms of turbulence, sunset
temperature anomalies, and precipitable water vapor (Seidel et al., 2023). El Niño’s effects
can persist over time, potentially affecting observations up to epoch C.2 in October 2012.
While 2019 was also an El Niño year, its impact was weaker, and all observations from
that year were made at small to moderate phase angles. Within epochs A.1 to C.2, a trend
toward flatter spectra with increasing phase angle is also evident. This is consistent with
independent observations obtained in 2011 by Takahashi et al. (2013) and Bazzon et al.
(2013), from Japan and Switzerland, respectively, who also reported a flattening of the
spectra at large phase angles, as already discussed in Sterzik et al. (2019).
Because we have no definitive explanation for the behavior of these early spectra and find
them problematic, we show them in the subsequent statistical analysis (Section 6.5) for
completeness, but exclude them from the actual calculations. In the next plots, they are
displayed with transparent colors to clearly distinguish them from the rest of the sample
used to determine disk-integrated properties of Earth.

6.5 Population studies
Building on our extensive catalog of Earthshine observations and corresponding simula-
tions in both reflectance and polarization, we now explore whether significant correlations
can be identified between Earth’s cloud and surface properties and the observed and sim-
ulated spectral features. To this end, we focus exclusively on the spectral continuum of
the observations and test several diagnostic metrics: the spectral slope in the visible (VIS)
range, a broadband color difference between the B and R filters (as defined by the typical
Johnson filters), and the continuum value at a single reference wavelength. For the B filter
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we use the spectral range from 435 to 455 nm, while for the R filter from 645 to 665 nm.
Furthermore, to evaluate the detectability of the VRE, we compute two vegetation indices:
the Normalized Difference Vegetation Index (NDVI) (Tinetti et al., 2006b) and the Po-
larized Difference Vegetation Index (PDVI) (Sterzik et al., 2019). In all subsequent plots,
simulated data points are marked with stars, while observed polarization measurements
are shown as dots. The different Earth viewing geometries are color-coded: Pacific (ocean-
dominated) configurations in turquoise, and Atlantic (mixed land-ocean) configurations in
red.
Error bars on the observational data are omitted from the figures, as they are smaller than
the size of the plotted data points. The uncertainty associated with individual slitlets
accounts for both measurement errors and the contribution from lunar depolarization, and
is propagated through the slitlet averaging procedure. Errors for each spectrum and cal-
culated quantity are provided in the public database (see Sec. 6.8). For the simulations,
error bars are similarly small, within the thickness of the plotted points. A more detailed
discussion of the simulation uncertainties is available in Roccetti et al. (2025a).
Although a comparison between observed and simulated reflectance spectra would be in-
formative, well-calibrated reflectance data are not available for this Earthshine catalog.
Nevertheless, as discussed in Roccetti et al. (2025a,b), polarization spectra and phase
curves are more sensitive to surface and cloud properties. For example, the implemen-
tation of the 3D Cloud Generator (3D CG) affects the spectral slope in polarization but
causes minimal changes in reflectance. In reflectance, the main effect is a shift in the
continuum level, which requires high-precision calibration, unavailable in this dataset.

6.5.1 Phase curves to distinguish between an ocean and mixed
surface scenario

In Fig. 6.2, we present the phase curves from both our observations and simulations as
a function of different metrics: the spectral slope γ in the visible (first row), the B–R
broadband filter difference (second row), and the reflectance and polarization at single
wavelengths (500 and 700 nm; third and fourth rows, respectively). Comparing the diag-
nostic power of these approaches helps to identify the most effective observational strategies
for retrieving information about different surface viewing geometries of the Earth seen as
an exoplanet and to understand the sensitivity of different metrics to the various surface
scenarios.
Analyzing the spectral slope in the VIS reflectance, we find that the Atlantic (mixed sur-
face) configurations, indicated by red stars, tend to cluster with shallower slopes compared
to the Pacific (ocean-dominated) geometries. This trend holds until phase angles exceed
130◦, where the reflectance spectra flatten due to the strong contribution of ocean glint.
A clear distinction between ocean and mixed surface compositions is evident in the spec-
tral slopes at phase angles smaller than quadrature. Beyond quadrature, the differences
become less significant. It is important to note that we simulate 53 specific geometries
corresponding to the observations, and Earth does not perfectly represent a pure ocean or
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land surface planet. In particular, for the Atlantic case, the land–ocean fraction plays a
key role in shaping the spectral slope, especially depending on whether the sunglint falls
over ocean or land.
A similar but opposite trend appears in polarization: Atlantic (mixed) configurations dis-
play steeper polarization slopes than Pacific (ocean) ones at comparable phase angles. This
difference is more pronounced at phase angles below quadrature than in reflectance. At
larger phase angles over the Pacific, the ocean glint substantially enhances polarization,
resulting in a flatter slope. In this polarization panel (top right in Fig. 6.2), both the
simulations (stars) and Earthshine observations (dots) are included, with observed slopes
broadly matching the simulated values. As explained in Section 6.4, we consistently ex-
clude the epochs from A.1 to C.2 in subsequent analyses, and these epochs are shown in
opaque colors.
In the second row of Fig. 6.2, we examine the sensitivity of the B-R broadband index
to distinguish between Pacific and Atlantic configurations. In reflectance, the B–R value
tends to be smaller for Atlantic cases relative to Pacific ones at the same phase angle,
though the clustering is less distinct than for the spectral slope. A similar trend is ob-
served in polarization, where Atlantic epochs exhibit larger B–R values than Pacific ones,
though again without clear separation between the two groups.
The third and fourth rows show the phase curves of reflectance and polarization at sin-
gle wavelengths: 500 and 700 nm. For these plots, we overlay the set of reference phase
curves for an ocean (Pacific) and a mixed (Atlantic) surface, as presented in Roccetti et al.
(2025a,b), corresponding to the 3D CG EXP-RAN x3 scenario. While Earth never fully
resembles a pure ocean planet and its surface composition varies with viewing geometry,
these models guide interpretation and highlight existing trends. The shaded regions indi-
cate the 1σ spread due to cloud variability, calculated from averaging phase curves with
different cloud fields from different days of the year (Roccetti et al., 2025a). Comparing
the simulations for each Earthshine epoch (stars) with the model phase curves allows us
to assess how representative these models are across the Earthshine catalog.
All reflectance simulations fall within the 1σ cloud variability range, while some polar-
ization simulations extend beyond it. This suggests that while disk-integrated reflectance
is relatively well constrained, polarization is more complex to model, but also richer in
diagnostic information about surface, atmospheric, and cloud characteristics.
Reflectance phase curves at 500 and 700 nm show similar behavior, with higher values at
500 nm due to Rayleigh scattering. However, the differences between the two model phase
curves fall within the cloud variability, making it difficult to distinguish surface properties
from reflectance at a single wavelength in the VIS. At 500 nm in polarization, the phase
curves for the ocean and mixed cases are also similar and within the cloud variability
spread. Observed and simulated Atlantic epochs are slightly below the reference model
predictions, occasionally falling outside the 1σ range. However, at 700 nm, beyond the
Rayleigh scattering regime, we observe a pronounced separation between the ocean and
mixed model phase curves, far exceeding the 1σ cloud variability. This diagnostic power
was previously highlighted in Roccetti et al. (2025a). Overlaying the individual simulations
and observations, we find broad agreement with this trend, reinforcing the value of polariza-
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Figure 6.2: Reflectance simulations (first column) and polarized observations and simu-
lations (second column) from our Earthshine catalog. We examine different diagnostic
metrics: the spectral slope in the visible range (first row), the B–R broadband difference
(second row), and the continuum reflectance or polarization at single wavelengths (λ = 500
nm and 700 nm; third and fourth rows, respectively), to assess whether we can reliably
distinguish between Pacific (ocean-dominated) and Atlantic (mixed land–ocean) viewing
geometries. The simulated values at single wavelengths in both reflected and polarized
light are derived from the reference phase curves presented in Roccetti et al. (2025a), with
the shaded regions indicating the 1σ cloud variability spread.
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tion in distinguishing surface types. In particular, the presence of ocean glint significantly
increases polarization when the sunglint is over water, while it contributes little when the
glint is hidden over land. Some intermediate epochs fall between the two model curves,
representing the scenes not fully described by either a pure ocean or a glint-obscured mixed
surface. This behavior is consistent with earlier findings, including preliminary simulations
of ocean planets with horizontally inhomogeneous clouds with varying cloud fractions by
Trees & Stam (2019), as well as indications of ocean presence in Earthshine polarization
observations in the NIR reported by Takahashi et al. (2021).

6.5.2 Cloud properties
After evaluating the sensitivity to various surface conditions, we now focus on cloud prop-
erties. Specifically, we examine the averaged cloud optical thickness τ and cloud cover
(cc) for the different viewing geometries of our Earthshine catalog. The true values of τ
and cc are derived from the ERA5 reanalysis product for the cloud field used in the sim-
ulations (the closest in time), as described in Roccetti et al. (2025a), and are reported in
Table 6.9. These values are calculated only for the illuminated side of the planet, as seen
from the Moon in the corresponding geometry. In Fig. 6.3, we explore the correlation
between cloud optical thickness and both the VIS spectral slope (γ from Eq. 6.4) and
the B-R broadband differences in both reflectance and polarization. We also tested the
single wavelength cases, as in 6.5.1, but we did not find any significant trends. To eval-
uate whether any linear correlation exists between the simulations and/or observations,
we use the Pearson correlation coefficient (R-value), which is reported in each panel. For
reflectance, we report only the R-value for simulations (Rsim), while for polarization, the
Pearson correlation coefficient is calculated for both simulations and observations (Robs).
From the R-values, we conclude that there is no significant correlation between either the
reflectance slope or the B-R difference and the cloud optical thickness. However, a mod-
erate linear correlation is observed for the polarization slope, which becomes moderately
strong in the case of the B-R difference. This can be understood physically as increasing
cloud optical thickness enhances multiple scattering within the cloud layer, which generally
reduces the degree of polarization. At the same time, the relative contribution of Rayleigh
scattering (which has strong wavelength dependence) decreases compared to Mie scattering
(which varies weakly with wavelength in this spectral range), resulting in a flatter polar-
ization slope. This suggests that a steeper VIS slope or a larger broadband B-R difference
in polarization corresponds to a smaller cloud optical thickness in the corresponding view-
ing geometry. Additionally, we observe a clustering of the Atlantic (mixed) epochs in the
lower optical thickness range, consistent with τ predictions for a mixture of land and ocean
sceneries, as previously reported by the statistical analysis of ERA5 cloud fields in Roccetti
et al. (2025a).
Next, we examine the same trends, but with cloud cover instead of optical thickness (Fig.
6.4). Cloud cover values are calculated for the illuminated viewing geometry of each Earth-
shine epoch and range from 55% to more than 69%, as obtained from the ERA5 cloud fields.
With cloud cover, we find a weak correlation with the polarization slope. Instead, we see a



180 6. Catalog of Earthshine observations

Figure 6.3: Correlations between the cloud optical thickness and the VIS spectral slopes
(first row) and the B-R broadband filter differences (second row) for reflectance simulations
(first column) and polarized simulations and observations (second column). We provide
the Pearson correlation coefficient (R) values and the linear fits for the simulations (black)
and observations (gray).

moderate linear correlation with the polarization B-R differences, with an R-value around
-0.5 for both simulations and observations. This negative correlation indicates that a larger
cloud cover is associated with a flatter spectrum from the B to the R filter. For cloud cover,
we observe larger R-values in reflectance, suggesting that this is a better diagnostic metric
for assessing cloud cover, particularly through the B-R coefficient. In contrast, the best
diagnostic metric for optical thickness was found to be the VIS spectral slope in polariza-
tion. In reflectance, we observe a moderate anticorrelation between the spectral slope and
cloud cover, while the B-R difference exhibits a moderately strong linear correlation with
an R-value of 0.67.
Thus, we find that polarization is more sensitive to the cloud optical thickness, while re-
flectance is more sensitive to cloud cover. Furthermore, the spectral slope provides more
diagnostic information on optical thickness in polarization, whereas the B-R difference
contains more sensitivity in reflectance. Moreover, it is important to note that assessing
cloud properties is challenging due to the degeneracy of various parameters such as optical
thickness, cloud cover, cloud deck height, and cloud droplet size. Thus, these moderately
strong linear correlations with optical thickness and cloud cover are highly relevant and
may pave the way for novel methods of discriminating cloud properties on exoplanets. Our
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Figure 6.4: Correlations between the cloud cover and the VIS spectral slopes (first row)
and the B-R broadband filter differences (second row) for reflectance simulations (first
column) and polarized simulations and observations (second column). We provide the
Pearson correlation coefficient (R) values and the linear fits for the simulations (black) and
observations (gray).

findings suggest that combining reflected and polarized light could be a promising avenue
for such investigations.

6.5.3 Vegetation red edge
As a final feature, we examine the detection of the VRE in both the simulated reflectance
spectra and the observed and simulated spectra in polarization. The VRE is characterized
by an increase in reflectivity (and a decrease in polarization) between 700 and 800 nm due
to chlorophyll. In reflectance, the VRE is quantified using the NDVI, defined as

NDVI = NIR − R
NIR + R , (6.6)

where the NDVI is calculated from the continuum in the NIR range (748–758 nm and
769-778 nm in order to exclude the O2-A band feature) and the red spectral range (R)
between 675 and 685 nm, normalized by their sum. In polarization, the VRE is observed
as a decrease in the spectral continuum in the same wavelength range. We calculate the
(PDVI) as

PDVI = NIR − R. (6.7)
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Following Sterzik et al. (2019), we apply a normalization procedure to estimate the PDVI
from both observed and simulated polarization spectra. Specifically, we fit a fourth-order
polynomial to the spectra in the 530–890 nm range, excluding regions affected by O2 and
H2O absorption features. We then subtract this fit from the original spectra. Unlike the
NDVI, the PDVI is not normalized by the term NIR + R, in order to avoid unphysical be-
havior when the denominator approaches zero. The resulting PDVI values are consistent
with those reported in Sterzik et al. (2019).
The fractional vegetation coverage for each viewing geometry is calculated using the
MODIS surface type maps. We consider all pixels containing grass or vegetation per-
centages and sum their vegetation fractions, accounting also for cloudy pixels. The results
are reported in Table 6.9, along with the percentage of land fraction, derived using a land-
sea mask to distinguish between pixels over the ocean and those over land. Additionally,
we account for the real dimensions of the pixels and correct for their projected area in our
vegetation and land fraction estimations. For each pixel, we first compute its physical area
by converting its latitude and longitude span into the area of the corresponding spherical
quadrangle on Earth’s surface. We then determine whether the pixel is illuminated by
the Sun by calculating the dot product between the unit vector pointing toward the Sun
and the surface normal vector of the pixel. If this dot product is negative, the pixel lies
in shadow and is considered not illuminated. For the illuminated pixels, we project their
area in the direction of the Moon by scaling the surface area by the dot product between
the pixel’s normal vector and the unit vector pointing toward the Moon. This projection
accounts for viewing geometry, giving greater weight to pixels directly facing the Moon
and diminishing the contribution of those observed at a slant angle.
In Fig. 6.5, we show the correlations between the NDVI (left panel) and PDVI (right panel)
as a function of the vegetation fraction. We clearly observe that the Atlantic (mixed) ge-
ometry epochs cluster at larger vegetation fractions, while the Pacific (ocean) points form
a compact cluster at very small vegetation fractions. Some Pacific epochs appear in tran-
sition between a nearly pure ocean configuration and one with a larger fraction of land
and vegetation coverage. Calculating the Pearson correlation coefficients, we find a strong
linear correlation between the NDVI and vegetation fraction, indicating a strong detection
of the VRE in the reflectance spectra of Earth as an exoplanet. We obtain a maximum
NDVI of around 0.07, consistent with previous studies such as Tinetti et al. (2006a). For
reference, the NDVI values for a satellite image over a fully forested area are typically
around 0.3, so a value of 0.07 for a vegetation cover fraction of 25% is in line with theo-
retical expectations.
For the PDVI, we also observe a moderately strong inverse correlation with the vegetation
fraction, as expected due to the decrease in polarization slope. Thus, while polarization
spectra are sensitive to the VRE, this feature is more prominent in reflectance.
Furthermore, we calculate the Pearson coefficients for the NDVI (Rsim = 0.88) and PDVI
(Robs = -0.67 and Rsim = -0.63) as a function of land fraction. This plot is not shown
in the paper, but it is very similar to the vegetation fraction case (Fig. 6.5), and it dis-
plays slightly stronger correlations with the land fraction. This could be because the land
fraction provides a more accurate reflection of the surface composition, whereas the vege-
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Figure 6.5: Correlation between the detection of the VRE feature and the vegetation
fraction of the viewing geometry. The left panel shows the correlation with the NDVI, while
the right panel shows the correlation with the PDVI. The Pearson correlation coefficients
(R) and the linear fits for both simulations (black) and observations (gray) are provided.

tation coverage is based on simplistic assumptions about which pixels should be considered
vegetated. Additionally, the MODIS surface type maps represent yearly averages, which
may not accurately capture seasonal variations in vegetation, especially over savannas and
mixed land cover regions.

6.6 Discussion
Through this catalog of Earthshine polarization observations, spanning phase angles from
approximately 37◦ to 136◦, we assess several key indicators of Earth’s habitability as it
would appear to a distant observer. Polarimetric Earthshine data reveal a wealth of in-
formation on both surface and atmospheric properties, crucial components in evaluating
planetary habitability.
First, using observations focused on the Pacific (ocean-dominated) geometry, Sterzik et al.
(2020) showed that the polarization cloudbow signature enables the retrieval of microphys-
ical cloud properties. Specifically, the data allowed us to assess that Earth’s clouds are
composed of liquid water droplets with an effective radius of approximately 6 µm. This
finding marked the first time such cloud microphysical properties were inferred from disk-
integrated spectra, highlighting the unique diagnostic power of polarization.
Additionally, in this work, we demonstrate sensitivity to the ocean glint signature at large
phase angles in the polarization continuum, evidenced by increased polarization levels in
spectra that include specular reflection. The successful detection of ocean glint confirms
the presence of surface liquid water and, together with the atmospheric clouds, supports
the existence of an active hydrological cycle. Moreover, by analyzing both the spectral and
temporal variability in the polarization VIS slope, building on the earlier work by Sterzik
et al. (2019), we assess the coexistence of ocean and land surfaces. This further reinforces
the idea that Earth’s polarized signal encodes rich information about surface composition
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and heterogeneity.
When combined with potential detections of atmospheric biosignature gases such as O2,
CH4, and H2O (though outside the scope of this paper), spectropolarimetry emerges as a
powerful tool for assessing both planetary habitability and possible evidence of an active
biosphere on the planet.
The diagnostic metrics introduced in this paper must, however, be interpreted in the con-
text of degeneracies that may arise in exoplanet studies. For instance, although the VIS
spectral slope shows sensitivity to surface composition, it is also influenced by cloud and
aerosol properties (e.g., Powell et al., 2019; Ohno & Kawashima, 2020), making its inter-
pretation non-trivial without prior knowledge of atmospheric conditions.
Nonetheless, our results reveal several spectral metrics with significant diagnostic power.
These insights are essential for shaping the scientific requirements of future telescopes and
instruments. For example, we find that broadband filters offer limited sensitivity to surface
features, though they remain useful for assessing cloud cover. In contrast, polarization, es-
pecially at single wavelengths beyond the Rayleigh scattering regime, proves to be uniquely
capable of distinguishing surface geometries, such as ocean-only versus mixed land-ocean
configurations. Such distinctions are not achievable through reflectance alone. This work
highlights the benefit of a complementary observational strategy that combines reflectance
and polarization measurements. This dual approach offers a more comprehensive charac-
terization of Earth-like planets and is likely to be valuable in future studies of habitable
exoplanets.

6.7 Conclusions
In this work, we have presented the first effort to simulate a large catalog of 53 Earthshine
polarization spectra, spanning a decade of observations from 2011 to 2020. The simulations
were conducted using the advanced Monte Carlo radiative transfer model MYSTIC, incor-
porating a state-of-the-art treatment of 3D cloud properties and wavelength-dependent
surface albedo maps. A physically consistent model for ocean specular reflection in both
reflectance and polarization was also included (Roccetti et al., 2025a). In parallel, we sig-
nificantly improved the quality of previously published Earthshine observations (Sterzik
et al., 2012, 2019, 2020). This was achieved by refining the data reduction and slitlet av-
eraging to reduce contamination from Moonshine and sky background, especially critical
for high phase angle observations.
With this improved observational dataset, we robustly validated our modeling framework,
demonstrating its ability to reproduce the polarization spectra of Earth as seen from afar.
This represents a more stringent validation than reflectance comparisons alone, given the
enhanced sensitivity of polarization to both surface and atmospheric properties, as further
discussed in this paper and in earlier work of our paper series (Roccetti et al., 2025a,b).
Our model successfully reproduces the observed spectral slopes, polarization levels, and
most of the absorption features, a substantial achievement considering the complexity in-
volved in modeling Earthshine polarization (Emde et al., 2017; Gordon et al., 2023). This
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success is primarily due to improved cloud representation, particularly through the 3D
CG developed in Roccetti et al. (2025a). Accounting for sub-grid cloud variability and
heterogeneity allows us to accurately simulate even the most challenging high phase angle
spectra, which are dominated by a complex interplay between ocean glint and overlying
3D cloud structure.
We also accurately reproduce the Atlantic (mixed surface) viewing geometry spectra,
thanks to the incorporation of HAMSTER wavelength-dependent albedo maps (Roccetti
et al., 2024). These maps avoid overestimating the reflectivity of vegetated and soil-covered
surfaces (Roccetti et al., 2025a), allowing us to match the continuum of the observations.
However, our simulations were unable to reproduce the first eight observed spectra (from
A.1 to C.2), which appear significantly flatter than later spectra acquired at similar phase
angles and geometries. We did not find a definitive explanation, although possible causes
include observational systematics or changes in the global atmospheric state, without clear
supporting evidence.
We then used both the simulated and observed polarization spectra to assess the diagnostic
potential of reflectance and polarization in probing surface viewing geometry, cloud prop-
erties, and the VRE. We evaluated the performance of various spectral metrics, including
the VIS spectral slope, broadband B–R color differences, and single-wavelength values.
Our main findings are:

• The VIS spectral slope in both reflectance and polarization effectively separates Pa-
cific (ocean-dominated) and Atlantic (mixed surface) epochs. Atlantic observations
show flatter slopes in reflectance and steeper slopes in polarization compared to the
Pacific ones. The B–R color index shows limited diagnostic power.

• Polarization at wavelengths beyond the Rayleigh scattering regime effectively distin-
guishes surface types, confirming model predictions (Roccetti et al., 2025a). This
result demonstrates the value of polarization for surface characterization in disk-
integrated exoplanet spectra.

• For the first time, we demonstrate that Earthshine polarization spectra are sensitive
to cloud properties. Specifically, the VIS polarization slope shows a moderately
strong correlation with cloud optical thickness, while the B–R reflectance index better
captures the cloud cover of the planet.

• We find a strong correlation between the NDVI and vegetation fraction, and a mod-
erately strong anti-correlation between the PDVI and vegetation fraction. These
results confirm the detectability of the VRE in disk-integrated spectra, especially in
reflectance.

In conclusion, our model is now capable of reproducing the majority of the 53 Earthshine
polarization spectra acquired with FORS2 at the VLT. This is a non-trivial accomplish-
ment, considering that polarization signals are strongly influenced by viewing geometry,
cloud and aerosol properties, surface composition, and solar illumination angle.
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These results establish a critical benchmark for future modeling approaches and obser-
vational diagnostics for rocky exoplanet characterization. In particular, our advanced
treatment of clouds and surfaces, introduced in Roccetti et al. (2025a), is the ground-
truth framework for simulating Earthshine observations and can inform other modeling
approaches for studying the Earth as an exoplanet. These results are instrumental in de-
veloping retrieval techniques for reflected light observations of rocky exoplanets, especially
in the context of next-generation observatories such as the ELT and the mission concept
HWO.

6.8 Data availability
The observational data and corresponding simulations are publicly available on GitHub2.
The same repository also includes a Jupyter Notebook containing all plotting routines used
to reproduce the figures in this work.
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188 6. Catalog of Earthshine observations

6.10 Appendix B: Catalog of observations and simu-
lations

Figure 6.6: Catalog of observations and simulations from epochs A.1 to E.1.
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Figure 6.7: Catalog of observations and simulations from epochs E.2 to F.7.
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Figure 6.8: Catalog of observations and simulations from epochs F.8 to H.2.
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Figure 6.9: Catalog of observations and simulations from epochs H.3 to J.2.
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Figure 6.10: Catalog of observations and simulations from epochs J.3 to K.3.



7
Summary and Future Perspectives

7.1 Historical importance
Since ancient times, humans have been captivated by understanding our place in the Uni-
verse and whether we are alone. Thanks to technological advancement and the current
development of the next generation of ground- and space-based telescopes, we will have
the possibility, in the coming decades, to start addressing one of the most profound scien-
tific questions: whether Earth is a truly unique planet or if other rocky exoplanets may
also harbor life. In this pursuit, Earth has long been recognized as a crucial benchmark
for evaluating the potential habitability of distant worlds (Sagan et al., 1993).
Earthshine, the faint glow visible on the darker portion of the visible Moon, had intrigued
observers since the Renaissance, when it was first correctly identified as sunlight reflected by
Earth. Galileo Galilei even invoked Earthshine to support the heliocentric model (Galilei,
1632). By the 20th century, the scientific value of Earthshine was being explored in two di-
rections: as a tool for studying Earth’s climate and albedo variability (Danjon, 1928), and
as a proxy for understanding how Earth might appear to a distant observer (Dubois, 1947).
This dual role laid the foundation for using Earthshine to study Earth’s disk-integrated
properties as an exoplanet, especially in preparation for future missions dedicated to exo-
planet characterization (Woolf et al., 2002). Over the years, Earthshine observations have
expanded in spectral coverage, phase angle range, and into the domain of polarization.
Yet, despite this progress, no comprehensive model has succeeded in reproducing the full
diversity of Earthshine spectra, particularly in polarization. Existing attempts often failed
to capture key spectral features, such as the continuum polarization level and spectral
slope (Emde et al., 2017; Gordon et al., 2023). This challenge marked the starting point
of the investigation presented in this thesis.
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7.2 Contribution of this work
The overarching question addressed in this thesis is how to develop a model capable of
simulating Earth as an exoplanet, of growing importance given the upcoming generation
of ground- and space-based telescopes, which will soon be able to observe rocky exoplanets
in reflected light. As outlined in Chapter 1, Earthshine observations provide a unique
opportunity to study Earth as a spatially unresolved exoplanet across different phase an-
gles, effectively mimicking how rocky exoplanets will be observed with instruments such
as ANDES and PCS at the ELT, or future missions like HWO. Importantly, Earthshine
polarization measurements are self-calibrated compared to intensity-only observations, of-
fering a benchmark for characterizing Earth-like planets.
In this thesis, I introduce novel modeling approaches for both the wavelength-dependent
surface albedo (Chapter 3) and the representation of 3D cloud fields, accounting for sub-
grid cloud variability and heterogeneity (Chapter 4). In doing so, I revisit and extend
questions raised nearly a century ago by Danjon (1928), who attributed the daily and
seasonal variability of Earthshine to a combination of cloud properties, atmospheric con-
ditions, and surface changes. These advancements were made possible by developing new
algorithms based on extensive observational datasets and reanalysis products of Earth’s
surface and cloud properties. These innovative approaches are integrated into a Monte
Carlo radiative transfer model capable of 3D simulations of Earth, including polarization.
This framework is then validated against a comprehensive catalog of Earthshine obser-
vations in polarization (Chapter 6). In addition to supporting exoplanet studies, these
improved surface and cloud modeling approaches could offer direct benefits for Earth Sys-
tem Modeling, enhancing simulations of Earth’s climate system.
This achievement has two significant implications. First, a validated ground-truth model
of Earth viewed as an exoplanet is essential for developing robust characterization strate-
gies for exoplanets. As discussed in Chapter 1, accurate forward models are crucial for
reliable atmospheric retrievals, particularly in the face of parameter degeneracies. This
is especially important for upcoming observations of small, rocky exoplanets in reflected
light, which are expected to exhibit greater diversity and surface heterogeneity than gas
giants, factors intimately connected to their habitability. Second, Earthshine observations
provide a unique source of disk-integrated data on Earth, which are typically inaccessi-
ble via satellite measurements. Using these observations to validate modeling approaches
advances exoplanet models and contributes to refining Earth system models (ESMs) by
incorporating more complete physical processes, helping to reduce uncertainties in climate
predictions. The development of wavelength-dependent surface albedo maps and a fast
3D cloud generator is of further relevance for remote sensing and for minimizing radiative
forcing biases associated with surface and cloud representations.
I can now address the central research questions of this thesis, as outlined in Chapter 1.

Q1: What is the threshold between overcomplexity and oversimplification in
modeling Earth as an exoplanet? To accurately reproduce disk-integrated Earthshine
polarization observations (Chapter 6), detailed surface and cloud modeling is essential.
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This includes capturing the wavelength dependence of surface albedo to account for ocean
glint features and their interaction with overlying clouds, as well as high-resolution rep-
resentations of 3D cloud structure and microphysical properties. However, such detailed
inputs are unattainable for exoplanets, highlighting that the complexity required to model
Earth as an exoplanet exceeds the current capabilities of exoplanet modeling and retrieval
frameworks. These findings should guide the exoplanet community toward developing
more advanced modeling tools incorporating spatial resolution, 3D cloud structures, and
sophisticated surface representations. In Chapter 5, I also investigate how increasing model
complexity, ranging from spatially homogeneous planets to detailed Earth scene-based sim-
ulations, significantly affects reflected light spectra and phase curves, especially at small
phase angles, and impacts polarization at larger phase angles. This emphasizes the limi-
tations of 1D and overly simplified models.

Q2: What insights can be gained from studying Earthshine observations? In
Chapter 6, I conduct a statistical analysis of a large sample of Earthshine polarization
observations collected over a decade, encompassing a wide range of atmospheric, cloud,
and surface conditions. I show that this dataset, comprising 53 spectra, can be used to
identify signs of an active biosphere on Earth. Specifically, it enables the retrieval of the
presence of liquid water clouds, the estimation of average cloud cover and optical thickness,
and even the detection of vegetation. Moreover, the analysis allows me to infer that
Earth’s surface consists of both land and ocean. This conclusion is further supported by
polarization measurements, as demonstrated in Chapter 5, where I show that polarization is
particularly sensitive to surface features, mainly due to the strong linear polarization signal
produced by the ocean glint. Chapter 5 also highlights that polarization is highly sensitive
to cloud properties, as evident from the cloudbow features. However, observing polarized
light from an exoplanet requires lower contrast than reflected light alone. Reaching lower
contrast in polarized light is more feasible thanks to reduced speckle noise. Therefore, a
complementary approach combining reflected and polarized light is likely the most effective,
as the addition of polarization significantly aids in resolving retrieval degeneracies and
distinguishing between different planetary characteristics.

Q3: Can this model validation with Earthshine observations also advance Earth
system models? To achieve the goals of this thesis, I developed a dataset of wavelength-
dependent surface albedo maps (Chapter 3), which are critical for interpreting reflected
light observations. Neglecting this wavelength dependence has recently been shown to
introduce significant biases in climate models, resulting in an average radiative forcing
error of 3.55 W m−2 (Braghiere et al., 2023). Similar issues arise with clouds: Chapter
4 shows that omitting the 3D cloud generator leads to an overestimation of the total
reflectance of the planet and an underestimation of its polarization. Clouds remain the
largest source of uncertainty in climate projections, making their accurate representation
and radiative impacts in models critically important. Thus, although the surface and cloud
modeling approaches developed here were primarily intended for astrophysical applications,
they hold significant potential for advancing Earth system modeling and remote sensing
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efforts.

In conclusion, this thesis presents the first modeling framework capable of reproducing
most Earthshine polarization observations. The surface albedo and cloud modeling tech-
niques developed herein should be extended to exoplanet simulations to ensure accurate
interpretation of reflected light data. Furthermore, these approaches offer substantial im-
provements for ESMs, particularly in reducing uncertainties in radiative forcing linked to
surface and cloud representations.

7.3 Future perspectives
An immediate application of this work lies in its extension to the field of Earth sciences.
In particular, HAMSTER could be integrated into climate models to evaluate the impact
of the wavelength-dependent component of surface albedo on the prediction of climatolog-
ical variables, similar to the approach adopted by Braghiere et al. (2023) using simplified
wavelength-dependent albedo maps. As a further step, HAMSTER may also prove valu-
able in Earth remote sensing applications. Using albedo values that correspond precisely to
the retrieval wavelength could reduce biases and improve atmospheric retrievals and abun-
dance estimates. Moreover, HAMSTER could be enhanced by incorporating a BRDF. This
extension would allow for modeling the directional reflectance properties of various surface
types, which is essential in Earth remote sensing applications. Additionally, as shown in
Chapter 3, HAMSTER can provide average spectral albedo values for specific surface types
(e.g., forests, deserts) over defined geographic regions. These averages can be combined
with precipitation and mean surface temperature maps to build an atlas of surface spectral
albedos. This atlas could then be integrated into general circulation models (GCMs) for
use in radiative transfer calculations.
While HAMSTER has already been validated against satellite observations, the 3D Cloud
Generator has yet to undergo full validation. High-resolution observations of clouds and
their top-of-atmosphere fluxes, such as those from MODIS or CALIPSO, could be used to
improve the algorithm. The newly launched ESA’s EarthCARE satellite offers unprece-
dented capability for assessing the 3D cloud structure and provides an even more promising
validation. Potentially improving the representation of clouds in radiative transfer models,
this work would provide significant insights into the cloud radiative effect.
Although applications in atmospheric physics are relatively straightforward, generalizing
these methods for exoplanet characterization presents a substantial challenge. We will
likely never have access to the exact surface properties, compositions, or detailed 3D cloud
structures of exoplanets, including their microphysical characteristics. Nevertheless, this
thesis has demonstrated the critical importance of including detailed modeling of surface
albedo and clouds. It is, therefore, essential to generalize these models to account for the
predicted diversity of physical and chemical conditions on rocky exoplanets.
All the abovementioned applications aim to extend these modeling approaches for both
Earth and exoplanet studies. However, conclusively demonstrating that polarization is an
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effective method for exoplanet characterization remains an open challenge. To address this,
I am leading two observational proposals with ESO’s VLT aimed at detecting polarized
light scattered by an exoplanet using FORS2. The data have already been collected and
are being analyzed. If successful, this would represent a first-time detection, though care-
ful attention must be given to potential sources of instrumental noise and contamination.
Concurrently, I lead an observational campaign to study Titan using CRIRES+ with spec-
tropolarimetry. This program will allow for the detection of trace gases from the ground
that would otherwise be obscured by telluric absorption and will serve as a test case for
high-resolution spectropolarimetry.
While this thesis focused on the spectral continuum in Earthshine, spectral lines in po-
larization also offer strong diagnostic potential, particularly for surface characterization,
as shown in Chapter 5. Although currently lacking observational data, high-resolution
Earthshine spectra in the NIR could open a promising research path. Combined with
the validated modeling framework developed here, such observations would support future
high-resolution reflected-light studies of rocky exoplanets (e.g., with ANDES), aiding in
retrieving surface and atmospheric properties and enhancing characterization when paired
with polarization data.
This thesis makes a strong case for polarimetry for future instruments such as PCS at the
ELT and HWO. Polarimetry offers a powerful advantage for exoplanet characterization,
especially at small angular separations. Polarimetric differential imaging significantly im-
proves sensitivity over intensity-only methods by suppressing speckle noise. Crucially, it
enables unambiguous detection of atmospheres through Rayleigh scattering and breaks the
radius–albedo degeneracy, a key limitation in reflected light studies. Polarimetry enhances
atmospheric retrievals by being more sensitive to features such as ocean glint, cloud prop-
erties, and spectral slopes. It also helps overcome telluric contamination in spectroscopy,
making it a vital tool for future exoplanet observations. In this thesis, I have shown that
polarimetry is key to overcoming the current frontiers of exoplanet observation and that
only through its lens can we detect the subtle glint of an ocean on the surface of a distant
world.
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