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Abstract

We study quantum corrections to the Einstein-Hilbert term in Type-IIB orientifolds
using string perturbation theory. We adopt two different approaches: one is genus-1
3-point amplitude and the other one is genus-3

2
2-point amplitude.

In first approach, we begin with revisiting the Heterotic genus-1 3-graviton ampli-
tude and derive a kinematic structure before coordinate integration that differs from
previous reports. We then extend the calculation to the Type-I string, including the
“pinched-off” contributions which are previously neglected. We find that even after
including these contributions, the resulting genus- 1 correction breaks the expected
gravitational kinematic structure, indicating that the string amplitude calculation
remains incomplete and requires further study. This involves assignment of picture
number on the surfaces, and a new technique ”vertical integration” should be con-
sidered to deal with the calculation of amplitudes. This procedure may introduce
potential new contributions. Unfortunately, the application of ”vertical integration”
is still under research. We have to leave this topic to our future study.

In second approach, using the concept of relevant modular transformations, we
determine the moduli spaces of all genus-3

2
Riemann surfaces, correcting an earlier

result about the fundamental domain. With this knowledge, it should in principle
be possible to derive genus-3

2
amplitude corrections.



Zusammenfassung

Wir untersuchen Quantenkorrekturen zum Einstein-Hilbert-Term in Type-IIB Ori-
entifolds unter Verwendung der String Störungsrechnung. Wir verfolgen dabei zwei
verschiedene Ansätze: zum einen die 3-Punkt Amplitude vom Genus-1 und zum
anderen die 2-Punkt Amplitude vom Genus-3

2
.

Im ersten Ansatz beginnen wir mit einer erneuten Betrachtung der Heterotic 3-
Graviton Amplitude vom Genus-1 und leiten eine kinematische Struktur vor der Ko-
ordinatenintegration ab, die sich von früheren Berichten unterscheidet. Anschließend
erweitern wir die Berechnung auf den Type-I String, einschließlich der zuvor ver-
nachlässigten ”pinched-off” Beiträge. Wir stellen fest, dass selbst nach Einbeziehung
dieser Beiträge die resultierende Korrektur der Genus-1 die erwartete gravitative
kinematische Struktur bricht, was darauf hindeutet, dass die Berechnung der String
Amplitude unvollständig bleibt und weiterer Untersuchungen bedarf. Dies beinhaltet
die Zuweisung von Bildnummern auf den Weltflächen, und es sollte eine neue Tech-
nik, die ”vertikale Integration”, in Betracht gezogen werden, um die Berechnung der
Amplituden zu bewältigen. Dieses Verfahren kann potenzielle neue Beiträge einbrin-
gen. Leider befindet sich die Anwendung der ”vertikale Integration” noch in der
Forschung. Wir müssen dieses Thema für unsere zukünftige Studie zurückstellen.

Im zweiten Ansatz bestimmen wir unter Verwendung des Konzepts relevanter
modularer Transformationen die Moduli-Räume aller Riemannschen Flächen vom
Genus-3

2
und korrigieren damit ein früheres Ergebnis über die fundamentale Domäne.

Mit diesem Wissen sollte es grundsätzlich möglich sein, Amplitudenkorrekturen der
Genus-3

2
abzuleiten.
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Chapter 1

Introduction

We can think of String Theory as the extension of Quantum Field Theory, which
means that it is the quantum theory of extended dynamical objects (strings/branes).
With the help of the tools and techniques from 2 dimensional conformal field theory
and only a few fundamental assumptions we can arrive at a beautiful theory of unified
interactions. Since the spectrum of string theory contains a massless spin-2 particle
which can be naturally interpreted as the graviton, it leads to the possibility that
string theory could be a promising candidate of the theory of quantum gravity.

Lorentz invariance and anomaly free request that superstring theory should pos-
sess 10 dimensional space-time degrees of freedom. To make the theory phenomeno-
logically interesting one has to reduce the dimension of the target space down to 4
dimension, which brings up the concept of compactification, or in a more general
manner, appropriate choice of internal conformal field theory. Additional condition
of 4D space-time minimal supersymmetry leads to the discovery of the Calabi-Yau
compactification which can preserve 4D space-time N = 2 supersymmetry. Orien-
tifold with D-branes could further reduce half of the supercharges, thus preserves
N = 1 supersymmetry. However, compactification creates many moduli, which is
undesired by phenomenological and cosmological reasons. Then one further develops
the method of moduli stabilization which considers non-trivial background values for
various massless bosonic excitations. See e.g.[43][22][57] for reviews.

One most important contribution of string theory boils down to that it provides
the new methodology of discovering a new theory by studying the mathematical
structures and consistency conditions first, then refining them to get a more realistic
theory consistent with real world data, which reverses the traditional methodology
upside down.

String theorists are often confronted with strong criticism about not making rea-
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sonable/testable predictions. In order to make the theory consistent with real world
data, one would have to understand low energy effective theory in details, especially
the quantum corrections. Keeping this in mind, one would require a computable
method to deal with this. String perturbation theory plays a central role in the
computation of such corrections to the effective action of certain model, which could
greatly improve our understanding of the specific model. This is one of the primary
motivation of the study of string perturbation theory. In string perturbation theory,
one can already make use of all the experiences and developments from quantum
field theory of point particles and conformal field theory.

We know that Calabi-Yau compactification and orientifold are necessary for con-
structing a low energy effective theory with 4 dimensional target space and N = 1
supersymmetry, which is meaningful from a phenomenological perspective. N = 1
supersymmetry in 4D is phenomenologically important because it can possess chiral-
ity which is necessary for Standard Model; it can avoid large numbers of extra light
particles in conflict with experiments; it has a reasonable SUSY breaking scale to hide
superpartners; it can possibly match gauge coupling unification patterns observed in
Standard Model. CY compactification leads to Kähler moduli as well as other moduli
in 4D effective theory1. The moduli are Kähler moduli T , complex structure moduli
U , complexified dilaton D, and D-brane moduli ϕ typically in Type IIB orientifolds.
Kähler moduli and other moduli have kinetic terms in the 4D effective action. The
metric of the kinetic term of the Kähler moduli is the Kähler metric. None of the
moduli was observed yet in experiments. Moduli stabilization, as a technical mecha-
nism, was introduced to make the moduli massive, thus to avoid inconsistency with
experimental results. However experience tells that it is important to understand
the string effective action at least at the 1-loop level or even higher-loop level before
attempt of moduli stabilization2. We would only focus on our interest in quantum
corrections, thus would not go into details of compactification, moduli stabilization
and derivation of effective action.

A simple introduction to the effective action and quantum corrections is given in
§4.1 and §4.2. The kinetic terms of the effective action of 4-d supergravity in string
frame3, up to 1-loop order, is4

S4 =
1

κ24

∫
d4x

√
−h
[
(e−2Φ4 + δE)

1

2
R +

(
G̃(0) + G̃(1)

)
∂µτ

(0)∂µτ (0)
]
+ . . . . (1.1)

1This is explained in standard textbooks, e.g.[44][23].
2This is discussed in e.g.[27][12][14]
3See §4.1 for the definition of string and Einstein frame.
4In this and next paragraphs we are following [14] and [47].
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τ (0) is the tree level form of the imaginary part of the Kähler moduli T . δE is the
correction to the Einstein-Hilbert term, including tree level α′ corrections, 1-loop
gs corrections, and possibly higher loop corrections, R is the Ricci scalar, Φ4 is 4
dimensional dilaton, G̃(0) is the tree level moduli space (Kähler) metric including
α′ corrections and G̃(1) is the 1-loop contributions to the string frame moduli space
(Kähler) metric.

1-loop corrections to the Einstein-Hilbert term contribute to the quantum correc-
tions to the moduli Kähler metric in minimally supersymmetric toroidal Type-IIB
orientifolds with D-branes, which can be observed from the 1-loop contributions to
the moduli space (Kähler) metric in Einstein frame

G
(1)

T T̄
(T ) =e2Φ4G̃(1)(τ) + 12

(
∂Φ4

∂τ (0)

)2

δEe2Φ4 + 6
∂Φ4

∂τ (0)
∂δE

∂τ (0)
e2Φ4

− δEe4Φ4G̃(0)(τ) +
1

2τ 3
δτ − 1

2τ 2
∂δτ

∂τ
+ . . . (1.2)

where δτ is 1-loop correction to τ (0). This is because when we go from String frame
to Einstein frame, Einstein-Hilbert term would be involved in the correction to the
moduli Kähler metric. Besides, the Kähler metric and Kähler potential also show up
in most terms of the low energy effective action, see from §4.1. Therefore, to study
the loop behavior of the theory, understanding of the correction to the Einstein-
Hilbert term is inevitable. This motivates the calculation of the correction to the
Einstein Hilbert term, in order to better understand the effective action.

It’s always difficult to compute multi-point and higher-genus-contributions from
string amplitudes. Multi-point contributions involve more operators, and thus they
are highly non-trivial from the perspective of operator calculation. Moreover, higher-
genus-surfaces also include those surfaces with non-trivial geometrical properties
which cause difficulties for analyzing or calculating certain math objects like fun-
damental region or period matrix etc. Moreover, beyond the understanding of the
effective theory, there are more obstacles like moduli stabilization and string model
building of Standard Model. In the end we would have to adapt all our understand-
ing with experimental results. These are out of the reach of this thesis, so we would
not engage in any detail of them.

Overview

The main concern of this thesis is to extend the existing methods of string perturba-
tion theory from the 3-point torus graviton amplitude (of Heterotic string) to all 4
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genus-1 surfaces (of Type-I string): Torus, Annulus, Klein bottle, Möbius strip, and
from genus-1 2-point Einstein-Hilbert term correction to the next order (genus-3

2
)

correction. 2-point amplitudes directly contribute to kinetic term of Kähler moduli,
but they may have ambiguities. Meanwhile 3-point amplitudes could ”strengthen” 2-
point amplitudes by providing independent, complementary information that makes
the loop corrections more robust and unambiguous. We are interested in confirming
old results as well as developing calculating techniques.

Pioneering researches indicate that 1-loop corrections to Einstein-Hilbert term in
Heterotic theory are absent[52][10]. Corrections of N = 2 models in Type-I theory
were then calculated in [7][9]. Thereafter the calculation were generalized to N = 1
orientifolds in [53][36].

First we studied the 3-point amplitude. One-loop 3-point 4D Heterotic graviton
amplitudes have been calculated in e.g.[40]. A special technique called ”pinched-off”
integration has been applied by Minahan[58] to extract correct kinematic structure
from higher order kinematic terms. This technique was also used in e.g.[56][17].
When going from Heterotic to Type-I, one would have to include all 1-loop surfaces
other than torus: Cylinder, Klein bottle and Möbius strip. Then it is necessary to
represent the integrals on the 1-loop surfaces by the integrals on the torus by lifting
technique, which is used in e.g.[7].

We inherited Minahan’s approach[58] and tried to generalize the 3-point ampli-
tude calculation in [40] to Type-I theory. The graviton 3-point amplitude in Type-I
was already studied in [9] without application of Minahan’s approach[58], so called
”Pinched-off integration”. In our calculation, we include extra contributions from
pinched-off integration, and Taylor expansion was also considered during the pinched-
off integration. We first reproduce the Heterotic kinematic structure calculation, then
lift the result in Heterotic to Type-I by the lifting technique on the covering torus[7].
We have found unusual conclusion in Type-I and expect to study it in future with
the help of the idea of factorization and the method called ”vertical integration”
from string field theory.

Then we turned to the study of 2-point amplitude calculation of correction to the
Einstein-Hilbert term. In order to study the phenomenologically interesting model
Type-IIB orientifold, people have tried to study the corrections to the moduli in
different scenarios, like [15][16][14]. The importance of the correction to the Einstein-
Hilbert term was mentioned in [47].

After 1-loop calculation, people’s attention turned to next order: Euler charac-
teristic -1 (or so called genus-3

2
). This is because in some cases 1-loop corrections

could be vanishing[28][35] or logarithmically suppressed[1], which makes genus-3
2
cor-

rections the leading order. Besides, genus-3
2
corrections also show up in a specific
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configuration of a supersymmetry breaking[10]. There a surface with a hole and a
handle was studied. As a follow up research, a surface with 3 holes has been studied
in [5].

The concepts of involution and taking square root from the double cover were
applied to go from 1-loop calculation to higher-genus-calculation, e.g. in the study
of bosonic amplitudes[21] and fermionic amplitudes[10][63]. Consistency of the mod-
ular transformations with the involution introduces the concept of Relative modular
transformation[18][19]. A further consistency requirement of the modular transfor-
mations with diffeomorphisms proposes the idea of Relevant modular transformation[5].

We followed the path of [47] and [54], tried to explore the calculation in genus-3
2
.

We begin with the double cover of the genus-3
2
surfaces, which is 2-torus. Involution

and taking square root from double cover were introduced[21][10][63]. We discussed
and clarified the concept of Relevant modular transformation[5], and pointed out the
necessity of it. We extended the result of the moduli space in [5] to all 5 genus-3

2

surfaces.



Part I

Preliminaries



Chapter 2

String Theory

As the extension of quantum field theory, string theory shares many fundamental
characteristics with quantum field theory. It encompasses a very broad and in-depth
range of content. We introduce some basic knowledge of string theory to prepare for
advanced topics in the following chapters. Starting with the fundamental dynamical
object and thinking of the string theory as a mathematical theory: field X being the
map from world-sheet to the target space, we work on 2 dimensional world-sheet.
Considering all symmetries and quantizing the theory one concludes that this is a
2D conformal field theory with critical target space dimension D = 26. Joining
and splitting of the open and closed string represents the interaction of the theory.
Therefore the interactions of the theory are encoded in the topology of the world-
sheet. By the path integral method we get the scattering amplitudes from summing
over all topologies of the world-sheet.

By including supersymmetry, bosonic string extends to superstring which has a
10 dimensional target space. Classifying the left/right-movers as well as orientability,
and imposing anomaly free condition and other consistency conditions, one restricts
superstring to 5 different theories. Besides, open string can end on dynamical object,
which is called D-brane. From unorientable world-sheets one also introduce the
concept of cross-cap and O-plane.

Compactification is then applied to reduce the dimension of String Theory to 4
which meets with the dimension of our real universe.

In this chapter we follow closely to [61], [62] and [23].
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2.1 Bosonic String Theory

Just like Quantum Mechanics studies 0 dimensional particle’s world-line, in String
Theory we study how 1 dimensional strings propagate on world-sheets. One describes
the motion of string in D dimensional space-time by the function Xµ(τ, σ), µ =
0 . . . D − 1, τ and σ are the world-sheet coordinates. Of course the physics should
be independent of parameterization. To begin with, no supersymmetry is involved
thus we focus on bosonic theory now.

Worldsheet action and symmetries

The start point of a good quantum theory would always be the action and all pos-
sible symmetries of the action. We take the area of the world-sheet swept out by
the string as the action. Then follow the similar procedure as in Quantum Mechan-
ics to avoid square root difficulty, we deduce that, the simplest Pincaré-invariant,
reparameterization invariant action would be the Polyakov action:

SP [X, γ] = − 1

4πα′

∫
Σ

dτdσ(−h)
1
2γab∂aX

µ∂bXµ, (2.1)

where h is the world-sheet metric, h = dethab and Σ is the world-sheet.
There would be an extra symmetry of the action which is the Weyl invariance

X ′µ(τ, σ) = Xµ(τ, σ),

h′ab(τ, σ) = exp(2Ω(τ, σ))hab(τ, σ) ∀Ω(τ, σ). (2.2)

One defines the energy momentum tensor as the variation of the action:

T ab(τ, σ) = 4πih−
1
2
δ

δhab
SP (2.3)

= − 1

α′ (∂
aXµ∂bXµ −

1

2
hab∂cX

µ∂cXµ). (2.4)

The equations of motion are

Tab = 0, (2.5)

∇2Xµ = 0. (2.6)

To eliminate possible surface terms in world-sheets with boundaries while keeping
Poincaré invariance, we impose Neumann boundary conditions

na∂aXµ = 0 on ∂Σ, (2.7)
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where na is the normal unit vector to ∂Σ. Or one can impose periodic boundary
conditions that the fields Xµ, ∂σXµ and hab are periodic.

If we relax Poincaré invariance, we can also impose Dirichlet boundary conditions

Xµ(τ, 0) = 0, Xµ(τ, ℓ) = yµ, (2.8)

where yµ is a constant and ℓ = 2π
√
α′ is the string length. α′ = 1

2πT
is the Regge

slope and T is the string tension.

Light cone gauge In light cone gauge the theory can be expressed by physical
degrees of freedom only. One defines space-time coordinates as (X+, X−, X i), i =
2 · · ·D − 1, with

X± =
1√
2
(X0 ±X1). (2.9)

The gauge is fixed by setting

X+ =
2πα′

ℓ
p+τ, (2.10)

where p+ = −p− = −∂L/∂Ẋ−.

Path Integral Quantization

The concept of path integral is well-known in quantum field theory. The basic idea
of path integral is that the amplitude of quantum mechanics is determined by the
integral of all possible paths from the initial state to the final state weighted by the
exponential of the action

⟨O⟩ = ⟨f | O |i⟩ =
∫ Xf

Xi

dX exp{iS}O (2.11)

where O is product of local operators.

Euclidean path integrals Euclidean path integrals are often more well-defined
because of the damping behavior of the exponential in 2 dimension. In string per-
turbation theory most calculation will be carried out in the Euclidean formalism.
To define the Euclidean amplitudes, we take the time t = X0 = −iu for real u.
The equivalence of Euclidean to Minkowski can be easily derived from analytical
continuation on the complex plane.
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Conformal Field Theory

Strings on the world-sheet is a 2 dimensional field theory equipped with conformal
symmetry. The necessary mathematical tool needed is the conformal field theory.

Conformal field theory is much more well-defined in Euclidean metric. Making a
wick rotation τ : τ → −iτ , we can define the complex coordinates

w = τ − iσ, w̄ = τ + iσ, (2.12)

or
z = exp(−iw) = exp(−iτ + σ). (2.13)

A particular useful gauge in conformal field theory ,which is called conformal
gauge, is defined by

ds2 = Ω2(−dτ 2 + dσ2) = −Ω2dσ+σ−, (2.14)

that the two dimensional metric is conformally flat.
Primary fields ϕ(z, z̄) (conformal fields) are the basic objects in a conformal field

theory. It transforms under conformal transformation as tensor:

ϕ(z, z̄) → ϕ′(z′, z̄‘) =

(
∂z′

∂z

)−h(
∂z̄′

∂z̄

)−h̄

ϕ(z, z̄). (2.15)

h and h̄ are conformal weights under analytic and anti-analytic transformations.

Operator Product Expansion In perturbation theory we are mainly interested
in the expectation value of operators, especially the behavior of it in the limit that two
operators are approaching each other. Operator Product Expansion is the systematic
tool to describe the limit. Formally it can be presented as

Ai(z1)Aj(z2) =
∑
k

ckijAk(z2), (2.16)

where z1 → z2, and Ak(z) is a basis for the set of local operators.
Since we are often interested in the limits, the OPE at small separation is domi-

nated by the singular terms.
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Normal Ordering We need normal ordering to well define the product of opera-
tors at the same point:

: Xµ1(z1, z̄1) . . . X
µn(zn, z̄n) := Xµ1(z1, z̄1) . . . X

µn(zn, z̄n) +
∑

subtractions, (2.17)

where ”subtractions” are all ways of choosing from Xµ1(z1, z̄1) . . . X
µn(zn, z̄n) any

number of pairs of operators and replacing each pair with the singular term of the
OPE of the pair of operators.

Mode expansion In z = exp(−iw) = exp(−iσ1 + σ2) coordinate, one can expand
the holomorphic field ∂Xµ(z) into modes:

∂Xµ(z) = −i
(α′

2

)1/2 ∞∑
m=−∞

αµ
m

zm+1
, (2.18)

or equivalently using the residue theorem we have

αµ
m =

( 2

α′

)1/2 ∮ dw

2π
zm∂Xµ(z). (2.19)

We have similar expressions for anti-holomorphic field ∂̄X(z̄) with α̃µ
m.

State-Operator correspondence

In w coordinate we must specify the boundary condition, or equivalently speaking
the initial state |A ⟩ as Imw → −∞.

When transformed to z coordinate, Imw = −∞ maps to z = 0, and equivalently
the initial state |A ⟩ in w can be represented by a local operator A in z = 0, or
so-called Vertex operator.

One can naturally define the initial state as

|A ⟩ = lim
z→0

A (z)|0⟩ = A (0)|0⟩, (2.20)

where by Cauchy’s integral formula and C0 is a contour surrounding the origin z = 0

A (0) =

∮
C0

dz

2πi

1

z
A (z). (2.21)

This shows 1-1 correspondence between the state |A ⟩ and the operator A (z). Thus
it is called the state-operator correspondence.
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As an important example, using (2.19), Cauchy’s differentiation formula and
holomorphicity of the fields we get the correspondence

αµ
−m|0⟩ ∼=

( 2

α′

)1/2 i

(m− 1)!
∂mXµ(0), m > 0. (2.22)

Initial states can be constructed from the ground state |1⟩ by acting with the creation
operators αµ

−m(m > 0) and α̃µ
−m(m > 0). The corresponding operator is the normal

ordered product of the local corresponding operators ∂mXµ(0) of αµ
−m and the anti-

holomorphic analogous part.

Gauge-Fixing and Moduli

Locally one can always fix the gauge of the path integral with (diff×Weyl) transfor-
mations, because the dimension of (diff×Weyl) group matches the degree of freedom
of the metric. One could use the Faddeev-Popov method to fix the gauge, details
could be found in the standard textbooks like [61, §3.3]. Here we would like to
mention the expansion of diff×Weyl transformations of the metric

δhab = 2δωhab −∇aδσb −∇bδσa

= (2δω −∇cδσ
c)hab − 2(P1δσ)ab, (2.23)

where the operator P1 maps vectors into traceless symmetric 2-tensors,

(P1δσ)ab =
1

2
(∇aδσb +∇bδσa − hab∇cδσ

c). (2.24)

But globally there is a small mismatch between the metric space and the gauge
group. The remnant is the moduli space. Moduli are the variation of the metrics
which are orthogonal to diff×Weyl transformations, while conformal killing vectors
(CKVs) are infinitesimal diff×Weyl transformations which do not change the metric.
Then we find that moduli correspond to the kernel of P †

1 and CKVs to the kernel of
P1. By Riemann-Roch theorem, we have

µ− κ = −3χ (2.25)

with µ = dimkerP †
1 and κ = dimkerP1. And κ vanishes for χ < 0, while µ vanishes

for χ > 0.
The gauge-fixed n-point amplitude would be

An(k1, . . . , kn) =
∑

topologies

∫
F

dµt

nR

∫
[dϕdbdc] exp(−Sm − Sg − λχ)
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World-sheet Euler number dim ker P1 dim ker P †
1

Sphere 2 6 0
Disk 1 3 0

Projective plane 1 3 0
Torus 0 2 2

Cylinder 0 1 1
Möbius strip 0 1 1
Klein bottle 0 1 1

Table 2.1: Moduli and CKV numbers of g ≤ 1 surfaces

×
∏

(a,i)/∈f

∫
dσa

i

µ∏
k=1

1

4π
(b, ∂tk ĥ)

∏
(a,i)∈f

ca(σ̂i)
n∏

i=1

ĥ(σi)
1
2Vi(ki, σi), (2.26)

where F stands for Fundamental domain, t are the moduli, b and c are the Faddeev-
Popov ghosts, Sm and Sg are the matter and ghost actions respectively, ĥ is the
fiducial metric, V are the vertex operators, (a, i) ∈ f are the set of coordinates of
the vertex operators fixed by the conformal killing vectors, nR is the finite order of
a possible residual discrete group of symmetries. This amplitude is valid also for
superstring if we include the superconformal field theory and βγ ghost system.

χ is the Euler characteristic and gs = eλ works as the string coupling constant.
λ is the constant background value of the dilaton D while D is the trace part of
the massless tensor spectrum. Therefore we can think of the amplitude An as the
perturbative expansion in genus-g = 1− χ/2.

2.2 Superstring Theory

The bosonic string theory has tachyons as well as no place for fermions. To solve
this, supersymmetry on world-sheet is imposed to extend the bosonic string theory to
superstring theory which includes tachyon-free theories and accommodates fermionic
degrees of freedom. Supersymmetry is the maximal extension of the Poincaré Sym-
metry.

Superaction and Supersymmetry The complete superstring action is

S = − 1

8π

∫
dσdτe

(
2

α′h
αβ∂αX

µ∂βX
µ+2iψ̄µρα∂αψµ−iχ̄αρ

βραψµ
(√ 2

α′∂βXµ−
i

4
χ̄βψµ

))
,

(2.27)
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where e = |det eaα| =
√
−h, eaα is the zwei-bein for describing spinors on curved

manifolds, ψ is the superpartner of X, χ is the gravitino. This action is invariant
under the supersymmetry√

2

α′ δϵX
µ = iϵ̄ψµ, (2.28)

δϵψ
µ =

1

2
ρα

(
2

α′∂αX
µ − i

2
χ̄αψ

µ

)
,

δϵe
a
α =

i

2
ϵ̄ρaχα

δϵχα = 2Dαϵ,

where ϵ(σ, τ) is a Majorana spinor parameterizing supersymmetry transformations
and Dα a covariant derivative with torsion.

Type-II String We are considering closed strings. The world-sheet free action of
the Type-II String in the light cone (l.c.) gauge is given by

Sl.c. = − 1

2π

∫
dσdτ(∂+X

i∂−X
i − iψi∂−ψ

i − iψ̄i∂+ψ̄
i). (2.29)

The bosonic field X satisfies periodic boundary condition. Fermionic field ψ can be
either periodic (Ramond sector) or antiperiodic (Neveu-Schwarz sector) on the left
and on the right. One has to perform the GSO projection in each sector to get the
superstring with space-time supersymmetry.

The fermionic oscillators are defined by
√
2bm = ψ2m−1 + iψ2m, m = 1, . . . , 4,

which satisfy the usual anticommutation relations

{bm, b†n} = δmn, {bm, bn} = 0, {b†m, b†n} = 0. (2.30)

There is a NS and R sector for both of the left and right-movers. The relative choice
of the GSO projection for the right-movers and for the left-movers is significant and
leads to two different sectors of the closed superstring theory. One can keep either
fermions of the same chirality or of opposite chirality in the two sectors. Depending
on the choice, we get either Type-IIA theory (non-chiral) or Type-IIB theory (chiral):

Type-IIA : (8v ⊕ 8s)⊗ (8v ⊕ 8c)

Type-IIB : (8v ⊕ 8c)⊗ (8v ⊕ 8c), (2.31)

which is the massless spectrum of Type-IIA or IIB respectively.
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Heterotic String Since the left and right-moving sectors can be treated inde-
pendently, the Heterotic string is constructed by the left-moving sector of the 26
dimensional bosonic string combined with the right-moving sector of the 10- dimen-
sional superstring. 16 compactified left-moving bosonic fields live in the internal
space which is a 16 dimensional torus, and we are left with a 10 dimensional string
theory. Modular invariance of the one-loop partition function constrains the inter-
nal 16 dimensional momentum lattice to be an even self-dual Euclidean lattice, and
further implies the gauge group resulting from torus compactification to be either
E8 × E8 or SO(32).

Type-I String Type-I theory is an orientifold1 of Type-IIB theory with orientifold
symmetry group

Z2 = {1,Ω}. (2.32)

Closed String Sector: The closed string sector of Type-I theory contains unori-
ented strings that are invariant under orientation-reversal. The massless states are
simply the states of Type-IIB that are invariant under Ω. We know that only gij,
ϕ, B′

ij (R-R 2-form), and a symmetric combination of the two gravitini survive the
projection.

Open String Sector: Open string sector arises from the addition of D-branes that
are required to cancel the charge of the orientifold plane. Orientation reversal is a
purely world-sheet symmetry, so it leaves the entire 9 dimensional space invariant.
Therefore, the orientifold plane is a O9-plane. It turns out to have −32 units of
charge w.r.t. the 10-form non-propagating field from the R-R sector. This charge
can be canceled by adding 32 Dirichlet D9-branes which each has unit charge. The
world-volume theory of the D9-branes gives rise to gauge group U(32) but only an
SO(32) subgroup is invariant under the action of Ω.

Type-I supergravity theory is anomaly free only if the gauge group is SO(32)
or E8 × E8. It is satisfying that the spectrum determined by requiring world-sheet
consistency is automatically anomaly free

Spin Structure Spinor defined on a genus-g Riemann surface could have either
periodic or anti-periodic boundary conditions along 2g non-contractible homology
basis. Then there are 22g possible spin structures for a genus-g surface. A spin
structure is called even (odd) if the number of zero modes of chiral Dirac operator
is even (odd), and this number modulo two is a topological invariant and additive
when two surfaces are glued together.

1cf. §2.3.2
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2.2.1 Ghost system

Fadeev-Popov quantization introduces ghost systems which simplifies the calculation
of the conformal field theory.

bc ghosts bc ghosts are obtained from fixing the gauge of the reparameterization
andWeyl invariance (world-sheet metric)2. In other word, the ghost part is equivalent
to the vector laplacian det′1/2(P †

1P1) which is a result of the Jacobian of decomposi-
tion of the metric space into diff×Weyl space and moduli space. In conformal gauge,
one has

∆FP =

∫
dbdc e−Sghost[b,c] (2.33)

Sghost[b, c] =
1

2π

∫
d2z(b∂̄c+ b̄∂c̄) (2.34)

with conformal weights h(b) = 2, h(c) = −1, cb,c = −26 and the OPEs

b(z)c(w) ∼ 1

z − w
+ · · · b(z)b(w) = c(z)c(w) = O(z − w). (2.35)

We can trade dim ker P †
1 number (dimension of the conformal Killing group) of the

integration of the position of the vertex operators for the same number of cc̄ fields.
For example, at tree level (sphere), we have

|⟨0|c(z1)c(z2)c(z3)|0⟩|2 = |(z1 − z2)(z2 − z3)(z3 − z1)|2. (2.36)

Derivation of this result could be found in [23, §6.2].

βγ superghosts Similarly, βγ superghosts are obtained from fixing the gauge of
the supersymmetry (world-sheet gravitino)3. One has

Ssuperghost[β, γ] =
1

2π

∫
d2z(β∂̄γ + β̄∂γ̄), (2.37)

with conformal weights h(β) = 3
2
, h(γ) = −1

2
, cβ,γ = 11 and the OPEs

γ(z)β(w) ∼ 1

z − w
+ · · · , β(z)β(w) = γ(z)γ(w) = O(1). (2.38)

2cf. [23, §6.2]
3cf. [23, §8.4]
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Bosonization

Bosonization means that a conformal field theory of 2n fermions with specific bound-
ary conditions and a conformal field theory of n bosons compactified on a torus share
the same correlation functions and thus are equivalent. Bosonization greatly sim-
plifies the treatment of ghost systems and is important for the construction of the
covariant vertex operators with ghost systems. We follow [23, §13.1] in this section.

For 2 fields ψ1 and ψ2, bosonization can be defined as

Ψ±(z) =
1√
2
(ψ1 ± ψ2)(z) (2.39)

Ψ±(z) =: e±ϕ(z) : (2.40)

VΛ(z) =: eiΛ·ϕ(z) : (2.41)

where ϕ is the bosonized boson, V is the vertex operator and Λ is the lattice vector
of the compactified space.

It contains a U(1) current algebra

j(z) =: Ψ+Ψ− := iϵ∂ϕ, j(z)j(w) =
1

(z − w)2
+ · · · ,

j(z)Ψ+(w) =
Ψ+(w)

z − w
+ · · · , j(z)Ψ−(w) = −Ψ−(w)

z − w
+ · · · , (2.42)

We parameterize the statistics by ϵ = 1 for Fermi statistics and ϵ = −1 for Bose
statistics.

As an example, we take a first order action

S =
1

2π

∫
d2zb∂̄c (2.43)

that b has conformal weight λ and c has conformal weight 1 − λ. To bosonize the
first order system, we identify b = Ψ+ and c = Ψ−. The energy-momentum tensor is

T =− λ : b∂c : +(1− λ) : (∂b)c : (2.44)

=
1

2
(: (∂b)c : − : b∂c :) +

1

2
ϵQ(: bc :)

with a background charge Q = ϵ(1− 2λ).
We get the U(1) current and bosonize it as

j(z) = − : b(z)c(z) := iϵ∂ϕ(z) (2.45)
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with
ϕ(z)ϕ(w) ∼ ϵ ln(z − w) (2.46)

and

T (z)j(w) =
Q

(z − w)3
+

j(w)

(z − w)2
+
∂j(w)

z − w
+ · · · . (2.47)

The action now turns into

S = − 1

8π

∫
d2z

√
h(ϵhαβ∂αϕ∂βϕ+QRϕ) (2.48)

where R is the scalar curvature. The energy-momentum tensor is now

T (j) = ϵ

(
1

2
: jj : −1

2
Q∂j

)
. (2.49)

We simply list the algebra:

j(z)eqϕ(w) =
q

z − w
eqϕ(w) + · · · , (2.50)

T (j)(z)eqϕ(w) =

[ 1
2
ϵq(q +Q)

(z − w)2
+

∂w
z − w

]
eqϕ(w) + · · · . (2.51)

Conformal ghost bosonization In ϵ = 1 case, the bc system can be bosonized
as

b(z) = eiϕ(z), c(z) = e−iϕ(z), (2.52)

ϕ(z)ϕ(w) ∼ ln(z − w).

Superconformal ghost bosonization In ϵ = −1 case, bosonization is more com-
plicated. We have

β(z) = e−ϕ(z)∂ξ(z), γ(z) = η(z)eϕ(z), (2.53)

ϕ(z)ϕ(w) ∼ − ln(z − w),

where ξ and η form a fermionic first order system with central charge c = −2 and
conformal weight of ξ is h = 0. One could further bosonize the ξη system as

: ξ(z)η(z) := ∂χ(z), χ(z)χ(w) ∼ ln(z − w), (2.54)

η(z) = e−χ(z), ξ(z) = eχ(z).

Finally we get

β(z) = e−ϕ(z)eχ(z)∂χ(z), γ(z) = e−χ(z)eϕ(z). (2.55)
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Picture number After bosonization of the superconformal ghosts, the bosonized
system obtained a picture charge as a new quantum number.4 Using the relation
between scalar curvature R and Euler character χ

χ =
1

4π

∫
d2z

√
hR, (2.56)

we see from the above action (2.48) that it restricts the background picture charge of
the states to be −Qχ/2 with Q = ϵ(1−2h) and χ = 2(1−g). Thus we have to assign
a total picture charge of −Qχ/2 to vertex operators in order to get a non-vanishing
correlation function. In the case of sphere and βγ ghost system as an example, we
have conformal weight h = 3/2, antisymmetry ϵ = −1 and Euler number χ = 2, thus
the total picture charge of vertex operators in a correlation function should be −2.
Another example is a torus with βγ system requiring a background picture charge of
−ϵ(1− 2h) · 2(1− g)/2 = 0. A state with picture charge q = −1 is called canonical,
because when one surface was factorized into 2 surfaces by a plumbing connecting
them, to satisfy the correct background picture charge of each factor surface, vertex
operators on the two ends of the plumbing require the canonical picture charge.

Picture Changing operator The picture changing operator (PCO) P+1 was de-
fined through

Vq+1 = P+1Vq = [Q, 2ξVq], (2.57)

where Vq is vertex operator with picture number q, and ξ is from bosonization of
superconformal ghosts. P+1 carries 1 unit of picture charge and its action on Vq
would raise the picture number of the operator by 1 unit.

2.2.2 D-Branes

From the construction of open string, we require a soliton in space-time to let the
open string end on it. We consider a p dimensional hyperplane (Dp-brane) along the
directions X1,. . . ,Xp. Take the longitudinal coordinates Xµ, µ = 0, . . . , p to satisfy
NN boundary conditions, and the transverse coordinates Xm, m = p + 1, . . . , 9 to
satisfy DD boundary conditions. Open strings are allowed to end on the p dimen-
sional hyperplane which can be viewed as a p-brane at a location determined by the
zero mode of the coordinates Xm. This construction shares all features of a BPS
soliton. Parallel branes preserve the space-time supersymmetry, while anti-branes
(with opposite charge) and branes at angles will break some supersymmetry.

4cf. [51, §4.20]
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Chan-Paton factor If there are n identical parallel D-branes, then the open string
can begin on a D-brane labeled by i and end on one labeled by j. The label of the
D-brane is called the Chan-Paton index at each end. Denote a general state in the
open string sector by |ψ, ij⟩λij with i, j Chan-Paton indices, λij is the Chan-Paton
factor, ψ is the state of the world-sheet fields, and λ† = λ due to the reality of
the string wave function. The massless excitation of the open string give rise to a
supersymmetric U(n) gauge theory on the worldvolume.

2.3 Discrete Symmetries

The approach of this part of introduction is to illustrate the main ingredients of the
general procedure of orientifolds.

2.3.1 Orbifolds

An orbifold M′ = M/G is obtained from a manifold M on which a discrete isometry
G acts. M′ is singular near the fixed points. Strings moving on a target space M
led to the concept of orbifolds in conformal field theory. Orbifold can be used to
construct a new theory T ′ from an existing theory T by taking the orbifold action G
on T and get T ′ = T/G.

ZN -orbifold on Torus T D (D even) We will need these orbifolds in later sections.
We start with complexifing the coordinates:

Zj =
1√
2
(X2j−1 + iX2j), Z∗j =

1√
2
(X2j−1 − iX2j), (2.58)

with the orbifold action acting as

G : Zj 7→ e2πivjZj, Z∗j 7→ e−2πivjZ∗j, j = 1, . . . , D/2 (2.59)

and vj = kj/N for kj ∈ Z is called twist vector. e±2πivj is the eigenvalue of the single
generator θ ∈ SO(D) (θN = 1) of ZN in the vector representation. Spectrum of T
is reduced to states that are invariant under G. Torus can be represented as RD/Λ,
we observe that θ acts crystallographically on the torus lattice Λ. Thus θ must have
all integer entries in the lattice basis. Then we know that

Tr θ =

D/2∑
j=1

2 cos(2πvj), (2.60)
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χ(θ) = det(1− θ) =

D/2∏
j=1

4 sin2(πvj) (2.61)

must both be integers. χ(θ) is the number of fixed points of θ by the Lefschetz
fixed point theorem. Ignoring possible factor with vj = 0 mod 1 in (2.61) gives the
number of fixed tori.

Twisted sectors

Due to the orbifold action, different points in the covering manifold M are equivalent
in the quotient manifold M/G under the orbifold action. Thus strings which are not
closed in M could be closed in M/G. And this induces the concept of twisted
sectors, which means strings are closed in these sectors but not closed in M.

We impose the boundary conditions of complexified boson

Zj(σ0, σ1 + 2π) = e2πikvjZj(σ0, σ1) (2.62)

Zj(σ0 + 2πτ2, σ
1 + 2πτ1) = e2πiℓvjZj(σ0, σ1) (2.63)

where τ = τ1 + iτ2 is the modulus on the torus. k ∈ Z (ell ∈ Z) means that the
boson is in the k-th (ℓ-th) twisted sector along one of the 2 periodic directions of the
torus.

Complex fermions on a ZN toroidal orbifold satisfy the twisted boundary condi-
tions

ψj(σ0, σ1 + 2π) = −e+2πiαe2πikvjψ(σ0, σ1), (2.64)

ψj(σ0 + 2πτ2, σ
1 + 2πτ1) = −e+2πiβe2πiℓvjψ(σ0, σ1) (2.65)

with α, β ∈ {0, 1/2} representing the spin structure.
Twisted sectors are essential for modular invariance. The partition functions of

twisted sectors and more other details can be found in app.D.

2.3.2 Orientifolds

The orientation-reversal action Ω (also called world-sheet parity) is defined as

Ω : (τ, σ) → (τ, ℓ− σ). (2.66)

It reverses the orientation of the strings. Like orbifolds, a new theory T ′ could also
be constructed from an existing theory T by Ω as T ′ = T/Ω. Orientation-reversal
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Ω could break half of the space-time supersymmetry, thus is a practical tool for the
construction of minimal space-time SUSY string theory in 4 dimension. More details
of orientifold symmetry could be found in app.C.

Typically people are interested in a ZN orbifold of toroidally compactified Type-
IIB theory and then orientifold it further by a symmetry Z2 = {1,Ω}. If the
orbifold group ZN is generated by θ, then the total orientifold symmetry is G =
{1, θ, . . . , θN−1,Ω,Ωθ, . . . ,ΩθN−1} or symbolically, G = ZN ∪ ΩZN , cf. (C.1).

Tadpole Cancellation and Orientifold Planes

There is a consistency requirement for orientifolds that is analogous to the require-
ment of modular invariance for the torus. This is the requirement of ‘tadpole can-
cellation’.

There exists non-vanishing 1-point functions, or so-called tadpoles, on orien-
tifolds. Cancellation of all tadpoles is necessary for obtaining a stable string vacuum.
This requirement is very restrictive and it more or less completely determines when
and how the open string should be added.

Physically, nonzero tadpoles imply that the equations of motion of some massless
fields are not satisfied. They occur for the following reason. The planes that are left
invariant by an orientation-reversal symmetry is called the orientifold plane. Like
a D-brane, an orientifold plane is a p dimensional hyperplane which couples to an
R-R (p+1)-form which we generically refer to as Cp+1. The charge of the orientifold
plane can be calculated by looking at the R-R tadpole. If the orientifold plane has
a nonzero charge then it acts as a source term in the equations of motion for the
(p + 1)-form field Cp+1. The field lines must start and end on charge sources in a
compact space, and the net charge must vanish on the compact space. The negative
charge of a p dimensional orientifold plane in a compact transverse space can only be
neutralized by adding the right-number of Dp-branes so that Gauss law is satisfied
and all tadpoles cancel.



Chapter 3

String Perturbation Theory

Similar to quantum field theory, we need to study string perturbation theory to gain
further insight into string theory. Phenomenologically interesting string amplitudes
also require string perturbation theory for calculations.

3.1 Basic concepts of String Perturbation theory

The string amplitude (2.26) could be abbreviated as

An =
∞∑
g=0

A(g)
n (3.1)

to emphasize the perturbation form of the theory. Z(g) = A
(g)
0 is the genus-g partition

function.
Two dimensional oriented surfaces without boundary are topologically completely

characterized by the genus-g. If we extend the surface to include not only handles but
also boundaries and cross-caps, then two dimensional surfaces would be topologically
characterized only by χ = 2 − 2h − b − c, with h handles, b holes and c cross-caps,
and genus-g = 1− χ/2 = h+ 1

2
b+ 1

2
c. Then each term in (3.1) will be weighted by

g
−χ+nc+

1
2
no

s = (eλ)−χ+nc+
1
2
no , (3.2)

where nc is the number of closed string vertex operators and no is the number of
open string vertex operators. λ turns out to be the constant background value of
the dilaton field D. Due to the expectation of small λ we can apply perturbation
techniques to the theory, but convergence will be ignored in this work.
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Riemann Surfaces

A 2-real dimensional (1-complex dimensional) complex manifold is called a Riemann
surface. Only in 2-real dimension there is a one-to-one correspondence between
Riemann Surfaces and Riemann Manifolds mod Weyl transformation. Also for the
same reason of the above correspondence, we know that on Riemann surfaces, a
conformal structure is the same as a complex structure.

3.2 Correlation Functions

By Wick’s theorem, all correlation functions can be expressed by propagators (also
known as two-point functions) ⟨ϕ1ϕ2⟩ where ϕ1 and ϕ2 are the fields in the theory.
Other than two-point functions, we would also need to know the exact forms of the
vertex operators to calculate the correlation functions.

3.2.1 Vertex Operators

We use the state-operator correspondence to obtain the vertex operators. In the ma-
jor work of this thesis we need graviton vertex operators, so we give the exact forms
of them in the following. We observe that gravitons are only present in excitations
of closed strings.

The superstring massless vertex operator[23]

V(−1,−1)(k, ϵ) =: ϵµν(k)V̄
µ
(−1)(k, z̄)V

ν
(−1)(k, z) :, (3.3)

with
V µ
(−1)(k, z) = e−ϕψµ(z)eik·X(z), (3.4)

is obtained from the state ϵµν(k)b
µ
−1/2b̄

ν
−1/2 |k⟩ with normalization condition ϵ

(G)
µν ϵ(G)µν =

1, where G stands for graviton.
Zero picture vertex operator is

V(0,0)(k, ϵ) =: ϵµνV̄
µ
(0)(k, z̄)V

ν
(0)(k, z) : (3.5)

with

V µ
(0)(k, z) =

√
2

α′

(
i∂Xµ +

α′

2
(k · ψ)ψµ

)
eik·X(z). (3.6)

Heterotic massless vertex operators are

V(−1)(k, ϵ) =:

√
2

α′ ϵµν(k)i∂̄X
µ(z̄)e−ϕψν(z)eik·X(z,z̄) :, (3.7)
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V(0)(k, ϵ) =:
2

α′ ϵµν(k)i∂̄X
µ(z̄)[i∂Xν(z) +

α′

2
(k · ψ)ψν(z)]eik·X(z,z̄) : . (3.8)

The polarization tensor ϵµν(k) represents the wave function of the massless string
excitation. BRST invariance imposes the on-shell conditions as kµϵµν = ϵµνk

ν = 0
and k2 = 0. We can decompose ϵµν into 3 irreducible parts, which are symmetric
and traceless part (graviton hµν , ϵ

G
µν), anti-symmetric part (anti-symmetric tensor

Bµν , ϵ
B
µν) and transverse diagonal part (dilaton D, ϵDµν). We have the decomposition

and the on-shell conditions as

ϵGµν = ϵGνµ, ϵGµνη
µν = kµϵGµν = 0, (graviton) (3.9)

ϵBµν = −ϵBνµ, kµϵBµν = 0, (antisymmetric tensor)

ϵDµν =
1√
d− 2

(ηµν − kµk̄ν − k̄νkµ), kµϵDµν = 0, (dilaton).

In this work, we would calculate the graviton amplitudes, thus the graviton vertex
operator is needed.

3.2.2 Two-point functions

One would have to use mathematical tricks to derive or guess the Green’s function
which satisfies the differential equation with the differential operator in the action.
Details could be found in [61] and [62].

Propagators on Sphere

The bosonic Green’s function PS
′ satisfies the differential equation

− 1

2πα′∇
2PS

′(σ1, σ2) =
∑
I ̸=0

XI(σ1)XI(σ2) = h−
1
2 δ2(σ1 − σ2)−X2

0 . (3.10)

The solution on sphere to the equation is given by (3.47), but in most cases we would
only need the simplified form:

⟨Xµ(z1)X
ν(z2)⟩ = −α

′

2
ηµν ln(z1 − z2). (3.11)

Similarly the fermionic Green’s function SS
′ satisfies the differential equation

− 1

2π
DSS

′(σ1, σ2) = δ2(σ1 − σ2)− zero modes (3.12)
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where D is dirac operator. And the solution on sphere is

SS
′(z1, z2) = ⟨ψµ(z1)ψ

ν(z2)⟩ =
ηµν

z1 − z2
. (3.13)

Meanwhile, by the same calculation as X field, two-point functions of bosonized field
ϕ of superconformal ghosts and bosonized field ϕµ of fermion ψµ are

⟨ϕ(z1)ϕ(z2)⟩ =− ln(z1 − z2), (3.14)

⟨ϕµ(z1)ϕ
ν(z2)⟩ =− δµν ln(z1 − z2).

One-loop propagators

It is useful to list the propagators in genus-1 case. The propagators on the torus are

PT (z, w) = ⟨X(z)X(w)⟩T = −α
′

2
ln

∣∣∣∣ϑ1(z − w|τ)2

ϑ′
1(0|τ)

∣∣∣∣+ π(z2 − w2)
2

2τ2
, (3.15)

ST (s; z, w) = ⟨ψ(z)ψ(w)⟩sT = iα′ϑs(z − w|τ)
ϑ1(z − w|τ)

ϑ′
1(0|τ)
ϑs(0|τ)

. (3.16)

Other 1-loop surfaces can be derived through method of images/involution[25][26][7],
we list here:

Pσ(z, w) = PT (z, w) + PT (z, Iσ(w)), (3.17)

⟨∂iXi∂jXj⟩ =
α′π

2τ2
+ ∂i∂jPσ(zi, zj), (3.18)

⟨∂̄iXi∂jXj⟩ = −α
′π

2τ2
+ ∂̄i∂jPσ(zi, Iσ(zj)), (3.19)

⟨ψ(z)ψ(w)⟩σ = Seven
T (s; z, w), (3.20)

⟨ψ(z)ψ̄(w̄)⟩σ = Seven
T (s; z, Iσ(w)), (3.21)

⟨ψ̄(z̄)ψ̄(w̄)⟩σ = S̄even
T (s̄; z̄, w̄), (3.22)

where σ = A,K,M represents the one-loop surface and Iσ is the involution (3.57).
”even” means even spin structure. ϑ functions are defined in app.A.

Arbitrary Genus

The detailed derivation of the propagators on arbitrary surface can be found in [68],
[38] and [21]. We only give the results here.
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The fermionic two-point function in even spin structures is

⟨ψ̄(z)ψ(w)⟩even = Seven
Σ (z, w) =

1

E(z, w)

ϑ[s](z − w)

ϑ[s](0)
(3.23)

where E(z, w) is the prime form[38] with E(z, w) ∼ z − w as z ∼ w. The fermionic
two-point function with odd spin structure is more complicated due to the zero
modes:

⟨ψ̄(z)ψ(w)⟩odd = Sodd
Σ (z, w) = hs(z)hs(w)pF,s odd(z, w) (3.24)

with h2s(z) =
∑

i ∂iϑ[s](0)ωi(z) is a holomorphic 1
2
-differential. ωi is the basis of

holomorphic 1-forms (see from [68] for details of the 1-forms), and

pF,s odd(z, w) =
1

E(z, w)

∑
∂iϑ[s](z − w)ωi(y)∑
∂iϑ[s](0)ωi(y)

. (3.25)

And the bosonic two-point function is

⟨X(z)X(w)⟩ = PΣ(z, w) = − lnF +
1

A

∫
d2yh

1
2 (y)

(
lnF (z, y) + lnF (y, w)

)
− 1

A2

∫ ∫
d2xd2yh

1
2 (x)h

1
2 (y) lnF (3.26)

with A =
∫
d2zh1/2, and

F (z, w) = exp

[
−2π

(
Im

∫ z

w

)
ω(ImΩ)−1

(
Im

∫ z

z

ω

)]
|E(z − w)|2 (3.27)

where Ω is the period matrix.
We notice the asymptotic behaviors of the propagators while z ∼ w are

PΣ(z, w) ∼ − ln(z − w), SΣ(z, w) ∼
1

z − w
(z ∼ w). (3.28)

This can be easily deduced, because the propagators are localized while z ∼ w, thus
they ignore the global geometry properties.

3.3 Perturbative Amplitudes

String Perturbation Theory studies the correlators of vertex operators in quantum
conformal field theory with interactions. From the bosonic result (2.26), we extend
it to the superstring as

An(k1, . . . , kn) =
∑

topologies

∫
F

dµt

nR

∫
[dϕdbdcdβdγ] exp(−Sm − Sghost − Ssuperghost − λχ)
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×
∏

(a,i)/∈f

∫
dσa

i

µ∏
k=1

B
∏

(a,i)∈f

ca(σ̂i)
n∏

i=1

ĥ(σi)
1
2Vi(ki, σi) (3.29)

where B is the superfield of ghost insertion of b ghost and β ghost. The picture
charges of Vi sum up to −χ, which is −2 in sphere, 0 in 1-loop, 1 in 3/2-loop and 2
in 2-loop. Since the B ghost integration would be absorbed into a moduli related term
which is independent of the vertex operators, we will focus only on the calculation of
the correlation functions of the vertex operators and ignore other integration parts.

3.3.1 Moduli Space

Starting from the metric space Mh, which is the space of all metrics on the surface
Σg, we need to gauge away the redundancy of the system. First step is gauging the
Weyl transformation plus diffeomorphisms connected to the identity Weyl× Diff0,
and the result is the Teichmüller space

Tg =
Mh

Weyl×Diff0

. (3.30)

There is further redundancy in the disconnected diffeomorphisms. We have to reduce
the Teichmüller space Tg to moduli space Mg

Mg =
Mh

Weyl×Diff
=

Tg

MCG
(3.31)

with the mapping class group MCG, which is

MCG =
Diff

Diff0

. (3.32)

For genus-g ≥ 2 Riemann surfaces there are no conformal killing vectors but
3g − 3 complex moduli, whose number is identical to the complex dimension of the
moduli space.

Choose 2g linear independent cycles ai, bi(i = 1, · · · , g) on the surfaces as a
canonical homology basis with the property

(ai, aj) = (bi, bj) = 0,

(ai, bj) = −(bi, aj) = δij. (3.33)

(a, b) means the intersecting pairing of two homology cycles. Then one defines the
Abelian differentials ωi, ω̄i as ∫

ai

ωj = δij, (3.34)
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and the period matrix Ωij is determined as

Ωij =

∫
bi

ωj. (3.35)

The dimension of Ωij coincides with the dimension of the moduli space for g =
0, 1, 2, 3, thus it can be used to parameterize conformally inequivalent Riemann sur-
faces for g ≤ 3.

Modular transformations are the disconnected diffeomorphisms which act non-
trivially on the given homology basis, and when g > 1 it is a subgroup of the MCG.
Modular transformations can be presented as a 2g × 2g matrix in(

a′

b′

)
=

(
D C
B A

)(
a
b

)
, (3.36)

where a, b are the homology basis and A,B,C,D are g× g matrices. To preserve the
property (3.33), the 2g × 2g matrix should be an element of the symplectic group
Sp(2g,Z) = {M ∈M2g×2g(Z) :M⊤JM = J},

J =

(
0 1
−1 0

)
. (3.37)

Under the modular transformation, the Abelian differentials and the period ma-
trix transform as

ω′
j = ωk(CΩ +D)−1

kj (3.38)

Ω′ = (AΩ +B)(CΩ +D)−1. (3.39)

The generators of modular transformations are called Dehn twist. They act along
the canonical homology basis. We have two generators acting on ai and bi for each
handle, and one generator for each cycle a−1

i ai+1 linking two consecutive handles.
All the Dehn twist matrices generate the whole Sp(2g,Z).

It is worth mentioning that there exists non-trivial disconnected diffeomorphisms
twist around trivial cycles on the surface so that they do not affect the homology
basis. These transformations form the Torelli group which is the quotient of the
mapping class group and the modular group Sp(2g,Z). In one-loop case the Torelli
group is trivial.

Moduli space is trivial for tree level, and on torus as an example, there is only
1 complex moduli τ , cf. Table 2.1. The modular group SL(2,Z), which is identical
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to Sp(2,Z) in 1-loop, is generated by two transformations τ → τ + 1 and τ → τ
τ+1

.
And they corresponds to two Dehn twists

Da =

(
1 1
0 1

)
, Db =

(
1 0
1 1

)
(3.40)

along two canonical homology basis a and b1. Instead, one often uses

T : τ → τ + 1,

S : τ → −1

τ
(3.41)

as the generators of the modular group.
Another example is g = 2 showed in Figure 3.1, where the generators of Sp(4,Z)

are given by the Dehn twists:

Da1 =


1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

 , Db1 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (3.42)

Da2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

 , Db2 =


1 0 0 0
0 1 0 1
1 0 1 0
0 0 0 1

 , Da1−1a2 =


1 0 0 0
0 1 0 0
−1 1 1 0
1 −1 0 1

 .

(3.43)

We see that the action of Dehn twist, taking Da1 as example, could be expressed
as cutting the genus-2 torus along a1, twisting along the a1 cycle, and gluing back
two ends together. We would need g = 2 moduli transformations when we discuss
g = 3/2 correction because g = 3/2 amplitudes are derived from g = 2 amplitudes
by involution.

3.3.2 Tree level amplitudes

When we talk about m-loop (m ≥ 1), we study the m-th order amplitudes Z(g)

of (3.1) on genus-g = m surfaces. Tree level is a bit different. It means surfaces
with positive Euler number, which are genus-g = 0 surfaces with a possible hole or
cross-cap, thus means 0 and 1

2
-loops.

1cf. [23, Figure 6.8]
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a1

b1
a1
-1
a2

b2

a2

Figure 3.1: Homology basis of genus-2 torus

Since in tree level χ > 0, the moduli number µ vanish. According to Riemann-
Roch theorem (2.25), sphere (h = b = c = 0) has 6 CKVs, both disc (h = c = 0, b =
1) and projective plane (h = b = 0, c = 1) have 3 CKVs.

As in the quantum field theory, expectation values of vertex operators are the
most basic quantities in string theory. There are several different methods of calcu-
lating the expectation values. We would extensively use the path integral method in
the main calculation of this work, thus we only give the brief introduction to bosonic
path integral calculation.2

Path Integral Calculation of Bosonic Expectation values

Begin with the generating functional

ZB[J ] =

〈
exp

(
i

∫
d2σJ(σ) ·X(σ)

)〉
, (3.44)

Jµ(σ) arbitrary. If we expand Xµ(σ) in terms of the eigenstates XI of ∇2XI =
−ω2

IXI , we can make ZB[J ] quadratic and express it as

ZB[J ] = i(2π)dδd(J0)

(
det′

−∇2

4π2α′

)− d
2

exp

(
− 1

2

∫
d2σd2σ′J(σ) · J(σ′)G′(σ, σ′)

)
(3.45)

with J0 =
∫
d2σJ(σ)X0 and the Green’s functionG′(σ1, σ2) =

∑
I ̸=0

2πα′

ω2
I
XI(σ1)XI(σ2).

Prime of a function means excluding the zero mode contribution (I ̸= 0).

2We mainly follow [61] in this section



3.3. PERTURBATIVE AMPLITUDES 37

Sphere

We use bosonic string on sphere as the simplest example. We take J(σ) =
∑n

i=1 kiδ
2(σ−

σi) and from the generating functional (3.44) we get the expectation value of n
tachyon vertex operators on sphere S2

An
S2
(k, σ) =

〈[
eik1·X(σ1)

]
r

[
eik2·X(σ2)

]
r
. . .
[
eikn·X(σn)

]
r

〉
= iCX

S2
(2π)dδd(

∑
i

ki) exp

(
−

n∑
i,j=1
i<j

ki · kjG(σi, σj)
)

(3.46)

where CX
S2

is a topology-related constant and δd(
∑

i ki) is the momentum conservation
condition. Then we have to solve the Green’s function G based on the specific
topology of the surface and including the renormalized Green’s function for self-
contraction as well, which is

G(σ1, σ2) = −α
′

2
ln |z12|2 + δ12

(
α′

2
ln |z12|2 + α′ω(z, z̄)

)
, (3.47)

where ω is the Weyl factor.
With higher vertex operators than tachyons in the expectation value〈

n∏
i=1

[
eiki·X(zi,z̄i)

]
r

p∏
j=1

∂Xµj(z′j)

q∏
k=1

∂̄Xνk(z̄′′k)

〉
S2

, (3.48)

we will need to contract all X derivatives either with another derivative or with an
exponential, then multiply the contraction result with the tachyon result to get the
final result. Be aware that the contractions are also related to the topology of the
surface.

Generalizations to other tree level surfaces are straightforward with restricting the
coordinates and solving related contractions and Green’s functions. A disk involves
boundary operators while both a disk and a projective plane involve the method of
image.

3.3.3 One-loop amplitudes

From (3.1) we know that 1-loop amplitudes are defined on genus-1 surfaces. There
are 4 Riemann surfaces with genus-1. In 1-loop surfaces the quadratic differentials
and CKVs are constants. A detailed derivation of both the bosonic and fermionic
1-loop partition functions of Type-IIB orientifold needed in this work could be found
in app.D.
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Torus The torus T is the only closed oriented genus-1 surface with 1 complex
modulus τ = τ1 + iτ2 and 2 CKVs. It is described as

(σ1, σ2) ∼= (σ1 + 2π, σ2) ∼= (σ1 + 2πτ1, σ
2 + 2πτ2), (3.49)

which can be thought of as rotate the end of a cylinder of circumference 2π and
length 2πτ2 by an angel of 2πτ1 and glue the two ends together. We can think of
torus as a closed string propagating along a loop, which in operator method gives
the partition function

⟨1⟩T ≡ ZT (τ) = Trclosed
[
exp(2πiτ1P − 2πτ2H)

]
, (3.50)

with P the Momentum operator and H the Hamiltonian.

Figure 3.2: Torus

Annulus (Cylinder) The annulus A has 1 real modulus t and 1 CKV, and it is
described as

0 ≤ σ1 ≤ π, (σ1, σ2) ∼= (σ1, σ2 + 2πit). (3.51)

We can think of a cylinder3 as an open string propagating along a loop, with the
partition function

⟨1⟩A ≡ ZA(τ) = Tropen
[
exp(−2πtH))

]
. (3.52)

Klein Bottle The Klein Bottle K has 1 real modulus t and 1 CKV, and it is
described as

(σ1, σ2) ∼= (σ1 + 2π, σ2) ∼= (−σ1, σ2 + 2πt), (3.53)

and the partition function is

ZK = Trclosed[Ω exp(−2πtH)], (3.54)

where Ω is the orientation-reversal operator (2.66).

3Cylinder and annulus are conformally equivalent, so we often use them interchangeably.
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(a) Cylinder (b) Klein Bottle

(c) Möbius Strip

Figure 3.3: 1-loop surfaces represented in tree channel diagram

Möbius Strip The Möbius Strip M has 1 real modulous t and 1 CKV, and it is
described as

0 ≤ σ1 ≤ π, (σ1, σ2) ∼= (−σ1 + π, σ2 + 2πt). (3.55)

and the partition function is

ZM = Tropen[Ω exp(−2πtH)]. (3.56)

Tree channel diagram We can always represent the fundamental domain of Klein
Bottle (Möbius Strip) in a tree channel diagram between two cross-caps or one cross-
cap and one hole, respectively. See Figure 3.3a, 3.3b and 3.3c. Then the string
boundary states can be used to compute the tree level diagram.

Involution A, K and M surfaces can be constructed from double-covering torus
under anti-conformal involutions4

IA(z) = IM(z) = 1− z̄, IK(z) = 1− z̄ + τ/2, (3.57)

with τ = τ1 + iτ2 be the modular parameter of the torus. And the fundamental
regions of the involutions are chosen to be

A : z ∈ [0,
1

2
]× [0, τ2] M : z ∈ [

1

2
, 1]× [0, τ2] K : z ∈ [0, 1]× [0,

τ2
2
]. (3.58)

The relative modular parameters of the tori are:

τA =
it

2
τM =

1

2
+ i

t

2
τK = 2it. (3.59)

4Here we closely follow the Appendix of [7].



Chapter 4

1-Loop correction to the
Einstein-Hilbert term in Type-IIB
orientifolds

4.1 Low energy effective action

Low energy approximation of String Theory is always a crucial tool of string phe-
nomenology. We would of course assume that particle physics and general relativity
are emergent concepts of the low energy approximation of String Theory. To relate
the quantum field theory to low energy approximation of String Theory, we have
to find the low energy effective action first. The idea is that the low energy action
should reproduce the amplitudes of massless string scattering. This can be done in
a perturbative fashion[23]. It’s always easy to write down the free action L2point of
massless particles. Then try to add L3point to reproduce 3-point functions of mass-
less string scattering. We can already relate various string constants to the coupling
constants of the effective action. Next level is the 4-point. Massless contribution
of 4-point amplitudes are generated by L3point, while massive contributions can be
expanded and described by the L4point, see from [23, §16.3] for details. Higher order
terms can be carried out order by order with the same fashion.

There is another method to restrict the effective action, which is using the space-
time symmetries such as supersymmetry or coordinate invariance. Then 10 dimen-
sional effective supergravity theories of the string theories with maximal supersym-
metry could be fixed in this routine. In most cases both methods would be combined
to find the effective action. We would not dive into the derivation of the low energy
effective actions here.
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We consider only the massless modes, that the effective action is the supergravity
action, the derivation of the relevant effective action would not be presented in this
work. In the string low energy approximation, the supergravity action depends on
three functions: the holomorphic superpotential W (Φ); an arbitrary holomorphic
function fab(Φ) replacing the gauge coupling g−2

a ; the Kähler potential K(Φ,Φ∗)
which is a general function of the superfields.1 To demonstrate, the purely bosonic
part of the Lagrangian density is

Lbos ∝
1

2κ2
R−K,̄ijDµϕ

i∗Dµϕj − 1

4
Re(fab(ϕ))F

a
µνF

bµν

−1

8
Im(fab(ϕ))ϵ

µνσρF a
µνF

b
σρ − V (ϕ, ϕ∗), (4.1)

and R is Ricci scalar. The potential is

V (ϕ, ϕ∗) = exp
(
κ2K

)
(K ījW ∗

;iW;j − 3κ2W ∗W ) +
1

2
fabD

aDb. (4.2)

Here K īj is the inverse matrix to ∂ī∂jK and

W;i = ∂iW + κ2∂iKW (4.3)

Re(fab(ϕ))D
b = −2ξa −K,it

a
ijϕ

j. (4.4)

where ξa is a Fayet–Iliopoulos parameter for a U(1) symmetry. The negative term
proportional to κ2 in V (ϕ, ϕ∗) is a supergravity effect.

The kinetic term for the scalars is field-dependent. The second derivative

K,̄ij =
∂2K(ϕ, ϕ∗)

∂ϕi∗∂ϕj
, (4.5)

in the form of Kähler metric, plays the role of a metric for the space of scalar fields.

Einstein Frame We know that it is always possible to transform the effective
action by field redefinition without changing the physics. So different effective actions
can reproduce the same string amplitudes if they only differ by field redefinition.
By convention we call an effective action in ”String Frame” when the action has
an overall factor of e−2Φ2; we call it in ”Einstein Frame” when the dilaton and
the graviton decouple by field redefinition. In Einstein frame we have a purely
gravitational term.

1We follow [62, §B] closely here.
2Actually frame is defined by the metric. String frame metric is exactly the same as the metric

in Polyakov action.
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4.2 Corrections to the Type-IIB Einstein-Hilbert

term

Our basic set-up is the 4D effective supergravity theory constructed from 10D Type-
IIB orientifold compactified on an internal T 6/ZN space. T 6/ZN has singularities as
a Calabi-Yau space, thus it is the limit of a real Calabi-Yau space. This leads to a 4D
N = 1 supergravity which is simple enough to be tactable and phenomenologically
interesting. Calculations of n-point string amplitudes contribute to the effective
supergravity action. We are not interested in the details of compactification, so we
skip the introduction to compactification and just mention that the corrections in
the 4D theories came from compactification from 10D to 4D.

Terms of order (k2)n(n > 2) in the kinematic tensor structure of the pure graviton
string amplitudes correspond to the Rn term (Riemann tensor) in the effective action
in low energy limit. For example, an R2 term in the effective action would give an
amplitude of order k4. No k4 or k6 term exists in 3 or 4-point tree level amplitudes
of type II theories, thus there is no R2 or R3 term in the type II effective actions at
tree level.3

However, in the tree level 4-point type II amplitudes with 4 massless NS-NS
bosons

−iκ
2α′3

4

Γ(−1
4
α′s)Γ(−1

4
α′t)Γ(−1

4
α′u)

Γ(1 + 1
4
α′s)Γ(1 + 1

4
α′t)Γ(1 + 1

4
α′u)

Kc(e1, e2, e3, e4) (4.6)

with kinematic structure

Kc(e1, e2, e3, e4) = tµ1ν1...µ4ν4tρ1σ1...ρ4σ4

4∏
j=1

ejµjρjkjνjkjσj
, (4.7)

tensor t representing the kinematic structure4 and s, t, u being Mandelstam variables,
one observes that there exists k8 terms, which correspond to the R4 term in the
effective action if one contracts eµρkνkσ with t to get Rµνσρ/4κ[62]. The ratio of
gamma functions can be expanded as

− 64

α′3stu
− 2ζ(3) +O(α′) (4.8)

with

ζ(k) =
∞∑

m=1

1

mk
. (4.9)

3Details of tree level Rn terms could be found in [62, §12.4]
4Tensor t is often called t8 and the exact form could be found in [62, (12.4.25)].
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The first term in the amplitude is proportional to κ2 without α′ dependence and it
arises from the Einstein-Hilbert term. The second term of zeta function is an R4

term.
In [44, §9.2.3], the authors claimed that ”The open-string amplitude with four

external massless states has the same overall kinematic factor K for both tree and
one-loop amplitudes (and probably multiloop amplitudes as well)”. Thus we also
expect that the kinematic factors stay the same for tree and one-loop amplitudes in
closed string case, and this is indeed shown in 10D in [45].

There exists R∧R∧R term inside the R4 term that turns into the Euler number χ
of the internal space after compactification to 4 dimensions[8], by using the relation∫

X6

R ∧R ∧R =
1

3!(2π)3
χ. (4.10)

This makes the R4 term in 10 dimensions into an R correction term to the Einstein-
Hilbert term in 4 dimensions as∫

M4

[
e−2ϕ4 +

χ

(2π)3

(
2ζ(3)

e−2ϕ4

V
+

2π2

3
+ . . .

)]√
−hR, (4.11)

where V is the volume of the internal Calabi-Yau space and ϕ4 is the 4 dimensional
dilaton, be aware that α′ is set to 2.

From (4.11) we see that the tree level plus torus correction to the Einstein-Hilbert
term is

(δE)S2+T =
χ

(2π)3

(
2ζ(3)

e−2Φ4

V
+

2π2

3

)
. (4.12)

Be aware that since we would like to consider the orientifold, we should add a fac-
tor of 1/2 to the torus contribution of the above term because of the orientifold
projection[47], which gives

(δE)S2+T =
χ

(2π)3

(
2ζ(3)

e−2Φ4

V
+
π2

3

)
(Orientifold) (4.13)

in orientifolds. 1-loop corrections of Annulus, Klein Bottle and Möbius strips in
Type-IIB orientifold have been calculated already in [47].

Our focus in this thesis is to follow the work in [47] and try to extend it to higher
genus and more-point amplitudes. Following the setup in [47], we would concentrate
on the Kähler moduli metric of the T 2 torus in K3× T 2. The Kähler moduli in 4D
effective theory arise from CY compactification5, and the moduli metric is the metric

5See from [22] for review.
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in the kinetic term of the moduli in the 4D effective action. Upon compactification to
4 dimensions, the quantum corrected kinetic term of tree level modulus τ (0) coupled
to gravity in string frame and up to 1-loop order is given by6

S4 =
1

κ24

∫
d4x

√
−h
[
(e−2Φ4 + δE)

1

2
R +

(
G̃(0) + G̃(1)

)
∂µτ

(0)∂µτ (0)
]
+ . . . , (4.14)

where δE is the correction to the Einstein-Hilbert term, including tree level α′ cor-
rections, 1-loop gs corrections. G̃(0) is the tree level moduli space metric including
α′ corrections and G̃(1) is the 1-loop contributions to the string frame moduli space
metric. The next order to genus-1 correction is genus-3

2
. Genus-3

2
correction δE( 3

2
)

is in higher genus-terms (dots in (4.14)). Furthermore,

κ−2
4 = (2π

√
α′)6κ−2

10 = (πα′)−1 (4.15)

and

e−2Φ4 ≡ e−2Φ10t1t2t3 =

√
σ(0)τ

(0)
1 τ

(0)
2 τ

(0)
3 , (4.16)

where e−2Φ10 is the 10 dimensional dilaton and

σ(0) = e−Φ10t1t2t3, τ
(0)
i = e−Φ10ti. (4.17)

ti are the dimensionless torus volumes measured with the string frame metric. The
definition of the Kähler variables in general gets quantum corrected

τ = τ (0) + δτ, (4.18)

where δτ is a moduli dependent function.
Starting from (4.14) and performing a Weyl transformation to go to Einstein

frame, one observes that the quantum correction to the metric of quantum corrected
Kähler modulus T (with imaginary part τ), is given, up to 1-loop order, by

G
(1)

T T̄
(T ) =e2Φ4G̃(1)(τ) + 12

(
∂Φ4

∂τ (0)

)2

δEe2Φ4 + 6
∂Φ4

∂τ (0)
∂δE

∂τ (0)
e2Φ4

− δEe4Φ4G̃(0)(τ) +
1

2τ 3
δτ − 1

2τ 2
∂δτ

∂τ
+ . . . . (4.19)

We can see that δE showed up in different terms. Therefore we can conclude that δE
does play an important role in the quantum correction to Kähler metric. Technical
details of calculation of partition functions and analysis of surfaces are given in
app.D.1 and app.D.2 respectively.

6This section and the following three sections are cited from [54].
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4.3 Graviton 1-loop 2-point function

In this section we derive some general formulas needed for computing 1-loop cor-
rection to the Planck mass in N = 1 Type-IIB toroidal orientifolds. Tadpole-free
condition was discussed in [2]). We are going to discuss general features in this
section, and apply them to K3× T 2 space in §5. Here we follow closely to [47, §3].

Begin with an amplitude of two gravitons (with momenta pi and polarization
tensors εi)

⟨Vg(p1, ε1)Vg(p2, ε2)⟩ =
∑

σ∈{T ,K,A,M}

⟨Vg(p1, ε1)Vg(p2, ε2)⟩σ, (4.20)

where the vertex operators are given by

Vg(p, ε) = −2gc
α′ εµν

(
i∂Xµ +

α′

2
p · ψψµ

)(
i∂̄Xν +

α′

2
p · ψ̄ψ̄ν

)
eip·X (4.21)

with εµνε
µν = 1. Using on-shell, transversality and tracelessness conditions

p21 = p22 = p1 · p2 = p1µε
µν
1 = p2µε

µν
2 = ηµνε

µν
1 = ηµνε

µν
2 = 0, (4.22)

the amplitude (4.20) has to be proportional to the only remaining contraction, i.e.

⟨Vg(p1, ε1)Vg(p2, ε2)⟩ = AiV4g
2
cp

µ
2ε1µνη

νλε2λρp
ρ
1 +O(p4). (4.23)

We have to compare this to the relevant term in the action which leads to linearized
Einstein equations, because both of them represent the 2-point amplitude of gravi-
tons. We read off

S =
M2

P

2

∫
d4x
(
− 1

2
hµν,ρh

νρ,µ
)
, (4.24)

where
Gµν = ηµν + hµν , (4.25)

for a symmetric fluctuation hµν . hµν and εµν have the relation in momentum space
showed by the vertex operator (4.21)

hµν = −4πgcεµνe
ip·X . (4.26)

Using (4.14), we have

M2
P =

1

κ24
(e−2Φ4 + δE). (4.27)
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Thus we compare (4.23) with

−1

4
κ24

∫
d4xδEhµν,ρh

νρ,µ. (4.28)

And we get

δE =
κ24
8π2

A =
α′

8π
A. (4.29)

The amplitude A gets contributions from all 1-loop surfaces, i.e. T , K, A, M.

4.4 One-loop surfaces

A detailed analysis of one-loop surfaces can be found in app.D.2. Torus and Sphere
contributions are already given in (4.13).

4.4.1 Contributions from K, A and M
Here we closely follow the calculation in [36]. Neglecting the momentum conservation
δ function arising from the bosonic zero mode integration we have

Aσ = − 1

8N(4π2α′)2

∑
s=even

∫ ∞

0

dt

t3

N−1∑
k=0

Z(ℓ)
σ (τσ, s)

∫
σ

d2ν1

∫
σ

d2ν2(
⟨∂̄X1∂̄X2⟩σ(⟨ψ2ψ1⟩sσ)2 + ⟨∂X1∂̄X2⟩σ(⟨ψ2ψ̄1⟩sσ)2

+⟨∂̄X1∂X2⟩σ(⟨ψ̄2ψ1⟩sσ)2 + ⟨∂X1∂X2⟩σ(⟨ψ̄2ψ̄1⟩sσ)2
)

(4.30)

where σ stands for the different world-sheet topologies K, A andM, with world-sheet
parameters τK = 2it, τA = it

2
, τM = 1

2
+ it

2
. Z

(ℓ)
σ (τσ, s) is the contribution (D.48) to

the partition function from the θℓ element inserted sector. The spin structure sum
only runs over the even spin structures s. Note that there is no contribution to Aσ

from eight fermion terms, cf. [14, §3.4].
From [36], we use

(⟨ψ2(ν)ψ1(0)⟩sσ)2 = −∂2ν lnϑ1(ν, τ) + ∂2v
ϑs(v, τ)

ϑs(0, τ)

∣∣∣∣
v=0

. (4.31)

It is the sum of a spin structure independent term with a spin structure dependent
term. The contribution to Aσ involving the first term in (4.31) (the spin struc-
ture independent term) does not survive the sum over spin structures in the super-
symmetric case. On the other hand, the spin structure dependent term does not
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depend on the vertex operator position and, thus can be taken out of the ν integrals.
Besides, provided that it does depend on the vertex operator position, this is the
same for (⟨ψ2ψ1⟩sσ)2, (⟨ψ2ψ̄1⟩sσ)2, (⟨ψ̄2ψ1⟩sσ)2 and (⟨ψ̄2ψ̄1⟩sσ)2. Take care of the relative
minus signs arising from conventions, the resulting ν integral can be solved using [7]∫
σ

d2ν1

∫
σ

d2ν2

(
⟨∂̄X1∂̄X2⟩σ−⟨∂X1∂̄X2⟩σ−⟨∂̄X1∂X2⟩σ+ ⟨∂X1∂X2⟩σ

)
=
α′π Im(τσ)

2
.

(4.32)
Taking into account (4.29), we finally achieve

(δE)σ = − α′

8π

1

8N(4π2α′)2
∂2v
∑

s=even

∫ ∞

0

dt

t3

N−1∑
ℓ=0

Z(ℓ)
σ (τσ, s)

ϑs(v, τσ)

ϑs(0, τσ)

α′π Im(τσ)

2

∣∣∣∣∣
v=0

= −(α′)2

8π

1

8N(4π2α′)2

∫ ∞

0

dt

t3
π Im(τσ)

2

N−1∑
ℓ=0

∂2v
∑

s=even

Z(ℓ)
σ (τσ, s)

ϑs(v, τσ)

ϑs(0, τσ)

∣∣∣∣∣
v=0

= −(α′)2

8π

1

8N(4π2α′)2

∫ ∞

0

dt

t3
π Im(τσ)

2

N−1∑
ℓ=0

∑
s=even

Z(ℓ)
σ (τσ, s)

ϑ′′
s(0, τσ)

ϑs(0, τσ)
. (4.33)

The lattice sums can be done after performing the spin-structure summation.
Thus the sum over spin-structure in (4.33) can be performed using (D.48) and (D.49)
for the partition function. Then we need the formula (cf. [15, (130)])

∑
s=even

Z(ℓ)
s

ϑ′′
s(0)

ϑs(0)
=

3∑
i=1

ϑ′
[

1
2
+ hi

1
2
+ γi + gi

]
(0)

ϑ

[
1
2
+ hi

1
2
+ γi + gi

]
(0)

. (4.34)

With this, (4.33) reads

(δE)σ = − π(α′)2

32N(4π2α′)2

∫ ∞

0

dt

t2
Im(τσ)

t

N−1∑
ℓ=0

CPσχ̃σ sin(πγ3)

·

(
2∏

j=1

f(γj)

)
3∑

i=1

ϑ′
[

1
2
+ hi

1
2
+ γi + gi

]
(0)

ϑ

[
1
2
+ hi

1
2
+ γi + gi

]
(0)

. (4.35)

4.5 Supersymmetric sectors

Here we discuss the contributions from different supersymmetric sectors.
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4.5.1 N = 1 sectors

Following [14, §3.8-3.11], N = 1 sectors contribution to the Planck mass is

(δE)(N=1) =
∑
σ

(δE)(N=1)
σ = − π(α′)2

64N(4π2α′)2

∫ ∞

0

dt

t2

∑
σ

∑
ℓ∈{N=1}

CPσσ
(ℓ). (4.36)

Here

σ(ℓ) = ẽσχ̃σ sin(πγ3)

(
2∏

j=1

f(γj)

)
σ̂(ℓ) for ℓ ∈ {N = 1} (4.37)

with

ẽσ =

{
1 for A,M
4 for K

(4.38)

and

σ̂(ℓ) =
3∑

i=1

ϑ′
[

1
2
+ hi

1
2
+ γi + gi

]
(0)

ϑ

[
1
2
+ hi

1
2
+ γi + gi

]
(0)

. (4.39)

For later use, we also introduce

eσ =

{
1 for A
4 for M,K

, (4.40)

From (4.38)-(4.40) and Table D.2, we have

K(ℓ)
u = 16 sin(2πℓv3) sin(2πℓv1) sin(2πℓv2)K̂(ℓ)

u ,

K(ℓ)
t = 4χ̃(θN/2, θℓ) sin(2πℓv3)K̂(ℓ)

t ,

A(ℓ)
99 = 4 sin(πℓv3) sin(πℓv1) sin(πℓv2)Â(ℓ)

99 ,

A(ℓ)
55 = 4 sin(πℓv3) sin(πℓv1) sin(πℓv2)Â(ℓ)

55 ,

A(ℓ)
95 = 2 sin(πℓv3)Â(ℓ)

95 ,

M(ℓ)
9 = −4 sin(πℓv3) sin(πℓv1) sin(πℓv2)M̂(ℓ)

9 ,

M(ℓ)
5 = −4 sin(πℓv3) cos(πℓv1) cos(πℓv2)M̂(ℓ)

5 . (4.41)

Note that for odd N there is no contribution from Kt, A55, A95 and M5.
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Making use of (A.10) and the fact that the even/odd spin structure ϑ functions are
even/odd functions of their argument, together with the super-symmetry condition∑

i vi = 0, we can get

σ̂(qN±ℓ) = ±σ̂(ℓ) for all σ, σ̂( qN
2

±ℓ) = ±σ̂(ℓ) for K,

σ(qN±ℓ) = σ(ℓ) for all σ, σ( qN
2

±ℓ) = σ(ℓ) for K. (4.42)

q is an arbitrary integer. These identities allow the individual sectors to be related
to each other.

For N = 1 sectors with hi = 0, the t-integral in (4.36) can be performed using
[14, (115)- (117)], i.e. (assuming 0 < γ < 1 for A and K, and 0 < γ < 1/2 for M)

IA/K(γ) =

∫ ∞

1
eσΛ

dt

t2
ϑ′
1(γ, τσ)

ϑ1(γ, τσ)

= eσπ(1− 2γ)Λ2 + eσ
π

24
[ψ′(γ)− ψ′(1− γ)], (4.43)

IM(γ) =

∫ ∞

1
4Λ

dt

t2
ϑ′
1(γ,

1
2
+ it

2
)

ϑ1(γ,
1
2
+ it

2
)

= 8π(1− 4γ)Λ2 +
π

12
[ψ′(γ)− ψ′(1− γ)− 1

2
ψ′(

1

2
+ γ) +

1

2
ψ′(

1

2
− γ)].

(4.44)

Here ψ′(x) denotes the trigamma function, i.e. the derivative of the digamma func-
tion ψ(x) = Γ′(x)/Γ(x).

The t-integral of terms with hi = ±1/2, appearing in Kt and A95, is given in
app.E where we find (for 0 < γ < 1)

ĨA/K(γ) =

∫ ∞

1
eσΛ

dt

t2
ϑ′
4(γ, τσ)

ϑ4(γ, τσ)
= eσπ(1− 2γ)Λ2 − eσ

π

48
[ψ′(γ)− ψ′(1− γ)]. (4.45)

Furthermore, the t-integral for M when γ > 1
2
is computed in app.E.1 where we

find (for 1
2
< γ < 1)

ĨM(γ) =

∫ ∞

1
4Λ

dt

t2
ϑ′
1(γ,

1
2
+ it

2
)

ϑ1(γ,
1
2
+ it

2
)

= 8π(3− 4γ)Λ2 − π

24

[
ψ′(γ − 1

2
)− ψ′(

3

2
− γ) + 2ψ′(1− γ)− 2ψ′(γ)

]
.

(4.46)
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4.5.2 N ≥ 2 sectors

N = 2 sectors are characterized by the fact that along exactly one torus (say the
n-th torus) hn vanishes and γn + gn is integer. Thus one needs to take the limit of
(4.35)

(−2 sinπ(γn + gn))

ϑ′
[

1
2

1
2
+ γn + gn

]
(0)

ϑ

[
1
2

1
2
+ γn + gn

]
(0)

→
ϑ′
[

1
2

1
2
+ γn + gn

]
(0)

η3
L[n,M/W ]

= (−2π)(−1)γn+gnL[n,M/W ]. (4.47)

To summarize, the N = 2 sector contribution is given by

(δE)(N=2) =
∑
σ

(δE)(N=2)
σ = − π(α′)2

64N(4π2α′)2

∫ ∞

0

dt

t2

∑
σ

∑
ℓ∈{N=2}

CPσσ
(ℓ). (4.48)

Here
σ(ℓ) = πẽσχ̃σD

(ℓ)
σ L[n,M/W ] for k ∈ {N = 2}, (4.49)

and the constant factor D
(ℓ)
σ is given by

D(ℓ)
σ = (−1)γn+gn

3∏
i ̸=n

f(γi) (4.50)

with f(γ3) = −2 sinπγ3. n depends on ℓ and σ.
Let us express (C.22) and (C.23) collectively as

L[n,M/W ] =
C [n,M/W ]

t

∑
m1,m2

e−
π
t
mambg

[n,M/W ]
ab , (4.51)

where

C [n,M/W ] =

{
Vn

4π2α′ for M (momentum sum)
4π2α′

Vn
for W (winding sum)

(4.52)

and

g
[n,M/W ]
ab =

{
g
[n]
ab for M (momentum sum)

g[n]ab for W (winding sum)
, (4.53)

i.e. g
[n,W ]
ab is the inverse matrix of g

[n,M ]
ab .
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Now we split L[n,M/W ] as

L[n,M/W ] =
C [n,M/W ]

t

(
1 +

∑
m⃗∈Z2\0⃗

e−
π
t
mambg

[n,M/W ]
ab

)

=
C [n,M/W ]

t
+ L′[n,M/W ] (4.54)

with

L′[n,M/W ] =
C [n,M/W ]

t

∑
m⃗∈Z2\0⃗

e−
π
t
mambg

[n,M/W ]
ab . (4.55)

Then we have ∫ ∞

1
eσΛ

dt

t2
L[n,M/W ] =

C [n,M/W ]e2σΛ
2

2
+

∫ ∞

0

dt

t2
L′[n,M/W ]. (4.56)

Here we set Λ = ∞ in the second term on the right hand side since it is finite in the
limit Λ = ∞. It can be evaluated using (app.§E)

Γ[n,M/W ] ≡
∫ ∞

0

dt

t3

∑
m⃗∈Z2\0⃗

e−
π
t
mambg

[n,M/W ]
ab

=


(4π2α′)2

π2V 2
n
E2(U

[n]) for M (momentum sum)
V 2
n

π2(4π2α′)2
E2

(
− 1

U [n]

)
for W (winding sum)

, (4.57)

where U [n] is the complex structure of the n-th torus and E2 is a non-holomorphic
Eisenstein series, cf. (E.7).

For N = 4 sectors hi vanish and γi+ gi are integer along all three tori. Thus, the
numerator of (4.35) has a triple zero which can not be balanced by the simple zero
in the denominator. Consequently the N = 4 sectors do not contribute.



Part II

Loop corrections to the
Einstein-Hilbert term



Chapter 5

O(k2) 1-loop 3-point graviton
amplitude

We are interested in confirming the calculation of corrections through graviton 3-
point amplitudes, because it could help to provide complementary information as
well as to clarify ambiguities in 2-point calculations. Graviton 3-point amplitude
was studied in [9] without application of Minahan’s approach (see §5.1.2), apparently
their result was incomplete. We would like to reproduce O(k2) graviton 3-point
amplitudes of Heterotic theory[40] where pinched-off integration was considered, and
extend it to Type-I theory.

As we have mentioned in §4.1, looking for the effective action requires to compare
the amplitudes calculated from string theories with the amplitudes calculated from
the effective action. Expanding the Einstein-Hilbert term in the effective action
around the flat metric gµν = ηµν + hµν , we get the first non-vanishing contribution
of gravity at 3-point level[40]:

√
gR|h3 = hµν (h,

µν h) + 2hµν ,
σhνρ, µhρσ (5.1)

→ (k2ϵ1k2) (ϵ2ϵ3) + 2 (k3ϵ2ϵ3ϵ1k2) + cyclic perm. (5.2)

hµν is required to satisfy the harmonic gauge condition □hµν = 0, ∂µhµν = 0 and
the tracelessness condition h = 0, to be able to correspond to string amplitudes. We
expect that at tree level and 1-loop level the calculation of string amplitudes gives
exactly the above kinematic structure (k2ϵ

1k2) (ϵ
2ϵ3) + 2 (k3ϵ

2ϵ3ϵ1k2) + cyclic perm.
at O(k2) order.

We apply the pinched-off integration and Taylor expansion in order to extract
extra O(k2) contributions from higher k order terms. We first try to reproduce
the Heterotic kinematic structure calculation in [40]. This was done in 2 different
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routine: one by direct calculation of vertex operator contractions, and the other one
by operator product expansion calculation. The exact calculations were completed
in collaboration with Dr. Harold Erbin and Dr. Jin U Kang. Then we lift the result
in Heterotic to Type-I by the lifting technique (see from e.g.[7][9]). For simplicity,
we rename the two-point functions P (zi, zj) ≡ Pij and S(zi, zj) ≡ Sij in this chapter.

5.1 Preliminary

We follow the notation in [23] that terms involving z̄ are left-moving (anti-holomorphic)
and terms involving z are right-moving (holomorphic).

5.1.1 Modular invariance and Transversality

We would require modular invariance condition1

k1 · k2 + k2 · k3 + k3 · k1 = 0. (5.3)

Polarization transversality condition2.

kµϵµν = 0 (5.4)

and momentum conservation
k1 + k2 + k3 = 0 (5.5)

would be imposed after pinched-off integration as we will mention in the following
§5.1.2.

5.1.2 Pinched-off Integration

The kinematic structure of O(k2) contribution in 3-point 1-loop calculation does not
match (5.2). However we do not expect such a mismatch between string calculation
and effective action calculation. To get the exact gravity kinematic structure (5.2) at
1-loop level in string amplitude, one has to consider contributions from O(k4) terms
in 1-loop calculation. A special technique called ”pinched-off” integration (used in
e.g.[58][56][17]) would be used to extract extraO(k2) contributions fromO(k4) terms.

1The Koba–Nielsen factor in the amplitude picks up an extra phase under modular transforma-
tion on torus, and modular invariance requires the extra phase to vanish. Therefore it imposes the
modular invariance condition.[58, p.56]

2Transversality condition is imposed by BRST invariance as an on-shell conditions kµϵµν =
ϵµνk

ν = 0 and k2 = 0[23, p.591]
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Pinched off integration arises in the limit zij → 0 of 3-point amplitude, which
means that two points of 3 are pinched towards each other. Making use of (3.28)
and taking the limit zij → 0, one obtains

When zij → 0 : Pij = −α
′

2
ln |χij|2 → −α

′

2
ln |zij|2, |χij|2 → |zij|2, (5.6a)

⟨:
∏
j

eikj ·Xj :⟩ =
∏
i<j

|χij|α
′ki·kj →

∏
i<j

|zij|α
′ki·kj (Koba–Nielsen factor), (5.6b)

∂̄iPij →
α′

2z̄ij
, ∂iPij →

α′

2zij
. (5.6c)

In this chapter we use χij as a convenient abbreviation of the variable of the loga-
rithmic function in the 1-loop bosonic propagator(3.15).

Due to momentum conservation, we have the condition ki · kj = 0 such that
certain O(k4) terms containing ki · kj vanish. Referring to the technique introduced
by Minahan [58, p. 50], we relax the condition ki ·kj = 0 of momentum conservation,
and impose the conditions only after we have done the integration. Then the integral
over the region |zij| < ϵ can yield a pole in ki ·kj, if we assume that α′|ki · kj| ≪

∣∣ 1
ln ϵ

∣∣:∫
|zij |<ϵ

d2zij
|zij|α

′ki·kj

|zij|2
≃ 2π

α′ki · kj
, (5.7)

and if ki · kj is analytically continued to a region where the integral is convergent.
One immediately finds that the integration cancels possible ki ·kj (order k2) in O(k4)
terms, and thus the cancellation results in finite value O(k2) terms.

Double pinched-off integration There cannot be a double pinched-off integra-
tion contribution to k2 order, because of the factorization of Riemann surface[65, §8],
see Figure 5.1. Due to the tiny integration region |zij| < ϵ, the surface with double
pinched-off integration would be factorized[69][65] into a torus and a sphere with 3
punctures, and they are connected by a string propagator (plumbing fixture) with
degeneration parameter q → 0. Since tadpole is vanishing in Type-I on torus, anal-
ysis in [69] and [65, §8] shows that double pinched-off integration could be absorbed
into a field redefinition and its contribution to k2 order is unphysical.

5.1.3 Taylor expansion trick

It is possible to find more singular terms in the pinching limit on which one could
apply pinched-off integration, with the help of Taylor expansion. One could use these
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x

x
x

tadpole

Figure 5.1: Double pinching factorization
x represents the insertion of a vertex operator

momentum terms to cancel corresponding momentum terms in the denominators in
the amplitude.

More concretely, one can Taylor-expand

lim
zl→zj

P (z̄i − z̄j) = P ((z̄i − z̄l) + (z̄l − z̄j))

= lim
zl→zj

(Pil + (z̄l − z̄j)∂̄z̄i−z̄lPil + · · · )

∼ lim
z̄l→z̄j

(Pil + z̄lj ∂̄iPil), (5.8)

and we use the propagator with z̄ because this would be used mostly in the later
calculation.

It can be much more tedious if we list all the middle steps of the calculation in the
following sections. So we omit the tedious middle steps and instead give an example
of how (5.8) works, to provide readers an intuitive understanding:

lim
zij→0

∂iPij ∂̄
2
ijPij(∂̄lPli − ∂̄lPlj) = lim

zij→0

1

zij

1

z̄2ij
(∂̄lPli − ∂̄lPlj)

= lim
zij→0

1

|zij|2
1

z̄ij
(∂̄lPli − ∂̄lPlj)

= − lim
zij→0

α′

2

1

|zij|2
1

z̄ij
(z̄ij ∂̄l∂̄jPlj) using (5.8)

= − lim
zij→0

α′

2

1

|zij|2
∂̄ljPlj. (5.9)

We see that the term limzij→0
1

|zij |2
required for pinched-off integration(5.7) shows up

in the above expansion. Be aware that, besides Taylor expansion trick, we will also
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use (5.32) throughout the calculations in this chapter, as well as (5.33) and (5.34)
after pinched-off integration, in order to transform the momentum terms into the
form of (5.2). The terms relevant to the kinematic structure (5.2) should have the
kinematic structures in the form of (kjϵikj) (ϵjϵl) or (kkϵiϵjϵlki).

5.2 Heterotic String

We consider here the Heterotic string that the world-sheet is oriented without bound-
aries, and the corresponding tree level and one-loop level surfaces are sphere and
torus.

Vertex Operator The zero ghost picture massless vertex operator of Heterotic
String is

V g
(0)(z, z̄, k, ϵ) = :

2

α′ ϵµν(k)i∂̄X
µ(z̄)

(
i∂Xν(z) +

α′

2
(k · ψ)ψν(z)

)
eik·X(z,z̄) :, (5.10)

and the -1 ghost picture massless vertex operator of Heterotic String is

V g
(−1)(z, z̄, k, ϵ) = :

√
2

α′ ϵµν(k)i∂̄X
µ(z̄)e−ϕψν(z)eik·X(z,z̄) : . (5.11)

5.2.1 Tree level

As discussed in §3.3, the ghost picture charge of tree level surfaces would be -2, thus
we would need vertex operators in zero and -1 ghost picture. The tree level 3-point
amplitude is

A
(0)
3 = ⟨cc̄V−1(z1) cc̄V−1(z2) cc̄V0(z3)⟩Σ0

(5.12)

with z1, z2 and z3 fixed. Inserting the vertex operators (5.10) and (5.11) gives (normal
ordering omitted)

A
(0)
3 =

(
2

α′

)2

ϵ1,µ1ν1ϵ2,µ2ν2ϵ3,µ3ν3⟨e−ϕ1e−ϕ2⟩⟨c1c̄1c2c̄2c3c̄3⟩

×
〈
i∂̄Xµ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉

×
(〈

i∂Xν3
3 e

ik1·X1eik2·X2eik3·X3
〉
⟨ψν1

1 ψ
ν2
2 ⟩

+
α′

2

〈
eik1·X1eik2·X2eik3·X3

〉
⟨ψν1

1 ψ
ν2
2 k3 · ψ3 ψ

ν3
3 ⟩
)
. (5.13)
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The ϕ correlator is

⟨e−ϕ1e−ϕ2⟩ = 1

z12
, (5.14)

and the ghost correlator yields

⟨c1c̄1c2c̄2c3c̄3⟩ = |z12|2|z23|2|z13|2. (5.15)

Using (B.2e) with an auxiliary variable ρ, we have (right-moving)〈
3∏

i=1

i∂Xµi(zi)e
iki·X(zi)

〉
=

3∏
i=1

∂

∂ρi,µi

1
2

(
α′

2

)2
(∑

i<j

ρi · ρj
z2ij

+
∑
i ̸=j

ki · ρj
zij

)2

+
1

3!

(
α′

2

)3
(∑

i ̸=j

ki · ρj
zij

)3
∏

i<j

(zij)
α′
2
ki·kj

∣∣∣∣∣
ρi=0

(5.16)

by expanding the exponential in series and keeping only terms which will contribute
after taking derivatives and setting the ρi to 0. Bar is omitted for simplicity, and we
will take it back later. Then the expression simplifies to〈

3∏
i=1

i∂Xµi(zi)e
iki·X(zi)

〉
=

1

2

(
α′

2

)2 [
ηµ1µ2

z212

(
kµ3

1

z13
+
kµ3

2

z23

)
+
ηµ1µ3

z213

(
kµ2

1

z12
− kµ2

3

z23

)
− ηµ2µ3

z223

(
kµ1

2

z12
+
kµ1

3

z13

)
−α

′

2

(
kµ3

1

z13
+
kµ3

2

z23

)(
kµ2

1

z12
− kµ2

3

z23

)(
kµ1

2

z12
+
kµ1

3

z13

)]∏
i<j

z
α′
2
ki·kj

ij .

(5.17)

Using momentum conservation and transversality kµi ϵi,µν = 0, we can further simplify
the expression. For O(α′0) part, one has as an example

kµ3

1

z13
+
kµ3

2

z23
=

−(kµ3

2 +�
�kµ3

3 )z23 + kµ3

2 z13
z13z23

= kµ3

2

z13 − z23
z13z23

= kµ3

2

z12
z13z23

(5.18)

such that
ηµ1µ2

z212

(
kµ3

1

z13
+
kµ3

2

z23

)
=
ηµ1µ2kµ3

2

z12z13z23
. (5.19)

Similarly one has

kµ2

1

z12
− kµ2

3

z23
= kµ2

1

z13
z12z23

,
kµ1

2

z12
+
kµ1

3

z13
= kµ1

3

z23
z12z13

(5.20)
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and

ηµ1µ3

z213

(
kµ2

1

z12
− kµ2

3

z23

)
=
ηµ1µ3kµ2

1

z12z13z23
, −η

µ2µ3

z223

(
kµ1

2

z12
+
kµ1

3

z13

)
=
ηµ2µ3kµ1

3

z12z13z23
. (5.21)

Sum up these 3 terms we get

tµ1µ2µ3 = ηµ1µ2kµ2

3 + ηµ2µ3kµ1

3 + ηµ3µ1kµ2

1 (5.22)

in (A.12).
O(α′) term could also be simplified as(

kµ3

1

z13
+
kµ3

2

z23

)(
kµ2

1

z12
− kµ2

3

z23

)(
kµ1

2

z12
+
kµ1

3

z13

)
= −kµ3

2

z12
z13z23

kµ2

1

z13
z12z23

kµ1

3

z23
z12z13

= −k
µ2

1 k
µ3

2 k
µ1

3

z12z13z23
. (5.23)

Gathering the above results we obtain (left-moving)〈
3∏

i=1

i∂̄Xµi(z̄i)e
iki·X(z̄i)

〉
∝ 1

2

(
α′

2

)2
T µ1µ2µ3

z̄12z̄13z̄23
(5.24)

where

T µ1µ2µ3 = ηµ1µ2kµ3

2 + ηµ2µ3kµ1

3 + ηµ3µ1kµ2

1 +
α′

2
kµ1

3 k
µ2

1 k
µ3

2 (5.25)

is defined in (A.12). Similarly one derives (right-moving)〈
i∂Xµ3(z3)

3∏
i=1

eiki·X(zi)

〉
∝ −α

′

2

kµ3

1 z12
z13z23

∏
i<j

(zij)
α′
2
ki·kj . (5.26)

Using (3.13), fermion part is

⟨ψν1(z1)ψ
ν2(z2)k3 · ψψν3(z3)⟩ = k3ρ⟨ψν1(z1)ψ

ν2(z2)ψ
ρ(z3)ψ

ν3(z3)⟩

∝ −ην2ν3kν13 + ην1ν3kν23
z13z23

. (5.27)

Summing up all the correlation functions and using momentum conservation and
transversality of ϵ, finally we obtain

A
(0)
3 =

α′

4
ϵ1,µ1ν1ϵ2,µ2ν2ϵ3,µ3ν3T

µ1µ2µ3tν1ν2ν3
∏
i<j

|zij|α
′ki·kj . (5.28)
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Imposing on-shell condition ki · kj = 0 we have
∏

i<j |zij|
α′ki·kj = 1. Then at order k2

we get

A
(0)
3

∣∣∣
k2

=
α′

4

[
(ϵ⊤1 ϵ2)(k2ϵ3k2) + (k2ϵ3ϵ

⊤
2 ϵ1k3) + (k2ϵ3ϵ

⊤
1 ϵ2k1) + cyclic perms

]
. (5.29)

One immediately finds that this amplitude does share the same kinematic structure
as the expanded Einstein-Hilbert term (5.2) in the effective action3.

5.2.2 Direct Calculation of the 1-loop kinematic structure

As discussed in §2.2.1, the ghost picture charge of 1-loop level surfaces would be
0, thus we would need vertex operator only in zero ghost picture. The 1-loop level
3-point amplitude is

A
(1)
3 =

〈
3∏

i=1

∫
d2zi V0(zi, z̄i)

〉
Σ1

. (5.30)

Inserting the vertex operators (5.10) gives the correlation function (normal ordering
omitted)

G
(1)
3 =

(
2

α′

)3

ϵµ1ν1
1 ϵµ2ν2

2 ϵµ3ν3
3

〈
3∏

i=1

[
i∂̄Xµi

i

(
i∂Xνi

i +
α′

2
ki · ψiψ

νi
i

)
eiki·Xi

]〉
(5.31a)

=

(
2

α′

)3

ϵµ1ν1
1 ϵµ2ν2

2 ϵµ3ν3
3

[〈∏
i

i∂̄Xµi

i i∂X
νi
i e

iki·Xi

〉

+
α′

2

∑
j

〈∏
ℓ̸=j

i∂Xνℓ
ℓ

∏
i

i∂̄Xµi

i e
iki·Xi

〉
⟨kj · ψjψ

νj
j ⟩

+

(
α′

2

)2∑
ℓ

〈
i∂Xνℓ

ℓ

∏
i

i∂̄Xµi

i e
iki·Xi

〉〈∏
j ̸=ℓ

kj · ψjψ
νj
j

〉

+

(
α′

2

)3
〈∏

i

i∂̄Xµi

i e
iki·Xi

〉〈∏
i

ki · ψiψ
νi
i

〉]
(5.31b)

≡ G0f
3 +G2f

3 +G4f
3 +G6f

3 . (5.31c)

The superscript nf stands for the number of fermions. We observe that there is the
cyclic permutation symmetry of the correlation function, thus it is only necessary to
compute 1 specific order and derive other orders by cyclic permutation.

3We notice that ϵi are symmetric in gravitons, thus the transposition could be ignored when it
is compared to (5.2).
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Spin structure independent term is vanishing due to the sum over the spin
structures[40], therefore G

(0f)
3 = 0. And G

(2f)
3 = 0 because the 2 fermions are

normal ordered and cannot be contracted with anything. We are left with G
(1)
3 =

G
(4f)
3 +G

(6f)
3 .

In the following computation, the contractions between the exponentials eiki·Xi

would not be indicated, because they always contribute the same factor
∏

i<j |χij|α
′ki·kj .

As a reminder, we have used modular invariance (5.3) to transform the momentum
terms throughout all calculations in this chapter, in order to get the desired forms
of the momentum terms. For example,

ki · kj
kl · ki

+
kj · kl
kl · ki

= −kl · ki
kl · ki

= −1. (5.32)

We have also used momentum conservation and transversality (5.4) after pinched-off
integration to get the desired forms of the kinematic structures. For example,

klϵiϵjϵlki = −kjϵiϵjϵlki, (5.33)

and
(kjϵlki)(ϵiϵj) = −(kiϵlki)(ϵiϵj) (5.34)

Pinched-off integration contracting rules We observe that to get extra O(k2)
terms from pinched-off integration, the following rules would be helpful when con-
tracting operators:4

1. Pinched-off integration (5.7) would require 1
zij

and 1
z̄ij

in the denominator of

one term in the amplitude. It is only possible to derive 1
zij

or 1
z̄ij

from either

⟨ψiψj⟩ or ⟨∂Xie
ikj ·Xj⟩ in the pinching limit |zij| < ϵ≪ 1.

2. We require at least 1 pair of fermions to be contracted in the form ⟨ki·ψikj ·ψj⟩ =
ki ·kj⟨ψiψj⟩. Since in the 6f terms there are only 3 of ki ·ψi, then one can have
at most 1 pair of ki · kj. In the 4f terms we have no choice but take the only
possible contraction ki · kj⟨ψiψj⟩. We have this rule because we want to cancel
the pole from the pinched-off integration.

3. In the 6f terms, we require one boson to be contracted with one exponential
to contribute 1/z̄ij, which has 2 ways: ⟨∂̄Xie

ikj ·Xj⟩ or interchanging zi and zj.
And we also require one pair of fermions contraction ⟨ψiψj⟩ to contribute 1/zij.

4Beaware that the rules work for both Heterotic and Type-I strings.
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4. To get the tensor structure (kjϵikj)(ϵjϵk), one should notice that (ϵjϵk) already
restricts part of the contractions to be ⟨∂̄Xµj

j ∂̄X
µk

k ⟩⟨ψνj
j ψ

νk
k ⟩. In other words,

one should look for terms with ηµjµkηνjνk .

5. The number of momenta k equals the number of imaginary signs i, which will
be needed when considering the overall sign.

We present two examples of the tensor structure (k1ϵ3k1)(ϵ1ϵ2):

ϵ1,µ1ν1 ∂̄X
µ1

1 ik1 · ψ1ψ
ν1
1 e

ik1·X1ϵ2,µ2ν2 ∂̄X
µ2

2 ik2 · ψ2ψ
ν2
2 e

ik2·X2ϵ3,µ3ν3 ∂̄X
µ3

3 ∂Xν3
3 e

ik3·X3 .(5.35)

With the z13 pinched-off integration, the correlation function of the above contrac-
tions of a 4f term to the k2 order turns into∫
d2z1

∫
d2z2

∫
d2z3G

1
4f,(k1ϵ3k1)(ϵ1ϵ2)

∼− α′

2

∫
d2z1

∫
d2z2

∫
d2z3(k1 · k2)(k1ϵ3k1)(ϵ1ϵ2)

S2
12∂̄

2P12
|χ13|

1
2
k1·k3

|z13|2
|χ23|

1
2
k2·k3|χ12|

1
2
k1·k2

POI∼ − π

∫
d2z1

∫
d2z2

k1 · k2
k1 · k3

(k1ϵ3k1)(ϵ1ϵ2)

S2
12∂̄

2P12|χ23|
1
2
k2·k3 |χ12|

1
2
k1·k2 , (5.36)

and ”POI” stands for ”Pinched-Off Integration”. We recall that Pij is the 1-loop
bosonic propagator here and χij is the variable of the logarithm function in Pij.

ϵ1,µ1ν1 ∂̄X
µ1

1 ik1 · ψ1ψ
ν1
1 e

ik1·X1ϵ2,µ2ν2 ∂̄X
µ2

2 ik2 · ψ2ψ
ν2
2 e

ik2·X2ϵ3,µ3ν3 ∂̄X
µ3

3 ik3 · ψ3ψ
ν3
3 e

ik3·X3 .(5.37)

Using S13 ≃ z−1
13 and S12 ≈ −S23 when |z13| < ϵ, and applying the z13 pinched-off

integration, the correlation function of the above contractions of a 6f term to the k2

order turns into∫
d2z1

∫
d2z2

∫
d2z3G

1
6f,(k1ϵ3k1)(ϵ1ϵ2)

∼α
′

2

∫
d2z1

∫
d2z2

∫
d2z3(k2 · k3)(k1ϵ3k1)(ϵ1ϵ2)

S12S13S23∂̄
2P12

|χ13|
1
2
k1·k3

z̄31
|χ23|

1
2
k2·k3 |χ12|

1
2
k1·k2

POI∼ π

∫
d2z1

∫
d2z2

k2 · k3
k1 · k3

(k1ϵ3k1)(ϵ1ϵ2)
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S2
12∂̄

2P12|χ23|
1
2
k2·k3 |χ12|

1
2
k1·k2 . (5.38)

In the following we start the calculation, we do it in a compact way, try to deal with
the whole correlation function together, and omit some tedious middle steps.

Computation of the 4-fermion term

Using correlation functions in app.B, consider G4f
3 term with ℓ = 1 in (5.31b):

G4f
3

∣∣∣
ℓ=1

=
2

α′ ϵ1,µ1ν1
ϵ2,µ2ν2

ϵ3,µ3ν3

〈
i∂Xν1

1 i∂̄Xµ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉
⟨k2 · ψ2ψ

ν2
2 k3 · ψ3ψ

ν3
3 ⟩

(5.39a)

=
2

α′ ϵ1,µ1ν1
ϵ2,µ2ν2

ϵ3,µ3ν3
k2ρk3σ

×
[〈
i∂Xν1

1 i∂̄X
µ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉
+
〈
i∂Xν1

1 i∂̄X
µ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉

+
〈
i∂Xν1

1 i∂̄X
µ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉
+
〈
i∂Xν1

1 i∂̄X
µ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉

+
〈
i∂Xν1

1 i∂̄X
µ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉
+
〈
i∂Xν1

1 i∂̄X
µ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉

+ (2 ↔ 3)

+
〈
i∂Xν1

1 i∂̄X
µ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉
+
〈
i∂Xν1

1 i∂̄X
µ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉

+
〈
i∂Xν1

1 i∂̄X
µ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉
+
〈
i∂Xν1

1 i∂̄X
µ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉

+
〈
i∂Xν1

1 i∂̄X
µ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉
+ (2 ↔ 3)

]
×
[
⟨ψρ

2ψ
ν2
2 ψ

σ
3ψ

ν3
3 ⟩ + ⟨ψρ

2ψ
ν2
2 ψ

σ
3ψ

ν3
3 ⟩
]

(5.39b)

=
2

α′ ϵ1,µ1ν1ϵ2,µ2ν2ϵ3,µ3ν3k2ρk3σ (−ηρσην2ν3 + ηρν3ησν2)S2
23 ×

∏
i<j

|χij |α
′ki·kj .

×

{(
α′

2

)2

(
kν1
2

z12
+
kν1
3

z13
)

[
−
(
−k

µ3

1

z̄13
− kµ3

2

z̄23

)
ηµ1µ2 ∂̄212P12 −

(
−k

µ2

1

z̄12
+
kµ2

3

z̄23

)
ηµ1µ3 ∂̄213P13

−
(
kµ1

2

z̄12
+
kµ1

3

z̄13

)
ηµ2µ3 ∂̄223P23

]
−
(
α′

2

)2

ην1µ2∂1∂̄2P12

[
−k

µ1

2

z̄12

kµ3

1

z̄13
− kµ1

2

z̄12

kµ3

2

z̄23
− kµ1

3

z̄13

kµ3

1

z̄13
− kµ1

3

z̄13

kµ3

2

z̄23

]
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−
(
α′

2

)2

ην1µ3∂1∂̄3P13

[
−k

µ1

3

z̄13

kµ2

1

z̄12
+
kµ1

3

z̄13

kµ2

3

z̄23
− kµ1

2

z̄12

kµ2

1

z̄12
+
kµ1

2

z̄12

kµ2

3

z̄23

]
+ην1µ2ηµ1µ3∂1∂̄2P12∂̄

2
13P13 + ην1µ3ηµ1µ2∂1∂̄3P13∂̄

2
12P12

}
. (5.39c)
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After some simplifications one finds

G4f
3

∣∣∣
ℓ=1

=− α′

2
ϵ1,µ1ν1ϵ2,µ2ν2ϵ3,µ3ν3 (−k2 · k3ην2ν3 + kν32 k

ν2
3 )S2

23 ×
∏
i<j

|χij|α
′ki·kj

×
{(

kν12
z12

+
kν13
z13

)[
−
(
kµ3

1

z̄13
+
kµ3

2

z̄23

)
ηµ1µ2 ∂̄212P12

+

(
−k

µ2

1

z̄12
+
kµ2

3

z̄23

)
ηµ1µ3 ∂̄213P13 +

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)
ηµ2µ3 ∂̄223P23

]
+
α′π

2τ2

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)[
ην1µ2

(
kµ3

1

z̄13
+
kµ3

2

z̄23

)
+ ην1µ3

(
kµ2

1

z̄12
− kµ2

3

z̄23

)]
+

2π

α′τ2

[
ην1µ2ηµ1µ3 ∂̄213P13 + ην1µ3ηµ1µ2 ∂̄212P12

]}

(5.40)

Note that the result is invariant under 2 ↔ 3 as expected. The contributions ℓ = 2
and ℓ = 3 are obtained by permuting cyclically (1, 2, 3) (one should note that the
factor in the first square bracket is invariant, as expected since the anti-holomorphic
sector is identical in all three cases).

To be even more explicit, we can perform the contractions between the Lorentz
indices to identify the different tensor structures:

G4f
3

∣∣∣
ℓ=1

=− α′

2
ϵ1,µ1ν1

(
−k2 · k3

(
ϵ2ϵ

⊤
3

)
µ2µ3

+ (ϵ3k2)µ3
(ϵ2k3)µ2

)
S2
23 ×

∏
i<j

|χij |α
′ki·kj

×
{(

kν1
2

z12
+
kν1
3

z13

)[
−
(
kµ3

1

z̄13
+
kµ3

2

z̄23

)
ηµ1µ2 ∂̄212P12 +

(
−k

µ2

1

z̄12
+
kµ2

3

z̄23

)
ηµ1µ3 ∂̄213P13

+

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)
ηµ2µ3 ∂̄223P23

]
+
α′π

2τ2

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)[
ην1µ2

(
kµ3

1

z̄13
+
kµ3

2

z̄23

)
+ ην1µ3

(
kµ2

1

z̄12
− kµ2

3

z̄23

)]
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+
2π

α′τ2

[
ην1µ2ηµ1µ3 ∂̄213P13 + ην1µ3ηµ1µ2 ∂̄212P12

]}
(5.41a)

=− α′

2
S2
23 ×

∏
i<j

|χij |α
′ki·kj

×
{(

kν1
2

z12
+
kν1
3

z13

)[
−
(
kµ3

1

z̄13
+
kµ3

2

z̄23

)(
−k2 · k3

(
ϵ⊤1 ϵ2ϵ

⊤
3

)
ν1µ3

+ (ϵ3k2)µ3

(
ϵ⊤1 ϵ2k3

)
ν1

)
∂̄212P12

+

(
−k

µ2

1

z̄12
+
kµ2

3

z̄23

)(
−k2 · k3

(
ϵ2ϵ

⊤
3 ϵ1
)
µ2ν1

+
(
ϵ⊤1 ϵ3k2

)
ν1

(ϵ2k3)µ2

)
∂̄213P13

+

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)
ϵ1,µ1ν1

(
−k2 · k3

(
ϵ2ϵ

⊤
3

)
+
(
k3ϵ

⊤
2 ϵ3k2

))
∂̄223P23

]
+
α′π

2τ2

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)[(
kµ3

1

z̄13
+
kµ3

2

z̄23

)(
−k2 · k3

(
ϵ1ϵ2ϵ

⊤
3

)
µ1µ3

+ (ϵ3k2)µ3
(ϵ1ϵ2k3)µ1

)
+

(
kµ2

1

z̄12
− kµ2

3

z̄23

)(
−k2 · k3

(
ϵ2ϵ

⊤
3 ϵ

⊤
1

)
µ2µ1

+ (ϵ1ϵ3k2)µ1
(ϵ2k3)µ2

)]
+

2π

α′τ2

[(
−k2 · k3

(
ϵ1ϵ2ϵ

⊤
3

)
+
(
k2ϵ

⊤
3 ϵ1ϵ2k3

))
∂̄213P13

+
(
−k2 · k3

(
ϵ2ϵ

⊤
3 ϵ

⊤
1

)
+
(
k3ϵ

⊤
2 ϵ1ϵ3k2

))
∂̄212P12

]}
(5.41b)

=− α′

2
S2
23 ×

∏
i<j

|χij |α
′ki·kj

×
{(

kν1
2

z12
+
kν1
3

z13

)[
−z̄−1

13

(
−k2 · k3

(
ϵ⊤1 ϵ2ϵ

⊤
3 k1

)
ν1

+ (k1ϵ3k2)
(
ϵ⊤1 ϵ2k3

)
ν1

)
∂̄212P12

− z̄−1
23

(
−k2 · k3

(
ϵ⊤1 ϵ2ϵ

⊤
3 k2

)
ν1

+ (k2ϵ3k2)
(
ϵ⊤1 ϵ2k3

)
ν1

)
∂̄212P12

− z̄−1
12

(
−k2 · k3

(
k1ϵ2ϵ

⊤
3 ϵ1
)
ν1

+
(
ϵ⊤1 ϵ3k2

)
ν1

(k1ϵ2k3)
)
∂̄213P13

+ z̄−1
23

(
−k2 · k3

(
k3ϵ2ϵ

⊤
3 ϵ1
)
ν1

+
(
ϵ⊤1 ϵ3k2

)
ν1

(k3ϵ2k3)
)
∂̄213P13

+ z̄−1
12 (k2ϵ1)ν1

(
−k2 · k3

(
ϵ2ϵ

⊤
3

)
+
(
k3ϵ

⊤
2 ϵ3k2

))
∂̄223P23

+z̄−1
13 (k3ϵ1)ν1

(
−k2 · k3

(
ϵ2ϵ

⊤
3

)
+
(
k3ϵ

⊤
2 ϵ3k2

))
∂̄223P23

]
+
α′π

2τ2

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)[
z̄−1
13

(
−k2 · k3

(
ϵ1ϵ2ϵ

⊤
3 k1

)
µ1

+ (k1ϵ3k2) (ϵ1ϵ2k3)µ1

)
+ z̄−1

23

(
−k2 · k3

(
ϵ1ϵ2ϵ

⊤
3 k2

)
µ1

+ (k2ϵ3k2) (ϵ1ϵ2k3)µ1

)
+ z̄−1

12

(
−k2 · k3

(
k1ϵ2ϵ

⊤
3 ϵ

⊤
1

)
µ1

+ (ϵ1ϵ3k2)µ1
(k1ϵ2k3)

)
+z̄−1

23

(
k2 · k3

(
k3ϵ2ϵ

⊤
3 ϵ

⊤
1

)
µ1

− (ϵ1ϵ3k2)µ1
(k3ϵ2k3)

)]
+

2π

α′τ2

[
−k2 · k3

((
ϵ1ϵ2ϵ

⊤
3

)
∂̄213P13 +

(
ϵ1ϵ3ϵ

⊤
2

)
∂̄212P12

)
+
(
k3ϵ

⊤
2 ϵ

⊤
1 ϵ3k2

)
∂̄213P13 +

(
k3ϵ

⊤
2 ϵ1ϵ3k2

)
∂̄212P12

]}
(5.41c)
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=− α′

2
S2
23 ×

∏
i<j

|χij |α
′ki·kj

×

{
(
kν1
2

z12
+
kν1
3

z13
)

[((
ϵ⊤1 ϵ2ϵ

⊤
3 k1

)
ν1

z̄13
+

(
ϵ⊤1 ϵ2ϵ

⊤
3 k2

)
ν1

z̄23

)
k2 · k3∂̄212P12

−
(
(k1ϵ3k2)

z̄13
+

(k2ϵ3k2)

z̄23

)(
ϵ⊤1 ϵ2k3

)
ν1
∂̄212P12

+

((
k1ϵ2ϵ

⊤
3 ϵ1
)
ν1

z̄12
−
(
k3ϵ2ϵ

⊤
3 ϵ1
)
ν1

z̄23

)
k2 · k3∂̄213P13

+

(
− (k1ϵ2k3)

z̄12
+

(k3ϵ2k3)

z̄23

)(
ϵ⊤1 ϵ3k2

)
ν1
∂̄213P13

+

(
(k2ϵ1)ν1

z̄12
+

(k3ϵ1)ν1

z̄13

)(
−k2 · k3

(
ϵ2ϵ

⊤
3

)
+
(
k3ϵ

⊤
2 ϵ3k2

))
∂̄223P23

]
+
α′π

2τ2

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)[
−

((
ϵ1ϵ2ϵ

⊤
3 k1

)
µ1

z̄13
+

(
k1ϵ2ϵ

⊤
3 ϵ

⊤
1

)
µ1

z̄12
+

(
ϵ1ϵ2ϵ

⊤
3 k2

)
µ1

z̄23
−

(
k3ϵ2ϵ

⊤
3 ϵ

⊤
1

)
µ1

z̄23

)
k2 · k3

+

(
(k1ϵ3k2)

z̄13
+

(k2ϵ3k2)

z̄23

)
(ϵ1ϵ2k3)µ1

+

(
(k1ϵ2k3)

z̄12
− (k3ϵ2k3)

z̄23

)
(ϵ1ϵ3k2)µ1

]
+

2π

α′τ2

[
−k2 · k3

((
ϵ1ϵ2ϵ

⊤
3

)
∂̄213P13 +

(
ϵ1ϵ3ϵ

⊤
2

)
∂̄212P12

)
+
(
k3ϵ

⊤
2 ϵ

⊤
1 ϵ3k2

)
∂̄213P13 +

(
k3ϵ

⊤
2 ϵ1ϵ3k2

)
∂̄212P12

]}
(5.41d)

=− α′

2
S2
23 ×

∏
i<j

|χij |α
′ki·kj

×

{((
k2ϵ

⊤
1 ϵ2ϵ

⊤
3 k1

)
z12z̄13

+

(
k2ϵ

⊤
1 ϵ2ϵ

⊤
3 k2

)
z12z̄23

+

(
k3ϵ

⊤
1 ϵ2ϵ

⊤
3 k1

)
|z13|2

+

(
k3ϵ

⊤
1 ϵ2ϵ

⊤
3 k2

)
z13z̄23

)
k2 · k3∂̄212P12

−
(
(k1ϵ3k2)

z̄13
+

(k2ϵ3k2)

z̄23

)((
k2ϵ

⊤
1 ϵ2k3

)
z12

+

(
k3ϵ

⊤
1 ϵ2k3

)
z13

)
∂̄212P12

+

((
k1ϵ2ϵ

⊤
3 ϵ1k2

)
|z12|2

−
(
k3ϵ2ϵ

⊤
3 ϵ1k2

)
z12z̄23

+

(
k1ϵ2ϵ

⊤
3 ϵ1k3

)
z13z̄12

−
(
k3ϵ2ϵ

⊤
3 ϵ1k3

)
z13z̄23

)
k2 · k3∂̄213P13

+

(
− (k1ϵ2k3)

z̄12
+

(k3ϵ2k3)

z̄23

)((
k2ϵ

⊤
1 ϵ3k2

)
z12

+

(
k3ϵ

⊤
1 ϵ3k2

)
z13

)
∂̄213P13

+

(
(k2ϵ1k2)

|z12|2
+

(k3ϵ1k2)

z12z̄13
+

(k2ϵ1k3)

z13z̄12
+

(k3ϵ1k3)

|z13|2

)(
−k2 · k3

(
ϵ2ϵ

⊤
3

)
+
(
k3ϵ

⊤
2 ϵ3k2

))
∂̄223P23

+
α′π

2τ2

[
−

((
k2ϵ1ϵ2ϵ

⊤
3 k1

)
z̄12z̄13

+

(
k2ϵ1ϵ2ϵ

⊤
3 k2

)
z̄12z̄23

+

(
k1ϵ2ϵ

⊤
3 ϵ

⊤
1 k2

)
z̄212

−
(
k3ϵ2ϵ

⊤
3 ϵ

⊤
1 k2

)
z̄12

)
k23 · k3

−

((
k3ϵ1ϵ2ϵ

⊤
3 k1

)
z̄213

+

(
k3ϵ1ϵ2ϵ

⊤
3 k2

)
z̄13z̄23

+

(
k1ϵ2ϵ

⊤
3 ϵ

⊤
1 k3

)
z̄12z̄13

−
(
k3ϵ2ϵ

⊤
3 ϵ

⊤
1 k3

)
z̄13z̄23

)
k2 · k3
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+

(
(k1ϵ3k2)

z̄13
+

(k2ϵ3k2)

z̄23

)(
(k2ϵ1ϵ2k3)

z̄12
+

(k3ϵ1ϵ2k3)

z̄13

)
+

(
(k1ϵ2k3)

z̄12
− (k3ϵ2k3)

z̄23

)(
(k2ϵ1ϵ3k2)

z̄12
+

(k3ϵ1ϵ3k2)

z̄13

)]
+

2π

α′τ2

[
−k2 · k3

((
ϵ1ϵ2ϵ

⊤
3

)
∂̄213P13 +

(
ϵ1ϵ3ϵ

⊤
2

)
∂̄212P12

)
+
(
k3ϵ

⊤
2 ϵ

⊤
1 ϵ3k2

)
∂̄213P13 +

(
k3ϵ

⊤
2 ϵ1ϵ3k2

)
∂̄212P12

]}
(5.41e)

Finally, we obtain the expanded result

G4f
3

∣∣∣
ℓ=1

=− α′

2
S2
23 ×

∏
i<j

|χij |α
′ki·kj

×

{
k2 · k3

[((
k2ϵ

⊤
1 ϵ2ϵ

⊤
3 k1

)
z12z̄13

+

(
k2ϵ

⊤
1 ϵ2ϵ

⊤
3 k2

)
z12z̄23

+

(
k3ϵ

⊤
1 ϵ2ϵ

⊤
3 k1

)
|z13|2

+

(
k3ϵ

⊤
1 ϵ2ϵ

⊤
3 k2

)
z13z̄23

)
∂̄2
12P12

+

((
k1ϵ2ϵ

⊤
3 ϵ1k2

)
|z12|2

−
(
k3ϵ2ϵ

⊤
3 ϵ1k2

)
z12z̄23

+

(
k1ϵ2ϵ

⊤
3 ϵ1k3

)
z13z̄12

−
(
k3ϵ2ϵ

⊤
3 ϵ1k3

)
z13z̄23

)
∂̄2
13P13

−
(
ϵ2ϵ

⊤
3

)( (k2ϵ1k2)

|z12|2
+

(k3ϵ1k2)

z12z̄13
+

(k2ϵ1k3)

z13z̄12
+

(k3ϵ1k3)

|z13|2

)
∂̄2
23P23

− 2π

α′τ2

((
k2ϵ1ϵ2ϵ

⊤
3 k1

)
z̄12z̄13

+

(
k2ϵ1ϵ2ϵ

⊤
3 k2

)
z̄12z̄23

+

(
k1ϵ2ϵ

⊤
3 ϵ

⊤
1 k2

)
z̄212

−
(
k3ϵ2ϵ

⊤
3 ϵ

⊤
1 k2

)
z̄12z̄23

)

− 2π

α′τ2

((
k3ϵ1ϵ2ϵ

⊤
3 k1

)
z̄213

+

(
k3ϵ1ϵ2ϵ

⊤
3 k2

)
z̄13z̄23

+

(
k1ϵ2ϵ

⊤
3 ϵ

⊤
1 k3

)
z̄12z̄13

−
(
k3ϵ2ϵ

⊤
3 ϵ

⊤
1 k3

)
z̄13z̄23

)]

−
(
(k1ϵ3k2)

z̄13
+

(k2ϵ3k2)

z̄23

)[((
k2ϵ

⊤
1 ϵ2k3

)
z12

+

(
k3ϵ

⊤
1 ϵ2k3

)
z13

)
∂̄2
12P12 +

2π

α′τ2

(
(k2ϵ1ϵ2k3)

z̄12
+

(k3ϵ1ϵ2k3)

z̄13

)]

−
(
(k1ϵ2k3)

z̄12
+

(k3ϵ2k3)

z̄23

)[((
k2ϵ

⊤
1 ϵ3k2

)
z12

+

(
k3ϵ

⊤
1 ϵ3k2

)
z13

)
∂̄2
13P13 +

2π

α′τ2

(
(k2ϵ1ϵ3k2)

z̄12
+

(k3ϵ1ϵ3k2)

z̄13

)]

+

(
(k2ϵ1k2)

|z12|2
+

(k3ϵ1k2)

z12z̄13
+

(k2ϵ1k3)

z13z̄12
+

(k3ϵ1k3)

|z13|2

)(
k3ϵ

⊤
2 ϵ3k2

)
∂̄2
23P23

+
2π

α′τ2

[
−k2 · k3

((
ϵ1ϵ2ϵ

⊤
3

)
∂̄2
13P13 +

(
ϵ1ϵ3ϵ

⊤
2

)
∂̄2
12P12

)
+
(
k3ϵ

⊤
2 ϵ

⊤
1 ϵ3k2

)
∂̄2
13P13 +

(
k3ϵ

⊤
2 ϵ1ϵ3k2

)
∂̄2
12P12

]}
.

(5.42)

Note that all factors in the bracket are of order O (k4) except for the last two lines
which are of order O (k2).

Extra tensor structure Beyond the two tensor structures related to the expanded
Einstein-Hilbert term at O(k2), two more tensor structures (k2ϵ1ϵ2k1) (k1ϵ3k1) and
(ϵ1ϵ2ϵ3) still appear in the correlation functions. The former contributes to O(k4)
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order and the latter vanishes after imposing momentum conservation, thus they
would not be considered in the following calculation.

Computation of the 6-fermion term

In this section, we want to compute

G6f
3 =ϵ1,µ1ν1ϵ2,µ2ν2ϵ3,µ3ν3

〈
i∂̄Xµ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉

× ⟨k1 · ψ1ψ
ν1
1 k2 · ψ2ψ

ν2
2 k3 · ψ3ψ

ν3
3 ⟩ . (5.43)

We have

G6f
3 =ϵ1,µ1ν1ϵ2,µ2ν2ϵ3,µ3ν3k1,ρ1k2,ρ2k3,ρ3

×
[〈
i∂̄Xµ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉

+
〈
i∂̄Xµ1

1 eik1·X1i∂̄Xµ2

2 e†k2·X2i∂̄Xµ3

3 eik3·X3
〉
+ cyclic perms

+
〈
i∂̄Xµ1

1 eik1·X1i∂̄Xµ2

2 eik2·X2i∂̄Xµ3

3 eik3·X3
〉
+ perms

]
× [⟨ψρ1

1 ψ
ν1
1 ψ

ρ2
2 ψ

ν2
2 ψ

ρ3
3 ψ

ν3
3 ⟩+ ⟨ψρ1

1 ψ
ν1
1 ψ

ρ2
2 ψ

ν2
2 ψ

ρ3
3 ψ

ν3
3 ⟩ − (ρ2 ↔ ν2)

− (ρ1 ↔ ν1)] (5.44a)

=
α′

2
ϵ1,µ1ν1ϵ2,µ2ν2ϵ3,µ3ν3k1,ρ1k2,ρ2k3,ρ3S12S13S23 ×

∏
i<j

|χij|α
′ki·kj

×
[
−ηµ1µ2 ∂̄212P12

(
−k

µ3

1

z̄13
− kµ3

2

z̄23

)
− ηµ1µ3 ∂̄213P13

(
kµ2

3

z̄23
− kµ2

1

z̄12

)
− ηµ2µ3 ∂̄223P23

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)
−
(
α′

2

)2(
kµ3

1

z̄13
+
kµ3

2

z̄23

)(
kµ2

1

z̄12
− kµ2

3

z̄23

)(
kµ1

2

z̄12
+
kµ1

3

z̄13

)]
× [ηρ1ρ2 (ην1ρ3ην2ν3 − ην1ν3ην2ρ3)− ηρ1ν2 (ην1ρ3ηρ2ν3 − ην1ν3ηρ2ρ3)

−ην1ρ2 (ηρ1ρ3ην2ν3 − ηρ1ν3ην2ρ3) + ην1ν2 (ηρ1ρ3ηρ2ν3 − ηρ1ν3ηρ2ρ3)] (5.44b)
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And we find

G6f
3 =

α′

2
ϵ1,µ1ν1ϵ2,µ2ν2ϵ3,µ3ν3S12S13S23 ×

∏
i<j

|χij|α
′ki·kj

×
[
ηµ1µ2 ∂̄212P12

(
kµ3

1

z̄13
+
kµ3

2

z̄23

)
+ ηµ1µ3 ∂̄213P13

(
kµ2

1

z̄12
− kµ2

3

z̄23

)
− ηµ2µ3 ∂̄223P23

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)
−
(
α′

2

)2(
kµ3

1

z̄13
+
kµ3

2

z̄23

)(
kµ2

1

z̄12
− kµ2

3

z̄23

)(
kµ1

2

z̄12
+
kµ1

3

z̄13

)]
× [k1 · k2 (ην2ν3kν13 − ην1ν3kν23 ) + k1 · k3 (ην1ν2kν32 − ην2ν3kν12 )

+k2 · k3 (ην1ν3kν21 − ην1ν2kν31 ) + kν31 k
ν1
2 k

ν2
3 − kν21 k

ν3
2 k

ν1
3 ] (5.45)

We can further simplify the tensor structure:

G6f
3 =

α′

2
S12S13S23 ×

∏
i<j

|χij|α
′ki·kj

×
[
ηµ1µ2 ∂̄212P12

(
kµ3

1

z̄13
+
kµ3

2

z̄23

)
+ ηµ1µ3 ∂̄213P13

(
kµ2

1

z̄12
− kµ2

3

z̄23

)
− ηµ2µ3 ∂̄223P23

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)
−
(
α′

2

)2(
kµ3

1

z̄13
+
kµ3

2

z̄23

)(
kµ2

1

z̄12
− kµ2

3

z̄23

)(
kµ1

2

z̄12
+
kµ1

3

z̄13

)]
×
[
k1 · k2

(
(ϵ1k3)µ1

(
ϵ2ϵ

⊤
3

)
µ2µ3

− (ϵ2k3)µ2

(
ϵ1ϵ

⊤
3

)
µ1µ3

)
+ k1 · k3

(
(ϵ3k2)µ3

(
ϵ1ϵ

⊤
2

)
µ1µ2

− (ϵ1k2)µ1

(
ϵ2ϵ

⊤
3

)
µ2µ3

+ k2 · k3
(
(ϵ2k1)µ2

(
ϵ1ϵ

⊤
3

)
µ1µ3

− (ϵ3k1)µ3

(
ϵ1ϵ

⊤
2

)
µ1µ2

+(ϵ3k1)µ3
(ϵ1k2)µ1

(ϵ2k3)µ2
− (ϵ2k1)µ2

(ϵ3k2)µ3
(ϵ1k3)µ1

]
(5.46)

=
α′

2
S12S13S23 ×

∏
i<j

|χij|α
′ki·kj

×
{
∂̄212P12(

kµ3

1

z̄13
+
kµ3

2

z̄23
)
[
k1 · k2

((
k3ϵ

⊤
1 ϵ2ϵ

⊤
3

)
µ3

−
(
k3ϵ

⊤
2 ϵ1ϵ

⊤
3

)
µ3

)
+ k1 · k3

((
ϵ1ϵ

⊤
2

)
(ϵ3k2)µ3

−
(
k2ϵ

⊤
1 ϵ2ϵ

⊤
3

)
µ3

)
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+ k2 · k3
((
k1ϵ

⊤
2 ϵ1ϵ

⊤
3

)
µ3

−
(
ϵ1ϵ

⊤
2

)
(ϵ3k1)µ3

)
+
(
k2ϵ

⊤
1 ϵ2k3

)
(ϵ3k1)µ3

−
(
k3ϵ

⊤
1 ϵ2k1

)
(ϵ3k2)µ3

]
+ ∂̄213P13

(
kµ2

1

z̄12
− kµ2

3

z̄23

)[
k1 · k2

((
ϵ2ϵ

⊤
3 ϵ1k3

)
µ2

−
(
ϵ1ϵ

⊤
3

)
(ϵ2k3)µ2

)
+ k1 · k3

((
k2ϵ

⊤
3 ϵ1ϵ

⊤
2

)
µ2

−
(
ϵ2ϵ

⊤
3 ϵ1k2

)
µ2

)
+ k2 · k3

((
ϵ1ϵ

⊤
3

)
(ϵ2k1)µ2

−
(
k1ϵ

⊤
3 ϵ1ϵ

⊤
2

)
µ2

)
+
(
k2ϵ

⊤
1 ϵ3k1

)
(ϵ2k3)µ2

−
(
k3ϵ

⊤
1 ϵ3k2

)
(ϵ2k1)µ2

]
− ∂̄223P23

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)[
k1 · k2

((
ϵ2ϵ

⊤
3

)
(ϵ1k3)µ1

−
(
ϵ1ϵ

⊤
3 ϵ2k3

)
µ1

)
+ k1 · k3

((
ϵ1ϵ

⊤
2 ϵ3k2

)
µ1

−
(
ϵ2ϵ

⊤
3

)
(ϵ1k2)µ1

)
+ k2 · k3

((
ϵ1ϵ

⊤
3 ϵ2k1

)
µ1

−
(
ϵ1ϵ

⊤
2 ϵ3k1

)
µ1

)
+
(
k3ϵ

⊤
2 ϵ3k1

)
(ϵ1k2)µ1

−
(
k1ϵ

⊤
2 ϵ3k2

)
(ϵ1k3)µ1

]
−
(
α′

2

)2(
kµ3

1

z̄13
+
kµ3

2

z̄23

)(
kµ2

1

z̄12
− kµ2

3

z̄23

)(
kµ1

2

z̄12
+
kµ1

3

z̄13

)
ϵ1,µ1ν1ϵ2,µ2ν2ϵ3,µ3ν3

× [k1 · k2 (ην2ν3kν13 − ην1ν3kν23 ) + k1 · k3 (ην1ν2kν32 − ην2ν3kν12 )

+k2 · k3 (ην1ν3kν21 − ην1ν2kν31 ) + kν31 k
ν1
2 k

ν2
3 − kν21 k

ν3
2 k

ν1
3 ]} (5.47)

=
α′

2
S12S13S23 ×

∏
i<j

|χij|α
′ki·kj

×
{
∂̄212P12

(
kµ3

1

z̄13
+
kµ3

2

z̄23

) [(
ϵ1ϵ

⊤
2

) (
k1 · k3 (ϵ3k2)µ3

− k2 · k3 (ϵ3k1)µ3

)
+ k1 · k2

(
(k3ϵ

⊤
1 ϵ2ϵ

⊤
3 )µ3 − (k3ϵ

⊤
2 ϵ1ϵ

⊤
3 )µ3

)
− k1 · k3

(
k2ϵ

⊤
1 ϵ2ϵ

⊤
3

)
µ3

+ k2 · k3
(
k1ϵ

⊤
2 ϵ1ϵ

⊤
3

)
µ3

+
(
k2ϵ

⊤
1 ϵ2k3

)
(ϵ3k1)µ3

−
(
k3ϵ

⊤
1 ϵ2k1

)
(ϵ3k2)µ3

]
+ ∂̄213P13

(
kµ2

1

z̄12
− kµ2

3

z̄23

)[(
ϵ1ϵ

⊤
3

) (
−k1 · k2 (ϵ2k3)µ2

+ k2 · k3 (ϵ2k1)µ2

)
+ k1 · k3

(
k2ϵ

⊤
1 ϵ2ϵ

⊤
3

)
µ3

+ k2 · k3
(
k1ϵ

⊤
2 ϵ1ϵ

⊤
3

)
µ3

+ k1 · k2
(
ϵ2ϵ

⊤
3 ϵ1k3

)
µ2

− k2 · k3(k1ϵ⊤3 ϵ1ϵ⊤2 )µ2
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+
(
k2ϵ

⊤
1 ϵ3k1

)
(ϵ2k3)µ2

−
(
k3ϵ

⊤
1 ϵ3k2

)
(ϵ2k1)µ2

]
− ∂̄223P23

(
kµ1

2

z̄12
+
kµ1

3

z̄13

)[
k1 · k2

(
(ϵ2ϵ

⊤
3 )(ϵ1k3)µ1 − (ϵ1ϵ

⊤
3 ϵ2k3)µ1

)
+ k1 · k3

(
(ϵ1ϵ

⊤
2 ϵ3k2)µ1 − (ϵ2ϵ

⊤
3 )(ϵ1k2)µ1

)
+ k2 · k3

(
(ϵ1ϵ

⊤
3 ϵ2k1)µ1 − (ϵ1ϵ

⊤
2 ϵ3k1)

)
+
(
k3ϵ

⊤
2 ϵ3k1

)
(ϵ1k2)µ1

−
(
k1ϵ

⊤
2 ϵ3k2

)
(ϵ1k3)µ1

]
−
(
α′

2

)2(
kµ3

1

z̄13
+
kµ3

2

z̄23

)(
kµ2

1

z̄12
− kµ2

3

z̄23

)(
kµ1

2

z̄12
+
kµ1

3

z̄13

)
ϵ1,µ1ν1ϵ2,µ2ν2ϵ3,µ3ν3

× [k1 · k2(ην2ν3kν13 − ην1ν3kν23 ) + k1 · k3(ην1ν2kν32 − ην2ν3kν12 )

+k2 · k3(ην1ν3kν21 − ην1ν2kν31 ) + kν31 k
ν1
2 k

ν2
3 − kν21 k

ν3
2 k

ν1
3 ]} . (5.48)

The spin sum in maximal supersymmetry (in particular D = 10) implies that the
amplitude vanishes[13, §3.3]. The simplest would be to perform the spin sum here,
before analysing further the different contributions. However, this breaks the unifor-
mity of the formulas so we don’t do it now.

3 graviton scattering, O (k2) contribution

Now we focus on 3 gravitons amplitude, which means only symmetric polarization
tensors should be considered when necessary.

Since we are trying to check the tensor structure (5.2) of the Einstein-Hilbert
term, we would like to study the O (k2) terms in 3 gravitons amplitude, which could
be derived from two sources: 1) contractions giving k2, 2) k4 with pinched-off inte-
gration. We observe that the fermion terms and the products ∂Xeik·X contribute at
order k4 in (5.31b). Note that we set |χij|α

′ki·kj = 1 (except when considering pinch-
ing) for simplicity since they would contribute to higher powers of the momenta. The
terms relevant to the kinematic structure (5.2) should have the kinematic structures
in the form of (kjϵikj) (ϵjϵl) or (kkϵiϵjϵlki).

O(k2) contributions without pinched-off integration It is easy to deriveO(k2)
contributions without pinched-off integration from the last two lines of (5.42):

G4f
3

∣∣∣
no pinched-off

=− α′

2
S2
23 ×

∏
i<j

|χij|α
′ki·kj

×
{

2π

α′τ2

[
−k2 · k3

((
ϵ1ϵ2ϵ

⊤
3

)
∂̄213P13 +

(
ϵ1ϵ3ϵ

⊤
2

)
∂̄212P12

)
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+
(
k3ϵ

⊤
2 ϵ

⊤
1 ϵ3k2

)
∂̄213P13 +

(
k3ϵ

⊤
2 ϵ1ϵ3k2

)
∂̄212P12

]}
+ cyclic permutations. (5.49)

We notice that the second line of the above result vanishes after imposing momentum
conservation (5.5).

Koba-Nielsen factor Pinched-off integration would use one |χmn|α
′km·kn . The

remaining non-pinching part of the Koba–Nielsen factor could be expanded as∏
i<j

|χij|
α′ki·kj
non−pinching = 1− 2α′

∑
i<j

ki · kjPij + terms of higher k order, (5.50)

which is vaild only if |zij| > ϵ (non-pinching) because of the singularity of Pij[40].
Only the leading term after the above expansion in the amplitude still keeps in O(k2)

order. Because of this, we take
∏

i<j |χij|α
′ki·kj ∼ 1 in our O(k2) calculation.

4-Fermion The terms relevant to the kinematic structure (5.2) from 4-fermion
contribution (5.42) are

α′

2
k2 · k3

[(
k2ϵ1ϵ2ϵ3k1
z12z̄13

+
k2ϵ1ϵ2ϵ3k2
z12z̄23

+
k3ϵ1ϵ2ϵ3k1

|z13|2

)
∂̄212P12

+

(
k1ϵ2ϵ3ϵ1k2

|z12|2
+
k1ϵ2ϵ3ϵ1k3
z13z̄12

− k3ϵ2ϵ3ϵ1k3
z13z̄23

)
∂̄213P13

− (ϵ2ϵ3)

(
k2ϵ1k2

|z12|2
+
k3ϵ1k3

|z13|2

)
∂̄223P23

]
+
α′

2
k3 · k1

[(
k3ϵ2ϵ3ϵ1k2
z23z̄21

+
k3ϵ2ϵ3ϵ1k3
z23z̄31

+
k1ϵ2ϵ3ϵ1k2

|z21|2

)
∂̄223P23

+

(
k2ϵ3ϵ1ϵ2k3

|z23|2
+
k2ϵ3ϵ1ϵ2k1
z21z̄23

− k1ϵ3ϵ1ϵ2k1
z21z̄31

)
∂̄221P21

− (ϵ3ϵ1)

(
k3ϵ2k3

|z23|2
+
k1ϵ2k1

|z21|2

)
∂̄231P31

]
+
α′

2
k1 · k2

[(
k1ϵ3ϵ1ϵ2k3
z31z̄32

+
k1ϵ3ϵ1ϵ2k1
z31z̄12

+
k2ϵ3ϵ1ϵ2k3

|z32|2

)
∂̄231P31

+

(
k3ϵ1ϵ2ϵ3k1

|z31|2
+
k3ϵ1ϵ2ϵ3k2
z32z̄31

− k2ϵ1ϵ2ϵ3k2
z32z̄12

)
∂̄232P32

− (ϵ1ϵ2)

(
k1ϵ3k1

|z31|2
+
k2ϵ3k2

|z32|2

)
∂̄212P12

]
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+
α′

2

2π

α′τ2

[
(k3ϵ2ϵ1ϵ3k2) ∂̄

2
13P13 + (k3ϵ2ϵ1ϵ3k2) ∂̄

2
12P12 + (k1ϵ3ϵ2ϵ1k3) ∂̄

2
21P21

+(k1ϵ3ϵ2ϵ1k3) ∂̄
2
23P23 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
32P32 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
31P31

]
. (5.51)

6-Fermion with Taylor expansion The terms relevant to the kinematic struc-
ture (5.2) from 6-fermion contribution (5.46), with application of Taylor expansion
trick §5.1.3, are

− 1

z12

(
−∂̄212P12

) (
−kµ3

1 ∂̄3P31 − kµ3

2 ∂̄3P32

){
(ϵ1ϵ2)

[
(k1 · k3) (ϵ3k2)µ3

− (k2 · k3) (ϵ3k1)µ3

]
+(k1 · k2)

[
(k3ϵ1ϵ2ϵ3)µ3

− (k3ϵ2ϵ1ϵ3)µ3

]
− (k1 · k3) (k2ϵ1ϵ2ϵ3)µ3

+ (k2 · k3) (k1ϵ2ϵ1ϵ3)µ3

}
− 1

z31

(
−∂̄213P13

) (
−kµ2

3 ∂̄2P23 − kµ2

1 ∂̄2P21

){
(ϵ1ϵ3)

[
(k2 · k3) (ϵ2k1)µ2

− (k1 · k2) (ϵ2k3)µ2

]
+(k1 · k3)

[
(k2ϵ3ϵ1ϵ2)µ2

− (ϵ2ϵ3ϵ1k2)µ2

]
+ (k1 · k2) (ϵ2ϵ3ϵ1k3)µ2

− (k2 · k3) (k1ϵ3ϵ1ϵ2)µ2

}
− 1

z23

(
−∂̄223P23

) (
−kµ1

2 ∂̄1P12 − kµ1

3 ∂̄1P13

){
(ϵ2ϵ3)

[
(k1 · k2) (ϵ1k3)µ1

− (k1 · k3) (ϵ1k2)µ1

]
+(k2 · k3)

[
(ϵ1ϵ3ϵ2k1)µ1

− (ϵ1ϵ2ϵ3k1)µ1

]
− (k1 · k2) (ϵ1ϵ3ϵ2k3)µ1

+ (k1 · k3) (ϵ1ϵ2ϵ3k2)µ1

}
(5.52)

=− 1

z12
∂̄212P12

(
∂̄3P31 − ∂̄3P32

)
{(ϵ1ϵ2) [(k1 · k3) (k1ϵ3k2)− (k2 · k3) (k1ϵ3k1)]

+ (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

− 1

z31
∂̄213P13

(
∂̄2P23 − ∂̄2P21

)
{(ϵ1ϵ3) [(k2 · k3) (k3ϵ2k1)− (k1 · k2) (k3ϵ2k3)]

+ (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)] + (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)}

− 1

z23
∂̄223P23

(
∂̄1P12 − ∂̄1P13

)
{(ϵ2ϵ3) [(k1 · k2) (k2ϵ1k3)− (k1 · k3) (k2ϵ1k2)]

+ (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)}
(5.53)

Using Taylor expansion trick(5.8):

=
α′

2

1

|z12|2
1

z̄12

(
+z̄12∂̄3∂̄2P32

)
{(ϵ1ϵ2) (k1ϵ3k1) [− (k1 · k3)− (k2 · k3)]

+ (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
α′

2

1

|z31|2
1

z̄31

(
+z̄31∂̄2∂̄1P21

)
{(ϵ1ϵ3) (k3ϵ2k3) [− (k2 · k3)− (k1 · k2)]
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+(k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)] + (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)}

+
α′

2

1

|z23|2
1

z̄23

(
+z̄23∂̄1∂̄3P13

)
{(ϵ2ϵ3) (k2ϵ1k2) [− (k1 · k2)− (k1 · k3)]

+ (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)}
(5.54)

= +
α′

2

1

|z12|2
∂̄223P23 {(k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
α′

2

1

|z13|2
∂̄212P12 {(k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)}

+
α′

2

1

|z23|2
∂̄213P13 {(k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)} . (5.55)

6-Fermion without Taylor expansion The terms relevant to the kinematic
structure (5.2) from 6-fermion contribution (5.46), without application of Taylor
expansion trick §5.1.3, are

α′

2
∂̄212P12

(
kµ3

1

|z13|2
− kµ3

2

|z23|2

){
(ϵ1ϵ2)

[
(k1 · k3) (ϵ3k2)µ3

− (k2 · k3) (ϵ3k1)µ3

]
+(k1 · k2)

[
(k3ϵ1ϵ2ϵ3)µ3

− (k3ϵ2ϵ1ϵ3)µ3

]
− (k1 · k3) (k2ϵ1ϵ2ϵ3)µ3

+ (k2 · k3) (k1ϵ2ϵ1ϵ3)µ3

}
+
α′

2
∂̄213P13

(
− kµ2

1

|z12|2
+

kµ2

3

|z23|2

){
(ϵ1ϵ3)

[
(k2 · k3) (ϵ2k1)µ2

− (k1 · k2) (ϵ2k3)µ2

]
+(k1 · k3)

[
(k2ϵ3ϵ1ϵ2)µ2

− (ϵ2ϵ3ϵ1k2)µ2

]
+ (k1 · k2) (ϵ2ϵ3ϵ1k3)µ2

− (k2 · k3) (k1ϵ3ϵ1ϵ2)µ2

}
+
α′

2
∂̄223P23

(
kµ1

2

|z12|2
− kµ1

3

|z13|2

){
(ϵ2ϵ3)

[
(k1 · k2) (ϵ1k3)µ1

− (k1 · k3) (ϵ1k2)µ1

]
+(k2 · k3)

[
(ϵ1ϵ3ϵ2k1)µ1

− (ϵ1ϵ2ϵ3k1)µ1

]
− (k1 · k2) (ϵ1ϵ3ϵ2k3)µ1

+ (k1 · k3) (ϵ1ϵ2ϵ3k2)µ1

}
(5.56)

=
α′

2
∂̄212P12

(
1

|z13|2
+

1

|z23|2

)
{(ϵ1ϵ2) (k1ϵ3k1) [− (k1 · k3)− (k2 · k3)]

+ (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
α′

2
∂̄213P13

(
1

|z12|2
+

1

|z23|2

)
{(ϵ1ϵ3) (k3ϵ2k3) [− (k2 · k3)− (k1 · k2)]
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+(k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)] + (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)}

+
α′

2
∂̄223P23

(
1

|z12|2
+

1

|z13|2

)
{(ϵ2ϵ3) (k2ϵ1k2) [− (k1 · k2)− (k1 · k3)]

+ (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)} (5.57)

=
α′

2
∂̄212P12

(
1

|z13|2
+

1

|z23|2

)
{(k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
α′

2
∂̄213P13

(
1

|z12|2
+

1

|z23|2

)
{(k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)}

+
α′

2
∂̄223P23

(
1

|z12|2
+

1

|z13|2

)
{(k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)} . (5.58)

Gathering all relevant terms, we get

α′

2
k2 · k3

[(
k2ϵ1ϵ2ϵ3k1
z12z̄13

+
k2ϵ1ϵ2ϵ3k2
z12z̄23

+
k3ϵ1ϵ2ϵ3k1

|z13|2

)
∂̄212P12

+

(
k1ϵ2ϵ3ϵ1k2

|z12|2
+
k1ϵ2ϵ3ϵ1k3
z13z̄12

− k3ϵ2ϵ3ϵ1k3
z13z̄23

)
∂̄213P13

− (ϵ2ϵ3)

(
k2ϵ1k2

|z12|2
+
k3ϵ1k3

|z13|2

)
∂̄223P23

]

+
α′

2
k3 · k1

[(
k3ϵ2ϵ3ϵ1k2
z23z̄21

+
k3ϵ2ϵ3ϵ1k3
z23z̄31

+
k1ϵ2ϵ3ϵ1k2

|z21|2

)
∂̄223P23

+

(
k2ϵ3ϵ1ϵ2k3

|z23|2
+
k2ϵ3ϵ1ϵ2k1
z21z̄23

− k1ϵ3ϵ1ϵ2k1
z21z̄31

)
∂̄221P21

− (ϵ3ϵ1)

(
k3ϵ2k3

|z23|2
+
k1ϵ2k1

|z21|2

)
∂̄231P31

]

+
α′

2
k1 · k2

[(
k1ϵ3ϵ1ϵ2k3
z31z̄32

+
k1ϵ3ϵ1ϵ2k1
z31z̄12

+
k2ϵ3ϵ1ϵ2k3

|z32|2

)
∂̄231P31

+

(
k3ϵ1ϵ2ϵ3k1

|z31|2
+
k3ϵ1ϵ2ϵ3k2
z32z̄31

− k2ϵ1ϵ2ϵ3k2
z32z̄12

)
∂̄232P32

− (ϵ1ϵ2)

(
k1ϵ3k1

|z31|2
+
k2ϵ3k2

|z32|2

)
∂̄212P12

]
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+
π

τ2

[
(k3ϵ2ϵ1ϵ3k2) ∂̄

2
13P13 + (k3ϵ2ϵ1ϵ3k2) ∂̄

2
12P12 + (k1ϵ3ϵ2ϵ1k3) ∂̄

2
21P21

+(k1ϵ3ϵ2ϵ1k3) ∂̄
2
23P23 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
32P32 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
31P31

]
+
α′

2

1

|z12|2
∂̄223P23 {(k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
α′

2

1

|z13|2
∂̄212P12 {(k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)}

+
α′

2

1

|z23|2
∂̄213P13 {(k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)}

+
α′

2
∂̄212P12

(
1

|z13|2
+

1

|z23|2

)
{(k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
α′

2
∂̄213P13

(
1

|z12|2
+

1

|z23|2

)
{(k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)}

+
α′

2
∂̄223P23

(
1

|z12|2
+

1

|z13|2

)
{(k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)} . (5.59)

Obviously, the ϵiϵj terms of the 4-fermion and the 6-fermion terms without Taylor
expansion trick cancel each other leading to

α′

2
k2 · k3

[(
k2ϵ1ϵ2ϵ3k1
z12z̄13

+
k2ϵ1ϵ2ϵ3k2
z12z̄23

+
k3ϵ1ϵ2ϵ3k1

|z13|2

)
∂̄212P12

+

(
k1ϵ2ϵ3ϵ1k2

|z12|2
+
k1ϵ2ϵ3ϵ1k3
z13z̄12

− k3ϵ2ϵ3ϵ1k3
z13z̄23

)
∂̄213P13

+
α′

2
k3 · k1

[(
k3ϵ2ϵ3ϵ1k2
z23z̄21

+
k3ϵ2ϵ3ϵ1k3
z23z̄31

+
k1ϵ2ϵ3ϵ1k2

|z21|2

)
∂̄223P23

+

(
k2ϵ3ϵ1ϵ2k3

|z23|2
+
k2ϵ3ϵ1ϵ2k1
z21z̄23

− k1ϵ3ϵ1ϵ2k1
z21z̄31

)
∂̄221P21

+
α′

2
k1 · k2

[(
k1ϵ3ϵ1ϵ2k3
z31z̄32

+
k1ϵ3ϵ1ϵ2k1
z31z̄12

+
k2ϵ3ϵ1ϵ2k3

|z32|2

)
∂̄231P31
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+

(
k3ϵ1ϵ2ϵ3k1

|z31|2
+
k3ϵ1ϵ2ϵ3k2
z32z̄31

− k2ϵ1ϵ2ϵ3k2
z32z̄12

)
∂̄232P32

+
π

τ2

[
(k3ϵ2ϵ1ϵ3k2) ∂̄

2
13P13 + (k3ϵ2ϵ1ϵ3k2) ∂̄

2
12P12 + (k1ϵ3ϵ2ϵ1k3) ∂̄

2
21P21

+(k1ϵ3ϵ2ϵ1k3) ∂̄
2
23P23 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
32P32 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
31P31

]
+
α′

2

1

|z12|2
∂̄223P23 {(k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
α′

2

1

|z13|2
∂̄212P12 {(k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)}

+
α′

2

1

|z23|2
∂̄213P13 {(k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)}

+
α′

2
∂̄212P12

(
1

|z13|2
+

1

|z23|2

)
{(k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
α′

2
∂̄213P13

(
1

|z12|2
+

1

|z23|2

)
{(k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)}

+
α′

2
∂̄223P23

(
1

|z12|2
+

1

|z13|2

)
{(k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)} . (5.60)

Excluding terms in (5.60) that are not relevant to pinched-off integration, we obtain
the following contributions proportional to 1/|zij|2:

α′

2

1

|z12|2
∂̄223P23 {(k2 · k3) (k1ϵ2ϵ3ϵ1k2) + (k3 · k1) (k1ϵ2ϵ3ϵ1k2)

+ (k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)

+ (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)

+ (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]
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− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)} (5.61)

=
α′

2

1

|z12|2
∂̄223P23 {− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k2) (k3ϵ2ϵ3ϵ1k3)

+ (k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2) + (k1 · k3) (k1ϵ2ϵ3ϵ1k2)

+ (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k2 · k3) (k1ϵ2ϵ1ϵ3k1)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)

+ (k2 · k3) (k1ϵ2ϵ3ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]} (5.62)

=
α′

2

1

|z12|2
∂̄223P23 {+(k1 · k2) (ϵ1ϵ2) (k1ϵ3k1)

+ 2 (k1 · k2) (k2ϵ1ϵ3ϵ2k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

+ 2 (k1 · k3) (k1ϵ2ϵ3ϵ1k2) + (k1 · k3) (k2ϵ3ϵ1ϵ2k3) + 2 (k1 · k3) (k2ϵ1ϵ2ϵ3k2)

+2 (k2 · k3) (k1ϵ2ϵ3ϵ1k2) + (k2 · k3) (k3ϵ1ϵ2ϵ3k1) + 2 (k2 · k3) (k1ϵ2ϵ1ϵ3k1)} (5.63)

=
α′

2

1

|z12|2
∂̄223P23 {+(k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

+ (k1 · k3) (k2ϵ3ϵ1ϵ2k3) + (k2 · k3) (k3ϵ1ϵ2ϵ3k1)

+2 (k1 · k3) (k2ϵ1ϵ2ϵ3k2) + 2 (k2 · k3) (k1ϵ2ϵ1ϵ3k1)} , (5.64)

and

α′

2

1

|z13|2
∂̄212P12 {(k2 · k3) (k3ϵ1ϵ2ϵ3k1) + (k1 · k2) (k3ϵ1ϵ2ϵ3k1)

+ (k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)

+ (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)

+ (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)} (5.65)

=
α′

2

1

|z13|2
∂̄212P12 {(k1 · k2) (k3ϵ1ϵ2ϵ3k1) + (k1 · k2) (k3ϵ2ϵ3ϵ1k3)

+ (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]− (k1 · k2) (k2ϵ1ϵ3ϵ2k3)

+ (k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)

+ (k2 · k3) (k3ϵ1ϵ2ϵ3k1) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

− (k2 · k3) (k1ϵ3ϵ1ϵ2k3) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)} (5.66)
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=
α′

2

1

|z13|2
∂̄212P12 {2 (k1 · k2) (k3ϵ1ϵ2ϵ3k1)− (k1 · k2) (k3ϵ2ϵ1ϵ3k1) + 2 (k1 · k2) (k3ϵ2ϵ3ϵ1k3)

+ (k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ 2 (k1 · k3) (k3ϵ1ϵ2ϵ3k1)

+ 2 (k2 · k3) (k3ϵ1ϵ2ϵ3k1) + (k2 · k3) (k2ϵ1ϵ3ϵ2k1) + 2 (k2 · k3) (k1ϵ2ϵ1ϵ3k1) (5.67)

=
α′

2

1

|z13|2
∂̄212P12 {+(k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k1 · k2) (k3ϵ2ϵ1ϵ3k2) + (k2 · k3) (k2ϵ1ϵ3ϵ2k1)

+2 (k1 · k2) (k3ϵ2ϵ3ϵ1k3) + 2 (k2 · k3) (k1ϵ2ϵ1ϵ3k1)} , (5.68)

and

α′

2

1

|z23|2
∂̄213P13 {(k3 · k1) (k2ϵ3ϵ1ϵ2k3) + (k1 · k2) (k2ϵ3ϵ1ϵ2k3)

+ (k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)

+ (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k2 · k3) (k1ϵ2ϵ1ϵ3k1)

+ (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k1 · k2) (k3ϵ2ϵ3ϵ1k3)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)} (5.69)

=
α′

2

1

|z23|2
∂̄213P13 {− (k1 · k2) (k2ϵ1ϵ3ϵ2k3) + (k1 · k2) (k2ϵ3ϵ1ϵ2k3)

+ (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)] + (k1 · k2) (k3ϵ2ϵ3ϵ1k3)

+ (k1 · k3) (k2ϵ3ϵ1ϵ2k3)− (k1 · k3) (k2ϵ1ϵ2ϵ3k1) + (k1 · k3) (k2ϵ1ϵ2ϵ3k2)

+ (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

+ (k2 · k3) (k1ϵ2ϵ1ϵ3k1)− (k2 · k3) (k1ϵ3ϵ1ϵ2k3)} (5.70)

=
α′

2

1

|z23|2
∂̄213P13 {2 (k1 · k2) (k2ϵ3ϵ1ϵ2k3) + (k1 · k2) (k3ϵ1ϵ2ϵ3k1) + 2 (k1 · k2) (k3ϵ2ϵ3ϵ1k3)

+ 2 (k1 · k3) (k2ϵ3ϵ1ϵ2k3)− (k1 · k3) (k3ϵ2ϵ3ϵ1k2) + 2 (k1 · k3) (k2ϵ1ϵ2ϵ3k2)

+ (k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

+2 (k2 · k3) (k3ϵ2ϵ1ϵ3k2)} (5.71)

=
α′

2

1

|z23|2
∂̄213P13 {+(k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

+ (k1 · k2) (k3ϵ1ϵ2ϵ3k1) + (k1 · k3) (k1ϵ2ϵ3ϵ1k2)
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+2 (k1 · k2) (k3ϵ2ϵ3ϵ1k3) + 2 (k1 · k3) (k2ϵ1ϵ2ϵ3k2)} . (5.72)

Summing up all contributions (including non-pinching contributions) gives

α′

2
k2 · k3

(
k2ϵ1ϵ2ϵ3k1
z12z̄13

+
k2ϵ1ϵ2ϵ3k2
z12z̄23

)
∂̄212P12 +

α′

2
k3 · k1

(
k2ϵ3ϵ1ϵ2k1
z21z̄23

− k1ϵ3ϵ1ϵ2k1
z21z̄31

)
∂̄221P21

+
α′

2

1

|z12|2
∂̄223P23 {+(k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

+ (k1 · k3) (k2ϵ3ϵ1ϵ2k3) + (k2 · k3) (k3ϵ1ϵ2ϵ3k1)

+2 (k1 · k3) (k2ϵ1ϵ2ϵ3k2) + 2 (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
π

τ2

(
(k1ϵ3ϵ2ϵ1k3) ∂̄

2
23P23 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
32P32

)
+
α′

2
k2 · k3

(
k1ϵ2ϵ3ϵ1k3
z13z̄12

− k3ϵ2ϵ3ϵ1k3
z13z̄23

)
∂̄213P13 +

α′

2
k1 · k2

(
k1ϵ3ϵ1ϵ2k3
z31z̄32

+
k1ϵ3ϵ1ϵ2k1
z31z̄12

)
∂231P31

+
α′

2

1

|z13|2
∂̄212P12 {+(k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ (k1 · k2) (k3ϵ2ϵ1ϵ3k2) + (k2 · k3) (k2ϵ1ϵ3ϵ2k1)

+2 (k1 · k2) (k3ϵ2ϵ3ϵ1k3) + 2 (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
π

τ2

(
(k3ϵ2ϵ1ϵ3k2) ∂̄

2
12P12 + (k1ϵ3ϵ2ϵ1k3) ∂̄

2
21P21

)
+
α′

2
k3 · k1

(
k3ϵ2ϵ3ϵ1k2
z23z̄21

+
k3ϵ2ϵ3ϵ1k3
z23z̄31

)
∂̄223P23 +

α′

2
k1 · k2

(
k3ϵ1ϵ2ϵ3k2
z32z̄31

− k2ϵ1ϵ2ϵ3k2
z32z̄12

)
∂̄232P32

+
α′

2

1

|z23|2
∂̄213P13 {+(k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

+ (k1 · k2) (k3ϵ1ϵ2ϵ3k1) + (k1 · k3) (k1ϵ2ϵ3ϵ1k2)

+2 (k1 · k2) (k3ϵ2ϵ3ϵ1k3) + 2 (k1 · k3) (k2ϵ1ϵ2ϵ3k2)}

+
π

τ2

(
(k3ϵ2ϵ1ϵ3k2) ∂̄

2
13P13 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
31P31

)
. (5.73)

Note that the terms in the first and third row add up by using (5.32), (5.33), (5.34),
and Taylor expansion trick (5.8) on the first row, and similarly for the 6th and 8th
row, and the 11th and 13th. Using modular invariance (5.3) and transversality (5.4)
these observations result in

α′

2

1

|z12|2
∂̄223P23 {(k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

+ 2 (k1 · k3) (k2ϵ3ϵ1ϵ2k3) + 2 (k2 · k3) (k3ϵ1ϵ2ϵ3k1)
+2 (k1 · k3) (k2ϵ1ϵ2ϵ3k2) + 2 (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
π

τ2

(
(k1ϵ3ϵ2ϵ1k3) ∂̄

2
23P23 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
32P32

)
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+
α′

2

1

|z13|2
∂̄212P12 {(k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ 2 (k1 · k2) (k3ϵ2ϵ1ϵ3k2) + 2 (k2 · k3) (k2ϵ1ϵ3ϵ2k1)
+2 (k1 · k2) (k3ϵ2ϵ3ϵ1k3) + 2 (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

+
π

τ2

(
(k3ϵ2ϵ1ϵ3k2) ∂̄

2
12P12 + (k1ϵ3ϵ2ϵ1k3) ∂̄

2
21P21

)
+
α′

2

1

|z23|2
∂̄213P13 {(k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

+ 2 (k1 · k2) (k3ϵ1ϵ2ϵ3k1) + 2 (k1 · k3) (k1ϵ2ϵ3ϵ1k2)
+2 (k1 · k2) (k3ϵ2ϵ3ϵ1k3) + 2 (k1 · k3) (k2ϵ1ϵ2ϵ3k2)}

+
π

τ2

(
(k3ϵ2ϵ1ϵ3k2) ∂̄

2
13P13 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
31P31

)
(5.74)

=
α′

2

1

|z12|2
∂̄223P23 {(k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

−2 (k1 · k2) (k1ϵ3ϵ1ϵ2k1)− 2 (k1 · k2) (k2ϵ1ϵ2ϵ3k2)}

+
π

τ2

(
(k1ϵ3ϵ2ϵ1k3) ∂̄

2
23P23 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
32P32

)
+
α′

2

1

|z13|2
∂̄212P12 {(k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

−2 (k1 · k3) (k1ϵ2ϵ1ϵ3k1)− 2 (k1 · k3) (k3ϵ1ϵ3ϵ2k3)}

+
π

τ2

(
(k3ϵ2ϵ1ϵ3k2) ∂̄

2
12P12 + (k1ϵ3ϵ2ϵ1k3) ∂̄

2
21P21

)
+
α′

2

1

|z23|2
∂̄213P13 {(k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

−2 (k2 · k3) (k2ϵ1ϵ2ϵ3k2)− 2 (k2 · k3) (k3ϵ2ϵ3ϵ1k3)}

+
π

τ2

(
(k3ϵ2ϵ1ϵ3k2) ∂̄

2
13P13 + (k2ϵ1ϵ3ϵ2k1) ∂̄

2
31P31

)
. (5.75)

Fermionic propagators would be absorbed into spin summation Z int
s=1 (see from e.g.[16][40])

and would not affect the coordinate integration. Performing pinched-off integra-
tion and using (5.32), (5.33) and (5.34) again gives the kinematic structure (using∫
T d

2z = 2τ2)

π∂̄223P23 {(ϵ1ϵ2) (k1ϵ3k1) + (k3ϵ2ϵ1ϵ3k1) + (k3ϵ1ϵ2ϵ3k1) + 2 (k2ϵ1ϵ3ϵ2k1)}
+π∂̄212P12 {(ϵ1ϵ3) (k3ϵ2k3) + (k3ϵ2ϵ3ϵ1k2) + (k2ϵ3ϵ1ϵ2k3) + 2 (k1ϵ3ϵ2ϵ1k3)}
+π∂̄213P13 {(ϵ2ϵ3) (k2ϵ1k2) + (k2ϵ1ϵ2ϵ3k1) + (k2ϵ1ϵ3ϵ2k1) + 2 (k3ϵ2ϵ1ϵ3k2)} . (5.76)
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Using (5.33), as well as the fact that ϵ are symmetric for gravitons, to transform and
simplify the above result (5.76), we arrive at

π∂̄223P23 {(k1ϵ3k1) (ϵ1ϵ2)− 2 (k3ϵ2ϵ3ϵ1k2)}
+π∂̄212P12 {(k3ϵ2k3) (ϵ3ϵ1)− 2 (k2ϵ1ϵ2ϵ3k1)}
+π∂̄213P13 {(k2ϵ1k2) (ϵ2ϵ3)− 2 (k1ϵ3ϵ1ϵ2k3)}
+
(
π∂̄223P23 − π∂̄212P12

)
(k1ϵ3ϵ1ϵ2k3)

+
(
π∂̄213P13 − π∂̄223P23

)
(k2ϵ1ϵ2ϵ3k1)

+
(
π∂̄212P12 − π∂̄223P23

)
(k3ϵ2ϵ3ϵ1k2) . (5.77)(

∂̄2stPst − ∂̄2tuPtu

)
×
∏

i<j |χij|α
′ki·kj will be vanishing after coordinate integration be-

cause the value of
∫
d2z1d

2z2d
2z3∂̄

2
stPst×

∏
i<j |χij|α

′ki·kj does not depend on s and t.
So we could get rid of these terms and obtain the final result

π∂̄223P23 {(k1ϵ3k1) (ϵ1ϵ2)− 2 (k3ϵ2ϵ3ϵ1k2)}
+π∂̄212P12 {(k3ϵ2k3) (ϵ3ϵ1)− 2 (k2ϵ1ϵ2ϵ3k1)}
+π∂̄213P13 {(k2ϵ1k2) (ϵ2ϵ3)− 2 (k1ϵ3ϵ1ϵ2k3)} . (5.78)

We see that this result differs from the gravity kinematic structure (5.2) by a relative
sign.

5.2.3 OPE Calculation of the 1-loop kinematic structure

Setup

We keep α′ explicit and use notations ∂Xνi
i = ∂Xνi (zi, z̄i) ≡ Jνi

i , ∂̄X
µi

i = ∂̄Xµi (zi, z̄i) ≡
J̄µi

i , ψ
νi
i = ψνi (zi) and zij ≡ zi − zj. For the graviton vertex operators for Heterotic

string theory we introduce (with k2i = 0 )

V µiνi
i ≡ 2

α′ : iJ̄
µi

i

(
iJνi

i +
α′

2
ki · ψiψ

νi
i

)
eikiXi :, (5.79)

so that the full (graviton) vertex operator at zero picture reads

Vi = ϵi,µiνiV
µiνi
i . (5.80)

Our aim is to evaluate the following 3-point function with pinching-off integration
at order of k2:〈

Vl

∫
|zi−zj |<ε

d2ziViVj

〉
=

〈
V µlνl
l

∫
|zi−zj |<ε

d2ziV
µiνi
i V

µjνj
j

〉
ϵl,µlνlϵi,µiνiϵj,µjνj . (5.81)
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Here ε is infinitesimal so that V µiνi
i V

µjνj
j can be replaced by the OPE, and because

of ∫
|zi−zj |<ε

d2zi
|zij|α

′ki·kj

znij z̄
m
ij

≃ 2π

α′ki · kj
δn1δm1 (5.82)

only following terms in the OPE can give non-vanishing contribution to the 3-point
function:

OPE
(
V µiνi
i V

µjνj
j

)
∋ |zij|α

′ki·kj

|zij|2
O

µiνiµjνj
j , (5.83)

where operator O
µiνiµjνj
j is further constrained to be of the form

O
µiνiµjνj
j = t

µiνiµjνj
αβγ (ki, kj) : J̄

α
j ψ

β
j ψ

γ
j e

i(ki+kj)·Xj : . (5.84)

Here t
µiνiµjνj
αβγ (ki, kj) are k-dependent OPE (tensor) coefficients. The above restriction

to the form of the operators follows from the following requirements:

• Counting the weight on the both sides of the OPE and the weight of the
|zij |α

′ki·kj

|zij |2
tells us that operatorO

µiνiµjνj
j must have weight

(
1 +

α′ki·kj
2

, 1 +
α′ki·kj

2

)
.

• Operator O
µiνiµjνj
j must contain at least 2 fermions, since otherwise the spin-

summation with the partition function makes the 3-point function vanish.

In the Heterotic case, the operator satisfying the above two requirements is only
J̄jψjψje

i(ki+kj)·Xj (for k2i = 0 = k2j ). In type I case, the allowed operators include

Jjψ̄jψ̄je
i(ki+kj)·Xj and ψjψjψ̄jψ̄je

i(ki+kj)·Xj .

Results of the OPE

Here we determine O
µiνiµjνj
j in (5.83). The result (up to order O (k3) ) reads

O
µiνiµjνj
j = −iα

′

2
:
[
ηµiµjki · J̄j + kµi

j J̄
µj

j − k
µj

i J̄
µi

j

]
[
ηνiνj (ki · ψj) (kj · ψj) + (ki · kj)ψνi

j ψ
νj
j

−
(
k
νj
i ψ

νi
j − kνij ψ

νj
j

)
((ki + kj) · ψj)

]
ei(ki+kj)·Xj :, (5.85)

so the OPE coefficients t
µiνiµjνj
αβγ (ki, kj) in (5.84)) are

t
µiνiµjνj
αβγ (ki, kj) = −iα

′

2

[
ηµiµjkiα + kµi

j η
µj
α − k

µj

i η
µi
α

]
[
ηνiνjkiβkjγ + (ki · kj) ηνiβ η

νj
γ −

(
k
νj
i η

νi
β − kνij η

νj
β

)
(ki + kj)γ

]
(5.86)
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3-point function from pinched-off singularity

Using the above OPE results, we can compute following 3-point function at the k2

order originating from pinched-off singularity (partition function and spin-sums are
suppressed but implied here):∫

d2zl

∫
d2zj

〈
Vl

∫
|zi−zj |<ε

d2ziViVj

〉
=

∫
d2zl

∫
d2zj

〈
Vl

∫
|zi−zj |<ε

d2ziOPE (ViVj)

〉
=

2iπ

α′ki · kj
ϵl,µlνlϵi,µiνiϵj,µjνj t

µiνiµjνj
αβγ (ki, kj)∫

d2zl

∫
d2zj

〈
: J̄µl

l kl · ψlψ
νl
l e

ikl·Xl :: J̄α
j ψ

β
j ψ

γ
j e

i(ki+kj)·Xj :
〉

=
2iπ

α′ki · kj
ϵl,µlνlϵi,µiνiϵj,µjνj t

µiνiµjνj
αβγ (ki, kj)∫

d2zl

∫
d2zj

〈
: kl · ψlψ

νl
l :: ψβ

j ψ
γ
j :
〉 〈

: J̄µl

l e
ikl·Xl :: J̄α

j e
i(ki+kj)·Xj :

〉
=Kijl

∫
d2zl

∫
d2zj (Slj)

2 ∂̄2l Plje
−kl·(ki+kj)Plj (5.87)

Here Kijl is the kinematic factor (∼ k2) given by

Kijl ≡ − 2iπ

α′ki · kj
ϵl,µlνlϵi,µiνiϵj,µjνj t

µiνiµjνj
αβγ ηµlα

(
kγl η

νlβ − kβl η
νlγ
)

= − 2iπ

α′ki · kj
ϵi,µiνiϵj,µjνj

(
kγl ϵ

αβ
l − kβl ϵ

αγ
l

)
t
µiνiµjνj
αβγ (5.88)

The kinematic factor Kijl given above can be explicitly computed by substituting
(5.86) for t

µiνiµjνj
αβγ and we obtain

Kijl = − π

(ki · kj)

(
T

(ijl)
1 + T

(ijl)
2 + T

(ijl)
3

)
(5.89)

where the 3 different tensor structures are given by (with notational abbreviation(
ϵ⊤i ϵj

)
≡ Tr

(
ϵ⊤i ϵj

)
)

T
(ijl)
1 =

(
ϵ⊤i ϵj

)
[(kl · kj) (kiϵlki)− (kl · ki) (kiϵlkj)]− (ki · kj)

[(
ϵ⊤l ϵi

)
(kiϵjkl) +

(
ϵ⊤l ϵj

)
(kjϵikl)

]
+ (kl · (ki + kj))

[(
ϵ⊤l ϵj

)
(kjϵikj) +

(
ϵ⊤l ϵi

)
(kiϵjki)

]
=
(
ϵ⊤i ϵj

)
[(kl · kj) (kiϵlki)− (kl · ki) (kiϵlkj)]

− (ki · kj)
[(
ϵ⊤l ϵi

)
(kiϵj (kl + ki)) +

(
ϵ⊤l ϵj

)
(kjϵi (kl + kj))

]
(5.90a)
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T
(ijl)
2 =(kl · kj)

[(
kjϵiϵ

⊤
j ϵlki

)
−
(
kiϵjϵ

⊤
i ϵlki

)]
+ (kl · ki)

[(
kiϵjϵ

⊤
i ϵlkj

)
−
(
kjϵiϵ

⊤
j ϵlkj

)]
+ (ki · kj)

[(
kiϵlϵ

⊤
i ϵjkl

)
+
(
kjϵiϵ

⊤
l ϵjkl

)
−
(
kiϵlϵ

⊤
j ϵikl

)
+
(
kiϵjϵ

⊤
l ϵikl

)]
− (kl · (ki + kj))

[(
kiϵlϵ

⊤
i ϵjki

)
−
(
kiϵlϵ

⊤
j ϵikj

)
+
(
kjϵiϵ

⊤
l ϵjki

)
+
(
kiϵjϵ

⊤
l ϵikj

)]
=(kl · kj)

[(
kjϵiϵ

⊤
j ϵlki

)
−
(
kiϵjϵ

⊤
i ϵlki

)]
+ (kl · ki)

[(
kiϵjϵ

⊤
i ϵlkj

)
−
(
kjϵiϵ

⊤
j ϵlkj

)]
+ (ki · kj)

[(
kiϵlϵ

⊤
i ϵj (kl + ki)

)
+
(
kjϵiϵ

⊤
l ϵj (kl + ki)

)
−
(
kiϵlϵ

⊤
j ϵi (kl + kj)

)
+
(
kiϵjϵ

⊤
l ϵi (kl + kj)

)]
(5.90b)

T
(ijl)
3 =(kiϵl (ki + kj))

[(
kiϵ

⊤
j ϵikl

)
−
(
klϵ

⊤
j ϵikj

)]
− (kjϵikj)

(
klϵ

⊤
j ϵl (ki + kj)

)
− (kiϵjki)

(
klϵ

⊤
i ϵl (ki + kj)

)
+ (kiϵjkl)

(
kjϵ

⊤
i ϵl (ki + kj)

)
+ (kjϵikl)

(
kiϵ

⊤
j ϵl (ki + kj)

)
(5.90c)

For the second equalities of (5.90a) and (5.90b) , we have used the modular in-
variance condition ki · kj + kj · kl + ki · kl = 0, i.e. (kl · (ki + kj)) = −ki · kj. The
permutation symmetry is still to be taken into account, which will be done later. T3
is a problematic tensor structure as this should not appear in the final result. It is
actually vanishing, which is shown in the following.

Simplifications of tensor structures (5.90a)-(5.90c)

At this stage, let us note following points:

a. So far we have relaxed the momentum conservation, i.e. p = ki + kj + kl ̸= 0
with p2 = 0, and p is treated as an infinitesimal parameter. Then it follows
that ki ·kj = −p ·kl and ϵl (ki + kj) = ϵlp, so these quantities are of linear order
in p.

b. From the point a above, (5.89) can be written as K ∼ (
∑

i Ti)
(p·kl)

. Since we will

take p → 0 at the end and since p appears in the denominator of (5.89), we
need to extract only the linear order in p for each Ti as the higher orders would
not contribute to limp→0K. Note that the last line of (5.90a) and the last two
lines of (5.90b) are of order p2 due to point a, so they do not contribute.

c. Combining both points above, we will set p = 0 (i.e. ki + kj + kl = 0 ) for the
coefficients of ki · kj and ϵj (ki + kj), in order to extract the contribution at the
linear order in p.

Using the prescription given at point c above, (5.90a)-(5.90c) simplify as

T
(ijl)
1 (O(p)) = (ki · kj)

(
ϵ⊤i ϵj

)
(kiϵlkj) , (5.91a)
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T
(ijl)
2 (O(p)) = − (ki · kj)

[(
kiϵjϵ

⊤
i ϵlkj

)
+
(
kjϵiϵ

⊤
j ϵlki

)]
, (5.91b)

T
(ijl)
3 (O(p)) = 0. (5.91c)

Thus (5.89) to this order reads

Kijl = π
[
−
(
ϵ⊤i ϵj

)
(kiϵlkj) +

(
kiϵjϵ

⊤
i ϵlkj

)
+
(
kjϵiϵ

⊤
j ϵlki

)]
. (5.92)

Note that the above is symmetric w.r.t. i ↔ j, i.e. Kijl = Kjil, which can be seen
from (

ϵ⊤i ϵj
)
=
(
ϵ⊤j ϵi

)
(5.93)

(kiϵlkj) = (kjϵlki) . (5.94)

Symmetrization

The overall result of 3-point function must be symmetric w.r.t. all permutations as
⟨VlViVj⟩ is. The permutations can be decomposed into permutation w.r.t. i↔ j and
the cyclic permutations. The symmetry w.r.t. cyclic permutations is broken in (5.87)
by the OPE taken in the way of (5.87) (c.f. 1st line). On the other hand, (5.87)
is symmetric w.r.t. i ↔ j, which can be seen from the symmetry of (5.92) and the
integral in the last line of (5.87). In particular, the integral in the last line of (5.87)
is invariant w.r.t. ( i↔ j ) since zj is a dummy variable integrated over and can be
renamed as zi (also the index j of P s ). Moreover, in the exponential we can use
momentum conservation and set kl · (ki + kj) = 0, which eliminates the exponential
and hence the index i. Therefore, the integral becomes a common factor invariant
w.r.t. any permutations of the indices, so that one needs to symmetrize only factor
K in (5.87), which we will do now. The upshot is that we have to symmetrize (5.87)
by adding only cyclic permutations of K. This can be summarized as follows:∫∫∫

d2zld
2zjd

2zi ⟨VlViVj⟩

→
∫
d2zl

∫∫
d2zjd

2zi ⟨Vl [OPE (ViVj)]⟩+ 2 cyclic permutations

→

(∫
d2zl

∫
d2zj

〈
Vl

∫
|zi−zj |<ε

d2zi OPE (ViVj)

〉)
+ 2 cyclic permutations

= (5.87) + 2 cyclic permutations

= Kijl

∫
d2zl

∫
d2zj (Slj)

2 ∂̄2l Plj + 2 cyclic permutations (5.95)
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Here in the 2nd line it is assumed that the integration region over zi and zj are
restricted to that where the separation between zi and zj are smaller than the distance
to zl, i.e. |zi − zj| < min (|zi − zl|, |zj − zl|), in order to allow us to take the OPE.
The 2 cyclic permutations in the 2nd line correspond to different choices of 2 vertex
operators for taking OPE.

Using (5.92), the final result after pinched-off integration is given by∫∫∫
d2z1d

2z2d
2z3 ⟨V1V3V2⟩

∣∣∣∣
pinched-off

=

π

[
[(ϵ3ϵ2) (k2ϵ1k2) + (k2ϵ1ϵ2ϵ3k1) + (k2ϵ1ϵ3ϵ2k3)]

∫
d2z1

∫
d2z2 (S12)

2 ∂̄21P12

]
+ 2 cyclic permutations.

(5.96)
Transpose ⊤ is omitted because we only consider gravitons. In the last line the
exponential has been set to 1 since only quadratic order in momenta is concerned.
We substituted lij with 123 to make the result easier comparable with the former
result. Again, fermionic propagators S2

12 would be absorbed into spin summation
Z int

s=1 (see from e.g.[16][40])
We see that the kinematic structure of the above result (5.96) contains only the

part with pinched-off integration. It agrees with the pinched-off integration part of
the result from previous section §5.2.2. So OPE calculation works as a double check
and confirms the correctness of our calculation.

5.2.4 Discussion

We notice that ∂̄2ijP (z̄i, z̄j) is a total derivative. Due to the reason explained in
5.2.2, the Koba-Nielsen factor was expanded and we only take the leading part
1. The coordinate integration of the amplitude is now an integration over a total
derivative on torus, which means that the whole Heterotic 1-loop 3-point correction
is vanishing anyway. This guarantees that the 1-loop will not break the gravity
kinematic structure (5.2) of the effective theory. This is different for Type I theory
to which we turn now in the next section.
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5.3 Type I string

We consider the type I string compactified on T 6/ZN orientifold with D = 4 non-
compact dimensions.

Vertex Operator The difference between Type-I and Heterotic 3-point graviton
amplitudes is about the vertex operators. In Heterotic case we only have to con-
sider left-moving fermions, see (5.10) and (5.11). But for Type-I theory, the vertex
operators in the (0, 0) and (−1,−1) pictures are

V g
(0,0)(z, z̄, k, ϵ) =:

2

α′ ϵµν(k)

(
i∂̄Xν(z̄) +

α′

2
(k · ψ̄)ψ̄ν(z̄)

)(
i∂Xν(z) +

α′

2
(k · ψ)ψν(z)

)
eik·X(z,z̄) :

(5.97)

V g
−1,−1(z, z̄, k, ϵ) =: ϵµν(k)e

−ϕ−ϕ̄ψµψ̄νeik·X : . (5.98)

Useful references are [7][6][14].

5.3.1 Tree level

The tree level 3-point amplitude reads

A
(0)
3 = ⟨cc̄V−1,−1 (z1) cc̄V−1,−1 (z2) cc̄V0,0 (z3)⟩Σ0

(5.99)

The computation is completely similar to the one of the holomorphic sector of the
Heterotic string and yields

A
(0)
3 ∼ ϵ1,µ1ν1ϵ2,µ2ν2ϵ3,µ3ν3t

µ1µ2µ3tν1ν2ν3 ×
∏
i<j

|zij|α
′ki·kj (5.100)

where we recall
tµ1µ2µ3 = ηµ1µ2kµ3

2 + ηµ2µ3kµ1

3 + ηµ3µ1kµ2

1 (5.101)

Note that there are no α′ corrections.
The result has the same tensor structure as (5.28) at leading order in α′ in the

Heterotic tree level amplitude, thus we know already that the above amplitude again
shares the same kinematic structure as the expanded Einstein-Hilbert term (5.2).

There is no disk-level O(k2) contribution in Type-I. The 2-point function in Type-
I was discussed in [11, §2][30][31][67][59][48][49], and the 3-point function in Type-I
was discussed in [20, §B].
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5.3.2 1-loop kinematic structure in Type-I

From the 3 graviton amplitudes of both Type-I and Heterotic, we know that the
calculation of Type-I 3 graviton amplitude would be pretty similar to Heterotic.
Thus we do not repeat the tedious calculation in §5.2 but change the strategy. We
directly focus on the two specific tensor structures (kjϵ

ikj)
(
ϵjϵl
)
and

(
klϵ

jϵlϵikj
)
,

and present only differences to Heterotic calculation.
Following the same argument in §2.2.1 as Heterotic string, we would again only

need vertex operators in zero ghost picture for genus-1 surfaces. The 1-loop level
3-point amplitude in Type-I theory is

G
(1)
3 =

〈
3∏

i=1

∫
d2zi V0,0(zi, z̄i)

〉
Σ1

. (5.102)

We rename V0,0(zi, z̄i) as Vi for simplicity in the following.
String theory has four types of surfaces at 1-loop level, or χ = 0, g = 1, i.e.

O (g2s). These are the torus T , the annulus (or cylinder) A, the Möbius strip M and
the Klein bottle K.

8-Fermion contribution in Type-I

We first observe the possible contractions of 8 (and even more) fermions in Type-
I which do not exist in Heterotic 3 graviton amplitude. In this case we will get
momentum of order k4 from fermions and we must do the pinched-off integration to
cancel k2. There are two different choices of picking fermions among vertex operators
for a certain 8 fermion contraction contributing toO(k2) with pinched-off integration:

1. In the first case, the contraction of 8 fermions consists of 4-fermions coming
from one vertex operator and 2 fermions coming from each of the remaining
2 vertex operators. All the other operators in the contraction are bosons.
W.l.o.g. we assign 4-fermions to Vertex operator V1 as an example, then the
term we are going to contract would be

k1 · ψ̄1ψ̄
µ
1k1 · ψ1ψ

ν
1e

ik1·X1 ∂̄Xµ
2 k2 · ψ2ψ

ν
2e

ik2·X2 ∂̄Xµ
3 k3 · ψ3ψ

ν
3e

ik3·X3 . (5.103)

Since a contraction of a boson with an exponential would bring in an extra
k, see (B.1c), we cannot contract any boson with the exponentials here. The
only source of the 1

|zij |2
term required by the pinched-off integration must be

the fermion contractions. Due to |zij|2 = zij z̄ij, one needs 1 pair of ⟨ψiψj⟩ and
1 pair of ⟨ψ̄iψ̄j⟩ to get 1/zij and 1/z̄ij when zi → zj. However, we have only
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one pair of fermions each from V2 and V3, and in the same vertex operator the
two fermions are either both left-moving or right-moving, it’s impossible to get
1/zij and 1/z̄ij simultaneously from either V2 or V3. Therefore, we can exclude
this case from O(k2) contribution.

2. In the second case, the contraction has left and right-moving bosons within the
same vertex operator, and 8 fermions are in the remaining 2 vertex operators.
W.l.o.g. we choose this vertex operator to be V3 as an example, then the
contraction term would be

k1 · ψ̄1ψ̄
µ
1k1ψ1ψ

ν
1e

ik1·X1k2 · ψ̄2ψ̄
µ
2k2ψ2ψ

ν
2e

ik2·X2 ∂̄Xµ
3 ∂X

ν
3 e

ik3·X3 . (5.104)

Here we observe that ∂̄X3 cannot be contracted with ∂X3, thus both of them
have to be contracted with the exponentials from V1 and V2. However this
disobeys the statement we have made in the last paragraph that bosons should
not be contracted with exponentials, which would give an extra k. Therefore
we can also exclude this case from k2 contribution.

To conclude, from the above argument, 8 fermion contractions should not be
included when considering O(k2) contribution.

10-and more Fermion contributions in Type-I Since 10 and more fermion
contributions in the amplitude of Type-I have 5 or more momenta already, while the
pinched-off integration can only cancel two momenta, we can ignore these contrac-
tions when only considering O(k2) in Type-I theory.

6-Fermion contribution in Type-I

By a simple observation we claim that in 6-fermion contractions each vertex operator
must contribute one and only one pair of fermions, otherwise one will have to contract
fermions located at the same position, which is forbidden. Furthermore, we should
mention that the tensor structure will be invariant when we exchange left-moving
and right-moving components of the contractions, since the polarization tensor ϵµν is
symmetric. These two observations show that one can already use most of the results
from the Heterotic 1-loop 3 graviton calculation. We should follow the rules listed
in §5.2.2 as well. These will greatly simplify our work, and we can already get an
anti-holomorphic copy from Heterotic calculation by changing all left (right)-moving
components in the Heterotic case to right (left)-moving, respectively.
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G4f
3 and G6f

3 correlation functions in Type-I

Here we want to discuss the possible variants of G6f
3 correlation functions when we

go to Type-I from Heterotic. W.l.o.g we again take G1
6f,(k1ϵ3k1)(ϵ1ϵ2)

in (5.37) as an
example, and rewrite it in Type-I:

ϵ1,µ1ν1
∂̄Xµ1

1 ik1 · ψ1ψ
ν1
1 e

ik1·X1ϵ2µ2ν2
∂̄Xµ2

2 ik2 · ψ2ψ
ν2
2 e

ik2·X2ϵ3µ3ν3
∂̄Xµ3

3 ik3 · ψ3ψ
ν3
3 e

ik3·X3 . (5.105)

G1,LLL
6f,(k1ϵ3k1)(ϵ1ϵ2)

∝− 1

16

∫
σ

d2z1

∫
σ

d2z2

∫
σ

d2z3(k2 · k3)(k1ϵ3k1)(ϵ1ϵ2)

⟨ψ1ψ2⟩σ⟨ψ2ψ3⟩σ⟨ψ1ψ3⟩σ⟨∂̄X1∂̄X2⟩σ∂̄Pσ
31|χσ

13|
1
2k1·k3 |χσ

23|
1
2k2·k3 |χσ

12|
1
2k1·k2 .

(5.106)

Here LLL in the superscript of G6f means that all three pairs of fermions are left-
moving, in the sequence of V1, V2, V3. R refers to right-moving. We will use this
notation throughout Type-I calculation.

We notice that if all 3 superscripts of L and R of V1, V2 and V3 for G4f
3 and G6f

3

correlation functions are switched to the other moving (e.g. GLLR → GRRL), the
amplitude is invariant: GLLR = GRRL.

1-loop Type-I theory has 3 more topologies other than torus. ∂2 ⟨XX⟩σ ̸= ∂2Pσ

[7, (A.4)] for A, K and M. Therefore the coordinate integration is not performed
on a total derivative any more. This will break the vanishing result of O(k2) with
pinching singularity in Heterotic case.

Lifting to covering Torus

To get a consistent result, we need to lift the integrals from 1-loop surfaces σ =
A,K,M to the covering torus using the following equation backwards[7]∫

T
d2zf(z) =

[∫
σ

d2z +

∫
Iσ(z)

d2z

]
f(z) =

∫
σ

d2z [f(z) + f(Iσ(z))] , (5.107)

where I(σ) is the image of involution on the double cover of σ, see (A.13) or [7,
(A.1)].

In order to make use of the full power of the lifting technique, we need to revert all
the amplitudes to the original form with all the propagators NOT expressed explicitly
by functions. For example, we should rewrite (5.106) as

G1,LLL
6f,(k1ϵ3k1)(ϵ1ϵ2)

=− α′

2

∫
σ

d2z1

∫
σ

d2z2

∫
σ

d2z3(k2 · k3)(k1ϵ3k1)(ϵ1ϵ2)
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⟨ψ1ψ2⟩σ⟨ψ2ψ3⟩σ⟨ψ1ψ3⟩σ⟨∂̄X1∂̄X2⟩σ⟨∂̄X3X1⟩σ
∏
i<j

∣∣χσ
ij

∣∣ 12ki·kj

=− α′

2

∫
σ

d2z1

∫
σ

d2z2

∫
σ

d2z3(k2 · k3)(k1ϵ3k1)(ϵ1ϵ2)fLLL
1 (z1, z2, z3)

∏
i<j

∣∣χσ
ij

∣∣ 12ki·kj
.

(5.108)

We know that we have 7 additional variants of this amplitude in Type-I, which
are G1,LLR, G1,LRL, G1,LRR, G1,RLL, G1,RLR, G1,RRL, G1,RRR. Using the fact that [7,
(A.3)]

⟨X(zi)X(zj)⟩σ = ⟨X(zi)X(Iσ(zj))⟩σ = ⟨X(Iσ(zi))X(zj)⟩σ (σ = A,K,M),
(5.109)

and [14, (185), (186)] (noticing the i)

⟨ψ(zi)ψ̄(zj)⟩σ = iSσ(zi, Iσ(zj)), (5.110)

⟨ψ̄(zi)ψ(zj)⟩σ = iSσ(Iσ(zi), zj), (5.111)

we find for example that

fLLR
1 (z1, z2, z3)

=⟨ψ1ψ2⟩σ⟨ψ2ψ̄3⟩σ⟨ψ1ψ̄3⟩σ⟨∂̄X1∂̄X2⟩σ⟨∂X3X1⟩σ

=⟨ψ1ψ2⟩σiSσ(z2, Iσ(z3))iSσ(z1, Iσ(z3))⟨∂̄X1∂̄X2⟩σ
∂

∂z3
⟨X3X1⟩σ

=− ⟨ψ1ψ2⟩σiSσ(z2, Iσ(z3))iSσ(z1, Iσ(z3))⟨∂̄X1∂̄X2⟩σ
∂

∂(1− z3)
⟨X(z3)X(z1)⟩σ

=⟨ψ1ψ2⟩σSσ(z2, Iσ(z3))Sσ(z1, Iσ(z3))⟨∂̄X1∂̄X2⟩σ
∂

∂Iσ(z3)
⟨X(z3)X(z1)⟩σ

=⟨ψ1ψ2⟩σSσ(z2, Iσ(z3))Sσ(z1, Iσ(z3))⟨∂̄X1∂̄X2⟩σ
∂

∂Iσ(z3)
⟨X(Iσ(z3))X(z1)⟩σ

=fLLL
1 (z1, z2, Iσ(z3)), (5.112)

where in the 4th line the partial derivative is ∂/∂(1 − z3 +
τ
2
) = ∂/∂IK(z3) for K.

This means that we can pair all these variants to lift to the covering torus by using
(5.107)

G1,LLL
6f,(k1ϵ3k1)(ϵ1ϵ2)

+G1,LLR
6f,(k1ϵ3k1)(ϵ1ϵ2)

=− 1

4

∫
σ

d2z1

∫
σ

d2z2

∫
σ

d2z3(k2 · k3)(k1ϵ3k1)(ϵ1ϵ2)(
fLLL
1 (z1, z2, z3) + fLLR

1 (z1, z2, z3)
)∏

i<j

∣∣χσ
ij

∣∣ 12ki·kj
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=− 1

4

∫
σ

d2z1

∫
σ

d2z2

∫
σ

d2z3(k2 · k3)(k1ϵ3k1)(ϵ1ϵ2)(
fLLL
1 (z1, z2, z3) + fLLL

1 (z1, z2, Iσ(z3))
)∏

i<j

∣∣χσ
ij

∣∣ 12ki·kj
=− 1

4

∫
σ

d2z1

∫
σ

d2z2

∫
T
d2z3(k2 · k3)(k1ϵ3k1)(ϵ1ϵ2)

fLLL
1 (z1, z2, z3)

∏
i<j

∣∣χσ
ij

∣∣ 12ki·kj . (5.113)

We observe that the integrand of this sum is exactly the same as G1,LLL
6f,(k1ϵ3k1)(ϵ1ϵ2)

except for the domain. Thus we can repeat the above lifting procedure and finally
obtain the result that

G1,LLL
6f +G1,LLR

6f +G1,LRL
6f +G1,LRR

6f +G1,RLL
6f +G1,RLR

6f +G1,RRL
6f +G1,RRR

6f |(k1ϵ3k1)(ϵ1ϵ2),(A,K,M)

= −1

4

∫
T
d2z1

∫
T
d2z2

∫
T
d2z3(k2 · k3)(k1ϵ3k1)(ϵ1ϵ2)fLLL

1 (z1, z2, z3)
∏
i<j

∣∣χσ
ij

∣∣ 12ki·kj

= G1,LLL
6f,(k1ϵ3k1)(ϵ1ϵ2)

|T . (5.114)

Moreover, we can apply this procedure to all G4f and G6f correlation functions, and
reduce/lift them all to the torus correlation functions with all left-moving fermions.

But we would like to point out that, G4f correlation functions has only 2 pairs
of fermions, thus actually they have only two superscript of L or R in Type-I. We
notice that∫

σ

d2z3
〈
∂̄X1∂̄X3

〉
σ

〈
∂̄X2∂X3

〉
σ

=

∫
σ

d2z3∂̄1
∂

∂z̄3
⟨X1X(z3)⟩σ ∂̄2

∂

∂z3
⟨X2X(z3)⟩σ

=

∫
σ

d2z3∂̄1
∂

∂(−Iσ(z3))

〈
X1X

(
Iσ(z3)

)〉
σ
∂̄2

∂

∂(−Iσ(z3))
⟨X2X(z3)⟩σ

=

∫
σ

d2z3∂̄1
∂

∂(−Iσ(z3))

〈
X1X

(
Iσ(z3)

)〉
σ
∂̄2

∂

∂(−Iσ(z3))
⟨X2X (Iσ(z3))⟩σ

=

∫
σ

d2z3∂̄1
∂

∂(Iσ(z3))

〈
X1X

(
Iσ(z3)

)〉
σ
∂̄2

∂

∂Iσ(z3)
⟨X2X (Iσ(z3))⟩σ

=

∫
σ

d2z3

〈
∂̄X1∂X

(
Iσ(z3)

)〉
σ

〈
∂̄X2∂̄X (Iσ(z3))

〉
σ

and vice versa (5.115)



5.3. TYPE I STRING 95

by using the invariance under Iσ(zj) of the bosonic correlator ⟨XiX(zj)⟩σ |i ̸=j =〈
XiX

(
Iσ(zj)

)〉
σ
|i ̸=j. Therefore we can apply (5.107) to lift the G4f correlation

functions on A,K,M to T , for example:∫
σ

d2z3
〈
∂̄X1∂̄X3

〉
σ

〈
∂̄X2∂X3

〉
σ
+

∫
σ

d2z3
〈
∂̄X1∂X3

〉
σ

〈
∂̄X2∂̄X3

〉
σ

=

∫
σ

d2z3

〈
∂̄X1∂X

(
Iσ(z3)

)〉
σ

〈
∂̄X2∂̄X

(
Iσ(z3)

)〉
σ
+

∫
σ

d2z3
〈
∂̄X1∂X3

〉
σ

〈
∂̄X2∂̄X3

〉
σ

=

∫
T
d2z3

〈
∂̄X1∂X3

〉
σ

〈
∂̄X2∂̄X3

〉
σ
. (5.116)

We conclude that the lifting procedure would also lift 4-fermion correlation functions
on 1-loop surfaces to the corresponding correlation function on the covering torus.

Summing up 1-loop Type-I 3-point amplitudes

From the conclusion of ”Lifting to covering Torus” §5.3.2, we know that lifting pro-
cedure imposes no extra factor, thus the result of Type-I will be exactly the same as
the result of Heterotic, except that we should use the correlators (3.18) and (3.19)
in Type-I for 1-loop surfaces A, K and M. Be aware that as in Heterotic, fermion
propagators would again be absorbed into spin summation Z int

s=1. 1-loop 3 graviton
Type-I amplitude receives contributions only from A, K and M5. We summarize
the kinematic structure result up to the overall factor:

Gσ ∝α
′

2

1

|z12|2

(
α′π

2τ2
+ ∂̄223Pσ(z̄2, z̄3)

)
{(k1 · k2) (ϵ1ϵ2) (k1ϵ3k1) + (k1 · k2) [(k3ϵ1ϵ2ϵ3k1)− (k3ϵ2ϵ1ϵ3k1)]

+ 2 (k1 · k3) (k2ϵ3ϵ1ϵ2k3) + 2 (k2 · k3) (k3ϵ1ϵ2ϵ3k1)

+2 (k1 · k3) (k2ϵ1ϵ2ϵ3k2) + 2 (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

− 2

α′

(
−α

′π

2τ2
+ ∂2∂̄1Pσ(z2, Iσ(z1))

)
(k1ϵ3ϵ2ϵ1k3)

(
α′π

2τ2
+ ∂̄223Pσ(z̄2, z̄3)

)
− 2

α′

(
−α

′π

2τ2
+ ∂3∂̄1Pσ(z3, Iσ(z1))

)
(k2ϵ1ϵ3ϵ2k1)

(
α′π

2τ2
+ ∂̄232Pσ(z̄3, z̄2)

)
+
α′

2

1

|z13|2

(
α′π

2τ2
+ ∂̄212Pσ(z̄1, z̄2)

)
{(k1 · k3) (ϵ1ϵ3) (k3ϵ2k3) + (k1 · k3) [(k2ϵ3ϵ1ϵ2k3)− (k3ϵ2ϵ3ϵ1k2)]

+ 2 (k1 · k2) (k3ϵ2ϵ1ϵ3k2) + 2 (k2 · k3) (k2ϵ1ϵ3ϵ2k1)

5Type-I theory also contains torus amplitude. However torus amplitude would exactly the same
as in Heterotic, thus it is vanishing.
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+2 (k1 · k2) (k3ϵ2ϵ3ϵ1k3) + 2 (k2 · k3) (k1ϵ2ϵ1ϵ3k1)}

− 2

α′

(
−α

′π

2τ2
+ ∂1∂̄3Pσ(z1, Iσ(z3))

)
(k3ϵ2ϵ1ϵ3k2)

(
α′π

2τ2
+ ∂̄212Pσ(z̄1, z̄2)

)
− 2

α′

(
−α

′π

2τ2
+ ∂2∂̄3Pσ(z2, Iσ(z3))

)
(k1ϵ3ϵ2ϵ1k3)

(
α′π

2τ2
+ ∂̄221Pσ(z̄2, z̄1)

)
+
α′

2

1

|z23|2

(
α′π

2τ2
+ ∂̄213Pσ(z̄1, z̄3)

)
{(k2 · k3) (ϵ2ϵ3) (k2ϵ1k2) + (k2 · k3) [(k2ϵ1ϵ3ϵ2k1)− (k2ϵ1ϵ2ϵ3k1)]

+ 2 (k1 · k2) (k3ϵ1ϵ2ϵ3k1) + 2 (k1 · k3) (k1ϵ2ϵ3ϵ1k2)

+2 (k1 · k2) (k3ϵ2ϵ3ϵ1k3) + 2 (k1 · k3) (k2ϵ1ϵ2ϵ3k2)}

− 2

α′

(
−α

′π

2τ2
+ ∂1∂̄2Pσ(z1, Iσ(z2))

)
(k3ϵ2ϵ1ϵ3k2)

(
α′π

2τ2
+ ∂̄213Pσ(z̄1, z̄3)

)
− 2

α′

(
−α

′π

2τ2
+ ∂3∂̄2Pσ(z3, Iσ(z2))

)
(k2ϵ1ϵ3ϵ2k1)

(
α′π

2τ2
+ ∂̄231Pσ(z̄3, z̄1)

)
. (5.117)

As in Heterotic theory, we notice that both ∂i∂̄jPσ(zi, Iσ(zj)) and ∂̄2ijPσ(z̄i, z̄j) are
total derivatives, thus they vanish upon coordinate integration on the covering torus.
Thus we could simplify our life and get rid of all terms including ∂i∂̄jPσ(zi, Iσ(zj)) or
∂̄2ijPσ(z̄i, z̄j). Then we perform the pinched-off integration as well as an extra coordi-
nator integration to obtain the non-vanishing contribution (using again

∫
T d

2z = 2τ2)

α′π2 { (ϵ1ϵ2) (k1ϵ3k1) + (k3ϵ2ϵ1ϵ3k1) + (k3ϵ1ϵ2ϵ3k1) + 2 (k2ϵ1ϵ3ϵ2k1)

+ (ϵ1ϵ3) (k3ϵ2k3) + (k3ϵ2ϵ3ϵ1k2) + (k2ϵ3ϵ1ϵ2k3) + 2 (k1ϵ3ϵ2ϵ1k3)

+ (ϵ2ϵ3) (k2ϵ1k2) + (k2ϵ1ϵ2ϵ3k1) + (k2ϵ1ϵ3ϵ2k1) + 2 (k3ϵ2ϵ1ϵ3k2)} . (5.118)

Using (5.33) to simplify the above contribution, we arrive at the final result

α′π2 { (k1ϵ3k1) (ϵ1ϵ2)− 2 (k3ϵ2ϵ3ϵ1k2)

+ (k3ϵ2k3) (ϵ3ϵ1)− 2 (k2ϵ1ϵ2ϵ3k1)

+ (k2ϵ1k2) (ϵ2ϵ3)− 2 (k1ϵ3ϵ1ϵ2k3) } . (5.119)

5.3.3 Discussion

We double-checked the gravity kinematic structure in the Heterotic 1-loop 3-point
graviton amplitude from [40]. We derived the kinematic structure (5.78) different
from theirs. We extended the calculation to Type-I 1-loop 3-point graviton am-
plitude. We already knew that the calculation to Type-I 1-loop 3-point graviton
amplitude in [9] was incomplete because they did not consider pinched-off integra-
tion. However, even including pinched-off integration, non-vanishing 1-loop correc-
tion (5.119) from our Type-I calculation still breaks the gravity kinematic structure
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V(0)

V(0)

V(-1)

PCO(+1)

V(-1)

Figure 5.2: Factorization of pinched-off integration contribution

(5.2), which shows that the string amplitude calculation is incomplete. Further stud-
ies are necessary to solve this problem.

In the pinching limit, according to [69, §2.5.1, §4.4, §4.5], the 1-loop surface that
we are working on should be factorized into a sphere with two vertex operators on
it connected to a 1-loop surface with 1 vertex operator on it by a propagator. We
illustrate the image in Figure 5.2. Actually in the calculation we never take into
account the effect of PCOs (Picture Changing Operators). The so called ”vertical
integration” technique[64, §3.6] provides a potential method toward the solution. In
order to make the picture numbers on both sphere and 1-loop surface consistent in
Figure 5.2, we would have to move 1 PCO from the vertex operator on the sphere
factor to the vertex operator on the torus factor in the pinching limit [69, §6.4.6][65,
§8] 6. We see that in the Figure 5.2, the 2 vertex operators at the 2 punctures con-
nected by the plumbing are forced to have canonical picture number7, thus the torus
and the sphere could have the correct total picture numbers of 0 and -2 respectively,
as discussed in §2.2.1. This modification of distribution of picture numbers involves
”vertical integration” and introduces potential new contributions. Unfortunately,
the application of ”vertical integration” is still under research. We have to leave this
topic to our future study.

To complete the 3-point 1-loop correction calculation, 1-loop partition functions
of Type-IIB T 6/ZN orientifolds would be necessary. These are introduced in app.C,
app.D.1 and app.D.2. They can also be found in e.g.[7][47].

6The superscripts in Figure 5.2 stand for the picture number of the corresponding vertex operator
or PCO.

7We are dealing with gravitons here, so we are in the NS sector and the picture numbers of
the vertex operators on the two punctures at the 2 ends of the plumbing should be canonical. RR
sector leads to a different total picture number, therefore requires the insertion of an extra PCO
on the plumbing.[37, §17.2.2]



Chapter 6

Preliminary: Basics about Genus-32
correction

The natural idea of the next step of the loop correction would be higher order of
perturbation series. Genus-3

2
is the next higher order to the 1-loop. Genus-3

2
surfaces

are surfaces with boundaries (open surfaces) plus unoriented surfaces. Generally, one
associates a closed oriented surface Σ̄ which is a double cover of Σ to obtain an open
or unoriented surface Σ. Involution reduces Σ̄ to Σ. We want to show that one
can express the determinants, differentials and classical action on Σ in terms of the
corresponding quantities on Σ̄. And we get genus-3

2
surfaces by the involution on

2-torus. This allows us to utilize the well-studied properties of genus-2 surfaces. 1

6.1 Involution on surfaces

A conformal structure [g] determines an almost complex structure J (J2 = −1) by
Ja
b =

√
ggacϵcb, ϵcb is the Levi-Civita symbol. And on 2 dimensional Riemann surfaces

Σ, Ja
b determines a complex structure J = idz ⊗ ∂

∂z
− idz̄ ⊗ ∂

∂z̄
. One can classify

Riemann surfaces Σ into three cases:

Oriented surface with boundary ∂Σ [38] Take Σ∗ to be the copy of Σ with
opposite orientation. The double cover of oriented surface Σ with boundary is a
closed oriented surface Σ̄ without boundary, which is obtained by attaching Σ∗ to
Σ along their corresponding boundaries. The involution I : Σ̄ → Σ̄ is orientation
reversing and maps 1 to 1 from Σ to Σ∗. We can extend the almost complex structure

1In this chapter we closely follow [21].
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J on Σ to an almost complex structure J̄ on Σ̄ by letting J̄p = Jp for p ∈ Σ and
J̄p = −(I ◦ J ◦ I−1)p for p ∈ Σ∗. By construction that I is orientation reversing, I is
anti-conformal and its fixed point set is ∂Σ, and Σ = Σ̄/I.

Unoriented surface without boundary [3] In this case, an unoriented surface
Σ without boundary has a compact oriented double cover Σ̄. The corresponding
anti-conformal involution I interchanges two points of Σ̄ which corresponds to the
same point on Σ, but the image I(p) ∈ Σ∗ lies above p ∈ Σ. In other words, this
could be considered effectively as gluing an orientation-reversed copy Σ∗ of Σ along
the cross-caps of Σ. This explains the construction of the double cover, and I has no
fixed point. We can lift the conformal structure on Σ to Σ̄. And since Σ̄ is oriented,
the conformal structure naturally determines a complex structure on Σ̄.

Unoriented surface with boundary [3] For Σ unoriented with boundary, we
take the complex double cover, which is obtained by doubling the Σ (effectively along
the cross-cap) to get an oriented double cover O with twice as many boundaries as
Σ as the anti-conformal involution in the unoriented surface without boundary, then
identifying each boundary with its image under I. There is another possible double
cover B across the boundaries, which is unoriented and has no boundaries. We
define the quadruple of Σ to be Q, which is the oriented double cover of B and it is
boundaryless. Q will be needed in §6.3.

The anti-conformal involution I transforms canonical homology basis of the Rie-
mann surfaces a-cycles to a, and b-cycles to b, and it is an orientation-reversing
diffeomorphism due to anti-conformal property. We express the involution I as

Iai = Γijaj, (6.1)

where elements of Γij are integers such that Γ2 = 1. Because of the orientation-
reversing property, the involution I preserves the intersection pairing but changes its
sign, which can be expressed as

Ibi = −Γjibj. (6.2)

And then we take a normalized basis of holomorphic differentials on Σ̄∫
ai

ωj = δij,

∫
bi

ωj = Ωij, (6.3)

where Ω is the period matrix. It gives

Iωi = Γjiω̄j, Ω = −Γ⊤Ω̄Γ, (6.4)

where bar means complex conjugate.
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6.2 Moduli space

Period matrix Ω as defined in (3.35) could be used to identify the moduli space of
genus-3

2
and 2 surfaces. We give the partition function of one boson on Σ and the

moduli space measure σΣ as an example: [4]

AΣ(Xi) =

∫
M(Σ)

σΣ

∫ (∏
dXi

)
e−Scl[Xi],

σΣ =

(
det′∆Σ,g∫

Σ

√
g

)− 1
4

(det
(
P †
1P1

)
Σ,g

)
1
2dµ

WP
(Σ), (6.5)

where M(Σ) is the moduli space. The measure of the moduli space is separated into
3 parts: dµ

WP
(Σ) is the Weil-Petersson measure of the moduli space defined in (6.24);

∆Σ,g is the scalar Laplacian ∂†∂ acting on X; (P †
1P1)Σ,g is the vector Laplacian as

P1 acts on vector fields, see (2.24). Scl[Xi] is the classical action.
In the path integral, we integrate over the moduli space of conformal structures,

which indicates that Σ and Σ̄ no longer have fixed conformal structures. Define the
action of I on the space C(Σ̄) of almost complex structures J by

J 7→ −I∗ ◦ J ◦ I∗, (6.6)

which is anti-conformal. Then Σ̄ could be a double cover of Σ iff J of Σ̄ is in the
fixed point set CI(Σ̄) under I.

The Teichmüller and moduli spaces of Σ̄ are[29]

T (Σ̄) = C(Σ̄)/Diff0(Σ̄), M(Σ̄) = C(Σ̄)/Diff(Σ̄), (6.7)

where Diff(Σ̄) is the group of orientation-preserving diffeomorphisms of Σ̄ and Diff0(Σ̄)
is the subgroup of Diff(Σ̄) connected to the identity. And

G(Σ̄) = Diff(Σ̄)/Diff0(Σ̄) (6.8)

is the mapping class group.
We identify the real tangent space to T (Σ̄) at [J ] with the space of real Beltrami

differentials µ[J ] ≡ µb
adx

a ⊗ ∂/∂xb, and the real cotangent space T ∗(Σ̄) at [J ] with
the space of real quadratic differentials ϕ[J ] ≡ ϕabdx

a ⊗ dxb. T (Σ̄) and T ∗(Σ̄) are
complex manifolds due to the almost complex structure[60]

µ[J ] 7→
(
Jµ[J ]

)
≡ J b

aµ
c
bdx

a ⊗ ∂

∂xc
,
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ϕ[J ] 7→
(
Jϕ[J ]

)
≡ J b

aϕcbdx
a ⊗ dxc. (6.9)

One could do the same construction on Σ, but if Σ is unoriented, then one takes
C(Σ) to be the space of conformal structures. If Σ has boundaries, Diff0(Σ) takes
each boundary component into itself[66].

T (Σ) should be identified with a slice of T (Σ̄) which is the fixed point set T I(Σ̄)
under I. The mapping class group G(Σ) is naturally identified with the relative mod-
ular group2 G(Σ̄, I) ≡ DiffI(Σ̄)/DiffI

0(Σ̄) where Diff
I is the group of diffeomorphisms

which commute with I. Therefore

M(Σ) ∼= T I(Σ̄)/G(Σ̄, I). (6.10)

From the above constructions, we are able to do the following steps: First, express
the string integrand for Σ as a form on T (Σ); Second, rewrite the determinants,
differentials, and classical action in σΣ in terms of quantities defined on Σ̄; Then,
identify the resulting expression as a form on T I(Σ̄) ∈ T (Σ̄); Finally, check that this
form is invariant under the relative modular group G(Σ̄, I).

After showing that the string integrand descends to a form on T I(Σ̄)/G(Σ̄, I) ∼=
M(Σ), we are able to write the amplitude AΣ for Σ in terms of a real slice of T (Σ̄).

6.3 Determinants

Now we proceed to the treatment of determinants of the string integrand. First we
deal with det′∆Σ,g. det

′ always stands for the determinant without zero modes while
zero modes are taken care of in the ghost system. We want to express det′∆Σ,g in
terms of the scalar determinant on Σ̄. In order to do so, we try to express det′∆±

Σ̄,g

in terms of det′∆Σ̄,g first, where det′∆+
Σ̄,g

and det∆−
Σ̄,g

denote the laplacian ∆Σ̄,g

restricted to functions even (+) and odd (−) under I. One notices that functions
odd under I do not include zero modes.

We introduce a quantity[32]:

RΣ̄,I(J) ≡ det′ ImΩ+/det′ ImΩ− = det
[
(1 + Γ) ImΩ + (1− Γ)(ImΩ)−1

]
, (6.11)

where ImΩ± = (1± Γ) ImΩ(1± Γ) and Γ is defining the involution Iai = Γijaj.
We claim that (

det′∆+
Σ̄,g∫

Σ̄

√
g

)
/ det∆−

Σ̄,g
= RΣ̄,I(J)

−1 (6.12)

2Details of relative modular group would be discussed in §6.5
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up to a multiplicative constant independent of g. The proof is given in [21]3, and
the central idea is to calculate the variation of the equation. Using this equation
together with the relation

det′∆Σ̄,g = det′∆+
Σ̄,g

det∆−
Σ̄,g
, (6.13)

one derives

det′∆+
Σ̄,g∫

Σ̄

√
g

=

(
det′∆Σ̄,g∫

Σ̄

√
g

) 1
2

(RΣ̄,I(J))
− 1

2 ,

det∆−
Σ̄,g

=

(
det′∆Σ̄,g∫

Σ̄

√
g

) 1
2

(RΣ̄,I(J))
+ 1

2 . (6.14)

Next we need to relate det′∆Σ,g to det′∆±
Σ̄,g

[21]. If Σ is oriented with boundary,

det∆D
Σ,g = det∆−

Σ̄,g
, det′∆N

Σ,g = det′∆+
Σ̄,g
, (6.15)

where D and N denote Dirichlet and Neumann boundary conditions respectively. If
Σ is unoriented with boundary,

det∆D
Σ,gdet

′∆N
Σ,g = det′∆+

Q,g, det′∆N
Σ,g = det′∆+

Σ̄,g
, (6.16)

where Q is the quadruple of Σ. Combining equations (6.12), (6.15) and (6.16) one
gets

det∆D
Σ,g det′∆N

Σ,g/
∫
Σ

√
g

oriented

(
det′∆Σ̄,g∫

Σ̄

√
g

) 1
2

(RΣ̄,I(J))
1
2

(
det′∆Σ̄,g∫

Σ̄

√
g

) 1
2

(RΣ̄,I(J))
− 1

2

unoriented
(det′∆Q,g)

1
2 (RQ,I(J))

1
2

(det′∆Σ̄,g)
1
2 (RΣ̄,I(J))

1
2

(
det′∆Σ̄,g∫

Σ̄

√
g

) 1
2

(RΣ̄,I(J))
− 1

2

If Σ is unoriented without boundaries, one can similarly derive

det′∆Σ,g∫
Σ̄

√
g

=

(
det′∆Σ̄,g∫

Σ̄

√
g

) 1
2

(RΣ̄,I(J))
− 1

2 . (6.17)

3be aware of the typo in [21], actually all Σ in [21, (4.1)] should have a bar
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Vector laplacian One also has to consider the vector laplacian in the amplitude
(6.5)

(P †
1P1)

a
b = (∆c∆c +

1

2
R)δab . (6.18)

With a symmetric tensor metric g one has

det
(
P †
1P1

)
Σ̄,g

= det
(
P †
1P1

)+
Σ̄,g

det
(
P †
1P1

)−
Σ̄,g
, (6.19)

where the + and − sign denote the vector laplacians restricted to even and odd
vector fields under I. Using the fact that J anticommutes with the involution and
commutes with the vector laplacian, one derives that

det
(
P †
1P1

)+
Σ̄,g

= det
(
P †
1P1

)−
Σ̄,g
, (6.20)

so

det
(
P †
1P1

)+
Σ̄,g

=

(
det
(
P †
1P1

)
Σ̄,g

) 1
2

and det
(
P †
1P1

)
Σ,g

= det
(
P †
1P1

)+
Σ̄,g

,

(6.21)
thus

det
(
P †
1P1

)
Σ,g

=

(
det
(
P †
1P1

)
Σ̄,g

) 1
2

. (6.22)

As an example, the string partition function of one boson on unoriented Σ with
boundary is

AΣ(Xi) =

∫
T I/G

MΣ̄R
±
Σ̄,I

1
2

∫
(
∏

dXi)e
−Scl[Xi]. (6.23)

Remarks:

1. The sign in exponent of RΣ̄,I is chosen w.r.t. the following: positive sign is for
open string (Neumann) boundary conditions or cross caps; negative sign is for
closed string (Dirichlet) boundary conditions.

2. T I(Σ̄)/G(Σ̄, I) ∼= M(Σ) is the moduli space of Σ.

3. The classical action Scl[Xi], which is only present if there are external string
states, can be explicitly given in terms of abelian differentials on Σ̄ and param-
eterized boundary curves Xi.
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The Weil-Petersson measure with a symmetric metric g can be factorized[33]:

dµ
WP

(Σ̄) ≡ det⟨ϕi, µj⟩
(det⟨ϕi, ϕj⟩)

1
2

6g−6∏
i=1

dmi = dµ
WP

(Σ) ∧ Jdµ
WP

(Σ), (6.24)

where {ϕi} is any basis for the space of real quadratic differentials on Σ̄, {µi} is any
basis of Beltrami differentials corresponding to tangent vectors d/dmi to Teichmüller
space, and ⟨·, ·⟩ is the Petersson pairing. Since g is symmetric, the space 0f quadratic
differentials {ϕi} splits into subspaces {ϕi} = {Si, JSi} where Si (JSi) is even (odd)
under I respectively.

From the factorization of dµ
WP

(Σ̄) we can derive the measure MΣ̄ with help of
σΣ̄ =MΣ̄ ∧ JMΣ̄:

MΣ̄ =

{det
(
P †
1P1

) 1
2

Σ̄,g

det⟨ϕi, ϕj⟩
1
2

(
det∆Σ̄,g∫

Σ̄

√
g det ImΩ

)− 1
2

} 1
2

(det ImΩ)−
1
4 det⟨Si, µj⟩

3g−3∏
i=1

dmi.

(6.25)
Then the determinant of the partition function of one boson on Σ is determined.

6.4 Fermions under Involution

Above method of taking square root from the double cover also applies to fermionic
determinants giving rise to the fermionic partition functions[10]. In the following,
we consider only the right moving part of fermions as a simple illustration since left
and right movers can have different spin structures.

The determinant of Dirac operator det′ΣD on the certain surfaces can be ex-
pressed by the determinant of Dirac operator det′Σ̄D on the double cover of that
surface[63], which is similar to the bosonic determinant. Here we give a detailed
explanation of this argument.

The key should be the point “There is therefore a one-to-one correspondence
between even and odd eigenfunctions with the same eigenvalue.”in [63]. We know
that

det′Σ̄D = det′Σ̄D
+det′Σ̄D

− (6.26)

where + and − represent that D is restricted to the even and odd states under
involution I respectively. For every eigenstate T of det′Σ̄D which is even under
Involution, it is always possible to construct an unique (∗T ) that is an eigenstate
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with the same eigenvalue and is odd under Involution, and vice versa[63]. This
indicates

det′Σ̄D
+ = det′Σ̄D

−. (6.27)

By definition, one easily finds that

det′ΣD = det′Σ̄D
+ or det′ΣD = det′Σ̄D

− (6.28)

w.r.t. certain spin structure and involution. Then the claim

det′ΣD = (det′Σ̄D)
1
2 (6.29)

is straightforward.
Refering to [63], we can explicitly write down the determinant up to a numerical

constant:

det′ΣD =

(
det′Σ̄∆∫

Σ̄

√
g det ImΩ

)− 1
4
∣∣∣∣ϑ [a⃗b⃗

]
(t)

∣∣∣∣, (6.30)

where a⃗ and b⃗ are the twists which represent the spin structures, and ϑ[a⃗
b⃗
] is the

standard theta function with characteristics.
Fermionic partition function includes a sum of theta functions over spin structures

with coefficient c:

ZF ∝
∑
spin

c

[
a⃗

b⃗

]
det′ΣD =

∑
a⃗,⃗b

c

[
a⃗

b⃗

](
det′Σ̄∆∫

Σ̄

√
g det ImΩ

)− 1
4
∣∣∣∣ϑ [a⃗b⃗

]
(t)

∣∣∣∣
=
∑
a⃗,⃗b

c

[
a⃗

b⃗

](
det′Σ̄∆∫

Σ̄

√
g det ImΩ

)− 1
4 ∑
n⃗∈Zg

e−π(n⃗+a⃗)t(n⃗+a⃗)⊤+2iπ(n⃗+a⃗)⃗b⊤ .

(6.31)

The coefficients c of higher loops could be determined by factorizing the double
covering surface into 1-loop surfaces. For example, a genus-2 torus T could be
factorized into two separate tori T1 and T2. c of T as well as the relative signs between
c could be determined up to a normalizing constant by expressing c = cT1cT2 and
imposing invariance under modular transformation, in the standard way. Due to the
involution, the coefficients c in genus-3

2
surface are inherited from the coefficients in

its genus-2 torus double cover.
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6.5 Relative Modular Group

All modular transformations M that preserve the involution I in the sense that I ′ =
MIM−1 ≡ I form the so called ”relative modular group”, which is a subgroup of the
modular group Sp(2g,Z) and is dependent on the individual surface. Only relative
modular transformations survive the involution on the double covering surface, and
thus they are relevant for the space after involution. Here we consider the general
case that genus-g is arbitrary.4

We know that the spin-structures can be described by the periodicity/anti-periodicity
when a fermions goes around the homology basis/cycles. We define the canonical
homology basis as ai winding around handles and bi winding around holes (see Figure
3.1) with symplectic intersection form

J(ai, bj) = −J(bj, ai) = δij,

J(ai, aj) = J(bi, bj) = 0. (6.32)

The symplectic form could be represented by the 2g dimensional homology basis
vector

v =



a1
...
ag
b1
...
bg


, en =


0
...
1
...
0

 (nth component)

as
e⊤mJen = Jmn (6.33)

where Jmn is the matrix element of J . We can give the explicit form of J as

J =

(
0 1
−1 0

)
2g×2g

(6.34)

According to §6.1, the involution I is anti-conformal, thus I reverses the rela-
tive angle between intersecting homology basis on the double cover Σ̄. Then the
involution matrix I acting on arbitrary e satisfies

−Jmn = (Iem)
⊤J(Ien) = e⊤mI

⊤JIen and −Jmn = e⊤m(−J)en ⇒ I⊤JI = −J.
(6.35)

4This section closely follows [18] and [19]
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The action on the a-cycles determines the behavior of the abelian differentials by
preserving

∫
ai
wj = δij. We take the general form of involution matrix as

I =

(
A B
C D

)
(2g×2g)

, (6.36)

where A,B, C,D are g × g matrices of integers and satisfy

C⊤A = A⊤C, D⊤B = B⊤D, C⊤B −A⊤D = 1 (6.37)

on account of (6.34) and (6.35). Period matrix Ω compatible with I should satisfy

Ω̄ = I(Ω) = (C +DΩ)(A+ BΩ)−1 (6.38)

while
∫
ai
wj = δij should be preserved under I, because of (6.4).

One can choose a proper homology basis to simplify both the involution matrix
and the corresponding period matrix Ω. And it’s always possible to reduce the
involution matrix to the triangular form

I =

(
1 0
∆ −1

)
, (6.39)

where the matrix ∆ is symmetric on account of (6.37). ∆ determines the real part
of the period matrix Ω as in (7.3)[55]. Such a basis which has this triangular form
of I is named ”identity basis”.

As a basic rule to obtain the identity basis, the homology a-cycles should be
invariant under involution, and the homology b-cycles should intersect a-cycles, thus
their orientation would be reversed under involution and therefore the sign of the
symplectic intersection pairing J(a, b) would be flipped.

By the classification theorem of closed surfaces[50], any connected closed surface
should be homeomorphic to one of the 3 families of surfaces:

• an oriented surface

• an oriented surface glued with 1 cross-cap: factorized into an oriented surface
with 1 boundary and a Möbius strip, glued along the boundaries

• an oriented surface glued with 2 cross-caps: factorized into an oriented surface
with 2 boundaries and 2 Möbius strips, glued along the boundaries
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Therefore we do not have to consider surfaces with 3 or more cross-caps. We factorize
the surfaces in above way because we want to associate the cross-caps of a surface
with homology cycles on the double cover of the surface. The construction of the
double covering Cylinder of a Möbius strip is illustrated in Figure 6.1. We see in
Figure 6.1 how a cross-cap of a Möbius strip is associated with a cycle A on the
double covering Cylinder. Equivalently we can say that the cross-cap on a surface
Σ is associated with the homology cycle A on the double cover Σ̄, which is shown in
Figure 6.2.

If a surface Σ has a total number n of boundaries plus cross-caps, then we take
n − 1 of them to be associated with n − 1 a-cycles of identity basis on the double
cover Σ̄, and this fixes the positions of these n − 1 a-cycles of identity basis on Σ̄.
For remaining a-cycles on Σ̄ which are not associated with boundaries or cross-caps
on Σ, we take them to be a subset of the canonical homology basis on Σ̄ that is not
associated with any boundaries/cross-caps on Σ (for example a1, a2 in Figure 6.3b).
So if n = 1, e.g. Σ is a torus with a hole or a cross-cap, no a-cycle on the double
covering Torus Σ̄ will be associated with a boundary or cross-cap on Σ, see Figure
6.3b. A detailed illustration of the identity basis of genus-3

2
surfaces could be found

in the following ”Genus-3
2
” section, paragraph ”Identity basis” (§6.5).

All the transformations M in the modular group Sp(2g,Z) that preserve I with

I ′ =MIM−1 ≡ I (6.40)

are of the form5

MR =

(
A 0
C (A−1)⊤

)
(2g×2g)

(6.41)

with A ∈ GL(g,Z) and

2C = ∆A− (A−1)⊤∆, C ∈ Zg×g. (6.42)

To avoid ambiguity, from now on we always call relative modular transformations
MR, and general modular transformationsM . One should notice that on genus-g > 1
surfaces, the relative modular transformation MR may mix neighboring tori.

Genus-1

Acting involution on a torus one could get 3 topologically different surfaces: Annulus,
Möbius strip and Klein bottle. The involution matrix under identity basis are:

IA =

(
1 0
0 −1

)
, IM =

(
1 0
1 −1

)
, IK =

(
1 0
0 −1

)
, (6.43)

5cf. app.F for more details.
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x

y

A

0 x 1:

(x,y)=(x,y)

1 x 2,0 y 1:

(x,y)=(2-x,y+1)

1 x 2,1 y 2:

(x,y)=(2-x,y-1)

2

1

10

2

1

0 1 2

Figure 6.1: Double cover of Möbius strip
Left: Möbius strip, Right: double covering Cylinder
the dotted line A is a cycle on double covering Cylinder
π is the projecting operator from double covering Cylinder to Möbius strip
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Factorization

Homology cycle A

double covering

∑ ∑

∑

Figure 6.2: Correspondence between cross-cap and homology cycle

It is worth to mention that here the identity basis and involution matrix are treated
under tree-channel, or in other word, we are representing the involution matrix by
its action on identity basis. This is different from what has been done in [7] and
[18]. There the involution is acting on the complex z-plane of a torus. Identity basis
always means working in tree-channel.

Genus-3
2

In the case of genus-3
2
in which we are interested, there are 5 topologically different

surfaces. Choosing the identity basis we get the ∆ matrices for (030) the ”pair of
pants”, (110) the ”torus with a hole” and (101) the ”torus with a cross-cap”:[18]

∆(030) =

(
0 0
0 0

)
, ∆(110) =

(
0 1
1 0

)
, ∆(101) =

(
0 1
1 0

)
, (6.44)

where the three integers (hbc) represent the number of handles (h), boundaries (b)
and cross-caps (c). The dimension of the ∆ being 2 is because we always consider
the homology basis to be on the double cover Σ̄ (in this case, genus-2 torus) as we
have discussed previously.
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Identity basis We illustrate the identity basis a1, a2, b1, b2 of genus-3
2
surfaces on

the double covering genus-2 torus in Figure 6.3. We split all 5 surfaces into 2 different
cases.

First case is the surfaces without handle as in Figure 6.3a. Here the homology
basis is identity basis and a-cycle or combination of a-cycles is always associated with
a boundary or a cross-cap, and b-cycle always intersects the corresponding a-cycle.

Second case is the surfaces with handle as in Figure 6.3b. Here we take the
canonical homology basis a1, a2, b1, b2 in (b). In this basis we can treat the modular
transformations almost the same as the modular transformations on a single torus,
thus could simplify the calculation. Identity basis of the surfaces with handle is
shown in Figure 6.3c. One can see the relation between the identity basis and the
canonical basis.

For (012) ”Klein bottle with a hole”, we have to distinguish among three positions
of the boundary relative to the cross-caps, which leads to three ∆ matrices:

∆
(1)
(012) =

(
1 1
1 0

)
, ∆

(2)
(012) =

(
1 0
0 1

)
, ∆

(3)
(012) =

(
0 1
1 1

)
. (6.45)

∆
(1)
(012) could be derived from ∆

(2)
(012) by acting modular transformation M on the

Involution I with the components of M being A−1 = 1 + σ+ and C = 0, while
∆

(3)
(012) could be derived from ∆

(1)
(012) by acting M on I with the components of M

being A = σ1 and C = 0, where σ are pauli matrices. Be aware that these two M
are not relative modular transformations since they do not preserve ∆ hence do not
preserve I. We have to distinguish them because ∆ is chosen based on a specific
choice of homology basis which is ”identity basis”. The two involutions I(1) and
I(3) correspond to two different ”identity bases” w.r.t. the different positions of the
homology basis relative to the original positions of the homology basis in ∆

(2)
(012) case.

Similarly, for (021) ”Möbius strip with a hole”, one has to distinguish among
three positions of the cross-cap relative to the holes, which leads to:

∆
(1)
(021) =

(
1 0
0 0

)
, ∆

(2)
(021) =

(
1 1
1 1

)
, ∆

(3)
(021) =

(
0 0
0 1

)
. (6.46)

The rank of the relative modular group of a genus-3
2
surface is 2.[18] This can

be easily seen from the form of the relative modular transformation matrix, that
the relative modular transformation is only determined by upper left 2 block. The
relative modular group of (012) and (021) surfaces in ∆

(2)
(012) and ∆

(2)
(021) bases are

generated by the same set of two generators:

G(2) =

(
σ1 0
0 σ1

)
and G′(2) =

(
T 2 0
C (T−2)⊤

)
(6.47)
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a1

b1

a1
-1
a2

b2

a2

(a) Identity Basis of genus-32 surfaces without
handle. a1, a2 and a−1

1 a2 are associated with
the boundaries or cross-caps of the genus-32
surface.

a1

b1 b2

a2
c

(b) Canonical Basis of genus-32 surfaces with
handle. c cycle is associated with the bound-
ary or cross-cap of the genus-32 surface.

a1

a2

a1/b2

a2/b1

c

(c) Identity Basis of genus-32 surfaces with
handle.

Figure 6.3: Identity Basis of genus-3
2
surfaces on the double cover
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where

T =

(
1 0
1 1

)
(6.48)

is the generator of SL(2,Z). The off-diagonal block C should be fixed by (6.42) with

∆
(2)
(012) and ∆

(2)
(021) respectively[46] as

C(012) = σ1 =

(
0 1
1 0

)
C(021) =

(
2 1
1 0

)
(6.49)



Chapter 7

Moduli Space of Genus-32 surfaces

Our ultimate goal regarding genus-3
2
surface would be extending the genus-1 results

in app.D to genus-3
2
surfaces. However we have to understand the moduli space and

fundamental domain of genus-3
2
surfaces first, and this is the major target of this

chapter. Both bosonic and fermionic partition functions of genus-3
2
were studied in

the former Chapter §6.

7.1 Fundamental Domain of Genus-32 surfaces

On the genus-2 Riemann surface, one uses period matrix of the surface to identify
conformally inequivalent surfaces, or in other words, to represent moduli space. Since
one can relate all the quantities (moduli spaces, determinants of scalar, vector and
Dirac operators etc.) of genus-3

2
to those quantities of the double covering genus-2

surfaces, we could represent all the quantities of genus-3
2
surfaces by the quantities

of the double covering genus-2 surfaces. For example, the homology basis of genus-
3
2
surfaces are represented by the homology basis of the double covering genus-2

surface, and the modular transformations and involutions are 4 matrices acting on 4
homology basis (a1, a2, b1, b2) as in genus-21.

7.1.1 General procedure

To begin with, we need to understand how to obtain the period matrix and how to
derive the moduli space from the period matrix. We are working with genus-g = 3

2

surfaces.

1cf. Figure 3.1 for illustration of the genus-2 canonical homology basis
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First Step: The period matrix Ω =

(
a b
b d

)
compatible with the involution I =(

A B
C D

)
satisfies

Ω̄ = I(Ω) = (DΩ + C)(BΩ +A)−1. (7.1)

So the involution I would restrict the form of the period matrix Ω.

Second Step: We apply relative modular transformation7.1.2MR =

(
A 0
C (A−1)⊤

)
to the period matrix Ω and get

Ω′ =MR(Ω)

=

[
(A−1)⊤Ω + C

]
· A−1

= (A−1)⊤ΩA−1 + CA−1. (7.2)

From this, one can see how the relative modular transformations act on the period
matrix, which encodes the moduli space on genus-g ≤ 2 surfaces .

Third Step: After getting the 3 moduli from first step, we can then impose the
action of relative modular transformations as well as the positivity of the imagi-
nary part of the period matrix on the moduli space from second step to get the
fundamental domain.

Last Step: One would have to check further possible restrictions (relevant modu-
lar transformation etc.) on the modular group, as well as to study the degeneration
limits of the surfaces. These would be discussed in later section §7.1.2.

Identity Basis

In the identity basis I =

(
1 0
∆ −1

)
, then

Ω̄ = I(Ω) = (−Ω +∆) · 1 = −Ω +∆ ⇒ Re{Ω} =
1

2
∆. (7.3)

One gets the constant real part of Ω, and the imaginary part of Ω is the matrix of
Siegel half space moduli:

Im{Ω} =

(
t11 t12
t12 t22

)
. (7.4)

The positivity of the imaginary part of the period matrix requires

v⊤ Im{Ω}v > 0, v := (a, b)⊤ ∈ R2
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⇒ t11|a|2 + t22|b|2 + t12(ab+ ba) ≥ 0

⇒

{ t11 ≥ 0
t22 ≥ 0

t11t22 ≥ t212

. (7.5)

We will discuss (012) and (021) (handles, boundaries, cross-caps) surfaces first.
Other 3 surfaces (030), (110) and (101) will be discussed later. And we know that
the generators for these two cases are in the same form (cf. generators (6.47) and
[19, p.391]):

G(021) = G(012) =

(
σ1 0
0 σ1

)
, G′

(021) = G′
(012) =

(
T 2 0
C (T−2)⊤

)
. (7.6)

So it’s easy to calculate Ω′ based on Ω.

Genus-1 Genus-1 surfaces are simple examples. Applying the above procedure
and using (6.43)

∆A = ∆K = 0,∆M = 1, (7.7)

defining τ = r + it (r, t ∈ R) as the period, we derive

τ̄ = −τ +∆ → τ =
∆

2
+ it (7.8)

and the moduli of Annulus, Möbius strip and Klein bottle are

τA = τK = it, τM =
1

2
+ it. (7.9)

There is no modular transformation on these genus-1 surfaces up to the sign, thus
the moduli space of these surfaces is just t ∈ R+.

7.1.2 Relevant Modular Transformation

In [5], the authors mentioned that one should only consider the ”Relevant Modular
Transformations” (cf. [5, (5.3)]) which are the relative modular transformations that
act at most as permutations of the boundaries and cross-caps.

We would like to emphasize that this is a crucial point if one wants to analyze the
moduli space of string theory. This is because, in String Theory, the moduli space
is defined by modding out the diffeomorphisms which are not connected to identity.
Thus one knows that the modular transformations as diffeomorphisms should not
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change the topology of the manifold (in our case, Riemann Surfaces), which implies
that a single connected component is always mapped by diffeomorphisms to a sin-
gle connected component, and boundaries/cross-caps should always be mapped to
boundaries/cross-caps respectively.2 This leads to the ”relevant modular transfor-
mation” condition that the relevant modular transformations should only at most
permute the boundaries and cross-caps, and a single boundary/cross-cap can never
be mapped to more than 1 boundary/cross-cap, and the number of boundaries/cross-
caps should not be changed respectively. Since in identity basis, homology a-cycles
on the double cover Σ̄ are associated with boundaries/cross-caps on the surface Σ,
homology a-cycles on Σ̄ should also comply with the relevant modular transforma-
tion condition as well as relative modular transformations, in the way that homology
a-cycles should at most be permuted and will never be mixed under relevant modular
transformations.

This will imply a strong restriction to the modular transformations we are looking
for on genus-3

2
surfaces. (030) surface is already discussed in [5]. A simple observation

directly shows that G′
(012), which is one of the two generators of (012), will be ruled

out by the relevant modular transformation condition. This is due to the fact that
the element T 2 in G′

(012) will act on the a-cycles of the identity basis as(
1 0
2 1

)(
a1
a2

)
=

(
a1
a21a2

)
. (7.10)

We see that a21a2 is no longer a homology cycle around a boundary or cross-cap, nei-
ther a connected component of the surface. Besides, we would like to point out that
the generator G(012) plus the two modular transformations M(2)→(1) and M(1)→(3)

3

would already be enough to generate the permutation group of the boundaries and
cross-caps. Thus we don’t have to worry about any other generator. One has the
same argument for (021).

2When we consider the cross-caps on an unoriented surface, its modular transformations are
always described by the relative modular transformations on the oriented double cover of the un-
oriented surface. The unoriented surface could effectively be obtained by cutting the double cover
along homology cycles, and glue cross-caps onto it. Thus those relative modular transformations are
acting on the homology cycles on the double cover, which should also be mapped into a connected
component rather than a mixture of homology cycles. A cross-cap can only be glued to a single
connected component.

3cf. (7.26) and (7.31)
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7.1.3 Moduli Space of (012) and (021) surfaces

We pay attention to the ∆(2) matrices first, and prove the results of the period
matrices of ∆(1) and ∆(3) matrices later in this section.

Delta Matrix ∆
(2)
(012)

We have

∆
(2)
(012) =

(
1 0
0 1

)
. (7.11)

And we know from [19, (9)] that C in (7.6) is the Pauli matrix σ1. Following the
first step in §7.1.1 we get

Ω̄ =

(
ā b̄
b̄ d̄

)
= −Ω +∆

(2)
(012) = −

(
a b
b d

)
+

(
1 0
0 1

)
=

(
1− a −b
−b 1− d

)
. (7.12)

Thus we find Ω =

(
1
2
+ it11 it12
it12

1
2
+ it22

)
. Then following the second step in §7.1.1 we

get the action of the relative modular transformations

G(012) :

(
1
2
+ it′11 it′12
it′12

1
2
+ it′22

)
= G(012)(Ω)

=

(
0 1
1 0

)(
1
2
+ it11 it12
it12

1
2
+ it22

)(
0 1
1 0

)
=

(
1
2
+ it22 it12
it12

1
2
+ it11

)
(7.13)

⇒ G(012) :

{t11 → t′11 = t22
t22 → t′22 = t11
t12 → t′12 = t12

, (7.14)

and

G′
(012) :

(
1
2
+ it′11 it′12
it′12

1
2
+ it′22

)
= G′

(012)(Ω)

=

(
1 −2
0 1

)(
1
2
+ it11 it12
it12

1
2
+ it22

)(
1 0
−2 1

)
+

(
0 1
1 0

)(
1 0
−2 1

)
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=

(
1
2
+ it11 − 4it12 + 4it22 it12 − 2it22

it12 − 2it22
1
2
+ it22

)
(7.15)

⇒ G′
(012) :

{t11 → t′11 = t11 − 4t12 + 4t22
t22 → t′22 = t22

t12 → t′12 = t12 − 2t22

, (7.16)

which presents how the two generators G(012) and G
′
(012) act on the moduli.

G′
(012) is not a relevant modular transformation7.1.2, so we just get rid of it.

Applying G(012) : t11 ↔ t22 as well as the positivity of the imaginary part of the
period matrix (7.5), one could choose the fundamental domain: (cf. [5])

0 ≤ t11 ≤ t22 ≤ ∞ and t212 ≤ t11t22. (7.17)

Delta Matrix ∆
(2)
(021)

We have

∆
(2)
(021) =

(
1 1
1 1

)
. (7.18)

But now we need to fix the off diagonal block C of the generators by using

2C = ∆A− (A−1)⊤∆, (7.19)

and then we can get

G(021) =

(
σ1 0
0 σ1

)
(7.20)

G′
(021) =

(
T 2 0
C (T−2)⊤

)
where C =

(
2 1
1 0

)
(7.21)

Following the first step in §7.1.1 we get(
ā b̄
b̄ d̄

)
= −

(
a b
b d

)
+

(
1 1
1 1

)
=

(
1− a 1− b
1− b 1− d

)
. (7.22)

Thus we find Ω =

(
1
2
+ it11

1
2
+ it12

1
2
+ it12

1
2
+ it22

)
. Then following the second step in §7.1.1 we

get the action of the relevant modular transformation (Here we have already applied
the relevant modular transformation condition and have got rid of G′

(021), G
′
(021) is

again not relevant modular transformation.)

G(021) :

(
1
2
+ it′11

1
2
+ it′12

1
2
+ it′12

1
2
+ it′22

)
=

(
0 1
1 0

)(
1
2
+ it11

1
2
+ it12

1
2
+ it12

1
2
+ it22

)(
0 1
1 0

)
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=

(
1
2
+ it22

1
2
+ it12

1
2
+ it12

1
2
+ it11

)
(7.23)

⇒ G(021) : t11 ↔ t22. (7.24)

Exactly as for (012), using the positivity of the imaginary part of the period ma-
trix and the relevant modular transformation G(021), one can choose the fundamental
domain: (cf. [5])

0 ≤ t11 ≤ t22 ≤ ∞ and t212 ≤ t11t22. (7.25)

Other ∆ Matrices

We know that there are four more ∆ matrices for (021) and (012) cases, each has
two: ∆(1) and ∆(3). Here we are going to prove that the extra ∆ matrices will have
the same moduli and modular transformations as the ∆(2) case.

We begin with ∆(1). The transformation of Involution matrix I in which we take

A−1 = 1 + σ+ of a Sp(4,Z) transformation M =

(
A 0
0 (A−1)⊤

)
(cf. [18])

I(1) =M(2)→(1)I
(2)M−1

(2)→(1), M(2)→(1) =


1 −1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 (7.26)

brings ∆(2) to ∆(1). We will use M instead of M(2)→(1) or M(1)→(3) in the following
when there is no ambiguity. However, one can actually consider here the M trans-
formation as a change of coordinate (homology basis). From our notation, we have
the homology basis in the vector form:

a1
a2
b1
b2

 = v(2). (7.27)

But one should notice that after the M transformation, the basis vector v(2), the
period matrix Ω and the relative modular groupG(012) andG

′
(012) are also transformed

like v(2) → v(1) = Mv(2), Ω(2) → Ω(1) = M(Ω(2)) and G(2) → G(1) = MG(2)M−1.
Thus following the standard procedure in §7.1.1, we find that two key equations are:4

Ω
(1)

= I(1)(Ω(1)) =MI(2)M−1(M(Ω(2))) =MI(2)(Ω(2)) =M(Ω
(2)
)

4We need to mention that these equations are only valid for M in the block diagonal form as is
the case in (7.26). Thus this proof does not hold for general surfaces.
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⇒ Ω
(1)

=M(Ω
(2)
), (7.28)

Ω′(1) = G(1)(Ω(1)) =MG(2)M−1(M(Ω(2))) =MG(2)(Ω(2)) (7.29)

⇒ Ω′(1) =M(Ω′(2)). (7.30)

Therefore, we can easily see that for ∆(1), the above two equations show that the
action of the relative modular transformations G(1) on the moduli of Ω(1) is exactly
the same as that of ∆(2). Then we can safely say that ∆(1) has the same fundamental
domain as ∆(2) up to the modular transformation M(2)→(1).

Following the same argument for ∆(3) with

M(1)→(3) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , (7.31)

we claim that ∆(1), ∆(2), ∆(3) have the same fundamental domain up to the modular
transformations M(2)→(1) and M(1)→(3).

7.1.4 Moduli Space of (030) surface

Restricting the (030) fundamental domain by fixed points

Due to the property of the modular transformations of (030) surface as shown in [5]5:

(G)2 = 1, (G′)2 = 1 and (GG′)3 = 1, (7.32)

where

G =

(
0 1
1 0

)
(7.33)

and

G′ =

(
−1 0
−1 1

)
(7.34)

are the two generators of the relevant modular group, and the relevant modular
transformations have fixed point sets. The boundary of fundamental domain should
be the union set of the fixed points of all relevant modular transformations plus other
restrictions. But thanks to the nilpotent property (7.32), the number of different

5We have used a different notation of generators than [5], in order to be compatible with other
generators in this thesis.
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relevant modular transformations is limited. We have to find all the fixed points of
all relevant modular transformations G, G′, GG′, GG′GG′, G′G, G′GG′G, G′GG′,
GG′G and so on. Here one observes that:

(1) G only exchanges t11 and t22, and the fixed point set of GM , where M is any
modular transformation except G, will be the intersection of the fixed point sets of
G and M ;

(2) Also because G exchanges t11 and t22, the fixed points of MG will be the
intersection of the fixed point sets of M and G with t11 and t22 exchanged;

(3) Since GG′GG′ = (GG′)−1, GG′GG′ will have the same fixed point set as GG′,
this argument also holds for G′GG′G.

Using these properties, we find that the fixed point set of all these modular
transformations should be the intersection of the fixed point sets of G, G′ and GG′G.
The fixed point sets of all other modular transformations will be the subset of the
fixed point set of these three modular transformations.

The fixed points of G satisfy the condition

t′11 = t22
!
= t11 ⇒ t11 = t22. (7.35)

The fixed points of G′ satisfy the condition

t′12 = −t12 − t22
!
= t12 ⇒ t12 = −1

2
t22. (7.36)

The fixed points of GG′G satisfy the condition

t′12 = −t12 − t11
!
= t12 ⇒ t12 = −1

2
t11. (7.37)

Combining all these conditions, choosing t11 ≤ t22 according to (7.35), and choosing
−1

2
t11 ≤ t12, also including the positive definiteness of imaginary part of period

matrix, we obtain the fundamental domain:

−1

2
t11 ≤ t12 ≤

√
t11t22, 0 ≤ t11 ≤ t22 ≤ ∞. (7.38)

The above fundamental domain is different from [5, (5.5)]

−
√
t11t22 ≤ t12 ≤ 0 ≤ t11 ≤ t22 <∞. (7.39)

But we observe that apply G′ and G ◦ G′ on any point t = (t11, t12, t22)
⊤ in (7.39),

one of the two transformed points

t′1 = G′(t) =

t11 + t22 + 2t12
−t12 − t22

t22,

 or t′2 = G ◦G′(t) =

 t22
−t12 − t22

t11 + t22 + 2t12

 (7.40)

will still be in (7.39). This means that (7.39) was incorrect.
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7.1.5 Moduli Spaces of (110) and (101) surfaces

According to §6.5 and Figure 6.3, we know that (110) and (101) surfaces have the
same homology basis as well as the same involution, such that they have the same
moduli space. It is easy to see that (a1, b1) and (a2, b2) in Figure 6.3b each form
a canonical homology basis of a torus. One could see that the relative modular
transformations on the double cover of (110) or (101) consist of the double copy of
the modular transformations on the torus of (110) or (101), which acts simultaneously
on (a1, b1) and (a2, b

−1
2 ) and are image of each other under involution. Also we see

that the canonical homology basis does not involve the boundary/cross-cap of the
surface, thus would not impose the relevant modular transformation condition.

One could relate identity basis to canonical basis. However, on genus-3
2
surfaces

with a handle, identity basis introduces extra difficulties on deriving the fundamental
domain and stops one from making use of the knowledge of the modular group of
torus. From the above observation, one realizes that the canonical basis could be
more useful since the modular transformations are the same as those on torus. This
is already studied in [10]. So in this section we consider the canonical basis as in
Figure 6.3b. In the canonical basis, the involution represented in matrix is

I =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , (7.41)

and the period matrix satisfies

Ω̄ = I(Ω) = −σ1Ωσ1. (7.42)

One derives

Ω =

(
t1 + it2 −it12
−it12 −t1 + it2

)
. (7.43)

We rename the moduli as

Ω =

(
τ −il
−il −τ̄

)
. (7.44)

to make it consistent with [10].
We already know that the two generators of the modular group of a torus are S

and T transformations, and S interchanges a with b while T shifts b by a[10]. Ex-
tending the two generators to double torus and representing them in matrix notation
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and preserving symplectic form and involution, one obtains6

SV⃗ =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0



a1
a2
b1
b2

 =


a′1 = b1
a′2 = b−1

2

b′1 = a−1
1

b′2 = a2

 ,

S =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , (7.45)

and

T V⃗ =


1 0 0 0
0 1 0 0
1 0 1 0
0 −1 0 1



a1
a2
b1
b2

 =


a′1 = a1
a′2 = a2

b′1 = a1 + b1
b′2 = b2 + a−1

2

 ,

T =


1 0 0 0
0 1 0 0
1 0 1 0
0 −1 0 1

 . (7.46)

The actions of the two generators on the moduli are

S :

(
τ ′ −il′
−il′ −τ̄ ′

)
= S(Ω)

=

(
−1 0
0 1

)(
τ −il
−il −τ̄

)−1(
1 0
0 −1

)
=

(
τ̄

l2−|τ |2
il

l2−|τ |2
il

l2−|τ |2
−τ

l2−|τ |2

)
(7.47)

⇒ S :

{
τ → τ̄

l2−|τ |2

l → − l
l2−|τ |2

, (7.48)

and

T :

(
τ ′ −il′
−il −τ̄ ′

)
6We used a different S transformation than [10] to preserve the symplectic form of the basis.



7.1. FUNDAMENTAL DOMAIN OF GENUS-3
2
SURFACES 125

t1

t2

−
√
1 + l2 −1

2
1
2

√
1 + l2

Figure 7.1: Fundamental Domain of (012) and (021)

= T (Ω)

= 1

(
τ −il
−il −τ̄

)
1 +

(
1 0
0 −1

)
=

(
τ + 1 −il
−il − ¯τ + 1

)
(7.49)

⇒ T :

{
τ → τ + 1
l → l

. (7.50)

Positive definiteness of the period matrix implies that t2 > 0 and− detΩ = |τ |2−l2 >
0. Using (7.48) and (7.50), one can derive the fundamental domain as shown in Figure
7.1. The fundamental domain consists of −1

2
< t1 <

1
2
and |t1 + it2|2 > 1 + l2[10].

One observes that t12 represents the length of the dividing geodesics c in Figure
6.3b[10].

Involution implies a further restriction that t12 > 0 by using Riemann bilinear
relation to relate t12 with Im{Ω} under involution and the positive definiteness of
the period matrix, details could be found in [10].
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7.2 Discussion

We discussed the concept of ”Relevant Modular Transformation”[5] in detail. We
applied this concept to extend former research on the moduli spaces of genus-3

2

surfaces, and we found the moduli spaces of all genus-3
2
surfaces. We pointed out

that the fundamental domain found in [5, (5.5)] was incorrect. With the knowledge
of determinants from Chapter §6 and moduli spaces from this Chapter, we should
be able to derive genus-3

2
amplitudes from genus-2 amplitudes. It is then possible to

further perform calculations of genus-3
2
corrections. However the integration over the

moduli spaces could be highly non-trivial. A numerical result as in [54] may involve
extra effort.



Chapter 8

Conclusion

This thesis extends perturbative corrections to Einstein-Hilbert term in Type-IIB
orientifolds in new directions and highlights unresolved challenges.

We revisited the Heterotic genus-1 3-graviton amplitude. We generalized the cal-
culation to include all four genus-1 surfaces in Type-I theory, incorporating pinched-
off contributions. These new 1-loop corrections break the previously expected grav-
itational kinematic structure, indicating missing contributions in the calculation. A
reassessment of picture number involves ”vertical integration” technique, and it may
introduce potential new contributions to amplitudes.

We also studied genus-3
2
surfaces. We determine the moduli spaces of genus-3

2

surface via relevant modular transformations, correcting earlier results and setting
the stage for computing genus-3

2
amplitudes.

Overall, this work deepens our understanding of quantum corrections to Einstein-
Hilbert term in Type-IIB orientifolds at 1 and higher genus. This could further im-
prove understanding of the low energy effective action in string theory. The findings
emphasize the importance of vertical integration and modular analysis in string per-
turbation theory. Future work will focus on: 1. implementing the vertical-integration
technique in genus-1 3-point amplitudes calculation; 2. deriving the explicit form of
the involution acting on the coordinates, getting genus-3

2
Green’s function, perform-

ing the moduli and coordinates integrals for genus-3
2
amplitudes, and completing the

genus-3
2
2-point calculation.
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Appendix A

Useful formula1

Abbreviations

ϵi,µν ≡ ϵµν(ki), Xi ≡ Xµ(zi, z̄i), zij = zi − zj, q = e2πiτ . (A.1)

ϑ functions
ϑ[α⃗

β⃗
](ν⃗, G) =

∑
n⃗∈ZN

eiπ(n⃗+α⃗)⊤G(n⃗+α⃗)e2πi(ν⃗+β⃗)⊤(n⃗+α⃗), (A.2)

ϑ1 = −ϑ[
1
2
1
2

](ν, τ) = 2eπiτ/4 sin(πν)
∞∏
n=1

(1− qn)(1− zqn)(1− z−1qn), (A.3a)

ϑ2 = ϑ[
1
2
0](ν, τ) = 2eπiτ/4 cos(πν)

∞∏
n=1

(1− qn)(1 + zqn)(1 + z−1qn), (A.3b)

ϑ3 = ϑ[ 00](ν, τ) =
∞∏
n=1

(1− qn)(1 + zqn−
1
2 )(1 + z−1qn−

1
2 ), (A.3c)

ϑ4 = ϑ[ 01
2
](ν, τ) =

∞∏
n=1

(1− qn)(1− zqn−
1
2 )(1− z−1qn−

1
2 ), (A.3d)

where z = e2πiν .

η function

η(τ) = q1/24
∞∏
n=1

(1− qn) =

[
∂νϑ1(0, τ)

−2π

] 1
3

, (A.4)

1Partly follow [23] and [47].
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and

ϑ[αβ ](0, τ)

η(τ)
= e2πiαβq

α2

2
− 1

24

∞∏
n=1

(1 + qn+α− 1
2 e2πiβ)(1 + qn−α− 1

2 e−2πiβ). (A.5)

Poisson re-summation

ϑ[0⃗
0⃗
](0, itG−1) =

√
Gt−N/2ϑ[0⃗

0⃗
](0, it−1G) (A.6)

Modular transformation S for annulus and Klein bottle

ϑ[αβ ](ν, τ) = (−iτ)−1/2e2πiαβ−πiν2/τϑ[−β
α ](ν/τ,−1/τ). (A.7)

Modular transformation ST 2S for Möbius

ϑ[αβ ](ν, τ) = (1− 2τ)−1/2e2πiβ
2

e−πiν2/(τ−1/2)ϑ[α+2β
β ](

ν

1− 2τ
,

τ

1− 2τ
). (A.8)

General Modular transformation S and T for ϑ-functions and η-function

ϑ[αβ ](τ + 1) = e−πi(α2−α)ϑ[ α
α+β− 1

2
](τ), (A.9a)

ϑ[αβ ](−
1

τ
) =

√
−iτe2πiαβϑ[−β

α ](τ) | arg
√
−iτ | < π

2
, (A.9b)

η(τ + 1) = eiπ/12η(τ), (A.9c)

η(−1

τ
) =

√
−iτη(τ). (A.9d)

Shifts in characteristics

ϑ[α+1
β ](ν, τ) = ϑ[αβ ](ν, τ),

ϑ[ α
β+1](ν, τ) = e2πiαϑ[αβ ](ν, τ). (A.10)

ν-periodicity formula

ϑ[αβ ](ν + aτ + b, τ) = e−2πiabe−πia2τe−2πia(ν+b)ϑ[α+a
β+b ](ν, τ). (A.11)
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Gravity

√
gR
∣∣
h3 = hµνhρσ∂

µνhρσ + 2hρσ∂σh
µν∂µhνρ

→ (k2 · ϵ1 · k2)(ϵ2 · ϵ3) + 2(k3 · ϵ2 · ϵ3 · ϵ1 · k2) + cyclic perms, (A.12a)

tµ1µ2µ3 = ηµ1µ2kµ2

3 + ηµ2µ3kµ1

3 + ηµ3µ1kµ2

1 , (A.12b)

T µ1µ2µ3 = tµ1µ2µ3 +
α′

2
kν13 k

ν2
1 k

ν3
2 . (A.12c)

Involution One-loop surfaces A, M and K can be defined as quotients of tori
under different involutions[7, (A.1)]

IA(z) = IM(z) = 1− z̄, IK(z) = 1− z̄ +
τ

2
, (A.13)

where τ = τ1 + iτ2 is the modular parameter of the defining torus.

ZN actions in D = 4 In the table are the twist vectors for different ZN orb-
ifold Type-IIB string models on T 6 (D = 4 space-time dimensions with 6 compact
dimensions).

Z3
1
3(1, 1, 2) Z′

6
1
6(1,−3, 2) Z′

8
1
8(1,−3, 2)

Z4
1
4(1, 1,−2) Z7

1
7(1, 2,−3) Z12

1
12(1,−5, 4)

Z6
1
6(1, 1,−2) Z8

1
8(1, 3,−4) Z′

12
1
12(1, 5,−6)

Cited from [2, Table 2]. Only Z3, Z6, Z′
6, Z7, Z12 models are tadpole-free, which is

discussed in [2].
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OPE and CFT correlation
functions

It would be helpful to show the relation between the OPE and correlation functions.

correlation functions on genus-g surfaces

⟨X(z)X(w)⟩ = Pg(z, w), (B.1a)

⟨ψ(z)ψ(w)⟩ = Sg(z, w), (B.1b)〈
∂X(z)eikX(w)

〉
= ik∂zPg(z, w)e

ikX(w). (B.1c)

The correlation functions refer to §3.2.2.

OPE and correlation functions on flat space

X(z)X(w) ∼ −α
′

2
ln(z − w), (B.2a)

∂X(z)∂X(w) ∼ −α
′

2
· 1

(z − w)2
, (B.2b)

∂X(z)eik·X(w) ∼ −ik · α
′

2
· e

ik·X(w)

z − w
, (B.2c)

eik·X(z)eik
′·X(w) ∼ ei(k+k′)·X(w)

(z − w)
α′
2
k·k′

, (B.2d)〈∏
i

ei(ki·X(zi)+ρi·∂X(zi))

〉
= exp

(
α′

2

∑
i<j

ρi · ρj
(zi − zj)2

+
α′

2

∑
i ̸=j

ki · ρj
zi − zj

)∏
i<j

(zi − zj)
α′
2
ki·kj ,

(B.2e)
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eqϕ(z)eq
′ϕ(w) ∼ e(q+q′)ϕ(w)

(z − w)qq′
, (B.2f)

ψ(z)ψ(w) ∼ 1

z − w
. (B.2g)

Torus correlation functions On torus we have:

⟨∂X(z)∂X(w)⟩ = ∂z∂wPT (z, w), (B.3a)

⟨∂X(z)∂̄X(w)⟩ = ∂z∂w̄PT (z, w) = −α
′

2
· π
τ2
. (B.3b)



Appendix C

Orientifold Ω symmetry

There are two distinct orientifold groups possible:

YN = {1,Ω, θk,Ωk}, k = 1, 2, . . . , N, θk ≡ e2πik/N , Ωk ≡ e2πik/NΩ (C.1)

and

WN = {1, θ2k−2,Ω2k−1}, k = 1, 2, . . . ,
N

2
, N even. (C.2)

Ω action and CP factors All conventions follow [2, §2]. We now elaborate the
action of the orientifold groups on the states in the open string sector, on D-branes.
A generic state can be written as λij|X, ij⟩ where i, j label the end points of the
open strings, λ is a CP matrix, and X collectively labels the world-sheet oscillators
that are involved in that state.

The orientifold elements have two possible actions on a generic D-brane state. In
addition to the obvious action on the oscillator states, they also act on the CP indices
with a matrix representation of the orientifold group. It is generated via matrices γθ

θk : |X, ij⟩ → ϵk(γk)ii′ |θk ·X, i′j′⟩(γ−1
k )j′j, (C.3)

Ωk : |X, ij⟩ → ϵΩk
(γΩk

)ii′|θk ·X, j′i′⟩(γ−1
Ωk

)j′j, (C.4)

where ϵk, ϵΩk
are signs. Note that the Ωk elements interchange also the string end

points. The group property θk = (θ1)
k and θN = 1 implies

γk = ±(γ1)
k, (γk)

N = ±1. (C.5)

Furthermore, the condition that Ω2

Ω2 : |X, ij⟩ → ϵ2Ω(γΩ(γ
⊤
Ω )

−1)ii′|X, i′j′⟩(γ⊤Ωγ−1
Ω )j′j, (C.6)
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is equal to the identity requires that

γΩ = ζγ⊤Ω , ζ2 = 1. (C.7)

Note that the adjoint action on the CP indices implies that the representation of the
orientifold group on the CP sector is defined up to a sign.

To evaluate the trace of partition functions under Ω, we require the action of the
orientation reversal on the bosonic oscillators

Ωαµ
kΩ

−1 = ᾱµ
k , Ωᾱµ

kΩ
−1 = αµ

k , (Closed String) (C.8)

Ωαµ
kΩ

−1 = (−1)kαµ
k , Ωᾱµ

kΩ
−1 = (−1)kᾱµ

k , (NN boundary condition) (C.9)

Ωαµ
kΩ

−1 = (−1)k+1αµ
k , Ωᾱµ

kΩ
−1 = (−1)k+1ᾱµ

k , (DD boundary condition),
(C.10)

and Ω also transforms ND boundary conditions to DN ones.
For the fermionic ones, we have

ΩψrΩ
−1 = ψ̄r, Ωψ̄rΩ

−1 = −ψr, (Closed String) (C.11)

ΩψrΩ
−1 = (−1)rψr, Ωψ̄rΩ

−1 = (−1)rψ̄r, (NN boundary condition) (C.12)

ΩψrΩ
−1 = (−1)r+1ψr, Ωψ̄rΩ

−1 = (−1)r+1ψ̄r, (DD boundary condition).
(C.13)

The extra minus sign in (C.11) is inserted in order for the product ψrψ̄r to be
orientation invariant. This choice does not affect the GSO-invariant states.

Moreover, we should notice that only the left-right symmetric sectors (NS-NS
and R-R) survive the Ω projection.

Lattice Sum on TD under Ω We only have the lattice sum in the case of that
there is fixed tori, i.e. χ(θm) = 0, or equivalently, ℓvj is integer or half-integer.
Otherwise there is no windings nor momenta in the compactified dimensions. And
we need to compute the traces of the lattice states, which is what we are going to do
to here: Lattice Sum. We use complex torus coordinates to represent the coordinates
of the compact dimensions, thus we complexify the momenta and windings

Mj = m2j−1 + im2j j = 1 . . .
D

2
, (C.14)

Nj = n2j−1 + in2j j = 1 . . .
D

2
. (C.15)
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This is allowed because if we observe the mode expansion of X i

X i(σ, τ) = xi + α′piτ + LRσ + i

√
α′

2

∑
n̸=0

1

n
(αi

ne
−in(τ−σ) + ᾱi

ne
−in(τ+σ)), (C.16)

we see that the momenta mi = pi ·R and windings ni = L follow the same θℓ trans-
formation as X i. Therefore there will be no problem to complexify those parameters.

The orientation reversal acts on momenta and windings as

Ω|Mj, Nj⟩ = |Mj,−Nj⟩, (C.17)

then only momenta survive the trace when no ZN element θℓ is inserted

⟨Mj, Nj|Ω|Mj, Nj⟩ =
D∏
i=1

δNj ,0. (C.18)

On the other hand, due to (D.10) and (D.11), we can get

θℓ|Mj, Nj⟩ = |e2πiℓvjMj, e
2πiℓvjNj⟩, (C.19)

we observe that the state survives the θℓ action after trace only when ℓvj is integer,
because mi and ni have to be integers.

Furthermore,
Ωθℓ|Mj, Nj⟩ = |e2πiℓvjMi, e

2πi(ℓvj− 1
2
)Ni⟩. (C.20)

We can easily see that the state survives the Ωθℓ action after trace only when ℓvj
is integer or half-integer. However, momenta and windings will not simultaneously
survive the Ωθℓ action after trace. If ℓvj is integer, then momentum survives. If ℓvj
is half-integer, then winding number survives.

[51, §4.18.5] gives the details of the calculation. The j0 current of L0 is changed
due to the toroidal compactification, which results in a lattice sum over the internal
momenta and windings, cf. [24, §4.2.2]. The general result is

Ztorus
lattice =

√
g

ℓ2s(
√
τ2η)2

∑
m⃗,n⃗

e[π(gij+Bij)/τ2ℓ
2
s](m

i+niτ)(mj+nj τ̄), (C.21)

gij is the metric of the 2-torus in the target space, Bij is antisymmetric constant
background value of the two-index antisymmetric tensor over the 2-torus. We won’t
consider B in our calculation, thus set Bij = 0. We define Vj =

√
g to be the
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regularized volume of the torus. j stands for the j-th coordinate of the torus. G is
the determinant of the metric gij.

Since in the following sections, momentum and winding won’t simultaneously
appear in the partition function. After performing a Poisson re-summation, we
summarize and rewrite the momentum/winding sum along the j-th torus with volume

Vj and metric g
[j]
ab from (C.21) as

L[j,M ] =
Vj

4π2α′t

∑
m1,m2

e−
π
t
mambg

[j]
ab , (C.22)

L[j,W ] =
4π2α′

Vjt

∑
n1,n2

e−
π
t
nanbg

[j]ab

. (C.23)

These sums are expressed in the closed string channel. Details could be found in [61,
(8.2.9)].

Twisted Sectors Here we need to consider the insertion of the Orientifold element
Ω. We know that only left-right symmetric states will survive the Ω insertion after
trace. Using the results from app.D.1.1, we can easily see that only when s = n+kvj
and t = n − kvj (k is the k-th twisted sector) are the same index set, the state is
left-right symmetric. This is equivalent to requiring kvj is integer or half-integer for
all j. However, this could only be possible for k = 0 or N

2
. Then we know that for

twisted sectors of Klein bottles, only the N
2
-th twisted sector survives.



Appendix D

Calculation of the 1-loop partition
function of Type-IIB T 6/ZN
orientifolds

In this appendix we mainly study the calculation of the partition function of Type-IIB
T 6/ZN orientifolds.1 We decompose the partition function into bosonic and fermionic
part, then further consider untwisted and twisted sectors. All the notations and main
calculations follow [23]. For orbifold Γ, we have SO(D) generators θ and twist vector
v⃗. We always use the light-cone gauge.

D.1 1-loop partition function of Type-IIB T 6/ZN

orientifolds

First we directly give the general partition function for the surface σ:

⟨1-loop⟩σ = Zσ = TrU+T orD−branes
NS,R [

1 + Ω

2
· P · 1 + (−1)F

2
e−2πiτH ]

=
V10−D

2 · (10−D)N(4π2α′)(10−D)/2

∫ ∞

0

dt

tD/2

∑
k,ℓ

∑
s=even

Zσ[θ
k, θℓ](τ, s)

(D.1)

1This section is cited from [54]
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with

P =
1

N

N−1∑
ℓ=0

θℓ, (D.2)

ZA[θ
ℓ](τA, s) = Z99[θ

ℓ](τA, s) + Z55[θ
ℓ](τA, s) + Z95[θ

ℓ](τA, s), (D.3)

ZM[θℓ](τM, s) = Z9[θ
ℓ](τM, s) + Z5[θ

ℓ](τM, s), (D.4)

ZK[θ
ℓ](τA, s) = Zuntwisted[1, θ

ℓ](τK, s) +
N−1∑
k=1

Ztwisted[θ
k, θℓ](τK, s), (D.5)

ZT [θ
ℓ](τA, s) = Zuntwisted[1, θ

ℓ](τT , s) +
N−1∑
k=1

Ztwisted[θ
k, θℓ](τT , s). (D.6)

Here τσ is defined as

τT = it, τK = 2it, τA =
it

2
, τM =

1

2
+
it

2
. (D.7)

1+Ω
2

is the orientifold projection and P is the ZN symmetry projection. Spin struc-
tures can be expressed in (α, β) or s. And we should also notice that there is no
twisted sectors for A and M, because both of the two surfaces can be considered as
open string in loop-channel, thus have no twisted sector.

We are considering here 1-loop amplitudes, i.e. Euler Number χ = 0 surfaces.
Therefore σ should be taken to be Torus, Annulus, Klein bottle or Möbius strip.
For the Torus and Klein bottle, we use U/T to label the untwisted/twisted sectors,
respectively. As we know, while Annulus and Möbius strip are the propagators of
the closed strings propagating between two D-branes, they are also equivalent to
closed 1-loop amplitudes of open strings with end-points on the two D-branes, by
closed-open duality. In this sense, we can calculate the amplitudes using open string
theory. We use D-branes to label where the open strings are attached.

D.1.1 Bosonic partition function

We will compute the bosonic partition function of type II string compactified on a
toroidal ZN orbifold first.
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Non-compact dimension

For non-compact dimension, the computation is standard. We have the partition
function

Z =
1

√
τ2ηη̄

for each non-compact dimension.

Compact dimension

Mode expansion We use the complexified coordinates

Zj =
1√
2
(X2j−1 + iX2j)

Z∗j =
1√
2
(X2j−1 − iX2j)

and we have:

θℓZjθ−ℓ = e2πiℓvjZj

θℓZ∗jθ−ℓ = e−2πiℓvjZj (D.8)

vj is the twist vector which is determined by the crystallographical structure.
The mode expansions are

Zj(σ0, σ1) = zj0+α
′M

j

R
σ0+N jRσ1+i

√
α′

2

∑
s

αj
s

s
e−is(σ0−σ1)+i

√
α′

2

∑
t

ᾱj
t

t
e−it(σ0+σ1).

(D.9)
M j and N j are complexified internal momenta and winding numbers respectively.
W.l.o.g. we consider the right-mover. We can find that

θℓαj
nθ

−ℓ = e2πiℓvjαj
n

θℓᾱj
nθ

−ℓ = e2πiℓvj ᾱj
n (D.10)

for Zj and

θℓα∗j
n θ

−ℓ = e−2πiℓvjα∗j
n ,

θℓᾱ∗j
n θ

−ℓ = e−2πiℓvj ᾱ∗j
n (D.11)

for Z∗j.
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Imposing
Zj(σ0, σ1 + 2π) = e2πikvjZj(σ0, σ1), (D.12)

which is valid for a complex boson in the k-th twisted sector, fixes the frequencies of
the mode expansion to s = n+ kvj and t = n− kvj with n integer. Furthermore, zj0
must satisfy (1− e2πikvj)zj0 = 0 mod 2πΛ (Λ is the torus coordinates lattice), i.e.
it must be a fixed point of the orbifold action and, therefore, states in the twisted
sectors are localized at the fixed points.
For the complex conjugate Z∗j there is an analogous expansion with coefficients
α∗j
n−kvj

= (αj
−n+kvj

)† for the right-movers, ᾱ∗j
n+kvj

= (ᾱj
−n−kvj

)† for the left-movers

and z∗j0 = (zj0)
† for the center-of-mass position. Canonical quantization results in the

following commutator relations for the oscillators

[αi
m+kvi

, α∗j
n−kvj

] = (m+ kvi)δ
ijδm+n,0,

[ᾱi
m−kvi

, ᾱ∗j
n+kvj

] = (m− kvi)δ
ijδm+n,0. (D.13)

The creation operators are αj
−n+kvj

, n > 0 and α∗j
−n−kvj

, n ≥ 0 for the right-movers

and ᾱj
−n−kvj

, n > 0 and ᾱ∗j
−n+kvj

, n ≥ 0 for the left-movers. Here we consider the
case where 0 < kvj < 1. The occupation number operators are

N j
R =

∞∑
n=−∞

: αj
n+kvj

α∗j
−n−kvj

:,

N j
L =

∞∑
n=−∞

: ᾱj
n+kvj

ᾱ∗j
−n−kvj

:,

with normal ordering : :. Note that the eigenvalues of NL and NR in the twisted
sectors are multiples of 1/N .

ZB[1, 1] untwisted sector For untwisted sector (k = 0)

Lj
0(1) =

1

2
(pjR)

2 +N j
R(k = 0)

L̄j
0(1) =

1

2
(pjL)

2 +N j
L(k = 0),

pjL and pjR are the Kaluza-Klein momenta for the left and right movers on the (com-
pact) j-th dimensions. L0 without j is just the sum of Lj

0 over j.
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The bosonic partition function is

Zuntwisted
bosonic = ZB[1, 1] = Tr

(
qL0− 1

12 q̄L̄0− 1
12

)
=

1

|η(τ)|2D
∑

mR,mL∈Λ∗

∑
nR,nL∈Λ

q
1
2
(m+ 1

2
n)2 q̄

1
2
(m− 1

2
n)2 ,

m is quantized momentum and n is winding number. Λ∗ is the dual lattice of the
torus coordinates lattice.

ZN projection For ℓ ̸= 0 twisted sectors, i.e. for complex bosons which satisfy the
boundary conditions

Zj(σ0 + 2πτ2, σ
1 + 2πτ1) = e2πilvjZj(σ0, σ1), (D.14)

we need to evaluate the trace with an θℓ insertion. Since we assume that θℓ leaves no
directions unrotated, thus neither quantized momenta nor windings survive the trace.
θℓ is ZN group element insertion. We only need to consider states obtained from the
Fock vacuum by acting with creation operators for which the complex coordinates
are eigenvectors of θl. The Fock vacuum is defined to be invariant under θ

|nj
1, n

j
2, . . . , n

∗j
1 , n

∗j
2 , . . . ⟩ := (αj

−1)
n1(αj

−2)
n2 . . . (α∗j

−1)
n∗
1(α∗j

−2)
n∗
2 . . . |0⟩.

Z[1, θℓ] sector Then, for instance, for the right movers in Zj, using (D.10) and
(D.11), we find the contribution

Tr
(
θℓqL

j
0(1)−

1
12

)
)
= q−

1
12

∑
nj
m,n∗j

m

⟨nj
1, n

j
2, . . . , n

∗j
1 , n

∗j
2 , . . . |θℓqL

j
0(1)|nj

1, n
j
2, . . . , n

∗j
1 , n

∗j
2 , . . . ⟩

= q−
1
12 (1 + qe2πiℓvj + qe−2πiℓvj + . . . ) (D.15)

where the first term is the contribution from the vacuum, the second and third terms
from states obtained by acting with αj

−1 and α∗j
−1 on the vacuum, and so on. It is

not hard to see that the whole expansion can be cast into the form

Tr
(
θℓqL

j
0(1)−

1
12

)
)
= q−

1
12

∑
all nm,n∗

m

(∏
m

(qme2πiℓvj)nm(qme−2πiℓvj)n
∗
m

)
= q−

1
12

∏
m

(∑
a

(qme2πiℓvj)a
∑
b

(qme−2πiℓvj)b
)
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= q−
1
12

∞∏
m=1

(1− qme2πiℓvj)−1(1− qme−2πiℓvj)−1

= −2 sin(ℓπvj)
η(τ)

ϑ

[
1
2

−1
2
− ℓvj

]
(τ)

. (D.16)

The last step is derived by using the definitions of ϑ and η functions, cf. (A.3a)
and(A.4).

Taking into account left and right-movers for all compact coordinates we obtain

Z[1, θℓ] = TrU(θℓqL0− 1
12 q̄L̄0− 1

12 ) = χ(θℓ)

∣∣∣∣∣
D/2∏
j=1

η(τ)

ϑ

[
1
2

−1
2
− ℓvj

]
(τ)

∣∣∣∣∣
2

1 means untwisted and θl means ZN element inserted.
Since P defined in (D.2) must act crystallographically on the torus lattice and

since L = niei with integer coefficients ni, in the lattice basis θ must be a matrix of
integers. Hence the quantities

Tr θℓ =

D/2∑
j=1

2 cos(2πℓvj) and χ(θl) =

D/2∏
j=1

4 sin2(πℓvj) (D.17)

must be integers. In fact, by the Lefschetz fixed point theorem, χ(θℓ) is the number
of fixed points of θℓ, and this can be explained as the result of the crystallographical
structure.

General Bosonic Partition Function Using modular transformations of ϑ and
η functions, we can get the partition functions of twisted sectors

S : τ → −1

τ
, (D.18)

S
(
Z[1, θk]

)
= χ(θk)

∣∣∣∣∣
D/2∏
j=1

η(− 1
τ
)

ϑ

[
1
2

−1
2
− kvj

]
(− 1

τ
)

∣∣∣∣∣
2

= χ(θk)

∣∣∣∣∣
D/2∏
j=1

η(τ)

ϑ

[
1
2
+ kvj
1
2

]
(τ)

∣∣∣∣∣
2
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= χ(θk)(qq̄)−
D
24

+Ek

∣∣∣∣∣
D/2∏
j=1

∞∏
n=1

(1− qn−1+{kvj})−1(1− qn−{kvj})−1

∣∣∣∣∣
2

= Z[θk, 1],

where Z[θk, 1] means θk twisted sector and no ZN element inserted, and (cf. [23,
(10.166)])

Ej
k =

1

2
{kvj}(1− {kvj}), (D.19)

Ek =

D/2∑
j=1

1

2
{kvj}(1− {kvj}) (D.20)

is the vacuum expectation value of L0 in the twisted Fock vacuum which is annihilated
by all positive oscillator modes. We define 0 ≤ {x} < 1 as the fractional value of
x : {x} = x− ⌊x⌋. (cf. [23, p.304-305])

We can continue generating pieces of the partition function by employing modular
transformations (A.9a)-(A.9d). The general result can be easily found to be

Z[θk, θℓ] = χ(θk, θℓ)

∣∣∣∣∣
D/2∏
j=1

η(τ)

ϑ

[
1
2
+ kvj

1
2
+ ℓvj

]
(τ)

∣∣∣∣∣
2

, (kℓvj /∈ Z or Z +
1

2
) (D.21)

χ(θk, θℓ) is the number of simultaneous fixed points of θk and θℓ. This formula is
valid when θk leaves no fixed directions, otherwise a sum over momenta and windings
could appear. In addition, χ(θk, θl) should be replaced by χ̃(θk, θl), the number of
fixed points in the sub-lattice effectively rotated by θk. χ and χ̃ differ because when

kvj=integer, the expansion of ϑ[
1
2
+kvj

1
2
−lvj

]/η has a prefactor (2 sinπℓvj), as follows from

the product representation of the ϑ-function. Therefore the actual coefficient in the
expansion of (D.21) is χ̃(θk, θl) = χ(θk, θℓ)/

∏
j,kvj∈Z 4 sin2 πℓvj.

Summary The bosonic piece of the partition function of the type II string com-
pactified on a symmetric ZN orbifold is:

ZB[θ
k, θℓ] =

(
1

√
τ2ηη̄

)8−D

χ̃(θk, θℓ)

∣∣∣∣∣
D/2∏
j=1

η(τ)

ϑ

[
1
2
+ kvj

1
2
+ ℓvj

]
(τ)

∣∣∣∣∣
2

, (kℓvj /∈ Z or Z +
1

2
)

(D.22)
D is the number of compact dimension.
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Number of Fixed points χ and χ̃

From [39, (A.4)] we know

χ̃(1, θn) = 1, χ̃(θm, θn) = χ(θm, θn) if χ(θm) ̸= 0,

χ̃(θm, θn) = χ̂(θm, θn) = χ(θm, θn)/
∏

j,mvj∈Z

4 sin2 πnvj if χ(θm) = 0, (D.23)

where χ(θm, θn) is the number of simultaneous fixed points of θm and θn. If θm leaves
fixed tori, i.e. χ(θm) = 0, we must use χ̂(θm, θn) which is the number of simultaneous
fixed points in the subspace actually rotated by θm. This is the same as we discussed
above.

As we see in app.C, only θN/2-twisted sector will survive, thus we are only inter-
ested in χ(θN/2, θn) cases.

From [42, p.4], we see that the ZN orbifold group action is generated by

θ : zj → e2πivjzj, (D.24)

with twist vector v⃗.
From [34, p.301], we can conclude that (using χg,h to represent arbitrary χ(θ

m, θn))
if e is the identity element of ZN ,

χe,g = χ(Fg) = det(1− g) = χ(θℓ) =

D/2∏
j=1

4 sin2(πℓvj). (D.25)

Since x is a fixed point of gh, if it is a fixed point of g and a fixed point of h, one
sees that

χg,h = χg,gh. (D.26)

Similarly,
χg,h = χg−1,h (D.27)

since the fixed point sets of g and g−1 are identical. This is also true for h and h−1,
thus we have

χg,h = χg,h−1 . (D.28)

Moreover, the number is symmetric under exchanging g and h, so we have

χg,h = χh,g. (D.29)

Using all these facts we can evaluate all terms of the form χθm,θn .
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D.1.2 Fermionic partition function

Now we come to the fermionic part. Since the Torus compactification has no action on
fermionic degrees of freedom, we don’t have to distinguish compact and non-compact
dimensions. Also be aware that the twist vectors of fermion vi is different from the
twist vectors of compactified bosons vj, because fermions are not compactified thus
they are in different dimension than the bosonic case. However, the twist vectors of
fermions won’t change the uncompactified dimensions of fermions, therefore we take
those non-compact dimensional components of the twist vectors to be 0.

Fermion

We now compute the one-loop partition function of a complex fermion with twisted
boundary conditions.

We define ψ = 1√
2
(ψ1 + iψ2) and ψ̄ = 1√

2
(ψ1 − iψ2). W.l.o.g, we observe the

action of the right-mover

S =
i

π

∫
d2σψ̄∂+ψ (D.30)

with energy-momentum tensor

T =
i

2
(ψ̄∂−ψ + ψ∂−ψ̄). (D.31)

Again, using mode expansion and canonical quantization, we can get the Hamil-
tonian H = L0 − c

24
with

L0 =
∞∑

m=1

{(
m+ α− 1

2

)
b̄−m−α+ 1

2
bm+α− 1

2
+

(
m− α− 1

2

)
b−m+α+ 1

2
b̄m−α− 1

2

}
+
α2

2

(D.32)
and c = 1 for one complex fermion. α is the parameter of the twisted boundary
condition defined in below.

Then we impose the twisted boundary conditions. For toroidal spatial direction

ψ(σ0, σ1 + 2π) = −e+2πiαψ(σ0, σ1),

ψ̄(σ0, σ1 + 2π) = −e−2πiαψ(σ0, σ1).

For toroidal time direction

ψ(σ0 + 2πτ2, σ
1 + 2πτ1) = −e+2πiβψ(σ0, σ1),

ψ̄(σ0 + 2πτ2, σ
1 + 2πτ1) = −e−2πiβψ(σ0, σ1).
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The minus signs correspond to path-integral with anti-periodic boundary conditions.
Periodic boundary conditions request to insert (−1)F . α, β ∈ {0, 1

2
} are spin struc-

tures, namely α stands for NS or R sectors, and β stands for (−1)F inserted or not.
But we still need to implement the β-twist (i.e. GSO projection) on operators, i.e.
we look for an operator PGSO which satisfies

PGSObn+α+ 1
2
P−1
GSO = e2πiβbn+α+ 1

2
,

PGSOb̄n+α+ 1
2
P−1
GSO = e−2πiβ b̄n+α+ 1

2
,

and thus the GSO projection is implemented by PGSO.
This operator is easily found to be

PGSO = e2πiβ(N−N̄),

where N, N̄ are the number operators

N =
∑
η>0

b−η b̄η, N̄ =
∑
η>0

b̄−ηbη. (D.33)

The partition function in the α, β sector is

Z[αβ ](τ) = Tr
(
PGSOq

L0− 1
24

)
= Tr

(
e2πiβ(N−N̄)qL0− 1

24

)
= q

α2

2
− 1

24

∞∏
n=1

(1 + qn+α− 1
2 e−2πiβ)(1 + qn−α− 1

2 e+2πiβ)

= e2πiαβ
ϑ

[
α
−β

]
(τ)

η(τ)
, (D.34)

cf. (A.1) for the definition of q. We can get the full result by adding the left and
right-mover part.

Partition function

Now let us consider the orbifold symmetry, which imposes additional boundary con-
ditions

ψj(σ0, σ1 + 2π) = −e+2πiαe2πikviψj(σ0, σ1),
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ψj(σ0 + 2πτ2, σ
1 + 2πτ1) = −e+2πiβe2πiℓviψj(σ0, σ1). (D.35)

And the partition function on the j-th complex compact dimension is

Zj
F [θ

k, θℓ] = Tr(NS⊕R)⊗(NS⊕R)

(
PGSOθ

ℓqL
j
0(θ

k)− 1
24 q̄L̄

j
0(θ

k)− 1
24

)
. (D.36)

The trace is over the left and right NS and R sectors for the fermions. This is
equivalent to summing over α ∈ {0, 1

2
}. Similarly, the GSO projection amounts to

summing over β ∈ {0, 1
2
}.

Using the result from app.D.1.2, we get the partition function of fermion

ZF [θ
k, θℓ] =

1

4

∣∣∣∣∣∑
α,β

sαβ(k, ℓ)
4∏

j=1

ϑ

[
α + kvj
−β − ℓvj

]
η

∣∣∣∣∣
2

, (D.37)

sαβ(k, ℓ) is the spin structure coefficients. By convention we take s00(k, ℓ) = 1.
Imposing modular invariance, notice that

∑
vi = 0, we check

s00(k, ℓ) = −s 1
2
0(k, ℓ) = 1, s0 1

2
(k, ℓ) = −eiπk

∑
vi = −1 = ∓s 1

2
1
2
(k, ℓ) (D.38)

leads to a modular invariant partition function.
Note that k = N should give the same solution as k = 0. This gives, once

more, the condition
∑
vi = 0. Note further that the sign of s 1

2
1
2
(k, ℓ) is not fixed

by modular invariance. Choosing opposite (equal) signs in the left and right-movers
corresponds to orbifold compactifications of Type-IIA (B) strings (as one can see by
looking at the k = ℓ = 0 sector).

D.1.3 D-branes on TD/ZN

This section refers to [51, §9.14.3] and [2, §2.2]
The tadpole of Klein bottle amplitudes will be canceled by the insertion of D9-

branes filling all ten dimensions. Through T-duality, we can further see the existence
of D5-branes because T-duality transforms D9-branes to D5-branes. And the tadpole
must be canceled by the addition of D5-branes as well. After that, we need O-planes
to cancel D-brane charges over compact space.

D5-branes will be stretching in the six non-compact dimensions. The orbifold
now acts on the transverse positions of the branes. Thus, there are two options to
consider.

We may consider a group of branes sitting at a fixed point of the orbifold action.
In such a case there is no further restriction on the transverse position. We may
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also consider a group of branes at a generic position xi on TD. Orbifold invariance
imposes that we also include a mirror brane group at the position −xi.

In the orientifold we are considering, the D5-branes will have vanishing twisted
tadpoles and therefore will not be fractional. Fractional means branes which are
fixed to the orbifold fixed points. This means we won’t have to worry about those
fixed branes.

In order to accommodate the orbifold action on the CP factors of D9-and D5-
branes we must introduce matrices γθ/Ω,9 and γθ/Ω,5. They satisfy the constraints
(C.5)-(C.7) coming from the orbifold group property.

For the trace of the CP factors, using (C.4) we may evaluate the trace as in [51,
(5.3.24)] ∑

ij

⟨i, j|Ω|i, j⟩ =
∑
iji′j′

⟨i, j|j′, i′⟩(γΩ)ii′(γ−1
Ω )j′j = Tr

[
γ⊤Ωγ

−1
Ω

]
. (D.39)

And we have similar results for θ∑
ij

⟨i, j|θk|i, j⟩) =
∑
iji′j′

⟨i, j|j′, i′⟩(γθk)ii′(γ−1
θk

)j′j = Tr
[
γ⊤θkγ

−1
θk

]
. (D.40)

Fixing signs According to the detailed discussion in [51, §7.3], in the NS sector
there is an ϵ phase for each of the 9-9 and 5-5 strings as follows

Ω|9− 9, p; ij⟩NS = ϵ99(γΩ,9)ii′ |9− 9, p; j′i′⟩NS(γΩ,9)
−1
j′j , (D.41)

Ω|5− 5, p; ij⟩NS = ϵ55(γΩ,5)ii′ |5− 5, p; j′i′⟩NS(γΩ,5)
−1
j′j . (D.42)

Similar arguments as in [51, §7.3] fix

ϵ299 = ϵ255 = −1, γΩ,5/9 = ζ5/9γ
⊤
Ω,5/9, ζ25 = ζ29 = 1. (D.43)

In the 5-9, 9-5 sectors, however, we may write

Ω|5− 9, p; ij⟩NS = ϵ59(γΩ,5)ii′ |9− 5, p; j′i′⟩NS(γΩ,9)
−1
j′j , (D.44)

Ω|9− 5, p; ij⟩NS = ϵ59(γΩ,9)ii′ |5− 9, p; j′i′⟩NS(γΩ,5)
−1
j′j , (D.45)

Imposing Ω2 = 1 we obtain
ϵ259ζ5ζ9 = 1. (D.46)

The phase ϵ59 captures the transformation properties under Ω of the SO(D)
twisted spinor as well of the NS open string vacuum. If two 9-5 states interact,
they may produce a 5-5 or a 9-9 state. Thus, a nontrivial coupling of two 9-5 states
to the massless 9-9 or 5-5 states should be allowed. This implies that ϵ259 = −1.
Therefore from (D.46), the CP projection is opposite for D5-branes compared to
that of D9-branes,

ζ5ζ9 = −1. (D.47)
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Boundary conditions We have to notice that in the case of effective open string
surfaces of Annulus and Möbius strips, due to the boundary conditions, we have
the general properties: NN directions have only momenta, DD directions have only
windings, and DN have none of both.

D5-branes Due to tadpole cancellation, only Zeven Type-IIB orbifold hasD9-branes
filling the space and D5-branes transversal to 1-st and 2-nd tori and parallel to
(wrapped around) 3-rd torus. So it means D5-branes only exist for Zeven models.

D.2 Analysis of the 4 Euler Number χ = 0 sur-

faces in 1-loop correction of Type-IIB T 6/ZN

orientifolds

We continue our discussion of the 1-loop partition function in app.D and present
the details of the partition functions of 4 one-loop surfaces in this section. Since the
calculation of the partition function of the surfaces is related to the twist vector vj
of a certain ZN group, we’ll give the general idea first, then give the examples in
detailed orientifolds in the following sections.2

From now on we’ll concentrate on phenomenally interesting D = 4 case and we
would like to study the properties of 1-loop surfaces needed in 2-point calculation of
1-loop corrections.

D.2.1 Partition Function

This section follows [47, §3] closely.
Using the results of partition functions we derived in app.D.1, we get the general

partition functions of the 3 different χ = 0 surfaces except torus

Z(ℓ)
σ (τσ, s) = (−2π)CPσχ̃σ(−2 sin(πγ3))

( 2∏
j=1

f(γj)

)
Zϑ

s (γi, hi, gi) (D.48)

2This section is cited from [54]



D.2. ANALYSIS OF THE 4 EULER NUMBER χ = 0 SURFACES IN
1-LOOP CORRECTION OF TYPE-IIB T 6/ZN ORIENTIFOLDS 151

with Zϑ
s (γi, hi, gi) being the ϑ-dependent part of the partition function given by

Zϑ
s (γi, hi, gi) = ηαβ

ϑ

[
α
β

]
ϑ

[
α + h1

β + γ1 + g1

]
ϑ

[
α + h2

β + γ2 + g2

]
ϑ

[
α

β + γ3

]
ϑ′
[
1
2
1
2

]
ϑ

[
1
2
+ h1

1
2
+ γ1 + g1

]
ϑ

[
1
2
+ h2

1
2
+ γ2 + g2

]
ϑ

[
1
2

1
2
+ γ3

] , (D.49)

where the spin structure relation between s and (α, β) can be found in Table D.1.
And ϑ′[1

2
, 1
2
] ≡ −2πη3, cf. (A.4). σ stands for the surfaces of Klein bottle K, Annulus

A and Möbius strip M, with world-sheet parameters τK = 2it, τA = it
2
, τM = 1

2
+ it

2
.

More details can be found in [7]. CPσ stands for the corresponding Chan-Paton
factor of the open string world-sheets and CP = 1 for the Klein bottle, cf. app.C.
Values for CPσ, χ̃σ, γi, f(γj), hi and gi can be found in Table D.2. Formula (D.48)
holds for all tadpole-free ZN Type-IIB orientifolds. Orientifolds with even N have
D5-branes wrapped around the third torus leading to the distinction of γ3 in (D.48).
And therefore the 3-rd torus always has NN boundary condition no matter whether
it is attached to D9 or D5-branes.

We choose
tr
(
γ−1
Ωℓ,5

γ⊤Ωℓ,5

)
= − tr γ2ℓ,5 (D.50)

and
tr
(
γ−1
Ωℓ,9

γ⊤Ωℓ,9

)
= tr γ2ℓ,9. (D.51)

The minus sign is due to the Gimon and Polchinski action of Ω, cf. [2, §2.3 and
(2.41)].

s 1 2 3 4[
α
β

] [
1
2
1
2

] [
1
2

0

] [
0
0

] [
0
1
2

]
ηs −1 −1 +1 −1

Table D.1: Spin structures

D.2.2 N ≥ 2 sectors

In these cases (−2 sin(πγ3))
∏2

j=1 f(γj) vanishes. N = 2 sectors are characterized by
that along exactly one ith-torus, hi vanishes and γi + gi is integer. N = 4 sectors are
characterized by that along all three torus, all three hi vanish and all three γi+gi are
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σ CP χ̃ γi f(γi) (i=1 or 2) h1 h2 g1 g2

Ku 1 1 2ℓvi −2 sin(πγi) 0 0 0 0
Kt 1 χ̃(θN/2, θℓ) 2ℓvi 1 1

2 − 1
2 0 0

A99 (tr γℓ,9)
2 1 ℓvi −2 sin(πγi) 0 0 0 0

A55 (tr γℓ,5)
2 1 ℓvi −2 sin(πγi) 0 0 0 0

A95 (tr γℓ,9)(tr γℓ,5) 2 ℓvi 1 1
2 − 1

2 0 0
M9 tr γ2ℓ,9 −1 ℓvi −2 sin(πγi) 0 0 0 0
M5 tr γ2ℓ,5 −1 ℓvi 2 cos(πγi) 0 0 1

2 − 1
2

Table D.2: Refer to [47]. Ku and Kt denote the Klein bottle contributions with untwisted and
θN/2-twisted closed strings running in the loop. χ̃(θN/2, θℓ) denotes the number of simultaneous
fixed points of θN/2 and θℓ. The CP factors corresponding to the D5-branes assume that all D5-
branes are sitting at the fixed point at the origin of the compact transverse space, details cf. [2,
§2.3]. Derivation of these constants in the table will be explained in the following subsections.

integer. In these cases, (D.48) has a well defined limit 1
η2

of singular part, but one
has to include internal momenta or windings, therefore we should substitute these
singular part with momentum/winding lattice sum (C.22) and (C.23).

For A and M the momentum sum L[j,M ] appears if the j-th torus is parallel to
the branes whereas the winding sum L[j,W ] appears if the j-th torus is transversal
to the branes, and this actually is related to the boundary conditions of the open
strings attached to the D-branes. For K the situation is as follows: If γj is even, the
corresponding torus is not reflected. The orientation reversal Ω, however, reverses the
winding modes. Thus only the momentum modes survive. On the other hand, if γj
is odd, the corresponding torus is reflected (i.e. kvj is half-integer). Combined with
Ω, this leaves the winding modes along this torus invariant. The terms ”momentum”
and ”winding” are used here referring to the open string channel.

D.2.3 Torus

Topologically Torus is the 1-loop closed string amplitude, without Orientifold sym-
metry Ω action.

This part is just the Type-IIB orbifold thus is trivial as (3.50) and has no tadpole.

D.2.4 Klein bottle

Topologically Klein bottle is the 1-loop closed string amplitude, with Orientifold
symmetry Ω action.
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In the operator form, the partition function of Klein bottle is

ΛK =

∫ ∞

0

dt

2t
TrU+T

[
Ω

2
· 1

N

N−1∑
ℓ=0

θℓ · 1 + (−1)F

2
e−2π(2it)(L0−c/24)

]
(D.52)

Be aware that Ω can act on bosonic and fermionic oscillators as described in (C.8)-
(C.13). Ω projects out NS-R and R-NS sectors. The action of Ω on the bosonic and
fermionic oscillators results in a nonzero contribution in the trace only if the state
has the same left and right oscillators. This effectively sets L0 + L̄0 → 2L0 for such
symmetric states and causes the final amplitude to have a modular parameter 2τ
instead of τ .

Also, since Ω exchanges θk with θN−k, we only have twisted strings with k = 0
and k = N

2
, N even.

CP factors Since Klein bottle is not attached to D-branes, thus the CP factor is
1.

γi Due to the Ω action, L0 + L̄0 → 2L0 will also double the γi. This can be easily
seen from the calculation of (D.16).

Untwisted sector

χ̃ and f(γi) Since Ω action leaves only left-right symmetric states, from (D.16) we
can see that we no longer have 4 sin2(πℓvj) for f(γi), but only have −2 sin(2πℓvj).

Lattice sum cf. app.D.2.2

γi = even-integer, i = 1, 2, 3 :
−2 sinπγi

ϑ

[
1
2

1
2
+ γi

] → 1

η3
L[j,M ] (D.53)

γi = odd-integer, i = 1, 2, 3 :
−2 sinπγi

ϑ

[
1
2

1
2
+ γi

] → 1

η3
L[j,W ] (D.54)

Twisted sector

From the paragraph ”Twisted Sectors” in app.C we know that only N
2
-twisted sector

is allowed.
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hi Kt is θ
N/2-twisted, thus kvj = half integer. And this is equivalent to shifting the

α of ϑ functions in the T 4 direction (1-st and 2-nd tori) by hi, cf. (D.21).

χ̃ and f(γi) As we discussed after (D.21), here N
2
· vj is integer, thus we have

χ̃(θN/2, θℓ) for χ̃.

Lattice sum cf. app.D.2.2

γ3 = even-integer :
−2 sinπγ3

ϑ

[
1
2

1
2
+ γ3

] → 1

η3
L[i,M ] (D.55)

γ3 = odd-integer :
−2 sinπγ3

ϑ

[
1
2

1
2
+ γ3

] → 1

η3
L[i,W ] (D.56)

D.2.5 Annulus

Annulus surface represents closed string propagates between two D-branes, without
Orientifold symmetry Ω action. Topologically and effectively we can consider it as
the 1-loop open string amplitude, without Orientifold symmetry Ω action.

In the operator form, the amplitude is

ΛA =

∫ ∞

0

dt

2t
Tr99+55+95+59

NS,R

[
1

2
· 1

N

N−1∑
ℓ=0

·1 + (−1)F

2
e−2π( it

2
)(L0−c/24)

]
(D.57)

Now we need to consider D-branes. According to earlier discussion about tadpole
cancellation in app.D.1.3, we know that we would only consider D9 and D5-branes.
Follow the discussion in app.D.1.3 and [51, §9.14.3], we have non-trivial CP factors
in the partition function for Annulus.

Recall that open string boundary conditions on compactified dimensions have the
results: NN directions have only momenta. DD only windings, and DN none of the
above.

A99

CP factors A99 is attached to two D9-branes. Therefore we have the CP factor
as square of trγ9,k.
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Lattice sum Here we have NN boundary conditions in the T 4 directions of A99,
and also NN boundary conditions in the 3-rd torus. Then the compact directions
have only momenta. And we need to substitute

γi = integer, i = 1, 2, 3 :
−2 sin(πγi)η

ϑ

[
1
2

1
2
+ γi

] → 1

η2
L[i,M ] (D.58)

A55

CP factors A55 is attached to two D5-branes. Therefore we have the CP factor
as square of trγ5,k.

Lattice sum Here we have DD boundary conditions in the T 4 directions of A55,
and NN boundary conditions in the 3-rd torus. Then the T 4 compact directions have
only windings. And we need to substitute

γi = integer, i = 1, 2 :
−2 sin(πγi)η

ϑ

[
1
2

1
2
+ γi

] → 1

η2
L[i,W ] (D.59)

γ3 = integer :
−2 sin(πγ3)η

ϑ

[
1
2

1
2
+ γ3

] → 1

η2
L[3,M ] (D.60)

A95

CP factors A95 is attached to one D5-brane and one D9-brane. Therefore we have
the CP factor as the product of trγ5,k and trγ9,k.

hi and f(γi) A95 has Dirichlet-Neumann boundary conditions along 1-st and 2-nd
torus. And the presence of 4 DN directions effectively Z2-twist the T

4 space (1-st and
2-nd torus), cf. [62, §13.4]. This is equivalent to the θN/2-twisted sector in app.D.2.4.
Therefore we have the same hi and f(γi) as in app.D.2.4.

χ̃ A95 actually has two orientation, which are A95 and A59. Thus this contribute a
factor of 2 to the partition function.
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Lattice sum Here we have ND boundary conditions in the T 4 directions of A55,
and NN boundary conditions in the 3-rd torus. Then the T 4 compact directions have
no momentum or windings. And we need to substitute

γ3 = integer :
−2 sin(πγ3)η

ϑ

[
1
2

1
2
+ γ3

] → 1

η2
L[3,M ] (D.61)

D.2.6 Möbius strip

Möbius strip surface represents closed string propagates between D-brane and orien-
tifold plane, with Orientifold symmetry Ω action. Topologically and effectively we
can consider it as the 1-loop open string amplitude, with Orientifold symmetry Ω
action.

In the operator form, the amplitude is

ΛM =

∫ ∞

0

dt

2t
Tr9+5

NS,R

[
Ω

2
· 1

N

N−1∑
ℓ=0

·1 + (−1)F

2
e−2π( 1

2
+ it

2
)(L0−c/24)

]
. (D.62)

Be aware that Ω in the Tr
[
ΩqL0−c/24

]
is equivalent to adding a minus sign to q because

of the action of Ω on L0, cf. (C.8)-(C.13). This is equivalent to substitute the torus
parameter τ in the partition functions with the half-shifted torus parameter

τM =
1

2
+
it

2
, (D.63)

as we have mentioned before about world-sheet parameters, cf. (D.7).
Since Ω changes the orientation of the string, 9-5 strings do not contribute to the

trace. For the same reason, only strings starting and ending on the same D5-brane
contribute after Z2 projection.

M9

Lattice sum Open strings on M9 has NN boundary condition, thus only K-K
momentum states survive.

γi = integer, i = 1, 2, 3 :
−2 sinπγi

ϑ

[
1
2

1
2
+ γi

] → 1

η3
L[i,M ] (D.64)
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CP factors M9 is attached to D9-branes, and it has Ω action, thus we have
CPM9 = tr

(
γ−1
Ωℓ,9

γ⊤Ωℓ,9

)
= trγ2ℓ,9, cf. [2, (2.36)].

χ̃ Due to the Ω action on the fermionic state for NN boundary condition (cf. (C.12))
and the Ω action on the vacuum states (cf. [51, (7.3.10) and (7.3.16)]), we have
Ω(ψµ

1
2

|0⟩) ∝ −ψµ
1
2

|0⟩, i.e. we have an extra minus sign in χ̃, also cf. [41, (3.11),(3.12)].

M5

Lattice sum Open strings on M5 has DD boundary condition, thus only winding
states survive.

γi = half-integer, i = 1, 2 :
2 cosπγi

ϑ

[
1
2

1
2
+ γi + gi

] → (−1)i

η3
L[i,W ] (D.65)

γ3 = integer :
−2 sinπγ3

ϑ

[
1
2

1
2
+ γ3

] → 1

η3
L[3,M ] (D.66)

gi Because now we have DD boundary conditions for T 4 directions, according to
(C.13), the T 4 directions have an extra minus sign. This is equivalent to an insertion
of θN/2 element in the trace, and thus equivalent to shifting the β in ϑ functions in
the T 4 direction (1-st and 2-nd tori) by gi.

f(γi) Due to the insertion of θN/2, this will shift the sin(πγj) in f(γj) for π/2, or
equivalently shift γj to γj + gj, and thus turns − sin into cos function for each of the
1-st and 2-nd tori.

CP factors and χ̃ M5 is attached to D5-branes, and it has Ω action, thus we have
CPM5 = tr

(
γ−1
Ωℓ,5

γ⊤Ωℓ,5

)
= −trγ2ℓ,5, cf. [2, (2.41)]. But here we take CPM5 = trγ2ℓ,5,

thus we move the minus sign to χ̃, which means we get χ̃ = −1.
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t-integrals

We need to evaluate t-integrals in §4.5.1 and §4.5.2. A more detailed derivation of
t-integrals could be found in [47, §C], we only list the results here. app.E.1 follows
[54].

N = 1 sector t-integral Here we deal with the t-integral of N = 1 sectors (see
§4.5.1). The integral to be evaluated is (assuming 0 < γ < 1)

I =

∫ ∞

1
eσΛ

dt

t2
ϑ′
4(γ, τσ)

ϑ4(γ, τσ)
(E.1)

with σ = K,A and τσ = ieσt
2

(eσ was defined in (4.40)). And the result is∫ ∞

1
eσΛ

dt

t2
ϑ′
4(γ, ieσt/2)

ϑ4(γ, ieσt/2)
= eσπ(1− 2γ)Λ2 − eσ

π

48
[ψ′(γ)− ψ′(1− γ)]. (E.2)

N = 2 sector t-integral Here we deal with the t-integrals of N = 2 sector (see
§4.5.2). The integrals to be evaluated are

Γ[n,M/W ] =

∫ ∞

0

dt

t3

∑
m⃗∈Z2\0⃗

e−
π
t
mambg

[n,M/W ]
ab

=
∑

m⃗∈Z2\0⃗

∫ ∞

0

dt

t3
e−

π
t
mambg

[n,M/W ]
ab

=
1

π2

∑
m⃗∈Z2\0⃗

1(
mambg

[n,M/W ]
ab

)2 . (E.3)
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The metric g
[n,M/W ]
ab is given by (4.53). Using (4.53) and the expression for g

[n]
ab in

terms of the complex structure U [n] = U
[n]
1 + iU

[n]
2 of n-th torus, i.e.

g
[n]
ab =

√
det g[n]

U
[n]
2

(
1 U

[n]
1

U
[n]
1 |U [n]|2

)
, (E.4)

one can write

g
[n,M/W ]
ab =


√

det g[n]

U
[n]
2

(
1 U

[n]
1

U
[n]
1 |U [n]|2

)
for M (momentum sum)

1

U
[n]
2

√
det g[n]

(
1 Ũ

[n]
1

Ũ
[n]
1 |Ũ [n]|2

)
for W (winding sum)

(E.5)

with Ũ [n] = Ũ
[n]
1 +iŨ

[n]
2 = −(U [n])−1 (i.e. Ũ

[n]
1 = −U [n]

1 /|U [n]|2 and Ũ [n]
2 = U

[n]
2 /|U [n]|2).

The result is

Γ[n,M/W ] =

{
(4π2α′)2

π2V 2
n
E2(U

[n]) for M (momentum sum)
V 2
n

π2(4π2α′)2
E2(−(U [n])−1) for W (winding sum)

, (E.6)

where Es(U) is the non-holomorphic Eisenstein series

Es(U) =
∑

m⃗∈Z2\0⃗

U s
2

|m1 +m2U |2s
. (E.7)

E.1 t-integral for M with γ > 1
2

When 1
2
< γ < 1 for M, we need to do the integral

ĨM =

∫ ∞

0

dt

t2
ϑ′
1(γ, τM)

ϑ1(γ, τM)
, (E.8)

here τM = it
2
+ 1

2
. We substitute γ′ = γ − 1

2
for γ, and this transforms the original

integral to

ĨM =

∫ ∞

0

dt

t2
ϑ′
2(γ

′, τM)

ϑ2(γ′, τM)
. (E.9)

By following the similar calculation in [14, §M.2], we perform ST 2S modular trans-
formations:

τM =
it

2
+

1

2
→ − 1

τM
→ − 1

τM
+ 2 →

(
1

τM
− 2

)−1

= 2il − 1

2
=: lM. (E.10)
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Here l = 1
4t
. The result of ST 2S modular transformation (A.8) is

ϑ′
2(γ

′, τM)

ϑ2(γ′, τM)

l= 1
4t= −16πγ′l + 4il

ϑ′
2(4iγ

′l, 2il − 1
2
)

ϑ2(4iγ′l, 2il − 1
2
)
. (E.11)

Using the representation of ϑ′
2/ϑ2 for | Im(z)| < Im(τσ)

ϑ′
2(z)

ϑ2(z)
=− π tan πz + 4π

∞∑
n=1

(−1)nqn

1− qn
sin 2πnz

=− π tan πz + 4π
∞∑

n,m=1

(−1)nqnm sin 2πnz (E.12)

we get

ĨM =

∫ ∞

1
4Λ

dt

t2
ϑ′
2(γ

′, τM)

ϑ2(γ′, τM)

= 4

∫ Λ

0

dl

(
− 16πγ′l + 4il

ϑ′
2(4iγ

′l, 2il − 1
2
)

ϑ2(4iγ′l, 2il − 1
2
)

)

= −16π

∫ Λ

0

dl l
(
4γ′ − tanh(4πγ′l) + 4

∞∑
n,m=1

(−1)n(m+1)e−4πlnm sinh(8πnγ′l)
)
.

(E.13)

Following the similar calculation as [14, (397),(398)]:

I1 =
∞∑

m,n=1

∫ ∞

0

dl l(−1)n(m+1)e−4πlnm sinh(8πnγ′l)

=
∞∑

m,n=1

(−1)n(m+1) mγ′

4n2π2(4γ′2 −m2)2

=
∞∑

m=1

mγ′Li2((−1)m+1)

4π2(4γ′2 −m2)2
. (E.14)

Note that the integral converges provided that 2|γ′| ≤ m (which is true now because
γ′ = γ − 1

2
). Now we split the sum into sums over even and odd m:

I1 =
∞∑
k=1

[
(2k)γ′Li2(−1)

4π2(4γ′2 − (2k)2)2

]
+

∞∑
k=0

[
(2k + 1)γ′Li2(1)

4π2(4γ′2 − (2k + 1)2)2

]
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=
1

1536

[
ψ′(1 + γ′)− ψ′(1− γ′)

]
+

1

768

[
ψ′(

1

2
− γ′)− ψ′(

1

2
+ γ′)

]
. (E.15)

All together we arrive at

= 8π(1− 4γ′)Λ2 − π

24γ′2
− π

24

[
ψ′(1 + γ′)− ψ′(1− γ′) + 2ψ′(

1

2
− γ′)− 2ψ′(

1

2
+ γ′)

]
= 8π(3− 4γ)Λ2 − π

24

[
ψ′(γ − 1

2
)− ψ′(

3

2
− γ) + 2ψ′(1− γ)− 2ψ′(γ)

]
. (E.16)
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Derivation of relative modular
transformation

Here we present a simple derivation of the lower triangular form of relative modular
transformation

M =

(
A B
C D

)
∈ Sp(2g,Z) (F.1)

which preserves the involution

I =

(
1 0
∆ −1

)
. (F.2)

Taking V⃗ := (a1, · · · , ag, b1, · · · , bg)⊤ to be the vector of the homology basis. The
symplectic preserving condition (F.1) is

MV⃗ (MV⃗ )⊤ =MJM⊤ =

(
A B
C D

)(
0 1
−1 0

)(
A⊤ C⊤

B⊤ D⊤

)
≡ V⃗ V⃗ ⊤ = J =

(
0 1
−1 0

)

=⇒


AB⊤ −BA⊤ = 0

AD⊤ −BC⊤ = 1

CB⊤ −DA⊤ = −1

CD⊤ −DC⊤ = 0

. (F.3)

From the involution preservation condition

MIV⃗ =MIM−1MV⃗ = I ′MV⃗ ≡ IMV⃗

⇒ I ′ =MIM−1 =

(
A B
C D

)(
1 0
∆ −1

)(
A′ B′

C ′ D′

)
≡ I =

(
1 0
∆ −1

)
(F.4)
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where M−1 =

(
A′ B′

C ′ D′

)
and

MM−1 =

(
A B
C D

)(
A′ B′

C ′ D′

)
= 1, (F.5)

as well as the symplectic preserving condition(F.3), one finds that

B = B′ = 0, A′ = A−1, D = (A−1)⊤ = D′−1, C ′ = −A⊤CA−1. (F.6)

The general form of M is

M =

(
A 0
C (A−1)⊤

)
(F.7)

with
2C = ∆A− (A−1)⊤∆. (F.8)
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