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Abstract

We study quantum corrections to the Einstein-Hilbert term in Type-IIB orientifolds
using string perturbation theory. We adopt two different approaches: one is genus-1
3-point amplitude and the other one is genus—% 2-point amplitude.

In first approach, we begin with revisiting the Heterotic genus-1 3-graviton ampli-
tude and derive a kinematic structure before coordinate integration that differs from
previous reports. We then extend the calculation to the Type-I string, including the
“pinched-off” contributions which are previously neglected. We find that even after
including these contributions, the resulting genus- 1 correction breaks the expected
gravitational kinematic structure, indicating that the string amplitude calculation
remains incomplete and requires further study. This involves assignment of picture
number on the surfaces, and a new technique ”vertical integration” should be con-
sidered to deal with the calculation of amplitudes. This procedure may introduce
potential new contributions. Unfortunately, the application of ”vertical integration”
is still under research. We have to leave this topic to our future study.

In second approach, using the concept of relevant modular transformations, we
determine the moduli spaces of all genus—% Riemann surfaces, correcting an earlier
result about the fundamental domain. With this knowledge, it should in principle
be possible to derive genus—% amplitude corrections.



Zusammenfassung

Wir untersuchen Quantenkorrekturen zum Einstein-Hilbert-Term in Type-1IB Ori-
entifolds unter Verwendung der String Storungsrechnung. Wir verfolgen dabei zwei
verschiedene Ansatze: zum einen die 3-Punkt Amplitude vom Genus-1 und zum
anderen die 2-Punkt Amplitude vom Genus—%.

Im ersten Ansatz beginnen wir mit einer erneuten Betrachtung der Heterotic 3-
Graviton Amplitude vom Genus-1 und leiten eine kinematische Struktur vor der Ko-
ordinatenintegration ab, die sich von fritheren Berichten unterscheidet. Anschlieend
erweitern wir die Berechnung auf den Type-I String, einschliefilich der zuvor ver-
nachlassigten ”pinched-oft” Beitrage. Wir stellen fest, dass selbst nach Einbeziehung
dieser Beitrage die resultierende Korrektur der Genus-1 die erwartete gravitative
kinematische Struktur bricht, was darauf hindeutet, dass die Berechnung der String
Amplitude unvollstandig bleibt und weiterer Untersuchungen bedarf. Dies beinhaltet
die Zuweisung von Bildnummern auf den Weltflachen, und es sollte eine neue Tech-
nik, die "vertikale Integration”, in Betracht gezogen werden, um die Berechnung der
Amplituden zu bewéltigen. Dieses Verfahren kann potenzielle neue Beitrége einbrin-
gen. Leider befindet sich die Anwendung der ”vertikale Integration” noch in der
Forschung. Wir miissen dieses Thema fiir unsere zukiinftige Studie zuriickstellen.

Im zweiten Ansatz bestimmen wir unter Verwendung des Konzepts relevanter
modularer Transformationen die Moduli-Radume aller Riemannschen Flachen vom
Genus—% und korrigieren damit ein fritheres Ergebnis tiber die fundamentale Domane.
Mit diesem Wissen sollte es grundsétzlich moglich sein, Amplitudenkorrekturen der
Genus—g abzuleiten.
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Chapter 1

Introduction

We can think of String Theory as the extension of Quantum Field Theory, which
means that it is the quantum theory of extended dynamical objects (strings/branes).
With the help of the tools and techniques from 2 dimensional conformal field theory
and only a few fundamental assumptions we can arrive at a beautiful theory of unified
interactions. Since the spectrum of string theory contains a massless spin-2 particle
which can be naturally interpreted as the graviton, it leads to the possibility that
string theory could be a promising candidate of the theory of quantum gravity.

Lorentz invariance and anomaly free request that superstring theory should pos-
sess 10 dimensional space-time degrees of freedom. To make the theory phenomeno-
logically interesting one has to reduce the dimension of the target space down to 4
dimension, which brings up the concept of compactification, or in a more general
manner, appropriate choice of internal conformal field theory. Additional condition
of 4D space-time minimal supersymmetry leads to the discovery of the Calabi-Yau
compactification which can preserve 4D space-time N = 2 supersymmetry. Orien-
tifold with D-branes could further reduce half of the supercharges, thus preserves
N = 1 supersymmetry. However, compactification creates many moduli, which is
undesired by phenomenological and cosmological reasons. Then one further develops
the method of moduli stabilization which considers non-trivial background values for
various massless bosonic excitations. See e.g.[43][22][57] for reviews.

One most important contribution of string theory boils down to that it provides
the new methodology of discovering a new theory by studying the mathematical
structures and consistency conditions first, then refining them to get a more realistic
theory consistent with real world data, which reverses the traditional methodology
upside down.

String theorists are often confronted with strong criticism about not making rea-



sonable/testable predictions. In order to make the theory consistent with real world
data, one would have to understand low energy effective theory in details, especially
the quantum corrections. Keeping this in mind, one would require a computable
method to deal with this. String perturbation theory plays a central role in the
computation of such corrections to the effective action of certain model, which could
greatly improve our understanding of the specific model. This is one of the primary
motivation of the study of string perturbation theory. In string perturbation theory,
one can already make use of all the experiences and developments from quantum
field theory of point particles and conformal field theory.

We know that Calabi-Yau compactification and orientifold are necessary for con-
structing a low energy effective theory with 4 dimensional target space and N' = 1
supersymmetry, which is meaningful from a phenomenological perspective. N = 1
supersymmetry in 4D is phenomenologically important because it can possess chiral-
ity which is necessary for Standard Model; it can avoid large numbers of extra light
particles in conflict with experiments; it has a reasonable SUSY breaking scale to hide
superpartners; it can possibly match gauge coupling unification patterns observed in
Standard Model. CY compactification leads to Kahler moduli as well as other moduli
in 4D effective theoryﬂ The moduli are Kahler moduli 7', complex structure moduli
U, complexified dilaton D, and D-brane moduli ¢ typically in Type IIB orientifolds.
Kahler moduli and other moduli have kinetic terms in the 4D effective action. The
metric of the kinetic term of the Kahler moduli is the Kéahler metric. None of the
moduli was observed yet in experiments. Moduli stabilization, as a technical mecha-
nism, was introduced to make the moduli massive, thus to avoid inconsistency with
experimental results. However experience tells that it is important to understand
the string effective action at least at the 1-loop level or even higher-loop level before
attempt of moduli stabilizationﬂ We would only focus on our interest in quantum
corrections, thus would not go into details of compactification, moduli stabilization
and derivation of effective action.

A simple introduction to the effective action and quantum corrections is given in
and §4.21 The kinetic terms of the effective action of 4-d supergravity in string
framdﬂ, up to 1-loop order, iﬂ

S, = % / d'ev/ R {(em 4 5E)%R + (GO +6w) W(O)@“T@] +o (1
4

!This is explained in standard textbooks, e.g.[44][23].
2This is discussed in e.g.[27] [12][14]

3See for the definition of string and Einstein frame.
“In this and next paragraphs we are following [14] and [47].



7 is the tree level form of the imaginary part of the Kahler moduli 7. §E is the
correction to the Einstein-Hilbert term, including tree level o/ corrections, 1-loop
gs corrections, and possibly higher loop corrections, R is the Ricci scalar, &, is 4
dimensional dilaton, G® is the tree level moduli space (Kihler) metric including
o corrections and G is the 1-loop contributions to the string frame moduli space
(Kéhler) metric.

1-loop corrections to the Einstein-Hilbert term contribute to the quantum correc-
tions to the moduli Kéahler metric in minimally supersymmetric toroidal Type-I11B
orientifolds with D-branes, which can be observed from the 1-loop contributions to
the moduli space (Kéhler) metric in Einstein frame

2
(1) . 2@4 ~(1 8@4 2@4 a®4 85E 2@4
Gy h(T) =***GW (1) + 12 <_8T(0)> SEe** 46 50 5.0
. 1 1 9ot
B 4%, ~(0) [l VRt
SEe" GV (1) + 27_357' 5.3 57 +... (1.2)

where 7 is 1-loop correction to 7(%). This is because when we go from String frame
to Einstein frame, Einstein-Hilbert term would be involved in the correction to the
moduli Kéhler metric. Besides, the Kéahler metric and Kahler potential also show up
in most terms of the low energy effective action, see from Therefore, to study
the loop behavior of the theory, understanding of the correction to the Einstein-
Hilbert term is inevitable. This motivates the calculation of the correction to the
Einstein Hilbert term, in order to better understand the effective action.

It’s always difficult to compute multi-point and higher-genus-contributions from
string amplitudes. Multi-point contributions involve more operators, and thus they
are highly non-trivial from the perspective of operator calculation. Moreover, higher-
genus-surfaces also include those surfaces with non-trivial geometrical properties
which cause difficulties for analyzing or calculating certain math objects like fun-
damental region or period matrix etc. Moreover, beyond the understanding of the
effective theory, there are more obstacles like moduli stabilization and string model
building of Standard Model. In the end we would have to adapt all our understand-
ing with experimental results. These are out of the reach of this thesis, so we would
not engage in any detail of them.

Overview

The main concern of this thesis is to extend the existing methods of string perturba-
tion theory from the 3-point torus graviton amplitude (of Heterotic string) to all 4



genus-1 surfaces (of Type-I string): Torus, Annulus, Klein bottle, M&bius strip, and
from genus-1 2-point Einstein-Hilbert term correction to the next order (genus—%)
correction. 2-point amplitudes directly contribute to kinetic term of Kéahler moduli,
but they may have ambiguities. Meanwhile 3-point amplitudes could ”strengthen” 2-
point amplitudes by providing independent, complementary information that makes
the loop corrections more robust and unambiguous. We are interested in confirming
old results as well as developing calculating techniques.

Pioneering researches indicate that 1-loop corrections to Einstein-Hilbert term in
Heterotic theory are absent[52][10]. Corrections of N = 2 models in Type-I theory
were then calculated in [7][9]. Thereafter the calculation were generalized to N = 1
orientifolds in [53][36].

First we studied the 3-point amplitude. One-loop 3-point 4D Heterotic graviton
amplitudes have been calculated in e.g.[40]. A special technique called ”pinched-oft”
integration has been applied by Minahan[58] to extract correct kinematic structure
from higher order kinematic terms. This technique was also used in e.g.[56][17].
When going from Heterotic to Type-I, one would have to include all 1-loop surfaces
other than torus: Cylinder, Klein bottle and Md&bius strip. Then it is necessary to
represent the integrals on the 1-loop surfaces by the integrals on the torus by lifting
technique, which is used in e.g.[7].

We inherited Minahan’s approach[58] and tried to generalize the 3-point ampli-
tude calculation in [40] to Type-I theory. The graviton 3-point amplitude in Type-I
was already studied in [9] without application of Minahan’s approach[58], so called
”Pinched-off integration”. In our calculation, we include extra contributions from
pinched-off integration, and Taylor expansion was also considered during the pinched-
off integration. We first reproduce the Heterotic kinematic structure calculation, then
lift the result in Heterotic to Type-I by the lifting technique on the covering torus[7].
We have found unusual conclusion in Type-I and expect to study it in future with
the help of the idea of factorization and the method called "vertical integration”
from string field theory.

Then we turned to the study of 2-point amplitude calculation of correction to the
Einstein-Hilbert term. In order to study the phenomenologically interesting model
Type-1IB orientifold, people have tried to study the corrections to the moduli in
different scenarios, like [I5][16][14]. The importance of the correction to the Einstein-
Hilbert term was mentioned in [47].

After 1-loop calculation, people’s attention turned to next order: Euler charac-
teristic -1 (or so called genus—%). This is because in some cases 1-loop corrections
could be vanishing[28][35] or logarithmically suppressed[I], which makes genus-3 cor-

rections the leading order. Besides, genus—% corrections also show up in a specific
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configuration of a supersymmetry breaking[10]. There a surface with a hole and a
handle was studied. As a follow up research, a surface with 3 holes has been studied
in [5].

The concepts of involution and taking square root from the double cover were
applied to go from 1-loop calculation to higher-genus-calculation, e.g. in the study
of bosonic amplitudes|21] and fermionic amplitudes[I0][63]. Consistency of the mod-
ular transformations with the involution introduces the concept of Relative modular
transformation[I8][19]. A further consistency requirement of the modular transfor-
mations with diffeomorphisms proposes the idea of Relevant modular transformation[5].

We followed the path of [47] and [54], tried to explore the calculation in genus-2.
We begin with the double cover of the genus—% surfaces, which is 2-torus. Involution
and taking square root from double cover were introduced [21][10][63]. We discussed
and clarified the concept of Relevant modular transformation[5], and pointed out the
necessity of it. We extended the result of the moduli space in [5] to all 5 genus—%
surfaces.



Part 1

Preliminaries



Chapter 2

String Theory

As the extension of quantum field theory, string theory shares many fundamental
characteristics with quantum field theory. It encompasses a very broad and in-depth
range of content. We introduce some basic knowledge of string theory to prepare for
advanced topics in the following chapters. Starting with the fundamental dynamical
object and thinking of the string theory as a mathematical theory: field X being the
map from world-sheet to the target space, we work on 2 dimensional world-sheet.
Considering all symmetries and quantizing the theory one concludes that this is a
2D conformal field theory with critical target space dimension D = 26. Joining
and splitting of the open and closed string represents the interaction of the theory.
Therefore the interactions of the theory are encoded in the topology of the world-
sheet. By the path integral method we get the scattering amplitudes from summing
over all topologies of the world-sheet.

By including supersymmetry, bosonic string extends to superstring which has a
10 dimensional target space. Classifying the left /right-movers as well as orientability,
and imposing anomaly free condition and other consistency conditions, one restricts
superstring to 5 different theories. Besides, open string can end on dynamical object,
which is called D-brane. From unorientable world-sheets one also introduce the
concept of cross-cap and O-plane.

Compactification is then applied to reduce the dimension of String Theory to 4
which meets with the dimension of our real universe.

In this chapter we follow closely to [61], [62] and [23].
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2.1 Bosonic String Theory

Just like Quantum Mechanics studies 0 dimensional particle’s world-line, in String
Theory we study how 1 dimensional strings propagate on world-sheets. One describes
the motion of string in D dimensional space-time by the function X*(7,0), p =
0...D —1, 7 and o are the world-sheet coordinates. Of course the physics should
be independent of parameterization. To begin with, no supersymmetry is involved
thus we focus on bosonic theory now.

Worldsheet action and symmetries

The start point of a good quantum theory would always be the action and all pos-
sible symmetries of the action. We take the area of the world-sheet swept out by
the string as the action. Then follow the similar procedure as in Quantum Mechan-
ics to avoid square root difficulty, we deduce that, the simplest Pincaré-invariant,
reparameterization invariant action would be the Polyakov action:

SP[X>7] =

Yt

/ drdo(—h) 370, X9, X o, (2.1)
>

where h is the world-sheet metric, h = det h,, and X is the world-sheet.
There would be an extra symmetry of the action which is the Weyl invariance

X'M(r,0) = X", 0),
hl(7,0) = exp(2Q(7, 0) ) hap(T, 0) vQ(T,0). (2.2)

One defines the energy momentum tensor as the variation of the action:

J

T (7,0) = 4mih ™2 Tl (2.3)
= —%(GC‘X“GZ’X# — %h‘“’@cX”aCXH). (2.4)
The equations of motion are
T =0, (2.5)
V2XH =0.

To eliminate possible surface terms in world-sheets with boundaries while keeping
Poincaré invariance, we impose Neumann boundary conditions

n*0,X, =0 on 0%, (2.7)
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where n® is the normal unit vector to 9¥. Or one can impose periodic boundary
conditions that the fields X*, 0 X* and h,;, are periodic.
If we relax Poincaré invariance, we can also impose Dirichlet boundary conditions

where y* is a constant and ¢ = 27v/o/ is the string length. o/ = 27+T is the Regge
slope and 7' is the string tension.

Light cone gauge In light cone gauge the theory can be expressed by physical
degrees of freedom only. One defines space-time coordinates as (X+, X, X?), i =
2---D —1, with

1
X+ = —(X"+£Xx"). 2.9
XY (29
The gauge is fixed by setting
2 /
Xt = 7;“ P, (2.10)

where pt = —p_ = —0L/0X .

Path Integral Quantization

The concept of path integral is well-known in quantum field theory. The basic idea
of path integral is that the amplitude of quantum mechanics is determined by the
integral of all possible paths from the initial state to the final state weighted by the
exponential of the action

X

(0) = (F1O i) :/ "X exp{iSIO (2.11)

X;

where O is product of local operators.

Euclidean path integrals FEuclidean path integrals are often more well-defined
because of the damping behavior of the exponential in 2 dimension. In string per-
turbation theory most calculation will be carried out in the Euclidean formalism.
To define the Euclidean amplitudes, we take the time t = X° = —iu for real w.
The equivalence of Euclidean to Minkowski can be easily derived from analytical
continuation on the complex plane.
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Conformal Field Theory

Strings on the world-sheet is a 2 dimensional field theory equipped with conformal
symmetry. The necessary mathematical tool needed is the conformal field theory.

Conformal field theory is much more well-defined in Euclidean metric. Making a
wick rotation 7 : 7 — —i7, we can define the complex coordinates

w =T —io, W =T + 10, (2.12)
or
z = exp(—iw) = exp(—iT + 0). (2.13)

A particular useful gauge in conformal field theory ,which is called conformal
gauge, is defined by

ds® = Q*(—d7* + do*) = —QPdo "o, (2.14)

that the two dimensional metric is conformally flat.
Primary fields ¢(z, Z) (conformal fields) are the basic objects in a conformal field
theory. It transforms under conformal transformation as tensor:

(2, 2) = ¢'(2, 2) = (%’j) - ((?)_i‘/) B o(z, 2). (2.15)

h and h are conformal weights under analytic and anti-analytic transformations.

Operator Product Expansion In perturbation theory we are mainly interested
in the expectation value of operators, especially the behavior of it in the limit that two
operators are approaching each other. Operator Product Expansion is the systematic
tool to describe the limit. Formally it can be presented as

Ai(21>Aj(22) = ZCZ-A]C(ZQ), (216)

where z; — 29, and Ag(z) is a basis for the set of local operators.
Since we are often interested in the limits, the OPE at small separation is domi-
nated by the singular terms.
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Normal Ordering We need normal ordering to well define the product of opera-
tors at the same point:

X (21,21) . X (20, Z0) = XY (21, 20) - X (2, 20) + Z subtractions, (2.17)

where ”subtractions” are all ways of choosing from X*(zy,z1) ... X#"(2,,z,) any
number of pairs of operators and replacing each pair with the singular term of the
OPE of the pair of operators.

Mode expansion In z = exp(—iw) = exp(—ic’ + 0?) coordinate, one can expand
the holomorphic field 0X*(z) into modes:

(9X“(z):—i<%/>l/2 i Z‘:‘ﬁl, (2.18)

or equivalently using the residue theorem we have

okt — (3)1/ ’ ]{ QW mpxn(s). (2.19)

C]5/

We have similar expressions for anti-holomorphic field 0X (2) with &

State-Operator correspondence

In w coordinate we must specify the boundary condition, or equivalently speaking
the initial state |&/) as Imw — —oo.

When transformed to z coordinate, Im w = —oo maps to z = 0, and equivalently
the initial state |</) in w can be represented by a local operator & in z = 0, or
so-called Vertex operator.

One can naturally define the initial state as

|«/) = lim 7 (2)|0) = </ (0)|0), (2.20)

where by Cauchy’s integral formula and Cj is a contour surrounding the origin z = 0

0 =4 Ly (2.21)

Co 2T 2

This shows 1-1 correspondence between the state |.<7) and the operator <7 (z). Thus
it is called the state-operator correspondence.
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As an important example, using (2.19), Cauchy’s differentiation formula and
holomorphicity of the fields we get the correspondence

ok, |0) = <3>1/2;'am)(“(0) m >0 (2.22)

o o) (m—1)! ’ ' '
Initial states can be constructed from the ground state |1) by acting with the creation
operators o, (m > 0) and &",,(m > 0). The corresponding operator is the normal
ordered product of the local corresponding operators 0" X*(0) of o, and the anti-
holomorphic analogous part.

Gauge-Fixing and Moduli

Locally one can always fix the gauge of the path integral with (diffx Weyl) transfor-
mations, because the dimension of (diffx Weyl) group matches the degree of freedom
of the metric. One could use the Faddeev-Popov method to fix the gauge, details
could be found in the standard textbooks like [61, §3.3]. Here we would like to
mention the expansion of diff x Weyl transformations of the metric

(Wlab = 25whab - Va50b - Vbdaa
= (20w — V00 hap — 2(P160) ap, (2.23)

where the operator P; maps vectors into traceless symmetric 2-tensors,
1
(P160')ab = é(Vaéab + Vb&ra — habVC(SO'C). (2.24)

But globally there is a small mismatch between the metric space and the gauge
group. The remnant is the moduli space. Moduli are the variation of the metrics
which are orthogonal to diffx Weyl transformations, while conformal killing vectors
(CKVs) are infinitesimal diffx Weyl transformations which do not change the metric.
Then we find that moduli correspond to the kernel of Pj and CKVs to the kernel of
P;. By Riemann-Roch theorem, we have

p— K= —3x (2.25)

with p = dim ker Pf and k = dimker P;. And x vanishes for xy < 0, while p vanishes
for x > 0.
The gauge-fixed n-point amplitude would be

Ak, k) = > Li—ﬁ/[dqﬁdbdc] exp(—Sm — Sy — Ax)

topologies
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World-sheet | Euler number | dim ker P; | dim ker PlT
Sphere 2 6 0
Disk 1 3 0
Projective plane 1 3 0
Torus 0 2 2
Cylinder 0 1 1
Mobius strip 0 1 1
Klein bottle 0 1 1

Table 2.1: Moduli and CKV numbers of g < 1 surfaces

m n
< I1 / H4i (b, 0,.h) [T (60 [ 1los)
(ai)¢f k=1 (ai)ef i=1
where [’ stands for Fundamental domain, ¢ are the moduli, b and ¢ are the Faddeev-
Popov ghosts, S, and S, are the matter and ghost actions respectively, h is the
fiducial metric, ¥ are the vertex operators, (a,i) € f are the set of coordinates of
the vertex operators fixed by the conformal killing vectors, ng is the finite order of
a possible residual discrete group of symmetries. This amplitude is valid also for
superstring if we include the superconformal field theory and 8+ ghost system.
X is the Euler characteristic and g, = e* works as the string coupling constant.
A is the constant background value of the dilaton D while D is the trace part of
the massless tensor spectrum. Therefore we can think of the amplitude A,, as the
perturbative expansion in genus-g = 1 — x/2.

D=

Yi(ks, 04), (2.26)

2.2 Superstring Theory

The bosonic string theory has tachyons as well as no place for fermions. To solve
this, supersymmetry on world-sheet is imposed to extend the bosonic string theory to
superstring theory which includes tachyon-free theories and accommodates fermionic
degrees of freedom. Supersymmetry is the maximal extension of the Poincaré Sym-
metry.

Superaction and Supersymmetry The complete superstring action is

1 2 o . 9 i
§=—< [ dodre (ahaﬁaa)(ﬂaﬁxumup oy —iXap’p ¢~(,/Jaﬁxu—;lxﬁwu)
(2.27)
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where e = |dete?| = v/—h, €% is the zwei-bein for describing spinors on curved
manifolds, 1 is the superpartner of X, y is the gravitino. This action is invariant
under the supersymmetry

M%&X“ = ie, (2.28)
«

1 2 7
B~ XH — — 5 h*
St = 2/7 (a,aoz 2Xo¢¢ >>

de€p = %Ep“xa
66X0¢ = 2Da€7

where €(o,7) is a Majorana spinor parameterizing supersymmetry transformations
and D, a covariant derivative with torsion.

Type-1I String We are considering closed strings. The world-sheet free action of
the Type-II String in the light cone (l.c.) gauge is given by

Ste. = —% / dodr (0, X"0_X" — i)' O_a)" — i)' 0,.9"). (2.29)

The bosonic field X satisfies periodic boundary condition. Fermionic field ¢ can be
either periodic (Ramond sector) or antiperiodic (Neveu-Schwarz sector) on the left
and on the right. One has to perform the GSO projection in each sector to get the
superstring with space-time supersymmetry.

The fermionic oscillators are defined by v/2b,, = ¥*™ ' + ip*™ m = 1,...,4,
which satisfy the usual anticommutation relations

{bpm, b1} = Spm, {byn,b,} =0, {bf b} = (2.30)

m?-n

There is a NS and R sector for both of the left and right-movers. The relative choice
of the GSO projection for the right-movers and for the left-movers is significant and
leads to two different sectors of the closed superstring theory. One can keep either
fermions of the same chirality or of opposite chirality in the two sectors. Depending
on the choice, we get either Type-ITA theory (non-chiral) or Type-IIB theory (chiral):

Type-IIA : (8v @ 8s) ® (8v @ 8¢)
TypellB:  (8v & 8c)® (8v & 8c), (2.31)

which is the massless spectrum of Type-ITA or IIB respectively.
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Heterotic String Since the left and right-moving sectors can be treated inde-
pendently, the Heterotic string is constructed by the left-moving sector of the 26
dimensional bosonic string combined with the right-moving sector of the 10- dimen-
sional superstring. 16 compactified left-moving bosonic fields live in the internal
space which is a 16 dimensional torus, and we are left with a 10 dimensional string
theory. Modular invariance of the one-loop partition function constrains the inter-
nal 16 dimensional momentum lattice to be an even self-dual Euclidean lattice, and
further implies the gauge group resulting from torus compactification to be either
Eg x Eg or SO(32).

Type-I String Type-I theory is an orientifold"| of Type-IIB theory with orientifold
symmetry group
Z, = {1,Q}. (2.32)

Closed String Sector: The closed string sector of Type-I theory contains unori-
ented strings that are invariant under orientation-reversal. The massless states are
simply the states of Type-IIB that are invariant under 2. We know that only g;,;,
¢, Bi; (R-R 2-form), and a symmetric combination of the two gravitini survive the
projection.

Open String Sector: Open string sector arises from the addition of D-branes that
are required to cancel the charge of the orientifold plane. Orientation reversal is a
purely world-sheet symmetry, so it leaves the entire 9 dimensional space invariant.
Therefore, the orientifold plane is a Og-plane. It turns out to have —32 units of
charge w.r.t. the 10-form non-propagating field from the R-R sector. This charge
can be canceled by adding 32 Dirichlet Dg-branes which each has unit charge. The
world-volume theory of the Dg-branes gives rise to gauge group U(32) but only an
SO(32) subgroup is invariant under the action of €.

Type-1 supergravity theory is anomaly free only if the gauge group is SO(32)
or Fg x Fg. It is satisfying that the spectrum determined by requiring world-sheet
consistency is automatically anomaly free

Spin Structure Spinor defined on a genus-g Riemann surface could have either
periodic or anti-periodic boundary conditions along 2¢g non-contractible homology
basis. Then there are 229 possible spin structures for a genus-g surface. A spin
structure is called even (odd) if the number of zero modes of chiral Dirac operator
is even (odd), and this number modulo two is a topological invariant and additive
when two surfaces are glued together.

Lef. :
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2.2.1 Ghost system

Fadeev-Popov quantization introduces ghost systems which simplifies the calculation
of the conformal field theory.

bc ghosts bc ghosts are obtained from fixing the gauge of the reparameterization
and Weyl invariance (world-sheet metric)ﬂ. In other word, the ghost part is equivalent
to the vector laplacian det’"/ 2(PlT Py) which is a result of the Jacobian of decomposi-
tion of the metric space into diff x Weyl space and moduli space. In conformal gauge,
one has

App = / dbdc e~ Sebost [b:d] (2.33)
1 _ _
Sghost [b7 C] = 2— /d22<bac + b86> (234)
T

with conformal weights h(b) = 2, h(c) = —1, ¢, = —26 and the OPEs
1

Z— W

b(z)e(w) ~ + - b(z)b(w) = c(z)c(w) = O(z — w). (2.35)

We can trade dim ker PlT number (dimension of the conformal Killing group) of the
integration of the position of the vertex operators for the same number of cc fields.
For example, at tree level (sphere), we have

|(0le(z1)e(z2)e(2)0)* = [(21 — 22) (22 — 23) (23 — 21) [ (2.36)
Derivation of this result could be found in [23], §6.2].
B~y superghosts Similarly, 5+ superghosts are obtained from fixing the gauge of
the supersymmetry (world-sheet gravitino)?l One has

1

Ssuperghost [ﬁ? ’ﬂ = %

/ d?z(B0y + BO7), (2.37)

with conformal weights h(8) = 2, h(y) = —3, ¢s, = 11 and the OPEs

1
Z—w

7(2)B(w) ~ +o BR)Aw) = () (w) = O1). (2.38)

2cf. 23] §6.2]
cf. |23, §8.4]
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Bosonization

Bosonization means that a conformal field theory of 2n fermions with specific bound-

ary conditions and a conformal field theory of n bosons compactified on a torus share

the same correlation functions and thus are equivalent. Bosonization greatly sim-

plifies the treatment of ghost systems and is important for the construction of the

covariant vertex operators with ghost systems. We follow [23, §13.1] in this section.
For 2 fields v, and 15, bosonization can be defined as

WE(z) = (0 £ 1) (2) (2:39)
UE(z) =: 9 (2.40)
Vi(z) =: M) (2.41)

where ¢ is the bosonized boson, V' is the vertex operator and A is the lattice vector
of the compactified space.
It contains a U(1) current algebra

1
i(2) = UTU™ = 4ed 1(2)g = ...
j(2) i€dp,  j(2)j(w) GowE T
Ut (w) U (w)
[(2)UF = —+ - (z)W™ =— 2.42
AU ) = ) =t e (24)
We parameterize the statistics by € = 1 for Fermi statistics and ¢ = —1 for Bose
statistics.
As an example, we take a first order action
s— 2 / d?2b0 (2.43)
= — 2 C .
27

that b has conformal weight A and ¢ has conformal weight 1 — A\. To bosonize the
first order system, we identify b = ¥ and ¢ = U~. The energy-momentum tensor is

T=—=X:b0c:+(1—=\):(db)c: (2.44)
1

:5(: (Ob)c: — : bdc:) + %EQ(i be :)

with a background charge Q@ = €(1 — 2).
We get the U(1) current and bosonize it as

Jj(z) = = b(2)c(z) == iedp(z) (2.45)
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with
d(2)p(w) ~ eln(z — w) (2.46)

QW) |, 9w

(z—w)? (z—w)? z-—w

and

T (2.47)

The action now turns into

1
R / (™ 0,6056 + QR) (2.48)
where R is the scalar curvature. The energy-momentum tensor is now
70 (L. 5 Lo
=el=:17j:—=Q07 ). (2.49)
2 2
We simply list the algebra:
; gw) _ 9 qpw) | 2.50
j(z)e p— +- (2.50)
1
: :€g+Q) 0
() ap(w) 2¢4(q w ap(w) 4 ... 2.51
(2)e e +o— e + (2.51)

Conformal ghost bosonization In ¢ = 1 case, the bc system can be bosonized

as
b(z) = (), c(z) = e ), (2.52)

¢(z)¢(w) ~ In(z —w).
Superconformal ghost bosonization In e = —1 case, bosonization is more com-

plicated. We have

B(z) = e ?P0E(2),  (2) = n(2)e”?, (2.53)
¢(2)p(w) ~ —In(z —w),
where ¢ and 7 form a fermionic first order system with central charge ¢ = —2 and
conformal weight of £ is h = 0. One could further bosonize the {n system as
1E(2)n(z) = 0x(2),  x(z)x(w) ~In(z —w), (2.54)
WE) = e, g(z) = ),

Finally we get
B(z) = e_¢(z)eX(z)8x(z), v(z) = e X(2)gd(2) (2.55)
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Picture number After bosonization of the superconformal ghosts, the bosonized
system obtained a picture charge as a new quantum number[] Using the relation
between scalar curvature R and Euler character y

1
X=1- / d*2V'hR, (2.56)

we see from the above action that it restricts the background picture charge of
the states to be —Qx/2 with @ = €(1—2h) and x = 2(1—g). Thus we have to assign
a total picture charge of —Qx/2 to vertex operators in order to get a non-vanishing
correlation function. In the case of sphere and 37 ghost system as an example, we
have conformal weight h = 3/2, antisymmetry ¢ = —1 and Euler number y = 2, thus
the total picture charge of vertex operators in a correlation function should be —2.
Another example is a torus with 5+ system requiring a background picture charge of
—e(1 —2h)-2(1 —g)/2 =0. A state with picture charge ¢ = —1 is called canonical,
because when one surface was factorized into 2 surfaces by a plumbing connecting
them, to satisfy the correct background picture charge of each factor surface, vertex
operators on the two ends of the plumbing require the canonical picture charge.

Picture Changing operator The picture changing operator (PCO) P,; was de-
fined through
%-ﬁ-l = P—i—l‘/q = [Qa 26%]a (257)

where V, is vertex operator with picture number ¢, and £ is from bosonization of
superconformal ghosts. P,; carries 1 unit of picture charge and its action on V,
would raise the picture number of the operator by 1 unit.

2.2.2 D-Branes

From the construction of open string, we require a soliton in space-time to let the
open string end on it. We consider a p dimensional hyperplane (Dp-brane) along the
directions X1,...,X?. Take the longitudinal coordinates X*, = 0,...,p to satisfy
NN boundary conditions, and the transverse coordinates X™, m =p+1,...,9 to
satisfy DD boundary conditions. Open strings are allowed to end on the p dimen-
sional hyperplane which can be viewed as a p-brane at a location determined by the
zero mode of the coordinates X™. This construction shares all features of a BPS
soliton. Parallel branes preserve the space-time supersymmetry, while anti-branes
(with opposite charge) and branes at angles will break some supersymmetry.

4ef. [51) §4.20]
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Chan-Paton factor If there are n identical parallel D-branes, then the open string
can begin on a D-brane labeled by ¢ and end on one labeled by j. The label of the
D-brane is called the Chan-Paton index at each end. Denote a general state in the
open string sector by |1, ij)\;; with ¢, 7 Chan-Paton indices, \;; is the Chan-Paton
factor, v is the state of the world-sheet fields, and AT = X due to the reality of
the string wave function. The massless excitation of the open string give rise to a
supersymmetric U(n) gauge theory on the worldvolume.

2.3 Discrete Symmetries

The approach of this part of introduction is to illustrate the main ingredients of the
general procedure of orientifolds.

2.3.1 Orbifolds

An orbifold M’ = M/G is obtained from a manifold M on which a discrete isometry
G acts. M’ is singular near the fixed points. Strings moving on a target space M
led to the concept of orbifolds in conformal field theory. Orbifold can be used to
construct a new theory 7" from an existing theory 7" by taking the orbifold action G
on T and get T" = T/G.

Zy-orbifold on Torus 77 (D even) We will need these orbifolds in later sections.
We start with complexifing the coordinates:

) 1 ) ) )
Zh = —(X¥L4iX¥), 79 =

V2

with the orbifold action acting as

(XZ-1 X)), (2.58)

Sl

G: 77— e*™igi A=A j=1,...,D/2 (2.59)

and v; = k;/N for k; € Z is called twist vector. e*?™ is the eigenvalue of the single
generator § € SO(D) (/Y = 1) of Zy in the vector representation. Spectrum of T
is reduced to states that are invariant under G. Torus can be represented as R /A,
we observe that 6 acts crystallographically on the torus lattice A. Thus 6 must have
all integer entries in the lattice basis. Then we know that

D/2
Tro = Z 2 cos(2mv;), (2.60)

j=1
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D/2
x(0) =det(l —0) = H4Sin2(7rvj) (2.61)

must both be integers. x(#) is the number of fixed points of 6 by the Lefschetz
fixed point theorem. Ignoring possible factor with v; =0 mod 1 in (2.61)) gives the
number of fixed tori.

Twisted sectors

Due to the orbifold action, different points in the covering manifold M are equivalent
in the quotient manifold M /G under the orbifold action. Thus strings which are not
closed in M could be closed in M/G. And this induces the concept of twisted
sectors, which means strings are closed in these sectors but not closed in M.

We impose the boundary conditions of complexified boson

Z3(0°, ot + 271) = 2™ 71 (50, o) (2.62)

730 + 211y, 0t + 271 = 2™ 29 (0 0t) (2.63)

where 7 = 7 + i1y is the modulus on the torus. k € Z (ell € Z) means that the

boson is in the k-th (¢-th) twisted sector along one of the 2 periodic directions of the
torus.

Complex fermions on a Zy toroidal orbifold satisfy the twisted boundary condi-
tions

wj(a(], 0_1 + 271') — _€+27ria€27rikv]~w<o,0’ 0,1), (2.64)
P (0" + 277, 0t 4 277y = —e TP (60 o) (2.65)

with «, f € {0,1/2} representing the spin structure.
Twisted sectors are essential for modular invariance. The partition functions of
twisted sectors and more other details can be found in appD}

2.3.2 Orientifolds

The orientation-reversal action €2 (also called world-sheet parity) is defined as
Q:(r,0) = (1,0 —0). (2.66)

It reverses the orientation of the strings. Like orbifolds, a new theory 7" could also
be constructed from an existing theory 7" by € as 7" = T'/Q). Orientation-reversal
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Q) could break half of the space-time supersymmetry, thus is a practical tool for the
construction of minimal space-time SUSY string theory in 4 dimension. More details
of orientifold symmetry could be found in app|C]

Typically people are interested in a Zy orbifold of toroidally compactified Type-
IIB theory and then orientifold it further by a symmetry Z, = {1,Q}. If the
orbifold group Zy is generated by 6, then the total orientifold symmetry is G =
{1,0,...,0N71,Q,00,...,90" "'} or symbolically, G = Zy UQZy, cf. (C.1).

Tadpole Cancellation and Orientifold Planes

There is a consistency requirement for orientifolds that is analogous to the require-
ment of modular invariance for the torus. This is the requirement of ‘tadpole can-
cellation’.

There exists non-vanishing 1-point functions, or so-called tadpoles, on orien-
tifolds. Cancellation of all tadpoles is necessary for obtaining a stable string vacuum.
This requirement is very restrictive and it more or less completely determines when
and how the open string should be added.

Physically, nonzero tadpoles imply that the equations of motion of some massless
fields are not satisfied. They occur for the following reason. The planes that are left
invariant by an orientation-reversal symmetry is called the orientifold plane. Like
a D-brane, an orientifold plane is a p dimensional hyperplane which couples to an
R-R (p+1)-form which we generically refer to as Cp41. The charge of the orientifold
plane can be calculated by looking at the R-R tadpole. If the orientifold plane has
a nonzero charge then it acts as a source term in the equations of motion for the
(p + 1)-form field C,;;. The field lines must start and end on charge sources in a
compact space, and the net charge must vanish on the compact space. The negative
charge of a p dimensional orientifold plane in a compact transverse space can only be
neutralized by adding the right-number of Dp-branes so that Gauss law is satisfied
and all tadpoles cancel.



Chapter 3

String Perturbation Theory

Similar to quantum field theory, we need to study string perturbation theory to gain
further insight into string theory. Phenomenologically interesting string amplitudes
also require string perturbation theory for calculations.

3.1 Basic concepts of String Perturbation theory

The string amplitude (2.26)) could be abbreviated as

Ay =) A (3.1)
g=0
to emphasize the perturbation form of the theory. 2@ = A(()g )is the genus-g partition
function.

Two dimensional oriented surfaces without boundary are topologically completely
characterized by the genus-g. If we extend the surface to include not only handles but
also boundaries and cross-caps, then two dimensional surfaces would be topologically
characterized only by x = 2 — 2h — b — ¢, with h handles, b holes and ¢ cross-caps,
and genus-g =1 — x/2=h+ %b + %c. Then each term in (3.1)) will be weighted by

S_X+”C+%n0 _ (e)\)—x-i-nc+%no7 (32)
where n,. is the number of closed string vertex operators and n, is the number of
open string vertex operators. A turns out to be the constant background value of
the dilaton field D. Due to the expectation of small A we can apply perturbation
techniques to the theory, but convergence will be ignored in this work.
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Riemann Surfaces

A 2-real dimensional (1-complex dimensional) complex manifold is called a Riemann
surface. Only in 2-real dimension there is a one-to-one correspondence between
Riemann Surfaces and Riemann Manifolds mod Weyl transformation. Also for the
same reason of the above correspondence, we know that on Riemann surfaces, a
conformal structure is the same as a complex structure.

3.2 Correlation Functions

By Wick’s theorem, all correlation functions can be expressed by propagators (also
known as two-point functions) (¢1¢) where ¢ and ¢ are the fields in the theory.
Other than two-point functions, we would also need to know the exact forms of the
vertex operators to calculate the correlation functions.

3.2.1 Vertex Operators

We use the state-operator correspondence to obtain the vertex operators. In the ma-
jor work of this thesis we need graviton vertex operators, so we give the exact forms
of them in the following. We observe that gravitons are only present in excitations
of closed strings.

The superstring massless vertex operator[23]

Vicr-n (k. €) =t e (R)VE y (k, 2)V g (K, 2) (3.3)

with
Vil
is obtained from the state €, (k)b" /Ql_)i 12 |k) with normalization condition e,(g)e(G)W =

1, where G stands for graviton.
Zero picture vertex operator is

(k, 2) = e PP (2)e X&) (3.4)

Voo (k. €) == € Vi (. 2)Viy) (k. 2) (3.5)
with
Ve (k,z) = 2 iaX“—i—gI(k‘-w)w“ kX (2) (3.6)
(0) ’ - Oé, 2 . .

Heterotic massless vertex operators are

Vi (k. ) = \/gwk)iéX“(z)e—%”<z>e““'X<Z’f> Lo (37
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/

Vi (h,©) = e (ROX*(2)i0X* () + (k- 0) (A X6 - (3g)

The polarization tensor €, (k) represents the wave function of the massless string
excitation. BRST invariance imposes the on-shell conditions as k"€, = €,,k” = 0
and k* = 0. We can decompose €, into 3 irreducible parts, which are symmetric
and traceless part (graviton hy,, efy), anti-symmetric part (anti-symmetric tensor
B, efl,) and transverse diagonal part (dilaton D, efy). We have the decomposition
and the on-shell conditions as

efy = efw efyn“" = kz“efy =0, (graviton) (3.9)
EE,, = —€fw k* Efy =0, (antisymmetric tensor)
1 -
6/5)11 = ﬂ(nuu - kuku - kyku), kuéfy = 0, (dilaton).

In this work, we would calculate the graviton amplitudes, thus the graviton vertex
operator is needed.

3.2.2 Two-point functions

One would have to use mathematical tricks to derive or guess the Green’s function
which satisfies the differential equation with the differential operator in the action.
Details could be found in [61] and [62].

Propagators on Sphere

The bosonic Green’s function Ps’ satisfies the differential equation

1

2ma!

V2Ps'(01,00) = Y X1(01) X (02) = h™26% (01 — 0) — X{. (3.10)
1£0
The solution on sphere to the equation is given by ([3.47)), but in most cases we would

only need the simplified form:

/

(XH(21) X" (2)) = —%W In(z — 2). (3.11)

Similarly the fermionic Green’s function Ss satisfies the differential equation

1
—2—DS$/(O'1, 03) = 6*(01 — 09) — zero modes (3.12)
m
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where D is dirac operator. And the solution on sphere is

S5’ (21, 22) = (W (210" (22)) = —L— (3.13)

21 — 22

Meanwhile, by the same calculation as X field, two-point functions of bosonized field
¢ of superconformal ghosts and bosonized field ¢* of fermion * are

(p(21)0(22)) = — In(z1 — 22), (3.14)
(¢"(21)9" (22)) = — 0" In(z1 — 29).

One-loop propagators

It is useful to list the propagators in genus-1 case. The propagators on the torus are

(29 — wy)?

o Us(z —w|r) 9 (07)
V1(z — w|T) 9,(0|7)

. (3.15)

27’2

St(siz,w) = (Y(2)¢(w))F = (3.16)

Other 1-loop surfaces can be derived through method of images/involution[25][26] [7],
we list here:

P,(z,w) = Pr(z,w) + Pr(z, [,(w)), (3.17)
(&XZ@XJ) = g + &@-Pa(zi, Zj), (318)
(0:X,0,X;) = —;‘/f + 0,0,P, (2, I (), (3.19)
(GD(w))s = 557552, 0), (3.20)
(D)) = S5 (s: 2. I (w)), (3:21)
(@)Y (0))e = S7(5; 2, W), (3.22)

where 0 = A, K, M represents the one-loop surface and I, is the involution (3.57)).
7even” means even spin structure. ¢ functions are defined in app[A]
Arbitrary Genus

The detailed derivation of the propagators on arbitrary surface can be found in [68],
[38] and [21]. We only give the results here.
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The fermionic two-point function in even spin structures is

(W(2)1h(w)) even = S5 (2, w) = E(zl w) ﬂ[j;[(j](?))w)

where F(z,w) is the prime form[38] with E(z,w) ~ z — w as z ~ w. The fermionic
two-point function with odd spin structure is more complicated due to the zero
modes:

(3.23)

(¥ ( JY(W)) odd = SOdd( w) = hy(2)hs(W)prsodd(2, W) (3.24)

with h%(z) = 3, 0:9[s](0)w;(2) is a holomorphic i-differential. w; is the basis of
holomorphic 1-forms (see from [68] for details of the 1-forms), and

L 2 00[s](2 = w)wi(y)
E(z,w)  3200[s](0)wily)

And the bosonic two-point function is

PFsodd(%, W) = (3.25)

(X(2)X(w)) = Pg(z,w) =—InF + %/dzyhé(y)(lnF(z,y) +In F(y,w))

—%//d%cﬁyh;(x)h%(y) InF (3.26)

with A = fszhl/Q, and

F(z,w) = exp |:—27T (Im /w> w(Im Q) (Im / wﬂ |E(z —w)| (3.27)

where (2 is the period matrix.
We notice the asymptotic behaviors of the propagators while z ~ w are
1

zZ—Ww

Ps(z,w) ~ —In(z — w), Ss(z,w) ~

(z ~w). (3.28)

This can be easily deduced, because the propagators are localized while z ~ w, thus
they ignore the global geometry properties.

3.3 Perturbative Amplitudes

String Perturbation Theory studies the correlators of vertex operators in quantum
conformal field theory with interactions. From the bosonic result (2.26)), we extend
it to the superstring as

dHt
Atireeo k) = 30 [ S [ dodbdedBin] exp(=S = Sypo = Sepergnt = 1)

topologies
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1

Hﬁ 0:)2Yi(k;, 0;) (3.29)

x H/daHBa

(ag)¢f (ai)ef

where B is the superfield of ghost insertion of b ghost and [ ghost. The picture
charges of #; sum up to —x, which is —2 in sphere, 0 in 1-loop, 1 in 3/2-loop and 2
in 2-loop. Since the B ghost integration would be absorbed into a moduli related term
which is independent of the vertex operators, we will focus only on the calculation of
the correlation functions of the vertex operators and ignore other integration parts.

3.3.1 Moduli Space

Starting from the metric space M}, which is the space of all metrics on the surface
¥4, we need to gauge away the redundancy of the system. First step is gauging the
Weyl transformation plus diffeomorphisms connected to the identity Weylx Diffy,
and the result is the Teichmiiller space
M,
T = o i
Weyl x Diffy
There is further redundancy in the disconnected diffeomorphisms. We have to reduce
the Teichmiiller space 7, to moduli space M,

My, T,

(3.30)

= = 31
M, Weyl x Diff  MCG (3:31)
with the mapping class group MCG, which is
Diff
MCG = ) .32
CG Diff, (3.32)

For genus-g > 2 Riemann surfaces there are no conformal killing vectors but
39 — 3 complex moduli, whose number is identical to the complex dimension of the
moduli space.

Choose 2g linear independent cycles a;,b;(i = 1,---,g) on the surfaces as a
canonical homology basis with the property

(ai, a;) = (b, b;) =0,
(a,by) = —(biy ;) = by (3.33)

(a,b) means the intersecting pairing of two homology cycles. Then one defines the
Abelian differentials w;, @w; as

/ Ww; = 5ij; (334)
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and the period matrix 2;; is determined as

Qij:/wj- (335)
b

i

The dimension of 2;; coincides with the dimension of the moduli space for g =
0,1,2,3, thus it can be used to parameterize conformally inequivalent Riemann sur-
faces for g < 3.

Modular transformations are the disconnected diffeomorphisms which act non-
trivially on the given homology basis, and when g > 1 it is a subgroup of the MCG.
Modular transformations can be presented as a 2g x 2g matrix in

()= (5 %)) 63

where a, b are the homology basis and A, B, C, D are g X g matrices. To preserve the
property (83.33]), the 2¢g x 2¢g matrix should be an element of the symplectic group
Sp(29,Z) = {M € Mayx2,(Z): MTJM = J},

J= <_01 3) . (3.37)

Under the modular transformation, the Abelian differentials and the period ma-
trix transform as

Wi = wp(CQ+ D)} (3.38)
Q' = (AQ+ B)(CQ+ D)™t (3.39)

The generators of modular transformations are called Dehn twist. They act along
the canonical homology basis. We have two generators acting on a; and b; for each
handle, and one generator for each cycle a; 'a;y; linking two consecutive handles.
All the Dehn twist matrices generate the whole Sp(2g, Z).

It is worth mentioning that there exists non-trivial disconnected diffeomorphisms
twist around trivial cycles on the surface so that they do not affect the homology
basis. These transformations form the Torelli group which is the quotient of the
mapping class group and the modular group Sp(2g,Z). In one-loop case the Torelli
group is trivial.

Moduli space is trivial for tree level, and on torus as an example, there is only
1 complex moduli 7, cf. Table . The modular group SL(2,Z), which is identical
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to Sp(2,Z) in 1-loop, is generated by two transformations 7 — 7+ 1 and 7 — -
And they corresponds to two Dehn twists

P I R () 5.0

along two canonical homology basis a and ZEI Instead, one often uses

T: 7—=717+1,
1
St T— —= (3.41)

T

as the generators of the modular group.
Another example is g = 2 showed in Figure [3.1] where the generators of Sp(4, Z)
are given by the Dehn twists:

1000 1010

010 0 0100
Pa=l1010]" P=loo1 o] (3.42)

0001 0001
1000 1000 1 0 00
0100 0101 0 1 00
De=1g 010l Po=|1010]| Doy -1a, 1 1 10
0101 000 1 1 -1 01
(3.43)

We see that the action of Dehn twist, taking D,, as example, could be expressed
as cutting the genus-2 torus along ay, twisting along the a; cycle, and gluing back
two ends together. We would need g = 2 moduli transformations when we discuss
g = 3/2 correction because g = 3/2 amplitudes are derived from g = 2 amplitudes
by involution.

3.3.2 Tree level amplitudes

When we talk about m-loop (m > 1), we study the m-th order amplitudes Z(¢)
of on genus-g = m surfaces. Tree level is a bit different. It means surfaces
with positive Euler number, which are genus-g = 0 surfaces with a possible hole or
cross-cap, thus means 0 and %-loops.

Lef. [23 Figure 6.8]
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Figure 3.1: Homology basis of genus-2 torus

Since in tree level x > 0, the moduli number p vanish. According to Riemann-
Roch theorem (2.25), sphere (h = b= ¢ = 0) has 6 CKVs, both disc (h =¢=0,b=
1) and projective plane (h =b=0,c = 1) have 3 CKVs.

As in the quantum field theory, expectation values of vertex operators are the
most basic quantities in string theory. There are several different methods of calcu-
lating the expectation values. We would extensively use the path integral method in
the main calculation of this work, thus we only give the brief introduction to bosonic
path integral calculation ]

Path Integral Calculation of Bosonic Expectation values

Begin with the generating functional

ZplJ] = <exp (z / d*cJ(0) -X(0)>>, (3.44)

J.(o) arbitrary. If we expand X*(o) in terms of the eigenstates X; of V2X; =
—w?X;, we can make Zg[J] quadratic and express it as

vl

ZplJ] = i(2m)%6%(Jy) (det’ll_ﬁv:/) exp < — %/d2ad2a’J(a) - J(0")G (o, a’))

(3.45)
with Jo = [ d®0J(0) Xy and the Green’s function G'(01, 03) = 37,4, 2 X 1(01) X1 (02).
I
Prime of a function means excluding the zero mode contribution (I # 0).

2We mainly follow [61] in this section
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Sphere

We use bosonic string on sphere as the simplest example. We take J(o) = > 1" | k;6%(o—
0;) and from the generating functional (3.44) we get the expectation value of n
tachyon vertex operators on sphere Sy

8 (ko) = ([ V] [etr X et )

r r°°

= iC,(2m)6" (> ki) exp ( =Y ki kG, aj)) (3.46)

i ij=1
i<

where C§ is a topology-related constant and 6%(3", k;) is the momentum conservation

condition. Then we have to solve the Green’s function G based on the specific

topology of the surface and including the renormalized Green’s function for self-

contraction as well, which is

o o
G(Ul, 02) = —3 In |Z12|2 + 512 (3 In |Z12|2 + O/CU(Z, Z)) s (347)

where w is the Weyl factor.
With higher vertex operators than tachyons in the expectation value

<H Xt TLoxm () [ ox (z;;)> , (3.48)

i=1 Jj= Sa

we will need to contract all X derivatives either with another derivative or with an
exponential, then multiply the contraction result with the tachyon result to get the
final result. Be aware that the contractions are also related to the topology of the
surface.

Generalizations to other tree level surfaces are straightforward with restricting the
coordinates and solving related contractions and Green’s functions. A disk involves
boundary operators while both a disk and a projective plane involve the method of
image.

3.3.3 One-loop amplitudes

From we know that 1-loop amplitudes are defined on genus-1 surfaces. There
are 4 Riemann surfaces with genus-1. In 1-loop surfaces the quadratic differentials
and CKVs are constants. A detailed derivation of both the bosonic and fermionic
1-loop partition functions of Type-IIB orientifold needed in this work could be found

in app/D}
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Torus The torus 7 is the only closed oriented genus-1 surface with 1 complex
modulus 7 = 7 + 479 and 2 CKVs. It is described as

(0!, 0%) = (o' +27m,0%) = (o' + 2771, 0% + 2772), (3.49)

which can be thought of as rotate the end of a cylinder of circumference 27 and
length 277, by an angel of 277 and glue the two ends together. We can think of
torus as a closed string propagating along a loop, which in operator method gives
the partition function

()7 = Z7(7) = Treosed [exp(2m7’1P — 27TTQH)], (3.50)

with P the Momentum operator and H the Hamiltonian.

Figure 3.2: Torus

Annulus (Cylinder) The annulus A has 1 real modulus ¢t and 1 CKV, and it is

described as
0<o; <m, (o', 0%) = (0!, 0 + 2mit). (3.51)

We can think of a cylinderﬂ as an open string propagating along a loop, with the
partition function

(1) 4 = ZA(T) = Tropen [ exp(—27tH))]. (3.52)

Klein Bottle The Klein Bottle £ has 1 real modulus ¢t and 1 CKV, and it is
described as

(o', 0%) = (0! + 27, 0%) =2 (=0, 0 + 271), (3.53)
and the partition function is
ZIC = Trclosed [Q eXp(—Qﬂ'tH)L (354)

where €2 is the orientation-reversal operator ([2.66]).

3Cylinder and annulus are conformally equivalent, so we often use them interchangeably.
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QO &K

(a) Cylinder (b) Klein Bottle
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\
N
~

(c) Mébius Strip

Figure 3.3: 1-loop surfaces represented in tree channel diagram

Mobius Strip The Mobius Strip M has 1 real modulous ¢t and 1 CKV, and it is
described as
0<o'<m, (0!, 0%) = (=o' + 7,0° + 271). (3.55)

and the partition function is

Zm = Tropen|[Qexp(—27tH)]. (3.56)

Tree channel diagram We can always represent the fundamental domain of Klein
Bottle (M6bius Strip) in a tree channel diagram between two cross-caps or one cross-
cap and one hole, respectively. See Figure [3.3a], [3.3b] and [3.3¢f Then the string
boundary states can be used to compute the tree level diagram.

Involution A, K and M surfaces can be constructed from double-covering torus
under anti-conformal involutiond’]

Ip(z) =1pm(2) =1— 2z, Ix(z) =1—Z+7/2, (3.57)

with 7 = 7 4+ i75 be the modular parameter of the torus. And the fundamental
regions of the involutions are chosen to be

1 1
Aizelog]x0m]  Mizelsaxmn  Kizelo1]x, %. (3.58)
The relative modular parameters of the tori are:

" ;
TA:% M= iy e = 2it (3.59)

4Here we closely follow the Appendix of [7].



Chapter 4

1-Loop correction to the
Einstein-Hilbert term in Type-11B
orientifolds

4.1 Low energy effective action

Low energy approximation of String Theory is always a crucial tool of string phe-
nomenology. We would of course assume that particle physics and general relativity
are emergent concepts of the low energy approximation of String Theory. To relate
the quantum field theory to low energy approximation of String Theory, we have
to find the low energy effective action first. The idea is that the low energy action
should reproduce the amplitudes of massless string scattering. This can be done in
a perturbative fashion[23]. It’s always easy to write down the free action Loppint Of
massless particles. Then try to add Lspem: to reproduce 3-point functions of mass-
less string scattering. We can already relate various string constants to the coupling
constants of the effective action. Next level is the 4-point. Massless contribution
of 4-point amplitudes are generated by Lsy0int, While massive contributions can be
expanded and described by the Lypoint, see from [23], §16.3] for details. Higher order
terms can be carried out order by order with the same fashion.

There is another method to restrict the effective action, which is using the space-
time symmetries such as supersymmetry or coordinate invariance. Then 10 dimen-
sional effective supergravity theories of the string theories with maximal supersym-
metry could be fixed in this routine. In most cases both methods would be combined
to find the effective action. We would not dive into the derivation of the low energy
effective actions here.
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We consider only the massless modes, that the effective action is the supergravity
action, the derivation of the relevant effective action would not be presented in this
work. In the string low energy approximation, the supergravity action depends on
three functions: the holomorphic superpotential W (®); an arbitrary holomorphic
function f,,(®) replacing the gauge coupling g,?; the Kéhler potential K (®,d*)
which is a general function of the superﬁeldsE] To demonstrate, the purely bosonic
part of the Lagrangian density is

1 % j 1 a v
Ebos (08 ﬁR - I{ﬁj-D,uq5 D#¢J - ZRe(fab(¢))Fqubu

s I FL, — V(6,67 (1.1)
and R is Ricci scalar. The potential is
V(. ¢") = exp(k*K) (KTWiW,; — 3:*W*W) + %fabD“D*’. (4.2)
Here K7 is the inverse matrix to 9;0; K and
W. = oW + k*0; KW (4.3)
Re( fan(¢)) D’ = —2¢, — K itd . (4.4)

where &, is a Fayet—Iliopoulos parameter for a U(1) symmetry. The negative term
proportional to k2 in V (¢, ¢*) is a supergravity effect.
The kinetic term for the scalars is field-dependent. The second derivative

__OK(9,¢")
= 500

in the form of Kéahler metric, plays the role of a metric for the space of scalar fields.

(4.5)

Einstein Frame We know that it is always possible to transform the effective
action by field redefinition without changing the physics. So different effective actions
can reproduce the same string amplitudes if they only differ by field redefinition.
By convention we call an effective action in ”String Frame” when the action has
an overall factor of e 2%} we call it in ”Einstein Frame” when the dilaton and
the graviton decouple by field redefinition. In Einstein frame we have a purely
gravitational term.

'We follow [62, §B] closely here.
2Actually frame is defined by the metric. String frame metric is exactly the same as the metric
in Polyakov action.
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4.2 Corrections to the Type-IIB Einstein-Hilbert
term

Our basic set-up is the 4D effective supergravity theory constructed from 10D Type-
I1B orientifold compactified on an internal 7°/Zy space. T°®/Zy has singularities as
a Calabi-Yau space, thus it is the limit of a real Calabi-Yau space. This leads to a 4D
N = 1 supergravity which is simple enough to be tactable and phenomenologically
interesting. Calculations of n-point string amplitudes contribute to the effective
supergravity action. We are not interested in the details of compactification, so we
skip the introduction to compactification and just mention that the corrections in
the 4D theories came from compactification from 10D to 4D.

Terms of order (k?)"(n > 2) in the kinematic tensor structure of the pure graviton
string amplitudes correspond to the R™ term (Riemann tensor) in the effective action
in low energy limit. For example, an R? term in the effective action would give an
amplitude of order k*. No k* or k% term exists in 3 or 4-point tree level amplitudes
of type II theories, thus there is no R? or R? term in the type II effective actions at
tree level Pl

However, in the tree level 4-point type II amplitudes with 4 massless NS-NS
bosons

ik*a®  T(—3d/s)D(—3/t)[(—1du)
4 T+ 31s)P(1+ 2at)0(1+ Ta'u)

with kinematic structure

K.(e1, ez, €3, €4) (4.6)

4
_ fHIV1.[4V4 4P101... 0404 . . .
K.(e1,e9,e3,e4) =1 t Hewjpjkj,,jkjgj, (4.7)
Jj=1

tensor t representing the kinematic structurelz_f] and s, ¢, u being Mandelstam variables,
one observes that there exists k® terms, which correspond to the R* term in the
effective action if one contracts e, k,k, with ¢ to get R,..,/4k[62]. The ratio of
gamma functions can be expanded as

—alfjw —2¢(3) + O(a) (4.8)
with -
C(k) =" % (4.9)

3Details of tree level R™ terms could be found in [62] §12.4]
4Tensor t is often called ® and the exact form could be found in [62, (12.4.25)].
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The first term in the amplitude is proportional to x? without o/ dependence and it
arises from the Einstein-Hilbert term. The second term of zeta function is an R*
term.

In [44, §9.2.3], the authors claimed that "The open-string amplitude with four
external massless states has the same overall kinematic factor K for both tree and
one-loop amplitudes (and probably multiloop amplitudes as well)”. Thus we also
expect that the kinematic factors stay the same for tree and one-loop amplitudes in
closed string case, and this is indeed shown in 10D in [45].

There exists RARA R term inside the R* term that turns into the Euler number x
of the internal space after compactification to 4 dimensions|8], by using the relation

1
RANRANR=———Y. 4.10
/Xa 3!(27T)3X ( )

This makes the R* term in 10 dimensions into an R correction term to the Einstein-
Hilbert term in 4 dimensions as

/M4 {em + (21)3 <24(3)# + 2%2 +. )1 V=hR, (4.11)

where V is the volume of the internal Calabi-Yau space and ¢, is the 4 dimensional
dilaton, be aware that o’ is set to 2.
From ({4.11]) we see that the tree level plus torus correction to the Einstein-Hilbert

term is
6_2(1>4 27T2 )

X
0E = ——=(2¢(3 —
( )52+T (27T)3 ( g( ) V + 3
Be aware that since we would like to consider the orientifold, we should add a fac-
tor of 1/2 to the torus contribution of the above term because of the orientifold
projection[47], which gives

(4.12)

Y o201 2 o

(0F)gys7 = 2y <2C(3)T + §> (Orientifold) (4.13)

in orientifolds. 1-loop corrections of Annulus, Klein Bottle and Mobius strips in
Type-IIB orientifold have been calculated already in [47].

Our focus in this thesis is to follow the work in [47] and try to extend it to higher

genus and more-point amplitudes. Following the setup in [47], we would concentrate

on the Kéhler moduli metric of the T torus in K3 x T2. The Kihler moduli in 4D

effective theory arise from CY compactification]], and the moduli metric is the metric

5See from [22] for review.
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in the kinetic term of the moduli in the 4D effective action. Upon compactification to
4 dimensions, the quantum corrected kinetic term of tree level modulus 7% coupled
to gravity in string frame and up to 1-loop order is given byﬁ

1 1 > ~
Si= [ dav=h [(am +E)5 R+ (GO +GV) awO)a“T‘O)] +o, (414)
4

where 0F is the correction to the Einstein-Hilbert term, including tree level o/ cor-
rections, 1-loop g, corrections. G(© is the tree level moduli space metric including
o corrections and G is the 1-loop contributions to the string frame moduli space
metric. The next order to genus-1 correction is genus—%. Genus—g correction §E(2)
is in higher genus-terms (dots in (4.14))). Furthermore,

7 = Vit = (rel) (115
and
6—2@4 = 6—2<I>10t1t2t3 — \/0(0)7—1(0)7—2(0)7'?50), (416)

where e~2%10 ig the 10 dimensional dilaton and

o0 = 710t 1ot 70 = ¢~ (4.17)

)

t; are the dimensionless torus volumes measured with the string frame metric. The
definition of the Kahler variables in general gets quantum corrected

=70 467, (4.18)

where 7 is a moduli dependent function.

Starting from and performing a Weyl transformation to go to Einstein
frame, one observes that the quantum correction to the metric of quantum corrected
Kéhler modulus 7' (with imaginary part 7), is given, up to 1-loop order, by

2
~ o d FE
G(lz (T) :€2<I>4G(1) (7_) + 12( 0 4 > 6E62¢,4 + 6 0 4 00 €2<I>4

7 570 970 970
~ 1 1 0ot
— §Ee*1 GO — 0T — ——+.... 4.1
SEe** GV (1) + 53 orT 53 5, T (4.19)

We can see that d ¥ showed up in different terms. Therefore we can conclude that 6 E
does play an important role in the quantum correction to Kahler metric. Technical
details of calculation of partition functions and analysis of surfaces are given in

app/|D.1] and applD.2] respectively.

6This section and the following three sections are cited from [54].
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4.3 Graviton 1-loop 2-point function

In this section we derive some general formulas needed for computing 1-loop cor-
rection to the Planck mass in A/ = 1 Type-IIB toroidal orientifolds. Tadpole-free
condition was discussed in [2]). We are going to discuss general features in this
section, and apply them to K3 x T? space in Here we follow closely to [47, §3].

Begin with an amplitude of two gravitons (with momenta p; and polarization
tensors ¢;)

(Vy(p1,e1)Vy(p2, €2)) = Z (Vo(p1,€1)Vy(p2, €2))0, (4.20)
oe{T K AM}

where the vertex operators are given by

29, . o A vy o =\ ip
Vyp.) = =, (10X + Sp- g ) (10X + Tp- g ) >  (421)

o
with €, = 1. Using on-shell, transversality and tracelessness conditions
P =103 =1 D2 = pruct’ = pouch’ = el = nues” =0, (4.22)
the amplitude has to be proportional to the only remaining contraction, i.e.
(Vo(pr. 1) Vy(p2, 2)) = AiVagipherun™ et + O(p*). (4.23)

We have to compare this to the relevant term in the action which leads to linearized
Einstein equations, because both of them represent the 2-point amplitude of gravi-
tons. We read off

M3 1
§== / da( — §hwh””7“>, (4.24)
where
G/JJ/ - 77/,Ll/ + h#y, (425)

for a symmetric fluctuation hy,,. h,, and €,, have the relation in momentum space

showed by the vertex operator (4.21])

By = —4mgee e, (4.26)
Using (4.14)), we have
1
M} = — (e +6E). (4.27)

Ky
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Thus we compare (4.23) with

1
—Zmi/d4x5EhMV7ph”p’“. (4.28)
And we get
2 !
E = %A - g—ﬂA. (4.29)

The amplitude A gets contributions from all 1-loop surfaces, i.e. T, K, A, M.

4.4 One-loop surfaces

A detailed analysis of one-loop surfaces can be found in app/D.2] Torus and Sphere
contributions are already given in (4.13]).

4.4.1 Contributions from K, A and M

Here we closely follow the calculation in [36]. Neglecting the momentum conservation
0 function arising from the bosonic zero mode integration we have

A S Z /OoﬂNZ_IZ(Z)(T s)/d2u /d2u
7 8N (4m2a/)? o B’ AR R M

s=even

({02002 (1200)3)? + (X1 DXa) o ((t00)3)?
HOX10Xa)o (o101)3) + (X OXa)o((n)3)?)  (430)

where o stands for the different world-sheet topologies K, A and M, with world-sheet
parameters 7 = 2it, T4 = £, T\ = 5 + £ Z(E—e)(ﬂ,, s) is the contribution (D.48)) to
the partition function from the 6* element inserted sector. The spin structure sum
only runs over the even spin structures s. Note that there is no contribution to A,
from eight fermion terms, cf. [14], §3.4].

From [36], we use

s\2 a2 2 Us(v, 7)
(ol (0)2)° =~ Indh(v.7) + 2" 0

) (4.31)
v=0
It is the sum of a spin structure independent term with a spin structure dependent
term. The contribution to A, involving the first term in (4.31]) (the spin struc-
ture independent term) does not survive the sum over spin structures in the super-
symmetric case. On the other hand, the spin structure dependent term does not
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depend on the vertex operator position and, thus can be taken out of the v integrals.
Besides, provided that it does depend on the vertex operator position, this is the

same for ((o101)2)2, ((1h2t01)2)2, ((ha101)%)? and ({19101)2)%. Take care of the relative
minus signs arising from conventions, the resulting v integral can be solved using [7]
o/ Im(7,)
5 .
(4.32)

/d2V1/d2V2<(5X15X2>0—<8X15X2>g—<5X18X2)g+<3X13X2>g> =

Taking into account | m we finally achieve

dt % v, T,) &7 Im(7,)
0E), = ZO(7, z z
(OF) 87T8N 47T2 )2 % Z / Z (725 ,Tg) 2

s=even

(o) 1 / dtﬂlm mIm(7,) ) S(U T,)
8t SN(4m2a/)? J, Za 2 2 (s 0,(0,7,)

s=even

(a')? 1 dtﬂlm mIm(7,) o U5(0,75)
& 8N(47r20/)2/0 Z Z 25 (7o s 95(0,7,) (4:33)

/=0 s=even

The lattice sums can be done after performing the spin-structure summation.

Thus the sum over spin-structure in (4.33)) can be performed using (D.48)) and (D.49)
for the partition function. Then we need the formula (cf. [I5 (130)])

1
__|_h.
19/[ 2 (A ](0)
%WL’YH‘Q@'

,19// 0) 3
AL = . 4.34
sze\;en ’ O) zz:;ﬁ %—i_hz (O) ( ’ )
s5+%+g
With this, (4.33)) reads
B m(a)? dt Im(
(0E), = TN (A /0 o) Z CP, X, sin(mys)
Lyp,
2 5 ﬁl{ljintg} 0
'(Hf(%’)) D e (4.35)
j=1 i=1

19[ 3+ }(0).

%+%+%

4.5 Supersymmetric sectors

Here we discuss the contributions from different supersymmetric sectors.
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4.5.1 N =1 sectors
Following [14, §3.8-3.11], ' = 1 sectors contribution to the Planck mass is

E)ND =3 BNV = — 64N 47T2 / dtz > cproe™. (4.36)

4 o Le{N=1}
Here
o9 = &, sin(mys (H fv )&(5) for ¢ € {N =1} (4.37)
with
6 — 1 for AL M (4.38)
4 for K
and L
= + .
RATEMNI
7T %t Y
- [2 — . (4.39)
o1 g |, 2 } (0)
5T%Tg
For later use, we also introduce
1 f
ey = or A , (4.40)
4 for M, K
From ([4.38)-(4.40) and Table D.2] we have
K = 16 sin(2mlvs) sin(2mlv; ) sin(2mlvy) KO,
K9 = 453(6M2, 6% sin(270v3) KLY,
Ag‘;} = 4 sin(mlvs) sin(mlvy ) sin(mlv,).Al 99,
Ag‘? = 4sin(mlv3) sin (ﬂévl) sin (7 lvs) Al 55,
A = 2 sin(mlvs) Al o
Mg’” = —4sin(mlvs) sin(mlvy) SiIl(ﬂ'EUQ)MS(f)
/\/lég) = —4sin(mlvs) cos(mlvy) Cos(ﬁévg)/\;lg). (4.41)

Note that for odd N there is no contribution from /C;, Ass, Ags and M.
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Making use of (A.10)) and the fact that the even/odd spin structure ¢ functions are
even/odd functions of their argument, together with the super-symmetry condition
> vi =0, we can get

GONE) — 150 foralle, 65 E) =460 for K,

oliVEl) = 50 for all o, o2 = 5O for K. (4.42)

q is an arbitrary integer. These identities allow the individual sectors to be related
to each other.

For N' = 1 sectors with h; = 0, the t-integral in (4.36)) can be performed using
[14, (115)- (117)], i.e. (assuming 0 < v < 1 for A and K, and 0 < v < 1/2 for M)

< dt (v, 1,)
IA/]C(V) = /1 t_2191(’}/,7'0>

eg A

= em(L = 29)A% + eo 2 [¥(7) =¥/ (1 = 7)), (4.43)

> dt(y, 5+ %)
7 _ [ a5+ 5)
() /1 t20(v, 3+ %)

=8 (1 —4y)A" + %W(v) — (1 —9) - %d/(% +7) + %1//(% — )]
(4.44)

Here ¢/(x) denotes the trigamma function, i.e. the derivative of the digamma func-
tion ¢ (z) = I'(z)/T(x).

The t-integral of terms with h; = +1/2, appearing in K; and Ags, is given in
app where we find (for 0 <y < 1)

Fae) = [ GHT (1 - o - e T ) - W1 - ) (145)

ea A

Furthermore, the t-integral for M when v > % is computed in app where we
find (for § <~ <1)

[W6v = 3) =G~ + 20/ =) - 2607)]
(4.46)
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4.5.2 N > 2 sectors

N = 2 sectors are characterized by the fact that along exactly one torus (say the
n-th torus) h, vanishes and 7, + g, is integer. Thus one needs to take the limit of
(4.35)

1 1
4 R (O I I B [
§+’Yn+gn R §+7n+gn /J[n’M/W]

T
0
3+H Mt gn

= (—2m)(—1) T LIWM/WT - (4.47)

(=2sinm(yn + gn))

To summarize, the A/ = 2 sector contribution is given by

WN=2) _ WN=2) _ m(a’)? = dt ()
((SE) = Z((SE)U = W t_2 Z Z CPGO' . (448)
o 0 o le{N=2}

Here
o = 78,53, DL LMV for ke {N =2}, (4.49)

and the constant factor DY is given by

DY = (=1t T f(w) (4.50)

i#En

with f(v3) = —2sin7y3. n depends on £ and o.

Let us express ((C.22)) and ((C.23]) collectively as

ClmM/Wi b oMW
[n,M/W] _ —gmimig,
£ - t 122 € Jab ? (451)
where
2 for M t
ClnM/w) _ e or (m?m('en um sum) (4.52)
T for W (winding sum)
and
/W] g for M (momentum sum) (4.53)
ab | giMet for W (winding sum) '

[n, W]

. . . . M
ie. g, is the inverse matrix of ggz !
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Now we split £IM/W] a5

C[ n,M/W] gl M/ W]
g Y e

mezZ2\0
Ol M/W]

with

£/ MW _ C[ Z e~ Fmembgy MM (4.55)

mez2\0

Then we have

dt C[n,M/W] 2A2 00 dt

/1 tQL”M/W] = + —i—/o t—zﬁ’[”’M/W]. (4.56)

eg A

Here we set A = 0o in the second term on the right hand side since it is finite in the
limit A = oo. It can be evaluated using (app.§E)

i M/W] / o~ T/ W)
22\0
(4:221/; Ey(UM) for M (momentum sum) (457
- —_ g . . ) .
71'2(4‘7?%(1’)2 E2< - ﬁ) for W (winding sum)

where U™ is the complex structure of the n-th torus and F, is a non-holomorphic
Eisenstein series, cf. .

For N' = 4 sectors h; vanish and ~; + g; are integer along all three tori. Thus, the
numerator of has a triple zero which can not be balanced by the simple zero
in the denominator. Consequently the N = 4 sectors do not contribute.



Part 11

Loop corrections to the
Einstein-Hilbert term



Chapter 5

O(k?) 1-loop 3-point graviton
amplitude

We are interested in confirming the calculation of corrections through graviton 3-
point amplitudes, because it could help to provide complementary information as
well as to clarify ambiguities in 2-point calculations. Graviton 3-point amplitude
was studied in [9] without application of Minahan’s approach (see , apparently
their result was incomplete. We would like to reproduce O(k?) graviton 3-point
amplitudes of Heterotic theory[40] where pinched-off integration was considered, and
extend it to Type-I theory.

As we have mentioned in §4.1], looking for the effective action requires to compare
the amplitudes calculated from string theories with the amplitudes calculated from
the effective action. Expanding the Einstein-Hilbert term in the effective action
around the flat metric g, = 7., + hu, we get the first non-vanishing contribution
of gravity at 3-point level[40]:

VIR s = huw (R R) + 2Ry, R B Ry, (5.1)
— (ko€1ks) (€2€3) + 2 (kseaeser k) + cyclic perm. (5.2)

h,. is required to satisfy the harmonic gauge condition Uh,, = 0,0"h,, = 0 and
the tracelessness condition A = 0, to be able to correspond to string amplitudes. We
expect that at tree level and 1-loop level the calculation of string amplitudes gives
exactly the above kinematic structure (kqoe'ks) (€2€3) + 2 (kse®e3¢'ky) + cyclic perm.
at O(k?) order.

We apply the pinched-off integration and Taylor expansion in order to extract
extra O(k?) contributions from higher & order terms. We first try to reproduce
the Heterotic kinematic structure calculation in [40]. This was done in 2 different
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routine: one by direct calculation of vertex operator contractions, and the other one
by operator product expansion calculation. The exact calculations were completed
in collaboration with Dr. Harold Erbin and Dr. Jin U Kang. Then we lift the result
in Heterotic to Type-I by the lifting technique (see from e.g.[7][9]). For simplicity,
we rename the two-point functions P(z;, z;) = P;; and S(z;, z;) = 5;; in this chapter.

5.1 Preliminary

We follow the notation in [23] that terms involving z are left-moving (anti-holomorphic)
and terms involving z are right-moving (holomorphic).

5.1.1 Modular invariance and Transversality
We would require modular invariance condition[]
ky-ko+ko-ks+ ks -k =0. (5.3)
Polarization transversality condition?}
kte,, =0 (5.4)
and momentum conservation

ki +ke+ky =0 (5.5)

would be imposed after pinched-off integration as we will mention in the following

12

5.1.2 Pinched-off Integration

The kinematic structure of O(k?) contribution in 3-point 1-loop calculation does not
match . However we do not expect such a mismatch between string calculation
and effective action calculation. To get the exact gravity kinematic structure at
1-loop level in string amplitude, one has to consider contributions from O(k*) terms
in 1-loop calculation. A special technique called ”pinched-off” integration (used in
e.g.[58][56][17]) would be used to extract extra O(k?) contributions from O(k*) terms.

IThe Koba—Nielsen factor in the amplitude picks up an extra phase under modular transforma-
tion on torus, and modular invariance requires the extra phase to vanish. Therefore it imposes the
modular invariance condition.[58] p.56]

2Transversality condition is imposed by BRST invariance as an on-shell conditions kte,, =
€uk” =0 and k? = 0[23] p.591]
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Pinched off integration arises in the limit z;; — 0 of 3-point amplitude, which
means that two points of 3 are pinched towards each other. Making use of ([3.28))
and taking the limit z;; — 0, one obtains

o o
When Zij —0: ]DZ = —Eln ’Xij‘2 — —Eln ‘Zl'j‘z, |Xij’2 — ’Zij|2, (56&)
(: H et ) = H i |5 — H | 23] ik (Koba-Nielsen factor), (5.6b)
j i<j i<j
~ o o
0;P; — —, 0; P — . 5.6
J 25@' J 221']' ( C)

In this chapter we use x;; as a convenient abbreviation of the variable of the loga-
rithmic function in the 1-loop bosonic propagator.

Due to momentum conservation, we have the condition k; - k; = 0 such that
certain O(k*) terms containing k; - k; vanish. Referring to the technique introduced
by Minahan [58, p. 50], we relax the condition k;-k; = 0 of momentum conservation,
and impose the conditions only after we have done the integration. Then the integral
over the region |z;;| < € can yield a pole in k; - k;, if we assume that of |k; - k| < |

oo ks
2| * or
dzz'»| - o~ (5.7)
/Izz-j<e Yz o'k -k

and if k; - k; is analytically continued to a region where the integral is convergent.
One immediately finds that the integration cancels possible k; - k; (order k?) in O(k*)
terms, and thus the cancellation results in finite value O(k?) terms.

Double pinched-off integration There cannot be a double pinched-off integra-
tion contribution to k? order, because of the factorization of Riemann surface[65, §8],
see Figure . Due to the tiny integration region |z;;| < €, the surface with double
pinched-off integration would be factorized[69][65] into a torus and a sphere with 3
punctures, and they are connected by a string propagator (plumbing fixture) with
degeneration parameter ¢ — 0. Since tadpole is vanishing in Type-I on torus, anal-
ysis in [69] and [65], §8] shows that double pinched-off integration could be absorbed
into a field redefinition and its contribution to k% order is unphysical.

5.1.3 Taylor expansion trick

It is possible to find more singular terms in the pinching limit on which one could
apply pinched-off integration, with the help of Taylor expansion. One could use these
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tadpole

Figure 5.1: Double pinching factorization
x represents the insertion of a vertex operator

momentum terms to cancel corresponding momentum terms in the denominators in
the amplitude.
More concretely, one can Taylor-expand
lim P(z — z) = P((z — 2) + (21 — %))

21 —Zj

~ Jim (le + Eljgipil)a (58)
and we use the propagator with z because this would be used mostly in the later
calculation.

It can be much more tedious if we list all the middle steps of the calculation in the
following sections. So we omit the tedious middle steps and instead give an example
of how (5.8)) works, to provide readers an intuitive understanding:

_ _ _ 11 _ _
lim 3¢Pz'jai2jpij(azpli — 0iP;j) = lim ——(0,P; — 0,Fy;)

Zij—>0 Zi]'—>0 Zij Zij
1 - _
zi5—0 ‘Zij|2 Eij( e ! lj)
a1 1, - )
= — lim ———5—(2;00;P;)  using (5.8

2ij—0 2 ‘ZU‘ Zij

1 _
—— 0P (5.9)

We see that the term lim,,; 0 #IZ required for pinched-off integration(/5.7)) shows up

|2i;
in the above expansion. Be aware that, besides Taylor expansion trick, we will also
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use ([5.32)) throughout the calculations in this chapter, as well as (5.33) and ([5.34)

after pinched-off integration, in order to transform the momentum terms into the
form of (5.2]). The terms relevant to the kinematic structure ([5.2)) should have the
kinematic structures in the form of (k;e;k;) (¢j€) or (kreiejerk;).

5.2 Heterotic String

We consider here the Heterotic string that the world-sheet is oriented without bound-
aries, and the corresponding tree level and one-loop level surfaces are sphere and
torus.

Vertex Operator The zero ghost picture massless vertex operator of Heterotic
String is
2 /

Vi (2,2, k. e) = - Jew(k)iéX“(Z) <i8X”(z) + %(/{: : w)¢”(z)) e X2 (5.10)

and the -1 ghost picture massless vertex operator of Heterotic String is
= 2 gAY =\, v ik-X (2,2
V(2,2 k6) = 14/ aew(k)zaX“(z)e S (z)ethXE2) (5.11)

5.2.1 Tree level

As discussed in §3.3] the ghost picture charge of tree level surfaces would be -2, thus
we would need vertex operators in zero and -1 ghost picture. The tree level 3-point
amplitude is

AP = (ceV_y (21) ceVir(2) ccVo(z3)) s, (5.12)

with 21, 2o and z3 fixed. Inserting the vertex operators (5.10) and ((5.11]) gives (normal
ordering omitted)

2
© _ (2 Ly — o
437 = o €1,10111 €2, 10305 €3, 135 (€ 1 €7 9?) (C1C1 0o C3)
X (iDX1 XX b Xa g ik

% (<iaX§/3€ik1-X1eikQ-X2€ik3-X3>< 51 12/2>

/
B i) (619
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The ¢ correlator is

1
(e0e ) = —, (5.14)
212
and the ghost correlator yields
<616102526353> = ‘212‘2’2’23’2‘213|2. (515)

Using (B.2¢]) with an auxiliary variable p, we have (right-moving)

7 z ? 1 1 kl j i
(oo -2 3 6) (S 52)

= G 3

1 a/ 3 k.. pi ’ O/k’ &
5 (3) ) | [
: itj ij -

1<)

(5.16)

pi=0

by expanding the exponential in series and keeping only terms which will contribute
after taking derivatives and setting the p; to 0. Bar is omitted for simplicity, and we
will take it back later. Then the expression simplifies to

3 2
) 1 ! 11 2 kus ku3 pips [ fH2 )
Faneors o)) [ (4 2) 5 (-2
i=1 2\ 2 %12 213 223 213 212 293
o (R
22 z z
23 12 13

_gl (ﬂ%_i_k%) (km ku2> <k,lt1 ku1>:|H %1J
2 213 2923 Z12 2923 212 zZ i<i i

(5.17)

Using momentum conservation and transversality kf'e; ,, = 0, we can further simplify
the expression. For O(a’) part, one has as an example

ki N ky* _ —(K5® + BE%) 203 + kP 213 e 213 — %23 s 212 (5.18)
<13 223 <13%23 213423 213423
such that e (s g a2
1H2 1H2
T ( + ) S (5.19)
212 213 223 212213223
Similarly one has
iw_kim:kﬂzﬂ kLerkim:kulﬁ (5.20)

1 ) 3
212 223 212723 212 213 212713
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and
e (k_ _ k_) ek e (kr N k_) _ TR o
2%3 212 223 212713723 ’ 2’%3 212 213 212213223
Sum up these 3 terms we get
prszHs — s kém 4 pHzhs k§1 e (5.22)

in (A.12).
O(d) term could also be simplified as

(5 (Y (Y g s s g

3
213 2923 212 223 212 213 213223 212723 212713
Sl il
S W N I (5.23)
212213723

Gathering the above results we obtain (left-moving)
3 2
- ) _ 1 /o TH1K213
10X M (7)e X)) o — (—> — 5.24
<E () 2\ 2/ ZipZ13Z23 (5:24)
where )
THikzbs — p /{:53 4 pHzhs /{251 + pHsim ki@ + %klgl ]{;i‘zl{;g?’ (5.25)
is defined in (A.12)). Similarly one derives (right-moving)
3 ! 1.H3
, k "
<¢aX“3(Z3) Hez’%-X<zi>> o — ST () Sk, (5.26)

2 z13%
i=1 18723 g

Using (3.13)), fermion part is

(W (21)"2 (22) Kz - Y™ (23)) = k(¥ (20)9" (22)7 (23)9" (23))
_nygug k.gl + nVll/?, k.gQ ‘

213223

x (5.27)

Summing up all the correlation functions and using momentum conservation and
transversality of e, finally we obtain

O/

0) _ M1p2 M3 $V1V2V3 o' ki-k;j
A" = L €2 v Ea s T 255" (5.28)

1<j
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Imposing on-shell condition ;- k; = 0 we have HKj |zij|a/ki'kj = 1. Then at order k?
we get

Oé,

A(O) , — Z [(6162)(k5263k2> + (k’2€3€;€1]€3) + (l{'QEgEIEQk’l) + CyChC perms} . (529)

3

k

One immediately finds that this amplitude does share the same kinematic structure
as the expanded Einstein-Hilbert term (5.2)) in the effective actionE].

5.2.2 Direct Calculation of the 1-loop kinematic structure

As discussed in §2.2.1] the ghost picture charge of 1-loop level surfaces would be
0, thus we would need vertex operator only in zero ghost picture. The 1-loop level

3-point amplitude is
3
AW = <H/d2z,~V0(zi,zi)> : (5.30)
i=1

P
Inserting the vertex operators (5.10|) gives the correlation function (normal ordering
omitted)

3
1 2 ’ v v v A i Vi o v; ik X
Gé ) = (E) et ey el <Z11 {z@Xi“ (z@Xil + Ekl S| etk (5.31a)

2\’ L |
= (_/) 6/;1V1652V2€§3V3 [<HZaXleZaXleezk1Xz>
a .
al . 1% A i Z .. . Vj
+5 > <H28X/ [Tioxte™ Xz> (kj - 007

J l#£] i
N\ 2
@ ; v ;O Y i otk X Vj
+ <§) Z <Z(9X/ HZ('?X{‘ elkirX > <H kj - b, >
¢ i G0
ANE:]
- Ay ik X vi
+ (5> <HzaXf e > <H ki - bl >] (5.31b)
=0y +G¥ +ay +GY (5.31c)

The superscript nf stands for the number of fermions. We observe that there is the
cyclic permutation symmetry of the correlation function, thus it is only necessary to
compute 1 specific order and derive other orders by cyclic permutation.

3We notice that ¢; are symmetric in gravitons, thus the transposition could be ignored when it

is compared to (5.2).
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Spin structure independent term is vanishing due to the sum over the spin
structures[40], therefore Géof ) = 0. And Gng ) = 0 because the 2 fermions are
normal ordered and cannot be contracted with anything. We are left with Ggl) =
Gy + Gy,

In the following computation, the contractions between the exponentials e
would not be indicated, because they always contribute the same factor [ ], _; [xi;]

As a reminder, we have used modular invariance to transform the momentum
terms throughout all calculations in this chapter, in order to get the desired forms
of the momentum terms. For example,

o'ki-k;j

T T A
S — 1. 32
Mok Rk Rk (5.32)

We have also used momentum conservation and transversality (5.4) after pinched-off
integration to get the desired forms of the kinematic structures. For example,

klEiEjElki = _kjeiejelkia (533)

and

(kjerk;)(ei€;) = —(kierk;) (€i€5) (5.34)

Pinched-off integration contracting rules We observe that to get extra O(k?)
terms from pinched-off integration, the following rules would be helpful when con-
tracting operatorsﬁ

1. Pinched-off integration ([5.7) would require ZL and zi in the denominator of
1] ij

one term in the amplitude. It is only possible to derive ZL or Zi from either

ij ij

(irh;) or (0X;e™*ii) in the pinching limit |z;;] < € < 1.

2. We require at least 1 pair of fermions to be contracted in the form (k;-1;k;-1;) =
ki - k;{(17p;). Since in the 6f terms there are only 3 of k; - ¢);, then one can have
at most 1 pair of &; - k;. In the 4f terms we have no choice but take the only
possible contraction k; - k;(1;1;). We have this rule because we want to cancel
the pole from the pinched-off integration.

3. In the 6f terms, we require one boson to be contracted with one exponential
to contribute 1/z;;, which has 2 ways: (0X,;e™%7) or interchanging z; and z;.
And we also require one pair of fermions contraction (¢;1);) to contribute 1/z;;.

4Beaware that the rules work for both Heterotic and Type-I strings.
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4. To get the tensor structure (k;e;k;)(ejex), one should notice that (e;e;) already
restricts part of the contractions to be (8X;Lj X! ’“)(1/1? 25). In other words,
one should look for terms with ntitkn”ivk,

5. The number of momenta k equals the number of imaginary signs ¢, which will
be needed when considering the overall sign.

We present two examples of the tensor structure (kiesky)(€1€2):

€1 ,u1l/1aX1 Zkl ¢ W k- X1€2 [AQVQaXQ Zk:? ¢2¢V2 ik X253,u3y35X§38X§36ik3.x3(5.35)

With the 213 pinched-off integration, the correlation function of the above contrac-
tions of a 4f term to the k? order turns into

o
/dzZl/d222/d 23G4f kreski)(ere2) ~ — §/d221/d222/d223<]€1 'kQ)(legkl)(ElEQ)

L1k ks
2 X § 2 1-R2
Sﬂc‘ﬂ%%lx R Pk
POI—’/T/dQZ'l/dQZQk klﬁgk‘l)(Glﬁg)
1°
S5O Pualxas | xa |2’“ * (5.36)

and "POI” stands for ”"Pinched-Off Integration”. We recall that Pj; is the 1-loop
bosonic propagator here and y;; is the variable of the logarithm function in P;;.

_ |
€1 WlaX1 iky - Wb”l kX e, ,maX2 iks - o W e Xaen s OX4 ks - hgph? et X5.37)

Using Si3 ~ 21’31 and S &~ —Ss3 when |z13] < €, and applying the z;3 pinched-off
integration, the correlation function of the above contractions of a 6 f term to the k>
order turns into

o
/dQ’Zl/d2z2/d2Z3Géf,(k163k1)(6162) N;/dzzl/d222/dQZg(kQ‘kg)(k1€3k'1)(61€2)

1k ks
_ 2
51251352332P12|XL|X |2k2k3|X |2k1k2

POI /dzzl/d222k2 kg k’légk‘l)(QEQ)
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- 1k, 1k,
S120” Pra|xas] 2" [xaa] 27" (5.38)

In the following we start the calculation, we do it in a compact way, try to deal with
the whole correlation function together, and omit some tedious middle steps.

Computation of the 4-fermion term

Using correlation functions in app, consider Ggf term with ¢ =1 in ([5.31b)):

2 _ , _ , _ ,
G| =261 a oy (10X PN XX XX L) (hy - b - i)
(5.39a)
2

:aelamm €2,1912€3, 303 k2pk3<7

\

oL Ay ik X1 Ayt vike-Xo 5 iks- 1A i ik X Ay e ] ike-Xa i ks
x [(i0X {1 i0X et X1igxhetke X2ig x ko eths Xa ) 4 (10X iOX ) ™ Xllana\ezkz Xz xta etk Xs)

——F—F —— i ——F—— —— — ]
+ <18X’1’1 iaXllll€Zk1'XliaXl2l26Zk2'X2iaX§362k3'X3> + <Z‘8X11’12'6X111161k1~xll' X§261k2~X2iaxét3ezk3<X3>

] —
T — - — | B ) T — - — N ] |
+ <Z'(9X11’12.8le1€Zk1'XliaXlzLQ‘e’kQ'XQjaX§3eZk3'X3> + <Z'8X11/17;8X11L1ezk1*X1iaXI2t2ezk2<X2ianaeik3<X3>

+ (2 3)

I f
r T ™ 1 ‘ . _ ‘ . r T N 1 ) . _ .
+ (10X i0X e Ko X 2etR X2 X ethe Xs ) 4 (10X HOX M et X1 ig X h etk X249 X K etk X))

]

e = 1. — = 1.
+ <i8le1i8X’fleZk1'X1 z'an?eZkTX%aXlgaezkx-Xs> + <Z-3X11/1Z-8X/1nezkl<X1Z-anzeszXQiani;ezkg.xs>

r — f - _ 1 . _ ‘ .
+ (I0XHi0X M et X1ig X h2 etk X2ig X [ eths X ) 4 (2 45 3)]

—F= 1

X | B s vy + Whuss ) | (5.39)
2 /ki-k:
:Jelaﬂlm €2, 1212 €3, u3v3 k2pk3<7 (—UMUV2V3 =+ 77’“/377[7”2) 8223 x H |Xij |a R
1<j
2 . .
O/ kul le k#s k#s _ k#z kﬂz _
x { (2) (L 4 i) {_ (_1 _ 2) U#IHQa%QPm _ (_ 1y 3) 77#1”381231313
212 213 213 223 212 223
k#l k#l _
_ (2 4 3) 77“2”38§3P23]
212 213

7 2 K1 U3 M1 713 13 M1 7.H3

o = ko' k kbt k kit k kit k

o < > nl/l H2 81 82 P12 |: 72 71 72 72 73 71 73 72
2 212 %213 212 223 213 %13 213 %23
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2
_ <a> 71059, 85 P [_kgkl LRERT RS RE R RS
2 213 212 213 %23 212 212 212 223
R s 9, 8y Pra B, P + 0k 9,05 Prad, Pra b (5.39¢)
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After some simplifications one finds
a 1201 % 1% 1%
Gyl |, = = i s (ko - k™" - KPRS?) S5 X H sl
i<j
kl’l qu LH3 EH3 3
() (55
219 213 Z13 223
k’“ k”” kXY KA -
+ ) M1lt362 P13 + ( + i) 77H2“3833P23:|
Z12 <13
_I_ (kul + k“’1> |:/’7]/1u2 (EMS + kim) _I_ /r,Vl},Lg (iﬂz _ k‘im)}
T2 \ %12 213 Z13 223 Z12  Zo3
™ V12 1 3 V1 1142
+a/_7_2 [77 K2 “38%3]313 4 prHs LR a%zplz}}
(5.40)

Note that the result is invariant under 2 <> 3 as expected. The contributions ¢ = 2
and ¢ = 3 are obtained by permuting cyclically (1,2,3) (one should note that the
factor in the first square bracket is invariant, as expected since the anti-holomorphic

sector is identical in all three cases).

To be even more explicit, we can perform the contractions between the Lorentz

indices to identify the different tensor structures:

/

o o'kiks
== S (—kz ks (e2e3 ), T (€3k2) ., (€2k3),, )553 x [T e

kﬂz

i<j

212

A

km
+ (2
Z12

n o'm
27’2

km
+ =
213
2%

Z12

S
213 213

3) nuzus 5%3]323]

223

kﬂa

+ ké“) |:77V1H2 (1 4
Z13

Z13

kuz

Z23

o
k 3) /L1,u'262 P12_|_ (

2) + nVIHS <

Z12

M2
[

212

_|_

kltz )

223

M2
k3®

223

)

13 82 P13
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2
/
Q'To

o Mo ks
— 5833 X H|Xij|a n

1<j

kl/1 k,lfl kus kl% _
(2 + 3) |:_ (_1 + _2> <_k»2 - ks (6]—626;—)”1#3 + (63/{32)#3 (6?62/@,)”1) 8%2P12

[7]”1”277#1“35123[313 + nV1#3U#1#25122P12] } (5.41&)

212 213 213 223

z Z23

12
ky' | ks T T 52

— + = €1, 1111 (—k2 - k3 (6263 ) + (k352 63k2)) 033 Pa3
212 213

f
H2 H2
+ —@ + kji —ko - k3 (626561) + (EIEng) (Egkg) 5%3P13
123240 vi H2
4

o/m (kYRS TR RS T
o (o) (5 +5) (P ks (e, + sk, (acsk,, )

B R TT
+ — — = (*kQ . k3 (6263 €1 )Mzﬂl + (6163]§72)Hl (EQkS)uz)

212 223
2 _
0/7;2 [(—kg . kg (61626:—;) + (kgﬁ;élezkg)) 8%3]313
+ (—kQ . k’g (626;61) (k3€;€163]€2)) 5%2]312]} (541b)
/ .
== %533 x H g | ™
1<J
k' ks b (T T , Ty A2
X 213 kQ ]ﬂd (61 €2€3 kl)y + (kledkz) (61 62kd)u 612P12
Z12 213 ! !
_ 2,’23 I€2€3 ]{72) (]{3263]62) (6;62]63)”1) 5%2P12

(ko (e
_ 2:121 ( ko - kg (k16263 61) (6]—63]62)”1 (klﬁgkg)) 5%3P13
( (kseaeq €1),, (€1T63]€2)V1 (k3€2k3)) 93 P13
+ 2121 (k26 ( kg k3 (6263 ) (1{736;—63]{}2)) 5223P23
( ]{?2 (6263 ) (k3€;€3k‘2)) 5§3P23]

ks
/ k,l21«1 ké“
- (212 —+ = |:213 ( kQ ]ﬂd (616263 ]ﬂl) (klegkg) (6162]63)#1)

o' T

27y Z13
+ 253 (—k2 - k3 (61626;]@)#1 + (k/’263k‘2) (6162]63)#1)
+ 2121 (—kQ . kg (klegﬁg—GI)ul + (6163]{)2)1“ (klegkg))

+22_31 (kg - k3 (k3€26;61r)u1 — (6163]62)“1 (k362k3))]

2 _
0/7;2 [—kg - ks ((616263 ) 813P13 + (61636;—) 6%2P12)

+ (k3€;6163k2) 5123P13 + (k3€;€163]€2) 5122P12]} (541C)



5.2. HETEROTIC STRING 67

Oé/ T ks
=- 5533 X H xig |* 5

1<j
T T T T
km k,Vl €1 €€ ]{71 v €1 €9€- ]{;2 y _
213 213 2923
k1€3]€2 k2€3k2) T =9
< Z23 (1 62k3)l’1 Oy P12
k1€26 € kseoeq € _
i ( 3 1 ( 3€2€3 1) kQ'kSaigPlg
223
(kreaks) = (kseak =
n ( 1€2k3) 3€2 3)) (€1T€3k2)u1 975 Py
Z23
koe kse _
+ (( 221)1)1 + ( 21)1/1) (—k‘Q . k’g (626;) + (k3€;€3k‘2)) 8§3P23:|
12 13

T T T T T T
i g (kgl i ké”) [_ ((616263 kl)m n (k16263 € )ul n (616263 kz)u1 (k3€2€3 € )m> b ks
D)

Zi2 713 Z13 Z12 %23 %23
I ((lﬂfgkz) I (k263k2)) (cr6sks) . + ((k162/€3) _ (k3€2/€3)> (6163]@)“1}
Z13 Zo3 Z12 Z23
+ 037;2 [—k2 - ks ((61626;) 5%31313 + (616363—) 5%2-7312)
+ (kgegefegkg) 033 P13 + (kge;qegkg) 5122]312]} (5.41d)
= %/533 x [T iy
i<j

]{?261 €2€3 kl) 4 (kzeregﬁgk‘g) n (k‘361r€26;—]€1) 4 (k3€1r62€;k2)
212213 212223 |z13]? 213223

) ko - k3075 Pro

koel eak k- k
(ky1esks) k263k2)> (( 2€] €2k3) . (kseq e 3)) 92, Pry

( Z13 Z23 Z12 13
s (kreze] e1ks) ~ (kgﬁge;ielkz) N (k1ezeg_61k3) B (ksezeg_elks) ks - k3D24Pis
|Z12| 2192923 213212 213223
(kreaks)  (kseok: koe] esk kyel esha) |
+< 162k3) 3€2 3)) <( 261 €sks) + (kyes < 2)> 0ts Pis
Z19 Zo3 Z12 213
(kzerks)  (kserks)  (kserks)  (kserk ;
L [ (kaeaks) seika) | 2€1. 3) | (ksex 23) (<2 - ks (e2eg ) + (kseg eskn)) 95 Pos
|z12]? 212713 213212 |213]
%

™ [ ((]{12616263 ]{11) i (]412616265{](12) i (kzlege;efkg) _ (k3€2€§61k2)> k23 ) kg

— — 72 —
279 Z12213 Z12223 219 Z12

- ((k3€162€3Tk1) 4 (k3€162€;k2) 4 (k1€26g61rk‘3) _ (k‘362€;€1T]€3)> kQ ) kg

72 — — — —_ —_ —
213 213223 212213 213223
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+ <(]€1_€3k‘2) + (/4}2_€3k2)> ((kgﬁ_legkg) + (k‘3€_162k‘3)>
213 223 212 213
4 ((k‘1€27€3) B (k3€2/€3)) ((k‘261€3k2) L (ki361€3k2))]
Z12 223 Z12 Z13
2w
+ o [ ko - ks ((616263 ) 813P13 + (616362 ) 812P12)
2
+ (kgG;rEIEgkg) é123P13 + (kgE;F.lEgkg) é122P12]} (5416)
Finally, we obtain the expanded result
G4f‘ — - Y2 x TT s %%
=1 2 23 11 1]
1<J
k2 kd kQEl €2€3 kl) T (kQElTEQ_EQkQ) (k3€1r€262;]€1) + (k3€IEQ_E3Tk2) 552]312
Z12713 Z12Z23 |z13] Z13723
n k16263 €1k2 (k3626;{61k2) . (klege;{qu) B (k3626;{61k3) 5%3P13
\212\ 212223 213212 213223
(626 ) ( koe1ks) (kgel_kz) (kzel_kg) (k361k723)> 82, Prs
|z12]? Z12713 213212 |213]
_ 21 (k261€263 kl) + (kgelege;kg) + (k162€;r€1rk2) _ k36265 €1 k’z
a'T Z12Z213 Z12Z23 Z%Q Z12Z223
_ 2m (k361626;k’1) n (k3€1€2€;;rk’2) n (k1€2€3 €1 kg) B k36263 €1 kg
a’'Te z2, Z13%23 212213 213223
. ((k163k2 k2€3k‘2 ) k2€1 52k3 + (k3€1r€2k3) a Py + 2T ( k261€2]€3 k3€1€2]€3))
Z13 213 ' o’ T2 Z13
_ ((k}162k3 k3€2k3 > k’2€1 €3k2 + (k3€1r€3k2) a Pis + iy < k’26163k’2 k’361€3k’2)>
Z12 213 13 o T2 Z13
koerk kserk koerk kserk =
+ (( 2€1k2) + (kser 2) + (k21 3) (ksex 3)> (k3€2T€3k2) 82231323
|z12]? Z12713 Z13Z12 |z13]?
2
v [— ((61626 ) OtsPis + (616362 ) 8121312)

Note that all factors in the bracket are of order O (k*) except for the last two lines
which are of order O (k?).

Extra tensor structure Beyond the two tensor structures related to the expanded
Einstein-Hilbert term at O(k?), two more tensor structures (kqejeaks) (k1€ezk;) and
(€1€2€3) still appear in the correlation functions. The former contributes to O(k?)

(5.42)
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order and the latter vanishes after imposing momentum conservation, thus they
would not be considered in the following calculation.

Computation of the 6-fermion term
In this section, we want to compute
Ggf 2617#11/1 62#21/263,#31/3 <26Xfl eikl.Xli(@XﬁueikQ'XgZ‘gXiéfseiks.Xs>
X (k- 1 kg - Yoty ks - hsaps®) (5.43)
We have
6f _
G3 _61,,u1V162,M2V2637M3V3k1701k2702k3,03
X [(iBX1 XD X gz e Xai X ps ik Xa
+ (10X} e i X5 e X2ig X1 e* s X5 ) 4+ cyclic perms
+ (10X e* Xrig X e X2ig X e X3 ) + perms |

X [T PO s") + (YT T e g ) — (2 ¢ 1)

—(p1 <> 1)) (5.44a)
o ok
:561,N1V162,M21/2637M3V3k17p1k27p2k3,p35125135’23 X H |Xij] kirks
i<j
_ kﬂs ku?, _ kuz kuz
% |:_77M1,u28%2pl2 (_L _ L) _ 77“1”38%3P13 ( 73 _ L)
213 223 223 212
. T
_ nuzug 8223 P23 ( _2 + _3 )
212 213

(5 (£ ) (5 -5) (2 4)
— | = —_— + = -_— - — — + =
2 213 223 212 223 212 213

X [nplm (nleanQVs _ 771/11/3771/2,03) _ 77,01112 (nlﬂpsnpzl/s _ 771/17/37792/33)
_nV1p2 (7791P377V2V3 _ npwsnl@ps) + 771/1V2 (nplpsnpws _ npll/:anpwa)] (5.44]0)
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And we find
o a'k;-kj
Ggf :Eel,uuq €2,1902€3,303 912513923 X H i o
i<j
3 kus kus km kM2
> {nmuzafzplz ( + ) + ulusa . Ps ( _i)
2’13 223 2;12 223
kﬂl k#l
_ 77#2#382 P23 (_ + _)
212 213
(O/>2 (kfs /{253) (kitz kgz) (kgl k/;l)]
— | = e - - — —_— 4+ —
2 213 <23 212 223 <12 213
% [kl . kz (?71/2l/3kgl o 77V1V3k§2) + kl . kg (nV1V2k2V3 _ 77V2V3k21/1)
hy - Ry (1R — R+ RORY R — RERSRY] (5.45)
We can further simplify the tensor structure:
o kil
Ggf 25512513523 X H X5 ks
1<)
3 ku3 k'uS B k#Q km
« {nmmaﬂpm ( + ) + numgafgpm ( R i)
213 223 212 223
k’“ kb
77#2#382 Pys ( + _3 )
Z12 213
(Y () (e ()
2 213 223 12 213
X [/ﬁ < ko ( e1ks) 1 (6 ) — (e2ks) 12 (6 )”1%)
+ Ky - ((63162)“3 (6162) (ﬁkz)m (6263 ),W,
+ ko - k3 ((62]{'1)“2 (6163) (63]1'1)“3 (61 € )MIMQ
+ (eskr),, (e1ks),, (€sks),, <62/ﬁ)u2 (e3ks) (elkg)m} (5.46)
O/ O/ki'kj
25512513523 X H ‘Xij|
1<)
) k#B k#3 T T T T
{alzplz(z—lg + 2—23) |:k1 . k2 <<k3€1 6263 )M3 - (k3€2 5163 )N3>

+ k'l k’3 ((6162) (€3k2)ﬂ3 —

(kQEIEQE;)r)yB)
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ks (el ae]),, — (6] (k) )
+ (kae] exks) (esky),, — (Kae] eaky) (€3k2)u3}
rapa (-5 bk ((@d k), - (o) (@h,,)
kb (e eae]), = (e k) )
ke hy (@) (eh),, - (hefad),,)
+ (kae| esky) (eaks),, — (Kae] eshz) (Ezkl)m}
— O34 Py3 (lz—j; + Z;) [k’l ks <(€2€3) (e1k3),, — (€1€3T€2k3)m>
ks (e eshs),, — (e6]) (k) )
ke ks ((ael k), — (aceh),, )
+ (kseg esk) (erka),,, — (Rreq esha) (elkg)m}

I\ 2 U3 u3 K2 H2 M1 11
o K} ks, Kl ks ks, ks
— | = —_— + = - — — —_— + = €111 €2,1202 €3, 33
2 Z13 223 Zi2 723 Zi2 713

X [y - kg ("0 kgt — "0 kg?) + by - ks (772 k" — ks

ha ks (7R — R KRS R — KRS RS} (5.47)
o o' k;-k;j
23512513523 X H |Xij] !
1<J
k#a k#s
{8%2P12 (— + —) [(6162) (1{71 /{Z3 (63]@2)“3 — k2 . k’3 (63/{71)#3>
213 223

+ k- ky ((Kae) eaeg )y — (Kaeg €165 )y)
— kl . kg (k2€1T€2€;r)u3 + kQ . kg (k1€;€16;)ug
+ (kgﬁ?ﬁgkg) (€3k1)u3 - (kgEIEle) (63]62)#3]
k#2 kuz
+ a P13 (_ - —) [(6163) < kl kg <€2k3)ﬂ2 + k’Q . k'g (62]{31)“2>

212 223
+ Ky - ks (k:gelTeQE;,r)m + ko - k3 (k1€2T€1€3T)M3

+ ki ko (egegelkg)m — ko - kg(klegele;)m
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+ (kgGlTﬁgkl) (62]{3)#2 - (kgﬁirﬁng) (62]€1)H2:|

B k#l km . .
— 033 Pas (— + —) (1 - ko ((e2€s ) (e1ks)u, — (er€s €2k3) ;)

212 213

+ kl . k’g ((6163—63/{72)”1 (6263 )(61]{?2)“1)
+ k2 . kg ((616;62/€1)H1 (6162 63]{)1))

+ (k3€;63k1) (€1k2)#1 - (l{}1€2 63]€2) (Elk?’)#l]

N 2 B3 K3 H2 K2 M1 H1

—| = — + = _— - = — + = €1, 0101 €2, 1002 €3, 1303
2 213 223 212 223 212 213
X

[y« ko ("2 — "2 ks?) + k- ks (72 ks® — " k3!
iy - ks (K — R + KRS R — KRR Y (5.48)

The spin sum in maximal supersymmetry (in particular D = 10) implies that the
amplitude vanishes[I3], §3.3]. The simplest would be to perform the spin sum here,
before analysing further the different contributions. However, this breaks the unifor-
mity of the formulas so we don’t do it now.

3 graviton scattering, O (k*) contribution

Now we focus on 3 gravitons amplitude, which means only symmetric polarization
tensors should be considered when necessary.

Since we are trying to check the tensor structure of the Einstein-Hilbert
term, we would like to study the O (k?) terms in 3 gravitons amplitude, which could
be derived from two sources: 1) contractions giving k%, 2) k% with pinched-off inte-
gration. We observe that the fermion terms and the products 0Xe®*X contribute at
order k* in (5.31b). Note that we set | Xij\a/k"'kj = 1 (except when considering pinch-
ing) for simplicity since they would contribute to higher powers of the momenta. The
terms relevant to the kinematic structure ([5.2)) should have the kinematic structures
in the form of (k;e;k;) (€;6) or (kreiejek;).

O(k?*) contributions without pinched-off integration It is easy to derive O(k?)
contributions without pinched-off integration from the last two lines of ((5.42]):

a/ ,kzki
e = - 5533 < T e

no pinched-off e
1<J

2 - _
X { ,ﬂ- [—/{32 . ]{33 ((61626;—) 833.[313 + (616365—) 8%2_[312)

' Ty
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+ (]{73(-:;61'—63]{32) 5123P13 + (]{3363—6163]{32) 5%2P12] }
+ cyclic permutations. (5.49)

We notice that the second line of the above result vanishes after imposing momentum
conservation ([5.5)).

Koba-Nielsen factor Pinched-off integration would use one |an|a/k’”'k". The
remaining non-pinching part of the Koba—Nielsen factor could be expanded as
H |Xij‘z;lz'_kgmchmg =1-2d Z k; - k; P;; + terms of higher k order, (5.50)
i<j i<j
which is vaild only if |2;| > € (non-pinching) because of the singularity of P,;[40].
Only the leading term after the above expansion in the amplitude still keeps in O(k?)

o' ki-k;

order. Because of this, we take [],_; [xijl ~ 1 in our O(k?) calculation.

4-Fermion The terms relevant to the kinematic structure (5.2) from 4-fermion

CY, kze Egegk kng 6263]{:2 k36 Egegk =
_kQ . k:3 ( 1 1 + 1 + 1 1) 2

212213 212293 |Z13|2

kieseserks kieseserks kseaeserks 2. p
2 = - — 134713
|212] 213212 213223
PG ke ks 2. P
212 |213]
O/ ]{53626361]{32 k’3€2€3€1]€3 k1€2€361k2 =2
—{——kg . k‘l — + — + 2 a23P23
2 2937221 293231 | 221
koesereaks koesereaky kiesereaky 52
5 — - - b1 Po1
| 203 21223 291231
kseaks kieaky 2. P
— (€z€1) 7 T 5 | 0516731
1223| ‘221‘
O/ k?1€36162k73 k1€3€1€2]{71 k2€3€162k33 592
+—]€1 . kg — + — + ) 831P31
2 231232 231212 | 232
k3€1€2€3k1 k3€16263k2 k2€1€263k2 52 P
7 T — - 301732
| 231 232231 232212

kiesk koesk =
_(6162)( 1€3R1 i 2€3 2> afzpwl

’Z31|2 |Z32|2
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o 2

+ 5 W [(k3€2€1€3]€2) O3 Pis + (kseaeresks) 07y Pra + (kieseaeiks) 03y Poy

(k’163€2€1k3) (923P23 + (/{?2616362]{31) 832P32 + (k)gelegégkl) 831P31} . (551)

6-Fermion with Taylor expansion The terms relevant to the kinematic struc-
ture (5.2)) from 6-fermion contribution ([5.46)), with application of Taylor expansion

trick §5.1.3] are

1 _ _ _
- 2'_12 (—332]312) (—kfsaspm - k§333P32) {(6162) [(lﬁ ’ k3) (63/€2)#3 - (kz ’ ks) (63]?1)#3}
+ (k‘l . k‘g) [(k3€1€263)ug — (]{3626163)u3] — (k’l . k‘g) <k2€16263)ﬂ3 + (k’g . k’g) (l{?1€26163)u3}
1 -
231

- (—5531[)13) (—k3“252P23 - k1M252P21> {(6163) -(ka ) k3) (62161)“2 - (kl ’ k2) (€2k3)u2
(

+ (kl . ]{Zg) |:(]€2€361€2)#2 — (626361]52)“2] + ]{?1 . ]{?2) (62€3€1k3)ﬂ2 - (k?g . ]{33) (k1€3€162>“2}

1 _ _ _ -
— _Z (—833]323) (—ké“@lplg — k’glalpl‘g) (6263) (kl . k2) (Elkg)#l — (kl . kg) (61]@2)“1
23 -

+ (k2 - k3) [(616362161)“1 - (616263k1)u1] — (k1 - k) (616362]63)M1 + (k1 - k3) (616263k2>u1}
(5.52)

B %125122]3 12 (05 P31 — 03 P52) {(€162) (k1 - k3) (Kveska) — (ko - ks) (kreskr)]
4 (ky - ko) [(Rsereneskn) — (Rseaereskn)] — (kr - k) (kaereaesk) -+ (ks - ks) (kresereskn)}
B ,%15123})13 (02Pa3 — D2 Pa1) {(€163) [(ka - k) (kseaks) — (ki - ko) (kzeaks)]
+ (K - ks) [(Raeseresks) — (hseaeserks)] + (ki - ka) (kseaeserks) — (ka - ks) (kiesereaks)}
B iaP (91Prs — 01 Prs) {(eaea) [(k - ko) (Raerky) — (ki - ky) (Raerko)
) (k1 - ks)

+ (k1 - ks (k‘2€1€2€3k‘2)}

+ (k?Q : k33) [(k?2€1€362k31) - (k?2€162€3k1 ] ( ) (/f2€1€3€2k’3)
(5.53)

Using Taylor expansion trick(}5.8]):
a1 1
(+Zl2a332P32) {(6162) (k’1€3k1) [— (kfl : k3) - (k?2 : k‘3)]

T2 |212| Z12

(k‘l k‘z) [(k‘361€2€3k‘1) - (k’3€2€1€3k1)] - (k‘l : k‘3) (k‘2€1€2€3]€1) + (lf2 : /f3) (k’1€2€1€3k‘1)}

"1 1
° (+Z313251P21) {(6163) (ksﬁzk?,) [— (kz : ks) - (k‘l : kz)]
2 ‘231‘ 331
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+ (lﬁ : k?3) [(k2€3€1€2k3) - (k?3€2€3€1]€2)] + (kfl : /'CQ) (k3€2€3€1k3) - (kQ : ka) (k?1€3€1€2k3)}

Zé : (+2230105 Pis) {(€2€3) (kaerka) [— (i - ko) — (k1 - k3)]
+ (K2 - k3) [(kaereseaks) — (kaereaesky)] — (ky - ko) (kaerezeaks) + (ki - k) (kae1€aesha)}
(5.54)
=+ O;/ ool 033 Pog { (k1 - ko) (€x€2) (Reghn) + (ku - ko) [(Rzerezeskn) — (kaeaereahi)]
— (k1 ks) (ka€r€2€3kn) + (K2 - k3) (kr€2ere3kn) }
+ O;/ ol ——5 01 Pro {(k1 - k3) (ex€s) (kzeaks) + (ki - ka) [(kaeaereaks) — (kaeaezeihy)]
+ (ka1 - k2) (ksexeserks) — (ko - k) (kiesereaks)}
+ C;/ ol ——5 03 Pis {(k2 - k3) (€2€3) (Raerka) + (kz - ka) [(kaerezeaks) — (kaereaeshn)]
(k1 - k) (Rnereseaks) + (kr - ks) (aerenesky)} . (5.55)

6-Fermion without Taylor expansion The terms relevant to the kinematic
structure (5.2) from 6-fermion contribution (5.46)), without application of Taylor
expansion trick §5.1.3] are

%Iészm (kii —~ k§‘32> {(6162) {(kl - ks) (eska),,, — (k2 - ks) (€3k1)#3}

|z13]" |23

+ (k1 - k2) [(7€3>t?162€3)#3 - (k362€1€3)u3] — (k1 - k3) (kaerees) ,, + (k2 - k3) (k1€261€3)#3}

o ki KL?
+ *613P13 ) T 3 (6163) (kz . ]{33) (62]{51)”2 — (k’l . kg) (62]{53)“2

2 212" [223]

12 23

+ (k1 - k3) [(k2€3€162) (€2e3€1k2) +( €2€3€1k3) — (k2 - k3) (k1€361€2)m}

)
+ %/553P23 (kjgl k”h ) { €2€3) [ kq - €1k?3 (kl : k3> (61]{32);“}
] = ¢

la1al” sl

+ (ko - k3) [(616362]€1) (e1€2€3k1) ) (er€ezeaks),, + (k1 - k3) (616263k2)ul} (5.56)

*%/5321312 <12 + 12> {(er€2) (kreskn) [— (k1 - k3) — (k2 - k3)]

|z13]7  [223]
+ (k1 - ko) [(ksereaeskr) — (kseoeresky)] — (k1 - k3) (koereaeskr) + (ko - ks) (k1ez€resk)}
o 1 1
+ 5013 i | g + 5 | {(e1€s) (ksezks) [ (k2 - k3) — (k1 - k2]

|z12]"  [223]
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+ (k1 : k3) [(k2€361€2k3) - (k3€263€1k2)] + (kl : k2) (k3€263€1k3) - (kQ : ks) (k163€162k3)}
o = 1 1
+ 5 033P03 | —5 + —— | {(e2€3) (kaerko) [ (k1 - k2) — (k1 - k3)]
2 |z12]” |21
—+ (kg . kg) [(k2€163€2k1) — (k2616263k1)] — (k}l . kg) (k2€163€2k3) + (kl . kg) (k2616263k2)} (557)
" 1 1
:%8%21312 ( + ) {(kl . k‘g) (6162) (klégkl) + (kl . kg) [(k’361€263/€1) — (k362€163/€1)]

lz1s]® Jeasl?
— (/fl . k‘g) (k261€263k1) + (kz . ]Cg) (k‘1€261€3]€1)}
o - 1 1
+ 5853P13 <||2 ||2> {(kl . k3) (6163) (/f3€2k3) + (/ﬁ : k3) [(k2€361€2k3) - (k3€2€361k2)]
212 223

+ (/ﬁ : kz) (k362€361k3) - (kz : kd) (/f1€361€2/€3)}

o - 1 1
+ 58%3P23 <|Z|2 + |Z|2> {(kg . kg) (6263) (k261k2> + (kg . kg) [(k’2€16362k1) — (k2€16263]€1)]
12 13
— (kl . kg) (k‘2616362k3) + (k‘l . kd) (k2€16263]€2)} . (558)

Gathering all relevant terms, we get

Oé/ k2€162€3k‘1 k2€1€2€3k2 k361€263k1 a2
71{32 : kS — + — + 3 812P12
2 Z12713 Z12723 |213]

kieseserk kieseszerk kseseserk -
+<12312+12313 32313)3123P13

|212]? 213212 Z13%23
k2€1/€2 k‘361k‘3 A
— (6263) 3 + 3 853P23
|212 | 213

o kaeseserk kseseserk kieseserks \ =
4 Yk 32?’_12—1—32?:13—&—1232126223P23
2 223721 2237231 | 221

<k263€162k3 koezereaky k163€162k‘1>82 Py,
21

|23 221223 221231
k3€2/€3 klégkl =
- (5361) 5 + 5 8§1P31
|22 |221]

o kieseieak kieseieak koesereaks \ =
Yk ke 131,23+131,21+2312233§1P31
2 731732 231712 |232]

ksereaezky kseiexesks koei€egeska )
5 — - - 055 P32
|231] 232231 232212

kiesk koesk -
_ (6162) 1€3 21 + 2€3 22 6122P12
|231] | 232]
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™ = = _
+ ?2 [(k}3€26163k2) (9%3]313 + (k‘3€26163k2) 8%2]312 + (k163€261k3) 8§1P21
+ (k1€362€1]€3) 62231’323 + (k2€163€2]€1) 6§2P32 + (k2€163€2k‘1) 5§1P31]

O[/

+ —= 9 | | 823P23 {(/ﬁ kQ) (6162) (k‘1€3k1) + (/ﬁ : ki2) [(k3€162€3k‘1) - (k3€26163k1)]
212

—(k1' 3) (kaereaeshy) + (k2 - k3) (kreaereskr)}

Oél

+— 7] | ———5 01, P1a {(k1 - k3) (eres) (kseaks) + (ki - ks) [(kaesereaks) — (kseaeserks)]
213
(kl . ]{?2) (k3€26361k’3) — (kg . k3) (k163€162k3)}
a/
+ — 7] | 3131313 {(ka - k3) (e2€3) (koe1ka) + (ko - k3) [(ka€1eseakr) — (kaereaesky)]
%93

— (kl . kg) (k2€163€2k3) + (/ﬁ . kg) (k261€263k2)}

o - 1 1
+ 58%2P12 <||2 + ||2> {(k‘l : kz) (6162) (k1€3k1) + (kl : kz) [(k3€1€263k1) - (k3€2€1€3k1)}
213 223

— (kl . ]{?3) (k‘2€16263k’1) + (kz . kg) (klegelﬁgkl)}

1 1
+ 3 13P13 <| ? + |z|2> {(k1 - k3) (e1€3) (kseaks) + (k1 - k3) [(koezereaks) — (kseaezerka)]
Z12 23
+ (k1 - k2) (kaeaeserks) — (ka2 - k) (kiesereaks)}
o - 1 1
+ *3331323 —— + —— | {(k2 - k3) (e2€3) (kaerka) + (ko - k3) [(k2erezeaky) — (kaereaesky)]
2 |z12]" |23
— (kl . k‘Q) (k2€16362k‘3) + (kjl . kg) (k‘261€263k‘2)} . (559)

Obviously, the €;e; terms of the 4-fermion and the 6-fermion terms without Taylor
expansion trick cancel each other leading to

Oé/ k2€162€3k31 ]{?2616263]{?2 k3€16263k31 592
—ky - k3 — + — + 07y P12
2 212213 212223 |213)°

kiezezerky k1€2€361k’3 kzezezer ks 2. p

2 = 134 13
| 212] 213212 213223
/
(0 ]{53626361]{72 k362€361l€3 ]{51626361]{32 52
+ —ky - ky K L -+ 053 P23
223221 223231 EXE

+ - -
| 205 291223 291231

k2 |:(/{?1€361€2k'3 4 ]{71€3€1€2k1 i k2€361€2]€3) 82

231239 231212 \232\

2
<k’2€3€1€2k‘3 k2€361€2kf1 o k1€3€1€2k1> 5221P21
Oé
2
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kseieaeskn ksereaesks koei€xesko A2
5 — = - 035 P39
| 231 232731 232212
—+ Tz [(k3€2€163]€2> 5%3P13 + <k3€2€1€3]€2) 5%2P12 + (k?1€3€2€1k'3) 5221P21
2
+ (k»’1€3€2€1]€3) D33 Pa3 + (ka€r€3eaky) 03, Py + (koer€ezeaky) 53%1]331}
o
+ 2 |z ‘ 623P23 {(k’l . kg) (6162) (]{?163/{71) —|— (kl . k’g) [(k3616263k1) — (k’362€1€3k‘1)]
12
— (kl kg) (k’2€1€2€3/€1) + (kg . kg) (l{?1€2€1€3]€1)}
o 1
+ = 9 |Z ‘ 612P12 {(lﬁ . kg) (6163) (k362k3) + (kl . kg) [<k2€361€2]€3) - (k362€3€1]€2)]
13
(kl k2) (k3€2€3€1/€3) - (kz : k3) (k1€3€1€2k3)}
o 1
+ — 2 |Z ‘ 8%3P13 {(kQ . ]{Zg) (6263) (]{7261]{?2) + <k2 . k'3) [(k2€1€3€2k1) — (k’2€1€2€3]€1)]
23

- (kl k?g) (]{32616362]{33) + (kl . kg) (k?2€162€3k’2)}
o - 1 1

+ —(9122P12 ( ) {(]{31 . ]{?2) [<k36162€3k’1) — (1{53626163]{71”
2 |213] |Z23|

5 T
- (k‘l : k‘3) (k‘2€1€2€3k’1) (/f2 ks) (k1€2€163k1)}

1 1
+ 613 13 (—2 + —2) {(k1 - k3) [(kaesereaks) — (kseaeserks)]
|212] | 23]

+ (kl . kg) (k3€26361k3) - (kz . kg) <k1€36162]€3)}

o - 1 1
+ —8223]323 ( 2 -+ ) {(k’g . ks) [(k’gﬁlﬁgegkl) - (k26162€3k1)}
2 |212] !2’13!
- (/{?1 . ]{Zg) (k261€3€2]€3) (kl kg) <k2€1€2€3]€2)} . (560)

Excluding terms in ((5.60) that are not relevant to plnched off integration, we obtain
the following contrlbutlons proportional to 1/|z;|*:

O/

2 | | (923P23 {(kg kg) (k1€2€361k2) + (kg . k‘l) (k16263€1k2)
212

+

ki kz) (€1€2) (kiesky) + (K1 - k) [(kserezesks) — (kaezeresky)]
ki - k3) (kaerezesky) + (kg - k) (krezeresks)

- k3) [(kaezereaks) — (kzezezerks)]

) (

) [

o
= =

k’ . ]{12 k3626361k3) — (kg . ]Cg) (k1636162]€3)
ko - k3) [(kaer€ezeakr) — (koer€eesky)]

[l

(
—(
(
(
(

+ + +
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— (kl . kQ) (k2€16362k‘3) + (kl . kg) (k261€263k2)} (561)
o 1
:5W853P23 {7 (]{71 . k‘g) (k26163€2k3) + (kl . kQ) (k‘3626361k3)
212
+ (k1 - k) (e1€2) (kiezky) + (k1 - k2) [(kzereaesky) — (kzezeresk)]

)(

(k1 - k3) (kaeregesky) + (K1 - k3) (kaereaeshka) + (K1 - k3) (kreaezerka)
+ (k1 - k3) [(koesereaks) — (ksezeserka)]
+ (k2 - k3) (kreaeresky) — (ko - k) (k1ezereaks)
+( )(

kg . ]{?3 k1€263€1k’2) + (kg . ]€3) [(k2€163€2]€1) — (k2€16263k’1)]} (562)

+2 (/ﬂl . kz) (k2616362k1) =+ (kl . kz) [(k3616263]€1) — (k3626163k1)]
+ 2 (k1 - k3) (k1€eseserka) + (k1 - k3) (kaesereaks) + 2 (ky - k3) (koei€eaesks)

+2 (kg . kg) (k1€263€1k2) + (kg . kg) (k361€263k1) + 2 (kg . kg) (klegelegkl)} (563)
o 1
:EWaSS‘PXg {+ (kl . kg) (6162) (klégkl) + (kl . kg) [(k3€1€263k1) — (k362€163k1)}
212
+ (k1 - k3) (koesereaks) + (ko - k3) (kzereaesky)
+2 (kl . kg) (k2616263k2) + 2 (kg . kd) (k1626163]€1)}, (564)
and
o 1 4
?W812P12 {(kg . kg) (]{3616263]{31) + (kl . k’2) (k3616263k1)
13

(k1 - k3) (e1€3) (kseaks) + (ki - k3) [(kaesereaks) — (kaeaeserha)]
(k1 - ko) (ksezezerks) — (k2 - k3) (krezereaks)

(k1 - ko) [(ksereaesky) — (kzeaeresks)]

(k1 - k3) (koereaesky) + (ko - ks3) (kreaeresky)

( )
(

+ (ko - k3 [(k2616362k1) - (k2€1€263k1)]
- k‘l . k’g) (k‘2€163€2]€3) + (]{)1 . k‘3) (k261€263k2)} (565)
o 1 -
:5W8122P12 {(k1 - ko) (ksereaesky) + (k1 - ko) (ksezeserks)
213
+ (k’l . k‘g (k‘36162€3k1) — (k3€261€3]€1)] — (1{31 . kg) (k‘2616362k3)
+ k’l . kg 6163) (]{1362]€3) + (]{31 . kg) [(k263€162k3) - (k362€3€1]€2)]

ko - k3 ko - k3) [(ko€1€eseaky) — (koereaesky)]

)

( )(

- (kl : k3) (k2€162€3k1) + (/f1 ’ k3) (k261€263k2)

( ) (ksereaesky) + (ko -

— (k2 - k3) (kresereaks) + (ko - k3) (kreaeresky)} (5.66)
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a/

=5 | ‘ —— 01, P12 {2 (k1 - ko) (ksereaesky) — (ki - ko) (ksezeresky) + 2 (ki - ko) (ksezeserks)
213

+ (k1 - k3) (e1€3) (kseaks) + (ki1 - k3) [(kaesereaks) — (kseaezerks)]
+2 (k1 - k3) (kzereaesky)
+ 2 (kg . kg) (k3616263k1) (kz . ]Cg) (k2616362]€1) + 2 (kg . kg) (k)1626163k1) (567)

a/

2 ‘ ‘ 812P12 {+ (/fl kg) (6163) (k362k3) -|— (kl . kg) [(k2636162k3) — (/ﬂ362€361k2)]
213

(kl . kg) (k3€261€3k2) + (kg . kg) (k261€362k1)
+2 (kl . ]{?2) (k‘3626361k’3) +2 (k‘g . kg) (k16261€3/€1)} R (568)

and

Oé/

5 B | ——— 015 P13 {(ks - k1) (kaesereaks) + (ki - ko) (kaesereaks)
o3

_|_

ko - k3
k1 - ko

( ) (e2€3) (k2e1ka) + (K2 - k3) [(k2€163€2/€1) - (k2€1€2€3/€1)]
—( )
(k1 - k)
—( )
( )
( )

(
(k2ereseaks) + (k1 - k) (koer€aesks)
[(kaereaesky) — (kzeaeresky)]
(koereaesky) + (ko - k3) (kiezeresky)
[

(

—

+
>~

k1 - ks
k1 - ks
k1 - ko

(k2€361€2/€3) - (k3€263€1/€2)]
k362€3€1k3) — (kg . kg) (k1€361€2k3)} (569)

813P13 { ( ) (k261€362k3) + (kl . kg) (k2€361€2k‘3)

2|

+ (k1 - ko) [(ksereaesky) — (kseaeresky)] + (k1 - k) (kseaeserks)

+ (k1 - k3) (kaesereaks) — (k1 - k3) (koereaesky) + (k1 - k3) (ka€r€eaeska)

(k1 - k3) [(kaes€ereaks) — (kzeaezerka)]

(ko - k3) (e2€3) (kaerka) + (ko - k3) [(ko€reseaky) — (koereaesky))

(ko - k3) (k1eeresk) — (ko - k3) (k1esereaks)} (5.70)

‘ ‘ 8%3P13 {2 (kl k‘g) (k2636162k‘3) (kl . kz) (]{73616263]61) + 2 (kl . kg) (k362€361k'3)
23

T2 ol

+ 2 (kl . ks) (k263€162k‘3) — (kl . kd) (k3€26361]€2) + 2 (/ﬂl . kg) (k2616263k2)

+ (k2 - k3) (e2e3) (kaerka) + (ko - k3) [(ka€reseakr) — (koeregesky)]

+2 (kg . kg) (k3€2€163k2)} (571)

Oé/

2 ‘ ‘ 813P13 {+ (k’g kg) (6263) (kgele) -+ (kg . kg) [(k2€163€2k1) — (k2€1€263k1)]
223

(kl . kg) (k3616263]€1) + (kl . k’g) (k1€26361k2)
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+2 (kl . kQ) (k3€26361k‘3) + 2 (kl . k‘g) (k2616263k2)} . (572)

Summing up all contributions (including non-pinching contributions) gives

/ !
« k2€1€263k1 k2€1€2€3l€2 52 « k2€3€162k1 k1€361€2]€1 52
7k2 . /{3 < — + — 6121312 + fkg . kl — — — 821P21
2 212213 Z12Z23 2 291Z23 291Z31

Oél

o - | ——— 033 Paz {+ (k1 - k2) (e1e2) (kiesky) + (ki - ka) [(ksereaesks) — (ksezeresks)]
212

(kl . kg) (k‘2636162k3) + (]{?2 . 1{33) (k36162€3k?1>
+2 (kl . kg) (k‘2€1€263k’2) + 2 (kg . k‘g) (/{31626163]{}1)}
+ 7% ((k1€36261k3) 5§3P23 -|— (k261€362k1) 5§2P32)

/ /
« ]411626361]{}3 k‘362€3€1k3 a2 « /4}1€3€1€2k‘3 k‘1€361€2k1 2
+ *kQ ks ( - - - O0isPis + —ki - ko — + — 05, P31
213712 213223 2 231232 231212

a/

+5 | | ——— 0%, Pro {+ (k1 - k3) (ere3) (kzeaks) + (ki - ks) [(kaesereaks) — (kseseserka)]
213
(kl . k2) (k3626163k2) + (kQ . kg) (k2€163€2]€1)
+2 (/ﬁ . kg) (k’362€361k‘3) + 2 (kg . k‘3) (k1€26163k‘1)}

s = _
+ ?2 ((k3626163k2) anglg + (]{31636261]{13) 8221P21)

/ !
+ ng Tk (k3€263€1k‘2 n k‘362€361k3) B2, Pos + %kl ks (k3616263k‘2 _ k‘2€1€2_€3k2) 82, Py

223221 223231 232231 232212

a/

+ 2 | | (913P13 {+ (kQ kg) (6263) (k261]€2) + (kz . kg) [(k2616362k1) — (k2616263]€1)]

(kl : k2) (k3€1€263k1) + (kl : k?3) (k1€2€361k2)
+2 (kl . kg) (k3626361k’3) + 2 (k’l . kd) (k2€16263k2)}
T — —
+ ? ((k‘362€163k2) 8123]313 =+ (k‘2€1€3€2]€1) 6§1P31) . (573)
2

Note that the terms in the first and third row add up by using (5.32), (5.33)), (5.34),

and Taylor expansion trick on the first row, and similarly for the 6th and 8th
row, and the 11th and 13th. Using modular invariance ([5.3) and transversality
these observations result in

a/

2 |Z | 8 P23 {( ]{Zg) (6162) (k’lﬁgkl) + (/{71 . ]{Zg) [(]{Z3€1€2€3k'1) - (]{73626163]{31)]
12

+ 2 (k’1 : k’g) (k?2€3€1€2k?3) + 2 (k?Q : k?3) (k3€1€2€3k1)
+2 (kl . kg) <k2€1€263k’2) —+ 2 (k’g . k'3) (k1€26163]€1)}

T _ _
+ . ((k1€362€1k3) D33P + (ka€rez62k1) 33%2]332)
2
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o 1

2 ’Z ’ (9122P12 {(kl . kg) (6163) <k3€2k3) + (kl . kg) [(k263€1€2]€3) - (k3626361k‘2)]
13
-+ 2 (]fl ]Cg) (k3€261€3k2) + 2 (kQ . k‘g) (k261€3€2k1>
+2 (kl . kg) <k3€2€361k3) + 2 (kg . kg) (l{1€2€1€3k’1)}
s — _
+ . ((k362€1€3k2) 07y Pra + (kieseaerks) 3§1P21)
2

o 1

+ — 2 |Z ’ 8%3P13 {(k’Q . k’g) (6263) (kgElk'Q) + (k’Q . kg) [(k2€1€3€2]€1) — (]{72616263]{?1)]
23

+2 (k’1 k’2) (k3€1€2€3k’1) +2 (kfl : k?3) (k1€2€3€1k2)
+2 (kl . kg) <k3€2€361k’3) + 2 (k’l . k'3) (k2€16263]€2)}

T - _
+ p ((k3€261€3k2) 05 P13 + (kaerezeaky) 33%1]331) (5.74)

a1
2 | | 833.[:)23 {(k?l . ]{?2) (6162) (k1€3k31) —I— (]{31 . ]{32) [(k?361€2€3]{51) — (]{33626163]{31)]
212

—2 (]{31 k’g) (k‘1€361€2k’1) — 2 (k’l . k‘g) (k’2616263k’2)}
—|— Ti ((k'163€261k53) 5223P23 + (k’261€362]€1) 5§2P32)
2

o 1

2 |Z ’ 8%2]312 {(kl . k'g) (6163) (k3€2k3) + (k’l . ]i'g) [(k2€3€1€2]€3) — (k3€2€361]€2)]
13
—2 (]{31 ]{33) (k1€261€3]{?1) — 2 (1{31 . k?g) <k3€16362]€3)}
s — _
+ 7_— ((/{?3€2€1€3k’2) 8122P12 + (k1€3€2€1]{73> (9%1]321)

o 1

+ = 5 |Z ’ 8%3P13 {(/fz : k‘g) (6263) (k2€1/€2) + (kz : k‘3) [(k2€1€3€2k‘1) - (k2€1€2€3]€1)]
23
—2 (kg /{,'3) (k2€162€3k2) -2 (kg . kg) <k36263€1]€3)}
e — _
+ p ((kseaeresks) O3 Prs + (kaerezeaks) O3, P ) - (5.75)
2

Fermionic propagators would be absorbed into spin summation Z™; (see from e.g.[16][40])
and would not affect the coordinate integration. Performing pinched-off integra-

tion and using (5.32)), (5.33) and (5.34) again gives the kinematic structure (using
[ d*z = 27)
-

T35 Pag {(e162) (kreshr) + (kseaeresky) + (ksereaeshr) + 2 (kaereseakn)}
+7T8122P12 {(6163) (kgﬁzkg) + (k36263€1k2) + (k263€1€2/€3) + 2 (k1€3€261k3>}
+7r(9%3P13 {(6263) (]{?261]{'2) —I— (k?2€162€3k?1) —f- <k2€163€2k’1> + 2 (k’3€2€163k’2)} . (576)
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Using , as well as the fact that e are symmetric for gravitons, to transform and
simplify the above result (5.76)), we arrive at
033 Poz {(k1eakn) (e162) — 2 (kseaeerks) }

+70% P { (kseaks) (ese1) — 2 (koerenesky)}

+70% Pi3 { (kae1 k) (e2€3) — 2 (kreserenks)}

+ (7T5§3P23 — WéfQPlg) (ky€eser€akis)

+ (7T5%3P13 — 7T5223P23) (ko€r€a€3ky)

+ (ngzplg — 7T5223P23) (kseaezerks) . (5.77)

(0% Py — 02, P) x [1;c il Xz-j|a/k"'kj will be vanishing after coordinate integration be-
cause the value of [ d®z1d?z9d?230% P x [, i1 *% does not depend on s and t.
So we could get rid of these terms and obtain the final result

053 Pz { (k1€3k1) (€162) — 2 (kseaezerka)}
+m05, Pra { (kseaks) (eser) — 2 (kaereaesks)}
+10%5 Pis {(kaerks) (€263) — 2 (Rresereaks)} (5.78)

We see that this result differs from the gravity kinematic structure (5.2)) by a relative
sign.

5.2.3 OPE Calculation of the 1-loop kinematic structure
Setup

We keep o explicit and use notations X} = 0X"i (z;,z) = J/,0X!" = 0XWi (2, %) =
JE ol =" () and z;; = 2z; — z;. For the graviton vertex operators for Heterotic
string theory we introduce (with &2 =0 )

2

BiVi —
‘/i - Oé/

/
Ll (in + %ki : 1/121/)1”1) etkiXi . (5.79)
so that the full (graviton) vertex operator at zero picture reads
Vi= Ei#il’iv;'mw' (580)

Our aim is to evaluate the following 3-point function with pinching-off integration
at order of k?:

2 o Hivy 2 1/ HiVi HiVj . .
<Vl/| | d Zl‘/;‘/;> - <Vi /| | d ZZ‘/i Vg >€l,#sz€%uiV¢€J,#jVj' (581)
2i—2j|<€ z2;—2j|<e
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Here ¢ is infinitesimal so that V" V}“j “7 can be replaced by the OPE, and because
of

|Z‘ ) |a ki-k o7

/ d2Zi Y — ~ ; 5n15m1 (582)
2= <e 252 o'k - k;

only following terms in the OPE can give non-vanishing contribution to the 3-point

function:
o' ki-kj

OPE (V/iv/at) 5 Lyl 7 s— O (5.83)
2351
where operator O™ is further constrained to be of the form

O?iymjyj t/h”zﬂ]”g (k k. ) : (@qwjﬁw;}’ei(kﬁ*kj)'xj - (584)

afy

Here ¢"7 9" (k; , k;) are k-dependent OPE (tensor) coefficients. The above restriction
aBy p

to the form of the operators follows from the following requirements:

e Counting the weight on the both sides of the OPE and the weight of the
o'k ks D . e e
lzul” 7 tells us that operator O;-” 9% must have weight (1 + k ks , 1+ k ki >

|21

e Operator 07"V must contain at least 2 fermions, since otherwise the spin-
summation with the partition function makes the 3-point function vanish.

In the Heterotic case, the operator satisfying the above two requirements is only
Jijb;e Rtk X (for k? = 0 = k7 ). In type I case, the allowed operators include

]w 1/] 6 i(ki+k;)-X; and lp]w]w]w ez(k +kj )X
Results of the OPE
Here we determine O%F*"""" in (5.83)). The result (up to order O (k®) ) reads

o4

O;{mum = : [n‘”“jki ) jj + k;;‘@“y — jj“}
7 () )+ ) 5
= (R w0y = K50) (ki k) - )] €% (5.85)
so the OPE coefficients tgg’;ﬂ 9 (ki, kj) in (5.84)) are

.y
tgzﬁvvzua”y (ki kj) = % [n”i“jk’m + k;“ b — kﬁ”néﬂ

[nw”jkwkﬂ + (ki - k; )77,3 ny — (szJnEl - k;jln;]) (ki + kj)v} (5.86)
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3-point function from pinched-off singularity

Using the above OPE results, we can compute following 3-point function at the k2
order originating from pinched-off singularity (partition function and spin-sums are
suppressed but implied here):

/d%/d?zj <V,/ zzvv> /d%,/d zj< / d*zOPE (mvj)>
|zs—2z5|<e |zi—z5|<e

HiVi ki Vs
’k: k €L € €ipgvstapy - (Kis )

/dZZl /szJ zmkl : wﬂ/flyleikl'xl : jj@wﬂ@wzei(kﬁkj)-xj :>

HiVi iV
/]i' k € NLVlel le’zej Mijta,B'y (k k; )

/d2zl/d2zz N TR R ey :> (e gyttt Jpethetha )
:mﬂ/dm/ﬁ%m%>@ﬂw*wwm% (5.87)

Here K, is the kinematic factor (~ k?) given by

T
=T HivitiVi o (1. B B vy
le == o'k - I{Z €l €i,piv; €4, ujujta57 n <k k n

7

20m
_ v, apf B oy \ pHiVik;vj
= g iy (K6 = W) (5.89)

aBy

The kinematic factor Kj;j; given above can be explicitly computed by substituting
(5.86]) for tg’;,;“j “ and we obtain

™

Kig— —— "
! (Ki - k)

(Tl(ijl) I TQ(ijl) + T?)(’iﬂ)> (5.89)

where the 3 different tensor structures are given by (with notational abbreviation
(eiTej) =Tr (e;ej))

T = (T e) [k - ky) (Raerks) — (ki - )(k etky)] — (ki - k;) [(&] ) (kieske) + (€ €) (Kjeik)]
+ (ki - (ki + k7)) [(6 &) (kjeiky) + (¢ €) (iesk ]

= (&€ )[(kz k;) (ki€eik:) — (ki k (kElk )]
— (ki - ky) [(e &) (Ries (R + Ka)) + (] €) (Rjes (ki + Ky)] (5.90a)
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T35 = (ky - k) [(Bjese] eki) — (Kiejed eki)] + (ko - ki) [(Riejel k) — (Bjeie] eik;)]
() [kl k) + (el k) — (kere] ecky) + (ke ki)
— (ki - (ki + kj)) [(k'ele» ejk') - (k‘élﬁ;'rﬁikj) + (k:'eielTejk-) (kiejelTeikj)]
= (k- k) [(hyeae] k) — (Ricye euki)] + G ) [(sel aky) — (yese] uky)]
+ (ki - kj) [(kiere] €5 (ki + k) + (kjee] € (ki + k;))
— (kielejTei (ki + k])) + (k:iejelTei (ki + k:j))] (5.90b)
T35 = (kiey (ki + kj)) [(kie] eikt) — (kue] eik;)]
— (kjeiky) (k€] & (ki + ky)) — (kiejki) (kued e (ki + k;))
+ (kiejky) (kje! e (ki +k;)) + (kjeiky) (k:ie;»rel (ki + k;)) (5.90¢)

For the second equalities of and , we have used the modular in-
variance condition k; - k; + kj - ki + k; -k = 0, i.e. (k- (k; +k;)) = —k; - kj. The
permutation symmetry is still to be taken into account, which will be done later. T3
is a problematic tensor structure as this should not appear in the final result. It is
actually vanishing, which is shown in the following.

Simplifications of tensor structures ([5.90a)-({5.90c)

At this stage, let us note following points:

a. So far we have relaxed the momentum conservation, i.e. p =k; +k; + k; # 0
with p? = 0, and p is treated as an infinitesimal parameter. Then it follows
that k;-k; = —p-k; and € (k; + k;) = €p, so these quantities are of linear order
in p.

b. F (Zz T')

. From the point a above, can be written as K ~ ) Since we will
take p — 0 at the end and since p appears in the denominator of (| -, we
need to extract only the linear order in p for each T; as the higher orders would
not contribute to lim, ,o K. Note that the last line of and the last two
lines of are of order p? due to point a, so they do not contribute.

c. Combining both points above, we will set p =0 (i.e. k; +k; +k =0 ) for the
coefficients of k; - k; and €; (k; + k;), in order to extract the contribution at the
linear order in p.

Using the prescription given at point ¢ above, ((5.90a))-(5.90c) simplify as

T(Op) = (ki - ky) (¢] &) (kierk) (5.91a)
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T7(O(p)) = — (ki - ky) [(kieje] eihy) + (kjeie] eiki)] (5.91b)
7370(0(p)) = 0. (5.91¢)

Thus to this order reads
Kij=m [ (6 ej) (kielk;) + (kieje:qkj) + (kjeie;-qui)] ) (5.92)

Note that the above is symmetric w.r.t. i <+ j, i.e. K;; = Kj;, which can be seen
from

(€ ¢;) = (€ i) (5.93)
(kielkj) = (kjﬁlki) . (594)

Symmetrization

The overall result of 3-point function must be symmetric w.r.t. all permutations as
(ViV;V;) is. The permutations can be decomposed into permutation w.r.t. i <+ j and
the cyclic permutations. The symmetry w.r.t. cyclic permutations is broken in ([5.87|
by the OPE taken in the way of (c.f. 1st line). On the other hand, (5.87
is symmetric w.r.t. ¢ <> j, which can be seen from the symmetry of and the
integral in the last line of . In particular, the integral in the last line of
is invariant w.r.t. (i <> j ) since z; is a dummy variable integrated over and can be
renamed as z; (also the index j of P s ). Moreover, in the exponential we can use
momentum conservation and set k; - (k; + k;) = 0, which eliminates the exponential
and hence the index ¢. Therefore, the integral becomes a common factor invariant
w.r.t. any permutations of the indices, so that one needs to symmetrize only factor
K in (5.87)), which we will do now. The upshot is that we have to symmetrize
by adding only cyclic permutations of K. This can be summarized as follows:

/// d2zld22jd22i (ViViV;)

— /d2zl // d*z;d*z; (V; [OPE (V;V;)]) + 2 cyclic permutations

(/ d2zl/d 2 < / d*z; OPE (VZV])>) + 2 cyclic permutations
|zi—2z5|<e

+ 2 cyclic permutations
= Kij / 2 / dQZj (Slj)2 512]313' + 2 cyclic permutations (5.95)
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Here in the 2nd line it is assumed that the integration region over z; and z; are
restricted to that where the separation between z; and z; are smaller than the distance
to 2, ie. |z — z;| < min (|2 — 2], |2; — 2), in order to allow us to take the OPE.
The 2 cyclic permutations in the 2nd line correspond to different choices of 2 vertex
operators for taking OPE.

Using , the final result after pinched-off integration is given by

/// d221d222d223 <‘/1‘/E))‘/2> =
pinched-off

™ [[(6362) (kgﬁlk'g) + (k2€1€2€3k1) + (k2€1€362]€3)] /d221 /d222 (512)2 812P12:|

+ 2 cyclic permutations.

5.96
Transpose T is omitted because we only consider gravitons. In the last lin(e th<)3
exponential has been set to 1 since only quadratic order in momenta is concerned.
We substituted lij with 123 to make the result easier comparable with the former
result. Again, fermionic propagators S%, would be absorbed into spin summation
Zm (see from e.g.[16][40])

We see that the kinematic structure of the above result contains only the
part with pinched-off integration. It agrees with the pinched-off integration part of
the result from previous section So OPE calculation works as a double check
and confirms the correctness of our calculation.

5.2.4 Discussion

We notice that 5%]3(51-,,@) is a total derivative. Due to the reason explained in
[.2.2] the Koba-Nielsen factor was expanded and we only take the leading part
1. The coordinate integration of the amplitude is now an integration over a total
derivative on torus, which means that the whole Heterotic 1-loop 3-point correction
is vanishing anyway. This guarantees that the 1-loop will not break the gravity
kinematic structure of the effective theory. This is different for Type I theory
to which we turn now in the next section.
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5.3 Type I string

We consider the type I string compactified on T°/Zy orientifold with D = 4 non-
compact dimensions.

Vertex Operator The difference between Type-I and Heterotic 3-point graviton
amplitudes is about the vertex operators. In Heterotic case we only have to con-
sider left-moving fermions, see and . But for Type-I theory, the vertex
operators in the (0,0) and (=1, —1) pictures are

Vo200 = ) (0320 + S0 000()) (10 + G 000002 S

V;ql’,l(z,i,kx) =: eﬂl,(k)e_‘z’_q;i/)“@”eik'x - (5.98)

Useful references are [7]]6][14].

5.3.1 Tree level

The tree level 3-point amplitude reads
AP = (Vi1 (1) €@V -1 (22) cVip (23))y, (5.99)

The computation is completely similar to the one of the holomorphic sector of the
Heterotic string and yields

(0) V1V o' ki-k;
A3 ~ 61,#1111627H2V2€3,#3V3t“1u2%t X H |Zij| o (5100)
1<J

where we recall
prHRIS — i k/f 4 ppens kgl + pHst kiﬂ (5.101)

Note that there are no o’ corrections.

The result has the same tensor structure as at leading order in o/ in the
Heterotic tree level amplitude, thus we know already that the above amplitude again
shares the same kinematic structure as the expanded Einstein-Hilbert term ([5.2).

There is no disk-level O(k?) contribution in Type-I1. The 2-point function in Type-
I was discussed in [11} §2][30][31][67][59] [48][49], and the 3-point function in Type-I
was discussed in [20, §B].
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5.3.2 1-loop kinematic structure in Type-I

From the 3 graviton amplitudes of both Type-I and Heterotic, we know that the
calculation of Type-I 3 graviton amplitude would be pretty similar to Heterotic.
Thus we do not repeat the tedious calculation in but change the strategy. We
directly focus on the two specific tensor structures (kje'k;) (ej el) and (klejeleik‘j),
and present only differences to Heterotic calculation.

Following the same argument in as Heterotic string, we would again only
need vertex operators in zero ghost picture for genus-1 surfaces. The 1-loop level
3-point amplitude in Type-I theory is

3
G = <H/d2zi V070(zi,zi)> . (5.102)
=1

31

We rename Vjo(2;, Z;) as V; for simplicity in the following.

String theory has four types of surfaces at 1-loop level, or x = 0,9 = 1, i.e.
O (g?). These are the torus 7, the annulus (or cylinder) A, the M&bius strip M and
the Klein bottle K.

8-Fermion contribution in Type-I

We first observe the possible contractions of 8 (and even more) fermions in Type-
I which do not exist in Heterotic 3 graviton amplitude. In this case we will get
momentum of order £* from fermions and we must do the pinched-off integration to
cancel k?. There are two different choices of picking fermions among vertex operators
for a certain 8 fermion contraction contributing to O(k?) with pinched-off integration:

1. In the first case, the contraction of 8 fermions consists of 4-fermions coming
from one vertex operator and 2 fermions coming from each of the remaining
2 vertex operators. All the other operators in the contraction are bosons.
W.lo.g. we assign 4-fermions to Vertex operator V) as an example, then the
term we are going to contract would be

Ey - il ey - Y e X 0 X M kg - porpy €2 X2 9 X ks - apgpietts X3 (5.103)

Since a contraction of a boson with an exponential would bring in an extra
k, see (B.1d), we cannot contract any boson with the exponentials here. The

only source of the ﬁ term required by the pinched-off integration must be
ij

the fermion contractions. Due to |Zij|2 = 2;;Z;j, one needs 1 pair of (1;1;) and
1 pair of (¢;40;) to get 1/z;; and 1/Zz;; when z; — z;. However, we have only
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one pair of fermions each from V5 and V3, and in the same vertex operator the
two fermions are either both left-moving or right-moving, it’s impossible to get
1/z;; and 1/Z;; simultaneously from either V5 or V5. Therefore, we can exclude
this case from O(k?) contribution.

2. In the second case, the contraction has left and right-moving bosons within the
same vertex operator, and 8 fermions are in the remaining 2 vertex operators.
W.l.o.g. we choose this vertex operator to be V3 as an example, then the
contraction term would be

I T 1
k- D ko e N by - g kytha e X2OXFOX e (5.104)

Here we observe that 0X5 cannot be contracted with X3, thus both of them
have to be contracted with the exponentials from V; and V5. However this
disobeys the statement we have made in the last paragraph that bosons should
not be contracted with exponentials, which would give an extra k. Therefore
we can also exclude this case from k? contribution.

To conclude, from the above argument, 8 fermion contractions should not be
included when considering O(k?) contribution.

10-and more Fermion contributions in Type-I Since 10 and more fermion
contributions in the amplitude of Type-I have 5 or more momenta already, while the
pinched-off integration can only cancel two momenta, we can ignore these contrac-
tions when only considering O(k?) in Type-I theory.

6-Fermion contribution in Type-I

By a simple observation we claim that in 6-fermion contractions each vertex operator
must contribute one and only one pair of fermions, otherwise one will have to contract
fermions located at the same position, which is forbidden. Furthermore, we should
mention that the tensor structure will be invariant when we exchange left-moving
and right-moving components of the contractions, since the polarization tensor €, is
symmetric. These two observations show that one can already use most of the results
from the Heterotic 1-loop 3 graviton calculation. We should follow the rules listed
in as well. These will greatly simplify our work, and we can already get an
anti-holomorphic copy from Heterotic calculation by changing all left (right)-moving
components in the Heterotic case to right (left)-moving, respectively.
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Ggf and Ggf correlation functions in Type-I

Here we want to discuss the possible variants of Ggf correlation functions when we
go to Type-I from Heterotic. W.l.o.g we again take Géf (kreskn)(erea) 110 (5.37) as an
example, and rewrite it in Type-I:

[ ]
| 1 1 | |
€1 mul@Xl Zkl d)ﬂf}ul ik X1 62#2V26X2 Zkg 1,[)2’(/}”2 ik X2€3#3u58X3 Zkg 1,[)3’(/}”3 ik XS (5105)

1
GéfL(I/;feskl)(ﬂéz) E/dzzl dzZ?/dQZ?)(kQ 'k3)(k1€3k1)(6162)

(Y102) 0 (hat)3) o (V1103) 0 (DX 10 XY 0 OPF | X35 | 28 F2 x g5 | 22755 [ Gy | 2P0 2.
(5.106)

Here LLL in the superscript of Gy means that all three pairs of fermions are left-
moving, in the sequence of Vi, V5, V5. R refers to right-moving. We will use this
notation throughout Type-I calculation.

We notice that if all 3 superscripts of L and R of V;, V5 and V3 for Ggf and Ggf
correlation functions are switched to the other moving (e.g. GFt — GEEL) the
amplitude is invariant: G*E = GERE

1-loop Type-I theory has 3 more topologies other than torus. 8% (XX)_ # 9*F,
[7, (A.4)] for A, K and M. Therefore the coordinate integration is not performed
on a total derivative any more. This will break the vanishing result of O(k?) with
pinching singularity in Heterotic case.

Lifting to covering Torus

To get a consistent result, we need to lift the integrals from 1-loop surfaces o =
A, IC, M to the covering torus using the following equation backwards|7]

/dzzf UdQH/L, 1 /UdQ [f(2) + f(I(2)], (5.107)

where (o) is the image of involution on the double cover of o, see (A.13) or [7,
(A.1)].
In order to make use of the full power of the lifting technique, we need to revert all

the amplitudes to the original form with all the propagators NOT expressed explicitly
by functions. For example, we should rewrite ([5.106)) as

/
Gl eat)(eren) = Ld221Ld222/0d223(k2'k3)(’f1€3k1)(6162)
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(1102)e (Vi) o (153) 0 (OX10X 2o (DX X1 Yo [ NG 25

1<j
o' [ 2 2 LLL o |Bkik
= - E d 21 d z2 d Zg(kg . k3)(k’163k1)(6162)f1 (2’17 22, 23) H |Xij‘ .
o o o 1<j

(5.108)

We know that we have 7 additional variants of this amplitude in Type-I, which
are GI,LLR Gl,LRL GI,LRR GI,RLL Gl,RLR GI,RRL Gl,RRR‘ Using the fact that [7
(A.3)]

(X(2:)X(2))e = (X (2:) X (I5(2))))0 = (X ([o(2:)) X ()0 (0= A K, M),

(5.109)
and [14, (185), (186)] (noticing the 7)
<¢_(Zi)7vz<zj)>a = iS5 (2, I, (25)), (5.110)
(V(2:)¥(2)))o = 1S6 (1o (21), %), (5.111)
we find for example that
1LLR(21,Z2aZ3) B B o
=(V192) 5 (Va3) 0 (V113) 5 (0X10X2), (0X3X1) 4
1200184 e Lo(20))iS0 o1 T (20 00} X X
= ()i e T (20)iS, o1 o () OX10X0) e o (X ) X 1),
- 0
=(1192) 590 (22, L5 (23))50(31»10(23))<3X13X2>a610(23)(X(Z3)X(21)>
=(U192)0 55 (22, I, (Z3))Sa(21710(23))<3X15X2>aa]a(z3) (X (L5(23)) X (1))
= [T (21, 20, 15(23)), (5.112)

where in the 4th line the partial derivative is 0/0(1 — 23 4+ §) = 0/01x(23) for K.
This means that we can pair all these variants to lift to the covering torus by using
(5.107))

1
1,LLL 1,LLR
G6f (kresk)(erea) + Gﬁf (kreskn)(erea) = — 1 /U d*z /UdZZ’z /G d223(/€2 - k3)(k1eskr)(€e1€2)

o Lk
(flLLL(217227Z3) +f1LLR<Zl7227Z3)> H {ij‘2 J

1<j
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1
= — —/dQZl/d222/d223(k32 'l{?3)(k3163k1>(61€2)

o | 3kiks
(FEFE G 22, 28) + FEEE 21, 20, 0 (20)) ) TT I

i<j
1
= — —/d221/d222/ d223(k52'k?g)(k?1€3]€1)(61€2)
ik
P (o, 2, 2) [T NG (5.113)
1<j
We observe that the integrand of this sum is exactly the same as G L

i e 6f,(k1esk1)(ere2)
except for the domain. Thus we can repeat the above lifting procedure and finally

obtain the result that

Gili}”LLL + Gl PR + Gl ;o + Gl . + Gl ri + Gl Fia + Gl AL + G ‘(leSkl)(€1€2) (AL M)
Lk, -kj
= _7/ d221/ d2Z2/ d22’3 ko - k’3 k‘1€3]€1)(€1€2)f (Z17227Z3 H |Xij 2
1<J
1,LLL
Gﬁf (k1eska)( 6162)|T' (5.114)

Moreover, we can apply this procedure to all G4 and Gy correlation functions, and
reduce/lift them all to the torus correlation functions with all left-moving fermions.

But we would like to point out that, G4y correlation functions has only 2 pairs
of fermions, thus actually they have only two superscript of L or R in Type-I. We
notice that

/ d*z3 (0X10X3) (0X,0X3) |

, -0

= [ 0 gy (KX (1) )

_ / fmﬁ (xix(L()) ﬁ (XaX (Io(2))),
. o0

—/Ud zgala(fo(zg)) <X

X
- / &z <axlax( )

2 9 9 5 0
:/Ud 23818_23<X1X(Z3)>0' 820_%<X2X(Z3)>0
_ 0
>>U 828(: <X2X(23)>a
0o

(10(20)), o VX UG
) u

(0X-0X (23))>U and vice versa (5.115)



5.3. TYPE I STRING 95

by using the invariance under I,(z;) of the bosonic correlator (X;X(z;)), iz =
<XiX <[U(zj)>> lizj. Therefore we can apply (5.107) to lift the G4y correlation
functions on A, i‘C, M to T, for example:

/ P2 (0X10X,)(0X,0X3) + / P2 (DX10X)(0X,0X3)

o / @2 (0X:0X (I,() ) ) (0X:0X (Io(z))) + / %23 (0X,0X3)_ (0X20X3)
= / d*z3 (0X10X3) (0X20X5) . (5.116)
T

We conclude that the lifting procedure would also lift 4-fermion correlation functions
on 1-loop surfaces to the corresponding correlation function on the covering torus.

Summing up 1-loop Type-I 3-point amplitudes

From the conclusion of ”Lifting to covering Torus” §5.3.2) we know that lifting pro-
cedure imposes no extra factor, thus the result of Type-I will be exactly the same as
the result of Heterotic, except that we should use the correlators and
in Type-I for 1-loop surfaces A, K and M. Be aware that as in Heterotic, fermion
propagators would again be absorbed into spin summation Z™,. 1-loop 3 graviton
Type-I amplitude receives contributions only from A, K and MP| We summarize
the kinematic structure result up to the overall factor:

T
G, agﬁ (a T + 823 ' (Z2, 23)) {(k1 - k) (e1€2) (kresky) + (k1 - ko) [(ksereaesky) — (kseaeresky)]

2 |212| 27-2
+2 (/{11 . k3) (k‘263€162]€3) + 2 (kg -k ) (k3€1€2€3k‘1)
+2 (]{31 . ]Cg) (k2€16263]€2) —+ 2 (kQ k’ ) (k1626163k1

}
2 o'm
- |- O Py(22,15(21)) | (krezeaerks) +523 (%2, Z3)

« 22

2
_J

T2
2 Y ( + 612P 2:1, 22)) {( ) (6163) (k3€2]<i3) ( k‘3) [(k‘2€3€1€2]€3) — (k3€2€3€1]<i2)]
\213\

+2 (kl ) (k362€163k2) + 2 (kg k‘3) (k2€16362k‘1)

6381 (23,1 (Zl) ) k2616362k1 e + 532 23,22))

5Type-I theory also contains torus amplitude. However torus amplitude would exactly the same
as in Heterotic, thus it is vanishing.
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+2 (kl . kg) (k36263€1k’3) + 2 (k‘g . kg) (k1626163k1)}

2 ! _
_ J (_Z ™ + 8183P5(21,10(23))) (k3€26163]€2) (

T2

o'm

5 T énga(zl,zz))

o'm

!
_ 2 (‘;‘ LI 8283P(,(22,L,(Z3))) (kreseserks) ( + 02, P, (%, 21))
T2 27‘2

1 ! =
+ a 5 <Z’Tﬂ- + (9123PU(51, Z3)> {(k‘g . k‘3) (6263) (kgﬁlkg) + (kg . k‘3) [(k‘2€1€3€2]€1) — (k26162€31€1)]
2
(

2 k‘361€263k1) + 2 (kl . k‘3) (k1€2€3€1k‘2)
+2 (]{31 . ]CQ) (k3€26361k3) + 2 (]Cl . k’3) (k261€263]€2)}
/

2 o T = CV/’lT _
- — ( 5 + 0102P5 (21, Ia(Zz))) (ksezeresks) ( + 5%3130(51» 53))
To 270

/ !
- (—‘;‘ Ty 63323,(23,10(32))) (ksereseaks) (‘” + 32, P (55, zl)) . (5.117)
T2 27‘2

As in Heterotic theory, we notice that both 8,0;P,(z;,1,(z;)) and 92 P,(%;, z;) are
total derivatives, thus they vanish upon coordinate integration on the covering torus.
Thus we could simplify our life and get rid of all terms including 9;0; P, (zi, I,(2;)) or
5%PJ(Z,-, Z;). Then we perform the pinched-off integration as well as an extra coordi-
nator integration to obtain the non-vanishing contribution (using again fT d*z = 27)

o' { (erea) (kreshr) + (kaezerezhn) + (kzereaeshi) + 2 (kacrezeakn)
+ (6163) (l{?3€2]€3) + (l{?362€361]{72) + (k2€3€162]€3) + 2 (k1€36261k33)
+ (6263) (szle) + (k2€1€2€3/€1) -+ (k2€1€3€2k1) -+ 2 (k3€261€3k2)} . (5118)

Using ((5.33) to simplify the above contribution, we arrive at the final result

Oé/7T2 { (1{5163]€1> (6162) — 2 (k’36263€1]€2>
+ (k3€2]€3) (6361) -2 (k2616263k1)
+ (knglk’Q) (6263) -2 (k?16361€2k’3) } . (5119)

5.3.3 Discussion

We double-checked the gravity kinematic structure in the Heterotic 1-loop 3-point
graviton amplitude from [40]. We derived the kinematic structure different
from theirs. We extended the calculation to Type-I 1-loop 3-point graviton am-
plitude. We already knew that the calculation to Type-I 1-loop 3-point graviton
amplitude in [9] was incomplete because they did not consider pinched-off integra-
tion. However, even including pinched-off integration, non-vanishing 1-loop correc-
tion from our Type-I calculation still breaks the gravity kinematic structure
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Figure 5.2: Factorization of pinched-off integration contribution

(5.2)), which shows that the string amplitude calculation is incomplete. Further stud-
ies are necessary to solve this problem.

In the pinching limit, according to [69, §2.5.1, §4.4, §4.5], the 1-loop surface that
we are working on should be factorized into a sphere with two vertex operators on
it connected to a 1-loop surface with 1 vertex operator on it by a propagator. We
illustrate the image in Figure Actually in the calculation we never take into
account the effect of PCOs (Picture Changing Operators). The so called ”vertical
integration” technique[64, §3.6] provides a potential method toward the solution. In
order to make the picture numbers on both sphere and 1-loop surface consistent in
Figure |5.2] we would have to move 1 PCO from the vertex operator on the sphere
factor to the vertex operator on the torus factor in the pinching limit [69] §6.4.6][65]
§8] E] We see that in the Figure the 2 vertex operators at the 2 punctures con-
nected by the plumbing are forced to have canonical picture numbeif}, thus the torus
and the sphere could have the correct total picture numbers of 0 and -2 respectively,
as discussed in §2.2.1] This modification of distribution of picture numbers involves
"vertical integration” and introduces potential new contributions. Unfortunately,
the application of ”vertical integration” is still under research. We have to leave this
topic to our future study.

To complete the 3-point 1-loop correction calculation, 1-loop partition functions
of Type-1IB T®/Zy orientifolds would be necessary. These are introduced in app
app and app/D.2] They can also be found in e.g.[7][47].

6The superscripts in Figure stand for the picture number of the corresponding vertex operator
or PCO.

"We are dealing with gravitons here, so we are in the NS sector and the picture numbers of
the vertex operators on the two punctures at the 2 ends of the plumbing should be canonical. RR
sector leads to a different total picture number, therefore requires the insertion of an extra PCO
on the plumbing.[37, §17.2.2]



Chapter 6

Preliminary: Basics about Genus—%

correction

The natural idea of the next step of the loop correction would be higher order of
perturbation series. Genus—% is the next higher order to the 1-loop. Genus—% surfaces
are surfaces with boundaries (open surfaces) plus unoriented surfaces. Generally, one
associates a closed oriented surface ¥ which is a double cover of ¥ to obtain an open
or unoriented surface ¥. Involution reduces ¥ to ¥. We want to show that one
can express the determinants, differentials and classical action on ¥ in terms of the
corresponding quantities on . And we get genus—% surfaces by the involution on
2-torus. This allows us to utilize the well-studied properties of genus-2 surfaces. E]

6.1 Involution on surfaces

A conformal structure [g] determines an almost complex structure J (J? = —1) by
J§ = \/99%°€ch, € is the Levi-Civita symbol. And on 2 dimensional Riemann surfaces
Y, Jy determines a complex structure J = idz ® % —idz ® %. One can classify
Riemann surfaces X into three cases:

Oriented surface with boundary 0% [38] Take ¥* to be the copy of ¥ with
opposite orientation. The double cover of oriented surface ¥ with boundary is a
closed oriented surface 3 without boundary, which is obtained by attaching ¥* to
¥ along their corresponding boundaries. The involution I : ¥ — ¥ is orientation
reversing and maps 1 to 1 from X to ¥*. We can extend the almost complex structure

Tn this chapter we closely follow [21].
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J on ¥ to an almost complex structure J on ¥ by letting J, = J, for p € ¥ and
Jy=—([oJoI™1), for p € X*. By construction that I is orientation reversing, I is
anti-conformal and its fixed point set is 93, and ¥ = /1.

Unoriented surface without boundary [3] In this case, an unoriented surface
¥ without boundary has a compact oriented double cover ¥. The corresponding
anti-conformal involution I interchanges two points of ¥ which corresponds to the
same point on X, but the image I(p) € X* lies above p € ¥. In other words, this
could be considered effectively as gluing an orientation-reversed copy ¥* of ¥ along
the cross-caps of . This explains the construction of the double cover, and I has no
fixed point. We can lift the conformal structure on ¥ to ¥. And since ¥ is oriented,
the conformal structure naturally determines a complex structure on ¥.

Unoriented surface with boundary [3] For ¥ unoriented with boundary, we
take the complex double cover, which is obtained by doubling the ¥ (effectively along
the cross-cap) to get an oriented double cover O with twice as many boundaries as
> as the anti-conformal involution in the unoriented surface without boundary, then
identifying each boundary with its image under I. There is another possible double
cover B across the boundaries, which is unoriented and has no boundaries. We
define the quadruple of ¥ to be @), which is the oriented double cover of B and it is
boundaryless. @ will be needed in §6.3]

The anti-conformal involution I transforms canonical homology basis of the Rie-
mann surfaces a-cycles to a, and b-cycles to b, and it is an orientation-reversing
diffeomorphism due to anti-conformal property. We express the involution I as

]ai:Fia-, 6.1
e}

where elements of T';; are integers such that I'> = 1. Because of the orientation-
reversing property, the involution I preserves the intersection pairing but changes its
sign, which can be expressed as

And then we take a normalized basis of holomorphic differentials on

/ wj = 61’]’7 /b wj = Qij7 (63)

7 3

where €) is the period matrix. It gives

where bar means complex conjugate.
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6.2 Moduli space

Period matrix € as defined in (3.35)) could be used to identify the moduli space of
genus—% and 2 surfaces. We give the partition function of one boson on ¥ and the
moduli space measure oy, as an example: [4]

AZ(XZ):/M(E) O-Z/<HdXi>€_ cl[Xi}’

o — (%) (et (P{R) Y (), (6.5)

where M(3) is the moduli space. The measure of the moduli space is separated into
3 parts: djy, (X) is the Weil-Petersson measure of the moduli space defined in (6.24));
Ay, is the scalar Laplacian 010 acting on X; (P]P,)s, is the vector Laplacian as
Py acts on vector fields, see ([2.24]). Sa[X;] is the classical action.

In the path integral, we integrate over the moduli space of conformal structures,
which indicates that ¥ and 3 no longer have fixed conformal structures. Define the
action of I on the space C(X) of almost complex structures J by

ST

J— —I,0Jol,, (6.6)

which is anti—confogmal. Then ¥ could be a double cover of ¥ iff J of ¥ is in the
fixed point set C7(X) under 1. )
The Teichmiiller and moduli spaces of ¥ are[29)

T(£) = O(5)/Diffy(8),  M(E) = C(2)/Diff(S), (6.7)

where Diff(3) is the group of orientation-preserving diffeomorphisms of ¥ and Diffy(3)

is the subgroup of Diff(X) connected to the identity. And
G(¥) = Diff(2) /Diffy (X) (6.8)

is the mapping class group.

We identify the real tangent space to T(X) at [J] with the space of real Beltrami
differentials pp = pbde® ® 9/0x°, and the real cotangent space T*(X) at [J] with
the space of real quadratic differentials ¢ = ¢updz® ® dab. T(X) and T*(X) are
complex manifolds due to the almost complex structure[60]

(& a a
py = (Ju) = Jopgda® @ pye
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o (Jop) = Jopadr® ® dat. (6.9)

One could do the same construction on ¥, but if 3 is unoriented, then one takes
C(X) to be the space of conformal structures. If 3 has boundaries, Diffy(X) takes
each boundary component into itself[66].

T(X) should be identified with a slice of T'(3) which is the fixed point set T (%)
under /. The mapping class group G(X) is naturally identified with the relative mod-
ular grou G(%, 1) = Diff'(£)/Diff}(£) where Diff’ is the group of diffeomorphisms
which commute Wlth I. Therefore

ME) =2 THE)/G(S, ). (6.10)

From the above constructions, we are able to do the following steps: First, express
the string integrand for 3 as a form on T'(X); Second, rewrite the determinants,
differentials, and classical action in oy in terms of quantities defined on 3: Then,
identify the resulting expression as a form on 77(%) € T(X); Finally, check that this
form is invariant under the relative modular group G (3, I).

After showing that the string integrand descends to a form on T(%)/G(%, 1) =
M(X), we are able to write the amplitude Ay, for 3 in terms of a real slice of T( ).

6.3 Determinants

Now we proceed to the treatment of determinants of the string integrand. First we
deal with det'Ay. ;. det’ always stands for the determinant without zero modes while
zero modes are taken care of in the ghost system. We want to express det’Ay , in
terms of the scalar determinant on . In order to do so, we try to express det Aig
in terms of det'Ag , first, where det A*g and det Ag S denote the laplacian Ag ,
restricted to functions even (+) and odd (—) under I. One notices that functions
odd under I do not include zero modes.
We introduce a quantity[32]:

Rs.;(J) = det' Tm Q* /det/ Im Q~ = det [(1 YD) ImQ+ (1 - D)(ImQ)Y],  (6.11)

where ImQ* = (1 £ ) Im Q(1 £T) and I is defining the involution Ia; = I';;a;.
We claim that

Jsva

2Details of relative modular group would be discussed in

det’Agg . .
—_— /det Aig = RZ’[<J) (612)
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up to a multiplicative constant independent of g. The proof is given in [ZI]EL and
the central idea is to calculate the variation of the equation. Using this equation
together with the relation

det'Ag , = det/Agg det Ag (6.13)

one derives

Js V9 Jsv9

det’As 2
det Ay = —22 Rs (J))* 2.

Next we need to relate det’'Ay. , to det’A%g[ﬂ]. If 3 is oriented with boundary,

det’ AL det’ A« 2 )
( S0 ) (g, (),

N|—=

(6.14)

det AZy =det Ag | det/AF, =det’A (6.15)

where D and N denote Dirichlet and Neumann boundary conditions respectively. If
> is unoriented with boundary,

det Ag’gdet’Ag’g = det'A ,, det’Agyg = det’Agg, (6.16)

where () is the quadruple of ¥. Combining equations (6.12), (6.15) and (6.16]) one
gets

det IAQQ det’Agig/ Jx 9
2 2
. det’ As 1 det’Ag, _
oriented ( T \/z;) (Rs 1(J)) 2 ( T \/%‘ ) (Rs1(J))

det'Ag : ~ _
( Lﬁ) (Rs1(J))

If ¥ is unoriented without boundaries, one can similarly derive

det'Ag, [det’Ag, 2 ) 1
o va —( fg\/§> (Rs(J)) 2. (6.17)

3be aware of the typo in [21], actually all X in [21, (4.1)] should have a bar

N[

(det,AQ,g)%(RQ,I(J))
(det/As; )2 (R ;(J))

(NI

unoriented

[T T
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Vector laplacian One also has to consider the vector laplacian in the amplitude

(6.5)

1
(PIP)E = (A°A,. + SLOLE (6.18)
With a symmetric tensor metric g one has
] ip)" i)
det(Pl P1> = det (Pl P1> " det (Pl P1> - (6.19)
PINY] X9 N

where the + and — sign denote the vector laplacians restricted to even and odd
vector fields under I. Using the fact that J anticommutes with the involution and
commutes with the vector laplacian, one derives that

+ —
det(PfH)f :det<PfP1>f , (6.20)
2.9 2.9
SO
+ 3 +
det(PlTP1>7 - (det(PlTH)) and det<PfP1) :det<P1TP1>7 ,
2.9 2.9 2.9 2.9
(6.21)
thus )
2
det(prl) - <det(PfP1> ) . (6.22)
.9 .9

As an example, the string partition function of one boson on unoriented > with
boundary is
As(X)) = Mz R, : / [ dxiesax (6.23)
TI/G

Remarks:

1. The sign in exponent of Ry, ; is chosen w.r.t. the following: positive sign is for
open string (Neumann) boundary conditions or cross caps; negative sign is for
closed string (Dirichlet) boundary conditions.

2. TI(X)/G(2, 1) 2 M(X) is the moduli space of ¥.

3. The classical action S¢[X;]|, which is only present if there are external string
states, can be explicitly given in terms of abelian differentials on > and param-
eterized boundary curves X;.
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The Weil-Petersson measure with a symmetric metric g can be factorized[33]:

6g—6

) — det<¢17 :u]>

d M= —————— dm; =d YA Jd ), 6.24

Hawp (3) (et(n, 63))7 Hl Hp (B) A g, (5) (6.24)
where {¢;} is any basis for the space of real quadratic differentials on 3, {u;} is any
basis of Beltrami differentials corresponding to tangent vectors d/dm; to Teichmiiller
space, and (-, -) is the Petersson pairing. Since g is symmetric, the space 0f quadratic
differentials {¢;} splits into subspaces {¢;} = {S;, JS;} where S; (JS;) is even (odd)
under [ respectively.

From the factorization of du,,,(2) we can derive the measure My, with help of

os = Ms A JMs:

1
det(PTH) ’ 1Y 3 39-3

5 det As 2 1

PN 3,9 _1

- det Im 2) ™2 det(S;, dm;.
u { det{¢g;, ¢;)2 (fz\/_detImQ) } ( ) (S 1) H

(6.25)

Then the determinant of the partition function of one boson on ¥ is determined.

6.4 Fermions under Involution

Above method of taking square root from the double cover also applies to fermionic
determinants giving rise to the fermionic partition functions[I0]. In the following,
we consider only the right moving part of fermions as a simple illustration since left
and right movers can have different spin structures.

The determinant of Dirac operator dety D on the certain surfaces can be ex-
pressed by the determinant of Dirac operator dety D on the double cover of that
surface[63], which is similar to the bosonic determinant. Here we give a detailed
explanation of this argument.

The key should be the point “There is therefore a one-to-one correspondence
between even and odd eigenfunctions with the same eigenvalue.”in [63]. We know
that

dete D = dety D dete D™ (6.26)

where + and — represent that D is restricted to the even and odd states under
involution I respectively. For every eigenstate T of detyD which is even under
Involution, it is always possible to construct an unique (*77) that is an eigenstate
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with the same eigenvalue and is odd under Involution, and vice versa[63]. This

indicates
dete D" = dets D™ (6.27)

By definition, one easily finds that
detsD = detg D" or  dety,D = dete D™ (6.28)
w.r.t. certain spin structure and involution. Then the claim
detl,D = (detiD)? (6.29)

is straightforward.
Refering to [63], we can explicitly write down the determinant up to a numerical

constant:
det=-A -
dety.D = z
e (fz\/ﬁdetImQ)

where @ and b are the twists which represent the spin structures, and 19[?] is the
standard theta function with characteristics.

Fermionic partition function includes a sum of theta functions over spin structures
with coefficient c:

i (] deth A ~i
Z e /D: Y
F«Zc[b}detz ch | (fzﬁdetlmﬂ) 9

i 1 det/’A a _ = - T . S NT
_ Z c ) Z e w(A+a)t(n+a) ' +2im(7+a)db ]
— J5 /g det ImQ

nezZ9

ST

9 [‘;] (t)', (6.30)

| QL

N

| QL

(6.31)

The coefficients ¢ of higher loops could be determined by factorizing the double
covering surface into 1-loop surfaces. For example, a genus-2 torus 7 could be
factorized into two separate tori 7; and 7. c of T as well as the relative signs between
c could be determined up to a normalizing constant by expressing ¢ = cycy; and
imposing invariance under modular transformation, in the standard way. Due to the
involution, the coefficients ¢ in genus—% surface are inherited from the coefficients in
its genus-2 torus double cover.
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6.5 Relative Modular Group

All modular transformations M that preserve the involution I in the sense that I’ =
MIM~' = I form the so called "relative modular group”, which is a subgroup of the
modular group Sp(2¢g,Z) and is dependent on the individual surface. Only relative
modular transformations survive the involution on the double covering surface, and
thus they are relevant for the space after involution. Here we consider the general
case that genus-g is arbitraryf_f]

We know that the spin-structures can be described by the periodicity /anti-periodicity
when a fermions goes around the homology basis/cycles. We define the canonical
homology basis as a; winding around handles and b; winding around holes (see Figure
with symplectic intersection form

J(ai,bj) = —J(bj,ai) = 51']‘,
J(&i,a]’) = J(bl, bj) =0. (632)

The symplectic form could be represented by the 2¢g dimensional homology basis

vector
a1

. 0
g
v=1, 1 e, = | 1| (ng component)
b, ’
as
e Je, = Jun (6.33)

where J,,,,, is the matrix element of J. We can give the explicit form of J as

J= ( " ) (6.34)
B 2gx2g

According to §6.1] the involution I is anti-conformal, thus I reverses the rela-
tive angle between intersecting homology basis on the double cover ¥. Then the
involution matrix I acting on arbitrary e satisfies

—Jpn = (Iey,) " J(Ie,) =€) 1T JIe, and —.J,,=e} (—J)e, = ["Jl=—J.
(6.35)

4This section closely follows [18] and [19]
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The action on the a-cycles determines the behavior of the abelian differentials by
preserving fai w; = 0;;. We take the general form of involution matrix as

A B
I = ( ) , (6.36)
¢ D (29%2g)

where A, B,C, D are g x g matrices of integers and satisfy
C'A=ATc, D'B=B"D, (C'B-A"D=1 (6.37)
on account of and . Period matrix {2 compatible with I should satisfy
Q=1(Q) = (C+DY(A+ B (6.38)

while fai w; = 0;; should be preserved under I, because of .

One can choose a proper homology basis to simplify both the involution matrix
and the corresponding period matrix 2. And it’s always possible to reduce the
involution matrix to the triangular form

= (2 _01) , (6.39)

where the matrix A is symmetric on account of . A determines the real part
of the period matrix 2 as in (7.3)[55]. Such a basis which has this triangular form
of I is named ”identity basis”.

As a basic rule to obtain the identity basis, the homology a-cycles should be
invariant under involution, and the homology b-cycles should intersect a-cycles, thus
their orientation would be reversed under involution and therefore the sign of the
symplectic intersection pairing J(a,b) would be flipped.

By the classification theorem of closed surfaces[50)], any connected closed surface
should be homeomorphic to one of the 3 families of surfaces:

e an oriented surface

e an oriented surface glued with 1 cross-cap: factorized into an oriented surface
with 1 boundary and a Mobius strip, glued along the boundaries

e an oriented surface glued with 2 cross-caps: factorized into an oriented surface
with 2 boundaries and 2 Md6bius strips, glued along the boundaries
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Therefore we do not have to consider surfaces with 3 or more cross-caps. We factorize
the surfaces in above way because we want to associate the cross-caps of a surface
with homology cycles on the double cover of the surface. The construction of the
double covering Cylinder of a Mdbius strip is illustrated in Figure [6.1 We see in
Figure how a cross-cap of a Mdbius strip is associated with a cycle A on the
double covering Cylinder. Equivalently we can say that the cross-cap on a surface
¥ is associated with the homology cycle A on the double cover ¥, which is shown in
Figure [6.2]

If a surface ¥ has a total number n of boundaries plus cross-caps, then we take
n — 1 of them to be associated with n — 1 a-cycles of identity basis on the double
cover ¥, and this fixes the positions of these n — 1 a-cycles of identity basis on .
For remaining a-cycles on ¥ which are not associated with boundaries or cross-caps
on X, we take them to be a subset of the canonical homology basis on ¥ that is not
associated with any boundaries/cross-caps on ¥ (for example aq, as in Figure .
Soif n =1, e.g. ¥ is a torus with a hole or a cross-cap, no a-cycle on the double
covering Torus 3 will be associated with a boundary or cross-cap on ¥, see Figure
. A detailed illustration of the identity basis of genus—% surfaces could be found
in the following ” Genus—%” section, paragraph ”Identity basis” (

All the transformations M in the modular group Sp(2g,Z) that preserve I with

I'=MIM'=1 (6.40)
are of the formP|
M <A 0 ) (6.41)
R — —IN\T .
¢ <A ) (29x2g)
with A € GL(g,Z) and
20 =AA—(AHTA,  Ce€z99, (6.42)

To avoid ambiguity, from now on we always call relative modular transformations
Mg, and general modular transformations M. One should notice that on genus-g > 1
surfaces, the relative modular transformation Mz may mix neighboring tori.

Genus-1

Acting involution on a torus one could get 3 topologically different surfaces: Annulus,
Mobius strip and Klein bottle. The involution matrix under identity basis are:

1 0 1 0 1 0

Scf. app for more details.
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V4
y ) 5
| 0<x<1:
X,Y)=(X,y)
1<x<2,0<y<lI:
AEY)~2-xy+H) A
¢ 1<x<2,1<y<2:
1 W(XSYHZ' xs}"l) 1
0 1 0 1 2
X

Figure 6.1: Double cover of Mébius strip

Left: Mdbius strip, Right: double covering Cylinder

the dotted line A is a cycle on double covering Cylinder

7 is the projecting operator from double covering Cylinder to Mobius strip
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Factorization

double covering

>

Homology cycle A

Figure 6.2: Correspondence between cross-cap and homology cycle

It is worth to mention that here the identity basis and involution matrix are treated
under tree-channel, or in other word, we are representing the involution matrix by
its action on identity basis. This is different from what has been done in [7] and
[18]. There the involution is acting on the complex z-plane of a torus. Identity basis
always means working in tree-channel.

Genus—%

In the case of genus—% in which we are interested, there are 5 topologically different
surfaces. Choosing the identity basis we get the A matrices for (030) the ”pair of

pants”, (110) the "torus with a hole” and (101) the ”torus with a cross-cap”:[1§]

0 0 01 01
A(O?’U) = (O 0) ) A(110) - (1 0) ) A(101) = (1 O) ) (644)

where the three integers (hbc) represent the number of handles (h), boundaries (b)
and cross-caps (¢). The dimension of the A being 2 is because we always consider
the homology basis to be on the double cover 3 (in this case, genus-2 torus) as we
have discussed previously.
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Identity basis We illustrate the identity basis aq, as, b1, by of genus—% surfaces on
the double covering genus-2 torus in Figure[6.3] We split all 5 surfaces into 2 different
cases.

First case is the surfaces without handle as in Figure [6.3a] Here the homology
basis is identity basis and a-cycle or combination of a-cycles is always associated with
a boundary or a cross-cap, and b-cycle always intersects the corresponding a-cycle.

Second case is the surfaces with handle as in Figure [6.3b] Here we take the
canonical homology basis ai, as, by, be in (b). In this basis we can treat the modular
transformations almost the same as the modular transformations on a single torus,
thus could simplify the calculation. Identity basis of the surfaces with handle is
shown in Figure [6.3¢f One can see the relation between the identity basis and the
canonical basis.

For (012) ”Klein bottle with a hole”, we have to distinguish among three positions
of the boundary relative to the cross-caps, which leads to three A matrices:

m _ (11 @ _ (10 @ _ (01
A(Om)_(l 0)’ A(012)_(0 1) A(OIQ)_ 1 1) (645)

Agé)w) could be derived from Agg)lz) by acting modular transformation M on the

Involution I with the components of M being A= = 1 4+ o and C = 0, while

Aég)m) could be derived from Agé)u) by acting M on [ with the components of M
1

being A = ¢ and C' = 0, where o are pauli matrices. Be aware that these two M
are not relative modular transformations since they do not preserve A hence do not
preserve I. We have to distinguish them because A is chosen based on a specific
choice of homology basis which is ”identity basis”. The two involutions IV and
I®) correspond to two different ”identity bases” w.r.t. the different positions of the
homology basis relative to the original positions of the homology basis in AE?))H) case.
Similarly, for (021) ”Mébius strip with a hole”, one has to distinguish among

three positions of the cross-cap relative to the holes, which leads to:

m _ (L0 @ _ (11 @ _ (00
A(021)_(0 0), A(021)—(1 1) A(021)— 0 1) (6.46)

The rank of the relative modular group of a genus—% surface is 2.[I8] This can
be easily seen from the form of the relative modular transformation matrix, that
the relative modular transformation is only determined by upper left 2 block. The
relative modular group of (012) and (021) surfaces in Ag?))m) and AE??U bases are
generated by the same set of two generators:

o 0 , T? 0
G2 — (01 01) and Q'@ — (C (TQ)T) (6.47)
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(a) Identity Basis of genus-3 surfaces without
handle. a1, as and a;lag are associated with
the boundaries or cross-caps of the genus—%
surface.

(b) Canonical Basis of genus-3 surfaces with
handle. c cycle is associated with the bound-

ary or cross-cap of the genus—% surface.

(c) Identity Basis of genus-3 surfaces with

handle.

Figure 6.3: Identity Basis of genus-% surfaces on the double cover
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where

T— G (1)> (6.48)

is the generator of SL(2,Z). The off-diagonal block C' should be fixed by ((6.42)) with

A(Q)

(012) and AEQ) respectively[46] as

021)
0 1 2 1
Clorz) =01 = (1 O) Cloz1) = (1 0) (6.49)



Chapter 7

Moduli Space of Genus—% surfaces

Our ultimate goal regarding genus—% surface would be extending the genus-1 results
in app@ to genus—% surfaces. However we have to understand the moduli space and
fundamental domain of genus—% surfaces first, and this is the major target of this
chapter. Both bosonic and fermionic partition functions of genus—% were studied in

the former Chapter §6.

7.1 Fundamental Domain of Genus—% surfaces

On the genus-2 Riemann surface, one uses period matrix of the surface to identify
conformally inequivalent surfaces, or in other words, to represent moduli space. Since
one can relate all the quantities (moduli spaces, determinants of scalar, vector and
Dirac operators etc.) of genus—% to those quantities of the double covering genus-2
surfaces, we could represent all the quantities of genus—% surfaces by the quantities
of the double covering genus-2 surfaces. For example, the homology basis of genus-
% surfaces are represented by the homology basis of the double covering genus-2
surface, and the modular transformations and involutions are 4 matrices acting on 4

homology basis (aq, ag, by, by) as in genus—QEI.

7.1.1 General procedure

To begin with, we need to understand how to obtain the period matrix and how to
derive the moduli space from the period matrix. We are working with genus-g = %
surfaces.

Lef. Figure for illustration of the genus-2 canonical homology basis



7.1. FUNDAMENTAL DOMAIN OF GENUS-% SURFACES 115

First Step: The period matrix 2 = (Z Z) compatible with the involution I =

('él g) satisfies
Q=1(Q)=(DQ+C)(BQ+ A (7.1)
So the involution I would restrict the form of the period matrix €.

Second Step: We apply relative modular transformation7.1.2| Mr = (é, ( APl)T)

to the period matrix 2 and get
' = Mg(?)
= [(Al)TQ - C} CAT!
=AhHToA oA (7.2)

From this, one can see how the relative modular transformations act on the period
matrix, which encodes the moduli space on genus-g < 2 surfaces .

Third Step: After getting the 3 moduli from first step, we can then impose the
action of relative modular transformations as well as the positivity of the imagi-
nary part of the period matrix on the moduli space from second step to get the
fundamental domain.

Last Step: One would have to check further possible restrictions (relevant modu-
lar transformation etc.) on the modular group, as well as to study the degeneration
limits of the surfaces. These would be discussed in later section §7.1.2]

Identity Basis

. . . 1 0
In the identity basis I = (A _1), then

Q=I(Q) = (-Q+A)-1=—-Q+A = Re{0}= %A. (7.3)

One gets the constant real part of (2, and the imaginary part of €2 is the matrix of
Siegel half space moduli:

Im{Q} — (t“ tm) . (7.4)

t1a  tao

The positivity of the imaginary part of the period matrix requires

v Im{Q}v > 0, v = (a,b)" € R?
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= t11|a|2 + t22|b|2 + tlg(ab + ba) >0

t11 >0
= { tog >0 . (75)
t11tan > 13,

We will discuss (012) and (021) (handles, boundaries, cross-caps) surfaces first.
Other 3 surfaces (030), (110) and (101) will be discussed later. And we know that
the generators for these two cases are in the same form (cf. generators (6.47) and
[19, p.391)):

op 0 T2 0
G(021) = G(012) = (01 01) ) G/(021) = G,(012) = (C’ (T—Q)T) : (7'6)
So it’s easy to calculate ' based on 2.

Genus-1 Genus-1 surfaces are simple examples. Applying the above procedure

and using (6.43))
Apy=Ar=0,Ay =1, (7.7)

defining 7 = r 4 it (r,t € R) as the period, we derive

_ A

T:—T+A—>T=§+Zt (7.8)
and the moduli of Annulus, Mobius strip and Klein bottle are

1
TaA = Tg = it, ™ =g + it. (7.9)
There is no modular transformation on these genus-1 surfaces up to the sign, thus
the moduli space of these surfaces is just t € R™.

7.1.2 Relevant Modular Transformation

In [5], the authors mentioned that one should only consider the ”Relevant Modular
Transformations” (cf. [B, (5.3)]) which are the relative modular transformations that
act at most as permutations of the boundaries and cross-caps.

We would like to emphasize that this is a crucial point if one wants to analyze the
moduli space of string theory. This is because, in String Theory, the moduli space
is defined by modding out the diffeomorphisms which are not connected to identity.
Thus one knows that the modular transformations as diffeomorphisms should not
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change the topology of the manifold (in our case, Riemann Surfaces), which implies
that a single connected component is always mapped by diffeomorphisms to a sin-
gle connected component, and boundaries/cross-caps should always be mapped to
boundaries/cross-caps respectivelyﬂ This leads to the "relevant modular transfor-
mation” condition that the relevant modular transformations should only at most
permute the boundaries and cross-caps, and a single boundary /cross-cap can never
be mapped to more than 1 boundary /cross-cap, and the number of boundaries/cross-
caps should not be changed respectively. Since in identity basis, homology a-cycles
on the double cover ¥ are associated with boundaries/cross-caps on the surface ¥,
homology a-cycles on ¥ should also comply with the relevant modular transforma-
tion condition as well as relative modular transformations, in the way that homology
a-cycles should at most be permuted and will never be mixed under relevant modular
transformations.

This will imply a strong restriction to the modular transformations we are looking
for on genus-3 surfaces. (030) surface is already discussed in [5]. A simple observation
directly shows that G4, which is one of the two generators of (012), will be ruled
out by the relevant modular transformation condition. This is due to the fact that
the element 72 in G/(ou) will act on the a-cycles of the identity basis as

G (1)) (Z;) - (a?;Q) ' (7.10)

We see that a?ay is no longer a homology cycle around a boundary or cross-cap, nei-
ther a connected component of the surface. Besides, we would like to point out that
the generator G gi2) plus the two modular transformations M) 1) and M(l)ﬁ(g)ﬂ
would already be enough to generate the permutation group of the boundaries and
cross-caps. Thus we don’t have to worry about any other generator. One has the
same argument for (021).

2When we consider the cross-caps on an unoriented surface, its modular transformations are
always described by the relative modular transformations on the oriented double cover of the un-
oriented surface. The unoriented surface could effectively be obtained by cutting the double cover
along homology cycles, and glue cross-caps onto it. Thus those relative modular transformations are
acting on the homology cycles on the double cover, which should also be mapped into a connected
component rather than a mixture of homology cycles. A cross-cap can only be glued to a single
connected component.

Scf. (7:26) and (731)
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7.1.3 Moduli Space of (012) and (021) surfaces
We pay attention to the A® matrices first, and prove the results of the period
matrices of A and A® matrices later in this section.
Delta Matrix Ag?w)
We have
@ (10
Al = <o 1). (7.11)

And we know from [19, (9)] that C in (7.6) is the Pauli matrix ;. Following the
first step in §7.1.1| we get

C_LI_)_ @ _  (a b 1 0y (l—a —D
EJ)_—Q+A(012)——(Z) d)+(0 1>_(_b 1_d>. (7.12)

% + ity 1ty
ity 54ty
get the action of the relative modular transformations

Thus we find Q2 = ) Then following the second step in §7.1.1| we

1 </ <4/
5+t it
: 2 11 12
Glon) - ( ity 14 it’22)
= G(2)(2)
(0 1\ (5 +it ity 0 1
10 ity 3+ites) \1 0
1 . .
5+ Zt22 Zt12
=2, : 7.13
it 3+ Ztn) (7.13)
t11 — tln = {99
= Go2) tay — loy = tu, (7.14)
t19 — t/12 =119
and
;o Lty it
(012) - ity i 4ith,

= G,(012)(Q)

(1 =2\ [+t ity 1L 0y (0 1)/ 1 0
—\0 1 ity 5 +iten) \—2 1 1 0)\-21
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- (% + ity — dityy + ditey ity — 2it22) (7.15)

itis — 2ita 5 + itao
tll — tlll = tll — 4t12 + 4t22
t12 — t/12 = tlg — 2t22

G/((nz) is not a relevant modular transformatio 2, so we just get rid of it.
Applying G 1) : t11 <+ ta2 as well as the positivity of the imaginary part of the
period matrix (|7.5]), one could choose the fundamental domain: (cf. [5])

which presents how the two generators G(o12) and G/, act on the moduli.
7.1.2,

0<ty <typy<oo and 1, <tte. (7.17)
Delta Matrix Agg)ﬂ)
We have
A®) — G D . (7.18)
But now we need to fix the off diagonal block C' of the generators by using
20 = AA — (A™HTA, (7.19)

and then we can get

0
Go21) = (01 ) (7.20)

0 01

/ ™ 0 2 1
(021) = (C’ (T_Q)T) where C = (1 0) (7.21)

Following the first step in §7.1.1| we get

a b a b 11 l—a 1-b
(b d)__<b d>+<1 1)‘(1—17 1—d>' (7.22)
Lty 14ty
% + 1ty % + atao
get the action of the relevant modular transformation (Here we have already applied
the relevant modular transformation condition and have got rid of G/(om)v G/(021) is

Thus we find 2 = ( ) Then following the second step in §7.1.1| we

again not relevant modular transformation.)

Gloay) - % i Z:t/n % + Z:t/w _ (V1 % + Zztll % + 2:7512 0 1
§+Zt/12 §+Zt/22 10 §+Zt12 §+Zt22 1 0
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1 : 1 :
5+ Ztgg 5+ 27512
=2 . ? . 7.23
(% +itip 1+ zt11> (7.23)
= G(Ogl) Dt > oo, (724)

Exactly as for (012), using the positivity of the imaginary part of the period ma-
trix and the relevant modular transformation G 21y, one can choose the fundamental
domain: (cf. [5])

0 S tll S t22 S oo and t%Q S t11t22. (725)

Other A Matrices

We know that there are four more A matrices for (021) and (012) cases, each has
two: AM and A®). Here we are going to prove that the extra A matrices will have
the same moduli and modular transformations as the A case.

We begin with A®. The transformation of Involution matrix I in which we take

A7l =1+ 0" of a Sp(4,Z) transformation M = (A 9 ) (cf. [18])

O (A 1)T
1 -1 00
) 0 1 0 0
I = Moy IPMy 0, Meso=4 o 1 o (7.26)
00 11

brings A® to AM. We will use M instead of M2)—s) or M(1)—3) in the following
when there is no ambiguity. However, one can actually consider here the M trans-
formation as a change of coordinate (homology basis). From our notation, we have
the homology basis in the vector form:

a1

9“2 =@, (7.27)
b1

by

But one should notice that after the M transformation, the basis vector v(?, the
period matrix {2 and the relative modular group G2y and G,(ou) are also transformed

like v@ — v = M@ Q@ — QW = M(Q®) and G — GV = MGP M~
Thus following the standard procedure in §7.1.1] we find that two key equations are{
o = 10QW) = MIO M1 (MQ®P)) = MIPQ®) = M©7)

4We need to mention that these equations are only valid for M in the block diagonal form as is
the case in ((7.26)). Thus this proof does not hold for general surfaces.
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=0 = m@?), (7.28)
QW =agMQW) = MGAM Y (M(Q?P)) = MGP(Q?) (7.29)
= QW = M(Q®). (7.30)

Therefore, we can easily see that for A, the above two equations show that the
action of the relative modular transformations G on the moduli of QM) is exactly
the same as that of A®). Then we can safely say that A has the same fundamental
domain as A® up to the modular transformation M2)-(1)-

Following the same argument for A®) with

0100
1000

Mau-e=19 9 0 1| (7.31)
0010

we claim that A®M, A®@ AB) have the same fundamental domain up to the modular
transformations Mo)_,1) and Mj)_,(3).

7.1.4 Moduli Space of (030) surface
Restricting the (030) fundamental domain by fixed points

Due to the property of the modular transformations of (030) surface as shown in [}

(G)? =1, (G")?=1 and (GG’ =1, (7.32)

G = ((1) é) (7.33)

G = <j (1)) (7.34)

are the two generators of the relevant modular group, and the relevant modular
transformations have fixed point sets. The boundary of fundamental domain should
be the union set of the fixed points of all relevant modular transformations plus other
restrictions. But thanks to the nilpotent property (7.32), the number of different

where

and

5We have used a different notation of generators than [5], in order to be compatible with other
generators in this thesis.



7.1. FUNDAMENTAL DOMAIN OF GENUS-% SURFACES 122

relevant modular transformations is limited. We have to find all the fixed points of
all relevant modular transformations G, G', GG', GG'GG', G'G, G'GG'G, GGG,
GG'G and so on. Here one observes that:

(1) G only exchanges t1; and ts9, and the fixed point set of GM, where M is any
modular transformation except GG, will be the intersection of the fixed point sets of
G and M;

(2) Also because G exchanges t1; and ty, the fixed points of MG will be the
intersection of the fixed point sets of M and G with t1; and 95 exchanged;

(3) Since GG'GG" = (GG")™!, GG'GG’ will have the same fixed point set as GG',
this argument also holds for G'GG'G.

Using these properties, we find that the fixed point set of all these modular
transformations should be the intersection of the fixed point sets of G, G’ and GG'G.
The fixed point sets of all other modular transformations will be the subset of the
fixed point set of these three modular transformations.

The fixed points of G satisfy the condition

!
th =tn=tn = tn =1l (7.35)

The fixed points of G’ satisfy the condition
1

!
ty=—te—tn =ty = tip= —§t22. (7.36)
The fixed points of GG'G satisfy the condition
! 1
to=—t—tn=tn = tp= 5t (7.37)

Combining all these conditions, choosing t1; < t9y according to ([7.35]), and choosing
—%tn < t19, also including the positive definiteness of imaginary part of period
matrix, we obtain the fundamental domain:

1
—§t11 <o < Vitnitae, 0 <t <igp < 00. (7.38)

The above fundamental domain is different from [3], (5.5)]

=Vt < t1p <0 <ty < fgp < 00. (7.39)

But we observe that apply G’ and G o G’ on any point t = (t11,t19,t20) " in (7.39),
one of the two transformed points

t11 + oo + 212 t22
tll = G/(t) = —t12 - t22 or t/2 =Go G,(t) = —tlg - t22 (740)
L92, 111 + tag + 219

will still be in (7.39)). This means that (7.39)) was incorrect.
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7.1.5 Moduli Spaces of (110) and (101) surfaces

According to §6.5 and Figure we know that (110) and (101) surfaces have the
same homology basis as well as the same involution, such that they have the same
moduli space. It is easy to see that (a;, by) and (ao, by) in Figure each form
a canonical homology basis of a torus. One could see that the relative modular
transformations on the double cover of (110) or (101) consist of the double copy of
the modular transformations on the torus of (110) or (101), which acts simultaneously
on (ay, by) and (ag, by') and are image of each other under involution. Also we see
that the canonical homology basis does not involve the boundary/cross-cap of the
surface, thus would not impose the relevant modular transformation condition.

One could relate identity basis to canonical basis. However, on genus—% surfaces
with a handle, identity basis introduces extra difficulties on deriving the fundamental
domain and stops one from making use of the knowledge of the modular group of
torus. From the above observation, one realizes that the canonical basis could be
more useful since the modular transformations are the same as those on torus. This
is already studied in [10]. So in this section we consider the canonical basis as in
Figure [6.3b] In the canonical basis, the involution represented in matrix is

01 0 O
=1s0 0 O (7.41)
00 -1 0
and the period matrix satisfies
Q=1(Q)=—0c'Qc". (7.42)
One derives A ”
Q- ( L _;gb) . (7.43)

We rename the moduli as
T  —il
o= (7, ). -
to make it consistent with [10].

We already know that the two generators of the modular group of a torus are S
and T transformations, and S interchanges a with b while 7" shifts b by a[10]. Ex-
tending the two generators to double torus and representing them in matrix notation
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and preserving symplectic form and involution, one obtaing’|
0 0 1 0 aq Clll = bll
- | 0 00 -1 as | | ay =0y
V=1100 o] vy =ai' |’
0 10 O by by = ay
0 01 0
0 00 —1
S = 100 ol (7.45)
0 1.0 0
and
1 0 00 a; ay = ay
- (0 1 00 as | ay = as
V=110 1o||ln]~ by =ai+0b [’
0 -1 0 1 bg b'2:b2+a2_1
1 0 00
0 1 00
T = L 0 10 (7.46)
0 -1 0 1
The actions of the two generators on the moduli are
7 =il
S (—z’l’ _T/)
= 5()
(=1 0\ (7 =i\ (1 0
0 1)\—il -7 0 —1
7 il
i A (7.47)
2—|r* 2|
T — 5

and

SWe used a different S transformation than [I0] to preserve the symplectic form of the basis.
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123

t
~VI+12 —3 5 VIt

Figure 7.1: Fundamental Domain of (012) and (021)

—T(@)

(e )

= (T—t'zl Lt 1) (7.49)
=T {T T_le (7.50)

Positive definiteness of the period matrix implies that ¢, > 0 and — det Q = |7|>—{% >

0. Using ((7.48)) and (7.50)), one can derive the fundamental domain as shown in Figure
. The fundamental domain consists of —3 < t; < 3 and |t; + ity > 1 4 12[10].
One observes that t;5 represents the length of the dividing geodesics ¢ in Figure

U]

Involution implies a further restriction that ¢;5 > 0 by using Riemann bilinear
relation to relate t1o with Im{Q2} under involution and the positive definiteness of
the period matrix, details could be found in [10].
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7.2 Discussion

We discussed the concept of ”Relevant Modular Transformation” [5] in detail. We
applied this concept to extend former research on the moduli spaces of genus—%
surfaces, and we found the moduli spaces of all genus—% surfaces. We pointed out
that the fundamental domain found in [5], (5.5)] was incorrect. With the knowledge
of determinants from Chapter §6| and moduli spaces from this Chapter, we should
be able to derive genus—% amplitudes from genus-2 amplitudes. It is then possible to
further perform calculations of genus—% corrections. However the integration over the
moduli spaces could be highly non-trivial. A numerical result as in [54] may involve
extra effort.



Chapter 8

Conclusion

This thesis extends perturbative corrections to Einstein-Hilbert term in Type-I1B
orientifolds in new directions and highlights unresolved challenges.

We revisited the Heterotic genus-1 3-graviton amplitude. We generalized the cal-
culation to include all four genus-1 surfaces in Type-I theory, incorporating pinched-
off contributions. These new 1-loop corrections break the previously expected grav-
itational kinematic structure, indicating missing contributions in the calculation. A
reassessment of picture number involves ”vertical integration” technique, and it may
introduce potential new contributions to amplitudes.

We also studied genus—% surfaces. We determine the moduli spaces of genus—%
surface via relevant modular transformations, correcting earlier results and setting
the stage for computing genus—% amplitudes.

Overall, this work deepens our understanding of quantum corrections to Einstein-
Hilbert term in Type-IIB orientifolds at 1 and higher genus. This could further im-
prove understanding of the low energy effective action in string theory. The findings
emphasize the importance of vertical integration and modular analysis in string per-
turbation theory. Future work will focus on: 1. implementing the vertical-integration
technique in genus-1 3-point amplitudes calculation; 2. deriving the explicit form of
the involution acting on the coordinates, getting genus—% Green’s function, perform-
ing the moduli and coordinates integrals for genus—g amplitudes, and completing the
genus—% 2-point calculation.
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Appendices



Appendix A
Useful formulal

Abbreviations
€ = €ulki), Xi=X"(2,%), zj=2—2%, q= e (A1)
Y functions ) .
% Z el 27m(1/+ﬁ) (n+a) (A2)
nezZN
) 00
U = —ﬁ[z](u 7) = 2™ sin(7v H (1—¢")(1—2z¢")(1 - 271", (A.3a)
Uy = ﬁ[%](v 7) = 2™/ cos(mv H (1—¢")(1+2¢")(1+ 27 1¢"), (A.3b)
95 =00, 7) = [ (1 — M1+ 2" 2)(1+ 27 1g" ), (A.3¢)
n=1
9y =99 (v, 7) H (1—¢")(1 —2q" )(1 - zflq"*%), (A.3d)
2 p—
where z = 2™,
n function
> 8,9,(0,7)13
n(r) =g/ [0 -q") = {%} ) (A.4)
n=1

'Partly follow [23] and [47].
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and
?[3](0, T o e . .
[5](( ) ) _ eQﬂzaﬁqT 51 H(l 4 anraf%eZmB)(l + qn aféefQﬂ'zﬁ)
mr n=1

Poisson re-summation
920, itG™Y) = VGt N9 (0,it1G)

Modular transformation S for annulus and Klein bottle

I3 (v, ) = (—ir) "V 2e2mel =Ty [\ (v /7, —1 /7).

Modular transformation S72S for Mobius

v T

«Q - wiB2 —miv?/(r— o'
5w, 7) = (1 —27) 1/2g2miB" /=12y E%](l o 197

).

(A.5)

(A.6)

(A7)

(A.8)

General Modular transformation S and 7' for ¥-functions and 7n-function

5] +1) = e D] (),
I8)(—) = VI ) e v/ <

-
n(r+1) = ™ (7),

77(—%) = v/—irn(7).

Shifts in characteristics

I 5 (v, ) = 0[5 (v, 7),
Il (v, ) = ™ [5) (v, 7).

v-periodicity formula

VGl (v +ar+b,7) = e_%wbe_m“QTe_Zma(”+b)ﬁ[gig](1/, 7).

(A.9a)

(A.9b)
(A.9¢)
(A.9d)

(A.10)

(A.11)
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Gravity

\/ER‘h?, = hyhpe 0" B + 207 0, WM 0, hy
— (ko - €1 - ko)(€a - €3) + 2(ks - €2 - €3 - €1 - ko) + cyclic perms, (A.12a)
(kRS — B2 2 | s Ry s oz (A.12b)

/
THIH2HE — phipzHs %k}gl k2 kbe. (A.12¢)

Involution One-loop surfaces A, M and K can be defined as quotients of tori
under different involutions[7, (A.1)]

Ii(2) = Iu(z) =1—2  Ig(z) = 1—2+%, (A.13)
where 7 = 71 + i1y is the modular parameter of the defining torus.

Zy actions in D = 4 In the table are the twist vectors for different Zy orb-
ifold Type-IIB string models on T° (D = 4 space-time dimensions with 6 compact
dimensions).

Z;| +(1,1,2) | Z4|5(1,-3,2) | Z | &(1,-3,2)
Z4 %(1717_2) Z7 %(1727_3> 212 1_12(17_574)
Zg | 2(1,1,-2) | Zs | £(1,3,—4) | Z}, | (1,5, —6)

Cited from [2, Table 2]. Only Z3, Zg, Z§, Z7, Z15 models are tadpole-free, which is
discussed in [2].



Appendix B

OPE and CFT correlation
functions

It would be helpful to show the relation between the OPE and correlation functions.

correlation functions on genus-g surfaces
(X(2)X(w)) = Py(z,w),
(W(2)Y(w)) = Sy(z,w),
<(9X(z)eikx(“’)> = ik0. P,(z, w)e ™),
The correlation functions refer to §3.2.2)

OPE and correlation functions on flat space

/

X (2)X (w) ~ —% In(z — w),
1
(z—w)?
o eik-X(w)

0X (2)0X (w) ~ —%/

X (2)emX®) ~ _j .

2 z-—w’
) , i(k+k')-X (w)
ezk-X(z) ezk X(w) € —,

/ /
(ke X () 190X (20)) | _ o pi-pi N Kiop o
<1:[€ > o < 2 2. (2 — %) "2 Z — % [

1<j 1#£] 1<j

(B.1a)
(B.1b)

(B.1c)
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p19(2) 0 3(w) lora)et) (B.2f)
(z —w)w"”’
1
~ ) B.2
YY) ~ —— (5.22)
Torus correlation functions On torus we have:

(0X(2)0X (w)) = 0,0, Pr(z,w), (B.3a)

(0X ()X (w)) = 0,05 Pr(z,w) = —% : Ti (B.3b)

2



Appendix C

Orientifold () symmetry

There are two distinct orientifold groups possible:
Yy ={1,Q,6% ), k=1,2,...,N, =N q =e"Ng (C1)

and

N
Wy = {1,602 Qu_1}, k=1,2,..., 5 N even. (C.2)

(2 action and CP factors All conventions follow [2, §2]. We now elaborate the
action of the orientifold groups on the states in the open string sector, on D-branes.
A generic state can be written as \;;|X,ij) where ¢,j label the end points of the
open strings, A is a CP matrix, and X collectively labels the world-sheet oscillators
that are involved in that state.

The orientifold elements have two possible actions on a generic D-brane state. In
addition to the obvious action on the oscillator states, they also act on the CP indices
with a matrix representation of the orientifold group. It is generated via matrices vy

0" |X,i5) = ex(ym)iv]0 - X, i'5") (v ) (C.3)
O« | X, ig) = eq, (o) |0" - X, 5) (v, )i7ss (C4)

where €, €o, are signs. Note that the 25 elements interchange also the string end
points. The group property 0% = (6;)* and 6y = 1 implies

w=Em), () ==+l (C.5)
Furthermore, the condition that 02

01X, i) = e (r(vy) | XL 15 (v v (C.6)



135

is equal to the identity requires that

Yo =C(vg, =1 (C.7)

Note that the adjoint action on the CP indices implies that the representation of the
orientifold group on the CP sector is defined up to a sign.

To evaluate the trace of partition functions under €2, we require the action of the
orientation reversal on the bosonic oscillators

Qo = al, Qap! = af, (Closed String) (C.8)
Qo™ = (—=1)ka, Qa0 = (—=D)kal, (NN boundary condition) (C.9)
Qo™ = (—1)F ok, Qar ™t = (1) al, (DD boundary condition),

(C.10)
and €2 also transforms ND boundary conditions to DN ones.
For the fermionic ones, we have
W, Q7 =, W), Q7 = =1, (Closed String) (C.11)

Q= (=1)",, Wp, Q1 = (=1)",, (NN boundary condition) (C.12)
Q= (1), Qp, = (1)), (DD boundary condition).
(C.13)

The extra minus sign in is inserted in order for the product 1, to be
orientation invariant. This choice does not affect the GSO-invariant states.

Moreover, we should notice that only the left-right symmetric sectors (NS-NS
and R-R) survive the €2 projection.

Lattice Sum on 7 under 2 We only have the lattice sum in the case of that
there is fixed tori, i.e. x(0™) = 0, or equivalently, fv; is integer or half-integer.
Otherwise there is no windings nor momenta in the compactified dimensions. And
we need to compute the traces of the lattice states, which is what we are going to do
to here: Lattice Sum. We use complex torus coordinates to represent the coordinates
of the compact dimensions, thus we complexify the momenta and windings

, (C.14)

Mj:mzj_l—i"imgj j:1

(C.15)

N’_|bw|u

Nj:ngj_l—l—ingj jzl
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This is allowed because if we observe the mode expansion of X

, . . [ —1 . . o
X(o,7)=2"+d'p'T+ LRo +1i % E —(alemM(T=o) 4 i gmin(r+a)) - ((C.16)
n
n#0

we see that the momenta m; = p; - R and windings n; = L follow the same 6* trans-
formation as X*. Therefore there will be no problem to complexify those parameters.
The orientation reversal acts on momenta and windings as

QMj, N;) = |Mj, —Nj), (C.17)

then only momenta survive the trace when no Zy element ¢’ is inserted
D
(M;, N; |9/ M;, N;) = T [ om0 (C.18)
i=1

On the other hand, due to (D.10) and (D.11)), we can get
0°|M;, Nj) = |2 Mj, ™I N;), (C.19)

we observe that the state survives the 6° action after trace only when fv; is integer,
because m; and n; have to be integers.

Furthermore, A ‘ )
QQqMJ‘, N]> = |€27rz£vai7 GQWZ(EUj_E)Ni>. (CQO)

We can easily see that the state survives the Q6 action after trace only when (v,
is integer or half-integer. However, momenta and windings will not simultaneously
survive the Q0% action after trace. If fv; is integer, then momentum survives. If v;
is half-integer, then winding number survives.

[51, §4.18.5] gives the details of the calculation. The jy current of Ly is changed
due to the toroidal compactification, which results in a lattice sum over the internal
momenta and windings, cf. [24, §4.2.2]. The general result is

g - B 21 (it i Gag=

oo _ VI N o Biy) a4t (o +107) (C.21)
lattice gg(\/,]_—zn)g Z;

m,n

gi; is the metric of the 2-torus in the target space, B;; is antisymmetric constant
background value of the two-index antisymmetric tensor over the 2-torus. We won’t
consider B in our calculation, thus set B;; = 0. We define V; = /g to be the
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regularized volume of the torus. j stands for the j-th coordinate of the torus. G is
the determinant of the metric g;;.

Since in the following sections, momentum and winding won’t simultaneously
appear in the partition function. After performing a Poisson re-summation, we
summarize and rewrite the momentum/winding sum along the j-th torus with volume

V; and metric gc[fb] from (C.21)) as

. V woan b il
oM — 5 e T 90y (C.22)
Am2a't mlzm;
2./
LWl — e Z o~ Fnanpgll®? (C.23)
Vit 4=,

These sums are expressed in the closed string channel. Details could be found in [61]
(8.2.9)].

Twisted Sectors Here we need to consider the insertion of the Orientifold element
Q. We know that only left-right symmetric states will survive the €2 insertion after
trace. Using the results from app., we can easily see that only when s = n+ kv,
and ¢t = n — kv; (k is the k-th twisted sector) are the same index set, the state is
left-right symmetric. This is equivalent to requiring kv; is integer or half-integer for
all j. However, this could only be possible for £ = 0 or % Then we know that for
twisted sectors of Klein bottles, only the %—th twisted sector survives.



Appendix D

Calculation of the 1-loop partition
function of Type-IIB T°/Zy
orientifolds

In this appendix we mainly study the calculation of the partition function of Type-I1B
T®/Zy orientifoldsE] We decompose the partition function into bosonic and fermionic
part, then further consider untwisted and twisted sectors. All the notations and main
calculations follow [23]. For orbifold I', we have SO(D) generators 6 and twist vector
v. We always use the light-cone gauge.

D.1 1-loop partition function of Type-IIB T°/Zy
orientifolds

First we directly give the general partition function for the surface o:

1+Q 1 —1)F ,
_'2_ .P. +( ) 6—27rz7'H]

2
_ Vio-p > dt .
- 2-(10—D)N(47r20/)(10—D)/2/0 D7 D D Zol0h0(r.s)

k,. s=even
(D.1)

<1—100p>0 =7, = Tr%—g?}’%m" D—branes[

!This section is cited from [54]
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with
L V2
_ L Y
P= ; 0 (D.2)
ZA[QZ] (Ta,8) = Zgg[ge](TA, s)+ Zss [95] (T4, $) + Zos [«9[] (T4, $), (D.3)
Zpl0°)(Tan, ) = Zo[0)(Tan, 8) + Zs5[0) (T, 8),
N—1
ZIC [98] (TAJ S) = Zuntwisted[17 96] (T/Ca S) + Z thisted [eka 9!] (T/Ca 8)7 (D5)
k=1
N-1
ZT[HK](TAv 3) = Zuntwisted[la Qé](ﬁﬁ 3) + Z thisted[ek, eg](TT, S). (D.G)
k=1

Here 7, is defined as

TT:it, T]CZQit, TA = —, TM:—+—. (D?)
% is the orientifold projection and P is the Zy symmetry projection. Spin struc-
tures can be expressed in (o, 3) or s. And we should also notice that there is no
twisted sectors for A and M, because both of the two surfaces can be considered as
open string in loop-channel, thus have no twisted sector.

We are considering here 1-loop amplitudes, i.e. Euler Number y = 0 surfaces.
Therefore o should be taken to be Torus, Annulus, Klein bottle or Mobius strip.
For the Torus and Klein bottle, we use U /T to label the untwisted /twisted sectors,
respectively. As we know, while Annulus and Mobius strip are the propagators of
the closed strings propagating between two D-branes, they are also equivalent to
closed 1-loop amplitudes of open strings with end-points on the two D-branes, by
closed-open duality. In this sense, we can calculate the amplitudes using open string
theory. We use D-branes to label where the open strings are attached.

D.1.1 Bosonic partition function

We will compute the bosonic partition function of type II string compactified on a
toroidal Z orbifold first.
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Non-compact dimension

For non-compact dimension, the computation is standard. We have the partition

function .

7 = -
/T2

for each non-compact dimension.

Compact dimension
Mode expansion We use the complexified coordinates

1

Zi (X 4+iX%)

s

749 = — (X% X%

~

and we have:
eézjefé — eQm'évj Zj
efz*jefl — 6727rifvj Zj (DS)

v; is the twist vector which is determined by the crystallographical structure.
The mode expansions are

. , M7 , % J. [/ v
79 (007 01) — Zé—i—O/FUO—FNJRUl—l—Z‘ % ; %e_w(ao_al)_i_z_ % ; %e—zt(gw—m)‘
(D.9)

M7 and N7 are complexified internal momenta and winding numbers respectively.
W.l.o.g. we consider the right-mover. We can find that

0 in—t __ 2mwibv; j
0al0" =e ™Ml

0'al 0=t = *migd (D.10)
for Z7 and

0 xjn—€ __ _—2mwilv;  *j
0’0" =e i,

ggd/:lje_ﬁ _ 6—27ri£vjd/:j (D.ll)

for 29,
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Imposing
73(0°, o' + 271) = ¥ 73 (60, o1, (D.12)

which is valid for a complex boson in the k-th twisted sector, fixes the frequencies of
the mode expansion to s = n + kv; and ¢ = n — kv; with n integer. Furthermore, zé
must satisfy (1 — e2™%)2) =0 mod 2mA (A is the torus coordinates lattice), i.e.
it must be a fixed point of the orbifold action and, therefore, states in the twisted
sectors are localized at the fixed points.

For the complex conjugate Z*/ there is an analogous expansion with coefficients
C(Zj_ foy = (o/; " +,wj)T for the right-movers, @Z{rkvj = (dj_ n_,wj)T for the left-movers
and 23’ = (2))! for the center-of-mass position. Canonical quantization results in the
following commutator relations for the oscillators

[O‘in—i-kvw a;k],j*kﬂj:l = (m + kvi>5ij5m+n,0a

[dlm—kviv d;(L]Jrkvj] = (m - kvi)éwém-kn,o' (D~13)
The cr’eation operators are o/_ ko 0> 0 and Oéijn—kv]» n > 0 for the right-movers
and o’ kv TV > 0 and d*fn oy T > (0 for the left-movers. Here we consider the

case where 0 < kv; < 1. The occupation number operators are

o
N;% = Z :agz—ﬁ-kvja—jn—kvj 5
n=—oo
o0
: i i
Ni = Z :aiz—l-kvj&—]n—kvj 5
n=—oo
with normal ordering : :. Note that the eigenvalues of N, and Ng in the twisted

sectors are multiples of 1/N.
Zg[1,1] untwisted sector For untwisted sector (k = 0)
, 1 ,
LH(1) = S (vh)? + Nk = 0)
, 1 .
L(1) = 5 (h)? + Ni(k = 0),

ij and p7R are the Kaluza-Klein momenta for the left and right movers on the (com-
pact) j-th dimensions. Ly without j is just the sum of L} over j.
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The bosonic partition function is
ZuntWISted ZB [1 1] Tr (qLo - % qio— é >

bosonic
1
MIGEIP e

mpmpEA* npnp N

1

+3n g%( 3n)°

l\)\»—l

m is quantized momentum and n is winding number. A* is the dual lattice of the
torus coordinates lattice.

Zy projection For ¢ # 0 twisted sectors, i.e. for complex bosons which satisfy the
boundary conditions

Z1(0° + 211y, 0t + 27m) = 2™ 29 (00 0 1), (D.14)

we need to evaluate the trace with an 6 insertion. Since we assume that 6 leaves no
directions unrotated, thus neither quantized momenta nor windings survive the trace.
6% is Zx group element insertion. We only need to consider states obtained from the
Fock vacuum by acting with creation operators for which the complex coordinates
are eigenvectors of #'. The Fock vacuum is defined to be invariant under

|7’L{, ngv cee ,TLTj, n;jv e > = (aj—l)nl (Oéj—2)n2 te (a*—Jl)nT (a*—JQ)n; ce |0>

Z[1,0%] sector Then, for instance, for the right movers in Z7, using (D.10) and
(D.11)), we find the contribution

¢W-5)Y) — % J o *j %] 0 Lh(A) (00 i *j %]
Tr(Qq o(1) 12)>—q 12 E (. nd,. .. 0 0, 0P nd nd, . o0 0l

J %
m,Mm

_ qfﬁ(l 1 ge?mit | gemmity ) (D.15)

where the first term is the contribution from the vacuum, the second and third terms
from states obtained by acting with o’ ; and o’ on the vacuum, and so on. It is

not hard to see that the whole expansion can be cast into the form

TI'(QE L 1)— 12)) =q 12 Z <H m QFZEUJ)nm(qm —27rz€v])nm>

all nm,nk,

:q—ﬁn (E : m 27rz€wJ aE : e~ 2mity; )
m a

b
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[e.9]
—q = H<1 _ qmezmzvj)—l(l _ qme—zmévj>—1

= —2sin({mv;) (D.16)

0{_1é€%]0ﬂ.

2
The last step is derived by using the definitions of ¥ and n functions, cf. (A.3a))
and (A4).

Taking into account left and right-movers for all compact coordinates we obtain
D/2

H n(7)
-

Z[1,0" = TeV (0'qPomgloiz) = y(6")

=19

1 means untwisted and 6! means Zy element inserted.

Since P defined in (D.2)) must act crystallographically on the torus lattice and
since L = n;e; with integer coefficients n;, in the lattice basis # must be a matrix of
integers. Hence the quantities

D/2 D/2
Tro' = Z 2cos(2mlv;) and  x(0) = H 4 sin®(mlv;) (D.17)
=1 j=1

must be integers. In fact, by the Lefschetz fixed point theorem, x(6%) is the number
of fixed points of 6, and this can be explained as the result of the crystallographical
structure.

General Bosonic Partition Function Using modular transformations of ¥ and
n functions, we can get the partition functions of twisted sectors

ST — —%, (D.18)
k o k o 77(_%) i
$(21,64) = x(0")| [T ——5 ]
=14 1 2 ( 1)
3 — kv
— (6% 11)—/[2 _ 77(;) 2
=l
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D/2 oo 2
= x(0")(qq) =P [T T — an b= (1 — gty =
j=1n=1
= Z[60%,1],

where Z[0%, 1] means 6% twisted sector and no Zy element inserted, and (cf. [23]
(10.166)))

Bl = ko b0~ (ko). (D.19)

D/2

B = 2 %{/wj}u ~ ko)) (D.20)

is the vacuum expectation value of Ly in the twisted Fock vacuum which is annihilated
by all positive oscillator modes. We define 0 < {z} < 1 as the fractional value of
z:{z} =z —|z]. (cf. [23, p.304-305])

We can continue generating pieces of the partition function by employing modular
transformations (A.9a)-(A.9d). The general result can be easily found to be

D/2 2

Z[0%, 0] = x (6%, 0% H T _:_7(]2 : (klv; ¢ Z or Z + %) (D.21)
=19 [2% _i_&}j} (1)

x (0%, 0%) is the number of simultaneous fixed points of 6% and #°. This formula is
valid when 6* leaves no fixed directions, otherwise a sum over momenta and windings
could appear. In addition, x(6*,6') should be replaced by y(6*,6'), the number of
fixed points in the sub-lattice eff?ctively rotated by #*. y and y differ because when
5 tkv;
1

kv;=integer, the expansion of J| |/n has a prefactor (2sinnfv,), as follows from

lvj
the product representation of the ¥-function. Therefore the actual coefficient in the

expansion of (D.21]) is y(6*%,6') = x(6%,0%)/ ILs0,ez 4 sin® wlo;.

Summary The bosonic piece of the partition function of the type II string com-
pactified on a symmetric Zy orbifold is:

D/2

2
1 5P n(T) 1
Zpl0F, 0] = ( _) PCANS . (ktv; ¢ ZorZ+ <)
NETT ,1;[1 2310 (o J ’
b} + g'Uj

(D.22)
D is the number of compact dimension.



D.1. 1-LOOP PARTITION FUNCTION OF TYPE-IIB T°¢/Zy
ORIENTIFOLDS 145

Number of Fixed points xy and y
From [39, (A.4)] we know

X(1,0") =1, X(O™,0") = x(0™,0™) if x(6™) #0,
X0, 0") = x(0™,0") = x(0™,0")/ H 4sin® nv;  if x(0™) =0, (D.23)

Jmuv; €L

where x(6™,60") is the number of simultaneous fixed points of ™ and 6". If 6™ leaves
fixed tori, i.e. x(0™) = 0, we must use x(6™,0") which is the number of simultaneous
fixed points in the subspace actually rotated by 6. This is the same as we discussed
above.

As we see in applC] only #V/2-twisted sector will survive, thus we are only inter-
ested in x(67/2,0™) cases.

From [42, p.4], we see that the Zy orbifold group action is generated by

0 : 20 — 2™yl (D.24)

with twist vector v.
From [34] p.301], we can conclude that (using x, 5, to represent arbitrary x (6™, 6"))
if e is the identity element of Zy,

D/2
Xeg = X(Fy) = det(1 = g) = x(0) = [ ] 4sin’(wtry). (D.25)

Since x is a fixed point of gh, if it is a fixed point of ¢ and a fixed point of h, one
sees that

Xg,h = Xg,gh- (D26)
Similarly,
Xg.h = Xg-1.h (D.27)

since the fixed point sets of g and ¢g~! are identical. This is also true for A and h™*,
thus we have

Xg.h = Xgh—1- (D.28)
Moreover, the number is symmetric under exchanging ¢ and h, so we have

Xg.h = Xh.g- (D.29)

Using all these facts we can evaluate all terms of the form xgm gn.
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D.1.2 Fermionic partition function

Now we come to the fermionic part. Since the Torus compactification has no action on
fermionic degrees of freedom, we don’t have to distinguish compact and non-compact
dimensions. Also be aware that the twist vectors of fermion v; is different from the
twist vectors of compactified bosons v;, because fermions are not compactified thus
they are in different dimension than the bosonic case. However, the twist vectors of
fermions won’t change the uncompactified dimensions of fermions, therefore we take
those non-compact dimensional components of the twist vectors to be 0.

Fermion

We now compute the one-loop partition function of a complex fermion with twisted
boundary conditions. )

.We define w = \/Li(zbl +ip?) and ¢ = %(2/11 —ip?). W.lo.g, we observe the
action of the right-mover

S = % / d*o0 (D.30)

with energy-momentum tensor

T— %(waw +$0_D). (D.31)

Again, using mode expansion and canonical quantization, we can get the Hamil-
tonian H = Lo — 57 with

- 1\- 1 3 o?
o= Z { (m ta- §>b_m_a+%bm+o‘_§ T (m - 5) b—m+a+%bm—a—é} + 7
m=1

(D.32)
and ¢ = 1 for one complex fermion. « is the parameter of the twisted boundary
condition defined in below.

Then we impose the twisted boundary conditions. For toroidal spatial direction

w(UO,Jl + 27?) — —e+2”a¢(00,01),
15( 0’0_1 4 27‘(’) — _6727riaw(0_070_1).
For toroidal time direction

V(0% + 211y, 0t + 217y = —e Y0, o),
V(0% + 217y, 0t 4 217y) = —e T PY(00, 0h).
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The minus signs correspond to path-integral with anti-periodic boundary conditions.
Periodic boundary conditions request to insert (—1). «, 3 € {0,1} are spin struc-
tures, namely « stands for NS or R sectors, and 8 stands for (—1)" inserted or not.
But we still need to implement the S-twist (i.e. GSO projection) on operators, i.e.
we look for an operator Pgso which satisfies

627ri6b

—1 _
PGSObn—i—a—i—%PGSO - nt+a+io

Pasoby a1t Paso = € ™ by a1,
and thus the GSO projection is implemented by Pgso.

This operator is easily found to be

Paso = ezm'ﬁ(NfN)7
where N, N are the number operators
N=> by, N=> bb, (D.33)
n>0 7n>0

The partition function in the «, 5 sector is

Z[3)(r) =Tr <PGSOqLoﬁ>

— Ty (62m'ﬁ(N—N)qL0—ﬁ>

9 o (T)
— 627r7,o¢B _ﬁ:|
e (D.34)

cf. (A.1)) for the definition of . We can get the full result by adding the left and
right-mover part.
Partition function

Now let us consider the orbifold symmetry, which imposes additional boundary con-
ditions

’g[)j(O'O,O'l + 27_[_) — _€+27ria627rikviwj(0_0’0_1)’
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P (0 + 277y, 0t 4 217y = —eTE P2 iT (50 o). (D.35)

And the partition function on the j-th complex compact dimension is

1

: J gk 1 L (ghy_ 1
Z[0%,0°] = Tr(vseme(vsar) (PGSOQEQLO(M) 21 g0(0") 24)' (D.36)

The trace is over the left and right NS and R sectors for the fermions. This is
equivalent to summing over a € {0, %} Similarly, the GSO projection amounts to
summing over 8 € {0, 3}.

Using the result from app/D.1.2] we get the partition function of fermion

\ 19[044—/{%} )

1 -8 — lv;
ko) _ j
ZF[Q 79]_1 Zsaﬁ(kjvg)]i[#‘ > (D37)
a,f j=1
Sap(k, £) is the spin structure coefficients. By convention we take sgo(k,f) = 1.

Imposing modular invariance, notice that > v; = 0, we check

soo(ks €) = —s19(k,£) = 1,501 (k, ) = =2 = —1 = Fs11(k, () (D.38)

N|=

1
2
leads to a modular invariant partition function.

Note that £ = N should give the same solution as £ = 0. This gives, once
more, the condition > v; = 0. Note further that the sign of s%%(k,é) is not fixed
by modular invariance. Choosing opposite (equal) signs in the left and right-movers
corresponds to orbifold compactifications of Type-ITA (B) strings (as one can see by
looking at the k = ¢ = 0 sector).

D.1.3 D-branes on T?/Zy

This section refers to |51, §9.14.3] and [2, §2.2]

The tadpole of Klein bottle amplitudes will be canceled by the insertion of Dg-
branes filling all ten dimensions. Through T-duality, we can further see the existence
of Ds-branes because T-duality transforms Dgy-branes to Ds-branes. And the tadpole
must be canceled by the addition of Ds-branes as well. After that, we need O-planes
to cancel D-brane charges over compact space.

Ds-branes will be stretching in the six non-compact dimensions. The orbifold
now acts on the transverse positions of the branes. Thus, there are two options to
consider.

We may consider a group of branes sitting at a fixed point of the orbifold action.
In such a case there is no further restriction on the transverse position. We may
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also consider a group of branes at a generic position 2 on T”. Orbifold invariance
imposes that we also include a mirror brane group at the position —x°.

In the orientifold we are considering, the Ds-branes will have vanishing twisted
tadpoles and therefore will not be fractional. Fractional means branes which are
fixed to the orbifold fixed points. This means we won’t have to worry about those
fixed branes.

In order to accommodate the orbifold action on the CP factors of Dg-and Ds-
branes we must introduce matrices vp/0,9 and v5/05. They satisfy the constraints
— coming from the orbifold group property.

For the trace of the CP factors, using we may evaluate the trace as in [51]
(5.3.24)]

> 1005 = D Gl ) (a)w (e ) = Trdag']. (D.39)
ij i1’y
And we have similar results for ¢

Z<Z7j’9k|27 ]>) = Z <Z7]|j/> Zl) (79’“)1’1" (V&cl)j’j =Tr [7;67921} . (D40)

ij igilj!

Fixing signs According to the detailed discussion in [51l §7.3], in the NS sector
there is an € phase for each of the 9-9 and 5-5 strings as follows

QU9 —9,p; i) ns = €90(102,0)ir19 — 9, 05 51 Y vs (v0.9) 13 (D.41)
QI5 = 5,p;ij) s = €s5(a5)ir |5 — 57P;j/i/>NS(’YQ,5)j7}- (D.42)
Similar arguments as in [51], §7.3] fix
639 = 6%5 =—1, YQ,5/9 = €5/9%;,5/9a C52 = Cg =L (D.43)
In the 5-9, 9-5 sectors, however, we may write
Q5 = 9,p; 1) ns = €s0(v0,5)ir|9 — 5, 0; 57 ) vs(v0.9) 515 (D.44)
Q9 —5,p; i) ns = €s0(70,0)i5 — 9,03 51 Y vs(va5) s (D.45)

Imposing 22 = 1 we obtain
€29C5C0 = 1. (D.46)
The phase €59 captures the transformation properties under €2 of the SO(D)
twisted spinor as well of the NS open string vacuum. If two 9-5 states interact,
they may produce a 5-5 or a 9-9 state. Thus, a nontrivial coupling of two 9-5 states
to the massless 9-9 or 5-5 states should be allowed. This implies that €2, = —1.
Therefore from (D.4€]), the CP projection is opposite for Ds-branes compared to
that of Dg-branes,
GsCo = —1. (D.47)
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Boundary conditions We have to notice that in the case of effective open string
surfaces of Annulus and Mobius strips, due to the boundary conditions, we have
the general properties: NN directions have only momenta, DD directions have only
windings, and DN have none of both.

Ds-branes Due to tadpole cancellation, only Z.,., Type-I1IB orbifold has Dg-branes
filling the space and Ds-branes transversal to 1-st and 2-nd tori and parallel to
(wrapped around) 3-rd torus. So it means Djs-branes only exist for Z.,, models.

D.2 Analysis of the 4 Euler Number y = 0 sur-
faces in 1-loop correction of Type-IIB T°/Zy
orientifolds

We continue our discussion of the 1-loop partition function in applD| and present
the details of the partition functions of 4 one-loop surfaces in this section. Since the
calculation of the partition function of the surfaces is related to the twist vector v;
of a certain Zy group, we’ll give the general idea first, then give the examples in
detailed orientifolds in the following sections]

From now on we’ll concentrate on phenomenally interesting D = 4 case and we
would like to study the properties of 1-loop surfaces needed in 2-point calculation of
1-loop corrections.

D.2.1 Partition Function

This section follows [47, §3] closely.
Using the results of partition functions we derived in app/D.I] we get the general
partition functions of the 3 different y = 0 surfaces except torus

20(70,9) = (~2m)CP (- 2sin(r) ( [] 700 22 hig) (0.19)

2This section is cited from [54]
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with Z?(v;, hs, g;) being the ¥-dependent part of the partition function given by
Q o+ h1 o+ hg :| |: « :|
) ) ) 9
{5} [5‘*‘714‘91] {54—724—92 B+
1 1 1 1 g
5+ 5+ ho 3
W V| 2 vl 2 9 2
{1 [%‘F%Jrgj [%+72+92 s+
where the spin structure relation between s and («, ) can be found in Table
And (3, 3] = —2m*, cf. (A4). o stands for the surfaces of Klein bottle K, Annulus
A and Mobius strip M, with world-sheet parameters 7 = 2it, 74 = %, ™ = % + %
More details can be found in [7]. CP, stands for the corresponding Chan-Paton
factor of the open string world-sheets and C'P = 1 for the Klein bottle, cf. applC|
Values for CP,, Xy, Vi, f(7;), hi and g; can be found in Table . Formula ([D.48))
holds for all tadpole-free Zy Type-IIB orientifolds. Orientifolds with even N have
Ds-branes wrapped around the third torus leading to the distinction of 3 in (D.48)).
And therefore the 3-rd torus always has NN boundary condition no matter whether

it is attached to Dg or Ds-branes.
We choose

Zf(%-, hi, gi) = TNap

(D.49)

N[ —bo|

tr<7§g1,575¢,5) = —1rvs (D.50)
and
t (Yoo,0Ve,0) = T 7229- (D.51)

The minus sign is due to the Gimon and Polchinski action of €, cf. [2) §2.3 and
(2.41)].

Table D.1: Spin structures

D.2.2 N > 2 sectors

In these cases (—2sin(m3)) H?:l f(7;) vanishes. N = 2 sectors are characterized by
that along exactly one iy,-torus, h; vanishes and v; + g; is integer. ' = 4 sectors are
characterized by that along all three torus, all three h; vanish and all three ~; + g; are
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o CPp X vi  f(vi) (i=lor2) hi hy g1 g2
Ku 1 1 20v; —2sin(77y;) 0 0 0 0
Ky 1 X(ON/2,6%) 20w, 1 i -1 0 o0
Aogg (trye,9)? 1 2 —2sin(7wy;) 0 0 0 0
Ass (tryes)? 1 lv; —2sin(my;) 0 0 0 0
Ags  (tre,9)(trve,s) 2 Qv 1 % —% 0 0

My tr 20,9 -1 lv; —2sin(7y;) 0 0 0 0
Ms try20,5 -1 lv; 2 cos(my;) 0 0 % —%

Table D.2: Refer to [47]. K, and K; denote the Klein bottle contributions with untwisted and
ON/2_twisted closed strings running in the loop. ¥(67V/2,6%) denotes the number of simultaneous
fixed points of #V/2 and 6¢. The CP factors corresponding to the Ds-branes assume that all Ds-
branes are sitting at the fixed point at the origin of the compact transverse space, details cf. [2]
§2.3]. Derivation of these constants in the table will be explained in the following subsections.

integer. In these cases, has a well defined limit n% of singular part, but one
has to include internal momenta or windings, therefore we should substitute these
singular part with momentum/winding lattice sum and .

For A and M the momentum sum L£UM appears if the j-th torus is parallel to
the branes whereas the winding sum £U"W] appears if the j-th torus is transversal
to the branes, and this actually is related to the boundary conditions of the open
strings attached to the D-branes. For K the situation is as follows: If v; is even, the
corresponding torus is not reflected. The orientation reversal €2, however, reverses the
winding modes. Thus only the momentum modes survive. On the other hand, if v;
is odd, the corresponding torus is reflected (i.e. kv; is half-integer). Combined with
Q, this leaves the winding modes along this torus invariant. The terms ”momentum”
and "winding” are used here referring to the open string channel.

D.2.3 Torus

Topologically Torus is the 1-loop closed string amplitude, without Orientifold sym-
metry §2 action.

This part is just the Type-I1IB orbifold thus is trivial as (3.50) and has no tadpole.

D.2.4 Klein bottle

Topologically Klein bottle is the 1-loop closed string amplitude, with Orientifold
symmetry {2 action.
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In the operator form, the partition function of Klein bottle is

< dt Q 1=, L+ (=DF A
A = =T u+T (20— 9[ . —2m(2it)(Lo—c/24) D.52
K /0 o {2 N ez:: 2 ¢ (D-52)

Be aware that {2 can act on bosonic and fermionic oscillators as described in ((C.8))-
. Q) projects out NS-R and R-NS sectors. The action of €2 on the bosonic and
fermionic oscillators results in a nonzero contribution in the trace only if the state
has the same left and right oscillators. This effectively sets Loy + Ly — 2L, for such
symmetric states and causes the final amplitude to have a modular parameter 27
instead of 7.

Also, since € exchanges 6% with
and k = %, N even.

ON—* we only have twisted strings with & = 0

CP factors Since Klein bottle is not attached to D-branes, thus the CP factor is
1.

v Due to the Q action, Ly + Ly — 2Lg will also double the ~;. This can be easily
seen from the calculation of (D.16)).

Untwisted sector

x and f(;) Since Q action leaves only left-right symmetric states, from (D.16]) we
can see that we no longer have 4 sin?(7fv;) for f(7;), but only have —2sin(27r/v;).

Lattice sum cf. applD.2.2)

osinmy 1 L.
~; = even-integer, i =1,2,3: ﬂ — —3,C[9’M] (D.53)
7+
. . —2sin7y; 1 W]
v = odd-integer, ¢=1,2,3: —(/———= = LY (D.54)

1
I
%‘i‘%‘

Twisted sector

From the paragraph ”Twisted Sectors” in app. we know that only %—twisted sector
is allowed.
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hi K is 0N/ ?-twisted, thus kv; = half integer. And this is equivalent to shifting the
« of ¥ functions in the 7% direction (1-st and 2-nd tori) by h;, cf. (D.21)).

X and f(y;) As we discussed after (D.21), here & - v; is integer, thus we have
X(6N/2,0°) for X.

Lattice sum cf. applD.2.2)

—2sl 1
v3 = even-integer ﬁ — ﬁﬁ[”M] (D.55)
5T 73
. —2s8in7y3 L iw
v3 = odd-integer — — 5L (D.56)

1
dIES
5T 73

D.2.5 Annulus

Annulus surface represents closed string propagates between two D-branes, without
Orientifold symmetry €2 action. Topologically and effectively we can consider it as
the 1-loop open string amplitude, without Orientifold symmetry 2 action.

In the operator form, the amplitude is

N—1
< g T R B Y
A — - T 99455495459 - . 271'( 5 )(LO 0/24) D57

A /0 of ~ NSR 2N ZM 2 ¢ (D-57)

Now we need to consider D-branes. According to earlier discussion about tadpole
cancellation in app/D.1.3] we know that we would only consider Dy and Ds-branes.
Follow the discussion in app[D.1.3| and [5I} §9.14.3], we have non-trivial CP factors
in the partition function for Annulus.

Recall that open string boundary conditions on compactified dimensions have the
results: NN directions have only momenta. DD only windings, and DN none of the
above.

A99

CP factors Ay is attached to two Dg-branes. Therefore we have the CP factor
as square of trvyg j.
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Lattice sum Here we have NN boundary conditions in the 7% directions of Ag,
and also NN boundary conditions in the 3-rd torus. Then the compact directions
have only momenta. And we need to substitute

—92sin(m; 1.
v; = integer, i =1,2,3: M — — M

: . (D.58)
o, 2 n
%+%

A55

CP factors As; is attached to two Ds-branes. Therefore we have the CP factor
as square of trys .

Lattice sum Here we have DD boundary conditions in the 7% directions of Ass,
and NN boundary conditions in the 3-rd torus. Then the 7% compact directions have
only windings. And we need to substitute

—2
~; = integer, i = 1,2 : sin(r - —2sin(my)n E[l Wi (D.59)
g, 2 ]
5+
—2si
v3 = integer : - (1 25[3 M] (D.60)
3 n
91, 2
5+ 73]

A95

CP factors Ajys is attached to one Ds-brane and one Dgy-brane. Therefore we have
the CP factor as the product of trvs ;, and tryg 4.

h; and f(v;) Ags has Dirichlet-Neumann boundary conditions along 1-st and 2-nd
torus. And the presence of 4 DN directions effectively Z,-twist the T space (1-st and
2-nd torus), cf. [62, §13.4]. This is equivalent to the #/%-twisted sector in app|D.2.4}
Therefore we have the same h; and f(7;) as in app

X Ags actually has two orientation, which are Ags and Asg. Thus this contribute a
factor of 2 to the partition function.
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Lattice sum Here we have ND boundary conditions in the 7% directions of Ass,
and NN boundary conditions in the 3-rd torus. Then the 7% compact directions have
no momentum or windings. And we need to substitute

1
3 = integer : — —25[3’M} (D.61)

D.2.6 Mbobius strip

Mobius strip surface represents closed string propagates between D-brane and orien-
tifold plane, with Orientifold symmetry 2 action. Topologically and effectively we
can consider it as the 1-loop open string amplitude, with Orientifold symmetry (2
action.
In the operator form, the amplitude is
> dt QO 1= 1+ (=DF 1w
A o ] UL

Be aware that  in the Tr[Qq"~%/?*] is equivalent to adding a minus sign to ¢ because
of the action of Q on Ly, cf. (C.8)-(C.13]). This is equivalent to substitute the torus
parameter 7 in the partition functions with the half-shifted torus parameter

1t
™ — =

= D.63
5+ 5 (D.63)

as we have mentioned before about world-sheet parameters, cf. (D.7).

Since {2 changes the orientation of the string, 9-5 strings do not contribute to the
trace. For the same reason, only strings starting and ending on the same Ds-brane
contribute after Zy projection.

My

Lattice sum Open strings on Mgy has NN boundary condition, thus only K-K
momentum states survive.

v; = integer, i=1,2,3: e R, M (D.64)
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CP factors My is attached to Dg-branes, and it has 2 action, thus we have
CPry = tr(7g, 978,0) = try2ee, cf. [2 (2.36)].

X Due to the Q action on the fermionic state for NN boundary condition (cf. (C.12))

and the  action on the vacuum states (cf. [51], (7.3.10) and (7.3.16)]), we have

Q0)) o< =i ]0), i.e. we have an extra minus sign in x, also cf. [41} (3.11),(3.12)].
2 2

Ms

Lattice sum Open strings on My has DD boundary condition, thus only winding
states survive.

2 . 1y
v; = half-integer, =1,2: COSIWY — ( 3) L] (D.65)
3 n
9 2
[% +7%+ gi:|
—2si 1
3 = integer : il RN —35[3’M] (D.66)

1
in]
5T

g; Because now we have DD boundary conditions for T# directions, according to
, the T* directions have an extra minus sign. This is equivalent to an insertion
of 9V/2 element in the trace, and thus equivalent to shifting the 3 in ¥ functions in
the T* direction (1-st and 2-nd tori) by g;.

f(v) Due to the insertion of /2, this will shift the sin(7;) in f(v;) for /2, or
equivalently shift ; to v; 4 g;, and thus turns — sin into cos function for each of the
1-st and 2-nd tori.

CP factors and y M5 is attached to Ds-branes, and it has 2 action, thus we have
CPu, = tr(vg, 570,5) = —tryees, of. [2 (2.41)]. But here we take C'Pry, = troyaes,
thus we move the minus sign to x, which means we get y = —1.



Appendix E
t-integrals

We need to evaluate t-integrals in §4.5.1] and §4.5.2 A more detailed derivation of
t-integrals could be found in [47, §C], we only list the results here. app follows
[54].

N =1 sector t-integral Here we deal with the ¢-integral of NV = 1 sectors (see
§4.5.1)). The integral to be evaluated is (assuming 0 < vy < 1)

< dt Iy (v, 15)
I= — 0 E.1
/. 7 24(r.7) (E1)

eg A

with o = K, A and 7, = % (e, was defined in (4.40))). And the result is

[ ety
129 (~ ie +/9)
ot V4(7y,iest/2)

T

= eom(1 = 29)A% — eo [V (3) = ¥/ (1 = 7). (E2)

N = 2 sector t-integral Here we deal with the ¢-integrals of NV = 2 sector (see
§4.5.2). The integrals to be evaluated are

o dt .o
F[nyM/W]:/ 3 d o e mb gl M)
0

mez2\0
LS [
t
mez2\0 0
1 1
=— E.3
2 Z [n,M /W] (E.3)

5 -
mez2\0 (mambgab )
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The metric g([;g’M/ " g given by (4.53). Using (4.53) and the expression for gc[:;} in

terms of the complex structure U = Ul[n] + Z'U2[n} of n-th torus, i.e.

n det gl [ 1 yn
9oy = ] [n] [11} 2 | (E4)
U, vt U

one can write

for M (momentum sum)

\/det gl ( 1yl

ul i U2
[n,M/W] _ 2 1
Jab X 1 g (E.5)
T et gl f]lm b2 for W (winding sum)

with U1 = U440, = —(U)~" (ie. UY) = ~U"/|UP 2 and U = U /|UTP2).
The result is

plndi/w) _ (471-2‘6/%) E,(UM) for M (momentum sum) (E:6)
% H(— (Ul =1 for W (winding sum) '

where F¢(U) is the non-holomorphic Eisenstein series

Us
E(U)= > e (B.7)
mez2\0

E.1 t-integral for M with v > %

When % <7y < 1 for M, we need to do the integral
dt v ( 7 ™)

I ’ E.8

M / t2 791 ’77 TM ( )

here Tpf = & + 1. We substitute o/ = v — & for v, and this transforms the original
5 T 3 v =7 B Y g

integral to
dt 19/ ’7 TM)
I E.9
M / 2 05(v, 1) (E9)
By following the similar calculation in [14, §M.2], we perform ST2S modular trans-
formations:

it 1 1 1 1 -1 1
mME sy oy [ —2) =2 =1y (E.10)
2 2 TM TM TM 2
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Here | = . The result of ST?S modular transformation (A.8) is

V5(Y, Tm) =4 U (4iy'1, 210 — 1)

—1677'1 + 44l . E.11
B T T syt 2 — 1) (E.11)
Using the representation of v, /9, for |Im(z)| < Im(7,)
Uy(2) (D"
=—nmtanmz + 47 sin 2mnz
= —rmtanmz + 47 Z )"q"" sin 2mnz (E.12)
n,m=1
we get
i < dty(v, ™)
M= 1 P 0a(v, )

9 (4iv'1, 261 — L)
=4 | di| — 16771 + 4il -2 ’ 2
/0 ( T iy, 20l — 1)

A [
= —167r/ dl l(4fy' — tanh(47v'l) + 4 Z (—1)n(mt1) g —dmlnm sinh(87m7’l)>.
0

n,m=1
(E.13)
Following the similar calculation as [14, (397),(398)]:
L = Z / dl [(—1)ntm+De=aminm ginh (8ny'l)
m,n=1
= ) (—1ynlm my’
Pt An272(472 — m2)?

¢ Am2(dy% — m?)?2
Note that the integral converges provided that 2|y'| < m (which is true now because
v =75- ) Now we split the sum into sums over even and odd m:

e (2k)7/Lig(—1) (2k 4 1)7'Lis(1)
h=2 {w(w - <2k>2>2} " Z [47r2(4v’2 — 2k +1)%)

k=1
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~ 1536 [Wl +9) - ' (1 - 7’)] + % [@D’(% —v) - W(% + 7’)} . (E.15)

All together we arrive at

/ ™ ™ / / / / /1 / /1 /
= 8r(1 = 4)A = g = [ ) =0 =) 20 =) - 205+ )
= 8r(3 4N W= D) v ) 2 20 )]. (B16)



Appendix F

Derivation of relative modular
transformation

Here we present a simple derivation of the lower triangular form of relative modular
transformation

M= (é g) € Sp(24,2) (F.1)

which preserves the involution
1 0
) .

Taking Vo= (a1, ,a4,b1, -+ ,b,)" to be the vector of the homology basis. The
symplectic preserving condition (F.1) is
— - A B 0 1\ /AT CT - - 0 1
T _ T _ _OUT _ 7

vty - (4 B (% B (8 ) v oan (4 1)
ABT —BAT =0
AD" —BC'T =1
CB" —DA" =-1 (E3)
CD" —DCT =0

From the involution preservation condition

MIV = MIM™*MV =I'MV = IMV

, (A BY(1 o\[/Aa B\_, (1 0
= I'= MIM _<C o)lx )l o)== 4 (F.4)
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/ /
where M1 = <A B) and

Cl D/
_ A B\ (A B
- (4 B) (4 2y .

as well as the symplectic preserving condition(F.3), one finds that
B=B=0A=A"'"D=(AY =D"1C =-ATCA™" (F.6)
The general form of M is

v=(4 ) (F.7)

20 = AA - (A HTA. (F.8)

with
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