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Abstract
Pretrained language models have significantly advanced natural language proces-
sing (NLP), but they are often tailored to English or a limited number of high-
resource languages, leading to a performance gap for low-resource languages.
This thesis presents a series of publications aimed at improving language mode-
ling and task adaptation for low-resource languages.

The first three publications, Glot500, MaLA500, and EMMA500, focus on
creating massively multilingual language models. The Glot500 publication pres-
ents Glot500-c, a large-scale multilingual corpus covering 534 language-script
pairs, sourced from diverse datasets after thorough cleaning and deduplication.
Based on this corpus, Glot500-m extends the vocabulary and continues pretrai-
ning on XLM-R (a language model covering about 100 languages), achieving
superior performance in both high- and low-resource languages. MaLA500 builds
upon Glot500 by scaling the model to larger LLMs using LLaMA 2 and Glot500-
c, resulting in a highly capable language model that sets new state-of-the-art re-
sults in in-context learning. EMMA500 further enhances MaLA500 by compiling
the MaLA corpus and enriching it with curated resources from diverse domains,
surpassing Glot500-c in both quality and quantity. Compared to MaLA500, EM-
MA500 exhibits robust performance across a broad set of benchmarks, including
a wide array of multilingual tasks and open-ended generation benchmarks.

Additionally, the publication titled “A Recipe for Parallel Corpora Exploitation
for Multilingual Large Language Models” investigated how the quality and quan-
tity of parallel corpora, as well as training objectives and model size, influence the
performance of multilingual large language models across various languages and
tasks. The findings provide valuable insights into the best use of parallel corpora
to enhance multilingual models, extending the generalizability of earlier research
across a broader range of languages and scenarios.

The mPLM-Sim and XAMPLER publications present innovative approaches
to cross-lingual transfer for both high- and low-resource languages. mPLM-Sim
introduces a novel language similarity metric based on multilingual pretrained
models, outperforming traditional linguistic similarity measures. This metric en-
hances zero-shot cross-lingual transfer for both syntactic and semantic tasks by
identifying the best source languages. The XAMPLER project tackles the challen-
ge of cross-lingual in-context learning using only annotated English data. XAMP-
LER trains a cross-lingual retriever using both positive and negative English ex-
amples generated by MaLA500, a large multilingual language model. By levera-
ging the retriever’s cross-lingual capabilities, XAMPLER selects English examp-
les to serve as few-shot samples for in-context learning in target languages. Expe-
riments demonstrate that XAMPLER significantly improves in-context learning
performance across a wide range of languages.
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Zusammenfassung
Vortrainierte Sprachmodelle haben die Verarbeitung natürlicher Sprache (NLP)
erheblich verbessert, sind jedoch häufig auf Englisch oder eine begrenzte Anzahl
ressourcenintensiver Sprachen zugeschnitten, was zu Leistungslücken bei ressour-
cenarmen Sprachen führt. Diese Arbeit präsentiert eine Reihe von Veröffentli-
chungen, die darauf abzielen, die Sprachmodellierung und die Aufgabenanpas-
sung für ressourcenarme Sprachen zu verbessern.

Die ersten drei Veröffentlichungen, Glot500, MaLA500 und EMMA500, kon-
zentrieren sich auf die Erstellung von massiv mehrsprachigen Sprachmodellen.
Die Glot500-Veröffentlichung präsentiert Glot500-c, ein umfangreiches mehrspra-
chiges Korpus, das 534 Sprach-Schrift-Paare umfasst, die nach gründlicher Berei-
nigung und Deduplizierung aus verschiedenen Datensätzen stammen. Basierend
auf diesem Korpus erweitert Glot500-m das Vokabular und setzt das Vortraining
auf XLM-R (ein Sprachmodell, das etwa 100 Sprachen umfasst) fort, wodurch
sowohl in ressourcenintensiven als auch in ressourcenarmen Sprachen überlege-
ne Leistungen erzielt werden. MaLA500 baut auf Glot500 auf, indem das Mo-
dell mithilfe von LLaMA 2 und Glot500-c auf größere LLMs skaliert wird, was
zu einem hochleistungsfähigen Sprachmodell führt, das neue Spitzenergebnisse
im kontextbezogenen Lernen erzielt. EMMA500 verbessert MaLA500 zusätzlich,
indem es das MaLA-Korpus kompiliert und mit kuratierten Ressourcen aus ver-
schiedenen Bereichen anreichert und Glot500-c sowohl in Qualität als auch in
Quantität übertrifft. Im Vergleich zu MaLA500 zeigt EMMA500 eine robuste
Leistung bei einer breiten Palette von Benchmarks, darunter eine breite Palette
mehrsprachiger Aufgaben und offener Generierungs-Benchmarks.

Darüber hinaus untersuchte die Veröffentlichung mit dem Titel “A Recipe for
Parallel Corpora Exploitation for Multilingual Large Language Models”, wie sich
Qualität und Quantität paralleler Korpora sowie Trainingsziele und Modellgröße
auf die Leistung mehrsprachiger Large Language Models in verschiedenen Spra-
chen und Aufgaben auswirken. Die Ergebnisse liefern wertvolle Einblicke in die
optimale Verwendung paralleler Korpora zur Verbesserung mehrsprachiger Mo-
delle und erweitern die Generalisierbarkeit früherer Forschung auf ein breiteres
Spektrum von Sprachen und Szenarien.

Die Veröffentlichungen mPLM-Sim und XAMPLER präsentieren innovative
Ansätze für den sprachübergreifenden Transfer sowohl für ressourcenintensive als
auch für ressourcenarme Sprachen. mPLM-Sim führt eine neuartige Sprachähn-
lichkeitsmetrik ein, die auf mehrsprachigen, vorab trainierten Modellen basiert
und traditionelle sprachliche Ähnlichkeitsmaße übertrifft. Diese Metrik verbessert
die sprachenübergreifende Übertragung ohne Vorgabe für sowohl syntaktische als
auch semantische Aufgaben, indem sie optimale Ausgangssprachen identifiziert.
Das XAMPLER-Projekt stellt sich der Herausforderung des sprachübergreifenden
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Lernens im Kontext, indem es ausschließlich annotierte englische Daten verwen-
det. XAMPLER trainiert einen sprachübergreifenden Retriever mit positiven und
negativen englischen Beispielen, die von MaLA500, einem großen mehrsprachi-
gen Sprachmodell, generiert werden. Indem XAMPLER die sprachübergreifen-
den Fähigkeiten des Retrievers nutzt, wählt es englische Beispiele aus, die als
wenige Beispiele für das kontextbezogene Lernen in Zielsprachen dienen. Expe-
rimente zeigen, dass XAMPLER die Leistung des kontextbezogenen Lernens in
einer Vielzahl von Sprachen erheblich verbessert.
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Chapter 1

Introduction

1.1 Motivation
Language models have evolved significantly over time, starting from smaller mod-
els such as GPT (Radford et al., 2018), BERT (Devlin et al., 2019), and BART
(Lewis et al., 2020), to large-scale models such as T5 (Raffel et al., 2020), GPT-3
(Brown et al., 2020), LLaMA (Touvron et al., 2023a,b; Dubey et al., 2024), Qwen
(Bai et al., 2023), and Mistral (Jiang et al., 2023). Additionally, commercial prod-
ucts such as Gemini (Anil et al., 2023a; Rivière et al., 2024) and ChatGPT1 have
further demonstrated the practical impact of these advancements. These devel-
opments have brought transformative benefits across diverse domains, including
daily life, scientific research, and software development.

Despite these advancements, most language models are predominantly de-
signed and optimized for English or a limited subset of high-resource languages,
resulting in a substantial performance gap for low-resource languages. Given that
over 7,000 languages are spoken worldwide,2 the vast majority remain underrep-
resented in today’s technological advancements. This imbalance not only restricts
equitable access to the transformative benefits of AI but also risks marginalizing
speakers of these languages in digital spaces, deepening the existing digital divide.
Bridging this gap is crucial for promoting inclusivity and ensuring that language
technologies cater to a truly global audience.

A major challenge in training or adapting language models for low-resource
languages lies in the severe scarcity of data (Joshi et al., 2020). As illustrated
in Figure 1.1, the majority of languages fall into Group 0, characterized by a
lack of both the unlabeled data required for language modeling and the labeled
data essential for fine-tuning and evaluation. In contrast, only a small fraction

1https://openai.com/blog/chatgpt
2https://www.ethnologue.com/insights/how-many-languages/

https://openai.com/blog/chatgpt
https://www.ethnologue.com/insights/how-many-languages/
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Figure 1.1: Language Resource Distribution. Based on available labeled data (LDC, LRE) and
unlabeled data (Wikipedia, Web), Joshi et al. (2020) categorized the world’s languages into several
groups, i.e., The Winners (5), The Underdogs (4), The Rising Stars (3), The Hopefuls (2), The
Scraping-Bys (1), and The Left-Behinds (0). The figure was taken from Joshi et al. (2020).

of languages belong to Group 5, which has sufficient unlabeled and labeled data
for effective training and task adaptation. This pronounced data scarcity presents
significant barriers to developing and optimizing robust language models for low-
resource languages.

To address the challenge of data scarcity in low-resource languages, we inves-
tigate key research questions focusing on two critical phases of massively multi-
lingual language models: modeling and adaptation.

Modeling: How can limited low-resource language data and parallel data
enhance pre-training?

Multilingual language models primarily rely on monolingual data for pre-
training, with optional use of parallel data to improve cross-lingual alignment
of representations across languages. As detailed in Section 1.2, we emphasize
the importance of collecting data specific to low-resource languages and assess its
impact on pre-training outcomes for both small and large-scale massively multi-
lingual language models. Furthermore, we explore best practices for effectively
incorporating parallel corpora between high-resource and low-resource languages,
aiming to enhance the overall performance and adaptability of multilingual lan-
guage models.
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Adaptation: How can labeled data from high-resource languages facili-
tate task adaptation for low-resource languages?

Obtaining labeled data for low-resource languages is considerably more chal-
lenging than collecting unlabeled data, posing a critical bottleneck for effective
task adaptation. As detailed in Section 1.3, we propose two strategies leveraging
cross-lingual transfer: utilizing labeled data from high-resource languages to sup-
port low-resource languages. We develop robust methods tailored to various task
adaptation paradigms for both small and large language models, ensuring reliable
and consistent performance for low-resource languages.

By adopting this comprehensive dual-phase approach, we aim to address the
resource gap for low-resource languages. This effort seeks to foster inclusivity
and enhance the effectiveness of multilingual language models, ensuring broader
and more equitable access to language technologies.

1.2 Modeling
Joint training with monolingual corpora from multiple languages has emerged
as the dominant paradigm for developing multilingual language models. These
multilingual language models range from small-sized ones, such as multilingual
BERT (Devlin et al., 2019), XLM-R (Conneau et al., 2020), mBART (Liu et al.,
2020), and mT5 (Xue et al., 2021), to larger language models, including XGLM (Lin
et al., 2021), mGPT (Shliazhko et al., 2022), BLOOM (Scao et al., 2022), and
Aya (Üstün et al., 2024). By leveraging joint training across diverse languages,
these models achieve robust generalization and transfer capabilities, effectively
supporting both high-resource and low-resource languages.

In addition, several techniques have been proposed to adapt existing multi-
lingual language models to unseen languages. Adapter-based methods (Pfeiffer
et al., 2020; Üstün et al., 2020; Pfeiffer et al., 2020; Nguyen et al., 2021; Faisal
and Anastasopoulos, 2022; Yong et al., 2022) introduce lightweight modules that
can be fine-tuned for specific languages without modifying the core model, mak-
ing adaptation computationally efficient. Vocabulary extension and substitution
(Chau et al., 2020; Wang et al., 2020a; Müller et al., 2020, 2021a; Pfeiffer et al.,
2021; Chen et al., 2023; Downey et al., 2023; Cui et al., 2023; Zhao et al., 2024)
address the limitations of fixed vocabularies by incorporating new tokens or re-
placing existing ones to accommodate unseen languages. Continued pre-training
(Ebrahimi and Kann, 2021; Yong et al., 2022; Cui et al., 2023; Zhao et al., 2024)
on monolingual or multilingual data allows the existing language models to refine
their understanding of new languages. In-context learning (Shi et al., 2022; Ahuja
et al., 2023; Huang et al., 2023; Etxaniz et al., 2023; Zhang et al., 2023; Lu et al.,
2023a; Tanzer et al., 2024; Zhang et al., 2024b,a) leverages contextual examples
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Figure 1.2: Comparison of language coverage and model size between existing multilingual mod-
els and Glot500, MaLA500, and EMMA500. Glot500, MaLA500, and EMMA500 support a
significantly larger number of languages than existing multilingual language models.

and linguistic knowledge of the unseen language during inference, enabling mod-
els to dynamically adapt their predictions to the linguistic or task-specific nuances
of unseen languages without additional training.

Despite significant progress, existing multilingual language models typically
support only about 100 languages, focusing primarily on those with significant
digital footprints or linguistic resources. Adaptation techniques, while effective,
are often designed for incremental support, addressing one language at a time.
This is still a long way from covering the approximately 7,000 languages spoken
worldwide, highlighting a substantial gap in the development of truly massively
multilingual models capable of handling a much broader and more diverse range
of languages simultaneously.

As shown in Figure 1.2, Glot500 (Imani et al., 2023), MaLA500 (Lin et al.,
2024b), and EMMA500 (Ji et al., 2024) push the boundary of language cover-
age, expanding from around 100 languages to over 500. Glot500 primarily tar-
gets smaller multilingual language models, while MaLA500 and EMMA500 are
designed for larger, more powerful massively multilingual language models, en-
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abling broader language support at scale.
Chapter 2 introduces the two primary contributions of Glot500 (Imani et al.,

2023): Glot500-c and Glot500-m. Glot500-c is a large-scale multilingual corpus
covering 534 language-script pairs. It was developed using a lightweight approach
that builds upon previous advancements in multilingual data curation. Specifi-
cally, it aggregates data from existing multilingual datasets and carefully curated
resources for low-resource languages, followed by thorough cleaning and dedupli-
cation. Building on this corpus, Glot500-m extends the vocabulary and continues
pre-training on XLM-R, a compact, encoder-only multilingual language model
that supports around 100 languages. This results in enhanced performance across
both high- and low-resource languages on a broad range of tasks. Our analysis
highlights several key factors that influence model quality, including corpus size
and help from related languages.

Chapter 3 introduces MaLA500 (Lin et al., 2024b), which builds on Glot500
by scaling up the massively multilingual language model to larger LLMs using
LLaMA 2, a large language model centered on English. This transition leverages
the enhanced capabilities of LLaMA 2, resulting in a more powerful, massively
multilingual model. As a result, MaLA500 achieves significant advancements in
in-context learning, without requiring any parameter updates.

Chapter 4 presents EMMA500 (Ji et al., 2024), which further enhances the
power of MaLA500. By compiling the MaLA corpus—a comprehensive mul-
tilingual dataset—and enriching it with curated resources from diverse domains,
EMMA500 surpasses Glot500-c in its quality and quantity. Compared to MaLA500,
EMMA500 exhibits robust performance across a broad set of benchmarks, includ-
ing a wide array of multilingual tasks and PolyWrite, an open-ended generation
benchmark developed as part of this study. Our results underscore the effective-
ness of continual pre-training in expanding the language capacity of large lan-
guage models, particularly for underrepresented languages. EMMA500 demon-
strates significant improvements in cross-lingual transfer, task generalization, and
language adaptability.

Parallel corpora are widely employed to boost the performance of multilin-
gual language models, offering notable benefits for both smaller and larger multi-
lingual language models. For smaller models, parallel corpora enhance perfor-
mance through parallel training objectives (Conneau and Lample, 2019; Patra
et al., 2022), enabling these models to effectively capture cross-lingual relation-
ships. In the case of larger models, parallel corpora serve as valuable instruction
data, helping refine the model’s understanding and improving task performance
across a wide range of languages (Cahyawijaya et al., 2023; Zhu et al., 2023; Li
et al., 2023). Despite the widespread use of parallel corpora, the best practices for
efficiently leveraging these parallel resources in large language models are still
insufficiently explored.
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Chapter 5 delves into the best practices for utilizing parallel corpora in large-
scale multilingual language models (Lin et al., 2025a). It examines how the qual-
ity and quantity of parallel corpora, along with training objectives and model size,
influence the performance of multilingual models across a broad spectrum of lan-
guages and tasks. Through a detailed analysis, the chapter highlights key fac-
tors that contribute to the effective integration of parallel data into multilingual
training processes. The findings offer valuable insights into optimizing the use
of parallel corpora, providing strategies for enhancing multilingual model perfor-
mance and expanding the applicability of previous research to a greater number
of languages and more diverse contexts. These insights pave the way for future
advancements in multilingual language model development, facilitating their de-
ployment in real-world applications that require broad language coverage and nu-
anced cross-lingual capabilities.

1.3 Adaptation
Acquiring labeled data for low-resource languages remains a labor-intensive chal-
lenge due to the limited availability of native speakers and linguistic resources. In
contrast, obtaining labeled data for high-resource languages is comparatively eas-
ier due to their larger speaker bases and more established linguistic infrastructures.
As a result, cross-lingual transfer has emerged as a powerful and widely adopted
technique to evaluate low-resource languages. This approach leverages data from
high-resource languages (source languages) and applies it to low-resource lan-
guages (target languages), eliminating the need for labeled data in the target lan-
guages and enabling models to perform well across language barriers.

In the era of small language models, fine-tuning plays a crucial role in adapt-
ing pre-trained language models to specific tasks. The standard workflow in cross-
lingual transfer involves fine-tuning a pre-trained multilingual language model on
available high-resource language data and then applying the fine-tuned model di-
rectly to low-resource language tasks, often with minimal additional training. This
process enables models to generalize across languages, leveraging the information
from high-resource languages to improve performance in low-resource contexts.

Chapter 6 introduces mPLM-Sim (Lin et al., 2024a), a novel approach aimed
at enhancing cross-lingual transfer for small multilingual language models. mPLM-
Sim proposes an innovative language similarity measure, leveraging learned rep-
resentations from multilingual pre-trained language models (mPLMs) using multi-
parallel corpora. In comparison to traditional linguistic measures, mPLM-Sim
outperforms them in both qualitative and quantitative analyses. Furthermore,
mPLM-Sim provides deep insights into the architecture of mPLMs by exploring
language similarity across various model layers and comparing different mPLMs.
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Notably, mPLM-Sim excels in selecting source languages for given target lan-
guages in zero-shot cross-lingual transfer, resulting in improved performance across
a wide range of benchmarks. This capability allows mPLM-Sim to efficiently al-
locate resources, making it easier to adapt models to low-resource languages with
better performance.

With the advent of large language models (LLMs), in-context learning has
emerged as a critical technique. Through in-context learning, LLMs can directly
perform new tasks by being provided with a few input-output examples alongside
the input query (Brown et al., 2020). The success of in-context learning depends
heavily on the careful selection of few-shot examples (Liu et al., 2022). Fine-
tuned retrievers have been proven effective in retrieving relevant examples in En-
glish (Rubin et al., 2022), thus enhancing the performance of in-context learning.
However, applying this approach to multilingual contexts encounters significant
challenges, particularly in low-resource languages, due to the scarcity of labeled
training data of low-resource languages.

Chapter 7 introduces XAMPLER (Lin et al., 2025b), an innovative approach
to the challenge of selecting few-shot examples for input queries in low-resource
languages. In the absence of labeled examples in these languages, XAMPLER
leverages English samples as few-shot examples. To construct positive and nega-
tive pairs for contrastive learning during the fine-tuning of the example retriever,
we leverage powerful large language models to label whether a candidate exam-
ple is helpful or not for in-context learning of a given English query. A small
massively multilingual language model serves as the foundation for fine-tuning
the retriever. This entire process relies solely on annotated English data. By har-
nessing the cross-lingual transferability of the base multilingual language model,
XAMPLER enables the fine-tuned retriever to identify relevant few-shot English
examples for input queries across any language supported by the model. Ex-
perimental results show that XAMPLER achieves state-of-the-art performance in
few-shot in-context learning across a wide range of languages, demonstrating its
robustness and adaptability in low-resource settings.

Both mPLM-Sim and XAMPLER represent significant advancements in cross-
lingual transfer, enhancing the use of both small- and large-scale language models
for low-resource languages. mPLM-Sim refines source language selection for
zero-shot transfer, while XAMPLER optimizes few-shot example selection using
English data, enabling effective in-context learning for languages with no labeled
data. Together, these methods boost performance in low-resource settings and
help bridge the gap in language technology across a wide range of languages.
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1.4 Outline
In this chapter, we provide the main topics covered in the publications throughout
this thesis, along with the conclusions drawn from the research and suggestions
for future work. Chapters 2, 3, and 4 focus on the development of massively
multilingual language models, addressing the challenges associated with scaling
these models to support a wide variety of languages. Chapter 2 introduces a mas-
sively multilingual corpus and leverages it to continue pre-training a small-scale
multilingual language model, thereby creating a massively multilingual language
model. Chapter 3 extends this approach to larger multilingual models, achiev-
ing strong performance in classification tasks via few-shot in-context learning.
Chapter 4 advances the development of more sophisticated and powerful multi-
lingual language models across a variety of tasks by incorporating improved data
resources. Chapter 5 investigates the use of parallel data to enhance large lan-
guage models, examining four key factors—quality and quantity of parallel cor-
pora, training objectives, and model size—that impact the performance of multi-
lingual models across a diverse set of languages and tasks. Chapter 6 introduces
mPLM-Sim, a novel approach to measuring language similarity and improving
cross-lingual transfer by optimizing source language selection. Finally, Chapter
7 presents XAMPLER, an advanced solution for retrieving relevant examples for
in-context learning in low-resource languages.

1.5 Foundation

1.5.1 Transformer
The Transformer architecture, introduced by Vaswani et al. (2017), revolutionized
natural language processing (NLP) by enabling more efficient scaling of language
models compared to traditional recurrent architectures. Unlike recurrent neural
networks (RNNs) and their variants, such as Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU), which process input sequentially and struggle
to capture long-range dependencies effectively, the Transformer leverages a self-
attention mechanism that processes entire sequences in parallel. This parallelism
not only significantly reduces training time but also enhances the model’s capacity
to capture complex relationships within the data.

As illustrated in Figure 1.3, the Transformer architecture is composed of two
key components: the encoder and the decoder. Both components are built using
layers of multi-head self-attention mechanisms and feed-forward networks, which
are stacked multiple times. The encoder processes the input sequence through
its layers to produce contextualized representations, capturing the relationships
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Figure 1.3: The Transformer architecture, as introduced by Vaswani et al. (2017).

between tokens within the input. The decoder generates the output sequence by
attending to both the encoder’s output and its own previously generated tokens.

One of the key innovations of the Transformer architecture is the multi-head
attention mechanism, which enhances the model’s ability to capture diverse con-
textual relationships within the input sequence. Unlike single-head attention,
which provides a single representation for each token’s interaction with the oth-
ers, multi-head attention divides the attention computation into multiple heads,
enabling the model to focus on different aspects of the sequence simultaneously.

As shown in Figure 1.4, the multi-head attention mechanism operates by pro-
jecting the input sequence into multiple subspaces, each corresponding to an at-
tention head. Each head independently computes attention scores and generates a
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attention.png

Figure 1.4: Scaled Dot-Product Attention (left) and Multi-Head Attention (right). Scaled Dot-
Product Attention computes a weighted sum of values V based on the similarity between queries
Q and keys K, normalized by the dimension of keys, dk. Multi-Head Attention extends this by
performing multiple parallel attention computations (heads) with independent parameterization,
enabling the model to jointly attend to information from different representation subspaces. The
figure was taken from Vaswani et al. (2017).

weighted representation of the sequence. These representations are then concate-
nated and linearly transformed to produce the final output.

Specifically, the process for a single attention head can be described as fol-
lows:

Attention(Q, K, V ) = softmax
(

QK>√
dk

)
V (1.1)

where Q, K, V are the query, key, and value matrices, derived from the input
embeddings via learned linear transformations. dk is the dimensionality of the
key vectors, and

√
dk is used to scale the dot products, preventing them from

growing too large. The softmax function ensures that the attention weights are
normalized to sum to 1.

In multi-head attention, the mechanism is applied h times (where h is the
number of heads), with separate projections for Q, K, and V for each head:

headi = Attention(QW Q
i , KW K

i , V W V
i ), (1.2)

where W Q
i , W K

i , and W V
i are learned weight matrices specific to the i-th head.

The outputs of all heads are concatenated and linearly transformed:

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O, (1.3)
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where W O is a learned output weight matrix.
The use of multiple heads allows the model to focus on different parts of the

sequence simultaneously. For example, one head might focus on syntactic rela-
tionships, while another captures semantic relationships.

Unlike RNNs and their variants, such as LSTMs and GRUs, which process
input tokens sequentially and inherently capture positional information through
their architecture, Transformers lack a built-in mechanism to encode the order of
tokens. Without positional encoding, a Transformer cannot differentiate between
sequences with identical tokens but different orders. For instance, the sentences
"The cat chased the mouse" and "The mouse chased the cat" would appear iden-
tical to the model, as it would treat both as containing the same set of tokens,
despite their vastly different meanings.

To overcome this, Transformers incorporate positional encodings to inject in-
formation about token order. These encodings are added to the input embeddings
at the base of the encoder and decoder stacks, enabling the model to distinguish
between tokens at different positions within the sequence.

In the original Transformer architecture by Vaswani et al. (2017), position
embeddings are generated using fixed, non-learnable functions. Each position p is
encoded as a combination of sine and cosine functions with varying frequencies:

PE(p, 2i) = sin
(

p

100002i/d

)
(1.4)

PE(p, 2i + 1) = cos
(

p

100002i/d

)
, (1.5)

where d is the dimensionality of the embeddings, and i is the hidden dimension
index.

Subsequent approaches, such as the learnable positional embeddings intro-
duced by Devlin et al. (2019), replace these fixed encodings with trainable vectors.
In this approach, each position in the sequence is assigned a unique vector, initial-
ized randomly and optimized alongside the model’s parameters during training.
While this method offers greater flexibility and adapts more effectively to specific
tasks, it is limited to a predefined maximum sequence length and lacks extrapola-
tion capability to positions outside this range.

Recent advancements in positional encoding have addressed these limitations.
Rotary Positional Embedding (RoPE) (Su et al., 2021) integrates learnable embed-
dings with rotational transformations, enabling better generalization and enhanced
performance in language models. However, RoPE struggles with sequences ex-
ceeding the training length. To address this, methods such as Alibi (Press et al.,
2022) and Lex (Sun et al., 2023) have been proposed, offering solutions that mit-
igate the extrapolation challenges and extend the model’s ability to handle longer
sequences effectively.



1.5 Foundation 16

The Transformer architecture has since become the backbone of many cutting-
edge models in natural language processing (NLP), including BERT (Devlin et al.,
2019), which specializes in capturing bidirectional context for tasks like question
answering and sentence classification, GPT (Radford et al., 2018), known for its
autoregressive approach and impressive language generation capabilities, and T5
(Raffel et al., 2020), a versatile model designed to handle a wide range of NLP
tasks using a unified text-to-text framework.

1.5.2 Pre-trained Language Representations
Pre-trained language representations have revolutionized natural language pro-
cessing (NLP) by providing versatile, general-purpose embeddings that encapsu-
late rich linguistic and contextual knowledge. These representations serve as a
robust foundation for a wide range of downstream tasks, including classification,
translation, summarization, and question answering. Trained on massive corpora
of unlabeled text using self-supervised learning objectives, they capture intricate
patterns in syntax, semantics, and context. After pre-training, these representa-
tions can be fine-tuned for specific tasks or leveraged directly through prompt-
ing, dramatically reducing the dependency on labeled data and computational re-
sources for task-specific applications. This paradigm has not only streamlined the
development of NLP systems but also broadened their applicability across diverse
languages and domains.

Static Representations

The emergence of static word embeddings, such as Word2Vec (Mikolov et al.,
2013a), GloVe (Pennington et al., 2014), and fastText (Bojanowski et al., 2017),
marked a significant milestone in the evolution of natural language processing
(NLP), paving the way for deep learning applications in the field. These embed-
dings provide dense vector representations of words, capturing semantic relation-
ships and similarities based on their distributional properties in large text corpora.
Unlike traditional one-hot or bag-of-words representations, static embeddings en-
code words into fixed-length vectors that reflect their contextual usage, enabling
models to perform more effectively in a variety of NLP tasks, such as sentiment
analysis, information retrieval, and machine translation.

Static embeddings are trained on large text corpora using techniques that lever-
age the distributional hypothesis: the idea that words occurring in similar contexts
tend to have similar meanings. Word2Vec (Mikolov et al., 2013a), for example,
employs neural network-based methods, including the Continuous Bag-of-Words
(CBOW) and Skip-Gram models, as illustrated in Figure 1.5.
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Figure 1.5: Two model architectures proposed by Mikolov et al. (2013a). The CBOW architecture
predicts the current word based on the context, and the Skip-gram predicts surrounding words
given the current word. The figure was taken from Mikolov et al. (2013a).

In the CBOW model, the objective is to predict a target word wt given its sur-
rounding context words wt−k, . . . , wt−1, wt+1, . . . , wt+k. The optimization goal
is:

LCBOW = −
T∑

t=1
log P (wt | wt−k, . . . , wt−1, wt+1, . . . , wt+k), (1.6)

where k is the size of the context window and T is the total number of words in
the corpus.

In the Skip-Gram model, the task is reversed, aiming to predict the context
words given a target word. The objective function is:

LSkip-Gram = −
T∑

t=1

k∑
j=−k,j 6=0

log P (wt+j | wt). (1.7)

Both architectures rely on the softmax function for estimating probabilities.
During training, they optimize the embeddings such that semantically similar
words appear closer in the resulting vector space. For example, words like “king"
and “queen" or “cat" and “dog" tend to cluster together, reflecting their shared se-
mantic properties. These embeddings have proven invaluable for numerous NLP
tasks, forming a foundation for more advanced language representation models.
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GloVe (Global Vectors for Word Representation) takes a different approach
by constructing a co-occurrence matrix X that counts how frequently words i and
j appear together in a fixed window of context. The embeddings are learned by
minimizing the following loss function:

LGloVe =
V∑

i,j=1
f(Xij)

(
w>i wj + bi + bj − log Xij

)2
, (1.8)

where wi and wj are the word vectors for words i and j, bi and bj are their respec-
tive biases, Xij is the co-occurrence count, and f(Xij) is a weighting function to
balance the influence of frequent and rare word pairs.

fastText, an extension of Word2Vec, introduces subword information by rep-
resenting each word as a composition of character n-grams. For a word w, the
embedding is computed as the sum of its subword n-gram embeddings:

vw =
∑

g∈G(w)
vg, (1.9)

where G(w) represents the set of character n-grams in w, and vg is the embed-
ding for each n-gram g. This approach enables fastText to model morphological
features effectively and handle rare or out-of-vocabulary (OOV) words.

While these methods revolutionized NLP by enabling pre-trained embeddings
to transfer knowledge to various tasks, static embeddings have inherent limita-
tions. Each word is assigned a single fixed vector, regardless of its meaning
in different contexts. For example, the word “bank" is represented identically
whether it refers to a financial institution or the side of a river. This lack of
context-awareness spurred the development of dynamic, context-sensitive embed-
dings, as seen in modern transformer-based models. Nonetheless, the simplicity,
efficiency, and effectiveness of static embeddings ensure their continued relevance
in resource-constrained settings and as foundational tools in the history of NLP.

Contextualized Representations

The scalability of the Transformer architecture has revolutionized language mod-
eling, transitioning from static word embeddings to advanced contextual language
models. Pioneering models such as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), GPT (Radford et al., 2018), T5 (Raffel et al., 2020), and BART
(Lewis et al., 2020) have significantly enhanced the ability to capture and represent
nuanced linguistic information. These models mark a significant departure from
earlier, static embedding techniques such as Word2Vec (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014), which assigned fixed representations to words,
and instead generate dynamic embeddings based on context. The Transformer
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architecture’s self-attention mechanism allows it to model long-range dependen-
cies, overcoming the limitations of previous recurrent models that struggled with
capturing distant relationships between tokens.

These state-of-the-art language models are broadly categorized into three pri-
mary architectures: encoder-only models (e.g., BERT, RoBERTa) are optimized
for understanding tasks, decoder-only models (e.g., GPT) are primarily used for
generative tasks, and encoder-decoder models (e.g., T5, BART) are versatile in
handling tasks that require both understanding and generation, such as translation
or summarization.

The backbone of training these large-scale language models is self-supervised
learning, which enables the models to learn linguistic representations directly
from vast corpora of unlabeled text. Unlike supervised learning, which requires
labeled data for training, self-supervised learning generates its own supervisory
signal by constructing predictive tasks from raw text. Two widely adopted self-
supervised objectives in this domain are Masked Language Modeling (MLM) and
Causal Language Modeling (CLM).

Masked Language Modeling (MLM) aims to predict certain tokens in a se-
quence that are randomly masked. Given an input sequence x = (x1, x2, . . . , xn),
a subset of tokens m ⊂ x is replaced with a special [MASK] token, resulting in
xmasked. The model is trained to predict the masked tokens based on their context.
The MLM objective is formally defined as:

LMLM = −Ex∼D

∑
i∈M

log P (xi | xmasked) (1.10)

whereM is the set of indices of the masked tokens, xmasked is the input sequence
with masked tokens, P (xi | xmasked) is the predicted probability of the original
token xi given the masked sequence. The MLM objective enables the model to
learn bidirectional contextual representations by considering both the left and right
context of the masked tokens.

Causal Language Modeling (CLM), also referred to as autoregressive lan-
guage modeling, predicts the next token in a sequence based on all previous to-
kens. Unlike MLM, CLM uses a unidirectional context, making it suitable for
generative tasks. Given an input sequence x = (x1, x2, . . . , xn), the CLM objec-
tive is defined as:

LCLM = −Ex∼D

n∑
i=1

log P (xi | x1, x2, . . . , xi−1) (1.11)

where P (xi | x1, x2, . . . , xi−1) is the predicted probability of the i-th token given
its preceding tokens. The CLM objective is commonly used in models designed
for text generation, such as GPT-like architectures.
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MLM provides bidirectional contextual understanding, making it well-suited
for tasks requiring a holistic view of the sequence (e.g., BERT). CLM models
the sequence in a unidirectional manner, which aligns with tasks like text gener-
ation (e.g., GPT). These self-supervised objectives form the foundation of mod-
ern language modeling, enabling models to generalize effectively across diverse
downstream tasks.

Typically, these language models undergo a two-stage training process. First,
they are pre-trained on massive corpora of unlabeled text to learn general-purpose
language representations. During this pre-training phase, the models are exposed
to diverse linguistic patterns, allowing them to develop a deep understanding of
language structure and meaning. Once pre-training is completed, the models un-
dergo a second phase, fine-tuning, where they are trained on labeled datasets
for specific downstream tasks, such as sentiment analysis, question answering,
or summarization. Fine-tuning allows the model to specialize and optimize its
performance on particular tasks by adjusting the parameters learned during pre-
training.

While the two-phase approach of pre-training and fine-tuning has proven ef-
fective, it can also introduce a mismatch between the distribution of data en-
countered during pre-training and the task-specific data encountered during fine-
tuning. This mismatch may limit the model’s ability to generalize across tasks,
particularly when the downstream task is significantly different from the pre-
training data. To address this challenge, recent advancements in prompt-based
learning and few-shot learning have emerged, enabling models to perform well on
new tasks with minimal task-specific training data.

Large Language Model Alignment

To address the challenges of task adaptability and data efficiency, newer models
such as GPT-2 (Radford et al., 2019), T5 (Raffel et al., 2020), and GPT-3 (Brown
et al., 2020) adopt innovative prompting techniques. As shown in Figure 1.6,
these techniques exploit the model’s pre-trained capabilities by framing tasks as
text completions, enabling zero-shot or few-shot learning directly from task de-
scriptions and a small number of examples. This eliminates the need for extensive
task-specific fine-tuning or parameter updates, allowing the models to perform a
wide range of tasks with minimal supervision. Such approaches not only mitigate
the pre-training-fine-tuning mismatch but also significantly reduce the reliance on
labeled data, making these models more adaptable to low-resource settings and
diverse real-world applications.

Despite their impressive capabilities, PLMs can exhibit undesirable behav-
iors, such as generating fabricated information (hallucinations), producing biased
or toxic outputs, or failing to adhere to user instructions (Bender et al., 2021;
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Figure 1.6: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels
above show four methods for performing a task with a language model – fine-tuning is the tradi-
tional method, whereas zero-, one-, and few-shot, which were proposed in Brown et al. (2020),
require the model to perform the task with only forward passes at test time. The figure was taken
from Brown et al. (2020).

Bommasani et al., 2021; Kenton et al., 2021). These issues present significant
challenges, especially in high-stakes applications like healthcare, legal services,
or education, where reliability, fairness, and ethical considerations are paramount.
To mitigate these problems, instruction tuning (Wang et al., 2022b) has been in-
troduced, helping models align more closely with human intentions and enabling
them to better follow explicit instructions in task-oriented and conversational con-
texts. Instruction tuning enhances the models’ ability to handle a broader range of
queries while adhering to user-defined guidelines.

Concurrently, advancements in model architecture and scaling have led to the
creation of even larger and more powerful models. Notable examples include
Gopher (Rae et al., 2021) with 280 billion parameters and Megatron-Turing NLG
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(Smith et al., 2022) with 530 billion parameters. These advancements have been
complemented by research emphasizing the importance of scaling not only model
size but also data size, as demonstrated by models like Chinchilla (Hoffmann
et al., 2022), which optimizes both factors for superior performance (Kaplan et al.,
2020; Hoffmann et al., 2022).

These innovations have spurred the development of a new generation of large
language models (LLMs) (Zhao et al., 2023), exemplified by models such as
PaLM (Chowdhery et al., 2022; Anil et al., 2023b), Gemini (Anil et al., 2023a),
LLaMA (Touvron et al., 2023a,b; Dubey et al., 2024), Gemma (Rivière et al.,
2024), Qwen (Bai et al., 2023), Mistral (Jiang et al., 2023), Claude 2,3 and Chat-
GPT.4 These models not only deliver exceptional performance across a wide range
of tasks but also exhibit emergent abilities, such as understanding nuanced queries,
reasoning across multiple steps, and generalizing to novel tasks with minimal su-
pervision (Wei et al., 2022; Lu et al., 2023b). These emergent abilities mark a
transformative shift in the capabilities of LLMs, making them increasingly inte-
gral to advancing research and applications in NLP.

PLMs represent a transformative leap in NLP, laying the foundation for un-
precedented innovation in the field. By harnessing vast amounts of data and lever-
aging advanced architectures, PLMs have significantly improved the ability to
understand and generate human language. This advancement not only enhances
the performance of a wide range of NLP tasks—such as text classification, transla-
tion, and summarization—but also broadens accessibility across diverse languages
and domains. Their adaptability allows for rapid fine-tuning and customization to
meet the needs of various industries, opening up new possibilities for applications
in healthcare, education, entertainment, and beyond.

1.5.3 Multilingual Representation
With over 7,000 languages spoken worldwide, supporting diverse languages in
NLP is crucial to fostering inclusivity and ensuring accessibility for all. Multilin-
gual representation in NLP aims to develop models that can understand, generate,
and transfer knowledge across numerous languages. This capability is particu-
larly important as most languages are significantly underrepresented in current
NLP tools and resources. By building models that effectively manage multilin-
gual contexts, NLP systems can democratize access to technology, break down
language barriers, and promote seamless global communication and information
exchange.

3https://web.archive.org/web/20230811143536/https://www.
anthropic.com/index/claude-2

4https://openai.com/blog/chatgpt

https://web.archive.org/web/20230811143536/https://www.anthropic.com/index/claude-2
https://web.archive.org/web/20230811143536/https://www.anthropic.com/index/claude-2
https://openai.com/blog/chatgpt
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mapping.png

Figure 1.7: Cross-lingual mapping: Unaligned monolingual word embeddings (left) and word
embeddings projected into a shared cross-lingual embedding space (right). Embeddings are visu-
alized with t-SNE. The figure was taken from Ruder et al. (2019).

Cross-Lingual Mapping

As illustrated in Figure 1.7, cross-lingual mapping seeks to align the represen-
tations of words or sentences from different languages into a unified semantic
space. This alignment is crucial for enabling seamless knowledge transfer across
languages, supporting tasks such as cross-lingual information retrieval, machine
translation, and low-resource language modeling. Approaches to cross-lingual
mapping are generally divided into two main categories: supervised methods,
which rely on parallel data for training, and unsupervised methods, which do not
require explicit alignment between languages.

Supervised approaches rely on bilingual dictionaries or parallel corpora to ex-
plicitly learn mappings between source and target languages. One commonly em-
ployed technique is linear mapping (Mikolov et al., 2013b), where monolingual
word embeddings from each language are aligned using a linear transformation.
Let X and Y denote the embedding matrices of the source and target languages,
respectively. The mapping is learned by solving:

W = arg min
W
‖WX − Y ‖F , (1.12)

where W is the transformation matrix and ‖ · ‖F represents the Frobenius norm.
This optimization problem is a specific instance of the Procrustes problem, which
aims to find the optimal linear transformation that aligns two embedding spaces.
Mikolov et al. (2013b) employed a gradient descent method to solve this opti-
mization. An extension of this approach constrains the transformation matrix W
to be orthonormal, i.e., W T W = I (Xing et al., 2015).

Although supervised methods yield promising results when high-quality bilin-
gual dictionaries are available, constructing these dictionaries can be a challeng-
ing task for many language pairs. To address this issue, unsupervised approaches
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(Artetxe et al., 2018; Lample et al., 2018) eliminate the need for parallel data by
exploiting structural similarities within monolingual embedding spaces. These
methods frequently utilize adversarial training to align embeddings, minimizing
domain divergence loss.

By aligning linguistic representations across languages, cross-lingual mapping
helps bridge linguistic barriers, thereby extending the reach of NLP to diverse lin-
guistic and cultural contexts. However, several challenges remain. The effective-
ness of these mappings is often influenced by the degree of similarity between
embedding spaces, which can vary significantly across languages with different
scripts, syntactic structures, or linguistic families. Additionally, mappings tend to
struggle with rare words, domain-specific terminology, and languages with limited
training data. Addressing these challenges is crucial for improving the robustness
and generalizability of cross-lingual mapping techniques.

Joint Training

Recently, joint training has emerged as the dominant approach in multilingual rep-
resentation learning, demonstrated by both smaller multilingual language models,
such as multilingual BERT (Devlin et al., 2019) supporting 104 languages and
XLM-R (Conneau et al., 2020) covering 100 languages, as well as larger multi-
lingual models like BLOOM (Scao et al., 2022) for 46 languages and Aya (Üstün
et al., 2024) supporting 100 languages.

In addition, some multilingual language models are designed specifically for
certain language groups. For African languages, models include AfriBERTa (Ogueji
et al., 2021), KinyaBERT (Nzeyimana and Rubungo, 2022), AfroXLMR (Alabi
et al., 2022a), SERENGETI (Adebara et al., 2022), Cheetah (Adebara et al., 2024),
and AfriMT (Adelani et al., 2022). CINO (Yang et al., 2022) is designed for Chi-
nese languages, while IndicBERT (Kakwani et al., 2020) focuses on Indian lan-
guages. For Indonesian languages, IndoBERT (Koto et al., 2020) and IndoGPT
(Cahyawijaya et al., 2021) have been developed. Additionally, Tower (Alves et al.,
2024) and EuroLLM (Martins et al., 2024) cater to European languages.

In this approach, raw text from multiple languages is aggregated during pre-
training, enabling the models to learn shared cross-lingual representations. This
method allows for the explicit alignment of representations across languages into
a common semantic space, where similar concepts and linguistic structures are
captured across diverse languages. By leveraging extensive multilingual corpora,
these models can transfer knowledge across languages, effectively understanding
and representing shared ideas, emotions, and expressions in a wide range of lin-
guistic contexts.

Joint training allows language models to learn language-agnostic features while
retaining language-specific nuances. Recent studies (Müller et al., 2021b; Chang
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Figure 1.8: Translation Language Model (TLM). This model extends the traditional Masked Lan-
guage Model (MLM) to parallel sentence pairs. For instance, when predicting a masked English
or French token, the model attends to both the English sentence and its French translation, aligning
embeddings between the two languages. Position embeddings in the target sentence are reset to
facilitate this alignment. The figure was taken from (Conneau and Lample, 2019).

et al., 2022) show that multilingual models effectively encode both language-
specific information (Gerz et al., 2018; Wu and Dredze, 2019; Rama et al., 2020;
Choenni and Shutova, 2022; Liang et al., 2021; Choenni et al., 2023) and language-
neutral knowledge, such as syntactic structures (Chi et al., 2020), token frequen-
cies (Rajaee and Pilehvar, 2022), and representation shifts (Libovický et al., 2020;
Pires et al., 2019). This enables multilingual language models to tackle a range
of tasks, including machine translation, cross-lingual transfer, and multilingual
content generation, laying the foundation for more inclusive and effective NLP
systems. This approach has proven particularly beneficial for low-resource lan-
guages, allowing them to leverage data from high-resource languages to improve
their performance.

Multilingual language models have a wide range of applications, including
translation, information retrieval, sentiment analysis, and education. By advanc-
ing multilingual representation, NLP can help build a more inclusive technolog-
ical ecosystem that bridges linguistic divides and meets the needs of a global,
multilingual population.

Parallel Corpora Exploitation

Parallel corpora, which consist of aligned sentences or documents across multiple
language pairs, are essential for advancing cross-lingual consistency and improv-
ing translation accuracy. Their use significantly enhances the performance of mul-
tilingual language models by providing critical resources for training on diverse
language pairs (Conneau and Lample, 2019; Patra et al., 2022).

An effective approach for leveraging parallel corpora is the Translation Lan-
guage Model (TLM), introduced by Conneau and Lample (2019). As illustrated
in Figure 1.8, TLM extends the traditional Masked Language Model (MLM) by
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incorporating parallel sentence pairs during pre-training. Specifically, given a pair
of sentences in source and target languages, TLM concatenates both sentences and
masks tokens within each sentence. The model then predicts the masked tokens
using context from both sentences, encouraging the alignment of token embed-
dings across languages. This approach enables the model to learn shared cross-
lingual representations by aligning linguistic structures between source and target
languages.

Since parallel corpora are often scarce, especially for low-resource languages,
bilingual lexicons covering a wide range of languages can be utilized to generate
synthetic parallel data (Wang et al., 2022a). This strategy enhances multilingual
models by allowing them to leverage available resources, boosting performance in
languages with limited training data. Additionally, multilingual sentence embed-
ding models, such as LASER (Artetxe and Schwenk, 2019), LABSE (Feng et al.,
2022), and LASER3 (Heffernan et al., 2022), can be employed for bitext mining
to further improve the alignment of cross-lingual representations.

By harnessing the power of parallel corpora, multilingual models can general-
ize more effectively across diverse languages. This ability is essential for enhanc-
ing the performance of various NLP tasks, including machine translation, cross-
lingual information retrieval, and content generation. All of these tasks benefit
from models that understand and represent multiple languages within a unified
semantic framework.

Language Adaptation

Many languages have limited data or are underrepresented during the pre-training
phase of multilingual language models, which hinders their performance in these
languages. Additionally, the curse of multilinguality (Conneau et al., 2020; Wang
et al., 2020b; Chang et al., 2023) can further degrade the model’s performance,
as adding more languages to the training data often leads to a deterioration in the
accuracy of the model on individual languages. To overcome these challenges, re-
searchers have explored various approaches to adapt existing multilingual models
for better performance on specific languages.

A widely studied technique for adapting pre-trained multilingual models to
specific tasks or languages is the use of adapters (Pfeiffer et al., 2020; Üstün et al.,
2020; Nguyen et al., 2021; Faisal and Anastasopoulos, 2022; Yong et al., 2022;
Alves et al., 2023). Adapters are lightweight modules inserted into the layers of a
pre-trained model, allowing it to adapt to new tasks or languages with minimal re-
training. This method captures language-specific nuances, improves performance
on low-resource languages, and reduces the computational cost of adaptation. The
modular nature of adapters is particularly appealing for adapting large, complex
models to diverse linguistic contexts.
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A prominent adapter technique for efficient model adaptation is Low-Rank
Adaptation (LoRA) (Hu et al., 2022). LoRA offers an efficient way to adapt large
pre-trained language models, especially in low-resource settings. Rather than ad-
justing all parameters of the model, LoRA introduces low-rank matrices into each
layer, fine-tuning these matrices while keeping the remaining model parameters
fixed. This significantly reduces the number of parameters that need to be updated,
making the adaptation process computationally more efficient.

The key idea behind LoRA is to factorize the weight matrix W of a neural
network layer into two low-rank matrices A and B:

W ′ = W + ∆W = W + A ·B (1.13)

where W ′ represents the adapted weight matrix, W is the original pre-trained
weight matrix, A and B are low-rank matrices fine-tuned during adaptation. By
introducing A and B, LoRA ensures that only a small number of parameters are
updated, thus reducing the computational cost associated with model adaptation.
The rank of A and B is typically much smaller than W , making the adaptation
process even more efficient.

Another approach to adapting multilingual language models to low-resource
languages is vocabulary extension or substitution (Chau et al., 2020; Wang et al.,
2020a; Müller et al., 2020, 2021a; Pfeiffer et al., 2021; Chen et al., 2023; Downey
et al., 2023). This approach involves modifying or expanding the model’s vocab-
ulary to better accommodate the linguistic features of low-resource languages.
Moreover, Alabi et al. (2022b) propose removing vocabulary tokens from the
embedding layer that correspond to non-African writing scripts before apply-
ing adapters. This approach reduces the model size, making it more efficient for
adapting existing multilingual language models to African languages.

Vocabulary extension involves adding new tokens to the model’s vocabulary,
which helps address out-of-vocabulary (OOV) issues and ensures better represen-
tation of previously unseen words or concepts. This process enables the model
to effectively handle new tokens and improve its performance on low-resource
languages.

On the other hand, vocabulary substitution focuses on replacing existing to-
kens in the model’s vocabulary with those from low-resource languages, often
through a process of cross-lingual token alignment. This method ensures smoother
adaptation by aligning the model’s vocabulary with the linguistic characteristics of
the target language, improving its capacity to generate and understand language-
specific tokens.

In the era of large language models, in-context learning has emerged as a pow-
erful approach, enabling models to efficiently adapt to low-resource languages.
By incorporating key contextual information, models can perform tasks more ef-
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fectively in these languages. One such piece of information is the use of few-
shot examples in the target language, which helps guide the model’s predictions.
Translation-based evaluation leverages pre-trained translation models (Shi et al.,
2022; Ahuja et al., 2023) or self-translation techniques (Huang et al., 2023; Etx-
aniz et al., 2023; Zhang et al., 2023) to provide translations between high-resource
and low-resource languages. Additionally, bilingual lexicons and grammar books
offer valuable linguistic resources, further enhancing model performance in low-
resource settings (Lu et al., 2023a; Tanzer et al., 2024; Zhang et al., 2024b,a).

Overall, these strategies help mitigate the challenges posed by the curse of
multilinguality, where the performance of multilingual models declines as more
languages are added to the training set. By focusing on techniques that adapt,
extend, and augment models for low-resource languages, these approaches show
great promise in advancing multilingual NLP applications. Ultimately, they con-
tribute to the development of more equitable and inclusive models that can better
support a diverse range of languages.

1.6 Conclusion and Future Work

1.6.1 Conclusion
This thesis presents significant advancements in both the modeling and adaptation
of massively multilingual language models, with a particular emphasis on reduc-
ing the performance gap between high- and low-resource languages. Its contri-
butions span the entire development pipeline—from data collection and model
architecture to adaptation and evaluation—culminating in a cohesive framework
for building more equitable and linguistically inclusive multilingual systems.

Through the Glot500, MaLA500, and EMMA500 series, this work introduces
comprehensive multilingual corpora and progressively scaled models that achieve
state-of-the-art performance across diverse linguistic settings. An in-depth analy-
sis of parallel corpora reveals how the interaction among data quality, data quan-
tity, and training objectives fundamentally determines the effectiveness of multi-
lingual language models.

In the area of task adaptation, the mPLM-Sim and XAMPLER studies propose
complementary strategies to strengthen cross-lingual generalization. mPLM-Sim
introduces a model-based language similarity metric to identify optimal source
languages for transfer learning, enabling more effective adaptation to underrep-
resented languages. In parallel, XAMPLER fine-tunes a cross-lingual retriever to
supply high-quality in-context examples, substantially enhancing in-context learn-
ing performance in low-resource scenarios.

Overall, this thesis demonstrates that the integration of high-quality multilin-
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gual data, principled transfer mechanisms, and data-driven adaptation techniques
can markedly reduce disparities between high- and low-resource languages. These
advances pave the way for the next generation of multilingual language mod-
els—systems that not only achieve linguistic parity but also embody a deeper
understanding of global cultural diversity, fostering more inclusive and represen-
tative language technologies.

1.6.2 Future Work
To reach the next milestone—developing large language models with capabili-
ties for low-resource languages comparable to those for English—several critical
challenges must be addressed.

Model Architecture and Scalability Designing an effective architecture is cru-
cial for developing multilingual language models that can support both high-
and low-resource languages. A well-balanced architecture must distribute model
capacity equitably across languages, enabling effective cross-lingual knowledge
transfer while mitigating overfitting to high-resource data. Integrating interpretabil-
ity tools further enhances transparency, allowing researchers to analyze internal
representations, track transfer dynamics, and evaluate language-specific perfor-
mance.

Certain architectural approaches are particularly well-suited for multilingual
settings. The Mixture-of-Experts (MoE) framework offers a scalable and effi-
cient solution by dynamically routing inputs through specialized expert networks,
thereby allocating computational capacity where it is most beneficial. Meanwhile,
tokenizer-free models provide a flexible alternative for handling low-resource lan-
guages, removing the constraints of fixed vocabularies and facilitating seamless
extension to previously unseen linguistic systems.

High-Quality Multilingual Data High-quality pretraining for multilingual lan-
guage models requires datasets that balance quantity and quality, particularly for
low-resource languages. Large-scale web-crawled corpora often underrepresent
these languages, and noisy or unverified data can amplify biases and errors. To
address this, a combination of human curation, LLM-based data generation, and
structured linguistic resources is essential.

Human-curated data remains the most reliable source, ensuring linguistic au-
thenticity and cultural fidelity. Community-driven collection and validation, espe-
cially involving native speakers, can expand coverage while preserving language-
specific nuances. At the same time, LLM-generated data can supplement scarce
resources: models can produce candidate text, which is then verified or refined
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by humans. Additionally, seed resources such as lexicons, grammar rules, and
parallel corpora can guide both human and LLM-based synthesis, ensuring the
resulting datasets are linguistically grounded and culturally appropriate.

By strategically combining these approaches—human expertise, LLM distil-
lation, and structured linguistic resources—researchers can create comprehensive,
high-quality multilingual datasets that support robust pretraining and effective
cross-lingual transfer.

Cross-Lingual Transfer Cross-lingual transfer can be divided into semantic-
level transfer and solution-level transfer. Semantic-level transfer involves sharing
universal knowledge—such as general world facts, common reasoning patterns,
and syntactic structures—that can be applied across multiple languages. In con-
trast, solution-level transfer focuses on adapting knowledge that is culturally, re-
gionally, or legally specific, reflecting the unique characteristics of each language
and context.

To facilitate semantic-level transfer, techniques like cross-lingual retrieval and
machine translation are critical for bridging data gaps, particularly for low-resource
languages. For solution-level transfer, leveraging reinforcement learning on high-
quality curated data allows models to learn how to solve tasks effectively in one
context and generalize that capability across languages.

Multimodal Grounding Incorporating multimodal data—text, speech, images,
and video—provides richer contextual grounding, particularly for languages with
limited textual resources. Speech data supports languages lacking standardized
orthography, while visual and environmental cues enhance semantic understand-
ing and cross-lingual reasoning.

Multimodal integration strengthens learning signals for low-resource languages
and offers a universal medium to bridge linguistic divides, supporting more equi-
table multilingual capabilities without redundancy in cultural or localization con-
siderations.

By addressing these challenges—scalable architectures, high-quality multi-
lingual data, cross-lingual transfer, and multimodal grounding—massively mul-
tilingual language models can achieve more equitable support across languages,
fostering a globally inclusive and accessible technological ecosystem.
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Abstract

The NLP community has mainly focused on
scaling Large Language Models (LLMs) ver-
tically, i.e., making them better for about 100
languages. We instead scale LLMs horizon-
tally: we create, through continued pretraining,
Glot500-m, an LLM that covers 511 predom-
inantly low-resource languages. An impor-
tant part of this effort is to collect and clean
Glot500-c, a corpus that covers these 511 lan-
guages and allows us to train Glot500-m. We
evaluate Glot500-m on five diverse tasks across
these languages. We observe large improve-
ments for both high-resource and low-resource
languages compared to an XLM-R baseline.
Our analysis shows that no single factor ex-
plains the quality of multilingual LLM rep-
resentations. Rather, a combination of fac-
tors determines quality including corpus size,
script, “help” from related languages and the
total capacity of the model. Our work ad-
dresses an important goal of NLP research: we
should not limit NLP to a small fraction of the
world’s languages and instead strive to support
as many languages as possible to bring the ben-
efits of NLP technology to all languages and
cultures. Code, data and models are available
at https://github.com/cisnlp/Glot500.

1 Introduction
The NLP community has mainly focused on scaling
Large Language Models (LLMs) vertically, i.e.,
deepening their understanding of high-resource lan-
guages by scaling up parameters and training data.
While this approach has revolutionized NLP, the
achievements are largely limited to high-resource
languages. Examples of “vertical” LLMs are GPT3
(Brown et al., 2020), PaLM (Chowdhery et al.,
2022) and Bloom (BigScience et al., 2022). In this
paper, we create Glot500-m, a model that instead
focuses on scaling multilingual LLMs horizontally,
i.e., scaling to a large number of languages the great

*Equal contribution.

majority of which is low-resource. As LLMs are
essential for progress in NLP, lack of LLMs support-
ing low-resource languages is a serious impediment
to bringing NLP to all of the world’s languages and
cultures. Our goal is to address this need with the
creation of Glot500-m.1

Existing multilingual LLMs support only about
100 (Conneau et al., 2020) out of the 7000 languages
of the world. These supported languages are the
ones for which large amounts of training data are
available through projects such as Oscar (Suárez
et al., 2019) and the Wikipedia dumps.2 Following
Siddhant et al. (2022), we refer to the 100 languages
covered by XLM-R (Conneau et al., 2020) as head
languages and to the remaining languages as tail
languages. This terminology is motivated by the
skewed distribution of available data per language:
for the best-resourced languages there are huge
corpora available, but for the long tail of languages,
only small corpora exist. This is a key problem we
address: the availability of data for tail languages
is limited compared to head languages. As a result,
tail languages have often been ignored by language
technologies (Joshi et al., 2020).

Although there exists some work on machine
translation for a large number of tail languages
(Costa-jussà et al., 2022; Bapna et al., 2022), ex-
isting LLMs for tail languages are limited to a
relatively small number of languages (Wang et al.,
2019; Alabi et al., 2022; Wang et al., 2022). In this
paper, we address this gap. Our work has three parts.
(i) Corpus collection. We collect Glot2000-c, a
corpus covering thousands of tail languages. (ii)
Model training. Using Glot500-c, a subset of
Glot2000-c, we train Glot500-m, an LLM covering
511 languages. (iii) Validation. We conduct an
extensive evaluation of the quality of Glot500-m’s

1In concurrent work, Adebara et al. (2022) train a multilin-
gual model for 517 African languages on a 42 gigabyte corpus,
but without making the model available.

2https://dumps.wikimedia.org/
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representations of tail languages on a diverse suite
of tasks.

In more detail, corpus collection considers three
major sources: websites that are known to publish
content in specific languages, corpora with clas-
sified multilingual content and datasets published
in specific tail languages. The resulting dataset
Glot2000-c comprises 700GB in 2266 languages
collected from ≈150 sources. After cleaning and
deduplication, we create the subset Glot500-c, con-
sisting of 511 languages and 534 language-scripts
(where we define a language-script as a combina-
tion of ISO 639-33 and script) to train Glot500-m.
Our criterion for including a language-script in
Glot500-c is that it includes more than 30,000 sen-
tences.

Model training. To train Glot500-m, we employ
vocabulary extension and continued pretraining.
XLM-R’s vocabulary is extended with new tokens
trained on Glot500-c. We then perform continued
pretraining of XLM-R with the MLM objective
(Devlin et al., 2019).

Validation. We comprehensively evaluate
Glot500-m on a diverse suite of natural language
understanding, sequence labeling and multilingual
tasks for hundreds of languages. The results demon-
strate that Glot500-m performs better than XLM-
R-B (XLM-R-base) for tail languages by a large
margin while performing comparably (or better) for
head languages.

Previous work on multilinguality has been hin-
dered by the lack of LLMs supporting a large num-
ber of languages. This limitation has led to studies
being conducted in settings dissimilar from real-
world scenarios. For example, Dufter and Schütze
(2020) use synthetic language data. And the curse
of multilinguality has been primarily studied for
a set of high-resource languages (Conneau et al.,
2020). By creating Glot500-m, we can investigate
these issues in a more realistic setting. We make
code, data and trained models available to foster
research by the community on how to include hun-
dreds of languages that are currently ill-served by
NLP technology.

Contributions. (i) We train the multilingual
model Glot500-m on a 600GB corpus, covering
more than 500 diverse languages, and make it pub-
licly available at https://github.com/cisnlp/
Glot500. (ii) We collect and clean Glot500-c, a
corpus that covers these diverse languages and al-

3https://iso639-3.sil.org/code_tables/639

lows us to train Glot500-m, and will make as much
of it publicly available as possible. (iii) We evaluate
Glot500-m on pseudoperplexity and on five diverse
tasks across these languages. We observe large im-
provements for low-resource languages compared
to an XLM-R baseline. (iv) Our extensive analysis
shows that no single factor explains the quality of
multilingual LLM representations. Rather, a com-
bination of factors determines quality including
corpus size, script, “help” from related languages
and the total capacity of the model. (v) Our work
addresses an important goal of NLP research: we
should not limit NLP to a relatively small number
of high-resource languages and instead strive to
support as many languages as possible to bring the
benefits of NLP to all languages and cultures.

2 Related Work

Training multilingual LLMs using the masked lan-
guage modeling (MLM) objective is effective to
achieve cross-lingual representations (Devlin et al.,
2019; Conneau et al., 2020). These models can be
further improved by incorporating techniques such
as discriminative pre-training (Chi et al., 2022) and
the use of parallel data (Yang et al., 2020; Chi et al.,
2021). However, this primarily benefits a limited
set of languages with large corpora.

Recent research has attempted to extend exist-
ing LLMs to languages with limited resources.
Wang et al. (2019) propose vocabulary extension;
Ebrahimi and Kann (2021) investigate adaptation
methods, including MLM and Translation Lan-
guage Model (TLM) objectives and adapters; Alabi
et al. (2022) adapt XLM-R to 17 African languages;
Wang et al. (2022) expand language models to
low-resource languages using bilingual lexicons.

Alternatively, parameter-efficient fine-tuning
adapts pre-trained models to new languages by
training a small set of weights effectively (Zhao
et al., 2020; Pfeiffer et al., 2021; Ansell et al., 2022).
Pfeiffer et al. (2022) address the “curse of multilin-
guality” by sharing a part of the model among all
languages and having separate modules for each lan-
guage. We show that the common perception that
multilinguality increases as we add more languages,
until, from some point, it starts decreasing, is naive.
The amount of available data per language and the
similarity between languages also play important
roles (§6.8).

Another approach trains LLMs from scratch for
a limited number of tail languages; e.g., AfriBERTa
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(Ogueji et al., 2021a) and IndicNLPSuite (Kakwani
et al., 2020) are LLMs for 11 African languages and
11 Indic languages. In concurrent work, Adebara
et al. (2022) train a multilingual model for 517
African languages on a 42 GB corpus, but without
making the model available and with an evaluation
on a smaller number of languages than ours.

Closely related to our work on corpus creation,
Bapna et al. (2022) and Costa-jussà et al. (2022)
also create NLP resources for a large number of tail
languages. They train a language identifier model
and extract textual data for tail languages from large-
scale web crawls. This approach is effective, but
it requires significant computational resources and
native speakers for all tail languages. This is hard
to do outside of large corporations. Bapna et al.
(2022) have not made their data available. Costa-
jussà et al. (2022) have only released a portion of
their data in around 200 languages.

A key benefit of “horizontally” scaled multilin-
gual LLMs is transfer from high- to low-resource
languages. Our evaluation suggests that Glot500-m
excels at this, but this is not the main focus of our
paper. There is a large body of work on crosslin-
gual transfer: (Artetxe and Schwenk, 2019; Imani-
Googhari et al., 2022; Lauscher et al., 2020; Con-
neau et al., 2020; Turc et al., 2021; Fan et al., 2021;
Severini et al., 2022; Choenni and Shutova, 2022;
Wang et al., 2023), inter alia.

3 Glot2000-c

3.1 Data Collection

One of the major challenges in developing NLP
technologies for tail languages is the scarcity of
high-quality training data. In this work, we propose
a lightweight methodology that is easily replicable
for academic labs. We identify tail language data
previously published by researchers, publishers and
translators and then crawl or download them. By
crawling a few websites and compiling data from
around 150 different datasets, we amass more than
700GB of text in 2266 languages. We will refer
to these sources of data as data sources. Our data
covers many domains, including religious texts,
news articles and scientific papers. Some of the
data sources are high-quality, verified by native
speakers, translators and linguists. Others are less
reliable such as web crawls and Wikipedia dumps.
It is therefore necessary to clean the data. For a list
of data sources, see §C.

3.2 Language-Scripts
Some languages are written in multiple scripts; e.g.,
Tajik is written in both Cyrillic and Arabic scripts.
Some data sources indicate the script, but others
either do not or provide mixed text in multiple
scripts. We detect the script for each sentence and
treat each language-script as a separate entity.

3.3 Ngram LMs and Language Divergence
We train a 3-gram character-level language model
𝑀𝑖 for each language-script 𝐿𝑖, using KenLM
(Heafield, 2011). We refer to the perplexity calcu-
lated for the corpus of language 𝐿𝑖 using language
model 𝑀 𝑗 as PP(𝑀 𝑗 , 𝐿𝑖). Similar to Gamallo
et al. (2017), we define a perplexity-based diver-
gence measure of languages 𝐿𝑖 and 𝐿 𝑗 as:

D𝐿𝑖 ,𝐿 𝑗 = max
(PP(𝑀 𝑗 , 𝐿𝑖),PP(𝑀𝑖 , 𝐿 𝑗)

)
We use D to filter out noisy data in §3.4 and study
the effect of similar languages in LLM training in
§6.7 and §6.8. For more details, see §A.

3.4 Data Cleaning
To remove noise, we use chunk-level and corpus-
level filters.

While some sources are sentence-split, others
provide multiple sentences (e.g., a paragraph) as
one chunk. Chunk-level filters process each chunk
of text from a data source as a unit, without sentence-
splitting. Some chunk-level filters are based on the
notion of word: we use white space tokenization
when possible and otherwise resort to sentencePiece
(Kudo and Richardson, 2018) trained by Costa-jussà
et al. (2022).

As chunk-level filters, we employ the sentence-
level filters SF1–SF5 from BigScience ROOTS
(Laurençon et al., 2022).

SF1 Character repetition. If the ratio of repeated
characters is too high, it is likely that the sentence
has not enough textual content.

SF2 Word repetition. A high ratio of repeated
words indicates non-useful repetitive content.

SF3 Special characters. Sentences with a high
ratio of special characters are likely to be crawling
artifacts or computer code.

SF4 Insufficient number of words. Since training
language models requires enough context, very
small chunks of text are not useful.

SF5 Deduplication. If two sentences are identical
after eliminating punctuation and white space, one
is removed.
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Glot2000-c 2266 35 2.3B 8K
Glot500-c 511 30 1.5B 120K
Costa-jussà et al. (2022) 134 - 2.4B 3.3M
Bapna et al. (2022) 1503 - 1.7B 25K

Table 1: Statistics for Glot2000-c, Glot500-c and ex-
isting multilingual datasets: number of languages,
scripts, sentences’ and median number of sentences’
per language-script.

In the rest of the paper, we refer to a chunk as
a sentence’. A sentence’ can consist of a short
segment, a complete sentence or a chunk (i.e.,
several sentences).

Corpus-level filters detect if the corpus of a
language-script is noisy; e.g., the corpus is in an-
other language or consists of non-meaningful con-
tent such as tabular data. We employ filters CF1
and CF2.

CF1 In case of mismatch between language
and script, the corpus is removed; e.g., Chinese
written in Arabic is unlikely to be Chinese.

CF2 Perplexity mismatch. For each language-
script L1, we find its closest language-script L2:
the language-script with the lowest perplexity di-
vergence (§3.3). If L1 and L2 are not in the same
typological family, we check L1/L2 manually and
take appropriate action such as removing the corpus
(e.g., if it is actually English) or correcting the ISO
code assigned to the corpus.

3.5 Training Data: Glot500-c
Among the 2000+ language-scripts that we col-
lected data for, after cleaning, most have too little
data for pretraining LLMs. It is difficult to quan-
tify the minimum amount needed for pretraining.
Therefore, we pick a relatively high “safe” threshold,
30,000 sentences’, for inclusion of language-scripts
in model training. This allows us to train the model
effectively and cover many low-resource languages.
Table 1 gives Glot500-c statistics. See §B for a
list of language-scripts. We train Glot500-m on
Glot500-c; note that while Glot500-c focuses on
tail languages, it contains some data in head lan-
guages which we include in Glot500-m training to
prevent catastrophic forgetting.

We divide the corpus for each language into
train/dev/test, reserving 1000 sentences’ each for
dev and test and using the rest for train. We pick
1000 parallel verses if we have a Bible translation

XLM-R-B XLM-R-L Glot500-m

Model Size 278M 560M 395M
Vocab Size 250K 250K 401K
Transformer Size 86M 303M 86M

Table 2: Model sizes. Glot500-m and XLM-R-B have
the same transformer size, but Glot500-m has a larger
vocabulary, resulting in an overall larger model.

and add 500 each to test and dev. These parallel
verses convey identical meanings and facilitate
crosslingual evaluation. We pretrain the model
using only the training data.

4 Glot500-m
4.1 Vocabulary Extension
To extend XLM-R’s vocabulary, we use Sentence-
Piece (Kudo and Richardson, 2018) with a unigram
language model (Kudo, 2018) to train a tokenizer
with a vocabulary size of 250K on Glot500-c. We
sample data from different language-scripts accord-
ing to a multinomial distribution, with 𝛼=.3. The
amount we sample for head languages is the same
as tail languages with the lowest amount; this favors
tail languages – head languages are already well
learned by XLM-R. We merge the obtained tokens
with XLM-R’s vocabulary. About 100K new to-
kens were in fact old tokens, i.e., already part of
XLM-R’s vocabulary. We take the probabilities
of the (genuinely) new tokens directly from Sen-
tencePiece. After adding the 151K new tokens to
XLM-R’s vocabulary (which has size 250K), the
vocabulary size of Glot500-m is 401K.

We could also calculate probabilities of existing
and new tokens over a mixture of original XLM-R
training corpus and Glot500-c (Chung et al., 2020).
For head languages, the percentage of changed
tokens using the new tokenizer compared to the
original tokenizer ranges from 0.2% to 50%. How-
ever, we found no relationship between percentage
of changed tokens and change in performance on
downstream tasks. Thus, there was little effect of
tokenization in our experiments.

4.2 Continued Pretraining
We create Glot500-m by continued pretraining of
XLM-R-B with the MLM objective. The opti-
mizer used is Adam with betas (0.9, 0.999). Initial
learning rate: 5e-5. Each training step contains
a batch of 384 training samples randomly picked
from all language-scripts. The sampling strategy
across language-scripts is the same as for vocabu-
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|head| |tail| measure (%)

Sentence Retrieval Tatoeba 70 28 Top10 Acc.
Sentence Retrieval Bible 94 275 Top10 Acc.
Text Classification 90 264 F1
NER 89 75 F1
POS 63 28 F1
Roundtrip Alignment 85 288 Accuracy

Table 3: Evaluation tasks and measures. |head|/|tail|:
number of head/tail language-scripts

lary extension (§4.1). We save checkpoints every
10K steps and select the checkpoint with the best
average performance on downstream tasks by early
stopping. Table 2 lists the sizes of XLM-R-B, XLM-
R-L and Glot500-m. Except for a larger vocabulary
(§4.1), Glot500-m has the same size as XLM-R-B.
We train Glot500-m on a server with eight NVIDIA
RTX A6000 GPUs for two weeks.

Similar to XLM-R, we concatenate sentences’ of
a language-script and feed them as a stream to the
tokenizer. The resulting output is then divided into
chunks of 512 tokens and fed to the model.

5 Experimental Setup
For most tail languages, there are no manually
labeled evaluation data. We therefore adopt a mixed
evaluation strategy: based partly on human labels,
partly on evaluation methods that are applicable
to many languages without requiring gold data.
Table 3 lists all our evaluation tasks.

Perplexity Following Salazar et al. (2020), we
calculate pseudoperplexity (PPPL) over the held-
out test set. PPPL is based on masking tokens
one-by-one (not left to right). Salazar et al. (2020)
give evidence that PPPL is a better measure of
linguistic acceptability compared to standard left-
to-right perplexity.

Roundtrip Alignment For assessing the quality
of multilingual representations for a broad range of
tail languages without human gold data, we adopt
roundtrip evaluation (Dufter et al., 2018). We first
word-align sentences’ in a parallel corpus based on
the multilingual representations of an LLM. We then
start from a word𝑤 in a sentence’ in language-script
L1, follow the alignment links to its translations in
language-script L2, then the alignment links from
L2 to L3 and so on, until in the end we follow
alignment links back to L1. If this “roundtrip” gets
us back to 𝑤, then it indicates that the LLM has
similar representations for the meaning of 𝑤 in
language-scripts L1, L2, L3, etc. In other words,

the cross-lingual quality of representations is high.
Vice versa, failure to get back to 𝑤 is a sign of poor
multilingual representations.

We use SimAlign (Jalili Sabet et al., 2020) and
align on the sub-word level on the Bible part of test,
based on the representations of the LLM computed
by transformer layer 8 as suggested in the original
paper. We use intersection symmetrization: each
word in a sentence’ is aligned to at most one word
in the other sentence’.

As evaluation measure we compute the percent-
age of roundtrips that were successes, i.e., the
roundtrip starts at 𝑤 in L1 and returns back to 𝑤.
For each language-script in test, we randomly select
three language-scripts as intermediate points L2,
L3, L4. Since the intermediate points influence
the results, we run the experiment five times with
different intermediate points and report the average.
All models are evaluated with the same five sets of
three intermediate language-scripts.

Sequence Labeling We consider two sequence
labeling tasks: Named Entity Recognition (NER)
and Part-Of-Speech (POS) tagging. We use the
WikiANN dataset (Pan et al., 2017) for NER and
version v2.11 of Universal Dependencies (UD)
(de Marneffe et al., 2021) for POS. Since training
data does not exist for some languages, we finetune
on English (with early stopping based on dev) and
evaluate zero-shot transfer on all languages covered
by WikiANN/UD. We set the learning rate to 2e-5
with Adam.

Sentence Retrieval Following (Hu et al., 2020),
we use up to 1000 English-aligned sentences’ from
Tatoeba (Artetxe and Schwenk, 2019) to evaluate
SentRetr (sentence retrieval). We also use 500
English-aligned sentences’ from the Bible part of
test. We find nearest neighbors using cosine sim-
ilarity based on the average word embeddings in
layer 𝑙 = 8 – following Jalili Sabet et al. (2020) –
and compute top10 accuracy. For fair comparison
and because the architectures are the same, we do
not optimize the hyperparameter 𝑙 for Glot500-m
and XLM-R-B.

Text Classification We evaluate on Taxi1500
(Ma et al., 2023). It provides gold data for text
classification with six classes in a large number
of language-scripts of which Glot500-m supports
354. We finetune on English (with early stopping
on dev) and evaluate zero-shot on test of the target
language-script. Learning rate: 2e-5, batch size:
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16 (following Ma et al. (2023)).

6 Experiments

In this section, we discuss aggregate results. For
detailed results, see §D and §E.

6.1 Results
Table 4 gives results. Glot500-m outperforms
XLM-R-B on all tasks for both head and tail
language-scripts, except for POS on head. That
Glot500-m outperforms XLM-R-B is expected for
tail language-scripts (i.e., those not covered by
XLM-R). For these language-scripts the improve-
ment margin is large. Outperformance may seem
counterintuitive for head language-scripts (those
covered by XLM-R) since Glot500-m has the same
number of (non-embedding) parameters as XLM-
R-B. Since the number of covered languages has
greatly increased, leaving less capacity per lan-
guage, we might expect underperformance. There
are a few possible explanations. First, XLM-R may
be undertrained, and the inclusion of more head
language training data may improve their repre-
sentations. Second, having more languages may
improve multilinguality by allowing languages to
synergize and enhance each other’s representations
and cross-lingual transfer. Third, there are lan-
guages similar to head languages among the tail
languages, which in turn aids head languages.

The gap between Glot500-m and the baselines
for tail language-scripts in sequence labeling is
smaller. These tasks do not require as deep an
understanding of language and thus transfer from
head to tail language-scripts is easier through shared
tokens.

Glot500-m also outperforms XLM-R-L for tail
language-scripts (all tasks) and head language-
scripts (3 tasks). This suggests that scaling up
size is not the only way for improvements. We can
also improve the quality of multilingual LLM repre-
sentations by increasing the number of languages.

6.2 Language Coverage
Table 5 compares Glot500-m vs. XLM-R-B on
pseudoperplexity. For fair comparison we use
word-level normalization. For 69 head language-
scripts, Glot500-m underperforms XLM-R-B. This
is expected as Glot500-m’s training data is small
for these language-scripts. Glot500-m outperforms
XLM-R-B for 420 tail language-scripts.

There are eight tail language-scripts for which
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Figure 1: Progression of training for sentence retrieval
and sequence labeling. x-axis: epochs/10K. The im-
provement is fast in the beginning for tail languages,
then gets slower and and reaches a plateau. This pattern
is partially observed for head languages.

Glot500-m performs worse than XLM-R-B. Five
are tail languages with a similar head lan-
guage where the two share a macro-language:
ekk/Standard Estonian (est/Estonian), aln/Gheg
Albanian (sqi/Albanian), nob/Norwegian Bokmal
(nor/Norwegian), hbs/Serbo-Croatian (srp/Serbian),
lvs/Standard Latvian (lav/Latvian). Since XLM-
R-B’s pretraining corpus is large for the five head
languages, its performance is good for the close tail
languages.

The other three languages all have a unique
script: sat/Santali (Ol Chiki script), div/Dhivehi
(Thaana script), iku/Inuktitut (Inuktitut syllabics).
For these languages, XLM-R-B’s tokenizer returns
many UNK tokens since it is not trained on these
scripts, resulting in an unreasonably optimistic esti-
mate of pseudoperplexity by our implementation.

Glot500-m’s token-level normalized pseudoper-
plexity ranges from 1.95 for lhu/Lahu to 94.4 for
tok/Toki Pona. The average is 13.5, the median
10.6. We analyze the five language-scripts with
the highest pseudoperplexity: tok_Latn, luo_Latn,
acm_Arab, ach_Latn, and teo_Latn.

tok/Toki Pona is a constructed language. Accord-
ing to Wikipedia: “Essentially identical concepts
can be described by different words as the choice
relies on the speaker’s perception and experience.”
This property can result in higher variability and
higher perplexity.

acm/Mesopotamian Arabic contains a large num-
ber of tweets in raw form. This may result in
difficult-to-predict tokens in test.

luo/Luo, ach/Acoli and teo/Teso are related
Nilotic languages spoken in Kenya, Tanzania,
Uganda and South Sudan. Their high perplex-
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tail head all
XLM-R-B XLM-R-L Glot500-m XLM-R-B XLM-R-L Glot500-m XLM-R-B XLM-R-L Glot500-m

Pseudoperplexity 304.2 168.6 12.2 12.5 8.4 11.8 247.8 136.4 11.6
Sentence Retrieval Tatoeba 32.6 33.6 59.8 66.2 71.1 75.0 56.6 60.4 70.7
Sentence Retrieval Bible 7.4 7.1 43.2 54.2 58.3 59.0 19.3 20.1 47.3
Text Classification 13.7 13.9 46.6 51.3 60.5 54.7 23.3 25.8 48.7
NER 47.5 51.8 60.7 61.8 66.0 63.9 55.3 59.5 62.4
POS 41.7 43.5 62.3 76.4 78.4 76.0 65.8 67.7 71.8
Roundtrip Alignment 2.6 3.1 4.5 3.4 4.1 5.5 2.8 3.3 4.7

Table 4: Evaluation of XLM-R base and large (XLM-R-B and XLM-R-L) and Glot500-m on pseudoperplexity and
six multilingual tasks across 5 seeds. Each number is an average over head, tail and all language-scripts. See §D, §E
for results per task and language-script. Glot500-m outperforms XLM-R-B in all tasks for head (except for POS)
and tail language-scripts and XLM-R-L for tail language-scripts. Best result per row/column group in bold.

head tail
Glot500-m is better 37 420
XLM-R-B is better 69 8

Table 5: Pseudoperplexity Glot500-m vs XLM-R-B.
Glot500-m’s worse performance on head can be at-
tributed to smaller training corpora and the relative diffi-
culty of learning five times more languages with the same
number of (non-embedding) parameters. Glot500-m per-
forms better on almost all tail language-scripts. §6.2
discusses the eight exceptions.

ity could be related to the fact that they are tonal
languages, but the tones are not orthographically
indicated. Another possible explanation is that
the training data is dominated by one subcorpus
(Jehova’s Witnesses) whereas the test data are dom-
inated by PBC. There are orthographic differences
between the two, e.g., “dong” (JW) vs. “doŋ” (PBC)
for Acoli. These three languages are also spoken
over a large area in countries with different standard
languages, which could increase variability.

Our analysis is not conclusive. We note however
that the gap between the three languages and the
next most difficult languages in terms of pseudop-
erplexity is not large. So maybe Luo, Acoli and
Teso are simply (for reasons still to be determined)
languages that have higher perplexity than others.

6.3 Training Progression

To analyze the training process, we evaluate
Glot500-m on sequence labeling and SentRetr at
10,000-step intervals. Figure 1 shows that perfor-
mance improves rapidly at the onset of training, but
then the rate of improvement slows down. This
trend is particularly pronounced for tail languages in
SentRetr. In comparison, sequence labeling is rela-
tively straightforward, with the baseline (XLM-R-B,
epoch 0) achieving high performance by correctly
transferring prevalent classes such as verb and noun

through shared vocabulary, resulting in a smaller
improvement of Glot500-m vs. XLM-R-B.

For SentRetr, we observe larger improvements
for the Bible than for Tatoeba. This is likely due to
the higher proportion of religious data in Glot500-c,
compared to XLM-R’s training data (i.e., CC100).

The average performance on downstream tasks
peaks at 480K steps. We have taken a snapshot of
Glot500-m at this stage and released it.

6.4 Analysis across Language-Scripts
To analyze the effect of language-scripts, we select
five tail language-scripts each with the largest and
smallest gain when comparing Glot500-m vs. XLM-
R-B for SentRetr and sequence labeling.

Table 6 shows that Glot500-m improves lan-
guages with scripts not covered by XLM-R (e.g.,
div/Dhivehi, Thaana script, see §6.2) by a large
margin since XLM-R simply regards the uncovered
scripts as unknown tokens and cannot compute
meaningful representations for the input. The large
amount of data we collected in Glot500-c also
contributes to the improvement for tail languages,
e.g., for tat_Cyrl (Tatar) in SentRetr Tatoeba and
mlt_Latn (Maltese) in POS. See §6.7 for a detailed
analysis of the effect of corpus size.

On the other hand, Glot500-m achieves just com-
parable or even worse results for some language-
scripts. We see at least three explanations. (i)
As discussed in §6.2, some tail languages (e.g.,
nob/Norwegian Bokmal) are close to a head lan-
guage (e.g., nor/Norwegian), so Glot500-m has no
advantage over XLM-R-B. (ii) A language is at the
low end of our corpus size range (i.e., 30,000 sen-
tences’). Example: xav_Latn, Xavánte. (iii) Some
languages are completely distinct from all other
languages in Glot500-c, thus without support from
any similar language. An example is mau_Latn,
Huautla Mazatec. Glot500-m has a much harder
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uzn C Northern Uzbek 5.4 87.0 81.6
nds L Low German 28.8 77.1 48.3 crs L Seselwa Creole 7.4 80.6 73.2
tuk L Turkmen 16.3 63.5 47.3 srn L Sranan Tongo 6.8 79.8 73.0
ile L Interlingue 34.6 75.6 41.0 uzb C Uzbek 6.2 78.8 72.6
uzb C Uzbek 25.2 64.5 39.3 bcl L Central Bikol 10.2 79.8 69.6
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d

dtp L Kadazan Dusun 5.6 21.1 15.5 xav L Xavánte 2.2 5.0 2.8
kab L Kabyle 3.7 16.4 12.7 mauL Huautla Mazatec 2.4 3.6 1.2
pamL Pampanga 4.8 11.0 6.2 ahk L Akha 3.0 3.2 0.2
lvs L Standard Latvian 73.4 76.9 3.5 aln L Gheg Albanian 67.8 67.6 -0.2
nob L Bokmål 93.5 95.7 2.2 nob L Bokmål 82.8 79.2 -3.6
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div T Dhivehi 0.0 50.9 50.9

PO
S

mlt L Maltese 21.3 80.3 59.0
che C Chechen 15.3 61.2 45.9 sah C Yakut 21.9 76.9 55.0
mri L Maori 16.0 58.9 42.9 sme L Northern Sami 29.6 73.6 44.1
nan L Min Nan 42.3 84.9 42.6 yor L Yoruba 22.8 64.2 41.4
tgk C Tajik 26.3 66.4 40.0 quc L K’iche’ 28.5 64.1 35.6

lo
w
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d

zea L Zeeuws 68.1 67.3 -0.8 lzh HLiterary Chinese 11.7 18.4 6.7
vol L Volapük 60.0 59.0 -1.0 nap L Neapolitan 47.1 50.0 2.9
min L Minangkabau 42.3 40.4 -1.8 hywAWestern Armenian 79.1 81.1 2.0
wuuHWu Chinese 28.9 23.9 -5.0 kmr L Northern Kurdish 73.5 75.2 1.7
lzh HLiterary Chinese 15.7 10.3 -5.4 aln L Gheg Albanian 54.7 51.2 -3.5

Table 6: Results for five tail language-scripts each with the largest (high end) and smallest (low end) gain Glot500-m
vs. XLM-R-B for four tasks. Glot500-m’s gain over XLM-R-B is large at the high end and small or slightly negative
at the low end. L = Latin, C = Cyrillic, H = Hani, A = Armenian, T = Thaana

lang-script XLM-R-B Glot500-m gain

uig_Arab head 45.8 56.2 10.4
uig_Latn tail 9.8 62.8 53.0
hin_Deva head 67.0 76.6 9.6
hin_Latn tail 13.6 43.2 29.6
uzb_Latn head 54.8 67.6 12.8
uzb_Cyrl tail 6.2 78.8 72.6
kaa_Cyrl tail 17.6 73.8 56.2
kaa_Latn tail 9.2 43.4 34.2
kmr_Cyrl tail 4.0 42.4 38.4
kmr_Latn tail 35.8 63.0 27.2
tuk_Cyrl tail 13.6 65.0 51.4
tuk_Latn tail 9.6 66.2 56.6

Table 7: Sentence Retrieval Bible performance of
Glot500-m and XLM-R-B for six languages with two
scripts: Uighur (uig), Hindi (hin), Uzbek (uzb), Kara-
Kalpak (kaa), Northern Kurdish (kmr), Turkmen (tuk).
Glot500-m clearly outperforms XLM-R-B with large
differences for tail language-scripts.

time learning good representations in these cases.

6.5 Languages with Multiple Scripts
Table 7 compares SentRetr performance XLM-R-B
vs. Glot500-m for six languages with two scripts.
Unsurprisingly, XLM-R performs much better for a
language-script it was pretrained on (“head”) than
on one that it was not (“tail”). We can improve
the performance of a language, even surpassing the
language-script covered by XLM-R, if we collect
enough data for its script not covered by XLM-R.
For languages with two scripts not covered by XLM-

R, the performance is better for the script for which
we collect a larger corpus. For example, kaa_Cyrl
(Kara-Kalpak) has about three times as much data as
kaa_Latn. This explains why kaa_Cyrl outperforms
kaa_Latn by 30%.

Dufter and Schütze (2020) found that, after train-
ing a multilingual model with two scripts for English
(natural English and “fake English”), the model per-
formed well at zero-shot transfer if the capacity of
the model was of the right size (i.e., not too small,
not too large). Our experiments with real data show
the complexity of the issue: even if there is a “right”
size for an LLM that supports both full acquisition
of languages and multilingual transfer, this size is
difficult to determine and it may be different for dif-
ferent language pairs in a large horizontally scaled
model like Glot500-m.

6.6 Analysis across Language Families
Table 8 compares SentRetr performance Glot500-m
vs. XLM-R-B for seven language families that have
ten or more language-scripts in Glot500-c. We
assign languages to families based on Glottolog.4
Generally, XLM-R has better performance the more
language-scripts from a language family are rep-
resented in its training data; e.g., performance is
better for indo1319 and worse for maya1287. The
results suggest that Glot500-m’s improvement over

4http://glottolog.org/glottolog/family
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family |𝐿𝐺 | |𝐿𝑋 | XLM-R-B Glot500-m gain

indo1319 91 50 41.5 61.4 19.9
atla1278 69 2 5.5 45.2 39.6
aust1307 53 6 13.7 47.0 33.2
turk1311 22 7 20.1 62.9 42.8
sino1245 22 2 7.6 38.9 31.3
maya1287 15 0 3.8 20.3 16.4
afro1255 12 5 13.0 34.3 21.4

Table 8: Average Sentence Retrieval Bible performance
of Glot500-m and XLM-R-B for seven language families.
The difference in coverage of a family by Glot500-m
vs. XLM-R-B is partially predictive of the performance
difference. |𝐿𝐺 |/|𝐿𝑋 |: number of language-scripts from
family covered by Glot500-m/XLM-R.

lang-script Glot+1 Glot500-m

rug_Latn, Roviana 51.0 49.0
yan_Latn, Mayangna/Sumo 46.4 31.8
wbm_Latn, Wa/Va 49.6 46.4

ctd_Latn, Tedim Chin 47.4 59.4
quh_Latn, Southern Quechua 33.4 56.2
tat_Cyrl, Tatar 58.8 67.2

Table 9: Performance on Sentence Retrieval Bible of con-
tinued pretraining on just one language-script (Glot+1)
vs. on Glot500-c (Glot500-m). Glot500-m underper-
forms on the top three and outperforms on the bottom
three. Our explanation is that the second group is sup-
ported by closely related languages in Glot500-c; e.g.,
for Southern Quechua (quh), Glot500-m also covers
closely related Cuzco Quechua (quz). For the first group
this is not the case; e.g., the Wa language (wbm) has no
close relative in Glot500-c.

XLM-R is the larger, the better our training corpus
Glot500-c’s coverage is of a family.

6.7 Effect of Amount of Training Data
We examine correlation between pretraining corpus
size and Glot500-m zero-shot performance. We
focus on SentRetr Bible (§5) since it supports the
most head and tail languages. We find that Pearson’s
𝑟 = .34, i.e., corpus size and performance are
moderately, but clearly correlated. We suspect that
the correlation is not larger because, in addition
to corpus size of language 𝑙 itself, corpus size of
languages closely related to 𝑙 is also an important
factor (see §6.4 for a similar finding for Norwegian).
We therefore also compute Pearson’s 𝑟 between (i)
performance of language 𝑙 on SentRetr Bible and
(ii) joint corpus size of 𝑙 and its 𝑘 nearest neighbors
(according to perplexity divergence, §3.3). In this
case, Pearson’s 𝑟 = .44 (for both 𝑘 = 3 and 𝑘 = 4),
indicating that the corpus size of nearest neighbor
languages does play a role.

6.8 Support through Related Languages
Building on §6.7, there is another way we can inves-
tigate the positive effect of closely related languages
on performance: We can compare performance
(again on SentRetr Bible) of continued pretraining
on just one language (we refer to this model as
Glot+1) vs. on all 511 languages represented in
Glot500-c (i.e., Glot500-m). Table 9 presents re-
sults for six language-scripts selected from various
language families and suggests that some languages
do not receive support from related languages (top
three). In that case, Glot+1 can fully concentrate
on learning the isolated language and does better
than Glot500-c. Other languages (bottom three)
do receive support from related languages. For
example, Southern Quechua (quh) seems to receive
support in Glot500-m from closely related Cuzco
Quechua (quz), resulting in Glot500-m outperform-
ing Glot+1.

7 Conclusion and Future Work
We collect and data-clean Glot500-c, a large corpus
of hundreds of usually neglected tail (i.e., long-tail)
languages and create Glot500-m, an LLM that is
trained on Glot500-c and covers these languages.
We evaluate Glot500-m on six tasks that allow us
to evaluate almost all languages. We observe large
improvements for both head and tail languages com-
pared to XLM-R. Our analysis shows that no single
factor fully explains the quality of the representa-
tion of a language in a multilingual model. Rather,
a combination of factors is important, including
corpus size, script, “help” from related languages
and the total capacity of the model.

This work is the first to create a language model
on a dataset of several hundreds of gigabytes and
to make it publicly available for such a large and di-
verse number of low-resource languages. In future
research, we would like to train larger models to
further investigate the effect of model size, distill
highly multilingual models for resource-efficient
deployment, explore alternatives to continued pre-
training and use models for more tail language
downstream tasks.

Limitations
(1) We did not perform any comprehensive hy-
perparameter search, which would have further
consolidated our results. This decision was made
due to the high cost of training multiple models. (2)
Compared to current very large models, Glot500-m
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is comparatively small. (3) Although we have tried
to minimize the amount of noise in our data, some
noise is still present.

Ethics Statement

There are two issues worth mentioning in regards
to this project. First, it was not feasible for us
to thoroughly examine the content of the data for
all languages, thus we cannot confirm the absence
of discrimination based on factors such as race or
sexuality. The data was solely utilized as a textual
corpus, and the content should not be interpreted
as an endorsement by our team. If the model is sub-
sequently utilized for generation, it is possible that
the training data may be reflected in the generated
output. However, addressing potential biases within
the data is an area for future research. Second, it
is important to note that while the data sources
utilized in this study do not explicitly prohibit the
reuse of data for research purposes, some sources
do have copyright statements indicating that such
use is permissible while others do not. Additionally,
certain sources prohibit the redistribution of data.
As such, data from these sources is omitted from
the published version of Glot2000-c.
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A N-grams LMs and Language
Divergence

Perplexity and Language Divergence. Perplexity
measures how well a model predicts a sample test
data. Assuming a test data contains sequences of
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characters 𝑆 = 𝑐ℎ1, 𝑐ℎ2, · · · , 𝑐ℎ𝑇 , perplexity (PP)
of 𝑆 given an n-gram character level language model
𝑀 is computed as follows:

PP(𝑆, 𝑀) = 𝑇

√√√ 𝑇∏
𝑡=1

1
P
(
𝑐ℎ𝑡 | 𝑐ℎ𝑡−1

1
) (1)

where P
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1
)

is computed as by dividing
the observed frequency (𝐶) of 𝑐ℎ𝑡−1

1 𝑐ℎ𝑖 by the
observed frequency of 𝑐ℎ𝑡−1

1 in 𝑀 training data:
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) (2)

Given the definition of perplexity, we can determine
how well a trained language model on language 𝐿1
predicts the test text of language 𝐿2 and vice-versa.
The divergence between two languages is computed
with the maximum of the perplexity values in both
directions. Two reasons lead to the use of max:
first, a symmetrical divergence is required, and
second, languages differ in their complexity, so
one direction of computing perplexity may result
in a much lower perplexity than another. Thus,
comparing perplexity results becomes difficult. As
an example, the Kuanua language (ksd_Latn) has
short words and a simple structure, which results
in 3−gram models getting lower perplexity on its
text compared to other languages. The lower the
perplexity the smaller the divergence between lan-
guages. The divergence (D) between language 𝐿𝑖

and 𝐿 𝑗 with trained language models of 𝑀𝐿𝑧 and
test texts of 𝑆𝐿𝑧 , where 𝐿𝑧 is the corresponding
language, computed as follows:

D𝐿𝑖 ,𝐿 𝑗 = max
(PP(𝑆𝐿𝑖 , 𝑀𝐿 𝑗 ),PP(𝑆𝐿 𝑗 , 𝑀𝐿𝑖 )

)
(3)

Runs and Data. The data used to train and test
the character level n-gram models is the same data
used for the training and testing of the Glot500-m.
The training of the models was limited to 100, 000
sentences’ per language-script. We use KenLM
library (Heafield, 2011) to build n-gram models.
This library uses an interpolated modified Kneser-
Ney smoothing for estimating the unseen n-grams.
Our evaluation has been performed over 7 n-gram
models (3 ≤ 𝑛 ≤ 9).
Baseline and Evaluation. Language family trees
were used as a baseline for evaluating the diver-
gence measures of the proposed approach. We
obtained language family tree data from Ethno-
logue online version (Eberhard et al., 2022). For

each language, the family tree follows the general or-
der from largest typological language family group
to smallest. There is only one family tree for each
language in the baseline data. Nodes in the family
tree represent typological language family groups.
Each node only has one parent, so if a node is
common in the family tree of two languages, its
parent is also common. We evaluate our perplex-
ity method on the following binary classification
task: Do the majority of a language 𝐿𝑧’s 𝑘 nearest
neighbors belong to the same typological language
family group as 𝐿𝑧? Assuming languages 𝐿𝑖 and
𝐿 𝑗 , with the following family trees:

𝑇𝐿𝑖 : 1 → 2 → 3 → 4 → 5 → 6

𝑇𝐿 𝑗 : 1 → 2 → 7 → 8

These 2 languages belong to the same typological
family group with family tree levels of 𝑙 ∈ {1, 2},
but not with family tree levels of 𝑙 = 3 and higher.
Result. When it comes to language families, the
majority of studies only refer to the largest typo-
logical language family group (level 𝑙 = 1). Here,
we also assess our methodology for other levels.
The results of classification accuracy for 3−gram
model, 𝑘 ∈ {1, 3, 7, 13, 21} and 𝑙 ∈ {1, 2, 3,max}
are shown in Table 10. In cases where the maximum
level of a tree is less than the 𝑙 parameter, the max-
imum level for that language is used. Languages
without a family or no other family member in our
data are excluded. We only report the 3−gram
model results as it gets the best results in most
configurations among other n-gram models. With
increasing 𝑙, the accuracy decreases, since more
languages fall outside the same typological family.
As 𝑘 increases, the accuracy decreases, because lan-
guages with faraway neighbors are being included
but the number of languages in the language typo-
logical group family will remain the same. There
are times when languages have a lot of loan words
from other languages because of geological proxim-
ity or historical reasons (e.g, colonization), which
makes them similar to the languages they borrowed
words from in our method. However they are differ-
ent when it comes to their typological families and
our method fails in these cases. Aymara (Macrolan-
guage: aym_Latn) and Quechua (Macrolanguage:
que_Latn), for example, had a great deal of contact
and influence on each other, but they do not belong
to the same typological group. As well, some of
the typological families are not that large, which
makes our results worse when 𝑘 increases. This is
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the case, for instance, of the Tarascan typological
family which only has two members.

model 𝑙 𝑘 accuracy (%)

3-gram 1 1 84.45
3-gram 1 3 75.77
3-gram 1 7 69.08
3-gram 1 13 62.75
3-gram 1 21 55.33
3-gram 2 1 79.75
3-gram 2 3 67.63
3-gram 2 7 59.49
3-gram 2 13 51.36
3-gram 2 21 42.68
3-gram 3 1 75.05
3-gram 3 3 60.22
3-gram 3 7 49.55
3-gram 3 13 38.34
3-gram 3 21 29.84
3-gram max 1 59.31
3-gram max 3 36.89
3-gram max 7 18.81
3-gram max 13 6.87
3-gram max 21 2.89

Table 10: Detecting the typological relatedness of lan-
guage with n-gram divergence: (Eq. 3); 𝑙: level of
typological language family group; 𝑘: number of near-
est language neighbors.

B Languages

The list of languages used to train Glot500-m with
the amount of available data for each language is
available in Tables 11, 12 and 13.

On Macrolanguages The presence of language
codes that are supersets of other language codes
within datasets is not uncommon (Kreutzer et al.,
2022). This issue becomes more prevalent in ex-
tensive collections. Within the ISO 639-3 standard,
these languages are referred to as macrolanguages.
When confronted with macrolanguages, if it is not
feasible to ascertain the specific individual language
contained within a dataset, the macrolanguage code
is retained. Consequently, it is possible that in
Glot2000-c and Glot500-c both the corpora for the
macrolanguage and its individual languages have
been included.

C List of data sources
The datasets and repositories used in this project
involve: AI4Bharat,5 AIFORTHAI-LotusCorpus,6
Add (El-Haj et al., 2018), AfriBERTa (Ogueji
et al., 2021b), AfroMAFT (Adelani et al., 2022;
Xue et al., 2021), Anuvaad,7 AraBench (Sajjad
et al., 2020), AUTSHUMATO,8 Bloom (Leong
et al., 2022), CC100 (Conneau et al., 2020;
Wenzek et al., 2020a), CCNet (Wenzek et al.,
2020b), CMU_Haitian_Creole,9 CORP.NCHLT,10

Clarin,11 DART (Alsarsour et al., 2018), Earth-
lings (Dunn, 2020), FFR,12 Flores200 (Costa-jussà
et al., 2022), GiossaMedia (Góngora et al., 2022,
2021), Glosses (Camacho-Collados et al., 2016),
Habibi (El-Haj, 2020), HinDialect (Bafna, 2022),
HornMT,13 IITB (Kunchukuttan et al., 2018), In-
dicNLP (Nakazawa et al., 2021), Indiccorp (Kak-
wani et al., 2020), isiZulu,14 JParaCrawl (Morishita
et al., 2020), KinyaSMT,15 LeipzigData (Goldhahn
et al., 2012), Lindat,16 Lingala_Song_Lyrics,17

Lyrics,18 MC4 (Raffel et al., 2020), MTData
(Gowda et al., 2021), MaCoCu (Bañón et al.,
2022), Makerere MT Corpus,19 Masakhane com-
munity,20 Mburisano_Covid,21 Menyo20K (Ade-
lani et al., 2021), Minangkabau corpora (Koto
and Koto, 2020), MoT (Palen-Michel et al.,
2022), NLLB_seed (Costa-jussà et al., 2022),
Nart/abkhaz,22 OPUS (Tiedemann, 2012), OS-
CAR (Suárez et al., 2019), ParaCrawl (Bañón
et al., 2020), Parallel Corpora for Ethiopian Lan-

5https://ai4bharat.org/
6https://github.com/korakot/corpus/releases/

download/v1.0/AIFORTHAI-LotusCorpus.zip
7https://github.com/project-anuvaad/

anuvaad-parallel-corpus
8https://autshumato.sourceforge.net/
9http://www.speech.cs.cmu.edu/haitian/text/

10https://repo.sadilar.org/handle/20.500.12185/
7

11https://www.clarin.si/
12https://github.com/bonaventuredossou/ffr-v1/

tree/master/FFR-Dataset
13https://github.com/asmelashteka/HornMT
14https://zenodo.org/record/5035171
15https://github.com/pniyongabo/kinyarwandaSMT
16https://lindat.cz/faq-repository
17https://github.com/espoirMur/songs_lyrics_

webscrap
18https://lyricstranslate.com/
19https://zenodo.org/record/5089560
20https://github.com/masakhane-io/

masakhane-community
21https://repo.sadilar.org/handle/20.500.12185/

536
22https://huggingface.co/datasets/Nart/abkhaz_

text
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Language-Script |Sent| Family Head Language-Script |Sent| Family Head Language-Script |Sent| Family Head

hbs_Latn 63411156 indo1319 vec_Latn 514240 indo1319 swh_Latn 95776 atla1278 yes
mal_Mlym 48098273 drav1251 yes jpn_Jpan 510722 japo1237 yes alt_Cyrl 95148 turk1311
aze_Latn 46300705 yes lus_Latn 509250 sino1245 rmn_Grek 94533 indo1319
guj_Gujr 45738685 indo1319 yes crs_Latn 508755 indo1319 miq_Latn 94343 misu1242
ben_Beng 43514870 indo1319 yes kqn_Latn 507913 atla1278 kaa_Cyrl 88815 turk1311
kan_Knda 41836495 drav1251 yes ndo_Latn 496613 atla1278 kos_Latn 88603 aust1307
tel_Telu 41580525 drav1251 yes snd_Arab 488730 indo1319 yes grn_Latn 87568
mlt_Latn 40654838 afro1255 yue_Hani 484700 sino1245 lhu_Latn 87255 sino1245
fra_Latn 39197581 indo1319 yes tiv_Latn 483064 atla1278 lzh_Hani 86035 sino1245
spa_Latn 37286756 indo1319 yes kua_Latn 473535 atla1278 ajp_Arab 83297 afro1255
eng_Latn 36122761 indo1319 yes kwy_Latn 473274 atla1278 cmn_Hani 80745 sino1245 yes
fil_Latn 33493255 aust1307 yes hin_Latn 466175 indo1319 gcf_Latn 80737 indo1319

nob_Latn 32869205 indo1319 iku_Cans 465011 rmn_Cyrl 79925 indo1319
rus_Cyrl 31787973 indo1319 yes kal_Latn 462430 eski1264 kjh_Cyrl 79262 turk1311
deu_Latn 31015993 indo1319 yes tdt_Latn 459818 aust1307 rng_Latn 78177 atla1278
tur_Latn 29184662 turk1311 yes gsw_Latn 449240 indo1319 mgh_Latn 78117 atla1278

pan_Guru 29052537 indo1319 yes mfe_Latn 447435 indo1319 xmv_Latn 77896 aust1307
mar_Deva 28748897 indo1319 yes swc_Latn 446378 atla1278 ige_Latn 77114 atla1278
por_Latn 27824391 indo1319 yes mon_Latn 437950 mong1349 rmy_Latn 76991 indo1319
nld_Latn 25061426 indo1319 yes mos_Latn 437666 atla1278 srm_Latn 76884 indo1319
ara_Arab 24524122 yes kik_Latn 437228 atla1278 bak_Latn 76809 turk1311
zho_Hani 24143786 yes cnh_Latn 436667 sino1245 gur_Latn 76151 atla1278
ita_Latn 23539857 indo1319 yes gil_Latn 434529 aust1307 idu_Latn 75106 atla1278
ind_Latn 23018106 aust1307 yes pon_Latn 434522 aust1307 yom_Latn 74818 atla1278
ell_Grek 22033282 indo1319 yes umb_Latn 431589 atla1278 tdx_Latn 74430 aust1307
bul_Cyrl 21823004 indo1319 yes lvs_Latn 422952 indo1319 mzn_Arab 73719 indo1319
swe_Latn 20725883 indo1319 yes sco_Latn 411591 indo1319 cfm_Latn 70227 sino1245
ces_Latn 20376340 indo1319 yes ori_Orya 410827 yes zpa_Latn 69237 otom1299
isl_Latn 19547941 indo1319 yes arg_Latn 410683 indo1319 kbd_Cyrl 67914 abkh1242
pol_Latn 19339945 indo1319 yes kur_Latn 407169 indo1319 yes lao_Laoo 66966 taik1256 yes
ron_Latn 19190217 indo1319 yes dhv_Latn 405711 aust1307 nap_Latn 65826 indo1319
dan_Latn 19174573 indo1319 yes luo_Latn 398974 nilo1247 qub_Latn 64973 quec1387
hun_Latn 18800025 ural1272 yes lun_Latn 395764 atla1278 oke_Latn 64508 atla1278
tgk_Cyrl 18659517 indo1319 nzi_Latn 394247 atla1278 ote_Latn 64224 otom1299
srp_Latn 18371769 indo1319 yes gug_Latn 392227 tupi1275 bsb_Latn 63634 aust1307
fas_Arab 18277593 yes bar_Latn 387070 indo1319 ogo_Latn 61901 atla1278
ceb_Latn 18149215 aust1307 bci_Latn 384059 atla1278 abn_Latn 61830 atla1278
heb_Hebr 18128962 afro1255 yes chk_Latn 380596 aust1307 ldi_Latn 61827 atla1278
hrv_Latn 17882932 indo1319 yes roh_Latn 377067 indo1319 ayr_Latn 61570 ayma1253
glg_Latn 17852274 indo1319 yes aym_Latn 373329 ayma1253 gom_Deva 61140 indo1319
fin_Latn 16730388 ural1272 yes yap_Latn 358929 aust1307 bba_Latn 61123 atla1278
slv_Latn 15719210 indo1319 yes ssw_Latn 356561 atla1278 aln_Latn 60989 indo1319
vie_Latn 15697827 aust1305 yes quz_Latn 354781 quec1387 leh_Latn 59944 atla1278
mkd_Cyrl 14717004 indo1319 yes sah_Cyrl 352697 turk1311 ban_Latn 59805 aust1307
slk_Latn 14633631 indo1319 yes tsn_Latn 350954 atla1278 ace_Latn 59333 aust1307
nor_Latn 14576191 indo1319 yes lmo_Latn 348135 indo1319 pes_Arab 57511 indo1319 yes
est_Latn 13600579 yes ido_Latn 331239 arti1236 skg_Latn 57228 aust1307
ltz_Latn 12997242 indo1319 abk_Cyrl 321578 abkh1242 ary_Arab 56933 afro1255
eus_Latn 12775959 yes zne_Latn 318871 atla1278 hus_Latn 56176 maya1287
lit_Latn 12479626 indo1319 yes quy_Latn 311040 quec1387 glv_Latn 55641 indo1319
kaz_Cyrl 12378727 turk1311 yes kam_Latn 310659 atla1278 fat_Latn 55609 atla1278
lav_Latn 12143980 indo1319 yes bbc_Latn 310420 aust1307 frr_Latn 55254 indo1319
bos_Latn 11014744 indo1319 yes vol_Latn 310399 arti1236 mwn_Latn 54805 atla1278
epo_Latn 8737198 arti1236 yes wal_Latn 309873 gong1255 mai_Deva 54687 indo1319
cat_Latn 8648271 indo1319 yes uig_Arab 307302 turk1311 yes dua_Latn 53392 atla1278
tha_Thai 7735209 taik1256 yes vmw_Latn 306899 atla1278 dzo_Tibt 52732 sino1245
ukr_Cyrl 7462046 indo1319 yes kwn_Latn 305362 atla1278 ctd_Latn 52135 sino1245
tgl_Latn 7411064 aust1307 yes pam_Latn 303737 aust1307 nnb_Latn 52041 atla1278
sin_Sinh 7293178 indo1319 yes seh_Latn 300243 atla1278 sxn_Latn 51749 aust1307
gle_Latn 7225513 indo1319 yes tsc_Latn 298442 atla1278 mps_Latn 50645 tebe1251
hin_Deva 7046700 indo1319 yes nyk_Latn 297976 atla1278 mny_Latn 50581 atla1278
kor_Hang 6468444 kore1284 yes kmb_Latn 296269 atla1278 gkp_Latn 50549 mand1469
ory_Orya 6266475 indo1319 zai_Latn 277632 otom1299 kat_Latn 50424 kart1248
urd_Arab 6009594 indo1319 yes gym_Latn 274512 chib1249 bjn_Latn 49068 aust1307
swa_Latn 5989369 yes bod_Tibt 273489 sino1245 acr_Latn 48886 maya1287
sqi_Latn 5526836 indo1319 yes nde_Latn 269931 atla1278 dtp_Latn 48468 aust1307
bel_Cyrl 5319675 indo1319 yes fon_Latn 268566 atla1278 lam_Latn 46853 atla1278
afr_Latn 5157787 indo1319 yes ber_Latn 264426 bik_Latn 46561
nno_Latn 4899103 indo1319 nbl_Latn 259158 atla1278 poh_Latn 46454 maya1287
tat_Cyrl 4708088 turk1311 kmr_Latn 256677 indo1319 phm_Latn 45862 atla1278

Table 11: List of languages used to train Glot500-m (Part I).
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Language-Script |Sent| Family Head Language-Script |Sent| Family Head Language-Script |Sent| Family Head

ast_Latn 4683554 indo1319 guc_Latn 249044 araw1281 hrx_Latn 45716 indo1319
mon_Cyrl 4616960 mong1349 yes mam_Latn 248348 maya1287 quh_Latn 45566 quec1387
hbs_Cyrl 4598073 indo1319 nia_Latn 247406 aust1307 hyw_Cyrl 45379 indo1319
hau_Latn 4368483 afro1255 yes nyn_Latn 241992 atla1278 rue_Cyrl 45369 indo1319
sna_Latn 4019596 atla1278 cab_Latn 240101 araw1281 eml_Latn 44630 indo1319
msa_Latn 3929084 yes top_Latn 239232 toto1251 acm_Arab 44505 afro1255
som_Latn 3916769 afro1255 yes tog_Latn 231969 atla1278 tob_Latn 44473 guai1249
srp_Cyrl 3864091 indo1319 yes mco_Latn 231209 mixe1284 ach_Latn 43974 nilo1247
mlg_Latn 3715802 yes tzh_Latn 230706 maya1287 vep_Latn 43076 ural1272
zul_Latn 3580113 atla1278 pms_Latn 227748 indo1319 npi_Deva 43072 indo1319
arz_Arab 3488224 afro1255 wuu_Hani 224088 sino1245 tok_Latn 42820 arti1236
nya_Latn 3409030 atla1278 plt_Latn 220413 aust1307 sgs_Latn 42467 indo1319
tam_Taml 3388255 drav1251 yes yid_Hebr 220214 indo1319 yes lĳ_Latn 42447 indo1319
hat_Latn 3226932 indo1319 ada_Latn 219427 atla1278 myv_Cyrl 42147 ural1272
uzb_Latn 3223485 turk1311 yes iba_Latn 213615 aust1307 tih_Latn 41873 aust1307
sot_Latn 3205510 atla1278 kek_Latn 209932 maya1287 tat_Latn 41640 turk1311
uzb_Cyrl 3029947 turk1311 koo_Latn 209375 atla1278 lfn_Latn 41632 arti1236
cos_Latn 3015055 indo1319 sop_Latn 206501 atla1278 cgg_Latn 41196 atla1278
als_Latn 2954874 indo1319 kac_Latn 205542 sino1245 ful_Latn 41188 atla1278
amh_Ethi 2862985 afro1255 yes qvi_Latn 205447 quec1387 gor_Latn 41174 aust1307
sun_Latn 2586011 aust1307 yes cak_Latn 204472 maya1287 ile_Latn 40984 arti1236
war_Latn 2584810 aust1307 kbp_Latn 202877 atla1278 ium_Latn 40683 hmon1336
div_Thaa 2418687 indo1319 ctu_Latn 201662 maya1287 teo_Latn 40203 nilo1247
yor_Latn 2392359 atla1278 kri_Latn 201087 indo1319 kia_Latn 40035 atla1278
fao_Latn 2365271 indo1319 mau_Latn 199134 otom1299 crh_Cyrl 39985 turk1311
uzn_Cyrl 2293672 turk1311 scn_Latn 199068 indo1319 crh_Latn 39896 turk1311
smo_Latn 2290439 aust1307 tyv_Cyrl 198649 turk1311 enm_Latn 39809 indo1319
bak_Cyrl 2264196 turk1311 ina_Latn 197315 arti1236 sat_Olck 39614 aust1305
ilo_Latn 2106531 aust1307 btx_Latn 193701 aust1307 mad_Latn 38993 aust1307
tso_Latn 2100708 atla1278 nch_Latn 193129 utoa1244 cac_Latn 38812 maya1287
mri_Latn 2046850 aust1307 ncj_Latn 192962 utoa1244 hnj_Latn 38611 hmon1336
hmn_Latn 1903898 pau_Latn 190529 aust1307 ksh_Latn 38130 indo1319
asm_Beng 1882353 indo1319 yes toj_Latn 189651 maya1287 ikk_Latn 38071 atla1278
hil_Latn 1798875 aust1307 pcm_Latn 187594 indo1319 sba_Latn 38040 cent2225
nso_Latn 1619354 atla1278 dyu_Latn 186367 mand1469 zom_Latn 37013 sino1245
ibo_Latn 1543820 atla1278 kss_Latn 185868 atla1278 bqc_Latn 36881 mand1469
kin_Latn 1521612 atla1278 afb_Arab 183694 afro1255 bim_Latn 36835 atla1278

hye_Armn 1463123 indo1319 yes urh_Latn 182214 atla1278 mdy_Ethi 36370 gong1255
oci_Latn 1449128 indo1319 quc_Latn 181559 maya1287 bts_Latn 36216 aust1307
lin_Latn 1408460 atla1278 new_Deva 181427 sino1245 gya_Latn 35902 atla1278
tpi_Latn 1401844 indo1319 yao_Latn 179965 atla1278 ajg_Latn 35631 atla1278
twi_Latn 1400979 atla1278 ngl_Latn 178498 atla1278 agw_Latn 35585 aust1307
kir_Cyrl 1397566 turk1311 yes nyu_Latn 177483 atla1278 kom_Cyrl 35249 ural1272
pap_Latn 1360138 indo1319 kab_Latn 176015 afro1255 knv_Latn 35196
nep_Deva 1317291 indo1319 yes tuk_Cyrl 175769 turk1311 giz_Latn 35040 afro1255
azj_Latn 1315834 turk1311 xmf_Geor 174994 kart1248 hui_Latn 34926 nucl1709
bcl_Latn 1284493 aust1307 ndc_Latn 174305 atla1278 kpg_Latn 34900 aust1307
xho_Latn 1262364 atla1278 yes san_Deva 165616 indo1319 yes zea_Latn 34426 indo1319
cym_Latn 1244783 indo1319 yes nba_Latn 163485 atla1278 aoj_Latn 34349 nucl1708
gaa_Latn 1222307 atla1278 bpy_Beng 162838 indo1319 csy_Latn 34126 sino1245
ton_Latn 1216118 aust1307 ncx_Latn 162558 utoa1244 azb_Arab 33758 turk1311 yes
tah_Latn 1190747 aust1307 qug_Latn 162500 quec1387 csb_Latn 33743 indo1319
lat_Latn 1179913 indo1319 yes rmn_Latn 162069 indo1319 tpm_Latn 33517 atla1278
srn_Latn 1172349 indo1319 cjk_Latn 160645 atla1278 quw_Latn 33449 quec1387
ewe_Latn 1161605 atla1278 arb_Arab 159884 afro1255 yes rmy_Cyrl 33351 indo1319
bem_Latn 1111969 atla1278 kea_Latn 158047 indo1319 ixl_Latn 33289 maya1287
efi_Latn 1082621 atla1278 mck_Latn 157521 atla1278 mbb_Latn 33240 aust1307
bis_Latn 1070170 indo1319 arn_Latn 155882 arau1255 pfl_Latn 33148 indo1319
orm_Latn 1067699 yes pdt_Latn 155485 indo1319 pcd_Latn 32867 indo1319
haw_Latn 1062491 aust1307 her_Latn 154827 atla1278 tlh_Latn 32863 arti1236
hmo_Latn 1033636 pidg1258 gla_Latn 152563 indo1319 yes suz_Deva 32811 sino1245
kat_Geor 1004297 kart1248 yes kmr_Cyrl 151728 indo1319 gcr_Latn 32676 indo1319
pag_Latn 983637 aust1307 mwl_Latn 150054 indo1319 jbo_Latn 32619 arti1236
loz_Latn 964418 atla1278 nav_Latn 147702 atha1245 tbz_Latn 32264 atla1278
fry_Latn 957422 indo1319 yes ksw_Mymr 147674 sino1245 bam_Latn 32150 mand1469

mya_Mymr 945180 sino1245 yes mxv_Latn 147591 otom1299 prk_Latn 32085 aust1305
nds_Latn 944715 indo1319 hif_Latn 147261 indo1319 jam_Latn 32048 indo1319
run_Latn 943828 atla1278 wol_Latn 146992 atla1278 twx_Latn 32028 atla1278

Table 12: List of languages used to train Glot500-m (Part II).
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pnb_Arab 899895 indo1319 sme_Latn 146803 ural1272 nmf_Latn 31997 sino1245
rar_Latn 894515 aust1307 gom_Latn 143937 indo1319 caq_Latn 31903 aust1305
fij_Latn 887134 aust1307 bum_Latn 141673 atla1278 rop_Latn 31889 indo1319
wls_Latn 882167 aust1307 mgr_Latn 138953 atla1278 tca_Latn 31852 ticu1244
ckb_Arab 874441 indo1319 ahk_Latn 135068 sino1245 yan_Latn 31775 misu1242
ven_Latn 860249 atla1278 kur_Arab 134160 indo1319 xav_Latn 31765 nucl1710
zsm_Latn 859947 aust1307 yes bas_Latn 133436 atla1278 bih_Deva 31658
chv_Cyrl 859863 turk1311 bin_Latn 133256 atla1278 cuk_Latn 31612 chib1249
lua_Latn 854359 atla1278 tsz_Latn 133251 tara1323 kjb_Latn 31471 maya1287
que_Latn 838486 sid_Latn 130406 afro1255 hne_Deva 31465 indo1319
sag_Latn 771048 atla1278 diq_Latn 128908 indo1319 wbm_Latn 31394 aust1305
guw_Latn 767918 atla1278 srd_Latn 127064 zlm_Latn 31345 aust1307
bre_Latn 748954 indo1319 yes tcf_Latn 126050 otom1299 tui_Latn 31161 atla1278
toi_Latn 745385 atla1278 bzj_Latn 124958 indo1319 ifb_Latn 30980 aust1307
pus_Arab 731992 indo1319 yes udm_Cyrl 121705 ural1272 izz_Latn 30894 atla1278
che_Cyrl 728201 nakh1245 cce_Latn 120636 atla1278 rug_Latn 30857 aust1307
pis_Latn 714783 indo1319 meu_Latn 120273 aust1307 aka_Latn 30704 atla1278
kon_Latn 685194 chw_Latn 119751 atla1278 pxm_Latn 30698 book1242
oss_Cyrl 683517 indo1319 cbk_Latn 118789 indo1319 kmm_Latn 30671 sino1245

hyw_Armn 679819 indo1319 ibg_Latn 118733 aust1307 mcn_Latn 30666 afro1255
iso_Latn 658789 atla1278 bhw_Latn 117381 aust1307 ifa_Latn 30621 aust1307
nan_Latn 656389 sino1245 ngu_Latn 116851 utoa1244 dln_Latn 30620 sino1245
lub_Latn 654390 atla1278 nyy_Latn 115914 atla1278 ext_Latn 30605 indo1319
lim_Latn 652078 indo1319 szl_Latn 112496 indo1319 ksd_Latn 30550 aust1307
tuk_Latn 649411 turk1311 ish_Latn 111814 atla1278 mzh_Latn 30517 mata1289
tir_Ethi 649117 afro1255 naq_Latn 109747 khoe1240 llb_Latn 30480 atla1278
tgk_Latn 636541 indo1319 toh_Latn 107583 atla1278 hra_Latn 30472 sino1245
yua_Latn 610052 maya1287 ttj_Latn 106925 atla1278 mwm_Latn 30432 cent2225
min_Latn 609065 aust1307 nse_Latn 105189 atla1278 krc_Cyrl 30353 turk1311
lue_Latn 599429 atla1278 hsb_Latn 104802 indo1319 tuc_Latn 30349 aust1307

khm_Khmr 590429 aust1305 yes ami_Latn 104559 aust1307 mrw_Latn 30304 aust1307
tum_Latn 589857 atla1278 alz_Latn 104392 nilo1247 pls_Latn 30136 otom1299
tll_Latn 586530 atla1278 apc_Arab 102392 afro1255 rap_Latn 30102 aust1307

ekk_Latn 582595 ural1272 vls_Latn 101900 indo1319 fur_Latn 30052 indo1319
lug_Latn 566948 atla1278 mhr_Cyrl 100474 ural1272 kaa_Latn 30031 turk1311
niu_Latn 566715 aust1307 djk_Latn 99234 indo1319 prs_Arab 26823 indo1319 yes
tzo_Latn 540262 maya1287 wes_Latn 98492 indo1319 san_Latn 25742 indo1319 yes
mah_Latn 534614 aust1307 gkn_Latn 97041 atla1278 som_Arab 14199 afro1255 yes
tvl_Latn 521556 aust1307 grc_Grek 96986 indo1319 uig_Latn 9637 turk1311 yes
jav_Latn 516833 aust1307 yes hbo_Hebr 96484 afro1255 hau_Arab 9593 afro1255 yes

Table 13: List of languages used to train Glot500-m (Part III).
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guages (Abate et al., 2018), Phontron (Neubig,
2011), QADI (Abdelali et al., 2021), Quechua-IIC
(Zevallos et al., 2022), SLI_GalWeb.1.0 (Agerri
et al., 2018), Shami (Abu Kwaik et al., 2018),
Stanford NLP,23 StatMT,24 TICO (Anastasopou-
los et al., 2020), TIL (Mirzakhalov et al., 2021),
Tatoeba,25 TeDDi (Moran et al., 2022), Tilde (Rozis
and Skadin, š, 2017), W2C (Majliš, 2011), WAT
(Nakazawa et al., 2022), WikiMatrix (Schwenk
et al., 2021), Wikipedia,26 Workshop on NER for
South and South East Asian Languages (Singh,
2008), XLSum (Hasan et al., 2021).

D Results for Each Task and Language
We report the detailed results for all tasks and
languages in Table 14 (Sentence Retrieval Tatoeba),
15, 16 (Sentence Retrieval Bible), 17 (NER), and 18
(POS), 19, 20 (Text Classification), 21, 22 (Round
Trip Alignment).

E Perplexity Results for all Languages
Perplexity number for all languages is presented in
Table 23, Table 24, and Table 25.

23https://nlp.stanford.edu/
24https://statmt.org/
25https://tatoeba.org/en/
26https://huggingface.co/datasets/wikipedia
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

afr_Latn 71.9 76.5 81.1 heb_Hebr 76.3 84.1 76.0 pam_Latn 4.8 5.6 11.0
amh_Ethi 35.1 37.5 44.6 hin_Deva 73.8 88.8 85.6 pes_Arab 83.3 86.6 87.6
ara_Arab 59.2 66.8 64.2 hrv_Latn 79.6 85.6 89.8 pms_Latn 16.6 12.6 54.5
arz_Arab 32.5 47.8 63.5 hsb_Latn 21.5 23.0 53.6 pol_Latn 82.6 89.6 82.4
ast_Latn 59.8 59.8 87.4 hun_Latn 76.1 81.8 69.2 por_Latn 91.0 92.1 90.1
aze_Latn 62.6 78.3 79.9 hye_Armn 64.6 40.0 83.2 ron_Latn 86.0 89.1 82.8
bel_Cyrl 70.0 80.5 81.4 ido_Latn 25.7 28.8 57.6 rus_Cyrl 89.6 91.6 91.5

ben_Beng 54.1 68.2 69.4 ile_Latn 34.6 41.9 75.6 slk_Latn 73.2 80.6 75.9
bos_Latn 78.5 82.2 92.4 ina_Latn 62.7 66.2 91.4 slv_Latn 72.1 78.0 77.0
bre_Latn 10.3 10.9 19.9 ind_Latn 84.3 90.2 88.8 spa_Latn 85.5 89.0 88.9
bul_Cyrl 84.4 88.3 86.7 isl_Latn 78.7 84.5 84.0 sqi_Latn 72.2 81.4 84.7
cat_Latn 72.8 73.9 78.7 ita_Latn 81.3 84.7 86.4 srp_Latn 78.1 85.0 90.0
cbk_Latn 33.2 36.0 49.4 jpn_Jpan 74.4 80.8 72.6 swe_Latn 90.4 92.4 89.7
ceb_Latn 15.2 15.0 41.3 kab_Latn 3.7 3.0 16.4 swh_Latn 30.3 34.6 44.1
ces_Latn 71.1 81.3 75.1 kat_Geor 61.1 79.1 67.7 tam_Taml 46.9 42.3 66.4
cmn_Hani 79.5 84.8 85.6 kaz_Cyrl 60.3 69.9 72.3 tat_Cyrl 10.3 10.3 70.3
csb_Latn 21.3 20.2 40.3 khm_Khmr 41.1 45.0 52.5 tel_Telu 58.5 50.4 67.9
cym_Latn 45.7 45.7 55.7 kor_Hang 73.4 84.3 78.0 tgl_Latn 47.6 54.2 77.1
dan_Latn 91.9 93.9 91.5 kur_Latn 24.1 28.5 54.1 tha_Thai 56.8 39.4 78.1
deu_Latn 95.9 94.7 95.0 lat_Latn 33.6 48.0 42.8 tuk_Latn 16.3 14.8 63.5
dtp_Latn 5.6 4.7 21.1 lfn_Latn 32.5 35.9 59.3 tur_Latn 77.9 85.4 78.4
ell_Grek 76.2 84.1 80.2 lit_Latn 73.4 76.8 65.6 uig_Arab 38.8 58.3 62.6
epo_Latn 64.9 68.5 74.3 lvs_Latn 73.4 78.9 76.9 ukr_Cyrl 77.1 88.3 83.7
est_Latn 63.9 68.6 69.1 mal_Mlym 80.1 84.4 83.8 urd_Arab 54.4 34.3 80.9
eus_Latn 45.9 54.4 52.7 mar_Deva 63.5 81.2 77.9 uzb_Cyrl 25.2 32.2 64.5
fao_Latn 45.0 42.7 82.4 mhr_Cyrl 6.5 5.8 34.9 vie_Latn 85.4 87.9 87.0
fin_Latn 81.9 85.8 72.3 mkd_Cyrl 70.5 83.9 81.4 war_Latn 8.0 6.5 26.2
fra_Latn 85.7 85.8 86.0 mon_Cyrl 60.9 77.3 77.0 wuu_Hani 56.1 47.4 79.7
fry_Latn 60.1 62.4 75.1 nds_Latn 28.8 29.0 77.1 xho_Latn 28.9 31.7 56.3
gla_Latn 21.0 21.2 41.9 nld_Latn 90.3 91.8 91.8 yid_Hebr 37.3 51.8 74.4
gle_Latn 32.0 36.9 50.8 nno_Latn 70.7 77.8 87.8 yue_Hani 50.3 42.3 76.3
glg_Latn 72.6 75.8 77.5 nob_Latn 93.5 96.5 95.7 zsm_Latn 81.4 87.4 91.8
gsw_Latn 36.8 31.6 69.2 oci_Latn 22.9 23.2 46.9

Table 14: Top10 accuracy of XLM-R-B, XLM-R-L, and Glot500-m on Sentence Retrieval Tatoeba.
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

ace_Latn 4.4 4.6 53.4 iba_Latn 14.4 13.6 66.0 pan_Guru 43.2 59.4 48.8
ach_Latn 4.4 3.2 40.0 ibo_Latn 5.0 3.0 30.4 pap_Latn 12.4 9.2 72.4
acr_Latn 2.6 3.4 25.4 ifa_Latn 4.4 4.4 39.2 pau_Latn 4.4 4.0 29.8
afr_Latn 76.8 77.2 69.4 ifb_Latn 4.8 3.6 36.6 pcm_Latn 13.6 10.4 66.8
agw_Latn 5.8 3.0 36.0 ikk_Latn 3.0 3.2 50.6 pdt_Latn 9.2 8.6 68.6
ahk_Latn 3.0 2.6 3.2 ilo_Latn 6.2 3.6 55.0 pes_Arab 69.4 72.2 80.8
aka_Latn 5.0 4.2 57.0 ind_Latn 82.6 80.4 72.2 pis_Latn 6.4 5.0 57.2
aln_Latn 67.8 72.4 67.6 isl_Latn 62.6 73.6 66.0 pls_Latn 5.0 4.0 34.4
als_Latn 51.4 48.0 55.8 ita_Latn 75.4 73.6 70.0 plt_Latn 26.6 28.0 59.8
alt_Cyrl 12.6 9.0 50.8 ium_Latn 3.2 3.0 24.8 poh_Latn 3.4 2.4 15.2
alz_Latn 4.6 3.8 34.6 ixl_Latn 4.0 3.0 18.4 pol_Latn 79.2 79.8 63.8
amh_Ethi 35.4 43.2 52.8 izz_Latn 2.8 2.8 25.6 pon_Latn 5.6 4.4 21.6
aoj_Latn 5.0 3.0 20.4 jam_Latn 6.6 4.4 67.8 por_Latn 81.6 79.8 76.6
arb_Arab 7.0 7.8 14.6 jav_Latn 25.4 33.2 47.4 prk_Latn 3.6 2.2 49.8
arn_Latn 4.8 4.0 28.4 jpn_Jpan 65.0 71.8 64.2 prs_Arab 79.4 78.6 88.8
ary_Arab 2.8 4.0 15.2 kaa_Cyrl 17.6 24.8 73.8 pxm_Latn 3.2 3.2 24.0
arz_Arab 5.4 4.8 24.8 kaa_Latn 9.2 9.8 43.4 qub_Latn 4.6 3.6 43.4
asm_Beng 26.2 40.6 66.6 kab_Latn 3.4 2.4 20.6 quc_Latn 3.6 2.8 24.8
ayr_Latn 4.8 4.8 52.8 kac_Latn 3.6 3.2 26.4 qug_Latn 4.8 3.6 50.8
azb_Arab 7.4 6.8 72.4 kal_Latn 3.4 3.6 23.2 quh_Latn 4.6 4.4 56.2
aze_Latn 71.0 78.6 73.0 kan_Knda 51.2 67.6 50.2 quw_Latn 6.2 4.6 49.2
bak_Cyrl 5.4 6.4 65.2 kat_Geor 54.2 61.4 51.4 quy_Latn 4.6 4.6 61.4
bam_Latn 3.4 3.6 60.2 kaz_Cyrl 61.4 73.0 56.8 quz_Latn 4.8 4.2 68.0
ban_Latn 9.0 9.8 33.0 kbp_Latn 2.6 2.6 36.0 qvi_Latn 4.4 3.4 46.8
bar_Latn 13.4 12.8 40.8 kek_Latn 5.0 3.4 26.4 rap_Latn 3.2 3.2 25.6
bba_Latn 3.8 3.4 36.8 khm_Khmr 28.4 42.6 47.6 rar_Latn 3.2 3.0 26.6
bbc_Latn 7.8 7.4 57.2 kia_Latn 4.0 5.6 33.2 rmy_Latn 6.8 5.8 34.6
bci_Latn 4.4 3.6 13.2 kik_Latn 3.2 2.8 53.4 ron_Latn 72.2 69.6 66.6
bcl_Latn 10.2 11.2 79.8 kin_Latn 5.0 5.0 59.4 rop_Latn 4.6 3.4 46.0
bel_Cyrl 67.2 72.8 55.8 kir_Cyrl 54.8 70.2 66.6 rug_Latn 3.6 3.4 49.0

bem_Latn 6.6 5.4 58.2 kjb_Latn 4.0 3.8 29.6 run_Latn 5.4 6.4 54.6
ben_Beng 46.4 52.8 53.4 kjh_Cyrl 11.0 7.8 53.8 rus_Cyrl 75.8 74.6 71.2
bhw_Latn 4.4 6.0 47.8 kmm_Latn 4.8 3.8 42.6 sag_Latn 6.0 4.4 52.4
bim_Latn 4.2 2.8 52.2 kmr_Cyrl 4.0 4.2 42.4 sah_Cyrl 6.2 4.6 45.8
bis_Latn 7.0 4.6 48.6 kmr_Latn 35.8 40.4 63.0 san_Deva 13.8 14.2 27.2
bod_Tibt 2.0 1.8 33.2 knv_Latn 2.8 2.2 9.0 san_Latn 4.6 3.8 9.8
bqc_Latn 3.4 3.0 39.2 kor_Hang 64.0 71.6 61.2 sba_Latn 2.8 2.8 37.6
bre_Latn 17.6 23.4 32.8 kpg_Latn 5.2 3.8 51.8 seh_Latn 6.4 4.8 74.6
bts_Latn 6.0 5.0 56.4 krc_Cyrl 9.2 10.2 63.0 sin_Sinh 44.8 56.6 45.0
btx_Latn 11.0 9.0 59.6 kri_Latn 2.8 2.8 62.8 slk_Latn 75.2 72.8 63.6
bul_Cyrl 81.2 78.0 76.4 ksd_Latn 7.0 5.4 42.6 slv_Latn 63.6 64.6 51.8

bum_Latn 4.8 3.6 38.0 kss_Latn 2.2 2.4 6.0 sme_Latn 6.8 6.2 47.8
bzj_Latn 7.8 4.0 75.0 ksw_Mymr 1.6 2.0 31.8 smo_Latn 4.4 3.4 36.0
cab_Latn 5.8 4.6 17.4 kua_Latn 4.8 5.4 43.8 sna_Latn 7.0 3.6 43.0
cac_Latn 3.6 3.0 14.8 lam_Latn 4.6 3.6 27.4 snd_Arab 52.2 64.6 66.6
cak_Latn 3.4 3.4 21.4 lao_Laoo 31.4 52.8 49.6 som_Latn 22.2 29.0 33.0
caq_Latn 3.2 4.4 30.2 lat_Latn 52.2 57.8 49.6 sop_Latn 5.2 4.2 31.2
cat_Latn 86.6 81.0 76.4 lav_Latn 74.2 78.0 58.8 sot_Latn 6.0 4.8 52.2
cbk_Latn 31.8 35.6 54.6 ldi_Latn 5.4 4.4 25.2 spa_Latn 81.2 78.8 80.0
cce_Latn 5.2 4.6 51.8 leh_Latn 5.6 4.0 58.2 sqi_Latn 58.2 58.2 63.4
ceb_Latn 14.2 12.6 68.0 lhu_Latn 2.0 2.0 5.0 srm_Latn 4.0 3.2 32.4
ces_Latn 75.2 75.8 58.0 lin_Latn 6.6 5.4 65.4 srn_Latn 6.8 5.2 79.8
cfm_Latn 4.6 4.0 46.8 lit_Latn 74.4 71.6 62.4 srp_Cyrl 83.0 87.0 81.2
che_Cyrl 3.4 3.4 14.0 loz_Latn 6.8 4.6 49.2 srp_Latn 85.0 87.2 81.2
chk_Latn 5.4 4.2 41.2 ltz_Latn 9.8 10.0 73.8 ssw_Latn 4.8 8.4 47.0
chv_Cyrl 4.6 4.2 56.0 lug_Latn 4.6 4.0 49.4 sun_Latn 22.4 25.4 43.0
ckb_Arab 4.0 4.8 47.2 luo_Latn 6.4 4.4 40.8 suz_Deva 3.6 3.4 34.2
cmn_Hani 39.2 40.8 41.8 lus_Latn 3.8 3.8 54.4 swe_Latn 79.8 79.8 78.0
cnh_Latn 4.8 4.2 55.6 lzh_Hani 25.0 31.4 63.4 swh_Latn 47.8 48.8 66.4
crh_Cyrl 8.8 11.2 75.2 mad_Latn 7.6 4.4 44.4 sxn_Latn 4.8 4.8 25.8
crs_Latn 7.4 5.2 80.6 mah_Latn 4.8 4.2 35.6 tam_Taml 42.8 56.8 52.0
csy_Latn 3.8 5.0 50.0 mai_Deva 6.4 9.6 59.2 tat_Cyrl 8.2 6.2 67.2
ctd_Latn 4.2 5.4 59.4 mal_Mlym 49.4 62.6 56.8 tbz_Latn 2.6 2.6 28.0
ctu_Latn 2.8 2.8 21.6 mam_Latn 3.8 3.2 12.8 tca_Latn 2.4 3.2 15.4
cuk_Latn 5.0 3.4 22.2 mar_Deva 66.2 69.0 74.8 tdt_Latn 6.2 5.0 62.2
cym_Latn 38.8 46.0 42.4 mau_Latn 2.4 2.4 3.6 tel_Telu 44.4 57.2 42.6
dan_Latn 71.6 73.2 63.2 mbb_Latn 3.0 3.4 33.6 teo_Latn 5.8 3.4 26.0
deu_Latn 78.8 80.6 66.6 mck_Latn 5.2 3.6 57.4 tgk_Cyrl 4.6 4.2 71.2
djk_Latn 4.6 4.0 40.4 mcn_Latn 6.0 4.2 39.2 tgl_Latn 61.0 60.6 78.6
dln_Latn 5.2 4.8 66.4 mco_Latn 2.6 2.6 7.0 tha_Thai 30.0 37.0 45.4

Table 15: Top10 accuracy of XLM-R-B, XLM-R-L, and Glot500-m on Sentence Retrieval Bible (Part I).
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

dtp_Latn 5.4 4.2 24.2 mdy_Ethi 2.8 2.4 31.6 tih_Latn 5.2 4.4 51.6
dyu_Latn 4.2 2.4 50.2 meu_Latn 5.6 4.4 52.0 tir_Ethi 7.4 6.2 43.4
dzo_Tibt 2.2 2.0 36.4 mfe_Latn 9.0 6.8 78.6 tlh_Latn 7.8 6.4 72.4
efi_Latn 4.4 4.2 54.0 mgh_Latn 5.2 3.4 23.6 tob_Latn 2.2 3.0 16.8
ell_Grek 52.6 53.8 48.6 mgr_Latn 4.0 4.4 57.6 toh_Latn 4.0 4.0 47.2
enm_Latn 39.8 39.2 66.0 mhr_Cyrl 6.6 5.4 48.0 toi_Latn 4.2 4.4 47.4
epo_Latn 64.6 59.8 56.2 min_Latn 9.4 6.2 29.0 toj_Latn 4.2 4.0 15.6
est_Latn 72.0 75.6 56.4 miq_Latn 4.4 4.4 47.4 ton_Latn 4.2 3.8 22.4
eus_Latn 26.2 28.4 23.0 mkd_Cyrl 76.6 72.6 74.8 top_Latn 3.4 3.6 8.0
ewe_Latn 4.6 3.0 49.0 mlg_Latn 29.0 28.4 66.0 tpi_Latn 5.8 4.4 58.0
fao_Latn 24.0 28.4 73.4 mlt_Latn 5.8 5.2 50.4 tpm_Latn 3.6 3.0 39.6
fas_Arab 78.2 80.4 89.2 mos_Latn 4.2 3.6 42.8 tsn_Latn 5.4 3.6 41.8
fij_Latn 3.8 3.0 36.4 mps_Latn 3.2 3.2 21.6 tso_Latn 5.6 5.0 50.8
fil_Latn 60.4 64.4 72.0 mri_Latn 4.2 3.8 48.4 tsz_Latn 5.6 3.2 27.0
fin_Latn 75.6 75.0 53.8 mrw_Latn 6.0 4.4 52.2 tuc_Latn 2.6 2.6 31.4
fon_Latn 2.6 2.0 33.4 msa_Latn 40.0 40.2 40.6 tui_Latn 3.6 3.2 38.0
fra_Latn 88.6 86.8 79.2 mwm_Latn 2.6 2.6 35.8 tuk_Cyrl 13.6 15.8 65.0
fry_Latn 27.8 27.4 44.0 mxv_Latn 3.0 3.4 8.8 tuk_Latn 9.6 9.6 66.2
gaa_Latn 3.8 3.4 47.0 mya_Mymr 20.2 27.8 29.4 tum_Latn 5.2 4.6 66.2
gil_Latn 5.6 3.6 36.8 myv_Cyrl 4.6 4.0 35.0 tur_Latn 74.4 74.8 63.2
giz_Latn 6.2 4.0 41.0 mzh_Latn 4.6 3.2 36.2 twi_Latn 3.8 3.0 50.0
gkn_Latn 4.0 3.4 32.2 nan_Latn 3.2 3.2 13.6 tyv_Cyrl 6.8 7.0 46.6
gkp_Latn 3.0 3.2 20.4 naq_Latn 3.0 2.2 25.0 tzh_Latn 6.0 5.2 25.8
gla_Latn 25.2 26.6 43.0 nav_Latn 2.4 2.8 11.2 tzo_Latn 3.8 3.8 16.6
gle_Latn 35.0 38.6 40.0 nbl_Latn 9.2 11.8 53.8 udm_Cyrl 6.0 5.0 55.2
glv_Latn 5.8 3.6 47.4 nch_Latn 4.4 3.0 21.4 uig_Arab 45.8 63.6 56.2
gom_Latn 6.0 4.6 42.8 ncj_Latn 4.6 3.0 25.2 uig_Latn 9.8 11.0 62.8
gor_Latn 3.8 3.0 26.0 ndc_Latn 5.2 4.6 40.0 ukr_Cyrl 66.0 63.4 57.0
grc_Grek 17.4 23.8 54.8 nde_Latn 13.0 15.2 53.8 urd_Arab 47.6 47.0 65.0
guc_Latn 3.4 2.6 13.0 ndo_Latn 5.2 4.0 48.2 uzb_Cyrl 6.2 7.4 78.8
gug_Latn 4.6 3.2 36.0 nds_Latn 9.6 8.4 43.0 uzb_Latn 54.8 60.8 67.6
guj_Gujr 53.8 71.2 71.4 nep_Deva 35.6 50.6 58.6 uzn_Cyrl 5.4 5.4 87.0
gur_Latn 3.8 2.8 27.0 ngu_Latn 4.6 3.4 27.6 ven_Latn 4.8 4.2 47.2
guw_Latn 4.0 3.4 59.4 nia_Latn 4.6 3.2 29.4 vie_Latn 72.8 71.0 57.8
gya_Latn 3.6 3.0 41.0 nld_Latn 78.0 75.8 71.8 wal_Latn 4.2 5.4 51.4
gym_Latn 3.6 3.8 18.0 nmf_Latn 4.6 4.6 36.6 war_Latn 9.8 6.6 43.4
hat_Latn 6.0 4.2 68.2 nnb_Latn 3.6 3.2 42.0 wbm_Latn 3.8 2.4 46.4
hau_Latn 28.8 36.0 54.8 nno_Latn 58.4 67.2 72.6 wol_Latn 4.6 4.4 35.8
haw_Latn 4.2 3.4 38.8 nob_Latn 82.8 85.2 79.2 xav_Latn 2.2 2.4 5.0
heb_Hebr 25.0 26.0 21.8 nor_Latn 81.2 84.2 86.2 xho_Latn 10.4 16.2 40.8
hif_Latn 12.2 16.4 39.0 npi_Deva 50.6 70.8 76.6 yan_Latn 4.2 3.4 31.8
hil_Latn 11.0 10.8 76.2 nse_Latn 5.2 5.0 54.8 yao_Latn 4.4 3.8 55.2
hin_Deva 67.0 72.8 76.6 nso_Latn 6.0 4.2 57.0 yap_Latn 4.0 4.0 24.0
hin_Latn 13.6 16.0 43.2 nya_Latn 4.0 4.6 60.2 yom_Latn 4.8 3.6 42.2
hmo_Latn 6.4 4.4 48.2 nyn_Latn 4.4 4.2 51.8 yor_Latn 3.4 3.6 37.4
hne_Deva 13.4 14.8 75.0 nyy_Latn 3.0 3.0 25.6 yua_Latn 3.8 3.4 18.2
hnj_Latn 2.8 2.8 54.2 nzi_Latn 3.2 3.0 47.2 yue_Hani 17.2 14.0 24.0
hra_Latn 5.2 4.6 52.2 ori_Orya 42.6 62.0 57.0 zai_Latn 6.2 4.2 38.0
hrv_Latn 79.8 81.8 72.6 ory_Orya 31.4 47.0 55.2 zho_Hani 40.4 40.2 44.4
hui_Latn 3.8 3.0 28.0 oss_Cyrl 4.2 3.6 54.8 zlm_Latn 83.4 78.4 87.0
hun_Latn 76.4 78.2 56.2 ote_Latn 3.6 2.4 18.0 zom_Latn 3.6 3.4 50.2
hus_Latn 3.6 3.2 17.6 pag_Latn 8.0 5.0 61.2 zsm_Latn 90.2 91.0 83.0
hye_Armn 30.8 33.0 75.2 pam_Latn 8.2 7.0 49.8 zul_Latn 11.0 16.0 49.0

Table 16: Top10 accuracy of XLM-R-B, XLM-R-L, and Glot500-m on Sentence Retrieval Bible (Part II).
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

ace_Latn 33.4 38.9 44.2 heb_Hebr 51.5 56.5 49.0 ori_Orya 31.4 27.6 31.0
afr_Latn 75.6 78.3 76.7 hin_Deva 67.0 71.1 69.4 oss_Cyrl 33.7 39.2 52.1
als_Latn 60.7 61.4 80.0 hrv_Latn 77.2 78.9 77.3 pan_Guru 50.0 50.5 48.1
amh_Ethi 42.2 40.9 45.4 hsb_Latn 64.0 69.0 71.2 pms_Latn 71.2 74.9 75.9
ara_Arab 44.7 48.7 56.1 hun_Latn 76.2 79.8 75.9 pnb_Arab 57.0 64.6 65.8
arg_Latn 73.6 74.6 77.2 hye_Armn 50.8 61.7 54.8 pol_Latn 77.5 81.2 78.1
arz_Arab 48.3 52.5 57.4 ibo_Latn 40.8 42.8 58.6 por_Latn 77.8 81.2 78.6
asm_Beng 53.2 64.4 64.2 ido_Latn 61.6 78.6 77.8 pus_Arab 37.4 39.9 41.4
ast_Latn 78.1 82.8 84.5 ilo_Latn 55.3 65.3 77.1 que_Latn 59.1 55.2 66.8

aym_Latn 40.8 38.7 47.1 ina_Latn 54.7 63.4 58.0 roh_Latn 52.6 55.7 60.3
aze_Latn 62.4 69.2 66.1 ind_Latn 49.0 54.1 56.6 ron_Latn 74.8 79.9 74.2
bak_Cyrl 35.1 49.3 59.4 isl_Latn 69.1 77.2 72.1 rus_Cyrl 63.8 70.0 67.6
bar_Latn 55.2 58.6 68.4 ita_Latn 77.3 81.2 78.7 sah_Cyrl 47.3 49.7 74.2
bel_Cyrl 74.2 78.7 74.3 jav_Latn 58.4 61.2 55.8 san_Deva 36.9 37.3 35.8

ben_Beng 65.3 75.8 71.6 jbo_Latn 18.0 26.3 27.8 scn_Latn 49.9 54.8 65.8
bih_Deva 50.7 57.1 58.7 jpn_Jpan 19.7 20.6 17.2 sco_Latn 80.9 81.8 85.6
bod_Tibt 2.5 3.0 31.6 kan_Knda 56.9 60.8 58.4 sgs_Latn 42.5 47.4 62.7
bos_Latn 74.0 74.3 74.2 kat_Geor 65.5 69.5 68.3 sin_Sinh 52.2 57.0 57.8
bre_Latn 59.1 63.9 63.3 kaz_Cyrl 43.7 52.7 50.0 slk_Latn 75.0 81.7 78.5
bul_Cyrl 76.8 81.6 77.2 khm_Khmr 43.3 46.2 40.6 slv_Latn 79.4 82.2 80.1
cat_Latn 82.2 85.4 83.7 kin_Latn 60.5 58.4 67.1 snd_Arab 41.2 46.6 41.8
cbk_Latn 54.6 54.0 54.1 kir_Cyrl 44.2 46.9 46.7 som_Latn 55.8 55.5 58.2
ceb_Latn 55.1 57.8 53.8 kor_Hang 49.1 58.5 50.9 spa_Latn 72.8 73.3 72.8
ces_Latn 77.6 80.8 78.3 ksh_Latn 41.3 48.3 58.7 sqi_Latn 74.0 74.4 76.6
che_Cyrl 15.4 24.6 60.9 kur_Latn 58.8 65.0 69.6 srp_Cyrl 59.7 71.4 66.4
chv_Cyrl 52.9 51.6 75.9 lat_Latn 70.7 79.2 73.8 sun_Latn 42.0 49.7 57.7
ckb_Arab 33.1 42.6 75.5 lav_Latn 73.4 77.1 74.0 swa_Latn 65.6 69.0 69.6
cos_Latn 54.3 56.4 56.0 lĳ_Latn 36.9 41.6 46.6 swe_Latn 71.8 75.9 69.7
crh_Latn 44.3 52.4 54.7 lim_Latn 59.9 64.7 71.8 szl_Latn 58.2 56.7 67.6
csb_Latn 55.1 54.2 61.2 lin_Latn 37.4 41.3 54.0 tam_Taml 55.0 57.9 55.2
cym_Latn 57.9 60.1 59.7 lit_Latn 73.4 77.0 73.5 tat_Cyrl 40.7 47.7 68.0
dan_Latn 81.5 84.2 81.7 lmo_Latn 68.8 68.4 71.3 tel_Telu 47.4 52.5 46.0
deu_Latn 74.3 78.6 75.7 ltz_Latn 47.4 55.8 69.1 tgk_Cyrl 24.7 38.3 68.5
diq_Latn 37.8 43.3 53.1 lzh_Hani 15.6 21.6 11.8 tgl_Latn 71.0 74.7 75.1
div_Thaa 0.0 0.0 51.1 mal_Mlym 61.0 63.3 61.3 tha_Thai 4.2 1.6 3.2
ell_Grek 73.7 78.6 72.8 mar_Deva 60.2 63.4 60.7 tuk_Latn 45.6 50.7 59.7
eml_Latn 32.9 36.1 40.8 mhr_Cyrl 44.3 48.3 63.1 tur_Latn 74.9 79.3 76.1
eng_Latn 82.7 84.5 83.3 min_Latn 42.9 46.2 41.8 uig_Arab 44.0 50.9 48.0
epo_Latn 63.8 71.8 68.0 mkd_Cyrl 74.5 80.4 73.3 ukr_Cyrl 75.2 76.3 74.2
est_Latn 72.2 78.5 73.5 mlg_Latn 54.9 54.3 57.9 urd_Arab 51.2 57.8 74.5
eus_Latn 59.0 62.0 58.0 mlt_Latn 43.2 48.3 73.3 uzb_Latn 70.6 76.2 75.1
ext_Latn 36.9 47.1 46.1 mon_Cyrl 72.4 74.3 66.9 vec_Latn 59.0 63.3 66.4
fao_Latn 61.1 70.8 72.4 mri_Latn 14.2 18.3 53.5 vep_Latn 59.8 59.3 71.3
fas_Arab 44.6 58.0 51.2 msa_Latn 62.3 70.4 65.8 vie_Latn 68.5 77.8 71.3
fin_Latn 75.5 79.1 75.2 mwl_Latn 42.6 47.5 45.3 vls_Latn 68.1 73.6 73.7
fra_Latn 77.2 79.8 76.0 mya_Mymr 51.3 53.4 55.5 vol_Latn 59.2 55.6 59.2
frr_Latn 45.4 46.8 54.8 mzn_Arab 36.4 43.1 44.9 war_Latn 61.9 61.4 66.1
fry_Latn 74.3 79.0 77.5 nan_Latn 46.2 51.4 82.1 wuu_Hani 29.4 54.0 25.1
fur_Latn 44.9 50.1 56.4 nap_Latn 53.0 53.9 55.7 xmf_Geor 40.2 40.0 62.6
gla_Latn 55.5 61.4 63.5 nds_Latn 62.4 66.7 77.1 yid_Hebr 47.6 52.5 50.3
gle_Latn 70.8 74.6 72.2 nep_Deva 63.2 66.4 62.7 yor_Latn 42.2 40.1 63.1
glg_Latn 80.2 81.1 79.4 nld_Latn 80.1 83.6 80.8 yue_Hani 24.8 30.3 22.6
grn_Latn 40.0 42.3 54.7 nno_Latn 76.6 80.4 78.0 zea_Latn 65.2 67.4 68.6
guj_Gujr 61.0 61.9 59.8 nor_Latn 76.5 80.1 76.7 zho_Hani 24.2 28.8 23.4
hbs_Latn 61.1 57.2 61.5 oci_Latn 65.3 67.8 70.1

Table 17: F1 of XLM-R-B, XLM-R-L, and Glot500-m on NER.
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

afr_Latn 88.7 89.3 87.5 hbo_Hebr 38.9 45.7 54.2 pol_Latn 84.7 85.4 82.4
ajp_Arab 62.9 67.3 69.7 heb_Hebr 68.0 69.2 67.2 por_Latn 88.6 89.8 88.2
aln_Latn 53.5 60.4 52.3 hin_Deva 71.3 75.3 70.3 quc_Latn 28.9 29.3 62.4
amh_Ethi 64.5 66.2 66.1 hrv_Latn 85.9 86.2 85.5 ron_Latn 83.9 85.7 80.6
ara_Arab 68.5 69.7 65.4 hsb_Latn 71.5 74.4 83.6 rus_Cyrl 89.1 89.7 88.7
bam_Latn 25.4 23.5 40.8 hun_Latn 82.6 82.7 81.2 sah_Cyrl 20.3 22.8 76.8
bel_Cyrl 86.2 86.2 86.0 hye_Armn 85.2 86.5 84.0 san_Deva 18.3 28.6 26.1

ben_Beng 82.8 83.8 83.8 hyw_Armn 78.5 82.5 80.4 sin_Sinh 57.7 60.1 54.7
bre_Latn 61.6 66.6 60.7 ind_Latn 83.5 84.1 82.7 slk_Latn 85.6 85.8 84.4
bul_Cyrl 89.1 88.9 88.1 isl_Latn 84.2 85.1 82.8 slv_Latn 78.5 79.1 75.9
cat_Latn 86.7 87.9 86.3 ita_Latn 88.3 89.6 87.3 sme_Latn 29.8 31.5 73.7
ceb_Latn 49.3 49.5 66.4 jav_Latn 73.2 76.7 74.1 spa_Latn 88.5 89.0 88.0
ces_Latn 85.0 85.4 84.4 jpn_Jpan 17.3 32.2 31.7 sqi_Latn 81.4 82.9 77.9
cym_Latn 65.5 67.0 64.4 kaz_Cyrl 77.3 79.1 75.9 srp_Latn 86.1 86.6 85.3
dan_Latn 90.7 91.0 90.2 kmr_Latn 73.1 78.2 75.5 swe_Latn 93.5 93.7 92.1
deu_Latn 88.4 88.4 87.9 kor_Hang 53.7 53.4 53.1 tam_Taml 76.1 76.9 75.0
ell_Grek 87.3 87.0 85.4 lat_Latn 75.0 80.3 72.4 tat_Cyrl 45.0 48.8 70.1
eng_Latn 96.3 96.5 96.0 lav_Latn 86.0 86.3 83.5 tel_Telu 85.0 85.0 82.2
est_Latn 86.1 86.4 83.1 lĳ_Latn 48.1 48.6 76.8 tgl_Latn 72.7 74.8 74.7
eus_Latn 71.3 73.7 61.8 lit_Latn 84.1 84.6 81.1 tha_Thai 46.0 54.7 56.7
fao_Latn 77.0 80.6 89.2 lzh_Hani 14.1 23.1 23.0 tur_Latn 72.9 74.0 70.7
fas_Arab 71.8 74.2 71.5 mal_Mlym 86.9 86.7 84.4 uig_Arab 68.2 70.2 68.9
fin_Latn 85.2 85.7 80.8 mar_Deva 83.0 85.2 80.8 ukr_Cyrl 85.9 86.3 84.8
fra_Latn 86.7 87.3 85.4 mlt_Latn 21.0 21.9 79.5 urd_Arab 61.0 68.2 62.0
gla_Latn 57.4 61.8 60.2 myv_Cyrl 39.7 38.6 65.7 vie_Latn 70.9 72.2 67.1
gle_Latn 65.5 68.7 64.4 nap_Latn 52.8 17.0 63.6 wol_Latn 25.6 25.5 61.6
glg_Latn 83.7 86.4 82.6 nds_Latn 58.0 67.3 77.2 xav_Latn 8.4 5.3 14.0
glv_Latn 27.5 29.5 52.7 nld_Latn 88.5 88.8 88.2 yor_Latn 21.7 21.4 63.9
grc_Grek 62.0 68.1 73.1 nor_Latn 88.1 88.9 88.0 yue_Hani 31.5 42.0 40.9
grn_Latn 8.9 7.8 19.8 pcm_Latn 47.3 50.1 57.1 zho_Hani 28.6 42.4 43.1
gsw_Latn 48.7 55.9 80.3

Table 18: F1 of XLM-R-B, XLM-R-L, and Glot500-m on POS.
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

ace_Latn 15 25 60 iba_Latn 30 35 56 ote_Latn 6 5 36
ace_Latn 15 25 60 iba_Latn 30 35 56 ote_Latn 6 5 36
ach_Latn 9 8 34 ibo_Latn 8 6 51 pag_Latn 22 21 52
acr_Latn 10 8 46 ifa_Latn 12 12 47 pam_Latn 20 18 41
afr_Latn 54 64 57 ifb_Latn 14 11 48 pan_Guru 53 65 59
agw_Latn 11 13 54 ikk_Latn 11 7 47 pap_Latn 31 36 55
ahk_Latn 5 5 24 ilo_Latn 15 13 52 pau_Latn 12 10 41
aka_Latn 11 7 48 ind_Latn 62 66 63 pcm_Latn 25 28 46
aln_Latn 44 51 49 isl_Latn 50 60 49 pdt_Latn 17 20 53
als_Latn 45 51 50 ita_Latn 57 68 61 pes_Arab 60 70 64
alt_Cyrl 25 23 54 ium_Latn 6 7 53 pis_Latn 13 13 57
alz_Latn 13 11 34 ixl_Latn 10 7 33 pls_Latn 6 7 41
amh_Ethi 42 49 43 izz_Latn 9 6 41 plt_Latn 30 51 50
aoj_Latn 12 9 41 jam_Latn 15 14 55 poh_Latn 16 8 48
arb_Arab 27 55 45 jav_Latn 44 54 49 pol_Latn 53 63 47
arn_Latn 9 8 46 jpn_Jpan 56 66 56 pon_Latn 10 8 50
ary_Arab 16 27 40 kaa_Cyrl 35 49 59 por_Latn 61 67 57
arz_Arab 28 49 39 kab_Latn 8 7 30 prk_Latn 6 6 51
asm_Beng 44 53 53 kac_Latn 7 8 44 prs_Arab 62 67 65
ayr_Latn 11 9 53 kal_Latn 9 7 33 pxm_Latn 9 9 43
azb_Arab 19 17 55 kan_Knda 53 63 59 qub_Latn 13 10 55
aze_Latn 56 64 61 kat_Geor 55 60 57 quc_Latn 9 7 45
bak_Cyrl 17 19 57 kaz_Cyrl 53 64 56 qug_Latn 13 8 59
bam_Latn 7 7 46 kbp_Latn 5 5 35 quh_Latn 11 10 56
ban_Latn 21 24 46 kek_Latn 6 9 45 quw_Latn 13 10 48
bar_Latn 31 42 45 khm_Khmr 51 64 59 quy_Latn 12 11 57
bba_Latn 6 6 42 kia_Latn 7 7 39 quz_Latn 11 8 56
bci_Latn 9 8 28 kik_Latn 7 6 40 qvi_Latn 9 8 59
bcl_Latn 28 27 51 kin_Latn 17 9 50 rap_Latn 8 7 50
bel_Cyrl 56 67 54 kir_Cyrl 55 63 60 rar_Latn 8 9 48

bem_Latn 13 14 43 kjb_Latn 7 9 48 rmy_Latn 16 12 47
ben_Beng 53 65 60 kjh_Cyrl 15 19 50 ron_Latn 60 70 60
bhw_Latn 11 11 47 kmm_Latn 8 6 46 rop_Latn 10 10 50
bim_Latn 7 7 47 kmr_Cyrl 8 8 44 rug_Latn 7 7 55
bis_Latn 13 12 57 knv_Latn 7 6 44 run_Latn 16 9 49
bqc_Latn 7 7 36 kor_Hang 59 70 60 rus_Cyrl 60 66 61
bre_Latn 30 49 36 kpg_Latn 9 10 57 sag_Latn 9 11 42
bts_Latn 18 17 56 krc_Cyrl 25 22 56 sah_Cyrl 10 9 52
btx_Latn 23 26 53 kri_Latn 7 9 52 sba_Latn 7 6 41
bul_Cyrl 61 70 57 ksd_Latn 10 11 53 seh_Latn 11 8 47

bum_Latn 9 9 43 kss_Latn 5 5 23 sin_Sinh 54 66 59
bzj_Latn 18 14 56 ksw_Mymr 5 5 53 slk_Latn 56 63 56
cab_Latn 9 8 41 kua_Latn 12 12 45 slv_Latn 59 66 61
cac_Latn 10 10 47 lam_Latn 5 8 28 sme_Latn 10 12 43
cak_Latn 7 8 53 lao_Laoo 56 66 64 smo_Latn 8 7 51
caq_Latn 7 7 47 lat_Latn 56 64 50 sna_Latn 13 11 42
cat_Latn 53 64 48 lav_Latn 54 66 55 snd_Arab 54 64 57
cbk_Latn 43 47 57 ldi_Latn 8 9 28 som_Latn 32 45 33
cce_Latn 13 9 47 leh_Latn 13 10 44 sop_Latn 12 8 32
ceb_Latn 28 30 49 lhu_Latn 6 6 30 sot_Latn 11 8 45
ces_Latn 50 65 53 lin_Latn 10 7 49 spa_Latn 61 69 60
cfm_Latn 8 8 55 lit_Latn 54 66 53 sqi_Latn 57 68 60
che_Cyrl 11 6 20 loz_Latn 10 10 48 srm_Latn 10 9 53
chv_Cyrl 8 7 52 ltz_Latn 22 30 52 srn_Latn 10 9 53
cmn_Hani 53 62 56 lug_Latn 16 9 45 srp_Latn 55 67 56
cnh_Latn 7 8 56 luo_Latn 12 10 39 ssw_Latn 14 17 40
crh_Cyrl 22 31 57 lus_Latn 11 7 52 sun_Latn 40 47 47
crs_Latn 14 17 61 lzh_Hani 46 55 55 suz_Deva 15 13 53
csy_Latn 9 7 52 mad_Latn 23 28 56 swe_Latn 60 66 56
ctd_Latn 9 8 56 mah_Latn 6 6 42 swh_Latn 47 59 56
ctu_Latn 15 14 51 mai_Deva 34 39 59 sxn_Latn 11 8 46
cuk_Latn 15 7 44 mal_Mlym 56 64 60 tam_Taml 56 61 60
cym_Latn 46 51 48 mam_Latn 10 6 31 tat_Cyrl 21 28 64
dan_Latn 51 62 50 mar_Deva 55 63 60 tbz_Latn 6 6 43
deu_Latn 56 65 53 mau_Latn 5 5 6 tca_Latn 5 5 47
djk_Latn 12 10 46 mbb_Latn 11 7 48 tdt_Latn 16 13 56
dln_Latn 10 5 52 mck_Latn 15 10 41 tel_Telu 55 65 60
dtp_Latn 9 8 39 mcn_Latn 13 9 43 teo_Latn 12 8 26
dyu_Latn 6 8 52 mco_Latn 6 7 28 tgk_Cyrl 10 7 55
dzo_Tibt 6 5 55 mdy_Ethi 6 7 47 tgl_Latn 48 60 56

Table 19: F1 of XLM-R-B, XLM-R-L, and Glot500-m on Text Classification (Part I).
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

efi_Latn 10 9 50 meu_Latn 15 11 52 tha_Thai 56 67 61
ell_Grek 37 47 54 mfe_Latn 16 14 61 tih_Latn 11 11 56
eng_Latn 74 75 68 mgh_Latn 10 6 35 tir_Ethi 23 27 48
enm_Latn 46 56 65 mgr_Latn 14 12 46 tlh_Latn 30 26 59
epo_Latn 53 63 53 mhr_Cyrl 14 10 43 tob_Latn 6 9 52
est_Latn 62 68 53 min_Latn 27 37 50 toh_Latn 11 8 41
eus_Latn 28 33 22 miq_Latn 7 7 48 toi_Latn 14 10 40
ewe_Latn 9 9 52 mkd_Cyrl 65 69 61 toj_Latn 12 11 42
fao_Latn 33 41 55 mlg_Latn 32 51 48 ton_Latn 6 7 47
fas_Arab 62 68 62 mlt_Latn 12 11 49 top_Latn 11 10 25
fij_Latn 8 7 51 mos_Latn 7 8 41 tpi_Latn 11 13 55
fil_Latn 47 56 53 mps_Latn 11 12 54 tpm_Latn 9 8 47
fin_Latn 57 66 56 mri_Latn 9 8 47 tsn_Latn 11 8 45
fon_Latn 5 6 49 mrw_Latn 15 18 41 tsz_Latn 10 10 45
fra_Latn 57 66 57 msa_Latn 43 49 46 tuc_Latn 7 9 50
fry_Latn 31 34 37 mwm_Latn 5 6 50 tui_Latn 8 8 49
gaa_Latn 5 6 43 mxv_Latn 8 8 24 tuk_Latn 23 26 53
gil_Latn 9 8 44 mya_Mymr 45 52 54 tum_Latn 12 12 49
giz_Latn 9 10 49 myv_Cyrl 11 7 47 tur_Latn 55 66 56
gkn_Latn 8 7 40 mzh_Latn 7 9 45 twi_Latn 9 6 46
gkp_Latn 5 6 35 nan_Latn 6 6 30 tyv_Cyrl 19 18 54
gla_Latn 28 43 42 naq_Latn 8 7 42 tzh_Latn 12 13 42
gle_Latn 37 53 40 nav_Latn 7 9 25 tzo_Latn 13 11 41
glv_Latn 10 12 38 nbl_Latn 20 26 46 udm_Cyrl 10 11 51
gom_Latn 10 13 39 nch_Latn 10 8 39 ukr_Cyrl 61 67 56
gor_Latn 17 15 50 ncj_Latn 7 9 43 urd_Arab 59 65 59
guc_Latn 8 6 42 ndc_Latn 13 13 40 uzb_Latn 49 59 56
gug_Latn 11 7 44 nde_Latn 20 26 46 uzn_Cyrl 13 17 57
guj_Gujr 57 67 63 ndo_Latn 13 9 40 ven_Latn 10 8 43
gur_Latn 6 6 47 nds_Latn 16 15 42 vie_Latn 57 65 55
guw_Latn 11 9 49 nep_Deva 56 61 61 wal_Latn 15 9 41
gya_Latn 5 5 39 ngu_Latn 8 10 50 war_Latn 19 21 41
gym_Latn 10 7 47 nia_Latn 11 9 47 wbm_Latn 7 6 52
hat_Latn 11 10 59 nld_Latn 50 59 55 wol_Latn 11 9 40
hau_Latn 34 40 47 nmf_Latn 9 7 36 xav_Latn 10 10 40
haw_Latn 8 7 41 nnb_Latn 11 8 46 xho_Latn 23 32 48
heb_Hebr 16 31 41 nno_Latn 49 56 57 yan_Latn 7 7 46
hif_Latn 22 37 42 nob_Latn 54 60 55 yao_Latn 10 8 43
hil_Latn 26 31 60 nor_Latn 53 63 55 yap_Latn 8 8 46
hin_Deva 54 70 57 npi_Deva 53 62 61 yom_Latn 13 9 35
hmo_Latn 14 13 53 nse_Latn 17 10 45 yor_Latn 11 7 51
hne_Deva 32 40 59 nso_Latn 11 7 48 yua_Latn 12 10 39
hnj_Latn 8 7 55 nya_Latn 12 10 56 yue_Hani 52 61 54
hra_Latn 10 7 49 nyn_Latn 16 7 38 zai_Latn 16 14 40
hrv_Latn 56 63 56 nyy_Latn 8 8 34 zho_Hani 55 68 55
hui_Latn 9 7 43 nzi_Latn 5 7 40 zlm_Latn 59 70 64
hun_Latn 62 69 53 ori_Orya 54 65 60 zom_Latn 11 9 50
hus_Latn 7 10 39 ory_Orya 55 64 61 zsm_Latn 61 64 63
hye_Armn 60 68 60 oss_Cyrl 6 6 47 zul_Latn 24 35 52

Table 20: F1 of XLM-R-B, XLM-R-L, and Glot500-m on Text Classification (Part II).
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

ace_Latn 2.50 2.83 4.56 hye_Armn 2.32 3.25 4.91 pam_Latn 2.85 3.52 4.46
ach_Latn 3.13 4.02 5.60 hye_Latn 2.34 2.98 2.44 pan_Guru 2.11 2.73 4.11
acr_Latn 2.01 2.46 2.51 iba_Latn 2.77 3.85 6.01 pap_Latn 3.12 3.85 5.46
afr_Latn 3.17 3.66 5.46 ibo_Latn 2.05 2.43 4.33 pau_Latn 2.67 3.09 4.09
agw_Latn 2.51 2.80 4.09 ifa_Latn 1.81 2.40 3.45 pcm_Latn 3.81 4.44 6.47
ahk_Latn 1.11 1.23 1.22 ifb_Latn 2.22 2.58 3.28 pdt_Latn 2.41 3.33 5.11
aka_Latn 3.38 4.50 6.48 ikk_Latn 1.75 2.29 3.83 pes_Arab 2.66 3.91 4.81
aln_Latn 4.06 4.92 7.39 ilo_Latn 3.06 3.87 6.24 pis_Latn 1.91 2.32 4.42
als_Latn 3.92 4.85 6.32 ind_Latn 4.06 5.00 7.60 pls_Latn 2.14 2.57 4.02
alt_Cyrl 2.91 3.36 5.32 isl_Latn 4.40 5.22 7.07 plt_Latn 3.74 3.99 6.82
alz_Latn 3.78 4.89 5.94 ita_Latn 3.55 4.02 6.18 poh_Latn 0.92 1.10 1.87
amh_Ethi 3.04 3.10 4.87 ium_Latn 2.00 2.27 3.46 pol_Latn 3.94 5.20 5.12
amh_Latn 1.41 1.76 1.70 ixl_Latn 1.62 1.94 2.14 pon_Latn 3.53 4.51 5.18
aoj_Latn 1.77 1.97 3.22 izz_Latn 1.65 2.06 3.12 por_Latn 3.61 4.35 6.12
arb_Arab 1.07 1.47 2.40 jam_Latn 2.77 3.06 3.59 prk_Latn 2.10 2.70 5.40
arn_Latn 2.40 2.79 4.51 jav_Latn 3.10 3.67 5.21 prs_Arab 3.54 4.28 6.92
ary_Arab 0.86 1.10 2.43 jpn_Jpan 3.62 4.39 4.07 pxm_Latn 1.76 2.15 3.40
arz_Arab 0.83 1.14 2.52 kaa_Cyrl 2.99 3.91 5.45 qub_Latn 2.48 2.97 4.24
asm_Beng 2.82 2.47 5.21 kaa_Latn 2.34 2.96 3.64 quc_Latn 1.87 2.45 2.77
ayr_Latn 2.61 3.09 3.93 kab_Latn 2.51 3.08 3.14 qug_Latn 2.44 2.99 5.34
azb_Arab 2.57 3.16 4.96 kac_Latn 1.66 2.17 3.34 quh_Latn 2.91 3.46 5.43
aze_Cyrl 2.76 3.26 3.62 kal_Latn 3.00 3.90 4.73 quw_Latn 2.89 3.50 5.62
aze_Latn 4.24 5.04 8.00 kan_Knda 2.58 3.18 4.05 quy_Latn 2.69 3.15 5.51
bak_Cyrl 2.20 2.38 4.35 kan_Latn 1.62 2.08 1.81 quz_Latn 3.33 3.89 6.07
bam_Latn 3.56 4.29 5.73 kat_Geor 4.06 4.99 5.53 qvi_Latn 2.82 3.42 4.89
ban_Latn 2.26 2.74 3.37 kaz_Cyrl 3.82 4.56 5.31 rap_Latn 1.31 1.61 2.31
bar_Latn 3.11 3.81 3.84 kbp_Latn 1.47 1.65 3.32 rar_Latn 1.83 2.22 3.27
bba_Latn 2.43 2.80 4.16 kek_Latn 1.91 2.45 2.70 rmy_Latn 2.85 3.68 4.83
bbc_Latn 3.02 3.85 5.22 khm_Khmr 1.57 1.70 2.82 ron_Latn 3.33 4.00 4.99
bci_Latn 2.81 3.18 3.30 kia_Latn 2.92 3.27 4.69 rop_Latn 1.60 2.08 3.46
bcl_Latn 3.78 4.61 8.06 kik_Latn 2.28 2.73 4.38 rug_Latn 2.56 2.95 3.60
bel_Cyrl 3.73 4.91 6.46 kin_Latn 2.67 3.26 4.19 run_Latn 3.33 3.98 6.82

bem_Latn 3.06 3.77 5.69 kir_Cyrl 4.54 4.35 6.36 rus_Cyrl 4.20 5.05 7.38
ben_Beng 3.29 3.07 4.99 kjb_Latn 2.42 3.03 3.27 sag_Latn 2.92 3.52 5.17
bhw_Latn 2.91 3.47 5.16 kjh_Cyrl 3.13 3.81 5.39 sah_Cyrl 2.31 3.01 4.98
bim_Latn 2.54 3.29 4.12 kmm_Latn 2.52 3.30 3.73 san_Deva 2.48 2.20 3.64
bis_Latn 2.59 2.96 4.68 kmr_Cyrl 2.31 2.76 4.30 san_Latn 1.54 2.23 2.35
bod_Tibt 0.54 3.39 2.43 kmr_Latn 3.75 4.19 5.70 sba_Latn 1.88 2.24 3.86
bqc_Latn 2.44 3.16 4.61 knv_Latn 1.27 1.53 2.09 seh_Latn 3.44 4.20 4.94
bre_Latn 3.32 3.87 3.79 kor_Hang 2.76 3.99 4.89 sin_Sinh 2.55 3.60 3.44
bts_Latn 4.06 4.92 7.99 kor_Latn 0.92 2.40 0.90 slk_Latn 4.65 5.06 6.43
btx_Latn 3.23 3.88 5.59 kpg_Latn 2.80 3.12 5.77 slv_Latn 3.11 4.32 5.23
bul_Cyrl 3.56 4.67 5.88 krc_Cyrl 2.85 3.66 4.90 sme_Latn 2.70 3.35 4.40

bum_Latn 3.22 3.73 4.89 kri_Latn 1.90 2.52 5.07 smo_Latn 2.26 2.72 4.34
bzj_Latn 1.65 2.43 4.48 ksd_Latn 2.82 3.28 5.42 sna_Latn 2.89 3.39 5.32
cab_Latn 2.16 2.63 2.98 kss_Latn 0.99 1.09 1.49 snd_Arab 3.12 3.92 5.30
cac_Latn 1.51 1.74 2.86 ksw_Mymr 0.95 1.46 4.18 som_Latn 3.15 3.40 4.17
cak_Latn 1.86 2.18 3.24 kua_Latn 4.25 4.92 7.31 sop_Latn 2.80 3.55 4.23
caq_Latn 2.20 2.94 3.66 lam_Latn 2.41 3.09 4.03 sot_Latn 3.49 4.31 6.96
cat_Latn 3.76 4.04 5.24 lao_Laoo 2.61 3.21 4.39 spa_Latn 3.71 4.21 5.86
cbk_Latn 3.12 3.64 4.34 lat_Latn 4.65 5.51 7.44 sqi_Latn 4.07 5.07 6.50
cce_Latn 2.96 3.40 4.86 lav_Latn 3.35 4.56 6.45 srm_Latn 1.75 1.96 3.23
ceb_Latn 3.45 4.13 5.10 ldi_Latn 3.41 3.94 4.29 srn_Latn 3.40 3.86 5.98
ces_Latn 4.33 5.27 7.75 leh_Latn 2.73 3.66 5.28 srp_Cyrl 6.48 6.50 10.24
cfm_Latn 2.69 3.18 4.52 lhu_Latn 1.43 1.61 1.36 srp_Latn 4.16 5.06 6.31
che_Cyrl 2.50 3.02 3.17 lin_Latn 1.78 2.73 4.61 ssw_Latn 3.27 4.02 5.72
chk_Hani 4.88 6.75 7.08 lit_Latn 4.69 5.66 7.07 sun_Latn 2.98 3.69 4.61
chk_Latn 3.20 3.94 5.36 loz_Latn 3.35 3.91 6.03 suz_Deva 1.68 1.66 2.82
chv_Cyrl 2.25 2.77 4.79 ltz_Latn 3.73 3.99 5.16 swe_Latn 4.77 4.76 7.09
ckb_Arab 2.38 3.15 3.86 lug_Latn 2.84 3.50 5.59 swh_Latn 4.05 4.99 7.27
ckb_Latn 2.11 2.57 3.35 luo_Latn 3.34 4.09 4.90 sxn_Latn 2.08 2.54 3.06
cmn_Hani 3.24 4.57 5.22 lus_Latn 2.43 2.99 5.20 tam_Latn 2.59 3.08 2.56
cnh_Latn 2.17 2.75 3.62 lzh_Hani 3.21 5.56 5.47 tam_Taml 3.09 3.77 5.74
crh_Cyrl 3.14 3.79 6.77 mad_Latn 2.65 3.29 4.45 tat_Cyrl 2.13 2.62 4.03
crs_Latn 2.63 3.46 4.88 mah_Latn 2.95 3.59 4.92 tbz_Latn 1.62 2.03 4.22
csy_Latn 2.58 3.02 4.25 mai_Deva 1.79 2.02 3.86 tca_Latn 1.29 1.56 2.77
ctd_Latn 2.94 3.61 4.65 mal_Latn 2.67 3.36 2.71 tdt_Latn 3.20 3.48 5.06
ctu_Latn 1.89 2.31 2.40 mal_Mlym 3.19 4.13 4.76 tel_Telu 2.87 3.78 3.98
cuk_Latn 2.20 2.87 3.09 mam_Latn 1.84 2.20 2.22 teo_Latn 3.37 4.18 4.29
cym_Latn 3.11 3.78 3.85 mar_Deva 3.87 5.13 5.65 tgk_Cyrl 2.63 3.29 6.11
dan_Latn 4.06 5.03 6.94 mau_Latn 1.60 1.78 1.12 tgl_Latn 3.22 3.35 5.16
deu_Latn 4.85 5.19 7.28 mbb_Latn 2.25 2.56 3.51 tha_Thai 1.50 2.72 4.10
djk_Latn 2.07 2.46 3.53 mck_Latn 3.34 4.06 5.09 tih_Latn 2.21 2.89 4.57
dln_Latn 3.89 4.89 5.23 mcn_Latn 3.74 4.42 5.60 tir_Ethi 1.90 1.93 4.03
dtp_Latn 2.05 2.28 3.04 mco_Latn 1.42 1.63 1.69 tlh_Latn 3.02 3.52 5.71
dyu_Latn 2.75 3.32 5.29 mdy_Ethi 1.36 1.26 2.89 tob_Latn 1.42 1.84 2.00
dzo_Tibt 0.39 2.51 2.03 meu_Latn 3.26 3.79 5.10 toh_Latn 2.17 2.90 4.41

Table 21: Accuracy of XLM-R-B, XLM-R-L, and Glot500-m on Round Trip Alignment (Part I).
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

efi_Latn 2.55 3.25 6.23 mfe_Latn 3.61 4.19 6.26 toi_Latn 3.19 4.10 4.31
ell_Grek 2.79 3.38 4.77 mgh_Latn 2.78 3.28 3.48 toj_Latn 1.43 1.84 2.25
eng_Latn 4.02 4.49 6.39 mgr_Latn 3.32 4.06 6.39 ton_Latn 2.01 2.64 3.63
enm_Latn 3.77 4.60 7.19 mhr_Cyrl 2.75 3.28 5.32 top_Latn 1.56 2.16 2.19
epo_Latn 4.01 4.83 5.88 min_Latn 2.62 3.05 3.78 tpi_Latn 2.44 2.71 5.96
est_Latn 4.34 5.24 8.21 miq_Latn 2.23 3.13 4.12 tpm_Latn 2.79 3.39 4.67
eus_Latn 3.12 3.80 4.19 mkd_Cyrl 3.99 4.54 7.37 tsn_Latn 2.82 3.12 4.63
ewe_Latn 2.22 2.67 4.74 mlg_Latn 3.34 3.81 6.33 tso_Latn 2.40 3.05 5.00
fao_Latn 3.85 4.62 5.75 mlt_Latn 2.94 3.57 4.87 tsz_Latn 2.68 3.14 4.20
fas_Arab 4.54 4.48 7.00 mos_Latn 2.71 3.24 4.25 tuc_Latn 1.43 1.83 2.36
fij_Latn 2.81 3.17 4.94 mps_Latn 1.50 1.65 3.05 tui_Latn 2.47 2.83 4.53
fil_Latn 3.26 3.92 4.80 mri_Latn 2.81 3.44 5.49 tuk_Cyrl 2.74 3.68 4.33
fin_Latn 4.06 5.19 6.03 mrw_Latn 2.69 3.24 4.58 tuk_Latn 2.43 3.23 4.74
fon_Latn 1.63 1.89 3.70 msa_Latn 3.17 3.50 5.38 tum_Latn 3.41 4.13 6.15
fra_Latn 3.19 3.97 5.08 mwm_Latn 1.74 1.99 3.20 tur_Latn 5.18 4.86 7.45
fry_Latn 3.36 3.99 4.52 mxv_Latn 1.75 2.11 2.31 twi_Latn 3.05 4.06 6.70
gaa_Latn 2.74 3.26 6.01 mya_Mymr 1.54 1.53 2.46 tyv_Cyrl 2.31 2.83 3.33
gil_Latn 2.76 3.20 4.50 myv_Cyrl 2.90 3.42 4.46 tzh_Latn 2.16 2.50 3.08
giz_Latn 3.00 3.43 5.40 mzh_Latn 2.62 3.02 4.10 tzo_Latn 2.01 2.29 2.77
gkn_Latn 1.93 2.07 3.31 nan_Latn 1.99 2.51 2.56 udm_Cyrl 2.90 3.48 4.72
gkp_Latn 1.88 2.25 3.40 naq_Latn 2.42 3.15 4.41 uig_Arab 2.58 3.11 3.61
gla_Latn 2.90 3.48 3.61 nav_Latn 1.75 2.10 2.71 uig_Latn 2.26 2.76 3.79
gle_Latn 3.52 4.24 4.49 nbl_Latn 3.09 3.87 4.85 ukr_Cyrl 5.71 5.96 7.47
glv_Latn 2.76 3.38 4.45 nch_Latn 2.18 2.74 3.32 urd_Arab 1.88 2.88 3.96
gom_Latn 3.05 3.59 4.40 ncj_Latn 2.64 3.40 3.69 urd_Latn 2.29 2.97 3.03
gor_Latn 2.26 2.73 3.71 ndc_Latn 3.32 3.85 6.67 uzb_Cyrl 2.73 3.26 7.24
grc_Grek 1.11 2.00 2.93 nde_Latn 4.00 4.60 6.05 uzb_Latn 3.32 3.98 5.91
guc_Latn 1.46 1.80 2.23 ndo_Latn 3.21 3.85 5.61 uzn_Cyrl 2.61 3.06 5.86
gug_Latn 2.60 3.23 4.70 nds_Latn 2.98 3.69 4.70 ven_Latn 2.96 3.64 5.34
guj_Gujr 3.18 4.15 4.38 nep_Deva 3.02 2.97 6.31 vie_Latn 3.99 4.48 6.69
gur_Latn 2.14 2.59 3.22 ngu_Latn 1.86 2.34 3.39 wal_Latn 2.87 3.65 4.24
guw_Latn 2.18 2.54 4.56 nia_Latn 2.75 3.47 3.24 war_Latn 3.04 3.74 5.43
gya_Latn 1.94 2.25 4.63 nld_Latn 2.81 3.63 4.90 wbm_Latn 2.44 2.86 6.53
gym_Latn 1.44 1.78 2.63 nmf_Latn 3.30 4.27 5.05 wol_Latn 3.47 4.48 6.10
hat_Latn 3.21 3.64 6.39 nnb_Latn 2.46 3.14 4.08 xav_Latn 0.87 1.03 1.12
hau_Latn 3.69 4.24 6.31 nno_Latn 3.90 4.61 7.41 xho_Latn 3.61 4.27 5.90
haw_Latn 2.25 2.63 3.55 nob_Latn 3.88 4.81 5.83 yan_Latn 2.95 3.35 5.59
heb_Hebr 1.85 2.41 3.92 nor_Latn 3.31 4.14 5.82 yao_Latn 2.01 2.66 3.87
hif_Latn 2.90 3.43 3.60 npi_Deva 3.29 3.30 5.93 yap_Latn 2.86 3.41 3.45
hil_Latn 2.92 3.48 4.88 nse_Latn 3.29 4.06 5.74 yom_Latn 3.25 4.00 5.17
hin_Deva 3.39 3.80 5.13 nso_Latn 3.06 3.92 5.51 yor_Latn 2.24 2.68 3.88
hin_Latn 2.94 3.20 4.77 nya_Latn 2.76 3.19 5.96 yua_Latn 2.04 2.26 2.86
hmo_Latn 2.43 2.70 6.12 nyn_Latn 2.77 3.50 5.59 yue_Hani 2.37 3.19 2.95
hne_Deva 2.48 2.53 4.95 nyy_Latn 2.21 2.74 2.95 zai_Latn 3.22 3.76 5.21
hnj_Latn 2.14 2.53 4.28 nzi_Latn 2.09 2.70 4.20 zho_Hani 2.77 4.38 5.03
hra_Latn 3.32 3.86 5.19 ori_Orya 2.73 2.77 3.92 zlm_Latn 4.39 5.15 7.54
hrv_Latn 4.14 5.24 7.02 ory_Orya 3.27 3.20 4.39 zom_Latn 3.65 4.45 5.36
hui_Latn 1.84 2.10 3.47 oss_Cyrl 2.20 2.52 5.85 zsm_Latn 4.49 5.07 8.83
hun_Latn 4.54 4.10 5.62 ote_Latn 1.89 2.23 2.66 zul_Latn 3.67 4.39 5.44
hus_Latn 1.70 2.00 2.42 pag_Latn 2.93 3.44 4.56

Table 22: Accuracy of XLM-R-B, XLM-R-L, and Glot500-m on Round Trip Alignment (Part II).
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

srd_Latn 87.2 66.6 5.4 aka_Latn 86.7 74.1 14.2 dyu_Latn 68.5 27.4 10.2
ben_Beng 5.2 3.7 7.2 mon_Latn 288 282.4 33.7 nyy_Latn 628.5 198.3 18.0
ajp_Arab 74.6 34.0 44.8 gor_Latn 89.8 140.7 8.8 tzh_Latn 320.3 82.8 4.7
tdx_Latn 688.4 716.4 16.0 kjb_Latn 110.8 81.1 16.2 hne_Deva 80.1 60.3 9.1
tpm_Latn 99.9 90.2 17.9 lhu_Latn 44.7 12.3 2.0 bel_Cyrl 3.4 2.5 5.3
grc_Grek 10.1 10.4 3.4 bos_Latn 6.1 3.4 7.9 szl_Latn 46.4 30.2 3.1
sxn_Latn 469.2 148.3 14.5 lmo_Latn 48.4 25.9 6.1 ksh_Latn 340.3 227.6 19.9
cos_Latn 52.1 22.8 13.3 mwn_Latn 697.8 543.8 30.7 pcd_Latn 61.2 40.8 13.2
tlh_Latn 53.6 46.3 11.1 aym_Latn 1084.6 727.8 14.5 ada_Latn 100 78.5 9.5
sid_Latn 1003.6 782.3 34.5 aoj_Latn 95.1 53.7 7.4 pxm_Latn 101.3 120.7 2.7
jam_Latn 213.3 195.2 15.8 est_Latn 7.7 4.0 22.1 xho_Latn 32.5 9.4 16.7
ban_Latn 40.8 76.1 16.1 bre_Latn 12.9 3.7 12.3 kaa_Cyrl 72.9 29.2 8.8
kin_Latn 544.1 203.2 6.6 bsb_Latn 74.5 45.1 7.6 kea_Latn 754.2 525.3 13.4
rop_Latn 150.7 93.4 8.4 yua_Latn 246.8 55.1 4.6 teo_Latn 587.1 271.7 62.0
alz_Latn 511.9 145.6 47.7 hrv_Latn 7.4 4.9 9.7 tsc_Latn 726.3 501.1 17.0
kwy_Latn 598.8 514.4 30.5 jav_Latn 20.2 4.4 22 hin_Deva 7.4 3.1 10
yor_Latn 109.1 55.9 11.0 mai_Deva 42.9 48.8 6.0 ekk_Latn 7 3.8 11.8
lao_Laoo 4.2 4.4 3.8 tyv_Cyrl 104.1 104.4 7.3 umb_Latn 920 838.8 17.4
aze_Latn 5.6 3.6 5.4 afb_Arab 68.7 44.4 55.9 tam_Taml 7.2 2.3 9.8

mya_Mymr 6.9 2.7 6.3 twi_Latn 178.9 66.7 17.9 toi_Latn 988.7 246.5 20.9
ssw_Latn 345.7 108.4 20.2 sme_Latn 293 368.2 6.5 kon_Latn 463.7 418.9 16.3
lus_Latn 493.5 131.2 16.4 yom_Latn 468 240.7 43.1 che_Cyrl 266.4 127.6 5.7
krc_Cyrl 120.1 63.2 9.3 tob_Latn 115 78.8 7.2 gaa_Latn 109.3 33.3 13.5
hbo_Hebr 6.3 3.6 5.6 mxv_Latn 69.8 29.7 5.0 tzo_Latn 246.5 54.3 7.0
mgr_Latn 737.8 254.2 33.0 ron_Latn 4.4 2.9 10.4 mon_Cyrl 5.8 3.4 8.6
crh_Cyrl 138.6 86.3 5.2 ile_Latn 67.9 40.1 5.7 cuk_Latn 211.5 72.1 32.0
ara_Arab 10.1 6.3 18.8 cce_Latn 468.3 123.5 22.5 ces_Latn 4.4 3.1 11.6
mar_Deva 7.5 4.6 11.2 uzn_Cyrl 402.4 138.7 5.2 rmy_Latn 288.2 349.8 25.0
nba_Latn 638.8 675.1 14.6 ibg_Latn 897.3 807.3 21.8 phm_Latn 914.5 678.5 11.6
mny_Latn 568.9 492.5 38.7 hat_Latn 228 113.3 14.0 glv_Latn 240.2 182.3 9.4
run_Latn 817.5 218.5 16.9 fij_Latn 377.3 96 12.8 diq_Latn 256.6 120.5 13.4
rus_Cyrl 3.3 2.3 4.5 kbp_Latn 34.6 24.5 7.1 poh_Latn 62.8 68.9 3.8
hbs_Latn 4.5 2.6 6 mlt_Latn 223 162.2 10.3 oss_Cyrl 121.8 58.7 5.1
lug_Latn 489 197.5 13.1 kjh_Cyrl 209.8 88.8 16.4 san_Deva 20.5 12.4 15.5
pls_Latn 91.7 98.9 6.9 ndo_Latn 892.3 178.1 21.1 ote_Latn 127.8 71.2 8.0
hif_Latn 21.6 46.7 13.5 rar_Latn 458.1 50.2 12.1 her_Latn 776 707.3 31.6
tll_Latn 244.6 161 24.3 ell_Grek 3.4 2.6 5.9 efi_Latn 256.8 47 11.5
crs_Latn 782.2 146.5 7.4 tvl_Latn 634.1 378.5 7.1 idu_Latn 117.7 90.9 12.0
rng_Latn 656.6 606.8 11.7 toj_Latn 287.1 113.6 9.6 hye_Armn 3.6 4.4 3.8
cjk_Latn 530.8 419.6 24.0 ikk_Latn 67.8 49.5 8.6 gcf_Latn 450.8 292.4 5.5
seh_Latn 917.8 230 11.2 ory_Orya 6.1 2.8 6.3 pus_Arab 12.9 7.5 12.7
rug_Latn 260.9 214.2 5.4 nor_Latn 5 2.8 8.5 sgs_Latn 119.2 124.7 10.5
hau_Latn 14.5 7.1 17.2 enm_Latn 43.1 31.0 36.6 mbb_Latn 177.1 138 4.2
uzb_Latn 5.6 3.6 5.8 arz_Arab 17.5 1.5 6.8 som_Arab 7.2 3.1 9.3
bim_Latn 142.2 97.3 11.3 bem_Latn 706.9 219.9 27.1 hsb_Latn 109.6 103.6 5.2
vep_Latn 218.1 111.5 6.1 gkp_Latn 33.1 30.2 12.7 ary_Arab 32.7 4.6 26
slv_Latn 7.8 4.9 26.9 guj_Gujr 6.2 3.6 6.5 hmo_Latn 509.3 77.7 10.9
azj_Latn 5.3 3.3 5.1 tbz_Latn 39.2 40.4 8.4 quw_Latn 177.8 157.7 26.1
cac_Latn 51.4 39.3 7.0 ven_Latn 268.3 62 9.4 pag_Latn 923.5 232.4 25.8
npi_Deva 8.6 4.9 7.3 crh_Latn 151 70.9 6.5 ber_Latn 639.1 981.4 21.3
lin_Latn 377.3 96.6 15.3 xmv_Latn 593.2 491.4 19.4 chk_Latn 766.9 151.6 19.1

zom_Latn 238.7 176.2 22.8 slk_Latn 4 2.9 11.2 kan_Knda 7.2 2.8 8.9
kmr_Cyrl 140.6 56.7 4.1 zne_Latn 854.7 658.4 48.8 loz_Latn 895 113.7 27.8
acm_Arab 113.6 74.0 81 cgg_Latn 565.7 454.4 12.4 tih_Latn 247.6 151.3 4.9
fin_Latn 4.2 3.1 21.7 vie_Latn 7.6 3.1 16.4 mfe_Latn 767.9 255.4 10.1

rmn_Grek 108.9 76.8 3.3 amh_Ethi 8.9 5.3 7.5 tel_Telu 6.5 4.0 7.9
wls_Latn 334.9 207.9 4.0 nyu_Latn 926.2 479.2 9.3 ina_Latn 26.9 17.1 7.2
hun_Latn 5.1 3.3 25.1 suz_Deva 63.4 76.4 2.5 isl_Latn 7.9 4.9 16.7
lĳ_Latn 98.8 55.1 5.9 tuc_Latn 108.9 80.8 7.6 tsz_Latn 990.6 199.7 14.2

quh_Latn 279 176.6 16.5 lub_Latn 670.8 577.5 23.8 ori_Orya 5.2 3.0 4.7
yap_Latn 507.3 195.9 10.6 epo_Latn 10.8 5.2 21 tat_Latn 168.4 65.5 6.9
abk_Cyrl 122.6 89.5 20.1 ksw_Mymr 16.6 7.5 4.6 arg_Latn 29.2 13.6 7.2
cmn_Hani 10.4 5.0 9.8 mwl_Latn 69.1 35.6 4.9 kia_Latn 132.4 126.8 18.5
csb_Latn 112.8 59.4 6.1 cak_Latn 101.7 46.1 5.4 afr_Latn 12.2 7.8 19.2
nbl_Latn 137.7 19.6 13.9 bar_Latn 124.7 108.9 14.4 myv_Cyrl 97.7 153.3 8.5
ndc_Latn 1188.5 374.6 19.4 asm_Beng 6 3.8 5 bik_Latn 170.4 60.3 13.7
oci_Latn 41.2 24.4 8.3 grn_Latn 199.3 141.6 10.3 ltz_Latn 39.7 165.1 10.9
fao_Latn 84.2 35.6 5.5 tso_Latn 506.1 115.2 13.2 iso_Latn 236.2 222.4 8.7
tui_Latn 126.1 127 20.6 nso_Latn 656.3 153.4 9.1 ewe_Latn 198 54.6 20.0
xav_Latn 21.4 15.9 5.7 bum_Latn 282.8 91.5 22.1 als_Latn 7.6 2.5 6.4

Table 23: Perplexity of all languages covered by Glot500-m (Part I).
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

swc_Latn 39.2 22.5 13.2 top_Latn 589.2 89.6 23.5 hin_Latn 11.1 22.1 11.9
deu_Latn 4.4 3.6 10.2 bin_Latn 278.1 169.8 13.3 eng_Latn 5.7 4.0 7.5
caq_Latn 185.9 129 21.6 chw_Latn 778.9 645.8 33.9 hus_Latn 134.6 68.2 5.3
ceb_Latn 63.1 53.1 2.1 hyw_Cyrl 268.5 233.5 6.3 urh_Latn 236.8 211.5 11.4
nia_Latn 280.3 85.5 7.5 kor_Hang 7.2 2.6 11 mkd_Cyrl 4.3 3.1 6.2
urd_Arab 8.3 5.3 8.7 btx_Latn 463 163.1 19.3 wbm_Latn 58.9 47.3 13.6
niu_Latn 600.1 437.5 10.1 srn_Latn 609.3 137.2 12.6 kwn_Latn 1053.6 753.2 32.0

mrw_Latn 320.8 174.9 7.6 llb_Latn 555.6 589.8 41.1 guc_Latn 432.6 117.8 9.4
bul_Cyrl 3.9 3.6 6.8 cbk_Latn 129.5 60.4 11.6 quc_Latn 270.7 83.9 5.6
pau_Latn 333.7 147.3 7.2 bcl_Latn 270 60.1 12.5 nds_Latn 112.5 161.1 7.4
tha_Thai 10.8 2.9 14.6 csy_Latn 198.3 152.5 21.7 ind_Latn 8.5 5.4 17.1
ilo_Latn 786.7 184.4 13.8 ctd_Latn 249.2 166.1 11.6 nde_Latn 56.7 21.5 12.1
kss_Latn 90.4 13.2 11.2 plt_Latn 10.8 3.6 5.7 kua_Latn 1104.8 191.2 13.4
zai_Latn 719.4 212.5 10.4 smo_Latn 235.7 55.6 7.0 nch_Latn 705.1 166.4 11.2
guw_Latn 267.7 65.5 6.9 kab_Latn 744.5 203.5 24.3 por_Latn 5.1 3.9 9.3
kbd_Cyrl 175.7 94.4 9.1 gom_Deva 82.8 48.4 9.0 jpn_Jpan 7.9 3.9 10
dln_Latn 238.8 207.8 7.5 ukr_Cyrl 3.1 2.9 5.9 spa_Latn 4.6 3.5 7.8
war_Latn 200.9 110.7 2.3 ast_Latn 27.5 18.6 4.8 knv_Latn 129 78.3 5.8
tca_Latn 70.4 49 6.0 lvs_Latn 4.8 2.7 5.7 agw_Latn 150.1 73.4 16.3
iku_Cans 2.2 1.9 5.8 rmn_Cyrl 624.3 513.1 8.7 ige_Latn 181.1 105.2 11.9
bjn_Latn 41.3 17.6 11.4 kir_Cyrl 7.7 2.9 11.9 dua_Latn 232.8 152.2 19.1
ngu_Latn 918 110.9 13.4 pfl_Latn 152 101.3 11.3 ogo_Latn 131.3 129.7 31.1
kmr_Latn 68 4.6 10.6 bqc_Latn 102.7 71.1 26.5 bas_Latn 410.4 437.7 16.7
tgl_Latn 7.9 4.4 8.9 yid_Hebr 7.6 4.8 5.1 bpy_Beng 20 21.4 2.9
eus_Latn 10.7 6.2 37.3 fil_Latn 9.2 2.3 9.9 lfn_Latn 60.4 51 6.9
hra_Latn 212.1 177.7 54.3 nap_Latn 81.7 39.6 10.5 ton_Latn 116 65.2 2.8
lue_Latn 839.2 627.4 19.8 heb_Hebr 6.7 4.9 13.5 lim_Latn 66.8 43.5 11.4
pol_Latn 4.5 2.7 10.6 sba_Latn 75.7 81.8 6.0 lav_Latn 4.2 2.2 6.6
leh_Latn 476.5 253.9 26.2 ifa_Latn 371.9 266.1 6.0 bih_Deva 27.6 16.1 5.0
lat_Latn 15.3 3.7 24.5 ami_Latn 1070.7 710.2 29.2 gym_Latn 509.6 66.3 17.0
div_Thaa 1.6 1.5 3.5 gil_Latn 763.5 161.3 15.7 ish_Latn 144.9 134 11.6
min_Latn 105 39.7 3.9 djk_Latn 360.4 93.4 13.4 zea_Latn 69.6 27.5 8.7
ctu_Latn 177.4 37.9 4.5 new_Deva 36.1 29.8 4.5 aln_Latn 3.9 2.3 12.7
tur_Latn 9.1 4.1 29.5 bam_Latn 74.5 23.7 46.8 gcr_Latn 352.9 314.7 7.5
dhv_Latn 509 435.8 11.8 wol_Latn 236.4 158.3 32.0 kal_Latn 377.2 370.9 8.3
lua_Latn 706 784.5 21.7 alt_Cyrl 140.7 50.9 9.3 dan_Latn 6 3.6 13.1
rmy_Cyrl 488.1 389.3 9.3 kri_Latn 87.6 35.8 8.6 tah_Latn 363 330.9 4.8
zpa_Latn 476.1 550.1 13.6 kom_Cyrl 93.4 57 4.9 kik_Latn 205.8 55.5 12.1
gom_Latn 405.7 282.9 27.9 sah_Cyrl 99.9 91.1 4.5 vmw_Latn 828.8 434.8 17.8
dtp_Latn 166.4 78.7 5.5 mzh_Latn 132.8 133.4 9.6 eml_Latn 283.4 144.9 6.6
fra_Latn 4.1 2.8 6.9 sna_Latn 316.6 331.1 16.4 sco_Latn 28.1 15.5 9.8
cat_Latn 4.1 2.2 7.3 bzj_Latn 264.7 75.8 10.9 kac_Latn 189.9 76.3 17.9

xmf_Geor 71.2 72.3 3.8 nld_Latn 5.7 4.5 12 ttj_Latn 865.2 509.5 15.5
ixl_Latn 53 29.6 4.2 gug_Latn 626.9 141.6 8.4 lun_Latn 720.1 565.6 31.9
ckb_Arab 72.2 80.6 6.0 yue_Hani 17.8 10.6 10.8 sot_Latn 269.1 122.4 8.1
ahk_Latn 44.8 9.1 2.1 fry_Latn 16.1 15.4 17.2 mau_Latn 199.7 13.6 8.4
sag_Latn 491.4 68.7 11.1 jbo_Latn 132.3 187.1 9.0 yan_Latn 134.4 108.4 31.4
qug_Latn 505 135.2 13.7 iba_Latn 529.3 87 16.6 ido_Latn 79.8 24.2 7.1
nyn_Latn 834.8 236.9 16.8 nya_Latn 319.6 256.8 12.7 rmn_Latn 968.8 1062.8 22.9
koo_Latn 481.3 321.6 13.8 tat_Cyrl 99.8 116 4.1 sat_Olck 1.4 1.2 4.6
uig_Arab 8.1 2.4 5.5 nzi_Latn 113.7 47.4 12.5 mad_Latn 132.7 90.2 7.9
kam_Latn 225.9 155.7 10.3 wal_Latn 492.7 120.3 18.1 hil_Latn 366 38.7 9.6
gkn_Latn 248 74.6 9.4 pdt_Latn 417.7 143 13.3 khm_Khmr 4.8 3.2 4.5
twx_Latn 1209.8 978.2 15.5 apc_Arab 74.8 42.2 37.2 fon_Latn 71.8 27 10.4
skg_Latn 665.4 624.1 15.8 mdy_Ethi 65.7 68.4 5.4 ngl_Latn 664.9 518.3 15.9
arb_Arab 4.1 2.1 6 rue_Cyrl 18.7 11.4 4.5 tcf_Latn 224.5 225.4 6.9
mco_Latn 295 37.6 4.6 azb_Arab 194.1 141.8 4.8 gur_Latn 86.2 39 17.9
sqi_Latn 6.2 2.1 8.4 bci_Latn 129.6 95.6 8.7 qvi_Latn 863.4 91.5 12.3
cnh_Latn 496 154.4 16.3 kmm_Latn 193.3 164.9 20.2 izz_Latn 95.5 78.5 5.5
sin_Sinh 7.5 5.4 9.8 bak_Cyrl 99 79 5.3 kur_Arab 90.3 76.3 5.7

kmb_Latn 564.8 465.8 15.6 miq_Latn 347.4 198.9 23.6 hbs_Cyrl 3.7 2.3 4.3
vol_Latn 78.4 67.7 2.4 kaa_Latn 94.2 100.6 7.3 ach_Latn 488.8 114.6 77.3
msa_Latn 8.2 26.1 15 bod_Tibt 8.8 4.0 6.3 wuu_Hani 35.9 16.8 11.7
bba_Latn 75.5 65.5 16.3 glg_Latn 5.9 4.6 9.2 quz_Latn 804.5 269.4 12.2
tgk_Latn 11.9 11.7 7.5 tum_Latn 516.4 168.3 10.2 tok_Latn 592.4 423 94.5
tiv_Latn 912.3 716.3 29.3 bbc_Latn 787.9 203.7 13.6 bis_Latn 727.1 47.7 10.7

hmn_Latn 60.9 52.5 8.8 kek_Latn 126.4 40.6 4.3 fur_Latn 196.5 142.8 7.7
swh_Latn 12.6 5.8 24.4 ace_Latn 81.5 54 6.4 ium_Latn 36.6 33.1 7.2
pis_Latn 563.2 64.7 9.7 pam_Latn 59.6 276.7 28.2 nse_Latn 771.7 292.3 13.7

mzn_Arab 50 34.3 6.3 fas_Arab 8 4.1 14.1 zul_Latn 36.3 10.1 21.7

Table 24: Perplexity of all languages covered by Glot500-m (Part II).
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Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m Language-Script XLM-R-B XLM-R-L Glot500-m

bts_Latn 205.7 204.5 8.8 tsn_Latn 264.7 137.8 12.5 orm_Latn 23.4 8.6 16
gla_Latn 11.5 12.7 7.2 pon_Latn 928.4 181.9 19.2 luo_Latn 699.4 258.5 85.1
kat_Latn 36.4 24.8 18.3 nmf_Latn 297.6 310.6 44.9 pcm_Latn 38.3 169.6 3.6
uig_Latn 188.8 173.9 15.2 ajg_Latn 147.1 149.5 22.6 nnb_Latn 364.1 95 28.6
kat_Geor 6 3.9 6.4 tir_Ethi 28.3 15.7 4.4 kaz_Cyrl 4.3 5.4 9.6
mlg_Latn 10.9 4.4 7.6 bhw_Latn 411.2 126.2 21.6 dzo_Tibt 8.5 3.3 5.7
arn_Latn 382.7 96.7 17.6 mhr_Cyrl 122.9 168.4 5.8 sun_Latn 23.6 11.9 17
tuk_Latn 456.7 197.8 5.8 swe_Latn 4.8 3.5 12.7 vec_Latn 40.6 21.1 9.2
vls_Latn 97.7 39.6 9.7 scn_Latn 117 64.9 7.8 ayr_Latn 261.1 237.6 27.7

hyw_Armn 15.8 9.1 4.3 udm_Cyrl 356.7 224.9 6.7 oke_Latn 209.2 220.1 13.0
que_Latn 447.9 536.1 11.9 ifb_Latn 246.3 177.9 5.1 kur_Latn 14.2 6.8 10.3
snd_Arab 13.2 4.1 19.5 naq_Latn 136.8 60.2 15.7 mgh_Latn 680 272.8 23.7
giz_Latn 81.9 82.9 37.7 zlm_Latn 5.6 3.3 4.6 tgk_Cyrl 181.3 153 4.5
ita_Latn 4.5 3.3 7.2 hrx_Latn 478.1 679.1 14.9 sop_Latn 607.5 228.2 29.5
qub_Latn 283.2 312.7 9.4 lzh_Hani 70 58 21.8 mos_Latn 272.6 118.3 13.2
nav_Latn 228.5 126.5 5.2 pap_Latn 674.4 149.3 18.1 rap_Latn 36.1 31.1 2.8
kqn_Latn 825.9 686.6 17.5 cfm_Latn 235.1 155 14.0 prk_Latn 69.4 45.9 7.1
toh_Latn 758.3 216.6 19.6 chv_Cyrl 122.5 73.8 5.4 uzb_Cyrl 236.2 138.4 4.9
mah_Latn 314.7 81.8 17.3 tdt_Latn 641.9 78.6 9.7 tog_Latn 821.1 777.7 13.4
wes_Latn 144.6 103.9 14.3 pan_Guru 4.4 2.5 4.3 mal_Mlym 5 3.7 6.2
nob_Latn 6.8 4.0 9.5 pms_Latn 83.6 46.2 3.6 nyk_Latn 1182.6 914.2 16.5
ext_Latn 68.3 38.2 8.1 roh_Latn 243.5 170 7.0 quy_Latn 949.7 320.2 14.5
lam_Latn 233.7 160.8 21.6 prs_Arab 6.8 3.5 4.8 abn_Latn 245.2 272.5 8.7

mwm_Latn 44.8 53.1 7.1 tuk_Cyrl 277.4 86.3 6.7 mcn_Latn 120.7 129.7 43.6
kpg_Latn 165.9 122.6 15.1 srm_Latn 257.5 74.5 12.3 nep_Deva 8.8 6.3 10
hau_Arab 5.3 3.0 8.1 gsw_Latn 288.2 181.2 22.3 gle_Latn 10.5 3.7 9.8
ksd_Latn 150 154.9 7.7 fat_Latn 192.3 149 17.6 cab_Latn 1216.7 155.6 15.4
zsm_Latn 12.2 2.9 22.7 ldi_Latn 394.8 107.1 38.2 mps_Latn 75.2 55.2 17.4
hui_Latn 209.9 177 10.0 kos_Latn 470.7 485.7 27.0 pnb_Arab 51.8 30.8 7.1
cym_Latn 8.2 4.8 11.2 acr_Latn 155.7 90.7 5.8 swa_Latn 11.4 6.4 20
srp_Latn 10.9 7.9 13.3 mri_Latn 63 59.5 8.7 hnj_Latn 88.3 92.5 11.3
bak_Latn 347.1 211 7.5 frr_Latn 117.6 101 9.5 haw_Latn 63.5 66.7 7.4
zho_Hani 20.7 5.9 31.3 mck_Latn 369.3 164.8 24.7 tpi_Latn 891.8 67.8 8.8
nno_Latn 9.9 12.7 10.4 pes_Arab 5.5 3.1 5.3 ncj_Latn 1019 136.2 13.7
gya_Latn 31 24.3 16.5 san_Latn 94.4 96.8 12.0 som_Latn 14.1 6.9 22.2
ibo_Latn 77.1 90.1 8.5 yao_Latn 738.9 162.4 13.8 mam_Latn 132.7 62.4 6.1
meu_Latn 380.2 158.5 26.7 srp_Cyrl 7.4 4.5 8.4 lit_Latn 4.4 2.5 10.6
ncx_Latn 1084.7 948.5 14.6 ful_Latn 104 105.6 13.1

Table 25: Perplexity of all languages covered by Glot500-m (Part III).
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Abstract

Large language models (LLMs) have advanced the state of the art in natural
language processing. However, their predominant design for English or
a limited set of languages creates a substantial gap in their effectiveness
for low-resource languages. To bridge this gap, we introduce MaLA-500,
a novel large language model designed to cover an extensive range of
534 languages. To train MaLA-500, we employ vocabulary extension and
continued pretraining on LLaMA 2 with Glot500-c. Our intrinsic evalua-
tion demonstrates that MaLA-500 is better at predicting the given texts of
low-resource languages than existing multilingual LLMs. Moreover, the
extrinsic evaluation of in-context learning shows that MaLA-500 outper-
forms previous LLMs on SIB200 and Taxi1500 by a significant margin, i.e.,
11.68% and 4.82% marco-average accuracy across languages. We release
MaLA-500 at https://huggingface.co/MaLA-LM.

1 Introduction

Large Language Models (LLMs), e.g., LLaMA (Touvron et al., 2023a;b), Mistral (Jiang
et al., 2023; 2024), and ChatGPT,1 have shown remarkable performance in natural language
understanding and generation. Follow-up studies (Bang et al., 2023; Lai et al., 2023; Ahuja
et al., 2023a;b) observe that these English-centric LLMs, such as LLaMA with mainly English
as the training data, are capable of handling some high-resource non-English languages,
benefiting from the inclusion of non-English language data during pretraining. However,
their applicability to low-resource languages is still limited due to data scarcity.

Previous studies have released pretrained multilingual models with mostly encoder-only
transformer architectures, e.g., multilingual BERT (Devlin et al., 2019) and XLM-R (Conneau
et al., 2020), for around 100 languages. The paradigm shift from encoder-only to decoder-
only achieves scalability for large language models with billions of model parameters,
leading to the development of open multilingual models. Recently, several generative
multilingual LLMs, such as XGLM (Lin et al., 2021), mGPT (Shliazhko et al., 2022), and
BLOOM (Scao et al., 2022), have emerged. Notably, the current language coverage for these
generative LLMs is limited to up to 60 languages, highlighting the remaining need for
further work on massively multilingual LLMs for many natural languages.

ImaniGooghari et al. (2023) have achieved a significant milestone in the realm of massive
language adaptation by extending the language coverage of a small-scale multilingual
language model, XLM-R (Conneau et al., 2020) - an auto-encoding model with 278M param-
eters, from 100 languages to an impressive number of 534 languages, and introducing an
extended model, Glot500-m with 395M parameters. ImaniGooghari et al. (2023) introduce
the Glot500-c corpora spanning 534 languages from 47 language families, and then apply

*Equal contribution.
1https://openai.com/blog/chatgpt
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vocabulary extension and continued pretraining to create Glot500-m. The introduction of
Glot500-c mitigates the challenge of data scarcity for low-resource languages. Moreover,
the adaptation method is more favorable than training from scratch, as it requires fewer
computational resources and emits a smaller carbon footprint. This success serves as a
strong motivation for our exploration into the massive language adaptation of LLMs.

This work aims to extend the capabilities of LLMs to encompass a wider range of languages.
Existing works like ImaniGooghari et al. (2023) on language adaptation of pretrained models
provide extended coverage across a wide linguistic spectrum but are limited to relatively
small model sizes - mostly at the hundred million scales, while other works like Yong et al.
(2022) extended generative LLMs but are limited to a small number of languages. Our
study pushes the boundaries by exploring language adaptation techniques for LLMs with
model parameters scaling up to 10 billion for 534 languages. Our investigation delves
into generative LLMs with a substantial increase in model parameters and their in-context
learning capabilities in diverse languages, especially low-resource languages. This augmen-
tation enables us to enhance contextual and linguistic relevance across a diverse range of
languages.

We address the challenges of adapting LLMs to low-resource languages, such as data sparsity,
domain-specific vocabulary, and linguistic diversity. Specifically, we study continued
pretraining of open LLM, i.e., LLaMA 2 (Touvron et al., 2023b), vocabulary extension, and
adaptation techniques, i.e., LoRA low-rank reparameterization (Hu et al., 2022). We deploy
distributed training and release MaLA-500 that covers more than 500 languages in various
domains. We evaluate MaLA-500 using intrinsic measures on held-out Glot500-c test set
and parallel data and extrinsic metrics on downstream benchmarks: SIB200 and Taxi1500.
The results show that MaLA-500 outperforms existing open LLMs of close or slightly larger
model size. This work broadens the accessibility of LLMs, making them valuable for a more
diverse set of language-specific use cases, especially for low-resource ones, and addressing
the equality issue by removing language barriers for speakers of many languages, especially
those underrepresented languages covered by existing LLMs.

2 Massive Language Adaptation

The principle of massive language adaptation of large language models accommodates the
utilization of a massively multilingual corpus (Section 2.1), the strong base LLM (Section 2.2),
and the technique for effective language adaptation: vocabulary extension (Section 2.3) and
continued pretraining (Section 2.4).

2.1 Data

We use Glot500-c (ImaniGooghari et al., 2023) covering 534 languages2 as the training data of
MaLA-500. See §A for the list of languages with their data amounts. The original number of
sentences ranges from 10 thousand to 63 million. Note that Glot500-c does not put full effort
into collecting data for high-resource languages but focuses on low-resource languages. We
sample languages from the imbalanced dataset according to a multinomial distribution,
with α = 0.3 for vocabulary extension and continued pretraining. We use different scales for
sampling data to be used in model training and vocabulary construction. After sampling,
the number of sentences for training ranges from 600 thousand to 8 million per language,
leading to 1 billion sentences in total. The number of sentences for vocabulary construction
ranges from 30 thousand to 400 thousand, making a total of 50 million sentences.

2.2 Model

We choose LLaMA 2 (Touvron et al., 2023b) to start continual training. LLaMA series
models (Touvron et al., 2023a), with model weights released publicly, have gained popularity
in the research community. Despite being English-centric compared to their multilingual

2We define languages using the ISO 639-3 code combined with the corresponding written script.
For example, “eng Latn” represents English written in the Latin script.
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counterparts, they have shown remarkable capacity for multiple languages (Ahuja et al.,
2023b). We choose the latest LLaMA 2, trained on 2 trillion tokens, as our base model to
benefit from its outstanding language capacity. Our study chooses the 7B model with 32
transformer layers, and leaves the extension of LLMs with larger sizes as a future work.

2.3 Vocabulary Extension

The original LLaMA 2’s 32,000 tokenizer covers English and a small fraction of other Eu-
ropean languages using Latin or Cyrillic scripts. To enhance its capability and encoding
efficiency for a broader range of languages, we extend the vocabulary with Glot500-c. Specif-
ically, we initially train a multilingual tokenizer with SentencePiece (Kudo & Richardson,
2018) on the sampled Glot500-c with a vocabulary of 250,000. Subsequently, we merge
the trained tokenizer with the original LLaMA 2 tokenizer by taking the union of their
vocabularies. As a result, we obtain the MaLA-500’s tokenizer with a vocabulary size of
260,164. After vocabulary extension and resizing the embedding layer, the model size
becomes 8.6B.

We measure the impact of vocabulary extension on the development set of Glot500-c by
analyzing the reduction in segmentation length for each language. The results indicate that
the effect of vocabulary extension varies, ranging from 8% (English, eng Latn) to 88% (Oriya,
ori Orya). Unsurprisingly, vocabulary extension has a larger effect on languages written
in non-Latin scripts than on those in the Latin script. However, for some low-resource
languages written in the Latin script, e.g., Kabiyè (kbp Latn) and Vietnamese (vie Latn),
the segmentation length is shortened by around 50%.

2.4 Continued Pretraining

We employ continued pretraining for language adaptation with low-rank adaptation (LoRA,
Hu et al., 2022) to enable parameter-efficient training, given the limitation of our computing
resources. LoRA injects trainable rank decomposition matrices, which approximate the
large weight matrices with a lower rank, to the pretrained model weights. It reduces the
computational complexity and thus saves the training cost while retaining high model
quality (Hu et al., 2022). We continually train the casual language model to update the rank-
decomposition matrices, embedding layer, and language modeling head while freezing the
transformer weights of pretrained models, allowing the continually trained language model
to learn from new data in new languages without completely losing its previous language
capacity. Continual training of large language models requires substantial computational
resources. We adopt efficient distributed training setups on supercomputers to make the
training process feasible.

2.5 Training

Hardware and Software We train our model on the computing cluster with the theoretical
peak performance of 2 petaflops on GPU nodes. We deploy distributed training on 24 Nvidia
Ampere A100 GPUs. As for software, we utilize the Huggingface Transformers (Wolf et al.,
2020), PEFT (Parameter-Efficient Fine-Tuning),3 and DeepSpeed (Rasley et al., 2020). We
use the ZeRO redundancy optimizer (Rajbhandari et al., 2020) and maximize the batch size
that fits the memory of each GPU. We employ mixed-precision training using the bfloat16
format.

Hyperparameters The learning rate is set at 3e-4. A weight decay of 0.01 is applied to
penalize large weights and mitigate overfitting. The trainable LoRA module targets the
query and value matrices. The language model head is not decomposed by a LoRA module
but is trained in a full-parameter manner. In our setting, the final model has 10B parameters
in total, in which 2B parameters are trainable. The LoRA module is incorporated with a rank
of 8, an alpha value of 32, and a dropout rate of 0.05, contributing to the model’s adaptability
and regularization during training. The context window is 4k. We maximize the batch size

3https://huggingface.co/docs/peft/index
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to fit the memory, making a global batch size of 384. The model undergoes three training
epochs. Checkpoints are saved every 500 steps, and we employ early stopping to select the
checkpoint that exhibits the most favorable average performance on downstream tasks.

Environmental Impacts We train our model on a carbon-neutral data center, with all
electricity generated with renewable hydropower, and the waste heat is utilized in district
heating to further reduce CO2 footprint.4

3 Evaluation

3.1 Benchmarks and Setup

We consider both intrinsic and extrinsic measures for evaluation. Evaluation dataset statistics
are shown in Table 1.

Datasets Metric ∥Data∥ ∥Lang∥ Domain

Intrinsic Glot500-c test (ImaniGooghari et al., 2023) NLL 1000 534 Misc
PBC (Mayer & Cysouw, 2014) NLL 500 370 Bible

Extrinsic SIB200 (Adelani et al., 2023) ACC 204 177 Misc
Taxi1500 (Ma et al., 2023) ACC 111 351 Bible

Table 1: Evaluation dataset statistics. ∥Data∥: test set size per language. ∥Lang∥: number of
evaluated languages. NLL: negative log-likelihood. ACC: Accuracy.

For intrinsic evaluation, perplexity is not comparable across models and languages due
to different text segmentations. Inspired by Xue et al. (2022); Yu et al. (2023), we instead
measure the negative log-likelihood (NLL) of the text using the given LLMs.

We concatenate the dataset as the input text and adopt the sliding-window strategy.5
The evaluation of different LLMs uses the same data with the concatenation of sentences
per language, thus making NLL model-comparable. In addition, we consider language-
comparable NLL by measuring NLL on parallel data, in which every sample in different
languages contains the same semantic information. We report the model-comparable NLL
of Glot500-c test set covering all 534 considered languages (§3.2), and language-comparable
NLL on Parallel Bible Corpus (PBC, Mayer & Cysouw, 2014), covering 370 languages (§3.3).

For extrinsic evaluation, we evaluate the few-shot learning capability of MaLA-500 and
compare it with other LLMs on SIB200 (Adelani et al., 2023) and Taxi1500 (Ma et al., 2023).

SIB200 is a topic classification dataset. The classification task involves seven classes, namely
science/technology, travel, politics, sports, health, entertainment, and geography. Our
evaluation spans a diverse set of 177 languages, obtained by intersecting the language sets
of SIB200 and Glot500-c. Note that the flores200-based SIB200 evaluation set is included
in the training data since Glot500-c includes flores200, but the classification labels are not
provided.

Taxi1500 is another text classification dataset spanning 351 languages. It involves six classes,
namely, Recommendation, Faith, Description, Sin, Grace, and Violence. Our evaluation
efforts aim to cover as many languages as possible. However, the evaluation of massively
multilingual language models is a challenging task. Due to the lack of real-world multilin-
gual evaluation benchmarks, we use this benchmark that contains religious content.

For in-context learning evaluation, the evaluated LLM receives a structured prompt, which
is the concatenation of few-shot examples and the sample intended for prediction. The
format for both a few-shot example and the sample to predict is defined as follows:

Template for SIB200:

4https://www.csc.fi/sustainable-development
5https://huggingface.co/docs/transformers/en/perplexity
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The topic of the news [sent] is [label]

Template for Taxi1500:

The topic of the verse [sent] is [label]

where [sent] is the sentence for classification, and [label] is the ground truth. [label] is
included when the sample serves as a few-shot example but is omitted when predicting
the sample. The constructed prompt is then used as input to the LLM. Subsequently, the
evaluated LLM is prompted to estimate the probability of the label over the label set based
on the provided prompt.

For SIB200, few-shots examples are randomly sampled from the in-language training sets.
Since randomly selecting few-shot examples for in-context learning yields random results
for both MaLA-500 and previous LLMs on Taxi1500, we consider the retriever-based in-
context learning (Liu et al., 2022). Specifically, we use average word embeddings in layer
8 of the Glot500 (ImaniGooghari et al., 2023) for retrieving semantic-similar samples as
suggested in previous work (Sabet et al., 2020) for all the compared models. The evaluation
process is implemented using the lm-evaluation-harness,6 and we use accuracy (ACC) to
measure the performance of classification.

3.2 Comparison across LLMs

We compare MaLA-500 with LLaMA 2-7B, mGPT-13B, BLOOM-7B1, and XGLM-7.5B on
Glot500-c test set, SIB200, Taxi1500 by computing the averaged performance across lan-
guages, and the result are given in Table 2. Among the evaluated LLMs, LLaMA 2-7B
performs second-best, indicating that LLaMA 2-7B has a strong multilingual capacity and
that it is reasonable to select it as the base model. MaLA-500 outperforms all compared
LLMs with a close or slightly larger model size across all the evaluated tasks. Notably,
compared to LLaMA 2-7B, MaLA-500 gains a lower NLL on the Glot500-c test set by 39.33,
and has 14.94% and 4.82% improvements on SIB200 and Taxi1500, respectively. It highlights
MaLA-500’s substantial contribution to enhancing the multilingual capacity of LLMs.

Model Glot500-c test (NLL ↓) SIB200 (ACC ↑) Taxi1500 (ACC ↑)

LLaMA 2-7B 190.58 42.08 44.07
mGPT-13B 282.46 45.34 40.98

BLOOM-7B1 202.95 44.63 43.98
XGLM-7.5B 205.07 34.36 43.24

MaLA-500 151.25 57.02 48.89

Table 2: Averaged results across languages on Glot500-c test (measured by NLL), SIB200,
and Taxi1500 (measured by accuracy (%)) of different LLMs. mGPT has no model with
around 7B parameters, so we choose a larger one with 13B parameters. ↓ indicates the lower,
the better. ↑ indicates the higher, the better. The best results are bold.

Figures 1 to 3 provide detailed performance analysis across languages on Glot500-c test,
SIB200, and Taxi1500. In those figures, we group scores into different performance bins and
display them in different colors. For Glot500-c test, MaLA-500 has more languages achieving
better NLL, i.e., 61 languages with NLL less than 100 and 171 languages with NLL between
100 and 150. Besides, MaLA-500 has 54 (10%) languages achieving NLL larger than 200,
which may indicate the languages are not well covered by the measured LLM. Nevertheless,
the number is much less than other LLMs. For example, the second-best LLM, LLaMA 2-7B,
has 231 (43%) languages achieving NLL larger than 200. For both SIB200 and Taxi1500,
MaLA-500 surpasses previous LLMs in the sense that it obtains random results in fewer
languages and achieves impressive performance in more languages than its counterparts.

6https://github.com/EleutherAI/lm-evaluation-harness
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Figure 1: NLL (lower is better) on Glot500-c test with the scores grouped into four bins
displayed in different colors. X-axis: the number of languages in performance ranges.
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Figure 2: Accuracy (higher is better) on SIB200 with the scores grouped into four bins
displayed in different colors. X-axis: the number of languages in performance ranges (%).

3.3 Comparison across Languages

To check in detail how MaLA-500 performs across languages, we check the performance
across language families7 shown in Table 3. We observe that more high-resource language
families, e.g., Indo-European (indo1319) and Dravidian (drav1251), achieve slightly better
performance than low-resource language families, e.g., Sino-Tibetan (sino1245).

In Table 4, we present a comprehensive analysis of the top 5 performance improvements
and declines across languages on SIB200 from MaLA-500 compared to LLaMA 2-7B. We
observe that MaLA-500 has substantial improvements on low-resource scripts, e.g., Kan-
nada (kan Knda), while has worse performance on high-resource languages, e.g., Swedish
(swe Latn), which have been well covered by LLaMA 2-7B.

In our comprehensive analysis of contributing factors on SIB200, we note that the corpus size
of a language exhibits a weak correlation of 0.13 with its performance gain. In contrast, the
corpus size of the language family to which a language belongs demonstrates a moderate
correlation of 0.40. A moderately high Pearson correlation of 0.53 is observed between the
effect of vocabulary extension, i.e., the reduction in segmentation length, and the perfor-
mance gain. This observation holds true for languages with both non-Latin scripts, such
as Kannada (kan Knda), Malayalam (mal Mlym), and Tigrinya (tir Ethi), as well as Latin
scripts, such as Igbo (ibo Latn) and Yoruba (yor Latn). It demonstrates the effectiveness of
vocabulary extension.

7We assign languages to families based on Glottolog: https://glottolog.org/glottolog/
family.
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Figure 3: Accuracy (higher is better) on Taxi1500 with the scores grouped into four bins
displayed in different colors. X-axis: the number of languages in performance ranges (%).

family ∥Sent∥ PBC (NLL ↓) SIB200 (ACC ↑) Taxi1500 (ACC ↑)

indo1319 988M 145.35 63.53 53.03
drav1251 135M 131.29 56.25 54.65
aust1307 113M 147.37 62.83 49.69
turk1311 109M 161.71 57.08 52.55
afro1255 100M 165.46 52.00 43.74
atla1278 57M 141.92 42.90 45.52
ural1272 50M 137.52 66.67 48.58
sino1245 29M 155.64 49.30 49.31

other 60M 167.69 55.74 46.67

Table 3: Performance comparison across language families on PBC, SIB200, and Taxi1500.
∥Sent∥: sentence number used for continued pretraining in total. ↓ indicates the lower, the
better. ↑ indicates the higher, the better.

3.4 Effect of Number of Shots

Figure 4 illustrates the relationship between accuracy and the number of in-context examples
(i.e., shots) on SIB200. As the number of in-context shots increases, there is a corresponding
rise in accuracy. Notably, with just 1-shot, accuracy exhibits randomness at 30.88%, indi-
cating 1-shot provides limited information for task learning. The transition from 1 shot to
2 shots/3 shots results in a notable improvement, with performances boosted by 19.83%
and 26.14%, respectively. This highlights the effectiveness of increasing the number of
shots. MaLA-500 achieves its peak performance at approximately 65% accuracy with 6-10
in-context shots. This may be attributed to the multi-class nature of the SIB200 dataset,
necessitating more shots for learning intricate input-label mappings.

In Figure 5, a more nuanced portrayal of results aligns with the observations made in
Figure 4. In the realm of 1-shot in-context learning, approximately 50 languages exhibit
erratic results. As the number of shots increases, there is a reduction in the number of
languages achieving low accuracy (25-50%), coupled with a growing cohort achieving high
accuracy (75-100%).

Further examination into individual language trends reveals that some low-resource lan-
guages require more shots to achieve better performance (e.g., pes Arab for Persian) or
even exhibit poor performance with 10 shots (e.g., dzo Tibt for Dzongkha and ayr Latn
for Central Aymara). In contrast, high-resource languages, such as fra Latn for French,
demonstrate impressive performance even with fewer shots, and increasing the number of
shots results in only marginal improvement.
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high end low end

Language LLaMA 2-7B MaLA-500 ∆ Language LLaMA 2-7B MaLA-500 ∆

kan Knda 17.16 57.35 40.19 swe Latn 71.08 60.29 -10.79
ckb Arab 19.61 60.29 40.68 rus Cyrl 71.57 65.20 -06.37
asm Beng 17.16 58.82 41.66 dan Latn 69.12 63.24 -05.88
pan Guru 14.22 58.82 44.60 pol Latn 74.51 68.63 -05.88
sin Sinh 15.20 60.29 45.09 ukr Cyrl 71.57 65.69 -05.88

Table 4: Results for five languages each with the largest (high end) and smallest (low end)
gains from MaLA-500 vs. LLaMA 2-7B for SIB200. ∆ indicates the difference between the
scores of MaLA-500 and LLaMA 2-7B. See §B for detailed results for each task.
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Figure 4: In-context learning macro-average accuracy (%) on SIB200 with different number
of shots using MaLA-500.

4 Related Work

4.1 Multilingual Language Models

Language model development has endeavored to broaden the scope of pretraining lan-
guages to address multilingual scenarios. Pretrained multilingual models have been able
to accommodate up to a hundred or more languages. Noteworthy examples include
mBERT Devlin et al. (2019), which supports 104 languages, XLM-R (Conneau et al., 2020)
covering 100 languages, mBART (Liu et al., 2020) designed for 25 languages, mT5 (Xue et al.,
2021) spanning 101 languages, XGLM (Lin et al., 2021) across 30 languages, GPT-3 covering
118 languages (93% English), mGPT (Shliazhko et al., 2022) accommodating 60 languages,
and BLOOM (Scao et al., 2022) supporting 46 languages and 13 programming languages.

Surprisingly, two recent multilingual language models have surpassed the conventional
limit by supporting more than 400 languages. Glot500-m (ImaniGooghari et al., 2023) spans
511 languages through vocabulary extension and continued training based on XLM-R.
SERENGETI (Adebara et al., 2022) goes even further by supporting 517 African languages
and language varieties, written in five different scripts, employing models inspired by both
ELECTRA (Clark et al., 2020) and XLM-R. MADLAD (Kudugunta et al., 2023) covers 419
languages and trains an 8B language model from scratch with an adapted UL2 objective (Tay
et al., 2022). Our work is concurrent with the MADLAD-400 language model. We distin-
guish it by: 1) language coverage. Our work covered more than 500 languages, a number
comparable to that of encoder-only models and surpassing MADLAD-400 by an additional
100 languages. 2) training methods. We consider continual training to benefit from the
learned knowledge of the original models. 3) model architecture. We adopt an open model
architecture, i.e., LLaMA, while MADLAD uses decoder-only T5 architecture, which has
not been supported by the HuggingFace ecosystem at the time of writing, thus leading to
additional difficulty in usage.
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Figure 5: Detailed results of in-context learning on SIB200 using MaLA-500. X-axis: the
number of languages in different accuracy ranges (%). Y-axis: number of shots.

4.2 Language Adaptation

Before the advent of LLMs, diverse approaches are employed to adapt small-scale multilin-
gual language models to new languages. These methods include using adapters (Pfeiffer
et al., 2020; Üstün et al., 2020; Pfeiffer et al., 2020; Nguyen et al., 2021; Faisal & Anastasopou-
los, 2022; Yong et al., 2022), vocabulary extension and substitution (Chau et al., 2020; Wang
et al., 2020; Müller et al., 2020; 2021; Pfeiffer et al., 2021; Chen et al., 2023; Downey et al.,
2023), leveraging monolingual corpora (Ebrahimi & Kann, 2021; Alabi et al., 2022), and
utilizing bilingual lexicons (Wang et al., 2022).

While language models have been scaled up notably, their coverage is limited to a specific set
of languages. To address this constraint, various methods have been proposed to expand the
applicability of these large language models across a broader range of languages, catering
to both general-purpose tasks and specific applications like machine translation. These
methods also involve vocabulary extension (Cui et al., 2023), continued pretraining and
instruction-tuning (Yong et al., 2022; Cui et al., 2023; Chen et al., 2024; Zhao et al., 2024), and
parallel corpora exploitation (Cahyawijaya et al., 2023; Yang et al., 2023; Zhu et al., 2023; Xu
et al., 2023). Despite these efforts, massive language adaptation of LLMs for general-purpose
tasks across diverse languages, e.g., covering many languages families and more than one
hundred languages, remains an area yet to be thoroughly explored.

5 Conclusion and Future Work

We present a pioneering effort in massive language adaptation on LLMs, focusing on
extending LLaMA 7B to our model, MaLA-500. This adaptation involves vocabulary
extension and continued pretraining with LoRA. Our approach leads to MaLA-500 achieving
state-of-the-art in-context learning capabilities, as demonstrated on the benchmarks of
SIB200 and Taxi1500. We release the training scripts and model weights publicly to facilitate
future research. This work marks a substantial advancement in applying LLMs to a diverse
range of languages.

Our future work will focus on further improving the model capacity, for example, on
machine translation across many language pairs. Alves et al. (2023) showed that LLMs
(LLaMA-7B and LLaMA-13B) exhibited poor performance even on English-centric high-
resource language pairs in some cases. Translation with LLMs on low-resource languages is
more challenging. The LLaMA-7B model performed poorly in our preliminary experiments.
Besides, our pretraining corpus does not intentionally include bilingual texts, and our
MaLA-500 model is not instruction-tuned with translation data. We leave the inclusion of
bilingual text during continual pretraining, instruction fine-tuning with translation data,
and the evaluation on machine translation as future works.
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Ethical Statement

LLMs have been known to exhibit biases present in their training data. When extending
LLMs to low-resource languages, there is a risk of propagating biases from high-resource
languages to underrepresented ones. Careful attention must be paid to mitigate bias and
ensure fairness in data collection and model training. The paper aims to make LLMs more
accessible for underrepresented languages. Still, there is a risk of creating a digital language
divide if certain communities are left out due to limited technological access. Future work
would address biases by conducting bias audits on the training data, debiasing the models
during generation, and continuously monitoring model outputs.

Reproducibility Statement

We make the following efforts to ensure reproducible research. We release the model
weights (https://huggingface.co/MaLA-LM) and codes for training and evaluation (https:
//github.com/MaLA-LM/mala-500). We use publicly available evaluation benchmarks
which can be obtained freely or by request. The results are reproducible with our released
model weights and evaluation scripts,
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A Languages
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7.
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Lang ∥Sent∥ Family Lang ∥Sent∥ Family Lang ∥Sent∥ Family

hbs Latn 63411156 indo1319 hin Deva 7046700 indo1319 ton Latn 1216118 aust1307
mal Mlym 48098273 drav1251 kor Hang 6468444 kore1284 tah Latn 1190747 aust1307
aze Latn 46300705 ory Orya 6266475 indo1319 lat Latn 1179913 indo1319
guj Gujr 45738685 indo1319 urd Arab 6009594 indo1319 srn Latn 1172349 indo1319
ben Beng 43514870 indo1319 swa Latn 5989369 ewe Latn 1161605 atla1278
kan Knda 41836495 drav1251 sqi Latn 5526836 indo1319 bem Latn 1111969 atla1278

tel Telu 41580525 drav1251 bel Cyrl 5319675 indo1319 efi Latn 1082621 atla1278
mlt Latn 40654838 afro1255 afr Latn 5157787 indo1319 bis Latn 1070170 indo1319
fra Latn 39197581 indo1319 nno Latn 4899103 indo1319 orm Latn 1067699
spa Latn 37286756 indo1319 tat Cyrl 4708088 turk1311 haw Latn 1062491 aust1307
eng Latn 36122761 indo1319 ast Latn 4683554 indo1319 hmo Latn 1033636 pidg1258
fil Latn 33493255 aust1307 mon Cyrl 4616960 mong1349 kat Geor 1004297 kart1248

nob Latn 32869205 indo1319 hbs Cyrl 4598073 indo1319 pag Latn 983637 aust1307
rus Cyrl 31787973 indo1319 hau Latn 4368483 afro1255 loz Latn 964418 atla1278
deu Latn 31015993 indo1319 sna Latn 4019596 atla1278 fry Latn 957422 indo1319
tur Latn 29184662 turk1311 msa Latn 3929084 mya Mymr 945180 sino1245

pan Guru 29052537 indo1319 som Latn 3916769 afro1255 nds Latn 944715 indo1319
mar Deva 28748897 indo1319 srp Cyrl 3864091 indo1319 run Latn 943828 atla1278
por Latn 27824391 indo1319 mlg Latn 3715802 pnb Arab 899895 indo1319
nld Latn 25061426 indo1319 zul Latn 3580113 atla1278 rar Latn 894515 aust1307
ara Arab 24524122 arz Arab 3488224 afro1255 fij Latn 887134 aust1307
zho Hani 24143786 nya Latn 3409030 atla1278 wls Latn 882167 aust1307
ita Latn 23539857 indo1319 tam Taml 3388255 drav1251 ckb Arab 874441 indo1319
ind Latn 23018106 aust1307 hat Latn 3226932 indo1319 ven Latn 860249 atla1278
ell Grek 22033282 indo1319 uzb Latn 3223485 turk1311 zsm Latn 859947 aust1307
bul Cyrl 21823004 indo1319 sot Latn 3205510 atla1278 chv Cyrl 859863 turk1311
swe Latn 20725883 indo1319 uzb Cyrl 3029947 turk1311 lua Latn 854359 atla1278
ces Latn 20376340 indo1319 cos Latn 3015055 indo1319 que Latn 838486
isl Latn 19547941 indo1319 als Latn 2954874 indo1319 sag Latn 771048 atla1278
pol Latn 19339945 indo1319 amh Ethi 2862985 afro1255 guw Latn 767918 atla1278
ron Latn 19190217 indo1319 sun Latn 2586011 aust1307 bre Latn 748954 indo1319
dan Latn 19174573 indo1319 war Latn 2584810 aust1307 toi Latn 745385 atla1278
hun Latn 18800025 ural1272 div Thaa 2418687 indo1319 pus Arab 731992 indo1319
tgk Cyrl 18659517 indo1319 yor Latn 2392359 atla1278 che Cyrl 728201 nakh1245
srp Latn 18371769 indo1319 fao Latn 2365271 indo1319 pis Latn 714783 indo1319
fas Arab 18277593 uzn Cyrl 2293672 turk1311 kon Latn 685194
ceb Latn 18149215 aust1307 smo Latn 2290439 aust1307 oss Cyrl 683517 indo1319
heb Hebr 18128962 afro1255 bak Cyrl 2264196 turk1311 hyw Armn 679819 indo1319
hrv Latn 17882932 indo1319 ilo Latn 2106531 aust1307 iso Latn 658789 atla1278
glg Latn 17852274 indo1319 tso Latn 2100708 atla1278 nan Latn 656389 sino1245
fin Latn 16730388 ural1272 mri Latn 2046850 aust1307 lub Latn 654390 atla1278
slv Latn 15719210 indo1319 hmn Latn 1903898 lim Latn 652078 indo1319
vie Latn 15697827 aust1305 asm Beng 1882353 indo1319 tuk Latn 649411 turk1311

mkd Cyrl 14717004 indo1319 hil Latn 1798875 aust1307 tir Ethi 649117 afro1255
slk Latn 14633631 indo1319 nso Latn 1619354 atla1278 tgk Latn 636541 indo1319
nor Latn 14576191 indo1319 ibo Latn 1543820 atla1278 yua Latn 610052 maya1287
est Latn 13600579 kin Latn 1521612 atla1278 min Latn 609065 aust1307
ltz Latn 12997242 indo1319 hye Armn 1463123 indo1319 lue Latn 599429 atla1278
eus Latn 12775959 oci Latn 1449128 indo1319 khm Khmr 590429 aust1305
lit Latn 12479626 indo1319 lin Latn 1408460 atla1278 tum Latn 589857 atla1278

kaz Cyrl 12378727 turk1311 tpi Latn 1401844 indo1319 tll Latn 586530 atla1278
lav Latn 12143980 indo1319 twi Latn 1400979 atla1278 ekk Latn 582595 ural1272
bos Latn 11014744 indo1319 kir Cyrl 1397566 turk1311 lug Latn 566948 atla1278
epo Latn 8737198 arti1236 pap Latn 1360138 indo1319 niu Latn 566715 aust1307
cat Latn 8648271 indo1319 nep Deva 1317291 indo1319 tzo Latn 540262 maya1287
tha Thai 7735209 taik1256 azj Latn 1315834 turk1311 mah Latn 534614 aust1307
ukr Cyrl 7462046 indo1319 bcl Latn 1284493 aust1307 tvl Latn 521556 aust1307
tgl Latn 7411064 aust1307 xho Latn 1262364 atla1278 jav Latn 516833 aust1307
sin Sinh 7293178 indo1319 cym Latn 1244783 indo1319 vec Latn 514240 indo1319
gle Latn 7225513 indo1319 gaa Latn 1222307 atla1278 jpn Jpan 510722 japo1237

Table 5: List of languages of Glot500-c (Part I).
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Lang ∥Sent∥ Family Lang ∥Sent∥ Family Lang ∥Sent∥ Family

lus Latn 509250 sino1245 kmb Latn 296269 atla1278 ncx Latn 162558 utoa1244
crs Latn 508755 indo1319 zai Latn 277632 otom1299 qug Latn 162500 quec1387
kqn Latn 507913 atla1278 gym Latn 274512 chib1249 rmn Latn 162069 indo1319
ndo Latn 496613 atla1278 bod Tibt 273489 sino1245 cjk Latn 160645 atla1278
snd Arab 488730 indo1319 nde Latn 269931 atla1278 arb Arab 159884 afro1255
yue Hani 484700 sino1245 fon Latn 268566 atla1278 kea Latn 158047 indo1319
tiv Latn 483064 atla1278 ber Latn 264426 mck Latn 157521 atla1278
kua Latn 473535 atla1278 nbl Latn 259158 atla1278 arn Latn 155882 arau1255
kwy Latn 473274 atla1278 kmr Latn 256677 indo1319 pdt Latn 155485 indo1319
hin Latn 466175 indo1319 guc Latn 249044 araw1281 her Latn 154827 atla1278
iku Cans 465011 mam Latn 248348 maya1287 gla Latn 152563 indo1319
kal Latn 462430 eski1264 nia Latn 247406 aust1307 kmr Cyrl 151728 indo1319
tdt Latn 459818 aust1307 nyn Latn 241992 atla1278 mwl Latn 150054 indo1319

gsw Latn 449240 indo1319 cab Latn 240101 araw1281 nav Latn 147702 atha1245
mfe Latn 447435 indo1319 top Latn 239232 toto1251 ksw Mymr 147674 sino1245
swc Latn 446378 atla1278 tog Latn 231969 atla1278 mxv Latn 147591 otom1299
mon Latn 437950 mong1349 mco Latn 231209 mixe1284 hif Latn 147261 indo1319
mos Latn 437666 atla1278 tzh Latn 230706 maya1287 wol Latn 146992 atla1278
kik Latn 437228 atla1278 pms Latn 227748 indo1319 sme Latn 146803 ural1272
cnh Latn 436667 sino1245 wuu Hani 224088 sino1245 gom Latn 143937 indo1319
gil Latn 434529 aust1307 plt Latn 220413 aust1307 bum Latn 141673 atla1278

pon Latn 434522 aust1307 yid Hebr 220214 indo1319 mgr Latn 138953 atla1278
umb Latn 431589 atla1278 ada Latn 219427 atla1278 ahk Latn 135068 sino1245
lvs Latn 422952 indo1319 iba Latn 213615 aust1307 kur Arab 134160 indo1319
sco Latn 411591 indo1319 kek Latn 209932 maya1287 bas Latn 133436 atla1278
ori Orya 410827 koo Latn 209375 atla1278 bin Latn 133256 atla1278
arg Latn 410683 indo1319 sop Latn 206501 atla1278 tsz Latn 133251 tara1323
kur Latn 407169 indo1319 kac Latn 205542 sino1245 sid Latn 130406 afro1255
dhv Latn 405711 aust1307 qvi Latn 205447 quec1387 diq Latn 128908 indo1319
luo Latn 398974 nilo1247 cak Latn 204472 maya1287 srd Latn 127064
lun Latn 395764 atla1278 kbp Latn 202877 atla1278 tcf Latn 126050 otom1299
nzi Latn 394247 atla1278 ctu Latn 201662 maya1287 bzj Latn 124958 indo1319
gug Latn 392227 tupi1275 kri Latn 201087 indo1319 udm Cyrl 121705 ural1272
bar Latn 387070 indo1319 mau Latn 199134 otom1299 cce Latn 120636 atla1278
bci Latn 384059 atla1278 scn Latn 199068 indo1319 meu Latn 120273 aust1307
chk Latn 380596 aust1307 tyv Cyrl 198649 turk1311 chw Latn 119751 atla1278
roh Latn 377067 indo1319 ina Latn 197315 arti1236 cbk Latn 118789 indo1319
aym Latn 373329 ayma1253 btx Latn 193701 aust1307 ibg Latn 118733 aust1307
yap Latn 358929 aust1307 nch Latn 193129 utoa1244 bhw Latn 117381 aust1307
ssw Latn 356561 atla1278 ncj Latn 192962 utoa1244 ngu Latn 116851 utoa1244
quz Latn 354781 quec1387 pau Latn 190529 aust1307 nyy Latn 115914 atla1278
sah Cyrl 352697 turk1311 toj Latn 189651 maya1287 szl Latn 112496 indo1319
tsn Latn 350954 atla1278 pcm Latn 187594 indo1319 ish Latn 111814 atla1278
lmo Latn 348135 indo1319 dyu Latn 186367 mand1469 naq Latn 109747 khoe1240
ido Latn 331239 arti1236 kss Latn 185868 atla1278 toh Latn 107583 atla1278
abk Cyrl 321578 abkh1242 afb Arab 183694 afro1255 ttj Latn 106925 atla1278
zne Latn 318871 atla1278 urh Latn 182214 atla1278 nse Latn 105189 atla1278
quy Latn 311040 quec1387 quc Latn 181559 maya1287 hsb Latn 104802 indo1319
kam Latn 310659 atla1278 new Deva 181427 sino1245 ami Latn 104559 aust1307
bbc Latn 310420 aust1307 yao Latn 179965 atla1278 alz Latn 104392 nilo1247
vol Latn 310399 arti1236 ngl Latn 178498 atla1278 apc Arab 102392 afro1255
wal Latn 309873 gong1255 nyu Latn 177483 atla1278 vls Latn 101900 indo1319
uig Arab 307302 turk1311 kab Latn 176015 afro1255 mhr Cyrl 100474 ural1272

vmw Latn 306899 atla1278 tuk Cyrl 175769 turk1311 djk Latn 99234 indo1319
kwn Latn 305362 atla1278 xmf Geor 174994 kart1248 wes Latn 98492 indo1319
pam Latn 303737 aust1307 ndc Latn 174305 atla1278 gkn Latn 97041 atla1278
seh Latn 300243 atla1278 san Deva 165616 indo1319 grc Grek 96986 indo1319
tsc Latn 298442 atla1278 nba Latn 163485 atla1278 hbo Hebr 96484 afro1255

nyk Latn 297976 atla1278 bpy Beng 162838 indo1319 swh Latn 95776 atla1278

Table 6: List of languages of Glot500-c (Part II).
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Lang ∥Sent∥ Family Lang ∥Sent∥ Family Lang ∥Sent∥ Family

alt Cyrl 95148 turk1311 mny Latn 50581 atla1278 csy Latn 34126 sino1245
rmn Grek 94533 indo1319 gkp Latn 50549 mand1469 azb Arab 33758 turk1311
miq Latn 94343 misu1242 kat Latn 50424 kart1248 csb Latn 33743 indo1319
kaa Cyrl 88815 turk1311 bjn Latn 49068 aust1307 tpm Latn 33517 atla1278
kos Latn 88603 aust1307 acr Latn 48886 maya1287 quw Latn 33449 quec1387
grn Latn 87568 dtp Latn 48468 aust1307 rmy Cyrl 33351 indo1319
lhu Latn 87255 sino1245 lam Latn 46853 atla1278 ixl Latn 33289 maya1287
lzh Hani 86035 sino1245 bik Latn 46561 mbb Latn 33240 aust1307
ajp Arab 83297 afro1255 poh Latn 46454 maya1287 pfl Latn 33148 indo1319

cmn Hani 80745 sino1245 phm Latn 45862 atla1278 pcd Latn 32867 indo1319
gcf Latn 80737 indo1319 hrx Latn 45716 indo1319 tlh Latn 32863 arti1236
rmn Cyrl 79925 indo1319 quh Latn 45566 quec1387 suz Deva 32811 sino1245
kjh Cyrl 79262 turk1311 hyw Cyrl 45379 indo1319 gcr Latn 32676 indo1319
rng Latn 78177 atla1278 rue Cyrl 45369 indo1319 jbo Latn 32619 arti1236
mgh Latn 78117 atla1278 eml Latn 44630 indo1319 tbz Latn 32264 atla1278
xmv Latn 77896 aust1307 acm Arab 44505 afro1255 bam Latn 32150 mand1469
ige Latn 77114 atla1278 tob Latn 44473 guai1249 prk Latn 32085 aust1305

rmy Latn 76991 indo1319 ach Latn 43974 nilo1247 jam Latn 32048 indo1319
srm Latn 76884 indo1319 vep Latn 43076 ural1272 twx Latn 32028 atla1278
bak Latn 76809 turk1311 npi Deva 43072 indo1319 nmf Latn 31997 sino1245
gur Latn 76151 atla1278 tok Latn 42820 arti1236 caq Latn 31903 aust1305
idu Latn 75106 atla1278 sgs Latn 42467 indo1319 rop Latn 31889 indo1319
yom Latn 74818 atla1278 lij Latn 42447 indo1319 tca Latn 31852 ticu1244
tdx Latn 74430 aust1307 myv Cyrl 42147 ural1272 yan Latn 31775 misu1242

mzn Arab 73719 indo1319 tih Latn 41873 aust1307 xav Latn 31765 nucl1710
cfm Latn 70227 sino1245 tat Latn 41640 turk1311 bih Deva 31658
zpa Latn 69237 otom1299 lfn Latn 41632 arti1236 cuk Latn 31612 chib1249
kbd Cyrl 67914 abkh1242 cgg Latn 41196 atla1278 kjb Latn 31471 maya1287
lao Laoo 66966 taik1256 ful Latn 41188 atla1278 hne Deva 31465 indo1319
nap Latn 65826 indo1319 gor Latn 41174 aust1307 wbm Latn 31394 aust1305
qub Latn 64973 quec1387 ile Latn 40984 arti1236 zlm Latn 31345 aust1307
oke Latn 64508 atla1278 ium Latn 40683 hmon1336 tui Latn 31161 atla1278
ote Latn 64224 otom1299 teo Latn 40203 nilo1247 ifb Latn 30980 aust1307
bsb Latn 63634 aust1307 kia Latn 40035 atla1278 izz Latn 30894 atla1278
ogo Latn 61901 atla1278 crh Cyrl 39985 turk1311 rug Latn 30857 aust1307
abn Latn 61830 atla1278 crh Latn 39896 turk1311 aka Latn 30704 atla1278
ldi Latn 61827 atla1278 enm Latn 39809 indo1319 pxm Latn 30698 book1242
ayr Latn 61570 ayma1253 sat Olck 39614 aust1305 kmm Latn 30671 sino1245

gom Deva 61140 indo1319 mad Latn 38993 aust1307 mcn Latn 30666 afro1255
bba Latn 61123 atla1278 cac Latn 38812 maya1287 ifa Latn 30621 aust1307
aln Latn 60989 indo1319 hnj Latn 38611 hmon1336 dln Latn 30620 sino1245
leh Latn 59944 atla1278 ksh Latn 38130 indo1319 ext Latn 30605 indo1319
ban Latn 59805 aust1307 ikk Latn 38071 atla1278 ksd Latn 30550 aust1307
ace Latn 59333 aust1307 sba Latn 38040 cent2225 mzh Latn 30517 mata1289
pes Arab 57511 indo1319 zom Latn 37013 sino1245 llb Latn 30480 atla1278
skg Latn 57228 aust1307 bqc Latn 36881 mand1469 hra Latn 30472 sino1245
ary Arab 56933 afro1255 bim Latn 36835 atla1278 mwm Latn 30432 cent2225
hus Latn 56176 maya1287 mdy Ethi 36370 gong1255 krc Cyrl 30353 turk1311
glv Latn 55641 indo1319 bts Latn 36216 aust1307 tuc Latn 30349 aust1307
fat Latn 55609 atla1278 gya Latn 35902 atla1278 mrw Latn 30304 aust1307
frr Latn 55254 indo1319 ajg Latn 35631 atla1278 pls Latn 30136 otom1299

mwn Latn 54805 atla1278 agw Latn 35585 aust1307 rap Latn 30102 aust1307
mai Deva 54687 indo1319 kom Cyrl 35249 ural1272 fur Latn 30052 indo1319
dua Latn 53392 atla1278 knv Latn 35196 kaa Latn 30031 turk1311
dzo Tibt 52732 sino1245 giz Latn 35040 afro1255 prs Arab 26823 indo1319
ctd Latn 52135 sino1245 hui Latn 34926 nucl1709 san Latn 25742 indo1319
nnb Latn 52041 atla1278 kpg Latn 34900 aust1307 som Arab 14199 afro1255
sxn Latn 51749 aust1307 zea Latn 34426 indo1319 uig Latn 9637 turk1311
mps Latn 50645 tebe1251 aoj Latn 34349 nucl1708 hau Arab 9593 afro1255

Table 7: List of languages of Glot500-c (Part III).
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B Detailed Results

Detailed results of evaluation are shown in Tables 8-15 (NLL on Glot500-c), Tables 16-21
(NLL on PBC), Tables 22-23 (ACC on SIB200), and Tables 24-29 (ACC on Taxi1500).
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Lang LLaMA 2-7B mGPT-13B BLOOM-7B1 XGLM-7.5B MALA-500

abk Cyrl 234.09 249.16 258.26 231.44 164.61
abn Latn 140.01 197.81 153.58 152.90 111.86
ace Latn 235.15 332.18 244.00 259.64 168.79
ach Latn 179.03 227.84 194.55 197.05 161.01

acm Arab 119.15 153.09 106.29 101.35 135.82
acr Latn 301.73 399.80 321.79 316.49 194.71
ada Latn 132.76 168.56 150.19 137.99 103.17
afb Arab 134.03 169.73 112.55 110.59 152.58
afr Latn 52.43 84.47 73.24 75.60 64.25

agw Latn 228.22 318.95 246.48 242.04 152.59
ahk Latn 229.45 377.60 245.81 241.21 163.96
ajg Latn 146.48 185.41 170.89 155.21 113.83
ajp Arab 153.34 199.79 129.62 124.24 164.80
aka Latn 163.59 223.13 166.49 185.41 131.50
aln Latn 191.62 259.76 218.75 267.34 143.64
als Latn 191.60 271.51 219.17 260.14 155.23
alt Cyrl 199.25 220.77 200.70 215.71 139.18
alz Latn 167.89 214.64 185.35 171.34 155.03
amh Ethi 328.25 834.56 407.68 550.50 268.11
ami Latn 122.67 168.42 131.77 132.36 109.13
aoj Latn 318.62 495.44 340.07 316.36 196.64
apc Arab 131.19 153.97 106.78 109.24 145.81
ara Arab 111.05 155.64 80.72 84.86 140.73
arb Arab 166.93 318.76 135.76 137.80 173.03
arg Latn 173.62 306.23 171.32 178.40 160.08
arn Latn 202.09 292.40 204.32 216.04 163.87
ary Arab 198.80 309.90 184.82 176.58 173.37
arz Arab 122.74 248.72 95.61 100.43 131.75
asm Beng 264.49 409.59 172.35 311.81 184.77
ast Latn 208.41 325.35 184.93 192.86 178.77

aym Latn 143.36 183.42 149.06 154.45 117.28
ayr Latn 274.31 342.40 288.57 293.48 185.87
azb Arab 254.60 293.24 273.20 285.61 162.94
aze Latn 156.58 230.45 195.32 189.59 110.56
azj Latn 168.12 228.08 212.31 199.86 126.98
bak Cyrl 274.50 348.47 288.93 307.95 169.00
bak Latn 191.06 259.97 196.98 213.41 152.50
bam Latn 195.29 251.28 203.50 215.62 171.51
ban Latn 205.77 297.97 213.20 213.89 186.89
bar Latn 210.97 287.33 234.73 208.66 188.90
bas Latn 137.53 172.78 143.37 147.13 110.71
bba Latn 233.68 286.30 258.58 238.94 164.18
bbc Latn 172.78 216.78 181.59 170.06 148.89
bci Latn 176.81 223.93 190.52 189.46 171.00
bcl Latn 149.22 209.44 162.25 174.40 132.55
bel Cyrl 110.77 174.19 142.62 147.27 85.11

bem Latn 182.62 222.50 198.45 150.51 158.31
ben Beng 92.79 162.83 50.33 55.42 73.86
ber Latn 88.37 120.03 87.79 101.52 71.90

bhw Latn 186.42 245.14 194.41 188.81 155.12
bih Deva 248.12 422.46 176.37 204.17 180.31
bik Latn 151.63 218.03 173.42 187.11 137.28
bim Latn 229.29 284.29 244.21 245.34 166.16
bin Latn 137.28 175.41 152.32 152.02 109.51
bis Latn 165.83 250.17 179.61 190.13 130.32
bjn Latn 200.57 302.58 202.67 199.15 182.65
bod Tibt 437.54 1690.09 461.35 80.21 286.05
bos Latn 87.13 175.82 131.95 149.85 110.92
bpy Beng 251.20 471.67 154.31 172.17 155.64
bqc Latn 208.00 266.53 226.49 205.65 153.58
bre Latn 222.93 276.71 208.07 260.44 184.35
bsb Latn 236.62 358.90 275.10 306.64 204.50
bts Latn 214.80 292.93 232.31 217.74 156.31
btx Latn 169.13 227.44 181.86 174.25 148.25
bul Cyrl 47.01 90.81 77.70 42.90 57.12

bum Latn 183.88 237.35 194.64 195.91 156.33
bzj Latn 167.62 244.15 188.25 194.46 137.81

Table 8: Detailed results of NLL on Glot500-c (Part I).
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Lang LLaMA 2-7B mGPT-13B BLOOM-7B1 XGLM-7.5B MALA-500

cab Latn 222.05 292.04 234.53 237.57 168.63
cac Latn 293.47 395.52 310.33 301.30 192.22
cak Latn 295.24 394.87 317.52 309.03 200.69
caq Latn 240.00 323.71 264.17 257.49 164.95
cat Latn 94.68 212.17 83.26 86.26 130.00
cbk Latn 143.05 221.60 145.69 159.41 137.96
cce Latn 178.45 226.07 190.01 192.54 152.70
ceb Latn 136.44 278.02 164.94 183.55 123.31
ces Latn 44.83 98.77 68.48 76.15 58.42
cfm Latn 240.20 305.25 252.92 256.79 185.94
cgg Latn 121.16 160.92 127.35 129.19 107.91
che Cyrl 199.15 272.63 203.57 197.17 158.57
chk Latn 189.52 258.69 201.19 200.61 145.98
chv Cyrl 246.19 292.36 252.81 229.56 157.91
chw Latn 139.07 174.73 142.88 121.98 121.16
cjk Latn 125.30 158.06 134.03 128.75 106.21

ckb Arab 372.24 437.95 370.20 521.30 243.30
cmn Hani 52.17 92.04 40.75 49.81 62.30
cnh Latn 185.01 242.39 198.20 198.57 147.90
cos Latn 192.02 323.30 210.38 211.96 185.03
crh Cyrl 236.43 282.79 239.67 260.03 141.08
crh Latn 149.67 240.28 168.79 157.01 131.91
crs Latn 153.11 202.53 153.34 87.81 129.39
csb Latn 238.86 336.99 261.46 294.41 166.29
csy Latn 226.53 299.52 249.53 245.14 172.03
ctd Latn 210.45 276.87 227.39 224.34 158.35
ctu Latn 216.90 310.89 226.68 220.32 157.27
cuk Latn 233.42 325.97 252.00 247.83 190.81
cym Latn 233.91 369.64 306.05 332.89 217.29
dan Latn 43.75 84.32 69.51 66.96 54.56
deu Latn 37.46 68.68 49.65 33.88 53.45
dhv Latn 121.21 170.85 126.68 128.57 95.81
diq Latn 174.75 265.78 180.00 190.78 147.56
div Thaa 314.55 565.83 314.34 17.32 153.76
djk Latn 188.44 249.39 201.50 207.16 163.39
dln Latn 217.51 288.73 231.93 238.10 165.40
dtp Latn 267.22 373.92 279.80 287.18 184.75
dua Latn 131.20 169.64 136.03 129.20 109.86
dyu Latn 186.37 237.65 193.19 205.47 157.89
dzo Tibt 238.61 842.40 244.70 47.40 154.48
efi Latn 178.91 251.07 205.96 203.93 134.40

ekk Latn 155.86 223.64 194.37 89.18 141.19
ell Grek 52.85 86.68 67.98 36.04 54.45
eml Latn 213.57 278.33 224.10 225.17 163.91
eng Latn 30.45 62.73 31.32 34.36 48.60
enm Latn 79.08 193.74 108.20 119.78 87.78
epo Latn 68.89 99.75 79.80 87.72 70.22
est Latn 70.18 100.28 88.33 40.53 67.38
eus Latn 79.07 87.15 48.33 45.59 70.49
ewe Latn 208.53 269.62 218.53 195.99 148.78
ext Latn 216.92 338.22 211.26 231.30 177.17
fao Latn 202.04 284.61 227.56 263.89 165.45
fas Arab 138.13 193.21 163.46 166.76 133.69
fat Latn 134.67 180.66 144.54 144.50 106.86
fij Latn 159.86 219.85 191.04 137.83 147.71
fil Latn 120.89 206.21 162.04 161.84 120.27
fin Latn 46.88 86.18 79.58 35.79 58.35
fon Latn 237.19 295.74 256.54 262.29 160.24
fra Latn 32.26 63.71 31.08 32.74 49.22
frr Latn 192.91 299.41 206.26 211.00 144.13
fry Latn 191.87 247.81 205.02 221.64 168.86
ful Latn 447.47 550.03 457.25 511.87 339.38
fur Latn 231.23 313.99 234.38 250.02 183.57
gaa Latn 188.66 232.67 222.71 158.83 146.37
gcf Latn 132.36 173.10 130.03 91.07 103.54
gcr Latn 113.22 157.83 115.02 79.46 94.40
gil Latn 175.92 237.54 187.79 181.71 154.60
giz Latn 244.47 332.32 268.61 266.29 168.09

Table 9: Detailed results of NLL on Glot500-c (Part II).
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Lang LLaMA 2-7B mGPT-13B BLOOM-7B1 XGLM-7.5B MALA-500

gkn Latn 223.58 304.46 253.54 245.24 167.81
gkp Latn 261.56 358.97 280.80 270.48 186.41
gla Latn 220.92 382.20 293.89 315.23 210.51
gle Latn 203.10 345.45 276.11 299.80 206.52
glg Latn 120.88 204.76 108.43 122.45 132.58
glv Latn 232.86 326.69 247.79 265.04 182.93

gom Deva 328.82 462.17 324.77 358.50 233.15
gom Latn 244.57 318.36 259.71 257.90 209.13
gor Latn 217.70 326.26 232.98 239.37 168.23
grc Grek 126.86 277.73 181.00 127.62 141.80
grn Latn 293.70 382.11 298.10 316.62 204.94
gsw Latn 180.67 226.37 199.03 171.72 157.34
guc Latn 241.99 340.92 257.19 234.87 183.29
gug Latn 197.04 258.55 201.92 214.05 158.39
guj Gujr 118.82 291.38 74.12 194.71 90.02
gur Latn 222.48 311.22 243.52 233.99 173.11
guw Latn 210.29 215.37 235.91 246.28 146.55
gya Latn 242.48 350.56 274.82 258.26 170.00
gym Latn 231.32 324.92 249.32 191.13 178.06
hat Latn 237.00 341.48 251.07 150.39 201.88
hau Arab 173.08 330.75 130.96 129.69 230.02
hau Latn 228.21 300.72 257.22 265.65 191.68
haw Latn 190.18 300.25 217.54 213.20 174.30
hbo Hebr 140.73 315.06 194.19 200.98 155.08
hbs Cyrl 206.87 503.80 370.83 417.41 225.22
hbs Latn 209.02 451.95 333.95 375.92 223.11
heb Hebr 48.34 63.09 58.19 63.73 56.05
her Latn 140.31 172.32 146.72 136.86 109.29
hif Latn 396.80 613.23 471.65 465.81 371.92
hil Latn 145.89 207.79 161.39 182.01 126.09

hin Deva 142.07 289.53 105.86 106.38 166.12
hin Latn 150.11 247.31 166.34 164.94 176.00

hmn Latn 241.00 375.11 282.60 284.95 182.91
hmo Latn 165.38 236.46 178.12 142.53 133.19
hne Deva 201.66 298.38 171.37 184.06 161.30
hnj Latn 231.56 324.18 263.80 278.94 141.56
hra Latn 215.87 271.46 228.66 229.46 169.57
hrv Latn 43.03 82.09 63.02 69.82 54.08
hrx Latn 131.34 182.33 140.90 135.17 105.20
hsb Latn 182.90 293.15 211.79 235.34 127.71
hui Latn 297.34 388.25 319.23 318.32 197.57
hun Latn 45.03 79.27 75.21 79.06 59.30
hus Latn 247.96 352.19 260.90 258.32 180.85

hye Armn 286.18 602.02 372.75 454.38 202.92
hyw Armn 145.46 263.04 186.63 213.52 110.19
hyw Cyrl 162.17 231.84 171.73 165.61 117.61
iba Latn 150.03 192.62 157.75 151.54 133.67
ibg Latn 115.37 152.94 119.10 122.19 106.08
ibo Latn 232.57 333.59 223.37 296.17 184.97
ido Latn 140.94 273.88 153.94 164.61 121.37
idu Latn 153.00 209.20 162.53 157.46 106.21
ifa Latn 252.33 328.31 270.66 266.03 172.20
ifb Latn 257.92 340.56 278.23 272.79 183.83
ige Latn 148.85 199.02 173.80 176.02 111.50
ikk Latn 249.37 330.44 284.76 310.26 166.74
iku Cans 261.21 877.71 343.18 496.50 174.80
ile Latn 100.28 199.76 105.32 115.20 100.35
ilo Latn 172.24 227.41 186.11 208.36 146.96
ina Latn 209.38 408.99 230.14 236.01 201.92
ind Latn 42.59 69.80 35.50 36.82 56.03
ish Latn 126.54 178.71 144.92 146.15 101.29
isl Latn 103.40 156.83 127.49 139.76 83.51
iso Latn 148.38 175.75 168.85 167.42 104.67
ita Latn 39.35 79.02 49.94 40.47 53.36

ium Latn 247.28 361.48 264.84 266.46 167.10
ixl Latn 327.09 506.74 353.08 348.23 222.05
izz Latn 301.73 400.14 346.61 361.39 193.24
jam Latn 204.69 291.31 223.99 231.17 157.87

Table 10: Detailed results of NLL on Glot500-c (Part III).
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jav Latn 208.92 275.29 212.60 220.31 180.00
jbo Latn 103.91 200.82 109.86 112.61 117.25
jpn Jpan 136.26 301.32 197.23 149.70 150.43
kaa Cyrl 281.21 363.07 300.20 317.13 146.98
kaa Latn 284.60 354.51 292.04 309.67 192.43
kab Latn 192.58 264.51 185.56 216.46 161.31
kac Latn 210.47 267.38 223.77 249.95 166.44
kal Latn 240.15 262.90 259.85 155.45 182.71

kam Latn 153.84 194.60 156.10 186.00 115.78
kan Knda 216.22 556.40 146.43 355.75 175.17
kat Geor 302.53 413.90 435.47 483.85 239.51
kat Latn 184.94 308.06 217.07 208.25 184.20
kaz Cyrl 257.67 341.78 280.01 297.13 187.85
kbd Cyrl 212.12 229.63 198.20 202.85 146.86
kbp Latn 232.17 306.53 257.45 246.16 161.08
kea Latn 118.17 159.93 121.92 122.29 105.69
kek Latn 234.79 332.19 244.69 228.87 164.18

khm Khmr 257.14 815.56 317.46 437.56 167.88
kia Latn 222.01 298.21 245.77 236.71 164.39
kik Latn 208.26 277.92 213.92 237.26 159.49
kin Latn 206.40 237.66 174.18 234.91 168.37
kir Cyrl 265.65 308.15 277.34 313.50 175.71
kjb Latn 263.79 353.35 280.16 278.13 179.76
kjh Cyrl 200.11 251.59 211.84 217.34 147.81

kmb Latn 132.84 166.09 137.48 118.00 112.99
kmm Latn 246.57 330.77 263.79 266.44 180.90
kmr Cyrl 224.23 284.40 226.51 221.22 154.70
kmr Latn 183.95 220.51 194.67 215.02 142.36
knv Latn 430.56 581.45 456.13 427.27 232.18
kom Cyrl 224.18 302.71 249.08 213.41 134.88
kon Latn 112.77 131.61 116.89 119.41 96.00
koo Latn 132.73 167.13 144.33 134.74 111.26
kor Hang 129.20 224.06 180.21 95.71 151.37
kos Latn 146.15 191.23 153.05 154.26 123.85
kpg Latn 221.52 321.94 246.33 245.73 148.93
kqn Latn 125.33 149.57 128.12 109.60 106.08
krc Cyrl 247.13 292.86 248.83 267.39 167.05
kri Latn 166.50 240.92 193.15 192.19 140.20
ksd Latn 198.81 269.96 210.59 212.57 138.81
ksh Latn 204.72 261.51 220.93 218.50 161.62
kss Latn 310.35 477.02 335.25 300.31 226.38

ksw Mymr 210.34 266.24 226.59 154.55 124.78
kua Latn 179.05 206.09 187.92 151.87 140.72
kur Arab 402.78 464.44 400.97 550.57 253.61
kur Latn 633.22 779.47 678.30 748.20 424.98
kwn Latn 136.80 170.23 141.88 111.31 107.21
kwy Latn 131.93 160.78 137.77 134.01 110.55
lam Latn 209.07 276.89 228.12 203.17 176.61
lao Laoo 405.48 978.35 435.37 583.11 225.06
lat Latn 167.49 274.19 186.97 210.22 183.32
lav Latn 193.22 257.06 227.60 252.31 162.80
ldi Latn 178.84 230.26 185.58 191.19 160.61
leh Latn 216.80 273.56 230.25 201.57 172.92
lfn Latn 232.59 368.62 246.45 258.76 187.82
lhu Latn 209.10 365.95 220.56 219.50 142.74
lij Latn 328.66 483.81 345.62 348.28 249.64

lim Latn 199.01 290.80 236.94 239.44 180.52
lin Latn 161.88 173.63 158.33 180.17 135.66
lit Latn 163.71 220.62 195.08 225.98 147.53
llb Latn 135.01 180.06 146.51 135.39 120.02

lmo Latn 222.22 378.21 247.54 242.80 182.01
loz Latn 179.54 194.46 185.77 142.19 147.86
ltz Latn 190.70 303.65 202.02 174.00 169.36
lua Latn 126.47 147.86 131.94 102.71 102.36
lub Latn 136.45 143.64 140.96 99.41 111.01
lue Latn 128.48 158.40 135.27 129.94 103.72
lug Latn 225.72 318.09 221.56 272.90 196.21
lun Latn 135.96 170.81 142.71 136.26 113.31

Table 11: Detailed results of NLL on Glot500-c (Part IV).
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luo Latn 177.43 224.04 194.07 187.72 156.23
lus Latn 192.97 251.35 203.37 212.72 163.95
lvs Latn 154.85 211.40 185.87 198.99 138.63
lzh Hani 149.57 215.19 130.32 153.38 151.15
mad Latn 232.71 325.38 245.39 249.29 176.81
mah Latn 178.50 246.26 188.98 183.17 145.35
mai Deva 245.94 389.84 189.93 223.00 185.84
mal Mlym 96.92 171.55 57.45 129.61 72.46
mam Latn 232.38 315.16 247.28 244.43 189.28
mar Deva 85.13 143.31 55.38 103.23 70.08
mau Latn 186.46 333.61 204.91 193.09 161.45
mbb Latn 282.70 410.99 309.56 307.47 175.50
mck Latn 191.94 244.49 202.17 191.28 152.16
mcn Latn 207.28 276.32 220.35 230.56 158.99
mco Latn 271.45 368.23 281.55 260.70 206.54
mdy Ethi 306.26 529.46 293.68 369.22 166.26
meu Latn 177.74 235.19 188.09 168.43 143.62
mfe Latn 147.50 194.41 143.47 92.23 129.23
mgh Latn 193.72 257.45 207.05 200.68 166.17
mgr Latn 183.96 226.09 194.25 149.77 160.18
mhr Cyrl 230.20 298.73 235.59 236.71 167.55
min Latn 161.40 266.18 164.13 170.30 166.91
miq Latn 207.63 276.27 228.42 223.78 160.37
mkd Cyrl 81.62 144.52 112.99 98.33 74.40
mlg Latn 185.23 250.78 189.32 226.85 148.82
mlt Latn 109.60 184.08 139.75 146.69 85.14

mny Latn 133.04 170.16 135.30 126.14 112.38
mon Cyrl 397.63 535.59 446.51 555.16 249.95
mon Latn 354.75 411.54 383.60 383.02 282.85
mos Latn 197.23 229.14 206.05 212.55 159.69
mps Latn 347.99 496.26 378.75 366.78 213.10
mri Latn 154.38 247.38 181.49 179.85 134.55

mrw Latn 235.11 306.78 250.41 253.18 169.69
msa Latn 164.05 261.28 155.14 151.77 190.44
mwl Latn 275.26 410.83 270.47 280.98 202.89

mwm Latn 293.40 430.46 315.11 294.17 162.95
mwn Latn 131.84 162.91 138.48 111.20 123.37
mxv Latn 206.13 324.92 222.48 222.86 171.82

mya Mymr 383.74 576.49 472.04 277.91 252.84
myv Cyrl 267.24 357.29 263.68 276.10 188.74
mzh Latn 257.70 370.86 285.03 276.60 169.96
mzn Arab 192.75 263.60 200.51 204.50 136.03
nan Latn 172.36 311.98 186.78 200.62 153.96
nap Latn 159.24 246.36 179.36 167.94 151.29
naq Latn 195.43 261.60 207.68 207.27 150.47
nav Latn 258.40 380.88 284.18 286.04 181.13
nba Latn 123.68 154.25 130.25 126.08 99.29
nbl Latn 175.10 238.64 194.74 211.98 154.90
nch Latn 206.55 287.53 220.86 221.43 183.56
ncj Latn 185.32 260.91 201.13 196.79 173.80
ncx Latn 115.71 168.08 121.23 122.70 98.71
ndc Latn 167.38 222.72 176.18 184.45 158.24
nde Latn 169.75 235.54 185.98 211.96 151.45
ndo Latn 192.10 227.02 204.45 150.28 149.69
nds Latn 195.44 272.44 213.17 204.47 184.93
nep Deva 232.93 425.83 167.54 291.83 210.52
new Deva 169.64 330.40 128.26 135.07 103.54
ngl Latn 134.87 177.05 140.92 115.46 104.59
ngu Latn 205.16 282.39 215.65 213.78 167.56
nia Latn 202.30 269.59 214.87 196.19 167.95
niu Latn 105.04 142.53 111.71 113.36 88.11
nld Latn 37.77 65.47 55.52 51.54 51.45
nmf Latn 222.98 290.53 242.04 246.36 167.31
nnb Latn 200.64 248.60 210.13 212.23 161.20
nno Latn 138.72 234.11 192.13 199.51 146.16
nob Latn 50.27 96.43 78.24 73.64 59.05
nor Latn 78.04 146.26 126.19 123.99 99.50
npi Deva 212.50 399.24 143.71 290.95 166.12

Table 12: Detailed results of NLL on Glot500-c (Part V).
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nse Latn 176.20 234.62 184.77 174.57 161.52
nso Latn 170.49 227.97 170.96 201.29 142.72
nya Latn 203.45 299.12 222.51 224.89 175.69
nyk Latn 131.13 166.47 142.89 138.50 105.26
nyn Latn 174.51 229.51 189.05 194.14 149.17
nyu Latn 126.29 172.40 132.49 127.67 99.26
nyy Latn 215.07 271.23 234.37 220.80 168.74
nzi Latn 191.21 256.55 219.47 209.42 152.30
oci Latn 202.93 343.11 207.95 210.24 185.26
ogo Latn 134.14 185.86 149.15 143.22 118.08
oke Latn 131.90 166.07 146.98 149.55 102.72
ori Orya 323.51 839.80 179.33 665.17 203.94
orm Latn 225.00 334.29 288.51 313.08 201.60
ory Orya 232.83 572.34 134.20 474.35 164.65
oss Cyrl 229.49 279.89 229.34 227.24 151.79
ote Latn 237.06 362.46 254.31 241.61 176.73
pag Latn 173.32 223.39 184.05 184.76 157.30
pam Latn 259.01 373.98 274.16 280.47 237.10
pan Guru 242.88 510.70 153.50 395.85 180.54
pap Latn 162.79 213.88 174.63 173.16 138.20
pau Latn 176.42 243.03 188.84 187.10 150.24
pcd Latn 144.96 228.79 143.18 150.08 140.39
pcm Latn 159.00 346.35 182.00 179.53 147.50
pdt Latn 192.69 252.34 199.07 199.80 144.40
pes Arab 153.46 199.83 175.97 179.97 139.01
pfl Latn 220.11 315.47 241.84 225.74 176.25

phm Latn 117.81 162.32 128.28 125.57 100.73
pis Latn 153.04 237.95 173.91 179.21 130.98
pls Latn 237.55 350.88 251.43 251.35 175.28
plt Latn 159.36 220.84 158.06 193.44 131.96

pms Latn 132.94 257.06 137.39 146.18 106.52
pnb Arab 345.25 418.35 279.85 240.35 237.22
poh Latn 389.80 589.86 417.71 416.42 230.35
pol Latn 44.19 82.29 66.66 71.91 60.02
pon Latn 177.92 236.38 190.47 189.62 149.49
por Latn 37.00 66.01 35.14 33.91 48.72
prk Latn 220.51 301.85 230.42 238.15 148.46
prs Arab 163.01 218.38 191.40 195.64 141.99
pus Arab 259.45 327.43 277.81 340.38 203.38
pxm Latn 299.37 391.48 317.99 307.01 180.85
qub Latn 210.38 265.76 222.82 172.89 152.70
quc Latn 248.16 320.50 271.51 258.06 187.13
que Latn 144.31 170.69 154.62 96.53 121.19
qug Latn 176.78 225.11 187.16 136.85 143.62
quh Latn 257.89 293.32 275.35 187.44 175.55
quw Latn 154.10 205.67 162.83 142.63 142.35
quy Latn 177.21 202.67 190.48 125.92 139.15
quz Latn 180.20 211.40 192.52 123.67 142.21
qvi Latn 178.08 234.53 188.58 156.22 145.79
rap Latn 204.53 354.21 219.29 226.89 158.90
rar Latn 169.22 249.96 191.91 189.56 168.88

rmn Cyrl 129.46 181.44 143.84 137.02 102.76
rmn Grek 135.82 190.47 141.78 125.21 92.56
rmn Latn 133.75 175.58 146.05 143.75 112.55
rmy Cyrl 135.65 184.00 147.87 137.05 109.18
rmy Latn 189.65 244.12 198.92 205.44 168.77
rng Latn 122.59 150.36 125.06 129.81 104.16
roh Latn 235.38 312.78 242.57 253.77 161.16
ron Latn 44.70 84.55 68.14 74.76 54.82
rop Latn 233.05 351.35 257.34 275.70 155.36
rue Cyrl 223.89 402.99 299.90 265.32 179.38
rug Latn 257.50 348.10 277.13 275.47 169.94
run Latn 184.59 218.12 161.96 207.06 157.49
rus Cyrl 65.34 155.39 116.17 67.59 84.56
sag Latn 162.87 194.78 175.45 155.14 149.65
sah Cyrl 383.55 455.30 382.36 423.03 218.84
san Deva 182.35 287.49 189.83 201.00 186.46
san Latn 242.46 324.45 278.75 282.93 199.18

Table 13: Detailed results of NLL on Glot500-c (Part VI).
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sat Olck 654.37 3377.97 667.66 40.17 311.96
sba Latn 272.45 372.47 303.48 293.62 167.13
scn Latn 236.20 355.24 263.10 270.02 191.69
sco Latn 147.94 341.79 193.24 193.20 170.39
seh Latn 173.46 231.41 177.38 174.40 138.70
sgs Latn 248.33 313.78 251.35 277.73 182.16
sid Latn 135.53 180.29 147.72 139.17 114.24
sin Sinh 82.29 173.16 114.00 137.98 70.77
skg Latn 128.02 172.67 131.34 145.32 116.16
slk Latn 62.89 116.82 86.67 103.39 63.93
slv Latn 42.18 85.28 64.75 73.49 55.26

sme Latn 288.98 357.31 301.64 295.23 205.46
smo Latn 220.26 338.16 250.74 252.76 190.00
sna Latn 221.02 311.60 221.92 258.38 189.74
snd Arab 209.83 264.61 217.96 260.53 163.07
som Arab 230.91 410.59 192.88 175.01 265.88
som Latn 235.21 346.36 286.69 312.99 212.51
sop Latn 176.17 207.78 188.41 157.21 167.90
sot Latn 200.82 271.71 205.51 235.65 157.18
spa Latn 37.28 70.48 34.26 38.65 53.39
sqi Latn 207.58 295.58 241.22 296.90 172.78
srd Latn 228.12 341.00 242.74 251.01 179.87
srm Latn 229.46 318.77 250.79 246.75 173.83
srn Latn 161.18 183.34 171.30 179.59 132.77
srp Cyrl 45.22 100.88 77.59 81.95 57.85
srp Latn 33.66 57.89 43.91 46.74 42.31
ssw Latn 194.10 264.22 212.99 230.20 165.70
sun Latn 220.72 314.99 228.18 237.07 203.32
suz Deva 255.00 400.13 262.34 257.16 157.30
swa Latn 156.02 208.21 125.78 94.55 151.68
swc Latn 103.75 133.69 98.32 71.66 102.14
swe Latn 42.72 82.20 68.89 60.92 56.18
swh Latn 178.28 223.65 151.05 97.98 161.49
sxn Latn 243.81 346.98 263.76 260.44 183.47
szl Latn 132.77 348.45 156.37 177.33 111.32
tah Latn 114.41 158.18 124.60 121.22 101.40
tam Taml 231.12 444.83 152.34 146.94 205.53
tat Cyrl 251.96 301.03 256.66 276.29 159.44
tat Latn 248.71 338.00 261.10 278.92 186.84
tbz Latn 273.90 352.17 299.25 281.11 164.62
tca Latn 306.13 452.15 328.77 316.81 174.51
tcf Latn 133.72 193.63 138.67 133.58 102.94
tdt Latn 158.16 217.96 172.56 182.04 130.27
tdx Latn 125.88 167.70 130.54 135.72 113.29
tel Telu 94.93 152.33 54.92 47.52 72.02
teo Latn 193.42 250.17 206.10 193.68 159.90
tgk Cyrl 313.76 369.08 333.83 342.42 196.57
tgk Latn 296.86 412.46 342.18 352.59 248.69
tgl Latn 56.44 94.00 76.30 77.15 64.98
tha Thai 192.70 331.25 242.28 116.12 175.60
tih Latn 233.30 329.24 255.15 254.70 158.13
tir Ethi 267.84 579.39 319.29 424.77 189.73
tiv Latn 133.38 168.19 140.43 126.42 116.08
tlh Latn 163.23 258.64 183.94 184.72 111.43
tll Latn 138.57 167.75 152.44 126.10 105.23

tob Latn 299.95 450.25 316.77 324.19 182.95
tog Latn 127.47 165.93 133.37 115.35 102.88
toh Latn 181.85 238.80 196.33 194.76 146.50
toi Latn 185.04 233.23 194.93 164.94 165.33
toj Latn 232.66 311.24 239.53 236.11 198.17
tok Latn 46.19 61.55 50.56 43.88 47.57
ton Latn 172.88 243.40 178.94 190.23 141.17
top Latn 221.27 303.90 232.90 223.12 212.88
tpi Latn 139.90 209.92 155.89 170.67 120.65

tpm Latn 214.33 280.83 241.97 231.70 154.99
tsc Latn 131.42 150.62 130.29 132.42 104.44
tsn Latn 209.69 291.69 203.77 245.18 169.85
tso Latn 182.87 208.89 176.69 194.90 142.27

Table 14: Detailed results of NLL on Glot500-c (Part VII).
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tsz Latn 183.82 253.97 200.16 176.35 153.98
ttj Latn 133.35 174.08 142.10 146.60 112.98
tuc Latn 325.34 444.23 346.52 291.84 180.84
tui Latn 247.40 330.20 266.54 265.71 181.39
tuk Cyrl 196.40 248.01 210.45 219.39 143.19
tuk Latn 217.31 235.95 217.78 238.66 155.71
tum Latn 184.51 236.91 190.41 153.36 153.44
tur Latn 48.52 66.76 60.61 34.71 63.33
tvl Latn 114.81 156.00 123.30 121.62 97.96
twi Latn 169.99 229.39 171.42 190.50 139.81
twx Latn 123.52 172.96 130.82 135.08 106.56
tyv Cyrl 270.89 314.09 275.97 304.11 174.60
tzh Latn 195.49 274.47 208.05 202.10 162.63
tzo Latn 223.14 324.35 237.54 228.92 173.78

udm Cyrl 222.45 277.14 231.98 219.71 160.30
uig Arab 336.01 432.84 320.43 463.38 207.25
uig Latn 254.59 292.36 270.85 285.12 203.29
ukr Cyrl 101.99 240.89 173.79 160.03 136.57

umb Latn 129.60 165.59 135.06 139.75 100.07
urd Arab 77.96 105.77 53.61 51.92 81.62
urh Latn 145.52 153.19 164.21 161.54 108.55
uzb Cyrl 307.70 353.00 332.86 314.77 178.07
uzb Latn 307.44 363.61 357.04 383.26 220.74
uzn Cyrl 233.89 270.06 254.96 247.92 145.01
vec Latn 163.22 261.93 181.25 168.76 170.03
ven Latn 190.45 233.75 198.94 198.18 151.65
vep Latn 316.12 456.77 326.76 243.40 192.08
vie Latn 108.65 169.92 86.74 91.41 138.89
vls Latn 200.17 292.89 242.66 253.44 171.13

vmw Latn 141.25 176.25 143.12 107.10 102.92
vol Latn 94.00 260.01 85.47 87.18 83.77
wal Latn 190.62 261.79 201.98 177.73 158.07
war Latn 127.41 249.86 146.46 166.29 153.84

wbm Latn 222.06 311.86 234.78 240.27 150.33
wes Latn 64.78 106.54 73.37 73.73 86.61
wls Latn 114.80 157.93 125.63 124.58 99.38
wol Latn 197.17 251.63 171.70 208.78 173.01

wuu Hani 152.90 283.11 127.83 152.82 145.05
xav Latn 350.22 619.11 379.76 371.80 201.63
xho Latn 224.10 315.12 219.57 265.57 187.35
xmf Geor 260.61 315.58 316.49 376.33 170.15
xmv Latn 125.37 168.73 129.48 139.97 111.94
yan Latn 228.46 314.62 248.18 243.68 165.66
yao Latn 196.25 253.72 209.77 198.91 166.06
yap Latn 197.98 274.54 212.39 209.00 169.09
yid Hebr 437.75 571.08 480.37 590.32 295.70
yom Latn 176.11 220.86 184.62 189.29 150.95
yor Latn 233.75 283.33 193.55 286.20 185.60
yua Latn 195.86 284.05 208.08 205.70 161.16
yue Hani 74.79 131.83 62.91 83.80 74.28
zai Latn 170.49 223.03 179.18 188.38 148.03
zea Latn 174.18 271.42 212.95 222.74 155.52
zho Hani 57.89 99.40 48.19 55.24 70.80
zlm Latn 106.37 176.09 92.63 93.81 118.56
zne Latn 127.57 167.13 134.43 115.53 104.95
zom Latn 214.60 277.57 233.64 228.48 170.06
zpa Latn 127.29 180.39 129.07 132.30 107.04
zsm Latn 102.42 171.64 92.39 94.59 123.31
zul Latn 208.94 340.58 235.91 257.18 192.84

all 190.58 282.46 202.95 205.07 151.25

Table 15: Detailed results of NLL on Glot500-c (Part VIII).
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ace Latn 137.43 196.93 144.50 152.49 97.89
ach Latn 113.66 152.08 123.29 125.31 102.45
acr Latn 177.86 233.22 188.27 182.33 114.27
afr Latn 80.43 132.25 116.34 129.21 95.33

agw Latn 130.32 186.58 136.17 138.27 95.93
ahk Latn 175.75 291.31 187.63 179.54 116.76
aka Latn 98.41 135.74 99.46 108.01 78.20
aln Latn 101.54 147.77 115.11 139.73 82.71
als Latn 93.47 134.99 106.68 127.57 78.53
alt Cyrl 122.23 146.47 125.04 134.88 90.21
alz Latn 107.41 139.39 116.48 109.62 102.48
amh Ethi 100.60 255.43 121.36 161.34 98.24
aoj Latn 175.25 270.87 185.66 171.29 114.19
arb Arab 94.03 186.47 77.67 78.12 104.22
arn Latn 141.08 205.53 143.63 154.61 113.59
ary Arab 128.97 212.49 125.35 118.25 104.58
arz Arab 80.59 185.56 64.91 66.52 92.22
asm Beng 123.16 196.03 79.80 147.49 101.89
ayr Latn 149.96 188.09 154.45 157.13 106.66
azb Arab 134.00 160.29 139.49 144.68 93.09
aze Latn 97.68 131.80 113.03 106.38 90.96
bak Cyrl 134.49 169.96 133.79 150.46 93.49
bam Latn 109.68 147.72 110.24 118.13 91.88
ban Latn 138.98 195.92 147.93 149.04 111.51
bar Latn 114.49 154.37 121.74 113.26 108.65
bba Latn 132.00 166.51 146.31 131.24 96.87
bbc Latn 110.66 143.87 117.12 107.02 100.17
bci Latn 117.42 156.47 125.70 124.26 126.80
bcl Latn 101.39 146.46 109.03 116.78 88.46
bel Cyrl 92.30 137.26 110.12 118.30 88.89

bem Latn 125.52 158.97 135.60 104.16 107.57
ben Beng 111.68 194.50 68.00 77.83 105.61
bhw Latn 124.94 169.40 130.40 123.48 101.65
bim Latn 124.64 162.78 132.77 130.01 96.33
bis Latn 126.46 196.19 136.72 148.29 95.85
bod Tibt 138.16 525.70 144.33 30.40 105.99
bqc Latn 113.18 149.13 122.07 112.76 91.11
bre Latn 120.49 151.33 111.97 139.13 105.99
bts Latn 111.90 154.57 120.61 110.17 89.16
btx Latn 118.13 163.25 128.43 125.76 103.19
bul Cyrl 66.25 124.78 104.01 42.33 85.30

bum Latn 116.16 153.66 121.83 121.74 101.82
bzj Latn 115.75 175.63 128.70 135.59 93.15
cab Latn 164.07 215.31 172.22 174.35 123.20
cac Latn 169.42 231.73 176.29 175.63 116.03
cak Latn 185.42 246.76 193.62 191.54 123.65
caq Latn 128.13 174.12 141.21 138.17 95.54
cat Latn 54.93 118.69 44.29 45.98 76.47
cbk Latn 103.50 154.23 105.08 108.15 91.19
cce Latn 124.20 159.68 133.40 132.89 106.02
ceb Latn 99.37 146.70 113.69 132.72 94.43
ces Latn 62.40 133.26 101.82 114.59 86.91
cfm Latn 138.07 179.26 142.58 143.43 107.20
che Cyrl 152.68 188.52 146.76 148.42 126.87
chk Latn 128.34 180.14 133.81 134.01 97.76
chv Cyrl 132.89 166.12 138.37 128.58 91.96
ckb Arab 126.47 155.90 125.59 164.22 100.65
cmn Hani 63.67 121.22 51.49 60.91 76.95
cnh Latn 129.26 175.83 134.65 139.53 104.21
crh Cyrl 128.56 166.14 128.91 139.13 82.61
crs Latn 100.72 139.95 101.88 57.70 80.86
csy Latn 125.81 172.44 138.22 132.16 100.90
ctd Latn 120.85 163.07 128.99 125.52 92.79
ctu Latn 156.04 220.78 162.45 157.63 112.41
cuk Latn 151.95 213.08 159.59 156.10 119.01
cym Latn 110.34 165.10 135.91 147.72 103.89

Table 16: Detailed results of NLL on PBC (Part I).
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dan Latn 63.65 114.43 97.95 101.13 86.68
deu Latn 57.09 109.69 84.08 54.00 80.90
djk Latn 143.19 192.80 147.13 153.74 120.66
dln Latn 113.43 155.19 118.82 125.73 92.37
dtp Latn 158.44 222.01 165.46 169.63 111.77
dyu Latn 122.24 161.61 126.53 132.73 103.04
dzo Tibt 157.37 550.44 162.42 36.35 99.22
efi Latn 121.73 173.61 139.58 136.78 90.15
ell Grek 80.65 169.16 109.07 57.11 105.74
eng Latn 28.40 93.81 40.01 42.56 46.91
enm Latn 45.43 113.74 62.99 66.87 55.22
epo Latn 79.83 125.27 88.81 100.79 85.24
est Latn 93.49 128.66 109.45 45.04 99.10
eus Latn 133.89 145.19 101.06 78.92 150.43
ewe Latn 140.69 190.49 147.85 133.36 103.15
fao Latn 101.92 150.02 113.16 134.84 93.21
fas Arab 87.19 121.18 99.32 104.15 77.85
fij Latn 110.29 158.90 130.18 97.89 97.65
fil Latn 74.66 130.09 106.51 109.03 84.32
fin Latn 68.42 125.52 116.35 38.52 91.75
fon Latn 160.80 210.76 176.23 178.40 107.16
fra Latn 46.01 105.73 38.57 44.16 73.33
fry Latn 111.69 146.88 111.45 123.28 100.32
gaa Latn 128.54 165.53 145.88 107.90 100.68
gil Latn 125.22 171.28 131.71 130.68 106.24
giz Latn 131.75 183.07 145.21 143.35 97.84
gkn Latn 151.99 210.57 167.40 166.78 116.75
gkp Latn 159.33 219.00 168.31 166.05 110.30
gla Latn 102.90 174.06 129.10 138.42 100.51
gle Latn 102.09 161.80 132.57 146.14 116.86
glv Latn 122.94 172.06 126.34 134.37 98.35

gom Latn 149.35 199.59 155.54 159.44 129.81
gor Latn 156.67 215.11 170.13 167.89 115.02
grc Grek 64.91 153.70 93.39 68.67 81.49
guc Latn 193.75 271.60 202.31 190.66 138.75
gug Latn 139.06 183.84 146.45 151.28 114.14
guj Gujr 121.18 329.05 86.23 202.19 107.88
gur Latn 143.42 208.51 152.80 148.18 106.41
guw Latn 142.60 155.00 158.22 166.16 98.92
gya Latn 130.25 197.61 146.23 137.31 99.85
gym Latn 180.93 262.58 196.74 161.03 135.73
hat Latn 112.20 159.68 116.00 48.45 90.71
hau Latn 105.95 146.45 117.21 127.18 96.63
haw Latn 91.42 140.04 102.87 102.50 91.03
heb Hebr 86.85 197.96 113.81 125.21 143.56
hif Latn 104.78 161.10 114.69 116.63 107.93
hil Latn 103.93 151.84 112.82 130.28 90.13

hin Deva 87.35 175.19 62.49 63.21 103.09
hin Latn 102.01 144.04 112.84 112.96 109.68

hmo Latn 119.64 179.32 128.46 103.09 91.86
hne Deva 124.72 183.69 106.59 120.10 94.27
hnj Latn 126.88 186.09 144.08 149.87 89.64
hra Latn 116.66 151.27 122.49 122.14 96.72
hrv Latn 62.52 125.68 96.82 107.18 73.96
hui Latn 151.46 203.46 161.05 161.36 108.54
hun Latn 69.17 118.92 117.60 125.55 94.04
hus Latn 170.91 241.76 179.70 177.42 120.81

hye Armn 111.94 219.94 141.97 171.24 89.75
iba Latn 102.40 135.32 109.00 102.90 87.43
ibo Latn 131.16 189.15 130.12 172.79 112.01
ifa Latn 140.53 194.86 151.53 148.37 102.38
ifb Latn 149.93 198.42 157.12 156.49 107.60
ikk Latn 132.84 186.95 150.31 163.16 95.14
ilo Latn 119.72 162.55 127.85 146.58 102.18
ind Latn 66.39 121.78 58.14 58.36 80.77
isl Latn 92.39 137.42 113.54 123.83 94.12
ita Latn 54.57 116.50 73.53 52.57 78.23

Table 17: Detailed results of NLL on PBC (Part II).
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ium Latn 150.62 222.39 155.20 157.52 99.54
ixl Latn 190.07 299.20 206.08 202.92 127.52
izz Latn 167.28 228.45 195.19 198.57 118.78
jam Latn 119.85 181.93 134.52 139.07 96.42
jav Latn 134.11 171.16 136.06 140.01 109.34
jpn Jpan 67.67 114.11 84.64 61.57 88.53
kaa Cyrl 136.14 179.48 138.63 153.33 84.79
kaa Latn 134.02 172.76 135.14 145.18 99.15
kab Latn 137.81 193.54 129.87 159.45 117.96
kac Latn 141.33 187.59 150.24 163.68 110.99
kal Latn 120.90 143.71 134.44 90.38 109.58

kan Knda 128.60 336.06 93.77 210.99 110.09
kat Geor 103.81 132.04 144.43 155.32 93.39
kaz Cyrl 129.49 166.60 137.43 150.12 108.56
kbp Latn 151.83 205.24 166.76 156.21 105.09
kek Latn 161.79 230.77 168.62 155.46 110.43

khm Khmr 141.48 453.97 161.21 233.38 100.53
kia Latn 122.81 171.17 136.22 131.73 95.76
kik Latn 141.34 189.92 143.91 155.69 106.53
kin Latn 110.75 137.92 101.14 123.88 99.96
kir Cyrl 125.74 148.16 127.29 148.79 94.02
kjb Latn 152.31 205.47 156.49 160.88 109.02
kjh Cyrl 133.84 168.82 142.31 145.53 97.43

kmm Latn 137.88 185.46 149.16 145.91 107.81
kmr Cyrl 139.23 182.66 137.99 142.19 103.56
kmr Latn 120.54 149.31 124.74 136.78 96.93
knv Latn 249.77 346.55 266.68 245.87 135.66
kor Hang 66.58 119.14 92.53 42.28 82.45
kpg Latn 128.18 190.92 139.68 135.05 90.65
krc Cyrl 123.42 149.60 119.82 130.97 89.22
kri Latn 118.15 172.62 134.67 131.33 96.69
ksd Latn 108.75 155.22 117.82 116.91 84.44
kss Latn 248.46 385.70 269.58 224.81 174.70

ksw Mymr 145.34 187.44 155.38 107.97 94.71
kua Latn 118.00 142.31 125.97 104.16 99.83
lam Latn 145.51 199.78 154.91 139.07 115.48
lao Laoo 163.17 414.25 172.28 234.46 116.39
lat Latn 56.98 102.85 65.60 73.77 73.15
lav Latn 90.61 119.37 103.75 114.03 94.92
ldi Latn 118.61 161.07 122.03 124.26 112.27
leh Latn 131.72 169.51 140.67 124.57 104.47
lhu Latn 147.32 262.73 152.94 153.96 100.83
lin Latn 113.81 128.30 110.20 123.56 92.52
lit Latn 92.16 120.15 107.63 123.52 97.69
loz Latn 119.93 140.69 125.00 98.71 99.46
ltz Latn 114.62 156.92 114.49 104.79 96.89
lug Latn 117.59 174.83 115.12 143.99 107.58
luo Latn 118.37 158.54 129.88 126.61 108.96
lus Latn 122.17 159.02 125.37 133.65 103.21
lzh Hani 62.06 88.07 54.92 60.19 66.36
mad Latn 136.26 192.90 146.43 145.94 103.63
mah Latn 113.96 159.42 120.91 110.27 97.45
mai Deva 136.92 209.91 108.91 126.23 100.39
mal Mlym 111.12 210.81 72.27 126.62 105.00
mam Latn 173.35 227.62 181.33 179.63 138.57
mar Deva 105.80 184.52 83.30 141.12 106.37
mau Latn 139.06 259.48 153.06 140.49 148.96
mbb Latn 160.77 237.84 174.36 171.35 101.96
mck Latn 124.95 161.95 131.37 123.87 99.72
mcn Latn 110.95 153.55 120.44 123.48 96.39
mco Latn 203.59 285.23 205.92 192.68 159.16
mdy Ethi 164.72 284.41 157.66 188.38 92.89
meu Latn 111.26 152.92 120.09 103.47 91.50
mfe Latn 99.68 136.00 98.60 55.39 80.86
mgh Latn 131.75 181.11 140.22 136.00 118.72
mgr Latn 126.60 154.99 129.40 106.55 108.42

Table 18: Detailed results of NLL on PBC (Part III).
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mhr Cyrl 122.42 160.48 119.36 127.42 100.09
min Latn 139.41 194.79 136.22 138.87 133.30
miq Latn 129.28 182.98 144.36 141.12 104.92
mkd Cyrl 85.29 151.22 112.67 89.21 89.46
mlg Latn 107.66 135.73 106.88 128.75 86.60
mlt Latn 108.58 168.92 134.24 137.26 107.12
mos Latn 129.97 161.07 135.30 138.61 112.98
mps Latn 196.29 283.21 212.92 204.15 126.56
mri Latn 87.56 138.21 103.82 111.33 88.68

mrw Latn 127.39 174.88 134.59 133.06 99.21
msa Latn 104.71 152.69 97.60 93.04 113.32

mwm Latn 159.30 238.34 171.46 159.27 99.80
mxv Latn 146.98 235.76 162.84 164.53 126.52

mya Mymr 162.62 248.51 185.69 84.78 107.92
myv Cyrl 148.95 192.16 140.65 152.76 110.76
mzh Latn 146.28 217.81 160.03 153.09 101.97
nan Latn 130.85 204.44 144.08 138.29 118.30
naq Latn 126.47 179.33 139.25 135.80 100.90
nav Latn 167.01 233.91 176.25 183.89 119.97
nbl Latn 109.14 148.07 114.06 127.75 96.55
nch Latn 155.09 212.74 165.40 171.74 144.74
ncj Latn 131.14 184.55 137.38 140.86 129.63
ndc Latn 106.50 151.16 111.70 117.94 107.15
nde Latn 106.83 152.97 114.79 133.97 100.83
ndo Latn 132.12 162.83 138.17 107.11 105.82
nds Latn 123.29 166.55 124.21 125.62 123.87
nep Deva 109.47 199.05 81.70 141.10 103.11
ngu Latn 148.78 204.17 156.73 156.92 120.15
nia Latn 135.60 192.37 143.95 130.11 111.86
nld Latn 58.81 114.31 96.47 97.28 82.78
nmf Latn 122.39 165.17 130.43 134.30 98.07
nnb Latn 122.26 163.28 127.40 131.83 98.36
nno Latn 80.33 133.43 102.92 112.53 86.17
nob Latn 61.45 126.38 100.25 98.89 80.02
nor Latn 56.27 104.11 87.94 86.18 71.86
npi Deva 115.63 219.43 78.62 159.24 96.97
nse Latn 116.86 157.47 124.34 116.64 109.55
nso Latn 116.55 160.63 114.34 132.40 97.49
nya Latn 112.30 160.76 116.85 124.27 101.20
nyn Latn 120.67 159.71 127.46 131.05 106.34
nyy Latn 153.10 189.04 164.69 160.66 121.06
nzi Latn 130.01 179.62 150.60 141.28 101.29
ori Orya 148.25 392.96 91.33 296.43 98.06
ory Orya 143.02 352.28 95.95 282.70 106.99
oss Cyrl 140.22 182.75 141.83 139.80 97.09
ote Latn 160.20 247.13 175.42 168.28 119.40
pag Latn 123.49 163.26 131.05 133.56 109.90
pam Latn 117.54 163.02 121.69 130.95 103.78
pan Guru 130.07 286.36 90.80 208.67 106.44
pap Latn 110.09 149.82 118.80 114.73 92.08
pau Latn 125.22 178.67 132.62 131.85 104.80
pcm Latn 76.80 127.05 89.92 91.28 79.44
pdt Latn 124.83 175.03 129.63 126.61 97.29
pes Arab 91.68 129.42 105.39 105.84 84.63
pis Latn 118.50 180.76 130.26 133.14 95.70
pls Latn 147.97 217.00 152.42 153.90 104.29
plt Latn 113.52 139.96 112.22 139.93 89.18

poh Latn 240.95 363.61 257.65 256.21 140.88
pol Latn 61.88 111.24 97.90 107.87 85.46
pon Latn 123.40 164.68 131.48 125.12 105.87
por Latn 53.69 106.83 42.29 45.85 75.88
prk Latn 118.66 167.68 121.37 128.55 94.48
prs Arab 88.26 123.81 99.63 105.09 80.28
pxm Latn 154.30 207.27 160.81 160.27 102.81
qub Latn 133.85 172.77 139.98 107.69 93.49
quc Latn 176.66 222.18 191.60 178.35 124.30
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qug Latn 124.11 158.66 131.62 95.23 95.07
quh Latn 148.83 174.81 154.34 107.04 106.24
quw Latn 104.78 139.63 109.91 95.69 92.58
quy Latn 119.84 140.49 127.93 85.16 94.14
quz Latn 126.18 149.08 134.60 85.68 96.32
qvi Latn 134.03 177.51 139.73 114.64 100.81
rap Latn 139.27 239.23 152.39 157.18 100.81
rar Latn 136.30 205.48 152.87 149.88 123.36

rmy Latn 124.05 164.59 129.35 132.97 108.84
ron Latn 71.75 145.55 113.22 136.42 92.16
rop Latn 141.24 218.11 152.37 163.59 93.46
rug Latn 144.21 200.64 155.21 151.73 99.72
run Latn 111.11 140.11 101.95 120.78 99.61
rus Cyrl 57.09 115.06 85.44 48.93 78.66
sag Latn 118.57 144.91 123.32 113.66 101.74
sah Cyrl 140.83 175.34 139.86 155.36 99.78
san Deva 120.11 183.77 128.71 131.38 123.45
san Latn 133.78 188.35 151.17 152.84 112.82
sba Latn 147.44 205.90 167.36 154.66 98.05
seh Latn 116.71 159.73 123.08 121.65 100.51
sin Sinh 133.79 283.43 166.13 228.72 113.72
slk Latn 75.89 141.01 105.13 123.74 89.45
slv Latn 75.67 140.40 111.88 127.31 95.15

sme Latn 134.17 166.51 131.28 132.85 103.75
smo Latn 113.64 165.04 126.68 127.57 96.65
sna Latn 107.03 157.69 112.48 124.30 99.14
snd Arab 141.08 183.48 144.96 173.65 107.47
som Latn 114.80 163.60 131.06 149.83 110.34
sop Latn 120.92 148.69 129.81 113.62 117.37
sot Latn 112.14 155.55 113.59 127.04 95.35
spa Latn 49.64 107.41 43.22 48.95 69.30
sqi Latn 106.17 145.44 116.56 140.41 92.13
srm Latn 172.30 242.13 187.65 185.42 124.54
srn Latn 112.06 137.43 113.65 121.74 91.24
srp Cyrl 57.16 129.53 97.17 99.06 71.36
srp Latn 61.53 124.70 95.02 105.00 71.54
ssw Latn 120.48 172.73 132.69 140.25 104.17
sun Latn 123.92 165.15 124.81 129.90 111.93
suz Deva 141.06 222.01 143.66 139.17 93.18
swe Latn 60.78 124.59 105.53 99.90 86.99
swh Latn 97.92 131.52 87.87 54.27 90.87
sxn Latn 173.04 249.27 188.33 183.25 124.96
tam Taml 109.64 213.05 70.91 64.81 100.45
tat Cyrl 136.52 167.63 136.15 147.39 94.42
tbz Latn 135.12 176.55 145.64 137.50 88.42
tca Latn 202.44 294.68 215.39 207.66 112.33
tdt Latn 114.70 164.66 123.50 129.26 93.86
tel Telu 122.18 196.41 91.03 65.40 115.17
teo Latn 115.64 157.71 122.24 117.99 99.95
tgk Cyrl 128.86 144.47 127.10 140.25 101.04
tgl Latn 74.71 130.27 109.14 110.56 85.29
tha Thai 107.69 187.16 134.02 58.96 101.09
tih Latn 129.95 188.97 139.91 137.24 89.82
tir Ethi 122.75 258.00 143.76 190.93 99.03
tlh Latn 87.59 142.90 97.02 97.38 62.55
tob Latn 179.90 269.36 189.99 191.60 107.12
toh Latn 127.60 171.62 136.60 136.06 104.79
toi Latn 124.75 166.04 133.32 114.25 114.54
toj Latn 175.52 237.75 181.56 177.72 148.72
ton Latn 120.61 179.89 125.92 137.67 98.37
top Latn 165.19 223.46 174.82 173.24 164.19
tpi Latn 105.47 161.38 117.02 128.35 84.22

tpm Latn 120.52 166.93 131.95 129.07 89.91
tsn Latn 112.13 163.36 113.76 129.32 96.63
tso Latn 125.25 155.16 120.37 134.66 103.51
tsz Latn 129.96 184.88 142.29 126.39 110.66
tuc Latn 187.91 261.93 196.20 166.43 106.46
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tui Latn 135.41 187.71 146.21 146.43 107.57
tuk Cyrl 127.20 168.02 136.69 145.86 94.72
tuk Latn 123.72 144.22 124.67 135.21 97.42
tum Latn 127.49 165.45 130.05 109.19 102.35
tur Latn 76.97 118.11 102.96 57.95 99.22
twi Latn 110.21 159.12 110.54 122.43 93.81
tyv Cyrl 165.82 197.37 164.25 181.87 107.33
tzh Latn 147.06 205.37 157.00 148.16 118.46
tzo Latn 166.45 248.81 178.03 173.52 122.42

udm Cyrl 138.00 176.90 140.39 137.21 102.56
uig Arab 166.57 226.61 157.03 229.43 114.04
uig Latn 145.11 165.68 156.02 157.78 121.77
ukr Cyrl 68.45 134.95 101.40 93.65 92.95
urd Arab 99.74 141.13 74.20 63.53 110.49
uzb Cyrl 128.48 149.94 136.85 135.60 88.90
uzb Latn 118.83 138.99 132.96 145.00 95.19
uzn Cyrl 136.04 160.00 145.95 142.34 94.12
ven Latn 131.18 172.05 138.68 137.88 104.82
vie Latn 74.42 115.85 56.37 59.30 91.10
wal Latn 129.99 180.12 134.43 122.12 105.68
war Latn 111.26 159.23 118.85 131.06 113.74

wbm Latn 120.96 174.48 126.11 128.99 94.78
wol Latn 115.67 154.99 101.97 127.09 102.93
xav Latn 243.35 430.83 263.49 257.10 137.76
xho Latn 112.96 155.63 109.11 135.39 107.43
yan Latn 125.81 179.37 136.34 131.31 98.47
yao Latn 143.68 187.96 148.92 143.16 114.54
yap Latn 150.28 207.86 157.67 157.91 123.07
yom Latn 118.61 155.58 121.64 126.20 100.18
yor Latn 129.77 166.68 100.87 155.88 105.79
yua Latn 148.34 218.12 155.65 156.40 118.30
yue Hani 64.57 122.47 54.42 62.71 87.78
zai Latn 121.90 161.31 121.61 129.12 108.99

zho Hani 64.02 115.19 51.79 63.22 69.53
zlm Latn 57.83 101.11 48.96 51.87 64.76
zom Latn 119.86 159.31 128.06 125.99 98.96
zsm Latn 60.40 110.60 51.75 52.51 70.43
zul Latn 103.20 157.55 113.26 130.35 98.06

all 122.10 180.54 129.55 131.31 101.67

Table 21: Detailed results of NLL on PBC (Part VI).
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7B1
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7.5B

MaLA-500
1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot 9-shot 10-shot

ace Latn 44.12 47.55 50.00 36.76 34.31 52.94 60.29 60.78 65.69 67.65 64.22 65.20 68.63 71.57
acm Arab 52.45 65.69 69.12 58.33 32.35 53.43 59.31 63.73 63.73 67.16 66.67 69.12 66.67 66.67
afr Latn 68.14 55.39 53.92 40.20 41.18 62.25 65.69 69.12 71.08 74.02 73.53 74.51 76.96 78.92
ajp Arab 47.55 64.22 68.63 53.43 33.33 56.86 59.80 59.80 65.20 63.73 63.24 69.12 68.14 66.67
als Latn 41.67 46.57 45.59 28.43 27.94 51.96 63.73 62.25 69.12 71.08 69.61 72.06 75.98 77.45

amh Ethi 15.69 18.63 16.67 13.24 25.00 36.76 45.59 51.47 51.96 53.92 51.96 53.43 54.90 53.92
apc Arab 46.57 65.69 68.14 53.43 31.37 55.88 60.29 65.69 65.69 67.16 65.20 68.63 67.65 72.06
arb Arab 53.43 63.24 68.14 57.35 32.35 54.90 60.29 63.73 65.20 68.14 67.16 69.12 68.63 70.59
ary Arab 45.10 57.84 69.12 50.49 26.47 52.45 55.39 56.37 60.29 59.80 64.22 63.73 59.31 64.71
arz Arab 50.98 64.22 68.14 56.86 30.88 52.45 59.31 60.78 64.22 66.18 68.14 69.12 66.67 69.12
asm Beng 17.16 49.02 61.27 37.25 31.37 53.43 58.82 65.20 67.65 67.65 68.14 67.65 67.65 67.65
ast Latn 69.12 60.78 69.12 55.39 34.31 65.69 70.10 70.59 74.02 75.00 75.98 77.94 79.90 79.90
ayr Latn 25.00 26.96 32.35 19.61 20.10 29.41 38.24 38.73 38.24 43.14 40.20 43.14 44.61 42.16
azb Arab 25.49 41.67 32.84 24.51 25.98 41.18 45.59 45.10 46.57 49.51 50.00 49.02 50.49 49.51
azj Latn 34.80 64.22 37.25 32.84 30.88 57.84 64.71 68.63 64.22 72.55 69.61 70.59 74.02 72.55
bak Cyrl 38.73 61.27 32.35 32.35 34.80 51.47 60.29 61.27 69.12 68.63 68.14 68.63 73.53 70.10
bam Latn 25.49 24.51 29.41 20.10 22.55 25.98 34.80 42.16 43.14 44.12 45.10 42.16 46.08 44.12
ban Latn 58.82 51.47 58.82 43.14 28.92 55.39 63.24 65.69 66.67 72.06 72.06 72.55 72.06 71.57
bel Cyrl 47.55 59.80 28.92 30.39 40.69 60.29 63.24 66.18 67.65 70.10 72.55 72.06 72.55 73.04

bem Latn 31.37 28.92 38.24 25.49 21.08 34.80 43.14 48.04 50.49 50.49 53.43 53.43 52.45 53.92
ben Beng 25.49 61.27 64.22 52.45 31.37 54.90 63.24 62.25 67.65 70.10 70.10 69.12 66.18 68.63
bjn Latn 48.53 51.96 61.76 42.65 32.35 62.75 66.18 68.14 71.57 75.98 73.04 72.55 75.00 77.45
bod Tibt 15.20 12.75 15.69 15.69 22.06 34.80 37.75 37.75 38.73 39.71 39.71 39.71 41.67 44.12
bos Latn 65.20 64.71 45.59 33.82 37.75 65.20 72.06 70.10 71.57 75.98 75.00 76.47 76.96 77.45
bul Cyrl 66.18 63.24 38.73 52.94 45.10 62.25 67.65 67.16 68.14 75.00 71.57 72.06 73.53 75.00
cat Latn 71.08 60.78 66.67 60.29 34.31 59.31 68.14 68.63 71.57 72.55 69.12 73.04 76.96 76.47
ceb Latn 50.49 50.98 49.02 39.71 39.22 60.29 66.67 66.67 68.63 73.04 72.06 71.57 74.51 74.02
ces Latn 69.12 62.75 47.55 40.69 39.22 62.25 69.61 70.59 72.55 76.47 72.55 74.02 80.88 76.96
cjk Latn 27.94 30.39 34.31 26.47 22.55 30.88 31.86 32.84 38.24 38.24 38.24 35.78 39.22 42.65

ckb Arab 19.61 22.55 23.04 12.25 28.92 53.43 60.29 57.35 65.20 65.20 62.75 65.69 65.69 70.59
cmn Hani 73.04 65.20 67.65 54.90 39.71 69.12 74.02 72.06 76.47 77.45 76.47 75.98 79.41 76.47
crh Latn 38.24 56.37 40.20 36.76 29.41 51.96 62.25 61.76 64.22 69.12 64.22 70.10 69.12 71.08
cym Latn 39.22 28.43 34.80 21.57 28.43 55.39 62.75 63.73 66.18 72.06 74.02 72.06 75.00 77.45
dan Latn 69.12 64.22 55.39 44.12 38.24 54.41 63.24 65.20 70.10 71.08 72.06 71.57 73.53 74.51
deu Latn 74.02 60.29 61.27 55.39 41.18 63.73 68.63 71.57 69.12 75.00 75.49 76.47 77.45 77.45
dyu Latn 28.43 28.92 32.35 20.10 21.08 29.90 38.73 39.71 46.57 44.12 41.67 47.06 44.61 43.63
dzo Tibt 14.71 10.29 13.73 12.75 21.57 30.39 36.76 37.25 39.71 36.76 39.22 37.75 43.14 39.22
ell Grek 47.55 63.73 28.43 60.29 43.63 62.75 69.61 66.67 69.12 69.61 70.59 73.04 72.06 72.06
eng Latn 71.57 59.80 71.08 67.65 48.04 63.24 70.59 69.12 69.12 74.02 73.04 74.51 76.96 75.98
epo Latn 52.94 50.49 52.94 43.63 27.94 49.51 66.18 66.67 68.63 72.55 73.53 71.57 74.51 75.98
est Latn 48.04 54.90 41.18 57.35 29.41 55.88 62.75 66.67 70.10 72.06 70.10 69.12 71.57 73.04
eus Latn 36.27 59.80 64.22 55.88 27.94 52.45 61.76 66.18 66.18 73.53 73.53 72.55 73.53 75.49
ewe Latn 23.53 23.53 29.90 17.16 23.53 28.43 38.24 35.29 41.18 43.63 38.73 44.61 39.71 43.63
fao Latn 41.18 43.63 38.73 29.90 35.29 52.94 56.86 57.84 62.25 61.27 62.25 61.76 64.22 69.12
fij Latn 27.45 27.45 36.27 24.02 24.51 37.75 48.53 47.55 53.92 48.53 50.00 51.47 51.47 53.92
fin Latn 67.65 63.24 38.73 56.86 36.76 61.76 70.10 70.10 72.55 74.51 72.06 73.53 75.00 75.49
fon Latn 25.49 22.06 31.37 19.12 23.53 29.90 30.88 37.25 35.78 38.24 39.71 38.24 37.25 46.57
fra Latn 72.06 64.71 66.18 59.80 36.76 58.82 71.08 67.65 71.08 74.51 71.57 74.02 77.45 77.45
ful Latn 27.45 31.37 32.84 24.02 21.57 31.86 36.76 40.69 43.14 45.10 44.12 47.06 47.06 46.08
fur Latn 58.82 50.00 55.88 38.73 35.78 53.92 55.88 62.25 66.67 68.63 68.14 67.16 75.00 72.55
gla Latn 37.75 24.51 27.45 17.16 24.51 50.98 55.88 57.84 57.35 59.80 63.24 61.27 62.75 65.20
gle Latn 39.71 25.49 25.00 17.16 27.94 53.43 57.84 63.24 64.22 67.65 64.71 63.24 62.75 73.53
glg Latn 68.63 62.25 64.22 55.39 29.41 66.67 70.10 71.08 74.02 76.96 73.53 76.47 77.45 80.39
grn Latn 42.16 47.06 48.53 33.82 25.98 52.45 62.75 64.71 62.25 67.16 64.22 65.69 61.76 69.61
guj Gujr 15.20 09.31 62.25 12.75 28.43 50.98 54.90 60.29 63.73 63.73 64.22 65.69 62.75 67.16
hat Latn 41.67 38.73 42.16 45.10 34.80 57.35 63.73 62.25 65.20 72.06 69.61 70.10 73.53 73.04
hau Latn 25.49 28.43 29.90 20.59 28.43 47.06 55.39 57.84 61.27 65.69 62.75 65.69 66.18 65.20
heb Hebr 37.75 63.24 20.59 11.76 26.47 41.67 47.06 51.47 54.90 51.96 50.98 54.90 53.92 54.41
hin Deva 44.61 62.75 62.75 51.96 33.82 55.39 60.78 66.67 65.20 69.61 70.59 74.02 73.04 72.06
hne Deva 37.75 58.82 59.80 49.02 28.43 55.39 55.88 65.20 62.75 68.63 66.18 65.69 68.14 71.08
hrv Latn 66.18 65.20 44.12 36.27 40.69 63.73 73.04 71.08 73.53 76.47 72.06 74.51 78.43 78.43
hun Latn 71.08 63.24 41.67 27.94 30.88 60.78 67.16 70.59 68.63 75.49 73.53 74.02 73.04 76.47
hye Armn 20.59 17.16 13.73 12.75 32.84 58.82 59.80 67.16 65.20 69.61 68.14 69.12 69.12 72.55
ibo Latn 24.02 26.47 38.24 19.12 30.39 51.47 57.35 63.73 67.16 69.12 68.14 69.12 68.63 72.06
ilo Latn 45.10 45.59 48.04 32.35 27.45 54.90 61.76 61.76 68.14 68.14 70.10 73.04 73.53 70.10
ind Latn 74.02 62.75 70.10 54.90 40.69 62.75 68.63 71.57 70.59 75.49 75.49 76.96 80.39 77.94
isl Latn 35.29 36.76 28.92 24.51 38.73 55.88 60.78 58.33 60.29 64.71 63.73 63.24 62.75 65.20
ita Latn 69.61 62.25 62.75 57.84 40.20 64.22 70.59 70.59 74.51 77.94 75.98 76.96 80.39 76.96
jav Latn 50.49 52.94 55.39 38.24 31.86 53.43 60.78 64.22 65.20 72.55 69.12 73.04 68.63 73.04
jpn Jpan 73.53 60.29 63.24 55.88 38.73 67.16 72.06 75.49 78.92 79.41 80.39 78.92 81.86 81.37
kab Latn 16.18 16.67 20.10 12.25 20.59 24.02 22.55 30.39 31.86 34.80 28.43 33.33 32.35 34.31
kac Latn 25.98 24.51 28.43 20.59 20.10 24.02 29.90 35.78 35.78 43.14 37.75 37.25 43.63 39.71
kam Latn 26.96 34.31 34.80 26.47 22.06 36.76 38.73 37.75 40.69 41.67 46.57 41.67 42.16 42.16
kan Knda 17.16 11.27 61.27 11.27 25.49 50.98 57.35 60.29 61.27 65.20 63.24 64.22 65.69 67.16
kat Geor 29.41 61.27 18.14 14.71 32.84 56.86 60.78 62.25 65.20 67.65 70.59 70.59 70.10 74.51
kaz Cyrl 37.75 62.75 29.90 28.43 34.31 53.43 57.35 62.25 65.69 67.16 65.20 65.69 69.12 67.65
kbp Latn 24.51 22.06 30.39 16.18 21.08 28.43 36.76 38.73 40.69 39.22 40.69 39.71 38.73 40.20
kea Latn 53.43 51.96 56.86 39.71 32.84 56.86 63.73 65.20 67.16 69.61 69.12 71.57 71.57 72.06

khm Khmr 27.45 11.27 25.49 15.20 39.22 61.76 67.16 67.65 68.63 72.06 73.53 75.00 76.47 76.47
kik Latn 29.41 32.84 38.73 26.96 21.57 37.75 49.51 50.49 50.49 56.86 56.37 56.37 52.94 56.86
kin Latn 26.47 32.35 50.49 24.51 27.45 40.69 49.02 52.94 57.84 58.33 60.78 56.86 59.31 59.80
kir Cyrl 35.78 60.78 34.80 27.45 29.90 45.59 58.33 60.78 60.29 65.20 60.29 64.71 66.18 66.18

kmb Latn 26.47 28.43 33.82 25.00 21.08 31.86 35.29 39.71 38.24 41.18 41.67 37.25 41.67 44.61
kmr Latn 29.41 33.82 33.33 21.57 25.98 37.75 47.06 47.55 52.45 52.45 54.90 54.41 58.82 61.76
kon Latn 33.33 33.82 40.69 32.35 22.06 39.71 46.57 51.96 53.92 64.71 64.22 60.78 64.22 65.20
kor Hang 67.65 63.24 43.14 56.37 45.10 63.24 67.65 69.12 71.57 73.04 70.59 75.98 76.96 76.47
lao Laoo 24.02 14.22 26.47 16.67 39.71 55.39 62.25 63.73 68.63 70.59 70.10 68.63 70.59 70.59
lij Latn 55.88 53.43 56.37 44.61 37.25 58.82 67.65 66.67 69.61 71.57 71.08 74.02 76.47 74.02

Table 22: Detailed results on SIB200 (Part I). For previous LLMs, 3-shot results are presented.
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Lang LLaMA 2
7B

mGPT
13B

BLOOM
7B1

XGLM
7.5B

MaLA-500
1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot 9-shot 10-shot

lim Latn 60.78 50.00 50.00 33.82 32.84 56.37 60.78 63.24 66.67 67.16 69.12 72.55 70.59 72.06
lin Latn 36.76 40.20 43.14 34.31 23.04 38.24 47.06 53.92 57.84 61.27 56.86 60.29 62.75 65.69
lit Latn 40.20 60.29 41.18 30.39 32.35 55.39 62.75 65.20 64.71 70.59 68.14 66.67 69.61 73.04

lmo Latn 57.84 50.98 55.88 41.67 34.80 59.31 65.69 66.18 70.10 71.57 70.59 70.59 75.00 75.49
ltz Latn 55.88 47.06 52.94 39.22 39.22 56.37 65.20 61.27 70.59 68.14 71.08 70.59 71.08 74.02
lua Latn 32.35 33.33 39.22 28.43 20.10 33.82 40.20 42.65 49.02 51.96 50.00 50.00 49.51 50.00
lug Latn 27.94 25.00 33.82 19.61 22.06 35.78 40.20 43.63 48.04 51.47 47.06 43.63 49.02 49.02
luo Latn 28.43 28.43 32.84 25.49 21.57 31.37 37.25 42.65 48.04 49.51 46.57 51.47 49.51 51.47
lus Latn 43.63 42.16 49.02 31.37 25.49 45.59 51.96 53.92 52.45 54.90 57.84 60.29 58.33 60.29
lvs Latn 43.14 67.16 43.63 29.41 31.37 57.84 65.20 63.24 68.14 72.55 67.65 69.61 71.08 72.55

mai Deva 40.69 59.31 60.29 51.47 33.33 57.84 61.76 66.67 67.65 69.12 69.12 70.10 71.57 69.12
mal Mlym 20.10 60.29 64.71 13.24 25.98 52.45 59.31 60.29 62.75 62.25 65.69 63.24 63.73 68.14
mar Deva 29.90 56.86 63.73 37.75 36.27 51.96 57.35 64.22 63.73 63.73 63.73 66.67 66.18 68.14
min Latn 48.04 55.39 59.80 39.71 31.37 57.35 69.12 68.14 68.63 77.94 72.06 75.98 75.49 77.45
mkd Cyrl 60.78 52.45 32.84 44.12 44.12 66.18 68.63 69.12 68.63 73.04 73.04 72.55 73.04 76.96
mlt Latn 49.51 45.10 46.08 29.90 35.78 64.71 67.16 68.14 67.16 77.45 75.49 76.96 77.45 76.96
mon Cyrl 23.53 54.90 20.10 18.63 38.24 50.00 56.86 55.88 63.24 64.22 63.24 63.24 65.20 67.16
mos Latn 25.49 23.53 29.90 20.59 20.59 27.94 36.76 37.75 37.75 40.69 41.67 45.10 41.67 45.10
mri Latn 30.39 24.02 30.88 17.65 28.43 44.12 49.02 51.47 51.47 57.84 55.88 58.82 56.37 58.33

mya Mymr 19.12 60.29 19.61 60.29 23.53 38.73 43.14 53.43 53.43 50.98 52.45 54.90 51.96 54.90
nld Latn 70.10 59.80 55.88 46.08 45.59 64.71 69.12 68.63 73.04 73.53 75.49 74.02 79.41 80.88
nno Latn 64.71 61.76 52.45 45.59 35.29 52.94 64.22 62.75 66.18 68.63 68.63 70.10 69.12 73.04
npi Deva 39.22 51.96 64.71 40.69 33.82 57.84 61.76 68.14 67.65 67.65 68.63 70.10 68.63 75.49
nso Latn 27.94 30.88 33.33 22.55 21.08 33.82 43.14 46.08 49.02 52.94 51.96 53.92 54.90 53.92
nya Latn 32.35 34.31 40.69 27.94 23.04 35.29 45.59 49.02 50.98 51.47 52.94 53.92 52.94 58.33
oci Latn 68.63 56.37 65.69 48.53 34.31 60.29 69.12 65.20 67.65 73.04 73.53 71.57 75.49 76.47

orm Latn 17.16 18.14 22.06 16.67 20.10 30.39 35.29 41.18 41.67 47.55 41.67 44.12 43.14 51.47
ory Orya 13.24 13.73 64.22 11.76 24.51 45.10 52.45 57.84 53.92 61.27 57.84 56.86 60.78 60.78
pag Latn 52.45 49.51 53.92 40.20 31.86 54.90 62.75 60.78 67.65 64.71 70.10 70.10 69.12 69.61
pan Guru 14.22 11.27 62.25 11.76 33.82 54.90 58.82 63.73 64.22 67.65 67.16 66.67 68.63 67.16
pap Latn 55.39 50.00 52.94 38.24 30.39 56.86 64.71 66.67 69.61 74.51 69.12 73.53 70.59 75.49
pes Arab 47.06 58.82 52.94 32.84 39.22 61.27 71.08 63.73 70.59 72.55 72.55 73.53 76.47 76.47
plt Latn 28.43 32.84 37.25 21.57 29.41 51.96 58.82 57.84 59.31 60.78 60.29 60.29 64.22 60.29
pol Latn 74.51 60.78 47.06 32.84 36.76 61.76 68.63 69.12 71.08 75.00 74.02 74.02 77.45 75.98
por Latn 70.10 61.76 65.20 59.31 36.76 64.71 72.06 70.10 74.51 75.00 76.96 75.49 78.43 82.84
prs Arab 50.49 55.39 49.51 33.33 37.25 60.78 64.22 67.16 69.12 72.55 72.55 73.53 72.55 75.49
pus Arab 30.39 34.80 38.73 21.08 30.39 47.06 50.98 52.45 54.41 53.92 53.92 55.88 55.88 57.84
quy Latn 32.84 35.29 40.69 35.29 22.06 36.27 44.12 45.59 49.02 52.45 49.51 49.02 50.98 50.98
ron Latn 69.12 61.76 57.84 42.65 41.18 61.27 70.10 65.20 70.10 74.51 73.53 75.00 78.92 78.43
run Latn 25.49 27.94 44.12 25.49 23.53 37.25 46.57 50.49 51.96 59.31 51.96 56.37 57.84 60.29
rus Cyrl 71.57 63.24 53.43 60.29 38.73 64.22 65.20 69.12 72.06 75.98 75.00 76.47 75.49 78.92
sag Latn 29.90 27.94 31.37 21.08 20.59 30.88 43.63 47.06 48.53 55.88 52.45 54.41 55.88 58.82
san Deva 27.94 47.55 54.90 42.65 24.51 48.04 60.29 57.84 62.25 66.67 65.20 61.76 66.18 65.20
scn Latn 51.96 50.00 53.43 40.69 37.25 63.73 73.04 70.59 74.02 77.45 75.49 75.00 80.39 76.47
sin Sinh 15.20 10.78 20.10 12.75 29.90 56.37 60.29 65.20 66.18 68.14 64.71 66.67 63.73 67.16
slk Latn 68.14 60.29 47.55 39.71 34.31 58.33 68.63 66.67 70.59 75.00 70.59 71.57 74.51 75.00
slv Latn 68.14 60.78 44.12 32.84 38.73 63.24 68.14 68.14 70.59 73.53 73.53 74.51 78.43 76.47

smo Latn 30.39 25.00 31.86 18.14 29.41 52.45 60.29 62.25 62.25 65.69 67.16 65.20 66.18 69.61
sna Latn 28.43 29.41 36.27 23.53 24.51 39.71 44.61 45.59 44.61 49.51 45.59 47.55 47.06 50.00
snd Arab 27.94 37.25 39.22 23.53 27.94 42.65 47.06 50.49 52.45 54.41 54.41 52.94 55.88 56.86
som Latn 23.53 25.49 27.94 17.16 22.06 36.27 44.61 47.55 51.47 52.94 52.94 53.92 54.41 55.39
sot Latn 29.41 28.43 33.82 18.63 22.55 36.76 43.14 47.06 50.49 51.96 52.45 55.39 54.41 56.86
spa Latn 72.55 58.33 67.65 56.37 35.29 64.22 69.61 72.06 74.51 74.02 72.06 76.47 78.43 78.43
srd Latn 53.92 52.45 50.98 37.25 31.37 60.29 66.18 68.63 75.98 74.02 77.94 77.45 79.41 79.41
srp Cyrl 63.73 55.39 33.33 39.22 45.59 65.20 70.59 69.61 73.04 76.47 74.02 75.00 77.94 79.41
ssw Latn 29.41 25.00 31.37 21.57 24.02 44.12 46.57 50.00 52.94 51.96 53.92 56.86 53.92 60.78
sun Latn 55.39 59.31 63.73 44.61 37.25 60.29 68.63 70.10 71.08 73.53 72.55 73.53 75.00 75.98
swe Latn 71.08 61.27 52.94 48.04 33.82 53.43 60.29 64.71 64.71 69.12 70.10 69.61 72.55 70.59
swh Latn 32.35 63.24 61.27 56.86 29.41 50.49 59.31 58.82 62.75 60.29 62.25 68.63 66.67 66.67
szl Latn 56.86 50.49 45.59 29.41 30.88 51.47 59.80 63.73 64.71 67.16 69.61 68.63 71.08 69.12

tam Taml 20.59 63.24 67.16 58.82 30.88 50.49 55.88 62.75 63.24 63.73 65.20 69.61 66.67 68.63
tat Cyrl 37.75 60.29 35.29 28.92 33.33 54.90 64.22 64.71 65.69 74.51 70.10 71.57 71.57 73.53
tel Telu 18.14 60.78 61.27 59.80 25.98 50.00 52.45 59.80 58.82 63.73 60.78 60.29 63.73 61.76
tgk Cyrl 26.96 57.84 23.53 17.16 36.76 54.90 60.29 60.78 61.27 69.12 64.71 66.18 68.14 70.59
tgl Latn 55.88 58.33 49.02 40.20 43.14 64.22 69.61 64.71 70.10 75.49 74.51 77.45 78.43 77.45
tha Thai 44.61 60.78 23.53 57.35 41.18 63.24 67.16 68.63 70.10 72.06 70.59 70.10 72.06 75.49
tir Ethi 13.24 16.18 16.18 13.73 21.57 34.80 39.22 41.67 47.06 46.08 45.59 47.06 45.59 47.55
tpi Latn 63.24 46.57 56.86 33.33 31.86 58.82 65.69 68.14 70.10 72.06 74.51 73.53 75.98 74.51
tsn Latn 28.92 29.90 32.35 24.51 24.51 40.20 44.12 47.06 47.06 53.43 51.96 50.00 50.49 54.41
tso Latn 30.88 31.37 36.76 28.92 22.55 35.29 41.18 45.10 46.08 48.04 43.14 43.14 45.59 49.02
tuk Latn 34.31 46.08 39.22 27.45 24.02 45.59 53.43 58.82 57.84 63.73 63.73 66.18 65.69 66.18
tum Latn 26.96 34.31 33.82 27.94 21.57 39.22 43.14 45.59 46.08 47.55 44.61 49.02 49.51 49.51
tur Latn 52.94 62.75 40.20 52.94 36.76 60.78 68.63 70.10 72.06 74.02 75.00 76.47 75.98 76.96
uig Arab 18.63 18.14 20.10 11.27 21.08 33.33 36.76 39.71 43.14 44.61 43.14 48.53 47.55 48.04
ukr Cyrl 71.57 63.73 41.18 43.63 39.71 60.29 65.69 66.18 69.12 71.08 75.00 73.53 72.55 75.00

umb Latn 25.00 26.47 29.90 23.04 21.57 30.88 32.84 36.76 35.78 40.20 38.24 34.80 36.76 35.29
urd Arab 38.73 53.43 63.24 54.41 36.27 55.39 62.75 64.22 64.22 68.63 65.20 68.63 67.16 67.16
uzb Latn 30.39 62.75 35.78 23.53 22.06 50.49 56.37 57.84 63.24 72.06 63.73 69.12 72.55 71.57
vec Latn 65.69 59.80 56.86 52.45 39.22 62.25 66.18 69.61 70.10 69.12 74.51 75.98 75.00 76.47
vie Latn 67.65 63.24 67.16 60.78 39.71 60.78 67.16 68.63 74.51 75.98 76.47 75.00 78.43 79.90
war Latn 51.47 51.47 51.47 37.25 37.75 61.27 65.69 65.20 69.61 73.04 71.57 71.57 74.02 74.02
wol Latn 32.35 34.80 43.14 25.49 23.53 36.76 42.16 45.59 48.53 53.43 47.55 52.94 54.90 53.43
xho Latn 30.39 29.90 38.24 22.55 25.98 46.57 51.96 56.37 58.33 60.78 61.76 60.29 62.75 64.22
yid Hebr 23.04 22.06 16.18 12.25 24.02 34.80 39.22 39.71 40.20 46.57 41.18 40.69 44.61 45.10
yor Latn 21.57 29.41 47.55 21.57 26.47 32.35 41.18 39.22 41.67 48.04 42.16 43.14 44.61 43.14
yue Hani 75.00 64.71 67.16 55.88 40.69 69.12 71.57 76.47 76.96 81.37 77.94 79.41 81.86 79.41
zsm Latn 65.69 61.27 64.71 50.00 36.76 60.29 68.14 69.12 67.65 73.53 73.53 76.96 77.45 75.00
zul Latn 25.00 25.49 35.29 15.20 25.49 51.47 49.02 54.41 56.37 57.84 60.29 61.76 59.31 62.75

all 42.08 45.34 44.63 34.36 30.88 50.71 57.02 58.95 61.20 64.04 63.15 64.13 65.19 66.32

Table 23: Detailed results on SIB200 (Part II). For previous LLMs, 3-shot results are presented.
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ace Latn 46.85 47.75 49.55 41.44 48.65
ach Latn 45.05 37.84 41.44 40.54 36.04
acr Latn 47.75 51.35 50.45 47.75 50.45
afr Latn 54.05 38.74 51.35 49.55 55.86

agw Latn 48.65 45.05 41.44 42.34 49.55
ahk Latn 43.24 36.04 36.04 35.14 45.05
aka Latn 42.34 32.43 38.74 42.34 54.95
aln Latn 34.23 35.14 36.94 35.14 44.14
als Latn 38.74 36.94 42.34 42.34 47.75
alt Cyrl 44.14 44.14 45.05 51.35 51.35
alz Latn 36.94 35.14 31.53 28.83 37.84
aoj Latn 50.93 37.96 45.37 46.3 49.07
arb Arab 43.24 45.05 49.55 44.14 50.45
arn Latn 38.74 42.34 34.23 36.04 43.24
ary Arab 32.43 33.33 38.74 32.43 44.14
arz Arab 31.53 39.64 45.05 36.94 46.85
asm Beng 45.95 42.34 54.95 40.54 54.05
ayr Latn 47.75 37.84 44.14 44.14 54.05
azb Arab 39.64 40.54 47.75 45.05 47.75
aze Latn 45.05 46.85 45.05 43.24 49.55
bak Cyrl 45.05 52.25 49.55 56.76 56.76
bam Latn 42.34 37.84 49.55 39.64 47.75
ban Latn 36.04 41.44 34.23 34.23 42.34
bar Latn 49.55 46.85 44.14 48.65 53.15
bba Latn 45.05 32.43 45.95 46.85 46.85
bci Latn 36.94 35.14 36.94 33.33 44.14
bcl Latn 42.34 48.65 39.64 39.64 54.95
bel Cyrl 47.75 45.95 48.65 43.24 57.66

bem Latn 47.75 37.84 42.34 41.44 51.35
ben Beng 40.54 41.44 52.25 51.35 47.75
bhw Latn 37.84 43.24 41.44 46.85 47.75
bim Latn 38.74 39.64 33.33 36.94 45.05
bis Latn 44.14 49.55 44.14 39.64 48.65
bqc Latn 39.64 36.04 34.23 33.33 40.54
bre Latn 39.64 36.04 35.14 36.04 40.54
btx Latn 49.55 36.94 42.34 41.44 43.24
bul Cyrl 45.05 42.34 48.65 45.05 54.95

bum Latn 42.34 39.64 37.84 37.84 44.14
bzj Latn 53.15 46.85 47.75 50.45 52.25
cab Latn 39.64 38.74 37.84 36.94 36.04
cac Latn 43.24 37.84 40.54 38.74 45.05
cak Latn 45.95 35.14 44.14 40.54 50.45
caq Latn 39.64 38.74 38.74 44.14 37.84
cat Latn 52.25 45.05 46.85 48.65 52.25
cbk Latn 54.05 40.54 56.76 54.05 55.86
cce Latn 49.55 45.05 50.45 48.65 48.65
ceb Latn 44.14 42.34 48.65 45.05 51.35
ces Latn 44.14 43.24 45.05 46.85 51.35
cfm Latn 49.55 41.44 49.55 53.15 48.65
che Cyrl 37.84 33.33 36.94 37.84 38.74
chk Latn 45.05 41.44 41.44 36.04 45.95
chv Cyrl 43.24 45.05 45.05 49.55 58.56
ckb Arab 44.14 36.94 45.05 42.34 51.35
cmn Hani 48.65 45.05 53.15 48.65 53.15
cnh Latn 46.85 46.85 46.85 49.55 46.85
crh Cyrl 49.55 40.54 47.75 54.95 54.05
crs Latn 52.25 44.14 49.55 55.86 59.46
csy Latn 47.75 41.44 54.95 53.15 45.95
ctd Latn 50.45 48.65 56.76 53.15 56.76
ctu Latn 41.44 35.14 38.74 40.54 43.24
cuk Latn 42.34 42.34 38.74 39.64 37.84
cym Latn 39.64 38.74 39.64 43.24 41.44
dan Latn 53.15 41.44 39.64 38.74 54.95
deu Latn 45.05 36.04 37.84 38.74 43.24
djk Latn 42.34 35.14 42.34 46.85 40.54
dln Latn 48.65 40.54 51.35 54.05 47.75

Table 24: Detailed results on Taxi1500 (Part I). 3-shot results are presented.
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dtp Latn 39.64 35.14 42.34 46.85 50.45
dyu Latn 41.44 39.64 42.34 38.74 46.85
dzo Tibt 45.05 40.54 41.44 45.05 45.05
efi Latn 39.64 36.04 38.74 41.44 45.95
ell Grek 49.55 45.95 49.55 48.65 51.35
eng Latn 55.86 42.34 58.56 54.05 59.46
enm Latn 50.45 41.44 56.76 50.45 54.95
epo Latn 49.55 40.54 47.75 42.34 49.55
est Latn 46.85 42.34 38.74 52.25 46.85
eus Latn 38.74 36.04 36.94 39.64 39.64
ewe Latn 51.35 43.24 50.45 46.85 45.05
fao Latn 53.15 44.14 52.25 53.15 58.56
fas Arab 49.55 50.45 57.66 51.35 55.86
fij Latn 48.65 43.24 41.44 43.24 53.15
fil Latn 48.65 41.44 46.85 51.35 51.35
fin Latn 47.75 45.05 41.44 45.95 54.95
fon Latn 38.74 35.14 37.84 40.54 45.05
fra Latn 60.36 51.35 62.16 52.25 59.46
fry Latn 37.84 33.33 36.04 27.03 46.85
gaa Latn 41.44 33.33 37.84 35.14 40.54
gil Latn 36.7 31.19 41.28 32.11 41.28
giz Latn 46.85 44.14 43.24 38.74 45.05
gkn Latn 38.74 34.23 34.23 36.94 41.44
gkp Latn 30.63 33.33 41.44 29.73 48.65
gla Latn 33.33 39.64 44.14 45.05 49.55
gle Latn 33.33 35.14 36.04 34.23 39.64
glv Latn 43.24 41.44 37.84 38.74 42.34

gom Latn 34.23 31.53 33.33 40.54 42.34
gor Latn 43.24 34.23 43.24 40.54 46.85
guc Latn 44.14 36.04 37.84 41.44 45.05
gug Latn 45.05 44.14 42.34 41.44 50.45
guj Gujr 45.95 37.84 52.25 44.14 56.76
gur Latn 45.95 45.95 44.14 47.75 48.65
guw Latn 45.05 37.84 47.75 46.85 48.65
gya Latn 37.84 37.84 41.44 34.23 42.34
gym Latn 41.44 39.64 39.64 43.24 50.45
hat Latn 50.45 43.24 44.14 41.44 56.76
hau Latn 44.14 37.84 41.44 44.14 48.65
haw Latn 45.95 39.64 38.74 34.23 49.55
heb Hebr 38.74 35.14 34.23 36.94 44.14
hif Latn 42.34 43.24 49.55 47.75 48.65
hil Latn 49.55 41.44 40.54 36.94 54.95

hin Deva 51.35 50.45 49.55 46.85 56.76
hmo Latn 46.85 45.05 46.85 45.05 53.15
hne Deva 55.86 54.05 54.05 58.56 58.56
hnj Latn 48.65 45.05 53.15 51.35 60.36
hra Latn 49.55 41.44 43.24 46.85 45.95
hrv Latn 55.86 51.35 52.25 54.95 61.26
hui Latn 51.35 40.54 41.44 45.05 46.85
hun Latn 46.85 44.14 41.44 43.24 48.65
hus Latn 32.43 32.43 34.23 37.84 42.34

hye Armn 45.95 40.54 45.95 49.55 61.26
iba Latn 49.55 46.85 51.35 48.65 55.86
ibo Latn 38.74 33.33 43.24 38.74 44.14
ifa Latn 36.04 30.63 35.14 38.74 43.24
ifb Latn 34.23 35.14 39.64 34.23 53.15
ikk Latn 43.24 36.94 39.64 39.64 43.24
ilo Latn 39.64 36.04 41.44 37.84 43.24
ind Latn 49.55 50.45 53.15 53.15 54.95
isl Latn 48.65 44.14 43.24 48.65 54.05
ita Latn 50.45 49.55 56.76 58.56 54.95

ium Latn 45.95 44.14 49.55 50.45 45.05
ixl Latn 42.34 39.64 41.44 43.24 40.54
izz Latn 38.74 47.75 39.64 42.34 54.95
jam Latn 41.44 43.24 53.15 50.45 61.26
jav Latn 41.44 47.75 44.14 37.84 45.95

Table 25: Detailed results on Taxi1500 (Part II). 3-shot results are presented.
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jpn Jpan 46.85 46.85 47.75 50.45 51.35
kaa Latn 43.24 53.15 47.75 51.35 54.05
kab Latn 27.93 36.04 30.63 34.23 35.14
kac Latn 44.14 34.23 43.24 42.34 52.25
kal Latn 41.44 37.84 36.04 35.14 40.54

kan Knda 48.65 37.84 52.25 45.95 54.05
kat Geor 41.44 41.44 42.34 46.85 48.65
kaz Cyrl 49.55 45.05 51.35 53.15 55.86
kbp Latn 40.54 35.14 36.94 31.53 47.75
kek Latn 45.95 42.34 45.05 44.14 51.35

khm Khmr 52.25 38.74 48.65 49.55 64.86
kia Latn 36.94 36.04 40.54 41.44 48.65
kik Latn 45.05 43.24 45.05 44.14 50.45
kin Latn 42.34 37.84 41.44 38.74 50.45
kir Cyrl 51.35 46.85 47.75 63.06 64.86
kjb Latn 48.65 46.85 44.14 44.14 48.65
kjh Cyrl 44.14 41.44 45.05 41.44 45.95

kmm Latn 45.95 45.05 47.75 51.35 45.95
kmr Cyrl 39.64 35.14 45.05 42.34 43.24
knv Latn 44.55 44.55 45.45 42.73 44.55
kor Hang 48.65 48.65 49.55 51.35 62.16
kpg Latn 44.14 52.25 51.35 42.34 54.95
krc Cyrl 45.95 36.04 48.65 48.65 53.15
kri Latn 49.55 48.65 49.55 51.35 54.95
ksd Latn 36.94 33.33 40.54 33.33 49.55
kss Latn 32.43 28.83 34.23 29.73 47.75

ksw Mymr 44.14 45.95 42.34 37.84 52.25
kua Latn 41.44 42.34 36.94 35.14 40.54
lam Latn 43.24 36.94 45.95 43.24 40.54
lao Laoo 45.05 39.64 46.85 50.45 50.45
lat Latn 53.15 41.44 53.15 56.76 57.66
lav Latn 39.64 33.33 36.04 39.64 45.05
ldi Latn 35.14 32.43 36.94 34.23 36.04
leh Latn 47.75 37.84 33.33 32.43 41.44
lhu Latn 27.93 34.23 34.23 37.84 42.34
lin Latn 47.75 37.84 39.64 39.64 48.65
lit Latn 42.34 40.54 44.14 48.65 49.55
loz Latn 45.95 42.34 36.04 44.14 40.54
ltz Latn 46.85 45.95 47.75 41.44 49.55
lug Latn 40.54 32.43 39.64 38.74 45.95
luo Latn 40.54 36.94 34.23 38.74 40.54
lus Latn 39.64 40.54 42.34 41.44 50.45
lzh Hani 54.95 48.65 54.05 43.24 56.76
mad Latn 47.75 52.25 47.75 47.75 53.15
mah Latn 43.24 36.04 42.34 45.95 45.05
mai Deva 45.05 41.44 49.55 54.05 51.35
mam Latn 43.24 33.33 41.44 45.05 45.95
mar Deva 49.55 44.14 53.15 45.95 56.76
mau Latn 29.73 29.73 36.94 37.84 32.43
mbb Latn 44.14 42.34 38.74 39.64 49.55
mck Latn 40.54 34.23 36.04 39.64 49.55
mcn Latn 35.14 27.93 33.33 33.33 38.74
mco Latn 41.44 33.33 43.24 33.33 43.24
mdy Ethi 39.64 46.85 43.24 43.24 51.35
meu Latn 53.15 38.74 45.05 48.65 52.25
mfe Latn 51.35 48.65 52.25 50.45 56.76
mgh Latn 42.34 33.33 41.44 35.14 38.74
mgr Latn 39.64 34.23 33.33 41.44 38.74
mhr Cyrl 47.27 42.73 45.45 42.73 48.18
min Latn 37.84 45.95 53.15 45.05 53.15
miq Latn 51.35 46.85 43.24 54.95 49.55
mkd Cyrl 52.25 48.65 56.76 57.66 66.67
mlg Latn 35.14 36.04 36.94 37.84 45.95
mlt Latn 37.84 33.33 42.34 43.24 46.85
mos Latn 39.64 42.34 39.64 36.04 36.04
mps Latn 47.75 45.05 42.34 45.05 51.35
mri Latn 45.05 42.34 38.74 42.34 44.14

Table 26: Detailed results on Taxi1500 (Part III). 3-shot results are presented.
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mrw Latn 40.54 39.64 41.44 37.84 49.55
msa Latn 44.14 41.44 45.95 37.84 46.85

mwm Latn 36.94 31.53 39.64 38.74 47.75
mxv Latn 33.33 35.14 39.64 38.74 40.54

mya Mymr 45.05 48.65 44.14 44.14 46.85
myv Cyrl 39.64 43.24 40.54 41.44 45.05
mzh Latn 45.05 45.95 42.34 40.54 44.14
nan Latn 32.43 35.14 48.65 49.55 44.14
naq Latn 36.94 36.94 37.84 39.64 41.44
nav Latn 27.03 28.83 30.63 33.33 38.74
nbl Latn 21.62 18.02 21.62 25.23 27.93
nch Latn 37.84 34.23 33.33 40.54 40.54
ncj Latn 46.85 45.95 42.34 41.44 42.34
ndc Latn 44.14 36.04 43.24 36.94 49.55
nde Latn 33.33 29.73 33.33 36.04 41.44
ndo Latn 41.28 34.86 37.61 33.94 46.79
nds Latn 41.44 38.74 37.84 34.23 43.24
nep Deva 45.05 49.55 63.06 51.35 60.36
ngu Latn 47.75 39.64 43.24 42.34 49.55
nld Latn 47.75 39.64 47.75 43.24 56.76
nmf Latn 44.14 40.54 42.34 41.44 44.14
nnb Latn 45.05 42.34 36.94 44.14 40.54
nno Latn 56.76 46.85 45.95 52.25 54.95
nob Latn 52.25 41.44 44.14 45.95 56.76
nor Latn 50.45 35.14 46.85 47.75 53.15
npi Deva 51.35 54.95 55.86 45.95 54.95
nse Latn 38.74 28.83 39.64 38.74 42.34
nso Latn 45.05 43.24 45.05 45.05 50.45
nya Latn 48.65 39.64 44.14 42.34 54.95
nyn Latn 39.64 33.33 37.84 36.94 45.05
nyy Latn 43.24 42.34 43.24 40.54 47.75
nzi Latn 36.94 32.43 33.33 32.43 35.14
ori Orya 43.24 34.23 51.35 46.85 45.95
ory Orya 44.14 44.14 49.55 46.85 55.86
oss Cyrl 49.55 49.55 49.55 44.14 54.05
ote Latn 34.23 31.53 34.23 36.04 49.55
pag Latn 44.14 48.65 48.65 42.34 50.45
pam Latn 45.95 36.04 44.14 47.75 45.05
pan Guru 41.44 33.33 46.85 40.54 47.75
pap Latn 50.45 44.14 52.25 49.55 53.15
pau Latn 38.74 45.05 37.84 36.94 46.85
pcm Latn 58.56 47.75 56.76 53.15 57.66
pdt Latn 53.15 45.95 45.95 48.65 54.05
pes Arab 50.91 46.36 59.09 48.18 53.64
pis Latn 57.66 47.75 50.45 45.95 55.86
pls Latn 43.24 43.24 43.24 39.64 45.95
plt Latn 36.94 35.14 37.84 43.24 47.75

poh Latn 42.34 42.34 45.05 39.64 48.65
pol Latn 41.44 43.24 46.85 55.86 56.76
pon Latn 45.95 39.64 43.24 39.64 42.34
por Latn 56.76 54.95 56.76 54.05 58.56
prk Latn 44.14 43.24 49.55 40.54 46.85
prs Arab 50.45 51.35 55.86 56.76 57.66
pxm Latn 48.65 44.14 41.44 41.44 47.75
qub Latn 46.85 44.14 43.24 48.65 45.05
quc Latn 45.05 41.44 43.24 38.74 50.45
qug Latn 45.95 46.85 50.45 45.05 56.76
quh Latn 49.55 49.55 46.85 42.34 51.35
quw Latn 43.24 36.94 45.05 44.14 53.15
quy Latn 58.56 48.65 54.95 50.45 57.66
quz Latn 51.35 38.74 60.36 54.95 59.46
qvi Latn 46.79 46.79 49.54 45.87 47.71
rap Latn 43.24 35.14 41.44 39.64 46.85
rar Latn 40.54 32.43 31.53 29.73 45.95

rmy Latn 37.84 37.84 38.74 40.54 43.24
ron Latn 45.05 51.35 44.14 47.75 57.66

Table 27: Detailed results on Taxi1500 (Part IV). 3-shot results are presented.
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rop Latn 45.95 45.05 42.34 42.34 55.86
rug Latn 43.24 38.74 46.85 44.14 45.05
run Latn 46.85 40.54 45.05 40.54 52.25
rus Cyrl 49.55 41.44 50.45 47.75 53.15
sag Latn 43.24 43.24 41.44 40.54 47.75
sah Cyrl 40.54 35.14 44.14 44.14 54.95
sba Latn 42.34 43.24 45.05 40.54 49.55
seh Latn 45.05 35.14 40.54 42.34 45.95
sin Sinh 39.64 38.74 39.64 42.34 45.95
slk Latn 53.15 50.45 44.14 47.75 53.15
slv Latn 47.75 45.05 55.86 51.35 49.55

sme Latn 45.95 45.05 42.34 41.44 48.65
smo Latn 38.74 40.54 43.24 44.14 53.15
sna Latn 50.45 30.63 43.24 45.95 60.36
snd Arab 44.14 45.05 56.76 51.35 56.76
som Latn 33.33 36.94 35.14 34.23 39.64
sop Latn 40.54 34.23 40.54 35.14 35.14
sot Latn 47.75 41.44 40.54 43.24 49.55
spa Latn 51.35 49.55 51.35 51.35 56.76
sqi Latn 42.34 43.24 52.25 52.25 57.66
srm Latn 35.14 41.44 39.64 37.84 45.05
srn Latn 45.95 53.15 54.05 48.65 51.35
srp Latn 59.46 48.65 58.56 54.05 58.56
ssw Latn 38.74 45.05 36.94 40.54 48.65
sun Latn 43.24 40.54 45.05 44.14 48.65
suz Deva 46.85 42.34 42.34 43.24 49.55
swe Latn 58.56 48.65 53.15 54.95 61.26
swh Latn 46.85 49.55 49.55 48.65 56.76
sxn Latn 42.34 36.94 44.14 44.14 46.85
tam Taml 44.14 53.15 59.46 48.65 60.36
tat Cyrl 47.75 47.75 45.95 48.65 54.05
tbz Latn 36.04 35.14 34.23 35.14 42.34
tca Latn 39.64 40.54 43.24 41.44 45.05
tdt Latn 40.54 38.74 48.65 45.05 52.25
tel Telu 33.33 45.95 50.45 45.95 49.55
teo Latn 33.33 37.84 26.13 31.53 41.44
tgk Cyrl 42.34 44.14 48.65 49.55 57.66
tgl Latn 48.65 41.44 46.85 51.35 51.35
tha Thai 43.24 42.34 43.24 37.84 47.75
tih Latn 43.24 37.84 40.54 36.04 54.05
tir Ethi 29.73 36.94 27.93 34.23 41.44
tlh Latn 51.35 45.95 45.95 41.44 53.15
tob Latn 44.55 43.64 41.82 38.18 50.00
toh Latn 42.34 39.64 40.54 40.54 42.34
toi Latn 44.14 45.05 34.23 36.04 45.05
toj Latn 43.24 40.54 36.94 43.24 42.34
ton Latn 42.34 42.34 42.34 44.14 52.25
top Latn 46.85 34.23 37.84 38.74 36.94
tpi Latn 48.65 44.14 52.25 48.65 49.55

tpm Latn 37.84 41.44 38.74 32.43 42.34
tsn Latn 40.54 36.04 38.74 34.23 37.84
tsz Latn 37.84 32.43 37.84 38.74 46.85
tuc Latn 45.95 44.14 47.75 44.14 48.65
tui Latn 42.34 38.74 38.74 37.84 50.45
tuk Latn 36.04 42.34 45.05 43.24 50.45
tum Latn 47.75 39.64 46.85 52.25 50.45
tur Latn 46.79 44.04 40.37 43.12 45.87
twi Latn 41.44 43.24 41.44 37.84 46.85
tyv Cyrl 38.74 38.74 43.24 44.14 45.05
tzh Latn 41.82 36.36 41.82 41.82 38.18
tzo Latn 39.64 43.24 34.23 29.73 41.44

udm Cyrl 36.94 38.74 42.34 44.14 47.75
ukr Cyrl 52.25 48.65 51.35 55.86 53.15

Table 28: Detailed results on Taxi1500 (Part V). 3-shot results are presented.
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ukr Cyrl 52.25 48.65 51.35 55.86 53.15
uzb Latn 45.05 49.55 37.84 46.85 54.05
uzn Cyrl 45.95 40.54 45.05 45.05 49.55
ven Latn 45.05 44.14 42.34 41.44 54.05
vie Latn 53.15 45.95 62.16 45.95 54.95
wal Latn 35.14 33.33 35.14 35.14 39.64
war Latn 48.65 39.64 37.84 45.05 54.95

wbm Latn 48.65 39.64 46.85 46.85 48.65
wol Latn 36.04 34.23 32.43 34.23 36.94
xav Latn 50.45 33.33 46.85 44.14 45.95
xho Latn 43.24 37.84 40.54 39.64 46.85
yan Latn 45.05 46.85 52.25 41.44 53.15
yao Latn 42.34 41.44 43.24 44.14 48.65
yap Latn 38.74 40.54 35.14 32.43 41.44
yom Latn 35.14 31.53 33.33 25.23 36.94
yor Latn 41.44 38.74 39.64 44.14 47.75
yua Latn 41.44 32.43 43.24 41.44 36.04
yue Hani 43.24 48.65 53.15 38.74 57.66
zai Latn 45.05 35.14 40.54 43.24 44.14

zho Hani 47.75 51.35 51.35 44.14 58.56
zlm Latn 54.05 49.55 57.66 56.76 64.86
zom Latn 50.45 42.34 44.14 43.24 48.65
zsm Latn 58.56 59.46 63.96 55.86 66.67
zul Latn 46.85 42.34 46.85 46.85 51.35

all 44.07 40.98 43.98 43.24 48.89

Table 29: Detailed results on Taxi1500 (Part VI). 3-shot results are presented.
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Abstract

In this work, we introduce EMMA-500, a large-scale multilingual language model continue-trained
on texts across 546 languages designed for enhanced multilingual performance, with a focus on
improving language coverage for low-resource languages. To facilitate continual pre-training, we
compile the MaLA corpus, a comprehensive multilingual dataset and enrich it with curated datasets
across diverse domains. Leveraging this corpus, we conduct extensive continual pre-training of the
Llama 2 7B model, resulting in EMMA-500, which demonstrates robust performance across a wide
collection of benchmarks, including a comprehensive set of multilingual tasks and PolyWrite, an
open-ended generation benchmark developed in this study. Our results highlight the effectiveness
of continual pre-training in expanding large language models’ language capacity, particularly
for underrepresented languages, demonstrating significant gains in cross-lingual transfer, task
generalization, and language adaptability.

Model: huggingface.co/collections/MaLA-LM -¿ EMMA-500
Data: huggingface.co/collections/MaLA-LM -¿ MaLA corpus
PolyWrite: huggingface.co/datasets/MaLA-LM/PolyWrite
Evaluation: github.com/MaLA-LM/emma-500

1 Introduction

Multilingual language models (MLMs) are designed to process and generate text in multiple lan-
guages. These models have evolved rapidly over the past decade, fueled by advances in deep learning,
e.g., Transformer networks (Vaswani et al., 2017), pre-training techniques, and the availability of
large-scale multilingual corpora such as mC4 (Raffel et al., 2020) and ROOTS (Laurençon et al., 2022).
The development of models like BERT (Devlin et al., 2019), GPT, and T5 (Raffel et al., 2020) opened
the door for multilingual counterparts such as mBERT, XLM-R (Conneau et al., 2020), mGPT (Shli-
azhko et al., 2022), and mT5 (Xue et al., 2021). These models were trained on massive multilingual
corpora, allowing text in dozens of languages to be processed with the same set of model weights. By
increasing the scale of both the data and the model, multilingual language models have demonstrated
impressive performance on a wide array of tasks, such as text classification, machine translation,
and question answering across different languages. A key advantage of multilingual models is their
ability to leverage cross-lingual transfer, where knowledge learned from high-resource languages
(like English or Chinese) can be applied to other languages. However, despite the remarkable progress
in multilingual models, many low-resource languages—those with limited available data—remain
underserved. While massive and extensive corpora are readily available for high-resource languages
like English, French, and Spanish, languages such as Xhosa and Inuktitut often have only scarce or
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fragmented data. This disparity between languages tends to make training datasets imbalanced, and
multilingual models trained on such imbalanced datasets tend to prioritize high-resource languages,
leaving low-resource languages underrepresented.

Recent studies adopt continual pre-training to enhance the language coverage of large language
models on low-resource languages. For example, Glot500 (Imani et al., 2023) and MaLA-500 (Lin
et al., 2024) use continual pre-training and vocabulary extension using XLM-R and LLaMA, re-
spectively, on the Glot500-c corpus covering 534 languages. xLLMs-100 (Lai et al., 2024) proceeds
to multilingual instruction fine-tuning to improve the multilingual performance of LLaMA and
BLOOM models on 100 languages, and Aya model (Üstün et al., 2024) applies continual training
to the mT5 model (Xue et al., 2021) using their constructed instruction dataset. LLaMAX (Lu et al.,
2024) pushes the envelope by focusing on translation tasks via continual pre-training of LLaMA in
over 100 languages.

As the field of MLMs evolves, the role of data becomes increasingly critical in enhancing the
performance of the models, particularly when it comes to low-resource languages. To address this
need for more and better data, we extend existing work, such as MaLA-500, by expanding the corpus
for continual pre-training, coupled with large-scale training methods. We emphasize the creation of
a massively multilingual corpus that not only increases the quantity of data but also diversifies the
types of texts (e.g., code, books, scientific papers, and instructions). This ensures better language
adaptation and broader language coverage, thus improving the representation and performance of
multilingual language models, especially for underrepresented languages, ultimately creating more
inclusive and versatile language models that cater to a broader linguistic diversity. Our contribution
is summarized as follows:

• We compile a massively multilingual corpus named MaLA to facilitate continual training of
large language models for enhanced language adaptation across a wide range of linguistic
contexts.

• We extend the MaLA corpus by integrating multiple curated datasets, creating a comprehensive
and diverse data mix specifically for continual pre-training.

• We perform continual pre-training with the Llama 2 7B model1 on the multilingual corpus
with 546 languages, resulting in the new EMMA-500 model. This model is rigorously evaluated
on a diverse set of tasks and benchmarks, including PolyWrite, a novel open-ended generation
benchmark developed as part of this work.

The MaLA Corpus Our multilingual corpus features the following characteristics:

• It contains 939 languages, 546 of which have more than 100k tokens and are used for training
our EMMA-500 model, and 74 billion (B) whitespace delimited tokens in total.

• It has more than 300 languages with over 1 million whitespace delimited tokens and 546
languages with over 100k tokens.

• It comes with four publicly available versions: (1) a noisy version after only basic pre-processing
like extraction and harmonization; (2) a cleaned version after data cleaning; (3) a deduplicated
version after approximate and exact deduplication; (4) a split version with train and valid
splits.

• Our augmentation to the MaLA corpus includes different types of texts such as code, books,
scientific papers and instruction data, leading to a data mix with 100B+ whitespace delimited
tokens.

Evaluation Results In a comparison with decoder-only LLMs (Section 4) including Llama 2-based
continual pre-trained models, LLMs that are designed to be multilingual, and the latest advanced
LLMs, our model achieves strong results:

1Choosing Llama 2 allows us to compare our model with many other models derived from it using continual pre-training.
We plan to continue training models based on Llama 3/3.1 in the future.
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• Out of models with parameter sizes from 4.5B to 13B, our model with 7B parameters has the
lowest negative log-likelihood according to an intrinsic evaluation.

• Our model remarkably improves the performance of commonsense reasoning, machine transla-
tion, and open-ended generation over Llama 2-based models and multilingual baselines, and
outperforms the latest advanced models in many cases.

• Our model improves the performance of text classification and natural language inference,
outperforming all Llama 2-based models and LLMs designed to be multilingual.

• While math and machine reading comprehension (MRC) tasks are challenging for the Llama
2 7B model and other multilingual LLMs, our model remarkably enhances the Llama 2 base
model. Our model yields improved performance on MRC over the base model but still produces
quasi-random results similar to other multilingual baselines.

• We demonstrate that massively multilingual continued pre-training does not necessarily lead
to regressions in other areas, such as code generation, if the data mix is carefully curated. Our
model surpasses the Llama 2 7B base model’s code generation abilities.

2 The MaLA Corpus

The MaLA corpus—MaLA standing for Massive Language Adaptation—is a diverse and extensive
compilation of text data encompassing 939 languages sourced from a wide array of datasets. It
is developed for continual training of multilingual large language models. The source datasets
the MaLA corpus is compiled from exhibit a wide range of variance in various aspects. Examples
of such elements include the data quality, the nature of the text content, how the data sources
were organized into directory and file tree structures (if distributed as files rather than through
an API) and the naming conventions used therein, the data formats and structures in the files or
in-memory objects containing the text data, and the logic by which multilingual texts were aligned.
This section introduces the efforts made in data extraction, harmonization, pre-processing, cleaning,
and deduplication in order to build the corpus.

2.1 Data Pre-processing

To develop the MaLA corpus for training our language model, we establish a processing workflow
consisting of the following key steps: (1) loading and curating identified data sources, (2) extracting
and harmonizing both textual and metadata from these diverse sources into a unified format—often
with tailored filtering, and (3) performing deduplication and further filtering on the textual data.
In step (1), source data are either organized and loaded into memory from a file tree structure or, if
available, accessed through an API. In step (2), the output is designed to be JSON Lines (JSONL) files
with extracted text data and other desired content. A JSONL file contains multiple JSON records for
storing data, each separated by a newline character. We selectively process only data annotated as
training or development (validation) data, deliberately excluding test data.

2.1.1 Extraction and Harmonization

As mentioned, there is significant variability in the data quality of the source datasets used for
compiling the corpus. Many of the datasets exhibit data quality challenges that would have adverse
effects on model training if left unaddressed. These dataset-specific challenges are typically addressed
during the pre-processing stage. For example, we identify one issue involving text records consisting
solely of date and timestamp information in the dataset for Languages of Russia (Corpora and Tools,
n.d.), likely resulting from a web scraper failing to differentiate between these elements and actual
text. We address this by implementing a logic in the pre-processing script to detect and exclude
such records. This issue is resolved by introducing a rule to identify and discard text containing
consecutive repeating words.

Due to the extensive volume of data, exhaustive examination of every source for data quality
issues is impractical. Instead, we address issues only as we encounter them in our data exploration
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and pre-processing pipeline development efforts. This approach likely leaves some data quality
problems undetected, since we do not go through the data systematically.

Despite the need for customized handling of certain dataset-specific idiosyncrasies, the core logic
and structure of the pre-processing workflow remain consistent across most datasets. We develop a
standardized pre-processing script that can be adapted with minor adjustments to accommodate
different datasets.

2.1.2 Language Code Normalization

An essential component of our pre-processing pipeline involved converting language codes to the
ISO 639-3 standard. This is crucial for ensuring consistent language identification across the source
datasets. We rely on the declared language of each dataset and normalize it to the ISO standard
without performing additional language identification at this step. This approach helps maintain
uniformity while streamlining the pre-processing workflow.

For monolingual data, we primarily use the PyPI library iso639-lang2 or langcodes3. While
converting language codes to ISO 639-3, we encounter several challenges. One issue is that some
languages in ISO 639-3 are divided into multiple subvarieties, but our source data does not specify
which subvariety is present. Our solution is to retain the original language code from the dataset, even
when it does not conform to the ISO 639-3 standard. Another issue arises when certain languages are
merged into other languages in the ISO 639-3 standard. In these cases, we update the language code
to reflect the merged language.

Additionally, some language names or codes in the source data—referred to as “original language
names” or “original language codes”—are not recognized by the conversion libraries. In some cases,
the reason behind this is that the original code in fact represents language families or groups of
dialects (e.g., the ISO 639-2 codes “ber” for Berber languages and “bih” for Bihari languages), rather
than specific languages. If so, we then retain the original codes, despite their non-compliance with
ISO 639-3. In other cases, the original language names are spelled differently from the standard
recognized by the libraries. To address this mismatch, we implement a logic to detect and correct
misspelled language names during pre-processing. All these “corner cases” require careful attention
in the pre-processing stage to ensure correct language code identification.

2.1.3 Writing System Recognition

In addition to normalizing language codes, we also identify the script or writing system used in
the text data. We use the GlotScript library (Kargaran et al., 2024) to recognize writing systems
accordant to the ISO 15924 standard. The process begins by sampling 100 random lines from each
dataset (or the full dataset if it contains fewer than 100 lines). If GlotScript fails to identify a script
from this sample, we attempt identification using just the first line of the sample. If this still does not
yield a result, we set the script as “None”. It is worth noting that we choose not to classify a dataset
into multiple scripts, even when code-mixing (i.e., the use of multiple scripts) is present.

If script identification is unsuccessful after the initial steps, we assume the script matched a
previously detected one for that language. In cases where no previous script information exists, we
refer to a mapping of languages and their default scripts provided by the Glot500 corpora collection.
Through this multi-step process, we are able to determine the script for every dataset without
exceptions.

During script identification, we encounter several challenges. One issue is determining an
appropriate length for the text chunk used for script recognition. A chunk that is too short could lead
to incorrect identification if the text contains quotes or foreign language fragments using a different
writing system. Conversely, using a chunk that is too long could result in excessive resource usage,
slowing down processing or even causing memory exhaustion. Another consideration is whether to
assume that a single file or dataset might contain multiple scripts. Such an assumption would require
identifying the script at a more granular level, such as paragraph by paragraph or even sentence by
sentence. Alternatively, we could assume that each file or dataset contained only one “main” script.
This assumption would allow us to identify the script from a representative sample of the text for the
whole file or dataset. We adopt the latter approach, recognizing a single dominant script for each

2https://pypi.org/project/iso639-lang/
3https://pypi.org/project/langcodes
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dataset. The output of this process is a label in the format language Script, e.g., eng Latn, where
“Language” represents the ISO 639-3 language code and ’‘Script” represents the ISO 15924 script
code.

2.1.4 List of Data Sources

The MaLA corpus harvests a wide range of datasets in multiple domains. Table 19 in the appendix
lists the corpora and collections we used as monolingual data sources. The major ones include
AfriBERTa (Ogueji et al., 2021), Bloom library (Leong et al., 2022), CC100 (Conneau et al., 2020;
Wenzek et al., 2020) CulturaX (Nguyen et al., 2023), CulturaY (Thuat Nguyen and Nguyen, 2024),
the Curse of Multilinguality (Chang et al., 2023), Evenki Life (Life, 2014), Glot500 (Imani et al.,
2023), GlotSparse (Kargaran et al., 2023), monoHPLT of HPLT v1.2 (de Gibert et al., 2024) from
the HPLT project (Aulamo et al., 2023), Indigenous Languages Corpora (EdTeKLA, 2022), Indo4B
(Wilie et al., 2020), Lacuna Project (Masakhane, 2023), Languages of Russia (Corpora and Tools,
n.d.), MADLAD-400 (Kudugunta et al., 2024), Makerere Radio Speech Corpus (Mukiibi et al., 2022),
masakhane-ner1.0 (Ifeoluwa Adelani et al., 2021), MC2 (Zhang et al., 2024a), mC4 (Raffel et al.,
2020), multilingual-data-peru (Grupo de Inteligencia Artificial PUCP, n.d.), OSCAR 2301 (OSCAR,
2023) from the OSCAR project 4, Tatoeba challenge monolingual collection (Tiedemann, 2020), The
Leipzig Corpora (Goldhahn et al., 2012), Tigrinya Language Modeling (Gaim et al., 2021), Wikipedia
20231101 (Wikimedia Foundation, n.d.) and Wikisource 20231201 (Wikimedia Foundation, n.d.).
We exclude high-resource languages in CulturaX, HPLT, MADLAD-400, CC100, mC4, and OSCAR
2301. We exclude Gahuza and Pidgin in the AfriBERTa dataset. We filter out texts that mainly
contain a date or timestamp in the Languages of Russia dataset. For Glot500-c, we filter out texts,
which may come from train or test tests from datasets for machine translation, such as Flores200,
Tatoeba, and mtdata. Despite the translation data being split into source and target languages in the
Glot500-c corpus, we decide to filter them to avoid potential data leakage, especially since we use
Flores200 as the evaluation benchmark.

2.2 Data Cleaning

Most source data has already undergone data cleaning to different extents. Nonetheless, different
cleaning processes have been adopted. We continue to clean the data to ensure consistency and
accuracy for monolingual and bilingual texts.

Following the pipeline used by BigScience’s pipeline for ROOTS corpus (Laurençon et al., 2022),
we further adopt some necessary data cleaning to filter out text samples that might have undesirable
quality. We first perform document modification for monolingual texts. The first step is whitespace
standardization: all types of whitespace in a document are converted into a single, consistent space
character. We split documents by newline characters, tabs, and spaces, strip words, and reconstruct
the documents to remove very long words. However, these two steps do not apply to languages
without whitespace word delimiters like Chinese, Japanese, Korean, Thai, Lao, Burmese, etc. We also
remove words containing certain patterns, e.g., “http” and “.com”, which are likely to be links and
page source code. We then perform document filtering, including word count filtering, character
repetition filtering, word repetition filtering, special characters filtering, stop words filtering, and flag
words filtering. We re-identify the languages that are supported by the pre-trained fastText-based
language identification model (Joulin et al., 2016a,b). For other languages, we assume the language
identification of the original data source and language code conversion are reliable.

2.3 Data Deduplication

As we collect data from different sources, we deduplicate the data to remove the overlap between
different sources.

MinHash Deduplication For each language’s dataset in each writing system, we start by using
the MinHashLSH algorithm (Rajaraman and Ullman, 2011) to filter out similar documents. It is
a near-deduplication technique that builds on MinHash (Broder, 1997), utilizing multiple hash
functions for n-grams and the Jaccard similarity, and incorporates Locality-Sensitive Hashing to

4https://oscar-project.org/
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Table 1: Data statistics of the MaLA corpus and comparison to other multilingual corpora. The
number of documents and tokens is in millions.

Dataset N Lang N Lang Counted N Docs N Tokens Avg Tokens/Doc

Glot500-c 534 454 1,815 35,449 19.53
MADLAD 419 414 1,043 645,111 618.51
CulturaX 167 161 2,141 1,029,810 480.99
CC100 116 101 2,557 52,201 20.41
MaLA 939 546 824 74,255 90.12

enhance efficiency. We use the implementation by text-dedup repository (Mou et al., 2023), applying
5-grams and a similarity threshold of 0.7 to identify similar documents based on the Jaccard index.

Exact Deduplication We further deploy exact deduplication using the text-dedup repository again
with precise matching. It takes each document through a hash function, i.e., MD5 (Rivest, 1992) in
our choice, and the hash values of all documents are compared to identify duplicates.

2.4 Key Statistics

This section presents the final MaLA corpus obtained after data sourcing, pre-processing, cleaning,
and deduplication. Table 1 first shows some basic data statistics and compares them with other
multilingual corpora for pre-training language models or language adaptation. Additional statistics
are presented in Section B in the appendix. The token counts are based on white-space delimitation,
though it might not be accurate for languages like Chinese, Japanese and Korean since the entire
clause is counted as one token. Glot500-c (Imani et al., 2023) has 534 languages in total, in which
454 languages are directly distributed on Huggingface 5. We also omit high-resource languages in
the other three datasets, i.e., MADLAD (Kudugunta et al., 2024), CulturaX (Nguyen et al., 2023), and
CC100 (Wenzek et al., 2020), as our main focus is continual pre-training for language adaptation.
The final MaLA corpus consists of 939 languages, 546 of which have more than 100k tokens and are
used for training our EMMA-500 model. Counting languages with more than 1 million tokens, the
MaLA corpus and Glot500-c have more than 300, while MADLAD and CulturaX have 200 and 100
respectively. Compared with Glot500-c, the MaLA corpus contains documents with significantly
higher sequence lengths, with an average token count of 90 versus 19. This higher sequence length is
advantageous for continually training LLMs because it provides more context within each training
example, allowing the model to better capture long-range dependencies and patterns in the data. As
a result, MaLA is more effective for language adaptation.

3 Data Mixing and Model Training

Incorporating a diverse data mix—spanning various languages, domains, document lengths and
styles—is crucial for continual training of large language models to enhance their versatility, gen-
eralization ability, and robustness across a wide range of tasks and domains. We augment the
MaLA corpus with diverse data to mitigate issues such as over-fitting to specific styles or topics or
underperforming on tasks outside the training distribution.

3.1 Data Mixing

Curated Data We enhance the corpus with high-quality curated data, specifically high-resource
languages in the monolingual part. We use texts from scientific papers as these provide a structured,
information-dense corpus that can improve the model’s ability to handle technical language and
domain-specific content. They are (1) CSL (Li et al., 2022), a large-scale Chinese Scientific Liter-
ature dataset, that contains titles, abstracts, keywords and academic fields of 396,209 papers; (2)
pes2o (Soldaini and Lo, 2023), a collection of full-text open-access academic papers derived from the
Semantic Scholar Open Research Corpus (S2ORC) (Lo et al., 2020). We further add free e-books from
the Gutenberg project6 compiled by Faysse (2023). These texts enhance the range of literary styles

5https://huggingface.co/datasets/cis-lmu/Glot500
6https://www.gutenberg.org/
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Table 2: Data mix for continual training. Code and reasoning-related data are counted by Llama 2
tokenizer and others are counted as whitespace delimited; ‘inst’ stands for instruction and ‘mono’
stands for monolingual texts.

Data Original Counts Sample Rate Final Counts Percentage

inst high 42,121,055,562 0.1 4,212,105,556 3.08%
inst medium-high+ 6,486,592,274 0.2 1,297,318,455 0.95%
inst medium-high 30,651,187,534 0.5 15,325,593,767 11.21%
inst medium 1,444,764,863 1.0 1,444,764,863 1.06%
inst medium-low 47,691,495 5.0 238,457,475 0.17%
inst low 3,064,796 20.0 61,295,920 0.04%
inst code/reasoning 612,208,775 1.0 612,208,775 0.45%
code 221,003,976,266 0.1 20,786,882,764 15.20%
curated (EN pes2o) 56,297,354,921 0.2 11,241,574,489 8.22%
curated (ZH CSL & wiki) 61,787,372 1.0 61,787,372 0.05%
curated (Gutenberg) 5,173,357,710 1.0 5,173,357,710 3.78%
mono high EN 3,002,029,817 0.1 300,202,982 0.22%
mono high 40,411,201,964 0.5 20,205,600,982 14.78%
mono medium-high 27,515,227,962 1.0 27,515,227,962 20.12%
mono medium 2,747,484,380 5.0 13,737,421,900 10.05%
mono medium-low 481,935,633 20.0 9,638,712,660 7.05%
mono low 97,535,696 50.0 4,876,784,800 3.57%

and narrative forms, thus enhancing the model’s versatility. Adding high-resource languages into the
pre-training corpora also mitigates the forgetting in model training.

Instruction Data We further augmented the training corpus by incorporating instruction-based
datasets, inspired by Li et al. (2023); Nakamura et al. (2024); Taylor et al. (2022). We mix two
instruction data into our training corpus. They are: (1) xp3x (Crosslingual Public Pool of Prompts
eXtended)7, a multitask instruction collection in 277 languages (Muennighoff et al., 2022); (2) the
Aya collection 8 that contains both human-curated and machine translated instructions in 101
languages (Singh et al., 2024). For both instruction datasets, we use their training set.

Code We additionally enrich the training corpus by sourcing code data from The Stack (Kocetkov
et al., 2023). This is done following existing work that demonstrates the value of code data in
improving the reasoning ability of language models (Ma et al., 2024; Zhang et al., 2024b) while also
mitigating any catastrophic forgetting of the base model’s programming knowledge.

We subsample The Stack at an effective rate of 15.2%, prioritizing high-quality source files and
data science code 9. We retain the 32 most important non-data programming languages by prevalence
while also adding in all llvm code following prior work detailing its importance in multi-lingual code
generation (Paul et al., 2024; Szafraniec et al., 2023). We also source from data-heavy formats but
follow precedent (Lozhkov et al., 2024) and subsample them more aggressively. For a more detailed
read on filtering heuristics, we direct the reader to Appendix A.2.

Data Mix Our final data mix for continual training is listed in Table 2. The resource categorization
refers to Section B.1 in the appendix and inst medium-high+ is a separate category with languages
with more than 500 million but less than 1B tokens. For monolingual text, we also have a seperate
category for English. In continual learning, where new data is introduced to an existing model, there
is a risk of “catastrophic forgetting”, where the model loses knowledge from earlier training stages.
Although our work’s primary focus is in a low-resource regime, we enhance the training corpus
with a wide range of data types, including books and scientific papers in high-resource languages,
code, and instruction data in our data mix. We downsample texts in high-resource languages and
upsample text in low-resource languages using different sample rates according to how resourceful
the language is. We make our data mix diverse and balanced towards different resource groups
of languages in order to retain the prior knowledge of the model while learning new information,
especially in medium- and low-resource languages, thus maintaining high performance across both
previously seen and new languages. The final data mix has around 136B tokens.

7https://huggingface.co/datasets/CohereForAI/xP3x
8https://huggingface.co/datasets/CohereForAI/aya_collection_language_split
9https://huggingface.co/datasets/AlgorithmicResearchGroup/arxiv_research_code
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Table 3: Evaluation statistics. Sample/Lang: average number of test samples per language; N Lang:
number of languages covered; NLL: negative log-likelihood; ACC: accuracy.

Tasks Dataset Metric Samples/Lang N Lang Domain

Intrinsic Evaluation Glot500-c test (Imani et al., 2023) NLL 1000 534 Misc
PBC (Mayer and Cysouw, 2014) NLL 500 370 Bible

Text Classification SIB200 (Adelani et al., 2023) ACC 204 205 Misc
Taxi1500 (Ma et al., 2023) ACC 111 1507 Bible

Commonsense Reasoning
XCOPA (Ponti et al., 2020) ACC 600 11 Misc
XStoryCloze (Lin et al., 2022) ACC 1870 11 Misc
XWinograd (Tikhonov and Ryabinin, 2021) ACC 741.5 6 Misc

Natural Language Inference XNLI (Conneau et al., 2018) ACC 2490 15 Misc

Machine Translation FLORES-200 (Costa-jussà et al., 2022) BLEU, chrF++ 1012 204 Misc

Open-Ended Generation Aya (Singh et al., 2024) BLEU, Self-BLEU 215 119 Misc
PolyWrite (Ours) Self-BLEU 149 240 Misc

Summarization XL-Sum (Hasan et al., 2021) ROUGE-L, BERTScore 2537 44 News

Math MGSM direct (Shi et al., 2022) ACC 250 10 Misc
MGSM CoT (Shi et al., 2022) ACC 250 10 Misc

Machine Comprehension BELEBELE (Bandarkar et al., 2023) ACC 900 122 Misc
ARC multilingual (Lai et al., 2023) ACC 1170 31 Misc

Code Generation Multipl-E (Cassano et al., 2022) Pass@k 164 7 Misc

3.2 Model Training

We employ continual training using the causal language modelling objective for the decoder-only
Llama model and exposing the pre-trained model to new data to develop our EMMA-500 model.
We adopt efficient training strategies combining optimization, memory management, precision
handling, and distributed training techniques. Our EMMA-500 model is trained on the Leonardo
supercomputer10, occupying 256 Nvidia A100 GPUs, using the GPT-NeoX framework (Andonian
et al., 2023). During training, we set a global batch size of 4096 and worked with sequences of 4096
tokens. The training process ran for 12,000 steps, resulting in a total of 200 billion Llama 2 tokens.
We use the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.0001, betas of [0.9, 0.95],
and an epsilon of 1e-8. We use a cosine learning rate scheduler with a warm-up of 500 iterations. To
reduce memory consumption, activation checkpointing is employed. Precision is managed through
mixed-precision techniques, using bfloat16 for computational efficiency and maintaining FP32 for
gradient accumulation.

4 Evaluation

4.1 Tasks, Benchmarks, and Baselines

Tasks and Benchmarks We conduct a comprehensive evaluation to validate the usability of our
processed data and data mixing for massively multilingual language adaptation. We perform the
intrinsic evaluation of the models’ performance on next-word prediction and evaluate the model’s
performance on downstream tasks. Table 3 lists the datasets we used as downstream evaluation
datasets in this work. For math tasks, we perform direct prompting and Chain-of-Thoughts prompting
on the MGSM benchmark and evaluate the performance using both exact and flexible matches. For
code generation tasks, we perform test-case-based execution-tested evaluations using the pass@k
metric (Chen et al., 2021). We benchmark for k values of 1,10, and 25 using a generation pool of 50
samples per problem.

Baselines We compare our model with three groups of decoder-only models. They are (1) Llama 2
models (Touvron et al., 2023) and continual pre-trained models based on Llama 2, such as CodeL-
lama (Roziere et al., 2023), MaLA-500 (Lin et al., 2024), LLaMAX (Lu et al., 2024), Tower (Alves
et al., 2024), and YaYi11; (2) other LLMs and continual pre-trained LLMs designed to be massively

10https://leonardo-supercomputer.cineca.eu
11https://huggingface.co/wenge-research/yayi-7b-llama2
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multilingual, including BLOOM (Scao et al., 2022), mGPT (Shliazhko et al., 2022), XGLM (Lin et al.,
2022), and Occiglot12; and (3) recent LLMs with superior English capabilities like Llama 3 (Dubey
et al., 2024), Llama 3.113, Qwen 2 (Yang et al., 2024a), and Gemma 2 (Team et al., 2024). There are
also some other LLMs such as OpenAI’s API models 14 and xLLMs-100 (Lai et al., 2024). However,
they do not release the model weights or they limit access to them through commercial API, so we
did not include them. The MADLAD model (Kudugunta et al., 2024) that uses the decoder-only T5
architecture is not supported by inference engines such as the HuggingFace transformers (Wolf et al.,
2019). We do not compare them in this work.

Evaluation Software We use the Language Model Evaluation Harness (lm-evaluation-harness)
framework (Gao et al., 2023) for benchmarking test sets that are already ingested in the framework.
For other benchmarks, we use in-house developed evaluation scripts and other open-source im-
plementations. In text classification tasks such as SIB-200 and Taxi-1500, the evaluation protocol
involves calculating the probability of the next output token for each candidate category. These
probabilities are then sorted in descending order, with the category having the highest probability
being selected as the model’s prediction. This process is implemented using the Transformers (Wolf
et al., 2019) library. In tasks like Machine Translation and Open-Ended Generation, the vLLM
library (Kwon et al., 2023) is used to accelerate inference, providing significant speed improvements.
Similarly, for code generation tasks, we use a VLLM-enabled evaluation harness package (vllm-code-
harness)15 for the execution-tested evaluations. For massively multilingual benchmarks with more
than 100 languages, we categorize languages into five groups as listed in Table 20 in the appendix.

4.2 Intrinsic Evaluation

For intrinsic evaluation, we compute the negative log-likelihood (NLL) of the test text given by the
tested LLMs instead of using length-normalized perplexity due to different text tokenization schemes
across models. We concatenate the test set as a single input and run a sliding-window approach.16

To make a comparison across models, we use the Glot500-c test set, which covers 534 evaluated
languages. We also test on the Parallel Bible Corpus (PBC) which could yield NLL more comparable
across languages. Table 4 and Table 5 show the intrinsic evaluation results on Glot500-c test and
PBC, respectively. As shown, our model attains lower NLL compared to all other models on both
test sets and languages with different resource availability. This suggests that the test sets are more
similar to the underlying training data of our model and it can be interpreted that EMMA-500 has
learned to compress massive multilingual text more efficiently.

4.3 Commonsense Reasoning

We assess the models’ commonsense reasoning ability using three multilingual benchmarks. XCOPA
(Ponti et al., 2020) is a dataset covering 11 languages that focuses on causal commonsense reasoning
across multiple languages. XStoryCloze (Lin et al., 2022) is derived from the English StoryCloze
dataset (Mostafazadeh et al., 2017) and translated into 10 non-English languages, testing com-
monsense reasoning within a story. In this task, the system must choose the correct ending for a
four-sentence narrative. XWinograd (Tikhonov and Ryabinin, 2021) is a multilingual collection of
Winograd Schemas (Levesque et al., 2012) available in six languages, aimed at evaluating cross-lingual
commonsense reasoning. We perform zero-shot evaluations. Accuracy is used as the evaluation
metric. We categorize languages into different resource groups based on language availability, accessi-
bility, and possible corpus size. For XCOPA, we have three groups, i.e., high-resource (Italian, Turkish,
Vietnamese, and Chinese), medium-resource (Swahili due to its regional influence, Estonian, Haitian
Creole, Indonesian, Thai, and Tamil), and low-resource languages (Cusco-Collao Quechua).17 For
XStoryCloze, the resource group is high-resource (Arabic, English, Spanish, Russian, and Chinese),
medium (Hindi, Indonesian, Swahili, and Telugu), and low (Basque and Burmese). For XWinograd,

12https://huggingface.co/occiglot/occiglot-7b-eu5
13https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1
14https://platform.openai.com/docs/models
15https://github.com/iNeil77/vllm-code-harness
16https://huggingface.co/docs/transformers/en/perplexity
17Note that there is no perfect categorization for language resource groups.
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Table 4: NLL on Glot500-c test. EMMA-500 Llama 2 7B has better average performance than all
baselines.

Model Avg High Medium-High Medium Medium-Low Low

Llama 2 7B 190.58 146.43 176.30 205.86 210.41 196.45
Llama 2 7B Chat 218.87 173.67 204.78 239.18 240.97 223.86
CodeLlama 2 7B 193.96 146.43 180.20 210.09 212.70 200.60
LLaMAX Llama 2 7B 187.37 108.58 142.84 197.74 212.22 203.83
LLaMAX Llama 2 7B Alpaca 169.12 94.84 123.90 173.54 193.83 187.34
MaLA-500 Llama 2 10B v1 155.62 127.51 153.93 173.02 166.01 158.12
MaLA-500 Llama 2 10B v2 151.25 123.82 147.69 167.46 161.20 155.13
TowerBase Llama 2 7B 192.98 150.41 180.19 209.12 212.18 198.89
TowerInstruct Llama 2 7B 199.44 157.33 186.42 216.92 218.82 204.93

Occiglot Mistral 7B v0.1 191.11 159.48 185.53 209.26 207.67 194.07
Occiglot Mistral 7B v0.1 Instruct 193.83 162.31 188.20 212.41 210.81 196.58
BLOOM 7B 202.95 160.33 195.01 216.15 220.46 206.89
BLOOMZ 7B 217.32 178.12 210.99 235.53 235.60 220.65
mGPT 340.37 311.14 337.29 388.97 367.45 343.14
XGLM 7.5B 205.07 199.08 210.22 225.53 214.92 205.67
Yayi 7B 226.67 181.48 217.34 243.42 246.58 231.65

Llama 3 8B 156.36 102.78 129.36 153.11 167.26 173.56
Llama 3.1 8B 154.59 101.23 127.57 150.87 164.81 172.05
Gemma 7B 692.25 583.39 721.77 817.40 729.61 689.60
Gemma 2 9B 320.81 348.26 351.08 380.49 338.00 303.62
Qwen 2 7B 188.55 132.47 171.50 200.26 210.21 196.78
Qwen 1.5 7B 195.52 141.37 181.41 212.10 217.16 202.46

EMMA-500 Llama 2 7B 112.20 81.78 100.89 122.53 99.28 109.25

Table 5: NLL on PBC. EMMA-500 Llama 2 7B has better average performance than all baselines.

Model Avg High Medium-High Medium Medium-Low Low

Llama 2 7B 122.10 91.30 99.41 112.31 133.08 135.34
Llama 2 7B Chat 139.14 108.40 115.78 129.79 149.54 152.82
CodeLlama 2 7B 123.98 93.27 101.83 113.47 134.65 137.52
LLaMAX Llama 2 7B 117.39 69.41 79.06 103.74 131.90 138.03
LLaMAX Llama 2 7B Alpaca 107.81 60.05 69.36 93.39 122.44 128.77
MaLA-500 Llama 2 10B v1 103.20 94.04 98.60 100.53 105.04 107.65
MaLA-500 Llama 2 10B v2 101.67 92.42 96.30 98.88 103.34 106.62
TowerBase Llama 2 7B 123.70 93.64 101.44 114.72 134.41 136.77
TowerInstruct Llama 2 7B 127.30 98.21 105.17 118.65 137.53 140.28

Occiglot Mistral 7B v0.1 121.64 95.15 101.86 114.37 131.49 132.93
Occiglot Mistral 7B v0.1 Instruct 123.18 96.86 103.41 115.88 132.98 134.48
BLOOM 7B 129.55 96.62 111.22 115.33 138.19 143.03
BLOOMZ 7B 137.72 107.03 119.89 125.85 145.27 150.95
mGPT 225.14 211.35 203.84 219.75 229.91 239.82
XGLM 7.5B 131.31 116.86 117.69 125.15 136.47 140.53
Yayi 7B 143.80 108.79 123.20 130.60 152.37 158.73

Llama 3 8B 102.55 64.20 71.82 85.22 114.79 121.29
Llama 3.1 8B 101.43 62.98 70.68 83.83 113.36 120.33
Gemma 7B 460.86 399.22 427.14 468.66 463.11 483.29
Gemma 2 9B 197.41 200.76 192.07 197.88 196.56 202.69
Qwen 2 7B 120.44 83.34 94.87 107.84 133.38 136.52
Qwen 1.5 7B 124.02 89.36 100.55 113.08 135.54 139.13

EMMA-500 Llama 2 7B 68.11 50.12 55.62 64.78 60.53 65.68
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Table 6: 0-shot results (ACC) on commonsense reasoning: XCOPA, XStoryCloze, and XWinograd.
EMMA-500 Llama 2 7B has better average performance than Llama 2 models and multilingual LLMs
on XCOPA, XStoryCloze, and comparable performance on XWinograd.

Model
XCOPA XStoryCloze XWinograd

Avg High Medium Low Avg High Medium Low Avg

Llama 2 7B 0.5667 0.6210 0.5390 0.5160 0.5755 0.6338 0.5445 0.4921 0.7247
Llama 2 7B Chat 0.5585 0.6125 0.5313 0.5060 0.5841 0.6480 0.5477 0.4974 0.6945
CodeLlama 2 7B 0.5469 0.5870 0.5253 0.5160 0.5568 0.6068 0.5233 0.4990 0.7092
LLaMAX Llama 2 7B 0.5438 0.5550 0.5413 0.5140 0.6036 0.6434 0.5882 0.5347 0.6749
LLaMAX Llama 2 7B Alpaca 0.5660 0.5980 0.5517 0.5240 0.6383 0.6908 0.6201 0.5433 0.6986
MaLA-500 Llama 2 10B v1 0.5309 0.5355 0.5327 0.5020 0.5307 0.5815 0.4922 0.4808 0.6589
MaLA-500 Llama 2 10B v2 0.5309 0.5355 0.5327 0.5020 0.5307 0.5815 0.4922 0.4808 0.6589
YaYi Llama 2 7B 0.5671 0.6210 0.5413 0.5060 0.5842 0.6498 0.5491 0.4904 0.7450
TowerBase Llama 2 7B 0.5633 0.6250 0.5290 0.5220 0.5778 0.6435 0.5367 0.4957 0.7429
TowerInstruct Llama 2 7B 0.5705 0.6290 0.5400 0.5200 0.5924 0.6683 0.5453 0.4970 0.7400

Occiglot Mistral 7B v0.1 0.5667 0.6280 0.5337 0.5200 0.5810 0.6518 0.5328 0.5003 0.7461
Occiglot Mistral 7B v0.1 Instruct 0.5655 0.6285 0.5297 0.5280 0.5939 0.6694 0.5433 0.5063 0.7293
BLOOM 7B 0.5689 0.5995 0.5587 0.5080 0.5930 0.6199 0.5905 0.5308 0.7013
BLOOMZ 7B 0.5487 0.5635 0.5460 0.5060 0.5712 0.6114 0.5582 0.4967 0.6795
mGPT 0.5504 0.5710 0.5440 0.5060 0.5443 0.5496 0.5453 0.5291 0.5969
mGPT 13B 0.5618 0.5975 0.5513 0.4820 0.5644 0.5776 0.5635 0.5331 0.6359
XGLM 7.5B 0.6064 0.6400 0.6037 0.4880 0.6075 0.6242 0.6036 0.5738 0.6884
YaYi 7B 0.5664 0.5955 0.5550 0.5180 0.6067 0.6490 0.5940 0.5265 0.6979

Llama 3 8B 0.6171 0.6835 0.5903 0.5120 0.6341 0.6850 0.6203 0.5344 0.7684
Llama 3.1 8B 0.6171 0.6930 0.5880 0.4880 0.6358 0.6866 0.6209 0.5387 0.7552
Gemma 7B 0.6364 0.7035 0.6143 0.5000 0.6501 0.6946 0.6449 0.5493 0.7741
Gemma 2 9B 0.6633 0.7340 0.6427 0.5040 0.6767 0.7247 0.6669 0.5764 0.8007
Qwen 2 7B 0.6031 0.6865 0.5640 0.5040 0.6146 0.6945 0.5697 0.5050 0.7644
Qwen 1.5 7B 0.5944 0.6685 0.5590 0.5100 0.5985 0.6662 0.5604 0.5056 0.7259

EMMA-500 Llama 2 7B 0.6311 0.6660 0.6257 0.5240 0.6638 0.6892 0.6573 0.6132 0.7280

there is only one group for high-resource languages. Table 6 shows the evaluation results of zero-shot
commonsense reasoning.

Compared with Llama 2-based models on XCOPA, our model improves the average performance
by a large margin—up to a 5% increase when compared with the best-performing TowerInstruct
based on Llama 2 7B.18 Our model also outperforms all the multilingual LLMs. Recent LLMs such as
Gemma and Llama 3 have stronger performance than Llama 2 models, and Gemma 2 9B performs
the best. However, our model achieves better performance than Qwen, Llama 3, and 3.1. We gain
similar results on XStoryCloze, outperforming all the models except Gemma 2 9B. As for XWinograd,
a multilingual benchmark with high-resource only, our model achieves improved performance
than Llama 2, despite not being as good as Tower models, which target high-resource languages.
However, our model is comparable to other multilingual LLMs. For low-resource languages, our
model outperforms all the compared LLMs except LLaMAX Llama 2 7B Alpaca on XCOPA, where
we achieve the same accuracy as it.

4.4 Machine Translation

FLORES-200 is an evaluation benchmark for translation tasks with 204 language pairs involving
English and thus 408 translation directions, with a particular focus on low-resource languages. We
assess all language models by adopting a 3-shot evaluation approach with the prompt:

Translate the following sentence from {src_lang} to {tgt_lang}
[{src_lang}]: {src_sent}
[{tgt_lang}]:

The performance is measured by BLEU (Papineni et al., 2002) and chrF++ (Popović, 2015) imple-
mented in sacrebleu (Post, 2018). The BLEU score is calculated with the flores200 tokenizer
applied to the texts and chrF++ uses word order 2. The choice of flores200 tokenization ensures
that languages that do not have a whitespace delimiter can be evaluated at the (sub-)word level. For

18The biggest improvements are on medium-resource languages. However, we note that the resource categorization is not
perfect.
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Table 7: 3-shot results on FLORES-200 (X-Eng, BLEU/chrF++). EMMA-500 Llama 2 7B has better
average performance than all baselines.

Model Avg High Medium-High Medium Medium-Low Low

Llama 2 7B 12.93/ 30.32 19.91/ 39.04 17.56/ 35.84 12.49/ 29.81 8.27/ 24.35 6.96/ 23.36
Llama 2 7B Chat 12.28/ 31.72 18.98/ 39.65 17.06/ 37.03 11.74/ 31.1 7.79/ 26.34 6.18/ 25.03
CodeLlama 2 7B 10.82/ 28.57 17.39/ 37.43 15.27/ 33.94 10.39/ 28.05 6.45/ 22.85 5.04/ 21.48
LLaMAX Llama 2 7B 1.99/ 13.66 3.68/ 22.18 2.95/ 18.15 1.83/ 12.84 0.67/ 7.2 1.01/ 9.04
LLaMAX Llama 2 7B Alpaca 22.29/ 42.27 32.83/ 54.56 30.04/ 51.25 21.7/ 41.94 13.06/ 31.32 14.24/ 32.88
MaLA-500 Llama 2 10B v1‡ 2.29/ 13.6 4.64/ 15.95 3.18/ 14.64 2.68/ 14.23 1.24/ 12.58 0.33/ 11.18
MaLA-500 Llama 2 10B v2‡ 2.87/ 15.44 5.58/ 18.65 3.81/ 16.33 3.55/ 16.29 1.63/ 14.2 0.55/ 12.76
Yayi Llama 2 7B 12.98/ 31.38 19.48/ 39.58 17.55/ 36.71 12.47/ 30.79 8.54/ 25.63 7.22/ 24.84
TowerBase Llama 2 7B 13.74/ 31.47 21.76/ 40.96 18.92/ 37.27 13.15/ 30.9 8.3/ 25.05 7.21/ 24.1
TowerInstruct Llama 2 7B 4.81/ 25.43 9.18/ 34.4 6.66/ 30.01 4.62/ 25.22 2.64/ 20.24 1.8/ 18.69

Occiglot Mistral 7B v0.1 13.12/ 31.13 19.53/ 38.93 17.57/ 36.27 13.07/ 31.2 9.03/ 26.15 6.86/ 23.83
Occiglot Mistral 7B v0.1 Instruct 11.61/ 31.65 16.72/ 39.28 15.06/ 36.48 11.7/ 31.73 8.48/ 26.88 6.54/ 24.7
BLOOM 7B 9.57/ 27.84 15.75/ 36.65 9.65/ 28.19 9.42/ 27.81 6.81/ 23.95 8.61/ 25.89
BLOOMZ 7B† 20.22/ 34.74 32.23/ 47.03 19.2/ 34.08 20.09/ 34.49 16.25/ 30.58 18.54/ 32.63
mGPT 5.29/ 20.69 9.37/ 26.64 8.28/ 25.29 3.41/ 17.87 2.43/ 16.07 2.84/ 17.28
mGPT-13B 7.42/ 24.58 12.61/ 31.95 11.11/ 30.16 5.72/ 22.49 3.57/ 18.16 4.11/ 20.04
Yayi 7B 4.82/ 21.36 5.69/ 25.18 4.53/ 19.97 4.41/ 21.52 3.71/ 19.18 6.13/ 23.12

Llama 3 8B 23.78/ 43.72 33.71/ 55.36 30.31/ 51.3 24.75/ 44.91 15.18/ 33.65 16.01/ 34.65
Llama 3.1 8B 24.19/ 44.1 34.15/ 55.7 30.79/ 51.7 24.98/ 45.26 15.89/ 34.24 16.13/ 34.85
Gemma 2 9B 23.15/ 38.87 33.11/ 51.36 30.81/ 48.53 25.58/ 41.23 15.37/ 30.03 11.73/ 24.15
Gemma 7B 23.79/ 43.68 34.23/ 55.77 29.87/ 50.95 24.0/ 44.25 16.16/ 34.36 16.03/ 34.58
Qwen 1.5 7B 15.58/ 35.87 24.07/ 46.29 19.92/ 40.74 15.76/ 36.27 9.74/ 28.81 9.77/ 29.13
Qwen 2 7B 17.39/ 37.61 27.63/ 50.06 22.48/ 43.28 18.13/ 38.63 9.89/ 28.54 10.64/ 29.99

EMMA-500 Llama 2 7B 25.37/ 45.78 32.24/ 53.74 31.39/ 52.85 25.72/ 46.16 20.32/ 39.96 17.18/ 36.15

reproducibility, we attach the BLEU and chrF++ signatures.19,20

Table 7 presents the average X-to-English (X-Eng) translation results.21 Our EMMA-500 model
outperforms all other models on average. We achieve the best performance across all language
settings, except for high-resource languages where our model slightly lags behind Llama 3/3.1,
Gemma 7B, and LlaMAX 7B Alpaca. In the English-to-X (Eng-X) translation direction, as shown in
Table 8, the advantage of EMMA-500 is even more pronounced. We outperform all other models even
in high-resource languages, and the advantage becomes more significant in lower-resource languages.
Overall, we note that our model outperforms Tower models which are explicitly adjusted to perform
translation tasks in high-resource languages. Further, the much larger margin between EMMA-500
and other models in Eng-X compared with X-Eng indicates that our EMMA-500 model is particularly
good at generating non-English texts.

4.5 Text Classification

SIB-200 (Adelani et al., 2023) and Taxi1500 (Ma et al., 2023) are two prominent topic classification
datasets. SIB-200 encompasses seven categories: science/technology, travel, politics, sports, health,
entertainment, and geography. Taxi1500 spans 1507 languages, involving six classes: Recommenda-
tion, Faith, Description, Sin, Grace, and Violence.

We use 3-shot prompting, drawing demonstrations from the development set and testing models
on the test split. The prompt template for SIB-200 is as follows:

Topic Classification: science/technology, travel, politics, sports, health,
entertainment, geography.

{examples}
The topic of the news "${text}" is

For Taxi-1500, the prompt template is as follows:

Topic Classification: Recommendation, Faith, Description, Sin, Grace,
Violence.

19BLEU: nrefs:1—case:mixed—eff:no—tok:flores200—smooth:exp—version:2.4.2
20chrF++: nrefs:1—case:mixed—eff:yes—nc:6—nw:2—space:no—version:2.4.2
21We mark BLOOMZ with a † because it has used FLORES in its instruction tuning data; we mark MaLA-500 with a ‡

because it has used FLORES in its training data but with source and target sides split. Besides, as a remark, Tower, LLaMAX,
and our EMMA-500 have intentionally used parallel data (not FLORES) in the training stage.
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Table 8: 3-shot results on FLORES-200 (Eng-X, BLEU/chrF++). EMMA-500 Llama 2 7B has better
average performance than all baselines.

Model Avg High Medium-High Medium Medium-Low Low

Llama 2 7B 4.62/ 15.13 10.77/ 24.38 8.56/ 21.4 2.55/ 13.72 0.74/ 8.72 0.7/ 7.92
Llama 2 7B Chat 4.95/ 16.95 10.87/ 24.51 8.54/ 22.69 3.25/ 15.5 1.52/ 12.08 0.94/ 10.03
CodeLlama 2 7B 4.27/ 14.94 10.04/ 23.48 7.79/ 20.79 2.57/ 14.2 0.71/ 9.27 0.58/ 7.49
LLaMAX Llama 2 7B 0.8/ 7.42 1.85/ 12.06 1.2/ 9.74 0.54/ 6.55 0.22/ 4.52 0.38/ 4.81
LLaMAX Llama 2 7B Alpaca 12.51/ 28.35 24.8/ 41.76 18.69/ 38.42 10.1/ 27.27 3.79/ 16.53 6.68/ 18.15
MaLA-500 Llama 2 10B v1‡ 0.6/ 6.08 1.51/ 9.0 1.13/ 8.19 0.35/ 5.99 0.07/ 4.5 0.02/ 2.9
MaLA-500 Llama 2 10B v2‡ 0.54/ 6.38 1.4/ 9.19 1.02/ 8.42 0.24/ 5.99 0.07/ 5.14 0.02/ 3.27
Yayi Llama 2 7B 4.41/ 14.87 10.49/ 24.0 8.21/ 21.27 2.52/ 13.57 0.6/ 8.49 0.53/ 7.42
TowerBase Llama 2 7B 4.83/ 16.03 11.89/ 24.15 8.33/ 21.46 2.57/ 14.49 1.38/ 11.6 0.74/ 8.9
TowerInstruct Llama 2 7B 3.23/ 15.64 7.22/ 22.65 4.99/ 20.0 2.2/ 14.9 1.62/ 12.31 0.73/ 8.97

Occiglot Mistral 7B v0.1 4.32/ 16.1 10.5/ 23.74 6.95/ 20.91 2.87/ 15.44 1.47/ 12.0 0.79/ 9.09
Occiglot Mistral 7B v0.1 Instruct 3.99/ 15.8 9.46/ 23.17 6.46/ 20.73 2.68/ 15.29 1.31/ 11.31 0.84/ 9.04
BLOOM 7B 2.81/ 11.8 7.53/ 19.0 3.12/ 13.36 2.05/ 11.48 0.85/ 8.0 2.09/ 9.22
BLOOMZ 7B† 7.44/ 16.1 23.64/ 32.22 7.46/ 16.62 6.98/ 16.05 1.28/ 9.99 4.17/ 11.77
mGPT 2.59/ 12.56 5.24/ 17.04 4.75/ 16.92 1.14/ 9.75 0.78/ 9.24 0.84/ 9.08
mGPT-13B 3.88/ 14.57 8.32/ 21.7 6.84/ 20.55 2.06/ 12.23 0.9/ 8.4 1.33/ 9.58
Yayi 7B 4.37/ 13.5 13.72/ 26.28 4.68/ 14.31 3.35/ 12.89 0.91/ 8.51 2.55/ 10.08

Llama 3 8B 9.93/ 24.08 20.38/ 36.87 14.95/ 32.05 8.89/ 24.28 2.83/ 14.26 4.2/ 14.29
Llama 3.1 8B 10.11/ 24.69 20.82/ 37.39 15.3/ 32.82 8.85/ 24.85 2.9/ 14.83 4.23/ 14.81
Gemma 2 9B 12.09/ 26.48 24.62/ 40.69 17.82/ 35.51 10.68/ 26.58 3.38/ 15.02 5.94/ 15.98
Gemma 7B 9.05/ 23.05 17.58/ 34.5 13.62/ 30.16 7.96/ 22.85 2.64/ 14.11 4.47/ 14.82
Qwen 1.5 7B 5.87/ 17.77 14.05/ 28.6 8.88/ 23.57 3.85/ 17.07 1.7/ 10.85 2.35/ 10.21
Qwen 2 7B 5.56/ 17.17 13.22/ 27.65 8.21/ 22.36 4.15/ 16.93 1.56/ 10.47 2.19/ 10.11

EMMA-500 Llama 2 7B 15.58/ 33.25 26.37/ 42.4 21.96/ 41.98 13.4/ 32.06 9.15/ 27.99 7.92/ 21.25

{examples}
The topic of the verse "${text}" is

The outcomes are tabulated in Table 9 and Table 10 for SIB-200 and TAXI-1500 respectively. For
SIB-200, our EMMA-500 model outperforms all Llama2-based models, with particularly notable
gains in languages with medium or fewer resources—seeing an average improvement of 47.5%.
Taxi-1500 could be a more challenging task since it is in the religious domain, but our model still
surpasses all Llama2-based models except for MalA-500. However, despite these improvements in
both classification tasks, our models lag behind the latest models such as Llama3 and 3.1, especially
in high-resource languages.

4.6 Open-Ended Generation

Aya Evaluation We choose the two subsets aya-human-annotated and dolly-machine-translated
from the Aya evaluation suite (Singh et al., 2024), which have both inputs and targets for subsequent
evaluation. To quantitatively assess the quality of the generated text by the models, we employ two
metrics: BLEU (Papineni et al., 2002) and Self-BLEU (Zhu et al., 2018). BLEU is crucial for assessing
the linguistic accuracy and relevance of the generated text in comparison to the expected human-like
text present in the dataset. Self-BLEU is used to evaluate the diversity of the text generated by a
model. It measures how similar different texts from the same model are to each other by treating
one generated text as the “candidate” and others as the “reference” texts. This metric is useful in
scenarios where high degrees of variation are desirable, as it helps identify models that might be
overfitting to particular styles or patterns of text.

The results are presented in Table 11. The BLEU metric is an indicator that measures how
generated texts are close to the references. However, in open-ended generation, LLMs cannot
generate identical texts to references, leading to low BLEU scores. The EMMA-500 model obtains
remarkably high BLEU scores in both high-resource and low-resource settings when compared
with baselines. Its performance in low-resource settings is particularly noteworthy, as it not only
sustains high BLEU scores but also exhibits a Self-BLEU score of 5.09, the highest among all models
evaluated. This high Self-BLEU score indicates less diversity in the generated text, suggesting that
while EMMA-500 maintains consistency, it may produce less varied outputs. When compared to
other high-performing models like Qwen 2 7B and Llama 3.1 8B, the EMMA-500 model exhibits a
superior balance between accuracy and linguistic creativity. Unlike Qwen 2 7B, which shows a spike
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Table 9: 3-shot results on SIB-200 (ACC). EMMA-500 Llama 2 7B has better average performance
than Llama 2 models and comparable performance with multilingual LLMs.

Model Avg High Medium-High Medium Medium-Low Low

Llama 2 7B 0.2241 0.2664 0.2469 0.2205 0.1968 0.1900
Llama 2 7B Chat 0.2558 0.2972 0.2811 0.2501 0.2303 0.2191
CodeLlama 2 7B 0.2335 0.2606 0.2542 0.2310 0.2142 0.2037
LLaMAX Llama 2 7B 0.1061 0.1242 0.1160 0.1001 0.0945 0.0954
LLaMAX Llama 2 7B Alpaca 0.2789 0.3309 0.3212 0.2716 0.2338 0.2282
MaLA-500 Llama 2 10B v1 0.2325 0.2330 0.2364 0.2288 0.2276 0.2358
MaLA-500 Llama 2 10B v2 0.1930 0.1893 0.2105 0.1949 0.1755 0.1846
Yayi Llama 2 7B 0.2457 0.2904 0.2717 0.2442 0.2144 0.2069
TowerBase Llama 2 7B 0.1934 0.2200 0.2092 0.1874 0.1790 0.1693
TowerInstruct Llama 2 7B 0.2053 0.2321 0.2196 0.2026 0.1915 0.1804

Occiglot Mistral 7B v0.1 0.3269 0.3880 0.3582 0.3174 0.2892 0.2836
Occiglot Mistral 7B v0.1 Instruct 0.3431 0.3948 0.3716 0.3336 0.3147 0.3008
BLOOM 7B 0.1781 0.2313 0.1805 0.1717 0.1576 0.1702
BLOOMZ 7B 0.2973 0.3039 0.2963 0.2980 0.2953 0.2970
mGPT 0.2711 0.2858 0.2799 0.2673 0.2589 0.2648
mGPT-13B 0.3320 0.3669 0.3427 0.3448 0.2939 0.3226
XGLM 7.5B 0.3181 0.3528 0.3512 0.3169 0.2696 0.2996
Yayi 7B 0.3576 0.4057 0.3620 0.3563 0.3472 0.3318

Llama 3 8B 0.6369 0.7345 0.7025 0.6462 0.5316 0.5696
Llama 3.1 8B 0.6142 0.7070 0.6790 0.6199 0.5146 0.5475
Gemma 7B 0.5821 0.6806 0.6455 0.5816 0.4886 0.5112
Gemma 2 9B 0.4625 0.5177 0.4900 0.4692 0.4304 0.4045
Qwen 1.5 7B 0.4795 0.5600 0.5181 0.4825 0.4156 0.4286
Qwen 2 7B 0.5495 0.6637 0.6014 0.5517 0.4519 0.4925

EMMA-500 Llama 2 7B 0.3127 0.3275 0.3328 0.3099 0.3083 0.2760

Table 10: 3-shot results on Taxi-1500 (ACC). EMMA-500 Llama 2 7B has comparable performance
with the compared LLMs.

Model Avg High Medium-High Medium Medium-Low Low

Llama 2 7B 0.1754 0.1950 0.1949 0.1847 0.1746 0.1737
Llama 2 7B Chat 0.1544 0.1873 0.1766 0.1661 0.1559 0.1522
CodeLlama 2 7B 0.1703 0.1745 0.1741 0.1720 0.1705 0.1700
LLaMAX Llama 2 7B 0.2352 0.2320 0.2340 0.2376 0.2356 0.2352
LLaMAX Llama 2 7B Alpaca 0.1509 0.1870 0.1688 0.1599 0.1500 0.1491
MaLA-500 Llama 2 10B v1 0.2527 0.2390 0.2402 0.2476 0.2457 0.2543
MaLA-500 Llama 2 10B v2 0.2339 0.2136 0.2230 0.2132 0.2172 0.2367
Yayi Llama 2 7B 0.1773 0.1874 0.1846 0.1819 0.1789 0.1765
TowerBase Llama 2 7B 0.1773 0.1849 0.1881 0.1867 0.1810 0.1761
TowerInstruct Llama 2 7B 0.1729 0.2017 0.1960 0.1808 0.1740 0.1709

Occiglot Mistral 7B v0.1 0.2226 0.2464 0.2291 0.2299 0.2233 0.2215
Occiglot Mistral 7B v0.1 Instruct 0.1876 0.2430 0.2090 0.1941 0.1918 0.1848
BLOOM 7B 0.1476 0.1558 0.1489 0.1456 0.1511 0.1473
BLOOMZ 7B 0.1696 0.1693 0.1698 0.1696 0.1699 0.1695
mGPT 0.1072 0.0867 0.0844 0.0992 0.1029 0.1093
mGPT-13B 0.1723 0.1798 0.1644 0.1588 0.1610 0.1738
XGLM 7.5B 0.2041 0.2421 0.2369 0.2125 0.2105 0.2010
Yayi 7B 0.1612 0.1665 0.1638 0.1645 0.1583 0.1611

Llama 3 8B 0.2173 0.3184 0.2708 0.2560 0.2261 0.2105
Llama 3.1 8B 0.2020 0.2751 0.2521 0.2443 0.2097 0.1959
Gemma 2 9B 0.1805 0.2868 0.2855 0.2499 0.2028 0.1689
Gemma 7B 0.1383 0.2429 0.2413 0.1874 0.1497 0.1283
Qwen 1.5 7B 0.0729 0.1265 0.1145 0.0878 0.0730 0.0692
Qwen 2 7B 0.2187 0.2737 0.2557 0.2401 0.2233 0.2147

EMMA-500 Llama 2 7B 0.1982 0.2366 0.2333 0.2277 0.2200 0.1930
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Table 11: Results on Aya (BLEU/Self-BLEU). EMMA-500 Llama 2 7B has higher average BLEU scores
than all baselines.

Model Avg High Medium-High Medium Medium-Low Low

Llama 2 7B 1.24/0.74 1.27/0.57 1.47/0.60 0.86/0.37 1.17/0.45 0.77/1.87
Llama 2 7B Chat 1.17/1.29 1.46/1.15 1.36/1.15 0.69/1.03 1.14/1.14 0.54/2.23
CodeLlama 2 7B 1.22/1.21 1.31/1.19 1.40/1.00 0.85/0.84 1.23/0.56 0.78/2.57
LLaMAX Llama 2 7B 1.72/1.70 1.80/1.37 2.03/1.48 1.30/1.24 1.65/0.89 0.98/3.74
LLaMAX Llama 2 7B Alpaca 1.68/1.67 1.82/1.22 1.96/1.42 1.28/1.14 1.55/1.04 1.00/3.94
MaLA-500 Llama 2 10B v1 0.40/2.29 0.42/2.53 0.49/2.79 0.32/1.22 0.31/2.42 0.18/1.16
MaLA-500 Llama 2 10B v2 0.41/2.31 0.42/2.01 0.50/2.65 0.32/1.42 0.33/1.02 0.18/3.09
Yayi Llama 2 7B 1.65/0.61 1.84/0.82 1.88/0.62 1.26/0.62 1.53/0.45 1.02/0.41
TowerBase Llama 2 7B 1.44/0.83 1.45/0.64 1.67/0.56 1.19/0.49 1.46/0.38 0.88/2.54
TowerInstruct Llama 2 7B 1.55/0.93 1.80/0.85 1.82/0.78 1.15/0.65 1.21/0.54 0.85/1.97

Occiglot Mistral 7B v0.1 1.53/2.43 1.57/0.91 1.78/2.89 1.17/1.73 1.61/1.31 0.95/4.27
Occiglot Mistral 7B v0.1 Instruct 0.75/2.81 0.82/2.38 0.89/3.10 0.43/2.72 0.79/1.17 0.45/3.50
BLOOM 7B 0.85/1.17 0.92/1.20 0.96/1.32 0.73/1.05 0.78/1.27 0.55/0.72
BLOOMZ 7B 0.12/0.61 0.07/0.33 0.17/0.62 0.08/1.00 0.06/0.89 0.08/0.51
mGPT 1.24/0.55 1.22/0.64 1.47/0.59 0.91/0.48 1.21/0.60 0.84/0.29
mGPT-13B 1.42/0.57 1.42/0.80 1.63/0.58 1.00/0.48 1.53/0.44 1.03/0.36
Yayi 7B 1.05/0.39 1.22/0.38 1.18/0.41 0.76/0.42 1.01/0.54 0.67/0.22

Llama 3 8B 1.59/0.94 1.03/0.60 1.31/0.53 2.96/0.54 1.11/0.28 2.43/3.47
Llama 3.1 8B 1.85/1.08 1.41/0.95 1.60/0.64 3.11/0.52 1.33/0.39 2.52/3.52
Gemma 2 9B 1.55/0.82 1.59/0.94 1.73/0.93 1.38/0.70 1.33/0.47 1.21/0.65
Gemma 7B 1.29/0.57 1.41/0.62 1.39/0.66 1.16/0.40 1.26/0.50 0.93/0.40
Qwen 1.5 7B 1.93/1.13 1.66/0.85 1.64/0.65 3.14/0.79 1.51/0.58 2.45/3.69
Qwen 2 7B 1.99/1.13 1.84/0.94 1.69/0.70 3.29/0.72 1.36/0.44 2.47/3.53

EMMA-500 Llama 2 7B 2.93/1.54 2.90/1.29 2.75/0.83 3.79/0.82 2.86/0.95 2.87/5.09

in performance primarily in medium-low resource settings, EMMA-500 maintains a consistently
high performance across varying levels of resource availability.

PolyWrite This is a novel multilingual benchmark composed in this work for evaluating open-ended
generation in 240 languages. We use ChatGPT to generate different prompts in English and use
Google Translate to translate them into different languages for models to generate creative content.
This benchmark consists of 31 writing tasks, such as storytelling and email writing, and 155 prompts
in total. We back-translate the multilingual prompts to English, calculate the BLEU scores between
original English prompts and back-translation, and filter out translated prompts with BLEU scores
below 20, and the entire dataset contains a total of 35,751 prompts. We release the PolyWrite dataset
on Huggingface22. The details of PolyWrite are described in Section C.1.

We use Self-BLEU (Zhu et al., 2018) to evaluate the diversity of generated texts in the PolyWrite
benchmark, as presented in Table 12. A lower Self-BLEU score indicates more diverse generation,
but does not means a better generation quality. Our EMMA-500 model demonstrates comparable
performance across various languages. Compared to other models like Llama 3/3.1 and Qwen 1.5/2,
particularly in medium-low and low-resource languages, EMMA-500 has higher Self-BLEU scores,
indicating lower diversity in its generated content.

Evaluating open-ended generation poses significant challenges, as it goes beyond simply measur-
ing accuracy or correctness. Metrics like BLEU or Self-BLEU, while useful for assessing similarity to
reference texts or the diversity of given texts, often fail to capture more nuanced aspects. Subjective
factors like cultural relevance and the appropriateness of responses in low-resource languages are
difficult to quantify. This makes it challenging to create evaluation benchmarks and metrics that fully
capture the strengths and weaknesses of models like EMMA-500 in diverse, real-world scenarios.

4.7 Summarization

XL-Sum (Hasan et al., 2021) is a large-scale multilingual abstractive summarization dataset that
covers 44 languages. To evaluate the quality of the generated summaries, we use ROUGE-L (Lin,
2004) and BERTScore (Zhang et al., 2019) as evaluation metrics. ROUGE-L measures the longest
common subsequence (LCS) between the reference and generated summaries. Recall and precision
are calculated by dividing the LCS length by the reference length and the generated summary length,
respectively. An F-score is then used to combine these two aspects into a single metric. BERTScore

22https://huggingface.co/datasets/MaLA-LM/PolyWrite
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Table 12: Results on PolyWrite (Self-BLEU).

Model Avg High Medium-High Medium Medium-Low Low

Llama 2 7B 0.5358 0.4282 0.6545 0.3769 0.4766 0.6587
Llama 2 7B Chat 1.1550 0.8640 0.8902 1.1877 1.4435 1.4167
CodeLlama 2 7B 1.0313 1.2052 1.2883 0.9191 0.9092 0.6798
LLaMAX Llama 2 7B 0.9564 1.0066 1.1655 0.8786 0.8363 0.7709
LLaMAX Llama 2 7B Alpaca 0.8086 0.7321 0.9517 0.8322 0.8351 0.4981
MaLA-500 Llama 2 10B v1 3.7079 3.7902 3.5066 2.4541 4.8052 3.5163
MaLA-500 Llama 2 10B v2 4.0059 3.1737 4.0148 3.0476 5.0652 3.8916
Yayi Llama 2 7B 0.6274 0.6207 0.6921 0.4169 0.6813 0.6352
TowerBase Llama 2 7B 0.4938 0.7268 0.4736 0.3945 0.4417 0.5396
TowerInstruct Llama 2 7B 0.7124 0.9565 0.7651 0.6492 0.5998 0.6615

Occiglot Mistral 7B v0.1 0.9647 0.8818 0.7975 0.9543 0.9563 1.4157
Occiglot Mistral 7B v0.1 Instruct 3.9033 5.3884 4.7140 3.7555 2.8444 2.9568
BLOOM 7B 1.3892 1.2845 1.6705 1.9685 1.1513 0.6600
BLOOMZ 7B 0.0024 0.0000 0.0005 0.0093 0.0000 0.0049
mGPT 0.7560 0.9222 0.6291 0.4534 0.8156 1.1134
mGPT-13B 0.7479 0.8483 0.7091 0.4230 0.7962 1.0201
Yayi 7B 0.5151 0.4266 0.3574 0.3283 0.6706 0.8574

Llama 3 8B 0.5796 0.5753 0.5921 0.7141 0.5586 0.4440
Llama 3.1 8B 0.7995 0.6805 0.8253 0.5044 0.6965 1.3585
Gemma 2 9B 1.1736 1.2347 1.2913 1.1616 0.9261 1.3240
Gemma 7B 1.0541 0.9629 1.1222 0.9275 1.1112 1.0284
Qwen 1.5 7B 0.6441 0.9398 0.7457 0.3797 0.4164 0.8738
Qwen 2 7B 0.5709 0.7763 0.6135 0.3695 0.4186 0.7989

EMMA-500 Llama 2 7B 0.9879 0.9833 0.7058 0.8465 1.3130 1.1702

computes the semantic similarity between summaries by leveraging contextual embeddings from
pre-trained language models. Specifically, we use the bert-base-multilingual-cased23 model for
BERTScore to accommodate multiple languages.

The evaluation results are presented in Table 13, we observe that our model, EMMA-500, performs
comparably to other Llama2-based models like TowerInstruct Llama 2 7B. While EMMA-500 shows
strength in certain language categories, it does not significantly outperform these models overall. This
suggests that, although EMMA-500 is effective in multilingual summarization tasks, there is room for
improvement to achieve more consistent performance across all languages. It is also important to
note that this test set includes only 44 languages, limiting the evaluation of EMMA-500’s capabilities
in low-resource languages.

4.8 Natural Language Inference

We evaluate on the XNLI (Cross-lingual Natural Language Inference) benchmark (Conneau et al.,
2018) where sentence pairs in different languages need to be classified as entailment, contradiction,
or neutral. We categorize the languages in XNLI into 3 groups, i.e., high-resource (German, English,
Spanish, French, Russian, and Chinese), medium-resource (Arabic, Bulgarian, Greek, Hindi, Turkish,
and Vietnamese), and low-resource (Swahili, Thai, and Urdu).24 Table 14 shows the aggregated
accuracy. Our model outperforms most baselines including Llama 2-based models and multilingual
LLMs. We achieve the second-best average accuracy, slightly behind the Llama 3.1 8B model. On the
low-resource end, we perform the second-best, slightly behind the Gemma 2 9B model.

4.9 Math

We evaluate the ability of LLMs to solve grade-school math problems across multiple languages on the
MGSM (Multilingual Grade School Math) benchmark (Shi et al., 2022). MGSM is an extension of the
GSM8K (Grade School Math 8K) dataset (Cobbe et al., 2021) by translating 250 of the original GSM8K
problems into ten languages. We also split these ten languages into three groups, i.e., high-resource
(Spanish, French, German, Russian, Chinese, and Japanese), medium-resource (Thai, Swahili, and
Bengali), and low-resource (Telugu). Table 15 shows the results for 3-shot prompting with a flexible
match to obtain the answers in model generation. We evaluate all the models by directly prompting
the questions (denoted as direct) and the questions with answers followed by Chain-of-Thoughts

23https://huggingface.co/google-bert/bert-base-multilingual-cased
24Again, the categorization is not perfect.
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Table 13: Results on XL-Sum (ROUGE-L/BERTScore).

Model Avg High Medium-High Medium Medium-Low Low

Llama 2 7B 0.07/0.67 0.07/0.67 0.07/0.66 0.06/0.65 0.10/0.62 0.08/0.71
Llama 2 7B Chat 0.09/0.68 0.09/0.68 0.08/0.68 0.08/0.67 0.12/0.64 0.10/0.74
CodeLlama 2 7B 0.07/0.66 0.07/0.65 0.07/0.66 0.06/0.63 0.10/0.64 0.08/0.71
LLaMAX Llama 2 7B 0.05/0.65 0.05/0.65 0.05/0.65 0.05/0.61 0.07/0.62 0.06/0.69
LLaMAX Llama 2 7B Alpaca 0.10/0.69 0.10/0.70 0.09/0.69 0.09/0.68 0.13/0.65 0.12/0.74
MaLA-500 Llama 2 10B v1 0.05/0.64 0.06/0.64 0.05/0.64 0.05/0.61 0.07/0.64 0.06/0.68
MaLA-500 Llama 2 10B v2 0.05/0.64 0.06/0.64 0.05/0.64 0.05/0.61 0.07/0.64 0.06/0.69
Yayi Llama 2 7B 0.08/0.67 0.09/0.67 0.07/0.67 0.07/0.66 0.11/0.61 0.09/0.71
TowerBase Llama 2 7B 0.08/0.67 0.08/0.67 0.07/0.67 0.07/0.65 0.10/0.63 0.09/0.71
TowerInstruct Llama 2 7B 0.09/0.68 0.09/0.69 0.09/0.69 0.08/0.66 0.12/0.64 0.09/0.73

Occiglot Mistral 7B v0.1 0.07/0.66 0.08/0.66 0.07/0.66 0.07/0.64 0.10/0.63 0.09/0.71
Occiglot Mistral 7B v0.1 Instruct 0.08/0.67 0.09/0.67 0.08/0.67 0.08/0.64 0.10/0.64 0.09/0.73
BLOOM 7B 0.07/0.65 0.07/0.65 0.07/0.65 0.06/0.62 0.10/0.58 0.08/0.71
BLOOMZ 7B 0.11/0.70 0.14/0.69 0.09/0.70 0.10/0.69 0.12/0.66 0.15/0.74
mGPT 0.04/0.60 0.05/0.60 0.04/0.60 0.02/0.56 0.07/0.59 0.04/0.63
mGPT-13B 0.05/0.62 0.06/0.62 0.05/0.63 0.04/0.59 0.08/0.59 0.05/0.67
Yayi 7B 0.12/0.70 0.14/0.69 0.10/0.69 0.11/0.69 0.12/0.66 0.15/0.75

Llama 3 8B 0.08/0.67 0.08/0.67 0.08/0.67 0.08/0.65 0.10/0.65 0.11/0.72
Llama 3.1 8B 0.09/0.67 0.08/0.66 0.08/0.67 0.08/0.65 0.09/0.66 0.10/0.72
Gemma 2 9B 0.07/0.65 0.07/0.64 0.07/0.66 0.07/0.63 0.09/0.64 0.09/0.71
Gemma 7B 0.07/0.65 0.07/0.63 0.06/0.65 0.07/0.67 0.07/0.60 0.08/0.63
Qwen 1.5 7B 0.10/0.69 0.11/0.69 0.09/0.69 0.10/0.68 0.11/0.65 0.11/0.74
Qwen 2 7B 0.10/0.69 0.12/0.69 0.09/0.69 0.10/0.68 0.11/0.65 0.11/0.74

EMMA-500 Llama 2 7B 0.09/0.67 0.08/0.66 0.08/0.67 0.08/0.69 0.11/0.66 0.10/0.67

Table 14: 0-shot results on XNLI (ACC).

Model Avg High Medium Low

Llama 2 7B 0.4019 0.4526 0.3772 0.3497
Llama 2 7B Chat 0.3858 0.4277 0.3675 0.3387
CodeLlama 2 7B 0.4019 0.4627 0.3729 0.3386
LLaMAX Llama 2 7B 0.4427 0.4653 0.4264 0.4303
LLaMAX Llama 2 7B Alpaca 0.4509 0.4847 0.4280 0.4289
MaLA-500 Llama 2 10B v1 0.3811 0.4210 0.3585 0.3465
MaLA-500 Llama 2 10B v2 0.3811 0.4210 0.3585 0.3465
YaYi Llama 2 7B 0.4128 0.4732 0.3841 0.3494
TowerBase Llama 2 7B 0.3984 0.4608 0.3633 0.3439
TowerInstruct Llama 2 7B 0.4036 0.4707 0.3692 0.3379

Occiglot Mistral 7B v0.1 0.4235 0.4990 0.3839 0.3519
Occiglot Mistral 7B v0.1 Instruct 0.4081 0.4758 0.3718 0.3452
BLOOM 7B 0.4160 0.4513 0.3969 0.3838
BLOOMZ 7B 0.3713 0.4002 0.3556 0.3451
mGPT 0.4051 0.4297 0.3965 0.3730
XGLM 7.5B 0.4375 0.4572 0.4216 0.4300
YaYi 7B 0.3987 0.4385 0.3824 0.3515

Llama 3 8B 0.4497 0.4882 0.4384 0.3956
Llama 3.1 8B 0.4562 0.4961 0.4404 0.4083
Gemma 7B 0.4258 0.4644 0.4100 0.3801
Gemma 2 9B 0.4674 0.4850 0.4511 0.4649
Qwen 2 7B 0.4277 0.4731 0.4135 0.3653
Qwen 1.5 7B 0.3947 0.4095 0.3880 0.3783

EMMA-500 Llama 2 7B 0.4514 0.4609 0.4440 0.4471

prompt in the same languages as the subset being evaluated (denoted as CoT) (Shi et al., 2022). The
results show that Llama 2 7B is a weak model in the MGSM math task. The base model and its
variants failed in most settings. Multilingual LLMs such as BLOOM, XGLM, and YaYi are also subpar
at this task. Recent LLMs like Llama 3, Qwen, and Gemma obtain reasonable performance, and
Qwen series models are the best. Our model improves the Llama 2 7B model remarkably in both
prompt strategies. For direct prompting, our model has an average accuracy of 0.1702, 7% higher
than the Llama 2 7B chat model. For CoT-based prompting, our model increases the score of the
Llama 2 7B chat model from 0.1 to 0.3 (20% higher) and slightly outperforms Llama 3 and 3.1 8B
models.
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Table 15: 3-shot results (ACC) on MGSM obtained by direct and CoT prompting.

Model
Direct Prompting CoT Prompting

Avg High Medium Low Avg High Medium Low

Llama 2 7B 0.0669 0.0807 0.0213 0.0120 0.0636 0.0760 0.0213 0.0080
Llama 2 7B Chat 0.1022 0.1373 0.0213 0.0080 0.1091 0.1353 0.0280 0.0160
CodeLlama 2 7B 0.0593 0.0707 0.0293 0.0120 0.0664 0.0873 0.0267 0.0200
LLaMAX Llama 2 7B 0.0335 0.0400 0.0200 0.0080 0.0362 0.0433 0.0227 0.0240
LLaMAX Llama 2 7B Alpaca 0.0505 0.0520 0.0400 0.0160 0.0635 0.0807 0.0413 0.0080
MaLA-500 Llama 2 10B v1 0.0091 0.0133 0.0027 0.0000 0.0073 0.0127 0.0000 0.0000
MaLA-500 Llama 2 10B v2 0.0091 0.0133 0.0027 0.0000 0.0073 0.0127 0.0000 0.0000
TowerBase Llama 2 7B 0.0615 0.0833 0.0173 0.0080 0.0616 0.0860 0.0240 0.0080
TowerInstruct Llama 2 7B 0.0724 0.0953 0.0173 0.0200 0.0824 0.1047 0.0187 0.0120

Occiglot Mistral 7B v0.1 0.1331 0.1687 0.0453 0.0160 0.1407 0.1880 0.0360 0.0120
Occiglot Mistral 7B v0.1 Instruct 0.2276 0.2980 0.0747 0.0280 0.2216 0.3040 0.0787 0.0280
BLOOM 7B 0.0287 0.0260 0.0280 0.0360 0.0229 0.0220 0.0147 0.0200
BLOOMZ 7B 0.0255 0.0267 0.0240 0.0120 0.0215 0.0167 0.0307 0.0200
mGPT 0.0135 0.0167 0.0053 0.0000 0.0142 0.0193 0.0067 0.0000
mGPT 13B 0.0131 0.0180 0.0067 0.0000 0.0153 0.0167 0.0120 0.0000
XGLM 7.5B 0.0102 0.0120 0.0067 0.0200 0.0116 0.0107 0.0120 0.0280
Yayi 7B 0.0276 0.0293 0.0147 0.0240 0.0302 0.0293 0.0240 0.0200

Llama 3 8B 0.2745 0.2787 0.2613 0.0560 0.2813 0.2853 0.2667 0.0520
Llama 3.1 8B 0.2836 0.2900 0.2613 0.0440 0.2731 0.2727 0.2547 0.0840
Gemma 7B 0.3822 0.3660 0.3827 0.2720 0.3578 0.3467 0.3707 0.2680
Gemma 2 9B 0.3295 0.2800 0.3573 0.3080 0.4469 0.3607 0.5200 0.4720
Qwen 2 7B 0.4895 0.5440 0.3880 0.1480 0.4469 0.3607 0.5200 0.4720
Qwen 1.5 7B 0.3156 0.4000 0.1600 0.0400 0.5147 0.5893 0.3907 0.1440

EMMA-500 Llama 2 7B 0.1702 0.1920 0.1187 0.0240 0.3036 0.4060 0.1480 0.0240

4.10 Machine Reading Comprehension

BELEBELE (Bandarkar et al., 2023) is a machine reading comprehension dataset covering 122
languages including high- and low-resource languages. Each question offers four multiple-choice
answers based on a short passage from the FLORES-200 dataset. This benchmark is very challenging,
even the English version of it presents remarkable challenges for advanced models. Table 16 shows
the zero-shot results in different resource groups. Our continual pre-training improves the Llama 2
7B base model. But Llama 2 7 B-based models mostly fail in this task and get quasi-random results.
Recent advanced models like Llama 3.1 and Qwen 2 get reasonable results.

Table 16: 0-shot results (ACC) on BELEBELE.

Model Avg High Medium-High Medium Medium-Low Low

Llama 2 7B 0.2627 0.2676 0.2635 0.2607 0.2641 0.2627
Llama 2 7B Chat 0.2905 0.3184 0.2997 0.2895 0.2947 0.2909
CodeLlama 2 7B 0.2738 0.2737 0.2733 0.2730 0.2730 0.2738
LLaMAX Llama 2 7B 0.2309 0.2323 0.2315 0.2307 0.2310 0.2308
LLaMAX Llama 2 7B Alpaca 0.2448 0.2546 0.2482 0.2441 0.2460 0.2449
MaLA-500 Llama 2 10B v1 0.2296 0.2302 0.2298 0.2297 0.2298 0.2297
MaLA-500 Llama 2 10B v2 0.2296 0.2302 0.2298 0.2297 0.2298 0.2297
YaYi Llama 2 7B 0.2832 0.2964 0.2867 0.2811 0.2837 0.2826
TowerBase Llama 2 7B 0.2636 0.2743 0.2685 0.2629 0.2648 0.2634
TowerInstruct Llama 2 7B 0.2793 0.2988 0.2851 0.2757 0.2819 0.2792

Occiglot Mistral 7B v0.1 0.3016 0.3225 0.3094 0.3002 0.3040 0.3015
Occiglot Mistral 7B v0.1 Instruct 0.3205 0.3414 0.3262 0.3174 0.3240 0.3208
BLOOM 7B 0.2411 0.2425 0.2452 0.2412 0.2411 0.2408
BLOOMZ 7B 0.3932 0.4543 0.4367 0.4151 0.4008 0.3951
mGPT 0.2396 0.2401 0.2381 0.2400 0.2394 0.2398
XGLM 7.5B 0.2485 0.2552 0.2517 0.2489 0.2490 0.2485
YaYi 7B 0.3797 0.4437 0.4271 0.4049 0.3872 0.3809

Llama 3 8B 0.4073 0.4607 0.4292 0.4103 0.4187 0.4088
Llama 3.1 8B 0.4519 0.5250 0.4801 0.4565 0.4674 0.4534
Gemma 7B 0.4337 0.5263 0.4783 0.4482 0.4543 0.4394
Gemma 2 9B 0.5449 0.6410 0.5890 0.5583 0.5685 0.5505
Qwen 2 7B 0.4931 0.5762 0.5220 0.5004 0.5116 0.4948
Qwen 1.5 7B 0.4183 0.4886 0.4479 0.4218 0.4300 0.4178

EMMA-500 Llama 2 7B 0.2675 0.2832 0.2818 0.2758 0.2714 0.2694

We then move to a more challenging task, the ARC multilingual test, which is a machine-translated
benchmark (Lai et al., 2023) from the ARC dataset (Clark et al., 2018) that contains English science
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exam questions for multiple grade levels. We test the five-shot performance, with results shown in
Table 17. The evaluation results show a similar pattern to BELEBELE that EMMA-500 improves
Llama 2 but the 7B model is not capable of this challenging task, all Llama2 7B-based models obtain
close to random results, and recent advances like Llama 3, Gemma, and Qwen get much better
results.

Table 17: 5-shot results (ACC) on ARC multilingual.

Model Avg High Medium Low

Llama 2 7B 0.2756 0.3312 0.2731 0.2102
Llama 2 7B Chat 0.2802 0.3369 0.2779 0.2129
CodeLlama 2 7B 0.2523 0.2886 0.2464 0.2165
LLaMAX Llama 2 7B 0.2609 0.3000 0.2592 0.2148
LLaMAX Llama 2 7B Alpaca 0.3106 0.3689 0.3185 0.2249
MaLA-500 Llama 2 10B v1 0.2116 0.2192 0.2048 0.2132
MaLA-500 Llama 2 10B v2 0.2116 0.2192 0.2048 0.2132
YaYi Llama 2 7B 0.2840 0.3430 0.2835 0.2111
TowerBase Llama 2 7B 0.2794 0.3532 0.2682 0.2051
TowerInstruct Llama 2 7B 0.3010 0.3888 0.2885 0.2116

Occiglot Mistral 7B v0.1 0.2977 0.3839 0.2851 0.2103
Occiglot Mistral 7B v0.1 Instruct 0.3088 0.4029 0.2965 0.2113
BLOOM 7B 0.2365 0.2627 0.2272 0.2189
BLOOMZ 7B 0.2395 0.2694 0.2274 0.2218
mGPT 0.2024 0.2011 0.1965 0.2137
mGPT 13B 0.2176 0.2299 0.2114 0.2123
XGLM 7.5B 0.2221 0.2461 0.2105 0.2110
YaYi 7B 0.2444 0.2796 0.2329 0.2191

Llama 3 8B 0.3480 0.4243 0.3553 0.2406
Llama 3.1 8B 0.3493 0.4243 0.3589 0.2400
Gemma 7B 0.3868 0.4646 0.4047 0.2606
Gemma 2 9B 0.4415 0.5459 0.4618 0.2782
Qwen 2 7B 0.3382 0.4388 0.3264 0.2317
Qwen 1.5 7B 0.2893 0.3555 0.2814 0.2192

EMMA-500 Llama 2 7B 0.2953 0.3410 0.2982 0.2334

4.11 Code Generation

We conduct code generation evaluations on the Multipl-E (Cassano et al., 2022) benchmark in the
interest of measuring the effects of massively multilingual continual pre-training on a model’s code
generation utility and detecting if any catastrophic forgetting (Luo et al., 2023) has occurred on
this front. Importantly, this also has implications for a model’s reasoning (Yang et al., 2024b) and
entity-tracking abilities (Kim et al., 2024).

Table 18 outlines comparisons against strong, openly available multilingual models such as
Qwen (Yang et al., 2024a) and Aya (Üstün et al., 2024) along with other continually pre-trained
models. Our main takeaway is that by carefully curating high-quality code data as part of the data
mix, it is possible to not only avoid the catastrophic forgetting that has plagued existing continually
pre-trained models (MaLA-500, LLaMAX and TowerBase) but also surpass the base model itself.
However, the pre-training phase is still the most important, and closing the gap with stronger base
models like Qwen and Gemma remains elusive.

5 Related Work

Multilingual LLMs Multilingual large language models (LLMs) have made significant progress
in processing and understanding multiple languages within a unified framework. Models like mT5
(Xue et al., 2021) and XGLM (Lin et al., 2022) leverage both monolingual and multilingual datasets
to perform tasks such as translation and text summarization across a wide spectrum of languages.
However, the predominant focus on English has led to disparities in performance, particularly for low-
resource languages. Recent work on multilingual LLMs, such as BLOOM (Scao et al., 2022), has shown
that adapting these English-centric models through vocabulary extension based on multilingual
corpora and continual pre-training (CPT) can improve performance across languages, especially
low-resource ones. These models highlight the importance of efficient tokenization and adaptation,
which can bridge the performance gap between high-resource and low-resource languages.
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Table 18: Results on Multipl-E. For language-level breakdowns, refer to Tables 24 to 26 in the
appendix.

Model Avg Pass@1 Avg Pass@10 Avg Pass@25

Llama 2 7B 8.92% 19.45% 25.68%
CodeLlama 2 7B 28.43% 50.83% 63.92%
LLaMAX 2 7B 0.35% 1.61% 2.67%
MaLA-500 Llama 2 10B V2 0.0% 0.0% 0.0%
TowerBase Llama 2 7B 3.61% 6.65% 8.97%

Occiglot Mistral 7B v0.1 21.26% 31.37% 45.86%
Bloom 7B 5.34% 10.49% 14.65%
BloomZ 2 7B 5.85% 11.40% 15.76%
Aya23 8B 9.19% 23.52% 32.09%

Mistral 7B v0.3 26.10% 48.68% 59.05%
Llama 3 8B 30.09% 53.82% 64.01%
LLaMAX 3 8B 3.00% 7.23% 10.67%
Gemma 7B 28.55% 54.27% 64.75%
CodeGemma 7B 31.51% 63.13% 72.65%
Qwen 1.5 7B 21.05% 37.19% 47.63%
Qwen 2 7B 38.68% 62.63% 71.55%

EMMA-500 Llama 2 7B 11.38% 19.02% 26.16%

Multilingual Corpora The availability and use of multilingual corpora play a crucial role in training
multilingual LLMs. CC100 Corpus (Conneau et al., 2020), launched in 2020, encompasses hundreds
of billions of tokens and over 100 languages. Further, CC100-XL Corpus (Lin et al., 2022), created
for the training of XGLM, extends across 68 Common Crawl Snapshots and 134 languages, aiming
to balance language presentation and improve performance in few-shot and zero-shot tasks. The
ROOTS Corpus (Laurençon et al., 2022), released in July 2022, supports BLOOM with approximately
341 billion tokens across 46 natural languages. It emphasizes underrepresented languages such
as Swahili and Catalan, drawing from diverse sources including web crawls, books and academic
publications. Besides, Occiglot Fineweb 25, which began to be released in early 2024, consists of
around 230 million documents in 10 European languages. It combines curated and cleaned web
data to support efficient training for both high- and low-resource European languages. Additionally,
recent efforts parallel corpus construction from web crawls, such as ParaCrawl (Bañón et al., 2020a)
and CCMatrix (Schwenk et al., 2021b), have contributed to large-scale multilingual training too.

Continual Pre-training Continual pre-training has become a popular strategy to adapt LLMs
to new languages and domains without retraining from scratch. The process involves updating
model parameters incrementally using a relatively small amount of new data from target languages.
Recent studies, such as those by Tejaswi et al. (2024), have demonstrated the effectiveness of CPT
in improving the adaptability of LLMs in low-resource language settings. Techniques such as
vocabulary augmentation and targeted domain-specific pre-training have been shown to significantly
improve both efficiency and performance, particularly when large multilingual models are adapted
to new languages. Despite its benefits, CPT can lead to catastrophic forgetting, where models lose
previously learned information. To address the potential degraded performance issue, Ibrahim
et al. (2024) presents a simple yet effective approach to continual pre-train models, demonstrating
that with a combination of learning rate re-warming, re-decaying, and replay of previous data, it
is possible to match the performance of fully re-trained models. Also, recent studies have delved
into the effectiveness of continual pre-training with parallel data. As highlighted in the study by
Gilabert et al. (2024), the use of a Catalan-centric parallel dataset has enabled the training of models
good at trasnalting in various directions. Besides, the research by Kondo et al. (2024), proposed a
two-phase continual training approach with parallel data. In the first phase, a pre-trained LLM is
continually pre-trained on parallel data, followed by a second phase of supervised fine-tuning with a
small amount of high-quality parallel data. Their experiments with a 3.8B-parameter model across
various data formats revealed that alternating between source and target sentences during continual
pre-training is crucial for enhancing translation accuracy in the corresponding direction.

25https://occiglot.eu/posts/occiglot-fineweb/
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6 Conclusion

This paper addresses critical advancements and challenges in adapting language models to more than
500 languages, focusing on enhancing their performance across diverse languages. We compile the
MaLA corpus, a multilingual dataset for continual pre-training of multilingual language models. By
expanding and augmenting existing corpora, we train the EMMA-500 model. It demonstrates notable
improvements in a range of tasks such as next-token prediction, commonsense reasoning, machine
translation, text classification, and open-ended generation, showing remarkable improvements in low-
resource languages. Our results show that a well-curated, massively multilingual corpora can advance
model capabilities. This work sets a new benchmark for inclusive and effective multilingual language
models and paves the way for future research to address the disparities between high-resource and
low-resource languages.

Limitations and Outlooks

Multilingual language models are typically designed to serve users of different languages, which
reflect the diverse cultural and linguistic backgrounds of their speakers. However, many available
multilingual benchmarks, including some used in this study, have been created through human or
machine translation. They tend to feature topics and knowledge primarily from English-speaking
communities and carry imperfections due to translation, which affects the integrity of LLM evaluation
(Chen et al., 2024). We highlight this discrepancy and call for collaborative efforts to develop large-
scale natively-created multilingual test sets that more accurately assess the breadth of languages and
cultures these models aim to cater to.

Our EMMA-500 model demonstrates enhanced multilingual performance relative to its base
model, Llama 2 7B, as well as other continually pre-trained variants. However, it does not surpass
some of the latest models, such as Llama 3, Gemma 2, and Qwen 2, on certain benchmarks. These
models are likely to be a better starting point for continual pre-training compared to Llama 2 due
to their larger pre-training data. We intend to pursue multilingual extension based on these newer
models in the future. On the other hand, it would be practical to assess the released corpus directly
in pre-training from scratch. Moreover, multilingual instruction tuning to prepare these models for
better task performance and natural interactions would be useful.
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José Camacho-Collados, Claudio Delli Bovi, Alessandro Raganato, and Roberto Navigli. 2016. A large-
scale multilingual disambiguation of glosses. In Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16).

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. 2022.
Multipl-e: A scalable and extensible approach to benchmarking neural code generation. arXiv
preprint arXiv:2208.08227.

Tyler A. Chang, Catherine Arnett, Zhuowen Tu, and Benjamin K. Bergen. 2023. When is multilin-
guality a curse? Language modeling for 250 high- and low-resource languages. arXiv preprint.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374.

Pinzhen Chen, Simon Yu, Zhicheng Guo, and Barry Haddow. 2024. Is it good data for multilingual
instruction tuning or just bad multilingual evaluation for large language models? arXiv preprint
arXiv:2406.12822.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. 2018. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. 2021. Training verifiers to solve math word problems. Preprint,
arXiv:2110.14168.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
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A Data Sources

A.1 Monolingual Data

Table 19 lists the corpora and collections we use as monolingual data sources in this work. Monolin-
gual data sources simply contain text data in a single language.

Metadata For the monolingual data sources, we define the contents of the JSONL output file from the
pre-processing workflow to consist of the fields url, text, collection, source, and original code.
The contents of these fields are as follows. The field text contains the language data in a granularity
specific to the given corpus. If the granularity was sentence-level, then we could expect the sentences
in the corpus to generally be independent of each other, while only parts of the sentences—such as
phrases, clauses, and words—exhibit serial dependence. If the granularity was paragraph-level, then
we could expect the sentences within paragraphs to have serial dependence, while paragraphs to
largely be independent of each other. The field url contains a URL indicating the web address from
which the text data has been extracted, if available. The field collection contains the name of the
collection, i.e., a corpus or a set of corpora, which the text is extracted from, whereas the field source
contains the name of a more specific part of the collection, such as the name of an individual corpus
or a file in the collection the text was extracted from. Lastly, the field original code contains the
language code of the text data as it is designated in the data source, e.g., in the directory structure,
the filenames, or the data object returned by an API call.

Table 19: Datasets used as monolingual source data.

Name Languages Domains URL Year

AfriBERTa (Ogueji et al., 2021) 10 news https://huggingface.co/datasets/castorini/afriberta-corpus 2021
Bloom library (Leong et al., 2022) 363 religious, books https://huggingface.co/datasets/sil-ai/bloom-lm 2022
CC100 (Conneau et al., 2020) 100 web https://huggingface.co/datasets/cc100 2020
CulturaX (Nguyen et al., 2023) 167 web https://huggingface.co/datasets/uonlp/CulturaX 2023
CulturaY (Thuat Nguyen and Nguyen, 2024) 75 web https://huggingface.co/datasets/ontocord/CulturaY 2024
curse-of-multilinguality (Chang et al., 2023) 200 misc https://github.com/tylerachang/curse-of-multilinguality 2023
Evenki Life (Life, 2014) 1 newspapers https://drive.google.com/file/d/1he2q6RncA_NKHPIJjSzlkK-2qgEFTiCG/view 2014
Glot500 (Imani et al., 2023) 511 misc https://huggingface.co/datasets/cis-lmu/Glot500 2023
GlotSparse (Kargaran et al., 2023) 10 news https://huggingface.co/datasets/cis-lmu/GlotSparse 2023
HPLT v1.2 (de Gibert et al., 2024) 75 web https://hplt-project.org/datasets/v1.2 2024
Indigenous Languages Corpora (EdTeKLA, 2022) 1 UNK https://github.com/EdTeKLA/IndigenousLanguages_Corpora 2022
Indo4B (Wilie et al., 2020) 1 misc https://github.com/IndoNLP/indonlu?tab=readme-ov-file 2020
Lacuna Project (Masakhane, 2023) 20 UNK https://github.com/masakhane-io/lacuna_pos_ner 2023
Languages of Russia (Corpora and Tools, n.d.) 46 social media, web http://web-corpora.net/wsgi3/minorlangs/download UNK
Madlad-400 (Kudugunta et al., 2024) 419 web https://huggingface.co/datasets/allenai/MADLAD-400 2023
Makerere Radio Speech Corpus (Mukiibi et al., 2022) 1 transcription https://zenodo.org/records/5855017 2022
masakhane-ner1.0 (Ifeoluwa Adelani et al., 2021) 12 UNK https://github.com/masakhane-io/masakhane-ner 2021
MC2 (Zhang et al., 2024a) 4 web https://huggingface.co/datasets/pkupie/mc2_corpus 2024
mC4 (Raffel et al., 2020) 101 web https://huggingface.co/datasets/allenai/c4 2020
multilingual-data-peru (Grupo de Inteligencia Artificial PUCP,
n.d.)

4 UNK https://github.com/iapucp/multilingual-data-peru 2020

OSCAR 2301 (OSCAR, 2023) 152 web https://huggingface.co/datasets/oscar-corpus/OSCAR-2301 2023
The Leipzig Corpora (Goldhahn et al., 2012) 136 newspapers, wikipedia https://huggingface.co/datasets/imvladikon/leipzig_corpora_collection 2012
Tigrinya Language Modeling (Gaim et al., 2021) 1 news, blogs, books https://zenodo.org/records/5139094 2021
Wikipedia 20231101 (Wikimedia Foundation, n.d.) 323 wikipedia https://huggingface.co/datasets/wikimedia/wikipedia 2023
Wikisource 20231201 (Wikimedia Foundation, n.d.) 73 books https://huggingface.co/datasets/wikimedia/wikisource 2023
Tatoeba challenge monolingual (Tiedemann, 2020) 280 wikimedia https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/data/

MonolingualData-v2020-07-28.md
2020

Glot500-c uses the following datasets: AI4Bharat,26 AIFORTHAI-LotusCorpus,27 Add (El-Haj
et al., 2018), AfriBERTa (Ogueji et al., 2021), AfroMAFT (Adelani et al., 2022; Xue et al., 2021), Anu-
vaad,28 AraBench (Sajjad et al., 2020), AUTSHUMATO,29 Bloom (Leong et al., 2022), CC100 (Conneau
et al., 2020), CCNet (Wenzek et al., 2020), CMU Haitian Creole,30 CORP.NCHLT,31 Clarin,32 DART
(Alsarsour et al., 2018), Earthlings (Dunn, 2020), FFR,33 Flores200 (Costa-jussà et al., 2022), GiossaMe-
dia (Góngora et al., 2021, 2022), Glosses (Camacho-Collados et al., 2016), Habibi (El-Haj, 2020), Hin-
Dialect (Bafna, 2022), HornMT,34 IITB (Kunchukuttan et al., 2018), IndicNLP (Nakazawa et al., 2021),
Indiccorp (Kakwani et al., 2020), isiZulu,35 JParaCrawl (Morishita et al., 2020), KinyaSMT,36 Leipzig-

26https://ai4bharat.org/
27https://github.com/korakot/corpus/releases/download/v1.0/AIFORTHAI-LotusCorpus.zip
28https://github.com/project-anuvaad/anuvaad-parallel-corpus
29https://autshumato.sourceforge.net/
30http://www.speech.cs.cmu.edu/haitian/text/
31https://repo.sadilar.org/handle/20.500.12185/7
32https://www.clarin.si/
33https://github.com/bonaventuredossou/ffr-v1/tree/master/FFR-Dataset
34https://github.com/asmelashteka/HornMT
35https://zenodo.org/record/5035171
36https://github.com/pniyongabo/kinyarwandaSMT

31 139



Data (Goldhahn et al., 2012), Lindat,37 Lingala Song Lyrics,38 Lyrics,39 MC4 (Raffel et al., 2020),
MTData (Gowda et al., 2021), MaCoCu (Bañón et al., 2022), Makerere MT Corpus,40 Masakhane
community,41 Mburisano Covid,42 Menyo20K (Adelani et al., 2021), Minangkabau corpora (Koto and
Koto, 2020), MoT (Palen-Michel et al., 2022), NLLB seed (Costa-jussà et al., 2022), Nart/abkhaz,43

OPUS (Tiedemann, 2012), OSCAR (Suárez et al., 2019), ParaCrawl (Bañón et al., 2020b), Parallel
Corpora for Ethiopian Languages (Abate et al., 2018), Phontron (Neubig, 2011), QADI (Abdelali et al.,
2021), Quechua-IIC (Zevallos et al., 2022), SLI GalWeb.1.0 (Agerri et al., 2018), Shami (Abu Kwaik
et al., 2018), Stanford NLP,44 StatMT,45 TICO (Anastasopoulos et al., 2020), TIL (Mirzakhalov et al.,
2021), Tatoeba,46 TeDDi (Moran et al., 2022), Tilde (Rozis and Skadiņš, 2017), W2C (Majliš, 2011),
WAT (Nakazawa et al., 2022), WikiMatrix (Schwenk et al., 2021a), Wikipedia,47 Workshop on NER
for South and South East Asian Languages (Singh, 2008), XLSum (Hasan et al., 2021). We filter
out Flores200 when processing the Glot500-c dataset. Glot500-c includes texts in languages, i.e.,
Azerbaijani, Gujarati, Igbo, Oromo, Rundi, Tigrinya and Yoruba, from the XLSum dataset.

A.2 Code

All the programming language splits are filtered using the following conditions:

• For files forked more than 25 times, we retain them if the average line length is less than 120,
the maximum line length is less than 300, and the alphanumeric fraction is more than 30%.

• For files forked between 15 and 25 times, we retain them if the average line length is less than
90, the maximum line length is less than 150, and the alphanumeric fraction is more than 40%.

• For files forked less than 15 times, we retain them if the average line length is less than 80, the
maximum line length is less than 120, and the alphanumeric fraction is more than 45%.

Subsequently, an aggressive MinHash deduplication pipeline with a threshold of 0.5 and a shingle
size of 20 is applied. Finally, the resultant language splits are then capped at 5 million samples each.

B Additional Statistics of MaLA Corpus

B.1 Supported Languages

Table 20 shows the languages codes of MaLA corpus, where “unseen” means the languages are
not used for training EMMA-500. The classification system for token counts categorizes language
resources based on their size into five distinct tiers: “high” for resources exceeding 1 billion tokens,
indicating a vast amount of data; “medium-high” for those with more than 100 million tokens,
reflecting a substantial dataset; “medium” for resources that contain over 10 million tokens, rep-
resenting a moderate size; “medium-low” for datasets with over “1 million tokens”, indicating a
smaller yet significant amount of data; and finally, “low” for resources containing less than 1 million
tokens, which suggests a minimal data presence. This hierarchy helps in understanding the scale and
potential utility of the language resources available. Figure 1 shows the number of texts and tokens
in different resource groups.

37https://lindat.cz/faq-repository
38https://github.com/espoirMur/songs_lyrics_webscrap
39https://lyricstranslate.com/
40https://zenodo.org/record/5089560
41https://github.com/masakhane-io/masakhane-community
42https://repo.sadilar.org/handle/20.500.12185/536
43https://huggingface.co/datasets/Nart/abkhaz_text
44https://nlp.stanford.edu/
45https://statmt.org/
46https://tatoeba.org/en/
47https://huggingface.co/datasets/wikipedia
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Category Languages Language Codes

high 27 fra Latn, mon Cyrl, kat Geor, tgk Cyrl, kaz Cyrl, glg Latn, hbs Latn, kan Knda, mal Mlym, rus Cyrl, cat Latn, hye Armn, guj Gujr, slv Latn, fil Latn,
bel Cyrl, isl Latn, nep Deva, mlt Latn, pan Guru, afr Latn, urd Arab, mkd Cyrl, aze Latn, deu Latn, eng Latn, ind Latn

low 210 prs Arab, nqo Nkoo, emp Latn, pfl Latn, teo Latn, gpe Latn, izz Latn, shn Mymr, hak Latn, pls Latn, evn Cyrl, djk Latn, toj Latn, nog Cyrl, ctu Latn,
tca Latn, jiv Latn, ach Latn, mrj Latn, ajp Arab, apc Arab, tab Cyrl, hvn Latn, tls Latn, bak Latn, ndc Latn, trv Latn, top Latn, kjh Cyrl, guh Latn, mni Mtei,
csy Latn, noa Latn, dov Latn, bho Deva, kon Latn, hne Deva, kcg Latn, mni Beng, hus Latn, pau Latn, jbo Latn, dtp Latn, kmb Latn, hau Arab, pdc Latn,
nch Latn, acf Latn, bim Latn, ixl Latn, dty Deva, kas Arab, lrc Arab, alz Latn, lez Cyrl, lld Latn, tdt Latn, acm Arab, bih Deva, mzh Latn, guw Latn,
rop Latn, rwo Latn, ahk Latn, qub Latn, kri Latn, gub Latn, laj Latn, sxn Latn, luo Latn, tly Latn, pwn Latn, mag Deva, xav Latn, bum Latn, ubu Latn,
roa Latn, mah Latn, tsg Latn, gcr Latn, arn Latn, csb Latn, guc Latn, bat Latn, knj Latn, cre Latn, bus Latn, anp Deva, aln Latn, nah Latn, zai Latn,
kpv Cyrl, enq Latn, gvl Latn, wal Latn, fiu Latn, swh Latn, crh Latn, nia Latn, bqc Latn, map Latn, atj Latn, npi Deva, bru Latn, din Latn, pis Latn,
gur Latn, cuk Latn, zne Latn, cdo Latn, lhu Latn, pcd Latn, mas Latn, bis Latn, ncj Latn, ibb Latn, tay Latn, bts Latn, tzj Latn, bzj Latn, cce Latn, jvn Latn,
ndo Latn, rug Latn, koi Cyrl, mco Latn, fat Latn, olo Latn, inb Latn, mkn Latn, qvi Latn, mak Latn, ktu Latn, nrm Latn, kua Latn, san Latn, nbl Latn,
kik Latn, dyu Latn, sgs Latn, msm Latn, mnw Latn, zha Latn, sja Latn, xal Cyrl, rmc Latn, ami Latn, sda Latn, tdx Latn, yap Latn, tzh Latn, sus Latn,
ikk Latn, bas Latn, nde Latn, dsb Latn, seh Latn, knv Latn, amu Latn, dwr Latn, iku Cans, uig Latn, bxr Cyrl, tcy Knda, mau Latn, aoj Latn, gor Latn,
cha Latn, fip Latn, chr Cher, mdf Cyrl, arb Arab, quw Latn, shp Latn, spp Latn, frp Latn, ape Latn, cbk Latn, mnw Mymr, mfe Latn, jam Latn, lad Latn,
awa Deva, mad Latn, ote Latn, shi Latn, btx Latn, maz Latn, ppk Latn, smn Latn, twu Latn, blk Mymr, msi Latn, naq Latn, tly Arab, wuu Hani, mos Latn,
cab Latn, zlm Latn, gag Latn, suz Deva, ksw Mymr, gug Latn, nij Latn, nov Latn, srm Latn, jac Latn, nyu Latn, yom Latn, gui Latn

medium 68 tha Thai, kat Latn, lim Latn, tgk Arab, che Cyrl, lav Latn, xho Latn, war Latn, nan Latn, grc Grek, orm Latn, zsm Latn, cnh Latn, yor Latn, arg Latn,
tgk Latn, azj Latn, tel Latn, slk Latn, pap Latn, zho Hani, sme Latn, tgl Latn, uzn Cyrl, als Latn, san Deva, azb Arab, ory Orya, lmo Latn, bre Latn,
mvf Mong, fao Latn, oci Latn, sah Cyrl, sco Latn, tuk Latn, aze Arab, hin Deva, haw Latn, glk Arab, oss Cyrl, lug Latn, tet Latn, tsn Latn, hrv Latn,
gsw Latn, arz Arab, vec Latn, mon Latn, ilo Latn, ctd Latn, ben Beng, roh Latn, kal Latn, asm Beng, srp Latn, bod Tibt, hif Latn, rus Latn, nds Latn,
lus Latn, ido Latn, lao Laoo, tir Ethi, chv Cyrl, wln Latn, kaa Latn, pnb Arab

medium-high 79 div Thaa, som Latn, jpn Japn, hat Latn, sna Latn, heb Hebr, bak Cyrl, nld Latn, tel Telu, kin Latn, msa Latn, gla Latn, bos Latn, dan Latn, smo Latn,
ita Latn, mar Deva, pus Arab, srp Cyrl, spa Latn, lat Latn, hmn Latn, sin Sinh, zul Latn, bul Cyrl, amh Ethi, ron Latn, tam Taml, khm Khmr, nno Latn,
cos Latn, fin Latn, ori Orya, uig Arab, hbs Cyrl, gle Latn, cym Latn, vie Latn, kor Hang, lit Latn, yid Hebr, ara Arab, sqi Latn, pol Latn, tur Latn, swa Latn,
hau Latn, ceb Latn, eus Latn, kir Cyrl, mlg Latn, jav Latn, snd Arab, sot Latn, por Latn, uzb Cyrl, fas Arab, nor Latn, est Latn, hun Latn, ibo Latn, ltz Latn,
swe Latn, tat Cyrl, ast Latn, mya Mymr, uzb Latn, sun Latn, ell Grek, ces Latn, mri Latn, ckb Arab, kur Latn, kaa Cyrl, nob Latn, ukr Cyrl, fry Latn,
epo Latn, nya Latn

medium-low 162 aym Latn, rue Cyrl, rom Latn, dzo Tibt, poh Latn, sat Olck, ary Arab, fur Latn, mbt Latn, bpy Beng, iso Latn, pon Latn, glv Latn, new Deva, gym Latn,
bgp Latn, kac Latn, abt Latn, quc Latn, otq Latn, sag Latn, cak Latn, avk Latn, pam Latn, meo Latn, tum Latn, bam Latn, kha Latn, syr Syrc, kom Cyrl,
nhe Latn, bal Arab, srd Latn, krc Cyrl, lfn Latn, bar Latn, rcf Latn, nav Latn, nnb Latn, sdh Arab, aka Latn, bew Cyrl, bbc Latn, meu Latn, zza Latn,
ext Latn, yue Hani, ekk Latn, xmf Geor, nap Latn, mzn Arab, pcm Latn, lij Latn, myv Cyrl, scn Latn, dag Latn, ban Latn, twi Latn, udm Cyrl, som Arab,
nso Latn, pck Latn, crs Latn, acr Latn, tat Latn, afb Arab, uzs Arab, hil Latn, mgh Latn, tpi Latn, ady Cyrl, pag Latn, kiu Latn, ber Latn, iba Latn, ksh Latn,
plt Latn, lin Latn, chk Latn, tzo Latn, tlh Latn, ile Latn, lub Latn, hui Latn, min Latn, bjn Latn, szl Latn, kbp Latn, inh Cyrl, que Latn, ven Latn, vls Latn,
kbd Cyrl, run Latn, wol Latn, ace Latn, ada Latn, kek Latn, yua Latn, tbz Latn, gom Latn, ful Latn, mrj Cyrl, abk Cyrl, tuc Latn, stq Latn, mwl Latn,
tvl Latn, quh Latn, gom Deva, mhr Cyrl, fij Latn, grn Latn, zap Latn, mam Latn, mps Latn, tiv Latn, ksd Latn, ton Latn, bik Latn, vol Latn, ava Cyrl,
tso Latn, szy Latn, ngu Latn, hyw Armn, fon Latn, skr Arab, kos Latn, tyz Latn, kur Arab, srn Latn, tyv Cyrl, bci Latn, vep Latn, crh Cyrl, kpg Latn,
hsb Latn, ssw Latn, zea Latn, ewe Latn, ium Latn, diq Latn, ltg Latn, nzi Latn, guj Deva, ina Latn, pms Latn, bua Cyrl, lvs Latn, eml Latn, hmo Latn,
kum Cyrl, kab Latn, chm Cyrl, cor Latn, cfm Latn, alt Cyrl, bcl Latn, ang Latn, frr Latn, mai Deva

unseen 393 rap Latn, pmf Latn, lsi Latn, dje Latn, bkx Latn, ipk Latn, syw Deva, ann Latn, bag Latn, bat Cyrl, chu Cyrl, gwc Arab, adh Latn, szy Hani, shi Arab,
njy Latn, pdu Latn, buo Latn, cuv Latn, udg Mlym, bax Latn, tio Latn, kjb Latn, taj Deva, lez Latn, olo Cyrl, rnl Latn, bri Latn, inh Latn, kas Cyrl,
wni Latn, anp Latn, tsc Latn, mgg Latn, udi Cyrl, mdf Latn, agr Latn, xty Latn, llg Latn, nge Latn, gan Latn, tuv Latn, stk Latn, nut Latn, thy Thai,
lgr Latn, hnj Latn, dar Cyrl, aia Latn, lwl Thai, tnl Latn, tvs Latn, jra Khmr, tay Hani, gal Latn, ybi Deva, snk Arab, gag Cyrl, tuk Cyrl, trv Hani, ydd Hebr,
kea Latn, gbm Deva, kwi Latn, hro Latn, rki Latn, quy Latn, tdg Deva, zha Hani, pcg Mlym, tom Latn, nsn Latn, quf Latn, jmx Latn, kqr Latn, mrn Latn,
bxa Latn, abc Latn, mve Arab, lfa Latn, qup Latn, yin Latn, roo Latn, mrw Latn, nxa Latn, yrk Cyrl, bem Latn, kvt Latn, csw Cans, bjr Latn, mgm Latn,
ngn Latn, pib Latn, quz Latn, awb Latn, myk Latn, otq Arab, ino Latn, tkd Latn, bef Latn, bug Bugi, aeu Latn, nlv Latn, dty Latn, bkc Latn, mmu Latn,
hak Hani, sea Latn, mlk Latn, cbr Latn, lmp Latn, tnn Latn, qvz Latn, pbt Arab, cjs Cyrl, mlw Latn, mnf Latn, bfm Latn, dig Latn, thk Latn, zxx Latn,
lkb Latn, chr Latn, pnt Latn, vif Latn, fli Latn, got Latn, hbb Latn, tll Latn, bug Latn, kxp Arab, qaa Latn, krr Khmr, kjg Laoo, isu Latn, kmu Latn,
gof Latn, sdk Latn, mne Latn, baw Latn, idt Latn, xkg Latn, mgo Latn, dtr Latn, kms Latn, ffm Latn, hna Latn, nxl Latn, bfd Latn, odk Arab, miq Latn,
mhx Latn, kam Latn, yao Latn, pnt Grek, kby Latn, kpv Latn, kbx Latn, cim Latn, qvo Latn, pih Latn, nog Latn, nco Latn, rmy Cyrl, clo Latn, dmg Latn,
aaa Latn, rel Latn, ben Latn, loh Latn, thl Deva, chd Latn, cni Latn, cjs Latn, lbe Latn, ybh Deva, zxx Zyyy, awa Latn, gou Latn, xmm Latn, nqo Latn,
rut Cyrl, kbq Latn, tkr Latn, dwr Ethi, ckt Cyrl, ady Latn, yea Mlym, nhx Latn, niv Cyrl, bwt Latn, xmg Latn, chy Latn, mfj Latn, hre Latn, bbk Latn,
shn Latn, lrc Latn, qvc Latn, muv Mlym, mdr Latn, luy Latn, lzh Hani, fuh Latn, mle Latn, brx Deva, pex Latn, kau Latn, yrk Latn, hin Latn, ekm Latn,
msb Latn, unr Orya, cac Latn, chp Cans, ckt Latn, bss Latn, lts Latn, bbj Latn, ttt Cyrl, kwu Latn, smn Cyrl, kpy Cyrl, tod Latn, wbm Latn, tcy Latn,
arc Syrc, nst Latn, tuz Latn, bob Latn, bfn Latn, pli Deva, snl Latn, kwd Latn, lgg Latn, nza Latn, wbr Deva, lan Latn, kmz Latn, bzi Thai, hao Latn,
nla Latn, qxr Latn, ken Latn, tbj Latn, blk Latn, ybb Latn, nwe Latn, gan Hani, snk Latn, kak Latn, tpl Latn, hla Latn, tks Arab, pea Latn, bya Latn,
enc Latn, jgo Latn, tnp Latn, aph Deva, bgf Latn, brv Laoo, nod Thai, niq Latn, nwi Latn, xmd Latn, gbj Orya, syr Latn, ify Latn, xal Latn, bra Deva,
cgc Latn, bhs Latn, pwg Latn, ang Runr, oki Latn, qve Latn, qvm Latn, bkm Latn, bkh Latn, niv Latn, zuh Latn, mry Latn, fiu Cyrl, ssn Latn, rki Mymr,
sox Latn, yav Latn, nyo Latn, dag Arab, qxh Latn, bze Latn, myx Latn, zaw Latn, ddg Latn, wnk Latn, bwx Latn, mqy Latn, lad Hebr, boz Latn, lue Latn,
ded Latn, pli Latn, avk Cyrl, wms Latn, sgd Latn, azn Latn, ajz Latn, psp Latn, jra Latn, smt Latn, ags Latn, csw Latn, wtk Latn, emp Cyrl, koi Latn,
tkr Cyrl, amp Latn, ymp Latn, mfh Latn, tdb Deva, omw Latn, khb Talu, doi Deva, gld Cyrl, ava Latn, chu Latn, dnw Latn, azo Latn, dug Latn, bce Latn,
kmr Latn, kpy Armn, abq Cyrl, trp Latn, ewo Latn, the Deva, hig Latn, pkb Latn, mxu Latn, oji Latn, tnt Latn, mzm Latn, mns Cyrl, lbe Cyrl, qvh Latn,
kmg Latn, sps Latn, brb Khmr, tah Latn, sxb Latn, mkz Latn, mgq Latn, got Goth, lns Latn, arc Latn, akb Latn, skr Latn, nsk Cans, sml Latn, pce Mymr,
eee Thai, lhm Deva, yux Cyrl, bqm Latn, bcc Arab, nas Latn, agq Latn, xog Latn, tsb Latn, fub Latn, mqj Latn, nsk Latn, bxr Latn, dln Latn, ozm Latn,
rmy Latn, cre Cans, kim Cyrl, cuh Latn, ngl Latn, yas Latn, bud Latn, miy Latn, ame Latn, pnz Latn, raj Deva, enb Latn, cmo Khmr, saq Latn, tpu Khmr,
eve Cyrl, cdo Hani

Table 20: Languages by resource groups

B.2 Data Analysis

We examine the Unicode block distribution of each language, which counts the percentage of tokens
falling into the Unicode block of each language. This aims to check whether language code conversion
and writing system recognition are reasonably good. Figure 2 shows the Unicode block distribution.
The result aligns with our observation of the presence of code-mixing, but in general, the majority of
languages have tokens falling in their own Unicode blocks.

We also check the data source distribution as shown in Figure 3 to see where the texts in the
MaLA corpus come from. The main source is common crawl, e.g., CC 2018, CC, OSCAR, and CC
20220801. A large number of documents come from Earthlings which comes from Glot500-c (Imani
et al., 2023). For web-crawled data with a URL in the original metadata of corpora like CulturaX
(Nguyen et al., 2023) and HPLT (de Gibert et al., 2024), we extract the domain. Thus, the final corpus
has many sources with a small portion.

C Evaluation Benchmarks

C.1 PolyWrite

The PolyWrite dataset has 51 writing tasks with the number of prompts per task shown in Figure 4.
We use Google Translate to translate the English prompts into 240 languages and back-translate for
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Figure 1: The number of texts and tokens of MaLA corpus in different resource groups.

translation quality assessment.
The metadata of PolyWrite includes several key fields. The category specifies the task type.

The name field typically holds the specific identifier for each prompt, while prompt en contains
the English version of the prompt. lang script identifies the language and script used, ensuring
correct language processing. The prompt translated field holds the translated prompt in the target
language, and prompt backtranslated contains the back-translated version to assess translation
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Figure 2: Unicode block distribution that measures the percentage of token counts falling into the
Unicode block of each language
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Figure 3: Data source distribution of MaLA corpus calculated by the number of documents

quality. Both bleu and chrf++ fields provide numeric evaluation metrics, with BLEU and chrF++
scores measuring the quality of the generated text. Finally, the uuid ensures a unique identifier for
each dataset entry, allowing for precise reference and tracking of individual prompts. To mitigate
errors introduced by the machine translation process, we filter out prompts with a BLEU score of less
than 20. Figure 5 shows the average BLEU score of each language in the final dataset.

D Detailed Results

This section presents detailed results of the evaluation. For benchmarks consisting of multiple
languages, we host the results on GitHub48. Those benchmarks include ARC multilingual, BELEBELE,
Glot500-c test set, PBC, SIB-200, Taxi-1500, FLORES200, XLSum, Aya evaluation suite, and PolyWrite.
For FLORES200, XLSum, Aya evaluation suite, and PolyWrite, we also release the generated texts of

48https://github.com/MaLA-LM/emma-500/tree/main/evaluation_results
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Figure 4: Writing tasks in the PolyWrite dataset.
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Figure 5: Mean BLEU scores per language in the PolyWrite dataset.

all compared models.
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D.1 Commonsense Reasoning

Table 21: 0-shot results (ACC) on XCOPA in all languages
Model Avg et-acc stderr ht-acc stderr id-acc stderr it-acc stderr qu-acc stderr sw-acc stderr ta-acc stderr th-acc stderr tr-acc stderr vi-acc stderr zh-acc stderr

Llama 2 7B 0.5667 0.4860 0.0224 0.5060 0.0224 0.6240 0.0217 0.6580 0.0212 0.5160 0.0224 0.5220 0.0224 0.5340 0.0223 0.5620 0.0222 0.5480 0.0223 0.6280 0.0216 0.6500 0.0214
Llama 2 7B Chat 0.5585 0.4780 0.0224 0.5080 0.0224 0.6240 0.0217 0.6720 0.0210 0.5060 0.0224 0.5220 0.0224 0.5060 0.0224 0.5500 0.0223 0.5520 0.0223 0.6120 0.0218 0.6140 0.0218
CodeLlama 2 7B 0.5469 0.4680 0.0223 0.5180 0.0224 0.5740 0.0221 0.6300 0.0216 0.5160 0.0224 0.4880 0.0224 0.5500 0.0223 0.5540 0.0223 0.5380 0.0223 0.5580 0.0222 0.6220 0.0217
LLaMAX Llama 2 7B 0.5438 0.4920 0.0224 0.5260 0.0224 0.5380 0.0223 0.5260 0.0224 0.5140 0.0224 0.5400 0.0223 0.5800 0.0221 0.5720 0.0221 0.5300 0.0223 0.5300 0.0223 0.6340 0.0216
LLaMAX Llama 2 7B Alpaca 0.5660 0.5120 0.0224 0.5420 0.0223 0.5720 0.0221 0.6100 0.0218 0.5240 0.0224 0.5500 0.0223 0.5700 0.0222 0.5640 0.0222 0.5520 0.0223 0.5520 0.0223 0.6780 0.0209
MaLA-500 Llama 2 10B v1 0.5309 0.4860 0.0224 0.5340 0.0223 0.5300 0.0223 0.5940 0.0220 0.5020 0.0224 0.5280 0.0223 0.5760 0.0221 0.5420 0.0223 0.5160 0.0224 0.5240 0.0224 0.5080 0.0224
MaLA-500 Llama 2 10B v2 0.5309 0.4860 0.0224 0.5340 0.0223 0.5300 0.0223 0.5940 0.0220 0.5020 0.0224 0.5280 0.0223 0.5760 0.0221 0.5420 0.0223 0.5160 0.0224 0.5240 0.0224 0.5080 0.0224
YaYi Llama 2 7B 0.5671 0.4880 0.0224 0.5080 0.0224 0.6260 0.0217 0.6700 0.0210 0.5060 0.0224 0.5320 0.0223 0.5520 0.0223 0.5420 0.0223 0.5540 0.0223 0.6320 0.0216 0.6280 0.0216
TowerBase Llama 2 7B 0.5633 0.4600 0.0223 0.5020 0.0224 0.6020 0.0219 0.7080 0.0204 0.5220 0.0224 0.5060 0.0224 0.5440 0.0223 0.5600 0.0222 0.5380 0.0223 0.5920 0.0220 0.6620 0.0212
TowerInstruct Llama 2 7B 0.5705 0.4880 0.0224 0.5160 0.0224 0.6200 0.0217 0.7100 0.0203 0.5200 0.0224 0.5100 0.0224 0.5420 0.0223 0.5640 0.0222 0.5460 0.0223 0.5860 0.0220 0.6740 0.0210

Occiglot Mistral 7B v0.1 0.5667 0.4720 0.0223 0.5140 0.0224 0.5700 0.0222 0.7460 0.0195 0.5200 0.0224 0.5160 0.0224 0.5720 0.0221 0.5580 0.0222 0.5440 0.0223 0.5520 0.0223 0.6700 0.0210
Occiglot Mistral 7B v0.1 Instruct 0.5655 0.4680 0.0223 0.5100 0.0224 0.5840 0.0221 0.7380 0.0197 0.5280 0.0223 0.5000 0.0224 0.5660 0.0222 0.5500 0.0223 0.5620 0.0222 0.5580 0.0222 0.6560 0.0213
BLOOM 7B 0.5689 0.4820 0.0224 0.5080 0.0224 0.6980 0.0206 0.5280 0.0223 0.5080 0.0224 0.5180 0.0224 0.5920 0.0220 0.5540 0.0223 0.5100 0.0224 0.7080 0.0204 0.6520 0.0213
BLOOMZ 7B 0.5487 0.4920 0.0224 0.5400 0.0223 0.6060 0.0219 0.5140 0.0224 0.5060 0.0224 0.5340 0.0223 0.5740 0.0221 0.5300 0.0223 0.5220 0.0224 0.5980 0.0219 0.6200 0.0217
mGPT 0.5504 0.5300 0.0223 0.4980 0.0224 0.5880 0.0220 0.5820 0.0221 0.5060 0.0224 0.5640 0.0222 0.5320 0.0223 0.5520 0.0223 0.5600 0.0222 0.6020 0.0219 0.5400 0.0223
mGPT 13B 0.5618 0.5080 0.0224 0.5180 0.0224 0.6260 0.0217 0.6080 0.0219 0.4820 0.0224 0.5800 0.0221 0.5480 0.0223 0.5280 0.0223 0.5680 0.0222 0.6340 0.0216 0.5800 0.0221
XGLM 7.5B 0.6064 0.6140 0.0218 0.5740 0.0221 0.6940 0.0206 0.6360 0.0215 0.4880 0.0224 0.6000 0.0219 0.5460 0.0223 0.5940 0.0220 0.5840 0.0221 0.7020 0.0205 0.6380 0.0215
YaYi 7B 0.5664 0.5040 0.0224 0.5300 0.0223 0.6340 0.0216 0.5180 0.0224 0.5180 0.0224 0.5540 0.0223 0.5620 0.0222 0.5460 0.0223 0.5200 0.0224 0.6640 0.0211 0.6800 0.0209

Llama 3 8B 0.6171 0.5340 0.0223 0.5280 0.0223 0.7140 0.0202 0.7160 0.0202 0.5120 0.0224 0.5800 0.0221 0.6000 0.0219 0.5860 0.0220 0.6240 0.0217 0.7160 0.0202 0.6780 0.0209
Llama 3.1 8B 0.6171 0.5300 0.0223 0.5380 0.0223 0.7160 0.0202 0.7260 0.0200 0.4880 0.0224 0.5540 0.0223 0.6120 0.0218 0.5780 0.0221 0.6180 0.0218 0.7240 0.0200 0.7040 0.0204
Gemma 7B 0.6364 0.5920 0.0220 0.5480 0.0223 0.7200 0.0201 0.7280 0.0199 0.5000 0.0224 0.6060 0.0219 0.6160 0.0218 0.6040 0.0219 0.6560 0.0213 0.7420 0.0196 0.6880 0.0207
Gemma 2 9B 0.6633 0.6380 0.0215 0.5280 0.0223 0.7780 0.0186 0.7580 0.0192 0.5040 0.0224 0.6380 0.0215 0.6360 0.0215 0.6380 0.0215 0.6740 0.0210 0.7660 0.0190 0.7380 0.0197
Qwen 2 7B 0.6031 0.5080 0.0224 0.5080 0.0224 0.7060 0.0204 0.7140 0.0202 0.5040 0.0224 0.5240 0.0224 0.5280 0.0223 0.6100 0.0218 0.5720 0.0221 0.6940 0.0206 0.7660 0.0190
Qwen 1.5 7B 0.5944 0.5200 0.0224 0.5300 0.0223 0.6440 0.0214 0.6520 0.0213 0.5100 0.0224 0.5260 0.0224 0.5580 0.0222 0.5760 0.0221 0.5880 0.0220 0.6920 0.0207 0.7420 0.0196

EMMA-500 Llama 2 7B 0.6311 0.6140 0.0218 0.5800 0.0221 0.7420 0.0196 0.6940 0.0206 0.5240 0.0224 0.6620 0.0212 0.6000 0.0219 0.5560 0.0222 0.6200 0.0217 0.7020 0.0205 0.6480 0.0214

Table 22: 0-shot results (ACC) on XStoryCloze in all languages
Model Avg ar-acc stderr en-acc stderr es-acc stderr eu-acc stderr hi-acc stderr id-acc stderr my-acc stderr ru-acc stderr sw-acc stderr te-acc stderr zh-acc stderr

Llama 2 7B 0.5755 0.4990 0.0129 0.7704 0.0108 0.6737 0.0121 0.5036 0.0129 0.5374 0.0128 0.5923 0.0126 0.4805 0.0129 0.6300 0.0124 0.5050 0.0129 0.5433 0.0128 0.5956 0.0126
Llama 2 7B Chat 0.5841 0.5050 0.0129 0.7869 0.0105 0.6711 0.0121 0.5083 0.0129 0.5407 0.0128 0.5963 0.0126 0.4864 0.0129 0.6552 0.0122 0.5202 0.0129 0.5334 0.0128 0.6221 0.0125
CodeLlama 2 7B 0.5568 0.5010 0.0129 0.7148 0.0116 0.6340 0.0124 0.5043 0.0129 0.4970 0.0129 0.5586 0.0128 0.4937 0.0129 0.5923 0.0126 0.5003 0.0129 0.5374 0.0128 0.5917 0.0126
LLaMAX Llama 2 7B 0.6036 0.5890 0.0127 0.7551 0.0111 0.6525 0.0123 0.5447 0.0128 0.5817 0.0127 0.6062 0.0126 0.5248 0.0129 0.6122 0.0125 0.5718 0.0127 0.5930 0.0126 0.6082 0.0126
LLaMAX Llama 2 7B Alpaca 0.6383 0.6036 0.0126 0.8147 0.0100 0.7068 0.0117 0.5486 0.0128 0.6214 0.0125 0.6645 0.0122 0.5381 0.0128 0.6744 0.0121 0.6016 0.0126 0.5930 0.0126 0.6545 0.0122
MaLA-500 Llama 2 10B v1 0.5307 0.4818 0.0129 0.7353 0.0114 0.6241 0.0125 0.4990 0.0129 0.4765 0.0129 0.4792 0.0129 0.4626 0.0128 0.5493 0.0128 0.4871 0.0129 0.5261 0.0128 0.5169 0.0129
MaLA-500 Llama 2 10B v2 0.5307 0.4818 0.0129 0.7353 0.0114 0.6241 0.0125 0.4990 0.0129 0.4765 0.0129 0.4792 0.0129 0.4626 0.0128 0.5493 0.0128 0.4871 0.0129 0.5261 0.0128 0.5169 0.0129
YaYi Llama 2 7B 0.5842 0.4997 0.0129 0.7909 0.0105 0.6870 0.0119 0.5063 0.0129 0.5427 0.0128 0.6142 0.0125 0.4745 0.0129 0.6479 0.0123 0.5003 0.0129 0.5394 0.0128 0.6234 0.0125
TowerBase Llama 2 7B 0.5778 0.4917 0.0129 0.7723 0.0108 0.6982 0.0118 0.5076 0.0129 0.5288 0.0128 0.5831 0.0127 0.4838 0.0129 0.6704 0.0121 0.5036 0.0129 0.5314 0.0128 0.5850 0.0127
TowerInstruct Llama 2 7B 0.5924 0.4931 0.0129 0.8087 0.0101 0.7161 0.0116 0.5069 0.0129 0.5295 0.0128 0.5956 0.0126 0.4871 0.0129 0.6936 0.0119 0.5149 0.0129 0.5414 0.0128 0.6300 0.0124

Occiglot Mistral 7B v0.1 0.5810 0.5129 0.0129 0.7737 0.0108 0.7340 0.0114 0.5208 0.0129 0.5149 0.0129 0.5864 0.0127 0.4798 0.0129 0.6294 0.0124 0.4983 0.0129 0.5314 0.0128 0.6089 0.0126
Occiglot Mistral 7B v0.1 Instruct 0.5939 0.5268 0.0128 0.7942 0.0104 0.7419 0.0113 0.5301 0.0128 0.5275 0.0128 0.6036 0.0126 0.4825 0.0129 0.6506 0.0123 0.5043 0.0129 0.5381 0.0128 0.6334 0.0124
BLOOM 7B 0.5930 0.5857 0.0127 0.7055 0.0117 0.6618 0.0122 0.5725 0.0127 0.6042 0.0126 0.6453 0.0123 0.4891 0.0129 0.5275 0.0128 0.5394 0.0128 0.5731 0.0127 0.6188 0.0125
BLOOMZ 7B 0.5712 0.5652 0.0128 0.7300 0.0114 0.6459 0.0123 0.5109 0.0129 0.5764 0.0127 0.5533 0.0128 0.4825 0.0129 0.5215 0.0129 0.5215 0.0129 0.5817 0.0127 0.5943 0.0126
mGPT 0.5443 0.4931 0.0129 0.5996 0.0126 0.5546 0.0128 0.5460 0.0128 0.5275 0.0128 0.5314 0.0128 0.5122 0.0129 0.5665 0.0128 0.5500 0.0128 0.5725 0.0127 0.5341 0.0128
mGPT 13B 0.5644 0.5162 0.0129 0.6420 0.0123 0.5864 0.0127 0.5539 0.0128 0.5506 0.0128 0.5811 0.0127 0.5122 0.0129 0.5943 0.0126 0.5460 0.0128 0.5764 0.0127 0.5493 0.0128
XGLM 7.5B 0.6075 0.5612 0.0128 0.6982 0.0118 0.6386 0.0124 0.5771 0.0127 0.5884 0.0127 0.6300 0.0124 0.5705 0.0127 0.6340 0.0124 0.5936 0.0126 0.6023 0.0126 0.5890 0.0127
YaYi 7B 0.6067 0.6181 0.0125 0.7432 0.0112 0.6942 0.0119 0.5606 0.0128 0.6367 0.0124 0.6241 0.0125 0.4924 0.0129 0.5215 0.0129 0.5361 0.0128 0.5791 0.0127 0.6678 0.0121

Llama 3 8B 0.6341 0.5864 0.0127 0.7869 0.0105 0.7062 0.0117 0.5579 0.0128 0.6281 0.0124 0.6592 0.0122 0.5109 0.0129 0.6876 0.0119 0.5639 0.0128 0.6300 0.0124 0.6578 0.0122
Llama 3.1 8B 0.6358 0.5910 0.0127 0.7816 0.0106 0.7081 0.0117 0.5533 0.0128 0.6327 0.0124 0.6803 0.0120 0.5242 0.0129 0.6863 0.0119 0.5592 0.0128 0.6115 0.0125 0.6658 0.0121
Gemma 7B 0.6501 0.6042 0.0126 0.8015 0.0103 0.7062 0.0117 0.5758 0.0127 0.6492 0.0123 0.6764 0.0120 0.5228 0.0129 0.7055 0.0117 0.6214 0.0125 0.6327 0.0124 0.6559 0.0122
Gemma 2 9B 0.6767 0.6525 0.0123 0.8015 0.0103 0.7426 0.0113 0.6016 0.0126 0.6691 0.0121 0.7134 0.0116 0.5513 0.0128 0.7373 0.0113 0.6373 0.0124 0.6479 0.0123 0.6896 0.0119
Qwen 2 7B 0.6146 0.5996 0.0126 0.7895 0.0105 0.6976 0.0118 0.5202 0.0129 0.5797 0.0127 0.6439 0.0123 0.4897 0.0129 0.6956 0.0118 0.5142 0.0129 0.5407 0.0128 0.6903 0.0119
Qwen 1.5 7B 0.5985 0.5539 0.0128 0.7816 0.0106 0.6830 0.0120 0.5189 0.0129 0.5566 0.0128 0.6287 0.0124 0.4924 0.0129 0.6327 0.0124 0.5169 0.0129 0.5394 0.0128 0.6797 0.0120

EMMA-500 Llama 2 7B 0.6638 0.6625 0.0122 0.7644 0.0109 0.7002 0.0118 0.6473 0.0123 0.6492 0.0123 0.6863 0.0119 0.5791 0.0127 0.6850 0.0120 0.6473 0.0123 0.6466 0.0123 0.6340 0.0124

Table 23: 0-shot results (ACC) on XWinograd in all languages
Model Avg en-acc stderr fr-acc stderr jp-acc stderr pt-acc stderr ru-acc stderr zh-acc stderr

Llama 2 7B 0.7247 0.8791 0.0068 0.6627 0.0522 0.7028 0.0148 0.7224 0.0277 0.6825 0.0263 0.6984 0.0205
Llama 2 7B Chat 0.6945 0.8555 0.0073 0.7108 0.0501 0.6840 0.0150 0.6464 0.0295 0.6571 0.0268 0.6131 0.0217
CodeLlama 2 7B 0.7092 0.8452 0.0075 0.6747 0.0517 0.6361 0.0155 0.7224 0.0277 0.6667 0.0266 0.7103 0.0202
LLaMAX Llama 2 7B 0.6749 0.7789 0.0086 0.6145 0.0537 0.7101 0.0147 0.6540 0.0294 0.5556 0.0280 0.7361 0.0197
LLaMAX Llama 2 7B Alpaca 0.6986 0.8275 0.0078 0.6627 0.0522 0.7237 0.0144 0.6616 0.0292 0.5937 0.0277 0.7222 0.0200
MaLA-500 Llama 2 10B v1 0.6589 0.8366 0.0077 0.6386 0.0531 0.6017 0.0158 0.6920 0.0285 0.6190 0.0274 0.5655 0.0221
MaLA-500 Llama 2 10B v2 0.6589 0.8366 0.0077 0.6386 0.0531 0.6017 0.0158 0.6920 0.0285 0.6190 0.0274 0.5655 0.0221
YaYi Llama 2 7B 0.7450 0.8852 0.0066 0.7108 0.0501 0.7226 0.0145 0.7414 0.0270 0.7175 0.0254 0.6925 0.0206
TowerBase Llama 2 7B 0.7429 0.8714 0.0069 0.7470 0.0480 0.6945 0.0149 0.7567 0.0265 0.6476 0.0270 0.7401 0.0196
TowerInstruct Llama 2 7B 0.7400 0.8628 0.0071 0.7711 0.0464 0.6840 0.0150 0.7719 0.0259 0.6635 0.0267 0.6865 0.0207

Occiglot Mistral 7B v0.1 0.7461 0.8654 0.0071 0.7952 0.0446 0.6601 0.0153 0.7186 0.0278 0.6635 0.0267 0.7738 0.0187
Occiglot Mistral 7B v0.1 Instruct 0.7293 0.8589 0.0072 0.7470 0.0480 0.6455 0.0155 0.7072 0.0281 0.6476 0.0270 0.7698 0.0188
BLOOM 7B 0.7013 0.8224 0.0079 0.7108 0.0501 0.5881 0.0159 0.7681 0.0261 0.5746 0.0279 0.7440 0.0195
BLOOMZ 7B 0.6795 0.8340 0.0077 0.7349 0.0487 0.5756 0.0160 0.6730 0.0290 0.5492 0.0281 0.7103 0.0202
mGPT 0.5969 0.6267 0.0100 0.5904 0.0543 0.5349 0.0161 0.5741 0.0305 0.5810 0.0278 0.6746 0.0209
mGPT 13B 0.6359 0.7062 0.0094 0.6386 0.0531 0.5777 0.0160 0.6122 0.0301 0.6000 0.0276 0.6806 0.0208
XGLM 7.5B 0.6884 0.7940 0.0084 0.6506 0.0527 0.6496 0.0154 0.6768 0.0289 0.6349 0.0272 0.7242 0.0199
YaYi 7B 0.6979 0.8404 0.0076 0.7590 0.0472 0.5808 0.0159 0.7224 0.0277 0.5587 0.0280 0.7262 0.0199

Llama 3 8B 0.7684 0.8680 0.0070 0.7108 0.0501 0.7529 0.0139 0.7985 0.0248 0.7143 0.0255 0.7659 0.0189
Llama 3.1 8B 0.7552 0.8757 0.0068 0.6627 0.0522 0.7529 0.0139 0.8061 0.0244 0.6762 0.0264 0.7579 0.0191
Gemma 7B 0.7741 0.8800 0.0067 0.7349 0.0487 0.7539 0.0139 0.7833 0.0255 0.7206 0.0253 0.7718 0.0187
Gemma 2 9B 0.8007 0.8942 0.0064 0.7590 0.0472 0.7977 0.0130 0.8289 0.0233 0.7429 0.0247 0.7817 0.0184
Qwen 2 7B 0.7644 0.8632 0.0071 0.6988 0.0507 0.6882 0.0150 0.7871 0.0253 0.7175 0.0254 0.8313 0.0167
Qwen 1.5 7B 0.7259 0.8331 0.0077 0.6988 0.0507 0.6590 0.0153 0.7034 0.0282 0.6635 0.0267 0.7976 0.0179

EMMA-500 Llama 2 7B 0.7280 0.8245 0.0079 0.7229 0.0494 0.7164 0.0146 0.6920 0.0285 0.6921 0.0261 0.7202 0.0200
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D.2 Code Generation

Table 24: Pass@1 on Multipl-E.
Model C++ C# Java JavaScript Python Rust TypeScript

Llama 2 7B 6.74% 5.65% 8.54% 11.34% 11.98% 6.12% 12.04%
CodeLlama 2 7B 26.70% 20.44% 30.56% 32.89% 28.76% 26.23% 33.45%
LLaMAX 2 7B 0.0% 0.0% 0.02% 0.68% 0.0% 0.0% 1.78%
MaLA-500 Llama 2 10B V2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
TowerBase Llama 2 7B 1.01% 6.85% 7.86% 0.87% 8.68% 0.0% 0.0%

Occiglot Mistral 7B v0.1 23.16% 16.14% 19.83% 26.92% 21.45% 16.34% 24.97%
Bloom 7B 5.25% 2.97% 6.37% 6.76% 7.65% 1.01% 7.34%
BloomZ 2 7B 6.87% 3.59% 6.02% 6.96% 7.33% 2.13% 8.04%
Aya23 8B 16.03% 7.91% 14.29% 6.23% 3.56% 11.43% 4.90%

Mistral 7B v0.3 26.12% 22.87% 25.54% 35.24% 24.91% 19.24% 28.76%
Llama 3 8B 34.12% 21.06% 26.56% 36.12% 30.22% 25.19% 37.34%
LLaMAX 3 8B 0.0% 0.0% 0.0% 9.73% 0.91% 0.21% 10.12%
Gemma 7B 29.66% 21.40% 27.35% 35.29% 30.11% 25.48% 30.57%
CodeGemma 7B 33.91% 21.05% 29.43% 37.78% 32.56% 28.70% 37.14%
Qwen 1.5 7B 22.04% 12.42% 17.68% 27.58% 32.11% 8.32% 27.21%
Qwen 2 7B 43.51% 21.47% 38.95% 46.31% 37.49% 34.61% 48.41%

EMMA-500 Llama 2 7B 11.34% 8.94% 11.93% 11.67% 18.97% 6.86% 9.94%

Table 25: Pass@10 on Multipl-E.
Model C++ C# Java JavaScript Python Rust TypeScript

Llama 2 7B 17.92% 14.22% 20.78% 23.12% 24.86% 13.08% 22.19%
CodeLlama 2 7B 51.39% 37.13% 50.38% 59.08% 56.58% 47.68% 53.60%
LLaMAX 2 7B 0.96% 0.0% 0.53% 3.99% 0.0% 0.12% 5.64%
MaLA-500 Llama 2 10B V2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
TowerBase Llama 2 7B 1.01% 6.85% 7.86% 0.87% 8.68% 0.0% 0.0%

Occiglot Mistral 7B v0.1 36.08% 27.49% 35.87% 47.45% 41.76% 29.80% 43.13%
Bloom 7B 11.35% 6.86% 12.79% 12.44% 14.24% 3.68% 12.08%
BloomZ 2 7B 12.55% 8.21% 12.94% 14.10% 14.84% 3.91% 13.27%
Aya23 8B 28.49% 17.34% 27.12% 23.19% 26.72% 26.14% 15.67%

Mistral 7B v0.3 50.23% 35.18% 46.83% 57.23% 54.29% 42.77% 54.22%
Llama 3 8B 55.13% 36.67% 54.34% 62.65% 59.24% 45.68% 63.02%
LLaMAX 3 8B 0.72% 0.0% 0.97% 22.91% 1.58% 1.38% 23.04%
Gemma 7B 55.21% 39.09% 52.02% 61.88% 60.09% 50.34% 61.23%
CodeGemma 7B 62.29% 45.11% 59.74% 70.96% 69.76% 61.27% 72.76%
Qwen 1.5 7B 40.11% 28.95% 37.56% 48.35% 40.34% 20.19% 44.85%
Qwen 2 7B 64.58% 43.17% 63.28% 73.21% 54.34% 65.48% 74.32%

EMMA-500 Llama 2 7B 22.84% 14.29% 21.28% 18.22% 24.94% 15.68% 15.91%

Table 26: Pass@25 on Multipl-E.
Model C++ C# Java JavaScript Python Rust TypeScript

Llama 2 7B 24.89% 18.77% 26.45% 30.31% 31.09% 18.70% 29.55%
CodeLlama 2 7B 64.12% 45.96% 61.98% 72.76% 71.77% 59.98% 70.89%
LLaMAX 2 7B 1.47% 0.0% 1.04% 6.78% 0.0% 0.34% 9.04%
MaLA-500 Llama 2 10B V2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
TowerBase Llama 2 7B 1.86% 15.74% 22.45% 2.53% 20.18% 0.0% 0.0%

Occiglot Mistral 7B v0.1 44.17% 33.89% 42.77% 56.63% 49.87% 37.94% 55.76%
Bloom 7B 17.27% 10.07% 17.23% 17.55% 17.93% 5.70% 16.81%
BloomZ 2 7B 17.41% 11.98% 18.66% 18.37% 18.78% 6.83% 18.31%
Aya23 8B 37.56% 21.87% 36.45% 33.57% 36.09% 35.34% 23.75%

Mistral 7B v0.3 60.93% 44.80% 56.12% 66.34% 65.33% 55.31% 64.51%
Llama 3 8B 64.42% 43.34% 62.14% 73.51% 71.82% 57.78% 75.09%
LLaMAX 3 8B 1.71% 0.0% 2.32% 35.61% 2.77% 2.08% 30.19%
Gemma 7B 66.14% 47.08% 63.24% 70.22% 70.47% 63.52% 72.56%
CodeGemma 7B 73.66% 50.79% 69.96% 79.48% 78.68% 74.87% 81.12%
Qwen 1.5 7B 51.87% 37.69% 48.71% 59.71% 49.69% 29.78% 55.98%
Qwen 2 7B 74.33% 51.87% 72.03% 81.67% 65.38% 74.97% 80.59%

EMMA-500 Llama 2 7B 31.93% 18.69% 29.85% 26.45% 32.55% 21.32% 22.34%
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D.3 Natural Language Inference

Table 27: 0-shot results (ACC) on XNLI in all languages.
Model Avg ar-acc stderr bg-acc stderr de-acc stderr el-acc stderr en-acc stderr es-acc stderr fr-acc stderr hi-acc stderr ru-acc stderr sw-acc stderr th-acc stderr tr-acc stderr ur-acc stderr vi-acc stderr zh-acc stderr

Llama 2 7B 0.4019 0.3542 0.0096 0.4265 0.0099 0.4711 0.0100 0.3667 0.0097 0.5530 0.0100 0.4052 0.0098 0.5008 0.0100 0.3771 0.0097 0.4237 0.0099 0.3494 0.0096 0.3635 0.0096 0.3727 0.0097 0.3361 0.0095 0.3663 0.0097 0.3618 0.0096
Llama 2 7B Chat 0.3858 0.3442 0.0095 0.3707 0.0097 0.4309 0.0099 0.3815 0.0097 0.5024 0.0100 0.3944 0.0098 0.4482 0.0100 0.3578 0.0096 0.4209 0.0099 0.3422 0.0095 0.3349 0.0095 0.3695 0.0097 0.3390 0.0095 0.3811 0.0097 0.3695 0.0097
CodeLlama 2 7B 0.4019 0.3341 0.0095 0.3775 0.0097 0.4723 0.0100 0.3763 0.0097 0.5478 0.0100 0.4438 0.0100 0.4920 0.0100 0.3594 0.0096 0.4606 0.0100 0.3329 0.0094 0.3502 0.0096 0.3859 0.0098 0.3325 0.0094 0.4040 0.0098 0.3594 0.0096
LLaMAX Llama 2 7B 0.4427 0.3378 0.0095 0.4683 0.0100 0.4896 0.0100 0.4257 0.0099 0.5490 0.0100 0.4759 0.0100 0.4779 0.0100 0.4550 0.0100 0.4554 0.0100 0.4305 0.0099 0.4185 0.0099 0.4329 0.0099 0.4418 0.0100 0.4386 0.0099 0.3438 0.0095
LLaMAX Llama 2 7B Alpaca 0.4509 0.3442 0.0095 0.4639 0.0100 0.4976 0.0100 0.4341 0.0099 0.5811 0.0099 0.4896 0.0100 0.5197 0.0100 0.4562 0.0100 0.4627 0.0100 0.4357 0.0099 0.4080 0.0099 0.4386 0.0099 0.4430 0.0100 0.4309 0.0099 0.3578 0.0096
MaLA-500 Llama 2 10B v1 0.3811 0.3594 0.0096 0.4120 0.0099 0.4751 0.0100 0.3446 0.0095 0.5618 0.0099 0.3410 0.0095 0.4759 0.0100 0.3365 0.0095 0.3394 0.0095 0.3522 0.0096 0.3369 0.0095 0.3382 0.0095 0.3502 0.0096 0.3602 0.0096 0.3325 0.0094
MaLA-500 Llama 2 10B v2 0.3811 0.3594 0.0096 0.4120 0.0099 0.4751 0.0100 0.3446 0.0095 0.5618 0.0099 0.3410 0.0095 0.4759 0.0100 0.3365 0.0095 0.3394 0.0095 0.3522 0.0096 0.3369 0.0095 0.3382 0.0095 0.3502 0.0096 0.3602 0.0096 0.3325 0.0094
YaYi Llama 2 7B 0.4128 0.3414 0.0095 0.4261 0.0099 0.4884 0.0100 0.3735 0.0097 0.5647 0.0099 0.4578 0.0100 0.5104 0.0100 0.3948 0.0098 0.4627 0.0100 0.3570 0.0096 0.3562 0.0096 0.3936 0.0098 0.3349 0.0095 0.3751 0.0097 0.3554 0.0096
TowerBase Llama 2 7B 0.3984 0.3390 0.0095 0.4137 0.0099 0.4787 0.0100 0.3526 0.0096 0.5635 0.0099 0.4169 0.0099 0.4944 0.0100 0.3454 0.0095 0.4594 0.0100 0.3502 0.0096 0.3478 0.0095 0.3574 0.0096 0.3337 0.0095 0.3719 0.0097 0.3522 0.0096
TowerInstruct Llama 2 7B 0.4036 0.3365 0.0095 0.4293 0.0099 0.4884 0.0100 0.3498 0.0096 0.5695 0.0099 0.4651 0.0100 0.4643 0.0100 0.3474 0.0095 0.4627 0.0100 0.3394 0.0095 0.3390 0.0095 0.3787 0.0097 0.3353 0.0095 0.3735 0.0097 0.3747 0.0097

Occiglot Mistral 7B v0.1 0.4235 0.3386 0.0095 0.4137 0.0099 0.5177 0.0100 0.3771 0.0097 0.5586 0.0100 0.5165 0.0100 0.5193 0.0100 0.3574 0.0096 0.4763 0.0100 0.3470 0.0095 0.3739 0.0097 0.4301 0.0099 0.3349 0.0095 0.3863 0.0098 0.4056 0.0098
Occiglot Mistral 7B v0.1 Instruct 0.4081 0.3438 0.0095 0.3884 0.0098 0.5084 0.0100 0.4000 0.0098 0.5566 0.0100 0.4863 0.0100 0.5169 0.0100 0.3430 0.0095 0.4004 0.0098 0.3317 0.0094 0.3635 0.0096 0.3799 0.0097 0.3406 0.0095 0.3759 0.0097 0.3863 0.0098
BLOOM 7B 0.4160 0.3385 0.0067 0.3992 0.0069 0.3978 0.0069 0.3537 0.0068 0.5397 0.0070 0.4882 0.0071 0.4980 0.0071 0.4651 0.0070 0.4303 0.0070 0.3788 0.0069 0.3505 0.0067 0.3509 0.0067 0.4220 0.0070 0.4739 0.0071 0.3535 0.0068
BLOOMZ 7B 0.3713 0.3269 0.0094 0.3402 0.0095 0.4169 0.0099 0.3582 0.0096 0.4687 0.0100 0.3602 0.0096 0.4305 0.0099 0.4040 0.0098 0.3747 0.0097 0.3361 0.0095 0.3309 0.0094 0.3373 0.0095 0.3683 0.0097 0.3667 0.0097 0.3502 0.0096
mGPT 0.4051 0.3382 0.0095 0.4173 0.0099 0.4478 0.0100 0.3542 0.0096 0.4936 0.0100 0.4281 0.0099 0.4406 0.0100 0.4133 0.0099 0.4321 0.0099 0.4189 0.0099 0.3578 0.0096 0.4012 0.0098 0.3422 0.0095 0.4550 0.0100 0.3361 0.0095
XGLM 7.5B 0.4375 0.3349 0.0095 0.4365 0.0099 0.4755 0.0100 0.4040 0.0098 0.5309 0.0100 0.4707 0.0100 0.4542 0.0100 0.4574 0.0100 0.4598 0.0100 0.4570 0.0100 0.4137 0.0099 0.4679 0.0100 0.4193 0.0099 0.4289 0.0099 0.3522 0.0096
YaYi 7B 0.3987 0.3980 0.0098 0.3578 0.0096 0.4261 0.0099 0.3647 0.0096 0.5052 0.0100 0.4771 0.0100 0.4819 0.0100 0.4004 0.0098 0.3912 0.0098 0.3406 0.0095 0.3434 0.0095 0.3317 0.0094 0.3707 0.0097 0.4418 0.0100 0.3494 0.0096

Llama 3 8B 0.4497 0.3365 0.0095 0.4534 0.0100 0.5048 0.0100 0.3928 0.0098 0.5502 0.0100 0.4952 0.0100 0.5056 0.0100 0.4755 0.0100 0.4916 0.0100 0.3892 0.0098 0.4627 0.0100 0.4823 0.0100 0.3349 0.0095 0.4900 0.0100 0.3815 0.0097
Llama 3.1 8B 0.4562 0.3386 0.0095 0.4558 0.0100 0.5145 0.0100 0.3896 0.0098 0.5522 0.0100 0.5028 0.0100 0.5177 0.0100 0.4940 0.0100 0.4916 0.0100 0.3936 0.0098 0.4807 0.0100 0.4932 0.0100 0.3506 0.0096 0.4711 0.0100 0.3976 0.0098
Gemma 7B 0.4258 0.3349 0.0095 0.4349 0.0099 0.4863 0.0100 0.3811 0.0097 0.5205 0.0100 0.4414 0.0100 0.4976 0.0100 0.4434 0.0100 0.4739 0.0100 0.4064 0.0098 0.3795 0.0097 0.4325 0.0099 0.3542 0.0096 0.4329 0.0099 0.3667 0.0097
Gemma 2 9B 0.4674 0.3418 0.0095 0.4952 0.0100 0.5137 0.0100 0.4325 0.0099 0.5345 0.0100 0.5141 0.0100 0.5229 0.0100 0.4731 0.0100 0.4956 0.0100 0.4558 0.0100 0.4988 0.0100 0.5072 0.0100 0.4402 0.0100 0.4570 0.0100 0.3293 0.0094
Qwen 2 7B 0.4277 0.3369 0.0095 0.4546 0.0100 0.4819 0.0100 0.3683 0.0097 0.5426 0.0100 0.4723 0.0100 0.5141 0.0100 0.4498 0.0100 0.4739 0.0100 0.3731 0.0097 0.3827 0.0097 0.4353 0.0099 0.3402 0.0095 0.4357 0.0099 0.3538 0.0096
Qwen 1.5 7B 0.3947 0.3434 0.0095 0.4092 0.0099 0.4277 0.0099 0.3618 0.0096 0.4908 0.0100 0.3787 0.0097 0.4313 0.0099 0.3815 0.0097 0.3888 0.0098 0.3542 0.0096 0.4422 0.0100 0.3884 0.0098 0.3386 0.0095 0.4438 0.0100 0.3398 0.0095

EMMA-500 Llama 2 7B 0.4514 0.3478 0.0095 0.4627 0.0100 0.4707 0.0100 0.4586 0.0100 0.5378 0.0100 0.4707 0.0100 0.4687 0.0100 0.4759 0.0100 0.4655 0.0100 0.4618 0.0100 0.4197 0.0099 0.4486 0.0100 0.4598 0.0100 0.4703 0.0100 0.3522 0.0096

D.4 Math

Tables 28 and 29 show 3-shot results on MGSM by direct and Chain-of-Thought prompting respec-
tively. All the scores are obtained by flexible matching.

Table 28: 3-shot results (ACC) on MGSM by direct prompting and flexible matching.
Model Avg bn bn-stderr de de-stderr en en-stderr es es-stderr fr fr-stderr ja ja-stderr ru ru-stderr sw sw-stderr te te-stderr th th-stderr zh zh-stderr

Llama 2 7B 0.0669 0.0280 0.0105 0.0800 0.0172 0.1760 0.0241 0.1120 0.0200 0.1200 0.0206 0.0240 0.0097 0.0800 0.0172 0.0280 0.0105 0.0120 0.0069 0.0080 0.0056 0.0680 0.0160
Llama 2 7B Chat 0.1022 0.0280 0.0105 0.1680 0.0237 0.2280 0.0266 0.1960 0.0252 0.1920 0.0250 0.0240 0.0097 0.1440 0.0222 0.0080 0.0056 0.0080 0.0056 0.0280 0.0105 0.1000 0.0190
CodeLlama 2 7B 0.0593 0.0160 0.0080 0.0880 0.0180 0.1280 0.0212 0.0880 0.0180 0.1040 0.0193 0.0560 0.0146 0.0600 0.0151 0.0200 0.0089 0.0120 0.0069 0.0520 0.0141 0.0280 0.0105
LLaMAX Llama 2 7B 0.0335 0.0280 0.0105 0.0360 0.0118 0.0600 0.0151 0.0200 0.0089 0.0720 0.0164 0.0320 0.0112 0.0240 0.0097 0.0160 0.0080 0.0080 0.0056 0.0160 0.0080 0.0560 0.0146
LLaMAX Llama 2 7B Alpaca 0.0505 0.0400 0.0124 0.0360 0.0118 0.1080 0.0197 0.0600 0.0151 0.0640 0.0155 0.0320 0.0112 0.0440 0.0130 0.0480 0.0135 0.0160 0.0080 0.0320 0.0112 0.0760 0.0168
MaLA-500 Llama 2 10B v1 0.0091 0.0000 0.0000 0.0000 0.0000 0.0120 0.0069 0.0200 0.0089 0.0240 0.0097 0.0120 0.0069 0.0200 0.0089 0.0040 0.0040 0.0000 0.0000 0.0040 0.0040 0.0040 0.0040
MaLA-500 Llama 2 10B v2 0.0091 0.0000 0.0000 0.0000 0.0000 0.0120 0.0069 0.0200 0.0089 0.0240 0.0097 0.0120 0.0069 0.0200 0.0089 0.0040 0.0040 0.0000 0.0000 0.0040 0.0040 0.0040 0.0040
YaYi Llama 2 7B 0.0709 0.0320 0.0112 0.0840 0.0176 0.1560 0.0230 0.1600 0.0232 0.1040 0.0193 0.0520 0.0141 0.0560 0.0146 0.0080 0.0056 0.0120 0.0069 0.0040 0.0040 0.1120 0.0200
TowerBase Llama 2 7B 0.0615 0.0240 0.0097 0.0840 0.0176 0.1160 0.0203 0.0920 0.0183 0.0880 0.0180 0.0480 0.0135 0.1000 0.0190 0.0120 0.0069 0.0080 0.0056 0.0160 0.0080 0.0880 0.0180
TowerInstruct Llama 2 7B 0.0724 0.0160 0.0080 0.1000 0.0190 0.1520 0.0228 0.1560 0.0230 0.1280 0.0212 0.0160 0.0080 0.1000 0.0190 0.0160 0.0080 0.0200 0.0089 0.0200 0.0089 0.0720 0.0164
Occiglot Mistral 7B v0.1 0.1331 0.0320 0.0112 0.2120 0.0259 0.3000 0.0290 0.2720 0.0282 0.2160 0.0261 0.0640 0.0155 0.1520 0.0228 0.0240 0.0097 0.0160 0.0080 0.0800 0.0172 0.0960 0.0187
Occiglot Mistral 7B v0.1 Instruct 0.2276 0.0480 0.0135 0.3400 0.0300 0.4640 0.0316 0.4000 0.0310 0.3160 0.0295 0.1840 0.0246 0.2360 0.0269 0.0640 0.0155 0.0280 0.0105 0.1120 0.0200 0.3120 0.0294
BLOOM 7B 0.0287 0.0240 0.0097 0.0160 0.0080 0.0400 0.0124 0.0360 0.0118 0.0120 0.0069 0.0200 0.0089 0.0360 0.0118 0.0400 0.0124 0.0360 0.0118 0.0200 0.0089 0.0360 0.0118
BLOOMZ 7B 0.0255 0.0320 0.0112 0.0160 0.0080 0.0360 0.0118 0.0240 0.0097 0.0320 0.0112 0.0280 0.0105 0.0360 0.0118 0.0280 0.0105 0.0120 0.0069 0.0120 0.0069 0.0240 0.0097
mGPT 0.0135 0.0000 0.0000 0.0200 0.0089 0.0320 0.0112 0.0080 0.0056 0.0240 0.0097 0.0160 0.0080 0.0240 0.0097 0.0160 0.0080 0.0000 0.0000 0.0000 0.0000 0.0080 0.0056
mGPT 13B 0.0131 0.0000 0.0000 0.0160 0.0080 0.0160 0.0080 0.0080 0.0056 0.0360 0.0118 0.0160 0.0080 0.0200 0.0089 0.0120 0.0069 0.0000 0.0000 0.0080 0.0056 0.0120 0.0069
XGLM 7.5B 0.0102 0.0000 0.0000 0.0080 0.0056 0.0000 0.0000 0.0120 0.0069 0.0000 0.0000 0.0040 0.0040 0.0200 0.0089 0.0200 0.0089 0.0200 0.0089 0.0000 0.0000 0.0280 0.0105
YaYi 7B 0.0276 0.0240 0.0097 0.0200 0.0089 0.0600 0.0151 0.0240 0.0097 0.0560 0.0146 0.0160 0.0080 0.0120 0.0069 0.0120 0.0069 0.0240 0.0097 0.0080 0.0056 0.0480 0.0135
Llama 3 8B 0.2745 0.1760 0.0241 0.3960 0.0310 0.5080 0.0317 0.4720 0.0316 0.3640 0.0305 0.0360 0.0118 0.3760 0.0307 0.2400 0.0271 0.0560 0.0146 0.3680 0.0306 0.0280 0.0105
Llama 3.1 8B 0.2836 0.2000 0.0253 0.4120 0.0312 0.5520 0.0315 0.4840 0.0317 0.3840 0.0308 0.0360 0.0118 0.4000 0.0310 0.2080 0.0257 0.0440 0.0130 0.3760 0.0307 0.0240 0.0097
Gemma 7B 0.3822 0.3440 0.0301 0.4480 0.0315 0.5880 0.0312 0.4800 0.0317 0.3960 0.0310 0.1680 0.0237 0.4120 0.0312 0.3760 0.0307 0.2720 0.0282 0.4280 0.0314 0.2920 0.0288
Gemma 2 9B 0.3295 0.2960 0.0289 0.4040 0.0311 0.5640 0.0314 0.5080 0.0317 0.3600 0.0304 0.0120 0.0069 0.3520 0.0303 0.3760 0.0307 0.3080 0.0293 0.4000 0.0310 0.0440 0.0130
Qwen 2 7B 0.4895 0.4440 0.0315 0.6560 0.0301 0.8080 0.0250 0.7600 0.0271 0.6960 0.0292 0.0160 0.0080 0.6720 0.0298 0.1600 0.0232 0.1480 0.0225 0.5600 0.0315 0.4640 0.0316
Qwen 1.5 7B 0.3156 0.1240 0.0209 0.4400 0.0315 0.5520 0.0315 0.4840 0.0317 0.4520 0.0315 0.1680 0.0237 0.4320 0.0314 0.0720 0.0164 0.0400 0.0124 0.2840 0.0286 0.4240 0.0313
EMMA-500 Llama 2 7B 0.1702 0.0880 0.0180 0.2320 0.0268 0.3400 0.0300 0.2800 0.0285 0.2560 0.0277 0.0920 0.0183 0.2280 0.0266 0.1680 0.0237 0.0240 0.0097 0.1000 0.0190 0.0640 0.0155

Table 29: 3-shot results (ACC) on MGSM by CoT prompting and flexible matching.
Model Avg bn bn-stderr de de-stderr en en-stderr es es-stderr fr fr-stderr ja ja-stderr ru ru-stderr sw sw-stderr te te-stderr th th-stderr zh zh-stderr

Llama 2 7B 0.0636 0.0200 0.0089 0.0760 0.0168 0.1600 0.0232 0.1240 0.0209 0.0920 0.0183 0.0360 0.0118 0.0800 0.0172 0.0200 0.0089 0.0080 0.0056 0.0160 0.0080 0.0800 0.0172
Llama 2 7B Chat 0.1091 0.0240 0.0097 0.1760 0.0241 0.2720 0.0282 0.1920 0.0250 0.1880 0.0248 0.0400 0.0124 0.1520 0.0228 0.0200 0.0089 0.0080 0.0056 0.0280 0.0105 0.1160 0.0203
CodeLlama 2 7B 0.0664 0.0160 0.0080 0.0920 0.0183 0.1320 0.0215 0.1080 0.0197 0.1080 0.0197 0.0440 0.0130 0.0760 0.0168 0.0120 0.0069 0.0160 0.0080 0.0600 0.0151 0.0400 0.0124
LLaMAX Llama 2 7B 0.0362 0.0360 0.0118 0.0360 0.0118 0.0720 0.0164 0.0360 0.0118 0.0520 0.0141 0.0280 0.0105 0.0280 0.0105 0.0080 0.0056 0.0080 0.0056 0.0200 0.0089 0.0480 0.0135
LLaMAX Llama 2 7B Alpaca 0.0635 0.0320 0.0112 0.0480 0.0135 0.1520 0.0228 0.0960 0.0187 0.0520 0.0141 0.0440 0.0130 0.0360 0.0118 0.0480 0.0135 0.0040 0.0040 0.0480 0.0135 0.0680 0.0160
MaLA-500 Llama 2 10B v1 0.0073 0.0000 0.0000 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0160 0.0080 0.0160 0.0080 0.0240 0.0097 0.0040 0.0040 0.0000 0.0000 0.0000 0.0000 0.0080 0.0056
MaLA-500 Llama 2 10B v2 0.0073 0.0000 0.0000 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0160 0.0080 0.0160 0.0080 0.0240 0.0097 0.0040 0.0040 0.0000 0.0000 0.0000 0.0000 0.0080 0.0056
YaYi Llama 2 7B 0.0722 0.0280 0.0105 0.0840 0.0176 0.1680 0.0237 0.1240 0.0209 0.1040 0.0193 0.0480 0.0135 0.0720 0.0164 0.0200 0.0089 0.0120 0.0069 0.0320 0.0112 0.1240 0.0209
TowerBase Llama 2 7B 0.0616 0.0360 0.0118 0.0800 0.0172 0.1120 0.0200 0.0840 0.0176 0.0760 0.0168 0.0360 0.0118 0.0840 0.0176 0.0120 0.0069 0.0080 0.0056 0.0280 0.0105 0.0920 0.0183
TowerInstruct Llama 2 7B 0.0824 0.0120 0.0069 0.1280 0.0212 0.1880 0.0248 0.1520 0.0228 0.1200 0.0206 0.0240 0.0097 0.1360 0.0217 0.0160 0.0080 0.0120 0.0069 0.0320 0.0112 0.1080 0.0197
Occiglot Mistral 7B v0.1 0.1407 0.0240 0.0097 0.2160 0.0261 0.3320 0.0298 0.2680 0.0281 0.2240 0.0264 0.0640 0.0155 0.1720 0.0239 0.0320 0.0112 0.0120 0.0069 0.0600 0.0151 0.1120 0.0200
Occiglot Mistral 7B v0.1 Instruct 0.2216 0.0400 0.0124 0.3320 0.0298 0.4320 0.0314 0.4200 0.0313 0.3160 0.0295 0.1680 0.0237 0.2440 0.0272 0.0560 0.0146 0.0160 0.0080 0.0840 0.0176 0.2480 0.0274
BLOOM 7B 0.0229 0.0200 0.0089 0.0160 0.0080 0.0480 0.0135 0.0240 0.0097 0.0240 0.0097 0.0040 0.0040 0.0440 0.0130 0.0160 0.0080 0.0200 0.0089 0.0200 0.0089 0.0240 0.0097
BLOOMZ 7B 0.0215 0.0200 0.0089 0.0200 0.0089 0.0240 0.0097 0.0320 0.0112 0.0320 0.0112 0.0200 0.0089 0.0160 0.0080 0.0240 0.0097 0.0200 0.0089 0.0160 0.0080 0.0120 0.0069
mGPT 0.0142 0.0000 0.0000 0.0200 0.0089 0.0200 0.0089 0.0160 0.0080 0.0240 0.0097 0.0120 0.0069 0.0200 0.0089 0.0280 0.0105 0.0000 0.0000 0.0000 0.0000 0.0160 0.0080
mGPT 13B 0.0153 0.0000 0.0000 0.0200 0.0089 0.0360 0.0118 0.0160 0.0080 0.0240 0.0097 0.0120 0.0069 0.0160 0.0080 0.0080 0.0056 0.0040 0.0040 0.0080 0.0056 0.0200 0.0089
XGLM 7.5B 0.0116 0.0000 0.0000 0.0120 0.0069 0.0000 0.0000 0.0080 0.0056 0.0000 0.0000 0.0040 0.0040 0.0160 0.0080 0.0200 0.0089 0.0240 0.0097 0.0160 0.0080 0.0280 0.0105
YaYi 7B 0.0302 0.0480 0.0135 0.0320 0.0112 0.0480 0.0135 0.0360 0.0118 0.0400 0.0124 0.0200 0.0089 0.0120 0.0069 0.0160 0.0080 0.0280 0.0105 0.0080 0.0056 0.0600 0.0151
Llama 3 8B 0.2813 0.1920 0.0250 0.3840 0.0308 0.5400 0.0316 0.4600 0.0316 0.3600 0.0304 0.0200 0.0089 0.3800 0.0308 0.2520 0.0275 0.0640 0.0155 0.3920 0.0309 0.0400 0.0124
Llama 3.1 8B 0.2731 0.1920 0.0250 0.4200 0.0313 0.5280 0.0316 0.4280 0.0314 0.3480 0.0302 0.0280 0.0105 0.3720 0.0306 0.2520 0.0275 0.0560 0.0146 0.3560 0.0303 0.0160 0.0080
Gemma 7B 0.3578 0.3640 0.0305 0.4080 0.0311 0.6080 0.0309 0.4520 0.0315 0.4200 0.0313 0.0360 0.0118 0.3920 0.0309 0.3880 0.0309 0.2480 0.0274 0.4400 0.0315 0.0480 0.0135
Gemma 2 9B 0.4469 0.4880 0.0317 0.5360 0.0316 0.7200 0.0285 0.6040 0.0310 0.5000 0.0317 0.0200 0.0089 0.5000 0.0317 0.5360 0.0316 0.4440 0.0315 0.5520 0.0315 0.0160 0.0080
Qwen 2 7B 0.5147 0.4520 0.0315 0.6600 0.0300 0.8200 0.0243 0.7520 0.0274 0.7160 0.0286 0.0280 0.0105 0.6840 0.0295 0.1720 0.0239 0.1760 0.0241 0.5840 0.0312 0.6080 0.0309
Qwen 1.5 7B 0.3036 0.1280 0.0212 0.4320 0.0314 0.5840 0.0312 0.5040 0.0317 0.4200 0.0313 0.1120 0.0200 0.3680 0.0306 0.0880 0.0180 0.0400 0.0124 0.2560 0.0277 0.2600 0.0278
EMMA-500 Llama 2 7B 0.1809 0.0840 0.0176 0.2240 0.0264 0.3760 0.0307 0.2560 0.0277 0.2160 0.0261 0.0800 0.0172 0.2280 0.0266 0.2120 0.0259 0.0240 0.0097 0.1160 0.0203 0.1640 0.0235
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Abstract

Recent studies have highlighted the potential
of exploiting parallel corpora to enhance multi-
lingual large language models in both bilingual
tasks, e.g., machine translation, and general-
purpose tasks, e.g., text classification. Building
upon these findings, our comprehensive study
aims to identify the most effective strategies
for leveraging parallel corpora. We investi-
gate the impact of parallel corpus quality and
quantity, training objectives, and model size
on the performance of multilingual large lan-
guage models enhanced with parallel corpora
across diverse languages and tasks. Our anal-
ysis reveals several key insights: (i) filtering
noisy translations is essential for exploiting par-
allel corpora, while language identification and
short sentence filtering have little effect; (ii)
even a corpus with just 10K parallel sentences
can yield results comparable to those obtained
from larger datasets; (iii) employing only the
machine translation objective yields the best
results among various training objectives and
their combinations; (iv) larger multilingual lan-
guage models benefit more from parallel cor-
pora than smaller models. Our study offers
valuable insights into the optimal utilization of
parallel corpora to enhance multilingual large
language models, extending the generalizabil-
ity of previous findings from limited languages
and tasks to a broader range of scenarios.

1 Introduction

Recent multilingual large language models
(mLLMs), represented by BLOOM (Scao et al.,
2022), MaLA500 (Lin et al., 2024b), and Aya
(Üstün et al., 2024), have shown impressive ca-
pacity on diverse tasks across languages. Paral-
lel corpora have emerged as crucial resources for
enhancing mLLMs, both for specific tasks, e.g.,
machine translation (Xu et al., 2023; Alves et al.,
2024), and for general-purpose tasks (Cahyawijaya
et al., 2023; Zhu et al., 2023; Li et al., 2023).
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Figure 1: Average performance improvements (y-axis)
achieved by mLLMs enhanced with parallel corpora
compared to their base models. Best: Instruction tun-
ing of BLOOM-7B1 with the machine translation
objective (MT) using 10K high-quality (i.e., filtered)
parallel sentences yields the best results. Main varia-
tions explored include: Filter (No) (using the original
data); OBJ (TLM) (translation language modeling ob-
jective); OBJ (XSS) (cross-lingual semantic similarity
objective); |Data| (50K) (a larger 50K-sentence dataset);
|Model| (1B7) (BLOOM-1B7 model).

However, existing studies often lack in compre-
hensive exploration of methodologies for harness-
ing parallel corpora. The quality and quantity of
parallel corpora remain inadequately explored, in-
hibiting the full potential of such resources. More-
over, the influence of different training objectives
and mLLM sizes across diverse languages and
tasks remains under-investigated. This limitation
impedes the generalization of parallel corpus ex-
ploitation methods across varied linguistic land-
scapes and task domains. Therefore, this paper
aims to address these gaps by presenting a compre-
hensive recipe for exploiting parallel corpora for
mLLMs. We focus on four key factors, with some
main results shown in Figure 1.

Quality: We explore three dimensions of paral-
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lel corpus quality: translation accuracy, sentence
length, and language identification. Our results
show that translation quality is vital for exploiting
parallel corpora, while sentence length filtering and
language identification have minimal impact.

Quantity: Acquiring large amounts of high-
quality parallel corpora is challenging, especially
for relatively low-resource languages. Our study
examines the minimum corpus size necessary to
achieve performance improvements across diverse
tasks. We find that even a corpus of just 10K sen-
tences can yield results comparable to those ob-
tained from much larger datasets.

Objective: Previous studies (Cahyawijaya et al.,
2023) have investigated the effectiveness of differ-
ent training objectives and their combinations on
classification tasks of Indonesian local languages,
using smaller-sized mLLMs up to 1B7 parame-
ters. We extend this investigation by examining
the impact of various training objectives and their
combinations on larger mLLMs across a range of
languages and tasks. Our experiments demonstrate
that employing the machine translation objective
produces the most promising results.

Model Size: The size of mLLMs can greatly
impact their ability to comprehend instructions de-
rived from parallel corpora. Our findings indicate
that larger mLLMs exhibit superior comprehension
and cross-task transferability compared to their
smaller counterparts. Consequently, they achieve
more substantial improvements across a broader
spectrum of tasks.

In light of the critical role parallel corpora play
in mLLMs, our study provides a comprehensive
recipe for effectively exploiting parallel corpora.
We have identified four primary factors: quality
(§4), quantity (§5), objective (§6), and model size
(§7). Our detailed analysis of these factors reveals
their great impact on mLLM performance across di-
verse languages and tasks. By delving into these as-
pects, we offer actionable insights that can inform
the development and optimization of strategies for
parallel corpus exploitation, ultimately contribut-
ing to the advancement of mLLMs in both bilingual
and general-purpose tasks.

2 Related Work

2.1 Parallel Data for Multilingual Language
Models

Over the years, multilingual language models have
evolved from earlier, smaller models, such as XLM

(Conneau and Lample, 2019), XLM-R (Conneau
et al., 2020), and Glot500 (Imani et al., 2023), to
more recent, larger models, including BLOOM
(Scao et al., 2022), MaLA500 (Lin et al., 2024b),
and Aya (Üstün et al., 2024). These models con-
sistently demonstrate strong performance across
various downstream tasks (Ahuja et al., 2023; Lin
et al., 2024c).

Parallel corpora have played a pivotal role in
both the analysis (Piqueras and Søgaard, 2022; Lin
et al., 2024a) and enhancement (Conneau and Lam-
ple, 2019; Ouyang et al., 2020; Yang et al., 2020;
Huang et al., 2019; Chi et al., 2021a; Wei et al.,
2021; Hu et al., 2021; Chi et al., 2021b; Reid and
Artetxe, 2022b; Liu et al., 2023) of small multilin-
gual language models.

In the era of mLLMs, parallel corpora are con-
structed as instruction data and used to enhance
mLLMs through supervised fine-tuning (Cahyaw-
ijaya et al., 2023; Zhu et al., 2023; Li et al.,
2023). Specifically, Cahyawijaya et al. (2023) pro-
pose three methods of incorporating parallel cor-
pora as instruction tuning data: Machine Transla-
tion (MT), Translation Language Modeling (TLM),
and Cross-Lingual Semantic Similarity (XSS) (see
§3.3). However, their evaluation is limited to small
models with up to 1.7 billion parameters and fo-
cuses solely on classification tasks within Indone-
sian local languages. Both Zhu et al. (2023) and
Li et al. (2023) propose using machine-translation-
style instruction data to improve mLLMs but do
not explore different training objectives. While
these studies yield promising results, their scope is
limited. Firstly, they do not explore critical factors
such as the quality and quantity of parallel corpora,
considering the high cost of collecting high-quality
and massive parallel corpora, especially for rel-
atively low-resource languages. Secondly, their
investigations do not encompass an in-depth analy-
sis of training objectives and mLLMs with varied
model sizes across diverse languages and tasks.

2.2 Key Elements for Language Modeling
Previous research has extensively examined critical
factors essential for the pretraining and enhance-
ment of language models.

Quality: Kreutzer et al. (2022) conducted man-
ual audits of prevalent monolingual and parallel cor-
pora, revealing significant portions of low-quality
data, particularly in corpora for relatively low-
resource languages. Follow-up studies have in-
vestigated the impact of data quality on model per-
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formance. Artetxe et al. (2022) observed that sim-
ilar results on downstream tasks can be achieved
regardless of the degree of quality of the corpus
used for pretraining, while other studies found that
the quality of parallel corpora matters for machine
translation (Ranathunga et al., 2024) and general-
purpose tasks (Reid and Artetxe, 2022a).

Quantity: Recent works (Chen et al., 2023;
Zhou et al., 2023; Gupta et al., 2023) have focused
on the impact of fine-tuning with small amounts
of high-quality instruction data, such as one or a
few thousand instances, showing promising perfor-
mance gains in evaluation tasks. Xu et al. (2023)
demonstrate that as few as 10K high-quality par-
allel sentences can significantly enhance machine
translation performance.

Objective: Different training objectives based
on parallel corpora for enhancing mLLMs can be
viewed as distinct instructions. Wang et al. (2023)
explore the impact of various types of instruction
tuning data and find that their combination can be
optimal in certain scenarios.

Model Size: Recent studies indicate that scaling
up language models enhances their capability to
excel in diverse and complex reasoning tasks (Wei
et al., 2022, 2023; Lu et al., 2023). Follow-up
studies (Wei et al., 2023) further illustrate distinct
behavioral differences between larger and smaller
models.

However, these factors have not yet been com-
prehensively explored in the context of leveraging
parallel corpora to enhance mLLMs across diverse
languages and tasks.

3 Setup

3.1 Language

We use three criteria for language selection. Firstly,
we select languages well covered by mLLMs as
our goal is to assess how parallel data enhances per-
formance after pre-training an mLLM with mono-
lingual data. Secondly, the selected languages
should be also covered by several different eval-
uation benchmarks, allowing for robust evaluation
across diverse downstream tasks. Lastly, we se-
lect typologically diverse languages, enabling our
investigation to generalize to a wide range of rela-
tively low-resource languages. Thus, we select five
languages: Arabic (ar), Spanish (es), Hindi (hi),
Vietnamese (vi) and Chinese (zh).

3.2 Data

We utilize the OPUS100 dataset (Zhang et al.,
2020), an English-centric multilingual corpus, to
gather parallel sentences between English (en) and
each target language. The quality of OPUS100 is
assessed across three dimensions:

Translation Quality Manual quality assessment
of the vast amount of parallel corpora is impracti-
cal. Instead, we employ COMETKIWI (Rei et al.,
2022)1, a tool for estimating the quality of machine
translation outputs across multiple languages. We
set a COMETKIWI score threshold τc, retaining
parallel corpora with scores not lower than τc.

Sentence Length Given the variation in character
length across languages, we avoid using it as a met-
ric for consistency. Instead, we measure sentence
length by the number of tokens, as determined by
the tokenizer of our chosen mLLM, BLOOM-7B1.
We establish a length threshold τl, retaining paral-
lel corpora where both source and target sentences
contain no fewer than τl tokens.

Language Identification To identify sentences
potentially not in the correct language, we employ
GlotLID (Kargaran et al., 2023), an open-source
language identification model. This language iden-
tification filter is applied to both the source and
target sentences.

3.3 Training

We select the BLOOM series (Scao et al., 2022)
for our investigation due to its offering of different
sizes of mLLMs which well cover the five target
languages under consideration.2 The pretraining
data size for the five target languages ranges from
23GB (Hindi) to 452GB (English). We explore
BLOOM models of various sizes, including 7B1,
3B, and 1B7. Due to limited computational re-
sources, we use LoRA (Hu et al., 2022), which is
known for its competitive performance compared
to full-parameter training (Alves et al., 2023), for
instruction tuning of BLOOM. We configure the
learning rate to 1× 10−4, weight decay to 0.1, and
set the rank of LoRA to 16 based on preliminary
experiment in §B. The maximum sequence length
for both source and target sentences is set to 128.
To maintain consistency across experiments with

1https://huggingface.co/Unbabel/wmt23
-cometkiwi-da-xxl

2Additional experiments with XGLM, as presented in §A,
yield conclusions consistent with those of BLOOM.
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Objective Template

MT Translate the following text from [SOURCE_LANG] to
[TARGET_LANG].\nText: [SOURCE_TEXT]\nTranslation: [TARGET_TEXT]

TLM [INPUT_TEXT]. Denoise the previous [TARGET_LANG] text to its
equivalent sentence in [SOURCE_LANG]: [SOURCE_TEXT]\n[TARGET_TEXT]

XSS [SOURCE_LANG] sentence: [SOURCE_TEXT]\n[TARGET_LANG] sentence:
[TARGET_TEXT]\nDo the two sentences have the same meaning? [LABEL]

Table 1: Templates of MT, TLM, and XSS for instruction data construction based on parallel corpora.

different quantities of parallel corpora, we ensure a
uniform training budget of 50K parallel sentences.
Specifically, we calculate the number of epochs as
50K divided by the number of sentences consid-
ered from the OPUS100 dataset. The batch size is
128, and we save the checkpoints every 20 steps.

Following Cahyawijaya et al. (2023), we con-
struct the data for instruction tuning based on the
parallel corpora by three distinct patterns: Machine
Translation (MT), Translation Language Model-
ing (TLM), and Cross-Lingual Semantic Similarity
(XSS). Table 1 presents the templates for these
three objectives. Here, [SOURCE_LANG] and
[TARGET_LANG] represent the language names
of the source and target languages, respectively.
In our study, we consider both English-to-target-
language and target-language-to-English directions,
where [SOURCE_LANG] represents English or
[TARGET_LANG] represents English. For MT,
[SOURCE_TEXT] and [TARGET_TEXT] refer
to the parallel sentences in the source and target
languages, respectively. For TLM, a portion of to-
kens in [TARGET_TEXT] are masked to generate
[INPUT_TEXT]. For XSS, our objective is to pre-
dict whether parallel sentences [SOURCE_TEXT]
and [TARGET_TEXT] are semantically similar,
with [LABEL] being “Yes” or “No”. Specifically,
we utilize the parallel corpora as positive examples
and introduce perturbations to [TARGET_TEXT]
to construct negative examples. We consider ap-
plying the objectives both individually and in com-
bination. We tune the model with the objective of
causal language modeling without loss mask.

3.4 Evaluation

We conduct evaluation across five diverse bench-
marks: FLORES (Costa-jussà et al., 2022), MUSE
(Lample et al., 2018), MLQA (Lewis et al., 2020),
XQUAD (Artetxe et al., 2020), and SIB (Adelani
et al., 2023). A comprehensive overview of these
benchmarks is available in Table 2. Our eval-

Dataset Task |Data| Metric I/C C/G

FLORES Machine Translation 1012 COMETKIWI C G
MUSE Word Translation 1500 F1 C G
MLQA Question Answering 4918 - 5495 F1 C G
XQuAD Question Answering 1190 F1 I G

SIB Text Classification 204 Acc I C

Table 2: Details of evaluation benchmarks. |Data|: Num-
ber of samples for evaluation. I/C: In-language/Cross-
language. C/G: Classification/Generation.

uation spans both classification tasks (SIB) and
generation tasks (FLORES, MUSE, MLQA, and
XQuAD), covering a spectrum of cross-language
(FLORES, MUSE, and MLQA) and in-language
tasks (XQuAD and SIB).

For translation tasks within FLORES and MUSE,
we explore bidirectional translation: from En-
glish to other languages (en-xx) and from other
languages to English (xx-en). Additionally, for
MLQA, we evaluate scenarios where questions are
in English and the passages and answers are in
other languages (en-xx), as well as situations where
questions are in other languages and the passages
and answers are in English (xx-en).

To provide a thorough understanding of our eval-
uation procedures, we offer detailed prompts for
each task in §C. In all experiments, we employ a 2-
shot in-context learning approach, where the model
is given two examples appended to the input query
to aid in making predictions.

4 Quality

4.1 Quality of OPUS100

We measure the quality of 500K parallel sentences
from OPUS100 for our five language pairs using
three key metrics: translation quality, sentence
length, and language identification accuracy, as
illustrated in Figures 2–4.

A considerable portion of OPUS100 is of low-
quality. All quality measures indicate that a large
portion of OPUS100 contains low-quality data. Ap-
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Figure 2: Translation quality measured by
COMETWIKI of 500K parallel sentences from
OPUS100 for our five language pairs. The
COMETWIKI scores are segmented into four
ranges: 0-0.25, 0.25-0.5, 0.5-0.75, and 0.75-1. Higher
scores represent better translation quality.
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Figure 3: Sentence length of 500K parallel sentences
from OPUS100 for our five language pairs. The three
categories are 0-5, 5-10, greater than 10 tokens.

proximately 10% of the data has COMETKIWI
scores below 0.25, indicating very poor translation
quality. Additionally, between 10% to 30% of the
data falls within the 0.25-0.5 score range, which is
still considered sub-optimal. Regarding sentence
length, we find that over 20% of the OPUS100 data
consists of very short sentences, with a length of no
more than five tokens. For language identification,
13% to 25% of the data is removed due to incorrect
language identification results in one of the two
parallel sentences.

Relatively low-resource languages suffer
more from low-quality issues. For relatively
low-resource languages like Hindi, there are fewer
high-quality parallel sentences compared to high-
resource languages such as Spanish. Analysis of
translation quality indicates that the English-Hindi
pair has less than 20% of parallel sentences with
high COMETWIKI scores (0.75-1), whereas the
English-Spanish pair has around 45%. For sen-
tence length, the English-Hindi pair contains 10%
more short sentences (0-5 tokens) compared to
high-resource language pairs. Moreover, both the
English-Arabic and English-Hindi pairs exhibit

0%
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en-ar en-es en-hi en-vi en-zh

Figure 4: Percentage of sentences retained after lan-
guage identification filtering of 500K parallel sentences
from OPUS100 for our five language pairs.

about 10% more parallel sentences that may be
in the wrong languages.

These comprehensive findings underscore the
critical importance of data quality when exploiting
parallel corpora for mLLM training.

4.2 Effect of Quality

Table 3 presents the performance of BLOOM-7B1
after instruction tuning with the machine transla-
tion objective, using 10K parallel corpora with var-
ious quality filtering strategies.

Parallel corpora containing noisy translations
still improve results. Comparing the results of
the experiment with τc = 0 (ID 1) to the original
model (ID 0), there’s an average improvement of
0.4% for all tasks. The most notable improvements
are observed in both bilingual tasks (en-xx) and
in-language tasks. However, generating English
for bilingual tasks yields degraded or marginally
improved results. Experiment 1 exhibits 0.7% and
1.1% decrements in FLORES and MUSE respec-
tively, with only a 0.3% improvement in MLQA.

Filtering out noisy translations leads to no-
table improvements. When τc = 0.5, the average
performance rises from 53.2% to 53.7%. Further
refinement to τc = 0.75 achieves an additional
0.3% improvement. These improvements are con-
sistently observed across all evaluated tasks. In the
optimal setting (ID 5), there’s a 1.2% improvement
compared to BLOOM-7B1 (ID 0). The improve-
ments corroborate the reliability of COMETKIWI
as a metric for filtering low-quality translations.

Filtering short sentences yields slightly worse
results than using unfiltered data. The experi-
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ID MODEL
FLORES MUSE MLQA

XQUAD SIB AVG
EN-XX XX-EN EN-XX XX-EN EN-XX XX-EN

0 BLOOM-7B1 69.1 72.4 43.1 53.7 36.4 42.7 47.2 58.1 52.8

τc τl LID

1 0 0 ✓ 69.7 71.7 44.4 52.6 37.8 43.0 47.7 58.8 53.2
2 0.5 0 ✓ 69.9 72.1 45.0 53.0 38.1 43.7 48.1 59.8 53.7
3 0.75 5 ✓ 70.3 72.1 45.7 53.6 38.1 43.5 47.8 59.2 53.8
4 0.75 0 ✗ 70.5 72.1 44.9 53.7 37.7 44.0 48.3 59.6 53.9
5 0.75 0 ✓ 70.3 72.3 45.5 53.9 38.0 43.9 48.3 59.5 54.0

Table 3: Performance (%) of BLOOM-7B1 after instruction tuning with the machine translation objective using 10K
parallel corpora with various quality filtering strategies. Parameters include τc for COMETWIKI score threshold, τl
for sentence length threshold, and LID indicating the adoption of language identification filtering.

ment with filtering short sentences (ID 3) achieves
comparable or slightly worse results compared
to that without filtering short sentences (ID 5).
This suggests that short sentences, whether at the
word or phrase level, may offer some benefits for
sentence-level tasks.

Using data with language identification filter-
ing results in only a 0.1% improvement on aver-
age. A comparison of experimental outcomes with
and without language identification filtering (ID 4
and 5) reveals that using data with language iden-
tification filtering yields merely a 0.1% improve-
ment on average. The most notable performance
difference is observed in the MUSE task, where us-
ing data with language identification filtering leads
to improvements of 0.6% (en-xx) and 0.2% (xx-
en). This marginal enhancement may be attributed
to the presence of sentences in similar languages
within OPUS100, which exhibit minor linguistic
variations compared to the true language. These
variations could potentially have a slight negative
impact on word-level translations while having lit-
tle impact on sentence-level tasks.

5 Quantity

5.1 Effect of Quantity Across Tasks

Based on Table 4, which shows the performance of
BLOOM-7B1 after instruction tuning with the ma-
chine translation objective using different amounts
of parallel sentences, we can derive the following
key findings:

Adding merely 1K parallel sentences helps.
Exploiting 1K parallel sentences for instruction
tuning improves the overall average score by 1%.
This increase is observed across most tasks, with
notable improvements in FLORES (en-xx), MUSE

(en-xx), and SIB.
Using 10K parallel sentences leads to the opti-

mal performance. The best overall performance
is achieved with 10K parallel sentences, resulting
in an average score of 54.0%. This setting yields
the highest scores in MUSE and SIB. This aligns
with the findings in Xu et al. (2023).

More data achieves comparable results. In-
creasing the number of parallel sentences beyond
10K results in comparable performance. Specifi-
cally, using 25K or 50K parallel sentences yields
average scores of 53.9%, which are very close to
the score obtained with 10K sentences.

The analysis suggests that instruction tuning
with a moderate amount of parallel sentences
(around 10K) yields the best overall improvement
in performance for the BLOOM-7B1 model across
various tasks.

5.2 Effect of Quantity Across Languages

We delve deeper into the influence of parallel cor-
pora quantity, as depicted in Table 5.

Using 10K parallel sentences achieves opti-
mal performance across most languages. For the
majority of languages, except Vietnamese (vi) and
Chinese (zh), the highest performance is obtained
with 10K parallel sentences. Even for Vietnamese
and Chinese, leveraging 10K parallel sentences can
yield comparable results. These observations align
with the findings in §5.1.

Different languages exhibit varying appetites
for parallel corpora. Across most languages, in-
creasing the number of parallel sentences used for
instruction tuning generally leads to incremental
improvements in performance. However, for Hindi
(hi) and Chinese (zh), transitioning from 1K to
10K parallel sentences does not yield improvement.
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|SENT|
FLORES MUSE MLQA

XQUAD SIB AVG
EN-XX XX-EN EN-XX XX-EN EN-XX XX-EN

0 69.1 72.4 43.1 53.7 36.4 42.7 47.2 58.1 52.8
1K 70.0 72.2 45.3 53.6 38.2 43.6 47.9 59.2 53.8
5K 70.3 72.2 45.4 53.5 38.2 43.8 48.2 59.5 53.9
10K 70.3 72.3 45.5 53.9 38.0 43.9 48.3 59.5 54.0
25K 70.3 72.2 45.1 53.8 38.0 44.0 48.4 59.5 53.9
50K 70.4 72.2 45.1 53.8 38.1 43.7 48.3 59.5 53.9

Table 4: Task performance (%) of BLOOM-7B1 after instruction tuning with the machine translation objective using
varying amounts of parallel sentences, obtained with the best filtering strategy (ID 5) as shown in Table 3. |SENT|
indicates the number of parallel sentences used for instruction tuning, with |SENT|=0 representing the original
BLOOM-7B1 model.

ar es hi vi zh

0 49.5 57.7 46.5 63.8 46.7
1K 50.8 58.1 47.7 64.3 47.8
5K 51.2 58.2 47.6 64.6 47.9

10K 51.3 58.4 47.7 64.6 47.8
25K 51.2 58.2 47.7 64.7 47.7
50K 51.2 58.2 47.7 64.7 47.6

Table 5: Language performance (%) of BLOOM-7B1
after instruction tuning with the machine translation
objective using varying amounts of parallel sentences,
obtained with the best filtering strategy (ID 5) as shown
in Table 3. |SENT| indicates the number of parallel
sentences used for instruction tuning, with |SENT|=0
representing the original BLOOM-7B1 model.

This phenomenon may be attributed to BLOOM-
7B1’s limited proficiency in these languages com-
pared to others, as reflected in the results of the
original BLOOM-7B1 model (|SENT|=0).

6 Objective

We explore the effectiveness of different objectives
and their combinations, with results in Table 6.

BLOOM-7B1 performs well on English gen-
eration tasks. The baseline BLOOM-7B1 model
exhibits robust performance across a spectrum of
evaluation tasks, notably excelling in English gen-
eration tasks such as FLORES (xx-en) and MUSE
(xx-en). Further exploitation of parallel corpora
fails to yield any discernible improvement.

MT emerges as the top performer. The MT
objective consistently outperforms the baseline
BLOOM-7B1 model, showcasing an average im-
provement of 1.2%. Moreover, MT achieves the
highest performance in 5 out of 8 evaluated tasks.

TLM exhibits limited effectiveness. While
TLM shows slight improvements on average
(0.2%), primarily driven by enhancements in tasks
like MUSE (en-xx), MLQA (xx-en), XQuAD, and
SIB, it also leads to degradation in tasks including
FLORES and MUSE (xx-en).

XSS achieves strong performance for clas-
sification. Using the XSS objective improves
BLOOM-7B1 by 0.7%, though it performs 0.5%
worse than MT. The major decrease is observed in
translation tasks, especially from English to other
languages. However, XSS can still slightly improve
translation tasks compared to BLOOM-7B1. No-
tably, XSS achieves 0.3% better performance on
SIB, highlighting its effectiveness for classification.

Combining training objectives does not pro-
vide large benefits. While combinations of differ-
ent objectives can improve BLOOM-7B1 by 0.2%
to 1.0%, none surpass the performance of using the
MT objective alone. The combination of MT and
XSS is the best among the combinations, slightly
worse than MT by 0.2%, but better than all other
objectives. Notably, MT +XSS achieves the best re-
sults on SIB, and TLM +XSS yields the best results
on MLQA (xx-en). These observations indicate
that no single objective excels across all tasks.

7 Model Size

We explore the impact of parallel corpora on vari-
ous sizes of BLOOM models, detailed in Table 7.

Smaller models exhibit more pronounced im-
provements in FLORES. Notably, BLOOM-1B7
demonstrates larger improvements compared to its
larger counterparts in the FLORES task, where the
prompt is the same as the one used during instruc-
tion tuning with the MT objective. This is attributed
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MODEL
FLORES MUSE MLQA

XQUAD SIB AVG
EN-XX XX-EN EN-XX XX-EN EN-XX XX-EN

BLOOM-7B1 69.1 72.4 43.1 53.7 36.4 42.7 47.2 58.1 52.8

MT 70.3 72.3 45.5 53.9 38.0 43.9 48.3 59.5 54.0
TLM 67.2 72.2 44.3 53.0 36.3 44.4 47.6 58.7 53.0
XSS 69.4 72.2 43.7 53.5 37.0 44.2 48.3 60.0 53.5

MT +TLM 69.3 72.1 44.1 53.2 36.8 43.8 47.2 59.5 53.2
MT +XSS 70.3 72.1 44.9 53.3 37.4 44.5 47.9 60.4 53.8

TLM +XSS 67.7 72.2 43.0 52.5 34.9 45.6 48.2 60.0 53.0
MT +TLM +XSS 69.5 72.1 44.2 53.2 36.1 45.1 47.7 59.0 53.4

Table 6: Performance (%) of BLOOM-7B1 after instruction tuning with different objectives and their combinations
using 10K parallel corpora, obtained with the best filtering strategy (ID 5) as shown in Table 3.

MODEL
FLORES MUSE MLQA

XQUAD SIB AVG
EN-XX XX-EN EN-XX XX-EN EN-XX XX-EN

BLOOM-7B1 69.1 72.4 43.1 53.7 36.4 42.7 47.2 58.1 52.8
+ Parallel Data 70.3 72.3 45.5 53.9 38.0 43.9 48.3 59.5 54.0

∆ 01.2 -00.1 02.4 00.2 01.6 01.2 01.0 01.4 01.2

BLOOM-3B 64.0 68.9 39.7 50.9 29.4 26.2 32.7 54.5 45.8
+ Parallel Data 65.0 69.1 41.4 51.6 30.9 26.7 34.5 56.9 47.0

∆ 01.0 00.2 01.8 00.7 01.5 00.5 01.8 02.4 01.2

BLOOM-1B7 59.0 65.8 37.2 48.5 20.0 22.2 24.8 53.0 41.3
+ Parallel Data 61.1 65.7 38.9 48.0 20.8 20.9 24.4 53.0 41.6

∆ 02.0 -00.1 01.6 -00.6 00.8 -01.3 -00.3 00.0 00.3

Table 7: Effect of parallel corpora on BLOOM models of different sizes across various tasks. ‘+ Parallel Data’
indicates instruction tuning of the given mLLM with the MT objective, using 10K parallel corpora obtained with the
best filtering strategy (ID 5) as shown in Table 3.

to the smaller models’ less developed in-context
learning capabilities before instruction tuning, al-
lowing for more substantial improvements when
supplemented with parallel corpora.

Larger models excel in diverse tasks. Con-
versely, larger models generally demonstrate
greater enhancements in tasks beyond machine
translation. Both BLOOM-7B1 and BLOOM-3B
exhibit a 1.2% improvement compared to their orig-
inal mLLMs, while BLOOM-1B7 shows a slight
0.3% improvement. Specifically, BLOOM-7B1
and BLOOM-3B display notable improvements
in tasks except for FLORES, while BLOOM-1B7
achieves comparable or even worse results.

These findings demonstrate that when leveraging
parallel corpora to enhance mLLMs, larger mod-
els not only exhibit improvements in direct tasks,
such as machine translation, but also demonstrate a
more substantial overall enhancement across a vari-
ety of tasks. In contrast, smaller models primarily
show benefits in direct tasks. This difference can

be attributed to the superior cross-task transferabil-
ity of larger mLLMs, where insights gained from
parallel corpora in one task contribute to improved
performance in others.

8 Conclusion

This paper investigates the impact of four criti-
cal factors – data quality, data quantity, objectives,
and mLLM sizes – on leveraging parallel corpora
to enhance mLLMs across diverse languages and
tasks. Our findings underscore the crucial impor-
tance of filtering out noisy translations to procure
high-quality training data for improving mLLMs.
Surprisingly, even a relatively modest dataset of
10K samples can yield promising results. Further-
more, our analysis shows that employing the ma-
chine translation objective leads to optimal out-
comes. Importantly, larger models exhibit a greater
capacity to benefit from parallel corpora, achieving
more substantial improvements. This study pro-
vides a comprehensive recipe for effectively lever-
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aging parallel corpora to enhance mLLMs. These
insights significantly contribute to advancing the
understanding and optimization of mLLMs across
different languages and tasks.

Limitations

Due to limited computational resources, we opted
not to explore full-parameter training for lever-
aging parallel corpora. Instead, we focused on
LoRA, drawing on insights from previous studies.
Additionally, our investigation is restricted to the
BLOOM series, and we did not extend our analysis
to other mLLMs. Furthermore, we did not also
explore mLLMs larger than 7B1.
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A Additional Experiments on XGLM

We explore the effect of parallel corpora quality on
XGLM-7.5B, and the results are shown in Table 8.
As shown, experiments on XGLM-7.5B exhibits
consistent findings as those on BLOOM-7B1.

ID MODEL Accuracy

0 XGLM-7.5B 52.8

τc τl LID

1 0 0 ✓ 54.6
2 0.5 0 ✓ 55.0
3 0.75 5 ✓ 54.4
4 0.75 0 ✗ 55.0
5 0.75 0 ✓ 55.5

Table 8: Performance (%) of XGLM-7.5B on SIB after
instruction tuning with the machine translation objective
using 10K parallel corpora with various quality filtering
strategies. Parameters include τc for COMETWIKI
score threshold, τl for sentence length threshold, and
LID indicating the adoption of language identification
filtering.

B Effect of LoRA Rank

We conduct initial experiments on Arabic to ex-
plore the effect of setting the rank of LoRA, and
the results are shown in Table 9. As shown, setting
the rank of LoRA as 16 lead to best performance.
Therefore, we use LoRA rank as 16 across all the
experiments.

C Prompt

The prompts of FLORES, MUSE, MLQA,
XQuAD, and SIB are shown as follows:

FLORES/MUSE

Translate the following
text from [SOURCE_LANG]

Rank Accuracy

8 59.0
16 62.0
32 60.0
128 61.0
256 60.5
512 59.5

Table 9: Effect of LoRA rank: Accuracy on SIB using
English-Arabic parallel data to improve BLOOM-7B1.

to [TARGET_LANG].\nText:
[SOURCE_TEXT]\nTranslation:
[TARGET_TEXT]

MLQA/XQuAD

[Passage] \nQ:
[Question]\nA: [Answer]

SIB

The topic of the news
[Passage] is [Label]
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Abstract

Recent multilingual pretrained language mod-
els (mPLMs) have been shown to encode strong
language-specific signals, which are not explic-
itly provided during pretraining. It remains an
open question whether it is feasible to employ
mPLMs to measure language similarity, and
subsequently use the similarity results to se-
lect source languages for boosting cross-lingual
transfer. To investigate this, we propose mPLM-
Sim, a language similarity measure that induces
the similarities across languages from mPLMs
using multi-parallel corpora. Our study shows
that mPLM-Sim exhibits moderately high cor-
relations with linguistic similarity measures,
such as lexicostatistics, genealogical language
family, and geographical sprachbund. We also
conduct a case study on languages with low
correlation and observe that mPLM-Sim yields
more accurate similarity results. Additionally,
we find that similarity results vary across dif-
ferent mPLMs and different layers within an
mPLM. We further investigate whether mPLM-
Sim is effective for zero-shot cross-lingual
transfer by conducting experiments on both
low-level syntactic tasks and high-level seman-
tic tasks. The experimental results demonstrate
that mPLM-Sim is capable of selecting better
source languages than linguistic measures, re-
sulting in a 1%-2% improvement in zero-shot
cross-lingual transfer performance.1

1 Introduction

Recent multilingual pretrained language models
(mPLMs) trained with massive data, e.g., mBERT
(Devlin et al., 2019), XLM-R (Conneau et al., 2020)
and BLOOM (Scao et al., 2022), have become a
standard for multilingual representation learning.
Follow-up works (Wu and Dredze, 2019; Libovický
et al., 2020; Liang et al., 2021; Chang et al., 2022)

*Equal contribution.
1Our code is open-sourced at https://github.com/

cisnlp/mPLM-Sim.

show that these mPLMs encode strong language-
specific signals which are not explicitly provided
during pretraining. However, the possibility of us-
ing mPLMs to measure language similarity and
utilizing the similarity results to pick source lan-
guages for enhancing cross-lingual transfer is not
yet thoroughly investigated.

To investigate language similarity in mPLMs,
we propose mPLM-Sim, a measure that leverages
mPLMs and multi-parallel corpora to measure sim-
ilarity between languages. Using mPLM-Sim, we
intend to answer the following research questions.

(Q1) What is the correlation between mPLM-
Sim and linguistic similarity?

We compute Pearson correlation between simi-
larity results of mPLM-Sim and linguistic similar-
ity measures. The results show that mPLM-Sim has
a moderately high correlation with some linguis-
tic measures, such as lexical-based and language-
family-based measures. Additional case studies on
languages with low correlation demonstrate that
mPLMs can acquire the similarity patterns among
languages through pretraining on massive data.

(Q2) Do different layers of an mPLM produce
different similarity results?

Jawahar et al. (2019); Sabet et al. (2020);
Choenni and Shutova (2022) have demonstrated
that different linguistic information is encoded
across different layers of an mPLM. We analyze the
performance of mPLM-Sim across layers and show
that mPLM-Sim results vary across layers, aligning
with previous findings. Specifically, the embed-
ding layer captures lexical information, whereas
the middle layers reveal more intricate similarity
patterns encompassing general, geographical, and
syntactic aspects. However, in the high layers, the
ability to distinguish between languages becomes
less prominent. Furthermore, we observe that clus-
tering of languages also varies by layer, shedding
new light on how the representation of language-
specific information changes throughout layers.
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(Q3) Do different mPLMs produce different sim-
ilarity results?

We make a comprehensive comparison among a
diverse set of 11 mPLMs in terms of architecture,
modality, model size, and tokenizer. The exper-
imental results show that input modality (text or
speech), model size, and data used for pretraining
have large effects on mPLM-Sim while tokenizers
and training objectives have little effect.

(Q4) Can mPLM-Sim choose better source lan-
guages for zero-shot cross-lingual transfer?

Previous works (Lin et al., 2019; Pires et al.,
2019; Lauscher et al., 2020; Nie et al., 2022; Wang
et al., 2023; Imai et al., 2023) have shown that the
performance of cross-lingual transfer positively cor-
relates with linguistic similarity. However, we find
that there can be a mismatch between mPLM sub-
spaces and linguistic clusters, which may lead to a
failure of zero-shot cross-lingual transfer for low-
resource languages. Intuitively, mPLM-Sim can
select the source languages that boost cross-lingual
transfer better than linguistic similarity since it
captures the subspaces learned during pretraining
(and which are the basis for successful transfer).
To examine this, we conduct experiments on four
datasets that require reasoning about different lev-
els of syntax and semantics for a diverse set of low-
resource languages. The results show that mPLM-
Sim achieves 1%-2% improvement over linguistic
similarity measures for cross-lingual transfer.

2 Setup

2.1 mPLM-Sim
Generally, a transformer-based mPLM consists of
N layers: N − 1 transformer layers plus the static
embedding layer. Given a multi-parallel corpus2,
mPLM-Sim aims to provide the similarity results
of N layers for an mPLM across L languages con-
sidered. In this context, we define languages using
the ISO 639-3 code combined with the script, e.g.,
“eng_Latn” represents English written in Latin.

For each sentence x in the multi-parallel cor-
pus, the mPLM computes its sentence embed-
ding for the ith layer of the mPLM: hi = E(x).
For mPLMs with bidirectional encoders, including
encoder architecture, e.g., XLM-R, and encoder-
decoder architecture, e.g., mT5, E(·) is a mean

2Monolingual corpora covering multiple languages can be
also used to measure language similarity. Our initial exper-
iments (§B.1) show that parallel corpora yield better results
while using fewer sentences than monolingual corpora. There-
fore, we use parallel corpora for our investigation.

pooling operation over hidden states, which per-
forms better than [CLS] and MAX strategies
(Reimers and Gurevych, 2019). For mPLMs with
auto-regressive encoders, e.g., mGPT, E(·) is a
position-weighted mean pooling method, which
gives later tokens a higher weight (Muennighoff,
2022). Finally, sentence embeddings for all sen-
tences of the L languages are obtained.

For ith layer, the similarity of each language
pair is computed using the sentence embeddings
of all multi-parallel sentences. Specifically, we get
the cosine similarity of each parallel sentence of
the language pair, and then average all similarity
scores across sentences as the final score of the pair.
Finally, we have a similarity matrix Si ∈ RL×L

across L languages for the ith layer of the mPLM.

2.2 mPLMs, Corpora and Languages
We consider a varied set of 11 mPLMs for our inves-
tigation, differing in model size, number of covered
languages, architecture, modality, and data used for
pretraining. Full list and detailed information of
the selected mPLMs are shown in Tab. 1.

We work with three multi-parallel corpora: the
text corpora Flores (Costa-jussà et al., 2022) and
Parallel Bible Corpus (PBC, (Mayer and Cysouw,
2014)) and the speech corpus Fleurs (Conneau
et al., 2022). Flores covers more than 200 lan-
guages. Since both PBC and Fleurs are not fully
multi-parallel, we reconstruct them to make them
multi-parallel. After recostruction, PBC covers
379 languages, while Fleurs covers 67 languages.
PBC consists of religious text, and both Flores
and Fleurs are from web articles. The speech of
Fleurs is aligned to the text of Flores, enabling us
to compare text mPLMs with speech mPLMs. We
use 500 multi-parallel sentences from each corpus.
Languages covered by mPLMs and corpora are
listed in §A.

2.3 Evaluation
Pearson Correlation We compute Pearson cor-
relation scores to measure how much mPLM-Sim
correlates with seven linguistic similarity measures:
LEX, GEN, GEO, SYN, INV, PHO and FEA. LEX
is computed based on the edit distance of the two
corpora. The six others are provided by lang2vec.
GEN is based on language family. GEO is ortho-
dromic distance, i.e., the shortest distance between
two points on the surface of the earth. SYN is de-
rived from the syntactic structures of the languages.
Both INV and PHO are phonological features. INV
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Model Size |Lang| |Layer| Tokenizer Arch. Objective Modality Data

mBERT (Devlin et al., 2019) 172M 104 13 Subword Enc MLM, NSP Text Wikipedia
XLM-R-Base (Conneau et al., 2020) 270M 100 13 Subword Enc MLM Text CC
XLM-R-Large (Conneau et al., 2020) 559M 100 25 Subword Enc MLM Text CC

Glot500 (Imani et al., 2023) 395M 515 13 Subword Enc MLM Text Glot500-c
mGPT (Shliazhko et al., 2022) 1.3B 60 25 Subword Dec CLM Text Wikipedia+mC4
mT5-Base (Xue et al., 2021) 580M 101 13 Subword Enc-Dec MLM Text mC4

CANINE-S (Clark et al., 2022) 127M 104 17 Char Enc MLM, NSP Text Wikipedia
CANINE-C (Clark et al., 2022) 127M 104 17 Char Enc MLM, NSP Text Wikipedia
XLM-Align (Chi et al., 2021b) 270M 94 13 Subword Enc MLM, TLM, DWA Text Wikipedia+CC

NLLB-200 (Costa-jussà et al., 2022) 1.3B 204 25 Subword Enc-Dec MT Text NLLB
XLS-R-300M (Babu et al., 2021) 300M 128 25 - Enc MSP Speech CommonVoice

Table 1: 11 mPLMs considered in the paper. |Layer| denotes the number of layers used for measuring similarity.
Both the static embedding layer and all layers of the transformer are considered. For encoder-decoder architectures,
we only consider the encoder. |Lang|: the number of languages covered. Arch.: Architecture. Enc: Encoder. Dec:
Decoder. MLM: Masked Language Modeling. CLM: Causal Language Modeling. TLM: Translation Language
Modeling. NSP: Next Sentence Prediction. DWA: Denoising Word Alignment. MT: Machine Translation. MSP:
Masked Speech Prediction. CC: CommonCrawl.

Task Corpus |Train| |Dev| |Test| |Lang| Metric Domain

Sequence
Labeling

NER (Pan et al., 2017) 5,000 500 100-10,000 108 F1 Wikipedia
POS (de Marneffe et al., 2021) 5,000 500 100-22,358 60 F1 Misc

Text
Classification

MASSIVE (FitzGerald et al., 2022) 11,514 2,033 2,974 44 Acc Misc
Taxi1500 (Ma et al., 2023) 860 106 111 130 F1 Bible

Table 2: Evaluation dataset statistics. |Train|/|Dev|: train/dev set size (source language). |Test|: test set size (target
language). |Lang|: number of target languages.

is derived from PHOIBLE, while PHO is based on
WALS and Ethnologue. FEA is computed by com-
bining GEN, GEO, SYN, INV and PHO.

For each target language, we have the similarity
scores between the target language and the other
L− 1 languages based on the similarity matrix Si

for layer i (see §2.1), and also the similarity scores
based on the considered linguistic similarity mea-
sure j. Then we compute the Pearson correlation rji
between these two similarity score lists. We choose
the highest correlation score across all layers as the
result of each target language since the results for
different languages vary across layers. Finally, we
report MEAN (M) and MEDIAN (Mdn) of the cor-
relation scores for all languages. Here, we consider
32 languages covered by all models and corpora.

Case Study In addition to the quantitative evalua-
tion, we conduct manual analysis for languages that
exhibit low correlation scores. We apply complete
linkage hierarchical clustering to get the similar
languages of the analyzed language for analysis.
Specifically, the languages which have the most
common shared path in the hierarchical tree with
the target language are considered as similar lan-
guages. To analyze as many languages as possible,
we consider the setting of Glot500 and PBC.

Cross-Lingual Transfer To compare mPLM-
Sim with linguistic measures for zero-shot cross-
lingual transfer, we run experiments for low-
resource languages on four datasets, including two
for sequence labeling, and two for text classifica-
tion. Details of the four tasks are shown in Tab. 2.

We selected six high-resource and typologi-
cally diverse languages, namely Arabic (arb_Arab),
Chinese (cmn_Hani), English (eng_Latn), Hindi
(hin_Deva), Russian (rus_Cyrl), and Spanish
(spa_Latn), as source languages. For a fair com-
parison, we use the same amount of source lan-
guage data for fine-tuning and validation as shown
in Tab. 2.

The evaluation targets all languages that are cov-
ered by both Glot500 and Flores and have at least
100 samples, excluding the six source languages.
The language list for evaluation is provided in §A.

We obtain the most similar source language for
each target language by applying each of the seven
linguistic similarity measures (LEX, GEN, GEO,
SYN, INV, PHO, FEA) and our mPLM-Sim. Here,
we consider the setting of Glot500 and Flores for
mPLM-Sim since extensive experiments (see §B.2)
show that Flores provides slightly better similarity
results than PBC. For the linguistic similarity mea-
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XLM-R-Base XLM-R-Large mT5-Base mGPT mBERT Glot500
M Mdn M Mdn M Mdn M Mdn M Mdn M Mdn

LEX 0.740 0.859 0.684 0.862 0.628 0.796 0.646 0.848 0.684 0.882 0.741 0.864
GEN 0.489 0.563 0.570 0.609 0.577 0.635 0.415 0.446 0.513 0.593 0.527 0.600
GEO 0.560 0.656 0.587 0.684 0.528 0.586 0.348 0.362 0.458 0.535 0.608 0.674
SYN 0.637 0.662 0.709 0.738 0.594 0.612 0.548 0.591 0.611 0.632 0.577 0.607
INV 0.272 0.315 0.312 0.292 0.295 0.321 0.340 0.394 0.216 0.246 0.248 0.293
PHO 0.112 0.151 0.207 0.258 0.166 0.176 0.184 0.239 0.111 0.125 0.094 0.144
FEA 0.378 0.408 0.443 0.466 0.354 0.371 0.455 0.479 0.346 0.361 0.358 0.372

AVG 0.455 0.516 0.502 0.559 0.449 0.500 0.420 0.480 0.420 0.482 0.451 0.508

CANINE-S CANINE-C NLLB-200 XLM-Align XLS-R-300M AVG
M Mdn M Mdn M Mdn M Mdn M Mdn M Mdn

LEX 0.661 0.821 0.639 0.784 0.722 0.856 0.728 0.869 0.285 0.262 0.651 0.791
GEN 0.548 0.629 0.565 0.633 0.538 0.626 0.516 0.606 0.401 0.353 0.514 0.572
GEO 0.504 0.560 0.533 0.624 0.490 0.499 0.616 0.690 0.531 0.541 0.524 0.583
SYN 0.476 0.521 0.507 0.559 0.375 0.370 0.634 0.669 0.354 0.389 0.548 0.577
INV 0.329 0.390 0.369 0.406 0.337 0.373 0.252 0.315 0.191 0.180 0.287 0.321
PHO 0.112 0.137 0.117 0.173 0.101 0.108 0.105 0.143 0.124 0.115 0.130 0.161
FEA 0.317 0.297 0.367 0.360 0.311 0.326 0.368 0.399 0.203 0.175 0.355 0.365

AVG 0.421 0.479 0.442 0.506 0.411 0.451 0.460 0.527 0.298 0.288 0.430 0.481

Table 3: Comparison across mPLMs: Pearson correlation between mPLM-Sim and seven similarity measures for all
mPLMs and Flores/Fleurs on 32 languages. mPLM-Sim strongly correlates with LEX, moderate strongly correlates
with GEN, GEO, and SYN, and weakly correlates with INV, PHO, and FEA.

sures, if the most similar source language is not
available due to missing values in lang2vec, we use
eng_Latn as the source language. We also compare
mPLM-Sim with the ENG baseline defined as us-
ing eng_Latn as the source language for all target
languages.

We use the same hyper-parameter settings as in
(Hu et al., 2020; FitzGerald et al., 2022; Ma et al.,
2023). Specifically, we set the batch size to 32 and
the learning rate to 2e-5 for both NER and POS, and
fine-tune Glot500 for 10 epochs. For MASSIVE,
we use a batch size of 16, a learning rate of 4.7e-6,
and train for 100 epochs. For Taxi1500, we use
a batch size of 32, a learning rate of 2e-5, and
train for 30 epochs. In all tasks, we select the
model for evaluating target languages based on the
performance of the source language validation set.

3 Results

3.1 Comparison Between mPLM-Sim and
Linguistic Similarity

Tab. 3 shows the Pearson correlation between
mPLM-Sim and linguistic similarity measures of
11 mPLMs, and also the average correlations of
all 11 mPLMs. We observe that mPLM-Sim

strongly correlates with LEX, which is expected
since mPLMs learn language relationships from
data and LEX similarity is the easiest pattern to
learn. Besides, mPLM-Sim has moderately strong
correlations with GEN, GEO, and SYN, which
shows that mPLMs can learn high-level patterns
for language similarity. mPLM-Sim also has a
weak correlation with INV, and a very weak corre-
lation with PHO, indicating mPLMs do not capture
phonological similarity well. Finally, mPLM-Sim
correlates with FEA weakly since FEA is the mea-
sure combining both high- and low-correlated lin-
guistics features.

To further compare mPLM-Sim with linguistic
similarity measures, we conduct a manual analysis
on languages for which mPLM-Sim has weak cor-
relations with LEX, GEN, and GEO. As mentioned
in §2, with the setting of Glot500 and PBC, we
apply hierarchical clustering and use similar results
for analysis.

We find that mPLM-Sim can deal well with lan-
guages that are not covered by lang2vec. For ex-
ample, Norwegian Nynorsk (nno_Latn) is not cov-
ered by lang2vec, and mPLM-Sim can correctly
find its similar languages, i.e., Norwegian Bokmål
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(nob_Latn) and Norwegian (nor_Latn). Further-
more, mPLM-Sim can well capture the similarity
between languages which cannot be well measured
by either LEX, GEN, or GEO.

For LEX, mPLM-Sim can capture similar lan-
guages written in different scripts. A special case
is the same languages in different scripts. Specif-
ically, mPLM-Sim matches Uighur in Latin and
Arabic (uig_Arab and uig_Latn), also Karakalpak
in Latin and Cyrillic (kaa_Latn and kaa_Cyrl). In
general, mPLM-Sim does a good job at cluster-
ing languages from the same language family but
written in different scripts, e.g., Turkic (Latn, Cyrl,
Arab) and Slavic (Latn, Cyrl).

For GEN, mPLM-Sim captures correct similar
languages for isolates and constructed languages.
Papantla Totonac (top_Latn) is a language of the
Totonacan language family and spoken in Mex-
ico. It shares areal features with the Nahuan
languages (nch_Latn, ncj_Latn, and ngu_Latn)
of the Uto-Aztecan family, which are all located
in the Mesoamerican language area.3 Esperanto
(epo_Latn) is a constructed language whose vo-
cabulary derives primarily from Romance lan-
guages, and mPLM-Sim correctly identifies Ro-
mance languages such as French (fra_Latn) and
Italian (ita_Latn) as similar. The above two cases
show the superiority of mPLM-Sim compared to
GEN.

The GEO measure may not be suitable for cer-
tain language families, such as Austronesian lan-
guages and mixed languages. Austronesian lan-
guages have the largest geographical span among
language families prior to the spread of Indo-
European during the colonial period.4 Moreover,
for mixed languages, such as creole languages,
their similar languages are often geographically
distant due to colonial history. In contrast to GEO,
mPLM-Sim can better cluster these languages.

The above analysis shows that it is non-trivial to
use either LEX, GEN, or GEO for measuring lan-
guage similarity. In contrast, mPLM-Sim directly
captures similarity from mPLMs and can therefore
produce better similarity results.

However, we observe that obtaining accurate
similarity results from mPLMs using mPLM-Sim
can be challenging for certain languages. To gain
further insights into this issue, we examine the

3https://en.wikipedia.org/wiki/
Mesoamerican_language_area

4https://en.wikipedia.org/wiki/
Austronesian_languages
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Figure 1: Comparison across layers: Pearson correlation
(MEAN) between mPLM-Sim and linguistic similarity
measures across layers for Glot500 and Flores on 32
languages. Correlation between mPLM-Sim and LEX
peaks in the first layer and decreases, while the correla-
tion with GEN, GEO, and SYN slightly increases in the
low layers before reaching its peak.

correlation between performances, specifically the
correlation between mPLM-Sim and GEN, and the
sizes of the pretraining data. Surprisingly, we find
a remarkably weak correlation (-0.008), suggesting
that differences in pretraining data sizes do not sig-
nificantly contribute to variations in performances.

Instead, our findings indicate a different key fac-
tor: the coverage of multiple languages within the
same language family. This observation is substan-
tiated by a strong correlation of 0.617 between the
diversity of languages within a language family
(measured by the number of languages included)
and the performance of languages belonging to that
particular language family.

3.2 Comparison Across Layers for
mPLM-Sim

We analyze the correlation between mPLM-Sim
and linguistic similarity measures across different
layers of an mPLM, specifically for Glot500. The
results, presented in Fig. 1, demonstrate the varia-
tion in mPLM-Sim results across layers. Notably,
in the first layer, mPLM-Sim exhibits a high corre-
lation with LEX, which gradually decreases as we
move to higher layers. Conversely, the correlation
between mPLM-Sim and GEN, GEO, and SYN
shows a slight increase in the lower layers, reach-
ing its peak in layer 1 or 2 of the mPLM. However,
for the higher layers (layers 10-12), all correlations
slightly decrease. We also performed further visual-
ization and analysis across layers using the setting
of Glot500 and Flores for mPLM-Sim (§C). The
findings are consistent with our observations from
Fig. 1.
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mPLM-Sim in all layers of Glot500. ENG represents using English as the source language. LEX, GEN, GEO,
and FEA indicate using the most similar languages based on the corresponding similarity measures as the source
language. The red dots of mPLM-Sim highlight the layer with the highest score.

Furthermore, our case study shows that the
layers which have highest correlations between
mPLM-Sim and LEX, GEN, or GEO vary across
languages. For example, Atlantic–Congo lan-
guages achieve highest correlation with GEN at the
1st layer, while Mayan languages at the 6th layer.
This finding demonstrates that language-specific
information changes across layers.

3.3 Comparison Across Models for
mPLM-Sim

Tab. 3 presents a broad comparison among 11 dif-
ferent mPLMs, revealing several key findings.

Firstly, the decoder architecture has a negative
impact on performance due to the inherent diffi-
culty in obtaining accurate sentence-level represen-
tations from the decoder. For example, the decoder-
only mPLM mGPT performs worse than encoder-
only mPLMs such as XLM-R and mBERT. This
observation is reinforced by the comparison be-
tween XLM-R-Large and mT5-Base, which have
nearly identical model sizes. Remarkably, XLM-R-
Large outperforms mT5-Base on AVG by 5% for
both Mean (M) and Median (Mdn) scores.

Additionally, tokenizer-free mPLMs achieve
comparable performance to subword-tokenizer-
based mPLMs. Notably, mPLMs such as mBERT,
CANINE-S, and CANINE-C, which share pretrain-
ing settings, exhibit similar performances.

The size of mPLMs also influences mPLM-
Sim in terms of LEX, GEN, and SYN. Compar-
ing XLM-R-Base with XLM-R-Large, higher-level
language similarity patterns are more evident in
larger mPLMs. Specifically, XLM-R-Large shows
a higher correlation with high-level patterns such
as GEN and SYN, while having a lower correla-

tion with low-level patterns like LEX, compared to
XLM-R-Base.

The training objectives adopted in mPLMs also
impact the performance of mPLM-Sim. Task-
specific mPLMs, such as NLLB-200, perform
slightly worse than general-purpose mPLMs. Be-
sides, XLM-Align, which leverages parallel ob-
jectives to align representations across languages,
achieves comparable results to XLM-R-Base. This
highlights the importance of advancing methods to
effectively leverage parallel corpora.

The choice of pretraining data is another impor-
tant factor. For example, mBERT uses Wikipedia,
while XLM-R-Base uses CommonCrawl, which
contains more code-switching. As a result, XLM-
R-Base has a higher correlation with GEO and
achieves higher AVG compared to mBERT.

The speech mPLM, i.e., XLS-R-300M, exhibits
lower correlation than text mPLMs, consistent with
findings from Abdullah et al. (2023). XLS-R-300M
learns language similarity from speech data, which
is biased towards the accents of speakers. Con-
sequently, XLS-R-300M has a higher correlation
with GEO, which is more related to accents, than
other similarity measures.

Factors such as the number of languages have
minimal effects on mPLM-Sim. Glot500, covering
over 500 languages, achieves comparable results
with XLM-R-Base.

3.4 Effect for Cross-Lingual Transfer

The macro average results of cross-lingual transfer
across target languages for both mPLM-Sim and
baselines are presented in Fig. 2. Among the evalu-
ated tasks, ENG exhibits the worst performance in
three out of four tasks, emphasizing the importance

281 168



Language GEN mPLM-Sim ∆ Language GEN mPLM-Sim ∆
hi

gh
en

d

N
E

R
jpn_Jpan 0.177 eng_Latn 0.451 cmn_Hani 0.275

PO
S

jpn_Jpan 0.165 eng_Latn 0.534 cmn_Hani 0.369
kir_Cyrl 0.391 eng_Latn 0.564 rus_Cyrl 0.173 mlt_Latn 0.603 arb_Arab 0.798 spa_Latn 0.196

mya_Mymr 0.455 cmn_Hani 0.607 hin_Deva 0.153 wol_Latn 0.606 eng_Latn 0.679 spa_Latn 0.074

lo
w

en
d pes_Arab 0.653 hin_Deva 0.606 arb_Arab -0.047 ekk_Latn 0.815 eng_Latn 0.790 rus_Cyrl -0.025

tgl_Latn 0.745 eng_Latn 0.667 spa_Latn -0.078 bam_Latn 0.451 eng_Latn 0.411 spa_Latn -0.039
sun_Latn 0.577 eng_Latn 0.490 spa_Latn -0.087 gla_Latn 0.588 rus_Cyrl 0.548 spa_Latn -0.040

hi
gh

en
d

M
A

SS
IV

E

mya_Mymr 0.616 cmn_Hani 0.707 hin_Deva 0.091

Ta
xi

15
00

tgk_Cyrl 0.493 hin_Deva 0.724 rus_Cyrl 0.231
amh_Ethi 0.532 arb_Arab 0.611 hin_Deva 0.079 kin_Latn 0.431 eng_Latn 0.619 spa_Latn 0.188
jpn_Jpan 0.384 eng_Latn 0.448 cmn_Hani 0.064 kik_Latn 0.384 eng_Latn 0.555 spa_Latn 0.172

lo
w

en
d cym_Latn 0.495 rus_Cyrl 0.480 spa_Latn -0.015 ckb_Arab 0.622 hin_Deva 0.539 arb_Arab -0.083

tgl_Latn 0.752 eng_Latn 0.723 spa_Latn -0.028 nld_Latn 0.713 eng_Latn 0.628 spa_Latn -0.085
deu_Latn 0.759 eng_Latn 0.726 spa_Latn -0.033 kac_Latn 0.580 cmn_Hani 0.483 hin_Deva -0.097

Table 4: Results for three languages each with the largest (high end) and smallest (low end) gains from mPLM-Sim
vs. GEN for four tasks. mPLM-Sim’s gain over GEN is large at the high end and smaller negative at the low end.
We report both the selected source languages and the results on the evaluated target languages. For mPLM-Sim, the
results are derived from the layers exhibiting the best performances as shown in Fig. 2. See §E for detailed results
for each task and each target language.

of considering language similarity when selecting
source languages for cross-lingual transfer. mPLM-
Sim surpasses all linguistic similarity measures in
every task, including both syntactic and semantic
tasks, across all layers except layer 0. This indi-
cates that mPLM-Sim is more effective in selecting
source languages that enhance the performance of
target languages compared to linguistic similarity
measures.

For low-level syntactic tasks, the lower layers
(layer 1 or 2) exhibit superior performance com-
pared to all other layers. Conversely, for high-level
semantic tasks, it is the middle layer of the mPLM
that consistently achieves the highest results across
all layers. This can be attributed to its ability to
capture intricate similarity patterns.

In Tab. 4, we further explore the benefits of
mPLM-Sim in cross-lingual transfer. We present a
comprehensive analysis of the top 3 performance
improvements and declines across languages. We
compare mPLM-Sim and GEN across four cross-
lingual transfer tasks. By examining these results,
we gain deeper insights into the advantages of
mPLM-Sim in facilitating effective cross-lingual
transfer.

The results clearly demonstrate that mPLM-
Sim has a substantial performance advantage over
GEN for certain target languages. On one hand,
for languages without any source language in the
same language family, such as Japanese (jpn_Jpan),
mPLM-Sim successfully identifies its similar lan-
guage, Chinese (cmn_Hani), whereas GEN fails to
do so. Notably, in the case of Japanese, mPLM-
Sim outperforms GEN by 27.5% for NER, 36.9%

for POS, and 6.4% for MASSIVE.
On the other hand, for languages having source

languages within the same language family, mPLM-
Sim accurately detects the appropriate source lan-
guage, leading to improved cross-lingual transfer
performance. In the case of Burmese (mya_Mymr),
mPLM-Sim accurately identifies Hindi (hin_Deva)
as the source language, while GEN mistakenly se-
lects Chinese (cmn_Hani). This distinction results
in a significant performance improvement of 15.3%
for NER and 9.1% for MASSIVE.

However, we also observe that mPLM-Sim falls
short for certain languages when compared to GEN,
although the losses are smaller in magnitude com-
pared to the improvements. This finding suggests
that achieving better performance in cross-lingual
transfer is not solely dependent on language sim-
ilarity. As mentioned in previous studies such as
Lauscher et al. (2020) and Nie et al. (2022), the
size of the pretraining data for the source languages
also plays a crucial role in cross-lingual transfer.

4 Related Work

4.1 Language Typology and Clustering
Similarity between languages can be due to com-
mon ancestry in the genealogical language tree,
but also influenced by linguistic influence and bor-
rowing (Aikhenvald and Dixon, 2001; Haspelmath,
2004). Linguists have conducted extensive rele-
vant research by constructing high-quality typo-
logical, geographical, and phylogenetic databases,
including WALS (Dryer and Haspelmath, 2013),
Glottolog (Hammarström et al., 2017), Ethnologue
(Saggion et al., 2023), and PHOIBLE (Moran et al.,
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2014; Moran and McCloy, 2019). The lang2vec
tool (Littell et al., 2017) further integrates these
datasets into multiple linguistic distances. De-
spite its integration of multiple linguistic measures,
lang2vec weights each measure equally, and the
quantification of these measures for language simi-
larity computation remains a challenge.

In addition to linguistic measures, some non-
lingustic measures are also proposed to measure
similarity between languages. Specifically, Hol-
man et al. (2011) use Levenshtein (edit) distance to
compute the lexical similarity between languages.
Lin et al. (2019) propose dataset-dependent fea-
tures, which are statistical features specific to the
corpus used, e.g., lexical overlap. Ye et al. (2023)
measure language similarity with basic concepts
across languages. However, these methods fail to
capture deeper similarities beyond surface-level
features.

Language representation is another important
category of language similarity measures. Before
the era of multilingual pretrained language models
(mPLMs), exploiting distributed language repre-
sentations for measuring language similarity have
been studied (Östling and Tiedemann, 2017; Bjerva
and Augenstein, 2018). Recent mPLMs trained
with massive data have become a new standard
for multilingual representation learning. Tan et al.
(2019) represent each language by an embedding
vector and cluster them in the embedding space.
Fan et al. (2021b) find the representation sprach-
bund of mPLMs, and then train separate mPLMs
for each sprachbund. However, these studies do not
delve into the research questions mentioned in §1,
and it motivates us to carry out a comprehensive
investigation of language similarity using mPLMs.

4.2 Multilingual Pretrained Language Models
The advent of mPLMs, e.g., mBERT (Devlin et al.,
2019), XLM (Conneau and Lample, 2019), and
XLM-R (Conneau et al., 2020), have brought sig-
nificant performance gains on numerous multilin-
gual natural language understanding benchmarks
(Hu et al., 2020).

Given their success, a variety of following
mPLMs are proposed. Specifically, different ar-
chitectures, including decoder-only, e.g., mGPT
(Shliazhko et al., 2022) and BLOOM (Scao et al.,
2022), and encoder-decoder, e.g., mT5 (Xue et al.,
2021), are designed. Tokenizer-free models, in-
cluding CANINE (Clark et al., 2022), ByT5 (Xue
et al., 2022), and Charformer (Tay et al., 2022),

are also proposed. Clark et al. (2022) introduce
CANINE-S and CANINE-C. CANINE-S adopts
a subword-based loss, while CANINE-C uses a
character-based one. Glot500 (Imani et al., 2023)
extends XLM-R to cover more than 500 languages
using vocabulary extension and continued pretrain-
ing. Both InfoXLM (Chi et al., 2021a) and XLM-
Align (Chi et al., 2021b) exploit parallel objec-
tives to further improve mPLMs. Some mPLMs
are specifically proposed for Machine Translation,
e.g., M2M-100 (Fan et al., 2021a) and NLLB-200
(Costa-jussà et al., 2022). XLS-R-300M (Babu
et al., 2021) is a speech (as opposed to text) model.

Follow-up works show that strong language-
specific signals are encoded in mPLMs by means of
probing tasks (Wu and Dredze, 2019; Rama et al.,
2020; Pires et al., 2019; Müller et al., 2021; Liang
et al., 2021; Choenni and Shutova, 2022) and in-
vestigating the geometry of mPLMs (Libovický
et al., 2020; Chang et al., 2022; Wang et al., 2023).
Concurrent with our work, Philippy et al. (2023)
have verified that the language representations en-
coded in mBERT correlate with both linguistic ty-
pology and cross-lingual transfer on XNLI for 15
languages. However, these methods lack in-depth
analysis and investigate on a limited set of mPLMs
and downstream tasks. This inspires us to conduct
quantitative and qualitative analysis on linguistic
typology and cross-lingual transfer with a broad
and diverse set of mPLMs and downstream tasks.

5 Conclusion

In this paper, we introduce mPLM-Sim, a novel
approach for measuring language similarities. Ex-
tensive experiments substantiate the superior per-
formance of mPLM-Sim compared to linguistic
similarity measures. Our study reveals variations
in similarity results across different mPLMs and
layers within an mPLM. Furthermore, our findings
reveal that mPLM-Sim effectively identifies the
source language to enhance cross-lingual transfer.

The results obtained from mPLM-Sim have sig-
nificant implications for multilinguality. On the
one hand, it can be further used in linguistic study
and downstream applications, such as cross-lingual
transfer, as elaborated in the paper. On the other
hand, these findings provide valuable insights for
improving mPLMs, offering opportunities for their
further development and enhancement.
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Limitations

(1) The performance of mPLM-Sim may be
strongly influenced by the quality and quantity of
data used for training mPLMs, as well as the de-
gree to which the target language can be accurately
represented. (2) The success of mPLM-Sim de-
pends on the supporting languages of mPLMs. We
conduct further experiment and analysis at §D. (3)
As for §3.3, we are unable to conduct a strictly fair
comparison due to the varying settings in which
mPLMs are pretrained, including the use of differ-
ent corpora and model sizes.
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A Languages

Tab. 5-10 show the language list covered by
mPLMs and corpora.

Tab. 11 provides the languages used for evaluat-
ing cross-lingual transfer.
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mBERT
CANINE-S
CANINE-C

XLM-R-Base
XLM-R-Large

Glot500 mGPT mT5-Base XLM-Align NLLB-200 XLS-R-300M Flores PBC Fleurs

ace_Arab ✓ ✓
ace_Latn ✓ ✓ ✓ ✓
ach_Latn ✓ ✓
acm_Arab ✓ ✓ ✓
acq_Arab ✓ ✓
acr_Latn ✓ ✓
aeb_Arab ✓ ✓
afr_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

agw_Latn ✓ ✓
ahk_Latn ✓ ✓
ajp_Arab ✓ ✓ ✓
aka_Latn ✓ ✓ ✓ ✓
aln_Latn ✓ ✓
als_Latn ✓ ✓ ✓ ✓
alt_Cyrl ✓ ✓
alz_Latn ✓ ✓
amh_Ethi ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
aoj_Latn ✓ ✓
apc_Arab ✓ ✓ ✓
arb_Arab ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
arb_Latn ✓ ✓
arn_Latn ✓ ✓
ars_Arab ✓ ✓
ary_Arab ✓ ✓ ✓ ✓
arz_Arab ✓ ✓ ✓ ✓

asm_Beng ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ast_Latn ✓ ✓ ✓ ✓ ✓

awa_Deva ✓ ✓
ayr_Latn ✓ ✓ ✓ ✓
azb_Arab ✓ ✓ ✓ ✓ ✓
azj_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
bak_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
bam_Latn ✓ ✓ ✓ ✓
ban_Latn ✓ ✓ ✓ ✓
bar_Latn ✓ ✓ ✓
bba_Latn ✓ ✓
bbc_Latn ✓ ✓
bci_Latn ✓ ✓
bcl_Latn ✓ ✓
bel_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

bem_Latn ✓ ✓ ✓ ✓
ben_Beng ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
bho_Deva ✓ ✓ ✓
bhw_Latn ✓ ✓
bim_Latn ✓ ✓
bis_Latn ✓ ✓
bjn_Arab ✓ ✓
bjn_Latn ✓ ✓ ✓
bod_Tibt ✓ ✓ ✓ ✓ ✓
bos_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓
bqc_Latn ✓ ✓
bre_Latn ✓ ✓ ✓ ✓ ✓
bts_Latn ✓ ✓
btx_Latn ✓ ✓
bug_Latn ✓ ✓
bul_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

bum_Latn ✓ ✓
bzj_Latn ✓ ✓
cab_Latn ✓ ✓
cac_Latn ✓ ✓
cak_Latn ✓ ✓
caq_Latn ✓ ✓
cat_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
cbk_Latn ✓ ✓
cce_Latn ✓ ✓
ceb_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ces_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
cfm_Latn ✓ ✓
che_Cyrl ✓ ✓ ✓
chk_Latn ✓ ✓
chv_Cyrl ✓ ✓ ✓ ✓ ✓
cjk_Latn ✓ ✓ ✓

Table 5: Languages covered by mPLMs and corpora.
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mBERT
CANINE-S
CANINE-C

XLM-R-Base
XLM-R-Large

Glot500 mGPT mT5-Base XLM-Align NLLB-200 XLS-R-300M Flores PBC Fleurs

ckb_Arab ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ckb_Latn ✓ ✓
cmn_Hani ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
cnh_Latn ✓ ✓ ✓
crh_Cyrl ✓ ✓
crh_Latn ✓ ✓ ✓
crs_Latn ✓ ✓
csy_Latn ✓ ✓
ctd_Latn ✓ ✓
ctu_Latn ✓ ✓
cuk_Latn ✓ ✓
cym_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
dan_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
deu_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
dik_Latn ✓ ✓
djk_Latn ✓ ✓
dln_Latn ✓ ✓
dtp_Latn ✓ ✓
dyu_Latn ✓ ✓ ✓ ✓
dzo_Tibt ✓ ✓ ✓ ✓
efi_Latn ✓ ✓
ekk_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ell_Grek ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
eng_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
enm_Latn ✓ ✓
epo_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
eus_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ewe_Latn ✓ ✓ ✓ ✓
fao_Latn ✓ ✓ ✓ ✓ ✓
fij_Latn ✓ ✓ ✓ ✓
fil_Latn ✓ ✓ ✓
fin_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
fon_Latn ✓ ✓ ✓ ✓
fra_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
fry_Latn ✓ ✓ ✓ ✓ ✓ ✓
fur_Latn ✓ ✓ ✓
fuv_Latn ✓ ✓
gaa_Latn ✓ ✓
gaz_Latn ✓ ✓ ✓ ✓
gil_Latn ✓ ✓
giz_Latn ✓ ✓
gkn_Latn ✓ ✓
gkp_Latn ✓ ✓
gla_Latn ✓ ✓ ✓ ✓ ✓ ✓
gle_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
glg_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
glv_Latn ✓ ✓ ✓
gom_Latn ✓ ✓
gor_Latn ✓ ✓
grc_Grek ✓ ✓
guc_Latn ✓ ✓
gug_Latn ✓ ✓ ✓ ✓ ✓
guj_Gujr ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
gur_Latn ✓ ✓
guw_Latn ✓ ✓
gya_Latn ✓ ✓
gym_Latn ✓ ✓
hat_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓
hau_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
haw_Latn ✓ ✓ ✓ ✓
heb_Hebr ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
hif_Latn ✓ ✓
hil_Latn ✓ ✓
hin_Deva ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
hin_Latn ✓ ✓ ✓ ✓
hmo_Latn ✓ ✓
hne_Deva ✓ ✓ ✓ ✓
hnj_Latn ✓ ✓ ✓
hra_Latn ✓ ✓
hrv_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
hui_Latn ✓ ✓
hun_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6: Languages covered by mPLMs and corpora.
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mBERT
CANINE-S
CANINE-C

XLM-R-Base
XLM-R-Large

Glot500 mGPT mT5-Base XLM-Align NLLB-200 XLS-R-300M Flores PBC Fleurs

hus_Latn ✓ ✓
hye_Armn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
iba_Latn ✓ ✓
ibo_Latn ✓ ✓ ✓ ✓ ✓ ✓
ifa_Latn ✓ ✓
ifb_Latn ✓ ✓
ikk_Latn ✓ ✓
ilo_Latn ✓ ✓ ✓ ✓
ind_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
isl_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ita_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ium_Latn ✓ ✓
ixl_Latn ✓ ✓
izz_Latn ✓ ✓
jam_Latn ✓ ✓
jav_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
jpn_Jpan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
kaa_Cyrl ✓ ✓
kaa_Latn ✓ ✓
kab_Latn ✓ ✓ ✓ ✓ ✓
kac_Latn ✓ ✓ ✓ ✓
kal_Latn ✓ ✓
kam_Latn ✓ ✓ ✓ ✓
kan_Knda ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
kas_Arab ✓ ✓
kas_Deva ✓ ✓
kat_Geor ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
kaz_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
kbp_Latn ✓ ✓ ✓ ✓
kea_Latn ✓ ✓ ✓ ✓
kek_Latn ✓ ✓
khk_Cyrl ✓ ✓

khm_Khmr ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
kia_Latn ✓ ✓
kik_Latn ✓ ✓ ✓ ✓
kin_Latn ✓ ✓ ✓ ✓ ✓
kir_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
kjb_Latn ✓ ✓
kjh_Cyrl ✓ ✓

kmb_Latn ✓ ✓ ✓
kmm_Latn ✓ ✓
kmr_Cyrl ✓ ✓
kmr_Latn ✓ ✓ ✓ ✓
knc_Arab ✓ ✓
knc_Latn ✓ ✓
kng_Latn ✓ ✓ ✓
knv_Latn ✓ ✓
kor_Hang ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
kpg_Latn ✓ ✓
krc_Cyrl ✓ ✓
kri_Latn ✓ ✓
ksd_Latn ✓ ✓
kss_Latn ✓ ✓

ksw_Mymr ✓ ✓
kua_Latn ✓ ✓
lam_Latn ✓ ✓
lao_Laoo ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
lat_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓
lav_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ldi_Latn ✓ ✓
leh_Latn ✓ ✓
lhu_Latn ✓ ✓
lij_Latn ✓ ✓ ✓

lim_Latn ✓ ✓ ✓
lin_Latn ✓ ✓ ✓ ✓ ✓ ✓
lit_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

lmo_Latn ✓ ✓ ✓ ✓
loz_Latn ✓ ✓
ltg_Latn ✓ ✓
ltz_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
lua_Latn ✓ ✓ ✓
lug_Latn ✓ ✓ ✓ ✓ ✓

Table 7: Languages covered by mPLMs and corpora.
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mBERT
CANINE-S
CANINE-C

XLM-R-Base
XLM-R-Large

Glot500 mGPT mT5-Base XLM-Align NLLB-200 XLS-R-300M Flores PBC Fleurs

luo_Latn ✓ ✓ ✓ ✓
lus_Latn ✓ ✓ ✓ ✓
lvs_Latn ✓ ✓ ✓
lzh_Hani ✓ ✓
mad_Latn ✓ ✓
mag_Deva ✓ ✓
mah_Latn ✓ ✓
mai_Deva ✓ ✓ ✓ ✓
mal_Mlym ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
mam_Latn ✓ ✓
mar_Deva ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
mau_Latn ✓ ✓
mbb_Latn ✓ ✓
mck_Latn ✓ ✓
mcn_Latn ✓ ✓
mco_Latn ✓ ✓
mdy_Ethi ✓ ✓
meu_Latn ✓ ✓
mfe_Latn ✓ ✓
mgh_Latn ✓ ✓
mgr_Latn ✓ ✓
mhr_Cyrl ✓ ✓
min_Arab ✓ ✓
min_Latn ✓ ✓ ✓ ✓ ✓
miq_Latn ✓ ✓
mkd_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
mlt_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

mni_Beng ✓ ✓
mon_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓
mos_Latn ✓ ✓ ✓ ✓
mps_Latn ✓ ✓
mri_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓
mrw_Latn ✓ ✓
mwm_Latn ✓ ✓
mxv_Latn ✓ ✓

mya_Mymr ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
myv_Cyrl ✓ ✓
mzh_Latn ✓ ✓
nan_Latn ✓ ✓
naq_Latn ✓ ✓
nav_Latn ✓ ✓
nbl_Latn ✓ ✓
nch_Latn ✓ ✓
ncj_Latn ✓ ✓
ndc_Latn ✓ ✓
nde_Latn ✓ ✓
ndo_Latn ✓ ✓
nds_Latn ✓ ✓ ✓
nep_Deva ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ngu_Latn ✓ ✓
nia_Latn ✓ ✓
nld_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
nmf_Latn ✓ ✓
nnb_Latn ✓ ✓
nno_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓
nob_Latn ✓ ✓ ✓ ✓ ✓
nor_Latn ✓ ✓ ✓ ✓ ✓ ✓
npi_Deva ✓ ✓ ✓ ✓
nse_Latn ✓ ✓
nso_Latn ✓ ✓ ✓ ✓
nus_Latn ✓ ✓
nya_Latn ✓ ✓ ✓ ✓ ✓ ✓
nyn_Latn ✓ ✓
nyy_Latn ✓ ✓
nzi_Latn ✓ ✓
oci_Latn ✓ ✓ ✓ ✓ ✓ ✓
ory_Orya ✓ ✓ ✓ ✓ ✓ ✓ ✓
oss_Cyrl ✓ ✓ ✓
ote_Latn ✓ ✓
pag_Latn ✓ ✓ ✓ ✓
pam_Latn ✓ ✓
pan_Guru ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 8: Languages covered by mPLMs and corpora.
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mBERT
CANINE-S
CANINE-C

XLM-R-Base
XLM-R-Large

Glot500 mGPT mT5-Base XLM-Align NLLB-200 XLS-R-300M Flores PBC Fleurs

pap_Latn ✓ ✓ ✓ ✓
pau_Latn ✓ ✓
pbt_Arab ✓ ✓
pcm_Latn ✓ ✓
pdt_Latn ✓ ✓
pes_Arab ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
pis_Latn ✓ ✓
pls_Latn ✓ ✓
plt_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
poh_Latn ✓ ✓
pol_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
pon_Latn ✓ ✓
por_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
prk_Latn ✓ ✓
prs_Arab ✓ ✓ ✓ ✓
pxm_Latn ✓ ✓
qub_Latn ✓ ✓
quc_Latn ✓ ✓
qug_Latn ✓ ✓
quh_Latn ✓ ✓
quw_Latn ✓ ✓
quy_Latn ✓ ✓ ✓ ✓
quz_Latn ✓ ✓
qvi_Latn ✓ ✓
rap_Latn ✓ ✓
rar_Latn ✓ ✓

rmy_Latn ✓ ✓
ron_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
rop_Latn ✓ ✓
rug_Latn ✓ ✓
run_Latn ✓ ✓ ✓ ✓
rus_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
sag_Latn ✓ ✓ ✓ ✓
sah_Cyrl ✓ ✓ ✓ ✓
san_Deva ✓ ✓ ✓ ✓ ✓ ✓ ✓
san_Latn ✓ ✓
sat_Olck ✓ ✓ ✓
sba_Latn ✓ ✓
scn_Latn ✓ ✓ ✓ ✓
seh_Latn ✓ ✓

shn_Mymr ✓ ✓
sin_Sinh ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
slk_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
slv_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
sme_Latn ✓ ✓
smo_Latn ✓ ✓ ✓ ✓ ✓
sna_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓
snd_Arab ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
som_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
sop_Latn ✓ ✓
sot_Latn ✓ ✓ ✓ ✓ ✓
spa_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
sqi_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓
srm_Latn ✓ ✓
srn_Latn ✓ ✓
sro_Latn ✓ ✓ ✓
srp_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
srp_Latn ✓ ✓
ssw_Latn ✓ ✓ ✓ ✓
sun_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
suz_Deva ✓ ✓
swe_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
swh_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
sxn_Latn ✓ ✓
szl_Latn ✓ ✓ ✓
tam_Latn ✓ ✓
tam_Taml ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
taq_Latn ✓ ✓
taq_Tfng ✓ ✓
tat_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
tbz_Latn ✓ ✓
tca_Latn ✓ ✓

Table 9: Languages covered by mPLMs and corpora.
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mBERT
CANINE-S
CANINE-C

XLM-R-Base
XLM-R-Large

Glot500 mGPT mT5-Base XLM-Align NLLB-200 XLS-R-300M Flores PBC Fleurs

tdt_Latn ✓ ✓
tel_Telu ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
teo_Latn ✓ ✓
tgk_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
tgl_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
tha_Thai ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
tih_Latn ✓ ✓
tir_Ethi ✓ ✓ ✓ ✓
tlh_Latn ✓ ✓
tob_Latn ✓ ✓
toh_Latn ✓ ✓
toi_Latn ✓ ✓
toj_Latn ✓ ✓
ton_Latn ✓ ✓
top_Latn ✓ ✓
tpi_Latn ✓ ✓ ✓ ✓ ✓
tpm_Latn ✓ ✓
tsn_Latn ✓ ✓ ✓ ✓
tso_Latn ✓ ✓ ✓ ✓
tsz_Latn ✓ ✓
tuc_Latn ✓ ✓
tui_Latn ✓ ✓
tuk_Cyrl ✓ ✓
tuk_Latn ✓ ✓ ✓ ✓ ✓ ✓
tum_Latn ✓ ✓ ✓ ✓
tur_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
twi_Latn ✓ ✓ ✓ ✓
tyv_Cyrl ✓ ✓ ✓
tzh_Latn ✓ ✓
tzm_Tfng ✓ ✓
tzo_Latn ✓ ✓

udm_Cyrl ✓ ✓
uig_Arab ✓ ✓ ✓ ✓ ✓ ✓
uig_Latn ✓ ✓
ukr_Cyrl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
umb_Latn ✓ ✓ ✓
urd_Arab ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
urd_Latn ✓ ✓
uzn_Cyrl ✓ ✓
uzn_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
vec_Latn ✓ ✓ ✓
ven_Latn ✓ ✓
vie_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
wal_Latn ✓ ✓
war_Latn ✓ ✓ ✓ ✓ ✓ ✓
wol_Latn ✓ ✓ ✓ ✓
xav_Latn ✓ ✓
xho_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓
yan_Latn ✓ ✓
yao_Latn ✓ ✓
yap_Latn ✓ ✓
ydd_Hebr ✓ ✓ ✓ ✓ ✓ ✓ ✓
yom_Latn ✓ ✓
yor_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
yua_Latn ✓ ✓
yue_Hani ✓ ✓ ✓ ✓ ✓
zai_Latn ✓ ✓
zlm_Latn ✓ ✓
zom_Latn ✓ ✓
zsm_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
zul_Latn ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 10: Languages covered by mPLMs and corpora.
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Task Language List

NER (108)

ace_Latn, afr_Latn, als_Latn, amh_Ethi, arz_Arab, asm_Beng, ast_Latn, azj_Latn, bak_Cyrl, bel_Cyrl, ben_Beng, bho_Deva, bod_Tibt, bos_Latn, bul_Cyrl,
cat_Latn, ceb_Latn, ces_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, ekk_Latn, ell_Grek, epo_Latn, eus_Latn, fao_Latn, fin_Latn, fra_Latn,
fur_Latn, gla_Latn, gle_Latn, glg_Latn, gug_Latn, guj_Gujr, heb_Hebr, hrv_Latn, hun_Latn, hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn,
jav_Latn, jpn_Jpan, kan_Knda, kat_Geor, kaz_Cyrl, khm_Khmr, kin_Latn, kir_Cyrl, kor_Hang, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn, ltz_Latn,

mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, mlt_Latn, mri_Latn, mya_Mymr, nld_Latn, nno_Latn, oci_Latn, ory_Orya, pan_Guru, pes_Arab, plt_Latn, pol_Latn,
por_Latn, ron_Latn, san_Deva, scn_Latn, sin_Sinh, slk_Latn, slv_Latn, snd_Arab, som_Latn, srp_Cyrl, sun_Latn, swe_Latn, swh_Latn, szl_Latn, tam_Taml,

tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tuk_Latn, tur_Latn, uig_Arab, ukr_Cyrl, urd_Arab, uzn_Latn, vec_Latn, vie_Latn, war_Latn, ydd_Hebr,
yor_Latn, yue_Hani, zsm_Latn

POS (60)

afr_Latn, ajp_Arab, amh_Ethi, bam_Latn, bel_Cyrl, bho_Deva, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, cym_Latn, dan_Latn, deu_Latn, ekk_Latn, ell_Grek,
eus_Latn, fao_Latn, fin_Latn, fra_Latn, gla_Latn, gle_Latn, glg_Latn, heb_Hebr, hrv_Latn, hun_Latn, hye_Armn, ind_Latn, isl_Latn, ita_Latn, jav_Latn,
jpn_Jpan, kaz_Cyrl, kmr_Latn, kor_Hang, lij_Latn, lit_Latn, mlt_Latn, nld_Latn, pes_Arab, pol_Latn, por_Latn, ron_Latn, san_Deva, sin_Sinh, slk_Latn,
slv_Latn, swe_Latn, tam_Taml, tat_Cyrl, tel_Telu, tgl_Latn, tha_Thai, tur_Latn, uig_Arab, ukr_Cyrl, urd_Arab, vie_Latn, wol_Latn, yor_Latn, yue_Hani

Massive (44)
afr_Latn, als_Latn, amh_Ethi, azj_Latn, ben_Beng, cat_Latn, cym_Latn, dan_Latn, deu_Latn, ell_Grek, fin_Latn, fra_Latn, heb_Hebr, hun_Latn, hye_Armn,

ind_Latn, isl_Latn, ita_Latn, jav_Latn, jpn_Jpan, kan_Knda, kat_Geor, khm_Khmr, kor_Hang, lvs_Latn, mal_Mlym, mya_Mymr, nld_Latn, nob_Latn, pes_Arab,
pol_Latn, por_Latn, ron_Latn, slv_Latn, swe_Latn, swh_Latn, tam_Taml, tel_Telu, tgl_Latn, tha_Thai, tur_Latn, urd_Arab, vie_Latn, zsm_Latn

Taxi1500 (130)

ace_Latn, afr_Latn, aka_Latn, als_Latn, ary_Arab, arz_Arab, asm_Beng, ayr_Latn, azb_Arab, bak_Cyrl, bam_Latn, ban_Latn, bel_Cyrl, bem_Latn, ben_Beng,
bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, ckb_Arab, cym_Latn, dan_Latn, deu_Latn, dyu_Latn, dzo_Tibt, ell_Grek, epo_Latn, eus_Latn, ewe_Latn, fao_Latn,
fij_Latn, fin_Latn, fon_Latn, fra_Latn, gla_Latn, gle_Latn, gug_Latn, guj_Gujr, hat_Latn, hau_Latn, heb_Hebr, hne_Deva, hrv_Latn, hun_Latn, hye_Armn,
ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn, kab_Latn, kac_Latn, kan_Knda, kat_Geor, kaz_Cyrl, kbp_Latn, khm_Khmr, kik_Latn, kin_Latn,

kir_Cyrl, kng_Latn, kor_Hang, lao_Laoo, lin_Latn, lit_Latn, ltz_Latn, lug_Latn, luo_Latn, mai_Deva, mar_Deva, min_Latn, mkd_Cyrl, mlt_Latn, mos_Latn,
mri_Latn, mya_Mymr, nld_Latn, nno_Latn, nob_Latn, npi_Deva, nso_Latn, nya_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pes_Arab, plt_Latn, pol_Latn,

por_Latn, prs_Arab, quy_Latn, ron_Latn, run_Latn, sag_Latn, sin_Sinh, slk_Latn, slv_Latn, smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, ssw_Latn,
sun_Latn, swe_Latn, swh_Latn, tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi, tpi_Latn, tsn_Latn, tuk_Latn, tum_Latn, tur_Latn,

twi_Latn, ukr_Cyrl, vie_Latn, war_Latn, wol_Latn, xho_Latn, yor_Latn, yue_Hani, zsm_Latn, zul_Latn

Table 11: Languages for evaluating zero-shot cross-lingual transfer. The number in brackets is the number of the
evaluated languages.
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mPLM-Sim Mono 1 5 10

LEX 0.741 0.704 0.688 0.745 0.743
GEN 0.527 0.504 0.480 0.482 0.510
GEO 0.608 0.597 0.523 0.562 0.597
SYN 0.577 0.583 0.556 0.560 0.573
INV 0.248 0.245 0.226 0.265 0.260
PHO 0.094 0.109 0.114 0.118 0.102
FEA 0.358 0.369 0.347 0.371 0.360

AVG 0.451 0.444 0.419 0.444 0.449

Table 12: Comparison of pearson correlation result:
Pearson correlation between seven similarity measurs
and mPLM-Sim (500 multi-parallel sentences), Mono
(Monolingual corpora) and the results of using different
amounts (1, 5, 10) of multi-parallel sentences.

B Comparison Across Corpora for
mPLM-Sim

B.1 Monolingual vs. Parallel
Both monolingual and parallel corpora can be ex-
ploited for obtaining sentence embeddings for mea-
suring language similarity. We conduct experi-
ments of exploiting monolingual corpora for mea-
suring similarity across languages, and also provide
the results of using different amounts (1, 5, 10, 500)
of multi-parallel sentences.

For the experiment of pearson correlation in Sec.
3.1, the results (MEAN) are shown in Tab. 12. For
the experiment of cross-lingual transfer in Sec. 3.4,
the results are shown in Tab. 13. Based on these
two experiments, we have the conclusions below:

• mPLM-Sim using multi-parallel corpora
achieves slightly better results than using
monolingual corpora.

• mPLM-Sim (500 sentences) requires less data
than exploiting monolingual corpora. Besides,
using mPLM-Sim (10 sentences) can achieve
comparable results with mPLM-Sim (500 sen-
tences). While including a truly low-resource
language for similarity measurement, mPLM-
Sim requires around 10 sentences parallel to
one existing language, while monolingual cor-
pora requires massive sentences.

In a word, exploiting parallel corpora is better for
measuring language similarity than monolingual
corpora.

B.2 Flores vs. PBC
To investigate the impact of multi-parallel corpora
on the performance of mPLM-Sim, we compare

mPLM-Sim Mono 1 5 10

NER 0.647 0.644 0.644 0.646 0.647
POS 0.751 0.737 0.748 0.753 0.752

Massive 0.730 0.730 0.723 0.728 0.730
Taxi 0.583 0.585 0.580 0.582 0.582

AVG 0.678 0.674 0.674 0.677 0.678

Table 13: Comparison of cross-lingual transfer result:
Cross-lingual transfer result for four tasks from mPLM-
Sim (500 multi-parallel sentences), Mono (Monolingual
corpora) and the results of using different amounts (1,
5, 10) of multi-parallel sentences.

Flores PBC
M Mdn M Mdn

LEX 0.741 0.864 0.654 0.735
GEN 0.527 0.600 0.519 0.572
GEO 0.608 0.674 0.546 0.603
SYN 0.577 0.607 0.491 0.528
INV 0.248 0.293 0.254 0.276
PHO 0.094 0.144 0.103 0.098
FEA 0.358 0.372 0.333 0.357

AVG 0.451 0.508 0.414 0.453

Table 14: Comparison across corpora: Pearson cor-
relation between mPLM-Sim and linguistic similarity
measures for Glot500 and all corpora on 32 languages.
Flores achieves higher correlations than PBC.
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the results of Glot500 with Flores and PBC on 32
languages that are covered by both corpora.

Tab. 14 shows that Flores outperforms PBC
across all similarity measures, except for PHO. To
gain further insights, we conduct a case study fo-
cusing on languages that exhibit different perfor-
mances between the two corpora.

In comparison to PBC, Flores consists of text
that is closer to web content and spans a wider
range of general domains. For example, a signif-
icant portion of Arabic script in Flores is written
without short vowels, which are commonly used in
texts requiring strict adherence to precise pronun-
ciation, such as the Bible.5 This discrepancy leads
to challenges in tokenization and representation
for languages written in Arabic, such as Moroccan
Arabic (ary_Arab) and Egyptian Arabic (arz_Arab),
resulting in poorer performance.

5https://en.wikipedia.org/wiki/Arabic_
diacritics
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C Visualization and Analysis Across
Layers

C.1 Hierarchical Clustering Analysis
We conducted hierarchical clustering analysis at
different layers (0, 4, 8, and 12) using the setting
of Glot500 and Flores for mPLM-Sim. The results,
shown in Fig. 3, reveal distinct patterns of language
clustering. In layer 0, the clustering primarily em-
phasizes lexical similarities, with languages shar-
ing the same scripts being grouped together. As we
progress to layers 4 and 8, more high-level similar-
ity patterns beyond the surface-level are captured.
For instance in these layers, Turkish (tur_Latn)
and Polish (pol_Latn) are clustered with their Tur-
kic and Slavic relatives although they use different
writing systems. The similarity results of layer 12
are comparatively worse than those of the middle
layers. For instance, English (eng_Latn) deviates
from its Germanic and Indo-European relatives and
instead clusters with Malay languages (ind_Latn,
zsm_Latn). This phenomenon can be attributed
to the higher layer exhibiting lower inter-cluster
distances (comparison between the y-axis range
across figures of different layers), which dimin-
ishes its ability to effectively discriminate between
language clusters.

C.2 Similarity Heatmaps
Fig. 4-7 show the cosine simlarity values in
heatmaps at layer 0, 4, 8 and 12, using the Glot500
and Flores settings for mPLM-Sim.

Generally, as the layer number increases, higher
cosine similarity values are observed. Layer 0 ex-
hibits a significant contrast in similarity values,
whereas layer 12 demonstrates very low contrast.
Notably, Burmese (mya_Mymr) consistently re-
ceives the lowest values across all layers, indicat-
ing the relationship between Burmese and other
languages may be not well modeled.
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Figure 3: Dendrograms illustrating hierarchical clustering results at layer 0, 4, 8, and 12 for Glot500 and Flores
across 32 languages.
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Figure 4: Heatmaps of cosine similarity results at layer 0 for Glot500 and Flores across 32 languages.
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Figure 5: Heatmaps of cosine similarity results at layer 4 for Glot500 and Flores across 32 languages.
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Figure 6: Heatmaps of cosine similarity results at layer 8 for Glot500 and Flores across 32 languages.
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Figure 7: Heatmaps of cosine similarity results at layer 12 for Glot500 and Flores across 32 languages.
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D Analysis on Unseen Languages of
mPLMs

The success of mPLM-Sim depends on the support-
ing languages of mPLMs. To get more insights
about languages which are this not supported by a
specific mPLM, we conduct a new Pearson corre-
lation experiment based on 94 languages unseen
by XLM-R. Among 94 languages, there are 24
(25.5%) languages that achieve higher correlation
than the average level of seen languages. These
24 languages usually have close languages seen
by XLM-R, e.g, the unseen language, Cantonese
(yue_Hani) is close to Mandarin (cmn_Hani). It
shows that mPLM-Sim can be directly applied to
some unseen languages which have close seen lan-
guages.

For the unseen languages which mPLM-Sim per-
forms poorly, we can connect it to seen languages
using traditional linguistic features, e.g., language
family, and then use or weight the similarity results
of seen languages as the results of the unseen lan-
guages. Since it is shown that mPLM-Sim provides
better results than traditional linguistic features in
our paper, connecting unseen languages to seen lan-
guages would be beneficial for unseen languages.
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E Detailed Results of Cross-Lingual
Transfer

We report the detailed results for all tasks and lan-
guages in Tab. 15-16 (NER), 17 (POS), 18 (MAS-
SIVE), 19-21 (Taxi1500).
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ENG LEX GEN GEO FEA mPLM-Sim

ace_Latn 0.421 0.421 eng_Latn 0.421 eng_Latn 0.427 hin_Deva 0.421 eng_Latn 0.439 spa_Latn
afr_Latn 0.739 0.739 eng_Latn 0.739 eng_Latn 0.720 arb_Arab 0.707 rus_Cyrl 0.739 eng_Latn
als_Latn 0.767 0.767 eng_Latn 0.737 rus_Cyrl 0.774 spa_Latn 0.737 rus_Cyrl 0.774 spa_Latn
amh_Ethi 0.450 0.389 cmn_Hani 0.515 arb_Arab 0.515 arb_Arab 0.554 hin_Deva 0.554 hin_Deva
arz_Arab 0.491 0.715 arb_Arab 0.715 arb_Arab 0.715 arb_Arab 0.491 eng_Latn 0.715 arb_Arab

asm_Beng 0.661 0.603 arb_Arab 0.720 hin_Deva 0.720 hin_Deva 0.720 hin_Deva 0.720 hin_Deva
ast_Latn 0.813 0.857 spa_Latn 0.857 spa_Latn 0.857 spa_Latn 0.680 hin_Deva 0.857 spa_Latn
azj_Latn 0.625 0.625 eng_Latn 0.625 eng_Latn 0.664 arb_Arab 0.654 hin_Deva 0.648 spa_Latn
bak_Cyrl 0.558 0.675 rus_Cyrl 0.558 eng_Latn 0.675 rus_Cyrl 0.681 hin_Deva 0.675 rus_Cyrl
bel_Cyrl 0.728 0.748 rus_Cyrl 0.748 rus_Cyrl 0.728 eng_Latn 0.715 arb_Arab 0.748 rus_Cyrl

ben_Beng 0.670 0.647 arb_Arab 0.692 hin_Deva 0.692 hin_Deva 0.692 hin_Deva 0.692 hin_Deva
bho_Deva 0.544 0.690 hin_Deva 0.690 hin_Deva 0.690 hin_Deva 0.610 arb_Arab 0.690 hin_Deva
bod_Tibt 0.417 0.544 cmn_Hani 0.544 cmn_Hani 0.522 hin_Deva 0.544 cmn_Hani 0.544 cmn_Hani
bos_Latn 0.697 0.697 eng_Latn 0.756 rus_Cyrl 0.715 spa_Latn 0.702 arb_Arab 0.715 spa_Latn
bul_Cyrl 0.748 0.783 rus_Cyrl 0.783 rus_Cyrl 0.787 spa_Latn 0.783 rus_Cyrl 0.783 rus_Cyrl
cat_Latn 0.806 0.808 spa_Latn 0.808 spa_Latn 0.808 spa_Latn 0.806 eng_Latn 0.808 spa_Latn
ceb_Latn 0.563 0.563 eng_Latn 0.563 eng_Latn 0.211 cmn_Hani 0.530 spa_Latn 0.530 spa_Latn
ces_Latn 0.760 0.760 eng_Latn 0.741 rus_Cyrl 0.760 eng_Latn 0.741 rus_Cyrl 0.741 rus_Cyrl
ckb_Arab 0.707 0.716 arb_Arab 0.692 hin_Deva 0.716 arb_Arab 0.703 rus_Cyrl 0.716 arb_Arab
crh_Latn 0.521 0.521 eng_Latn 0.521 eng_Latn 0.472 arb_Arab 0.402 cmn_Hani 0.551 spa_Latn
cym_Latn 0.593 0.593 eng_Latn 0.617 rus_Cyrl 0.593 eng_Latn 0.542 arb_Arab 0.636 spa_Latn
dan_Latn 0.792 0.792 eng_Latn 0.792 eng_Latn 0.792 eng_Latn 0.747 arb_Arab 0.792 eng_Latn
deu_Latn 0.714 0.714 eng_Latn 0.714 eng_Latn 0.714 eng_Latn 0.714 eng_Latn 0.706 spa_Latn
ekk_Latn 0.713 0.713 eng_Latn 0.713 eng_Latn 0.713 eng_Latn 0.729 rus_Cyrl 0.729 spa_Latn
ell_Grek 0.686 0.686 eng_Latn 0.733 rus_Cyrl 0.729 spa_Latn 0.733 rus_Cyrl 0.733 rus_Cyrl
epo_Latn 0.639 0.639 eng_Latn 0.639 eng_Latn 0.639 eng_Latn 0.628 rus_Cyrl 0.722 spa_Latn
eus_Latn 0.516 0.516 eng_Latn 0.516 eng_Latn 0.552 spa_Latn 0.588 hin_Deva 0.552 spa_Latn
fao_Latn 0.706 0.706 eng_Latn 0.706 eng_Latn 0.706 eng_Latn 0.710 arb_Arab 0.719 spa_Latn
fin_Latn 0.728 0.728 eng_Latn 0.728 eng_Latn 0.728 eng_Latn 0.728 rus_Cyrl 0.760 spa_Latn
fra_Latn 0.730 0.730 eng_Latn 0.805 spa_Latn 0.730 eng_Latn 0.730 eng_Latn 0.805 spa_Latn
fur_Latn 0.567 0.567 eng_Latn 0.545 spa_Latn 0.567 eng_Latn 0.605 hin_Deva 0.545 spa_Latn
gla_Latn 0.571 0.571 eng_Latn 0.612 rus_Cyrl 0.571 eng_Latn 0.576 arb_Arab 0.582 spa_Latn
gle_Latn 0.670 0.670 eng_Latn 0.574 rus_Cyrl 0.670 eng_Latn 0.688 spa_Latn 0.688 spa_Latn
glg_Latn 0.768 0.822 spa_Latn 0.822 spa_Latn 0.822 spa_Latn 0.822 spa_Latn 0.822 spa_Latn
gug_Latn 0.552 0.552 eng_Latn 0.552 eng_Latn 0.566 spa_Latn 0.566 spa_Latn 0.566 spa_Latn
guj_Gujr 0.573 0.582 arb_Arab 0.606 hin_Deva 0.606 hin_Deva 0.606 hin_Deva 0.606 hin_Deva
heb_Hebr 0.458 0.300 cmn_Hani 0.542 arb_Arab 0.542 arb_Arab 0.463 rus_Cyrl 0.542 arb_Arab
hin_Deva 0.650 0.697 arb_Arab 0.697 arb_Arab 0.697 arb_Arab 0.697 arb_Arab 0.697 arb_Arab
hrv_Latn 0.738 0.738 eng_Latn 0.746 rus_Cyrl 0.738 eng_Latn 0.746 rus_Cyrl 0.776 spa_Latn
hun_Latn 0.727 0.727 eng_Latn 0.727 eng_Latn 0.727 eng_Latn 0.721 rus_Cyrl 0.762 spa_Latn
hye_Armn 0.518 0.533 arb_Arab 0.518 eng_Latn 0.533 arb_Arab 0.512 rus_Cyrl 0.531 hin_Deva
ibo_Latn 0.574 0.574 eng_Latn 0.574 eng_Latn 0.563 spa_Latn 0.574 eng_Latn 0.563 spa_Latn
ilo_Latn 0.673 0.673 eng_Latn 0.673 eng_Latn 0.577 cmn_Hani 0.673 eng_Latn 0.716 spa_Latn
ind_Latn 0.594 0.594 eng_Latn 0.594 eng_Latn 0.443 hin_Deva 0.594 eng_Latn 0.594 eng_Latn
isl_Latn 0.707 0.707 eng_Latn 0.707 eng_Latn 0.707 eng_Latn 0.707 eng_Latn 0.726 spa_Latn
ita_Latn 0.764 0.762 spa_Latn 0.762 spa_Latn 0.762 spa_Latn 0.762 spa_Latn 0.762 spa_Latn
jav_Latn 0.580 0.580 eng_Latn 0.580 eng_Latn 0.215 cmn_Hani 0.529 hin_Deva 0.614 spa_Latn
jpn_Jpan 0.177 0.451 cmn_Hani 0.177 eng_Latn 0.451 cmn_Hani 0.260 hin_Deva 0.451 cmn_Hani
kan_Knda 0.531 0.567 arb_Arab 0.531 eng_Latn 0.638 hin_Deva 0.638 hin_Deva 0.638 hin_Deva
kat_Geor 0.644 0.640 arb_Arab 0.644 eng_Latn 0.640 arb_Arab 0.681 hin_Deva 0.681 hin_Deva
kaz_Cyrl 0.416 0.525 rus_Cyrl 0.416 eng_Latn 0.525 rus_Cyrl 0.315 cmn_Hani 0.525 rus_Cyrl

khm_Khmr 0.404 0.404 eng_Latn 0.404 eng_Latn 0.467 hin_Deva 0.404 eng_Latn 0.549 arb_Arab
kin_Latn 0.626 0.626 eng_Latn 0.626 eng_Latn 0.672 arb_Arab 0.626 eng_Latn 0.726 spa_Latn
kir_Cyrl 0.391 0.564 rus_Cyrl 0.391 eng_Latn 0.564 rus_Cyrl 0.455 hin_Deva 0.564 rus_Cyrl

kor_Hang 0.470 0.445 cmn_Hani 0.470 eng_Latn 0.445 cmn_Hani 0.445 cmn_Hani 0.551 hin_Deva

Table 15: Cross-Lingual Transfer Results of NER (Part 1): The first column is the target language. For each language
similarity measure, we report both the source language selected based on similarity and also the evaluation results
on target language using the source language. For mPLM-Sim, we report the layer achieving best performance
(layer 1).
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lij_Latn 0.431 0.431 eng_Latn 0.413 spa_Latn 0.413 spa_Latn 0.395 hin_Deva 0.413 spa_Latn
lim_Latn 0.646 0.646 eng_Latn 0.646 eng_Latn 0.646 eng_Latn 0.605 hin_Deva 0.621 spa_Latn
lin_Latn 0.486 0.486 eng_Latn 0.486 eng_Latn 0.555 arb_Arab 0.486 eng_Latn 0.519 spa_Latn
lit_Latn 0.707 0.707 eng_Latn 0.699 rus_Cyrl 0.707 eng_Latn 0.699 rus_Cyrl 0.699 rus_Cyrl

lmo_Latn 0.712 0.712 eng_Latn 0.706 spa_Latn 0.706 spa_Latn 0.559 hin_Deva 0.706 spa_Latn
ltz_Latn 0.646 0.646 eng_Latn 0.646 eng_Latn 0.646 eng_Latn 0.663 spa_Latn 0.663 spa_Latn

mal_Mlym 0.591 0.642 arb_Arab 0.591 eng_Latn 0.709 hin_Deva 0.709 hin_Deva 0.709 hin_Deva
mar_Deva 0.583 0.725 hin_Deva 0.725 hin_Deva 0.725 hin_Deva 0.725 hin_Deva 0.725 hin_Deva
min_Latn 0.405 0.405 eng_Latn 0.405 eng_Latn 0.363 hin_Deva 0.405 eng_Latn 0.423 spa_Latn
mkd_Cyrl 0.696 0.767 rus_Cyrl 0.767 rus_Cyrl 0.730 spa_Latn 0.767 rus_Cyrl 0.767 rus_Cyrl
mlt_Latn 0.667 0.667 eng_Latn 0.597 arb_Arab 0.732 spa_Latn 0.641 rus_Cyrl 0.732 spa_Latn
mri_Latn 0.531 0.531 eng_Latn 0.531 eng_Latn 0.433 cmn_Hani 0.531 eng_Latn 0.572 spa_Latn

mya_Mymr 0.493 0.612 arb_Arab 0.455 cmn_Hani 0.607 hin_Deva 0.493 eng_Latn 0.607 hin_Deva
nld_Latn 0.779 0.779 eng_Latn 0.779 eng_Latn 0.779 eng_Latn 0.779 eng_Latn 0.781 spa_Latn
nno_Latn 0.762 0.762 eng_Latn 0.762 eng_Latn 0.762 eng_Latn 0.686 hin_Deva 0.762 eng_Latn
oci_Latn 0.678 0.802 spa_Latn 0.802 spa_Latn 0.802 spa_Latn 0.802 spa_Latn 0.802 spa_Latn
ory_Orya 0.230 0.262 arb_Arab 0.300 hin_Deva 0.230 hin_Deva 0.300 hin_Deva 0.300 hin_Deva
pan_Guru 0.464 0.470 hin_Deva 0.470 hin_Deva 0.470 hin_Deva 0.470 hin_Deva 0.470 hin_Deva
pes_Arab 0.386 0.606 arb_Arab 0.653 hin_Deva 0.606 arb_Arab 0.653 hin_Deva 0.606 arb_Arab
plt_Latn 0.533 0.533 eng_Latn 0.533 eng_Latn 0.424 arb_Arab 0.510 rus_Cyrl 0.507 spa_Latn
pol_Latn 0.754 0.754 eng_Latn 0.719 rus_Cyrl 0.754 eng_Latn 0.719 rus_Cyrl 0.719 rus_Cyrl
por_Latn 0.745 0.803 spa_Latn 0.803 spa_Latn 0.803 spa_Latn 0.745 eng_Latn 0.803 spa_Latn
ron_Latn 0.632 0.632 eng_Latn 0.746 spa_Latn 0.632 eng_Latn 0.614 rus_Cyrl 0.746 spa_Latn
san_Deva 0.306 0.523 hin_Deva 0.523 hin_Deva 0.523 hin_Deva 0.523 hin_Deva 0.523 hin_Deva
scn_Latn 0.676 0.676 eng_Latn 0.750 spa_Latn 0.750 spa_Latn 0.623 arb_Arab 0.750 spa_Latn
sin_Sinh 0.536 0.560 arb_Arab 0.727 hin_Deva 0.727 hin_Deva 0.727 hin_Deva 0.727 hin_Deva
slk_Latn 0.745 0.745 eng_Latn 0.721 rus_Cyrl 0.745 eng_Latn 0.659 hin_Deva 0.721 rus_Cyrl
slv_Latn 0.766 0.766 eng_Latn 0.724 rus_Cyrl 0.766 eng_Latn 0.724 rus_Cyrl 0.724 rus_Cyrl
snd_Arab 0.374 0.441 arb_Arab 0.530 hin_Deva 0.530 hin_Deva 0.530 hin_Deva 0.441 arb_Arab
som_Latn 0.598 0.598 eng_Latn 0.562 arb_Arab 0.562 arb_Arab 0.579 hin_Deva 0.605 spa_Latn
srp_Cyrl 0.627 0.586 rus_Cyrl 0.586 rus_Cyrl 0.627 eng_Latn 0.586 rus_Cyrl 0.586 rus_Cyrl
sun_Latn 0.577 0.577 eng_Latn 0.577 eng_Latn 0.492 hin_Deva 0.577 eng_Latn 0.490 spa_Latn
swe_Latn 0.632 0.632 eng_Latn 0.632 eng_Latn 0.632 eng_Latn 0.632 eng_Latn 0.632 eng_Latn
swh_Latn 0.687 0.687 eng_Latn 0.687 eng_Latn 0.503 arb_Arab 0.662 spa_Latn 0.662 spa_Latn
szl_Latn 0.670 0.670 eng_Latn 0.655 rus_Cyrl 0.670 eng_Latn 0.631 hin_Deva 0.655 rus_Cyrl

tam_Taml 0.498 0.597 arb_Arab 0.498 eng_Latn 0.626 hin_Deva 0.626 hin_Deva 0.626 hin_Deva
tat_Cyrl 0.630 0.715 rus_Cyrl 0.630 eng_Latn 0.715 rus_Cyrl 0.672 arb_Arab 0.715 rus_Cyrl
tel_Telu 0.420 0.516 arb_Arab 0.420 eng_Latn 0.539 hin_Deva 0.539 hin_Deva 0.539 hin_Deva
tgk_Cyrl 0.588 0.652 rus_Cyrl 0.598 hin_Deva 0.652 rus_Cyrl 0.629 arb_Arab 0.652 rus_Cyrl
tgl_Latn 0.745 0.745 eng_Latn 0.745 eng_Latn 0.466 cmn_Hani 0.667 spa_Latn 0.667 spa_Latn
tha_Thai 0.049 0.074 cmn_Hani 0.049 eng_Latn 0.014 hin_Deva 0.049 eng_Latn 0.074 cmn_Hani
tuk_Latn 0.577 0.577 eng_Latn 0.577 eng_Latn 0.579 arb_Arab 0.553 cmn_Hani 0.615 spa_Latn
tur_Latn 0.712 0.712 eng_Latn 0.712 eng_Latn 0.707 arb_Arab 0.707 rus_Cyrl 0.758 spa_Latn
uig_Arab 0.460 0.547 arb_Arab 0.460 eng_Latn 0.525 rus_Cyrl 0.485 cmn_Hani 0.547 arb_Arab
ukr_Cyrl 0.695 0.802 rus_Cyrl 0.802 rus_Cyrl 0.695 eng_Latn 0.802 rus_Cyrl 0.802 rus_Cyrl
urd_Arab 0.596 0.689 arb_Arab 0.743 hin_Deva 0.743 hin_Deva 0.743 hin_Deva 0.743 hin_Deva
uzn_Latn 0.713 0.713 eng_Latn 0.713 eng_Latn 0.716 rus_Cyrl 0.479 hin_Deva 0.792 spa_Latn
vec_Latn 0.624 0.624 eng_Latn 0.680 spa_Latn 0.680 spa_Latn 0.549 hin_Deva 0.680 spa_Latn
vie_Latn 0.654 0.654 eng_Latn 0.654 eng_Latn 0.406 cmn_Hani 0.654 eng_Latn 0.546 rus_Cyrl
war_Latn 0.554 0.554 eng_Latn 0.554 eng_Latn 0.425 cmn_Hani 0.425 cmn_Hani 0.585 spa_Latn
ydd_Hebr 0.496 0.496 eng_Latn 0.496 eng_Latn 0.496 eng_Latn 0.609 hin_Deva 0.569 arb_Arab
yor_Latn 0.614 0.614 eng_Latn 0.614 eng_Latn 0.612 spa_Latn 0.532 rus_Cyrl 0.612 spa_Latn
yue_Hani 0.261 0.635 cmn_Hani 0.635 cmn_Hani 0.635 cmn_Hani 0.635 cmn_Hani 0.635 cmn_Hani
zsm_Latn 0.654 0.654 eng_Latn 0.654 eng_Latn 0.522 hin_Deva 0.654 eng_Latn 0.654 eng_Latn

Table 16: Cross-Lingual Transfer Results of NER (Part 2): The first column is the target language. For each language
similarity measure, we report both the source language selected based on similarity and also the evaluation results
on target language using the source language. For mPLM-Sim, we report the layer achieving best performance
(layer 1).
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afr_Latn 0.850 0.850 eng_Latn 0.850 eng_Latn 0.599 arb_Arab 0.809 rus_Cyrl 0.854 spa_Latn
ajp_Arab 0.671 0.648 arb_Arab 0.648 arb_Arab 0.648 arb_Arab 0.651 hin_Deva 0.648 arb_Arab
amh_Ethi 0.648 0.645 cmn_Hani 0.670 arb_Arab 0.670 arb_Arab 0.704 hin_Deva 0.704 hin_Deva
bam_Latn 0.451 0.451 eng_Latn 0.451 eng_Latn 0.411 spa_Latn 0.484 hin_Deva 0.411 spa_Latn
bel_Cyrl 0.824 0.934 rus_Cyrl 0.934 rus_Cyrl 0.824 eng_Latn 0.719 arb_Arab 0.934 rus_Cyrl

ben_Beng 0.767 0.583 arb_Arab 0.803 hin_Deva 0.803 hin_Deva 0.803 hin_Deva 0.803 hin_Deva
bho_Deva 0.520 0.682 hin_Deva 0.682 hin_Deva 0.682 hin_Deva 0.536 arb_Arab 0.682 hin_Deva
bul_Cyrl 0.871 0.899 rus_Cyrl 0.899 rus_Cyrl 0.882 spa_Latn 0.899 rus_Cyrl 0.899 rus_Cyrl
cat_Latn 0.860 0.962 spa_Latn 0.962 spa_Latn 0.962 spa_Latn 0.860 eng_Latn 0.962 spa_Latn
ceb_Latn 0.605 0.605 eng_Latn 0.605 eng_Latn 0.481 cmn_Hani 0.634 spa_Latn 0.634 spa_Latn
ces_Latn 0.826 0.826 eng_Latn 0.874 rus_Cyrl 0.826 eng_Latn 0.874 rus_Cyrl 0.874 rus_Cyrl
cym_Latn 0.621 0.621 eng_Latn 0.612 rus_Cyrl 0.621 eng_Latn 0.602 arb_Arab 0.618 spa_Latn
dan_Latn 0.873 0.873 eng_Latn 0.873 eng_Latn 0.873 eng_Latn 0.640 arb_Arab 0.873 eng_Latn
deu_Latn 0.850 0.850 eng_Latn 0.850 eng_Latn 0.850 eng_Latn 0.850 eng_Latn 0.784 spa_Latn
ekk_Latn 0.815 0.815 eng_Latn 0.815 eng_Latn 0.815 eng_Latn 0.790 rus_Cyrl 0.790 rus_Cyrl
ell_Grek 0.822 0.822 eng_Latn 0.871 rus_Cyrl 0.834 spa_Latn 0.871 rus_Cyrl 0.871 rus_Cyrl
eus_Latn 0.625 0.625 eng_Latn 0.625 eng_Latn 0.681 spa_Latn 0.702 hin_Deva 0.681 spa_Latn
fao_Latn 0.869 0.869 eng_Latn 0.869 eng_Latn 0.869 eng_Latn 0.701 arb_Arab 0.876 spa_Latn
fin_Latn 0.771 0.771 eng_Latn 0.771 eng_Latn 0.771 eng_Latn 0.773 rus_Cyrl 0.773 rus_Cyrl
fra_Latn 0.838 0.838 eng_Latn 0.885 spa_Latn 0.838 eng_Latn 0.838 eng_Latn 0.885 spa_Latn
gla_Latn 0.571 0.571 eng_Latn 0.588 rus_Cyrl 0.571 eng_Latn 0.498 arb_Arab 0.548 spa_Latn
gle_Latn 0.578 0.578 eng_Latn 0.624 rus_Cyrl 0.578 eng_Latn 0.624 spa_Latn 0.624 spa_Latn
glg_Latn 0.796 0.864 spa_Latn 0.864 spa_Latn 0.864 spa_Latn 0.864 spa_Latn 0.864 spa_Latn
gug_Latn 0.213 0.213 eng_Latn 0.213 eng_Latn 0.256 spa_Latn 0.256 spa_Latn 0.256 spa_Latn
heb_Hebr 0.636 0.560 cmn_Hani 0.696 arb_Arab 0.696 arb_Arab 0.704 rus_Cyrl 0.696 arb_Arab
hin_Deva 0.665 0.612 arb_Arab 0.612 arb_Arab 0.612 arb_Arab 0.612 arb_Arab 0.612 arb_Arab
hrv_Latn 0.829 0.829 eng_Latn 0.899 rus_Cyrl 0.829 eng_Latn 0.899 rus_Cyrl 0.899 rus_Cyrl
hun_Latn 0.801 0.801 eng_Latn 0.801 eng_Latn 0.801 eng_Latn 0.740 rus_Cyrl 0.811 spa_Latn
hye_Armn 0.817 0.595 arb_Arab 0.817 eng_Latn 0.595 arb_Arab 0.846 rus_Cyrl 0.846 rus_Cyrl
ind_Latn 0.814 0.814 eng_Latn 0.814 eng_Latn 0.695 hin_Deva 0.814 eng_Latn 0.814 eng_Latn
isl_Latn 0.805 0.805 eng_Latn 0.805 eng_Latn 0.805 eng_Latn 0.805 eng_Latn 0.802 spa_Latn
ita_Latn 0.852 0.906 spa_Latn 0.906 spa_Latn 0.906 spa_Latn 0.906 spa_Latn 0.906 spa_Latn
jav_Latn 0.742 0.742 eng_Latn 0.742 eng_Latn 0.543 cmn_Hani 0.645 hin_Deva 0.731 spa_Latn
jpn_Jpan 0.165 0.534 cmn_Hani 0.165 eng_Latn 0.534 cmn_Hani 0.402 hin_Deva 0.534 cmn_Hani
kaz_Cyrl 0.724 0.739 rus_Cyrl 0.724 eng_Latn 0.739 rus_Cyrl 0.545 cmn_Hani 0.739 rus_Cyrl
kmr_Latn 0.748 0.748 eng_Latn 0.719 hin_Deva 0.646 arb_Arab 0.748 eng_Latn 0.777 spa_Latn
kor_Hang 0.497 0.447 cmn_Hani 0.497 eng_Latn 0.447 cmn_Hani 0.447 cmn_Hani 0.491 hin_Deva
lij_Latn 0.739 0.739 eng_Latn 0.819 spa_Latn 0.819 spa_Latn 0.685 hin_Deva 0.819 spa_Latn
lit_Latn 0.787 0.787 eng_Latn 0.840 rus_Cyrl 0.787 eng_Latn 0.840 rus_Cyrl 0.840 rus_Cyrl

mal_Mlym 0.847 0.680 arb_Arab 0.847 eng_Latn 0.804 hin_Deva 0.804 hin_Deva 0.804 hin_Deva
mar_Deva 0.813 0.830 hin_Deva 0.830 hin_Deva 0.830 hin_Deva 0.830 hin_Deva 0.830 hin_Deva
mlt_Latn 0.776 0.776 eng_Latn 0.603 arb_Arab 0.798 spa_Latn 0.787 rus_Cyrl 0.798 spa_Latn
nld_Latn 0.874 0.874 eng_Latn 0.874 eng_Latn 0.874 eng_Latn 0.874 eng_Latn 0.855 spa_Latn
pes_Arab 0.675 0.690 arb_Arab 0.709 hin_Deva 0.690 arb_Arab 0.709 hin_Deva 0.690 arb_Arab
pol_Latn 0.791 0.791 eng_Latn 0.881 rus_Cyrl 0.791 eng_Latn 0.881 rus_Cyrl 0.881 rus_Cyrl
por_Latn 0.857 0.910 spa_Latn 0.910 spa_Latn 0.910 spa_Latn 0.857 eng_Latn 0.910 spa_Latn
ron_Latn 0.747 0.747 eng_Latn 0.816 spa_Latn 0.747 eng_Latn 0.794 rus_Cyrl 0.816 spa_Latn
san_Deva 0.217 0.319 hin_Deva 0.319 hin_Deva 0.319 hin_Deva 0.319 hin_Deva 0.319 hin_Deva
sin_Sinh 0.546 0.520 arb_Arab 0.652 hin_Deva 0.652 hin_Deva 0.652 hin_Deva 0.652 hin_Deva
slk_Latn 0.820 0.820 eng_Latn 0.865 rus_Cyrl 0.820 eng_Latn 0.743 hin_Deva 0.865 rus_Cyrl
slv_Latn 0.743 0.743 eng_Latn 0.805 rus_Cyrl 0.743 eng_Latn 0.805 rus_Cyrl 0.805 rus_Cyrl
swe_Latn 0.891 0.891 eng_Latn 0.891 eng_Latn 0.891 eng_Latn 0.891 eng_Latn 0.891 eng_Latn
tam_Taml 0.733 0.586 arb_Arab 0.733 eng_Latn 0.771 hin_Deva 0.771 hin_Deva 0.771 hin_Deva
tat_Cyrl 0.675 0.692 rus_Cyrl 0.675 eng_Latn 0.692 rus_Cyrl 0.587 arb_Arab 0.692 rus_Cyrl
tel_Telu 0.791 0.653 arb_Arab 0.791 eng_Latn 0.781 hin_Deva 0.781 hin_Deva 0.781 hin_Deva
tgl_Latn 0.695 0.695 eng_Latn 0.695 eng_Latn 0.416 cmn_Hani 0.719 spa_Latn 0.719 spa_Latn
tha_Thai 0.502 0.499 cmn_Hani 0.502 eng_Latn 0.453 hin_Deva 0.502 eng_Latn 0.499 cmn_Hani
tur_Latn 0.671 0.671 eng_Latn 0.671 eng_Latn 0.522 arb_Arab 0.671 rus_Cyrl 0.697 spa_Latn
uig_Arab 0.660 0.536 arb_Arab 0.660 eng_Latn 0.670 rus_Cyrl 0.525 cmn_Hani 0.687 hin_Deva
ukr_Cyrl 0.821 0.918 rus_Cyrl 0.918 rus_Cyrl 0.821 eng_Latn 0.918 rus_Cyrl 0.918 rus_Cyrl
urd_Arab 0.589 0.580 arb_Arab 0.889 hin_Deva 0.889 hin_Deva 0.889 hin_Deva 0.889 hin_Deva
vie_Latn 0.648 0.648 eng_Latn 0.648 eng_Latn 0.442 cmn_Hani 0.648 eng_Latn 0.658 rus_Cyrl
wol_Latn 0.606 0.606 eng_Latn 0.606 eng_Latn 0.679 spa_Latn 0.606 eng_Latn 0.679 spa_Latn
yor_Latn 0.644 0.644 eng_Latn 0.644 eng_Latn 0.651 spa_Latn 0.658 rus_Cyrl 0.651 spa_Latn
yue_Hani 0.196 0.787 cmn_Hani 0.787 cmn_Hani 0.787 cmn_Hani 0.787 cmn_Hani 0.787 cmn_Hani

Table 17: Cross-Lingual Transfer Results of POS: The first column is the target language. For each language
similarity measure, we report both the source language selected based on similarity and also the evaluation results
on target language using the source language. For mPLM-Sim, we report the layer achieving best performance
(layer 2). 306 193



ENG LEX GEN GEO FEA mPLM-Sim

afr_Latn 0.732 0.732 eng_Latn 0.732 eng_Latn 0.589 arb_Arab 0.701 rus_Cyrl 0.732 eng_Latn
als_Latn 0.708 0.708 eng_Latn 0.721 rus_Cyrl 0.727 spa_Latn 0.727 spa_Latn 0.727 spa_Latn
amh_Ethi 0.557 0.470 cmn_Hani 0.532 arb_Arab 0.532 arb_Arab 0.611 hin_Deva 0.611 hin_Deva
azj_Latn 0.773 0.773 eng_Latn 0.773 eng_Latn 0.705 arb_Arab 0.793 hin_Deva 0.793 hin_Deva

ben_Beng 0.676 0.625 arb_Arab 0.768 hin_Deva 0.768 hin_Deva 0.768 hin_Deva 0.768 hin_Deva
cat_Latn 0.731 0.833 spa_Latn 0.833 spa_Latn 0.833 spa_Latn 0.731 eng_Latn 0.833 spa_Latn

cym_Latn 0.492 0.492 eng_Latn 0.495 rus_Cyrl 0.492 eng_Latn 0.433 arb_Arab 0.480 spa_Latn
dan_Latn 0.838 0.838 eng_Latn 0.838 eng_Latn 0.838 eng_Latn 0.720 arb_Arab 0.838 eng_Latn
deu_Latn 0.759 0.759 eng_Latn 0.759 eng_Latn 0.759 eng_Latn 0.759 eng_Latn 0.726 spa_Latn
ell_Grek 0.715 0.715 eng_Latn 0.729 rus_Cyrl 0.717 spa_Latn 0.729 rus_Cyrl 0.729 rus_Cyrl
fin_Latn 0.677 0.677 eng_Latn 0.677 eng_Latn 0.677 eng_Latn 0.701 rus_Cyrl 0.701 rus_Cyrl
fra_Latn 0.812 0.812 eng_Latn 0.816 spa_Latn 0.812 eng_Latn 0.812 eng_Latn 0.816 spa_Latn
heb_Hebr 0.697 0.576 cmn_Hani 0.691 arb_Arab 0.691 arb_Arab 0.714 rus_Cyrl 0.691 arb_Arab
hun_Latn 0.673 0.673 eng_Latn 0.673 eng_Latn 0.673 eng_Latn 0.698 rus_Cyrl 0.698 rus_Cyrl
hye_Armn 0.781 0.729 arb_Arab 0.781 eng_Latn 0.729 arb_Arab 0.780 rus_Cyrl 0.780 rus_Cyrl
ind_Latn 0.819 0.819 eng_Latn 0.819 eng_Latn 0.779 hin_Deva 0.819 eng_Latn 0.819 eng_Latn
isl_Latn 0.658 0.658 eng_Latn 0.658 eng_Latn 0.658 eng_Latn 0.658 eng_Latn 0.664 rus_Cyrl
ita_Latn 0.772 0.817 spa_Latn 0.817 spa_Latn 0.817 spa_Latn 0.817 spa_Latn 0.817 spa_Latn
jav_Latn 0.507 0.507 eng_Latn 0.507 eng_Latn 0.416 cmn_Hani 0.504 hin_Deva 0.495 spa_Latn
jpn_Jpan 0.384 0.448 cmn_Hani 0.384 eng_Latn 0.448 cmn_Hani 0.363 hin_Deva 0.448 cmn_Hani
kan_Knda 0.682 0.628 arb_Arab 0.682 eng_Latn 0.729 hin_Deva 0.729 hin_Deva 0.729 hin_Deva
kat_Geor 0.618 0.605 arb_Arab 0.618 eng_Latn 0.605 arb_Arab 0.620 hin_Deva 0.620 hin_Deva

khm_Khmr 0.655 0.655 eng_Latn 0.655 eng_Latn 0.636 hin_Deva 0.655 eng_Latn 0.611 arb_Arab
kor_Hang 0.758 0.643 cmn_Hani 0.758 eng_Latn 0.643 cmn_Hani 0.643 cmn_Hani 0.768 hin_Deva
lvs_Latn 0.661 0.661 eng_Latn 0.661 eng_Latn 0.661 eng_Latn 0.651 hin_Deva 0.722 rus_Cyrl

mal_Mlym 0.717 0.678 arb_Arab 0.717 eng_Latn 0.764 hin_Deva 0.764 hin_Deva 0.764 hin_Deva
mya_Mymr 0.688 0.656 arb_Arab 0.616 cmn_Hani 0.707 hin_Deva 0.688 eng_Latn 0.707 hin_Deva

nld_Latn 0.813 0.813 eng_Latn 0.813 eng_Latn 0.813 eng_Latn 0.813 eng_Latn 0.813 eng_Latn
nob_Latn 0.847 0.847 eng_Latn 0.847 eng_Latn 0.847 eng_Latn 0.847 eng_Latn 0.847 eng_Latn
pes_Arab 0.831 0.780 arb_Arab 0.817 hin_Deva 0.780 arb_Arab 0.817 hin_Deva 0.817 hin_Deva
pol_Latn 0.768 0.768 eng_Latn 0.788 rus_Cyrl 0.768 eng_Latn 0.788 rus_Cyrl 0.788 rus_Cyrl
por_Latn 0.793 0.839 spa_Latn 0.839 spa_Latn 0.839 spa_Latn 0.793 eng_Latn 0.839 spa_Latn
ron_Latn 0.791 0.791 eng_Latn 0.814 spa_Latn 0.791 eng_Latn 0.790 rus_Cyrl 0.814 spa_Latn
slv_Latn 0.643 0.643 eng_Latn 0.720 rus_Cyrl 0.643 eng_Latn 0.720 rus_Cyrl 0.720 rus_Cyrl
swe_Latn 0.834 0.834 eng_Latn 0.834 eng_Latn 0.834 eng_Latn 0.834 eng_Latn 0.834 eng_Latn
swh_Latn 0.465 0.465 eng_Latn 0.465 eng_Latn 0.468 arb_Arab 0.499 spa_Latn 0.499 spa_Latn
tam_Taml 0.698 0.657 arb_Arab 0.698 eng_Latn 0.737 hin_Deva 0.737 hin_Deva 0.737 hin_Deva
tel_Telu 0.695 0.657 arb_Arab 0.695 eng_Latn 0.756 hin_Deva 0.756 hin_Deva 0.756 hin_Deva
tgl_Latn 0.752 0.752 eng_Latn 0.752 eng_Latn 0.648 cmn_Hani 0.723 spa_Latn 0.723 spa_Latn
tha_Thai 0.791 0.714 cmn_Hani 0.791 eng_Latn 0.752 hin_Deva 0.791 eng_Latn 0.714 cmn_Hani
tur_Latn 0.747 0.747 eng_Latn 0.747 eng_Latn 0.650 arb_Arab 0.731 rus_Cyrl 0.786 hin_Deva
urd_Arab 0.716 0.686 arb_Arab 0.806 hin_Deva 0.806 hin_Deva 0.806 hin_Deva 0.806 hin_Deva
vie_Latn 0.771 0.771 eng_Latn 0.771 eng_Latn 0.680 cmn_Hani 0.771 eng_Latn 0.771 eng_Latn
zsm_Latn 0.754 0.754 eng_Latn 0.754 eng_Latn 0.731 hin_Deva 0.754 eng_Latn 0.754 eng_Latn

Table 18: Cross-Lingual Transfer Result of MASSIVE: The first column is the target language. For each language
similarity measure, we report both the source language selected based on similarity and also the evaluation results
on target language using the source language. For mPLM-Sim, we report the layer achieving best performance
(layer 8).
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ace_Latn 0.624 0.624 eng_Latn 0.624 eng_Latn 0.726 hin_Deva 0.624 eng_Latn 0.654 spa_Latn
afr_Latn 0.600 0.600 eng_Latn 0.600 eng_Latn 0.455 arb_Arab 0.522 rus_Cyrl 0.604 spa_Latn
aka_Latn 0.518 0.518 eng_Latn 0.518 eng_Latn 0.471 spa_Latn 0.469 hin_Deva 0.471 spa_Latn
als_Latn 0.575 0.575 eng_Latn 0.557 rus_Cyrl 0.536 spa_Latn 0.557 rus_Cyrl 0.536 spa_Latn
ary_Arab 0.421 0.484 arb_Arab 0.484 arb_Arab 0.465 spa_Latn 0.421 eng_Latn 0.484 arb_Arab
arz_Arab 0.325 0.430 arb_Arab 0.430 arb_Arab 0.430 arb_Arab 0.325 eng_Latn 0.430 arb_Arab

asm_Beng 0.574 0.548 arb_Arab 0.600 hin_Deva 0.600 hin_Deva 0.600 hin_Deva 0.600 hin_Deva
ayr_Latn 0.694 0.694 eng_Latn 0.694 eng_Latn 0.645 spa_Latn 0.564 cmn_Hani 0.685 hin_Deva
azb_Arab 0.527 0.585 arb_Arab 0.527 eng_Latn 0.585 arb_Arab 0.639 hin_Deva 0.639 hin_Deva
bak_Cyrl 0.632 0.667 rus_Cyrl 0.632 eng_Latn 0.667 rus_Cyrl 0.635 hin_Deva 0.667 rus_Cyrl
bam_Latn 0.487 0.487 eng_Latn 0.487 eng_Latn 0.617 spa_Latn 0.531 hin_Deva 0.617 spa_Latn
ban_Latn 0.446 0.446 eng_Latn 0.446 eng_Latn 0.483 cmn_Hani 0.497 hin_Deva 0.489 spa_Latn
bel_Cyrl 0.622 0.571 rus_Cyrl 0.571 rus_Cyrl 0.622 eng_Latn 0.530 arb_Arab 0.571 rus_Cyrl

bem_Latn 0.418 0.418 eng_Latn 0.418 eng_Latn 0.477 arb_Arab 0.517 spa_Latn 0.517 spa_Latn
ben_Beng 0.667 0.568 arb_Arab 0.634 hin_Deva 0.634 hin_Deva 0.634 hin_Deva 0.634 hin_Deva
bul_Cyrl 0.612 0.618 rus_Cyrl 0.618 rus_Cyrl 0.574 spa_Latn 0.618 rus_Cyrl 0.618 rus_Cyrl
cat_Latn 0.496 0.614 spa_Latn 0.614 spa_Latn 0.614 spa_Latn 0.496 eng_Latn 0.614 spa_Latn
ceb_Latn 0.565 0.565 eng_Latn 0.565 eng_Latn 0.565 cmn_Hani 0.456 spa_Latn 0.456 spa_Latn
ces_Latn 0.620 0.620 eng_Latn 0.577 rus_Cyrl 0.620 eng_Latn 0.577 rus_Cyrl 0.577 rus_Cyrl
ckb_Arab 0.544 0.539 arb_Arab 0.622 hin_Deva 0.539 arb_Arab 0.589 rus_Cyrl 0.539 arb_Arab
cym_Latn 0.488 0.488 eng_Latn 0.435 rus_Cyrl 0.488 eng_Latn 0.469 arb_Arab 0.501 spa_Latn
dan_Latn 0.556 0.556 eng_Latn 0.556 eng_Latn 0.556 eng_Latn 0.401 arb_Arab 0.556 eng_Latn
deu_Latn 0.559 0.559 eng_Latn 0.559 eng_Latn 0.559 eng_Latn 0.559 eng_Latn 0.561 spa_Latn
dyu_Latn 0.520 0.520 eng_Latn 0.520 eng_Latn 0.587 spa_Latn 0.568 hin_Deva 0.587 spa_Latn
dzo_Tibt 0.495 0.612 arb_Arab 0.682 cmn_Hani 0.681 hin_Deva 0.681 hin_Deva 0.681 hin_Deva
ell_Grek 0.532 0.532 eng_Latn 0.547 rus_Cyrl 0.485 spa_Latn 0.547 rus_Cyrl 0.547 rus_Cyrl
epo_Latn 0.548 0.548 eng_Latn 0.548 eng_Latn 0.548 eng_Latn 0.511 rus_Cyrl 0.530 spa_Latn
eus_Latn 0.196 0.196 eng_Latn 0.196 eng_Latn 0.299 spa_Latn 0.268 hin_Deva 0.299 spa_Latn
ewe_Latn 0.480 0.480 eng_Latn 0.480 eng_Latn 0.589 spa_Latn 0.530 hin_Deva 0.589 spa_Latn
fao_Latn 0.658 0.658 eng_Latn 0.658 eng_Latn 0.658 eng_Latn 0.591 arb_Arab 0.526 spa_Latn
fij_Latn 0.512 0.512 eng_Latn 0.512 eng_Latn 0.525 cmn_Hani 0.576 spa_Latn 0.576 spa_Latn
fin_Latn 0.465 0.465 eng_Latn 0.465 eng_Latn 0.465 eng_Latn 0.518 rus_Cyrl 0.518 rus_Cyrl
fon_Latn 0.462 0.462 eng_Latn 0.462 eng_Latn 0.562 spa_Latn 0.462 eng_Latn 0.562 spa_Latn
fra_Latn 0.566 0.566 eng_Latn 0.627 spa_Latn 0.566 eng_Latn 0.566 eng_Latn 0.627 spa_Latn
gla_Latn 0.489 0.489 eng_Latn 0.476 rus_Cyrl 0.489 eng_Latn 0.464 arb_Arab 0.503 spa_Latn
gle_Latn 0.375 0.375 eng_Latn 0.387 rus_Cyrl 0.375 eng_Latn 0.502 spa_Latn 0.502 spa_Latn
gug_Latn 0.396 0.396 eng_Latn 0.396 eng_Latn 0.561 spa_Latn 0.561 spa_Latn 0.561 spa_Latn
guj_Gujr 0.717 0.646 arb_Arab 0.680 hin_Deva 0.680 hin_Deva 0.680 hin_Deva 0.680 hin_Deva
hat_Latn 0.571 0.571 eng_Latn 0.644 spa_Latn 0.571 eng_Latn 0.584 arb_Arab 0.644 spa_Latn
hau_Latn 0.486 0.486 eng_Latn 0.560 arb_Arab 0.550 spa_Latn 0.486 eng_Latn 0.550 spa_Latn
heb_Hebr 0.398 0.391 cmn_Hani 0.359 arb_Arab 0.359 arb_Arab 0.373 rus_Cyrl 0.359 arb_Arab
hin_Deva 0.705 0.618 arb_Arab 0.618 arb_Arab 0.618 arb_Arab 0.618 arb_Arab 0.618 arb_Arab
hne_Deva 0.708 0.711 hin_Deva 0.711 hin_Deva 0.711 hin_Deva 0.711 hin_Deva 0.711 hin_Deva
hrv_Latn 0.569 0.569 eng_Latn 0.680 rus_Cyrl 0.569 eng_Latn 0.680 rus_Cyrl 0.680 rus_Cyrl
hun_Latn 0.540 0.540 eng_Latn 0.540 eng_Latn 0.540 eng_Latn 0.609 rus_Cyrl 0.609 rus_Cyrl

Table 19: Cross-Lingual Transfer Results of Taxi1500 (Part 1): The first column is the target language. For
each language similarity measure, we report both the source language selected based on similarity and also the
evaluation results on target language using the source language. For mPLM-Sim, we report the layer achieving best
performance (layer 4).
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hye_Armn 0.650 0.678 arb_Arab 0.650 eng_Latn 0.678 arb_Arab 0.654 rus_Cyrl 0.654 rus_Cyrl
ibo_Latn 0.544 0.544 eng_Latn 0.544 eng_Latn 0.566 spa_Latn 0.544 eng_Latn 0.566 spa_Latn
ilo_Latn 0.511 0.511 eng_Latn 0.511 eng_Latn 0.463 cmn_Hani 0.511 eng_Latn 0.591 spa_Latn
ind_Latn 0.720 0.720 eng_Latn 0.720 eng_Latn 0.795 hin_Deva 0.720 eng_Latn 0.720 eng_Latn
isl_Latn 0.497 0.497 eng_Latn 0.497 eng_Latn 0.497 eng_Latn 0.497 eng_Latn 0.602 spa_Latn
ita_Latn 0.608 0.593 spa_Latn 0.593 spa_Latn 0.593 spa_Latn 0.593 spa_Latn 0.593 spa_Latn
jav_Latn 0.445 0.445 eng_Latn 0.445 eng_Latn 0.428 cmn_Hani 0.441 hin_Deva 0.516 spa_Latn
kab_Latn 0.259 0.259 eng_Latn 0.368 arb_Arab 0.396 spa_Latn 0.259 eng_Latn 0.396 spa_Latn
kac_Latn 0.451 0.451 eng_Latn 0.580 cmn_Hani 0.483 hin_Deva 0.580 cmn_Hani 0.483 hin_Deva
kan_Knda 0.673 0.637 arb_Arab 0.673 eng_Latn 0.640 hin_Deva 0.640 hin_Deva 0.640 hin_Deva
kat_Geor 0.558 0.464 arb_Arab 0.558 eng_Latn 0.464 arb_Arab 0.672 hin_Deva 0.672 hin_Deva
kaz_Cyrl 0.587 0.636 rus_Cyrl 0.587 eng_Latn 0.636 rus_Cyrl 0.629 hin_Deva 0.636 rus_Cyrl
kbp_Latn 0.357 0.357 eng_Latn 0.357 eng_Latn 0.361 spa_Latn 0.357 eng_Latn 0.378 hin_Deva

khm_Khmr 0.653 0.653 eng_Latn 0.653 eng_Latn 0.679 hin_Deva 0.653 eng_Latn 0.679 hin_Deva
kik_Latn 0.384 0.384 eng_Latn 0.384 eng_Latn 0.456 arb_Arab 0.555 spa_Latn 0.555 spa_Latn
kin_Latn 0.431 0.431 eng_Latn 0.431 eng_Latn 0.530 arb_Arab 0.431 eng_Latn 0.619 spa_Latn
kir_Cyrl 0.623 0.601 rus_Cyrl 0.623 eng_Latn 0.601 rus_Cyrl 0.750 hin_Deva 0.601 rus_Cyrl
kng_Latn 0.353 0.353 eng_Latn 0.353 eng_Latn 0.455 arb_Arab 0.455 arb_Arab 0.381 spa_Latn
kor_Hang 0.614 0.602 cmn_Hani 0.614 eng_Latn 0.602 cmn_Hani 0.602 cmn_Hani 0.686 hin_Deva
lao_Laoo 0.689 0.689 eng_Latn 0.689 eng_Latn 0.711 cmn_Hani 0.689 eng_Latn 0.711 cmn_Hani
lin_Latn 0.504 0.504 eng_Latn 0.504 eng_Latn 0.541 arb_Arab 0.504 eng_Latn 0.450 spa_Latn
lit_Latn 0.566 0.566 eng_Latn 0.594 rus_Cyrl 0.566 eng_Latn 0.594 rus_Cyrl 0.594 rus_Cyrl
ltz_Latn 0.546 0.546 eng_Latn 0.546 eng_Latn 0.546 eng_Latn 0.547 spa_Latn 0.547 spa_Latn
lug_Latn 0.474 0.474 eng_Latn 0.474 eng_Latn 0.564 arb_Arab 0.510 spa_Latn 0.510 spa_Latn
luo_Latn 0.394 0.394 eng_Latn 0.394 eng_Latn 0.435 arb_Arab 0.394 eng_Latn 0.427 spa_Latn
mai_Deva 0.698 0.724 hin_Deva 0.724 hin_Deva 0.724 hin_Deva 0.724 hin_Deva 0.724 hin_Deva
mar_Deva 0.720 0.665 hin_Deva 0.665 hin_Deva 0.665 hin_Deva 0.665 hin_Deva 0.665 hin_Deva
min_Latn 0.482 0.482 eng_Latn 0.482 eng_Latn 0.464 hin_Deva 0.482 eng_Latn 0.552 spa_Latn
mkd_Cyrl 0.701 0.648 rus_Cyrl 0.648 rus_Cyrl 0.629 spa_Latn 0.648 rus_Cyrl 0.648 rus_Cyrl
mlt_Latn 0.503 0.503 eng_Latn 0.519 arb_Arab 0.527 spa_Latn 0.556 rus_Cyrl 0.527 spa_Latn
mos_Latn 0.360 0.360 eng_Latn 0.360 eng_Latn 0.506 spa_Latn 0.360 eng_Latn 0.506 spa_Latn
mri_Latn 0.522 0.522 eng_Latn 0.522 eng_Latn 0.391 cmn_Hani 0.522 eng_Latn 0.484 spa_Latn

mya_Mymr 0.581 0.574 arb_Arab 0.537 cmn_Hani 0.674 hin_Deva 0.581 eng_Latn 0.674 hin_Deva
nld_Latn 0.713 0.713 eng_Latn 0.713 eng_Latn 0.713 eng_Latn 0.713 eng_Latn 0.628 spa_Latn
nno_Latn 0.704 0.704 eng_Latn 0.704 eng_Latn 0.704 eng_Latn 0.691 hin_Deva 0.704 eng_Latn
nob_Latn 0.656 0.656 eng_Latn 0.656 eng_Latn 0.656 eng_Latn 0.656 eng_Latn 0.656 eng_Latn
npi_Deva 0.694 0.712 hin_Deva 0.712 hin_Deva 0.694 eng_Latn 0.712 hin_Deva 0.712 hin_Deva
nso_Latn 0.514 0.514 eng_Latn 0.514 eng_Latn 0.519 arb_Arab 0.519 arb_Arab 0.564 spa_Latn
nya_Latn 0.560 0.560 eng_Latn 0.560 eng_Latn 0.584 arb_Arab 0.584 arb_Arab 0.624 spa_Latn
ory_Orya 0.698 0.635 arb_Arab 0.683 hin_Deva 0.698 eng_Latn 0.683 hin_Deva 0.683 hin_Deva
pag_Latn 0.618 0.618 eng_Latn 0.618 eng_Latn 0.572 cmn_Hani 0.610 spa_Latn 0.610 spa_Latn
pan_Guru 0.709 0.675 hin_Deva 0.675 hin_Deva 0.675 hin_Deva 0.675 hin_Deva 0.675 hin_Deva
pap_Latn 0.572 0.572 eng_Latn 0.538 spa_Latn 0.538 spa_Latn 0.607 arb_Arab 0.538 spa_Latn
pes_Arab 0.624 0.619 arb_Arab 0.668 hin_Deva 0.619 arb_Arab 0.668 hin_Deva 0.668 hin_Deva

Table 20: Cross-Lingual Transfer Results of Taxi1500 (Part 2): The first column is the target language. For
each language similarity measure, we report both the source language selected based on similarity and also the
evaluation results on target language using the source language. For mPLM-Sim, we report the layer achieving best
performance (layer 4).
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plt_Latn 0.503 0.503 eng_Latn 0.503 eng_Latn 0.495 arb_Arab 0.627 rus_Cyrl 0.562 spa_Latn
pol_Latn 0.690 0.690 eng_Latn 0.690 rus_Cyrl 0.690 eng_Latn 0.690 rus_Cyrl 0.690 rus_Cyrl
por_Latn 0.615 0.605 spa_Latn 0.605 spa_Latn 0.605 spa_Latn 0.615 eng_Latn 0.605 spa_Latn
prs_Arab 0.677 0.653 arb_Arab 0.665 hin_Deva 0.665 hin_Deva 0.691 cmn_Hani 0.665 hin_Deva
quy_Latn 0.696 0.696 eng_Latn 0.696 eng_Latn 0.693 spa_Latn 0.718 hin_Deva 0.693 spa_Latn
ron_Latn 0.582 0.582 eng_Latn 0.617 spa_Latn 0.582 eng_Latn 0.589 rus_Cyrl 0.617 spa_Latn
run_Latn 0.470 0.470 eng_Latn 0.470 eng_Latn 0.508 arb_Arab 0.546 hin_Deva 0.504 spa_Latn
sag_Latn 0.476 0.476 eng_Latn 0.476 eng_Latn 0.491 arb_Arab 0.476 eng_Latn 0.442 spa_Latn
sin_Sinh 0.582 0.652 arb_Arab 0.663 hin_Deva 0.663 hin_Deva 0.663 hin_Deva 0.663 hin_Deva
slk_Latn 0.568 0.568 eng_Latn 0.592 rus_Cyrl 0.568 eng_Latn 0.635 hin_Deva 0.592 rus_Cyrl
slv_Latn 0.635 0.635 eng_Latn 0.718 rus_Cyrl 0.635 eng_Latn 0.718 rus_Cyrl 0.718 rus_Cyrl
smo_Latn 0.600 0.600 eng_Latn 0.600 eng_Latn 0.630 cmn_Hani 0.549 arb_Arab 0.625 spa_Latn
sna_Latn 0.443 0.443 eng_Latn 0.443 eng_Latn 0.444 arb_Arab 0.555 spa_Latn 0.555 spa_Latn
snd_Arab 0.694 0.621 arb_Arab 0.726 hin_Deva 0.726 hin_Deva 0.726 hin_Deva 0.726 hin_Deva
som_Latn 0.355 0.355 eng_Latn 0.454 arb_Arab 0.454 arb_Arab 0.424 hin_Deva 0.485 spa_Latn
sot_Latn 0.441 0.441 eng_Latn 0.441 eng_Latn 0.537 arb_Arab 0.537 arb_Arab 0.516 spa_Latn
ssw_Latn 0.437 0.437 eng_Latn 0.437 eng_Latn 0.424 arb_Arab 0.424 arb_Arab 0.497 spa_Latn
sun_Latn 0.493 0.493 eng_Latn 0.493 eng_Latn 0.548 hin_Deva 0.493 eng_Latn 0.514 spa_Latn
swe_Latn 0.665 0.665 eng_Latn 0.665 eng_Latn 0.665 eng_Latn 0.665 eng_Latn 0.665 eng_Latn
swh_Latn 0.642 0.642 eng_Latn 0.642 eng_Latn 0.558 arb_Arab 0.574 spa_Latn 0.574 spa_Latn
tam_Taml 0.684 0.643 arb_Arab 0.684 eng_Latn 0.695 hin_Deva 0.695 hin_Deva 0.695 hin_Deva
tat_Cyrl 0.670 0.664 rus_Cyrl 0.670 eng_Latn 0.664 rus_Cyrl 0.648 arb_Arab 0.664 rus_Cyrl
tel_Telu 0.557 0.594 arb_Arab 0.557 eng_Latn 0.684 hin_Deva 0.684 hin_Deva 0.684 hin_Deva
tgk_Cyrl 0.490 0.724 rus_Cyrl 0.493 hin_Deva 0.724 rus_Cyrl 0.426 arb_Arab 0.724 rus_Cyrl
tgl_Latn 0.628 0.628 eng_Latn 0.628 eng_Latn 0.563 cmn_Hani 0.567 spa_Latn 0.567 spa_Latn
tha_Thai 0.600 0.669 cmn_Hani 0.600 eng_Latn 0.651 hin_Deva 0.600 eng_Latn 0.669 cmn_Hani
tir_Ethi 0.487 0.497 cmn_Hani 0.531 arb_Arab 0.531 arb_Arab 0.601 hin_Deva 0.601 hin_Deva
tpi_Latn 0.621 0.621 eng_Latn 0.621 eng_Latn 0.579 cmn_Hani 0.621 eng_Latn 0.609 spa_Latn
tsn_Latn 0.397 0.397 eng_Latn 0.397 eng_Latn 0.447 arb_Arab 0.413 cmn_Hani 0.495 spa_Latn
tuk_Latn 0.537 0.537 eng_Latn 0.537 eng_Latn 0.649 arb_Arab 0.592 cmn_Hani 0.604 hin_Deva
tum_Latn 0.559 0.559 eng_Latn 0.559 eng_Latn 0.528 arb_Arab 0.642 hin_Deva 0.533 spa_Latn
tur_Latn 0.609 0.609 eng_Latn 0.609 eng_Latn 0.602 arb_Arab 0.615 rus_Cyrl 0.640 hin_Deva
twi_Latn 0.532 0.532 eng_Latn 0.532 eng_Latn 0.507 spa_Latn 0.532 eng_Latn 0.507 spa_Latn
ukr_Cyrl 0.506 0.558 rus_Cyrl 0.558 rus_Cyrl 0.506 eng_Latn 0.558 rus_Cyrl 0.558 rus_Cyrl
vie_Latn 0.642 0.642 eng_Latn 0.642 eng_Latn 0.656 cmn_Hani 0.642 eng_Latn 0.614 rus_Cyrl
war_Latn 0.449 0.449 eng_Latn 0.449 eng_Latn 0.472 cmn_Hani 0.472 cmn_Hani 0.505 spa_Latn
wol_Latn 0.396 0.396 eng_Latn 0.396 eng_Latn 0.400 spa_Latn 0.396 eng_Latn 0.400 spa_Latn
xho_Latn 0.486 0.486 eng_Latn 0.486 eng_Latn 0.507 arb_Arab 0.486 eng_Latn 0.422 spa_Latn
yor_Latn 0.542 0.542 eng_Latn 0.542 eng_Latn 0.556 spa_Latn 0.584 rus_Cyrl 0.556 spa_Latn
yue_Hani 0.577 0.718 cmn_Hani 0.718 cmn_Hani 0.718 cmn_Hani 0.718 cmn_Hani 0.718 cmn_Hani
zsm_Latn 0.658 0.658 eng_Latn 0.658 eng_Latn 0.694 hin_Deva 0.658 eng_Latn 0.658 eng_Latn
zul_Latn 0.504 0.504 eng_Latn 0.504 eng_Latn 0.527 arb_Arab 0.526 rus_Cyrl 0.529 spa_Latn

Table 21: Cross-Lingual Transfer Results of Taxi1500 (Part 3). The first column is the target language. For
each language similarity measure, we report both the source language selected based on similarity and also the
evaluation results on target language using the source language. For mPLM-Sim, we report the layer achieving best
performance (layer 4).
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Abstract
Recent studies indicate that leveraging off-the-
shelf or fine-tuned retrievers, capable of retriev-
ing relevant in-context examples tailored to
the input query, enhances few-shot in-context
learning for English. However, adapting these
methods to other languages, especially low-
resource ones, poses challenges due to the
scarcity of cross-lingual retrievers and anno-
tated data. Thus, we introduce XAMPLER:
Cross-Lingual Example Retrieval, a method
tailored to tackle the challenge of cross-lingual
in-context learning using only annotated En-
glish data. XAMPLER first trains a retriever
based on Glot500, a multilingual small lan-
guage model, using positive and negative En-
glish examples constructed from the predic-
tions of a multilingual large language model,
i.e., MaLA500. Leveraging the cross-lingual
capacity of the retriever, it can directly retrieve
English examples as few-shot examples for
in-context learning of target languages. Ex-
periments on two multilingual text classifica-
tion benchmarks, namely SIB200 with 176
languages and MasakhaNEWS with 16 lan-
guages, demonstrate that XAMPLER substan-
tially improves the in-context learning perfor-
mance across languages. Our code is available
at https://github.com/cisnlp/XA
MPLER.

1 Introduction

Large language models (LLMs) have shown emer-
gent abilities in in-context learning, where a few
input-output examples are provided with the in-
put query. Through in-context learning, LLMs can
yield promising results without any parameter up-
dates (Brown et al., 2020). However, the efficacy of
in-context learning is highly dependent on the se-
lection of the few-shot examples (Liu et al., 2022).

Recent studies (Luo et al., 2024) have uncov-
ered a more strategic approach to example retrieval.
Rather than relying on random selection, these stud-
ies advocate for retrieving examples tailored to the
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Figure 1: XAMPLER involves three steps: 1. Data
Construction: given a query in English qi, we divide
the candidate English examples Di into positive exam-
ples Dpos

i and negative examples Dneg
i based on the

prediction of MaLA500 (Lin et al., 2024b); 2. Retriever
Fine-tuning: we fine-tune the retriever based on Glot500
(Imani et al., 2023) using the constructed data; 3. In-
Context Learning: given a query in any language qj ,
we use the fine-tuned retriever to retrieve relevant En-
glish examples Dj as few-shots for in-context learning.
For training, XAMPLER requires English data only.
Once trained, the model can be applied to any of the
500 languages covered by MaLA500/Glot500 without
any need for (often unavailable) labeled low-resource
data.

input query, resulting in notable performance en-
hancements in in-context learning. The retrievers
employed by these methods can be categorized into
two main types: general off-the-shelf retrievers
(Liu et al., 2022), e.g., Sentence-BERT (Reimers
and Gurevych, 2019), and task-specific fine-tuned
retrievers (Rubin et al., 2022), which are trained
based on LLM signals (whether an example is help-
ful) using labeled data.

Utilizing off-the-shelf retrievers has been fur-
ther validated as an effective approach in multilin-
gual settings (Nie et al., 2022; Winata et al., 2023;
Tanwar et al., 2023). However, this method en-
counters limitations when applied to low-resource
languages. Existing multilingual retrievers, e.g.,
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SBERT (Reimers and Gurevych, 2020), cover a lim-
ited number of languages (i.e., 50+), and language-
model-based retrievers (Hu et al., 2020) struggle
to effectively align distant languages (Cao et al.,
2020; Liu et al., 2023). Additionally, relying on off-
the-shelf retrievers might lead to sub-optimal per-
formance. Conversely, adopting task-specific fine-
tuned retrievers has been demonstrated as a more ef-
fective approach (Rubin et al., 2022). Nonetheless,
the availability of data for fine-tuning task-specific
retrievers in low-resource languages is limited.

To tackle these challenges, we propose a simple
yet effective method that relies solely on annotated
English data, termed XAMPLER (Cross-Lingual
Example Retrieval). As shown in Fig. 1, given an
English query qi and an English example from the
candidate pool Di, we employ in-context learning
with MaLA500 (Lin et al., 2024b), a 10B multi-
lingual LLM covering 534 languages, to predict
the label of the query. Based on the correctness
of the prediction, we classify the candidate exam-
ple as either positive or negative, i.e., Dpos

i and
Dneg

i . Then, leveraging the curated dataset, we
train a retriever based on Glot500 (Imani et al.,
2023), a multilingual small language model cov-
ering 534 languages, aiming to minimize the con-
trastive loss (Rubin et al., 2022; Cheng et al., 2023;
Luo et al., 2023). Finally, the trained retriever is
directly applied to retrieve valuable few-shot ex-
amples in English for the given query in the target
language. The retrieved English few-shot exam-
ples, along with the input query, are then fed into
MaLA500 for in-context learning. Experiments
across 176 languages on SIB200 and 16 languages
on MasakhaNEWS show that XAMPLER effec-
tively retrieves cross-lingual examples, thereby en-
hancing in-context learning across languages.

2 Approach

2.1 Problem Definition

Given an input query qi in any language, our ob-
jective is to enhance in-context learning for pre-
dicting the label of qi by retrieving tailored few-
shot examples from the pool of candidate exam-
ples D. Due to the scarcity of annotated data in
low-resource languages, we introduce XAMPLER,
namely, Cross-Lingual Example Retrieval. On one
hand, we leverage in-domain English examples as
the pool of candidate examples D, from which we
retrieve cross-lingual examples in English for qi in
any target language. On the other hand, we only

consider qi sourced from English training data to
train the task-specific retriever, which is then di-
rectly applied for evaluation across languages.

2.2 Data Construction

To train the task-specific retriever aimed at retriev-
ing informative examples for the given query qi,
we consider contrastive learning, which requires
both positive and negative examples for each query
qi. We define examples as positive when the LLM
accurately predicts the ground truth of qi while uti-
lizing the example as a one-shot example appended
to qi for in-context learning. Conversely, examples
are categorized as negative if the LLM’s prediction
deviates from the ground truth.

Scoring all pairs of training examples presents
a quadratic complexity in |D|, making it resource-
intensive. Inspired by Rubin et al. (2022), we miti-
gate this by selecting the top k similar examples as
candidates. We utilize Sentence-BERT (SBERT)
(Reimers and Gurevych, 2020)1 for candidate selec-
tion. Based on our experiments detailed in Section
B, we set k = 10. The top k candidates for qi are
denoted as Di = {di,1, · · · , di,k}, where each can-
didate di,j is represented as (xi,j , yi,j), with xi,j
being the input and yi,j the corresponding label.

After obtaining the candidate-query pairs
{(qi, di,1), · · · , (qi, di,k)}, we conduct 1-shot in-
context learning with MaLA500 (Lin et al., 2024b)
to predict the class of the qi given the candidate
di,j , resulting in a predicted label ŷi,j . If MaLA500
correctly predicts the label of qi (i.e., ŷi,j = yi), we
consider the candidate di,j as a positive example
(d+i,j); otherwise a negative example (d−i,j). Finally,
we divide Di into sets of positive and negative ex-
amples, denoted as Dpos

i and Dneg
i , respectively.

2.3 Retriever Fine-tuning

We utilize the contrastive loss (Rubin et al., 2022;
Cheng et al., 2023; Luo et al., 2023) to train the
task-specific retriever, aiming to maximize the sim-
ilarity between qi and xi,j if xi,j is a positive ex-
ample while minimizing the similarity if xi,j is a
negative example. We opt for Glot500 (Imani et al.,
2023) with a model size of 395M as the base model
for training the retriever, considering the significant
cost of fine-tuning an LLM. We train for 50 epochs
using the AdamW optimizer with a learning rate
of 2e-5 and a batch size of 16. Due to the multi-
lingual nature of Glot500, the fine-tuned retriever

1We use version distiluse-base-multilingual-cased-v1.
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can be effectively transferred to retrieve in-context
examples for other languages.

2.4 In-Context Learning
At test time, when employing in-context learning
across languages, where qi can be in any language,
we use the fine-tuned task-specific retriever to re-
trieve a few cross-lingual examples in English tai-
lored to qi. The retrieved examples are appended
to qi as input for MaLA500 (Lin et al., 2024b) to
predict the label of qi through in-context learning.

3 Experiment

3.1 Setup
Benchmark We evaluate XAMPLER on two text
classification benchmarks: SIB200 (Adelani et al.,
2023a) and MasakhaNEWS (Adelani et al., 2023b).
The partitioning for these datasets was predefined
by the respective benchmarks. SIB200 is a mas-
sively multilingual text classification benchmark
with seven classes. Our evaluation spans a di-
verse set of 176 languages, obtained by intersecting
the language sets of SIB200 and MaLA500 (see
§C). The English training set contains 701 sam-
ples, with 204 evaluation samples per language.
MasakhaNEWS is a news classification task for 16
African languages, covering six topics. The En-
glish training set contains 3.31k samples, with 175
to 948 evaluation samples per language.

Our evaluation framework follows the prompt
template used in Lin et al. (2024b): ‘The topic of
the news [sentence] is [label]’, where [sentence]
represents the text for classification and [label] is
the ground truth. [label] is included when the sam-
ple serves as a few-shot example but is omitted
when predicting the sample. We opt for English
prompt templates over in-language ones due to the
labor-intensive nature of crafting templates for non-
English languages, especially those with limited
resources. MaLA500 takes the concatenation of
few-shot examples and qi as input, then proceeds to
estimate the probability distribution across the label
set. We measure the performance with accuracy.

Baselines We compare XAMPLER with the fol-
lowing retrieving strategies:

Random Sampling. We randomly select exam-
ples from the English candidate pool D.

Multilingual Language Models. We use two mas-
sively multilingual language models, Glot500 and
MaLA500, as retrievers. Tailored examples are
retrieved based on the cosine similarity between

SIB200 MasakhaNEWS
Label-Aware Label-Agnostic Label-Aware Label-Agnostic

Random 65.24 61.68 72.32 72.39
Glot500 66.60 68.55 73.35 73.01

MaLA500 66.75 66.25 73.39 71.58
SBERT 67.13 66.59 73.24 72.8
LaBSE 68.51 73.69 72.54 73.29

Multilingual E5 69.09 74.61 73.63 72.61

XAMPLER 70.18 75.91 75.02 73.85

Table 1: Average macro-accuracy across the evaluated
languages on SIB200 and MasakhaNEWS using XAM-
PLER compared to the baselines.

the sentence representations of the candidate and
the query. For Glot500, we utilize mean pool-
ing over hidden states of the selected layer. For
MaLA500, we adopt a position-weighted mean
pooling method on the selected layer, assigning
higher weights to later tokens (Muennighoff, 2022).
We use K-Nearest Neighbors to select the layer that
performs best across layers (see §A). The selected
layers for Glot500 and MaLA500 are 11 and 21,
respectively.

Off-the-shelf Retriever. We also employ three off-
the-shelf retrievers trained on parallel data: SBERT
(Reimers and Gurevych, 2019), LaBSE (Feng et al.,
2022), and Multilingual E5 (Wang et al., 2024).2

We set the number of shots as the number of
classes and evaluate under two settings: the label-
aware setting, where one shot is provided per class,
and the label-agnostic setting, where the most simi-
lar examples are retrieved regardless of their labels.

3.2 Main Results

The comparison between the baselines and XAM-
PLER is illustrated in Table 1. Our analysis re-
veals several insights based on the performance
with In-Context Learning (ICL) across different
methods. Notably, the random baseline exhibits
the worst performance among the baselines using
ICL, emphasizing the critical role of example se-
lection for effective in-context learning. Multilin-
gual language models, which retrieve examples
based on semantic similarity learned during pre-
training, slightly outperform the random baseline.
Leveraging an off-the-shelf retriever further im-
proves performance, with Multilingual E5 emerg-
ing as the top performer among them. Among all
the methods, XAMPLER achieves the highest per-
formance in in-context learning. Specifically, on
SIB200, XAMPLER surpasses Multilingual E5 by
1.09% in the label-aware setting and 1.30% in the

2https://huggingface.co/intfloat/mult
ilingual-e5-large
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label-agnostic setting, and by 1.93% and 1.24% on
MasakhaNEWS, respectively.

Our two established practices to reduce resource
requirements, i.e., selecting the top-k similar ex-
amples as candidates using existing off-the-shelf
retrievers and using a smaller base model for re-
triever training, ensures that XAMPLER operates
efficiently. For example, on the SIB200 benchmark
(701 samples, 10 candidates per sample) using an
NVIDIA GeForce GTX 1080 Ti (11GB), retriever
fine-tuning took just 1.5 hours, and retrieving sim-
ilar examples added only 0.1 seconds per query
during inference.

3.3 Ablation Study
To further assess the effectiveness of XAMPLER,
we conduct the following ablation studies:

Method Accuracy (%)

XLT (Glot500) 69.51
XLT (MaLA500) 69.90

MT 74.50
KNN 72.85

XAMPLER 75.91

Table 2: Performance comparison of XAMPLER with
ablation methods on the SIB200 benchmark.

Cross-lingual Transfer (XLT). Cross-lingual
transfer is another approach that utilizes English
data. In this method, the multilingual language
model is fine-tuned on English data and then eval-
uated across target languages. Both Glot500 and
MaLA500 are included, with their respective cross-
lingual transfer methods denoted as XLT (Glot500)
and XLT (MaLA500). For Glot500, we perform
full-parameter fine-tuning with a batch size of 16
and a learning rate of 1e-5. For MaLA500, which
is trained by incorporating LoRA (Hu et al., 2022)
into LLaMA 2-7B (Touvron et al., 2023), we up-
date only the LoRA parameters with prompt tuning.
The learning rate is set to 1e-3, weight decay is 0.1,
the maximum sequence length is 128, and the batch
size is 16. The optimizer used is AdamW.

Machine Translation (MT). We translate the ex-
amples retrieved by XAMPLER from English to
the target language and use these translated exam-
ples as few-shot examples for in-context learning.
For translation, we use the distilled 600M variant
of NLLB-200 (Costa-jussà et al., 2022).

K-Nearest Neighbors (KNN). We consider KNN
with the fine-tuned task-specific retriever of XAM-
PLER for comparison. Specifically, we adopt ma-

60
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80

2 4 6 8 10

KNN ICL

Figure 2: KNN (K-Nearest Neighbors) vs. ICL (In-
Context Learning) with different number of shots. X-
axis: number of shots. Y-axis: Macro-average accuracy.

jority voting based on the labels of the examples
retrieved by the given retriever.

The results of the ablation studies are shown in
Table 2. XAMPLER outperforms XLT (Glot500)
and XLT (MaLA500) by 6.40% and 6.01%, respec-
tively, demonstrating that in-context learning, when
combined with informative cross-lingual few-shot
examples, is superior to traditional cross-lingual
transfer methods via fine-tuning. Translating En-
glish examples into target languages results in
slightly worse results than XAMPLER by 1.41%. It
demonstrates that XAMPLER benefits more from
English in-context examples than in-language ex-
amples. A comparison between XAMPLER and
KNN shows that XAMPLER performs better by
3.06%. We also compared XAMPLER’s perfor-
mance with KNN and ICL using varying numbers
of retrieved examples, as illustrated in Figure 2. In-
terestingly, XAMPLER with ICL exhibits inconsis-
tent superiority over KNN, with performance vari-
ances ranging from 3% to 10%. Specifically, XAM-
PLER with KNN achieves its peak performance
with 5 examples, whereas ICL achieves impressive
results with only 2 examples. Notably, in compar-
ison to KNN’s optimal performance, recorded at
73.26% with 5 shots, XAMPLER with ICL demon-
strates a notable improvement of 2.58%. These
findings underscore the efficacy of applying in-
context learning in effectively leveraging the re-
trieved examples.

4 Related Work

Early studies (Gao et al., 2021; Liu et al., 2022;
Rubin et al., 2022) on retrieving informative ex-
amples for few-shot in-context learning often rely
on off-the-shelf retrievers to gather semantically
similar examples to the query.
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While off-the-shelf retrievers have shown
promise, the examples they retrieve may not al-
ways represent optimal solutions for the given task,
potentially resulting in sub-optimal performance.
Hence, Rubin et al. (2022) delve into learning-
based approaches: if an LLM finds an example
useful, the retriever should be encouraged to re-
trieve it. This approach enables direct training of
the retriever using signals derived from query and
example pairs in the task of interest.

Several works (Winata et al., 2021; Shi et al.,
2022; Winata et al., 2022; Nie et al., 2022; Winata
et al., 2023; Tanwar et al., 2023; Cahyawijaya et al.,
2024) extend these methods to non-English lan-
guages. A study closely related to ours is Shi et al.
(2022), which trains a cross-lingual example re-
triever via distilling the LLM’s scoring function
and evaluates it on four languages for the Text-to-
SQL Semantic Parsing task. However, our con-
tribution lies in addressing the more challenging
low-resource scenario, thereby extending the appli-
cability and robustness of the approach proposed
by Shi et al. (2022).

5 Conclusion

In this paper, we introduce XAMPLER, a novel
approach designed for cross-lingual example re-
trieval to facilitate in-context learning in any lan-
guage. Relying solely on English data, XAMPLER
trains a task-specific retriever capable of retriev-
ing cross-lingual English examples tailored to any
language query, thereby facilitating few-shot in-
context learning for any language. Experiments on
SIB200 and MasakhaNEWS show that XAMPLER
outperforms previous methods by a notable margin.

Limitations

We did not consider other models and benchmarks
due to the absence / unavailability of massively mul-
tilingual ones. Additionally, while it is acknowl-
edged that English may not universally serve as the
optimal source language for cross-lingual transfer
across all target languages (Lin et al., 2019; Wang
et al., 2023; Lin et al., 2024a), our study does not
explore the selection of different source languages
due to the predominant availability of training data
in English for many tasks.
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A KNN Performance Across Layers

We show the 10-shot KNN results across layers
with Glot500 and MaLA500 as retrievers in Fig-
ure 3 and 4. As shown, layer 21 of MaLA500 and
layer 11 of Glot500 achieve the best performance
across layers. Therefore, the retrieved results based
on these two layers are used in the baselines.
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Figure 3: Results of 10-shot KNN (K-Nearest Neigh-
bors) with Glot500 as retriever across layers.
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Figure 4: Results of 10-shot KNN (K-Nearest Neigh-
bors) with MaLA500 as retriever across layers.

B Effect of k

We conduct additional experiments to analyze the
impact of the parameter k, with the results pre-
sented in Figure 5. Our findings indicate that XAM-
PLER performs optimally when k = 10. However,
as k exceeds 10, there is a slight decrease in perfor-
mance. This trend may be attributed to the possibil-
ity that increasing k leads to fewer hard negatives
for training the retriever.

C Detailed Results

The language list of SIB200 and the results of
XAMPLER and the compared baselines are shown
in Table 3 and Table 4. The language list of
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Figure 5: In-context learning with XAMPLER with
different k.

MasakhaNEWS and the results of XAMPLER and
the compared baselines are shown in Table 5.
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Label-Aware Label-Agnostic
Random Glot500 MaLA500 SBERT LaBSE Multilingual E5 XAMPLER Random Glot500 MaLA500 SBERT LaBSE Multilingual E5 XAMPLER

ace_Latn 72.55 75.00 72.06 74.51 72.55 74.51 72.06 63.73 71.57 70.10 70.10 76.47 80.39 76.96
acm_Arab 62.25 64.71 65.20 70.10 66.18 68.63 75.00 61.76 71.08 65.69 78.92 75.98 75.98 79.90
afr_Latn 77.45 76.47 77.94 79.90 80.39 81.86 79.41 70.59 79.41 78.43 83.82 88.24 81.86 87.25
ajp_Arab 64.71 67.65 67.16 68.14 69.61 68.14 74.51 64.71 72.06 64.71 77.94 76.47 77.94 84.31
als_Latn 74.51 74.51 77.94 78.92 77.45 79.41 75.00 68.63 75.98 75.00 80.88 83.82 82.84 84.31
amh_Ethi 56.37 59.31 60.29 60.29 61.76 60.78 68.63 57.35 61.27 60.78 60.29 67.16 67.16 71.08
apc_Arab 63.73 67.65 65.20 68.63 68.14 71.08 75.00 61.76 72.06 62.25 78.43 79.90 76.47 85.78
arb_Arab 65.69 69.61 68.63 69.61 72.55 72.06 77.45 65.20 74.02 70.10 76.96 81.37 75.98 83.82
ary_Arab 58.82 65.20 63.24 65.69 64.71 66.18 74.51 57.84 71.57 60.78 71.57 71.57 73.53 80.39
arz_Arab 63.24 66.18 64.71 66.18 67.65 65.20 73.53 62.25 69.61 61.76 76.47 78.92 76.96 82.84

asm_Beng 70.59 72.06 73.04 72.06 75.98 75.49 73.53 69.12 76.47 72.55 64.22 78.92 76.96 83.82
ast_Latn 79.90 76.47 81.37 79.90 79.41 80.39 82.84 74.02 78.43 81.37 85.78 84.31 82.84 89.71
ayr_Latn 39.71 45.59 43.14 46.08 44.61 45.59 42.16 44.12 47.55 47.06 46.08 46.57 53.43 52.45
azb_Arab 47.55 50.49 50.98 50.98 52.45 54.41 64.71 48.04 61.27 49.51 46.57 60.29 61.76 70.59
azj_Latn 77.45 76.47 77.45 77.94 78.92 82.35 77.94 71.57 79.41 76.47 78.92 82.84 83.82 84.80
bak_Cyrl 69.12 75.49 71.57 72.55 72.06 74.51 75.00 66.18 73.53 69.61 77.94 75.00 78.92 80.88
bam_Latn 44.12 46.08 48.04 47.06 49.51 50.49 52.94 43.14 47.55 44.61 46.08 50.00 57.35 49.02
ban_Latn 75.00 74.51 76.47 77.94 78.92 78.43 79.90 69.61 73.53 78.43 75.98 83.33 84.31 82.35
bel_Cyrl 76.96 76.96 75.00 78.43 77.94 78.92 76.47 71.08 77.94 74.02 76.47 84.80 81.86 85.78

bem_Latn 50.49 52.94 52.45 49.51 52.45 54.41 53.43 47.55 58.82 50.98 50.49 54.41 65.69 62.25
ben_Beng 72.06 72.06 67.65 69.61 73.53 72.55 79.41 65.20 75.49 68.14 66.18 77.94 77.94 81.86
bjn_Latn 71.57 73.04 72.55 72.06 73.53 73.53 76.47 71.08 73.04 74.51 70.10 80.39 79.90 83.33
bod_Tibt 53.92 50.49 49.51 50.98 56.86 50.98 50.98 48.53 51.96 51.96 36.76 56.37 50.98 59.31
bos_Latn 78.43 78.43 75.98 78.92 81.37 81.86 79.90 72.06 82.35 77.94 80.39 82.84 82.84 89.22
bul_Cyrl 77.94 78.92 77.45 79.41 78.92 77.94 78.92 72.06 78.92 78.43 81.86 85.78 80.88 85.78
cat_Latn 78.43 77.45 80.88 83.82 80.39 83.33 81.86 74.02 81.86 79.41 84.31 86.76 84.31 88.24
ceb_Latn 75.98 75.98 76.96 76.47 78.92 76.47 79.90 71.08 75.98 76.96 74.51 84.80 81.37 86.27
ces_Latn 75.49 76.96 77.94 76.96 78.43 79.41 77.94 69.61 77.45 76.96 78.92 85.78 82.35 88.73
cjk_Latn 44.12 44.12 44.12 44.12 47.06 46.57 43.14 40.69 46.08 49.02 44.61 50.00 55.88 47.06
ckb_Arab 69.12 71.08 66.67 69.61 69.12 72.06 75.00 63.24 73.53 67.16 66.18 63.24 75.98 81.86
cmn_Hani 76.96 77.45 81.86 79.90 79.41 79.90 86.27 69.12 81.37 77.94 82.84 79.90 80.88 89.71
crh_Latn 71.08 69.12 67.65 72.06 74.02 72.55 72.55 62.25 74.02 69.61 73.04 75.98 75.49 75.00
cym_Latn 77.45 76.96 75.98 75.98 80.39 78.43 77.94 71.57 78.43 79.90 70.59 85.78 84.31 78.92
dan_Latn 81.37 82.84 80.88 82.35 79.90 83.82 84.80 75.49 82.35 82.84 82.35 86.76 82.84 89.71
deu_Latn 80.39 80.88 83.82 83.82 82.35 83.33 83.33 74.51 78.43 84.31 85.78 86.27 85.29 86.76
dyu_Latn 51.96 51.96 50.98 50.98 51.47 56.37 49.02 47.55 49.02 49.51 48.04 54.41 57.84 50.49
dzo_Tibt 31.86 39.22 35.78 33.33 40.69 37.75 50.00 34.31 43.14 37.25 22.06 48.53 34.80 54.90
ell_Grek 74.02 75.00 78.92 77.45 77.45 79.41 76.47 72.06 76.47 74.02 75.98 78.92 80.39 83.82
eng_Latn 82.84 84.31 85.29 85.78 84.31 84.80 86.27 73.04 84.80 85.78 86.27 85.29 87.75 91.67
epo_Latn 73.53 76.96 75.00 74.51 76.96 77.45 79.90 71.08 78.43 77.94 76.96 86.27 84.80 82.84
est_Latn 68.63 73.04 71.08 71.57 74.02 75.49 75.00 67.16 75.98 71.57 72.55 79.90 80.39 79.90
eus_Latn 59.80 70.10 69.12 69.61 69.61 73.04 75.49 63.73 75.49 68.63 69.61 79.90 86.27 83.82
ewe_Latn 42.65 45.59 44.61 47.55 48.04 47.06 48.04 41.67 42.16 43.14 47.55 49.51 54.90 53.43
fao_Latn 62.75 66.18 68.14 64.71 69.61 69.61 73.53 59.31 70.10 63.24 65.69 77.94 77.45 83.82
fij_Latn 43.14 42.65 46.57 45.10 45.59 48.04 50.49 44.12 49.51 47.55 47.55 54.41 60.29 53.43
fin_Latn 75.49 75.00 75.49 74.51 75.98 77.94 77.94 67.16 78.92 74.51 74.51 82.84 80.39 83.33
fon_Latn 43.14 46.57 46.57 46.57 50.98 52.45 42.16 41.18 48.53 42.65 46.08 50.49 57.35 48.04
fra_Latn 78.92 78.43 78.43 80.88 81.37 81.86 83.82 72.06 79.41 81.86 80.39 86.76 82.84 89.22
ful_Latn 45.59 47.06 47.55 50.49 52.94 50.98 43.63 44.61 46.08 50.00 51.96 57.35 55.88 52.94
fur_Latn 69.61 68.63 71.08 69.61 70.59 73.04 75.49 63.73 68.14 70.59 75.98 74.51 80.88 79.41
gla_Latn 63.24 57.84 64.71 65.20 68.63 68.14 62.75 60.29 63.24 68.63 59.80 75.49 74.51 67.16
gle_Latn 65.20 68.14 71.08 71.08 71.08 72.55 66.18 66.18 72.55 67.65 64.71 80.88 81.37 74.02
glg_Latn 79.41 80.88 79.41 79.90 77.94 81.37 84.80 71.57 83.33 81.86 86.76 84.80 87.75 86.76
grn_Latn 63.73 64.22 64.22 67.16 65.69 69.12 70.10 61.76 67.16 66.18 69.61 71.08 75.00 77.94
guj_Gujr 73.53 73.04 70.10 69.61 77.45 73.04 79.90 69.61 73.04 67.65 62.25 77.45 78.92 85.29
hat_Latn 70.10 72.55 75.00 73.53 75.00 76.96 76.47 65.20 77.45 73.53 73.04 82.84 81.37 82.35
hau_Latn 68.14 65.69 67.65 63.73 67.16 68.14 69.12 58.82 68.63 66.67 61.27 76.47 74.02 69.12
heb_Hebr 47.55 50.00 45.10 49.02 52.45 54.41 62.75 47.55 61.76 45.59 50.00 65.69 68.63 77.45
hin_Deva 68.63 71.08 69.61 68.63 73.53 76.47 78.92 69.12 78.43 70.59 63.24 80.39 79.90 85.29
hne_Deva 67.16 74.02 69.12 68.63 75.00 77.45 74.51 63.24 75.00 70.59 62.75 81.37 80.39 80.88
hrv_Latn 79.41 80.88 78.92 77.94 78.92 82.35 80.39 73.04 80.88 76.47 80.39 84.80 82.35 86.76
hun_Latn 76.47 75.00 77.45 77.45 77.45 76.96 80.88 71.08 76.96 76.96 77.94 86.27 78.43 87.25
hye_Armn 74.02 75.49 72.06 74.02 74.51 75.98 76.47 66.67 74.51 71.57 70.59 79.90 80.39 84.80
ibo_Latn 71.08 73.53 72.06 73.53 73.53 74.02 75.00 66.18 71.57 69.61 71.57 79.90 83.33 80.88
ilo_Latn 66.67 69.12 71.08 69.61 73.53 75.49 74.51 62.75 71.57 71.57 74.51 76.47 83.33 78.92
ind_Latn 79.41 81.86 80.88 80.88 81.37 82.35 84.80 74.51 80.88 83.33 83.33 84.80 85.78 90.69
isl_Latn 69.12 69.12 69.61 70.59 71.57 73.04 74.02 65.20 68.63 67.65 69.61 78.92 72.55 81.37
ita_Latn 80.88 79.90 82.35 82.84 83.33 83.33 84.80 73.53 82.35 83.33 86.27 87.25 86.27 90.69
jav_Latn 72.06 74.02 72.55 74.51 75.00 75.49 77.45 69.61 75.98 74.02 76.47 77.45 78.43 85.78
jpn_Jpan 78.43 78.43 80.88 80.88 83.82 81.86 83.33 74.51 77.94 81.86 79.90 86.76 80.88 86.27
kab_Latn 34.31 36.27 37.75 37.75 38.73 39.71 34.31 33.33 38.24 33.33 33.82 40.69 40.20 35.78
kac_Latn 40.20 41.67 41.18 39.71 45.10 44.12 42.65 39.71 40.69 42.65 47.06 47.06 54.90 46.08
kam_Latn 41.18 43.63 40.69 44.12 47.55 47.06 44.12 40.69 50.98 44.61 44.61 51.47 55.39 49.51
kan_Knda 69.61 72.06 66.18 69.61 71.08 73.53 74.02 65.20 74.51 68.63 64.71 76.96 77.45 77.45
kat_Geor 76.47 75.49 77.45 74.51 77.45 77.45 78.92 74.02 79.41 76.96 64.71 83.82 78.92 83.82
kaz_Cyrl 72.55 73.04 73.04 73.53 75.00 75.49 77.45 64.22 75.49 70.59 73.53 80.88 79.41 82.35
kbp_Latn 43.14 44.12 48.04 48.04 47.55 48.53 49.51 43.63 42.16 46.57 47.55 44.61 50.98 47.55
kea_Latn 74.51 75.98 75.00 77.94 75.00 76.96 79.41 68.14 77.45 75.49 82.84 81.37 82.35 78.92

khm_Khmr 76.96 76.47 75.49 74.51 76.47 77.94 80.88 71.57 77.45 74.51 75.00 78.92 79.41 85.29
kik_Latn 50.00 53.92 55.39 52.94 54.90 55.39 58.82 48.04 54.90 52.94 53.43 57.35 64.71 58.82
kin_Latn 49.51 51.96 51.96 50.49 51.47 51.96 56.37 49.02 55.39 50.49 48.04 64.71 72.06 62.75
kir_Cyrl 68.14 69.61 69.61 70.59 72.06 74.51 72.06 64.22 73.04 64.71 69.61 75.98 77.94 78.43

kmb_Latn 40.20 41.67 42.16 43.14 44.61 46.08 43.63 43.63 47.06 44.12 43.14 48.53 53.43 50.98
kmr_Latn 58.33 61.76 61.76 61.27 65.20 66.18 67.16 55.88 69.61 61.27 57.84 74.02 76.96 69.61
kon_Latn 58.33 64.71 61.27 63.24 65.69 67.16 63.24 56.37 61.76 59.80 61.76 59.31 74.51 64.22
kor_Hang 76.96 78.92 80.88 83.82 81.37 81.86 81.37 75.98 80.39 81.86 87.25 86.27 85.29 88.73
lao_Laoo 72.55 70.59 74.51 72.06 73.04 70.59 75.98 66.67 73.53 74.02 70.59 76.47 78.43 84.31
lij_Latn 73.04 73.04 72.06 74.02 74.51 75.49 75.98 67.16 72.55 73.53 78.43 76.96 78.92 80.39
lim_Latn 77.45 76.47 75.98 79.41 77.94 77.45 75.98 68.14 78.92 76.96 81.86 83.82 82.35 78.43
lin_Latn 59.31 57.84 60.78 63.24 60.29 59.31 62.75 52.45 63.24 60.78 65.20 61.27 67.65 66.67

Table 3: 7-shot accuracy with on SIB200.
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