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Abstract

The Distance Conjecture stands as one of the foundational pillars of the Swampland
programme. As such, it serves as a pivotal element within a broader set of principles
that aim to identify the effective field theories coupled to gravity which can be completed
to a theory of quantum gravity in the UV. By now, there is significant evidence of its
validity. Furthermore, the insights and implications of the Distance Conjecture, along
with closely related variants, have recently been used to put forward phenomenological
predictions that can be tested in the near future. However, the Distance Conjecture in
its original formulation is a statement on moduli space, i.e. on the field space spanned
by massless moduli fields. In realistic scenarios, these fields are subject to a scalar
potential, lifting the formerly flat moduli space to a more generic scalar field space with
potential. Aiming to use the Distance Conjecture in these settings, one therefore has to
carefully extend its applicability, taking care of novel features that may not arise within
the paradigm of a flat moduli space.

The goal of the present thesis is to investigate some of these novel aspects aris-
ing in the presence of a scalar potential on field space, as well as implications from
(generalised) dualities and the role of non-geometric backgrounds. We give a concise
introduction to the Swampland program, focussing on the Distance Conjecture and
related variants. In particular, we provide a brief summary of the current state of the
art with respect to the Distance Conjecture in the presence of a potential as well as
the connection with dualities. We then investigate the implications of (generalised)
T-duality for the Distance Conjecture encountering aspects like topology change and
missing towers at infinite distance. This will lead to a proposed amendment to the Dis-
tance Conjecture in the presence of diverging scalar potentials. We furthermore discuss
non-geometric backgrounds as well as generalised T-duals and the way they fit within
the Swampland program. As an alternative approach to the problem of the potential
we utilise geometric flow equations, in particular (generalised) Ricci flow. We explain
how the fixed points and singularities of such flows can offer a different angle on the
problem of diverging potentials and missing towers encountered before, leading to an
extension of the Ricci Flow Conjecture to also include fluxes. We define some novel
flows and, after establishing their well-posedness, outline their potential applications
to study related issues like scale-separation in 10D string vacua. Lastly, we thoroughly
discuss the closely related problem of defining a suitable (formal) notion of distance in
the presence of a potential. We close with a brief outlook on work in progress that aims
to address this problem within the framework of optimal transport.
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Zusammenfassung

Die Distanzvermutung (engl. Distance Conjecture) ist eine der tragenden Sdulen des
Swampland-Programms. Als solche, ist sie von zentraler Bedeutung innerhalb einer
Sammlung von Konzepten, mit dem Ziel gravitative effektive Feldtheorien zu iden-
tifizieren, die zu einer konsistenten Theorie der Quantengravitation vervollstindigt
werden konnen. Zahlreiche Hinweise stiitzen mittlerweile ihre Giiltigkeit, und Erken-
ntnisse aus der Distanzvermutung sowie abgeleitete Varianten wurden verwendet, um
phdnomenologische Vorhersagen zu entwickeln, die zeitnah experimentell tiberpriif-
bar sind. Urspriinglich bezieht sich die Distanzvermutung jedoch auf den Modulraum,
also den Feldraum, der von masselosen Feldern aufgespannt wird. In realistischen
Szenarien unterliegen diese Felder einem Skalarpotential, wodurch der zuvor flache
Modulraum zu einem allgemeineren Skalarfeldraum mit Potential erweitert wird. Die
Verwendung der Distanzvermutung in diesem Kontext erfordert daher eine sorgfaltige
Erweiterung ihrer Anwendbarkeit, wobei neue Aspekte berticksichtigt werden miissen,
die im Zusammenhang mit flachen Modulrdaumen nicht auftreten.

Ziel dieser Arbeit ist es, solche neuartigen Aspekte zu untersuchen, die durch ein
Skalarpotential im Feldraum entstehen, sowie Implikationen aus (verallgemeinerten)
Dualitdten und die Rolle nicht-geometrischer Rdiume zu analysieren. Wir geben eine
kompakte Einfithrung in das Swampland-Programm, mit besonderem Fokus auf die
Distanzvermutung und deren Varianten, ergédnzt durch eine kurze Zusammenfassung
des aktuellen Forschungsstands in Gegenwart eines Potentials und den Zusammen-
hang mit Dualititen. Darauf aufbauend, werden die Konsequenzen von (verallge-
meinerter) T-Dualitét fiir die Distanzvermutung untersucht, einschliefilich topologie-
verdndernden Prozesse und fehlender Zustidnde in unendlicher Distanz. Dies fiihrt
zu einem Vorschlag fiir eine Modifikation der Distanzvermutung bei divergierenden
Skalarpotentialen. Ebenso werden nicht-geometrische Rdume sowie verallgemein-
ert T-duale Konfigurationen und deren Einbindung in das Swampland-Programm
behandelt. Als alternative Herangehensweise werden geometrische Flussgleichun-
gen, insbesondere der (verallgemeinerte) Ricci-Fluss, analysiert. Fixpunkte und Sin-
gularitdten solcher Fliisse ertffnen eine neue Perspektive auf divergierende Poten-
tiale und fehlende Zustinde und resultieren in einer verallgemeinerten Ricci-Fluss-
Vermutung. Wir definieren neue Fliisse, {iberpriifen ihre Wohldefiniertheit und disku-
tieren mogliche Anwendungen, etwa zur Untersuchung der Skalen-Trennung von
zehndimensionalen stringtheoretischen Losungen. Abschlieffend behandeln wir das
eng verwandte Problem der Definition einer geeigneten Abstandsfunktion in Gegen-
wart eines Potentials. Die Arbeit schliefit mit einem Ausblick auf laufende Unter-

suchungen, der diese Problematik anhand von Optimalem Transport adressiert.
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Introduction

“Trying to quantise the gravitational field”
— B. DeWitt to W. Pauli, as a response to being asked what he is working on.

“That is a very important problem — but it will take someone really smart!”
- W. Pauli.

Institute of Advanced Study, November 1949 [1]

I.1. Einstein’s 8" symphony: Quantum Gravity

When Franz Schubert died in 1828, at the age of only 31, he had completed an over-
whelming amount of well over 1000 pieces, including over 600 songs, countless piano
pieces, and seven symphonies. Among them his intonation of Erlkénig, Ave Maria, the
Trout Quintet and several impromptus. However, there is one piece in Schubert’s mag-
num opus that plays a distinguished role: his unfinished 8" symphony, Die Unvollendete
(ger. The Unfinished). Only two of the four conjectured movements are completed, the
third is fragmented, and the fourth absent. In particular, besides all his masterpieces,
precisely this unfinished piece is still performed on a regular basis. One could argue
that this is due to the fact that together with Beethoven’s Eroica, the symphony in the
unusual “black key” B minor marks the beginning of the first romantic symphonies,
moving away from the clear structures of the classical period. While this is certainly
partially true, there is an arguably even greater factor: the intriguing mystery of the un-
finished and humanity’s urge for completion. Still today historians and musicians are
wondering what would have been Schubert’s ideas and visions and trying to unravel
the full picture behind what Schubert left unfinished.
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The urge towards a full and complete understanding is surely not unique to music.
It can be described as a fundamental drive in our very human nature, and in particular,
it is this desire to obtain a complete understanding of our world that has driven modern
physics for centuries. We have come a long way in this quest, with the development
of Quantum Mechanics [2-4] and Special Relativity [5,6] paving the road for Quantum
Field Theory (QFT) [7-9], peaking in the formulation of the Standard Model of particle
physics. Unifying the three fundamental forces of electromagnetism and the weak
and strong force, the Standard Model is able to describe an overwhelming amount
of processes to an unprecedented level of accuracy. However, several open questions
remain, like the smallness of the cosmological constant, i.e. the cosmological constant
problem [10,11], dark matter [12,13] or neutrino oscillation [14]. Most notably, there is
Einstein’s theory of General Relativity (GR) [15,16], at the heart of which lies the Einstein
Field Equation [15]

1
R,uv - EguvR + Aguv = KTyv >

together with its action principle, given in terms of the Einstein-Hilbert action [15,17]

Sk = ;—K/d‘*x\/——g(ze—z/\n/d‘*xﬁLM.

Despite General Relativity’s great success in accurately describing (classical) gravita-
tional phenomena, it turns out to be impossible to consistently combine GR with the
Standard Model into a unified and complete (quantum) theory of all the known inter-
actions. Before going into any more details as to why this incompatibility arises, we
may ask ourselves why this is even desirable.

Curiously, the necessity of a quantised theory of gravity was first raised by Einstein
himself in the year 1916, many years before Schrodinger postulated his famous wave
equation and quantum mechanics was far from being fully developed: [18]

6GY6  Sitzung der physikalisch-mathematischen Klasse vom 22. Juni 1916

Gleichwohl miiBten die Atome zufolge der inneratomischen Elek-
tronenbewegung nicht nur elektromagnetische, sondern aueh Gravi-
tationscnergie ausstrahlen, wenn auch in winzigem Betrage. Da dies
in Wahrheit in der Natur nieht zutreffen diirfte, so scheint es, daB
die Quantentheorie nicht nur die Maxwrrrsche Elektrodynamik, son-
dern aueh die neue Gravitationstheorie wird modifizieren miissen.
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Einstein concludes his short argument, a gravitational analogue of Bohr’s quanti-

“

sation condition for the electron, with the words “...therefore, it seems, that the quantum
theory will have to modify, not only Maxwell’s electrodynamics, but also the new theory of
gravitation.” There are many similar heuristic arguments suggesting that indeed there
is a need for a quantum theory of gravity; see for example [19] for a scientific philoso-
pher’s perspective on some of these heuristic arguments. However, the strongest and
most robust evidence comes from the theory of black holes and their experimental
confirmation through the observation of gravitational waves [20].

In a semi-classical approach, problems arising from non-renormalizability [21,22]
of GR when treated as a QFT can be somewhat evaded by considering the theory as a
ultraviolet (UV)-incomplete effective theory of quantum gravity. The role of quantum
effects for gravitational setups has been demonstrated in this framework. In fact, this
has led to many significant results in cosmology [23,24] and the theory of black holes,
most notably the celebrated area law of the Bekenstein-Hawking entropy [25-27]

SBH = A ;
4Gn

at the heart of black hole thermodynamics. At the same time, the semi-classical descrip-
tion cannot provide the microscopic picture behind this formula. While at the horizon
of the black hole curvature is comparably small, the black hole curvature as described
within GR diverges at the singularity in the centre of the black hole, and a semi-classical
approach cannot be used to understand this apparent singularity. Hence, any answer
to these issues seems to require a UV-complete description of gravity that can describe
phenomena at the smallest scales, taking into account the laws of quantum mechanics.
This sought after theory is Quantum Gravity (QG).

In a broader sense, we see that like Schubert’s 8", General Relativity can be seen
as Einstein’s Unvollendete. GR is a beautiful and powerful framework that accurately
describes the nature of gravity over a vast range of scales, with semi-classical gravity
having fragments of its third movement written. While the fourth and last movement,
quantum gravity, is still not fully worked out, the search for a theory of quantum gravity
has already led to many important insights, including the above-mentioned black hole
thermodynamics a la Bekenstein-Hawking [25-27], the Hamiltonian formulation of
GR of Arnowitt, Deser, and Misner [28] or the holographic principle of 't Hooft [29]
and Susskind [30] and its realisation via Maldacena’s AdS/CFT correspondence [31].
Nevertheless, a full complete picture is still missing, and this is one of the biggest tasks,
but also mysteries, left for current and future physicists.

There is a distinguished candidate for this last step towards a full theory of
quantum gravity describing our universe, and this is String Theory.
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I.2. String theory as a theory of everything?

Trying to perform a perturbative quantisation of classical GR, one soon encounters
ultraviolet (UV) divergences in the resulting loop diagrams that render the theory
non-renormalizable [21,22]. This is due to the fact that when going to arbitrarily high
energies, the associated interaction vertices of gravitons, which are the resulting gauge
bosons of the gravitational interaction, become coincident and the Feynman diagrams
diverge. However, it was realised that there is a remarkably simple, and yet somewhat
revolutionary way to circumvent this problem. The interaction can be smeared out
and hence the divergence softened by introducing one-dimensional extended objects
as the fundamental degrees of freedom of the quantum theory. These objects are in
turn called strings and their resulting theory leads to the notion of String Theory [32-37].
These strings come in two variants, open and closed strings, and have an associated
characteristic length scale /;. While the former can be thought of as one-dimensional
objects with two endpoints, closed strings can be thought of as loops propagating in
spacetime. Similarly to how interactions in quantum field theory are perturbatively
described by Feynman diagrams that depict the possible worldline configurations of a
point particle, interactions of strings are described by diagrams in terms of worldsheets
and hence the perturbative expansion is given in terms of worldsheet topologies. In
particular, this means that divergences coming from local singularities at the interaction
vertices are smoothened out by the extended nature of the string, and this is why
there are no pathological divergences in the UV. Classical point-like particles can then
be thought of as vibrational modes of the string. In particular, the theory contains
the aforementioned graviton, a massless spin-2 particle, which is the gauge boson of
gravitational interaction at the quantum level. String theory then offers a microscopic
picture for black hole thermodynamics and correctly reproduces the aforementioned
Bekenstein-Hawking entropy [38]. At low energies, the theory reduces to GR and the
open strings give rise to Yang-Mills theories. Hence, string theory unifies gravitational
and gauge interactions, providing a unified theory of all the (known) forces.

Whether this makes string theory THE theory of quantum gravity or Theory of
Everything is not clear yet. However, it is clear that string theory is a consistent theory
of quantum gravity. It is the so far only fully consistently developed QG we have, and
there are strong hints pointing towards the fact that it is the unique theory of gravity
compatible with our (current) expectations of a theory of quantum gravity. This is
known as String Universality [39-44]. In any case — at the very least — it is a valuable
testing ground for collecting intuition of properties a generic QG theory might, or might
not, posses. These ideas and concepts can then be contrasted with other (more general)
physical arguments, and this line of thought leads to the Swampland Program [45].
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I1.3. The Swampland program

A naive estimate for the scale at which quantum gravitational effects become important
can be made on dimensional grounds. In particular, such a scale should involve the
relevant fundamental constants leading to the Planck length

7
Ip =+ ZN ~1.6x10 ¥ cm,

serving as a first estimate for the string length /;. This is an extremely tiny scale, and

hence, if this was the end of the story, the detection of imprints of quantum gravitational
effects would seem hopeless. However, as we will see, the string scale /; can be
parametrically smaller than the Planck length /; < Ip, such that, for example, Kaluza-
Klein (KK) modes originating from extra dimensions can, in principle, be detected.

Even more importantly, and somewhat surprisingly, even if quantum gravitational
effects are highly suppressed, high-energy (UV) physics can have crucial impacts on
low-energy (IR) physics, once quantum gravity is properly included in the discussion.
This goes by the name of UV/IR mixing [46-52] and is in conflict with a traditional
Wilsonian approach to Effective Field Theories (EFT), where the UV physics is assumed
to have no, or only highly suppressed, impacts on the IR physics. This effect is inherently
due to the presence of (quantum) gravity, and hence gravity is in some sense special.
Once taken into account, great care is needed to determine the consistency and validity
of EFTs that seem perfectly fine in the absence of gravity. In particular, the actual cut-off
of the EFT might be lower than naively expected, as captured by the so-called species
scale [53-57], which quantifies the scale at which quantum gravitational effects become
important, hence serving as the maximum cut-off. Subsequently, it has become clear
in more recent years that not every possible effective field theory can be consistently
coupled to gravity in the UV. This idea was first formulated in [45] by Vafa and goes by
the name of Swampland program [58-62]. The Swampland program then aims to identify
the low-energy EFTs that can be consistently coupled to gravity and hence lead to a
UV-complete theory of quantum gravity. This is done by the formulation of a growing
web of so-called Swampland Conjectures. If a theory passes (all) these conjectures, it is
in the Landscape, while if it fails to satisfy them, it belongs to the Swampland.

The conjectures are motivated by general principles we believe a theory of quan-
tum gravity should possess, and further substantiated by black hole arguments and
experience or testing in string theory. As such, some of them are powerful enough to
derive phenomenologically interesting predictions that can be tested experimentally in
the near future [63-66]. Hence, they may offer a glimpse into the possible imprints
of quantum gravitational effects on our physical world and, most importantly, help to
deepen our understanding of quantum gravity.
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I.4. Outline

The main goal of this thesis is to highlight some issues and novel features that arise
when studying aspects of the Swampland program in the presence of a non-vanishing
scalar potential on field space, along with implications of generalised dualities and
non-geometry. Hereby, the thesis is split into two main parts.

Part Iserves as an introduction to some of the main concepts heavily used in the main
Part II. In Chapter 1 we collect some selected basic principles of bosonic string theory.
Chapter 2, in turn, offers a detailed discussion of the role of dualities, in particular
T-duality, and generalisations thereof. In Chapter 3 we introduce the concept of Double
Field Theory as well as non-geometric fluxes and spaces, respectively. Finally, Chapter 4
contains a brief introduction to the theory of geometric flows, in particular, Ricci flow,
and its generalisation and applications in string theory and mathematics. The reader
familiar with these topics may skip these chapters and directly move to Part Il and only
return to them when referred to from the main chapters for further details.

In Part II, starting with Chapter 5, we offer a brief introduction to the Swampland
program. We focus on aspects of the Swampland Distance Conjecture (SDC) and
related concepts. In particular, in view of later chapters, we discuss the issues arising
in the presence of a non-trivial scalar potential and the use of generalised dualities and
non-geometric backgrounds. We provide a short overview of the current state-of-the-
art in the field and some recent developments. The remaining chapter then aims to
offer some possible approaches developed by the author and collaborators to tackle the
aforementioned questions.

Chapter 6 starts with a discussion of the implications of (topological) T-duality and
the associated mapping of states for the SDC. Working with the example of the three-
sphere with H-flux, we discover a lack of tower of states for the SDC and relate it to a
divergence in the potential on scalar field space. This ultimately leads us to propose an
amendment to the SDC. We derive a general reduction formula applicable to generic
10 vacua and discuss some further examples.

In Chapter 7 we explain how to include certain non-geometric spaces and their
formulation in terms of S-supergravity into the discussion of the SDC and subsequently
move to the example of the T-duality chain introduced in Chapter 3.

Chapter 8 is again dedicated to a discussion of dualities, now focussing on the
realisation of non-Abelian T-duality via Poisson-Lie T-duality. The dual space resulting
from the S® example under consideration turns out to be non-geometric, leading to a
combined treatment of generalised dualities and non-geometry. We close the chapter
with an outlook on genuine Poisson-Lie T-duality and the Distance Conjecture.

In Chapter 9 we shift the focus to the use of geometric flows within the Swampland,
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discussing a generalisation of the Ricci Flow Conjecture to include (NSNS) fluxes and
applications to field spaces with potentials. The emerging picture offers an alternative
perspective on the divergent potential discussed in Chapter 6. This further motivates
the problem of distances in the presence of a potential alluded to in Chapter 5.

Starting from the results obtained in Chapter 9, Chapter 10 sets out to generalise
Ricci flow to also include RR-fluxes, thus leading to flow for Type Il supergravity. After
proofing the well-posedness of the flow, we discuss the extension to 11D, the inclusion
of source contributions, as well as several examples.

Finally, Chapter 11 is devoted to an in-depth discussion of the issues of a proper
notion of distance or length in the presence of a potential. Reflecting the results obtained
in the previous chapters as well as recent literature, we are led to propose an alternative

more general approach via the theory of Optimal Transport.
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Chapters 6 to 11 in Part II of the present thesis closely follow the work published by the
author and collaborators during his doctoral studies:
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[68]: S. Demulder, D. Liist and T. Raml, Navigating string theory field space with geometric
flows, JHEP 05 (2025) 030, [2412.10364].

The following papers were also published during the authors doctoral studies, but are
only very briefly touched upon in Chapter 2 of this thesis:

[69]: S. Demulder and T. Raml, Poisson-Lie T-duality defects and target space fusion, [HEP
11 (2022) 165, [2208.04662].

[70]: R. Blumenhagen, A. Paraskevopoulou and T. Raml, Non-associative Algebras of
Cubic Matrices and their Gauge Theories, JHEP 09 (2025) 003, [2504.02942].
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Furthermore, Chapters 6-8 and 10 contain additional details and novel results by
the author that have not been published so far.
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Notation & Conventions

We work in the “mostly plus” metric signature such that ,,, = diag(—,+,...,+). For G
a Riemannian metric, we denote by (-, -)g the inner product induced by G (with M, N
p-tensors)

(M,N)G = My,._1,Ny,..s, G .. GPP (0.1)

and its induced norm by || M I> = (M, M). If G is Lorentzian, the above is no longer

positive-definite in general, and we denote the “square” of a rank-p tensor F, with
2_ 1 nJ I,J
|Fpl® = =Fn..1,Fn..0,G...GPP, 0.2)
p-

such that ||[M||*> = p!|M|*. In contrast, (F p)f , we define without normalisation, i.e.
(Fa)3y = Froyq,  Frayn, GEM L GlriMpt, (0.3)
Furthermore, we adopt natural units in which
c=h=kp=¢=1, (0.4)
but mostly keep explicit Newton’s gravitational constant
Gy = 6.7087(10) x 107¥(GeV) 2, (0.5)

such that the (4-dimensional) Planck mass is given as

1
Mp = —— ~10GeV . (0.6)
VGn

The standard Einstein-Hilbert action is of the form

(4) 1 4 M3 4
St = 1o [ dvER@ = = [ dtvEERG). 07)

with the reduced Planck mass Mp = 4/1/(8nG ). Similarly in D dimensions, we define
the (reduced) Planck mass Mp p as the coefficient in front of the Ricci scalar of the

action
7(0-2)
Sirl = =5 / d”xv=gR(g) . (0.8)

which is in the Einstein frame, in contrast to the string frame defined later in Eq. (1.11).

For differential geometry conventions and identities, see Appendix E.
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CHAPTER 1 .

Selected elements of string theory

As of today, string theory is our most promising candidate for obtaining a complete
theory describing all the known interactions of our universe. In fact, it is the so far
only fully developed consistent theory of quantum gravity which furthermore elegantly
reproduces the know gravitational interaction governed by Einstein’s General Relativity
in its low-energy limit. The theory is built on an elegant and extremely rich underlying
mathematical structure. Being defined as a theory in 10 spacetime dimensions, the
way in which lower dimensional (effective) descriptions arise, that at least resemble
the Standard Model of Particle Physics, is rather involved. As such, it is clear that
any self-contained introduction to string theory and its phenomenological implications
goes well beyond the scope of the introductory chapter of a doctoral thesis. Therefore,
in the present work, we will assume some familiarity of the reader with the basic
concepts of string theory. The following chapter should rather be viewed as refresher
on some selected aspects that will be particularly important in the course of this thesis.
For complete introductions to the (basics) of string theory, we refer to the excellent
standard references [32-37].
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Chapter 1. Selected elements of string theory

1.1. The string worldsheet non-linear o--model

The bosonic string in Minkowski spacetime is described most conveniently in terms of
the so-called Polyakov action [72]
1

Sp = - / o V-hhPny; 0, X 9pX7 , (1.1)
dra’ Jx

with h4p the (auxiliary) metric on the worldsheet X, parametrised by 7 and . The
metric £ is not be confused with a non-trivial spacetime metric G;; which we introduce
below. Besides being Poincaré invariant, reparametrisation invariant and (classically) Weyl
invariant, the action is crucially renormalizable. Due to the symmetries mentioned above,
there is enough freedom to choose the so-called conformal gauge in which A4 = n4p.
In particular, the Polyakov action with flat target space classically is a 2d Conformal Field
Theory (CFT) of D massless free scalar fields X* (7, o) (see [73] for an introduction).

The Polyakov action (1.1) is merely a special case of the more general notion of a non-
linear o-model (NLSM), which can be very naturally' generalised to a generic manifold
M with metric tensor Gy, such that the action reads

1

dra’

Sp =- / P V-hhG 0, X X" . (1.2)
b

Here, X! are target space embedding fields, i.e. maps X! : ¥ — M from the world-

sheet into the target space M. Although at first glance this might seem like a mild

generalisation, since the theory is no longer quadratic in X, the action now describes

an interacting field theory. We can expand around a classical solution at X (o) = Xo, by

writing X’ (o) = X! +Y' (o) such that we obtain”

1
G170 X' 05X" = |G11(X0) + G117 x (X0)YX + EG”,LK(XO)YLYK +... | 0aY OpY7 . (1.3)

In the above expression we can view the G, k... (Xp) as coupling constants, determining
the kinetic term and an infinite tower of higher-order interactions for the fields Y.
Since the fields Y/ have (worldsheet) dimension zero, all the interaction terms have
an associated coupling of dimension zero, and hence the NLSM (1.2) is renormalizable
by power counting. We will return to this fact in more detail in Chapter 4. We can
also determine the theory’s range of validity as a weakly coupled perturbative theory.
In particular, there is a characteristic (target space) length scale associated with the

expansion, the radius of curvature r., which is roughly set by dxG ~ r;!l. Rescaling

ndeed, writing Gy = nry + f17(X) with f a perturbation around flat Minkowski, we can think of
this as a string moving in a background of a coherent state of gravitons, corresponding to a (superposition
of ) wave functions f7; ~ {rye'*X; cf. [33,35].

Indices after a comma denote derivatives with respect to this index.

12



1.1. The string worldsheet non-linear o-model

¥! — Va’Y! such that the new Y’ has target space (mass) dimension zero, we see that the
effective (dimensionless) coupling becomes Va'[r.. Hence, whenever the characteristic
scale of the target space geometry, given by r. is much larger than the string scale, we
have a well-defined perturbation theory®, measured by powers of a’. Furthermore,
since this also implies that the associated energy scales are very low, we can safely
ignore the extended nature of the string in the limit @’ — 0 and move to a description
in terms of a low-energy effective action of point-like particles. Hence, the expansion in
o’ measures the “stringiness” with which we describe the geometry.

We stressed before that the NLSM exhibits classical Weyl invariance. However, gener-
ically this symmetry is broken by quantum effects. Consider first the case of a flat target
space with metric n7,,,,. Without going into any details, note that the breakdown of Weyl
invariance is captured by a non-vanishing trace of the energy momentum tensor 7¢,
which at the end of the day reads

D -26
12

T =— R(h), (1.4)

where R(h) is the Ricci scalar of the worldsheet metric /2, D the dimension of the target
space M and the factor of 26 comes from the bc ghost system that has to be included,
cf. [32-37]. Hence, we see that the Weyl anomaly vanishes exactly when D = 26,which is
the critical dimension for the bosonic string.

One can repeat the above calculation for a non-flat target space metric G;;, for
example by covariant background field expansion. In particular, computing the relevant
diagrams that contribute to the trace of T' at leading order, one obtains an additional

anomaly contribution

1 .
-B7,0aX" 0 X7 . (1.5)

1
T = —=Rj(G)d X 09X’ = -
2o

2

The coefficient 3% is called Weyl anomaly coefficient and measures the theory’s failure
of being Weyl invariant. In particular, we see that the theory is Weyl invariant if and
only if R;;(G) = 0, hence the target space is Ricci flat. That is, a consistent background
needs to fulfil the vacuum Einstein equation.

We use the notation 3, in order to distinguish it from the S-function of the associated
RG flow of the NLSM, which is closely related but, in general, does not coincide with
the anomaly coefficient. This will be discussed in more detail in Section 4.2.2.

3String theory is defined as a double expansion in both o’ and the string coupling gs = ¢®, with the
latter an expansion in string loops, corresponding to the genus of the associated string worldsheet. Hence
gs sets the strength of string interactions and a well-defined perturbative expansion also requires small
string coupling, which in contrast to @’ a free parameter, is dynamically set by (the vacuum expectation
value of) the dilaton ®.

13



Chapter 1. Selected elements of string theory

1.1.1. Including the Kalb-Ramond field and dilaton

The NLSM action (1.2) is in fact not the only possible (bosonic) contribution, that is
compatible with reparametrisation invariance and (power counting) renormalisability*.
There are two more contributions that one can add, such that the full NSNS non-linear
o-model action reads

O'_

4 V=R G110, X 95X +€P B30 X 09X +a/N=h R(h)cp) (1.6)
T’

Here we introduced the Kalb-Ramond two-form field B as well as the dilaton scalar
field ®. The latter actually explicitly breaks Weyl invariance. However, on dimensional
grounds, it enters at first order in @’ and hence can be considered a loop effect. It
will turn out that its tree-level contributions exactly cancel the loop-level contributions
of G and B. Repeating the Weyl anomaly calculation, i.e. calculating also the loop

contributions coming from B and @, one finds
a 1 AG I qavyJ 1 AB _af 1 J 1 AD h 1.7
T a——@ﬁljaaXa X _ZTQ’BIJG (9(,X aﬁX —Eﬁ R( ), ()
with anomaly coefficients

\ ) 1 ,
B =« (RIJ(G) - ZHIKLHJKL + 2V1VJ<I>) +0(a’?),

R (1 )

Bl =« (EVLHLIJ - VL‘DHLIJ) +0(a"?), (1.8)
o D-2 1

B® = g 6. ( R(G) + ﬂH,JLH”L +2V, ®ViD - 2V2q>) +0(a’?).

Note that the anomaly coefficient for the dilaton (working with D = 26) is first-order
in @’ and hence can indeed be considered a higher-order loop effect. The theory is
Weyl invariant up to leading order in o’, if the above coefficients vanish. We already
mentioned that in the absence of H and ®, the vanishing of the anomaly coefficient for G
precisely gives the Einstein equation in the vacuum and therefore it is suggestive to view
the associated Einstein-Hilbert action as the low-energy effective action descending
from the stringy NLSM. Amazingly, even in the presence of B and ®, we can write
down such an effective action, and it takes the relatively simple form

3<D>_ /de\/ 24’( 2(D-26) 26) R(G)—lH”KH”K+461<I>a’<I>+O(a)- (1.9)

4These are all operators of dimension two, hence resulting in a dimensionless coupling constant. There
is in fact a dimension zero operator that can be added to the action, which corresponds to a coupling to
a background tachyon. It breaks Weyl invariance, but actually plays no significant role and is therefore
omitted here; cf. [74].

14



1.2. RR sector and low-energy effective theories

Indeed, varying the action with respect to G, B and ®, the resulting equations of motion
are precisely given by (1.8). The action (1.9) and its interpretation as a low-energy
effective action will play a central role in this thesis and will be discussed in more detail

in the following.

Remark

¢ For the superstring (in the RNS (Ramond-Neveu-Schwarz) formulation [75,76]),
the Polyakov action is supplemented by an additional Dirac term that describes
D free Mayorana fermions on the world sheet in the vector representation of the
Lorentz group SO(D - 1,1). The total action reads

S = —g / d%r (aax,aaxf + (p,paaw’) : (1.10)
>

with p® two-dimensional Dirac matrices obeying the usual Dirac algebra. This
leads to a N = (1,1) supersymmetric worldsheet NLSM. The resulting theory
goes by the name of Superstring Theory, and turns out to be well defined in the
critical dimension D = 10. We will not discuss the superstring here further, but
refer to the standard literature [32-37]

1.2. RR sector and low-energy effective theories

So far we have only covered the NSNS sector of the bosonic string, which gives rise
to space-time bosons. However, the superstring bosonic spectrum on target space also
includes states from the RR sector. These cannot be directly coupled to the worldsheet
non-linear o-model, at least in the RNS-formulation®. We will not discuss this issue
here but directly move to their low-energy effective theories. Whenever we work at energies
far below the string scale, we can safely omit® the massive string states and work with

an effective description in terms of 10D supergravity.

1.2.1. Type II supergravity

We briefly summarise the bosonic sector of Type II Supergravity (SUGRA) theories,
which will be used in the later Part II of this thesis. For the remaining supergravity
theories, as well as the fermionic sector and supersymmetry, we again refer to the
standard literature [32-36, 82].

50n has to use either the Pure Spinor formalism [77,78] or the Green-Schwarz formalism [79-81].
5This also requires weak curvature, so we can omit higher o’ corrections; cf. discussion below (1.3).
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Chapter 1. Selected elements of string theory

NSNS sector

Working in the critical D = 26 or D = 10 dimensions for the bosonic or superstring
respectively, the NSNS sector, common to all” supergravity theories reads

1 1
SP) = — / dPxV=Ge™® (R(G) - —H;;xHX + 48,09'®| , (1.11)

282, 12
where we omit higher-order contributions in @’. The constant &1g is not determined
a priori and can be changed by rescaling of ®. After pairing up with the vacuum
expectation value of ® (and going to the Einstein frame), p sets the gravitational
20

coupling constant kp = kp ¢®0. The present form of the action, with the factor e™=® in

front of R(G), is referred to as the string frame action.

RR sector

Type II string theory comes in two different variants; Type IIA and Type IIB theories.
Accordingly, there are two supergravity actions which are also denoted by IIA and IIB.
In particular, the massless sector of Type IIA string theory or supergravity includes
bosonic states from the tensor product of two Ramond ground states, which give rise
to RR form fields of odd degree, C1, C3. Hence, Type IIA supergravity includes these
fields and their associated field strengths F, and Fy, which are defined as

F, =dCy, Fy=dC3-HACy, (1.12)

and similar for Type IIB with fields Cy, C», C4 and associated field strengths F1, F3, Fs.
Adding the contributions to the NSNS sector, the Type Il supergravity action reads

1
Si=— [ d'%V-G , (1.13)
~2
2K10

1 1 Op5
-20 2 2 P 2
¢ (R(G)—§|H| +4/09] )—zg( —7) IF|

where p € {2,4} for IIA and p € {1,3,5} for IIB. The five-form flux Fs has to be
supplemented with a self-duality constraint, rendering the Type IIB action strictly
speaking a pseudo-action and leading to the additional factor of 1/2 in (1.13). This is
only the dynamical part of the action. There are also topological Chern-Simons (CS)
terms Scs and localised source contributions Ssource, for example from Dp-branes or

orientifold Op-planes, that have to be added. The former read

1 1
Sgs = TN By AdC3AdCs, S = —F/C4AH3/\F3. (1.14)
KlO K10

7In the Type I theory, the Kalb-Ramond field B is projected out.
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1.2. RR sector and low-energy effective theories

The source contributions in turn, modify the resulting Bianchi identities (see below) and
are crucial for tadpole cancellation [83] (see for example [32]). Furthermore, it is clear that
they modify the equations of motions, and we make use of these contributions when
discussing geometric flows in Chapter 10. Hence, we list some relevant terms, as well
as the deformation of Type IIA — massive Type IIA — and corresponding equations of
motions in Appendix A.

Equations of motion

The equations of motion can be obtained by variation of the action (1.13). For the Type
ITA theory, neglecting possible source contributions, those coming from the variation
of G and ® read

Lo 20(L o Lo 1 2 2
OZRIJ_ZH” +2V;V;d—e §(F2)1J+ﬁ(F4)IJ_ZgIJ(|F2| +| Fy] ) , (1.15)
1 1
0=2V?® - 2|VD|? + SR - Z|H|2, (1.16)
while the equation of motion for B is
20 1
O:d(e *H)—Fz/\*F4—§F4/\F4. (117)
The variations with respect to the fluxes give

O=dxF +HAXxF;=0, (1.18)
O=dxF,+HAF;=0. (1.19)

These equitations of motion are supplemented with the Bianchi identities
dH =0, dF; =0, dFy=HAF;. (1.20)

The Type IIB equations are analogous, and we refer to the literature.

Remarks

¢ Strictly speaking, the equation for G in (1.15) is obtained only after variation
and subsequent substitution of the dilaton equation of motion (1.16) in order to
eliminate contributions G;;R and G;|H|?>. On-shell this fact is not important, but

it will matter in Chapter 10 when discussing flow equations.

¢ Itisnothard to see that upon setting the RR fluxes to zero, the equations of motion
for G, B, ® indeed match the condition of vanishing Weyl anomaly coefficients
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Chapter 1. Selected elements of string theory

B1s = 0. This is immediate for G and ®. For later use in Chapter 9 and 10 we note®

0=x(-2d® A *H +d % H) = =24 4¢sH —d"H = -2" . (1.21)

* Type IIB supergravity action in the Einstein frame admits the particularly nice,
SL(2,R)-invariant rewriting ( with t = Cy +ie~? the axio-dilaton)

1 1oytdMr 1 |G3)2 1
Sip = — [ d'% V-G |R(G) - = - = - Z|Fs5)?) = Scs. (1.22
=g [ VG (RO - - Sy~ A S 022

We will return to it in Section 2.1, when discussing S-duality.

1.2.2. 11D supergravity

Supersymmetry places very tight restrictions on the form an action can have in D
dimensions, while satisfying certain requirements like causality or not having particles
with spin greater than two. In fact, it turns out that in D = 11 there is a unique

supergravity action which reads [84]

1 1
Sip = T / d"xV-G (R(G) - E|F4|2) - / CsAFyAFy, (1.23)
11

2
12«3,
with Fy = dC3. Compactifying on a circle, one obtains Type IIA supergravity [85].
Furthermore, the action can be viewed as the low-energy limit of another theory of
quantum gravity that has not been discussed so far, namely M-theory. This will be
briefly discussed in Chapter 2. The equations of motion’ read

1 5, 1 . 1
OZRMN_E(F4)ij+6|F4| s 0=d*F4+§F4/\F4, (124.)

together with the trivial Bianchi identity dF; = 0.

1.3. Lower-dimensional effective theories

So far, all our considerations have been performed in the critical dimension of D = 26
or D = 10, for the bosonic and superstring, respectively. However, in order to connect
string theory as a theory of quantum gravity and their low-energy effective theories
discussed in the previous Section to conventional physics in four dimensions, one needs

to explain the seemingly absent additional 6 dimensions. One way to achieve this is

8Here we used the identities ty * w = (-1)% % (XP A w) for w € Q¥(M). This gives x(d® A xH) =
(—1)(”_3)L(d®)ﬁ * *H = (—1)4("‘3)L(d¢)nH = (o)t see also Appendix E for conventions.
91n fact, this is the trace reversed form of the “Einstein equation” for g.
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1.3. Lower-dimensional effective theories

through so-called compactification and successive dimensional reduction in order to obtain
a lower-dimensional (low-energy) effective theory'’. This is an extremely important but
also vastly broad subject, so we will only briefly sketch some important aspects. More
details can be found in the standard textbook references [32-37] and [82,86]. A textbook

more tailored to string phenomenology and model-building is [87] as well as [88-90]

1.3.1. Compactifications

The basic idea of compactification is rather simple. Starting form a D-dimensional

(total) space, we assume that (at least locally) we can write the geometry as
MD=Md><Kn, d=(D—n), (1.25)

with the n-dimensional compact manifold K, and the (generically non-compact max-
imally symmetric) d = (D - n) dimensional manifold M¢. We call the former the
compactification or internal manifold, and the latter the external manifold. The full con-
figuration, of course, still needs to satisfy the equations of motion, and this puts strong
restrictions on the possible geometries. In the absence of fluxes, and assuming that at
the product is global, such that the total metric takes the form

ds? = GrydX'dX? = g, (x)dx#dx” + h(y)mndy™dy" (1.26)

this implies that both spaces, in particular K, need to be Ricci flat R,,, = 0. Here
external directions and the associated metric are denoted with x and g(x) while the
internal ones are given by y and /(y),which is not to be confused with the worldsheet
metric of the NLSM (1.6) introduced before. The simplest examples of such internal
manifolds, which will be discussed in Chapter 2, are given by the circle S' or more
generally n-dimensional tori 7". These are special examples of Calabi-Yau manifolds,
which play a paramount role in string theory compactifications. We will not discuss
Calabi-Yau manifolds here but refer to [32] for an introduction. Instead we will sketch
the idea on the example of the circle, which will reveal a crucial property of string

theory compactifications, the notion of T-duality.

The closed string compactified on a circle

We split the D = 26 dimensional space into a 25-dimensional external part and a circle
S! of radius r along the X* direction. The closed string can then wrap the compact
direction, resulting in a nontrivial winding number w € Z, relaxing the periodicity

10Nt every effective theory, is a low-energy effective theory, see Remark in Section 1.3.2.
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Chapter 1. Selected elements of string theory

relation to

X (o +271) = X2 (o) + 21w, weZ. (1.27)

A standard mode expansion leads to

’

X?(o, 1) =xP + T+ wro + osc. , (1.28)
r

where we have taken into account the winding mode contribution as well as the fact
that momentum on a compact space is quantised according to p?®> = n/r with n € Z the
momentum modes. The higher Fourier or oscillator modes are not important in the
following and are denoted by osc. Comparing with the mode expansion for the left- and
right-moving components, we see that for the compact direction X 25 we now have

n wr n wr
pr=24 0 pe=tt (1.29)
r (0% r 04

From the viewpoint of an observer in the remaining 25 non-compact directions the
24
) R
me=s- Z 2t 3
=7 a’

The mass formula is invariant under the transformation'!

mass evaluates to

+ 0sc. (1.30)

al

r—i=—
r

mee—w, (1.31)

>

i.e., invariant under inversion of the radius and simultaneous exchange of winding and
momentum modes. For the example at hand, it is then rather easy to see that T-duality
extends to a duality of the full spectrum. Applying the transformation rules (1.31) to the
centre-of-mass momenta py, pr we see that T-duality acts as ( piS , p%f) — ( pff ,— piS),
which can be extended to the full mode expansion and hence also the oscillator modes
by

XP — X2, X5 — -Xz. (1.32)

This is a Z, symmetry that only acts on the right-moving sector of the string in a non-
trivial way. However, the NLSM'? corresponding to theories with X2 = X2° — X2 can
be shown to be fully equivalent to the one of X% = X2 + X2> and hence T-duality really
is a proper symmetry of the full bosonic string theory.

11 The oscillator states, although not given here, are trivially invariant under this transformation.
121n the case of a toroidal target space this defines a CFT and hence the results is exact.
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1.3. Lower-dimensional effective theories

Remark

¢ The action of T-duality as a Z, symmetry of the form (1.32) also carries over to
the open string. From this one can in turn deduce that starting from an open
string with Neumann boundary conditions'>, the dual open string X® = X% - X%
has Dirichlet boundary conditions and vice versa. This shows that although break-
ing Poincaré invariance, Dirichlet boundary conditions cannot be neglected, and
therefore T-duality necessarily leads to the notion of D-branes [91] (see [92,93] for
a comprehensive introduction). In fact, since T-duality along a compact direction
exchanges the two boundary conditions, the D p-branes are mapped to D(p + 1)
or D(p — 1)-branes [91], depending on whether the compact dualised direction
corresponds to a transverse or longitudinal direction of the brane, respectively.

1.3.2. Field theory limit and dimensional reduction

In case we are only interested in the low-energy effective theory of the above example,
we can decouple the stringy contributions. This field theory limit amounts to sending
o’ — 0, such that we can indeed omit all oscillator contributions, as well as the winding
states which have no analogue in a point-particle-like description and become infinitely
heavy and hence decouple. If we are furthermore interested in length scales much larger
than r, effectively taking the limit » — 0, the remaining infinite tower of momentum
modes is truncated to the massless zero mode n = 0. The resulting procedure is known
as Kaluza-Klein (KK)reduction [94-96]. It is an example of a dimensional reduction. More
generally for some given compactified manifolds K,,, dimensional reduction amounts
to keeping only the zero modes of the (Fourier) expansion along the compact directions,
whereas in the compactified theory a priori all, in particular also the higher, massive
modes are kept in the lower-dimensional (effective) description.

Note that there are different notions of effective actions and reductions or trunca-
tions, and one should be careful in differentiating between them. Besides the already
mentioned notion of Kaluza-Klein reductions there are Scherk-Schwarz reductions [97].
Furthermore, there is the concept of (consistent) truncations'* and effective actions. Nei-
ther have to give rise to a valid low-energy effective action, correctly describing the (4d)
physics below a given cutoff A, nor is a generic low-energy effective action, for example,
a consistent truncation. See [98-100] and [101-103].

I3Neumann boundary conditions require dsX! = 0at0,r, ie. atthe ends of the (open) string. In
contrast, Dirichlet boundary conditions read §X I'at 0, 7, such that the ends of the string are fixed in some
hypersurface X! = ¢! in target space.

14 A truncation of some D-dimensional theory, to a (lower) d-dimensional theory in terms of a reduced
(truncated) set of degrees of freedoms or fields is called consistent if any solution in d-dimensions, can be
lifted to full D-dimensional solutions of the full theory [98-100].
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1.3.3. Moduli fields and moduli stabilisation

The equations of motion, or anomaly coefficients, put tight restrictions on the possible
internal manifolds. However, there is still a rather extensive freedom on the precise
shape and size of the internal compact manifold, even for a fixed topology. This freedom
is parametrised by some (yet) unfixed free parameters that control exactly the size and
shape of the geometry. These parameters manifest themselves after compactification as
massless scalar fields, which are called moduli fields or simply moduli and each of them
controls some certain aspect of the geometry'”.

This is highly problematic for several reasons. First, at the level of the dimensionally
reduced effective action in d = 4, this would result in several massless scalar bosons,
schematically

Vi
8(4) - ilgt / d4x\/§ (R(g) - 7ab6ﬂ¢aa”¢b ’ (133)
10

with Vin the volume of the internal space, Vint = fK d"yvVh. This would lead to
deviations from Newton’s law that are excluded [65] by experiment. Second, since
these parameters are free, there is no singled-out vacuum expectation value. However,
some of these scalars control the overall volume of the compact space, which hence is not
fixed by the theory. This is problematic since too small or large internal spaces would
run into conceptual or phenomenological problems, respectively. In particular, we
argued in Section 1.1, that the effective dimensionless coupling is set by Va’/r., where
rc is the characteristic length scale (“radius”) of the geometry. Hence, to have a well-
defined perturbative expansion and be able to neglect higher curvature corrections, we
should have r2 > a’. On the other hand, if the size of the compact space is too large, this
is incompatible with observations and is therefore ruled out by experiments [107].

It is therefore clear that in order to obtain phenomenologically meaningful models,
which at the same time are under computational control, it is important to stabilise the
moduli ¢“ at some finite vacuum expectation value (¢¢), the string vacuum, such that
they are massive enough not to be in contrast with current observations. This is done
by the introduction of a scalar potential V (¢)

% a
8% = jzm/ dhxy=g (R(g) ~ Yab(9) 39" " 9" =V (p) |, (1.34)
10

and the resulting procedure is known as moduli stabilisation. These potentials arise

15The dilaton ®, common to all String Theories is an exception. It is the distinguished (modulus) field,
the vacuum expectation value of which sets the string coupling g. There are also moduli associated with
RR-fields or open string moduli which we will not discuss here. See, for example, [104] for a compact
introduction of moduli fields. Further discussions can be found in [87,89,105,106] and the standard
textbooks.
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1.3. Lower-dimensional effective theories

due to additional objects that have to be introduced to the 10D theory, which upon
dimensional reduction source the potential,

V() D curvature, fluxes, (localised) sources... . (1.35)

The precise details and ingredients of the compactification model crucially influence
the physics of the effective theory, for example, through the value and nature of the
4d cosmological constant A [108-110] or the way in which supersymmetry is broken
[110-113]. Generating such potentials in a well-defined and well-behaved manner
represents an active field of research of highest interest.

A particularly nice way to introduce such a potential is by using background fluxes,
and the resulting procedure is known as flux compactification. This is again an extremely
deep and rich subject, so we merely summarise the main idea and refer to the literature
for a self-contained introduction; see [62,88,89,106]. While for a pure gravitational
background determined solely by some metric tensor Gy, the possible solutions
are restricted to Ricci flat backgrounds, once we introduce background NSNS or RR-
flux, the space of solutions is greatly enlarged. In particular, we are no longer bound to
Calabi-Yau (Ricci flat) manifolds, but to more general structures, in particular generalised
Calabi-Yau spaces, which are tightly connected to the notion of generalised geometry
to be briefly discussed in Chapter 3. We will see in detail how these terms enter
the potential in Chapter 6, so we refer to this Section and the extensive literature on
flux compactification listed earlier. Furthermore, we note that there are further exotic
fluxes that have not been discussed so far, that have received quite some attention
within the framework of moduli stabilisation. These are the so-called non-geometric
fluxes [114-116] which we will be introduced in Chapter 3 and further discussed in
Chapter 7. The easiest string-theoretic example of a true moduli space, i.e. without a
potential, is the example of the KK reduction of the closed string on a circle.

Moduli spaces and their associated metric

For a theory with n moduli fields {¢“}, the space spanned by these fields is called
the moduli space M of the theory. This space is generically non-compact [117] and
comes with a natural notion of associated metric G,;(¢), which is given in terms of
the coefficient of the kinetic term vy, in (1.34), Gup(¢) = Yan(¢). Consequently, there
exists a notion of distance on moduli space that can be viewed as a distance between
physically different configurations of the underlying theory. This notion of distance
will be paramount for the discussion of the Swampland program, in particular the
Swampland Distance Conjecture and will be discussed in Chapter 5.

We already mentioned that there is a particularly intuitive modulus that corre-
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Chapter 1. Selected elements of string theory

sponds to the overall volume of the compact space. The simplest example of such a
(true) modulus is the radius of the circle compactification discussed before. Start from
the (NSNS sector) low-energy effective action in terms of a (D = d + 1)-dimensional

supergravity and compactify the theory on a circle, assuming the metric is of the form
ds? = razg,, dxtdx” +r2dy?, (1.36)

with r the radius of S!. Allowing for r to be a function of the external coordinates
x*, r = r(x) and going to the Einstein frame (see the next Section) the resulting action

reads
7(d-2)
M d-11
s ==t [ ateyg (R@ T (1.37)

Hence we can identify y = d—jérlz as the metric on moduli space, which one might

naively identify with the half-line r € [0, o). However, at the level of string theory, we
have T-duality, which relates circles of radius r with 7 = @’/r. These configurations are
physically equivalent, and the true moduli space of inequivalent theories is given by

re (0,r.], (orequivalently r € [r,, o)), (1.38)

where r, = Vo’ is the self-dual radius.

Generically, the naive moduli space M as inferred from the massless scalar fields
of the (effective) action gets reduced by nontrivial symmetries or dualities that relate
points in moduli space. These correspond to physically equivalent theories when lifted
to the level of string theory. In particular, in case there is a certain redundancy, for
example due to gauge or duality symmetry parametrised by some group K, the true
moduli space of inequivalent configurations Mis

M=MJ/K. (1.39)
In particular, in the present example we have
M= (0.r.] =Ro0/2Z2, (1.40)

where the Z, corresponds to the T-duality inversion r — a’/r. We will encounter the
natural extension to the case of a compactification on n-tori in Chapter 2.

When there is a non-zero scalar potential V(¢), some of the directions in moduli
space get lifted or stabilised and (at least some of) the fields become massive. In this
case, the resulting field space is no longer called moduli space but simply scalar field
space and the massive fields scalar fields. In this case the existence and physical meaning
of a proper distance in the presence of a potential, induced by the metric on field space,

24



1.3. Lower-dimensional effective theories

is much more involved and the problem of defining and understanding such a distance
in the presence of a potential is one of the main goals of this thesis. We will further
review the resulting challenges in Chapter 5 and propose some possible implications

and resolutions in the remaining chapters of the main Part II of this thesis.

We close this section on moduli spaces with a word of caution. There are several
different notions of moduli spaces in the context of theoretical physics and mathematics.
In the context of string compactifications, as explained above, we denote as moduli the
massless scalar fields parametrising the internal geometry or coupling of our theory.
Up to possible symmetries, these span the moduli space, or, in the presence of a
scalar potential, the scalar field space of the theory. Relatedly, the word moduli space
can also more generally denote the space of (inequivalent) physical configurations or
solutions of a system. The most closely related and also most relevant notion of moduli
space in mathematics is the moduli space of Riemannian metrics M(M) on some given
manifold M, which we will discuss in detail in Chapter 4. As a special case in 2D, this
contains the moduli space of Riemannian surfaces of genus g, denoted M\g which is defined

as [33](or [118] for a mathematically rigorous introduction)

fv il M(M,)
¢~ Diff(My) < Weyl(Mg) ’

(1.41)

where M(M,) is the space of all Riemannian metrics for the manifold M, of fixed genus
g and x denotes the semidirect product, cf. [119]. Since string theory is an expansion in
worldsheet topologies'® (genus), this space is of paramount importance as a measure
for the Polyakov path integral, cf. [32,33].

Remarks

¢ In (1.34) there is a factor V;;,, = fK d"y Vh in front of the action. Comparing with
the definition of the reduced (4D) Planck mass given in (0.7) we obtain

(Vint _ Msz (Vint

M% = = (1.42)
K%O ng2 18
2 \4
where we used that K%O = (4”47‘: ) g%, Iy = 2nVa’ and M = al For large (in units of

[¢) internal spaces, the string scale (and also 10D Planck scale) can be much lower
than Mp. In the formal limit of taking Viny — oo, the (4D) Planck mass goes to
infinity, and hence the gravitational coupling goes to zero, and gravity becomes

1We ignore worldsheets with boundaries which are important for the open string, as well as marked
surfaces relevant for discussion of string scattering amplitudes.
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Chapter 1. Selected elements of string theory

negligible. The limit Mp — o is the so-called gravity decoupling limit'’. On the

other hand, for stringy sized extra dimensions, we roughly have Mp ~ M;.

(Perturbative) string theory is defined as a double expansion in the string coupling
gs as well as the o-model coupling Vo /r. Hence in general, the action (1.34) and, in
particular, the scalar potential receive perturbative quantum corrections induced
by higher-loop effects and higher-curvature corrections to the effective action;
see [87-89,106,110,120].

Besides the perturbative corrections mentioned above, there are further non-
perturbative corrections that arise, for example, from (worldsheet) instantons,
D-branes wrapping certain internal cycles or gaugino condensation. We refer
to [32,87] and the reviews [62,88,106,110,120].

The corrections listed above play a crucial role for moduli stabilisation in certain
models like the KKLT scenario [121] or the Large Volume Scenario (LVS) [122],
where stabilisation is achieved not at leading but higher order. In contrast, in
DGKT-like [123] models'®, all moduli may be stabilised without the need for
non-perturbative or higher order contributions. Nevertheless, depending on the
parametric regime (in particular small volume) correction can become important
and can introduce for example stability issues; see [125,126] and references therein
for a recent discussion in view of the Swampland program (cf. Chapter 5).

For the case of N = 1 4d supergravity, there is a very convenient description of
the scalar potential and metric on field space. In particular the non-topological
(F-term) part of V can be derived from the so-called holomorphic superpotential
W and from the Kéhler potential K such that we have

V 5 Vi = K(GVD;WD;W - 3|WP), (1.43)

with G5 the Kédhler metric and D;W the Kédhler covariant derivative and we have

set k4 = 1. For details and further conventions, we refer to [32].

WGenerically “Vint — oo also generates an infinite tower of light KK modes and so the resulting theory

can not be viewed as decoupled from gravity but as an additional dimensions opening up; cf. Chapter 5.
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CHAPTER 2 .

Dualities

In the introduction, we advertised string theory as the — possibly unique — candidate
for a theory of quantum gravity. However, it is well-known that at the level of the
full superstring theory, there are five distinct formulations that differ in particular by
their particle content and gauge groups. The resolution of this apparent contradiction
leads to the notion of dualities. These can be seen as a slightly generalised notion of
symmetry, relating possibly distinct theories that are, however, physically equivalent.
Dualities played a fundamental role in the development of string theory and they
marked the beginning of the so-called second superstring revolution, which lead to the
unification of these five different superstring theories. They are an essential part of the
theories structure and provide invaluable tools in perforating explicit calculations in
otherwise hopeless situations. Apart from the already mentioned T-duality, we will
introduce the notion of S- and U-duality as well as an outlook on the conjectured 11D
non-perturbative limit of Type IIA string theory, known as M-theory. Thereafter we
will give a detailed discussion of T-duality on topological non-trivial spaces and in
the presence of fluxes, as well as several generalised notions of T-duality adapted to
non-Abelian isometries. Lastly we comment on the relation to topological defects as
well as the role of generalised dualities for string theory and possible implications for
the Swampland program to be discussed later in Part II.
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Chapter 2. Dualities

2.1. Dualities as a unifying tool: From 5 to 1

We saw that T-duality on a circle inverts the radius of the circle while exchanging
winding and momentum modes of the string. These are both states of the perturba-
tive spectrum of the closed string, and T-duality maps a weakly coupled perturbative
theory with light degrees of freedom given by the momentum modes to an equivalent
weakly coupled theory with light degrees of freedom given by the winding modes. In
particular, T-duality is a map at fixed order in the string loop expansion. We will see
below that this behaviour carries over more generally and hence T-duality should be
considered a perturbative duality.

However, it is already known from standard QFT that there are dualities that relate
weakly coupled theories with strongly coupled descriptions of the same or even a dif-
ferent theory, the prime example being the Montonen—Olive duality [127]. The resulting
dualities are called strong-weak (coupling) dualities and such a duality also exists in string
theory where it goes by the name of S-duality. Similarly to T-duality it represents an
invaluable tool in understanding the different corners, or realisations of string theory.
S-duality can be very compactly motivated on the example of the Type IIB theory: at the
quantum level, the global SL(2,R) symmetry of the Type IIB supergravity action (1.22)
is broken to SL(2,Z). The axio-dilaton 7 = Cj + ie~? then transforms under SL(2,Z)
through fractional linear transformations

b
=0 i bedeZ, ad—be=1. 2.1)
cT+d

Now taking Cp = 0 and considering the special element S witha =d =0andc=-b =1
we obtain T — —1/7, which in terms of the string coupling constant g, = ¢? translates

to
1

gs — —. (2.2)
8s
Therefore, the transformation is mapping a theory at weak string coupling to a theory
at strong coupling and vice versa. Together with the element 7 defined by a = b =d =
1,¢ =0, the elements S and T generate the full SL(2, Z), which is the S-duality group of
Type 1IB string theory. Hence, Type IIB is in fact self-dual under S-duality.

In general S-duality will, however, not relate the strong and weakly coupled sectors
of the same theory, but of different theories. For example, it turns out that the weakly
coupled Type I theory is S-dual to the strongly coupled heterotic SO(32) and vice
versa. Furthermore, since T-duality exchanges the Neumann and Dirichlet boundary
conditions, it maps Dp-branes to D(p + 1) or D(p — 1) branes, depending on whether
the duality is applied along a transverse or longitudinal direction, respectively. This
extends to the RR charges such that odd-degree forms are exchanged with even-degree
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2.1. Dualities as a unifying tool: From 5 to 1

form fields, and hence T-duality along a single compact direction maps Type IIA string
theory to Type IIB and the other way around. Similarly, T-duality along a compact
circle relates the two heterotic theories. In total, we obtain a web of dualities that can
be summarised by the following diagram [85,128] below.

. 11D SUGRA
— e

e

Het E8 x E8

Type ITIA

Het SO(32)

‘x ,""Q

Type I «”

Looking at the above diagram, several comments are in order. First note that the arrow
from Type IIB to the Type I theory, with label Q, denotes an orientifold projection
resulting in the unoriented Type I theory. Furthermore, we added one more spike, i.e.
one more theory to the star. This is 11-dimensional supergravity, which compactified on
acircle, at the level of the low-energy effective actions, turns out to be equivalent to Type
ITA (supergravity) theory. Similarly, when compactified on an interval (equivalently
S'/Z,) the theory reduces to the effective theory of the heterotic string with gauge group
Eg x Eg; see [32,37] for details.

Indeed, we see that all the different string theories, or supergravities, are related by
an intricate web of dualities which unify [85,128] the seemingly distinct theories. Even
more, the diagram seems to suggest that all the different realisations are in some sense
merely different (asymptotic) corners [85] of some Mother theory in the middle of the
star, which we denoted by the symbol M. There are in fact strong hints that such a
Mysterious theory exists, and it goes by the name of M-theory. We will briefly motivate
this (conjectured) 11-dimensional theory in the following section.

Note that the word duality, although wildly used, has no clear definition and is fre-
quently used together with the word symmetry, often even synonymously. Further-
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more, it might or might not coincide with formal mathematical notions of duality

operations. In the present thesis, we adopt the following notion of duality:

A duality, is a transformation between possibly different theories that are, however,
physically equivalent. In particular, the physical spectrum, the equations of motion,
the correlation functions, etc. are left invariant.

In particular, we do not require a duality to leave the action invariant or to map a
theory to the same theory. If a duality is a map between the same theories, we call it
a self-duality, which is often used synonymously' with symmetry. Lastly, note that the
combination of T- and S-dualities leads to the notion of U-duality [128]; see also [129].

For general overviews of dualities in supergravity and string theory as well as further
references, see [32,37,130-133]. The canonical references tailored to T-duality and its
generalised notions are [134-136].

2.1.1. M(atrix)-Theory

A possible way to think about the aforementioned 11-dimensional theory is to view
its compactification on a circle to 10D as the (T-dual of the) strong coupling limit of
the Type IIA string theory. In the low-energy limit the 11D theory is described by
11-dimensional supergravity; cf. Section 1.2.2. Since the theory includes a three-form
field C3, there are electrically and magnetically charged branes under this field, which
are the M2 and M5 branes, respectively. Upon compactifying on a circle, these objects,
together with the metric tensor, result in the bosonic field content of the Type IIA theory.
Furthermore, the radius of the compact circle is identified with the coupling constant
of the Type IIA theory [85]

r = lsgs, (equivalently 185 = (Fl]MP’ll)%) (2.3)

such that the strong coupling limit of the latter corresponds to a decompatification
limit” of the 11D theory. Note that M-theory does not include (fundamental) strings
and since by definition the theory sits at strong coupling, there is no well-defined
description in terms of a perturbative expansion. One can, however, learn more about

the non-perturbative sector using the duality relations outlined above, for example, by

INote that depending on the definition of symmetry used, a self-duality can be a slightly more general
concept. For example, SL(2,R) is a proper symmetry of the Type II supergravity action. At the quantum
level it is broken to SL(2, Z) and there is no full description in terms of a local action functional. Hence,
requiring a symmetry to leave invariant the action, Type IIB string theory is merely self-dual under the
S-duality group, which in that sense does not correspond to a proper symmetry.

2We keep this fact in mind, as (infinite) limits like this are of mayor interest in the Swampland program,
in particular the Swampland Distance Conjecture.
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making use of BPS protected non-perturbative objects like DO-branes. This allows us
to extract information that goes well beyond 11-dimensional supergravity; see [37] for
some easy examples.

An exact non-perturbative formulation of the microscopic degrees of freedom of
M-theory is still lacking. One proposal for such a non-perturbative theory is Matrix
theory, and in particular the BFSS Matrix model [137], see [138—140] for a review. Despite
being the most promising formulation we have so far, the formulation comes with its
own shortcomings, most notably the obscured role of the M5-branes in comparison to
the M2-branes. In particular, the absence of (longitudinal) M5-brane currents can be
traced back to the fact that the fundamental degrees of freedom in terms of matrices
are associative and the current, which evaluates to [141]

MUK L STy ([Xi, [X7, X*]] + Cyclic) , (2.4)

hence vanishes by means of the Jacobi identity.

From the point of view of the Swampland program (cf. Chapter 5), in particular the
M-theoretic Emergence Proposal (see [142] for a review) this, however, hints towards
the fact, that the BFFS model is not yet a complete realisation of M-theory at the
quantum level. Motivated by this fact, the author and collaborators in [70] explored
the possibility of evading the problem related to the Jacobi identity, by introducing
so-called cubic matrices. Defining appropriate products, these objects, together with
usual (bi)-matrices form a non-associative algebra that can be regarded as a two-term
truncated L., algebra giving rise to a fundamental identity between the two and the
three-bracket. Besides providing a simple class of concrete examples for such algebras a
generalised construction of Yang-Mills theories, topological BF theory and generalised
IKKT models was presented. We will not cover these topics here but refer the reader to
the publication [70] and the references therein.

Lastly, we note that by construction the resulting theory features non-associativity.
From the point of view of a particle theory, (spacetime) non-commutativity and non-
associativity seem very exotic. However, we will see that non-commutativity and non-
associativity appear almost naturally once string theory or more generally quantum
gravity comes into play and this will be discussed in more detail in Chapter 3 when
introducing non-geometric backgrounds and their associated fluxes.

For a general introduction to M-theory (and U-duality) see [129,143,144]; for a focus
on the matrix model formulation [140,145,146].
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2.2. A closer look on T-duality

We briefly summarised the fundamental role that dualities, in particular T-duality,
played in the development of string theory. It can be shown that T-duality is a proper
duality of the full (perturbative) quantum theory and hence provides a pivotal tool in
many areas of the field. It will also play a major role in Part II of this thesis, and hence
we devote the remainder of this chapter to a more in-depth treatment.

After a short review of T-duality on the n-torus we discuss abelian T-duality on
curved backgrounds, which are by far the most rigorous and best understood notions
of T-duality. We then move to generalised notions of T-duality. The role of the latter
at the quantum level is not yet fully clear, and there are several subtleties that need to
be investigated [147]. It is beyond the scope of this short introduction to the subject
to give an in-depth discussion of these issues here, but we refer to the discussion and
literature provided at the end of this Chapter. For us, generalised T-dualities will
be mostly a solution generating technique’ in order to generate new, generically less
symmetric backgrounds and the implications for the Swampland program, in particular

the Swampland Distance Conjecture, cf. Chapter 5.

2.2.1. Toroidal compactifications

The circle example of Chapter 1.6 can be easily generalised to the n-torus. Imposing
the periodicities X! = X! + 2zw!, with w! the winding numbers, one can show that
Hamiltonian of the zero modes in the compact directions can be written as

1 1
H=5(p+pR) = 52" HZ, (25)

with the 2d x 2d matrix H € O(d, d,R) called the generalised metric and Z a vector of

momentum n; and winding numbers w! which read

G -BG'B BG™!

H =H(G,B) =
(G B) -G7'B G!

n

. Z= (m) . (2.6)

The momenta py /g form an even self-dual Lorentzian lattice '(@-4) [148] such that
p7 —pr=2wln; €22, (2.7)

and all such lattices are related by O(d,d,R) rotations. Every point in the lattice
corresponds to a different target space geometry with generically different spectra.

However, since the momenta pyr transform in the vector representation of O(d, d,R),

3See also the remark at the end of the Chapter.
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the terms sz /g are invariant under O(d,R) such that the Hamiltonian is invariant
under the maximal compact subgroup O(d,R) x O(d,R). Extending the argument to
the oscillator modes shows that the moduli space of toroidal compactifications is locally
isomorphic to [134,148,149]
0(d,d,R)
0(d,R)xO0(d,R) "

(2.8)

The remaining question is whether there exists a subgroup H of transformations of
the above coset that leaves the physical system, in particular the spectrum, invariant
and therefore relates two physically equivalent* theories. Since H transforms under
0 € 0(d,d,R) according to H’ = OTHO, it can worked out explicitly by acting on H,
that such a subgroup is given by H = O(d, d,Z). Therefore, the true moduli space of
inequivalent theories reads [134]

0(d,d,R)
0(d,R) x O(d,R)

/ 0(d,d,2). (2.9)

The subgroup O(d, d, Z) precisely generalises the simple r — 1/r duality of the circle
compactification and describes T-duality for toroidal backgrounds. For a discussion
of the generating elements of O(d, d,Z) and their physical interpretation in terms of
diffeomorphisms, gauge as well as duality transformations, see, for example, [134].

2.2.2. Curved backgrounds and the Buscher rules

The closed string on a (curved) background is described by the worldsheet non-linear
o-model (1.6). Now assume that the action (1.6) is invariant under a diffeomorphism
generated by the (nowhere vanishing, globally defined) Killing vector k#, i.e. under the
global transformation

seX! = ek (X). (2.10)
In particular, this means that the background has to satisfy (w a one-form)
LG =0, Li®=0, LiB=dw . (2.11)

Working in adapted coordinates such that k = (1,0, ..., 0) we can use the above invari-
ance to choose all background fields independent of the isometry direction X°. We can
then gauge the global symmetry (2.10), i.e. consider the local transformation

X' =e(X)K(X), (2.12)

“Full equivalence of the physical theories requires not only an automorphism on the space of states but
also a perfect mapping of correlation functions under the transformation. We refer to [134] for a thorough
discussion of the associated gauge symmetry that establishes the equivalence.
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and introduce a gauge field A and covariant derivative D, X’ such that
A0 (X) = 0pe(X) + Age, 0oX! - DoX! =0,X' — kA, . (2.13)

Then we arrive at® the action [150,151]

1

dra’

+ €% (Aak!BLy0pXT = 2400,36X") + €™ 00 Ag + @' N=RR(N)®)

So- = - /dZO'(V—hhaﬁG]JDaXIDﬁXJ+60BBIJa(,X165XJ
z

(2.14)

where we have introduced the Lagrange multiplier field y. Integrating out the Lagrange
multiplier leads to A being pure gauge, A = d¢. Using the gauge invariance (2.13), A can
then be set to zero, leading back to the original action. On the other hand, integrating out
the gauge field A leads to an action that is equivalent to (1.6), now with the background
quantities {G, B, ®} replaced by {G, B, ®}, where the latter are given by [152,153]

~ 1

Goo = Goy’

= BOI ~ GOI

Gor = =——, Bor = —, 2.15
o GOO o Goo ( )

- Go;Goys — BosB ~ Go;Bos — GoiB

Gr) =Gy — 01 OJG . orBos . By =By, - 01 OJGOO orBos ’

together with the shift of the dilaton according to
. 1
O=0- 3 log Goo . (2.16)

The coordinate X° is now replaced by the Lagrange multiplier y, which is then usually
denoted X?, such that the metric is given in the basis {X°, X!,..., X?} and it can be
shown [147] that X (or x) again corresponds to a compact direction. These relations
are known as the famous Buscher rules. The transformation rule for the dilaton, being a
higher-order o’ contribution, is calculated separately, for example, using a path integral
argument [152,153]. The procedure can be generalised to backgrounds with n abelian

isometries, which is equivalent to an iterative application of the above procedure.

Remarks

¢ The treatment outlined above was purely local. Whenever the worldsheet X is
allowed to have nontrivial topology, the procedure has to be performed with some
care. This includes the role of the Lagrange multiplier [147,154-156], topological

Only the metric part can be gauged by minimal coupling. The Kalb-Ramond field is more involved
to take care of and requires the introduction of additional terms, cf. [150,151].
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2.2. A closer look on T-duality

terms and large gauge transformations [147,154], and global properties of B and
w [157,158]. Further references can be found in [134,154] or in [159].

¢ While in the toroidal case, T-duality can be shown to be a symmetry of the partition
function (cf. [134] and references therein) and hence a (perturbative) duality of
the full quantum theory, curved backgrounds are more involved. The anomaly
coefficients 3 of the NLSM, are invariant under the Buscher rules at linear order in
@’ and this invariance can be extended to higher orders with the transformation
rules generically receiving [160] corrections at higher loops. In case the theory
admits a CFT description, it was shown in [147,161] that conformal invariance
is preserved and therefore the duality is exact and extends to all orders in a’°.
This extends to Wess-Zumino-Witten (WZW) models (cf. [73] or [162]), the duals

of which are orbifolds of the initial theory [163] with an equivalent spectrum.

Example: T-duality of $>

A particularly nice example to illustrate the Buscher rules is the three-sphere $%, which
can be viewed as the Lie group manifold SU(2). A convenient parametrisation reads

2
ds? = %(dyf +sin(0)%dé?) + rz(% cos(n)dé; — dér)?, (2.17)

with n € [0,7],&1,& € [0,27r) and a trivial Kalb-Ramond field and dilaton. This
parametrisation highlights the structure of S° as a non-trivial U(1)-fibration (along &)
over the two-sphere S, known as the Hopf fibration — also known as Hopf bundle, cf. [164].
The associated first Chern class is ¢1(S%) = 1, while the fundamental group is trivial
71(8%) = 0. Clearly, (2.11) is satisfied.

T-dualising along the circle fibre using the Buscher rules (2.15) and (2.16) we obtain

— 72 , 1 ~ 1 ~
ds? =7 (dn2 + sm(n)zdgf) +—5deg. B=-7cos(ndéi ndea, @ =—log(r). (218)

Hence we obtain a dual space that is the product of a two-sphere and a circle of inverse
radius together with a nontrivial two-form field B and dilaton ®.

We can see from this example that T-duality on curved backgrounds can introduce
non-trivial fluxes and also change the topology” [166,170] of the underlying geometry.
In particular 71(8%) = 0, while 71 (8% x §') = Z. We will return to this important point
in the next section and later in Chapter 6 in the context of the Swampland program.

By a careful treatment of global issues of the worldsheet this extends to arbitrary genus and hence all
orders in string coupling [147].

"Topology change is widely believed to be a universal property of quantum gravity. In particular
it is featured by string theory [165-170]; see also [171] and [172] for a more recent account and further
references. Note also the close connection with the “Cobordism Conjecture” in Chapter 5.
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2.2.3. RR sector, Fourier-Mukai transform and topological T-duality

T-duality can be extended to the full (quantum) theory hence in particular to the remain-
ing bosonic fields in the Ramond-Ramond sector. However, in the RNS formulation,
these cannot be coupled to the worldsheet o-model® and hence a derivation a la Buscher
is not possible. However, since RR fields couple to D-branes, it is possible to infer their
transformations, at least in the case of a trivially fibred circle and B = 0, from the trans-
formation rules of the D-branes. T-duality for open strings interchanges Neumann
with Dirichlet boundary conditions. Hence, depending on whether we dualise along a
direction transverse or perpendicular to the D-brane, we either change a Neumann into
Dirichlet direction or vice versa. D-branes however are charged under the RR-fields,
in particular a p-form F,, gauge field couples electrically to a (p — 1)-brane. Hence, in
order to obtain a consistent picture under T-duality we can deduce that the potentials
F = dC have to transform as

Co=C, Cr=Cor, Cors =Cyy, Crix = Coryk - (2.19)

This is the analogue of the simple r < 1/r rule of T-duality on a circle.

Buscher rules for RR sector

The analogue of the Buscher rules for RR potentials under (abelian) T-duality on a
curved background with isometry was derived in several different approaches [173—
179]. For Type II theories, they relate (massless) Type IIA theories with Type IIB and,
again adopting the isometry direction along X?, they read [179]

(p-1)
Gor,C
5(1’) — (p)-1 _ ( _ 1) 0LL2 013"'113]
Of...dp — “hod, — \P Goo ’ (2.20)
~(p) _ ~(p+l) (p)
Cll...lp = C011...1p - pBOlIlC012...I,,] :

In particular, odd-form potentials are exchanged with even ones, and hence T-duality
is indeed a map between Type IIA and Type IIB theories, as mentioned earlier.

The T-duality rules (2.20) for the RR potentials hold for an arbitrary isometric direc-
tion. In particular, this holds not only for the case of a trivial product manifold M x S*
but also for a more general S1-fibration over some base manifold M, S! < X. Let us
for the moment restrict ourselves to trivially fibred spaces, potentially with n abelian
isometries, i.e. X = M xT" and a NSNS three-form H that is trivial in H>(X, Z) such that
it can be globally written as H = dB. In this case, there is a very compact formula that
encodes the T-duality for the RR field strengths. In terms of the polyform § = ¥, F),

8 A possible approach is to work in the Green-Schwarz formulation, cf. [79-81].
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and its dual § = 3, F,, on X = M x T" it reads [180]

Eg, — ch(P)eB_B‘& — el?—B+Z[d9~,-/\d9i8, = eFC& , (2.21)
" ™ "
with ch(#) the Chern character of the complex Poincaré line bundle’ P over 7" xT" with
U(1) connection and curvature ¥ = —27xi Y,; df; A d6;. Here 6;,6; are the coordinates
on T" and T" respectively, and we omitted some pullbacks on B; compare (2.24). The
above transformation is known as Fourier-Mukai transform and can be interpreted as an
isomorphism between H-twisted cohomologies H*(X, H)

T.: H*(M xT",H) — H**'\(M xT", H), (2.22)

which in turn can be lifted to an isomorphism of (twisted) K-theories classifying the
D-brane charges and their transformation under T-duality [180, 182]. In particular, the

Fourier-Mukai transform can be thought of an integral transform
ATX 5 A°T*X :a - (p2)(K - pia), (2.23)

with p : X X X — X the projection map onto X and similar for p and K is called
the kernel of the integral transform. The Fourier-Mukai hence acts by first pulling
back to the correspondence space, convoluting with the kernel K and then pushing
forward to X. Comparing with (2.21) we see that the kernel is essentially given by the

exponential

K=e',  F=pB-p'B+) dinde;, (2.24)

upon identifying the pushforward map as fibrewise integration and reinstating the pull-
backs omitted before. It is then exactly this kernel that gives rise to the isomorphism
(2.22) via

T,:=p.oel op*: H'(M xT",H) — H**'\(M xT",H), (2.25)

and subsequently the K-theory equivalent. The construction has been generalised to
non-trivial circle bundles E and non-trivial H in [182,183].

Topological T-duality

We know from the previous section that T-duality can also be applied to nontrivial
circle fibration over M. In this case, the formula (2.21) is no longer well defined globally
but gives the correct Buscher rules at least locally [182]. It has been argued in [182,183],
that indeed the isomorphism (2.25) can be extended to the fibred case; see also [184].

9See for example [181] for a definition and discussion focused towards T-duality.
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T-duality
HeH¥E,Z), E+—— S'5  *§8 <« s E HeHNE Z)

c1(E)=n.H

Figure 2.1.: Visualisation of topological T-duality as a isomorphism between H-twisted
cohomologies of two dual (generically topologically inequivalent) circle-fibrations E
and E with H-flux H and H over a common base M.

Let E be an (oriented) S! bundle over M with Chern class ¢1(E) € H?(M, Z) together
with anontrivial H-flux H € H*(E, Z). Then the T-dual space E is again a circle fibration
over M with nontrivial H-flux A such that [182]

c1(E)=n.H, ci(E)=m.H, (2.26)

where 7, 7 are the associated projections to the base M. Therefore, loosely speaking, T-
duality on topological nontrivial spaces with H flux exchanges flux with topology. Note

that in the physics literature it is common to denote the unit of flux k associated with a
certain representative in H 3(E, Z) with [H] such that schematically we can write

topology: c1(E) «— flux: [A]. (2.27)

Furthermore, we see that indeed c1(E) € H*(M, Z) is mapped to H € H*(E,Z) and, as

mentioned before, the isomorphism (2.22) extends to an isomorphism [182]
T.:H*(E,H) — H**Y(E,H). (2.28)
The situation is summarised in Figure 2.1. For further details, see [182,183].

Example: S3 with H-flux

We have already encountered the example of the three-sphere fitting into these rules.
Here S was mapped to the topologically distinct space S?x S! together with a nontrivial
B-field and dilaton. In particular, the T-duality exchanged c1(S%) = 1, [H] = 0 with
c1(S?x 81 =0,[H] = 1. We can easily generate another example by supporting [H] = k
units of flux on $°. The resulting theory can be viewed as a SU(2) WZW-model at level
k, denoted SU(2);. We define the B-field as

B = —g cos(n)dép A déy, (2.29)

which can be easily shown to give [H] = k. The dilaton is chosen to be trivial.
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T-dualising using the Buscher rules gives

— 2 1 (1 2
ds2 == (dn2 + sin(n)zdgf) + = |2k cos(n)dé; —2dé&| (2.30)
4 r2\2

together with
-~ 1 ~
B=-3cos(ndé Adéy, @ =-log(r). (2.31)

From the dual line element, one can read off'” that ¢1(E) = k and [H] = 1, hence
realising (2.26). We will see later that his example fits into the more general family of
Lens spaces that we discuss in Chapter 6, Section 6.3.

2.2.4. Generalised T-dualities

We provide a minimalistic guide through the main aspects of generalised dualities,
restricting to the minimum needed for later considerations in Part II. We point the reader
to the relevant literature for details and focus on contrasting the standard approach to
non-Abelian T-duality with the more general notion of Poisson-Lie T-duality.

Standard approach to non-Abelian T-duality (NATD)

The gauging procedure outline in the previous section can be generalised to multiple
non-Abelian isometries, introducing multiple non-commuting gauge fields A“ as ini-
tially worked out in [150,151]. The dual theory can then be again obtained by introduc-
ing a set of Lagrange multipliers 19, leading to the standard formulation of non-Abelian
T-duality (NATD) [154,186—-188]. However, the procedure is much less straightforward
and suffers from many drawbacks compared to abelian T-duality. In the case where the
isometries act without isotropies, hence without any fixed points, one can write down
transformations rules for the dual background similar to the Buscher rules (2.15) and
(2.16). However, these will in particular depend on the non-Abelian structure constants
fap© of the initial symmetry group. In the case where the isometry group is the whole
group manifold under consideration, the transformation rule reads [135,155,189,190]

Eab = (Eab +/lcfcab)_1 s (232)

givenin the Lie algebra basis of (left-invariant) Maurer-Cartan forms L¢ defined through
g 'dg = LT, with g € G an element of the isometry group G. The Killing form has
been used to lower the index on f,,¢. From this, G and B can be obtained as symmetric
and antisymmetric parts, respectively.

10This can be seen by calculating the associated connection and charge, as nicely explained in [185].
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T-duality \ Vector fields \ Symmetry cond. \ Conservation eq.
abelian [Va,vp] =0 L, Eij=0 dxJ,=0
non-Abelian | [v4,vp] = fup Ve L, Eij=0 dxJ,=0
Poisson-Lie | [vg4,vp] = fap Ve (2.35) dxJ, = fPudp N,

Table 2.1.: Summary of properties of the different notions of (generalised) T-duality.
The current J, is defined in (B.1) in Appendix B.

For discussions of some of the issues arising within this approach, like non-compactness
or lack of isometries, see [135,154,188] and references therein.

Example: NATD of $3

Viewed as a group manifold, we have $3 = SU(2) such that f,pe = €ape. In the basis of
left-invariant forms L? the metric on S° is simply givenby E,p = Gap = r28 41, such that

we obtain

Eab = (rZ + /lcecab)_l s (233)
which, upon moving to spherical coordinates with 12 = ¥, (1%)?, leads to [187,191]

dszzr—2+mds (S), B:mVOI(S), (I>=CD—§10g(r +rl ), (234:)
where the transformation rule of ® can be found in [186]. In particular, the dual is

non-compact and lacks some of the symmetries of the original model, cf. [187].

Poisson-Lie T-duality

Non-Abelian T-duality is one way to generalise the notion of conventional T-duality
for isometry groups that are non-Abelian. We now turn to Poisson-Lie (PL) T-duality,
which weakens the requirement of having an isometry even further. In particular,
we let go of the isometry requirement £, E;; = 0 but instead impose the weaker
condition [192,193]

Ly, Eij = fP° v EqExjve? (2.35)

with a, b, c,... denoting algebra indices while i, j, k, ... are curved indices. For the
moment, f¢°. are simply constants, the role of which will become clear in a second.
Let {v,} be a set of vector fields generating some Lie algebra g with an associated Lie
group G such that the condition (2.35) is satisfied for a given background E. Then
the NLSM with background E is called Poisson-Lie T-dualisabale, and the consistency
relation [£,,, L,,] = L|v,,v,] implies that 4 . are, in fact, structure constants of a dual
algebra g. This turns g (and by duality also §) into a so called bialgebra, hence an algebra
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2.2. A closer look on T-duality

admitting a dual algebra such that the mixed Jacobi identity'' is satisfied. Now, forming
the direct sum d = g ® §, one obtains the co-called Drinfeld double d. The dual group
G naturally encodes the Poisson-Lie T-dual background [192,193]. The associated Lie
group D = exp(d) is also referred to as a Drinfel’d double, which (at least for D simply
connected) splits as D = G »« G; here >« denotes the Zappa—Szép product, cf. [194]. For
further details, we refer to the reviews [136,195-197]. The symmetries and conserved
currents for the different incarnations of T-duality are summarised in Table 2.1.
The Poisson-Lie symmetric o-models for a Lie-group G the reads

So= [ LB + )AL (2:36)
>

with L = g~'dg again the left-invariant Maurer-Cartan forms written in a basis of
generators {T“} of the Lie-algebra g and group G > g. Here Ej is a constant background
matrix and IT = I1(g) is the Poisson-Lie structure bivector of G which can be obtained
from the r-matrix solving the classical Yang-Baxter equation'?. The dual theory is then
given by

St = /Z Lal(E5" +11(2) " L. (2.37)

from which one can readily obtain the dual background data G, B. Similarly to the
abelian case, the dilaton requires a separate treatment. Its transformation rules were
derived in [198] (see also [199]) and it turns out that in order to have a PL-symmetric
configuration, the dilaton and its dual need to take the form

1 = 1 det((}ab)
® = o+ 7 log (det(Gap)) , B =P+ Jlog|—=

G| (2.38)

with G, and G4 again evaluated in the algebra frame.

Abelian and standard non-Abelian T-duality can be obtained as special cases:

* abelian T-duality: We have d = u(1)? ®u(1)? such that D = U(1)4 x U(1)¢ and since
I1 =11 = 0 we get the familiar toroidal T-duality rule E — 1/E, cf. Section 2.2.1.

* NATD: The Drinfeld double reads d = g @ u(1)¢ so that (at least locally) we
have D = G < U(1)9™C In this case IT = 0 while IT = f,,°1. and we obtain the
background E.p = (Ey Db + faptAe which is nothing else than (2.32), however

crucially with angular coordinates leading to a compact geometry.

HThe mixed Jacobi identity for structure constants f,,¢ and their duals f7 k; reads f,pcfd¢. =
fac’dfceb+facefdcb+fcbefdca+fcbdfcea- _

12 Alternatively one can explicitly compute I1 (and I1) from the adjoint action for the group elements
on the generators T, T, see for example [69] Appendix A.
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We denote the NATD obtained via PL T-duality of the double D = G x U(1)4™¢ as
NATD”* while NATD without superscript denotes the standard approach.

Remark

¢ Choosing the Drinfeld double for NATD to be the cotangent bundle D = TG =
G =< R¥MC one can recover the non-compact case of standard NATD. For example
T*SU(2) = SU(2) =< R3, with E as in (2.32).

2.2.5. Dualities from defects

There is an interesting relation between (generalised) dualities and so-called topological
defects [200-206], which is in particular connected to the notion of T-duality via the
Fourier-Mukai transform sketched in the previous section.

At the level of the o-model action (1.6), we can introduce a (topological) defect,
separating two a priori unrelated theories and gluing them along a common defect
line. In particular, consider a pair of NLSM actions with target space maps X : £ — M
and X : £ — M and associated background data G, B and G, B, which we keep arbitrary
for the moment. We then glue the theories by combining the worldsheets £ U £ along
a defect line D. The latter we locate at o = 0, so that the map X(7,0) is now defined
for o > 0 and X(r, o) for o < 0. It is convenient to define the following product target

space map

X=XxX:ZUS 5> MxM:(r,0)» X =X, X"). (2.39)

Omitting any details, we define a connection A on a line bundle taking values in the
pushforward of the product map X restricted to the defect line D. The connection has
an associated curvature ¥ = dA. We thus have a total worldsheet action [204,207]

1

2ra’

S=/dZUL(G,B,X)+/dzoL(G,B,X)— /dTAI(X)c?TXI, (2.40)
z > D

with L(G, B, X) the Lagrangian of the bosonic sigma model (1.6), see Figure 2.2.
Varying the complete action and evaluating the location of the defect o = 0 imposes
equations of motion that generically relate the background data G, B to the quantitates
G, B in a way depending on the explicit choice of the defect or connection (curvature).
It was realised in [207] for the case of abelian T-duality and later for NATD [191],
that starting from a dualisable model G, B and imposing a specific choice of defect
associated with curvature ¥, the equations of motion fix the background G, B to be the
(non-)Abelian T-dual of the former. Abelian T-duality corresponds to the choice

F = —dgi AB;. (241)
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X

YCMxXM

Figure 2.2.: Two worldsheet theories glued along a defect line D. The defect contribu-
tions is mapped to a submanifold Y of the target space product manifold Y € M x M.

In the beginning of this paragraph we hinted towards the connection of defects
and the Fourier-Mukai transformation as a transformation of the RR charges. In order
to understand this, note that T-duality of a D-brane can be understood as a fusion
operation of a defect with a boundary condition'®. Since the associated D-branes are
charged under the RR fields, the duality defect encodes some information about the
duality transformation of these charges. It was shown in [191,207] that the two form 7
living on the worldvolume of the topological defect encoding (non-) abelian T-duality
determines the kernel K of the Fourier-Mukai-like transformation via

K=el, F=p"B-p*B-F. (2.42)

Recalling the choice of curvature that leads to the abelian T-duality defect given in
(2.41), we indeed obtain the correct kernel for the Fourier-Mukai transformation given
in (2.24). It was shown in [191] that this carries over to NATD, where the curvature
of the defect connection again gives rise to the correct transformation rules for the RR
sector under non-Abelian T-duality.

Finally, in [69] the author and a collaborator derived the defect contribution im-
plementing PL T-duality. This confirmed from a different perspective the proposed
Fourier-Mukai kernel for PL T-duality derived in [208] from a completely different
approach. We refer to the original publication for details and further references [69].

2.2.6. The role of generalised dualities in string theory

We close this Chapter by addressing some questions and issues concerning generalised
T-dualities. A discussion of the potential role of generalised dualities for the Swampland
program is delayed until Chapter 5.

13Gee [69] and references therein for details on the fusion process.
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Solution generating technique vs quantum symmetry

It is not clear if and which incarnation of generalised T-duality can be lifted to the
quantum level and hence serve as a true duality of string theory. It was recently
shown [209] that for certain WZW models PL T-duality is indeed valid up to all orders
in o’ and string coupling and hence indeed extends beyond the classical level. Here, itis
worth mentioning that while drastically relaxing the underlying assumptions of abelian
T-duality, generalised T-dualities can be shown to remain canonical equivalences [170,
192,210] and hence transformations between theories with a classically common phase
space. The question of whether non-Abelian T-duality can be a (perturbative) symmetry
of string theory is a long-standing one [155] and it is believed that generalised T-dualities
generically fail to hold at all orders in genus expansion. However, starting from a CFT,
the generalised dualities map CFTs to (generically inequivalent) CFTs at least up to
second order in o’ [211-213], which, at the very least, suggests that they are seen as
powerful solution-generating techniques.

Map between scalar field spaces

In view of the Swampland Distance Conjecture, to be introduced in Chapter 5, we are
interested in the scalar field space descending from the internal manifold, in particular
the associated field space metric and the scalar potential. In contrast to abelian T-
duality, it is not clear for generalised T-duality that upon dualising, the metric and
scalar potential stay invariant. We will investigate this in Chapter 8.

Global structure

The global structure of the generalised T-duals is much less trivial than in the abelian
case. In view of our later use as compactification manifolds, we would like the dual
space to be compact to perform the dimensional reduction in the standard way. NATD
maps a compact space to a non-compact one, since the Lagrange multiplier procedure
does not capture the global information about the dual manifold [170]. PL T-duality

circumvents this problem, and hence we will follow this procedure'*.

In conclusion, we see that the power of generalised T-duality clearly lies in the ability
to generate a plethora of background with properties that challenge and expand the
space of known solutions. While the latter are often highly symmetric, their generalised
duals are in general much less symmetric while still computationally under control and

supported by intuition gained from the initial space'”.

4Understanding the global structure is anyway highly nontrivial also in the PL case; see e.g. [208].

15Prime examples for this, although not discussed here, are generalised duals of TsT-deformations
[214,215] and the closely related (integrable) JJ-deformations [166,216,217] of CFTs. These models
feature exotic global properties such as changes in topology along certain directions in moduli space [216].
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Generalised geometry, DFT
and non-geometric backgrounds

Strings are extended objects that can perceive spacetime geometry rather differently
than point particles. Consider, for example, closed string winding modes wrapping
nontrivial cycles of the geometry. These do not have a point-particle analogue. Even
more striking is the ability to define the theory on configurations that do not fit into
the standard paradigm of Riemannian geometry. While in the latter, local patches are
glued by diffeomorphisms — and in the presence of fluxes — gauge transformations, in
string theory there exist further transformations that leave the theory invariant. These
include in particular the dualities discussed in the previous section, which from a
string perspective can be put on equal footing with diffeomorphism and gauge trans-
formations. In particular, strings can propagate on spaces with transition functions
corresponding to T-dualities or even S-dualities, and such spaces are often called T-folds
(or S-folds respectively) and more generally non-geometric spaces. There are even more
exotic configurations that lack a local Riemannian description due to the dependence
on canonical conjugate winding coordinates or where the left and right moving sectors
of the closed string perceive spacetime differently. These spaces are known as locally
non-geometric. It turns out that non-geometric spaces in general can be described very
naturally within the framework of Double Field Theory, which we review at the beginning
of this chapter before moving to non-geometric spaces.
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3.1. Double field theory and generalised geometry

There are several physical motivations for the introduction of the notion of Generalised
Geometry and Double Field Theory (DFT). From a string theory point of view, it is partic-
ularly natural to start from the following observation'. The closed strings on a circle
(parametrised by X) not only gives rise to momentum modes n! but also winding modes
wy. Upon T-dualising, these winding modes can be viewed as momentum modes along
a dual circle with coordinate X. Woking towards a full field theoretic description of
the closed string on a D-torus it seems natural to write down a theory that — along
the compact direction — depends both on the physical coordinates X! as well as the
dual winding coordinates X;, such that the fields are now functions of both these
coordinates?. Schematically, we can write such an action as

S= / do?L(X', X;, YH), (3.1)
)

where Y# is a target space coordinate along the non-compact direction. While in
principle, one could now push this idea to the level of the worldsheet action and write
down, for example, a doubled o-model action [219] or even a formulation of String
Field Theory (cf. [220] for a review), we are more interested in the low-energy effective
description of such an action. In particular we are interested in the action of the NSNS
sector, with field content G, B, ® and its generalisation to the doubled formulaation.

Finding such a description is of course a non-trivial task. Without going into any
details on the derivation and focussing on the compact directions which we denote by
XM | the action reads [221]

1 1
SDFT = / dZDXe‘Zd(—WMNaMWKL(?N?{KL - EWMN(?N?‘(KLQLWMK

8 (3.2)
— 20p dONHMN + 4wMNaMdaNd) .
with
G -BG'B BG!
H = HMN = , e = \Ge ™2, (3.3)
-G~ B G1

where H is the generalised metric that we already encountered in Section 2.2.1. Indices
are raised and lowered by use of the O(D, D) “metric”

(o 1p
n= (1D 0 ) ’ (34)

1See for example [218] for a nice and compact introduction, which we partially follow below.
“We have already implicitly hinted at such a doubling when writing the spectrum of the string as
ZTH 7 with Z a 2D-dimensional zero mode vector in Section 2.2.1.

46



3.1. Double field theory and generalised geometry

such that the inverse H ! is given by

WMN = UMonpNWOP . (3.5)

Here, I =1, ...,2D, and the first D indices corresponding to the coordinates X " and the
latter D to their tilde pendants. Likewise, the derivatives dys split as dp = 0; = Jx: for
i=1,...,Dand 9y = 9' = 8)2[ fori =D +1,...,2D. The action is manifestly O(D, D)
invariant’ and the resulting theory is known as Double Field Theory (DFT) [221-224].

In particular, O(D, D)-transformations O act on H via H = OHOT and on X via
X = OX, or explicitly in indices

HMN = oM . 1T oN | XM - oM, xN (3.6)

Since in the action all O(D, D) indices are contracted, the invariance is apparent.

Trying to motivate the action from symmetry principles almost automatically leads
to the notion of Generalised Geometry [225,226] which we briefly summarise now. The
low-energy effective action (1.9) has gauge symmetries consisting of diffeomorphisms
and gauge transformations of B. While the former are generated by vector fields
V € I'(TM), the latter are generated by one-forms ¢ € I'(T*M). The core essence of
generalised geometry then boils down to combining both of them into a single object,
the generalised vector X

X=V+éeD(TM T M), 3.7)

where TM ® T*M is called the generalised tangent bundle of M. It is convenient to
combine the elements into a 2D vector XM

X;
Xi

XM =

&i
vi) , (3.8)

with the index i running from 1 to D. The generalised tangent bundle E can be more

generally written as an element of the short exact sequence
0—>TM—E—TM—0, (3.9)

such that E = T"M ® TM and the sections of E are the generalised vectors X. This
simple yet elegant packaging is at the heart of generalised geometry. For the many
details omitted here, we refer to the original work [225,226], see also the excellent
review [227] aimed towards applications in string theory.

Note that so far the introduction of the generalised tangent bundle does not amount
to the doubling of coordinates of the above action. However, as we will see in a second,

3 And hence in particular invariant under (abelian) T-duality.
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Chapter 3. Generalised geometry, DFT and non-geometric backgrounds

the generalised tangent bundle comes with a natural bilinear form (-, -) of signature
(D, D) as well as a positive definite metric H, that is, in fact, the generalised metric
from above. The formeris givenfor X =V +£,Y =W+ y e I'(TM © T*M) by

1 1
(X.¥) = SXTnY = 2 (exx +owé) (3.10)

where 7 is again given by (3.4). In addition to this bilinear, we would also like to define
a positive-definite inner product on E. In fact, we already encountered a very convenient
choice, namely the generalised metric H of (3.3). It is convenient to write H in terms of
so-called generalised vielbeins &, that are defined via

H=8T1,8. (3.11)

This object is not unique but only fixed up to O(2D) transformations. A convenient and
common choice, is

e 0
Ee.) = (_ _T) . (3.12)

elb e

where e is the standard D-dimensional vielbein defined via G = e’ 14e = e AOab e’fi and
b is given in the vielbein basis B = e b, ebj. We will shortly see another frame, which
is more convenient in certain situations, the so-called non-geometric frame.

Lastly, we briefly comment on the symmetries of the doubled action (3.2). The
gauge algebra of the action (3.2) and hence its symmetries are encoded into the so-
called C-bracket [-,-]c [224], which is the Double Field Theory generalisation of the
Courant bracket [228] on E, playing a role similar to the Lie bracket for vector fields. In
particular, there is a generalised Lie derivative Lx such that the gauge transformation of

the generalised metric can be written as [221]
SHMN = .ﬁx?‘(MN - [.ﬁx, .ﬁy] = —.EA[X,Y]C . (3.13)

Therefore, the gauge algebra is determined by the C-bracket.

Remarks

* Double field theory, as originally derived [223] from (closed) String Field Theory
was first formulated as an expansion up to cubic order in terms of the field
E17 = Ery +er7(X,X) + O(e?) with E = G + B the constant background field.
Furthermore, there is a formulation [229-231] in terms of generalised fluxes Fazc
that is particularly convenient to connect to gauged supergravity but also non-

geometric spaces. We refer to the review [232] and the references therein.
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3.1. Double field theory and generalised geometry

¢ Later we will be mostly interested in curved backgrounds, in particular group
manifolds. Starting from Wee-Zumino-Witten models, the framework of Double
Field Theory was generalised to these situations in [233-235] and is known as
DFTwzw. The action can be obtained by replacing the O(D, D) derivative d; in
Sprr by a covariant derivative V;, keeping manifest O (D, D)-invariance.

¢ DFT makes manifest the T-duality invariance of string theory. Combining T-
dualities with S-dualities leads to U-duality and the corresponding theory invari-
ant under the U-duality is Exceptional Field Theory, see [236-238].

3.1.1. Section condition and the choice of frame

So far, we did not provide a vital piece of information, namely how to obtain the
standard NSNS effective action from Spgr. In particular, we need to select the D physical
coordinates among the 2D total coordinates, and hence a D-dimensional subspace in the
full 2D-dimensional target space of the action. This is known as choosing a polarisation
or section and the associated constraint as section condition. A particular way to choose
such a polarisation is by means of the strong constraint, which for @, (X, X) generic fields

reads » B
AP OMDy, = 0,0,0'Dp, + I PP, =0, Va,b. (3.14)

If this constraint is satisfied, it can be shown that the theory depends at most on D of the
coordinates, and hence one can always find a frame in which the fields only depend on
X and not on X. It is this frame then, in which we can make contact with the standard
formulation of NSNS effective action.

The strong constraint, in fact, is not just an arbitrary way to impose the condition.
It is, in fact, the natural generalisation of the level matching condition in string theory
and is crucial for the consistency of the doubled theory. A particular simple choice is to
impose d(-) = 0, i.e. all fields depend only on the physical coordinates X. This trivially
satisfies the strong constraint and one finds that upon this choice the doubled action
reduces to the standard NSNS supergravity action

Sprr = f d2DXe‘2d(%7-(MN6M7{KL6N‘]-{KL —-.. )
ﬂézo (3.15)
S = [dPx\Ge2® (R(G) — L Hyj HU +4a,~q>ai<1>) .
We saw that the explicit form of H in terms of the fields G, B is determined by a

choice of generalised frame field &. The canonical choice (3.12) leads to the familiar
parametrisation of H in the form of (3.3) in terms of G and B. Although this choice
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Chapter 3. Generalised geometry, DFT and non-geometric backgrounds

recovers upon the appropriate section condition the familiar geometric NSNS action,
from a doubled perspective there is a priori no preferred choice for the decomposition
of H in terms of a specific &. There are backgrounds that, from a string perspective,
are perfectly fine but may look ill-defined from a standard Riemannian point of view in
terms of G and B. These backgrounds may be plagued by monodromies that are neither
diffeomorphism nor gauge transformations, but actually duality transformations. Their
target space geometry cannot be described in terms of standard Riemannian geometry,
as for example, transition functions also need to include duality transformations; see
also Figure 3.1. This leads to the notion of non-geometric spaces [114-116,159,239]. In
these cases, it turns out to be favourable to switch to an alternative description in terms
of new fields G and 8 defining a different frame &; 5. Taking the generalised vielbein
to be given as [240]
¢ B

Eep) = (o é_T) , (3.16)

leads to a specific frame, known as S—frame that is particularly suited to treat these

non-geometric spaces, which will be the topic of the next section.

Comprehensive reviews on DFT can be found in [218,232,241].

3.2. Non-geometric spaces and -gravity

We will see shortly that (at least a special class of) non-geometric spaces are closely
related to T-duality. Furthermore, they can feature exotic properties like explicit de-
pendences on winding coordinates. It should therefore not come as a surprise that DFT
is a very convenient tool for working with these spaces. In the following section, we
will outline how starting from the DFT action one can define a new frame - the non-
geometric frame - and an associated effective theory [242,243] with Lagrangian Lg that
is particularly suited to investigate these spaces. The latter defines an alternative to the
standard NSNS effective action and is often called B-(super)gravity, see also [243-245].

3.2.1. Why non-geometry?

From a phenomenological point of view the idea of non-geometry can seem very
exotic or even undesirable. However, quite the opposite is true. Moduli stabilisation
(cf. Section 1.3) can be conveniently achieved by turning on constant background
fluxes in the (internal) geometry of the higher-dimensional theory, for example through
the NSNS three-form flux or Ramond-Ramond fluxes. Upon compactification these
generate a scalar potential for the effective theory, stabilising (at least some of) the
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3.2. Non-geometric spaces and S-gravity

moduli at the minimum of the potential. These fluxes are part of the geometric field
content of supergravity or string theory and are therefore geometric fluxes. However it
turned out that in certain instances these fluxes were not enough to stabilise all moduli.
Subsequently, it was realised [246-250] that stabilisation could be potentially realised by
introducing exotic fluxes that had no apparent geometric origin [247] in the standard
formulation of 10D SUGRA or string theory respectively, see also [250,251]. Whilst
achieving the desired moduli stabilisation the origin of these fluxes from a higher-
dimensional realisation remained unclear until the authors of [240,242,252] managed
to resolve the puzzle by approaching the problem via DFT. By starting from the full
doubled action, choosing a particular frame and imposing the section condition it was
possible to write down a ten-dimensional effective action involving new exotic fluxes,
that upon compactification could be matched with the one that were observed before
in the context of moduli stabilisation. It is exactly the appearance of these new fluxes
that characterise the features of globally and locally non-geometric spaces.

3.2.2. B-gravity

We start by noting that due to the defining relation (3.11), the vielbein given in (3.16) is
merely a reparametrisation of the same H, i.e.

(.5 L1208 e.8) = H =8, 5 1oapEap) - (3.17)

The two frames are related through a O(D - 1,1) x O(1, D — 1)-transformation O, i.e.
& = 0§, cf. Appendix C in [243]. The generalised metric in terms of these fields reads

G G
= N oA B ~ | (3.18)
-G G- pGp
from which by comparison with (3.3) one can deduce the relation*
(G+B) '=(G1+p). (3.19)

The dilaton in the new frame can be defined by requiring the generalised volume
element to remain invariant

¢ 224G = 0 2%G . (3.20)

This field redefinitions were employed in a series of works [240,242,245,252] in order
to rewrite the standard NSNS sector in terms of theses new fields. The resulting theory
is known as S-(super)gravity and is particularly suited to describe non-geometric spaces

“Note the index structure for 8 resulting from this equation, 8 = BY. In particular 8 is not a two-form,
but a bivector g = % B d; A 0j, cf. [240]. For explicit transformation rules, see, for example, [240].
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Chapter 3. Generalised geometry, DFT and non-geometric backgrounds

and their exotic fluxes. Crucially, it is equivalent to the NSNS action up to a total
derivative and it is this new frame, in which non-geometric spaces are well-defined.
Without going into details, the strategy to find this new description or new action

can be summarised in the following diagram (adapted from [242])

0€0(d-1,1)x0(1,d-1)

Lprr(H(G, B),d) Lprr(H(G,B),d) +du(...)

) Jo

(3.19) A o
LNSNs(G,B,(I))+a(...) < > Lﬁ(G,/B,CD)+6()

Hence, the new action can be obtained by first rotating to the new frame in the DFT
action and then applying the strong constraint’, reducing to a D-dimensional theory
depending only on the physical coordinates X. The resulting action reads [242,243]

A A A v A ]. .. A
Sp = f dPxe VG (R(G) + R(G) - SRR +4(50)?
) (3.21)
+4(B10;® = 3G g f19,G71 +0 ),

where R is a rather complicated expression, involving the field g and the Q-flux which
we define below. It is a scalar under diffeomorphism and can be seen as a kind of Ricci

scalar-like tensor associated with a connection I, cf. remark below and [245]. It reads

. 1. A A . 1 4 . A . .
R = _ZLGiijnleQ,kij P EGUQ oM -G0M0 T+ (3.22)

where we omitted terms that are further contractions of Q, G and derivatives thereof,
as they will vanish and hence not play a role in our discussion in Chapter 7. The full
expression can be found, for example, in Eq. (A.8) of [242]. We will see in Chapter 7, that
this form of the action is crucial in establishing the correct matching of the potentials
of non-geometric spaces and their duals for the Swampland Distance Conjecture. In
particular the action explicitly contains the non-geometric fluxes

Qi =ap7,  RIF=3pMgpt. (3.23)

Upon compactification, these fluxes will give contributions to the scalar potential that
are similar to their NSNS cousins. As indicated in the diagram above, the Lagrangian
of the g-gravity theory is equivalent to the NSNS Lagrangian up to a total derivative

Lnsns = Lﬁ +0 ( . ) . (324)

This means that the two Lagrangians share the same symmetries and — up to field

5This need not be possible always, cf. remarks below.
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3.2. Non-geometric spaces and S-gravity

redefinitions — also the same set of equations of motion, implying that a vacuum of one
theory will automatically also be a (local) vacuum of the other one. The explicit form
of the total derivative can be found in the appendix of [67], where the matching of the

two frames is demonstrated explicitly on the example of S* and its NATD'™.

Remarks

e Finding a suitable connection I" and covariant derivative V turned out to be
challenging. It was however defined in [245] together with an associated tensor

R =R, (3.25)

similar to the standard Ricci tensor such that diffeomorphism invariance of the
theory is manifest. The formulation in terms of R will be crucial for later chapters.

e At the level of the full DFT action, the R-flux has another contribution from dual
coordinates

Riik — 3 (5[iﬁjk] +ﬁf[ia[ﬁjk]) , (3.26)

Generically the section condition is then not satisfied and one can not perform
the truncation to the physical coordinates.

¢ Non-geometric properties can also be understood from the failure of the frame
fields to be globally defined. See [253] for a detailed discussed of the role of the
frame in non-geometric settings and its global properties. One can also translate
this to the section condition, which ceases to be defined globally [254]. Since
patches are glued with dualities, the section condition has to be adjusted.

* We reserve the word non-geometry or non-geometric background for the effective
theories that fall within the framework described above. There are more general
notions of the word non-geometric background or string vacuum. We can think
of a (perturbative) geometric string background as arising from a worldsheet NLSM
admitting a (pseudo-)Riemannian target space manifold with associated differen-
tial structure and field content. Then all theories not fitting into these class can be
thought of as non-geometric in one sense or another. In particular these are generic
2d worldsheet SCFTS like rational CFTs [162], in particular Gepner models [255]
or also asymmetric orbifolds’ [258].

OWhile Rk = 3p!1119,p7k] = 3p!li1y,87k] is a tensor such that the R2 term is diffeomorphism invariant,
0 kl] is not. Repackaging all the Q terms into R leads to a covariant object, cf. the discussion of [243].
’/ Asymmetric obribfolds are a somewhat special case as their effective theories in terms of gauged

supergravities display exactly the non-geometric fluxes introduced above, cf. [256,257]
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Chapter 3. Generalised geometry, DFT and non-geometric backgrounds

Figure 3.1.: In contrast to standard Riemannian geometry, transition functions ¢;; are
not only allowed to include diffeomorphisms (and gauge transformations of the NSNS
form field B) but also dualities. In case of T-duality this leads to the notion of a T-fold.

3.2.3. Monodromies and non-geometry

Non-geometry manifests itself - at least within the form discussed here - as either a
T-duality monodromy around some cycle or through the dependence on winding coor-
dinates. At the level of the underlying geometric structure, this translates to transition
functions between patches that include T-duality transformations, leading to the notion
of a T-fold®; see also Figure 3.1. The global non-geometric structure obviously can not
be detected locally; instead, we have to study non-trivial monodromies around certain
non-contractible cycles of the geometry. Monodromies in general are not particular
features of non-geometric spaces but generically arise for nontrivial fibrations’. Going
around the loop in the fibre, H might not respect a periodicity like z ~ z + 2. In

contrast, it will transform as
H'Y (z+2m) = M' L HM S (2) Mk, (3.27)

where M is the monodromy matrix associated to the specific cycle. Demanding now
that the background gives rise to a valid string background, the matrix M is required
to correspond to a symmetry of string theory, i.e. it should lie in the T-duality group
O(D, D, Z). Although geometric spaces can have monodromies that lie in the geometric
subgroup of O(D, D, Z) corresponding to diffeomorphism or gauge transformations, for
non-geometric spaces it is a nontrivial element that is neither of the two and corresponds

to a T-duality; see also Appendix C in [261].

For a nice review on aspects of non-geometry, we refer to [159]; see also [239].

8See in particular, also [157,219,259,260] for geometric aspects of T-folds, including DFT.

“Non-geometric spaces, in particular for example T-folds, viewed as fibrations over some base manifold
B, can be characterised in terms of their monodromy properties when going around a cycle in the base.
See [259] and references therein.

54



3.2. Non-geometric spaces and S-gravity

3.2.4. The T-duality chain

The prototypical example of a non-geometric space can be found by successive T-duality
transformations starting from the three-dimensional torus with H-flux. This leads to the
so-called T-duality chain [262,263]. As we will use this example in Part II, we introduce
some of its basic features here. The detailed examination in view of the Swampland
Distance Conjecture is delayed to Chapter 7. The setup can be summarised as
- i - xs  RAl
H-flux x1 geomeicnc flux. x Q ﬂux , l/]X ’ (3.28)
H;jk Itk 0"k R'7"

with arrows denoting T-duality along the corresponding directions. The last one has to
be read with care, as it does not correspond to a proper T-duality; cf. discussion below.

T3 with [H] = k

Our starting point is the torus 73, equipped with k units of H-flux. Denoting the angular
coordinates with x’ fori € {1, 2,3} the background has the simple form

ds® = Gydaix/ = 3 r2(dx')?, B =kxadx! Ady? (3.29)
i
In order to have at least two proper isometric directions, we restrict the dilaton to be at
most a function of x3, i.e. ® = @3 = ®3(x%). The flux associated to B is simply

[H] = Hi3 = k. (3.30)

This background - although not solving the equations of motion and hence not a
proper string vacuum - gives rise to a well-defined effective theory when inserted in
the effective action S. Since we have two isometries, along x; and x;, we can perform
T-duality. Dualising along a single direction, say x1, leads to the so-called twisted torus.

Twisted torus

After T-dualising along the x! isometry, the resulting background reads

3 20,332
‘51 k= (x kx
ds? = (n’)2r—2(di1)2+r§(1+ r(2r2) )(dx2)2—2r—fdi1dx2+r§(dx3)2, B=0, (331)
i=1 1 12 1

with 7; one-forms that read 5! = 1/r1(d%; — kx3dx?) and 7% = rpdx?, n® = r3dx® and dual
coordinates denoted with ¥'. The background is subject to the identifications

i1~i1+n1—n3kx2, 2 ~x2+n?, B~ +nd, nie{O,l}, (3.32)

55



Chapter 3. Generalised geometry, DFT and non-geometric backgrounds

and is in particular compact. Hence, we obtain a purely geometric background with no
flux. Sometimes this background is said to have f-flux, which is a slightly misleading
way to express that the background has a non-trivial topology giving rise to a flux-like

contribution, satisfying the Maurer-Cartan equation
dn' = fan® An’, (3.33)

with f¢ _the flux number of the geometric flux in the basis of one-forms. In the case at
hand (and written in a coordinate basis), it reads [ f] = 123 = k. Note that the natural
“radius” of the twisted cycle of xlis given by 71 = 1/r; while 7,3 = ro/3. Furthermore,
the dilaton gets shifted by the usual transformation rule such that it reads

D =Q3 - log(m) . (334)
This geometry is an example of the more general notion of a nilmanifold.

O-flux background

Dualising a second time, now along the x2-direction, we obtain

-1
20.3\2
ds? = (1+ K0) ) (rfz(df1)2+rz_2(d~fz)2) +r5(dx°)?,

r2r2
12 (3.35)
kx3 . B 1 ,  k2(x3)?
=——" _dijAdi,, ®=03-=log|ri+ .
rirs + k%x3 ! 2 377 08" r?

It is easy to see that this configuration is problematic. Going around the x>-fibre, it
is clear'’ that due to the nontrivial denominator, the metric (and similarly the B-field)
does not respect the periodicity of the coordinate. Instead, the metric can be viewed
as periodic up to T-duality transformations, i.e. transformations in 0(2,2,Z). On can
check that going around the cycle x> — x® + 27 it picks up a monodromy

1; O
M=
P 13 0 2= O

00 0
c0(2,2,2), P=|0 0 2n|. (3.36)

Since M is of lower triangular form, it is neither a diffeomorphism nor a gauge transfor-

mation and hence a non-trivial duality element!!

of 0(2,2,Z). Therefore going around
the base, we have to glue the patches with T-duality, inverting the radius, and hence

realising a (non-geometric) T-fold.

mAlternatively one can explicitly substitute the background into the action, resulting in a total derivative
which renders the theory non single valued, see Appendix B in [240].
"For decompositions of O(D, D) in matrix generators and their physical interpretation see [134].
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3.2. Non-geometric spaces and S-gravity

Since we are dealing with a T-fold, the theory is better described in the g-frame.
Using the relation (3.19), we readily obtain a new frame in which the geometry is
well-defined. It reads

0 kx® 0
ds? = ri(diy)? + 1y 2(di)? +75(dx°)?, B=[-kx® 0 0],

0 0 0 (3.37)

(AI) = q)3 - log(r1r2) ,

such that the metric has the form of a standard torus with radii 7, = 1/r1/2 and 73 = r3.
Finally, the nontrivial  gives rise to the new Q-flux. The latter is given by Q '/ = 8,
such that we obtain

[0]1 =037 =k. (3.38)

R-flux background

First, note that a naive application of the Buscher rules would lead to the background

-1
2(,3V2
ds2 _ (1 + k (X ) ) (rl—Z(d)zl)Z + rz—Z(dx~2)2) + ’,,52 (dX~3)2 ,

2.2
i (3.39)
kx3 N 5 1 5 kz(x3)2
5= ittt @20t gt

which besides the obvious illegality of the transformation itself and the problematic

monodromy now depends on the coordinate x>

. From the point of view of the new
rotated coordinate basis {#1, %, 3} the coordinate x3 should be viewed as the dual wind-
ing coordinates and hence we encounter a background that no longer fulfils the strong
constraint. One can argue that we were never allowed to perform such a transformation
due to the lack of isometry. However, the same background can be obtained from a DFT
perspective by a O(d, d, Z) rotation without any reference to abelian T-duality. This has
also been argued in [242] and references therein. Strictly speaking, this background
hence should be treated in the doubled formalism. However, since the R-flux itself
does not depend on the coordinate x>, for our purposes it is enough to continue with
the above expression. Comparing with the Q-flux background, it is trivial to see that

in the S-frame the new space reads

0 kx> 0
ds? = r;2(di)? + 1y 2 (di)? +r3(d%s)?, B=|-kx® 0 0],
0 0 0 (3.40)

Ci) = @3 - log(rlrzrg) .
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Chapter 3. Generalised geometry, DFT and non-geometric backgrounds

Recall that before implementing the section condition d = 0, the R-flux is given by (3.26).
Now taking into account that the new physical coordinates read X' = {¥, %, %3} and
the dual X; = {x!,x2,x>}, we see that indeed we have a non-vanishing contribution

R¥2 =53p12 = k. (3.41)

Hence, the flux quantum is conserved when mapped along the chain of equation
(3.28). The first two background are perfectly well described within Riemannian ge-
ometry, while the Q-flux background is only locally geometric, i.e. can be described
by Riemannian geometry patch-wise; globally T-duality is needed in order to glue the
patches. Therefore the space is also called globally non-geometric. In contrast, the R-flux
background depends on the dual coordinates and is not even locally described within
Riemannian geometry and hence an example of a locally non-geometric space.

Remarks

* Locally non-geometric space seem to be in tension with a description in terms of
point-like particles. To see this start from the torus with H-flux and observe that
due to the Freed-Witten anomaly [264] there can not be any wrapped D3-branes.
Translating the situation to the R-flux background via T-duality one arrives at the
conclusion that there can not be any D0-branes and hence no point particle like
states. For a more detailed discussion we refer to [265] or also [266]. Furthermore
the background features, besides non-commutativity [256,261,267-269], even non-
associativity of the target space coordinates [269,270].

* Since the spaces in the above chain are all dual'? to each other, one might argue
that the non-geometry of the latter two is merely an artefact. There is however a
large family of backgrounds that is not dual to to any geometric space and these
can be realised by asymmetric orbifold constructions [258]. For the relation of these
spaces with non-geometric Q- and R-fluxes see [256,257]. Since these spaces treat
differently left and right movers of the string, they completely lack a target space
description and can not be brought to such by any T-duality. They are examples
of proper stringy realisation of truly non-geometric spaces.

* In the above example we only have either geometric or non-geometric fluxes at
each step but not simultaneously. However it was shown, that there are back-
grounds in which all of the above fluxes are turned on at the same time, see for
example [257] for a construction in terms of asymmetric orbifold. These are again
truly non-geometric, i.e. not dual to any purely geometric realisation.

120f course the last step is not a true duality as explained above.
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CHAPTER

Geometric flows

Partial differential equations (PDE) are the main tools in describing dynamical pro-
cesses in physical systems. They often come in the form of so-called flow or transport
equations that describe the evolution of some given physical quantity in time. This
evolution can be an intuitive evolution of physical quantities in spacetime, like the Heat
equation or the Euler equations of fluid dynamics. The can also describe processes in
more abstract spaces, like the continuity equation in quantum mechanics, describing
the evolution or conservation of the probability current which can be seen as an evolu-
tion in the space of probabilities. Geometric flow equations, in addition, describe the
evolution of some underlying geometry itself with respect to some abstract notion of
“time”, which does not necessarily have an interpretation in terms of a physical time.
A similar and closely related example is the Renormalisation Group (RG) flow, describing
the running of some physical coupling with a scale A. In the following chapter, we will
focus on a particular geometric flow, known as Ricci flow and its generalisations. We
will give a detailed introduction to its mathematical properties that will be the founda-
tion of the discussion of geometric flows in the context of the Swampland program in
Chapter 9 and 10. After a review of standard Ricci flow, we introduce its generalisation
including form fields and the relation to the string effective action. After discussing

some examples, we close with a short discussion of applications within string theory.
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Chapter 4. Geometric flows

4.1. Basics of Ricci flow and its generalisation

We provide a brief introduction to Ricci flow and its generalisation. We focus on
the gradient flow interpretation pioneered by Perelman in [271-273], which led to
his celebrated proof of the Poincaré Conjecture [274], and the relation to string theory.
For a more complete and detailed mathematical treatment, including a treatment of
singularities and surgery, we refer to the references listed at the end of the chapter.

4.1.1. Ricci flow

Ricci flow, as introduced by Richard Hamilton, is determined by the partial differential
equation (PDE) [275]
0

5581 (8) = —2R,1y (8(5)) . (4.1)
where g, € ['(S2T*M) is a metric tensor on the manifold M and R, (g) the Ricci tensor
associated to g, which in the following will be simply denoted by R/, and similar for
R(g) = R. We explicitly highlighted the dependence on the auxiliary flow parameter'
s. The equation (4.1) defines a PDE on g(x, s), which has to be supplemented with
suitable boundary or initial conditions such that g(s) gives a one-parameter family of
metric tensors on M. Ricci flow can be seen” as a (non-linear) generalisation of the heat
equation, or more general a convection-diffusion-reaction system, cf. [276]. As such, it
tends to smoothen out the geometry along the flow by contracting regions with positive
sectional curvature K > 0 and expanding regions where K < 0, cf. Figure 4.1.

2D:
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Figure 4.1.: Visualisation of the flow behaviour of curved spaces under Ricci flow for a
dumbbell-like geometry in D = 2 and D = 3. Crucially, in 2D the neck of the geometry
is locally a circle S with zero curvature, neither shrinking nor expanding and hence the
full geometry evolves towards a sphere. In contrast, in 3D the neck is given by S? with
K > 0 and therefore shrinks, leading to the so-called neck-pinch. The precise behaviour,
i.g. an emerging singularity or infinitely long neck depends on the initial conditions.

n the mathematical literature the s is often denoted f instead, and viewed as an abstract “time” along
the flow. We occasionally also refer to s as (flow) time, but it should not be confused with physical time.

2Using harmonic coordinates [18] {x*'} one can locally write (4.1) as dsguy = Aguy + Q(g"”, dsguyv) With
Q quadratic in the arguments.
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4.1. Basics of Ricci flow and its generalisation

It was realised in the seminal paper [271] of Perelman, that Ricci flow can be realised
as a gradient flow® with respect to an associated entropy functional

T(e.f) = [ duyge (R+I194F) 3)

with f a smooth real-valued function on M. The scalar f can, up to a factor of two, be
identified with the dilaton f = 2¢. In addition, one needs to impose the generalised unit
volume constraint

/d“x ge /=1, (4.4)
M

hence keeping the weighted, integrated volume element constant along the flow. Under
these conditions, the Ricci flow (4.1) is gradient with respect to the action (4.3) with
dilaton f and (4.4) result in an additional equation for f. The combined system is
known as Perelman’s combined flow and reads [271]

of

58;” 2
=-2R,,, — =-Af+|Vf|“-R. 4.
9 u 9s f+1 | (4.5)

This is actually not the form of the flow directly emerging from the variational procedure
but has been gauge fixed by a specific choice of diffeomorphism that decouples the two
PDEs. Before fixing the gauge, the system reads

af

==2R;y =2V, V, f+ Lx8uv s -Af-R+Lxf, (4.6)

gy
Os

which clearly represents a coupled system of PDE that is in general much harder to
solve®. The additional Lie derivative terms are added since the physical metrics are
determined only up to diffeomorphisms that enter the flow equations via Lxe. Upon
setting X = Vf, the flow reduces to (4.5). When referring to the Ricci flow or the
combined flow, we mostly have in mind the gauge-fixed version (4.5). However, it is
important to keep the diffeomorphism ambiguity in mind, as it will appear many times
in the discussions to follow and plays a crucial role for establishing the (short-time)
existence of Ricci flow.

For later purposes, we note that in the case of an Einstein space, i.e. Ry, ~ guv, the

flow equation can be shown to reduce to a flow equation for the Ricci scalar

OsR = V?R +2R,,, R*” . (4.7)

SForv:[0,S] > R"and & :R" > Ra gradient flow is defined as
Ay =-VE®). (4.2)
For more abstract settings, e.g. for the case of g, relevant here, see Appendix E and Eq. (4.24) and (4.27).

“In system (4.1) on the other hand, f is decoupled from the evolution equation of g. Hence, one can
first solve for g and then subsequently for f.
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Chapter 4. Geometric flows

4.1.2. Existence of solutions and the space of Riemannian metrics

So far we have introduced a PDE for a given metric tensor g on a manifold M, which we
did not specify further. The mathematically inclined reader will therefore immediately
ask if such a PDE is well-posed. For an initial condition gp, do (at least short-lived)
solutions always exist and are they unique? Under certain assumptions, these questions
can be answered positively, while for others more care is required.

In case the manifold M is equipped with a positive-definite Riemannian metric g,
solutions to a given initial condition go always exist, at least for s € [0,€],e > 0, and
are unique. For closed manifolds M, the existence and uniqueness was first established
by Hamilton [275]. Alternatively one can make use of the aforementioned DeTurck-
trick [277], using the diffeomorphism freedom to bring the flow into a form in which
standard existence and uniqueness theorems from the theory of PDEs, can be applied;
cf. [278,279]. The results were then later extended to complete non-compact manifolds
in [280,281]. For long term existence, i.e. Vs > 0 there have to be imposed further
conditions, as for example curvature bounds on go.

On the other hand, for Lorentzian signature the situation is in general very different.
The indefinite signature of Lorentzian spaces, corresponding to negative diffusion
constants and, in particular, negative principal symbols of the associated differential
operator, can lead to severe pathologies of the flow. The severity of these pathologies
depends both on the underlying manifold as well as the chosen initial conditions.
Since in the present thesis we are mostly interested in applying the flow (and its
generalisation) to compact Riemannian manifolds, we will not discuss these issues
further here but refer to the discussion in [282-284] and references therein.

In the Riemannian case, there is some further mathematical structure that we can
introduce that formalises the evolution of g in a more abstract space, namely the so-
called (moduli) space of Riemannian metrics. In a nutshell, this is the set M(M) of
all Riemannian metrics on the manifold M. It turns out that M(M) is not only a
set, but can be itself viewed as a (infinite-dimensional) manifold. We will not enter
the details of dealing with such a highly nontrivial structure but restrict ourselves to
some core elements that will be important for later discussions, especially in view of
geometric flows. For this first note that a metric tensor g on a manifold M is a section
of the second symmetric power of the cotangent bundle of M, i.e. T'(S*T*M) such
that the induced bilinear form on 7, M is positive definite. One can define a, formally
infinite dimensional, vector space C®(M, S>T*M) of real symmetric (0,2) tensor fields
on M and equip it with a certain topology, turning it into a Fréchet manifold; see, for
example, [285,286]. The set M(M) is then a subspace of this space,

M(M) < C*(M, S*T*M) . (4.8)
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4.1. Basics of Ricci flow and its generalisation

We already mentioned above that, especially from a physical point of view, we are
only interested in metrics up to diffeomorphisms, since it are only these that define
physically inequivalent geometries. In fact also form a mathematical point of view this
is true and hence the moduli space of Riemannian metrics M(M)ona given manifold M is
defined by quotienting out the action of the diffeomorphism group Diff(M), such that
we finally obtain’

M(M) = M(M)/Diff(M) . (4.9)

This redundancy of diffeomorphism is reflected in the flow equation by the arbitrary
diffeomorphism term in equation (4.6). However, this distinction will not play an
important role for us and we will focus on M(M) rather than M (M).

Since Ricci flow determines a one-parameter family of metrics g(s), we can view
Ricci flow as a path or curve s — g(s) on M(M)°. Accordingly, the natural question
concerning the length of such a curve arises. The definition of such a length requires the
notion of a metric on the space of metrics itself. In fact, there is a natural Riemannian
metric GY Y% on the space of Riemannian metrics M(M), defining at every point
g € M(M) abilinear form denoted G, (v, w) via

Gs(v,w) =/ devgggV“Bvﬂawyﬁ, (4.10)
M

with v, w € To(M(M)). The metric G, is given by

7 = ghg”?, (4.11)
as it was introduced by Ebin [287] as a natural metric on M (M) and is also known as
the canonical metric. In fact, this is a special case of the family of metrics’”

1
ovaf _ - ( gHagVB 4 g gV _ zTguvgaﬁ) , (4.12)

introduced by DeWitt [288], who was the first to compute geodesics and distances in
these settings. The family of metrics is hence known as DeWitt metric and the canonical
metric corresponds to 7 = 0. We will be exclusively interested in the case 7 = 0, which
we also loosely refer to as DeWitt metric in the following and denote by &~ = G, b,
Having defined a notion of metric we can calculate the induced distance between to

points via

d(0.81) = infy {L( | 7(0) = g0, ¥(1) = g1} (4.13)

5In the mathematical literature usually M(M) denotes the moduli space itself, i.e. the quotient.
When working with the gauge-fixed flow, i.e. having picked a specific vector field X in (4.6) specifying

the diffeomorphism, the flow can be viewed as a path on M(M) with the “gauge slice” selected by X.
7Strictly speaking, G is only positive definite — and hence a proper metric — for 7 = 0.
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The notion of length L(y) along a path y(s) : [0,1] — M(M) then reads

L(y) = / ds\/ / dPxyEGL P dfl’;" dj;ﬁ . (4.14)

The minimising curves of (4.13), along which the distances are measured, are nothing

more than the geodesics of the DeWitt metric. These geodesics are in general highly
complicated curves and will not discuss the notion of geodesics further here, but refer
to [285,286,289] and references therein; we also recommend [284] for a discussion of
the above concepts and, in particular, for a in-depth treatment of the geodesics. We
will be mostly interested in the distance along the flow trajectories. This distance
can be calculated using (4.14) and is generically much easier to obtain than geodesics.
However, they will in general not minimise (4.13), i.e. Ricci flow trajectories generically
do not correspond to geodesics in M(M). Considering also an evolution of f, the
configuration space is enlarged and the functional is modified. We will delay the
discussion of these modifications until later when introducing generalised flows.

Remark

¢ The aforementioned freedom of adding a diffeomorphism term gives rise to spe-
cial solutions, called Ricci solitons [290]. These are solutions that, broadly speak-
ing, evolve in a self-similar way. In particular, these are geometries that satisfy

1
R,uv + E-EXg,uv = /lg/.tv > (4.15)

which for A > 0 are called shrinking, for A < 0 expanding and for A = 0 steady Ricci

solitons. Einstein spaces are special cases of such Ricci solitons; cf. [291].

e There are various modifications of the Ricci flow that, in addition to the Ricci
tensor R, are sourced by additional terms. These include the Ricci-Bourguignon
flow, Yamabe flow or the normalised Ricci-flow; see [292] and references therein.

e Strictly speaking, the length formula (4.14) only makes sense for compact (Rie-
mannian) manifolds. For M non-compact (and possibly Lorentzian), we should
renormalise the distance, for example, by dividing by the overall volume V(M) =
/M dPx+/|g| and performing exhaustions by compact subspaces Q, so that schemat-
ically (note the absolute value)

va, d (ld Y
L(go,g1) ~ hm/ \/|/ dPx+/|glGH” P gﬂ jf. (4.16)

V(Q)

The simple volume normalisation is often also used in the compact case.
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4.1. Basics of Ricci flow and its generalisation

4.1.3. Simple examples of the Ricci flow

The simplest solution to the Ricci flow equation is found when the geometry is given
by an Einstein manifold. For these, the Ricci curvature takes the form

Ruv(g) = kg,uv > (417)

for k a real constant. One can now directly compute the resulting flow equation, which
reduces to an equation on k(s). However, it is more instructive to look at explicit
examples, where k can be related to a geometric quantity that visualises the flow
behaviour and allows for a physical interpretation.

Compact & Euclidean: $"

Particularly useful examples are the n-spheres of radius r for which k in Eq. (4.17)
is positive with k = (n — 1)/r?. For later purposes, it is illustrative to write the flow
equation in terms of the radius r, which will become time-dependent under the flow.
Indeed, taking the ansatz g(s) = r2(s)go with go the metric of the round unit sphere (cf.
(2.17)), the conventional Ricci flow equation reads

(n-1)
r(s)

such that the radius of the sphere shrinks to zero as

r(s)=+ro—2(n-1)s. (4.19)

0
gr(s) =— , (4.18)

Non-compact & Lorentzian: AdS,

The two above examples were compact and, in particular, with Euclidean signature.
While existence results for Ricci flow can be generalised to (complete) non-compact
Riemannian spaces, we mentioned above, that the Lorentzian case is much more prob-
lematic. Working on a case by case basis, in particular with suitable initial conditions,
Ricci flow can nevertheless studied also for Lorentzian signature. A particular relevant
and rather simple example that will become important later is d-dimensional Anit-de
Sitter space, denoted AdS,. In global coordinates, the metric can be written as

72

2y —1
ds? = - (1 . Lz) dr + (1 . %) dr + 242, (4.20)

with dQ?_, the line element of the (unit) (d — 2)-sphere. AdS is again an example of
an Einstein space, with R, = —(d = 1)/ L%g uv and as such is a vacuum solution of the
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Einstein equation with the cosmological constant A given by

(d-1)(d-2)

A=-
212

4.21)

Similarly to the compact hyperbolic case, we could calculate the flow behaviour in terms
of the AdS radius L. However, in view of later use, it is instructive to describe it in
terms of A. The associated flow equation and solution then reads
0 2A? Ag
=

SA(s) = T A(s) = Ty (4.22)

4.1.4. Generalised Ricci flow

There is a very natural generalisation of the (coupled) Ricci flow equations that emerges
from the gradient flow interpretation of Ricci flow and the associated connection to
the o-model g-functions or Weyl anomaly coefficients. This generalised flow, which
naturally included the Kalb-Ramond field, was first derived in [293] and is simply
referred to as generalised Ricci flow; see also [294].

In particular, it was shown in [293] that one can define such a generalised flow, by
starting from a generalised Perelman functional given by

1
F(g.H, f) = /K d"xyge " (R— §|H|2+ \Y f|2) , (4.23)

together with the (unaltered) constant volume constraint (4.4). Of course we read-
ily recognise this as the low-energy effective action (1.11), upon identifying f = 2¢.
Promoting the fields to functions of some auxiliary parameter s, we can calculate the

“variation” of the action via®

d p
—_— = n -
sff—/dx ge

(—R’“’ _ VAV 4 %H"MH"”) 8

ds
1 1, 08uy OB,
T N B | e A I R R
2 2 as Js
08 uv , 0 1,08, 0
/d”x ge ”V g” —,8“ -S —g‘“’ﬁ——f (4.24)
2 ds ds

where f3 are the Weyl anomaly coefficients (1.8) and we introduced the notation

S=S(g hf)= (R - %|H|2 +2Af — |Vf|2) . (4.25)

8See [293] for a more detailed calculation.
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S can be seen as a generalised scalar curvature; see [68,295]. Now the functional ¥ is
furthermore subject to a constraint on the field f given by (4.4). It is not hard to see that
this implies

1 ,,08uv Of
_ouv_ oY 7)) _ 4.2
(2g ds  Os 0. (4.26)

hence, the last contribution in (4.24) vanishes. The remaining two contributions define
a gradient flow with flow equations ,BA%B. It is customary to introduce a factor of 2 in
order to match the standard Ricci flow conventions, so that we arrive at [295]

0 o 1
o8y = ~28%, = ~2R,,, + EH*Z‘V -2V,V,f,
y (4.27)
&Byv = _ZIBAgy = V/IH/l,uv - H/lyvv/lfy
and
0 1 v
af =—-R+ ZH”VAH - Af . (428)

This flow is known as generalised Perlman or combined flow and from now on, whenever
we write ¥, we refer to the functional (4.23), together with the constant volume constraint
(4.4). Whenever we talk about the functional only, we will refer to it as S. The last flow
equation for f can be computed from (4.26) after plugging in the flow equation for g.
Note that the flow equation is not given by the B-function for f (respectively ¢ = % f of
(1.8) and therefore an identification of f with ¢ is less direct. We will comment on this
in detail in Chapter 9. However, let us note already here that at the end of the flow, i.e.
when we are at a fixed point of (g, B), the flow equation of f indeed reduces to 3¢ = 0.
Therefore at the very least at the fixed point the identification f = 2¢ is justified. This
is nothing else than the statement that whenever 3¢ = 8 = 0, this implies also 3¢ =0,
a point that will be important in Section 4.2.2 below.

Similarly to the conventional Ricci flow, we are free to add diffeomorphism terms
for the flow of g and f, and an additional term for the flow of B, corresponding to the
gauge invariance of B. Using this freedom, the flow can be brought to the form

P 1,
agﬂv = _ZR,uV + EHIJV y

5 (4.29)
aB,uv = VKHI(/JV s

in which f decouples from the other flow equations. The flow equation for f becomes

9 3
af=—R+§|1r71|2—Af+|Vf|2. (4.30)

This system of flow equitations is usually referred to as the gauge-fixed generalised Ricci
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or Perelman flow, or in the case f is omitted, simply generalised Ricci flow. We will
mostly refer to all the different incarnations loosely as generalised Ricci flow, where it
should be clear from the context which form of the flow equations is used.

Before giving some instructive examples, we close this short introduction to gen-
eralised Ricci flow by pointing out the monotonicity properties of the functional ¥
which will be crucial in Chapter 9. In particular substituting the definition of the flow
equations (4.27) into (4.24) we see that

2
+

2

1 1
H—RW — VIV 4 ZHGH ) 4|2 (Ve H Y = HYV, f)

if:/dn\/ge—f >0, (4.31)
dS K

establishing strict monotonicity along the flow, with zero only at the fixed point.

Remark

* While in the absence of H, the fixed points of the Ricci flow are critical points of
S, this is no longer true in general in the presence of H; see the discussion in [68].

* Generalised Ricci flow can be elegantly written using generalised geometry.
Defining G = nH (n and H defined in Chapter 3) the flow (4.29) can be equiva-
lently stated as

G726 = -2Re(6), @32)
with Re(G) a generalised Ricci tensor, cf. [295]. The (moduli) space of generalised
metrics GM (M), which also includes B will be introduced in Chapter 9.

4.1.5. Simple examples of the generalised Ricci flow

We will apply generalised Ricci flow almost exclusively to internal compact manifolds,
with Euclidean signature. Hence we do not list non-compact or Lorentzian examples
below. However, note that the behaviour of the compact hyperbolic space generalises
completely analogously to, for example, the case of AdS; with (RR) flux.
Three-sphere with H-flux.

It is a natural step to support $3 with k units of H-flux. In three dimensions there is

only one possible choice of H-flux, proportional to the volume form
H =2k dvol, (4.33)

where dvol is the volume form of the unit three-sphere and & is a real number.
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Figure 4.2.: Plot of the flow behaviour of the background $* with H-flux under gener-
alised (combined) Ricci flow. The radius (orange) stabilises at the corresponding value
of H-flux [H] = k (blue) which stays constant along the flow. The scalar field f (red)
converges to a constant such that the unit volume constraint is fulfilled along the flow.
Dashed lines correspond to an extension “backwards” in time.

Explicitly, one can easily show”’ that d;k = 0. The flow equation for g then reduces

to a differential equation for r(s)

2 2k?2
r(s) r(s)5 '

Taking k = 0 gives back the standard Ricci flow of the three-sphere (4.18). The gener-

alised combined flow , including f is then given (in the gauge-fixed frame) as

= ( ) = (4.34)

2 2k?2 0 0 6 6k?2
o TR e =0 g W= e

The flow behaviour is plotted in Figure 4.2 and will be discussed extensively in Chapter

= ( ) = (4.35)

6 in the context of the (generalised) Swampland Ricci Flow Conjecture.

Three-dimensional hyperbolic space with flux.

Choose an Einstein manifold with k negative, i.e. a compact hyperbolic 3-manifold,
R;;j(g) = —2g;; with a flux given by the volume form, the flow behaviour is again entirely
through the radius L(¢) which now is subject to [295]

2 2k?

— = . 4.36

N TR TBE 30
Since both terms now enter with a positive sign, it is clear that there is no non-trivial
fixed point and, in contrast to the sphere, even after including the flux the manifolds

keeps expanding homothetically forever.

“Compute R* (cf. appendix of [68]) to see it only has a symmetric part and apply lemma 4.6 of [295].
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4.2. Ricci flow in string theory & mathematics

We close this introductory chapter on (generalised) Ricci flow by pointing out some ap-
plications & relations of the theory of Ricci flow to physical and mathematical problems.
More examples can be found in [283] and [296].

4.2.1. Poincaré Conjecture & Thurston’s Geometrisation Conjecture

The by far most famous and celebrated application of Ricci flow is Perelman’s proof
of the Poincaré Conjecture [274], published in three relatively short articles [271-273]
between 2002 and 2003, therefore solving one of the seven Millennium Prize Problems.
In fact his work even proofed a stronger conjecture, put forward by Thurston, known as
Geometrisation Conjecture [297] . Loosely speaking the latter states that every compact
orientable three-manifold M admits a canonical decomposition into pieces, each of
which belongs to one of eight different canonical geometric structures. In particular,
Thurston’s conjecture implies the Poincaré Conjecture, namely that any closed three-
manifold M with trivial fundamental group 71 (M) is homeomorphic to $°.

The proof of Perelman is highly non-trivial and requires techniques not discussed
in this thesis, in particular surgery'’. When written in full detail, the proof covers
several hundred pages and hence we refer to the original manuscripts [271-273] as well
as [298,299] that explain the proof in full detail.

4.2.2. Conformal vs. scale invariance

The procedure for obtaining the Weyl anomaly coefficients 3, sketched in Chapter 1, is
very cumbersome, especially when moving to higher order in a’. In practice it turns
out to be much more effective, investigating the UV finiteness of the 2d QFT defined
by the NLSM, i.e. computing its Renormalisation Group (RG) B-functions. These are
closely related to the Weyl anomaly coefficients 3. However, there is a crucial subtlety
arising, which we will briefly discuss in the following. Its resolution will illustrate a
very elegant use [300] of (generalised) Ricci flow in the context of string theory.

First note that by classical Weyl invariance we can bring the worldsheet metric to
a flat from. In particular, the theory is classically a CFT. However, for a generic back-
ground, at the quantum level it suffers from divergent loop diagrams in the UV and
the theory needs to be regularised. Regularisation procedures, like dimensional requlari-
sation, generically break conformal invariance. Moving to 2 + € dimensions, the theory

10Surgery can be viewed as a kind of regularisation procedure introduced by Perelman in order to deal
with the singularities appearing under a generic Ricci flow. It is absolutely curial in order to succeed in
proving the Poincaré & Geometrization Conjecture and we refer to [278,279,296] for an introduction.
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is no longer scale invariant and hence, in particular, conformal invariance is broken.
The resulting divergence can be cured by the subtraction of appropriate counterterms.
These in turn can be absorbed into the fields X* together with a renormalisation of
the (infinite number of) coupling constants, which for the NLSM are given in terms
of g,v(X). The associated renormalised metric (omitting contributions from B) at first
order in o’ reads

Suv = 8uv — a”R,uv . (4.37)

From this we can identify the RG g-function B, that determines the running of the

coupling g with the scale A. In particular, one can identify

ﬂﬁv = Q/R,uv > (4.38)

such that the running of g with the scale A is described by

9 ,
/’l%guv = ﬁ,ﬁv =a'Ryy . (4.39)

If B = 0, the right-hand side of the equation vanishes and the theory becomes scale-
invariant. However, it was realised already in [301] and subsequently further discussed
in [302-304], that in fact this requirement is too strong. Physically inequivalent metrics
are only defined up to diffeomorphism and, hence, in order to obtain a fixed point of
the RG flow it is sufficient to eliminate the counterterm by a diffeomorphism. This
translates to

Ruy =V, V, +V,V,, (4.40)

with the vector field V,, parametrising the coordinate transformations. Absorbing this
factor into the g-function, measuring the theories failure of being scale invariant, can
be written

ﬁ/gzv = Ruv - (Vyvv + Vny) . (441)

The theory is then scale-invariant if 8%, = 0. Comparing with (1.8) we see that this
is not the condition for Weyl invariance but weaker. In particular, in order to have
B8 =0 = 8 = 0 we need that [300,302-304]

V= —0,®, (4.42)

hence, the arbitrary scalar field has to be given by the gradient of the dilaton ®.
In fact, while 8, = 0 implies [305,306] global scalar invariance, f,,, = 0 implies local
conformal/ Weyl invariance'' and hence this raises the question under which conditions

11Weyl and conformal invariance can in fact be identified in this case; see [74].
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scale invariance implies conformal invariance. Polchinski was the first who, using a
rather abstract argument, showed [306] that for 2d NLSM with compact target spaces'”
this is always is the case. However, it is very hard to pinpoint the exact necessary and
sufficient conditions under which the implication holds'.

The authors of [300] started from the following observation: taking the RHS of
(4.40) to be the operator defining a geometric flow, the resulting (Ricci flow) describes a
(steady) Ricci soliton, defined in (4.15) with X = V. However, it follows from Perelman’s
seminal work [271,291], that in fact any steady Ricci soliton is gradient. The gradient
function can be identified with the dilaton and hence this gives an alternative proof that
scale invariance implies conformal invariance. Building on this insight and using the
generalised Ricci flow of [293], the authors of [300] generalised this argument to NLSM
including a B-field that applies to all order in perturbation theory. In contrast to the
abstract argument of [306], the treatment using Ricci flow is rather direct and concrete,
enabling them to define an explicit criteria in terms of a so-called Lee form under which
(at least in special settings) the implication does or does not hold, confirming the so far
known examples of non-compact or non-complete manifolds; see [300] for details.

Remark

* We exclusively discussed the case of 2d QFTs. For d > 2, the situation is even less
clear. See, for example, [308] for a treatment in d = 4. Furthermore, the argument
of [300] above was generalised to heterotic o-models in [309].

* In principle, one can translate between RG flow and Ricci flow by a redefinition
of the flow parameter, effectively reversing the flow direction. In particular,
introducing the RG scale A via A = Age™2* the Ricci flow equation

0

ag,uv = _2R,uv(g) = _2ﬁiv s (4.43)

takes the familiar form
0

— n8
Tlog (S =i (444)

Therefore we see that A and s are inversely related: while A — +co corresponds
to going towards the UV, s — oo describes a flow towards the IR. See [68] for a
discussion of the example of the SU(2) principal chiral model.

* For an application of flow equations as a solution generating technique, see [310].

12More abstractly, a unitary 2d QFT with a discrete spectrum of operator dimensions [306].
13Counterexamples lacking some of the above assumptions can be found in [34] and [307].
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The Swampland program

We have outlined in Chapter 1 how string theory beautifully evades immediate
challenges that arise when trying to formulate a quantum theory of gravity from a
standard quantum field theory approach. On the other hand, in the lower-energy limit
the theory gives rise to a vast amount of possible effective theories descending from
the Landscape of string vacua. Although this may seem like quantum gravity looses
much — or even all — of its restrictive power in this regime, it has become clear in the
last years, that QG anyway puts very thigh constraints on the possible low-energy EFTs
that can arise in the IR while being compatible with a theory of quantum gravity in the
UV. The set of ideas and principles stemming from this observation is known as the
Swampland program [45] and it will be the purpose of the following chapter to give a
brief introduction to some of its score concepts. We discuss some selected Swampland
Conjectures, that will be used in the remainder of this thesis. In particular we will
focus on the Distance Conjecture and related conjectures, as well as questions and issues
arising from the presence of non-trivial scalar potentials on field space.

75




Chapter 5. The Swampland program

5.1. A new road to quantum gravity

Among the many beautiful features of string theory is its highly restricted nature,
descending from the demand of mathematical and physical self-consistency. The van-
ishing of the Weyl anomaly briefly reviewed at the beginning of Chapter 1, fixing, for
instance, the spacetime dimension and leading to the vacuum Einstein equation is only
one example. There are many more principles, like tadpole cancellation or unitarity
that almost uniquely fix the form of the theory, leading to the famous fact that, unlike
a generic EFT, string theory has no free parameters. All parameters, like Yukawa cou-
plings, are fixed by the internal geometry and are by no means arbitrary. Low-energy
effective theories are in general much less restrictive and there is an overwhelming
amount of possible theories we can write down that seem consistent at the low-energy
effective level. However, it has become clear more recently [45,58—62], that once gravity
is taken into account the set of seemingly consistent EFT gets drastically reduced when
requiring them to be completable to a full consistent theory of quantum gravity in the UV.

The Swampland program [45] can then be defined as the effort of finding suitable crite-
ria — the so-called Swampland Conjectures — in order to identify the classically consistent
effective field theories that can be completed to a consistent theory of quantum gravity
in the UV. Theories that can be coupled to QG in a consistent way are said to belong to
the Landscape. Conversely, the ones that fail to satisfy at least one of these conditions,
and hence cannot be completed to a fully consistent theory of quantum gravity belong
to the — vastly bigger — Swampland.

Quantum Gravity

Energy

Landscape

[ Swampland ]
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5.1. A new road to quantum gravity

5.1.1. A web of conjectures

In recent years, the Swampland program has led to an ever-growing net of closely
related conjectures. In particular, not only has there been incredible progress in iden-
tifying new patterns and principles that led to the proposal of new conjectures, but
substantial efforts have been made in order to test and better understand existing
Swampland conjectures. This is done either from a top-down perspective, for example
working within string-theoretic examples, or from a bottom-up approach, employing
basic principles we believe should be realised in a theory of quantum gravity. As such,
the relevant literature has become vast and several pedagogical reviews exist by now,
covering at least some of the different (aspects of) Swampland conjectures and their
refinements and generalisations [58-62]. Hence, below we merely list the three core
conjectures that can be seen as the foundational pillars upon which many of the more
refined and specialised conjectures build. In the rest of the chapter we focus on one of
them — the Swampland Distance Conjecture — as well as some of its refinements and

generalisations, as these will be our main interest in this thesis:

No Global Symmetries Conjecture [311]. There are no (exact) global symmetries in a
consistent theory of quantum gravity.

The conjecture has been generalised to broader notions of symmetry, including
generalised and non-invertible symmetries [312-314]. The absence of higher-form

global symmetries motivates the closely related Cobordism Conjecture [315].

(Electric) Weak Gravity Conjecture (WGC) [316]. In a gravitational theory with U(1)
gauge symmetry and gauge coupling e, there is at least one particle of mass m and charge
q such that m? < Ze2q2M12D.

See [317,318] for an introduction, further developments and references.

Swampland Distance Conjecture (SDC) [117]. See Section 5.2.1 below.

There exists a several generalisation and refinements, some of which are also dis-
cussed in Section 5.2.1 below.

Further conjectures & concepts metioned
¢ Emergence Proposal [319-322]; see also [142] for a recent pedagogical review.

* Species scale [53-57]; see [323] and references therein for a recent account in the

context of the Swampland program.

* Dynamical Cobordism [324-329] & Cobordism Distance Conjecture [324].
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Chapter 5. The Swampland program

5.2. The Distance Conjecture and its relatives

Before we dive into a discussion of the Swampland Distance Conjecture, we recall the
notion of geometry associated to the moduli space of an effective d-dimensional theory
with action

Mgz
S =—= / d’xy=g (R(g)—vabﬁyso“@”sob : G.1)

discussed in Chapter 1. In particular, recall the metric on moduli space M is defined as
the factor y,;, in front of the kinetic term of the scalar field (moduli) in the action (5.1).

The geodesic distance between points P, Q on M descending from vy, is defined as

_. ! dpe deb
12,0 = int [rantotsn 2 as. 52

with y(s) : [0,1] = M a smooth path on moduli space with y(0) = P and y(1) = Q.

5.2.1. The Swampland Distance Conjecture

The Distance Conjecture is a statement about the geometry of the moduli space M
associated with an effective action (5.1) and the consequences of large field displace-
ments in the moduli. In particular, it postulates the appearance of an infinite tower of

exponentially light states when approaching points at infinite distance:

Swampland Distance Conjecture (SDC) [117].

1. The moduli space M of a consistent theory of quantum gravity is non-
compact and parametrised by the expectation values of scalar fields ¢¢, the
moduli, which are not subjected to a potential. There are always two points
P, Q such that the (geodesic) distance d(P, Q) between them is infinite.

2. When approaching an infinite-distance point Q, there is an infinite tower of
states that becomes exponentially light with the geodesic distance

m(Q) ~m(P)e” 242 when d(P,Q) — «, (5.3)

where P is an arbitrary reference point, a is a (positive) constant and m

denotes the mass scale of the corresponding states as a function of P, 0 € M.

In particular, in the limit d(P, Q) — oo the infinite tower becomes massless, sending the
cut-off A of the EFT to zero. The behaviour is illustrated in Figure 5.1.
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5.2. The Distance Conjecture and its relatives

@

Figure 5.1.: The SDC predicts the breakdown of an EFTs when moving to large (infinite)
distances on moduli space as more and more states fall below the theory’s UV cut-off
A. For Ap — oo the infinite tower of massless states invalidates the EFT description.

Note that the metric yu, = yan(¢) is in general a function of the moduli fields.
In field-theoretic terms this means that the kinetic term is not canonically normalised’.
However, it is convenient to work with canonically normalised fields p¢, in terms of
which geodesics are simply straight lines and the distance is given by the proper field
displacement d(P,Q) = Ap = [p%(1) — p¢(0)|. This implies that the mass formula for
large field displacements is exponential in the proper field distance and takes the simple

form

m(Q) ~m(P)e ®™ when Ap — . (5.4)

At first one might think that there can be many different infinite-distance limits that
are different in their physical realisation and meaning. However, quite the contrary
seems to be the case. In fact, so far every possible infinite-distance limit of a consistent

theory of QG has been shown to belong to one of only two possible scenarios:

¢ Decompactification limits: In a certain duality frame, one or multiple dimensions

decompactify with the (leading) tower given by KK modes.

¢ Emergent String Limit: A (unique) critical string becomes asymptotically ten-
sionless and weakly coupled with the leading tower given by string excitation
modes. If d < 10 there are further KK modes at the same scale, signalling a

compactification to 4 < d < 10 spacetime dimensions.

In fact, it was argued in [330] that these are the only possible scenarios, and this proposal
goes by the name of Emergent String Conjecture [330].

There are many more conjectures that are closely related or refinements of the SDC.
We will discuss several of them in more detail in the following. A more extensive list
can be found at the end of this chapter, as well as in [58-61]. Before moving on, we
briefly revisit the example of the circle compactification discussed in Chapter 1.

L A scalar field ¢ is canonically normalised if its kinetic term is of the simple form £ > -8, 9, ¢% 3" @b
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Chapter 5. The Swampland program

A simple example: circle compactification

In Chapter 1 we discussed the moduli space of the S' compactification with action
(5.1) and metric on moduli space y = Z—jrl—z (cf. Eq. (1.37)) such that the canonically

[d-1
P=NT 5 log(r) . (5.5)

Since the moduli space is one-dimensional (we ignore possible dilaton contributions),

normalised field reads

the distance between two points on moduli space, or radii, is simply given by

1

d— r
d(rivry) = mlog(%), (5.6)

as can be inferred from the canonically normalised field or, alternatively, from (5.2).
Therefore, we see that there are two infinite-distance limits: » — oo and » — 0. Both
of them correspond to a decompactification limit or the (T-)dual thereof, respectively.
The associated towers predicted by the SDC are given in terms of the Kaluza-Klein
momentum modes and the string winding modes. The mass formula for these states
was given - in the string frame - in equation (1.30). In the Einstein frame, it reads”

= (2 s (22 -
such that we find
Mgk (n) = nr T = ne” Z’%p, Myinding (W) = wri? = we Z‘%p. (5.8)
We can summarise the behaviour as
M(po +Ap) = M(pg)e™ ™11, (5.9)
with the constant a = Z—:;, hence exactly matching the behaviour of (5.4).

Remarks

¢ The SDC has been examined in a wide range of different settings, and a large body
of evidence has been collected in its support [117,320,322,330-361]. It is therefore
one of the most well-established conjectures within the Swampland program. For
connections to other conjectures see [333,342,362-367] and for connections with
(pure) mathematics [320, 330,334, 343,349,361, 366, 368-372].

_2 ~
2 An overall factor @2 comes from g1 in m? = —-pup*. The additional factor of ()2 = M;L = ras
for the winding modes stems from the fact that we keep the d-dimensional Planck mass and effective

dilaton ®; = ® - log(\/Z) fixed, together with M;d;Z) ~ g’2MS(D_2); see also [58].
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5.2. The Distance Conjecture and its relatives

¢ The constant @ was not specified in the original proposal but is expected to be of
order one in Planck units [373,374] (cf. *SDC and sSDC in Section 5.3 below).

¢ The light tower of states is a realisation of light species. The associated species
scale Agp reads Asp = Mp 4N 77 ~ M p.a+1 and hence the Planck mass of the
higher (d + 1)-dimensional theory (which for large r is much lower than Mp 4).

5.2.2. The SDC and dualities

The closed string on a circle is invariant under T-duality, i.e. under the inversion of
the radius r — % and the simultaneous exchange of winding and momentum modes
n < w; see Chapter 2. These are precisely the two infinite-distance points of the moduli
space and their associated infinite towers of light states. Hence, even if we were unaware
of one of the two infinite-distance points, by T-duality we could have immediately
predicted the existence of the second point and its associated tower of winding or
momentum modes from the first one. Hence, these concepts are closely connected and
therefore the SDC is sometimes called a Duality Conjecture. In particular, the discussion
accompanying the original formulation of the SDC also includes a statement about the
finiteness of the volume of moduli space’. This notion of finiteness is tightly connected
to the existence of dualities in string theory [45]. We refer to [45,117], but also to the
more recent [379] and [380] for a refined treatment. Finiteness, or more concretely
“compactifiability” of [379] was then used in [361] to provide even stronger evidence
for the SDC. Dualities also play an important role in the recent [359].

Extrapolating from the present example one can hope to use T-duality in order to ex-
plore different corners of moduli space and the corresponding towers. In particular, the
exchange of string zero modes under T-duality gives a powerful way in understanding

the — possibly very complicated — infinite-distance points.

Going beyond the circle

While the exchange of string zero modes is very straightforward for the trivially fibred
circle, the exchange is in general much more involved when T-duality acts on nontrivial
fibration and in the presence of fluxes. When applied to generic curved spaces (with
fluxes), the known simple exchange patterns are greatly modified, leading to a novel
narrative in relation to the SDC. We will see in great detail in Chapter 6, that the
topology changing nature of T-duality will relate distinct infinite-distance corners of
the moduli space, leading, for example, to backgrounds not supporting any winding
modes. We will use generalised T-dualities and non-geometry to access an even wider

range of dual spaces and hence infinite-distance points in Chapter 7 and 8.

3 A related statement, put forward in [117], about the geometry of moduli space, concerns the negative
scalar curvature at infinite-distance points. See [375-378] for a recent discussion.
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Chapter 5. The Swampland program

T-duality
T

Moduli/scalar field space

Figure 5.2.: T-duality as a tool for generating related infinite-distance points with very
different (geometric) properties and towers of states: change of topology, trivialisation
and generation of homology cycles and non-geometry.

5.2.3. Generalised Distance Conjecture & AdS Distance Conjecture

By now, several generalisations of the SDC have been proposed, extending the conjec-
ture to a broader range of applicability. The first such extension that we discuss was put
forward in [363] and postulates that the SDC also applies to generic variations of the
space-time metric itself, rather than only moduli descending from the internal space:

Generalised Swampland Distance Conjecture (gSDC) [363]. An infinite tower of

states with mass scaling
m(syp) ~m(s;)e” M, (5.10)

arises when considering distances A between metrics Go = G(s;) and G1 = G(sy)
in the space of metrics M(M).

The gSDC is therefore promoted to a statement on the more abstract space of metrics
M(M), which was already discussed in Section 4.1.2. The natural metric is then the

DeWitt metric [288] G N©” associated with the family of metrics G () spanning M(M),

introduced in (4.12). The associated distance is

1/2

((V(M)/M\/EG GOr === . (5.11)

Sf
Ag = Ag(Go,G1) = c/ ds

i

which — apart from the volume normalisation — is just the distance L of (4.14).

There is a particularly easy example on which to apply the gSDC: Weyl rescaling
guv = €*7g,, of the (external) metric g,,. In particular, applying such a rescaling to
AdS spaces (see (4.20)), rescales the cosmological constant A (cf. (4.21)) via [363]

A= —%(d —1)(d-2)e 2. (5.12)
Plugging this into the distance formula (5.11), one readily obtains [363,381]

A
Ag =1p—7; = log(f) - (5.13)
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5.2. The Distance Conjecture and its relatives

Therefore, Ay — 0 is at infinite distance and the gSDC postulates an infinite tower
of light states, which due to (5.10) scales as [363]

m(Ag) ~ m(A)e™ s = m(Ay) (%)a | (5.14)

Hence, this motivates the following conjecture:

AdS Distance Conjecture (ADC) [363]. Any quantum gravity theory formulated
on an AdS space with cosmological constant A exhibits an infinite tower of massless
states in the limit of vanishing A — 0. In Planck units, the masses scale as

m~ A, (5.15)

with positive constant & ~ O(1).

Remarks

* Requiring @ = 1 for supersymmetric AdS vacua leads to the strong AdS Distance
Conjecture [363], and — as a consequence — places scale separated theories in the
Swampland. For arguments in favour, but also challenging this strong version and
hence also scale separation, we refer to [62,126] as well as recent [125,357,382-390]

and references therein.

* The ADC can be easily motivated from simple 10D string vacua, like AdSs x S°,
in which, due to the lack of scale separation, taking A — 0 corresponds to taking
the radius of $° to infinity. This gives rise to a light tower of KK modes on S°.

5.2.4. Ricci Flow Conjecture
We have just encountered the Generalised Distance Conjecture, extending the SDC to
generic variations of the metric of spacetime M itself, hence to a statement on distances
on the space of metrics M(M). On the other hand, we reviewed in Chapter 4 that
Ricci flow defines trajectories or paths in exactly this space of metric M(M). Take, for
example, the Ricci flow of AdS spaces as discussed in Section 4.1.3, which reduces to a
flow behaviour of the cosmological constant according to (cf. (4.22))

A(s) = (5.16)
In particular, for s — co we see that (Ag < 0 for AdS) the cosmological constant vanishes
and we approach the Ricci flat Minkowski spacetime, which is the fixed point of the
flow. Together with black hole entropy arguments, this led the authors of [381] to

propose the following conjecture:
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Ricci Flow Conjecture (RFC) [381]. Take a family of metrics G, (s) on a manifold
M, defining a theory of quantum gravity and satisfying the Ricci flow equation
(4.1). Then there exists an infinite tower of states that becomes massless when
following the flow to a fixed point 958, (s)|s=s, = 0 at infinite distance.

There are several possibilities proposed in [381] as to how to measure the distance
for the conjecture. First, we can again simply use the DeWitt metric Qg’ NOP and the
associated induced length (4.14) or (5.11) as the natural distance on M(M). It was
shown in [381], that in the case of AdS the resulting distance is nothing else than the

one resulting from the Weyl rescaling* (5.12) and hence

2
Ag ~[1-—==A
o~ (1-7751

Hence, the RFC immediately and elegantly recovers to the ADC. A more detailed

Sf

~ log(%) . (5.17)

Si

discussion of the RFC and, in particular, the generalisation proposed by the author and
collaborators in [68], will be provided in Chapters 9, 10 and 11.

Remarks

* Note that the RFC circumvents certain issues that can arise when applying the
gSDC directly to (uncompactified) 10D SUGRA or string vacua, in particular, with
Ricci-flat directions; see the discussion in Section 2.1 of [381].

e Partially motivated by the above point, the authors of [381] also proposed other
measures of distance along the flow. In particular, one such alternative is to

directly define
AR = ln(Rf/R,-) s (518)

with R; the Ricci scalar of the family of metrics G, (s) evolving under Ricci flow.

¢ In the context of black holes, the RFC was extended in [391] to the Einstein-
Maxwell action in order to analyse the stability of Reissner-Nordstréem black
holes. See also [284,392-396] for other applications of the RFC.

5.3. Potentials on scalar field space

The SDC, in its original formulation, is a statement on moduli space. However, phe-
nomenologically more interesting and viable backgrounds generically depart from this
setting as they usually require moduli stabilisation, and hence non-zero scalar po-
tentials. In particular, ingredients like background fluxes and nontrivial topologies

“The parameters 7 and s are related by the following reparametrisation [381] 7 = % In (1 - ﬁ/\os).
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5.3. Potentials on scalar field space

generate such potentials and therefore the field spaces of the associated EFTs depart
from the paradigm of being spanned by strictly massless moduli fields. Nevertheless,
at the very least, one would expect some (generalised) version of the SDC to also apply
along (almost) flat directions of the potential, i.e. along some valleys or in asymp-
totic flat corners. Exploring the conditions under which such extensions of the SDC
are applicable is crucial, in particular, in view of possible implications for cosmological
models of inflation [374,397-401] and other recent exciting phenomenologically testable
predictions that foot on an application of the SDC”. It was first argued in [373] and [374]
that — at least under some suitable assumptions — the SDC should remain valid:

Refined Swampland Distance Conjecture (rfSDC) [373,374]. The SDC, as defined
in Section 5.2.1, holds even in the presence of a potential, i.e. for generic scalar
fields, with the moduli space replaced by scalar field space.

Furthermore, for d(P, Q) 2 Mp, Eq. (5.3) is replaced by the stronger

M(Q) < M(P)e~*4(P-Q) (5.19)

There are several core questions that arise from the statement of the rSDC:

* What are the paths in field space along which the distances are measured? In
the presence of a potential, physical admissible paths and geodesics no longer
agree, and we need to define new principles for selecting the path along which to
measure distances. Does the SDC also hold for paths that deviate from geodesics?

¢ Closely connected to the first point, we need to reevaluate the definition of distance
or length along the path in field space. Usual geodesics do not encode the “cost”
of having a non-zero potential. However, departing from the mathematical well-
defined notion of geodesics as length-minimising curves, one might run into
troubles with the defining axioms of a distance. Hence, one either has to make
sure these issues do not arise or potentially move to a generalised notion of
distance that can serve as a sensible measure of length or cost for the SDC.

¢ Thirdly, infinite-distance points often arise from taking some underlying geo-
metric picture to “extreme” configurations, for example, the limit of vanishing
cycles or decompactification. These extrema often translate to distinguished val-
ues of the scalar potential, like vanishing or diverging V. While in the former,

asymptotically we can neglect the potential, the latter is much less clear.

5For example, the Dark Dimension scenario [63] predicts the existence of one mesoscopic extra dimen-
sion of micrometer size. See [64,402-410] for further developments and extensions to two mesoscopic
dimensions. For explicit string-theoretic realisations, see [411-415] and [416].
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Theses three points — together with the role of (generalised) dualities on curved backgrounds

and non-geometry — can be viewed as the main motivations and questions discussed in this

thesis. Hence, the remainder of this work will be devoted to offering a detailed explanation of
several possible approaches to resolving these issues and related problems.

These problems have received considerable attention in the last years and there are
several proposals to approach these points in the literate. We close this chapter with
a brief section, reviewing some of the existing work and proposals on the SDC in the
presence of a potential, before moving to the main chapters of this thesis, discussing
the contributions of the author and collaborators.

Remarks

¢ The SDCinits original formulation does not specify the constant «. It was realised
in [373,374] that in many examples the proper field distance grows at most loga-
rithmically once the field displacement reaches the Planck scale and therefore, in
order for the masses to drop faster than any power law, the exponential behaviour
has to kick in, once the displacement reaches the Planck length. This leads to
the strict inequality in (5.19) and effectively restricts « to be of order one, or more
precisely é < O(1). This restricts the onset of the exponential drop in mass’, in
particular d(P, Q) < O(1). See also [337,371,418-420].

* It was argued in [348], that there is a sharp lower bound for «, associated with
the lightest tower, given by @ > 1/Vd — 2. This is known as Sharpened Distance
Conjecture [348]. See also [417] and [421] for a recent account and references.

* Note that also the previously discussed extensions of the SDC, in particular the
gSDC, ADC and RFC effectively cover situations in which there is a scalar poten-
tial. In particular, changing the cosmological constant by (Weyl) rescaling or Ricci
flow, we effectively perform field displacements in the presence of a potential.

5.3.1. Summary of (recent) developments on the SDC and potentials

The study of the SDC in the presence of a potential, and hence the rSDC, goes back
to [373] in which so-called axion monodromy [422,423] and axion alignment [424,425]
scenarios were investigated. In particular, in these models the axion can traverse large

— a priori trans-Planckian — field excursions that are in conflict with the behaviour

°It was pointed out in [417], that when trying to extract stringent constraints on the EFT under
consideration, the rSDC suffers from the fact that although the exponential drop in mass appears at
d(P, Q) of order one, for finite d(P, Q) the tower can in principle be still parametrically heavier than Mp.
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postulated in (5.19). Hence, invalidating any EFT description beyond some critical field
displacement of the order d(P,Q) > Mp. However, it was argued in [373], that after
propertly taking into account backreaction effects, the proper field distance is bounded in
a way, that extending the theory beyond distances of order Planck scale is impossible
while retaining a valid effective field theory description. This was later observed in a
broader setting in a series of papers [331,369,426,427]. Although not going into details,
itisimportant to understand the way paths and associated distances are defined in these
settings. There were to different strategies pursued in [373]. The first, and arguably
more natural way, is to restrict the possible trajectories to flat directions, i.e. along the
valleys of the potential. We discuss this in more detail in a moment, but first, we briefly
outline the second option. The latter amounts to displacing some field ¢! = A from the
vacuum, while appropriately adjusting the remaining ¢, a # 1 in order to obtain their
vacuum expectation values as functions of the displaced field,

0
0p?

V(p) =0 = ¢ = ¢*(1). (5.20)

This implies that the naive field space metric y,; which is itself a function of the
fields yap = van(¢®), and which continues to measuring the proper field distance, gets
corrected. This is exactly the aforementioned backreaction effect. It turns out that it
precisely seems to forbid trans-Planckian excursions, as after some critical value, the
proper field distance grows at best logarithmically, forcing the exponential drop in the
mass of the tower. For details, we refer to [331,369,426,427]. This behaviour was shown
to hold within a relatively broad setup in [369] by studying the asymptotic form of V.
Restricting ourselves to the valley of the potential, we can think of the first scenario
as [373] integrating out the massive fields above some cut-off scale A, effectively reduc-
ing the field space M at some initial scale Ag to a lower-dimensional field space Mx
with A < Ag. Within this field space there might still be non-flat direction, however
with an associated energy scale below the cut-off such that it seems reasonable to allow
for trajectories also along these directions, viewing them effectively flat. However, there
is an apparent problem arising [428]. In the lower-dimensional field or moduli space
there are geodesics that, when lifted back to the full field space M do not correspond
to naive geodesics of the associated field space metric. From a point of view of the
space M together with the non-trivial potential, this simply translates to the fact that
the valleys of the potential do not correspond to geodesic trajectories of M. Since these
geodesics of M, are necessarily of greater length then the ones in M (see also [366])

dm(P,Q) <dm,(P,0), (5.21)

such that these trajectories, corresponding to geodesics in Mj, might violate the SDC.
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Figure 5.3.: Visualisation of the problematic (possibly infinitely) spiralling potential.
Lowering the theories cutoff from Ag to A, the trajectories are forced to follow the valley
of the potential, which does not agree with the geodesic at A.

This issue was investigated” in [428] where it was argued that the amount of non-
geodesic of such valley trajectories is actually constraint by the SDC and this leads to
the Convex Hull Distance Conjecture [428], effectively constraining the possible scalar
potentials® consistent with the expectations of the SDC, or more generally QG.

This fact was later investigated [366] from the perspective of tameness [430,431] and
the Tameness Conjecture [432]. Consider, for example, the problematic case of a field
space with (infinitely) spiralling potential, illustrated in Figure 5.3. If the cutoff A is
sufficiently large, compared to the scale of the potential, we can consider the straight
line to the origin, which a priori can be of finite” distance. Then lowering the cutoff A
far enough, we obtain a reduced moduli space, in which the valley of the spiral is the
geodesic, hence giving rise to a “new” infinite-distance point and leading to a potential
inconsistency for the SDC. The Tameness Conjecture [432] then, broadly speaking,
amounts to postulating that potentials like this cannot arise in physical situations. A
related powerful tool for restricting the possible structure of moduli or scalar field
spaces is (asymptotic) Hodge theory; see for example, [433].

The scalar potential V also plays a crucial role for cosmological implications, see
[52,400,403,404,434-439] for a (incomplete) recent account. In particular, the de Sitter
Conjecture (dSC) [362,440] excluding the existence of (meta-)stable de Sitter vacua as
well as the Trans-Planckian Censorship Conjecture (TCC) [400]. For the connection
of the potential with the Species Scale see [399,441-443]. For other variants of the SDC
not mentioned here, like the Black Hole Entropy DC [444], the Gravitino DC [445], the
Species Scale DC [446] and other related aspects, we refer to the literature.

The issue concerning the (mathematical) definition of a distance in the presence of
a potential, as well as the relevant literature, will be discussed in Chapter 11.

7 A nice explanation of this fact can also be found in [366].

8See also [429] (and the discussion below) for proposals on constraining the scalar potential.

The argument does not necessarily depend on the straight line being of finite distance. Even if the
point is at infinite distance before, one can imagine a spiralling potential generating a distance that delays
the mass drop to a sub-exponential behaviour in field distance and hence violating the SDC.
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CHAPTER 6 .

Topology change, missing towers
and scalar potentials under T-duality

The Swampland Distance Conjecture is closely connected with dualities, in particu-
lar T-duality. This is nicely illustrated at the example of the trivially fibred circle, where
the infinite-distance points and the associated towers are mapped to each other via
T-duality. In this chapter, we investigate how this naive matching carries over to more
complicated setups. In particular, we discuss non-trivial topologies and flux contribu-
tions, and their role for the infinite-distance points and towers for the SDC as well as
their mapping under T-duality. Furthermore, we examine the role of emerging scalar
potentials in situation where certain towers are obstructed, leading to and amendment
of the SDC. Subsequently, we derive a generic reduction formula for variations that
involve the metric and (background) flux contributions. We discuss the role of these
flux variations and their relevance for obtaining a consistent T-duality invariant metric
on field space. Inspired by the discussions in [382,447,448], we outline how T-duality
may help in understanding the subtle interplay between off-shell and on-shell con-
siderations when studying the SDC. We close with some further examples as well as
a discussion on T-duality for isometries with fixed points and the invariance of the

resulting potential on field space.
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Chapter 6. Topology change, missing towers and scalar potentials under T-duality

6.1. The canonical example of S* with H-flux

In Chapter 5, we discussed the close connection between the SDC and dualities, in
particular, T-duality. This was illustrated on the well-known example of the compacti-
fication of the bosonic string on a trivially fibred circle. In this section, we will consider
the next simplest example of a background that deviates from this example in several
significant ways, namely the three-sphere S* with k units of H-flux. Due to the non-
trivial topology of curved spaces and the presence of flux, we need to reconsider the
existence of the infinite towers of massless states that are dictated by the SDC. In partic-
ular, we will encounter missing towers of winding modes as well as non-conserved KK
modes. Furthermore, given the fact that we apply T-duality to a circle bundle that is
nontrivially fibred over the base manifold and/or with background flux, the resulting
T-dual space will display a different topology than the original space. This necessitates
a careful analysis of the would-be tower of exponentially light states to establish a con-
sistent picture under T-duality. Another key difference is that the scalar field space is
now subject to a potential. Generally, this potential must be taken into account when
trying to deduce implications for the SDC. In particular, we will argue that the scalar
potential can solve the problem of missing modes, leading us to propose an amendment
to the SDC in the presence of (diverging) potentials.

6.1.1. Dimensional reduction

We start illustrating the reduction procedure outlined in section 5.2 on the example of
$3. Hence, we start from the D-dimensional action

/ dPXV-Ge™® (R(G) - %H”KH”K +49;00' @ 6.1)
where we assume that the total metric is of the form G = g(x) @ h(y) with g a (arbitrary)
external metric and % the three-dimensional metric of the three-sphere with radius r
as given in (2.17). We denote external coordinates with x#, while internal coordinates
with y’. For simplicity, we assume that the only non-vanishing H-flux is supported on
$% and again given by (2.29) with k units of flux. We formally split the dilaton according
to @ = @y + ¢(x) + ¢, (y). Now, promoting the radius r to a dynamical field depending
on the external coordinates, r = r(x), also 4 and ¢, inherit an implicit dependence on
x,ie. h(y,r(x)),¢y(y,r(x)). Performing the dimensional reduction and going to the
= (D - 3)-dimensional Einstein frame we obtain

- [ a7 (R<g> (0907 - S0 - e (Zi - 23—2)) 62
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6.1. The canonical example of S® with H-flux

V(r; k)

Figure 6.1.: Plot of the effective scalar potential V resulting from dimensional reduc-
tion. In green we plot the potential for the sphere with k units of H-flux, sourced by
contributions from both the curvature of the sphere as well as a flux contribution. The
grey curve depicts the potential with k£ = 0, i.e. just the three-sphere without any flux.

Here we defined the d-dimensional dilaton as ¢, = ¢ — 3 log(r®) and V = Vi, = 272,
In particular, this means that the metric of field space and the potential read

Yrr = 37'_2 5
4¢g k 3 (63)
V(pa,r) = ed2 (ﬁ - F) .

It is now an easy exercise to do the same procedure for the T-dual space. Indeed, one
recovers precisely the same expression for the potential and metric on field space’.
However, let us stress that of course now the terms combine in a different non-trivial
way since T-duality mixes metric and flux contributions. However, at the end, the
T-duality is a proper duality of string theory, and so the final effective actions should be
equivalent. Indeed, in the next section we will argue in full generality that the metric

on field space as well as the potential are invariant under (abelian) T-duality.

6.1.2. Topology change, zero-modes and mass spectrum

In order to discuss the implications for the SDC we first collect the necessary information
on the zero modes on §® and its T-dual. This includes in particular the existence and
conservation of momentum and winding states, their associated masses, their exchange
under topological T-duality, and in particular the behaviour under variations of r.

Although so far we treated the flux number k as a fixed constant, in light of later
considerations, we will also examine variations of k. The relevance of this for the SDC
will become clear in Section 6.1.5.

IThere is also the related question of whether to allow also x-dependent k = k(x). This will be
discussed in detail in Section 6.1.5.
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Chapter 6. Topology change, missing towers and scalar potentials under T-duality

Topological T-duality

In Chapter 2 the background of S with k units of H-flux was discussed as a particular
example for topology change under T-duality. In particular, we observed that the
behaviour fits into the general framework of topological T-duality and therefore displays

an exchange of flux and topological data according to
c1(8® =1 [A =k, ci(Ey=k & [H] =1. (6.4)

For further details, we refer to Chapter 2.

Existence and conservation of winding and momentum zero modes

The fundamental group of the three-sphere is trivial, 71 (S%) = 0, implying that all loops
are contractible and therefore no nontrivial winding states can exist on S°. On the other
hand, due to the nontrivial H-flux, the dual space can be shown (cf. Section 6.3) to have
a torsion-full fundamental group 7 (83) = Zy. Therefore, upon winding k times around
the circle fibre, the string can actually unwind and the loop becomes contractible. There
are only k£ — 1 non-trivial winding states, w,. Hence (at least for finite k and r) this
geometry cannot support an infinite tower of winding states.

Turning to the momentum modes on S%, there is a priori no obstruction to their
existence. However, there is a subtlety concerning their conservation and, therefore,
interpretation as states giving rise to an infinite tower of states for the SDC. In particular,
we need to take into account the presence of the H-flux, which might lead to non-
conservation of momentum modes due to the coupling of winding and momentum
zero modes through the Kalb-Ramond field B, analogously to the toroidal case. We
will explain this in detail in Section 6.3, as well as in Appendix C. Anticipating this
discussion, it is natural to assume that also on the three-sphere with H-flux there might
be a problem of non-conserved modes. Although on the $® there are no winding modes
and this argument does not apply, there is anyway a lack of (infinite) towers for finite
r and k. This is hard to see from a perturbative perspective and we will first argue via
T-duality and then make use of the exact description in terms of the associated SU(2)
WZW model at level k. In particular, on the dual space $°, there are only Z; winding
states. Since T-duality is expected to exchange winding and momentum states, this hints
at the fact that there is indeed a lack of an infinite tower of (conserved) momentum
states on $%, due to the presence of the H-flux. One could try to work out an explicit
perturbative argument similar to the one discussed in Chapter 5, however, since in this
case one has to deal with spherical harmonics, the calculation is much more involved.
Hence, we will take a different path in the following.

92



6.1. The canonical example of S® with H-flux

For the example at hand, we have the great advantage that the theory can be de-
scribed as a WZW model” at level k, denoted SU(2). In particular, the isometry group
of the theory is SO(4) =~ SU(2)r x SU(2)r, and hence states are labelled by quantum
numbers j, j,m,m. Their associated ranges can be shown to be j = 0, %, 1,... % and
—j < m < j and similar for the barred quantities, see, for example, [450]. On simply
connected group manifolds it is however known that the modular invariant is sym-
metric [34,452] and states appearing in the spectrum are the left-right symmetric ones
with® j = j and define states

|j, m,m) . (6.5)

In particular, due to the simply-connectedness, there are no twisted sectors of winding
states. We can view j as a total angular momentum and m, m as the quantum numbers
of two (commuting) momentum components Jg and J_g that generate translation in the
directions & and ¢&; respectively; see [451] for more details. Crucially we see that while
we have a tower of momentum-like states, similar to the KK modes on a torus, or the
states corresponding to the spherical harmonics on the free S3, the towers are finite since
J < k/2, resulting in k — 1 different states. From a perturbative perspective this can be
viewed as having only Z; worth of conserved momentum states. Under T-duality along
&> it can be shown [163] that the WZW model SU(2)x is mapped to the orbifold theory
SU(2)/Zx where the Z; action is embedded into the right action U(1)g associated to
shifts along &>. States in the latter are labelled

lj,m,w), (6.6)

with w the winding number, which is defined only modulo k& and hence we see that
there is only a finite number of winding states. Furthermore, momentum states are only
defined modulo ¢; = 1 so that there is only the trivial momentum state. This pattern
of exchange of states can be formulated even more generally and extends to T-duality
between more general orbifolds of SU(2)x [453]. This will be explained in Section 6.3.
Furthermore, note that also on the dual space, there is only a finite number of KK-like
modes, bounded by the level k. This behaviour is summarised in Table 6.2 and is, in
particular, consistent with the expected exchange of winding and momentum under
(abelian) T-duality, which we discuss in more detail in a moment.

We close this paragraph by discussing the interesting limiting cases of k,r — 0 and
k,r — co. Here we need to distinguish the case where we keep the theory on-shell, i.e.

imposing k = r? from the one where we vary k and r independently. The latter case

2See for example the lecture notes [449], or [34,450]. Some nice references more tailored to the
discussion below are [451] and [452].
5In particular particle-like states have j = J.
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S3 with [H] = k r = const. r—0 r — o
% ‘ w :none w :none; light | w :none; heavy
= const.
n:Zg n: Zy; heavy n:Z;light
w :none; const. w :none; light
k—0 *
n : heavy n : heavy
w : none; const. w :none; heavy
k — o *
n: Z; const. n: Z;light

Table 6.1.: Summary of the various limits discussed in section 6.1.2 and the behaviour
of the associated towers of states. Simultaneous limits in r and k are taken on-shell,
i.e identifying k = r2 along the limit. The limits denoted with * are not covered in the
present discussion. In the case where there are no states, “light/heavy” refers to the
would-be mass dependence for such states in this limit.

is rather easy to understand from a perturbative point of view. Take, for example, the
level k fixed and send » — co. In this case the effect of the H-flux or WZ-term becomes
less and less important*. In the limit » — co we hence obtain the free Principal Chiral
Model (PCM) on SU(2) or the string on S° while in the limit » — 0 there is only a finite
number of states. Keeping on the other hand r fixed and sending k — oo corresponds
to an infinite flux limit, in which there is no apparent tower of states. The limit k — 0
again corresponds to the limit of a free theory on 3. However, it will turn out to be of a
different nature than the previous ones. Even though there is an infinite tower of states
in this theory, given by the string momentum zero modes, we will see that its mass does
not depend on k and hence no light tower of states emerges. This is consistent with the
fact that this limit does not correspond to an infinite-distance limit.

Lastly, we have the on-shell limit keeping k/r? constant. Recall that the number of
states j grows with k and hence more and more conserved states appear in this limit.
Furthermore, since the flux contribution comes with additional inverse powers of g,
such that H? ~ k?/r~12, this limit also effectively corresponds to a dilute flux limit and
hence we are asymptoting the free PCM. The limit £ — 0, on the other hand, does not
have an obvious tower of states.

Mass spectrum of light states

Understanding the mass dependence of the tower of states when varying the moduli
of the internal (curved) geometry is essential to discuss the SDC. Although this is not
known for most backgrounds, the KK spectrum of the three-sphere is well understood.

“In particular H/Vol <« 1 and hence one can see the effect of H as a perturbation of the PCM on SU(2).
See also the related Appendix C.
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3 with [H] = k $3 with [H] = 1

c1=1,m=0,[H] =k cir=k,m=2;,[H] =1

1 e winding : Z; = {0} momentum : Z; = {0}
St-fibre o
momentum : Z; winding : Zx
S2-base no winding but momentum € Z

Table 6.2.: Topological and flux data for the three-sphere with Kalb-Ramond flux and
its dual as well as the resulting obstructed modes. The mapping of the states is indeed
consistent under T-duality and follows the naive exchange of momentum and winding
modes familiar from the trivially fibred case. The splitting into fibre and base and the
associated assignment of states is inspired by the case of the trivial bundle and should
be viewed heuristically. Strictly speaking the towers can not be uniquely associated to
a single direction, due to the non-trivial structure of the fibration.

It is given by’
21U+
rz

1=0,1,2,... (6.7)

While this is valid for the three-sphere without any flux contribution, in principal we
should also take into account the non-vanishing H-flux®. However, we will be merely
interested in the behaviour near infinite-distance points. In particular for r — co we
can use the fact that this contribution will be suppressed in the associated Laplacian
problem by inverse powers of g ~ r? and therefore we can neglect the flux contribution
for r — oo and use the above scaling behaviour of the KK-modes. Furthermore,
once again, one can move to the CFT picture and obtain the mass dependence from
the primary fields. Taking into account that the scalar KK modes are the left-right
symmetric states [ = (j, j) one indeed obtains (6.7), at least for large k = r2.

For the winding modes, obtaining precise relations for the mass dependence is even
more challenging. However, here we can build on the familiar - but heuristic - intuition
that the tensions or mass of a closed string winding an internal cycle scales with the
volume of this cycle. Therefore, winding states are expected to become infinitesimally
light when the volume of the cycle goes to zero.

6.1.3. Consistent mapping of states under T-duality

Our previous findings for S® with flux and its dual are summarised in Table 6.2. Es-

sentially, T-duality on the Hopf fibre exchanges momentum and winding modes along

"While in flat space one can perform a mode expansion, curved spaces require a Hodge decomposition
and analysis of the spectrum of the Laplacian problem.
6Generically one has to switch to H-twisted cohomology [454] with twisted differential dg = d — HA.
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S!lo E— S, [H=1

~
I
H
il
Il
o

R r= oo
S}, [H]=r?

Figure 6.2.: The three-sphere with Kalb-Ramond flux, similarly to the circle, is a non-
trivial example of a background with a self duality point, which is located at r = 1.
Therefore we can chart the full scalar field space, either staying on one duality frame,
i.e. moving along the upper or lower line, or change frame “dynamically” as we move
across the self duality point.

this direction; however, the precise mapping of states is much more intricate. In par-
ticular, since the dual space $3 has a non-trivial fundamental group m = Zy, it can
support non-trivial winding states in the presence of a non-vanishing flux; one expects
the momenta on the fibre to be non-conserved due to their coupling through H, see
C. However, after winding k — 1 times, the string can unwind and therefore there can
only be a finite amount of winding. This is confirmed from the CFT picture in terms of
the orbifold construction. There is a precise formula relating the states and their duals
for so-called Lens spaces, which we discuss later in this chapter. The above example is
merely a special case and hence we refer to section 6.3 for the precise formula.

Not only does the metric and scalar potential on field space for the dual geometry
agree with that of the initial S®> with flux, but the geometry even shares a self-duality
point, allowing for a neat interpretation in terms of the SDC; see Figure 6.2.

6.1.4. The role of the scalar potential

Having collected all the necessary information, we can finally turn to a discussion of the
Distance Conjecture. Like in the simple circle compactification, there are two infinite
distance limits for the radius: r — 0 and » — 0. In the previous paragraph, we also
discussed the dependence of the states on the level or flux number k. We will keep this
quantity constant for now and come back to variations associated with k at a later stage
in Section 6.1.5. Note that the following reasoning is independent of the duality frame

chosen, and therefore we will work with the three-sphere in the following.

Decompactification limit

Taking the limit of large radius r — oo, i.e. the decompactification limit, we can readily
identify the infinite tower of exponentially light states. It is given by the momentum
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zero modes of the string. The canonically normalised scalar field is
p = V3log(r), (6.8)

such that the mass of the KK modes scales exponentially with p, just like for the circle.

Limit of small radius

Taking the radius to zero r — 0, we immediately encounter an apparent contradiction.
There are no winding states which would usually become light in the r — 0 limit and
therefore no obvious asymptotically massless tower of states exists’. However, upon
setting k = r? and adding a linear dilaton®, the three sphere with H-flux is a valid string
background. By definition, it should therefore be in the Landscape and in particular
meet the predictions of the SDC. However, there is one crucial ingredient that we have
not taken into account so far, namely the non-trivial scalar potential V (¢4, ) sourced
by the curvature and non-trivial fluxes on the internal geometry. In particular, we see
that while the potential vanishes in the limit of large radii, there is a divergence in V for
small r — 0. For large radii we can neglect the potential and treat r as a true modulus
and apply the “standard” SDC. For small r on the contrary the potential cannot be
neglected and we face the question if and how the SDC can be applied in such a case.
In fact, the potential diverges when approaching the problematic point r = 0, where
we lack an infinite tower of exponentially light states, as predicted by the standard
SDC. The resolution of this paradox was originally proposed in [67] by the authors
and collaborators: Whenever the internal geometry of an EFT in the Landscape lacks
the existence of an infinite tower of states with respect to a “would be infinite-distance
point” of the scalar field space, the SDC predicts a diverging scalar potential when
approaching this point. This can be seen as an amendment to the SDC for situations

with nonzero scalar potentials leading to a modified version of the SDC:

SDC and divergent potentials [67]. In effective field theories that can be consistently
lifted to a theory of quantum gravity in the UV, a divergence in the scalar potential emerges
when approaching an infinite locus point for which the target space geometry cannot give
rise to a light tower of states. That is, the potential signals pathological infinite-distance

loci in the scalar field space.

Note that the idea of situations with certain inaccessible infinite distance points
in moduli space has already been discussed in the literature. See [289] for a similar,

however, not directly related obstruction described by the Negative Distance Conjecture.

"Wrapped branes on $3, for example, are forbidden by the Freed-Witten anomaly [264].
8See also the remark on the next page.
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Remarks

¢ Although the three-sphere with H-flux is a solution to the SUGRA equations of
motion for G and B, the dilaton equation has a no-zero contribution that has
to be compensated for. At the level of the WZW model, this corresponds to
a non-zero vacuum energy. However, the theory can be easily completed to a
proper string background by adding, for example, a linear dilaton background.
The resulting worldsheet CFT is factorised, and the linear dilaton background
merely compensates the vacuum energy by contributing to the central charge,
without adding further contributions to the other equations of motion or anomaly
coefficients 5. Such geometries arise as the near-horizon geometry of a NS5-brane,
see [451,455].

* The behaviour of the diverging potential at infinite distance seems very similar’ to
the dynamical cobordism scenarios studied in [324-329] as well as the associated
Dynamical Cobordism Conjecture [324]. It would be interesting to study this
possible relation in more depth.

6.1.5. On-shell vs. off-shell variations & flux contributions

In the last section, we argued that in order to obtain a valid string background, i.e.
conformal invariance at least in leading order in a’, we have to impose the relation
k = r?. This is of course nothing else than the requirement of minimizing the potential
(6.3) and hence sitting at a vacuum of the theory, in other words to be on-shell.'’.
Recently, a closely related problem was investigated in [447] in the context of the AdS
Distance Conjecture [363]. Then the obvious question of the role of the correlation
of k and r for the SDC arises. There are several instances in which insisting on this
identification can have a significant impact on the calculation and interpretation. First of
all, it is clear that the potential behaves qualitatively differently for k = r. Furthermore,
if we were to impose this relation already before the compactification procedure, there
can be additional contributions to the metric on moduli space since k inherits a x-
dependence through r. This will lead to the issue of on- vs. off-shell variations of [447]
for the metric on scalar field space. In fact, the authors of [447] introduced what they
call an action metric that takes into account contributions from the variation of the RR-
fluxes. In addition to some conceptual challenges, it was then shown that the resulting
contributions are crucial to obtain a positive metric on the space of fields of these families
of string vacua; see also [382,448]. We will see that T-duality can help in understanding

9We thank Andriana Makridou for pointing this out to us and for several insightful discussions.
10This relation does not receive quantum corrections, but is valid to all order in a’, as is clear from the
WZW description. For a proper string vacuum, one only has to take care of the deficit central charge.
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these subtleties also in the case of NSNS flux. Furthermore, at the quantum level the
flux number [H] is quantised, and therefore any identification a priori turns the scalar
field space into a discrete space. The implications of such a discrete field space and
its interpretation were studied in [456]. An alternative approach, utilising for example
open string moduli or scalar fields in order to enlarge the field space and hence connect
the vacua was studied in [457,458]. We will not discuss these approaches here further
but focus on the former aspects and their role for the SDC.

Flux variation and their metric contributions

Following the above considerations, we revisit the compactification procedure that
leads to the metric and potential in the field space. Imposing k = r? while also making
the radius dynamical r = r(x) we effectively have to take into account also variations
of the flux around its constant vacuum expectation value, i.e. k = k(x) = r?(x). Hence,
this means that we actually compute the metric on field space for an on-shell family
of string backgrounds as a function of r(x) along the lines of [447]. Upon substituting
k — r(x), there is one additional problematic term originating from the flux term

1

— L gHIk —
HyjxH =

2 Co’c(n)2
4 r2

(0r)?. (6.9)

This term is problematic in its own right, due to the missing integration over the internal

space. Adding also the contribution coming from the metric, we obtain

1 sin(n) 1 + 2 csc(n)?
Yrr = Vv ‘/Srs dnd‘fldé:Z 4 2

1 T
=53 /0 dn sin(n) (1 + 2 csc(n)?) . (6.10)

However, the left-over integral on 7 is divergent. We will return to this issue in a
second and show that we can eliminate the divergence by using the gauge invariance
of H. Before doing so, it turns out to be insightful to examine the situation also from
the T-dual perspective. Substituting k with r(x) in (2.30) the dual background takes the

simple form

ds?

r? 4 4
Z(dﬂz +dé7 + < dg; - — cos(n)dérdé)
r r 6.11)

B= —% cos(n)dép Adés .

The resulting space is a non-trivial circle bundle supported by one unit of H-flux.
In particular, there is no field dependence of the Kalb-Ramond field, and the metric
on scalar field space can be calculated in the standard way from the variation of the

metric; it coincides with (6.10).
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This simple example shows that it is unavoidable to take into account also the varia-
tions of the flux contributions to preserve invariance under T-duality. The contributions
from the flux are crucial in order to match the expressions of the metric on fields space
for a pair of T-dual backgrounds. We will show this in full generality in Section 6.2.

Divergent contribution and gauge invariance

We just argued that T-duality necessitates to also take into account the contribution
of the Kalb-Ramond flux for the metric on field space. However, the integral (6.9)
we encountered turns out to be divergent. The crucial observation is that, unlike the
flux contribution H,,,,H*** that enters the potential V, the term H,, ;s H*/* is not gauge
invariant. In particular, it is sensitive to the explicit choice of Kalb-Ramond field B.
Taking inspiration from [447] we can try to use the gauge freedom in B to cure this
divergence. Defining B patchwise in a consistent way, we will be able to render the
integral finite, and hence obtain a well-defined metric on field space.

First note that due to the chosen structure of B we have H, i = d,,B;;. Now we add
a closed term to B such that

B=B+/da(y), (6.12)

where ( is constant and @ (y) a one-form on the internal space. Clearly, since we are
adding an exact term, this results in the same flux H. Promoting ¢ to a function of the
external space, i.e. viewing { = {(x) as a scalar field, the resulting flux reads

H=dB=dB+d(x) Ada(y), (6.13)

or more explicitly

Hyya=Hyya, Hyij = Hyij + 0, (x) (da); - (6.14)
In particular, whenever we are on-shell, i.e. { the modulus is constant, any such choice
of Kalb-Ramond field B describes the same supergravity solution. However, following
the procedure in [447] and allowing for off-shell variations of the action in order to
compute the metric on field space, this choice will have a non-trivial contribution to
the metric. Appropriately choosing the additional term, it is possible to render the
integral finite. We can cover the sphere by two patches corresponding to the northern
(7 € [0,37/4)) and southern (57 € (r/4, 7]) hemispheres and define B on these as

By = B+r*d(£de), Bs = B-r*d(£d&), (6.15)

On-shell, these two choices only differ by an exact term and, therefore, are gauge
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equivalent. Off-shell however, the relevant flux term is

2
—2 tan(n/2)7 5,92 (6.16)

and similar for the contribution from Bg. The full flux contribution then reads

1 n/2 . n . 1+4log(2)
yH = 5 (/0 dn sin(n) H/’:'JkH’”k /7;/2 dn sin(n) HkaH’”k r—zg , (6.17)
such that the total metric of field space is given by
1+4log(2)
Yer = Ve + V= —rzg : (6.18)

Hence, indeed, by calculating the metric y from both (2.17) and (2.30) we obtain the same
expression (6.10). This carries over to the treatment in terms of the patches. Applying
the Buscher rules patch-wise, the transformed patches glue again together smoothly to
form a non-trivial circle bundle of S2. The gauge transformation relating the choices of
B gets translated into a diffeomorphism between the new geometric patches. This can
be checked explicitly, and one obtains again (6.18) for y,,; see also [67].

We could not only have identified k with r? but also allowed for generic variations
of all possible free parameters of the theory, in the example above the flux number
k. Our argument using T-duality suggests that this is indeed reasonable if one is to
have an invariant metric on field space under T-duality. A similar setup has been
investigated in [382,447,448] in the context of the AdS Distance Conjecture with non-
vanishing RR-fluxes. As was pointed out in these references, in general the fluxes are
constrained by the tadpole conditions and hence generically cannot be varied freely.
Only in special cases do there exist (infinite) families of vacua such that variations along
the flux number can lead to infinite distances. We will return to this issue later.

For completeness and also for later purposes, we also state the metric on field space
for generic k = k(x). In this case, we obtain the following expression for the kinetic

terms in the action

2 log(Z)

3
Yab0Padpp = },—2(31”)2 (ak)2 (6.19)

Since k is already canonically normalised, there is only one infinite distance, corre-
sponding to k — co, while k = 0 is at finite distance.

On-shell potentials?

Not only does the on-shell constraint k = r? introduce non-trivial contributions to the
metric on moduli space, but it also modifies the form and interpretation of the scalar
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Chapter 6. Topology change, missing towers and scalar potentials under T-duality

potential as a function of r as well as the mass dependence of the tower of states. First,
upon identifying k = r?, the scalar potential becomes

=——ed?. (6.20)

k=r2 r?

09 (k23
V(@a,r)lg=p2 = €72 (ﬁ _ 2?)

This potential is the analogue of the on-shell metric discussed in the previous section.
It should be viewed as a potential for the infinite family of vacua given by S® with flux
number k correlated to the radius via r = Vk.

We see that there are basically three possible ways to view the scalar field space and
its associated potential. First, one can either keep k as a given background constant or
promote it to a scalar field. In the second case, there is still the question of whether to
impose the on-shell condition k = r2 or keep k as an independent variable:

i) Keeping k fixed: In this case, the situation is straightforward. The moduli space
metric obtained by varying r as in previous sections gives y = 3/(2r?). For given
but fixed k, the potential with minimum at the vacuum k = r? reads (omitting ¢ )

3 k2

V(rk) = -+~
(r; k) 2r2  2p0

(6.21)

Asymptotically we have lim,_,o V = +o0 and lim, ,., V = 0. See Figure 6.3.

ii) Off-shell scalar field k: We obtain the two-dimensional'! moduli space with
metric for » and k and potential as above. There are now 4 asymptotic regions:
lim, oV = 400 and lim, ., V = 0, as well as limy_,o V = —3/2r =2 and lim_,e V =
co. However, according to (6.19) only 3 of them correspond to infinite distances,
while k — 0 is at finite distance; cf. Figure 6.3.

iii) On-shell scalar field k: The situation is similar to above, only that in the end we
have to identify k = r2, effectively reducing to a one-dimensional field space with
a potential that reads (again omitting ¢4)

V(r; k) = ~57- (6.22)

This is now a field space for a family of vacua. For every r, we have a valid string
background. Hence we look at a certain direction in the previously 2-dimensional
tield space. This situation corresponds to the red line in Figure 6.3.

HWe omit the dilaton for the discussion here.
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V(r; ko)

Figure 6.3.: Visualisation of the different scenarios described before. Plot (a) shows
the potential as a function of both the radius r as well as the flux number k (which is
allowed to vary continuously). The red line represents the valley of the potential, i.e.
the line of on-shell vacua. Plot (b) on the right shows the potential as a function of the
radius for constant ko (orange) as well as the on-shell potential with k = r? (red).

On vs. off-shell towers and the SDC

Variations of r with fixed k have been extensively discussed above. We also analysed the
towers of states and the scalar potential for variable k, as well as the on-shell variations
with k = r2. In the former case, there are three infinite distance limits, corresponding
tor — {0,00} as well as k — co. Although we argued that for r — co the theory
asymptotes the free PCM with an infinite tower of momentum states becoming light,
in the limit k& — co there are no states with masses decreasing in k. This is consistent
with the fact that exactly in this limit the scalar potential diverges, hence excluding this
point from the reasoning of the SDC. The same happens for the limit » — 0, as was
already argued before. The limit of k — 0 is at finite distance and corresponds to the
free PCM. Since the masses do not scale with k, we do not expect a tower of massless
states. This is consistent with the potential remaining finite in this limit.

For the on-shell case, the field space and scalar potential effectively become one-
dimensional, and we have two infinite distance points, r — {0,c}. Again in the
small radius limit there is no tower and the potential divergeslz. For large radii, the
situation is somewhat peculiar. Since k = r? and the number of momentum states is
bounded by k, we see that we have more and more conserved states'” that become light.
However, the situation is slightly different from the original picture or formulation of
the SDC [117]. In the latter there is an infinite tower of states, the masses of which
decrease exponentially along the flow, while here the tower is finite but grows without
bound along the limit & — oco. The cutoff of the effective theory is anyway brought
to zero in this limit but in a slightly different manner. We leave the investigation of

12Note that in this case the potential diverges to —co.
13In the dual picture this corresponds to more and more winding states becoming light as 7 shrinks.
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this subtle point for future research'*. Anticipating a forthcoming discussion on non-
geometric spaces, we note that for the above arguments to hold, it was essential that we
had only one overall volume modulus in terms of the radius r. In particular, moving
to the three torus with H-flux, we will see that although the overall situation seems
very similar, there are subtleties arising due to the possibility of taking infinite distance
limits along distance cycles in specific ways; see Chapter 7.

In closing, we want to stress once more that this was a purely classical consideration.
At the quantum level the flux is quantised, and it is not clear that a continuous limit
like the above even makes sense. This especially applies to small values of k or r and
the limit of 2 = k — 0. We refer to [456] for a possible discrete approach.

6.2. A general formula for the reduction

We derive a general formula for the metric and potential on field space for generic
variations of the metric, fluxes, and dilaton in the bosonic sector of Type Il SUGRA that
can be used to study, for example, flux variations. We do not assume any additional

ingredients such as supersymmetry.

6.2.1. NSNS sector
We start again from the generic D-dimensional effective action

S = L

1
- dPXV-Ge™® |R(G) - —H;;xHK +49,08' 0| , (6.23)
2 Jup 12

on a D-dimensional manifold Mp which we assume to be of the product form Mp =
My x K, with external space M, and compact internal manifold K,,. We do not assume
supersymmetry nor do we add fermionic or higher-form RR fields for now. The gener-
alisation including the RR sector and possible boundary terms is rather straightforward
and we discuss it in a separate step in Section 6.2.3. We take the total metric to be of the

form!®
GrydX'dX” = gy (x, pa(x))dxtdx” + hij(y, x, o (x))dy dy’ (6.24)

withu=0,...,d-1,i=1,...,nand D = d + n. Hence, we allow the internal metric
h to depend explicitly on the external coordinates as well as implicitly through some

4There is an additional curiosity for such backgrounds when completed to proper string backgrounds
by addition of a linear dilaton (and external AdS). In particular, there is a special point k =1 (or k = 3
for the bosonic string) where there emerges an infinite tower of massless higher spin states [459-461].
How and if this can be seen as an infinite distances associated to a metric for k coming from a variational
procedure like above is not obvious. However, it is potentially related — via the proposed phase transition
between black holes and long strings in these examples — to infinite distances as described within [462]. I
would like to thank Joaquin Masias for a discussion on this point.

15The conventions are slightly different to [67] but more suitable for later generalisation to the RR sector.
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scalar fields ¢“(x). Decomposing the Ricci scalar R(G) and resumming properly one

can show that under the above assumptions it splits as

R(G) =R(g) +R(h) + Ztr(k,,k,,)g’“" - itr(kﬂ)tr(k,,)g”" - tr(h_lljgh)

=R(g)+R(h) + T (g, h), (6.25)

where k, = h™19,h and O, is the d’Alembertian with respect to the metric g. As usual
Hpjkx = 30[1Byk| and we assume that the Kalb-Ramond field and the dilaton respect

the block-diagonal structure of the geometry, i.e.

BMV:B”V(X,QOG(X)), Bll :Bl.j(y’x"pa(x))’ B/JJ :O’

(6.26)
D(X) = @p + ¢(x, p“(x)) + ¢y (y),

with ®( a constant. We assume & can be decomposed into a “internal” y-dependent
part and a factor involving the x-dependent scalar fields ¢“(x) according to

Vh = \hge?” (6.27)

with hg at most a function'® of y' and o = o (x, ¢%). Furthermore, we define the

d-dimensional dilaton

bpa=¢—-0. (6.28)

After somewhat lengthy computation, splitting the fields into external and internal, as

well as going to the Einstein frame via the Weyl rescaling

e~ . —2¢4
2w
th w= , 6.29
g—oe g, withw=-— (6.29)
we obtain
(i; 1 -3 —8¢4 4 _
S=— [ d%+\-3{R(@) - —H, , H e a2 — ——9,,¢,0"
7 / X/ g{ (&) 75 Huva et = o a0t pa (630)
- ')/abay‘/’aaﬂ<pb - Ya,ua'agoa - V(pas ¢d)} .
The metric on field space vy, is then given by
1 ~
Yab = Z(v*/d"y hoe—”y{tr(h—laahh—la,,h) +tr(h_18th_16bBT)},
K (6.31)

1 ~
Yan = 577! /K d"y o e’2¢y{tr(h_18ahh_1c’)ﬂh) + tr(h_lath_laﬂBT)} .

16In principal one could drop this assumption, however than ¢, below is y-dependent and we end up
with a warped geometry in the effective action.
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The potential V(¢%, ¢4) is given by

% 1 - s
V(e® 4a) = JV_l/Kd"y ho e‘z”’Y{(R(h) = T Hijet +4a,-¢a‘¢) e%}
(6.32)
1 v 7 ~
-5V / d"y Vho e 2% {tr(h—la,,h—la#h) + tr(h‘laﬂBh‘la/‘BT)} :
K

with V = [, d"y Vhg e 2#>. The detailed calculation can be found in Appendix D.

The expression vy, is nothing else than the well-known DeWitt or Candelas-de la
Ossa metric for scalar field variations [288,463,464] which is in fact the natural met-
ric [464] on the space of parameter of Kdhler manifolds in the presence of a non-trivial
B-field. Since in general there is a non-zero potential sourced by curvature and flux,
(some) scalar fields become massive. Note that we did not take into account any scalar
field dependence of the external quantities R(g), H,ya, ¢a. The procedure has some
ambiguity involved at this stage. We defined g = ¢ 2¢“¢ as well as ¢4 = ¢ — 0, so
in general there will be some field dependence also in these external quantities that
we should take into account. We will come back to this point later and in particular
comment on the strategy explored in [382,447,448].

Finally, consider the linear term in d¢ in the field space metric, y,,, which does not
have a clear interpretation and hence should be absent or cancelled by other contribu-
tions. Indeed, it was argued in [447] for the case of external AdS, that linear terms like
this can be cancelled from variations in the external metric. However, by restricting the
scalar field to depend only on a certain subset of the external coordinates, the terms
can often be set to zero directly. As an example, consider the linear dilaton background
that arises as the near-horizon limit of a NS5-brane. We mentioned before that this
is the easiest example for promoting the three-sphere with flux to a full string back-
ground without altering the already examined behaviour. It amounts to completing
S% with k units of flux to a 10D solution by adding a 7d external Minkowski space

ds2 = nffﬁ)dx“dxﬁ +dz?, together with a linear dilaton'’, given by [455]
z
d=-—, (6.33)
Va

and on-shell condition k = ¢g. Promoting ¢ again to a scalar field, we obtain additional
terms (recall that ® = ¢ — o with o =  log(r®) for $%; u = {a, z})

0, 9°® 5 —25%0,q(x) + irguazr(x) +o (6.34)

q? Va

For k = g = r? the deficit charge of B2 indeed cancels with this contribution from ®; see also [451].
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Therefore, this provides an example of the problematic linear terms mentioned before.
However, imposing that g is not a function of z, i.e. g(x*) = g(x?), the terms in (6.34)
can be easily set to zero. In fact, it seems that in the present example, this is the only
possibility to make this contribution disappear. Since the external space is Minkowski,
there is no apparent way to cancel (6.34) by variations from the external space, nor a
natural way to generate such a term from the internal geometry and flux.

6.2.2. T-duality invariance & positivity of the metric and scalar potential

Dropping the integration over the internal manifold as well as constant prefactors, the
expression for the metric on field space in the NSNS sector reads

Yap = tr(h 1d,hh ™ dph) + tr(h~'9,Bh~ 1, BT). (6.35)

Using the DFT generalised metric H (cf. Chapter 3 Jone can express this quantity as

Yab = %tr(‘H‘laa“HV-(_lab‘H). (6.36)

Since (abelian) T-duality acts on H by O(d, d) transformations and using the invariance
of the trace, we see that indeed v, is T-duality invariant. Hence, this confirms on
more general ground what we already argued for in the example of S with H-flux
and its dual: the metric is only invariant once we include the variation of the flux or
Kalb-Ramond field B. The fully invariant expression is given by (6.35), which we can
write compactly as

Yab = {0ah|Obh) ), + (0 B|0pB)),
=(0q(h + B))|0p(h — B))y,
= (BuE|ObE")), (6.37)

where the inner product is defined in (0.1). It is then immediately clear that in the case
of a one-dimensional field space for a scalar field ¢ we have

Yoo =100l + 0, BIf, (6:38)

and therefore the metric is manifest positive definite as is required from a proper metric.
In fact, positive definiteness also holds for the multi-dimensional case. To see this note
that from (6.37) v is a gram matrix with respect to the norm [|-||. Therefore, it follows
that s, is positive semidefinite. It is positive definite if and only if all 9, E are linearly
independent, which in turn is true if the ¢ are linearly independent.

Having established the T-duality invariance of the NSNS sector moduli space metric,

it is natural to also investigate the invariance of the potential on field space. Just like
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the metric, this quantity should be invariant, as T-dual backgrounds are equivalent and
should give rise to the same low-energy effective action and moduli or scalar field space,
respectively. Again, this follows almost immediately by referring to DFT. Indeed, the
effective action (6.23) can be rewritten in terms of the 2n-dimensional action Spgr, which
upon imposing the section condition reduces to the string effective action; cf. Chapter
3. Since Spgr is manifestly O(d, d) invariant, it follows that the string effective action
is invariant under abelian T-duality. It is somehow remarkable that the invariance of
T-duality, which is defined as a duality at the level of the worldsheet NLSM relating
physically equivalent theories, keeps the low-energy effective action invariant. Writing
out the individual terms and performing the Buscher rules, it is apparent that the terms

combine in a highly nontrivial way into the dual terms in the action.

6.2.3. RR sector

After having dealt with the internal variations of the NSNS sector, let us turn to the RR
sector. We take the metric and dilaton as above and focus on the RR fields. The action
including the RR-sector reads

2
ZKD

S = 1 /dDX\/Ee—Z‘I’

1 1 0p5
R(G) -3 |H|* + 40| - Eez‘l’z (1 - %) |Fp;2) . (6.39)
4

Up to this point, the procedure is quite straightforward and analogous to that before,
since there are no derivatives of the metric involved. For now, we assume that for all ¢

the potentials C, are of the form

Cry..1, (X)) = Cpy g (97 (), xH) + Ciy iy (97 (x), ) - (6.40)

This is not the most general setup, but is sufficient for most of the known supergravity
solutions. After some manipulations that can be found again in Appendix D we
obtain

2,

v d. 5 lp(s L e 1) od2 2
S:ﬁ/dx _g{R(g)‘i'_Ee( 0+0—)zpl 1—5 e ‘1’2¢d|Fp|

2 7 2 7
— YRR 2040, 0% 0F " — yRR2P408 % — Vg (¢°, ¢d)} :

(6.41)

where we defined

1 ~_ " _ o 1 0,5
Yab =5V 1/d v e {00 5 (1— %) (8aCql0nCy),.}
K .
s (6.42)
- n - o 5
yRE = 1/Kd yho e 2¢y{e2(<1>0+ )Za(l_%) <aﬂcq|aacq>h}.
i g
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The potential contributions reads

1 - n — o 6 5 4L
VRR(@a> Pa) = Eq/ 1/Kd yVhge 2% {ez(%* ) g2%d Z (1 - %) (e 3 |fp|2
g (6.43)

1 ~uv
+ T (Oucp-110ycp-1), 8" )} .

Note that while this formula covers the bulk NSNS and RR sector, it does not include

contributions from the Chern-Simons term'®

, nor source contributions. In general,
these terms still have to be added as they will give additional contributions. However,
because of their particular (topological) form , they will only contribute to the scalar
potential. For us these terms will play only a minor role, and we denote them by
Scs/scource, and their contributions to the scalar potential by Vcs/source- For explicit
expressions tailored to the examples discussed in Sections 6.4 and 7.3.1 we refer to the

Appendices A and D.

Summary of formulas

The full reduced action including both the NSNS and RR sector (and source contribu-
tions) to the potential. The effective action reads

("} d = - 1 ’Sﬂ 2 1 2(D, 6P5 2d—2p 2
Sui= 55 [ AF{R@ - 57 HE - 5 RN YL

-7 000" a — Cap ($2) 0,0 0" 0" — Tap(da)0" o — V (g, ¢d)} ,
(6.44)

with the total combined expressions

Tap(¢a) = yASNS + yBR e
Tau(da) = ySNS + yRR 20 (6.45)

V(Soaa ¢d) = VNSNS(‘paa ¢d) + VRR(‘pa’ ¢d) + VCS/source(wa’ ¢d) .

Separate terms are defined in equation (6.31),(6.32) and (6.42),(6.43) in the previous
sections. The metric g is related to the external part g of the D-dimensional product

metric G via
—2¢a
~ 2w _
w= R

(6.46)

We will see in Chapter 7 that there are further exotic fluxes that can enter the scalar
potential, and hence we have to generalise the reduction formula in order to also take

these new contributions into account.

%Note that working in the democratic formulation, which basically just introduces a factor of 1/2 for
the flux terms, there is actually no CS term. See Appendix A and, for example, [227].
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Remarks

¢ As mentioned earlier, there can also be contributions to the metric that arise from
varying external quantities, in particular R(g). This was extensively studied in a
series of articles [382,447,448] in the context of external AdS spaces, and we refer
to these references for details. However, in principal, one is not restricted to the
form of variations performed in these papers, which is motivated by the specific
form of the AdS metric. This leads to the crucial question of which (metric)
variations should be allowed for. In particular once we do not restrict ourselves to
massless deformations anymore — hence also in the presence of a scalar potential.
This point is crucial for fully understanding in particular metrics over full families
of vacua and we plan to investigate to this question in the future.

* Generically, the effective action has contributions I',, that are linear in the scalar
fields. Such terms have no obvious interpretation in terms of a metric on field
space, and itis believed that they should be absent from the start, cancelled among
themselves by the separate contributions in I';,, or cancelled by the aforemen-
tioned external contributions. The former case, which can be often realised by
restricting to functions of a certain subset of external coordinates only, was treated
in Section 6.2.1. The latter was extensively investigated in [382,447,448].

* In [447,457,458] different procedures from the one used here was used to vary
(RR) fluxes in the context of string vacua that have external AdS was explored. In
general, it is not expected that the approaches give the same exact metric on field
space once generalised to all sectors. We leave a more in depth comparison for
future work, but note that both of them come with certain strengths or weaknesses.
While the variation presented here depends on the gauge choice for the (B)-filed,
it does not necessarily give rise to linear terms in derivatives, cf. Section 6.1.5.
For the treatment initiated in [447], there is no such gauge ambiguity due to fixed
variations with respect to the singled out AdS radial coordinate z. However, there
are generically linear terms that have to be cancelled by other contributions, and
it is not clear how to generalise the procedure to more complicated backgrounds,
like warped geometries or spaces without a distinguished direction z.

6.3. A family of examples: Lens spaces

The three-sphere turned out to be a highly interesting background for studying the SDC
and its interplay with T-duality. There is a generalisation of S° that is especially natural
in view of topological T-duality. We can think of S° as a non-trivial U(1)-fibration over
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the two-sphere S? via the Hopf-fibration with first Chern class c1(8%) =1 and there
is an infinite family of non-trivial circle bundles over S? labelled by their Chern class
c1 = p € Z. These spaces are called Lens spaces [163,164,185,451,453] and in fact the
most natural way to introduce them is by orbifolding S* with the discrete group Z,.
For this, note that S° can be written in terms of complex coordinates via

$* = {(z1,22) € C |l + |z2* = 1} . (6.47)
Defining the action of Z,, on S° by [164,185]

(21,22) = (exp(27il/p)z1,exp(2nil/p)z2), 1=0,1,....p -1, (6.48)

we obtain a background that reads
2 T 2 2 2 4 .0 4
ds® = T dn” +dé + —dé; - ; cos(n)dé1dér | . (6.49)
p

This geometry is known as a lens space' L(p, 1) and is often denoted by $3/Z,, high-
lighting the origin as an orbifold of S3. Lens spaces have first Chern class ¢1(L(p, 1)) = p
and fundamental group n1(L(p,1)) = Z, for 1 < p € Z, hence pure torsion. Here, the
torsion-full cycle is given by the non-trivial circle fibre over the base S2. This fact will be
important for the existence of towers of states for the SDC since on these cycles strings
can unwind after wrapping the cycle p — 1 times. It is clear from the above that initial
53 is also part of this family, as it can be seen as the lens space L(1,1) with m; ($%) =0.
As for the three-sphere the background supports a non-trivial H-flux, given by

H= % sin()dn A dé A dé, . (6.50)

Writing the flux g as ¢ = % with k € Z, it turns out that the background corresponds to
an exact CFT in terms of a SU(2)x/Z, WZW model if r = Vk = qp.

Topology change and spectrum

Lens spaces L(m, 1) and L(n,1) for m # n € Z are not homeomorphic and carry distinct
topological invariants. In fact, they are a very elegant family of examples realising
the principal of topology change under T-duality via topological T-duality outlined in
Section 2.2.3. Combining the metric (6.49) with ¢ units of H-flux and applying T-duality
on the circle fibre, one obtains a background with p and g exchanged, i.e. [154,182]

L(p,1) and [H]=q < L(g,1) and [H]=p. (6.51)

YThere are also Lens spaces L(p, q) with ¢ # 1, see for example [164,185].
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$3/z, with [H] =q | $%/Z, with [H] = p

c1=p,m =2, c1=q,m1 =24

w:Z,, n:Zg w:Z,, n:Z,

Table 6.3.: Momentum and winding modes for a generic Lens space L(p, 1) with [H] = ¢
and its dual. The exchange of p and g follows the rules of topological T-duality.

In particular, since we have ¢1(L(p,1)) = p and therefore T-duality indeed exchanges
the topological invariant with the flux number, as outlined in Section 2.2.3. Performing
a T-duality directly at the level of the background along the isometry”’ & we obtain

r4—2(d;72 +sin(r)?) +r72( B cos(nder - p déa)

B-= —g cos(1)dér A dés .

ds?
(6.52)

This defines a circle fibration with ¢; = ¢ and [H] = p. Upon imposing the previously
mentioned relation between r, p and ¢ the background fits again into the form (6.49).

Zero modes and masses

In order to be able to discuss the role of these backgrounds within the Swampland
program and the SDC in particular, we need to understand the states and their mass
dependence. The situation for a generic lens space §2/z p is very similar to the one for
the T-dual of $° with p units of H-flux. Therefore, we keep the discussion minimal and
summarise the relevant behaviour in Table 6.3.

Due to the non-trivial fundamental group, there can be winding states. However,
since we have torsionful groups of the form Z,, there can be only p — 1 distinct or
conserved non-trivial winding states. In particular, after winding p times, the loop
becomes contractible and the string can unwind. Therefore we are again led to the
conclusion that also for Lens spaces the winding modes can not provide an infinite
tower of states. Taking into account only the geometry and neglecting the H-flux, there
is a priori no reason for an obstruction of a tower of conserved momentum modes. In
particular, while the orbifolding projects out states that are not invariant under the Z,,
action, there is still an infinite tower of states that survive the projection. However,
when [H] # 0 the situation is very similar to the one discussed for S® with flux and its
dual: the H-flux modifies the conservation in a way that there is only a finite conserved
tower of KK modes. Under T-duality, these map to the winding states lapelled by Z,,.

“ONote that in contrast to &, £; is not a proper isometric direction along we can dualise. In fact, the
corresponding fibre is isomorphic to U(1)/Z,, as is nicely explained in [185].
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This heuristic picture has been worked out and confirmed explicitly at the level of the
worldsheet CFT. In particular writing k = pg, the WZW orbifold theory SU(2),4/Z),
has momentum states n that are defined modulo ¢ and winding states that are defined
modulo [453] p, i.e.

neZzy, weZ,. (6.53)

Under T-duality along the Hopf fibre, the theory is mapped to SU(2) ,4 / Z, with winding

and momentum states

nez,, weZzZ,. (6.54)

In particular, the theories are fully equivalent at the level of the CFT [163,453] and
explicitly realised the principle of topological T-duality [182]. The mass dependence
of the KK spectrum can be obtained by projecting onto the Z,-invariant states of the
three-sphere. In particular, the overall scaling with r remains unchanged, and we still
have an infinite number of states, see, e.g. [465]. As argued in Section 6.1 the effect of
the flux can again be neglected in the for us relevant regions. The winding modes are

2 2

expected to scale with the volume of the wrapped cycles and, therefore mj, ~ r°.

Distance Conjecture

Substituting the Lens space background (6.49) into the reducion formula (6.31) and
(6.32) we obtain

(6.55)

g 3\ iy
2r6  2p2 o

7rr:f_2’ V(’”’(ﬁd):(_—_ e
Comparing with Section 6.1, we see that the situation for the special case of S® with
H-flux carries over to the more general family of backgrounds of Lens spaces. While
the r — oo corner of field space meets the predictions of the SDC, there is a lack of states
when approaching r — 0. The situation is again resolved by taking into account the
diverging scalar potential and the amendment to the SDC presented in Section 6.1.
Most of the discussion also applies to the special case {p = 1, ¢ = 0}, which corre-
sponds to the three-sphere without any flux. However, since this space is not a proper
string vacuum, the implications for the SDC and the amendment in terms of the diverg-
ing potential are less clear or strong than in the case of a proper string background.

6.4. Towards realistic examples: DGKT-like vacua

The (family of) examples discussed so far should be viewed as toy examples in order to
gain intuition for the effect of T-duality and the scalar potential for the SDC. The next
step is therefore to see how or if this intuition carries over to other more complicated
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string and M-theory vacua and, in particular, phenomenologically interesting examples.
A nice family of vacua to study these effects is the family of 11D vacua given by Freund-
Rubin [466] backgrounds. These were also intensively studied in the context of AdS
distances and flux variations in [447] and very recently in an algorithm to “backtrack”
the underlying brane picture of AdS flux vacua [467]. However, a phenomenologically
more interesting setup is that of DGKT-like vacua [123] briefly mentioned in Chapter 1.
These theories actually come as a full family of vacua labelled by the Fj flux quantum
f4, which is a completely unconstrained parameter, similarly to the RR-flux in Freund-
Rubin vacua and provide AdS examples of the four-dimensional N = 1 effective theories
mentioned in Chapter 1. These vacua still lack an uplift to full 10D string-theoretic
solutions, but have been shown [468] to descend from “approximate” (supersymmetric)
massive Type IIA solutions with SU(3) structure and orientifold sources that are not
localised but smeared, which were found and classified in [469].

We will not discuss whether such smeared solutions are fully consistent beyond
the supergravity approximation and hence give rise to genuine string theoretic vacua;
see [470] and in particular [125,126,471] for a recent account with a special emphasis
on scale separation and also Swampland arguments. For us, they merely serve as more
realistic examples on which we can test the reduction formula and obtain some intuition
on how the potential enters these richer scenarios. However, we briefly comment on
some aspects of these vacua and related ones in the context of the SDC in Chapter 7.

We work with the background conventions given in [469] (see also [472]), which at
the level of string theory arise in the near-horizon limit of intersecting branes in the
presence of orientifold planes. The metric and the dilaton read

6
ds%0 = desidS4 + Z rl.zdy% , ® = const., (6.56)
i=1

with L the AdS radius and r; the radii of the 7°. This is supplemented by constant

background fluxes (along internal directions)

Hy35 = His5 = Hy3s5 = —Ho46 = D,

F3456 = F1256 = F1234 = 14,

(6.57)

and the non-zero Romans mass m = m, such that the setup is within massive Type IIA
SUGRA, see Appendix A. One obtains a string vacuum at r; = 1 if the flux and AdS
radius are chosen

5 o 2 5 3

L:__ = —— = — . .
me , b 56 m, i 5m (6.58)

In order to cancel the tadpoles, the theory has to be supplemented with smeared orien-
tifold 6-planes (06) along the (internal) directions (1,3,5), (2,4,5), (2,3,6) and (1,4, 6)
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6.4. Towards realistic examples: DGKT-like vacua

with charge ue = hm, which will give non-zero contributions to the potential via the
source terms; for details, see [469,471-473] and Appendix A.

Metric and potential on field space

For simplicity, consider the case of a factorised”! T® = (72)3.Then, due to the orientifold
projection, the only surviving moduli are r1, 72, 7, ¢4, v, o, such that(cf. [469])

Bip =B =Bss =7, C235 = C1a5 = C136 = —v, Cue=0. (6.59)

In addition to the standard scalar field, we are interested in variations of the background
fluxes like b, f4 and m. We will discuss these in a second step. Substituting the
background data and the allowed scalar fields into our reduction formula (b, fs, m
fixed). For the NSNS sector of the metric y we obtain

. _ _ 3
y NSNS 3,090 0P = 3r 2|0, |* + 3r52|0,ra|* + *5r1 215 210,71* + 2|0, pal* (6.60)
while for the RR sector we find
yK (9#90“8” = grzrllez‘f’ﬂ[) v+ 1Ty ez¢4|6 o, (6.61)

For the potential we get (we only give the potential for the real part of the scalar fields)

4 4 2.4 4
+3r 3r 3f2+m?r

V(ga,pa) ~ 2204 14 62 2m[)e3¢4—1 et 4 - 172 +V(t,v,0,¢4). (6.62)
12 rr; 172

It can be checked explicitly that the field space metric and scalar potential above are
precisely in agreement with whatis obtained by using the N’ = 1 scalar potential formula
(1.43) of Section 1.3.3. Hence, this gives a nice consistency check of our general reduction
formula (6.44) and (6.45). However, it should be stressed that the formula derived in
the previous section holds more general and does not require any supersymmetry.

In view of a later discussion of the SDC, we extract the asymptotic behaviour of the
scalar potential. For this first note that the potential is given in terms of the effective 4d
dilaton ¢4, which itself is a function of the radii. We can reinstate the 10d dilaton using
¢4 =¢ — o witho = %log(rm). This leads to

+3r4 r2—3r2 3f +mZrid
V(Soa,‘p) I)z 2¢17—9_2mb€3¢%+€4¢ = 7 7 2 +V(T v,o, ¢) (663)
s " nr

2ln particular, this can be achieved by considering orbifolds T6 / Z% like for example in [474]. Consider-
ing the even more restricted setup of T / Zg leads to the solutions of [123,124], where there are no complex
structure moduli that survive but a priori three independent volume moduli v, associated to the 72.
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The naive asymptotic limits of this potential, keeping all but one scalar field fixed,

then read
lin})V:oo, lin})V=oo, Iim V=0,
ne 2 ¢ (6.64)
Iim V=0, Iim V=0, Iim V =oc0.
ry—o0 1p—00 ¢Pp—00

Since the field space is multidimensional, there are, however, also other limits of mul-
tiple variables while keeping certain ratios fixed. For example, take the limit of large
radii and large string coupling in a way such that oy = const. This is an infinite distance
limit and it is clear then from (6.62) that in this special limit we do not have a vanishing
V, but V. — oo hinting towards the fact that there might be an absence of a tower of
states in that specific direction. A detailed discussion of all the different limits and the
interpretation in terms of the SDC is beyond the scope of this short section and is left
for future work. However, we will comment on this example again in Chapter 7.

Lastly, we discuss the variation of the background fluxes that we have already
introduced in Section 6.1.5 for the NSNS flux. We will explain later in Section 7.3 that
in fact, due to a non-trivial tadpole, the only parameter that can be freely varied is fs,
while h and m are highly constrained by the tadpole condition (7.21). For the former,
we define the C3 potential as

(C3)235 = (C3)145 = (C3)136 = —Vv(x) ,

(6.65)
(C3)as6 = Y Ta(x),  (C3)ase = y'Ha(x),  (C3)aza = y'fa(x),

where we made a (arbitrary) choice for the components involving fs in order to repro-
duce the flux (6.57) and promoted {4 to a function of the external (AdS) coordinates x*.
Using the reduction formula (6.42) results in the additional terms

yffaﬂgoaaﬁgob - 4ﬂ3r1r2_1€2¢4(x) |(9ﬁ,f4|2 , (6.66)

where a factor 87° comes from the internal integration that now involves factors of the
2 .
form fo "dxt (x1)2.

Remark

¢ The DGKT-like background discussed above admits a whole family of solutions,
indexed by f; such that all vacuum values can be written in terms of a single
parameter. See [382] for a closely related procedure methionine earlier, which
also takes into account external variations such that in the end one obtains a (on-
shell) metric and potential for the full family of vacua, parametrised in terms of a
single scalar field (the AdS radius in that case).
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6.5. Local isometries and invariant potentials?

We close this chapter with a short discussion of T-duality for isometries with fixed
points and the possible implications for the SDC; see also [475] for a related discussion.
In particular, this corresponds to spaces where a local circle fibration degenerates, and
hence the space is not globally a principal U(1)-bundle. T-dualities on such spaces are
arguably the simplest examples that feature topology change under T-duality. However,
in contrast to topological T-duality discussed in Chapter 2, this is not due to an exchange
of topological invariants and flux quanta, but more due to a certain ill-definedness of
the procedure, due to global obstructions in finding a globally well-defined Killing
vector field. Take, for instance, the two-dimensional Euclidean plane R2. Moving to
polar coordinates, the metric reads

ds? = dI? + 12d¢?. (6.67)

The metric has an isometry along the 6 direction, which, however, degenerates at the
origin r = 0. Since the associated Killing vector dg generates rotations around the
origin, the latter is a fixed point of the isometry. The dual geometry, naively using the
Buscher rules, gives

ds? =di>+ llzdéz, (6.68)

which is clearly singular, exactly at the fixed point of the isometry. However, we already
saw that strings perceive spacetime very differently and in particular also for the SDC
and the associated scalar potential, what matters is the full expression for the potential
and not only the part corresponding to the metric. In particular, the Buscher rules,
in addition to the change in metric, dictate also a non-trivial dilaton ® = —log(/).

Substituting the background into the action, we obtain the Lagrangian®

_ 3 -4 4
V=R(g)=0, V:R(§)+4(5®)Z:l—2+l—2:0. (6.69)

However, despite this almost trivial example, where the action functionals indeed
match, the T-duality invariance for isometries with fixed points is not guaranteed. Take
for example S2; the two-sphere can not be written as a globally defined circle fibration,
and hence thereis no global U(1) isometry. Locally, one can, however, apply the Buscher
rules as above and obtain the metric and dilaton. While the sphere gives rise to a non-
zero Lagrangian through the Ricci scalar R(g) = rz—z, leading to a non-zero potential
V = 2/r?, when regarded as an internal compactification space, the dual potential is
easily computed as V = —r% such that there is a sign flip in the potential. Using the

2We denote by V the integrand of the potential and omit the volume factor and integration.
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general Buscher rules, one can actually show that in 2D

G60(G11G60 — 2G01G61 + GooGil) +2 det(G)Gé’o

2 det(G)? =-V(G.B,4), (6.70)

V(G,B,®) =

using the fact that there is an isometric direction X° and hence the initial background
can be expressed”’ independently of X°. Primes denote derivative with respect to X*.
The potentials are zero, and hence agree if the associated metric component along the
duality direction is constant

Goo = const. (6.71)

It is not hard, but somewhat tedious to check that this generalised to arbitrary dimen-

sions?* in the following way. One can show that for arbitrary D,
V(G,B,®) #V(G,B, ). (6.72)

However, if there exists a coordinate system in which Ggg = const. then the potentials
agree

Goo = const. = V(G,B,®) =V(G, B, $). (6.73)

Note that we can translate the condition of constant Gy into a statement of the norm

of the Killing vector k. Since we work in adapted coordinates, the latter is
k> = G jk'k) = Gy, (6.74)

and hence the statement translate into a condition on the norm of the Killing vector. In
particular, if the isometry is not globally defined, the Killing vector is generically not
constant and, for example, in the case of a fixed point, degenerates to |k| = 0, so that the
norm cannot be constant globally.

Hence we see that while the Buscher rules give a locally equivalent background also
for globally ill-defined S! bundles, the effective action captures the global issues and
mirrors them through non-invariant scalar potentials under the duality transformation.
Note that this reasoning of the failure of the invariance can also be seen from a doubled
perspective. In order to perform T-duality, we need a frame in which we can act with
the O(D, D) element O; implementing the factorised T-duality along that direction. If
the isometry has a fixed point, this frame degenerates at some point, and hence the
argument presented earlier in Section 6.2.2 breaks down.

ZIn adapted coordinates and neglecting subtleties with respect to B, which in 2D is anyway pure gauge.

?*One can either employ a computer algebra program and check for the relevant dimensions up to
D =11 or explicitly perform the Buscher rules on all terms in V, checking that the full expressions match.
The latter indeed confirms the behaviour for arbitrary D but is very lengthy and is not presented here.
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Non-geometric backgrounds and the SDC

At a first glance one might expect that a generic string vacuum has an underlying ge-
ometric realisation that can be described by ordinary Riemannian geometry, and hence
that non-geometric realisations — introduced in Chapter 3 — are merely exotic corners of
the string Landscape. However, quite the contrary seems to be the case. String theory
allows for a much bigger configuration space than can be described by standard geomet-
ric notions of point particles, and hence we expect [239] that the vast majority of vacua
arise from some notion of non-geometry. Geometric configurations are then merely
special points within this huge Landscape. A good understanding of these theories
and their properties with respect to Swampland conjectures is therefore paramount. In
the present chapter, we will investigate a specific notion of non-geometric spaces and
their associated fluxes, realised in terms of S-supergravity, and the implications for the
SDC. We will start by discussing the appropriately adjusted reduction procedure of
the previous chapter and, as a first example, discuss the three-dimensional T-duality
chain. After a careful analysis of these backgrounds, unravelling certain missing towers
of states, we briefly highlight how some of the issues are circumvented once moving
to more realistic examples with additional ingredients leading back to the DGKT-like
flux vacuum and its T-dual cousins discussed earlier. We finally comment on possible
approaches to truly non-geometric spaces like asymmetric orbifolds, and some recent
developments in the literature.
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7.1. Reduction of non-geometric backgrounds

The reduction formula derived earlier needs to be modified in case the internal geometry
is not a Riemannian manifold but given by some (globally) non-geometric space. Based
on the discussion in Part I, we can expect the non-geometric fluxes to give contributions
similar to their NSNS pendants. In particular, we have two additional sources for the

potential

V > Q2% R?. (7.1)

The initial step of the reduction procedure is analogous to the purely geometric setup
described in earlier sections. Assuming some suitable factorisation of the total space
like in Section 6.2.1 we can split the terms in the action into purely external and internal
parts respectively. Additionally there will be mixed terms, coming from the non-trivial
dependence of the internal geometry on the external coordinates. At this point in the
geometric setting, we would reorganise the terms properly, go to the Einstein frame and
finally integrate over the internal geometry. However in the case of a non-geometric
background the NSNS background fields are plagued by non-trivial monodromies
that preclude us from performing the actual integration and arrive at the reduced
d = (D — n)-dimensional theory. We will circumvent this problem by going to the
non-geometric S-frame introduce in Chapter 3. There is a certain ambiguity in when to
switch to the g-frame. Either one starts from the non-geometric frame in D dimensions
and then goes back to the standard NSNS frame for the external geometry after the
splitting or the other way around. We will choose the second option, i.e. rewriting the
internal geometry in the S-frame after the split. This means in particular that the mixed
terms which enter the metric on field space are treated in the standard NSNS frame.
However, it is easy to see that both procedure are equivalent. In particular, the metric
on moduli space is given by vy, = %tr(?( 19, HH 19, H), with H invariant under the
change of frame as explained in Chapter 3, hence giving equivalent results.

Explicitly this means that after having split the geometry into an internal and ex-
ternal part, we trade the geometric data {4, B, ¢} for their non-geometric cousins
{h, B, #y}. The resulting geometry has trivial monodromy and can be integrated with-
out any obstacles. Instead of the Lagrangian of the internal manifold in terms of g, B
and ¢,, we now have the g-gravity Lagrangian given in (3.21). Specialising on globally
non-geometric backgrounds, i.e. discarding R-flux contributions, it reads [243]

Ly = e 28Nk (R(D) + R(h) + 408, + 4(B7 9,y + hpg 70,571 + Q) . (72)

Now, performing the analogue calculation to Section 6.2.1 one arrives at an expression
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for the potential on field space that reads (Q? = h; ;i i*'Q 70 1)

Vgt 00 =71 [ ary\ioe 2o {R- 10230 0N +4106, P+ | 73)
where ... denote terms that will not contribute in our concrete examples and can be
found in [243]; V is defined as below (6.32), now in terms of the hatted equivalents.

Note that naively ¢, depends on the g-frame through 6. However, under the
assumption that also in the non-geometric frame one can split ¢, into a sum of a purely
tield-dependent term and a function of only the coordinates, it follows by using the
invariance of VGe2® that, in fact, ¢4 = d4 = ¢ — &. Furthermore, under the simplifying
assumption' that g5"d,,(-) = 0 the potential reduces to

—~ ~ 4 N 5 1 N
Vet 00 =<Vl [ary e (Rih) - 302+ 408, 79

which is particularly similar to the standard geometric expression (6.32). In total we
see that also for the non-geometric setting, the relevant formulas are given by (6.44)
and (6.45) with Vy (¢, ¢4) replaced by VO(QD“, ¢a) given by (7.4) or more generally (7.3).

Remark

* Note that the transformation to S-gravity maps to the same vacuum solution and
hence we remain at the same point in field space. However, now it is described
by a redefined set of fields that, in contrast to the NSNS frame fields, give rise to
a well-defined background configuration.

7.1.1. Volume scaling behaviour of potential

Before moving on to discuss some examples, we close the general discussion by refer-
ring to a generic formula for the scaling behaviour of the potential in the presence of
geometric and non-geometric fluxes. Focussing on the overall volume modulus and
(the logarithm of) the 4d dilaton o, the authors of [240] argued that the potential after
compactification from 10D to 4d reads

V(p,o) = 0'4_2 (—p_lVJ(,) +p_3VIg +pVg +p3V2) , (7.5)

where the fields are defined through

hj=phl) . e = g=pey (7.6)

I This holds in particular for simple backgrounds like the T-duality chain. In the example of the NATD
of $3 in Chapter 8 this does not hold and we are required to use the more general formula above.
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o 0 o

Figure 7.1.: Change in global structure for the backgrounds of the 3D T-duality chain.
Schematically illustrated are the T2 fibres, while the S! base is omitted. While the scalar
field space and potential are left invariant under the T-duality transformations along
the chain, the corresponding target space geometries differ drastically.

and we refer to [240,252] for further details and conventions. With some mild modifica-
tions, this formula can also be applied to compactifications to d dimensions. In the case
of N = 1 supersymmetric compactifications, the non-geometric fluxes can furthermore
be included into the general formula (1.43) discussed in Section 1, see [265].

7.2. 3D T-duality chain in the Swamp?

We investigate the behaviour of the T-duality chain with respect to the SDC. For details,
we refer to Chapter 3. Recall that the chain can be written schematically as

H-flux " geometric flux v Q-flux R-flux

— — — (7.7)

>

Hiji Ik O RY

where for now we omit the last step leading to the exotic R-flux background.

In the following we argue for a tension between non-geometric T-duality chain
and the predictions of the SDC: even after consideration of the non-trivial potential the
backgrounds seem to lack certain zero modes and associated exponentially light towers
required by the SDC. Without further modification, we therefore have to conclude that
these backgrounds lie in the Swampland. However, this is not too surprising, since the
torus with H-flux is not a proper string background on its own. It has to be embedded
into a proper solution that necessarily involves other ingredients such as fluxes or
sources. These may come with additional sources for towers of states that we do not
account for in this simplest incarnation of the T-duality chain. In Section 7.3.1 we will
consider the natural completion of the T-duality chain to full string backgrounds, which
is closely related to the DGKT-like example discussed at the end of Chapter 6.
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T3 with H-flux | Twisted three-torus | 72 with Q-flux

Ricci scalar R - Vv -
H-flux v - -
O-flux - - v
. —4og 2 _ 2 _ 2 _

potential e @2 V(r;) GG Ere3)™! 3™

Table 7.1.: Summary of scalar potentials, highlighting the different contributions in each
duality frame. Tilde radii #; denote the natural notion of radius in the corresponding
geometry and are inversely related to the ones of the initial torus with radii r;.

Backgrounds and scalar potentials
Before going into details, we summarise the potentials in Table 7.1. As expected, the
potentials agree even though they are sourced by different flux contributions.

Torus with H-flux

Take the background as in Section 3 with coordinates y’ for i € {1,2,3} and dilaton at
most a function of y3, i.e. ¢y = ¢3 = ¢3(y3). Substituting this into our general reduction
formula, we obtain the reduced effective action

(Vlnt
T 22

[ atevmz (R - 510648 = Y r2 0P Ve ba) . 78)

i

The scalar potential is given by

—~ 49, 1 B ‘
V(i ga) = =Vl / d’yVhe 2> (—E%jkﬂ”k +4a,-¢ya‘¢y)

S
= _V(g3) + = =3 (7.9)
2 r%r

In case the internal dilaton reads ¢3 = 0, which we will assume in the following, we
have V), = (27)% and V(¢y) = 0. Clearly, the potential diverges for r; — 0.

Twisted torus

T-dualising along the y! isometry of the T2 the resulting background is the twisted torus
or nilmanifold with metric given in (3.31), which is a purely geometric background
without any NSNS or RR-flux. The natural radius of the twisted cycle of 7 is given by
71 = 1/r1 while 73 = /3. The potential is now sourced by different contributions

2
V(ri, ¢q) = — V-l Z/dy1dy2dy3\/_e 26y (R(h) +40;¢,0' ¢y) 1 e%. (7.10)
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O-flux background

Dualising a second time, now along the y?-direction, the resulting configuration is given
by (3.35). In Chapter 3 we already discussed that this background is not well-defined as
it features a non-trivial monodromy along the fibre y3 and is actually a non-geometric
T-fold. In order to anyway being able to perform the necessary integration and obtain
the reduced effective action, we are therefore forced to go to the non-geometric g-frame.
Using the relation (3.19) we showed in Chapter 3 that the resulting background reads

ds? = rl_zdy% + rz_zdyg + r%(dy?’)2 , B =—-kyzoh A Or, 7.11)

by = 93~ log(rira). |

This new frame is indeed well-defined and free of pathological monodromies with a
metric in the form of a standard three-torus with radii 71/, = 1/r12 and 73 = r3. The
potential is now calculated as

—~_ 4¢ - - _74 ~ i ]. [ i kz 1 74(#
V(ri, ¢a) = _(Vintled_z/dYIdyZdys\/ze 20 (40,610'1-70110))) = S 555e7 L (7.12)
4 ’ 2 riryrs

such that the non-trivial part of the potential stems from the Q-flux contribution, which

no reads
Q312 = _Q321 =-k. (7.13)

The potential again agrees, but only after moving to the g-frame.

Overall we observe that (as expected from the discussion in Section 6.2.2) the poten-
tials, even though sourced by very different fluxes, agree for all the backgrounds in the
duality chain. The same holds for the field space and the associated metric. However,
although this results in equivalent effective actions, the corresponding internal target
spaces, their geometric properties, and the nature of light states differ drastically. This

is summarised in Figure 7.1.

Zero modes and mass spectra

We list the presence or absence of the relevant zero modes that would give rise to the
towers of states for the SDC for each of the three backgrounds separately. Furthermore,
we provide a brief discussion of the individual mass spectra. These turn out to be
rather difficult to access, and therefore we mainly restrict ourselves to a rather heuristic
discussion, pointing out the challenges encountered. This does not affect our analysis
in a negative way since already the very existence or rather absence of modes leads to
strong implications for the Distance Conjecture.
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Zero modes

i)

ii)

For the torus with H-flux the situation of momentum modes is similar to the case
of $3 with flux. Also here we encounter non-conservation of momentum due to
the H-flux. In fact, momentum is conserved only modulo k. Due to the simplicity
of the torus geometry one can even pinpoint this non-conservation quite precisely
from the perturbative point of view. Employing the dilute flux approximation
one can show [269] (cf. Appendix C for more details) that in the presence of
non-trivial winding the momentum modes are no longer conserved. In particular

there is an obstruction to conserved momenta of the form
pPXW, (7.14)

with p,w the winding and momentum mode vectors. In the torus we can have
non-trivial winding w € Z along each cycle and thus the momentum zero modes
are no longer conserved and can not provide the necessary towers for the SDC.
On the other hand, there is no obstruction for winding modes and we have
m1(T3) = Z%-worth of winding modes [262]. We will argue below that there are
infinite-distance limits with no tower of states but also no diverging potential.

Moving to the dual twisted torus we see that the geometry has a non-trivial
homology structure [262] (cf. [263] for a in depth discussion)

H\(T3,,2) =20 ZaZ. (7.15)

In particular the latter factor corresponds to a torsionful cycle and therefore again
to a cycle on which a string can unwind after winding k — 1 times. This provides
an alternative argument for the non-conservation of the momentum zero modes
in the torus with H-flux without having to employ any perturbative calculation.
Note that this is similar to the non-conservation of D3 charges in twisted T°
backgrounds [476]?. Naively in the absence of any additional flux one would
expect the momentum modes on the twisted torus to form a Z®? lattice due to
the compact nature of the geometry similar to the standard torus. However the
geometry is much more involved due to the structure of the non-trivial fibration.

We finally turn to the Q-flux background. The discussion is conceptually more
involved and also less understood due to the unclear role of differential calculus
on this background. There are two obvious approaches. One can work in the
B-frame where the background is well defined and applying the analogue of

2Even though the charges are non-conserved they are anyway BPS [476].
g g y yway
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standard Riemannian geometry in terms of the metric 4°. Alternatively, one
can try to infer the relevant behaviour by use of T-duality. We will choose the
second option here and basically reverse our previous argumentation. We infer
the properties of this background by consistency under T-duality.

Mass spectrum

i)

ii)

iif)

For large values of r we can neglect the flux contribution and therefore the KK-
spectrum has the familiar 1/r dependence in this corner of field space. Similarly,

the winding modes scale with the volume or radius of the wrapped cycle.

Although the twisted torus is only a T-duality away from the previous back-
ground, it already features many significantly different aspects. In particular, it
was shown in [101] that the Laplacian spectrum displays an unusual gap between
some light states and the rest of the spectrum. The spectrum of the low-energy
effective theory can then in principle be computed from the eigenvectors of the
Laplacian. However, this is an analysis that goes beyond the scope of this section*
and we will once again infer the spectrum by use of T-duality, cf. Table 7.2.

As already anticipated in the discussion before, the analysis of the non-geometric
frame is not only computationally but also conceptually challenging. Although
it is possible in principle to treat the well-defined geometry in the S-frame analo-
gously to the standard torus, it is not clear whether one can interpret the result-
ing mass dependence as the true physical mass. Defining a Q-twisted differen-
tial [245,263,477]similar to the H-twisted one for the torus, one can perform a
Laplacian analysis. At large values one can again neglect the effect of the flux;

however, the physical interpretation remains somewhat unclear.

Distance Conjecture

Having collected all the necessary information, we are now in a position to discuss
the T-duality chain in light of the SDC. The situation is summarised in Table 7.2. In
contrast to the sphere, there are now three independent moduli for every geometry,

which correspond to the three independent radii of the three torus r; fori € {1,2,3} as

well as the H-flux number k. The infinite distance points again correspond to sending

one (or more) of these quantities to either zero or infinity.

The behaviour of the potential for r; — 01is fairly similar to the examples encountered

here so far. We have a divergence in V for small radii r; in all the different T-duality

3And therefore taking into account the Q-flux, some notion of Q-twisted differential [245,247,477].
4There are several issues one has to take care of, like for example the appearance of space invaders [98].
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V(ry)

Modes ri—0 ri — 00

3, [#] =k |w:| Z&Z®Z | (light light light) |(heavy, heavy, heavy)
{r1,r2.r3} P |nc ® nc & nc|( heavy, heavy, heavy) (hglff, thf/ Lghf)
T3, [f1=k |w:| Ze®@Z®Z | (heavylight light) | (light heavy, heavy)
{r{Lr2rs} p:|nc@®nc®Z| (lightheavy, heavy) | (heavy,light, light)
Té/ [Ql=k |w: |Zk®Zr @ Z| (heavy, heavy light) (thf/ y,gl'ff,heavy)
oy} p:|lncozez | (light lightheavy) | (heavy, heavy,light)

Table 7.2.: The plot illustrates the diverging scalar potential as a function of of the radii
ri, with the others kept fixed. The radii are with respect to the torus with H-flux. The
table lists the zero modes and their asymptotic behaviour with respect to the r;. Crossed
expressions denote non-conserved (nc) or only a finite amount of conserved states. For
the Q-flux background the expressions are inferred from T-duality.

1

rf

frames”. However, there seems to be no apparent reason for this divergence in terms
of missing modes. On the torus, there is no immediate obstruction for the existence of
winding modes. This hints at the fact that while the absence of modes for a consistent
background seems to imply the emergence of a divergent scalar potential, the converse
is not necessarily the case. This aspect requires further investigation elsewhere.
Turning to the limit of large radii r;, we quickly run into problems. Indeed, looking
at Table 7.2 it is apparent that there is no infinite tower of light, conserved states and
therefore no tower for the SDC. In contrast to the three-sphere with H-flux, where we
had only a finite number of states for fixed k and r, now the centre of mass momenta
of the string are all non-conserved and cannot be interpreted as KK-particles. Only in
the strict limit of » = co momentum conservation is restored and the tower is mass-
less. However, along the limit of large » we never have proper (particle-like) conserved
modes®. At the same time, also the potential is regular and even vanishing in this
limit. Furthermore, consider the limit of sending both k and one of the radii, say r1 to
infinity, keeping their ratio constant, i.e. k/r? = const. along the limit. This is clearly

“We stress again that that is with respect to the radius r; associated to the torus with H-flux.

® Although we assume in the following that situations like this are not sufficient for the SDC, this
aspect deserves a deeper investigation. Even if such a situation turns out to be sufficient, we argue below
that there are further infinite-distance limits in the (3D) chain that violate the SDC.
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Chapter 7. Non-geometric backgrounds and the SDC

an infinite-distance limit as well; however, since k/ r% are fixed the flux contribution is
not even vanishing asymptotically and we never recover conserved momentum states,

cf. expansion in Appendix C. Furthermore, the potential stays constant in this limit.

We see that in both cases there is no divergence that would protect us from the
absence of states via our proposed amendment to the SDC. We are therefore led to the
conclusion [67] that without embedding the solution into a proper string background,
i.e. adding fluxes or other ingredients, these backgrounds are in conflict with the SDC

and can not arise as the low-energy effective limit of a theory of quantum gravity.

7.3. 6D T-duality chain and locally non-geometric
backgrounds

We discuss a natural generalisation of the 3D T-duality chain in 6 dimensions, which
builds on the DGKT-like background discussed in Section 6.4. Although not giving a
full analysis of all the relevant aspects, we highlight some differences to the 3D example.
Furthermore, we give a brief outlook on the last step in the 3D T-duality chain, leading
to the locally non-geometric R-flux space.

7.3.1. T-duality chain in 6D

The 3D T-duality chain discussed in the last section served as an easy and clear example
for discussing the relevant aspects of non-geometric backgrounds for the SDC. However,
as mentioned several times, these backgrounds are only toy examples and do not give
rise to full string vacua or at least supergravity backgrounds. There is a very natural 6D
analogue that can be completed to a supergravity solution and gives rise to a proper 10D
T-duality chain, analogous to (7.7). In fact, we already introduced the first background
of the chain at the end of Chapter 6, the DGKT-like Type IIA toroidal orientifold
with fluxes. We give a brief outlook on how, upon dualising this will lead to a 6D
nilmanifold and finally to the higher-dimensional analogue of the Q-flux background
and the potential implications for the SDC and Swampland program.

Since these backgrounds involve many more ingredients, the analysis for the SDC
becomes significantly more involved. In particular, several things must be taken into
account, such as towers of wrapped branes [336,344,478], the role of the smeared orien-
tifold sources [125,389,471,479] or also the issue of scale separation [126] between the
internal compactification scale and the external AdS space and the (strong) ADC [363];
see also the list of references in Section 5.2.3. An in-depth analysis of all these points
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7.3. 6D T-duality chain and locally non-geometric backgrounds

goes way beyond the purpose of this section. The following discussion should be more
viewed as an outlook, highlighting some novel features and serving as a guide for
further investigation of non-geometric backgrounds within the Swampland program
as well as highlighting some novel features.

T® with fluxes

This background was introduced in Section 6.4. In contrast to the 3D torus with H-flux
we discussed before, this background features not only NSNS-flux but also RR-form
flux as well as contributions from (smeared) orientifold sources. In particular, the
metric and potential of the reduced action was given by

yab(9,,<p“5”gob = 3r1_2|6r1|2 + 3;’2_2|(9r2|2 +3|04)* + 4ﬂ3r1r2_1€2¢4(x) |(9,1‘f4|2 +...,

4 4 2 2 2, 5244
rp+3r -3 3 +forar 7.16
V(‘pa’ ¢d) ~ b2e2¢4% — 2f0be3¢4¥ + e4¢4w ..., ( )
r,r 3 rira
12 r1r2

where we restricted to the real part of the (NSNS sector) scalars and flux variations.

Nilmanifold 4.7

Performing two T-dualities along the directions y!, y? the resulting background is again
a nilmanifold (4.7 in the classification of [480])

dsyy = L*dshys, + ) 7ref,  ®=¢—log(rira), (7.17)

6
i=1
4

with e; a basis of one-forms such that e = (dj; — (y°dy® +y>dy*)), ex = (d¥, — (—y°0dy* +

y>dy?)) and e; = dy; fori = 3,...,6. The radii in this basis are given by 7| = % P = %
and 73 = 75 = r1 and 74 = 7g = r2. The fluxes are given by
H=0, m=0, Fp=m,  Fyu=Fe=1i,  Fioae=Ts, (7.18)

which can be easily calculated using the Buscher-like rules for the RR fields given
in (2.20), adapted to the massive Type IIA case; see the remark in Appendix A. There is
geometric flux but no H-flux. The metric and scalar potential are identical to the ones
for T° above. In fact, this can be seen very elegantly in the N = 1 formalism, but can
be calculated also simply with the reduction formula (6.44) and (6.45). The solution is
again completed by 06 planes in the directions (1,3, 6), (1,4,5),(2,3,5) and (2,4, 6).
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Chapter 7. Non-geometric backgrounds and the SDC

O-flux background

After two additional T-dualities along the directions y?, y*, the resulting background is
the 6D analogue of the O-flux background. After moving to the non-geometric g-frame,
in which the resulting background simplifies tremendously, it reads

4
1
ds?, = deszAdS4+Z F2(d5)2+r2(dy") 242 (dy)?,  Fi=fy3=—,fa=fy=—. (7.19)
i=1
The NSNS three-form flux is replaced by a non-zero g with components g = —g'3 = py®
and % = - = p)° resulting in a non-vanishing Q-flux. The RR sector is given by

Faus.6=Fao2s.6=T, Fap2p54=m, (7.20)

together with a non-zero Romans mass m = f4. There are 06 planes in the directions
(1,3,5),(1,4,6), (2,4,5) and (2,3, 6). Importantly, similar to the 3D case, the resulting
scalar potential is only well defined after moving to the non-geometric S-frame.

Novel features and interesting open questions

Let us highlight some important differences from the 3D toy example and the new

aspects to be taken into account for the SDC.

* Inthe presence of fluxes and sources we do not only have to check the supergravity
equations of motion but also the Bianchi identities leading to non-trivial tadpole
cancellation conditions. These are highly restrictive and it has been also pointed
out in [382] that therefore (on-shell) flux variations are generically possible only
in special circumstances, when certain flux quanta are not entering the tadpole
conditions. For the T° vacuum above, the tadpole conditions reads

0=dF, =H - j°, (7.21)

where j° is the source contribution of the O6-planes, cf. [469]. This does not
involve the Fy-flux. Furthermore, the theory allows for a full family of vacua
labelled by the flux quantum f4, which is not constraint by the tadpole condition.
On the other hand, H explicitly enters (7.21) and can not be varied arbitrarily
on-shell. Hence, the problematic limit of the three torus, sending k, r; — co while

keeping k/ r% fixed, is not allowed, at least not in an on-shell manner.

* There remains the question of the compatibility of the r; — oo limits, for which we
encountered a lack of conserved momentum modes. In the presence of RR-fluxes

and sources, we cannot perform a simple mode expansion like before, so it is not
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7.3. 6D T-duality chain and locally non-geometric backgrounds

clear if and in which sense the argument applies in this case. Furthermore, there

might be different towers.

* Despite giving rise to (supersymmetric) SUGRA solutions, the validity of the
above backgrounds is all but established. First, there is the issue of smeared
sources and the associated backreaction and control issues when trying to localise
them [471,479]. Furthermore, these are prime examples of backgrounds with scale
separation, which is in conflict with the strong ADC, cf. Section 5.2.3 and [126].

7.3.2. Towards locally non-geometric backgrounds and the SDC?

In the (3D) T-duality chain we have ignored the last step in (7.7), leading to the so
called R-flux background. In contrast to the Q-flux background, this is a space that
can not even locally be described by Riemannian geometry, therefore called locally non-
geometric. As mentioned in Chapter 3, these spaces can be better understood from a
doubled perspective as such spaces also depend on the dual winding coordinates.

Without going into any details, starting from the 3D Q-flux background and T-
dualising along the y? direction amounts to viewing y® the dual coordinate and §3 the
geometric while also inverting the radius, such that the backgrounds reads

ds? = r2(dy)? +rp2(d55 +13%(d53)?. B=—ky A da,

) (7.22)
¢y = ¢3 —log(rirars) .

The dependence on the dual coordinate X3 = y? in B in turn leads to a non-vanishing
R-flux”
R =35118%3) = k. (7.23)

This dependence on the dual winding coordinate renders a standard physical interop-
eration of the background quite obscure. From a DFT perspective, there is no preferred
direction and one could argue that from a stringy point of view one can just as well
work in terms of both standard — as well as winding — coordinates (or a mixture of
both). However then one should ask about the effective theory of such a configuration
after compactification. A naive approach is to indeed treat the coordinate X5 = y® just
like the other physical coordinates and use our reduction formula for non-geometric
backgrounds, now suitably adjusted for the inclusion of the R-flux. In the present case
this only modifies the expression for the scalar potential, which now reads

V(p®) = —P-leds / d35e 29> {R(fz) - f—zRiijifk +4(ag5y)2+...}. (7.24)

int

"More precisely we have Ri/k = 3pli Bl k] cf. [242,252] for details and notation.

131



Chapter 7. Non-geometric backgrounds and the SDC

Here, dots again denote contractions of 3,0, R, ... that are zero in the present case.
Plugging in the above expressions, we obtain

_ 4
Yapdg 0" = ) r?10ri] + —— 106d . (7.25)

i

and

—_ 4 . 1 . PN k
V(ri,(pd):—fv—le% / d35e~2%> (——R,-ij”k+46i¢46‘¢4 = ead2 . (7.26)

12
Hence, in treating the winding coordinates as physical for the reduction, we obtain an
effective action that is equivalent to the other backgrounds in the duality chain.

Remarks

¢ Flux backgrounds like the ones above, at the level of string theory, can be obtained
from intersecting branes, cf. [473]. Non-geometric flux configurations from near-

horizon limits of O- and R-branes and their exotic features were discussed in [481].

* We mentioned before that R-flux spaces are closely related to asymmetric orbifold,
which can provide a stringy realisation of these effective theories. Due to their lack
of (geometric) target-space description, the metric on field space can in general
not be obtained in the standard way by reading off from the kinetic term but from
a more formal analysis of the underlying (complex) geometry. See [482] for a first
investigation of this kind on the special example of a asymmetric freely acting
orbifold.

e Asymmetric orbifolds, at the level of the effective supergravity, are known to
give rise to generalised Scherk-Schwarz reductions. Swampland-like criteria on
these Scherk-Schwarz reductions and their potential uplift to stringy orbifold
constructions were discussed in [483]

* An alternative way to tackle non-geometric spaces and their associated fluxes is
the Swampland Tadpole Conjecture [484], which also allows for a discussion of
non-geometric backgrounds [485](see also [486]), although most of the existing
work has been done for on different notions of non-geometry than the ones

discussed here, like Gepner models.

* A further interesting testing ground are Type IIB 7%/Z, orientifolds and their
T-duals [262]. These backgrounds have been already partially investigated in the
context of the SDC in [487] (see also [488]).
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Generalised dualities, deformations and
the Swampland

It has become clear from the previous chapters that sting dualities are powerful
tools for exploring the different infinite-distance points on field space and are in fact
tied to the very heart of the Distance Conjecture. When working with curved spaces or
fluxes, there is, however, an even bigger family of transformations that can be used to
relate points in field space. In the present section, we will consider some of these more
general relations that all fall under the term of generalised T-dualities and were briefly
introduced in Section 2.2.4. We will illustrate the novel aspects with the example of the
non-Abelian T-dual of §°. This example will be particularly interesting as it also connects
to the discussion of non-geometric backgrounds of the previous chapter. Furthermore,
we will provide an outlook on how to include the currently most general formulation
of T-duality, Poisson-Lie T-duality, in the Swampland program, and particularly the
SDC. The discussion will be somewhat heuristic and should be taken as a pointer
towards possible interesting directions for future investigations. Lastly, we will discussa
particular deformation of the round S, which will introduce an interesting playground
to check the behaviour of the potential and towers for a direction in field space that

does not correspond to a naive volume rescaling but deformation of the geometry.
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8.1. Non-abelian T-dual of S

As a first step in investigating the role of generalised T-dualities within the Swampland
program, we come back to our favourite example of the three-spheres. However,
in contrast to before, we will not apply T-duality along some (abelian) isometry but
employ non-Abelian T-duality; see Chapter 2. In order to do so, we consider the three-
sphere as the non-Abelian Lie group SU(2) and T-dualise with respect to the full SU(2)
rather than the Hopf-fibre. As explained in Section 2.2.4, there are different ways to
construct non-Abelian T-duals for some given target space geometry. We will focus on
the construction through Poisson-Lie T-duality, since this procedure will allow us to
circumvent the problem of non-compact Lagrange multipliers and related issues that
would arise in the standard approach to NATD, cf. Section 2.2.4. However, in the given
example this comes at a price. The resulting space will turn out to be non-geometric,
and it will again be crucial to work in the S-frame (cf. Chapter 3) in order to get a
consistent picture under (generalised) T-duality for the SDC.

8.1.1. Construction of the non-Abelian dual

In contrast to earlier chapters, we start from the geometry of S® without any flux. For
reasons that will become clear soon, we denote the non-Abelian T-dual of $° by 73. The
construction of the NATD via Poisson-Lie T-duality is via the associated Drinfel’d
double, cf. Section 2.2.4. In particular for SU(2) the Drinfel’d double of interest is given
by

D=SU(2)=U(1)3, (8.1)

and the associated Poisson bivectors read

(0 6
Mm=0, TM=(-6 0 ¢). (8.2)
y —¢ 0

In order to realise the standard geometry of S° we choose Ey = r?13 such that the
backgrounds read

E-= (Eo—l + H)_l = 121, (8.3)

., v ¢? gy -1 0p+riy
E = (Eo+ﬁ) =—— |y +r?0 4y’ oy -riy|, (8.4)
r2X
06 — 1>y Oy +r¥¢p 1t +6?

with X = r* + ¢? +y2 + 6% and {¢, ¢, 6} € [0, 2x] the angular variables parametrising the
three independent one-cycles of a topological three torus 7°. The matrices are given in
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the basis of Maurer-Cartan forms L, . Splitting E, E into symmetric and antisymmetric
parts in order to obtain the metric G and B-field we obtain (now in coordinate basis)

1 0 —cos(n)
G=r? 0 1 0 , B=0, (8.5)
—cos(n) O 1
g [P ey 0¢ 1[0 -0 v
G:Z—( oy vy Gy ) B:—(e 0 —¢). (8.6)
L T WA I Xy 6 0

The metric for G is given in the basis {1, &1, &2} with ranges as in (2.17) and, therefore, is
simply the standard round metric on $°. In order to establish the full duality, we need
to add a dilaton of the form [198]

O =y + %llog(G) = glog(r) , (8.7)

where G is to be understood in the algebra basis. The dual dilaton then reads
®= 11og(6;') . (8.8)
4

8.1.2. Non-geometry of NATD*" §3

The dual background (8.6) is parametrised by three angular coordinates and topolog-
ically describes a three-torus. However, it is clear that the metric and B-field do not
respect the periodicity of the angular coordinates which are clearly spoilt by the factor
1/X and are therefore ill-defined. As was already explained, this is a strong hint of
non-geometry. Indeed, the geometry can be thought of as a T-fold [260]. This is clear
when looking at the monodromy of H, revealed under the shift ¢’ — ¢ +2n

7—{1](¢+2ﬂ’w+2ﬂ’6+2ﬂ):MIL?{LK(gb’waH)MK’ (89)
with monodromy matrix
0 2 -2r
MK = (13 P) , P=|-2r 0 2n]|. (8.10)
2 2m 0

Comparing with the form of a general O(d, d) transformation, see for example [134],
we see that this can not be interpreted as a coordinate transformation or gauge trans-
formation of the Kalb-Ramond two-form B. The geometry, when viewed globally, is
glued using T-duality transformations rather than standard gauge or diffeomorphism

ISince the dual space is just U(1)? this basis and the standard coordinates basis coincide.
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transformations. The background should hence be viewed as a non-geometric T-fold
and so the appropriate framework to further analyse the geometry in view of the SDC
is the B-frame. It will again be crucial for the consistency under generalised dualities
to work within the g-frame and not with the standard NSNS quantities G, B.

8.1.3. NATDPL in S-frame

We adopt the notation of the previous sections and denote the internal manifold metric
by h and the Kalb-Ramond field B. The dual geometry is denoted by g, B. Switching to
the non-geometric frame, we denote the dual simply by / (and not Z) and the bivector
by B. Then the background in the S-frame has the particularly simple form

0 6 -y
h=R7213, pB=[-6 0 ¢ |. (8.11)
)
The resulting background in this frame drastically simplified and more importantly is
perfectly well-defined and respects the periodicity of the coordinates. Furthermore in
this frame it seems reasonable to view the geometry as a three-torus with radius 7 = 1/r
and, therefore, denote it by 7°. Plugging g into the definition of the Q-flux gives

02 =1, (8.12)

such that the space is supported by one unit of Q-flux. Lastly, the dilaton in the g-frame
is (cf. Chapter 3)

.1 .3
® = ZIn(h) = ~ZIn(r). (8.13)

Remark

* Working in the framework of Poisson-Lie T-duality has the advantage of obtaining
anon-Abelian T-dual of S° that is again compact. In contrast, the standard NATD
geometry obtained by a Lagrange multiplier procedure gives a non-compact ge-
ometry, which in turn is hard to make sense of in view of the SDC but also for
holography. However, in [489] a holographic completion of the NATD of S* was
constructed, starting from a AdS3xS3xT* background. Longing for a well-defined
dual CFT, the problematic non-compact direction is segmented into an infinite
series of intervals, which then in turn are periodically identified. Although the
resulting geometry is effectively compact, it is not obvious how to compare or even
match these two forms of the NATD. A first step to connect the two approaches
was taken by the author and collaborators in [67], Appendix D, and we refer to
the original publication for details.
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8.1.4. Scalar potential and metric on field space for NATD'T

After having obtained the relevant internal geometries, we can now move on to the
discussion in view of the SDC. For this we first calculate the metric and potential on
field space and confirm that indeed the expressions stay invariant. For the NATD:
it will be crucial to work with the non-geometric formulation, as otherwise we do not
obtain perfect agreement of the scalar potential.

Three-sphere $>

Since our internal manifold before dualisation is simply the standard S without any
H-flux, the metric and potential read

3 ¢y

3 dogq
Y= V(na) = =5 et (814)

NATDPL of §3

Having derived the general reduction formula also for the non-geometric setting in
the previous chapter it is now easy to obtain the metric and potential on field space.
Plugging the calculated functions into (7.3) we obtain the following result

3
Yrr = r_z s
(8.15)
51 2% arl2 26 1 2 1. i i 3 4eg
V(r’ ¢d) = _(V ed-2 /dy\/Ze ¢V{—ZQ - Ehiijl]Qlk } = —2r2ed—2 .

Note that in this example there is an additional term as opposed to the standard Q?
term. In particular, it can be checked that this background does not meet the simplifying
assumption ¥"@,,(-) = 0, cf. Chapter 3.

More importantly, we see that the scalar potential agrees with that of the NATD'L
$8. This would have failed if we had not moved to the B-supergravity formulation.
Indeed, there would have been a total derivative term that spoils the equivalence. A
detailed discussion of this boundary term can be found in the original publication [67],
Appendix E. The scalar potential also follows the general scaling behaviour of [240]
mentioned in Section 7.1.1 both for S® where the contribution comes from geometric
flux, as well as for the NATDPF where the non-geometric Q-flux sources the potential.

8.1.5. Zero modes, mass spectrum and the SDC

We have already examined the spectrum of the three-sphere in great detail in three
previous chapters. Therefore, we mainly focus on an analysis of the NATD geometry
and the mapping under duality.
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Here, the framework of Poisson-Lie T-duality is not only useful for obtaining a
compact non-Abelian T-dual that fits within the expectations of a duality within the SDC
but also provides a generalised rule [490] to track momentum and winding exchange

within these backgrounds, cf. Appendix B and the remark in the next section.

Zero modes

Using the generalised momentum and winding exchange rule reviewed in Appendix B
the dualisation with respect to SU(2) gives

$3=SUQ2):w=0and neZ® e SUQR)ampr : W € Z* and n=0. (8.16)

While there cannot be nontrivial winding on the three-sphere, there are three copies of
infinite towers of quantised momentum modes. Applying non-Abelian T-duality with
respect to the full SU(2), the dual geometry is topologically a three torus and therefore
has three non-contractible cycles which can give rise to three infinite towers of winding
states. More surprisingly, the geometry does not feature any quantised momentum
modes at all. This is not only in perfect agreement with the expectations from T-duality
of exchanging winding and momentum modes, but can also be understood directly
from the geometry. While S° has non-Abelian isometries, the dual geometry has no

isometries left and, therefore, no apparent conserved momentum states.

Mass spectrum

Having discussed the S in Chapter 6 we directly turn to the NATDFL geometry. Since
the space should be viewed as a non-Abelian T-fold we face the same question as in the
previous chapter. The background in the standard frame is quite involved and even ill-
defined. Atthe same time the physical meaning of computing the mass spectrum in the
non-geometric frame is not completely clear. The equations of motion in the § frame are
very similar to the standard torus with H-flux and therefore we expect the momentum
states to be non-conserved and scaling with #~! and the winding states with 7. With
this we indeed conclude that now for # — 0 (r — o) the winding states become light
and provide the infinite tower of states, while the non-conserved momentum modes
correspond to the missing tower of winding modes on S°. The former problem of
finding the (Laplacian) spectrum of the NATD'L, i.e. the masses of the KK modes, has
been explored in [491]. This was done in the context of the holographic background
AdS3 x S% x T*, however within the standard approach to non-Abelian T-duality. It was
found that at least for large radius r — oo the spectrum can be matched to the one of
the S®. Hence at least in this regime the spectrum is consistent under NATD'™.
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Background Potential V Obstructed modes Frame
$3, [H] =0 —% absence of winding NSNS
NATD™ of §3, [0 =1] —% = -5 | non-cons. momentum B

Table 8.1.: Relevant data of the S and its non-Abelian T-dual. The last column highlights
the frame in which the geometry is well-defined. The natural radius 7 of the dual
geometry is related to the radius r of the sphere via 7 = 1/r.

The relevant properties of S* and NATD'™ for the SDC are summarised in Table 8.1.
The three-sphere and its NATD fit nicely into the expectations set by the SDC. However,
only once the scalar potential and the amendment to the SDC presented in Section 6.1
are taken into account. Indeed, also for the NATDL there is a lack of tower of states>.

8.2. Towards genuine Poisson-Lie T-duality

Motivated by the previous section, it is natural to ask how generalised dualities, in
particular proper Poisson-Lie T-duality, fit into this context of the SDC. However, in
contrast to the special case of taking the Drinfel’d double to be d = G x U(1)4™¢ and
hence NATD via PL T-duality, a generic Drinfel’d double associated to G, is not compact
and, apart from special cases, the duality maps solutions of the standard supergravity
equations of motion to solutions of generalised SUGRA [492,493], which even lack a
description in terms of a d-dimensional action functional [198].

8.2.1. Invariance of metric and potential under PL T-duality

For the reasons mentioned above, in the following we restrict the discussion to the case
of NATDP! with G compact and G = U(1)4m(S),

Metric on field space

Specialising to NATD'™, we can work with the standard supergravity formulation and
use the formula we obtained in Section 6.2.1. Recall that it was given in terms of the

generalised metric as

Yab = %tr(ﬂ—laaww—lam) . (8.17)

Similarly to abelian T-duality, Poisson-Lie T-duality can be understood [494] asa O(d, d)
transformation at the DFT level. However, there is the crucial difference that the

“However, note that we are again considering a toy example, which without the addition of further
fluxes, etc. does not define a proper supergravity or string vacuum
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generalised vielbein and hence, also the O(d, d) elements are not constant anymore but
depend on the left-invariant forms or coordinates of the space. This is not a problem
since the derivative in (8.17) is with respect to the scalar fields or the external coordinates
via the chain rule respectively. Therefore the only problematic contributions which
would spoil an invariance can arise if the transformation matrix depends on the scalar
tields. However, the way the duality is defined we argue that this does not happen.
For this first note that the duality is defined at the level of the underlying group
manifold. Moduli or scalar fields arise however at the level of the geometry. They will
therefore enter through the constant element Ey. For example, consider the sphere $°.
The canonical bi-invariant metric is inherited from the Killing form of the underlying
algebra together with the left invariant forms. In particular, up to normalisation one
can write the metric in a local coordinate basis as h;; = hape®ie’; = (T, Tp)e% e” ; with
(+,+) the ad-invariant inner product on the algebra. The e“; are the components of
the left-invariant vector fields obtained from the left invariant forms via o = e%;T,dx".
For SU(2) we have (T,,T,) = 4Tr{T,T};} and it is clear that the notion of radius r of
the geometric sphere simply corresponds to some choice of general normalisation «
of the inner product. Now consider some deformation of the sphere, for example the
so-called squashed sphere with metric g;; = Aoy + 2205 + 2303, This corresponds to
an anisotropic inner product (7,,Tp) = kqp. From the definition of the PL symmetric
background it is however clear that the radius r or the anisotropic deformation x4
enter into the definition of Ey. A similar argument holds for B, the parameters of which
also enter into Ey. Therefore Ej is the only quantity carrying a dependence on possible
moduli ¢ and we can again use the O(d, d) invariance to show that the metric on field
space is invariant under NATD™ and hence also standard non-Abelian T-duality. This

explains why the metric on field space stayed invariant in the previous example.

Potential on field space

In the abelian case the invariance of the potential under T-duality is immediate when
moving to DFT. For the more general case at hand, this does not carry over directly. As
mentioned previously, the O(d, d) transformation that implements the PL T-duality at
the level of the DFT action is field dependent. Therefore, it is all but obvious that the
action is invariant under this transformation. However, the potential, after going to the
appropriate frame, remained invariant under non-Abelian T-duality. Together with the
example below, this hints towards such an invariance, but a formal proof is missing®.

We leave this question as well as the more general setting for future research.

3In principal one can simply write out the model directly at the level of the EFT and compare it with
the dual model. However, this is very tedious and an alternative approach seems much more inviting.
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Remark

¢ The exchange of winding and momentum states in PL-symmetric models can
be elegantly described [490] in terms of the theory on the double D, see also
Appendix B. In particular, if the double is given as D = G »« G the exchange

simplifies to

winding in D
7T1(D =G> 5)
m(G) @ (m(G)/m(G)) m(G) @ (m(G)/m(G))
—_— N —_—— - 7

winding in G inding in G
. winding in G ~
gen. momentum in G gen. momentum in G

For the example of the NATD of S° treated in the previous paragraphs, the
Drinfel’d double is simply D = SU(2) < U(1)? such that we obtain the winding and

momentum exchange summarised in equation (8.16).

8.3. Dualities and deformations

T-dualisable theories need to satisfy very specific conditions and are therefore often
highly symmetric. While for generalised T-duality on can greatly loosen the necessary
requirements, the underlying (algebraic) structure is nevertheless very rich. Hence, it
is not surprising that many of these theories also allow for well-behaved deformations.
These generically break even more of the remaining symmetries while keeping the
theory under computational control. For us, these deformations are particularly inter-
esting, since they offer a convenient way to introduce new scalar fields corresponding
to these geometric deformations so that we can study their implications for the SDC. In
particular, we can further examine our proposed amendment to the SDC in the presence
of a potential, which will be the main purpose of this section.

8.3.1. The 5-deformation of $3 and its NATD'L

In the previous section, we have looked at the NATD'T of §3, which, on top, turned out to
be a non-geometric space with Q-flux. The example was therefore not only interesting
for studying the role of generalised T-duality within the Swampland program but
also the interplay with non-geometry. In the following we will see that the pair of
backgrounds even allows for certain deformation that preserved the duality and at the
same time provides us with an additional interesting deformation that we can in turn

view as an additional scalar field of our effective theory after reduction.
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Background expressions
Without going into too many details here, the n-deformation of the SU(2) background

corresponds to choosing the constant background matrix Ey as

Eo= (r—213 - fﬂz)_l : (8.18)

with R the associated r-matrix of the model (cf. [136]) and 7 the deformation parameter.
Plugging this into the formulas for E and E with TI, I as before and separating the

metric and Kalb-Ramond parts, we obtain (in the coordinate frame)

rinsi
» [T 0 0 0 EmE o
G= T 0 cos(§)2+% cos(&)|, B= _% 0 o], (819)
0 cos({) 1 0 0 0

while for G and B we again find ill-defined expressions that suffer from non-trivial

monodromy. However, in the S-frame, we obtain the very simple expressions

r4
rl_2 + 1’2772 0 0 0 1+r4n)72 +60 —y
G = 0 L+ 72 cl) , B= _1::_477772_9 0 6 |- (8.20)
0 0 = 7 - 0

Furthermore, note that dB = 0 and therefore B is pure gauge4.

Metric and scalar potential

We have already argued on general grounds that the metric and potential on field space
are indeed invariant under NATD'™. One can easily verify this for the present example

and obtain in either case

4

_ 1

Yardp0¢® =3r72(0r [+ St 100l + —— 10¢al®
8.21
6+ 4_r4772 - 2r8n4 494 ( )
V(I", n, ¢d) == > ed-2
.
After canonical normalisation the metric reads
1 4

Yapde“og” = 0pP + 5 1onf + = 10¢al . (8.22)

with p = \/glog(r). From this we see that, as usual, there are two infinite-distance

points for the radius, associated with » — co and r — 0. However, for the deformation

4Since H2(S3,R) = 0 any closed form on $3 is exact and therefore pure gauge.
y pure gaug
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Virgsm V(r;no)

aus |
(a) (b)

Figure 8.1.: Plotted is the potential of the deformed three-sphere with radius r and
deformation parameter 5. The left figure (a) shows the potential as a function of n with
r = ro fixed while the right figure (b) depicts the potential as a function of the radius r
with fixed n = .

parameter 77, we see that only  — oo leads to an infinite distance, while  — 0 is at
finite distance. This was actually to be expected, considering the physical meaning of
the deformation. The limit 7 — 0 corresponds to a vanishing deformation, and hence
in this limit we go back to the unperformed sphere. In contrast,  — oo corresponds to
a “infinitely” deformed sphere, in which the sphere gets squashed more and more until
it formally becomes a 2 dimensional disk. While in the former limit we do not expect
any breakdown of the EFT and therefore no towers, the latter clearly corresponds to a
drastic limit in which, at least naively, we expect a tower of states.

Comparing (8.21) with the expression for the undeformed sphere V = —6r‘2e%,
we see that the behaviour of the potential is drastically modified. Although for n =0,
the potential vanished for a large radius, we now encounter a divergence for any 7 # 0.
Furthermore, since we are dealing with a higher-dimensional field space, we can also
take the limits of small and large . While for  — 0 we simply go back to the potential
of the standard undeformed sphere, for large n the potential again diverges. This
behaviour is illustrated in Figure 8.1.

Distance Conjecture

The picture we obtain in view of the SDC fits very nicely with our proposed amendment
to the SDC. Introducing the deformation parameter 7 leads to a new direction in scalar
tield space. The limit 7 — 0, which corresponds to the limit of the round $3, lies — for
constant and finite r —at finite distance and comes with a finite scalar potential. Indeed,
we do not expect any breakdown of the associated EFT in this limit and therefore also no
tower of light states. In contrast, 7 — co corresponds to an infinite-distance point. Since
n measures the deformation of the sphere, this corresponds to a infinitely squashed
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sphere that effectively becomes a disk. We do not have any tower to our disposal that
could arise in this limit°. This problematic behaviour is resolved by the divergence of
the associated scalar potential, signalling the absence of the tower of states.

The interpretation for the radius is somewhat more involved. For any 1 # 0, the
deformation breaks at least some of the isometries of the sphere and hence naively
due to the breakdown of momentum conservation one might expect the absence of a
tower of states. Note that the deformation of the geometry is purely along the S? base.
Indeed, we can write

P (d{z + sin(g)2dgf) N (cos()dé; +dén)? (8.23)

1+r4n2 4 4

from which it is apparent that the Hopf fibre does not get deformed. Hence in fact
this suggests that we still have a tower of KK modes associated with the circle fibre.
In fact, this highlights an aspect that we have already stressed before. While for
consistent backgrounds with missing towers, we argued that there emerges a scalar
potential signalling the absence of the tower, the converse seems not necessarily true.
In particular, in general it is not clear if a diverging scalar potential in some direction
necessarily implies the absence of a tower of states in that very direction or some other

kind of inconsistency®. In any case the behaviour is consistent with the SDC.

SEven if winding modes could potentially serve as towers in such a limit, which is not immediately
clear, they are anyway absent for $°.

®Note however the possible connection to Dynamical Cobordism and the Cobordism Distance Con-
jecture mentioned in the remark in Section 6.1.4.
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CHAPTER 9 .

String theory field space and
the generalised Ricci Flow Conjecture

The Swampland Distance Conjecture was originally formulated as a statement on
moduli space. Starting from the lift of the conjecture to the space of metrics in terms
of the Generalised Distance Conjecture [363] the authors of [381] were led to the Ricci
Flow Conjecture. Inspired by the fact that Ricci flow determines an evolution of the
spacetime metric and therefore effectively varies the underlying geometry we propose
an alternative way to explore the scalar field space of string compactifications by ap-
plying this logic to the internal geometry. We study how by evolving the internal
geometry under the flow, infinite-distance points in field space can be reached. Aiming
to take into account also fluxes, we are naturally lead to consider generalised Ricci flow.
This allows us to incorporate fluxes in a mathematically well-defined and easy manner.
Hence by lifting the discussion from scalar field space back to the underlying geometry
we do not have to face the potential directly. Instead, we obtain a very intuitive geo-
metric evolution dictated by the flow and can measure the length along the paths using
the associated entropy functional. This geometric path is then translated into a path
on scalar field space. After defining an appropriate measure of length for generalised
Ricci flow, we revisit the example of the three-sphere with H-flux and obtain a different
viewpoint of the problem of the potential. The resulting picture is in perfect agreement
with the conclusion drawn before, provided that we slightly extend the original Ricci
Flow Conjecture in order to also take into account the flux contributions.
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Chapter 9. String theory field space and the generalised Ricci Flow Conjecture

9.1. Geometric flows on string theory field space

Consider the low-energy effective theory of strings moving on a curved D-dimensional
background. As explained in Chapter 1, restricting to the bosonic NSNS sector and
allowing for non-trivial three-form flux H and dilaton ¢, the theory is described by the

string effective action

1 1
SP = — [ dPxV-Ge ™ (R(G) — Z|H|? +4|VD?] . (9.1)

KD Mp 2
Similarly to previous chapters, we assume that the total space Mp is the direct product
Mp = My X K, of some external d-dimensional space M; and a compact internal
manifold K, such that the metric can be split1 as G = ¢ ® g. Assuming that also H

respects this product structure, the action is factorised as

1 e R ~
¥ = [ aP"age 2| (Re@) +4V4P)
Kp Jmp (9.2)

+ (Rte) - J1rP #4190 |

where henceforth H is assumed to have legs only in the internal space and we have split
the dilaton as ® = ¢ + ¢ with ¢ depending at most on the external coordinates.
Proceeding with the usual compactification procedure discussed in the previous
chapters, the second (internal) part would give rise to the metric and potential on the
scalar field space for the resulting d-dimensional effective theory. This was discussed
in detail in Sections 1.2 and 6. Here we want to take a different route and work directly
with the internal part of the action. In particular, we isolate the action functional that

captures the internal part of the geometry

S = /d"x Vge ¢ (R(g) - %|H|2+4|V¢|2 . (9.3)
K

Upon supplementing S with the generalised unit volume constraint (4.4) this is nothing
else than the generating functional of generalised Ricci flow we encountered in Sec-

tion 4.1.4, and this will be the basis for the considerations in the rest of this chapter.

INote, that in contrast to pervious chapters we denote the internal metric with g and not 4 in order to
match the standard notation in the geometric flow literature; coordinates are denoted by x. There should
be no confusion, since most of our discussion will focus solely on the internal geometry.
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9.1.1. Generalised Ricci flow and the space of generalised metrics

Recall that upon identifying f = 2¢ and supplementing the action (9.3) with the gener-

alised unit volume constraint

/ e fdv, =1, (9.4)
K

defines a gradient flow with flow equations [293,295]

0 1
agij = —ZRij + EHIZJ - ZViij,
0

o 1

— f=-R+-|HP-Af.

L f =R+ glHP - Af

Here and in the following, we use the notation dV, = d"x+/g. The right-hand side of
the flow equations for g and B is then nothing more than the Weyl anomaly coefficients
B8/B of the associated NLSM, i.e. dsg = 2%,9,B = —238. The interpretation of f, as
explained in Section 4.1.4, is less straightforward and we will return to this point at
several instances later. Choosing a suitable diffeomorphism, f can be decoupled from
the other flow equations; see Section 4.1.4, in particular Eq. (4.29).

The evolution of a given background {g, B, f} under generalised Ricci flow defines
a one-parameter family of metrics, Kalb-Ramond fields, and dilaton fields. In fact, in
Section 4.1.4 we explained how in the case of the metric this can be viewed as defining
a path in the (abstract) space M(M) of Riemannian metrics on the manifold M. This
directly carries over to the combined system {g, B, f} evolving under generalised Ricci
flow, where the path is now in the space of generalised Riemannian metrics on M,
denoted GM(M) and the configuration space of the dilaton M (M)

R — GM(M) x Ms(M) = M(M) x Q2(M) x Mp(M) : s+ (G(5). £(5)).  (9.6)

Every point along this trajectory corresponds to a generalised metric G(g, B) (cf. (4.32))
or a point in GM together with a point in M or dilaton configuration, respectively.
Hence, this is the natural generalisation of the geometric scenario described in Sec-
tion 4.1.2. As already mentioned several times, there is a subtle difference between
the string-theoretic dilaton and the scalar field f. We ignore this for the moment and
return to an in-depth discussion in Sections 9.2.1 and 9.4. It turns out [495] that the
appropriate metric on GM (M) is still given by the DeWitt metric G*¥*#, which was
introduced in (4.12). Therefore, distances in GM (M) are measured according to the
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@:@Z@

Figure 9.1.: Ricci flow evolves and modifies the (internal) geometry and hence also
the associated parameters, which after compactification appear as moduli or, more
general, scalar fields. Instead of directly defining a path on field space in the presence
of a potential — sourced by the internal geometry and fluxes — we follow the path that
is descending from the geometric evolution dictated by (generalised) Ricci flow.

length formula (c a constant)

dgua dgvg dBua deﬁ
Liy)=c [ d dr A et s
» C/y S\/-/M e Gy ( ds ds | ds ds

=c/7ds\//M dPxvg (19sgll3 + 195 BII3) - 9.7)

Geometric flows select paths in the space of (generalised) metrics according to an

underlying geometric principle that is formulated in terms of a differential equation.
In the case of generalised Ricci flow, formulated as a gradient flow of the Perelman
functional, this underlying principle descends directly from the functional S and the
additional constraint. Therefore, a generalised Ricci flow enables us to probe the space
of generalised metrics. For true moduli spaces, i.e. in the absence of a potential, there is
a distinguished path along which the distance for the SDC should be measured, namely
the geodesics. In the presence of a potential, it is no longer obvious that the paths should
be measured along geodesics; see discussion in Section (5.3). In the following, we will
argue that in these situations there are alternative guiding principles that can select a
meaningful path taking into account the effect of the non-trivial potential. In particular,
we will work with Ricci flow in order to make progress in the exploration of scalar field
spaces with potentials arising from compactifications of higher-dimensional theories.
Hereby, the main observation is that, utilising geometric flows, there is no need to work
directly on scalar field space. Instead, we can lift the discussion to a purely geometric
picture. Working directly at the level of the geometry and fluxes, the (generalised)
Ricci flow evolves these quantities and, for some given initial data, defines a unique
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path in the space of generalised metrics. Instead of directly taking into account the
potential, the flow behaviour is therefore dictated by exactly the curvature and flux of
the internal manifold which upon the dimensional reduction gives rise to the scalar
potential. While the geometry is gradually modified by the flow, the associated scalar
field also changes accordingly and sweeps out a path in field space. Therefore, the
flow defines a trajectory in the space of generalised metric that is mirrored by a path
in scalar field space; this is visualised in Figure 9.1. While the flow does not describe
proper string backgrounds along the flow, once hitting a fixed point, the background
has vanishing 3-functions, and therefore we reach a valid string vacuum. In particular,
this offers a precise way in which we can describe off-shell trajectories leading to on-
shell configurations at the end of the flow. The off-shell paths follow a very natural

functional in this setting, namely the string effective action S, subject to a constraint.

9.2. Measures of distance along the flow

The procedure described in the previous paragraph can only work if we can construct
a distance measure along the flow that mirrors the distance on scalar field space in a
meaningful way. Hence, it is crucial to have a well-defined notion of distance?, and the
purpose of the following section is to construct such a measure. In particular, we will
generalise the existing proposals for a distance along Ricci flow to take into account
the presence of the flux. Furthermore, we argue that there is a fundamental definition
of distance whenever we have a generating functional at hand which we denote A;..
This new definition reduces to the known simple form discussed in Section 5.2.4, i.e.
Ap = log(F) in the fluxless case, but also nicely connects to the generalised DeWitt or
Candelas-de la Ossa metric [67,464] in the presence of H-flux, which was discussed in
Chapter 6. This will establish the fact that, at least for gradient flows, we are measuring
the distance according to the natural metric on the space of generalised metrics. The
role of the flow therefore is mainly in singling out the natural trajectories along which
to measure the distance for the SDC or RFC, respectively.

A natural (but not fully satisfactory) guess

Recall from Section 4.1.1 that Ricci flow can be seen as the gradient flow of Perel-
man’s functional ¥ (g, f), and hence, due to its monotonicity, the functional offers a
very natural measure of length along the flow. In particular, guided by the analogy be-
tween Perelman’s functional and the Gibbons-Hawking entropy, a distance was defined

2Whether this is really a genuine distance in the mathematical sense is discussed in Chapter 11.
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in [381] through

T'(g,f)lsf) ©.8)

F (& Pls:

The natural choice for generalised Ricci flow is therefore to simply replace ¥ (g, f) by

Ag= log(

¥ (g,H, f). However, this approach has some drawbacks. Apart from some special
cases, it is not clear how to connect this notion of distance to the standard one in terms
of the DeWitt metric. The purpose of the following section is to overcome this issue by
taking inspiration from the well-known notion of a line integral along a vector field.

9.2.1. A universal definition of length for geometric flows

We start by recalling the basic notion of a line integral. Take a vector field F(x) and
v a curve in K a (compact) n-dimensional manifold. The line integral along y is then
defined as

I, = /7 F(r(s)) - #(s) ds, (9.9)

where r(s) is a parametrisation of the curve y. For geometric flows, in particular
generalised Ricci flow, there is a natural candidate for the vector field. Starting from #
the generating functional or Perelman functional we define the vector field F through
the gradient® of 7, i.e.

F=VF= /K dvg e/ ((ﬁg)ffagij + (ﬁB)iJaBi}.) . (9.10)

The coefficients 32/ are then nothing else than the flow equations or Weyl anomaly

coefficients of generalised Ricci flow given in Eq. (9.5); see also (4.24). Taking inspiration

from the line integral (9.9), we define the length along the flow as*

AL:/ 1 \/|F(r(s))-i‘(s)|ds:\/;TK/WS(}'P/st, (9.11)

2 (VK

where Vi = fK dVy e/ and 1(s) = (gij(5), Bij(s))". The square root was introduced
in order to connect to the generalised DeWitt metric discussed in Section 6.2 as will

T
3The gradient is taken with respect to the basis (%, a%) .
iy LY

“We can pull the volume factor through the integral since it is constant in time by means of the constraint
of the generalised Perelman functional. When applying this formula to more general functionals without
constraint, it is therefore important to distinguish between the two expressions. Furthermore, note that
we introduced an additional factor of 1/v2 compared to [68] that is purely conventional but will result in
an exact match between the distance measured with Ay, and (5.2) with (6.31).
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become clear in a moment. In particula, we can write A;, as

1/2

/ dVge_f((Bg)ijasgij + (BB)ijasBij)
K

1/2

/dvge_ 1 ll Jmavglmasglj %gilgjmasBlmasBij)
K

dvge (1105l + 1|05 BII
[ avee-t {10t + 10,51

1/2
, (9.12)

where in the second line we used the definition of the generalised Ricci flow (9.5).
We clearly recognise the last line as the generalised DeWitt or Candelas-de la Ossa
metric (6.35) of Section 6, evaluated along a path y selected by the flow. We again
observe that, generically, flux contributions enter the notion of distance in a nontrivial
way and must not be ignored in general [67,382,447,458]. Furthermore, since we already
know that the metric is positive definite, the above expression is strictly positive along
the flow and zero only at the fixed points. We will come back to this in Chapter 11.

Relation to A¢

The new notion of distance A; connects nicely to the existing distances for Ricci
flow,established in [381]. In order to see this, we restrict ourselves to the conventional
Perelman flow without H-flux, such that we can write (9.11) as

1
_ZN/(VA_K/st

Here we stress again that the time-independence of the dV, was crucial for pulling the

1/2

10sF |

(9.13)

/ dVge_f OsR(s)
K

time derivative onto R. Restricting to spaces with spatially constant Ricci curvature
with R; jRif = %Rz and k a constant, by equation (4.7) we find that the scalar curvature
evolves according to d;R = kR?, such that

OsR(s)| 4 R(sp)\ _ F(g.f)ls
RGs) ds = log (%7 ) = log | gy | - (0.14)

and we recover the proposed distances of [381].

The same carries over to the case with non-trivial H-flux, where under additional
conditions on H the distance reduces to

F(g.H,f)ls,
(g.H./)| f) 9.15)

Ap = log ( Tl Ty

We close this first discussion of the distance by stressing once more that in the above
we worked with the generalised Perelman flow and the associated functional. This
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guaranteed that the normalising factor of the dilaton-weighted volume is constant in
time and can be pulled out of the time integral. Furthermore, this guaranteed that the
generalised Ricci flow is gradient with respect to the functional #, which allowed the
elegant connection to the generalised DeWitt metric. The purpose of the next section
will be to investigate whether one can relax this constraint. This boils down to studying
the flow equation of f and its role as a dilaton. However, these modifications will
necessarily come at a price. In general, we will lose the monotonicity of the functional
along the flow. However, we investigate how one can still obtain a meaningful notion
of distance using a modified version of the above A;. At the same time, it will become
clear that the naive choice of log(¥) can become problematic in these settings. The
interpretation of the measure Ay as a proper distance in the mathematical sense is
deferred to Chapter 11.

Role of the scalar field f

The scalar field f played a distinguished role in the previous discussion, since it is
through f that the unit volume constraint is imposed. This in turn is crucial in order
to obtain a well-defined gradient flow, as discussed in Section 4.1.4. The physical
interpretation of the constraint is not completely clear, and it might be argued to
be somehow artificial. Therefore, also its role in the RFC is unclear. This is even
more evident, when noting that the flow behaviour of the volume of the manifold
and the dilaton are coupled to each other. In particular, they are inversely correlated
and whenever the volume reaches extremal values, f behaves in a way such that the
generalised volume element remains constant. It is therefore not clear, seeing f as
a genuine dilaton, how to access infinite-distance points while staying at finite string
coupling. These limits could be investigated in [381] by considering purely dilatonic
flow. We will discuss two different ways of decoupling f from the constraint, bringing
it closer to an actual interpretation of a stringy dilaton. Starting from the variation of
the action functional given in (9.3), we will see that there are alternative ways to obtain
flow equations that preserve at least some of the desirable properties of the flow and
the associated distance. We will postpone this detailed discussion to Section 9.4 and
focus first on the (modified) Ricci Flow Conjecture in the presence of fluxes and the
associated potential on scalar field space.

Remark

* In [496] the authors proposed an interpretation for the constraint. In particular,
their analysis suggests a deeper physical principle of the constraint than pure
mathematical curiosity. Using the known procedure to obtain the equations of
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motion of the NSNS sector from the functional with constraint, they extended this
procedure to include Ramon-Ramond fields as well as moduli and higher-order
string-loop corrections.

9.3. Revisiting S® with flux

This chapter would not be complete if we did not come back to our favourite example,
$% with flux. As was explained earlier, one of the main motivations for studying
generalised Ricci flow within the Swampland program is to obtain a different viewpoint
on the role of potentials on field space for the SDC. These generically arise when
considering fluxes or internal manifolds that have a nontrivial topology and will, in
general, also feature divergent directions. For consistent string backgrounds, we argued
in Section 6.1.4 that these divergences arise because of a lack of light towers of states
required by the SDC and hence effectively screening this would-be infinite-distance
point. In the following, we see that there is a nice and complementary interpretation in
terms of generalised Ricci flow which will lead to a generalised Ricci Flow Conjecture.
We start by quickly recalling the situation we encountered in Chapter 6. The three-
sphere cannot support any non-trivial winding and therefore is missing the required
infinite tower of light states for » — 0. However, there is a scalar potential, sourced by
the curvature and the H-flux supported on the sphere, such that this scalar potential
diverges for small r, signalling the lack of a tower and preventing us from visiting this

naive infinite-distance point.

9.3.1. Flow behaviour and distance

Trying to understand this example through the lens of generalised Ricci flow, we first
need to understand the flow behaviour of the background. The flow was shown in
Section 4.1.4 to reduce to an evolution equation for the radius r, which reads

2 2k?

0
ET(S) = —m + r(s)S .

Here, the flux number k, which turns out to be constant in 3D, is such that the H-flux

(9.16)

itself remains fixed for all s. The differential equation (9.16) admits a unique fixed point
at r = Vk of attractive nature. In particular, for r < Vk we have d,r(s) > 0 while for
r > Vk, dsr(s) < 0 and so in any case the flow is towards the fixed point. Crucially,
the inclusion of H has lifted the singularity at the end of the conventional Ricci flow
and created a finite stable fixed point » = Vk. This should be viewed as a first hint that

the RFC in the presence of fluxes is richer than the standard one. In particular, we can
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have fixed points at finite values that do not correspond to singularities or any other
“extreme limits” of the underlying geometry. Indeed, we do not expect any tower of
massless states to appear when approaching the fixed point » = Vk, which is exactly
the conformal fixed point of the underlying SU(2), WZW model.

We are particularly interested in the asymptotics of r. Asymptotically we can neglect
the second or first term on the RHS of (9.16) so that the PDE simplifies to

r>1: Zr(s) ~—-2 = r(s) ~ ([r2 —s,
ds r(s) 0 r(0) = rg. (9.17)

. 0 2k? 6
r<l: &r(S)N"'W = r(s) ~4r

Comparing with (4.34) we observe that for large r the flow asymptotes the one of $°
without any flux. For small » we have a novel flow behaviour that is modified by the
presence of the H-flux. We see that asymptotically we can extend the flow backwards
in time, starting at some initial o = r(s)|s=0. Starting at some rg > 1 this is possible
for all s < 0 and therefore the flow can be defined for all s € (-0, ). In particular,
the radius grows without bound for negative s and therefore the potential approaches
zero. On the other hand, starting at some ry < 1 the radius becomes zero after a finite
time s* = rg /(6k?) where, in particular, the flow equation encounters a singularity. In
this limit, the corresponding potential diverges; see Figure 9.2. This means that the
solution for large r is eternal, while the solution for small radius is merely immortal with

a maximal interval of existence s € (s*, ).

Calculating the distance

Before discussing this example in light of the (generalised) Ricci Flow Conjecture, we
need to determine the distance A;, defined in the previous section. In particular, there
are three distinguished points. These are the two limiting cases of zero and infinite
radius r, as well as the fixed point r = Vk.

Recall that the new notion of distance A; can be written in the form

1/2

Ar = (9.18)

/ dVge_f(|g_1(3sg|2 + |g_16sB|2)
K

1 ds
v ),
The only time dependence of the metric is through r(s) such that we can easily obtain
|g‘1(93g|2 = 12(dsr/r)? and therefore

12 (57 |(d,r\?
Ap =+ = i
=

which exactly agrees with the distance obtained directly from the effective action. From

172 .
ds = «/5/ ! ?ds - x/§1og(r(sf))) . (9.19)

r(si
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this we can easily determine the three distances of interest’, which evaluate to

Ar(ro, \/%) = const. , for ro > 0.
Ap(rg,00) = o0, for rg > Vk. (9.20)
Ap(rg,0) = o0, for ro < Vk.

Therefore we have two infinite distance points, both of them reached for s — co and

§ — —oo respectively.

Remarks

i) The flow in (9.16) was calculated from the gauge-fixed flow, in which the scalar f
is decoupled from the flow of r. In this gauge the volume is not constant in time
and therefore one needs to be especially careful in these cases when evaluating
the distance® A;. However, for the given example, all the time dependence of g;;
isin r and therefore, also f is only a function of s, and not the coordinates. In these
cases the two gauges agree and indeed the unit volume constraint is fulfilled in
both, such that we did not bother pulling out the volume factor out of the integral.

ii) In Chapter 4, we discussed the nice existence and uniqueness properties of (gen-
eralised) Ricci flow. In contrast, backward flow is generally poorly posed’. Even
though in this case solutions are not guaranteed to exist and may even be unsta-
ble, under certain conditions the backward heat flow can anyway be well-posed.
These situations are much less studied, but some results are available; see, for
example, [497] for uniqueness results under the assumption of curvature bounds.
Given the fact that for generalised Ricci flow, even less is known, we will take a
pragmatic approach and assume the existence of some backward solution when
reasonable and confirm this by numerical computations whenever possible.

9.3.2. The generalised Ricci Flow Conjecture

After having analysed the flow behaviour and the associated distances, we are finally
in a position to examine the three-sphere with flux from the perspective of generalised
Ricci flow and the RFC or SDC respectively. The flow behaviour is summarised in
Figure 9.2. Although being relatively easy and hence tractable, the example features
all the interesting possible behaviours we can encounter under a generic flow. In the

5Note that in contrast to the fixed point, the other two can only be reached “backwards” in time.

bSince F is gauge invariant the end result does of course not depend on the gauge. Quite simply, one
needs to be more careful when performing the integration

’This is a familiar problem that for example also appears for the the backwards heat equation
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following, we carefully analyse them one by one, while relating to the conclusions of

Chapter 6 concerning the role of the scalar potential and the implications for the SDC

and the proposed amendment.

@ r — oo : We pick an initial radius ro > Vk. Taking s — —co, the radius grows

unbounded and the sphere decompactifies. At the level of the flow equation we
have lim;_,_« ds7(s) = 0, which means that we approach a fixed point of the flow.
Furthermore, according to our analysis in (9.20), this corresponds to an infinite-
distance point when following the generalised Ricci flow as measured by A;. The
associated infinite light tower of states for the SDC is given by the KK-modes.

r = Vk : Both for starting at ro > 0 or rp < 0 this is a fixed point of the flow where
the radius stabilises according to the value of the H-flux. This corresponds to
the minimum of the associated potential and is the conformal string vacuum of
the associated WZW model at level k. Although this is a fixed point of the flow,
ie. lim,_,,, 05r(s) = 0, the associated distance in (9.20) is finite. This is perfectly
consistent with the fact that we are at a string vacuum and therefore do not expect

an infinite tower of light states.

r — 0 : We start from an initial radius ry < 0 and extend the flow backwards in
time. In contrast to the first situation, we now encounter a singularity, since we
have lim,_,_o, = co. The resulting picture fits very nicely with the discussion [67]
in Section 6.1. The scalar field space corresponding to the compactification on
this background has a nontrivial scalar potential sourced by curvature and flux
contributions. While for r — oo the potential vanishes and asymptotically we
can apply the standard SDC, it diverges for r — 0. In terms of Ricci flow, this
limit does not correspond to a fixed point and the Ricci Flow Conjecture does
not predict an infinite tower of light states. It was discussed in great length in
Section 6.1, that indeed there is no tower for » — 0 due to the missing winding
modes on S°. The potential signalled this absence and in some sense “screened”
us from visiting this point. The situation we encounter in this paragraph is the
manifestation of this very principle, now seen through the lens of generalised
Ricci flow [67].

The above discussion nicely illustrates the impact of the potential for the SDC from

another perspective and shows how the addition of H-flux® can modify the possible

scenarios for the RFC. This motivates the following reformulation of the conjecture.

8The extension to RR fluxes is discussed in Chapter 10.
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(a) (b)
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Figure 9.2.: Visualisation of generalised Ricci flow and the associated scalar potential for
the three sphere. Panel (a) on the left depicts — for comparison - the situation without
flux. The right panel (b), relevant for the discussion here, shows generalised Ricci flow
of the sphere with [H] = k units of H-flux and the resulting (modified) scalar potential.

Generalised Ricci Flow Conjecture (gRFC) [67]. Consider QG on a family of back-
grounds determined by the triple (g;;(s), Bi;(s), f (s)) satisfying the generalised Ricci flow.
There exists an infinite tower of states becoming massless along the trajectory of the flow
towards a fixed point which in addition lies at infinite distance. The distance between two
backgrounds at time s; and sy is measured in terms of the generalised Perelman entropy
functional F (g, B, f) by Ar.

We highlight the fact that according to the above conjecture, massless towers of states
occur only when approaching a fixed point, which additionally lies at infinite distance.
It is apparent from the above discussion that these two things do not necessarily go
hand in hand. While case (3) lies at infinite distance, it does not correspond to a fixed
point but a singularity and therefore, correctly, no tower of states is predicted.

Finally, note that the gRFC can also be formulated for generalised Ricci flow without
f and hence without any reference to a generating functional. The distance can then
be measured by the generalised DeWitt metric (6.35) along the trajectory in GM(M)
or by defining an analogue of Ag defined in (5.18), i.e, As = In(R — 3|H|* - 4|(’)<I>|2)|§f.
However, such a notion of distance does not have the nice monotonicity properties of
Ay inherited from the functional F.
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9.3.3. The gRFC in the T-dual

Especially within the context of string theory, one of the drawbacks of standard Ricci
flow is the fact that it is not invariant under T-duality. Starting from a topologically
nontrivial purely geometric background with only a metric (and dilaton), the geometry
is mapped under (topological) T-duality to a solution with flux and hence cannot be
described by standard Ricci flow. It was shown in [498] that the generalised Ricci flow is
invariant under this topology-changing process. In order to obtain a consistent picture
within string theory, we are therefore forced to consider this more general flow and its
associated conjecture. In this paragraph, we illustrate how the generalised Ricci flow
and its implications for the SDC and gRFC translate to the T-dual.

Recall that the T-dual of the sphere with k units of H-flux along the Hopf fibre is
again given by a circle fibration over S% y = E— 52, where now the fibre has an
associated radius that is proportional to 71, cf. equation (2.30). Plugging this into the
flow equations of generalised Ricci flow, we arrive again at

2
%r(s) = —r(z—s)+%, %h(s) =0, (9.21)
hence, as promised, the flow equation stays invariant. However, the geometric realisa-
tion and the physical interpretation with respect to the SDC change. We already know
from Chapter 6 that the associated scalar potential and metric on field space also remain
invariant. What is left to do is therefore to interpret the three distinguished limits and
the flow behaviour in the new frame. Again, referring to Figure 9.2, we have

@ r = oo : While on $° this corresponds to a decompactification, here only the two-
sphere decompactifies while the fibre shrinks because it scales with r~1. Since
the flow equations remain invariant, this is again a fixed point of the flow. The
infinite tower of light states is provided by the KK modes on $2. For a discussion
of the additional modes and the mapping under T-duality, we refer to Section 6.1.

@ r = Vk : At the fixed point the geometry is locally a product of a two-sphere with
radius g2 = Vk and a circle with associated radius rg1 = 1/Vk. Since we are at a

finite-distance fixed point, there are no towers becoming light.

@ r = 0 : The sphere shrinks to a point while the circle fibre decompactifies. Ac-
cording to our distance Az, this is an infinite-distance point, however, not a fixed
point of the flow. Therefore, we do not expect a proper infinite tower of light
states in this limit according to the gRFC. Indeed, we know from Section 6.1 that

the conservation of KK modes is spoilt due to the presence of H, cf. Section 6.1.

Indeed, we see that we obtain a fully consistent picture under T-duality.
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Lastly, the flow for the T-dual f can be easily extracted from the dual geometric
background. Alternatively, recall that in the Buscher rules, the T-dual dilaton is defined
in such a way that the weighted volume element /ge2¢ is invariant under T-duality,
such that

f=f-log(det(g)) . (9.22)

This f will then automatically fulfil the constant volume constraint.

9.4. Modified flow equations for f

We return to the question on the role of the scalar field f, its interpretation as a
dilaton, and the related generalised unit volume constraint. In particular, we explore
the possibility of discarding the unit-volume constraint, examine the resulting flows,

and present an alternative approach to include an explicit dilaton ¢.

9.4.1. A family of flow equations for f

Recall from Section 4.1.4 that the variation of S gives raise to a term

ij98ii _ 0f
ds  Os]’

i3:...+ R—%|H|2+2Af—|Vf|2) (%g

5 (9.23)

In the absence of the constraint, this contribution does not vanish, but has to be taken
care of by some other mechanism. One might contemplate reabsorbing the part propor-
tional to the trace of g in the flow equation of g;;, which would lead to a flow according
to the Einstein field equation. However, it is known that this “Einstein flow” is ill-posed
and, in general, does not admit even short-time solutions, which also can be seen as a
manifestation of the conformal mode problem of gravity. We refer the interested reader
to [300] for an insightful discussion and further relevant references.

The formulation of generalised Ricci flow in terms of a gradient of a generating
functional naturally provides us with a monotonous functional along the flow. How-
ever, as also noted in [295], there is the “curiosity” that the action functional S remains
monotonous along the flow even without the constraint, provided the flow equation for
f is modified in a certain way. However, the resulting flow is not gradient with respect
to S. Looking at equation (9.23) it is clear that the full variation is manifestly positive
if the remaining contribution can be written as a perfect square. Indeed, we would like
to write

;08ij Of

1 1 ;
R—SIHI® +2Af - |Vf|2) (Egk v —) =S(2,B. 1)

Os
Os Os ’

U

(9.24)

with S(g, B, f) the generalised scalar curvature, Eq. (4.25).
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Then imposing the flow equation

% logu=aS(g,B, f), (9.25)

with @ a yet free integer we can write the variation of S as

Osp

d 1. , 1. . 1 2\
—S~ [ |=l0sg?+ =|0:B)> + = fav, > 0. 2
dsS /K(zlagl +2|6‘ | +a/ )e dv, >0 (9.26)

Therefore, S increases strictly monotonically if we choose a > 0. Furthermore, we see
that for @ = 0 we retain the standard constraint /K dVge™/ = 1. The flow equation for f
can now be extracted from (9.25). In particular, using the traced flow of g;;

1 ., 1
580,81 = ~(R+Af - Z|H|2), (9:27)

we obtain

0=aS-0dslog(n)
=al|R- %|H|2+2Af— ik +(R+Af—%|H|2)+asf

a+3

=(@+1)R - T|H|2+(2a+1)Af—a|Vf|2+65f. (9.28)

Therefore,we obtain a family of flow equations for f, labelled by «, that reads

3
“;_r IH? = Qa + D)AS +a|Vf]2. (9.29)

%f:T;“) =—(a+1)R+

Choosing @ = 0 as a consistency check, we indeed get the correct formula for f in the
standard case with unit volume constraint. Taking a = 2 in analogy to the other flow

equations, we obtain

9 5
—gf:BR— §|H|2+5Af—2|Vf|2, (9.30)

which does not coincide with the dilaton g-function. However, at fixed points

1
0= ﬁgij = —Rij - ViV f + sHiyH}"
‘9Sa 5 4 (9.31)
0=——f=3R-|H>+3Af - 2|Vf|*.
Js 2
Upon substituting the traced equation for g into the second, we get
0=2|H|®>+2Af -2|Vf|* =B/, (9.32)

which is precisely the standard dilaton equation of motion 3% of (1.8) (after substituting
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tr(ﬁﬁy) and using f = 2¢). Hence, at the fixed point, f can be identified with an on-
shell string-theoretic dilaton. Lastly, there is another curiosity about the above family
of flows, since for @ = —1 the resulting flow is

0 1
5ol = gIHE+AF = |Vf2 ~ B, (9:33)

which directly gives the -function of the dilaton and therefore it is suggestive to iden-
tify f = 2¢. However, this comes at the price of losing monotonicity along the flow,
since now the last term in the sum (9.26) appears with a minus sign.

These modified flows will not play a major role in the remainder of this thesis, so
we move a discussion of some examples and the SDC to the Appendix F.

9.4.2. Including the dilaton explicitly

In the previous section, by modifying the flow equation we were led to a family of flows
that as a special case contained the evolution according to the A-function of the string
dilaton. While this is certainly an interesting — maybe even desirable — feature, there
was no monotonous functional along the flow available. Indeed, given the fact that
the metric and dilaton are already evolving according to the equations of motion of the
string effective action, it is natural to accompany this by a flow of the string-theoretic
dilaton, completing the picture to the full NSNS sector. Concretely we would therefore
like to have a system of flow equations for g, B and ¢ that reads’

d . 1
%gij = —Zﬁfj = —ZR,'_]' + EHIZJ — 4V,'Vj¢,
0 .
5o Bij = ~2B% = V*Hyij — 2Hi V<o , (9.34)
9 . 1
—¢ =287 = Ap - 2(Ve)* + S |H|*.
Js 2

Trying to identify directly f = 2¢ and trying to have S as a monotonous (or even
gradient) functional along the flow leads back to the problems and discussion of the
precious section and is therefore not desirable. However, it was realised in [499] that

This system of equations is well-defined in the sense that ¢ can be decoupled from the other flow
equations and obeys a Heat-like equation that can be solved a posteriori.
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the above system can be realised as the (gauge-fixed) gradient flow of the functional

~ 1 ~ ¢ -F
F(g.H, [ =20+ ]) = /K (R - SIHP+ V(29 + f)|2) e e/ av, (9.35)
= / ((R - %|H|2 + 4|V¢|2) +4VeV f + (vf)Z) e e av,,
K
supplemented by the constraint
/ e e Tav, =1. (9.36)
K
The flow equation for £ is obtained from the constraint and reads'’

if: ”fz—Af—2V¢Vf—R+1|H|2—2A¢+(vf)2. (9.37)
s 2

Although this looks very promising, it should be stressed that strictly speaking, only
the flow equations for g and B are gradient with respect to #. The dilaton equation d;¢
arises in a somewhat artificial way due to the splitting of f into ¢ and f and will enter
the distance along the flow only indirectly through the other flow equations. Therefore,
the gradient property must be understood in a weaker sense.

A distance for modified flows?

Although considerations in the preceding section show that there are reasonable mod-
ifications to the flow equations that can decouple the dilaton or f from the behaviour
of g, the implications for the gRFC and the Distance Conjecture are far from obvious.
Indeed, all the modifications discussed come with their own shortcomings as compared
to standard generalised Ricci flow.

In particular, loosing the gradient property with respect to 7, also the appropriate
choice of measure of length becomes less clear. For example, restricting ourselves to
the family of flows with @ > 0, we see that the functional is strictly monotonous along
the flow. In fact, the summands are positive and only zero at the fixed point of the
flow, and the functional S can be used to define a distance along the flow. On the other
hand, allowing for & = —1 in principle, the summands in 9,S can cancel each other such
that 9,8 = 0 even at points that do not correspond to fixed points. In view of a proper
definition of distance, these points can be problematic, since they lead to a violation of
the axiom of strict positivity, i.e. A(x,y) =0 for x # y. We elaborate further on this in
Chapter 11 while a discussion of some examples can be found in the Appendix F.

10After acting with a diffeomorphism that decouples f from the other flow equations via Ly 7 similar
to Section 4.1.4. ’
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Geometric flows with RR-fluxes,
supergravity flows and product spaces

There are only very few full 10D solutions of Type II supergravity that only in-
volve NSNS flux. Most of them come with additional Ramond-Ramond p-form fluxes
and, in more realistic settings descending from string, with (localised) source contri-
butions from D-branes or orientifold planes. Hence, if we want to apply the formalism
developed in the previous chapter to internal spaces with more fluxes and source con-
tributions, or even full 10D vacua, we need to include also this contributions into the
flow as well as the issues connected to Lorentzian signature. Defining such a flow is
highly non-trivial and there are several obstacles to be overcome that were not present
in the (compact) NSNS case. We will anyway propose a possible definition for such a
flow in 10 as well as 11 dimensions and furthermore establish its well-posedness, at least
for the Euclidean case. We give an explicit example for a flow of a full 10D orientifold
background towards a Minkowski vacuum. We conclude by highlighting some of the
challenges that arise when moving to Lorentzian (product) spaces, in particular, the
case of external AdS and propose some possible further approaches in this direction.
We also discuss possible applications within the Swampland program, in particular
applications for the SDC and RFC as well as related questions, like scale separation or
smeared sources, that can potentially be addressed.
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10.1. A flow for Type II supergravity

In this section, motivated by the form of the flow equations in the NSNS sector, we

introduce a generalised flow that includes also RR p-form fluxes'

. We are agnostic
about the role of the flow as being applied to internal or external spaces (or full product
spaces) but first specialise to the Euclidean case. This will enable us — closely following
the known proof for the NSNS sector — to establish that the flow is indeed well-defined.
We also discuss how the flow in principle can be used to study the implications for the

SDC and Swampland program.

10.1.1. Flow equations with RR-fields

We know from the previous chapters that the flow equations for g and B under gen-
eralised Ricci flow are nothing else than the (NSNS sector) equations of motion of
supergravity. When trying to include p-form RR-fluxes, it therefore seems natural to
impose flow equations that mirror this behaviour. In particular in the setting of Type
IT SUGRA, we choose the flow equations to be precisely the associated equations of
motion (1.15), (1.16) and (1.17), such that for (massive) Type IIA theories we obtain the

following flow equations’

d _ 102
5550 = —2,8?’]. =-2R;j —4V;V¢ + EHij

1 1 1
+262 | =(F3)ij + 75 (FD)y = 317 (m? + 1l + 'F“'Z)] ’

0 _ 1

&Bij = —2,85 = Vka,'j - ZHk,'ijgb + (*(Fz AxFy — §F4 ANFy—m *FZ))ij R (101)
9 | -2B7 =486 —4IVeP + R~ J|HI?,
05| <287 = 200 — 4|V + [HP + 12 (1 - DIFPR + (4 - m) |4l - 3m?) .

Here, n = gi/g; j denotes the dimension of the (Euclidean) space under consideration.
These are supplemented by the flow equations for the Ramond-Ramond flux potentials,

which read
9 =C k
5_Ci = —Zﬂi I=V'F; + *x(H A *F4)i s
p $ . (10.2)
acijm = —2,3”?;,1 = VEFiijm +*(H A Fa)ijm -

'We refer to [500] for a closely related flow that includes higher-form fluxes but can not be applied
directly to Type II solutions due to the lack of a dilaton that has to be incorporated into the flow and enters
the NSNS and RR sector differently.

“Note that there are slightly different normalisation factors compared to [68], due to some normalisa-
tion conventions, as well as the sign of the m? term corrected.
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Analogously, one can also define a flow for Type IIB theories. In principle, the choice
of prefactors for the flow equations is arbitrary, but it will be convenient to use the
above conventions for later purposes. We stress the slight abuse of notation in denoting
the flow equations with $°, which should merely highlight the fact that we use the
equations of motion, like in the purely NSNS sector. However, these functions cannot
be seen as Weyl anomaly coefficients or RG flow g-functions of a NLSM description.
The reader will wonder why there are two flow equations for the dilaton. This is due
to some ambiguity, similar to the one discussed in the remark at the end of Section 1.2.
The first equation corresponds to the equation of motion obtained directly from the
variation of the action. The latter 37 is obtained by substituting the traced equation of
the metric 3. As mentioned before, on-shell — and therefore at the fixed points of the
flow — these choices are equivalent while, in general, they lead to different expressions
along the flow. It is often customary to work with the latter one due to the decoupling
of the Ricci scalar. For us, the following proof does not depend on the choice of 3%, so

we remain agnostic about the precise choice and denote both by 5.

10.1.2. Short time existence and uniqueness

In Section 4.1.1 we discussed the fact that Ricci flow is not strictly parabolic®, which
is connected to the diffeomorphism invariance of the flow equations. Therefore, the
flow is a priori not well defined and one has to employ the “DeTurck trick” in order
to establish the existence of at least short-lived solutions. This story carries over to the
problem at hand. The flow equations (10.1), (10.2) do not define a strictly parabolic
system but — following the strategy of [295] — we define the vector field

Xk =gl (F{} - (Fo)f}) : (10.3)

in order to gauge fix the flow equations and remove the ambiguity from the diffeo-
morphism invariance. No define differential operators denoted O(g, B, ¢, F),) by taking
the right hand side of the flow equations —23° corrected by the addition of the Lie
derivative of X. Furthermore we add a second Lie derivative with respect to —V¢ in
order to bring the flow equations into a from reminiscent of the gauge fixed generalised
Ricci flow equations, such that in total the operators read”

Ou(8,H, Fp, ¢) = =25 + Lx(¢) —2Lvy(e) = -2 + Lx(e). (10.4)

3 A system of PDEs d;u = Lu, defined by the differential operator L, is strictly parabolic if the principal
symbol of L is positive definite. Loosely speaking, the principal symbol (L) is captured by the highest-
order derivatives in L. For a non-linear L (like the Ricci tensor R;, viewed as an operator acting on g; )
parabolicity can be established using the linearisation of L; see Appendix E for more details.

“The flow equitations for the fluxes F), denoted by BFr are obtained from -1 by derivation d().
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Here, o denotes all the quantities g, B, F},,¢. For later purposes we also define
B°* = B° + Lyy(e). It is important to note at this point that for standard (generalised)
Ricci flow the Lie derivative with respect to V¢ would decouple the dilaton from all the
other flow equations. Due to the presence of the RR-fluxes that enter the action with
a different weighting of the dilaton this is, however, no longer true and this will have
a significant impact on our analysis as we will explain shortly. The next step in the
procedure is to compute the linearisation of these operators O;. In order to do so, we
introduce the following notation. First, we expand all the fields up to first-order terms,
i.e. gij = (80)ij + hij(¢t) and similarly for the other fields. We suppress indices and write
g, Hy, FP, ¢, in order to explicitly stress the dependence on the linearisation parameter,
and where here we denote F” = F,,. Lastly, we denote

d
dr

- d
Ht = H, -
t=0 ds

. d
Ftl’ =FP, —
t=0 dr

S

b =¢. (10.5)

t=0

gl =§a .
/=0 dr

The resulting PDE are then of second order due to the form on the flow equations. It is
immediate that, using the results from the NSNS sector, we obtain [295]

Og(gta .o ) = Ag +1.0.t.,
=0

=

d
< tzoOg(H,, ) =lot., (10.6)

dr

where l.o.t denotes terms of lower than leading order in derivatives. Here A denotes
the “rough” or connection Laplacian A = g'/V,;V; while we write Ayg = —(dd*+d*d) for
the Laplace-de Rham Laplacian; see Appendix E. Furthermore, in the above, we only
keep quantities explicitly dependent on the linearisation parameter ¢, while the rest is
simply denoted by .. .,i.e. Og(g;,...) = Og(gs, H, F?, ¢). Then since F? and also ¢ only
appear at zeroth order in derivative in O,, we clearly get

d
dr

Oy (FF,...) =1lo.t., d O¢(¢r,...) =loit. (10.7)
t=0 dr t=0

Similarly, one can proceed for all the other O; and the results read

d - d _
EI:OOH(gt’...)_H’ at=00¢(gz,...)—g,
d N d R
d_ OH(Ht,...):AdRH+1.0.t., d_ O¢(¢z,...):A¢,
tt=0 tl‘=0 (10 8)
d d ’
at:OOFp(gt,...)—A, at:OOFp((pz,...)—Z,
di OFp (Ftp, co) = AdRFp +lo.t.,
tt=0

where E, A, X, Q are operators, the precise form of which will not be relevant for us as
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10.1. A flow for Type II supergravity

they drop out of the argument. Now by use of the Weizenbdck identity (cf. AppendixE,
Eq. E.10)

Agrw = Aw + Ric(w), w a n-form, (10.9)
we obtain
d A d » .
—| Opy(H;,...)=AH+1lo.t., —| Ofr,(F/,...)= AFP +1o0.t. (10.10)
dt =0 dt =0

Having collected all the necessary information, we can now obtain the principal symbol
o (in the basis defined by (10.5))

8 A0 0 0\/¢g
A E A0 O||l A

o (D(g.H.4,F7)(Og. 0,04, OFr)) s17la 0 a ollal (10.11)
FP A 0 T AJ\FP

with the last entry again viewed as a block matrix and similar for the (4,7) and (7, 4)
entries as column or row vectors, respectively. Then using Silvester’s criterion we
see that [o7;] is positive-definite, and therefore the system is strictly parabolic. This
establishes the existence of short-time solutions for the gauge fixed flow defined in
terms of the RHS of the operators in (10.4).

Ultimately, we are interested in the flow defined by 5’ (or 87). Therefore in a second
step we need to undo the gauge transformation applied in the first step such that we
end up with the flow in a form that upon eliminating the RR-fields, reduces to the usual
generalised Ricci flow in the NSNS sector. Again following the procedure in [295],

define a one-parameter family of diffeomorphisms y; by

%ws =-X(gs,80) o5, with yo=id. (10.12)
Using ¢, we define the pulled-back fields
gs=vigs. F)=yiF’,  Hy=yiH,,  $s=y ds. (10.13)

This inverts the DeTurck trick and a short computation following [295] shows’

C()sgs = 0y (w*gs) = '70* (asgs) + Ql’*LfX(gS,to)gs
=¢" (=285 (g, H, FP, §) + Lx(g,,60)8)) + ¥ L -X(g,.,20) 8
= —2Bg(g,FI, Fp,é), (10.14)

5Using the identity c%(‘l‘;"Ts) =y (LX,. Ts + %TS) for time-dependent vector fields and tensors
(cf. [501], Prop. 22.15).
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which trivially then also carries over to H, F,, and ¢
0sHs = -2Bu (8, H,FP,$), 0sFP = -2Brr (8, H,FP,$), 0s¢s =-2B4(& H,FP,¢$). (10.15)

This shows that the data {g, H, F?, ¢} satisfy a system of geometric flow equations j'
that extends the conventional generalised Ricci flow to also include RR-fluxes. Further-
more, by reversing the effect of the diffeomorphism induces by V¢, this established
the existence of a family of backgrounds {g, H, F?, ¢} that are solutions to the system
defined by f', hence following the equations of motion of Type IIA supergravity.

The flow equations for the form fields can be obtained by integration, yielding

. . - _ .1 ~ ~
26Sst = ZasHs = AdRH +d = (Fz A *xFy + §F4 ANFy—mx* FQ) s (10.16)

such that
- . . . 1. . -
20,Bs = —d*H + x(Fp A xFy + §F4 ANFy—m* F). (1017)

Similarly, the equations for the RR-fluxes can be integrated. This concludes the discus-
sion and establishes short-time existence of the flow.

Remarks

¢ We directly imposed the equations of motion as the flow equations, loosing the
notion of a gradient flow. One could try to adapt the variation of the action func-
tional performed for the NSNS sector (cf. Section 4.1.4) to the present situation.
Indeed, it turns out that all problematic contributions from the RR sector can be
repackaged into the flow equation of g, such that

S(g.B. f) (%gij% - ‘;—f) , (10.18)
with S the generalised scalar curvature defined in (4.25). This suggests that by
again imposing the weighted unit volume constraint, one can generate a gradient
flow that results in the flow equations imposed by hand before, except for the
dilaton or f, which would be fixed by requiring the vanishing of (10.18). However,
this flow equation is problematic because it comes with a negative sign in leading
order. Thisis also the case for the conventional Ricci flow; however, in the standard
case, the flow equation for f can be completely decoupled from the rest and then
solved a posteriori. In the presence of RR-fluxes, this decoupling is no longer
possible. This possibility will therefore not be pursued here further®.

®However, note that the flow might exist under special conditions and hence may also lead to interesting
flow behaviours for the SDC.This has to be checked on explicit examples and is left for future work.
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10.2. A flow for 11D supergravity

10.2. A flow for 11D supergravity

There is an even simpler setting in which we can attempt to include RR-fluxes, namely
at the level of 11D supergravity. In particular, in 11D there is no dilaton such that
we do not face the problem of the different weighting of the RR fields and the metric
that appears in the flow equations (10.1). However, on the other hand, this also means
that there is no obvious way to impose the generalised unit volume constraint. So
generically the flow will again not be gradient or strictly monotonous. This will have
implications for the definition of a distance along the flow, discussed in Section 10.3.
For now, recall that the action in 11D reads

1 1
S= —/dllxx/|g| R - Z|F4)?|, (10.19)
247, 2

with 11 the 11-dimensional gravitational coupling. Then analogously to the reasoning
in the 10D case, by imposing the equations of motion as flow equations, we obtain’

0 - 1 1

5381 = —2B5;, = -2 (Rij - E(F4)l'2j + 6|F4|zgij) ,
P 1 (10.20)
AC k

acijm = —2ﬁ,~j3;n = (V Frijm+ >* (Fg A F4)ijm) .
The short-time existence follows directly from the discussion in the previous section.

Note that the symbol * is gain of purely notational nature.

10.2.1. Example: $* with RR-flux

There is an obvious example to look at in this setting, which is the analogue of S with
H-flux: $* with f; units of Fy-flux. Indeed, the flow equations are readily obtained
3 f2 3

r(s)? * 3r(s)”’ ds

%r(s) =— fa=0. (10.21)
Note that similarly to the generalised Ricci flow of S, the flux does not flow since it is
given by the volume form. However, it stabilises the flow of the geometry. The flow is
plotted in Figure 10.1 and very closely resembles the one of the S® example with H-flux.
We delay a discussion with respect to the SDC to the next section (and Chapter 11),
where we discuss the problem of a distance for the flow.

"Note that a flow of the same form has already been proposed in [310], see also [502]. In these settings,
however, the full 11D space is flown rather than only the internal space. This necessarily forces to work in
the Lorentzian signature, again raising issues with the short time existence in general.
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r(s)
—  h(s)

N

Figure 10.1.: Illustration of the 11D supergravity flow (10.20) on the example of $* with
f4 = 3 units of RR-flux. The flow behaviour is very similar to the one obtained for
S with H-flux, with the radius (orange) stabilising at a value set by the flux number
(blue). However, the crucial difference is that the given background is not a proper
string vacuum by itself, but has to be embedded into a full (11D) solution. Dashed lines
correspond to an extension “backwards” in time.

Remark

¢ In the beginning of this paragraph we commented on the absence of the dilaton
and the issue of lacking an obvious way to implement a generalised unit volume
constraint. A possible alternative approach® could be implemented when consid-
ering full product spaces. Introducing a warping factor for the external metric
in a way such that the problematic term is eliminated from the variation of the
action may circumvent this issue. Upon dimensional reducing this could be seen

as a non-trivial dilaton imposing the standard unit volume constraint.

10.3. Notion of distance and the SDC

Having added additional contributions to the flow, we are forced to appropriately adjust
our notion of distance in order to correctly take into account these contributions. Once
we are equipped with such a distance we can discuss the role or relevance of such flows
and some examples for the SDC.

10.3.1. Distances

There are (at least) two obvious choices for distances along the new flow, which are
closely related to the distances introduced in Chapter 9.

The first possibility is to again consider the flow solely as a tool for defining distin-
guished trajectories (off-shell) trajectories in configurations space. The distance along

8We would like to thank Chris Blair for a very insightful discussion, pointing out this possibility to us.
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the flow can then be calculated using the notion of path length of the associated path y
in this space, which can now be written (schematically) as

k
Mu = MG(M) x Mg x [ |QF (M), (10.22)
p

with p even/odd for Type IIA/IIB. A natural guess for a metric on My should then be

NSNS +y

the analogue of I' = y RR derived Chapter 6, such that a naive guess is

a~ [ ds\/| [ dnvge2e(1a.ell + 181+ cr Y 0.6, + co losolP)|. (1023
Y M q

where the prefactors ¢, 4 have to be worked out explicitly. This is left for future work.

The second possibility is to make use of the fact that there is a canonical choice of
a functional along the flow. This is the Type II action Sy given in (1.13), the equations
of motion of which give rise to the flow equations (10.1), (10.2). However, as explained
above, the flow is not gradient with respect to Sy and hence the functional is generally
not monotonous along the flow. Therefore, defining a distance according to

S(g, F4)|Sf) 7 (10.24)

As = log(&g,mui

leads to a distance which, in general, violates strict positivity”. A similar possibility
would be to integrate the (spacetime average) absolute value of S along the flow. We
will not discuss these possibilities here further.

10.3.2. Relevance for SDC

Clearly including the RR-fluxes was an essential and necessary step towards a much
broader class of Type II string or SUGRA vacua. After all, there is only a very limited
number of purely NSNS vacua. However, we are still not in a position to discuss
full 10D vacua since so far we only discussed the Euclidean version of the flow, and
the corresponding backgrounds should be viewed only as a (internal) part of a bigger
product geometry. Then the only cases we could possibly discuss at this point are
vacua that factorise into two separate vacuum solutions, where, for phenomenological
reasons, the external part should be maximally symmetric. Focussing in particular on
external Minkowski space, this means that we could ignore the external part due to the
Ricci-flatness and obtain complete flow behaviour by only looking at the internal part.
Unfortunately, it is well known that apart form solutions of the form M 1 X X19-4-1 with
X Ricci flat, there cannot be such simple, true 10D Minkowski vacua in the presence

‘Tt might even violate positivity, but this can be easily cured by taking the absolute value.
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of fluxes without adding negative-tension source contributions, due to the Maldacena-
Nufiez no-go theorem [503]. While adding such contributions to the flow equations
is in principle possible — as we will briefly discuss in the next section — it often forces
us to consider the whole 10D solutions and therefore also the problem of Lorentzian

signature and as well as other challenges.

10.3.3. SDC and distance for the S* example with RR-flux

We saw in Section 10.2.1 that similar to the NSNS case, the flow behaviour is simply
given as a PDE on r(s). Therefore, we can easily calculate the distance!” using (10.23)

Sf
Ay = / s ) :ln(r—f). (10.25)

r(s) r

Hence, there are again two infinite distance points r — {0, co}.

which reduces to

Only one of these, r — oo, corresponds to a fixed point, while » — 0 is a singularity.
This pattern is very suggestive since indeed on $* there are no winding modes and
therefore no infinite tower of light states for small radius. However, we are anyway not
in a position to make definite statements or interpretations in terms of the SDC or gRFC
as explained in the previous section. In fact, the present background can be completed
to a solution of 11D SUGRA of Freund-Rubin type [466] by choosing the external space
to be AdS7 with a radius correlated to the one of the internal 4. Therefore in order to
make definite statements for the SDC we would need to take this external contribution
into account, possibly by investigating Ricci flow of the full product space. We will not
further pursue this topic here in full detail, but we will give a brief outlook on such
flows in the next section. A detailed discussion is left for future work.

10.4. Product spaces & Lorentzian signature

We explained before that the Type II flow, although much richer than the NSNS sector
generalised Ricci flow, is not sufficient to make a definite statement for the SDC as most
internal background configurations with fluxes are not vacua on their own. They have
to be supplemented with contributions from the external space. Even more, if we want
external Minkwoski or de Sitter space, we need contributions of negative tension like
orientifold planes, as required'! by the Maldacena-Nufiez no-go theorem [503].

In principle, adding such source contributions to the flow is rather straightforward

mAlternatively we can also use (10.24) which, at leats asymptotically, results in equivalent distances.
'The linear dilaton background of Section 6.2 giving rise to a Minkowski vacuum with internal $3 and
H-flux evades the Maldacena-Nufiez theorem since the dilaton (6.33) is a function of the external space.
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when following the recipe for constructing the Type II flow introduced before. We
merely add the relevant contributions to the equations of motion. This is certainly
true in the absence of non-trivial worldvolume gauge fields and when considering the
sources as static objects from the perspective of the flow. In general, however, it can be a
more complicated endeavour. Furthermore localised contributions in the form of Dirac-
Delta distributions require a particularly careful treatment and for this reason we will
restrict the discussion to the so called smeared approximation. We already encountered
this concept when we discussed the family of DGKT-like examples in Chapter 6 and
their T-dual later on. We will again not be concerned with the debated role of their
uplifts to string theory vacua but refer to [125,126,470].

For the above reasons, we therefore focus on smeared orientifold contributions in the
following outlook. The contributions of O-planes to the action and equations of motion
are discussed in Appendix A; see also [470,471,504]. Adding these contributions to the
flow equations, the new flow equation for the metric and dilaton read

3 _ L
5581 = Zﬁigj =-2R;j —4V;V¢ + EHU

1 1 1
+2¢%¢ [E(Fzz)ij + E(Ff)ij T 38 (mz +IFl |F4|2)}

1 1
+ 3¢ (T, = 58 > t,,) , (10.26)
sources
3 —253) E4A¢_4|V¢|2+R_ %|H|2+%e¢ 2isources Ip s
559 =1 287 =280 — 4|V9P + |HP + 1e? (§9Ti; ~ § Toources Ip) (10.27)

+1e20 (1= DIRL + @ - )| Faf? - 2m?) .

where T;; and ¢, are defined in the appendix. Similarly, one can define the flow
equations for B and the RR-fluxes F),, which we do not list here. Notice that the source
contributions enter in zeroth order in derivatives, so they do not spoil the calculation
of the associated principal symbol and the flow remains well-behaved. Note that we
have again implicitly assumed a Euclidean signature such that the indices i should be
understood as restricted to run only over a subset of some (10D) Lorentzian indices /.
As discussed several times, for Lorentzian signature even conventional Ricci flow
turns out to be problematic, and the flow has to be investigated on a case by case basis.
This clearly carries over to the flows defined in this chapter and, hence, in case we want
to discuss the flow of full product spaces greater care is needed. We will leave a more
in-depth investigation of the flow for these cases and in particular its interpretation and
implications for the SDC and gRFC for future work. However, there is a specific subset

of solutions that mostly evades the problems connected to Lorentzian signature. These
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are Minkowski vacua of the form M;_11 X Kp_4 for which the geometry is of block
diagonal form and all non-trivial sources and also dilaton contributions are restricted
to the internal geometry, with the exception of O-planes, which are taken to be space
filling in the external Minkowski space (and possibly also additionally extended along
some internal directions). Then, due to the Ricci flatness of Minkowski space and the
specific source setup, no derivative with respect to external coordinates x* contributes,
in particular not the problematic d; which comes with the negative sign g, = -1.
However, note that this does not directly imply that the external flow equations are
trivial ;X . 4, = 0 as their equations of motion have terms of the form g;, (. ..), which
are hence generically non-zero. However, we will ignore these contributions, as they
will not influence the flow behaviour of the quantities of interest. After finding a
solution to the internal flow with non-trivial fixed point, one then has to check that at

the fixed point these external contributions also vanish; see also remark below.

10.4.1. Example: My X T° with O4-planes

A straightforward example illustrating the new flow is the My 1 x T° with NSNS H-flux,
RR two-form flux F, and spacetime filling O4-planes belonging to the generalised class
of Giddings-Kachru-Polchinsky (GKP)-like solutions [505] found in [470]. In particular,
we take

ds = ') detdx” + i(dyi)z, ® = ¢ = const., (10.28)
with fluxes given as
H=hdy> Ady* Ady?, Fo = f,dy! A dy2. (10.29)
Together with the spacetime filling O4-planes this leads to a Minkowski vacuum if
) e R 3 (10.30)

In order to discuss the generalised flow (10.26) we introduce an overall volume
modulus or radius of a homogenous T° which we denote with r(s) and discuss the flow
behaviour of g, (s) and ¢(s) while keeping h and f, fixed. In order to do so consistently,
we have to pick our initial conditions compatible with the on-shell relation (10.30) as
otherwise we would be forced to take into account also a flow of h(s) and f»(s) that is
introduced by the RHS of their flow equations being non-zero.
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Figure 10.2.: Plot of the flow behaviour of the generalised Type II flow on the Minkowski
vacuum with O4-planes discussed in this section. While curves sufficiently closetor =1
and ¢(s) < 0 converge to the vacuum, generic initial conditions (at least with the chosen
flux numbers and restricting to constant fluxes) are non-convergent (violet, blue).

In doing so, we obtain (the indices refer to the internal directions y*)

VHs g VH4

0s8ii = - 26) | vie{1,2,3},
g ()3 1 r(s)e ie€{1,2,3}
_ _VH4 og(s) _ VM4 og(s) _ VH4 (s) -
asg.// - 2r(S)5€ - 4r(s)3e - 4 r(S)e i V.] € {47 5} ’ (1031)

952172 P T
6 4 —
ds %ekb@) _ % —2\ze?® (= 213;75) .

3 -
VR Y - S (= 28)),

It is clear that indeed r(s*) = 1 is a fixed point of the flow giving rise to the vacuum
described above'?. We can solve the flow equations numerically. It turns out that
the flow only converges for special initial values of and, furthermore, the convergence
depends on the flow equation chosen for ¢. The flow is visualised in Figure 10.2, where
we plotted the vector field corresponding to the flow of {r(s), ¢(s)}, together with some
selected curves, highlighting the convergence or non-convergence of the flow.

Note that alternatively we could have also taken the dilaton as constant (hence
“forgetting” the flow equation for ¢) but then in order to find proper vacua that fulfil in
particular (10.30) we need to allow for a flow of the flux numbers f, and ). For suitable
chosen initial conditions, these should then evolve in a way such that (10.30) is again
satisfied for the constant ¢y under consideration. We will not discuss these different
aspects further here, but leave a closer investigation for future work.

120One can check that then automatically the external equations of motion are satisfied, i.e. ﬁ_lgw.
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10.4.2. The SDC and generic vacua

We have only discussed one particular example for the full flow, and in order to gain
better intuition concerning, for example, the convergence properties of the flow, a more
detailed discussion is needed. This short section should hence be viewed as a proof-
of-concept with the main discussion left for future work. In particular, in view of the
Swampland program and the SDC, there are many points that need to be investigated:
the ability to visit different infinite-distance points, the existence of the relevant towers,
and possible implications or modifications for the (generalised) RFC. The ultimate goal
or hope is then that an in-depth discussion from this new approach can give new per-
spectives on debated backgrounds like the DGKT-like AdS vacua discussed in Chapter 6
and 7 and related issues, e.g. the role of smeared sources or scale separation.

We close this section, highlighting some central questions and further directions
relevant for a further investigation of the topic:

* A natural next step would be to consider vacua with external AdS metric, for
example the DGKT-like backgrounds discussed earlier. Having a non-flat external
space will lead to additional contributions; in particular the “repulsive” nature
of AdS in view of Ricci flow, arising from the negative curvature can lead to
challenges concerning the convergence properties of the flow to finite fixed points.

* While most details carry over directly to Type IIB, there is a subtlety due to the self-
duality constraint of the five-form flux. This is better addressed in the democratic
formulation [506].

* A consistent vacuum does not only require the equations of motion to be satisfied
but crucially also the Bianchi identities, which should also be checked at the fixed
points. These issues are also easier to handle within the democratic formulation.

* The flow defined in this chapter motivates a generalised Ricci-Bourguignon flow
0ygiy(s) = =2 B, + pte(B gy - B3 gis) (10.32)
s&ij = ij 1Y ij 8ij 1 08ij| > .
which might have similar applications as the standard Ricci-Bourguignon flow [292,
507] used in [392] for a discussion of product spaces.

* In view of the SDC there remains the definition of a length, the analysis of
fixed points and in particular infinite-distance points, as well as the role of the
(smeared) sources and related aspects like scale separation. In particular, it would
be interesting if a treatment via Ricci flow can shed new light on these issues.

We plan to investigate these examples in the future.
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CHAPTER 1 1 I

The SDC on field space: distance or cost

The Distance Conjecture in its standard formulation is based on a well-defined no-
tion of distance, induced by the moduli space metric y,;, and its associated geodesics.
Measuring distances according to the (shortest) geodesic guarantees that all the math-
ematical requirements of a proper notion of distance are satisfied. However, from the
discussion in the previous chapter it has become clear that our proposed definition of
distance in the presence of a potential might violate some of these properties. This is
not particular to our approach, but has in fact been observed also in other approaches
trying to define a distance in the presence of a potential. In the following chapter, we
will provide an in-depth discussion of the challenges that arise for our proposed notions
of distance, as well as a comparison with other approaches in the literature. This will
lead us to the conclusion that in the presence of a non-zero potential, the requirement of
having a proper (mathematical) notion of distance might be too restrictive. Instead, we
will give a brief outlook on a possible alternative approach via the theory of Optimal
Transport based on work in progress [71].
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11.1. What to expect of a distance

Having the underlying higher-dimensional theory at our disposal, in Chapters 9 and 10
we explained how we can evade [68] the problem of the path in the presence of a
potential by lifting the problem back to the underlying geometry and using geometric
flows. However, in the course of these discussions —and also in Chapter 6 — we have seen
that in the presence of fluxes, or more generally, in the presence of a scalar potential,
naive measures might notlead to a well-defined (mathematical) notion of a distance any
more. For example, by loosing properties like strict positivity or due to the fact that in
the presence of a potential, the notion of (naive) geodesics does not necessarily coincide
with physical paths anymore. Indeed, it was pointed out, for example in [428], that due
to forces introduced by the potential the trajectories are driven to paths that deviate from
geodesics; see also the discussion in [373]. Consequently, it is not clear if such a notion
of distance, or better length, is on equal footing with the standard geodesic distance
on (flat) moduli spaces when it comes to the application of the Distance Conjecture. A
deviation from the standard notion of distance was for example also observed in [383],
where — inspired by the Maupertuis’s principle' —a distance in the presence of a generic
scalar potential was defined. However, even though passing some nontrivial test and
— similar to the RFC - reproducing the ADC, the distance fails to satisfy the triangle
inequality. A closely related —though not equivalent — proposal was put forward in [384]
actually evading some of these problem. However, it comes with other drawbacks
as it is, for example — similar to Ricci flow — bound to certain trajectories. Other
definitions, like the discrete approach of [456] succeed in satisfying such principles
but are difficult to compute in concrete examples. Distances between families of vacua
were also discussed in [382,447,448] as well as [457,458,509]. Furthermore, we saw in
Chapter 6 that in the case of a consistent theory with diverging potential, there can be
“would-be infinite-distance points” which lack a tower of states [67] and such situations
have to be properly accounted for also by a definition of distance in the presence of a
potential, or at least by suitable adjustments of the SDC.

Before we go into a more detailed discussion of the distances proposed in this thesis,
as well as a short comparison with alternative existing proposals in the literature, we

quickly recollect the required axioms of a distance.

11.1.1. Distance axioms

From a mathematical perspective, the requirements for a function d(-,-) to define a

distance are strictly set. In particular, for M a set, d is a distance (or metric) if it satisfies

ISee, for example, [508].
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the following axioms:
i) Positivity: d(P,Q) > 0 for P # Q... inequivalent points have non-zero distance.
ii) Identity of indiscernibles: d(P, P) = 0.. . the distance of a point to itself is zero.
iii) Symmetry: d(P,Q) = d(Q, P). .. the length form P to Q is the same as from Q to P.
iv) Triangle inequality: d(P,Q) < d(P,U) +d(U, Q) ... generalisation of “a straight line
through P and Q is the shortest path”.
Points i) and ii) are sometimes collectively referred to as strict positivity.

The SDC in its core formulation is crucially based on the existence of a well-defined
notion of (geodesic) distance and associated length-minimising paths. It is therefore
worth going through the above axioms and comparing with the situations we countered
for the distances or lengths defined in the previous chapters.

Before doing so , there is a comment in order concerning the two major approaches
for defining a notion of distance along the flow. The first was through the use of some
functional & (not necessarily the Perelman functional ) that might or might not have
nice monotonicity properties along the flow. In the former case, it can be integrated
along the flow to give rise to a nice definition of distance, as explained below. In case
such a (strong) monotonicity is missing, one can still use the functional to define a
distance, for example, through expressions like A = log(&E(sy)/E(s;)); cf. Chapters 9
and 10. The second possibility is to consider the flow as a path on a certain configuration
space (for example M(M) or MG(M)) and measure the distance or better length of the
associated path v, using the (natural) metric on the configuration space. In both cases,
the Ricci flow serves as a tool to identify the appropriate path. While in the latter case,
this is the “only” purpose of the flow, in the first case, the associated functional also
enters the distance. This means that in the second case the corresponding potential
only influences the selection of the path , while it is not clear in which way the metric
on this space captures the potential. In the first case, on the other hand, the geometry
and fluxes, and hence — by the correspondence explained in the previous chapters — the
distance, receive additional contributions through the generating functional. Hence,
in this case the distance itself is “weighted” by contributions that mirror the cost of
moving in the presence of a potential. This is a central point, and we will come back to
this in Section 11.3. The distance Ay, is a special case, as we showed in Chapter 9. When
using Ay, we actually measure the distances in GM(M) with the natural associated
metric given in terms of the generalised DeWitt metric (4.12) and therefore the two
approaches are actually equivalent in this case.

Ad i) & ii): For distances defined via geometric flow equations and a (generating) func-
tional, strict positivity of the distance is directly connected to the strict monotonicity

properties of the functional along the flow. In particular, for the distance A; defined

179



Chapter 11. The SDC on field space: distance or cost

(a)

Figure 11.1.: Due to the fact that Ricci flow selects specific trajectories in the configura-
tion space MG (M), distances are only defined for points on the same orbit. Allowing
to connect points on different orbits through fixed points one can assign also distances
to points not within the same flow trajectory. In order to obtain sensible results one
should only allow such a procedure for fixed points at finite distance.

in (9.11), strict monotonicity is directly inherited from the monotonicity of the generat-
ing functional #. As mentioned in Section 9.2.1, the functional is strictly monotonous
along the flow and zero only at fixed points. Therefore, the distance Ay inherits strict
positivity along the flow. However, it is clear that this property is directly correlated
with that of F. Once other functionals are used, or the flow modified such that #
is no longer strictly monotonous, also the distance loses the respective property. For
example, in Section 9.2.1 — after weakening the unit volume constraint — the resulting
flow was not even gradient anymore. The same is true for the supergravity flows
including RR-fluxes in the previous chapter. One could weaken the requirement of
strict positivity to only require positivity, for which a monotonous function is sufficient
while still using the length defined by (9.11). However, in such situations, a nontrivial
evolution along the flow might not come hand in hand with an increase of length. Un-
derstanding the relevance of such particular cases for the SDC would be an interesting
task. Distances measured using the path length in the associated configuration space
are strictly positive by definition.

Ad iii): While strict positivity — or its failure - is relatively straightforward and unam-
biguous to establish, symmetry is subject to interpretation. Geometric flows —in a strict
sense — single out a unique direction along the flow, establishing the distance d(P, Q)
for two points along the flow trajectory from P to Q. For these points, there is no different
flow solution running from Q to P as this would conflict with the monotonicity of the
functional 7. The only way to assign the distance d(Q, P), is via d(Q, P) = —d (P, Q),
which we can think of as transverse the flow “backwards? in time”. In this case, sym-
metry is satisfied by definition. Similarly, a definition via the path y on configuration

space is symmetric by definition as we can transverse the path in reverse direction.

’This backwards evolution should be understood heuristically as running back the flow trajectory
define by the “forward” flow and not in the literal sense of backwards Ricci flow. The latter is in general
ill-defined as explained also in previous chapters.
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Figure 11.2.: llustration of the principle explained in point iii) concerning the triangle
inequality on the explicit example of S®x S with H-flux. By choosing appropriate initial
conditions it is possible to generate a flow through every pair of points {r;, 2}, hence
covering any point in the configuration space or radii (blue). However in order connect
two arbitrary pairs of points, on needs to pass through the fixed point {vk1, Vk2} (at
finite distance; red). The orange line corresponds to the shortest geodesic path in the
space of radii according to the natural metric on the space of metrics.

Ad iv): Point three highlighted the fact that the definition of paths through (geometric)
flow equations raises subtleties concerning the symmetry criteria of the associated
distance. This problem is even more present when considering the triangle inequality.
For some given initial conditions, the generalised Ricci flow singles out a (unique)
path in the space of generalised metric GM(M). In particular, given some initial
point P, in general there is no other flow trajectory that connects P with some other
point Q. In general, the only possibility of connecting such points is by finding a
common fixed point of the flow (if it exists) and defining the distance piecewise, cf.
Figure 11.1 and 11.2. In order to obtain sensible results, such a fixed point has to be of
course at finite distance, as otherwise, one would artificially generate infinite-distance
points. Furthermore, distances between points P and Q can be measured simply along
the geodesics of this generalised DeWitt metric on configuration pace. These will in
general not coincide with Ricci flow trajectories, and in particular taking these points
into account, one could conclude that the triangle inequality is not satisfied®. However,
it is not clear how these paths translate to field spaces with non-trivial potentials. In
particular they might corresponds to very counter-intuitive paths crossing potentials
in a way that follows no first-principle criterion, cf. Figure 5.3. This is in clear contrast
with paths defined by the flow that arise as gradient flows of S or more precisely 7. In
principle, one could also ask for the triangle inequality to hold for points that can be
connected via a flow. Then the triangle inequality is satisfied by construction.

3 A similar issue arises in [384] where paths are defined via attractor solutions.
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There are two other related points or issues that are worth discussing. The first,
already alluded to above, is a possible incompleteness of reachable points. Usual mod-
uli spaces are given by geodesically complete spaces, and hence measuring distances
between points along geodesics is exhaustive. However, while Ricci flow in principle
allows for arbitrary points as initial conditions, all other points along the evolution
are then fixed by the flow equations. Furthermore, infinite-distance points are often
only reachable by extending the flow backward in time, which might not be possible.
However, it is worth noting that infinite-distance points usually correspond to certain
extrema of the underlying geometry, and these are often covered by Ricci flow.

Lastly, recall that GM (M) itself comes with a natural metric and hence notion of
geodesics. In general, these do not coincide” and are, generically, incredibly compli-
cated. Furthermore, they lack a clear physical meaning as they do not follow a (action)
minimising principle, i.e. they are not on-shell solutions of the equations of motion. It
is not clear if and how such distances are covered by the (generalised) SDC.

The above points leave us in a certain dilemma. While for true moduli spaces,
there is a well-defined and unambiguous notion of distance, the discussion on Ricci
flow as well as arguments already raised in Chapter 5 seem to suggest that once we
take into account a non-zero scalar potential, a generalised — somehow weakened —
notion of distance might be favoured. We will give a brief perspective in favour [71] of
such a more general measure in terms of so-called cost functions within the framework
of Optimal transport in the final Section 11.3. But before that, we briefly contrast our
findings with other proposals for distances and the SDC in the presence of a potential.

11.2. Relation to other proposed notions of distance

We briefly comment on some possible connections of our proposed notion of distance
to other existing work on the definition of a distance in the presence of a potential or,
more generally, on scalar field space.

Before entering any discussion on related approaches, it has become clear from the
previous chapter that in the context of geometric flows there are essentially two options.
The first is to flow (some part of) the total geometry or string vacuum. Depending on
the setup, one can then either flow only the internal geometry and then translate this
into a motion on scalar field space. Or flow the total geometry, which translates into
a trajectory on the full configuration space, including possible variations of external
parameters. This was extensively studied in the present work. The second option, only

“Notice that even standard moduli spaces, i.e. in the absence of a potential, allow for several inequiva-
lent measures, leading to possibly different predictions for the SDC; cf. [510]. See also [444] for a discussion
on issues arising due to diffeomorphism (non-)invariance of distances on the space of metrics.
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briefly mentioned in chapter 5 is to define distances directly with respect to scalar field
space of a generic effective action

7(d—2)
1
Sut= [ dE (R - ranede o' Vo). AL

Now, for example, if this action descends from compactification on an internal Calabi-
Yau, the kinetic term of the scalars is determined by a Kédhler metric y,;» = 9;0;K with
K the Kéahler potential of the Calabi-Yau. Whenever V = 0, one could try to directly
flow the moduli space metric y,,. This would give an alternative way of exploring
genuine moduli spaces. Alternatively, one can try to directly define [284] a flow for
the system (11.1) that also takes into account the potential V and the dynamical d-
dimensional metric g. Such an approach has partially been explored, e.g. in [284], the
resulting flow is generally not as nicely behaved as the flows that operate directly at
the target space geometry and hence evade explicit potential terms. The Lorentzian
signature of g further influences this negatively. However, it is exactly an action of the
form (11.1) that is the starting point of the consideration in [383] and [384]. A direct
comparison of the definitions of these publications with the ones presented here is
therefore nontrivial as it would require a careful analysis of flows on the scalar field
space directly.

We nevertheless point out that in particular, in view of AdS spaces and the asso-
ciated ADC, the proposals of [383] and [384] and a treatment via Ricci flow lead to
equivalent results, effectively reproducing the ADC. Indeed, we reviewed in Chapter 5
how by studying Ricci flow of (external) AdS spaces, the Ricci Flow Conjecture directly

reproduces the ADC and the associated distance

(11.2)

This distance was also obtained in both [383] and [384].

Similarly to the treatment in [384] which uses attractor solutions to define the tra-
jectories for the SDC in the presence of a potential, in [444,511,512] the authors used
the attractor mechanism to probe moduli spaces with supersymmetric BPS states. The
distance is in turn related to the difference in (squared) ADM mass of the associated
black hole. In some sense these approaches are similar to the first scenario described
above, flowing the internal space — here a Calabi-Yau — by the means of some evolution
equation that gradually changes the internal moduli along the flow. However, crucially,
the attractor mechanism as such is not a geometric flow and, in particular, does not have

a direct generating functional.
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It is therefore clear that so far there is no agreed upon universal® proposal for such
a distance that is fully satisfactory, or can cover all possible scenarios. Combining all
these facts naturally leads to the conclusion that — at least from the point of view of
the (generalised) Ricci Flow Conjecture — lengths are rather measured with respect to
a minimising cost principle, rather than a genuine distance. This, in turn, motivates a
treatment form a (mathematically) more abstract point of view, leading to the frame-

work of Optimal Transport, which we turn to in the next and final section of this thesis.

A nice comparison between the proposals in [383] and [384] can be found in the
appendix of [384]. For more details on the discrete notion of distance, we refer to [456].
Other proposals of generalised distances that we could not cover in more detail here
can be found in [513-516].

11.3. A proper distance on field space via Optimal

Transport?

In view of the previous discussion, finding a proper notion of distance in the presence
of a potential is very reminiscent of defining a cost function for an optimisation problem;
see, e.g. [517,518]. In fact, it has been shown recently [500,519] that (generalised) Ricci
flow can be realised in such a way, more precisely within the framework of Optimal
Transport [520] by choosing a suitable generalised cost functional that is closely related
to the so-called Wasserstein distance on the space of probability measures. The following
offers a brief outlook on work in progress of the author and collaborators to appear in
the near future [71].

In order to illustrate this some more, take the following toy optimisation problem,
illustrated in Figure 11.3. Given two piles of sand of a given volume V and a specific
shape, what is the best or most efficient way to move the (mass distribution of) sand
from one pile to the other? Or, formulated differently, what is the optimal way of moving
a distribution u supported on (some subset of) R into a different distribution v on R
of equal measure. In order to find the optimal way, we need to define a so-called cost
function c(x,y), quantifying the “cost” of moving the sand from one point x to another
point y. In this one-dimensional example we can simply take the Euclidean distance

Note in particular that in general, different notions of distance might lead to different infinite-distance
points, and more importantly it might be that finite distance point according to one definition of distance,
might be at infinite distance with respect to another definition, causing obvious conceptual problems for
the SDC. Such scenarios were examined, for example, in [510] and we refer to it for details. In any case, it
raises the question of the existence of a unique definition, realising some underlying physical principle.
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a ’

x y

Figure 11.3.: Illustration of mass distributions over the real line. The optimisation
problem corresponds to finding a (volume-preserving) map that takes u into v in a way
that minimises a certain “cost” functional, set by a cost function c(x, y).

d(x,y) as a cost function c¢(x, y). A map realising the transport of the mass density in a
minimal way with respect to the cost function d is then an optimal transport map.

Normalising the distributions to unity, we can view them as probability distributions
on a metric space M, which in this case is simply M = R. The optimisation problem just
sketched can then be rigorously defined within the framework of Optimal Transport, for
example in terms of the associated Monge-Kantorovich problem. We will not enter this
here in detail, but focus on a closely related quantity.

In particular, for (M, d) a (separable and complete) metric space denote by P (M) the
space of probability measures on M. On the space £ (M) we can define the Wasserstein
p-distance W), between distributions pg, p1 € P(M) via

1/p
W,(po.p1) = inf (/ d(x,y)? dn(x,y) , (11.3)
MxM

el (po.p1)

where 7 is a coupling (a joint probability measure) with marginals pg and p;.

The distance W), is then exactly the total cost associated with the optimal transport
plan minimising the Monge-Kantorovich problem with cost function c(x, y) = d(x, y)?.
The Wasserstein distance W, can therefore be viewed as a measure of how different these
distributions are and, crucially, defines a proper distance on the space of probability
measures. This raises the following question:

Can we formulate the problem of distances on scalar field space in the presence of a potential
within the framework of optimal transport and measure distances using a (generalised)
Wasserstein distance?

It is then clear that one of the central aspects of such a proposal is a sensible translation
of the field space problem to a problem in terms of probability measures, as well as the
identification of a suitable cost function c(x, y) that takes into account the effect of the
potential. Indeed, to gain intuition for the latter, we can again look at the toy example
introduced at the beginning of this section. While the example was introduced over
the one-dimensional space R, let us generalise the setup and consider the distributions
on R2%. The mass distribution is then over some area specified by points (x1,x2) and a
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Figure 11.4.: Starting from distributions on a two-dimensional metric space M = R?
(figure (a)) and projecting onto the one-dimensional subspace y = 0, the distance or
cost on the resulting space (figure (b)) can be viewed as “ignoring” some contributions
from the original example. The inverse problem of finding a cost function that takes
into account additional information besides the position x; —here the position in x; —is
the toy analogue of the problem of the scalar potential.

natural cost function is simply the Euclidean distance in two dimensions, which now
does not only take into account displacements in x = x; to y1, but also displacements
from x7 to yp. We can project this 2d example onto the real line along x; and it is clear
that the cost associated to the two scenarios differs in general; see Figure 11.4. Viewing
the additional direction as some kind do height, we can formulate this by saying that
in the 2d example our cost function also takes into account the cost of moving the mass
vertically (lifting it at the cost of potential energy), while in the one-dimensional case
obtained form projection, we only take into account horizontal displacements. The
problem of finding a distance in the presence of a potential can then be seen as the
inverse of this toy example. Given a notion of distance or cost on scalar field space, how
do we need to modify the cost function in order to take into account the cost of moving
in a potential. While for the toy example this amounts to taking the canonical higher-
dimensional distance d(x, y), for the scalar field space there seem to be several possible
scenarios that also depend on the precise embedding of the field space into a space of
probability measures. This will be discussed in the forthcoming publication [71].

The second big question — which in principle has to be addressed first — concerns
the embedding of scalar field space into a space of probability measures. We will
not enter any details as this is also still subject to current investigations [71]. One
possible approach seems to be to work with systems that allow for a formulation in
terms of an associated Hamilton-Jacobi problem which can be related in a canonical
way to the Wasserstein distance. These arise, for example, in the framework of (fake)
supergravity [521]. The associated probability distributions in this case can be obtained
from the Hamilton-Jacobi system together with a Wentzel-Kramers—Brillouin (WKB)
approximation. Additionally we can use the work of [522] and the associated “wave-
function of the universe” [523] satisfying the Wheeler-DeWitt equation [524-526] in
order to include also a discussion of dynamical spacetimes. We plan to report on these
approaches in the forthcoming publication [71].
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Summary and future directions

The scalar field space associated to a generic (low-energy) effective theory is not
flat, but comes with a nontrivial scalar potential. Therefore, taking into account the
implications of such a potential is crucial when formulating Swampland criteria, in
particular for the Distance Conjecture. In this work, we investigated this problem
from various directions, presenting novel approaches and discussions that allow for an
extended application of the SDC.

Focussing on the Distance Conjecture, we performed [67] an in-depth analysis of
the implications of topological T-duality for spaces with nonzero curvature and in
the presence of fluxes. Carefully tracking the exchange of towers of states under the
topology-changing transformation, we explained that due to the topological properties
of S3, there is a lack of towers of states required for the SDC. However, observing a
divergence in the scalar potential along this direction, we argued that this problematic
direction should be viewed as screened by the potential. We concluded that due to
the complicated topological and symmetry properties of curved backgrounds and the
presence of fluxes, this should be a more general feature of diverging potentials. This
led us to propose an amendment of the SDC presented in Section 6.1.4, extending the
SDC to these situations. This was substantiated on further examples, presenting also a
tirst step towards a more realistic examples to check our proposal.

Generic points in the Landscape are expected to correspond to (some form of) non-
geometric configuration, rather than a geometric background. As such, they should
necessarily be included into the Swampland discussion, and this represents the main
motivation of Chapter 7. Starting from a particular realisation of such backgrounds
in terms of non-geometric 0- & R-fluxes introduced in Chapter 3, the results of [67]
provide a first discussion of such spaces in the context of the Distance Conjecture. We
incorporated these spaces into the reduction procedure and showed that a consistent
picture for the SDC indeed requires a transformation to the non-geometric S-frame in
order to obtain consistent effective actions for the SDC. We explained some issues that
arise for the 3D T-duality chain, suggesting it actually lies in the Swampland, and also
how some of these issues are resolved by moving to the more complete 6D analogue
that can be realised in terms of 10D supergravity solutions.

In Chapter 8 we expanded our discussion to also include a first exploration [67]
of the role of generalised T-dualities in the Swampland. It was explained how by
using the associated transinformation, one can access an even wider range of (possibly
infinite-distance) points on field space through dualities. We employed the framework
of Poisson-Lie T-duality to obtain the non-Abelian T-dual of $3, which turned out to give
a highly nontrivial realisation of a non-geometric background, necessitating a careful
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analysis using S-supergravity. We clarified the (exotic) exchange of zero modes and the
consistency under T-duality as well as the duality invariance of the metric and potential
on field space, together with some implications for the SDC.

The second major approach toward a treatment of potentials initiated in [68] and
introduced here in Chapter 9 was the use of geometric flow equations. In particular, we
utilised generalised Ricci flow in order to translate the problem of defining distances
on field space to the space of generalised metrics and trajectories defined by gener-
alised Ricci flow. We showed how the Ricci Flow Conjecture of [381] can be extended
to flux-supported internal spaces. This suggests a new way to systematically explore
scalar field space with potentials or string theory field space, respectively. In particular,
if offers an alternative perspective on the divergent potential observed in Chapter 6.
Effectively geometrising the exploration on field space, this new approach bypasses the
problem of defining paths on field spaces with potentials and the associated challenges
by using generalised Ricci flow to single out paths on scalar field space. We refined the
existing notion of distance for the RFC and showed that, for gradient flows, it is directly
related to the natural distance on the space of generalised metrics, as well as giving
a first-principle derivation of the logarithmic dependence proposed in [381]. Further-
more, we discussed the role of the field f or dilaton and proposed some alternative
flow equations as well as associated notions of distance.

Building on the intuition gained in previous chapters, in Chapter 10 we further
generalised the flows to also include RR-fluxes as well as source contributions, leading
to a flow for Type II supergravity. This ultimately also allows us to discuss full 10D
(product space) string vacua, at least in the special setting of Minkowski vacua. We
explained how these flows can potentially give new perspectives on issues like scale
separation or the role of smeared sources.

Finally, Chapter 11 addressed the fundamental question of the definition of a proper
notion of distance in the presence of a scalar potential. We contrasted the axioms of a
distance with the properties found for the notions of distance defined in earlier chap-
ters, as well as a comparison with other proposals in the recent literature. This led us to
the conclusion that a definition in terms of a cost rather than a proper distance might be
favoured in these settings. We gave a brief outlook on some work in progress, aiming

to realise this idea within the framework of optimal transport.

Altogether, it is fair to say that the role of the scalar potential of the SDC is a deep
and intricate problem that requires a careful and thorough treatment of all associated
issues. While here we offered some appealing approaches in that direction, there are
still many open questions and further aspects that need to be investigated:
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Tackling more realistic examples, AdS and scale separation. First of all, the be-
haviour of the scalar potential should be tested in other — potentially more involved —
setups, together with a careful analysis of the involved towers of states in order to under-
stand the precise circumstances under which the proposed divergence in the potential
appears. The same holds for the various flow equations introduced here. In particular,
it would be very interesting to investigate the behaviour of the generalised flows for
nontrivial product spaces, for example also AdS vacua. As explained in Chapter 10,
this might lead to new perspectives on hotly debated issues like scale separation [126]
or the role of smeared sources [125,389,471,479].

Topology change Topology change is believed to be a universal aspect of quantum
gravity, prominently featured in string theory [165-170]; see also [171] and [172]. We
explained how this is also highlighted by T-duality extending to a map between man-
ifolds of different topology in the presence of fluxes. These changes can also occur in
the framework of deformations and the change of the associated deformation parame-
ters [527]. The moduli space components of spaces with different topology sometimes
correspond to moduli space components with different topology [134,528,529], and
it would be interesting to see how this relates to the SDC but also with® dynamical
cobordism [324-329].

Flux variations and distances on the space of string theory vacua. Furthermore,
starting from configurations that do not satisfy the equations of motion for the fluxes,
these new flows can lead to situations in which we can study flux variations from a new
perspective. This is particularly interesting also in view of flux variations for families of
string solutions that go beyond the rather simple cases of AdS Freund-Rubin or DGKT
solutions discussed in Chapter 6. It is not fully clear how to generalise the variational”
procedure initiated in [447] and further studied in [382,448] for external AdS spaces —
or even more complicated warped spaces — to arbitrary variations (like the ones studied
in a slightly different manner in Chapter 6) and (generalised) Ricci flow on product
spaces might offer a new perspective on this.

Backreaction and quantum corrections. Having introduced (smeared) sources for
our flow equations, it would be interesting to also study their localisation, nontrivial
warping, as well as the role of quantum corrections, in particular in view of back-
grounds like the DGKT example discussed in Chapter 6; see also [125]. Using the Ricci

®We thank Andriana Makridou for a very nice talk at the workshop “Lotus & Swamplandia” in Naxos
and a subsequent discussion on this topic in the context of dynamical cobordism.
7We would like to acknowledge a nice discussion with Nicolo Petri on these, and related, issues.
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Flow Conjecture it might be possible to track such corrections by adding appropriate
terms to the flow equations. Such corrections have been studied for example using
integrability techniques [530]. Flows with higher-loop contributions have also been
discussed in [531] starting from the two-loop RG flow of the Heterotic string, which in
fact can be seen as a modification of generalised Ricci flow by higher-order corrections
or alternatively a flux-modified RG-2 flow [532]. In view of higher-order curvature
corrections also the possible connection to [533] seems intriguing.

Generalised Calabi-Yau spaces and geometric flows. Other prominent flows
that might have interesting implications for the Swampland program are Kéhler-Ricci
flow [534] and its generalisation [535], or the Hull-Strominger system [536, 537] and
associated flows that have fixed points that solve the anomaly cancellation conditions
of the aforementioned system, see, e.g. [538,539]. The former would open up the pos-
sibility of studying N = 2 flux compactifications and generalised Calabi-Yau manifolds
from a flow perspective. Similarly, the application of flows for (truly) non-geometric
backgrounds, as well as the role of generalised dualities in the context of flows, is still

an open question.

Arelation to information theory. A last point we would like to mention concerns the
issues associated with a proper definition of distance in the presence of a potential and
possible connections to an information theoretic distance. In particular, we explained
that — especially from a point of view of Ricci flow [500,519] - there is a close connection
to optimal transport. While the author is currently investigating this approach in
some upcoming work [71], it would be interesting to also connect this with classical
information theoretical approaches and possibly connect to the conclusions of [515,516];
see also [540,541].

In conclusion, we see that much like the unfinished symphony of quantum gravity that
motivates this work, several aspects of the Distance Conjecture and the scalar potential remain
an unfinished composition, with its final measures still to be written.
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A. Massive Type IIA & sources

Romans mass

Type IIA supergravity allows for a deformation by the introduction of the so-called
Romans mass m. The associated theory is called massive Type IIA. The action is identical

to before, apart from an additional term

Sp=o [ d10W=G [—%nﬂ} , (A1)
2859

and the redefinition of the RR fluxes, which now read

F> =dCy +mB, F4:dC3—H/\C1+%B/\B. (A2)

Source contributions

In case there are D-brane or O-planes, the action Sy in (1.13) is supplemented by a source
term Ssource, Which again consists of two parts, a Dirac-Born-Infeld (DBI) [542-544] and
a Wess—Zumino (WZ) part [545]. Since the WZ term is topological it will — like the
CS term of the bulk action — not contribute to the equations of motion. Specialising to
fibred manifolds and setting gauge field contributions on the source worldvolume %, 1

to zero® the DBI term can be written as (we follow the conventions of [480,504,506])

Sppr = —¢pTp / e~ ®d%+/det(P[g1,1)5(L), (A.3)

where P[] is a projector onto the directions parallel to the source and §(L1) a delta
function that localises the source in the transverse directions. The constant ¢, is ¢, = 1
for a Dp-brane and ¢, = -27 -5 for an Op-plane, while the tension is 7, = %(471&’)3_7!7
and T, = up the RR charge since they are BPS.

Equations of motion and Bianchi identities for massive Type IIA with sources

The equations of motion for massive Type IIA in the presence of fluxes take the form

1
0=R11+2V1VJ¢—ZH%J—€2(D

1 1 1
E(FZZ)IJ + E(Ff)u — 781 (mz +|Fy* + |F4|2)}

14 1
~ ¢ (TIJ ~ 5817 Z lp) , (A4)

sources

8n particular, we take (*B — ¥ = 0, with.* the pullback to the worldvolume X p+1 and ¥ the field
strength of the worldvolume gauge field.
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and for the dilaton
o=4A¢—4|V¢|2+R—1|H|2+1e‘I’ § t (A.5)
2 2 pe '
sources

where T;; is the energy-momentum tensor associated to Spg;. Under the above as-

sumptions, it can be written as

242
Ty = =22 2, crTpPIGLINAetPIGL]IL). (A.6)

such that its trace defines 7, via

Gy, = Z (p+1)t,. (A7)
sources
Similarly, one can obtain the equations of motion for B and the RR-fields, as well as
their Bianchi identities. For example, the equation of motion for F4 now reads

d(xFp) + HA %xFy = 21?%0 Z C()/Jo(S;' , (A8)

0-sources

while the Bianchi identity is

dF—HAF =2/, »  ceiteds - (A9)

6—sources

For the remaining fluxes, we refer to the literature; see for example, [504].

Remark

¢ For massive Type IIA, the RR T-duality rules (2.20) are slightly modified. Define
the polyform C = Y, C" as well as the quantity C = C — mX%®. Then the
T-duality rules are given by the above relations (2.20) but with C(/2/4) replaced
by the hatted equivalent C [179].

* In the presence of fluxes and sources it is convenient to work in the so-called dermo-
cratic formulation [506], which explicitly includes also the magnetic dual fluxes,
such that, for example, in (massive) Type IIA, we have generically all odd fluxes
F, in the theory, i.e. n € {0,2,4,6,8,10}, where the Romans mass is identified
with Fy; we refer to [506] and the standard textbooks.

» Working with smeared sources, at the level of the equations of motion and Bianchi
identities, it breaks down to replacing ¢(L) with 1 in the equation for G and @,
while replacing 67 with the volume element d'x|, .
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B. Generalised momentum-winding exchange

T-duality on a circle not only inverts the radius, but also interchanges momentum zero
modes with winding states. While in the abelian case this can be shown rigorously, for
generalised T-dualities this is more involved. Winding modes might be absent due to
lack of non-trivial cycles and the dual background, in general, also lacks some, or all of
the isometries of the initial space and therefore also the associated conservation laws.

However due to the Poisson-Lie condition (2.35) it turns out that there is a current’
J = eajEijaJrXidOjTa + eajEij8+XidO'_Ta (S G~ , (Bl)

that, although no longer conserved, turns out to be G-flat'’. The associated charges,
in turn, are no longer numbers, but valued in G. The flatness of J can be shown to be

equivalent to the following unit-monodromy condition

Pexp/J(T(g) =éeG, (B.2)
y

where # denotes path ordering. It was realised in [193], that the constraint actually
provides crucial information about the modes at the quantum level, effectively giving
rise to quantisation of momentum and winding modes. In particular, a very similar
relation already appears when quantising the free boson NLSM on a circle

Pexp%]zéelm, (B.3)
Y

which is satisfied due to quantisation of momentum on a compact space. Extrapolating
the argument to Poisson-Lie manifolds, the authors in [193] proposed that (B.2) is the
appropriate quantisation condition for this more general case, leading to a generalised
Narain lattice Apy = m1(D). Imposing the constraint it is possible to translate the
quantisation condition into a homotopy problem of the target space and its dual. In
the abelian circle case the current (B.1) is valued in uﬂ(\li) and the unit monodromy
constraint (B.3) projects an infinite number of momentum states onto the unit element.
This suggests lifting the current to the universal cover of U(1), the real line R. The
quantisation condition or monodromy constraint then selects the allowed quantum
states as the one being projected to the unit element. This is schematically depicted
in Figure B.1. On the other hand, evaluating the dual current, valued in u(1), leads to
quantisation of the dual momenta, which can be viewed as the winding modes from the

perspective of the initial frame. In total, the winding and momentum states are therefore

9The vielbeins e,/ are defined via g~1dg = e“jdx«iTa for g € G such that eajebj = 62.
10gee Table 2.1, column “Conservation eq.”.
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IRI’I

0 0
NS
7,(G)/n(D/G)
—— /N
0 —s 5(D/G) —> 1(G) ——> (D) —> ,(DIG) —> 0
C 2 1 1 1
/ N
- m(D/G) 7(D/G)
< / AN
- U) = §! 0 0

Figure B.1.: An infinite amount of elements in the covering space R, gets projected down
to the identity e € U(1) (left). On the right we visualise how long exact sequences can
be decomposed into short exact sequences in a canonical manner. For details see [164].

encoded in the homotopy properties of the double D = U(1) x I’JFT) vian(D) =Zx Z,
which is indeed the Narain lattice for the boson on the circle. Generalising this to the
PL symmetric spaces, the winding and momentum modes are therefore encoded in the
Drinfel’d double D and its homotopy group 71(D). The double D - viewed as a principal
G-bundle - gives rise to a long exact sequence of homotopy groups (see, e.g. [164])

0=m(D) — m(D/G) — 71(G) — m(D) — m(D/G) — no(G)=0.  (B4)

Using standard arguments (cf. Figure B.1 or [164]), this can be decomposed into short
exact sequences, in particular giving rise to

0 — m(G)/m(D/G) — m1(D) — m(D/G) — 0, (B.5)
which is in fact split and hence we obtain an isomorphism

m1(G)

7T1(D) = ﬂl(D/G) 7] m .

(B.6)

This can be viewed as the Narain lattice of the PL-symmetric NLSM under the constraint
(B.2). Physically, the non-contractible cycles in D split into quantised momenta and
winding modes. The identification depends on which of the groups or spaces is viewed
as physical and dual, respectively. The distribution of states is then summarised as

winding in D/ G
—_—
71(D) ~» m1(D/G) @ (m(G)/ma(D/G)) , (B.7)
N———
winding in D non-comm. momentum in D/G

and similar for D/G. Comparison then yields the generalised momentum-winding
exchange. For further details, we refer to [193]. The argument generalises to coset
spaces G/H. This will be discussed elsewhere.
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C. Dilute fluxes and Laplacian spectrum

We briefly illustrate the idea of the so-called dilute flux approximation on the example
of the three-torus with H-flux. In particular, assume that the flux is sufficiently weak
compared to the overall volume of the geometry, i.e. “diluted”

k

W <1 , (Cl)

for [H] = k the flux number. As a result, we can view the contributions coming from
H as perturbations around the conformal torus fixed point and solve the theory up to
leading order in k. The resulting theory is often denoted CFTy; more details can be
found in [267,269], as well as in [546] and references therein.

Working at the level of the NLSM (1.6), for which the canonical metric and B-field
of the flat torus are given by

G =diag(r},r3,r3),  B=kX’dX; AdXa, (C2)
the equations of motion reads
Giy0* XY = kéuy0o X 0 X" . (C.3)

Assuming that we are within the validity range of the approximation, in particular large
r;, this can be solved perturbatively and the solution up to leading order in k reads'!

h h
XH(t,0) :xg + —zxz +pOT+ —pHT+N”0' Z —evpppNV 2 (C.4)
Tu 2ry,

where for once, we are not summing over repeated indices u. Furthermore, we allowed
non-trivial winding N* of the string via the usual boundary conditions of the three-
torus, X* (1,0 +2r) = X*(1,0)+2xNH. Since B is linear in X#, the canonical momentum

is still given by
1 a4 v
I, = 2H(G,“,X +B,,X"), (C.5)

and since B is non-constant, translation invariance generated by I1 is generically broken,

and there is no conserved momentum. From the expansion (C.4) we can read off
XH = ph + sz Z evpppNV (C.6)

We see that the centre-of-mass momentum is no longer constant but depends on the

HEor more details we refer to [261].
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worldsheet parameter 7. In vector notation, the last term reads
PoXN=0&po || N, (C.7)

hence momentum conservation only holds, if momentum and winding vectors are
parallel. Since on the torus there is generically non-zero winding and non-zero, arbi-
trary momentum states, this implies that momentum is non-conserved. This is rem-
iniscent [269] of the cyclotron effect of charged point particles moving in a (constant)
magnetic field, which in this higher-dimensional situation translates to a constant H.

Attempting to perform a dilute flux approximation like above might give some
heuristic ideas of the mass behaviour and conservation properties of states, also for
curved spaces. However, several issues arise, rendering such approaches technically
much more involved and, in general, not fully trustworthy:

¢ For curved spaces, a naive flat-space mode expansion is not possible, and the
identification of the mass spectrum becomes much harder. In principle, one has
to perform a Hodge decomposition and determine the massive spectrum of the

KK-tower by solving for the scalar spectrum of the associated Laplacian'”.

* In the presence of fluxes, the above-mentioned Laplacian problem and the Hodge
decomposition must be adopted to H-twisted cohomology [454]. In particular,
the latter is determined by the nilpotent differential dg = d — HA and the Hodge-

decomposition and Laplacian problem should be built form dg.

D. Derivation of reduction formula

NSNS sector

First, the identity (6.25) is a direct consequence of the assumption (6.24). In particular,
there are only four non-zero mixed Christoffel symbols

1 1 1 1
Fga = Egayaagaﬁ > ng = _Egayayhab > F?l,B = —Ehababgaﬁ , FZG = Eh“caﬁhcb . (D.1)
such that splitting R(G) into internal and external indices and properly resumming

gives

R(G) = R(g) + R(h) + Ztr(kﬂkv)g’“' - }ltr(kﬂ)tr(kv)gw —tr(h'ogh) . (D.2)

12Tt was pointed out for example in [101], that sometimes the Laplacian spectrum may not coincide with
the spectrum of the effective theory. This can be caused by the appearance of so-called space invaders [98],
arising through the combination of massive modes into massless ones, or by additional fluxes.
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Now also using egs. (6.26) to (6.28) the action splits as (absorbing ® into «)

S = %/ddxd"yﬁ\/h_oe_z‘pye_wd (R(g)+R(h)+3’(g, h)
K

1

1 o1 . .
- Eﬂ{wﬂ[‘”/’ - E}gjkﬂ'fk — —Hy ik HP* + 40,007 ¢ +4ai¢a’¢) . (D.3)

4

Now using the transformation rule of the Ricci scalar under a Weyl rescaling

—2¢q
d-2"

2w ~

g e “g, with w = (D.4)

we can bring the action to the Einstein frame

1 o — 1 L sey Ad=T1) ]
S= ﬁ/dd?fd yv=g Vho e 2% {R(g)—ﬁ AP e at — 75 Oupadt pa+
1

.. . 4 1 . .
(R(h) - E}[ijkﬂ‘-'k +4al-¢>a‘¢) edd _ J(g)e 2w — Zy{,,jkﬂwk +4a,,¢aﬂ¢} . (D.5)

Note that we partially integrated the contribution of the transformation of the Ricci
scalar to obtain the last term. The term (g, h)e >“ can also be partially integrated '
to obtain

[ atxars g Vo2 g e -
/ d9xd"y—=g Vho e 2% (—Llitr(k,ukv)g”" - }Ltr(k#)tr(kv)g”" - 2tr(k#)8’7‘¢d) . (D.6)
Using the identity d(det(A)) = det(A)tr(A~16A) we obtain
tr(h~1d,h) = 48,0, (D.7)
such that we end up with

1 d - 5 . 1 Aoy 8oy 4 .
= — n —_ h ¢y {R —_— v /“lV/l -2 —_ — M
S 2K2/d xd"y\/-gVhoe (&) 1757 AH! Y ea d_za,,¢da da+

1 , A2 N 1 -
(R(h) - = HpH +4ai¢al¢) et = Jtr(kuk )3 = 29, | (D.B)
Introducing the invariant internal volume

V= / d"y hge ¢ . (D.9)

13We assume that total derivative terms vanish and hence can be dropped. In principle, this has to
be checked for the specific background at hand. In particular, the total derivative might not vanish in
the context of non-geometric background, where extra care is needed. See also Appendix E of [67] and
Chapter 3.

201



Appendices

we can write the action as

(V — . 1 ava 787(# 4 (1
$=5 / AUNZ {R(3) = S5 a7 e T = =20, 000"+

1 1 i
- (k) = 2940377 = Vo(gar b)), (D10)

where we defined the scalar potential

—~ 1 .. . 4

Vo(¢a, ¢a) ==V~ / d"y Vho e‘“’y{(R(h) - o e + 4ai¢a‘¢) et} (D1

Finally, we work out the explicit moduli dependence by splitting the derivative 0,(-) =

04 ()] p=const. + (Ou?)0“(-) where 9, = %. This gives, with now all partials d,, under-
stood as d,,(+)|p=const., the result

(i/\ = - 1 aval —8¢q 4: o
S= m/ddx\/—g {R(g) - E}[ymﬂ“ leas — ) 0 ha0" pa+
~ YabOp 96" = a0 = V(g da)} . (D.12)

with yap, Yau and V (9%, ¢4) as in (6.31) and (6.32).

RR sector

We start from the Weyl rescaled action
_ 1 d_gn, [—5 -2¢ 5 1 2@-w) 2
S_ﬁ/d xd y\/—g\/h_oe y{R(g)+~~—§e ;!FA}. (D.13)
Then using the form (6.40) of the potentials C,, we can write

[Fol* = [l + 11 + P (fp)uar...apr (fp)vbr..bp 18 HPY L h=1Pret (D.14)

and therefore we get

1 — _ 3 1 1 ,a-2p 2
S = 5 / dxd"yy=g Vho e 2% {R(g) oo §e2(‘1’0+‘7) Z Eez a2 %4 |F,| (D.15)
P

1 2(d— 1 1 20 p ~ b b
- Ee (@-w) ; E }fp| - Ee ; lT!(fp),ual...ap_l(fp)vbl...bp_lguvhal Lo hfrt pil} .

Again we work out the explicit moduli dependence by splitting the derivative

0u () = 0u()lp=const. + (0up?)0°(-) where 9¢ = aga . We do not consider variations
coming from the purely external fluxes for now. Furthermore the purely internal part
can not give contributions as there are no derivatives with respect to x#. Therefore we
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consider only the last term. This gives terms which we recognise as the higher form
generalization of the contributions from the Kalb-Ramond 2-form. Plugging these
results into the expression for the action we get

1 1 1 ,a-
S=75 / A"y Vho e 20 {R(@) + -+ = 520 N — 2 0 |
2K 2 > p!
1 o2(@wpro) 200 N 2P azuy
- Ee e Z F <aycp—1|aacp—l>h (0, gH")

) p ) (D.16)
2(®p+0) 2 a b ~uv
— 56 (Do+ )e Pa Zp: F <aacp—1|abcp—1>h (a,u(p av‘/’ g'u )

1 5 5 1 4eq, 2 ~
-5 (©o+07) ,2¢a Zp: ;(ea-z ’fl’|h +p (Oucp-1l0ycp_1), g’”)},

leading to the expressions (6.42) and (6.43).

E. Some basics of (parabolic) PDE

We review some basics of (parabolic) PDE, including some differential geometric iden-
tities and conventions used in this work. We mostly follow the conventions of [547],
except for the relative minus sign of the Laplace-de Rham operator. See also [501].

Differential geometry conventions

For d : Q%¥(M) — Q*1(M) the exterior derivative on the n-dimensional manifold M
with metric g, we define the co-differential ¢ as the adjoint § = d* : Q*1(M) — Qk (M)
satisfying

/g(d*a,ﬁ)vol:/ g(a,dp)vol. (E.1)
M M

The Hodge dual of a p-form 1 denoted by %7 is given as the unique (n — p)-from
satisfying
a A xn = g(a,n)vol, (E.2)

for every k-form a, such that we have the following identities (7 a p-form)
*xn = (=1)P""Psgn(g)n, (B.3)
and the co-differential § can be written as

on= (1" en(gyxdxn, (& (M., = Vi,
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Here V is the Levi-Civita connection on M and we denote by V; also the covariant
derivative in the direction e¢; = %. We can define its formal adjoint V*

g(Vya,B) = g(a,Vxp), (E.5)
and with that the Bochner Laplacian A acting on a p-form 7 as
Aw=-V'Vw = tr V’w. (E.6)
Acting on a scalar function f, it reduces to the rough or connection Laplacian Ay
~V'Vf=trV2f =YV, V;f = Avf, (E.7)

so that we can drop the subscript in A. From d and ¢ we can furthermore define the
Laplace-de Rham operator or Hodge Laplacian as

Agr : QK(M) = Q¥(m), Agrw =—(dé +d)w. (E.8)

The sign choice we adapt here is somewhat unconventional but has the advantage that

when acting on scalar functions gives
Agrf = =6df = V'V, f = Af. (E.9)
This can be used to establish the Weizenbdck identity (cf. [547])
—Agr = (d*d +dd*) = V*'Vw + Ric(w) (E.10)

from which we obtain

Agrw = Aw — Ric(w) , (E.11)
Here Ric(w) is the Weizenbdck curvature operator defined through the Ricci tensor.
The precise form is not important, only that it is of lower order compared to A.
Parabolic PDE and the principal symbol
We recall the definition of parabolic differential operators on curved manifolds, follow-

ing [548].

Let E, F be smooth vector bundles over a C* manifold M and denote by C*(E) and
C®(F) the vector spaces of smooth sections of E and F, respectively. In each local patch,
we can write an order k linear differential operator L : C*(E) — C®(F) acting on an
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element y# € C¥(M) as

I
LW)a = Z(ai,ﬁ)’”z”'kviliz...kwﬁ . (E.12)
k=0
Here, B = 1,..., p enumerates the coordinates {¢“} on the fibreof Eand a =1,...,¢

the coordinates {n®} on the fibre of F. The coefficients (a’flﬁ) are k-tensors.

The principal symbol o (L) : I[TI"(E) — II*(F) is a vector bundle homomorphism
with IT : T*M — M the bundle projection'®. Explicitly, it is defined at (x,¢) € T* as

[o(L)(x, )] ap = [al g ()] " . & (E.13)
with ¢; € RP. Therefore, since V;..,¥ = V;, ...V, ¥ = 0; ...0;, ¥ + loweroderterms,

o (L) is effectively obtained by replacing ; with ¢’ in the leading order part of L.

Now L is elliptic at a point x € M if (L) (x, £) is an isomorphism'” for every & # 0.
Furthermore, A is strongly elliptic if there exists a constant 6 > 0 such that

[0 (A) (x, )] apn®n” 2 nlél Il (E.14)

where |n|? = g'/ (x)&:¢; (for the Riemannian manifold (M, g)) and 1o = hagnP with hag
the Riemannian metric on the fibres. In particular L is strongly elliptic if the matrix of
the principal symbol is everywhere positive definite.

A non-linear differential operator L : C*(E) — C*(F)

Ly = F(x,y, Vi, ..., V*y), (E.15)

for F differentiable, is said to be (strongly) elliptic if the linearised operator DL at x is
(strongly) elliptic with respect to .

Finally, a system of PDE is (strictly) parabolic if for ¢, € C ([0, o[ x C®(E)) the

system

Oss = Lsis (E16)

is given by a family of smooth (strongly) elliptic operators Ly : C*(E) — C®(F).
If a system if strongly parabolic, there exists a unique smooth solution v to (E.16)

with initial condition ¢ (x, 0) = ¥(x) on [0, 7[ for some 7 > 0.

4Note IT*(E) is a vector bundle over T*M with fibre E at (x, &) € T*; cf. [278].
15This necessitates p = ¢ and one can identify E and F.
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Gradient flows

In Chapter 4 we briefly discussed the definition of a gradient flow, where we gave
a definition for the simple Euclidean case. In a more general setting, following the
conventions of [282,391], we can define a gradient flow in some abstract space X
with “coordinates” W9, metric GA® € I'(§?T*X) and generating functional & : X — R
according to [520,549,550]

d 5
aqﬂ‘ = —grad;(&(¥)) = —GAB(ST—BS(‘P) . (E.17)

In case the coordinates are the metric tensors ¥4 = g uv, the space X can be identified
with the space of Riemannian metric M(M) and the metric G5 is the DeWitt metric
(4.12). Then taking the Perelman functional 7 of (4.3) as a generating functional one
recovers Ricci flow, or more precisely the combined flow; cf. also [282] and [391]. In
this case the gradient is with respect to the basis {9* = d,,, }. Similar one can then read
off the gradient flow of generalised Ricci flow from the variation in Eq. (4.24).

Note that the Wasserstein distance introduced in Chapter 11 can be associated to
a certain Riemannian (Wasserstein) metric gV on the space of probability measures
P (M) such that one can define a gradient according to [520, 549, 550]

grad,, ¥ (p) = —div (pV%S(p)) , (E.18)

with p(x)dx € P(M). Using this definition of gradient, together with a suitable gen-
erating functional one can hence define gradient flows on the space of probability
measures such that the associated distance is the Wasserstein distance (11.3). Appro-
priately choosing &, one can for example realise the continuity equation as a gradient
flow in this way. For details we refer to [520,549,550]. The associated differential
calculus on P (M) is known as Otto calculus [549].

F. Examples of the modified flows

We illustrate the behaviour of the modified flows on the canonical example of $* with
H-flux for the special cases of @ = 2 and a = -1, respectively.
For a = 2, the flow reads

18 +101<2
r(s)?  r(s)®’

— =T =~ F1
Bsf f (E1)

Since the flow equations for g;; are not influenced by the modification for f, the radius
stabilises at r = Vk for s — oo. In this limit d;f is not vanishing but approaching
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G. A generalised Ricci-Bourguignon flow

— ) r(s) — h(s) — f06) /

(a) NS ) s

Figure F.1.: The plots show the flow behaviour of the modified flows introduced in this
section on the particular example of $* with k units of H-flux. As desired, the flow
behaviour of r and f is no longer strictly correlated. In particular f diverges both for
the flow with @ = 2 (left) and a = -1 (right). Dashed lines correspond to an extension
“backwards” in time.

the constant value —8/k? and therefore this is not a fixed point of the combined flow
{8ij(s), f(s)}. However, extending the flow backward in time for ro > Vk we reach a
fixed point where both d;g;; = 0 and 0 f = 0, cf. Figure F.1, panel a.

On the other hand, for @ = —1 we obtain

0 (-1 _ 4k2
6sf =T, ' = ) (E2)
The situation is illustrated in Figure F.1, panel b.
Example including ¢
Working again with the example of $* supported by k units of flux, we obtain
0 2k>
Zg(s)=p0 =,
ds r(t)
0 6 2k* (3)
9 sy =Tr=——2 .
asf(s) I r(s)? " r(s)®

We find a situation in which r — Vk but ¢ and f do not approach a constant. However,

they diverge such that the generalised volume constraint is satisfied, cf. Figure F.2.

G. A generalised Ricci-Bourguignon flow

There are in principle different choices for the flow equation of ¢. We explained that
this corresponds to taking either the equation of motion descending directly form a
variational principle of the action, or — by using the trace of the Einstein equation —
replacing the Ricci scalar R. This gives an a priori different flow equitation, that shares

however the same fixed points with the initial one. This is not only true of the flow
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Appendices

---------------------- — $6)
— Ji»

r(s)

— h(s)

AN
\ S
Figure F.2.: Plotted is the combined flow of the system described by (9.35) and (9.37)

on the example of S® with k units of flux. The two scalars diverge in a way such that
the generalised constant volume constraint (9.36) is satisfied.

equation of ¢, but also g;;; see also the remark at the end of Section 1.2.1. In fact,
the form of the equation of motion for g used here is already the one obtained by
substituting the dilaton equation of motion, as by this choice we avoid the problems
arising from the negative modes of R, rendering the PDE ill-posed. However, these are
not the only possibilities. One can create a whole family of flows, all sharing the same
fixed point by introducing a flow according to

958ij(s) = -2 (Blg] +ptr(B};)gij — Zﬁggij) - (G1)

For {p = 0, k = 0} this is hence the standard flow introduced above, while for {p =0, k =
1} it gives the Einstein equation as derived directly from the variational principle; see
also [504], Eq. (A.15). Furthermore, in the absence of fluxes and sources, when setting
k = 0, the flow is reduced to

asglj(s) =-2 (le+pRgl]) , (G2)

which is exactly the so-called Ricci-Bourguignon flow [292,507]. The flow (G.1) can
therefore be viewed as a generalised version of the Ricci-Bourguignon flow. It would
be interesting to see if this flow can have similar relevance for the SDC and RFC as the
standard version discussed in [392], in particular when discussing product spaces.
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