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Zusammenfassung

Das astrophysikalische Gas, das den Raum in, um und in Galaxien ausfüllt, wie das interstellare
(ISM), zirkumgalaktische (CGM) und Intracluster-Medium (ICM), ist selten einheitlich. Stattdessen
ist es oft mehrphasig und besteht aus nebeneinander existierenden heißen, warmen und kalten
Komponenten, die mit Turbulenzen und Magnetfeldern wechselwirken. Um den Baryonenzyklus
in astrophysikalischen Systemen wie Galaxien zu erfassen, ist es wichtig zu verstehen, wie sich
die verschiedenen Komponenten des mehrphasigen Gases bilden, überleben und zerstört werden.
In dieser Arbeit werden diese Fragen durch eine Kombination aus idealisierten Simulationen
und der Entwicklung von Untergittermodellen untersucht. Die großen Überdichten und kleinen
Längenskalen des kalten Gases machen es unerschwinglich, die mehrphasige Struktur durch
Erhöhung der Simulationsauflösung aufzulösen. Dies macht den Einsatz von Teilgittermodellen
erforderlich, um die unaufgelöste Struktur in einer Simulation zu verfolgen. Ein solches
Teilgittermodell wiederum erfordert ein besseres Verständnis und ein physikalisches Modell
des Verhaltens von Mehrphasengasen aus idealisierten Simulationen.

Zu diesem Zweck untersuchen wir zunächst die Rolle von Magnetfeldern bei der Gestaltung
der Kaltgasdynamik, indem wir sowohl turbulente Strahlungsmischschichten (TRML) als auch
turbulente Boxsimulationen mit und ohne Magnetfelder durchführen. Wir stellen fest, dass
Magnetfelder die Vermischung in TRMLs unterdrücken, während sie in realistischeren turbulenten
Boxsimulationen nur eine begrenzte Wirkung haben. In beiden Fällen wird die Morphologie
des kalten Gases fadenförmiger, wenn Magnetfelder vorhanden sind, obwohl die Wachstumsraten
insgesamt vergleichbar bleiben. Synthetische MgII-Absorptionslinienprofile aus den Simulationen
stimmen in beiden Regimen mit den Beobachtungserwartungen überein, während die Analyse
der Feldtopologie eine flussgefriergetriebene Verstärkung in der kalten Phase und verworrene,
fraktalartige magnetische Strukturen offenbart.

Zweitens stellen wir ein neuartiges Untergittermodell vor, MOGLI (Model for Multiphase Gas
using Multifluid Hydrodynamics), das in den Multifluid-Code AREPO implementiert wurde. Das
Modell berücksichtigt den Luftwiderstand, die turbulente Vermischung und das Wachstum kalter
Gase durch physikalisch motivierte Vorschriften mit minimalen freien Parametern. Wir schlagen
auch zwei validierte Methoden zur Schätzung der unaufgelösten turbulenten Geschwindigkeiten
als Teil des Modells vor. Wir testen und validieren die vollständige und reduzierte Version
des Untergittermodells anhand einer Reihe von aufgelösten, mehrphasigen, turbulenten Box
Simulationen in Athena++ als Benchmark. MOGLI reproduziert wichtige Verhaltensweisen wie
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die Überlebensschwellen kalter Gase und ermöglicht Simulationen mehrphasiger astrophysikalischer
Systeme, die sonst rechnerisch undurchführbar wären.

Drittens untersuchen wir die Kondensation und das Überleben kalter Gase in einer ISM-ähnlichen
Umgebung mit Hilfe dreidimensionaler turbulenter Boxsimulationen mit Strahlungskühlung.
Anders als im CGM oder ICM haben die heiße (𝑇 ∼ 104 K) und die kalte (𝑇 ∼ 102 K) Phase
vergleichbare Abkühlungszeitskalen, so dass Kaltgaskondensation und -wachstum gleichzeitig
von Bedeutung sein können. Wir identifizieren drei Regime: (i) turbulente Kaltgaskondensation,
(ii) Überleben von Wolken ohne Kondensation und (iii) Zerstörung von Wolken ohne Kondensation.
Wir schlagen ein neues Kondensationskriterium vor, das auf der Abkühlungszeit des komprimierten
Gases im lognormalen Schwanz der Dichteverteilung basiert und das die Kondensationsregime in
unseren Simulationen genau abgrenzt. Unsere Ergebnisse zeigen, dass in bestimmten Regionen
des Parameterraums kaltes Gas nur bestehen bleiben kann, wenn es von außen zugeführt wird.
Wir unterstreichen auch die stochastische und nichtlineare Natur der Mehrphasendynamik im
ISM.

Zusammengenommen vertiefen diese Studien unser Verständnis davon, wie sich mehrphasiges
Gas in turbulenten astrophysikalischen Umgebungen verhält, klären die Rolle von Magnetfeldern
bei der Entwicklung von kaltem Gas und bieten einen physikalisch fundierten Rahmen für die
Einbeziehung von kaltem Gas in großräumige Simulationen von Galaxien und ihrer Umgebung.



Abstract

The astrophysical gas filling the space in, around and between galaxies, like Interstellar (ISM),
Circumgalactic (CGM) and Intracluster medium (ICM), is rarely uniform. Instead, it is often
multiphase, comprised of co-existing hot, warm, and cold components, interacting with turbulence
and magnetic fields. Understanding how the different components of the multiphase gas form,
survive and get destroyed is essential for capturing the Baryon cycle in astrophysical systems like
galaxies. This thesis investigates these questions through a combination of idealised simulations
and subgrid model development. The large overdensities and small lengthscales of the cold gas
make it prohibitively expensive to resolve the multiphase structure by increasing the simulation
resolution. This necessitates the use of subgrid models to keep track of unresolved structure in a
simulations. Such a subgrid model, in turn, requires a better understanding and a physical model
of multiphase gas behaviour from idealised simulations.

Toward that goal, first, we explore the role of magnetic fields in shaping the cold gas dynamics
by conducting both turbulent radiative mixing layer (TRML) and turbulent box simulations
with and without magnetic fields. We find that while magnetic fields suppress mixing in
TRMLs, they have a limited effect in more realistic turbulent box simulation. In both cases,
the morphology of cold gas becomes more filamentary when magnetic fields are present, though
the overall growth rates remain comparable. Synthetic MgII absorption line profiles from the
simulations match observational expectations in both regimes, while analysis of field topology
reveals flux-freezing-driven amplification in the cold phase and tangled, fractal-like magnetic
structures.

Second, we present a novel subgrid framework, MOGLI (Model for Multiphase Gas using
Multifluid Hydrodynamics), implemented within the multifluid AREPO code. The model accounts
for drag, turbulent mixing, and cold gas growth using physically motivated prescriptions with
minimal free parameters. We also propose two validated methods to estimate unresolved turbulent
velocities, as part of the model. We rigorously test and validate the full and reduced version of
the subgrid model against a suite of resolved single-fluid, multiphase, turbulent box simulations
in Athena++ as the benchmark. MOGLI reproduces key behaviours such as cold gas survival
thresholds and enables simulations of multiphase astrophysical systems that would otherwise be
computationally infeasible.

Third, we investigate cold gas condensation and survival in an ISM-like environment using
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three-dimensional turbulent box simulations with radiative cooling. Unlike in the CGM or ICM,
the hot (𝑇 ∼ 104 K) and cold (𝑇 ∼ 102 K) phases have comparable cooling timescales, hence
allowing for cold gas condensation and growth to be simultaneously important. We identify
three regimes: (i) turbulent cold gas condensation, (ii) externally seeded cloud survival without
condensation, and (iii) cloud destruction without condensation. We propose a new condensation
criterion based on the cooling time of compressed gas in the log-normal tail of the density
distribution, which accurately delineates the condensation regime in our simulations. Our results
show that in certain regions of parameter space, cold gas can only persist if introduced externally.
We also highlight the stochastic and non-linear nature of multiphase dynamics in the ISM.

Together, these studies deepen our understanding of how multiphase gas behaves in turbulent
astrophysical environments, clarify the role of magnetic fields in cold gas evolution, and provide a
physically grounded framework for incorporating cold gas into large-scale simulations of galaxies
and their surroundings.



1 | A short review of Multiphase Gas

Nothing in this book is true.

— Kurt Vonnegut, in Cat’s Cradle

Writing a review is to science, as golf is to
sports.

— Max Gronke, paraphrasing Volker
Springel, while presenting his review paper

The “Space” is not entirely empty. Apart from the celestial objects like the stellar objects, planets
and moons, the “Space” is filled with astrophysical gas. And, this gas does not exist as a uniform,
single-phase medium. Instead, it exists in a state known as multiphase, where the gas can
occupy a wide range of properties (Field et al., 1969; McKee & Ostriker, 1977a). The phase
in multiphase refers to gas that occupies a stable, narrow range of properties, like temperature,
density and ionisation fraction. The simplest kind of a multiphase medium is a two-phase gas with
a cold (𝑇 ∼ 104 K) phase and a hot (𝑇 ≳ 106 K) phase (Field et al., 1969). The multiple phases
in such a medium coexist, interact, and evolve together. These phases may differ significantly in
temperature and density, but often remain approximately in pressure equilibrium. This isobaric
nature and significant temperature separation between the phases also results in high density
contrasts of ∼ 100 − 1000. This multiphase character is not only theoretically expected, but
ubiquitously observed across a vast range of structures, ranging from galaxy clusters and solar
prominences, as shown in Fig. 1.1.

Observational Signatures of Multiphase Gas
Observationally, multiphase gas manifests itself in a wide variety of astrophysical systems. The
existence of multiphase gas has been confirmed across vast range of length and timescales. In
this section, we cover the observations of multiphase gas, as shown in Fig. 1.1, from the large to
small lengthscales, ranging from Mpc to metre size phenomena.

Galaxy Clusters
Galaxy clusters are the largest gravitationally bound structures in the Universe. They typically
form at the nodes of the cosmic web, where massive dark matter haloes host numerous galaxies.
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At the centre of these haloes resides the brightest cluster galaxy (BCG) (Dubinski, 1998), which
is usually a massive galaxy often associated with Active Galactic Nuclei (AGN) jets (Best et al.,
2007). Observations have revealed that these jets can propagate into the intracluster medium
(ICM), influencing its thermodynamic state. The ICM is predominantly filled with X-ray-emitting
hot gas at the virial temperature∼ 107 K, but it also hosts colder components, such as H𝛼-emitting
filaments at ∼ 104 K, occupying the same spatial regions (Olivares et al., 2025; Mccourt et al.,
2012).

A well-studied example is the Perseus cluster, where high-resolution Chandra X-ray images reveal
the hot ICM surrounding the BCG, alongside extended H𝛼 filaments tracing the multiphase
structure of the cluster core (Salomé et al., 2006; Falceta-Gonçalves et al., 2010). We show a
multiwavelength image of the Perseus Cluster’s BCG in Fig. 1.1, in top left. The X-ray emitting
hot gas is shown in purple and pink, while the H𝛼 emitting cold-gas filaments are shown in red.
(Fabian et al., 2008).

Jellyfish Galaxies
As noted in the previous section, galaxy clusters host numerous galaxies within the same dark
matter halo, many of which orbit the BCG. Among these, a subset exhibit extended, jellyfish-like
structures across multiple wavelengths. These so-called jellyfish or ram-pressure-stripped galaxies
are thought to develop such morphologies as a result of gas being stripped from their interstellar
medium (ISM) and circumgalactic medium (CGM) due to their motion through the ICM. The
stripping of gas is primarily driven by ram pressure and shear forces arising from the interaction
with the dense ICM (Vollmer et al., 2001).

Observations have detected X-ray emission from the stripped tails of these galaxies, which
gradually blend into the ambient ICM with increasing distance from the galaxy (Sun et al., 2010).
In addition, molecular CO (Jáchym et al., 2014) and H𝛼 emission (Merluzzi et al., 2013; Fossati
et al., 2016; Consolandi et al., 2017) are observed from the same tails, once again revealing their
multiphase nature (Sun et al., 2021).

It remains unclear whether the cold gas in these tails primarily originates from the galaxy’s
ISM and survives the stripping process, or if it is replenished via in-situ radiative cooling.
Understanding the formation and evolution of such multiphase tails remains an active area of
research with several open questions. Fig. 1.1 shows an example of such a Jellyfish galaxy,
named ESO137-001. It shows a multi-wavelength view of the ram-pressure stripped tail, in CO
and H𝛼 (Jáchym et al., 2019).

Galactic outflows
Zooming in to galactic scales, certain galaxies with high star formation rates exhibit strong
feedback due to supernovae in the interstellar medium (ISM). This feedback can drive ISM
material into the circumgalactic medium (CGM), launching biconical outflows known as galactic
outflows (Veilleux et al., 2020a; Scannapieco & Brüggen, 2015; Reichardt Chu et al., 2022).
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Figure 1.1: Observational evidence for multiphase nature of astrophysical gas across vast range
of lengthscales, from Mpc to metre scales. From top left to bottom left: multiwavelength image
of Perseus cluster (Fabian et al., 2008), CO+H𝛼 image of ESO 137-001 Jellyfish Galaxy (Jáchym
et al., 2019), multiwavelength image of galactic outflows in NGC 3079 (Li et al., 2019) and M82
(NASA/CXC/SAO et al., 2006), H𝛼 image of Smith’s cloud (Fox et al., 2016), multiwavelength
image of Crab Nebula (Dubner et al., 2017), MgII observation of solar prominences (Hillier &
Polito, 2018), Clouds (Image credit: Author) and sternutation, i.e. sneezing (Bourouiba, 2016).
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In Fig. 1.1, we show multi-wavelength views of two such galaxies, NGC 3079 and M82 (also
known as the Cigar Galaxy)(NASA/CXC/SAO et al., 2006). M82, often regarded as a prototypical
example of multiphase galactic outflows, is shown with the stellar disc in green, X-ray-emitting
hot gas in blue (Kaaret et al., 2001), and H𝛼-emitting cold gas in red (Matsubayashi et al., 2013).
NGC 3079 similarly exhibits multiphase outflows, with cold gas with H𝛼 emission highlighted
in red and X-ray emission from hot gas shown in purple (Li et al., 2019).

These observations illustrate a key component of the baryon cycle, in which volume-filling hot
gas and mass-dominant cold gas are ejected from the ISM. However, it remains an open question
how much of the cold gas originates from the ISM and how much forms within the outflow via
in-situ cooling, thermal instability, or mixing.

High Velocity Clouds (HVCs)

High-velocity clouds (HVCs) are off-plane, fast-moving (≳ 90km/s), H𝛼-emitting gas structures
observed in the Milky Way, embedded within the hotter halo environment (Wakker & van
Woerden, 1997) and cover a substantial fraction of the sky. These clouds reflect the complex
multiphase structure of the Milky Way’s CGM. HVCs exhibit a broad range of metallicities
(from studies like Ashley et al., 2024) and velocities (Westmeier, 2018), complicating efforts to
determine their exact origins. Proposed origins include galactic inflows from Large Magellanic
Cloud (LMC), galactic outflows, or recycled material as part of the Milky Way’s baryon cycle
(Putman et al., 2012).

In Fig. 1.1, we show an example of an H𝛼-emitting HVC, called Smith’s cloud. The image reveals
fine substructures within the cloud, which is embedded in the surrounding hot halo gas, while the
hot phase is not visible in H𝛼. (Fox et al., 2016)

Supernova Remnnant

Turning to the interstellar medium (ISM), we encounter structures such as supernova remnants
(Mufson et al., 1986). In Fig. 1.1, we show a multi-wavelength image of the Crab Nebula, a
well-known supernova remnant (Hester, 2008). The purple, volume-filling component corresponds
to hot, X-ray-emitting gas, while the intricate filamentary structures trace cooler gas emitting at
optical and infrared wavelengths (Dubner et al., 2017).

Similar multiphase structures are observed in HII regions and planetary nebulae. Beyond these
object-associated environments, the diffuse ISM itself is recognised as inherently multiphase,
with components ranging from hot (∼ 104 K) to cold (∼ 100 K) gas (Inutsuka, 2009). These
phases coexist in pressure equilibrium but are shaped by complex processes, including radiative
feedback from stars. The ISM remains an active area of research due to its complexity and role
in star formation (Field et al., 1969; McKee & Ostriker, 1977b).
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Solar Atmosphere
Coming even closer to home, we arrive at our solar system. The Sun and its atmosphere is among
the most extensively studied stellar environments, due to both its proximity and continuous
monitoring by a range of ground- and space-based observatories across multiple wavelengths.
The solar corona, in particular, serves as a valuable observational laboratory for investigating
multiphase gas dynamics. Although the solar atmosphere is strongly shaped by magnetic fields,
many of the physical processes relevant to other astrophysical systems are also at play.

Two key layers of the solar atmosphere are the photosphere, typically at temperatures of ∼ 104 K,
and the overlying corona, reaching up to ∼ 106 K. Energy release events in the photosphere
can eject cooler gas into the hot corona, producing a wide range of magnetically structured
phenomena, including flares, prominences, and sunspots (Nakagawa, 1970). One prominent
example of a multiphase structure is the solar prominence, shown in Fig. 1.1 (Antiochos et al.,
2000; Parenti, 2014). These consist of cool (∼ 104 K) gas emitting in lines such as MgII,
suspended within the surrounding million-degree plasma. The dynamics of this material rising,
falling, and being reheated are governed by a complex interplay between radiative processes,
magnetic confinement, and heating from the underlying layers (Hillier & Polito, 2018).

The high cadence and spatial resolution of solar observations offer a unique opportunity to test
theoretical models developed at galactic and cluster scales under more controlled conditions.
One such cross-scale concept is thermal instability, referred to in the solar community as
thermal non-equilibrium, is invoked to explain the formation of cool condensates in coronal
filaments (Antolin, 2020; Antolin & Froment, 2022). This remains an active area of research
and represents a promising interface for collaboration between solar physicists and researchers
studying multiphase gas in other astrophysical contexts.

Smaller scales on Earth
Back on Earth, we also encounter a wide variety of multiphase phenomena. While the nature of
the phases differs from their astrophysical counterparts, both systems present similar modeling
challenges due to comparable density contrasts and turbulent environments.

In astrophysical contexts, phase separation typically arises from differences in radiative heating
and cooling. In contrast, terrestrial multiphase systems often involve classical fluid phase
transitions, for example, liquid water droplets suspended in air, as in terrestrial clouds. Despite the
differences in origin, both types of systems feature complex interactions mediated by turbulence
between phases with high density contrasts (∼ 103). (Sardina et al., 2011).

Such behavior is not limited to atmospheric clouds. On smaller scales, turbulence facilitates
phase interactions in many day-to-day scenarios. A notable example is sneezing (Sternutation,
Bourouiba, 2016), where liquid droplets are dispersed into a turbulent air flow (Faeth, 1996).
Similar processes are also studied extensively in combustion physics, where liquid or solid fuel
interacts with oxidants, producing multiphase exhaust (Damköhler, 1940; Kuo & Acharya, 2012).

These terrestrial systems have the advantage of being accessible to direct experimentation and
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Figure 1.2: Temperature-density phase diagram showing the stable hot and cold phases, as orange
and blue blobs, respectively. It also shows the different interactions, namely mixing and cooling,
between these phases. The unstable intermediate temperature gas is shown as a grey blob.
The green dashed line shows the thermal equilibrium curve, where the cooling and heating are
balanced. The red and blue shaded regions correspond to heating and cooling dominated regions,
respectively.

controlled study. As a result, they offer valuable insight into multiphase dynamics that can
inform our understanding of analogous astrophysical systems, where direct experimentation is
not feasible. This presents a promising opportunity for interdisciplinary exchange between
astrophysics and engineering disciplines (Tan et al., 2021).

How does multiphase gas form?
A useful way to understand multiphase structure is through the temperature-density phase
diagram. When heating and radiative cooling rates are plotted in this space, the equilibrium
points define a thermal equilibrium curve, shown as a green dashed line in Fig. 1.2. Stable
phases (hot and cold phases) on this curve allow gas to remain in a given phase when slightly
perturbed; unstable regions, by contrast, lead to runaway heating or cooling. In general, we
can assume that the two phases are isobaric to avoid unbalanced forces at the interfaces (Field
et al., 1969). Hence, these stable points align along roughly isobaric contours, giving rise to
well-separated cold and hot phases. These features appear in simulation outputs as bimodal
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temperature and density distributions, and underlie much of the multiphase dynamics observed
(McKee & Ostriker, 1977a).

A medium can become multiphase through several pathways. Previous studies have shown that
even a small fraction of seed cold gas can initiate the development of a multiphase structure,
depending on the relative timescales of mixing and radiative cooling (Gronke & Peng Oh, 2018;
Gronke et al., 2022a). Fig. 1.2 shows an overview of the multiphase interaction between the cold
and hot phases. The interaction between the hot and cold phases generates gas at intermediate
temperatures, which typically lies in a thermally unstable regime and exhibits short cooling times
(Begelman & Fabian, 1990a). If the cooling timescale of this mixed-phase gas is shorter than its
mixing timescale with the volume-filling hot phase, it can further condense into cold gas. This
leads to a positive feedback loop that enhances cold gas mass and facilitates the emergence of a
sustained multiphase medium. In Chapter 3 we extend this understanding to include magnetic
fields which can theoretically affect mixing between the phases. For an originally single-phase
gas to become multiphase, the seed cold gas has to originate either through external injection,
such as from galactic outflows in CGM or Red Supergiant winds in ISM (Larkin et al., 2025), or
through in-situ processes like thermal instability or turbulent condensation (Field & Field, 1965;
Mohapatra et al., 2022b). In Chapter 5 we investigate the interplay between the two processes
of multiphase gas creation, i.e. in-situ formation and multiphase mixing, in a turbulent ISM
environment.

Why Should We Care?

The presence of multiphase gas in extended astrophysical environments, such as the CGM
and ICM, is crucial due to its central role in regulating the baryon cycle. In the context of
galaxy evolution, the multiphase structure has major effects on the processes of gas accretion,
feedback-driven outflows, and the subsequent recycling of ejected material over evolutionary
timescales of these astrophysical systems (Tumlinson et al., 2017). Fig. 1.3 shows the different
components and processes involved in the galactic baryon cycle.

Key observational diagnostics, including quasar absorption line spectra and extended emission
features such as Lyman-𝛼 and Mg II, are expected to be highly sensitive to the underlying
multiphase nature of the CGM. Similarly, in galaxy clusters, the ICM exhibits an analogous
multiphase structure that plays a critical role in the thermal regulation and redistribution of
baryons across the cluster environment (Donahue & Voit, 2022). Hence, from a modelling
perspective, multiphase gas plays a critical role in regulating star formation, metal transport,
and the long-term evolution of the gas reservoir within and around galaxies and galaxy clusters.
Therefore, any attempt to accurately model galaxy or cluster evolution must account for the
multiphase nature of the underlying astrophysical gas.
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Figure 1.3: Schematic representation of the Baryon cycle of a galaxy. The background structure
represents the turbulent nature of the circumgalactic medium. The cold and hot phases are shown
as blue and red blobs. It also shows the different flows of gas in and out of the system. Inspired
by Tumlinson et al. (2017).
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Numerical Challenges and Resolution Requirements
However, modelling multiphase gas is exceptionally challenging due to the vast range of scales
involved. Cold gas structures are often sub-parsec in size (McCourt et al., 2018) with more
structures for smaller and smaller scales (Gronke & Oh, 2020a; Das & Gronke, 2024a). On
the other hand, the domains of interest, such as galaxies or clusters, span tens to hundreds
of kiloparsecs, with the associated density contrasts as high as 104. Yet, these small-scale
structures critically influence large-scale observables, and small-scale effects like the cloud
survival, morphology, and kinematics affect CGM diagnostics, star formation, and outflow
propagation. Using brute-force computational approaches, such as increasing resolution to
directly resolve small-scale cold gas structures, is computationally prohibitive. For instance,
simulating a cosmological sample of galaxies with resolution sufficient to capture such cold
gas features would require sub-pc resolution. A suite of cosmological simulations like THESAN
(Kannan et al., 2022) would require an estimated 100 to 1000 years of CPU time on an exascale
supercomputer such as El Capitan. Hence, capturing this physics without explicitly resolving it
necessitates the development of subgrid models.

From a modelling perspective, multiphase gas plays a critical role in regulating star formation,
metal transport, and the long-term evolution of the gas reservoir within and around galaxies and
galaxy clusters (Tumlinson et al., 2017). Therefore, any attempt to accurately model galaxy or
cluster evolution must account for the multiphase nature of the underlying astrophysical gas. In
Chapter 4 we develop a subgrid for the multiphase gas using the theoretical understanding from
previous studies with small-scale simulations.
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2 | A quick introduction to Turbulence

Let others bring order to chaos. I would
bring chaos to order instead, which I think
I have done.

— Kurt Vonnegut, in Breakfast of
Champions

You can mix anything if you stir hard
enough.

— Max Gronke, about Stirring vs. Mixing

2.1 Why is astrophysical gas turbulent?
Turbulence, like the multiphase nature of astrophysical gas, is expected to be ubiquitous in
astrophysical media. Reynolds number (Re), which is a measure of susceptibility of a flow to
become turbulent, is defined as,

Re ∼ 𝑢𝐿

𝜈

where𝑢, 𝐿 and 𝜈 are the flow speed, characteristic lengthscale and kinematic viscosity, respectively.
A higher Re corresponds to a higher susceptibility of flow to become turbulent (Stokes, 1851;
Reynolds, 1883).

The very low values of kinematic viscosity (Spitzer, 1962), along with large characteristic
lengthscales in astrophysical environments, result in a very high Reynolds number, with Re ∼
105 − 1010. In such regimes, even modest energy injection can give rise to turbulent flows.
Consequently, turbulence is expected in virtually any region where energy is being deposited,
whether gravitational, thermal, kinetic, or magnetic in origin.

When energy is injected into a medium as kinetic energy, it undergoes a turbulent cascade from
the large driving scale down to progressively smaller scales. This cascade continues until the
energy reaches the viscous dissipation scale called the Kolmogorov lengthscale (Kolmogorov,
1941), where it is ultimately dissipated as thermal energy. The red line in Fig. 2.1 shows the power
spectrum for kinetic energy once this cascade is fully established upto the dissipation length scale,
𝑙𝜈 ∼ Re−3/4𝐿. Due to the massive value of Re, the characteristic (driving) scale (𝐿) and dissipation
lengthscale (𝑙𝜈) are separated by many orders of magnitudes. This makes it almost infeasible to
have a simulation which incorporates both the lengthscales. Hence, simulations without subgrid
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Magnetic energy grows
via small-scale dynamo

Kinetic energy

Turbulence 
Driving

Figure 2.1: Diagram shows the evolution of turbulent power spectrum for kinetic energy and
magnetic energy. Replicated from Schekochihin et al. (2001). The series of figures on the right
depicts the small-scale dynamo, where a magnetic field loop can be stretched and folded, leading
to amplification. 𝑘𝜈 and 𝑘𝜂 are wavenumbers corresponding to Kolmogorov dissipation and
resistive lengthscale (Kolmogorov, 1941).

turbulence models, either boost 𝜈 artificially to enable Direct Numerical simulations (DNS) or
leave 𝑙𝜈 unresolved and let dissipation happen numerically at the grid scale. The simulations of
the second kind are called Implicit Large Eddy simulations (ILES) and are the most common
way of simulating turbulent gas in astrophysical studies, including the ones in this thesis (Pope,
2000).

The eddies of different scales (𝑙) evolve at the eddy turnover time (𝑡eddy(𝑙)) for that scale, making
it an important dynamical timescale. According to Kolmogorov’s theory of incompressible
turbulence (Kolmogorov, 1941), the energy transfer rate across scales is constant. This implies a
characteristic turbulent velocity scaling, with lengthscale 𝑙 as 𝑢(𝑙) ∝ 𝑙1/3. This leads to an eddy
turnover time scaling of

𝑡eddy(𝑙) ∼
𝑙

𝑢(𝑙) ∼ 𝑙2/3

As the eddies of size 𝑙 evolve on a timescale of 𝑡eddy(𝑙), this scaling implies that smaller eddies
evolve more rapidly. Hence, the largest scales typically act as the bottleneck for the overall energy
cascade.

Observationally, turbulence has been characterized across a wide range of spatial scales using
various tracers. Turbulence in the interstellar medium can be powered by numerous sources, for
example, stellar winds, supernovae, inflows, etc (Elmegreen & Scalo, 2004; Scalo & Elmegreen,
2004). Falceta-Gonçalves et al. (2014) quantify the turbulence through the density power spectrum
at small scales, revealing its imprint on the structure of the interstellar medium. At galactic scales,
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Vidal-García et al. (2021) measure the turbulent energy cascade rate across different regions of
a galaxy group using CH+ (1-0) lines. More recently, Li et al. (2022) analyse turbulence in the
jellyfish galaxy ESO 137-001, discussed in the previous section, using multiphase emission from
CO and H𝛼, providing insights into the kinematics of the stripped gas tails.

2.2 What about magnetic fields?
In a steady-state turbulent plasma with magnetic fields, we also expect to see a similarly turbulent
magnetic field structure, due to the flux-freezing of magnetic fields in the conducting plasma.
This leads to exchange of energy between the kinetic and magnetic energy across scales (Grete
et al., 2017). Similar to kinetic viscosity (𝜈) for kinetic energy, there is magnetic diffusivity
(𝜂) for magnetic energy, which quantifies the dissipation of magnetic energy to thermal energy.
Hence, analogous magnetic Reynolds number (Re𝑚) and resistive lengthscale (𝑙𝜂) can be defined
as,

Re𝑚 ∼ 𝑢𝐿

𝜂

𝑙𝜂 ∼ Re−3/4
𝑚 𝐿 = Pr−1/2

𝑚 𝑙𝜈

where the magnetic Prandtl number (Pr𝑚) refers to the ratio (𝜈/𝜂). With the viscosity and magnetic
diffusion values for fully ionised plasma from Spitzer (1962), we can write Pr𝑚 ∼ 10−5𝑇4/𝑛,
where 𝑇 and 𝑛 are temperature (in K) and number density (in cm−3). A gas with a number density
of 0.01 cm−3 at 106K, typical for CGM, will have a Pr𝑚 ∼ 1021, leading to 𝑙𝜂 ∼ 10−10𝑙𝜈. As
the magnetic field can have structures as small as 𝑙𝜂, magnetic fields structures can be orders of
magnitudes smaller than the smallest velocity structure of size 𝑙𝜈.

In the absence of a strong initial magnetic field, a very low seed magnetic field can be amplified
via a small-scale dynamo. Fig. 2.1 shows an intuitive picture (on the right side) of how a magnetic
field loop, flux-frozen in a turbulent flow, can be stretched and twisted, leading to amplification.
This process happens at the timescales of the 𝑡eddy(𝑙). Hence, magnetic field amplification due to
the dynamo is most efficient at the smallest scales, where the 𝑡eddy is shortest, as also illustrated
in Fig. 2.1.

The vast lengthscale separation between 𝑙𝜈 and 𝑙𝜂, over the existing separation between 𝐿 and 𝑙𝜈,
makes it practically impossible to simulate magnetohydrodynamic (MHD) turbulence with all the
relevant scales included. Hence, similar to hydrodynamic turbulence, the dissipation of magnetic
fields is usually left to numerical dissipation at grid scales in astrophysical studies, like the study
in Chapter 3. This also implies that the Pr𝑚 ∼ 1 in an ILES simulation of MHD turbulence.
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3 | Magnetic Fields in Multiphase
Turbulence: Impacts on Dynamics and
Structure

Purpose of computation is not numbers, but
insight.

— Richard Hamming
in The art of doing science and engineering

Don’t ascribe something to Physics, if it can
be explained by a bug.

— Volker Springel

This work has been published in the Monthly Notices of the Royal Astronomical Society, Volume
527, Issue 1, January 2024, Pages 991–1013.

The fact that most of the astrophysical media are multiphase in nature is a well-established
one, from observational (e.g. Tumlinson et al., 2017; Veilleux et al., 2020a), numerical, and
theoretical investigations (McKee & Ostriker, 1977a; Donahue & Voit, 2022; Faucher-Giguere
& Oh, 2023a). The multiphase nature of the interstellar (ISM), circumgalactic (CGM) and
intracluster (ICM) medium is also expected to play an important role in the overall evolution of
the associated systems, from the general baryon cycle to feedback processes (Veilleux et al., 2005;
Péroux & Howk, 2020). However, there are many aspects of multiphase media, like survival and
characteristic size of cold media, that are still in question and are an active field of research.

Many forays towards understanding the multiphase gas use an idealised version of the medium.
There are studies which focus on the development of the multiphase gas by condensation from
an initially static hot ambient medium via thermal instability in 1D (Sharma et al., 2012; Waters
& Proga, 2019), 2D (McCourt et al., 2018) and 3D simulations (Gronke & Oh, 2020b). Such
studies are a good way to isolate and investigate the role of different factors like magnetic fields
(Sharma et al., 2010; Ji et al., 2018), metallicity (Das et al., 2021a), gravity (McCourt et al.,
2012), density fluctuations (Choudhury et al., 2019), rotation (Sobacchi & Sormani, 2019) or
cosmic rays (Butsky et al., 2020).

It is also well known that the astrophysical media are highly turbulent, due to their high
Reynolds number. This has been shown by many observational (Elmegreen & Scalo, 2004;
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Falceta-Gonçalves et al., 2014; Vidal-García et al., 2021; Li et al., 2022) and numerical studies
(Brandenburg & Nordlund, 2011; Federrath, 2013; Burkhart et al., 2020). Hence, many studies
like Mohapatra & Sharma (2019); Gronke et al. (2022a); Mohapatra et al. (2022b,c) investigate
the evolution of the multiphase gas in the presence of a turbulent astrophysical media. Turbulence
both amplifies and destroys multiphase gas. The density and temperature perturbations in a
turbulent medium can enhance the creation of multiphase gas, while the same turbulent motions
can mix the existing multiphase gas, which might further cool or mix away depending on the
cooling timescale.

Not just astrophysics, multiphase turbulence is also a very relevant topic at more terrestrial
scales and is also an active field of research in general fluid dynamics circles, as there are many
applications like combustion dynamics, smoke transport and meteorology where multiphase
interactions play a crucial role. One seminal result in the field was by Damköhler (1940), where
they found that the behaviour of a flame front in a turbulent medium differs depending on the ratio
of the reaction and turbulent timescales, i.e. the Damköhler number. Tan et al. (2021) further
explore this parallel in the context of hydrodynamic turbulent radiative mixing layers (TRMLs)
in astrophysical media.

Generally, there are three stages in the evolution of a turbulent multiphase medium, with many
studies examining each. First, the production or presence of seed multiphase gas. The exact
mechanism of this can vary from medium to medium. For the CGM, this can either be in the
form of multiphase ISM transported into the CGM by feedback mechanism, or via condensations
from the hot medium due to thermal instability. The second stage is the growth of one of the
phases in the multiphase gas. And, the final stage is the equilibrium or steady state.

In order to understand the second stage of the multiphase gas evolution, Gronke et al. (2022a)
study the growth of cold gas in a thermally stable, ambient turbulent medium. They found a
critical radius for the size of the seed cold gas cloud in a given turbulent hot ambient medium
(akin to the survival criterion previously found for laminar flows Gronke & Peng Oh, 2018; Li
et al., 2020; Kanjilal et al., 2021). Their results also agreed with the expectations from the
previous hydrodynamics TRML results from Tan et al. (2021), indicating TRMLs might be the
principle mechanism for mixing in a multiphase medium.

But, apart from being multiphase and turbulent, the astrophysical media are also known to
possess substantial magnetic fields as seed primordial magnetic fields are amplified due to
structure formation and other baryonic dynamics (Dimopoulos & Davis, 1997; Subramanian,
2015). There are many observational evidences for ubiquitousness of magnetic fields using
techniques like Faraday rotation (Dreher et al., 1987; Kim et al., 1990; Taylor & Perley, 1993;
Clarke et al., 2001), dust alignment (Ade et al., 2015), and others (Lopez-Rodriguez et al., 2021).
And, many numerical studies also point to a similar prevalence of magnetic fields (e.g., Pakmor
et al., 2020; van de Voort et al., 2021).

The presence of magnetic fields can be disruptive to mixing via TRMLs. It is well-known that
linearly, the Kelvin-Helmholtz instability is suppressed for specific magnetic field orientation
(Chandrasekhar, 1961), while Ji et al. (2019) show that the nonlinear evolution of the instability
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with radiative cooling is suppressed for all orientations of the initial magnetic field. 1 Hence,
the inclusion of magnetic fields may change the overall evolution of multiphase gas, resulting in
different survival criteria and cold gas growth rates. In summary, while it has been shown in
recent work that mixing and subsequent cooling can lead to the survival and even the production
of cold gas, and thus explain the ubiquitous presence of multiphase gas in turbulent systems
– where this cold gas should be destroyed rapidly – magnetic fields might ruin this picture by
preventing mixing and hence hindering cooling.

In this paper, we investigate the influence of magnetic fields on the general phenomenon of mixing
between the phases in a multiphase gas. For that purpose, we use two kinds of simulations, TRMLs
and turbulent boxes, with and without magnetic fields. First, we expand on the parameter space for
TRMLs explored in previous studies, to confirm the suppression of mixing for different cooling
strengths (and hence different Damköhler numbers). Second, we check for the effects of including
magnetic fields in turbulent box simulations similar to Gronke et al. (2022a).

The structure of the paper is as follows. We explain the numerical setups for both TRMLs and
turbulent boxes in section 4.1. We present the results from the TRML simulations in section
3.1.1, and the turbulent boxes in section 3.3. Then, we discuss our results in section 3.4 and
conclude in section 4.6. The visualisations related to this study can be found here.2

3.1 Numerical setup

For our simulations, we use the ATHENA++ code (Stone et al., 2020a). We use the default
HLLC solver for our hydrodynamic (HD) simulations and the default HLLD solver for our
magnetohydrodynamic (MHD) simulations, with Piecewise Linear Method (PLM) applied to
primitive variables, second-order Runge-Kutta time integrator, adiabatic EOS and a cartesian
geometry. Similar to Gronke et al. (2022a), we implemented the Townsend radiative cooling
algorithm (Townsend, 2009a) for computing the radiative losses, using a cooling curve at solar
metallicity fitted using 40 segments of power laws. We also enforce a temperature floor 𝑇floor =

4 × 104 K.

3.1.1 Turbulent Radiative Mixing Layer (TRML)
Turbulent, radiative mixing layers in the astrophysical context have been investigated in the past
(e.g., Begelman & Fabian, 1990a; Slavin et al., 1993; Kwak & Shelton, 2010; Hillier et al., 2023;
Fielding et al., 2020). We use the same numerical setup as the one used in Tan et al. (2021) and Ji
et al. (2019) to investigate the Turbulent Radiative Mixing Layer (TRML), with a small difference
in our coordinates convention. The shear velocity in our simulations is along 𝑥 and the cold/hot
interface is normal to 𝑧.

1This study was within the slow-cooling regime from Tan et al. (2021).
2http://hiteshkishoredas.github.io/research/mhd_multiphase.html

http://hiteshkishoredas.github.io/research/mhd_multiphase.html
http://hiteshkishoredas.github.io/research/mhd_multiphase.html
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Figure 3.1: Temperature slices for different TRML simulations for 𝑣shear = 100 km s−1 (M ≈ 0.3).
First column shows the hydrodynamic simulations, 2ndto 4th column show simulations with
MA = 10, last three columns show simulations with MA = 1. Top row shows simulations with
strong cooling, Da = 60, Bottom row shows simulations with weak cooling, Da = 6×10−5. This
shows the different ways magnetic fields evolve for different initial orientations. It also suggests
that the cases with the higher magnetic field strength along the shear direction show a lesser
extent of mixing.

The different density and velocity profiles are,

𝜌(𝑧) = 𝜌cold +
𝜌hot − 𝜌cold
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[
1 − tanh

𝑧

𝑎

]
(3.1)

𝑣𝑥 (𝑧) =
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[
1 + tanh

𝑧

𝑎

]
(3.2)

𝑣𝑧 = 𝛿𝑣 exp
−𝑧2

𝑎2 sin 𝑘𝑥𝑥 sin 𝑘𝑦𝑦 (3.3)

𝐵 =
𝑣shear𝜌

1/2
hot

MA
𝐵̂0 (3.4)

where 𝑘𝑥 and 𝑘𝑦 are set to 2𝜋/𝐿box,x and 2𝜋/𝐿box,y respectively.

We use 𝑣shear = 100km/s, 50km/s as the shear velocity (corresponding to sonic Mach numbers
of M ≡ 𝑣shear/𝑐s,hot ∼ 0.33, 0.16), 𝛿𝑣 = 0.01𝑣shear, 𝑎 = 𝐿box,z/20 for the interface thickness,
and MA = 1, 10 as initial Alfvénic Mach number. Furthermore, 𝜌hot = 1.6 × 10−4cm−3 is the
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density of hot medium, 𝜌cold = 1.6 × 10−2cm−3 is the density of cold medium, and 𝐵̂0 is the
initial magnetic field direction. We use a floor temperature of 4 × 104 K, and we stop cooling
at temperatures above 0.5𝑇hot to emulate the effect of heating, where 𝑇hot is the hot medium
temperature. We initialise the cold medium at the floor temperature (4 × 104 K), and use a fixed
pressure over the whole box to ensure pressure balance in the initial conditions. This corresponds
to a hot medium at 𝑇hot = 𝑇cold𝜒 with 𝜒 ≡ 𝜌cold/𝜌hot = 100 being the overdensity. We impose an
outflow boundary condition along the normal to the cold/hot interface (𝑧), and periodic boundary
conditions in all other directions. Note that due to the self-similarity of the solution, the chosen
numerical values for 𝜌 and 𝑣shear are unimportant (as long as the critical dimensionless quantities
are kept constant).

We use a resolution of 64 × 64 × 640 in 𝑥, 𝑦̂ and 𝑧 directions respectively, and use different
box sizes to vary parameters in our simulations, but keep the ratios of box lengths in different
dimension fixed, 𝐿box,z = 10𝐿box,x = 10𝐿box,y. We vary the Damkohler number (Da = 𝑡turb/𝑡cool =

𝐿box,x or y/(𝑢turb𝑡cool)) in a range of ∼ 10−4 − 104 by changing 𝐿box.

In such TRML simulations, the mixing layer tends to move into the hot medium as it is consumed
and more cold gas is created. This can cause the mixing layer to go out of the computational
domain, especially for high Da cases. To counter that, we add a velocity to the whole box in
the opposite direction to keep the mixing layer inside the computational domain. This velocity
is calculated using the difference between the current cold/hot interface position and the original
cold/hot interface position (𝑧 = 0). We verify that this does not affect the mixing rates, and only
increases the time the mixing layer spends inside the computational box. We denote the different
TRML simulations as Ma(A)_Bx(B), where A is the Alfvénic Mach number and B is the initial
magnetic field orientation.

3.1.2 Driven turbulence boxes
We use a separate simulation setup, similar to the one used in Gronke et al. (2022a), to study
the behaviour of cold gas in fully-developed turbulence with (MHD) and without (HD) magnetic
fields. We start with a box filled with isobaric gas at uniform density and temperature (𝑇hot =

4 × 106 K), with solar metallicity and H-abundance. In our MHD simulations, we initialize the
box with a uniform magnetic field. We use the Ornstein-Uhlenbeck (OU) process (Eswaran &
Pope, 1988a; Schmidt et al., 2006a) to drive the turbulence at the largest scale (𝑘 = 2𝜋/𝐿box), i.e.
the box size. We use driving timescale of 0.001 𝑡eddy, correlation timescale ∼ 𝑡eddy and solenoidal
to compressive fraction 𝑓sol = 0.3. We also maintain a 𝐿box/𝑅cloud = 40 for all our simulations.

We drive the turbulence for 7 𝑡eddy with the cooling turned off, which gives the setup enough time
to reach a steady-state with equilibrium kinetic energy and magnetic energy (when included).
We restart the simulation after introducing a dense cloud, with an overdensity 𝜒 = 100 and
radius 𝑅cl in the centre of the box while conserving the kinetic, thermal and magnetic energy
density. This results in an isobaric, cold, dense cloud with density 𝜌cold = 𝜒𝜌hot and temperature
𝑇cold = 4 × 104 K = 𝑇floor. As we use an adiabatic equation-of-state, the average temperature
can increase significantly by the end of the turbulent driving phase, due to the dissipation of the
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turbulent energy. Hence, to bring the ambient temperature back to the required value, before
introducing the cloud, we also rescale the internal energy of the whole box by a fixed constant.
We also verify that this abrupt rescaling does not have any significant effect on the velocity
distribution.

The input parameters for the driven turbulence are the kinetic energy injection rate ( ¤𝐸), the size
of the simulation box (𝐿box) and the density of the medium (𝜌). Given a box size and gas density,
we calculate the required ¤𝐸 for a required turbulent velocity (see, e.g., Lemaster & Stone, 2009),
i.e.,

¤𝐸𝑡eddy = (1
2
𝜌𝑣2

turb +
1
2
𝐵2

turb)𝐿
3
box (3.5)

and assuming equipartition this yields

¤𝐸 =
𝛼

2
𝜌𝐿2𝑣3

turb (3.6)

where, 𝛼 = 1 for hydrodynamic simulations and 𝛼 = 2 for MHD simulations . Following the
convention from previous studies, we also use cloud radii normalised by 𝑙shatter = min (𝑐s𝑡cool).
This corresponds to the 𝑐s𝑡cool of the cold, dense medium in our simulations, i.e. 𝑐s𝑡cool(𝜌cold, 𝑇floor).

3.2 Results: Turbulent Radiative Mixing Layer
Turbulent Radiative Mixing Layers (TRMLs) are mixing layer simulations that also include
radiative cooling for the mixed gas. These have long been studied as an idealised small-scale
setup for the mixing between different phases in a multiphase gas (e.g. Esquivel et al., 2006; Ji
et al., 2019; Fielding et al., 2020; Tan et al., 2021; Yang & Ji, 2023). In this section, we study
the evolution of TRMLs for different cooling strengths and look for differences caused by the
presence of magnetic fields.

3.2.1 Gas & magnetic field morphology
Previous studies of linear and non-linear evolution of mixing layers have shown suppression
of Kelvin-Helmholtz (KH) instability-induced mixing, in the presence of magnetic fields. In
the linear regime, the KH instability is suppressed for cases with magnetic field along the shear
direction if 𝑣shear < (𝑣A,hot𝑣A,cold)1/2 ≈ 𝑣A,hot𝜒

−1/4 (Chandrasekhar (1961); Chapter XI, Eq. 205).
While, in non-linear regime, the KH instability is suppressed for all magnetic field orientations
(Ji et al., 2019). In this subsection, we reproduce these results and extend them by varying the
cooling and magnetic field strength.

Fig 3.1 shows the temperature slices of the different TRML simulations, along with the magnetic
field morphology, for different Alfvénic mach number (MA = 𝑣shear/𝑣𝐴, where 𝑣𝐴 is the Alfvén
wave speed), and initial magnetic field orientation (𝐵̂0). We control the Da = 𝑡turb/𝑡cool,mix (where
𝑡turb = 𝐿/𝑣turb and 𝑡cool,mix is the cooling time evaluated at 𝑇 = 2 × 105 K, and 𝑣turb is calculated
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Figure 3.2: 𝛽 = 𝑃thermal/𝑃magnetic slices for different TRML simulations with 𝑣shear = 100km/s
(corresponding to the temperature slices shown in Fig. 3.1). 1stto 3rd column show simulations
with MA = 10, last three columns show simulations with MA = 1. Top row shows simulations
with strong cooling, 𝐷𝑎 = 60, Bottom row shows simulations with weak cooling, Da = 6×10−5.
This shows the extent of amplification possible in the different cases. Even with a higher initial
𝛽, turbulent motions can amplify the magnetic fields to lower 𝛽. For cases with lower initial 𝛽
strong cooling in the mixing layer can also lead to amplification.
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Figure 3.3: Top & middle Stability criterion of Kelvin-Helmholtz instability for different initial
magnetic field orientations (cf. Eq. (3.8)), Bottom Density profile for the different cases shown
above. This shows the difference in the stability of the mixing layers for different cases. The
cases with higher magnetic field strength along the shear (initial or amplified) are more stable.
The density profile shows the extent of the mixing layers.
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Figure 3.4: Left column MA = 1, Right column MA = 10, Top row Stable values of mixing
layer surface brightness for different Da, The orange and blue dashed lines on the top row panels
are the expected values from hydrodynamic TRML simulations by Tan et al. (2021). This shows
clear suppression in cooling rates of most of the simulations with magnetic fields, in comparison
to hydrodynamic TRML simulations. We discuss details about the trends in § 3.2. Bottom
row Evolution of mixing layer surface brightness with time, for different initial magnetic field
orientations at two Da values.
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using scaling relations from Tan et al., 2021; we will investigate the role of 𝑣turb more below) by
varying the box sizes, and MA by changing the initial magnetic field strength, for a given sonic
Mach number. We have simulations with Mshear,hot fixed to 0.16 and 0.33, corresponding to a
𝑣shear of 50 and 100 km s−1. We find that the amplification in the magnetic fields is very different
depending on the initial magnetic field orientation as we discuss below.

Fig. 3.2 shows the 𝛽(= 𝑃thermal/𝑃magnetic) and has layout similar to that of Fig. 3.1. The extent of
amplification in the different cases is much clearer in Fig. 3.2, where the darker regions correspond
to a higher magnetic field strength and lighter regions to a lower magnetic field strength.

The upper and lower row of Fig. 3.1 shows the fast and slow cooling cases, respectively. On one
hand, in the fast cooling (Da > 1) a sharp temperature edge between 𝑇 < 105 K and 𝑇 ∼ 106 K
gas is visible, i.e., a true multiphase structure exists, while on the other hand, a large amount of
this “intermediate temperature” gas is visible in the slow cooling (Da < 1) case – with the exact
amount depending on the suppression of mixing caused by magnetic fields. Unsurprisingly, in
the HD case most mixed gas exists and generally in the MHD case with MA ≈ 1 the least. What
is maybe a bit more surprising is the effect (and the evolution of) the magnetic field topology: in
the B ∥ 𝑥 case the suppression of mixing is easy to understand and expected from linear theory
(Chandrasekhar, 1961). However, we also find in all the other cases a (strong) suppression. B ∥ 𝑦̂
also has a strong effect, particularly in the MA ≈ 1 simulations. This is due to the amplification
of the magnetic fields in the direction of the shear, as discussed below. On the other hand, for
B ∥ 𝑧 initially, one can note two distinct effects depending on the value of MA. For MA > 1 the
flow bends the magnetic field lines, resulting in a similar situation as in the B ∥ 𝑥 case; in fact,
even larger suppression since the bending of the field lines leads to a 𝐵𝑥 > 𝐵initial. An artefact of
this bending can be seen in magnetic field topology in the bottom panel for MA > 1 with B ∥ 𝑧.
We find a kink in the magnetic field moving downwards at the Alfvén wave speed. For MA ≲ 1,
however, the magnetic field lines are so stiff that a bending by 90 degrees is not possible. Instead,
we end up with diagonal field lines which, nevertheless, substantially suppress the mixing.

To better understand the exact order of amplification, we first consider the cases where the shear
is super-Alfvénic (MA ∼ 10) in the hot medium, in the three central (2nd - 4th) columns of Fig. 3.1
& 3.2, to explain the extent of amplification in the different cases.

• 𝐵initial | | 𝑧 | | 𝑛̂interface (Ma10_Bz): The amplification is the highest for this case. The Alfvén
wave velocity in the dense medium is lower by a factor of 𝜒1/2, hence the field lines are
more “anchored” in the cold gas, compared to the hot gas. This causes field lines to bunch
up near the interface, resulting in high amplification of magnetic fields in the direction
parallel to the shear. This amplification is so high that the magnetic field strength can get
much higher than the initialised magnetic field strength.

• For 𝐵initial | | 𝑥 | | ®𝑣shear (Ma10_Bx): As the Kelvin-Helmholtz (KH) instability grows, it gives
rise to vortices around 𝑦̂. Fig. 3.1 shows that vortices can stretch and bend the magnetic
fields, leading to their amplification. These vortices can further become turbulent and
cause more amplification due to local dynamo effect. All of these put together, result in the
second-highest amplification of magnetic fields along the shear direction.
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Figure 3.5: 𝑢′ profiles along 𝑧 for different initial magnetic field orientations. The first two panels
from the left show the difference between the direction parallel to magnetic fields versus the other
directions. The third panel shows the outlier case of magnetic fields normal to the interface,
where both the normal (𝑧) and shear direction show much higher fluctuations due to the presence
of magnetic fields along both these directions. Hence, we choose the directions which free from
these spurious fluctuations in these different cases, as denoted in Eq 3.13

• Lastly, for 𝐵initial | | 𝑦̂ ⊥ ®𝑣shear ⊥ 𝑛̂interface (Ma10_By): The amplification is the lowest as
the only process for amplification of magnetic fields is due dynamo effect from the turbulent
motions generated in the mixing layer due to non-linear evolution of the KH instability.

This results in a general order for the magnetic field strength along the shear direction in
Super-Alfvénic TRML simulations as: Ma10_Bz > Ma10_Bx > Ma10_By.

Similarly, for the cases where the shear is sub/trans-Alfvénic (MA ∼ 1) in the hot medium, in the
three rightmost columns in Fig. 3.1, we again check for magnetic field strength along the shear
direction.

• For 𝐵initial | | 𝑧 | | 𝑛̂interface (Ma1_Bz): As the shear is sub-Alfvénic, the amplified magnetic
field in the shear direction is not high enough to surpass the initialised magnetic field in
the shear direction for 𝐵initial | | 𝑥 | | ®𝑣shear (Ma1_Bx). So, Ma1_Bz ends up with the second
highest in the order of magnetic field strength along the shear direction.

• 𝐵initial | | 𝑥 | | ®𝑣shear (Ma1_Bx) has the strongest magnetic field in shear direction, just due to
the high initial magnetic strength.

• This leaves the 𝐵initial | | 𝑦̂ ⊥ ®𝑣shear ⊥ 𝑛̂interface (Ma1_By): Due to the much higher
overall magnetic field strength, it is harder for the resulting turbulent velocity to cause any
amplification.

Hence, we get an order for the magnetic field strength along the shear direction in Sub-Alfvénic
TRML simulations as: Ma1_Bx > Ma1_Bz > Ma1_By. In our simulations, we find one exception
to this order, at intermediate Da, where the order of Ma1_Bz and Ma1_By is switched.
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Figure 3.6: Top panel Scatter plot of the surface brightness (𝑄) and turbulent velocity (𝑢′)
calculated from the simulations. The dashed and dotted lines show the respective strong and
weak cooling scaling relation according to Eq. 3.9-3.10. Bottom panel Similar to the top panel,
after we remove the D̃a dependence. The dotted line shows the analytical expectation from
Tan et al. (2021), which they find for hydrodynamic simulations. This suggests that the general
relation found in hydrodynamic TRML simulations, between the turbulent velocity in the mixing
layer and cooling (and hence mixing) rate, is still valid in the presence of magnetic fields.
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3.2.2 Cooling rates
According to the linear KH instability criterion, the stronger the magnetic field in the direction
of the shear, the more stable the perturbation gets. This means stronger magnetic fields in the
later non-linear phase may disrupt the generation or cascade of further vortices. To test this, we
quantify the stability of KH perturbations, using the linear stability criterion (Chandrasekhar,
1961). So, the perturbation is stable to KH instability, if

𝑣shear < (𝑣A,hot𝑣A,cold)1/2 = 𝑣A,hot𝜒
−1/4 (3.7)

which can be expressed as a dimensionless number

𝑐KH =
Δ𝑣𝑥𝜒

1/4𝜌
1/2
hot

𝐵𝑥
< 1. (3.8)

We calculate 𝑐KH using profiles of all the relevant quantities along the normal to the hot/cold
interface. This results in a profile of 𝑐KH, in which a value <1 denotes a tendency towards stability
while a value >1 shows a tendency towards instability. Fig. 3.3 shows the profiles of this KH
stability criterion at an advanced stage of evolution, for different magnetic field orientations and
strengths. The top and middle panels show the KH stability criterion and the bottom shows the
corresponding density profiles. We align the profiles so that the hot/cold interface aligns between
all the cases. We do not plot the points on the profile which have a Δ𝑣 < 10−2 km/s, or if the
points are out of the computational domain.

We find that due to the amplification of the magnetic fields in the shear direction, the KH
instability is suppressed. The order of the extent of suppression seems to follow the same order as
the amplification of the magnetic fields. For both MA > 1 and MA < 1, Ma1_By and Ma10_By
are the most unsuppressed as the 𝑐KH is almost entirely in the unstable regime. For the other two
directions, the extent of suppression depends on the size of the portion around the mixing layer
that is stable. This means, Ma1_Bx and Ma10_Bz are the most suppressed in MA < 1 and > 1,
respectively. This trend in suppression is important as this can affect the cooling rates, which we
check next.

We study the cooling rates using the surface brightness of TRML simulations for all the different
cases, that is, different values of the Dahmköhler number (Da = 𝑡turb/𝑡cool), Alfvénic mach
number (MA = 𝑣/𝑣𝐴, where 𝑣𝐴 is the Alfvén wave speed), and initial magnetic field orientation
(𝐵̂0). We define the surface brightness as the total luminosity per unit surface area, that is,
𝑄 = 𝐿total/(𝐿𝑥𝐿𝑦). Fig. 3.4 shows the calculated saturation surface brightness (along with 2𝜎
errorbars) for the different simulations on the top row, along with its temporal evolution on the
bottom row.

We find that the order of amplification of magnetic fields along the shear direction, mentioned
above, matches the order of suppression of surface brightness, as shown in the right panel in
Fig. 3.4. This is due to the higher suppression of KH instability by the higher magnetic field
strength along the shear direction, as also expected from the linear theory (Chandrasekhar, 1961).
Below, we dive deeper into this correlation.



28 3. Multiphase turbulence and Magnetic fields

We also find that the difference in cooling rates, due to this suppression of KH instability, is
reduced for the low Da cases with MA ∼ 10, as shown in Fig. 3.4. This might be due to the
change in the rate-limiting process. For a low Da the cooling is very slow, so the cooling rate
is bottlenecked by the slow cooling rate rather than the mixing rate. This does not happen for
MA ∼ 1 because the mixing rate is suppressed to such low values that mixing continues to be the
rate-limiting process.

3.2.3 Turbulence velocity profiles
Among the different ways to mix two phases, turbulence is one of the most efficient ones. In this
section, we quantify the extent of turbulence in the mixing layer in the above discussed TRML
simulations and look for connections of turbulence with the rate of mixing and cooling in the
system.

This dependence has been studied before, in the absence of magnetic fields. Assuming a constant
pressure and cooling function for hydrodynamic TRML simulations, as shown in Tan et al. (2021),
for a strong cooling regime (Da > 0.1),

𝑄 ∝ 𝑢′3/4𝐿
1/4
box ∝ 𝑢′Da1/4 (3.9)

and for slow cooling regime (Da < 0.1),

𝑄 ∝ 𝑢′1/2𝐿
1/2
box ∝ 𝑢′Da1/2. (3.10)

Our next step is to check these relations in the presence of magnetic fields. We use the geometric
method to calculate the 𝑢′, similar to Tan et al. (2021). First, we calculate this bulk velocity profile
as the density-weighted average of the velocity field along the other two perpendicular axes (i.e.
𝑥 and 𝑦̂). Then, we subtract the bulk velocity profile along 𝑧, which is normal to the hot/cold
interface, from the velocity field to obtain the turbulent component. This turbulent velocity field
allows us to compute density-weighted RMS values of this field along the axes perpendicular
to the hot/cold interface normal (i.e. 𝑥 and 𝑦̂), to obtain 1D profile of all three components of
turbulent velocity along normal to the hot/cold interface (𝑧). Fig. 3.5 shows an example of the
calculated turbulent velocity profiles for a snapshot where the cooling rate has reached saturation,
for different initial magnetic field orientations. There are other methods like Gaussian filtering
(e.g. Brereton & Kodal, 1994; Adrian et al., 2000; Abruzzo et al., 2022a) to get these 1D profiles,
but we find that the choice of method does not significantly influence the next steps, as shown in
appendix 6.5.3.

Unlike Tan et al. (2021), we cannot select a particular direction that is untouched by shear or
cooling inflow, as that direction can be aligned with the magnetic field. Hence, we have to
calculate the turbulent velocity using different directions for different cases. In addition to that,
the turbulent velocity component along the magnetic field can have some contributions from
large velocity fluctuations along the magnetic fields, as Fig 3.5 shows. To get around this issue,
we calculate the 𝑢′ using the other two components perpendicular to magnetic fields, except in
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Figure 3.7: Left column Density rendering at 2.6𝑡eddy after the cold gas cloud of size 310𝑙shatter is
introduced in a turbulent box with rms velocity of Mach 0.5, 2nd-4th column Density projections
of the same simulation, at 1.3, 2.0 and 2.6𝑡eddy after the cold gas cloud is added. The top row
panels are from the simulations with magnetic fields, and the bottom row panels are from the
simulation without magnetic fields. These show the clear differences between the morphology
of cold gas of gas with and without magnetic fields, while also showing the similarities in the
overall evolution of the cold gas.
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the case of 𝐵initial | | 𝑧 | | 𝑛̂interface (Ma1_Bz, Ma10_Bz). For the exceptions, where the large-scale
magnetic field orientations are along the shear and normal to the interface (i.e. 𝑥 and 𝑧), we only
consider the turbulent velocity component along the direction perpendicular to those directions,
𝑦̂. In short, we use the following expressions to calculate the turbulent velocities in the different
cases,

𝑢′2B̂0 | |x̂
(𝑧) = 3

2

(
⟨𝑢′𝑦⟩2

rms + ⟨𝑢′𝑧⟩2
rms

)
(3.11)

𝑢′2B̂0 | |ŷ
(𝑧) = 3

2

(
⟨𝑢′𝑥⟩2

rms + ⟨𝑢′𝑧⟩2
rms

)
(3.12)

𝑢′2B̂0 | |ẑ
(𝑧) = 3 ⟨𝑢′𝑦⟩2

rms (3.13)

We, furthermore, checked that the turbulent velocity components used in the equations above are
the ones that have similar profiles among themselves in each case, to ensure the isotropicity of
the turbulent components, as shown in Fig. 3.5.

As in Tan et al. (2021), we consider the maximum of the obtained turbulent velocity profile
as the turbulent velocity. We repeat this process for every snapshot and consider the mean of
the turbulent velocity over the last 5𝑡𝐾𝐻 as the saturated turbulent velocity (𝑢′) and the standard
deviation as the error.

Note that throughout we denote the Damköhler number with D̃a when the measured 𝑢′ was used
and Da when the theoretically expected 𝑢′ from the Tan et al. (2021) was used.

3.2.4 Turbulence vs. cooling rates
We use the above obtained 𝑢′ to check the relations in Eq. (3.9)-(3.10), as shown in Fig. 3.6.
The top panel of Fig. 3.6 shows a scatter plot of the surface brightness and turbulent velocities
calculated from the simulations. We find the respective strong and weak cooling scaling relation
according to Eq. (3.9)-(3.10), regardless of the magnetic field strength and orientation. For a
better comparison, we remove the D̃a dependence and show the correlation in the bottom panel of
Fig. 3.6. We clearly show that regardless of the initial magnetic field orientation or strength, the
Eq. 3.9-3.10 holds true, even though the relations originally obtained for hydrodynamic systems
(Tan et al., 2021). We also confirm that the method of 𝑢′ calculation does not affect these results,
as shown in Appendix 6.5.3, in Fig. 5.

3.3 Results: Turbulent box
In the previous section, we examined the TRML setup which is considered a more idealized
version of Turbulent boxes (cf. §4.1), and found that magnetic fields can suppress the mixing in
general, regardless of their initial orientation. If we follow this conclusion, one would expect the
inclusion of magnetic fields in turbulent boxes to cause significant differences in the evolution of
a cold cloud. This effect can manifest either as a change in the cold gas growth rates or a change in



3.3 Results: Turbulent box 31

the survival criteria. In this section, we show results from the “turbulent box” setup in which we
place a cold gas clump of size 𝑅cl in a turbulent medium, with a turbulent Mach number of Ms,
either with (MHD) or without (HD) magnetic fields. We then look for the effect of the magnetic
fields, not only on the growth rates and survival criteria but also on the morphology and overall
behaviour of the cold gas.

3.3.1 Cold gas survival and growth
When cold gas is subject to turbulence, it can either be mixed away in the hot material or the
mixed gas cools sufficiently fast to ensure the continuous survival of the cold gas. Gronke et al.
(2022a) studied this effect using hydrodynamical simulations and found a relation between the
critical value of 𝑡eddy/ 𝑡cool,mix (equivalently 𝑅cl/𝑙shatter) for a given turbulent velocity. However,
as we have shown in the last section, magnetic fields can suppress Kelvin-Helmholtz (KH)
instability-induced mixing between the hot and cold phases in a TRML. Hence, one could expect
a similar significant difference in a turbulent box with (MHD) and without (MHD) magnetic
fields.

As mentioned in (cf. §4.1), the initial seed magnetic fields are such that plasma 𝛽 (= 𝑃thermal/𝑃magnetic) ≈
100. But, due to the local dynamo effect (Schekochihin et al., 2001), the magnetic field gets
amplified to reach equipartition with the turbulent kinetic energy by the end of the driving phase
of the turbulence and before the cloud is introduced. We can use the fact that at equipartition,
MA ∼ 1, and the relation between the sonic (Ms) and Alfvénic (MA) Mach numbers as follows,
to get an estimate of the final plasma 𝛽 for a given Ms,

𝛽 ∼ 2
𝛾M2

s
∼ 1

M2
s
. (3.14)

This means the plasma 𝛽 at equipartition, when the cloud is introduced, is ≈ 16, 4 and 1 for Ms =

0.25, 0.5 and 0.9, respectively.

We study multiple of these turbulent box simulations at different turbulent velocities (Ms ≈ 0.25,
0.5 and 0.9) and with multiple cloud radii near the critical radii found in previous hydrodynamic
studies (Gronke et al., 2022a). See §4.1 for an overview of the setup.

Fig. 3.7 shows one of the HD-MHD pairs of simulations with Ms ≈ 0.5 and 𝑅cloud ≈ 310𝑙shatter,
where the upper row shows the simulation with magnetic fields (MHD) and the lower row shows
the same simulation but without magnetic fields (HD). The leftmost column shows renderings of
the number density with the view in the direction of one of the diagonals of the computational
domain, at a time 2.6 𝑡eddy after the cloud is introduced. The three columns on the right show
density projections of the same simulations as the first column, but at different times (1.3 𝑡eddy,
2.0 𝑡eddy and 2.6 𝑡eddy after the cloud insertion). We can see that in both the HD and the MHD
simulation the crude behaviour of the cold gas is similar. The cloud survives and grows in both
simulations, and the overall amount of gas in the simulation box also looks roughly similar.

Fig. 3.7 also shows how the gas structure evolves. The cold gas seems to grow as it gets stretched,
folded and transported by the turbulent motion in the hotter surrounding medium. We also see the
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Figure 3.8: Survival or destruction of the cold gas in the different turbulent boxes. The dashed
line is the survival criterion from Gronke et al. (2022a). This shows the surprising lack of
difference between the survival criterion, with and without magnetic fields. The subsonic
turbulent simulations agree well with the previously found survival criterion, with some deviation
in trans-sonic turbulent boxes (c.f. § 3.3).



3.3 Results: Turbulent box 33

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t/teddy

100

101

M
co

ld
/M

co
ld

,i
ni

tia
l

= 0.5, Resolution: 2563

R/lshatter = 3
R/lshatter = 15
R/lshatter = 31
R/lshatter = 77
R/lshatter = 155
R/lshatter = 310

MHD
HD

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
g
 

R
cl

l sh
at

te
r

Figure 3.9: Cold gas evolution with time for different simulations initiated with varying sizes
of cold gas cloud in turbulence with M = 0.5. Solid lines show the simulations with magnetic
fields, dashed lines show the hydrodynamic simulations and the dotted lines show the expected
hydrodynamic growth rates from Gronke et al. (2022a). This shows that there are only marginal
differences between the growth and destruction rates of the cases with and without magnetic fields,
compared to the differences seen in the TRML simulations. The differences further diminish as
we consider cases well within the survival regime.
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difference in the general morphology of the cold gas in the two cases. The cold gas morphology
is much more filamentary in the MHD simulation, while it is very clumpy and less dispersed in
the HD simulation. We will discuss the morphology further in § 3.3.2.

Next, we check for the growth (or destruction) of the cold gas in all the turbulent box simulations.
We define the cold gas mass as the total gas mass with temperature below 2 𝑇floor = 8 × 104

K and normalize the obtained value with the initial cold gas cloud mass. We take the obtained
cold gas mass and check for survival or destruction at different Mach numbers and cloud radii.
We determine the survival or destruction of the cloud using the final normalized cold gas mass
values. The cases with final 𝑀cold/𝑀cold,0 > 1(< 1) are considered to show cold gas survival
(destruction). We plot this survival or destruction for the different cases as a scatter plot in Fig. 3.8.
It clearly shows the lack of difference in survival criteria between the pairs of simulations with
(MHD) and without (HD) magnetic fields. This shows that the inclusion of magnetic fields does
not affect the survival or destruction of the cold cloud. We also plot the survival criteria found
by Gronke et al. (2022a) in Fig. 3.8, given as

𝑅cl

𝑙shatter
= Mhot,turb

𝑡cool,mix

𝑡cool,cold
10(0.6Mhot,turb+0.02)

We find that this survival criterion works well for our subsonic turbulent simulations, but our
transonic turbulent simulations seem to deviate slightly from this survival criteria. This could be
due to the difference between subsonic, transonic and supersonic turbulence due to the presence of
shocks in later cases, possibly destroying the clouds which would have survived in the absence of
these shocks. Regardless, this does not affect our original conclusion about the lack of significant
difference in survival (or destruction) between HD and MHD simulations, hence, we leave the
investigation for causes of this discrepancy to future studies.

Another property which can have differences due to the inclusion of magnetic fields is the growth
(destruction) rates of the cold gas. For that, we repeat the process of calculating the cold gas
mass for each snapshot to obtain the temporal evolution of cold gas mass for all the different
simulations with M = 0.5, and Fig. 3.9 shows the same. We find a lack of drastic differences
in the growth rates of the simulations that are well within the survival regime. We see slight
differences (within a factor of 2) in simulations close to the transition regime, but it is still less than
the order of magnitude differences seen in and expected from the TRML simulations. We also
plot the expected growth curve for the surviving cases, using 𝑡grow from equation (7) in Gronke
et al. (2022a) and the mass growth equation for “fragmented” growth, 𝑀cold = 𝑀cold,0 𝑒

(𝑡/𝑡grow) , as

𝑡grow ≡ 𝛼𝜒M−1/2
s,hot

(
𝑅cloud

𝑙shatter

)1/2 (
𝑅cloud

𝐿box

)−1/6
𝑡cool,cold (3.15)

where, 𝛼 = 0.5 is a fudge factor.
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This lack of significant difference in the cold gas mass evolution and survival criteria between
turbulent box simulations with (MHD) and without (HD) magnetic fields is surprising, in view
of the results from TRML simulations in the previous (cf. §3.2), where we found that the mixing
rates are (highly) suppressed when magnetic fields are introduced into the same simulations.
This dichotomy in the results can be confusing, and we discuss a possible solution to this in the
discussion section (cf. §3.4.1).

3.3.2 Cold gas distribution and morphology
In the previous subsection, we showed how the presence of magnetic fields seems to have only
a marginal effect on the cold gas mass growth and survival. Still, the magnetic fields are not
entirely inconsequential. The magnetic fields can affect the gas flow and vice-versa due to effects
like flux-freezing. We also saw in the above section that the morphology of the cold clouds is
different between the simulations with (MHD) and without (HD) magnetic fields (cf. Fig. 3.7).
In this section, we present such differences and quantify these differences in the morphology and
distribution of the cold gas.

Turbulent transport has been a long-standing field of research in fluid dynamics. In a turbulent
medium, the stochastic motions can transport, break, coalesce or mix the cold gas clouds. This
results in a wide variety of cold gas cloud morphology. Gronke et al. (2022a) calculated the cloud
size distribution in a hydrodynamically turbulent medium and found a power law, 𝑁 (> 𝑉) ∝ 𝑉−1

(which has also been found in larger scale simulations, e.g., Tan & Fielding, 2023). As we saw
a significant difference in the cold gas structure in Fig. 3.7, we check if the visual difference in
cold gas morphology between HD-MHD simulations is reflected in cold gas size distributions.

We calculate the cumulative number distribution of the cold clumps in a set of HD-MHD
simulations with Ms,hot = 0.5 and 𝑅cloud = 310𝑙shatter. Similar to Fig. 3.9, we define cold gas
as the gas with temperature below 2𝑇floor = 8 × 104 K and use feature labelling functionality
in SciPy’s (Virtanen et al., 2020) ndimage as the clump finding algorithm to identify the cold
clumps. We determine the volume of the obtained clumps and use it to calculate the cumulative
number distribution, shown in Fig. 3.10. We find that the distribution is well approximated by a
power-law with slope -1, i.e. 𝑁 (> 𝑉) ∝ 𝑉−1, while deviating at the two extremes of the volume
range due to resolution limits at lower volumes and statistical under-representation at higher
volumes. This matches the results from Gronke et al. (2022a). We also see that the number
distribution does not show a drastic difference between the HD and MHD simulations, apart from
a slight excess of small clumps in the HD simulation. This means the cold gas clumps in MHD
simulation are not significantly smaller or larger in volume than its HD counterpart.

Even though the difference in number distribution is minor, Fig. 3.7 clearly shows significant
morphological differences between the cold gas structure in HD and MHD simulations. Visually,
the cold gas in MHD simulations has a much more filamentary shape, while it has a more clumpy
cold gas morphology in the corresponding HD simulations. We quantify this filamentariness of
the cold gas structures as the length of the longest “shortest path” possible within the clump.

To do so, we first identify the individual clouds, as done for Fig. 3.10, and create a “neighbourhood
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Figure 3.10: Cumulative number distribution for HD-MHD simulation pair with M = 0.5 and
𝑅cloud = 310𝑙shatter. This shows the marginal difference in the overall distribution of clump sizes,
and also that the distribution matches the distribution of ∝ 𝑉−1, found in previous studies.
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Figure 3.11: Histogram of longest shortest distance in the neighbourhood graph of every clump
in a snapshot from the turbulent box at Mturb = 0.5, with and without magnetic fields. This figure
gives a lower limit on the difference in the filamentariness of the cold gas clumps in the two cases.
We find at cold gas clumps can get more filamentary in the presence of magnetic fields, by about
a factor of 2.
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Figure 3.12: Velocity structure function (VSF) for hot (green line) and cold (blue line) gas
phases in a set of simulations with (MHD) and without (HD) magnetic fields, at M = 0.5 and
𝑅cl = 310𝑙shatter. The dashed and solid lines show the VSF at different times, 𝑡 = 1.32𝑡eddy
and 3.95𝑡eddy after introducing the cold gas cloud. This shows the decreasing difference in VSF
of the two phases with time, in both cases, which means that the two phases are kinematically
well-connected. We also find a smaller early-time difference between the hot and cold gas VSF
for the MHD simulation, indicating a better kinematic connection in that case.
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graph” for each clump using an adjacency matrix. In this “neighbourhood graph”, each gridcell
inside the cloud is a node and two nodes are connected with an edge if the two share a face. We
calculate the shortest path between every node in this neighbourhood graph, and take the longest
from this list of shortest paths as the required longest “shortest path”. As many of the largest
clumps contain ≳ 50, 000 gridcells, we have to use a faster way which can give a close enough
answer instead of using the brute force method. The slowest step of the method is the shortest
path calculation among each pair of nodes. Hence, to speed up this step, we only consider every
4th node to identify the two points with the longest “shortest path”, and later recalculate the path
using the full graph with all nodes to get the final length. This optimised method drastically
reduces the number of path calculations and makes this analysis computationally feasible. We
also find negligible differences between the full brute force method and the optimised method in
our tests. This is because the points with the actual longest “shortest path” is usually in close
vicinity, likely within 4 grid lengths, unless the reduced graph is drastically different, which is
rare.

We repeat this process for each clump in the MHD and HD simulations with M = 0.5 and
𝑅cloud = 310 𝑙shatter and plot the histogram of the obtained longest “shortest path” in Fig. 3.11.
We find that the 90%ile of this length distribution for MHD simulations is longer by a factor of
2 compared to the corresponding HD simulation. Assuming, a constant volume of a cylindrical
cold gas clump, which is reasonable as shown in Fig. 3.10, an increase of 2 in length corresponds
to an increase of ≈ 2.8 in the length-to-width ratio of the clump. This method under-quantifies
the filamentariness of the clumps, as the connected filamentary structures that are shorter than
the main filament are not included. A full tree-based filament analysis will be the ideal method
for this analysis, but we leave the detailed study of filamentariness to future investigations.

We find that the p-value for the two length distributions in HD and MHD is lower than 0.05,
which means we can consider the filamentariness of HD and MHD simulations to have different
underlying distributions. The KS statistic quoted in Fig. 3.11 quantifies the difference between
the two distributions and is linked to the p-value. The higher the KS statistic, the lower the
p-value. As our number of samples is limited by the number of clouds in the simulation, we will
need a bigger box and longer runtime to improve the confidence level of this conclusion.

So, we conclude that, even though the cold gas clouds in the MHD simulation are similar in
volume and its distribution, compared to their HD counterparts, they are significantly more
filamentary in their morphology.

3.3.3 Cold gas entrainment
In a multiphase environment, the motion of one phase can affect the motion of another via
drag forces or mixing-induced momentum transfer (see, e.g., Gronke & Oh, 2020a; Tonnesen &
Bryan, 2021a). This means the phases can be kinematically linked. In addition to that, due to
flux freezing in the gas, the magnetic fields can increase the extent of this kinematic link. A good
way to check for this is the first-order velocity structure function (VSF). It quantifies the average
difference in velocities of gridcells separated by a given distance. The difference in the VSF of
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Figure 3.13: Evolution of average shear at clump boundaries in a set of HD and MHD simulations
with M = 0.5 and 𝑅cl = 310𝑙shatter (same as Fig. 3.12). The shaded regions show the
corresponding 15-85%ile intervals. The figure also shows the shear on the clump boundaries
is about an order of magnitude lower than the turbulence velocity in the simulations. Also, on
average, clumps in the MHD simulation seem to have a marginally lower, but very similar shear,
in comparison to HD simulations.

the two phases corresponds to a lack of link in the kinematics between the two, while a smaller
difference corresponds to a greater kinematic link.

We calculate the velocity structure function (VSF) of the hot and cold phases of gas in simulations
with (MHD) and without (HD) magnetic fields at different times. First, we calculate pairwise
distances and velocity difference magnitudes between each pair of gridcells. Again, due to
computational constraints, we cannot use all cells for the pairwise calculations, so we randomly
choose 2 × 104 gridcells for this calculation. Then, the list of pairwise velocity differences is
binned according to the pairwise distances and we plot the average of the velocity differences in
each bin as the VSF in Fig. 3.12. In general, we find a higher value of VSF in the hot gas than the
cold gas for both the simulations at all different times in the evolution, as seen in other idealised
simulations (Gronke et al., 2022a; Mohapatra et al., 2022a), and even some observations (Li et al.,
2022).

For structure function calculations with steep slopes, Seta et al. (2023) had found a 2-point stencil
to be unconverged and suggested the use of higher-order stencils. But, the slope of VSF for
Kolmogorov turbulence (1/3) is shallow enough for a 2-point stencil to be converged. Hence, we
use a 2-point stencil for all our VSF calculations.

This difference between the hot and cold VSF is much larger in HD simulation, on the left panel
of Fig. 3.12, while in MHD simulations (right panel of Fig.3.12) the difference is much more
subtle with both hot and cold VSF comfortably within 16-84 %ile range of each other. This
shows that the cold phase is, in general, better entrained in MHD simulations compared to HD
simulations. This is likely due to the flux-freezing of the magnetic fields that can result in a
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more efficient kinematic connection between the hot and cold phases, as mentioned before. In
presence of flux-frozen magnetic fields, any relative motion between the two phases encounters
an enhanced drag force (McCourt et al., 2015). We also find that, even though the VSF of the
different phases start off differently in HD-MHD simulations, they end up with very similar hot
and cold VSF profiles in both cases. This means, given enough time, both simulations reach a
similar extent of entrainment. Still, we do note that the entrainment is faster in MHD simulations,
compared to HD, as shown by the faster decreases in the difference between hot and cold medium
VSF in MHD simulations. This result indicates high entrainment of cold gas in hot gas, albeit
an imperfect one. More importantly, it also points to a more efficient and faster entrainment of
the cold gas in the presence of magnetic fields, with both HD and MHD simulations reaching an
equivalent entrainment state, given enough time.

Further, we calculate the average shear at the cold gas clump boundaries for each snapshot in
the HD and MHD simulations with M = 0.5 and 𝑅cl = 310𝑙shatter using yt(Turk et al., 2011).
Fig. 3.13 shows the evolution of this average and the 15-85%ile interval of the shear at clump
boundaries with time. We find that the shear at the clump boundaries is, in general, about one
order of magnitude lower than the turbulent velocity in the simulation. This again indicates a
high entrainment of the cold gas. Also, the slightly lower values of average and 85%ile value
of shear for MHD simulations suggest a more efficient and faster entrainment in the presence of
magnetic fields.

3.3.4 Magnetic fields strength and structure
In MHD simulations, magnetic fields are kinematically very important, as the gas flows affect the
magnetic fields and vice-versa. Apart from affecting the kinematics, magnetic field structure can
also affect other processes like thermal conduction and cosmic ray transport in an astrophysical
media (e.g., Kempski et al., 2023; Ruszkowski & Pfrommer, 2023).

The turbulent motions can result in a local dynamo effect, leading to amplification of magnetic
fields in MHD simulations. The extent of this amplification can vary in the different phases due
to differences in the Alfvénic wave speed (𝑣A = 𝐵/√𝜌) and turbulent velocities. On top of the
dynamo effect, the compression of gas during its cooling can also cause amplification during cold
gas formation, due to flux-freezing.

To examine these differences, we check the distribution of magnetic field strengths in the different
phases. We define the cold phase as the gas with temperature 𝑇 < 2𝑇floor = 8 × 104 K, hot
phase as 𝑇 > 0.5𝑇amb = 2 × 106 K, and mixed gas as the gas with temperatures in between, i.e.
8 × 104 K < 𝑇 < 2 × 106 K. Fig. 3.14 shows the distribution of magnetic field strengths in these
three gas phases, for simulations of three turbulent Mach numbers and with two cloud radii. The
exact distribution has a non-trivial dependence on factors like the turbulent Mach numbers and
cold gas growth rate. But in all cases, the mixed and cold gas magnetic strength distributions are
centred at stronger magnetic fields, while the hot gas magnetic strength is centred around weaker
magnetic fields, with the dashed line showing the equipartition magnetic field strength. This
higher magnetic field strength in cold and mixed gases could be due to three possible processes:
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Figure 3.14: Histogram of magnetic field strength in gas within different temperature ranges,
namely hot (𝑇 > 2 × 106 K), mixed (8 × 104 K < 𝑇 < 2 × 106 K), and cold (𝑇 < 8 × 104 K)
gas, for two simulations where the cloud gas cloud survives, 𝑡 = 3.92𝑡eddy after its introduction.
Left M = 0.5, 𝑅cl = 310𝑙shatter. Right M = 0.25, 𝑅cl = 77𝑙shatter. The dashed vertical line
corresponds to the equipartition magnetic field strength, achieved in the hot ambient gas at the
end of driving the turbulence. This shows that the magnetic fields are significantly amplified as
the gas cools down to a lower temperature. We discuss the possible causes of this amplification
in § 3.4.2.

turbulent local dynamo in the dense gas as the equipartition magnetic field is higher for a denser
gas moving at similar velocities, flux-freezing accompanied by compression due to cooling, and
magnetic draping caused by the relative motion between the dense gas and magnetic fields. We
discuss more about these processes, and possible order of importance in the discussion section
(c.f. §3.4).

Flux-freezing and the turbulent motions can result in a very tangled magnetic field structure. These
tangled mangetic fields can have many consequences including reduced thermal conduction and
slower cosmic ray transport. Presence of multiphase gas in a turbulent medium can add further
complexity to the magnetic morphology, due the magnetic field strength distributions in different
phases, as we show earlier in this section. To better understand this, we study the structure of the
magnetic fields using magnetic field streamlines. We use yt (Turk et al., 2011) to calculate 10000
streamlines for 100 different streamline lengths (𝑙stream) between 0.01 − 1𝐿box. We calculate the
displacement between the two endpoints of the streamlines (𝑙), to get the ratio 𝑙stream/𝑙. This ratio
denotes the extent of entanglement of the magnetic field. A 𝑙stream/𝑙 = 1 indicates a perfectly
untangled streamline, with higher values denoting a higher extent of entanglement. We repeat this
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Figure 3.15: Top Average, median and 10average of logarithm of entanglement, i.e. 𝑙stream/𝑙 for
different streamline lengths (𝑙stream). The dashed lines show the corresponding best linear fits and
the shaded region shows the 15-85%ile interval. The general trend of increasing entanglement
for longer and longer streamline lengths indicate a fractal-like structure of the magnetic field
lines, discussed further in § 3.4.2. Bottom inset Points denote the mean and variance of
log10 (𝑙stream/𝑙) and the green dashed line shows the linear fit, 𝑉 = 0.24(𝜇 − 0.03). We use this
relation to calculate the shown probability distribution. Bottom Solid lines show the probability
distributions of different values of entanglement, log10 (𝑙stream/𝑙), for three values of streamline
lengths. The dashed lines show the corresponding calculated Γ distributions, with the parameters
mentioned in the legend. This shows the close agreement between the estimated and calculated
probability distributions. There are some deviations for the probability distribution of small
streamline length, which is discussed further in § 3.3.4.
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process for different 𝑙stream/𝐿box, and obtain distributions of the extent of entanglement (𝑙stream/𝑙)
for each 𝑙stream/𝐿box. We calculate the mean, median and mean of the logarithmic lengths in each
𝑙stream/𝑙 distribution.

The upper panel of Fig. 3.15 shows the trend of mean, median, mean(log) and 15-85%ile interval
for each 𝑙stream/𝐿box value. We find that all the metrics of ensemble value of the ratio 𝑙stream/𝑙
increase linearly with 𝑙stream/𝐿box. The upper panel of Fig. 3.15 shows the close approximation
of the linear trend for mean and mean(log). This means the extent of the entanglement increases
linearly with the length of the streamline. This property could be a sign of fractal-like behaviour
of the field lines down to a certain threshold at small scales. We discuss this further in the
discussion section (cf. §3.4). Note that the asymmetrically located 15th and 85th percentiles
with respect to the median indicate a long tail towards longer 𝑙stream/𝑙.

To show this more explicitly, we further choose three different streamline lengths, shown as
vertical dotted lines in the upper panel of Fig. 3.15, and recalculate the streamlines for 10× more
(105) starting points. We repeat the above mentioned process to calculate the 𝑙stream/𝑙 values and
calculate the probability distribution function of the entanglement, 𝑙stream/𝑙, for these three values.
We plot these probability distribution functions as solid lines in the bottom panel of Fig. 3.15.
Even though we find some minor deviations at higher entanglement values due to insufficient
counts caused by the reduced number of samples, the histogram at lower entanglement values is
robust and fairly well converged with the number of streamlines.

Next, we attempt to find an analytic form for the different probability distribution functions
(PDF) that we found earlier for the 𝑙stream/𝑙, in the bottom panel of Fig. 3.15. We calculate the
variance (𝑉) and mean (𝜇) of log10 (𝑙stream/𝑙) and find a strong linear relation between the two
as 𝑉 = 0.242(𝜇 − 0.031). For a Γ distribution, the variance and mean are given by 𝑉 = 𝑘𝜃2

and 𝜇 = 𝑘𝜃, where 𝑘 and 𝜃 are the shape and scale parameters, respectively. This means, our
𝑉 − 𝜇 relation for log10 (𝑙stream/𝑙) matches the properties of a Γ distribution with 𝜃 = 0.242,
and 𝑘 = 𝜇/𝜃 = 𝜇/0.242. Using the linear fit for the 𝜇, shown in upper panel of Fig. 3.15, and
the equation of the Γ distribution, a fit for the PDF of 𝑙stream/𝑙 for a given 𝑙stream/𝐿box is a Γ

distribution for 𝑥 = log10 (𝑙stream/𝑙) −0.031 with 𝑘 ≈ log10(1.5𝑙stream/𝐿box +1) and the 𝜃 = 0.242
mentioned above.

The bottom panel of Fig. 3.15 shows the analytical form with the dotted lines. We find that the
analytical form agrees very well with the PDF for long streamlines. But for shorter streamlines,
at intermediate values of entanglement (𝑙stream/𝑙), it overestimates the PDF at intermediate
entanglement values in the tail. This can be an indication towards a different underlying analytic
form for PDF, which is equivalent to the Γ distribution at longer streamlines. Or, it can be due to
resolution effects as they start to become more important for short highly entangled streamlines.
We leave a deeper investigation of this for future studies.

As the charged particles tend to gyrate around and follow the magnetic field lines, analytic form
for the magnetic field morphology, similar to the ones we find above, can be used in developement
of models for their transport through a multiphase turbulent medium.
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3.3.5 Synthetic absorption line spectra
As shown in the results section of turbulent boxes (cf. §3.3), we know that the morphology and
details of kinematics can differ significantly between the simulations with (MHD) and without
(HD) simulations. This difference can affect observational probes like predicted quasar absorption
line spectra, because the column density and Doppler shift, the two major features of lines, can
be affected by these differences in morphology and kinematics. We investigate these effects and
their observational consequences in this section.

Fig. 3.16 shows the distribution of column densities of cold (𝑇 < 105 K) and intermediate/mixed
(105 < 𝑇 < 106 K) along one of the dimensions of the box for a set of HD-MHD simulation with
Mhot,turb = 0.5 and 𝑅cloud = 310 𝑙shatter, same as Fig. 3.7 and 3.12. Note that because 𝑙shatter ∝ 𝑛−1

McCourt et al. (2018) the column densities simulated can be directly compared to observations.
We still find that the column density histogram of the cold gas shows a greater extent of difference
between the set of HD and MHD simulations, compared to the intermediate gas. We also see
that most of the difference shows up at lower values of column density. So, we expect to see
some difference between the HD and MHD simulations in observational probes of cold gas, for
example, LOS absorption due to MgII, at lower equivalent widths.

In order to investigate the observational consequences of the differences between HD and MHD
simulations, we create mock LOS absorption spectra using Trident (Hummels et al., 2017) on
the same set of HD-MHD simulations as Fig. 3.7, 3.11, 3.12, and 3.16 (Mhot,turb = 0.5, 𝑅cloud =

310 𝑙shatter). Note that both of these snapshots have similar cold gas volume filling fractions.

We sample ∼ 10000 line-of-sight (LOS) spectra along one of the axes of the computational
domain on a 100×100 grid. Due to the isotropic nature of the system, the particular choice of the
axis should not affect the statistical inferences. We use a Δ𝜆 = 0.1Å (corresponding to a spectral
resolution 𝑅 ≡ 𝜆/Δ𝜆 ≈ 28, 000) to create the mock absorption features for MgII at uniform solar
metallicity. We select spectra which have a maximum absorbed flux of more than 0.1, over a
continuum flux of 1.0, so that we are only considering LOS that pass through significant amounts
of cold gas. We also exclude the spectra which have saturated features (with a flux less than 0.1)
because they correspond to unnaturally large cold gas volume filling fractions, thus, leaving the
number of components ill-defined. Next, we calculate the equivalent width (EW) for the MgII
line complex and the number of absorption features for each LOS, as the area under the continuum
and the number of minima in a spectrum, respectively. Fig. 3.18 shows the 2D distribution of
EW and the number of absorption features for the HD-MHD simulations. We also show the
fit obtained for the same quantities from observations of MgII absorbers in quasar spectra in
Churchill et al. (2020). Interestingly, the more frequent regions of both the 2D histograms in
Fig. 3.18 are close to the relation found in Churchill et al. (2020). We also find that, for the same
EW, the MgII spectra of the MHD simulation tend to have a slightly higher number of absorption
features, compared to the HD simulation, but these differences are marginal.

We repeated this exercise with 10x better spectrum resolution, which is much higher than that of
the observed spectra, and we also included an additional CIV 1551Å line. The corresponding
distributions, analogous to Fig. 3.18, are shown Fig. 7 and 8 in Appendix 6.5.3). In both cases,
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the distributions change, but still roughly follow the observed curve.

3.4 Discussion

3.4.1 Mass transfer rates in a magnetized, turbulent medium
The two results for mixing layers and turbulent box simulations shown in Sec. 3.1.1 and Sec. 3.3,
respectively, present a dichotomy. On one hand, TRML simulations show a significant suppression
in the mixing of two phases, and on the other hand, the turbulent box simulations show the lack of
a similar difference in mixing rate, as shown by the cold gas growth rates and survival criterion.

To resolve this, we need the answer to the question, what is the primary mechanism of mixing
of two phases? The mixing happens when the multiphase structures get small enough to reach
the “dissipation scale” where the molecular diffusion is fast enough to mix the two phases
(Obukohov-Corrsin phenomenology; Oboukhov, 1949; Corrsin, 1951). There can be multiple
ways to reach such small scales, and one of these is via vorticity. Vorticity or vortices can
stretch, fold and transport, in other words, it “stirs” and stretches the structures, eventually
reaching the small scales where molecular diffusion can take over and “mix” the two phases
(Villermaux, 2019). In theory, this vorticity does not have to be part of turbulence, but in the
high Reynold’s number of fluids, as is the case in astrophysical mediums, the vortices generally
become turbulent. This causes a faster stirring of the multiphase structures, and a more rapid
increase in the surface area and decrease in structure width, resulting in more efficient diffusion.
Hence, in an astrophysical medium, the main mechanism of mixing is expected to be turbulent
mixing. In principle, the mixing should only depend on the turbulence and be independent of the
source of turbulence.

In a Kelvin-Helmholtz or TRML setup, the initially structured vortices quickly give way to a
turbulent mixing layer. The turbulence in this mixing layer is the key mechanism of stirring and
mixing the two phases. This lead to this chain of processes: KH instability → Turbulence →
Mixing. When magnetic fields are introduced in the system, depending on their orientation, they
hinder the link between the KH instability and turbulence by slowing down the rate at which the
turbulence in the mixing layer is driven. But as we show above, importantly, the magnetic fields
do not affect the other link that connects turbulence with mixing. So, we expect to see a tight
correlation between the turbulent velocity in the mixing layer and the extent of mixing/cooling
that is occurring in the mixing layer, regardless of the magnetic field orientation or strength (cf.
Fig. 3.6). Hence, we conclude that suppression of mixing in TRML simulations in magnetic
fields is due to the reduced driving of turbulence in the mixing layer, which in turn leads to a
reduced mixing of the two phases.

The situation is different in our turbulent box setup. There the system is the driven turbulence that
cascades from the largest (box-size) scales to the smallest (gridcell-size) scales. This implies that
𝑢′ is fixed and since the mixing and cooling rate only depends on 𝑢′ directly, we obtain similar
growth rates in the HD and MHD cases – explaining the unaltered survival criterion and mass
transfer rates found (cf. Figs. 3.8 and 3.9, respectively).
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We also find direct evidence that the turbulent, cascading 𝑢′ is responsible for the mixing, and
not the (also in the turbulent box present) hydrodynamical instabilities seeding smaller-scale
turbulence. Firstly, the velocity structure functions of both the hot and the cold medium follow
each other closely (cf. Fig. 3.12) indicating near perfect entrainment of the cold gas. Secondly,
we also show explicitly the shear between cold and hot gas (c.f. §3.3.3) being small, i.e., the cold
gas is well-entrained in the hot ambient gas. This means the shear is minimal, resulting in a lesser
extent of turbulence in the mixing layer between the two phases. If solely the shear would be
responsible for the mixing and cooling, we estimate the mass doubling time to be ∼ 5𝑡eddy for the
turbulent box with M = 0.5 and 𝑅cl = 310𝑙shatter, which is about an order of magnitude longer
than actually found in the simulations (using the TRML scaling relations of Tan et al., 2021 for
each surface cell on the cold gas clump).

In summary, we find the 𝑢′ → ¤𝑚 relation to be universal in HD and MHD (and consistent with
high-resolution TRML studies; Fielding et al., 2020; Tan et al., 2021). However, magnetic fields
prevent instabilities to form in the mixing layer setup leading to a lower 𝑢′ and thus to a decreased
mass transfer rate. When the extent of turbulence is fixed by larger scales – as done in the turbulent
box – the magnetic fields cannot suppress the mixing leading to comparable luminosities in the
HD and MHD runs.

In realistic, astrophysical multiphase systems such as the ICM, CGM or ISM turbulence is also
seeded on larger scales, then cascading downwards. In the ICM, for instance, AGN feedback is
believed to play a dominant role in the stirring process leaving a characteristic imprint on the
VSF (Li et al., 2022). Similarly, for the CGM where both (AGN and stellar) feedback processes
as well as cosmological inflow act on ∼ 100 kpc scales ‘stirring’ the CGM (Chen et al., 2023a).
The alternative ‘shearing layer’ picture might occur in multiphase systems where bulk flows
are dominant such as galactic winds and cold streams; however, since also there non-negligible
turbulent is present which mixing channel is dominant is still unclear (Schneider et al., 2020; Tan
& Fielding, 2023; Rathjen et al., 2023).

3.4.2 Magnetic field amplification and morphology
We find that the magnetic field strengths in cold and mixed gas of our MHD turbulence simulations
are higher than their equipartition values in the hot medium (c.f. §3.3.4). As discussed earlier,
this higher value in the cold and mixed gas can be due to higher equipartition values in denser gas
(as 𝐵eq ∝ √

𝜌, with the caveat of assuming similar turbulent velocities in hot and cold medium,
which we discuss later in the section), due to flux-freezing during compression from hot to cold
medium (e.g. Sharma et al., 2010; Gronke & Oh, 2020a), or due to magnetic draping around the
cold gas clumps (Dursi & Pfrommer, 2008; McCourt et al., 2015).

It is hard to disentangle these three processes as the extent of amplification in the simulation
(≈ 6𝐵0) can be achieved via all above the processes. The flux-freezing can cause an amplification
up to 𝜒2/3𝐵0 ≈ 22𝐵0, assuming an isotropic, isobaric collapse from 𝑇hot to 𝑇cold and conservation
of magnetic flux. The local dynamo and magnetic draping can account for an amplification up to
𝜒1/2𝐵0 ≈ 10𝐵0, assuming the amplification continues until equipartition is reached, i.e. MA ∼ 1,
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Figure 3.16: Column density distribution of cold (𝑇 < 105 K, left panel) and intermediate
(105 K < 𝑇 < 106 K, right panel) temperature gas in HD (in green) and MHD (in blue)
simulations, with M = 0.5 and 𝑅cl = 310𝑙shatter. This shows that the column densities for the
above cases are within the observationally expected column densities for absorption spectra in a
circumgalactic environment. It also shows that the lower end of column density distribution for
cold temperature gas has a higher extent of difference between the HD and MHD simulations.
This makes an absorption line tracing the cold gas a prime candidate for looking at observational
differences between the HD and MHD simulations.
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Figure 3.17: An example line-of-sight MgII 2796 Å absorption mock spectra with Δ𝜆 = 0.01Å,
from the HD (blue solid line) and MHD (green dashed line) simulations with M = 0.5 and
𝑅cl = 310𝑙shatter (same as Fig. 3.16). The dotted black line shows the threshold of the minimum
absorbed flux of a feature, and the red circles show the features that we consider for analysis.
This figure is only for reference, as these are higher resolution spectra compared to the ones used
in the analysis at Δ𝜆 = 0.1Å, which is closer to observational spectral resolution.
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Figure 3.18: Contour plot of the 2D histogram of line-of-sight MgII absorption mock spectra
in the number of absorption features vs. equivalent width space, for HD (solid contours) and
MHD (dashed contours) simulations with M = 0.5 and 𝑅cl = 310𝑙shatter (same as Fig. 3.16 and
3.17). The dash-dotted green line shows the relation found in Churchill et al. (2020). This shows
that there are only marginal differences in the overall distributions of HD and MHD simulations,
despite the differences in Fig. 3.16. We also find that they agree quite well with the observed
relations from Churchill et al. (2020).
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and similar 𝑣turb surrounding the cold gas means the new equilibrium magnetic field in the cold
gas increases by

√︁
𝜌cold/𝜌hot. The flux-freezing causes a higher magnetic field in newly formed

cold or mixed gas, and the other two processes amplify the existing magnetic field in the cold
or mixed gas. As the magnetic fields reach equipartition values, they start to become stiff to the
gas motions and start to back-react and influence the gas motions. This means the amplification
value of 𝜒1/2𝐵0 ≈ 10𝐵0 at equipartition gives a rough upper limit on the amplification by all the
processes. And, this agrees with our results in Fig. 3.14.

Out of the possible processes, turbulent local dynamo and magnetic draping are less likely due
to a few reasons. For the magnetic fields to be amplified to 10𝐵0 due to turbulent local dynamo,
the turbulent velocity at cold gas cloud scales has to be similar to the hot gas turbulent velocity.
But, due to the small scales of the cold gas clumps, the turbulent velocities at cloud scales will
be much lower at ∼ 𝑣turb(𝑙clump/𝐿box)2/3. Hence, the local dynamo will not be able to cause the
calculated high amplifications.

For magnetic draping to amplify the fields, there needs to be a significant relative velocity (𝑣rel)
between the hot and cold gas, which generally is not the case, as we find a very similar VSF
for hot and cold gas and low shear between the phases. This means, the 𝑣rel ≪ 𝑣turb, hence the
amplification of magnetic fields due to such process is probably insignificant. In addition, draping
generally requires and leads to structured magnetic fields as they ‘drape’ around the clouds (Dursi
& Pfrommer, 2008) – something we do not observe in our simulations.

This leaves flux-freezing and subsequent compression of magnetic fields as the only process that
can cause significant amplification. Once, the amplification reaches a limit where the magnetic
fields are stiff (trans/sub-Alfvénic), the gas continues to evolve along magnetic field lines, hence
cold gas growth does not necessarily have to compress the magnetic fields.

Next, we consider the structure of the magnetic fields. In our study, we find that the extent
of entanglement (𝑙stream/𝑙) of the magnetic field lines increases linearly with the length of the
streamline (c.f. Fig. 3.15). This points to a structure where the longer the streamlines are, the
more relatively small-scale structures are sampled. This is possible if the magnetic streamlines
have a “fractal-like” structure that goes on until a fixed small-scale, which is the grid-scale in our
simulations. Hence, the longer the streamlines are, the wider the range of perturbations that are
included, leading to the increasing trend of entanglement.

This is analogous to the well-known problem of measuring a coastline, where the measured
coastline length increases with decreasing length of the measuring stick. In this case, the roles
are reversed. The measuring stick has a constant length, while we make the coastline longer.
Assuming self-similarity, if we rescale this longer coastline, we effectively make the measuring
stick smaller and we get back to the original coastline measuring problem. Let 𝜖 ∝ 1/𝑙stream be
the effective length of the measuring stick. Hence, 𝐿 = 𝑙stream/𝑙 will be the rescaled coastline
(streamline) length. We can use the relation found in Fig. 3.15 and the expression for the length
of self-similar fractals, i.e. 𝐿 ∝ 𝜖1−𝐷 (Mandelbrot, 1967; Mandelbrot & Wheeler, 1983) to find
the fractal dimension (𝐷) of the magnetic field lines. We find that the magnetic field lines have
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a fractal dimension, 𝐷 = 2. Such naturally occurring fractal structures with a fractal dimension
of 2 in 3D space are known to exist, with Brownian motion being one example (Falconer, 1985).
Previous studies of TRMLs have also found fractal structures, for example, Fielding et al. (2020)
show that the cooling layer in a TRML has a fractal dimension of 2.5, while Tan et al. (2021) find
a slightly different value but note that measured values can differ.

We also find that a Γ distribution on logarithmic entanglement (log10 𝑙stream/𝑙) matches fairly well
with the computed distribution from the simulations for longer streamlines. The Γ distribution
does a poorer job for very short streamlines, which might hint towards a transition to or altogether
a different distribution for the entanglement. Or, this might possibly be due to higher resolution
effects on the shorter streamlines.

We hope that this analytic form for magnetic field entanglement will be helpful in development
of models for transport charged particles through magnetised multiphase turbulence.

3.4.3 Connection to observations
Multiwavelength studies now allow the joined observational study of multiphase astrophysical
media. Of the many ways to probe the properties of the multiphase gas, the absorption lines are
one of the widely used methods (e.g., Steidel et al., 2010; Crighton et al., 2015; Chen, 2017; Rubin
et al., 2022). The different phases in the CGM of an intervening galaxy can deposit absorption
features on the background quasar continuum. As the different sections of the absorbing medium
can be moving with different velocities, these absorption features can be deposited at different
Doppler-shifted positions near the line centre with different widths. Hence, the absorption features
provide information about the kinematics and structure of the absorbing medium.

We find that there is no significant difference in mock absorption features of MgII 2796Å with
and without magnetic fields. We, furthermore, show mock absorption spectra from both HD and
MHD simulations agree with observed MgII absorption features from Churchill et al. (2003);
Churchill et al. (2020), who established a relation between the number of ‘absorbers’ and the
total equivalent width of the absorption. We also show in Appendix 6.5.3 that this agreement is
approximately valid across spectral resolution and absorption lines.

As we found a universal clump mass distribution following d𝑁/d𝑚 ∝ 𝑚−2 (cf. Fig. 3.10 and
§ 3.3.2) in both the HD and MHD cases (consistent with Gronke et al., 2022a), this suggests that
the Churchill et al. (2020) is a direct consequence of the clump mass distribution, and similar
probes might be used to constrain it providing an interesting avenue for future work.

In addition to absorption lines, there are many studies that investigate the emission lines from
multiphase media. Li et al. (2022) look at the multiphase turbulence in the ram-pressure stripped
tail of ESO 137-001 using different emission lines. They find a similar velocity structure function
as ours (in Fig. 3.12) and many other simulations (Mohapatra et al., 2021, 2022a). This shows
that both simulations and observations point towards a high extent of kinematic coupling between
the different phases in astrophysical media.
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3.4.4 Connection to previous studies
Due to the very high Reynolds number of astrophysical media, they are highly susceptible to
turbulence. Hence, these media are expected to be turbulent in all the different scenarios in which
energy is being injected into the medium, be it via supernovae, accretion or mergers. This turbulent
nature of astrophysical medium has been studied before in previous studies (Schekochihin &
Cowley, 2007; Lancaster et al., 2021; Hu et al., 2022; Li et al., 2022; Federrath, 2013; Elmegreen
& Scalo, 2004; Wittor & Gaspari, 2020). There is also a plethora of studies that look at the different
aspects of magnetohydrodynamic (MHD) turbulence, both in contexts related and unrelated to
astrophysical mediums (see, e.g., review by Schekochihin, 2020).

Recently, there has been a significant focus on the multiphase nature of such turbulence, with or
without magnetic fields. Previous studies like Mohapatra et al. (2022c) and Gronke et al. (2022a)
have looked into hydrodynamic multiphase turbulence, while studies like Mohapatra et al. (2022b)
and Mohapatra et al. (2022a) investigate the same with magnetic fields. And, studies like Seta &
Federrath (2022) have looked at the evolution of magnetic fields in a multiphase medium. The key
difference between these studies (except Gronke et al. (2022a)) and ours is the thermal instability
of the ambient hot medium. In our setup, we mimic a heating source and turn off the cooling for
gas hotter than 0.5𝑇amb, hence the ambient hot medium is thermally stable. Due to the absence of a
thermally unstable ambient medium, mixing is the primary mechanism for creating the thermally
unstable intermediate gas in our simulations. Still, results from our study will be relevant for
the late evolution of simulations with thermally unstable hot medium, at which point, the further
creation of cold gas is likely dominated by the cooling of mixed intermediate gas, rather than the
less unstable hot medium. Importantly, the dynamics of a multiphase medium are quite different
depending on which phase dominates the simulation domain. Since in most astrophysical media,
the hot component is dominated by volume (see, e.g., Tumlinson et al., 2017, for the CGM), we
choose to focus on the initial phase where this is also the case in our setup. Studying the full
dynamic range, i.e., having a sufficiently large volume to sustain 𝑓V,c ≪ 1 for an extended period
of time while resolving the small-scale structure is unfortunately computationally prohibited.

Another similar system of turbulent boxes can be the stratified turbulent boxes, as studied by
Mohapatra et al. (2021), Mohapatra et al. (2021) and Wang et al. (2023a). In such systems, the
fundamental nature of turbulence can be different, depending on the extent of stratification. But,
due to the presence of a similar hierarchy of structure and scales, we expect to see a similar
growth or destruction of cold gas. In a stratified medium, there are two kinds of motions, one
across the stratified layers, i.e. along the stratifying force (𝐹strat), and the other along the layers,
i.e. perpendicular to the 𝐹strat. The growth of cold gas within the layer itself would depend on
the turbulent property in the layer, roughly perpendicular to 𝐹strat, while the transport and growth
of cold gas among the stratified layers would depend on the gas motion along 𝐹strat. This kind
of motion can be turbulent or buoyancy-driven where the cold gas falls “down”. A stronger
stratification can suppress the turbulent motions across the stratified layers, while the buoyant
forces and motions can get amplified. Hence, even though some of our results are relevant to
a stratified system, due to the complex interplay between these different flows, further study is
needed to fully understand the rich physics in play.
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Apart from explicitly turbulent boxes, turbulence shows up time and again in a lot of astrophysical
simulations. An example of one such system are the ‘cloud-crushing’ simulations modelling cold
gas-wind interactions. These set of simulations, designed to study multiphase galactic outflows,
have been extensively studied (e.g., Klein et al., 1994a; Marinacci et al., 2010; Scannapieco &
Brüggen, 2015; McCourt et al., 2015; Schneider & Robertson, 2017; Girichidis et al., 2021).
Studies find that cold gas clouds that are bigger than a certain critical radius can not only survive
against a fast-moving hot wind but even grow as they are being entrained in the wind (Gronke &
Peng Oh, 2018; Li et al., 2020) with the details of the critical radius still under debate (Kanjilal
et al., 2021; Farber & Gronke, 2021; Abruzzo et al., 2022a).

Initially, when hit with the hot wind, Kelvin-Helmholtz (KH) rolls are formed near the edges
facing perpendicular to the wind, where the relative velocity is the highest. These KH rolls act as
one of the initial sources of turbulent motions behind the cloud in its tail and cause mixing. As
the cloud gets entrained and the shear decreases, this mechanism is unable to drive any further
turbulence. Still, many of the previous studies mentioned above find that the cold gas mass
continues to grow even after the cloud is entrained. This points to the presence of a substitute
process for driving the turbulence at later times. The nature of this substitute process is still
an open question, with some suggestions being the hot gas inflow due to cooling tail (Abruzzo
et al., 2022a) or the pulsations of the cold clumps themselves (Gronke & Oh (2023), Gronke
& Oh (2020b)). Regardless of the exact source of the late-time turbulence driving in the tails,
as we show in this study, if the resulting turbulence in the tail is similar, the mixing and the
cold gas evolution will be similar. Interestingly, studies with magnetic fields, like Gronke &
Oh (2020a) and Hidalgo-Pineda et al. (2023) find a lack of significant difference between the
growth rates of the cold gas with (MHD) and without (HD) magnetic fields. This result, in
combination with what we find in our study, means that the presence of magnetic fields is not
affecting the turbulence-driving mechanism. However, note that Hidalgo-Pineda et al. (2023) do
find a significant difference in the survival criterion of clouds in a laminar flow with the inclusion
of magnetic fields (∼ 2 orders of magnitude with 𝛽 ∼ 1). To understand this, it is important to
recall that the main difference to our turbulent setup is that for a wind tunnel setup the reduction
of the drag time (𝑡drag ∼ 𝜒𝑣/𝑟cl ∼ 𝜒1/2𝑡cc) in order to be comparable to the destruction time 𝑡cc is
sufficient for survival. Hidalgo-Pineda et al. (2023) attribute this reduction to a combination of
draping (Dursi & Pfrommer, 2008; McCourt et al., 2015) and an altered 𝜒 due to compression of
magnetic fields. On the other hand, in a turbulent setup, the cold gas is never fully entrained.

Another analogous set of systems is the Ram-pressure stripped galaxies, also called jellyfish
galaxies. Similar to the cloud-crushing simulations, such galaxies have a multiphase tail. And,
both simulations (Roediger & Brüggen, 2006; Tonnesen & Bryan, 2009) and observations (Boselli
et al., 2022; Li et al., 2022; Luo et al., 2023) have shown the presence of turbulence in the tails
of such galaxies. Results from this study will be quite relevant to the environment in such a tail,
where the extent of the turbulence in the tail will dictate the overall evolution of the multiphase
gas. Even though there are some strong parallels between jellyfish galaxies and cloud-crushing
simulations, there are also many differences, like the difference in overdensity, presence of
self-gravity, star-formation, feedback, etc. Hence, more detailed studies are required to fully
understand these systems.
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One of the major sources of turbulence in the circumgalactic medium (CGM) is the galactic
outflows caused by the supernova feedback in the galactic disk. In our simulations, we vary the
turbulent energy injection rate in order to get a similar turbulent velocity in both HD and MHD
simulations. In a more realistic system, as in isolated galaxy simulations, the energy injection is
dictated by the supernova rate, and indirectly by the star formation rate (SFR). Previous studies
like Hopkins et al. (2019); van de Voort et al. (2021) found that changes to SFR, stellar mass and
ISM mass due to the inclusion of magnetic fields are small. This means the energy injection rate
into the CGM is roughly unaltered due to the inclusion of magnetic fields. As the magnetic fields
in the CGM will act as an additional energy sink, the resulting turbulent velocity in the CGM
due to the outflows is expected to be lower when magnetic fields are included. This reduced
turbulent velocity in the CGM can be one of the possible reasons for the lower extent of mixing of
metals in CGM, resulting in the stronger angular dependence of metallicity in simulations when
the magnetic fields are included (van de Voort et al., 2021).

Closer to home, multiphase MHD turbulence is also seen in the solar atmosphere. The nature of
MHD turbulence in the solar atmosphere is quite different, due to the very high magnetic field
intensities, leading to sub-Alfvénic turbulence. In this case, the magnetic field tension is very
high, and magnetic field lines are stiff to the gas flows. Still, as the mixing of multiphase gas is
fundamentally tied only to the gas flows, and in the presence of the turbulent cascade of structures,
our results suggest that the evolution of the multiphase gas would primarily be affected by the
overall turbulent property. One of the sources for this turbulence can be the non-linear evolution
of KH instability, which has been investigated in previous studies like Hillier et al. (2023).

3.4.5 Caveats / future directions
Below, we mention some caveats of the study and some directions that can be explored in future
studies.

• Resolution: We use a lower resolution in our TRML simulations compared to that in Tan
et al. (2021). This should not affect our results because, as Tan et al. (2021) show, it is
enough to properly resolve the largest eddy to get converged cooling and mixing rates, which
we do. Similarly, Gronke et al. (2022a) show that the growth rates and survival of cold gas
clouds well within the survival regime, is converged if the cloud radius is well-resolved.
As this criterion is satisfied in our simulations, we believe the results should be converged
over similar resolutions. A lack of physical resistivity, viscosity or conduction means that
in our simulations these are replaced by numerical resistivity, viscosity and conduction. A
higher resolution will lead to a decrease in these but, as mentioned in section 3.4.1, the
primary timescale in the problem is the turbulent eddy timescale of the largest eddy, which
is unaffected by the resolution. This is similar to the analogous result in TRMLs which Tan
et al. (2021) find in their study.

• Turbulent driving: In this study, we maintain a solenoidal to compressive driving ratio
( 𝑓shear) of 0.3 across all turbulent box simulations. Previous studies find that different
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𝑓shear in simulations can cause differences in the turbulent power spectrum (Federrath,
2013; Grete et al., 2018; Mohapatra et al., 2022c). But for our results, it is enough that the
turbulent eddy timescale of the largest eddy is longer than that of smaller eddies, this remains
unchanged with a different turbulent driving. The nature of turbulent driving can also affect
the magnetic field amplification in MHD turbulence. The magnetic field in a turbulent
box driven by an 𝑓shear > 0 is amplified much faster than a purely compressively-driven
( 𝑓shear = 0) turbulent box. Still, this difference is well within an order of magnitude, and the
results from our simulations should largely be applicable to the case of purely compressible
turbulence.

• Subsonic vs supersonic: In this study, we restrict ourselves to the subsonic regime in both
TRML and turbulent box simulations (to be more applicable to most astrophysical systems).
Yang & Ji (2023) have looked at the behaviour of TRMLs with supersonic shear velocities,
and find that for very high Mach numbers, the turbulent velocities in the mixing zone start
to saturate with increasing shear velocities. This leads to a stagnation in the cooling rate,
which is in agreement with our results from TRML simulations. Mohapatra et al. (2022b),
in their simulations with supersonic turbulence, find that stronger turbulence can lead to
higher compression and rarefactions in the medium. The stronger compression, along with
shocks, might cause higher cold gas formation from the cooling of the ambient medium
if the cooling is stronger than shock heating. This might also be valid for the supersonic
multiphase turbulent boxes with non-cooling ambient medium, analogous to this study,
where shocks passing through the medium might result in more efficient cooling of shocked
intermediate gas regions. On the other hand, shocks in supersonic turbulence can also lead
to the destruction of the cold gas, countering the additional cold gas formation. We see a
hint of this more efficient destruction in our transonic (Ms ≈ 0.9) turbulent simulations in
Fig. 3.8, where the clouds larger than the subsonic critical radius get destroyed. Hence, the
results in an analogous multiphase supersonic turbulent box might vary from the subsonic
cases. This is further complicated by the presence of magnetic fields, where there are two
kinds of shocks, and these can also lead to the amplification of the magnetic fields.

• Super-Alfvénic vs Sub-Alfvénic: Most of the large-scale astrophysical media like the ISM,
CGM and ICM are usually super-Alfvénic (MA >1) in nature. Even though, most of them
start with a relatively highMA, due to amplification of the magnetic fields the media reach a
lowerMA, but usually not equipartition due to temporal evolution, and stay Super-Alfvénic.
Similarly, in our simulations, we start well within the Super-Alfvénic regime but during
the turbulent driving, we reach equipartition, before we introduce the cold gas cloud.
That is, MA ≳ which is tran-Alfvénic to mildly super-Alfvénic. This setup works well
to understand the above mentioned astrophysical media, but there are other multiphase
environments like the Solar Corona where the medium is well within the sub-Alfvénic
regime and our turbulent boxes may not be analogous anymore. On the other hand, our
TRML simulations include simulations with trans-Alfvénic to mildly sub-Alfvénic motions.
We find that our conclusion about the relation between turbulent velocity and mixing still
holds. This means, given there are turbulent motions and a turbulent cascade, the mixing
will only depend on the turbulent properties and not the presence or absence of the magnetic
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fields. Still, we have not explicitly tested this in a turbulent box setup but can be a topic for
future investigations.

• Anisotropic conduction: It is well-known that conduction is anisotropic in the presence
of magnetic fields. But, as we do not have physical conduction in our simulations, the
numerical conduction in the simulations is isotropic in both HD and MHD cases. While it
has been shown by Tan et al. (2021); Tan & Oh (2021) that generally turbulent diffusion
dominates over the laminar one (thus, explaining seemingly ‘puzzling’ convergence of
larger scale studies such as ours), this has only recently been investigated with anisotropic
conduction in an MHD setup by Zhao & Bai (2023a) who corroborate our results and find
similar trend in suppression of cooling (see, however, Brüggen et al., 2023; Jennings et al.,
2023, who included anisotropic conduction in their ‘cloud-crushing’ simulations and find
similar mass growth rates as the pure hydro runs). This will add an additional layer of
complexity, and can also be a future direction to explore.

• Other effects neglected in this study are cosmic rays, viscosity, and geometrical variations
such as stratification. Our goal here was to study mixing in MHD in a simplified setup to
which we will add additional layers of complexity in future work.

3.5 Conclusions
In this study, we investigate the influence of magnetic fields on the general phenomenon of
mixing between the phases in a multiphase gas. For that purpose, we use two sets of simulations,
turbulent radiative mixing layers (TRMLs) and turbulent boxes, with and without magnetic fields.
First, we expand the parameter space for TRMLs explored in previous studies, to confirm the
suppression of mixing for different cooling strengths (and hence different Damköhler numbers)
at different initial magnetic field orientations. Second, we check for the effects of including
magnetic fields in turbulent box simulations similar to Gronke et al. (2022a). We investigate
for any differences in cold gas growth rates and survival. We also study the effects of magnetic
fields on the morphology of the multiphase gas and magnetic fields and check for the subsequent
observational consequences.

The following are the main conclusions from this study:

• We find that magnetic fields, in general, suppress the mixing in turbulent radiative mixing
layers. The exception being some cases with magnetic fields are perpendicular to both
shear and interface normal. This suppression is due to either amplification or the existence
of strong magnetic fields along the shear, which stabilises the mixing layer.

• The inclusion of magnetic fields in TRML simulations only affects the generation of
turbulence. We find that the relation between turbulent velocity in the mixing layer and
mixing (hence cooling) rates from hydrodynamic simulations (Tan et al., 2021) still holds.

• We find that turbulent box simulations do not show significant differences in growth rates
between identical cases with and without magnetic fields. Similarly, the survival criterion
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of cold gas is also unaffected by the inclusion of magnetic fields.

• We show that this lack of difference, with and without magnetic fields, is in line with our
results from TRML simulations where the relation between the turbulence and mixing is
unaffected by the presence of magnetic fields. Given similar turbulent properties, we find
that the mixing between phases in a multiphase medium will also be similar, regardless of
the details of turbulence generation including the presence or absence of magnetic fields.

• We verify that the turbulent boxes with and without magnetic fields show similar clump
size distribution (𝑁 (> 𝑚) ∝ 𝑚−1), which is in agreement with previous studies. But, we
find that exact morphologies are different, with the clumps being more filamentary when
magnetic fields are included.

• We find the cold phase to be generally well entrained with the hot phase with the
MHD simulation reaching this entrained state faster than the HD one. This implies that
‘shear-driven’ mass transfer is not sufficient to explain the growth rates observed.

• We use mock absorption line observations of MgII to check the observational consequences
of such differences in the morphology. While we do not find a significant difference between
the statistics of the two cases with and without magnetic fields, both cases roughly agree
with observations.

• We investigate the magnetic field structure in turbulent boxes. The cold gas phase has a
higher mean magnetic field due to flux-freezing. We use the magnetic field streamlines to
show the fractal nature of magnetic field lines and find an approximate distribution for the
extent of magnetic field entanglement.

Our study reconciles the seemingly contradictory results of the effect of magnetic fields in
turbulent mixing layers and a fully multiphase turbulent setup. This result also implies that
the presence of cold gas in multiphase media can be explained through continuous mixing and
cooling – and this channel is not hindered by the presence of magnetic fields. However, the topic
of multiphase MHD turbulence still remains full of many unanswered questions, like the effect
of cosmic rays, thermal conduction, viscosity, etc. which we hope to tackle in future work.
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Multiphase gas dynamics is prevalent in various astrophysical media, from accretion disks to
galactic outflows. There are observational (Tumlinson et al., 2017; Veilleux et al., 2020b),
numerical and theoretical (McKee & Ostriker, 1977a; Donahue & Voit, 2022; Faucher-Giguère
& Oh, 2023b) evidence for the multiphase nature of astrophysical media. The multiphase nature
of the interstellar medium (ISM), circumgalactic medium (CGM) and intracluster medium (ICM)
significantly affects the evolution of corresponding systems, like galaxies or galaxy clusters, via
processes such as their baryon cycles or feedback processes (Veilleux et al., 2005; Péroux &
Howk, 2020).

Recent observations have provided crucial insights into the structure of this multiphase gas,
particularly in galactic halos. Studies have constrained the size of cold gas clouds in the CGM
to be ≲ 10 pc (Lan & Fukugita, 2017; Crighton et al., 2015; Schaye et al., 2007; Rauch et al.,
1999; Chen et al., 2023b). This small-scale structure exists within large halos spanning tens to
hundreds of kpc in radius (Tumlinson et al., 2017), creating a significant challenge for numerical
simulations attempting to resolve these disparate scales – and leading to non-convergence of
cosmological simulations in the halo gas content (e.g. Hummels et al., 2019; van de Voort et al.,
2021).

Many theoretical studies use small-scale idealized simulation setups to better resolve and understand
the small-scale gas structure. Some studies have focused on the in-situ formation of multiphase
gas from the hot ambient phase via thermal instability (Field, 1965; Sharma et al., 2012; McCourt
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Figure 4.1: A schematic diagram showing the underlying picture of the multifluid method and
the MOGLI model. The simulation domain on the right shows an example grid with different
cold gas structures in blue, and marked volume-filling fractions (𝛼). The zoomed-in view in the
middle shows the model’s assumption of the underlying cold gas structure, as numerous spheres.
Zooming in further, the left panel shows the different interactions in the MOGLI model, along
with other contributing variables, like the local turbulent velocity (𝑣turb,local).

et al., 2012), and the effects of turbulence (Audit & Hennebelle, 2005; Mohapatra et al., 2022b),
magnetic fields (Sharma et al., 2010; Ji et al., 2019), metallicity (Das et al., 2021a), density
perturbations (Choudhury et al., 2019), rotation (Sobacchi & Sormani, 2019), cosmic rays
(Butsky et al., 2020), and stratification (Mohapatra et al., 2020; Wang et al., 2023b). Other
studies have examined the evolution of cold gas through mixing and subsequent cooling of the
mixed intermediate temperature gas, particularly through cloud-crushing simulations where cold
clouds are mixed and accelerated by hot outflow winds (e.g. Armillotta et al., 2016; Kanjilal et al.,
2021; Abruzzo et al., 2022a; Hidalgo-Pineda et al., 2023) or cold streams flowing through a hot
halo (e.g. Mandelker et al., 2020; Ledos et al., 2024).

Across these small-scale studies, it has been found that resolving length scales as small as
sub-parsec is crucial for achieving convergence in even the most basic properties, such as the
mass distribution across different phases (McCourt et al., 2018; Gronke & Peng Oh, 2018;
Gronke et al., 2022b). This point has also been reiterated in larger scale simulations (Tonnesen
& Bryan, 2021b; Tan & Fielding, 2023; Warren et al., 2024). However, accurately simulating
these multiphase media in large-scale simulations, which are required to capture the dynamics
and energetics of large-scale flows(Bustard et al., 2016; Fielding & Bryan, 2022; Nguyen &
Thompson, 2022; Smith et al., 2024), and draw reasonable observational conclusions, remains a
significant challenge due to the wide range of scales involved. For example, properly resolving
the observed cold gas structures within a single galactic halo would require a resolution that
remains computationally infeasible even for next-generation supercomputers.
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There have been many approaches in astrophysical simulations to address this challenge through
‘subgrid models’ that incorporate processes occurring below the resolution limit. Notable
examples include models for unresolved turbulence (Schmidt et al., 2006b; Schmidt & Federrath,
2011; Scannapieco & Brüggen, 2008), supernova feedback (e.g. Rosdahl et al., 2017; Martizzi
et al., 2016), and star formation (e.g. Federrath & Klessen, 2012). Previous studies, such as
Huang et al. (2020) and Smith et al. (2024) (cf. § 4.5.3 for an overview of previous multiphase
subgrid models), have used Eulerian-Lagrangian methods for subgrid treatment of multiphase
galactic outflows, where cold gas clouds are treated as particles interacting with the surrounding
hot gas. Another possible approach is an Eulerian-Eulerian method, known as the ‘multifluid’
method.

The multifluid approach has been successfully applied to multiphase flows in various terrestrial
contexts, including meteorology, combustion processes, and water flows. By tracking multiple
fluids on the same grid, these methods allow for explicit representation of interactions between
different phases (Prosperetti & Tryggvason, 2007). Recently, Butsky et al. (2024) implemented a
subgrid model with a second pressureless cold fluid for unresolved cold gas clouds. In this study,
we explore a different route by using an alternative implementation of the two-fluid method in the
astrophysical code AREPO (Springel, 2010; Weinberger et al., 2020) by Weinberger & Hernquist
(2023a) to create a subgrid model. Our approach advances the multifluid framework by allowing
for arbitrary volume filling fractions of each fluid, the inclusion of physically motivated coupling
terms between the phases, and a thorough testing against resolved multiphase simulations.

A major motivation behind the creation of a model with distinct physically-motivated and verified
components is to make it usable for multiphase astrophysical systems in general. Although,
different systems might need some setup-specific additions or modifications for numerical reasons,
but the physical core of the model developed in this study and verified across a wide parameter
space will still stay applicable, just like the physical theories that it draws upon. As the advances
in computing resources will enable large-scale simulations to reach higher resolutions such
simulations to start to better resolve the larger-scale cold gas structures. But, it will be insufficient
to resolve the fractal-like smaller scale structures and physics. In such a regime, MOGLI will
be applicable throughout the astrophysical gas. For instance, in the CGM or ICM, where it can
keep track of the large regions in which the volume filling fraction of the cold phase is small
(see, e.g., McCourt et al., 2018, and references therein) while also being able to model, e.g.,
resolved filaments feeding into the galaxies in which the cold gas is dominant (Dekel et al., 2009;
Mandelker et al., 2020).

This paper is structured as follows. In § 4.1, we describe the numerical setup used to implement
and validate our subgrid model, titled MOGLI. In § 4.2, we list and explain the ingredients that go
into MOGLI before validating it in § 4.3 and § 4.4 using Kolmogorov scaling and local velocity
gradients-based estimates for local turbulent velocities, respectively. We discuss these results in
§ 4.5 before we conclude in § 4.6. The visualisations related to this study can be found here.1

1http://hiteshkishoredas.github.io/research/mogli_subgrid.html

http://hiteshkishoredas.github.io/research/mogli_subgrid.html
http://hiteshkishoredas.github.io/research/mogli_subgrid.html
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Figure 4.2: Initial cold fluid volume fraction slices for MOGLI simulations with resolved and
unresolved cold gas clouds. The left panel shows an example of a resolved cold gas cloud with
643 cells and 𝐿box/𝑅cloud = 8, where the cloud is bigger than the grid cells and grid cells inside
the volume of the cloud have an 𝛼′ = 1 − 𝛼floor. On the other hand, the right panel shows the
initial cold fluid volume fraction for MOGLI simulation with an unresolved cold gas cloud, with
83 cells and 𝐿box/𝑅cloud = 32. As the cold gas cloud is unresolved, the volume fraction in the
cell is set to 𝛼floor + 𝑉cloud/𝑉cell, where 𝑉cloud and 𝑉cloud are the cloud and grid cell volumes. In
both cases, the cells without any cold gas have a volume fraction, 𝛼′ = 𝛼floor = 10−8. The dashed
circles show the corresponding cold gas cloud size in the simulations.

4.1 Numerical Setup
We use two simulation setups: the high-resolution resolved single-fluid setup using Athena++
(Stone et al., 2020b) and the analogous MOGLI simulations using multifluid AREPO (Springel,
2010; Weinberger et al., 2020) framework from Weinberger & Hernquist (2023a) with our new
subgrid model MOGLI implemented.

4.1.1 Turbulent box simulations
We initialise a cubic computational domain, filled with isobaric hot gas of constant density, 𝜌hot,
at a temperature, 𝑇hot = 4 × 106K. Subsequently, we drive turbulence in this box at the largest
scale, i.e. the box size (𝐿box), using the Ornstein-Uhlenbeck (OU) process (Eswaran & Pope,
1988b; Schmidt et al., 2006b) to reach a given turbulent velocity (𝑣turb) at steady-state. We let
the turbulence driving proceed for about 7𝑡eddy, where 𝑡eddy = 𝐿box/𝑣turb is the eddy-turnover
timescale. For the turbulence driving, we set the correlation timescale to ∼ 𝑡eddy, the driving
timescale to 0.001𝑡eddy and the solenoidal to compressive fraction, 𝑓sol = 0.3. Note that during
the turbulence-driving of the initialisation phase, there is no radiative cooling in Athena++ runs,
and only a single fluid in MOGLI runs.
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At the end of the initialisation phase, we restart the simulation after introducing a dense cold gas
cloud with a radius 𝑅cloud, overdensity 𝜒 = 100 and temperature 𝑇cold = 4 × 104K, in the centre
of the box. The introduction of cloud differs between the single-fluid Athena++ and multifluid
MOGLI runs, and the details are explained in Sec. 4.1.2 & 4.1.3. During the turbulence-driving
in the initialisation phase, the temperature of the hot gas increases due to turbulence heating.
Hence, before introducing the cloud, we rescale the temperature of each cell by a constant factor,
to get the average temperature back to 𝑇hot. Due to the subsonic nature of turbulence, we find
that the abrupt change in temperature does not have a noticable effect on the velocity and density
distribution. We also repeat this two-step process, turbulent driving and the addition of cold
cloud, with different random seeds for the turbulence driving to probe the stochasticity of the
results.

4.1.2 Resolved single-fluid
For simulations with Athena++ (Stone et al., 2020b), we use the default HLLC solver with
Piecewise Linear Method (PLM) on primitive variables, RK2 time integrator, adiabatic equation
of state (EOS) and cartesian geometry. Similar to Das & Gronke (2024b), we use the CIE cooling
curve from Wiersma et al. (2009) at solar metallicity and implement the Townsend (2009b)
radiative cooling algorithm with a 40-segment power-law fit on the cooling curve for calculating
the radiative losses. We stop the cooling and enforce a temperature floor at 𝑇floor = 4 × 104K.2

We include radiative cooling for one set of simulations (radiative mixing) and do not have radiative
cooling for the rest (non-radiative mixing). For introducing the cold gas cloud with an overdensity
of 𝜒 = 100 in Athena++ simulations, we set the density within the cloud region to 𝜒𝜌hot and
temperature to𝑇hot/𝜒, while keeping the local pressure and kinetic energy unchanged. We resolve
the dense cold gas cloud by at least 12 grid cells along its diameter, to have converged evolution
(Gronke et al., 2022b; cf. Tan et al., 2021 for comparison to detailed turbulent mixing layer
simulations). We vary the cloud radius (𝑅cloud) as well as the 𝐿box/𝑅cloud for comparison with
analogous multifluid simulations.

4.1.3 Subgrid multifluid
For MOGLI simulations with multifluid AREPO, we use the default exact hydrodynamic Riemann
solver, time integration, and piecewise linear reconstruction with a variation to MUSCL-Hancock
scheme (Pakmor et al., 2016). The details of the multifluid framework are presented in Weinberger
& Hernquist (2023a). We use an adiabatic EOS for the hot fluid to allow for turbulent heating
and cooling. In contrast, we use a quasi-isothermal EOS for the cold fluid, which resets the
internal energy after each timestep, to emulate the temperature floor and fast cooling for cold
gas in resolved single-fluid simulations3. We use a different (de)refinement criterion where we

2While the shape of Λ(𝑇) matters for the exact ¤𝑚 (Abruzzo et al., 2022b), for the current theoretical focussed
work the main decisive factor is the minimum cooling time (See also Farber & Gronke, 2021; Tan et al., 2021) which
we have at the cloud temperature.

3Note that the bolometric luminosity of turbulent, multiphase media is dominated by the enthalpy flux (Ji et al.,
2019; Gronke et al., 2022b). Hence, the energy radiated away by the cold medium is negligible (and highly dependent
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assume the cell is filled with hot fluid, i.e. we refine depending on 𝑚refine =
∑
𝑘 𝑚𝑘𝜌hot/𝜌𝑘 ,

where 𝑘 belongs to the set of fluids. We (de)refine the cell to match 𝑚refine and a target mass
resolution. This (de)refinement criterion ensures that the cells with more cold fluid are not
excessively refined, and refinement occurs as if we only have the hot fluid. As with any other
choice of (de)refinement criterion, this one also has some downsides, like worse resolution in
cells filled with cold fluid, loss of the pseudo-Lagrangian nature in the case of source terms and
its equivalence with equal spatial resolution.

In a multifluid simulation, we track hot and cold gas as two different fluids. Each cell has
a quantity that refers to the fraction of cell volume occupied by the fluids. The right section
of Fig. 4.1 shows a schematic diagram of different cases and corresponding cold gas volume
fractions. As we only have two fluids in our setup, we only need to keep track of one volume
fraction. We refer to the volume fraction of the cold fluid as 𝛼′ and that of the hot fluid as (1−𝛼′).
We enforce a floor of 𝛼floor = 10−8 on 𝛼′ and (1 − 𝛼′) for numerical reasons. Hence, 𝛼′ = 𝛼floor
for a cell filled with hot fluid and 𝛼′ = 1 − 𝛼floor for one filled with cold fluid. The 𝛼floor dictates
the order of magnitude of the smallest amount of cold gas that can be tracked, so it has to be a
sufficiently small number. We found that 𝛼floor = 10−8 is small enough, and further decrease does
not have a significant effect on the results, apart from the slightly higher computational costs due
to stricter source integration tolerances. Note that there is no single-phase radiative cooling for
the hot fluid. This is in line with the assumptions of the single-fluid resolved simulations.

After rescaling the temperature (same as the Athena++ setup; cf. Sec. 4.1.2 above), we take the
single-fluid output at the end of the turbulence-driving in the initialisation phase and create the
multifluid initial condition with the cloud. If the cloud is resolved, we fill the cells within the
cloud region with cold fluid by setting 𝛼′ = 1−𝛼floor. If the cloud is not resolved, we pick the cell
closest to the centre of the box and increase the 𝛼′ by the amount corresponding to the volume
of the unresolved cloud. If 𝑉cell and 𝑉cloud are the volume of the cell and the cloud, respectively,
the 𝛼′ is set to 𝛼floor + 𝑉cloud/𝑉cell. Both fluids have the same velocity at the beginning of the
simulations.

Fig. 4.2 shows the initial cold fluid volume fraction slices for MOGLI simulations with resolved
and unresolved cold gas clouds. The left panel shows an example of a resolved cold gas cloud
with 643 cells and 𝐿box/𝑅cloud = 8, where the cloud is bigger than the grid cells and grid cells
inside the volume of the cloud have an 𝛼′ = 1 − 𝛼floor. On the other hand, the right panel shows
the initial cold fluid volume fraction for MOGLI simulation with an unresolved cold gas cloud,
with 83 cells and 𝐿box/𝑅cloud = 32. As the cold gas cloud is unresolved, the volume fraction in
the cell is set to 𝛼floor + 𝑉cloud/𝑉cell, where 𝑉cloud and 𝑉cell are the cloud and grid cell volumes.
The dashed circles show the corresponding cold gas cloud size in the simulations.

on the heating source).
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4.2 MOGLI: The subgrid model
Multifluid AREPO evolves multiple fluids on a common grid. This allows for the inclusion of
terms for interactions between the fluids. In our case, the interaction terms are mass exchange
( ¤𝑚), momentum exchange ( ¤®𝑝) and energy exchange ( ¤𝐸) terms. The source terms are integrated
using the Bader-Deuflhard semi-implicit integration (Bader & Deuflhard, 1983; Weinberger et al.,
in prep). The semi-implicit integrator takes the 10 conservative variables (mass, momenta and
energy for each fluid) and integrates the source functions from the subgrid model to calculate the
new values over a timestep. MOGLI consists of the model for the source terms for the interactions
between the hot and cold gas fluids, which we explain in this section.

4.2.1 Definition of the source functions

Let Q and ¤Q denote the conservative variables and source functions, respectively, from the
model.

Q =


𝑚

®𝑝
𝐸

 , ¤Q =


¤𝑚
¤®𝑝
¤𝐸

 (4.1)

where, 𝑚, ®𝑝 and 𝐸 refer to mass, momentum and total energy in a cell.

We split the source functions into three components, which refer to contributions from three
different physical processes. The first contribution, ¤Qdrag, is due to the hydrodynamic drag
between fluids. The drag interaction does not lead to a mass exchange but can result in momenta
and energy exchange. The second one, ¤Qmix, is from the mixing between cold into hot fluid, and
the third, ¤Qgrow, is from the cooling of the mixed gas from hot fluid to cold fluid. Both second-
and third-source function contributions involve mass, momenta, and energy exchange. So, the
full source function can be written as

¤Q = ¤Qdrag + ¤Qmix + ¤Qgrow. (4.2)

The left panel of Fig. 4.1 shows a schematic representation of the different source function
contributions. While mass and momentum are conserved for all the different parts of the source
functions, energy is only conserved for ¤Qdrag and ¤Qmix. For ¤Qgrow, the energy is not conserved as
thermal energy is dissipated via radiative cooling and the difference between the energy exchange
is given by ¤𝐸cooling. We can write the conservation relations as

¤Qdrag,cold = − ¤Qdrag,hot, (4.3)
¤Qmix,cold = − ¤Qmix,hot, (4.4)

¤Qgrow,cold = − ¤Qgrow,hot −


0
0

¤𝐸cooling

 . (4.5)
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From here onwards, we will denote elements of the ‘cold’ or ‘hot’ source functions with cold or
hot, respectively.

4.2.2 The cold gas volume filling fraction
As volume fraction is not part of the 10 conservative variables, we need to calculate the volume
fraction from the conservative quantities.

𝛼′ =
𝑚cold𝑢cold

𝑚cold𝑢cold + 𝑚hot𝑢hot
(4.6)

where 𝑢hot and 𝑢cold are the specific internal energy of the hot and cold fluid, respectively. As 𝛼
has a floor and ceiling value, we redefine the volume fraction such that values between 𝛼floor and
𝛼ceil map linearly to their physical values in [0, 1]. So, a cell-filled with hot fluid and 𝛼′ = 𝛼floor
corresponds to 𝛼 = 0, while a cell filled with cold fluid and 𝛼′ = 1 − 𝛼floor corresponds to 𝛼 = 1.
This new mapped value is subsequently used for calculations in the source functions.

𝛼 =


0.0 for 𝛼′ < 𝛼floor
𝛼′ − 𝛼floor

1 − 2𝛼floor
for 𝛼′ ∈ [𝛼floor, 1 − 𝛼floor]

1.0 for 𝛼′ > 1 − 𝛼floor

(4.7)

4.2.3 Drag forces
One obvious change of momentum and energy stems from the hydrodynamic drag between the
fluids in a cell, in the presence of a relative velocity Δ®𝑣 giving rise to ¤𝑄drag in Eq. (4.2). The drag
force between the two fluids in the cell will be

¤𝑝drag,cold = − ®𝐹drag = 0.5 𝐶D 𝜌hot 𝐴cross(𝛼) |Δ®𝑣 |Δ®𝑣 (4.8)

where 𝐶D = 0.5 is the drag coefficient and 𝐴cross(𝛼) is the cross-sectional area of the cold fluid in
the direction of the relative velocity. We further discuss the functional form of 𝐴cross (Eq. (4.33))
in Section 4.2.7.

Drag force also leads to an exchange of energy between the two fluids. The rate of energy
exchange is set to,

¤𝐸cold = − ®𝐹drag.®𝑣𝑖 . (4.9)

Here, ®𝑣𝑖 is the centre of mass velocity, which will be attained at equilibrium (Saurel & Abgrall,
1999), i.e.,

®𝑣i =
𝑚cold®𝑣cold + 𝑚hot®𝑣hot

𝑚cold + 𝑚hot
=

®𝑝cold + ®𝑝hot

𝑚cold + 𝑚hot
. (4.10)
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As mentioned earlier, the drag force contribution does not cause mass exchange. Hence, the final
form of ¤Qdrag,cold is

¤Qdrag,cold =


0

− ®𝐹drag
− ®𝐹drag.®𝑣i

 . (4.11)

Later, in Sec. 4.3.1 & 4.4 we include ¤Qdrag and verify the MOGLI model.

4.2.4 Turbulent Mixing
Next, we consider the contribution to source functions from the turbulent mixing of cold gas into
hot gas. This part of the source function contains mass, momenta and energy exchange and is
captured by Qmix (cf. Eq. (4.2)).

To first order, we expect the turbulent mixing to destroy the cold gas on a characteristic timescale
𝑡destroy, i.e., ¤𝑚cold→hot ∼ 𝑚/𝑡destroy. From previous work as well as analytical considerations, we
expect this destruction timescale to be the Kelvin-Helmholtz or Rayleigh-Taylor timescale of the
cloud (e.g. Klein et al., 1994b; Gronke et al., 2022b)

𝑡destroy =
𝜒1/2𝑙cold

𝑣turb
. (4.12)

Here, 𝑙cold is the effective size of the cold gas in the cell

𝑙cold =

(
𝛼𝑉cell

4𝜋/3

)1/3
, (4.13)

𝑣turb is the turbulent velocity, and 𝜒 overdensity of a given cell

𝜒 ≡ 𝜌cold

𝜌hot
=

(
1
𝛼
− 1

)
𝑚cold

𝑚hot
. (4.14)

Note that while 𝜒 is independent of 𝛼 for a given cell, 𝑙cold strongly depends on it and thus
gives rise to a short destruction time for, e.g., a predominantly hot cell. We explicitly verified
this destruction term in Sec. 4.3.1 & 4.4. While we calculate 𝑙cold as the size of a monolithic
cold cloud in the cell, it refers to the length-scale of the overall cold gas structure which we
subsequently use to calculate destruction timescale, 𝑡destroy in Eq. (4.12), it does not relate to the
cold gas structure within the cell.

Within any cell, we expect the mass exchange to slow down and drop with increasing volume
fraction of the cold fluid, due to the decrease in the interface area between the two fluids, over
which the exchange can happen; for instance, we expect a cold gas cell surrounded by other gas
cells with a ∼ 1 cold gas volume fraction this mass exchange rate to be ∼ 0 as the cell is entirely
‘shielded’ from the hot medium. We include an extra multiplicative factor, i.e. the area factor, of
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Figure 4.3: Top panel shows a slice of 𝑣turb,grad from a simulation with a turbulent Mach number,
Mturb,box = 0.5 at the box scale. It shows how the velocity gradient-based estimation (grad) can
capture the spatial variation in the local velocity dispersion, in other words, the local turbulent
velocity. Bottom panel shows, in solid lines, the distribution of the local turbulent velocity, at
the scales of average cell size instead of local cell size, in the same snapshot as the top panel.
We find that while the mass-weighted mean of from grad method, shown as the dashed green
line, agrees with the estimate from kol, shown as the solid blue line. The pink dotted line shows
the expected Maxwell-Boltzmann distribution with the same mean as the mass-weighted mean
from kol method. Even though the mean turbulent velocity from the two simulations are very
similar, the distribution of velocities is drastically different, with the kolmethod leading to a fixed
value for a fixed length scale, and the grad method matching the expected Maxwell-Boltzmann
distribution.
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2ℎ(𝛼) to account for this dependence on the interface area. This factor essentially encodes the
details of the subgrid cold gas structure. The exact form of this factor is derived and discussed in
§ 4.2.74.

We find that the variation of surface area, via the area factor of, 2ℎ(𝛼)), is inadequate to
suppress the cold gas destruction in cells which have a high cold fluid mass fraction, 𝛼mass =

𝑚cold/(𝑚cold + 𝑚hot), especially for cases with resolved cold gas. We find that the cells in the
interior of a resolved cold gas structure have spuriously high mass fluxes. In resolved single-fluid
simulations, these cells are ‘shielded’ from mixing with the hot gas, as they are mostly also
surrounded by other predominantly cold gas cells preventing their destruction. To account for
this extra ‘shielding’ in resolved simulations, we introduce the first of the two free-parameters in
the model, where the mass exchange from cold to hot occurs only in cells that possess a mass
fraction 𝛼mass less than a threshold. We find that a 𝛼mass threshold of 0.15 works well across all
tests (§ 4.3.1), i.e.,

¤𝑚cold→hot =


2ℎ(𝛼) 𝑚cold

𝑡destroy
𝛼mass < 0.15

0 otherwise.
(4.15)

The momenta and energy exchange are the corresponding fluxes caused by the mass exchange.
Hence, we get a source function contribution due to mixing,

¤Qmix,cold =


− ¤𝑚cold→hot

−®𝑣cold ¤𝑚cold→hot
−1

2 ¤𝑚cold→hot𝑣
2
cold − ¤𝑚cold→hot𝑢cold

 (4.16)

4.2.5 Cold gas growth
Finally, we include the source function contribution due to the cooling of mixed gas to create
more cold gas. Previous studies like Gronke et al. (2022b) have shown that for cases that are well
within the growth regime, the cold gas mass follows an exponential growth, with a characteristic
timescale of 𝑡grow ∼ 𝜒(𝑡cool𝑙/𝑣turb)1/2, i.e., characterised by the geometric mean of the cold gas
mixing and cooling time, and where 𝑙 refers to the cold gas structure lengthscale and 𝑣turb is
the turbulent velocity at the lengthscale 𝑙. Note that this growth time is backed up by analytical
arguments of combustion theory and numerically verified using small-scale simulations (Tan
et al., 2021). We can rewrite the expression for 𝑡grow in terms of the local cell properties as,

𝑡grow = 𝜒(𝑡destroy𝑡cool,cold)1/2𝛼1/9 (4.17)

where the additional factor 𝛼1/9 arises to account for the effective cold gas size within a cell, i.e.
(𝑅cloud/𝐿box)1/3.

4Note that we deliberately did not absorb the factor 2 into the fudge factor to facilitate comparison with prior
work; cf. § 4.2.7
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Figure 4.4: The comparison between the directly calculated velocity dispersion (𝑣turb,direct) and
the approximated local velocity dispersions using both estimation methods. The top panel shows
the comparison with the velocity gradient-based method (grad) and the bottom panel show the
comparison with the Kolmogorov spectrum-based method (kol).
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Both 𝑡destroy and 𝑡cool,cold can be calculated from local grid cell properties, but in our tests, we
consider a fixed value of 𝑡cool,cold. We use the value of cloud-crushing timescale, i.e. 𝑡cc =

𝜒1/2𝑅cloud/𝑣turb and the ratio 𝑡cool,cold/𝑡cc for the benchmark Athena++ simulation to obtain the
corresponding value of 𝑡cool,cold for MOGLI runs. We also include the area factor of 2ℎ(𝛼) for
this interaction, same as Eq. (4.15), which gives the hot to cold fluid mass exchange rate,

¤𝑚hot→cold = 2ℎ(𝛼)𝑚cold

𝑡grow
(4.18)

As mentioned earlier, the energy across the system is not conserved during cold gas growth. Any
increase in the specific internal energy is quickly radiated away. One major contribution to this
is the difference in internal energy during the mass exchange from hot to cold fluid is radiated
away and hence subtracted

¤𝐸cooling = ¤𝑚hot→cold(𝑢hot − 𝑢cold). (4.19)
Note that there will be additional cooling of the thermalised kinetic energy. While the exact
amount of this radiated energy is uncertain and depends on the details of geometry and momentum
exchange (see Appendix 6.5.3), it is self-consistently removed by the quasi-isothermal EOS.

Including the momentum exchange due to mass exchange, we obtain the expression for the source
function contribution due to cold gas growth

¤Qgrow,cold =


¤𝑚hot→cold

®𝑣hot ¤𝑚hot→cold
1
2 ¤𝑚hot→cold𝑣

2
hot + ¤𝑚hot→cold𝑢hot

 −


0
0

¤𝐸cooling

 . (4.20)

4.2.6 Turbulent velocity estimation

Turbulence is key in mixing hot and cold material, and thus, the expressions in ¤Qmix and
¤Qgrow depend on the local turbulent velocity at the scale of cold fluid in the cell, as 𝑣turb =

𝑣turb,cell(𝑙cold/𝑙cell)1/3, where 𝑙cell is the cell size. The most accurate way to accomplish this is to
have a turbulence model that keeps track of the subgrid turbulence (akin to Schmidt et al., 2006b
or Semenov, 2024). As the implementation of such a model in a moving-mesh code like AREPO
is out of the scope of this study, we use two methods to approximate the turbulence at the grid
cell scales.

Estimation by Kolmogorov Scaling (kol)

The first method (kol) assumes that the turbulence is fully developed and follows the Kolmogorov
spectrum to the subgrid scales. So, by scaling the box-scale turbulent velocity (𝑣turb,box) down to
the grid cell scale, we can estimate the local turbulence.

𝑣turb,kol,cell = 𝑣turb,box

(
𝑙cell

𝐿box

)1/3
(4.21)

This method is feasible for setups with fully developed turbulence at a resolved scale, like our
turbulent box simulations. However, it is not appropriate in simulations with significant spatial
and/or temporal variation in turbulence.
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Figure 4.5: Variation of 𝐴𝑅/(2𝑉box) with volume fraction (𝛼) in a 3D box. The colour of the
points shows the size of the individual spheres, relative to the box size and the orange lines
correspond to the approximate fit for the points, i.e. 𝛼ℎ(𝛼) (Eq. (4.30)).
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Estimation by velocity gradients (grad)

The second method of local turbulence estimation (grad) avoids the problems of the kolmethod
by estimating the local velocity dispersion at any given time. We use the Jacobian of the velocity
vector (J[𝑎, 𝑏] = 𝜕 ®𝑣 [𝑎]/𝜕 ®𝑥 [𝑏]), to estimate velocity dispersion at the grid scale (𝜎®𝑣,cell),
and assume a fully-developed Kolmogorov spectrum on smaller scales to estimate the turbulent
velocity at the subgrid cold gas scale (𝑙cold) from the calculated grid-scale. The subscript to
different quantities refers to their relation to the fluid cell. For example, ®𝜌𝑖 refers to the density in
the 𝑖th cell.

As explained in Pakmor et al. (2016), in AREPO, the gradient of a quantity 𝜙, in the 𝑖th cell, i.e.
®∇𝑖𝜙) is calculated such that it gives the best fit for Eq. (4.22) when written for the quantity in all
neighbouring cells (𝜙 𝑗 ). Let the 𝑖th cell have 𝑛ngb neighbouring cells, each denoted by a subscript
𝑗 , at a displacement of ®𝑥 𝑗𝑖,

𝜙 𝑗 = 𝜙𝑖 + ®∇𝑖𝜙 · ®𝑥 𝑗𝑖 . (4.22)

We use Eq. (4.22) to calculate the mean of 𝜙 over the neighbouring cells in 𝑛ngb including the 𝑖th
cell,

𝜇𝑖 (𝜙 𝑗 ) = 𝜙𝑖 + ®∇𝑖𝜙 · 𝜇𝑖 (®𝑥 𝑗𝑖). (4.23)

Subsequently, we use the Eq. (4.23) for the mean to calculate the standard deviation for 𝜙, 𝜎2
𝜙
.

𝜎2
𝜙 =

1
𝑛ngb + 1

𝑛ngb∑︁
𝑗

[
®∇𝑖𝜙 ·

(
®𝑥 𝑗𝑖 − 𝜇𝑖 (®𝑥 𝑗𝑖)

) ]2
(4.24)

To evaluate the Eq. (4.24) further, we need to make some assumptions. First, we assume that the
neighbouring cells are uniformly distributed around the current cell. Hence, the weighted average
of the displacements, 𝜇𝑖 (®𝑥 𝑗𝑖) is expected to have a marginal magnitude and can be ignored. Next,
we assume that the neighbouring cells are at roughly equal distances of 𝑥ngb from the current cell,
and we can replace ®𝑥 𝑗𝑖 with 𝑥ngb𝑥 𝑗𝑖. Here, 𝑥 𝑗𝑖 refers to the unit vector in the direction of ®𝑥 𝑗𝑖, i.e.
𝑥 𝑗𝑖 = ®𝑥 𝑗𝑖/|𝑥 𝑗𝑖 |. This simplifies Eq. (4.24) to

𝜎2
𝜙 =

𝑥2
ngb

𝑛ngb + 1

𝑛ngb∑︁
𝑗

[
®∇𝑖𝜙 · 𝑥 𝑗𝑖

]2
. (4.25)

Eq. (4.25) shows that the velocity dispersion is related to the root-mean-square value of the
component of gradient towards the neighbouring cells. The exact value of this quantity will
depend on the relative position and number of the neighbouring cells. Hence, to further simplify
the Eq. (4.25), we postulate that this value is close to the value at the limit of 𝑛ngb → ∞, with
all the neighbouring cells uniformly distributed around the current cell. This allows us to rewrite
Eq. (4.25) in its integral form and to obtain the value at the limit by evaluating the integral,

𝜎𝜙,𝑛ngb→∞ =

√︂
1
3
𝑥ngb |∇𝑖𝜙 | (4.26)
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Figure 4.6: Variation of 𝐴/𝐴box with volume fraction (𝛼) in a 3D box. The colour of the points
shows the size of the individual spheres, relative to the box size and the orange lines correspond
to the approximate fit for the points (Eq. (4.33)).
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To replace 𝜙 with 𝑣𝑥 ,𝑣𝑦 and 𝑣𝑧 5 in Eq. (4.26), we use the approximation 𝑥ngb ≈ 𝑉1/3
cell . This yields

an estimate of the local turbulence

𝑣turb,grad,cell = (𝜎2
𝑣𝑥

+ 𝜎2
𝑣𝑦
+ 𝜎2

𝑣𝑧
)1/2 = 𝑉

1/3
cell

√√√
1
𝜉

3∑︁
𝑖, 𝑗

(
𝜕𝑣 𝑗

𝜕𝑥𝑖

)2
(4.27)

where, 𝜉 = 3. Here, we replace 3 with 𝜁 as a free parameter, which we verify and modify in
the next section. For multifluid simulations, if there are 𝑛𝑘 fluids, we evaluate the local turbulent
velocity with Eq. (4.27) for each fluid separately and take the mass-weighted average as the final
turbulent velocity estimate per cell, i.e.,

𝑣turb,grad,cell =
1

𝑚cell

𝑛𝑘∑︁
𝑘

𝑚𝑘𝑣turb,grad,k. (4.28)

Comparison and validation of the methods

The top panel of Fig. 4.3 shows a slice of 𝑣turb,grad,cell from a simulation with a turbulent Mach
number, Mturb,box = 0.5 at the box scale using 𝑁cells = 643 resolution elements. It shows
how the velocity gradient-based estimation (grad) can capture the spatial variation in the local
velocity dispersion, in other words, the local turbulent velocity. The bottom panel shows, in
solid lines, the estimation for local turbulent velocity at the lengthscale of the average cell size
(𝑙cell,avg = (𝑉box/𝑁cell)1/3) in the same snapshot as the top panel. As the kol only depends on
the lengthscale, it returns a fixed local turbulent velocity for a fixed lengthscale. The blue solid
line shows the kolmethod estimate for the 𝑙cell,avg. The green solid line shows the distribution of
the grad estimates for local turbulent velocities at scale of 𝑙cell, and the green dashed line shows
the corresponding mass-weighted mean. We find that the estimate from kol and mass-weighted
mean from grad agree very well with each other, and the expected value 𝑣̄turb ≈ 𝑣turb,box/𝑁1/3

cells.

As the turbulence velocities along each basis directions (𝑣turb,𝑥 , 𝑣turb,𝑦, 𝑣turb,𝑧) roughly follow
gaussian distribution, the turbulent velocity magnitude 𝑣turb = (𝑣2

turb,𝑦 + 𝑣
2
turb,𝑦 + 𝑣

2
turb,𝑧)

1/2 is
expected to follow a Maxwell-Boltzmann distribution. In Fig. 4.3, the pink dotted line shows the
expected Maxwell-Boltzmann distribution, with the same mean as the the mass-weighted mean
from grad method. We find that the distribution of local turbulent velocity estimate from grad
matches well with the Maxwell-Boltzmann distribution, with some deviations at small and large
velocity magnitudes. The deviations at small velocity magnitudes are likely due to the resolution
limit and lack of small scales, while the deviations at the larger velocities are probably due to
slope-limiting for the gradients.

We want to test how well Eq. (4.28) can approximate the local velocity dispersion. Hence, we
directly calculate the velocity dispersion at grid cell size in the neighbourhood for each grid

5Note that the velocity gradients used in the MOGLI simulations are the slope-limited gradients that are used in
the finite-volume solver.
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Figure 4.7: Cold gas evolution in non-radiative MOGLI runs with time, normalised to the
initial cloud-crushing time (𝑡cc = 𝜒1/2𝑅cloud/𝑣turb), with Mturb = 0.5. The solid lines show
the cold gas evolution, as the total mass of the cold fluid, with the colour of the line denoting
the initial 𝑅cloud/𝑑𝑥. The dot-dashed and dashed lines show the cold gas evolution in the
benchmark Athena++ simulations, with resolutions 1923 and 3843 respectively. Top panel shows
the evolution for simulations with unresolved initial cloud 𝐿box/𝑅cloud = 32 and bottom panel
shows the same for resolved initial cloud 𝐿box/𝑅cloud = 8. This shows that the cloud destruction
timescales in MOGLI are in agreement with the timescales in benchmark Athena++.
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cell in the simulation, 𝜎turb,ngb and use it as the benchmark we want to approximate. As the
directly calculated velocity dispersion is over the whole neighbourhood with a volume 𝑉ngb =∑

ngb𝑉cell,j, we use the Kolmogorov scaling to scale it down to the grid cell size as 𝑣turb,direct =

𝜎turb,ngb(𝑉cell/𝑉ngb)1/9 where the latter term introduces corrections of order unity.

Fig. 4.4 shows the comparison between the directly calculated velocity dispersion (𝑣turb,direct)
and the approximated local velocity dispersions using both estimation methods. The top panel
shows the comparison with the velocity gradient-based method (grad) and the bottom panel show
the comparison with the Kolmogorov spectrum-based method (kol). For the bulk of the cells,
𝑣turb,direct and 𝑣turb,grad agree well with each other and are within a factor of 2 between each other.
The slight deviations from 𝑣turb,direct are likely due to the assumptions involved in obtaining the
Eq. (4.27). On the other hand, the 𝑣turb,kol from the kol method is unable to capture the spatial
variations in the 𝑣turb,direct.

During our non-radiative turbulent mixing tests, explained later in Sec. 4.4, we find a 𝜉 = 2 works
better in matching with the benchmark Athena++ simulations. Hence, we use 𝜉 = 𝜉MOGLI ≡ 2 in
MOGLI runs,

𝑣turb,grad,cell,MOGLI = 𝑉
1/3
cell

√√√
1

𝜉MOGLI

3∑︁
𝑖, 𝑗

(
𝜕𝑣 𝑗

𝜕𝑥𝑖

)2
. (4.29)

Even though the analytical expression with 𝜉 = 3 can estimate the local velocity dispersion or
local turbulent velocity, the estimated turbulent velocity is not high enough to match the turbulent
mixing in the resolved Athena++ simulations. One potential cause for this can be the proximity
to the dissipation scales, which can be rectified in future with better subgrid turbulence models. 6

Later, in Sec. 4.3 and 4.4 we test our MOGLI model with both Kolmogorov scaling-based (kol)
and velocity gradient-based (grad) methods for local turbulent velocity estimation, respectively.
See Appendix 6.5.3 for a more general version Eq. (4.29), which can also be applied to 2D
geometries.

4.2.7 Cold gas surface and cross-sectional area
Both the mass exchange from hot to cold and cold to hot medium naturally depend on the exposure
of the two media, and thus crucially depend on the size of the interface area in any given cell. As
shown in the middle and left panel of Fig. 4.1, in order to account for non-spherical and overlapping
cold gas structures, we use two area factors in the model introduced in Sec. 4.2.4 & 4.2.5 (cf.
Eq. (4.15) & (4.18)).

The first area factor, 2ℎ(𝛼), corresponds to the dependence on the interface area between the two
fluids. The second area factor, 𝐴cross(𝛼), is for the cross-sectional area along the relative velocity
of the fluid.

6Also note this scheme will also interpret laminar viscous flows with velocity gradients as turbulent velocity,
although such cases might be unlikely due to the very high Reynolds number of astrophysical gas.



78 4. MOGLI

0.0 0.2 0.4 0.6 0.8 1.00.5

1.0

1.5

2.0

2.5

3.0

t h
al

f/t
cc

Athena++ mean
MOGLI mean
2  interval

MOGLI
Athena++

10 1 100 101

AREPO R/dx

200

300

400

500

600

700

At
he

na
++

 re
so

lu
tio

n

Figure 4.8: Scatter plot of the half mass time (𝑡half) normalised to the initial cloud-crushing
timescale (𝑡cc = 𝜒𝑅cloud/𝑣turb), for different turbulent Mach numbers. Athena++ simulations
with different resolutions (1923, 3843, and 7683, represented by the colour of the point) and
turbulence random seeds to capture the inherent stochasticity of cold gas destruction in a turbulent
medium.
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Figure 4.9: Projected 𝛼𝜌cold/𝜌hot,ini, i.e.
∫

los 𝛼(𝜌cold/𝜌hot,ini)𝑑𝑧/𝐿box, plots at different times for
MOGLI runs with M = 0.5 different 𝑡cool,cold/𝑡cc values. Two columns on the left show the
evolution of an unresolved (𝐿box/𝑅cloud = 32) initial cloud and two columns on the right show the
evolution of a resolved initial (𝐿box/𝑅cloud = 8) cold cloud for destruction and survival regimes.
We find that the clouds with short cooling timescales, i.e. 𝑡cool,cold = 10−4𝑡cc survive and grow,
while clouds with long cooling timescales, i.e. 𝑡cool,cold = {10, 10−2}𝑡cc end up losing cold gas
and get destroyed, as expected from the results of previous studies (Gronke et al., 2022b).
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Figure 4.10: Early-time hot fluid mass flux ( ¤𝑚hot) slices, normalised with ratio of total hot
fluid mass and eddy-turnover time (𝑚hot,box/𝑡eddy), for MOGLI simulations with resolved and
unresolved cold gas clouds, at M = 0.5. The left panel shows an example of a resolved cold
gas cloud with 643 cells and 𝐿box/𝑅cloud = 8, where the cloud is bigger than the grid cells and
grid cells inside the volume of the cloud have an 𝛼 = 1 − 𝛼floor. On the other hand, the right
panel shows the slice for MOGLI simulation with an unresolved cold gas cloud, with 83 cells
and 𝐿box/𝑅cloud = 32. This shows how the model is able to distinguish between the interior and
exterior of the resolved cloud and the mass exchange only occurs at the interface around the cloud.
The dashed circles show the corresponding initial cold gas cloud size in the simulations.

We take a Monte-Carlo approach to approximate these area factors. We generate a fixed grid box
with a varying number of equally sized, spheres, allowing for overlapping spheres7. We calculate
the surface area (𝐴) of the resulting ensemble of spheres using the scikit-learn’s marching
cubes algorithm (Pedregosa et al., 2011; Lorensen & Cline, 1987), and volume fraction (𝛼) as
the ratio of the volume of encapsulated cells and grid volume (𝑉box). We repeat this exercise with
different radii of spheres (𝑅sphere).

We find, as shown in Fig. 4.5, that the quantity 𝐴𝑅sphere/(2𝑉box) seems to follow a general relation
with the volume fraction.

𝐴𝑅sphere

2𝑉box
= 𝛼ℎ(𝛼) =


𝛼 if 𝛼 ∈ [0, 0.4)
0.4 if 𝛼 ∈ [0.4, 0.8)
2 − 2𝛼 if 𝛼 ∈ [0.8, 1]

(4.30)

7We also tried different sphere size distributions but did not find any major impact on the results while significantly
increasing the number of free parameters.
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where ℎ(𝛼) is a function of volume fraction, which we define for convenience in later derivations8.

Assuming that the spheres are composed of cold gas, with an overdensity of 𝜒 and density of
𝜒𝜌hot, we obtain a relation for the interface area as a function of the volume fraction,

𝐴 =
2ℎ(𝛼)𝛼𝑉box

𝑅sphere
=

2ℎ(𝛼)𝑚cold

𝜒𝜌hot𝑅sphere
. (4.31)

Substituting the area (𝐴) from Eq. (4.31) in the expression for mass exchange (e.g., Tan et al.,
2021) we obtain

¤𝑚cold = 𝐴𝜌hot𝑣flux =
𝑚cold

𝜒𝑅sphere/𝑣flux
2ℎ(𝛼) = 2ℎ(𝛼)𝑚cold

𝑡flux
(4.32)

which introduces the cold gas surface area factor of 2ℎ(𝛼). Here, 𝑡flux ∼ 𝜒𝑅sphere/𝑣flux is the
naive mass doubling/halving time of a spherical object. Note that the factor of 2 along ℎ(𝛼)
can explain the fudge factor 0.5 used in 𝑡grow in (Gronke et al., 2022b). At low cold gas volume
fractions, Eq. (4.32) reduces to the empirical exponential growth rate expression observed in
previous studies like (Gronke et al., 2022b).

We take a similar approach to approximate the dependence of cross-sectional area in the direction
of relative velocity, on the volume fraction. Assuming an isotropic distribution of the spheres, the
cross-sectional area should be independent of the direction of the relative velocity. We calculate
the cross-sectional area (𝐴cross) and volume fraction (𝛼) of a varying number of randomly
distributed spheres along the three axes of the grid and repeat it for different radii of the spheres
(𝑅sphere). Fig. 4.6 shows the dependence of 𝐴cross normalised to the grid’s cross-sectional area,
i.e. 𝐴box = 𝐿2

box, on the volume fraction of the spheres. There is a scatter, where larger individual
spheres lead to a lower cross-sectional area for the same volume fraction. However, the trend
converges with smaller individual clouds, and we use a sigmoid function to approximate this
relation.

𝐴cross(𝛼) = 𝑉2/3
cell

(
𝑒10𝛼 − 1
𝑒10𝛼 + 1

)
(4.33)

where, we replace 𝐴box with 𝑉2/3
cell . Although we observe a 𝑅sphere/𝐿box dependence, we do not

expect there to be a significant effect in final behaviour, as 𝐴cross is only used for the drag force,
which turns out to have a minor contribution to the momentum exchange.

With this, we have the complete and fully-defined MOGLI model and can move to verifying this
model in the next section.

4.3 Verification: With Kolmogorov turbulence estimation
As the turbulent velocity estimation is a fundamental part of the model, we verify the two
estimates separately and present the results in two sections. In this section, we test MOGLI with

8We also tested similar fits to the points in Fig. 4.5, including higher order ones, but it does not change the results
significantly.
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Figure 4.11: Cold gas evolution in MOGLI runs with time, normalised to the initial cloud-crushing
time (𝑡cc), with Mturb = 0.5. The two groups of solid and dashed curves correspond to
𝑡cool,cold/𝑡cc = {10−4, 10}. These lines show the cold gas evolution, as the total mass of the
cold fluid, with the colour of the line denoting the initial 𝑅cloud/𝑑𝑥. Top panel shows the
evolution for simulations with unresolved initial cloud 𝐿box/𝑅cloud = 32 and bottom panel shows
the same for resolved initial cloud 𝐿box/𝑅cloud = 8. The black dashed line shows the expected
exponential growth of the simulations which grow, with the growth time (𝑡grow) calculated using
Eq. (5.11). The purple dot-dashed and dashed lines show the cold gas evolution from analogous
Athena++ benchmark runs, with 1923 and 3843 cells, respectively. We find a good agreement
between the analytically expected growth rates and MOGLI runs.
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Figure 4.12: Scatter plot of the ratio of the 𝑡grow from the simulations and the analytical 𝑡grow,theory
(Eq. (5.11)), across different turbulent Mach number (M). Crosses show the values from the
MOGLI runs, with the colours denoting their "Resolvedness" (𝑅/𝑑𝑥), while the black circles
show the values from benchmark Athena++. The set of points for benchmark Athena++ include
values calculated from simulations from Gronke et al. (2022b); Das & Gronke (2024b). We also
show the means as dashed lines and 2𝜎 intervals as shaded regions of the benchmark Athena++
and MOGLI runs. The comparison shows only a marginal difference between the benchmark
Athena++ and MOGLI runs in the means with significant overlap between the scatter.
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the Kolmogorov scaling-based turbulent velocity estimate. We use high-resolution Athena++
turbulent box simulations with resolved initial cold gas cloud as the benchmark to compare the
multifluid simulations with the MOGLI subgrid model. For a model to be declared operational,
we require the multifluid simulation to agree with the benchmark Athena++ simulations, even if
the

• initial cold gas clump is resolved or unresolved, i.e., 𝑅cloud/𝑑𝑥 > 1 or < 1, respectively.9,

• resolution of the simulation is varied (𝑑𝑥), regardless of the “resolvedness” of the cloud,

• turbulent velocity is changed (M),

• random driving of the turbulence is different.

In the next sections, we test the different parts of the model across this parameter space. First,
we only add the contributions from drag and turbulent mixing of cold gas and verify this reduced
version of MOGLI with the benchmark Athena++ simulations in Sec. 4.3.1. In Sec. 4.3.2, we
verify the full MOGLI model again with small-scale high-resolution Athena++ simulations and
results.

4.3.1 Non-radiative Mixing
We start with testing a reduced version of the MOGLI model. This is to independently verify
the different parts of the model. For the first set of tests, we only include the contributions from
¤Qdrag and ¤Qmix, i.e. ¤Qnon−rad = ¤Qdrag + ¤Qmix. This setup is analogous to the turbulent mixing
of cold and hot gas in a non-radiative box, i.e. without radiative cooling.

We run the Athena++ turbulent box simulations and introduce a cold cloud after driving the
turbulence, without radiative cooling. In the absence of cooling of the mixed gas, inevitably,
the cold cloud loses mass at an approximately exponential rate. Fig. 4.7 shows the evolution of
𝑚cold/𝑚cold,initial with time normalised to initial cloud crushing timescale (𝑡cc = 𝜒

1/2𝑅cloud/𝑣turb)10.
We find that the mass evolution happens at approximately similar time-scales, in the MOGLI
simulations using ¤Qnon−rad and Athena++ benchmark simulations, with differences well within
a factor of 2. We vary the 𝐿box/𝑅cloud in the range [8, 64], resolution per direction in [8, 64],
turbulent Mach number, M in [0.2, 0.75] and random seed for turbulence driving. Note that
an exact match between the MOGLI runs and Athena++ benchmark runs is infeasible due to
stochasticity of turbulence and differences in the numerical methods

In Athena++, we define cold gas mass as the total mass of gas cells with temperature below
8 × 104K and in MOGLI, the cold gas mass is the total mass of the cold fluid in the box. We
calculate this for the snapshots separately and find the time taken for the total cold gas mass to
reach half its initial value, i.e. 𝑡half . Fig. 4.8 shows a scatter plot of the half mass time (𝑡half)

9Note that throughout the text, we use 𝑅cloud refers to the size of the initial cold gas cloud. 𝑙cold in the previous
section refers to the cold gas length scale inside a particular grid cell.

10Throughout the text, 𝑡destroy refers to the cold gas destruction timescale within the cell (cf. Eq. 4.12), while 𝑡cc
refers to the cloud destruction timescale of the initial cold gas cloud.
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normalised to the initial cloud-crushing timescale, for different turbulent Mach numbers. As a
benchmark, we use resolved Athena++ simulations with different resolutions (1923, 3843 and
7683, represented by the colour of the point) and turbulence random seeds to capture the inherent
stochasticity of cold gas destruction in a turbulent medium. Due to this inherent stochasticity, we
show the mean and 2𝜎 interval around the mean for the benchmark Athena++ and corresponding
MOGLI simulations. For the MOGLI runs, the colour of the point in Fig. 4.8 shows how resolved
or unresolved the initial cloud is via the ratio of the cloud radius and grid cell size (𝑅/𝑑𝑥).

We find that the mean and scatter of the cold gas destruction from the subgrid model with
the Kolmogorov turbulent velocity estimation agree well with the benchmark Athena++ and
both cluster with a factor of ∼ 2 near the analytical value of ∼ 𝑡cc. This verifies that the source
function contribution for mixing, ¤Qmix is working as expected and leads to a physically consistent
behaviour.

4.3.2 Radiative mixing
Next, we include the remaining source function contribution for the growth of cold gas via mixing,
¤Qgrow. This gives us the full subgrid model for radiative mixing with ¤Q = ¤Qdrag + ¤Qmix + ¤Qgrow.
With the full subgrid model, the MOGLI simulations are analogous to resolved turbulent box
simulations with radiative cooling, similar to simulations in Das & Gronke (2024b); Gronke et al.
(2022b).

We run the MOGLI simulations with different turbulent Mach numbers (M) in [0.2, 0.75],
multiple resolutions per direction in [8, 64], two different random seeds for turbulent driving and
different values of 𝑡cool,cold/𝑡cc. We calculate the value of 𝑡cool,cold from the 𝑡cc = 𝜒

1/2𝑅cloud/𝑣turb
and required value of their ratio. We use our Athena++ runs with different resolutions, turbulent
Mach numbers random turbulence seeds, and cold cloud sizes (𝑅cloud) as the benchmark for
comparison. This includes our simulations and the results from Gronke et al. (2022b); Das &
Gronke (2024b).

Morphology

Fig. 4.9 shows the 2D maps of projected 𝛼𝜌cold (
∫

los 𝛼𝜌cold𝑑𝑧/𝐿box) plots at different times, for
MOGLI runs with M = 0.5 different 𝑡cool,cold/𝑡cc values. Two columns on the left show the
evolution of an unresolved (𝐿box/𝑅cloud = 32) initial cloud and two columns on the right show the
evolution of a resolved initial (𝐿box/𝑅cloud = 32) cold cloud for destruction and survival regimes.
We find that the clouds for runs with short 𝑡cool,cold show growth of cold gas, while the clouds in
runs with longer 𝑡cool,cold get destroyed, as expected from the results of previous studies (Gronke
et al., 2022b).

Fig. 4.10 shows the early-time hot fluid mass flux ( ¤𝑚hot) slices, normalised with ratio of total
hot fluid mass and eddy-turnover time (𝑚hot,box/𝑡eddy), for radiative MOGLI simulations with
resolved and unresolved cold gas clouds, at M = 0.5. The left panel shows a case of a resolved
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cold gas cloud with 643 cells and 𝐿box/𝑅cloud = 8, where the cloud is bigger than the grid cells
and grid cells inside the volume of the cloud have an 𝛼 = 1 − 𝛼floor. It is clear that cells located
within the cloud lose hot mass and gain cold mass ( ¤𝑚hot < 0), while cold gas is being mixed into
cells located just outside the cloud which thus gain hot mass and lose cold mass ( ¤𝑚hot > 0).

On the other hand, the right panel of Fig. 4.10 shows the slice from a MOGLI simulation
with an unresolved cold gas cloud, 83 cells and 𝐿box/𝑅cloud = 32. This shows how the model
can distinguish between the interior and exterior of the resolved cloud and ensures that the mass
exchange only occurs at the interface around the cloud. The dashed circles show the corresponding
initial cold gas cloud size in the simulations.

Cold gas growth and survival

We use the same definition of cold gas as in Section 4.3.1, for both benchmark Athena++ runs
and MOGLI runs to calculate the cold gas mass in different snapshots and obtain the evolution of
cold gas mass with time. Fig. 4.11 shows the temporal evolution of the cold gas, normalised to the
initial cold gas mass, in MOGLI runs with M = 0.5. We include simulations with two different
cold cloud sizes (𝐿box/𝑅cloud), two values for 𝑡cool,cold/𝑡cc = {10−4, 10}, two values for turbulence
random seed and multiple resolutions. We only show the evolution till 𝑚cold,box < 0.9𝑚total,box,
as beyond that point the growth of the cold gas stagnates due to the deficiency of hot gas in the
box and the theoretical predictions from previous studies do not apply anymore. The colour of
the lines shows how "Resolved" (𝑅/𝑑𝑥 > 1) or "Unresolved"(𝑅/𝑑𝑥 < 1) the initial cold gas cloud
is. We find that the MOGLI runs, regardless of the varied degrees of resolutions, also show
growth of cold gas when 𝑡cool,cold ≪ 𝑡cc and destruction when 𝑡cool,cold ≫ 𝑡cc, in agreement with
the previous results using resolved single-fluid simulations (Gronke et al., 2022b; Das & Gronke,
2024b).

We run benchmark Athena++ simulations with the corresponding 𝑡cool,cold/𝑡cc and different
resolutions and random instances of turbulence. Fig. 4.11 shows the benchmark Athena++
cold gas evolution in Fig. 4.11 for comparison. We find that even though the early evolution
might vary marginally, the late-time growth rates are similar between the benchmark Athena++
and MOGLI runs, within the range of turbulent stochasticity and factor of 2. In Fig. 4.11, we also
show the corresponding analytical, cold gas growth curve as black dashed lines, and the MOGLI
runs agree well with the predicted exponential growth curve. The analytical growth timescale,
𝑡grow,theory, is given by (Gronke et al., 2022b)

𝑡grow,theory

𝑡cc
= 0.5 𝜒

(
𝑡cool,cold

𝑡cc

)1/2 (
𝐿box

𝑅cloud

)1/6
. (4.34)

Note that while this equation is of the same form as the implemented Eq. (4.17), on a per-cell
basis, it is important to point out that whether our simulations recover the correct global growth
rate is far from obvious. This is due to undecidability problem of complex systems, like cellular
automata (Kari, 1994), where the existence of a simpler set of rules that result in an intended
emergent behaviour is not necessary.
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Next, we quantitatively compare the cold gas growth rates between the benchmark Athena++
and the MOGLI runs. We calculate the cold gas mass doubling time and use it to calculate the
𝑡grow. Fig. 4.12 shows the ratio of the 𝑡grow from the simulations and the analytical 𝑡grow,theory
from Eq. (5.11), across different turbulent Mach number (M). Crosses denote the values from
the MOGLI runs, with the colours denoting their "Resolvedness" (𝑅/𝑑𝑥), while the black circles
show the values from benchmark Athena++. The set of points for benchmark Athena++ include
values of data from Gronke et al. (2022b); Das & Gronke (2024b). We also show the mean
values as dashed lines and 2𝜎 intervals as shaded regions, in blue for the benchmark Athena++
and in green for MOGLI runs. The comparison shows only a marginal difference in the means
with significant overlap between the scatter of values from benchmark Athena++ and MOGLI
runs. This verifies that the MOGLI subgrid model accurately captures the growth of cold gas to
a reasonable extent.

Apart from growth rates, a working subgrid model should consistently agree with the survival
criterion of cold gas clouds obtained in previous studies using resolved single-fluid simulations
(Gronke et al., 2022b). In Fig. 4.13, we reproduce the survival plot from Gronke et al. (2022b)
with MOGLI runs. It shows the survival or destruction of cold gas in the MOGLI runs, in a
parameter space of 𝑡cool,mix/𝑡cc and turbulent Mach number (M), where 𝑡cool,mix refers to the
cooling time of the intermediate mixed gas,

𝑡cool,mix = 𝑡cool(𝑇mix, 𝜌mix) (4.35)

where the 𝑇mix =
√
𝑇cold𝑇hot and 𝜌mix =

√
𝜌cold𝜌hot are the temperature and density of the

intermediate mixed gas (Begelman & Fabian, 1990b).

As the MOGLI runs only use the cold gas cooling time (𝑡cool,cold), unlike our Athena++ runs
which use a full cooling function, we assume the CIE cooling curve from Wiersma et al. (2009)
(as used in the benchmark Athena++ runs) to evaluate 𝑡cool,mix = 𝜒𝑡cool,coldΛ(𝑇mix)/Λ(𝑇cold). For
our choice of 𝑇cold, 𝜒 this results in 𝑡cool,mix ≈ 64𝑡cool,cold

The circles in Fig.4.13 denote runs with “resolved” (𝑅/𝑑𝑥 > 1) initial cold clouds and crosses
represent the “unresolved” (𝑅/𝑑𝑥 ≤ 1) initial cold clouds and the colour of the points show the
final cold gas mass, averaged over the last 10 snapshots and normalised with the initial cold gas
mass. We show the survival criterion found in Gronke et al. (2022b) and confirmed in Das &
Gronke (2024b) as a dashed black line along with annotation for the survival and destruction
regimes. As there are a large number of points with very similar parameters, we randomly
displace the points vertically by a factor of 1.5, for clarity. We find that the resolved MOGLI
runs agree well with the survival criteria, while the unresolved runs agree within an order of
magntude and show the expected trend. We also see some stochasticity in simulations that lie
close to the criterion. This is an expected behaviour seen in resolved single-fluid simulations
due to the inherent randomness of turbulence. This verifies the ability of the subgrid model to
accurately reproduce the survival and destruction of cold gas as an emergent behaviour.
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Figure 4.13: Scatter plot of survival or destruction of cold gas in the MOGLI runs, in a parameter
space of 𝑡cool,mix/𝑡cc and turbulent Mach number, M, where 𝑡cool,mix (c.f. Eq. (4.35)). The
circles show the points from resolved (𝑅/𝑑𝑥 > 1) MOGLI simulations, while crosses denote
the unresolved (𝑅/𝑑𝑥 < 1) simulations. The colour of the points denotes the ratio of total final
cold fluid mass, averaged over the last 10 snapshots, normalised to the initial value. The black
dashed line shows the survival criterion from Gronke et al. (2022b), and we find that MOGLI
can reproduce this survival criterion as an emergent behaviour. Note that the points are randomly
shifted vertically by a factor of 1.5 for clarity.
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Figure 4.14: Evolution of the cold gas spatial dispersion, normalised to its initial value, in the
benchmark Athena++, as dashed lines, and MOGLI runs, as solid lines, with time normalised
with turbulent eddy turnover time. The colour of dashed lines shows the resolution of the
Athena++ simulations, while the colour of the solid lines shows the “resolvedness” of the initial
cold cloud in the MOGLI runs, i.e. 𝑅/𝑑𝑥. Left panel shows the evolution of MOGLI runs with
resolved initial clouds at 𝐿box/𝑅cloud = 8, and the corresponding Athena++ runs. Right panel
shows the same but for MOGLI runs with unresolved initial cloud at 𝐿box/𝑅cloud = 32, and the
Athena++ runs.
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Figure 4.15: Same as Fig. 4.8 but with the gradient-based local turbulence estimation. Scatter plot
of the half mass time (𝑡half) normalised to the initial cloud-crushing timescale (𝑡cc = 𝜒𝑅cloud/𝑣turb),
for different turbulent Mach numbers. Athena++ simulations with different resolutions (1923,
3843, and 7683, represented by the colour of the point) and turbulence random seeds to capture
the inherent stochasticity of cold gas destruction in a turbulent medium.
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Figure 4.16: Same as Fig. 4.11 but with the gradient-based local turbulence estimation. Cold
gas evolution in MOGLI runs with time, normalised to the initial cloud-crushing time (𝑡cc), with
Mturb = 0.5. The two groups of solid and dashed curves correspond to two different values of
𝑡cool,cold/𝑡cc = {10−4, 10}. The solid lines show the cold gas evolution, as the total mass of the
cold fluid, with the colour of the line denoting the initial 𝑅cloud/𝑑𝑥. Top panel shows the evolution
for simulations with unresolved initial cloud 𝐿box/𝑅cloud = 32 and bottom panel shows the same
for resolved initial cloud 𝐿box/𝑅cloud = 8. The black dashed line shows the expected exponential
growth of the simulations which grow, with the growth time (𝑡grow) calculated using Eq. (5.11).
The purple dot-dashed and dashed lines show the cold gas evolution from analogous Athena++
benchmark runs, with 1923 and 3843 cells, respectively. We find a good agreement between the
analytically expected growth rates and MOGLI runs.
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Figure 4.17: Same as Fig. 4.12 but with the gradient-based turbulence estimation. Scatter plot
of the ratio of the 𝑡grow from the simulations and the analytical 𝑡grow,theory (Eq. 5.11), across
different turbulent Mach number (M). Crosses show the values from the MOGLI runs, with
the colours denoting their "Resolvedness" (𝑅/𝑑𝑥), while the black circles show the values from
benchmark Athena++. The set of points for benchmark Athena++ include values calculated
from simulations from Gronke et al. (2022b); Das & Gronke (2024b). We also show the means
as dashed lines and 2𝜎 intervals as shaded regions of the benchmark Athena++ and MOGLI
runs. The comparison shows only a marginal difference between the benchmark Athena++ and
MOGLI runs in the means with significant overlap between the scatter.
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Cold gas spatial dispersion

As the simulation evolves, the cold gas is expected to get progressively more spatially dispersed
with time and can be an important mechanism for the transport of cold gas in large-scale
simulations. We test for differences in the dispersion of cold gas in the benchmark Athena++ and
MOGLI simulations. We define a quantity, 𝜓, as a proxy for the spatial dispersion of cold gas,

𝜓cold =
∏

𝑖=[1,2,3]

[∑
cold 𝑚cold 𝛿𝑥𝑖,com∑

cold 𝑚cold

]
(4.36)

where, 𝛿𝑥𝑖,com = |𝑥𝑖,cell − 𝑥𝑖,com,cold | is the distance, along 𝑖th axis, between the cold gas/fluid
centre-of-mass and cell centre, in a periodic box. We run benchmark Athena++ and the
corresponding MOGLI runs with initial 𝑅cloud = 310 𝑐s,cold𝑡cool,cold, varying resolution and
different turbulent random seed. We repeat this calculation on the snapshots from Athena++ and
MOGLI runs to obtain the temporal evolution of the cold gas dispersion (𝜓cold). Fig. 4.14 shows
the temporal evolution of the 𝜓cold, normalised to its initial value, in the benchmark Athena++
as dashed lines, and MOGLI runs as solid lines. The colour of dashed lines shows the resolution
of the Athena++ simulations, while the colour of the solid lines shows the “resolvedness” of the
initial cold cloud in the MOGLI runs, i.e. initial 𝑅/𝑑𝑥. The top panel shows the evolution of
MOGLI runs with unresolved initial clouds at 𝐿box/𝑅cloud = 32, and the corresponding Athena++
runs. The bottom panel shows the same but for MOGLI runs with unresolved initial cloud at
𝐿box/𝑅cloud = 8, and the Athena++ runs.

In general, in both “resolved” and “unresolved” cloud cases, while the cold gas dispersion is
higher in MOGLI runs, the growth of dispersion follows qualitatively similar evolution with
similar timescales11. The higher dispersion is likely due to the poorer resolution for the highly
unresolved, i.e. low 𝑅/𝑑𝑥, which leads to higher numerical diffusion in volume fraction. This
can be improved in future with a higher-order solver in the multifluid code, but the differences
fall within an acceptable range for the current study.

With the above tests, we verify that the MOGLI model, with the Kolmogorov turbulence
estimation, can capture all the different facets of cold gas behaviour, i.e. the survival, destruction
rates, growth rates and cold gas dispersion in a turbulent medium, in an emergent way. In the
next section, we repeat the verification tests from this section for MOGLI model with our new
gradient-based local turbulence estimation method (grad).

4.4 Verification:
With Velocity gradient-based turbulence estimation

As the Kolmogorov estimation method (kol) assumes isotropic and steady-state turbulence over
the simulation domain, it cannot be applied in setups with evolving or strongly varying turbulence.
For more general scenarios with temporal and/or spatial variation in turbulence, we need a method

11Interestingly, we find good agreement even though the cold gas has one bulk velocity per cell.
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to estimate the local turbulent velocity from the local fluid properties. We implement the grad
method for local turbulence estimation based on velocity gradients to get around this limitation
of the kol method. As described in Sec. 4.2.6, we use the local velocity gradient calculated
using neighbouring cells in AREPO (Pakmor et al., 2016) to estimate the velocity dispersion in the
neighbourhood. Once we know the turbulent velocity in this neighbourhood, we scale it to the
cold gas scales by assuming a fully developed Kolmogorov turbulence below those grid scales.

We repeat our verification tests from Section 4.3 to confirm the accuracy of MOGLI with the
gradient-based turbulent velocity estimation. We start with checking the non-radiative turbulent
mixing rates. Fig. 4.15, analogous to Fig. 4.8, shows the cold gas half time for non-radiative
MOGLI runs ( ¤Q = ¤Qdrag + ¤Qmix) with the grad method. For the grad method, we find a
slightly higher separation between the mean of the benchmark Athena++ and MOGLI runs, and
a wider scatter in both cases when compared to the kol method of estimation. The differences
are minimal and within acceptable limits. So, we can conclude that the grad method works well
for non-radiative mixing.

For the full model, i.e., including radiative mixing, first, we check the evolution of cold gas mass
evolution in Fig. 4.16, analogous to Fig. 4.11. It shows the same behaviour where, regardless of
the resolution, the clouds with faster cooling time, i.e. 𝑡cool,cold/𝑡cc ≪ 1, grow at expected rates
while the clouds with slow cooling, i.e. 𝑡cool,cold/𝑡cc ≫ 1, get destroyed. Subsequently, we repeat
the quantitative verification of the growth rates in Fig. 4.17, similar to the comparison made
in Fig. 4.12. We find marginally higher differences in the mean value of 𝑡grow/𝑡grow,theory (cf.
Sec. 4.3.2) of the benchmark Athena++ runs and MOGLI runs, in comparison to the differences
with kol method, while the standard deviation is similar.

Next, we verify the emergent survival criterion from MOGLI with the grad estimation. In
Fig. 4.18, we show the survival and destruction of the cold cloud, analogous to Fig. 4.13. We
find that the MOGLI runs still agree well with the survival criterion from Gronke et al. (2022b),
albeit slightly worse than the kol method.

Finally, we check for any differences in the dispersion of cold fluid using the local turbulent
estimator. Fig. 4.19 shows the evolution of cold gas dispersion 𝜓cold (cf. Eq. 4.36 in Sec. 4.3.2),
analogous to Fig. 4.14 for kol method. We find that the cold gas dispersion follows an almost
identical evolution with grad method, in Fig. 4.19 as with grad in Fig. 4.14.

With the series of tests above, we can conclude that MOGLI model with the velocity gradient-based
local turbulence estimation (grad) method also accurately captures the subgrid behaviour of cold
gas with a good agreement with the benchmark Athena++ and analogous MOGLI runs with
the kol simulations. Since the average turbulence estimates are consistent and the agreement
between MOGLI and the resolved Athena++ runs was demonstrated in the previous section, this
outcome is unsurprising. However, this assumption does not hold for simulations focused on
local measures (e.g., local dispersion) or where gas flows vary significantly, making a ‘global’
concept of turbulence inapplicable. In summary, we find the grad method to be more suitable
for most astrophysical applications and thus adopt it as the default in MOGLI. Nonetheless, the
initial comparison with the simpler kol method provides a valuable opportunity to isolate and
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Figure 4.18: Same as Fig. 4.13 but with the gradient-based turbulence estimation. Scatter plot
of survival or destruction of cold gas in the MOGLI runs, in a parameter space of 𝑡cool,mix/𝑡cc
and turbulent Mach number, M, where 𝑡cool,mix (c.f. Eq. (4.35)). The circles show the points
from resolved (𝑅/𝑑𝑥 > 1) MOGLI simulations, while crosses denote the unresolved (𝑅/𝑑𝑥 < 1)
simulations. The colour of the points denotes the ratio of total final cold fluid mass, averaged over
the last 10 snapshots, normalised to the initial value. The black dashed line shows the survival
criterion from Gronke et al. (2022b), and we find that MOGLI can reproduce this survival criterion
as an emergent behaviour. Note that the points are randomly shifted vertically by a factor of 1.5
for clarity.



96 4. MOGLI

0.0 0.5 1.0 1.5 2.0 2.5
t/teddy

10 1

100

101

102

co
ld

/
co

ld
,i

ni
tia

l

Resolved
Lbox

Rcloud
= 8

MOGLI runs
Athena++ runs

100

101

102

103

104

co
ld

/
co

ld
,i

ni
tia

l
Unresolved
Lbox

Rcloud
= 32

100

150

200

250

300

350

400

450

500

At
he

na
++

 re
so

lu
tio

n

10 1

100

101

AR
EP

O 
R

/d
x

Figure 4.19: Same as Fig. 4.14 but with gradient-based turbulence estimation. Evolution of the
cold gas dispersion, normalised to its initial value, in the benchmark Athena++, as dashed lines,
and MOGLI runs, as solid lines, with time normalised with turbulent eddy turnover time. The
colour of dashed lines shows the resolution of the Athena++ simulations, while the colour of
the solid lines shows the “resolvedness” of the initial cold cloud in the MOGLI runs, i.e. 𝑅/𝑑𝑥.
Top panel shows the same but for MOGLI runs with unresolved initial cloud at 𝐿box/𝑅cloud = 32,
and the Athena++ runs. Bottom panel shows the evolution of MOGLI runs with resolved initial
clouds at 𝐿box/𝑅cloud = 8, and the corresponding Athena++ runs.
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Figure 4.20: Evolution of projected 𝛼𝜌cold/𝜌hot,ini for a turbulent box with MOGLI, gradmethod,
643 cells, 100 unresolved clouds with a radius 𝐿box/256, where 𝐿box is the box size, and 𝑡cool/𝑡cc =

5× 10−4. The unresolved clouds grow and subsequently fill the box due to its finite size. We will
need a box with ∼ 30003 cells to run an analogous simulation in a single-fluid code without a
subgrid model.

understand the underlying physical mechanisms.

4.5 Discussion

4.5.1 Model showcase
After the testing and verification of the MOGLI model in Sec. 4.3 & 4.4, we can use it to simulate
a setup to show the strengths of such a model. We simulate a turbulent box with 643 cells and
M = 0.5, and introduce 100 unresolved clouds with a radius of 𝐿box/256, where 𝐿box is the box
size. To run an analogous setup in a single-fluid simulation code without a subgrid model, we
need to resolve the individual clouds with around 10 cells across their radius, hence requiring a
single-fluid simulation with ∼ 30003 cells. Such single-fluid simulations require a considerable
computational cost, while our analogous MOGLI multifluid simulation can capture the relevant
cold gas evolution with just a 643 cells simulation with negligible computational cost. Fig. 4.20
shows the evolution projected 𝛼𝜌cold/𝜌hot,ini for the showcase simulation using our MOGLI model
with the grad local turbulence estimation method.

This shows the potentially massive savings in computational times with the MOGLI model, over
a brute force method of resolving the cold gas structures in a single-fluid code without a subgrid
model allowing for configurations infeasible with traditional single-fluid simulations. We plan to
study several such scenarios in future work.
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4.5.2 The need for a multiphase subgrid model
With the ISM, CGM, and ICM, multiphase media are ubiquitous in and around galaxies and,
thus, crucial to our understanding of galaxy formation and growth. Not only is the new fuel
for star-formation channelled through the multiphase galactic halos (see reviews by Donahue
& Voit, 2022; Faucher-Giguère & Oh, 2023b) but gas is also expelled from galaxies through
multiphase galactic winds (Veilleux et al., 2020b; Heckman & Thompson, 2017). Even the gas
within the galaxy is highly multiphase with a much wider range of temperatures, from ∼ 102K
gas in molecular gas to > 107K gas in supernova ejecta. Thus, correctly modelling multiphase
gas dynamics is the foundation of accurately modelling gas transport, its conversion into stars
and their subsequent impact on the galaxy when they end in supernovae and lead to feedback.
Hence, understanding multiphase gas is a cornerstone of understanding the wider baryon cycle.

While great strides are being made to model the interstellar medium including its multiphase
nature correctly in dedicated, small domain simulations (Walch et al., 2015; Kim & Ostriker,
2017), this is much more problematic in a larger scale, cosmological simulations. Nevertheless,
modern large-scale cosmological simulations using ‘zoom in’ and adaptive techniques, based on
targeting a mass resolution, manage to reach a parsec-scale resolution in certain dense regions
within the ISM while at the same time capturing the effects of the larger environment.

However, the same techniques cannot be applied to the halo of galaxies spanning ∼ 100 kpc in
radius (for a Milky Way-sized galaxy at 𝑧 ∼ 0; Tumlinson et al., 2017). In these large volumes,
recent observations constrain the upper limit to the size of this cold gas to be ≲ 10 pc (Lan &
Fukugita, 2017; Crighton et al., 2015; Schaye et al., 2007; Rauch et al., 1999). This implies
that simulation of a single halo would require at least (100, 000)3 resolution elements – a task
infeasible even for the next generation of supercomputers. For example, modern cosmological
simulations require tens of millions of CPU hours to simulate ∼ 109 particles/cells (e.g., THESAN,
Kannan et al., 2022). Extrapolating this figure to (100, 000)3 cells, we would need ∼ 107 million
core hours. Thus, even an optimally parallelised run on one million cores (approximately the
number of CPU cores on the exascale supercomputer El Capitan) such a run would take 107 hours,
i.e. ∼ 1000 years. Of course, this is a simplified approximation; however, it still illustrates the
point that even next-generation exascale machines will not be able to resolve the CGM structure
observed to date.

The inability of modern cosmological simulations to achieve the resolution needed to model
the (observed) cold gas structures found in the halos directly comes from the fact they are
non-converged in even the most basic cold gas properties such as the amount of ∼ 104 K gas
found (see extensive discussion of this in the literature, e.g., Faucher-Giguère & Oh, 2023b;
van de Voort et al., 2021; Hummels et al., 2024; Ramesh & Nelson, 2024a; Peeples et al., 2019).
This implies that when comparing such simulations to CGM observables, it is impossible to know
whether a (mis)match is due to the physics implemented in this simulation (e.g., the feedback
mechanisms, and star formation models) or if this is a transient agreement that would vanish with
a higher resolution.

In addition, while the simulation projects mentioned above can significantly increase the number
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of resolution elements in the CGM, it is important to note that all these projects start with
cosmological zoom simulations of individual halos in which memory usage is not as much of
an issue. However, to study cold gas microphysics across the galaxy population, this technique
would have to be applied to a large number of halos, posing significant additional requirements
on the available memory. Since modern uniform mass resolution galaxy formation simulations
are limited not solely by compute resources but also by memory, such an undertaking would only
allow very limited increases in the number of resolution elements per halo, with no prospects to
resolve the required spatial scales any time soon.

This limitation due to a highly multiscale problem is not new to astrophysics. For about two
decades now, we have known that supernovae feedback – taking place on initially minuscule
scales – is crucial to shaping galaxy morphology (e.g. Naab & Ostriker, 2017). The way these
indispensable ‘feedback’ processes are modelled in astrophysical simulations is through a ‘subgrid
model’, that is, by including their effects on larger scales through (empirical) source and sink
terms.

Our model MOGLI is exactly such a subgrid model but for a two-phase multifluid medium. While
it is not the first model of this kind (cf. § 4.5.3 for a comparison to previous work), it includes (i) a
solid Eularian-Eularian numerical framework common in engineering (Weinberger & Hernquist,
2023a) implemented in the popular code AREPO (Weinberger et al., 2020; Springel, 2010), and
(ii) coupling terms between the phases based on and verified with small-scale simulations and
combustion inspired theory (Tan et al., 2021; Gronke et al., 2022b).

This solid foundation implies that the number of free parameters in our model is at a bare
minimum, i.e. it includes only two free parameters. Only in Eq. (4.15), the ¤𝑚cold→hot includes
a fudge parameter for the 𝛼mass threshold, and in Eq. (4.29), 𝑣turb,grad,MOGLI includes 𝜉MOGLI
(which is within a factor of ∼ 2 of the theoretically expected value). Such a low number of
free parameters is important, in general, for a subgrid model to preserve the predictive power of
the simulations – but especially for a multiphase subgrid model such as MOGLI, as all cells are
affected by it. Thus, allowing for more degrees of freedom by, for example, altering directly the
amount of cold gas found in the halo would diminish the predictive power rapidly.

Naturally more work is required (cf. § 4.5.4) but this work is a strive in the right direction to
ultimately model the multiphase gas in and around galaxies in a converged manner.

4.5.3 Previous work
As multiphase media are common in terrestrial applications, numerical tools to model them
are extensively developed and widely used in various engineering disciplines, such as chemical,
mechanical, and civil engineering. For example, in chemical engineering, they are critical for
simulating processes like distillation, fluidized bed reactors, and mixing in multiphase reactors.
In mechanical engineering, they enable the design and optimization of cooling systems involving
liquid-vapor interactions, such as in heat exchangers and condensers. In civil engineering,
they play a key role in understanding and managing subsurface flows, including groundwater
contamination, oil recovery, and sediment transport in rivers (Prosperetti & Tryggvason, 2007).
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In astrophysics, however, dedicated methods to model multiphase flows are less used – with some
notable exceptions. Semelin & Combes (2002), for instance, already included a ‘warm’ (> 104 K)
and a ‘cold’, pressureless phase as two separate fluids in their SPH scheme (alongside stars and
dark matter) with the colder one being modelled via a ‘sticky particle scheme’ (Levinson &
Roberts, 1981), thus, allowing the particles to inelastically collide with each other. They include
the possibility for ‘warm’ particles to cool down and turn into ‘cold’ ones, and vice-versa to
evaporate ‘cold’ particles due to supernovae feedback. Using this scheme, Semelin & Combes
(2002) successfully perform a simulation of an isolated disk galaxy and study its evolution.
While their source/sink terms are relatively large-scale and simplified, their approach represents a
pioneering step toward incorporating multiphase processes in galaxy modelling (also see Berczik
et al., 2003 for a similar implementation or Harfst et al., 2004 for an extension to three phases).

A similar approach is followed by Scannapieco et al. (2006), who instead of using two different
particle types in their SPH scheme, ‘decouple’ particles with low entropy (essentially corresponding
to a cold phase), thus, allowing neighbouring particles with different thermal properties. This
implementation is meant to address the ‘overcooling problem’ where the energy of a supernova
ejected in the dense medium is instantly lost (e.g. Kim & Ostriker, 2015; Smith et al., 2018). While
the multiphase implementation of Scannapieco et al. (2006) is not specifically targeting galactic
winds, their supernovae feedback implementation results in a separation of nearby particles into
‘hot’ and ‘cold’ ones, and, thus leads to an efficient wind launching. Their algorithm can thus be
seen to be more in line with the more recent developments of SN ejected winds where particles
are also decoupled (Springel & Hernquist, 2003; Okamoto et al., 2005; Oppenheimer & Davé,
2006).

More recently, the multiphase nature of galactic winds has led to the development of several
Eulerian-Lagrangian subgrid models where the cold phase is represented by particles within a
hot gas cell (Huang et al., 2020; Smith et al., 2024). In these models, physically motivated source
and sink terms between the phases akin to the ones used in this study have been implemented12.

Our work can be seen as a continuation of these efforts using different numerical means. While
the previous astrophysical work mentioned above has focused on a colder phase represented via
a particle, we have created a two-phase (a ∼ 104 K and a ‘hot’ ≳ 106 K phase) Eulerian-Eulerian
subgrid model using the multifluid implementation of Weinberger & Hernquist (2023a) and
coupling terms inspired by combustion theory which was validated previously using a range of
small-scale numerical simulations (Ji et al., 2019; Tan et al., 2021; Gronke et al., 2022b; Tan
et al., 2023). This implementation has the advantage that it can especially capture multiphase,
turbulent media – which are ubiquitously found in astrophysics, such as in the CGM, ICM and
galactic winds – as well as the cold gas disperses naturally.

In this regard, our approach is similar to the two-fluid model implemented in ENZO by Butsky
et al. (2024) during the work on this model. Note, however, that our cold fluid is represented as
a compressible second fluid while their cold phase is assumed to be pressureless. While both

12Note that subgrid model of Huang et al. (2020) does not include cold gas mass growth whereas the Smith et al.
(2024) model does.
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should yield the same result in the case of vanishing volume filling fractions and temperature of
the cold phase, a pressureless fluid can only represent unresolved cold clouds. The transition to
marginally resolved or even fully resolved clouds where the pressure of the cold fluid displaces the
hot fluid, i.e. the main focus of this work, cannot be modelled in the pressureless approach. This
also results in differences in source terms: their coupling terms between the phases are inspired by
the classical ‘cloud crushing’ problem, i.e., the interaction of a laminar hot wind and a cold cloud
(e.g., Klein et al., 1994b) with the individual cold gas cloudlets radii being 𝑟cl ≈ min(𝑐s𝑡cool)
inspired by the ‘shattering’ scenario (McCourt et al., 2018). In contrast, the presented work
allows full flexibility in the respective volume filling fractions and allows, specifically, also the
case where the typical length and timescales of unresolved and resolved processes are comparable.
Thus, we needed to generalise the source terms to account for the finite availability of hot gas,
of ‘shielding’ of inner layers of resolved cold clouds and geometric considerations of the change
in surface area when a substantial fraction of a cell is filled with cold gas and generally cannot
assume an instantaneous equilibration of the cold gas into a universal cloud radius or cloud mass
function.

Both Eulerian-Eulerian and Eulerian-Lagrangian multifluid models have advantages and disadvantages.
Notably, in the Eulerian-Lagrangian approach the particles representing the cold phase have zero
extents. Thus, reproducing the dispersion of the cold medium (cf. § 4.3.2) would require particle
splitting/merging which is currently not implemented in these models. This is in particularly
crucial since multiphase gas exhibits a large amount of fragmentation and dispersion (cf. § 4.3.2,
also Gronke et al., 2022b; Mohapatra et al., 2022b; Fielding et al., 2023a) leading commonly to
large areal covering fractions observed, e.g., in the CGM (see, e.g., review by Tumlinson et al.,
2017). On the other hand, Lagrangian-Eulerian subgrid models can represent several bulk flows
within one cell which might be advantageous in modeling fountain flows13.

The different subgrid implementations found in the literature do not just differ in the exact
numerical implementation but also in terms of their goals and philosophy. While most of the
above discussed aim directly for a large-scale application, no comparison of the emergent behavior
to smaller-scale resolved hydrodynamical simulations is done – as was carried out here (as well
as in Butsky et al., 2024). While such a comparison is somewhat tedious, it is crucial to ensure
robustness a while keeping the amount of free parameters to a minimum.

4.5.4 Limitations and future directions
Although our model MOGLI takes a step in the direction of capturing the rich physics of
small-scale cold gas structures, many aspects of the multiphase gas are still open questions and
remain to be investigated in both small-scale simulations and subgrid modelling. Some of such
aspects are:

• Magnetic fields: Although magnetic fields can suppress mixing via hydrodynamical
instabilities like Kelvin-Helmholtz instabilities (Chandrasekhar, 1961; Ji et al., 2019),

13When considering different levels of fluid discretization, one must also account for realistic turbulent diffusion,
which often dominates in multiphase systems (e.g. Tan et al., 2021).
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as shown in Das & Gronke (2024b), the mixing properties depend only on the turbulent
velocities. Hence, MOGLI model should remain unchanged with or without magnetic
fields.

• Thermal conduction: In the turbulent mixing of cold gas, the eventual mixing of cold gas is
via thermal conduction at molecular diffusion scales. Such small scales are not resolved in
our simulations, but as shown in Tan et al. (2021), the turbulent mixing is rate-limited at the
scales of the largest eddy, and is converged with the largest eddy scales are well resolved.
Although, in our simulations, the thermal conduction is numerical, due to the rate-limiting
nature of the largest scale, we expect the multiphase gas behaviour to be unchanged.

• Viscosity: Similar to thermal conduction, viscosity operates at very small scales and can
change the small-scale turbulent properties. Even though we have numerical viscosity in
our simulations, due to the same rate-limiting nature of largest eddies in turbulent mixing,
with grid cells larger than the viscous scales, the multiphase gas properties are expected
to be unaffected. While viscosity can potentially change the microturbulent properties of
the ‘laminar’ cooling front on small scales, and thus, affect the form of our coupling terms
(cf. Tan et al., 2021), it has recently been shown in small-scale simulations that even strong
viscosity has a weak effect on the mass transfer rate due to the competing effect of cooling
(Marin-Gilabert et al., 2025).

Apart from the limitations mentioned above, there are many directions the MOGLI can be
improved and expanded in future studies. One such improvement can be to include a more
sophisticated subgrid turbulence model (Schmidt & Federrath, 2011; Semenov, 2024). Currently,
MOGLI does not account for in-situ formation of cold gas from hot gas via processes like thermal
instability (Field, 1965; McCourt et al., 2018; Sharma et al., 2010). This will enable the creation
of the initial seed cold gas which can later grow further via turbulent mixing included in the
MOGLI model.

Another avenue for refining the model is the inclusion of other phases. It is clear from observations
that colder (< 8000K) gas exists (McKee & Ostriker, 1977a; Cox, 2005), which points to the
existence of a three-phase gas, with much more rich physics and complex interactions among the
phases (Farber & Gronke, 2021; Chen & Oh, 2024). Three-phase turbulent gas is still a relatively
unexplored system and detailed investigations with small-scale simulations are required before a
theory can be developed to be included in MOGLI.

While several ingredients are still missing, this work represents a first step for multi-fluid
cosmological simulations. These next generation of large-scale simulations would overcome
the vexing converging issue in particular in the CGM that current models suffer (see discussion
in § 4.5.2). In contrast – as demonstrated in § 4.3.2 – the total cold gas mass of MOGLI is
independent of resolution, and thus can lead to converged large-scale simulations and a robust
comparison to observations. To do so, however, it is important to recall that multi-fluid simulations
are not as easily interpretable as single-phase ones. For instance, the sub-resolution morphology
and kinematics have to be defined as both absorption (Hummels et al., 2017; Singh Bisht et al.,
2024; Rudie et al., 2019) as well as emission (e.g. Gronke et al., 2016; Hansen & Oh, 2006;
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Chang & Gronke, 2024) crucially depends on them. While some results (such as the clump
mass distribution; Gronke et al., 2022b; Tan & Fielding, 2023) are already known, and more
small-scale simulations are needed to parametrize this information. This information can then be
used to alter tools such as Trident (Hummels et al., 2017) to make them aware of the subgrid
details in a multi-fluid simulation.14

4.6 Conclusions
In this study, we introduce our new MOGLI subgrid model to account for the subgrid cold gas
behaviour, using multifluid hydrodynamics. We use the theoretical framework developed and
confirmed in previous work (Fielding et al., 2020; Tan et al., 2021; Gronke et al., 2022b; Das &
Gronke, 2024b), and the multifluid implementation (Weinberger & Hernquist, 2023a) in AREPO
(Springel, 2010; Weinberger et al., 2020). First, we present the details of our models which
consists of,

• Mass, momentum and energy fluxes ( ¤Q), from drag forces ( ¤Qdrag), turbulent mixing
( ¤Qmix), and cold gas growth ( ¤Qgrow).

• A local turbulent velocity estimation methods (𝑣turb) based on a Kolmogorov scaling-based
method (𝑣turb,kol), or a velocity gradient-based approach (𝑣turb,grad).

• an estimate of the cold gas surface and cross-sectional area (2ℎ(𝛼) and (𝐴cross(𝛼), respectively).

Second, we separately verify the different parts of the MOGLI model for the two local turbulence
estimates. We compare the MOGLI runs with resolved benchmark single-fluid Athena++
simulations for verification. We test the quantities across different turbulent Mach numbers,
resolved/unresolved initial cold clouds, resolution and random seeds for turbulent driving, for a
robust comparison. The following are the main conclusions from our verification and tests in this
study:

• We show that the reduced version of the MOGLI model for non-radiative mixing, i.e.
¤Qnon−rad = ¤Qdrag+ ¤Qmix, matches the benchmarks non-radiativeAthena++, both qualitatively
and quantitatively, in terms of the destruction timescales, across all different parameters,
with very similar mean and scatter in 𝑡half/𝑡cc,

• We find that MOGLI model leads to physically consistent interaction between the phases in
both resolved and unresolved cold gas structures, where the mass exchange only happens at
the interfaces when the cold gas is resolved and throughout the structure when unresolved,

• The full MOGLI model for radiative mixing, shows the expected behaviour of cold gas
growth at short cooling timescales and cold gas destruction for long cooling timescales,
across all different parameters,

14Ultimately, evolving some morphological parameters (e.g., clump size distribution) alongside the fluid quantitites
is also possible. However, to do so the set of equations have to be developed and thoroughly tested.
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• We verify that the full MOGLI model for radiative mixing, quantitatively matches the
expected cold gas mass growth timescales, with very similar mean and scatter in 𝑡grow/𝑡grow,theory
between the benchmark Athena++ runs and MOGLI runs. In both, we find the mean 𝑡grow
to be ∼ 1.5𝑡grow,theory,

• The full MOGLI model for radiative mixing, also recreates the cold gas survival criterion
from Gronke et al. (2022b), as an emergent process, i.e., while ‘survival’ is not explicitly
implemented in MOGLI, it can recover this larger scale result.

• We show that the cold gas dispersion is similar between the full MOGLI model for radiative
mixing and analogous benchmark Athena++ runs. The agreement is better in case of a
resolved, initial cold gas cloud, compared to the unresolved initial cold gas cloud,

• All the verification tests hold true, regardless of the local turbulent velocity estimation
method,

• We demonstrate the strength of the MOGLI model by running a 643 cells simulation using
MOGLI with 100 unresolved clouds, which would require ∼ 30003 cells in a single-fluid
code without a subgrid model.

Our study presents our new physically motivated, multifluid subgrid model MOGLI. We have
extensively tested and verified the model across a wide range of possible simulation parameters,
to ensure a robust and consistent model. This work will be a useful development towards
running converged large-scale simulations with subgrid prescriptions for the unresolved cold gas.
However, this MOGLI has many avenues for improvement like the inclusion of the molecular
phase, in-situ cold gas formation, subgrid turbulence prescription, etc, which we hope to tackle
in future work.
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5.1 Introduction
The formation and persistence of cold gas in turbulent, radiatively cooling astrophysical media is
central to understanding a range of astrophysical media, like the interstellar (ISM), circumgalactic
(CGM) and intracluster medium (ICM) (Field et al., 1969). In particular, cold gas plays a pivotal
role in regulating star formation, fueling feedback cycles, and governing the thermodynamic
state of extended gaseous halos (Tumlinson et al., 2017). While the importance of cold gas is
widely recognised, the physical mechanisms responsible for its condensation and survival within
a turbulent, hot environment remain areas of active investigation.

Turbulence introduces significant complexity into this problem (Mohapatra et al., 2022b). By
generating fluctuations in density and temperature, turbulence can both promote and suppress the
condensation of cold gas. The timescales for cooling and mixing become intimately linked, with
gas in intermediate temperature regimes often occupying thermally unstable states. Whether a
multiphase medium develops depends sensitively on the balance between turbulent eddy turnover
times and local cooling times. Prior studies have shown that under certain conditions, a small
seed of cold gas can grow via turbulent mixing and subsequent radiative cooling (e.g., Gronke
& Peng Oh, 2018; Gronke et al., 2022a; Das & Gronke, 2024a). The presence of the seed cold
gas is usually explained by the external influences like galactic outflows (Tumlinson et al., 2017)
or in-situ cold gas formation from hot phase via thermal instability (Field, 1965; Sharma et al.,
2010; Mohapatra & Sharma, 2019).

In the previous studies, the in-situ cold gas formation (or condensation) of cold gas from an
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thermally unstable hot gas and its subsequent growth via mixing were investigated separately,
due to the separation in relevant timescales, i.e. cooling timescale of hot (𝑡cool,hot) and cold phase
(𝑡cool,cold) respectively, in CGM and ICM. In ISM, this does not hold true anymore, where the
cooling time of the hotter phase (𝑇hot = 104K) is comparable to the cooling time of the cold phase
(𝑇cold = 100K). Hence, in the ISM, both processes can act together and be important in different
circumstances.

In this chapter, we systematically investigate the ISM-like turbulent system, with an unstable
hot phase (104K). We study (1) the criterion for turbulent cold gas condensation from the hot
phase, and (2) subsequent cold cloud survival in a stable hot phase. We begin with analytical
considerations that motivate a new condensation criterion based on the cooling time of turbulently
compressed gas parcels. We then describe our simulation setup and methods, before presenting
results on cold gas morphology, mass evolution, and phase structure. Finally, we compare our
proposed criterion against previous models and discuss the broader implications for cold gas in
multiphase astrophysical systems.

5.2 Analytical considerations
In this section, we review the relevant timescales, lengthscales, and criteria.

The phenomenon of turbulence has its own inherent timescales and lengthscales. In a turbulent
box, the turbulent eddies of size 𝑙 evolve on the eddy-turnover timescale, 𝑡eddy(𝑙) = 𝑙/𝑢, where 𝑢
is the turbulent velocity on that scale. Assuming a Kolmogorov spectrum and turbulent velocity
of 𝑣turb at the scales of the box, i.e. 𝐿box, we can rewrite 𝑡eddy(𝑙) ∼ 𝑡eddy,box(𝑙/ 𝐿box)2/3, where
𝑡eddy,box = 𝐿box/ 𝑣turb is the eddy turnover time at the box scale.

In this study, we aim to study the behaviour of turbulent gas with radiative cooling. The process
of radiative cooling introduces its own timescales, namely the cooling time, defined for gas at a
density 𝜌 and temperature 𝑇 as

𝑡cool(𝜌, 𝑇) =
𝑘B𝑇/(𝛾 − 1)
𝜌Λ(𝑇) (5.1)

where, Λ(𝑇) is the cooling function and Lcool = 𝜌2Λ is the cooling rate. From henceforth, Λ𝑥
will refer to Λ(𝜌𝑥 , 𝑇𝑥).

We also define a second cooling timescale (𝑡′cool), including the effect of the heating function,
Γ(𝑇), defined as

𝑡′cool(𝜌, 𝑇) =
𝑘B𝑇/(𝛾 − 1)
𝜌Λ(𝑇) − Γ(𝑇) (5.2)

where 𝜌Γ is the heating rate. As we maintain an average energy equilibrium in the hot gas phase
in the box, to avoid the box from cooling or heating as a whole, heating terms balance cooling
for average conditions, i.e. Γ/𝜌hot = Λhot. The previous cooling time, i.e. 𝑡cool is comparatively
easier to calculate than 𝑡′cool, hence we use 𝑡cool during our simulation setup.
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Different characteristic density and temperature pairs have their corresponding cooling times, like
cooling time for (𝜌, 𝑇) pairs for cold and hot gas phase, (𝜌cold, 𝑇cold) and (𝜌hot, 𝑇hot) correspond
to the cooling times 𝑡cool,cold and 𝑡cool,hot. The other important cooling time is the cooling time of
the ‘mixed’ gas, 𝑡cool,mix, at a density and temperature of (𝜌mix, 𝑇mix), where 𝜌mix =

√
𝜌cold𝜌hot

and 𝑇mix =
√
𝑇cold𝑇hot (Begelman & Fabian, 1990a).

Previous work has shown that using the ratio of a ‘destruction time’ to 𝑡cool,mix can explain the
survival of cold gas in a laminar ‘wind tunnel’ (Gronke & Peng Oh, 2018; Kanjilal et al., 2021)
as well as in a turbulent box (Gronke et al., 2022a; Das & Gronke, 2024a). Specifically, these
authors used

𝑡cool,mix

𝑡cc
< 1 (5.3)

where 𝑡cc ∼ 𝜒1/2𝑟cl/𝑣 is the ‘cloud crushing’ timescale (Klein et al., 1994a) of a cold cloud of
size 𝑟cl and overdensity 𝜒 ≡ 𝜌cl/𝜌hot being impinged by a hot flow with velocity 𝑣 – which in the
turbulent medium is 𝑣 ∼ 𝑣turb. We will connect our work to these previous studies on cold gas
survival, and in particular, investigate the validity of Eq. (5.3) for lower temperatures. However,
we will also study the condensation of a cold phase from an initially purely hot, turbulent gas.

Putting radiative cooling and turbulence together results in modification of cooling timescales
as the density and temperature distributions broaden due to turbulent fluctuations. Next, we
want to calculate the cooling time of the turbulently compressed gas, 𝑡cool,comp. We know that
the Eulerian density in a turbulent box at steady-state roughly follows a log-normal distribution
(Federrath, 2013). So, if 𝑠 = ln (𝜌/𝜌hot) is the log-density, the probability density function (PDF)
of s is given by a normal distribution, N(𝜇𝑠 = 0, 𝜎𝑠), where 𝜇𝑠 and 𝜎𝑠 are the mean and standard
deviation of the normal distribution. As shown in Federrath (2013), the value of 𝜎𝑠 depends on
the turbulent mach number (M) and a constant parameter (𝑏) that changes with forcing, as

𝜎2
𝑠 = ln

(
1 + 𝑏2M2

)
(5.4)

where 𝑏 ≈ 0.38 (Mohapatra et al., 2022b).

As 𝑠 is normally distributed, the probability of highly compressed or rarified gas decreases
exponentially away from the mean value. We assume a threshold of 𝑠comp = 𝑘𝜎𝑠 for the high-end
of the log-density corresponding to compressed gas, where 𝑘 is a constant free parameter. We
rewrite this threshold to calculate density of the compressed gas 𝜌comp corresponding to 𝑠comp as

𝜌comp = 𝜌hot𝑒
𝑘𝜎𝑠 = 𝜒−1/2𝜌mix𝑒

𝑘𝜎𝑠 (5.5)

and, assuming adiabaticity of the turbulence

𝑇comp = 𝑇hot𝑒
(𝛾−1)𝑘𝜎𝑠 = 𝜒1/2𝑇mix𝑒

(𝛾−1)𝑘𝜎𝑠 . (5.6)
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Now, we can use Eq. 5.1 to calculate the ratio

𝑡′cool,comp

𝑡cool,mix
=

(
𝜌mix

𝜌comp

) (
𝑇comp

𝑇mix

) (
Λmix

Λcomp − (𝜌hot/𝜌comp)Λhot

)
(5.7)

= 𝜒𝑒(𝛾−2)𝑘𝜎𝑠
(

Λmix

Λcomp − Λhot𝑒−𝑘𝜎𝑠

)
. (5.8)

If we postulate that condensation from a turbulent hot gas occurs if 𝑡cool,comp is short enough
compared to 𝑡eddy, which timescale over which a gas parcel samples a significant portion of the
density distribution (Scannapieco et al., 2024). Hence, assuming another free parameter, 𝐴, we
can write a condensation criterion as

𝑡′cool,comp

𝑡eddy
< 𝐴 =⇒

𝑡cool,mix

𝑡eddy
< 𝐴

(
𝑒(2−𝛾)𝑘𝜎𝑠

𝜒

) (
Λcomp − Λhot𝑒

−𝑘𝜎𝑠

Λmix

)
(5.9)

5.3 Method
We use the ATHENA++ code (Stone et al., 2020a) for our simulations. We run the code with
the default HLLC solver, Piecewise Linear Method (PLM) on primitive variables, second-order
Runge-Kutta time-integrator, adiabatic equation of state (EOS) on a Cartesian grid, and periodic
boundary conditions.

5.3.1 Turbulence and cold cloud
We adopt a setup similar to that used in Das & Gronke (2024a) for hydrodynamic turbulent box
simulations. The domain is initialised as a cubic box filled with isobaric gas at uniform density and
temperature (𝑇hot = 104 K), assuming solar metallicity and hydrogen abundance. Turbulence is
driven at the largest scale (𝑘 = 2𝜋/𝐿box) using an Ornstein–Uhlenbeck (OU) process (Eswaran &
Pope, 1988a; Schmidt et al., 2006a). We set the driving timescale to 0.001 𝑡eddy, with a correlation
timescale of approximately 𝑡eddy = 𝐿box/𝑣turb, and a solenoidal-to-compressive forcing ratio of
𝑓sol = 0.3. All simulations use a box-to-cloud size ratio of 𝐿box/𝑅cloud = 201

We drive the turbulence for up to 7 𝑡eddy in the presence of radiative cooling, allowing the system
sufficient time to either reach a statistical steady state with saturated kinetic energy or to undergo
cold gas condensation. If no condensation occurs within this period, we restart the simulation by
introducing a dense cloud at the centre of the box. The cloud has an overdensity of 𝜒 = 100, a
radius 𝑅cloud, and is initialised while conserving the total kinetic energy densities. This results in
an isobaric, cold, dense cloud with density 𝜌cold = 𝜒 𝜌hot and temperature 𝑇cold = 102 K = 𝑇floor.

Our fiducial simulations have a resolution of 643 cells, with a subset of runs at 1283 resolution
for testing convergence. We explore a range of Mach numbers spanning both subsonic and

1This is smaller than the ratio 𝐿box/𝑅cloud = 40 used in Das & Gronke (2024a), chosen here to maintain the same
number of resolution elements per cloud radius at reduced overall resolution. The trade-off is a more rapid filling of
the box with cold gas as condensation progresses.
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supersonic regimes (M ∈ [0.1, 2.5]) and vary the hot gas density 𝜌hot to systematically probe
different values of the cooling-to-dynamical timescale ratio, 𝑡cool,mix/𝑡eddy.

5.3.2 Radiative cooling and heating
We implement radiative cooling using the algorithm of Townsend (2009a), which enables accurate
integration of stiff cooling source terms. We adopt a cooling curve Λ(𝑇) at solar metallicity,
from Wiersma et al. (2009) 𝑇 > 104K and Koyama & Inutsuka (2002) for 𝑇 ≤ 104K, and
approximated using 70 piecewise power-law segments spanning the temperature range 102 K to
108 K. We enforce a temperature floor of 𝑇floor = 102 K throughout the simulations.

To study cold gas condensation from the hot phase, we do not suppress cooling in the hot medium,
unlike in Gronke et al. (2022a) and Gronke & Peng Oh (2018). However, the absence of external
heating can lead to net cooling or turbulent heating of the bulk gas. To maintain approximate
global energy balance, we include a uniform heating/cooling density term, Hextra. We assume
that the kinetic energy injected to drive turbulence, ¤𝐸turb, is fully dissipated as heat. This rate is
estimated using the box size 𝐿box and ambient density 𝜌hot as

¤𝐸turb =
1
2
𝜌hot𝐿

2
box𝑣

3
turb

(see, e.g., Lemaster & Stone, 2009). If Lcool denotes the volumetric cooling rate for gas at
constant density 𝜌hot and temperature 𝑇hot, then the global energy balance can be written as

Hextra = Lcool − ¤𝐸turb/𝐿3
box = 𝜌2

hot

[
Λ(𝑇hot) −

1
2

𝑣3
turb

𝜌hot𝐿box

]
(5.10)

Figure 5.1 shows the resulting equilibrium temperatures at the end of the turbulence driving
phase. The inclusion of Hextra effectively regulates the thermal state of the gas, maintaining the
hot phase within a narrow temperature range centered around 𝑇hot = 104 K.

5.4 Results
As mentioned in Section. 5.3, we run the turbulent box simulations in two stages. The first stage
involves driving the turbulence in the hot medium, with radiative cooling. If during the first
stage, no cold gas condensation occurs and the box reaches a steady state, we introduce a cold
dense cloud. In the upcoming sections, we explore the behaviour of cold gas in both stages of
simulations across a parameter space of turbulent Mach number (M) and 𝑡cool,mix/𝑡eddy. In this
work, we define the cold phase as the gas with temperature 𝑇 < 200K and the hot phase as the
temperature 𝑇 > 5000K.

5.4.1 Cold gas morphology and behaviour
Over the parameter space spanned by different values of 𝑡cool/𝑡eddy and M, the evolution of cold
gas falls into three distinct categories. In Fig. 5.2, we illustrate representative simulations from



110 5. Cold gas creation and survival

102 103 104 105 106

T(K)
10 28

10 26

10 24

10 22

10 20

(T
)(a

rb
ita

ry
 u

ni
ts

)

10 5

10 3

10 1

101

103

105

t c
oo

l(a
rb

ita
ry

 u
ni

ts
)

 = 1
 = 0.5
 = 0.1

Figure 5.1: The cooling function (Λ(𝑇)) and cooling time (𝑡cool) for different temperatures and
𝜌hot = 1. The blue curve shows Λ(𝑇) and the black curve shows the 𝑡cool. The red regions mark
the temperature region of the equilibrium temperature in our simulations with the global energy
balance with Eq. 5.10.
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Figure 5.2: Density projections of turbulent box simulations with M ∼ 0.5, at three different
times across columns, and for the three different cold gas behaviours across the rows. The
different regimes of behaviour are bottom row: turbulent condensation, middle row: no turbulent
condensation but cold cloud survival and top row: no turbulent condensation and cold cloud
destruction. The two regimes where the end state contains cold gas show a similar fragmented
cold gas structure.



112 5. Cold gas creation and survival

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t/teddy

10 1

100

101

m
co

ld
,c

lo
ud

/m
co

ld
,c

lo
ud

,i
ni

tia
l

Cloud evolution

0.1
3

Analytical

0.0

0.2

0.4

0.6

0.8

1.0

m
co

ld
,t

ur
b/

m
to

t,
bo

x

Turbulent condensation

10 4

10 3

10 2

10 1

t c
oo

l,
m

ix
/t

ed
dy

Figure 5.3: Cold gas mass evolution in the two stages of simulations, for M ∼ [0.5, 3].
Top panel shows the cold gas evolution during the turbulent condensation stage. The blue
shaded region marks the region where we consider a simulation is have turbulent condensation.
The bottom panel shows the cold gas mass evolution after the introduction of a cold cloud
in simulations without condensation. The green and red shaded regions show the regimes
of cold gas survival and destruction. The dotted lines show the expected cold gas growth
(𝑚cold,cloud = 𝑚cloud,cloud,initial𝑒

𝑡/𝑡grow) with the analytical growth rate (𝑡grow using the Eq. 5.11 from
Gronke et al. (2022a)
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Figure 5.4: The fate of cold gas during the two stages of simulations across the parameter space
of (𝑡cool/𝑡eddy) vs. M. The circles denote the first stage of simulations with turbulence driving,
while the crosses show the second stage where a cold cloud is introduced in simulations without
condensation. The colour of the points denotes the corresponding final cold gas mass. We
show the three different regimes of cold gas behaviour, namely, blue regime where simulations
with turbulent condensation, green regime where simulations without turbulent condensation,
but show survival of cold gas cloud, and finally red regime with simulations without turbulent
condensation and which also show cold cloud destruction. The regimes are separated by the
turbulent condensation criterion as blue dashed line, from Eqn. 5.9 and cold cloud survival
criterion from Gronke et al. (2022a).
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each regime. The figure shows density projections (𝜌/𝜌hot,initial) integrated along a coordinate
axis, with time increasing from left to right.

In the first category, where the turbulent hot medium is thermally unstable, cold gas condenses
out of the background and fragments, forming structures across a range of length scales (bottom
row of Fig. 5.2). In the second and third categories, the background is thermally stable, and
we introduce a cold, dense cloud. In the second case, the cloud survives and grows despite the
lack of ambient thermal instability (top row), whereas in the third, it is destroyed by turbulent
mixing (middle row). In the two regimes with cold gas in the end state, we find similar multiscale
fragmented cold gas structures, showing parallels between the two channels of cold gas creation.

The regime with no turbulent condensation and cold cloud survival is of particular interest. This
shows that even in the thermally stable regime, an externally introduced cold gas can persist and
grow. This highlights that thermal instability and multiphase mixing affect the cold gas behaviour
independently. This emphasises the importance of mixing and non-linear dynamical processes
in shaping the multiphase structure.

5.4.2 Temporal cold gas mass evolution
Next, we take a quantitative look at the cold gas evolution across our simulations. We compute
the total mass of cold gas (𝑇 < 200 K) in each snapshot to track its temporal evolution.

The top panel of Fig. 5.3 shows the cold gas mass as a function of time (normalised to 𝑡eddy) during
the initial turbulence driving phase. Condensation occurs on different timescales depending on
the ratio 𝑡cool,mix/𝑡eddy with some stochastic variation. The blue-shaded region marks the threshold
for turbulent condensation: simulations with their time-averaged cold gas mass (over the final
0.5 𝑡eddy) below this region are classified as not exhibiting turbulent condensation. For these, we
proceed to inject a cold, dense cloud to study its evolution.

The bottom panel shows the evolution of cold gas after such a cloud is introduced. In agreement
with earlier studies, clouds grow when 𝑡cool,mix/𝑡eddy is small, and are disrupted when this ratio is
large. We show both subsonic and supersonic examples, with cold gas survival and destruction.
We compare the cold gas evolution from simulations with the expected cold gas growth, i.e.
𝑚cold = 𝑚cold,ini𝑒

𝑡/𝑡grow , where 𝑡grow refers to the analytical growth rates from Gronke et al.
(2022a), given by

𝑡grow ≡ 𝛼𝜒M−1/2
hot

(
𝑅cloud

𝑙shatter

)1/2 (
𝑅cloud

𝐿box

)−1/6
𝑡cool,cold (5.11)

where, 𝛼 = 0.5 is a fudge factor. The analytic predictions are shown only for subsonic cases, as
cold gas does not survive in the supersonic regime. We find that the analytical growth rates agree
well with the cold gas mass evolution in these simulations.

In simulations that do produce condensation, the cold gas typically grows rapidly and reaches
a quasi-steady state, often dominating the mass budget due to the finite volume and periodic
boundaries of the simulation box. This saturation is likely numerical rather than physical. We
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also see stochasticity in the time of condensation between simulations with similar 𝑡cool,mix/ 𝑡eddy
values, e.g. yellow dashed lines with 𝑡cool,mix/ 𝑡eddy ∼ 0.1. We attribute this to the stochastic
nature of turbulence.

Some simulations exhibit transient condensation, where the cold gas initially grows but then
declines to a much lower, steady level. To differentiate between cases with and without turbulent
condenstation, we adopt a criterion: if the maximum cold gas mass remains below 25% of the
total box mass, we classify it as not sustaining significant condensation. We find that cold gas
clouds can survive in thermally stable turbulence only if the turbulence is subsonic. None of
the supersonic runs without in-situ condensation support the survival of the introduced cold
gas clouds, indicating that cloud longevity in such regimes is tightly linked to the presence of
condensation.

5.4.3 Condensation, survival and destruction of cold gas

Next, we take a look at the parameter scan of simulations with varying Mach numbers (M = 0.1
to 3) and different 𝑡cool,mix/𝑡eddy ratios. The analysis proceeds in two stages, as before: first, we
test for turbulent cold gas condensation during the driving phase; if no condensation is observed,
we introduce a cold cloud to assess its survival. We use the corresponding cold gas mass evolution
of the simulations, similar to Fig. 5.3, and take the average cold gas mass over the final 0.5 𝑡eddy
to ascertain the fate of cold gas in the simulation.

Figure 5.4 summarises the outcomes across this parameter space. Circles indicate whether
condensation occurred during the driving phase, with colours representing the final cold gas mass
normalised to the total box mass. As mentioned in the previous section, we use a threshold of
0.25𝑚tot,box to classify turbulent condensation. For simulations lacking condensation, additional
runs track the fate of an introduced cold cloud. These are marked with crosses, with the colour
denoting the final cold gas mass normalised to the initial cloud mass. The solid pink line
represents the survival threshold from Gronke et al. (2022a), and the blue line represents the our
condensation criterion, Eq. 5.9 from Section. 5.2, with a 𝑘 = 3 and 𝐴 = 10−5 as a free-parameters,
based on whether the cooling time of compressed gas, 𝑡cool,comp, is comparable to 𝑡eddy2. Three
distinct regimes emerge, indicated by shaded regions:

• Blue: Turbulent condensation during the first stage of simulation,

• Green: No turbulent condensation, but the cold clouds survive,

• Red: No turbulent condensation and the cold clouds are destroyed.

As we show in Fig. 5.4, cloud survival without turbulent condensation is limited to subsonic
turbulence.

2We compare this with alternative criteria from previous work in the appendix.
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Figure 5.5: Density-temperature (𝜌/𝜌hot,ini −𝑇) histogram of a supersonic turbulence simulation,
at M = 2.27 and 𝑡cool,mix/ 𝑡eddy = 0.8252, without cold gas condensation. Figures on the top
and right show the distribution of 𝜌/𝜌hot,ini and 𝑇 respectively. The black dashed line shows an
adiabatic curve set to the initial entropy.
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Figure 5.6: Density-temperature (𝜌/𝜌hot,ini − 𝑇) histogram of a subsonic turbulence simulation,
at M = 0.4 and 𝑡cool,mix/ 𝑡eddy = 0.0145, with cold gas condensation. Figures on the top and right
show the distribution of 𝜌/𝜌hot,ini and 𝑇 respectively. The black dotted line shows an isobaric
curve set to the initial pressure.
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5.4.4 Phase plot of the gas
To further understand turbulent condensation, we examine the phase structure of the simulations
during the first stage of turbulent driving with radiative cooling. We focus exclusively on this
phase, as the second stage involving an externally introduced cold cloud has already been explored
in previous studies (Kanjilal et al., 2021). To analyse the phase structure, we calculate the 2D
volume-weighted histograms of the simulation snapshots, showing the distribution of gas cells in
temperature–density space, with the density normalised to the initial hot gas density. Alongside
the 2D histogram, we also present the corresponding 1D histograms of the volume-weighted
density and temperature distributions, on the top and right side.

Figure 5.5 shows the 2D and corresponding 1D histograms of density and temperature for a
turbulent box simulation with supersonic turbulence (M = 2.27) and 𝑡cool,mix/𝑡eddy = 0.8252, a
case with no cold gas condensation. We find that the phase structure broadly follows an adiabatic
relation, shown as the black dashed line in the figure. This supports the assumption of adiabatic
evolution in our derivation of the cold gas condensation criterion in Section. 5.2. We also find a
broad density distribution, consistent with previous studies (Federrath, 2013). The temperature
histogram similarly spans a wide range, roughly following the adiabatic curve.

Next, we examine a case where the turbulent hot gas undergoes cold gas condensation. In Fig. 5.6,
we show the phase diagram for a subsonic turbulent box with Mhot = 0.4 and 𝑡cool,mix/𝑡eddy =

0.0145, where a clear transition from the hot to the cold phase is observed. The resulting density
and temperature distributions are bimodal, characteristic of a multiphase medium. Between the
two stable phases, we observe a trace population of gas cooling from the hot to the cold phase.
This gas approximately follows an isobaric trajectory, deviating only near the cold end where the
cooling becomes increasingly rapid.

5.5 Conclusions and Discussion
• Condensation criterion: The criterion from Mohapatra et al. (2022b), expressed as
𝑡TI,hot/𝑡eddy = 𝑐2 𝑒

𝑐1𝜎𝑠 , where 𝜎𝑠 is the standard deviation of the logarithmic density field
and, [𝑐1, 𝑐2] are empirical constants. 𝑡TI refers to the thermal instability timescale defined
as,

𝑡TI =
𝛾𝑡cool

2 − (𝑑 lnΛ/𝑑 ln𝑇) − 𝛼
where 𝛼 = 1 depends on the details of the heating.

For our simulations, as the (𝑑 lnΛ/𝑑 ln𝑇) |𝑇=𝑇hot ≈ 6, the hot phase is linearly stable to
thermal instability. Hence, according to the criterion from Mohapatra et al. (2022b), the
hot phase should be indefinitely stable, which we do not find in our simulations. While this
discrepancy can stem from differing definitions of condensation and variations in simulation
setup, in contrast, our criterion shows good agreement with the simulation outcomes.

A more detailed comparison between condensation criteria would benefit from a controlled
suite of simulations with standardised setups, which we defer to future work.
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• Onset of cold gas condensation: While the onset of cold gas condensation has a
dependence on 𝑡cool/𝑡eddy, we see that there is also some stochastic variation among
simulations with similar 𝑡cool/𝑡eddy. This variation is likely due to the stochastic nature
of turbulence.

• Cold gas creation, survival and destruction: We find three different regimes of cold gas
behaviour. One with turbulent cold gas condensations, two others where the hot phase is
stable and does not condense. In the latter two regimes, we see one where the cold cloud
survives upon introduction, and one where it is destroyed. The regime of particular interest
is the one where the hot phase is stable to turbulent condensation but lets the cloud grow if
introduced externally.

This implies the existence of regions of ISM, where cold gas can only appear if a seed cold
gas was embedded by an external source.

• Caveats ISM is home to rich physics with many different processes contributing to the
overall behaviour of the multiphase gas. In this study, we only account for a handful of
them. Some of the missing components are viscosity, thermal conduction, magnetic fields,
partial ionisation, etc. Inclusion of these processes can be important, and will be revisited
in a future study.
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To see a world in a grain of sand
And a heaven in a wild flower,
Hold infinity in the palm of our hand
And eternity in an hour.

— William Blake, Auguries of Innocence

Gravity do be a cruel mistress.

— Aniket Bhagwat

6.1 Creation of multiphase gas
The first step in the evolution of multiphase gas is its creation. One of the possible origins for
multiphase gas is the in-situ formation from hot gas due to thermal instability. The theory of the
linear evolution of thermal instability has been an active field of research since the 1950s (Field,
1965; Parker, 1953), with more and more physics getting included. At the same time, significant
interest has arisen in non-linear evolution, too.

We expect the hot plasma to be highly turbulent due to its very high Reynolds number. As
mentioned in Chapter 5, we investigat how supersonic turbulent fluctuations can seed thermal
instability, lead to the creation of a multiphase ISM and mix the phases in such a multiphase ISM.

6.2 Survival of multiphase gas
In recent years, a lot of development has occurred in establishing a firm theory of multiphase
gas (McCourt et al., 2018; Gronke & Peng Oh, 2018; Sharma et al., 2010; Butsky et al., 2020; Ji
et al., 2019; Fielding et al., 2023b; Gronke et al., 2022b). Also, thanks to analogies to the field
of turbulent combustion, these efforts led to a solid understanding of the mixing and transport
of the different phases (Tan et al., 2021). This is crucial for implementing small-scale physics
in larger-scale simulations and for interpreting observed data. However, all these efforts might
be for nothing because of the neglect of magnetic fields. We not only know that magnetic fields
exist in astrophysical plasmas, but also that magnetic fields inhibit the mixing of phases. This
can affect a big chunk of the theory developed to date for the existence and survival of multiphase
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gas, and resolving this tension has been a big puzzle.

To tackle this puzzle, in Chapter 3, we investigated the interplay of magnetic fields, turbulence,
and radiative cooling in Das & Gronke (2024b). we show that just the presence of a magnetic
field does not inherently affect the mixing or growth of cold gas. Rather, the extent of turbulence
in the medium dictates the evolution in a multiphase medium. We confirm this new picture
of the turbulent mixing of multiphase gas using the turbulent radiative mixing layer (TRML)
simulations. Since then, these results have been confirmed in other studies with varying simulation
setups (Hidalgo-Pineda et al., 2024; Zhao & Bai, 2023b). We also show that even though magnetic
fields do not affect cold gas mass or volume distribution, they result in significantly more elongated
cold gas structures. Using these simulations, we test for observable differences with or without
magnetic fields with synthetic absorption spectra for MgII and CIV and find a good agreement
with observed MgII absorption spectra statistics from HST-COS observations (Churchill et al.,
2020), regardless of the presence or absence of magnetic fields.

In summary, our study in Chapter 3 explains the puzzling fact that magnetic fields present in
(turbulent) astrophysical media do not alter the mixing processes between the phases and thus
puts the prior theory of small-scale gas dynamics on a solid foundation.

6.3 Bridging the large and small scales
Large-scale simulations have been a potent tool to compare our theoretical understanding and
observations. But often, deviations from observation start to appear when looked at closely.
Current large-scale simulations manage to reach, at best, a resolution of a few tens of parsecs
in the CGM (Hopkins et al., 2018; Grand et al., 2017; Pillepich et al., 2019; Ramesh & Nelson,
2024b). On the other hand, many small-scale studies have shown that we need to resolve scales
at least as small as 10−2pc, if not smaller, to capture the small-scale structure accurately (Gronke
& Oh, 2020b; Das et al., 2021b; McCourt et al., 2018; Gronke & Oh, 2020a; Das & Gronke,
2024b). Achieving such resolutions in large-scale simulations by brute computational power is
infeasible. Hence, there is a need to bridge this gap in scales between the large and small scales,
and subgrid models are one way to do so.

Using the recently developed novel AREPO Multifluid Framework (Weinberger & Hernquist,
2023b), as shown in Chapter. 4 we developed a new subgrid model that consistently accounts for
the evolution of cold gas, both smaller and bigger than grid cells (Das et al. (2024)). The model
consists of source and sink terms for mass, momentum, and energy, quantifying the interactions
between the cold and hot gas phases. As these are based on first principles or small-scale
simulations based on first principles, the subgrid model does not require any free parameters to
capture the unresolved cold gas dynamics. The model was rigorously tested and verified using
the resolved small-scale simulations. For this testing and verification, we perform a large grid
of over 200 simulations on various HPC systems. We show that the model accurately predicts
cold gas growth, survival, and destruction, regardless of the resolution, extent of turbulence, and
across the whole parameter space. Even though the model only uses the local properties, without
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Figure 6.1: The cooling function Λ(𝑇) (solid line, left axis), and the cooling time 𝑡cool (dashed,
right axis) of a particular cloud crushing setup with floor temperature 𝑇floor = 800K and hot gas
density 𝜌hot = 0.1 mp/cm3. The local peak 𝑡cool,peak and minimum 𝑡cool,min of the cooling time are
labelled. The three shaded regions mark the temperature range for the cold 𝑇cloud < 𝑇 < 2×𝑇cloud
(blue), warm 2 × 𝑇cloud < 𝑇 < 𝑇mix (green), and hot gas temperatures 𝑇mix < 𝑇 < 𝑇ceil (red) used
in this study. These correspond to the temperature distribution of a simulation snapshot shown
on top of the figure, where the three stable phases are clearly separated.

any tuning of free parameters, we find that cold gas destruction rates, growth rates, and survival
criteria of cold clouds are produced as an emergent behaviour with the subgrid model.

As the model also requires the local turbulent velocity, we develop a novel analytic method
to estimate local turbulent velocity which re-uses the velocity gradients calculated for the flux
calculations. We verify that this method accurately captures the local turbulent velocity and
allows the implementation of this subgrid model to more general large-scale simulations. To
showcase the advantages of this model, we simulate ∼ 100 tiny "unresolved" cold clouds with
just 643 resolution elements, which would have required 50003 without the subgrid model.

This effort now paves the way for fully converged, large-scale, cosmological simulations.

6.4 Other works: 3-phase turbulent medium
Until now, studies of multiphase mixing and cold/warm gas survival, relevant to CGM and ICM,
have been mostly limited to the investigation of 2-phase media. The justification behind this
assumption is the presence of a UV background which inhibits the cooling below 104K. But, the
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self-shielding in a dense 104K gas cloud can shield against the UV background heating and allow
the core of such clouds to cool to lower temperatures (< 104K). This makes 3-phase medium a
possibility with cold phase ( 800K), warm phase ( 8000K) and hot phase (≳ 4× 106K) in a CGM
environment.

To study such a 3-phase turbulent medium, in this study, we use a simulation setup similar to
that in Chapter 3. We lower the floor temperature to 800K to allow for the formation of cold gas
(800K), in addition to the warm phase (8000K).

Fig. 6.1 shows the cooling function (Λ(𝑇)) from Wiersma et al. (2009) and Koyama & Inutsuka
(2002) on the left y-axis as the solid line and an example of cooling timescale (𝑡cool) on the right
y-axis as the dashed line, between 800K and 108K. We assume isobaricity and a hot gas density
of 𝜌hot = 0.1 mp/cm3 at 𝑇hot = 4 × 106K. The temperature range is split into three regimes,
corresponding to the three phases of gas. We define cold gas phase as gas with temperature in
[𝑇cloud, 2 × 𝑇cloud], shown in blue, warm gas phase with temperature in [2 × 𝑇cloud, 𝑇mix], shown
in green, and hot gas phase with temperature above 𝑇mix, shown in red. Here, 𝑇mix refers to
the geometric mean of the cold and hot gas temperature, i.e.

√
𝑇cold𝑇hot (Begelman & Fabian,

1990a). The top panel of Fig. 6.1 shows the number distribution of the temperature distribution
at an intermediate snapshot from one of our simulations. It clearly shows the three peaks
corresponding to the three stable gas phases. We also annotate two physically relevant cooling
times, namely the local cooling time peak for warm gas phase (𝑡cool,peak) and the minimum cooling
timescale (𝑡cool,min).

Next, we look at the temperature distributions of different gas phases. We plot the temperature
slices of the four different behaviours corresponding to the four cases of survival-destruction, to
better understand the physical distribution of cold gas. Figure 6.2 shows the morphology of cold
gas and warm gas in the four clouds with different initial radii at different stages of evolution.
The cold phase is shown in blue, and the warm phase in pink.

As the initial size of the cloud increases from left to right panels, there is more cold gas formation.
However, the warm gas is almost always limited to the interface between the cold and hot. For
any clump of cold gas, it is always covered by a thin envelope of warm gas. This is consistent with
recent conclusions of Blackburn & Farber (2024), who also see “intermediate mixing layers"
in their simulations. The presence of the intermediate warm gas layer decreases the mixing

timescale of cold gas due to the temperature dependence 𝑡cc =
𝜒

1/2
cl 𝑅cl
𝑣turb

, where 𝜒wc =
𝑇warm
𝑇cold

. This
timescale is mediated by the newly formed warm layer, which is faster than otherwise with direct
interaction between hot and cold, due to the decreased 𝜒wc < 𝜒hw < 𝜒hc.

This work will be important for extending our 2-phase subgrid model, from Chapter 4, to a more
general framework.
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Figure 6.2: Temperature slices of four 800K boxes, initialized with clouds of different initial
radii (from 𝑅cl ∼ 20𝑙shatter to ∼ 2 × 108𝑙shatter) and temperature ratio 𝜒 ≈ 5000 in the turbulent
medium with M = 0.4 and box 50 times the cloud size, again representing the four cases of
survival-destruction. The slices are taken at snapshots which best demonstrate the evolution of
cold gas, with corresponding 𝑡cc values shown on the bottom. The diverging colorbar is drawn
in a way that shows the different phases of gas. Going left to right, we see an overall growth of
cold medium with the increasing cloud size. Regardless of this, the cold cloud (blue) is always
enveloped in layers of warm gas (red), separated from the surrounding hot medium (black).

6.5 Future directions

In recent years, observations have expanded their horizons to a wider range of redshifts, higher
spectral and spatial resolutions, and wider surveys, resulting in many new and unexpected
discoveries. Given ongoing and future surveys by HST/COS, JWST, VLT, ELT, Gemini, Keck,
LSST, TMT, and GMT, this pace of discovery can only accelerate - which is one of the reasons
why this topic of ‘Cosmic Ecosystems’ was selected by the US National Academies in their
Astro2020 decadal survey as one out of only three “Key Scientific Challenges for the Next
Decade” highlighting its importance for the field. While the observational side of this field is
making huge strides, our theoretical models are challenged by the multiphase and multiscale
nature of astrophysical gas and, as a result, cannot even reproduce basic observed properties such
as the amount of cold gas, let alone make robust predictions. For this reason, there are three
directions in which the work of this thesis can be taken forward:

1. pushing the boundaries of theoretical understanding of small-scale physics by including
the missing components,

2. developing numerical methods, like subgrid models, to model these small-scale effects and
run the next generation of large-scale simulations using them,

3. creating the tools for improved observational predictions from the new generation of
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simulations.

6.5.1 A more complete picture of Multiphase gas dynamics
The range of scales for astrophysically relevant processes is vast. From the AU-scale gyro-radius
of cosmic ray particles to the Mpc-scale gas flow in the circumgalactic medium (CGM), this
makes capturing all the relevant physics in a single simulation computationally infeasible. This
has led to efforts towards understanding smaller-scale idealised simulations that include a subset
of relevant physics, in an attempt to understand the complex behaviour of astrophysical media.
The interaction between different physical processes further complicates this problem. Almost
all astrophysical media are highly multiphase, with hot gas, cold gas, molecular gas, and dust.
For a long time, the complex interactions between these phases and the computational cost of
simulating all the relevant physics had been a bottleneck in studying such multiphase gas. Only
in recent years, with better computational resources and advances in the understanding of simpler
systems, has it finally become feasible to do a complete and exhaustive investigation with all the
different relevant pieces included.

This work can be further extended to study the interplay between all the stable phases of a
turbulent astrophysical media, namely: Hot gas (> 106K), cold gas (∼ 104K), molecular gas
(< 104K), and dust. This means the simulation will have a vast range in temperatures, from 107K
to 10K, and this will be the first time any small-scale resolved simulation has captured such a vast
range in temperatures.

Figure 6.3: The three boxes represent different aspects of multiphase gas dynamics, and the
shaded boxes are the currently explored areas. It shows the chain of rich physics needed for better
understanding and observational predictions of multiphase gas.

As the gas properties can be very different across this wide range of temperatures, the relevant
physical processes also change dramatically depending on the temperature. Three such processes
that used to be neglected in a subrange of temperatures but have to be included for this setup
are: radiative transfer, non-equilibrium cooling, and magnetic fields. These three processes can
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interact in complex ways that can only be properly studied in a small-scale simulation where the
required resolution conditions can be satisfied.

6.5.2 Subgrid models and Next-generation large-scale simulations
As mentioned in the previous section, the small-scale effects, as the name suggests, operate at
very short length and time scales. Many of the previous studies reaffirm the necessity to resolve
scales that are, at the very least, significantly sub-parsec in scale. This multiphase, multiscale
nature makes the extended media like CGM and ICM extremely challenging to model, and thus
far, all prior simulations are not converged in even the first-order gas properties such as the
amount of cold gas, let alone quantities that can directly be compared to observations, such as
the gas covering fractions. This is where subgrid models take centre stage. A subgrid model
takes into account a small-scale phenomenon occurring at scales smaller than those resolved in
a simulation and ensures that the large-scale behaviour is as if those subgrid scales are resolved.
One well-known example is the attempt towards a subgrid model of turbulence, to account for
the turbulent cascade to scales smaller than the resolved scales of a simulation.

The next generation of large-scale simulations will need to include such subgrid models to
accurately capture the small-scale physics of multiphase gas, which is almost entirely missing in
the current simulations. The other potential development can be towards filling this gap with an
extension to the current work onthe 2-phase MOGLI subgrid model, from Chapter 4.

Our ongoing work into 3-phase gas (hot, cold, and molecular gas) behavior from Sec. 6.4 (Wu,
Z., Das, H. K. & Gronke (2025)[in prep.]) and in-situ formation of multiphase gas from hot gas
(Das et al. (2021b), Das & Gronke (2025) [in prep.]) can provide the required theoretical backing
for the development of a 3-phase subgrid model.

6.5.3 Towards better observational predictions
Apart from acting as a laboratory for controlled experiments and helping us better understand
the relevant physics, simulations also serve as a predictive tool to make sense of the observations
and test our theoretical understanding. Current simulations cannot predict baryonic observations
such as quasar absorption features, because they lack the resolution or methods needed to capture
the baryonic physics. So, it is imperative to test the next generation of large-scale simulations
rigorously. Hence, another possible avenue for further work can be the test of the predictive
ability of large-scale simulations, with subgrid models, to reproduce the recent abundance of
absorption and emission observations from both space and ground-based observatories.

We can develop methods to create synthetic quasar line-of-sight (QSO) absorption observations
and extended dust emissions from such large-scale simulations, which consistently track the
small-scale multiphase structure with subgrid models. As these converged simulations capture the
small-scale gas behaviour and structures, such mock observations will allow an apples-to-apples
comparison with the observations at greater fidelity and farther into the extended CGM and ICM
(Péroux & Howk, 2020). In the future, these datasets can be further extended to include other
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emission features observed in and around galaxies (Green et al., 2014; Reichardt Chu et al., 2022).
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equilibrium curve, where the cooling and heating are balanced. The red and blue
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1.3 Schematic representation of the Baryon cycle of a galaxy. The background
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2.1 Diagram shows the evolution of turbulent power spectrum for kinetic energy and
magnetic energy. Replicated from Schekochihin et al. (2001). The series of
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3.1 Temperature slices for different TRML simulations for 𝑣shear = 100 km s−1 (M ≈
0.3). First column shows the hydrodynamic simulations, 2ndto 4th column show
simulations with MA = 10, last three columns show simulations with MA = 1.
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3.3 Top & middle Stability criterion of Kelvin-Helmholtz instability for different
initial magnetic field orientations (cf. Eq. (3.8)), Bottom Density profile for the
different cases shown above. This shows the difference in the stability of the
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3.4 Left columnMA = 1, Right columnMA = 10, Top row Stable values of mixing
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two panels from the left show the difference between the direction parallel to
magnetic fields versus the other directions. The third panel shows the outlier case
of magnetic fields normal to the interface, where both the normal (𝑧) and shear
direction show much higher fluctuations due to the presence of magnetic fields
along both these directions. Hence, we choose the directions which free from
these spurious fluctuations in these different cases, as denoted in Eq 3.13 . . . . . 25
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3.6 Top panel Scatter plot of the surface brightness (𝑄) and turbulent velocity (𝑢′)
calculated from the simulations. The dashed and dotted lines show the respective
strong and weak cooling scaling relation according to Eq. 3.9-3.10. Bottom
panel Similar to the top panel, after we remove the D̃a dependence. The dotted
line shows the analytical expectation from Tan et al. (2021), which they find
for hydrodynamic simulations. This suggests that the general relation found in
hydrodynamic TRML simulations, between the turbulent velocity in the mixing
layer and cooling (and hence mixing) rate, is still valid in the presence of magnetic
fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 Left column Density rendering at 2.6𝑡eddy after the cold gas cloud of size
310𝑙shatter is introduced in a turbulent box with rms velocity of Mach 0.5, 2nd-4th

column Density projections of the same simulation, at 1.3, 2.0 and 2.6𝑡eddy
after the cold gas cloud is added. The top row panels are from the simulations
with magnetic fields, and the bottom row panels are from the simulation without
magnetic fields. These show the clear differences between the morphology of cold
gas of gas with and without magnetic fields, while also showing the similarities
in the overall evolution of the cold gas. . . . . . . . . . . . . . . . . . . . . . . . 29

3.8 Survival or destruction of the cold gas in the different turbulent boxes. The dashed
line is the survival criterion from Gronke et al. (2022a). This shows the surprising
lack of difference between the survival criterion, with and without magnetic fields.
The subsonic turbulent simulations agree well with the previously found survival
criterion, with some deviation in trans-sonic turbulent boxes (c.f. § 3.3). . . . . . 32

3.9 Cold gas evolution with time for different simulations initiated with varying sizes
of cold gas cloud in turbulence with M = 0.5. Solid lines show the simulations
with magnetic fields, dashed lines show the hydrodynamic simulations and the
dotted lines show the expected hydrodynamic growth rates from Gronke et al.
(2022a). This shows that there are only marginal differences between the growth
and destruction rates of the cases with and without magnetic fields, compared to
the differences seen in the TRML simulations. The differences further diminish
as we consider cases well within the survival regime. . . . . . . . . . . . . . . . 33

3.10 Cumulative number distribution for HD-MHD simulation pair with M = 0.5 and
𝑅cloud = 310𝑙shatter. This shows the marginal difference in the overall distribution
of clump sizes, and also that the distribution matches the distribution of ∝ 𝑉−1,
found in previous studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 Histogram of longest shortest distance in the neighbourhood graph of every clump
in a snapshot from the turbulent box at Mturb = 0.5, with and without magnetic
fields. This figure gives a lower limit on the difference in the filamentariness of
the cold gas clumps in the two cases. We find at cold gas clumps can get more
filamentary in the presence of magnetic fields, by about a factor of 2. . . . . . . . 37
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3.12 Velocity structure function (VSF) for hot (green line) and cold (blue line) gas
phases in a set of simulations with (MHD) and without (HD) magnetic fields,
at M = 0.5 and 𝑅cl = 310𝑙shatter. The dashed and solid lines show the VSF at
different times, 𝑡 = 1.32𝑡eddy and 3.95𝑡eddy after introducing the cold gas cloud.
This shows the decreasing difference in VSF of the two phases with time, in both
cases, which means that the two phases are kinematically well-connected. We
also find a smaller early-time difference between the hot and cold gas VSF for the
MHD simulation, indicating a better kinematic connection in that case. . . . . . . 38

3.13 Evolution of average shear at clump boundaries in a set of HD and MHD
simulations with M = 0.5 and 𝑅cl = 310𝑙shatter (same as Fig. 3.12). The shaded
regions show the corresponding 15-85%ile intervals. The figure also shows the
shear on the clump boundaries is about an order of magnitude lower than the
turbulence velocity in the simulations. Also, on average, clumps in the MHD
simulation seem to have a marginally lower, but very similar shear, in comparison
to HD simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.14 Histogram of magnetic field strength in gas within different temperature ranges,
namely hot (𝑇 > 2 × 106 K), mixed (8 × 104 K < 𝑇 < 2 × 106 K), and cold
(𝑇 < 8 × 104 K) gas, for two simulations where the cloud gas cloud survives,
𝑡 = 3.92𝑡eddy after its introduction. Left M = 0.5, 𝑅cl = 310𝑙shatter. Right M =

0.25, 𝑅cl = 77𝑙shatter. The dashed vertical line corresponds to the equipartition
magnetic field strength, achieved in the hot ambient gas at the end of driving the
turbulence. This shows that the magnetic fields are significantly amplified as the
gas cools down to a lower temperature. We discuss the possible causes of this
amplification in § 3.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.15 Top Average, median and 10average of logarithm of entanglement, i.e. 𝑙stream/𝑙 for
different streamline lengths (𝑙stream). The dashed lines show the corresponding
best linear fits and the shaded region shows the 15-85%ile interval. The general
trend of increasing entanglement for longer and longer streamline lengths indicate
a fractal-like structure of the magnetic field lines, discussed further in § 3.4.2.
Bottom inset Points denote the mean and variance of log10 (𝑙stream/𝑙) and the
green dashed line shows the linear fit, 𝑉 = 0.24(𝜇 − 0.03). We use this relation
to calculate the shown probability distribution. Bottom Solid lines show the
probability distributions of different values of entanglement, log10 (𝑙stream/𝑙), for
three values of streamline lengths. The dashed lines show the corresponding
calculated Γ distributions, with the parameters mentioned in the legend. This
shows the close agreement between the estimated and calculated probability
distributions. There are some deviations for the probability distribution of small
streamline length, which is discussed further in § 3.3.4. . . . . . . . . . . . . . . 43
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3.16 Column density distribution of cold (𝑇 < 105 K, left panel) and intermediate
(105 K < 𝑇 < 106 K, right panel) temperature gas in HD (in green) and MHD
(in blue) simulations, with M = 0.5 and 𝑅cl = 310𝑙shatter. This shows that
the column densities for the above cases are within the observationally expected
column densities for absorption spectra in a circumgalactic environment. It also
shows that the lower end of column density distribution for cold temperature gas
has a higher extent of difference between the HD and MHD simulations. This
makes an absorption line tracing the cold gas a prime candidate for looking at
observational differences between the HD and MHD simulations. . . . . . . . . . 48

3.17 An example line-of-sight MgII 2796 Å absorption mock spectra withΔ𝜆 = 0.01Å,
from the HD (blue solid line) and MHD (green dashed line) simulations with
M = 0.5 and 𝑅cl = 310𝑙shatter (same as Fig. 3.16). The dotted black line shows
the threshold of the minimum absorbed flux of a feature, and the red circles show
the features that we consider for analysis. This figure is only for reference, as
these are higher resolution spectra compared to the ones used in the analysis at
Δ𝜆 = 0.1Å, which is closer to observational spectral resolution. . . . . . . . . . . 49

3.18 Contour plot of the 2D histogram of line-of-sight MgII absorption mock spectra
in the number of absorption features vs. equivalent width space, for HD (solid
contours) and MHD (dashed contours) simulations with M = 0.5 and 𝑅cl =

310𝑙shatter (same as Fig. 3.16 and 3.17). The dash-dotted green line shows the
relation found in Churchill et al. (2020). This shows that there are only marginal
differences in the overall distributions of HD and MHD simulations, despite the
differences in Fig. 3.16. We also find that they agree quite well with the observed
relations from Churchill et al. (2020). . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 A schematic diagram showing the underlying picture of the multifluid method and
the MOGLI model. The simulation domain on the right shows an example grid
with different cold gas structures in blue, and marked volume-filling fractions
(𝛼). The zoomed-in view in the middle shows the model’s assumption of the
underlying cold gas structure, as numerous spheres. Zooming in further, the left
panel shows the different interactions in the MOGLI model, along with other
contributing variables, like the local turbulent velocity (𝑣turb,local). . . . . . . . . 60

4.2 Initial cold fluid volume fraction slices for MOGLI simulations with resolved and
unresolved cold gas clouds. The left panel shows an example of a resolved cold
gas cloud with 643 cells and 𝐿box/𝑅cloud = 8, where the cloud is bigger than the
grid cells and grid cells inside the volume of the cloud have an 𝛼′ = 1 − 𝛼floor.
On the other hand, the right panel shows the initial cold fluid volume fraction
for MOGLI simulation with an unresolved cold gas cloud, with 83 cells and
𝐿box/𝑅cloud = 32. As the cold gas cloud is unresolved, the volume fraction in the
cell is set to 𝛼floor +𝑉cloud/𝑉cell, where𝑉cloud and𝑉cloud are the cloud and grid cell
volumes. In both cases, the cells without any cold gas have a volume fraction,
𝛼′ = 𝛼floor = 10−8. The dashed circles show the corresponding cold gas cloud
size in the simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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4.3 Top panel shows a slice of 𝑣turb,grad from a simulation with a turbulent Mach
number,Mturb,box = 0.5 at the box scale. It shows how the velocity gradient-based
estimation (grad) can capture the spatial variation in the local velocity dispersion,
in other words, the local turbulent velocity. Bottom panel shows, in solid lines,
the distribution of the local turbulent velocity, at the scales of average cell size
instead of local cell size, in the same snapshot as the top panel. We find that while
the mass-weighted mean of from grad method, shown as the dashed green line,
agrees with the estimate from kol, shown as the solid blue line. The pink dotted
line shows the expected Maxwell-Boltzmann distribution with the same mean
as the mass-weighted mean from kol method. Even though the mean turbulent
velocity from the two simulations are very similar, the distribution of velocities
is drastically different, with the kol method leading to a fixed value for a fixed
length scale, and the grad method matching the expected Maxwell-Boltzmann
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 The comparison between the directly calculated velocity dispersion (𝑣turb,direct)
and the approximated local velocity dispersions using both estimation methods.
The top panel shows the comparison with the velocity gradient-based method
(grad) and the bottom panel show the comparison with the Kolmogorov spectrum-based
method (kol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Variation of 𝐴𝑅/(2𝑉box) with volume fraction (𝛼) in a 3D box. The colour of the
points shows the size of the individual spheres, relative to the box size and the
orange lines correspond to the approximate fit for the points, i.e. 𝛼ℎ(𝛼) (Eq. (4.30)). 72

4.6 Variation of 𝐴/𝐴box with volume fraction (𝛼) in a 3D box. The colour of the
points shows the size of the individual spheres, relative to the box size and the
orange lines correspond to the approximate fit for the points (Eq. (4.33)). . . . . . 74

4.7 Cold gas evolution in non-radiative MOGLI runs with time, normalised to the
initial cloud-crushing time (𝑡cc = 𝜒1/2𝑅cloud/𝑣turb), with Mturb = 0.5. The solid
lines show the cold gas evolution, as the total mass of the cold fluid, with the colour
of the line denoting the initial 𝑅cloud/𝑑𝑥. The dot-dashed and dashed lines show
the cold gas evolution in the benchmark Athena++ simulations, with resolutions
1923 and 3843 respectively. Top panel shows the evolution for simulations with
unresolved initial cloud 𝐿box/𝑅cloud = 32 and bottom panel shows the same
for resolved initial cloud 𝐿box/𝑅cloud = 8. This shows that the cloud destruction
timescales in MOGLI are in agreement with the timescales in benchmark Athena++. 76

4.8 Scatter plot of the half mass time (𝑡half) normalised to the initial cloud-crushing
timescale (𝑡cc = 𝜒𝑅cloud/𝑣turb), for different turbulent Mach numbers. Athena++
simulations with different resolutions (1923, 3843, and 7683, represented by
the colour of the point) and turbulence random seeds to capture the inherent
stochasticity of cold gas destruction in a turbulent medium. . . . . . . . . . . . . 78
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4.9 Projected 𝛼𝜌cold/𝜌hot,ini, i.e.
∫

los 𝛼(𝜌cold/𝜌hot,ini)𝑑𝑧/𝐿box, plots at different times
for MOGLI runs with M = 0.5 different 𝑡cool,cold/𝑡cc values. Two columns on the
left show the evolution of an unresolved (𝐿box/𝑅cloud = 32) initial cloud and two
columns on the right show the evolution of a resolved initial (𝐿box/𝑅cloud = 8)
cold cloud for destruction and survival regimes. We find that the clouds with
short cooling timescales, i.e. 𝑡cool,cold = 10−4𝑡cc survive and grow, while clouds
with long cooling timescales, i.e. 𝑡cool,cold = {10, 10−2}𝑡cc end up losing cold gas
and get destroyed, as expected from the results of previous studies (Gronke et al.,
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4.10 Early-time hot fluid mass flux ( ¤𝑚hot) slices, normalised with ratio of total hot
fluid mass and eddy-turnover time (𝑚hot,box/𝑡eddy), for MOGLI simulations with
resolved and unresolved cold gas clouds, at M = 0.5. The left panel shows an
example of a resolved cold gas cloud with 643 cells and 𝐿box/𝑅cloud = 8, where
the cloud is bigger than the grid cells and grid cells inside the volume of the
cloud have an 𝛼 = 1 − 𝛼floor. On the other hand, the right panel shows the
slice for MOGLI simulation with an unresolved cold gas cloud, with 83 cells and
𝐿box/𝑅cloud = 32. This shows how the model is able to distinguish between the
interior and exterior of the resolved cloud and the mass exchange only occurs at
the interface around the cloud. The dashed circles show the corresponding initial
cold gas cloud size in the simulations. . . . . . . . . . . . . . . . . . . . . . . . 80

4.11 Cold gas evolution in MOGLI runs with time, normalised to the initial cloud-crushing
time (𝑡cc), with Mturb = 0.5. The two groups of solid and dashed curves
correspond to 𝑡cool,cold/𝑡cc = {10−4, 10}. These lines show the cold gas evolution,
as the total mass of the cold fluid, with the colour of the line denoting the initial
𝑅cloud/𝑑𝑥. Top panel shows the evolution for simulations with unresolved initial
cloud 𝐿box/𝑅cloud = 32 and bottom panel shows the same for resolved initial
cloud 𝐿box/𝑅cloud = 8. The black dashed line shows the expected exponential
growth of the simulations which grow, with the growth time (𝑡grow) calculated
using Eq. (5.11). The purple dot-dashed and dashed lines show the cold gas
evolution from analogous Athena++ benchmark runs, with 1923 and 3843 cells,
respectively. We find a good agreement between the analytically expected growth
rates and MOGLI runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.12 Scatter plot of the ratio of the 𝑡grow from the simulations and the analytical
𝑡grow,theory (Eq. (5.11)), across different turbulent Mach number (M). Crosses
show the values from the MOGLI runs, with the colours denoting their "Resolvedness"
(𝑅/𝑑𝑥), while the black circles show the values from benchmark Athena++. The
set of points for benchmark Athena++ include values calculated from simulations
from Gronke et al. (2022b); Das & Gronke (2024b). We also show the means
as dashed lines and 2𝜎 intervals as shaded regions of the benchmark Athena++
and MOGLI runs. The comparison shows only a marginal difference between
the benchmark Athena++ and MOGLI runs in the means with significant overlap
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4.13 Scatter plot of survival or destruction of cold gas in the MOGLI runs, in a
parameter space of 𝑡cool,mix/𝑡cc and turbulent Mach number, M, where 𝑡cool,mix
(c.f. Eq. (4.35)). The circles show the points from resolved (𝑅/𝑑𝑥 > 1) MOGLI
simulations, while crosses denote the unresolved (𝑅/𝑑𝑥 < 1) simulations. The
colour of the points denotes the ratio of total final cold fluid mass, averaged over
the last 10 snapshots, normalised to the initial value. The black dashed line shows
the survival criterion from Gronke et al. (2022b), and we find that MOGLI can
reproduce this survival criterion as an emergent behaviour. Note that the points
are randomly shifted vertically by a factor of 1.5 for clarity. . . . . . . . . . . . . 88

4.14 Evolution of the cold gas spatial dispersion, normalised to its initial value, in the
benchmark Athena++, as dashed lines, and MOGLI runs, as solid lines, with
time normalised with turbulent eddy turnover time. The colour of dashed lines
shows the resolution of the Athena++ simulations, while the colour of the solid
lines shows the “resolvedness” of the initial cold cloud in the MOGLI runs, i.e.
𝑅/𝑑𝑥. Left panel shows the evolution of MOGLI runs with resolved initial clouds
at 𝐿box/𝑅cloud = 8, and the corresponding Athena++ runs. Right panel shows
the same but for MOGLI runs with unresolved initial cloud at 𝐿box/𝑅cloud = 32,
and the Athena++ runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.15 Same as Fig. 4.8 but with the gradient-based local turbulence estimation. Scatter
plot of the half mass time (𝑡half) normalised to the initial cloud-crushing timescale
(𝑡cc = 𝜒𝑅cloud/𝑣turb), for different turbulent Mach numbers. Athena++ simulations
with different resolutions (1923, 3843, and 7683, represented by the colour of the
point) and turbulence random seeds to capture the inherent stochasticity of cold
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4.16 Same as Fig. 4.11 but with the gradient-based local turbulence estimation. Cold
gas evolution in MOGLI runs with time, normalised to the initial cloud-crushing
time (𝑡cc), with Mturb = 0.5. The two groups of solid and dashed curves
correspond to two different values of 𝑡cool,cold/𝑡cc = {10−4, 10}. The solid lines
show the cold gas evolution, as the total mass of the cold fluid, with the colour
of the line denoting the initial 𝑅cloud/𝑑𝑥. Top panel shows the evolution for
simulations with unresolved initial cloud 𝐿box/𝑅cloud = 32 and bottom panel
shows the same for resolved initial cloud 𝐿box/𝑅cloud = 8. The black dashed
line shows the expected exponential growth of the simulations which grow, with
the growth time (𝑡grow) calculated using Eq. (5.11). The purple dot-dashed and
dashed lines show the cold gas evolution from analogous Athena++ benchmark
runs, with 1923 and 3843 cells, respectively. We find a good agreement between
the analytically expected growth rates and MOGLI runs. . . . . . . . . . . . . . 91
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4.17 Same as Fig. 4.12 but with the gradient-based turbulence estimation. Scatter
plot of the ratio of the 𝑡grow from the simulations and the analytical 𝑡grow,theory
(Eq. 5.11), across different turbulent Mach number (M). Crosses show the values
from the MOGLI runs, with the colours denoting their "Resolvedness" (𝑅/𝑑𝑥),
while the black circles show the values from benchmark Athena++. The set
of points for benchmark Athena++ include values calculated from simulations
from Gronke et al. (2022b); Das & Gronke (2024b). We also show the means
as dashed lines and 2𝜎 intervals as shaded regions of the benchmark Athena++
and MOGLI runs. The comparison shows only a marginal difference between
the benchmark Athena++ and MOGLI runs in the means with significant overlap
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4.18 Same as Fig. 4.13 but with the gradient-based turbulence estimation. Scatter plot
of survival or destruction of cold gas in the MOGLI runs, in a parameter space of
𝑡cool,mix/𝑡cc and turbulent Mach number, M, where 𝑡cool,mix (c.f. Eq. (4.35)). The
circles show the points from resolved (𝑅/𝑑𝑥 > 1) MOGLI simulations, while
crosses denote the unresolved (𝑅/𝑑𝑥 < 1) simulations. The colour of the points
denotes the ratio of total final cold fluid mass, averaged over the last 10 snapshots,
normalised to the initial value. The black dashed line shows the survival criterion
from Gronke et al. (2022b), and we find that MOGLI can reproduce this survival
criterion as an emergent behaviour. Note that the points are randomly shifted
vertically by a factor of 1.5 for clarity. . . . . . . . . . . . . . . . . . . . . . . . 95

4.19 Same as Fig. 4.14 but with gradient-based turbulence estimation. Evolution of the
cold gas dispersion, normalised to its initial value, in the benchmark Athena++,
as dashed lines, and MOGLI runs, as solid lines, with time normalised with
turbulent eddy turnover time. The colour of dashed lines shows the resolution
of the Athena++ simulations, while the colour of the solid lines shows the
“resolvedness” of the initial cold cloud in the MOGLI runs, i.e. 𝑅/𝑑𝑥. Top panel
shows the same but for MOGLI runs with unresolved initial cloud at 𝐿box/𝑅cloud =

32, and the Athena++ runs. Bottom panel shows the evolution of MOGLI runs
with resolved initial clouds at 𝐿box/𝑅cloud = 8, and the corresponding Athena++
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is the box size, and 𝑡cool/𝑡cc = 5 × 10−4. The unresolved clouds grow and
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5.1 The cooling function (Λ(𝑇)) and cooling time (𝑡cool) for different temperatures
and 𝜌hot = 1. The blue curve shows Λ(𝑇) and the black curve shows the 𝑡cool.
The red regions mark the temperature region of the equilibrium temperature in
our simulations with the global energy balance with Eq. 5.10. . . . . . . . . . . . 110
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5.2 Density projections of turbulent box simulations with M ∼ 0.5, at three different
times across columns, and for the three different cold gas behaviours across the
rows. The different regimes of behaviour are bottom row: turbulent condensation,
middle row: no turbulent condensation but cold cloud survival and top row: no
turbulent condensation and cold cloud destruction. The two regimes where the
end state contains cold gas show a similar fragmented cold gas structure. . . . . . 111

5.3 Cold gas mass evolution in the two stages of simulations, for M ∼ [0.5, 3]. Top
panel shows the cold gas evolution during the turbulent condensation stage. The
blue shaded region marks the region where we consider a simulation is have
turbulent condensation. The bottom panel shows the cold gas mass evolution
after the introduction of a cold cloud in simulations without condensation.
The green and red shaded regions show the regimes of cold gas survival and
destruction. The dotted lines show the expected cold gas growth (𝑚cold,cloud =

𝑚cloud,cloud,initial𝑒
𝑡/𝑡grow) with the analytical growth rate (𝑡grow using the Eq. 5.11
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5.4 The fate of cold gas during the two stages of simulations across the parameter
space of (𝑡cool/𝑡eddy) vs. M. The circles denote the first stage of simulations with
turbulence driving, while the crosses show the second stage where a cold cloud is
introduced in simulations without condensation. The colour of the points denotes
the corresponding final cold gas mass. We show the three different regimes
of cold gas behaviour, namely, blue regime where simulations with turbulent
condensation, green regime where simulations without turbulent condensation,
but show survival of cold gas cloud, and finally red regime with simulations
without turbulent condensation and which also show cold cloud destruction. The
regimes are separated by the turbulent condensation criterion as blue dashed line,
from Eqn. 5.9 and cold cloud survival criterion from Gronke et al. (2022a). . . . 113

5.5 Density-temperature (𝜌/𝜌hot,ini−𝑇) histogram of a supersonic turbulence simulation,
atM = 2.27 and 𝑡cool,mix/ 𝑡eddy = 0.8252, without cold gas condensation. Figures
on the top and right show the distribution of 𝜌/𝜌hot,ini and 𝑇 respectively. The
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5.6 Density-temperature (𝜌/𝜌hot,ini−𝑇) histogram of a subsonic turbulence simulation,
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6.1 The cooling function Λ(𝑇) (solid line, left axis), and the cooling time 𝑡cool
(dashed, right axis) of a particular cloud crushing setup with floor temperature
𝑇floor = 800K and hot gas density 𝜌hot = 0.1 mp/cm3. The local peak 𝑡cool,peak
and minimum 𝑡cool,min of the cooling time are labelled. The three shaded regions
mark the temperature range for the cold 𝑇cloud < 𝑇 < 2 × 𝑇cloud (blue), warm
2 × 𝑇cloud < 𝑇 < 𝑇mix (green), and hot gas temperatures 𝑇mix < 𝑇 < 𝑇ceil
(red) used in this study. These correspond to the temperature distribution of a
simulation snapshot shown on top of the figure, where the three stable phases are
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6.2 Temperature slices of four 800K boxes, initialized with clouds of different initial
radii (from 𝑅cl ∼ 20𝑙shatter to ∼ 2 × 108𝑙shatter) and temperature ratio 𝜒 ≈ 5000 in
the turbulent medium with M = 0.4 and box 50 times the cloud size, again
representing the four cases of survival-destruction. The slices are taken at
snapshots which best demonstrate the evolution of cold gas, with corresponding
𝑡cc values shown on the bottom. The diverging colorbar is drawn in a way that
shows the different phases of gas. Going left to right, we see an overall growth
of cold medium with the increasing cloud size. Regardless of this, the cold
cloud (blue) is always enveloped in layers of warm gas (red), separated from the
surrounding hot medium (black). . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 The three boxes represent different aspects of multiphase gas dynamics, and the
shaded boxes are the currently explored areas. It shows the chain of rich physics
needed for better understanding and observational predictions of multiphase gas. . 126

4 𝑢′ profiles for two different methods. The left panel shows the averaging method
used in Tan et al. (2021), and the right panel shows the Gaussian filtering method
used in Abruzzo et al. (2022a). We find only minor differences between the two
methods which, at worst, stay within an order of magnitude. . . . . . . . . . . . . 156

5 Same figure as Fig 3.6, but the 𝑢′ is calculated using the Gaussian filtering method
from Abruzzo et al. (2022a). This shows that the results in Fig 3.6 are not sensitive
to the method used to calculate the turbulent velocity. . . . . . . . . . . . . . . . 157

6 Red points show the points from the skipped graph of a single clump, and the
blue solid line shows the calculated filament length using every 4th point. Axis
labels correspond to the number of gridcells. . . . . . . . . . . . . . . . . . . . . 159

7 Same as Fig. 3.18 but for high resolution MgII 2796 Å absorption spectra with
𝑑𝜆 = 0.01Å . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8 Same as Fig. 3.18 but for high resolution CIV Å absorption spectra with 𝑑𝜆 = 0.01Å161
9 Cold gas mass evolution for simulations with the same parameters but different

random instances of turbulence. The different panels refer to different 𝑅cl/𝑙shatter
in a turbulent medium with M = 0.5. The different colours denote simulations
with varying random seeds for turbulent driving. The solid and dashed lines show
the evolution of simulations with and without magnetic fields, respectively. . . . . 163



154 LIST OF FIGURES



Appendix

MHD Turbulence

Comparison of methods to calculate 𝑢′

There are different ways to calculate the turbulent velocity (𝑢′) in TRML simulations, and it is
important to ensure that our conclusions are not sensitive to the choice of the method. In this
section, we compare two methods of calculating 𝑢′. The first method is the one we use for the
analysis in this paper and is the same method used in Tan et al. (2021). The second method is
employing Gaussian filtering (e.g. Brereton & Kodal, 1994; Adrian et al., 2000; Abruzzo et al.,
2022a). Fig 4 shows the same analysis as Fig 3.5 but using the two methods, and Fig 5 shows the
same analysis as the Fig 3.6 but using the 𝑢′ calculated using the Gaussian filtering method.

We find that our results are robust across the two methods and are insensitive to the differences
between these two methods of calculating 𝑢′.

Quantification of filamentariness
As mentioned in § 3.3.2, we use neighbourhood graphs for each cold gas clump to calculate the
measure of filamentariness. The following are the different steps we take to calculate the measure,
after we use a clump-finding method to identify the cold gas clumps:

1. Calculate the adjacency matrix for each gridcell inside the clump. If a speedup is needed,
construct another adjacency matrix for each 𝑛th.

2. Construct the neighbourhood graphs from all the adjacency matrices constructed in the
previous step.

3. Calculate the shortest path between each node in the smallest of the neighbourhood graphs
created in the previous step.

4. Find the longest of the set of calculated shortest paths and note the nodes corresponding to
that path.

5. Recalculate the length of the longest “shortest” path between the nodes from the previous
step, using the largest neighbourhood graph.
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Figure 4: 𝑢′ profiles for two different methods. The left panel shows the averaging method used
in Tan et al. (2021), and the right panel shows the Gaussian filtering method used in Abruzzo
et al. (2022a). We find only minor differences between the two methods which, at worst, stay
within an order of magnitude.
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Figure 5: Same figure as Fig 3.6, but the 𝑢′ is calculated using the Gaussian filtering method
from Abruzzo et al. (2022a). This shows that the results in Fig 3.6 are not sensitive to the method
used to calculate the turbulent velocity.
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6. The length from the previous step gives a rough measure of the filament length in the
clump. Repeat the steps for all clumps.

We tested the above method for different numbers of skipped points for calculating the shortest
paths. We find a negligible difference in the calculated length of large clumps even up to the point
where every 20th point is considered. We see major deviations only when the skipped points are
a big majority of the points and the resulting neighbourhood graph is not representative of the
clump anymore.

In this work, we only skip every 4th point in the clump. Fig. 6 shows an example of the calculated
filament length for a clump in an MHD turbulent box simulation.

Mock spectra
As mentioned in § 3.3.5 and 3.4.3, we find only marginal differences between the statistics of the
MgII mock absorption spectra of the HD and MHD simulations, despite significant differences in
the column densities. This can be due to the specific property of the MgII 2796Å absorption line,
like the curve of growth flattening around similar column densities, which can lead to smaller
differences. Another possible reason for this lack of difference can also be the spectral resolution.
To address both these points, we first increase the spectral resolution of the mock spectra tenfolds
to Δ𝜆 = 0.01Å and recreate the same MgII 2796Å mock absorption spectra analysis as Fig. 3.18.
Secondly, we repeat the same analysis for CIV 1551Å at the higher resolution. As a significant
fraction of the CIV mock absorption lines are saturated, we use a more relaxed constraint for
the minimum (0.01) and maximum (0.95) absorbed flux. Fig. 7 and 8 show the results from the
analysis of higher spectral resolution MgII 2796Å and CIV 1551Å mock absorption spectra.

We find that the increase in spectral resolution of mock MgII absorption spectra shifts the relation
between the number of features and total equivalent width, but it roughly follows the same slope
as the observed relation from Churchill et al. (2020). Surprisingly, the statistics of the mock CIV
1551Å absorption spectra also seem to agree with the observed MgII relation, and the HD-MHD
differences are wider as expected, but to the lower number of unsaturated mock spectra, it is
harder to draw concrete conclusions.

This apparent robustness of the observed relation might hint towards a more fundamental origin
of the relation, like the clump distribution. But, we leave it to future studies to investigate this
further.

Effect of stochasticity
The stochastic nature of the turbulence can cause variations in the evolution of quantities in a
turbulent environment. Gronke et al. (2022a) found that this stochasticity affects the cold gas
mass evolution in hydrodynamic turbulent boxes with an intermediate-sized initial cold cloud.
In this regime, they saw both survival and destruction of the cold cloud for different choices of
random seeds for turbulent driving. This was attributed to the higher significance of the exact
turbulent velocity field in the intermediate regime between cloud survival and destruction.
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Figure 6: Red points show the points from the skipped graph of a single clump, and the blue
solid line shows the calculated filament length using every 4th point. Axis labels correspond to
the number of gridcells.
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Figure 7: Same as Fig. 3.18 but for high resolution MgII 2796 Å absorption spectra with
𝑑𝜆 = 0.01Å
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We repeat this test for our simulations, with and without magnetic fields. We run turbulent box
simulations with 3 different random seeds at M = 0.5 and introduce clouds of different sizes to
check for the effect of stochasticity of the turbulence. We use a 𝐿box/𝑅cl = 20, instead of 40, due
to its lower computational costs.

Fig. 9 shows the cold gas mass evolution for the different cases. We find that the cold gas mass
growth/destruction rate for cold gas clouds in intermediate and destruction regimes is sensitive to
the exact choice of the random seed. We also find that this is true for both HD and MHD and with
no clear order of growth rate between the HD and MHD counterparts. This high dependence on
stochasticity in these regimes is due to the lack of cold gas mass. This results in a very stochastic
sampling of turbulence, hence making the evolution very stochastic in nature.

On the other hand, in the survival regime, the MHD simulations seem to have a slightly lower
growth rate, compared to their HD counterparts, although still a much lower difference compared
to the order of magnitude difference observed in TRML simulations. We attribute this minor
difference to some unavoidable systematic differences between the HD and MHD simulations.
The biggest of them is the difference in dissipation rate between MHD and HD, due to the
extra dissipation of magnetic energy via numerical resistivity. This higher dissipation results
in a slightly hotter medium in a fully developed turbulent box, in turn resulting in a slightly
deviated density distribution. These slight deviations affect the evolution via a slight difference
in overdensity, mixed gas temperature, etc.

Still, as Fig. 9 shows, this difference is minor and it gets even more trivial when we take the
spread due to stochasticity into account.

MOGLI: Multiphase subgrid model

Local Turbulence estimation in 2D

We can generalise the expression for 2D geometries. In 2D, the limits of the integral are different,
along with a different definition of the cell volume, leading to a slight variation in Eq. (4.27),

𝑣turb,grad,2D = (𝜎2
𝑣𝑥

+ 𝜎2
𝑣𝑦
)1/2 = 𝑉

1/2
cell

√√√
1
𝜉2D

2∑︁
𝑖, 𝑗

(
𝜕𝑣 𝑗

𝜕𝑥𝑖

)2
(1)

where, 𝜉2D = 4.

During our non-radiative turbulent mixing tests, explained later in Sec. 4.4, we find a 𝜉3𝐷 = 2
works better in matching with the benchmark Athena++ simulations. Hence, we use a 𝜉3𝐷 = 2
in MOGLI runs. We can also combine both Eq. (4.27) & (1) into a single expression for 𝐷
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dimensions,

𝑣turb,grad,D = 𝑉
1/𝐷
cell

√√√
1
𝜉D

𝐷∑︁
𝑖, 𝑗

(
𝜕𝑣 𝑗

𝜕𝑥𝑖

)2

where, 𝜉D =


4 if 𝐷 = 2
3 if 𝐷 = 3 Analytical
2 if 𝐷 = 3 MOGLI

(2)

Heating due to inelastic mass exchange
We start with the assumption of conservation of total energy (𝐸total) during mass exchange, i.e.
¤𝐸total,hot + ¤𝐸total,cold = 0. The total energy further consists of the total energy into thermal and

kinetic energy. We denote the cold fluid mass and hot fluid mass as 𝑚cold and 𝑚hot respectively.
Similarly, 𝑢cold/hot and 𝑣cold/hot for the corresponding cold/hot fluid specific thermal and kinetic
energy. We assume that the cold fluid cools rapidly back to stay at 𝑢cold, and we account for
radiated energy as ¤𝐸rad. As mass is converged during this process, ¤𝑚cold = − ¤𝑚hot, which leads to

¤𝑚cold(𝑢hot − 𝑢cold)+
1
2
¤𝑚cold(𝑣2

hot − 𝑣
2
cold) = (3)

( ¤𝐸rad+𝑚hot ¤𝑢hot) + 𝑚cold𝑣cold ¤𝑣cold + 𝑚hot𝑣hot ¤𝑣hot

Next, we rearrange the conservation relation for total momentum, i.e. ¤𝑝hot+ ¤𝑝cold = 0 and multiply
𝑣hot to obtain,

𝑚hot𝑣hot ¤𝑣hot = ¤𝑚cold𝑣hot(𝑣hot − 𝑣cold) − 𝑚cold𝑣hot ¤𝑣cold (4)

We plug this relation back into Eq. 4, and further decompose the mass and momentum flux
into two components of the bidirectional exchange. After simplifying the expression further, we
obtain

¤𝐸rad + 𝑚hot ¤𝑢hot = ( ¤𝑚hot→cold + ¤𝑚cold→hot)
(Δ𝑣)2

2
+ ¤𝑚coldΔ𝑢 (5)

where Δ𝑢 = (𝑢hot − 𝑢cold) and Δ𝑣 = (𝑣hot − 𝑣cold).

The left-hand side (LHS) of Eq. 5 represents the total heating in both the fluids. The first term in
right-hand side (RHS) refers to heating from the thermalised kinetic energy. On the other hand,
the second term of RHS gives the heating due to thermal energy exchange. While the second
term in the RHS can be divided between the fluids, the separation of first term will depend on
the details of the geometry and momentum exchange, as these affect how much of the lost kinetic
energy was thermalised in each fluid.
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If we assume a fudge factor, Ω ∈ (0, 1), denoting the fraction of lost energy thermalised in the
cold fluid, we can separate the two terms in LHS as,

¤𝐸rad = Ω ( ¤𝑚hot→cold + ¤𝑚cold→hot)
(Δ𝑣)2

2
+ ¤𝐸cooling

𝑚hot ¤𝑢hot = (1 −Ω) ( ¤𝑚hot→cold + ¤𝑚cold→hot)
(Δ𝑣)2

2
− ¤𝑚cold→hotΔ𝑢

As MOGLI keeps track of the total energy consistently while imposing quasi-isothermal EOS for
the cold fluid, it is unaffected by this uncertainty of Ω.
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