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Abstract
The introduction of Deep Learning based pretrained Language Models (LMs)
has brought large improvements throughout Natural Language Processing (NLP).
Pretrained in an unsupervised fashion to predict missing words from incomplete
pieces of text, they can subsequently be adapted to any task of interest and replace
the need to develop and train specialized architectures. Their ability to excel is
rooted in the fact that pretrained LMs store a multitude of task relevant knowledge
parametrically. This knowledge is not limited to linguistic capabilities. Pretrained
LMs were also shown to acquire significant amounts of world and commonsense
knowledge.

We explore two aspects of world/commonsense knowledge acquired by LMs.
First, consistency, that is, we expect a model’s behavior to be consistent across a
set of implied queries. Second, completeness with respect to the factual queries
which may be put to the model.

We analyze knowledge consistency with respect to negation, adversarial dis-
tractors, multilinguality, paraphrasing and commonsense reasoning and find that
although the LMs under investigation contain significant amounts of world knowl-
edge, they are prone to answer factual implications inconsistently and self-contra-
dictory. As a result, it can be hard to identify what the model actually “believes”
about the world, making it susceptible to inconsistent behavior. Building on this,
we develop a new architecture where an LM is enhanced with a ‘symbolic execu-
tive’ - an evolving, symbolic memory of prior beliefs. For new incoming queries
the LM has the ability to reflect back on related beliefs, enabling it to improve
over time.

To improve knowledge completeness, we explore different ways of integrat-
ing knowledge not acquired by the model. i) We enhance an LM with a retrieval
component over external knowledge sources for improved Question Answering.
ii) We explore LMs’ reasoning capabilities during pretraining to deduce knowl-
edge not explicitly seen. iii) We build a model that integrates novel entities into
LM-based Entity Linking systems.

In analyzing and improving knowledge consistency and completeness, this
thesis makes a significant step towards LM-based architectures with a systematic
notion of belief, enabling them to construct a more coherent picture of the world,
and improve over time without model retraining.
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Zusammenfassung
Die Einführung der Deep Learning basierten, Pretrained Language Models (LMs)
führte zu großen Druchbrüchen im Bereich der Natürlichen Sprachverarbeitung.
Pretrained LMs ersätzten weitgehend den Bedarf an Aufgaben spezialisierten Ar-
chitekturen. Stattdessen kann ein LM nach einer allgemeinen Pretrainingsphase,
in der das Modell lernt Textstücke zu vervollständigen, durch Finetuning oder
Prompting, leicht an unterschiedlichste Aufgaben angepasst werden. Das LM er-
lernt wäherend der Pretrainingsphase eine Vielzahl an aufgabenrelevantem Wis-
sens parametrisch, welches dann aufgabenspezifisch abgefragt werden kann. Be-
merkenswert ist, dass sich das erlernte Wissen nicht auf linguistische Fähigkeiten
beschränkt, sondern auch enzyklopädisches Wissen und Commonsense beinhal-
tet.

Wir untersuchen zwei Aspekte des von LMs erlernten Wissens. Erstens, Kon-
sistenz, wo wir erwarten, dass sich das LM im Bezug auf implizierte Fakten kon-
sitent verhält. Zweitens, Vollstkändigkeit im Bezug auf mögliche Wissensfragen,
die man dem Modell stellen könnte.

Wir analysieren Konsistenz bezüglich Negation, irreführendem Priming, Mehr-
sprachigkeit, Paraphrasierung und Commonsensezusammenhängen. Trotz der
Menge angesammelten Wissens, zeigt sich, dass die von uns untersuchten LMs
anfällig für inkonsistentes Verhalten sind. Folglich ist es schwierig aus einzel-
nen Outputs eines LMs, die sich wiedersprechen können, auf das grundlegende
Erfassen von Fakten zu schließen.

Aufbauend darauf entwickeln wir eine neue Architektur, bei der ein LM durch
eine symbolische Komponente erweitert wird. Diese symbolische Komponente ist
ein sich entwickelndes, symbolisches Gedächtnis vorausgehender Outputs. Für
neu eintreffende Anfragen hat das LM die Fähigkeit, sich auf verwandte, vor-
rausgehende Outputs zu stützen, was es ermöglicht, sich im Laufe der Zeit zu
verbessern.

Um die Vollstkändigkeit des Wissens zu erweitern, erkunden wir verschiedene
Möglichkeiten, nicht erfasstes Wissen zu integrieren. i) Wir erweitern ein LM
mit einer Abfragekomponente, die Zugriff auf externe Wissensquellen hat. ii)
Wir erforschen die Fähigkeit eines LMs während des Pretrainings aus zusam-
menhängenden Fakten Schlussfolgerungen zu ziehen und sich somit selbst, nicht
explizit gesehenes Wissen, abzuleiten. iii) Wir entwickeln ein Modell, das nicht
erfasste Entitäten in LM-basierte Entitätsverknüpfungssysteme integriert.

Durch die Analyse und Verbesserung von Konsistenz und Vollständigkeit des
von LM erfassten Wissens leistet diese Arbeit einen bedeutenden Schritt hin zu
LM-basierten Architekturen, die ein kohärenteres Bild der Welt erfassen köennen
und sich im Laufe der Zeit verbessern.
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Chapter 1

Introduction

1.1 Outline
This thesis is structured in two parts. In this first, introductory part (Chapter 1), we
motivate the research questions, summarize our contributions and provide back-
ground information relevant to this thesis. The second part (Chapters 2 to 9)
comprises the publications part of this thesis.

The introductory part begins in Section 1.2 with a high level introduction,
followed by Sections 1.3 and 1.4 that motivate its approach and contributions more
concretely. Section 1.5 gives a more general review of knowledge representations
in Language Models and in Sections 1.6 and 1.7, we summarize basic concepts
of Deep Learning and Natural Language Processing relevant for this work. The
introductory part concludes with Sections 1.8 and 1.9 listing limitations of this
thesis and giving an outlook into future research directions.

The second part, from Chapter 2 till 6, corresponds to publications on consis-
tency. Chapters 7 till 9 correspond to publications on completeness.

1.2 Motivation

The introduction of Deep Learning based pretrained Language Models (LMs 1) in
2018 (Peters et al., 2018; Devlin et al., 2019) marked a significant breakthrough
for the field of Natural Language Processing (NLP). These models effectively
captured contextual information in text at an unprecedented scale and quickly
emerged as universal tools that set new state-of-the-art performance on a wide
range of NLP benchmarks (Wang et al., 2019).

1Throughout this thesis, we use this acronym to refer specifically to Deep Learning based
pretrained Language Models introduced in 2018, and not to any preceding models, such as count-
based models.
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In the years that followed, researchers continued to push the boundaries of
pretrained LMs, resulting in the development of models that grew exponentially in
size and were trained on larger amounts of data, starting from the early pretrained
models like Elmo (Peters et al., 2018) and BERT (Devlin et al., 2019), consisting
of around hundreds of million parameters, reaching to T5 (Raffel et al., 2020)
which is the largest model used as part of this thesis and which consists of 11
billion parameters. This trend continues today beyond the scope of this thesis
with further advancements in scale, e.g., PaLM (Chowdhery et al., 2022) which
surpasses the 500 billion parameter threshold.

These models are pretrained in an unsupervised fashion using the language
modeling objective to predict the next word or sequence of words, given words in
context.

To create task-specific models, early LMs followed the pretraining-finetuning
paradigm which involves making several copies of the model to finetune them
on task-specific data. Subsequently, the field shifted to the pretraining-prompting
paradigm. This approach eliminates the need to create multiple separately trained
copies of a model to make it task-specific. Instead, by providing a few task-
specific samples or instructions, the model can be instantly adapted.

The fact that LMs excel on such a wide variety of tasks, combined with the
success of prompting that does not require the integration of large amounts of
external knowledge, suggests that much of the necessary knowledge is already
encoded parametrically in the model.

This knowledge is not limited to linguistic capabilities (Goldberg, 2019; He-
witt and Manning, 2019; Tenney et al., 2019; Elazar et al., 2021). Research also
shows their progressing ability to acquire and interact with world and common
sense knowledge (Petroni et al., 2019; Davison et al., 2019; Peters et al., 2019;
Jiang et al., 2020; Roberts et al., 2020).

How to best represent factual knowledge has been a long standing problem
in artificial intelligence research (Brachman and Levesque, 2004). Parametric
knowledge acquisition inside LMs offers new and unique opportunities. It enables
wide domain coverage, is easily scalable due to their unsupervised construction
and is not tied to any specific schema, which is specifically compelling in the
context of common sense knowledge (Razniewski et al., 2021).

But with LMs’ neural nature comes the challenge that their parametrical knowl-
edge is encoded in a diffused manner, making it difficult to access, interpret, con-
trol and maintain.

In this context, this thesis studies two aspects of knowledge acquired by LMs,
which we call consistency, that is, we expect a model’s behavior to be consistent
across a set of implied queries and completeness with respect to the factual queries
which may be put to the model.

Consistency: Work quantifying the amount of factual knowledge captured by
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LMs usually evaluates their performance on Question Answering (Q&A) tasks,
e.g., Roberts et al. (2020). Although their performance on these tasks is substan-
tial, it is not always clear how (or even if) an answer relates to implied statements
and whether the LM is latently constructing an internal “belief 2 system”.

Specifically, we study consistency with respect to negation, adversarial dis-
tractors, multilinguality, paraphrasing and commonsense reasoning. With our
work on consistency, we show that LMs are prone to answer factual implications
inconsistently and in a self-contradictory manner. As a result, it is sometimes hard
to pin down what an LM actually “believes3”, making them susceptible to incon-
sistent and/or irrational behavior and hard to debug errors. To address this, we
embed the LM into a broader system with an ‘symbolic executive’ – a symbolic
memory component in which we make the model’s beliefs explicit and with a rea-
soning mechanism to resolve inconsistencies. This is significant as it is a first step
towards LM-based architectures with a systematic notion of belief, enabling them
to construct a more coherent picture of the world, and improve over time without
model retraining.

Completeness: During pretraining, not every piece of knowledge an LM is
exposed to is necessarily captured parametrically and after pretraining novel infor-
mation arises constantly. In this context, we i) study what governs which knowl-
edge is acquired and which is not, specifically we question whether LMs during
pretraining are able to acquire factual knowledge beyond what they see explic-
itly and ii) build systems that integrate missing knowledge into the model. To
study knowledge acquisition in LMs we focus on two mechanisms, reasoning and
memorization, where we propose a synthetic framework that allows us to study
the causal relationship between the facts present in the training data and the facts
learned by the model. We build systems to integrate missing knowledge in the
context of two of the most prominent knowledge-intensive NLP tasks, namely
Q&A and Entity Linking (EL). Again, our approach is to embed the LM into a
broader system consisting of an external knowledge store containing embedding-
based representations of novel knowledge and a retrieval mechanism to integrate
this information into the task specific system.

2Here, we refer to the model’s factual opinions as “beliefs” instead of “knowledge” because a
model’s predictions may be wrong. In general, an agent can be said to believe statement s if it acts
as if s was true (Schwitzgebel, 2024). We adopt a simple implementation of this, namely the LM
generates s or answers “yes” to the question “s?”. Note that other versions could be used.

3Here and in what follows, human concepts such as belief have been attributed to language
models for ease of exposition. This anthropomorphism should not be taken too literally.
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1.3 Consistency of Knowledge

1.3 Consistency of Knowledge
Our central contribution to knowledge consistency is twofold. Measuring Con-
sistency: We show that although LMs contain significant amounts of knowledge
at the first glance, they are prone to inconsistent behaviour. As a result, it can
be hard to identify what the model actually believes about the world, making it
susceptible to inconsistent behaviour and simple errors. Improving Consistency:
We introduce a new style of architecture to improve consistency where an LM is
extended with a ‘symbolic executive’, an evolving, symbolic memory and reason-
ing mechanism. Such a component enables us to materialize belief dependencies
and repair latent inconsistencies and therefore construct more coherent pictures of
the world.

Measuring Consistency

Instead of following the standard Q&A setting, consisting of evaluating answers
to factual queries in isolation, we define sets of implied factual statements and
measure accuracy as well as consistency when querying an LM’s belief about
these statements. We define consistency sets for negation, adversarial distractors,
multilinguality, paraphrasing and commonsense reasoning.

To query for LMs’ beliefs, we follow two different approaches depending on
the type of model. For early Masked LMs (refer to Section 1.7.4), we follow
Petroni et al. (2019) and reformulate knowledge base (KB) (subject, relation, ob-
ject) triplets into cloze-style natural language queries. To do so, we use natural
language template relation (e.g., “X is the capital of Y”) and insert Wikidata enti-
ties as subjects (X) and mask the object (Y), e.g., “Paris is the capital of [MASK]”.
This setup matches the input style of the model during pretraining and enables us
to query the LM zero-shot (without any finetuning). For Causal LMs (refer to
Section 1.7.4), we employ models finetuned for multiple-choice Q&A tasks.

To measure consistency, we define a consistency metric. Even though the
exact formulation of our consistency metric varies in our papers, the underlying
principle is the same. We measure consistency in terms of conditional violation
(Li et al., 2019), namely the fraction of constraints whose condition is believed,
but whose conclusion is not.

The following paragraphs summarize individual contributions to measuring
knowledge consistency in detail:

In Chapter 2, building on Petroni et al. (2019)’s work quantifying the amount
of knowledge acquired by LMs, we propose two new related tasks to analyze the
factual knowledge stored in LMs. The first task, negation, involves automatically
inserting negation markers into factual queries to create pairs of positive and neg-
ative questions. We find that LMs like Elmo and BERT are prone to generate both
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factual statements (“Birds can fly”) as well as their incorrect negation (“Birds can-
not fly”). For some relation types, the overlap between the top-ranked completions
for positive and negative queries exceeds 50%.

The second task, mispriming, draws inspiration from priming methods in hu-
man psychology. In an adversarial setting, we automatically insert misleading
distractors into cloze questions, such as “Talk? Birds can [MASK]” which easily
mislead LMs into incorrect responses, like filling the masked token with “talk”
instead of factually correct fillers like “chirp”. We can manually create more nat-
ural sounding misprimes, for example, “regent of Antioch” in “Tancred, regent of
Antioch, played a role in the conquest of [MASK]” tricks BERT into choosing the
filler “Antioch” (instead of “Jerusalem”). Our automatically generated misprimes
are less natural, but they allow us to create a large misprime dataset for an initial
study. We find that for BERT, factual accuracy drops significantly, depending on
the type of relation and misprime, up to 100%.

Chapter 3 focuses on consistency with respect to paraphrasing. Again build-
ing on Petroni et al. (2019), we develop ParaRel, a high-quality collection of man-
ually created paraphrases of relation templates. Through ParaRel, we show that
LMs like BERT, RoBERTa (Liu et al., 2019) and ALBERT (Lan et al., 2019)
exhibit poor consistency with respect to paraphrases, propose a finetuning ap-
proach to improve consistency with respect to paraphrases, and then experimen-
tally demonstrate its effectiveness. Consistency improves by 5.8 percent points,
which in turn also improves factual accuracy by 1.8 points.

Most work studying knowledge representations in LMs only considers English
which limits accessibility of NLP based applications. To address this in the con-
text of factual consistency, Chapter 4 extends to a multilingual setting. To this end,
we automatically translate a set of factual queries into 53 languages and examine
multilingual BERT (Devlin et al., 2019) (mBERT) for consistency across lan-
guages. We find that querying mBERT for factual knowledge yields inconsistent
performance across languages. Notably, mBERT exhibits a language bias; e.g.,
when asked in French about locations, it tends to predict France or French cities.
This language-bias can be mitigated by pooling predictions across languages by
selecting the object predicted by the majority of languages. This approach leads to
improved performance, even surpassing that of monolingual English BERT mod-
els.

Finally, in Chapter 5 and 6, we study inconsistency with respect to sets of
factual queries implied by commonsense reasoning. In this context, we can distin-
guish between two notions of consistency: i) consistency with respect to human-
defined implications of factual statements and ii) a model’s self-consistency.

Chapter 5 studies consistency with respect to human-defined implications. For
example, if the LM believes that “a poodle is a dog”, we test if it also believes “a
poodle has a tail” independent of the model knowing the implicating fact that
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“dogs have tails”. We collect these commonsense implications from the human-
curated commonsense KB ConceptNet (Speer et al., 2017). We identify general
concepts of interest, e.g., “mammal” and convert selected KB triples about them
to implications. For example, the ConceptNet triple (dog, has a, tail) becomes “X
is a dog” →“X has a tail”. We then define a set of 85 entities of interest (animals
and plants) which fill the placeholder X and query T5 large (Raffel et al., 2020).
We find that T5 large answers only 70% of the queries consistently.

In Chapter 6, we study a model’s self-consistency by examining its faithful-
ness to chains of reasoning it generates itself. Here, the model can be factually
incorrect but still self-consistent. For instance, it might generate conditions like
“birds have wings” and “a poodle is a bird” to justify the hypothesis “poodles have
wings”. In practice, we observe that these model generated reasoning chains are
more fine-grained than the KB-based ones. To study self-consistency we deploy
Entailer (Tafjord et al., 2022) which is a T5 based model finetuned to generate
sets of candidate explanations based on a given hypothesis. Given a collection
of commonsense, multiple-choice Q&A datasets, EntailmentBank (Dalvi et al.,
2021), OBQA (Mihaylov et al., 2018), QuaRTz (Tafjord et al., 2019), we ask En-
tailer to explain why each candidate answer might be true, expressed as a set of
sentences that entail the answer. We then add a self-verification step to check
that the model itself believes those generations. For example, when we ask the
model to explain “giraffes give live birth”, the model generates [because] “mam-
mals give live birth” [and] “a giraffe is a mammal”. Self-querying then checks
if the model actually believes its generations (“Do mammals give live birth?”).
The answer (“yes”/“no”) assigns a true/false value to each generation. This two
step procedure of generating candidate explanations and self-verification is then
applied recursively to the generated, supporting sentences. We call the resulting
network of model beliefs and their dependencies a belief graph that enables us to
materializes relevant model beliefs and their conflicts. Based on this graph, we
find that T5 answers ∼87% of the queries self-consistently.

Improving Consistency

Beyond quantifying LM’s consistency with respect to commonsense reasoning,
Chapter 5 also introduces a new style of architecture which we call BeliefBank.
This approach integrates an LM into a broader system that includes a ‘symbolic
executive’, an evolving, symbolic memory of beliefs. This memory not only
records the LM’s answers but can also modify them. We outline two mechanisms
to improve belief consistency in the overall system. i) A reasoning component
that uses a weighted MaxSAT solver to revise beliefs that significantly conflict
with others. This constraint solver has a global view on the memory, and thus can
balance all beliefs seen so far with the provided constraints to minimize conflict.
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ii) A feedback mechanism that retrieves past beliefs from memory and provides
them as context when new queries are issued. This allows the model to prevent lo-
cal conflicts by reflecting on beliefs immediately relevant to the query. We show
that these two mechanisms significantly improve both the accuracy and consis-
tency (by absolute ∼15% accuracy and ∼25% consistency). We also show how
conflict resolution in early batches can be propagated to later test queries and
therefore how answer accuracy improves over time.

In Chapter 6, we extend our work on BeliefBank and develop the REFLEX
model to study self-consistency (see previous section). Given the belief graph
and using the same global reasoning component as BeliefBank, we identify and
minimize contradictions in the graph. As REFLEX relies on model generated
constraints, it is prone to noise which makes conflict resolution while maintaining
accuracy more challenging than in the BeliefBank setting. We find that REFLEX
significantly improves consistency (by 8%-11% absolute) without harming overall
answer accuracy, resulting in answers supported by faithful chains of reasoning
drawn from a more consistent belief system.

Overall, this body of work is one of the first to challenge knowledge acqui-
sition in LMs beyond the standard Q&A setup that queries individual facts in
isolation and shows how brittle LMs’ belief systems are. This brittleness is a
major impediment in practical applications of LMs in critical domains such as
medicine and law where properties of explainability, interpretability, and trust are
a necessity. Our work on BeliefBank systems is a significant first step towards LM
based architectures with a systematic notion of belief, enabling them to construct
a more coherent picture of the world, and potentially improve over time without
any additional training.

1.4 Completeness of Knowledge
Again, our contribution to knowledge completeness is twofold: First, we explore
mechanisms through which LMs acquire factual knowledge during pretraining.
More specifically reasoning mechanisms which could enable an LM to acquire
knowledge beyond what it explicitly sees during training. Second, we build sys-
tems that are able to integrate knowledge from external natural language sources
into the LM.

Study of knowledge acquisition

In Chapter 7, we explore how LMs acquire factual knowledge during pretraining
by examining the causal relationship between the facts present in the training data
and the facts learned by the model. We focus on two mechanisms: reasoning and
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memorization.
Regarding reasoning, to conduct our study, we construct small, synthetic train-

ing corpora consisting of knowledge base (subject, relation, object) triplets that
specifically target the factors we are interested in. We pretrain language models
from scratch that follow BERT architecturally but reduce the number of parame-
ters and layers significantly to account for training data size. To study reasoning,
the synthetic corpus follows a set of six symbolic rules (equivalence, symmetry,
inversion, composition, implication, negation). For each rule, we create a corpus
that contains facts from which the rule can be learned. We test the model’s ability
to use the rule to infer unseen facts by holding out some facts in a test set.

We find that BERT is capable of learning some one-hop rules (equivalence
and implication). For others, even though high test precision suggests successful
learning, we observe that its application of these rules at inference time is flawed
(symmetry, inversion and negation). We find that BERT struggles with two-hop
rules (composition).

In the context of memorization, we aim to identify factors that contribute to the
successful memorization of facts encountered during pretraining. Specifically, we
examine two such factors: schema conformity and frequency. Schema conformity
refers to facts that are consistently supported by other facts, e.g., “sparrows can
fly” in a corpus with many similar facts about birds. In contrast, exceptions lack
consistent support by other facts e.g., “penguins cannot fly”. By frequency we
mean the number of times a model is exposed to certain facts over training.

To study memorization, we ensure that the amount of factual knowledge con-
tained in the training corpus surpasses the model’s storage ability. We then control
fact frequency and schema conformity, and measure their effect on memorization.
We identify schema conformity and frequency as key factors for successful mem-
orization whereas exceptions are more difficult to learn.

Prior work has mainly focused on quantifying the amount of knowledge that
is acquired but little is understood about how this knowledge is acquired during
pretraining and why. To the best of our knowledge, our work is the first to propose
a synthetic framework to investigate the causal relation between facts present in
training and facts learned by the LM, therefore enabling us to study whether LMs
have the ability to acquire knowledge via reasoning which in turn would make
models also more consistent.

Integrating novel knowledge into Language Models

To maintain stable performance over time, LMs need to keep in sync with our ever
changing world. Moreover, we don’t have compelling mechanisms which ensure
that certain information seen during training is captured parametrically. There-
fore, we need mechanisms to integrate new knowledge into LMs. Chapter 8 and
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Chapter 9, address this problem in the context of two of the most prominent NLP
tasks: Question-Answering and Entity Linking. For both tasks, we extend the LM
with an external knowledge store containing embedding-based representations of
novel knowledge and a retrieval mechanism to integrate this information into the
task specific system.

In Chapter 8, we introduce BERT-kNN where we build on Khandelwal et al.
(2020) and extend an LM with a retrieval component over Wikipedia articles.
More specifically, we combine BERT with a two step retrieval process. First, us-
ing traditional Tf-idf-based information retrieval, we select a subset of Wikipedia
articles that are relevant to the query. Second, we run a k-nearest-neighbour (kNN)
search between the encoded query and encodings of the selected Wikipedia pas-
sages. We show that BERT-kNN outperforms BERT on cloze-style Q&A by large
margins (by ∼10% points). Moreover, in contrast to BERT, BERT-kNN can han-
dle facts not covered by BERT’s training set without any further training and ex-
cels for rare facts. We also show that BERT often identifies the correct response
category (e.g., US city), but only kNN recovers the factually correct answer (e.g.,
“New York”).

In Chapter 9, we introduce the EDIN, the Unknown Entity Discovery and In-
dexing benchmark. Standard EL is the task of identifying mentions of named
entities in natural language and connecting them to their corresponding entries in
a reference knowledge base. This reference KB defines and represents the set of
known entities. Usually, work on EL assumes that the reference KB is complete,
and therefore all mentions can be linked. In practice this is hardly ever the case,
as knowledge bases are incomplete and because novel concepts arise constantly.
In EDIN, unknown entities, hence entities without a description in the knowl-
edge base and without labelled mentions that could be used for training, have
to be integrated into an existing EL system. Building on dense-retrieval based
EL (Cucerzan, 2007), we introduce the end-to-end EDIN pipeline that detects,
clusters, and indexes mentions of unknown entities in context by unifying the in-
formation of multiple mentions into one embedding per entity and adds them to
the reference index. EDIN is able to link unseen entities without any additional
training that standard EL systems would not be able to link without relying at least
on manually crafted descriptions but its performance sill lacks behind that of seen
entities (∼28 percent points less recall).

Given the dynamic nature of the world, devising methods that keep LM-based
applications up-to-date is essential. This portion of the thesis contributes to such
research work. Concurrent and later work on retrieval-augmented LMs (summa-
rized in Section 1.5), also building on Khandelwal et al. (2020), explores similar
systems. Specifically, the work of Lewis et al. (2020) on retrieval augmented gen-
eration (RAG) finds wide spread application in industry, highlighting the practical
viability of this hybrid approach relying on a combination of parametric and ex-
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ternal knowledge.

1.5 Knowledge Representations in Language Mod-
els

Shortly after the introduction of pretrained LMs, research finds that their expo-
sure to large amounts of textual information, combined with their training objec-
tive of predicting text continuations, indirectly facilitates the acquisition of factual
and commonsense knowledge. Most prominently, Petroni et al. (2019) quantify
the amount of relational knowledge these models acquire and pose the question
whether pretrained LMs could act as alternatives to traditional knowledge bases
and Bosselut et al. (2019); Davison et al. (2019) show how pretrained LMs’ com-
monsense abilities can be harvested for KB completion.

These works initiated productive research activity around parametric knowl-
edge representations in the context of LMs.

Advantages of Parametric Knowledge Representations

How to best represent factual knowledge has been a long standing problem in
artificial intelligence research (Brachman and Levesque, 2004). Before the wide
spread deployment of LMs, systems mainly relied on structured representations
like KGs or retrieval over natural language corpora. These technologies are ma-
tured enough to constitute the backbone of knowledge systems in industry (Hogan
et al., 2021) in the last decades.

Considering the proven utility of these traditional methods, a natural question
is whether knowledge represented parametrically within an LM has advantages
beyond what is possible with traditional methods.

First and foremost, language models demonstrate remarkable performance far
beyond what was possible with prior specialized systems. Noteworthy is their
few- and zero-shot performance on standard NLP benchmarks (Brown et al.,
2020), and especially their open dialog performance (OpenAI, 2024; Gemini Team,
2023) in the context of closed-book question-answering (Roberts et al., 2020).
In a few-shot setting, LMs are presented with only a few task-specific examples
without further training to master a downstream task. In a zero-shot setting no
task-specific samples are presented, just as in a closed-book Q&A setting where
the model answers questions without access to external knowledge sources. In
these scenarios, LMs have to rely solely on their parametric knowledge.

There are three aspects why parametric knowledge acquisition within LMs
demonstrates great potential (Razniewski et al., 2021):
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i) Unsupervised Construction: LMs possess the ability to capture knowledge
through unsupervised learning. Consequently, they can autonomously ac-
quire knowledge from vast amounts of textual data without the need for
explicit human intervention or manual curation.

ii) Domain Coverage: LMs excel in covering a wide range of domains. By
training on diverse textual sources, including books, websites, and articles,
LMs acquire knowledge that spans multiple subject areas. Their expansive
domain coverage enables them to provide contextually relevant responses
and insights, making them valuable resources for addressing a broad range
of queries and tasks.

iii) Open Schema and Commonsense Knowledge: Unlike traditional knowledge
representations, which rely on structured triplets and predefined relations,
LMs offer an open schema. This flexible framework allows LMs to cap-
ture and use knowledge beyond the limitations of rigid structured formats.
Significantly, LMs hold promise in capturing and leveraging commonsense
knowledge, which often eludes rigid formats.

Open Problems of Parametric Knowledge Representations

But with pretrained LM’s neural nature also comes the challenge that LM’s para-
metric knowledge is encoded in a diffused manner, making it difficult to access,
interpret, control and maintain. As we lack methods to eliminate factual knowl-
edge acquisition in LMs, we have to understand its advantages as well as open
problems. Considerable research efforts have been devoted to advancing our un-
derstanding of parametric knowledge acquisition and improving its utility. This
thesis contributes to such research work.

The following section gives an overview of related work. While it does not
encompass the entirety of research conducted in this context, it highlights key
research questions and mentions noteworthy papers concurrent to this thesis. Fi-
nally, it highlights the most practical approach to knowledge integration into LMs,
namely hybrid systems that combine parametric knowledge representations within
an LM with external knowledge sources like the BERT-kNN model introduced in
Chapter 8.

Knowledge Access:

Petroni et al. (2019) quantify the amount of knowledge LMs acquire via zero-shot,
cloze-style question answering relying on manually crafted fill-in the blank tem-
plates. However, this approach can only measure a lower bound on the amount
of knowledge contained within a pretrained LM, as different templates could
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have been more optimal for eliciting knowledge. Jiang et al. (2020) demonstrate
this and show how template optimization can result in significantly better perfor-
mance.

Moreover, zero-shot cloze-style extraction techniques also suffer from the
problem that LMs can fill in the blank with natural sounding continuations that
are not wrong but do not elicit the knowledge that was targeted, e.g., “Paris is the
capital of fashion” instead of “Paris is the capital of France”. Finetuning the LM
on a dataset of text passages designed to elicit the desired information can address
this issue. Two prevalent finetuning approaches in this context include finetuning
for Q&A (Roberts et al., 2020) and for KG completion (Bosselut et al., 2019). In
Chapters 2,3,4 we follow the cloze-style Q&A approach and in Chapters 5,6 we
use finetuned models.

Knowledge Interpretation:

LMs’ training objective is to predict the most probable continuation of a given
textual input. This objective does not explicitly instruct an LM to refrain from
generating responses in situations where they lack the necessary knowledge for
accurate factual answers. The absence of such instructions makes LMs prone to
attempt to provide a response even if the necessary information to answer a ques-
tion was missing from the model’s training data or was not latently memorized,
potentially leading to inaccuracies (Varshney et al., 2022) and inconsistencies as
highlighted in Chapters 2 till 6.

In this context, attribution techniques aiming to provide evidence snippets that
support the text that an LM generates become important (Bohnet et al., 2023).
These techniques enable a more thorough assessment of the credibility and accu-
racy of the generated knowledge which is instrumental for ensuring reliability of
their responses. Attribution techniques are usually applied post-hoc. In our work
studying knowledge acquisition during training (Chapter 7), we propose a frame-
work that provides full control over the factual knowledge a model is exposed to
enabling us to study (on a small scale) factual knowledge acquisition causally.

Knowledge Control:

The enormous amounts of training data, specifically vast amounts of internet data,
coupled with the diffused nature of parametrically stored knowledge, make it hard
to exert fine-grained control over the model’s responses and to avoid unintended
or undesirable outcomes. E.g., LMs have been shown to memorize specific in-
formation like personal identifiable information (Carlini et al., 2023) and more
generally to amplify harmful societal biases (Blodgett et al., 2020). Research try-
ing to align LMs’ generations with human preferences is an active research thread,
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e.g., spanning from careful dataset curation (Laurençon et al., 2022) to integration
of human feedback during finetuning (Ouyang et al., 2022), to name a few.

Knowledge Maintenance:

Given the dynamic nature of the world, it is essential to ensure that the infor-
mation stored within an LM remains accurate and relevant over time. Lazaridou
et al. (2021) highlight this problem in more depth by showing how a model’s per-
formance generally degrades on future text corpora from beyond their training
period. Specifically focusing on new events and KG facts, Livska et al. (2022);
Dhingra et al. (2022) introduce new benchmarks to measure how LMs can be
adapted to new information over time. With our work on EDIN (Chapter 9) we
highlight and quantify this problem in the context of Entity Linking.

To keep LMs up-to-date and effective, various methods are explored. One
strategy is to continuously train the model on novel data, e.g., Dhingra et al.
(2022). Another approach augments LMs with external knowledge sources thereby
enabling them to retrieve and integrate novel knowledge (Lewis et al., 2020; Izac-
ard and Grave, 2021; Min et al., 2020). Chapters 8 (BERT-kNN) and 9 (EDIN) of
this thesis fall into this category. Retrieval augmentation is discussed further in the
next section. A third method, known as knowledge editing (Sinitsin et al., 2020;
De Cao et al., 2021; Mitchell et al., 2022; Meng et al., 2022), aims for minimal
weight updates to modify specific information within the model but is not a very
practical solution to the problem.

Hybrid Systems:

Given the afore discussed challenges of knowledge access, interpretation, con-
trol and maintenance, a best-of-both-worlds approach, combining the strengths of
LMs and external systems, is promising. Hybrid systems that integrate an LM
with external knowledge sources, e.g., a retrieval component over natural text,
offer such best-of-both-worlds solutions. Retrieval-augmented LMs usually rely
on two steps: i) Retrieving textual passages relevant to the input prompt from a
datastore and ii) integrating this information at inference time.

In the past, retrieval commonly used term-match or BM25 (Sparck Jones,
1972; Robertson, 1997). Now, dense-retrieval – relying on a bi-encoder architec-
ture (Yih et al., 2011), that runs a nearest neighbor search between independently
encoded input queries and a large-scale index of text passage encodings – is a pop-
ular approach. Relevance is computed using the inner product or Euclidean dis-
tance between the query and the text passage encodings. To integrate the retrieved
information, the answer is usually generated using a sequence-to-sequence model
conditioned on the retrieved documents (Lewis et al., 2020; Izacard and Grave,
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2021; Min et al., 2020).
In the context of language modeling, Khandelwal et al. (2020) first integrates

retrieval over a billions of token datastore into an LM relying directly on the pre-
trained language model encoder. Our BERT-kNN model in Chapter 8 directly
builds on this work introducing such hybrid system to Q&A and showing how it
can integrate novel information not seen during training. RAG (Lewis et al., 2020)
then jointly finetunes the retriever and language model by modelling documents
as a latent variable, and minimizing the objective with gradient descent. In con-
trast to our work, RAG doesn’t require a two-stage retrieval process that relies on
a combination of Tf-idf and dense retrieval. REALM (Guu et al., 2020) extends
this from finetuning to jointly training the retrieval system with the LM encoder in
an end-to-end fashion. (Izacard et al., 2022) explores different contrastive learn-
ing methods to train retrievers to improve transfer to new applications. RETRO
(Borgeaud et al., 2022) scales the retrieval datastore to trillions of tokens, and
changes the model architecture to take retrieved documents as input. Atlas (Izac-
ard et al., 2022) is a retrieval-augmented LM, designed with a focus on few-shot
learning and sample efficiency that exhibits few-shot abilities that emerge at lower
scale than in standard LMs.

Instead of dense-retrieval integration, another line of work proposes integra-
tion of search engines by generating text queries, and using the retrieved docu-
ments as additional context (Nakano et al., 2019; Thoppilan et al., 2022; Shuster
et al., 2022; Lazaridou et al., 2022).

1.6 Foundations of Deep Learning for NLP
In this section, we introduce the basic concepts of Deep Learning tailored to NLP,
aimed at introducing the basic building blocks underlying Deep Learning based
LMs. We refer to Goodfellow et al. (2016) for a more thorough introduction to
Deep Learning.

1.6.1 Neural Networks

A neural network is a non-linear function, parameterized by Θ ∈ Rk, that maps
input X to output Y as fΘ : X ∈ Rn → Y ∈ Rm. In this definition, given Θ ∈
Rk, fΘ maps vectors to vectors. We can also extend its definition to input matrices
X ∈ Rk×n by applying fΘ row-wise, resulting in an output matrix fΘ(X) ∈
Rk×m. Additionally, fΘ is required to be differentiable with respect to Θ. Neural
networks are typically a composition of such functions fi,Θi

:

fΘ(x) = fl,Θl
(fl−1,Θl−1

(. . . f1,Θ1(x)) . . .)
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where l ∈ N is the number of layers in the network.
In the following, we present specific layers commonly used to build neural

LMs.

Encoder Layers

In NLP, the input space consists of sequences of words which have to be mapped
to real-valued vectors as input to the neural network. This transformation takes
place in the first layer of the neural network, called the embedding layer. First, we
define a finite vocabulary set V . Each item in the vocabulary space corresponds to
a column in a identity matrix In where n corresponds to the number of words in the
vocabulary. This sparse vector representation of the vocabulary is then mapped to
a dense representation via a matrix product with an embedding matrix E ∈ Rm×n

where each row corresponds to a vector representation, the embedding, of an item
in the vocabulary and m is referred to as the embedding dimensionality.

Typically the set V corresponds to a set of words or subword tokens (Schuster
and Nakajima, 2012). Subword tokens are beneficial because they lower the mem-
ory demands of E and allow the model to handle a wide range of text sequences.

Feed-Forward Layers

A feed-forward layer is a function that consists of a linear transformation followed
by a non-linear one that is applied element-wise to an input vector, x ∈ Rn:

Feed Forward(x) = g(W · x+ b)

where W ∈ Rm×n and b ∈ Rm are the layer’s parameters and g : Rm → Rm

is the non-linear activation function. There are a number of different activation
function to chose from. A common choice is the rectified linear unit (ReLU)
g(x) = max(0,x).

Softmax Layers

To transform the output of a neural network into a probability distribution, e.g., for
classification tasks, the last layer of the neural network typically uses a softmax
function:

Softmax(x)i =
exi

∑n
j=1 e

x
j

which is a parameter-free mapping where Softmax(x)i is interpreted as the prob-
ability that the model assigns to the ith output class.
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Layer Normalization

Layer normalization (Ba et al., 2016) is a technique to normalize the inputs to a
layer which stabilizes the learning process. With learnable parameters w,b ∈ Rn,
it is defined as:

Layer Norm(x) = w ⊙ x− µ(x)

σ(x)
+ b

with µ(x), σ(x) being the mean and the standard deviation of input x and ⊙
denoting element-wise multiplication.

Recurrent Layers

For a sequential input X = {x0, . . . ,xt} like sequences of words (e.g., from a
sentence), a recurrent layer recursively maps input xt ∈ Rn to output yt ∈ Rm by
computing

ht = gh(Uhxt +Vhh(t−1) + bh)

yt = gy(Uyht + by),

where

θ = (Uh,Vh ∈ Rn×n;bh ∈ Rd;Uy ∈ Rm×n;by ∈ Rm)

are the parameters of the model and g are activation functions.
RNNs can effectively capture temporal dependencies and sequential informa-

tion by maintaining hidden vector representations ht that evolve as they process
each element of the input sequence. This sequential nature made RNNs suitable
for language processing tasks.

Attention Layers

An attention layer can focus on different elements of an input sequence X =
{x0, . . . ,xt}, computing weighted sums based on their importance. To this end,
we define Q, K and V matrices, as so-called query, key and value representations
of X where each column of the matrix represents a k-dimensional vector repre-
sentation of xt. The output of the attention layer is a weighted sum of V, where
the weight assigned to each value is determined by the dot-product of the query
with all the keys:

Attention(Q,K,V) = Softmax(QK⊤/
√
k) ·V

Attention layers in NLP enable updating word representations based on their
context words by attending to their representations (Bahdanau et al., 2015) and
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Figure 1.1 – Transformer encoder block (adapted from Vaswani et al. (2017))

are one of the core building blocks of the Transformer architecture (Vaswani et al.,
2017). The Transformer architecture uses multi-head self-attention. Self-attention
refers to the special case where Q = K = V. In multi-head attention, attention
is performed multiple times with different linear transformations of Q, K and V
where the resulting sequences are concatenated, and a final linear transformation
is applied.

1.6.2 Transformer Models
In this section, we will assemble the individual layers we introduced in the pre-
ceding section to build the Transformer model (Vaswani et al., 2017). The Trans-
former is the core architecture that all modern LMs have in common.

Before the introduction of the Transformer model, recurrent neural networks
(RNNs) that stack multiple recurrent layers, specifically the Long short-term mem-
ory (LSTM) network (Hochreiter and Schmidhuber, 1997) were commonly used
in NLP.

RNN’s sequential nature by definition seemed suitable for language. How-
ever, propagating information across long time spans turned out to be empirically
difficult, e.g., as analyzed by Cho et al. (2014) for machine translation. Attention
layers have been added to overcome this issue (Bahdanau et al., 2015). Vaswani
et al. (2017) proposed a machine translation system relying on attention only. The
architecture comprises an encoder responsible for transforming input sequences
into contextualized vector representations via self-attention, and a decoder gener-
ating output sequences token-by-token by attending to both input representations
and previously generated output.
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Transformer Encoders (see Figure 1.1) are composed of stacked blocks, each
consisting of self-attention layers followed by feed-forward layers, incorporating
residual connections and layer normalization. These blocks transform input to-
ken embeddings into contextualized representations, with positional information
added through learned positional embeddings or combinations of sine and cosine
functions. The entire encoder comprises multiple such blocks.

Transformer Decoders are comprised of multiple blocks similar to the se-
quence of encoder layers but employ masked self-attention to prevent tokens from
attending to future tokens during left-to-right text generation. Additionally, de-
coders incorporate attention layers allowing contextualized representations to at-
tend to input representations from the encoder.

To obtain token predictions, the output of the last hidden layer T (X) is once
more transformed to obtain S(X) = Layer Norm(σ(T (X)W + b)). Then the
embeddings matrix E from the first layer is reused and prediction scores are ob-
tained by P (X) = Softmax(S(X)E⊺ +b). Here, P (X)t can be interpreted as the
probability that the model assigns to vocabulary tokens at step t.

1.6.3 Training
Initially, the network’s parameters Θ are set randomly. We then train the neural
network fΘ to optimize a specified objective function formulated in terms of a loss
function L. For a specific training example x with label y, we define loss L(x, y)
which we aim to minimize over the set of training examples Dtrain:

L =
∑

(x,y)∈Dtrain

L(x, y).

A common loss function used in neural networks is the cross-entropy loss, which
is defined as:

L = − log fΘ(x)y.

This loss function is typical for classification tasks with k classes where the
model generates a k-dimensional output vector fΘ(x) ∈ [0, 1]k for each input x.
The final layer is a softmax layer, allowing us to interpret fΘ(x)i as the probability
assigned to class i for input x.

In the context of language modeling, y represents the correct token, and fΘ(x)
is the output of the Transformer model. Here, fΘ(x)y is the probability assigned
to the correct token y given the input x as shown in the prior section.

To train neural networks, we typically use gradient descent. The gradient of
the loss, ∇L, is computed, and the parameters Θ are updated by taking a small
step in the opposite direction of the gradient:
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Θ′
i = Θi − γ · (∇L)i ,

where γ ∈ R is the learning rate. This process is repeated multiple times until
a predefined termination criterion is met.

To train deep neural networks successfully, modifications of this basic method
exist.

1.7 Foundations of NLP for LMs
In this section, we introduce the basic concepts of representation learning for nat-
ural language and language modeling, and give an overview of popular language
models published during the time of this thesis. For a more in-depth introduction
to NLP, we refer the reader to Jurafsky and Martin (2009)4.

Central to representation learning is the hypothesis that a word’s meaning can
be inferred by the contexts in which a word appears (Firth, 1957). Representation
learning algorithms following this hypothesis base a word’s representation on the
contexts they appear in. Consequently, two words that occur in similar contexts,
share similar representations as they are likely to have similar meaning.

1.7.1 Static Representations
In static representations, each unit in a vocabulary V with size n is represented
by a single static vector given by f : V → Rd with dimensionality d ∈ N. Such
representations could follow different formalization.

An early formalization of Firth’s hypothesis is the idea of count-based ap-
proaches where a co-occurrence matrix tracks how often words appear together
within a context window. Later neural networks approaches became more preva-
lent. Most prominently, Mikolov et al. (2013) introduced two methods to estimate
word vectors. One method is skip-gram with negative sampling, commonly re-
ferred to as word2vec. The underlying idea is to predict, given a word vi, whether
another word vj is likely to appear in the context window of vi. This prediction
is realized by a shallow, two-layer neural network where the dot product between
embeddings of words should be large when occurring in the same context and
small otherwise.

4For an updated version, see https://web.stanford.edu/ jurafsky/slp3/
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1.7.2 Contextualized Representations.
With static word embeddings, ambiguous words, e.g., bank, that carry multiple
meanings (e.g., a river bank or the financial institution) share a single static rep-
resentation even though they appear in distinct contexts. Contextualized represen-
tations take the context in which a word appears explicitly into account. A word
is represented by a vector that is dynamically conditioned on the current context
it appears in. Hence the representations for the word bank in the above examples
differ.

Among the first approaches to learn contextualized embeddings are Peters
et al. (2017); McCann et al. (2017). The central idea is to learn a neural language
model and use the hidden states of the model as contextualized embeddings.

1.7.3 Language Models
A language model is a statistical model of natural language. It models the proba-
bility that a sequence of tokens occurs, i.e., it models the probability P (t0, . . . , tt).
Using the product rule of probability, we can decompose the probability of a se-
quence of tokens into conditional probabilities of each token given the previous
context:

P (t0, . . . , tt) = P (t0)P (t1|t0)P (t2|t0, t1) . . . P (tt|t0, . . . , tt−1) =
t∏

i=0

P (ui|u<i).

A statistical model Pθ(ti|t0, . . . , ti−1) can then be parameterized with, for ex-
ample, an LSTM, e.g., Sundermeyer et al. (2012).

A significant benefit is that language models can be pretrained on extensive
text data, such as internet sources, without requiring manual labeling. As a result,
these pretrained models can then be applied to various downstream tasks without
the need for additional labeled data.

Elmo: Embeddings from Language Models

Peters et al. (2017) introduced contextualized embeddings by training a language
model with forward and backward LSTMs. The backward pass models previous
tokens using future context, and the hidden states of the network, combined with
static embeddings, serve as contextual input for downstream sequence tagging
tasks.

Building on this, Peters et al. (2018) developed deep contextualized embed-
dings known as Embeddings from Language Models (ELMo), which at the time
achieved state-of-the-art performance on various tasks. ELMo uses bidirectional
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LSTMs for language modeling and allows the downstream model to learn a weighted
mixture of hidden representations from different layers.

BERT: Bidirectional Encoder Representations from Transformers

Devlin et al. (2019) introduced Bidirectional Encoder Representations from Trans-
formers (BERT) which is a Transformer encoder model pretrained on a modified,
bi-directional, form of language modeling. BERT considers context words from
both left and right sides simultaneously, rather than being limited to one direction.
This version of language modeling is termed masked language modeling (MLM).

In masked language modeling, a random portion of the input tokens in a sen-
tence is corrupted and the model objective is to predict the masked tokens of the
original input. In BERT, 15% of the input tokens in a training corpus are sampled
for learning. Of these, 80% are replaced with [MASK], 10% are replaced with
randomly selected tokens, and the remaining 10% are left unchanged.

To adapt BERT for downstream tasks, we finetuning the model with task
specifc data. For sequence labeling tasks, this involves adding a prediction head,
which is a feed-forward layer, on top of the pretrained transformer. The output
probabilities are computed as P (X) = Softmax(T (X)W+b), where W ∈ Rd×k

and b ∈ Rk for k possible labels. The parameters from this task-specific predic-
tion head, along with the parameters from the pretrained Transformer model, are
jointly optimized via a loss function appropriate for the downstream task.

1.7.4 Overview of Neural Language Models
ELMo and BERT initiated the development of a large variety of LMs with differ-
ent sizes, architectures, and training data. In Table 1.1, we list popular transformer-
based language models published during the course of this thesis.

On the side of the training objective, we distinguish between masked language
models (MLM) (described in the preceding section) and causal language mod-
els (CLM). As a MLM randomly masks tokens within an input sequence, it has
the advantage of bidirectional context, allowing the model to consider both past
and future tokens when making predictions. A CLM is an autoregressive model
trained to predict the next token in a sequence given only the previous tokens,
meaning they only consider the past and not the future context when generating
predictions.

Architecturally, LMs can be differentiated in terms of their encoder/decoder
structure. The original Transformer consists of two stacks: the encoder and de-
coder. The encoder is fed the sequence of input tokens and outputs a sequence of
vectors of the same length as the input. Then, the decoder autoregressively pre-
dicts the target sequence, token by token, conditioned on the output of the encoder.
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To achieve this conditioning, the decoder includes cross-attention layers in each
of its blocks, allowing the decoder to also attend to the output of the encoder. The
self-attention layers in the decoder utilize a causal masking pattern that prevents
the model from attending to future tokens when predicting the output sequence.

BERT originally popularized the encoder-only architecture where only a Trans-
former encoder layer stack was used. A limitation of this architecture is the con-
straint that it can only produce the same number of tokens that it was fed as input.

Most recent LMs use a decoder-only architecture. These models can be trained
as a traditional language model (i.e., to predict the next token in a sequence).
Decoder-only models have no independent means of processing or representing
the input sequence and target sequence differently, and conditioning is simply
based on past tokens. On the one hand, this means that the representation for any
conditioning text is inherently weaker; on the other hand, it yields a simpler ar-
chitecture that is naturally suited to a standard autoregressive next-step-prediction
pretraining objective.

Wang et al. (2022a) gives a comprehensive comparison between architectural
and training objective differences.

In this work, we mostly focus on BERT (Devlin et al., 2019) and T5 (Raffel
et al., 2020) but also make use of ELMo (Peters et al., 2017) , Transformer-XL
(Dai et al., 2019), RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2019) and
multilingual mBERT (Devlin et al., 2019).
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Model Architecture Data Objective Sizes Chapter

BERT
Devlin et al. (2019)

Enc Wikipedia,
Books Corpus

CLM base (110M),
large (336M)

2,3,7,8,9

mBERT
Devlin et al. (2019)

Enc 102 languages
with largest
Wikipedias

MLM,
NSP

base (110M) 4

Transformer-XL
Dai et al. (2019)

Enc wikitext-103 large (257M) 2

RoBERTa
Liu et al. (2019)

Enc Wikipedia,
Books
Corpus,
CC-News,
OpenWeb-
Text, Stories

MLM base (125M),
large (355M)

3

XLM-R
Conneau et al. (2020)

Enc Common
Crawl

MLM base (270M),
large (550M)

-

ALBERT
Lan et al. (2019)

Enc Wikipedia,
Books
Corpus,
CC-News,
OpenWeb-
Text, Stories

MLM,
SOP

base (12M),
large (18M),
xlarge (60M),
xxlarge (235M)

3

GPT-2
Radford et al. (2019)

Dec WebText CLM small (117M),
medium (345M),
large (774M),
XL (1.5B)

-

GPT-3
Brown et al. (2020)

Dec Common
Crawl,
WebText2,
Books1,
Books2,
Wikipedia

CLM small (125M),
medium (350M),
large (760M),
XL (1.3B),
2.7B, 6.7B,
13B, 175B

-

T5
Raffel et al. (2020)

Enc-Dec C4 MLM small (77M),
base (250M),
large (800M),
XL (3B),
XXL (11B)

5,6

Table 1.1 – Overview of popular transformer-based LMs published during
the time of this thesis (adapted from Schick (2023)). For each model, we list
the underlying Transformer architecture, the pretraining data and objective,
relevant model sizes and the chapters in which it is used.
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1.8 Limitations
Saying that the field of NLP is moving quickly would be an understatement. Its
speed of progress is unprecedented. The scope of contributions of a single thesis is
naturally limited. This thesis mostly studies early stage LMs, specifically BERT.
Developments since November 2022 with the introduction of ChatGPT (OpenAI,
2024) are out of scope of this thesis. Moving forward, future work has to study
how findings transfer to larger models where new capabilities could have emerged
(Wei et al., 2022a).

On a technical level, the presented work on improving knowledge consistency
and completeness embeds the LM into broader systems where improvements hap-
pen in this larger system outside of the LM itself. Propagating and generalizing
information back into the parameters of the LM is out of scope of this thesis.
Similarly, our studies of different consistency patterns highlight the problem at
inference time but do not investigate the inner workings of LMs that could enable
a model to construct consistent knowledge representations latently.

1.9 Outlook
GPT-3.5 and 4 (OpenAI, 2024) mark another significant breakthrough in the field
of NLP, saturating many academic benchmarks and hence also constituting sig-
nificant progress in the context of the shortcomings of LMs highlighted by this
dissertation. These models are larger in size and have been trained on more data.
Additionally, an emphasis has been put on aligning the model to human prefer-
ences and instructions (Ouyang et al., 2022). Nonetheless, despite these advance-
ments, issues of consistency and completeness in knowledge acquisition are not
entirely resolved.

As demonstrated in our transition from studying 770 million parameter mod-
els (Kassner et al., 2021) to 11 billion models (Kassner et al., 2023) where we
moved to more challenging consistency sets, the nature of the problem appears
to have shifted in granularity. While earlier models exhibited obvious and easily
identifiable failures, current models tend to display more nuanced, subtle incon-
sistencies. Recent studies also confirm that inconsistencies, e.g., in the context
of negation (Truong et al., 2023) and logical rules (Jang and Lukasiewicz, 2023;
Berglund et al., 2024), persist, highlighting the relevance of this thesis also in the
context of GPT-3.5/4.

In terms of completeness, we still lack a standard approach on how to integrate
novel information. However, highly competitive and active model development
ensures that up-to-date versions are frequently available. To enhance knowledge
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integration, retrieval-augmentation proves to be a practical solution with RAG-
like approaches (Lewis et al., 2020) gaining significant popularity in industry.

While practical solutions offer immediate benefits, our understanding of how
LMs acquire and generalize knowledge remains insufficient. Research studying
the inner workings of LMs, e.g., Geva et al. (2023); Wang et al. (2023a); Yang
et al. (2024), holds promise. By enabling models to generalize knowledge beyond
what they have explicitly seen during training and enhancing latent reasoning ca-
pabilities during both training and inference, such research holds potential for
significant advancements. Ultimately, the goal is to develop models capable of
generalizing any factual statement implicitly and integrating it seamlessly into a
coherent belief system. For instance, in a multilingual context, given informa-
tion in English, an ideal model would be able to automatically generalize across
languages, enabling queries in any language of interest.

However, relying solely on latent knowledge and reasoning proves insuffi-
cient at present. Retrieval-augmented and prompting approaches like chain-of-
thought-prompting (Wei et al., 2022b) and self-consistency (Wang et al., 2023b)
or instruction following (Wang et al., 2022b) which trigger the LM to reason ex-
plicitly prove to be a viable alternative in making models more consistent and able
to integrate external information – specifically given most recent introduction of
models that can rely on millions of tokens of context (Gemini Team, 2024). Ad-
ditionally, the development of LM agents (Weng, 2023), which are models em-
bedded in larger systems capable of observing and taking actions in the real world
via tools, heralds an exciting new chapter in language model capabilities. These
agents leverage their ability to interact with external environments, allowing them
to gather real-time information and make informed decisions, further enhancing
the applicability and robustness of language models in practical scenarios.
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Negated and Misprimed Probes for
Pretrained Language Models: Birds
Can Talk, But Cannot Fly
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Abstract

Building on Petroni et al. (2019), we pro-
pose two new probing tasks analyzing fac-
tual knowledge stored in Pretrained Language
Models (PLMs). (1) Negation. We find
that PLMs do not distinguish between negated
(“Birds cannot [MASK]”) and non-negated
(“Birds can [MASK]”) cloze questions. (2)
Mispriming. Inspired by priming methods in
human psychology, we add “misprimes” to
cloze questions (“Talk? Birds can [MASK]”).
We find that PLMs are easily distracted by
misprimes. These results suggest that PLMs
still have a long way to go to adequately learn
human-like factual knowledge.

1 Introduction

PLMs like Transformer-XL (Dai et al., 2019),
ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019) have emerged as universal tools that capture
a diverse range of linguistic and factual knowledge.
Recently, Petroni et al. (2019) introduced LAMA
(LAnguage Model Analysis) to investigate whether
PLMs can recall factual knowledge that is part of
their training corpus. Since the PLM training ob-
jective is to predict masked tokens, question an-
swering (QA) tasks can be reformulated as cloze
questions. For example, “Who wrote ‘Dubliners’?”
is reformulated as “[MASK] wrote ‘Dubliners’.” In
this setup, Petroni et al. (2019) show that PLMs out-
perform automatically extracted knowledge bases
on QA. In this paper, we investigate this capability
of PLMs in the context of (1) negation and what
we call (2) mispriming.

(1) Negation. To study the effect of negation
on PLMs, we introduce the negated LAMA dataset.
We insert negation elements (e.g., “not”) in LAMA
cloze questions (e.g., “The theory of relativity was
not developed by [MASK].”) – this gives us posi-
tive/negative pairs of cloze questions.

Querying PLMs with these pairs and comparing
the predictions, we find that the predicted fillers
have high overlap. Models are equally prone to
generate facts (“Birds can fly”) and their incor-
rect negation (“Birds cannot fly”). We find that
BERT handles negation best among PLMs, but it
still fails badly on most negated probes. In a second
experiment, we show that BERT can in principle
memorize both positive and negative facts correctly
if they occur in training, but that it poorly gener-
alizes to unseen sentences (positive and negative).
However, after finetuning, BERT does learn to cor-
rectly classify unseen facts as true/false.

(2) Mispriming. We use priming, a standard
experimental method in human psychology (Tul-
ving and Schacter, 1990) where a first stimulus
(e.g., “dog”) can influence the response to a sec-
ond stimulus (e.g., “wolf” in response to “name
an animal”). Our novel idea is to use priming
for probing PLMs, specifically mispriming: we
give automatically generated misprimes to PLMs
that would not mislead humans. For example, we
add “Talk? Birds can [MASK]” to LAMA where
“Talk?” is the misprime. A human would ignore
the misprime, stick to what she knows and produce
a filler like “fly”. We show that, in contrast, PLMs
are misled and fill in “talk” for the mask.

We could have manually generated more natural
misprimes. For example, misprime “regent of Anti-
och” in “Tancred, regent of Antioch, played a role
in the conquest of [MASK]” tricks BERT into chos-
ing the filler “Antioch” (instead of “Jerusalem”).
Our automatic misprimes are less natural, but au-
tomatic generation allows us to create a large mis-
prime dataset for this initial study.

Contribution. We show that PLMs’ ability to
learn factual knowledge is – in contrast to human
capabilities – extremely brittle for negated sen-
tences and for sentences preceded by distracting
material (i.e., misprimes). Data and code will be
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published.1

2 Data and Models

LAMA’s cloze questions are generated from
subject-relation-object triples from knowledge
bases (KBs) and question-answer pairs. For KB
triples, cloze questions are generated, for each re-
lation, by a templatic statement that contains vari-
ables X and Y for subject and object (e.g, “X was
born in Y”). We then substitute the subject for X
and MASK for Y. In a question-answer pair, we
MASK the answer.

LAMA is based on several sources: (i) Google-
RE. 3 relations: “place of birth”, “date of birth”,
“place of death”. (ii) T-REx (Elsahar et al., 2018).
Subset of Wikidata triples. 41 relations. (iii) Con-
ceptNet (Li et al., 2016). 16 commonsense rela-
tions. The underlying corpus provides matching
statements to query PLMs. (iv) SQuAD (Rajpurkar
et al., 2016). Subset of 305 context-insensitive
questions, reworded as cloze questions.

We use the source code provided by Petroni
et al. (2019) and Wolf et al. (2019) to evaluate
Transformer-XL large (Txl), ELMo original (Eb),
ELMo 5.5B (E5B), BERT-base (Bb) and BERT-
large (Bl).

Negated LAMA. We created negated LAMA
by manually inserting a negation element in each
template or question. For ConceptNet we only
consider an easy-to-negate subset (see appendix).

Misprimed LAMA. We misprime LAMA by
inserting an incorrect word and a question mark
at the beginning of a statement; e.g., “Talk?” in
“Talk? Birds can [MASK].” We only misprime
questions that are answered correctly by BERT-
large. To make sure the misprime is misleading,
we manually remove correct primes for SQuAD
and ConceptNet and automatically remove primes
that are the correct filler for a different instance of
the same relation for T-REx and ConceptNet. We
create four versions of misprimed LAMA (A, B, C,
D) as described in the caption of Table 3; Table 1
gives examples.

3 Results

Negated LAMA. Table 2 gives spearman rank cor-
relation ρ and % overlap in rank 1 predictions be-
tween original and negated LAMA.

Our assumption is that the correct answers for
a pair of positive question and negative question

1https://github.com/norakassner/LAMA primed negated

Version Query
A Dinosaurs? Munich is located in [MASK] .
B Somalia? Munich is located in [MASK] .
C Prussia? Munich is located in [MASK] .
D Prussia? “This is great”. . . .

“What a surprise.” “Good to know.” . . .
Munich is located in [MASK] .

Table 1: Examples for different versions of misprimes:
(A) are randomly chosen, (B) are randomly chosen
from correct fillers of different instances of the relation,
(C) were top-ranked fillers for the original cloze ques-
tion but have at least a 30% lower prediction probabil-
ity than the correct object. (D) is like (C) except that 20
short neutral sentences are inserted between misprime
and MASK sentence.

should not overlap, so high values indicate lack
of understanding of negation. The two measures
are complementary and yet agree very well. The
correlation measure is sensitive in distinguishing
cases where negation has a small effect from those
where it has a larger effect.2 % overlap is a measure
that is direct and easy to interpret.

In most cases, ρ > 85%; overlap in rank 1 pre-
dictions is also high. ConcepNet results are most
strongly correlated but TREx 1-1 results are less
overlapping. Table 4 gives examples (lines marked
“N”). BERT has slightly better results. Google-RE
date of birth is an outlier because the pattern “X
(not born in [MASK])” rarely occurs in corpora
and predictions are often nonsensical.

In summary, PLMs poorly distinguish positive
and negative sentences.

We give two examples of the few cases where
PLMs make correct predictions, i.e., they solve
the cloze task as human subjects would. For “The
capital of X is not Y” (TREX, 1-1) top ranked pre-
dictions are “listed”, “known”, “mentioned” (vs.
cities for “The capital of X is Y”). This is appropri-
ate since the predicted sentences are more common
than sentences like “The capital of X is not Paris”.
For “X was born in Y”, cities are predicted, but

2A reviewer observes that spearman correlation is gener-
ally high and wonders whether high spearman correlation is re-
ally a reliable indicator of negation not changing the answer of
the model. As a sanity check, we also randomly sampled, for
each query correctly answered by BERT-large (e.g., “Einstein
born in [MASK]”), another query with a different answer, but
the same template relation (e.g., “Newton born in [MASK]”)
and computed the spearman correlation between the predic-
tions for the two queries. In general, these positive-positive
spearman correlations were significantly lower than those be-
tween positive (“Einstein born in [MASK]”) and negative
(“Einstein not born in [MASK]”) queries (t-test, p < 0.01).
There were two exceptions (not significantly lower): T-REx
1-1 and Google-RE birth-date.
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Facts Rels Txl Eb E5b Bb Bl
ρ % ρ % ρ % ρ % ρ %

Google-RE

birth-place 2937 1 92.8 47.1 97.1 28.5 96.0 22.9 89.3 11.2 88.3 20.1
birth-date 1825 1 87.8 21.9 92.5 1.5 90.7 7.5 70.4 0.1 56.8 0.3
death-place 765 1 85.8 1.4 94.3 57.8 95.9 80.7 89.8 21.7 87.0 13.2

T-REx

1-1 937 2 89.7 88.7 95.0 28.6 93.0 56.5 71.5 35.7 47.2 22.7
N-1 20006 23 90.6 46.6 96.2 78.6 96.3 89.4 87.4 52.1 84.8 45.0
N-M 13096 16 92.4 44.2 95.5 71.1 96.2 80.5 91.9 58.8 88.9 54.2

ConceptNet - 2996 16 91.1 32.0 96.8 63.5 96.2 53.5 89.9 34.9 88.6 31.3
SQuAD - 305 - 91.8 46.9 97.1 62.0 96.4 53.1 89.5 42.9 86.5 41.9

Table 2: PLMs do not distinguish positive and negative sentences. Mean spearman rank correlation (ρ) and mean
percentage of overlap in first ranked predictions (%) between the original and the negated queries for Transformer-
XL large (Txl), ELMo original (Eb), ELMo 5.5B (E5B), BERT-base (Bb) and BERT-large (Bl).

for “X was not born in Y”, sometimes countries
are predicted. This also seems natural: for the posi-
tive sentence, cities are more informative, for the
negative, countries.

Balanced corpus. Investigating this further, we
train BERT-base from scratch on a synthetic cor-
pus. Hyperparameters are listed in the appendix.
The corpus contains as many positive sentences of
form “xj is an” as negative sentences of form “xj
is not an” where xj is drawn from a set of 200
subjects S and an from a set of 20 adjectives A.
The 20 adjectives form 10 pairs of antonyms (e.g.,
“good”/”bad”). S is divided into 10 groups gm of
20. Finally, there is an underlying KB that defines
valid adjectives for groups. For example, assume
that g1 has property am = “good”. Then for each
xi ∈ g1, the sentences “xi is good” and “xi is not
bad” are true. The training set is generated to con-
tain all positive and negative sentences for 70% of
the subjects. It also contains either only the posi-
tive sentences for the other 30% of subjects (in that
case the negative sentences are added to test) or
vice versa. Cloze questions are generated in the for-
mat “xj is [MASK]”/“xj is not [MASK]”. We test
whether (i) BERT memorizes positive and negative
sentences seen during training, (ii) it generalizes to
the test set. As an example, a correct generalization
would be “xi is not bad” if “xi is good” was part of
the training set. The question is: does BERT learn,
based on the patterns of positive/negative sentences
and within-group regularities, to distinguish facts
from non-facts.

Table 5 (“pretrained BERT”) shows that BERT
memorizes positive and negative sentences, but
poorly generalizes to the test set for both positive
and negative. The learning curves (see appendix)
show that this is not due to overfitting the training
data. While the training loss rises, the test preci-
sion fluctuates around a plateau. However, if we

Corpus Relation Facts A B C D

Google-RE
birth-place 386 11.7 44.7 99.5 98.4
birth-date 25 72.0 91.7 100.0 88.0
death-place 88 14.8 47.1 98.9 98.9

T-REx
1-1 661 12.7 20.6 30.1 28.1
N-1 7034 22.1 48.3 59.9 41.2
N-M 2774 26.6 55.3 58.7 43.9

ConceptNet - 146 52.1 59.6 82.9 70.6
SQuAD - 51 33.3 - 68.6 60.8

Table 3: Absolute precision drop (from 100%, lower
better) when mispriming BERT-large for the LAMA
subset that was answered correctly in its original form.
We insert objects that (A) are randomly chosen, (B)
are randomly chosen from correct fillers of different in-
stances of the relation (not done for SQuAD as it is
not organized in relations), (C) were top-ranked fillers
for the original cloze question but have at least a 30%
lower prediction probability than the correct object. (D)
investigates the effect of distance, manipulating (C)
further by inserting a concatenation of 20 neutral sen-
tences (e.g., “Good to know.”, see appendix) between
misprime and cloze question.

finetune BERT (“finetuned BERT”) on the task of
classifying sentences as true/false, its test accuracy
is 100%. (Recall that false sentences simply cor-
respond to true sentence with a “not” inserted or
removed.) So BERT easily learns negation if su-
pervision is available, but fails without it. This
experiment demonstrates the difficulty of learning
negation through unsupervised pretraining. We
suggest that the inability of pretrained BERT to
distinguish true from false is a serious impediment
to accurately handling factual knowledge.

Misprimed LAMA. Table 3 shows the effect of
mispriming on BERT-large for questions answered
correctly in original LAMA; recall that Table 1
gives examples of sentences constructed in modes
A, B, C and D. In most cases, mispriming with a
highly ranked incorrect object causes a precision
drop of over 60% (C). Example predictions can be
found in Table 4 (lines marked “M”). This sensi-
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cloze question true top 3 words generated with log probs
G

oo
gl

e
R

E

O Marcel Oopa died in the city of [MASK]. Paris Paris (-2.3), Lausanne (-3.3), Brussels (-3.3)
N Marcel Oopa did not die in the city of [MASK]. Paris (-2.4), Helsinki (-3.5), Warsaw (-3.5)
M Yokohama? Marcel Oopa died in the city of [MASK]. Yokohama (-1.0), Tokyo (-2.5), Paris (-3.0)
O Anatoly Alexine was born in the city of [MASK]. Moscow Moscow (-1.2), Kiev (-1.6), Odessa (-2.5)
N Anatoly Alexine was not born in the city of [MASK]. Moscow (-1.2), Kiev (-1.5), Novgorod (-2.5)
M Kiev? Anatoly Alexine was born in the city of [MASK]. Kiev (-0.0), Moscow (-6.1), Vilnius (-7.0)

T
E

R
x

O Platonism is named after [MASK] . Plato Plato (-1.5), Aristotle (-3.5), Locke (-5.8)
N Platonism is not named after [MASK]. Plato (-0.24), Aristotle (-2.5), Locke (-5.7)
M Cicero? Platonism is named after [MASK]. Cicero (-2.3), Plato ( -3.5), Aristotle (-5.1)
O Lexus is owned by [MASK] . Toyota Toyota (-1.4), Renault (-2.0), Nissan (-2.4)
N Lexus is not owned by [MASK]. Ferrari (-1.0), Fiat (-1.4), BMW (-3.7)
M Microsoft? Lexus is owned by [MASK] . Microsoft (-1.2), Google ( -2.1), Toyota (-2.6)

C
on

ce
pt

N
et

O Birds can [MASK]. fly fly (-0.5), sing (-2.3), talk (-2.8)
N Birds cannot [MASK]. fly (-0.3), sing ( -3.6), speak (-4.1)
M Talk? Birds can [MASK]. talk (-0.2), fly ( -2.5), speak (-3.9)
O A beagle is a type of [MASK]. dog dog (-0.1), animal (-3.7), pigeon (-4.1)
N A beagle is not a type of [MASK]. dog (-0.2), horse ( -3.8), animal (-4.1)
M Pigeon? A beagle is a type of [MASK]. dog (-1.3), pigeon ( -1.4), bird (-2.2)

SQ
uA

D

O Quran is a [MASK] text. religious religious (-1.0), sacred (-1.8), Muslim (-3.2)
N Quran is not a [MASK] text. religious (-1.1), sacred ( -2.3), complete (-3.3)
M Secular? Quran is a [MASK] text. religious (-1.5), banned ( -2.8), secular (-3.0)
O Isaac’s chains are made out of [MASK]. silver silver (-1.9), gold (-2.1), iron (-2.2)
N Isaac’s chains are not made out of [MASK]. iron (-1.2), metal ( -2.1), gold (-2.1)
M Iron? Isaac’s chains are made out of [MASK]. iron (-0.4), steel ( -2.8), metal (-2.8)

Table 4: BERT-large examples for (O) original , (N) negated and (M) misprimed (Table 3 C) LAMA.

train test
pos neg pos neg

pretrained BERT 0.9 0.9 0.2 0.2
finetuned BERT 1.0 1.0 1.0 1.0

Table 5: Accuracy of BERT on balanced corpus. Pre-
trained BERT does not model negation well, but fine-
tuned BERT classifies sentences as true/false correctly.

tivity to misprimes still exists when the distance
between misprime and cloze question is increased:
the drop persists when 20 sentences are inserted
(D). Striking are the results for Google-RE where
the model recalls almost no facts (C). Table 4 (lines
marked “M”) shows predicted fillers for these mis-
primed sentences. BERT is less but still badly
affected by misprimes that match selectional re-
strictions (B). The model is more robust against
priming with random words (A): the precision drop
is on average more than 35% lower than for (D).
We included the baseline (A) as a sanity check for
the precision drop measure. These baseline results
show that the presence of a misprime per se does
not confuse the model; a less distracting misprime
(different type of entity or a completely implausible
answer) often results in a correct answer by BERT.

4 Discussion

Whereas Petroni et al. (2019)’s results suggest that
PLMs are able to memorize facts, our results indi-
cate that PLMs largely do not learn the meaning

of negation. They mostly seem to predict fillers
based on co-occurrence of subject (e.g., “Quran”)
and filler (“religious”) and to ignore negation.

A key problem is that in the LAMA setup, not
answering (i.e., admitting ignorance) is not an op-
tion. While the prediction probability generally is
somewhat lower in the negated compared to the
positive answer, there is no threshold across cloze
questions that could be used to distinguish valid
positive from invalid negative answers (cf. Table 4).

We suspect that a possible explanation for PLMs’
poor performance is that negated sentences occur
much less frequently in training corpora. Our syn-
thetic corpus study (Table 5) shows that BERT is
able to memorize negative facts that occur in the
corpus. However, the PLM objective encourages
the model to predict fillers based on similar sen-
tences in the training corpus – and if the most simi-
lar statement to a negative sentence is positive, then
the filler is generally incorrect. However, after fine-
tuning, BERT is able to classify truth/falseness cor-
rectly, demonstrating that negation can be learned
through supervised training.

The mispriming experiment shows that BERT
often handles random misprimes correctly (Table 3
A). There are also cases where BERT does the
right thing for difficult misprimes, e.g., it robustly
attributes “religious” to Quran (Table 4). In general,
however, BERT is highly sensitive to misleading
context (Table 3 C) that would not change human
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behavior in QA. It is especially striking that a single
word suffices to distract BERT. This may suggest
that it is not knowledge that is learned by BERT, but
that its performance is mainly based on similarity
matching between the current context on the one
hand and sentences in its training corpus and/or
recent context on the other hand. Poerner et al.
(2019) present a similar analysis.

Our work is a new way of analyzing differences
between PLMs and human-level natural language
understanding. We should aspire to develop PLMs
that – like humans – can handle negation and are
not easily distracted by misprimes.

5 Related Work

PLMs are top performers for many tasks, includ-
ing QA (Kwiatkowski et al., 2019; Alberti et al.,
2019). PLMs are usually finetuned (Liu et al., 2019;
Devlin et al., 2019), but recent work has applied
models without finetuning (Radford et al., 2019;
Petroni et al., 2019). Bosselut et al. (2019) investi-
gate PLMs’ common sense knowledge, but do not
consider negation explicitly or priming.

A wide range of literature analyzes linguis-
tic knowledge stored in pretrained embeddings
(Jumelet and Hupkes, 2018; Gulordava et al., 2018;
Giulianelli et al., 2018; McCoy et al., 2019; Das-
gupta et al., 2018; Marvin and Linzen, 2018;
Warstadt and Bowman, 2019; Kann et al., 2019).
Our work analyzes factual knowledge. McCoy
et al. (2019) show that BERT finetuned to perform
natural language inference heavily relies on syntac-
tic heuristics, also suggesting that it is not able to
adequately acquire common sense.

Warstadt et al. (2019) investigate BERT’s un-
derstanding of how negative polarity items are
licensed. Our work, focusing on factual knowl-
edge stored in negated sentences, is complementary
since grammaticality and factuality are mostly or-
thogonal properties. Kim et al. (2019) investigate
understanding of negation particles when PLMs
are finetuned. In contrast, our focus is on the inter-
action of negation and factual knowledge learned
in pretraining. Ettinger (2019) defines and applies
psycho-linguistic diagnostics for PLMs. Our use of
priming is complementary. Their data consists of
two sets of 72 and 16 sentences whereas we create
42,867 negated sentences covering a wide range of
topics and relations.

Ribeiro et al. (2018) test for comprehension of
minimally modified sentences in an adversarial

setup while trying to keep the overall semantics
the same. In contrast, we investigate large changes
of meaning (negation) and context (mispriming).
In contrast to adversarial work (e.g., (Wallace et al.,
2019)), we do not focus on adversarial examples
for a specific task, but on pretrained models’ ability
to robustly store factual knowledge.

6 Conclusion

Our results suggest that pretrained language models
address open domain QA in datasets like LAMA by
mechanisms that are more akin to relatively shallow
pattern matching than the recall of learned factual
knowledge and inference.

Implications for future work on pretrained
language models. (i) Both factual knowledge and
logic are discrete phenomena in the sense that sen-
tences with similar representations in current pre-
trained language models differ sharply in factuality
and truth value (e.g., “Newton was born in 1641”
vs. “Newton was born in 1642”). Further archi-
tectural innovations in deep learning seem neces-
sary to deal with such discrete phenomena. (ii)
We found that PLMs have difficulty distinguishing
“informed” best guesses (based on information ex-
tracted from training corpora) from “random” best
guesses (made in the absence of any evidence in
the training corpora). This implies that better con-
fidence assessment of PLM predictions is needed.
(iii) Our premise was that we should emulate hu-
man language processing and that therefore tasks
that are easy for humans are good tests for NLP
models. To the extent this is true, the two phenom-
ena we have investigated in this paper – that PLMs
seem to ignore negation in many cases and that they
are easily confused by simple distractors – seem
to be good vehicles for encouraging the develop-
ment of PLMs whose performance on NLP tasks is
closer to humans.
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A Appendix

A.1 Details on LAMA
We use source code provided by Petroni et al.
(2019) 3. T-REx, parts of ConceptNet and SQuAD
allow multiple true answers (N-M). To ensure sin-
gle true objects for Google-RE, we reformulate the
templates asking for location to specifically ask for
cities (e.g., “born in [MASK]” to “born in the city
of [MASK]”). We do not change any other tem-
plates. T-REx still queries for ”died in [MASK]”.

A.1.1 Details on negated LAMA
For ConceptNet we extract an easy-to-negate sub-
set. The final subset includes 2,996 of the 11,458
samples. We proceed as follows:

1. We only negate sentences of maximal token
sequence length 4 or if we find a match with one
of the following patterns: “is a type of ”, “is made
of”, “is part of”, “are made of.”, “can be made of”,
“are a type of ”, “are a part off”.

2. The selected subset is automatically negated
by a manually created verb negation dictionary.

A.1.2 Details on misprimed LAMA
To investigate the effect of distance between the
prime and the cloze question, we insert a concate-
nation of up to 20 “neutral” sentences. The longest
sequence has 89 byte pair encodings. The distance
upon the full concatenation of all 20 sentences did
not lessen the effect of the prime much. The used
sentences are: ”This is great.”, ”This is interesting.”,
”Hold this thought.”, ”What a surprise.”, ”Good
to know.”, ”Pretty awesome stuff.”, ”Nice seeing
you.”, ”Let’s meet again soon.”, ”This is nice.”,

3github.com/facebookresearch/LAMA
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Figure 1: Training loss and test accuracy when pretrain-
ing BERT-base on a balanced corpus. The model is able
to memorize positive and negative sentences seen dur-
ing training but is not able to generalize to an unseen
test set for both positive and negative sentences.

”Have a nice time.”, ”That is okay.”, ”Long time no
see.”, ”What a day.”, ”Wonderful story.”, ”That’s
new to me.”, ”Very cool.”, ”Till next time.”, ”That’s
enough.”, ”This is amazing.”, ”I will think about
it.”

batch size 512
learning rate 6e-5
number of epochs 2000
max. sequence length 13

Table 6: Hyper-parameters for pretraining BERT-base
on a balanced corpus of negative and positive sen-
tences.

batch size 32
learning rate 4e-5
number of epochs 20
max. sequence length 7

Table 7: Hyper-parameters for finetuning on the task of
classifying sentences as true/false.

A.2 Details on the balanced corpus
We pretrain BERT-base from scratch on a corpus
on equally many negative and positive sentences.
We concatenate multiples of the same training data
into one training file to compensate for the little
amount of data. Hyper-parameters for pretraining
are listed in Table 6. The full vocabulary is 349
tokens long.

Figure 1 shows that training loss and test ac-
curacy are uncorrelated. Test accuracy stagnates

around 0.5 which is not more than random guessing
as for each relation half of the adjectives hold.

We finetune on the task of classifying sentences
as true/false. We concatenate multiples of the same
training data into one training file to compensate
for the little amount of data. Hyperparameters for
finetuning are listed in Table 7.

We use source code provided by Wolf et al.
(2019) 4.

4github.com/huggingface/transformers
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Abstract

Consistency of a model—that is, the invari-
ance of its behavior under meaning-preserving
alternations in its input—is a highly desirable
property in natural language processing. In this
paper we study the question: Are Pretrained
Language Models (PLMs) consistent with re-
spect to factual knowledge? To this end, we
create PARAREL , a high-quality resource of
cloze-style query English paraphrases. It con-
tains a total of 328 paraphrases for 38 relations.
Using PARAREL , we show that the consistency
of all PLMs we experiment with is poor—
though with high variance between relations.
Our analysis of the representational spaces of
PLMs suggests that they have a poor structure
and are currently not suitable for represent-
ing knowledge robustly. Finally, we propose a
method for improving model consistency and
experimentally demonstrate its effectiveness.1

1 Introduction

Pretrained Language Models (PLMs) are large
neural networks that are used in a wide variety of
NLP tasks. They operate under a pretrain-finetune
paradigm: Models are first pretrained over a large
text corpus and then finetuned on a downstream
task. PLMs are thought of as good language en-
coders, supplying basic language understanding
capabilities that can be used with ease for many
downstream tasks.

A desirable property of a good language un-
derstanding model is consistency: the ability to
make consistent decisions in semantically equiv-
alent contexts, reflecting a systematic ability to
generalize in the face of language variability.

1The code and resource are available at: https://
github.com/yanaiela/pararel.

Examples of consistency include: predicting
the same answer in question answering and read-
ing comprehension tasks regardless of paraphrase
(Asai and Hajishirzi, 2020); making consistent
assignments in coreference resolution (Denis and
Baldridge, 2009; Chang et al., 2011); or making
summaries factually consistent with the original
document (Kryscinski et al., 2020). While consis-
tency is important in many tasks, nothing in the
training process explicitly targets it. One could
hope that the unsupervised training signal from
large corpora made available to PLMs such as
BERT or RoBERTa (Devlin et al., 2019; Liu
et al., 2019) is sufficient to induce consistency
and transfer it to downstream tasks. In this paper,
we show that this is not the case.

The recent rise of PLMs has sparked a discus-
sion about whether these models can be used as
Knowledge Bases (KBs) (Petroni et al., 2019;
2020; Davison et al., 2019; Peters et al., 2019;
Jiang et al., 2020; Roberts et al., 2020). Consis-
tency is a key property of KBs and is particularly
important for automatically constructed KBs. One
of the biggest appeals of using a PLM as a KB
is that we can query it in natural language—
instead of relying on a specific KB schema. The
expectation is that PLMs abstract away from lan-
guage and map queries in natural language into
meaningful representations such that queries with
identical intent but different language forms yield
the same answer. For example, the query ‘‘Home-
land premiered on [MASK]’’ should produce the
same answer as ‘‘Homeland originally aired on
[MASK]’’. Studying inconsistencies of PLM-KBs
can also teach us about the organization of knowl-
edge in the model, or lack thereof. Finally, failure
to behave consistently may point to other repre-
sentational issues such as the similarity between
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antonyms and synonyms (Nguyen et al., 2016),
and overestimating events and actions (reporting
bias) (Shwartz and Choi, 2020).

In this work, we study the consistency of factual
knowledge in PLMs, specifically in Masked Lan-
guage Models (MLMs)—these are PLMs trained
with the MLM objective (Devlin et al., 2019; Liu
et al., 2019), as opposed to other strategies such
as standard language modeling (Radford et al.,
2019) or text-to-text (Raffel et al., 2020). We ask:
Is the factual information we extract from PLMs
invariant to paraphrasing? We use zero-shot eval-
uation since we want to inspect models directly,
without adding biases through finetuning. This
allows us to assess how much consistency was
acquired during pretraining and to compare the
consistency of different models. Overall, we find
that the consistency of the PLMs we consider is
poor, although there is a high variance between
relations.

We introduce PARAREL , a new benchmark that
enables us to measure consistency in PLMs (§3),
by using factual knowledge that was found to
be partially encoded in them (Petroni et al., 2019;
Jiang et al., 2020). PARAREL is a manually curated
resource that provides patterns—short textual
prompts—that are paraphrases of one another,
with 328 paraphrases describing 38 binary rela-
tions such as X born-in Y, X works-for Y (§4). We
then test multiple PLMs for knowledge consis-
tency, namely, whether a model predicts the same
answer for all patterns of a relation. Figure 1 shows
an overview of our approach. Using PARAREL ,
we probe for consistency in four PLM types:
BERT, BERT-whole-word-masking, RoBERTa,
and ALBERT (§5). Our experiments with
PARAREL show that current models have poor
consistency, although with high variance between
relations (§6).

Finally, we propose a method that improves
model consistency by introducing a novel con-
sistency loss (§8). We demonstrate that, trained
with this loss, BERT achieves better consis-
tency performance on unseen relations. However,
more work is required to achieve fully consistent
models.

2 Background

There has been significant interest in analyzing
how well PLMs (Rogers et al., 2020) perform

Figure 1: Overview of our approach. We expect that
a consistent model would predict the same answer
for two paraphrases. In this example, the model is
inconsistent on the Homeland and consistent on the
Seinfeld paraphrases.

on linguistic tasks (Goldberg, 2019; Hewitt and
Manning, 2019; Tenney et al., 2019; Elazar et al.,
2021), commonsense (Forbes et al., 2019; Da and
Kasai, 2019; Zhang et al., 2020), and reasoning
(Talmor et al., 2020; Kassner et al., 2020), usu-
ally assessed by measures of accuracy. However,
accuracy is just one measure of PLM perfor-
mance (Linzen, 2020). It is equally important that
PLMs do not make contradictory predictions (cf.
Figure 1), a type of error that humans rarely make.
There has been relatively little research attention
devoted to this question, that is, to analyze if
models behave consistently. One example con-
cerns negation: Ettinger (2020) and Kassner and
Schütze (2020) show that models tend to generate
facts and their negation, a type of inconsistent be-
havior. Ravichander et al. (2020) propose paired
probes for evaluating consistency. Our work is
broader in scope, examining the consistency of
PLM behavior across a range of factual knowl-
edge types and investigating how models can be
made to behave more consistently.

Consistency has also been highlighted as a
desirable property in automatically constructed
KBs and downstream NLP tasks. We now briefly
review work along these lines.

Consistency in knowledge bases (KBs) has
been studied in theoretical frameworks in the
context of the satisfiability problem and KB
construction, and efficient algorithms for detect-
ing inconsistencies in KBs have been proposed
(Hansen and Jaumard, 2000; Andersen and
Pretolani, 2001). Other work aims to quantify the
degree to which KBs are inconsistent and de-
tects inconsistent statements (Thimm, 2009, 2013;
Muiño, 2011).
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Consistency in question answering was stud-
ied by Ribeiro et al. (2019) in two tasks: visual
question answering (Antol et al., 2015) and read-
ing comprehension (Rajpurkar et al., 2016). They
automatically generate questions to test the con-
sistency of QA models. Their findings suggest
that most models are not consistent in their pre-
dictions. In addition, they use data augmentation
to create more robust models. Alberti et al. (2019)
generate new questions conditioned on context
and answer from a labeled dataset and by filtering
answers that do not provide a consistent result
with the original answer. They show that pretrain-
ing on these synthetic data improves QA results.
Asai and Hajishirzi (2020) use data augmentation
that complements questions with symmetricity
and transitivity, as well as a regularizing loss that
penalizes inconsistent predictions. Kassner et al.
(2021b) propose a method to improve accuracy
and consistency of QA models by augmenting
a PLM with an evolving memory that records
PLM answers and resolves inconsistency between
answers.

Work on consistency in other domains in-
cludes Du et al. (2019) where prediction of con-
sistency in procedural text is improved. Ribeiro
et al. (2020) use consistency for more robust
evaluation. Li et al. (2019) measure and miti-
gate inconsistency in natural language inference
(NLI), and finally, Camburu et al. (2020) propose
a method for measuring inconsistencies in NLI
explanations (Camburu et al., 2018).

3 Probing PLMs for Consistency

In this section, we formally define consistency and
describe our framework for probing consistency
of PLMs.

3.1 Consistency

We define a model as consistent if, given
two cloze-phrases such as ‘‘Seinfeld originally
aired on [MASK]’’ and ‘‘Seinfeld premiered on
[MASK]’’ that are quasi-paraphrases, it makes
non-contradictory predictions2 on N-1 relations
over a large set of entities. A quasi-paraphrase—a

2We refer to non-contradictory predictions as predictions
that, as the name suggest, do not contradict one another. For
instance, predicting as the birth place of a person two dif-
ference cities is considered to be contradictory, but predict-
ing a city and its country, is not.

concept introduced by Bhagat and Hovy (2013)—
is a more fuzzy version of a paraphrase. The
concept does not rely on the strict, logical defini-
tion of paraphrase and allows us to operationalize
concrete uses of paraphrases. This definition is
in the spirit of the RTE definition (Dagan et al.,
2005), which similarly supports a more flexible
use of the notion of entailment. For instance, a
model that predicts NBC and ABC on the two
aforementioned patterns, is not consistent, since
these two facts are contradictory. We define a
cloze-pattern as a cloze-phrase that expresses a
relation between a subject and an object. Note
that consistency does not require the answers to
be factually correct. While correctness is also an
important property for KBs, we view it as a sep-
arate objective and measure it independently. We
use the terms paraphrase and quasi-paraphrase
interchangeably.

Many-to-many (N-M) relations (e.g., shares-
border-with) can be consistent even with different
answers (given they are correct). For instance, two
patterns that express the shares-border-with rela-
tion and predict Albania and Bulgaria for Greece
are both correct. We do not consider such relations
for measuring consistency. However, another re-
quirement from a KB is determinism, that is, re-
turning the results in the same order (when more
than a single result exists). In this work, we focus
on consistency, but also measure determinism of
the models we inspect.

3.2 The Framework

An illustration of the framework is presented
in Figure 2. Let Di be a set of subject-object
KB tuples (e.g., <Homeland, Showtime>) from
some relation ri (e.g., originally-aired-on), ac-
companied with a set of quasi-paraphrases
cloze-patterns Pi (e.g., X originally aired on Y).
Our goal is to test whether the model consistently
predicts the same object (e.g., Showtime) for a
particular subject (e.g., Homeland).3 To this end,
we substitute X with a subject from Di and Y with
[MASK] in all of the patterns Pi of that relation
(e.g., Homeland originally aired on [MASK] and
Homeland premiered on [MASK]). A consistent
model must predict the same entity.

3Although it is possible to also predict the subject from the
object, in the cases of N-1 relations more than a single answer
would be possible, thus converting the test from measuring
consistency to measuring determinism instead.
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Figure 2: Overview of our framework for assessing model consistency. Di (‘‘Data Pairs (D)’’ on the left) is a set
of KB triplets of some relation ri, which are coupled with a set of quasi-paraphrase cloze-patterns Pi (‘‘Patterns
(P )’’ on the right) that describe that relation. We then populate the subjects from Di as well as a mask token into
all patterns Pi (shown in the middle) and expect a model to predict the same object across all pattern pairs.

Restricted Candidate Sets Since PLMs were
not trained for serving as KBs, they often predict
words that are not KB entities; for example, a PLM
may predict, for the pattern ‘‘Showtime originally
aired on [MASK]’’, the noun ‘tv’—which is also
a likely substitution for the language modeling
objective, but not a valid KB fact completion.
Therefore, following others (Xiong et al., 2020;
Ravichander et al., 2020; Kassner et al., 2021a),
we restrict the PLMs’ output vocabulary to the set
of possible gold objects for each relation from the
underlining KB. For example, in the born-in rela-
tion, instead of inspecting the entire vocabulary of
a model, we only keep objects from the KB, such
as Paris, London, Tokyo, and so forth.

Note that this setup makes the task easier for the
PLM, especially in the context of KBs. However,
poor consistency in this setup strongly implies
that consistency would be even lower without
restricting candidates.

4 The PARAREL Resource

We now describe PARAREL , a resource designed
for our framework (cf. Section 3.2). PARAREL is
curated by experts, with a high level of agreement.
It contains patterns for 38 relations4 from T-REx
(Elsahar et al., 2018)—a large dataset containing
KB triples aligned with Wikipedia abstracts—with
an average of 8.63 patterns per relation. Table 1
gives statistics. We further analyze the paraphrases

4Using the 41 relations from LAMA (Petroni et al., 2019),
leaving out three relations that are poorly defined, or consist
of mixed and heterogeneous entities.

used in this resource, partly based on the types
defined in Bhagat and Hovy (2013), and report
this analysis in Appendix B.

Construction Method PARAREL was con-
structed in four steps. (1) We began with the
patterns provided by LAMA (Petroni et al., 2019)
(one pattern per relation, referred to as base-
pattern). (2) We augmented each base-pattern with
other patterns that are paraphrases from LPAQA
(Jiang et al., 2020). However, since LPAQA was
created automatically (either by back-translation
or by extracting patterns from sentences that con-
tain both subject and object), some LPAQA pat-
terns are not correct paraphrases. We therefore
only include the subset of correct paraphrases.
(3) Using SPIKE (Shlain et al., 2020),5 a search
engine over Wikipedia sentences that supports
syntax-based queries, we searched for additional
patterns that appeared in Wikipedia and added
them to PARAREL . Specifically, we searched for
Wikipedia sentences containing a subject-object
tuple from T-REx and then manually extracted
patterns from the sentences. (4) Lastly, we added
additional paraphrases of the base-pattern using
the annotators’ linguistic expertise. Two addi-
tional experts went over all the patterns and cor-
rected them, while engaging in a discussion until
reaching agreement, discarding patterns they
could not agree on.

Human Agreement To assess the quality of
PARAREL , we run a human annotation study. For

5https://spike.apps.allenai.org/.
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# Relations 38
# Patterns 328

Min # patterns per rel. 2
Max # patterns per rel. 20
Avg # patterns per rel. 8.63
Avg syntax 4.74
Avg lexical 6.03

Table 1: Statistics of PARAREL . Last two
rows: average number of unique syntactic/
lexical variations of patterns for a relation.

each relation, we sample up to five paraphrases,
comparing each of the new patterns to the base-
pattern from LAMA. That is, if relation ri con-
tains the following patterns: p1, p2, p3, p4, and p1

is the base-pattern, then we compare the following
pairs (p1, p2), (p1, p3), (p1, p4).

We populate the patterns with random subjects
and objects pairs from T-REx (Elsahar et al.,
2018) and ask annotators if these sentences are
paraphrases. We also sample patterns from dif-
ferent relations to provide examples that are not
paraphrases of each other, as a control. Each task
contains five patterns that are thought to be para-
phrases and two that are not.6 Overall, we collect
annotations for 156 paraphrase candidates and 61
controls.

We asked NLP graduate students to annotate
the pairs and collected one answer per pair.7

The agreement scores for the paraphrases and the
controls are 95.5% and 98.3%, respectively, which
is high and indicates PARAREL ’s high quality.
We also inspected the disagreements and fixed
many additional problems to further improve
quality.

5 Experimental Setup

5.1 Models and Data

We experiment with four PLMs: BERT, BERT
whole-word-masking8 (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and ALBERT (Lan

6The controls contain the same subjects and objects so
that only the pattern (not its arguments) can be used to solve
the task.

7We asked the annotators to re-annotate any mismatch
with our initial label, to allow them to fix random mistakes.

8BERT whole-word-masking is BERT’s version where
words that are tokenized into multiple tokens are masked
together.

et al., 2019). For BERT, RoBERTa, and ALBERT,
we use a base and a large version.9 We also report
a majority baseline that always predicts the most
common object for a relation. By construction,
this baseline is perfectly consistent.

We use knowledge graph data from T-REx
(Elsahar et al., 2018).10 To make the results com-
parable across models, we remove objects that are
not represented as a single token in all models’
vocabularies; 26,813 tuples remain.11 We further
split the data into N-M relations for which we
report determinism results (seven relations) and
N-1 relations for which we report consistency (31
relations).

5.2 Evaluation
Our consistency measure for a relation ri (Consis-
tency) is the percentage of consistent predictions
of all the pattern pairs pi

k, p
i
l ∈ Pi of that relation,

for all its KB tuples di
j ∈ Di. Thus, for each KB

tuple from a relation ri that contains n patterns,
we consider predictions for n(n − 1)/2 pairs.

We also report Accuracy, that is, the acc@1
of a model in predicting the correct object, using
the original patterns from Petroni et al. (2019).
In contrast to Petroni et al. (2019), we define it
as the accuracy of the top-ranked object from the
candidate set of each relation. Finally, we report
Consistent-Acc, a new measure that evaluates indi-
vidual objects as correct only if all patterns of the
corresponding relation predict the object correctly.
Consistent-Acc is much stricter and combines the
requirements of both consistency (Consistency)
and factual correctness (Accuracy). We report the
average over relations (i.e., macro average), but
notice that the micro average produces similar
results.

6 Experiments and Results

6.1 Knowledge Extraction through
Different Patterns

We begin by assessing our patterns as well as the
degree to which they extract the correct entities.
These results are summarized in Table 2.

9For ALBERT we use the smallest and largest versions.
10We discard three poorly defined relations from T-REx.
11In a few cases, we filter entities from certain relations that

contain multiple fine-grained relations to make our patterns
compatible with the data. For instance, most of the instances
for the genre relation describes music genres, thus we remove
some of the tuples were the objects include non-music genres
such as ‘satire’, ‘sitcom’, and ‘thriller’.
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Model Succ-Patt Succ-Objs Unk-Const Know-Const

majority 97.3±7.3 23.2±21.0 100.0±0.0 100.0±0.0
BERT-base 100.0±0.0 63.0±19.9 46.5±21.7 63.8±24.5
BERT-large 100.0±0.0 65.7±22.1 48.1±20.2 65.2±23.8
BERT-large-wwm 100.0±0.0 64.9±20.3 49.5±20.1 65.3±25.1
RoBERTa-base 100.0±0.0 56.2±22.7 43.9±15.8 56.3±19.0
RoBERTa-large 100.0±0.0 60.1±22.3 46.8±18.0 60.5±21.1
ALBERT-base 100.0±0.0 45.8±23.7 41.4±17.3 56.3±22.0
ALBERT-xxlarge 100.0±0.0 58.8±23.8 40.5±16.4 57.5±23.8

Table 2: Extractability measures in the different
models we inspect. Best model for each measure
highlighted in bold.

First, we report Succ-Patt, the percentage of
patterns that successfully predicted the right ob-
ject at least once. A high score suggests that the
patterns are of high quality and enable the models
to extract the correct answers. All PLMs achieve
a perfect score. Next, we report Succ-Objs, the
percentage of entities that were predicted cor-
rectly by at least one of the patterns. Succ-Objs
quantifies the degree to which the models ‘‘have’’
the required knowledge. We observe that some
tuples are not predicted correctly by any of our
patterns: The scores vary between 45.8% for
ALBERT-base and 65.7% for BERT-large. With
an average number of 8.63 patterns per relation,
there are multiple ways to extract the knowledge,
we thus interpret these results as evidence that a
large part of T-REx knowledge is not stored in
these models.

Finally, we measure Unk-Const, a consistency
measure for the subset of tuples for which no pat-
tern predicted the correct answer; and Know-
Const, consistency for the subset where at least
one of the patterns for a specific relation pre-
dicted the correct answer. This split into subsets is
based on Succ-Objs. Overall, the results indicate
that when the factual knowledge is successfully
extracted, the model is also more consistent. For
instance, for BERT-large, Know-Const is 65.2%
and Unk-Const is 48.1%.

6.2 Consistency and Knowledge

In this section, we report the overall knowledge
measure that was used in Petroni et al. (2019) (Ac-
curacy), the consistency measure (Consistency),
and Consistent- Acc, which combines knowledge
and consistency (Consistent-Acc). The results are
summarized in Table 3.

We begin with the Accuracy results. The results
range between 29.8% (ALBERT-base) and 48.7%

Model Accuracy Consistency Consistent-Acc

majority 23.1±21.0 100.0±0.0 23.1±21.0
BERT-base 45.8±25.6 58.5±24.2 27.0±23.8
BERT-large 48.1±26.1 61.1±23.0 29.5±26.6
BERT-large-wwm 48.7±25.0 60.9±24.2 29.3±26.9
RoBERTa-base 39.0±22.8 52.1±17.8 16.4±16.4
RoBERTa-large 43.2±24.7 56.3±20.4 22.5±21.1
ALBERT-base 29.8±22.8 49.8±20.1 16.7±20.3
ALBERT-xxlarge 41.7±24.9 52.1±22.4 23.8±24.8

Table 3: Knowledge and consistency results. Best
model for each measure in bold.

(BERT-large whole-word-masking). Notice that
our numbers differ from Petroni et al. (2019) as
we use a candidate set (§3) and only consider KB
triples whose object is a single token in all the
PLMs we consider (§5.1).

Next, we report Consistency (§5.2). The BERT
models achieve the highest scores. There is a con-
sistent improvement from base to large versions
of each model. In contrast to previous work that
observed quantitative and qualitative improve-
ments of RoBERTa-based models over BERT
(Liu et al., 2019; Talmor et al., 2020), in terms
of consistency, BERT is more consistent than
RoBERTa and ALBERT. Still, the overall results
are low (61.1% for the best model), even more
remarkably so because the restricted candidate set
makes the task easier. We note that the results are
highly variant between models (performance on
original-language varies between 52% and 90%),
and relations (BERT-large performance is 92% on
capital-of and 44% on owned-by).

Finally, we report Consistent-Acc: the results
are much lower than for Accuracy, as expected, but
follow similar trends: RoBERTa-base performs
worse (16.4%) and BERT-large best (29.5%).

Interestingly, we find strong correlations be-
tween Accuracy and Consistency, ranging from
67.3% for RoBERTa-base to 82.1% for BERT-
large (all with small p-values � 0.01).

A striking result of the model comparison is
the clear superiority of BERT, both in knowledge
accuracy (which was also observed by Shin et al.,
2020) and knowledge consistency. We hypothe-
size this result is caused by the different sources
of training data: although Wikipedia is part of the
training data for all models we consider, for BERT
it is the main data source, but for RoBERTa and
ALBERT it is only a small portion. Thus, when
using additional data, some of the facts may be
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Model Acc Consistency Consistent-Acc

majority 23.1±21.0 100.0±0.0 23.1±21.0
RoBERTa-med-small-1M 11.2±9.4 37.1±11.0 2.8±4.0
RoBERTa-base-10M 17.3±15.8 29.8±12.7 3.2±5.1
RoBERTa-base-100M 22.1±17.1 31.5±13.0 3.7±5.3
RoBERTa-base-1B 38.0±23.4 50.6±19.8 18.0±16.0

Table 4: Knowledge and consistency results for dif-
ferent RoBERTas, trained on increasing amounts
of data. Best model for each measure in bold.

forgotten, or contradicted in the other corpora; this
can diminish knowledge and compromise consis-
tency behavior. Thus, since Wikipedia is likely the
largest unified source of factual knowledge that
exists in unstructured data, giving it prominence
in pretraining makes it more likely that the model
will incorporate Wikipedia’s factual knowledge
well. These results may have a broader impact
on models to come: Training bigger models with
more data (such as GPT-3 [Brown et al., 2020]) is
not always beneficial.

Determinism We also measure determinism for
N-M relations—that is, we use the same measure
as Consistency, but since difference predictions
may be factually correct, these do not necessar-
ily convey consistency violations, but indicate
non-determinism. For brevity, we do not present
all results, but the trend is similar to the con-
sistency result (although not comparable, as the
relations are different): 52.9% and 44.6% for
BERT-large and RoBERTa-base, respectively.

Effect of Pretraining Corpus Size Next, we
study the question of whether the number of
tokens used during pretraining contributes to con-
sistency. We use the pretrained RoBERTa models
from Warstadt et al. (2020) and repeat the ex-
periments on four additional models. These are
RoBERTa-based models, trained on a sample of
Wikipedia and the book corpus, with varying train-
ing sizes and parameters. We use one of the three
published models for each configuration and re-
port the average accuracy over the relations for
each model in Table 4. Overall, Accuracy and
Consistent-Acc improve with more training data.
However, there is an interesting outlier to this
trend: The model that was trained on one mil-
lion tokens is more consistent than the models
trained on ten and one-hundred million tokens.
A potentially crucial difference is that this model
has many fewer parameters than the rest (to avoid

Model Diff-Syntax No-Change

majority 100.0±0.0 100.0±0.0
BERT-base 67.9±30.3 76.3±22.6
BERT-large 67.5±30.2 78.7±14.7
BERT-large-wwm 63.0±31.7 81.1±9.7
RoBERTa-base 66.9±10.1 80.7±5.2
RoBERTa-large 69.7±19.2 80.3±6.8
ALBERT-base 62.3±22.8 72.6±11.5
ALBERT-xxlarge 51.7±26.0 67.3±17.1

Table 5: Consistency and standard deviation when
only syntax differs (Diff-Syntax) and when syntax
and lexical choice are identical (No-Change). Best
model for each metric is highlighted in bold.

overfitting). It is nonetheless interesting that a
model that is trained on significantly less data can
achieve better consistency. On the other hand, its
accuracy scores are lower, arguably due to the
model being exposed to less factual knowledge
during pretraining.

6.3 Do PLMs Generalize Over Syntactic
Configurations?

Many papers have found neural models (especially
PLMs) to naturally encode syntax (Linzen et al.,
2016; Belinkov et al., 2017; Marvin and Linzen,
2018; Belinkov and Glass, 2019; Goldberg, 2019;
Hewitt and Manning, 2019). Does this mean that
PLMs have successfully abstracted knowledge
and can comprehend and produce it regardless of
syntactic variation? We consider two scenarios.
(1) Two patterns differ only in syntax. (2) Both
syntax and lexical choice are the same. As a proxy,
we define syntactic equivalence when the depen-
dency path between the subject and object are
identical. We parse all patterns from PARAREL

using a dependency parser (Honnibal et al.,
2020)12 and retain the path between the entities.
Success on (1) indicates that the model’s knowl-
edge processing is robust to syntactic variation.
Success on (2) indicates that the model’s knowl-
edge processing is robust to variation in word
order and tense.

Table 5 reports the results. While these and the
main results on the entire dataset are not compa-
rable as the pattern subsets are different, they are
higher than the general results: 67.5% for BERT-
large when only the syntax differs and 78.7% when

12https://spacy.io/.
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# Subject Object Pattern #1 Pattern #2 Pattern #3 Pred #1 Pred #2 Pred #3

1 Adriaan Pauw Amsterdam [X] was born in [Y]. [X] is native to [Y]. [X] is a [Y]-born person. Amsterdam Madagascar Luxembourg

2 Nissan Livina Geniss Nissan [X] is produced by [Y]. [X] is created by [Y]. [X], created by [Y]. Nissan Renault Renault

3 Albania Serbia [X] shares border with [Y]. [Y] borders with [X]. [Y] shares the border with [X] Greece Turkey Kosovo

4 iCloud Apple [X] is developed by [Y]. [X], created by [Y]. [X] was created by [Y] Microsoft Google Sony

5 Yahoo! Messenger Yahoo [X], a product created by [Y] [X], a product developed by [Y] [Y], that developed [X] Microsoft Microsoft Microsoft

6 Wales Cardiff The capital of [X] is [Y] . [X]’s capital, [Y]. [X]’s capital city, [Y]. Cardiff Cardiff Cardiff

Table 6: Predictions of BERT-large-cased. ‘‘Subject’’ and ‘‘Object’’ are from T-REx (Elsahar et al.,
2018). ‘‘Pattern #i’’ / ‘‘Pred #i’’: three different patterns from our resource and their predictions. The
predictions are colored in blue if the model predicted correctly (out of the candidate list), and in red
otherwise. If there is more than a single erroneous prediction, it is colored by a different red.

the syntax is identical. This demonstrates that
while PLMs have impressive syntactic abilities,
they struggle to extract factual knowledge in the
face of tense, word-order, and syntactic variation.

McCoy et al. (2019) show that supervised mod-
els trained on MNLI (Williams et al., 2018), an
NLI dataset (Bowman et al., 2015), use superficial
syntactic heuristics rather than more generalizable
properties of the data. Our results indicate that
PLMs have problems along the same lines: They
are not robust to surface variation.

7 Analysis

7.1 Qualitative Analysis

To better understand the factors affecting con-
sistent predictions, we inspect the predictions of
BERT-large on the patterns shown in Table 6. We
highlight several cases: The predictions in Exam-
ple #1 are inconsistent, and correct for the first
pattern (Amsterdam), but not for the other two
(Madagascar and Luxembourg). The predictions
in Example #2 also show a single pattern that
predicted the right object; however, the two other
patterns, which are lexically similar, predicted the
same, wrong answer—Renault. Next, the patterns
of Example #3 produced two factually correct an-
swers out of three (Greece, Kosovo), but simply
do not correspond to the gold object in T-REx
(Albania), since this is an M-N relation. Note that
this relation is not part of the consistency evalu-
ation, but the determinism evaluation. The three
different predictions in example #4 are all incor-
rect. Finally, the two last predictions demonstrate
consistent predictions: Example #5 is consistent
but factually incorrect (even though the correct
answer is a substring of the subject), and finally,
Example #6 is consistent and factual.

Figure 3: t-SNE of the encoded patterns from the
capital relation. The colors represent the differ-
ent subjects, while the shapes represent patterns. A
knowledge-focused representation should cluster based
on identical subjects (color), but instead the clustering
is according to identical patterns (shape).

7.2 Representation Analysis
To provide insights on the models’ representa-
tions, we inspect these after encoding the patterns.

Motivated by previous work that found that
words with the same syntactic structure cluster
together (Chi et al., 2020; Ravfogel et al., 2020)
we perform a similar experiment to test if this be-
havior replicates with respect to knowledge: We
encode the patterns, after filling the placehold-
ers with subjects and masked tokens and inspect
the last layer representations in the masked token
position. When plotting the results using t-SNE
(Maaten and Hinton, 2008) we mainly observe
clustering based on the patterns, which suggests
that encoding of knowledge of the entity is not the
main component of the representations. Figure 3
demonstrates this for BERT-large encodings of
the capital relation, which is highly consistent.13

To provide a more quantitative assessment of this
13While some patterns are clustered based on the subjects

(upper-left part), most of them are clustered based on patterns.
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phenomenon, we also cluster the representations
and set the number of centroids based on:14 (1) the
number of patterns in each relation, which aims to
capture pattern-based clusters, and (2) the number
of subjects in each relation, which aims to cap-
ture entity-based clusters. This would allow for
a perfect clustering, in the case of perfect align-
ment between the representation and the inspected
property. We measure the purity of these clusters
using V-measure and observe that the clusters
are mostly grouped by the patterns, rather than
the subjects. Finally, we compute the Spearman
correlation between the consistency scores and
the V-measure of the representations. However,
the correlation between these variables is close
to zero,15 therefore not explaining the models’
behavior. We repeated these experiments while
inspecting the objects instead of the subjects, and
found similar trends. This finding is interesting
since it means that (1) these representations are
not knowledge-focused, i.e., their main compo-
nent does not relate to knowledge, and (2) the
representation by its entirety does not explain the
behavior of the model, and thus only a subset
of the representation does. This finding is con-
sistent with previous work that observed similar
trends for linguistic tasks (Elazar et al., 2021).
We hypothesize that this disparity between the
representation and the behavior of the model may
be explained by a situation where the distance
between representations largely does not reflect
the distance between predictions, but rather other,
behaviorally irrelevant factors of a sentence.

8 Improving Consistency in PLMs

In the previous sections, we showed PLMs are
generally not consistent in their predictions, and
previous works have noticed the lack of this prop-
erty in a variety of downstream tasks. An ideal
model would exhibit the consistency property after
pretraining, and would then be able to transfer it
to different downstream tasks. We therefore ask:
Can we enhance current PLMs and make them
more consistent?

8.1 Consistency Improved PLMs

We propose to improve the consistency of PLMs
by continuing the pretraining step with a novel

14Using the KMeans algorithm.
15Except for BERT-large whole-word-masking, where the

correlation is 39.5 (p < 0.05).

consistency loss. We make use of the T-REx
tuples and the paraphrases from PARAREL .

For each relation ri, we have a set of para-
phrased patterns Pi describing that relation. We
use a PLM to encode all patterns in Pi, after popu-
lating a subject that corresponds to the relation ri

and a mask token. We expect the model to make
the same prediction for the masked token for all
patterns.

Consistency Loss Function As we evaluate the
model using acc@1, the straight-forward consis-
tency loss would require these predictions to be
identical:

min
θ

sim(arg max
i

fθ(Pn)[i], arg max
j

fθ(Pm)[j])

where fθ(Pn) is the output of an encoding function
(e.g., BERT) parameterized by θ (a vector) over
input Pn, and fθ(Pn)[i] is the score of the ith
vocabulary item of the model.

However, this objective contains a comparison
between the output of two argmax operations,
making it discrete and discontinuous, and hard to
optimize in a gradient-based framework. We in-
stead relax the objective, and require that the pre-
dicted distributions Qn = softmax(fθ(Pn)), rather
than the top-1 prediction, be identical to each
other. We use two-sided KL Divergence to mea-
sure similarity between distributions: DKL(Qri

n ||
Qri

m)+DKL(Qri
m||Qri

n ) where Qri
n is the predicted

distribution for pattern Pn of relation ri.
As most of the vocabulary is not relevant for

the predictions, we filter it down to the k tokens
from the candidate set of each relation (§3.2). We
want to maintain the original capabilities of the
model—focusing on the candidate set helps to
achieve this goal since most of the vocabulary is
not affected by our new loss.

To encourage a more general solution, we make
use of all the paraphrases together, and enforce
all predictions to be as close as possible. Thus,
the consistency loss for all pattern pairs for a
particular relation ri is:

Lc =

k∑

n=1

k∑

m=n+1

DKL(Qri
n ||Qri

m) + DKL(Qri
n ||Qri

m)

MLM Loss Since the consistency loss is dif-
ferent from the Cross-Entropy loss the PLM is
trained on, we find it important to continue the
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MLM loss on text data, similar to previous work
(Geva et al., 2020).

We consider two alternatives for continuing the
pretraining objective: (1) MLM on Wikipedia and
(2) MLM on the patterns of the relations used
for the consistency loss. We found that the latter
works better. We denote this loss by LMLM .

Consistency Guided MLM Continual Training
Combining our novel consistency loss with the
regular MLM loss, we continue the PLM training
by combining the two losses. The combination of
the two losses is determined by a hyperparameter
λ, resulting in the following final loss function:

L = λLc + LMLM

This loss is computed per relation, for one KB
tuple. We have many of these instances, which we
require to behave similarly. Therefore, we batch
together l = 8 tuples from the same relation and
apply the consistency loss function to all of them.

8.2 Setup

Since we evaluate our method on unseen relations,
we also split train and test by relation type (e.g.,
location-based relations, which are very common
in T-REx). Moreover, our method is aimed to
be simple, effective, and to require only mini-
mal supervision. Therefore, we opt to use only
three relations: original-language, named-after,
and original-network; these were chosen ran-
domly, out of the non-location related relations.16

For validation, we randomly pick three relations
of the remaining relations and use the remaining
25 for testing.

We perform minimal tuning of the parame-
ters (λ ∈ 0.1, 0.5, 1) to pick the best model,
train for three epochs, and select the best model
based on Consistent-Acc on the validation set. For
efficiency reasons, we use the base version of
BERT.

8.3 Improved Consistency Results
The results are presented in Table 7. We report ag-
gregated results for the 25 relations in the test. We
again report macro average (mean over relations)
and standard deviation. We report the results of the
majority baseline (first row), BERT-base (second
row), and our new model (BERT-ft, third row).

16Many relations are location-based—not training on them
prevents train-test leakage.

Model Accuracy Consistency Consistent-Acc

majority 24.4±22.5 100.0±0.0 24.4±22.5
BERT-base 45.6±27.6 58.2±23.9 27.3±24.8
BERT-ft 47.4±27.3 64.0±22.9 33.2±27.0

-consistency 46.9±27.6 60.9±22.6 30.9±26.3
-typed 46.5±27.1 62.0±21.2 31.1±25.2
-MLM 16.9±21.1 80.8±27.1 9.1±11.5

Table 7: Knowledge and consistency results for
the baseline, BERT base, and our model. The
results are averaged over the 25 test relations.
Underlined: best performance overall, including
ablations. Bold: Best performance for BERT-ft
and the two baselines (BERT-base, majority).

First, we note that our model significantly im-
proves consistency: 64.0% (compared with 58.2%
for BERT-base, an increase of 5.8 points). Accu-
racy also improves compared to BERT-base, from
45.6% to 47.4%. Finally, and most importantly,
we see an increase of 5.9 points in Consistent-Acc,
which is achieved due to the improved consistency
of the model. Notably, these improvements arise
from training on merely three relations, meaning
that the model improved its consistency ability
and generalized to new relations. We measure the
statistical significance of our method compared
to the BERT baseline, using McNemar’s test (fol-
lowing Dror et al. [2018, 2020]) and find all results
to be significant (p � 0.01).

We also perform an ablation study to quantify
the utility of the different components. First, we
report on the finetuned model without the con-
sistency loss (-consistency). Interestingly, it does
improve over the baseline (BERT-base), but it lags
behind our finetuned model. Second, applying our
loss on the candidate set rather than on the entire
vocabulary is beneficial (-typed). Finally, by not
performing the MLM training on the generated
patterns (-MLM), the consistency results improve
significantly (80.8%); however, this also hurts
Accuracy and Consistent-Acc. MLM training
seems to serve as a regularizer that prevents ca-
tastrophic forgetting.

Our ultimate goal is to improve consistency
in PLMs for better performance on downstream
tasks. Therefore, we also experiment with fine-
tuning on SQuAD (Rajpurkar et al., 2016), and
evaluating on paraphrased questions from SQuAD
(Gan and Ng, 2019) using our consistency model.
However, the results perform on par with the base-
line model, both on SQuAD and the paraphrase
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questions. More research is required to show that
consistent PLMs can also benefit downstream
tasks.

9 Discussion

Consistency for Downstream Tasks The rise
of PLMs has improved many tasks but has also
brought a lot of expectations. The standard usage
of these models is pretraining on a large cor-
pus of unstructured text and then finetuning on
a task of interest. The first step is thought of as
providing a good language-understanding compo-
nent, whereas the second step is used to teach the
format and the nuances of a downstream task.

As discussed earlier, consistency is a crucial
component of many NLP systems (Du et al., 2019;
Asai and Hajishirzi, 2020; Denis and Baldridge,
2009; Kryscinski et al., 2020) and obtaining this
skill from a pretrained model would be extremely
beneficial and has the potential to make special-
ized consistency solutions in downstream tasks
redundant. Indeed, there is an ongoing discussion
about the ability to acquire ‘‘meaning’’ from raw
text signal alone (Bender and Koller, 2020). Our
new benchmark makes it possible to track the
progress of consistency in pretrained models.

Broader Sense of Consistency In this work we
focus on one type of consistency, that is, con-
sistency in the face of paraphrasing; however,
consistency is a broader concept. For instance,
previous work has studied the effect of nega-
tion on factual statements, which can also be
seen as consistency (Ettinger, 2020; Kassner and
Schütze, 2020). A consistent model is expected to
return different answers to the prompts: ‘‘Birds
can [MASK]’’ and ‘‘Birds cannot [MASK]’’. The
inability to do so, as was shown in these works,
also shows the lack of model consistency.

Usage of PLMs as KBs Our work follows the
setup of Petroni et al. (2019) and Jiang et al.
(2020), where PLMs are being tested as KBs.
While it is an interesting setup for probing models
for knowledge and consistency, it lacks important
properties of standard KBs: (1) the ability to return
more than a single answer and (2) the ability to
return no answer. Although some heuristics can
be used for allowing a PLM to do so, for example,
using a threshold on the probabilities, it is not
the way that the model was trained, and thus may
not be optimal. Newer approaches that propose

to use PLMs as a starting point to more complex
systems have promising results and address these
problems (Thorne et al., 2020).

In another approach, Shin et al. (2020) sug-
gest using AUTOPROMPT to automatically generate
prompts, or patterns, instead of creating them
manually. This approach is superior to manual
patterns (Petroni et al., 2019), or aggregation of
patterns that were collected automatically (Jiang
et al., 2020).

Brittleness of Neural Models Our work also
relates to the problem of the brittleness of neural
networks. One example of this brittleness is the
vulnerability to adversarial attacks (Szegedy et al.,
2014; Jia and Liang, 2017). The other problem,
closer to the problem we explore in this work,
is the poor generalization to paraphrases. For ex-
ample, Gan and Ng (2019) created a paraphrase
version for a subset of SQuAD (Rajpurkar et al.,
2016), and showed that model performance drops
significantly. Ribeiro et al. (2018) proposed
another method for creating paraphrases and
performed a similar analysis for visual ques-
tion answering and sentiment analysis. Recently,
Ribeiro et al. (2020) proposed CHECKLIST, a sys-
tem that tests a model’s vulnerability to several
linguistic perturbations.

PARAREL enables us to study the brittleness of
PLMs, and separate facts that are robustly encoded
in the model from mere ‘guesses’, which may arise
from some heuristic or spurious correlations with
certain patterns (Poerner et al., 2020). We showed
that PLMs are susceptible to small perturbations,
and thus, finetuning on a downstream task—given
that training datasets are typically not large and
do not contain equivalent examples—is not likely
to perform better.

Can We Expect from LMs to Be Consistent?
The typical training procedure of an LM does
not encourage consistency. The standard training
solely tries to minimize the log-likelihood of an
unseen token, and this objective is not always
aligned with consistency of knowledge. Consider
for example the case of Wikipedia texts, as op-
posed to Reddit; their texts and styles may be very
different and they may even describe contradic-
tory facts. An LM can exploit the styles of each
text to best fit the probabilities given to an unseen
word, even if the resulting generations contradict
each other.
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Since the pretraining-finetuning procedure is
currently the dominating one in our field, a great
amount of the language capabilities that were
learned during pre-training also propagates to the
fine-tuned models. As such, we believe it is impor-
tant to measure and improve consistency already
in the pretrained models.

Reasons Behind the (In)Consistency Since
LMs are not expected to be consistent, what are
the reasons behind their predictions, when being
consistent, or inconsistent?

In this work, we presented the predictions of
multiple queries, and the representation space of
one of the inspected models. However, this does
not point to the origins of such behavior. In future
work, we aim to inspect this question more closely.

10 Conclusion

In this work, we study the consistency of PLMs
with regard to their ability to extract knowledge.
We build a high-quality resource named PARAREL

that contains 328 high-quality patterns for 38 re-
lations. Using PARAREL , we measure consistency
in multiple PLMs, including BERT, RoBERTa,
and ALBERT, and show that although the latter
two are superior to BERT in other tasks, they
fall short in terms of consistency. However, the
consistency of these models is generally low. We
release PARAREL along with data tuples from
T-REx as a new benchmark to track knowledge
consistency of NLP models. Finally, we propose
a new simple method to improve model consis-
tency, by continuing the pretraining with a novel
loss. We show this method to be effective and to
improve both the consistency of models as well as
their ability to extract the correct facts.
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A Implementation Details

We heavily rely on Hugging Face’s Transformers
library (Wolf et al., 2020) for all experiments in-
volving the PLMs. We used Weights & Biases for
tracking and logging the experiments (Biewald,
2020). Finally, we used sklearn (Pedregosa et al.,
2011) for other ML-related experiments.

B Paraphrases Analysis

We provide a characterization of the paraphrase
types included in our dataset.

We analyze the type of paraphrases in
PARAREL . We sample 100 paraphrase pairs from
the agreement evaluation that were labeled as
paraphrases and annotate the paraphrase type.
Notice that the paraphrases can be complex;
as such, multiple transformations can be anno-
tated for each pair. We mainly use a subset
of paraphrase types categorized by Bhagat and
Hovy (2013), but also define new types that
were not covered by that work. We begin by
briefly defining the types of paraphrases found
in PARAREL from Bhagat and Hovy (2013)
(more thorough definitions can be found in
their paper), and then define the new types we
observed.

1. Synonym substitution: Replacing a word/
phrase by a synonymous word/phrase, in the
appropriate context.

2. Function word variations: Changing the func-
tion words in a sentence/phrase without
affecting its semantics, in the appropriate
context.

3. Converse substitution: Replacing a word/
phrase with its converse and inverting the
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relationship between the constituents of a
sentence/phrase, in the appropriate context,
presenting the situation from the converse
perspective.

4. Change of tense: Changing the tense of a
verb, in the appropriate context.

5. Change of voice: Changing a verb from its ac-
tive to passive form and vice versa results in
a paraphrase of the original sentence/phrase.

6. Verb/Noun conversion: Replacing a verb by
its corresponding nominalized noun form
and vice versa, in the appropriate context.

7. External knowledge: Replacing a word/
phrase by another word/phrase based on
extra-linguistic (world) knowledge, in the
appropriate context.

8. Noun/Adjective conversion: Replacing a
verb by its corresponding adjective form and
vice versa, in the appropriate context.

9. Change of aspect: Changing the aspect of a
verb, in the appropriate context.

We also define several other types of para-
phrases not covered in Bhagat and Hovy (2013)
(potentially because they did not occur in the
corpora they have inspected).

a. Irrelevant addition: Addition or removal of
a word or phrase, that does not affect the
meaning of the sentence (as far as the relation
of interest is concerned), and can be inferred
from the context independently.

b. Topicalization transformation: A transforma-
tion from or to a topicalization construction.
Topicalization is a construction in which
a clause is moved to the beginning of its
enclosing clause.

c. Apposition transformation: A transformation
from or to an apposition construction. In an
apposition construction, two noun phrases
where one identifies the other are placed one
next to each other.

d. Other syntactic movements: Includes other
types of syntactic transformations that are
not part of the other categories. This includes
cases such as moving an element from a co-
ordinate construction to the subject position
as in the last example in Table 8. Another
type of transformation is in the following
paraphrase: ‘‘[X] plays in [Y] position.’’ and
‘‘[X] plays in the position of [Y].’’ where
a compound noun-phrase is replaced with a
prepositional phrase.

We report the percentage of each type, along
with examples of paraphrases in Table 8. The
most common paraphrase is the ‘synonym sub-
stitution’, following ‘function words variations’
which occurred 41 and 16 times, respectively. The
least common paraphrase is ‘change of aspect’,
which occurred only once in the sample.

The full PARAREL resource can be found at:
https://github.com/yanaiela/pararel
/tree/main/data/pattern data/graphs
json.
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Paraphrase Type Pattern #1 Pattern #2 Relation N.

Synonym substitution [X] died in [Y]. [X] expired at [Y]. place of death 41
Function words variations [X] is [Y] citizen. [X], who is a citizen of [Y]. country of citizenship 16
Converse substitution [X] maintains diplomatic relations with [Y]. [Y] maintains diplomatic relations with [X]. diplomatic relation 10
Change of tense [X] is developed by [Y]. [X] was developed by [Y]. developer 10
Change of voice [X] is owned by [Y]. [Y] owns [X]. owned by 7
Verb/Noun conversion The headquarter of [X] is in [Y]. [X] is headquartered in [Y]. headquarters location 7
External knowledge [X] is represented by music label [Y]. [X], that is represented by [Y]. record label 3
Noun/Adjective conversion The official language of [X] is [Y]. The official language of [X] is the [Y] language. official language 2
Change of aspect [X] plays in [Y] position. playing as an [X], [Y] position played on team 1
Irrelevant addition [X] shares border with [Y]. [X] shares a common border with [Y]. shares border with 11
Topicalization transformation [X] plays in [Y] position. playing as a [Y], [X] position played on team 8
Apposition transformation [X] is the capital of [Y]. [Y]’s capital, [X]. capital of 4
Other syntactic movements [X] and [Y] are twin cities. [X] is a twin city of [Y]. twinned administrative body 10

Table 8: Different types of paraphrases in PARAREL . We report examples from each paraphrase type,
along with the type of relation, and the number of examples from the specific transformation from a
random subset of 100 pairs. Each pair can be classified into more than a single transformation (we
report one for brevity), thus the sum of transformation is more than 100.
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Abstract

Recently, it has been found that monolin-
gual English language models can be used as
knowledge bases. Instead of structural knowl-
edge base queries, masked sentences such as
“Paris is the capital of [MASK]” are used as
probes. We translate the established bench-
marks TREx and GoogleRE into 53 languages.
Working with mBERT, we investigate three
questions. (i) Can mBERT be used as a multi-
lingual knowledge base? Most prior work only
considers English. Extending research to mul-
tiple languages is important for diversity and
accessibility. (ii) Is mBERT’s performance
as knowledge base language-independent or
does it vary from language to language? (iii)
A multilingual model is trained on more text,
e.g., mBERT is trained on 104 Wikipedias.
Can mBERT leverage this for better perfor-
mance? We find that using mBERT as a knowl-
edge base yields varying performance across
languages and pooling predictions across lan-
guages improves performance. Conversely,
mBERT exhibits a language bias; e.g., when
queried in Italian, it tends to predict Italy as
the country of origin.

1 Introduction

Pretrained language models (LMs) (Peters et al.,
2018; Howard and Ruder, 2018; Devlin et al., 2019)
can be finetuned to a variety of natural language
processing (NLP) tasks and generally yield high
performance. Increasingly, these models and their
generative variants are used to solve tasks by sim-
ple text generation, without any finetuning (Brown
et al., 2020). This motivated research on how
much knowledge is contained in LMs: Petroni et al.
(2019) used models pretrained with masked lan-
guage to answer fill-in-the-blank templates such as
“Paris is the capital of [MASK].”

∗ Equal contribution - random order.

Query Two most frequent predictions

en X was created in MASK. [Japan (170), Italy (56), . . . ]
de X wurde in MASK erstellt. [Deutschland (217), Japan (70), . . . ]
it X è stato creato in MASK. [Italia (167), Giappone (92), . . . ]
nl X is gemaakt in MASK. [Nederland (172), Italië (50), . . . ]

en X has the position of MASK. [bishop (468), God (68), ...]
de X hat die Position MASK. [WW (261), Ratsherr (108), ...]
it X ha la posizione di MASK. [pastore ( 289), papa (138), ...]
nl X heeft de positie van MASK. [burgemeester (400), bisschop (276) , ...]

Table 1: Language bias when querying (TyQ) mBERT.
Top: For an Italian cloze question, Italy is favored as
country of origin. Bottom: There is no overlap be-
tween the top-ranked predictions, demonstrating the in-
fluence of language – even though the facts are the
same: the same set of triples is evaluated across lan-
guages. Table 3 shows that pooling predictions across
languages addresses bias and improves performance.
WW = “Wirtschaftswissenschaftler”.

This research so far has been exclusively on En-
glish. In this paper, we focus on using multilingual
pretrained LMs as knowledge bases. Working with
mBERT, we investigate three questions. (i) Can
mBERT be used as a multilingual knowledge base?
Most prior work only considers English. Extend-
ing research to multiple languages is important for
diversity and accessibility. (ii) Is mBERT’s perfor-
mance as knowledge base language-independent or
does it vary from language to language? To answer
these questions, we translate English datasets and
analyze mBERT for 53 languages. (iii) A multilin-
gual model is trained on more text, e.g., BERT’s
training data contains the English Wikipedia, but
mBERT is trained on 104 Wikipedias. Can mBERT
leverage this fact? Indeed, we show that pooling
across languages helps performance.

In summary our contributions are: i) We auto-
matically create a multilingual version of TREx
and GoogleRE covering 53 languages. ii) We use
an alternative to fill-in-the-blank querying – rank-
ing entities of the type required by the template
(e.g., cities) – and show that it is a better tool
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to investigate knowledge captured by pretrained
LMs. iii) We show that mBERT answers queries
across languages with varying performance: it
works reasonably for 21 and worse for 32 lan-
guages. iv) We give evidence that the query lan-
guage affects results: a query formulated in Italian
is more likely to produce Italian entities (see Ta-
ble 1). v) Pooling predictions across languages
improves performance by large margins and even
outperforms monolingual English BERT. Code and
data are available online (https://github.com/
norakassner/mlama).

2 Data

2.1 LAMA
We follow the LAMA setup introduced by Petroni
et al. (2019). More specifically, we use data from
TREx (Elsahar et al., 2018) and GoogleRE.1 Both
consist of triples of the form (object, relation, sub-
ject). The underlying idea of LAMA is to query
knowledge from pretrained LMs using templates
without any finetuning: the triple (Paris, capital-of,
France) is queried with the template “Paris is the
capital of [MASK].” In LAMA, TREx has 34,039
triples across 41 relations, GoogleRE 5528 triples
and 3 relations. Templates for each relation have
been manually created by Petroni et al. (2019). We
call all triples from TREx and GoogleRE together
LAMA.

LAMA has been found to contain many “easy-
to-guess” triples; e.g., it is easy to guess that a
person with an Italian sounding name is born in
Italy. LAMA-UHN is a subset of triples that are
hard to guess introduced by Poerner et al. (2020).

2.2 Translation
We translate both entities and templates. We use
Google Translate to translate templates in the form
“[X] is the capital of [Y]”. After translation, all
templates were checked for validity (i.e., whether
they contain “[X]”, “[Y]” exactly once) and cor-
rected if necessary. In addition, German, Hindi and
Japanese templates were checked by native speak-
ers to assess translation quality (see Table 2). To
translate the entity names, we used Wikidata and
Google knowledge graphs.

mBERT covers 104 languages. Google Translate
covers 77 of these. Wikidata and Google Knowl-
edge Graph do not provide entity translations for all

1code.google.com/archive/p/
relation-extraction-corpus/

Figure 1: x-axis is the number of translated triples, y-
axis the number of languages. There are 39,567 triples
in the original LAMA (TREx and GoogleRE).

languages and not all entities are contained in the
knowledge graphs. For English we can find a total
of 37,498 triples which we use from now on. On
average, 34% of triples could be translated (macro
average over languages). We only consider lan-
guages with a coverage above 20%, resulting in the
final number of languages we include in our study:
53. The macro average of translated triples in these
53 languages is 43%. Figure 1 gives statistics. We
call the translated dataset mLAMA.

3 Experiments

3.1 Model
We work with mBERT (Devlin et al., 2019), a
model pretrained on the 104 largest Wikipedias.
We denote mBERT queried in language x as
mBERT[x]. As comparison we use the English
BERT-Base model and refer to it as BERT. In initial
experiments with XLM-R (Conneau et al., 2020)
we observed worse performance, similar to Jiang
et al. (2020a). Thus, for simplicity we only report
results on mBERT.

3.2 Typed and Untyped Querying
Petroni et al. (2019) use templates like “Paris is the
capital of [MASK]” and give argmaxw∈V p(w|t)
as answer where V is the vocabulary of the LM
and p(w|t) is the (log-)probability that word w
gets predicted in the template t. Thus the object
of a triple must be contained in the vocabulary of
the language model. This has two drawbacks: it
reduces the number of triples that can be considered
drastically and hinders performance comparisons
across LMs with different vocabularies. We refer
to this procedure as UnTyQ.

We propose to use typed querying, TyQ: for each
relation a candidate set C is created and the pre-
diction becomes argmaxc∈C p(c|t). For templates
like “[X] was born in [MASK]”, we know which
entity type to expect, in this case cities. We ob-
served that (English-only) BERT-base predicts city
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names for MASK whereas mBERT predicts years
for the same template. TyQ prevents this.

We choose as C the set of objects across all
triples for a single relation. The candidate set could
also be obtained from an entity typing system (e.g.,
(Yaghoobzadeh and Schütze, 2016)), but this is be-
yond the scope of this paper. Variants of TyQ have
been used before (Xiong et al., 2020).

3.3 Singletoken vs. Multitoken Objects
Assuming that objects are in the vocabulary
(Petroni et al., 2019) is a restrictive assumption,
even more in the multilingual case as e.g., “Ham-
burg” is in the mBERT vocabulary, but French
“Hambourg” is tokenized to [“Ham”, “##bourg”].
We consider multitoken objects by including multi-
ple [MASK] tokens in the templates. For both TyQ
and UnTyQ we compute the score that a multitoken
object is predicted by taking the average of the log
probabilities for its individual tokens.

Given a template t (e.g., “[X] was born in [Y].”)
let t1 be the template with one mask token, (i.e.,
“[X] was born in [MASK].”) and tk be the template
with k mask tokens (i.e., “[X] was born in [MASK]
[MASK] . . . [MASK].”). We denote the log proba-
bility that the token w ∈ V is predicted at ith mask
token as p(mi = w|tk), where V is the vocabulary
of the LM. To compute p(e|t) for an entity e that
is tokenized into l tokens ε1, ε2, . . . , εl we simply
average the log probabilities across tokens:

p(e|t) = 1

l

l∑

i=1

p(mi = εi|tl).

If k is the maximum number of tokens of any entity
e ∈ C gets split into, we consider all templates
t1, . . . , tk, with C being the candidate set. The
prediction is then the word with the highest average
log probability across all templates t1, . . . , tk.

Note that for UnTyQ the space of possible pre-
dictions is V × V × · · · × V whereas for TyQ it is
the candidate set C.

3.4 Evaluation
We compute precision at one for each relation, i.e.,
1/|T |∑t∈T 1{t̂object = tobject} where T is the
set of all triples and t̂object is the object predicted
by TyQ or UnTyQ. Note that T is different for
each language. Our final measure (p1) is then the
precision at one averaged over relations (i.e., macro
average). Results for multiple languages are the
macro average p1 across languages.

untyped typed
single

0.1

0.2

0.3

0.4

p1

untyped typed
multi

0.0

0.1

0.2

p1

Figure 2: Distribution of p1 scores for 53 languages in
UnTyQ vs. TyQ. Left: singletoken (object = 1 token).
Right: multitoken (object > 1 token).

4 Results and Discussion

We first investigate TyQ and UnTyQ and find that
TyQ is better suited for investigating knowledge
in LMs. After exploring the translation quality,
we use TyQ on mLAMA and observe rather sta-
ble performance for 21 and poor performance for
32 languages. When investigating the languages
more closely, we find that prediction results highly
depend on the language. Finally, we validate our
initial hypothesis that mBERT can leverage its mul-
tilinguality by pooling predictions: pooling indeed
performs better.

4.1 UnTyQ vs. TyQ

Figure 2 shows the distribution of p1 scores for
single and multitoken objects. As expected, TyQ
works better, both for single and multitoken ob-
jects. With UnTyQ, performance not only depends
on the model’s knowledge, but on at least three
extraneous factors: (i) Does the model understand
the type constraints of the template (e.g., in “X is
the capital of Y”, Y must be a country)? (ii) How
“fluent” a substitution is an object under linguistic
constraints (e.g., morphology) that can be viewed
as orthogonal to knowledge? Many English tem-
plates cannot be translated into a single template
in many languages, e.g., “in X” (with X a country)
has different translations in French: “à Chypre”,
“au Mexique”, “en Inde”. But the LAMA setup
requires a single template. By enforcing the type,
we reduce the number of errors that are due to sur-
face fluency. (iii) The inadequacy of the original
LAMA setup for multitoken answers. Figure 2
(right) shows that the original UnTyQ struggles
with multitokens (mean p1 .03 vs. .17 for TyQ).

Overall, TyQ allows us to focus the evaluation
on the core question: what knowledge is contained
in LMs? From now on, we report numbers in the
TyQ setting.

Manual template tuning or automatic template

75



3253

machine manually manually
translated corrected paraphrased

de 18.1 19.4 (6) 20.9 (18)
hi 5.4 6.2 (14) 6.2 (1)
ja 0.4 0.4 (14) 0.7 (5)

Table 2: Effect of manual template modification on Un-
TyQ. Shown is p1, number of templates modified (in
brackets). Templates are modified to correct mistakes
from machine translation and paraphrased to achieve
the correct object type. Manual template correction has
a small effect on UnTyQ.

mining (Jiang et al., 2020b) has been investigated
in the literature to approach the typing problem.
We had native speakers check templates for Ger-
man, Hindi and Japanese, correct mistakes in the
automatic translation and paraphrase the template
to obtain predictions with the correct type. Table 2
shows that corrections do not yield strong improve-
ments. We conclude that template modifications
are not an effective solution for the typing problem.

4.2 Translation Quality

Contemporaneous work by Jiang et al. (2020a) pro-
vides manual translations of LAMA templates for
23 languages respecting grammatical gender and
inflection constraints. We evaluate our machine
translated templates by comparing performance on
a common subset of 14 languages using TyQ query-
ing on the TREx subset. Surprisingly, we find a per-
formance difference of 1 percentage points (0.23
vs. 0.24, p1 averaged over languages) in favor of
the machine translated templates. This indicates
that the machine translated templates in combina-
tion with TyQ exhibit comparable performance but
come with the benefit of larger language coverage
(53 vs. 23 languages).

4.3 Multilingual Performance

In mLAMA, not all triples are available in all lan-
guages. Thus absolute numbers are not compara-
ble across languages and we adopt a relative per-
formance comparison: we report p1 of a model-
language combination divided by p1 of mBERT’s
performance in English (mBERT[en]) on the ex-
act same set of triples and call this rel-p1. A rel-
p1 score of 0.5 for mBERT[fi] means that p1 of
mBERT on Finnish is half of mBERT[en]’s per-
formance on the same triples. rel-p1 of English
BERT is usually greater than 1 as monolingual
BERT tends to outperform mBERT[en].

Figure 3 shows that mBERT performs reason-
ably well for 21 languages, but for 32 languages

LAMA LAMA-UHN
BERT 38.5 29.0
mBERT[en] 35.0 25.7
mBERT[pooled] 41.1 32.1

Table 3: p1 for BERT, mBERT queried in English,
mBERT pooled on LAMA and LAMA-UHN.

rel-p1 is less than 0.6 (i.e., their p1 is 60% of En-
glish’s p1). We conclude that mBERT does not
exhibit a stable performance across languages. The
variable performance (from 20% to almost 100%
rel-p1) indicates that mBERT has no common rep-
resentation for, say, “Paris” across languages, i.e.,
mBERT representations are language-dependent.

4.4 Bias

If mBERT captured knowledge independent of lan-
guage, we should get similar answers across lan-
guages for the same relation. However, Table 1
shows that mBERT exhibits language-specific bi-
ases; e.g., when queried in Italian, it tends to predict
Italy as the country of origin. This effect occurs
for several relations: Table 4 in the supplementary
presents data for ten relations and four languages.

4.5 Pooling

We investigate pooling of predictions across lan-
guages by picking the object predicted by the ma-
jority of languages. Table 3 shows that pooled
mBERT outperforms mBERT[en] by 6 percent-
age points on LAMA, presumably in part be-
cause the language-specific bias is eliminated.
mBERT[pooled] even outperforms BERT by 3 per-
centage points on LAMA-UHN. This indicates that
mBERT can leverage the fact that it is trained on
104 Wikipedias vs. just one and even outperforms
the much stronger model BERT.

5 Related Work

Petroni et al. (2019) first asked the question: can
pretrained LMs function as knowledge bases? Sub-
sequent analyses focused on different aspects, such
as negation (Kassner and Schütze, 2020), easy to
guess names (Poerner et al., 2020), integrating
adapters (Wang et al., 2020) or finding alterna-
tives to a “fill-in-the-blank” approach with single-
token answers (Bouraoui et al., 2020; Heinzerling
and Inui, 2020; Jiang et al., 2020b). Other work
combines pretrained LM with information retrieval
(Guu et al., 2020; Lewis et al., 2020a; Izacard and
Grave, 2020; Kassner and Schütze, 2020; Petroni
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en id m
s af gl vi da es ca ce
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Figure 3: p1 of BERT (red) vs mBERT[x] (blue) divided by p1 of mBERT[en] on the same set of triples in
each language x. mBERT captures less factual knowledge than monolingual English BERT. While performance is
reasonable for 21 languages, it is below 60% for 32 languages. Dashed line is rel-p1 of mBERT[en] (by definition
equal to 1.0). Performance of BERT varies slightly as the set of triples is different for each language. Note that the
Wikipedia of Cebuano (ceb) consists mostly of machine translated articles.

et al., 2020). None of this work addresses lan-
guages other than English.

Multilingual models like mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020) perform
well for zero-shot crosslingual transfer (Hu et al.,
2020). However, we are not aware of any prior
work that analyzed to what degree pretrained mul-
tilingual models can be used as knowledge bases.
There are many multilingual question answering
datasets such as XQuAD (Artetxe et al., 2020),
TiDy (Clark et al., 2020), MKQA (Longpre et al.,
2020) and MLQA (Lewis et al., 2020b). Usually,
multilingual models are finetuned to solve such
tasks. Our goal is not to improve question answer-
ing or create an alternative multilingual question
answering dataset, but instead to investigate which
knowledge is contained in pretrained multilingual
LMs without any kind of supervised finetuning.

There is a range of alternative multilingual
knowledge bases that could be used for evaluation.
Those include ConceptNet (Speer et al., 2017) or
BabelNet (Navigli and Ponzetto, 2010). We de-
cided to provide a translated versions of TREx and
GoogleRE for the sake of comparability across lan-
guages. By translating manually created templates
and entities we can ensure comparability across
languages. This is not possible for crowd-sourced
databases like ConceptNet.

In contemporaneous work, Jiang et al. (2020a)
create and investigate a multilingual version of
LAMA. They provide human template translations
for 23 languages, propose several methods for mul-
titoken decoding and code-switching, and experi-
ment with a number of PLMs. In contrast to their
work, we investigate typed querying, focus on com-
parabiliy and pooling across languages, and explore
language biases.

6 Conclusion

We presented mLAMA, a dataset to investigate
knowledge in language models (LMs) in a multi-
lingual setting covering 53 languages. While our
results suggest that correct entities can be retrieved
for many languages, there is a clear performance
gap between English and, e.g., Japanese and Thai.
This suggests that mBERT is not storing entity
knowledge in a language-independent way. Ex-
periments investigating language bias confirm this
finding. We hope that this paper and the dataset
we publish will stimulate research on investigating
knowledge in LMs multilingually rather than just
in English.
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A Language Bias

Table 4 shows the language bias for 10 relations.
For each relation we aggregated the predictions
across all triples and show the most common two
predicted entities together with its count (in brack-
ets). The querying language clearly affects results.
The effect is drastic for relations that ask for a coun-
try (e.g., P495 or P1001). P39 yields very different
results without exhibiting a clear pattern. Other
relations such as P463 or P178 are rather stable.

B Data Samples

Table 4 and Table 5 show randomly sampled entries
from the data.

C Pretraining Data

We investigate whether performance across lan-
guages is correlated with the amount of pretraining
data for each language. To this end we investigate
the number of articles per language as of January
2021 2 and p1 for TyQ in Figure 6. We do not have
access to the original pretraining data of mBERT.
Thus, the number of articles we consider in the
analysis might be different to the actual data used
to train mBERT.

2https://meta.wikimedia.org/wiki/List_
of_Wikipedias
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Figure 4: Three randomly sampled data entries from
mLAMA per language. Due to the automatic genera-
tion of the dataset not all of them are fully correct.
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en de nl it
P495: “[X] was created in [Y]” Japan (170), Italy (56) Deutschland (217), Japan (70) Nederland (172), Italië (50) Italia (167), Giappone (92)
P101: “[X] works in the field of [Y]” art (205), science (135) Kunst (384), Film (64) psychologie (263), kunst (120) fisiologia (168), caccia (135)
P106: “[X] is [Y] by profession” politician (423), composer (80) Politiker (323), Journalist (128) politicus (339), acteur (247) giornalista (420), giurista (257)
P1001: “[X] is a legal term in [Y]” India (12), Germany (11) Deutschland (36), Russland (9) Nederland (22), België (12) Italia (31), Germania (16)
P39: “[X] has the position of [Y]” bishop (468), God (68) WW (261), Ratsherr (108) burgemeester (400), bisschop (276) pastore ( 289), papa (138)
P527 “[X] consists of [Y]” sodium (125), carbon (88) Wasserstof (398), C (49) vet (216), aluminium (130) calcio (165), atomo (96)
P1303 “[X] plays [Y]” guitar (431), piano (165) Gitarre (312), Klavier (204) piano (581), harp (42) arpa (188), pianoforte (139)
P178 “[X] is developed by [Y]” Microsoft (177), IBM (55) Microsoft (153), Apple (99) Microsoft (200), Nintendo (69) Microsoft (217), Apple (49)
P264 “[X] is represented by music label [Y]” EMI (267), Swan (32) EMI (202), Paramount Records (59) EMI (225), Swan (50) EMI (217), Swan (99)
P463 “[X] is a member of [Y]” FIFA (126), NATO (33) FIFA (118), NATO (38) FIFA (157), WWE (16) FIFA (121), NATO (36)

Table 4: Most frequent object predictions (TyQ) in different languages. Some relations exhibit language specific
biases. WW = “Wirtschaftswissenschaftler”.
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Figure 5: Data samples continued.
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Figure 6: Scatter plot of p1 TyQ and number of articles
in the corresponding Wikipedia. There is no clear trend
visible.
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Abstract

Although pretrained language models
(PTLMs) contain significant amounts of world
knowledge, they can still produce inconsistent
answers to questions when probed, even
after specialized training. As a result, it can
be hard to identify what the model actually
“believes” about the world, making it sus-
ceptible to inconsistent behavior and simple
errors. Our goal is to reduce these problems.
Our approach is to embed a PTLM in a
broader system that also includes an evolving,
symbolic memory of beliefs – a BeliefBank
– that records but then may modify the raw
PTLM answers. We describe two mechanisms
to improve belief consistency in the overall
system. First, a reasoning component – a
weighted MaxSAT solver – revises beliefs
that significantly clash with others. Second, a
feedback component issues future queries to
the PTLM using known beliefs as context. We
show that, in a controlled experimental setting,
these two mechanisms result in more consis-
tent beliefs in the overall system, improving
both the accuracy and consistency of its
answers over time. This is significant as it is
a first step towards PTLM-based architectures
with a systematic notion of belief, enabling
them to construct a more coherent picture
of the world, and improve over time without
model retraining.

1 Introduction

Intelligent agents are typically considered to have
beliefs about the world – propositions that they take
as true (Genin and Huber, 2021). In general, a sys-
tem can be said to (appear to) believe a proposition
p, e.g., “eagles are birds”, if it produces answers
consistent with p (and its other beliefs). Pragmati-
cally, we expect the system to (a) give a consistent
answer to different paraphrases of the question "p?"
("Are eagles birds?", "Is an eagle a type of bird?",
...), and (b) give correct answers about implications
of p ("Eagles lay eggs", "Eagles have feathers", ...),

Figure 1: The proposed architecture. The model’s raw
answers are stored in a persistent, symbolic memory
(BeliefBank), and two mechanisms attempt to improve
them: (a) A constraint solver flips beliefs (e.g., the be-
lief that “a swallow is a fish”) that clash significantly
with others. (b) A feedback mechanism poses new
questions using existing, relevant beliefs (e.g., “a swal-
low is not a fish”) as the query context. We find that
both consistency and accuracy of the overall system
improve. Example: The model M shown in the fig-
ure incorrectly answers “yes”, when asked “a swallow
has gills?”. But (as shown above) if reminded of its
previous answer “a swallow is not a fish”, M correctly
answers "no".

conditional on its other knowledge and reasoning
abilities.

Maintaining a consistent set of beliefs (a “belief
system”) is a key facet of intelligence, as it can
help debug errors and encourage rational behav-
ior. However, although PTLMs contain substan-
tial world knowledge (Petroni et al., 2019), their
answers to probing questions can be inconsistent
(Elazar et al., 2021; Kassner and Schütze, 2020),
even after specialized training to reduce inconsis-
tency (Ribeiro et al., 2019; Li et al., 2019). As
a result, it is sometimes hard to pin down what a
PTLM actually “believes”, making them suscepti-
ble to inconsistent and/or irrational behavior. Our
goal is a first step to avoid these problems by em-
bedding a PTLM in a broader system with a clearer
notion of belief (see Figure 1).

Prior work in AI, including in formal logic
(Genesereth and Nilsson, 1987), belief mainte-
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nance (De Kleer, 1986; Dechter and Dechter,
1988), and uncertainty (Pearl, 1986), offers models
for how beliefs can be managed. Most importantly,
it posits that creating a coherent set of beliefs –
a kind of “mental model” of the world (Johnson-
Laird, 1983) - is a constructive process requiring ex-
plicit representation of beliefs, and inference about
their dependencies. Based on this, our approach
is to embed a PTLM in a broader system with an
evolving, symbolic memory of beliefs - a Belief-
Bank - along with two mechanisms to improve
belief consistency of the overall system. First a
reasoning component – a weighted MaxSAT (sat-
isfiability) solver – reasons about belief dependen-
cies and revises beliefs that significantly clash with
others. Second, a feedback component poses fu-
ture queries to the model using known beliefs as
context, aiming for more accurate and consistent
answers from the PTLM itself. The BeliefBank
represents the overall system’s beliefs (a “mental
model”) about the world, constructed by deliberat-
ing over the noisy output of a raw PTLM.

We explore this in a controlled experimental set-
ting where both candidate beliefs and constraints
between them are provided. Candidate facts are
simple sentences that may be true or false, e.g., "An
eagle is a bird" (T), “An eagle is a mammal” (F).
Constraints are between (variabilized) facts, e.g.,
“X is a bird→X has wings”. These allow us to both
probe and measure improvement in the consistency
and accuracy of a system’s beliefs, compared with
an original PTLM.

In contrast to prior work, this system does not
rely on fine-tuning the PTLM. Fine-tuning requires
expensive training data, and risks destabilizing the
model’s performance on other tasks outside the
scope of training. Instead, our system functions
without training data, explicitly reasoning about
beliefs using an external mechanism, thus allow-
ing both controllability and interpretability. Most
significantly, we find that improving consistency
in this way improves accuracy, while earlier fine-
tuning-based approaches report either no accuracy
gains (Ribeiro et al., 2019; Minervini and Riedel,
2018; Li et al., 2019) or only slight gains (Asai and
Hajishirzi, 2020).

We make the following contributions:
1. We show that a PTLM-based system can be

given a consistent notion of belief by aug-
menting the PTLM with a global memory –
the BeliefBank – that can be deliberated over.

Specifically, we show that two mechanisms –
constraint reasoning and feedback – improve
the overall system’s accuracy and consistency
over time.

2. We contribute a targeted dataset to measure
a system’s consistency against given con-
straints.

3. We provide an analysis of the failure modes
and directions for future work.

This work is significant as it is a first step towards
PTLM-based architectures that have a systematic
notion of belief, allowing them to construct a more
coherent picture of the world, and improve over
time without model retraining.1

2 Related work

The idea that agents should have a belief system
dates back to the earliest years of AI, e.g., Mc-
Carthy (1959) envisioned representing a system’s
beliefs as formal propositions along with a rea-
soning process to identify what follows. Multiple
subfields of AI have explored ways of represent-
ing and updating beliefs, including in formal logic
(Genesereth and Nilsson, 1987; Moore, 1983), be-
lief revision (De Kleer, 1986; Dechter and Dechter,
1988), and uncertainty (Pearl, 1986). Similarly,
work in cognitive science has promoted mental
models – coherent, constructed representations of
the way the world is believed to be – as central to
understanding and communication (Johnson-Laird,
1983; Gentner and Stevens, 1983; Hilton, 1996).
We draw on these ideas, proposing how they can be
layered on top of PTLMs, here representing beliefs
as NL statements rather than formal structures.

Although PTLMs contain extensive world
knowledge (Petroni et al., 2019; Roberts et al.,
2020), they can be inconsistent in their answers to
probing questions (Ettinger, 2020; Davison et al.,
2019; Ravichander et al., 2020; Elazar et al., 2021;
Subramanian et al., 2020), making their “world
model” unclear. Although various approaches have
improved answer consistency, mainly through mod-
ified model training, e.g., (Ribeiro et al., 2019; Min-
ervini and Riedel, 2018; Li et al., 2019; Asai and
Hajishirzi, 2020), they have not solved the prob-
lem. Current PTLMs still behave as a source of
noisy knowledge, rather than projecting a coherent
picture of the world (Kassner and Schütze, 2020).

A close analogy to our task is in knowledge
graph (KG) construction. Pujara et al. (2013)

1Dataset is available at https://allenai.org/data/beliefbank
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define “knowledge graph identification” as the
task of building a maximally consistent KG given
noisy candidate facts and their extraction confi-
dences, and constraints between them. They de-
velop a solution using probabilistic soft logic (PSL)
(Broecheler et al., 2010) as their constraint reasoner.
Our reasoning component follows similar ideas, but
applied to the noisy predictions of a PTLM. On the
face of it, it is not clear how to plug a constraint
solver into a PTLM, given their very different na-
tures. Our solution introduces a global persistent
memory, making this novel combination of tech-
nologies possible. To our knowledge this has not
been done before.

Our work presents a broader system architec-
ture in which a PTLM is embedded, along with
a dynamic, persistent memory. While there are
prior neural architectures that include an associated
memory, e.g., (Henaff et al., 2016; Sukhbaatar et al.,
2015; Graves et al., 2016), these components typi-
cally play the role of a short-term working memory
to help computation. In contrast, our BeliefBank
is a persistent, long-term memory, and we treat the
PTLM as a component within a larger system. Our
work also differs from retrieval-augmented archi-
tectures, e.g., RAG (Lewis et al., 2020), REALM
(Guu et al., 2020), that augment model input with
external retrievals. Rather, our memory is reflective,
built from model outputs and reasoned over.

Our feedback mechanism uses old answers to
help answer new questions. This builds on prior
work such as Self-Talk (Shwartz et al., 2020),
where a model asks itself related questions to help
with new answers, and can be seen as a form of dy-
namic prompt engineering (Liu et al., 2021). In our
case, feedback is selected from a global BeliefBank,
rather than generated with templated subqueries,
potentially allowing more control over feedback
selection.

Finally, our system performs a kind of continual
learning (Parisi et al., 2019; Carlson et al., 2010).
While recent work in this area has focused on dy-
namic update of model parameters, e.g., (Ebrahimi
et al., 2021), our work leaves the model fixed, and
seeks improvement in the broader system in which
the model is embedded, exploring an alternative
and potentially more interpretable architecture to-
wards this goal.

3 Task

Our goal is to ascribe a clearer notion of “belief” to
a system that includes a model M , by improving,
over time, the consistency and accuracy of its an-
swers (compared with M ) to a stream of questions.
We measure this with true/false probing, where we
are also given a set of constraints between answers:

Given:
• a stream of sentences Q, interpreted as

questions to the model
• a set of constraints C(S) between (the

truth values of) sentences in Q, each an-
notated with a weight wi (A penalty wi is
applied if ci ∈ C(S) is violated)

• a model M that takes as input a question
q ∈ Q and optionally an (NL) context X
(consisting of answers to previously posed
questions), and predicts a True/False an-
swer A with confidence score F

Accumulate:
• the True/False labels for Q predicted by
M , optionally corrected by the constraint
solver, so as to maximally improve accu-
racy (with respect to gold labels) and con-
sistency (minimize total penalties of con-
straint violations)

4 Approach

Our approach adds a memory layer, called the Be-
liefBank, on top of the model to globally track
beliefs. Two mechanisms are then used to manage
the BeliefBank beliefs, namely constraint reason-
ing and feedback, as we now describe.

4.1 Definitions

Let

• a belief bi be a triple (si,li,wi), where
– si is a sentence ∈ S
– label li ∈ {T,F} denotes the system’s

True/False belief about the truth of si2

– weight wi is a number ∈ [0, 1] represent-
ing the system’s strength of that belief

For example:
("a poodle is a dog", T, 0.9)

denotes the belief (strength 0.9) that "a poodle
is a dog" is a true statement (T).

2Strictly, the label F denotes the belief that the negation of
si is true, e.g., (“a poodle is a bird”,F,...) denotes the belief “a
poodle is not a bird”.
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• a BeliefBank B(S) = a set of beliefs over
sentences S = s1, ..., sn

• a constraint ci = a 5-tuple of the form
(si.li → sj .lj , wi) where

– si, sj are sentences ∈ S,
– li, lj ∈ {T,F}. If si has truth value li,

denoted si.li, then sj is expected to have
truth value lj , denoted sj .lj .

– wi denotes the strength of that expecta-
tion (a penalty wi is applied if violated).

For convenience, a shared variable X can be
used in si, sj , allowing a set of grounded con-
straints to be expressed in one statement, e.g.,

(“X is a dog”.T→ “X has a tail”.T, 0.8)
expresses that if something is a dog, then it
should (T) have a tail, with a penalty of 0.8
applied if it does not. Mutual exclusivity is
expressed using two rules, e.g., that fish and
birds are mutually exclusive is expressed:

(“X is a bird”.T→ “X is a fish”.F, 1.0)
(“X is a fish”.T→ “X is a bird”.F, 1.0)

where “F” indicates the conclusion should be
false if the condition here is true (T).

• a constraint graph C(S) = a set of con-
straints ci over sentences S

Given a set of beliefs B(S) about S and a set of
constraints C(S), we measure consistency using
(the complement of) Li et al. (2019)’s conditional
constraint violation (τ ) metric, namely the fraction
of constraints whose condition si.li is believed, but
whose conclusion (that sj has truth value lj) is not.
In other words, over all constraints ci ∈ C(S),
inconsistency τ is
τ = |{ ci | ¬(si.li → sj .lj) }| / |{ ci | si.li }|

i.e., the size of the set of violated constraints
(si.li → sj .sj is false) divided by the size of the
set of applicable constraints. We then define:

consistency = 1 - τ

4.2 Methods
We consider our system in a dynamic setting, where
it receives a stream of questions and gradually
builds up a BeliefBank of answers (including revis-
ing earlier answers). We evaluate two methods for
improving the BeliefBank’s accuracy and consis-
tency over time:
Constraint solving: Given a model M ’s raw an-

swers (with confidences), a constraint solver
seeks to reduce constraint violations by poten-
tially flipping answers that maximally clash
with other answers.

Feedback: Given a new question q, selected be-
liefs in the BeliefBank are provided as context
to M to help it answer q correctly.

Figure 1 shows these components.

4.2.1 Constraint Solving
Given a set of beliefs and constraints, the constraint
solver has two competing objectives: (a) flip beliefs
so as to minimize constraint violations (b) don’t
flip beliefs, so as to preserve the model’s raw an-
swers, i.e., minimize conflict between the model
and BeliefBank. To implement this tradeoff, the
model’s answers are themselves treated as just an-
other constraint, e.g., the answer that "a poodle is
a dog" is true (confidence 0.9) is treated as a con-
straint "a poodle is a dog", with penalty 0.9 if it
is violated. To balance the two objectives (a) and
(b), the model confidences are scaled by a learned
hyper-parameter λ, trained on a calibration part
of our dataset, disjoint from the data then used in
experiments (Section 5).

To implement constraint solving, we translate
the task into a weighted MaxSAT (satisfiability)
problem P , for which efficient algorithms with
guarantees exist. Each belief becomes a weighted
assertion in P , e.g., the belief ("a poodle is a dog",
T, 0.9) is expressed in SAT syntax:

0.9 "a poodle is a dog"3

while the constraint ("a poodle is a dog".T→ "a
poodle has a tail".T, 0.8) is expressed:

0.8 "a poodle has a tail" -"a poodle is a dog"
(literally: "a poodle has a tail" OR NOT ("-") "a
poodle is a dog"). We then apply the solver Z3
(De Moura and Bjørner, 2008) to P , which outputs
a set of truth assignments for all individual sen-
tences in P so as to minimize the weighted sum of
violations. If the truth of any sentence has changed,
the BeliefBank is correspondingly updated.

4.2.2 Feedback
Feedback involves asking the model a question, but
with the benefit of knowing answers to prior, re-
lated questions. To use these answers in the query,
selected beliefs are added to the query context be-
fore asking the model. (Note that the selected be-
liefs are not guaranteed to be correct, of course).
Our conjecture is that if the model is explicitly re-
minded of relevant beliefs when answering a new
question, it will answer the question more accu-

3In practice, strings are replaced with numeric identifiers
in SAT syntax, but for clarity we leave them as strings here.
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rately and consistently. For example, in Figure 1,
when asked "Do swallows have gills?", our model
M incorrectly answers "yes". But if reminded
that swallows are not fish, by asking: "CONTEXT
Swallows are not fish. QUERY Do swallows have
gills?" the model now correctly answers "no".

We evaluate two policies for choosing which
beliefs to feed back to M when asking question q
about entity e:

1. on topic beliefs, namely current beliefs about
entity e, randomly selected from the Belief-
Bank

2. most relevant on topic beliefs (i.e., again
about e), using the constraint graph to identify
relevance. As the constraint graph captures
potential clashes that the answer to q could
cause, we use the graph to identify beliefs
that would be most affected by that answer.
For example, if the current query is: "Is a
poodle an animal?", the constraint graph iden-
tifies potential clashes that would occur if the
model answered "yes", and also clashes if it
answered "no". Here, if the model answered
"no", the resulting belief ("a poodle is not an
animal") would strongly clash with other be-
liefs "A poodle is a dog." and "A poodle is a
mammal.", so these two are strong candidates
for the context. We select the three strongest
clashing beliefs found in this way, consider-
ing both "yes" and "no" answers to q. If no
relevant fact is present, we use a randomly
selected topic belief instead.

In both cases, three beliefs are selected, this number
was empirically found to be most effective.

5 Dataset

We create a dataset4 to test our approach in a con-
trolled way, allowing us to perform systematic ex-
periments to evaluate behavior. The dataset con-
tains two parts, constraints and facts, defined over
simple sentences such as “a swallow is a bird.”

5.1 Constraints

The dataset contains two kinds of constraints:
positive implications: conclusion truth value lj =

T (true), e.g.,
“X is a dog.T→ “X has a tail.”.T

mutual exclusivities: expressed as a pair of con-
straints with lj = F (false), e.g.,

4Dataset is available at https://allenai.org/data/beliefbank

“X is a dog".T→ "X is a bird.”.F
“X is a bird".T→ "X is a dog.”.F
expresses that an entity cannot be both a dog
and a bird at the same time.

Positive implications were manually gathered from
ConceptNet (Speer et al., 2017). First, we identi-
fied 121 general concepts of interest, e.g., “mam-
mal”, then converted selected triples about them to
constraints (Details of the selection process are in
Appendix A). For example, the ConceptNet triple
(dog,HasA,tail) becomes the constraint "X is a dog"
→ "X has a tail". We also add weaker, disjunctive
constraints in the backward direction, e.g., "X has
a tail"→ "X is a dog" OR "X is a cat" OR .... for all
entities with tails. Mutual exclusivities were gath-
ered from the “isa” taxonomies in ConceptNet and
WordNet (Fellbaum, 2005), using the approxima-
tion that siblings in the noun hierarchy are mutually
exclusive. Thus, for any pair of siblings, we add a
mutual exclusivity constraint (using two constraint
rules).

We collected 2612 constraints in this fashion
(1836 forward implications, 2*388 bidirectional
mutual exclusivities).

5.2 Constraint Weights
Constraint weights need to be set appropriately to
mix well with the model’s confidences inside the
weighted SAT solver. We use a development set of
1072 facts about seven entities to set one constraint
weight for the forward direction of the implications
and the mutual exclusivity rules and a second one
for the backward direction of the implications. To
do this we perform a grid search over these param-
eters, finding the values that result in the highest F1
(accuracy) after running the constraint solver over
the raw model’s beliefs about these facts.

5.3 Facts
We also collect a set of truth-labeled facts about
different entities, relevant to the constraints. To
do this, we select a new entity, e.g., "poodle", that
is a member of one of our general concepts, e.g.,
"dog", then instantiate the constraint graph with
that entity (i.e., set X = "poodle"). We then identify
the leaf (source) nodes of that graph, just consider-
ing forward implication rules, i.e., finding facts not
implied by other facts in the graph, and manually
annotate their True/False labels. We then use the
implications and mutual exclusivities to infer other
True/False labels for other sentences, i.e., we prop-
agate the annotated labels through the graph. This
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provides “silver” labels for sentences reachable in
this way (a subset of all the sentences in the graph)
– silver because the implications are soft, hence not
guaranteed to hold for all entities.

We repeat this for 85 entities (animals and
plants), resulting in a final dataset containing
12,525 “silver” facts (sentences + True/False la-
bels). Note that this data is purely for evaluation.
There is no training phase or training data. The
system does not have access to any labeled data
besides the constraint rules.

6 Model

The fixed modelM that we use for our experiments
is Macaw (Tafjord and Clark, 2021), a state-of-the-
art T5 QA model fine-tuned on ≈400k QA pairs.
To query the model, we pose the query (optionally
with a textual context), and let the model choose
between the two answer options "yes" and "no".
The model also outputs an answer confidence, used
as the belief weight.

We use the T5-large version of this model. Note
that we do not retrain the model for this work;
rather, it is used as a black-box QA module in the
broader system (Figure 1). Other models could
equally have been used.

7 Experiments

We evaluate our system in a dynamic setting in
which it receives a stream of questions, building up
and revising a BeliefBank. To simplify the evalu-
ation, we consider questions to arrive in batches,
and evaluate the BeliefBank after each batch, mea-
suring accuracy (F1)5 and consistency (1-τ , Sec-
tion 4.1) of the BeliefBank so far, comparing with
the gold labels. We evaluate four configurations:
Raw model: The BeliefBank simply records the

raw model’s answers 6

Constraint-Solving: After each batch, the con-
straint solver is run over all the (raw) model
answers so far, and the BeliefBank updated
accordingly.

Feedback: Questions in batch n are posed to the
model using a context selected from the be-

5We measure accuracy with F1 (on the True class) rather
than % correct because the True/False distribution in our
dataset is unbalanced, with significantly fewer True than False
answers. F1 avoids scores being dominated by negative an-
swers.

6To the best of our knowledge there are no other baseline
models to compare to as consistency based Q&A does not
go beyond paraphrases and relies on finetuning (Elazar et al.,
2021).

Figure 2: The four configurations we evaluate. In (B),
the contraint-solver (SAT solver) is run over all model
M answers so far. In (C), current beliefs are fed back
as context for new questions. (D) combines the two.

liefs already in the BeliefBank (batches 1 to
n− 1). We evaluate two selection strategies:
Feedback (on-topic): Random beliefs about

the entity e being queried about
Feedback (relevant): On-topic beliefs (i.e.,

again about e) that are most relevant to
the query, as defined in Section 4.2.2

Feedback + Constraint-Solving: A combination
of the two.

These configurations are illustrated in Figure 2.

7.1 Results

The results are shown in Figure 3, showing the
changing accuracy and consistency of the grow-
ing BeliefBank with time, for different configura-
tions. Each time-step (batch) represents another
10% of the test questions being posed to the sys-
tem. (The same data is presented in tabular form in
Appendix B). Several conclusions can be drawn:
• Use of feedback, constraint-checking, or both,

all result in a continually improving accuracy
over time. This is a significant result, showing
a larger system can continually improve even if its
internal PTLM component is fixed. (The raw accu-
racy of the PTLM itself is necessarily constant).
• Use of the constraint-solver results in very

high (~95%) consistency, indicating that it is do-
ing its job well, and also improving accuracy
substantially (+17% over the raw model). The
constraint-solver has a global view of the Belief-
Bank, and thus can balance all beliefs seen so far
with the provided constraints to make a decision.
• Relevant feedback results in significant

consistency gains compared with just on-topic
feedback. As relevant beliefs are exactly those
that may clash with the answer to the current ques-
tion (Section 4.2.2), this encourages the model to
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OnTopic-FB = using (randomly selected) on-topic feedback from old answers for new queries.
Relevant-FB = using most relevant on-topic feedback for new queries.
Constraints = running the constraint-solver after each batch.

Figure 3: Accuracy (left) and consistency (right) of the growing BeliefBank, as the system answers incrementally
more questions (each batch = 10% of the queries). Relevant feedback, constraint-solving, and both, all help
improve both F1 and Consistency.

answer consistently with those beliefs, promoting
consistency. Of course, this could hurt accuracy
if those relevant beliefs were wrong, amplifying
the errors. In fact, the overall accuracy remains
about the same as with on-topic feedback, and sig-
nificantly better than the model’s raw answers.

• The greatest gains are for feedback and
constraint-solving combined, resulting in +18%
F1 (absolute) over the raw model accuracy. This
suggests that feedback and constraints can work
together in a positive way.

• As a sanity check we also tried using random
beliefs about other entities (off-topic) as feedback,
but (as expected) the results did not significantly
differ from no feedback (raw model), ending at
≈72% F1 and ≈74% consistency after batch 10.

We also evaluated a non-incremental, “omni-
scient” version of the BeliefBank: Given the raw
model answers to all questions, re-ask every ques-
tion using feedback selected (using relevance) from
all the other answers. The resulting accuracy was
74.5%, substantially lower than for the on-topic
incremental approaches. Interestingly, this ap-
proach’s built-in advantage (that every question
has access to answers for all other questions) does
not outweigh the built-in disadvantage (that those
are the raw, rather than incrementally corrected,
answers). This is a significant result demonstrat-
ing that the positive feedback loop of the incre-
mental approaches can be advantageous, where
feedback feeds more accurate beliefs into the Be-
liefBank, improving future feedback, etc.

7.2 Failure Analysis

We now provide some examples of good and bad
flips to better understand the behavior of the model.

First, as an illustration of desired behavior, the
raw model incorrectly believes that a pine is both
a plant (correct) and a vertebrate (incorrect), when
queried. However, this violates a mutual exclusiv-
ity rule, so the constraint-solver considers flipping
one of these. Flipping “pine is a plant” from T to
F would result in numerous other violations, e.g.,
“pine is a tree” (which the model also believes)
would be violated. As a result, it prefers to (cor-
rectly) disbelieve “pine is a vertebrate”, improving
both accuracy and consistency.

From an analysis of the data, we see that the
majority of the raw model errors are false posi-
tives – the raw model generally answers (almost)
all the positive facts correctly (recall is ≈98%),
but mistakenly thinks many negative facts are also
true (precision is ≈54%). These false positives can
be rather unusual facts, e.g., “A poodle is a bath-
room.” (model’s answer: True). It is unsurprising
that the model knows most of the positive facts,
as they are simple statements about common enti-
ties (“eagles can fly”), likely seen in pre-training.
However, the fact that the model makes (what a
person would view as) catastrophic errors when
asked more unusual questions, e.g., believing that
“a poodle is plant”, reveals that the PTLM’s grasp
of the world is still incomplete and problematic.
The constraint mechanism proposed here essen-
tially asks the model to think about its answers and
their consequences, so that it can spot problems
that the PTLM alone does not see, and repair them.
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The constraint reasoner can also make mistakes,
flipping things the wrong way so as to improve
consistency, at the expense of accuracy. For ex-
ample, the raw model correctly believes that “a rat
is not a cat”. However, the constraint solver then
(incorrectly) flips this to “a rat is a cat”, because
multiple constraints weakly suggest rats are cats
given other beliefs (”rats catch mice”, “rats have
tails”,...), which together add up, causing the (incor-
rect) flip, including overwhelming the strong (but
not infinitely strong) constraint that “a rat is not a
feline.” This illustrates that the constraint mech-
anism is sensitive to the number of and weights
on constraints, even with automatic hyperparame-
ter tuning (Section 5.2).

Similarly, the feedback mechanism is sensi-
tive to question order, especially if the model’s
early answers are wrong, as the feedback mecha-
nism causes the model to pay extra (sometime dis-
proportionate) attention to earlier context (Kassner
and Schütze, 2020). For example, the bad context
“A poodle is not a mammal” (from an earlier bad
answer) undesirably causes the model to change
its answer for "A poodle is a dog" from true (raw
model) to false.

Finally, we can only speculate why feedback
improves results, in particular, since the feedback
consists of facts that came from the model itself
(i.e., that it already knows). One explanation is that
feedback may help the model focus attention on
important facts, e.g., reminding the model that “a
swallow is not a fish” should help it realize that “a
swallow has gills” is False (Figure 1). In addition,
feedback may possibly help resolve some ambi-
guities, e.g., the feedback “a swallow has wings”
helps identify the bird sense of “swallow”. Similar
advantageous use of feedback was observed in the
SelfTalk experiments (Shwartz et al., 2020).

In future work, the feedback mechanism can be
improved further by training it to respond more
systematically to feedback (similar to (Clark et al.,
2020)) and to better balance implicit and explicit
knowledge (Talmor et al., 2020), ideally incorpo-
rating different levels of confidence.

8 Future Work

8.1 Human in the Loop

Although our system is autonomous, its incremen-
tal setting combined with the explicit representa-
tion of beliefs makes it amenable to a human in the
loop. In this setting, a human might spot an egre-

gious bad belief in the BeliefBank, and forcibly
correct it. Then, ideally, this strong positive dat-
apoint would also improve the model’s accuracy
on other beliefs, both in the BeliefBank and for
future questions. As a brief test of this, we allowed
a human to correct all bad beliefs (average 6) in the
BeliefBank after just the first batch (10%) of ques-
tions, and then continued as before to completion,
using the constraint-solving approach. We find that
these limited interventions increased both the final
F1 and Consistency each by 2% (absolute) on top
of the gains produced by the corrected beliefs them-
selves. Although preliminary, this suggests that
our architecture may have value in an interactive
“machine teaching” setting, where the user is super-
vising and correcting the system, and it continually
improves as a result (Zhu, 2015).

8.2 Towards Deployment

Although our work has been in a constrained setting
(targeted set of relations, entities and constraints),
there is a clear development path to deployment
in real QA systems to reduce the kind of irrational
behavior we have described, such as in this (real)
transcript:

(1) Is oxygen colorless? yes
(2) What color is oxygen? blue
(3) What gas do plants produce? oxygen
(4) What color is the gas plants produce? green

The basic components of our architecture provide
a framework to help avoid such irrationality. First,
(declarative versions of) questions and model an-
swers would be persistently stored in a BeliefBank.
Second, on-topic feedback could be selected to
help answer new questions using information re-
trieval over the BeliefBank. Third, given a source
of constraints, e.g., a general rule of taxonomic
inheritance,7 constraint solving could be applied
to spot and reduce clashes. This would require
a mechanism to identify when a belief satisfies a
constraint’s condition or conclusion, e.g., a state-of-
the-art textual entailment engine such as CA-MTL
(Pilault et al., 2021). A variant of our system could
also work without the distinction of model beliefs
and constraints: Instead of providing constraints ex-
ternally we could treat them as beliefs, e.g., query
the model for mutual exclusivities "Can an entity
be an animal and a plant?" or implications: "Do
dogs have tails?" directly. This would run the risk

7I.e., that the properties of an entity type usually apply to
all its subtypes also.
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of adding extra noise, but would eliminate the man-
ual effort involved in generating the constraint set,
and therefore improve scalability. Together, such
developments would pave the way to real-world
QA systems that are more consistent and improve
over time, rather than remain static.

8.3 The Broader Research Agenda

This work only touches on a broader research
agenda, namely how to expand work on PTLMs
to encompass the cognitive skills of world model-
ing and deliberative reasoning (“thinking, fast and
slow” (Kahneman, 2011)). In this broader agenda,
intelligence is not just about opaque question-
answering, but also about constructing mental mod-
els that describe how (some aspect of) the world
works (Gentner and Stevens, 1983). Although men-
tal models are abstractions (hence are approximate),
they add a powerful, systematic component to un-
derstanding that should expand its capabilities.

The BeliefBank can be seen as a simple illus-
tration of this broader agenda. A wider pursuit
would include a richer notion of a model, perhaps
with more structure to model elements than just
sentences; more sophisticated means of model con-
struction than just accumulating and resolving an-
swers; and the generation of explanations to convey
the deliberative component’s behavior, and ulti-
mately interact with a user. Such mechanisms may
be symbolic or neural in nature, e.g., (Talmor et al.,
2020). Although these issues are beyond the scope
of this paper, our work points to this interesting,
larger goal for PTLM research, as well as offering
a specific mechanism for belief consistency.

9 Conclusion

PTLMs can be inconsistent in their answers to prob-
ing questions, and can still give (what to a person
appear as) naively wrong answers. This work is a
first step towards alleviating these problems. By
embedding a PTLM within a larger system with
a persistent, global memory – the BeliefBank –,
a constraint-solver and feedback mechanism, we
have shown that the overall system’s behavior is
more coherent, both in terms of consistency and
accuracy. The additional memory layer can loosely
be seen as the system’s “mental model”, a represen-
tation constructed from the PTLM’s raw answers.

Our experiments were conducted in a restricted
(small set of relations, entities and constraints), con-
trolled setting, and further development is needed

to scale to larger and more complex tasks. Nev-
ertheless, the work here is significant as it is a
first step towards PTLM-based architectures with a
globally consistent notion of belief, allowing them
to construct a more coherent picture of the world,
and continually improve with time.
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Appendix: BeliefBank: Adding Memory to a Pre-Trained Language
Model for a Systematic Notion of Belief

A Selecting Constraint Rules from
ConceptNet

As described in Section 5.1, positive implication
(constraint) rules were manually gathered from
ConceptNet (Speer et al., 2017). First, we iden-
tified 121 general concepts of interest, e.g., “mam-
mal”, choosing concepts with high occurrence (>
100 times) in ConceptNet, avoiding significantly
ambiguous terms (e.g., “bat”), and filtering out
plurals and obscure concepts. For these entities,
we then collected all ConceptNet facts involving
6 relations: IsA, HasA, MadeOf, PartOf, HasProp-
erty, and CapableOf, and re-expressed them as con-
straints. For example, the ConceptNet triple (dog,
HasA, tail) gives rise to the constraint "X is a dog"
→ "X has a tail." (Triples are converted into En-
glish sentences using simple templates). We then
manually filter theses constraints for factual correct-
ness. We also add weaker, disjunctive constraints
in the backwards direction, e.g., "X has a tail"→
"X is a dog" OR "X is a cat" OR .... for all entities
with tails. (These backwards rules discourage the
trivial solution that everything is false.) Finally,
two hyperparameters for weights on forward and
backwards rules are set by automatic calibration
(Section 5.2).

B Experimental results in table form

Tables 1 and 2 contain the numerical data for the
experimental results plotted in Figure 3.
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Accuracy (F1) after batch→ 1 2 3 4 5 6 7 8 9 10
Raw model 69.2 70.0 70.0 69.3 69.3 69.5 69.2 69.0 69.1 69.3
OnTopic-FB 69.2 74.3 76.0 76.4 77.0 77.3 77.5 77.5 77.8 77.8
Relevant-FB 69.2 73.8 75.1 75.8 76.8 77.2 77.7 78.4 78.9 79.5
Constraints 72.3 75.2 76.8 78.3 80.1 81.6 82.4 83.3 84.9 85.8
Relevant-FB + Constraints 72.4 78.5 80.5 82.1 83.6 84.2 85.1 86.1 86.7 86.6

Table 1: Experimental results for accuracy (F1), as plotted in Figure 3, here shown in tabular form.

Consistency (1− τ ) after batch→ 1 2 3 4 5 6 7 8 9 10
Raw model 73.2 73.7 74.0 72.8 72.4 72.3 72.3 72.2 72.4 72.5
OnTopic-FB 73.2 72.9 73.6 73.3 73.5 72.6 72.5 72.6 72.5 72.3
Relevant-FB 73.2 77.8 79.3 80.1 80.6 79.7 80.1 80.5 80.8 81.0
Constraints 98.2 97.1 96.5 96.2 96.3 96.4 96.1 96.1 96.0 96.0
Relevant-FB + Constraints 98.8 98.2 97.6 97.8 97.9 97.7 97.3 97.2 97.1 97.0

Table 2: Experimental results for consistency (1− τ ), as plotted in Figure 3, here shown in tabular form.
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Abstract

While large language models (LLMs) are pro-
ficient at question-answering (QA), it is not
always clear how (or even if) an answer fol-
lows from their latent “beliefs”. This lack
of interpretability is a growing impediment to
widespread use of LLMs. To address this, our
goals are to make model beliefs and their in-
ferential relationships explicit, and to resolve
inconsistencies that may exist, so that answers
are supported by interpretable chains of reason-
ing drawn from a consistent network of beliefs.
Our approach, which we call REFLEX, is to add
a rational, self-reflecting layer on top of the
LLM. First, given a question, we construct a be-
lief graph using a backward-chaining process
to materialize relevant model beliefs (includ-
ing beliefs about answer candidates) and their
inferential relationships. Second, we identify
and minimize contradictions in that graph us-
ing a formal constraint reasoner. We find that
REFLEX significantly improves consistency (by
8%-11% absolute) without harming overall an-
swer accuracy, resulting in answers supported
by faithful chains of reasoning drawn from a
more consistent belief system. This suggests
a new style of system architecture in which an
LLM extended with a rational layer can provide
an interpretable window into system beliefs,
add a systematic reasoning capability, and re-
pair latent inconsistencies present in the LLM.

1 Introduction
While large language models (LLMs) are impres-
sive at question-answering (QA), it is not always
clear how (or even if) an answer follows from their
latent “beliefs”1 about the world, or whether the
LLM even has a coherent internal belief system.
This general opacity is a growing impediment to
widespread use of LLMs, e.g., in critical applica-
tions such as medicine, law, and hiring decisions,

1 We adopt a simple definition of belief, namely that a
model believes X if it answers "yes" to the question "Is X
true?". Other definitions could also be used; see Section 2.

Figure 1: (Top) When queried about each answer option
independently, the model incorrectly believes both are
true, and is more confident in the wrong answer (S2).
(Bottom) REFLEX adds a "rational" layer above the
LLM layer, in which a belief graph is constructed (by
iteratively querying the LLM, up/down arrows), contain-
ing relevant model-believed facts (white/grey = believed
T/F) and their inferential relationships. Inconsistencies
are then identified (red) and minimized by a constraint
reasoner that flips T/F labels on beliefs (green ✓/X),
here resulting in the correct answer (S1, green box) +
explanation (graph) by the overall system (blue).

where properties of explainability, interpretability,
and trust are paramount. Our goal is to help alle-
viate such opacity by constructing an explicit rep-
resentation of system beliefs and their inferential
relationships (including to answer candidates), so
that answers are supported by interpretable chains
of reasoning. These constructed belief graphs,
e.g., Figures 1 and 2, form a rational layer above
the LLM explaining how answers follow from be-
liefs, and provide a window into some of the latent
contents of the model, potentially helping users
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understand and trust model answers.

In addition, when we do this, we find such graphs
expose latent inconsistencies in the model’s beliefs.
We show how such inconsistencies can be resolved
using constraint satisfaction techniques. When we
do this, the rational layer becomes not just a win-
dow onto the model, but an active reasoning com-
ponent in its own right in a larger, overall system,
comprising the (frozen) LLM plus rational layer
(blue box, Figure 1). We show this results in a
more consistent set of beliefs in the overall system,
without harming overall answer accuracy (although
some individual answers may change). The result
is answers supported by faithful, system-believed
chains of reasoning drawn from a consistent belief
system.

Our approach, called REFLEX, introduces a ra-
tional layer consisting of two parts. First, to pro-
duce a belief graph, we recursively ask the LLM
to explain why each candidate answer might be
true, expressed as a set of sentences that entail
the answer. This builds on earlier work on generat-
ing entailment-based and chain-of-thought explana-
tions (Tafjord et al., 2022; Weir and Durme, 2022;
Wei et al., 2022). We then add a self-verification
step to check that the model itself believes those
generations (i.e., that the model believes what it
says), allowing us to identify sentences reflecting
the model’s own internal knowledge. For example,
in Figure 1, when asked to explain S1 (“giraffes
give live birth”), the model generates S7 ([because]
“mammals give live birth”) and S4 ([and] “a giraffe
is a mammal”). Self-querying then checks if the
model actually believes its generations (“Do mam-
mals give live birth?”). The answer (“yes”/”no”)
assigns a true/false (T/F) value to each generation,
indicated in Figure 1 by white/grey nodes. This
procedure is then applied recursively to the gener-
ated, supporting sentences. The resulting network
of model beliefs and their dependencies provides a
a window into the model.

Second, we apply a formal constraint reasoner
to this graph to resolve inconsistencies, by find-
ing the optimal (minimal cost, Section 3.3) way
of flipping T/F values. For example, on the left in
Figure 1, S2 and S3 (“spiders do/don’t give live
birth”) are in an XOR relationship (i.e., exactly
one must be false), but both are believed as true
(white) by the LLM - a latent contradiction within
the LLM. Constraint reasoning then seeks to re-
move such inconsistencies, here flipping the belief

value on S2 from T to F (Figure 1, right), repairing
the contradiction. This builds on earlier techniques
(Kassner et al., 2021; Mitchell et al., 2022; Jung
et al., 2022), though in a notably richer setting with
over 350 nodes and 80 constraints per question,
joint inference across answer candidates, and a va-
riety of constraint types. The overall result is a fully
autonomous, self-reflective system that is able to
deliberate (and if necessary change) its answers,
thereby resolving latent inconsistencies that would
otherwise go unnoticed, and provide faithful expla-
nations drawn from a consistent belief system.

We evaluate our implementation of REFLEX

on three datasets: EntailmentBank (Dalvi et al.,
2021), OBQA (Mihaylov et al., 2018), and QuaRTz
(Tafjord et al., 2019). We find that REFLEX is
able to construct belief graphs with significantly
improved consistency (by 8%-11% absolute) with-
out harming overall answer accuracy. In addition,
answers are now supported by a more consistent,
system-believed chain of reasoning, providing a
window into the previously latent beliefs of the
model. Our contributions are thus:

1. A new style of system architecture in which
an LLM is extended with a rational layer
in which an explicit representation of system
beliefs and relationships is constructed and
which can be reasoned over. This layer pro-
vides an interpretable window into system
beliefs, adds a systematic reasoning capablity,
and allows latent inconsistencies present in
the LLM to be repaired.

2. An implementation of this architecture demon-
strating that the consistency of the overall
system’s network of beliefs can be signif-
icantly improved without harming answer
accuracy. Answers are now supported by ex-
plicit, interpretable chains of reasoning drawn
from a more consistent network of beliefs.

2 Related Work
Materializing a Model’s Internal Knowledge: It
is now well recognized that LLMs contain exten-
sive world knowledge (Petroni et al., 2019, 2020;
Davison et al., 2019; Peters et al., 2019; Jiang et al.,
2020; Roberts et al., 2020) that somehow enables
them to perform well. Recent work has attempted
to expose that knowledge in various ways, both
to justify answers and improve performance, and
our work falls into this genre. Standard explana-
tion generation methods (Wiegreffe and Marasović,
2021) can produce compelling explanations, but
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Figure 2: Given a question, each answer choice is first converted to a hypothesis statement (A). The belief graph
is then constructed in stages, first generating rules that conclude the hypotheses (B), then backward-chaining to
generate rules concluding the premises of those first rules, etc., and adding in negated versions of graph statements
connected with the originals via XOR links (e.g., nodes 11 and 12), until the stopping criterion is met (C). Statements
are then labeled with the model’s belief in them (true/false), found via self-querying (white = believed true, grey =
believed false). Finally, logical conflicts are identified (colored red), and constraint satisfaction techniques are used
to resolve them. In this case, as there is strong evidence that node 2 is actually true (7 & 6 → 2, not(19) → 2), the
solver finds that the minimum cost repair is to flip node 2’s label from FALSE to TRUE. Here, node 2 ends up being
selected as the final answer, thus correctly answering the original question.

with no guarantee that the generated sequence of
tokens expresses the model’s internal knowledge,
nor entails the actual answer. Similarly, chain-of-
thought (CoT) (Wei et al., 2022) and Least-to-Most
(Zhou et al., 2023) prompting generate (in different
ways) a step-by-step reasoning chain along with
an answer, but again with no claim that the chain
reflects the model’s internal knowledge nor is valid
reasoning (Subramanian et al., 2020).

To add semantics to generations, several systems
have used self-querying to verify that generations

reflect model-believed facts (by self-querying “Is
p true?”) (e.g., Kassner et al., 2021; Jung et al.,
2022), or model-believed rules (by self-querying
“Does p imply q?”) (e.g., Tafjord et al., 2022). We
build on these to construct a belief graph, namely
a network of model-believed facts and their infer-
ential relationships, which can then be reflected
on.

Beliefs: We refer to the model’s factual opin-
ions as “beliefs” rather than “knowledge” because
those opinions may be wrong. In general, an agent
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can be said to believe p if it acts as if p was true
(Schwitzgebel, 2019). Following Kassner et al.
(2021) and Richardson et al. (2022), we take a sim-
ple, syntactic operationalization of this, namely the
agent answers “yes” to the question “p?”, but also
note that more semantic versions could be used,
e.g., the agent also answers “yes” to paraphrases
and implications of p.

Reducing Inconsistency: LLMs are known to
be inconsistent in their answers (Ettinger, 2020;
Kassner and Schütze, 2020; Davison et al., 2019;
Ravichander et al., 2020; Elazar et al., 2021; Sub-
ramanian et al., 2020; Gu et al., 2023), and several
recent works have used constraint reasoners to iden-
tify and reduce inconsistency. BeliefBank used a
MaxSAT solver to resolve inconsistencies between
model beliefs, but required a hand-provided set of
constraint rules (Kassner et al., 2021). ConCoRD
(Mitchell et al., 2022) similarly used MaxSAT to
ensure model answers were consistent with NLI-
derived entailment constraints between them, but
did not introduce additional model-believed facts
and rules. Maieutic Prompting (Jung et al., 2022)
also used MaxSAT to resolve inconsistencies be-
tween facts in prompt-induced explanation chains.
However, those chains were not validated as re-
flecting model-believed constraint rules2, and did
not support conjunction. REFLEX extends these
reasoning chains to provide a full semantic account
of how answers are supported by the model’s in-
ternal knowledge. Additionally, it performs joint
reasoning across answer candidates and operates
at a much larger scale (e.g., over 350 nodes on
average for each question) and with a variety of
constraint types.

3 REFLEX: Our Approach

3.1 Belief Graphs

Our belief graphs are defined over a set of natu-
ral language true/false statements and represent a
set of rules that constrain the truth values of these
statements. We refer to statements that are fac-
tually true in the world as facts. The truth value
assigned by a model M to a statement is referred
to as M ’s belief in that statement (cf. Footnote 1).
A model’s internal beliefs may not always align

2REFLEX checks whether both the statements si, and the
rules (si → h), are believed by the model via self-querying,
e.g., by asking “Does si → h?”, and also scores the strength
of those beliefs. In maieutic prompting, the generated rules
are not checked against the model, resulting in rules that the
model itself may not believe, if queried about them.

with facts. Our goal is to extract a model’s ini-
tial beliefs about statements inferentially related
to all top-level hypotheses of interest, and perform
reasoning to update these beliefs so as to make
them more consistent with respect to the rules, and
ideally also factually more accurate.

A belief graph is a type of factor graph com-
monly used in the probabilistic inference litera-
ture (Loeliger, 2004). Formally, it is defined as
an undirected graph G = (N,E) with nodes N
and edges E. Nodes are of two types: A state-
ment node (referred to as a "variable node" in
a factor graph) is a triple (s, l, cs) containing a
natural language statement s, an associated value
l ∈ {T, F} initially denoting M ’s belief that s is
true or false, and a confidence cs ∈ [0, 1] denoting
a confidence in that label. A rule node (referred
to as a "factor node" in a factor graph) is a pair
(r, cr) denoting a disjunctive rule or constraint over
statements, with confidence cr. It takes the form
r = (−s1 ∨ . . . ∨ −sℓ ∨ sℓ+1 ∨ . . . ∨ sk). For
ease of interpretation, we view this constraint as
r = p → h where p = s1∧ . . .∧sℓ is a conjunctive
premise and h = sℓ+1 ∨ . . . ∨ sk is a disjunctive
hypothesis. The rule says that if p is true, so must
be h; and the contrapositive of this.

Edges E connect rule nodes to the statements
they constrain, denoting their dependence. For leg-
ibility, we draw edges directionally to depict the
way the rule reads: the statements in p point to r,
which in turn points to h. Mathematically, the influ-
ence is bidirectional and the depicted directionality
is irrelevant during reasoning (Section 3.3), just as
in a standard factor graph.

We adopt the standard probabilistic semantics
of factor graphs, thereby associating a belief graph
with a well-defined probability distribution over
any set of statement beliefs. For a statement node
(s, l, cs), the cost costs for setting it to l is 0, and
that for setting it against l is cs; the corresponding
weight of this node is ws = exp(−costs). Costs
and weights for a rule node (r, cr) are defined
similarly, based on whether the beliefs satisfy r or
not. Finally, the overall weight of a T/F assign-
ment to all statements is

∏
sws ·

∏
r wr, which,

when normalized by the total weight across all pos-
sible assignments, yields a probability distribution
over such assignments. We will be interested in
finding the most consistent set of beliefs, i.e., a
T/F assignment to statements with the minimum
overall weight, which is equivalent to minimizing
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∑
s costs +

∑
r costr. This is referred to as the

MPE (most probable explanation) problem in the
graphical models literature, which we later solve
exactly using a MaxSAT constraint solver based
on a standard translation of MPE into weighted
MaxSAT (Park, 2002; Sang et al., 2007).

3.2 Constructing Belief Graphs

Given an initial node (statement) s, a belief graph
G is produced by a backward-chaining process de-
scribed below, in which G is recursively expanded
to add statements that together may entail s.

3.2.1 Basic Operations
Let h denote a hypothesis (language statement s)
of interest and p a premise—a set of statements
{s1,. . . ,sn} that together may entail h. Given these,
there are three basic operations required to gener-
ate belief graphs:
1. h ⇒ p: Given h, generate a p that may entail h.
2. s ⇒ (l, cs): Given a statement s, output a

true/false value l and a confidence in the belief
that s has truth value l (as assessed via yes/no
question-answering).

3. (p, h) ⇒ cr: Given p and h, output a confidence
that the candidate rule r = p → h holds.

The most important of these is the first operation,
in which the model self-generates conjunctive rules
concluding h (i.e., reason p for believing h), thus
adding new nodes to the graph.

There are several ways of implementing these
basic functions, and our algorithm is agnostic to
the method used. In our work here, we use Entailer,
an off-the-shelf T5-11B trained model with these
functionalities (Tafjord et al., 2022). Further, since
the raw score produced by the model tends to be
skewed towards 0 or 1, when computing cs and cr
in practice, we re-scale the raw model score using
a set of hyperparameters (cf. Appendix B).

One may use alternative ways to implement
these operators, such as chain-of-thought prompt-
ing a model like GPT3 (Wei et al., 2022) or Chat-
GPT (OpenAI, 2022). For example, to generate
a rule concluding a hypothesis h such as “Plants
require CO2 to make their food.”, the model could
be prompted with h followed by “Explain the last
statement with a 2-step reasoning chain.”, the num-
bered generations forming the premise p. Similarly,
generated statements and rules can be validated as
reflecting the model’s beliefs by self-querying (“Is
s true?”, “Does p imply h?”), and then using the
generated yes/no answer token probabilities as the

Algorithm 1 The recursive algorithm for construct-
ing a belief graph of max depth dmax for a hypoth-
esis set H. The subroutine EXTEND-GRAPH takes
a partial graph G as an input and extends it in place
with one statement and its subgraph.

1: procedure GENERATE-GRAPH(hypotheses H, max
depth dmax):

2: let G = empty graph
3: foreach h ∈ H
4: call EXTEND-GRAPH(h, 0, dmax, G)
5: add MC rule node

(∨
h∈H h,∞

)
to G

6: foreach pair (hi, hj) of hypotheses in H
7: add MC rule node (¬hi ∨ ¬hj , cmc) to G
8: return G

9: procedure EXTEND-GRAPH(statement s, current depth
d, max depth dmax, partial graph G):

10: call operator s ⇒ (l, cs) to score statement s
11: add statement node (s, l, cs) to G
12: gen. the negation sentence negs = neg(s)
13: add rule node (XOR(s,negs), cxor) to G
14: call EXTEND-GRAPH(negs, d+ 1, dmax, G)
15: if d < dmax do:
16: let h = s
17: call operator h ⇒ p to generate p
18: call operator (p, h) ⇒ cr to score rule p → h
19: add rule node (p → h, cr) to G
20: foreach si ∈ p
21: call EXTEND-GRAPH(si, d+ 1, dmax, G)

model’s confidence (Kadavath et al., 2022).

3.2.2 Initial Hypothesis Generation
Given a question, we first generate a set H of hy-
pothesis sentences (e.g., “Is the sky (A) blue (B)
yellow” → { h1 = “The sky is blue.”, h2 = “The sky
is yellow.”).3 An N -way multiple choice question
yields N hypotheses in H. A true/false question
yields 2 hypotheses. To handle open-ended ques-
tions, candidate answers can be generated, e.g.,
using nucleus sampling (Holtzman et al., 2019).

3.2.3 Belief Graph Generation
The belief graph generation process is shown in
Algorithm 1. An example of (part of) a generated
belief graph is shown in Figure 2.

Given a set H of hypotheses, we generate a sin-
gle belief graph G by using our basic operations
(Section 3.2.1) to recursively generate rules that
conclude each hi ∈ H up to a fixed maximum
depth dmax. (Each original hi is at depth d = 0.)

For each statement s, we also generate nodes
negs (and their recursive subgraphs) expressing its
negation, e.g., “The sky is not blue.” from “The

3Conversion of a QA pair to a declarative hypothesis D
uses a custom T5-11B model trained on the QA2D dataset
(Demszky et al., 2018).
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sky is blue.”.4 Each pair s and negs is connected
with an XOR rule, indicating a (soft) preference
for setting exactly one of them to true; this is repre-
sented as two disjunctive constraints (s∨negs) and
(−s ∨ −negs) whose weight cxor is a fixed hyper-
parameter. Lastly, we add a multiple-choice (MC)
constraint which has two parts: a hard constraint
(with infinite cost) that at least one hypothesis must
be chosen, and a soft constraint5 that no more than
one should be chosen. The soft constraint is associ-
ated with a fixed hyperparameter weight cmc.

3.3 Reasoning Over Belief Graphs

Belief graphs provide a window into the model’s
beliefs about some of the relevant statements and
their (believed) inferential relationships to candi-
date answers to a question. As others have shown
(Kassner et al., 2021; Mitchell et al., 2022), such
beliefs can be inconsistent, and materializing those
inconsistencies provides one the opportunity to re-
move or reduce them.

In a similar vein, and as discussed in Section 3.1,
REFLEX performs inference over belief graphs in
order to compute an updated set of beliefs that is
as consistent as possible with the rules. To this
end, it converts belief graphs into an equivalent
weighted MaxSAT problem and uses an off-the-
shelf MaxSAT solver (RC2, (Ignatiev, 2019)) to
compute the optimal flips of initial true/false beliefs
that minimize global inconsistency. It then discards
all rules that are in conflict with the updated state-
ment beliefs, obtaining a smaller, updated belief
graph. This smaller belief graph produced by
REFLEX is self-consistent and provides inferential
support for the top-level hypotheses.

3.4 Generating Faithful Explanations

Notably, the smaller updated belief graph produced
by REFLEX provides a faithful explanation of the
answer it predicts, in the sense that it accurately
represents the reasoning process behind the overall
system’s prediction (Lyu et al., 2022). This is true
as the MaxSAT reasoning process results precisely
in a self-consistent set of beliefs from which RE-
FLEX determines whether to believe a candidate
answer or not, and produces its final prediction
based on this (rather than on the raw LLM output
alone; note that we do not make any claims about

4We use a simple, custom-built utility for this, namely a
T5-base model trained on 9k Turk-generated examples.

5soft, to allow for cases with multiple valid answers, e.g.,
open-ended questions or those asking for the best answer.

how the internal reasoning of the LLM component
operates.) Thus, REFLEX provides the user with an
interpretable reasoning trace, allowing the user to
understand how it derived the answer from more
rudimentary facts (Subramanian et al., 2020).

We note that the original belief graph (before
reasoning) may reveal that the model’s original ex-
planation is, in fact, not faithful to its own beliefs.
For example, in Figure 2, the model believes state-
ments 6, 7, and that 6 & 7 entail 2, but does not
believe 2 (colored grey). Thus, the global reason-
ing layer of REFLEX plays a critical role in arriving
at faithful explanations.

4 Experiments and Results

The goal of our experiments is to evaluate the ex-
tent to which our overall system, namely an LLM
plus a self-reflecting, rational layer, helps expose
and resolve inconsistencies in the LLM’s beliefs
without harming accuracy. Importantly, REFLEX is
evaluated in a zero-shot setting, without relying on
training instances of the target datasets.

Datasets. We use the test partitions of three ex-
isting multiple-choice datasets: EntailmentBank
(Dalvi et al., 2021), OBQA (Mihaylov et al., 2018),
and QuaRTz (Tafjord et al., 2019). We chose our
datasets as they contain inferentially rich questions
(typically) requiring reasoning. The partitions con-
tain 339, 500, and 784 examples, respectively.

Models. The baseline LLM we use is an LLM
that has been trained to perform QA and also sup-
ports the basic operations discussed in Sec. 3.2.1,
enabling us to assess how much it can be improved
by adding a REFLEX layer. To this end, we use
a publicly available, frozen, off-the-shelf T5-11B
LLM called Entailer (Tafjord et al., 2022). To an-
swer an MC question with this LLM, we score each
answer hypothesis (cs, Section 3.2.1) and select the
one with the highest truth confidence. If Entailer
assigns false values to all answer choices, we select
the hypothesis with the lowest false confidence.

REFLEX then adds a rational layer to this LLM,
creating a new system that is also able to self-reflect
and modify its beliefs. To ensure the different be-
lief graph scores in REFLEX are appropriately cali-
brated, we use nine hyperparameters, tuned once
on the dev partition of EntailmentBank (Dalvi et al.,
2021) and then kept fixed for all experiments. De-
tails are in Appendix B. Note the LLM itself re-
mains frozen, with belief revision occurring in the
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rational (belief graph) layer above it.

Metrics. For measuring self-consistency, we fol-
low Li et al. (2019) and report the conditional con-
straint violation (τ ) metric, defined as follows: the
fraction of rules whose premises p are believed true,
but whose hypothesis h is not. In other words, over
all rules of the form p → h, τ is:

τ =
|{p → h | p = T, h = F}|

|{p → h | p = T}|
where s = T denotes the system believes statement
s to be true (similarly for s = F ). The numerator
of τ thus captures the number of constraints the
system violates. The denominator captures the
number of applicable constraints. We then report
the following metric: consistency = 1 - τ .

For QA performance, we report standard
multiple-choice accuracy: 1 point for predicting
the correct answer, 1/N points for predicting N
answers including the correct one, 1/k points for
no prediction (k = # answer options), 0 otherwise.

4.1 Results
Consistency. Table 1 shows consistency results
on the test partitions of our datasets. We observe
significant consistency gains (by 8%-11% abso-
lute), showing REFLEX’s effectiveness at creating a
consistent belief network within the overall system.

Entail-
System mentBank OBQA Quartz
LLM 87.0 88.2 85.7
LLM + rational layer 96.1 95.9 96.6

(REFLEX)

Table 1: Consistency: By adding a rational layer to the
baseline LLM, REFLEX significantly improves consis-
tency among beliefs by resolving uncovered conflicts.

Accuracy. Table 2 shows overall performance on
our three datasets (test partitions). As can be seen,
we observe stable accuracy, as well as the answers
now being faithful to the reasoning chains in the
belief graph. This is significant, as it allows users
to understand how answers follow from system
beliefs (and in cases where an LLM belief was
flipped, why that belief is untenable in the broader
system).

Ablations. To study the impact of the three dif-
ferent types of rules on consistency improvement,
we using the EntilmentBank dataset (dev partition).

Entail-
System mentBank OBQA Quartz
LLM 79.4 74.0 80.2
LLM + rational layer

79.9 75.0 80.0
(REFLEX)

Table 2: QA accuracy: REFLEX’s belief revision in the
rational layer preserves overall QA accuracy.

To do this, given the belief graph for a question,
we mask out (separately, rather than cumulatively)
each type of rule in turn when providing the graph
to the MaxSAT solver. We then run the constraint
solver and measure the resulting self-consistency
of beliefs on the original graph.

System EntailmentBank
REFLEX (our system): 96.1

- without p → h rules 93.8
- without XOR rules 90.4
- without MC rule 95.8

Table 3: Consistency: Ablations on EntailmentBank
(Dev) suggest that all three types of rules contribute to
improving self-consistency.

The results are shown in Table 3 (the MC rule
is the constraint that exactly one multiple-choice
option should be chosen, Section 3.2.3). The results
indicate that all three types of rules contribute to
the system’s consistency improvements.

4.2 Success Analysis

We identify three classes of successful reasoning
by the constraint reasoner: (a) latent model beliefs
correct an initially wrong answer (Figure 3); (b) the
system corrects an initially erroneous, latent model
belief (Figure 4); and (c) strong model beliefs iden-
tify and reject a bad rule (Figure 5). These types of
system corrections help to improve accuracy and
produce answers supported by valid chains of rea-
soning, allowing users insight into why an answer
follows from the model’s knowledge.

4.3 Failure Analysis

Reasoning can also make mistakes. From a man-
ual analysis of 50 random questions from Entail-
mentBank that REFLEX answered incorrectly, we
identified five main causes of failure and their ap-
proximate frequency (Note that multiple categories
can apply, hence total is > 100%):
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Figure 3: Example of good reasoning: The model’s
beliefs in 1 and 2, and the rule 1 & 2 → 3, as well as
the xor constraint, causes it to (desirably) flip its belief
in 3 from false (grey, before) to true (white, after).

1. Missing Rules (≈30%): In some cases, the
system generates irrelevant rules but misses an im-
portant one needed to support the correct answer,
resulting in incorrect conclusions. While somewhat
subjective, this is a notable error category that we
observe. For example for the question:

A human cannot survive the loss of (A) The liver
[correct] (B) A lung (C) A kidney

the system incorrectly concludes (B) is true, ignor-
ing the commonsense rule that with two lungs, a
person can survive without one of them.

2. Incorrect Beliefs (≈30%): Sometimes the
reasoner fails to correct incorrect model beliefs,
either because the model’s confidence is high or
evidence against them is weak or missing. In the
example shown in Figure 7, the model’s strong,
incorrect beliefs that “river deltas are reservoirs”
and “reservoirs always provide freshwater” (untrue
of oceans, say) causes it to incorrectly conclude
that “deltas are freshwater reservoirs”.

3. Incorrect Rules (≈10%): Rule generation
can produce bad rules, e.g., in Figure 5), and in
some cases the constraint reasoner fails to reject
them if they are strongly believed. In particular,
confusion or ambiguity over quantifiers can result
in bad rules, e.g., (emphasis added) “Some animals
catch their prey with trickery.” & “A spider is a kind
of animal.” → “Spiders catch their prey with trick-
ery.”. Similarly the model generates the fallacy:
“Some people don’t mind not moving for an hour”
& “breathing is a kind of movement” → “Some

Figure 4: Example of good reasoning: Although the
model correctly believes option (A) is false (grey, node
3), this answer conflicts with other beliefs (red). Rea-
soning leads the system to realize that its weakest belief
(2) is actually false, correctly flipping its label from true
(white) to false (grey, right side) restoring consistency.

Figure 5: Example of good reasoning: Here the rea-
soner (desirably) chooses to reject the violated (bad)
rule rather than flip a belief, as the minimum cost way
to restore consistency.

people don’t mind not breathing for an hour.”

4. Ambiguous Statements, Unexpected Reason-
ing (≈10%): A common cause of error is the
surprising ambiguity of belief statements, which
can often be read in multiple ways. In several cases,
the model adopts a valid but unexpected interpre-
tation, resulting in “errors” compared to the gold
answer label. For example, in Figure 6, the model
takes the word “always” in a literal sense (“glaciers
will not always be there”), resulting in an answer
that differs from the gold label. Developing ways
to attach context to these statements to help disam-
biguate them would help alleviate such errors.

5. Multiple Valid Answers (≈10%): A final
cause of “error” - at least with respect to the gold
label - is that multiple answers may be valid, and
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Figure 6: Unexpected reasoning: Here the model unex-
pectedly pays particular attention to the world “always”.
Because it strongly believes that glaciers will not always
be there (1, white), the system prefers to flip its beliefs
in 3 and 4, rather than flipping 1, thus rejecting answer
option B (arguably correctly).

the question is asking for the best answer; eg. for
“What could fill a beach ball? (A) Oxygen (B) Wa-
ter ...”, A is labeled correct, while B is also a valid
answer. REFLEX (desirably) finds valid reasoning
chains for both, but the notion of highest-scoring
proof does not fully correlate with the notion of
“best answer” intended by the question author.

5 Future Work

There are several impactful ways this work could
be further extended. First, incorporating the ques-
tion’s context in the belief statements in our ratio-
nal layer could make the semantics of the beliefs
more precise, thus avoiding potential ambiguity in
their truth value. Second, one could use the belief
graph itself to identify the key reasoning pieces that
the LLM is most uncertain about. This could then
guide a human-in-the-loop mechanism to correct or
validate uncertain pieces via user interaction. Third,
maintaining a persistent belief graph over multiple
questions could help make the system more consis-
tent across questions. This, in turn, would make a
user’s conversational experience with the system
more coherent in a longer dialog setting. Lastly,
after resolving inconsistencies in the rational layer,
we could consider propagating information back to
the LLM layer in order to update it (via fine-tuning,
model editing, memory-based architectures, etc.),

Figure 7: Failure due to bad beliefs: The model
strongly believes both 1 and 2 (although both are factu-
ally incorrect), here causing 3’s label to undesirably flip
from false (correct) to true (incorrect).

helping avoid similar inconsistencies in the future.

6 Conclusion

While LLMs perform well, the interdependencies
between their answers and their other beliefs is
opaque, and may even be in conflict. This lack
of interpretability is a significant impediment to
widespread use of LLMs. To reduce this opac-
ity, and reduce these conflicts, we have proposed
REFLEX, a new system architecture in which an
explicit, interpretable representation of beliefs - the
belief graph - is added as a rational layer above
the LLM. This layer providing a window into sys-
tem beliefs, and allows latent inconsistencies in the
LLM alone to reasoned about and repaired. Our im-
plementation shows that belief consistency of the
overall system is significantly improved, without
harming answer accuracy, resulting in answers sup-
ported by interpretable chains of reasoning drawn
from a more consistent belief system. This new
architecture is an important step towards improv-
ing confidence in system behavior, and towards
trustable deployment of LLMs in practical applica-
tions.

Limitations

We have shown how an LLM can be extended with
a self-reflective component, allowing latent model
knowledge to be made explicit in the form of a
belief graph, providing a window into the model’s
system of beliefs. While exciting, there are several
limitations with the current work and opportunities
for the future.

First, the reasoning component in the rational
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layer can make mistakes, resulting in the overall
system rejecting true statements or accepting false
ones. A detailed analysis and classification of these
failure modes was presented in Section 4.3.

Second, for our experiments, we used the T5-
11B based Entailer system as the baseline LLM.
While there is every reason to expect our pro-
posed architecture to be effective in reducing in-
consistency with newer and larger LLMs such as
ChatGPT and LLaMA, this is still to be evalu-
ated. Doing so would require implementing the
basic operations needed to construct belief graphs
(Section 3.2.1) using instruction prompting and in-
context learning. Other work has demonstrated
such implementations (e.g., Wei et al., 2022; Jiang
et al., 2020), making the outlook promising, but
indeed their combination still needs to be demon-
strated at scale in an architecture like REFLEX.

Lastly, we found consistency-minimized belief
graphs to be highly valuable in understanding the
system’s successes and failures. We expect these
graphs to be a valuable starting point for provid-
ing explanations and gaining a user’s trust in the
system. However, we have not conducted a formal
user study to measure this.

Ethics Statement

Like any other project using LLMs, despite the
best intentions there is a risk of the model produc-
ing biased or offensive statements as part of its
explanations, and thus must be used with care and
appropriate guards and warnings.
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A Additional Results

We report results on the dev set of the Entailment-
Bank dataset in Table A1.

System EntailmentBank (dev)
Consistency Accuracy

LLM 87.5 78.6
LLM + rational layer 96.1 81.8

(REFLEX)

Table A1: Results on EntailmentBank (dev), used to
tune the system’s hyperparameters.

B Hyperparameters and Runtime

MaxSAT finds the optimal assignment of true/false
labels on statement nodes that minimizes the total
penalty of constraint violations. If the true/false la-
bel on a statement node is flipped, then the penalty
is the model confidence cs in the original label.
Similarly if a rule (constraint) is violated by the
true/false labels on its associated statements, then
the penalty is the model confidence cr in that rule.

We set a number of hyperparameters to ensure
that the various sources of confidence are appropri-
ately balanced, and tune these on a development set
(EntailmentBank (dev) which is separate from our
test sets). We use the same set of hyperparameters
for all test sets.

1. As raw model confidences cs are highly
skewed towards 0 and 1, we re-calibrate these
with ek.(cs−1), where k is a fixed hyperparam-
eter. Note, that for the MC and XOR rule, the
raw input score s is 1.0.

2. We calibrate rule confidences in the same way
as we calibrate belief confidences but use sep-
arate calibration parameters different types of
rules namely:

• Entailer rules p → h
• XOR rules
• MC rules

i.e., the raw rule score c is re-calibrated to
confidence ektype.(c−1) where ktype is the re-
spective hyperparameter per rule type.

3. We set three hyperparameters tuning the re-
spective importance of the three different
types of rules. Therefore, the final rule score
is computed by c = ttype ∗ ektype.(c−1) where
ttype is the respective hyperparameter constant
per rule type.

4. For xor rules between statements si and negsi,

Hyperparameter Value
k 9
kentailer 36
kxor 30
kmc 9
tentailer 1.02
txor 1.1
tmc 0.98
mxor 0.3
dmax 5

Table B1: Hyperparameters.

we remove (ignore) those where there is signif-
icant uncertainty, namely where |score(si)−
score(negsi)| ≤ mxor, where mxor is a
tuned hyperparmeter.

5. Additionally, we tune a damping parameter
that downscales rules on the boundary of the
graph. Belief nodes involved in these rules
are not supported by any premises and should
therefore have less influence than rules with
strong support.

6. Finally, we tune the maximum depth dmax of
the belief graph.

The performance on this dev set partition is
shown in Table A1 and the hyperparameter values
are shown in Table B1.

The runtime for MaxSAT constraint solving is
fast (<1 millisecond per question). However, con-
structing the belief graph is computationally in-
tensive: Each call to expand or score a node takes
∼2 seconds, and our graphs typically contain ∼600
nodes, so if these calls were maximally parallelized,
with each step growing the graph one level deeper,
the runtime would be the maximum graph depth
(5) x 2 seconds = ∼10 seconds total (or several
minutes if a naive sequential implementation were
used).
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Chapter 7

Are Pretrained Language Models
Symbolic Reasoners Over
Knowledge?
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Abstract

How can pretrained language models (PLMs)
learn factual knowledge from the training set?
We investigate the two most important mech-
anisms: reasoning and memorization. Prior
work has attempted to quantify the number of
facts PLMs learn, but we present, using syn-
thetic data, the first study that investigates the
causal relation between facts present in train-
ing and facts learned by the PLM. For reason-
ing, we show that PLMs seem to learn to apply
some symbolic reasoning rules correctly but
struggle with others, including two-hop rea-
soning. Further analysis suggests that even
the application of learned reasoning rules is
flawed. For memorization, we identify schema
conformity (facts systematically supported by
other facts) and frequency as key factors for its
success.

1 Introduction

Pretrained language models (PLMs) like BERT
(Devlin et al., 2019), GPT-2 (Radford et al., 2019)
and RoBERTa (Liu et al., 2019) have emerged as
universal tools that capture a diverse range of lin-
guistic and – as more and more evidence suggests
– factual knowledge (Petroni et al., 2019; Radford
et al., 2019).

Recent work on knowledge captured by PLMs
is focused on probing, a methodology that identi-
fies the set of facts a PLM has command of. But
little is understood about how this knowledge is
acquired during pretraining and why. We analyze
the ability of PLMs to acquire factual knowledge
focusing on two mechanisms: reasoning and mem-
orization. We pose the following two questions:
a) Symbolic reasoning: Are PLMs able to infer
knowledge not seen explicitly during pretraining?
b) Memorization: Which factors result in success-
ful memorization of a fact by PLMs?

∗*equal contribution

We conduct our study by pretraining BERT from
scratch on synthetic corpora. The corpora are com-
posed of short knowledge-graph like facts: subject-
relation-object triples. To test whether BERT has
learned a fact, we mask the object, thereby gener-
ating a cloze-style query, and then evaluate predic-
tions.

Symbolic reasoning. We create synthetic cor-
pora to investigate six symbolic rules (equivalence,
symmetry, inversion, composition, implication,
negation); see Table 1. For each rule, we create a
corpus that contains facts from which the rule can
be learned. We test BERT’s ability to use the rule
to infer unseen facts by holding out some facts in
a test set. For example, for composition, BERT
should infer, after having seen that leopards are
faster than sheep and sheep are faster than snails,
that leopards are faster than snails.

Our setup is similar to link prediction in the
knowledge base domain and therefore can be seen
as a natural extension of the question: “Language
models as knowledge bases?” (Petroni et al., 2019).
In the knowledge base domain, prior work (Sun
et al., 2019; Zhang et al., 2020) has shown that
models that are able to learn symbolic rules are
superior to ones that are not.

Talmor et al. (2019) also investigate symbolic
reasoning in BERT using cloze-style queries. How-
ever, in their setup, there are two possible reasons
for BERT having answered a cloze-style query cor-
rectly: (i) the underlying fact was correctly inferred
or (ii) it was seen during training. In contrast,
since we pretrain BERT from scratch, we have full
control over the training setup and can distinguish
cases (i) and (ii).

A unique feature of our approach compared to
prior work (Sinha et al., 2019; Richardson et al.,
2020; Weston et al., 2016; Clark et al., 2020) is that
we do not gather all relevant facts and present them
to the model at inference time. This is a crucial
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Rule Definition Example
EQUI Equivalence (e, r, a) ⇐⇒ (e, s, a) (bird, can, fly) ⇐⇒ (bird, is able to, fly)
SYM Symmetry (e, r, f) ⇐⇒ (f, r, e) (barack, married, michelle) ⇐⇒ (michelle, married, barack)
INV Inversion (e, r, f ) ⇐⇒ (f, s, e) (john, loves, soccer) ⇐⇒ (soccer, thrills, john)
NEG Negation (e, r, a) ⇐⇒ (e, not r, b) (jupiter, is, big) ⇐⇒ (jupiter, is not, small)
IMP Implication (e, r, a) ⇒ (e, s, b), (e, s, c),... (dog, is, mammal) ⇒ (dog, has, hair), (dog, has, neocortex), ...
COMP Composition (e, r, f ) ∧ (f, s, g) ⇒ (e, t, g) (tiger, faster than, sheep) ∧ (sheep, faster than, snail)

⇒ (leopard, faster than, snail) with r = s = t

Table 1: The six symbolic rules we investigate (cf. (Nayyeri et al., 2019)) with an example in natural language for
entities e, f, g ∈ E, relations r, s, t ∈ R and attributes a, b, c ∈ A.

difference – note that human inference similarly
does not require that all relevant facts are explicitly
repeated at inference time.

We find that i) BERT is capable of learning some
one-hop rules (equivalence and implication). ii) For
others, even though high test precision suggests suc-
cessful learning, the rules were not in fact learned
correctly (symmetry, inversion and negation). iii)
BERT struggles with two-hop rules (composition).
However, by providing richer semantic context,
even two-hop rules can be learned.

Given that BERT can in principle learn some rea-
soning rules, the question arises whether it does so
for standard training corpora. We find that BERT-
large has only partially learned the types of rules
we investigate here. For example, BERT has some
notion of “X shares borders with Y” being symmet-
ric, but it fails to understand rules like symmetry in
other cases.

Memorization. During the course of pretrain-
ing, BERT sees more data than any human could
read in a lifetime, an amount of knowledge that sur-
passes its storage capacity. We simulate this with
a scaled-down version of BERT and a training set
that ensures that BERT cannot memorize all facts
in training. We identify two important factors that
lead to successful memorization. (i) Frequency:
Other things being equal, low-frequency facts are
not learned whereas frequent facts are. (ii) Schema
conformity: Facts that conform with the overall
schema of their entities (e.g., “sparrows can fly” in
a corpus with many similar facts about birds) are
easier to memorize than exceptions (e.g., “penguins
can dive”).

We publish our code for training and data gener-
ation. 1

1https://github.com/BennoKrojer/
reasoning-over-facts

2 Data

To test PLMs’ reasoning capabilities, natural cor-
pora like Wikipedia are limited since it is difficult
to control what the model sees during training. Syn-
thetic corpora provide an effective way of investi-
gating reasoning by giving full control over what
knowledge is seen and which rules are employed
in generating the data.

In our investigation of PLMs as knowledge bases,
it is natural to use (subject, relation, object) triples
as basic units of knowledge; we refer to them as
facts. The underlying vocabulary consists of a set
of entities e, f, g, ... ∈ E, relations r, s, t, ... ∈
R and attributes a, b, c, ... ∈ A, all represented
by artificial strings such as e14, r3 or a35. Two
types of facts are generated. (i) Attribute facts:
relations linking entities to attributes, e.g., (e, r, a)
= (leopard, is, fast). (ii) Entity facts: relations
linking entities, e.g., (e, r, f) = (Paris, is the capital
of, France).

In the test set, we mask the objects and generate
cloze-style queries of the form “e r [MASK]”. The
model’s task is then to predict the correct object.

2.1 Symbolic Reasoning

Table 1 gives definitions and examples for the six
rules (EQUI, SYM, INV, COMP, IMP, NEG) we
investigate. The definitions are the basis for our
corpus generation algorithms, shown in Figure 1.
SYM, INV, COMP generate entity facts and EQUI,
IMP, NEG attribute facts. We create a separate
corpus for each symbolic rule. Facts are generated
by sampling from the underlying vocabulary. For
§2.1, this vocabulary consists of 5000 entities, 500
relations and 1000 attributes. Half of the relations
follow the rule, the other half is used to generate
random facts of entity or attribute type.

We can most easily think of the corpus genera-
tion as template filling. For example, looking at
SYM in Table 1, the template is (e, r, f) ⇐⇒
(f, r, e). We first sample a relation r from R and
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EQUI
C = ∅, D = ∅
for i ∈ 1 . . . n do
(r, s) ∼ R× R
a ∼ A
for j ∈ 1 . . .m do
e ∼ E
addC=Bernoulli(0.5)
if addC then
C=C∪{(e, r, a)}
D=D∪{(e, s, a)}

else
C=C∪{(e, s, a)}
D=D∪{(e, r, a)}

SYM
C = ∅, D = ∅
for i ∈ 1 . . . n do
r ∼ R
for j ∈ 1 . . .m do
(e, f) ∼ E × E
C=C∪{(e, r, f)}
D=D∪{(f, r, e)}

INV
C = ∅, D = ∅
for i ∈ 1 . . . n do
(r, s) ∼ R× R
for j ∈ 1 . . .m do
(e, f) ∼ E × E
C=C∪{(e, r, f)}
D=D∪{(f, s, e)}

COMP
C = ∅, D = ∅
for i ∈ 1 . . . n do
(r, s, t) ∼ R× R× R
for j ∈ 1 . . .m do
(e, f, g) ∼ E×E×E
C=C∪{(e, r, f)}
C=C∪{(f, s, g)}
D=D∪{(e, t, g)}

IMP
C = ∅, D = ∅
for i ∈ 1 . . . n do
(r, s) ∼ R× R
for k ∈ 1 . . . l do
b ∼ A
α ∼ A× . . .× A
for j ∈ 1 . . .m do
e ∼ E
C=C∪{(e, r, b)}
for a ∈ α do
D=D∪{(e, s, a)}

NEG
C = ∅, D = ∅
for i ∈ 1 . . . n do
r ∼ R
for j ∈ 1 . . .m do
e ∼ E
a ∼ A
b = antonym(a)
negated=Bernoulli(0.5)
if negated then
C=C∪{(e, not r, a)}
D=D∪{(e, r, b)}

else
C=C∪{(e, r, a)}
D=D∪{(e, not r, b)}

Figure 1: Pseudocode for symbolic reasoning corpus generation. “a ∼ A” stands for: a is randomly sampled
from A. (“α ∼ A × . . . × A”: a tuple of 4 attributes is sampled.) The vocabulary consists of entities e, f, g ∈ E,
relations r, s, t ∈ R and attributes a, b, c ∈ A. Train/test corpora are formed from C and D. n = 20, m = 800,
l = 2. See §2.1 for details.

FREQ
C = ∅
m = 1
for i ∈ 1 . . . n do
(e, f) ∼ E × E
r ∼ R
for j ∈ 1 . . .m do
C = C ∪ {(e, r, f)}

if i%(n/100) == 0 then
m+ = 1

SCHEMA
C = ∅
for i ∈ 1 . . . k do
δ ∼ E × . . .× E
for r inR do

schema = Bernoulli(0.5)
if schema then
α ∼ A× ...× A
for e ∈ δ do

for a ∈ α do
add = Bernoulli(0.5)
if add then
C = C ∪ {(e, r, a)}

else
exception = Bernoulli(0.5)
if exception then
a ∼ A
C = C ∪ {(e, r, a)}

else
for e ∈ δ do

add = Bernoulli(0.5)
if add then
a ∼ A
C = C ∪ {(e, r, a)}

Figure 2: Pseudocode for memorization corpus gen-
eration. “a ∼ A” stands for: a is randomly sampled
from A. (“δ ∼ E × . . .×E”: a tuple of 250 entities is
sampled. “α ∼ A × ... × A”: a tuple of 10 attributes
is sampled.) The vocabulary consists of entities e ∈ E,
relations r ∈ R and attributes a ∈ A. C is both training
set and test set. n = 800,000, k = 250. See §2.2 for
details.

then two entities e and f from E. We then add
(e, r, f) and (f, r, e) to the corpus – this is one
instance of applying the SYM rule from which
symmetry can be learned. Similarly, the other rules
also generate instances.

For each of the other rules, the template filling
is modified to conform with its definition in Ta-
ble 1. INV corresponds directly to SYM. COMP is
a two-hop rule whereas the other five are one-hop
rules. EQUI generates instances from which one
can learn that the relations r and s are equivalent.
IMP generates implication instances, e.g., (e, r, b)
(= (dog, is, mammal)) implies (e, s, a1) (= (dog,
has, hair)), (e, s, a2) (= (dog, has, neocortex)) etc.
Per premise we create four implied facts.

For NEG, we generate pairs of facts (e, r, a) (=

(jupiter, is, big)) and (e, not r, b) (= (jupiter, is not,
small)). We define the antonym function in Figure 1
(NEG) as returning for each attribute its antonym,
i.e., attributes are paired, each pair consisting of a
positive and a negative attribute.

Each of the six generation algorithms has the
outer loop “for i ∈ 1. . .n” (where n = 20) that
samples one, two or three relations (and potentially
attributes) and generates a subcorpus for these rela-
tions; and the inner loop “for j ∈ 1. . .m” (where
m = 800) that generates the subcorpus of instances
for the sampled relations.

Train/test split. The data generation algorithms
generate two subsets of factsC andD, see Figure 1.
For each rule, we merge all of C with 90% of D
(randomly sampled) to create the training set. The
rest of D (i.e., the other 10%) serves as the test set.

For some of the cloze queries “e r [MASK]”,
there are multiple correct objects that can be sub-
stituted for MASK. Thus, we rank predictions and
compute precision at m, i.e., precision in the top
m where m is the number of correct objects. We
average precision at m for all cloze queries.

This experimental setup allows us to test to what
extent BERT learns the six rules, i.e., to what extent
the facts in the test set are correctly inferred from
their premises in the training set.

2.2 Memorization

For memorization, the vocabulary consists of
125,000 entities, 20 relations and 2250 attributes.

Effect of frequency on memorization. Our
first experiment tests how the frequency of a fact in-
fluences its successful memorization by the model.
Figure 2 (left, FREQ) gives the corpus generation
algorithm. The outer loop generates 800,000 ran-
dom facts. These are divided up in groups of 8000.
A fact in the first group of 8000 is added once to
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the corpus, a fact from the second group is added
twice and so on. A fact from the last group is added
100 times to the corpus. The resulting corpus C is
both the training set and the test set.

Effect of schema conformity. In this experi-
ment, we investigate the hypothesis that a fact can
be memorized more easily if it is schema confor-
mant.

Figure 2 (right, SCHEMA) gives the corpus gen-
eration algorithm. We first sample an entity group:
δ ∼ E × . . . × E. For each group, relations are
either related to the schema (“if schema”) or are
not (else clause). For example, for the schema “pri-
mate” the relations “eat” (eats fruit) and “climb”
(climbs trees) are related to the schema, the rela-
tion “build” is not since some primates build nests
and treehouses, but others do not.

For non-schema relations, facts with random
attributes are added to the corpus. In Figure 4,
we refer to these facts as (facts with) unique at-
tributes. For relations related to the schema, we
sample the attributes that are part of the schema:
α ∼ A × ... × A (e.g., (“paranut”,. . . ,”banana”)
for “eat”). Facts are then generated involving these
attributes and added to the corpus. In Figure 4, we
refer to these facts as (facts with) group attributes.
We also generate exceptions (e.g., “eats tubers”)
since schemas generally have exceptions.

Similarly, the two lines “add = Bernoulli(0.5)”
are intended to make the data more realistic: for a
group of entities, its relations and its attributes, the
complete cross product of all facts is not available
to the human learner. For example, a corpus may
contain sentences stating that chimpanzees and ba-
boons eat fruit, but none that states that gorillas eat
fruit.

For this second memorization experiment, train-
ing set and test set are again identical (i.e., = C).

In a final experiment, we modify SCHEMA as
follows: exceptions are added 10 times to the cor-
pus (instead of once). This tests the interaction
between schema conformity and frequency.

3 BERT Model

BERT uses a deep bidirectional Transformer
(Vaswani et al., 2017) encoder to perform masked
language modeling. During pretraining, BERT ran-
domly masks positions and learns to predict fillers.
We use source code provided by Wolf et al. (2019).
Following (Liu et al., 2019), we perform dynamic
masking and no next sequence prediction.

rule train test
EQUI 99.95 98.28
SYM 99.97 98.40
INV 99.99 87.21
IMP 100.00 80.53
NEG 99.98 20.54
COMP 99.98 0.01
ANTI 100.00 14.85

Table 2: Precision in % of completing facts for sym-
bolic rules. Training corpora generated as specified in
Figure 1. See §4.1 for detailed discussion.

(A) NEG (B) COMP

Figure 3: Learning curves for symbolic reasoning.
(A) shows precision for NEG with a varying number
of attributes. A reduction to 125 attributes enables
BERT to successfully apply antonym negation to the
test set. (B) shows test set precision for COMP follow-
ing the standard setup (orange) and an enhanced ver-
sion (blue). Only in enhanced, i.e., with the introduc-
tion of additional facts adding more semantic informa-
tion, is COMP generalized.

For symbolic rules, we start with BERT-base
and tune hyperparameters. We vary the number
of layers to avoid that rule learning fails due to
over-parametrization, see appendix for details. We
report precision based on optimal configuration.

In the memorization experiment, our goal is to
investigate the effect of frequency on memorization.
Due to a limited compute infrastructure, we scale
down BERT to a single hidden layer with 3 atten-
tion heads, a hidden size of 192 and an intermediate
size of 768.

4 Results, Analysis and Discussion

4.1 Symbolic Reasoning
Table 2 gives results for the symbolic reasoning
experiments. BERT has high test set precision
for EQUI, SYM, INV and IMP. As we see in Ta-
ble 1, these rules share that they are “one-hop”:
The inference can be straightforwardly made from
a single premise to a conclusion, e.g., “(barack
married michelle)” implies “(michelle married
barack)”. The crucial difference to prior work is
that the premise is not available at inference time.
“(michelle married barack)” is correctly inferred by
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the model based on its memory of having seen the
fact “(barack married michelle)” in the training set
and based on the successful acquisition of the sym-
metry rule. Table 2 seems to suggest that BERT is
able to learn one-hop rules and it can successively
apply these rules in a natural setting in which the
premise is not directly available.

In the rest of this section, we investigate these
results further for SYM, INV, NEG and COMP.

4.1.1 Analysis of SYM and INV
Table 2 seems to indicate that BERT can learn that
a relation r is symmetric (SYM) and that s and t are
inverses (INV) – the evidence is that it generates
facts based on the successfully acquired symmetry
and inversion properties of the relations r, s and t.
We now show that while BERT acquires SYM and
INV partially, it also severely overgenerates. Our
analysis points to the complexity of evaluating rule
learning in PLMs and opens interesting avenues for
future work.

Our first observation is that in the SYM experi-
ment, BERT understands all relations to be sym-
metric. Recall that of the total of 500 relations,
250 are symmetric and 250 are used to generate
random facts. If we take a fact with a random
relation r, say (e, r, f), and prompt BERT with
“(f, r, [MASK])”, then e is predicted in close to
100% of cases. So BERT has simply learned that
any relation is symmetric as opposed to distinguish-
ing between symmetric and non-symmetric rela-
tions.

This analysis brings to light that our setup is
unfair to BERT: it never sees evidence for non-
symmetry. To address this, we define a new experi-
ment, which we call ANTI because it includes an
additional set of “anti” relations that are sampled
from R∗ with R∗∩ R =∅ and |R| = |R∗|. ANTI
facts take the following form: (e, r, f), (f, r, g)
with e 6= g. Using this ANTI template we follow
the standard data generation procedure. The corpus
is now composed of symmetric, anti-symmetric
and random facts. ANTI training data indicate to
BERT that r ∈ R∗ is not symmetric since many
instances of r facts are seen, with specific entities
(f in the example) occurring in both slots, but there
is never a symmetric example.

Table 2 (ANTI) shows that BERT memorizes
ANTI facts seen during training but on test, BERT
only recognizes 14.85% of ANTI facts as non-
symmetric. So it still generalizes from the 250 sym-
metric relations to most other relations (85.15%),

even those without any “symmetric” evidence in
training. So it is easy for BERT to learn the concept
of symmetry, but it is hard to teach it to distinguish
between symmetric and non-symmetric relations.

Similar considerations apply to INV. BERT suc-
cessfully predicts correct facts once it has learned
that s and t are inverses – but it overgeneralizes
by also predicting many incorrect facts; e.g., for
(e, s, f) in train, it may predict (f, t, e) (correct),
but also (e, t, f) and (f, s, e) (incorrect).

In another INV experiment, we add, for each pair
of (f, r, e) and (e, s, f) two facts that give evidence
of non-symmetry: (f, r, g) and (e, s, h) with e 6= g
and h 6= f . We find that test set precision for
INV (i.e., inferring (e, s, f) in test from (f, r, e) in
train) drops to 17% in this scenario. As for SYM,
this indicates how complex the evaluation of rule
learning is.

In summary, we have found that SYM and INV
are learned in the sense that BERT generates cor-
rect facts for symmetric and inverse relations. But
it severely overgenerates. Our analysis points to
a problem of neural language models that has not
received sufficient attention: they can easily learn
that the order of arguments is not important (as
is the case for SYM relations), but it is hard for
them to learn that this is the case only for a subset
of relations. Future work will have to delineate
the exact scope of this finding – e.g., it may not
hold for much larger training sets with millions of
occurrences of each relation. Note, however, that
human learning is likely to have a bias against sym-
metry in relations since the vast majority of verbs2

in English (and presumably relations in the world)
is asymmetric. So unless we have explicit evidence
for symmetry, we are likely to assume a relation is
non-symmetric. Our results suggest that neural lan-
guage models do not have this bias – which would
be problematic when using them for learning from
natural language text.

4.1.2 Analysis of NEG
NEG was the only rule for which parameter tuning
improved performance. A reduction to four layers
obtained optimal results.

In Table 2 we report a test set precision of
20.54%. Why is negation more challenging than
implication? Implication allows the model to gen-
eralize over several entities all following the same
rule (e.g., every animal that is a mammal has a

2For example, almost all of the verb classes in (Levin,
1993) are asymmetric.
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neocortex). This does not hold for negation (e.g., a
leopard is fast but a snail is not fast). BERT must
learn antonym negation from a large number of
possible combinations. By reducing the number of
possible combinations (decreasing the number of
attributes from 1000 to 500, 250 and 125) BERT’s
test set precision increases, see Figure 3 (A). With
125 attributes a precision of 91% is reached. A re-
duction of attributes makes antonym negation very
similar to implication.

We investigate BERT’s behavior concerning
negation further by adding an additional attribute
set A∗, with A∗ ∩ A =∅ and |A| = |A∗| to the vo-
cabulary. A∗ does not follow an antonym schema.
We sample a ∈ A∗, e ∈ E, r ∈ R to add additional
random facts of the type (e, r, a) or (e, not r, a)
to NEG’s training set. After training we test on
the additional random facts seen during training by
inserting or removing the negation marker. We see
that BERT is prone to predict both (e, r, b) and (e,
not r, b) for b ∈ A∗ (for 38%). Antonym negation
was still learned.

We conclude that antonym negation can be
learned via co-occurrences but a general concept
of negation is not understood.

This is in agreement with prior work (Ettinger,
2020; Kassner and Schütze, 2020) showing that
BERT trained on natural language corpora is as
likely to generate a true statement like “birds can
fly” as a factually false negated statement like
“birds cannot fly”.

4.1.3 Analysis of COMP
Why does BERT not learn COMP? COMP differs
from the other rules in that it involves two-hop rea-
soning. Recall that a novelty of our experimental
setup is that premises are not presented at infer-
ence time – two-hop reasoning requires that two
different facts have to be “remembered” to make
the inference, which intuitively is harder than a one-
hop inference. Figure 3 (B) shows that the problem
is not undertraining (orange line).

Similar to the memorization experiment, we in-
vestigate whether stronger semantic structure in
form of a schema can make COMP learnable. We
refer to this new experiment as COMP enhanced.
Data generation is defined as follows: Entities are
divided into groups of 10. Relations are now de-
fined between groups in the sense that the mem-
bers of a group are “equivalent”. More formally,
we sample entity groups (groups of 10) E1, E2,
E3 and relations r, s, t. For all e1 ∈ E1, e2 ∈

E2, e3 ∈ E3, we add (e1, r, e2) and (e2, s, e3) to
C and (e1, t, e3) to D. In addition, we introduce a
relation “samegroup” and add, for all em, en ∈ Ei,
(em, samegroup, en) to C – this makes it easy to
learn group membership. As before, the training
set is the merger of C and 90% of D and the test
set is the rest of D.

Similar semantic structures occur in real data.
The simplest case is a transitive example: (r) planes
(group 1) are faster than cars (group 2), (s) cars
(group 2) are faster than bikes (group 3), (t) planes
(group 1) are faster than bikes (group 3).

Figure 3 (B) shows that BERT can learn COMP
moderately well from this schema-enhanced corpus
(blue curve): precision is clearly above 50% and
peaks at 76%.

The takeaway from this experiment is that two-
hop rules pose a challenge to BERT, but that they
are learnable if entities and relations are embedded
in a rich semantic structure. Prior work (Brown
et al., 2020) has identified the absence of “do-
main models” (e.g., a domain model for common
sense physics) as one shortcoming of PLMs. To
the extent that PLMs lack such domain knowledge
(which we simulate here with a schema), they may
not be able to learn COMP.

4.2 Natural Language Corpora

In this section, we investigate to what extent the
PLMs BERT and RoBERTa have learned SYM and
INV from natural language corpora. See Table 3.
For “smaller/larger” (INV), we follow Talmor et al.
(2019) and test which of the two words is selected
as the more likely filler in a pattern like “Jupiter
is [MASK] than Mercury”. For the other three
relations (“shares borders with” (SYM), “is the op-
posite of” (SYM), “is the capital of” / “’s capital is”
(INV)), we test whether the correct object is pre-
dicted in the pattern “e r [MASK]” (as in the rest
of the paper). We give the number of (i) consistent
(“cons.”), (ii) correct and consistent (“correct”) and
(iii) inconsistent (“inc.”) predictions. (A prediction
is consistent and incorrect if it is consistent with
the rule, but factually incorrect.)

In more detail, we take a set of entities (coun-
tries like “Indonesia”, cities like “Jakarta”) or adjec-
tives like “low” that are appropriate for the relation
and test which of the entities / adjectives is pre-
dicted. For each of the five relations, we run both
BERT-large-cased and RoBERTa-large and report
the more consistent result.
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relation rule completions examples
cons. correct inc.

shares borders with SYM 152 152 2
(ecuador,peru)
(togo,ghana), (ghana,nigeria)

is the opposite of SYM 179 170 71
(demand,supply)
(injustice,justice), (justice,truth)

is the capital of (C-of)
’s capital is (s-C-is) INV 59 59 1

(indonesia,s-C-is,jakarta)
(canada,s-C-is,ottawa), (ottawa,C-of,ontario)

is smaller/larger than
(countries) INV 54 23 99

(russia,larger,canada), (canada,smaller,russia)
(brazil,smaller,russia), (russia,smaller,brazil)

is smaller/larger than
(planets) INV 9 9 36

(jupiter,larger,mercury), (mercury,smaller,jupiter)
(sun,bigger,earth), (earth,bigger,sun)

Table 3: Can PLMs (BERT and RoBERTa) learn SYM and INV from natural language corpora? For
“smaller/larger”, we follow Talmor et al. (2019) and test which of the two words is selected as a filler in a pat-
tern like “Jupiter is [MASK] than Mercury”. For the other three relations, we test whether the correct object is
predicted (as in the rest of the paper). We give the number of (i) consistent (“cons.”), (ii) correct and consistent
(“correct”) and (iii) inconsistent (“inc.”) predictions. Blue: consistent examples. Red: inconsistent examples. (We
make the simplifying assumption that “justice” can only have one opposite.)

Consistency and accuracy are high for “shares
borders with” and “capital”. However, this is most
likely due to the fact that many of these facts oc-
cur verbatim in the training corpora of the two
models. For example, Google shows 54,800 hits
for “jakarta is the capital of indonesia” and 1,290
hits for “indonesia’s capital is jakarta” (both as a
phrase). It is not possible to determine which factor
is decisive here: successful rule-based inference or
memorization. The ultimate futility of this analysis
is precisely the reason that we chose to work with
synthetic data.

Consistency for “is the opposite of” is much
lower than for the first two relations, but still de-
cent. To investigate this relation further, we also
tested the relation “is the same as”. It turns out
that many of the “opposite” objects are also pre-
dicted for “is the same as”, e.g., “high is the same
as low” and “low is the same as high” where the
predicted word is in italics. This indicates that the
models have not really learned that “is the opposite
of” is symmetric, but rather know that antonyms
are closely associated and often occur together in
phrases like “X is the opposite of Y”, “X and Y”,
“X noun, Y noun” (e.g., “good cop, bad cop”) etc.
Apparently, this is then incorrectly generalized to
“is the same as”.

Consistency and accuracy are worse for
“smaller/larger”. “smaller/larger” sentences of the
sort considered here are probably rarer in genres
like Wikipedia than “shares borders with” and “is
the capital of”. A Wikipedia article about a coun-
try will always say what its capital is and which
countries it borders, but it will not enumerate the
countries that are smaller or larger.

In summary, although we have shown that pre-
trained language models have some ability to learn
symbolic rules, there remains considerable doubt
that they can do so based on natural corpora.

4.3 Memorization

Experimental results for the memorization experi-
ments are shown in Figure 4.

(A) shows that frequent facts are memorized well
(0.8 for frequency 100) and that rare facts are not
(≈ 0.0 for frequencies < 15).

(B) shows that BERT memorizes schema confor-
mant facts perfectly (“group attributes”). Accuracy
for exceptions is clearly lower than those of schema
conformant facts: about 80%. The frequency of
each fact in the training corpus in this experiment is
1. Overall, the total amount of exceptions is much
lower than the total amount of schema conformant
facts.

(C) shows that exceptions are perfectly learned if
10 copies of each exception are added to the corpus
– instead of 1 in (B). In this case, limited capacity
affects memorization of schema-conformant facts:
accuracy drops to ≈ 0.9.

In summary, we find that both frequency
and schema conformity facilitate memorization.
Schema conformant facts and exceptions compete
for memory if memory capacity is limited – depend-
ing on frequency one or the other is preferentially
learned by BERT.

5 Limitations

Our experimental design makes many simplifying
assumptions: i) Variation in generated data is more
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(A) frequency (B) schema conformity, (C) schema conformity,
exceptions rare exceptions frequent

Figure 4: Memorization experiments. We investigate the effect of frequency and schema conformity on memo-
rization. (A) Frequent facts are memorized well (0.8 for frequency 100), rare facts are not (≈ 0.0 for frequencies
< 15). (B) BERT memorizes schema conformant facts perfectly (“group attributes”). Accuracy for rare exceptions
is clearly lower (80%). (C) Exceptions are perfectly learned if 10 copies of each exception are added to the cor-
pus – instead of 1 in (B). In this case, limited capacity affects memorization of schema-conformant facts (“group
attributes” drops to ≈ 0.9).

limited than in naturally occurring data. ii) Seman-
tics are deliberately restricted to one rule only per
generated corpus. iii) We do not investigate effects
of model and corpus size.

i) In natural corpora relations can have more
than two arguments, entities can have several to-
kens, natural data are noisier than synthetic data
etc. Also, we study each rule in isolation.

ii) While our simplified corpora make learning
easier in some respects, they may make it harder in
others. Each corpus is focused on providing train-
ing material for one symbolic rule, but it does not
contain any other “semantic” signal that may be
helpful in learning symbolic reasoning: distribu-
tional signals, entity groupings, hierarchies, rich
context etc. The experimental results of “COMP
enhanced” indicate that indeed such signals are ben-
eficial to symbolic rule learning. The interplay of
such additional sources of information for learning
with symbolic rules is an interesting question for
follow up work.

iii) Results are based on BERT-base and scaled-
down versions of BERT-base only, just as training
corpora are orders of magnitude smaller than natu-
ral training corpora. We varied model and corpus
sizes within the limits of our compute infrastruc-
ture, but did not systematically study their effect
on our findings.

Our work is an initial exploration of the question
whether symbolic rules can be learned in principle,
but we view it mainly as a starting point for future
work.

6 Related Work

Radford et al. (2019) and Petroni et al. (2019) show
in a zero-shot question answering setting that PLMs
have factual knowledge. Our main question is: un-
der what conditions do PLMs learn factual knowl-
edge and do they do so through memorization or
rule-based inference?

Sun et al. (2019) and Zhang et al. (2020) show
in the knowledge graph domain that models that
have the ability to capture symbolic rules like SYM,
INV and COMP outperform ones that do not. We
investigate this question for PLMs that are trained
on language corpora.

Talmor et al. (2019) test PLMs’ symbolic reason-
ing capabilities probing pretrained and finetuned
models with cloze-style queries. Their setup makes
it impossible to distinguish whether a fact was in-
ferred or memorized during pretraining. Our syn-
thetic corpora allow us to make this distinction.

Clark et al. (2020) test finetuned BERT’s reason-
ing capabilities, but they always make premise and
conclusion locally available to the model, during
training and inference. This is arguably not the way
much of human inference works; e.g., the fact F
that X borders Y allows us to infer that Y borders
X even if we were exposed to F a long time ago.

Richardson et al. (2020) introduce synthetic
corpora testing logic and monotonicity reasoning.
They show that BERT performs poorly on these
new datasets, but can be quickly finetuned to good
performance. The difference to our work again is
that they make the premise available to the model
at inference time.

For complex reasoning QA benchmarks (Yang
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et al., 2018; Sinha et al., 2019), PLMs are finetuned
to the downstream tasks. Their performance is
difficult to analyze: it is not clear whether any
reasoning capability is learned by the PLM or by
the task specific component.

Another line of work (Gururangan et al., 2018;
Kaushik and Lipton, 2018; Dua et al., 2019; Mc-
Coy et al., 2019) shows that much of PLMs’ per-
formance on reasoning tasks is due to statistical
artifacts in datasets and does not exhibit true rea-
soning and generalization capabilities. With the
help of synthetic corpora, we can cleanly investi-
gate PLMs’ reasoning capabilities.

Hupkes et al. (2020) study the ability of neural
models to capture compositionality. They do not
investigate our six rules, nor do they consider the ef-
fects of fact frequency and schema conformity. Our
work confirms their finding that transformers have
the ability to capture both rules and exceptions.

A large body of research in psychology and cog-
nitive science has investigated how some of our
rules are processed in humans, e.g., Sloman (1996)
for implication. There is also a lively debate in
cognitive science as to how important rule-based
reasoning is for human cognition (Politzer, 2007).

Yanaka et al. (2020); Goodwin et al. (2020) are
concurrent studies of systematicity in PLMs. The
first shows that monotonicity inference is feasible
for syntactic structures close to the ones observed
during training. The latter shows that PLMs can ex-
hibit high over-all performance on natural language
inference despite being non-systematic.

Roberts et al. (2020) show that the amount of
knowledge captured by PLMs increases with model
size. Our memorization experiments investigate
the factors that determine successful acquisition of
knowledge.

Guu et al. (2020) modify the PLM objective to
incentivize knowledge acquisition. They do not
consider symbolic rule learning nor do they analyze
what factors influence successful memorization.

Based on perceptrons and convolutional neural
networks, Arpit et al. (2017); Zhang et al. (2017)
study the relation of generalizing from real struc-
tured data vs. memorizing random noise in the
image domain, similar to our study of schema-
conformant facts and outliers. They do not study
transformer based models trained on natural lan-
guage.

7 Conclusion

We studied BERT’s ability to capture knowledge
from its training corpus by investigating its reason-
ing and memorization capabilities. We identified
factors influencing what makes successful mem-
orization possible and what is learnable beyond
knowledge explicitly seen during training. We saw
that, to some extent, BERT is able to infer facts not
explicitly seen during training via symbolic rules.

Overall, effective knowledge acquisition must
combine both parts of this paper: memorization
and symbolic reasoning. A PLM is not able to
store an unlimited amount of knowledge. Through
acquiring reasoning capabilities, knowledge gaps
can be filled based on memorized facts. A schema-
conformant fact (“pigeons can fly”) need not be
memorized if there are a few facts that indicate
that birds fly and then the ability of flight can be
filled in for the other birds. The schema conformity
experiments suggest that this is happening. It is
easier to capture knowledge that conforms with a
schema instead of memorizing facts one by one.

There are several directions for future work.
First, we made many simplifying assumptions that
should be relaxed in future work. Second, how
can we improve PLMs’ ability to learn symbolic
rules? We see two avenues here, either additional
inductive biases could be imposed on PLMs’ archi-
tectures or training corpora could be modified to
promote learning of symbolic rules.
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A Hyperparameters

A.1 Model hyperparameters
For all reported results we trained with a batch-size
of 1024 and a learning rate of 6e-5.

Our experiments for symbolic rules started with
the BERT-base model with 12 layers, 12 attention
heads, hidden size of 768 and intermediate size of
3072. For rules with a low test precision (NEG and
COMP) we then conducted a restricted grid search
(restricted due to limited compute infrastructure):
We tried all possible numbers of layers from 1 to 12
and then only considered the best result. For NEG
the best performance came from 4 layers, whereas
COMP did not show improvements for any number
of layers. For NEG with 3 layers (which had a very
similar performance to 4 layers) we exemplarily
tested whether changing the attention heads, hidden
size or intermediate size improves precision. For
this we trained with the following 4 settings:

• attention heads = 6, hidden size = 768, inter-
mediate size = 3072

• attention heads = 12, hidden size = 384, inter-
mediate size = 1536

• attention heads = 12, hidden size = 192, inter-
mediate size = 768

• attention heads = 12, hidden size = 96, inter-
mediate size = 192

However this did not further improve precision.

A.2 Data hyperparameters
In previous iterations of our experiments, we had
used different settings for generating our data. For
instance, we had varied the number of rules in our
corpora: 50 or 100 instead of the presented 20 rules.
Even the sampling process itself can be tweaked
to allow for less overlaps between rules and be-
tween instances of one rule. However, we observed
the same trends and similar numbers across these
different settings.

B Symbolic rules

In the following sections, we present illustrat-
ing corpora for INV, IMP and COMP enhanced.
Each line is one datapoint. We also include the
control group at the end of each corpus that does
not follow any rule. In the case of composition en-
hanced, ”{...}” indicates the sampled group which
is not part of the actual dataset.

We illustrate our training corpora using real
world entities and relations. Note that the ac-
tual corpora used for training are composed of an
entirely synthetic vocabulary. For simplicity we
show grouped composition with enhancement with
groups of 4, instead of 10 as it is in the real data.

B.1 INV
Paris CapitalOf France
France HasCapital Paris
...
Egypt HasCapital Cairo (counterpart in test-set)
...
Apple Developed iOS
iOS DevelopedBy Apple
...
Germany RandomRelation China
Cairo RandomRelation Norway

B.2 IMP
{(Flu), (Cough, RunningNose, Headache, Fever)}
Kevin HasDisease Flu
Kevin HasSymptom Cough
Kevin HasSymptom RunningNose
Kevin HasSymptom Headache
Kevin HasSymptom Fever
...
Mariam HasDisease Flu
...
Peter RandomRelation Pain
Sarah RandomRelation Tooth
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B.3 Comp enhanced
{e8, e2, e4, e5}
e8 ConnectedTo e2
e8 ConnectedTo e4
e8 ConnectedTo e5
e2 ConnectedTo e8
...
{e15, e13, e12, e19}
e15 ConnectedTo e13
e15 ConnectedTo e12
...
{e25, e24, e29, e20}
e25 ConnectedTo e24
e25 ConnectedTo e29
...
e8 r1 e15
e8 r1 e13
e8 r1 e12
e8 r1 e19
e2 r1 e15
e2 r1 e13
...
e5 r1 e19
...
e15 r2 e25
e15 r2 e24
e15 r2 e29
e15 r2 e20
...
e19 r2 e20
...
e8 r3 e25
e8 r3 e24
e8 r3 e29
e8 r3 e20
...
...
e133 r61 e23
e56 r61 e29
...
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BERT-kNN: Adding a kNN search
component to pretrained language
models for better QA
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Abstract

Khandelwal et al. (2020) use a k-nearest-
neighbor (kNN) component to improve lan-
guage model performance. We show that
this idea is beneficial for open-domain ques-
tion answering (QA). To improve the recall
of facts encountered during training, we com-
bine BERT (Devlin et al., 2019) with a tra-
ditional information retrieval step (IR) and a
kNN search over a large datastore of an embed-
ded text collection. Our contributions are as
follows: i) BERT-kNN outperforms BERT on
cloze-style QA by large margins without any
further training. ii) We show that BERT often
identifies the correct response category (e.g.,
US city), but only kNN recovers the factu-
ally correct answer (e.g., “Miami”). iii) Com-
pared to BERT, BERT-kNN excels for rare
facts. iv) BERT-kNN can easily handle facts
not covered by BERT’s training set, e.g., re-
cent events.

1 Introduction

Pretrained language models (PLMs) like BERT
(Devlin et al., 2019), GPT-2 (Radford et al., 2019)
and RoBERTa (Liu et al., 2019) have emerged as
universal tools that not only capture a diverse range
of linguistic, but also (as recent evidence seems to
suggest) factual knowledge.

Petroni et al. (2019) introduced LAMA (LAn-
guage Model Analysis) to test BERT’s perfor-
mance on open-domain QA and therefore inves-
tigate PLMs’ capacity to recall factual knowledge
without the use of finetuning. Since the PLM train-
ing objective is to predict masked tokens, ques-
tion answering tasks can be reformulated as cloze
questions; e.g., “Who wrote ‘Ulysses’?” is refor-
mulated as “[MASK] wrote ‘Ulysses’.” In this
setup, Petroni et al. (2019) show that, on QA, PLMs
outperform baselines trained on automatically ex-
tracted knowledge bases (KBs).

Figure 1: BERT-kNN interpolates BERT’s prediction
for question q with a kNN-search. The kNN search
runs in BERT’s embedding space, comparing the em-
bedding of q with the embeddings of a retrieved sub-
set of a large text collection: Pairs of a word w in the
text collection and the BERT embedding of w’s con-
text (BERT (s)) are stored in a key-value datastore.
An IR step is used to define a relevant subset of the
full datastore (yellow). BERT (q) (red) is BERT’s
embedding of the question. The kNN search runs be-
tween BERT (q) and BERT (s) and the correspond-
ing distance d and word w is returned (orange). Fi-
nally, BERT’s predictions (blue) are interpolated with
this kNN search result.

Still, given that PLMs have seen more text than
humans read in a lifetime, their performance on
open-domain QA seems poor. Also, many LAMA
facts that PLMs do get right are not “recalled” from
training, but are guesses instead (Poerner et al.,
2019). To address PLMs’ poor performance on
facts and choosing BERT as our PLM, we introduce
BERT-kNN.

BERT-kNN combines BERT’s predictions with
a kNN search. The kNN search runs in BERT’s
embedding space, comparing the embedding of the
question with the embeddings of a retrieved subset
of a large text collection. The text collection can
be BERT’s training set or any other suitable text
corpus. Due to its kNN component and its resulting
ability to directly access facts stated in the searched
text, BERT-kNN outperforms BERT on cloze-style
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Dataset BERT-base BERT-large ERNIE Know-BERT E-BERT BERT-kNN
LAMA 27.7 30.6 30.4 31.7 36.2 39.4
LAMA-UHN 20.6 23.0 24.7 24.6 31.1 34.8

Table 1: Mean P@1 on LAMA and LAMA-UHN on the TREx and GoogleRE subsets for BERT-base, BERT-
large, ERNIE (Zhang et al., 2019), KnowBert (Peters et al., 2019), E-BERT (Poerner et al., 2019) and BERT-kNN.
BERT-kNN performs best.

QA by large margins.
A schematic depiction of the model is shown

in Figure 1. Specifically, we use BERT to embed
each token’s masked context s in the text collection
(BERT (s)). Each pair of context embedding and
token is stored as a key-value pair in a datastore.
Testing for a cloze question q, the embedding of q
(BERT (q)) serves as query to find the k context-
target pairs in the subset of the datastore that are
closest. The final prediction is an interpolation of
the kNN search and the PLM predictions.

We find that the kNN search over the full dat-
store alone does not obtain good results. Therefore,
we first query a separate information retrieval (IR)
index with the original question q and only search
over the most relevant subset of the full datastore
when finding the k-nearest-neighbors ofBERT (q)
in embedding space.

We find that the PLM often correctly predicts the
answer category and therefore the correct answer is
often among the top k-nearest-neighbors. A typical
example is “Albert Einstein was born in [MASK]”:
the PLM knows that a city is likely to follow and
maybe even that it is a German city, but it fails to
pick the correct city. On the other hand, the top-
ranked answer in the kNN search is “Ulm” and so
the correct filler for the mask can be identified.

BERT-kNN sets a new state-of-the-art on the
LAMA cloze-style QA dataset without any fur-
ther training. Even though BERT-kNN is based on
BERT-base, it also outperforms BERT-large. The
performance gap between BERT and BERT-kNN
is most pronounced on hard-to-guess facts. Our
method can also make recent events available to
BERT without any need of retraining: we can sim-
ply add embedded text collections covering recent
events to BERT-kNN’s datastore.

The source code of our experiments is avail-
able under: https://github.com/norakassner/
BERT-kNN.

2 Data

The LAMA dataset is a cloze-style QA dataset that
allows to query PLMs for facts in a way analogous

to KB queries. A cloze question is generated using
a subject-relation-object triple from a KB and a
templatic statement for the relation that contains
variables X and Y for subject and object; e.g, “X
was born in Y”. The subject is substituted for X
and [MASK] for Y. In all LAMA triples, Y is a
single-token answer.

LAMA covers different sources: The
GoogleRE1 set covers the relations “place
of birth”, “date of birth” and “place of death”.
TREx (ElSahar et al., 2018) consists of a subset of
Wikidata triples covering 41 relations. ConceptNet
(Li et al., 2016) combines 16 commonsense rela-
tions among words and phrases. The underlying
Open Mind Common Sense corpus provides
matching statements to query the language model.
SQuAD (Rajpurkar et al., 2016) is a standard
question answering dataset. LAMA contains a
subset of 305 context-insensitive questions. Unlike
KB queries, SQuAD uses manually reformulated
cloze-style questions which are not based on a
template.

We use SQuAD and an additional 305 Concept-
Net queries for hyperparamter search.

Poerner et al. (2019) introduce LAMA-UHN, a
subset of LAMA’s TREx and GoogleRE questions
from which easy-to-guess facts have been removed.

To test BERT-kNN’s performance on unseen
facts, we collect Wikidata triples containing TREx
relations from Wikipedia pages created January–
May 2020 and add them to the datastore.

3 Method

BERT-kNN combines BERT with a kNN search
component. Our method is generally applicable to
PLMs. Here, we use BERT-base-uncased (Devlin
et al., 2019). BERT is pretrained on the BookCor-
pus (Zhu et al., 2015) and the English Wikipedia.

Datastore. Our text collection C is the 2016-
12-21 English Wikipedia.2 For each single-token
word occurrence w in a sentence in C, we com-

1https://code.google.com/archive/p/
relation-extraction-corpus/

2dumps.wikimedia.org/enwiki
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Dataset Statistics Model

Facts Rel BERT kNN BERT
-kNN

GoogleRE 5527 3 9.8 51.1 48.6
TREx 34039 42 29.1 34.4 38.7
ConceptNet 11153 16 15.6 4.7 11.6
SQuAD 305 - 14.1 25.5 24.9
unseen 34637 32 18.8 21.5 27.1

Table 2: Mean P@1 for BERT-base, kNN and their
interpolation (BERT-kNN) for LAMA subsets and un-
seen facts. BERT results differ from Petroni et al.
(2019) where a smaller vocabulary is used.

Configuration P@1
hidden layer 12 36.8
hidden layer 11 39.4
hidden layer 10 34.7
hidden layer 11 (without IR) 26.9

Table 3: Mean P@1 on LAMA (TREx, GoogleRE sub-
sets) for different context embedding strategies. Top:
The context embedding is represented by the embed-
ding of the masked token in different hidden layers.
Best performance is obtained using BERT’s hidden
layer 11. Bottom: We show that BERT-kNN’s per-
formance without the additional IR step drops signif-
icantly. We therefore conclude that the IR step is an
essential part of BERT-kNN.

pute the pair (c, w) where c is a context embedding
computed by BERT. To be specific, we mask the
occurrence of w in the sentence and use the embed-
ding of the masked token. We store all pairs (c, w)
in a key-value datastore D where c serves as key
and w as value.

Information Retrieval. We find that just using
the datastore D does not give good results (see re-
sult section). We therefore use Chen et al. (2017)’s
IR system to first select a small subset of D us-
ing a keyword search. The IR index contains all
Wikipedia articles. An article is represented as a
bag of words and word bigrams. We find the top
3 relevant Wikipedia articles using TF-IDF search.
For KB queries, we use the subject to query the IR
index. If the subject has its dedicated Wikipedia
page, we simply use this. For non-knowledge base
queries, we use the cloze-style question q ([MASK]
is removed).

Inference. During testing, we first run the IR
search to identify the subset D′ of D that corre-
sponds to the relevant Wikipedia articles. For the
kNN search, q is embedded in the same way as the
context representations c in D: we set BERT (q)
to the embedding computed by BERT for [MASK].
We then retrieve the k = 128 nearest-neighbors of

Figure 2: Mean P@1, P@5, P@10 on LAMA for orig-
inal BERT and BERT-kNN.

BERT (q) in D′. We convert the distances (Eu-
clidean) between BERT (q) and the kNNs to a
probability distribution using softmax. Since a
word w can occur several times in kNN, we com-
pute its final output probability as the sum over all
occurrences.

In the final step, we interpolate kNN’s (weight
0.3) and BERT’s original predictions (weight 0.7).
We optimize hyperparameters on dev. See supple-
mentary for details.

Evaluation. Following Petroni et al. (2019) we
report mean precision at rank r (P@r). P@r is 1
if the top r predictions contain the correct answer,
otherwise it returns 0. To compute mean preci-
sion, we first average within each relation and then
across relations.

4 Results and Discussion

Table 1 shows that BERT-kNN outperforms BERT
on LAMA. It has about 10 precision point gain over
BERT, base and large. Recall that BERT-kNN uses
BERT-base. The performance gap between original
BERT and BERT-kNN becomes even larger when
evaluating on LAMA-UHN, a subset of LAMA
with hard-to-guess facts.

It also outperforms entity-enhanced versions of
BERT (see related work) – ERNIE (Zhang et al.,
2019), KnowBert (Peters et al., 2019) and E-BERT
(Poerner et al., 2019) – on LAMA.

Table 2 shows that BERT-kNN outperforms
BERT on 3 out of 4 LAMA subsets. BERT pre-
vails on ConceptNet; see discussion below. Huge
gains are obtained on the GoogleRE dataset. Fig-
ure 2 shows precision at 1, 5 and 10. BERT-kNN
performs better than BERT in all three categories.

Table 3 compares different context embedding
strategies. BERT’s masked token embedding of
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Query and True Answer Generation
G

oo
gl

e
R

E

hans gefors was born in [MASK]. BERT-kNN: stockholm (0.36), oslo (0.15), copenhagen (0.13)
True: stockholm BERT: oslo (0.22), copenhagen (0.18), bergen (0.09)

kNN: stockholm (1.0), lund (0.00), hans (0.00)

T
R

E
x regiomontanus works in the field of [MASK]. BERT-kNN: astronomy (0.20), mathematics (0.13), medicine (0.06)

True: mathematics BERT: medicine (0.09), law (0.05), physics (0.03)
kNN: astronomy (0.63), mathematics (0.36), astronomical (0.00)

C
on

ce
pt

N
et

ears can [MASK] sound. BERT-kNN: hear (0.27), detect (0.23), produce (0.06)
True: hear BERT: hear (0.28), detect (0.06), produce (0.04)

kNN: detect (0.77), hear (0.14), produce (0.10)

Sq
ua

d tesla was in favour of the [MASK] current type. BERT-kNN: alternating (0.39), electric (0.18), direct (0.11)
True: ac BERT: electric (0.28), alternating (0.18), direct (0.11)

kNN: alternating (0.87), direct (0.12), ac (0.00)

Table 4: Examples of generation for BERT-base, kNN, BERT-kNN. The last column reports the top three tokens
generated together with the associated probability (in parentheses).

hidden layer 11 performs best. We also show the
necessity of the IR step by running a kNN search
over all Wikipedia contexts, which results in preci-
sion lower than original BERT. To run an efficient
kNN search over all contexts instead of the relevant
subset identified by the IR step, we use the FAISS
libary (Johnson et al., 2017).

Table 2 also shows that neither BERT nor kNN
alone are sufficient for top performance, while the
interpolation of the two yields optimal results. In
many cases, BERT and kNN are complementary.
kNN is worse than BERT on ConceptNet, presum-
ably because commonsense knowledge like “birds
can fly” is less well-represented in Wikipedia than
entity triples and also because relevant articles are
harder to find by IR search. We keep the interpola-
tion parameter constant over all datasets. Table 4
shows that kNN often has high confidence for cor-
rect answers – in such cases it is likely to dominate
less confident predictions by BERT. The converse
is also true (not shown). Further optimization could
be obtained by tuning interpolation per dataset.

BERT-kNN answers facts unseen during pre-
training better than BERT, see Table 2. BERT was
not trained on 2020 events, so it must resort to
guessing. Generally, we see that BERT’s knowl-
edge is mainly based on guessing as it has seen
Wikipedia during training but is not able to recall
the knowledge recovered by kNN.

Table 4 gives examples for BERT and BERT-
kNN predictions. We see that BERT predicts the
answer category correctly, but it often needs help
from kNN to recover the correct entity within that
category.

5 Related work

PLMs are top performers for many tasks, includ-
ing QA (Kwiatkowski et al., 2019; Alberti et al.,

2019; Bosselut et al., 2019). Petroni et al. (2019)
introduced the LAMA QA task to probe PLMs’
knowledge of facts typically modeled by KBs.

The basic idea of BERT-kNN is similar to Khan-
delwal et al. (2020)’s interpolation of a PLM and
kNN for language modeling. In contrast, we ad-
dress QA. We introduce an IR step into the model
that is essential for good performance. Also, our
context representations differ as we use embed-
dings of the masked token.

Grave et al. (2016) and Merity et al. (2017), in-
ter alia, also make use of memory to store hidden
states. They focus on recent history, making it
easier to copy rare vocabulary items.

DRQA (Chen et al., 2017) is an open-domain
QA model that combines an IR step with a neural
reading comprehension model. We use the same IR
module, but our model differs significantly. DRQA
does not predict masked tokens, but extracts an-
swers from text. It does not use PLMs nor a kNN
module. Most importantly, BERT-kNN is fully un-
supervised and does not require any extra training.

Some work on knowledge in PLMs focuses on
injecting knowledge into BERT’s encoder. ERNIE
(Zhang et al., 2019) and KnowBert (Peters et al.,
2019) are entity-enhanced versions of BERT. They
introduce additional encoder layers that are inte-
grated into BERT’s original encoder by expensive
additional pretraining. Poerner et al. (2019) injects
factual entity knowledge into BERT’s embeddings
without pretraining by aligning Wikipedia2Vec en-
tity vectors (Yamada et al., 2016) with BERT’s
wordpiece vocabulary. This approach is also lim-
ited to labeled entities. Our approach on the other
hand is not limited to labeled entities nor does it re-
quire any pretraining. Our approach is conceptually
different from entity-enhanced versions of BERT
and could potentially be combined with them for
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even better performance. Also, these models ad-
dress language modeling, not QA.

The combination of PLMs with an IR step/kNN
search has attracted a lot of recent research interest.
The following paragraph lists concurrent work:

Petroni et al. (2020) also combine BERT with an
IR step to improve cloze-style QA. They do not use
a kNN search nor an interpolation step but feed the
retrieved contexts into BERT’s encoder. Guu et al.
(2020) augment PLMs with a latent knowledge re-
triever. In contrast to our work they continue the
pretraining stage. They jointly optimize the masked
language modeling objective and backpropagate
through the retrieval step. Lewis et al. (2020); Izac-
ard and Grave (2020) leverage retrieved contexts
for better QA using finetuned generative models.
They differ in that the latter fuse evidence of mul-
tiple contexts in the decoder. Joshi et al. (2020)
integrate retrieved contexts into PMLs for better
reading comprehension.

6 Conclusion

This work introduced BERT-kNN, an interpolation
of BERT predictions with a kNN search for unsu-
pervised cloze-style QA. BERT-kNN sets a state-
of-the-art on LAMA without any further training.
BERT-kNN can be easily enhanced with knowl-
edge about new events that are not covered in the
training text used for pretraining BERT.

In future work, we want to exploit the utility
of the kNN component for explainability: kNN
predictions are based on retrieved contexts, which
can be shown to users to justify an answer.
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A Data

LAMA and LAMA-UHN can be downloaded from:
https://dl.fbaipublicfiles.com/LAMA/

For TREx unseen, we downloaded the latest
Wikidata and Wikipedia dump from:
https://dumps.wikimedia.org/

wikidatawiki/entities/wikipedia_en/

latest-all.json.bz2

and
https://dumps.wikimedia.org/enwiki/

latest/enwiki-latest-pages-articles.xml.

bz2.
We filter for TREx relations and only consider

facts which have a Wikipedia page created after
January 1st 2020. We only consider relations with
5 questions or more. We add the additional embed-
ded Wikipedia articles to the datastore.

B Inference

The probability of the kNN search for word w is
given by:
pkNN (w | q) ∼∑

(cw,w)∈kNN e−d(BERT (q),cw)/l.

The final probability of BERT-kNN is the
interpolation of the predictions of BERT and the
kNN search:
pBERT−kNN (q) = λpkNN (q)+(1−λ)pBERT (q),

with
q question,
BERT (q) embedding q,
w target word,
sw context of w,
cw = BERT (s) embedded context,
d distance,
l distance scaling,
λ interpolation parameter.

C Hyperparameters

Hyperparameter optimization is done with the
305 SQuAD questions and additional randomly
sampled 305 ConceptNet questions. We remove
the 305 ConceptNet questions from the test set.
We run the hyperparameter search once.
We run a grid search for the following hyperparam-
eters:
Number of documents N = [1, 2, 3, 4, 5],
Interpolation λ = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],
Number of NN k = [64, 128, 512],
Distance scaling l = [5, 6, 7, 8, 9, 10, 11, 12].

The optimal P@1 was found for:
Number of documents N = 3,
Interpolation parameter λ = 0.3,
Number of NN k= 128,
Distance scaling l = 6.

D kNN without IR

To enable a kNN search over the full datastore
we use FAISS index (Johnson et al., 2017). We
train the index using 1M randomly sampled keys
and 40960 number of clusters. Embeddings are
quantized to 64 bytes. During inference the index
looks up 64 clusters.

E Computational Infrastructure

The creation of the datastore is computationally
expensive but only a single forward pass is needed.
The datastore creation is run on a server with 128
GB memory, Intel(R) Xeon(R) CPU E5-2630 v4,
CPU rate 2.2GHz, number of cores 40(20), 8x
GeForce GTX 1080Ti. One GPU embedds 300
contexts/s. The datastore includes 900M contexts.

Evaluation is run on a server with 128 GB
memory, Intel(R) Xeon(R) CPU E5-2630 v4, CPU
rate 2.2GHz, number of cores 40(20). Evaluation
time for one query is 2 s but code can be optimized
for better performance.
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Chapter 9

EDIN: An End-to-end Benchmark
and Pipeline for Unknown Entity
Discovery and Indexing
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Abstract

Existing work on Entity Linking mostly as-
sumes that the reference knowledge base is
complete, and therefore all mentions can
be linked. In practice this is hardly ever
the case, as knowledge bases are incomplete
and because novel concepts arise constantly.
We introduce the temporally segmented Un-
known Entity Discovery and Indexing (EDIN)
-benchmark where unknown entities, that is en-
tities not part of the knowledge base and with-
out descriptions and labeled mentions, have
to be integrated into an existing entity linking
system. By contrasting EDIN with zero-shot
entity linking, we provide insight on the addi-
tional challenges it poses. Building on dense-
retrieval based entity linking, we introduce the
end-to-end EDIN-pipeline that detects, clus-
ters, and indexes mentions of unknown entities
in context. Experiments show that indexing a
single embedding per entity unifying the infor-
mation of multiple mentions works better than
indexing mentions independently.

1 Introduction

Most existing works on Entity linking (EL) – the
fundamental task of detecting mentions of entities
in context and disambiguating them against a ref-
erence knowledge base (KB) – assume that such
KB is complete, and therefore all mentions can be
linked. In practice this is hardly ever the case, as
KBs are incomplete when they are created and be-
cause novel concepts arise constantly. For example,
English Wikipedia, often used as the reference KB
for large scale linking, is growing by more than
17k entities every month.1

Consequently, at the time of deployment EL sys-
tems are quickly outdated and static evaluation
overestimates performance. But as these systems
play significant role in many real world industry

1https://en.wikipedia.org/wiki/Wikipedia:
Size_of_Wikipedia (09.05.2022)

applications, e.g., moderating discussions around
recent events, a dynamic look on EL is crucial.

Nonetheless, related work on this problem is
sparse. Available datasets (Ji et al., 2015; Der-
czynski et al., 2017; Nakashole et al., 2013) and
models (Hoffart et al., 2014) are outdated and/or
small scale and use features which are not read-
ily available (Nakashole et al., 2013; Wu et al.,
2016). Most importantly, they approach the prob-
lem only in parts. We revisit this problem in context
of dense-retrieval and large-scale EL, e.g., EL rely-
ing on bi-encoder architecture that runs a nearest
neighbor search between mention encoding and
a large-scale index of entity encodings. To this
end, we introduce EDIN-benchmark and EDIN-
pipeline where unknown entities, that is entities
with no available canonical names, descriptions
and labeled mentions, have to be integrated into an
existing EL model in an end-to-end fashion. To the
best of our knowledge, EDIN-pipeline is the first
end-to-end pipeline tackling this problem.

Note that this setting is strictly more demand-
ing than zero-shot (zs) entity linking (Logeswaran
et al., 2019), where a textual description of the zs
entities is available at the time of training.

The EDIN-benchmark is temporally segmented
into two parts, one preceding time t1 and one pre-
ceding time t2. With current approaches, an EL
system created at t1 is unable to create a dense-
index entry – and therefore successfully link – un-
known entities introduced after t1. The task that
we propose consists in adapting a model trained at
t1 using only an adaptation dataset – a set of new
documents also mentioning unknown entities – and
unsupervised techniques. There are therefore two
parts to this task: i) Discovery, which consists in
detecting mentions of unknown entities in the adap-
tation dataset and classifying them as unknown and
ii) Indexing, consisting in mapping co-referring
mentions of unknown entities to a single represen-
tation compatible with the entity index.
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By introducing a clear-cut temporal segmenta-
tion EDIN-benchmark targets unknown entities
which are truly novel/unseen to all parts of an EL
system, specifically the pre-trained language model
(PLM). Therefore, the EL system cannot rely on
implicit knowledge captured by the PLM. This is,
to the best of our knowledge, a setting that has
not been explored before in the context of dense-
retrieval based EL.

Temporal segmentation also lets us study effects
of entity encoder and PLM degradation. We ob-
serve that precision drops for known entities in
novel contexts which points to a large problem
of PLM staleness also discussed by (Agarwal and
Nenkova, 2021; Dhingra et al., 2022; Lazaridou
et al., 2021).

We show that distinguishing known from un-
known entities, arguably a key feature of an intel-
ligent system, poses a major challenge to dense-
retrieval based EL systems, as a model has to strike
a delicate balance between relying on mention vs.
context: context is crucial to distinguish unknown
entities carrying the same name as known entities
and to co-refer different mentions of the same un-
known entities, while mentions are essential to dis-
tinguish unknown entities with different name but
semantic similarity to existing ones.

On the side of indexing, inserting unknown enti-
ties into a space of known entities poses problems
of interference with known entities in their close
proximity. For instance, when first encountering
mentions of BioNTech we want to create an index
entry in proximity of other biotech companies but
in a way that linking can still differentiate between
them. We find that adapting the EL model to the
updated index, is essential.

We experiment with different indexing methods.
In particular, we contrast single mention-level in-
dexing (FitzGerald et al., 2021) with indexing clus-
ters of mentions. We find that unifying the informa-
tion of multiple mentions into a single embedding
is beneficial.

We summarize our contributions as follows: i)
We introduce the EDIN-benchmark, a large scale
end-to-end EL dataset where unknown entities need
to be discovered and integrated into an existing
entity index in an unsupervised fashion. ii) We
propose the EDIN-pipeline in the form of an exten-
sion of existing dense-retrieval architectures. iii)
We contrast this task with zs EL, and provide in-
sight on the challenges it poses. iv) We show that

indexing a single embedding per entity, unifying
the information of multiple mentions, works better
than indexing mentions independently.

Data and evaluation code is located here: https:
//github.com/facebookresearch/EDIN

2 Task definition

We formally define end-to-end EL as follows:
Given a paragraph p and a set of known entities
EK = {ei}, each with canonical name, the title,
t(ei) and textual description d(ei), our goal is to
output a list of tuples, (e, [i, j]), where e ∈ EK is
the entity corresponding to the mention mi,j span-
ning from the ith to jth token in p. We call a system
that solves this task based on d(ei) a Description-
based entity linking system L.

For EDIN-benchmark, after training a model
Lt1 at time step t1, a set of unknown entities
EU = {ei} with EU

⋂
EK = ∅ and no available

canonical names, descriptions and labeled men-
tions is introduced between t1 and t2 > t1. The task
is to adapt Lt1 in an unsupervised fashion such that
it can successfully link mentions of EU

⋃
EK .

We use three dataset splits: the training set
Dtrain to train Lt1, the adaptation dataset Dadapt

used to adapt Lt1 and the test set Dtest to evaluate.
Both Dadapt and Dtest include mentions between
t1 and t2. The model relies on Dadapt to discover
EU and extract representations to integrateEU into
the entity index. We ensure that Dadapt and Dtest

are disjoint to prevent leakage of test mentions into
entity representations extracted from Dadapt.

3 EDIN-pipeline

Our EDIN-pipeline is built on top an end-to-end ex-
tension of the dense-retrieval based model BLINK
(Ledell Wu, 2020) and is similar to (Li et al., 2020).
It is composed of a Mention Detection (MD), En-
tity Disambiguation (ED) and Rejection (R) com-
ponents. MD detects entity mention spans [i, j] in
context relying on BERT (Devlin et al., 2019). ED
links these mentions to e ∈ EK . It relies on bi-
encoder architecture running a k-nearest-neighbor
(kNN) search between mention encoding and can-
didate entity encodings (the entity index). Mention
encodings are pooled from BERT-encoded para-
graph tokens p1..n:

mi,j = FFL(BERT ([CLS]p1 . . . pn[SEP ])i...j)
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Figure 1: EDIN-pipeline: In the adaptation phase, detected mentions inDadapt are mapped into a joint dense space
withEK representations. A clustering algorithm groups mentions and entities based on kNN-similarity. Clusters of
mentions without entity encoding are collected in E′

U . To integrate these into the index of EK , mentions in single-
sentence contexts are concatenated and mapped to a single embedding using the entity encoder. After adaptation,
the updated entity index is used for standard EL in an inductive setting.

Entities are represented using BLINK’s frozen en-
tity encoder:

e = BERT[CLS]([CLS]t(e)[SEP ]d(e)[SEP ])

Mention-entity candidates are passed to R that
controls precision-recall trade-off by thresholding
a learned candidate score.

More information about architecture and training
are detailed in appendix A.

4 Unknown Entity Discovery and
Indexing

We introduce an end-to-end pipeline to encode EU

into Lt1’s entity index. The process is depicted in
Figure 1. This pipeline is fully unsupervised and
only relies onDadapt. It follows a two-step process:
i) in Discovery the EL system detects mentions of
unknown entities and recognises them as being un-
known; ii) during Indexing, co-referring mentions
of unknown entities are mapped to a single em-
bedding compatible with the entity index. After
adaptation the updated model is tested on Dtest.

4.1 Unknown Entity Discovery
First, Lt1 detects and encodes mentions part of
Dadapt. The MD head is trained to detect men-
tions leveraging the context around them, and
can therefore detect mentions of both EK and
EU . Encoded mentions M = {m1, ...,m|M |} are
then input to a clustering algorithm that partitions
M into disjoint clusters C = {c1, ..., c|C|}. We
adopt the same greedy NN clustering algorithm

as Logan IV et al. (2021) where mi is assigned to
cluster ck if mj ∈ ck is NN mention to mi and
sim(mi,mj) > δ.

Next, entity encodings of e ∈ EK are assigned
to these clusters if

∑
j=0..J(sim(ei,mj)))/J > τ

holds for mj ∈ ci with ei being the nearest entity
of mj ∈ ci. δ and τ are tuned on Dadapt-dev to
optimize for recall. For more details see appendix
C. Following Agarwal et al. (2021), all clusters not
containing any entity representation are deemed to
refer to entities in EU . We refer to this subset of
automatically identified unknown entities as E′U .

4.2 Unknown Entity Indexing

Next, clusters identified as E′U are integrated into
the EL index of Lt1. We explore two different
methods of indexing:
Cluster-based: We concatenate all mentions part
of a cluster, each with the sentence they occur in,
and use the entity encoder to map to a single entity
encodings. We pool over all mi ∈ ci and select the
most occurring mention as canonical name t(e).
Mention-based: Mentions in single sentence con-
texts are indexed individually using the entity en-
coder. Individual mentions are used as t(e).

5 Evaluation

As mentions of type EU are significantly less fre-
quent than mentions of type EK , we report results
on these two types separately.

For Discovery, we report precision and recall of
EU classification and clustering metrics.
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Wikipedia OSCAR

Train 100k (908k) 100k (1.7M)
Adapt 17k (183k) 17k (380k)

Dev Train 8k (78k) 8k (142k)
Dev Adapt - 9k (183k)

Test 198k (1.8M) 569k (11M)

Table 1: Dataset Statistics: Number of samples (num-
ber of mentions) for training, adaptation and testing.

Bin Support EK R Support EU R

[0) 68,241 21.1 7,095 17.5
[1) 59,227 29.1 3,923 25.9
[1, 10) 313,232 45.6 9,939 40.7
[10, 100) 901,857 65.7 7,765 57.3
[100, 1k) 2,860,880 76.9 7,399 64.4
[1k, +) 5,981,028 84.4 6,717 86.7

Table 2: Frequency effects: End-to-end EL perfor-
mance of upper baseline model Lt2 per frequency bins.

To evaluate end-to-end EL, we compute preci-
sion (P) and recall (R) following Li et al. (2020)
but using a hard matching criteria.

To do so for cluster-based discovery, canonical
names of indexed clusters need to be consistent
with the set of test labels. Our method of assigning
canonical names to clusters based on pooling over
mentions is not. To resolve this mismatch we pool
over the gold labels associated with these mentions
instead of the mentions themselves. This is only
done for evaluation.

Unsupervised clustering of mentions in Dadapt

may suffer from two kinds of errors: i) Clusters
can be incomplete, e.g., mentions of a single entity
can be split into multiple clusters which can lead
to indexing the same entity multiple times and ii)
Clusters can be impure, e.g., mentions of different
entities end in the same cluster, which leads to con-
flation of multiple entities into one representation.

In our evaluation we use the gold labels for com-
puting standard EL metrics by associating possibly
more than one cluster to each EU , and consider a
prediction correct if a mention is linked to any of
the clusters associated with the correct entity. EL
metrics could fail to capture shortcomings in es-
tablishing co-references between mentions though,
therefore we report clustering metrics alongside
EL metrics. We follow Agarwal et al. (2021) and
report normalized mutual information (NMI).

6 EDIN-benchmark

To construct the entity index, we download
Wikipedia dumps from t1 and t2 and extract en-
tity titles and descriptions. Setting t1 to September
2019 (the date when BLINK was trained) the KB
consists of 5.9M entities, setting t2 to March 2022
an additional set of 0.7M entities is introduced.

Wikipedia and Oscar data is created as follows.
Wikipedia: Since usually only the first mention

of an entity inside a Wikipedia article is hyper-
linked, we annotate a subset of Wikipedia. We use
a version of L that was trained at t2 on a labelled
non-public dataset. While noisy, these predictions
are significantly better than what our best discov-
ery and indexing methods can achieve, therefore
we adopt them as pseudo-labels for the purpose
of comparing approaches. As discovery and in-
dexing methods improve, manual labelling of the
evaluation data will afford more accurate measures.
Wikipedia provides time stamps which enables us
to separate two time splits.

OSCAR news: This dataset is based on the
common-crawl dataset OSCAR (Abadji et al.,
2021). We select a subset of English language news
pages which we label automatically as described
above. The dataset consists of 797k samples, which
we split based on their publication date. We publish
this dataset using stand-off annotations and code to
download the relevant raw data. To enable evalu-
ation of future versions of PLMs and EL systems,
we also publish our data processing scripts.

For both types of datasets we publish two time
splits: D1, containing samples preceding t1, which
is used to train model Lt1 and D2, with samples
preceding t2, which is used to train an upper bound
model Lt2. To adapt Lt1, we hold out a subset of
data from between t1 and t2 to construct Dadapt

(Dadapt ∩ D2 = ∅). Remaining samples are ran-
domly split into train, dev, test. Figure 2 illustrates
the different data splits. Overall dataset statistics
are listed in Table 1.

To construct Dadapt, we follow Agarwal et al.
(2021), and set the ratio of mentions of type EU to
EK to 0.1. 2 As Dt2-test covers both known and
unknown entities, we use this dataset for EDIN-
pipeline evaluation. In Oscar Dt2-test, the average
number of mentions per EU is 5.6 and it is ten

2Naturally this ratio would lie at 0.02. We made this ar-
tificial adjustment to reduce the strong class imbalance and
obtain more interpretable and statistically stable results. Such
adjustment could be lifted once considerably more precise
unknown entity discovery components become available.
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times lower than for EK . COVID-19 is the most
occurring unknown entity with 12k mentions. 638k
EU are not mentioned at all and only 733 are men-
tioned more than ten times.

7 Results and Discussion

In the following sections, we discuss results for
OSCAR data. Results on Wikipedia data are con-
sistent but lower and shown in appendix F. Our
main findings are shown in Table 3 where we re-
port end-to-end performance on OSCAR Dt2-test.

Overall, our results show:

• EDIN-benchmark is challenging. Particularly
attributed to imperfect discovery, end-to-end
performance in terms of recall lacks signifi-
cantly behind the upper bound, see 7.5.

• When contrasting with zs EL, we find that i)
adapting the model to the updated index by
re-training the model after indexing is crucial,
see 7.2 and ii) entity encodings relying on
clusters of mentions in context instead of hu-
man crafted descriptions have high potential
but discovering these clusters is challenging,
see 7.4.1.

• Our best performing system relies on Cluster-
based indexing, with the advantage of attend-
ing to and unifying the information of multi-
ple mentions, see 7.4. We call this version the
EDIN-pipeline.

In whats to come, we first discuss upper and
lower performance bounds. Then, we follow our
two-step pipeline where we first present results on
discovery and indexing separately and then assem-
ble the full end-to-end pipeline.

Recall our terminology:

• Cluster-based: EU encodings rely on men-
tions in context which are concatenated and
embedded into a single encoding.

• Mention-based: EU encodings rely on indi-
vidually indexed mentions in context.

• Description-based: EU encodings rely on
human crafted descriptions. This type of in-
dexing is used in the zs setting.

7.1 Lower and upper bounds

Our starting point, and an obvious lower perfor-
mance bound, is given by model Lt1 trained at
Dt1. This model lacks representations of EU and
its training data does not contain any corresponding
mentions. Therefore, performance on the subset of
EU is 0 for all metrics.

For an upper performance bound we take model
Lt2 trained at Dt2. The entities in EU were intro-
duced to Wikipedia past t1 but before t2, meaning
that to Lt2 these entities are actually known: la-
beled mentions of EU are part of the training data
and entity representations are part of the index.
Lt2 reaches similar performance as Lt1 for EK .

We suspect performance differences can be at-
tributed to the difference in training data.

Performance of Lt2 on mentions of EU is lower
than on mentions of EK . The performance dis-
crepancy between EU and EK is largely due to
frequency differences, see Table 2. We suspect that
the remaining difference can be attributed to the
degradation of PLM and entity encoder. Note that
while labelled mentions of EU were seen during
the training phase of Lt2, BLINK’s entity encoder
was not re-trained. To investigate this hypothesis
further, we test Lt1 on mentions of EK that meet
two conditions: i) time stamps of these samples are
posterior to t1 and ii) two or more mentions of EU

occur in their context. Thus, we target mentions
of EK in novel contexts to which neither BLINK
nor the PLM have been exposed. The total number
of entities that meet these conditions are 40,055.
We find that recall drops only slightly from 80.1 to
79.9 but precision drops from 82.0 to 75.9. This
result indicates that EU are also a source of noise
when trying to link mentions of EK .

7.2 Additional upper bound: Zero-shot EL

Zs EL relies on Description-based indexing. It may
be a valid option in some practical settings, where
we may e.g. be able to frequently download fresh
Wikipedia snapshots and rerun all or part of the
training, but it does not meet the conditions for
being a valid entry to EDIN-benchmark, because
it relies on supervision for deciding what novel
entities to add to the index, and because it requires
manually written descriptions for such entities. For
these reasons, we present it here as an additional
upper bound comparison point.

We note that in the zs problem, all entities are
part of the index at training time. In the setting
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Known Entities Unknown Entities Unknown Entities filtered
Model R P NMI R P NMI R P NMI

Lt1 (lower bound) 80.1 82.0 93.5 0.0 0.0 0.0 0.0 0.0 0.0
Lt2 (upper bound) 78.7 79.7 93.1 49.2 31.8 93.8 63.1 26.0 93.4
Lt1-Descp (zs setting) 80.2 82.6 93.5 46.5 32.4 93.8 58.3 26.2 90.5

Lt1-Mention-Oracle 80.6 81.5 93.3 24.0 46.6 87.0 40.7 46.6 87.0
Lt1-Mention 80.3 81.9 93.4 20.5 43.7 87.6 34.5 43.5 88.7

Lt1-Cluster-Oracle 80.3 82.0 94.2 30.5 51.8 85.9 51.8 51.8 85.9
EDIN-pipeline (Lt1-Cluster) 80.3 81.9 93.4 20.8 43.1 85.9 35.4 43.1 85.3

Table 3: EL performance on OSCAR Dt2-test for unknown entities EU and known entities EK . Left shows
end-to-end performance; Right shows filtered performance where mentions of EU not part of Dadapt are dropped
from test. Upper/Lower bounds: Lt1, trained at t1, uses Description-based entity encodings and constitutes the
lower bound. It lacks encodings of EU . Lt2, trained at t2, uses Description-based entity encodings and constitutes
the upper bound. EU are part of the index and their labeled mentions are part of training. Lt1-Descp adapts Lt1 by
adding Description-based entity encodings of EU to the index. As it relies on human discovery and descriptions
it constitutes an additional upper bound. Adaptation: For Lt1-Mention Mention-based encodings of i) oracle EU

and ii) discovered E′
U part of Dadapt are added to Lt1’s entity index. For Lt1-Cluster Cluster-based encodings of

i) oracle EU and discovered E′
U part of Dadapt are added to Lt1’s entity index.

of EDIN-benchmark, indexing happens after train-
ing. We run the following experiments to study the
effect this difference has:

• Not Re-trained: Description-based entity
representations are added to the index without
re-training Lt1 after indexing.

• Re-trained: Description-based entity repre-
sentations are added to the index with re-
training Lt1 after indexing.

Recall and precision of EU with Re-trained is
46.5% and 32.4% respectively, see Table 4. Recall
and precision with Not Re-trained is 26% and 17%
points lower respectively.

We note that unknown entities can potentially
be placed in close proximity to known ones in em-
bedding space. When these entity encodings are
present during training, they can be picked up as
hard negatives and the mention encoder can learn
to circumvent them. This hypothesis is supported
by experiments showing that the mean similarity
between mentions and correct known entity em-
beddings increases significantly when the mention
encoder is re-trained after adding the new entities.
For details see the appendix D.

The take-away for the EDIN-pipeline is that,
after adding new entity representations to the in-
dex, another round of training is needed to adapt
the mention encoder to the updated index. We
adopt this approach for the following experiments.

Besides adapting the mention encoder, re-training
BLINK could have a similar effect: in such case
learning from hard negative can affect the spac-
ing of entity encodings. As re-training BLINK is
expensive, we did not explore this option.

Unknown Entities Known Entities
R P NMI R P NMI

Not re-trained 20.6 15.5 95.2 80.1 82.3 93.5
Re-trained 46.5 32.4 93.8 80.2 82.6 93.5

Table 4: Adapting the model to the updated index:
End-to-end EL performance on OSCARDt2-test when
adding Description-based representation of unknown
entities EU to the entity index with (Re-trained) and
without (Not re-trained) re-training of Lt1.

7.3 EDIN Discovery

First condition for effective discovery is the ability
to reliably detect mentions of both EK and EU .
Recall ofLt1 onDadapt for MD task is 90% forEK

and 86% for EU . As expected, recall of mentions
of EK is higher as no mentions of EU were seen
during training. As a reference, running Lt2 on
Dadapt we find that for both EK and EU 91% of
mentions are recalled. Note again, that for Lt2, EU

are known. This indicates that MD is not affected
by frequency differences and PLM degradation.

Once mentions are detected, we adopt a cluster-
ing approach to classify between mentions of EU
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and EK . We measure clustering quality of 91.2%
NMI on Dadapt. We evaluate discovery based on
these clusters by evaluating whether a discovered
cluster is indeed referring to anEU . Note, that here
duplicated discovery of the same entity is not pe-
nalized. We set the minimum number of mentions
per cluster to 3 and report low discovery precision
(10%) but relatively high recall (86%). Overall,
this results in detecting 71% of all unknown enti-
ties part of Dadapt.

We find that the constraint requiring that most
mentions in a cluster are within a region controlled
by hyper-parameter τ , as described in 4.1, is crucial.
In an ablation study we drop this condition and
greedily assign EK to clusters if sim(ei,mi) > τ
holds for any mi ∈ ci. This setting is similar to
Agarwal et al. (2021) where a single entity-mention
link is sufficient for cluster assignment. Discovery
dropped to 49% recall and 8% precision.

A qualitative error analysis reveals that false neg-
atives are mostly caused by the problem that men-
tion embeddings of EU (e.g. BioNTech) can have
high similarity with entity embeddings of EK (e.g.
of other biotechnology companies). We suspect
that this problem is particularly pronounced in our
setting because EDIN-benchmark is large scale (up
to 6 times more entities in the reference KB and
up to 36 times more mentions in the clustering set
compared to Agarwal et al. (2021)) with many tail
entities.

Conversely, false positives are mostly due to
known entities being misclassified unknown when
occurring in novel contexts, e.g., “blood tests” or
“vaccine” in context of COVID form distinct clus-
ters. But, low precision in discovery is less prob-
lematic than low recall as re-training after indexing
gives the ability to learn to ignore clusters of EK .

7.4 EDIN indexing

After discovery, we need mention clusters of EU

to be integrated into the entity index.
We compare Mention-based and Cluster-based

indexing. To isolate discovery and indexing perfor-
mance, we first evaluate indexing using oracle clus-
ters, where we replace the discovery method run on
Dadapt with an oracle where mentions of EU are
discovered and clustered perfectly. Mention-based
indexing performs worse than Cluster-based index-
ing with a gap of around 5% points, see Table 3
(left), Lt1-Mention-Oracle vs. Lt1-Cluster-Oracle.
When reducing the test set to mentions of entities

that were actually discoverable, the difference in
recall becomes even more pronounced: 41% for
Mention-based vs. 52% for Cluster-based indexing,
see Table 3 (right).

Interestingly, this means that the ability to at-
tend over multiple mentions in context and unify
their information into a single embedding leads to
superior representations. Note that here the entity
encoder was neither trained to deal with the style of
individual mentions in context nor with clusters of
mentions in context. For future work, it would be
interesting to see if Cluster-based indexing can be
generally beneficial to EL, outside of the context
of EDIN-pipeline.

7.4.1 Cluster-based vs. Description-based
As an upper baseline, we compare Cluster-based
indexing with the zs setting which uses Description-
based indexing. Zs EL does not rely on Dadapt

but on a human’s decision to add an entry to the
index and therefore discovery is perfect. To isolate
indexing from discovery, we again filter the test set
to actually discoverable entities and assume perfect
oracle clusters.

In this setting, see Table 3 (right), we find that
Cluster-based-Oracle indexing performs 7% points
lower than Description-based indexing in recall but
26% better in terms of precision.

The take-away is that when discovery is perfect,
Cluster-based indexing relying on concatenated
mentions in context instead of manually crafted
descriptions has high potential. In the end-to-end
setting, we see that assembling these perfect clus-
ters is challenging.

We also want to emphasise that results in Table
3 show that EL performance on EK is not affected
by this adaptation process. Recall and precision
remain, with 80.3 and 81.9, stable. We also test
if this finding also holds on standard EL datasets.
We compare performance on AIDA test before and
after adaptation and report no difference in perfor-
mance on EK .

7.5 End-to-end pipeline

We assemble the full end-to-end pipeline. We re-
place oracle clusters of EU by discovered clusters
of E′U . Errors in discovery that affect indexing are:
i) misclassification of clusters as either known or
unknown and ii) incomplete and impure clusters.
We find that performance of Mention-based and
Cluster-based indexing in terms of recall and preci-
sion converges and is significantly lower than their
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oracle counterparts.
When reducing the test set to mentions of en-

tities that were discoverable, thus part of Dadapt,
Cluster-based indexing is 1% point better in terms
of recall and 0.4 % worse in precision, Table 3
(right). When reducing the test set further to men-
tions of entities that were in fact discovered, recall
of Cluster-based indexing is, with 58.4%, better
than that of Mention-based indexing (55.5%).

We also report performance of ED with oracle
mention detection in Table 6 in the appendix E.
Here, we find that Cluster-based indexing is per-
forming better than Mention-based indexing across
all metrics.

We conclude that Cluster-based indexing per-
forms better than Mention-based indexing. We call
this version the EDIN-pipeline.

Besides yielding an index that scales in memory
with the number of entities rather than the num-
ber of mentions – a significant advantage when the
number of entities is already large and in view of a
streaming extension – Cluster-based indexing gen-
erates fixed-size entity embeddings as a by-product
that can have applications of their own and can be
used to enhance PLMs (e.g., Peters et al. (2019)).

Overall, EDIN-pipeline performance shows that
EDIN-benchmark is challenging. In terms of re-
call, end-to-end performance lacks 26% points be-
hind the upper bound Lt2. In this setting, errors
in discovery propagate. Most notably, we see this
manifest when i) comparing Table 3 unfiltered and
filtered where the recall problem of EU becomes
apparent and ii) comparing performance of oracle
and automatic clusters where precision drops by
10% points.

In future work, we want to explore a setting
where EU are discovered in a streaming fashion,
thus scaling up Dadapt and dropping the artificially
imposed ratio of EK vs. EU . This would pose
challenges in terms of scale and precision in dis-
covery. Here, a human in the loop approach, as
proposed by Hoffart et al. (2016) in the context of
keeping KBs fresh, to introduce a component of
supervision, might be needed.

8 Related work

EL is an extensively studied task. Prior to the in-
troduction of PLMs, EL systems used frequency
and typing information, alias tables, TF-IDF-based
methods and neural networks to model context,
mention and entity (Cucerzan, 2007; Bunescu and

Paşca, 2006; Milne and Witten, 2008; He et al.,
2013; Sun et al., 2015a; Lazic et al., 2015; Raiman
and Raiman, 2018; Kolitsas et al., 2018; Gupta
et al., 2017; Ganea and Hofmann, 2017; Khalife
and Vazirgiannis, 2018; Onoe and Durrett, 2019).

Gillick et al. (2019) present a PLM-based dual
encoder architecture that encodes mentions and en-
tities in the same dense vector space and performs
EL via kNN search. Logeswaran et al. (2019) pro-
posed the zs EL task and show that domain adaptive
training can address the domain shift problem. Sub-
sequently, Wu et al. (2020) showed that pre-trained
zs architectures are both highly accurate and com-
putationally efficient at scale. None of these works
tackle the problem of unknown entities.

Recently, FitzGerald et al. (2021) model EL en-
tirely as mappings between mentions, where in-
ference involves a NN search against all known
mentions of all entities in the training set. In this
setting mentions need to be labeled. They do not
explore their approach in the setting of unknown
entities.

Prior to dense retrieval-based EL, unknown en-
tity discovery work includes: Ratinov et al. (2011)
train a classifier to determine whether the top
ranked EL candidate is unknown relying on lo-
cal context, global Wikipedia coherence, and addi-
tional manually crafted features. Nakashole et al.
(2013) introduce a model for unknown entity dis-
covery and typing leveraging incompatibilities and
correlations among entity types. Hoffart et al.
(2014); Wu et al. (2016) study a variety of features
for unknown entity discovery: Hoffart et al. (2014)
use perturbation-based confidence measures and
key-phrase representations and Wu et al. (2016)
explore different feature spaces, e.g., topical and
search engine features. These features are not read-
ily available and incorporating them into PLM-
based approaches is not straightforward; Ji et al.
(2015); Derczynski et al. (2017) introduce shared
tasks for discovery. These tasks are defined on com-
paratively small datasets and target only named
entities; Akasaki et al. (2019) introduces a time
sensitive method of discovering emerging entities
relying on Twitter data.

None of these works consider unknown entities
in an end-to-end setting including mention detec-
tion, unknown entity discovery and indexing. Also,
we cannot use their datasets to evaluate as these
entities were part of training the PLM.

In the context of named entity tagging, Mota and
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Grishman (2009) showed that entity taggers can be
effectively updated by incorporating contemporary
unlabeled data using semi-supervised learning.

Closely related to EL is the task of cross doc-
ument entity co-reference (CDC), where no ref-
erence KB is present (Bagga and Baldwin, 1998;
Gooi and Allan, 2004; Singh et al., 2011; Dutta and
Weikum, 2015; Barhom et al., 2019; Cattan et al.,
2021a; Caciularu et al., 2021; Cattan et al., 2021b).
Most recently, Logan IV et al. (2021) benchmark
methods for streaming CDC, where mentions are
disambiguated in a scalable manner via incremen-
tal clustering. Our work can be seen as bridging
between the world of CDC and EL.

Most recently, Angell et al. (2021) introduce a
new EL method using document-level supervised
graph-based clustering. Agarwal et al. (2021) ex-
tend this work to cross-document EL and entity
discovery. In this work, we adopt a more standard
bi-encoder architecture (i.e. BLINK), with better
EL scalability potential (memory linear in the num-
ber of entities and not in the number of mentions)
and an existing end-to-end extension. We use a
modified version of their discovery method.

9 Conclusion

This work introduced EDIN-benchmark and EDIN-
pipeline. EDIN-benchmark is a large-scale, end-
to-end EL benchmark with a clear cut temporal
segmentation for Unknown Entity Discovery and
Indexing. EDIN-pipeline detects and clusters men-
tions of unknown entities in context. These clusters
of unknown mentions are then collapsed into single
embeddings and integrated into the entity index of
the original EL system.

Limitations

The main limitations of EDIN-benchmark are: i)
The dataset is not human-annotated. Instead we
used an upper-bound model to label data automat-
ically. ii) We limit Dadapt in size and artificially
adjust class imbalance between mentions of type
EU toEK . The limited size ofDadapt in turn limits
the discoverability of unknown entities, specifically
low-frequency ones. Once progress is made in the
accuracy and scalability of entity discovery, EDIN-
benchmark can be modified to a truly dynamic
setting where unknown entities are continuously
discovered in a stream of incoming documents and
integrated into the EL system.

EDIN-pipeline is tailored to dense-retrieval

based EL and adapting it to different EL ap-
proaches, e.g., to generative EL systems De Cao
et al. (2021), is not straightforward.

We study EDIN-benchmark and -pipeline in a
monolingual setting using English language only.
EDIN-benchmark’s extension to a multilingual set-
ting is straight forward. OSCAR and Wikipedia
data are available in 166 different languages but
coverage will be a problem. EDIN-pipeline can be
extended to more languages by following (Botha
et al., 2020) but EDIN performance is expected to
vary across languages as it does for standard EL.

EDIN-benchmark covers news and Wikipedia
domain entities only, and we have not evaluated the
EDIN-pipeline on other domains.

The overall performance of EDIN-pipeline has
ample margins for improvement, with the precision
of clustering-based discovery as the main bottle-
neck at present. The significant number of false
positives (mentions of known entities classified as
unknown) is still a barrier to deployment in most
real-world settings.

Ethical Considerations

EL is a standard NLP task. Outside of academia
EL can be deployed in both non-problematic (e.g.,
content understanding for hate speech detection)
and problematic (e.g., surveillance) settings. Inde-
pendent of the use-case, potential bias that these
models could exhibit needs to be evaluated. EL
relies on human curated knowledge bases (here
Wikipedia) which could carry bias e.g. in terms
of language, genders and races, see for example
Sun and Peng (2021). Another source of bias in
the context of dense-retrieval based EL, is the bias
of the underlying language model (here BERT).
Both potential sources of bias could be propagated
to the down-stream task. To mitigate biases, we
refer to Goldfarb-Tarrant et al. (2021); Steed et al.
(2022) that show bias mitigation needs to be done
on the side of the downstream task rather than the
language model. Rudinger et al. (2018); Zhao et al.
(2018) introduce methods of downstream bias miti-
gation, here in the context of co-reference resolu-
tion.

We publish our dataset/scripts that generate the
datasets. Our dataset is based on English Wikipedia
and a subset of English online news pages ex-
tracted from OSCAR. All Wikipedia based data
is made fully available. OSCAR is common-crawl
based data and only available to researchers upon
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request. We release code and stand-off annotations
which enables researchers to reproduce the dataset.
Our EL annotations rely on an upper bound model
which is due to the performance gap sufficient for
EDIN but should not be considered gold data for
general EL tasks. We will indicate this prominently
on the website we use to host the data.
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A Model

In the following sections, we explain our model’s
architecture in detail. It relies on Blink’s bi-
encoder architecture (680M parameters). The
model can be downloaded from:

https://github.com/facebookresearch/
BLINK

The code for clustering is located here:

https://github.com/rloganiv/
streaming-cdc

A.1 Mention Detection

For every span [i,j], the MD head calculates the
probability of [i,j] being the mention of an entity
by scoring whether i is the start of the mention, j
is the end of the mention, and the tokens between i
and j are the insides:

sstart(i) = wT
startpi

send(j) = wT
endpj

smention(t) = wT
mentionpt

where wstart,wend,wmention are learnable vectors
and pi paragraph token representations based on
BERT:

[p1 . . . pn] = BERT ([CLS]p1 . . . pn[SEP ])

Overall mention probabilities are computed as:

p([i, j]) = σ(sstart(i) + send(j) +

j∑

t=i

(smention(t)))

Top candidates are selected as mention candidates
and propagate to the next step.

A.2 Entity Disambiguation

The ED head receives mention spans in the text and
finds the best matching entity in the KB.

Following Wu et al. (2020), ED is based on dense
retrieval. Description-based entity representations
are computed as follows:

e = BERT[CLS]([CLS]t(e)[SEP ]d(e)[SEP ])

Following Li et al. (2020), mention representations
are constructed with one pass of the encoder and

without mention boundary tokens by pooling men-
tion tokens through a single feed-forward layer
(FFL) from the encoder output:

mi,j = FFL(pi . . . pj)

Similarity score s between the mention candi-
date and an entity candidate e ∈ E are computed:

s(e, [i, j]) = e ∗mi,j

A likelihood distribution over all entities, condi-
tioned on the mention [i, j] is computed:

p(e|[i, j]) = exp(s(e, [i, j]))∑
e′∈E exp(s(e

′, [i, j]))

< [i, j], e∗ >, such that

e∗ = argmaxe(p([i, j], e)),

are passed as a candidate < mention span, entity >
tuple to the rejection head.

A.3 Rejection head
MD and ED steps over-generate. R looks at an
(e∗, [i, j]) pair holistically decides whether to ac-
cept it. Input features to R are the MD score
p([i, j]), the ED score p(e∗|[i, j]), the mention rep-
resentation yi,j , top-ranked candidate representa-
tion xe∗ as well as their difference and Hadamard
product. The concatenation of these features is fed
through a feed-forward network to output the final
entity linking score p([i, j], e∗). All p([i, j], e∗) >
γ are accepted where γ is a threshold set to 0.4.

A.4 Training
Following prior work (Sun et al., 2015b; Cao et al.,
2018; Gillick et al., 2019; Onoe and Durrett, 2020),
training is split into two stages. First, ED only
is trained on a Wikipedia dataset. This dataset is
constructed by extracting Wikipedia hyperlinks to
labeled mention-entity pairs and consists of 17M
training samples. Then, ED, MD and R are trained
jointly on the downstream dataset (either Oscar or
Wikipedia). Outputs from one component are fed
as input to the next and losses are summed together.
To train the ED head, frozen entity representations
are used. As entity embeddings do not change
during training, entity embeddings can be indexed
using quantization algorithms for a fast kNN search
(using FAISS (Johnson et al., 2017) framework
with HNSW index). A likelihood distribution over
positive and mined hard negative entities for each
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Parameter Value

dm 0.8171
sm 0.5
de 110

Table 5: Hyper-parameters adaptation phase

mention is computed. Negative Log-Likelihood
loss across all gold mentions in the text is used.

To train MD, binary cross-entropy loss between
all possible valid spans and gold mentions in the
training set is computed. Valid spans are spans with
begin < end, less than a maximum length, and we
also filter out spans that start or end in the middle
of the word.

To train R, binary cross-entropy loss between
retrieved mention-entity pairs and gold mention-
entity pairs is used.

Outputs from one component are fed as input to
the next and losses are summed together.

B OSCAR-based dataset

OSCAR data can be downloaded here:

https://oscar-corpus.com/

We select the following six online news pages:

BBC: https://www.bbc.com/
CNN: https://www.cnn.com/
Deutsche Welle: https://www.dw.com/en/
Reuters: https://www.reuters.com/article/
Guardian: https://www.theguardian.com/
Associated Press: https://apnews.com/article/

C Hyper-parameters adaptation phase

Using OSCAR Dadapt-dev, we optimize mention
score threshold sm, greedy NN distance threshold
dm and mention entity similarity threshold de.

We optimize sm in range 0.0 to 1.0 in steps of
0.1 for EU discovery recall. We optimize dm in
range 0.5 to 1.0, in steps of 0.0001 for NMI. We
optimize de for EU discovery recall in range 50 to
250 in steps of 10. For results, see Table 5.

We report recall of 81% and precision of 6% for
clusters referring to unknown entities. Recall of
clusters referring to known entities is 88% with
precision 96%. Clustering NMI is 0.92.

D Adapting to the updated index

We show that by re-training L after indexing, L
learns to circumvent EU : We identify known enti-
ties part of the training set that are in close proxim-
ity of unknown entities (confusable known entities).
We compare the average similarity between men-
tions and their respective linked entity when adding
unknown entities before training vs. after training.
Mean similarity when adding unknown entities be-
fore training is 93.28 for confusable known entities
and 92.57 for other known entities. A t-test shows
that this difference is significant (p-value of 0.0001
with< 0.05). As a reference, mean similarity when
adding unknown entities post training is 92.65 irre-
spective of whether they are confusable or not.

E Disambiguation Results

Besides end-to-end performance, we also report en-
tity disambiguation performance with oracle men-
tion detection in Table 6.

F Wikipedia Results

We report performance on Wikipedia Dt2-test in
Table 7. Due to a smallerDadapt, end-to-end perfor-
mance is lower. When filtering Wikipedia Dt2-test
for mentions of discovered entities, Lt1-Cluster-
Oracle precision is 40.5 and Lt1-Cluster recall is
15.3.

G Infrastructure, Training and Inference
Details

We ran all training distributed across 8 NVIDIA
TESLA V100 GPUs, each with 32 GB of memory.
The first training stage took 48h, the second one
12h.

Adaptation phase is currently limited by expen-
sive greedy NN clustering with quadratic time com-
plexity but the type of clustering is interchangeable
for more efficient ones. We chose this type of clus-
tering as Logan IV et al. (2021) showed it performs
decently for BLINK based mention encodings.
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OSCAR
Unknown Entities Known Entities

Model R P NMI R P NMI

LDt1 0.0 0.0 0.0 92.2 92.2 96.0
LDt2 63.5 45.3 96.8 90.0 90.2 96.0
Lt1-Descp 58.0 33.9 96.3 92.1 92.3 96.1

Lt1-Mention 26.2 30.8 92.7 92.2 92.2 96.0

EDIN (Lt1-Cluster) 27.9 34.1 93.4 92.2 92.2 96.2

Table 6: Entity Disambiguation performance on OSCAR Dt2-test.

Unknown Entities Known Entities
Model R P NMI R P NMI

Lt1 0.0 0.0 0.0 70.5 75.8 95.4
Lt2 33.6 25.0 98.3 70.6 75.4 95.3
Lt1-Descp 33.9 20.0 98.0 71.2 74.4 95.3

Lt1-Cluster-Oracle 7.8 55.6 90.6 70.1 75.9 95.6
EDIN (Lt1-Cluster) 1.8 15.4 93.4 71.1 74.1 95.3

Table 7: End-to-end EL performance on Wikipedia Dt2-test.

Figure 2: Dataset splits: A schema illustrating the
composition of Dt1 and Dt2. Note, that contrary to
what this plot suggests, the number of samples per data
split is equal for Dt1 and Dt2.
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