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Abstract

Although the behavior of agents is often led by self-interest, many environments
pose an incentive for cooperation by accomplishing a task together and thus be
compensated collectively. This naturally leads to the search of a payout mechanism
that assigns to each agent a share of the collective benefit which reflects its individual
contribution to the completed task. Game theory models such scenarios by the notion
of cooperative games in which the agents are the participating players. Within the
game-theoretic framework, the Shapley value poses the most prominent solution to
the emerging fair division problem, arguably capturing a widespread understanding
of fairness.

Over the last decade, the Shapley value has received unprecedented attention within
the field of machine learning, attributing importance to entities such as features,
datapoints, and structural components of predictive models. Especially the branch of
explainable artificial intelligence picked it up as a means to provide understanding
of the decision-making of increasingly complex and opaque models. Likewise,
Shapley interactions which capture synergies between players have recently attracted
attention. Unfortunately, the computational complexity of both quantities, the
Shapley value and Shapley interaction, suffers from the exponential blow-up w.r.t. to
the number of involved players and thus becomes quickly infeasible in practice. This
incentivizes the research on approximation algorithms that return precise estimates
while palpating the cooperative game as little as possible.

In this thesis, we develop approximation algorithms that leverage novel representa-
tions of the Shapley value and Shapley interactions on the basis of mean estimation
and weighted regression which allow for tailored sampling schemes. Given the
Shapley value’s richness of applications, our methods are purposefully domain-
independent without imposing structural assumptions. Consequently, they can be
applied across the entire spectrum of emerging cooperative games. To this end,
we place special emphasis on the variance reduction technique of stratification to
develop methods that utilize the gathered information from each sample to a richer
degree than in other representations possible and derive theoretical guarantees
for the estimates’ precision. Empirical evaluations in the context of machine learn-
ing confirm the soundness of our propositions and their capability to display an
advantage over competing methods.
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Zusammenfassung

Obwohl das Verhalten von Akteuren oft von Eigeninteresse geleitet ist, setzen viele
Szenarien einen Anreiz zur Kooperation, indem Akteure gemeinsam eine Aufgabe
bewdéltigen und dafiir kollektiv vergiitet werden. Dies fithrt zwangslaufig zu der
Frage nach einem Auszahlungsmechanismus, der jedem Akteur seinen Anteil an
der kollektiven Vergiitung ausschiittet, welcher dessen individuellen Beitrag zur
Bewiltigung ebendieser Aufgabe widerspiegelt. Die Spieltheorie modelliert solche
Szenarien anhand des Konzepts eines kooperativen Spiels, das die Akteure als die
teilnehmenden Spieler umfasst. Innerhalb des spieltheoretischen Rahmens stellt der
Shapley-Wert die prominenteste Losung fiir das auftretende Problem der gerechten
Aufteilung dar, weil dieser ein weit verbreitetes Verstdndnis von Fairness erfasst.

Der Shapley-Wert hat iiber das letzte Jahrzehnt hinweg beispiellose Aufmerksamkeit
im Bereich des maschinellen Lernens erhalten und wird unter anderem benutzt, um
die Wichtigkeit von einzelnen Attributen, Datenpunkten oder sogar strukturellen
Komponenten von Pradiktionsmodellen zu messen. Insbesondere das Feld der
erklarbaren kiinstlichen Intelligenz hat diesen als Werkzeug aufgegriffen, um ein
Verstandnis fiir die Entscheidungsfindung immer komplexer und undurchsichtiger
werdender Modelle zu vermitteln. Ebenso haben Shapley-Interaktionen, welche Syn-
ergien zwischen Spielern quantifizieren, an Interesse gewonnen. Bedauerlicherweise
leidet die Rechenkomplexitét beider Grof3en unter einer exponentiellen Zunahme in
Bezug auf die Anzahl der beteiligten Spieler und wird somit schnell impraktikabel.
Dieser Umstand motiviert die Erforschung von Approximationsalgorithmen, die den
Shapley-Wert und Shapley-Interaktionen moglichst préazise schétzen.

Diese Arbeit entwickelt Approximationsalgorithmen, die neuartige Darstellungen des
Shapley-Wertes und der Shapley-Interaktionen anhand von Mittelwertschdtzung und
gewichteter Regression nutzen, welche dementsprechend angepasste Stichprobe-
verfahren zum Schétzen ermoglichen. Angesichts der Vielfalt an Anwendungen
des Shapley-Wertes treffen wir keine strukturellen Annahmen tiiber das kooperative
Spiel, sodass die entwickelten Methoden bewusst doménenunabhéngig und {iber das
gesamte Spektrum an kooperativen Spielen anwendbar sind. Tiefergehend behan-
deln wir Stratifizierung als Technik zur Varianzreduktion von Schitzern, um Algo-
rithmen zu entwickeln, welche die in den gesammelten Stichproben enthaltene Infor-
mation zu einem hoheren Grad nutzen, als andere Darstellungen dies ermoglichen,
und theoretische Garantien fiir die Approximationsgiite zu geben. Empirische Unter-
suchungen im Kontext des maschinellen Lernens bestétigen die Fundiertheit unserer
Methoden und deren Fahigkeit, konkurrierende Anséatze zu schlagen.
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Introduction

Competitive environments seemingly promote selfishness. However, collaboration be-
tween agents or parties poses a fruitful business model in many economic scenarios.
Smaller logistic service providers, for example, join forces to cost-effectively solve
routing problems emerging from transportation demands. In doing so, the involved
parties increase their profitability and overcome their cost disadvantage against
larger companies (Schopka and Kopfer, 2015; Kimms and Kozeletskyi, 2016). Soft-
ware firms form joint ventures to benefit from each other’s expertise and knowledge
exchange while sharing fixed costs (Fahimullah et al., 2019). Electricity providers
in energy grids, as another example, cooperate by collectively responding to elec-
tricity demands (Bremer and Sonnenschein, 2013; O’Brien et al., 2015), ensuring
the functioning of civil infrastructure. A central question is how to distribute the
gained profit among agents such that each receives a fair share which reflects its
contribution to the collective benefit achieved by the group. Conversely, the presence
of an equitable payout mechanism in the first place may incentivize cooperation.

The arising fair division problem is subject of extensive research within the field of
game theory. Cooperative games, one of the field’s most popular concepts, facilitate
axiomatically guided approaches. Within this notion, the collaborating agents
are interpreted as abstract players which can form arbitrary subgroups, so-called
coalitions, that capture cooperation between the included players. In addition, a
value function that assigns a real-valued worth to each possible coalition models the
collective benefit a group of players achieves by solving a certain task. Combined with
the sheer versatility of this formalism, constructing this value function appropriately
enables to model a wide range of fair division problems crossing multiple domains
beyond profit allocation, including finance (Moehle et al., 2022) and social networks
(Gaské et al., 2023). The induced lattice of coalition values gives room to impose
axiomatic desiderata on an equitable allocation that divides the collective benefit
achieved by all players. The Shapley value (Shapley, 1953) emerged as the most
prominent division rule, as it is the unique solution to fulfill a certain set of axioms
that arguably capture an intuitive understanding of fairness.
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Recognizing the Shapley value’s axiomatic derivation, the field of machine learning
started to employ it for the purpose of constructing explanations that shed light
on the intricate inner workings of machine learning models (Sundararajan and
Najmi, 2020). Facing the rapid growth in complexity of modern models which have
consequently become increasingly opaque, the branch of explainability offers various
methods to aid understanding of their decision-making (Vilone and Longo, 2021),
thus reclaiming a certain sense of trustworthiness. Among those, additive feature
explanations decompose an observed effect such as the predicted value or a model’s
generalization performance among the features of the data and assign to this end an
importance score to each feature. Performing this attribution via the Shapley value
has attracted significant interest, leading to a diverse variety of Shapley-based expla-
nations (Rozemberczki et al., 2022). Their appeal stems from the simplicity by which
the trade-off between fidelity and readability of an explanation is tackled. Although
the simplification to individual importance scores is interpretable to the human user,
it compresses the constructed cooperative game behind the fair division problem
quite drastically, potentially hiding synergies between features. Fittingly, Shapley in-
teractions (Grabisch and Roubens, 1999) conceptually extend the Shapley value and
render the interplay between players tangible, enriching explanations by additionally
assigning scores to pairs and triples of features (Fumagalli et al., 2023).

The axiomatic uniqueness of the Shapley value comes with a price to pay in com-
plexity. Its inherent deficiency is rooted in the blow-up of the number of feasible
coalitions which scales exponentially with the number of players in the game. In
fact, in the absence of drastic restrictions to the value function, the computation
of the Shapley value is NP-hard (Deng and Papadimitriou, 1994). As a practical
consequence, its applicability is severely limited, if not vanished for large player
numbers, as often encountered in datasets of high dimensionality. The dooming in-
feasibility poses a pressing need to reliably estimate Shapley values and interactions.
To this end, approximation algorithms palpate the value function primarily through
statistical sampling of coalition values.

Given the richness of applications of the Shapley value and interactions, this thesis
contributes approximation algorithms that are not only model-agnostic for explana-
tions in machine learning but also domain-independent. The developed methods
are applicable to arbitrary cooperative games regardless of their origin. In this
spirit, we restrain from imposing heuristics in the shape of structural assumptions
on the value function, as they do not only limit applicability, but also impede the
validity of theoretical guarantees which we aspire to provide. Instead, we discover
novel presentations of the Shapley value to which we develop tailored sampling

Chapter 1 Introduction
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schemes that make more effective use of costly observed samples. Further, we are
interested in universal theoretical guarantees on the approximation quality that
hold true for any game, hinting at how structural properties of a cooperative game
ultimately impact the estimates’ precision. In particular, we specialize on the vari-
ance reduction technique of stratification, refine it in the context of Shapley values,
and demonstrate its hypothetical potential. Our algorithms empirically converge to
this optimum and compare favorably to other proposed methods depending on the
game’s domain. Last but not least, we distinguish between approximating all players’
Shapley values precisely and identifying the most influential players according to
their Shapley values. The subtle but significant shift in the objective gives room to
transfer algorithmic approaches from online learning that we take advantage of.

Thesis Structure and Contained Works

As this thesis aspires to provide universal approximation methods and investigate
their properties detached from domain-specific applications, we start by giving a brief
introduction to cooperative game theory in Chapter 2 at a more conceptual level.
Being equipped with formal concepts and the axiomatic derivation of the Shapley
value and Shapley interaction, this part will hint at alternatives to both quantities
and present our considered notion of their ubiquitous approximation problem.

We continue to present commonly appearing constructions of cooperative games
within the field of machine learning in Chapter 3. We will touch upon additive
feature explanations more thoroughly since these form the major motivation of
the Shapley value in machine learning. However, our goal is not to give a compre-
hensive overview of explainable Al, more so, we want to raise awareness for the
intricate differences in modeling cooperative games that substantially impact the
interpretation of the resulting explanations. Moreover, we come across other games
that not necessarily fulfill an explanatory purpose but are used to perform selection
of entities such as features, datapoints, and model components. Both types of fair
division problem are part of our empirical evaluations.

Chapter 4 categorizes common approximation methods of the Shapley value. Their
categorization serves as a platform for embedding the contribution of this thesis
into the context of current state-of-the-art methods. The main contribution of this
thesis comprises the following works that are given from Chapter 5 to 11 whose
appendices are contained from Appendix A to D:

1.1 Thesis Structure and Contained Works
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2.1

Introduction to Cooperative
Game Theory

The notion of a cooperative game forms the foundation of this thesis and the
considered problem of approximating the Shapley value and interactions. After
providing a glimpse on the fundamentals of cooperative game theory in Section 2.1,
we introduce in Section 2.2 the Shapley value as a member of the so-called class
of semivalues, an axiomatic class of solution concepts to the fair division problem.
Section 2.3 expands further to Shapley interactions by investigating on how to
quantify not only the contribution of single players but the interplay of whole groups
of players. Finally, Section 2.4 touches upon the computational complexity of the
presented game-theoretic quantities and highlights subtle but decisive differences
between the task of approximating all Shapley values precisely and just identifying
the players with the highest Shapley values.

Cooperative Games

The frequently appearing situation of agents making agreements in order to accom-
plish a task with each of them aiming to reap a selfish benefit calls for a systematic
approach to model such scenarios of cooperation. Since these agents do not neces-
sarily have to be of human form, as for example robots, or at least not represent
individual human beings such as companies, organizations, and even whole states,
we will refer to these agents as players in a cooperative game. Typically, these players
are given by a player set N with each element i € N being a player. Within this
notion, cooperation comes into existence through the formation of coalitions of
players that are represented by subsets of N.

A critical but often needed assumption is that each possible coalition S C A can not
only be formed, but also that its collective benefit that S would achieve by (partially)
completing the task at hand is measurable. The collective benefit of a coalition can
be seen as a joint payout for cooperation and is often called worth or value of S.
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Since each coalition has its own worth, it comes naturally to think of a mapping v
that assigns to each coalition S C N its worth v(.S). The set function v is commonly
referred to as the characteristic function or value function.

The next assumption that we impose is the transferability of worth between players.
The joint payout can be divided and distributed arbitrarily among the players in a
coalition. Transferability is often met in practice, as it is common to pay in monetary
units for performed work or service. In contrast, this excludes scenarios in which
payouts take the shape of indivisible goods. To embed this formally, we assume each
worth v(S) to be a real-valued number, thus leading to a value function that maps
from the power set of players to the set of real numbers, i.e. v : P(N') — R. Equipped
with player set and value function, we can define what is known as a cooperative
game, coalitional game, or transferable utility game (Branzei et al., 2008).

Definition 2.1. Cooperative Game
A cooperative game is given by the pair (N, v) with A being its set of players and
v : P(N) — R its value function.

The formalism of a cooperative game is simple yet expressive enough to model many
scenarios of cooperation due to its abstract nature. To keep this spirit, we denote the
player set as ' = {1, ..., n} with n expressing the finite number of players. Hence,
a game allows 2" many coalitions to form. This exponential growth will turn out
to be crucial in Section 2.4. The power set contains two special subsets: the empty
coalition () and the grand coalition N being the player set itself. The worth v(()) can
be challenging to interpret and is often set to zero, capturing the common sense
that no work performed should lead to no value. However, we will encounter in
Chapter 3 the construction of games that do exhibit a non-zero worth of the empty
coalition without running into difficulties of interpretation. On the other side, v
can be scaled such that the worth v (/) of the grand coalition is 1, thus essentially
becoming a capacity or fuzzy measure (Sugeno, 1974). Note that for any v with
v(N') — v(() # 0 both requirements come without loss of generalization since v can
be normalized into v/ as follows:

v(S) - v(0)

J(0) forall S C \V. (2.1

Interestingly and simultaneously important, Definition 2.1 and also the normaliza-
tion do not restrict v to be negative. In fact, it is even appropriate to assign negative
values to coalitions with a destructive impact, potentially arising through the incom-
patibility of certain players or the presence of those with malicious intentions.

Chapter 2 Introduction to Cooperative Game Theory
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In order to illustrate cooperative games and the upcoming notions in the remainder
of this chapter, we will continuously make use of the exemplary game given by
Example 2.2 that could exist in real life in this way or another.

Example 2.2. Three car mechanics decide to start a business with their own au-
tomotive workshop. Each of them brings varying levels of experience within the
required skillset ranging from performing the actual repairs to business adminis-
tration. The three of them try to help each other and contribute their part. The
player set is thus modeled as N’ = {1, 2,3}. The worth of a coalition is measured
by the monthly revenue the workshop would achieve by being run solely with the
mechanics contained within that coalition. The value function is given by Table 2.1.

s |0 @ 3 L2y (13 {23 {1.2.3)
v(S) ‘ 0 20 40 50 60 80 100 120

Table 2.1.: Tabular representation of the value function for three players.

So far, we have only used cooperative games as a descriptive tool for mathematical
modeling. In the next section we will derive quantities that provide further insight
into the weighted exponentially-sized lattice of coalitions, illustrated by Figure 2.1,
that a game (A, v) spans. Moreover, it is not unusual to impose structural assump-
tions on the shape of v (see (Valaskova and Struk, 2005) for an overview), for
example, one of the more popular being monotonicity. For a monotone game holds

v(S) <v(T) forall S, T C N withSCT. 2.2)

However, for the remainder of this chapter, we will consider games with arbitrary
value functions that are not restricted to any particular shape.

The Shapley Value: A Unique Solution

In light of a cooperative game being present with players that seek their own
individual benefit, one is predominately faced with the following two questions:

1. Which coalitions are formed by players who agree to cooperate?

2. How is the worth of a realized coalition distributed among its players?

2.2 The Shapley Value: A Unique Solution
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Although extensive studies have been conducted to answer the first question (Ray,
2007), we will consider the grand coalition as given. In other words: all players
agree to cooperate together and bring the grand coalition to life. This leaves us with
the fair division problem of how to divide the gain in collective benefit v(N') — ()
among all players in . For the sake of convenience, we will assume v({)) = 0 such
that simply (/) has to be distributed. Worth mentioning is that this question can
not only bee seen from the perspective of distributing worth in equitable manner.
One may interpret the assigned value to a player as a measure of his contribution to
the fulfillment of a task or even power, for instance within a voting system.

We approach the fair division problem axiomatically and derive possible solutions
systematically based on desired properties, partly recapitulating the work of Shapley
(1953). We begin with the notion of a payoff distribution on which we later impose
desiderata.

Definition 2.3. Payoff Distribution
Given a cooperative game (N, v), a payoff distribution 2z € R" is a real-valued
sequence of length n.

Given a specific game, one may search for a suitable payoff distribution that assigns
a reward to each player while fulfilling desirable properties. But to be more precise,
what we are actually seeking is a mechanism that describes how to form a payoff
distribution for any cooperative game we might be confronted with. Hence, we
define solution concepts which induce a mapping from the space of cooperative
games to that of payoff distributions.

Definition 2.4. Solution Concept
A solution concept is a function I" that maps any cooperative game (A, v) and
contained player i € A to a real-valued payoff, i.e.

(N, v,i) — x; € R.

We denote the payoff assigned to player i as I';(NV,v) := T'(NV, v, i) or z; if there
is no ambiguity about the considered game. The payoff distribution induced by I"
for a game is thus (N, v) := (I1(NV,v),...,[,(N,v)) also denoted as x. A trivial

example of a solution concept is one that assigns the uniform distribution to all
v(N)

cooperative games. Ergo, each player i is assigned the same payoff z; = = .
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Figure 2.1.: A cooperative game (N, v) spans a lattice of exponential size w.r.t. the number
of players n, illustrated here for four players N' = {1, 2, 3,4}. Each coalition
S C N is represented by a node which can be associated with a weight given
by its worth v(.S). Each marginal contribution of a player i to a coalition S
forms an edge weighted with A,(S). The coalitions are grouped by cardinality
in layers and the marginal contributions of player 1 are marked in blue.

Unfortunately, this does not reflect that players might contribute to the task at hand
to varying degrees. As a consequence, some players may even view this as unfair
treatment and be incentivized to complain as demonstrated by Example 2.5.

Example 2.5. Considering the scenario of Example 2.2, the uniform distribution
would assign to each of the three car mechanics a payoff of x; = 40, despite the
increase in worth that the substitution of player 1 by player 2 causes for each coalition
containing player 1 but not player 2. This indicates that player 2 contributes more
and thus should also receive a higher payoff.

This brings us to the notion of marginal contributions that will allow us to measure
the impact of individual players and formalize an intuitive understanding of fairness.

Definition 2.6. Marginal Contribution
Given a cooperative game (N, ), the marginal contribution of a player : € N to a
coalition S C N\ {i} is given by

Ai(S) == v(SU{i}) — v(S).

2.2 The Shapley Value: A Unique Solution



10

Practically speaking, a player’s marginal contribution captures the increase in collec-
tive benefit caused by him joining that coalition. To preserve a certain meaningful-
ness, we exclude coalitions which already contain that player, i.e. i € S, since the
marginal contribution would automatically turn zero. It can also turn negative if a
player causes a loss of collective benefit. As indicated, we can now construct axioms
(Shapley, 1953) that arguably capture desiderata of a fair solution concept.

We call i € N a dummy player if all its marginal contributions are equal, i.e. there ex-
ists some ¢; € R with A;(S) = ¢; forall S C M\ {i}, and ¢; its dummy contribution.

Definition 2.7. Dummy Player Axiom
A solution concept I fulfills the dummy player axiom if for any cooperative game
(N, v) and player i € N it assigns the dummy contribution ¢; of 7 as its payoff, i.e.

x; = ¢; for each dummy player i € AV .

The dummy player axiom enforces the expectation that a player who does not
interact with other players and independently contributes its constant part to all
coalitions, should not receive more or less than that contribution. One might consider
this axiom as mild and lenient since it rarely comes into force. A single deviating
marginal contribution of player 7 suffices to no longer impose any restriction on ;.

We call two distinct players i, j € N symmetric if their marginal contributions are
equal for each coalition that does not contain both, i.e. A;(S) = A;(S) for all
S SN\ {i g}

Definition 2.8. Symmetry Axiom
A solution concept T" fulfills the symmetry player axiom if for any cooperative game
(N, v) and symmetric players i, j € N it assigns equal payoff to 7 and 7, i.e.

z; = x; for each pair of symmetric players i, j € NV.

Effectively, the symmetry axiom implies that two players, who can be mutually
substituted within all coalitions without a change in worth, are granted the same
payoff since measured by their marginal contributions, they contribute equally. This
axiom excludes solution concepts that are discriminative or biased against certain
players, capturing an idea that is at the core of fairness.

Chapter 2 Introduction to Cooperative Game Theory



Definition 2.9. Linearity Axiom

A solution concept I fulfills the linearity axiom if for any player set \V, player i € N,
two value functions v, v, for N, and ¢ € R, scaling v, by c¢ scales the payoff of i by
¢ and the sum of the payoffs assigned to i for the games (N, ) and (N, 12) equals
the payoff for the sum of both games, i.e.

Fi(/\/, CV1) = CPZ‘(N, 1/1) and PZ‘(N, 1/1) + Fi(N, VQ) = Fi(/\/‘, V1 + VQ) .

The addition of two value functions is to be carried out pointwise, i.e. (v; +12)(S) =
v1(S) + 1»(S) for all S C N. The linearity axiom, is in contrast to the previous
two desiderata the first axiom that cannot be applied on the payoff distribution
itself for a particular game but requires the introduction of a solution concept. The
linear decomposition ensures that the calculation of the payoff distribution can be
separated into independent subgames that do not influence each other.

Despite each axiom being relatively loose when considered individually, the combi-
nation of all three is in contrast restrictive enough to give rise to a narrow class of
solution concepts known as semivalues (Dubey et al., 1981) given in Definition 2.10
which is the only family of solution concepts to fulfill these axioms simultaneously.

Definition 2.10. Semivalue (Dubey et al., 1981)
Given any cooperative game (N, v) and weights w = (wo, . .., w,—1) € R™, a solution
concept I' is called a semivalue if it assigns to each player i € N the payoff

FZ‘(/\/‘,I/) = Z w‘g‘ AZ(S)
SCN\{i}

Note that marginal contributions to coalitions of the same size are required to be
weighted equally, as otherwise the symmetry axiom would be violated. In addition to
the appeal in connection with the fairness axioms, the semivalues yield a convenient
interpretation. The payoff for a player given by any semivalue is a weighted average
of the player’s marginal contributions. Since any choice of weights w is feasible,
there are plenty of solution concepts to choose from, and thus the class of semivalues
does not yet provide a satisfying answer to the fair division problem. The most
straightforward choice would be to assign uniform weights, leading to the Banzhaf
value, a prominent representative of the class of semivalues.

2.2 The Shapley Value: A Unique Solution
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Definition 2.11. Banzhaf Value (Banzhaf, 1965)
The Banzhaf value is the solution concept I' that assigns to any cooperative game
(N, v) the payoff distribution I'(N, v) = 3 with the payoff of each i € A/ given by

,31' = 2n—1 Z AZ(S) .

SCN\{i}

For the remainder, we will use the name of any specific semivalue like the Banzhaf
value interchangeably for the solution concept I', the induced payoff distribution j,
and the payoff j; of a player. Although the simplicity of the Banzhaf value might
convince, Example 2.13 uncovers its significant deficiency regarding an obvious
axiom that we have left out so far, namely the efficiency axiom.

Definition 2.12. Efficiency Axiom
A solution concept I fulfills the efficiency axiom if for any cooperative game (N, v)
the assigned payoff distribution summed up over all players equals the worth of the

grand coalition, i.e.
n

ZF,'(./\/',V) =v(N).

=1

This definition is specifically tailored for our assumption of v({}) = 0. In the general
case, efficiency requires the payoffs of all players to sum up to v(N) — v(0).

Example 2.13. Applying the Banzhaf value to the cooperative game of the three
car mechanics in Example 2.2, the first mechanic is assigned a payoff of 3; = 22.5,
the second [y = 42.5, and the third g3 = 57.5. The payoff distribution sums up to
122.5, surpassing the revenue that all three of them achieve together. Hence, their
automotive workshop would need to take out a loan to pay its three employees.

Essentially, the Banzhaf value is not guaranteed to sum up to the worth of the grand

coalition. A simple idea to fix this issue and satisfy the efficiency axiom is to rescale

the payoffs by a factor of iSLN)ﬂ-' Unfortunately, this comes at the price of losing
=17

linearity. However, there is a way of constructing a semivalue that incorporates
efficiency. It can be achieved by adjusting the weights which yields the arguably
most prevalent semivalue, the Shapley value.
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Definition 2.14. Shapley Value (Shapley, 1953)

The Shapley value is the solution concept I' that assigns to any cooperative game

(N, v) the payoff distribution I'(N, v) = ¢ with the payoff of each i € N given by
1

sg%%{i} - ( \Sll)

Like all other semivalues, the Shapley value is a weighted average of a player’s
marginal contributions. Its unprecedented popularity emerges not only from its com-
pliance with the four axioms, but also the fact that it is the unique solution concept
to fulfill them (Shapley, 1953). No other solution concept satisfies all four axioms.

Theorem 2.15. (Shapley, 1953)
The solution concept T'(N,v) = ¢ is the only solution concept to simultaneously fulfill
the dummy player, symmetry, linearity, and efficiency axiom.

Not only does Theorem 2.15 speak in favor of the Shapley value, it also excludes
all other weights w for semivalues if one intransigently insists on efficiency. Yet,
in comparison to the Banzhaf value, the utilized weights within the Shapley value
might appear at first arbitrary and incomprehensible. One way to shed light on
their shape is to observe the mass of weight that is assigned to each coalition size.
The sum of weights connected to each coalition size from zero to n — 1 is exactly
%. Hence, the mass of weight is first uniformly distributed over the sizes, and then
uniformly distributed over the marginal contributions to coalitions of that particular
size (see Equation 4.4). The approximation techniques based on stratification
presented in Section 4.2 take advantage of this particular observation.

Another approach is to derive the weights from a probabilistic perspective. Since
the weights sum up exactly to 1, one can interpret them also as a probability
distribution for each player. This distribution over marginal contributions can be
rediscovered by averaging a player’s marginal contributions that appear throughout
all permutations of N. The marginal contribution A;(7) of a player ¢ w.r.t. to some
permutation 7 : N” — N, mapping each position j to a player = (j), is the increase
in worth when i enters the coalition pre (i) := U;;i(i)fl{w(j)} that precedes i
in m, hence A;(m) := A;(pre,(i)). Within this construction each A;(S) appears
potentially multiple times because it can arise from numerous permutations = that
cause pre, (i) = S. To be exact, the coalition S can precede 7 in any arbitrary
order, allowing for |S|! different combinations and the irrelevance of the order of

2.2 The Shapley Value: A Unique Solution
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the succeeding players A/ \ (S U {i}) in = multiplies this number by (n — |S| — 1)!.
Note that the position of i in 7 is fixed by the cardinality of S, i.e. ©(|S| + 1) = i.
Hence, there exist |S|! - (n — |S| — 1)! many permutations in which each marginal

contribution A;(S) appears. The proportion to the total number of permutations
[S|t-(n=|S[=D)! 1

n! (e
Consequently, we arrive at a different representation of the Shapley value based on

n! leads us back to the weights of the Shapley value, i.e.

permutations:

1
i = ] Z A;(pre(i)) . (2.3)

Hence, the Shapley value in Definition 2.14 can be interpreted as the expected
marginal contribution where the randomness is w.r.t. the drawn coalition S not
containing ¢ with the probability distribution given by the weights, or w.r.t. permu-
tations of the player set drawn uniformly at random. We demonstrate the latter
representation for the calculation of the Shapley value in Example 2.16.

Example 2.16. The Shapley values of the three mechanics in Example 2.2 are
¢1 = 21.6, ¢ = 41.6, ¢3 = 56.6, and sum up exactly to the worth that they achieve
all together. A calculation of ¢ based on permutations is given in Table 2.2.

Marginal contribution
Permutation 1 2 3
1,2,3 20 40 60
1,3,2 20 40 60
2,1,3 20 40 60
2,3,1 20 40 60
3,1,2 30 40 50
3,2,1 20 50 50
Average: ¢; 21.6 41.6 56.6

Table 2.2.: Tabular calculation of the Shapley value for three players. Each player has its
own column with the cell value denoting its marginal contribution when players
enter the game in the order of a particular permutation. The Shapley value is
the average over all rows, each representing a permutation.

We have systematically answered the question of how to distribute collective benefit
among the players of a cooperative game by formalizing desiderata that an aspired
fair solution should fulfill. The notion of marginal contributions played a central role,
stretching from axioms to the actual solution. We have yet only alluded to the rich-
ness of representations for the Shapley value and will encounter further alternatives
giving rise to a variety of sampling approaches for approximation in Chapter 4.
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2.3 Shapley Interactions: Extension to Higher Order

One would assume that the essence of cooperation lies within the added value that
players provide when working together compared to executing partial tasks on their
own. It is therefore all the more important to be not mislead by the Shapley value.
One could mistakenly interpret each player to simply contribute its Shapley value as
the added amount of value in a sequential process of players independently solving
a task. The Shapley value might give a convincing solution to the fair division
problem but it does not answer how cooperation happens. More precisely we are
interested in the synergies between players that arise from cooperation: How do
players affect each other in terms of contributed value? We will call these synergy
effects interaction of players.

The simplest case to consider is the interaction of a pair of players i and j that should
be measured by some real number I; ;. Starting with pairs, it comes naturally to
extend a desired notion of interaction to some higher order, namely to sets of any car-
dinality beyond pairs. Thus, we carry on in the spirit of Section 2.2 and define with
the interaction index the equivalent to the solution concept from Definition 2.4.

Definition 2.17. Interaction Index
An interaction index is a function I" that maps any cooperative game (N, v) and
coalition K C N to a real-valued interaction I, i.e.

T(N,v,K) — Ix € R.

We will write I'x (N, v) := I'(V, v, K') which already reveals our intention to extend
the Shapley value to interaction since the interaction index subsumes the notion of
the solution concept in the case of K being a singleton. Hence, we will also call the
interaction I; := Iy;, of {i} its payoff to be aligned with previous notions.

In contrast to the Shapley value, when speaking about interaction, we are missing
the confrontation with a precise problem statement as for fair division. To what
question exactly should interaction give an answer to? We will approach this void
by formulating our expectations of a suitable interaction index at the example of
pairs, making our way to a proposal for sets of any order guided by the rationale
behind the concepts in Section 2.2. In doing so, we present the ground-laying work

2.3 Shapley Interactions: Extension to Higher Order 15
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of Grabisch and Roubens (1999) who establish an axiomatic characterization, albeit
following a different structure for didactic reasons.

Taking inspiration from the notion of a player’s marginal contribution A;(.S), we
first desire to quantify the isolated interaction of a pair {7, j} C N in the presence of
some coalition S C N\ {i, j} by an interaction term A, ;(S). We would surely claim
with conviction that ¢ and 5 do not exhibit any interaction if both players contribute
in additive fashion to the worth of S. Hence, we would demand A, ;(S) to be zero
if we observe

v(S)+ Ai(S)+ Aj(S) =v(SU{i,j}). 2.4

Grabisch and Roubens (1999) distinguish two cases should the equality not hold. If
the right-hand side is greater, then one can intuitively speak of profitable cooperation
between i and j since their mutual presence increases the attained worth surpass-
ing the combination of individual contributions. Otherwise, one calls it harmful
cooperation because the presence of one player impedes the other player to put its
contribution to full display. Splitting the marginal contributions into coalition values,
we can rearrange Equation 2.4 to

v(SU{i,j}) —v(SU{i}) —v(SU{j}) +v(S)=0. (2.5)

Since the left-hand side equals zero, just as demanded from an interaction term
following our intuition, we shall adopt it as our aspired expression of A; ;(.S). This
is aligned with our case distinction by the switch in sign of A, ;(.S) for profitable and
harmful cooperation, further exemplified by Example 2.18.

Example 2.18. The three car mechanics of Example 2.2 share different working
attitudes, complement each other in their skills, or sometimes exhibit redundant
capabilities leading to all three types of pairwise interactions. Mechanics 1 and
2 have negative interaction of A;2({3}) = —10 in the presence of mechanic 3,
mechanics 1 and 2 have no interaction on their own, i.e. A; 2()) = 0, and mechanics
2 and 3 have positive interaction of Ay 3(f)) = 10 on their own.

Interestingly, the pairwise interaction term can also be stated by only utilizing either
marginal contributions of player i or that of j (Kojadinovic, 2003):

AS(8) = A(S U {}) - Ad(S) 2.6)
and A%](S) = AJ(S U {Z}) — A](S) . 2.7)
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This observation yields a convenient interpretation. While the marginal contribution
measures the increase in worth of S caused by the presence of i, the interaction
of i and j measures the increase of j’s marginal contribution to S caused by the
presence of i and vice versa. Thus, one might view this as a recursive extension
to pairs and we shall bring it to completeness for any cardinality, leading us to the
discrete derivative that generalizes the marginal contribution from Definition 2.6.

Definition 2.19. Discrete Derivative !

Given a cooperative game (N, v), the discrete derivative of a coalition KX C N to a
disjoint coalition S C N \ K is given by Ax(S) := v(S) for K = () and otherwise
for non-empty K and any i € K by

Ak (S) == A\ (SULi}) — Ay (5) -

Hence, the interaction of K can be stated as the impact of any i € K on the next
lower order interaction of K \ {i}, ultimatively ending in the impact on coalition
values. Note that this definition indeed entails the marginal contribution as interac-
tion of singletons. In contrast, for sets of higher cardinality one might question the
well-definedness since any i € K can be chosen to enter the next recursive step. We
resolve these doubts by offering an equivalent closed-form representation of A (S)
that simply sums up coalition values with alternating signs.

Proposition 2.20. (Kojadinovic, 2003)
For all cooperative games (N ,v) and disjoint coalitions K, S C N, the discrete deriva-
tive Ag(S) is equal to

Ag(S) = > (-nEWE y(suw).
WCK

Now that we have established with the discrete derivative the essential building block
for interaction as we did with the marginal contribution for payoff, it is the obvious
next step to plug it into the semivalue. This approach follows the thought that the
interaction index for any K should likewise be a composition of interaction terms
over all coalitions S C N\ K that come into question, generalizing the summation
over all S C N\ {i} in Definition 2.10. By doing so, we construct the class of
cardinal interaction indices. For convenience, let [a] := {b € NU {0} : b < a}.

'We deviate from the definition provided by Grabisch and Roubens (1999) to emphasize the recur-
siveness. However, both are equivalent as shown by Proposition 2.20.

2.3 Shapley Interactions: Extension to Higher Order
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Definition 2.21. Cardinal Interaction Index (Grabisch and Roubens, 1999)

Given any cooperative game (N, v) and weights wy, € R foreach k € [n],s € [n—k],
an interaction index I' is called a cardinal interaction index if it assigns to each
K C N the interaction

SCN\K

This construction might appear admittedly ad-hoc as it transfers the semivalue to
interaction without further justification. Fortunately, the class of cardinal interaction
indices enjoys a similar axiomatic basis encompassing adaptations of the dummy,
symmetry, and linearity axiom. Seeking a generalization of semivalues, they contain
the special case of a singleton K and thus extend those given in Section 2.2.

Definition 2.22. Dummy Interaction Axiom

An interaction index T" fulfills the dummy interaction axiom if for any cooperative
game (N, ) and dummy player i € N it assigns the dummy contribution ¢; of 7 as
its payoff and assigns zero interaction to all sets containing i, i.e.

Ii = ¢; and Iy = 0VK € PN\ {i}) \ {0} for each dummy playeri € V.

The newly included property of interaction with dummy players is under no circum-
stances groundless. If a player i does not interact with the other coalition members
K and simply additively contributes its part, then its presence should make no differ-
ence to the interaction between the players in K. Fittingly, this is already captured
by the discrete derivative, i.e. A (S U {i}) = Ax(S) with dummy player :.

We call two not necessarily disjoint coalitions K, Ko € N of the same size symmetric
if all their discrete derivatives are pairwise equal for each coalition not containing
both, i.e. Ak, (S) = Ak, (S) forall S C N\ (K; U K»).

Definition 2.23. Symmetry Interaction Axiom

An interaction index T fulfills the symmetry interaction axiom if for any cooperative
game (N, v) and symmetric coalitions K7, Ko C N it assigns equal interaction to
Ki and K>, i.e.

Ix, = I, for each pair of symmetric coalitions K1, Ko € N .
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The equivalence in discrete derivatives implies that the two coalitions can be mutu-
ally substituted without a change in value. Hence, the game is essentially oblivious
to the choice between them and thus both should be assigned the same interaction
by a fair interaction index. Lastly, we again consider linearity which comes with no
further extension to interaction.

Definition 2.24. Linearity Interaction Axiom

An interaction index I fulfills the linearity interaction axiom if for any player set N/,
coalition K € N, two value functions vy, v, for NV, and ¢ € R, scaling v, by c scales
the induced payoffs by ¢ and the sum of interactions assigned to K for the games
(N, 1) and (N, 1») equals the interaction for the sum of both games, i.e.

FK(N, CVI) = CFK(N, Vl) and FK(N, Vl) + FK(N, Vg) = FK(./\/, v+ 1/2) .

Any interaction index that fulfills these three axioms is of the shape of a cardinal
interaction index (Grabisch and Roubens, 1999). The class of cardinal interaction
indices distinguishes its members only by their weights wy, ; leaving a wide selection
of indices to measure interaction. Again, a pragmatic choice would be to use uniform
weights wy, ¢ = Q,L%k that add to 1 such that we obtain an arithmetic mean of discrete
derivatives. The resulting index is known as the Banzhaf interaction index.

Definition 2.25. Banzhaf Interaction Index (Grabisch and Roubens, 1999)
The Banzhaf interaction index is the interaction index that assigns to any coalition
K C N with |K| = k of a cooperative game (A, v) the interaction

1
5= o ST Ak(S).
SCAN\K

Note that the weights are uniform w.r.t. the reference coalition S but do depend on
the size of K since k determines the number of discrete derivatives for K. Aligned
with our paradigm to generalize the Banzhaf and Shapley value to interaction, the
Banzhaf interaction index reduces to the former for k = 1. However, the derivation
of weights to obtain a Shapley interaction index is less straightforward. In comparison
to the fair division problem, there is no obvious equivalent to the efficiency axiom
(see Definition 2.12) for interaction.

2.3 Shapley Interactions: Extension to Higher Order
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A further axiom lifts the recursive rationale of the discrete derivative to the index
itself. Although the Banzhaf interaction index still fulfills it, the recursive interaction
axiom will prepare to force a unique choice of weights within the class of cardinal
interaction indices with the help of the Shapley value.

Definition 2.26. Recursive Interaction Axiom
An interaction index I" fulfills the recursive interaction axiom if for any cooperative
game (N, v), coalition K C N with |K| > 2, and i € K holds

TN, v) =Ty W\ {i}, v) = Ty g W\ {i, v )

with v+, v=1 . P\ {i}) — R, v(S) = v(S U {i}), and v~(S) = v(S) for all
S C N\ {il.

The recursive interaction axiom requires that the interaction of K equals the differ-
ence in interaction of K \ {i} between the two games in which i is always present
and, respectively, is always absent. The combination of these four axioms plus the re-
duction to the Shapley value for singletons results in the Shapley interaction index.

Definition 2.27. Shapley Interaction Index (Grabisch and Roubens, 1999)
The Shapley interaction index is the interaction index that assigns to any coalition
K C N with |K| = k of a cooperative game (N, v) the interaction

1
I}@:: Z

s (= k+1)- (5H

Ak (S).

Both interaction indices exhibit an axiomatic justification. The result in Theorem 2.28
concludes our excursion from interaction effects relying on discrete derivatives,
baked into semivalues, to a Shapley-based notion of interaction for any cardinality.

Theorem 2.28. (Grabisch and Roubens, 1999)

The interaction indices I® and I? are the only interaction indices to simultaneously
fulfill the dummy interaction, symmetry interaction, linearity interaction, recursive
interaction axiom, and in the case of singletons reduce to the Banzhaf value and,
respectively, to the Shapley value.
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Example 2.29. The three car mechanics of Example 2.2 share the following Banzhaf
and Shapley interactions given in Table 2.3. The interactions for all strict subsets
K c N do not only potentially differ in magnitude, but can also exhibit different
signs. Both indices always assign Axs(()) as the interaction of the grand coalition.

K| {1} {2} {3} {12} {13} {2,3} {1,2,3}
101225 425 575 5 5 5 ~10
191216 416 566 -5 5 5 ~10

Table 2.3.: Tabular representation of the Banzhaf and Shapley interactions for three players.

One might observe that the weights in Definition 2.27 are closely linked to those of
the Shapley value in Definition 2.14 since not only do they coincide for £ = 1 but
also both intuitive descriptions through mass of weights and permutations which we
gave in Section 2.2 are likewise applicable. Any coalition K has discrete derivatives
to coalitions S ranging from size zero to n — k. The mass of weights is distributed

uniformly over these n — k + 1 many sizes, and for each size s the mass of weights is
n—k

again uniformly distributed among the ("

) coalitions sharing the same size s and
not including any player of K.

The discrete derivative of some K in a permutation of players can be understood
analogously to the marginal contribution. Here, we merge K to a new player [K]
such that we consider permutations = of /' \ K U {[K]}. Its discrete derivative
is given by Ak (7) := Ak (pre,([K])) with the reference coalition pre_([K]) being
the players that precede [K] in 7. We count again the number of permutations =
that exhibit Ag (7)) = Ag(S) for any fixed S C N\ K with |S| = s. There exist s!
many orderings for the preceding players S and (n — k — s)! many orderings for
the succeeding ones '\ (K U S). Therefore, we have |s!| - (n — k — |s|)! suitable
permutations against (n — k + 1)! permutations in total. This ratio is equal to the

weight wy, s = such that the Shapley interaction index can be viewed

-1
as the expected discrete derivative for randomly sampled permutations:

= Gy 2 Ak (pre (). 28

2.3 Shapley Interactions: Extension to Higher Order
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Computational Complexity: Approximation as a Resort

We have introduced the Shapley value and Shapley interactions as measures to
quantify the contribution of a player and the interaction between players based on
desiderata capturing an intuitive notion of fairness. Unfortunately, their axiomatic
uniqueness comes with a price to pay. As Figure 2.1 illustrates, the lattice spanned
by a cooperative game grows exponentially w.r.t. the number of players n. And since
all semivalues and cardinal interaction indices (with non-zero weights) include the
worth of all feasible coalitions in their definitions, the exponential growth of the
power set bears consequences on their computation. In fact, the exact computation
of the Shapley value is even NP-hard as shown by Deng and Papadimitriou (1994)
and this result can analogously be extended to the Shapley interaction index. The
emerging practical implication is the quickly arising infeasibility of the Shapley value
and interaction for growing player numbers.

The evident remedy to overcome this burden is the approximation of Shapley-based
measures which we consider in this section as a task given to an approximation
algorithm. For simplicity, we will cover it only for the Shapley value since the
problem can readily be transferred to Shapley interactions. In particular, we present
in the following two similar problem statements of which each comes with their own
challenges, namely the approximate-all and the top-k identification problem.

Approximate-all. Starting with the former, in essence, the natural goal of an ap-
proximation algorithm A is to provide precise estimates by only sparsely palpating
the cooperative game’s lattice with as few evaluated coalition values as possible.
We denote by ¢; the algorithm’s estimate of player ’s Shapley value ¢; for a fixed
game (N, v) and by b= (<2>1, cee &n) the estimated payoff distribution for all players.
Motivated by the idea that A should observe only a limited part of the game’s lattice,
we consider the fixed-budget setting. It states that the algorithm is provided N and
access to v but can evaluate the value function to retrieve the worth of a coalition
only a limited number of times that is given by the budget T' € N. More precisely, it
can choose a sequence of coalitions S1, . .., St, possibly containing duplicates, from
which it sequentially obtains the worth v(.S;) of each contained coalition S;. Hence,
an approximation algorithm has two degrees of freedom to maximize the precision
of ¢: the choice of the retrieval sequence and how it aggregates the obtained values
to an estimate. Important to note is that the retrieval sequence is not determined
in advance but can be constructed randomly step by step, and even further, the
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distribution from which the next coalition is drawn can be adjusted to previously
observed coalition values.

A key element in this task is the error measure p : R” x R” — R>( that quantifies

the imprecision p(qg, ¢) of a returned estimate ¢ w.r.t. the actual Shapley value ¢.

An ubiquitous property of the error measure within the literature is its additive
decomposition in terms of the individual errors for the players. However, different
proposals have been made for the individual error themselves and their weighting.
The by far most common combination is that of the arithmetic mean of the individual
squared errors which results in

Zn: (6 - ) . (2.9)

=1

3\'—‘

Pavg, sqr

As an alternative Campen et al. (2018) investigate the absolute individual error and
optionally put it into relation with the magnitude of the player’s Shapley value, thus
forming a percentage error that leads to

pperabs Z |¢l|¢ i . (2.10)
i=1 Z

The latter captures the idea of punishing the estimates’ deviations increasingly for
smaller absolute Shapley values because these have a relatively higher impact. On
the other side, the former uniform weights treat each player equally important in
the error measure.

Under the possibly random nature of an approximation algorithm .4, the returned
estimate ¢ effectively becomes a random variable. Hence, A should not be seen as
a deterministic function AN, v, T) ¢ € R™ and thus the error measure needs
an extension to judge the performance of A. This is typically done by taking the
expectation of the error, which is of course significantly different from the error of
the expected estimate. Applying this to the arithmetic mean of individual squared
errors, we arrive at the expected mean squared error (MSE)

E[MSE] := E [Pavg sqr Qb ¢ } ZE {( >2} (2.11)

2.4 Computational Complexity: Approximation as a Resort
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whose minimization constitutes the goal of an approximation algorithm. Its popular-
ity stems from the fact that it is analytically accessible and yields the bias-variance
decomposition of the expected individual error:

E {(ng - d%’)ﬂ = (E [cf;z} - ¢i)2 +w (2.12)
bias variance

Not only does this incentivize the investigation of bias and variance as properties of
A, it also facilitates the empirical evaluation of A for larger unstructured games. At
first sight, the MSE requires ¢ to be known in order to calculate an error. However,
this can quickly become infeasible for games with a large number of players n in
combination with a missing closed-form polynomial solution of ¢. If A is known
to be unbiased, i.e. the bias in Equation 2.12 turns zero, the error collapses to the
estimate’s variance. In practice, one can then empirically measure the variance of
#; through multiple approximation runs without the need to laboriously compute
¢; in advance.

The expectation is only one quantity to summarize the error distribution of A.
Another approach is to consider the cumulative distribution by stating an upper
bound § € [0, 1] on the probability that an error greater than e occurs. An algorithm
satisfying this condition is called a probably approximate correct (PAC) learner. Most
often, the individual absolute deviation is employed as the error measure, leading to
the condition

P (yq%; — | > g) <. (2.13)

Before turning our attention to the top-k identification problem, we want to raise
awareness why it is appropriate to count the number of accesses to v instead of the
time passed during the execution of .A. The following reasons speak in favor of the
discrete budget T

* The actual runtime of an executed algorithm might vary strongly depending on
the implementation and used optimizations related to programming language
and hardware. Therefore, a comparison might mislead and favor carefully
crafted implementations instead of conceptually advantageous methods.

* The approximation quality in dependence of the budget is much easier to
analyze and allows for the direct usage of concentration inequalities from
probability theory by interpreting the construction of the random retrieval
sequence as a sampling procedure.
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* In many practical applications, the evaluation of a coalition’s worth poses the
bottleneck regarding resource and time consumption. This is especially the
case for the inference of complex machine learning models and even more so
for re-training on large datasets being performed during each access. Hence,
the operations performed by .A between evaluations become negligible.

* Eventually, the deciding resource of consumption might not be time but mea-
sured in monetary units to which the algorithmic operations barely contribute.
For instance, users that investigate the behavior of a remotely offered machine
learning model need to pay for its inference that is provided as a service.

Top-% identification. At the core of the approximate-all problem is the precision of
each real-valued estimate ¢;. A somewhat less restrictive goal would be to correctly
observe the relation between the players’ Shapley values instead of their actual
magnitude. For example, given a cooperative game, one could only be interested in
the identity of the player possessing the highest Shapley value. Taking this thought
further, the task can be generalized to finding the & players with the highest Shapley
values. One can motivate the idea by the potential disinterest towards players
that exhibit relatively low contribution which grow in number for games whose
distribution of Shapley values is skewed with a few players having high impact and
the others forming a uniform mass that sinks into oblivion. The problem setting
resulting from this paradigm shift is known as the top-k identification problem.
We will present in the following necessary notions to describe it and point out
differences to the approximation problem introduced above. The object of interest
is now the non-empty coalition £* C N of size k < n such that no other player in
N\ K* possesses a greater Shapley value than any player in X*. Naively, under the
assumption of mutually distinct Shapley values, one would utilize orderings of N to
characterize K* as

K= A{nr(1),...,7(k) |7 : N = N with ¢.;y > ¢, foralli <je N}. (2.14)

Hence, the algorithm’s goal is to identify the top-k players correctly by returning
a coalition K = K*. Obviously, the strictly descending ordering of players = is
non-existent as soon as a set of players shares the same Shapley value. Such a set is
only critical if it crosses the top-k border, more precisely if fewer than & many players
with higher value and fewer than n — k with lower value exist. Confronted with this
difficulty, we need to reformulate our goal since now multiple correct answers K

2.4 Computational Complexity: Approximation as a Resort
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> Player
1 2 3 4 5 6 7 8

Figure 2.2.: Exemplary illustration of an algorithm’s state confronted with the top-k identifi-
cation problem for n = 8 and k = 3: The exemplary algorithm .4 maintains an
estimate ngSZ (green dots) and a confidence interval (whiskers) for each player
1 € N. The players are sorted in descending order of A’s estimates. As it is the
task of A to separate the three players with the highest Shapley value (dotted
line), it can sacrifice the estimate’s precision of any player whose confidence
interval already strongly indicates to which side it belongs. Here, player 1 is
with high confidence within the top-3 because its confidence interval does not
intersect with any interval of players to be estimated outside the top-3. Vice
versa, player 8 at the bottom end can be likewise excluded from the top-3.

may exist. We abstain from partial orderings and call any coalition K C A of size k
eligible if it maximizes the sum of contained Shapley values, i.e. it holds

> ¢i= max Z i, (2.15)

= SCN:|S|=k !

and denote the set of all eligible coalitions as & C P(N). This maximal sum of %
many Shapley values

L= max ng) (2.16)

SCN:|S|=k %

is unique and shared by all K € &;. Note that in case of mutually distinct Shapley
values only * is eligible, i.e. & = {K*}. Consequently, the approximation algo-
rithm’s task is to return a coalition K € &,. We stick to the fixed-budget setting,
meaning that the algorithm has again a budget T at its disposal.

What significantly changes, is the error measure whose meaning we invert to obtain
a real-valued precision (K, &) that is supposed to express how close the returned
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estimate K comes to being eligible and thus to be maximized. The simplest yet most
strictest measure to propose is the binary precision

. 1 ifK e &,
Ppin (K, &) = . (2.17)
0 ifK¢&

which harshly punishes every mistakenly included player within K. It does not
differentiate between non-eligible coalitions of different degree and thus it provides
only limited guidance to investigate the quality of differing algorithms. Instead, and
to rectify this shortcoming, one can consider the ratio precision

¢rat(l€,gk) = Imax |]C i ’C|

2.1
Ke&y, k ’ ( 8)

stating what percentage of players in K does not need to be swapped out and
substituted by players from A\ K to form an eligible coalition. One may view it as
a refinement of the prior since it extends the effective codomain of the precision
measure from {0, 1} to the unit interval [0, 1]. Still, the ratio precision misses out
on an opportunity to further distinguish the quality of estimates. For example,
two non-eligible coalitions K; and K, may share the same precision but the falsely
included players in K; possess greater Shapley values than those falsely included in
Ks. In the spirit of Equation 2.15, K1 comes closer to being eligible because the sum
of its Shapley values is greater and thus closer to ®;. This blind spot is covered by

the relative precision
2. b

brai(K, E) 1= G — (2.19)

defined for all cooperative games with ®; # 0. This measure can turn negative if the
sum for the estimate K is negative but ®;, > 0. In contrast to the previous measures,
the relative precision is not bounded over all games. It can be arbitrarily large for
®;, < 0 and arbitrarily small for ®; > 0. In the former case it even needs to be
minimized instead of being maximized. A further downside compared to the ratio
precision is its inability to count how many players are correctly identified.

Kariyappa et al. (2024) propose two error measures that instead of counting the
wrongly included players, similar to Equation 2.18, indicate the lost contribution in
Shapley value. For this purpose, let ¢y« := mingeg, min;cx ¢; be the smallest Shap-
ley value associated with the players contained in any eligible coalition. Obviously,

2.4 Computational Complexity: Approximation as a Resort
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it can be found in all eligible coalitions. The inclusion error measures the maximal
deficit in Shapley value of a player in K compared to ¢-:

Pinc(K, &) == inf {e e RZ0 | ¢; > ¢y —e Vi € K} . (2.20)

On the other hand, the exclusion error measures the maximal advantage in Shapley
value of a player not in K compared to ¢y

Pexc(K, &) :=inf {e € RZ0 | ¢; < ¢y + Vi e N\ K}. (2.21)

Kariyappa et al. (2024) combine both measures to form the inclusion-exclusion error
that takes the maximum of both:

Pinc+exc (I@, gkz) = max{pmc (I@, 5k:)7 Pexc(’&a gk)} . (2.22)

Just as for the approximate-all task, these measures have to be lifted to the ran-
domness of the approximation algorithm 4. Again, the expectation and the PAC
notion are suitable choices. Here, the expected binary precision yields a convenient
interpretation. It specifies the probability of A correctly returning an eligible coali-
tion. This immediately follows from the observation that the binary precision of A is
effectively a Bernoulli random variable.

A crucial difference between the approximate-all and the task of top-k identification
is that the latter does not imply the necessity of precise estimates ¢; for the players’
Shapley values, at least not for all of them. It suffices to correctly identify the order
relations ¢; > ¢; between the players with the precision of the estimates ; playing
a minor role. This setting allows to sacrifice the individual estimates’ precision
for players with Shapley values at the very bottom (or very top) of the spectrum
because they can be confidently excluded from the top-% (or assigned to it), and use
the saved budget to improve the accuracy for players in the proximity of ¢;«. See
Figure 2.2 for an illustration of this idea.

In contrast, the approximate-all task requires each individual estimate ¢; to be as
precise as possible. Here, the algorithm A can prioritize players depending on
the weighting of the individual errors and the observed sample variance for each
estimate. Finally, every approximation algorithm for the approximate-all problem
can be adapted for the top-k identification by simply returning the & players with
the highest estimates ¢;. This transfer might fail vice versa since no algorithm for
the latter problem is obliged to maintain an estimate ¢.
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3.1

Cooperative Games in
Machine Learning

The Shapley value, and more so cooperative games in general, are recognized as
viable formalisms to model collaboration and define payouts spanning over a wide
range of practical scenarios. Classical examples include applications in economics
where profit (Bremer and Sonnenschein, 2013; O’Brien et al., 2015; Fahimullah et
al., 2019) or cost (Schopka and Kopfer, 2015; Kimms and Kozeletskyi, 2016) is to be
fairly allocated among participating parties of joint ventures. Moreover, the Shapley
value found its way into finance as a tool to attribute performance or risk to individ-
ual assets held in a portfolio (Shalit, 2020; Shalit, 2021; Moehle et al., 2022). Not
necessarily seeking an equitable distribution, it is used to detect the most influential
individuals within social networks (Campen et al., 2018; Gasko et al., 2023).

Over the last decade, the Shapley value has sparked significant interest in the field
of machine learning. Its rising prominence has been fueled by the discovery that it
can be used to construct feature explanations, and thus hopefully shed light onto
the decision-making of complex black-box models. We discuss the construction of
cooperative games for the purpose of additive feature explanations in Section 3.1
and how interactions enrich these explanations overcoming potential deficiencies of
the Shapley value in Section 3.2. Besides providing understanding to the human user,
the Shapley value and interactions can also serve a more performance-driven purpose
by quantifying the contribution of individual features to a generalization task, thus
guiding feature selection. This approach can likewise be applied to entities such as
datapoints and components of a model, which we touch upon in Section 3.3.

Additive Feature Explanations

In the context of the fair division problem, the Shapley value is often applied or
interpreted from a normative perspective. It determines the share ¢; of the collective
benefit v(N) that each player i € N participating in the cooperative game should
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receive as an earned payout reflecting its own contribution to the group. However,
this is not necessarily the only direction of interpretation. Instead, by departing from
the motivation of distributing fair payouts to reward-seeking agents, one can not only
ask how much each player should be compensated, but rather try to understand how
much each player contributes to v(/N'). Consequently, this view confers a descriptive
meaning on the Shapley value, transforming it into an instrument to quantitatively
investigate how cooperation takes place and how players participate in that.

Practically speaking, this allows to decompose a system’s observed behavior mea-
sured by some numerical effect v(N') among contributing factors N' = {1,...,n} in
an additive manner. Within machine learning, the branch of explainable Al recog-
nized this opportunity by starting to employ the Shapley value for the construction of
additive feature explanations which assign an importance score to each feature. The
score is then interpreted as a measure of a feature’s impact on a model’s predicted
value for some datapoint of interest, or even a model’s more general behavior across
multiple datapoints such as generalization performance. Thus, features are repre-
sented by the players AV in the emerging cooperative games and the interpretation
of a feature subset’s worth v(.S) depends on the modeling of v tailored to the effect
v(N) to be explained. We briefly revisit the fundamentals of supervised machine
learning (Abu-Mostafa et al., 2012) in the following.

Supervised machine learning. For a feature space X’ and target space ) one usually
assumes the existence of a ground truth g : X — ) that maps each instance x € X to
alabel y € Y. As g is unknown, or at least only rough properties of g are presumed,
it is the task of a leaner Z is to pick a model h, also known as hypothesis, from a
hypothesis space H C {h : X — )} that approximates g. Given training data in the
form of m many datapoints D = {(x;,y;) }/"y C (X x V)™, Z learns g by selecting
h € H which mirrors the dependency between instances and labels in D within
the constraints imposed by #. If the labels are produced by g, i.e. y; = g(«;) for
all (z;,y;) € D, then intuitively a good fit h(z;) ~ y; on the training data should
promise g ~ h beyond D at first sight. Thus, g is learned from D and Z can be
understood as a mapping Z : D — ‘H. The obtained model & is then used to make
predictions h(x) for so far unseen instances = whose label y is not provided. Most
often the data generating process incorporates noise leading to labels of stochastic
nature such that a deterministic mapping g is not appropriate for modeling. Instead,
a probabilistic dependency between instance x and label y is assumed which can be
viewed as g with added heteroscedastic noise. The datapoints are now assumed to be
drawn independent and identically distributed from a joint probability distribution
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P over X x ). Since the learner is restricted to return a deterministic model h
incapable of mimicking the randomness shown by the dependency between X and
Y, aloss function L : Y — ) is used to judge how well h approximates P. For any
(x,y) € X x ), the loss L(y, h(x)) measures the error that » makes on (z,y) by
comparing the ground truth label with 4’s prediction. Integrating the loss over the
joint distribution P, one obtains h’s expected error called risk:

Rp(h) := / L(y, h(z)) dP(z,y) . 3.1)
(z,y)EX XY

Risk minimization is usually the central goal of any learner Z. In other words, Z
is supposed to pick the optimal hypothesis h* € H with minimal expected error
Rp(h*). However, as P is hidden and only palpated by the datapoints in D, one
approximates the consequently inaccessible risk of 4 by means of its empirical risk

m

> Ly, h(z)) - (3.2)

1
Rp(h):=—
m “
=1
Without elaborating on pitfalls such as under- and overfitting which potentially hint
at a misspecification of #, the hypothesis with minimal empirical risk is commonly

taken as a proxy for h*. Further of importance is the shape of X and ).

* An instance = € X is typically, or can always be generalized to a vector of
feature values x = (z1,...,x,) such that X = &} x ... x A}, is composed
of n many features. For example, the feature space of patient data could
be multi-dimensional containing features such as age, blood pressure, and a
binary indicator whether a patient is a smoker or not.

* The target space ) can either be real-valued or discrete. For sake of simplicity,
we omit more sophisticated variants. The learning task for the former case
is called regression and classification for the latter. Continuing the example
of patient data, the target variable could be the required duration of medical
attention to cure a patient, constituting a regression task, or for classification,
one might want to predict the type of disease a patient suffers from.

Coming back to our alluded use case of the Shapley value, the employed models
have in recent years rapidly increased in complexity, e.g. deep neural networks
or boosted trees, as they demonstrate superior predictive performance and the
ability to generalize intricate patterns in data. As a consequence, the relationship
between instance z and predicted value h(x) or other properties of h have grown

3.1 Additive Feature Explanations
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intractable to the human user or developer. Ergo, the field of explainable Al aims
at turning h interpretable such that its decision-making becomes comprehensible,
although making simplifications to this end. Additive feature explanations assigning
feature importance scores (based on the Shapley value) are one of many methods
to approach interpretability, see (Adadi and Berrada, 2018; Molnar, 2022) for a
broader overview, which exhibit two appealing properties.

* The explanation is post hoc as it is applied on the model h after training. Hence,
the training procedure performed by the learner Z, including the choice of the
hypothesis space # is left untouched. This allows to explain provided models
without the knowledge of Z. On the contrary, intrinsic interpretability studies
how to learn and explain models that are already intrinsic by design due to
their simpler structure (Molnar, 2022) such as linear models or decision trees.

* Moreover, additive feature explanations are model-agnostic since they do not
require access to the inner workings of h and are thus capable of handling any
model. This is achieved by viewing h as a black box whose behavior to input
is only observed by its output, whereas other methods are tailored to specific
model types and leverage the knowledge of their structure, e.g. decision trees
(Lundberg et al., 2020) and neural networks (Shrikumar et al., 2017).

Further, one distinguishes between local and global explanations (Molnar, 2022).

* Local explanations consider the model’s prediction h(z) for a single instance z
of interest. Quantifying how each feature value z; affected h(z), sheds light
on how h generated the prediction. The derived feature attribution scores do
not only hint at which features have been influential, but also which class label
the contained information in z; favors in the case of classification, or whether
it had a positive or negative impact in the case of regression. However, the
scores do not make a statement how even a slightly different feature value
x} # x; would have changed h(x) or how important a feature A; is in general.

* Global explanations on the other hand, try to capture each feature’s, not
the feature values’, effect on the model’s behavior from a more holistic view,
usually including multiple datapoints. A popular effect to decompose is the
reduction in empirical risk Ry (h) achieved by the features on some dataset D’
that is not necessarily equal to D used for training, often disjunct, but usually
generated by the same distribution P. One interprets then the resulting feature
importance score for X; as a measure of its utility for h to generalize the data.
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In the following, we introduce the emerging cooperative games of Shapley-based
feature explanations for both types of explanations. While the player set N rep-
resents all features, or their values of an instance z, throughout all examples, the
value function v is the crucial component to construct cooperative games that appro-
priately model the effect to be explained. Hence, v is subject to change and can take
many shapes depending on the desired explanation type and interpretation.

Local Shapley-explanations. Starting with the simpler case of regression, for given
h and z it is obvious to demand v(N') = h(z) such that each feature value z; is
assigned an attribution score ¢; which quantifies its fair share of v(N') — v(0). This
alone already raises two questions: How do we meaningfully define v/(.S) for feature
subsets S C N and how do we interpret v(0))? The construction of v(S) should
capture the prediction of A for the instance x only using the feature values S. Hence,
this requires to remove the features \/'\ S, represented by absent players, from z. In
this context, the first question can be rephrased as: what does it mean for a feature
to be present, or absent, in an instance z?

Unfortunately, one can not simply cut features from x as h is trained to take in an
n-dimensional vector and thus unable to process an input of different dimensionality.
Instead, we seek to mask the absent feature values such that their contained infor-
mation is hidden from the model, simulating the removal of features. The masking,
also called feature imputation, is performed by a removal function

f: XX . xXXPWN) =X x...xX, (3.3)

which manipulates an instance = to fg(z) := f(z,S) such that h(fg(z)) is well-
defined and can be used within the construction of v. Since S expresses the features
to remain present, their feature values should be left untouched by f, i.e. fs(x); = x;
for all i € S. Equipped with f as a tool for masking, we can define

V(8) = h(fs(x)) forall S € N (3.4)

which coincides with our requirement v(N') = h(z). The worth v(()) becomes now
h’s prediction with no information of = available. Still, in order to make sense of
v(N) — v(0) and the resulting scores ¢;, f needs a meaningful definition. There
exist multiple possibilities, each leading to a different interpretation of ¢;. We briefly
present selected variants and refer to (Sundararajan and Najmi, 2020; Covert et al.,
2021) for more extensive overviews:

3.1 Additive Feature Explanations
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Baseline imputation: Strumbelj and Kononenko (2010) substitute absent feature
values by those of a baseline instance z € X, i.e. fg(z); = z; foralli € N'\ S.
As a result, one obtains v({)) = h(z) and the Shapley values decompose the
prediction difference h(x) — h(z) caused by the change in information from
z to x. The choice of z is not trivial and could potentially complicate the
interpretation as it poses the risk for mixtures of = and =z to form that are out
of the distribution P. Thus, h would be evaluated on instances of a shape that
it has not seen before, challenging the meaningfulness of v severely.

Marginal imputation: To circumvent the burden of having to specify a baseline
instance, one can instead impute feature values by randomly drawing from
each feature’s marginal distribution over X; conditioned on the present values
from S which is derived from some dataset D’ (Strumbelj and Kononenko,
2014; Lundberg and Lee, 2017). Now that f is not deterministic anymore, one
usually takes the expectation of the resulting predictions leading to v(S) =
E[h(fs(x);)].- The aforementioned deficiency for baseline imputation remains
since each feature value is substituted independently.

Conditional imputation: Aas et al. (2021) counteract on this drawback by imput-
ing all feature values collectively at hand of a distribution of dimension |\ \ S|
conditioned on the present features values. While this approach promises to
construct realistic instances, Sundararajan and Najmi (2020) argue how its
practicability is limited by the difficulty of eliciting the required conditional
distribution over multiple features from the available data D.

For classification tasks the real-valued effect to divide is not immediately visible.
In the example of patient data, the class labels in ) could be names of diseases.
Nevertheless, one can still construct a value function by demanding from A to output
a predicted probability distribution over ), for which each h.(x) is interpreted as
the model’s estimated probability that ¢ € ) is the ground truth label of z. The
multidimensionality of h(x) causes a new problem to be solved as it is not immedi-
ately clear which class probability to select or how to combine them. Strumbelj and
Kononenko (2010) propose class-wise value functions

ve(S) = he(fs(z)) forall S € N (3.5)

such that one obtains an additive explanation for each class. Here it is com-
mon to only consider the cooperative game (N, v.+) for the predicted label ¢* =
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arg max.cy h.(x). Different removal functions f can be applied orthogonally to the
classifier h, as presented above for regression.

Global Shapley-explanations. For global explanations, not the prediction h(z) for
a specific instance but rather the model’s general behavior is of interest, for example
its empirical risk Rp on a separate test dataset D’ with D N'D’ = (). As one
desires to quantify each feature’s contribution to h’s generalization performance,
one would not define v(N) = Rp/(h) but rather decompose the reduction in risk
v(N) = Rpr(hg) — Rpr(h) that the presence of all features yields. The reference risk
is computed for the model h that does not use any features. This leads us back to
the question of how to perform feature removal, necessary for the construction of
the complete value function v over all feature subsets.

Cohen et al. (2007) and Pfannschmidt et al. (2016) let Z retrain h for each S C N/,
already excluding the absent features V' \ S from the training data D such that the
resulting model hg expects |S|-dimensional instances. Thus, they define the value
function as

v(S) = Rpi(hy) — Rp/(hg) forall S C N. (3.6)

The worth of a feature subset can be interpreted as the gained predictive performance
caused by the inclusion of these features. One might wonder, what shape h takes.
For regression with the mean squared error it predicts the mean target value observed
in D and the majority class for classification with 0-1 loss. Notably, this construction
is rather a statement about the learner Z than the initial model since h is only
involved in v(N'), assuming that in fact hys = h. Nevertheless, it constitutes a
meaningful way of measuring each feature’s importance.

In order to stick to the provided model /4 and not require the involvement of Z,
Covert et al. (2020) propose to apply feature masking as done for local explanations.
In particular, a removal function f based on conditional imputation is used to
construct

v(S) = E[Rp (fo(h)] — E[Ro(fs(h))] , (3.7)

where the randomness is taken w.r.t. the imputation. Inspired by (Heskes et al.,
2020) for local explanations, Breuer et al. (2024) go one step further and involve
causal relationships between features within the imputation performed by f.

3.1 Additive Feature Explanations
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Feature Explanations with Shapley Interactions

Additive feature explanations exhibit the appeal of high readability due to their low
complexity, being specified by only one value per feature. Meanwhile, other works
have investigated their validity (Kumar et al., 2020; Kumar et al., 2021; Gosiewska
and Biecek, 2020) and observed that the additive decomposition is mostly too
simple to grasp non-additive structures that complex models possess, as they would
otherwise not be concerned for explanation. From the perspective of a cooperative
game, it is self-understood that n many importance scores can hardly represent a
value function assigning worth to 2" many feature subsets without making drastic
simplifications. Kumar et al. (2020) argue how the additivity axiom conceptually
limits the Shapley value, rendering it inappropriate to faithfully capture the intricate
dependencies between features that arise so often in practice. Further, Gosiewska
and Biecek (2020) showcase that the obliviousness to these dependencies potentially
leads to inconsistent explanations that users can not rely on.

The aforementioned works collectively hint at interactions between features to
overcome the shortcomings of the Shapley value. Fittingly, cooperative game theory
offers with the notion of Shapley interactions (see Section 2.3) already a tool to
unveil the latent synergies of higher dimensionality between features. The Shapley
interactions can be derived without the need to alter the constructed cooperative
games for Shapley-based explanations. A gained benefit of the shared origin in
form of the same cooperative game is that the Shapley values do not have to be
dismissed but rather extended by the obtained interactions. In other words, Shapley
interactions do not replace additive explanations but enrich them with additional
information. As the dimensionality of the interactions to be considered can be
specified by the human user himself, Shapley interactions give room to individually
adjust how the inherent trade-off between fidelity and readability is tackled by
tuning the complexity of the explanation.

Whereas, at the example of local explanations for regression, a negative Shapley
value ¢; indicates that the feature value z; contributes to the reduction of the
predicted value h(x), the interpretation of Shapley interactions judging by the sign
alone is not quite as clear. In the context of feature explanations, one can distinguish
between three ways in which the pairwise interaction Ifj ; of two features z; and
x; having positive Shapley values ¢; and ¢; impacts the prediction. A positive sign
is commonly interpreted as evidence that z; and z; complement each other such
that the combination of both provides additional information, increasing h(z) even

Chapter 3 Cooperative Games in Machine Learning



3.3

further than the features do on their own. A negative sign might hint at how the
combination of z; and z; reveals new information to the model that speaks in favor
of a reduction of h(z), opposite to the feature values’ individual impact. However,
this is not necessarily the case. As a third possibility, taking into account both z; and
x; could still increase h(x) but in sub-additive manner compared to the individual
contributions of z; and x;, leading to IZ’ ; being negative. For this phenomena, the
features are often said to contain redundant information. The incentive for A to
further increase its prediction is reduced by the information already provided by one
feature, that the other at least partly shares.

Selection of Machine Learning Entities

So far, we have considered feature importance scores on the basis of the Shapley
value for the purpose of explaining machine learning models. However, these scores
are not limited to being only applied within explainability, but are also suitable to
serve as a tool to more tangible goal-driven tasks such as feature subset selection.
Cohen et al. (2007), Pfannschmidt et al. (2016), Becker and Bengs (2023), and
Sebastian and Gonzalez-Guillén (2024) evaluate the usefulness of each feature by
means of Shapley values as they would be derived for global explanations, and select
features with the highest assigned scores. This application entails a further incentive
to consider the top-k identification (see Section 2.4 and Section 4.5) if one wants to
preselect a feature subset of fixed size k based on Shapley values.

Selecting a subset of the most useful features before the learning procedure promises
to achieve better generalization performance when complex models show the inclina-
tion to overfit on the given training data. Moreover, having to process fewer feature
values reduces computational expenditures caused by training and inference. Last
but not least, a reduction of the feature space itself can already aid interpretability
as the influences of fewer features have to be overseen. Beyond supervised learning,
Balestra et al. (2022) recognize the possibility of constructing cooperative games
out of unlabeled data, only containing instances, such that the resulting Shapley
values reflect the features’ importance within that point cloud. Feature selection can
then be likewise conducted to mitigate the curse of dimensionality.

Actually, the versatility of cooperative games opens the door for an even wider

extension of the Shapley value’s range of applications. The games in Section 3.1 are
constructed by viewing the value function v as the tool for appropriate modeling

3.3 Selection of Machine Learning Entities
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while keeping the player set N fixed to represent features. Interestingly, an observed
effect such as a model’s empirical risk does not need to be distributed among features.
Instead, various other entities involved in the learning process, for example the
datapoints used for training or structural components of the model, can constitute
the players of a cooperative game. We refer to (Rozemberczki et al., 2022) for a
broader overview.

Data valuation and federated learning. The field of data valuation quantifies the
value of each datapoint in the training set for learning and cooperative games are
applied by formulating each datapoint (z;,y;) € D as a player. In order to let
the Shapely value reflect how much a datapoint contributes to the generalization
performance, the value function is defined to map each coalition S to a performance
score, for example test accuracy for classification, of the model hg that the learner
returns when using only S C D as the training set (Ghorbani and James Y. Zou, 2019;
Jia et al., 2019; Wu et al., 2023). Sorting the datapoints by their Shapley values and
successively removing those of least importance facilitates a flexible approach to
reduce the training set. Further, excluding datapoints with negative Shapley values
constitutes an approach to remove harmful outliers in the data, which potentially
mitigate predictive performance. Another economically motivated purpose is to pay
out data owners proportionally to the Shapley value of each datapoint they provided
to construct a richer collective training set. More generally, the branch of federated
learning studies how multiple clients with their own private data can collaborate by
offering their datasets to train a model in decentralized manner. Viewing each client
as a player, the Shapley value poses a mechanism to fairly payout clients according
to the gain in predictive performance of the joint model that their data provides (Liu
et al., 2022; Sim et al., 2020).

Model pruning. The complexity of modern machine learning models is not only
rooted in highly non-linear operations that are performed during inference but also
in the increasing number of structural components that these models are made
of. Common examples are deep neural networks such as BERT (Devlin et al.,
2019) for natural language processing with millions of parameters and thousands of
artificial neurons, or random forests aggregating dozens if not hundreds of decision
trees. Hence, the possibility of assigning importance to individual components
has attracted interest for multiple reasons. First, the sheer ability to assess the
impact of each component on the generalization performance may provide an
understanding that could potentially guide model design or more precisely the
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design of the hypothesis space #. Similarly to feature selection, reducing the
number of components, known as model pruning, promises to mitigate the threat
of overfitting caused by too expressive models coupled with sparse training data
(LeCun et al., 1989). The reduction in size at the expense of the model’s expressivity
caused by pruning is accepted as a compromise to render large models practicable
to a wider range of users and application scenarios with constrained computational
resources. Ghorbani and James Y Zou (2020) formulate neurons as players to prune
deep neural networks by removing neurons whose Shapley values indicate a low or
even harmful contribution to a performance score of the network. Rozemberczki
and Sarkar (2021) prune model ensembles that aggregate multiple base models
to a bigger model. In particular, random forests consisting of decision trees are
considered by defining the player set as the set of initially contained decision trees.

Including interactions. Sorting entities such as features, datapoints, or neurons
by their Shapley values and discarding the assumably least important ones is a
conceptually straightforward approach. However, it is not free of pitfalls. Entities
that share contributing factors, for example features with similar information to
improve predictive performance, possess a certain redundancy which is not reflected
by the Shapley value. In fact, for two correlated features X; and X; having relatively
high Shapley values, including &; might render X; barely useful, as &; already
provides most of the information that X; could contribute. In the context of pruning,
one might also be fooled by the sorting in the opposite way. Multiple mutually
correlated features can share an importance mass via their Shapley values that
one feature alone would inherit if the others were absent. Thus, potentially all of
these features seem in comparison to those not sharing importance mass relatively
insignificant and are at the danger of being pruned, although at least one of them
would make a significant contribution. Whereas the importance of an entity is falsely
boosted in the first example, it is hidden by the Shapley value in the second example.
To avoid falling victim to these pitfalls, Chu and Chan (2020) propose in the context
of feature subset selection the incorporation of interaction between features to adjust
the sorting. As discussed in Section 3.2, Shapley interactions bear the potential to
expose the redundancy between features since their core building block, the discrete
derivative, measures the degree to which one player’s presence impacts the other
player’s contribution. Obviously, this idea can be generalized to any kind of entity
represented by a player within a cooperative game.

Since the versatility of cooperative games enables the Shapley value and interactions
to be applied for a multitude of diverse tasks, we see ourselves confirmed in the

3.3 Selection of Machine Learning Entities
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pursuit of approximation algorithms that are universally applicable, independent of
the actual domain being modeled by the game. Further, we view the employment of
tailored heuristics within the value function, capturing how particular entities such
as features or datapoints tend to behave and shape a coalition’s worth, as subordinate
to the research on approximation techniques yielding a general understanding and
possibly theoretical guarantees that are not restricted by specific assumptions. We
meet this motivation of domain-independent methods in the following chapter.
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Contribution and
State of the Art

The contribution of this thesis is divided into four parts. We give a brief overview by
concisely presenting each part in the following. After a categorization of selected
approximation methods for the Shapley value in Section 4.1, providing the neces-
sary background of state-of-the-art literature, Section 4.2 to 4.5 elaborate on each
contribution part in more detail.

Contribution (l)-(lll): Shapley Value Approximation via Stratification. To begin with,
we detach in (I) the Shapley value from the popular notion of marginal contributions
on which it is built on, and propose a different representation relying on the aggre-
gation of single coalition values as the foundation of our developed approximation
method. Combining it with stratification as a variance reduction technique for mean
estimates facilitates the integration of a more efficient update rule that utilizes each
sampled coalition to update the estimate of each player. In addition, the derived
theoretical guarantees in (I) result in a twofold benefit: they allow the construction
of confidence intervals around the estimates and give insight on which games our
algorithm is advantageous. Further, we refine our method in (II) by observing that
the allocation of samples across the strata plays a vital role in the reduction of
the approximation error and exhibits room for optimization. We transfer adaptive
sampling from stratifying methods based on marginal contributions to our approach
such that the employed allocation is no longer given a priori but updated during
the approximation process itself. In addition to the empirical improvement, we
investigate in (II) stratification also from a more conceptual viewpoint, quantify its
theoretical potential at the hand of the optimal allocation in hindsight, and answer
to which degree our method closes this gap. At the example of feature explanations
for unlabeled data based on total correlation, we illustrate in (III) the efficacy of
stratifying methods, concluding that these leverage the relation between a coalition’s
size and its worth to outshine competing methods.
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Contribution (IV): Shapley Value Approximation via Optimization. We tackle the ap-
proximation problem with an alternative method in (IV) by deviating from the
common perspective of the Shapley value as an expected value of marginal contribu-
tions or coalition values. Instead, we construct a structured and parameterizable
surrogate game that mimics the cooperative game at hand by fitting its value func-
tion to that of the given game after observing sampled coalitions. The key idea is
to exploit the surrogate game’s structure and compute its exact Shapley values in
polynomial time. At the same time, a sufficient degree of flexibility in that structure
promises a good fit such that the surrogate game’s Shapley values serve as precise
estimates for that of the given game. Choosing the value function to be k-additive
allows us to extract its Shapley values immediately as they are directly contained
within this representation. Further, we provide as an analytical result that the fitting
of a k-additive game forces its Shapley values to exactly match those of the given
cooperative game after having observed the latter in its entirety. We interpret this
result as proof to the theoretical soundness of our approach, implying that the error
of the retrieved estimates converges to zero during the approximation process.

Contribution (V): Approximation of Shapley Interactions. In the spirit of (I), we
present in (V) a representation of Shapley interactions that emphasizes coalition
values instead of discrete derivatives and also stratify it by the coalitions’ size. So to
speak, this work serves as an extension and methodological transfer of the approach
presented in (I) from the special case of the Shapley value to the superordinate class
of cardinal interaction indices. Moreover, this work exhibits a unifying nature: all
semi-values and cardinal interaction indices can be approximated simultaneously
during the sampling process or afterwards without the requirement to specify indices
of interest in advance. This is made feasible by the observation that the maintained
strata are atomic building blocks shared by all semi-values and cardinal interaction
indices, which only differ in the weighting of these strata.

Contribution (VI)-(VIl): Top-k Shapley Players Identification. We recognize in (VI)
how the task of identifying the & players with highest Shapley values differs substan-
tially enough from that of approximating all values precisely to employ different
algorithmic approaches. Most importantly, since the numerical estimates do not
need to be precise across the whole player set, the identification problem offers the
opportunity to sacrifice precision of estimates whose players’ top-k membership can
be determined with confidence in favor of those who are metaphorically speaking
located close to the top-k border. This allows to redistribute available samples from
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the former to the latter type of players. Based on this observation, we establish a
novel connection to multi-armed bandits from the field of online machine learning,
viewing each player as an arm of a slot machine that can be pulled to obtain a
sample from its distribution of marginal contributions as a reward. Particularly
for the top-k identification problem, we discover in (VII) the utility of comparing
marginal contributions to the same reference coalition between players, leading
to the variance reduction technique of antithetic sampling based on correlated ob-
servations. Motivated by this insight, we develop an approximation algorithm that
exploits a new representation of the Shapley value utilizing an altered notion of
marginal contribution and incorporates techniques inspired by multi-armed bandits.
Moreover, we highlight the difference to the approximate-all problem by comparing
the performance of algorithms on both tasks and observing that approximation
quality is not necessarily transferable between them.

Categorization of Approximation Methods

The Shapley value’s approximation problem has fostered the usage of varying
techniques for estimation fueled by its richness in representations. Subsequently, a
diverse landscape of proposed methods has formed within the literature. As we focus
on methods that are applicable to any cooperative game without posing structural
assumptions that rely on the context of a specific domain, we give in the following
a brief overview on the taxonomy of such approximation algorithms. Figure 4.1
illustrates this taxonomy and incorporates contributions of this thesis. Within the
plethora of proposed methods, we distinguish between two main classes.

Approximation through mean estimation. The first class interprets the Shapley
value as an expected value and thus encompasses approximation algorithms that
conduct mean estimation. Most popular among those is to view the Shapley value
of each player as its expected marginal contribution w.r.t. a discrete distribution
in which each marginal contribution is assigned its weight in Definition 2.14 as its
probability. ApproShapley (Castro et al., 2009) realizes sampling from this distri-
bution by drawing random permutations of the player set and using the appearing
marginal contributions in these sequences as samples. It relies on the Shapley value’s
representation based on permutations given by Equation 2.3 and draws the same
number m of samples A; (Si(l)) A (Si(m)> for each player since every player

4.1 Categorization of Approximation Methods
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Approximation
Methods

Optimization
(Weighted Regression)

Mean Estimation

KerneISHAP
(Lundberg and Lee 2017)

(Simon and Vincent 2020)

Sampling Marginal
Contributions

Sampling
Coalitions

(Covert et al. 2019)

Unbiased KemelSHAP
(Covert et al. 2021)
SVAKAGd

(Pelegrina et al. 2025)

Stratification

Antithetic Sampling]

Stratification

Stratified Sampling
(Maleki et al. 2013)

SVARM
(Kolpaczki et al. 2024)

Stratified SVARM
(Kolpaczki et al. 2024)

ApproShapley
(Castro et al. 2009)

Ergodic Sampling
(Ilés and Kerényi 2019)

(Strumbelj and Kononenko 2014)

Owen Sampling
(OKhrati and Lipani 2021)

(Mitchel et al. 2022)

Adaptive

Adaptive SVARM
(Kolpaczki et al. 2024)

Adaptive

(O'Brien et al. 2015)

cmes
(Kolpaczki et al. 2025)

Continuous Adaptive SVARM
(Kolpaczki et al. 2024)

Structured Sampling

(van Campen et al. 2018) (Castro etal. 2017)

(Burgess and Chapman 2021)

Figure 4.1.: Taxonomy of selected domain-agnostic approximation algorithms for the Shap-
ley value. Selected contributions of this thesis are marked in red.

exhibits exactly one marginal contribution in a permutation. Hence, each estimate

is computed as

i A (™). (4.1)

i Z 022 , 4.2)

where o? := V[A;(9)] is the variance of player i’s marginal contributions for random

S C N\ {i} with distribution P(S) = ﬁ Drawing, the marginal contributions
LANE]
independently between the players would consume two budget tokens per draw,

leading to a maximum of m < % many samples per player. Instead, by reusing the
already evaluated coalitions in a permutation, this upper bound can be increased to
m < 25T since only n + 1 evaluations have to made per permutation. Despite the
fixed budget T', this improvement in terms of higher m leads to a reduction in MSE.

In contrast, Strumbelj and Kononenko (2014) propose an improvement by sequen-
tially choosing to sample the next marginal contribution from that player whose
contribution to the MSE would reduce the most, taking into account the sample vari-
ance 67 of its observed marginal contributions and the hitherto number of samples

m;. In particular, the player i maximizing
2 2
i 9%
/ /
;. m;+1

4.3)
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is greedily selected. The new key element here is that the approximation algorithm
is adaptive in the sense that it adjusts its sampling procedure to the observations
collected so far, whereas ApproShapley is static. As a consequence each player is
assigned its own total number of samples m,; instead of a uniform m.

Maleki et al. (2013) introduce the variance reduction technique of stratification
to the field of Shapley value estimation. Each player’s population of marginal
contributions A;(S) is partitioned by grouping them into n many strata sharing
the same size |S|. For our convenience, this partitioning can also be expressed
algebraically, describing the Shapley value as an average of strata values ¢; ; which
in turn are arithmetic means of their contained marginal contributions:

1=
== — >, Ai(S). (4.4)
ni= (") SCA\{i}
1S|=¢
=:¢i 0

The samples are taken independently from each stratum such that the resulting
subestimates &i’g are aggregated back to

P It S
Gi=—> tis- (4.5)
"o

An allocation that assigns m; ¢ > 1 samples to each stratum results in an MSE of

2
Oie

E[MSE] = (4.6)

n3

1 n n—2
1=

1e=1 it
with stratum variance o2, := V[A;(S)] for uniformly distributed S C N\ {i} of size
¢. Note that the stratum variances are constants of the cooperative game but the

allocation m; ¢ is free of choice. Obviously, it holds o7, = 07, | =

0 for all players
and retrieving the single marginal contributions of the respective strata suffices to
exclude these from further consideration, requiring only a budget of 2n + 2. Hence,
in search of minimal MSE, Equation 4.6 forms in combination with the budget
constraint 7 := T — 2n — 2 an optimization problem. Its solution, the optimal choice
of m; ¢, is known as the Neyman allocation (Neyman, 1934), taking the shape of

* 03, =
miy= T, (4.7)
2> > ok

j=1k=1
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where we for sake of simplicity omit the constraint that each m;, must be a natural
number. Strata with higher standard deviation o; ¢ require proportionally more sam-
ples in the Neyman allocation. Since the stratum variances (or standard deviations)
are a priori unknown, a static allocation as employed by Stratified Sampling (Maleki
et al., 2013) has no chance of reaching it and thus minimizing the MSE.

To combat this lack of knowledge, adaptive methods adjust their sampling accord-
ingly by favoring strata that exhibit higher observed variance, thus impact the MSE
to greater degree. Castro et al. (2017) propose a two-phased algorithm that first
explores the cooperative game by equifrequently sampling from all strata. Based
on the estimated variances 63 ¢» an estimate of m;, is used to chase the Neyman
allocation in the subsequent exploitation phase. O’Brien et al. (2015) take inspira-
tion from multi-armed bandits to smoothly transition from exploration (collecting
evenly samples from all strata) to exploitation (mimicking the optimal allocation)
with the help of a sigmoid function, instead of abruptly switching phases. Burgess
and Chapman (2021) employ the Stratified Empirical Bernstein Bound to identify
the next player to sample for that promises maximal MSE reduction. Despite their
appeal to optimally employ stratification, none of these adaptive methods come with
guarantees for the approximation quality in the fixed-budget setting. So far, only
their unbiasedness has been shown.

Owen Sampling (Okhrati and Lipani, 2020) can remotely be categorized as a stratify-
ing method but is built upon a quasi-continuous distribution of marginal contribu-
tions. Instead of viewing the Shapley value as a discrete sum, Owen (1972) shows
that it can be represented by the integral

6= [EA(Si)] da (4.8

where S; , C N\ {i} is randomly constructed: a biased coin toss decides for each
player j € N\ {i} whether it is present in S, ; or not. So the probability that S; ,
equals some S C N\ {i} is

P(Siy=5) = ¢ (1 - g 1971, 4.9)

Okhrati and Lipani (2020) numerically integrate Equation 4.8 by palpating it at fixed
equidistant points ¢ € [0, 1] and estimating the expected marginal contribution for
each ¢ through sampling. This representation reveals an intricate connection leading
back to Definition 2.14. Drawing a random ¢ € [0, 1] and next a marginal contribu-
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tion according to Equation 4.9 is equal to drawing each marginal contribution with
its weight within the Shapley value.

All previous methods have in common that marginal contributions are drawn inde-
pendently for each player, but not necessarily between them, e.g. ApproShapley. By
drawing dependent observations, Illés and Kerényi (2019) and Mitchell et al. (2022)
apply the technique of antithetic sampling which exploits covariances between sam-
ples to decrease each estimate’s variance. In light of the bias-variance decomposition
(see Equation 2.12), this promises to further reduce the MSE.

Another subbranch of approximation methods conducting mean estimation foregoes
the notion of marginal contributions and splits the Shapley value into two sums:

b= Y —n(SU{i - Y —m

scangy ™ (ls) scagiy ™ (ls))

L ). 4.10)

=67 =iy

Covert et al. (2019) implicitly adopt this view and instead of sampling for each sum
separately, each drawn coalition is used to update an estimate of ¢; and ¢; via
importance sampling. Wang and Jia (2023) estimate the Banzhaf value in equivalent
fashion without importance sampling due to its uniform weights.

Approximation through optimization. Although mean estimation might be consid-
ered as the most natural way to approximate the Shapley value given its shape
of a weighted sum, the branch of optimization constitutes a popular alternative.
These methods follow a completely different approach by not estimating the Shapley
values ¢; of a given game (N, v) directly, but instead compute the exact Shapley
values ¢ of a surrogate game (N, /) that is to be close to (N, v). The intuition
behind this idea is that a value function +/ similar to v should also yield similar
Shapley values and thus precise estimates. This approach is fruitful under two con-
ditions: (i) the surrogate game’s Shapley values ¢’ quickly converge to ¢ and (ii) its
Shapley values can be computed in polynomial time. The second condition is met by
imposing a class of highly structured value functions for whom closed-form solutions
exist. At the same time, incorporating a certain flexibility into +/ is desirable such
that it can reflect the shape of v. Given observed coalition values v(S;),...,v(Sr)
through sampling without replacement, the surrogate game is fitted to minimize an

4.1 Categorization of Approximation Methods
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objective function that quantifies the dissimilarity between v and +/. In particular,
the objective function most often emulates weighted regression in the form of

T
S ws, (V(Se) — v(S)” (4.11)
t=1

On this basis, KernelSHAP (Lundberg and Lee, 2017) employs a simplistic yet effective
surrogate game in which each player i € N possesses a coefficient ¢; that is added
to the worth of a coalition upon 4’s inclusion, leading to the value function

V'(S) = CQjLZCi forall S C \V, (4.12)
i€s
where ¢y is used to handle games in which v(()) # 0. Hence, within the surrogate
. . n—2y—1
game all players are dummy players. Using weights wg = (‘ S\—l) for all S €
P(N)\ {0, N} and adding the efficiency constraint (see Definition 2.12), estimates
¢! are obtained by solving the following optimization problem:
T ,
(' (St) — v(Sh))

min —
COrenn 33 (|g|—21)

s.t. Y e =v(N)—v(0)
i=1

(4.13)

Despite the simplicity of 2/, the solution to Equation 4.13 yields the Shapley values of
(N, v) when all coalitions except for () and N are included in the objective function
(Charnes et al., 1988). This implies the convergence of ¢/ to ¢; during approximation
for an increasing number of samples and is thus a vital step towards condition (i).
Fittingly, the representation of v/ given by Equation 4.12 already elicits the Shapley
values of the surrogate game because ¢, = ¢; holds due to the dummy axiom,
satisfying condition (ii).

In opposition to mean-estimation methods, Covert and Lee (2021) recognize the
analytical difficulty to make statements about KernelSHAP’s properties such as
bias and variance. Instead, they empirically show a non-zero bias and further
propose Unbiased KernelSHAP that trades zero bias for higher variance. Fumagalli
et al. (2023) show how this variant of KernelSHAP effectively coincides with mean-
estimation of the Shapley value as a weighted sum of coalition values, bridging the
two main branches of approximation. In another variant, Simon and Vincent (2020)
tackle the convex optimization problem by performing stochastic gradient descent.
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Approximation of Shapley interactions. Compared to the richness of methods for
estimating Shapley values, the choice of approximation algorithms for Shapley
interaction is quite sparse. Sundararajan et al. (2020) extend the Monte Carlo
method of ApproShapley to sample discrete derivatives and estimate the Shapley
interaction index as a mean discrete derivative, which is likewise applicable to
the general class of cardinal interaction indices. Meanwhile, they propose the
Shapley-Taylor index that measures interactions for order 1 up to a specified k.
The Shapley-Taylor interaction for the top-order k is as well a cardinal interaction
index. Tsai et al. (2023) introduce the Faithful Shapley interaction index measuring
interactions between order 1 and k inspired by the weighted regression formed by
Equation 4.11 and 4.12 but extended to interactions. Thus, their index can also be
approximated via optimization. The representation of the Shapley interaction index
for pairs as a solution to a weighted regression problem, similar to KernelSHAP, has
been recently discovered under KernelSHAP-IQ (Fumagalli et al., 2024).

Shapley Value Approximation via Stratification

Contribution (l). We start by explicitly introducing the new representation of two
sums in Equation 4.10 as a basis for approximating the Shapley value via mean
estimation in absence of marginal contributions. Our result stating the non-existence
of a distribution over P(\) to sample from such that ¢; and ¢; can be estimated
without bias and importance sampling, motivates us to propose Shapley Value
Approximation without Requesting Marginals (SVARM). It relies on the observation
that each observed v(S) can be used to update the estimate ¢; for all i € S or ¢;
for all i ¢ S if drawn according to the distributions

1
+(Q) .
Fr8) = 151(;5) Hn

e 1
P(8) = e o ¥S e PN\ {N},  (4.15)

VS e P(N)\ {0}, (4.14)

respectively, where H,, denotes the n-th harmonic number. This allows to not only
update a single estimate for some player but all affected players depending on which
distribution is being used. Hence, SVARM alternates between estimating ¢. -values
and ¢, -values and reuses each evaluated worth v(S) for multiple players. In fact,
both distributions cause with each draw ;- many updates in expectation such that
our combination of sampling mechanism and update rule exhibits higher budget

4.2 Shapley Value Approximation via Stratification
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efficiency. In comparison, the branch of methods drawing marginal contributions
can only utilize each A;(S) for ¢; as it appears in no other player’s Shapley value.

In order to maximize the reusage of costly acquired samples, we incorporate the
variance reduction technique of stratification and propose Stratified SVARM building
on the representation of the Shapley value as

1 o1
== — >, v(SU{N-—=> — > v(9). (4.16)
n = (") scvan n = (") scvan
|S|=¢ |S|=¢
:;ﬁz =,

Worth mentioning is how it coincides with the proposal of (Ancona et al., 2019),
although there not being used for domain-agnostic approximation as we intend. On
one hand, stratifying each player’s two sums promises to obtain faster converging
strata estimates (see contribution (II) in Chapter 6 for a more detailed explanation).
On the other, it opens up the opportunity to increase budget efficiency to a point
where it reaches the maximum sample reuse principle (Wang and Jia, 2023), stating
(in the context of the Banzhaf value) that each coalition’s worth should be used for
all player’s estimates. Stratification allows to circumvent the difficulty of different
weights between ¢ and ¢; in the case of the Shapley value. Constructing each
Shapley value estimate as a combination of estimates for the strata values, i.e.

N 1 n—1 R .
¢i: *Z(ﬁ;&_(ﬁi,p (4.17)
=0

makes updating all ¢; with each sampled 1(S) feasible. The key observation here is
that regardless which coalition S one considers, for each player i there exists exactly
one size ¢ such that either gbxz or ¢; , contains v(S). Since these are arithmetic
means, updating is straightforward without the necessity of importance sampling,
thus facilitating the derivation of theoretical guarantees for the approximation
quality in the fixed-budget setting. Note that in principle, Stratified SVARM can
approximate all semivalues simultaneously by reweighting the strata value estimates
in Equation 4.17. This is not even required to happen during sampling but can be
performed at termination for any chosen semivalue.

The benefit gained by maximum sample reuse becomes tangible upon inspecting the
MSE. If all coalitions of size 0,1,n — 1, and n are evaluated by a warm-up phase in
advance and my coalitions of size ¢ are drawn in total, then for stratum variances
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01‘2, o4 = V(S U {i})] and 01‘2, ¢ = V[v(S;,)] with uniformly distributed random
coalition S; y C N\ {i} of size ¢, the MSE of Stratified SVARM is bounded by

1 g zZ Lt oy
MSE — — = .18

We specify m, appropriately, in other words dictating how many coalitions of size
¢ are to be drawn, yet not including any knowledge of the stratum variances, to
simplify the bound and derive

21 n n-2 U?nax ,'logn
E[MSE] < Ognzzm e eO(“Cf) . (419
=1 (=2

where T = T — 2n — 2 is the remaining budget after evaluating all coalitions of

2 —

size 0,1,n — 1, and n. Here, oy,

2 2 .
max g, o, _ 18 a constant
i€N,f€{2,...,n72}{ i,0—1,+7 %40, }

of the game itself. We would like to stress the point that except for the warm-up
phase Stratified SVARM achieves an MSE that grows sublinearly with the number
of players if one considers the maximum stratum variance to be independent of
n. For completeness, sampling from all sizes in equal frequencies yields the same
asymptotic behavior. In comparison, the asymptotic MSE resulting from stratified
sampling of marginal contributions (see Equation 4.6) with equal frequencies over
all sizes exhibits a worse dependency:

1 n n—2 2 .n
E[MSE] §—TZZUiZ€O % , (4.20)
s =1
where 02, = max 0?,. Assuming the maximum stratum variances to

T ieN el n—2)
be equal, Stratified SVARM achieves an MSE reduction of a factor of roughly -2
gn

neglecting constants which corroborates its increase in budget efficiency. The

experiments conducted by Muschalik et al. (2024) speak in favor of our method,
stating its competitiveness across various types of cooperative games that appear in
the field of machine learning.

Contribution (ll). Since the sample allocation m, over strata offers a certain degree
of freedom, one might pose the question of how much Stratified SVARM can be
improved by optimizing its allocation. Here, optimization entails the adjustment
to the a priori unknown stratum variances. To shed light on the potential of

4.2 Shapley Value Approximation via Stratification
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stratification (for fixed partitioning into strata), we derive similar to (Neyman, 1934)
the optimal sample allocation for Stratified SVARM to be

my = —° T, (4.21)
[ O 4 Teo
RYD +
k=2 =1

While m; remains unknown in practice, it serves the purpose of quantifying the
minimal MSE that Stratified SVARM could theoretically achieve. Plugging the optimal
allocation into Equation 4.18 yields

2
1 (22 |\ &ofi, T Ur2naX+/—
< _ Y 9 "y — . .
E[MSE] < (EjJ§ At ) eo s (4.22)

=2 \i=1
Proof of asymptotics:
n—2 n 42 2 2 2 n—2 2
1 Z Z O’i,Z717+ n 0'2-7577 < O'maX+/, i n 1
T\ \i= ¢ n—¢| — nT = Ve n—7
4quax+/, zn: i 2
nT - Ve

2
max, /.

not to be affected by n. It is hidden only in 7 = T — 2n — 2. This implies that
Stratified SVARM has the hypothetical potential to exhibit approximation quality

Remarkably, the dependency of n nearly vanishes if we again assume o

which almost does not deteriorate with growing player numbers, or the size of
the cooperative game in other words. To the best of our knowledge, no other
approximation algorithm for the Shapley value possesses this analytical property.
For example, employing the Neyman allocation (see Equation 4.7) for stratified
sampling of marginal contributions leads to an MSE of

n n—2 2 2 .
E[MSE] = ngT (Z 3 m) co <%j’j”> . (4.23)

i=1 ¢=1
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As already alluded to, the stratum variances are inaccessible to the approximation
algorithm and have to be estimated. Thus, we transfer the approach of Castro et al.
(2017) and propose Adaptive SVARM which divides its available budget into two
phases conducting exploration and exploitation. The first phase collects samples
from all strata to maintain estimates 6’2 P and 63 0+ Before entering the second
phase, the presumably optimal allocation 772} is computed according to Equation 4.21
based on the stratum variance estimates. Within the second phase Adaptive SVARM
does not allocate its samples as prescribed by 77 as this would only be optimal
for the second phase in isolation. Instead, it fills up the total allocation including
the first phase such that the stratification is optimal across the entire budget at
disposal. This is done by pursuing in the second phase the allocation that results
from the difference between the optimal allocation for T and that realized in the first
phase. Consequently, it reaches 7i2; at termination. Moreover, we develop Continuous
Adaptive SVARM as an extension that keeps estimating the stratum variances during
the second phase and simultaneously adapts ri,. The underlying idea is that the
observations made in the second phase are equally valid to improve the precision of
6—2 ¢4 and &;{ ¢ and thus more reliably estimate ;.

Our empirical results convey two messages. First, depending on the cooperative
game, the performance gap between Stratified SVARM and its optimal version in
hindsight is indeed significant. Second, both of our adaptive algorithms close this
gap and thus bring the hypothetical potential of stratification to life.

Contribution (lll). We further assess the performance of Stratified SVARM and com-
pare stratified sampling against methods representing other branches of approxi-
mation. In particular, cooperative games constructed to derive feature importance
scores for unlabeled data are considered. In the absence of target variables and a pre-
dictive model, Balestra et al. (2022) propose the total correlation between discrete

features X1, ..., X,, as a measure of worth for a coalition S of features, i.e.
v(S)=| > H(Xy) | — H(Xi)ies) : (4.24)
X;eS

where H(-) denotes the Shannon entropy. As a result, the retrieved Shapley values
should indicate the features’ usefulness in unsupervised learning. We interpret
the obtained empirical findings as evidence for the effectiveness of stratification
in general and in particular that of Stratified SVARM. Clearly, a dependence of
a coalition’s worth to its size reduces stratum variances and thus speeds up the

4.2 Shapley Value Approximation via Stratification
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convergence of mean estimates. This is plausibly the case for the total correlation of
features as it is likely to increase with coalition size.

Shapley Value Approximation via Optimization

Contribution (IV). Inspecting KernelSHAP (Lundberg and Lee, 2017) from a more
conceptual standpoint, we recognize that it is not only a direct application of the
Shapley value’s representation as a solution to a weighted regression problem
(Charnes et al., 1988), but rather an instance of a more general framework that we
establish. As described in Section 4.1, a surrogate game is fitted to match the given
value function v and its own Shapley values are taken as estimates. The simplicity
of the surrogate game utilized by KernelSHAP (see Equation 4.12) incentivizes us to
plug in a more sophisticated value function /. Greater flexibility of v/ should ease
to capture more intricate patterns of coalition values and therefore promise a better
fit to v. We take inspiration from Grabisch (1997a) stating that any value function
can be decomposed into Shapley interactions as

v(S)= > vas-I4 forall S C N (4.25)
ACN

with suitable coefficients v4 s that do not depend on v but only on the coalitions
A and S themselves. Keeping the interaction values Iﬁ as free variables to adjust
would allow to fit a value function ¢/ of that form to palpated points of ». However,
since each A C N possesses its own interaction, this representation exhibits 2"
degrees of freedom which prohibits a unique identifiable solution to the resulting
optimization problem (similar to Equation 4.13) when only a subset of coalitions is
evaluated. As a remedy, we truncate the surrogate game’s flexibility by restricting
interactions up to a chosen order k which yields the k-additive value function

vk(S) = > yas-I§ forall S CN. (4.26)
ACN

|A|<k
The concept of k-additivity (Grabisch, 1997b) provides a useful tool to impose
structure upon a value function, or discrete fuzzy measure in general, by demanding
from it to be additive up to some order k. In our case this translates to setting all
Shapley interactions of higher order than & to zero. This is not even far-fetched, in
the context of machine learning it is typical for higher order interactions between
features to diminish and being close to zero (Bordt and Luxburg, 2023), while other
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empirical works demonstrate how 2-additive and 3-additive measures suffice for
appropriate modeling (Grabisch et al., 2006; Pelegrina et al., 2020). Important to
note is that also this surrogate game’s representation immediately yields its own
Shapley values in form of singleton interactions IF := I fl.}.

Subsequently, our proposed method SVAkapp samples coalitions Sy, ..., S € P(N)\
{0, N'} without replacement to fill the objective function of Equation 4.13 with v/
being substituted by v, and free variables I f, for all A C NV with |A] < k:

T
min > wsy (ve(S) — v(Sh))?
t=1 4.27)

s.t. zn:IZk =v(N) —v(0)
i=1

Here, each I represents the estimate ;. Although vy, is fitted to v, one might right-
fully ask whether the estimates converge to the desired Shapley values ¢; of (N, v).
We clear these doubts by analytically showing that the solution to Equation 4.27
yields the Shapley values in the cases of k£ = 1,2,3 when the objective function
is filled with all coalitions S € P(N) \ {0, N} and again weights wg = (‘g‘__zl)f1
are being used, i.e. I} = I? = I} = ¢; for all i € N. We interpret this result as
evidence for the soundness of our approach and appropriateness of v,. Moreover,
our result is oblivious to the shape of v. The complete optimization problem yields
exact Shapley values despite v not even being proximately k-additive. Hence, its
solution constitutes a novel representation of the Shapley value.

Approximation of Shapley Interactions

Contribution (V). The fact that the Shapley interaction index originates from the
Shapley value, or more generally speaking the cardinal interactions can be viewed
as descendants of semivalues, entices to project approximation methods from the
Shapley value to Shapley interactions. Being aware of the shared similarities between
both quantities, we extend Stratified SVARM from (I) to approximate any cardinal
interaction index. This involves generalizing key ideas of Stratified SVARM, lifting
them to higher order. Starting with the representation of the interaction Ik for any

4.4 Approximation of Shapley Interactions
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cardinal interaction index (see Definition 2.21), we split the discrete derivatives
Ak (S) into coalition values according to Proposition 2.20 and stratify by size:

n—=k
—k 1
=5 (" o e L 3 wsuw), e
=0 WCK ( Y )SQ\/’\K
|S|=¢
::IIV{VJ

where k£ = |K|. The algebraic manipulation involving the factor (”Ek) allows us to
form strata values IIV& that are an arithmetic mean of coalition values, suitable for
mean estimation via sampling. Note that these strata form a unique partitioning
of P(N) for each K because every coalition S U W C N, is contained in exactly
one stratum. Any cardinal interaction index can be expressed by Equation 4.28 as
plugging in its associated weights wy, , recovers Definition 2.21.

On this basis, we propose the approximation algorithm SVARM-IQ that samples
coalitions and updates its estimates analogously to Stratified SVARM. Each evaluated
worth v(A) is used to update an estimate f}ge with W = ANK and ¢ = |A\ W] for
each K C N of size k. For each K the stratum estimates are aggregated to

n—k
o —k A
I = Z (TL ¢ )wk’g Z (—1)k_|W| . IIV("/,'Z (4.29)

£=0 WCK

such that the maximum sample reuse principle is again fulfilled since every observed
v(A) contributes to all estimates. As the stratum estimates can be weighted to
form any cardinal interaction, SVARM-IQ is capable of approximating an arbitrary
selection of indices simultaneously if the orders of interest k are provided in ad-
vance. This includes the Shapley value and semivalues, extending Stratified SVARM.
Moreover, the indices do not have to be specified a priori because the aggregation in
Equation 4.29 can be performed on demand and after the completion of sampling.

A more extensive overview of interaction indices is given in (Muschalik et al., 2024)
and the comparison to state-of-the-art methods speaks in favor of SVARM-IQ for
many use cases appearing within the field of machine learning.
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4.5 Top-k Shapley Players Identification

Contribution (VI). Given the many approximation algorithms to choose from, one
could simply reduce the top-% identification problem to the approximate-all problem
by estimating all players’ Shapley values precisely and returning those players with
the highest estimates. Narayanam and Narahari (2008) put this thought to practice,
employing an algorithm equivalent to ApproShapley (Castro et al., 2009). However,
this approach might be viewed as too naive since some player’s Shapley values turn
out to be so low during approximation, or at least their estimates, that these can be
excluded from the top-k with high confidence. The same holds true for the other
end of the spectrum inhabited by players with relatively high estimates. As a result
of this observation, it is perspicuous to favor the sampling for players who seem to
be close to the border between the top-k and the rest, as their membership is more
difficult to assess. Hence, the precision of players’ estimates clearly belonging to
the top-k, or not, is sacrificed to save budget for critical players and speed up the
convergence to the desired segregation.

This algorithmic idea has already been discovered by the field of multi-armed bandits,
a subbranch of online learning, initially to identify the distribution with highest
mean (Bubeck et al., 2009), corresponding to top-1, and later for the general case
of top-k (Gabillon et al., 2011; Bubeck et al., 2013). Here, metaphorically, one
considers n many so-called arms a4, ..., a, of a slot machine, each of which yields
a numerical reward upon pulling. The latent reward distributions are unknown
and potentially mutually different, likewise, their mean rewards. Pulling an arm a;
corresponds to drawing a random sample r; from its reward distribution.

To the best of our knowledge, we are first to introduce the connection between
top-k Shapley players identification and multi-armed bandits by formulating each
player i € A as an arm a;, and its distribution of marginal contributions w.r.t. to
the weights within the Shapley value as the arm’s reward distribution. Thus, by
pulling an arm a;, one observes a random marginal contribution A;(S) of that player
as a reward r;. This facilitates the immediate application of multi-armed bandit
algorithms such as Gap-E (Gabillon et al., 2011) and SAR (Bubeck et al., 2013).

Moreover, we propose Border Uncertainty Sampling (BUS), a bandit algorithm that
greedily selects the next player which optimizes a selection criterion. The crite-
rion intertwines exploration and exploitation by favoring players with low sample
numbers and estimates on the verge of belonging to the top-k respectively.

4.5 Top-k Shapley Players Identification
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Contribution (VII). Despite the usage of estimates ¢;, one for each player, it suffices
to correctly predict the ordering of players w.r.t. their Shapley values without even
knowing these values precisely. A step towards this direction can be made by
pairwise comparing estimates and judging for each pair of players whether ¢; < ¢,
holds, approximated by ¢; < q%-. This approach is resilient against distortions that
impact both estimates equally. Hence, precise estimates are not necessarily required,
but it is rather their difference that plays a role. Pursuing this idea, we analytically
show that for algorithms relying on Monte Carlo estimates, it is advantageous to
incorporate a positive covariance between ¢; and gi;j into their sampling procedure
such that the risk of a misordering is reduced. The underlying variance reduction
technique of leveraging covariance is known as antithetic sampling.

Inspired by this observation, we intend to sample marginal contributions for all
players that share a coalition, foregoing the independence of the player’s estimates.
In particular, for any S C N, the marginal contributions A;(S) of all i € N\ S and
A;(S\ {j}) of all j € S share the worth ©(.S). We cover both cases by the unifying
notion of the extended marginal contribution

AUS) == (S U{i}) — v(S\ {i}). (4.30)

Intuitively, the collected observations should be positively correlated as extended
marginal contributions of different players to the same coalition are more likely
similar in value than independent draws. On this basis, we introduce Compara-
ble Marginal Contributions Sampling (CMCS) which round-wise collects extended
marginal contributions for all players to maintain estimates ¢;. To our favor, sam-
pling extended marginal contributions does not introduce a bias when a distribution
over P(N) is employed that corresponds to the weights in the following novel
representation of the Shapley value:

1
P = - AY(S) .
¢ S%J:\/ (n+ 1)(|5|) (5) 31

In addition, CMCS displays a certain budget-efficiency by only requiring n + 1 evalu-
ations for n many updates in comparison to the independent sampling of marginal
contributions which consumes two per update. However, it performs pure explo-
ration as it is not selective about the players that it samples for. Therefore, our ex-
tension Greedy CMCS tackles the exploration-exploitation dilemma and saves budget
by randomly leaving out players whose membership is relatively certain. Adopting
the top-£ algorithm of Kariyappa et al. (2024), our variant CMCS@Qk greedily selects
in each round only two players guided by their overlap in confidence intervals.
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Abstract

The Shapley value, which is arguably the most popular ap-
proach for assigning a meaningful contribution value to play-
ers in a cooperative game, has recently been used intensively
in explainable artificial intelligence. Its meaningfulness is due
to axiomatic properties that only the Shapley value satis-
fies, which, however, comes at the expense of an exact com-
putation growing exponentially with the number of agents.
Accordingly, a number of works are devoted to the efficient
approximation of the Shapley value, most of them revolve
around the notion of an agent’s marginal contribution. In this
paper, we propose with SVARM and Stratified SVARM two
parameter-free and domain-independent approximation algo-
rithms based on a representation of the Shapley value de-
tached from the notion of marginal contribution. We prove
unmatched theoretical guarantees regarding their approxima-
tion quality and provide empirical results including synthetic
games as well as common explainability use cases comparing
ourselves with state-of-the-art methods.

Introduction

Whenever agents can federalize in groups (form coalitions)
to accomplish a task and get rewarded with a collective ben-
efit that is to be shared among the group members, the no-
tion of cooperative game stemming from game theory is ar-
guably the most favorable concept to model such situations.
This is due to its simplicity, which nevertheless allows for
covering a whole range of practical applications. The agents
are called players and are contained in a player set A/. Each
possible subset of players S C N is understood as a coali-
tion and the coalition N containing all players is called the
grand coalition. The collective benefit (.5) that a coalition
S receives upon formation is given by a value function v
assigning each coalition a real-valued worth.

The connection of cooperative games to (supervised) ma-
chine learning is already well-established. The most promi-
nent example is feature importance scores, both local and
global, for a machine learning model: features of a dataset
can be seen as players, allowing one to interpret a feature
subset as a coalition, while the model’s generalization per-
formance using exactly that feature subset is its worth (Co-
hen, Dror, and Ruppin 2007). Other applications include

Copyright © 2024, Association for the Advancement of Artificial
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evaluating the importance of parameters in a machine learn-
ing model, e.g. single neurons in a deep neural network
(Ghorbani and Zou 2020) or base learners in an ensem-
ble (Rozemberczki and Sarkar 2021), or assigning relevance
scores to datapoints in a given dataset (Ghorbani and Zou
2019). See Rozemberczki et al. (2022) for a wider overview
of its usage in the field of explainable artificial intelligence.
Outside the realm of machine learning cooperative games
also found applications in operations research (Luo, Zhou,
and Lev 2022), for finding fair compensation mechanisms
in electricity grids (O’Brien, Gamal, and Rajagopal 2015),
or even for the purpose of identifying the most influential
individuals in terrorist networks (van Campen et al. 2018).

In all of these applications, the question naturally arises
of how to appropriately determine the contribution of a sin-
gle player (feature, parameter, etc.) with respect to the grand
collective benefit. In other words, how to allocate the worth
v(N) of the full player set N' among the players in a fair
manner. The indisputably most popular solution to this prob-
lem is the Shapley value (Shapley 1953), which can be intu-
itively expressed by marginal contributions. We call the in-
crease in worth that comes with the inclusion of player i to
a coalition S, i.e., the difference v(S U {i}) — v(S), player
1’s marginal contribution to S. The Shapley value of i is a
weighted average of all its marginal contributions to coali-
tions that do not include . Its popularity stems from the fact
that it is the only solution to satisfy axiomatic properties that
arguably capture fairness (Shapley 1953).

Despite the appealing theoretical properties of the Shap-
ley value, there is one major drawback with respect to its
practical application, as its computational complexity in-
creases exponentially with the number of players n. As a
consequence, the exact computation of the Shapley value
becomes practically infeasible even for a moderate number
of players. This is especially the case where accesses to v
are costly, e.g., re-evaluating a (complex) machine learning
model for a specific feature subset, or manipulating train-
ing data each time v is accessed. Recently, several approx-
imation methods have been proposed in search of a rem-
edy, enabling the utilization of the Shapley value in explain-
able AI (and beyond). However, most works are stiffened
towards the notion of marginal contribution, and, conse-
quently, judge algorithms by their achieved approximation
accuracy depending on the number of evaluated marginal



contributions. This measure does not do justice to the fact
that approximations can completely dispense with the con-
sideration of marginal contributions and elicit information
from v in a more efficient way — as we show in this paper.
We claim that the number of single accesses to v should be
considered instead, since especially in machine learning, as
mentioned above, access to v is a bottleneck in overall run-
time. In this paper, we make up for this deficit by consider-
ing the problem of approximating the Shapley values under
a fixed budget T of evaluations (accesses) of v.

Contribution. We present a novel representation of the
Shapley value that does not rely on the notion of marginal
contribution. Our first proposed approximation algorithm
Shapley Value Approximation without Requesting Marginals
(SVARM) exploits this representation and directly samples
values of coalitions, facilitating “a swarm of updates”, i.e.,
multiple Shapley value estimates are updated at once. This is
in stark contrast to the usual way of sampling marginal con-
tributions that only allows the update of a single estimate.
We prove theoretical guarantees regarding SVARM’s preci-
sion including the bound of O( 1T°§ ™) on its variance.

Based on a partitioning of the set of all coalitions accord-
ing to their size, we develop with Stratified SVARM a refine-
ment of SVARM. The applied stratification materializes a
twofold improvement: (i) the homogeneous strata (w.r.t. the
coalition worth) significantly accelerate convergence of esti-
mates, (ii) our stratified representation of the Shapley value
with decomposed marginal contributions facilitates a mech-
anism that updates the estimates of all players with each sin-
gle coalition sampled. Among other results, we bound its
variance by O (%).

Besides our superior theoretical findings, both algorithms
possess a number of properties in their favor. More specif-
ically, both are unbiased, parameter-free, incremental, i.e.,
the available budget has not to be fixed and can be en-
larged or cut prematurely, facilitating on-the-fly approxima-
tions due to their anytime property, and do not require any
knowledge about the latent value function. Moreover, both
are domain-independent and not limited to some specific
fields, but can be used to approximate the Shapley values
of any possible cooperative game.

Finally, we compare our algorithms empirically against
other popular competitors, demonstrating their practical
usefulness and proving our empirical enhancement Stratified
SVARM™, which samples without replacement to be the first
sample-mean-based approach to achieve rivaling state-of-
the-art approximation quality. All code including documen-
tation and the technical appendix can be found on GitHub!'.

Related Work

The recent rise of explainable Al has incentivized the re-
search on approximation methods for the Shapley value
leading to a variety of different algorithms for this purpose.
The first distinction to be made is between those that are
domain-independent, i.e., able to deal with any cooperative

"https://github.com//kolpaczki//Approximating-the- Shapley-
Value-without-Marginal-Contributions

game, and those that are tailored to a specific use case, e.g.
assigning Shapley values to single neurons in neural net-
works, or which impose specific assumptions on the value
function. In this paper, we will consider only the former,
as it is our goal to provide approximations algorithms inde-
pendent of the context in which they are applied. The first
and so far simplest of this kind is ApproShapley (Castro,
Goémez, and Tejada 2009), which samples marginal contri-
butions from each player based on randomly drawn permu-
tations of the player set. The variance of each of its Shapley
value estimates is bounded by O(7%). Stratified Sampling
(Maleki et al. 2013) and Structured Sampling (van Campen
et al. 2018) both partition the marginal contributions of each
player by coalition size in order to stratify the marginal
contributions of the population from which to draw a sam-
ple, which leads to a variance reduction. While Stratified
Sampling calculates a sophisticated allocation of samples
for each coalition size, Structured Sampling simply samples
with equal frequencies. Multiple follow-up works suggest
specific techniques to improve the sampling allocation over
the different coalition sizes (O’Brien, Gamal, and Rajagopal
2015; Castro et al. 2017; Burgess and Chapman 2021).

In order to reduce the variance of the naive sampling ap-
proach underlying ApproShapley, 1l1és and Kerényi (2019)
suggest to use ergodic sampling, i.e., generating samples
that are not independent but still satisfy the strong Law of
Large numbers. Quite recently, Mitchell et al. (2022) inves-
tigated two techniques for improving ApproShapley’s sam-
pling approach. One is based on the theory of reproducing
kernel Hilbert spaces, which focuses on minimizing the dis-
crepancies for functions of permutations. The other exploits
a geometrical connection between uniform sampling on the
Euclidean sphere and uniform sampling over permutations.

Adopting a Bayesian perspective, i.e., by viewing the
Shapley values as random variables, Touati, Radjef, and
Sais (2021) consider approximating the Shapley values by
Bayesian estimates (posterior mean, mode, or median),
where each posterior distribution of a player’s Shapley value
depends on the remaining ones. Utilizing a representation of
the Shapley value as an integral (Owen 1972), Owen Sam-
pling (Okhrati and Lipani 2020) approximates this integral
by sampling marginal contributions using antithetic sam-
pling (Rubinstein and Kroese 2016; Lomeli et al. 2019) for
variance reduction.

A fairly new class of approaches that dissociates itself
from the notion of marginal contribution are those that view
the Shapley value as a solution of a quadratic program with
equality constraints (Lundberg and Lee 2017; Simon and
Vincent 2020; Covert and Lee 2021). Another unorthodox
approach is to divide the player set into small enough groups
for which the Shapley values within these groups can be
computed exactly (Soufiani et al. 2014; Corder and Decker
2019). For an overview of approaches related to machine
learning we refer to (Chen et al. 2023).

Problem Statement

The formal notion of a cooperative game is defined by a tu-
ple (N, v) consisting of a set of players N = {1,...,n} and
a value function v : P(N) — R that assigns to each subset
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Player 1 Player 2

Player n N ={1,2,3,4,5}
e Sample AT ~ P+

o Update all ¢; with i € AT
At ={1,3,5} € UT, U, U

— Update ¢}, ¢, o7

Alte%nate

e Sample A~ ~ P~

o Update all ¢; with i ¢ A~
A- = {1,3,5} € Uy, Uy
— Update ¢, , ¢

Figure 1: Illustration of SVARM’s sampling process and update rule: Each player i has two urns U;" := {S U {i} | S C N;}
and U;” := {S | S C N} containing marbles which represent coalitions, with mean coalition worth (b;-" and ¢; . SVARM
alternates between sampling coalitions AT ~ P* and A~ ~ P~. With each drawn coalition all estimates of those urns are
updated which contain the corresponding marble. Since each player’s two urns form a partition of the powerset P(N), all

players have exactly one urn updated with each sample.

of NV a real-valued number. The value function must satisfy
v(@) = 0. We call the subsets of A/ coalitions, N itself the
grand coalition, and the assigned value v(.S) to a coalition
S C N its worth. Given a cooperative game (N, v), the
Shapley value assigns each player a share of the grand coali-
tion’s worth. In particular, the Shapley value (Shapley 1953)
of any player i € N is defined as

b= Y S HSULN - S M)
sex e (i)

where N; := N\ {i} for each player i € A/. The term v(SU
{i})—v/(9) is also known as player i’s marginal contribution
to S C N; and captures the increase in collective benefit
when player 7 joins the coalition S. Thus, the Shapley value
can be seen as the weighted average of a player’s marginal
contributions.

The exact computation of all Shapley values requires the
knowledge of the values of all 2" many coalitions and is
shown to be NP-hard (Deng and Papadimitriou 1994). In
light of the exponential computational effort w.r.t. to n, we
consider the goal of approximating the Shapley value of
all players as precisely as possible for a given budget of
T € N many evaluations (accesses) of v in discrete time
steps 1,...,T. Since v((}) = 0 holds by definition, the eval-
uation of v()) comes for free without any budget cost. We
judge the quality of the estimates é1, ..., dn—which are
possibly of stochastic nature — obtained by an approxima-
tion algorithm after 7' many evaluations by two criteria that
have to be minimized for all ¢ € N. First, the mean squared

error (MSE) of the estimate (;ASZ is given by

- 2

E[(é: —¢:)]- @
Utilizing the bias-variance decomposition allows us to re-
duce the squared error to the variance V[¢;] of the Shapley

?In fact, only 2™ — 1 many coalitions, as v((}) = 0 is known.
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value estimate in case that it is unbiased, i.e. E[p;] = ¢;.

The second criterion is the probability of ngSZ deviating from
¢; by more than a fixed ¢ > 0:

P(|ds — dil >¢). 3)
Both criteria are well-established for measuring the quality
of an algorithm approximating the Shapley value.

SVARM

Thanks to the distributive law, the formula of the Shapley
value for a player ¢ can be rearranged so that it is not its
weighted average of marginal contributions, but the differ-
ence of the weighted average of coalition values by adding ¢
and the weighted average of coalition values without ¢:

¢i= Y ws-v(SU{i})— Y ws-v(S), @

SCN; SCN;

=:¢f =¢;
with weights wg = ﬁ for each S C N;. We call (ﬁ

s
the positive and ¢, the negative Shapley value, while we
refer to the collective of both as the signed Shapley values.
The weighted averages ¢j and ¢; can also be viewed as ex-
pected values, i.e., o] = E[v(SU{i})] and ¢; = E[v(S)],
where § ~ P" and P¥(S) = wg for all S C N;. Note
that all weights add up to 1 and thus P" forms a well-
defined probability distribution. In this way, we can approx-
imate each signed Shapley value separately using estimates
gf)j and 923; and combine them into a Shapley value estimate
by means of ngbl = ngSj - QAS;.

In light of this, a naive approach for approximating each
signed Shapley value of a player is by sampling some num-
ber of M many coalitions S, ..., S with distribu-
tion P* and using the sample mean as the estimate, i.e.,
oF = i Zf\jﬂ v(S™) U {i}). However, this would re-
quire all 2n signed Shapley values (two per player) to be



estimated separately by sampling coalitions in a dedicated
manner, each of which would lead to an update of only one
estimate. This ultimately slows down the convergence of the
estimates, especially for large n.

On the basis of the aforementioned representation of the
Shapley value, we present the Shapley Value Approxima-
tion without Requesting Marginals (SVARM) algorithm, a
novel approach that updates multiple Shapley value esti-
mates at once with a single evaluation of v. Its novelty con-
sists of sampling coalitions independently from two specifi-
cally chosen distributions P and P~ in an alternating fash-
ion, which allows for a more powerful update rule: each (in-
dependently) sampled coalition A* from P allows one to
update all positive Shapley value estimates éj of all pay-
ers ¢ which are contained in A7, i.e., i € AT. Likewise, for
a coalition A~ drawn from P, all negative Shapley value
estimates gf)j for i ¢ A~ can be updated.

It is worth noting that, for simplicity, we alternate evenly
between the samples from the P and P~ distributions, al-
though one could also use a ratio other than 1/2. To avoid
a bias, both distributions have to be tailored such that the
following holds for all : € A and S C N;:

P(A* = SU{i} | i € AT) = )
—P(A"=S|id A7) =wg.

For this reason, we define the probability distributions over
coalitions to sample from as

1
Pr(S)=————
)= a1z,

B

where H,, = >_;'_, 1/k denotes the n-th harmonic number.
Note that both P™ and P~ assign equal probabilities to
coalitions of the same size, so that one can first sample the
size and then draw a set uniformly of that size. This pair of
distributions is provably the only one to fulfill the required
property (see Appendix C.1).

The approach of dividing the Shapley value into two parts
and approximating both has already been pursued (although
not as formally rigorous) via importance sampling (Covert,
Lundberg, and Lee 2019), allowing to update all n estimates
with each sample. Wang and Jia (2023) adopt the same rep-
resentation for the Banzhaf value, and coined the strategy of
updating all players’ estimates with each sampled coalition
the maximum sample reuse (MSR) principle. Their approxi-
mation algorithm is specifically tailored to the Banzhaf value
as it leverages its uniform weights wg = 2%1 and is thus,
at least not directly, transferable to the Shapley value.

In the following we describe SVARM'’s procedure with
the pseudocode of Algorithm 1. The overall idea of the sam-
pling and update process is illustrated in Figure 1. It starts
by initializing the positive and negative Shapley value esti-
mates qgf and qgi_ , and the number of samples c:r and c;
collected for each player i. SVARM continues by launching
a warm-up phase (see Algorithm 3 in Appendix B). In the
main loop, the update rule is applied for as many sampled

VS e PN)\{0}, (6)

P(8) = vS € PN\ {N}, (7)

Algorithm 1: SVARM
Input: N, 7T € N
o, b7 « Oforalli e N

—_

2: ¢f,c; + 1foralli e N

3: WarRMUP

4: t < 2n

5: whilet +2 < T do

6: Draw AT ~ PT

7:  Draw A~ ~ P~

8 vt <+ v(AT)

9: v+ v(47)

10:  fori e A++q(+> )
y ¢ o Fv

12: c;" — c;" +1

13:  end for

14: forie N\ A~ do
71— ¢ b tv—

16: c; <c¢ +1

17:  end for

180 t+t+2
19: end while
20: ¢; + ¢ — ¢ foralli € N

Output: qAﬁl, cee q%n

pairs of coalitions A* and A~ as possible untii SVARM
runs out of budget. In each iteration A" is sampled from
P* and A~ from P~. The worth of AT and A~ is evalu-
ated and stored in v and v, requiring two accesses to the

value function. The estimate (;AS;* of each player i € AT is
updated with the worth /(A7) such that ¢; is the mean of

sampled coalition values. Likewise, the estimate ¢, of each
playeri ¢ A~ is updated with the worth v(A™). At the same
time, the sample numbers of the respective signed Shapley
value estimates are also updated. Finally, SVARM computes
its Shapley value estimate b; of ¢; for each i according to
Equation (4). Note that since only the quantities ngSjr, quS* ¢

LS )
and ¢ are stored for each player, its space complexity is in
O(n). Moreover, SVARM is incremental and can be stopped
at any time to return its estimates after executing line 20, or

it can be run further with increased budget.

Theoretical Analysis. In the following we present theo-
retical results for SVARM. All proofs are given in Section C
of the technical appendix. For the remainder of this section
we assume that a minimum budget of 7' > 2n + 2 is given.
This assumption guarantees the completion of the warm-up
phase such that each positive and negative Shapley value es-
timate has at least one sample and an additional pair sampled
in the loop. The lower bound on 7' is essentially twice the
number of players n, which is a fairly weak assumption. We
denote by T' := T' — 2n the number of time steps (budget)
left after the warm-up phase. Moreover, we assume 7 to be
even for sake of simplicity such that a lower bound on the
number of sampled pairs in the main part can be expressed
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Player 1 Player 2

+ +
Uy Uso

. of o
mean: ¢ g mean: ¢, g

Player n

o Sample 5 ~ P

e Sample A uniformly
with size s

e Update all cﬁkl
withie A

e Update all (;);
with i ¢ A
N ={1,2,3,4,5},
s=3, A={1,3,5}:

— Update c;b(;?_ oy

— Update ¢ 5, ;3

Figure 2: Illustration of Stratified SVARM’s sampling process and update rule: Each player i has urns U, je ={SuU{i}|SC
Ni,|S| = £} and U, == {S | S CN;,|S| =} forall £ € {0,...,n — 1}, 2n in total, containing marbles which represent
coalitions, with mean coalition worth gzbzfz and gf);’e. Stratified SVARM samples in each time step ¢ a coalition A; € N and

updates the estimates of all players’ urns that contain the corresponding marble. Since each player’s urns form a partition of the
powerset P(N), all players have exactly one urn updated with each sample.

by % — n. We begin with the unbiasedness of the estimates
maintained by SVARM allowing us later to reduce the mean
squared error (MSE) of each estimate to its variance.

Theorem 1. The Shapley value estimate ngSZ ofanyi € N
obtained by SVARM is unbiased, i.e.,

El¢i] = 5.
Next, we give a bound on the variance of each Shapley value
estimate. For this purpose, we introduce notation for the
variances of coalition values contained in (bj and ¢; . For
arandom set A; C N; distributed according to P* let

o = V(A U{i})] ando; ? = V[(4)].  ®)
Theorem 2. The variance of any player’s Shapley value es-
timate ¢; obtained by SVARM is bounded by

V(g < Q;In (of

2 + o_i_Z).

Combining the unbiasedness in Theorem 1 with the latter
variance bound implies the following result on the MSE.

Corollary 1. The MSE of any player’s Shapley value esti-
mate ¢; obtained by SVARM is bounded by

B[(6: - 90)"] < 7"

2 2
(O'i+ +o; ).

. . 2 _2,
Assuming that each variance term o~ and o ~ is bounded

by some constant independent of n (and 7T'), the MSE bound
in Corollary 1 is in (’)(ITO%) and so is the variance bound
in Theorem 2. Note that this assumption is rather mild and
satisfied if the underlying value function is bounded by con-
stants independent of n, which again is the case for a wide
range of games and in particular in explainable Al for global
and local feature importance based on classification proba-
bilities lying between 0 and 1. Further, as T is growing lin-
early with n by assumption, the denominator is essentially
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driven by the asymptotics of 7. Thus, the dependency on
n is logarithmic, which is a significant improvement over
existing theoretical results having a linear dependency on
n like O(%) for ApproShapley (Castro, Gémez, and Tejada
2009) or possibly worse (Simon and Vincent 2020). Finally,
we present two probabilistic bounds on the approximated
Shapley value. The first utilizes the variance bound shown
in Theorem 2 by applying Chebyshev’s inequality.
Theorem 3. The probability that the Shapley value estimate
¢; of any fixed player i € N deviates from ¢; by a margin
of any fixed € > 0 or greater is bounded by

P — 1] > €) < 220 (572 1 o2,

e?T
The presented bound is in O(%) and improves upon the
bound derived by Chebyshev’s inequality of O(7) for Ap-
proShapley (Maleki et al. 2013). Our second bound derived
by Hoeffding’s inequality is tighter, but requires the intro-
duction of notation for the ranges of v(A4;) and v(A4; U {i}):

= maxv(SU{i)) - min v(SU{D), )

ﬁ
|

?

K2

T = A v(S) — Join v(S). (10)
Theorem 4. The probability that the Shapley value estimate
g&i of any fixed player i € N deviates from ¢; by a margin
of any fixed € > 0 or greater is bounded by

P(|6i — 1] > €) < 2¢” 77 +4—

’

—_

where U = 27 /(74 4572,

Note that this bound is exponentially decreasing with T’
and can be expressed asymptotically as O(e_UOTg;TSE). In
comparison, the bounds of O(e_%) for ApproShapley,

O(ne™ %) for Stratified Sampling (Maleki et al. 2013), and
the projected SGD variant (Simon and Vincent 2020) show
worse asymptotic dependencies on 7 in comparison.



Stratified SVARM

On the basis of the representation of the Shapley value in
Equation (4), we develop another approximation algorithm
named Stratified SVARM to further pursue and reach the
maximum sample reuse principle. Its crux is a refinement of
SVARM obtained by stratifying the positive and the negative
Shapley value (b;r and ¢; . We exploit the latter to develop an
even more powerful update rule that allows for updating all
players simultaneously with each single coalition sampled.
Both, gﬁj_ and ¢; can be rewritten using stratification such
that each becomes an average of strata, whereas the strata
themselves are averages of the coalitions’ worth:

n—1
1 1
o == i Y w(SUfi)) = Zm, (an
n =0 ( 0 )SQJ\/}
|S]=¢
B 1 n—1 1 1 n—1 B
by == > (S ==Y 6, (12)
ni= (") SCN, "0
|ST=¢

We call gi):fé the ¢-th positive Shapley subvalue and ¢, the /-

th negative Shapley subvalue forall £ € £ := {0, ... X n—1}.
Now, we can write ¢; as

1 n—1
I + =
=D b~ dip (13)
£=0

Note that this representation of ¢; coincides with Equation 6
in (Ancona, Oztireli, and Gross 2019). Intuitively speaking
at the example of ¢ (and analogously for ¢; ), we partition
the population of coalitions contained in ¢; into n strata.
Each stratum d) comprises all coalitions which include the
player ¢ and have cardinality ¢ + 1. Instead of sampling di-
rectly for ¢, the stratification allows one to sample coali-

tions from each stratum, obtain mean estimates (ﬁe, and ag-

gregate them to
1 n—1 R
=529 (14)
£=0

in order to obtain an estimate for ¢;. Due to the increase
in homogeneity of the strata in comparison to their origin
population, caused by the shared size and inclusion or ex-
clusion of ¢ for coalitions in the same stratum, one would
expect the strata to have significantly lower variances and
ranges resulting in approximations of better quality com-
pared to SVARM. In combination with our bounds shown
in Theorem 2 and Theorem 4, this should result in approxi-
mations of better quality. In the following we present further
techniques for improvement which we apply for Stratified
SVARM (Algorithm 2).

Exact Calculation. First, we observe that some strata
contain very few coalitions. Thus, we calculate
(;52 0,(;52 33 Zn 1:¢;1, and qﬁz n_1 for all players
exactly by evaluatmg v for all coalitions of size 1,n— 1, and
n. This requires 2n + 1 many evaluations of v (see Algo-
rithm 5 in Appendix B). We already obtain ¢; , = v(0)) =0

Algorithm 2: Stratified SVARM
Input: N, 7T € N

1: gz@jfz,éi_)e +— Oforalli € Nand/ € L
¢l iy Oforalli e Nandl € £

EXACTCALCULATION(N)
WarMUp T (N)
WarMUP ~ (N)

tezn+1+zz( ]

while ¢t < T do
Draw s; ~ P
9:  Draw A, from {S C NV | |S| = s;} uniformly
10:  UppaTE(A)
11: t+—t+1
12: end whlle

13: gi)z<—n2¢>

Output: (;51, RN

® R D

Mforallze./\/

by definition. As a consequence, we can exclude the sizes
0,1,n — 1, and n from further consideration. We assume for
the remainder that n > 4, otherwise we would have already
calculated all Shapley values exactly.

Refined Warm-Up. Next, we split the warm-up into two
parts, one for the positive, the other for the negative Shapley
subvalues (see Algorithm 6 and 7 in Appendix B). Each col-

lects for each estimate qgh or (ii_é’ respectively, one sample

and consumes a budget of Z::_QQ (ﬂ .

S

Enhanced Update Rule. Thanks to the stratified repre-
sentation of the Shapley value, we can enhance SVARM’s
update rule and update with each sampled coalition A; C N

the estimates ngl A1 for all i € A; and g?);‘ Ayl for all

i ¢ A;. Thus, we can update all estimates ¢; at once with
a single sample. This enhanced update step is given in Al-
gorithm 4 (see Appendix B) and illustrated in Figure 2. In
order to obtain unbiased estimates, it suffices to select an ar-
bitrary size s of the coalition A to be sampled and draw A
uniformly at random from the set of coalitions with size s.
We go one step further and choose not only the coalition A,
but also the size s randomly according to a specifically tai-
lored probability distribution P over {2,...,n — 2}, which
leads to simpler bounds in our theoretical analysis in which
each stratum receives the same weight. We define for n even:

nlogn—1 lfS < n—2
25nlogn(H%,1—1) - 2
P — 1 ifs=1
P(s) == { 7ogn 1 ifs=3
nlogn—1 otherwise
2(nfs)n10gn<H%,lfl)
- if s < ”T—l

and for n odd: ]5(5) = otherwise
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Note that Stratified SVARM is incremental just as SVARM,
but in contrast, requires quadratic space O(n?) as it stores
estimates and counters for each player and stratum.

Theoretical Analysis. Similar to SVARM, we present in
the following our theoretical results for Stratified SVARM.
All proofs are given in Appendix D. Again, we assume a
minimum budget of T > 2n + 1+ 23" 2 [2] = W €
O(nlogn), guaranteeing the completion of the warm-up
phase, and denote by T = T — W the budget left after the
warm-up phase. We start by showing that Stratified SVARM
is not afflicted with any bias.

Theorem 5. The Shapley value estimate quSZ ofanyi € N
obtained by Stratified SVARM is unbiased, i.e.,
Next, we consider the variance of the Shapley value es-

timates and quickly introduce some notation. Let A4; , C
N; be a random coalition of size ¢ distributed with

P(4ie=5)=(",") ' Define the strata variances

=V [p(Ase)]. (15)

Theorem 6. The variance of any player’s Shapley value es-
timate ¢; obtained by Stratified SVARM is bounded by

2logn w3, 2
Vig:] < T ZU;,_Z + 00
=1

ot == V(A U{i})] and o},

Together with the unbiasedness shown in Theorem 5, the
variance bound implies the following MSE bound.

Corollary 2. The MSE of any player’s Shapley value esti-
mate ¢; obtained by Stratified SVARM is bounded by

210gn _ 2
E[(¢; — ¢:1)%] < ZUM 001 -

With our choice of the sampling distribution P we achieved
an easily interpretable bound on the MSE in which each stra-
tum variance is equally weighted. Assuming that each stra-
tum variance is bounded by some constant independent of

n, the MSE bound in Corollary 2 is in O(%). Note
that, by assumption, 7" is growing log-linearly with n so that
the denominator is essentially driven by the asymptotics of
T. Again, compared to existing theoretical results, with lin-
ear dependence on n, the logarithmic dependence on n is a
significant improvement. Still, it is worth emphasizing that
the more homogeneous strata with lower variances consti-
tute the core improvement of Stratified SVARM, which are
not reflected within the O-notation. Our first probabilistic
bound is obtained by Chebyshev’s inequality and the bound
from Theorem 6.

Theorem 7. The probability that the Shapley value estimate
@; of any fixed player i € N deviates from ¢; by a margin
of any fixed € > 0 or greater is bounded by

R 210gn 2
P(|p; — ¢i| > €) < =T Z Tig +UM+1-
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Lastly, our second probabilistic bound derived via Hoeffd-
ing’s inequality is tighter, but less trivial. It requires some
further notation, namely the ranges of the strata values:

+ . . _ . .
rl, = Sgﬁﬁ}é:l v(SU{i}) Sg\%zl&:ey(s u{i}),
(16)
T = ngftﬁ)é:E v(S) — Sg/\%;ﬁﬂ:@ v(S). (17)

Theorem 8. The probability that the Shapley value estimate
¢; of any fixed player i € N deviates from ¢; by a margin of

any fixed € > 0 or greater is bounded by P(|¢; — ¢;| > ¢€)
s Y]]
< 2(n — 3) e 8nZ(logn)? 271 ,
eV _

2
where ¥ = 252"2/< E s z+1> .

T—nlogn

This bound is of order O(ne ~*(oen)? ) showing a slightly
worse dependency on n compared to Theorem 4 due to the
introduction of strata.

Empirical Results

To complement our theoretical findings, we evaluate our al-
gorithms and its competitors on commonly considered syn-
thetic cooperative games and explainable Al scenarios in
which Shapley values need to be approximated. In partic-
ular, we select parameterless algorithms that do not rely on
provided knowledge about the value function of the prob-
lem instance at hand, since ours do not either. Besides the
sampling distribution P over coalition sizes proposed for
Stratified SVARM (S-SVARM), we also consider sampling
with the simpler uniform distribution over all sizes from 2 to
n — 2 (S-SVARM uniform). In order to allow for a fair com-
parison with KernelSHAP, which samples coalitions without
replacement, we include with S-SVARM™ (uniform) an em-
pirical version of S-SVARM without the warm-up that also
samples without replacement to compensate for this under-
lying advantage (see Algorithm 8 in Appendix B), which ob-
viously comes at the price of space complexity linear in 7.

We run the algorithms multiple times on the selected
game types and measure their performances by the mean
squared error (MSE) averaged over all players and runs de-
pending on a range of fixed budget values 7". Measuring the
approximation quality by the MSE requires the true Shapley
values of the considered games to be available. These are
either given by a polynomial closed-form solution for the
synthetic games (see Section 6.1) or we compute them ex-
haustively for our explanation tasks (see Section 6.2). The
results of our evaluation are shown in Figure 3 and are pre-
sented in more detail in Appendix F.

As already said, we judge the algorithms’ approximation
qualities in dependence on the spent budget (model eval-
uations) 1" instead of the consumed runtime. In fact, the
algorithms differ in actual runtime. For example SVARM
performs less arithmetic operations than Stratified SVARM

since it does not update all players’ estimates g;;L or gﬁf
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Figure 3: Averaged MSE and standard errors over 100 repetitions in dependence of fixed budget 7T": (1) Airport game, (2) Shoe
game, (3) SOUG game, (4) NLP sentiment analysis, (5) Image classifier, (6) Adult classification.

with each sample. Some algorithms, e.g. KernelSHAP, vary
strongly in their time consumption per sample since a costly
quadratic optimization problem needs to be solved after
observing all samples. We intentionally avoid the runtime
comparison for three reasons: (i) the observed runtimes
may differ depending on the actual implementation, (ii) the
fixed-budget setting facilitates a coherent theoretical analy-
sis where the observed information is restricted, (iii) evaluat-
ing the worth of a coalition poses the bottleneck in explana-
tion tasks, rendering the difference in performed arithmetic
operations negligible.

Synthetic Games

Cooperative games with polynomial closed-form solutions
of their Shapley values are well suited for tracking the ap-
proximation error for large player numbers. We exploit this
fact and investigate a broad range of player numbers n which
are significantly higher than those for the explanation tasks.
We conduct experiments on the predefined Shoe and Air-
port game as done in (Castro, Gémez, and Tejada 2009;
Castro et al. 2017). Their degree of non-additivity poses a
difficult challenge to all approximation algorithms. Further,
we consider randomly generated Sum of Unanimity Games
(SOUG) games (van Campen et al. 2018) which are capable
of representing any cooperative game. The value function
and Shapley values of each game are given in Appendix E.
We observe that S-SVARM itself already shows reli-
ably good approximation performance across all consid-
ered games and budget ranges. It is significantly superior to
its competitors ApproShapley and KernelSHAP and as ex-
pected, S-SVARM™ extends the lead in approximation qual-
ity even more. In contrast, SVARM can rarely keep up with
its refined counterpart S-SVARM. However, in light of the
bounds on the MSEs in Corollary 1 and 2 this is not surpris-

ing: SVARM’s MSE bound scales linearly with the variances

2 _2 i, . .
o " and o] of all coalition values containing respectively

L . 2
not containing ¢, while the relevant variance terms Uje and

oy ZQ for S-SVARM are restricted to coalitions of fixed size.
In most games, the latter terms are significantly lower since
coalitions of the same size are plausibly closer in worth. Fi-
nally, S-SVARM is quite robust regarding the magnitude of
the standard errors.

Explainabality Games

We further conduct experiments on cooperative games stem-
ming from real-world explainability scenarios, in particu-
lar, use cases in which local feature importance of machine
learning models are to be quantified via Shapley values.
The NLP sentiment analysis game is based on the Distil-
BERT (Sanh et al. 2019) model architecture and consists of
randomly selected movie reviews from the IMDB dataset
(Maas et al. 2011) containing 14 words. Missing features
are masked in the tokenized representation and the value of
a set is its sentiment score. In the image classifier game, we
explain the output of a ResNet18 (He et al. 2016) trained on
ImageNet (Deng et al. 2009). The images’ pixels are sum-
marized into n = 14 super-pixels and absent features are
masked with mean imputation. The worth of a coalition is
the returned class probability of the model (using only the
present super-pixels) for the class of the original prediction
which was made with all pixels being present. For the adult
classification game, we train a gradient-boosted tree model
on the adult dataset (Becker and Kohavi 1996). A coalition’s
worth is the predicted class probability of the true income
class (income above or below 50 000) of the given datapoint
with the absent features being removed via mean imputa-
tion. Since no polynomial closed-form solution exists for
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the Shapley values in these games, we compute them ex-
haustively, limiting us to a feasible number of players for
which we can track the MSE. While this restricts us to a
player number (tokens, superpixels, features) of n = 14 due
to limited computational resources, this is arguably still an
appropriate and commonly appearing number of entities in-
volved in an explanation task. We refer to Appendix E for a
more detailed explanation of the chosen games.

A first observation is the close head-to-head race be-
tween S-SVARM™ and KernelSHAP across the considered
games leaving all other methods behind. Thus, S-SVARM*
is the first sample-mean-based approach achieving rivaling
state-of-the-art approximation quality. KernelSHAP’s coun-
terpart Unbiased KernelSHAP, designed to facilitate approx-
imation guarantees similar to our theoretical results which
KernelSHAP lacks, is clearly outperformed by S-SVARM.
Given the consistency demonstrated by S-SVARM and S-
SVARMT, we claim that both constitute a reliable choice
under absence of domain knowledge. We conjecture that the
reason for the slight performance decrease of S-SVARM
from synthetic to explainability games lies not only within
the latent structure of v, but is also caused by the lower
player numbers. As our theoretical results indicate, its sam-
ple efficiency grows with n due to its enhanced update rule.
However, conducting experiments with larger n becomes
computationally prohibitive for explainability games, since
the Shapley values have to be calculated exhaustively in or-
der to track the approximation error. Further, our results in-
dicate the robustness of S-SVARM(™) w.r.t. the utilized dis-
tribution P, which allows us to use the uniform distribution
without performance loss, and secondly shows that our de-
rived distribution is not just a theoretical artifact, but a valid
contribution to express simpler bounds which are easier to
grasp and interpret.

Conclusion

We considered the problem of precisely approximating the
Shapley value of all players in a cooperative game under the
restriction that the value function can be evaluated only a
given number of times. We presented a reformulation of
the Shapley value, detached from the ubiquitous notion of
marginal contribution, facilitating the approximation by esti-
mates of which a multitude can be updated with each access
to the value function. On this basis, we proposed two ap-
proximation algorithms, SVARM and Stratified SVARM,
which have a number of desirable properties. Both are
parameter-free, incremental, domain-independent, unbiased,
and do not require any prior knowledge of the value func-
tion. Further, Stratified SVARM shows a satisfying compro-
mise between peak approximation quality and consistency
across all considered games, paired with unmatched theo-
retical guarantees regarding its approximation quality. While
fulfilling more desirable properties and not having to solve
a quadratic optimization problem of size 7' in comparison
to the state-of-the-art method KernelSHAP, effectively dis-
abling on-the-fly approximations, our simpler sample-mean-
based method Stratified SVARM™ can fully keep up in com-
mon explainable Al scenarios, and even shows empirical su-
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periority on synthetic games.

Limitations and Future Work. The quadratically grow-
ing number of strata w.r.t. n might pose a challenge for
higher player numbers, which future work could remedy by
applying a coarser stratification that assigns multiple coali-
tion sizes to a single stratum. One could investigate the em-
pirical behavior in further popular explanation domains such
as data valuation, federated learning, or neuron importance
and extend our evaluation to scenarios with higher player
numbers. Since the true Shapley values are not accessible for
larger n, a different measure of approximation quality than
the MSE needs to be taken for reference. The convergence
speed of the estimates is a naturally arising alternative. Our
empirical results give further evidence for the non-existence
of a universally best approximation algorithm and encourage
future research into the cause of the observed differences in
performance w.r.t. the game type. Further, it would be inter-
esting to analyze whether structural properties of the value
function, such as monotonicity or submodularity, have an
impact on the approximation quality of both algorithms.
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Abstract. Over the last decade, the Shapley value has become one of
the most widely applied tools to provide post-hoc explanations for black
box models. However, its theoretically justified solution to the problem
of dividing a collective benefit to the members of a group, such as fea-
tures or data points, comes at a price. Without strong assumptions,
the exponential number of member subsets excludes an exact calcula-
tion of the Shapley value. In search for a remedy, recent works have
demonstrated the efficacy of approximations based on sampling with
stratification, in which the sample space is partitioned into smaller sub-
populations. The effectiveness of this technique mainly depends on the
degree to which the allocation of available samples over the formed strata
mirrors their unknown variances. To uncover the hypothetical potential
of stratification, we investigate the gap in approximation quality caused
by the lack of knowledge of the optimal allocation. Moreover, we com-
bine recent advances to propose two state-of-the-art algorithms Adap-
tive SVARM and Continuous Adaptive SVARM that adjust the sample
allocation on-the-fly. The potential of our approach is assessed in an
empirical evaluation.

Keywords: Shapley Value - Cooperative Games - Explainable
Artificial Intelligence - Feature Importance

1 Introduction

Over the last decade, machine learning models exhibited a significant increase
in complexity, turning them eventually into non-transparent black boxes that
seemingly resist any attempt to transfer their inner workings to a level of human
comprehension. Meanwhile, developers are confronted with a recent rise in soci-
etal and legal pressure to ease understanding of their decision-making and thus
provide trustworthiness, as for example the EU AI Act [1]. A common approach
to deal with this rising demand is by providing post-hoc feature explanations.
Additive feature explanations divide an observed numerical effect among the
available features used by the applied model. This allows for interpreting the
The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

. Longo et al. (Eds.): xAI 2024, CCIS 2154, pp. 489-512, 2024.
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part assigned to a feature as its individual contribution to the effect of inter-
est. Here, one commonly distinguishes between two feature explanation types.
On the one hand, local explanations consider the model’s prediction outcome
for a single data point of interest as the effect to be split up, called feature
attribution [20]. On the other hand, global explanations quantify the features’
individual contributions to the generalization performance of the model on a
chosen set of data points, also known as feature importance [8|.

An established way to additively decompose an effect is by adopting a game-
theoretical view. Cooperative games capture the spirit that features are agents
or players which can form groups, called coalitions, and perform a task together,
for which the group receives a numerical reward. Constructing this reward mech-
anism fittingly as the prediction value or the generalization performance elicits
local, respectively global explanations. This in turn reduces the explanation task
to finding an appropriate partition of the collective benefit obtained by all play-
ers cooperating together. The so far most popular solution to the problem of
assigning fair payoffs is the Shapley value [29], since it is the only solution to
provably fulfill desirable axioms that one would demand from such a partition.
The Shapley value of a player can be understood as the weighted average of
its marginal contributions to all coalitions, with the marginal contribution of
a player to a coalition simply being the increase in received reward that the
inclusion of that player causes. Unfortunately, it entails an inherent drawback.
As its formula contains the rewards of all possible coalitions (feature subsets),
the Shapley value’s computational complexity is exponential w.r.t. the number
of involved players in the game, turning quickly intractable in practice.

Current research on tackling this problem goes in two directions. By assum-
ing a tightly restricted model type and reward mechanism, one stream of works
reduces its computation to polynomial time for feature attribution [19,20]. How-
ever, these approaches are neither model-agnostic nor fruitful for feature impor-
tance. Even more importantly, the Shapley value found its way into numerous
more areas, spanning from data valuation [12,16] to quantifying the contribu-
tion of base learners in ensembles [27] and neurons in deep networks [13], and
well beyond machine learning such as for example economics [3]|. For a broader
overview in machine learning we refer to [28]. Hence it is of vital importance to
tackle the problem on a more abstract and domain-independent level that allows
to transfer solutions. The second stream does justice to this assessment and pro-
poses to approximate the Shapley value with barely any underlying assumptions
(see Sect.2). Most approximation methods strike a balance between precision
and approximation time by returning sample-based mean-estimates.

Among these, the technique of stratification has been employed by a number
of algorithms. Stratification takes advantage of the observation that coalitions
of the same size may tend to obtain similar rewards. Grouping them by size
creates subpopulations, called strata, of higher homogeneity w.r.t. the coalitions’
rewards than then population of the whole power set of players. The increase in
homogeneity, or the reduction in variance in other words, speeds up sample-based
mean estimation, as subestimates for each stratum converge faster. The key to
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exploit this technique to its fullest is an allocation of available samples that
prioritizes strata with higher variance. However, this comes with two hurdles.
First, the optimal allocation has to be derived analytically after investigating
the algorithm’s precision depending on each stratum’s variance and the number
of samples spent on it. And second, the stratum variances are a priori unknown
and can only be estimated. We call approaches oblivious to these variances with
a fixed sample allocation static, and those that adjust their allocation during the
approximation process by learning from the observed samples adaptive.

Contribution. Despite first refinements offered in the literature, the hypothetical
potential of stratification using the optimal allocation is left unexplored. Assess-
ing it would not only shed light on the gap that current stratifying methods have
to close, but also reveal what performance improvements are to be expected at
most. Moreover, adaptive methods have only been proposed for the class of
approaches that sample marginal contributions, while the more recent class of
sampling coalition-reward pairs Stratified SVARM [18] is being left untouched
so far. Hence our contribution is divided into multiple parts:

— First, we reflect upon stratification for Shapley approximations and establish
guiding terminology in Sects. 4 and 6.

— We derive the theoretically optimal sample allocation for the state-of-the-art
Stratified SVARM algorithm in Sect. 5.

— By transferring and improving adaptive techniques, we propose the enhanced
model-agnostic algorithms (Continuous) Adaptive SVARM in Sect. 7.

— Finally, we conduct an empirical evaluation of the benefit of adaptive com-
pared to static stratification for both sampling approaches in Sect. 8.

2 Related Work

Interpreting the Shapley value as a weighted average of marginal contributions
allows to also view it as an expectation of those and thus ApproShapley |[6]
approximates it by sampling marginal contributions, with further theoretical
guarantees provided in [21]. Following, [21]| introduced with Stratified Sampling
the stratification by size, employing a static sample allocation over the strata.
Structured Sampling [30] falls within this class too as it distributes the samples
uniformly over all strata. The first algorithms to consider adaptive stratification
were Standard Deviation Sampling [25] and St-ApproShapley-opt [5]. While the
former, represents a multi-armed bandit-based philosophy, the latter chases the
optimal allocation by estimating the strata’s variances. A more sophisticated
mechanism is employed by the Stratified Empirical Bernstein Method [4], which
evaluates for each sample to be drawn next the most promising stratum. Further
model-agnostic methods relying on the notion of marginal contributions are given
in [15,22,26]. Shifting to sampling coalition-reward pairs, [7| divide the Shapley
value into two sums, for which [18] propose and theoretically analyze Stratified
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SVARM. More outstanding, yet popular is KernelSHAP [20]. It exploits the
correspondence of the Shapley value to the solution of a weighted least square
optimization problem, which it approximately constructs with each observed
coalition, but does not allow to apply stratification.

3 The Shapley Value and Its Approximation

Cooperative games are formally represented by a tuple (N, ) comprising the set
of players N' = {1,...,n}, which we identify by natural numbers, and a value
function v : P(N) — R that assigns to each coalition S C N a real-valued worth
v(S). Despite its simplicity, this formalism possesses the capability of modelling
countless scenarios in which human or possibly nonhuman entities can form
groups to attain a collective benefit. Given the availability of the players in N,
the question of how to divide the worth v(N\) of the grand coalition N/ among all
members in equitable manner arises. The Shapley value [29] provides a solution
based on the notion of marginal contributions. We call the increase in worth
A;(S) :=v(SU{i}) — v(S) caused by the inclusion of player ¢ in presence of
a coalition S its marginal contribution to S. The Shapley value of any player
1 € N is given by a weighted average of its marginal contributions:

b= ﬁ-&(sy (1)
scagiy Vs

One can derive this formula by imposing the four axioms efficiency, symmetry,
additivity, and the dummy-property (see [28] for further explanations), which
capture a widely accepted intuition of fairness in the context of profit allocation.
The Shapley value is provably the only solution to fulfill all of these axioms
simultaneously [29]. This uniqueness arguably constitutes the key driver for its
popularity in and outside of XAI. However, it comes with the major drawback
of computational complexity. Without strong assumptions on the structure of v,
the exact computation of the Shapley value is NP-hard [10] because the number
of subsets grows exponentially fast with the number of players n. Approximations
are therefore needed to make the computation practically feasible.

We consider the fixed-budget setting in which all of the latent but unknown
Shapley values ¢1, ..., ¢, are to be approximated by estimates qgl, cee qAﬁn The
approximation algorithm is aware of A/, but has only restricted access to v in
the sense that the number of times it can evaluate the worth v(S) of any S is
limited by a fixed budget T'. We judge the approximation quality by the mean
squared error (MSE) averaged over all players:

MSE := %izﬁz l(d) - @)2] . 2)

The minimization of this measure is a widely demanded goal in the literature
given its accessibility in theory as well as for empirical measurements.
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4 Static Stratification

Since the Shapley value is a weighted mean of marginal contributions, it can
also be seen as the expected value of a probability distribution over marginal
contributions defined by the weights, thus, establishing mean estimates obtained
via sampling as a natural approximation. Generally speaking, the precision of
mean estimates, collected by randomly sampling from a distribution, depends on
the distribution’s variance. The lower the variance, the higher is the precision.
Although the population to draw samples from is already fixed, stratification
can still reduce the variance of the estimate. Instead of sampling from the whole
population, one can form a partition, dividing the population into multiple sub-
populations, called strata. By sampling from each stratum separately, mean esti-
mates are obtained for all strata, and these are aggregated to the desired estimate
of the whole population. This approach allows a more accurate approximation
if the strata are reasonably homogeneous, or in other words, have significantly

lower variances than the base population.
‘ = : ®

)

S()QN\{i}:‘S(]IZU SlgN\{i}:‘Sl‘ZI Szg/\/\{i}:l,Sg:Q
S S N\{i} E[v(So0)] = é;0 Blv(S1)] = é;, Blv(S2)] = ¢; 5
Ep(S)] = ¢;

Fig. 1. Stratification at the example of Stratified SVARM: The population of coalitions
S C N\ {i}, depicted as marbles in an urn, is partitioned into multiple strata by
grouping them by size. Aggregating the strata values ¢, , yields the desired average

¢, . The homogeneity of each stratum increases the precision of sample-based estimates.

Stratified approaches have been proposed for two different representations of
the Shapley value. First and most obviously, by viewing the individual marginal
contributions of a player as elements of the population to be stratified, as first
exemplified with Stratified Sampling by [21]. And second, [18] took advantage
of a representation that dispenses with the ubiquitous notion of marginal con-
tributions [2,7], based on averages of single coalition values. Stratifying this
representation, [18] propose Stratified SVARM, a mechanism that updates the
estimates of all players simultaneously with each sampled coalition.

We recapitulate both approaches in its simplest form proposed: static strat-
ification. With this term, we coin the ignorance regarding the strata variances,
which is reflected by an a priori allocation of samples over the strata. In other
words, the mechanism to select the stratum to be sampled from next is oblivious
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of the observations made and determined before the approximation task itself.
We assume to sample with replacement as done by most methods for the sake
of simplicity. All proofs of our theoretical results are given in Appendix B.

4.1 Stratified Sampling

Stratified Sampling proposed in [21] is the first algorithm to approximate a
player’s Shapley value based on stratification. The marginal contributions 4;(.S)
of a fixed player ¢ are grouped by the cardinality of S into n many strata.
Fittingly, the definition of the Shapley value uses this partition also from an
algebraic view, suggesting a convenient interpretation. For any ¢ € Lo =
{0,...,n — 1}, we define the /-th stratum value of player i as the average of
its marginal contributions to all coalitions of size ¢, i.e.

i = > A (3)
u

SCN \{%}
|S1=
Next, by building upon this notion, we retrieve the Shapley value as the uniform
average of the n many strata values:

1 n—1
== i (4)
£=0

The sampling procedure maintains an estimate qgi’g for each stratum, given by
the empirical mean of the independently sampled marginal contributions from
the according stratum. Note that each sampled marginal contribution A;(S)
consumes two budget tokens as both values v(S) and v(S U {i}) need to be
evaluated. The stratum value estimates are aggregated in the same manner as
the true values in order to obtain the final Shapley value estimate ¢Ez

Since each player has its own population of marginal contributions, we are
dealing with n separate approximation problems. In [21], the authors do not spec-
ify how to approximate the Shapley values of all players, though one can simply
divide the available budget T" among them and repeat the procedure for each
player. We denote by m,; , the number of sampled marginal contributions from
player i’s ¢-th stratum after the algorithm’s termination and call (m; ¢)ienr ter A
the sample allocation, capturing the sample numbers of all n? many strata. Worth
mentioning is the possibility that the sample numbers do not have to be fixed
beforehand. Instead, Stratified Sampling employs a static sample allocation: each
m;. e is fixed upon initialization. Given the variance aie = V[A;(S)] w.r.t. the
uniform probability distribution over all coalitions S C N \ {i} of size ¢ we can
express the achieved MSE.

Theorem 1. The mean squared error of Stratified Sampling using any static
sample allocation (M ¢)ien pec, With m; g >1 for alli € N and ¢ € LA is
n—1

LI (G EE b oecn

1=1 £=0
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The condition m; , > 1 for all strata implies that each stratum gets assigned at
least one sample which is necessary to avoid any bias of the final estimate &i,
ie. E[(iz] = ¢;. In fact, under this condition even the strata estimates themselves
are unbiased. For technical reasons, [21] specifies an allocation that increases
with coalition size, irrelevant for our objective of MSE minimization. Instead,
one could simply distribute the budget uniformly over all players and strata by
assigning m; » = 5=, leading to an MSE of

%gﬁl@i—@f} TN g

For the sake of simplicity, we assume that the assigned fraction to m;, is a
natural number and save ourselves the effort of rounding the sample allocation
otherwise. Even further, one can save some budget by taking into account that
the strata ¢ = 0 and ¢ = n — 1 contain exactly one marginal contribution,
reducing the variances 030 and o? n—1 to zero for all i. The shared coalition
values v(()) and v(N) can be reused saving a budget of 2n — 2. Hence, one could

set m; o = m; n—1 to 1 for all players and split the remaining budget evenly, i.e.
Mig = gy forall €€ Ly :={1,...,n =2} with T :=T — 2n — 2.

4.2 Stratified SVARM

Departing from marginal contributions, the second representation suitable for
stratification separates the Shapley value into two sums qb;“ and ¢; :

b= Y s Y ———u(S). (0

SCA\fi} Y (s1) SCA\fi} Y (s)

J/ N >4

=67 =iy

Instead of approximating each sum separately, both weighted averages of coali-
tion values are further stratified by the size of S in [18], illustrated in Fig. 1. For
each player ¢ and size ¢ € L A, the following strata values are thus obtained:

( 11) S u(SU{i}) and o, = ﬁ S us). ()
0 SCN; )4 SCN;
|S]=¢ |S]=¢

+
Pip =

The interpretation is simple and appealing: Each stratum value qb;% is the uni-
form average of all coalitions of size £+ 1 that include 7. An analogous statement
can be made for ¢, ,. The Shapley value can then be written as

1n—1 1n—1
:E;@fg—ﬁ;ﬁb;g- (8)
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Update Mechanism. In contrast to Stratified Sampling, which samples from each
stratum separately, Stratified SVARM reuses each sampled coalition A to update
at least one stratum estimate (b o Or ¢ ¢ of each player, thereby getting the most
out of the information observed. This is made possible by the observation that
for any player i and any player subset A, v(A) is either a part of (ZSZTI Al-1 ifi € A,
or otherwise a part of ¢Z| Al if i ¢ A. As a consequence, this effectively reduces
the number of strata to sample from to n + 1, one for each subset size, captured
by £, := {0,...,n}. In each time step a subset size to sample from is chosen
and the sampled coalition of that size is used for the update mechanism. Note
that in comparison to the sampling of marginal contributions, here each sample
only consumes one budget token instead of two.

Warmup. Similar to Sect. 4.1 we define m;“é and m,_, as the number of sampled

coalitions used to update (;5;}, or Qgi_,e respectively, for each i € N and £ € L. As
we proposed in Sect. 4.1 for Stratified Sampling, [18] made use of the fact that
some strata contain only a few coalitions. Stratified SVARM computes the strata
values ¢, g, qbz 0> Pi1s qbz n—29;. n_l,gé:n_l exactly for all players by evaluating
all coalitions of size 0, 1, n — 1, and n at the price of 2n 4+ 2 budget tokens.
This reduces the number of subset sizes to choose from to n — 3. To guarantee
unbiasedness, [18] introduce a warmup procedure preceding the sampling such
that each of the remaining 2n? — 2n strata is covered by at least one sample,
ie. m&, m; , > 1. It consumes a budget of W := 2 22;22 [2] and we denote the
remaining budget left for sampling as T := W + 2n + 2.
Further, we let m, be the number of sampled coalitions of size ¢ after the
warmup for each ¢ € L/ := {2,...,n — 2}. Note that although the numbers
+ and m, , are determining the approximation quality, the algorithm is only
ﬁxmg an allocatlon on the level of the subset sizes, 1e (my¢)eec: . Here, again,
given a static sample allocation and the variances o7, , := V[y(S U {i})] and
01.2,&_ := V[r(9)] w.r.t. the uniform probability distribution over all coalitions
S C N\ {i} of size £, we can express a bound on the MSE.

Theorem 2. The mean squared error of Stratified SVARM using any static
sample allocation (my)ecr: s bounded by

2 1n—21 n : 2,
e @)]én—gﬁ} iy 2t

A subtle difference is that [18] selects the coalition size randomly according to a
fixed probability distribution. The expected sample allocation can be interpreted
as the chosen static allocation since it is not influenced by the observations made
during sampling. Their proposed distribution is sophisticated, prioritizing subset
sizes close to zero and close to n at the cost of those further in the middle of the
spectrum in order to achieve a bound that equally weighs all strata variances. If
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we instead split the remaining budget equally such that m, = %, we obtain
1 - n 2 2 é 1 + z Z —
“\E ( _ ) 9
LB |(6-a) ] <2 )
i=1 =1 /=2

We demonstrate the sharpness of these bounds in Sect. 8.

5 Theoretically Optimal Allocation

The results shown above in Theorems 1 and 2 give rise to the question of how
small the MSE can possibly be, and motivate the search for the responsible opti-
mal sample allocation. For both sampling approaches Stratified Sampling and
Stratified SVARM, the impact of a stratum’s variance on the MSE is directly
linked to its sample number. Hence, it comes quite naturally to fine-tune the
sample allocation by adjusting it to the underlying variances. Obviously, these
variances are unknown such that the resulting MSE can only be achieved in the-
ory. However, this investigation will yield important insights, as we uncover the
theoretical limit on the MSE for each approach that no static sample allocation
can improve upon, thus showcasing the theoretical potential of stratification.

5.1 Optimal Stratified Sampling

In the pursuit of the optimal allocation, we minimize the MSE given in Theorem
1, while constraining the total number of evaluations according to the given
budget. This can be formulated as the following optimization problem:

” = ; zf
(M} o)ieneec,, = arg min = E §

(mie)ien eect, i=1=1 "

st 23 Y =T
mip € N Vie N, telly

In order to allow for a fair comparison with Stratified SVARM, we assume that
the strata £ = 0 and £ = n — 1 are already computed exactly (see Sect.4.1).
While the constraint on the sample numbers reflects the fact that no fractions of
samples can be taken, it also impedes the attempt to derive an analytical solution
of the problem. For this reason, we allow non-negative real-valued numbers, i.e.
substituting it by m; , € Ry Vi € N, £ € L, and call the resulting optimization
problem the relaxed sample allocation problem for marginal contributions.

Theorem 3. The solution to the relaxed sample allocation problem for marginal
contributions is given by the allocation

q

if

— T forallieN,leLl)
QZZ
j=1k=1

* —
m; ¢ =
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which yields the following mean squared error for Stratified Sampling:

1 n . 2 9 n n—2 2

= E(z_z):|:_~< Uy;,e) :

e (CRUl vy
Theorem 3 reveals that the optimal allocation partitions the budget among the
strata in proportion to their fraction of the total sum of stratum standard devi-
ations. This result is also known as the Neyman allocation [24]. It was discov-
ered previously by [5] to improve Stratified Sampling, though used incorrectly
by replacing the standard deviations with the variances. Some sample numbers
might fall below 1, although at least one sample is needed per stratum. We
fix this by rounding the sample allocation appropriately without violating the
constraint.

5.2 Optimal Stratified SVARM

We now transfer the optimization problem in search for the optimal allocation
from Stratified Sampling to Stratified SVARM. The objective function to be
minimized is our result on the MSE in Theorem 2. Although this is only an upper
bound, it does not significantly harm the meaningfulness of the solution to be
derived, since the inequality stems from a minor technical detail introduced for
the sake of readability. As a constraint, we impose again that the sum of samples
drawn has to equal the budget left after the warmup:

: 131 g Ole 14+ | Tii-
* _ v b )
(me)ees, = (mrf)ligﬁ,u n? EZ:; me ; l * n—1~{
n—2
s.t. my — T
=2
me € N Ve L,

Again, we relax this optimization problem by allowing the sample numbers to be
real-valued but non-negative, i.e. my € R>o V¢ € L£],. We name this relaxation
the relaxed sample allocation problem for coalitions.

Theorem 4. The solution to the relaxed sample allocation problem for coalitions
18 given by the allocation

n7—7€
=1 _
my = ‘T forallieN,teLl!,
n—2 noo,2 o2
Z Z ik—1,+ + % k,—
- k n—k
k=2 =1

which yields the following mean squared error for Stratified SVARM:
2

n n—2 n 2 2
1 2 2 1 Tip—1,+ , 9i4,—
_ E (Z_ Z) <_7 9 I 1Ty
n; l(b ¢ ]_RQT ;:2 ; 14 +n—€
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Similarly to Theorem 3, the optimal allocation for Stratified SVARM assigns each
coalition size £ a number of samples that depends on the proportion its associated
stratum variances contribute to the MSE bound. In contrast to the Neyman
allocation, the update mechanism dilutes the relationship between strata and
the sample numbers on the level of coalition sizes.

We dispense with an analytical comparison of the MSE given in Theorems
3 and 4 because the different variance notions of marginal contributions 01273
and coalition values O’Z 4/ of a specific game decide which approach offers the
better approximation potential. Instead, we compare both optimal allocations
empirically in Sect.8. For the same reason, we consider asymptotic notation
as inappropriate since it conceals the effect of small stratum variances, thus
doing injustice to the core idea of stratification. Worth mentioning is that if all
standard deviations are equal, both optimal allocations lead to the same MSE
as the uniform allocations proposed in Sect.4. The degree to which the former
improve upon the latter increases with the variability of the standard deviations.

6 Adaptive Stratification

It comes at no surprise that the MSE achieved by Stratified Sampling and Strat-
ified SVARM employing their respective optimal allocation (see Sect.5) is not
applicable in practice, since the stratum variances are unknown during approxi-
mation. Fortunately, overcoming this lack of information by estimating the stra-
tum variances with the means of the observed samples poses a promising remedy,
as it enables the adaptation of the sampling allocation during the approximation
process itself. We call this adaptive stratification. In contrast to static stratifi-
cation, the mechanism to select the stratum to be sampled from next is now
informed and utilizes this (possibly inexact) knowledge.

Pursuing this idea, all adaptive methods are confronted with the exploration-
exploitation dilemma. While adjusting the sample allocation according to the
obtained knowledge about the strata variances promises to achieve a more accu-
rate approximation, excessively exploiting it can even be harmful. Since it is
based on the variances’ estimates, it might lead to a poorly performing allocation
if these are not approximated precisely enough. Hence, it is of vital importance
to explore, i.e., to collect samples from strata with apparently low variances to
ensure a convergence to the optimal allocation. Otherwise, the algorithm might
be trapped in sampling too often from falsely assessed strata of high variance,
without having the chance to correct its estimated optimal allocation by sam-
pling more often from other strata. Performing exploration and exploitation to
the right degree is key to successful adaptive stratification. We shortly recapit-
ulate on current adaptive methods for Stratified Sampling in the following.

6.1 The Two-Phase Approach

One way to tackle the exploration-exploitation dilemma is by dividing both
into two separate phases. The Two-Staged-St-ApproShapley-opt algorithm [5]
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follows this motive as it samples in the first phase uniformly from all strata for
exploration, and switches to exploitation in the second phase. This is done by
estimating the optimal allocation w.r.t. the available budget T on the basis of
Theorem 3 in combination with the observed strata variances in the exploration
phase. Next, the algorithm calculates for each stratum the number of samples
to be drawn in the exploitation phase such that the sum of both phases matches
the estimated optimal allocation. Note that this is not guaranteed to be feasible,
since sample numbers may already exceed their counterparts within the optimal
allocation during exploration. Shortening the exploration phase reduces this risk,
but unfortunately, the quality of the strata estimates as well. This concern is not
dealt with in [5], where both phases are simply set to consume half of the total
budget. We observe that the algorithm wrongly deviates from the Neyman allo-
cation by considering the stratas’ variances instead of their standard deviations.

6.2 Bandit-Based Approach

Instead of demanding a strict separation, one can transition from exploration
towards exploitation in a more seamless manner. This paradigm is employed for
the approximation of the Shapley value of a single player by Standard Deviation
Sampling 25]. Instead of determining the sample numbers upfront it employs a
probability distribution over the strata to select the next draw. The closer this
distribution is to the proportions of the Newman allocation, the more exploita-
tion is performed on average. On the other side, full exploration can be modelled
by choosing a uniform distribution. The mix of both is achieved via a convex
combination with €(t) € [0, 1] being the weight for the uniform distribution at
timestep t € {1,...,T}, and respectively 1 — €(¢) for the estimated optimal
allocation. The degree of freedom to design the rate of the transition lies with
the function e. In [25], a sigmoid function with two parameters is chosen for
controlling the percentage of exploration and the transition speed. Obviously,
these are hyperparameters to be specified by the practitioner relying on domain-
knowledge. In light of our aim to remain model-agnostic, this poses a considerable
vulnerability to the robustness of the method.

6.3 Empirical Bernstein Bound

Continuing in the spirit of simultaneously performing exploration and exploita-
tion, the Stratified Empirical Bernstein Method [4] combines both in an even
more interwoven way. It relies on the Stratified Empirical Bernstein Bound [4],
which bounds the probability that an estimate gz%z deviates from ¢; by more than
some specific degree. The innovation of the algorithm is to greedily select in
each timestep the stratum that promises the highest reduction on the deviation
probability given by the bound. As the actual sample numbers are also part of
the considered degree of the deviation, the compromise between exploration and
exploitation is steered automatically by the bound itself without further algo-
rithmic intervention. In contrast to Standard Deviation Sampling, it comes with
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a different flaw that impedes any effective usage in the absence of rich domain-
knowledge: The bound assumes the ranges of all strata to be given, a requirement
that is hard to fulfill for cooperative games stemming from explanation tasks.

7 Adaptive Stratification of SVARM

The previously presented techniques are only introduced for the class of meth-
ods which sample marginal contributions. Hence, we close this gap in the cur-
rent literature by applying the two-phased approach to Stratified SVARM, as we
consider it to be the only adaptive technique without critical deficiencies. This
transfer yields Adaptive SVARM, and Continuous Adaptive SVARM in combi-
nation with a conceptual improvement, which we propose as new model-agnostic
approximation algorithms for the Shapley value.

7.1 Adaptive SVARM

We present our algorithm (see Algorithm 1) formally building upon Stratified
SVARM (see Sect.4.2) and our derived optimal allocation in Sect. 5.2. The pseu-
docode of the subprocedures is given in Appendix A.

Warmup. To begin with, all coalitions of the sizes 0,1,n — 1,n are evaluated to
compute all strata values ¢; o, ¢; 1, ¢; ,,_1, (bz 0 gﬁz 2> qbz n_1 exactly, captured by
EXACTCALCULATION (see Algorithm 4) Hence, Adaptive SVARM also maintains
stratum estimates éié for each i € N and ¢ € L. Next, we keep valid estimates
61.27& +/- of the variances by ensuring to have observed at least two samples

from each stratum. This is achieved by calling each procedure WarMUP™ and
WArMUP ™ (cf. Algorithm 6 and 7 in [18]) twice. In total this procedure leaves
T:=T —2n — 2 — 2W budget tokens for the remaining phases.

Ezploration Phase. In each timestep the size s € {2,...,n—2} of the next coali-
tion A to sample is determined in Round-robin fashion to mimic the uniform
allocation. Afterwards, A C A is drawn u.a.r. The UpDATE procedure (see Algo-
rithm 3) evaluates the worth of A once and incrementally updates the stratum

+/

estimates (ﬁjg/ - using the sample counters ¢, , . The computation of the variance
estimates and &2 ot/ is prepared by maintaining the sum of observed coalition

values Zj e/ and the sum of squared values Q+/ We specify the length of the
exploratlon phase by a parameter A € [0, 1] representmg the percentage of time
steps it consumes of the available budget T" after the warmup. Subsequently, the
phase stretches over NI many time steps. Assuming the latter to be a multiple
of the number of remaining sizes n — 3, each size is selected % many times.

Ezxploitation Phase. After completing the exploration phase, Adaptive SVARM
has (1—\)T many samples left for the exploitation phase, in which the previously
employed uniform allocation is extended to the estimated optimal allocation over
the budget T'. The procedure CALCULATEALLOCATION (see Algorithm 2) computes
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Algorithm 1 Adaptive SVARM

Input: N, T € N\ € [0,1]

11 b7y, 620 4,6%,_ « Oforallie N,Le L,

2: cje, M,EZ"'E,EM,QM,QM +—O0forallie N,Le L,
3: Cg<—0fora11€€£

4: EXACTCALCULATION

5: 2XWARMUPT; 2XWARMUP ™~

6: T+ T —2n—2-2W

7: fort=1,...,\T do

8 s« (t—1 modn—3)+2

9:  Draw A from {S C N | |S| = s} uniformly at random
10:  UppaTe(A)

11: end for

12: (M} )eeq2,...,n—2} < CALCULATEALLOCATION
13: t 1

14: fort <1,...,(1—\T do

15 s <4 arg minge,, ==

16:  Draw A from {S C ./\/ | |S| = s} uniformly at random
17:  UppaTe(A)
18: end for

19: ¢l<— Z(b o foralieN

~

Output: ¢1, ety On

the variance estimates on the basis of E+/ and Q+/ , and plugs them into
Theorem 4 to obtain the estimated optlmal allocatlon

52

~2
ik, —

z,k—1,+ 2k,
k + n—k

\/Z zz 1+_|_ :Lez
T forallie N,Le L, (10)
Z >

k=2 =1

where m; denotes the number of coalitions of size ¢ to be drawn in total in both

1 loit . .
phases. Let m,*"°" and m;" ° he the number of coalitions of size ¢ drawn dur-

ing exploratlon and explmtation respectively. Then, ideally, the sample number
exploit Ak explore

during exploitation is given by m, =my; —m, . This is not necessar-
~ 1 . loit -
ily feasible since one can not exclude 7; < m, . In this case, m; " is

set to zero and after this altering of the allocation one has to adjust the other
samples whose sum exceeds now T. We perform this by excluding this coalition
size from Eq. (10) and compute the allocation again, e.g., the summation in
the denominator is taken without the affected size ¢, while the budget is set to
T — eXplore . The intuition is to neglect the size ¢, as more samples have been
collected than demanded by the optimal allocation, and solve the optimization
problem in Sect. 5.2 again with only the total budget available for the remain-

5 ) : . 1 i . ) .
ing sizes. Since m) < m, " °"® can occur in the newly assigned allocation, this
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procedure has to be repeated eventually. However, it is guaranteed to terminate
due to n being finite. During each of the remaining (1 — \)7" timesteps, the algo-
rithm proceeds similarly to the exploration phase. With the purpose of sampling
evenly, the only exception is that the next size s is chosen as the one with the
lowest number of current samples ¢ relative to its assignment ). Finally, the

stratum estimates are aggregated to obtain an estimate (ﬁl for each player.

7.2 Continuous Adaptive SVARM

We find that the two-phase approach as presented so far does not fully exploit the
collected information to estimate the optimal allocation as precisely as possible.
While it derives variance estimates during the exploration phase, the observa-
tions during the exploitation phase remain untouched. Since these posses fur-
ther useful information, we propose to update the estimated optimal sample
allocation continuously during exploitation. The resulting algorithm Continuous
Adaptive SVARM poses a straightforward improvement by additionally calling
CALCULATEALLOCATION after each update (line 15) in the exploitation phase.

8 Empirical Results

In order to complement our theoretical work, we empirically compare the approx-
imation qualities depending on the spent budget, assess the algorithms’ efficacy,
answer whether adaptive stratification improves upon its static counterpart, and
quantify the remaining gap of Stratified SVARM variants to the theoretical
optimum derived in Sect.5.2. In particular, we are interested in a comparison
between ApproShapley as a baseline of sampling marginal contributions without
stratification, the class of algorithms sampling marginal contributions, includ-
ing Stratified Sampling and its extension Two-Staged-St-ApproShapley-opt 5]
(Adaptive Sampling), and on the contrary Stratified SVARM in combination
with our proposed improvements Adaptive SVARM and Continuous Adaptive
SVARM. In addition, we include for each class the optimal algorithm, that a
priori knows all stratum variances, given by Optimal Sampling and Optimal
SVARM. We consider cooperative games of different origin and structure: fea-
ture explanations (local and global) for real-world data and synthetic games.

Table 1. Used datasets and models for feature explanation tasks.

Type Dataset Features | Task Model

Global Adult census [17] 14 Classification | Random forest

Global Bank Marketing [23] | 16 Classification | Random forest

Global Local | Bike sharing [11] 12 Regression Random forest XGBoost
Global German credit [14] |20 Classification | Random forest

Local ImageNet [9] 14 Classification | ResNet18
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(a) Bike sharing feature importance: 7' = 20000, n = 15, A = 0.5
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(b) Adult census feature importance: T' = 5000, n = 14, A = 0.5
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Fig. 2. Averaged MSE and standard error over 50 repetitions during approximation
depending on current timestep t for global explanations. All adaptive algorithms use
A = 0.5. The performance of the hypothetical optimal algorithms (see Sect.5) and
theoretical bounds for Stratified SVARM (Eq. (9)), Optimal SVARM (Theorem 4),
and Optimal Stratified Sampling (Theorem 3) are included.

Feature Importance Games. Given a model and dataset, we construct a coop-
erative game by setting the value function of a feature subset to be the classi-
fication accuracy (or R? for regression tasks) of the model on a test set (30%
of datapoints). For each coalition S the model is fitted on the training set (70%
of datapoints) with only the features contained in S. We use a default sklearn
random forest consisting of 20 trees on all datasets given in Table 1.

Feature Attribution Games. For a model’s prediction h(zx) on a specified dat-
apoint z, the worth v(S) of a feature subset is set to be the difference
h(xs) — h(zg), where h(zg) denotes the prediction with all features N \ S
removed from z. For classification we take the class confidence h.(xg) € [0, 1]
with h(z) = c instead of the class label. Feature values in the Bike sharing
dataset are removed by substituting them with their mean (or mode if cate-
gorical) within the dataset. For ImageNet pictures, semantic superpixels to be
removed are replaced by their mean color. The used models and datasets are
given in Table 1.

Synthetic Games. The experiments based on explanation tasks are limited to rel-
atively low feature numbers because the Shapley values have to be computed in
order to track the approximation error. Synthetic games [5,6, 18| provide a possi-
bility to investigate approximation algorithms for large player numbers n because
their structure elicits a closed-form polynomial expression of the Shapley value.
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(a) Bank marketing feature importance: T = 10000, n = 16, A = 0.5
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(b) German credit feature importance: 7' = 10000, n = 20, A = 0.5
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Fig. 3. Averaged MSE and std. error over 50 repetitions during approximation depend-
ing on current ¢ for global explanations. For legend and further details see Fig. 2.

Our results show a significant gap between Stratified Sampling and its theoret-
ical optimum across all datasets except for Fig.3(b). Although not closing it
completely, Adaptive SVARM reduces it visibly in Fig.2(a) and Fig. 3(a) after
switching to its exploitation phase. However, we also encounter cases in which
it fails to have a positive effect on the approximation quality or performs even
worse than the baseline ApproShapley. Interestingly, the deficit of the optimum
to ApproShapley in Fig. 3(b) shows that stratifying marginal contributions can
even be counterproductive to the goal of precise approximation.

On the other hand, the class of Stratified SVARM and our proposed improve-
ments effortlessly outperform its counterpart based on marginal contributions
except for feature attribution for regression tasks (see Fig.4(a)). The optimality
gap of Stratified SVARM is smaller or even nonexistent in Fig.3(b). Indepen-
dent of the gap’s extent both of our algorithms close it after sufficient time spent
in their exploitation phase. Hence, they not only improve upon state-of-the-art
Stratified SVARM, but also lead us to conclude that we have reached optimality
for this class of stratifying methods. To our surprise, we observe no considerable
difference between Adaptive SVARM and Continuous Adaptive SVARM with
A = 0.5, implying that the variance estimates are precise enough and that A
can be further decreased. Adaptive SVARM reduces the approximation error at
termination by (a) 28% and (b) 33% in Fig.2, 18% in Fig.4(b), and 70% in
Fig. 5(b) compared to Stratified SVARM. Finally, the alignment of our theoreti-
cal statements with the empirical results, as especially exemplified for Stratified
SVARM and Optimal SVARM, gives evidence for the precision of our analysis
in Sect. 5 and the appropriateness of our approach.
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(a) Bike sharing feature attribution: 7' = 2000, n = 12, A = 0.5 5 (b) Tmage feature attribution: 7' = 5000, n = 14, A = 0.5
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Fig. 4. Averaged MSE and standard error over 50 repetitions during approximation
depending on current t for local explanations. All adaptive algorithms use A = 0.5.

(a) Shoe game: n = 50, T' = 5000, A = 0.5 (b) Airport game: 7' = 5000, n = 100, A = 0.5
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Fig. 5. Averaged MSE and standard error over 50 repetitions during approximation
depending on current t for synthetic games. For further game details see [6,18|.

9 Conclusion

We categorized stratified approaches for the approximation of all player’s Shap-
ley values in the fixed-budget setting by distinguishing between static and adap-
tive stratification. Recognizing the lack of more involved techniques for the class
of methods that sample coalitions instead of marginals, we derived analytically
the optimal allocation for Stratified SVARM. Moreover, we transferred the two-
phase approach resulting in two novel approximation algorithms. Our empirical
evaluation provides a multi-faceted insight. The gap of static methods to the
theoretical optimum is of varies depending on the considered game. Adaptive
SVARM and Continuous Adaptive SVARM close that gap and reach class opti-
mality during approximation. The quadratically growing number of strata poses
an inherent drawback of stratification for both classes. It prolongs the warmup,
increases space complexity, and reduces the number of available samples per
stratum. Future work could examine whether coarser strata encompassing mul-
tiple coalition sizes offer a reasonable workaround. Lastly, our work is effortlessly
transferred to other semi-values proposed in game theory like the Banzhaf value.
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A Pseudocode

CALCULATEALLOCATION begins by computing the variance estimates prepared
by the observations during the exploration phase. Next, it estimates the optimal
allocation in potentially multiple iterations. The sizes ¢ which are still part of the
optimization problem are kept in M. Each size whose sample number 1m; does
not exceed its number ¢, from the exploration phase, i.e. m; < ¢, is assigned
after computation to the set of dropouts F. The available budget 7" considered
is reduced by the sum of sample numbers of the current dropouts. We assume
ROUND to return a vector of natural numbers by rounding appropriately.

UpDATE updates the affected stratum estimates identical to [18] by iterating over
all players. The variance estimation is prepared by maintaining for each stratum
the sum observed coalition values in Ej e/ ~ and the sum of squared values in

Q;Le/ . Note that the value function is only accessed once.

EXACTCALCULATION iterates over all coalitions of size 0,1, n — 1, n. Each coalition
is used to call the UpDATE procedure. After 2n 4 2 spending budget tokens the
strata values ¢, , @; 0+, ®; 1, qu,n_2, Pin—1: gb;fn_l are computed exactly.

Algorithm 2 CALCULATEALLOCATION

2
L6714 ¢ 5 (Q;fz_l D (2@_1) ) for all i € N, £ € L,

i,0—1, Cie—1,

2
61»27&_ L1 (_Qi—’e_L <ZZ£> )for alli e N, 0 e L)

0,1 Cie,
my < O0forall ¢ €{2,...,n—2}
M, D+ {2,...,n—2}
T « T
while D # () do

~2 ~2

n o< (o
i,6—1,+ i,6,—
\/E1 R

> \/i &g,k71,++5?,k,7
teM \i=1 k n—k
8 D+ {feM|m; <c}
9: T’ < T’ — Z Cy
¢eD
100 M+ M\D
11: end while
12: my <—co for all £ €{0,...,n —2} \ M
13: Output: Rounp(rg, ..., My, o)

T for all £ € M

T My




508 P. Kolpaczki et al.

Algorithm 3 UpDATE(A)

1: UA<—V(A); ClA| < C|A| +1
2: for i € A do . L
A c, P +va
. + i,|A]=1 74, |A|-1
A S Y
.t +
4: A1 <—ci7|A|71—|—1
: + +
5: EZ|A| 1<_E|A|—1+UA
6: Q“L'A‘ L2 A-1 T + (va)?
7: end for
8: for i e N'\ A do
N c. ~q?>,_ +va
9: — o Gilal %Al
¢'L=|A| ci7|A|+1
10: Ci_:IAI — CZIAI +1
11: E;‘A‘ — Zi_,\A\ +va
120 07 4 Q7+ (va)?
13: end for

Algorithm 4 ExacTCALCULATION [18§]

1: for s € {0,1,n—1,n} do
22 for Ac{SCN||S|=s}do

3 UPDATE(A)
4: end for

5: end for
B Proofs

Static Allocation for Stratified Sampling. Proof of Theorem 1: Let :(:EZL) be
the m-th sampled marginal contribution of player ¢’s ¢-th stratum. Since m; , > 1
for all i € N and ¢ € LA, and the marginal contributions are drawn uniformly
at random from their stratum, each estimate qﬁl ¢ and (;51 is unbiased:

T o T B e L S ] B <
[@]—;;E{Q,E}—EZE m—M;%,g]—E;@,é—@-

Next, we investigate the variance where make use of the independent samples:

ZEFS NI RS oA S F R o

The bias-variance decomposition allows to combine both intermediate results
and quantify the MSE for a single player. Averaging over all players yields:

. n n n—1
e [6-o) ] HE G- B A EE
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O

Static Allocation for Stratified SVARM. Proof of Theorem 2: The unbi-
asedness of each estimate qb 0 (bl ¢, and (;51 has been shown in Lemma 8, Lemma
9, and Theorem 5 [18]. Let m; ¢ 4+,m; ¢,— be the number of times the estimate

¢, and respectively qAﬁi_é got updated after the warmup and m; ¢ 4, m; ¢ — be the
total numbers including the warmup.

Lemma 1. For any i € N and { € L!, the number of updates are binomially
distributed with m; ¢—1 4+ ~ Bin (mg, %) and m; ¢ ~ Bin (mg, ”T_e)

The proof is analogous to Lemma 10 in [18]. We utilize Lemma 1 to bound the
following expectations for all i € A" and all £ € £/, (cf. Lemma 13 [18]):

1 1 1
E [ ] <"  and E [ ] <—— <

From the proof of Theorem 6 in [18] we extract and reuse:

V[@-]S [TLQZ Titot 2“]

mge—1,+ mz,é,—

1 « 1
L P

m17€_17+

z 1,+ 0'2z
<_ 1 1,£,— )
- ng +n—€

The bound on the variance enables us to take advantage of the bias-variance
decomposition since the unbiasedness is already given:

[(6-0)] - ([6] o) v [a] < 1 3o (e i)

Averaging the mean squared error over the players completes the proof:

2 1 =g ze Lt OFp

O

Optimal Allocation for Stratified Sampling. Proof of Theorem 3: The
relaxed sample allocation problem for marginal contributions is given by:

. B : 1 Ot
(M7 ¢)ien bec,, =  arg min n3 Z Z .

(mie)ien eecr, i=1 ¢=1

s.t. QZZmM =T

=1 /=1
mie € Rsg Vie N, bell,.
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We derive the solution by employing Lagrangian multipliers, hence we minimize

n n—2 n n—2
L ((mi)ieneecr, A =3 ZZ -I-/\ (22277%5 - ) :

2161 1=1 ¢=1

We solve for VL = 0 which requires

a O.?Z ' ) n n—2 .
L=——"t 4ox20VieN,leL) and —L—2 mie—T =
omg e n3m? , ° ;ez:l Z

This equation system yields together with the budget constraint

n n—2 2
(oF W
Mmig=——— YVieN,lc/l)), and =
: V2 n3 4 n3T2 (Z Z )

1=1 /=1

from which we derive the optimal allocation to minimize the objective function:

040 7

n n—2 T
23 > Ojk
1=1k=1

mi e =

)

O

Optimal Allocation for Stratified SVARM. Proof of Theorem 4: The
relaxed sample allocation problem for coalitions is given by:

% o . 1 2 Cy
(midieer = min - m 2,
n—2
s.t. Z My = [
=2
my € RZO \WAS E;j

n 2 2
where we define the coefficients ¢, := Y Z225E 4 Zhlo We derive the solution
i=1
by employing Lagrangian multipliers, hence we minimize

n—2 n—2
1 Cy =
L(mg,...,mn_g,)\):—2 ——}—A(ng—T).
s =2
We solve for VL = 0 which requires
0 e, 0 2 _

L L=——t_4tX20 Veer d —<L= —T=0.
omy n?m? + €& an o\ ; e

This equation system yields together with the budget constraint

n—2 2
Cy 1
me=4[15 WEL, and A= —m <;\/c7> .
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from which we derive the optimal allocation to minimize the objective function:
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Abstract

Assigning importance scores to features is a common
approach to gain insights about a prediction model’s
behavior or even the data itself. Beyond explainabil-
ity, such scores can also be of utility to conduct fea-
ture selection and make unlabeled high-dimensional
data manageable. One way to derive scores is by
adopting a game-theoretical view in which features
are understood as agents that can form groups and
cooperate for which they obtain a reward. Splitting
the reward among the features appropriately yields
the desired scores. The Shapley value is the most
popular reward sharing solution. However, its expo-
nential complexity renders it inapplicable for high-
dimensional data unless an efficient approximation
is available. We empirically compare selected ap-
proximation algorithms for quantifying feature im-
portance on unlabeled data.

Keywords: Shapley values, feature impor-

tance scores, unsupervised learning

1. Unsupervised Feature Importance

The increasing complexity of machine learning mod-
els as well as dimensionality of collected data is calling
for a method to make both interpretable to the hu-
man user. A universally applicable approach are ad-
ditive feature explanations which divide an observed
numerical effect among the available features. Choos-
ing this effect to be explained appropriately allows
to interpret each feature’s share as its contribution
to the behavior of interest. In particular, the Shap-
ley value [1] has emerged as the most frequently ap-
plied scoring rule. Popular examples include the fea-
tures’ contributions to a model’s generalization per-
formance [2, 3] and prediction value for a selected
instance [4]. In the realm of unlabeled data and ab-
sence of a prediction model, Shapley-based feature
importance scores have been utilized to perform di-
mensionality reduction [2]. Balestra et al. [5] refined
this approach by proposing a feature ranking based
on Shapley values that reduces redundancy among

© Kolpaczki. Licensed under CC BY 4.0.
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the selected features. Aiming at preserving the infor-
mation contained in the data while minimizing cor-
relation between the selected feature subset Balestra
et al. employ the total correlation of shared by all
all available features of the dataset as the numerical
effect to be divided. For any subset S it is given by

C(S)= > H(X)—H(S) (1)

Xes

where H(X) and H(S) denote the Shannon entropy
of a single feature X and a set of features S respec-
tively. This is made feasible by viewing the set of all
feature values as observed realizations of a random
variable.

2. Cooperative Games

A cooperative game is formally given by a pair (N, v)
containing a finite set of players N'= {1,...,n} and
a value function v : P(N) — R that assigns a real-
valued worth to each coalition S C N. This simple
formalism is expressive enough to model feature sub-
sets as coalitions that share some total correlation.
The most popular solution to the question of how to
divide the achieved worth v(N') among all players is
the Shapley value [1] as it is provably the only solu-
tion to fulfill certain axioms [1] that plausibly capture
a notion of fairness. It assigns to each ¢ € A the share

1
A

scangiy v Vs

¢i = p(SU{i}) —v(9)]  (2)

and can be interpreted as a weighted average of
marginal contributions A;(S) := v(S U {i}) — v(9).
Given the context of high-dimensional data yielding
large player numbers, the computational complexity
caused by the exponential number of coalitions ren-
ders any attempt to exactly calculate ¢; futile.



COMPARING SHAPLEY VALUE APPROXIMATION METHODS FOR UNSUPERVISED FEATURE IMPORTANCE

3. Shapley Value Approximation

The rapid increase of the Shapley value’s popularity
in recent years, spanning over various machine learn-
ing fields [6] and beyond, incentivized the research
on how to approximate it, facilitating its practical
usage. The approximation problem consists of the
task of computing precise estimates (]31, e ,qgn of all
Shapley values with minimal resource consumption.
We consider the fized-budget setting in which the
number of times an approximation algorithm is al-
lowed to access v is limited by a budget T' € N. This
is motivated by the observation that the evaluation of
large models or data poses a bottleneck, possibly even
causing monetary costs when the access is provided
remotely by another party. The quality of the esti-
mates is measured by the mean squared error (MSE)
averaged over all players which is to be minimized:

MSE := %Xj;E [(qs . @)2] .

We shortly describe selected algorithms that we use
for our experiments in Section 4. The first and sim-
plest class of approximation methods leverages the
fact that ¢; can be interpreted as player i’s expected
marginal contribution. This allows to obtain a mean
estimate by randomly sampling marginal contribu-
tions. Castro et al. [7] propose with ApproShapley
an algorithm that draws random permutations of .
It extracts a marginal contribution of each player by
iterating through a permutation. Following the spirit,
Stratified Sampling [8] partitions the population of a
player’s marginal contributions into strata, each con-
taining marginal contributions to coalitions S of the
same size. This technique can increase estimation
quality if |S| has an influence on A;(S). Closely re-
lated, Structured Sampling [9] modifies sampled per-
mutations such that the marginal contributions to
coalitions of different sizes appear in the same fre-
quency. Departing from the discrete sum, Owen
Sampling [10] updates an integral representation of
the Shapley value [11]. Introducing another repre-
sentation, Kolpaczki et al. [12] sample with Strat-
ified SVARM single coalitions instead of marginal
contributions. In combination with stratification it
reaches higher sample efficiency as all players’ esti-
mates are updated with each coalition. Adopting
a different view, KernelSHAP [4] solves a weighted
least squares problem, filled by randomly drawn coali-
tions, of which the Shapley values are the solution.

4. Empirical Evaluation

We compare the approximation quality of selected al-
gorithms depending on the available budget T for un-
supervised feature importance. In particular we use
three real-world datasets: Breast Cancer, Big Five
Personality Test, and FIFA 21 prepared as in [5]. A
cooperative game is built from each dataset by inter-
preting the features as players and applying the to-
tal correlation as the corresponding coalition’s worth.
The approximation algorithms are run for a range of
different budget values for multiple repetitions. In
order to track the MSE, we calculate the Shapley val-
ues exhaustively beforehand. From Figure 1, Strati-
fied SVARM emerges as significantly superior once it
completes its warmup. Stratified Sampling and Struc-
tured Sampling perform on par or marginally better
for higher budget ranges. The advantage of stratify-
ing methods is likely to be caused by the impact of the
feature subset size on the total correlation. In con-
trast, other methods including KernelSHAP perform
clearly worse, except for ApproShapley displaying the
lowest MSE given exteremely small budget.

0.2

0.15

0.1

MSE

0.05

0 50 100 150 200 T 250

(a) Breast Cancer: 9 features

0.1

0.08

0.06

MSE

0.04

0.02

0 100 200 300 400 T 500

(b) Big Five: 12 features

0.1

0.08

0.06

MSE

0.04

0.02

o _ .
0 100 200 300 400 T 500

(¢) FIFA 21: 12 features

Figure 1: Averaged MSE and std. error over 50 rep-
etitions depending on available budget T
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Abstract

The Shapley value is the prevalent solution for
fair division problems in which a payout is to be
divided among multiple agents. By adopting a
game-theoretic view, the idea of fair division and
the Shapley value can also be used in machine
learning to quantify the individual contribution
of features or data points to the performance of
a predictive model. Despite its popularity and
axiomatic justification, the Shapley value suffers
from a computational complexity that scales expo-
nentially with the number of entities involved, and
hence requires approximation methods for its re-
liable estimation. We propose SVAkapp, a novel
approximation method that fits a k-additive surro-
gate game. By taking advantage of k-additivity,
we are able to elicit the exact Shapley values of
the surrogate game and then use these values as es-
timates for the original fair division problem. The
efficacy of our method is evaluated empirically
and compared to competing methods.

1. Introduction

The complexity of applied machine learning models experi-
enced a rapid and certainly significant increase over the last
decade. On the contrary, this development comes with an
ever-rising burden to understand a model’s decision-making,
reaching a point at which the inner workings are beyond
human comprehension. Meanwhile, societal and political
influences led to a growing demand for trustworthy Al (Li
et al., 2023). The field of Explainable AI (XAI) emerges
to counteract these consequences, aiming to bring back un-
derstanding to the human user and developer. Among the
various explanation types (Molnar, 2021), post-hoc additive
explanations convince with an intuitive appeal: an observed
numerical effect caused by the behavior of the black box
model is divided among participating entities. Additive
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terian University, Sdo Paulo, Brazil 2LMU Munich, Germany
SMCML, Munich, Germany. Correspondence to: Guilherme
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feature explanations decompose a predicted value for a par-
ticular datapoint (Lundberg & Lee, 2017) or generalization
performance on a test set (Covert et al., 2020) among the
involved features, enabling feature importance scores. Be-
yond explainability, this allows in feature engineering to
conduct feature selection by removing features with irrel-
evant or even harmful contributions (Cohen et al., 2005;
Marcilio & Eler, 2020).

Treating this decomposition as a fair division problem opens
the door to game theory which views the features as coop-
erating agents, forming groups called coalitions to achieve
a task and collect a common reward that is to be shared.
Such scenarios are captured by the widely applicable notion
of cooperative games (Peleg & Sudholter, 2007), model-
ing the agents as a set of players /V and assuming that a
real-valued worth v(A) can be assigned to each coalition
A C N by a value function v. Among multiple propositions
the Shapley value (Shapley, 1953) prevailed as the most
favored solution to the fair division problem. It assigns to
each player a share of the collective benefit, more precisely
a weighted average of all its marginal contributions, i.e.,
the increase in collective benefit a player causes when join-
ing a coalition. Its popularity is rooted in the fact that it is
provably the only solution to fulfill certain desirable axioms
(Shapley, 1953) which arguably capture a widespread under-
standing of fairness. For example, in the context of supply
chain cooperation (Fiestras-Janeiro et al., 2011), the gain
in reduction cost when joining a coalition may be shared
among companies based on the Shapley value. The greater a
company’s marginal contributions to the cost reduction, the
greater its received payoff, measured by the Shapley value.

The applicability of the Shapley value exceeds by far the
sphere of economics as its utility has been recognized by
researchers of various disciplines. Most prominently, it has
recently found its way into the branch of machine learning,
especially as a model-agnostic approach, quantifying the
importance of entities such as features, datapoints, and even
model components like neurons in networks or base learn-
ers in ensembles (see (Rozemberczki et al., 2022) for an
overview). Adopting the game-theoretic view, these entities
are understood as players which cause a certain numerical
outcome of interest. Shaping the measure of a coalition’s
worth adequately is pivotal to the informativeness of the
importance scores obtained by the Shapley values. For ex-
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ample, considering a model’s generalization performance on
a test dataset restricted to the feature subset given by a coali-
tion yields global feature importance scores (Pfannschmidt
et al., 2016; Covert et al., 2020). Conversely, local feature
attribution scores are obtained by splitting the model’s pre-
diction value for a fixed datapoint (Lundberg & Lee, 2017).
The Shapley value’s purpose is not limited to provide addi-
tive explanations since it has also been proposed to perform
data valuation (Ghorbani & Zou, 2019), feature selection
(Cohen et al., 2007), ensemble construction (Rozember-
czki & Sarkar, 2021), and the pruning of neural networks
(Ghorbani & Zou, 2020). Moreover, it has been applied to
extract feature importance scores in several recent practical
applications, such as in risk management (Nimmy et al.,
2023), energy management (Cai et al., 2023), sensor array
(re)design (Pelegrina et al., 2023b) and power distribution
systems (Ebrahimi & Rastegar, 2024).

The uniqueness of the Shapley value comes at a price that
poses an inherent drawback to practitioners: its computation
scales exponentially with the number of players taking part
in the cooperative game. Consequently, it becomes due to
NP-hardness (Deng & Papadimitriou, 1994) quickly infeasi-
ble for increasing feature numbers or even a few datapoints,
especially when complex models are in use whose evalu-
ation is highly resource consuming. As a viable remedy
it is common practice to approximate the Shapley value
while providing reliably precise estimates is crucial to ob-
tain meaningful importance scores. On this background, the
recently sharp increase in attention that XAl attracted, has
rapidly fueled the research on approximation algorithms,
leading to a diverse landscape of approaches (see (Chen
et al., 2023)) for an overview related to feature attribution).

Contribution. We propose with SVAkapp (Shapley Value
Approximation under k-additivity) a novel approximation
method for the Shapley value based on the concept of
k-additive games whose structure elicits a denser param-
eterizable value function. Fitting a k-additive surrogate
game to randomly sampled coalition-value pairs comes with
a twofold benefit. First, it reduces flexibility, promising
faster convergence and second, the Shapley values of the
k-additive surrogate game are obtained immediately from
its representation. In summary, our contributions are:

(i) SVAEapp fits a k-additive surrogate game to sampled
coalitions, trying to mimick the given game by a sim-
pler structure with a parameterizable degree of freedom
while maintaining low representation error. The surro-
gate game’s own Shapley values are obtained immedi-
ately due to its structure and yield precise estimates for
the given game if the representation exhibits a good fit.

(ii) SVAkapp does not require any structural properties of
the value function. Thus, it is domain-independent

and can be applied to any cooperative game oblivious
to what players and payoffs represent. Specifically in
the field of explainability, it is model-agnostic and can
approximate local as well as global explanations.

(iii) We prove the theoretical soundness of SVAkapp by
showing analytically that its underlying optimization
problem yields the Shapley value.

(iv) We empirically compare SVAkapp to competitive base-
lines at the hand of various explanation tasks, and shed
light onto the best fitting degree of k-additivity.

The remainder of this paper is organized as follows. We
describe existing works related to this paper in Section 2.
Section 3 introduces the theoretical background behind our
proposal. In Section 4, we present our novel approximation
method. We conduct experiments for several real-world
datasets in Section 5. Finally, in Section 6, we conclude our
findings and highlight directions for future works.

2. Related Work

The problem of approximating the Shapley value, and the re-
cent interest it attracted from various communities, lead to a
multitude of diverse approaches to overcome its complexity.
First to mention among the class of methods that can handle
arbitrary games, without further assumptions on the struc-
ture of the value function, are those which construct mean
estimates via random sampling. Fittingly, the Shapley value
of each player can be interpreted as the expected marginal
contribution to a specific probability distribution over coali-
tions. Castro et al. (2009) propose with ApproShapley the
sampling of permutations from which marginal contribu-
tions are extracted. Further works, following this paradigm,
employ stratification by coalition size (Maleki et al., 2013;
Castro et al., 2017; van Campen et al., 2018; Okhrati &
Lipani, 2020), or utilize reproducing kernel Hilbert spaces
(Mitchell et al., 2022). Departing from marginal contri-
butions, Stratified SVARM (Kolpaczki et al., 2024a) splits
the Shapley value into multiple means of coalition values
and updates the corresponding estimates with each sampled
coalition, being further refined by Adaptive SVARM (Kol-
paczki et al., 2024b). Guided by a different representation
of the Shapley value, KernelSHAP (Lundberg & Lee, 2017)
solves an approximated weighted least squares problem, to
which the Shapley value is its solution. Fumagalli et al.
(2023) prove its variant Unbiased KernelSHAP (Covert &
Lee, 2021) to be equivalent to importance sampling of sin-
gle coalitions. Joining this family, (Pelegrina et al., 2023a)
propose k4 pp-SHAP, which consists in a local explainabil-
ity strategy that formulates the surrogate model assuming
a k-additive game!. The authors locally adopt the Choquet

"Note that kapp-SHAP is limited to local explanations. In
contrast, our proposed method SVAkapp differs by its applicability
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integral as the interpretable model, whose parameters have
a straightforward connection with the Shapley value.

On the contrary, tailoring the approximation to a specific
application of interest by leveraging structural properties
promises faster converging estimates. In data valuation, in-
cluding knowledge of how datapoints tend to contribute to a
learning algorithm’s performance has proven to be a fruit-
ful, resulting in multiple tailored approximation methods
(Ghorbani & Zou, 2019; Jia et al., 2019b;a). In similar fash-
ion Liben-Nowell et al. (2012) leverage supermodularity in
cooperative games. Even further, value functions of certain
parameterized shapes facilitate closed-form polynomial so-
lutions of the Shapley value w.r.t. the number of involved
players. Examples include the voting game (Bilbao et al.,
2000) and the minimum cost spanning tree games (Granot
et al., 2002) being used in operations research.

Besides the Shapley value’s prominence for explaining the
decision-making of a model, it has also found its way to
more applied tasks. For instance, Nimmy et al. (2023) use
it to quantify each feature’s impact in predicting the risk de-
gree in managing industrial machine maintenance, Pelegrina
et al. (2023b) apply it to evaluate the influence of each elec-
trode on the quality of recovered fetal electrocardiograms,
and Brusa et al. (2023) measure the features’ importance
towards machinery fault detection. Worth mentioning, each
application requires an appropriate modeling in terms of
player set and value function in order to obtain meaningful
explanations. Moreover, Shapley values can be useful in fea-
ture engineering to perform feature selection. For instance,
features with low relevance towards the model performance
may be removed from the dataset without an impact onto
the prediction quality (Pelegrina & Siraj, 2024).

3. The Shapley Value and i-Additivity

We formally introduce cooperative games and the Shapley
value in Section 3.1. Next, we present in Section 3.2 the con-
cept of k-additivity, constituting the core of our approach.

3.1. Cooperative Games and the Shapley Value

A cooperative game is formally described by n players, cap-
tured by the set N = {1,...,n}, and an associated payoff
function v : P(N) — R, where P(N) represents the power
set of N. This simple but expressive formalism may for
example represent a shipment coordination where compa-
nies form a coalition in order to save costs when delivering
their products. In this case, the companies can be modeled
as players and v(A) represents the benefit achieved by the
group of companies A C N. Clearly, v(N) is the total
benefit when all companies (players) form the grand coali-

to any formulation of a cooperative game. Moreover, in the context
of explainable Al, it is capable of providing global explanations.
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tion N. Commonly, one normalizes the game by defining
v(f) = 0, i.e., the worth of the empty set. However, in
explainability, v()) may take nonzero values, e.g., with no
features available one may obtain a classification accuracy
of 50%. In this case, one can normalize v by simply sub-
tracting the worth of the empty set from all game payoffs,
ie., V(A) « v(A) —v(0) forall AC N.

A central question arising from a cooperative game is how to
fairly share the worth v(V) of the grand coalition N among
all participating players. The Shapley value (Shapley, 1953)
emerges as the prevalent solution concept since it uniquely
satisfies axioms that intuitively capture fairness (Shapley,
1953). Given the game (N, v), the Shapley value of each
player ¢ is defined as

n— Al —1)|A|
o=y AU (40 ) - v,
ACN\{i}

)]
where |A| represents the cardinality of coalition A. It can
be interpreted as a player’s weighted average of marginal
contributions to the payoff. Among the fulfilled axioms such
as null player, symmetry, and additivity (see (Young, 1985)
for more details and other properties), in explainability the
most useful is efficiency. It demands that the sum of all
players’ Shapley values is equal to the difference between
v(N) and v(0). Mathematically, efficiency means

_Z ¢i =v(N) —v(0). )

Or, in the game theory framework where v(()) = 0, one
obtains >, ¢; = v(NN). In explainability, efficiency can
be used to decompose a measure of interest among the set
of features. As a result, one can interpret the importance of
each feature to that measure.

Unfortunately, satisfying the desired axioms in the form of
the Shapley value comes at a price. According to Equa-
tion (1), the calculation requires the evaluation of all 2"
coalitions within the exponentially growing power set of N.
In fact, the exact computation of the Shapley value is known
to be NP-hard (Deng & Papadimitriou, 1994). Hence, its
exact computation does not only become practically infea-
sible for growing player numbers but it is also of interest
that the evaluation of only a few coalitions suffices to re-
trieve precise estimates. For instance, a model has to be
costly re-trained and re-evaluated on a test dataset for each
coalition if one is interested in the features’ impact on the
generalization performance. Therefore, a common goal is
to approximate all Shapley values ¢ = (¢1,...,¢,) of a
given game (NN, v/) by observing only a subset of evaluated
coalitions M C P(N). We denote the size of M by T € N
and refer to it as the available budget representing the num-
ber of samples an approximation algorithm is allowed to
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draw. The mean squared error (MSE) serves as a popular
measure to quantify the quality of the obtained estimates
¢ = (¢1,...,Pyn) and is to be minimized:

iéE[(éz@)Q] ; (3)

where the expectation is taken w.r.t. the (potential) random-
ness of the approximation strategy.

3.2. Interaction Indices and k-Additivity

The underlying idea of measuring the impact (or share) of
a single player ¢ by means of its marginal contributions
finds its natural extension to sets of players S in the Shapley
interaction index (Murofushi & Soneda, 1993; Grabisch,
1997a) by generalizing from marginal contributions to dis-
crete derivatives. For any S C N its Shapley interaction
1(S) is given by

Soows | X ()T avay | @

ACN\S A'CS

1(8) =

. . ! ! .
with weights wg = % For convenience, we

will write I; := I({i}) and I; ; := I({4,j}). Instead of
individual importance, I(.S) indicates the synergy between
players in S. Although this interpretation is not straightfor-
ward for coalitions of three or more entities, it has a clear
meaning for pairs. For two players ¢ and j, the Shapley in-
teraction index I; ; quantifies how the presence of ¢ impacts
the marginal contributions of 5 and vice versa. Especially in
explainable Al, where players represent features, it can be
interpreted as follows:

» If I; ; < 0, there is a negative interaction (redundant
effect) between features ¢ and j.

e If I; ; > 0, there is a positive interaction (complemen-
tary effect) between ¢ and j.

» If I; ; = 0, there is no interaction between 4 and j
(independence) on average.

Note that the Shapley interaction index reduces to the Shap-
ley value for a singleton, i.e., I; = ¢;. Moreover, there
is a linear relation between the interactions and the game
payoffs (Grabisch, 1997a). Indeed, from the interactions
one may easily retrieve the game payoffs by the following
expression:

W(A) = > i 1(B). 5)

BCN

where V\Erlw B is defined by

T r—1
T m T
=D . d p=-) —F—
Tr (l)n‘ coan g — r—I1+1 <l>

are the Bernoulli numbers starting with g = 1.

This linear transformation recovers any coalition value v(A)
by using the Shapley interaction values of all 2™ coalitions,
thus including the Shapley values. Therefore, 2" many
parameters are to be defined if the whole game is to be
expressed by Shapley interactions. However, in some sit-
uations one may assume that interactions only exist for
coalitions up to £ many players. This assumption leads to
the concept known as k-additive games. A k-additive game
is such that 7(S) = 0 for all S with |S| > k. Obviously,
this restricts the flexibility of the game but depending on
k, this may significantly decrease the number of param-
eters to be defined such that for low k it increases only
polynomially with the number of players. For instance, in
2-additive and 3-additive games, there are only n(n + 1)/2,
and n(n? + 5)/6 respectively, many interactions indices
as the remaining parameters are equal to zero. One may
argue that within Shapley-based feature explanations, the
neglection of higher order interactions, by setting them to
zero per default, comes naturally. For instance, Bordt & von
Luxburg (2023) show that these interactions barely exist in
the context of post-hoc local explanations.

4. k-Additive Approximation Approach

In this section, we present our method SVAkapp to approxi-
mate Shapley values. It builds upon the idea of adjusting a
k-additive surrogate game (N, 1) to randomly sampled and
evaluated coalitions. Having fitted the surrogate game to
represent the observed coalition values with minimal error,
its own Shapley values ¢* can be interpreted as estimates ng
for ¢ of (N, v) since the fitting promises v, to be close to v.
See Figure 1 for an illustration of the approach.

4.1. The k-Additive Optimization Problem

We leverage the representation of v, by means of interac-
tions as given in Equation (5). In particular, since vy, is
supposed to be k-additive, we specify vy, as a linear transfor-
mation of interactions I*(B) forall B C N of size | B| < k,
allowing us to drop interactions of higher order than k:

|B| k
= > Yans (B ©
BCN
|BI<k

Note that, given this representation, the Shapley values ¢*
of the resulting game (IV, vy ) are obtained immediately by
the interactions I¥ = ¢¥, which will serve as estimates for
the Shapley values ¢ of the game (N, v), i.e. IF ~ ¢;. The
k-additive representation of v, comes with the advantage
that the number of parameters I*(B) needed to define the
surrogate game is reduced (as several parameters are set
to zero). The drawback of this strategy is the reduction in
flexibility left to model the observed game (N, ) according
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Figure 1: The sampled coalition values (A1), ..., v(Ar) from the given game (IV, v) are used to fit a k-additive surrogate

game (N, v}) in polynomial time. The Shapley values ¢%, . ..
representation. Since v, approximates v, these serve as estimates of the true Shapley values ¢, .. .

to the obtained evaluations. However, we can still model in-
teractions for coalitions up to k players. Empirically, works
in the literature (Grabisch et al., 2002; 2006; Pelegrina et al.,
2020; 2023a) have been using 2-additive or even 3-additive
games and obtained satisfactory results for modeling inter-
actions. Our goal is to fit v as close as possible to v and
we therefore minimize the following expression, capturing
by how much v, deviates from v:

Yo waw(4) —wm(4)?, (7)

AeP(N)\{0,N}

where w4 is an importance weight associated to each coali-
tion A. We are eager to meet the desirable efficiency ax-
iom such that the difference between and v(N) and v(0) is
decomposed among the players within our approximated
values ¢*. This is ensured by imposing the constraint
v(N) —v(0) = vg(N) — v (0). Hence, we arrive at the
following optimization problem.

Definition 4.1. Given a cooperative game (NN, v/), a degree
of k-additivity £k € N with k& < n, and weights wa €
R associated with each coalition A C N, the k-additive
optimization problem is given by the following constrained
weighted least square optimization problem:

2

. B
min > wa | v(A)— > '7||Ar‘13\[k(B)
" AeP(N)\{0,N} BCN
|B|<k
B B
st v(N)=v(0) = ¥ (sfpl - ") )
BCN
|BI<k

Solving the k-additive optimization is at the core of our
approach. In the remainder we describe how to overcome
two key challenges. First, we address in Section 4.2 how
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, @k of (N, v}) are obtained immediately from its k-additive

, @n Of (N, V).

to choose the weights w4 such that ¢* comes close to ¢.
Second, as the objective function sums up over exponential
many coalitions, we present in Section 4.3 our algorithm
SVAkapp that constructs an approximative objective func-
tion by sampling coalitions and adding their error terms.

4.2. Theoretical Soundness through Choice of Weights

Seeking precise estimates ¢* = ¢, one may even raise the
question if it is feasible to retrieve the exact Shapley values
¢ from the solution I* and how the weights w4 have to
be set to achieve this. We analytically derive the correct
weights and positively answer this question.

Theorem 4.2. The solution to the k-additive optimization
problem of any cooperative game (N,v) for the cases of
k=1 k=2 and k = 3 with weights w’ = (|Z|_—21)_1
vields the Shapley value, i.e.

IF = ¢;.

See Appendix A for the proof of Theorem 4.2. Note that
these weights coincide with those derived by Charnes et al.
(1988) used in (Lundberg & Lee, 2017) for a different opti-
mization problem. The result implies that having observed
the cooperative game (IV, v) in its entirety with all coalitions
contained, our approach yields the exact Shapley values with
no approximation error. We interpret this as evidence for
the soundness and theoretical foundation of our method.
Moreover, since the result holds irregardless of the shape of
v, the game can even highly deviate from being k-additive
and our estimates will still converge to its Shapley value.
Hence, k-additivity is not an assumption that our method
requires but rather a tool to be leveraged.

We conjecture that Theorem 4.2 holds also true for arbitrary
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degrees of k-additivity and leave the proof for future work
due to the analytical challenge it poses. Worth mentioning
is that the hardness of incorporating Shapley interactions of
higher degree into weighted least squares optimizations has
already been acknowledged by Fumagalli et al. (2024).

4.3. Approximating the k-Additive Optimization
Problem via Sampling

Computing the solution to the k-additive optimization prob-
lem (see Definition 4.1) is practically infeasible since the
objective compromises exponential many error terms w.r.t.
n. As a remedy we follow the same strategy as adopted
in (Lundberg & Lee, 2017; Pelegrina et al., 2023a) and
approximate the objective function by sampling coalitions
without replacement. Let M = {A;,..., A7} be the set
of sampled coalitions with A; # Aj; for all ¢ # j and
the sequence vaoq = (V(A41),...,v(Ar)) representing its
evaluated coalition values. Thus, we solve the following
optimization problem after sampling:

2

min > wa [v(A) = ¥ A5 RB)
1 AEM\{O,N} BCN
|B|<k
st v(N) =) = 3 (2l =) 14(B)
BCN

|BI<k

®)

To ensure the efficiency constraint, we force the sampling
of § and N. Each coalition A € P(N) \ {0, N} is drawn
according to an initial probability distribution p defined by
Wi

pA (€))

2o Ben\(0.N} UB
After drawing a coalition A, we set p 4 to zero and normal-
ize the remaining probabilities. This procedure is repeated
until |[M| = T. Algorithm 1 presents the pseudo-code
of SVAkapp. The algorithm requires the game (N, v), the
additivity degree k, and the budget T'. It starts by evaluat-
ing v(()) and v(N). Thereafter, based on the (normalized)
distribution p, it samples 7" — 2 coalitions from P (N), eval-
uates each, and extends M as well as v 4. Finally, it solves
the optimization problem in Equation (8) with weights w?
given by Theorem 4.2 (see Appendix B for an analytical so-
lution). The extracted Shapley values ¢* of v}, are returned
as estimates (;3 for the Shapley values ¢ of (N, v).

We would like to emphasize that Theorem 4.2 does not
make a statement about the obtained solution during sam-
pling when not all coalitions are observed. To the best of
our knowledge, and it is also well-known, there exists no
approximation guarantee for methods that estimate the Shap-
ley value by means of a weighted least squares optimization
problem. The difficulty of obtaining a theoretical result is
further elaborated by (Covert & Lee, 2021).

Algorithm 1 SVAkapp

Input: (N,v), k, T
M« {0,N}
v ((0), v(N))
while |M| < T do
Sample a coalition A € P(N)\ {0, N} from normal-
ized distribution p
M+~ MU {A}
vm ¢ (Va, v(4))
pA — 0
end while
10: (Ik(B))BgN:\B|§k < SOLVE(M,I/M,]C)
11: Output: I¥ ... IF

AR

5. Empirical Evaluation

In order to assess the approximation performance of
SVAkapp, we conduct experiments with cooperative games
stemming from various explanation types. Although our
method is not limited to a certain domain, we find the field
of explainability best to illustrate its effectiveness. We con-
sider several real datasets as well as different tasks. The
evaluation of our proposal is mainly two-fold. Not only are
we interested in the comparison of SVAkapp against current
state-of-the-art model-agnostic methods in Section 5.2, but
we also seek to investigate how the choice of the assumed
degree of additivity & affects the approximation quality (see
Section 5.3). In the sequel of Section 5.1, we describe the
utilized datasets and resulting cooperative games.

For each considered combination of dataset, approximation
algorithm, and number of value function evaluations 7', the
obtained estimates dS are compared with the Shapley values
¢ which we calculate exhaustively in advance. We measure
approximation quality of the estimates by the mean squared
error (MSE). The error is measured depending on 7" as we
intentionally refrain from a runtime comparison for multiple
reasons: (i) the observed runtimes may differ depending
on the actual implementation, (ii) evaluating the worth of a
coalition poses the bottleneck in explanation tasks, render-
ing the difference in performed arithmetic operations negli-
gible for more complex models and datasets, (iii) instead of
runtime, monetary units might be paid for each access to a
remotely provided model offered by a third-party.

5.1. Datasets

We distinguish between three feature explanation tasks:
global importance, local attribution, and unsupervised im-
portance being described further in Appendix C.

Within global feature importance (Covert et al., 2020) the
features’ contributions to a model’s generalization perfor-
mance are quantified. This is done by means of accuracy
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Figure 2: MSE of SVAkapp averaged over 100 repetitions in dependence of available budget T for different additivity
degrees k. Datasets stem from various explanation types: global (a)-(c), local (d)-(f), and unsupervised (g)-(i) with differing

player numbers 7.

for classification and the mean squared error for regression
on a test set. For each evaluated coalition a random forest is
retrained on a training set. We employ the Diabetes (regres-
sion, 10 features), Titanic (classification, 11 features), and
Wine dataset (classification, 13 features).

On the contrary, local feature attribution (Lundberg & Lee,
2017) measures each feature’s impact on the prediction of a
fixed model for a given datapoint. While the predicted value
can directly be used as the worth of a feature coalition for
regression, the predicted class probability is required instead
of a label for classification. Rendering a feature outside of
an evaluated coalition absent is performed by means of im-
putation that blurs the features contained information. The
experiments are conducted on the Adult (classification, 14
features), ImageNet (classification, 14 features), and IMDB
natural language sentiment (regression, 14 features) data.

In the absence of labels, unsupervised feature importance
(Balestra et al., 2022) seeks to find scores without a model’s
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predictions. This is achieved by employing the total correla-
tion of a feature subset as its worth, since the datapoints can
be seen as realizations of the joint feature value distribution.
For this task, we consider the Breast cancer (9 features),
Big Five (12 features), and FIFA 21 (12 features) datasets.

5.2. Impact of the Additivity Degree %

In order to provide an understanding of the underlying trade-
off between fast convergence (low k) and expressiveness
(high k) of the surrogate game and how the crucial choice of
k affects the approximation quality, we evaluate SVAkapp
for different k (i.e., for different k-additive models).

Figure 2 presents the obtained results for all datasets and
for k € {1,2,3,4}. Note that the curves for higher & begin
at points of higher budget because the greater k, the more
coalition values are required to identify a unique k-additive
value function that fits the observations. We explain the
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Figure 3: MSE of SVAkapp and competing methods averaged over 100 repetitions in dependence of available budget 7.
Datasets stem from various explanation types: global (a)-(c), local (d)-(f), and unsupervised (g)-(i) with differing player

numbers n.

behavior for low k, specifically £ = 1, by the model’s in-
ability to achieve a good fit due to missing flexibility. As a
result, the convergence to the exact Shapley values is slow.
A similar observation can be made for the 2-additive model
in both global and local tasks. Although in FIFA dataset
the 2-additive model rapidly converges to the exact Shapley
values, for the other ones a higher number of samples are
needed until convergence. These findings imply that interac-
tions up to order 2 are not sufficient to model how features
jointly impact performance (global task) or prediction out-
come (local task). On the other hand, both the 3-additive
and 4-additive model converge significantly faster for most
datasets and outperform the parmeterization with &k = 1 or
k = 2 after a few samples. By comparing k = 3 and k =4
variants, the choice of k& = 3 appears preferable as it results
in quicker decreasing error curves.

5.3. Comparison with Existing Approximation Methods

In our second experiment, we compare SVAkapp with other
existing approximation methods. For instance, we consider
Stratified sampling (Maleki et al., 2013), Stratified SVARM
(Kolpaczki et al., 2024a) and KernelSHAP (Lundberg &
Lee, 2017). For the purpose of comparison, we adopt the
3-additive model to represent SVAkapp since it displays the
most satisfying compromise between approximation quality
and minimum required evaluations as argued in Section 5.2.
Figure 3 presents the obtained results for all methods. See
Appendix D for results including Permutation sampling
(Castro et al., 2009) and the 2-additive model.

First to mention is that SVAkapp competes consistently
with Stratified SVARM for the best approximation per-
formance across most datasets. Although for a very low
number of function evaluations SVAkapp achieves an er-
ror greater than some other approaches (specially Stratified
SVARM), at some point during the approximation process

109



Shapley Value Approximation Based on k-Additive Games

it converges faster to the exact Shapley values and leaves
it competitors with a considerable margin behind, espe-
cially for local feature attribution. The comparison with
KernelSHAP provides mixed results. For Adult, Big Five
and FIFA datasets, SVAkapp converged faster to the ex-
act Shaley values whereas for Titanic and IMDB datasets,
KernelSHAP achieves a better performance.

6. Conclusion

We proposed with SVAkapp a new algorithm to approxi-
mate Shapley values. It falls into the class of approaches
that fit a structured surrogate game to the observed value
function instead of providing mean estimates via Monte
Carlo sampling. Despite restricting the surrogate game to
be k-additive, our developed method is model-agnostic. It is
also applicable to any cooperative game without posing fur-
ther assumptions since its underlying optimization problem
provably yields the Shapley value. We investigated empiri-
cally the trade-off that the choice of the parameter k poses.
Further, SVAkapp exhibits competitive results with other
existing approaches depending on the considered explana-
tion type, dataset, and available for budget for sampling,
allowing us to conclude the non-existence of a dominating
approximation method.

Limitations and Future Work. While the surrogate
game’s flexibility increases with higher k-additivity, it also
requires more observations to begin with in order to obtain
a unique solution of the optimization problem, eventually
posing a practical limit on k. Adopting further techniques
to the sampling procedure within our method, serves as
a natural avenue for further research to improve approx-
imation performance. We expect future investigations of
differently structured surrogate games to yield likewise fruit-
ful results and contribute to the advancement of this class of
approximation algorithms. Note that, besides the estimated
Shapley values, our proposal could also provide the inter-
action effects when k£ > 2. Although we did not address
these parameters, future works can extract the estimated
interaction indices and use them to investigate redundant
or complementary features. For instance, this could be of
interest in practical applications where interaction between
features are relevant as for example in disease detection.
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Abstract

Addressing the limitations of individual at-
tribution scores via the Shapley value (SV),
the field of explainable AT (XAI) has recently
explored intricate interactions of features or
data points. In particular, extensions of the
SV, such as the Shapley Interaction Index
(SII), have been proposed as a measure to
still benefit from the axiomatic basis of the
SV. However, similar to the SV, their exact
computation remains computationally pro-
hibitive. Hence, we propose with SVARM-1Q
a sampling-based approach to efficiently ap-
proximate Shapley-based interaction indices
of any order. SVARM-IQ can be applied to
a broad class of interaction indices, includ-
ing the SII, by leveraging a novel stratified
representation. We provide non-asymptotic
theoretical guarantees on its approximation
quality and empirically demonstrate that
SVARM-IQ achieves state-of-the-art estima-
tion results in practical XAl scenarios on dif-
ferent model classes and application domains.

1 INTRODUCTION

Interpreting black box machine learning (ML) mod-
els via feature attribution scores is a widely applied
technique in the field of explainable AT (XAI) (Adadi
and Berrada, 2018; Covert et al., 2021; Chen et al.,

Proceedings of the 27" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).
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Figure 1: By dividing an ImageNet picture into mul-
tiple patches, attribution scores for single patches and
interactions scores for pairs aid explaining a vision
transformer.

2023). However, in real-world applications, such as
genomics (Wright et al., 2016) or tasks involving nat-
ural language (Tsang et al., 2020), isolated features
are less meaningful. In fact, it was shown that, in the
presence of strong feature correlation or higher order
interactions, feature attribution scores are not suffi-
cient to capture the reasoning of a trained ML model
(Wright et al., 2016; Slack et al., 2020; Sundararajan
and Najmi, 2020; Kumar et al., 2020, 2021). As a rem-
edy, feature interactions extend feature attributions to
arbitrary groups of features (see Figure 1).

A prevalent approach to define feature attributions
is based on the Shapley value (SV) (Shapley, 1953),
an axiomatic concept from cooperative game theory
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that fairly distributes the payout achieved by a group
among its members. Extensions of the SV to Shapley-
based interaction indices, i.e., interaction indices that
reduce to the SV for single players, have been proposed
(Grabisch and Roubens, 1999; Bordt and von Luxburg,
2023; Sundararajan et al., 2020; Tsai et al., 2023). Yet,
the exact computation of the SV and Shapley-based
interactions without further assumptions on the ML
model quickly becomes infeasible due to its exponen-
tial complexity (Deng and Papadimitriou, 1994).

In this work, we present SVARM Interaction Quan-
tification (SVARM-IQ), a novel approximation tech-
nique for a broad class of interaction indices, includ-
ing Shapley-based interactions, which is applicable to
any cooperative game. SVARM-IQ extends Stratified
SVARM (Kolpaczki et al., 2023) to any-order interac-
tions by introducing a novel representation of interac-
tion indices through stratification.

Contribution. Our core contributions include:

1. SVARM-IQ (Section 3): A model-agnostic ap-
proximation algorithm for estimating Shapley-
based interaction scores of any order through
leveraging a stratified representation.

2. Theoretical Analysis (Section 4): We prove, under
mild assumptions, that SVARM-IQ is unbiased
and provide bounds on the approximation error.

3. Application (Section 5): An open-source imple-
mentation! and empirical evaluation demonstrat-
ing SVARM-IQ’s superior approximation quality
over state-of-the-art techniques.

Related work. In cooperative game theory,
Shapley-based interactions, as an extension to the
SV, were first proposed with the Shapley-Interaction
index (SII) (Grabisch and Roubens, 1999). Besides
the SII, the Shapley-Taylor Interaction index (STI)
(Sundararajan et al., 2020) and Faithful Shapley-
Interaction index (FSI) (Tsai et al, 2023) were
introduced, which, in contrast to the SII, directly
require the efficiency axiom. Beyond Shapley-based
interaction indices, extensions of the Banzhaf value
were studied by Hammer and Holzman (1992). In
ML, limitations of feature attribution scores have
been discussed in Wright et al. (2016), Sundararajan
and Najmi (2020), and Kumar et al. (2020, 2021)
among others. Model-specific interaction measures
have been proposed for neural networks (Tsang et al.,
2018; Singh et al., 2019; Janizek et al., 2021). Model-
agnostic measures were introduced via functional
decomposition (Hooker, 2004, 2007) in (Lou et al.,

"https://github.com/kolpaczki/svarm-iq

2013; Molnar et al., 2019; Lengerich et al., 2020; Hiabu
et al., 2023). Applications include complex language
(Murdoch et al., 2018) and image classification (Tsang
et al., 2020) models, as well as application domains,
such as gene interactions (Wright et al., 2016). Be-
sides pure explanation purposes, e.g. understanding
sentiment predictions from NLP models (Fumagalli
et al., 2023), Chu and Chan (2020) leveraged the SII
to improve feature selection for tree classifiers.

Approximation techniques for the SV have been pro-
posed via permutation sampling (Castro et al., 2009),
which has been extended to the SII and STI (Sun-
dararajan et al., 2020; Tsai et al., 2023). For the
SV, Castro et al. (2017) demonstrated the impact of
stratification on approximation performance. Alter-
natively, the SV can be represented as a solution to
a least squares problem (Charnes et al., 1988), which
was exploited for approximation (Lundberg and Lee,
2017; Covert and Lee, 2021) and extended to FSI (Tsai
et al., 2023). Recent work proposed a model-agnostic
sampling-based approach (Fumagalli et al., 2023) for
Shapley-based interactions, which was further linked
to Covert and Lee (2021). On the model-specific side
Muschalik et al. (2024) extended the polynomial-time
exact computation of the SV for local feature im-
portance in decision trees (Lundberg et al., 2020) to
the SII. While permutation-based approaches are re-
stricted to update single estimates, Kolpaczki et al.
(2023) proposed wit Stratified SVARM a novel ap-
proach for the SV that is capable of updating all esti-
mates using only a single value function call.

2 SHAPLEY-BASED
INTERACTION INDICES

In the following, we are interested in properties of a
cooperative game, that is a tuple (N, v) containing a
player set N = {1,...,n} with n € N players and
a value function v : 2V — R mapping each subset
S C N of players, also called coalition, to a real-valued
number v(S). In the field of XAI the value function
typically represents a specific model behavior (Covert
et al., 2021), such as the prediction of an instance or
the dataset loss. The player set represents the en-
tities whose attribution will be determined, e.g., the
contribution of features to a prediction or the dataset
loss. To determine the worth of individual players, the
Shapley value (SV) (Shapley, 1953) can be expressed
as a weighted average over marginal contributions.
Definition 2.1 (Shapley Value (Shapley, 1953)). The
SV is 1
scay "ist)

where 1 € N and A;(S) = v(SU{i}) — v(S).
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The SV is provably the unique attribution measure
that fulfills the following axioms: linearity (linear com-
binations of value functions yield linear combinations
of attribution), dummy (players that do not impact the
worth of any coalition receive zero attribution), sym-
metry (two players contributing equally to all coali-
tions receive the same attribution), and efficiency (the
sum of of all players’ attributions equals the worth
of all players) (Shapley, 1953). In many ML related
applications, however, the attribution via the SV is
limited in the presence of strong feature correlation or
higher order interaction (Slack et al., 2020; Sundarara-
jan and Najmi, 2020; Kumar et al., 2020, 2021). It is
therefore necessary to study interactions between play-
ers in cooperative games. The SV is a weighted aver-
age of marginal contributions A; of single players, and
a natural extension to pairs of players is

A j(8) = (S Ui, j}) — v(S) — Ai(S) — A;(5)

for S C M\{i,j}. Generalizing this recursion to higher
order interactions yields the following definition.

Definition 2.2 (Discrete Derivative (Fujimoto et al.,
2006)). For K C N, the K-derivative of v at S C
N\ K is

Ag(S)= Y ()K= p(suw).
WCK

The Shapley interaction index (SIT) was the first ax-
iomatic extension of the SV to higher order interaction
(Grabisch and Roubens, 1999). It can be represented
as a weighted average of discrete derivatives.

Definition 2.3 (Shapley Interaction Index (Grabisch
and Roubens, 1999)). The SII of K C N is defined as

1
=% —— Ak ().
s (= K+ 1" 5

Cardinal Interaction Indices. Besides the SII, the
Shapley-Taylor interaction index (STI) (Sundararajan
et al., 2020) and Faithful Shapley interaction index
(FSI) (Tsai et al., 2023) have been proposed as ex-
tensions of the SV to interactions. More general, the
SII can be viewed as a particular instance of a broad
class of interaction indices, known as cardinal interac-
tion indices (CIIs) (Fujimoto et al., 2006), which are
defined as a weighted average over discrete derivatives:

Ik = Z Ak,5| Ak ()
SCN\K

with weights A s|. In particular, every interaction
index satisfying the (generalized) linearity, symmetry
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and dummy axiom, e.g., SII, STI and FSI, can be rep-
resented as a CII (Grabisch and Roubens, 1999). Be-
yond Shapley-based interaction indices, ClIs also in-
clude other interaction indices, such as a generalized
Banzhaf value (Hammer and Holzman, 1992). In Sec-
tion 3, we propose a unified approximation that applies
to any CII. For details about other CIIs and their spe-
cific weights, we refer to Appendix B.

The SIT is the provably unique interaction index
that fulfills the (generalized) linearity, symmetry and
dummy axiom, as well as a novel recursive axiom that
links higher order interactions to lower order interac-
tions (Grabisch and Roubens, 1999). For interaction
indices it is also possible to define a generalized effi-
ciency condition, i.e. that 3= e v g <., IK = V(N)
for a maximum interaction order k... In ML appli-
cations, this condition ensures that the sum of contri-
butions equals the model behavior of A/, such as the
prediction of an instance. The SII scores can be aggre-
gated to fulfill efficiency, which yield the n-Shapley val-
ues (n-SIT) (Bordt and von Luxburg, 2023). Further-
more, other variants, such as STI and FSI, extend the
SV to interactions by directly requiring an efficiency
axiom. In contrast to the SV, however, a unique index
is only obtained by imposing further conditions. Sim-
ilar to the SV, whose computation is NP-hard (Deng
and Papadimitriou, 1994), the weighted sum of dis-
crete derivatives requires 2" model evaluations, neces-
sitating approximation techniques.

2.1 Approximations of Shapley-based
Interaction Scores

Different approximation techniques have been pro-
posed to overcome the computational complexity of
Shapley-based interaction indices, which extend on ex-
isting techniques for the SV.

Permutation Sampling. For the SV, permutation
sampling (Castro et al., 2009) was proposed, where the
SV is represented as an average over randomly drawn
permutations of the player set. For each drawn permu-
tation, the algorithm successively adds players to the
subset, starting from the empty set using the given
order. By comparing the evaluations successively, the
marginal contributions are used to update the esti-
mates. Extensions of permutation sampling have been
proposed for the SIT (Tsai et al., 2023) and STI (Sun-
dararajan et al., 2020). For the SII, only interactions
that appear in a consecutive order in the permutation
can be updated, resulting in very few updates per per-
mutation. For the STI, all interaction scores can be
updated with a single permutation, however, the com-
putational complexity increases, as the discrete deriva-
tives have to be computed for every subset, resulting
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in an increase by a factor of 2¥ per interaction.

Kernel-based Approximation. Besides the
weighted average, the SV also admits a representation
as a solution to a constrained weighted least square
problem (Charnes et al., 1988). This optimization
problem requires again 2" model evaluations. How-
ever, it was proposed to approximate the optimization
problem through sampling and solve the resulting
optimization problem explicitly, which is known as
KernelSHAP (Lundberg and Lee, 2017). An extension
of kernel-based approximation was proposed for FSI
(Tsai et al., 2023), but it remains open, whether this
approach can be generalized to other indices, while
its theoretical properties are unknown.

Unbiased KernelSHAP and SHAP-IQ. Unbi-
ased KernelSHAP (Covert and Lee, 2021) constitutes a
variant of KernelSHAP to approximate the SV, which
yields stronger theoretical results, including an un-
biased estimate. While this approach is motivated
through a kernel-based approximation, it was shown
that it is possible to simplify the calculation to a
sampling-based approach (Fumagalli et al., 2023). Us-
ing the sampling-based approach, SHAP-IQ (Fuma-
galli et al., 2023) extends Unbiased KernelSHAP to
general interaction indices.

2.2 Stratified Approximation for the SV

Stratification partitions a population into distinct sub-
populations, known as strata, where sampling is then
separately executed for each stratum. If the strata are
chosen as homogeneous groups with lower variabil-
ity, stratified sampling yields a better approximation.
First proposed for the SV by Maleki et al. (2013),
it was shown empirically that stratification by coali-
tion size can improve the approximation (Castro et al.,
2017), while recent work extended it by more sophisti-
cated techniques (Burgess and Chapman, 2021). With
Stratified SVARM, Kolpaczki et al. (2023) proposed an
approach that abstains from sampling marginal con-
tributions. Instead, it samples coalitions to leverage
its novel representation of the SV, which splits the
marginal contributions into two coalitions and strat-
ifies them by size. This allows one to assign each
sampled coalition to one stratum per player, thus effi-
ciently computing SV estimates for all players simul-
taneously. Hence in contrast to permutation sam-
pling, Stratified SVARM reaches a new level of ef-
ficiency as all estimates are updated using a single
model evaluation. In comparison to KernelSHAP,
it is well understood theoretically and shows signif-
icant performance improvements compared to Unbi-
ased KernelSHAP (Kolpaczki et al., 2023). In the fol-
lowing, we extend Stratified SVARM to Shapley-based

interaction indices, and even general ClIs.

3 SVARM-IQ: A STRATIFIED
APPROACH

Since the practical infeasibility of computing the CII
incentivizes its approximation as a remedy, we for-
mally state our considered approximation problem un-
der the fixed-budget setting in Section 3.1. We con-
tinue by introducing our stratified representation of
the CII in Section 3.2, which stands at the core of our
new method SVARM-I(Q presented in Section 3.3.

3.1 Approximation Problem

Given a cooperative game (A,v), an order k > 2
a budget B € N, and the weights (Mg ¢)ecg,, with
Ly = {0,...,n — k} specifying the desired CII, the
goal is to approximate all the latent but unknown CII
Ix with K € Ny, := {S C N | |S| = k} precisely.
The budget B is the number of coalition evaluations
or in other words accesses to v that the approxima-
tion algorithm is allowed to perform. It captures a
time or resource constraint on the computation and
is justified by the fact that the access to v frequently
imposes a bottleneck on the runtime due to costly in-
ference, manipulation of data, or even retraining of
models. We denote by Ik the algorithm’s estimate
of I. Since we consider randomized algorithms, re-
turning stochastic estimates, the approximation qual-
ity of an estimate I is judged by the following two
commonly used measures that are to be minimized:
First, the mean squared error (MSE) of any set K:

E [(fK — IK)Z} , and second, a bound on the probabil-

ity P(|fK — Ix| > €) <4 to exceed a threshold € > 0,
commonly known as a (e, d)-approximation.

3.2 Stratified Representation

Our sampling-based  approximation  algorithm
SVARM-IQ leverages a mnovel stratified represen-
tation of the CII. For the remainder, we stick to the
general notion of the CII of any fixed order k£ > 2.
The concrete interaction type to be approximated can
be specified by the weights Ay . We stratify the CII
Ix by coalition size and split the discrete derivatives
Ak (S) into multiple strata to obtain:

n—=k
—k
I = Z (n ¢ >)\k,l Z (—1)k_|W| . [IV<V,£'

=0 WCK
with strata terms for all W C K and ¢ € Ly:
1
> uSuw). (1)

(") s &7k
|S|=¢

W _
IK,E =

117



Kolpaczki, Muschalik, Fumagalli, Hammer, Hiillermeier

This representation is a generalization of the SV rep-
resentation utilized by Stratified SVARM (Kolpaczki
et al.,, 2023) as it extends from the SV to the CIIL.
Since each stratum contains (";k) many coalitions,
I }’}’7[ is a uniform average of all eligible coalition worths

and hence we obtain its estimate IA}/(VZ by taking the
sample-mean of evaluated coalitions b’clonging to that
particular stratum. Further, we can express any CII
by means of the strata IIV}/,Z trough manipulating their
weighting according to the weights Ay ¢. Subsequently,
the aggregation of the strata estimates, mimicking our
representation, yields the desired CII estimate:

n—k
N n—=k ~
Ix = Z ( ¢ )Ak,z Z ()WY,

£=0 WCK

Further, we demonstrate the popular special case of
SII between pairs, i.e., k = 2, in Appendix D.

3.3 SVARM-IQ

Instead of naively sampling coalitions separately from
each of the 2%(})(n — k + 1) many strata, we pro-
pose with SVARM-IQ a more sophisticated mecha-
nism, similar to Kolpaczki et al. (2023), which lever-
ages the stratified representation of the CII.

Update Mechanism. SVARM-IQ (given in Algo-
rithm 1 and Figure 2) updates for a single sampled
coalition A C N one strata estimate of each of the
(Z) many considered subsets K. This is made feasi-
ble by the observation that any coalition A belongs
into exactly one stratum associated with [x. This is
in the spirit of the mazimum sample reuse principle,
employed previously for the Banzhaf value (Wang and
Jia, 2023) and the SV (Kolpaczki et al., 2023) with
the underlying motivation that each seen observation
should be utilized to update all interaction estimates.
To be more precise, for each K € N we update

IV, with W=ANK and ¢ = [A] — [W|. (2)

Notably, our sampling ensures that for every interac-
tion A\ K ~ wif({S C N\ K | |S] = £}), as the
probability of A\ K conditioned on W = AN K and
¢ =|A| — |AN K| is uniform. This is required as I}/,
is a uniform average, cf. Eq. (1), and allows to updafe
estimates for every interaction by sampling a single
subset A. Considering the limited budget B, this up-
date rule elicits information from v in a more “budget-
efficient” manner, since it contributes to (Z) many esti-
mates with only a single evaluation. To guide the sam-
pling, we first draw in each time step b a coalition size
ap from a probability distribution Py over the eligible
sizes, and draw then A, uniformly at random among
all coalitions of size a;. We store the evaluated worth
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(A) Border Evaluation

evaluate and compute explicitly
—

{SCN 18] € Sexp} Toxp 1= {Iy | £+ W] € Sexp}

sample, evaluate, and approximate
—

{S SN |I8] € Simp} Tinp := {I¥¢ | £+ |W| € Simp}

(B) Sampling and Evaluation (C) Approximation

Sample subset size For every interaction K of order k

an~ P Find stratum I}gl € Limp
¢ withW =ANK and ¢ = |A| — |W|
Sample subset of size a
A~ unif({S C N | |S| = a}) i

Update stratum estimate

Compute value of A

v+ v(4)

I}vg[ — UpdateMean(le, v)

(D) Compute Final Estimates

n-k
Ix=Y" <" ' k) Aee Y (1)1, with exact I}, = I}Y, for I}Y, € Tox,
=0 WCK

Figure 2: Schematic overview of SVARM-IQ.

v(Ap) in order to reuse it for all estimate updates, one
for each K. This is done by calling UPDATEMEAN Qsee
Appendix C), which sets the associated estimate I}ge
to the new average, taking the sampled worth v(Ap)
and the number of so far observed samples c}/g ¢, of that
particular estimate into account. We set Py to be the
uniform distribution over all sizes, i.e., P, = unif(0,n).
A specifically tailored distribution for £ = 2 allows us
to express sharper theoretical results in Section 4.

Border Sizes. Further, we enhance our approach
by transferring a technique, introduced by Fumagalli
et al. (2023). We observe that for very low and very
high s only a few coalitions of size s exist, (f) many
to be precise. Thus, evaluating all these coalitions and
calculating the associated strata I II’{VJ explicitly upfront
saves budget, as it avoids duplicates, i.e., coalitions
sampled multiple times. Given the budget B and the
probability distribution over sizes Py, we determine a
set of subset sizes Sexp = {0, ..., Sexp; W — Sexp, - - - , N},
for which the expected number of samples exceeds the
number of coalitions of each subset size. Consequently,
we evaluate all coalitions of sizes in Sexp, i.€., S CN
with |S| € Sexp. From the remaining sizes Simp =
{Sexp+1,...,n—Sexp — 1}, we sample coalitions. This
split allows to compute all strata

IOXP = {I}/(V,Z ‘ é+ |W| € Soxp}

explicitly, which follows from Eq. (2) and ¢+|W| = | A|.
The remaining strata

Timp = {1 ¢ | L+ W] € Simp}

are approximated with I}ng by sampling coalitions.
The procedure to determine Sexp, and Simp, named
CoMPUTEBORDERS (see Appendix C), is applied before
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Algorithm 1 SVARM-IQ

1: Input: (N V) BeN, ke {1 n} (/\k7g)g€£k
2: II‘/}/Z,CKK%OVKEN]C,KEE]C,WCK

3: Sexp,Slmp <+ COMPUTEBORDERS

4 B« B— ZSGSexp ('Z)

5. forb=1,...,B do

6:  Draw size ap € Simp ~ Pp

7:  Draw A, from {S C N | |S| = ap} uv.a.r.

8 v v(Ap) > store coalition worth
9: for K ¢ NV, do
10: W+ ANK > get stratum set
11: L ap — |W] > get stratum size
12: Y, UPDATEMEAN([KK, CR 4> Ub)
13: CKJ — CKJ +1 > increment counter
14:  end for
15: end for

[
(=]

o (e z (") Ak z (—1)F=IWITY VK € N;

17: Output. Iy for all K €N

the sampling loop in Algorithm 1. Hence, SVARM-
1Q enters its sampling loop with a leftover budget of
B:=B-— D osc Sexp (2), and repeatedly applies the up-
date mechanism. The distribution Pj is altered to P
by setting Py(s) = 0 for all s € Sexp and upscaling all
entries s € Simp such that they sum up to 1. Note that
this technique yields exact CII values for B = 2™.

Approximating Multiple Orders and Indices.
SVARM-IQ is not restricted to approximate only one
specific order k at the time. Quite to the contrary,
it can be extended to maintain strata estimates IV K0
for multiple orders, which are then simultaneously up-
dated within the sampling loop without imposing fur-
ther budget costs. The aggregation to interaction esti-
mates [ Kk 1s then carried out for each considered subset
K separately. Note that this also entails the SV, i.e.,
k = 1, thus allowing one to approximate attribution
and interaction simultaneously. Since the stratification
allows to combine the strata to any CII, SVARM-IQ
can approximate multiple CII’s at the same time, no-
tably without even the need to specify them during
sampling. This can be realized by specifying multi-
ple weighting sequences (A ¢)ecz, , one for each CII of
interest, and performing the final estimate computa-
tion I for each type. Note that this comes without
incurring any additional budget cost.

4 THEORETICAL RESULTS

In the following, we present the results of our theoret-
ical analysis for SVARM-IQ. All proofs are deferred
to Appendix E. In order to make the analysis feasi-

ble, a natural assumption is to observe at least one
sample for each approximated stratum [ W@ € Timp-
We realize this requirement algorlthmlcally only for
the remainder of this chapter by executing a WArMUP
procedure (see Appendix 3) between COMPUTEBORDERS
and SVARM-I1Q’s sampling loop. For each I}}(V,e € Limp
it samples a coalition A C AN \ K of size £ and
sets f}’(vl to v(AUW). Hence, SVARM-IQ enters its

sampling loop with a leftover budget of B := B —
Zsesexp (") = |Zimp|.- We automatically set sexp > 1,
which consumes only 2n + 2 evaluations. Hence for
n = 3, all strata are already explicitly calculated.
Since CoMPUTEBORDERS evaluates then at least all coali-
tions of size s € {0,1,n —1,n}, the initial distribution
Py, over sizes has support {2,...,n—2}. For k > 3, this
allows us to specify Py to be the uniform distribution:

1
Py(s) == p— for all s € {2,...,n —2}.
Further for the remainder of the analysis, we use a
specifically tailored distribution in the case of k = 2:

_Bn__ ifs< =
PQ(S) = {5(5126" f ; N
(n—s)(n—s—1) 1 =2
with 8, = Mﬂ%ﬁgg) for even n > 4 and £, = 5=L-

for odd n > 5. This allows us to express sharper
bounds in comparison to the uniform distribution.

Notation and assumptions. We introduce some
notation, coming in helpful in expressing our results
legibly. For any w € {0,...,k} we denote by L} :=
{t € Ly | L+ w € Simp}. For any K € N} and
leLylet Agobea random coalition with distribution
P(Ag, = S) = (";*) " forall S C N\ K with | S| = £.
For any W C K we denote the stratum wvariance by
o%kow = VIv(Ax, UW)] and the stratum range by
Tew = maxgca\ x Y(SUW)—mingcpan g V(SUW).
S|=¢ S|=¢

For a Comprehelnlsive overview of the| 1llsed notation,
we refer to Appendix A. As our only assumptions, we
demand n > 4 and the budget to be large enough to
execute COMPUTEBORDERS, WARMUP , and the sampling
loop for one iteration, i.e., B> 0.

Unbiasedness, Variance, and MSE. We begin
by showing that SVARM-IQ’s estimates are unbiased,
which is not only desirable but will also turn out useful
shortly after in our analysis.

Theorem 4.1. SVARM-IQ’s CII estimates are unbi-
ased for all K € Ny, i.e., E[lk] = Ik.

The unbiasedness enables us to reduce the MSE of any

I to its variance. In fact, the bias-variance decom-
position states that E[(Ix — Ix)?] = (E[lx] — Ix)? +
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V[Ik]. Hence, a variance analysis of the obtained esti-
mates suffices to bound the MSE. The variance of I K
is tightly linked to the number of samples SVARM-
IQ collects for each stratum estimate I}Vgé. At this
point, we distinguish in our analysis between k = 2
and k > 3 to obtain sharper bounds for the former
case facilitated by our carefully designed probability
distribution P, over coalition sizes. To keep the pre-
sented results concise, we introduce 7 := 2(n—1)? for
k=2 and vy := n*"1(n — k + 1) for all k > 3. This
stems from the aforementioned difference in precision
on the lower bound of collected samples.

Theorem 4.2. For any K € Ny the variance of the
CII estimate Ik returned by SVARM-1Q is bounded by

_ 2
Vi<t Y % (1) Rk

WK pec)!

Note that our efforts in optimizing the analysis for k =
2 reduced the bound by a factor of 3 in comparison to
substituting k£ with 2 in our bound for the general case.
This is caused by the severe increase in complexity
when trying to give a lower bound for the number of
samples each stratum receives. Although our approach
allows one to obtain a sharper bound for special cases
as k = 3 or k = 4 with a similarly dedicated analysis,
we abstain from doing so as we prioritize a concise
presentation of our results.

Corollary 4.3. For any K € Ny, the MSE of Ix
returned by SVARM-IQ is bounded by E[(Ix —Ix)?] <

AN
lg Z Z (ng > Ai,ﬂ%(,e,w-

WK gl

We state this result more explicitly for the frequently
considered interaction type: the SII for pairs of players
i and j. In this case our bound boils down to

A 2] 9
SII SII 2
E [(Im —[i,j) ] ) Yo D G

WCLing}eerW!

The simplicity achieved by this result supports a
straightforward and natural interpretation. The MSE
bound of each SII estimate is inversely proportional to
the available budget for the sampling loop and each
stratum variance contributes equally to its growth.

We intentionally abstain from expressing our bounds
in asymptotic notation w.r.t. B and n only, as it would
not do justice to the motivation behind employing
stratification. The performance of SVARM-IQ is based
on lower strata variances (and also strata ranges) com-
pared to the whole population of all coalition values
within the powerset of A'. This improvement can not
be reflected adequately by the asymptotics in which
the variances vanish to constants.
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(¢, 6)-Approximation. Combining Theorem 4.2
with Chebyshev’s inequality immediately yields a
bound on the probability that the absolute error of a
fixed I exceeds some & > 0 given the budget at hand.

Corollary 4.4. For any K € N, the absolute error of
I returned by SVARM-1Q) exceeds some fized € with
probability of at most P(|Ix — I| > ¢) <

2
Tk n—k 2 2

-~ )\ .
=2 E E < / ) kO K 0 W

WEK g

One can easily rearrange the terms to find the mini-
mum budget required to obtain P(|Ix — Ix| < &) >
1 — 9 for a given § > 0. Note that this bound still
depends on the unknown strata variances. Further,
we provide another bound in Theorem 4.5 (see Ap-
pendix E.4), resulting from a slightly more laborious
usage of Hoeffding’s inequality which takes the strata
ranges into account. To the best of our knowledge
there exists no theoretical analysis for permutation
sampling of CIIs. SHAP-IQ is like wise unbiased, but
its theoretical analysis (Theorem 4.3) Fumagalli et al.
(2023) does not provide such detail for fixed n and k.

5 EXPERIMENTS

We empirically evaluate SVARM-IQ’s approximation
quality in different X AT application scenarios and com-
pare it with current state-of-the-art baselines.

Baselines. In the case of estimating SII and STI
scores, we compare SVARM-IQ to SHAP-IQ (Fuma-
galli et al., 2023) and permutation sampling (Sun-
dararajan et al., 2020; Tsai et al., 2023). For FSI, we
compare against the kernel-based regression approach
(Tsai et al., 2023) instead of permutation sampling.

Table 1: Overview of the XAI tasks and models used
Task Model ID Removal Strategy n Yy
LM  DistilBert Token Removal 14 [-1,1]

ViT  ViT-32-384 Token Removal 9,16 [0,1]

Superpixel

CNN' - ResNet18 Marginalization

14 [0,1]

Explanation Tasks. Similar to Fumagalli et al.
(2023) and Tsai et al. (2023), we evaluate the ap-
proximation algorithms based on different real-world
ML models and classical XAI scenarios (cf. Table 1).
First, we compute interaction scores to explain a sen-
timent analysis language model (LM), which is a fine-
tuned version of DistilBert (Sanh et al., 2019) on the
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Figure 3: Approximation quality of SVARM-IQ (blue) compared to SHAP-IQ (pink) and permutation sampling

(purple) baselines for estimating order & = 2,3 SII on the LM (a; n = 14) and the ViT (b; n = 16).

Shaded

bands represent the standard error over 50, respectively 30 runs.

IMDB (Maas et al., 2011) dataset. Second, we investi-
gate two types of image classification models, which
were pre-trained on ImageNet (Deng et al., 2009).
We explain a vision transformer (ViT), (Dosovitskiy
et al., 2021), and a ResNet18 convolutional neural net-
work (CNN) (He et al., 2016a). The ViT operates on
patches of 32 times 32 pixels and is abbreviated with
ViT-32-384. The torch versions of the LM, ViT,
and the CNN are retrieved from Wolf et al. (2020)
and Paszke et al. (2017). For further descriptions on
the models and feature removal strategies aligned with
Covert et al. (2021), we refer to Appendix F.

Measuring Performance. To assess the perfor-
mance of the different approximation algorithms, we
measure the mean squared error averaged over all
K € Nj (MSE; lower is better) and the precision at
ten (Prec@10; higher is better) of the estimated inter-
action scores compared to pre-computed ground-truth
values (GTV). Prec@10 measures the ratio of correctly
identifying the ten highest (absolute) interaction val-
ues. The GTV for each run are computed exhaustively
with 2™ queries to the black box models. All results
are averaged over multiple independent runs.

Approximation Quality for SII. We compare
SVARM-IQ against permutation sampling and SHAP-
1Q at the LM and ViT explanation tasks for approx-
imating all SIT values of order ¥ = 2 and &k = 3 in
Figure 3. Across both considered measures, MSE and
Prec@10, SVARM-IQ demonstrates superior approx-
imation quality. Noteworthy is SVARM-IQ’s steep
increase in approximation quality in the earlier bud-
get range allowing applications with limited computa-
tional resources. Based on our theoretical findings, we
assume the stratification by size in combination with
the splitting of discrete derivatives to be the cause for

1e-3STI for the CNN (n =14, 50 runs)

\ Method
| —— SVARM-IQ

1.0

N 1e-3FSI for the CNN (n = 14, 50 runs)
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Figure 4: Comparison of SVARM-IQ and baselines
for STT (left) and FSI (right) on the CNN. Shaded
bands represent the standard error over 50 runs.

the observed behavior. Most plausibly coalitions of the
same size and sharing a predetermined set, as encom-
passed by each stratum I}’(‘fb vary less in their worth
than the whole population of coalitions. Consequently,
the associated variance o,y is considerably lower,

leading to faster convergence of the estimate fIV(Ve.

Example Use-Case of n-SII Values. Precise es-
timates allow to construct high-quality n-SII scores as
proposed by Bordt and von Luxburg (2023). Figure 1
illustrates how n-SII scores can be used to explain the
ViT with 16 patches for an image of two correctly clas-
sified Labradors. All individual patches receive posi-
tive attribution scores (k = 1) of varying degree, lead-
ing practitioners to assume that patches with similar
attribution are of equal importance. However, en-
hancing the explanation with second order interactions
(k = 2), reveals how the interplay between patches
containing complementing facial parts, like the eyes
and the mouth, strongly influences the model’s predic-
tion towards the correct class label. On the contrary,
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n-Sli values of order k=1,2
explained class: airliner (p=0.97)

n-Sll values of order k=1,2
explained class: airliner (p =0.97)

n-Sll values of orderk=1,2 Order 1
explained class: airliner (p=0.97) Y o nuf

Figure 5: Comparison of ground-truth n-SII values of order £k = 1 and k = 2 for the predicted class probability
of a ViT for an ImageNet picture sliced into a grid of n = 16 patches (left) against n-SII values estimated by
SVARM-IQ (center) and permutation sampling (right). The exact computation requires 65,536 model evaluations
while the budget of both approximators is limited by 5000, making up only 7.6% of the space to sample.

tiles depicting the same parts, e.g. those containing
eyes, show negative interaction, allowing to conclude
that the addition of one in the presence of the other is
on average far less impactful than their individual con-
tribution. Solely observing the monotony of the indi-
vidual scores would have arguably led to overlook this
insight. We describe this further in Appendix G.2.

Estimating FSI and STI. Further, we compute
different ClIIs of a fixed order with SVARM-IQ and
consistently achieve high approximation quality. We
summarize the results on the CNN in Figure 4. For
STI, SVARM-IQ, again, outperforms both sampling-
based baselines. The kernel-based regression estima-
tor, which is only applicable to the FSI index, yields
lower approximation errors than SVARM-IQ. Similar
to SV estimation through KernelSHAP (Lundberg and
Lee, 2017), this highlights the expressive power of the
least-squares representation available for FSI.

Instance-wise comparison. Lastly, we compare in
Figure 5 SVARM-IQ’s n-SII estimates of order k = 1
and k = 2 against those of permutation sampling and
the ground truth for single a single instance. The
ground truth interaction is computed upfront for the
predicted class probability of the ViT for a specified
image sliced into a grid of 16 patches, and both ap-
proximation algorithms are executed for a single run
with a budget of 5000 model evaluations, thus con-
suming only 7.6% of the budget necessary to compute
GTYV exactly. The estimates obtained by SVARM-IQ
show barely any visible difference to the human eye.
In fact, SVARM-IQ’s approximation replicates the
ground truth with only a fraction of the number of
model evaluations that are necessary for its exact com-
putation. Hence, it significantly lowers the computa-

122

tional burden for precise explanations. On the con-
trary, permutation sampling yields estimated impor-
tance and interaction scores which are afflicted with
evident imprecision. This lack in approximation qual-
ity has the potential to cause misguiding explanations.
More comparisons are shown in Appendix G.2.

6 CONCLUSION

We proposed SVARM-IQ, a new sampling-based ap-
proximation algorithm for interaction indices based
on a stratified representation to maximize budget ef-
ficiency. SVARM-IQ is capable of approximating all
types and orders of cardinal interactions simultane-
ously, including the popular SII. Consequently, as the
special case of SVs is also entailed, this facilitates
the approximation of feature importance and interac-
tion simultaneously, thus offering an enriched expla-
nation. Besides proving theoretical results, we empir-
ically demonstrated SVARM-IQ’s advantage against
current state-of-the-art baselines. Its model-agnostic
nature and domain-independence allow practitioners
to obtain high-quality interaction scores for various en-
tity types such as features or data points.

Limitations and Future Work. Due to SVARM-
1Q’s stratification, the number of maintained strata es-
timates grows exponentially with the interaction order
k. This space complexity poses a challenge for large in-
teraction orders. As a pragmatic remedy, future work
may consider the approximation of interaction scores
for a smaller number of sets or a coarser stratifica-
tion by size. Lastly, it still remains unclear whether
the performance of the kernel-based regression estima-
tor available for FSI and the SV can be transferred to
other types of CllIs like the SIT or STT indices.
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Abstract

The usefulness of cooperative game theory and key concepts like the Shapley value, which measures
the contribution of individual players to the overall performance of a coalition, has been demonstrated
in various applications. Due to the computational effort growing exponentially with the number of
participants in a game, several methods have been proposed to approximate Shapley values. Yet, in
many applications, only the order of players according to their Shapley values is important, or maybe
the set of the k best players, but not the values themselves. In this paper, we consider the problem of
identifying the k players in a cooperative game with the highest Shapley values and denote it as the
Top-k Shapley problem. By viewing the marginal contributions of a player as a random variable, we
establish a connection between cooperative games and multi-armed bandits, which in turn allows us to
reduce Top-k Shapley to the multiple arms identification problem. We call the resulting bandits problem
Shapley bandits. Besides adopting existing algorithms for multiple arms identifications, we propose the
Border Uncertainty Sampling algorithm (BUS) and provide empirical evidence for its superiority over
state-of-the-art algorithms.

Keywords

Shapley value, Cooperative games, Multi-armed bandit, Multiple arms identification

1. Introduction

The formal notion of a cooperative game, in which players can form coalitions to accomplish a
certain task, is a versatile concept with countless practical applications. Consider, for example,
the cooperation of municipalities in infrastructure projects, with the goal to reduce costs by
sharing and allocating available resources. In the context of (supervised) machine learning,
individual features can be seen as players and feature subsets as coalitions — the task here is to
train a model with high predictive performance [1, 2].

An interesting question in the context of cooperative games concerns the importance or
contribution of an individual player: How to distribute the collective benefit of a coalition among
the individual players? A connection to explainable Al can be drawn by interpreting features in
a machine learning model as players and the predictive performance as the collective benefit
such that the portion allocated to each feature can be seen as its importance for the model.
Independent of the considered application, cooperative game theory has proposed different
solution concepts, with the Shapley value as the arguably most popular one [3]. The Shapley
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value assigns to each player a weighted average of all its marginal contributions, where we
understand by a marginal contribution of a player the increase in the worth of a coalition when
adding that player. The popularity of the Shapley value arises from the fact that it can be derived
axiomatically by demanding desirable properties that one would expect from a fair distribution
[3]. It has found its usage in a broad range of fields, from identifying influential members in
terrorist networks [4, 5] to finding important neurons in artificial neural networks [6].

An inherent drawback of the Shapley value is the huge computational effort caused by the
exponentially (in the number of players) growing number of marginal contributions — one per
coalition — to be averaged over. As a consequence, brute force approaches quickly become
infeasible for even only a few dozens of players. Several approximation methods have been
proposed [6, 7, 8] to tackle this difficulty, all of them sharing the same idea of calculating mean
estimates for randomly sampled marginal contributions uniformly for all players. Further,
theoretical guarantees for approximation methods have been shown under mild assumptions
(7, 8].

While these approximations show partially satisfying results in empirical studies, it seems to
be rarely mentioned that in many applications the true objective is not to obtain precise Shapley
value estimates for all players, but to identify a certain number of k players with the highest
Shapley values (even though most works are indirectly aiming for that). For example, security
agencies are more interested in identifying the most threatening members in terrorist networks,
or the good performance of a machine learning model is oftentimes largely driven only by the
most valuable features. Needless to say, one could tackle this problem niively by just pointing
at the £ players with highest Shapley value estimates obtained by traditional approximation
algorithms. However, this approach would involve sampling steps to approximate the Shapley
values of players for which one can already be certain that these are at the top or bottom of
the ranking in terms of the Shapley values. In such cases, on the other hand, it makes sense
to sample marginal contributions for players lying in the middle” of the ranking in order to
separate as quickly as possible the set of k-best players from the rest with a certain degree of
certainty, although this might involve sacrificing precision of estimates for those players who
are likely to be at the top or bottom of the ranking.

Similar considerations have already been made in the field of multi-armed bandit (MAB)
problems [9], which is a class of online learning problems, where an agent needs to choose
one arm (choice alternative) among a given set of arms (choice alternatives) in the course of a
sequential decision process to achieve a specific target. In the stochastic variant of the MAB
problem, each arm is associated with an unknown reward distribution and choosing a specific
arm results in obtaining a stochastic reward generated by the chosen arm’s unknown reward
distribution. Many of the targets considered therefore revolve around identifying a specific
partial ranking with respect to the (unknown) means of the arms reward distributions as quickly
as possible. One particular target is to find the k£ arms having the highest mean, known as the
multiple arms identifications problem [10], for which a number of algorithmic solutions are
already available [10, 11, 12, 13, 14]. In this paper, we show how to trace the Top-k Shapley
problem back to the multiple arms identifications problem, so that state-of-the-art solution
methods for the latter problem can be efficiently used for the former. In addition, we propose a
new method that performs even superior in numerical experiments.
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2. Preliminaries

Before introducing our proposed problem formally in Section 3, we revisit in the following
cooperative games and the Shapley value, as well as the problem of multiple arms identification
in multi-armed bandit problems.

2.1. Cooperative Games and the Shapley Value

A cooperative gameis characterized by a pair (IV, v) containing a set of players N = {p1,...,pn}
and a value function v : P(N) — R, where v(()) = 0 by definition. The players can form
coalitions S C N and obtain a combined benefit given by v/(.S) which is called the worth of S.
For the question of how to distribute the worth (V) of the grand coalition N to the individual
n many players, the Shapley value [3] forms a payoff distribution allocating to each player p;

the value
1

¢i(v) = — oty - (W(SUpi}) — v(9)).

scwiny "ist)

For simplicity, we write ¢; whenever it is clear to which value function v we refer. The difference
inworth v(SU{p;}) —v(S) is called p;’s marginal contribution given S. The Shapley value can
be derived axiomatically, as it is provably the only solution concept fulfilling simultaneously

the following properties [3], which one would intuitively demand from a fair distribution:

- Efficiency: the worth of IV is partitioned over all players, i.e, v(N) =>_ -y i,

+ Symmetry: if two players p; and p; cannot be distinguished by their marginal contri-
butions, i.e., v(S U {p;}) = v(S U {p;}) for all S C N not containing p; or p;, then
¢ = ¢j,

« Additivity: if v is a sum of two value functions v; and vs, ie., v = v; + 19, then
¢i(v) = ¢i(1) + di(12),

« Dummy element: if a player p; has constant marginal contribution v({p;}) for all coali-
tions, i.e., (S U {pi}) = v(S) + v({pi}) forall S C N \ {p;}, then ¢; = v({i}).

2.2. Multiple Arms Ildentification

A multi-armed bandit problem is specified by a set of arms A = {ay,...,a,} each arm a; of
which is endowed with an unknown distribution (; having mean p;. In each discrete time
step t, the learner can pull an arm a; of its choice, meaning that it retrieves a random sample
X! ~ (; drawn independently conditioned on the history of the previous time steps. The
arms can be ordered (not necessarily uniquely) via a permutation 7 : [n] — [n] such that
Pr(l) = -+ = fix(n), Where we define [n] := {1,...,n}. Given a number k£ € [n], the
objective of the learner in the multiple arms identification problem is to identify the top-k arms
Ar(1)s - - - On(k)- In the literature there are two prevalent learning frameworks for this objective,
namely the fixed budget setting and the fixed confidence setting. In the former, a number of
time steps 7' (the budget) is given beforehand, which once exhausted requires the learner to
return its guess about the top-k arms, with its performance being measured by the probability
of returning a correct output. On the contrary, the learner is judged in the latter by the number



of time steps needed in order to identify the top-k arms with probability at least 1 — § for a
given § € (0, 1].

3. Problem Statement

The Top-k Shapley problem is given by a cooperative game (N, v) in which accesses to the
value function v are costly. Although v is known (in the sense that we can access v(,S) for all
S C N), the Shapley values remain unknown, since it is practically infeasible for a sufficiently
large number of players to compute them. The players in N can be ordered (not necessarily
uniquely) via a permutation 7 : [n] — [n] such that ¢ (1) > ... > ¢4(y). For sake of simplicity,
we assume that the there are no ties at the top-k-th position. Given a number k € [n], the
learner’s goal is to identify the top-k players py(q), . .., Pr(x) With highest Shapley values.

Likewise to multiple arms identification, we distinguish between two learning scenarios.

One where performance is measured by the probability of the learner successfully identifying
the top k players after a given number 7" of accesses to v that the learner is allowed to make
(fixed budget scenario). The other focusing on a minimal number of accesses to v in order to
guarantee a successful identification with a probability of at least 1 — § for a given ¢ € (0, 1]
(fixed confidence scenario). Due to page restrictions we focus only on the fixed budget setting.

4. Reduction to Multiple Arms Identification

Given a cooperative game (N, /), the marginal contribution v(S U {p;}) — v(5) of each player

pi can be viewed as a discrete random variable X; if S is drawn randomly from P(N \ {p;}).

Further, by drawing any S with probability 1/n("5'), X; has mean E[X;] = ¢;. Thus, by
interpreting a player p; as an arm a; within a multi-armed bandit problem, where retrieving
a sample of the arm’s distribution corresponds to drawing a (independent) sample of X;, we
obtain that the arm’s mean p; equals the player’s Shapley value ¢;. Together with the Shapley
values, the corresponding arms’ means remain unknown to us. With this connection at hand,
the reduction to multiple arms identification is complete, as the objective of identifying the
top-k players pr(1), - - -, Pr (k) With highest Shapley values is equivalent to the task of finding the
corresponding k arms a(y), - - - , ar(x) having highest means. We denote the resulting bandit
problem as Shapley bandits. This general reduction scheme allows leveraging any algorithm
for multiple arms identification to the Top-k Shapley problem without affecting its internal
mechanisms. Finally, it should be emphasized that each pull of an arm a; involves two accesses
to the value function v, one for v(.S) and the other for v(S U {p;}).

5. Algorithms

We present and analyze in Section 5.1 Uniform Random Sampling as a first benchmark algorithm,
show in Section 5.2 how to adapt already existing algorithms for multiple arms identification
to the top-k Shapley problem at the example of the Gap-based Exploration algorithm [14], and
propose in Section 5.3 with Border Uncertainty Sampling a new algorithm that can be easily
generalized to multiple arms identification.
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5.1. Uniform Random Sampling

As an illustrative example of how the approach can be applied we present the Uniform Random
Sampling algorithm (see Algorithm 1). It is a modification of the ApproShapley algorithm in
[7] and the Simple Random Sampling algorithm in [8], which instead of sampling permutations
of players and computing marginal contributions in the sequence in which players in the
permutations appear, simply samples a coalition for each player in order to remain faithful to
our reduction explained above (cf. Section 4).

For each player p; a mean estimate g?)z of ¢; is kept by URS and at termination the £ players
with highest estimates are returned. Note how URS does not rely on a budget 71" or confidence
1 — § to be given, instead it can be run for an arbitrary number of time steps and is therefore
applicable for the fixed budget setting as well as the fixed confidence setting. Utilizing the

Algorithm 1: Uniform Random Sampling (URS)
Input: N, v, k

1 Initialize: g?)z +—0,t; < 0Vp; € N

2 fort=1,2,...do

3 i< (t modn)+1

4 t;+—t;+1

5 Git; = v(SU{pi}) —v(S) with S € N\ {p;} drawn with probability 1/n("5/)
. gbl - (tifl)f;Jr@,ti

7 end

Output: p;(1), ..., Pz for @ : [n] — [n] with {bﬁ(l) >, > gAb,Ar(n)

techniques presented in [8], we can derive performance guarantees for the fixed budget and the
fixed confidence setting depending on the variances or ranges of the marginal contributions of
each player, stated in the following.

Theorem 1.
Let 02 > V[X;] forallp; € Nand k € [n], m € N, § € (0,1], as well as g, > 0 with
€k < Gr(k) — Pr(k+1)- Then, URS identifies the top-k players correctly

. after 2mn many accesses to v with probability at least 1 — 4n0?/2m;
« with probability at least 1 — § after 8n°0/c25 many accesses to v.

The proof is given in Appendix A. The first property becomes a guarantee for the fixed budget
scenario by setting m (denoting the number of marginal contributions drawn for each player)
to the highest integer fulfilling 2mmn < T for the given budget 7". The second property reveals
a sampling complexity of 87°0%/<25 for the fixed confidence scenario.

Theorem 2.
Let 7 be an upper bound for the range of X; for all p; € N. Further, let k € [n], m € N,
6 € (0,1],and 0 < ) < @) — Pr(k+1)- Then, URS identifies the top-k players correctly

. after 2mn many accesses to v with probability at least 1 — 2n exp (—cim/2,2) ;



« with probability at least 1 — § after 4n7%/:2 - log (27/5) many accesses to v.

The proof is given in Appendix B. Again, m is to be interpreted as the number of marginal
contributions drawn for each player.

5.2. Gap-based Exploration

At the example of the Gap-based Exploration algorithm (Gap-E) [15, 14] we demonstrate how
to adapt a multiple arms identification algorithm to the Top-k Shapley problem (see Algorithm
2). Originally, Gap-E was proposed and analyzed for the setting of finding the single arm with
highest mean reward in [15], and later slightly modified for the task of finding the top-k arms
in [14]. Whenever Gap-E pulls an arm a;, we replace the random sample by v(S U {i}) — v(S)
for S C N\ {p;} drawn randomly with probability 1/n("15'). Gap-E demands the budget 7T, a
coefficient ¢ € R+, and the complexity of the problem H‘¥) as additional parameters to be
given, where

70 _ Z": (A§k>)_2, wmd Al [Hi = prs, €T n (0}
i=1 Horr(k) — His ie{n(k+1),...,m(n)}

Algorithm 2: Gap-based Exploration (Gap-E)
Input: N, v, T, c, H®

1 Initialize: (ESZ —0,t; < 1Vp; e N

2 fori=1,...,ndo

‘ ¢; = v(SU{p;}) — v(S) with S C N \ {p;} drawn with probability Un(ts!)

end

fort=n+1,...,T do

Compute 7 : [n] — [n] with @r(l) > ... > (Aﬁfr(n)

}

7 A = {¢z - Q%fr(lf—i-l) ie{n(1),...,7(k)
Z Prk) — G4 ie{rn(k+1),...,m(n)}

8 i%argmax—Aj—i-c«/H%u_
j€ln] !
9 ti+—t; +1
10 G, = v(SU{pi}) — v(S) with S € N \ {p;} drawn with probability 1/n("5/)
3 ti—1 Ai+ it
&, ( )i ¢

A G e W

11
12 end

Output: pfr(l)a e 7pfr(k) for 7 : [n} — [n] with QASfr(l) > ... > (z)fr(n)

5.3. Border Uncertainty Sampling

Next, we propose a new algorithm (cf. Algorithm 3) called Border Uncertainty Sampling (BUS)
without providing theoretical guarantees. In similar fashion to Gap-E a measure of (un-)certainty
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whether a player p; belongs to the top-k players or not is at the heart of BUS. However, the gaps
involved in the measure of (un-)certainty are calculated in a slightly different manner, namely
as the absolute distance to the average of the k-th and (k + 1)-th highest mean estimates b (k)

and g;ﬁﬁ( k+1)- Next, BUS chooses to draw a sample for the player p; that minimizes its gap times
the number of samples BUS has already drawn for it, i.e., A; - ¢;. The intuition behind this
measure of certainty is that for players with larger gap A; we are more certain to tell whether
it belongs to the top-k players or not. Likewise, a larger number ¢; of samples drawn indicates
a higher precision of the estimate éﬁz Thus, BUS selects the player p; with highest uncertainty.
As with URS, a clear advantage of BUS over Gap-E is that no additional parameters like the time
budget for instance are required, allowing it to be terminated at any time step.

Algorithm 3: Border Uncertainty Sampling (BUS)
Input: N, v, k
1 Initialize: (ESZ —0,t; < 1Vp; e N
2 fori=1,...,ndo
3 ‘ ¢; = v(SU{p;}) — v(S) with S C N \ {p;} drawn with probability Un(s))
4 end
5 fort=n-+1,...do
6 Compute 7 : [n] — [n] with ¢,

phe b7 (k) + i
; o Pa(k) ;75 (k+1)

8 AZ'(—’(%i—(Ab*’VpZ'EN

9 i< argminAj - t;

j€ln]

10 ti+—t;+1

11 Git; = v(SU{pi}) —v(S) with S C N \ {p;} drawn with probability 1/n("5)
(Q)i - (ti—l)ii-i—qﬁi,ti

12
13 end

Output: pfr(l)a c.. 7pfr(k) for 7 : [TL} — [TL] with (257}(1) > ... > (%fr(n)

6. Experiments

In the following we evaluate the algorithms URS, BUS, Gap-E [14], and Successive Accepts and
Rejects (SAR) [14] modified for the Top-k Shapley problem on synthetic data. For Gap-E we
have heuristically set H*) = 10000 and ¢ = 1. We are interested in the performance curves in
dependence of the number of players n, the budget 7', and the variance in marginal contributions.
Generating random value functions is not suitable for our purpose, as this leads to expensive
computations of the corresponding Shapley values. As a remedy, we simulated cooperative
games with the following two approaches. First, we consider in Section 6.1 a stochastic setting
in which the marginal contributions of each player are sampled from some fixed distributions.
And secondly, we simulate in 6.2 a special case of cooperative games called sum of unanimity



games for which the computation of Shapley values is fairly straightforward. We show in all
figures for each choice of parameters the averaged ratio of correctly identified top-k players
gathered from 500 repetitions.

6.1. Stochastic Setting

We substitute the marginal contributions of each player p; by a random variable X; ~ N '(p;, 02)
and set p; = 0.806 — 0.006¢ for all p; € N. The results are shown in Figure 1. For all three
considered dependencies (budget, number of players, and variances) BUS outperforms the other
considered algorithms by a visible margin. The performance of all algorithms improves for
increasing budgets and decreasing variances as one would expect, but the impact of the number
of players on BUS’s and Gap-E’s ratio is surprisingly low in the considered ranges.

—eo— URS —e—BUS
—e— Gap-E —e— SAR
1 T T T T 1 T T T

0.8 |- N
0.6 |-
0.4

0.2

0

[
0 200 400 600 800 1,000 20 40 60 80 100 (9.001 0.002 0.003 0.004 0.005

Figure 1: Averaged ratios of correct returned sets under the stochastic setting for k = 10. Left: n = 100,
0? = 0.005. Center: T = 1000, 02 = 0.005. Right: n = 100, T = 1000.

6.2. Sums of Unanimity Games

In an unanimity game, specified by a subset R C NN, the value function takes the form of
vr(S) =I{R C S}forall S C N,

where I{-} denotes the indicator function. An unanimity game can be interpreted as a game in
which all players contained in R have to agree on cooperating together in order to achieve a
benefit of 1. One can construct a sum-of-unanimity-games game (SOUG game) by combining
multiple unanimity games in a linear combination. More precisely, for a set of coalitions
R C P(N) and coefficients cp € R for each R € R the value function is given by:

v(S) =Y cr-vr(S)forall S C N.
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The Shapley values of a SOUG game can be calculated in linear time with respect to the number
of combined unanimity games and is given for each player p; by [3]:

_ CR
b= > &

ReR:ER

For our simulations we generate SOUG games by drawing all the key terms uniformly at random
within a specific range/domain, respectively. The considered ranges or domains are

« {5,6,...,50} for the number of combined unanimity games |R|,
« {0,1,...,n} for the size of each R € R,

o N for the members of each R € R,

« [0,1/|r|] for the coefficient cp for each R € R.

The results in Figure 2 show a similar picture as for the stochastic setting, albeit the performance
ratios being closer together. BUS still outperforms its competitors Gap-E and SAR, while the
benchmark algorithm URS does not perform significantly worse, which indicates the increased
challenge that SOUG games pose in comparison to the stochastic setting. In contrast, the number
of players has now a more drastic impact.

1 T T T 1
—e— URS —e—BUS T

0.8 || —e— Gap-E —e— SAR 0.8
0.6 - 0.6
04 0.4
0.2 0.2

oo - . 0 I

500 1,000 1,500 2,000 10 20 30 40 50

Figure 2: Averaged ratios of correct returned sets for SOUG games for &k = 3. Left: n = 10. Right:
T=2000.

7. Conclusion

We have proposed the Top-k Shapley problem, which consists of finding the k players in
a cooperative game with the highest Shapley values. Taking a probabilistic view by seeing
the marginal contributions of the players as discrete random variables allowed us to draw a
connection to multi-armed bandits and reduce the problem to multiple-arms identification,
which we have done by successfully adapting known algorithms. We proposed with BUS a
new algorithm that is not limited to the use case of identifying top-k Shapley players and gave
evidence for its superiority by means of empirical results. Further, it has the advantage of not



needing to know any additional parameters compared to other algorithms for multiple arms
identification. For future work, we aim to derive theoretical guarantees, albeit leaving room for
modifications open in order to make the analysis feasible.
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A. Proof of Theorem 1

For all 7 and t; we can view ¢; ¢, as a discrete random variable with:

E[és.,] = (1_1) (S U{i}) - 1(S)
scn\{i} "' LS

= ¢i.

Let T} be the number of times marginal contributions have been drawn for i and Y; = Zgizl Dits»
thus E[Y;] = T;¢; and ¢; = Yi/T; at the point of termination.

Lemma 3.
Let e, > 0 with e < ¢r (1) — @r(r+1)- The probability of URS identifying the top-k Shapley
players correctly is at least

1- ;:;IP’ (Mgw(i) — On(i)| 2 %k) '

Proof:
First, we show that a correct identification of the top-k players by URS implies that all Shapley
values are estimated with an absolute error of at most <::
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From which we derive:

k n n
~ ~ ~ €k
Pl N {%(i) > %(j)} >1-> P <\¢ﬂ(i) — ri)| = ?> : O

i=1 j=k+1 i=1
Let 02 = V[¢;+] and hence V[Y;] = T;o?. Similar to [8], we obtain by using Chebyshev’s
inequality for all e, > O:

402

[

z-:zTi'

P(|¢A5i—¢z’| > %k) <

We complete the proof by deriving for ¢ > ¢; and m < T} for all ¢ with the help of Lemma 3:

k n . ) 4 9
PN {¢w<i>>¢wm} =1- ;2]:;

i=1j=k+1

B. Proof of Theorem 2

Let r; be the range of ¢; 4, for all <. Similar to [8], we obtain by using Hoeffding’s inequality, for
all g, > 0:

- 2T
P (16— il > 5) s2exp< 5’“ )

)
2r;

We complete the proof by deriving for > r; and m < T; for all ¢ with the help of Lemma 3:

k n . A EiM
S IaNARTET Y 21—2”@@(— 2r2>-

i=1j=k+1
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Abstract

Additive feature explanations rely primarily on
game-theoretic notions such as the Shapley value
by viewing features as cooperating players. The
Shapley value’s popularity in and outside of ex-
plainable Al stems from its axiomatic unique-
ness. However, its computational complexity
severely limits practicability. Most works inves-
tigate the uniform approximation of all features’
Shapley values, needlessly consuming samples
for insignificant features. In contrast, identifying
the k most important features can already be suffi-
ciently insightful and yields the potential to lever-
age algorithmic opportunities connected to the
field of multi-armed bandits. We propose Compa-
rable Marginal Contributions Sampling (CMCS),
a method for the top-k identification problem uti-
lizing a new sampling scheme taking advantage
of correlated observations. We conduct exper-
iments to showcase the efficacy of our method
in compared to competitive baselines. Our em-
pirical findings reveal that estimation quality for
the approximate-all problem does not necessarily
transfer to fop-k identification and vice versa.

1. Introduction

The fast-paced development of artificial intelligence poses
a double-edged sword. Obviously on one hand, machine
learning models have significantly improved in prediction
performance, most famously demonstrated by deep learning
models. But, on the other hand, their required complexity to
exhibit these capabilities comes at a price. Human users face
concerning challenges comprehending the decision-making
of such models that appear to be increasingly opaque. The
field of explainable Al (Vilone & Longo, 2021; Molnar,
2022) offers a simple yet popular approach to regain un-
derstanding and shed light onto these black box models
by means of additive feature explanations (Doumard et al.,
2022). Probing a model’s behavior to input, this expla-

'"LMU Munich >Munich Center for Machine Learning. Corre-
spondence to: Patrick Kolpaczki <patrick.kolpaczki@ifi.lmu.de>.
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nation method assigns importance scores to the utilized
features. Depending on the explanandum of interest, each
score can be interpreted as the feature’s impact on the mod-
els’ prediction for a particular instance or its generalization
performance.

The Shapley value (Shapley, 1953) has emerged as a promi-
nent mechanism to assign scores. Taking a game-theoretic
perspective, each feature is viewed as a player in a coop-
erative game in which the players can form coalitions and
reap a collective benefit by solving a task together. For
instance, a coalition representing a feature subset can be
rewarded with the generalization performance of the to be
explained model using only that subset. Posing the om-
nipresent question of how to divide in equitable manner the
collective benefit that all players jointly achieve, reduces
the search for feature importance scores to a fair-division
problem. The Shapley value is the unique solution to fulfill
certain desiderata which arguably capture an intuitive notion
of fairness (Shapley, 1953). The marginal contributions of a
player to all coalitions, denoting the increase in collective
benefit when joining a coalition, are taken into a weighted
sum by the Shapley value.

It has been extensively applied for local explanations, divid-
ing the prediction value (Lundberg & Lee, 2017), and global
explanations that divide prediction performance (Covert
et al., 2020). In addition to providing understanding, other
works proposed to utilize it for the selection of machine
learning entities such as features (Cohen et al., 2007; Wang
et al., 2024), datapoints (Ghorbani & Zou, 2019), neurons in
deep neural networks (Ghorbani & Zou, 2020), or base learn-
ers in ensembles (Rozemberczki & Sarkar, 2021). We refer
to (Rozemberczki et al., 2022) for an overview of its appli-
cations in machine learning. Unfortunately, the complexity
of the Shapley value poses a serious limitation: its calcu-
lation encompasses all coalitions within the exponentially
growing power set of players. Hence, the exact computation
of the Shapley value is quickly doomed for even moderate
feature numbers. Ergo, the research branch of estimating
the Shapley value has sparked notable interest, in particular
the challenge of precisely approximating the Shapley values
of all players known as the approximate-all problem.

However, often the exact importance scores just serve as a
means to find the most influential features, be it for explana-
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tion or preselection (Cohen et al., 2007; Wang et al., 2024),
and are not particularly relevant themselves. Hence, we ad-
vocate for the top-k identification problem (Kolpaczki et al.,
2021) in which an approximation algorithm’s goal is to iden-
tify the k players with highest Shapley values, without hav-
ing to return precise estimates. This incentivizes to forego
and sacrifice precision of players’ estimates for whom re-
liable predictions of top-k membership already manifest
during runtime. Instead, the available samples, reflecting
finite computational power at disposal, are better spent on
players on the verge of belonging to the top-% in order to
speed up the segregation of top-k players from the rest.

Contribution. We propose with Comparable Marginal
Contributions Sampling (CMCS), Greedy CMCS, and
CMCS@K novel top-k identification algorithms for the
Shapley value. More specifically, our contributions are:

* We present a new representation of the Shapley value
based on an altered notion of marginal contribution
and leverage it to develop CMCS. On the theoretical
basis of antithetic sampling, we underpin the intuition
behind utilizing correlated observations especially for
top-k identification.

¢ Moreover, with Greedy CMCS and CMCS@K we pro-
pose multi-armed bandit-inspired enhancements. Our
proposed algorithms are model-agnostic and applicable
to any cooperative game independent of the domain of
interest.

 Lastly, we observe how empirical performance does
not directly translate from the approximate-all to the
top-k identification problem. Depending on the task,
different algorithms are favorable and a conscious
choice is advisable.

2. Related Work

The problem of precisely approximating all players’ Shapley
values has been extensively investigated. Since the Shapley
value is a weighted average of a player’s marginal contribu-
tions, methods that conduct mean estimation form a popular
class of approximation algorithms. Most of these sample
marginal contributions as performed by ApproShapley (Cas-
tro et al., 2009). Many variance reduction techniques, that
increase the estimates’ convergence speed, have been incor-
porated: stratification (Maleki et al., 2013; O’Brien et al.,
2015; Castro et al., 2017; van Campen et al., 2018; Okhrati
& Lipani, 2020; Burgess & Chapman, 2021), antithetic sam-
pling (Illés & Kerényi, 2019; Mitchell et al., 2022), and
control variates (Goldwasser & Hooker, 2024). Departing
from the notion of marginal contributions, other methods
view the Shapley value as a composition of coalition values
and sample these instead for mean estimation (Covert et al.,

2019; Kolpaczki et al., 2024a;b). A different class of meth-
ods does not approximate Shapley values directly, but fits a
parametrized surrogate game via sampling. As the surrogate
game represents the game of interest increasingly more faith-
ful, its own Shapley values become better estimates. Due to
the surrogate game’s highly restrictive structure these can
be obtained in polynomial time. KernelSHAP (Lundberg &
Lee, 2017) is the most prominent member of this class with
succeeding extensions (Covert & Lee, 2021; Pelegrina et al.,
2025). See (Chen et al., 2023) for an overview of further
methods for feature attribution and specific model classes.

First to consider the top-£ identification problem for Shapley
values were Narayanam & Narahari (2008) by simply return-
ing the players with the highest estimates effectively com-
puted by ApproShapley (Castro et al., 2009). This straight-
forward reduction of top-k identification to the approximate-
all problem can be realized with any approximation algo-
rithm. Kolpaczki et al. (2021) establish a connection to the
field of multi-armed bandits (Lattimore & Szepesvari, 2020)
and thus open the door to further algorithmic opportunities
that top-k identification has to offer. Here, pulling an arm of
a slot machine metaphorically captures the draw of a sample
from a distribution. Usually, one is interested in maximizing
the cumulative random reward obtained from sequentially
playing the multi-armed slot machine or finding the arm
with highest mean reward. Modeling each player as an arm
and its reward distribution to be the player’s marginal con-
tributions distributed according to their weights within the
Shapley value (Kolpaczki et al., 2021), facilitates the usage
of bandit algorithms to find the & distributions with highest
mean values which represent the players’ Shapely values.
The inherent trade-off between constantly collecting infor-
mation from all arms to avoid falling victim to the estimates’
stochasticity and selecting only those players that promise
the most information gain to correctly predict top-k mem-
bership, constitutes the well-known exploration-exploitation
dilemma.

Bandit algorithms such as Gap-E (Gabillon et al., 2011) and
Border Uncertainty Sampling (BUS) (Kolpaczki et al., 2021)
tackle it by greedily selecting the next arm to pull as the
one that maximizes a selection criterion which combines
the uncertainty of top-k£ membership and its sample number.
In contrast Successive Accepts and Rejects (SAR) (Bubeck
et al., 2013) phase-wise eliminates arms whose top-k£ mem-
bership can be reliably predicted. SHAPQK (Kariyappa
et al., 2024) employs an alternative greedy selection crite-
rion based on confidence intervals for the players’ estimates.
In each round, samples are taken from two players, one
from the currently predicted top-k and one outside of them,
with the highest overlap in confidence intervals. The overlap
is interpreted as the likelihood that the pair is mistakenly
partitioned and should be swapped instead.
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3. The Top-£ Identification Problem

We introduce cooperative games and the Shapley value for-
mally in Section 3.1, and briefly after present the widely
studied problem of approximating all players’ Shapley val-
ues in a cooperative game Section 3.2. On that basis, we in-
troduce the problem of identifying the top-k players with the
highest Shapley values in Section 3.3 and distinguish it from
the former by highlighting decisive differences in perfor-
mance measures which will prepare our theoretical findings
and arising methodological avenues alluded to in Section 4.

3.1. Cooperative Games and the Shapley Value

A cooperative game (N, ) consists of a player set N' =
{1,...,n} and a value function v : P(N') — R that maps
each subset S C N to a real-valued worth. The players in
N can cooperate by forming coalitions in order to achieve
a goal. A coalition is represented by a subset S of A/ that
includes exactly all players which join the coalition. The
formation of a coalition resolves in the (partial) fulfillment
of the goal and a collective benefit v(,S) disbursed to the
coalition which we call the worth of that coalition. The
empty set has no worth, i.e. v(f}) = 0. The abstractness
of this notion offers a certain versatility in modeling many
cooperative scenarios. In the context of feature explanations
for example, each player represents a feature and the for-
mation of a coalition is interpreted to express that a model
or learner uses only that feature subset and discards those
features absent in the coalition. Depending on the desired
explanation type, the prediction value for a datapoint of
interest or an observed behavior of the model over multiple
instances, for example generalization performance on a test
set, is commonly taken as the worth of a feature subset.

A central problem revolving around cooperative games is the
question of how to split the collective benefit that all players
achieve together among them. More precisely, which share
@; of the grand coalition’s worth v(A/) should each player
i € N receive? A common demand is that these payouts ¢
are to be fair and reflect the contribution that each player
provides to the fulfillment of the goal. Guided by this ra-
tionale, the Shapley value (Shapley, 1953) offers a popular
solution by assigning each player ¢ the payoff

bi = LU - s,
SCM\ {3} n( S| )
The difference in worth A;(S) := v(S U {i}) — v(S) is
known as marginal contribution and reflects the increase
in collective benefit that ¢ causes by joining the coalition
S. The reason for the Shapley value’s popularity lies within
its axiomatic justification. It is the unique payoff distribu-
tion to simultaneously satisfy the four axioms, symmetry,
linearity, efficiency, and dummy player (Shapley, 1953),
which capture an intuitive notion of fairness in light of the
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faced fair division problem. Despite this appeal, the Shapley
value comes with a severe drawback. The number of coali-
tion values contained in its summation grows exponentially
w.r.t. the number of players n in the game. In fact, its exact
calculation is provably NP-hard (Deng & Papadimitriou,
1994) if no further assumption on the structure of v is made,
and as a consequence, the Shapley value becomes practi-
cally intractable for datasets with even medium-sized feature
numbers. This issue necessitates the precise estimation of
Shapley values to provide accurate explanations.

3.2. Approximating all Shapley Values

Within the approximate-all problem, the objective of an ap-
proximation algorithm A is to precisely estimate the Shap-
ley values ¢ = (¢1,...,dy) of all players by means of
estimates qg = (qgl, RN qgn) for a given cooperative game
(N, v). We consider the fixed-budget setting in which the
number of times A can access v to evaluate the worth v/(.S)
of a coalition S of its choice is limited by a budget 7" € N.
Thus, A can sequentially retrieve the worth of 7" many, pos-
sibly duplicate, coalitions to construct its estimate ¢. This
captures the limitation in time, computational resources, or
monetary units that a practical user is facing to avoid falling
victim to the exact computation’s complexity. Furthermore,
it is motivated by the observation that the access to v poses
a common bottleneck, by performing inference of complex
models or re-training on large data, instead of the negligible
arithmetic operations of A.

Since A potentially uses randomization, for instance by
drawing samples and evaluating random coalitions, the com-
parison of (;3 and ¢ needs to incorporate this randomness
to judge the approximation quality. In light of this, the
expected mean squared error is a wide-spread measure of
approximation quality that is to be minimized by .A:

E[MSE] := i;/]E {(qs - éiﬂ . ©)

3.3. Identifying Top-% Players: A Subtle but Significant
Difference

Instead of estimating the exact Shapley values of all players,
of which many might be similar and insignificant, one could
be interested in just finding the players that possess the
highest Shapley values, with the particular values being in-
cidental. More precisely, in the top-k identification problem
(TKIP) an approximation algorithm A4 is confronted with
the task of returning an estimate K C N of the coalition
KC* with given size k € [n] := {1,...,n} that contains the
players with the highest Shapley values in the game (N, v).
We consider again the fixed-budget setting with budget 7T'.

However, K* is not necessarily unique as players may share
the same Shapley value. We restrain from any assumptions
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on the value function v and will thus present notions and
measures capable of handling the ambiguity of X*. We call
a coalition L C NV of k many players eligible if the sum of
Shapley values associated to the players in /C is maximal:

> ¢ = sgﬁﬁ:k;@' 3)

ielkC

We denote by £ C P(N) the set of all eligible coalitions.
Any eligible estimate K is correct and A should not be
punished for it. Note that for distinct Shapley values we
have &, = {K*}. In the following, we give in a first step
precision measures (to be maximized) and error measures
(to be minimized) for K given & and extend them in a
second step to the randomness of A. A straightforward way
to judge the quality of an estimate /C is the binary precision
(Kolpaczki et al., 2021)

X 1 ifKeé&
Yin () ::{ HAE @)

0 otherwise

that maximally punishes every wrongly included player in
K. In order to further differentiate estimates that are close
to being eligible from ones that have little overlap with an
eligible coalition, we introduce the ratio precision

N 1 N
Y (K) = o max [N K| (5)

which measures the percentage of correctly identified play-
ersin K by counting how many players can remain in K after
swapping with players from A"\ K to form an eligible coali-
tion. It serves as a gradual but still discrete refinement of the
binary precision with both measures assigning values in the
unit interval [0, 1]. Let ¢y~ := mingeg, min;ex ¢; be the
minimal Shapley value in any eligible coalition. Obviously,
it is the minimal value for all coalitions in &,. Kariyappa
et al. (2024) propose the inclusion-exclusion error which is
the smallest € > 0 that fulfills

bi > pr- — €
—_—

inclusion

and ¢; < g+ +¢€ (6)
—_———

exclusion

foralli € Kandall j € N\ K:

Pincrexc := inf{e € R=0 | Vi e K : ¢i > P — €,
Vi e N\K:¢; < ép-+e}. (7)

In simple terms, it measures how much the sum of Shapley
values associated with K can increase at least or that of
N\ K can decrease by swapping a single player between
them. To account for the randomness of A, effectively turn-
ing K into a random variable, the expectation of each mea-
sure poses a reasonable option just as in Section 3.2. Worth

mentioning is that E [, (K)] turns out to be the probability

that 4 flawlessly solves the top-k identification problem.
Kariyappa et al. (2024) resort to probably approximate cor-
rect (PAC) learning. Specifically for the inclusion-exclusion
error they call A for § € [0, 1] an (e, §)-PAC learner if

]P(pinc+exc(lc) S 5) 2 1-— 6 (8)

holds after .4 terminates on its own with unlimited budget at
disposal. Obviously, any algorithm for the approximate-all
problem can be translated to top-k identification by simply
returning the k players with the highest estimates.

4. The Opportunity of Correlated
Observations

The two problems of approximating all players and top-k
identification differ in goal and quality measures, hence they
also incentivize different sampling schemes. It is the aim
of our work to emphasize and draw attention to our obser-
vation that the role of correlated samples between players
plays a fundamental role for the top-£ identification prob-
lem, whereas this is not the case for the approximate-all
problem. We demonstrate this at the example of a sim-
ple and special class of approximation algorithms that can
solve both problem statements. We call an algorithm A
an unbiased equifrequent player-wise independent sam-
pler if it samples marginal contributions for all players
in M many rounds. In each round m € {1,...,M} A
draws n coalitions Sfm), . 5™ one for each i € N,

according to a fixed joint probability distribution over
PN\{1}) x...x P(N'\ {n}) with marginal distribution

b
n: (75\1)

for each ¢ € N. Note that this implies E[Ai(ng))} =
¢; for all players. Further, the samples are independent
between rounds and A aggregates the samples of each player
to an estimate of its Shapley value b by taking the mean of
their resulting marginal contributions, i.e.

. 1 M
b= Ai(S™), (10)
m=1

which is an unbiased estimate of ¢;. For the approximate-all
problem A simply returns these estimates and for identify-
ing the top-k players it returns the set of k players K that
yield the highest estimates ¢;. Ties can be solved arbitrarily.
A well-known member of this class of approximation algo-
rithms is ApproShapley proposed by Castro et al. (2009).
For the approximate-all problem one can quickly derive the
expected mean squared error of A to be

P (5™ =8) = ©)

1
ieN
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where 02 := V[A;(S™)] denotes the variance of player i’s
marginal contributions. The expected MSE decreases for a
growing number of samples M and the sum of variances o2
can be seen as a constant property of the game (N, v) that is
independent of .A. In contrast, turning to top-k identification,
we show the emergence of another quantity in Theorem 4.1
if one considers the inclusion-exclusion error. Let K, :=
{K CN | |K| =k, pincrexc(K) < €} for any e € R=0. The
central limit theorem can be applied within our considered
class and thus we assume each /M ((¢; — ¢;) — (¢i — ¢;))
to be normally distributed.

Theorem 4.1. Every unbiased equifrequent player-wise in-
dependent sampler A for the top-k identification problem
returns for any cooperative game (N, V) an estimate K with
inclusion-exclusion error of at most € > 0 with probabil-
ity at least

PRek)> Y [1- % q>(m¢¢’> ,
KeK. iek Ti,j
JEN\K

where o7 ; = V[Ai(Si(m)) - Aj(S](-m))] and ® denotes the
standard normal cumulative distribution function.

The proof is given in Appendix A.1. Notice the difference
to Equation (11) for approximating all Shapley values. The
MSE directly reflects the change of each single player’s
estimate (;Abi, but in contrast, for identifying top-k an estimate
may change arbitrarily as long as the partitioning of the
players into top-k and outside of top-k stays the same.

For most pairs 4, j with i € K and j € N\ K of a coalition
K € K. with sufficiently small e, it holds ¢; > ¢;. Thus,
for a fixed game (N, v) and fixed budget T, the lower bound
in Theorem 4.1 should favorably increase if o; ; decreases
which can be influenced by A due to the allowed flexibility
in its sampling scheme. Note that A is only restricted in
the marginal contribution of each Si(m) but not in the joint

distribution of S im), o 5™ In fact, the variance of the
difference between marginal contributions decomposes to

,J

o2, = 02»2+032-—2C0v (Ai (Si(m)) WAV (S;m))) . (12)

Consequently, an increased covariance between sampled
marginal contributions of top-k players and bottom players
improves our lower bound. Leveraging the impact of covari-
ance shown by Equation (12) in the sampling procedure is
generally known as antithetic sampling, a variance reduc-
tion technique for Monte Carlo methods to which our class
belongs. Our considered class of approximation algorithms
does not impose any restrictions on the contained covariance
between marginal contributions sampled within the same
round m. We interpret this as degrees of freedom to shape
the sampling distribution. Striving towards more reliable
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estimates K, we propose in Section 5 an approach based
on the suspected improvement that positively correlated
observations promise.

5. Antithetic Sampling Approach

Motivated by Section 4, we develop in Section 5.1 Compa-
rable Marginal Contributions Sampling (CMCS), a budget-
efficient antithetic sampling procedure that naturally yields
correlated observations applicable for both problem state-
ments. We take inspiration from (Kolpaczki et al., 2021;
Kariyappa et al., 2024) and extend CMCS with a greedy se-
lection criterion in Section 5.2, deciding from which players
to sample from, to exploit opportunities that top-k identifi-
cation offers.

5.1. Sampling Comparable Marginal Contributions

We start by observing that the sampling of marginal contri-
butions can be designed to consume less than two evalua-
tions of v per sample. In fact, the budget restriction 7' is
not coupled to the evaluation of marginal contributions as
atomic units but single accesses to v. Instead of separately
evaluating v(.S) and v(S U {i}) for each A;(.S), the evalu-
ations can be reused to form other marginal contributions
and thus save budget. This idea can already be applied to
the sampling of permutations of the player set. Castro et al.
(2009) evaluate for each drawn permutation 7 the marginal
contribution A;(pre, (7)) of each player i to the preceding
players in 7. Except for the last player in 7, each evaluation
v(pre,;(m)U{i}) can be reused for the marginal contribution
of the succeeding player.

We further develop this paradigm of sample reusage by
exploiting the fact that any coalition S C N appears in n
many marginal contributions, one for each player, namely in
n — |S| many of the form A;(S) for¢ ¢ S and |\S| many of
the form A;(S\ {7}) for i € S. We meaningfully unify both
cases by establishing the notion of an extended marginal
contribution in Definition 5.1.

Definition 5.1. For any cooperative game (N, v), the ex-
tended marginal contribution of a player i € A\ to a coalition
S C N is given by

AU(S) = v(SU{i}) — v(S\ {i)).

Fittingly, this yields A}(S) = A;(S \ {i}) fori € S and
ALS) = A;(S) = A;(S\ {i}) fori ¢ S. Thus, we
circumvent the case of A;(S) =0fori € S.

We aim to draw in each round m (of M many) a coalition
S(m) C N, compute the extended marginal contributions
A (8™) of all players as illustrated in Figure 1, and update
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Figure 1. A cooperative game spans a lattice with each coalition S C A/ forming a node and each marginal contribution A;(.S) being
represented by an edge between S and S U {7}, exemplified here for N' = {1, 2, 3,4}. CMCS draws a random coalition S and computes
the extended marginal contributions Aj(S) = A;(S \ {i}) of all players s € N. For n = 4 it evaluates five coalitions and retrieves four

marginal contributions.

each ngSz as the average of the corresponding observations:

. 1 M
b=z > AL (s (13
m=1

We reuse the coalition value vg(m) = (S™) to update all
estimates by computing each extended marginal contribu-
tion as

ifieS
otherwise

14
Consequently, updating all n estimates requires only n + 1
calls to v such that we obtain a budget-efficiency of RLH
sampled observations per call. In comparison, drawing
marginal contributions separately yields a budget-efficiency
of 1/2. In order to make this approach effective, it is desir-
able to obtain unbiased estimates leading to the question
whether there even exists a probability distribution over
P(N) to sample SU™ from such that E[A(S(™)] = ¢;
for all 4 € A. Indeed, we show its existence in Proposi-
tion 5.2 by means of a novel representation of the Shapley
value based on extended marginal contributions.

s (et _ ) vsom — (ST {i})
A (S( )) = {Z/(S(m) U {i}) — vgom

Proposition 5.2. For any cooperative game (N, v), the
Shapley value of each player i € N is a weighted average
of its extended marginal contributions. In particular, it holds

See Appendix A.2 for a proof. The weighted average allows
to view the Shapley value as the expected extended marginal
contribution and thus drawing S(™) from the distribution

N
(n+ 1) ()

yields unbiased estimates. Note that this is indeed a well-
defined probability distribution over P(N) as shown in Ap-
pendix A.2. The resulting algorithm Comparable Marginal
Contributions Sampling (CMCS) is given by Algorithm 1.
It requires the cooperative game (N, v), the budget T, and
the parameter k as input. The number of performed rounds
M is bounded by M = LRL_HJ We solve sampling from
the exponentially large power set of A by first drawing a
size ¢ ranging from O to n uniformly at random (line 3)
and then drawing uniformly a coalition S of size ¢ (line 4).
This results in the probability distribution of Equation (15)
since there are n + 1 sizes and (7;) coalitions of size ¢ to
choose from. For the top-£ identification problem CMCS
returns the set of k£ many players K for which it maintains
the highest estimates ¢A>Z Ties are solved arbitrarily.

P (S<m> - S) - forall SC N (15)

CMCS can also be applied for the approximate-all prob-
lem by simply returning its estimates since its sampling
procedure and computation of estimates is independent of
k. Thus, it is also an unbiased equifrequent player-wise
independent sampler (see Section 4) because the marginal
contributions obtained in each round stem from a fixed joint
distribution and the resulting marginal distributions coincide
with Equation (9) as implied by Proposition 5.2. Hence for
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Algorithm 1 Comparable Marginal Contributions Sampling
(CMCS)
Input: (M, v), T € N,k € [n]

1: ¢; < Oforalli e N

2 form=1,...,[-2-] do

3:  Draw ¢ € {0,. nJr,ln} uniformly at random
4:  Draw S C N with |S| = £ uniformly at random
5: wg + v(S)
6: forie N do
7. , vs —v(S\{i}) ifies
' ' v(SU{i}) —vs otherwise
8: bi <m-1)7;;;,.,+A,,.,
9:  end for
10: end for

Output: K containing k players with highest estimate b;

T being a multiple of n + 1, its expected MSE is according
to Equation (11):

E[MSE] = ”n“;l Z o2 (16)
1EN

For the top-k identification the sampling scheme in CMCS
yields an interesting property. All players share extended
marginal contributions to the same reference coalitions
S(m) Intuitively, this makes the estimates more compa-
rable, as all have been updated using the same samples.
Instead of estimating ¢; and ¢; precisely, CMCS answers
the relevant question whether ¢; > ¢; holds, by comparing
the players marginal contributions to roughly the same coali-
tions, modulo the case of ¢ € S and j ¢ S or vice versa.
Instead, drawing marginal contributions separately, indepen-
dently between the players, can, metaphorically speaking,
be viewed as comparing apples with oranges.

Consequently, the estimates QASZ and ngSj are corre-
lated and we further conjecture that the covariance
Cov(Al(S1™), A (50™)) = E[AY(S™ AL(SC™)] -
E[A,’L-(S("‘))}E[A;- (S(™)] has a positive impact on the
inclusion-exclusion error of CMCS in light of Theorem 4.1.
For cooperative games in which the marginal contribution
of a player is influenced by the coalitions size, our sampling
scheme should yield positively correlated samples. In this
case, if player ¢ or j is added to the same coalition S, it is
likely that both have a positive marginal contribution (or
both share a negative) which in turn speaks for a positive
covariance. For the general case, the covariance is stated in
Proposition 5.3.

Proposition 5.3. For any cooperative game (N, v) the co-
variance between the extended marginal contributions of
any players i # j of the same round sampled by CMCS is
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given by
Cov (A; (S(m)> A (S(m))) = —1i- 1 Sg;\{i} Ai(S)
AL(S)  AL(Su{i}) o
( (5 " ) ) no

The proof is given in Appendix A.2. The sum can be seen
as the Shapley value ¢; in which each marginal contribu-
tion of ¢ is additionally weighted by extended marginal
contributions of j. To demonstrate the presumably positive
covariance and give evidence to our conjecture, we con-
sider a simple game of arbitrary size n with v(N) = 1 and
v(S) = 0 for all coalitions S # A. Each player has a
Shapley value of % and the covariance in Proposition 5.3
given by n%rl . % is strictly positive for n > 2.

5.2. Relaxed Greedy Player Selection for Top-%

Identification

Striving for budget-efficiency in the design of a sample pro-
cedure might be favorable, however, CMCS as proposed
in Section 5.1 is forced to spend budget on the retrieval
of marginal contributions for all players in order to maxi-
mize budget-efficiency. This comes with the disadvantage
that evaluations of v are performed to sample for a player ¢
whose estimate él is possibly already reliable enough and
does not need further updates compared to other players.
This does not even require él to be precise in absolute terms.
Instead, it is sufficient to predict with certainty whether ¢
belongs to the top-k or not by comparing it to the other
estimates. This observation calls for a more selective mech-
anism deciding which players to leave out in each round and
thus save budget.

A radical approach is the greedy selection of a single player
which maximizes a selection criterion based on the collected
observations that incorporates incentives for exploration
and exploitation. Gap-E (Gabillon et al., 2011; Bubeck
et al., 2013) composes the selection criterion out of the
uncertainty of a player’s top-k (exploitation) membership
and its number of observations (exploration). Similarly,
BUS (Kolpaczki et al., 2021) selects the player ¢ minimizing
the product of its estimate’s distance to the predicted top-
k border %(minieK b; — Max,;c\n & (;ASJ) times its sample
number M;. In the same spirit but outside of the fixed-
budget setting, SHAPQK (Kariyappa et al., 2024) chooses
for given § € (0,1) the two players i € K and j € N\ K
with the highest overlap in their 9/n-confidence intervals of
their estimates ¢; and ng. It applies a stopping condition
and terminates when no overlaps between K and N \ K
larger then a specified error ¢ exist. Assuming normally
distributed estimates qBZ under the central limit theorem, it
holds P( pinc+exc(l€) <) > 1— ¢ for its prediction K.
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Figure 2. Inclusion-exclusion error € for increasingly comparable sampling variants (Independent, Same Length, Identical), incorporation
of sample-reusage (CMCS), and greedy selection (Greedy CMCS, CMCS@K) depending on 7'.

Given the core idea of CMCS to draw samples for multiple
players at once in order to increase budget-efficiency and
obtain correlated observations, the greedy selection of a
single player as done in (Gabillon et al., 2011; Kolpaczki
et al., 2021) or just a pair (Kariyappa et al., 2024) is not suit-
able for our method. The phase-wise elimination performed
by SAR (Bubeck et al., 2013) is not viable as it assumes
all observations to be independent in order to analytically
derive phase lengths. Instead, we relax the greediness by
probabilistically selecting a set of players P") C A in
each round m, favoring those players who fulfill a selection
criterion to higher degree. By doing so, we propose Greedy
CMCS that intertwines the overcoming of the exploration-
exploitation dilemma with the pursuit of budget-efficiency.
We do not abandon exploration, since every player gets a
chance to be picked, and the selection criterion incentivizes
exploitation as it reflects how much the choice of a player
benefits the prediction K.

Our selection criterion is based on the current knowledge of
q§1, ey qﬁn and the presumably best players K. Inspired by
Theorem 4.1, we approximate the probability of each pair of
players i € K and j € A"\ K being incorrectly partitioned
by Greedy CMCS as

Pij =0 («/Mz,‘i;fj_) : (17)

0i,j

For all pairs (i, j) € N'? we track:

* the number of times M; ; that both ¢ and j have been
selected in a round,

« the sampled marginal contributions’ mean difference

M; ;
0ij = j;;;72;113;(5(f@j0nw) — A8 (m))

within these M; ; rounds, where f; ;(m) denotes the
m-th round in which ¢ and j are selected, and

¢ the estimate a of the variance a
A;-(S(m))] W.r.t. Equation (15).

= VIAY(S™) -

Important to note is that we may not simply use the differ-
ence gij — ¢; of our Shapley estimates, including all rounds,
instead of 51 j because qB, and qgj may differ in their respec-
tive total amount of total samples M; and M; such that the
central limit theorem used for Theorem 4.1 is not applicable
anymore. We derive Equation (17) in Appendix A.3.

For each pair (i, j) € K x (N \ K) the estimate f; ; quan-
tifies how likely ¢ and j are wrongly partitioned: Greedy
CMCS estimates (;5, > qb] although ¢; < ¢; holds. Since
we want to minimize the probability of such a mistake, it
comes natural to include the pair (4, j) with the highest
estimate p; ; in the next round of Greedy CMCS to draw
marginal contributions from, i.e. i,j € PU™_ As a con-
sequence, gﬁl and g%j should become more reliable causing
the error probability to shrink. Let Q™) C K x (N '\ K)
be the set of selected pairs in round m from which the se-
lected players are formed as P = {i € N | 3(4,7) €
Q™ v 3(4,i) € QU™}. In order to allow for more than
two updated players in a round m, i.e. |Q(™)| > 1, but
waive pairs that are more likely to be correctly classified, we
probabilistically include pairs in Q™ depending on their
p-value. Let Pmax = max; e RTTe D;,; be the currently high-
est and prin = min, g ek Di,; the currently lowest value.
We select each pair (4, j) independently with probability

((z j) € Q(W)) Dij — Dmin

for all (¢, )
pde pmm

(18)
This forces the pair with Py to be picked and that with
Pmin to be left out. The probability of a pair beings elected
increases monotonically with its p-value.

Within an executed round we do not only collect marginal
contributions for players in PM) and update M; ;, 5Z g
and 67 ; for all (i, j) € Q™. We use the collected infor-
mation to its fullest by also updating the estimates of all
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e Kx(M\K).
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Figure 3. Comparison of achieved inclusion-exclusion error of various algorithms for top-k identification (left) and approximate-all

(right) depending on 7'.

pairs (7, ) with both players being present in P(™ despite
(i,7) ¢ QU™. Visually speaking, we update the complete
subgraph induced by P("™) with players being nodes and
edges containing the pairwise estimates.

Since the assumption of normally distributed estimates mo-
tivated by the central limit theorem is not appropriate for a
low number of samples, we initialize Greedy CMCS with a
warm-up phase as proposed for SHAP@K (Kariyappa et al.,
2024). During the warm-up My, many rounds of CMCS
are performed such that afterwards every player’s Shapley
estimate is based on M, samples. This consumes a budget
of (n + 1) Mpyi, many evaluations. My, is provided to
Greedy CMCS as a parameter. Subsequently, the above de-
scribed round-wise greedy sampling is applied as the second
phase until the depletion of the in total available budget 7.
The pseudocode of the resulting algorithm Greedy CMCS
is given in Appendix B.

Instead of our proposed selection mechanism, one can sam-
ple in the second phase only from the two players ¢ € K and
jé K with the biggest overlap in confidence intervals as
performed by SHAP@K. Leaving the sampling of CMCS
in the first phase untouched, we call this variant CMCSQK.
This is feasible since the choice of the sampling procedure
in SHAP@K is to some extent arbitrary, as long as it yields
confidence intervals for the Shapley estimates.

6. Empirical Results

We conduct multiple experiments of different designs to
assess the performance of sampling comparable marginal
contributions at the example of explanation tasks on real-
world datasets. First, we demonstrate in Section 6.1 the
iterative improvements of our proposed algorithmic tricks
ranging from the naive independent sampling to Greedy
CMCS and CMCS@K. Section 6.2 investigates whether fa-
vorable MSE values of algorithms for the approximate-all
problem translate on the same cooperative games to the
inclusion-exclusion error for top-k identification. In Sec-
tion 6.3 we compare our variants of CMCS against baselines
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and state-of-the-art competitors. Lastly, we investigate in
Section 6.4 the required budget until the stopping criterion
of (Kariyappa et al., 2024) applied to CMCS guarantees
an error of at most € with probability at least 1 — §. All
performance measures are calculated by exhaustively com-
puting the Shapley values in advance and averaging the
results over 1000 runs. Standard errors are included as
shaded bands. We compare against ApproShapley (Castro
et al., 2009), KernelSHAP (Lundberg & Lee, 2017) (with
reference implementation provided by the shap python
package, the one to sample without replacement), Strat-
ified SVARM (Kolpaczki et al., 2024a), BUS (Kolpaczki
et al., 2021), and SamplingSHAPQK (Kariyappa et al.,
2024) which is SHAP@K drawing samples according to Ap-
proShapley. For both SamplingSHAPQK and CMCS@QK,
we use Mmin = 30 and confidence intervals of 9/n with
0 = 0.001. We drop Gap-E (Gabillon et al., 2011) and SAR

(Bubeck et al., 2013) due to worse performances I

Datasets and games. Analogously to (Kolpaczki et al.,
2024a;b), we generate cooperative games from two types
of explanation tasks in which the Shapley values represent
feature importance scores. For global games, we construct
the value function by training a sklearn random forest with
20 trees on each feature subset and taking its classification
accuracy, or the R?-metric for regression tasks, on a test
set as the coalitions” worth. We employ the Adult (n = 14,
classification), Bank Marketing (n = 16, classification),
Bike Sharing (n 15, regression), Diabetes (n = 10,
regression), German Credit (n = 20, classification), Titanic
(n = 11, classification), and Wine (n = 13, classification)
dataset. For local games, we create a game by picking a
random datapoint and taking a pretrained model’s prediction
value as each coalition’s worth. Feature values are imputed
by their mean, respectively mode. For this purpose we take
the Adult (n = 14, XGBoost, classification), ImageNet (n =
14, ResNet18, classification), and NLP Sentiment (n = 14,
DistilBERT transformer, regression, IMDB data) dataset.

'All code can be found at https://github.com/
timnielen/top-k-shapley
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Figure 4. Comparison of achieved inclusion-exclusion error with baselines for local explanations: fixed budget with varying k (left) and

fixed k with increasing budget (right).

6.1. Advantage of Comparable Sampling

Greedy CMCS builds upon multiple ideas whose effects
onto the approximation quality is depicted in isolation by
Figure 2. As a baseline we consider the independent sam-
pling of marginal contributions of each player with distribu-
tion given in Equation (9). The comparability of the samples
is stepwise increased by sampling in each round marginal
contributions to coalitions of the same length for all players,
and next using the identical coalition S(™) drawn according
to Equation (15). In compliance with our conjecture, the
decreasing error from independent to same length and fur-
ther to identical speaks in favor of the beneficial impact that
comes with correlated observations. The biggest leap in per-
formance is caused by reusing the evaluated worth /(S(™))
appearing in each marginal contribution of the independent
variant resulting in CMCS. The sample reusage alone almost
doubles the budget-efficiency from 1/2 to »/n+1. On top of
that, incorporating (relaxed) greedy sampling gifts Greedy
CMCS and CMCS @K a further advantage by halving the
error for higher budget ranges.

6.2. MSE vs. Inclusion-Exclusion Error

Given the similarities between the problem statements of
approximating all Shapley values (cf. Section 3.2) and that
of top-k identification (cf. Section 3.3) at first sight, one
might suspect that approximation algorithms performing
well in the former, also do so in the latter and vice versa.
However, Figure 3 shows a different picture. The best per-
forming methods Stratified SVARM and KernelSHAP re-
main consistent but change in order. The variants of CMCS

10

are less favorable in terms of MSE but are barely outper-
formed in top-k identification. We interpret this as further
evidence that top-£ identification indeed rewards positively
correlated samples supporting our intuition of comparabil-
ity. Most striking is the difference between ApproShapley
and CMCS. Assuming to know v()) = 0, ApproShapley
exhibits a budget-efficiency of 1 as it consumes in each sam-
pled permutation n evaluations and retrieves n marginal con-
tributions, which is only slightly better than that of CMCS
with n/n+1. Thus, it should be only marginally better in ap-
proximation according to Equation (11) and Equation (16).
Our results in Figure 3 confirm the precision of our the-
ory. However, notice how CMCS significantly outperforms
ApproShapley in terms of pinciexc despite the almost iden-
tical budget usage. Hence, it is the stronger correlation
of samples drawn by CMCS combined with the nature of
top-k identification that causes the observed advantage of
comparable sampling.

6.3. Comparison with Existing Methods

Figure 4 and 5 compare the performances of our methods
against baselines for local and global games. For fixed
k = 3, we observe the competitiveness of Greedy CMCS
and CMCS@K being mostly on par with KernelSHAP, but
getting beaten by Stratified SVARM for global games, which
in turns subsides at local games. Greedy CMCS exhibits
stable performance across both explanation types and the
whole range of k. On the other hand, if instead the budget
is fixed, Greedy CMCS has often the upper hand for values
of k close to 7/2 and is even with KernelSHAP for lower k.
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Figure 5. Comparison of achieved inclusion-exclusion error with baselines for global explanations: fixed budget with varying k (left) and

fixed k£ with increasing budget (right).

6.4. Budget Consumption for PAC Solution

Assuming normally distributed Shapley estimates,
SHAP@K is a (e, §)-PAC learner (Kariyappa et al., 2024),
i.e. upon self-induced termination it holds pinc+eXC(I€) <e
with probability at least 1 —J. KernelSHAP is not applicable
as it does not yield confidence bounds. For this reason
Kariyappa et al. (2024) sample marginal contributions
referred as SamplingSHAPQK. Its stopping condition is
triggered as soon as no 9/n confidence intervals for the
estimates ¢ overlap between K and N \ K. We apply the
stopping condition to our algorithms and compare to
SamplingSHAP@QK in the PAC-setting. Table 1 shows the
average number of calls to v until termination that is to be
minimized. For some local games the number of calls is
significantly higher due to the large variance in the difficulty
of the respective games induced from each datapoint.
CMCS@K shows the best results in nearly every game by
some margin, which makes it the algorithm of choice for
PAC-learning. Thus, CMCS @K is preferable when guaran-
tees for approximation quality are required and improves
upon SHAP@K due to its refined sampling mechanism.

7. Conclusion

We emphasized differences between the problem of approx-
imating all Shapley values and that of identifying the k
players with highest Shapley values. Analytically recog-
nizing the advantage that correlated samples promise, we
developed with CMCS an antithetic sampling algorithm that
reuses evaluations to save budget. Our extensions Greedy
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CMCS and CMCS@K employ selective strategies for sam-
pling. Both demonstrate competitive performances, with
Greedy CMCS being better suited for fixed budgets, whereas
CMCS@X is clearly favorable in the PAC-setting. Our pro-
posed methods are not only model-agnostic, moreover, they
can handle any cooperative game, facilitating their applica-
tion for any explanation type and domain even outside of
explainable Al The difficulties that some algorithms face
when translating their performance to top-k identification
suggest that practitioner’s being consciously interested in
top-k explanations might have an advantage by applying
tailored top-k algorithms instead of the trivial reduction to
the approximate-all problem. Future work could investigate
the sensible choice of the warm-up length in Greedy CMCS
and CMCS@K which poses a trade-off between exploration
and exploitation. Modifying our considered problem state-
ment to identify the players with highest absolute Shapley
values poses an intriguing variation for detecting the most
impactful players and opens the door to new approaches.
Finally, Shapley interactions enrich Shapley-based explana-
tions. The number of pairwise interactions grows quadrati-
cally with n, hence top-k identification could play an even
more significant role. Our work can be understood as a
methodological precursor to such extensions.
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Conclusion and Outlook

To conclude this thesis, we recapitulate its contributions and point out limitations
of our developed methods. To address the arising challenges, we outline potential
solutions, leading to future research directions. We briefly touch upon methodologi-
cal extensions and variations of our considered problem statements that promise to
further advance the field.

Shapley Value Approximation via Stratification. Deviating from the ubiquitous no-
tion of marginal contributions, we proposed with Stratified SVARM an approximation
algorithm that conducts mean estimation of the Shapley value by sampling single
coalition values. The integrated stratification by coalition size is leveraged to update
all player’s estimates simultaneously thus reaching a more efficient usage of the
limited value function evaluations. The resulting reduction in approximation error
compared to the sampling of marginal contributions, which does not allow sample
reusage to this degree, becomes evident by inspecting the asymptotic behavior. This
phenomena is reflected by our empirical findings, albeit state-of-the-art methods
being advantageous for local explanations. However, our method proves to be
favorable across various domains such as global explanations, data valuation, fed-
erated learning, and ensemble selection (Muschalik et al., 2024). The displayed
advantage for highly structured games demonstrated on synthetic games aligns with
the interpretation of our theoretical result, stating how our algorithm benefits from
stratification for cooperative games with low stratum variances. Our investigation
on how to optimally allocate budget to coalition sizes quantifies the gap between
the naive uniform allocation and the best in hindsight, taking the stratum variances
into account. We closed this gap empirically by transferring adaptive approaches,
resulting in a further improvement demonstrated by Adaptive SVARM. Remarkably,
the optimal allocation pursued by Adaptive SVARM leads to an approximation error
only weakly affected by the number of players, whereas methods based on marginal
contributions seem incapable of achieving such a dependency.

Although stratification promises preciser stratum estimates at first, its adaptive
version is vulnerable to an exaggeration of its own. For large enough player numbers,
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the fixed budget is not sufficient to provide adequate variance estimates for the
growing number of strata during the exploration phase. As a consequence, the
estimated optimal allocation is polluted by this imprecision and misguides the
exploitation phase, ultimately missing the true optimal allocation. As a remedy, one
could coarsen the stratification by merging adjacent strata depending on the player
number and budget, or even adaptively by taking the observed variances into account.
More so, we suspect that weakening the granularity in heterogeneous manner would
exploit how stratum means tend to differ less for larger sizes, allowing a coarser
partitioning than at the lower end. Moreover, the hyperparemeter \ used to set the
ratio between exploration and exploitation is susceptible to misspecification. Taking
inspiration from explore-then-commit strategies of multi-armed bandits (Lattimore
and Szepesvari, 2020) poses a possible solution. Lastly, our approximate-all problem
statement deliberately assumes equal evaluation costs for all coalitions to ease
theoretical analyses. However, this simplification is at least debatable, as one might
observe how lower-sized coalitions require more imputation effort for local feature
explanations, and the other way round, coalitions of larger size are more costly to
evaluate in data valuation and federated learning. Fittingly, our stratifying methods
already possess mechanisms to distinguish coalitions by size and are thus adjustable
to the differing evaluation costs by tweaking the sample allocation.

Shapley Value Approximation via Optimization. Following a vastly different paradigm
of estimation, we fit a surrogate game whose own Shapley values are immediately
elicited out of its representation via weighted regression to the game whose Shapley
values are to be approximated. To this end, we proposed a k-additive surrogate
game that is composed of Shapley values and Shapley interactions up to a certain
order k. Our theoretical result confirms the validity of our approach, stating that
k-additivity is not a rigorous assumption but rather a tool to construct surrogate
games of varying plasticity while retaining the ability to exactly mimic the true Shap-
ley values. Consequently, one can interpret the solution to our resulting k-additive
optimization problem as a novel representation of the Shapley value.

On one hand, having to specify the hyperparameter k confronts a user with an
adequate choice to make. On the other hand, it provides the opportunity to in-
corporate domain knowledge to which dimension interactions play a significant
role and diminish beyond that. The derivation of a theoretical guarantee for the
fixed-budget setting proves to be challenging such that it remains unclear which
properties of a cooperative game impact the estimates’ precision. Moreover, as the
surrogate game is already specified by its own interactions, we suspect our approach
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to be likewise fruitful for the estimation of interactions. In other words, the solution
of the k-additive optimization problem could yield the Shapley interactions of the
game of interest for the right choice of weights that is to be derived analytically
in future work.

Approximation of Shapley Interactions. In the same manner that Shapley interac-
tions generalize the Shapley value, we extended Stratified SVARM to SVARM-IQ
which estimates Shapley interactions of arbitrary order. Not only is our method
capable of approximating any semivalue and cardinal interaction index, but it also
does not require the indices of interest to be specified before approximation. Instead,
by leveraging strata as universal building blocks for all indices, it enables to postpone
the specification to even after sampling when the stratum estimates are aggregated
to indices according to their weightings. SVARM-IQ proves to be competitive against
state-of-the-art methods on various domains if not favorable (Muschalik et al., 2024).
In particular, its achieved reduction in approximation error for interactions on image
data processed by vision transformer models speaks for itself.

Although we did not propose an adaptive version as for Stratified SVARM, the fine
granularity of the stratification already threatens its practicability for higher inter-
action order k since the number of strata grows exponentially with k. Despite that,
even for k = 2, the number of strata has cubic complexity w.r.t. the player number n.
Besides the incurred space complexity, the number of made observations per stratum
shrinks, harming their estimates’ precision. As argued above, we see a remedy in
coarser stratification. Our method is only one example to showcase how algorithms
for approximating the Shapely value can be transferred to Shapley interactions.
Thus, it could pave the way for further methods to be proposed. In this spirit,
we conjecture that the broad class of methods for the Shapley value that samples
marginal contributions can be lifted to approximate interactions. Instead of utilizing
the representation of interactions as a weighted sum of discrete derivatives, or on
the other extreme, breaking them down to the atomic building blocks of coalition
values as done by SVARM-IQ, one can apply the recursive nature of the discrete
derivative (see Definition 2.19) to represent it by marginal contributions. This would
immediately facilitate the extension of the aforementioned class to interactions.

Top-k Shapley Players Identification. The difference between the problem of ap-
proximating all players’ Shapley values and that of only identifying those with
the highest values comes with multiple opportunities and implications. First, we
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establish a connection to multi-armed bandits following the observation how play-
ers form arms whose reward distributions can be constructed from their marginal
contributions. Next, our analytical discovery that the covariance between player’s
Shapley value estimates impacts the identification performance forms a contrast to
its irrelevance for the approximate-all problem under MSE minimization. Seeking to
take advantage of the influence of covariance, we developed CMCS which combines
dependent observations between players as a form of antithetic sampling and budget
efficiency in its sampling mechanism. Facing the exploration-exploitation dilemma,
we proposed further variants that selectively choose the players to sample from
which promise more relevant information gain to separate the top-% from the rest.

Taking into consideration that players with negative Shapley values might actually
be at least as impactful as the top-k, but only in a harmful way, we advocate for
future work to investigate an altered problem statement in which the players with
highest absolute Shapley values are to be identified. Lastly, we conjecture how
top-k identification has an even higher relevance for Shapley interactions. Given
an interaction order of interest, the sheer number of subsets of that cardinality
should sufficiently impede the approximation of all their interaction terms such that
top-k identification has a significant advantage in budget consumption as many
interactions can be safely predicted to lie within the top-k or on the opposite side. We
deem the combination of our efforts on the approximation of Shapley interactions
and top-k identification for Shapley values to be a fruitful methodological precursor
to this future endeavor.
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Table 1: List of frequently symbols used throughout the paper.

Problem setting

N set of players
N; set of players without 7
n number of players
v value function
T budget, number of allowed evaluations of v
oi Shapley value of player ¢
qASi estimated Shapley value of player ¢
SVARM

f positive Shapley value
¢;— | negative Shapley value
g%f estimated positive Shapley value
5 2 estimated negative Shapley value
pPr sampling probability distribution over coalitions to estimate qﬁf
P~ sampling probability distribution over coalitions to estimate ¢,
T remaining budget after completion of the warm-up phase
o ? | variance of coalition values including player ¢
o; * | variance of coalition values excluding player %
T range of coalition values including player ¢
T, range of coalition values excluding player ¢
m; | number of sampled coalitions after the warm-up phase to update ngS:r
m; | number of sampled coalitions after the warm-up phase to update ngS;
m; | total number of sampled coalitions to update gﬁj
m; | total number of sampled coalitions to update gﬁ[

Stratified SVARM

Qﬁ;.’je {-th positive Shapley subvalue
¢; ¢ | {-thnegative Shapley subvalue
(%Z'e estimated ¢-th positive Shapley subvalue
Qéz_e estimated ¢-th positive Shapley subvalue
P sampling probability distribution over coalition sizes
T remaining budget after completion of the warm-up phase
02'@2 variance of coalition values in the /-th stratum including player ¢
O';,FZQ variance of coalition values in the /-th stratum excluding player 4
7';& range of coalition values in the /-th stratum including player ¢
;¢ | range of coalition values in the {-th stratum excluding player ¢
mj:e number of sampled coalitions after the warm-up phase to update q}h
m; , | number of sampled coalitions after the warm-up phase to update ¢, ,
mﬁe total number of sampled coalitions to update gi;:fé
m, , | total number of sampled coalitions to update ‘731_2
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B Further Pseudocode

B.1 SVARM

Algorithm 3 WArRMUP

1: fori € N do

2: Draw A" and A~ i.id. from P¥
3 of < v(ATU{i})

4 ¢ (A7)

5: end for

The warm-up of SVARM samples for each player i two coalitions AT and A~, both drawn i.i.d. according to the
weights wg, i.e., the probability distribution P*, and updates gﬁj and ¢, , which needs a budget of 2n in total. This
ensures that each estimate is based on at least one sample.

B.2 Stratified SVARM

Algorithm 4 UpDATE(A)
1 v+ v(A)
2: fori € Ado . -,
. 2+ ci,lAl—1'¢z,lAl—1+v
3 (Z)LlAI—l « cj:‘Al_l—l—l

+ +
Cijal-1 < Cija—1t 1
end for
: fori e N\ Ado
o Cilal ®ia Y
Gl T
Cial € Cjapt1
9: end for

N R

%

Stratified SVARM’s update procedure updates exactly one Shapley subvalue of each player given a coalition A. It
consumes only one budget token by storing the worth of A in the variable v (line 1). The first loop increments for all
players i € A their counter c 1A]-1 by 1 and updates the |A| — 1-th positive Shapley subvalue estimate (;5 Jaj—1 t

be the average over all values of coalitions which are contained in that stratum of player i. Analogously, the second
loop incerements for all players ¢ not contained in A their counter CZI Al by 1 and updates the | A|-th negative Shapley

subvalue estimate (;Aﬁjl A to be the average over all values of coalitions which are contained in that stratum of player .

Algorithm 5 ExactCaLcuLATION(N)

1: forse {1,n—1,n} do
2: forAe {SCN||S|=s}do

3: UPDATE(A)
4:  end for
5: end for

The exact calculation evaluates all coalitions of size 1,n — 1 and n, thus 2n + 1 in total For each coalition, the
update procedure is called Effectively, this leads to exactly computed strata d)l 0 = i 00 Pino = ¢l 3> qﬁl i =

+
¢1n 17¢L1 Cbz,l’ z,n—l ¢z ,n—1 andcountersc 1,0 — 17Cz n— 2 = ]"CL n—1 = ]' C ,1 =n- ]"cz n—1 = =1
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Algorithm 6 WarMUP T ()
1. fors=2,....,n—2do

2:  Draw a permutation 7 of A u.a.r.

33 fork=0,...,[%| —1do

4: A+ {n(1+ks),...,m(s+ks)}

5: v« v(A)

6: fori € Ado

7 ¢, v

8: C:s—l —1

9: end for

10:  end for

11: ifn mod s # 0 then

12: A+ {r(n—(n mod s)+1),...,7(n)}
13: Draw Be {SCN\ A||S|=s—(n mod s)}
14: v+ v(AUB)

15: fori € Ado

16: ¢, v

17: o1

18: end for

19:  endif

20: end for

The warm-up for the positive Shapley subvalues iterates over all coalition sizes from 2 to n — 2 (line 1) and draws
for each size s a permutation 7 of A uniformly at random (line 2). The ordering = is sliced into coalitions of size
s and each of them is used to update only the players contained in that particular coalition (lines 6-9). In particular,

since each coalition A is the first to be observed for the corresponding players’ stratum, the estimate <z$;f571 is set to

the worth of A and its counter c:fs_l is set to 1. Note that for each coalition A of size s only one access to v is made
to update all affected s many players. In case that n is not a multiple of s, some players less than s are left over at
the end of 7 (line 11). We group those with other random players to form a coalition of size s, but only update with
the worth of that coalition the left out players (lines 15-18). Note that the warm-up comes without any bias, since for

each player ¢ and stratum estimate ¢; , each coalition A C N with ¢ € A and |[A| = s has the same probability of
being chosen. Finally, [ %] many coalitions are evaluated for each size s, resulting in Z;L:_QQ [2] € O(nlogn) total

evaluations.

Algorithm 7 WarmUP~ ()
1. fors=2,....,n—2do

2:  Draw a permutation m of N uv.a.r.

33 fork=0,...,[%| —1do

4: A+ {n(1+ks),...,m(s+ks)}
5: v+ v(N\ A)

6: fori € Ado

7 ¢;7L—S <_ v

8: Cz‘_,n—s —1

9: end for

10:  end for

11:  ifn mod s # 0 then

12: A+ {r(n—(n mod s)+1),...,7(n)}

13: Draw B {SCN\A||S|=5s—(n mod s)} var
14: v+ v(N\ (AU B))

15: fori c Ado
16: ¢;n—s —v
17: Ci_,n—s ~—1
18: end for

19:  endif

20: end for
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Approximating the Shapley Value without Marginal Contributions

The warm-up for the negatlve subvalues proceeds analogously to the previously presented positive warm-up. Instead
of ¢>, s_pand ¢y, qb; n_sand c;, are updated with the wort of '\ A for all players contained in the coalition A.

B.3 Stratified SVARM™

Algorithm 8 Stratified SVARM™
Input' N, TeN

while ¢ < T and m, > 0 for some s do
Draw s; € {2,...,n — 2} with probability

nizws’ms
ggzwyms/
10:  Draw A; from {S C N | |S]| = 5,5 ¢ L, } var.

11:  UppDATE(A4;)

122 mg, <+ mg, — 1

13: t+t+1

14: end while

1: M,¢M <+ Oforalli e Nandf € L

2: ;r,z, c;, <+ Oforalli e Nand/ € L

3: ExactCaLcuLATION(N)

4: t + 2n + 1 {consumed budget}

5: ws « P(s)forall s € {2,...,n — 2} {sampling weight of size s}

6: Ly < Qforall s € {2,...,n — 2} {sampled coalitions of size s}

7: Mg — (f) forall s € {2,...,n — 2} {reamining sets to sample of size s}
8:

9:

—1 n—1
- B 1 i+ 1 i— .
15! 01 e 2, Yt T T e o, P foralli €N

Output: (;31, R q@n

Stratified SVARM™ is a modification of Stratified SVARM to deliver better empirical performance with only two
slight changes that do not alter the method on a conceptual level. First, we remove the warm-up since it is less efficient
in the sense that not all players estimates are updated with each sampled coalition. Hence, we only consume a budget
of 2n + 1 due to the exact calculation of the border strata before entering the main loop. Although it is extremely
unlikely for a sufficiently large chosen budget 1" and an appropriate distribution P over the coalition sizes, it can
happen that some cﬁé or ¢; , are zero. In this case dividing by n the total number of strata per sign per player in line
15 would cause an unnecessary bias. Instead, we average only over all strata for which at least one sample has been
observed, i.e. ¢ .0 > Orespectively c¢; , > 0. Second and most important, we sample coalitions without replacement.
We are aware that different ways of 1mp1ement1ng this exist (saving substantial amounts of runtime), but we choose
to demonstrate it as simply as possible. Effectively each coalition of size s € {2, . — 2} is assigned the weight
b(s)
()’
t a remaining coalition A, is drawn with probability proportional to its weight (its own weight divided by the sum of
all remaining coalitions’ weights). We realize this by a two-step procedure: first the size s; is drawn in line 9, then a
remaining coalition of size s; is drawn uniformly at random in line 10. For this purpose we keep track of all so far
sampled coalitions of a given size s in L (line 6) and the number of coalitions m of size s left to sample (line 7).
Finally, we added the condition that at least one coalition must be left to sample to the loop in line 8, in case that 7" is
chosen larger than 2™ — 1.

such that coalitions of the same size have the same weight and their weight sums up to P( ). In each time step
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Approximating the Shapley Value without Marginal Contributions

C SVARM Analysis

Notation:

o LetT =T — 2n.

* Let A; be a random set with P(4; = 5) = wg forall S C N .

e Leto? = V[(4; U {i})].
o Let a;Q =V[v(4;)].

* Let ;" be number of sampled coalitions A after the warm-up phase that contain i.

* Letm; be number of sampled coalitions A~ after the warm-up phase that do not contain 3.

e Let m:“ = mj + 1 be total number of samples for ngS:r

e Letm; = mj + 1 be total number of samples for qgi_.

. + — . _ . . . .
Let max v(SU{i}) Jain v(S U {i}) be the range of v(A; U {i}).

e Letr, = max v(S) — Srrcuj\r} v(S) be the range of v(A;).

Assumptions:

o Tiseven
e T >0

C.1 Unbiasedness of Shapley Value Estimates

To start with, we prove that the distributions P+ and P~ are well-defined.
Lemma 1. The distributions PT and P~ over P(N') are well-defined, i.e.,

Y PHS) =D P (5 =1

SCN

SCN

Proof. The statement is easily shown for P by grouping the coalitions by size. We derive:

One can prove the desired property analogously for P~.

> PH(S)

SCN

IIDIEMC)

=1 SCN

—_

O

For the remainder of this section we assume that 7' > 2n + 1 such that the warm-up phase can be completed by

SVARM.

Lemma 2. For each player i € N the positive and negative Shapley Value estimates g{)j and q@: are unbiased, i.e.,

B[of] =¢f and E[é7]=0;.
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Proof. Let mj be the number of coalitions sampled after the warm-up phase that contain ¢ and mj be the total number
of samples used to update gbj, thus mj = mj + 1. Further, let A} form € {1,3,5,...,T — 1} be the sampled
coalitions for updating the positive Shapley values (gb;r)ie A, then we can write the positive Shapley value of player

1€ N as

, T2
i+
(i)i - mijﬁlz:ly 2m— 1 {z€A2m 1
X T/2 (19)
= mij' A3 1) V(A2m 1)H{16A2m AR

m=n

where [. denotes the indicator function, and we used that during the warm-up phase (m < 2n) there is for each player
i only one A}, to update the corresponding positive Shapley value, namely at time step 2i — 1. First, we show for each
oddm > 2nand S C N that P(A} = SU {i} | i € A)})) = wg. Note that since A}, ~ P (see (6)) it holds that

P(i € A)) ZP@€A+ |AL| =0
—ZP(%NIIA |=0)-P(|A5] =)

:;ﬁ'f.ﬂn,l

1

H,

(20)

With this, we derive

+ = SU{i
By = UL |1 € ap) = T =50 )

=H, - PT(SU{i})
1
“(S+1)- (j511)

= ws.

Since A3, ; \ {i} ~ P“ itholds that P(45, ; \ {i} = S) = wg foranyi € N and S C ;.
Taking all of this into account, we derive for ¢i+ using (19):

T/2
A 1
E[6F |mf] = — | E[(afi) [mf]+E | 3 vl ey, ) Imi

? m=n

_ %( 3 B(Af \ i} = S) - (S U {i})
2 SCN;

T/2

+E[ZHW+ L 2 P =S UL} i€ A ) v V(S Ui | mi])

= S wsevs Uty +mr Y ws - u(S UL

i\ scw; SCN;

=T,

19

173



Approximating the Shapley Value without Marginal Contributions

Finally, we conclude:

B[6:] = S8 [5 1m =m] -Bont =m)
m=1
= S 6 B(mp = m)
s

Analogously we derive E [(23; } = ¢; by defining m; , m; , and A,, form € {2,4,6,...,T} similarly as for their
positive counterparts. O

Theorem 1 For each player i € N the estimate 957 obtained by SVARM is unbiased, i.e.,
E {ng} = ¢;.
Proof. We apply Lemma 2 and obtain in combination with Equation (4):
E[d] =E[6f] -E[4]

=67 — o7
= 6.

C.2 Sample Numbers

Lemma 3. For any i € N the expected number of updates of (;Aﬁj' and gZ)l_ after the warm-up phase is
T

2H,"

B mf] =& [m] =

Proof. First, we observe that mj is binomially distributed with mj ~ Bin (%, %) because % many pairs are

sampled and each independently sampled coalition AT contains the player i with probability H,, !, see (20).

Consequently, we obtain

) T
E[mt] = 3

Similarly, we observe that ;" is also binomially distributed with m;” ~ Bin (%, Hi) , leading to the same expected

number of updates. O

C.3 Variance and Squared Error

Lemma 4. The variance of any player’s Shapley value estimate (ﬂ given the number of samples m?‘ and m; is exactly

ot? g2

. R B ;

V[qﬁ”mi,mi}— o+ =
m; m;

Proof. We first decompose the variance of QASZ into the variances of qg:“ and Qgi_ and their covariance:
V [bi [ mimy| = (V]6F 1mif| 4V [67 Im| = 2Cov (9F .67 [ mf,m))
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We derive for the variance of cf)j

Similarly we obtain for d;l-_ :
_2
v [é7 Imi] = 2=
m;
The covariance of (ﬁf and qgi_ is zero because both are updated with sampled coalitions drawn independently of each
other. Thus, we conclude:

~ 0'7"2 0'._2
V[qﬁ”m?‘,m;} ="+ "=
m; m;
O
Lemma 5. For the sample numbers of any player i € N holds
1 1 2H,
c[2] el s
m; m; T
Proof. By combining Equation (3.4) in Chao and Strawderman [1972]:
— _ pym+1
E 1 _ 1-(1-p) < 1 _ L,
1+ X (m+1)p mp  E[X]
for any binomially distributed random variable X ~ Bin(m, p) with Lemma 3, we obtain:
1 1 1 2H,
E|l— | =E < = —.
[mj] [1—|—mj} ~ E [m]] T
Notice that m; and m; are identically distributed. O
Theorem 2 The variance of any player’s Shapley value estimate (ﬁl is bounded by
- 2H,
v[a] < (o +077).
Proof. The combination of Lemma 4 and Lemma 5 yields:
\4 {cbz} =E {V [¢z | mf:mfﬂ
2 _2
=E 0—;_ + g
mi o my
12 _2
=0 E|— | +0 —
e ]+ [
2H,
< (ot +er)
O

Corollary 1 The expected squared error of any player’s Shapley value estimate is bounded by

[(o-a)] <5 (o).
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Proof. The bias-variance decomposotion allows us to plug in the unbiasedness of ng shown in Theorem 1 and the

bound on the variance from
B|(6-0)| = (6] - o)+ v [o]

2H, 2 2
<4(.+ f),
S5 o, +o;

C.4 Probabilistic Bounds

Theorem 3 Fix any player i € N and € > 0. The probability that the Shapley value estimate qsz deviates from ¢; by
a margin of € or greater is bounded by

P(i-o1ze) < 5 (o7 +007)

Proof. The bound on the variance of gzgl in Theorem 2 allows us to apply Chebyshev’s inequality:

V| i
B o

IP’(|<;ASZ-7¢>Z-| 25) < a;2+a;r2).

O

Corollary 3. Fix any playeri € N and § € (0,1]. The Shapley value estimate qu deviates from ¢; by a margin of €
or greater with probability not greater than 6, i.e.,

P(|éi—¢i|28)§5 for 62\/2;[;<0;r2+0;2>.

Lemma 6. For any fixed player i € N and € > 0 holds

2m;r€2 + .2

~ ~ om.
P(|¢?¢r|25mf)§2exp< +2) and P(|¢;¢J|Ze|m;)s2exp< mﬁf)-
i Ty

Proof. We prove the statement for b by making use of Hoeffding’s inequality in combination with the unbiasedness
of the positive and negative Shapley value estimates shown in Lemma 2. The proof for ¢; is analogous.

P(I67 =6/l 2 e mi) =P (167 —E [di+] || m])

my my
=P V(Aj’m) —E Z Z/(A;fm >mie|mf
m=0 m=0

2m;e?
<2exp | ——5 .
i

Lemma 7. For any fixed player i € N and € > 0 holds:

~ - exp<77‘+2
oP(|¢j—¢f|2£)Sexp(—“?nz)—l—Q ;

~ cxp(—ri
P (167 - 0712 ¢) <exp (— ks ) +2 i

176



Approximating the Shapley Value without Marginal Contributions

Proof. We prove the statement for cZAaj The proof for (;Aﬁi_ is analogous. To begin with, we derive with the help of
Hoeffding’s inequality for binomial distributions a bound for the probability of /72;” not exceeding %:
T

mt) - 1)

]P(mj < ) gP(E[mﬂ A >E
4 (]E [mﬂ - 4?@)2
B T

< exp

<o (- 573)
exp| — |,

S exp 4Hn2

where we used the lower bound on E [mﬂ shown in Lemma 3. Next, we derive with the help of Lemma 6 a statement

of technical nature to be used later:

m:\-4HnJ+1
z 2
2me
m=| . | +1 Ti
£ NS N
2e c
=2 Z exp <_+2> -2 exp <_+2>
m=0 T‘i m—0 TZ‘
2e2 4§nJ R T
() (2]
=9 : ;
exp <2f> ~1
L ]
2¢2
e
<2 :
exp (2i2> ~1
At last, putting both findings together, we derive our claim:
H”(Iéj—ﬁ\ 28)
T
2 ~
= ZP(WF—W\ Zf\mfzm) P (m} =m)
m=1
T
2 ~
F=m)+ Z P ‘¢j_¢;r|28|mj:m).[p(m;r:m)
m:L%JJrl

=

3

Lt |
= Z P(W’j‘@ﬂZS\m?:m) P (m

P (16 07| > e |mi =m)

m=1
_ T
T 2
=+
SIP’(mi < thJ)Jr Z
m:l_%J+1
NES
T exp (‘r@)
< exp (— 2) +2 :
4H, <2€2>
exp ( 7> -1
O
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Theorem 4 For any fixed player i € N and € > 0 the probability that the Shapley value estimate (;32 deviates from ¢;
by a margin of € or greater is bounded by
T
_ 2¢? LEJ
R T €exXp (*f)
P(l@@zs)é%xp( 2>+4 (ri e )”
4H, exp (2 ) — 1

(T++T’ )2

Proof.
P (16— il > <)

P (17 —61) + (67 — 97l 2¢)
<P(16f — o7 +1d7 — o712 <)

+ _
2 er; A B o
_P<|¢j_¢“21¢£r>+?<|¢i _¢Z|Zr++zr>
3 1 i i

exp 2¢2 417';nj
T X (_ rf4r- 2)
§2exp<—4H2>+4 (ri ¥7: ) .
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D Stratified SVARM Analysis

Notation:

eLetL={0,...,n—1} LT ={1,....,n—3}and L~ = {2,...,n —2}.
n—2

* Let W =2n 4142 ) [%] denote the length of the warm-up phase.
s=2

» Let T = T — W be the available steps after the warm-up phase.
e Let m:fg =#{t| i € A, |As] = £ + 1} be the total number of samples used to update gz@jz

* Letm,; , = #{t | i ¢ Ay, |A:] = £} be the total number of samples used to update QAS;’Z.

« Letm, = #{t | i € As,|A;| = £+ 1, > W} be the number of samples used to update ¢;, after the
warm-up phase.

* Letm; , = #{t | i & As,|A¢| = £,t > W} be the number of samples used to update gzggl after the warm-up
phase.

e Let Ajf(, « be the k-th set used to update gb:é and A;, . the k-th set used to update ¢; .
* Let A; o be arandom set with P(4; , = 5) = ﬁ forall S C A\ {i} with |S| = ¢.
l

2_1: v(A zék)and¢18_ 1— > V(A )

-Letgzble: e, .

* Letg; =1 Z_:Oﬂg Qg

* Leto],” = V[u(AieU{i})] and o), " = V(A ).

* Letr), = s 1, v(SU{i}) — Sg/\/g;éi&s' » v(S'U {i}) be the range of v(A], ,).
* Letr;, = ScN%a§|S|:Z v(S) — Sg/\/gggls':e v(S) be the range of v/(A;, ;).

n—2
s Let R = Zr and R e;r;’e.

Assumptions:

* n >4, for n < 3 the algorithm computes all Shapley values exactly.

D.1 Unbiasedness of Shapley Value Estimates

Lemma 8. Due to the exact calculation, the following estimates are exact for all i € N:
¢ ngro = ¢i+0 =v({i})
¢7, n—2 = ¢?:TL—2 = ﬁ Z V(N\ {-]})

JEN:j#i
¢zn 1 ¢z<'~,>n—1 = V(N)
* ¢;0 = 515;,0 =v)=0

cba=dn=a > vl
JEN:j#i

¢ éZn—l = ¢’L7L 1= (N\ {Z}

Lemma 9. All remaining estimates that are not calculated exactly are unbiased, i.e., for all i € N :
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‘E {g{sm — ¢, forall € € L+
‘K [&;4 = ¢ forall € € L~

Proof. We prove the statement only for &h as the proof for éz_f is analogous. Fix any i € A and £ € LT. As soon

as the size s; of the to be sampled coalition | A¢| is fixed, A; is sampled uniformly from {S C A | |S| = s;}. This
allows us to state for every A; and any S C N with |[S| =¢+ 1andi ¢ S:

T 1
]P’(At :SU{Z}|ZEAt,|At| :Z‘l’l): ﬁ
¢
Continuing, we derive for the expectation of q@ié given the number of samples m:fez

E {nge | mj,e}

Mie
1 ,
=E mr Z V(Ao y) mﬁe
0,0 k=1
R
= 5 DR AL [
il k=1
R
= — P (Afo = SULI i € AT, ATl = €41) - v(SU{i})
it k=1 ScA\{i}:1s1=¢
mt
1 i, L
=— (nfl) -v(SU{i})
Mit k=1 scan\{iy:Is|=¢ \ ¢
+
Mie
1 ,
mip "
— ot
= Pie
Note that the term is well defined, since m:z € {1,...,T} due to the warm-up phase. We conclude:
T
E{ je} = ZE{(]&Z‘.Tﬂm;'Te:m} ~]P’(m;fe=m>
m=1
T
= Zm'ﬂ”(m&:m)
m=1
= ‘ﬁr

Theorem 5 The Shapley value estimates for all i € N are unbiased, i.e.,
E {QEZ} = ¢;.
Proof. By applying Lemma 8 and Lemma 9 we obtain:
n—1
. 1 . .
Blo] =5 2B [0l B [0
£=0
1 n—1
= Y b
£=0
= ¢i.
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D.2 Sample numbers
Lemma 10. For any i € N the numer of updates m;f,z and m; , are binomially distributed with

_(4+1 -
m;’:e ~ Bin (T, el P+ 1)) forallt e LT

n—E.

and m; , ~ Bin <T, — f’(f)) foralll e L.

Proof. We argue that there are 7' many independent time steps in which qgje can be updated. If |A;| = ¢+ 1 then i is

included in A; with a probability of ”Tl due to the uniform sampling of A; given that its size s; is fixed, leading to an

update. Since the choice of size and members of the set A; are independent, the probability of q@ﬁe being updated in

time step ¢ is £ - P(¢ + 1). The same argument holds true for (;g;l with an update probability of 2=~ - P(¢) in each
time step.

O

Lemma 11. For any i € N the expected number of updates of quf[ and &:Z after the warm-up phase is at least

E |mf,| > forall € £

and E [T‘nh} >

2nlogn

foralll € L.
2nlogn

Proof. In the following we distinguish between different cases, depending on the parity of n and size of £. We will
use the bound H,, < logn + 1 and the following inequalities multiple times which hold true for n > 4:

1 > 1 and nlogn — 1 > 1
H% —1 7 logn n(H%_l —1)
We begin with the case ofnJ(ZandES"T’l— :
_{+1 = _ —¢ -
E[m,] = -%-P(ﬁ—kl) E[m,] =T "= Py
77_’ 1 7T n—4~¢ 1
" 2n Ha —1 " 2n { Ha—1
2 2
>
~ 2nlogn ~ 2nlogn
Forn {2 and ¢ = 251 we obtain:
- l+1 - - n—V0 =
]E[m;jé}:T.;; -P(L41) E{mi‘,e}:T "n 20
T f+1 1 T n—t 1
“2n n—{—1 Hna—1 " 2n { Haa—1
2 2
I T
> -
~ 2nlogn 2nlogn
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Forn {2and ¢ > "7“ we obtain:

+1 7 P - _7F D
E i, =T P+ 1) Em,| =T — . P()
T 041 1 T 1
2 n—{0—1 Hna—1 " 2n Hnoa —1
2nlogn 2nlogn
Switchington|2,westartwith€:%—l:
- 0+1 - n—{0 =
E[m } 7.2 Pt E{m;z}:T-L-P(E)
n ' n
_ T _ T n—¢ nlogn-—1
"~ 2nlogn " 2nlogn ¢ (Ha 1 —1)
T
~ 2nlogn
Forn | 2 and ¢ = % we derive:
! - ¢ -
E[ } 7.2 et E[m;z}:T-n - P(0)
n ;
_ T 41 nlogn —1 _ T
" 2nlogn n—f—1 n(Hyz_1—1) " 2nlogn
T
~ 2nlogn
Forn | 2and £ < § — 2 we derive:
+1 _ - n—4{0 =
{ 74 T ]E{mi’g}zT- — . P()
_ T nlogn — 1 _ T n—{ nlogn-—1
~ 2nlogn n(Hz_y—1) ~2nlogn £ n(Ha_y—1)
T T
>
~ 2nlogn ~ 2nlogn
Finally,n | 2 and £ > % + 1 yields:
_ ! _ -0 -
E[m } 7. s E[m;e}:T-” - P(0)
n ;
B T +1 nlogn —1 _ T nlogn — 1
" 2nlogn n—f—1 n(Has_;—1) " 2nlogn n(Hz_1—1)
T T
- > -
~ 2nlogn ~ 2nlogn

D.3 Variance and Expected Squared Error

Lemma 12. The variance of any player’s Shapley value estimate (;Aﬁl given the number of samples mh and m; , for
all ¢ € L is given by

-3 + 2 _ 2
R 1 2o, O,
) + — _ i, 1,041
V[ () (2) | = e 2 e L
€ € =1 Mae  My41
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Proof. We first decompose the variance of gZ)l into the variances of QAST and quSi_ and their covariance:

v ¢1| ( )ieﬁ'*‘ (m“)eeﬁ—]
=V ¢j | (mﬁ@)éeﬁ] +V {@ | (m;g)e . } — 2Cov <¢7 T ( )€e£+ ’ (m“)éeﬁ—>
_v ¢+ [ (mi),. ﬁ] +V{a3i | (mi,e)geﬁ}-

where we used the observation that (;Aﬁj and ngSi_ are independent. We derive for ¢A>j

1 n—3 R R R
¢+ | ( )/eu 2 ZV {ﬁ@ | m:r‘} + Z Cov (qﬁj’é,gb;fe, | mi@’m&')
=1 00
1 n—3
_ o+ +
) ZV {%z | mz/i|
n—3 + 2

SR I
(=1 m;

where we used the observation that ¢ , and (;5Z "o are independent for £ # ¢'. Note that qﬁl 0 gi;l 2> ¢jn 1 gzbz 0 d)z 1

E

and qu_ n_1 are constants without variance. A similar result can be obtained for ¢>i_. Putting our intermediate results

together yields:

v o (i ) (i)

{@ verr \Mit) e
=V |of \% m; )
2 ‘ = LJ + { Mie éec}
n2 (=1 z/ TL2 —2 mi,,
_ 2
z l i ZJrl
n? Z m> '
/=1 7,[ z,€+1
O
Lemma 13. For any i € N holds
1 2nl 1 2nl
E —| < " ?gnforallﬁe LT and E|—| < i ?gnforallﬁe L.
m;y m; e
Proof. We prove the result only for ml'-fg since the proof for m, , is analogous. By combining Equation (3.4) in Chao
and Strawderman [1972]:
_ _ m+1
]E{l}zl(lp) <1_1’
1+ X (m+1)p ~mp E[X]
for any binomially distributed random variable X ~ Bin(m,p) with Lemma 10 and Lemma 11, we obtain:
1 1 1 1
E —| = _ < 2n ?gn'
m; g L+m}, E {mj’z} T
O

Theorem 6 For P as chosen above the variance of any player’s Shapley value estimate (;ASZ is bounded by

A 210gn 2
|: :| ZUzZ +Uz€+1 .
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Proof. The combination of Lemma 12 and Lemma 13 yields:

el =2 o5 (7. ]
:; gl

i,E 7,0+1

n—3

o ZU
z,é

2logn 2
Zng +Uz/+1 .

2
+02€+1 E

1
™My 11

Corollary 2 For P as chosen above the MSE of any player’s Shapley value estimate (Z;Z is bounded by

N 2 2logn 2 _ 2
E {(@(ﬁi) } S 7 +z t 0041 -

" =1

Proof. Using the bias-variance decomposition, the unbiasedness of éz shown in Theorem 5, and the bound on the
variance from Theorem 6 we obtain that:

E [(¢ —@)2} = (E [M - dn)z +V [ﬂ

< 210%11” 3

o+ 2 2
ie T O 001 -

nT
(=1

D.4 Probabilistic Bounds

Theorem 7 Fix any playeri € N and & > 0. For P as above the probability that the estimate qBZ deviates from ¢; by
a margin of € or greater is bounded by

R 210gn _ 2
P(|¢z‘*¢|25) Z Tig +Ui,£+1'

Proof. The bound on the variance of qB, in Theorem 6 allows us to apply Chebyshev’s inequality:
[¢Zi| 210 n—3
. g n 2
P(16 -0l 2 e) € = < E Dol H i
O

Corollary 4. Fix any player i € N and § € (0,1]. The estimate &l deviates from ¢; by a margin of € or greater with
probability not greater than 6, i.e.,

2logn w— 3

onT —

o+ 2 2
e T

P(‘Qgi—szﬁ) <§ for e=

Lemma 14. For any i € N and fixed € > 0 holds:

'IP)(|(13?:£ |>5|m )<26Xp< i’f )forallﬁeﬁJr

i
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Approximating the Shapley Value without Marginal Contributions

. ]P’(|<;ASZZ — @il =€ my,) <2exp <— EZ; )forallé e L™

i,0

Proof. We prove the statement for ¢ , by making use of Hoeffding’s inequality in combination with the unbiasedness

of the strata estimates shown in Lemma 9. The proof for QSi ¢ 1s analogous.

P(|¢§je - ¢i+,é| > m;fe)
=P (\ér@ —Eg}) = < | m},)
m7,

z e p) —E V(AZe,k)
k=1 k=1

2m; e
< 2exp (— +M2 .
Tie

+ +
2 Mm; € [ my,

Lemma 15. For any i € N and fixed € > 0 holds:

B exp (
T

P (|¢;’:Z - ¢:_Z| 2 E) < exp (_Snz(logn)2

) In log n
foralll € LT

(o

) an lo;, n
foralll € L™

exp( <2 )—1
N3

T ) exp(

P (|<£1_7[ - ¢2_7€| 2 E) < exp (_8'r12(logn)2

Proof. We prove the statement for QASXE. The proof for q@; , 1s analogous. To begin with, we derive with the help of

Hoeffding’s inequality for binomial distributions a bound for the probability of mje not exceeding ﬁ:

T
P(m, <
b 4dnlogn
-+ -+ =+ T
<P ]E{m.e} fm.EZE[m,e} _
b e b 4dnlogn

_ 2
-+ T
2 (]E [mi,e] - m)

<exp | -

T
cep(- T ).
= P 8n2(logn)?
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Approximating the Shapley Value without Marginal Contributions

where we used the lower bound on E [mﬁ} shown in Lemma 11. Next, we derive with the help of Lemma 14 a
statement of technical nature to be used later:

T
Z P(|<£:e_¢:e|25|mi—é:m)

M= oribg ] +1

) 2me?
<2 Z exp <+ 5 )
il

m= gz | +1 "

T 252 m Lﬁmj 52 m
m=

Vi
7 _
2¢? Lo 22\
exp | —5— —exp | ==
Tie Tie
2
2
exp < zf 2) -1
Tk

22>Lm£¥nJ
£

exp (_ T 2
Tie
<2

exp (ffi) —1
ie

At last, putting both findings together, we derive our claim:

P (|$je - ¢:e| > 5)

T
= ZP(|$Z6*¢22|25|m:z:m)'P(m;fe:m)
m=1

S

T
4nl

n

—

02

B (1
T
+ Z P(WL* :£|25|mze:m)']l”(m&:m)
m=| frrfogw ] +1

T
_ T R
<2 (m0< | gaga) )+ 2 (Btetizelmi=m)
T

M= gtogw | +1

AN

T R

< exp (— ) +2 e
- 8n?(logn)? exp < 262 > 1
r+2

i,

O

Lemma 16. For any i € N and fixed ¢ > 0 the probabilities that the estimates (;AS:“ and qu_ deviate from (ﬁj‘,
respectively ¢, are bounded by:

P (167~ 6712 2) < (n-3) | exp (~ gz ) +2exp< <22>1 ’
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- exp| =" "3
(167 — 0712 ¢) <(n=3) | e (~ gl ) +2 =

Proof. We prove the statement for (ﬁ using Lemma 15. The proof for q@; is analogous.

H(CEED

1 n—1
=TP’<\HZ¢Z@—¢Z@ 25)
£=0

1 n—1 R
<P| = + oot >
< (n Z |¢,7z ¢z,z| = 5)
=0
n—3
:]P( |¢:e_¢:e| 25“)
=1
n—3 +
R enr;,
< P <|¢;fe - ¢:fe| > RJ‘I )
=1
T
- o) I
<(n-— exp | — +
8n2(logn)? exp (215;7«;2) 1

O

Theorem 8 For any i € N and fixed € > 0 the probability that the estimate qu deviates from ¢; by a margin of € or
greater is bounded by

2¢%n?

< > \_471, lognJ
= EXPp | =57 -2
. T (Ry+R;)
P(|¢i—¢i\2€)§2(n—3) exp | —=— s | +2
8n?(logn) 26202 1
exp "R

Proof. We apply Lemma 16 and obtain:
P (|<73i — il > 6)
=P (I(6F — o)+ (67 —d7) 2 ¢)
<P (167 - oF1+197 — 07| 2 ¢)

. RT R eR~
<P (197 —of1 > e ) + B (17 —o71> e
(_ 2e?n? )LﬁJ
P\~ ®’Ritr )2

<2(n-23) T +2
_ ex - -
I n p 8n2(10g TL)2 exp (3—627”2> 1
(R7+R; )2
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E Cooperative Games

E.1 Synthetic games

We provide formal definitions of the synthetic games and their Shapley values used in our empirical evaluation (see
Section 6), and describe the process of how we randomly generated some of these.

E.1.1 Shoe Game

The number of players n in the Shoe game has to be even. The player set consist of two halves A and B of equal size,
ie., N =AUBwith AN B = () and |A| = |B| = %. The value function is given by (S) = min{|S N A|,[S N B|}.
1

All players share the same Shapley value of ¢; = 3.

E.1.2 Airport Game

The Airport game entails n = 100 players. Each player 7 has an assigned weight ¢;. The value function is the
maximum of all weights contained in the coalition, i.e., (S) = max;cg ¢;. The weights and resulting Shapley values
are:

1 ifie{1,...,8} 0.01 ifi e {1,...,8}
2 ifie{9,...,20} 0.020869565 ifi € {9,...,20}
3 ifie{21,...,26} 0.033369565 ific {21,...,26}
4 ifie{27,...,40} 0.046883079 ifi € {27,...,40}
L ifi € {41,...,48} bi = 0.063549745 ifi € {41,...,48}
)6 ifie{49,...,57} © ) 0.082780515 ifi € {49,...,57}
7 ifie {58,...,70} 0.106036329 ifi € {58,...,70}
8 ifiec{71,...,80} 0.139369662 ifi € {71,...,80}
9 ific{81,...,90} 0.189369662 ifi € {81,...,90}
10 ifi e {91,...,100} 0.289369662 ifi € {91,...,100}

E.1.3 SOUG Game
A Sum of unanimity games (SOUG) is specified by M many sets S1, ..., Sy € AN and weights c1,...,cp € R. The
M M
value functions is defined as v(S) = }_ ¢m - Is,,cs leading to Shapley values ¢; = > g%y - Lies,,, which can
= Tom

m=1
be computed in polynomial time if knowledge of sets and coefficients is provided. We generate SOUG games with
M = 50 randomly by selecting for each S,, to be drawn a size uniformly at random between 1 and n, and then draw
the set .S, with that size uniformly. We draw the coefficients uniformly at random from [0, 1].

E.2 Explainability games

In the following, we describe the three explainability games introduced in Section 6; namely, the NLP sentiment
analysis game (see Section E.2.1), the image classifier game (see Section E.2.2), and the adult classification (see
Section E.2.3), and explain the value function of each resulting cooperative game. Since there exists no efficient
closed-form solution, we compute the Shapley values exhaustively (via brute force) in order to allow the tracking
of the approximation error of the different algorithms. Due to constraints in computational power this limits us to
n = 14 players per game, which necessitates 2'4 = 16 384 model evaluation to exhaustively traverse the powerset of
all coalitions. Note that after a budget of T' = 24 both KernelSHAP and Stratified SVARM™* have an approximation
error of zero because both have observed all coalition values and thus have seen the cooperative game in its entirety.

E.2.1 NLP sentiment analysis

The NLP sentiment game describes an explainability scenario for local feature importance of a sentiment classification
model. The sentiment classifier? is a fine-tuned version of the DistilBERT transformer architecture Sanh et al. [2019].
The model was fine-tuned on the IMDB dataset Maas et al. [2011]. The model expects a natural language sentence as
input, transforms the sentence into a tokenized form and predicts a sentiment score ranging from [—1, 1]. We randomly
select sentences from the IMDB dataset, that contain no more than 14 tokens. For a sentence the local explainability

*https://huggingface.co/dhlee347/distilbert-imdb.
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game consists of presenting the model a coalition of players (tokens) and observing the predicted sentiment as the
value of a coalition. Absent players are removed in the tokenized representation (i.e. tokens are removed).

E.2.2 Image classifier

The image classifier game is similar to the NLP sentiment analysis game (Section E.2.1) a local explanation scenario.
For this we explain the output of an image classifier given random images from ImageNet Deng et al. [2009]. The
model to be explained is a ResNet18* He et al. [2016] trained on ImageNet Deng et al. [2009]. To restrict the number
of players, we apply SLIC Achanta et al. [2012] to summarize individual pixels with 14 super-pixels. The super-pixels
then make up the players in the image classification game. A coalition of players, thus, consists of the corresponding
super-pixels. The super-pixels of absent players are removed via mean-imputation by setting all their pixels to grey.
The worth of a coalition is determined by the output of the model (using only the present super-pixels given by the
coalition) for the class of the original prediction which was made with all pixels being present.

E.2.3 Adult classification

Similar to the preceding two games, the adult classification game is also a local explanation scenario. We train a
gradient-boosted tree classifier (sklearn) on the adult dataset Becker and Kohavi [1996] to classify whether an adult
has an income below or above 50 000. Each game is based on a randomly chosen datapoint for which the players
correspond to features. A coalition is formed by removing the absent feature values of the selected datapoint via mean
imputation. The worth of a coalition is the predicted class probability of the true income class given the manipulated
datapoint after mean imputation of absent features.

“https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html.
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F Further Empirical Results

The plots shown in Figure 3 hardly visualize the performance differences between the algorithms with low MSE
values. Thus, we present our findings in Figure 4 to Figure 9 in higher resolution.

Airport game: n = 100, 100 repetitions Airport game: n = 100, 100 repetitions
2.0 — - 20 - -
15 % L5
7 VARM T
5 o SV, s
S od SV for E]
o tified SVARM uniforin 210
@ S-SVARM* @
= - =~ S-SVARM™ uniform =
0.5 0.5

0

0

T-10°

Figure 4: Airport game with 100 players: Averaged MSE over 100 repetitions in dependence of fixed budget T, shaded

bands showing standard errors.

SOUG: n = 20, 100 repetitions

SOUG: n = 20, 100 repetitions
T

2 T 4 T
20
3
— biased KernelSHAP
& ARM
“’ atified SVARM
2 atifed SVARM uniform g,
- — VARM* =
10 === StratSVARM™ uniform
1
0 25 5.0 7. Lh

102 10

T.10? 10

Figure 5: SOUG game with 20 players: Averaged MSE over 100 repetitions in dependence of fixed budget T, shaded

bands showing standard errors.

Shoe game: n = 50, 100 repetitions
T

MSE -10~1

ApproShapley
Stratified Sampli

—— Structu

VARM*
- -~ S-SVARM* uniform

MSE -10~%

10

T-10° !

Figure 6: Shoe game with 50 players: Averaged MSE over 100 repetitions in dependence of fixed budget T, shaded

bands showing standard errors.
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NLP sentiment: n = 14, 100 repetitions NLP sentiment: n = 14, 100 repetitions
T T T T

10 T T T T 4 T~ I I
—— ApproShapley ,
Stratified Sampling
—— Structured Sampling
8
eISH/ 3
—— Unbiased KernelSHAP
—— SVARM
7 6 —— Stratified SVARM 1
s - - - Stratificd SVARM uniform 2,
2 ARM* )
Z, - == S-SVARM* uniform =
1
2
0 0
0 2. 0 7.5 10 12, 1 16 0

Figure 7: NLP game with 14 players: Averaged MSE over 100 repetitions in dependence of fixed budget T, shaded
bands showing standard errors.

Image classifier: n = 14, 100 repetitions Image classifier: n = 14, 100 repetitions
T T

20 - - - - - - - 5
—— ApproShapley
Stratified Sampling
—— Structured Sampling
Owen Sampling i
151 —— KerncISHAP b
—— Unbiased KernelSHAP
—— SVARM .
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g o —— S-SVARM* N =
12 4
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05]-
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Figure 8: Image classifier game with 14 players: Averaged MSE over 100 repetitions in dependence of fixed budget
T, shaded bands showing standard errors.

Adult classification: n = 14, 100 repetitions Adult classification: n = 14, 100 repetitions
5 T T T T T T T 10 T
—— ApproShapley
Stratified Sampling
—— Structured Sampling
ar —— Owen Sampling b L
Ke
—— Unbiased KernelSHAP
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Figure 9: Adult classification with 14 players: Averaged MSE over 100 repetitions in dependence of fixed budget T,
shaded bands showing standard errors.
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Shapley Value Approximation Based on k-Additive Games

A. Theoretical Analysis

In the following we prove Theorem 4.2 by solving the k-additive optimization problem with weights w, = (|Z|_—21) -

analytically and showing that the solution contains the Shapley value. We introduce some simplifying notation:

P:=P(N)\ {0,N}
o Io:=1IF0), I :=1%{i})foralli € N, I, ; :=1I*({i,j}) forall {i,5} C N, I ;¢:=I*({i,5,¢})
* Weight w,, for any A with |[A| = a

B
« yap = 7\‘A|m3| forall A, B C N

1 ifid A .
’Bi,A:{l ifZiA foralli € Nand A € P(N)\ {0, N}

2 if {i,7}NA|l =1
« Bija= it i 104l forall {i,j} C Nand A € P(N)\ {0, N}
e 1 otherwise

-1 if|{i,5,}nAl=1
* Bigea=41 if[{i,j,0}nAl=2 forall{ij ¢} CNandAe€P(N)\{0N}
0 otherwise

Our proof is preceded by an observation that we shall utilize later:

Lemma A.1. For any set of players N, player i € N and for the cases { = 2 and { = 3 the following equality holds:

Z waBi,a Z va,BIB = % Z Z waBj A Z va,8IB .

AcP BCN JEN AcPp BCN
|Bl=¢ |B[=¢
Proof:
We show the statement for both cases separately and start with £ = 2. For interactions I;, ;, that contain ¢ we derive after

n72)*1:

inserting the weights w, = (77}

Yowabia Y. Biga.ali g

AeP {j1,42}CN
i€{j1,J2}
= > Lij, Yo BiaBiawa
J1EN\{i} AeP
= > I; j, Z~ WA — Z~ wa — 2 Z~ wa + 2 Z~ WA
j1EN\{i} AeP AeP AeP AeP
i,j1€EA i,51¢A i€A,j1¢A i¢gA,j1€EA
n—1 n—2 n—1 n—1
= > L | X ~Z Wo — ~Z we —2 ) ~Z we +2 ) ~Z Wq (10)
J1EN\{i} a=2 AcP,|Al=a a=1 pAcP,|A|=a a=1 AcP,|Al=a a=1 AcP,|Al=a
i,j1€A i,j1¢A i€Aj1¢A igA,j1€EA
_ Z I nil n—2) ni2 2 2nil N2 +2nil 2
- ) o Tun (a72 Wa — ( a )w“ - (afl)wa (afl)wa
Jj1eN\{i} a=2 a=1 a=1 a=1
n—1
= Y L (G2 0) w
j1EN\{i} a=1
n—1
= ¥ Ly =t
J1EN j17#i a=1
= 0

12
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And for all other interactions I, ;, not containing 7 we derive:

> waBia > Bir garALjy g

AeP {J1,92CN\{i}
= X g X owat X wa-2 3} wa-2 ) wa
{71,323 CN\{i}  AcP AeP AeP AeP
i,J1,j2€A i€A,j1,52¢A 1,j1€A,j2 ¢ A i,jo€AJ1¢EA
- > wa— Y, wa+2 > wa + 2 > wa
AeP AcP AcP AcP
i€ A, j1,j2€A 'J1J2¢A J1€EAi,j2E A J2€Ai1EA
n—2 n—1 n—1
= > 1, 4 Z > wat X ~Z Wa—2 ), ~Z Wa —2 3 ~Z
{71:32SN\{i} a=3 AeP,|Al=a a=1 AeP,|Al=a a=2 AeP,|Al=a a=2 AeP,|Al=a
,J1,J2€A 1€A,J1,j2 ¢ A i,j1€Aja g A i,j2€A,j1¢ A
n—1 n—3 n—2 n—2
-2 > Wa = Y > wat+23 > wa+2 )] > Wa
a=2 AcP,|Al=a a=1 AcP,|A|l=a a=l AcP,|Al=a a=1 AcP,|Al=a
¢ A, j1,j2€A i,J1,J2 A J1€A L joE A J2€A1EA

n— n—2 n—1 n—1
_ 5 %m(ZG@W+ZCﬁWMQZ@SWﬁQE@@%
{71,52}CN\{i} a=3 a=1 a=2 a=2
n—1 n—3 n—2 n—2
D 2 (s 2 5

- ¥ hme®—W5+W% (")) wa

{71,J2} CN\{i} a_1
= (a—1)(a—2) a—1 n—a—1 _ (n—a—1)(n—a—2)
- Z 1,J2 Z (n—2)(n—a) 75m+5 n—2 (n—2)a
{41,523 CEN\{i }

= 0

Adding Equation (10) and (11) yields:

> wabia Y, vapls
BCN

AcP c
|Bl=2

= _% Z wAﬁi,A Z BJlJz,A Ji,J2

AcP {j1.32}CN

1
= 7% Z~ waBia Y, Bjigaalige + Z~ waPia > Bjriz.alj g2
AeP {71,532} CN AeP {d1,32}EN\{é}
i€{j1,2}

Consequently, we also have

LS S waBja Y vasls=0.
JEN ach B

13

Wq

an
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n72)*1:

Continuing with ¢ = 3, for interactions I}, j, j, that contain 7 we derive after inserting the weights w, = (a71

E~ wAﬂi,A Z ﬁh,jz,js,AIjl’szS
AcP {j1,d2,33}CN
ZG{Jl,Jz,J 3}

= > L j1 s Z Bi,aBij1 WA
{41,932} EN\{i}

= Z 7]1»]2 Z wa — Z WA — Z wA + Z wA

{71,323} CN\{3} AePicA AePicA AP i¢A AePi¢A
\{leiz}ﬂAl— [{71.52}1NA|=1 [{j1.52}NA[=1 [{i1.52}NA|=2
n—1
= > L j1 3 Z > Wo — Y > Wa
{71,523} EN\{3} a=1 AeP,|Al=a a=2  AeP,|Al=a (12)
i€A,[{j1,j2}NA[=0 i€A,[{j1,J2}NAl=

n—2 n—1
-2 > Wa + 3 > Wq

a=1  AeP,|Al=a a=2  AeP,|Al=a

ig A,[{j1,52}NAl=1 ig A, [{j1,J2}NA|=

n—2
= Z IiJl»jz
{71,52}CN\{i}

n—3 —9 =l n—3 _ 2n72 n—3 nl n—3
(a—l)wa a§2 (a—2)wa agl (a—l)wa + a§2 (a—Q)wa

(n—2

a—l)wa
1

@/\
T LM

Jun

= - > L jy g
{j1,d2}EN\{i}
= —(n-1) >

{71,523} CN\{4}

°
Il

&~

©,J1,J2

And for all other interactions I}, ;, ;, not containing ¢ we derive:

Z wAﬁi,A Z th]é,js,AIth»JS

AeP {41,52,93} SN\ {i}
= o Z ) Ij17j2,j3 Z~ Bi7A6j17j21j37AwA
{J1:32,33} SN \{i} AeP

= > T}, ja s > wa — > wy — > wa + > wa

{41,42,53 YCN\{i} AePicA AePicA A€eP,i¢ A AePi¢A
[{J1,52,73}NA|=1 [{1,52,73}NA|=2 [{71.42,3}NA[|=1 [{71.42,73}NAl=
n—2 n—1
= Z Ij11j27j3 Z - Z Waq — Z B Z Wq
{41,42,J3 YCN\{i} a=2 AcP,|A|=a,icA a=3 AcP,|Al=a,icA
[{71.42,d3}NA[I=1 [{71.52,53}NA[|=2
n—3 n—2
- > Wa + 3 > Wq
a=1 AcP |A|=a,i¢ A a=2 AcP,|A|=a,i¢gA
[{71,42,3}NA[=1 [{71:42,53}NA[|=2
n—2 4 n—1 4 n—3 4
o 3 . Z X I-717J27J3 Z (a—2)wa Z (a—B)wa Z (a I)wa+ Z ( )
{71.32,93}CSN\{i} a=2 a=3 a=1
n—1
_ L n—4\ _ (n—2
= 3 Z ‘Ijmms > (4((1—2) (a—1))wﬂ
{J1.92,33 SN\ {3} a=1
n—1
_ o (a—1)(n—a—1)
- 3 o Z ) IJ1,J2J3 Z 4 (n—2)(n—3) -1
{J1,92,33}SN\{3} a=1
= —(n-1) > Iy 3.4

{j1,J2,33} SN \{i}
(13)

14
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Adding Equation (12) and (13) yields:
> waBia Y vasls
BCN

AeP

|B|=3
_ 1
= —5 X waBia X Biigegsaliiges
AcP {41,42,33}CN
1
= 5| X waBia X Bigegsaliigegs + 2 waBia > Bjr gzds ALj o s
AP {J1.32,33}CN AcP {41,52,3s}CN\{i}

i€{j1.52,J5}

( Ii,jhjz + Z Ij11j27j3>
{j1,d2}EN\{i} {j1.32,93YCN\{i}

_ n—1 L
= 6 Z I, ja s
{j1,42,43yCN

Obviously, summing up the last term over all 7 € N and dividing it by n will not change it, which concludes the proof. [

Proof of Theorem 4.2:
The constraint to guarantee the efficiency axiom can be simplified, leading to the following optimization problem:

mzin ST wa <1/(A) Z ’YA,BIB>

AeP N,|B|<k

st. v(N)—v(0) = Z}V

We apply the Lagrange method. The new objective to minimize is

AN = > wa (Z/(A)— > ’VA,BIB> +>\<Z Ii—l/(N)-i-V(@)) .

AeP BCN,|B|<k iEN

The partial derivatives of A must turn to zero for its solution. Hence we obtain the following equations:

!
P =2 > wavag (V(A) - > VA,BIB> =0

AeP CN,|B|<k
32 = -2 WAYA, {4} v(A) — > YA BIB> + A L 0 forallt € N
AeP BCN,|B|<k
A= 23 wayas <Z/(A) - > VA,BIB> =0 forall S C N with |S| € [2, k]
AeP BCN,|B|<k
!
B= X L) +v0) L0
From g’; we immediately extract
> Li=v(N)-v(0) (14)
i€EN
and thus also for any ¢ € N:
Z Ij:l/(N)fy((Z))*Ii.
JEN\{i} (15

The derivative g}‘ can be rearranged for any 7 € IV to obtain an expression of summands grouped by the order of their

contained interactions:

8 =Y waBialv(A - X qaslp|+A
' AeP BCN,|B|<k 16
= 2 waBiav(4) = 2 wab; AIO+ Yo waBia Y Bjaly— > waBia Y, vyaplp+A
AeP AeP AeP JEN AcP BCN
2<|B|<k
15
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In the following, we derive expressions for multiple terms that are contained in Equation (16). First, we have for the sum
containing the interaction of the empty set:

> wabialo Io( >oowa— Y wA)

AeP AePi¢A AePicA
n—1 n—1
=l | X Y. Wa— Y Y. wa
a=1 AcP,igA a=1 AcPicA
Al=a Al=a a7

n—1

=h ¥ (%) = (D) we
n—1

=h ¥ -

=0
Next, we solve the sum that contains interactions of singletons, requiring two steps, we begin with

n—1
Y waBiali=1 Y (3w (18)
AeP a=l1

In the second step we analyze and utilize Equation (15) to obtain:

Yoowafia Y, Bjal;

AP JENj#i
= Yo Ll X wat+ X wa— Y wa— D wa
JEN,j#i AeP AeP AeP AeP

ijeA ijgA i€AjgA igAjeA

- % Ij<n21 Sty Y e Y w-y % w) (19)

JEN,j#i a=2 AcP,|Al=a a=1 AcP,|Al=a a=1 AcP,|A|=a a=1 AcP,|A|=a
i.jEA i.j¢A i€A,JEA igAJEA
n—1 n—2 n—1
SR $ollte I SR G PAEES o o )
JEN,j#i a=2 a=1 a=1
n—1
= 0N 0 -1 T (7)) + (7)) ~205D) we
a=

n—2

We combine Equation (18) with Equation (19), and apply the weights w, = (a_l)_l and the identity 2H,, | =

n—1 n _ n—11 . . s
Do Ty where Hy,_; = )" _, + is the harmonic sum, to derive:

> waBia Y Bjal;
AeP JEN
= > waBia <5i,AIi+ > 5j,AIj>
AeP JENj#i
= YwaBiali+ Y wafia Y, Bjal;
Ae ;1 AeP jGN,j?i:'il
= L az=:1 (W)wa + (W(N) = v(0) - I;) (;1 ((2:3) +("07) - Q(Zj)) Wa (20)
= LT ()= (2D - 02942020 ) we + 0 —v0) 'S ((29) + (479 = 2070 ) w
= S (D ) )T ()16

= d(n— DL+ W(N) - v(0) ”g =
— 4= 1)+ 2(n — 1) (Hyt —2) (0(N) — (0))
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Summing Equation (20) up over all ¢ € N yields under usage of Equation (14):

> > waBia Y, Bjaly =2(n—1)(n(Hn-1 —2)+2) (W(N) —v(0)) . 1)

1EN AcP JEN

And as the final intermediate term we derive for the weighted coalition values summed up over all ¢ € N:

> 2 waPiav(A) = 30 wav(A)(n—2/4]) . (22)

1EN AcP AeP

For any ¢ € N, after rearranging Equation (16) and plugging in Equation (17) and (20) we have

A= > wafiav(A)+2(n -1+ (n—1)(Hy—1 —2) W(N)—v(@) — > wafia Y. ~vanls.
AeP AeP , <B‘%fv< i (23)

We also obtain for —A by rearranging Equation (16), summing it up over all ¢« € N, dividing by n, and plugging in
Equation (17), (21), and (22):

_)‘:% Z~ wav(A) (n —2[A]) + == ("( n—1—2)+2) (V(N)_V(m)—% > > wafia B;N Ya,BIB .

AeP €N AcP c
2<|B|<k

24

Finally, we conclude the proof by equating Equation (23) and (24). We utilize Lemma A.1 to cancel out the sums that
contain interactions of order two and three such that the theorem holds true for the cases of k = 2 and k = 3. This step is
does not apply for the special case of k£ = 1 since the last sums in Equation (23) and (24) vanish. We solve for I; and derive:

L= 5 (n(Hyo1 —2)+2) (v(N) —v(0)) - Q(V( ) —v(0))
Qn(rlL 1) Z U)AV(A) (7’L72|AD g(n 2(n—1) Z wABz AV( )

+ > wABz,A > vasls-iY ¥ wAﬁgA > vaBls
BCN

AcP BCN JEN AecP C
2<|B|<k 2<|B|<k
= LN =)+ gy ¥ war(A)m—20A)+ 55y X wav(4)
A€PicA AEPicA
Ty o war(A) (n=2JA]) = 55ty X wav(A)
(n—1) - (n—1) £
AeP.igA AePigA
= LW -v)+ ¥ s waw@) - ¥ 8 war(4)
AEPicA AP igA
= LeMW v+ S ) S ()
) Aepica NAIS AcPiga N4l
= =y - V(4) — —L (A
AQJ;JGA n(411) (4) Acg:ng n(ar) (4)
= > A AU () - ()
ACN,igA " \1al
= ¢ O
17
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B. Analytical Solution to the Optimization Problem

In order to solve the optimization problem presented in Equation (8), one may use a trick to remove the constraints.
One may include both () and N, as well as v(0)) and v(N), into the objective and assign them with large weights (e.g.,
wy = wy = 10%). As a consequence, one ensures that both constraints

v(0) = Y APTE(B) and v(N) = 3 45 1M(B)
BCN BN
|BI<k BTk

are satisfied when minimizing the objective which implies the constraint v(N) — v(0) = vi(N) — vk (D) of the k-additive
optimization problem.
With the aforementioned modifications, the optimization problem can be formulated as follows:

2

min 3 wa | v(A) = X AL MB) | (25)
I AeM BC

Clearly, (25) is a weighted least square problem. Indeed, assume W as a matrix whose diagonal elements are the weights
w4 for all A € M, vy as the associated vector of sampled coalitions, and P as the transformation matrix from the
generalized interaction indices to the game, i.e., vyq = PI¥, where I¥ = (I*(0), ¢f, ... ¢k If,, ... 1K | ... IF(A)),
with |A| = k, is the vector of generalized interactions in the lexicographic order for coalitions of players such that | 4| < k.

In matrix notation, (25) can be formulated as
min (VM —PIk)TW(Z/M —PI’“) , (26)

Ik

whose well-known solution is given by
I = (PTWP) ' PTWuy,. 27)

18
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C. Cooperative Games Details

The cooperative games used within our conducted experiments are based on explanation examples for real world data. This
section complete their brief description given in Section 5. Across all cooperative games the players represent a fixed set of
features given by a particular dataset.

C.1. Global feature importance

Seeking to quantify each feature’s individual importance to a model’s predictive performance, the value function is based on
the model’s performance of a hold out test set. This necessitates to split the dataset at hand into training and test set. Features
outside of an inspected coalition .S are removed by retraining the model on the training set and measuring its performance
on the test set. For all games we a applied train-test split of 70% to 30% and a random forest consisting of 20 trees. For
classification the value function maps each coalition to the model’s resulting accuracy on the test set minus the accuracy of
the mode within the data such that the empty coalition has a value of zero. For regression tasks the worth of a coalition is
the reduction of the model’s mean squared error compared to the empty set which is given by the mean prediction. Again,
the empty coalition has a value of zero.

C.2. Local feature attribution

Instead of assessing each feature’s contribution to the predictive performance, its influence on a model’s prediction for a
fixed datapoint can also be investigated. Hence, the value function is based on the model’s predicted value.

C.2.1. ADULT CLASSIFICATION

A sklearn gradient-boosted tree classifies whether a person’s annual salary exceeds 50,000 in the Adult tabular dataset
containing 14 features. The predicted class probability of the true class is taken as the worth of a coalition S. In order
to render features outside of S absent, these are imputed by their mean value such that the datapoint is compatible to the
model’s expected feature number.

C.2.2. IMAGE CLASSIFICATION

A ResNet18 model is used to classify images from ImageNet. Since the for error tracking necessary exact computation of
Shapley values is infeasible for the given number of pixels, 14 semantic segments are formed after applying SLIC. These
super-pixels form the player set. Given that the model predicts class c using the full image, the value function assigns to each
coalition S the predicted class probability of c resulting from only including those super-pixels in S. The other super-pixels
are removed by mean imputation, setting them grey.

C.2.3. IMDB SENTIMENT ANALYSIS

A DistilBERT transformer fine-tuned on the JMDB dataset predicts the sentiment of a natural language sentence between -1
and 1. The sentence is transformed into a sequence of tokens. The input sentences are restricted to sentences that result in 14
tokens being represented by players of the cooperative game. This allows to remove players in the tokenized representation
of the transformer. The predicted sentiment is taken as the worth of a coalition.

C.3. Unsupervised feature importance

In contrast to the previous settings, there is no available predictive model to investigate unlabeled data. Still, each feature’s
contribution to the shared information within the data can be quantified and assigned as a score. (Balestra et al., 2022)
proposed to view the features 1,...,n as random variables X, ..., X,, such that the datapoints are realizations of their
joint distribution. Next, the worth of a coalition .S is given by their total correlation

v(8) =) H(Xi) - H(S)
i€S
where H(X;) denotes the Shannon entropy of X; and H (.S) the contained random variables joint Shannon entropy. The
utilized datasets are reduced in the number of features and datapoints to ease computation. The Breast cancer dataset

contains 9 features and 286 datapoints. The class label indicating the diagnosis is removed. From the Big five and FIFA 21
dataset 12 random features are selected out of the first 50 and the datapoints are reduced to the first 10,000.
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D. Further Empirical Results

Aiming at further illustrating the performance of our proposal in comparison with existing approximation methods, in this
section, we extend the results presented in Section 5.3 by including another approach, called ApproShapley (given here as
Permutation sampling) (Castro et al., 2009), and our proposal for k£ = 2. We show this comparison in Figure 4. Note that,
with the exception of the Wine dataset, the Permutation sampling leads to the worst results.
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Figure 4: MSE of SVAkapp and competing methods averaged over 100 repetitions in dependence of available sample budget
T'. Datasets stem from various explanation types (i) global (first row), (ii) local (second row), and unsupervised (third row)

with differing player numbers n.
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Organization of the Appendix.

Within the Appendix, we provide not only proofs for our theoretical analysis

in Appendix E and further empirical results in Appendix G, but also give a table of frequently used symbols
throughout the paper inAppendix A, provide Shapley-based interaction measures and other indices falling under
the notion of cardinal interaction indices explicitly in Appendix B, provide further and more detailed pseudocode
of our algorithmic approach SVARM-IQ in Appendix C, showcase our method at the popular special case of the
Shapley Interaction index for pairs Appendix D, and describe the used models, datasets, and explanation tasks
within our experimental setup in Appendix F. Appendix H contains the hardware details.
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A LIST OF SYMBOLS

Problem setting

Z Z|

k

Set of players

Set of all subsets of the player set with cardinality &
Number of players

Value function

Budget, number of allowed evaluations of v

Considered interaction order

Interaction set

Discrete derivative of players K at coalition S

Cardinal interaction index of players K

Estimated cardinal interaction index of players K

Set of all coalition sizes at which interactions of order k can occur
Weight of each coalition of size ¢ for interaction order k

SVARM-IQ

Average worth of coalitions SUW with S CN\ K, |S|=¢and W C K
Estimate of I[Vge

Number of samples observed for stratum I}/(V’E

Sizes for which all coalitions are evaluated for explicit stratum computation
Sizes for which coalitions are sampled for implicit stratum estimation
Set of all explicitly computed strata

Set of all implicitly extimated strata

Set of implicit coalitions sizes ¢ depending on W of IIVX[

Probability distribution over sizes {2,...,n — 2}

Altered probability distribution over sizes {Sexp + 1,...,17 — Sexp — 1}
Budget left for the sampling loop after COMPUTEBORDERS

Budget left for the sampling loop after CoMPUTEBORDERS and WARMUP
Variance of coalition worths in stratum I},

Range of coalition worths in stratum I}{,

Number of samples with which f}/ge is updated after the warm-up

Total number of samples with which fIV(V,z is updated

m-th coalition used to update I v,

Table 2: List of symbols used frequently throughout the paper.
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B CARDINAL INTERACTION INDICES AND THEIR WEIGHTS

All Shapley-based interaction indices and a few other game-theoretic measures of interaction can be captured
under the notion of cardinal interaction indices (CII). We have stated this in Section 2 without presenting the
aforementioned indices explicitly. We catch up on this by providing the weights (A ¢)eer, of each index that is
contained within the CII

Z Ais) - Ak (S)

SCM\K

with discrete derivative

Ag(S)= Y ()K= suw).

Shapley Interaction index (SII) (Grabisch and Roubens, 1999):

)\SH 1
(n—k+1) ("zk)

e Shapley-Taylor Interaction index (STI) (Sundararajan et al., 2020):
)\STI _ k
n—1
n(",’)

Faithful-Shapley Interaction index (FSI) (Tsai et al., 2023):
AFSI — 2k-1D! (n—L-DI{+E—1)!

(k=12 (n+k—1)
e Banzhaf Interaction index (BII) (Grabisch and Roubens, 1999):
1
BIL
)\ T 9n—k

For k =1, the SII, STI, and FSI are identical and equal to the Shapley value:

b= 3 (§1>-[u<su{i}>—u<s>],
scangiy '\ e

which is why these are also called Shapley-based interactions. For a comprehensive overview of the axiomatic
background justifying these indices, we refer to (Tsai et al., 2023) and (Fumagalli et al., 2023).

n-SII Values. The n-Shapley Values (n-SII) ®" were introduced by Bordt and von Luxburg (2023) as an
extension of the Shapley interactions Lundberg et al. (2020) to higher orders. The n-SII constructs an interaction
index for interactions up to size n, which is efficient, i.e. the sum of all interactions equals the full model v(N).
The n-SII are based on SII, I3, and aggregate SII up to order n. The highest interaction order of n-SII is always
equal to SII. For every lower order, the n-SII values are constructed recursively, as

§ I31(9) if |[K|=n
Qi = 0% + B, x| 2 keag BMe i K| <n,
|K|+|K|=n

where the initial values are the SV ®' = ¢ and B,, are the Bernoulli numbers. It was shown Bordt and von
Luxburg (2023) that n-SII yield an efficient index, i.e.

Z % =v(N

KCN
|K|<n
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C ADDITIONAL PSEUDOCODE

C.1 Computing Border Sizes

We have only sketched the CoMPUTEBORDERS procedure and will provide it now in full detail (see Algorithm 2).
Its purpose is to determine the coalition sizes Sex, for which all coalitions are to be evaluated such that the
corresponding strata are computed explicitly. We construct this set symmetrically, in the sense that a size Sexp
is determined such that all Sexp = {0, ..., Sexps ™ — Sexp, - - -, 1}, in other words: the smallest and the largest
Sexp Many set sizes are included. Hence, we assume for simplicity that the initial probability distribution over
sizes Py is symmetric, i.e., Px(s) = Pi(n — s), although it does not pose a challenge to extend this to any Py of
arbitrary shape.

We start with sex, = 1 and adjust the remaining budget B and the altered probability distribution over sizes Py.
For each size s being included into Sexp, We set its probability mass to zero and upscale the remaining entries,
effectively transferring probability mass from the border sizes to the middle. According to this procedure,
COMPUTEBORDERS constructs P, with

5’ €Simp

for all s € Sipyp  and Pk(s) =0 for all s € Sexp.

Algorithm 2 CoMPUTEBORDERS

1: Sexp < 1
2: B+ B—2n—2
3: Pk(O),Pk(l),pk(nf1),Pk(n) +~— 0
4: Py(s) + 17Pk(0)7Pk(11;)i(ls:’)k(nfl)ka(n) forall s € {2,...,n—2}
5: while sexp +1 < 5 and (S X:H) < Pe(Sexp +1) - B do
6: Sexp = Sexp T 1
7: if sexp = 5 then
&  BeB-(")
9: Py, + Unif(0,n)
10:  else if sexp = "51 then
11: B+ B- 2(3;,)
12: Py, + Unif(0,n)
13: else
14: B+ B- 2(5:1,,)
15: Py(Sexp) < 0
16: pk.(n — Sexp) < 0
17: Pk(s)e% for all s € {Sexp+1,...,m — Sexp — 1}
18:  end if ’
19: end while
20: Sexp ¢ {0,. .., Sexp, W — Sexpy - - -, N}
21: Simp ¢ {Sexp +1,.-.sn — Sexp — 1}
22: for s € Seyp, do
23:  for A c N, do
24: v+ v(A)
25: for K € NV}, do
26: W<+ ANK
27: fA% S 7A|W|
28: I, 1Y, + (vfk)
29: end for ‘
30: end for
31: end for

32: Output: Sexp, Simp
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COMPUTEBORDERS iterates over sizes in increasing manner, checking whether the reminaing budget B is large
enough such that the number of coalitions of the next size sey, 4+ 1 considered is covered by the expected number
of drawn coalitions with that size. Aslong as this holds true, scyp is incremented and B as well as D, are adjusted.
Note that thus not only Sexp + 1 is added to Sexp but also n — sexp — 1. We distinguish between different cases,
depending on Whether the incremented Sexp has reached the middle of the range of coalition sizes. In case of
even n this is &, otherwise & T As soon as sexp reaches that number, Pk( ) becomes irrelevant because_then all
coalitions of all sizes are being evaluated, leaving no strata to be estimated. In this case we simply set Py to the

uniform distribution such that it is well-defined.

After the computation of Sexp, wWe evaluate all coalitions with cardinality s € Sexp. For each such coalition A
we update the estimate [ Wl with W = AN K and ¢ = s — |W] according to our update mechanism. Since each
stratum contains only coalitions of the same size, this leads to exactly computed strata representing the average
of the contained coalitions’ worths.

C.2 Warm-up

The WARMUP (see Algorithm 3) procedure guarantees that each stratum estimate f}’}/_e with I[V(VZ € ZLimp is initialized
with the worth of one sampled coalition. This is a natural requirement to facilitate our theoretical analysis in
Appendix E. We achieve this algorithmically by iterating over all combinations of K € N}, W C K, and £ € ELW‘.
Each such combination specifies a stratum that is implicitly to be estimated. WARMUP draws for each stratum a
coalition A umformly at random from the set of all coalitions of size ¢ and not containing any player of K. The
estimate 1}/ K. 18 then set to the evaluated worth v(A U W) and the counter of observed samples is set to one.
The spent budget is:

Finel = () wﬁjo (et

-(1) 5 () Homax(0, sy 1= . omin{ = sy = 1= )

w=0

k
(Z) . Z (Z) (n — max{k, Sexp + 1 + w} — max{0, Sexp + 1 —w} +1).

w=0

Algorithm 3 WARMUP
1: for K C NV}, do
for W C K do
for ¢ € £V do
Draw A from {S C N\ K | |S| = ¢} uniformly at random
IA}/(V’E —v(AUW)
c}’ge +—1
end for
end for
end for

C.3 Updating Strata Mean Estimates

In order to update the mean estimates I}’Xe of the estimated strata incrementally with a single pass, thus not
requiring to iterate over all previous samples, we use UPDATEMEAN (see Algorithm 4). Besides the old estimate
and the newly observed coalition worth vy, this requires the number of observations made so far given by clvg ‘-

Algorithm 4 UpDATEMEAN

. . TW w
L. Input: Iy ,, cg 4, 0p
IIVX[C}/(V:,{+U1)

2: Output: e
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D THE SPECIAL CASE OF PAIRWISE SHAPLEY-INTERACTIONS

We stated our approximation algorithm SVARM-IQ for all CII and any order k. Since the Shapley Interaction
index (SII) for pairs, i.e., k = 2, is the most popular among them, we provide a description of SVARM-1Q and
the pseudocode (see Algorithm 5) for that specific case, leading to a simpler presentation of our approach.

The SII of a pair of players {i,j} € N> is given by

=3 (11)(”_2) [(SU{ij}) —v(SU{i}) —v(SU{j}) +v(S)].

sca\{igy (T s

Now, our approach stratifies the discrete derivatives A; ;(S) by size and splits them into multiple strata, yielding
the following representation of the SII:

SII Zl{l 2J} I{ i} I{]}z + 79

9,5,0 4,7, 4,5,0°

with strata terms for all W C {7, j} and £ € Lo :={0,...,n —2}:

1
¢ Sclfg\{zﬂ}

We keep a stratum estimate I (. for each pair 7 and j, size ¢ € Lo, and subset W C {i,j}. Subsequently, the
aggregation of the strata estlmates which we obtain during sampling, provides the desired SII estimate:

+17,

1,5,¢

S,;I = n— 1 Z Iz{;’]f} IZ{j}E Iz{g}é

For each sampled coalition A of size |A| = a, the update mechanism needs to distinguish between only 4 cases.
For each pair ¢ and j it updates:

o I} g je A,

i,j,a—

i

3,5,a—1

ifie Abut j ¢ A,
oI{i}a (ifjeAbuti¢ A or

. ifi,j ¢ A.

z]a

This case distinction is still captured by computing W = AN K, ¢ = a — |W|, and updating —71 e
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Algorithm 5 SVARM-IQ (for the Shapley Interaction index of order k = 2)

Input: (M,v), BeN

10, 10, 10 109 0 for all {i,j} € No, L € Lo

c?7j7e7cz{2e,cz{£€, cl{z.’?é} «~0  forall {i,j} € No,l € Lo
COMPUTEBORDERS
B+~B- ¥ ()
SESexp
forb=1,...,B do
Draw size ap € Simp ~ Py
Draw A, from {S C N'| |S| = ap} uniformly at random
Vp < Z/(Ab)
10:  for {i,5} € N> do
11: W+ Ayn{i,j}
12: < ap — |W|

13:

W Izv,Vj,Z'cK/j,é"'vb

5,0 P
. w w

14: Cije — Cije +1

15:  end for

16: end for

Do L NTjaY _ i Y o for all {3 it € .
17 Ly < 203 [20 ik gt —Ligetije or all {i,j} € N>

18: Output: I, ; for all {i,5} € N>
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E PROOFS

In the following, we give the proofs to our theoretical results in Section 4. We start by defining and revisiting
some helpful notation and stating our assumptions.

Notation:

o Let £, :={0,...,n—k}.

Let E‘kwl ={l € Ly | L+|W] € Simp} = [max{0, Sexp+1—w}, min{n—k, n—sexp, —1}] for any W C K € Nj,.

Let B=B— > ses... (%) = [Zimp| be the available budget left for the sampling loop after the completion of

COMPUTEBORDERS ancf WARMUP.

For all K € N}, with £ € Ly, let Ak be a random set with P(Ag, = S) = (nlk) for all S C A\ K with
£
|S| = ¢.

For all K € N}, with W C K and ¢ € L}:

— Let 0%,y = V[v(Ag U W)] be the strata variance.
— Let rgow = Sglj\fR(K v(SUW) — sg\iflgz( v(SUW) be the strata range.
[S|=¢ |S|=¢
Let m%e =#{b| |Ap| =L+ |W|, Ay N K = W} be the number of samples with which IA}/(V,Z is updated
during the sampling loop.

— Let mlvg_[ = m}/ge + 1 be the total number of samples with which f}/}/j is updated.
— Let A%Z,m be the m-th coalition used to update IIV(V’E.

e Forall K € N let R := >, Y rxew.
WEK pe V]

o Let v be 2 :=2(n — 1)2 for k = 2 and y :=n* "1 (n — k+ 1)2 for k > 3.
Assumptions:

e« B>0

e n>4

e B 2"

The lower bound on the leftover budget B is necessary to ensure the completion of CoMPUTEBORDERS and WARMUP,
and that at least one coalition is sampled during the sampling loop. The assumption on n arises from the fact
that CoMPUTEBORDERS automatically evaluates the worth of all coalitions having size 0,1,n — 1 or n. Hence,
all CII values are computed exactly for n = 3. Our considered problem statement becomes trivial for n < 2.
Likewise, in order to avoid triviality, we demand the budget to be lower than the total number of coalitions 2.
Otherwise, all CII values will be computed exactly by ComPUTEBORDERS and the approximation problem vanishes.
This allows us to state Simp # 0 and Ziy,p # 0.

E.1 Unbiasedness
Lemma E.1. All strata estimates IA}/& are unbiased, i.e., for all K ¢ Ny, W C K, £ € Ly:
Proof. The statement trivially holds for all strata explicitly computed by CompuTEBORDERS. Thus, we consider

the remaining strata which are estimated via sampling. Fix any K € N, W C K, and £ € ELWl. Due to the
uniform sampling of eligible coalitions once the size is fixed, we have:
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T
=W E [V(AVKV,é,m) | m%e]
K.t m=1
TR
= — D PAR = SUW | |AK ol = €+ W[, AR s N K = W) - v(SUW)
Kl m=1 SCN\K
[S|=¢
1 mVKV‘z
K.l m=15CAN\K \ ¢
[S|=¢
w
1 MK e
= I,
mi e mz=1 ’
w
=k

Note that the set A% ¢,m has cardinality £+ |W| and fulfills A% ¢.m N =W by definition. Otherwise, it would

not be used to update fIV}/,z- Since WARMUP gathers one sample for each stratum estimate, it guarantees m‘f{V s> 1
Thus the above terms are well defined. Finally, we obtain:

B+1
E || = S E[I I mi=m| - Pomit, =m)
m=1
B+1
= Z I}ge -IP’(mVKV,e =m)

m=1

_Tw
—IK’e.

Theorem 4.1. The CII estimates returned by SVARM-IQ are unbiased for all K € Ny, i.e.,

E [fK} = Ix.

Proof. We have already proven the unbiasedness of all strata estimates with Lemma E.1. Thus, we obtain for
all K € Nk:

E {fK] =F Zk <n ; k)/\k,z Z (—1)F= W] 'IAIV}/,Z

WCK

n—k
n—=k _ o
= Z( ’ ))\k,e Z (—1)F= VI -IE[IKZ}
=0 WCK
n—k n—k
=0 WCK
= Ix
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E.2 Sample Numbers

Form now on, we distinguish between the special case of order k¥ = 2 and all others k£ > 3, allowing us to give
tighter bounds for the former. Hence, we introduce ~; for all k > 2 with

Yo =2(n—1)% and v, = nF "1 (n — k + 1)2 for all k > 3.

Lemma E.2. The number of samples ey collected for the strata estimate IA]V}/’e of any fized player set K € Ny,

W CK, and ¢ € AC‘kwl collected during the sampling loop is binomially distributed with an expected value of at
least ~
B
E[my,] > —.
' Tk
Proof. The number of collected samples during the sample loop, i.e. m%e, is binomially distributed because in
each iteration the stratum I I"}fe has the same probability to be updated and the sampled coalitions are independent

of each other across the iterations. The number of iterations is B and the condition for an update of IAIV& is that
the sampled set A, fulfills |[Ay] = ap = £ + |W| and A, N K = W. This happens with a probability of:

]P’(ab=£+|W|,AbﬂK=W)
:IF’(AbﬂK:W\ab:€+|W|)~P(ab:€+|W|)

n—=k
_ (()) Byt + W),
W |

_ (n—k B
Hence, we obtain m¥ , ~ Bin <B, (( < )) - Py(0+ |W|)> This yields
’ o+ | W

R
E[my,] = B- 7= - Pt + [W])
Z+|W|)

n—k
>B- (f;) - Py(C+ [W)).
(e )

Note that Py(£+|W|) > Pp(¢+|W]|) holds true for all £ and W C K with £+ [W| € Simp, because for these sizes,
from which coalitions are sampled, P}, can only gain probability mass in comparison to P,. More precisely, for
all s € Simp we have

Pk(s) > Pk(s) _
> B(s) T X B+ X Puls)

s’ €Simp 5" E€Sexp s’ €Simp

Pk(s) = Pk(S).

We continue to prove our statement for the case of k = 2 and any fixed K = {i,j} by giving a lower bound for
the expected value of miV}’j’e. Inserting k = 2, we can further write

B[t > B pys )

. (£+|W\)

B (W) (n— L W)
Toan—-1) o m—z_m!~%w+ﬂm)

vV

Let
(n—=f0(n—-¢-1) ifw=0
fmwy:“;ﬂﬂ‘w_g_m!: (+D)(n—0-1) ifw=1.
! (n—¢—2)! i
+1)(l+2) ifw=2

213



Kolpaczki, Muschalik, Fumagalli, Hammer, Hiillermeier

In the following, we derive the lower bound f(¢,|W]) - Py(€ + |W|) > 52 for all [W]| € {0,1,2} and ¢ € L‘QW‘

2(n—1)
by distinguishing over different cases of n, £, and |W| and exploiting our tailored distribution Ps.

For odd n, £+ |[W| < 251 and [W| = 0:

m—0On—-£-1) n-1 (n—1)2 n

FUEW) - Pa(E+ W) = 0o0—1) 2n—3) T 2(n—3)2 " 2(n—1)

For odd n, {4+ |W| < %51, and [W|=1:

l+1)(n—¢-1) n-1 (n—l)(n+1)> n

JE W) - Pat+ W) = i+l 2n-3) " 2m-327 ~2n-1)
For odd n, £+ |[W| < 251 and [W| = 2:
f(€,|W|)-P2(€+|W|):(€+1)(£+2) n—-1  n—1 S

(L+2)(f+1) 2(n—3) 2(n—-3)~ 2(n—1)

For odd n, £+ |W| > 241 and |W| = 0:

(n=0On—-¢-1) n-1 n—1 n

FEIWD - Pl +IW) = O =0 =1) "3 =3) ~ 2 =3) = 3 —1)

For odd n, ¢ + |W| > ”T“, and |W| = 1

(l+1)(n—0-1) n—1 >(n—1)(n+1)> n

FEIW]) - Pol+WI) = m—C—1)n—0-2) 2(n—-3)~ 2m-32 ~2(n-1)

For odd n, £+ |W| > "7“7 and |W| = 2:

(+1)(L+2) o n—1 >(n—1)(n+1)> n
m—C0—=2)n—€-3) 2(n—3) ~ 2(n-3)2 ~2(n-1)

W) - P+ W) =

For even n, £+ |W| < 252, and |W| = 0:

WD Potp )= PmO0 L=l w2 (et

Le—1) 2(n?2 —4n+2) ~ 2(n—4)(n?—4n+2) ~ 2(n—1)

For even n, £ + [W| < 252 and |[W| = 1:

FOWD - Pye < DO 2= a(n-2)(n+2) o n

(e+1)¢ 2(n2 —4n+2) ~ 2(n—4)(n2 —4n+2) ~ 2(n—1)

For even n, £ + |W| < %7 and |[W| = 2:

L+1)(l+2) n? —2n n? —2n n

((+2)(l+1) 2(n2—4n+2) 2(n®>—4n+2) ~ 2(n—1)

fU W) - Pyl + W) =

For even n, £+ |W| > %, and |[W| = 0:

n—£0)n—-£-1) n? —2n n? —2n n

FEIW]) - Pofl+ W) = = On—(—1) 22 —dn+2)  2n? —4n+2) = 2n—1)

For even n, £ +|W| > Z, and |[W| = 1:

(L+1)(n—0-1) n? —2n n? n

FGIW]) - Po+ WD) = n—C—1)(n—0—2) 2(n?—4n+2) = 2(n? —4n + 2) = 2(n —1)
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For even n, £+ |[W| > %, and |W| = 2:

(C+1)(0+2) n? —2n n? —2n .

FEIW]) - Poll+ W) = n—t—2)(n—0-3) 2n2—4n+2) ~ 22 —4n+2) ~ 2(n—1)

This allows us to conclude:

n—2
E [m)"; ] >B- (") -Py(0+ W)

- (exw1)

B (W) (= W)

Shm-D 0 iz WD
B n

= ntn—1) 2(n—1)

2| &

Next, we turn our attention to the case of k > 3. Inserting the uniform distribution for Py, we can write for the
expected number of samples:

E[my] > B- () P (C+ W)

(e+7|lW\)
_B (n=k)! 4+ W) (n—t—|W))! 1
N n! 1 (n—f—k)! n-3
. — k)
S B. (n—Fk! 1 .
- n! n—3
In the following we prove that (”;Ik)! . n£3 > m First, we obtain the equivalent inequality

T n—k+1)>m-3) []
i=n—k+2

Note that we have n > k at all times. The inequality obviously holds true for all k¥ < 4. We prove its correctness
for k£ > 5 by induction over k. We start with the induction base at k = 5:

T n—k+1)>m-3) J[ i
i=n—k+2
e ndn—4)>(n—1)(n—2)(n—3)>
< 5n® 4 39n > 29n? + 18.

The resulting equality is obviously fulfilled by all n > 5. Next, we conduct the induction step by considering the
inequality for k 4+ 1 with k& > 5:

nF(n — k)
:%-nk_l(n—k—kl)
zm-(n—?))iEHi
> (n—k+1)(n—3) ﬁ i

i=n—k+2

n

=m-3 J[ @

i=n—k+1
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With the inequality proven, we finally obtain the desired lower bound for the expectation of m% P

Bfal,) > 5. 0B 1
- B
T nFl(n—k+1)2
B
%

Lemma E.3. The expected inverted total sample number of the strata estimate f}}(v,e for any fired K € Ny,

WCK, and l € ELWl s bounded by

—_

IA
W=

W
Mg

Proof. In the following, we apply equation (3.4) in (Chao and Strawderman, 1972), stating

1

{ 1 }_1(1p)m+1

= < ,
X+1 (m+1)p ~ mp E[X]

for any binomially distributed random variable X ~ Bin(m,p). Due to WarMUP we have ml , = m , + 1, since
it guarantees exactly one sample for each stratum. Next, Lemma E.2 allows us to substitute X with m}’ , and
we obtain:

E.3 Variance and Mean Squared Error

Lemma E.4. For any K € N}, given the sample numbers mVKV’Z for all W C K and ¢ € E\le’ the variance of

the estimate I is given by

. n—k\* o
V{[K|(m%e)€€£7WgK}= Z Z ( . >)\i,£. :L»‘ﬁ}w.

WCK peplW] Kt

Proof. First, we split the variance of Ix with the help of Bienaymé’s identity into the variances of the strata
estimates and their covariances. Then we make use of the fact that each sample to update a stratum is effectively
drawn uniformly:
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v [fK | (mfvgf)EEc,WgK}
-nfk n—Fk
=V (> ' )AM S DR ) e wex
_3:0 WCK S
-n—k n
=V ( , ))\W DB | () e wer
| (=0 WCK c
- n—k\> .
- ( , > XV [T Vit
=0 WCK
n—=k\/n—=k T - N .
+ 3 ( , )( p )Akwk’e,,(_l)zk W= Cov (10, 1 \m%e,m%e,)
leLy, Vel
WCK  w/ck
LN AW
g AN
= X (1) e v mit)
=0 WCK

~

n—k\> A
) )\i,eV {IIVXZ | mIVK@}

n—k\° 1 i
= Z ( / ) )\i,@V - Z V(Alvg,@,m) \ m%é
7’)7,I(7

4 m=1

<n — k)Z/\Q O?(,Z,W
/¢ kL™ T W

Mg

The strata estimates f}}(ve and f}}(vé, are independent for W # W' or £ = ¢’ because each sampled coalition A,
can only be used to update one estimate. Consequently, their covariance is zero. Finally, the variances of the
estimates for the explicitly calculated strata are zero and thus eliminated. O

Theorem 4.2. For any K € Ny, the variance of the estimate I returned by SVARM-IQ is bounded by

2
v [ix| < % >y <”;k> N2,0% o

WCEK per)V!

Proof. We combine the variance of each estimate variance conditioned on the sample numbers given by
Lemma E.4 with the bound on the expected inverted total sample numbers given by Lemma E.3:

v [fK} = B ) [V [fK ) e ;KH

LeELLWCK
2 2

= >3 (M) e
—E 2

(m¥e) Vi ) w

e L, WCK WQKZGELW‘ mKJ
2
n—=k 1

— 2 2
SV YR G e

WCK peplWl K0

2

Yk n—k 2 2
<2 Y (")) Mok

WEK pegl]
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O

Corollary 4.3. For any K € Nj, the mean squared error of the estimate I returned by SVARM-IQ is bounded
by
. 2
]E|:<[K—IK) ] Z Z ( > Ai,ﬂ%{,é,w-

By CK perlW!
Proof. The bias-variance decomposition allows us to decompose the mean squared error into the bias of I and
its variance. Since we have shown the estimate’s unbiasedness in Theorem 4.1, we can reduce it to its variance
bounded in Theorem 4.2:
. 2
E RIK - IK) ]

(= [ix — 1x])" + v [1]

=v[id

Tk :

<E Y > (") e
WCKZGE\W\

E.4 Threshold Exceedence Probability

Corollary 4.4. For any K € N}, and fized € > 0 the absolute error of the estimate I returned by SVARM-1Q
exceeds € with a probability of at most

P<|fK—IK| 25) < < ) AQ,N%@(J,W-
chéedww

Proof. We apply Chebychev’s inequality and make use of the variance bound in Theorem 4.2:

IP(|fK —Ig| > E) < M [Ik} < ssz Z Z ( >2)‘i,1€0%(,£,W'

WCK yeplWl

O

Lemma E.5. For the stratum estimate IA}/{V,Z of any K € Njy with W C K, L € E‘,CWI

. omW &2
w w w K.
P (\IK,Z — Il >el mK,e) < 2exp <_r2 .
KW

, and some fixed € > 0 holds

Proof. We combine Hoeffding’s inequality with the unbiasedness of the strata estimates shown in Lemma E.1
and obtain:

P (|flvg,€ -1, >¢| mge)

- P (u}% —E[ ) > e | mi,)

w
MK,

K
Z Asem Z V(Afvg,e,m)

m=1
2mK &>
TK oW

> m%ea m%e

\ /\
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Lemma E.6. For any K € N, with W C K, (€ £\kW| and some fixed € > 0 holds

B
2’yk

B ) exp (_ r22€2 ) [
+92 K,0,Ww

’ 7 27; exp (T2252 ) -1
KW

Proof. We start by deriving with Hoeffding’s inequality and Lemma E.2 a bound on the probability that m%e

B .
27k "

falls below

B
=P <IE [y ] —my, >E[my,] - 2%)
~ 2
ENECTIE

B
exp 22 |

Further, we show with Lemma E.5 another statement:

B+41
FW w w
P (lIK,Z Il >e|mg, = m)
m=| £ | +1
Ry 2me?
<2 exp [ ——
= K0, W
m=[ 5 | +1
LA )\
2¢e 2e
:2Zexp —— -2 exp | ——
m=0 K., W m=0 K.t,w
2 B+1
exp (_ 2252 ) Zwa — exp (_ 2262 )
—9 K,0,W Tk, e,w
exp ( 2252 ) 1
TK..,Ww
B
exp (7 r226 ) {Z’YkJ
< 2 K. 0,.W
exp (T22€ ) -1
K.0W
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Finally, we combine both intermediate results and obtain:

P (|IIV}/,1Z —Ix,| > 8)

3

]P(|f;v(‘{£ —IIV}/,E\ >e | mVKVJ :m) -]P’(mg(ve =m)

IN
= 10

= P(|f%efIK€|Z€|mVKK[:m) P(mKl—m)

m=1

-
+ P(|f¥671}g5|25|m%4:m) P(mKl:m)
e 1
B B+1 .
§P<m%e§{2%J>+ Z P(|IK[—Im|26|m%e:m>
i

IN

O

Theorem 4.5. For any K € Ny and fized € > 0 the absolute error of the estimate I exceeds € with probability

of at most

< . >[25kJ
- exp| — e
( B>+2 Pl |

“9y2 »
RNGOROTY

P(|fK—IK|2€)§ Z Z exp

WEK pec)V]
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Proof. We derive the result by applying Lemma E.6 and utilizing the fact that for all explicitly computed strata
I}/}f[ € Zexp holds I}/}fz = I}ge:

P (|fK ~Ix| > s)

- —k
— P z > ("7 P () | 2
n—=k n—k )
<P > ( / >Ak,ﬂ}{£1¥{e >e
(=0 WCK
k TW w
=P Z )\]ﬁg ]K,Z_IK,E >e€
WCK CL
D> P(( Yo - | > )
WCK gep| Wl K
SV 19 ETK LW
I I
WCK peplWl ¢ )k SVK
< 5]
o exXp nki
B (") AR R
< Z Z exp( >+2 )
WCK gerlW!

2e2 _
eXp <(nzl\7)2/\isz%{> 1
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F DESCRIPTION OF MODELS, DATASETS AND EXPLANATION TASKS

We briefly sketched the datasets and models on which our cooperative games, used for the experiments, are built.
Hence, we provide further details and sources to allow for reproducibility. Note that the LM, CNN, and SOUM
are akin to (Fumagalli et al., 2023).

F.1 Language Model (LM)

We used a pretrained sentiment analysis model for movie reviews. To be more specific, it s a variant of
DistilBert, fine-tuned on the IMDB dataset, and its python version can be found in the transformers API
(Wolf et al., 2020) at https://huggingface.co/lvwerra/distilbert-imdb. The explanation task is to ex-
plain the model’s sentiment rating between —1 and 1 for randomly selected instances, where positive model
outputs indicate positive sentiment. The features, which are words in this case, are removed on the token level,
meaning that tokens of missing values are removed from the input sequence of words, shortening the sentence.
Thus, a coalition within a given sentence is given by the sequence containing only the words associated with each
each player of that coalition. The value function is given by the model’s sentiment rating.

F.2 Vision Transformer (ViT)

The ViT is, similar to the LM, a transformer model. Unlike the LM, the ViT operates on image patches
instead of words. The python version of the underlying ViT model can be found in the transformers API
at https://huggingface.co/google/vit-base-patch32-384. It originally consists of 144 32x32 pixel image
patches, 12 patches for each column and row. In order to calculate the ground truth values exhaustively via
brute force, we cluster smaller input patches together into 3x3 images containing 9 patches in total or into 4x4
images containing 16 patches in total. Patches of a cluster are jointly turned on and off depending on whether the
cluster is part of the coalition or not. Players, represented by image patches, that are not present in a coalition
are removed on the token level and their token is set to the empty token. The worth of a coalition is the model’s
predicted class probability for the class which has the highest probability for the grand coalition (the original
image with no patches removed) and is therefore within [0, 1].

F.3 Convolutional Neural Network (CNN)

The next local explanation scenario is based on a ResNet18? model (He et al., 2016b) trained on ImageNet (Deng
et al., 2009). The task is to explain the predicted class probability for randomly selected images from ImageNet
(Deng et al., 2009). In order to obtain a player set, we use SLIC (Achanta et al., 2012) to merge single pixels
to 14 super-pixels. Each super-pixel corresponds to a player in the resulting cooperative game, and a coalition
of players entails the associated super-pixels. Absent super-pixel players are removed by setting the contained
pixels to grey (mean-imputation). The worth of a coalition is given by the model’s predicted class probability,
using only the present super-pixels, for the predicted class of the full image with all super-pixels at hand.

F.4 Sum Of Unanimity Models (SOUM)

We further consider synthetic cooperative games, for which the computation of the ground truth values is feasible
within polynomial time. For a given player set N' with n many players, we draw D = 50 interaction subsets
S1,...,Sp € N uniformly at random from the power set of N. Next, we draw for each interaction subset Sy a
coefficient ¢4 € [0, 1] uniformly at random. The value function is simply constructed by defining

D
v(S)=> ca-[SaCS]

d=1

for all coalitions S C N. We generate 50 instances of such synthetic games and average the approximation
results. To our advantage, this construction yields a polynomial closed-form solution of the underlying CII
values (Fumagalli et al., 2023), which allows us to use higher player numbers than in real-world explanation
scenarios. For details of the CII computation we refer the interested reader to (Fumagalli et al., 2023).

https://pytorch.org/vision/main/models/generated /torchvision.models.resnet 18.html
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G FURTHER EMPIRICAL RESULTS

‘We conducted more experiments than shown in the main part but had to omit them due to space constraints. Be-
sides the approximation curves, comparing SVARM-IQ’s approximation quality for the SII, STI, and FSI against
current baselines measured by the MSE and Prec@10, we present another type of visualization to demonstrate
how SVARM-IQ’s performance advantage aids in enriching explanations by including interaction effects.

G.1 Further Results on the Approximation Quality

This section contains more detailed versions of the figures depicted in the main section. We compare the

approximation quality of SVARM-IQ against baselines for the SII on the LM and ViT in Figure 6, for SII, STI,
and FSI for CNN in Figure 7, and for SOUM in Figure 8.
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Figure 6: Approximation quality of SVARM-IQ (blue) compared to SHAP-IQ (pink) and permutation sampling
(purple) baselines averaged over multiple runs for estimating the SII of order k = 2,3 on the LM (first column,
n = 14, 50 runs) and the ViT (second column, n = 16, 30 runs; second column, n = 9, 20 runs). The performance
is measured by the MSE (first row) and Prec@10 (second row). The shaded bands represent the standard error

over the number of performed runs.
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Figure 7: Approximation quality of SVARM-IQ (blue) compared to SHAP-IQ (pink) and permutation sampling
(purple) baselines averaged over 50 runs on the CNN for estimating the SII (first column), STT (second column),
and FSI (third column) of order k = 2 for n = 14. The performance is measured by the MSE (first row) and
Prec@10 (second row). The shaded bands represent the standard error over the number of performed runs.
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Figure 8: Approximation quality of SVARM-IQ (blue) compared to SHAP-IQ (pink) and permutation sampling
(purple) baselines averaged over 50 runs on the SOUM for estimating the SII (first column), STT (second column),
and FSI (third column) of order k = 2 for n = 20. The performance is measured by the MSE (first row) and
Prec@10 (second row). The shaded bands represent the standard error over the number of performed runs.
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G.2 Further Examples of the Vision Transformer Case Study

In the following, we demonstrate how the inclusion of interaction besides attributions scores may enrich inter-
pretability and how significantly SVARM-IQ contributes to more reliable explanations due to faster converging
interaction estimates. First, we present in Figure 9 SVARM-IQ’s estimates for our ViT scenario, which quantify
the importance and interaction of image patches, revealing the insufficiency of sole importance scores and em-
phasizing the contribution of interaction scores for explaining class predictions for images. Second, we compare
in Figure 10 attribution scores and interaction values estimated by SVARM-IQ and permutation sampling with
the ground truth. Our results showcase that even with a relatively low number of model evaluations SVARM-1Q
mirrors the ground truth almost perfectly, while the inaccurate estimates of its competitor pose the visible risk
of misleading explanations, thus harming interpretability.

The obtained estimates for the labrador picture in Figure 9 (upper left) allow for a plausible explanation of
the model’s reasoning. The most important image patches, those which capture parts of the dogs’ heads, share
some interesting interaction. The three patches which contain at least one full eye, might be of high importance,
but also exhibit strongly negative pairwise interaction. This gives us the insight that the addition of such a
patch to an existing one contributes on average little to the predicted class probability in comparison to the
increase that such a patch causes on its own, plausibly due to redundant information. In other words, it suffices
for the vision transformer to see one patch containing eyes and further patches do not make it much more
certain about its predicted class. On the other side, some patches containing different facial parts show highly
positive interaction. For example, the teeth and the pair of eyes complement each other since each of them
contains valuable information that is missing in the other patch. Considering only the importance scores and
their ranking would have not led to this interpretation. Quite the opposite, practitioners would assume most
patches to be of equal importance and overlook their insightful interplay.

The comparison of estimates with the ground truth in Figure 10 allows for a twofold conclusion. The estimates
obtained by SVARM-IQ show barely any visible difference to the human eye. In fact, SVARM-IQ’s approximation
replicates the ground truth with only a fraction of the number of model evaluations that are necessary for its
exact computation. Hence, it significantly lowers the computational burden for precise explanations. On the
contrary, permutation sampling yields estimated importance and interaction scores which are afflicted with
evident imprecision. Both, the strength and sign of interaction values are estimated with quite severe deviation
for the two considered orders. Hence, the attempt to order the true interactions’ strengths or identifying the
most influential pairs becomes futile. This lack in approximation quality has the potential to misguide those
who seek for explanations on why the model has predicted a certain class.

226



SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification

n-Sll values of order k=1, 2 Order 1 n-Sll values of order k=1, 2 .o;aehn
igh pos.

explained class: Labrador retriever (p = 0.99) b4 C,‘S‘v"p’f explained class: racer (p =0.78) ~ low pos.
* low neg.

« low neg.
@ high neg.

@ high neg.

Order 2
s high pos.
low pos.

low neg.

we high neg.

Order 2

s high pos.
low pos.
low neg.

== high neg.

n-Sll values of order k=1, 2 Order 1 n-Sll values of order k=1, 2 Order 1

. . high . . . high .
explained class: kit fox (p = 0.49) @ bt e, explained class: Arabian camel (p = 1.0) @ hi e
, « low neg. « low neg.
@ high neg. @ high neg.
. Order 2 Order 2
s high pos. s high pos.
L] low pos. low pos.
low neg. low neg.
s high neg. s high neg.

. ) .

Figure 9: Computed n-SII values of order k£ = 1,2 by SVARM-IQ for the predicted class probability of a ViT for
selected images taken from ImageNet (Deng et al., 2009). The images are sliced into grids of multiple patches,
n = 16 in the first row and n = 9 in the second row. The estimates are obtained after single computation runs
given a budget of 10000 evaluations for n = 16 patches and 512 (GTV) for n = 9 patches.
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Figure 10: Row-wise comparison of ground-truth n-SII values of order k£ = 1, 2 for the predicted class probability
of a VIiT (first row) against n-SII values estimated by SVARM-IQ (second column) and permutation sampling
(third row) with 5000 model evaluations. The pictures are taken from ImageNet (Deng et al., 2009) and sliced
into a grid of 16 patches (n = 16).
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H HARDWARE DETAILS

This section contains the hardware details required to run and evaluate the empirical results. All experiments
where developed and run on a single DELL XPS 15 9510 notebook with Windows 10 Education installed as the
operating system. This laptop contains one 11th Gen Intel(R) Core(TM) i7-11800H clocking at 2.30GHz base
frequency, 16.0 GB (15.7 GB usable) of RAM, and a NVIDIA GeForce RTX 3050 Ti Laptop GPU.

The model-function calls were pre-computed in around 10 hours on the graphics card. The evaluation of the
approximation quality required around 50 hours of work on the CPU. In total, running the experiments took
around 50 hours on a single core (no parallelization) and 10 hours on the graphics card.
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A. Theoretical Analysis
A.1. Proof of Theorem 4.1

For the estimate K. C M returned by an algorithm for the top-k£ identification problem we can obviously state

PKeK.)= 3 PK=K).

KeKe

Given the construction of K, .4 must choose any i € N to be in K if qgl > (;AS]- holds for at least n — k many players j € N.
Hence, for any K € K. we have:

PK=K)> PNMieKYjieN\K:d; > ;)
> 1= > P& <9y
i€k
JEN\K
Given the assumptions on the sampling procedure and the aggregation to estimates q@l, cee q@n, we can apply the central

limit theorem (CLT) to state that for any ¢ € K and j € N\ K the distribution of v M (((;3, — i) — (¢ — ¢j)) converges

to a normal distribution with mean 0 and variance o2 j as M — oo since IE[qZ)7 éj] = ¢; — ¢;. Although M is finite as
it is limited by the budget T, we assume it to be normally distributed, to which it comes close to in practice for large M.
Hence, for any i € K and j € N\ K we derive:

P(g; < ¢;) = Pl¢s —; <0)

= P((¢i — ¢5) — (i — ¢;) < —(di — ¢5))

= P(VM((¢i — ¢;) — (¢i — ¢;)) < VM(¢; — i)
Lo (V)

where ® is the standard normal cumulative distribution function. Putting the intermediate results together, we obtain
¢ Pi—Pi
PReK) > ¥ [1- & @ (VArs-®)

KeKe iek
JEN\K

A.2. Comparable Marginal Contributions Sampling

Proof that Equation (15) induces a well-defined probability distribution:
Obviously it holds P(.S) > 0 and for the sum of probabilities we have:

> PS)= Y % =2 X (n+i)(") =2 (nff))(") =

SCN sy (D5 ¢

Proof of Proposition 5.2:
For any i € N we derive:

M) = X by SN+ T gy AS)

17 .
ng\/ (n+D)(j5)

€S léS
= % A (9) + %Az S
SQ\Z/:\{i} (41 (1s41) ) SC/\X/:\{ a3 ((5) (%)
1 1 1
= 1 n + N (S
SQ/\Zf:\{i}n ! ((|S+1) (s)) (%)
= > - A (S)
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Proof of Proposition 5.3:
Given the unbiasedness of the samples, i.e. E[A}(S(™))] = ¢, for every i € N, the covariance is given by:

Cov (A}(S0™), AL(S™)) = E [A(S(™)AL(S0™)] — B [AL(SM)] E [A](5™)]
E [A}(St™)A(S0)] - ¢id;

For the first term we derive:

E [A;(St™)AL(S)]
= — < AL(S)A(S
sgf\/ (n+1)(;5)) i9) ]( )
- 1 Ai(9)A;(S) | AS)A;(SUfi}) | AuSULNA;(S) | ASU{THA,(SU{i})
= o2 @) + (o) + n +
SCM\{i,j} I5] IS|+1 IS|+1 IS|+2

- Ly A9): <A_7-§S)) +A-f(SnU{i}>)+Ai(Su{j})~ (Aj<s> +A.7(35{i}>)

SCNN\{i,5} 15| (1s751) (1s751) (1sT2)
- L A(S) - (259 +A;(SU{i})>
e SQJ\X/’:\{i} ( ) ( (\g\) (\sﬁl)

A.3. Approximating Pairwise Probabilities for Greedy CMCS

Analogously to Appendix A.1, we derive for any pair 7, 7 € N and unbiased equifrequent player-wise independent sampler:

P(¢i < ¢;) = Pl —¢; <0) -
= P((¢i — ¢5) — (¢ — b;) > ¢i — ;)

= P(VM((di — b)) — (¢i — ¢5)) > VM(di — 4)))
RN

Since this statement does not require the knowledge of an eligible coalition /C, we can estimate the likelihood of ¢; < ¢;
during runtime of the approximation algorithm. For this purpose, we use the sample variance to estimate o; ;. Note that
M is the number of drawn samples that both ngﬁt and ngﬁj share. Since the players’ marginal contributions are selectively
sampled, Greedy CMCS substitutes M by the true number of joint appearances M; ; and (ﬁl — éj by 51 ; which only takes
into account marginal contributions of ¢ and j which have been acquired during rounds in which both players have been
selected.
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B. Pseudocode of Greedy CMCS

In addition to the pseudocode in Algorithm 2, we provide further details regarding the tracking of estimates and probabilistic
selection of players.

Algorithm 2 Greedy CMCS
Input: (N, v), T € N,k € [n], Muin

1: ¢;, M; « Oforalli € N

2: Mi,ja Ei.,jv Fi,j <~ Oforalli,j€ N

3:t+0

4: whilet < T do

5:  Draw ¢ € {0,...,n} uniformly at random

6:  Draw S C N with |S| = [ uniformly at random
7: Vg — Z/(S)
8.
9

t+—t+1
: P< SELECTPLAYERS
10: fori e Pdo

11: if ¢ = T then
12: exit
13: end if

14: A; {“S —-v(S\{i}) ifiesS

v(SU{i}) —vs otherwise

150 gy« QLmDditAs
17: t—t+1
18:  end for

19: Mi’j — Mi’j + 1 for all i,j € P

20: Z,;,j — Zi,j + (A, - A]) foralli,j € P

21: Fi’j < Pi’j + (Al — A]')2 for all 1,] € P

22: end while

Output: K containing k players with highest estimate (;Aﬁz

« Initialize estimator qAbl and individual counter of sampled marginal contributions M; for each player.

* Initialize for each player pair: the counter for joint appearances in rounds M; ;, the sum of differences of marginal
contributions ¥; ;, and the sum of squared differences of marginal contributions I'; ;.

* Given d,, := A;(Sm \ {i}) — A;(Sm \ {j}) the unbiased variance estimator is

) L M, -y ) 52

P — _ — R iJ

Ji’j M -1 Zl(dm d) M -1 (Fz’] MlJ) '
m=

* In each round, select with SELECTPLAYERS players P for whom to form an extended marginal contribution:

— First phase: select all players My, times: P = N,

— Second phase: otherwise, partition the players into top-k players K and the rest K’ = A/ \ K based on the estimates
Dy s O ) )

Compute p; ; = P(¢; < ¢;) forall pairs i € K, j € K'.

If all pairs are equally probable, select all players as it is not reasonable to be selective.

Otherwise, sample a set of pairs () based on p; ;.

Select all players as members of P that are in at least one pair in Q.

e Sample a coalition S and cache its value.

16
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Form for all selected players in P their extended marginal contribution A/ (S) and update their estimator ng

Update the values M; ;, ¥; ;, and I'; ; for all 7, j € P required for computing the variance estimates c}f’ j and p; ;.

In practice, we precompute and cache v()) and v(N) in the beginning. We do that for ALL tested algorithms for a fair

comparison.

We modify Stratified SVARM to only precompute coalition values for sizes 0 and n, instead of including sizes 1 and

n — 1. Instead of integrating this optimization into all our algorithms, we remove it as it requires a budget of 2n which

might be infeasible for games with large numbers of players.

Algorithm 3 SELECTPLAYERS

1: P+« N
2: if M; j > My, forall i, j € N then

3 K«k players of A/ with highest estimate éi, solve ties arbitrarily
4 K « N \ K
2
567 ¢ gy (Pi,j - 1\24) foralli € K,j € K
C B 2 ic K.icK!
6:  Pij— P (w/Mw ﬁ) foralli € K,5 €K
7: if mini_’j ﬁi,j 7& max; ; [A)i’j then
8: PQ+0
9: for (i,j) € K x K/ do
10: Draw Bernoulli realization B; ; with P(B; ; = 1) = maf”;mfl;njlf”p -
.7 P, 1,0 P,y
11: if Bi,j = 1 then
12: Q< QU{(i, )}
13: P+ PU{i,j}
14: end if
15: end for
16:  endif
17: end if
Output: P

17
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C. Further Empirical Results

Figure 6. Comparison of achieved error with baselines: inclusion-exclusion error for fixed budget with varying k (left), inclusion-exclusion
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Figure 7. Comparison of achieved ratio precision and MSE with baselines for global explanations: precision for fixed budget with varying

k (left), precision for fixed k with increasing budget (middle), and MSE depending on budget (right).
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Figure 8. Comparison of achieved ratio precision and MSE with baselines for local explanations: precision for fixed budget with varying
k (left), precision for fixed k with increasing budget (middle), and MSE depending on budget (right).
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