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2. Abstract (English):

Type 2 diabetes (T2D) is a prevalent and intricate metabolic condition stemming from the body's
inefficient utilization of insulin. It is distinguished by elevated blood sugar levels attributed to com-
promised insulin secretion and resistance, with the majority of cases linked to overweight or obe-
sity. T2D is a complex chronic disease with no apparent early symptoms or vary widely from
individual to individual but untreated high blood sugar can damage multiple organs. So early de-
tection of preclinical conditions and comprehension of the underlying mechanisms within subphe-
notypes of T2D are crucial, followed by the adoption of preventive and therapeutic approaches.

Precision medicine in diabetes entails optimizing the diagnosis, prediction, prevention, or treat-
ment of diabetes through integration of multidimensional data while considering individual varia-
tions. It employs muti-omics technologies such as genotyping, transcriptomics, metabolomics
combined with clinical phenotype to illustrate the systematic biology. There is growing interest in
applying metabolic profiling to identify disease molecular signatures, as it offers a powerful ap-
proach for unraveling the complex relationships between obesity, metabolism, and diabetes pro-
gression. This thesis aims to advance precision health strategies for T2D by improving early de-
tection with identified candidate biomarkers and capturing disease heterogeneity using data-
driven classification approaches, that integrates metabolomics, genetics, and clinical assessment
data.

This thesis firstly utilized 146 targeted metabolomic profiles obtained from the Cooperative Health
Research in the Region of Augsburg (KORA) FF4 cohort comprising 1715 participants and cor-
relating them with obesity and T2D. 42 and 3 metabolites were significantly correlated with body
mass index (BMI) and T2D adjusted for multiple covariates, respectively, and were also replicated
in the previous studies. Those metabolites included branched-chain amino acids (BCAA) and
lipids. Sobel mediation test implied that lipids including sphingomyelin (SM) C16:1, SM C18:1 and
diacyl phosphatidylcholine (PC aa) C38:3 mediated the impact of BMI on T2D. Additionally, men-
delian randomization indicated a causal link where BMI influenced changes in SM C16:1 and PC
aa C38:3, and alterations in SM C16:1, SM C18:1, and PC aa C38:3 contributed to T2D incident.
Biological pathway analysis, alongside genetic studies, and experiments with mice, revealed that
dysregulation of sphingolipid and phosphatidylcholine metabolism were pivotal factors in the early
stages of T2D pathophysiology. Our findings highlight that these three identified metabolites play
a mediating role in connecting BMI with T2D, shedding light on their significance in T2D develop-
ment.

To further elucidate the role of metabolites in the glycemic deterioration, data from 3000 individ-
uals enrolled in the Innovation Medicines Initiative - Diabetes Research on Patient Stratification
(IMI-DIRECT) consortium were analyzed, with measurements available for 911 metabolites (132
targeted-metabolomics, 779 untargeted-metabolomics). In the targeted (and untargeted) metab-
olomics measurements, we observed 4 (15) and 34 (99) metabolites had significant variation in
normal glucose regulation (NGR) group compared to those with impaired glucose regulation (IGR)
and T2D groups respectively. Besides, for pre-diabetic group, 50 (108) metabolites were identified
to be significantly distinct from T2D group. Metabolites identified through targeted metabolomics,
such as lysophosphatidylcholine acyl (lysoPC a) C17:0 and the sum of hexoses and untargeted
metabolomics including N-lactoylvaline, N-lactoylleucine, formiminoglutamate, carbohydrate lac-
tate, and an unknown compound (X-24295) were significantly associated with HbA1c progression
rate and predictive of incident prediabetes and diabetes. In the causal mediation test, we also
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observed that these metabolites were significant mediators of glycemic deterioration from base-
line to 18- and 48-month follow-ups. In mendelian randomization, we observed T2D exhibited a
causal influence on the concentrations of three metabolites (hexose, glutamate and caproate (FA
6:0)), while four phosphatidylcholines such as PC aa C36:2 as well as the two omega-3 fatty acids
stearidonate (FA18:4) and docosapentaenoate (n3 DPA; FA22:5) potentially played a causal role
in the onset of T2D. Our findings suggest metabolites lysoPC a C17:0, N-lactoylvaline, N-lac-
toylleucine, formiminoglutamate, as well as lactate, and an unknown metabolite (X-24295) are
linked with glycemic deterioration and are the mediators for developing of IGR or T2D, which help
improve the early detection and understanding the progression of the disease.

In above sections we identified the biomarkers playing a role in the early-stage T2D progression,
which could contribute to implementation of preventive and therapeutic strategies. Individual tra-
jectories of hyperglycemia vary widely, necessitating a thorough comprehension of its mecha-
nisms and the implementation of precision treatment for T2D patients with this condition. There-
fore, we used data of 301 T2D individuals from KORA FF4 study for cluster analysis. We firstly
replicated original cluster from the study by Ahlqvist et al. 2018 by forcing k=4 with same variables
but three different scaling parameters and centroids combinations. We found original clusters
were not effectively replicated, as evidenced by significantly different assignment frequencies and
cluster characteristics between the ANDIS and KORA samples. New clusters were derived
through open k-means analysis and the stability of new clusters was evaluated based on the
assignment consistency across various sets of variables and Jaccard indices. K=3 clusters was
used in the new clustering and additionally including high-sensitivity C-reactive protein (hsCRP)
in the variable set yielded notable cluster stability with all Jaccard indices exceeding 0.75. Poly-
genic risk scores (PRS) and diabetes complications were delineated in the new three clusters as
manifestations of inherent heterogeneity. The three de-novo derived clusters (n= 96, 172, 33,
respectively) effectively captured heterogeneity within the sample and exhibited distinct distribu-
tions of PRS and diabetes complications, i.e. Cluster 1 was characterized by insulin resistance
with high neuropathy prevalence, Cluster 2 was defined as age-related diabetes with higher prev-
alence of stroke and CKD, and Cluster 3 showed the highest genetic predisposition and risk of
obesity-related diabetes. Our findings demonstrate that subphenotyping T2D based on unique
clinical characteristics of the samples yields stable categorization and effectively captures T2D
heterogeneity, thereby supporting the advancement of personalized treatment strategies.

In conclusion, this thesis shows that metabolic profiles can support the early detection of diabetes
and deepen our understanding of the pathological mechanisms underlying T2D progression. Ad-
ditionally, subtyping T2D aids elucidate its inherent heterogeneity and paves the way for person-
alized treatment approaches. Together, these insights offer valuable contributions to the advance-
ment of precision health.
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3. Zusammenfassung

Typ-2-Diabetes (T2D) ist eine weit verbreitete und komplexe Stoffwechselerkrankung, die auf
eine ineffiziente Glukoseregulation zuriickzufiihren ist. Sie zeichnet sich durch einen erhdhten
Blutzuckerspiegel aus, der durch eine beeintrachtigte Insulinsekretion und -resistenz bedingt ist,
wobei die meisten Falle auf Ubergewicht oder Fettleibigkeit zurlickzufiinren sind. T2D ist eine
chronische Stoffwechselerkrankung, deren Symptome im Frihstadium fehlen oder von Person
zu Person stark variieren kdénnen. Unbehandelt kann ein hoher Blutzucker jedoch mehrere
Organe schadigen. Daher ist die frihzeitige Erkennung praklinischer Erkrankungen und das
Verstandnis der zugrunde liegenden Mechanismen von entscheidender Bedeutung, um
praventive und therapeutische Ansatze zu entwickeln.

Prazisionsmedizin bei Diabetes bedeutet die Optimierung der Diagnose, Vorhersage, Pravention
oder Behandlung von Diabetes durch die Integration mehrdimensionaler Daten unter
Berlcksichtigung individueller Variationen. Es nutzt Muti-Omics-Technologien wie
Genotypisierung, Transkriptomik und Metabolomik in Kombination mit klinischem Phanotyp, um
die zugrundeliegende systemische Biologie zu veranschaulichen. Besonders zunehmendes
Interesse besteht an der Anwendung von Stoffwechselprofilen zur Identifizierung von
Krankheitsbiomarkern, da es sich um einen wirksamen Ansatz zur Aufdeckung des komplizierten
Verlaufs zwischen Fettleibigkeit, Stoffwechsel und Diabetes handelt. Ziel dieser Arbeit ist es, zur
Prazisionsmedizin von T2D beizutragen, indem die Friherkennung mit identifizierten Kandidaten-
Biomarkern verbessert und Heterogenitat mit datengesteuerter Klassifizierung auf der Grundlage
von Metabolomik/Genetik und klinischen Daten erfasst wird.

In dieser Arbeit wurden zunachst 146 Metabolit-Profile, die aus der FF4-Kohorte der kooperativen
Gesundheitsforschung in der Region Augsburg (KORA) mit 1715 Teilnehmern gewonnen wurden,
mit Fettleibigkeit und T2D korreliert. 45 Metaboliten waren signifikant mit dem um mehrere
Kovariaten adjustierten BMI und T2D assoziiert, die alle bereits bekannt waren. Bei diesen
Metaboliten handelte es sich um verzweigtkettige Aminosauren, Sphingolipide, Acylcarnitine,
Lysophospholipide oder Phosphatidylcholine. Der Sobel-Mediationstest legt nahe, dass der
Einfluss des BMI auf T2D Uber Lipide wie Sphingomyelin (SM) C16:1, SM C18:1 und
Diacylphosphatidylcholin (PC aa) C38:3 vermittelt werden kdnnte. Darlber hinaus weist die
Mendelsche Randomisierung auf einen Kausalzusammenhang hin, bei dem der BMI die
Veranderungen in SM C16:1 und PC aa C38:3 beeinflusste und Verdnderungen in SM C16:1,
SM C18:1 und PC aa C38:3 zu T2D beitrugen. Die Analyse biologischer Signalwege sowie
genetischer Studien und Experimente mit Mausen zeigen, dass eine Fehlregulation des
Sphingolipid- und Phosphatidylcholin-Stoffwechsels entscheidende Faktoren in den frihen
Stadien der T2D-Pathophysiologie sind. Die Ergebnisse dieser Arbeit zeigen, dass diese drei
identifizierten Metaboliten eine vermittelnde Rolle bei der Verbindung von BMI mit T2D spielen,
was Aufschluss Uber ihre Bedeutung flr die T2D-Pathologie gibt.

Um die Rolle von Metaboliten bei glykdmischer Veranderungen weiter aufzuklaren, wurden 3000
Personen des Konsortiums Innovation Medicines Initiative — Diabetes Research on Patient
Stratification (IMI-DIRECT) mit 911 gemessenen Metaboliten (132 gezielte Metabolomik, 779
ungezielte Metabolomik) analysiert. Bei den gerichtete (und ungerichtete) Metabolomics-
Messungen beobachteten wir, dass 4 (15) und 34 (99) Metaboliten signifikante Unterschiede in
der Gruppe mit normaler Glukoseregulation (NGR) im Vergleich zu denen mit beeintrachtigter
Glukoseregulation (IGR) bzw. T2D aufwiesen. Darlber hinaus wurden fir die pradiabetische
Gruppe 50 (108) Metaboliten identifiziert, die sich deutlich von der T2D-Gruppe unterschieden.
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Wesentliche Metaboliten waren hauptsachlich verzweigtkettige Aminosauren (BCAA), auch
abgeleitete BCAA, Lipide, Xenobiotika und einige nicht annotierte Metabolite. Metaboliten wie
LysoPC a C17:0, Summe der Hexosen (aus gerichtete Metabolomik), Aminosauren aus dem
BCAA-Metabolismus wie N-Lactoylvalin und N-Lactoylleucin, Formiminoglutamat sowie Laktat
und ein unbekannter Metabolit (X-24295) waren mit der HbA1c-Progressionsrate korreliert und
sagten das Auftreten von Pradiabetes/Diabetes voraus. Im kausalen Mediationstest
beobachteten wir auch, dass diese Metaboliten signifikante Mediatoren der glykdmischen
Verschlechterung vom Ausgangswert bis zur Nachuntersuchung nach 18 und 48 Monaten waren.
Die Mendelschen Randomisierung zeigte, dass T2D einen kausalen Einfluss auf die
Konzentrationen von drei Metaboliten (Hexose, Glutamat und Caproat (FA 6:0)) hatte, wahrend
Lipide wie spezifische Phosphatidylcholine (PC aa C36:2) sowie die beiden Omega-3-Fettsauren
Stearidonat (FA18:4) und Docosapentaenoat (FA22:5) moglicherweise eine ursachliche Rolle bei
der Entstehung von T2D spielen. Unsere Ergebnisse legen nahe, dass die Metaboliten LysoPC
a C17:0, N-Lactoylvalin, N-Lactoylleucin, Formiminoglutamat sowie Laktat und ein unbekannter
Metabolit (X-24295) mit einer glykdmischen Verschlechterung assoziiert sind und die Mediatoren
fur die Entwicklung von IGR und T2D sind, die dazu beitragen konnten, die Friiherkennung und
das Verstandnis der Pathologie der Krankheit zu verbessern.

In den obigen Abschnitten haben wir die Biomarker identifiziert, die bei der T2D-Progression im
Frihstadium eine Rolle spielen und zur Umsetzung praventiver und therapeutischer Strategien
beitragen konnten. Aufgrund er Komplexitat und Heterogenitat von T2D, ist ein grundlegendes
Verstandnis seiner Mechanismen und die Umsetzung einer prazisen Behandlung fur T2D-
Patienten mit dieser Erkrankung erforderlich. Deshalb wurden Clusteranalyse in Daten von n =
301 T2D-Personen aus der KORA FF4-Studie durchgefiihrt. Zunachst wurde der Originalcluster
von Ahlgvist et al. Repliziert, k=4 unter Verwendung derselben Variablen wie Ahlqgvist et al.
erzwungen. Es wurden drei verschiedene Skalierungsparameter und Schwerpunktkombinationen
untersucht. Dabei konnten die urspringlichen Cluster nicht effektiv repliziert werden, da es
deutlich unterschiedliche Zuordnungshaufigkeiten und Clustereigenschaften zwischen den
ANDIS- und KORA-Proben gab. Daraufhin wurden neue Cluster mittels offener K-Means-Analyse
abgeleitet und die Stabilitdt dieser Cluster auf der Grundlage der Zuweisungskonsistenz Uber
verschiedene Variablensatze und Jaccard-Indizes bewertet. Bei der neuen Clusterbildung
wurden 3 Cluster verwendet.Unter zusatzlicher Einbeziehung von hochsensiblen C-reaktivem
Protein (hsCRP) in den Variablensatz ergab sich eine bemerkenswerte Clusterstabilitat, wobei
alle  Jaccard-Indizes 0,75  Uberstiegen. Polygene  Risikoscores (PRS) und
Diabeteskomplikationen wurden in den neuen drei Clustern als Manifestationen inharenter
Heterogenitat abgegrenzt. Die drei de-novo-abgeleiteten Cluster (n = 96, 172 bzw. 33) erfassten
effektiv die Heterogenitat innerhalb der Stichprobe und zeigten unterschiedliche Verteilungen von
PRS- und Diabetes-Komplikationen, d. h. Cluster 1 war durch Insulinresistenz mit hoher
Neuropathie-Pravalenz gekennzeichnet Cluster 2 wurde als altersbedingter Diabetes mit hoherer
Pravalenz von Schlaganfallen und CKD definiert, und Cluster 3 wies die hdchste genetische
Veranlagung und das hdchste Risiko fur Diabetes im Zusammenhang mit Fettleibigkeit auf.
Unsere Ergebnisse deuten darauf hin, dass die T2D-Subphanotypisierung auf der Grundlage der
einzigartigen klinischen Merkmale der Probe zu einer stabilen Kategorisierung fiihrt und die T2D-
Heterogenitat effektiv erfasst, und dass dieser Ansatz die Weiterentwicklung der personalisierten
Behandlung von Diabetes erleichtern kdnnte.

Zusammenfassend zeigt diese Arbeit, dass Metabolitprofile bei der Friiherkennung von Diabetes
helfen kdénnen, um die Pathologien der T2D-Progression zu verstehen, wahrend die
Subtypisierung von T2D dabei hilft, die zugrunde liegende Heterogenitat aufzuklaren und um
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potenziell personalisierte Therapien zu entwickeln. Somit konnten wichtige Beitrage zur
Prazisionsmedizin geleistet werden.
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4. Introduction

41 Type 2 diabetes

World Health Organization (WHO) manifests that the global number of people with diabetes rose
to 422 million in 2014, and it is estimated to impact approximately 700 million adults by 2050 [1].
Diabetes mellitus (DM) is a metabolic condition marked by abnormally high blood glucose levels
due to the body's impaired ability to utilize insulin effectively. Over time, disruptions in insulin
secretion or insulin function, and eventually both, can result in disturbances in carbohydrate, pro-
tein, and lipid metabolism. DM is a multifactorial condition encompassing type 1 diabetes (T1D),
type 2 diabetes (T2D), gestational diabetes, maturity-onset diabetes of the young (MODY), and
so on [2]. Here we mainly focus on prediabetes and T2D in our research.

According to WHO, T2D is diagnosed when fasting plasma glucose (FPG) = 126 mg/dL (7.0
mmol/L), or when 2-h plasma glucose (2h-PG) = 200 mg/dL (11.1 mmol/L). These could be
measured by an oral glucose tolerance test (OGTT). American Diabetes Association (ADA) aligns
with the WHO criteria but adds two more measurements, hemoglobin A1c (HbA1c) = 6.5% (48
mmol/mol) and a random plasma glucose = 200 mg/dL (11.1 mmol/L) can be also considered as
a diagnostic tool [3, 4].

More than 95% of individuals with diabetes have T2D. It was initially observed primarily in adults
but is now increasingly prevalent in children. T2D can cause progressive damage to the body,
particularly affecting nerves and blood vessels. Prevention is often possible, with contributing
factors including overweight, physical inactivity, and genetic predisposition. Timely diagnosis is
essential to reduce the severe consequences of T2D. The most effective approach to identify
diabetes is through routine examinations and blood tests performed by a medical professional.
Symptoms of T2D can be subtle and may take several years to manifest, leading to delayed
diagnosis and the onset of complications [5].

4.1.1 Risk factors

Several factors are considered to increase the risk of T2D, including obesity, fat distribution, phys-
ical inactivity, age, family history, prediabetes and race/ethnicity. Being overweight and prediabe-
tes are key contributing factors [6, 7].

The occurrence of overweight and obesity is on a continuous rise among both adults and children.
From 1975 to 2016, the global occurrence of overweight or obese children and adolescents rose
from 4% to 18% [8]. Obesity significantly contributes to the onset of insulin resistance and diabe-
tes [9], but the molecular pathway remains not fully understood. Prediabetes denotes a state
where blood sugar levels exceed normal ranges but fall below the threshold for diabetes diagnosis.
If not addressed, prediabetes frequently advances to type 2 diabetes [7] as shown in the KORA
cohort which is a longitudinal population-based adult cohort study [10] and IMI-DIRECT cohort
which is a longitudinal population-stratified adult cohort study [11].

4111 Obesity and T2D

Excess body weight and obesity pose significant risks for the development of T2D [6]. T2D results
from insulin resistance across multiple organs, coupled with insulin secretory decrease in B-cells
[12]. The global surge in obesity prevalence is believed to contribute to the recent uptick in T2D
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cases, as obesity exerts influence on both insulin action and B-cell function [6]. Elevated plasma
free fatty acid (FFA) concentrations linked to obesity and T2D may adversely affect $-cells. Under
basal conditions, circulating FFAs contribute to approximately 30% of insulin secretion, irrespec-
tive of diabetes status [13]. It is plausible that the interplay of elevated plasma FFAs, triglycerides,
and glucose—referred to as "glucolipotoxicity” [14], combined with excessive plasma amino acids,
can lead to p-cell dysfunction and death [15]. Research conducted in mouse models has revealed
that adipose tissue generates proinflammatory cytokines, leading to insulin resistance [16]. More-
over, the observation that obesity in humans is characterized by increased infiltration of macro-
phages into adipose tissue [17] suggests that adipose inflammation is a key contributor to insulin
resistance among individuals with obesity. Both animal and human studies provide evidence that
alterations in adipose tissue metabolism and inflammation, induced by obesity, play a crucial role
in regulating metabolic functions in other organs and contribute to B-cell dysfunction [17].

Lifestyle changes such as a modest weight loss (5-10% of baseline weight), combined with at
least two and half hours of physical activity per week led to a decrease in diabetes incidence by
over 50% [18]. This suggests that weight loss is an effective therapeutic strategy for managing
T2D.

41.1.2 Prediabetes

Prediabetes is designated for an intermediate stage of hyperglycemia in which glycemic param-
eters are above normal but do not meet the threshold criteria for diabetes. Thus, predisposing the
individuals to an elevated risk of T2D and cardiovascular disease onset [3, 19]. Prediabetes is
commonly linked to conditions such as obesity, metabolic syndrome, dyslipidemia and hyperten-
sion [20].

WHO and ADA have different criteria for prediabetes. WHO defines impaired fasting glucose (IFG)
as FPG of 110 to 125 mg/dL (6.1 to 6.9 mmol/L). Impaired glucose tolerance (IGT) is then defined
as 2-hour plasma glucose level of 140-200 mg/dL (7.8 to 11.0 mmol/L) after 75 g of oral glucose.
It can be also a combined approach of the two previously mentioned based on a 2 h OGTT [4].
Whereas ADA classifies IFG as 100-125 mg/dL (5.6 to 6.9 mmol/L) and IGT as 140-199 mg/dL
(7.8 to 11.0 mmol/L). Furthermore, ADA also advocates for the inclusion of HbA1c in diabetes
diagnostics and considers a level of 5.7% to 6.4% as a critical criterion. Employing HbA1c as a
diagnostic factor, it tends to yield higher percentages of prediabetes compared to FPG [3, 21].
HbA1c reflects an average blood sugar level and was initially perceived as a more representative
indicator of hyperglycemia [22, 23].

In the United States, approximately 10% of individuals with prediabetes progress to diabetes an-
nually [7]. Rigorous lifestyle modifications, encompassing weight loss, enhanced physical activity,
regular self-monitoring, led to a significant decrease in diabetes incidence over a 3-year timeframe
[7]. Dietary patterns were suggested to be a very important factor in prevention of prediabetes
and T2D [24].

4.1.2 Complications

Many essential organs, including the heart, nerves, eyes, and kidneys, are impacted by T2D [25].
Additionally, factors that elevate the risk of diabetes also predispose individuals to other severe
ailments. Proper diabetes management and blood sugar control can lower the risk of complica-
tions and related health conditions.
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The majority of morbidity associated with T2D stems from cardiovascular diseases, which may
include coronary artery disease, heart failure, and stroke [26]. 20-30% of individuals experiencing
acute coronary syndromes have T2D, with an additional 40% exhibiting impaired glucose toler-
ance [27]. Research indicates that mortality rates after acute myocardial infarction are roughly
double for patients with diabetes compared to those without [27]. Diabetes is a well-established
risk factor for stroke, primarily due to its ability to induce pathological changes in blood vessels
throughout the body. When cerebral vessels are influenced, diabetes can directly lead to stroke.
Besides, Diabetic stroke patients tend to have worse post-stroke recovery outcomes and elevated
mortality rates [28]. Diabetic kidney disease is also prevalent. Approximately half of individuals
diagnosed with T2D will eventually experience kidney disease. Poorly managed diabetes can
harm the blood vessels responsible for filtering waste in the kidneys, resulting in kidney damage
and contributing to elevated blood pressure [29]. Another common chronic complication is dia-
betic neuropathy, which manifests with sensory disturbances, muscle atrophy, difficulty walking,
susceptibility to wounds, and severe pain in the lower limbs. Additionally, it can lead to symptoms
such as pulmonary dysfunction, tachycardia, orthostatic hypotension, urinary incontinence, indi-
gestion, nausea, and fluctuations between diarrhea and constipation [26, 30].

4.2 Precision medicine and treatment in diabetes

ADA and the European Association for the Study of Diabetes (EASD) have jointly issued consen-
sus report based on expert opinion on precision medicine in diabetes [31]. "A strategy to enhance
diabetes diagnosis, prediction, prevention, or treatment of diabetes by integrating multidimen-
sional data, considering individual variations" is how the text defines precision diabetes medicine
[31]. In diabetes precision medicine, the distinctive genetic profile of an individual, along with
environmental or contextual information from clinical records and other 'omics data, is employed.
This approach enables a comprehensive understanding of individual traits, variations, circum-
stances, and preferences [32].

Presently, the primary hurdle lies in the fact that all precision medicine approaches necessitate
the generation, storage, and comprehension of extensive datasets, encompassing not only ge-
netic information but also various OMICs levels. The challenge is to process and translate these
datasets into clinically relevant applications [31]. Wang et al. 2012 used a metabolomic approach
which identifed metabolites like glycine and lysophosphatidylcholine to be predictors for predia-
betes and T2D [33]. Tulipani et al. 2016 showed metabolic traits such as glutamate, glycine and
BCAA serve as biomarkers of obesity and are associated with an increased risk of diabetes
development in people with prediabetes [34]. This study uncovered individualized molecular
markers of early T2D onset. In the case of individuals with T2D, clinical phenotypes such as
glutamate decarboxylase antibodies, age at diagnosis, body mass index (BMI), HbA1c, and ho-
meostatic model assessment can be employed to classify patients into four T2D categories such
as age or BMI related diabetes [35]. These identified clinical features hold the potential to predict
patients who exhibit favorable responses to some glucose-lowering medications like dipeptidyl
peptidase 4 inhibitors (DPP4i), as well as those who may respond less effectively or experience
adverse outcomes [36, 37]. The reduced costs associated with genotyping panels, genome-wide
association studies (GWAS), and polygenic risk scores offer novel insights into the prevention,
treatment, and prospective clinical applicability of these findings [31, 38]. Additionally, intervention
trials indicate that tailoring diet or increasing physical activity remains effective in preventing dia-
betes, irrespective of the underlying genetic risk [39, 40]. These studies suggest that multi-omics
profiles combined with clinical features have capacity to inform precision medicine in diabetes.
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4.3 Assessment on the molecular level in Diabetes and Obesity
research

4.3.1 Metabolomics

Metabolic variations are a commonality in both obesity and T2D, and these conditions frequently
coexist due to shared causes and interrelated factors [41, 42]. The field of metabolomics has
been proven valuable in delineating human metabolism [43]. Numerous investigations have es-
tablished connections between the plasma metabolome and obesity [44, 45], revealing potential
metabolic dysregulation associated with obesity. These metabolites linked to obesity encompass
amino acids and their catabolic products, lipids, and nucleotides. Several of these plasma metab-
olites have exhibited correlations with the incidence of type 2 diabetes [46-49] and cardiovascular
disease [50-52] in various prospective studies. This suggests that these metabolites hold the po-
tential to enhance the characterization of obesity beyond traditional anthropometric measures.
Several inquiries have established connections between phenotype and metabolism, pinpointing
serum or plasma metabolic markers independently linked to the development of both obesity and
diabetes [53-56]. Numerous metabolites have been identified as associated with both diabetes
and overweight or obesity. Within the domain of amino acid metabolism, increased levels are
observed for BCAAs, cysteine, glutamine, phenylalanine, proline, while decreased levels are
noted for asparagine, glycine and citrulline in both obesity and diabetes [57]. The diminished ex-
pression of mitochondrial branched-chain amino transferase is regarded as a contributing factor
to the heightened concentrations of BCAAs in obesity, a condition linked with decreased serum
insulin levels [58]. Metabolomics has been proven to be instrumental in clarifying how metabolites
work in governing system, particularly in relation to obesity and diabetes.

Additionally, connecting metabolites with various omics, particularly genetics through genome-
wide association (MGWAS), provides insights into the genetic impact on the metabolic composi-
tions [59-61]. As mMGWAS continues to expand its sample size and delve into more intricate met-
abolic traits, it facilitates a more holistic and systematic downstream analysis.

4.3.2 Genomics

Examining the genetic makeup enables the prediction of disease susceptibility. The elevated
rates of obesity and the resulting clinical implications T2D, underscore the significant role played
by environmental factors and their interplay with genetic variations in the development of diseases
[62]. More than 900 independent Single Nucleotide Polymorphisms (SNPs) linked to BMI [63] and
more than 230 loci impacting the risk of T2D are shown by GWAS [64].

Obesity is a multifaceted condition influenced by both genetic and environmental factors. Evi-
dence from twin and family studies has highlighted the significant role of genetic elements in
obesity, particularly in cases where there is a positive family history of obesity, leading to an
elevated risk of childhood obesity. The concordance rate for obesity is notably higher in monozy-
gotic twins compared to dizygotic twins. Twin studies estimate the heritability of obesity to be
between 40% and 75%, underscoring the substantial genetic component contributing to obesity
[65]. Recent progress in genetic testing has allowed for the discovery of genes associated with
obesity. Genes such as LEP, LEPR, POMC, PCSK1, MC4R, SIM1, BDNF, and NTRK2 have
been identified as causative factors for obesity. Next-generation sequencing (NGS) is becoming
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increasingly prevalent and proving to be a valuable tool in clinical settings for identifying candidate
genes linked to obesity [66].

T2D is recognized as an intricate, polygenic disorder. Similarly, individuals with one parent af-
fected by type 2 diabetes face an elevated risk of developing the condition, reaching nearly 40%.
Furthermore, if both parents are affected, the risk rises substantially, reaching up to 70% [67].
The exploration of the genetic foundation of T2D was constrained to linkage studies and candi-
date gene approaches, and through these investigations, rare familial types of T2D, along with
genes linked to common forms of T2D (such as PPARG, KCNJ11, and TCF7L2), were identified
[68]. Conventionally, genetic studies of these genes concentrate on genomic regions with sub-
stantial genetic impacts and already recognized disease pathways. GWAS facilitates significant
advancements in genetic investigation of complex disorders by pinpointing novel genes impli-
cated in the pathogenesis of diseases. This approach revealed a substantial subset of newly
identified genes, including KLF14, ENPP1, ADIPOQ, IRS, GCKR, SREBF1, JAZF1, SCL30AS8,
TCF7L2, and others [67, 69]. Lately, there has been a surge in the global pursuit of understanding
the genetic landscape of susceptibility and the etiological architecture of T2D through an increas-
ing number of GWAS, meta-analysis studies, investigations into rare, structural, and protective
variants, as well as sequencing in familial contexts [67].

4.3.3 Cluster analysis

Cluster analysis refers to a range of mathematical techniques that explore relationships among
points in multi-dimensional space. These methods primarily rely on assessing similarities or dis-
similarities (or proximities) between entities within the dataset [70-72]. As an example of biological
application of cluster analysis we can point out is Ahlqvist et al. [35] adopted data-driven cluster
analysis (k-means and hierarchical clustering) to identify subgroups of diabetes using six diabe-
tes-related variables to categorize diabetic individuals into five clusters in which four of these
clusters predominantly represent subgroups of T2D while one cluster is associated with severe
autoimmune diabetes (SAID), primarily corresponding to T1D. This study presented a novel and
precise diabetes classification and provided a crucial advancement towards precision medicine
in diabetes.

The challenge in cluster analysis, also known as unsupervised classification, lies in determining
the most effective way to divide data points. Deciding the optimal clustering method for a given
dataset is crucial to attain precise and desired results, all while taking into consideration the in-
herent nature of the data [70]. K-means clustering is a data-driving method. It facilitates the clas-
sification of data by distributing or grouping data points into K clusters based on distinctive fea-
tures. In data-based clusters, also known as center-based clusters, each data object within a
cluster is closer to the center of that cluster than to the center of any others [73, 74]. Initially, the
K-means algorithm establishes the initial K centroids, either by computing means from random
subsets of the dataset or by selecting the first K elements. In each iteration, the algorithm assigns
each data point to its nearest centroid and subsequently updates the centroids after forming the
K clusters [72-74]. To assign a point to the closest centroid, a proximity measure is required to
quantify the distance between data points. This involves an algorithm that consistently calculates
the similarity of each point to every centroid [72].

Determining the optimal number of clusters is one of the most challenging and debated aspects
when employing the K-means data clustering algorithm. The final selection or justification of a
specific K value is notably dependent on the particular analysis or experiment. Moreover, K values
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can be adjusted or modified to enhance and achieve more suitable results based on the charac-
teristics of the data and the objectives of the analysis [75]. Numerous methods are available for
selecting the optimal K value, including the Elbow method, Gap statistic algorithm, Silhouette
coefficient algorithm, Canopy algorithm, NBClust, and others [75]. The Elbow method involves
using the cluster centroid and the squared distance between entities within each cluster to gen-
erate a series of K values. The number of clusters (K) is then visualized by plotting the explained
variation as a function [76]. On the other hand, the Silhouette method assesses how well an
observation aligns with its own cluster, with a high value indicating a well-matched observation to
its own cluster and a poor match to neighboring clusters [76]. This method is commonly used in
many studies [35, 77, 78].

4.4 Inadequate early detection and systematic biological
understanding of T2D

The transition from normal or impaired fasting glucose to T2D typically occurs gradually, and
notably, its symptoms may go unnoticed for extended periods. Delays in diagnosis significantly
contribute to inadequate management and an increased risk of complications [79]. Given the ris-
ing global prevalence and burden of diabetes, early identification of predisposition to T2D can
significantly enhance opportunities for preventing and managing this condition effectively. Pres-
ently, elevated blood glucose and glycated hemoglobin are primarily employed for diabetes diag-
nosis. Nevertheless, it's vital to acknowledge that elevated blood sugar reflects a continuous and
evolving process. These constraints could lead to misclassification and misdiagnosis [80]. One
study [81] discovered that the rise in fasting glucose levels, along with higher BMI, blood pressure,
lipids like triglycerides and lower HDL-cholesterol (HDL-C), are higher risk of developing diabetes.

On the other hand, personalized progression of hyperglycemia and subsequent diabetes compli-
cations vary widely because of various underlying biological causes [82]. Traditionally, diabetes
is mainly classified into type 1 (T1D) and T2D, primarily determined by the presence (T1D) or
absence (T2D) of autoantibodies. So current treatment guidelines addressing poor metabolic con-
trol once it has occurred but lack the ability to identify which patients would require more intensive
care, limits their applicability.

These findings underscore the need for further research to establish optimal diagnostic criteria
and diabetes subphenotyping strategies. Approaches such as deep molecular phenotyping hold
promise for uncovering the underlying mechanisms of glucose dysregulation and informing more
personalized, precise prevention and treatment strategies.

4.5 Aims of this thesis

The main objectives of this thesis are to enhance early detection and explore the role of molecular
biomarkers and T2D heterogeneity using multidimensional data. This approach aligns with the
concept of precision medicine in diabetes and allows for a comprehensive understanding of indi-
vidual traits, variations, situations, and inclinations. Three studies were performed to answer the
specific research questions:

To 1) use the targeted metabolomic profiles from the German KORA FF4 cohort to examine me-
tabolite signatures associated with obesity and T2D involved in the development of obesity related
T2D, to improve the early detection of incident of T2D. This corresponds to paper | [83].
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2) Identify metabolites from both targeted metabolomics and untargeted metabolomics in IMI-
DIRECT cohort linked with glycemic deterioration, from NGR to prediabetes and eventually to
T2D, to further optimize the early diagnosis and understand the progression of T2D. This corre-
sponds to paper Il [84].

3) use a data-driven cluster analysis with clinical characteristics in KORA FF4 to classify T2D into
different subphenotypes and provide a more accurate, clinically relevant stratification, marking a
significant advancement toward precision treatment in diabetes. This corresponds to paper Il [85].
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5. Methods

5.1 Study population

KORA is a population-based study that comprises several deeply phenotyped epidemiological
surveys in the Augsburg region of southern Germany. The study design, sampling method and
data collection have been described elsewhere [86]. The baseline KORA S4 involved the exami-
nation of 4,261 individuals between 1999 and 2001. The first follow-up F4 comprised of 3,080
individuals between 2006 and 2008 and the second follow-up FF4 examined 2,269 participants
between 2013 and 2014. Figure 1 provides an overview of the KORA study. Written informed
consent was received from all study participants. T2D was diagnosed based on OGTT according
to WHO criteria or clinically diagnosed by physician. The estimated glomerular filtration rate
(eGFR) calculation and chronic kidney disease (CKD) definition was described in detail here [83,
87]. Information regarding parental history of diabetes, myocardial infarction, stroke, neuropathy,
and metformin intake or any antidiabetic medication intake was self-reported.

s4 F4 FF4 FFF4
1999-2001 2006-2008 2013-2014 2021-2022

Figure 1. Overview of the timeline of KORA study for baseline surveys and follow-up examinations.

IMI-DIRECT is a population-stratified cohort study and multicenter, involved in diabetes research.
Baseline clinical variables and omics were measured, follow-up studies are carried out at different
intervals such as 18 month, 36 months and 48 months based on the feedback biomarkers to
improve the study design. Figure 2 provides an overview of the IMI-DIRECT study. Detailed char-
acteristics of this cohort as well as inclusion/exclusion criteria were described somewhere else
[11, 88]. NGR and IGR were defined based on ADA 2011 diagnostic criteria using HbA1c, fasting
glucose and 2 h glucose. Prevalent T2D was identified through clinically diagnosis or the ADA
2011 criteria. Participants displayed NGR and prevalent T2D according to the glycaemic
measures in cohort 1 were also included for further analyses (Figure 2).

Paper | and Paper Il were conducted on the KORA FF4 cohort. Paper | was a cross sectional
study analyzing 1715 participants with complete metabolomics data, consisting of 1276 non-
obese participants and 439 obese ones based on BMI or 1415 non-diabetic individuals and 300
T2D ones based on OGTT or clinical diagnosis.

Paper Il only included 301 participants with T2D for cluster analysis. Besides, PRS was calcu-
lated for all individuals with T2D (N=301) and all individuals without T2D but with available genetic
data as the control group (N=1357) for comparison.

Paper Il included a cross-sectional design for analyzing DIRECT data at baseline and a longitu-
dinal design of follow-up 18 and 48 months. 3000 individuals with complete metabolomic meas-
urements at baseline were included in our study and ones had complete follow-up information for
further longitudinal analysis.



5 Methods 23

Cohort 1: prediabetes Cohort 2: diabetes
Pre-screening with
DIRECT-DETECT GGG L
(recruited/sampling frame) 11/118
2235/24682
NHS | | DanFunD
434/2870 87/7439
HMS || Health 2006
48/201 172/2308 || Local general practices and registries
|
METSIM RISC  |]| Health2010 | MDC L 2 v L 4
1340/6414 18/76 56/1522 169/3734 Exeter Newcastle Copenhagen
I ! 170 146
v | Z2— | Z— v
Kuopio Amsterdam Copenhagen Lund Dundee Amsterdam Lund
1340 500 326 169 184 169 107
[ | | | l I |
; PR
Screening | | i | Screening
Did not meet 2235 i : 830 Did not meet
inc_lu.:]suon criteria or ¢ i—- Nov 2012-Aug 2014 E ) inc'lusion criteria or
wit dre;‘é gonsent . ! Nov 2012-Sep 2014 3 Y wnhdre\:‘v1consent
1
Baseline i i Baseline
2127 : i 789
Lost to follow-up ¢ - - ) Lost to follow-up
138 v y 121
18 month follow-up :r' May 2014-Mar 2016 i | 18 month follow-up
1989 i Aug 2014-Apr 2016 = i
Lost to follow-up L ¥
B » Lostto follow-up
260 v ‘9 - v 116
48 month follow-up | — May 2017-Mar 2019 i | 36 month follow-up
!
1729 | Dec 2016-Oct 2018 =_ e

Figure 2. Overview of the baseline surveys and follow-up examinations of IMI-DIRECT study [11].

5.2 Metabolite quantification and normalization

Blood samples from KORA FF4 participants were measured with the AbsoluteIDQTM p180 Kit.
The details were previously described here [89]. Finally, 146 metabolites were passed quality
control (QC) for further analysis in this study in paper I.

Blood sample from IMI-DIRECT individuals at baseline were measured with the AbsoluteIDQTM
p150 Kit (targeted metabolomics) and metabolon platform (untargeted metabolomics) respec-
tively. 132 metabolites from targeted metabolomics and 779 ones from untargeted metabolomics
were included in this study after QC in paper Il. The measurement details were stated here [90].

The concentrations of all metabolites were natural log transformed and scaled (mean=0, sd=1)
before statistical analysis to ensure comparability across the metabolites.

5.3 Genomics

Genotyping of KORA was performed by the Affymetrix Axiom Array. More than 500,000 autoso-
mal SNPs thorough quality control were subsequently imputed based on the haplotype reference
consortium (HRC) reference panel using Impute2 v2.3.2. Variants with certainty <0.95, infor-
mation metric < 0.7, low genotyping calls (geno 0.03), and Hardy—Weinberg equilibrium exact test
p-value < 5x10-10 were excluded. Finally, 7,753,540 variants with a minor allele frequency (MAF) >
1% were kept for the analysis in the study.
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5.4 Statistical analysis

Paper |

Firstly, | explored the candidate biomarkers associated with BMI and T2D through multivariable
linear regression and logistic regression with different covariates. Sobel mediation test [91, 92]
was performed to identify the metabolites which convey the effect of BMI on T2D. Lastly | per-
formed two sample mendelian randomization (2SMR) to check the causal inference of BMI, iden-
tified metabolites and T2D.

SNPs and genes in humans were searched to find the association with three identified lipids (SM
C16:1, SM C18:1, and PC aa C38:3) to comprehend the biological pathway. Genotype-Tissue
Expression (GTEx) human database and the Mouse Genome Informatics (MGI) database were
used to investigate the tissue-specific role of the related genes CERS4, PDXDC1 and FADS1-3.
Mouse Genome Database [93] was used to identify gene expression correlations with relevant
obesity and T2D traits in mice adipose, liver, muscle and brain tissue: an F2 cross of the inbred
ApoE-/- C57BL/6J and C3H/HeJ strains [94].

Paper Il

Estimates from multivariable logistic regression analysis were obtained using the concentration
of each transformed metabolite as an independent variable and the glycemic status value (NGR
vs. IGR, NGR vs. T2D, or IGR vs. T2D) as a dependent variable. A multivariable linear regression
model was employed to examine metabolites associated with HbA1c progression rate.

Candidate biomarkers associated with prediabetes/diabetes as well as HbA1c progression rate
were used for further analysis. Incident prediabetes or diabetes was carried out with the identified
metabolites as exposure and glycemic status at follow-up timeline as outcome. A causal media-
tion test was performed to assess the mediation effect of the above identified metabolites. Here,
baseline glycemic status was considered as an independent variable, the metabolites entered the
model as a mediator whereas follow-up glycemic status was conducted as the dependent variable.

Causal inference used 2SMR methods and inverse-variance-weighted (IVW) method to explore
the causal effect of T2D on metabolites and vice-versa the causal effect of metabolite on T2D by
wald ratio.

Paper Il

301 individuals with T2D from the KORA FF4 study were used for cluster analysis. For the repli-
cation of original clusters to KORA cohort, | used the same variables as ANDIS’s cohort: age,
BMI, HbA1c, homeostasis model assessment (HOMA) estimates of beta-cell function (HOMA2-
B) and insulin resistance (HOMA2-IR) in KORA FF4. | employed k=4 since we did not include
T1D in our study, with three different hyperparameter combinations: 1) scaling and centroids from
the original ANDIS cohort, 2) scaling from KORA, but centroids from ANDIS, 3) both scaling and
centroids from KORA. Each individual from KORA was assigned to one of the original clusters
based on the smallest Euclidean distance to the respective cluster center. Transitions of individ-
uals between clusters based on the different approaches were visualized by Sankey diagrams.

De-novo clusters were derived by a two-step approach, of which the optimal number of clusters
k was determined based on silhouette width and elbow method, followed by k-means. The basic
variable set: age at examination, BMI, HbA1C, HOMA2-B and HOMA2-IR. Additional variables
hs-CRP, triglycerides (TG), HDL-cholesterol (HDL-C) and systolic blood pressure (SBP) were
added individually to the basic set of variables to explore their impact on cluster performance.
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The stability of de-novo clusters was assessed by assignment congruence over different variable
sets and Jaccard indices. Sensitivity analysis was done for the final clusters by recalculating sep-
arately for men and women to assess potential sex differences.

PRS was calculated with driving the list of variants of the optimal T2D score from Polygenic Score
(PGS) Catalog [95] as score number “PGS000014” and summing up the product of the dosage
of risk allele multiplying with their respective weights in KORA. PRS was evaluated for both indi-
viduals with and without T2D in KORA FF4.

Differences of PRS in individuals with and without diabetes were quantified by logistic regression
models with PRS as the exposure variable. One-way ANOVA and t-tests were employed to ex-
amine the disparities in PRS and frequency of risk alleles of the top significant 20 genetic variants
across clusters. Differences in diabetes-related complications and parental history were assessed
using Fisher’s exact test.
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6. Results

Paper |

Obesity sets off a series of metabolic reactions that increase the risk of several accompanying
conditions such as insulin resistance. In this study we addressed the first aim of this thesis and
aimed to find the metabolites implicated in the progression from obesity to T2D.

We identified 42 metabolites associated with BMI independently, phosphatidylcholine diacyl (PC
aa) C38:3, glutameta (Glu), sphingomyelin (SM) C16:1, SM C18:1, lysophosphatidylcholine acyl
(lysoPC a) C17:0 and lysoPC a C18:2 were the six strongest ones. 3 metabolites were signifi-
cantly linked to T2D, hydroxybutyrylcarnitine (C3-DC (C4-OH)), Alpha-Amino acid (alpha-AAA)
and isoleucine (lle). In the Sobel mediation test, three metabolites SM C16:1, SM C18:1, and PC
aa C38:3 showed significant mediation effect of BMI on fasting glucose or HbA1c, suggesting
these metabolites increased the risk of glycemic deterioration. The causality directions of BMI,
three identified lipids and T2D were confirmed by 2sMR, we observed that BM| was a causal
factor for the change of SM C16:1 and SM C18:1, while SM C16:1, SM C18:1, and PC aa C38:3
were causal factors for T2D incidence. These results suggest sphingomyelins and phosphatidyl-
cholines could serve as a molecular mediator in the development of obesity related T2D.

Incorporating these three lipids with human genetics, we were informed that these three metabo-
lites were linked to SNPs at the CERS4, PDXDC1 and FADS1-3 locus [96, 97]. CERS4 and
FADS1-3 were found to impact the sphingolipids biosynthesis, impairing insulin sensitivity and
pancreatic beta-cell function [98, 99]. PDXDC1 and FADS2 upregulate phosphatidylcholine,
which suppresses key genes like IRS-2, disrupting insulin signaling [100].

Paper Il

This paper addressed the second aim of this thesis and identified biomarkers assisting in catego-
rizing individuals based on their glycemic deterioration, thereby contributing to aiding in the insight
into the disease progression.

In the targeted assay we observed 4, 34 and 50 metabolites to be significantly different between
NGR-IGR, NGR-T2D and IGR-T2D groups. While in the untargeted metabolomics panel, there
were 15, 99 and 108 metabolites significantly having variations in each group. Significant metab-
olites were mainly BCAAs, also derived BCAAs, lipids, xenobiotics, and a few unknowns.

Metabolites from targeted metabolomics including lysoPC a C17:0 and sum of hexoses, and from
untargeted metabolomics including N-lactoylvaline and N-lactoylleucine, formiminoglutamate, as
well as carbohydrate lactate, and an unknown metabolite (X-24295) were linked to HbA1c pro-
gression rate as well as incidence of prediabetes/diabetes. In the causal mediation test, we also
observed that these metabolites significantly mediated the glucose deterioration from baseline to
follow-ups.

We utilized 2SMR to assess the causal directions between metabolites and T2D. Our analysis
revealed that T2D causally affects the concentrations of three metabolites (hexose, glutamate
and caproate (FA 6:0)). Additionally, four phosphatidylcholines such as PC aa C36:2 along with
two omega-3 fatty acids stearidonate (FA18:4) and docosapentaenoate (n3 DPA; FA22:5) poten-
tially contribute to the development of T2D.

Paper Il
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Data-driven clustering holds the potential to uncover the pathophysiology of glucose deterioration
and the onset of comorbidities in individuals with T2D. This paper addressed the third aim of this
thesis by a comprehensive statistical assessment of T2D subphenotyping in KORA FF4 cohort.

Participants in KORA were assigned to the corresponding clusters based on ANDIS’s scaling and
centroids parameters, it was observed that the relative cluster sizes in KORA differed from those
observed in the ANDIS study. Severe insulin-deficient diabetes (SIDD) in KORA only collected 2%
of the T2D cases compared to 17.5% in ANDIS. Over 80% of participants in KORA were classified
into the MARD cluster, compared to approximately 40% in ANDIS. When clinical variables were
scaled based on own scaling parameters, all these variables showed the same trend in KORA
and ANDIS. The relative cluster sizes in KORA were similar to those observed in the ANDIS study,
for example mild age-related diabetes (MARD) had the most participants for both KORA (46.8%)
and ANDIS (39.1%), and 15.3% of individuals in KORA were allocated to SIDD which was similar
to the ANDIS study (17.5%). Besides, 65% of participants were assigned to the same clusters
when using ANDIS centroids, but either ANDIS scaling or KORA scaling. When we employed
KORA's own scaling and centroids (using k-means, forced k=4), a novel distinct cluster was ob-
served with the overall most modest metabolic impairments and low BMI. Only 45% of the partic-
ipants had consistent cluster assignments between using ANDIS centroids and KORA centroids
but same KORA scaling. Collectively, these findings imply that the original ANDIS clusters may
not entirely capture the characteristics of the KORA sample.

De novo cluster analysis was derived in KORA, k=3 was determined to be the optimal number of
clusters by silhouette width and the elbow plot. KORA participants were categorized into 3 groups
by k-means with the basic variables. Cluster 1 (n=96, 31.9%) was characterized by hyperinsu-
linemia and insulin resistance, resembling the severe insulin resistant diabetes (SIRD) cluster
identified in the ANDIS cohort; Cluster 2 (n=172, 57.1%) had older age, low BMI and low insulin
resistance, akin to the mild age-related diabetes (MARD) cluster in the ANDIS cohort; Cluster 3
(n=33, 11.0%) showed insulin deficiency (low HOMAZ2-B), high BMI and poor glycemic control
(high HbA1c), representing a distinct cluster not observed in the ANDIS cohort. When we added
additional variables hsCRP, TG, HDL-C, or SBP, respectively, it was found 90%, 93%, 90% and
98% of participants were assigned to the same cluster compared to when using basic variables.
To explore the influence of systemic inflammation distinguishing diabetes subtypes, we deter-
mined the clusters based on the variable set of age, BMI, HbA1c, HOMA2-B, and HOMA2-IR plus
hsCRP as the final subphenotypes. The final clusters did not show substantial sex-specific effects
as the majority of individuals (95%) were grouped to the same cluster for both men and women
as in the initial data analysis. Moreover, the Jaccard indices of all final clusters were above 0.75,
indicating reasonably high cluster stability.

The heterogeneity of the final clusters was assessed by PRS and diabetic complications. Cluster
1 had relatively lower genetic risk with no significant difference from the control group, but high
prevalence of neuropathy. Cluster 2 had the middle genetic risk, relatively higher than the control
group (but not significantly different from Cluster 1), and a higher prevalence of stroke and CKD.
Cluster 3 showed a significantly higher PRS than both control group and Cluster 1, with more
frequently a positive parental history of diabetes.



7 Discussion 28

7. Discussion

7.1 Early progression of T2D

T2D is a chronic, metabolic disease, thus exploring the role of intermediate molecules may un-
cover new therapeutic targets for addressing early-stage T2D pathophysiology. Plasma metabo-
lites circulate throughout the entire body and play a direct role in the molecular regulation of com-
plex diseases, such as obesity, prediabetes, diabetes [57]. Assessing these metabolites offers
molecular insights into their involvement in biological processes triggered by disease progression.

In Paper |, we analyzed KORA targeted metabolomics profiles to identify underlying links to met-
abolic pathways. T2D typically develops in the advanced stages of obesity, it is confirmed that
SM C16:1, SM C18:1 and PC aa C38:3 were significantly correlated with obesity in our study.
These metabolites were also reported to be strongly linked to T2D [101]. In the mediation test,
these three lipids significantly conveyed the influence of BMI on fasting glucose/HbA1c. Integra-
tion with mendelian randomization indicates the direction of causality, suggesting that lipids such
as SM C16:1 and PC aa C38:3 could serve as molecular mediators which contribute to the de-
velopment of T2D. This metabolic process linking obesity and diabetes may be driven by modu-
lation of inflammation through fatty acid (FA) and proinflammatory cytokines. Obese individuals
are usually characterized with these two elevated elements which are known to activate sphingo-
myelinase (SMase) and converting sphingomyelins to ceramide, thus exerting an action of insulin
resistance [102, 103]. High-fat diets, which lead to elevated FA and excessive of PC, contribute
to obesity and diabetes in individuals [104]. Genetic factors may also modulate this process, of-
fering potential avenues for intervention. FADS1-3 and PDXDC, associated with these three lipids,
are revealed to be linked with polyunsaturated fatty acids (PUFAs) [105-108], which influence the
biosynthesis of sphingolipid and phosphatidylcholines, modulating the risk of developing T2D [109,
110]. These findings suggest genetic predisposition and early variation in the metabolism of
sphingolipids and phosphatidylcholines, which play a role in prediction the onset of T2D.

In Paper Il, we reported candidate metabolites from both targeted metabolomics and untargeted
metabolomics involved in the development of T2D in IMI-DIRECT study. 19 metabolites (4 from
targeted and 15 from the global profiling) were significantly associated with prediabetes, which
consisted of hexoses (H1), three phospholipids and five amino acids, five lipids, two carbohy-
drates, two unknown compounds, and one xenobiotic. Prediabetes is commonly linked to
dyslipidemia, characterized by an altered lipid profile compared to individuals with normal glucose
regulation [111]. In the further study we found that lysoPC a C17:0 and lactate, X-24295,
formiminoglutamate, N-lactoylleucine, N-lactoylvaline were also liked with HbA1¢ progression and
incident prediabetes/diabetes. Jenkins et al. [112] explored the source of circulating odd-chain
fatty acids (C17:0, C15:0) by conducting both animal and human studies. Their findings suggested
that dietary intake was associated with C15:0, whereas C17:0 was primarily synthesized by the
body, indicating distinct origins and disparate roles in disease causation. One study also con-
firmed lysoPC a C17:0 was significantly associated with incident T2D [113], and the mechanism
could be induced by FFA as it was reported inhibition of the transformation of FA palmitic acid to
lysophosphatidylcholine (LPC), thereby preventing insulin resistance in mice models [114].
Causal mediation analysis further indicated the identified metabolites strongly mediates glycemic
change from baseline status to follow-up. Elevated formiminoglutamate is a marker of folate de-
ficiency, which is reported to be associated with destructed phospholipids homeostasis and a risk
factor for diabetes mellitus [115]. It is also confirmed that formiminoglutamate was linked to an
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increased risk of incident T2D in older Puerto Ricans [116]. N-lactoyl amino acids like N-lactoylleu-
cine, N-lactoylvaline fused through a reaction between lactate and BCAAs are rarely reported in
metabolomic datasets, a significant increase in all measured N-lactoyl amino acids was observed
in T2D volunteers compared to those without T2D and metformin treatment increased their levels
in TwinsUK cohort [117]. We could therefore hypothesis the mechanism maybe mediated by the
medication, but the exact role in human body and pathways downstream are unclear and needs
further research. A study of Swedish men proved that increased lactate concentrations in serum
was independently associated with a higher incidence of T2D in a longitudinal study [118]. Lactate
is generated in the cytoplasm through the glycolytic pathway under anaerobic conditions [119],
other studies also showed that lactate production increases progressively during the early stages
of T2D development [120, 121]. This was argued that augmented lactate levels are crucial in
glucose transport and metabolism, profoundly contributing to insulin resistance [122]. Our study
confirmed that lipids lysoPC a C17:0, amino acids formiminoglutamate along with novel N-lactoyl-
amino acids N-lactoylleucine, N-lactoylvaline and carbohydrate lactate were significantly associ-
ated with glycemic deterioration and involvement in T2D progression.

7.2 Understanding of T2D heterogeneity

T2D is a complex, heterogeneous disease, so understanding the heterogeneity and enhancing
the personalized treatment is required. The T2D classification system proposed by Ahlqgvist et al.
[35] has been validated in various populations and has proven to be a useful tool to further char-
acterize potential pathophysiological pathways and diabetes progression. We firstly conducted
an original cluster replication including a detailed overview of participant transitions between rep-
licated clusters. We found that the characteristics of the KORA population were only partly re-
flected. Some of the inconsistencies in replicability may be due to variations in study design and
participants’ characteristics. We used age at examination for clustering in KORA which was sig-
nificantly higher compared to the ANDIS cohort. Additionally, individuals in KORA showed better
glycemic control and lower insulin resistance than those in the ANDIS sample [35], suggesting
that KORA may have included a higher proportion of T2D cases with less severe disease. Besides,
our HOMA models were calculated from fasting insulin rather than C-peptide which might induce
differences in estimates. Our results thus highlight the value of subphenotyping by demonstrating
the impact of specific study characteristics, and we add a potential new T2D subphenotype to the
existing panel and we consider this finding important for personalized prevention.

De-novo cluster analysis was derived from KORA study, k=3 was found to be the best number of
clusters rather than 4 based on silhouette and elbow plot. Mild obesity-related diabetes (MOD)-
like cluster disappeared, which is consistent with the observation from Safai et al.[123]. We further
assessed cluster performance and stability across different variable sets, basic variables with
additionally hsCRP, HDL-C, TG, or SBP, respectively. We observed that these additional varia-
bles had minimal impact on the reassignment of individuals, with over 90% individuals remaining
in their original clusters, suggesting high stability and robustness across different variable sets.
One could thus hypothesize that the original variables likely encompass a significant portion of
T2D heterogeneity and are sufficient for identifying clinically relevant T2D subphenotypes. In the
current analysis we included hsCRP for clustering to consider the role of subclinical inflammation
and assess potential differences within subphenotypes. Cluster 1 is most similar to SIRD with low
hsCRP with a high proportion of newly diagnosed diabetes, Cluster 2 is most similar to MARD
with the most favorable clinical characteristics. Cluster 3 is a distinct cluster, characterized by
high BMI, high hsCRP and low HOMAZ2-B, closely resembling a typical patient encountered in
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clinical practice. The mechanism could be the excess body weight triggers CRP stimulation and
inflammation, which plays a role in the regulation of insulin action and insulin resistance [124,
125]. PRS and the prevalence of self-reported parental history of diabetes were both highest in
Cluster 3. Besides, Cluster 3 had higher abundance of risk alleles which were mapped to locus
TCF7L2, which is the most significant locus for T2D risk and the first to be consistently identified
in genomic linkage studies [126]. TCF7L2 has also been reported to play essential developmental
and metabolic roles in adipose tissue. The inactivation of adipocyte TCF7L2 in knockout mice
promoted weight gain, and increased adipose tissue mass [127], and this phenotype was associ-
ated with adipose tissue inflammation [124, 128, 129]. So, Cluster 3 represents a T2D subphe-
notype associated with a greater genetic risk for both diabetes and obesity, and rigorous weight
control could prove particularly beneficial to offset the higher genetic risk. Cluster 1 was charac-
terized by a comparatively higher prevalence of neuropathy and this could be induced by insulin
dysregulation which can lead to neuropathic changes in sensory neurons and the peripheral nerv-
ous system, which is significantly affected by diabetes [130]. Interestingly, Cluster 1 has signifi-
cant lower HbA1c levels compared to Cluster 3 which also exhibits a relatively higher frequency
of neuropathy, so it would be interesting to investigate glucose-lowering therapy in this cluster in
the prevention of neuropathy. Additionally, lifestyle changes would be advantageous, including
dietary adjustments to reduce calorie intake and limit high-glycemic-index carbohydrates, along
with regular physical activity to boost calorie expenditure and improve insulin sensitivity in muscle
tissue [131, 132]. Cluster 2 showed a relatively higher proportion of CKD cases and stroke, which
could be due to the higher age in Cluster 2 as it is confirmed that age is a major risk factor for
metabolic complications in T2D [133, 134]. Since the risk in Cluster 2 is primarily driven by aging—
a non-modifiable factor—close monitoring of comorbidities is especially important for this group.
Strict control of factors like blood pressure and renal function, potentially with medication, is rec-
ommended. Taken together, clustering based on age, BMI, HbA1c, HOMA2-B, HOMA2-ID with
hsCRP provided the identification of a new distinct subphenotype with a potential genetic predis-
position to obesity-induced inflammation. Therefore, this thesis demonstrates that to fully leverage
the benefits of T2D subphenotyping, clustering approaches must be adapted and tailored to the
respective sample, thereby enabling the development of more personalized and precise treatment
strategies.

7.3 Limitation

We acknowledge several limitations in our studies. 1) Storing plasma samples for extended peri-
ods can lead to changes in metabolite concentrations [89], potentially affecting the associations.
2) Identifying metabolites, particularly in untargeted metabolomics, can be difficult due to gaps in
database and the existence of unidentified or novel metabolites, often indicated by asterisk (*) in
the metabolite names. and this may influence the associations; 3) The studies are mainly cross
sectional or rely solely on baseline metabolites measurements, which limits their ability to distin-
guish between cause and consequence. Longitudinal analyses could be conducted to investigate
the variation in metabolites concentrations across different stages to confirm our findings; 4) Re-
garding the T2D subphenotype study, the sample size of T2D is relatively small. It also had a
limited sample of individuals with diabetes-related complications and family history information.
Besides, we only investigated the prevalence of diabetic complications and incidence of compli-
cations need to be examined in future analysis.
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8. Conclusion and Outlook

8.1 Conclusion

Amongst increasing global cases, effective adaptation programs are crucial to reducing the grow-
ing burden of diabetes-related hospitalizations and medical care. This thesis demonstrated sev-
eral metabolic biomarkers like sphingolipids, phosphatidylcholines and amino acids that could
contribute to prediction of T2D incident and involved in the T2D progression, which provide the
clue for early detection of T2D in clinical. Moreover, this research work confirmed that T2D is
heterogeneous, subphenotype classification based on the specific sample is necessary and assist
in crafting personalized diabetes treatments. These research strategies outlined in this study align
with the guidelines of precision medicine in diabetes are crucial to safeguard public health.

8.2 Outlook

Diabetes cannot be cured today but proactive measures can be taken for prevention and remis-
sion to alleviate the challenges of diabetes and improve the quality of life for individuals who have
or are at risk of diabetes [135, 136].

Collectively, our findings provide insight into metabolic biomarkers participating in early T2D pro-
gression and disease heterogeneity based on data-driven classification, these align with the fu-
ture goals of T2D prevention and treatment/remission. More studies with larger sample sizes are
needed to corroborate our findings regarding the molecular biomarkers for early detection and
essential classification accounting for individual differences.

Furthermore, metabolic profiles remain unclear among people with obesity who have or do not
have T2D. In paper |, sphingolipids (SM C16:1, SM C18:1) and phosphatidylcholines (PC aa
C38:3) were found to mediate the effect from obesity to T2D, and these three biomarkers were
significantly higher in obese people but not significantly associated with T2D in the full model.
From mediation test, they showed significant association with HbA1c and fasting glucose as these
two are well-known clinical diagnotic factors for T2D. Hence, exploring whether molecular bi-
omarkers can distinguish between obese individuals with and without T2D, while further exploring
the role of metabolic biomarkers and the links between obesity and T2D, presents an intriguing
avenue for more research.

Genetic is a well-established risk factor for T2D. A recent study demonstrated genetic contributes
the heterogeneity of T2D pathophysiology by combining multi-ancestry genome-wide association
study data with single-cell epigenomics [137]. Population-level genetic changes require many
generations to take effect, this epidemic is primarily a result of recent environmental changes,
suggesting that shifts in non-genetic factors have triggered the effects of pre-existing susceptibility
genes [138]. It would be interesting to explore the potential role of the metabolites in groups with
different genetic risk profiles and figure out the interaction with environment-metabolites-gene,
shed more light on T2D mechanisms.

Results from a 5-year follow-up of the landmark Diabetes Remission Clinical Trial (DIRECT) study
reveal that weight loss can potentially sustain remission of T2D for at least five years [139]. Re-
mission refers to blood sugar levels can remain within a non-diabetic range long-term, without the
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need for diabetes medication. In our paper | and paper Il, we confirmed some metabolic bi-
omarkers involved in T2D development, this contributes to T2D early detection and prevention.
Thus, studies could target individuals already diagnosed with T2D, emphasizing the aspects of
remission and treatment. A longitudinal study could be designed to investigate the correlation
between BMI change and blood glucose levels. For instance, in Paper I, Cluster 3 was identified
as obesity-related diabetes. It would be interesting to examine whether additional weight loss
interventions could contribute to T2D remission within this group, but larger sample size would be
required. On the other hand, personalized treatment is a prominent area of interest, demanding
an understanding of individual trajectories of hyperglycemia and consequent diabetes complica-
tions stemming from diverse underlying biological factors. Therefore, employing effective classi-
fication methods based on multidimensional data is imperative. However, this process is not a
one-time endeavor. In Paper Ill, we encountered challenges in replicating clusters from the AN-
DIS study due to differing cohort characteristics. Hence, deriving de novo clusters based on
KORA's own clinical values proved to be more meaningful. This means another challenge of dia-
betes research would be the identification of suitable cohorts for translation taking into account
race and ethnic differences. If this is considered, improved representation of global populations
in subphenotyping studies would be covered [140].
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Abstract: Obesity plays an important role in the development of insulin resistance and diabetes,
but the molecular mechanism that links obesity and diabetes is still not completely understood.
Here, we used 146 targeted metabolomic profiles from the German KORA FF4 cohort consisting of
1715 participants and associated them with obesity and type 2 diabetes. In the basic model, 83 and
51 metabolites were significantly associated with body mass index (BMI) and T2D, respectively. Those
metabolites are branched-chain amino acids, acylcarnitines, lysophospholipids, or phosphatidyl-
cholines. In the full model, 42 and 3 metabolites were significantly associated with BMI and T2D,
respectively, and replicate findings in the previous studies. Sobel mediation testing suggests that the
effect of BMI on T2D might be mediated via lipids such as sphingomyelin (SM) C16:1, SM C18:1 and
diacylphosphatidylcholine (PC aa) C38:3. Moreover, mendelian randomization suggests a causal
relationship that BMI causes the change of SM C16:1 and PC aa C38:3, and the change of SM C16:1,
SM C18:1, and PC aa C38:3 contribute to T2D incident. Biological pathway analysis in combination
with genetics and mice experiments indicate that downregulation of sphingolipid or upregulation of
phosphatidylcholine metabolism is a causal factor in early-stage T2D pathophysiology. Our findings
indicate that metabolites like SM C16:1, SM C18:1, and PC aa C38:3 mediate the effect of BMI on T2D
and elucidate their role in obesity related T2D pathologies.

Keywords: obesity; type 2 diabetes; metabolomics; mediation; mendelian randomization; type 2
diabetes pathology
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1. Introduction

According to the World health Organization (WHO), over 1 billion people worldwide
are obese, including 650 million adults, 340 million adolescents and 39 million children,
and this results in the degradation of health [1]. Obesity is a disease impacting most body
systems and contributes to a range of noncommunicable diseases including cardiovascular
disease, type 2 diabetes (T2D), and cancer [2—4]. It has been proven that being overweight
or obese are the most critical conditions for risk of developing T2D and both are linked to
metabolic syndrome [5]. Metabolic processes are regulated by various perturbations from
its surrounding environment and several levels of enzymes [6]. The molecular mechanisms
by which obesity affects T2D development include lipid metabolism, insulin sensitivity,
and inflammation [7].

Increasing interest has been addressed in the application of metabolic profiling to the
identification of disease biomarkers, as it is a potent approach to uncovering the convoluted
progression between obesity, metabolism, and diabetes [8]. Stevens et al. outlined the
metabolomic signature of human obesity and linked them to T2D parameters such as
C-reactive protein (CRP) and HbAlc [9]. The study by Tulipani et al. shows metabolic
traits [lysolglycerophospholipids in particular lysophosphatidylcholines associated with
morbid obesity and several amino acids glutamate, glycine and branch chain amino acids
were biomarkers of risk of diabetes onset associated with obesity and prediabetes [10].
Lipidomics analysis has unraveled that several sphingomyelins, diacyl phosphatidyl-
choline, and lysophosphatidylcholine were associated with waist circumference whereas
HOMA-IR was strongly related with specific lysophosphatidylcholines and diacyl phos-
phatidylcholines [11]. These studies provide support for the involvement of metabolites in
progression of metabolic disease, but no emphasis was given to dissect the intermediate
pathway between obesity and diabetes.

Small molecular lipids such as sphingolipids, glycerophospholipids, and fatty acids
play vital roles in metabolic pathways related to health and disease. Sphingolipids are a
class of lipids; simple sphingolipids include the sphingoid bases and ceramides. Ceramides
are important bioactive lipids produced from three pathways: (i) the de novo pathway;
(i) the sphingomyelin pathway; and (iii) the salvage/recycling pathway [12]. Glycerophos-
pholipids are a class of lipids that constitute a major component of cell membrane, which
is generally composed of hydrophobic fatty acids and a hydrophilic phosphate group.
The phosphate group is modified by different small molecules to form different kinds of
glycerophospholipids, for example, by choline to form phosphatidylcholine [13]. Clinical
studies have demonstrated that phospholipids including sphingolipids and glycerophos-
pholipids are strongly associated with insulin sensitivity [14].

Genetic composition can be used to make predictions regarding disease susceptibility.
The overgrown obesity rates and their clinical consequences (T2D) clearly indicate that
non-genetic or environmental factors and their interaction with genetic variants are major
players of disease development [15]. Genome-wide association studies show more than
900 genetic variants associated with BMI [16] and more than 230 loci influencing risk of
12D [17]. Furthermore, linking metabolites with other omics, especially genetics using
genome-wide association (mMGWAS), gives access to genetics’ influence on the metabolic
composition of key lipids, amino acids, and carbohydrates [18-20]. mGWAS, with a grow-
ing sample size and ascending complex metabolic traits, allows for a more comprehensive
and systems-based downstream analysis.

In this work, we considered a targeted metabolomic analysis of 1715 participants
enrolled in the KORA FF4 Cohort to investigate metabolite markers for obesity and T2D
participate in development of obesity-related Type 2 diabetes. Metabolite profiles of
146 named serum metabolites were assessed and compared with publicly available studies.
The metabolites mediation effect of BMI on T2D was investigated using a mediation test.
Further, we used mendelian randomization (MR) to define metabolites that may be causally
linked with BMI and T2D and vice versa using genetic variants. Finally, biological pathways
and consequences were analyzed by incorporating genetics and mouse model data from
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the literature, yielding the bioactive role of sphingolipids and glycerophospholipids in
metabolic dysregulation and beta cell dysfunction.

2. Materials and Methods
2.1. Study Subjects and Sampling

The Cooperative Health Research in the Region of Augsburg (KORA) study is a
population-based cohort study. The KORA FF4 study (2013-2014) is the second follow-up
of KORA 54 (1999-2001). All samples included in the study were collected in the morning
between 8:00 a.m. and 10:30 a.m. after at least 8 h of fasting. We examined 2216 individuals
who had phenotype and metabolite measurements and excluded 501 participants in the
analysis, including (1) underweight (BMI < 15 kg/ m?) or missing covariate values (n = 23),
and (2) prediabetes (impaired fasting glycemia or impaired glucose tolerance, n = 390). It is
reported that impaired fasting glucose and impaired glucose tolerance should be considered
as different phenotypes from T2D, so we removed these participants [21]. Additionally
excluded were (3) diagnosis for type 1 diabetes (1 = 6) and (4) unclear type of diabetes
mellitus (n = 82). The remaining dataset has 1715 participants, comprising 1276 non-obese
participants (BMI < 30 kg/m?) and 439 obese (BMI > 30 kg/m?), and 1415 non-diabetic
participants and 300 individuals with type 2 diabetes. The incident T2D was defined
based on an oral glucose tolerance test (OGTT) or a validated physician diagnosis. WHO
diagnostic criteria were applied to the classification of KORA participants.

2.2. Metabolite Quantification and Normalization

Samples were collected and stored at —80 °C and profiling FF4 metabolomics were
performed in February—October 2019. The stability was measured and validated [22]. Blood
samples from KORA FF4 participants in the study were measured with the AbsolutelDQ™
p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). The assay procedures were
previously described in detail [23]. Briefly, 10 pL serum samples were added to the 96-well
kit plate with respective standards and dried under a nitrogen stream. Amino acids and bio-
genic amines were derivatized with 5% phenylisothiocyanate in ethanol/water/pyridine.
After metabolite and standard extraction, using methanol containing 5 mM ammonium
acetate, the eluate was diluted with water for LC MS/MS analysis and with the kits running
solvent for FIA-MS/MS analysis. The analytical process was conducted by the MetIQ™
software package and a targeted profiling scheme was applied to quantitatively identify
known metabolites. Metabolites that met any one of the three exclusion criteria were
deleted: (1) coefficient of variance (CV) value of five reference samples was equal to or
greater than 25%; (2) there were > 50% of all measured sample concentrations lower than
corresponding plate limit of detection (LOD), the plate LOD was defined as 3 times median
of three zero samples in each plate; and (3) the non-detectable rate of all measured samples
was equal to or greater than 50%. There were 146 metabolites that passed quality control
(QC). Non-detectable values in sample data were randomly imputed ranging from 75% to
125% of the half of the lowest measured value of the metabolite in each plate. Afterwards,
plate normalization factors (NFs) were taken into consideration and adjusted for metabolite
concentrations to reduce the plate impact. The normalization process was described else-
where [24]. Metabolite concentrations were natural-log transformed and scaled (mean =0,
sd = 1) to ensure comparability between the metabolites.2.3. Statistics

All statistical analyses were performed in R (version 4.1.0) and a two-sided
p value < 0.05 was considered as statistically significant after the Bonferroni correction.

2.2.1. Multivariable Linear Regression and Logistic Regression

For BMI-metabolite associations, multivariable linear regression was employed with
each metabolite as an independent variable and the BMI value as a dependent variable.
This analysis was adjusted for covariates age, sex in basic model and including additional
covariates like, physical activities, smoking status, systolic blood pressure, high-density
lipoprotein cholesterol (HDL-C), triglyceride, fasting glucose levels in full model. In logistic
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regression analysis for metabolite-T2D associations, odds ratios (ORs) for each metabolite
between two groups were calculated. Logistic regression analysis was carried out with the
diabetic status as a dependent variable and each metabolite as an independent variable.
Same risk factors in the linear regression analyses with additional BMI were added as
covariates in the logistic regression model and the same significance level was adopted.

2.2.2. Sobel Mediation Test

We performed Sobel tests [25,26] to assess whether metabolites carry the influence of
BMI to T2D. All analyses were conducted in R by using the package ‘bda’ v15.2.5 and the
functions mediation test. In order to adjust confounders, the residuals were obtained from a
linear regression model that each metabolite was a dependent variable and covariates (age,
sex, physical activity, smoking status, systolic blood pressure, HDL-C, and triglyceride) as
independent variables. Afterwards, metabolite residual entered the Sobel test model as a
mediator, and BMI as an independent variable, whereas fasting glucose or HbAlc was taken
as the dependent variable. With these two approaches, we examined the mediation effect
of metabolites. The p-value thresholds follow the Bonferroni-correction and metabolites
with p < 0.05 were considered to have a significant mediation effect.

2.2.3. Mendelian Randomization

We checked for causal inference using two sample mendelian randomisation (2SMR)
methods from the MRInstruments (0.3.2) and TwoSampleMR library (v0.5.6) [27]. 2SMR
is a method to draw a causal relation using only summary statistics of genome wide
association studies (GWAS) from two observational studies [27]. To assess the impact
of BMI on metabolite levels, in a 2SMR test, BMI instruments were obtained from the
GIANT-UK Biobank meta-analysis [16] and the corresponding SNP estimates on T2D
were extracted from the mGWAS [28]. BMI instruments with genome-wide significance
(p<1x 10~8) and an LD clumping threshold of 0.001 were considered. The exposure and
outcome data were harmonized before performing the MR analysis by positioning the
SNPs on the same effect allele. We used the IVW method to estimate the causal effect of
BMI on metabolites. From the direction of metabolites to T2D, metabolite instruments were
obtained from the metabolite-GWAS [28] and extracted the corresponding SNPs from the
GWAS meta-analysis [29]. After LD clumping and harmonization, a Wald ratio method
was selected in MR analysis to estimate the causal relationship due to the limited SNP
instruments. For sensitivity analysis, we performed heterogeneity or horizontal pleiotropy
based on the MR-Egger analysis.

3. Results
3.1. Associations of Metabolites with BMI and T2D
3.1.1. Characteristics of the KORA FF4 Participants

Among 1715 participants, 1276 individuals were non-obese (BMI < 30) and 439 were
obese (BMI >30). As shown in Table 1, there was no significant difference in sex and
alcohol consumption between obese and non-obese groups. Compared with the non-obese
group, the blood pressure, triglycerides, and fasting glucose were significantly higher and
HDL cholesterol was significantly lower in the obese group. Besides, for participants with
BMI < 30, only 136 individuals (10.7%) developed T2D, whereas T2D was diagnosed more
frequently in obese participants (37.6%).

Similarly, for alcohol consumption, no significant difference between healthy and T2D
participants was observed. BMI, blood pressure, triglycerides, and fasting glucose were
significantly higher and HDL cholesterol was significantly lower in the T2D group (Table 2).
Compared with non-diabetic individuals, the cases of obesity in T2D groups (53.3%) were
almost three times higher than in the normal participant’s group (19.2%).
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Table 1. Characteristics of the KORA FF4 participants based on their BMI. Mean and standard
deviation are provided for quantitative variables. Count and percentage are provided for categorical
variables. The significant difference of population characteristics between the individuals with obesity
and the normal participants was calculated. Categorical variables were calculated via the chi square
test. Student’s ¢ test was used for continuous variables. Abbreviations: HbA1C, glycated hemoglobin;
HDL, high-density lipoprotein; LDL, low-density lipoprotein.

BMI Overall Non-Obese Obese

(BMI < 30 kg/m?) (BMI > 30 kg/m?) p Value
Sample size 1715 1276 439

Age mean (SD) 59.0 (12.2) 58.1 (12.1) 62.0 (12.0) <0.001
Sex woman (%) 904 (52.7) 683 (53.5) 221 (50.3) 0.268
Weight (kg) mean (SD) 78.6 (16.0) 72.7 (11.8) 95.7 (14.2) <0.001
Height (cm) mean (SD) 169.1 (9.6) 169.5 (9.6) 167.7 (9.7) <0.001
Alcohol (g/day) mean (SD) 14.2 (19.4) 14.5 (18.2) 13.5 (22.5) 0.392
Waist (cm) mean (SD) 95.6 (14.0) 90.2 (10.5) 111.6 (10.3) <0.001
Waist-hip-ratio mean (SD) 0.9 (0.1) 0.88 (0.1) 0.96 (0.1) <0.001
Fasting glucose (mmol/L) mean (SD) 5.6 (1.3) 5.4 (1.0) 6.3 (1.7) <0.001
2 h post glucose (mmol/L) mean (SD) 5.8 (2.2) 5.5(1.7) 6.9 (3.2) <0.001
Systolic blood pressure (mmHg) mean (SD) 1179 (17.2) 116.4 (16.6) 122.5 (18.1) <0.001
Diastolic blood pressure (mmHg) mean (SD) 72.7 (9.5) 72.2(9.1) 74.0 (10.3) 0.001
Smoking (%) <0.001

Smoker 267 (15.6) 221 (17.3) 46 (10.5)

Ex-smoker 658 (38.4) 461 (36.1) 197 (44.9)

Never-smoker 790 (46.1) 594 (46.6) 196 (44.6)

Physical activities inactive (%) 702 (40.9) 456 (35.7) 246 (56.0) <0.001
HDL cholesterol (mmol/L) mean (SD) 1.7 (0.5) 1.8 (0.5) 1.5 (0.4) <0.001
LDL cholesterol (mmol/L) mean (SD) 3.5(0.9) 3.4(0.9) 3.6 (0.9) 0.048

Triglycerides (mmol/L) mean (SD) 1.4 (0.8) 1.25 (0.8) 1.6 (0.9) <0.001
HbAlc (%) mean (SD) 5.5(0.7) 5.4 (0.6) 5.8 (0.9) <0.001

Total cholesterol (mmol/L) mean (SD) 5.6 (1.00) 5.6 (1.0) 5.5 (1.0) 0.409
C-reactive protein (mg/L) mean (SD) 23(4.4) 1.7 (3.8) 3.9(5.5) <0.001
Type 2 diabetesy (%) 300 (17.5) 136 (10.7) 164 (37.4) <0.001

Table 2. Characteristics of the KORA FF4 participants based on their diabetic status. Mean and
standard deviation is provided for quantitative variables. Count and percentage are provided for
categorical variables. The significant difference of population characteristics between the diabetic
patients and nondiabetic participants was tested, respectively. Categorical variables were calculated
via chi square test. Student’s t test was used for continuous variables.

Diabetes Overall ;1133 (];Zels)) p Value
Sample size 1715 1415 300
Age mean (SD) 59.0 (12.2) 59.7 (12.2) 69.5 (10.0) <0.001
Sex woman (%) 904 (52.7) 784 (55.4) 120 (40.0) <0.001
Weight (kg) mean (SD) 78.6 (16.0) 76.8 (15.3) 87.2 (16.5) <0.001
Height (cm) mean (SD) 169.1 (9.6) 169.4 (9.7) 167.2 (9.1) <0.001
Alcohol (g/day) mean (SD) 14.2 (19.4) 13.9 (18.1) 15.8 (24.7) 0.115
Waist (cm) mean (SD) 95.6 (14.0) 93.1 (12.9) 107.8 (12.7) <0.001
Waist-hip-ratio mean (SD) 0.9 (0.1) 0.9 (0.1) 1.0 (0.1) <0.001
Fasting glucose (mmol/L) mean (SD) 5.6 (1.3) 52(0.4) 7.6 (2.0) <0.001
2 h post glucose (mmol/L) mean (SD) 5.8(2.2) 54(1.1) 12.6 (3.5) <0.001
Systolic blood pressure (mmHg) mean (SD) 1179 (17.2) 116.1 (16.2) 126.7 (18.8) <0.001
Diastolic blood pressure (mmHg) mean (SD) 72.7 (9.5) 72.8 (9.1) 72.0 (11.1) 0.201
Smoking (%) <0.001
Smoker 267 (15.6) 243 (17.2) 24 (8.0)

Ex-smoker 658 (38.4) 524 (37.0) 134 (44.7)

Never-smoker 790 (46.1) 648 (45.8) 142 (47.3)

Physical activities inactive (%) 702 (40.9) 512 (36.2) 190 (63.3)
HDL cholesterol (mmol/L) mean (SD) 1.72 (0.5) 1.76 (0.5) 1.48 (0.4) <0.001
LDL cholesterol (mmol/L) mean (SD) 3.5(0.9) 3.5(0.9) 3.3(0.9) <0.001
Triglycerides (mmol/L) mean (SD) 1.4 (0.8) 1.3 (0.8) 1.8 (1.0) <0.001
HbA1lc (%) mean (SD) 5.5(0.7) 5.3 (0.3) 6.5 (1.0) <0.001
Total cholesterol (mmol/L) mean (SD) 5.6 (1.0) 5.6 (1.0) 5.3 (1.1) <0.001
C-reactive protein (mg/L) mean (SD) 23 (4.4) 2.1(4.3) 34 (4.6) <0.001

BMI = Obese (%) 439 (25.6) 275 (19.4) 164 (54.7) <0.001
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3.1.2. Metabolites Associated with BMI and T2D

A linear regression model was used to investigate the BMI associated metabolites and
a logistic regression model was employed for T2D associations. Model assumptions have
been performed and reported in Supplemental Document S2. Only age and sex (adding
BMI for T2D model) were added in the basic regression models. The numbers of significant
metabolites were the highest, and 83 metabolites were significantly associated with BMI
and 51 metabolites were significantly associated with T2D.

Next, we tested how covariates like lifestyle, lipids, and fasting glucose influenced
the association between metabolites with BMI and T2D. When more covariates were
included, the significant numbers decreased. In particular, the association between BMI
and metabolites was affected mostly by lipids and blood pressure, which was indicated
from the dramatically dropped number when lipids and blood pressure were added in the
model. Fasting glucose influenced mostly the T2D association and the number of significant
metabolites decreased from 41 to 3, which suggests many metabolites were associated with
T2D mediated by fasting glucose (Figure 1).
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Figure 1. The number of metabolites significantly associated with BMI and T2D in different models
after multiple testing correction. The first coordinate on x-axis shows basic model building upwards
with including lifestyle, blood pressure, lipids, and fasting glucose parameters as covariates in the
model. The y-axis depicts a number of significant metabolites resulting from each model as indicated
on x-axis. Lifestyle includes smoking status and physical activities. BP: systolic blood pressure; lipids
include HDL cholesterol (HDL-C) and triglycerides.

Obesity specific metabolites: Linear regression was used to execute a metabolite-wide
association study in KORA FF4, and we identified 83 and 42 metabolites associations in
the basic and full models after conservative Bonferroni correction for multiple testing. A
volcano plot (Figure 2A,B) provides a quick visual identification of statistically significant
metabolites with a larger effect size. The full summary statistics of different models
are reported in the Supplemental Materials Tables S2 and S3. Table 3 shows only the
metabolites significantly associated with BMI in the full model. Totally, 12 metabolites were
negatively associated with BMI whereas 30 were positively associated in the full model.
We confirmed the BMI metabolites associations using the published literature and almost
all were replicated except for SM C20:2.
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Figure 2. Volcano plots show the association of metabolites with BMI and T2D in the basic model
(A,C) and the full model (B,D). Bonferroni correction p-value cut-off is 0.05/146 = 0.00034 was
considered. Each dot represents a metabolite, and they are displayed based on the beta estimate or

odds ratio (x-axis) and the negative logarithm (base 10) of the p-value (y-axis). The covariates for the

basic model are age, sex, and (BMI); the covariates for the full model are age, sex, (BMI), smoking

status, physical activities, HDL-C, blood pressure, triglycerides, and fasting glucose.
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From this analysis we made the following four key observations.

We have observed that all diacyl phosphatidylcholines (PC aa), acylcarnitines, bio-
genic amines, and sphingomyelins (SM) were positively associated with BMIL In
particular, PC aa C38:3 was the strongest metabolite associated with BMI (1.301
[1.082-1.520], g-value = 3.65x 10=%5. Glutamate (1.255 [1.032-1.478],
g-value = 3.05 x 10~%), SM C16:1 (1.118 [0.901-1.336], g-value = 3.87 x 10721),
alpha-AAA (0.955 [0.726-1.184], g-value = 8.04 x 10~1%), and CO (0.672 [0.462-0.882],
g-value = 6.13 x 10~8) were those with the strongest association in each category;
Some amino acids were positively correlated with BMI. Among them, glutamate (1.255
[1.032-1.478], g-value = 3.05 X 10~?%) and Tyrosine (0.901 [0.695-1.106],
g-value = 2.51 x 10~'%) have the strongest association. Others were inversely as-
sociated with BMI: Asparagine (—0.642 [—0.843——0.44], gq-value = 7.73 x 10~8) and
Glycine (—0.515 [—0.724-—0.305], g-value = 2.34 x 10~%);

Three acylalkylphosphatidylcholine (PC ae) were positively associated with BMI, PC
ae C36:5 (0.502 [0.29-0.713], g-value = 5.09 x 10~%), PC ae C36:4 (0.457 [0.254-0.66],
g-value = 156 x 107%), and PC ae C32:2 (0.506 [0.258-0.754],
g-value = 9.52 x 1073); whereas others PC aes were negatively associated with
BMI: PC ae C42:3 (—0.594 [—0.821-—0.368], g-value = 4.29 x 107°), PC ae C36:2
(—0.607 [—0.84-—0.373], g-value = 5.48 x 10°), PC ae C40:6 (—0.424 [—0.639-—0.209],
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g-value = 166 X 1072), and PC ae (382 (—0.406 [—0.613——0.199],
g-value = 1.80 x 1072);

(4) Alllysophosphatidylcholines (lyso PC) were negatively associated with BMI. In partic-
ular, lysoPC a C17:0 (—1.1 [—1.305-—0.896], g-value = 4.20 x 10~23) was the strongest.

Table 3. Metabolites significantly associated with BMI in the linear regression full model. The
dependent variable was BMI, whereas the independent variables were the log transformed and
standardized concentration of each metabolite, adjusted for age, sex, smoking status, physical
activities, HDL-C, blood pressure, triglycerides, and fasting glucose. g-values were reported
as p values adjusted for multiple testing by Bonferroni correction. Only metabolites with a
p-value lower than 0.00034 (0.05/146) were included in this table.

Positively Associated

Category Metabolite Beta Estimate (95% CI) p-value g-value
PC aa PC aa C38:3 1.301 (1.082-1.520) 250 x 10730 365 x 10728
PC aa PC aa C38:4 0.728 (0.514-0.943) 3.74 x 10711 5.47 x 1077
PC aa PC aa C40:4 0.692 (0.471-0.913) 9.89 x 10~ 1.44 x 1077
PC aa PC aa C32:1 0.606 (0.375-0.837) 293 x 1077 428 x 107>
PC aa PC aa C40:5 0.505 (0.279-0.730) 1.19 x 1075 1.74 x 1073
PC aa PC aa C36:3 0.512 (0.281-0.742) 1.41 x 1075 2.06 x 1073
PC aa PC aa C36:4 0.426 (0.207-0.644) 1.38 x 104 2.01 x 1072
Amino Acids Glutamate (Glu) 1.255 (1.032-1.478) 2.09 x 107%  3.05 x 10~
Amino Acids Tyrosine (Tyr) 0.901 (0.695-1.106) 1.72x 1077 251 x 10"
Amino Acids Phenylalanine (Phe) 0.823 (0.618-1.027) 6.11 x 10715 892 x 10713
Amino Acids Valine (Val) 0.876 (0.652-1.100) 260 x 1071 3.80 x 10712
Amino Acids Isoleucine (Ile) 0.866 (0.618-1.114) 1.05 x 1011 1.53 x 102
Amino Acids Leucine (Leu) 0.755 (0.515-0.995) 9.02 x 1010 1.32 x 1077
Amino Acids Alanine (Ala) 0.458 (0.242-0.673) 3.27 x 107° 4.78 x 1073
Amino Acids Ornithine (Orn) 0.399 (0.195-0.603) 1.30 x 1074 1.90 x 102
SM SM C16:1 1.118 (0.901-1.336) 265 x 1072 387 x10°2
SM SM C18:1 1.061 (0.848-1.273) 581 x 1072 848 x 10~
SM SM C20:2 0.763 (0.541-0.985) 2.14 x 1071 312 x 107°
SM SM C18:0 0.697 (0.490-0.903) 452 x 1071 6.60 x 1077
SM SM C24:1 0.518 (0.310-0.726) 1.16 x 1076 1.69 x 10~*
Biogenic Amines AIF(’:‘I;' ﬁﬁi"gﬂd 0.955 (0.726-1.184) 551 x 10716 8,04 x 10~ 14
Biogenic Amines Kynurenine 0.743 (0.524-0.962) 3.81 x 10~ 5.57 x 10~°
Biogenic Amines  4-Hydroxyproline (t4-OH-Pro) 0.485 (0.279-0.691) 413 x 107 6.02 x 104
Acylcarnitines Carnitine (C0) 0.672 (0.462 -0.882) 420 x 10710 6.13 x 108
Acylcarnitines Valerylcarnitine (C5) 0.700 (0.478-0.922) 7.96 x 1010 1.16 x 10~7
Acylcarnitines Propionylcarnitine (C3) 0.670 (0.449-0.891) 3.50 x 10~° 5.11 x 1077
Acylcarnitines Butyrylcarnitine (C4) 0.457 (0.247-0.667) 2.15 x 1072 3.14 x 1073
PC ae PC ae C36:5 0.502 (0.290-0.713) 3.49 x 107° 5.09 x 10~*
PC ae PC ae C36:4 0.457 (0.254-0.660) 1.07 x 10~ 1.56 x 1073
PC ae PC ae C32:2 0.506 (0.258-0.754) 6.52 x 107> 952 x 1073

Negatively Associated

Category Metabolite Beta Estimate (95% CI) p-value g-value
lysoPC lysoPC a C17:0 —1.1 (—1.305--0.896) 288 x 107 420 x 10723
lysoPC lysoPC a C18:2 ~1.129 (—1.348-—0.911) 172 x 1073 251 x 102!
lysoPC lysoPC a C18:1 —0.978 (—1.193-—0.763) 1.08 x 10718 872 x 101
lysoPC lysoPC a C16:0 —0.640 (—0.849——0.432) 219 x 107° 3.20 x 1077
lysoPC lysoPC a C18:0 —0.521 (—0.725-—0.316) 6.48 x 107 9.46 x 107°
lysoPC lysoPC a C20:4 —0.415 (—0.627-—0.203) 1.28 x 10~* 1.86 x 1072
Amino Acids Asparagine (Asn) —0.642 (—0.843——0.44) 5.30 x 10710 7.73 x 1078
Amino Acids Glycine (Gly) —0.515 (—0.724-—0.305) 1.60 x 1076 234 x 107*
PC ae PC ae C42:3 —0.594 (—0.821-—0.368) 294 x 1077 429 x 1075
PC ae PC ae C36:2 —0.607 (—0.840-—0.373) 3.75 x 1077 5.48 x 107>
PC ae PC ae C40:6 —0.424 (—0.639-—0.209) 1.14 x 1074 1.66 x 1072
PC ae PC ae C38:2 —0.406 (—0.613-—0.199) 1.23 x 1074 1.80 x 1072
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To investigate the direction of effect across BMI class (normal, overweight, and obese),
the six most significant metabolites from the full model were visualized by violin-box plots
stratified by BMI in Figure 3. PC aa C38:3, glutameta (Glu), SM C16:1 and SM C18:1 showed
synchronized direction with BMI, increasing concentrations with increased BMI, whereas
lysoPC a C17:0 and lysoPC a C18:2 reversed, which is consistent with the result from the

linear regression model.
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Figure 3. Violin-boxplots show the top six significant metabolite distributions of study subjects
divided in three different classes of BMI, normal (18.5 < BMI < 25), overweight (25 < BMI < 30),
and obese (BMI > 30). The box contains 50% of the participants. The middle line stands for median
dividing the box into two areas. The 25th and 75th percentile of the distribution are represented by
upper and lower hinges.

T2D specific metabolites: multivariable logistic regression analysis was conducted
with known diabetes-related variables as covariates to identify significant metabolites.
Similarly, alcohol was not included in the model as a covariate because there was no
significant difference between T2D and healthy individuals. A volcano plot (Figure 2C,D)
represents the result of the logistic regression model. The full summary statistics of different
models are reported in the Supplemental Materials Tables S4 and S5. Table 4 shows only the
metabolites significantly associated with T2D in the full model. Three metabolites, C3-DC
(C4-OH), alpha-AAA and isoleucine (Ile) were observed to have significant associations
in the full model after conservative Bonferroni correction. All of them were positively
correlated with T2D and replicated by the published literature (details in the Section 4).
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Table 4. Metabolites significantly associated with T2D in the logistic regression full model. The
dependent variable was T2D status, whereas the independent variables were the log transformed and
standardized concentration of each metabolite, adjusted for age, sex, BMI, smoking status, physical
activities, HDL-C, blood pressure, triglycerides, and fasting glucose. g-values were reported as
p-values adjusted for multiple testing by Bonferroni correction. Only metabolites with p-value lower
than 0.00034 (0.05/146) were included in this table.

Category Metabolite Odds Ratios (95% CI) p-Value g-Value
Acylcarnitines Hydroxybutyrylcarnitine (C3-DC (C4-OH)) 0.619 (0.363-0.888) 3.79 x 1076 5.54 x 1074
Biogenic Amines Alpha-Amino acid (alpha-AAA) 0.638 (0.308-0.977) 1.77 x 1074 2.58 x 1072
Amino Acids Isoleucine (Ile) 0.637 (0.293-0.987) 3.08 x 10~* 450 x 1072

Figure 4 displays the violin-boxplots of the three significant metabolites in the T2D
full model. The concentrations of C3-DC (C4-OH), alpha-AAA, and Ile increased among
the group with T2D, which is consistent with the result from the logistic regression model.

C3-DC (C4-0OH) alpha—-AAA lle
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Figure 4. Violin-box plots show the distribution of three significant metabolites stratified by diabetic
status. The box contains 50% of the observations. The middle line stands for median dividing the
box into two areas. The 25th and 75th percentile of the distribution are represented by upper and
lower hinges.

3.2. Sobel Mediation Test

A Sobel mediation test was conducted to investigate whether a mediator carries the
effect of an independent variable on a dependent variable. In our research, we used
fasting glucose or HbAlc as T2D indicators to test the metabolite mediation of the effect of
BMI on T2D. In order to adjust the influence of the confounders, the metabolite residual,
calculated from the linear regression model between each metabolite and covariates, was
used as a mediator in the test. The significant mediators are shown in Table 5 and full
statistics are shown in Supplementary Materials Table S6 and Table S7, respectively. The
mediation of the associations between BMI and fasting glucose via the 12 metabolites were
Bonferroni-corrected significant (q-value < 0.05) whereas nine metabolite mediations were
significant between BMI and HbAlc. Among all these metabolites, sum of hexose, SM
C16:1, glutamate, PC aa C38:3, alpha-AAA, isoleucine, lyso PC a C18:0, and leucine were
significant in both tests, which suggests their robust mediation effects. The sum of hexose
owned the strongest mediation in both studies, which was not very surprising as it mainly
represents the glucose in human blood. A summarizing plot of the mediation analysis is
shown in Figure 5.
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Table 5. Results for mediation analysis with the BMI as independent variable, metabolite as potential
mediator, fasting glucose or HbAlc as dependent variable. g-values were reported as p-value adjusted
for multiple testing by Bonferroni correction.

Sobel Test (Metabolite, BMI, Fasting Glucose)

Sobel Test (Metabolite, BMI, HbA1c)

Metabolite p-Value q-Value Metabolite p-Value q-Value
Sum of hexoses 149 x 10716 2,18 x 10~ 14 Sum of Hexoses 114 x 1015 1.66 x 10713
SM C16:1 288 x 1077 420 x 107° Isoleucine (Ile) 1.08 x 107° 158 x 1073
Glutamate (Glu) 1.27 x 107 1.85 x 10~* SM C16:1 1.40 x 1075 2.04 x 1073
PC aa C38:3 262 x107° 3.82 x 107* lysoPC a C18:0 556 x 107> 8.11 x 1073
lysoPC a C17:0 1.31 x 107°  1.91 x 1073 Leucine (Leu) 1.05 x 107*  1.53 x 1072
Alpha-Amino acid (alpha-AAA) 158 x 1075 2.3 x 1073 Glutamate (Glu) 1.06 x 107*  1.55 x 1072
Isoleucine (Ile) 1.95x 107°  2.84 x 1073 lysoPC a C16:0 112 x 107 1.63 x 1072
lysoPC a C18:0 500 x 107> 730 x 1073  Alpha-Amino acid (alpha-AAA) 148 x 10~% 2.16 x 102
Alanine (Ala) 6.94 x 107°  1.01 x 1072 PC aa C38:3 314 x 107* 459 x 1072
SM C18:1 133 x 107*  1.94 x 1072
Leucine (Leu) 1.48 x 107*  2.16 x 1072
SM C20:2 291 x 1074 4.24 x 1072
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The Lancet 2022 Jan; 399:394-
405

Figure 5. Schematic representation of the mediation analysis [2,30-32].

3.3. Mendelian Randomization

To assess the causality relationship between BMI, identified metabolites from medi-
ation test and T2D, we employed two-sample mendelian randomization (MR) tests. We
conducted a two-sample (2SMR) mendelian randomization analysis in two directions
(BMI-to-metabolite, metabolite-to-T2D, Figure 6). BMI instruments were extracted from
the GIANT-UK Biobank meta-analysis [16] and then the corresponding SNPs estimated
on T2D were selected from the published metabolite-GWAS [28]. Metabolite instruments
were obtained from the same metabolite-GWAS [28] and extracted the corresponding SNPs
from the GWAS meta-analysis [29]. The 2SMR analysis results are presented using the
Inverse Variance Weighted (IVW) method in BMI to metabolite direction and the Wald
ratio method in metabolite to T2D direction. Only SM C16:1, SM C18:1, and PC aa C38:3
have available instruments in both directions, so we showed the MR results of these three
metabolites in this study.
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Figure 6. Schematic diagram is suggestive of relationships between BMI, metabolites and T2D. The
studies we used for MR were listed in the figure. 8-estimate stands for beta coefficient, se stands for
standard error [16,28,29].

Our results indicated that the change of BMI could cause the concentration change
of SM C16:1 and PC aa C38:3. The change of SM C16:1, SM C18:1, and PC aa C38:3
contributes to the development of T2D, which suggests lipids like SM C16:1 and PC aa C38:3
are intermediate molecules involved in the progression from obesity to T2D. Sensitivity
analysis was carried out to test if these results were robust from proof of heterogeneity or
horizontal pleiotropy, which was supported by the MR-Egger analysis. For BMI to SM
C16:1, Q statistic from the heterogeneity measure was not significant (p_Het 0.51 > 0.05),
indicating there was no heterogeneity. For BMI to PC aa C38:3, the p-value (p_Het 0.03)
was slightly lower than 0.05, showing heterogeneity between different instruments, and
random effect was selected to report the result. The MR-Egger intercept test (p_Pleio > 0.05)
suggested no directional pleiotropy for both metabolites. For the direction of metabolites to
T2D, we did not perform the sensitivity analysis as only one SNP instrument was available
for each metabolite.

3.4. The Biological Role of SM C16:1, SM C18:1, and PC aa C38:3 in Transition to T2D

In order to understand the biological pathway of these three lipids (SM C16:1, SM
C18:1, and PC aa C38:3), we searched for the associated SNPs and genes in humans. The
metabolite SM C18:1 was reported to be associated with SNP rs12610250-A, the locus
CERS4 [28]. PC aa C38:3 was significantly correlated with rs7200543-A, locus PDXDC1
and rs968567-T, locus FADS2 [28]. Both SM C16:1 and SM C18:1 were associated with
rs174547-C, rs174537-A, rs102275-G, rs174546-A, rs174556-A, rs1535-G, rs174449-G,
rs1000778-A, the locus FADS1-3 [33]. CERS4 and FADS1-3 were identified to influence
the biosynthesis of sphingolipids including sphingomyelins and ceramides [28,33], which
could be produced from each other by hydrolysis and synthase [34]. It was reported sphin-
gomyelins were essential for insulin secretion in rat beta cells [35] and beta cell viability [36].
Mice model and cell experiments demonstrated that inhibition of ceramide biosynthesis
impaired insulin sensitivity and caused pancreatic beta-cell dysfunction [36,37]. This is
consistent with the result of negative associations between SM C16:1, SM C18:1, and T2D
in the current study (basic model). The specific variants of PDXDC1 and FADS2 were
found to upregulate phosphatidylcholine [28]. Increased phosphatidylcholines bind to
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and activate the aryl hydrocarbon receptor (AhR) expressed in hepatocytes and inhibi-
tion of the essential genes including IRS-2 for promotion of the insulin pathway [38]. We
observed the consistent result that PC aa C38:3 was positively associated with T2D in
a human study [32]. These observations support the particular sphingolipid and phos-
phatidylcholine dysmetabolism as a causal factor in early-stage T2D progression (shown
in Figure 7).

SM C16:1, SM C18:1
rs174547-C, rs174537-A,  SM C18:1 PC aa C38:3
15102275-G, 1s174546-A,  rs12610250-A 1s7200543-A
rs174556-A, rs1535-G, (CERS4) (PDXDC1)
15174449-G, rs1000778-A 1s968567-T (FADS2)
(FADS1-3) l |
Downregulated Sphingolipids Upregulated Phosphatidylcholines
Sphingomyelinase .
Downregulatgd — Down.regulated AhR
sphingomyelin | d=—— | ceramide
biosynthesis SM Synthase [biosynthesis L
IRS-2
\ l / hepatocyte
®
®
® ® Insulin release
Cell death
Pancreatic Beta-cell
T2D development

Figure 7. Schematic representation of the pathway analysis of diminished sphingolipid metabolism
to a transition of T2D. The SNPs marked with green are the ones used in the MR test. The red pathway
is generally involved in sphingomyelins (SM), the purple and gray pathways are for ceramides, and
phosphatidylcholines (PC), respectively. All three kinds of metabolites influence insulin release.

4. Discussion

Obesity triggers a cascade of metabolic processes that raise the stake of various co-
morbidities including insulin resistance and glycemic deterioration causing T2D. Under-
standing the role of intermediate molecules involved in the process from obesity to T2D
offers a therapeutic strategy to early-stage T2D pathophysiology. In our study, we assessed
the functionally characterized targeted metabolite profiles of KORA FF4 participants for
underlying metabolic pathway links. The major results of the present study are (1) iden-
tification of several metabolite changes among subjects with obesity and diabetic status,
(2) metabolites such as SM C16:1, SM C18:1, and PC aa C38:3 show significant mediation
effect of BMI on T2D, (3) the causality direction of BMI, three lipids (SM C16:1, SM C18:1, PC
aa C38:3), and T2D, and (4) the biological consequences of the downregulated sphingolipids
and upregulated phosphatidylcholine.

It is strongly suggested that in blood, elevated concentrations of branched-chain
amino acids are associated with an increased risk of type 2 diabetes mellitus [39,40]. In our
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study among metabolites associated with BMI, the branched chain amino acids (BCAAs),
isoleucine (Ile), leucine (Leu), and valine (Val) were positively correlated and have been
confirmed in several studies [30,41,42].In fact, isoleucine was positively associated with
T2D in the full model and replicated in the literature [21]. Isoleucine (Ile) and leucine (Leu)
also appear to be mediators between BMI and T2D. Other amino acids such as glutamate,
alanine, tyrosine, and phenylalanine significantly changed among different BMIs and these
also have been found in other studies [30,43,44]. Other studies speculate the reason could
be that high concentration of BCAAs causes insulin resistance by activating the mammalian
target of rapamycin (mTOR) signaling [45,46]. There might be a mechanism proposed for
branched-chain-keto acid dehydrogenase (BCKD) inhibition and suppression of enzymatic
catabolism of amino acids in individuals with obesity [47].

Acylcarnitines like carnitine (C0), valerylcarnitine (C5), propionylcarnitine (C3) in-
creased in individuals with higher BMI, which is in line with other studies [30,44]. Hy-
droxybutyrylcarnitine (C3-DC (C4-OH)) was positively associated with T2D [48]. Several
studies indicate an increase in plasma acyl carnitines in patients with T2D [30,31] and it is
attributed to an incomplete long chain fatty acyl-CoA oxidation of fatty acids [43,49].

Biogenic amines were found to be related with obesity and T2D. Alpha-aminoadipic
acid (alpha-AAA) and kynurenine were positively associated with BMI. Meantime, alpha-
aminoadipic acid was also positively associated with T2D in the full model and showed
significant mediation of BMI to T2D. Alpha-aminoadipic acid is an intermediate in the
metabolism of lysine and rat studies indicate that aminoadipic acid is elevated in the pre-
diabetic state and so it could be a predictive biomarker for the development of diabetes [50].

Considering glycerophospholipids, all diacylphosphatidylcholines (PC aa) increased
with increased BMI, such as PC aa C38:3, PC aa C38:4, PC aa C40:4, PC aa C32:1, and
especially PC aa C38:3, the strongest metabolite with the lowest p-value, which is in line
with Frigerio et al. [30]. All lysophosphatidylcholines (lyso PCs) were observed to have
negative association with BMI. lysoPC a C17:0, lysoPC C18:2, and lysoPC C18:1 were the
strongest negatively correlated with BMI, consistent with several other studies [10,51].
Only a few acylalkylphosphatidylcholine (PC ae) increased with BMI (PC ae C36:5, PC
ae C36:4, PC ae C32:2) whereas many decreased (PC ae C42:3, PC ae C36:2, PC ae C40:6,
PC ae C38:2). Moreover, PC aa C38:3, LysoPC a C16:0, LysoPC a C17:0, and LysoPC
a C18:0 were observed to mediate from BMI to T2D, and this is a novel finding in our
study. Phospholipids such as phosphatidylcholines (PC) are the essential constituent of
cellular membranes and are critical for cellular signal transduction [52]. The LysoPCs
(16:0, 17:0, 18:0) negatively associated with T2D in the basic model in our cohort have
been considered to be involved in pro-inflammatory and atherogenic [53], but their major
role still needs to be elucidated. PC aa C38:3 is reported to be positively associated with
incident T2D [32], and mediation analysis and mendelian randomization results indicate it
could be the intermediate molecules involved in obesity-related T2D development. The
mechanisms governing the PC-mediated association between obesity and T2D could be via
fatty acid (FA) and insulin signaling pathways. High-fat diets, inducing overproduction of
PC, result in obesity and diabetes in individuals [54,55]. It is stated that abnormally high
PC lipids affect energy metabolism and insulin signaling [56,57]. Mice fed with high-fat
diets show upregulation of exosomal phosphatidylcholine, which results in binding to the
aryl hydrocarbon receptor (AhR) [38], a transcription factor expressed in hepatocytes to
integrate dietary and metabolic processes, and thus inhibition of the insulin response.

The Frigerio et al. study [30] confirms that sphingomyelins (SM), SM C16:1, and
SM (C18:1 were significantly associated with BMI. In the mediation test, both SM C16:1
and SM C18:1 have significant mediation effects of BMI on fasting glucose. These two
metabolites have been shown to be associated with BMI and T2D in other studies [30,31].
Integrating with mendelian randomization suggests the causality direction and sphin-
gomyelins such as SM C16:1 could be the molecular mediators of obesity-to-T2D evolution.
Sphingomyelins are one of the most abundant sphingolipids in bodily fluids and in tissues,
which is a lipid class with both signaling and structural properties and was reported to be
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related to the development of major metabolic and cardiovascular diseases [56—60]. The
metabolic link between obesity and diabetes could be induced by modulating inflamma-
tion via FA and proinflammatory cytokines. Increased bioavailability of free fatty acid
(FFA) and proinflammatory cytokines are characterized in obese subjects; sphingolipid
metabolism is affected through both substrate supply and regulation of the enzymes [61,62].
Through the use in vivo and vitro mice models, it is confirmed that saturated FAs stimulate
toll-like receptor 4 (TLR-4), activating sphingomyelinase (SMase) and converting sphin-
gomyelins to ceramide, which reduces sphingomyelins content and exerts an action of
insulin resistance [63]. SMase is also observed to be activated by proinflammatory cytokines
tumor necrosis factor-alpha (TNF-«x), resulting in an increased ceramide production from
C57BL/6] mice with the intraperitoneal administration of TNF-oc [64]. These events can
lead to pancreatic 3-cell dysfunction and T2D development in obese subjects. A study by
Kelli M Sas et al. [65] investigates the role of perturbed ceramide metabolism in diabetic
kidney disease (DKD). Ceramides were measured in the plasma and kidney cortex of a
C57BLKS db/db mouse model of DKD which revealed long-chain ceramides (C14:0, C16:0,
C18:0, C20:0) and a glucosylceramide (Glu-Cer C18:0) were increased in diabetic mouse
plasma, whereas very-long-chain (C24:0, C24:1) ceramides and glucosylceramide (Glu-Cer
C16:0) were decreased in diabetic mouse kidney tissue. However, circulating metabolites
from the KORA study show exactly the opposite role of ceramide through SMase and
genetics variants.

T2D usually occurs at the later stage of obesity, and we confirmed that lipids like SM
C16:1,SM C18:1 and PC aa C38:3 could mediate the effect of BMI on T2D and also be a causal
factor for T2D development. Therefore, we incorporated human genetics with mice model
experiments to figure out the biological pathway. It was reported that FADS1-3 and CERS4
genetic variants with specific minor alleles (Figure 7) are associated with downregulated
sphingolipids [28,33] whereas PDXDC1 and FADS2 upregulated phosphatidylcholine
(Figure 7) [28], which contributes to promoting T2D pathophysiology [33,38]. CERS4 is the
gene responsible for encoding ceramide synthases. Several knockout mice studies report
that the inhibition of ceramide biosynthesis provokes both insulin resistance and the glucose
homeostasis disruption [37,66,67]. This is contradictory with the above section which states
increased ceramide causes insulin resistance. It may be attributed to that only general routes
of metabolism are discussed, and specific sphingolipid species and sphingolipid metabolic
pathways stay unintelligible. The function of the PDXDC1 protein, a vitamin B6-dependent
decarboxylase, is not well known. It was observed in previous GWAS that PDXDC1 is
linked with omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) [68,69].
Insulin-resistance in mice induced by high-fat diets showed downregulation PDXDC1 in
the liver [70]. These events suggest PDXDC1 plays a role in the fatty acids metabolism to
influence phosphatidylcholine biosynthesis, regulating the risk of insulin resistance and
T2D. The FADSI1-3 genetic locus, which encodes FA desaturase enzymes, derive PUFAs via
endogenous desaturation and elongation of fatty acids [71,72]. FADS1-3 are reported to
share genome-wide significant associations with almost all cardiometabolic phenotypes
such as dyslipidemia, fatty liver, obesity, and T2D [73-75]. The possible interpretation could
be similar with PDXDC1—that the FADS genetic variants, which influence FA desaturase
enzyme activity to affect sphingolipid and phosphatidylcholines biosynthesis, modulate the
risking of developing T2D [76,77]. It has been observed that the FADS genes are associated
with the differences in adipose tissue, body weight, and glucose homeostasis and these are
regulated by PUFAs [78], which is consistent with our results that FADS1-3 have strong
correlations with obesity and T2D traits in adipose, liver, and muscle tissues in ApoE—/—
C57BL/6] and C3H/He] mice (Supplementary Figure S3). These data suggest genetic
predisposition and early alterations in sphingolipids and phosphatidylcholines metabolism
contribute to prediction of T2D incident.

This study has several advantages and limitations. A high number of participants
were included in the study to investigate the metabolite signatures associated with obesity
and T2D. We employed mediation testing to discover the novel metabolites which mediated
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the effect from BMI on T2D. MR tests and mice model experiments from the literature
were used to establish plausible biological pathways. The most important point from this
study is that lipids SM C16:1, SM C18:1, and PC aa C38:3 could be biomarkers for early
stage T2D diagnosis. However, there are still some limitations that could be investigated
in further studies. It is reported that storage of plasma samples for up to five years
results in altered concentrations of metabolites [22] and this may influence the associations.
Sphingomyelins SM C16:1 and SM C18:1 were found to be positively associated with obesity
but negatively with T2D (basic model) and this is also replicated in the literature [30,31].
This could be caused from SMase converting sphingomyelins to ceramide at the later
stage of obesity [63,64] and could be the reason why sphingomyelins have a positive
effect on incident T2D from MR results but were negatively associated with prevalent
T2D in a cross-sectional study; however, the molecular mechanism was not confirmed.
Longitudinal analyses could be performed to study how metabolite concentrations change
at different stages and if they are able to predict the onset of obesity related T2D. In our
study, we observed sphingolipids” metabolic pathway linked obesity and T2D but how
specific metabolites SM C16:1, SM C18:1, and PC aa C38:3 work is still ambiguous and
requires additional experiments to confirm more detailed molecular behavior. In the current
study, metabolites were associated with BMI and T2D considering traditional covariates.
Moreover, other complication factors like depressive symptoms or kidney disease or dietary
intake might also have an influence on metabolic traits, which are not considered in this
study.

5. Conclusions

This study assessed metabolic profiles from a targeted approach based on the KORA
FF4 cohort. The cross-sectional analysis showed metabolic biomarkers related to obesity
and T2D.For the first time, we show metabolites like SM C16:1, SM C18:1, and PC aa
C38:3 performed significant mediation effects of BMI on T2D. MR analysis and mice model
experiments provided new evidence in sphingolipid-driven alterations in insulin secretion
and T2D development. This translates previous findings from mice models to the human
metabolism. This study contributes to human validation of SM C16:1, SM C18:1, and PC
aa C38:3 as biomarkers for obesity-related T2D pathophysiology that could be regarded
as potential clinical targets for risk evaluation and disease monitoring. In conclusion, the
findings reported here shed new light on new potential therapeutic strategies from the
perspective of metabolic signatures.
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Abstract

Aims/hypothesis Type 2 diabetes is a chronic condition that is caused by hyperglycaemia. Our aim was to characterise the
metabolomics to find their association with the glycaemic spectrum and find a causal relationship between metabolites and
type 2 diabetes.

Methods As part of the Innovative Medicines Initiative - Diabetes Research on Patient Stratification (IMI-DIRECT) consor-
tium, 3000 plasma samples were measured with the Biocrates Absolute/DQ p150 Kit and Metabolon analytics. A total of 911
metabolites (132 targeted metabolomics, 779 untargeted metabolomics) passed the quality control. Multivariable linear and
logistic regression analysis estimates were calculated from the concentration/peak areas of each metabolite as an explanatory
variable and the glycaemic status as a dependent variable. This analysis was adjusted for age, sex, BMI, study centre in the basic
model, and additionally for alcohol, smoking, BP, fasting HDL-cholesterol and fasting triacylglycerol in the full model. Statis-
tical significance was Bonferroni corrected throughout. Beyond associations, we investigated the mediation effect and causal
effects for which causal mediation test and two-sample Mendelian randomisation (2SMR) methods were used, respectively.

Results In the targeted metabolomics, we observed four (15), 34 (99) and 50 (108) metabolites (number of metabolites
observed in untargeted metabolomics appear in parentheses) that were significantly different when comparing normal glucose
regulation vs impaired glucose regulation/prediabetes, normal glucose regulation vs type 2 diabetes, and impaired glucose
regulation vs type 2 diabetes, respectively. Significant metabolites were mainly branched-chain amino acids (BCAAs), with
some derivatised BCAAs, lipids, xenobiotics and a few unknowns. Metabolites such as lysophosphatidylcholine a C17:0,
sum of hexoses, amino acids from BCAA metabolism (including leucine, isoleucine, valine, N-lactoylvaline, N-lactoylleucine
and formiminoglutamate) and lactate, as well as an unknown metabolite (X-24295), were associated with HbA  progression
rate and were significant mediators of type 2 diabetes from baseline to 18 and 48 months of follow-up. 2SMR was used to
estimate the causal effect of an exposure on an outcome using summary statistics from UK Biobank genome-wide association
studies. We found that type 2 diabetes had a causal effect on the levels of three metabolites (hexose, glutamate and caproate
[fatty acid (FA) 6:0]), whereas lipids such as specific phosphatidylcholines (PCs) (namely PC aa C36:2, PC aa C36:5, PC ae
C36:3 and PC ae C34:3) as well as the two n-3 fatty acids stearidonate (18:4n3) and docosapentaenoate (22:5n3) potentially
had a causal role in the development of type 2 diabetes.

Conclusions/interpretation Our findings identify known BCAAs and lipids, along with novel N-lactoyl-amino acid metabo-
lites, significantly associated with prediabetes and diabetes, that mediate the effect of diabetes from baseline to follow-up (18
and 48 months). Causal inference using genetic variants shows the role of lipid metabolism and r-3 fatty acids as being causal
for metabolite-to-type 2 diabetes whereas the sum of hexoses is causal for type 2 diabetes-to-metabolite. Identified metabo-
lite markers are useful for stratifying individuals based on their risk progression and should enable targeted interventions.

Sapna Sharma, Qiuling Dong and Mark Haid contributed equally to
this study.

Extended author information available on the last page of the article
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What is already known about this subject?

e Type 2 diabetes is a chronic condition that is characterised by hyperglycaemia

e The primary objectives of the DIRECT consortium include the identification of potential biomarkers that can assist

in categorising individuals based on their glycaemic deterioration

What is the key question?

What is the correlation between metabolomics and the glycaemic spectrum, and is there a causal relationship
between any metabolites and type 2 diabetes?

What are the new findings?

Novel metabolites such as picolinoylglycine, N-lactoylvaline, N-lactoylleucine and formiminoglutamate, as well as
lactate and an unknown metabolite (X-24295, from untargeted metabolomics), were associated with prediabetes,
type 2 diabetes and HbA1c progression rate and were significant mediators of type 2 diabetes from baseline to 18

and 48 months of follow-up

e  (Causal inference using genetic variants shows that the n-3 fatty acids stearidonate (18:4n3) and
docosapentaenoate (22:5n3) have a causal role in type 2 diabetes

How might this impact on clinical practice in the foreseeable future?

e |dentified metabolite markers may be useful for stratifying individuals based on their risk of progression and may

enable targeted interventions

Keywords Causality - Glycaemic traits - HbA,, - IMI-DIRECT - Mediation - Metabolomics - N-lactoylaminoacids - Patient
stratification - Targeted metabolomics - Type 2 diabetes - Untargeted metabolomics

Abbreviations

2SMR Two-sample MR

GWAS Genome-wide association study
H1 Hexoses

IGR Impaired glucose regulation

IGT Impaired glucose tolerance

IMI-DIRECT Innovative Medicines Initiative - Diabetes
Research on Patient Stratification

Lac-Phe N-lactoyl-phenylalanine

LysoPC Lysophosphatidylcholine

MOVE Multi-omics variational autoencoders

MR Mendelian randomisation

NA Unidentified metabolite

NGR Normal glucose regulation

PC Phosphatidylcholine

Introduction

Type 2 diabetes is a complex and common metabolic disor-
der, resulting from the body’s ineffective use of insulin. It can
be characterised by hyperglycaemia (high blood sugar) due to

impaired insulin secretion and insulin resistance, with most
affected people being overweight or obese [1]. Impaired glu-
cose tolerance (IGT) and impaired fasting glucose, together
known as impaired glucose regulation (IGR) or prediabetes,
characterise an intermediate condition before converging
towards diabetes. Recent studies show that a complex inter-
play of genetic susceptibility, environmental factors, lifestyle
(including diet, physical activity, smoking and alcohol con-
sumption), clinical heterogeneity, drugs and gut microbiome
orchestrates the development of type 2 diabetes [2]. Over
time, individuals with type 2 diabetes are more likely to have
a higher risk for heart attacks, strokes [3], neuropathy (nerve
damage), retinopathy (causing blindness) and kidney failure
as well as several infectious diseases including COVID-19,
reducing life quality and causing social burden [4, 5].
Metabolomics profiles involve a set of low-molecular-
weight biochemicals (metabolites) that includes sugars,
amino acids, organic acids, nucleotides, lipids, xenobiot-
ics and other compound classes. Identifying biochemi-
cal changes occurring between prediabetes and diabetes
improves risk prediction for better-targeted prevention [6,
7]. In addition, genetic composition can be used to make
predictions regarding disease susceptibility. Genome-wide
association studies (GWAS) show that more than 400 loci
influence the risk of type 2 diabetes [8] and that 900 genetic
variants have been associated with BMI [9]. Therefore,
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linking metabolites with genetics gives access to genetics’
influence on the metabolic compositions [10-13], provid-
ing comprehensive molecular understanding of the disease.

In the Innovative Medicines Initiative - Diabetes Research
on Patient Stratification (IMI-DIRECT), we characterised
132 metabolites from targeted measurements and 779
metabolites from untargeted measurements profiled in 3000
individuals at baseline. The study population was stratified
by following ADA 2011 glycaemic categories as follows:
23.89% (n=692) had normal glucose regulation (NGR) with
fasting glucose 5.23 (SD=0.39) mmol/l; 48.91% (n=1418)
had IGR with fasting glucose 5.90 (SD=0.51) mmol/l; and
27.2% (n=890) had type 2 diabetes with fasting glucose 7.15
(SD=1.39) mmol/l [14]. For the integration of non-omics
data such as health status, lifestyle and medication with
metabolomics, advanced statistical techniques were applied
to analyse the data (see Methods). Beyond multivariate and
association analyses we performed causal mediation analysis
to evaluate potential causal roles of mediators on outcome
[15, 16]. A study on drug—omics associations in type 2 dia-
betes [17] used an unsupervised deep learning framework
of multi-omics variational autoencoders (MOVE) to extract
significant drug response patterns from 789 individuals
newly diagnosed with type 2 diabetes in the IMI-DIRECT
cohort. We integrated the polypharmacy effect on metab-
olomics knowledge from MOVE and compared with our
molecular findings in this study.

Our aims in this study were as follows: (1) to characterise
911 small molecular (132 targeted, 779 untargeted metabo-
lomics analysis approach) features associated with prediabetes/
IGR and type 2 diabetes; (2) to identify baseline metabolites
associated with progression rate estimated from cross-sectional
data; (3) to investigate potential mediation effects of metabo-
lites from baseline glycaemic status to follow-up using media-
tion analysis; and (4) to identify causal relationships between
metabolites and type 2 diabetes using genetics drivers using
two-sample Mendelian randomisation (2SMR) tests.

Methods
DIRECT cohort

The Diabetes Research on Patient Stratification (DIRECT)
cohort encompasses 24,682 European participants at varying
risk of glycaemic deterioration, identified and enrolled into
a prospective cohort (study 1) of prediabetes (n=2235) and
type 2 diabetes (n=830). Using ADA 2011 glycaemic catego-
ries in study 1, 33% (n=692) of cohort 1 (prediabetes risk)
had NGR, 67% (n=1418) had IGR and 108 were excluded.
In study 2, 789 samples were included and 41 samples were
excluded. From study 1, 101 excluded samples entered study
2 (n=890). The ratio of self-reported sex varied in each study.

@ Springer

Detailed characteristics on inclusion and exclusion criteria,
along with the protocol timeline for visits and tests for both
studies, have been described elsewhere [14, 18]. In summary,
venous blood fasting samples were obtained, followed by per-
formance of DNA extractions and additional biochemical
analyses. Metabolomics measurements for distinct samples
at the baseline is considered in this study.

Targeted metabolomics (Absolute/DQ p150 Kit)

Blood samples in the study were analysed with the Abso-
luteIDQ p150 Kit (BIOCRATES Life Sciences, Innsbruck,
Austria) (see electronic supplementary material [ESM]
Methods for details) [19]. After data export, lower and upper
outliers were defined as samples with >33% of metabolite
concentrations below 25% quantile (+1.5 X IQR). Metabolite
traits with too many zero-concentration samples and uniden-
tified metabolites (NAs, >50%) were excluded (none). The
CV was calculated in reference samples for each metabolite
over all plates. Metabolite traits with CV>0.25 were excluded.
After quality control, 132 metabolites were included in
this study (ESM Table 1). Metabolite concentrations were
log,-transformed and scaled (mean=0, SD=1) to ensure com-
parability between the metabolites.

Untargeted metabolomics (Metabolon platform)

Untargeted LC/MS-based techniques covers a broad spec-
trum of metabolites, in contrast to the targeted techniques
wherein metabolites are limited to a predefined set of
molecules. For details on sample preparation, measure-
ment and identification of metabolites, see ESM Methods.
Incomplete databases and the presence of unknown or
novel metabolites have been reported with an asterisk (*)
against the metabolite name. The measured volume of the
datasets contained 12% missing values. We screened for
outlier remover (see ESM Fig. 1 for an example), which
added 4% more missing values onto existing missing val-
ues (ESM Table 2). Peaks were quantified using AUC.
For studies spanning multiple days, a data normalisation
step was performed to correct variation resulting from
instrument inter-day tuning differences. Essentially, each
compound was corrected in run-day blocks by register-
ing the medians to equal one and normalising each data
point proportionately (termed the ‘block correction’; ESM
Fig. 2). Principal component analysis was performed on the
metabolite dataset and checked for technical effects such as
centre and sex (see ESM Fig. 3). The data missing pattern
was tested using logistic regression considering missing as
0 and non-missing as 1; there was no significant association
between missing and regressors indicating the missing-at-
random pattern. The K-nearest neighbour (KNN)-based
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imputation method was applied using K=10 as suggested
and optimised from German Cohort KORA F4 [20].

Statistics

Multivariable logistic regression and linear regression Identi-
fying metabolites specifically associated with the presence of
IGR and type 2 diabetes, we ran the logistic regression with
adjustment for age, sex, BMI and centre as the basic model,
and adjusted additionally for alcohol consumption, smok-
ing, BP, fasting HDL-cholesterol and fasting triacylglycerol
as the full model. The concentration of each metabolite was
log,-transformed and scaled to have a mean of zero and an
SD of 1. Each metabolite was taken as exposure and a binary
NGR-IGR, NGR-type 2 diabetes (NGR-T2D) or IGR-type
2 diabetes (IGR-T2D) variable as an outcome. The OR of
outcomes was calculated using the p coefficient from logistic
regression, where OR>1 indicates higher odds of outcome
and OR<0 shows lower odds of outcome. To account for
multiple testing, the p values from regression analyses were
adjusted for multiple testing using the Bonferroni correction
(g values). To stratify sex-dependent metabolites, men and
women were separated to test the associations by performing
the logistic regression full models.

For incidents of IGR and type 2 diabetes analysis, a
binary NGR-IGR, NGR-T2D or IGR-T2D variable at fol-
low-up times of 18 months and 48 months was taken as the
outcome; transformed metabolites and the same risk factors
in the full model were taken as exposure and covariates,
respectively. The same p correction method was adopted.

The linear regression model was used to explore the asso-
ciation between HbA | progression rate and metabolites at
the baseline. HbA, . progression rate was computed with
a conditional linear mixed effect model and adjusted for
changes in BMI and diabetes medications [21]. Each trans-
formed metabolite was taken as the independent variable and
HbA, concentration as the dependent variable, with adjust-
ment for age and sex. Bonferroni correction was performed
for p correction.

Mediation analysis Mediation analysis followed the basic
steps suggested by Baron and Kenny [22], and the signifi-
cance of the mediation effect was tested with a non-para-
metric causal mediation analysis [22, 23]. Each identified
metabolite was taken as a mediator, glycaemic category sta-
tus at the baseline as the independent variable and glycaemic
category at the follow-up (18 months and 48 months) as
the dependent variable. R package ‘mediation (4.5.0)’ was
used to calculate the p value and proportion of the mediation
effect by bootstrapping with 1000 resamples.

Mendelian randomisation We used 2SMR approaches from
the MRInstruments (0.3.2) and TwoSampleMR library

(v0.5.6) to check causal inference [24]. The 2SMR technique
enables the establishment of a causal relationship between
two observational studies (ESM Fig. 4), solely relying on
summary statistics obtained from GWAS [24, 25]. To evalu-
ate the influence of type 2 diabetes on metabolite levels, we
conducted a 2SMR examination. Type 2 diabetes instruments
were obtained from the genome-wide genotyping study [26]
and the corresponding SNP estimates on metabolites were
extracted from the metabolite-GWAS [10, 27]. Prior to per-
forming Mendelian randomisation (MR) analysis, exposure
and outcome data were harmonised by aligning the SNPs
on the same effect allele. We employed the inverse-variance
weighting [10, 26, 27] to estimate the causal effect.

Results
Study populations

After stringent quality control (see ESM Methods), we iden-
tified 132 (ESM Table 1) and 779 (ESM Table 2) metabolites
from targeted and untargeted metabolomics measurements,
respectively, that were profiled for 3000 samples (ESM
Table 3) [28]. Baseline characteristics (Table 1) revealed
that there were significant differences in BMI, fasting vari-
ables and health status observed between NGR, IGR and
type 2 diabetes groups. No significant differences in age and
smoking status were observed between these three groups.
In addition, the study was conducted across seven countries;
type 2 diabetes participants were recruited in all centres
while participants with NGR or IGR were only recruited
in the Amsterdam, Copenhagen, Kuopio and Lund centres.

Metabolites associated with prediabetes
and diabetes from targeted metabolomics
measurements

A multivariable logistic regression model was used with
known diabetes-related variables as covariates to identify
significant metabolites. Study centre, sex, age and BMI were
covariates in the basic model while the additional variables
systolic BP, fasting HDL-cholesterol, fasting triacylglycerol,
smoking status, alcohol status and health status were added in
the full model. Based on the full model, four metabolites dif-
fered significantly between the NGR and IGR groups (Fig. 1a).
Of these, hexoses (H1) showed the strongest association (OR
1.81 [95% CI 1.59, 2.06], p;;,=3.97x107"7) and served as a
positive control throughout our analysis. Thirty-four and 50
metabolites differed significantly between NGR and IGR vs
type 2 diabetes, respectively (Fig. 1b,c). As a general pattern,
phosphatidylcholines (PCs) and lysophosphatidylcholine
(lysoPC) were negatively associated with progression to type
2 diabetes, while branched-chain and aromatic amino acids as

@ Springer
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Table 1 Baseline characteristics

o Characteristic NGR IGR T2D p value
of the DIRECT participants
based on their glycaemic Sample size 692 1418 890
category Male sex 519 (75.0) 1074 (75.7) 525 (59.0) <0.001
Centre <0.001
Amsterdam 167 (24.1) 300 (21.2) 183 (20.6)
Copenhagen 54 (7.8) 223 (15.7) 97 (10.9)
Dundee 0 0 164 (18.4)
Exeter 0 0 142 (16.0)
Kuopio 407 (58.8) 820 (57.8) 34 (3.8)
Lund 64 (9.2) 75 (5.3) 104 (11.7)
Newcastle 0 0 166 (18.7)
Age, years 62.15+6.43 62.08+6.19 61.99+7.96 0.894
BMI, kg/m? 27.15+3.65 28.33+4.06 30.59+4.92 <0.001
Systolic BP, mmHg 128.48+15.21 131.62+15.20 132.02+15.78 <0.001
Diastolic BP, mmHg 79.18+8.73 81.20+8.97 76.48+9.88 <0.001
Fasting glucose, mmol/l 5.23+0.39 5.90+0.51 7.13+1.39 <0.001
Fasting HDL-cholesterol, mmol/l 1.37+0.35 1.30+0.36 1.18+0.38 <0.001
Fasting LDL-cholesterol, mmol/l 3.21+0.90 3.19+0.95 2.43+1.00 <0.001
Fasting TG, mmol/l 1.22+0.53 1.44+0.66 1.56+0.88 <0.001
Fasting cholesterol, mmol/l 5.14+0.97 5.15+1.01 4.33+1.17 <0.001
Fasting HbA ., mmol/mol 35.34+2.22 37.86+2.88 45.86+5.94 <0.001
Fasting HbA,, % 5.38+0.20 5.61+0.26 6.35+0.54 <0.001
Fasting insulin, pmol/l 50.84+30.90 72.42+50.22 96.56+72.69 <0.001
Smoking status 0.717
Current smoker 93 (13.4) 215 (15.2) 117 (13.2)
Ex-smoker 326 (47.1) 681 (48.0) 445 (50.1)
Never 272 (39.3) 520 (36.7) 326 (36.7)
Not Known 1(0.1) 2(0.1) 1(0.1)
Alcohol consumption status 0.004
Never 96 (13.9) 166 (11.7) 140 (15.7)
Occasionally 134 (19.4) 282 (19.9) 214 (24.1)
Regularly 462 (66.8) 968 (68.3) 534 (60.1)
Not known 0 2(0.1) 1(0.1)
Health status <0.001
Poor 1(0.1) 10 (0.7) 28 (3.1)
Fair 49 (7.1) 74 (5.2) 34 (3.8)
Good 331 (47.8) 744 (52.5) 428 (48.1)
Very good 213 (30.8) 396 (27.9) 239 (26.9)
Excellent 49 (7.1) 74 (5.2) 34 (3.8)
Not known 4 (0.6) 11 (0.8) 19 (2.1)

Quantitative variables are expressed as mean + SD; categorical variables are expressed as n (%)

The significant difference of population characteristics between the individuals with IGR/type 2 diabetes
and the normal participants (NGR) was calculated. Test statistics for categorical variables were calculated
via the 4 test and Student’s ¢ test for continuous variables

T2D, type 2 diabetes; TG, triacylglycerol

well as valeryl/glutaryl-related acylcarnitines were positively
associated with type 2 diabetes.

H1 (OR 9.67 [95% C1 6.54, 14.32], p;,=1.13x107%") also
had the strongest associations in NGR-T2D while C5-M-DC
(OR=5.31 [95% CI 4.16, 6.77], pfdr=1.07><10_38) had the
strongest association in IGR-T2D. Three metabolites (HI,

@ Springer

lysoPC a C17:0, lysoPC a C18:0) were significantly dif-
ferent in all comparisons (NGR-IGR, NGR-T2D and IGR-
T2D), suggesting their important roles in diabetes indica-
tion and severity. Detailed statistics for the basic model
and full model are shown in ESM Tables 3-8. As there
were many more male participants than female participants



2809

Diabetologia (2024) 67:2804-2818

pringer

ureAwosuryds ‘NS *SINOJ0d JUAIPIP AQ PAUsAIdaI ATe SISSE[O 9)I[0QRIAW $2)[0qRIAW JUBOYIUTIS [ord SMOYs SIxe-4 oyl pue (1D %66) MO SMOYS SIXe-X
QU L, "Styels YI[eay pue sniels [oYodTe ‘snyels Suryows ‘[0100K[S[Aoern Sunse] ‘[o10)se[oyo-TH Sunsey ‘ddq ‘TING ‘9Se Xos ‘onued Apnis 10J paysn(pe ‘so[qerrea juspuadopur se so)rjoqeiol ay) pue
so[qeLrea Juapuadap se () sajaqeip g 2dA) sa YOI pue (q) sa39qeIp 7 2dA) sA YON “(B) YOI SA YON 10J S[OPOW uoIssaI3ar onsiSo] [qelreannw ayj Jo synsal ay) Sunuasaidar syod SefJ | b4

As

0o} 0o} o

9 v z Gl oL S 0 0 gl ol
B — o P — _— —

71O saunjulesjoy HO-Z:71L O~ seuniusesjkoy

HO-Z:¥1D sauiiuieojhoy 4
(HO-¥2) 0d-£0_sauniuLesjfoy GO sauniuIEd|AOY
Da-N-SD sauniuieojhoy

on_|_>_|m0|wwcm_5mo_>o< .

-0a- -GO sauniuieojAo i
B 5 Y (W-20-£2) HO-GD™ sauniusedjhoy
tmOlwwcz_Ewo_\Gd\

Al9_pioe oulwy
ayd ploe oulwy

JAL " proe oulwy
[BA”_PIOE OUlWY
nax pIoe oujwy

1

1

1

1

|

! -
| —— 0:21D & OdosApidi]
1

0:710 & OdosA|_pidi \ 1K "pioe oulwy

1

1

1

1

1o

1

.

T
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
[ 1
. 0:910 € OdosA_pidi _
. 1:910 & DJosA| pidi [BA PIoE oulluy |
e 0:/10¢€ on_Om»_l 7 nax_ pIoe oulwy 1
. 0:810 & OdosA_pidi : - '
L. 1:81D & DJosA|_pidi] 0:710 B OOl pidr] !
Lo 2810 & OdosAI_pidi] 0:910 & OdosA| pidi _
- €020 B Odosh] pidn L 1910 & OdosAI pidi !
-1 €:2€D ee Od_pidi " 0:210 & DdosA[ pidi ' . _
: w _ —— 0:810 B OdosA| pidi
Ve ¢:7€0 EE Od_pidn] H 0:81.0 & DdosA| pidi '
. €:¥€D €8 Od_ _
[ 0:9€D BB Od s 1:810 B OdosA| pidin !
1ebns " ¢:9€D €8 Od_| = 3 Z:81.0 & OdosAI pdr = " =z
pidi ¢ I 0:8€0 ee Od_| m_._ @ | 6260 8 0 pId o | o)
e L:0vD €e Od_pidi] ) - : (di T ' 3
piog oUltlY b Z:0v0 e Od_pidi g L Z:ved eE Od pIdI g ! g
saululeojhoy —_— 1 2:0€D @€ Od = 1 ) _ = 1 =
. 1:z60 o8 Od_ o e €70 ee Od pidi] o ! ]
Aiobered - Lired e wM|u_mﬂ . 1:0p0 BB OdPIdI "
e £:pE 98 Ddl_pidi a 2:0£0 98 Od PldiT | ve0 ee 0 pId)
e 0:92 9€ Jdl_| - 1260 o8 Od pIdI | vved Be Od pidn
le B ae 1 _ 1
. goEs e oa-Hidi . Z:ve0 98 Od pIdN _
. 0:860 o€ on_uu_m: I €70 96 Od pidi '
. 0:070 98 Od_pidi] . —
. 1:0vD 98 Dd_ . 0:9€0 o€ on_lu_a_._ !
S 0:¥Q %€ 9d_Pid r 0:0v0 98 Od PIdI '
o 2:zv0 98 Od_pidiT ' . - '
. €240 o8 Dg_pidi . L:0v0 oe o.n_\ua_._ X
' vnmwoﬁ oe von_ t 0:Z¥0 98 Od Pidn !
. 1710 (HO) WS_ 741 08 A DId
g 1910 (HO) S| ) £:¢v0 88 9d Pt " LK Iebng
. 2:220 (HO) s pic " 110 (HO) Ws™ P |
. 0:910 INS_pidi . : ~
Ve ol NS ! 0:9L0 WS Pdi !
ls 11810 INS_ 1 L:9LD NS pdi )
le 0:%20 INS_| . 120 WS pidi !
Pe L:¥ZO NS P! " odmmm: . !
. LH Jebng . IH S X
) q e



2810

Diabetologia (2024) 67:2804-2818

enrolled in the study, a sensitivity analysis stratified by
sex was conducted, and is reported in ESM Results, ESM
Tables 9-14 and ESM Fig. 5.

Metabolites associated with prediabetes
and diabetes from untargeted metabolomics
measurements

Fifteen metabolites were significantly changed between
NGR and IGR based on the logistic regression analyses
in the full model (Fig. 2a). Fructosyl lysine had the high-
est statistically significant association with progression
to IGR (OR 1.53 [95% CI 1.37, 1.71], py;,=8.64x107"?).
Similarly, 99 and 108 metabolites differed significantly
between NGR or IGR and type 2 diabetes, respectively
(Fig. 2b,c). As a general pattern, lipids were negatively
associated and amino acids were positively associated
with progression to type 2 diabetes. 1-(1-Enyl-palmitoyl)-
2-oleoyl-GPC (P-16:0_18:1)* (OR 0.23 [95% CI 0.17,
0.31], pfd,=3.48><10_18) had the strongest association for
the NGR-T2D comparison, while cysteine-S-sulphate
(OR 3.25 [95% CI2.55, 4.15], pyy,=3.11x107"*) was sig-
nificantly associated in the IGR-T2D comparison. Seven
metabolites (fructosyl lysine, glutamate, 1-stearoyl-
GPC (18:0), N-lactoylphenylalanine, N-lactoylvaline,
picolinoyl glycine, mannonate) appeared significant in
all comparison groups, suggesting their important roles as
diabetes risk indicators. Detailed statistics are presented
in ESM Tables 15-20. A sex-based sensitivity analysis of
metabolomics data from the untargeted measurements is
reported in ESM Results, ESM Table 21-26, ESM Fig. 6.

Metabolites associated with HbA, progression rate

HbA,, progression rate was computed with a condi-
tional linear mixed effect model and adjusted for changes
in BMI and diabetes medications [21]. In multivariable
linear regression analysis, lysoPC a C17:0 (B —0.0535
[95% CI —0.08, —0.0269], p;,;,=0.0109), glycine (Gly) (B
—0.0509 [95% CI —0.0782, —0.0236], p;;,=0.0347) and
H1 (§ 0.0481 [95% CI 0.0218, 0.0745], p;,=0.0452) were
significantly correlated with HbA,_ progression rate and
all were related to glycaemic-deterioration traits as well.
In untargeted metabolomic profiling, 20 metabolites were
significantly related to HbA , progression rate, with pyru-
vate (p 0.0877 [95% CI 0.0609, 0.114], pfd,=1.28><10‘7)
showing the strongest association. Besides pyruvate,
N-lactoylleucine, lactate, N-lactoylphenylalanine, X-15245,
N-lactoylisoleucine, N-lactoylvaline, 1-(1-enyl-palmitoyl)-
2-oleoyl-GPC (P-16:0/18:1)*, cortolone glucuronide,
X-24295, formiminoglutamate and N-lactoyltyrosine were
also significantly associated with glycaemic categories.

@ Springer

Tables 2 and 3 show the metabolites with significant asso-
ciations, while the complete results are reported in ESM
Tables 27-28.

Metabolite association with incident diabetes (IGR/
type 2 diabetes)

Several metabolites were identified to be significantly
associated with HbA | progression rate as well as glycae-
mic category: three targeted metabolites (lysoPC a C17:0;
glycine, H1); and 12 untargeted metabolites (pyruvate,
N-lactoylleucine, lactate, N-lactoylphenylalanine, X-15245,
N-lactoylisoleucine, N-lactoylvaline, 1-[1-enyl-palmitoyl[-
2-oleoyl-GPC* [PC(P-16:0/18:1)], cortolone glucuronide,
X-24295, formiminoglutamate, N-lactoyltyrosine). Next,
we investigated their predictive value for IGR and type 2
diabetes by including baseline metabolite concentrations
and incident IGT or type 2 diabetes in follow-up timelines
in multivariable logistic regression. As shown in Table 4,
lysoPC a C17:0 concentration at baseline was observed to
significantly differ in 244 incident IGR individuals com-
pared with 398 NGR control individuals after 18 months.
The sum of H1 at baseline concentrations showed significant
differences between incident IGR (at 48 month follow-up)
and NGR or incident type 2 diabetes and IGR at both the 18
month and the 48 month follow-up.

In untargeted metabolomic profiling, lactate and X-24295
baseline concentrations were significantly correlated with
IGR or type 2 diabetes incidence at the 18 month and 48
month follow-up (Table 5). Formiminoglutamate, N-lac-
toylleucine and N-lactoylvaline significantly differed in 244
incident IGT individuals compared with 398 NGT control
individuals after 18 months. We did not find any significant
metabolites from untargeted measurements to predict the
incidence of IGR from NGR at 48 months.

Mediation analysis

Causal mediation analysis was employed to explore the
potential mediation effects of the identified metabolites
from baseline glycaemic status to follow-up. Consistent
with incidence results, lysoPC a C17:0 showed strong sig-
nificance (proportion of mediation by 13%, mediation effect
p=0.034, Fig. 3a), indicating that this metabolite partially
mediated the glycaemic deterioration from NGR to IGR at
18 months. The positive control H1 exhibited significant
mediation effects in all groups (between 6% and 9%) as it is
mainly represented by blood glucose.

N-Lactoylvaline (proportion of mediation 24%, mediation
effect p<2x10719), lactate (proportion of mediation 22%,
mediation effect p=0.002), N-lactoylleucine (proportion
of mediation 20%, mediation effect p=0.006), formimino-
glutamate (proportion of mediation 11%, mediation effect
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Table 2 Metabolites from targeted measurements significantly associ-
ated with HbA,; progression rate from a linear regression model

Metabolite B (95% CI) p value Pyar value

LysoPC a C17:0 —0.053 (-0.080, 8.25x10™ 0.011
—-0.027)

Gly —0.051 (-0.078, 2.63x107* 0.0345
-0.024)

H1 0.048 (0.022, 0.075) 3.42x10™* 0.045

The dependent variable is the HbA . progression rate while the inde-
pendent variable is the log,-transformed and standardised baseline
concentration of a given metabolite, adjusted by age and sex

The py,, values represent the adjusted p value for multiple testing by
Bonferroni correction

p=0.034) and X-24295 (proportion of mediation 11%, medi-
ation effect p=0.042) were all observed to show significant
mediation effects from baseline NGR to IGR at 18 months’
follow-up (Fig. 3b). Furthermore, formiminoglutamate
(proportion of mediation 23%, mediation effect p=0.006)
showed a significant mediation effect from NGR to IGR at
48 months. These results suggest that these metabolites own
a significant mediation effect on glycaemic deterioration.

MR

The availability of genetic data on type 2 diabetes makes
the use of MR particularly compelling. To assess bidi-
rectional causal relationships between type 2 diabe-
tes and metabolites (Fig. 4), we employed 2SMR tests.
After multiple testing correction only the concentration
of the sum of H1 was determined by type 2 diabetes
(p<0.05/117=0.00042). For untargeted metabolites we
found instruments for only 19% of the metabolites (i.e.
151 out of 779). For example, instruments are from genes
TCF7L2, IGF2BP2, NOTCH2, CDKALI, PABPC4, FTO
and JAZF1, known to be associated with diabetes and that
have been further significantly associated with the metab-
olites. Following multiple testing correction, it suggests
that the change in an amino acid (glutamate) and a lipid
(caproate, FA C6:0) was caused by change in type 2 diabe-
tes status (p<0.05/151=0.000331). However, metabolites
that are causal for type 2 diabetes (meaning that the change
in metabolite caused change in the disease status) included
several phosphatidylcholines, namely PC aa C36:2, PC aa
C36:5, PC ae C36:3 and PC ae C34:3, from the targeted
metabolomics dataset. From the untargeted metabolomics

Table 3 Metabolites from

untargeted metabolomics Metabolite B (95% CI) p value Pyar Value
measurements significantly Pyruvate 0.087 (0.060, 0.114) 1.65x10710  1.28x107
gif)‘;zt;gr:”r‘;};;&ﬁi  linear N-Lactoylleucine 0.082 (0.056, 0.109) 8.43x1071°  6.57x107
regression model Lactate 0.075 (0.049, 0.102) 3.30x107®  2.57x107°
N-Lactoylphenylalanine 0.074 (0.048, 0.100) 3.66x107%  2.85x107°
X-15245 0.074 (0.047, 0.100) 6.24x107%  4.86x107°
N-Lactoylisoleucine 0.068 (0.042, 0.095) 3.11x1077  2.42x107
N-Lactoylvaline 0.067 (0.041, 0.094) 5.69x1077  4.43x107*
X-11444 0.068 (0.041, 0.094) 6.22x1077  4.84x107*
Orotidine 0.065 (0.038, 0.091) 1.74x107%  1.35%x1073
Metabolonic lactone sulphate 0.063 (0.036, 0.089) 2.9 x107° 2.28x1073
3,4-Dihydroxybutyrate 0.060 (0.033, 0.087) 1.11x107°  8.64x1073
N4-Acetylcytidine 0.059 (0.033, 0.085) 1.16x107°  9.06x1073
X-24337 0.058 (0.032, 0.085) 147107 0.011
1-(1-Enyl-palmitoyl)-2-oleoyl-GPC(P-16:0/18:1)*  —0.058 (—=0.084, —0.032)  1.49x107  0.016
X-25828 —0.058 (=0.085, —0.032)  1.50x10™>  0.017
Cortolone glucuronide 0.058 (0.032, 0.085) 1.73%x107 0.013
X-24295 0.057 (0.031, 0.084) 1.77%107°  0.014
Formiminoglutamate 0.059 (0.032, 0.088) 2.75x10™  0.021
1-Palmitoyl-2-oleoyl-GPE (16:0/18:1) 0.056 (0.029, 0.082) 3.59x10™°  0.028
N-Lactoyltyrosine 0.055 (0.029, 0.082) 3.98x107>  0.031

The dependent variable is the HbA, progression rate while the independent variable is the
log,-transformed and standardised baseline concentration of a given metabolite, adjusted by age and sex.
The py,, are adjusted p for multiple testing by Bonferroni correction
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Table 4 Metabolites from targeted measurements that were signifi-
cantly associated with incidence of IGR and type 2 diabetes in differ-
ent pairwise comparisons

Comparison OR (95% CI) p value
18 months
398 NGR vs 244 IGR
lysoPC a C17:0 —0.246 (—0.452, —0.043) 0.018
897 IGR vs 71 T2D
H1 0.545 (0.164, 0.945) 0.006
48 months
244 NGR vs 295 IGR
H1 0.433 (0.189, 0.690) 7x1073
821 IGR vs 128 T2D
H1 0.347 (0.064, 0.642) 0.018

Baseline metabolites were taken as the independent variables with
glycaemic category in different timelines (18 months and 48 months)
as the dependent variables, adjusted by study centre, sex, age, BMI,
BP, fasting HDL-cholesterol, fasting triacylglycerol, smoking status,
alcohol status and health status

ORs and p values were calculated from the logistic regression model
T2D, type 2 diabetes

Table 5 Metabolites from untargeted measurements that were signifi-
cantly associated with incidence of IGR and type 2 diabetes in differ-
ent pairwise comparisons

Comparison OR (95% CI) p value
18 months
398 NGR vs 244 IGR
Formiminoglutamate 0.369 (0.157, 0.588) 7.7%10~*
Lactate 0.373 (0.143, 0.557) 0.002
N-Lactoylleucine 0.294 (0.079, 0.514) 0.008
N-Lactoylvaline 0.248 (0.039, 0.460) 0.021
X-24295 0.225 (0.022, 0.432) 0.031
897 IGR vs 71 T2D
X-24295 0.474 (0.162, 0.801) 3.6x1073
Lactate 0.409 (0.077, 0.747) 1.6x1072
48 months
821 IGR vs 128 T2D
X-24295 0.474 (0.162, 0.801) 3.6x1073
Lactate 0.409 (0.077, 0.747) 1.6x1072

Baseline metabolites were taken as the independent variables with
glycaemic category in different timelines (18 months and 48 months)
as the dependent variables, adjusted by study centre, sex, age, BMI,
BP, fasting HDL-cholesterol, fasting triacylglycerol, smoking status,
alcohol status and health status

ORs and p values were calculated from the logistic regression model
T2D, type 2 diabetes

dataset, two n-3 fatty acids, namely stearidonate (18:4n3)
and docosapentaenoate (n3 DPA; 22:5n3), were identified
to be causal for type 2 diabetes. Detailed statistics of our
MR analysis are presented in ESM Tables 29-32.

Discussion

In this study, we used untargeted metabolomics to provide
semi-quantitative global screening of metabolites in the
development of a disease whereas targeted metabolomics
was used to quantify a pre-selected subset of metabo-
lites with absolute concentrations. However, the overlap
between the two metabolomic techniques was limited to a
few amino acids and lipids. In the current study we report
19 metabolites (three from targeted and 14 from global
profiling, plus one common lysoPC a C18:0 / 1-stearoyl-
GPC [18:0]) that were significantly associated with predia-
betes in the DIRECT cohort. The advantages of global pro-
filing become evident as it allows for the identification of
a broader spectrum of metabolites. Few notable examples
are given here. First, picolinoylglycine (HMDBO0059766),
which is potentially a phase II product of picolinic acid,
a degradation product of tryptophan [29] and glycine
[30], and shows potential as a novel marker for glycaemic
deterioration. Prediabetes is often associated with dyslipi-
daemia, marked by an imbalanced lipid profile compared
with individuals with NGR [24]. Second, N-lactoyl amino
acids are not infrequently observed in metabolomic data-
sets. In fact it has come to light that N-lactoyl amino acids
were misidentified in some metabolomic studies and were
erroneously reported as 1-carboxyethyl amino acids. In
particular, N-lactoyl-phenylalanine (Lac-Phe) is known to
act as an appetite suppressant when given to obese mice
[31]. However, in humans Lac-Phe concentrations were
observed to rise following vigorous exercise [32]. In fact,
the most recent study shows that Lac-Phe facilitates the
impact of metformin on both food intake and body weight
[33, 34]. It seems that the exact role of Lac-Phe in the
human body and pathways downstream, such as energy
metabolism, insulin signalling, exercise-induced pathways,
are unclear and needs further research.

We are aware of several limitations to our study.
Although metabolomics screening showcases numerous
valuable attributes in health science, challenges inherent
to this approach continue to exist, especially in the accu-
rate identification of metabolites which is crucial for the
biological interpretation and validation of metabolomics

@ Springer
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a
LysoPC a C17:0 H1 H1
13% 6% 9%
p<2x1016 p =0.004

p=0.034

NGR r_\ IGR 18 months’

)
baseline — > follow-up

NGR f\ IGR 18 months’

)
baseline — > follow-up

IGR f\ T2D 18 months’

. —_—_—)
baseline follow-up

H1 H1
8% 8%
p<2x1016 p =0.006
NGR f\ IGR 48 months’ IGR r\ T2D 48 months’
baseline ——————— follow-up baseline — > follow-up
N-Lactoylvaline Lactate N-Lactoylleucine
24% 2% 20%
p<2x10°% p=0.002 p=0.006
NGR /\ IGR 18 months’ NGR /_\ IGR 18 months’ NGR f\ IGR 18 months’
- )
baseline ———————— follow-up baseline follow-up baseline " follow-up
Formiminoglutamate X-24295 Formiminoglutamate
11% 11% 23%
p=0.034 p=0.042 p=0.006
NGR /_\ IGR 18 months’ NGR f\ IGR 18 months’ NGR f_\ IGR 48 months’
baseline > follow-up baseline =~ — > follow-up baseline ~—————— follow-up

Fig.3 Schematic overview of mediation analysis with lysoPC a
C17:0 and hexoses (a) or N-lactoylvaline, lactate, N-lactoylleucine,
formiminoglutamate and X-24295 (b) as mediators. Numbers above

data [35]. Variability in sample collection, preparation
and analytical techniques can impact the reproducibil-
ity and comparability of results across different studies.
Standardisation efforts are ongoing but may not fully
address all sources of variation. The identification of
metabolites, especially in untargeted metabolomics, can
be challenging. Incomplete databases and the presence of
unknown or novel metabolites have been reported with
a metabolite name with an asterisk (*) sign. However,
ongoing advancements in technology, methodology and
standardisation efforts aim to enhance the robustness and
applicability of metabolomics studies [35]. The current
study is predominantly based on White male participants
from the Kuopio region of Europe, and for this reason
an additional sex-based sensitivity analysis has been per-
formed and reported separately (ESM Results 1 and 2).
Challenges in MR studies include limited statistical power,
potential reverse causation, confounding and pleiotropy
[36]. Caution is advised in interpreting causality inference,

@ Springer

the red arrows indicate the percentage and significance of mediation
effects. T2D, type 2 diabetes

considering the various limitations mentioned in the meth-
ods, and precautionary measures were taken by using valid
MR instruments and reporting Bonferroni significance.
A drug-metabolomics associations study [17] was exam-
ined to determine whether or not metabolites linked to type
2 diabetes from the DIRECT study were also associated
with a particular drug. Looking at our results and those of
Allesge et al [17], we found that 44% (15 out of 34) of tar-
geted metabolites and 3% (three out of 99) of non-targeted
metabolites that were significantly associated with type 2
diabetes also showed a significant association with at least
one of the 20 drugs. This suggests that metabolites linked to
type 2 diabetes may be confounded by polypharmacy.
However, metabolite association with incident predia-
betes or diabetes (IGR-T2D) showed that lysoPC a C17:0
could predict the risk of developing IGR at 18 months and
48 months. It has already been shown that lysoPCs differ
significantly between individuals with incident IGT or type
2 diabetes and individuals with NGR in the KORA study
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Fig.4 Forest plot representing causal estimates of type 2 diabetes on targeted and untargeted metabolites in the two-sample MR test. T2D, type

2 diabetes

[37]. LysoPC a C17:0 was negatively associated with diabe-
tes, a finding that was confirmed in several studies [38, 39].
The aforementioned drug—metabolomics association study
[17] showed that lysoPC a 17:0 was not associated with the
drugs. However, the origin of odd-chain fatty acids (mainly
C15:0 and C17:0) remains elusive. Jenkins et al [40] investi-
gated the origin of circulating odd-chain fatty acids (C17:0,
C15:0) through a combination of animal and human stud-
ies to determine possible contributions of fatty acids from
the gut-microbiota, diet and novel endogenous biosynthesis
[41]. The findings suggested that C15:0 was linked to die-
tary intake, while C17:0 was predominantly biosynthesised,
indicating independent origins and non-homologous roles in
disease causation.

Causal mediation analysis indicated that plasma lactate
strongly mediates the effects of identified metabolites in the
transition from baseline glycaemic status to follow-up [42].
In a longitudinal study of Swedish men, elevated serum lac-
tate was independently linked to a higher incidence of type
2 diabetes, irrespective of obesity measures [43]. Formimi-
noglutamate was confirmed to be associated with a higher
risk of incident type 2 diabetes in older Puerto Ricans [44].
N-lactoylleucine and N-lactoylvaline, derivatives of leucine
and valine, respectively, are ubiquitous pseudodipeptides of
lactic acid and amino acids that are formed by reverse prote-
olysis [32] and are correlated with underivatised amino acids
in human plasma. The Microbiome and Insulin Longitudinal
Evaluation Study (MILES) [45] investigated the association
between ABO haplotypes and insulin-related characteristics,
and explored possible pathways that could mediate these

associations. The study showed that the A1 haplotype poten-
tially enhances favourable insulin sensitivity in non-Hispanic
White individuals, with lactate likely influencing this mecha-
nism, while gut bacteria are not believed to be a contributing
factor.

In MR, causality signifies that modifying exposure leads
to a predictable change in the outcome. Our 2SMR analysis
suggests that the metabolites causal for type 2 diabetes are
PC aa C36:2, PC aa C36:5, PC ae C34:3 and PC ae C36:3
and all these metabolites are significantly associated with
drug—metabolomics. However, from untargeted metabo-
lomics two n-3 fatty acids, namely stearidonate (18:4n3) and
docosapentaenoate DPA 22:5n3), are not further associated
with drugs. In 2012, Banz et al [46] explored the therapeutic
implications of stearidonate acid in preventing or managing
type 2 diabetes. The Fatty Acids and Outcomes Research
Consortium (FORCE) [47] found that higher circulating bio-
markers of seafood-derived n-3 fatty acids were associated
with lower type 2 diabetes risk. On the contrary, branched-
chain amino acids [48] and sphingomyelin [15] have been
shown to have a causal role in type 2 diabetes development,
a correlation not observed in the DIRECT study.

Conclusions
Our study demonstrates that alteration in blood plasma

metabolites is associated with glycaemic deterioration. The
progression from prediabetes to diabetes is mediated by novel

@ Springer
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metabolites such as picolinoylglycine and N-lactoyl-amino
acids, as demonstrated by evidence from the DIRECT study.
N-lactoyl-amino acids are known to be exercise-induced
metabolites that suppress food intake and influence glucose
homeostasis. Additional functional research and quantifica-
tion are needed to advance the identification of early meta-
bolic biomarkers such as N-lactoyl-amino acids, which have
the potential to forecast the onset of type 2 diabetes. Collec-
tively, these findings direct attention towards novel metabolic
signatures associated with glycaemic deterioration.

Supplementary Information The online version contains peer-reviewed
but unedited supplementary material available at https://doi.org/10.
1007/s00125-024-06282-6.
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using three different hyperparameter combinations. De novo clusters were derived
by open k-means analysis. Stability of de novo clusters was assessed by assignment
congruence over different variable sets and Jaccard indices. Distribution of polygenic
risk scores and diabetes complications in the respective clusters were described as an
indication of underlying heterogeneity.

Results: Original clusters did not replicate well, indicated by substantially different
assignment frequencies and cluster characteristics between the original and current
sample. De novo clustering using k =3 clusters and including high sensitivity
C-reactive protein in the variable set showed high stability (all Jaccard indices >0.75).
The three de novo clusters (h = 96, n = 172, n = 33, respectively) adequately cap-
tured heterogeneity within the sample and showed different distributions of poly-
genic risk scores and diabetes complications, that is, cluster 1 was characterized by
insulin resistance with high neuropathy prevalence, cluster 2 was defined as age-
related diabetes and cluster 3 showed highest risk of genetic and obesity-related
diabetes.

Conclusion: T2D subphenotyping based on its sample's own clinical characteristics

KEYWORDS

1 | INTRODUCTION

Diabetes is a rapidly growing global health concern.’? The underlying
causes of pancreatic beta-cell dysfunction are heterogeneous, and
individual trajectories of hyperglycaemia and subsequent diabetes
complications vary widely.>* Therefore, classifications of type 2 diabe-
tes (T2D) that predict the risk of complications and provide options
for a tailored treatment have been actively studied.>~®

Traditionally, diabetes is mainly classified into type 1 (T1D) and T2D,
primarily determined by the presence (T1D) or absence (T2D) of autoan-
tibodies. A novel approach to identify subphenotypes of diabetes was
the hallmark study by Ahlqvist et al.” They used six diabetes-related vari-
ables including age at diagnosis, body mass index (BMI), haemoglobin
Alc (HbA1c), homeostasis model assessment (HOMA) estimates of beta-
cell function (HOMA2-B) and insulin resistance (HOMA2-IR) and gluta-
mic acid decarboxylase antibodies (GADA) to categorize individuals with
diabetes into five clusters. Thereby, four clusters mainly represent T2D
subphenotypes and one cluster with severe autoimmune diabetes (SAID)
mainly corresponds to the T1D subphenotype. The four T2D subpheno-
types were labelled based on their distinctive features as severe insulin-
deficient diabetes (SIDD), severe insulin resistant diabetes (SIRD), mild
obesity-related diabetes (MOD) and mild age-related diabetes (MARD)
and exhibited different risks of disease progression and diabetes compli-
cations. These clusters have been replicated in diverse ethnic groups
such as British,’® German,'**2 American and Chinese,**'* Mexican,
Icelandic,*® Japanese!” and Asian Indian cohorts.*® Recently, subpheno-
types were characterized in more detail from a molecular perspective,

19,20

including potential underlying genetic determinants and cluster-

specific signatures of metabolomics and proteomics.?*?? There appear to

leads to stable categorization and adequately reflects T2D heterogeneity.

clustering, cohort study, database research, diabetes complications, type 2 diabetes

be differences in biomarkers of inflammation between diabetes subphe-
notypes, which is in line with the involvement of inflammatory mecha-
nisms, most often assessed by C-reactive protein (CRP), in the
progression of diabetes.'??® Taken together, the current state of evi-
dence suggests that diabetes subphenotyping, including deep molecular
phenotyping, holds the potential to offer key insights into the underlying
pathophysiology of glucose dysregulation and the onset of comorbidities
among individuals with T2D, while it further enables the advancement of
personalized treatment of diabetes.

In the current study, we aimed to perform a comprehensive statisti-
cal assessment of T2D subphenotyping in the Cooperative Health
Research in the Region of Augsburg (KORA) FF4 cohort (Southern
Germany). Our aims were threefold: (1) to investigate to which extent
the original clusters from Ahlgvist et al.” could be replicated in the KORA
sample; (2) to derive novel T2D subphenotypes based on data-driven
clustering, also accounting for inflammation and (3) to investigate hetero-
geneity between the de novo derived subphenotypes by describing the
distribution of genetically predicted risk as captured by a polygenic risk
score (PRS), diabetes-related complications and parental history of diabe-

tes. An overview of the study design is shown in Figure 1.

2 | METHODS

21 | Study population and clinical data

KORA comprises several deeply phenotyped population-based epide-
miological surveys.?* The current analysis is based on data from the
KORA-FF4 study, conducted between 2013 and 2014. Details about
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KORA FF4 (N = 1658)
T2D = 301, control = 1357

Replication of ANDIS clusters for T2D samples in KORA De novo derivation of T2D clusters by k-means (N = 301) and

evaluation of the heterogeneity in KORA (N = 1658)

(N = 301)

Fixed number of clusters k = 4 Scaling/centroids
Fixed variable set as ANDIS study KORA/KORA (T2D = 301)
Scaling/centroids Scaling/centroids Scaling/centroids Determine the optimal

ANDIS/ANDIS KORA/ANDIS KORA/KORA number of clusters
for T2D samples

L |
[ for T2D samples

Explore variable sets ]

Characterization of T2D clusters and
evaluation the cluster’s heterogeneity

U

Polygenic risk Diabetes complications and
scores (N = 1658) parental history (T2D = 301)

FIGURE 1 Study design. The left part in orange corresponds to aim (1) whereas the right part in blue corresponds to aims (2) and (3). The
fixed variable set contained the basic variables: Age, body mass index, haemoglobin Alc, homeostasis model assessment (HOMA) estimates of
beta-cell function (HOMAZ2-B) and insulin resistance (HOMAZ2-IR), corresponding to the original ANDIS study. Variable sets in KORA contained
the basic variables plus one additional variable, respectively: High sensitivity C-reactive protein, triglycerides, HDL-cholesterol or systolic blood
pressure. ANDIS, Swedish All New Diabetics in Scania cohort; KORA, ‘Cooperative Health Research in the Region of Augsburg’ cohort; T2D, type
2 diabetes; PRS, polygenic risk score.

TABLE 1 Characteristics of the KORA FF4 participants for men and women.

Men (N = 178) Women (N = 123) p
Age at examination (years) mean (SD) 69.6 (10.0) 69.4(10.2) 0.83
BMI (kg/m?) mean (SD) 30.3(4.9) 32.2(5.7) 0.003
HbA1c (mmol/mol) mean (SD) 46.9 (11.7) 47.9 (10.9) 0.48
HOMA2-B % mean (SD) 72.3 (38.4) 71.5(31.8) 0.85
HOMA2-IR (SD) 2.1(1.2) 2.0(1.0) 0.52
hsCRP (mg/L) mean (SD) 2.7 (3.3) 4.5 (6.0) 0.001
TG (mmol/L) mean (SD) 1.9 (1.1) 1.6 (0.8) 0.025
HDL-C (mmol/L) mean (SD) 1.4 (0.4) 1.6 (0.4) <0.001
SBP (mmHg) mean (SD) 130.4 (17.8) 122.3(19.9) <0.001
Fasting glucose (mmol/L) mean (SD) 7.6 (2.0) 7.5(1.9) 0.543
Use of metformin 84 (47.2) 57 (46.3) 0.94
Any oral antidiabetic medication or insulin treatment 96 (53.9) 64 (52.0) 0.80
Known diabetes (%) 123 (69.1%) 84 (68.3%) 0.982

Note: Mean and standard deviation (SD) are provided for quantitative variables and differences were evaluated by student's t test. Count and percentage
are provided for categorical variables and differences were evaluated by chi square test.

Abbreviations: BMI, body mass index; HbA1C, haemoglobin Alc; HDL-C, high-density lipoprotein cholesterol; hsCRP, high sensitivity C-reactive protein;
HOMA2-B, homeostasis model assessment estimates of beta-cell function; HOMA2-IR, homeostasis model assessment estimates of insulin resistance;
Known diabetes, the diabetes diagnosis was known prior to the study; TG, triglycerides; SBP, systolic blood pressure.
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the study sample and the assessment of clinical data are presented in
Supplementary Material.

For the current analysis, only participants with T2D were included
for cluster analysis. Participants with T1D (n = 6) were excluded from
all analyses. Moreover, participants with missing values for clustering
variables (described below) were excluded (n = 20). Finally, the cluster
analysis comprised N = 301 individuals with T2D (Table 1). For the
assessment of genetically T2D risk, a PRS was calculated for all indi-
viduals with T2D (N = 301) and without T2D (N = 1357) as the con-
trol group (Table S1).

2.2 | Genotyping and polygenetic risk score
Genetically predicted T2D risk was calculated by an established PRS,

as described in Supplementary Material.

2.3 | Statistical analysis

Statistical analysis was conducted using R version 4.1.1. A two-sided
p value <0.05 was considered statistically significant. A detailed
description of (1) the replication of original clusters, including different
combinations of scaling and centroid hyperparameters, (2) de novo
cluster derivation in the KORA study and (3) assessment of differ-
ences between clusters with respect to PRS, parental history of diabe-

tes and diabetes complications is presented in Supplementary

Material.
3 | RESULTS
3.1 | Studysample

The final sample included 301 individuals with T2D, thereof
94 (31.2%) with newly detected diabetes by oral glucose tolerance
test (oGTT). Comparison between women and men showed higher
BMI, hsCRP and HDL-C values in women and higher TG and SBP
levels in men, whereas medication intake (metformin and any other
oral antidiabetic medication or insulin treatment) was similar (Table 1).
Fasting glucose and HbA1lc values over time are presented in
Figure S1.

3.2 | Replication of the four ANDIS T2D clusters
3.21 | Assignment by using ANDIS scaling and
ANDIS centroids

First, clinical variables of the KORA participants were scaled based on
ANDIS's scaling parameters, and each participant was assigned to a
single cluster based on the Euclidean distance to the ANDIS cen-

troids.?> The characteristics of four clusters are shown in Table S2

and Figure 2A. The SIDD cluster in KORA was characterized by a rela-
tively younger age, lower insulin secretion (HOMA2-B) and highest
HbA1c; the SIRD cluster had the highest level of insulin resistance
(HOMAZ2-IR) and insulin secretion (HOMAZ2-B); the MOD cluster had
a high BMI but younger age and the MARD cluster showed low insulin
resistance, low BMI and older age. The relative cluster sizes in KORA
were not comparable to those found in the ANDIS study. SIDD made
up only 2% of the T2D cases in KORA compared to 17.5% in ANDIS.
More than 80% of participants in KORA were assigned to the MARD
cluster, compared to only around 40% in ANDIS.

3.2.2 | Assignment by using KORA scaling and
ANDIS centroids

Second, the clinical variables of KORA participants were scaled
based on own scaling parameters derived from the KORA sample
and then assigned to a single cluster based on the Euclidean dis-
tance to the ANDIS centroids.?! The characteristics of four clusters
are shown in Table S2 and Figure S2A. The SIDD cluster in KORA
was characterized by a relatively younger age, lower insulin secre-
tion (HOMAZ2-B) and poorer glycaemic control (higher HbA1c); the
SIRD cluster had the highest level of insulin resistance (HOMA2-IR)
and insulin secretion (HOMAZ2-B); the MOD cluster had a high BMI
and individuals were younger and the MARD cluster had low insulin
resistance and low BMI, but an older age. All these variables
followed the same trend in KORA and ANDIS. The relative cluster
sizes in KORA were comparable to those found in the ANDIS study,
for example, most participants were allocated to MARD for both
KORA (46.8%) and ANDIS (39.1%), and 15.3% of individuals in
KORA were assigned to SIDD which was similar to the ANDIS
study (17.5%).

We then investigated the transfer of individuals when using
ANDIS centroids, with either ANDIS scaling or KORA scaling. Sixty-
five percent of participants were assigned to the same clusters
(Figure S2B). Compared to ANDIS scaling, clusters were more
evenly distributed when using KORA scaling. Most strikingly, a
substantial part of the MARD cluster when using ANDIS scaling
was allocated to the SIDD, SIRD and MOD clusters using KORA

scaling.

3.2.3 | Assignment by using KORA scaling and
KORA centroids

Third, clusters were derived based on hyperparameters from KORA
data alone, using k-means clustering on the same variable set (age,
BMI, HbA1c, HOMA2-B and HOMA2-IR) forcing the same number of
clusters (k = 4) as in the ANDIS cohort. As shown in Figure S3, cluster
1 was characterized by low insulin secretion (low HOMAZ2-B), high
BMI and poor metabolic control (high HbA1c); thus, we labelled clus-
ter 1 as SIDD. Cluster 2 had insulin resistance as evidenced by a high
HOMAZ2-IR which could be compared to SIRD. Cluster 3 featured
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FIGURE 2 Distributions of age at examination, body mass index (BMI), haemoglobin Alc (HbA1c), homeostasis model assessment (HOMA)
estimates of beta-cell function (HOMAZ2-B) and insulin resistance (HOMA2-IR) in the KORA FF4 cohort for each cluster (A) using ANDIS scaling
and ANDIS centroids or (B) with additional high sensitivity C-reactive protein (hsCRP) derived from de novo k-means with k = 3. The upper and

lower bounds of boxes represent the first and third quartiles, box centres

represent the median values and circles represent outliers. (C) Sankey

diagram displaying the transfer of individuals between the clusters identified using KORA scaling and ANDIS centroids (left side) and the clusters
identified using KORA scaling and KORA centroids (right side), (D) transition of individuals between the clusters originally replicated using KORA
scaling and KORA centroids (left side, corresponding to the right side of Figure 2C) and de novo derivation (right side) and (E) transition of
individuals between the de novo clusters identified using basic variables (left side) and with the additional variable hsCRP (right side). MARD, mild
age-related diabetes; MOD, mild obesity-related diabetes; SIDD, severe insulin-deficient diabetes; SIRD, severe insulin resistant diabetes.

elderly individuals with relatively mild metabolic irregularities which is
similar to MARD in the ANDIS study. Cluster 4 represented a novel
distinct subphenotype with the overall most modest metabolic impair-
ments and low BMI and was thereby distinct from the ANDIS
cluster MOD.

We also generated the Sankey diagram to visualize and compare
the cluster assignment based on the second approach (using KORA
scaling and ANDIS centroids) and the third approach (using
KORA scaling and KORA centroids). We observed consistent cluster
assignments for only 45% of the individuals between the second and
third approach (Figure 2C). Taken together, these results suggest that
the original ANDIS clusters do not fully reflect the characteristics of
the KORA sample.

3.3 | De novo cluster derivation in KORA
3.3.1 | Determination of k and cluster derivation

Both silhouette width and the elbow plot methods agreed that k = 3
rather than k = 4 was the optimal number of clusters for the KORA
data (Figure S4). Subsequently, k-means was used on the basic vari-
able set to categorize KORA participants into three clusters represent-
ing three T2D subphenotypes. Clinical characteristics according to
each subphenotype are shown in (Figure S5A). Cluster 1 (n = 96,
31.9%) was characterized by hyperinsulinemia and insulin resistance
(most similar to the SIRD cluster in the ANDIS cohort); participants in
cluster 2 (n =172, 57.1%) had older age, low BMI and low insulin
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resistance which could be compared to MARD in the ANDIS cohort;
and cluster 3 (n=33, 11.0%) showed insulin deficiency (low
HOMAZ2-B), high BMI and poor glycaemic control (high HbA1c), which
is a distinct cluster from those present in the ANDIS cohort. We then
compared participant transitions from the original cluster replication
using KORA centroids and KORA scaling (third approach as described
above) with the de novo derived clusters (Figure 2D). Individuals pre-
viously allocated to the MARD subphenotype were reallocated to the
new cluster 1 and cluster 2. Individuals previously allocated to
the novel distinct subphenotype were mainly reallocated not only to
the new cluster 2, but also to the new cluster 3 (distinct). Individuals
previously allocated to the SIRD subphenotype were reallocated to
the new cluster 3.

3.3.2 | Different variable sets and final clusters

We assessed the stability of cluster assignments when using differ-
ent sets of variables for clustering: basic variables (age at examina-
tion, BMI, HbA1lc, HOMA2-B and HOMAZ2-IR) plus hsCRP, TG,
HDL-C or SBP, respectively. In general, the addition of these vari-
ables did not substantially influence the distribution of the basic
variables between clusters and did not lead to substantial transition
of participants between clusters (Figure 2B,D, Figures S5, Sé6 and
S7). In detail, 90%, 93%, 90% and 98% of participants were allo-
cated to the same cluster when using basic variables compared to
when adding hsCRP, TG, HDL-C or SBP, respectively. To account
for the role of systemic inflammation in diabetes differentiation, we
defined the clusters derived from the variable set of age, BMI,
HbA1c, HOMA2-B and HOMA2-IR plus hsCRP as the final subphe-
notypes, presented in Figure 2B, Tables S3 and S4. Cluster

1 included 91 participants (30.2%) and was characterized by insulin
resistance (high HOMA2-IR) and hyperinsulinemia, with a high pro-
portion of newly diagnosed diabetes cases (most similar to the
SIRD cluster in ANDIS). Cluster 2 included 182 individuals (60.5%)
and was characterized by high age, low BMI and low insulin resis-
tance (most similar to the MARD cluster in ANDIS). Cluster
3 included 28 participants (9.3%) and was characterized by a high
BMI, poor glycaemic control, high level of subclinical inflammation
(high hsCRP) and relative insulin deficiency, broadly resembling a
typical patient seen in clinical practice (most similar to SIDD/MOD
cluster in ANDIS).

The assessment of cluster stability showed that Jaccard indices
of all final clusters were above 0.75, indicating reasonably high
cluster stability for the final variable set (Table S5). Of note, with
additional variables TG, HDL-C or SBP, stability slightly decreased
for all clusters and cluster 3 even showed Jaccard indices below
0.75 (Table S5). Besides, the majority of individuals (95%) were
assigned to the same cluster as in the initial data analysis, and both
men and women showed the same trend on the clinical variable
distribution (Figure S8), suggesting a lack of substantial sex-specific

effects.

3.4 | Cluster differences in genetic risk, diabetes-
related complications and parental history

34.1 | Polygenic risk score

The overall distribution of the PRS in the KORA FF4 sample is given
in Figure 3A. Participants with T2D had significantly higher PRS
values (p < 0.001) compared to those without T2D and were
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FIGURE 3 (A) Density plot shows the polygenic risk score (PRS) distribution in the KORA FF4 sample without (light green) and with (light red)

type 2 diabetes (T2D). Data beyond the two vertical lines indicate extreme values of the PRS distribution, and the corresponding numbers reflect
the proportion of individuals without (light green) and with (light red) T2D who showed extreme PRS values. (B) Percentile of increasing PRS (x-
axis) versus the prevalence of T2D (y-axis). (C) Distributions of PRS in control group (marked as 0) and three clusters representing T2D

subphenotypes.
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overrepresented in the highest quantiles of the distribution
(Figure 3A,B). When comparing the distribution of PRS in the respec-
tive clusters to individuals without diabetes (Figure 3C), the PRS in
cluster 2 and cluster 3 was significantly different to the control group
(both p < 0.001, respectively) but the PRS in cluster 1 was not differ-
ent to the control group. An additional t test confirmed that cluster
3 had a significantly higher PRS than cluster 1 (p = 0.034), whereas

there was no significant difference between cluster 1 and cluster 2.

3.4.2 | Diabetes-related complications and parental
history of diabetes

We evaluated the prevalence of diabetes-related complications and
parental history of T2D in the three clusters. As shown in Figure S9
and Table S7, in general, individuals in clusters 1 and 2 had a substan-
tially higher prevalence of myocardial infarction, stroke and chronic
kidney disease (CKD). Individuals in cluster 3 had a more frequently
positive parental history of diabetes.

Moreover, compared to cluster 1, cluster 2 had a lower frequency
of neuropathy (p = 0.043) but a higher prevalence of stroke (not sig-
nificant) and CKD (p = 0.030).

4 | DISCUSSION
The T2D subphenotype classification scheme proposed by Ahlqvist
et al.” has been replicated in different populations and has proven to
be a useful tool to further characterize potential pathophysiological
pathways and diabetes progression. Our study aimed at a comprehen-
sive assessment of original cluster replication, including a systematic
illustration of participant transitions between replicated clusters, de
novo cluster derivation, including the assessment of cluster stability,
and underlying genetic risk and complication distribution. We found
that the original clusters only partially reflected the characteristics of
individuals with T2D in the KORA sample, whereas de novo derived
clusters showed excellent stability and captured the underlying het-
erogeneity between the T2D subphenotypes. Our results therefore
underscore the importance of subphenotyping by illustrating the
importance of individual study characteristics, and we contribute
another potential T2D subphenotype to the existing panel.

Our results align with recent findings, which indicated that 11 of
18 studies either delineated distinct subphenotypes or failed to iden-
tify all ANDIS subphenotypes.?® Part of the lack of replicability of the
original clusters may be attributed to differences in the study setup
and participants' characteristics. For example, we used age at exami-
nation for clustering, since age of diabetes onset for most T2D partici-
pants was not available. Therefore, the average age used in the KORA
sample was significantly higher compared to the ANDIS cohort
(Table S1), especially in the de novo cluster 2 (comparable to MARD).
Moreover, individuals in KORA had better glycaemic control and less
insulin resistance compared to the ANDIS sample (Table S1), indicat-

ing that KORA potentially included a larger proportion of T2D cases

with less severe disease. Furthermore, our HOMA models were based
on insulin instead of C-peptide, which might have led to differences in

estimates. Some studies?”:?8

suggested that C-peptide better
reflected insulin secretion, while another study?’ suggested that both
of them performed similar in evaluating beta cell function.

Employing different scaling parameters generated a big difference
in cluster allocation, and different studies applied different
approaches.?2?> The incongruence of cluster assignment, together
with the identification of a novel, distinct subphenotype not present
in ANDIS when using KORA centroids, shows that the original clusters
do not capture the characteristics of the KORA sample as well. We
consider this finding important for personalized prevention. While the
ANDIS cohort captured crucial subphentoypes, these clusters might
take different shapes or not fully reflect the underlying sample in
other cohorts with different characteristics. Contributions from multi-
ple studies are therefore needed to expand and refine the current
panel of T2D subphenotypes.

Determination of the optimal number of clusters k based on sil-
houette and elbow plot showed that in the KORA sample, k = 3 was
the best number of clusters, which is consistent with the Danish DD2
study.?> A head-to-head comparison between the clusters from KORA
and DD2 revealed major similarities (Table S8). Consistent with the
research from Safai et al.’® which did not identify an evident
MOD-like cluster in their de novo cluster analysis (when using k = 5,
including SAID), the clusters with the highest BMI also exhibited sig-
nificantly higher insulin resistance. Besides the clinical characteristics
used for clustering, multiple other factors are associated with T2D.
We thus assessed cluster stability across different variable sets, addi-
tionally including hsCRP, HDL-C, TG or SBP, respectively. We found
that these additional variables did not contribute much to the reallo-
cation of individuals, as more than 90% individuals were still assigned
to the same cluster, indicating high cluster stability and robustness
towards different variable sets. One could thus hypothesize that the
original variables already capture a major part of T2D heterogeneity
and are adequate to identify clinically meaningful T2D subpheno-

183031 3ls0 applied analytical approaches for a

types. Other studies
wider range of clusters or included different variables than the ANDIS
study but did not systematically evaluate how participants were real-
located when using different clustering variables.

CRP is regulated by proinflammatory cytokines derived from adi-
pose tissue.>?3 In individuals with T2D, CRP levels are chronically
elevated.®* In the current analysis, we included hsCRP for clustering
to account for the role of subclinical inflammation and assess potential
differences according to subphenotypes. The de novo derived cluster
3 could not be mapped to one of the original ANDIS clusters and was
characterized by high BMI, high hsCRP and relatively low HOMA2-B.
Increased CRP levels have been linked to excess body weight since
adipose tissue produces tumour necrosis factor a (TNF-a) and
interleukin-6 (IL-6), which are pivotal factors for CRP stimulation.3%%3
We could thus hypothesize that cluster 3 represents a T2D subpheno-
type with chronic, obesity-induced subclinical inflammation. The PRS
and the prevalence of self-reported parental history of diabetes were

both the highest in cluster 3. So, cluster 3 could represent a T2D
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subphenotype with higher genetically induced risk for both diabetes
and obesity, resulting in chronic subclinical inflammation (Table S6
and Figure S10). We note that the use of a PRS to define subgroups
of diabetes is still questionable and would render the algorithm less
readily applicable in clinical practice and other studies, which is why
we only use it descriptively. Since non-genetic risk factors might have
even stronger unfavourable impacts in individuals with genetic predis-
position, the group in cluster 3 would particularly benefit from rigor-
ous weight control, either through lifestyle modifications or drug
treatment. Moreover, these individuals should be monitored for
potential other causes of inflammation, such as infections or wounds.

The analysis of diabetes complications showed that in cluster
2, there was a higher proportion of CKD cases and a relatively higher
percentage of stroke (not significant) compared to cluster 3. This
could be due to the higher average age in cluster 2, since it is well-
established that age is a major risk factor for metabolic complications
in T2D.3>3¢ Because risk in cluster 2 is mainly conferred by aging pro-
cesses, and age is a non-modifiable factor, for this cluster in particular,
close monitoring of comorbidities and strict, potentially medication-
based, control of, for example, blood pressure and renal function is
advisable. Cluster 1 was characterized by hyperinsulinemia and a com-
paratively higher prevalence of neuropathy compared to cluster
2. Insulin dysregulation can contribute to neuropathic changes in sen-
sory neurons, and the peripheral nervous system is one of several
organ systems that are profoundly affected in diabetes.®” Interest-
ingly, HbA1c levels in cluster 1 were comparatively low, so it would
be crucial to investigate the use of glucose-lowering therapy in this
cluster to evaluate their role in the prevention of neuropathy in
this subphenotype. Medication therapy in this cluster was compara-
tively low, likely due to the high proportion of newly diagnosed diabe-
tes cases, so this would be an obvious target to tackle insulin
resistance in these individuals. Moreover, lifestyle interventions would
be beneficial, including dietary changes by reducing calorie intake and
limiting high glycaemic index carbohydrates and regular physical activ-
ity which enhances calorie burning and increases insulin sensitivity in
muscle tissue.®83? Evidence indicates that an increased level of hsCRP
is linked with diabetes-related complications,*>*! but cluster 3 with
the highest hsCRP levels was not characterized by a high load of com-
plications. This may be due to the younger age of individuals in cluster
3 (Figure 2B), since given the potential pathway discussed above
about a genetic predisposition to obesity-induced inflammation, it
would be possible that diabetes complications in cluster 3 have not
yet developed.

We acknowledge the limitations of our current study. The sample
size was relatively small compared to other population-based studies,
and although unsupervised clustering does not have strict sample size
requirements, the small number of individuals with diabetes-related
complications and family history information impedes the interpreta-
tion of shared disease characteristics. While the clusters represent a
true underlying structure in the data from a statistical perspective, this
structure could also have emerged due to other shared characteristics
of the respective individuals, for example, environmental factors, and

do not necessarily represent shared pathophysiology. Moreover, our

results regarding diabetes complications need to be interpreted with
caution, since complications were self-reported, and the sample size
was small. We were unable to model medication effects, since medica-
tion could not be included as a variable in the clustering procedure, and
participants' individual medication regimes could not be disentangled.
Moreover, our participants were exclusively of white European ethnic-
ity, which limits the generalizability to other populations.

In conclusion, to exploit the full advantages of T2D subphenotyp-
ing, a potential mismatch between reported T2D clusters and the indi-
vidual study characteristics has to be taken into account. Since
adapting the clustering algorithm might not always be possible, further
efforts should be undertaken to identify further subtypes from differ-
ent well-characterized studies, in order to expand and refine the cur-
rent panel of T2D subphenotypes.
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