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2. Abstract (English): 

Type 2 diabetes (T2D) is a prevalent and intricate metabolic condition stemming from the body's 

inefficient utilization of insulin. It is distinguished by elevated blood sugar levels attributed to com-

promised insulin secretion and resistance, with the majority of cases linked to overweight or obe-

sity. T2D is a complex chronic disease with no apparent early symptoms or vary widely from 

individual to individual but untreated high blood sugar can damage multiple organs. So early de-

tection of preclinical conditions and comprehension of the underlying mechanisms within subphe-

notypes of T2D are crucial, followed by the adoption of preventive and therapeutic approaches.  

Precision medicine in diabetes entails optimizing the diagnosis, prediction, prevention, or treat-

ment of diabetes through integration of multidimensional data while considering individual varia-

tions. It employs muti-omics technologies such as genotyping, transcriptomics, metabolomics 

combined with clinical phenotype to illustrate the systematic biology. There is growing interest in 

applying metabolic profiling to identify disease molecular signatures, as it offers a powerful ap-

proach for unraveling the complex relationships between obesity, metabolism, and diabetes pro-

gression. This thesis aims to advance precision health strategies for T2D by improving early de-

tection with identified candidate biomarkers and capturing disease heterogeneity using data-

driven classification approaches, that integrates metabolomics, genetics, and clinical assessment 

data. 

This thesis firstly utilized 146 targeted metabolomic profiles obtained from the Cooperative Health 

Research in the Region of Augsburg (KORA) FF4 cohort comprising 1715 participants and cor-

relating them with obesity and T2D. 42 and 3 metabolites were significantly correlated with body 

mass index (BMI) and T2D adjusted for multiple covariates, respectively, and were also replicated 

in the previous studies. Those metabolites included branched-chain amino acids (BCAA) and 

lipids. Sobel mediation test implied that lipids including sphingomyelin (SM) C16:1, SM C18:1 and 

diacyl phosphatidylcholine (PC aa) C38:3 mediated the impact of BMI on T2D. Additionally, men-

delian randomization indicated a causal link where BMI influenced changes in SM C16:1 and PC 

aa C38:3, and alterations in SM C16:1, SM C18:1, and PC aa C38:3 contributed to T2D incident. 

Biological pathway analysis, alongside genetic studies, and experiments with mice, revealed that 

dysregulation of sphingolipid and phosphatidylcholine metabolism were pivotal factors in the early 

stages of T2D pathophysiology. Our findings highlight that these three identified metabolites play 

a mediating role in connecting BMI with T2D, shedding light on their significance in T2D develop-

ment. 

To further elucidate the role of metabolites in the glycemic deterioration, data from 3000 individ-

uals enrolled in the Innovation Medicines Initiative - Diabetes Research on Patient Stratification 

(IMI-DIRECT) consortium were analyzed, with measurements available for 911 metabolites (132 

targeted-metabolomics, 779 untargeted-metabolomics). In the targeted (and untargeted) metab-

olomics measurements, we observed 4 (15) and 34 (99) metabolites had significant variation in 

normal glucose regulation (NGR) group compared to those with impaired glucose regulation (IGR) 

and T2D groups respectively. Besides, for pre-diabetic group, 50 (108) metabolites were identified 

to be significantly distinct from T2D group. Metabolites identified through targeted metabolomics, 

such as lysophosphatidylcholine acyl (lysoPC a) C17:0 and the sum of hexoses and untargeted 

metabolomics including N-lactoylvaline, N-lactoylleucine, formiminoglutamate, carbohydrate lac-

tate, and an unknown compound (X-24295) were significantly associated with HbA1c progression 

rate and predictive of incident prediabetes and diabetes. In the causal mediation test, we also 
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observed that these metabolites were significant mediators of glycemic deterioration from base-

line to 18- and 48-month follow-ups. In mendelian randomization, we observed T2D exhibited a 

causal influence on the concentrations of three metabolites (hexose, glutamate and caproate (FA 

6:0)), while four phosphatidylcholines such as PC aa C36:2 as well as the two omega-3 fatty acids 

stearidonate (FA18:4) and docosapentaenoate (n3 DPA; FA22:5) potentially played a causal role 

in the onset of T2D. Our findings suggest metabolites lysoPC a C17:0, N-lactoylvaline, N-lac-

toylleucine, formiminoglutamate, as well as lactate, and an unknown metabolite (X-24295) are 

linked with glycemic deterioration and are the mediators for developing of IGR or T2D, which help 

improve the early detection and understanding the progression of the disease. 

In above sections we identified the biomarkers playing a role in the early-stage T2D progression, 

which could contribute to implementation of preventive and therapeutic strategies. Individual tra-

jectories of hyperglycemia vary widely, necessitating a thorough comprehension of its mecha-

nisms and the implementation of precision treatment for T2D patients with this condition. There-

fore, we used data of 301 T2D individuals from KORA FF4 study for cluster analysis. We firstly 

replicated original cluster from the study by Ahlqvist et al. 2018 by forcing k=4 with same variables 

but three different scaling parameters and centroids combinations. We found original clusters 

were not effectively replicated, as evidenced by significantly different assignment frequencies and 

cluster characteristics between the ANDIS and KORA samples. New clusters were derived 

through open k-means analysis and the stability of new clusters was evaluated based on the 

assignment consistency across various sets of variables and Jaccard indices. K=3 clusters was 

used in the new clustering and additionally including high-sensitivity C-reactive protein (hsCRP) 

in the variable set yielded notable cluster stability with all Jaccard indices exceeding 0.75. Poly-

genic risk scores (PRS) and diabetes complications were delineated in the new three clusters as 

manifestations of inherent heterogeneity. The three de-novo derived clusters (n= 96, 172, 33, 

respectively) effectively captured heterogeneity within the sample and exhibited distinct distribu-

tions of PRS and diabetes complications, i.e. Cluster 1 was characterized by insulin resistance 

with high neuropathy prevalence, Cluster 2 was defined as age-related diabetes with higher prev-

alence of stroke and CKD, and Cluster 3 showed the highest genetic predisposition and risk of 

obesity-related diabetes. Our findings demonstrate that subphenotyping T2D based on unique 

clinical characteristics of the samples yields stable categorization and effectively captures T2D 

heterogeneity, thereby supporting the advancement of personalized treatment strategies. 

In conclusion, this thesis shows that metabolic profiles can support the early detection of diabetes 

and deepen our understanding of the pathological mechanisms underlying T2D progression. Ad-

ditionally, subtyping T2D aids elucidate its inherent heterogeneity and paves the way for person-

alized treatment approaches. Together, these insights offer valuable contributions to the advance-

ment of precision health. 
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3. Zusammenfassung 

Typ-2-Diabetes (T2D) ist eine weit verbreitete und komplexe Stoffwechselerkrankung, die auf 

eine ineffiziente Glukoseregulation zurückzuführen ist. Sie zeichnet sich durch einen erhöhten 

Blutzuckerspiegel aus, der durch eine beeinträchtigte Insulinsekretion und -resistenz bedingt ist, 

wobei die meisten Fälle auf Übergewicht oder Fettleibigkeit zurückzuführen sind. T2D ist eine 

chronische Stoffwechselerkrankung, deren Symptome im Frühstadium fehlen oder von Person 

zu Person stark variieren können. Unbehandelt kann ein hoher Blutzucker jedoch mehrere 

Organe schädigen. Daher ist die frühzeitige Erkennung präklinischer Erkrankungen und das 

Verständnis der zugrunde liegenden Mechanismen von entscheidender Bedeutung, um 

präventive und therapeutische Ansätze zu entwickeln.  

Präzisionsmedizin bei Diabetes bedeutet die Optimierung der Diagnose, Vorhersage, Prävention 

oder Behandlung von Diabetes durch die Integration mehrdimensionaler Daten unter 

Berücksichtigung individueller Variationen. Es nutzt Muti-Omics-Technologien wie 

Genotypisierung, Transkriptomik und Metabolomik in Kombination mit klinischem Phänotyp, um 

die zugrundeliegende systemische Biologie zu veranschaulichen. Besonders zunehmendes 

Interesse besteht an der Anwendung von Stoffwechselprofilen zur Identifizierung von 

Krankheitsbiomarkern, da es sich um einen wirksamen Ansatz zur Aufdeckung des komplizierten 

Verlaufs zwischen Fettleibigkeit, Stoffwechsel und Diabetes handelt. Ziel dieser Arbeit ist es, zur 

Präzisionsmedizin von T2D beizutragen, indem die Früherkennung mit identifizierten Kandidaten-

Biomarkern verbessert und Heterogenität mit datengesteuerter Klassifizierung auf der Grundlage 

von Metabolomik/Genetik und klinischen Daten erfasst wird.  

In dieser Arbeit wurden zunächst 146 Metabolit-Profile, die aus der FF4-Kohorte der kooperativen 

Gesundheitsforschung in der Region Augsburg (KORA) mit 1715 Teilnehmern gewonnen wurden, 

mit Fettleibigkeit und T2D korreliert. 45 Metaboliten waren signifikant mit dem um mehrere 

Kovariaten adjustierten BMI und T2D assoziiert, die alle bereits bekannt waren. Bei diesen 

Metaboliten handelte es sich um verzweigtkettige Aminosäuren, Sphingolipide, Acylcarnitine, 

Lysophospholipide oder Phosphatidylcholine. Der Sobel-Mediationstest legt nahe, dass der 

Einfluss des BMI auf T2D über Lipide wie Sphingomyelin (SM) C16:1, SM C18:1 und 

Diacylphosphatidylcholin (PC aa) C38:3 vermittelt werden könnte. Darüber hinaus weist die 

Mendelsche Randomisierung auf einen Kausalzusammenhang hin, bei dem der BMI die 

Veränderungen in SM C16:1 und PC aa C38:3 beeinflusste und Veränderungen in SM C16:1, 

SM C18:1 und PC aa C38:3 zu T2D beitrugen. Die Analyse biologischer Signalwege sowie 

genetischer Studien und Experimente mit Mäusen zeigen, dass eine Fehlregulation des 

Sphingolipid- und Phosphatidylcholin-Stoffwechsels entscheidende Faktoren in den frühen 

Stadien der T2D-Pathophysiologie sind. Die Ergebnisse dieser Arbeit zeigen, dass diese drei 

identifizierten Metaboliten eine vermittelnde Rolle bei der Verbindung von BMI mit T2D spielen, 

was Aufschluss über ihre Bedeutung für die T2D-Pathologie gibt.  

Um die Rolle von Metaboliten bei glykämischer Veränderungen weiter aufzuklären, wurden 3000 

Personen des Konsortiums Innovation Medicines Initiative – Diabetes Research on Patient 

Stratification (IMI-DIRECT) mit 911 gemessenen Metaboliten (132 gezielte Metabolomik, 779 

ungezielte Metabolomik) analysiert. Bei den gerichtete (und ungerichtete) Metabolomics-

Messungen beobachteten wir, dass 4 (15) und 34 (99) Metaboliten signifikante Unterschiede in 

der Gruppe mit normaler Glukoseregulation (NGR) im Vergleich zu denen mit beeinträchtigter 

Glukoseregulation (IGR) bzw. T2D aufwiesen. Darüber hinaus wurden für die prädiabetische 

Gruppe 50 (108) Metaboliten identifiziert, die sich deutlich von der T2D-Gruppe unterschieden. 
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Wesentliche Metaboliten waren hauptsächlich verzweigtkettige Aminosäuren (BCAA), auch 

abgeleitete BCAA, Lipide, Xenobiotika und einige nicht annotierte Metabolite. Metaboliten wie 

LysoPC a C17:0, Summe der Hexosen (aus gerichtete Metabolomik), Aminosäuren aus dem 

BCAA-Metabolismus wie N-Lactoylvalin und N-Lactoylleucin, Formiminoglutamat sowie Laktat 

und ein unbekannter Metabolit (X-24295) waren mit der HbA1c-Progressionsrate korreliert und 

sagten das Auftreten von Prädiabetes/Diabetes voraus. Im kausalen Mediationstest 

beobachteten wir auch, dass diese Metaboliten signifikante Mediatoren der glykämischen 

Verschlechterung vom Ausgangswert bis zur Nachuntersuchung nach 18 und 48 Monaten waren. 

Die Mendelschen Randomisierung zeigte, dass T2D einen kausalen Einfluss auf die 

Konzentrationen von drei Metaboliten (Hexose, Glutamat und Caproat (FA 6:0)) hatte, während 

Lipide wie spezifische Phosphatidylcholine (PC aa C36:2) sowie die beiden Omega-3-Fettsäuren 

Stearidonat (FA18:4) und Docosapentaenoat (FA22:5) möglicherweise eine ursächliche Rolle bei 

der Entstehung von T2D spielen. Unsere Ergebnisse legen nahe, dass die Metaboliten LysoPC 

a C17:0, N-Lactoylvalin, N-Lactoylleucin, Formiminoglutamat sowie Laktat und ein unbekannter 

Metabolit (X-24295) mit einer glykämischen Verschlechterung assoziiert sind und die Mediatoren 

für die Entwicklung von IGR und T2D sind, die dazu beitragen könnten, die Früherkennung und 

das Verständnis der Pathologie der Krankheit zu verbessern.  

In den obigen Abschnitten haben wir die Biomarker identifiziert, die bei der T2D-Progression im 

Frühstadium eine Rolle spielen und zur Umsetzung präventiver und therapeutischer Strategien 

beitragen könnten. Aufgrund er Komplexität und Heterogenität von T2D, ist ein grundlegendes 

Verständnis seiner Mechanismen und die Umsetzung einer präzisen Behandlung für T2D-

Patienten mit dieser Erkrankung erforderlich. Deshalb wurden Clusteranalyse in Daten von n = 

301 T2D-Personen aus der KORA FF4-Studie durchgeführt. Zunächst wurde der Originalcluster 

von Ahlqvist et al. Repliziert, k=4 unter Verwendung derselben Variablen wie Ahlqvist et al. 

erzwungen. Es wurden drei verschiedene Skalierungsparameter und Schwerpunktkombinationen 

untersucht. Dabei konnten die ursprünglichen Cluster nicht effektiv repliziert werden, da es 

deutlich unterschiedliche Zuordnungshäufigkeiten und Clustereigenschaften zwischen den 

ANDIS- und KORA-Proben gab. Daraufhin wurden neue Cluster mittels offener K-Means-Analyse 

abgeleitet und die Stabilität dieser Cluster auf der Grundlage der Zuweisungskonsistenz über 

verschiedene Variablensätze und Jaccard-Indizes bewertet. Bei der neuen Clusterbildung 

wurden 3 Cluster verwendet.Unter zusätzlicher Einbeziehung von hochsensiblen C-reaktivem 

Protein (hsCRP) in den Variablensatz ergab sich eine bemerkenswerte Clusterstabilität, wobei 

alle Jaccard-Indizes 0,75 überstiegen. Polygene Risikoscores (PRS) und 

Diabeteskomplikationen wurden in den neuen drei Clustern als Manifestationen inhärenter 

Heterogenität abgegrenzt. Die drei de-novo-abgeleiteten Cluster (n = 96, 172 bzw. 33) erfassten 

effektiv die Heterogenität innerhalb der Stichprobe und zeigten unterschiedliche Verteilungen von 

PRS- und Diabetes-Komplikationen, d. h. Cluster 1 war durch Insulinresistenz mit hoher 

Neuropathie-Prävalenz gekennzeichnet Cluster 2 wurde als altersbedingter Diabetes mit höherer 

Prävalenz von Schlaganfällen und CKD definiert, und Cluster 3 wies die höchste genetische 

Veranlagung und das höchste Risiko für Diabetes im Zusammenhang mit Fettleibigkeit auf. 

Unsere Ergebnisse deuten darauf hin, dass die T2D-Subphänotypisierung auf der Grundlage der 

einzigartigen klinischen Merkmale der Probe zu einer stabilen Kategorisierung führt und die T2D-

Heterogenität effektiv erfasst, und dass dieser Ansatz die Weiterentwicklung der personalisierten 

Behandlung von Diabetes erleichtern könnte.  

Zusammenfassend zeigt diese Arbeit, dass Metabolitprofile bei der Früherkennung von Diabetes 

helfen können, um die Pathologien der T2D-Progression zu verstehen, während die 

Subtypisierung von T2D dabei hilft, die zugrunde liegende Heterogenität aufzuklären und um 
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potenziell personalisierte Therapien zu entwickeln. Somit konnten wichtige Beiträge zur 

Präzisionsmedizin geleistet werden. 
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4. Introduction 

4.1 Type 2 diabetes 

World Health Organization (WHO) manifests that the global number of people with diabetes rose 

to 422 million in 2014, and it is estimated to impact approximately 700 million adults by 2050 [1]. 

Diabetes mellitus (DM) is a metabolic condition marked by abnormally high blood glucose levels 

due to the body's impaired ability to utilize insulin effectively. Over time, disruptions in insulin 

secretion or insulin function, and eventually both, can result in disturbances in carbohydrate, pro-

tein, and lipid metabolism. DM is a multifactorial condition encompassing type 1 diabetes (T1D), 

type 2 diabetes (T2D), gestational diabetes, maturity-onset diabetes of the young (MODY), and 

so on [2]. Here we mainly focus on prediabetes and T2D in our research. 

According to WHO, T2D is diagnosed when fasting plasma glucose (FPG) ≥ 126 mg/dL (7.0 

mmol/L), or when 2-h plasma glucose (2h-PG) ≥ 200 mg/dL (11.1 mmol/L). These could be 

measured by an oral glucose tolerance test (OGTT). American Diabetes Association (ADA) aligns 

with the WHO criteria but adds two more measurements, hemoglobin A1c (HbA1c) ≥ 6.5% (48 

mmol/mol) and a random plasma glucose ≥ 200 mg/dL (11.1 mmol/L) can be also considered as 

a diagnostic tool [3, 4]. 

More than 95% of individuals with diabetes have T2D. It was initially observed primarily in adults 

but is now increasingly prevalent in children. T2D can cause progressive damage to the body, 

particularly affecting nerves and blood vessels. Prevention is often possible, with contributing 

factors including overweight, physical inactivity, and genetic predisposition. Timely diagnosis is 

essential to reduce the severe consequences of T2D. The most effective approach to identify 

diabetes is through routine examinations and blood tests performed by a medical professional. 

Symptoms of T2D can be subtle and may take several years to manifest, leading to delayed 

diagnosis and the onset of complications [5].  

4.1.1 Risk factors 

Several factors are considered to increase the risk of T2D, including obesity, fat distribution, phys-

ical inactivity, age, family history, prediabetes and race/ethnicity. Being overweight and prediabe-

tes are key contributing factors [6, 7]. 

The occurrence of overweight and obesity is on a continuous rise among both adults and children. 

From 1975 to 2016, the global occurrence of overweight or obese children and adolescents rose 

from 4% to 18% [8]. Obesity significantly contributes to the onset of insulin resistance and diabe-

tes [9], but the molecular pathway remains not fully understood. Prediabetes denotes a state 

where blood sugar levels exceed normal ranges but fall below the threshold for diabetes diagnosis. 

If not addressed, prediabetes frequently advances to type 2 diabetes [7] as shown in the KORA 

cohort which is a longitudinal population-based adult cohort study [10] and IMI-DIRECT cohort 

which is a longitudinal population-stratified adult cohort study [11]. 

4.1.1.1 Obesity and T2D 

Excess body weight and obesity pose significant risks for the development of T2D [6]. T2D results 

from insulin resistance across multiple organs, coupled with insulin secretory decrease in β-cells 

[12]. The global surge in obesity prevalence is believed to contribute to the recent uptick in T2D 
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cases, as obesity exerts influence on both insulin action and β-cell function [6]. Elevated plasma 

free fatty acid (FFA) concentrations linked to obesity and T2D may adversely affect β-cells. Under 

basal conditions, circulating FFAs contribute to approximately 30% of insulin secretion, irrespec-

tive of diabetes status [13]. It is plausible that the interplay of elevated plasma FFAs, triglycerides, 

and glucose—referred to as "glucolipotoxicity" [14], combined with excessive plasma amino acids, 

can lead to β-cell dysfunction and death [15]. Research conducted in mouse models has revealed 

that adipose tissue generates proinflammatory cytokines, leading to insulin resistance [16]. More-

over, the observation that obesity in humans is characterized by increased infiltration of macro-

phages into adipose tissue [17] suggests that adipose inflammation is a key contributor to insulin 

resistance among individuals with obesity. Both animal and human studies provide evidence that 

alterations in adipose tissue metabolism and inflammation, induced by obesity, play a crucial role 

in reg󠆷ulating󠆷 metabolic functions in other org󠆷ans and contribute to β-cell dysfunction [17]. 

Lifestyle changes such as a modest weight loss (5-10% of baseline weight), combined with at 

least two and half hours of physical activity per week led to a decrease in diabetes incidence by 

over 50% [18]. This suggests that weight loss is an effective therapeutic strategy for managing 

T2D. 

4.1.1.2 Prediabetes 

Prediabetes is designated for an intermediate stage of hyperglycemia in which glycemic param-

eters are above normal but do not meet the threshold criteria for diabetes. Thus, predisposing the 

individuals to an elevated risk of T2D and cardiovascular disease onset [3, 19]. Prediabetes is 

commonly linked to conditions such as obesity, metabolic syndrome, dyslipidemia and hyperten-

sion [20]. 

WHO and ADA have different criteria for prediabetes. WHO defines impaired fasting glucose (IFG) 

as FPG of 110 to 125 mg/dL (6.1 to 6.9 mmol/L). Impaired glucose tolerance (IGT) is then defined 

as 2-hour plasma glucose level of 140-200 mg/dL (7.8 to 11.0 mmol/L) after 75 g of oral glucose. 

It can be also a combined approach of the two previously mentioned based on a 2 h OGTT [4]. 

Whereas ADA classifies IFG as 100-125 mg/dL (5.6 to 6.9 mmol/L) and IGT as 140-199 mg/dL 

(7.8 to 11.0 mmol/L). Furthermore, ADA also advocates for the inclusion of HbA1c in diabetes 

diagnostics and considers a level of 5.7% to 6.4% as a critical criterion. Employing HbA1c as a 

diagnostic factor, it tends to yield higher percentages of prediabetes compared to FPG [3, 21]. 

HbA1c reflects an average blood sugar level and was initially perceived as a more representative 

indicator of hyperglycemia [22, 23]. 

In the United States, approximately 10% of individuals with prediabetes progress to diabetes an-

nually [7]. Rigorous lifestyle modifications, encompassing weight loss, enhanced physical activity, 

regular self-monitoring, led to a significant decrease in diabetes incidence over a 3-year timeframe 

[7]. Dietary patterns were suggested to be a very important factor in prevention of prediabetes 

and T2D [24]. 

4.1.2 Complications 

Many essential organs, including the heart, nerves, eyes, and kidneys, are impacted by T2D [25]. 

Additionally, factors that elevate the risk of diabetes also predispose individuals to other severe 

ailments. Proper diabetes management and blood sugar control can lower the risk of complica-

tions and related health conditions.  
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The majority of morbidity associated with T2D stems from cardiovascular diseases, which may 

include coronary artery disease, heart failure, and stroke [26]. 20-30% of individuals experiencing 

acute coronary syndromes have T2D, with an additional 40% exhibiting impaired glucose toler-

ance [27]. Research indicates that mortality rates after acute myocardial infarction are roughly 

double for patients with diabetes compared to those without [27]. Diabetes is a well-established 

risk factor for stroke, primarily due to its ability to induce pathological changes in blood vessels 

throughout the body. When cerebral vessels are influenced, diabetes can directly lead to stroke. 

Besides, Diabetic stroke patients tend to have worse post-stroke recovery outcomes and elevated 

mortality rates [28]. Diabetic kidney disease is also prevalent. Approximately half of individuals 

diagnosed with T2D will eventually experience kidney disease. Poorly managed diabetes can 

harm the blood vessels responsible for filtering waste in the kidneys, resulting in kidney damage 

and contributing to elevated blood pressure [29]. Another common chronic complication is dia-

betic neuropathy, which manifests with sensory disturbances, muscle atrophy, difficulty walking, 

susceptibility to wounds, and severe pain in the lower limbs. Additionally, it can lead to symptoms 

such as pulmonary dysfunction, tachycardia, orthostatic hypotension, urinary incontinence, indi-

gestion, nausea, and fluctuations between diarrhea and constipation [26, 30].  

4.2 Precision medicine and treatment in diabetes 

ADA and the European Association for the Study of Diabetes (EASD) have jointly issued consen-

sus report based on expert opinion on precision medicine in diabetes [31]. "A strategy to enhance 

diabetes diagnosis, prediction, prevention, or treatment of diabetes by integrating multidimen-

sional data, considering individual variations" is how the text defines precision diabetes medicine 

[31]. In diabetes precision medicine, the distinctive genetic profile of an individual, along with 

environmental or contextual information from clinical records and other 'omics data, is employed. 

This approach enables a comprehensive understanding of individual traits, variations, circum-

stances, and preferences [32].  

Presently, the primary hurdle lies in the fact that all precision medicine approaches necessitate 

the generation, storage, and comprehension of extensive datasets, encompassing not only ge-

netic information but also various OMICs levels. The challenge is to process and translate these 

datasets into clinically relevant applications [31]. Wang et al. 2012 used a metabolomic approach 

which identifed metabolites like glycine and lysophosphatidylcholine to be predictors for predia-

betes and T2D [33]. Tulipani et al. 2016 showed metabolic traits such as glutamate, glycine and 

BCAA serve as biomarkers of obesity and are associated with an increased risk of  diabetes 

development in people with prediabetes [34]. This study uncovered individualized molecular 

markers of early T2D onset. In the case of individuals with T2D, clinical phenotypes such as 

glutamate decarboxylase antibodies, age at diagnosis, body mass index (BMI), HbA1c, and ho-

meostatic model assessment can be employed to classify patients into four T2D categories such 

as age or BMI related diabetes [35]. These identified clinical features hold the potential to predict 

patients who exhibit favorable responses to some glucose-lowering medications like dipeptidyl 

peptidase 4 inhibitors (DPP4i), as well as those who may respond less effectively or experience 

adverse outcomes [36, 37]. The reduced costs associated with genotyping panels, genome-wide 

association studies (GWAS), and polygenic risk scores offer novel insights into the prevention, 

treatment, and prospective clinical applicability of these findings [31, 38]. Additionally, intervention 

trials indicate that tailoring diet or increasing physical activity remains effective in preventing dia-

betes, irrespective of the underlying genetic risk [39, 40]. These studies suggest that multi-omics 

profiles combined with clinical features have capacity to inform precision medicine in diabetes. 
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4.3 Assessment on the molecular level in Diabetes and Obesity 

research 

4.3.1 Metabolomics  

Metabolic variations are a commonality in both obesity and T2D, and these conditions frequently 

coexist due to shared causes and interrelated factors [41, 42]. The field of metabolomics has 

been proven valuable in delineating human metabolism [43]. Numerous investigations have es-

tablished connections between the plasma metabolome and obesity [44, 45], revealing potential 

metabolic dysregulation associated with obesity. These metabolites linked to obesity encompass 

amino acids and their catabolic products, lipids, and nucleotides. Several of these plasma metab-

olites have exhibited correlations with the incidence of type 2 diabetes [46-49] and cardiovascular 

disease [50-52] in various prospective studies. This suggests that these metabolites hold the po-

tential to enhance the characterization of obesity beyond traditional anthropometric measures. 

Several inquiries have established connections between phenotype and metabolism, pinpointing 

serum or plasma metabolic markers independently linked to the development of both obesity and 

diabetes [53-56]. Numerous metabolites have been identified as associated with both diabetes 

and overweight or obesity. Within the domain of amino acid metabolism, increased levels are 

observed for BCAAs, cysteine, glutamine, phenylalanine, proline, while decreased levels are 

noted for asparagine, glycine and citrulline in both obesity and diabetes [57]. The diminished ex-

pression of mitochondrial branched-chain amino transferase is regarded as a contributing factor 

to the heightened concentrations of BCAAs in obesity, a condition linked with decreased serum 

insulin levels [58]. Metabolomics has been proven to be instrumental in clarifying how metabolites 

work in governing system, particularly in relation to obesity and diabetes. 

Additionally, connecting metabolites with various omics, particularly genetics through genome-

wide association (mGWAS), provides insights into the genetic impact on the metabolic composi-

tions [59-61]. As mGWAS continues to expand its sample size and delve into more intricate met-

abolic traits, it facilitates a more holistic and systematic downstream analysis. 

4.3.2 Genomics  

Examining the genetic makeup enables the prediction of disease susceptibility. The elevated 

rates of obesity and the resulting clinical implications T2D, underscore the significant role played 

by environmental factors and their interplay with genetic variations in the development of diseases 

[62]. More than 900 independent Single Nucleotide Polymorphisms (SNPs) linked to BMI [63] and 

more than 230 loci impacting the risk of T2D  are shown by GWAS [64]. 

Obesity is a multifaceted condition influenced by both genetic and environmental factors. Evi-

dence from twin and family studies has highlighted the significant role of genetic elements in 

obesity, particularly in cases where there is a positive family history of obesity, leading to an 

elevated risk of childhood obesity. The concordance rate for obesity is notably higher in monozy-

gotic twins compared to dizygotic twins. Twin studies estimate the heritability of obesity to be 

between 40% and 75%, underscoring the substantial genetic component contributing to obesity 

[65]. Recent progress in genetic testing has allowed for the discovery of genes associated with 

obesity. Genes such as LEP, LEPR, POMC, PCSK1, MC4R, SIM1, BDNF, and NTRK2 have 

been identified as causative factors for obesity. Next-generation sequencing (NGS) is becoming 
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increasingly prevalent and proving to be a valuable tool in clinical settings for identifying candidate 

genes linked to obesity [66]. 

T2D is recognized as an intricate, polygenic disorder. Similarly, individuals with one parent af-

fected by type 2 diabetes face an elevated risk of developing the condition, reaching nearly 40%. 

Furthermore, if both parents are affected, the risk rises substantially, reaching up to 70% [67]. 

The exploration of the genetic foundation of T2D was constrained to linkage studies and candi-

date gene approaches, and through these investigations, rare familial types of T2D, along with 

genes linked to common forms of T2D (such as PPARG, KCNJ11, and TCF7L2), were identified 

[68]. Conventionally, genetic studies of these genes concentrate on genomic regions with sub-

stantial genetic impacts and already recognized disease pathways. GWAS facilitates significant 

advancements in genetic investigation of complex disorders by pinpointing novel genes impli-

cated in the pathogenesis of diseases. This approach revealed a substantial subset of newly 

identified genes, including KLF14, ENPP1, ADIPOQ, IRS, GCKR, SREBF1, JAZF1, SCL30A8, 

TCF7L2, and others [67, 69]. Lately, there has been a surge in the global pursuit of understanding 

the genetic landscape of susceptibility and the etiological architecture of T2D through an increas-

ing number of GWAS, meta-analysis studies, investigations into rare, structural, and protective 

variants, as well as sequencing in familial contexts [67]. 

4.3.3 Cluster analysis  

Cluster analysis refers to a range of mathematical techniques that explore relationships among 

points in multi-dimensional space. These methods primarily rely on assessing similarities or dis-

similarities (or proximities) between entities within the dataset [70-72]. As an example of biological 

application of cluster analysis we can point out is Ahlqvist et al. [35] adopted data-driven cluster 

analysis (k-means and hierarchical clustering) to identify subgroups of diabetes using six diabe-

tes-related variables to categorize diabetic individuals into five clusters in which four of these 

clusters predominantly represent subgroups of T2D while one cluster is associated with severe 

autoimmune diabetes (SAID), primarily corresponding to T1D. This study presented a novel and 

precise diabetes classification and provided a crucial advancement towards precision medicine 

in diabetes. 

The challenge in cluster analysis, also known as unsupervised classification, lies in determining 

the most effective way to divide data points. Deciding the optimal clustering method for a given 

dataset is crucial to attain precise and desired results, all while taking into consideration the in-

herent nature of the data [70]. K-means clustering is a data-driving method. It facilitates the clas-

sification of data by distributing or grouping data points into K clusters based on distinctive fea-

tures. In data-based clusters, also known as center-based clusters, each data object within a 

cluster is closer to the center of that cluster than to the center of any others [73, 74]. Initially, the 

K-means algorithm establishes the initial K centroids, either by computing means from random 

subsets of the dataset or by selecting the first K elements. In each iteration, the algorithm assigns 

each data point to its nearest centroid and subsequently updates the centroids after forming the 

K clusters [72-74]. To assign a point to the closest centroid, a proximity measure is required to 

quantify the distance between data points. This involves an algorithm that consistently calculates 

the similarity of each point to every centroid [72]. 

Determining the optimal number of clusters is one of the most challenging and debated aspects 

when employing the K-means data clustering algorithm. The final selection or justification of a 

specific K value is notably dependent on the particular analysis or experiment. Moreover, K values 
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can be adjusted or modified to enhance and achieve more suitable results based on the charac-

teristics of the data and the objectives of the analysis [75]. Numerous methods are available for 

selecting the optimal K value, including the Elbow method, Gap statistic algorithm, Silhouette 

coefficient algorithm, Canopy algorithm, NBClust, and others [75]. The Elbow method involves 

using the cluster centroid and the squared distance between entities within each cluster to gen-

erate a series of K values. The number of clusters (K) is then visualized by plotting the explained 

variation as a function [76]. On the other hand, the Silhouette method assesses how well an 

observation aligns with its own cluster, with a high value indicating a well-matched observation to 

its own cluster and a poor match to neighboring clusters [76]. This method is commonly used in 

many studies [35, 77, 78]. 

4.4  Inadequate early detection and systematic biological 

understanding of T2D 

The transition from normal or impaired fasting glucose to T2D typically occurs gradually, and 

notably, its symptoms may go unnoticed for extended periods. Delays in diagnosis significantly 

contribute to inadequate management and an increased risk of complications [79]. Given the ris-

ing global prevalence and burden of diabetes, early identification of predisposition to T2D can 

significantly enhance opportunities for preventing and managing this condition effectively. Pres-

ently, elevated blood glucose and glycated hemoglobin are primarily employed for diabetes diag-

nosis. Nevertheless, it's vital to acknowledge that elevated blood sugar reflects a continuous and 

evolving process. These constraints could lead to misclassification and misdiagnosis [80]. One 

study [81] discovered that the rise in fasting glucose levels, along with higher BMI, blood pressure, 

lipids like triglycerides and lower HDL-cholesterol (HDL-C), are higher risk of developing diabetes.  

On the other hand, personalized progression of hyperglycemia and subsequent diabetes compli-

cations vary widely because of various underlying biological causes [82]. Traditionally, diabetes 

is mainly classified into type 1 (T1D) and T2D, primarily determined by the presence (T1D) or 

absence (T2D) of autoantibodies. So current treatment guidelines addressing poor metabolic con-

trol once it has occurred but lack the ability to identify which patients would require more intensive 

care, limits their applicability.  

These findings underscore the need for further research to establish optimal diagnostic criteria 

and diabetes subphenotyping strategies. Approaches such as deep molecular phenotyping hold 

promise for uncovering the underlying mechanisms of glucose dysregulation and informing more 

personalized, precise prevention and treatment strategies. 

4.5 Aims of this thesis 

The main objectives of this thesis are to enhance early detection and explore the role of molecular 

biomarkers and T2D heterogeneity using multidimensional data. This approach aligns with the 

concept of precision medicine in diabetes and allows for a comprehensive understanding of indi-

vidual traits, variations, situations, and inclinations. Three studies were performed to answer the 

specific research questions: 

To 1) use the targeted metabolomic profiles from the German KORA FF4 cohort to examine me-

tabolite signatures associated with obesity and T2D involved in the development of obesity related 

T2D, to improve the early detection of incident of T2D. This corresponds to paper I [83]. 
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2) Identify metabolites from both targeted metabolomics and untargeted metabolomics in IMI-

DIRECT cohort linked with glycemic deterioration, from NGR to prediabetes and eventually to 

T2D, to further optimize the early diagnosis and understand the progression of T2D. This corre-

sponds to paper II [84]. 

3) use a data-driven cluster analysis with clinical characteristics in KORA FF4 to classify T2D into 

different subphenotypes and provide a more accurate, clinically relevant stratification, marking a 

significant advancement toward precision treatment in diabetes. This corresponds to paper III [85]. 
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5. Methods 

5.1 Study population 

KORA is a population-based study that comprises several deeply phenotyped epidemiological 

surveys in the Augsburg region of southern Germany. The study design, sampling method and 

data collection have been described elsewhere [86]. The baseline KORA S4 involved the exami-

nation of 4,261 individuals between 1999 and 2001. The first follow-up F4 comprised of 3,080 

individuals between 2006 and 2008 and the second follow-up FF4 examined 2,269 participants 

between 2013 and 2014. Figure 1 provides an overview of the KORA study. Written informed 

consent was received from all study participants. T2D was diagnosed based on OGTT according 

to WHO criteria or clinically diagnosed by physician. The estimated glomerular filtration rate 

(eGFR) calculation and chronic kidney disease (CKD) definition was described in detail here [83, 

87]. Information regarding parental history of diabetes, myocardial infarction, stroke, neuropathy, 

and metformin intake or any antidiabetic medication intake was self-reported. 

 

Figure 1. Overview of the timeline of KORA study for baseline surveys and follow-up examinations. 

IMI-DIRECT is a population-stratified cohort study and multicenter, involved in diabetes research. 

Baseline clinical variables and omics were measured, follow-up studies are carried out at different 

intervals such as 18 month, 36 months and 48 months based on the feedback biomarkers to 

improve the study design. Figure 2 provides an overview of the IMI-DIRECT study. Detailed char-

acteristics of this cohort as well as inclusion/exclusion criteria were described somewhere else 

[11, 88]. NGR and IGR were defined based on ADA 2011 diagnostic criteria using HbA1c, fasting 

glucose and 2 h glucose. Prevalent T2D was identified through clinically diagnosis or the ADA 

2011 criteria. Participants displayed NGR and prevalent T2D according to the glycaemic 

measures in cohort 1 were also included for further analyses (Figure 2). 

Paper I and Paper III were conducted on the KORA FF4 cohort.  Paper I was a cross sectional 

study analyzing 1715 participants with complete metabolomics data, consisting of 1276 non-

obese participants and 439 obese ones based on BMI or 1415 non-diabetic individuals and 300 

T2D ones based on OGTT or clinical diagnosis. 

Paper III only included 301 participants with T2D for cluster analysis. Besides, PRS was calcu-

lated for all individuals with T2D (N=301) and all individuals without T2D but with available genetic 

data as the control group (N=1357) for comparison.  

Paper II included a cross-sectional design for analyzing DIRECT data at baseline and a longitu-

dinal design of follow-up 18 and 48 months. 3000 individuals with complete metabolomic meas-

urements at baseline were included in our study and ones had complete follow-up information for 

further longitudinal analysis. 

S4 

1999-2001 

F4 

2006-2008 

FF4 

2013-2014 

FFF4 

2021-2022 
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Figure 2. Overview of the baseline surveys and follow-up examinations of IMI-DIRECT study [11]. 

5.2 Metabolite quantification and normalization 

Blood samples from KORA FF4 participants were measured with the AbsoluteIDQTM p180 Kit. 

The details were previously described here [89]. Finally, 146 metabolites were passed quality 

control (QC) for further analysis in this study in paper I. 

Blood sample from IMI-DIRECT individuals at baseline were measured with the AbsoluteIDQTM 

p150 Kit (targeted metabolomics) and metabolon platform (untargeted metabolomics) respec-

tively. 132 metabolites from targeted metabolomics and 779 ones from untargeted metabolomics 

were included in this study after QC in paper II. The measurement details were stated here [90]. 

The concentrations of all metabolites were natural log󠆷 transformed and scaled (mean = 0, sd = 1) 

before statistical analysis to ensure comparability across the metabolites. 

5.3 Genomics 

Genotyping of KORA was performed by the Affymetrix Axiom Array. More than 500,000 autoso-

mal SNPs thorough quality control were subsequently imputed based on the haplotype reference 

consortium (HRC) reference panel using Impute2 v2.3.2. Variants with certainty < 0.95, infor-

mation metric < 0.7, low g󠆷enotyping󠆷 calls (g󠆷eno 0.03), and Hardy–Weinberg equilibrium exact test 

p-value < 5x10-10 were excluded. Finally, 7,753,540 variants with a minor allele frequency (MAF) > 

1% were kept for the analysis in the study. 
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5.4 Statistical analysis 

Paper I 

Firstly, I explored the candidate biomarkers associated with BMI and T2D through multivariable 

linear regression and logistic regression with different covariates. Sobel mediation test [91, 92] 

was performed to identify the metabolites which convey the effect of BMI on T2D. Lastly I per-

formed two sample mendelian randomization (2SMR) to check the causal inference of BMI, iden-

tified metabolites and T2D. 

SNPs and genes in humans were searched to find the association with three identified lipids (SM 

C16:1, SM C18:1, and PC aa C38:3) to comprehend the biological pathway. Genotype-Tissue 

Expression (GTEx) human database and the Mouse Genome Informatics (MGI) database were 

used to investigate the tissue-specific role of the related genes CERS4, PDXDC1 and FADS1-3. 

Mouse Genome Database [93] was used to identify gene expression correlations with relevant 

obesity and T2D traits in mice adipose, liver, muscle and brain tissue: an F2 cross of the inbred 

ApoE−/− C57BL/6J and C3H/HeJ strains [94]. 

Paper II 

Estimates from multivariable logistic regression analysis were obtained using the concentration 

of each transformed metabolite as an independent variable and the glycemic status value (NGR 

vs. IGR, NGR vs. T2D, or IGR vs. T2D) as a dependent variable. A multivariable linear regression 

model was employed to examine metabolites associated with HbA1c progression rate.  

Candidate biomarkers associated with prediabetes/diabetes as well as HbA1c progression rate 

were used for further analysis. Incident prediabetes or diabetes was carried out with the identified 

metabolites as exposure and glycemic status at follow-up timeline as outcome. A causal media-

tion test was performed to assess the mediation effect of the above identified metabolites. Here, 

baseline glycemic status was considered as an independent variable, the metabolites entered the 

model as a mediator whereas follow-up glycemic status was conducted as the dependent variable.  

Causal inference used 2SMR methods and inverse-variance-weighted (IVW) method to explore 

the causal effect of T2D on metabolites and vice-versa the causal effect of metabolite on T2D by 

wald ratio. 

Paper III 

301 individuals with T2D from the KORA FF4 study were used for cluster analysis. For the repli-

cation of original clusters to KORA cohort, I used the same variables as ANDIS’s cohort: age, 

BMI, HbA1c, homeostasis model assessment (HOMA) estimates of beta-cell function (HOMA2-

B) and insulin resistance (HOMA2-IR) in KORA FF4. I employed k=4 since we did not include 

T1D in our study, with three different hyperparameter combinations: 1) scaling and centroids from 

the original ANDIS cohort, 2) scaling from KORA, but centroids from ANDIS, 3) both scaling and 

centroids from KORA. Each individual from KORA was assigned to one of the original clusters 

based on the smallest Euclidean distance to the respective cluster center. Transitions of individ-

uals between clusters based on the different approaches were visualized by Sankey diagrams. 

De-novo clusters were derived by a two-step approach, of which the optimal number of clusters 

k was determined based on silhouette width and elbow method, followed by k-means. The basic 

variable set: age at examination, BMI, HbA1C, HOMA2-B and HOMA2-IR. Additional variables 

hs-CRP, triglycerides (TG), HDL-cholesterol (HDL-C) and systolic blood pressure (SBP) were 

added individually to the basic set of variables to explore their impact on cluster performance. 



5 Methods 25 

The stability of de-novo clusters was assessed by assignment congruence over different variable 

sets and Jaccard indices. Sensitivity analysis was done for the final clusters by recalculating sep-

arately for men and women to assess potential sex differences. 

PRS was calculated with driving the list of variants of the optimal T2D score from Polygenic Score 

(PGS) Catalog [95] as score number “PGS000014” and summing up the product of the dosage 

of risk allele multiplying with their respective weights in KORA. PRS was evaluated for both indi-

viduals with and without T2D in KORA FF4. 

Differences of PRS in individuals with and without diabetes were quantified by logistic regression 

models with PRS as the exposure variable. One-way ANOVA and t-tests were employed to ex-

amine the disparities in PRS and frequency of risk alleles of the top significant 20 genetic variants 

across clusters. Differences in diabetes-related complications and parental history were assessed 

using Fisher’s exact test. 
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6. Results  

Paper I 

Obesity sets off a series of metabolic reactions that increase the risk of several accompanying 

conditions such as insulin resistance. In this study we addressed the first aim of this thesis and 

aimed to find the metabolites implicated in the progression from obesity to T2D. 

We identified 42 metabolites associated with BMI independently, phosphatidylcholine diacyl (PC 

aa) C38:3, glutameta (Glu), sphingomyelin (SM) C16:1, SM C18:1, lysophosphatidylcholine acyl 

(lysoPC a) C17:0 and lysoPC a C18:2 were the six strongest ones. 3 metabolites were signifi-

cantly linked to T2D, hydroxybutyrylcarnitine (C3-DC (C4-OH)), Alpha-Amino acid (alpha-AAA) 

and isoleucine (Ile). In the Sobel mediation test, three metabolites SM C16:1, SM C18:1, and PC 

aa C38:3 showed significant mediation effect of BMI on fasting glucose or HbA1c, suggesting 

these metabolites increased the risk of glycemic deterioration. The causality directions of BMI, 

three identified lipids and T2D were confirmed by 2sMR, we observed that BMI was a causal 

factor for the change of SM C16:1 and SM C18:1, while SM C16:1, SM C18:1, and PC aa C38:3 

were causal factors for T2D incidence. These results suggest sphingomyelins and phosphatidyl-

cholines could serve as a molecular mediator in the development of obesity related T2D.  

Incorporating these three lipids with human genetics, we were informed that these three metabo-

lites were linked to SNPs at the CERS4, PDXDC1 and FADS1-3 locus [96, 97]. CERS4 and 

FADS1-3 were found to impact the sphingolipids biosynthesis, impairing insulin sensitivity and 

pancreatic beta-cell function [98, 99]. PDXDC1 and FADS2 upregulate phosphatidylcholine, 

which suppresses key genes like IRS-2, disrupting insulin signaling [100]. 

Paper II 

This paper addressed the second aim of this thesis and identified biomarkers assisting in catego-

rizing individuals based on their glycemic deterioration, thereby contributing to aiding in the insight 

into the disease progression. 

In the targeted assay we observed 4, 34 and 50 metabolites to be significantly different between 

NGR-IGR, NGR-T2D and IGR-T2D groups. While in the untargeted metabolomics panel, there 

were 15, 99 and 108 metabolites significantly having variations in each group. Significant metab-

olites were mainly BCAAs, also derived BCAAs, lipids, xenobiotics, and a few unknowns.  

Metabolites from targeted metabolomics including lysoPC a C17:0 and sum of hexoses, and from 

untargeted metabolomics including N-lactoylvaline and N-lactoylleucine, formiminoglutamate, as 

well as carbohydrate lactate, and an unknown metabolite (X-24295) were linked to HbA1c pro-

gression rate as well as incidence of prediabetes/diabetes. In the causal mediation test, we also 

observed that these metabolites significantly mediated the glucose deterioration from baseline to 

follow-ups.  

We utilized 2SMR to assess the causal directions between metabolites and T2D. Our analysis 

revealed that T2D causally affects the concentrations of three metabolites (hexose, glutamate 

and caproate (FA 6:0)). Additionally, four phosphatidylcholines such as PC aa C36:2 along with 

two omega-3 fatty acids stearidonate (FA18:4) and docosapentaenoate (n3 DPA; FA22:5) poten-

tially contribute to the development of T2D.  

Paper III 
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Data-driven clustering holds the potential to uncover the pathophysiology of glucose deterioration 

and the onset of comorbidities in individuals with T2D. This paper addressed the third aim of this 

thesis by a comprehensive statistical assessment of T2D subphenotyping in KORA FF4 cohort. 

Participants in KORA were assigned to the corresponding clusters based on ANDIS’s scaling󠆷 and 

centroids parameters, it was observed that the relative cluster sizes in KORA differed from those 

observed in the ANDIS study. Severe insulin-deficient diabetes (SIDD) in KORA only collected 2% 

of the T2D cases compared to 17.5% in ANDIS. Over 80% of participants in KORA were classified 

into the MARD cluster, compared to approximately 40% in ANDIS. When clinical variables were 

scaled based on own scaling parameters, all these variables showed the same trend in KORA 

and ANDIS. The relative cluster sizes in KORA were similar to those observed in the ANDIS study, 

for example mild age-related diabetes (MARD) had the most participants for both KORA (46.8%) 

and ANDIS (39.1%), and 15.3% of individuals in KORA were allocated to SIDD which was similar 

to the ANDIS study (17.5%). Besides, 65% of participants were assigned to the same clusters 

when using ANDIS centroids, but either ANDIS scaling or KORA scaling. When we employed 

KORA’s own scaling and centroids (using k-means, forced k=4), a novel distinct cluster was ob-

served with the overall most modest metabolic impairments and low BMI. Only 45% of the partic-

ipants had consistent cluster assignments between using ANDIS centroids and KORA centroids 

but same KORA scaling. Collectively, these findings imply that the original ANDIS clusters may 

not entirely capture the characteristics of the KORA sample. 

De novo cluster analysis was derived in KORA, k=3 was determined to be the optimal number of 

clusters by silhouette width and the elbow plot. KORA participants were categorized into 3 groups 

by k-means with the basic variables. Cluster 1 (n=96, 31.9%) was characterized by hyperinsu-

linemia and insulin resistance, resembling the severe insulin resistant diabetes (SIRD) cluster 

identified in the ANDIS cohort; Cluster 2 (n=172, 57.1%) had older age, low BMI and low insulin 

resistance, akin to the mild age-related diabetes (MARD) cluster in the ANDIS cohort; Cluster 3 

(n=33, 11.0%) showed insulin deficiency (low HOMA2-B), high BMI and poor glycemic control 

(high HbA1c), representing a distinct cluster not observed in the ANDIS cohort. When we added 

additional variables hsCRP, TG, HDL-C, or SBP, respectively, it was found 90%, 93%, 90% and 

98% of participants were assigned to the same cluster compared to when using basic variables. 

To explore the influence of systemic inflammation distinguishing diabetes subtypes, we deter-

mined the clusters based on the variable set of age, BMI, HbA1c, HOMA2-B, and HOMA2-IR plus 

hsCRP as the final subphenotypes. The final clusters did not show substantial sex-specific effects 

as the majority of individuals (95%) were grouped to the same cluster for both men and women 

as in the initial data analysis. Moreover, the Jaccard indices of all final clusters were above 0.75, 

indicating reasonably high cluster stability. 

The heterogeneity of the final clusters was assessed by PRS and diabetic complications. Cluster 

1 had relatively lower genetic risk with no significant difference from the control group, but high 

prevalence of neuropathy. Cluster 2 had the middle genetic risk, relatively higher than the control 

group (but not significantly different from Cluster 1), and a higher prevalence of stroke and CKD. 

Cluster 3 showed a significantly higher PRS than both control group and Cluster 1, with more 

frequently a positive parental history of diabetes. 
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7. Discussion  

7.1 Early progression of T2D 

T2D is a chronic, metabolic disease, thus exploring the role of intermediate molecules may un-

cover new therapeutic targets for addressing early-stage T2D pathophysiology. Plasma metabo-

lites circulate throughout the entire body and play a direct role in the molecular regulation of com-

plex diseases, such as obesity, prediabetes, diabetes [57]. Assessing these metabolites offers 

molecular insights into their involvement in biological processes triggered by disease progression.  

In Paper I, we analyzed KORA targeted metabolomics profiles to identify underlying links to met-

abolic pathways. T2D typically develops in the advanced stages of obesity, it is confirmed that 

SM C16:1, SM C18:1 and PC aa C38:3 were significantly correlated with obesity in our study. 

These metabolites were also reported to be strongly linked to T2D [101]. In the mediation test, 

these three lipids significantly conveyed the influence of BMI on fasting glucose/HbA1c. Integra-

tion with mendelian randomization indicates the direction of causality, suggesting that lipids such 

as SM C16:1 and PC aa C38:3 could serve as molecular mediators which contribute to the de-

velopment of T2D. This metabolic process linking obesity and diabetes may be driven by modu-

lation of inflammation through fatty acid (FA) and proinflammatory cytokines. Obese individuals 

are usually characterized with these two elevated elements which are known to activate sphingo-

myelinase (SMase) and converting sphingomyelins to ceramide, thus exerting an action of insulin 

resistance [102, 103]. High-fat diets, which lead to elevated FA and excessive of PC, contribute 

to obesity and diabetes in individuals [104]. Genetic factors may also modulate this process, of-

fering potential avenues for intervention. FADS1-3 and PDXDC, associated with these three lipids, 

are revealed to be linked with polyunsaturated fatty acids (PUFAs) [105-108], which influence the 

biosynthesis of sphingolipid and phosphatidylcholines, modulating the risk of developing T2D [109, 

110].  These findings suggest genetic predisposition and early variation in the metabolism of 

sphingolipids and phosphatidylcholines, which play a role in prediction the onset of T2D. 

In Paper II, we reported candidate metabolites from both targeted metabolomics and untargeted 

metabolomics involved in the development of T2D in IMI-DIRECT study. 19 metabolites (4 from 

targeted and 15 from the global profiling) were significantly associated with prediabetes, which 

consisted of hexoses (H1), three phospholipids and five amino acids, five lipids, two carbohy-

drates, two unknown compounds, and one xenobiotic. Prediabetes is commonly linked to 

dyslipidemia, characterized by an altered lipid profile compared to individuals with normal glucose 

regulation [111]. In the further study we found that lysoPC a C17:0 and lactate, X-24295, 

formiminoglutamate, N-lactoylleucine, N-lactoylvaline were also liked with HbA1c progression and 

incident prediabetes/diabetes. Jenkins et al. [112] explored the source of circulating odd-chain 

fatty acids (C17:0, C15:0) by conducting both animal and human studies. Their findings suggested 

that dietary intake was associated with C15:0, whereas C17:0 was primarily synthesized by the 

body, indicating distinct origins and disparate roles in disease causation. One study also con-

firmed lysoPC a C17:0 was significantly associated with incident T2D [113], and the mechanism 

could be induced by FFA as it was reported inhibition of the transformation of FA palmitic acid to 

lysophosphatidylcholine (LPC), thereby preventing insulin resistance in mice models [114]. 

Causal mediation analysis further indicated the identified metabolites strongly mediates glycemic 

change from baseline status to follow-up. Elevated formiminoglutamate is a marker of folate de-

ficiency, which is reported to be associated with destructed phospholipids homeostasis and a risk 

factor for diabetes mellitus [115]. It is also confirmed that formiminoglutamate was linked to an 
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increased risk of incident T2D in older Puerto Ricans [116]. N-lactoyl amino acids like N-lactoylleu-

cine, N-lactoylvaline fused through a reaction between lactate and BCAAs are rarely reported in 

metabolomic datasets, a significant increase in all measured N-lactoyl amino acids was observed 

in T2D volunteers compared to those without T2D and metformin treatment increased their levels 

in TwinsUK cohort [117]. We could therefore hypothesis the mechanism maybe mediated by the 

medication, but the exact role in human body and pathways downstream are unclear and needs 

further research. A study of Swedish men proved that increased lactate concentrations in serum 

was independently associated with a higher incidence of T2D in a longitudinal study [118]. Lactate 

is generated in the cytoplasm through the glycolytic pathway under anaerobic conditions [119], 

other studies also showed that lactate production increases progressively during the early stages 

of T2D development [120, 121]. This was argued that augmented lactate levels are crucial in 

glucose transport and metabolism, profoundly contributing to insulin resistance [122]. Our study 

confirmed that lipids lysoPC a C17:0, amino acids formiminoglutamate along with novel N-lactoyl-

amino acids N-lactoylleucine, N-lactoylvaline and carbohydrate lactate were significantly associ-

ated with glycemic deterioration and involvement in T2D progression. 

7.2 Understanding of T2D heterogeneity 

T2D is a complex, heterogeneous disease, so understanding the heterogeneity and enhancing 

the personalized treatment is required. The T2D classification system proposed by Ahlqvist et al. 

[35] has been validated in various populations and has proven to be a useful tool to further char-

acterize potential pathophysiological pathways and diabetes progression. We firstly conducted 

an original cluster replication including a detailed overview of participant transitions between rep-

licated clusters. We found that the characteristics of the KORA population were only partly re-

flected. Some of the inconsistencies in replicability may be due to variations in study design and 

participants’ characteristics. We used age at examination for clustering in KORA which was sig-

nificantly higher compared to the ANDIS cohort. Additionally, individuals in KORA showed better 

glycemic control and lower insulin resistance than those in the ANDIS sample [35], suggesting 

that KORA may have included a higher proportion of T2D cases with less severe disease. Besides, 

our HOMA models were calculated from fasting insulin rather than C-peptide which might induce 

differences in estimates. Our results thus highlight the value of subphenotyping by demonstrating 

the impact of specific study characteristics, and we add a potential new T2D subphenotype to the 

existing panel and we consider this finding important for personalized prevention. 

De-novo cluster analysis was derived from KORA study, k=3 was found to be the best number of 

clusters rather than 4 based on silhouette and elbow plot. Mild obesity-related diabetes (MOD)-

like cluster disappeared, which is consistent with the observation from Safai et al.[123]. We further 

assessed cluster performance and stability across different variable sets, basic variables with 

additionally hsCRP, HDL-C, TG, or SBP, respectively. We observed that these additional varia-

bles had minimal impact on the reassignment of individuals, with over 90% individuals remaining 

in their original clusters, suggesting high stability and robustness across different variable sets. 

One could thus hypothesize that the original variables likely encompass a significant portion of 

T2D heterogeneity and are sufficient for identifying clinically relevant T2D subphenotypes. In the 

current analysis we included hsCRP for clustering to consider the role of subclinical inflammation 

and assess potential differences within subphenotypes. Cluster 1 is most similar to SIRD with low 

hsCRP with a high proportion of newly diagnosed diabetes, Cluster 2 is most similar to MARD 

with the most favorable clinical characteristics. Cluster 3 is a distinct cluster, characterized by 

high BMI, high hsCRP and low HOMA2-B, closely resembling a typical patient encountered in 
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clinical practice. The mechanism could be the excess body weight triggers CRP stimulation and 

inflammation, which plays a role in the regulation of insulin action and insulin resistance [124, 

125]. PRS and the prevalence of self-reported parental history of diabetes were both highest in 

Cluster 3. Besides, Cluster 3 had higher abundance of risk alleles which were mapped to locus 

TCF7L2, which is the most significant locus for T2D risk and the first to be consistently identified 

in genomic linkage studies [126]. TCF7L2 has also been reported to play essential developmental 

and metabolic roles in adipose tissue. The inactivation of adipocyte TCF7L2 in knockout mice 

promoted weight gain, and increased adipose tissue mass [127], and this phenotype was associ-

ated with adipose tissue inflammation [124, 128, 129]. So, Cluster 3 represents a T2D subphe-

notype associated with a greater genetic risk for both diabetes and obesity, and rigorous weight 

control could prove particularly beneficial to offset the higher genetic risk. Cluster 1 was charac-

terized by a comparatively higher prevalence of neuropathy and this could be induced by insulin 

dysregulation which can lead to neuropathic changes in sensory neurons and the peripheral nerv-

ous system, which is significantly affected by diabetes [130]. Interestingly, Cluster 1 has signifi-

cant lower HbA1c levels compared to Cluster 3 which also exhibits a relatively higher frequency 

of neuropathy, so it would be interesting to investigate glucose-lowering therapy in this cluster in 

the prevention of neuropathy. Additionally, lifestyle changes would be advantageous, including 

dietary adjustments to reduce calorie intake and limit high-glycemic-index carbohydrates, along 

with regular physical activity to boost calorie expenditure and improve insulin sensitivity in muscle 

tissue [131, 132]. Cluster 2 showed a relatively higher proportion of CKD cases and stroke, which 

could be due to the higher age in Cluster 2 as it is confirmed that age is a major risk factor for 

metabolic complications in T2D [133, 134]. Since the risk in Cluster 2 is primarily driven by aging—

a non-modifiable factor—close monitoring of comorbidities is especially important for this group. 

Strict control of factors like blood pressure and renal function, potentially with medication, is rec-

ommended. Taken together, clustering based on age, BMI, HbA1c, HOMA2-B, HOMA2-ID with 

hsCRP provided the identification of a new distinct subphenotype with a potential genetic predis-

position to obesity-induced inflammation. Therefore, this thesis demonstrates that to fully leverage 

the benefits of T2D subphenotyping,  clustering approaches must be adapted and tailored to the 

respective sample, thereby enabling the development of more personalized and precise treatment 

strategies. 

7.3 Limitation 

We acknowledge several limitations in our studies. 1) Storing plasma samples for extended peri-

ods can lead to changes in metabolite concentrations [89], potentially affecting the associations. 

2) Identifying metabolites, particularly in untargeted metabolomics, can be difficult due to gaps in 

database and the existence of unidentified or novel metabolites, often indicated by asterisk (*) in 

the metabolite names. and this may influence the associations; 3) The studies are mainly cross 

sectional or rely solely on baseline metabolites measurements, which limits their ability to distin-

guish between cause and consequence. Longitudinal analyses could be conducted to investigate 

the variation in metabolites concentrations across different stages to confirm our findings; 4) Re-

garding the T2D subphenotype study, the sample size of T2D is relatively small. It also had a 

limited sample of individuals with diabetes-related complications and family history information. 

Besides, we only investigated the prevalence of diabetic complications and incidence of compli-

cations need to be examined in future analysis. 
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8. Conclusion and Outlook 

8.1 Conclusion 

Amongst increasing global cases, effective adaptation programs are crucial to reducing the grow-

ing burden of diabetes-related hospitalizations and medical care. This thesis demonstrated sev-

eral metabolic biomarkers like sphingolipids, phosphatidylcholines and amino acids that could 

contribute to prediction of T2D incident and involved in the T2D progression, which provide the 

clue for early detection of T2D in clinical. Moreover, this research work confirmed that T2D is 

heterogeneous, subphenotype classification based on the specific sample is necessary and assist 

in crafting personalized diabetes treatments. These research strategies outlined in this study align 

with the guidelines of precision medicine in diabetes are crucial to safeguard public health. 

8.2 Outlook 

Diabetes cannot be cured today but proactive measures can be taken for prevention and remis-

sion to alleviate the challenges of diabetes and improve the quality of life for individuals who have 

or are at risk of diabetes [135, 136].  

Collectively, our findings provide insight into metabolic biomarkers participating in early T2D pro-

gression and disease heterogeneity based on data-driven classification, these align with the fu-

ture goals of T2D prevention and treatment/remission. More studies with larger sample sizes are 

needed to corroborate our findings regarding the molecular biomarkers for early detection and 

essential classification accounting for individual differences.  

Furthermore, metabolic profiles remain unclear among people with obesity who have or do not 

have T2D. In paper I, sphingolipids (SM C16:1, SM C18:1) and phosphatidylcholines (PC aa 

C38:3) were found to mediate the effect from obesity to T2D, and these three biomarkers were 

significantly higher in obese people but not significantly associated with T2D in the full model. 

From mediation test, they showed significant association with HbA1c and fasting glucose as these 

two are well-known clinical diagnotic factors for T2D. Hence, exploring whether molecular bi-

omarkers can distinguish between obese individuals with and without T2D, while further exploring 

the role of metabolic biomarkers and the links between obesity and T2D, presents an intriguing 

avenue for more research.  

Genetic is a well-established risk factor for T2D. A recent study demonstrated genetic contributes 

the heterogeneity of T2D pathophysiology by combining multi-ancestry genome-wide association 

study data with single-cell epigenomics [137]. Population-level genetic changes require many 

generations to take effect, this epidemic is primarily a result of recent environmental changes, 

suggesting that shifts in non-genetic factors have triggered the effects of pre-existing susceptibility 

genes [138]. It would be interesting to explore the potential role of the metabolites in groups with 

different genetic risk profiles and figure out the interaction with environment-metabolites-gene, 

shed more light on T2D mechanisms. 

 Results from a 5-year follow-up of the landmark Diabetes Remission Clinical Trial (DiRECT) study 

reveal that weight loss can potentially sustain remission of T2D for at least five years [139]. Re-

mission refers to blood sugar levels can remain within a non-diabetic range long-term, without the 



8 Conclusion and outlook 32 

need for diabetes medication. In our paper I and paper II, we confirmed some metabolic bi-

omarkers involved in T2D development, this contributes to T2D early detection and prevention. 

Thus, studies could target individuals already diagnosed with T2D, emphasizing the aspects of 

remission and treatment. A longitudinal study could be designed to investigate the correlation 

between BMI change and blood glucose levels. For instance, in Paper III, Cluster 3 was identified 

as obesity-related diabetes. It would be interesting to examine whether additional weight loss 

interventions could contribute to T2D remission within this group, but larger sample size would be 

required. On the other hand, personalized treatment is a prominent area of interest, demanding 

an understanding of individual trajectories of hyperglycemia and consequent diabetes complica-

tions stemming from diverse underlying biological factors. Therefore, employing effective classi-

fication methods based on multidimensional data is imperative. However, this process is not a 

one-time endeavor. In Paper III, we encountered challenges in replicating clusters from the AN-

DIS study due to differing cohort characteristics. Hence, deriving de novo clusters based on 

KORA's own clinical values proved to be more meaningful. This means another challenge of dia-

betes research would be the identification of suitable cohorts for translation taking into account 

race and ethnic differences. If this is considered, improved representation of global populations 

in subphenotyping studies would be covered [140]. 
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Abstract: Obesity plays an important role in the development of insulin resistance and diabetes,
but the molecular mechanism that links obesity and diabetes is still not completely understood.
Here, we used 146 targeted metabolomic profiles from the German KORA FF4 cohort consisting of
1715 participants and associated them with obesity and type 2 diabetes. In the basic model, 83 and
51 metabolites were significantly associated with body mass index (BMI) and T2D, respectively. Those
metabolites are branched-chain amino acids, acylcarnitines, lysophospholipids, or phosphatidyl-
cholines. In the full model, 42 and 3 metabolites were significantly associated with BMI and T2D,
respectively, and replicate findings in the previous studies. Sobel mediation testing suggests that the
effect of BMI on T2D might be mediated via lipids such as sphingomyelin (SM) C16:1, SM C18:1 and
diacylphosphatidylcholine (PC aa) C38:3. Moreover, mendelian randomization suggests a causal
relationship that BMI causes the change of SM C16:1 and PC aa C38:3, and the change of SM C16:1,
SM C18:1, and PC aa C38:3 contribute to T2D incident. Biological pathway analysis in combination
with genetics and mice experiments indicate that downregulation of sphingolipid or upregulation of
phosphatidylcholine metabolism is a causal factor in early-stage T2D pathophysiology. Our findings
indicate that metabolites like SM C16:1, SM C18:1, and PC aa C38:3 mediate the effect of BMI on T2D
and elucidate their role in obesity related T2D pathologies.

Keywords: obesity; type 2 diabetes; metabolomics; mediation; mendelian randomization; type 2
diabetes pathology

Metabolites 2023, 13, 227. https://doi.org/10.3390/metabo13020227 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo13020227
https://doi.org/10.3390/metabo13020227
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-3369-4120
https://orcid.org/0000-0002-8794-8229
https://orcid.org/0000-0002-1274-4715
https://orcid.org/0000-0001-6645-0985
https://orcid.org/0000-0003-1039-8879
https://doi.org/10.3390/metabo13020227
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo13020227?type=check_update&version=2


Metabolites 2023, 13, 227 2 of 21

1. Introduction

According to the World health Organization (WHO), over 1 billion people worldwide
are obese, including 650 million adults, 340 million adolescents and 39 million children,
and this results in the degradation of health [1]. Obesity is a disease impacting most body
systems and contributes to a range of noncommunicable diseases including cardiovascular
disease, type 2 diabetes (T2D), and cancer [2–4]. It has been proven that being overweight
or obese are the most critical conditions for risk of developing T2D and both are linked to
metabolic syndrome [5]. Metabolic processes are regulated by various perturbations from
its surrounding environment and several levels of enzymes [6]. The molecular mechanisms
by which obesity affects T2D development include lipid metabolism, insulin sensitivity,
and inflammation [7].

Increasing interest has been addressed in the application of metabolic profiling to the
identification of disease biomarkers, as it is a potent approach to uncovering the convoluted
progression between obesity, metabolism, and diabetes [8]. Stevens et al. outlined the
metabolomic signature of human obesity and linked them to T2D parameters such as
C-reactive protein (CRP) and HbA1c [9]. The study by Tulipani et al. shows metabolic
traits [lyso]glycerophospholipids in particular lysophosphatidylcholines associated with
morbid obesity and several amino acids glutamate, glycine and branch chain amino acids
were biomarkers of risk of diabetes onset associated with obesity and prediabetes [10].
Lipidomics analysis has unraveled that several sphingomyelins, diacyl phosphatidyl-
choline, and lysophosphatidylcholine were associated with waist circumference whereas
HOMA-IR was strongly related with specific lysophosphatidylcholines and diacyl phos-
phatidylcholines [11]. These studies provide support for the involvement of metabolites in
progression of metabolic disease, but no emphasis was given to dissect the intermediate
pathway between obesity and diabetes.

Small molecular lipids such as sphingolipids, glycerophospholipids, and fatty acids
play vital roles in metabolic pathways related to health and disease. Sphingolipids are a
class of lipids; simple sphingolipids include the sphingoid bases and ceramides. Ceramides
are important bioactive lipids produced from three pathways: (i) the de novo pathway;
(ii) the sphingomyelin pathway; and (iii) the salvage/recycling pathway [12]. Glycerophos-
pholipids are a class of lipids that constitute a major component of cell membrane, which
is generally composed of hydrophobic fatty acids and a hydrophilic phosphate group.
The phosphate group is modified by different small molecules to form different kinds of
glycerophospholipids, for example, by choline to form phosphatidylcholine [13]. Clinical
studies have demonstrated that phospholipids including sphingolipids and glycerophos-
pholipids are strongly associated with insulin sensitivity [14].

Genetic composition can be used to make predictions regarding disease susceptibility.
The overgrown obesity rates and their clinical consequences (T2D) clearly indicate that
non-genetic or environmental factors and their interaction with genetic variants are major
players of disease development [15]. Genome-wide association studies show more than
900 genetic variants associated with BMI [16] and more than 230 loci influencing risk of
T2D [17]. Furthermore, linking metabolites with other omics, especially genetics using
genome-wide association (mGWAS), gives access to genetics’ influence on the metabolic
composition of key lipids, amino acids, and carbohydrates [18–20]. mGWAS, with a grow-
ing sample size and ascending complex metabolic traits, allows for a more comprehensive
and systems-based downstream analysis.

In this work, we considered a targeted metabolomic analysis of 1715 participants
enrolled in the KORA FF4 Cohort to investigate metabolite markers for obesity and T2D
participate in development of obesity-related Type 2 diabetes. Metabolite profiles of
146 named serum metabolites were assessed and compared with publicly available studies.
The metabolites mediation effect of BMI on T2D was investigated using a mediation test.
Further, we used mendelian randomization (MR) to define metabolites that may be causally
linked with BMI and T2D and vice versa using genetic variants. Finally, biological pathways
and consequences were analyzed by incorporating genetics and mouse model data from
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the literature, yielding the bioactive role of sphingolipids and glycerophospholipids in
metabolic dysregulation and beta cell dysfunction.

2. Materials and Methods
2.1. Study Subjects and Sampling

The Cooperative Health Research in the Region of Augsburg (KORA) study is a
population-based cohort study. The KORA FF4 study (2013–2014) is the second follow-up
of KORA S4 (1999–2001). All samples included in the study were collected in the morning
between 8:00 a.m. and 10:30 a.m. after at least 8 h of fasting. We examined 2216 individuals
who had phenotype and metabolite measurements and excluded 501 participants in the
analysis, including (1) underweight (BMI < 15 kg/m2) or missing covariate values (n = 23),
and (2) prediabetes (impaired fasting glycemia or impaired glucose tolerance, n = 390). It is
reported that impaired fasting glucose and impaired glucose tolerance should be considered
as different phenotypes from T2D, so we removed these participants [21]. Additionally
excluded were (3) diagnosis for type 1 diabetes (n = 6) and (4) unclear type of diabetes
mellitus (n = 82). The remaining dataset has 1715 participants, comprising 1276 non-obese
participants (BMI < 30 kg/m2) and 439 obese (BMI ≥ 30 kg/m2), and 1415 non-diabetic
participants and 300 individuals with type 2 diabetes. The incident T2D was defined
based on an oral glucose tolerance test (OGTT) or a validated physician diagnosis. WHO
diagnostic criteria were applied to the classification of KORA participants.

2.2. Metabolite Quantification and Normalization

Samples were collected and stored at −80 ◦C and profiling FF4 metabolomics were
performed in February–October 2019. The stability was measured and validated [22]. Blood
samples from KORA FF4 participants in the study were measured with the AbsoluteIDQTM

p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). The assay procedures were
previously described in detail [23]. Briefly, 10 µL serum samples were added to the 96-well
kit plate with respective standards and dried under a nitrogen stream. Amino acids and bio-
genic amines were derivatized with 5% phenylisothiocyanate in ethanol/water/pyridine.
After metabolite and standard extraction, using methanol containing 5 mM ammonium
acetate, the eluate was diluted with water for LC MS/MS analysis and with the kits running
solvent for FIA-MS/MS analysis. The analytical process was conducted by the MetIQ™
software package and a targeted profiling scheme was applied to quantitatively identify
known metabolites. Metabolites that met any one of the three exclusion criteria were
deleted: (1) coefficient of variance (CV) value of five reference samples was equal to or
greater than 25%; (2) there were ≥ 50% of all measured sample concentrations lower than
corresponding plate limit of detection (LOD), the plate LOD was defined as 3 times median
of three zero samples in each plate; and (3) the non-detectable rate of all measured samples
was equal to or greater than 50%. There were 146 metabolites that passed quality control
(QC). Non-detectable values in sample data were randomly imputed ranging from 75% to
125% of the half of the lowest measured value of the metabolite in each plate. Afterwards,
plate normalization factors (NFs) were taken into consideration and adjusted for metabolite
concentrations to reduce the plate impact. The normalization process was described else-
where [24]. Metabolite concentrations were natural-log transformed and scaled (mean = 0,
sd = 1) to ensure comparability between the metabolites.2.3. Statistics

All statistical analyses were performed in R (version 4.1.0) and a two-sided
p value < 0.05 was considered as statistically significant after the Bonferroni correction.

2.2.1. Multivariable Linear Regression and Logistic Regression

For BMI-metabolite associations, multivariable linear regression was employed with
each metabolite as an independent variable and the BMI value as a dependent variable.
This analysis was adjusted for covariates age, sex in basic model and including additional
covariates like, physical activities, smoking status, systolic blood pressure, high-density
lipoprotein cholesterol (HDL-C), triglyceride, fasting glucose levels in full model. In logistic
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regression analysis for metabolite-T2D associations, odds ratios (ORs) for each metabolite
between two groups were calculated. Logistic regression analysis was carried out with the
diabetic status as a dependent variable and each metabolite as an independent variable.
Same risk factors in the linear regression analyses with additional BMI were added as
covariates in the logistic regression model and the same significance level was adopted.

2.2.2. Sobel Mediation Test

We performed Sobel tests [25,26] to assess whether metabolites carry the influence of
BMI to T2D. All analyses were conducted in R by using the package ‘bda’ v15.2.5 and the
functions mediation test. In order to adjust confounders, the residuals were obtained from a
linear regression model that each metabolite was a dependent variable and covariates (age,
sex, physical activity, smoking status, systolic blood pressure, HDL-C, and triglyceride) as
independent variables. Afterwards, metabolite residual entered the Sobel test model as a
mediator, and BMI as an independent variable, whereas fasting glucose or HbA1c was taken
as the dependent variable. With these two approaches, we examined the mediation effect
of metabolites. The p-value thresholds follow the Bonferroni-correction and metabolites
with p < 0.05 were considered to have a significant mediation effect.

2.2.3. Mendelian Randomization

We checked for causal inference using two sample mendelian randomisation (2SMR)
methods from the MRInstruments (0.3.2) and TwoSampleMR library (v0.5.6) [27]. 2SMR
is a method to draw a causal relation using only summary statistics of genome wide
association studies (GWAS) from two observational studies [27]. To assess the impact
of BMI on metabolite levels, in a 2SMR test, BMI instruments were obtained from the
GIANT-UK Biobank meta-analysis [16] and the corresponding SNP estimates on T2D
were extracted from the mGWAS [28]. BMI instruments with genome-wide significance
(p < 1× 10−8) and an LD clumping threshold of 0.001 were considered. The exposure and
outcome data were harmonized before performing the MR analysis by positioning the
SNPs on the same effect allele. We used the IVW method to estimate the causal effect of
BMI on metabolites. From the direction of metabolites to T2D, metabolite instruments were
obtained from the metabolite-GWAS [28] and extracted the corresponding SNPs from the
GWAS meta-analysis [29]. After LD clumping and harmonization, a Wald ratio method
was selected in MR analysis to estimate the causal relationship due to the limited SNP
instruments. For sensitivity analysis, we performed heterogeneity or horizontal pleiotropy
based on the MR-Egger analysis.

3. Results
3.1. Associations of Metabolites with BMI and T2D
3.1.1. Characteristics of the KORA FF4 Participants

Among 1715 participants, 1276 individuals were non-obese (BMI < 30) and 439 were
obese (BMI ≥ 30). As shown in Table 1, there was no significant difference in sex and
alcohol consumption between obese and non-obese groups. Compared with the non-obese
group, the blood pressure, triglycerides, and fasting glucose were significantly higher and
HDL cholesterol was significantly lower in the obese group. Besides, for participants with
BMI < 30, only 136 individuals (10.7%) developed T2D, whereas T2D was diagnosed more
frequently in obese participants (37.6%).

Similarly, for alcohol consumption, no significant difference between healthy and T2D
participants was observed. BMI, blood pressure, triglycerides, and fasting glucose were
significantly higher and HDL cholesterol was significantly lower in the T2D group (Table 2).
Compared with non-diabetic individuals, the cases of obesity in T2D groups (53.3%) were
almost three times higher than in the normal participant’s group (19.2%).



Metabolites 2023, 13, 227 5 of 21

Table 1. Characteristics of the KORA FF4 participants based on their BMI. Mean and standard
deviation are provided for quantitative variables. Count and percentage are provided for categorical
variables. The significant difference of population characteristics between the individuals with obesity
and the normal participants was calculated. Categorical variables were calculated via the chi square
test. Student’s t test was used for continuous variables. Abbreviations: HbA1C, glycated hemoglobin;
HDL, high-density lipoprotein; LDL, low-density lipoprotein.

BMI Overall Non-Obese
(BMI < 30 kg/m2)

Obese
(BMI ≥ 30 kg/m2) p Value

Sample size 1715 1276 439
Age mean (SD) 59.0 (12.2) 58.1 (12.1) 62.0 (12.0) <0.001
Sex woman (%) 904 (52.7) 683 (53.5) 221 (50.3) 0.268

Weight (kg) mean (SD) 78.6 (16.0) 72.7 (11.8) 95.7 (14.2) <0.001
Height (cm) mean (SD) 169.1 (9.6) 169.5 (9.6) 167.7 (9.7) <0.001

Alcohol (g/day) mean (SD) 14.2 (19.4) 14.5 (18.2) 13.5 (22.5) 0.392
Waist (cm) mean (SD) 95.6 (14.0) 90.2 (10.5) 111.6 (10.3) <0.001

Waist-hip-ratio mean (SD) 0.9 (0.1) 0.88 (0.1) 0.96 (0.1) <0.001
Fasting glucose (mmol/L) mean (SD) 5.6 (1.3) 5.4 (1.0) 6.3 (1.7) <0.001
2 h post glucose (mmol/L) mean (SD) 5.8 (2.2) 5.5 (1.7) 6.9 (3.2) <0.001

Systolic blood pressure (mmHg) mean (SD) 117.9 (17.2) 116.4 (16.6) 122.5 (18.1) <0.001
Diastolic blood pressure (mmHg) mean (SD) 72.7 (9.5) 72.2 (9.1) 74.0 (10.3) 0.001

Smoking (%) <0.001
Smoker 267 (15.6) 221 (17.3) 46 (10.5)

Ex-smoker 658 (38.4) 461 (36.1) 197 (44.9)
Never-smoker 790 (46.1) 594 (46.6) 196 (44.6)

Physical activities inactive (%) 702 (40.9) 456 (35.7) 246 (56.0) <0.001
HDL cholesterol (mmol/L) mean (SD) 1.7 (0.5) 1.8 (0.5) 1.5 (0.4) <0.001
LDL cholesterol (mmol/L) mean (SD) 3.5 (0.9) 3.4 (0.9) 3.6 (0.9) 0.048

Triglycerides (mmol/L) mean (SD) 1.4 (0.8) 1.25 (0.8) 1.6 (0.9) <0.001
HbA1c (%) mean (SD) 5.5 (0.7) 5.4 (0.6) 5.8 (0.9) <0.001

Total cholesterol (mmol/L) mean (SD) 5.6 (1.00) 5.6 (1.0) 5.5 (1.0) 0.409
C-reactive protein (mg/L) mean (SD) 2.3 (4.4) 1.7 (3.8) 3.9 (5.5) <0.001

Type 2 diabetesy (%) 300 (17.5) 136 (10.7) 164 (37.4) <0.001

Table 2. Characteristics of the KORA FF4 participants based on their diabetic status. Mean and
standard deviation is provided for quantitative variables. Count and percentage are provided for
categorical variables. The significant difference of population characteristics between the diabetic
patients and nondiabetic participants was tested, respectively. Categorical variables were calculated
via chi square test. Student’s t test was used for continuous variables.

Diabetes Overall T2D
(No)

T2D
(Yes) p Value

Sample size 1715 1415 300
Age mean (SD) 59.0 (12.2) 59.7 (12.2) 69.5 (10.0) <0.001
Sex woman (%) 904 (52.7) 784 (55.4) 120 (40.0) <0.001

Weight (kg) mean (SD) 78.6 (16.0) 76.8 (15.3) 87.2 (16.5) <0.001
Height (cm) mean (SD) 169.1 (9.6) 169.4 (9.7) 167.2 (9.1) <0.001

Alcohol (g/day) mean (SD) 14.2 (19.4) 13.9 (18.1) 15.8 (24.7) 0.115
Waist (cm) mean (SD) 95.6 (14.0) 93.1 (12.9) 107.8 (12.7) <0.001

Waist-hip-ratio mean (SD) 0.9 (0.1) 0.9 (0.1) 1.0 (0.1) <0.001
Fasting glucose (mmol/L) mean (SD) 5.6 (1.3) 5.2 (0.4) 7.6 (2.0) <0.001
2 h post glucose (mmol/L) mean (SD) 5.8 (2.2) 5.4 (1.1) 12.6 (3.5) <0.001

Systolic blood pressure (mmHg) mean (SD) 117.9 (17.2) 116.1 (16.2) 126.7 (18.8) <0.001
Diastolic blood pressure (mmHg) mean (SD) 72.7 (9.5) 72.8 (9.1) 72.0 (11.1) 0.201

Smoking (%) <0.001
Smoker 267 (15.6) 243 (17.2) 24 (8.0)

Ex-smoker 658 (38.4) 524 (37.0) 134 (44.7)
Never-smoker 790 (46.1) 648 (45.8) 142 (47.3)

Physical activities inactive (%) 702 (40.9) 512 (36.2) 190 (63.3)
HDL cholesterol (mmol/L) mean (SD) 1.72 (0.5) 1.76 (0.5) 1.48 (0.4) <0.001
LDL cholesterol (mmol/L) mean (SD) 3.5 (0.9) 3.5 (0.9) 3.3 (0.9) <0.001

Triglycerides (mmol/L) mean (SD) 1.4 (0.8) 1.3 (0.8) 1.8 (1.0) <0.001
HbA1c (%) mean (SD) 5.5 (0.7) 5.3 (0.3) 6.5 (1.0) <0.001

Total cholesterol (mmol/L) mean (SD) 5.6 (1.0) 5.6 (1.0) 5.3 (1.1) <0.001
C-reactive protein (mg/L) mean (SD) 2.3 (4.4) 2.1 (4.3) 3.4 (4.6) <0.001

BMI = Obese (%) 439 (25.6) 275 (19.4) 164 (54.7) <0.001
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3.1.2. Metabolites Associated with BMI and T2D

A linear regression model was used to investigate the BMI associated metabolites and
a logistic regression model was employed for T2D associations. Model assumptions have
been performed and reported in Supplemental Document S2. Only age and sex (adding
BMI for T2D model) were added in the basic regression models. The numbers of significant
metabolites were the highest, and 83 metabolites were significantly associated with BMI
and 51 metabolites were significantly associated with T2D.

Next, we tested how covariates like lifestyle, lipids, and fasting glucose influenced
the association between metabolites with BMI and T2D. When more covariates were
included, the significant numbers decreased. In particular, the association between BMI
and metabolites was affected mostly by lipids and blood pressure, which was indicated
from the dramatically dropped number when lipids and blood pressure were added in the
model. Fasting glucose influenced mostly the T2D association and the number of significant
metabolites decreased from 41 to 3, which suggests many metabolites were associated with
T2D mediated by fasting glucose (Figure 1).

83

51

79

50

76

50 50

41 42

3
0

20

40

60

80

+age,sex (BMI) +lifestyle +BP +lipids +fasting glucose

Model Type

N
um

be
r 

of
 S

ig
ni

fic
an

t M
et

ab
ol

ite
s

group

number_BMI

number_T2D

Figure 1. The number of metabolites significantly associated with BMI and T2D in different models
after multiple testing correction. The first coordinate on x-axis shows basic model building upwards
with including lifestyle, blood pressure, lipids, and fasting glucose parameters as covariates in the
model. The y-axis depicts a number of significant metabolites resulting from each model as indicated
on x-axis. Lifestyle includes smoking status and physical activities. BP: systolic blood pressure; lipids
include HDL cholesterol (HDL-C) and triglycerides.

Obesity specific metabolites: Linear regression was used to execute a metabolite-wide
association study in KORA FF4, and we identified 83 and 42 metabolites associations in
the basic and full models after conservative Bonferroni correction for multiple testing. A
volcano plot (Figure 2A,B) provides a quick visual identification of statistically significant
metabolites with a larger effect size. The full summary statistics of different models
are reported in the Supplemental Materials Tables S2 and S3. Table 3 shows only the
metabolites significantly associated with BMI in the full model. Totally, 12 metabolites were
negatively associated with BMI whereas 30 were positively associated in the full model.
We confirmed the BMI metabolites associations using the published literature and almost
all were replicated except for SM C20:2.
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Figure 2. Volcano plots show the association of metabolites with BMI and T2D in the basic model
(A,C) and the full model (B,D). Bonferroni correction p-value cut-off is 0.05/146 = 0.00034 was
considered. Each dot represents a metabolite, and they are displayed based on the beta estimate or
odds ratio (x-axis) and the negative logarithm (base 10) of the p-value (y-axis). The covariates for the
basic model are age, sex, and (BMI); the covariates for the full model are age, sex, (BMI), smoking
status, physical activities, HDL-C, blood pressure, triglycerides, and fasting glucose.

From this analysis we made the following four key observations.

(1) We have observed that all diacyl phosphatidylcholines (PC aa), acylcarnitines, bio-
genic amines, and sphingomyelins (SM) were positively associated with BMI. In
particular, PC aa C38:3 was the strongest metabolite associated with BMI (1.301
[1.082–1.520], q-value = 3.65× 10−28. Glutamate (1.255 [1.032–1.478],
q-value = 3.05 × 10−25), SM C16:1 (1.118 [0.901–1.336], q-value = 3.87 × 10−21),
alpha-AAA (0.955 [0.726–1.184], q-value = 8.04 × 10−14), and C0 (0.672 [0.462–0.882],
q-value = 6.13 × 10−8) were those with the strongest association in each category;

(2) Some amino acids were positively correlated with BMI. Among them, glutamate (1.255
[1.032–1.478], q-value = 3.05 × 10−25) and Tyrosine (0.901 [0.695–1.106],
q-value = 2.51 × 10−15) have the strongest association. Others were inversely as-
sociated with BMI: Asparagine (−0.642 [−0.843–−0.44], q-value = 7.73 × 10−8) and
Glycine (−0.515 [−0.724–−0.305], q-value = 2.34 × 10−4);

(3) Three acylalkylphosphatidylcholine (PC ae) were positively associated with BMI, PC
ae C36:5 (0.502 [0.29–0.713], q-value = 5.09 × 10−4), PC ae C36:4 (0.457 [0.254–0.66],
q-value = 1.56 × 10−3), and PC ae C32:2 (0.506 [0.258–0.754],
q-value = 9.52 × 10−3); whereas others PC aes were negatively associated with
BMI: PC ae C42:3 (−0.594 [−0.821–−0.368], q-value = 4.29 × 10−5), PC ae C36:2
(−0.607 [−0.84–−0.373], q-value = 5.48 × 10−5), PC ae C40:6 (−0.424 [−0.639–−0.209],



Metabolites 2023, 13, 227 8 of 21

q-value = 1.66 × 10−2), and PC ae C38:2 (−0.406 [−0.613–−0.199],
q-value = 1.80 × 10−2);

(4) All lysophosphatidylcholines (lyso PC) were negatively associated with BMI. In partic-
ular, lysoPC a C17:0 (−1.1 [−1.305-−0.896], q-value = 4.20 × 10−23) was the strongest.

Table 3. Metabolites significantly associated with BMI in the linear regression full model. The
dependent variable was BMI, whereas the independent variables were the log transformed and
standardized concentration of each metabolite, adjusted for age, sex, smoking status, physical
activities, HDL-C, blood pressure, triglycerides, and fasting glucose. q-values were reported
as p values adjusted for multiple testing by Bonferroni correction. Only metabolites with a
p-value lower than 0.00034 (0.05/146) were included in this table.

Positively Associated

Category Metabolite Beta Estimate (95% CI) p-value q-value

PC aa PC aa C38:3 1.301 (1.082–1.520) 2.50 × 10−30 3.65 × 10−28

PC aa PC aa C38:4 0.728 (0.514–0.943) 3.74 × 10−11 5.47 × 10−9

PC aa PC aa C40:4 0.692 (0.471–0.913) 9.89 × 10−11 1.44 × 10−7

PC aa PC aa C32:1 0.606 (0.375–0.837) 2.93 × 10−7 4.28 × 10−5

PC aa PC aa C40:5 0.505 (0.279–0.730) 1.19 × 10−5 1.74 × 10−3

PC aa PC aa C36:3 0.512 (0.281–0.742) 1.41 × 10−5 2.06 × 10−3

PC aa PC aa C36:4 0.426 (0.207–0.644) 1.38 × 10−4 2.01 × 10−2

Amino Acids Glutamate (Glu) 1.255 (1.032–1.478) 2.09 × 10−27 3.05 × 10−25

Amino Acids Tyrosine (Tyr) 0.901 (0.695–1.106) 1.72 × 10−17 2.51 × 10−15

Amino Acids Phenylalanine (Phe) 0.823 (0.618–1.027) 6.11 × 10−15 8.92 × 10−13

Amino Acids Valine (Val) 0.876 (0.652–1.100) 2.60 × 10−14 3.80 × 10−12

Amino Acids Isoleucine (Ile) 0.866 (0.618–1.114) 1.05 × 10−11 1.53 × 10−9

Amino Acids Leucine (Leu) 0.755 (0.515–0.995) 9.02 × 10−10 1.32 × 10−7

Amino Acids Alanine (Ala) 0.458 (0.242–0.673) 3.27 × 10−5 4.78 × 10−3

Amino Acids Ornithine (Orn) 0.399 (0.195–0.603) 1.30 × 10−4 1.90 × 10−2

SM SM C16:1 1.118 (0.901–1.336) 2.65 × 10−23 3.87 × 10−21

SM SM C18:1 1.061 (0.848–1.273) 5.81 × 10−22 8.48 × 10−20

SM SM C20:2 0.763 (0.541–0.985) 2.14 × 10−11 3.12 × 10−9

SM SM C18:0 0.697 (0.490–0.903) 4.52 × 10−11 6.60 × 10−9

SM SM C24:1 0.518 (0.310–0.726) 1.16 × 10−6 1.69 × 10−4

Biogenic Amines Alpha-Amino acid
(alpha-AAA) 0.955 (0.726–1.184) 5.51 × 10−16 8.04 × 10−14

Biogenic Amines Kynurenine 0.743 (0.524–0.962) 3.81 × 10−11 5.57 × 10−9

Biogenic Amines 4-Hydroxyproline (t4-OH-Pro) 0.485 (0.279–0.691) 4.13 × 10−6 6.02 × 10−4

Acylcarnitines Carnitine (C0) 0.672 (0.462 -0.882) 4.20 × 10−10 6.13 × 10−8

Acylcarnitines Valerylcarnitine (C5) 0.700 (0.478–0.922) 7.96 × 10−10 1.16 × 10−7

Acylcarnitines Propionylcarnitine (C3) 0.670 (0.449–0.891) 3.50 × 10−9 5.11 × 10−7

Acylcarnitines Butyrylcarnitine (C4) 0.457 (0.247–0.667) 2.15 × 10−5 3.14 × 10−3

PC ae PC ae C36:5 0.502 (0.290–0.713) 3.49 × 10−6 5.09 × 10−4

PC ae PC ae C36:4 0.457 (0.254–0.660) 1.07 × 10−5 1.56 × 10−3

PC ae PC ae C32:2 0.506 (0.258–0.754) 6.52 × 10−5 9.52 × 10−3

Negatively Associated

Category Metabolite Beta Estimate (95% CI) p-value q-value

lysoPC lysoPC a C17:0 −1.1 (−1.305–−0.896) 2.88 × 10−25 4.20 × 10−23

lysoPC lysoPC a C18:2 −1.129 (−1.348–−0.911) 1.72 × 10−23 2.51 × 10−21

lysoPC lysoPC a C18:1 −0.978 (−1.193–−0.763) 1.08 × 10−18 8.72 × 10−15

lysoPC lysoPC a C16:0 −0.640 (−0.849–−0.432) 2.19 × 10−9 3.20 × 10−7

lysoPC lysoPC a C18:0 −0.521 (−0.725–−0.316) 6.48 × 10−7 9.46 × 10−5

lysoPC lysoPC a C20:4 −0.415 (−0.627–−0.203) 1.28 × 10−4 1.86 × 10−2

Amino Acids Asparagine (Asn) −0.642 (−0.843–−0.44) 5.30 × 10−10 7.73 × 10−8

Amino Acids Glycine (Gly) −0.515 (−0.724–−0.305) 1.60 × 10−6 2.34 × 10−4

PC ae PC ae C42:3 −0.594 (−0.821–−0.368) 2.94 × 10−7 4.29 × 10−5

PC ae PC ae C36:2 −0.607 (−0.840–−0.373) 3.75 × 10−7 5.48 × 10−5

PC ae PC ae C40:6 −0.424 (−0.639–−0.209) 1.14 × 10−4 1.66 × 10−2

PC ae PC ae C38:2 −0.406 (−0.613–−0.199) 1.23 × 10−4 1.80 × 10−2
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To investigate the direction of effect across BMI class (normal, overweight, and obese),
the six most significant metabolites from the full model were visualized by violin-box plots
stratified by BMI in Figure 3. PC aa C38:3, glutameta (Glu), SM C16:1 and SM C18:1 showed
synchronized direction with BMI, increasing concentrations with increased BMI, whereas
lysoPC a C17:0 and lysoPC a C18:2 reversed, which is consistent with the result from the
linear regression model.
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Figure 3. Violin-boxplots show the top six significant metabolite distributions of study subjects
divided in three different classes of BMI, normal (18.5 ≤ BMI < 25), overweight (25 ≤ BMI < 30),
and obese (BMI ≥ 30). The box contains 50% of the participants. The middle line stands for median
dividing the box into two areas. The 25th and 75th percentile of the distribution are represented by
upper and lower hinges.

T2D specific metabolites: multivariable logistic regression analysis was conducted
with known diabetes-related variables as covariates to identify significant metabolites.
Similarly, alcohol was not included in the model as a covariate because there was no
significant difference between T2D and healthy individuals. A volcano plot (Figure 2C,D)
represents the result of the logistic regression model. The full summary statistics of different
models are reported in the Supplemental Materials Tables S4 and S5. Table 4 shows only the
metabolites significantly associated with T2D in the full model. Three metabolites, C3-DC
(C4-OH), alpha-AAA and isoleucine (Ile) were observed to have significant associations
in the full model after conservative Bonferroni correction. All of them were positively
correlated with T2D and replicated by the published literature (details in the Section 4).
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Table 4. Metabolites significantly associated with T2D in the logistic regression full model. The
dependent variable was T2D status, whereas the independent variables were the log transformed and
standardized concentration of each metabolite, adjusted for age, sex, BMI, smoking status, physical
activities, HDL-C, blood pressure, triglycerides, and fasting glucose. q-values were reported as
p-values adjusted for multiple testing by Bonferroni correction. Only metabolites with p-value lower
than 0.00034 (0.05/146) were included in this table.

Category Metabolite Odds Ratios (95% CI) p-Value q-Value

Acylcarnitines Hydroxybutyrylcarnitine (C3-DC (C4-OH)) 0.619 (0.363–0.888) 3.79 × 10−6 5.54 × 10−4

Biogenic Amines Alpha-Amino acid (alpha-AAA) 0.638 (0.308–0.977) 1.77 × 10−4 2.58 × 10−2

Amino Acids Isoleucine (Ile) 0.637 (0.293–0.987) 3.08 × 10−4 4.50 × 10−2

Figure 4 displays the violin-boxplots of the three significant metabolites in the T2D
full model. The concentrations of C3-DC (C4-OH), alpha-AAA, and Ile increased among
the group with T2D, which is consistent with the result from the logistic regression model.
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Figure 4. Violin-box plots show the distribution of three significant metabolites stratified by diabetic
status. The box contains 50% of the observations. The middle line stands for median dividing the
box into two areas. The 25th and 75th percentile of the distribution are represented by upper and
lower hinges.

3.2. Sobel Mediation Test

A Sobel mediation test was conducted to investigate whether a mediator carries the
effect of an independent variable on a dependent variable. In our research, we used
fasting glucose or HbA1c as T2D indicators to test the metabolite mediation of the effect of
BMI on T2D. In order to adjust the influence of the confounders, the metabolite residual,
calculated from the linear regression model between each metabolite and covariates, was
used as a mediator in the test. The significant mediators are shown in Table 5 and full
statistics are shown in Supplementary Materials Table S6 and Table S7, respectively. The
mediation of the associations between BMI and fasting glucose via the 12 metabolites were
Bonferroni-corrected significant (q-value < 0.05) whereas nine metabolite mediations were
significant between BMI and HbA1c. Among all these metabolites, sum of hexose, SM
C16:1, glutamate, PC aa C38:3, alpha-AAA, isoleucine, lyso PC a C18:0, and leucine were
significant in both tests, which suggests their robust mediation effects. The sum of hexose
owned the strongest mediation in both studies, which was not very surprising as it mainly
represents the glucose in human blood. A summarizing plot of the mediation analysis is
shown in Figure 5.
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Table 5. Results for mediation analysis with the BMI as independent variable, metabolite as potential
mediator, fasting glucose or HbA1c as dependent variable. q-values were reported as p-value adjusted
for multiple testing by Bonferroni correction.

Sobel Test (Metabolite, BMI, Fasting Glucose) Sobel Test (Metabolite, BMI, HbA1c)

Metabolite p-Value q-Value Metabolite p-Value q-Value

Sum of hexoses
(H1) 1.49 × 10−16 2.18 × 10−14 Sum of hexoses

(H1) 1.14 × 10−15 1.66 × 10−13

SM C16:1 2.88 × 10−7 4.20 × 10−5 Isoleucine (Ile) 1.08 × 10−5 1.58 × 10−3

Glutamate (Glu) 1.27 × 10−6 1.85 × 10−4 SM C16:1 1.40 × 10−5 2.04 × 10−3

PC aa C38:3 2.62 × 10−6 3.82 × 10−4 lysoPC a C18:0 5.56 × 10−5 8.11 × 10−3

lysoPC a C17:0 1.31 × 10−5 1.91 × 10−3 Leucine (Leu) 1.05 × 10−4 1.53 × 10−2

Alpha-Amino acid (alpha-AAA) 1.58 × 10−5 2.3 × 10−3 Glutamate (Glu) 1.06 × 10−4 1.55 × 10−2

Isoleucine (Ile) 1.95 × 10−5 2.84 × 10−3 lysoPC a C16:0 1.12 × 10−4 1.63 × 10−2

lysoPC a C18:0 5.00 × 10−5 7.30 × 10−3 Alpha-Amino acid (alpha-AAA) 1.48 × 10−4 2.16 × 10−2

Alanine (Ala) 6.94 × 10−5 1.01 × 10−2 PC aa C38:3 3.14 × 10−4 4.59 × 10−2

SM C18:1 1.33 × 10−4 1.94 × 10−2

Leucine (Leu) 1.48 × 10−4 2.16 × 10−2

SM C20:2 2.91 × 10−4 4.24 × 10−2

Metabolites
(especially:

SM C16:1, PC aa C38:3)

T2DBMI

Mediation

Observed in current study

As shown in Lingvay et al. 
The Lancet 2022 Jan; 399:394-
405 

Figure 5. Schematic representation of the mediation analysis [2,30–32].

3.3. Mendelian Randomization

To assess the causality relationship between BMI, identified metabolites from medi-
ation test and T2D, we employed two-sample mendelian randomization (MR) tests. We
conducted a two-sample (2SMR) mendelian randomization analysis in two directions
(BMI-to-metabolite, metabolite-to-T2D, Figure 6). BMI instruments were extracted from
the GIANT-UK Biobank meta-analysis [16] and then the corresponding SNPs estimated
on T2D were selected from the published metabolite-GWAS [28]. Metabolite instruments
were obtained from the same metabolite-GWAS [28] and extracted the corresponding SNPs
from the GWAS meta-analysis [29]. The 2SMR analysis results are presented using the
Inverse Variance Weighted (IVW) method in BMI to metabolite direction and the Wald
ratio method in metabolite to T2D direction. Only SM C16:1, SM C18:1, and PC aa C38:3
have available instruments in both directions, so we showed the MR results of these three
metabolites in this study.
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SM C16:1
SM C18:1

PC aa C38:3

T2DBMI

Metabolite
Beta 
Estimate se p-value

BMI to SM C16:1 0.0234 0.0117 4.6 × 10-2

BMI to SM C18:1 0.0201 0.0142 0.156

BMI to PC aa C38:3 0.0434 0.0162 7.21 × 10-3

BMI instruments: the GIANT-UK Biobank
meta-analysis

Yengo, L. et al. Mol. Genet. 27, 
3641–3649 (2018).

SNP-Metabolite: mGWAS meta-analysis
Draisma HHM et al. Nat. 
Commun. 2015 Jun 12;6:7208

Metabolite instruments: mGWAS
meta-analysis

Draisma HHM et al. Nat. 
Commun. 2015 Jun 12;6:7208

SNP-T2D: GWAS meta-analysis
Xue A et al. Nat Commun. 
2018 Jul 27;9(1):2941Causal

Metabolite
Beta 
Estimate se p-value

SM C16:1 to T2D 0.896 0.288 1.89 × 10-3

SM C18:1 to T2D 0.790 0.254 1.89 × 10-3

PC aa C38:3 to T2D 0.462 0.191 1.56 × 10-2

Figure 6. Schematic diagram is suggestive of relationships between BMI, metabolites and T2D. The
studies we used for MR were listed in the figure. ß-estimate stands for beta coefficient, se stands for
standard error [16,28,29].

Our results indicated that the change of BMI could cause the concentration change
of SM C16:1 and PC aa C38:3. The change of SM C16:1, SM C18:1, and PC aa C38:3
contributes to the development of T2D, which suggests lipids like SM C16:1 and PC aa C38:3
are intermediate molecules involved in the progression from obesity to T2D. Sensitivity
analysis was carried out to test if these results were robust from proof of heterogeneity or
horizontal pleiotropy, which was supported by the MR-Egger analysis. For BMI to SM
C16:1, Q statistic from the heterogeneity measure was not significant (p_Het 0.51 > 0.05),
indicating there was no heterogeneity. For BMI to PC aa C38:3, the p-value (p_Het 0.03)
was slightly lower than 0.05, showing heterogeneity between different instruments, and
random effect was selected to report the result. The MR–Egger intercept test (p_Pleio > 0.05)
suggested no directional pleiotropy for both metabolites. For the direction of metabolites to
T2D, we did not perform the sensitivity analysis as only one SNP instrument was available
for each metabolite.

3.4. The Biological Role of SM C16:1, SM C18:1, and PC aa C38:3 in Transition to T2D

In order to understand the biological pathway of these three lipids (SM C16:1, SM
C18:1, and PC aa C38:3), we searched for the associated SNPs and genes in humans. The
metabolite SM C18:1 was reported to be associated with SNP rs12610250-A, the locus
CERS4 [28]. PC aa C38:3 was significantly correlated with rs7200543-A, locus PDXDC1
and rs968567-T, locus FADS2 [28]. Both SM C16:1 and SM C18:1 were associated with
rs174547-C, rs174537-A, rs102275-G, rs174546-A, rs174556-A, rs1535-G, rs174449-G,
rs1000778-A, the locus FADS1-3 [33]. CERS4 and FADS1-3 were identified to influence
the biosynthesis of sphingolipids including sphingomyelins and ceramides [28,33], which
could be produced from each other by hydrolysis and synthase [34]. It was reported sphin-
gomyelins were essential for insulin secretion in rat beta cells [35] and beta cell viability [36].
Mice model and cell experiments demonstrated that inhibition of ceramide biosynthesis
impaired insulin sensitivity and caused pancreatic beta-cell dysfunction [36,37]. This is
consistent with the result of negative associations between SM C16:1, SM C18:1, and T2D
in the current study (basic model). The specific variants of PDXDC1 and FADS2 were
found to upregulate phosphatidylcholine [28]. Increased phosphatidylcholines bind to
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and activate the aryl hydrocarbon receptor (AhR) expressed in hepatocytes and inhibi-
tion of the essential genes including IRS-2 for promotion of the insulin pathway [38]. We
observed the consistent result that PC aa C38:3 was positively associated with T2D in
a human study [32]. These observations support the particular sphingolipid and phos-
phatidylcholine dysmetabolism as a causal factor in early-stage T2D progression (shown
in Figure 7).

Figure 7. Schematic representation of the pathway analysis of diminished sphingolipid metabolism
to a transition of T2D. The SNPs marked with green are the ones used in the MR test. The red pathway
is generally involved in sphingomyelins (SM), the purple and gray pathways are for ceramides, and
phosphatidylcholines (PC), respectively. All three kinds of metabolites influence insulin release.

4. Discussion

Obesity triggers a cascade of metabolic processes that raise the stake of various co-
morbidities including insulin resistance and glycemic deterioration causing T2D. Under-
standing the role of intermediate molecules involved in the process from obesity to T2D
offers a therapeutic strategy to early-stage T2D pathophysiology. In our study, we assessed
the functionally characterized targeted metabolite profiles of KORA FF4 participants for
underlying metabolic pathway links. The major results of the present study are (1) iden-
tification of several metabolite changes among subjects with obesity and diabetic status,
(2) metabolites such as SM C16:1, SM C18:1, and PC aa C38:3 show significant mediation
effect of BMI on T2D, (3) the causality direction of BMI, three lipids (SM C16:1, SM C18:1, PC
aa C38:3), and T2D, and (4) the biological consequences of the downregulated sphingolipids
and upregulated phosphatidylcholine.

It is strongly suggested that in blood, elevated concentrations of branched-chain
amino acids are associated with an increased risk of type 2 diabetes mellitus [39,40]. In our
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study among metabolites associated with BMI, the branched chain amino acids (BCAAs),
isoleucine (Ile), leucine (Leu), and valine (Val) were positively correlated and have been
confirmed in several studies [30,41,42].In fact, isoleucine was positively associated with
T2D in the full model and replicated in the literature [21]. Isoleucine (Ile) and leucine (Leu)
also appear to be mediators between BMI and T2D. Other amino acids such as glutamate,
alanine, tyrosine, and phenylalanine significantly changed among different BMIs and these
also have been found in other studies [30,43,44]. Other studies speculate the reason could
be that high concentration of BCAAs causes insulin resistance by activating the mammalian
target of rapamycin (mTOR) signaling [45,46]. There might be a mechanism proposed for
branched-chain-keto acid dehydrogenase (BCKD) inhibition and suppression of enzymatic
catabolism of amino acids in individuals with obesity [47].

Acylcarnitines like carnitine (C0), valerylcarnitine (C5), propionylcarnitine (C3) in-
creased in individuals with higher BMI, which is in line with other studies [30,44]. Hy-
droxybutyrylcarnitine (C3-DC (C4-OH)) was positively associated with T2D [48]. Several
studies indicate an increase in plasma acyl carnitines in patients with T2D [30,31] and it is
attributed to an incomplete long chain fatty acyl-CoA oxidation of fatty acids [43,49].

Biogenic amines were found to be related with obesity and T2D. Alpha-aminoadipic
acid (alpha-AAA) and kynurenine were positively associated with BMI. Meantime, alpha-
aminoadipic acid was also positively associated with T2D in the full model and showed
significant mediation of BMI to T2D. Alpha-aminoadipic acid is an intermediate in the
metabolism of lysine and rat studies indicate that aminoadipic acid is elevated in the pre-
diabetic state and so it could be a predictive biomarker for the development of diabetes [50].

Considering glycerophospholipids, all diacylphosphatidylcholines (PC aa) increased
with increased BMI, such as PC aa C38:3, PC aa C38:4, PC aa C40:4, PC aa C32:1, and
especially PC aa C38:3, the strongest metabolite with the lowest p-value, which is in line
with Frigerio et al. [30]. All lysophosphatidylcholines (lyso PCs) were observed to have
negative association with BMI. lysoPC a C17:0, lysoPC C18:2, and lysoPC C18:1 were the
strongest negatively correlated with BMI, consistent with several other studies [10,51].
Only a few acylalkylphosphatidylcholine (PC ae) increased with BMI (PC ae C36:5, PC
ae C36:4, PC ae C32:2) whereas many decreased (PC ae C42:3, PC ae C36:2, PC ae C40:6,
PC ae C38:2). Moreover, PC aa C38:3, LysoPC a C16:0, LysoPC a C17:0, and LysoPC
a C18:0 were observed to mediate from BMI to T2D, and this is a novel finding in our
study. Phospholipids such as phosphatidylcholines (PC) are the essential constituent of
cellular membranes and are critical for cellular signal transduction [52]. The LysoPCs
(16:0, 17:0, 18:0) negatively associated with T2D in the basic model in our cohort have
been considered to be involved in pro-inflammatory and atherogenic [53], but their major
role still needs to be elucidated. PC aa C38:3 is reported to be positively associated with
incident T2D [32], and mediation analysis and mendelian randomization results indicate it
could be the intermediate molecules involved in obesity-related T2D development. The
mechanisms governing the PC-mediated association between obesity and T2D could be via
fatty acid (FA) and insulin signaling pathways. High-fat diets, inducing overproduction of
PC, result in obesity and diabetes in individuals [54,55]. It is stated that abnormally high
PC lipids affect energy metabolism and insulin signaling [56,57]. Mice fed with high-fat
diets show upregulation of exosomal phosphatidylcholine, which results in binding to the
aryl hydrocarbon receptor (AhR) [38], a transcription factor expressed in hepatocytes to
integrate dietary and metabolic processes, and thus inhibition of the insulin response.

The Frigerio et al. study [30] confirms that sphingomyelins (SM), SM C16:1, and
SM C18:1 were significantly associated with BMI. In the mediation test, both SM C16:1
and SM C18:1 have significant mediation effects of BMI on fasting glucose. These two
metabolites have been shown to be associated with BMI and T2D in other studies [30,31].
Integrating with mendelian randomization suggests the causality direction and sphin-
gomyelins such as SM C16:1 could be the molecular mediators of obesity-to-T2D evolution.
Sphingomyelins are one of the most abundant sphingolipids in bodily fluids and in tissues,
which is a lipid class with both signaling and structural properties and was reported to be
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related to the development of major metabolic and cardiovascular diseases [58–60]. The
metabolic link between obesity and diabetes could be induced by modulating inflamma-
tion via FA and proinflammatory cytokines. Increased bioavailability of free fatty acid
(FFA) and proinflammatory cytokines are characterized in obese subjects; sphingolipid
metabolism is affected through both substrate supply and regulation of the enzymes [61,62].
Through the use in vivo and vitro mice models, it is confirmed that saturated FAs stimulate
toll-like receptor 4 (TLR-4), activating sphingomyelinase (SMase) and converting sphin-
gomyelins to ceramide, which reduces sphingomyelins content and exerts an action of
insulin resistance [63]. SMase is also observed to be activated by proinflammatory cytokines
tumor necrosis factor-alpha (TNF-α), resulting in an increased ceramide production from
C57BL/6J mice with the intraperitoneal administration of TNF-α [64]. These events can
lead to pancreatic β-cell dysfunction and T2D development in obese subjects. A study by
Kelli M Sas et al. [65] investigates the role of perturbed ceramide metabolism in diabetic
kidney disease (DKD). Ceramides were measured in the plasma and kidney cortex of a
C57BLKS db/db mouse model of DKD which revealed long-chain ceramides (C14:0, C16:0,
C18:0, C20:0) and a glucosylceramide (Glu-Cer C18:0) were increased in diabetic mouse
plasma, whereas very-long-chain (C24:0, C24:1) ceramides and glucosylceramide (Glu-Cer
C16:0) were decreased in diabetic mouse kidney tissue. However, circulating metabolites
from the KORA study show exactly the opposite role of ceramide through SMase and
genetics variants.

T2D usually occurs at the later stage of obesity, and we confirmed that lipids like SM
C16:1, SM C18:1 and PC aa C38:3 could mediate the effect of BMI on T2D and also be a causal
factor for T2D development. Therefore, we incorporated human genetics with mice model
experiments to figure out the biological pathway. It was reported that FADS1-3 and CERS4
genetic variants with specific minor alleles (Figure 7) are associated with downregulated
sphingolipids [28,33] whereas PDXDC1 and FADS2 upregulated phosphatidylcholine
(Figure 7) [28], which contributes to promoting T2D pathophysiology [33,38]. CERS4 is the
gene responsible for encoding ceramide synthases. Several knockout mice studies report
that the inhibition of ceramide biosynthesis provokes both insulin resistance and the glucose
homeostasis disruption [37,66,67]. This is contradictory with the above section which states
increased ceramide causes insulin resistance. It may be attributed to that only general routes
of metabolism are discussed, and specific sphingolipid species and sphingolipid metabolic
pathways stay unintelligible. The function of the PDXDC1 protein, a vitamin B6-dependent
decarboxylase, is not well known. It was observed in previous GWAS that PDXDC1 is
linked with omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) [68,69].
Insulin-resistance in mice induced by high-fat diets showed downregulation PDXDC1 in
the liver [70]. These events suggest PDXDC1 plays a role in the fatty acids metabolism to
influence phosphatidylcholine biosynthesis, regulating the risk of insulin resistance and
T2D. The FADS1-3 genetic locus, which encodes FA desaturase enzymes, derive PUFAs via
endogenous desaturation and elongation of fatty acids [71,72]. FADS1-3 are reported to
share genome-wide significant associations with almost all cardiometabolic phenotypes
such as dyslipidemia, fatty liver, obesity, and T2D [73–75]. The possible interpretation could
be similar with PDXDC1—that the FADS genetic variants, which influence FA desaturase
enzyme activity to affect sphingolipid and phosphatidylcholines biosynthesis, modulate the
risking of developing T2D [76,77]. It has been observed that the FADS genes are associated
with the differences in adipose tissue, body weight, and glucose homeostasis and these are
regulated by PUFAs [78], which is consistent with our results that FADS1-3 have strong
correlations with obesity and T2D traits in adipose, liver, and muscle tissues in ApoE−/−
C57BL/6J and C3H/HeJ mice (Supplementary Figure S3). These data suggest genetic
predisposition and early alterations in sphingolipids and phosphatidylcholines metabolism
contribute to prediction of T2D incident.

This study has several advantages and limitations. A high number of participants
were included in the study to investigate the metabolite signatures associated with obesity
and T2D. We employed mediation testing to discover the novel metabolites which mediated
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the effect from BMI on T2D. MR tests and mice model experiments from the literature
were used to establish plausible biological pathways. The most important point from this
study is that lipids SM C16:1, SM C18:1, and PC aa C38:3 could be biomarkers for early
stage T2D diagnosis. However, there are still some limitations that could be investigated
in further studies. It is reported that storage of plasma samples for up to five years
results in altered concentrations of metabolites [22] and this may influence the associations.
Sphingomyelins SM C16:1 and SM C18:1 were found to be positively associated with obesity
but negatively with T2D (basic model) and this is also replicated in the literature [30,31].
This could be caused from SMase converting sphingomyelins to ceramide at the later
stage of obesity [63,64] and could be the reason why sphingomyelins have a positive
effect on incident T2D from MR results but were negatively associated with prevalent
T2D in a cross-sectional study; however, the molecular mechanism was not confirmed.
Longitudinal analyses could be performed to study how metabolite concentrations change
at different stages and if they are able to predict the onset of obesity related T2D. In our
study, we observed sphingolipids’ metabolic pathway linked obesity and T2D but how
specific metabolites SM C16:1, SM C18:1, and PC aa C38:3 work is still ambiguous and
requires additional experiments to confirm more detailed molecular behavior. In the current
study, metabolites were associated with BMI and T2D considering traditional covariates.
Moreover, other complication factors like depressive symptoms or kidney disease or dietary
intake might also have an influence on metabolic traits, which are not considered in this
study.

5. Conclusions

This study assessed metabolic profiles from a targeted approach based on the KORA
FF4 cohort. The cross-sectional analysis showed metabolic biomarkers related to obesity
and T2D.For the first time, we show metabolites like SM C16:1, SM C18:1, and PC aa
C38:3 performed significant mediation effects of BMI on T2D. MR analysis and mice model
experiments provided new evidence in sphingolipid-driven alterations in insulin secretion
and T2D development. This translates previous findings from mice models to the human
metabolism. This study contributes to human validation of SM C16:1, SM C18:1, and PC
aa C38:3 as biomarkers for obesity-related T2D pathophysiology that could be regarded
as potential clinical targets for risk evaluation and disease monitoring. In conclusion, the
findings reported here shed new light on new potential therapeutic strategies from the
perspective of metabolic signatures.
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Abstract
Aims/hypothesis  Type 2 diabetes is a chronic condition that is caused by hyperglycaemia. Our aim was to characterise the 
metabolomics to find their association with the glycaemic spectrum and find a causal relationship between metabolites and 
type 2 diabetes.
Methods  As part of the Innovative Medicines Initiative - Diabetes Research on Patient Stratification (IMI-DIRECT) consor-
tium, 3000 plasma samples were measured with the Biocrates AbsoluteIDQ p150 Kit and Metabolon analytics. A total of 911 
metabolites (132 targeted metabolomics, 779 untargeted metabolomics) passed the quality control. Multivariable linear and 
logistic regression analysis estimates were calculated from the concentration/peak areas of each metabolite as an explanatory 
variable and the glycaemic status as a dependent variable. This analysis was adjusted for age, sex, BMI, study centre in the basic 
model, and additionally for alcohol, smoking, BP, fasting HDL-cholesterol and fasting triacylglycerol in the full model. Statis-
tical significance was Bonferroni corrected throughout. Beyond associations, we investigated the mediation effect and causal 
effects for which causal mediation test and two-sample Mendelian randomisation (2SMR) methods were used, respectively.
Results  In the targeted metabolomics, we observed four (15), 34 (99) and 50 (108) metabolites (number of metabolites 
observed in untargeted metabolomics appear in parentheses) that were significantly different when comparing normal glucose 
regulation vs impaired glucose regulation/prediabetes, normal glucose regulation vs type 2 diabetes, and impaired glucose 
regulation vs type 2 diabetes, respectively. Significant metabolites were mainly branched-chain amino acids (BCAAs), with 
some derivatised BCAAs, lipids, xenobiotics and a few unknowns. Metabolites such as lysophosphatidylcholine a C17:0, 
sum of hexoses, amino acids from BCAA metabolism (including leucine, isoleucine, valine, N-lactoylvaline, N-lactoylleucine 
and formiminoglutamate) and lactate, as well as an unknown metabolite (X-24295), were associated with HbA1c progression 
rate and were significant mediators of type 2 diabetes from baseline to 18 and 48 months of follow-up. 2SMR was used to 
estimate the causal effect of an exposure on an outcome using summary statistics from UK Biobank genome-wide association 
studies. We found that type 2 diabetes had a causal effect on the levels of three metabolites (hexose, glutamate and caproate 
[fatty acid (FA) 6:0]), whereas lipids such as specific phosphatidylcholines (PCs) (namely PC aa C36:2, PC aa C36:5, PC ae 
C36:3 and PC ae C34:3) as well as the two n-3 fatty acids stearidonate (18:4n3) and docosapentaenoate (22:5n3) potentially 
had a causal role in the development of type 2 diabetes.
Conclusions/interpretation  Our findings identify known BCAAs and lipids, along with novel N-lactoyl-amino acid metabo-
lites, significantly associated with prediabetes and diabetes, that mediate the effect of diabetes from baseline to follow-up (18 
and 48 months). Causal inference using genetic variants shows the role of lipid metabolism and n-3 fatty acids as being causal 
for metabolite-to-type 2 diabetes whereas the sum of hexoses is causal for type 2 diabetes-to-metabolite. Identified metabo-
lite markers are useful for stratifying individuals based on their risk progression and should enable targeted interventions.
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Abbreviations
2SMR	� Two-sample MR
GWAS	� Genome-wide association study
H1	� Hexoses
IGR	� Impaired glucose regulation
IGT	� Impaired glucose tolerance
IMI-DIRECT	� Innovative Medicines Initiative - Diabetes 

Research on Patient Stratification
Lac-Phe	� N-lactoyl-phenylalanine
LysoPC	� Lysophosphatidylcholine
MOVE	� Multi-omics variational autoencoders
MR	� Mendelian randomisation
NA	� Unidentified metabolite
NGR	� Normal glucose regulation
PC	�  Phosphatidylcholine

Introduction

Type 2 diabetes is a complex and common metabolic disor-
der, resulting from the body’s ineffective use of insulin. It can 
be characterised by hyperglycaemia (high blood sugar) due to 

impaired insulin secretion and insulin resistance, with most 
affected people being overweight or obese [1]. Impaired glu-
cose tolerance (IGT) and impaired fasting glucose, together 
known as impaired glucose regulation (IGR) or prediabetes, 
characterise an intermediate condition before converging 
towards diabetes. Recent studies show that a complex inter-
play of genetic susceptibility, environmental factors, lifestyle 
(including diet, physical activity, smoking and alcohol con-
sumption), clinical heterogeneity, drugs and gut microbiome 
orchestrates the development of type 2 diabetes [2]. Over 
time, individuals with type 2 diabetes are more likely to have 
a higher risk for heart attacks, strokes [3], neuropathy (nerve 
damage), retinopathy (causing blindness) and kidney failure 
as well as several infectious diseases including COVID-19, 
reducing life quality and causing social burden [4, 5].

Metabolomics profiles involve a set of low-molecular-
weight biochemicals (metabolites) that includes sugars, 
amino acids, organic acids, nucleotides, lipids, xenobiot-
ics and other compound classes. Identifying biochemi-
cal changes occurring between prediabetes and diabetes 
improves risk prediction for better-targeted prevention [6, 
7]. In addition, genetic composition can be used to make 
predictions regarding disease susceptibility. Genome-wide 
association studies (GWAS) show that more than 400 loci 
influence the risk of type 2 diabetes [8] and that 900 genetic 
variants have been associated with BMI [9]. Therefore, 
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linking metabolites with genetics gives access to genetics’ 
influence on the metabolic compositions [10–13], provid-
ing comprehensive molecular understanding of the disease.

In the Innovative Medicines Initiative - Diabetes Research 
on Patient Stratification (IMI-DIRECT), we characterised 
132 metabolites from targeted measurements and 779 
metabolites from untargeted measurements profiled in 3000 
individuals at baseline. The study population was stratified 
by following ADA 2011 glycaemic categories as follows: 
23.89% (n=692) had normal glucose regulation (NGR) with 
fasting glucose 5.23 (SD=0.39) mmol/l; 48.91% (n=1418) 
had IGR with fasting glucose 5.90 (SD=0.51) mmol/l; and 
27.2% (n=890) had type 2 diabetes with fasting glucose 7.15 
(SD=1.39) mmol/l [14]. For the integration of non-omics 
data such as health status, lifestyle and medication with 
metabolomics, advanced statistical techniques were applied 
to analyse the data (see Methods). Beyond multivariate and 
association analyses we performed causal mediation analysis 
to evaluate potential causal roles of mediators on outcome 
[15, 16]. A study on drug–omics associations in type 2 dia-
betes [17] used an unsupervised deep learning framework 
of multi-omics variational autoencoders (MOVE) to extract 
significant drug response patterns from 789 individuals 
newly diagnosed with type 2 diabetes in the IMI-DIRECT 
cohort. We integrated the polypharmacy effect on metab-
olomics knowledge from MOVE and compared with our 
molecular findings in this study.

Our aims in this study were as follows: (1) to characterise 
911 small molecular (132 targeted, 779 untargeted metabo-
lomics analysis approach) features associated with prediabetes/
IGR and type 2 diabetes; (2) to identify baseline metabolites 
associated with progression rate estimated from cross-sectional 
data; (3) to investigate potential mediation effects of metabo-
lites from baseline glycaemic status to follow-up using media-
tion analysis; and (4) to identify causal relationships between 
metabolites and type 2 diabetes using genetics drivers using 
two-sample Mendelian randomisation (2SMR) tests.

Methods

DIRECT cohort

The Diabetes Research on Patient Stratification (DIRECT) 
cohort encompasses 24,682 European participants at varying 
risk of glycaemic deterioration, identified and enrolled into 
a prospective cohort (study 1) of prediabetes (n=2235) and 
type 2 diabetes (n=830). Using ADA 2011 glycaemic catego-
ries in study 1, 33% (n=692) of cohort 1 (prediabetes risk) 
had NGR, 67% (n=1418) had IGR and 108 were excluded. 
In study 2, 789 samples were included and 41 samples were 
excluded. From study 1, 101 excluded samples entered study 
2 (n=890). The ratio of self-reported sex varied in each study. 

Detailed characteristics on inclusion and exclusion criteria, 
along with the protocol timeline for visits and tests for both 
studies, have been described elsewhere [14, 18]. In summary, 
venous blood fasting samples were obtained, followed by per-
formance of DNA extractions and additional biochemical 
analyses. Metabolomics measurements for distinct samples 
at the baseline is considered in this study.

Targeted metabolomics (AbsoluteIDQ p150 Kit)

Blood samples in the study were analysed with the Abso-
luteIDQ p150 Kit (BIOCRATES Life Sciences, Innsbruck, 
Austria) (see electronic supplementary material [ESM] 
Methods for details) [19]. After data export, lower and upper 
outliers were defined as samples with >33% of metabolite 
concentrations below 25% quantile (±1.5 × IQR). Metabolite 
traits with too many zero-concentration samples and uniden-
tified metabolites (NAs, >50%) were excluded (none). The 
CV was calculated in reference samples for each metabolite 
over all plates. Metabolite traits with CV>0.25 were excluded. 
After quality control, 132 metabolites were included in 
this study (ESM Table 1). Metabolite concentrations were 
loge-transformed and scaled (mean=0, SD=1) to ensure com-
parability between the metabolites.

Untargeted metabolomics (Metabolon platform)

Untargeted LC/MS-based techniques covers a broad spec-
trum of metabolites, in contrast to the targeted techniques 
wherein metabolites are limited to a predefined set of 
molecules. For details on sample preparation, measure-
ment and identification of metabolites, see ESM Methods. 
Incomplete databases and the presence of unknown or 
novel metabolites have been reported with an asterisk (*) 
against the metabolite name. The measured volume of the 
datasets contained 12% missing values. We screened for 
outlier remover (see ESM Fig. 1 for an example), which 
added 4% more missing values onto existing missing val-
ues (ESM Table 2). Peaks were quantified using AUC. 
For studies spanning multiple days, a data normalisation 
step was performed to correct variation resulting from 
instrument inter-day tuning differences. Essentially, each 
compound was corrected in run-day blocks by register-
ing the medians to equal one and normalising each data 
point proportionately (termed the ‘block correction’; ESM 
Fig. 2). Principal component analysis was performed on the 
metabolite dataset and checked for technical effects such as 
centre and sex (see ESM Fig. 3). The data missing pattern 
was tested using logistic regression considering missing as 
0 and non-missing as 1; there was no significant association 
between missing and regressors indicating the missing-at-
random pattern. The K-nearest neighbour (KNN)-based 
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imputation method was applied using K=10 as suggested 
and optimised from German Cohort KORA F4 [20].

Statistics

Multivariable logistic regression and linear regression  Identi-
fying metabolites specifically associated with the presence of 
IGR and type 2 diabetes, we ran the logistic regression with 
adjustment for age, sex, BMI and centre as the basic model, 
and adjusted additionally for alcohol consumption, smok-
ing, BP, fasting HDL-cholesterol and fasting triacylglycerol 
as the full model. The concentration of each metabolite was 
loge-transformed and scaled to have a mean of zero and an 
SD of 1. Each metabolite was taken as exposure and a binary 
NGR-IGR, NGR-type 2 diabetes (NGR-T2D) or IGR-type 
2 diabetes (IGR-T2D) variable as an outcome. The OR of 
outcomes was calculated using the β coefficient from logistic 
regression, where OR>1 indicates higher odds of outcome 
and OR<0 shows lower odds of outcome. To account for 
multiple testing, the p values from regression analyses were 
adjusted for multiple testing using the Bonferroni correction 
(pfdr values). To stratify sex-dependent metabolites, men and 
women were separated to test the associations by performing 
the logistic regression full models.

For incidents of IGR and type 2 diabetes analysis, a 
binary NGR-IGR, NGR-T2D or IGR-T2D variable at fol-
low-up times of 18 months and 48 months was taken as the 
outcome; transformed metabolites and the same risk factors 
in the full model were taken as exposure and covariates, 
respectively. The same p correction method was adopted.

The linear regression model was used to explore the asso-
ciation between HbA1c progression rate and metabolites at 
the baseline. HbA1c progression rate was computed with 
a conditional linear mixed effect model and adjusted for 
changes in BMI and diabetes medications [21]. Each trans-
formed metabolite was taken as the independent variable and 
HbA1c concentration as the dependent variable, with adjust-
ment for age and sex. Bonferroni correction was performed 
for p correction.

Mediation analysis  Mediation analysis followed the basic 
steps suggested by Baron and Kenny [22], and the signifi-
cance of the mediation effect was tested with a non-para-
metric causal mediation analysis [22, 23]. Each identified 
metabolite was taken as a mediator, glycaemic category sta-
tus at the baseline as the independent variable and glycaemic 
category at the follow-up (18 months and 48 months) as 
the dependent variable. R package ‘mediation (4.5.0)’ was 
used to calculate the p value and proportion of the mediation 
effect by bootstrapping with 1000 resamples.

Mendelian randomisation  We used 2SMR approaches from 
the MRInstruments (0.3.2) and TwoSampleMR library 

(v0.5.6) to check causal inference [24]. The 2SMR technique 
enables the establishment of a causal relationship between 
two observational studies (ESM Fig. 4), solely relying on 
summary statistics obtained from GWAS [24, 25]. To evalu-
ate the influence of type 2 diabetes on metabolite levels, we 
conducted a 2SMR examination. Type 2 diabetes instruments 
were obtained from the genome-wide genotyping study [26] 
and the corresponding SNP estimates on metabolites were 
extracted from the metabolite-GWAS [10, 27]. Prior to per-
forming Mendelian randomisation (MR) analysis, exposure 
and outcome data were harmonised by aligning the SNPs 
on the same effect allele. We employed the inverse‐variance 
weighting [10, 26, 27] to estimate the causal effect.

Results

Study populations

After stringent quality control (see ESM Methods), we iden-
tified 132 (ESM Table 1) and 779 (ESM Table 2) metabolites 
from targeted and untargeted metabolomics measurements, 
respectively, that were profiled for 3000 samples (ESM 
Table 3) [28]. Baseline characteristics (Table 1) revealed 
that there were significant differences in BMI, fasting vari-
ables and health status observed between NGR, IGR and 
type 2 diabetes groups. No significant differences in age and 
smoking status were observed between these three groups. 
In addition, the study was conducted across seven countries; 
type 2 diabetes participants were recruited in all centres 
while participants with NGR or IGR were only recruited 
in the Amsterdam, Copenhagen, Kuopio and Lund centres.

Metabolites associated with prediabetes 
and diabetes from targeted metabolomics 
measurements

A multivariable logistic regression model was used with 
known diabetes-related variables as covariates to identify 
significant metabolites. Study centre, sex, age and BMI were 
covariates in the basic model while the additional variables 
systolic BP, fasting HDL-cholesterol, fasting triacylglycerol, 
smoking status, alcohol status and health status were added in 
the full model. Based on the full model, four metabolites dif-
fered significantly between the NGR and IGR groups (Fig. 1a). 
Of these, hexoses (H1) showed the strongest association (OR 
1.81 [95% CI 1.59, 2.06], pfdr=3.97×10−17) and served as a 
positive control throughout our analysis. Thirty-four and 50 
metabolites differed significantly between NGR and IGR vs 
type 2 diabetes, respectively (Fig. 1b,c). As a general pattern, 
phosphatidylcholines (PCs) and lysophosphatidylcholine 
(lysoPC) were negatively associated with progression to type 
2 diabetes, while branched-chain and aromatic amino acids as 
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well as valeryl/glutaryl-related acylcarnitines were positively 
associated with type 2 diabetes.

H1 (OR 9.67 [95% CI 6.54, 14.32], pfdr=1.13×10−27) also 
had the strongest associations in NGR-T2D while C5-M-DC 
(OR=5.31 [95% CI 4.16, 6.77], pfdr=1.07×10−38) had the 
strongest association in IGR-T2D. Three metabolites (H1, 

lysoPC a C17:0, lysoPC a C18:0) were significantly dif-
ferent in all comparisons (NGR-IGR, NGR-T2D and IGR-
T2D), suggesting their important roles in diabetes indica-
tion and severity. Detailed statistics for the basic model 
and full model are shown in ESM Tables 3–8. As there 
were many more male participants than female participants 

Table 1   Baseline characteristics 
of the DIRECT participants 
based on their glycaemic 
category

Quantitative variables are expressed as mean ± SD; categorical variables are expressed as n (%)
The significant difference of population characteristics between the individuals with IGR/type 2 diabetes 
and the normal participants (NGR) was calculated. Test statistics for categorical variables were calculated 
via the χ2 test and Student’s t test for continuous variables
T2D, type 2 diabetes; TG, triacylglycerol

Characteristic NGR IGR T2D p value

Sample size 692 1418 890
Male sex 519 (75.0) 1074 (75.7) 525 (59.0) <0.001
Centre <0.001
  Amsterdam 167 (24.1) 300 (21.2) 183 (20.6)
  Copenhagen 54 (7.8) 223 (15.7) 97 (10.9)
  Dundee 0 0 164 (18.4)
  Exeter 0 0 142 (16.0)
  Kuopio 407 (58.8) 820 (57.8) 34 (3.8)
  Lund 64 (9.2) 75 (5.3) 104 (11.7)
  Newcastle 0 0 166 (18.7)
Age, years 62.15±6.43 62.08±6.19 61.99±7.96 0.894
BMI, kg/m2 27.15±3.65 28.33±4.06 30.59±4.92 <0.001
Systolic BP, mmHg 128.48±15.21 131.62±15.20 132.02±15.78 <0.001
Diastolic BP, mmHg 79.18±8.73 81.20±8.97 76.48±9.88 <0.001
Fasting glucose, mmol/l 5.23±0.39 5.90±0.51 7.13±1.39 <0.001
Fasting HDL-cholesterol, mmol/l 1.37±0.35 1.30±0.36 1.18±0.38 <0.001
Fasting LDL-cholesterol, mmol/l 3.21±0.90 3.19±0.95 2.43±1.00 <0.001
Fasting TG, mmol/l 1.22±0.53 1.44±0.66 1.56±0.88 <0.001
Fasting cholesterol, mmol/l 5.14±0.97 5.15±1.01 4.33±1.17 <0.001
Fasting HbA1c, mmol/mol 35.34±2.22 37.86±2.88 45.86±5.94 <0.001
Fasting HbA1c, % 5.38±0.20 5.61±0.26 6.35±0.54 <0.001
Fasting insulin, pmol/l 50.84±30.90 72.42±50.22 96.56±72.69 <0.001
Smoking status 0.717
  Current smoker 93 (13.4) 215 (15.2) 117 (13.2)
  Ex-smoker 326 (47.1) 681 (48.0) 445 (50.1)
  Never 272 (39.3) 520 (36.7) 326 (36.7)
  Not Known 1 (0.1) 2 (0.1) 1 (0.1)
Alcohol consumption status 0.004
  Never 96 (13.9) 166 (11.7) 140 (15.7)
  Occasionally 134 (19.4) 282 (19.9) 214 (24.1)
  Regularly 462 (66.8) 968 (68.3) 534 (60.1)
  Not known 0 2 (0.1) 1 (0.1)
Health status <0.001
  Poor 1 (0.1) 10 (0.7) 28 (3.1)
  Fair 49 (7.1) 74 (5.2) 34 (3.8)
  Good 331 (47.8) 744 (52.5) 428 (48.1)
  Very good 213 (30.8) 396 (27.9) 239 (26.9)
  Excellent 49 (7.1) 74 (5.2) 34 (3.8)
  Not known 4 (0.6) 11 (0.8) 19 (2.1)
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enrolled in the study, a sensitivity analysis stratified by 
sex was conducted, and is reported in ESM Results, ESM 
Tables 9–14 and ESM Fig. 5.

Metabolites associated with prediabetes 
and diabetes from untargeted metabolomics 
measurements

Fifteen metabolites were significantly changed between 
NGR and IGR based on the logistic regression analyses 
in the full model (Fig. 2a). Fructosyl lysine had the high-
est statistically significant association with progression 
to IGR (OR 1.53 [95% CI 1.37, 1.71], pfdr=8.64×10−12). 
Similarly, 99 and 108 metabolites differed significantly 
between NGR or IGR and type 2 diabetes, respectively 
(Fig. 2b,c). As a general pattern, lipids were negatively 
associated and amino acids were positively associated 
with progression to type 2 diabetes. 1-(1-Enyl-palmitoyl)-
2-oleoyl-GPC (P-16:0_18:1)* (OR 0.23 [95% CI 0.17, 
0.31], pfdr=3.48×10−18) had the strongest association for 
the NGR-T2D comparison, while cysteine-S-sulphate 
(OR 3.25 [95% CI 2.55, 4.15], pfdr=3.11×10−18) was sig-
nificantly associated in the IGR-T2D comparison. Seven 
metabolites (fructosyl lysine, glutamate, 1-stearoyl-
GPC (18:0), N-lactoylphenylalanine, N-lactoylvaline, 
picolinoyl glycine, mannonate) appeared significant in 
all comparison groups, suggesting their important roles as 
diabetes risk indicators. Detailed statistics are presented 
in ESM Tables 15–20. A sex-based sensitivity analysis of 
metabolomics data from the untargeted measurements is 
reported in ESM Results, ESM Table 21–26, ESM Fig. 6.

Metabolites associated with HbA1c progression rate

HbA1c progression rate was computed with a condi-
tional linear mixed effect model and adjusted for changes 
in BMI and diabetes medications [21]. In multivariable 
linear regression analysis, lysoPC a C17:0 (β −0.0535 
[95% CI −0.08, −0.0269], pfdr=0.0109), glycine (Gly) (β 
−0.0509 [95% CI −0.0782, −0.0236], pfdr=0.0347) and 
H1 (β 0.0481 [95% CI 0.0218, 0.0745], pfdr=0.0452) were 
significantly correlated with HbA1c progression rate and 
all were related to glycaemic-deterioration traits as well. 
In untargeted metabolomic profiling, 20 metabolites were 
significantly related to HbA1c progression rate, with pyru-
vate (β 0.0877 [95% CI 0.0609, 0.114], pfdr=1.28×10−7) 
showing the strongest association. Besides pyruvate, 
N-lactoylleucine, lactate, N-lactoylphenylalanine, X-15245, 
N-lactoylisoleucine, N-lactoylvaline, 1-(1-enyl-palmitoyl)-
2-oleoyl-GPC (P-16:0/18:1)*, cortolone glucuronide, 
X-24295, formiminoglutamate and N-lactoyltyrosine were 
also significantly associated with glycaemic categories. 

Tables 2 and 3 show the metabolites with significant asso-
ciations, while the complete results are reported in ESM 
Tables 27–28.

Metabolite association with incident diabetes (IGR/
type 2 diabetes)

Several metabolites were identified to be significantly 
associated with HbA1c progression rate as well as glycae-
mic category: three targeted metabolites (lysoPC a C17:0; 
glycine, H1); and 12 untargeted metabolites (pyruvate, 
N-lactoylleucine, lactate, N-lactoylphenylalanine, X-15245, 
N-lactoylisoleucine, N-lactoylvaline, 1-[1-enyl-palmitoyl[-
2-oleoyl-GPC* [PC(P-16:0/18:1)], cortolone glucuronide, 
X-24295, formiminoglutamate, N-lactoyltyrosine). Next, 
we investigated their predictive value for IGR and type 2 
diabetes by including baseline metabolite concentrations 
and incident IGT or type 2 diabetes in follow-up timelines 
in multivariable logistic regression. As shown in Table 4, 
lysoPC a C17:0 concentration at baseline was observed to 
significantly differ in 244 incident IGR individuals com-
pared with 398 NGR control individuals after 18 months. 
The sum of H1 at baseline concentrations showed significant 
differences between incident IGR (at 48 month follow-up) 
and NGR or incident type 2 diabetes and IGR at both the 18 
month and the 48 month follow-up.

In untargeted metabolomic profiling, lactate and X-24295 
baseline concentrations were significantly correlated with 
IGR or type 2 diabetes incidence at the 18 month and 48 
month follow-up (Table 5). Formiminoglutamate, N-lac-
toylleucine and N-lactoylvaline significantly differed in 244 
incident IGT individuals compared with 398 NGT control 
individuals after 18 months. We did not find any significant 
metabolites from untargeted measurements to predict the 
incidence of IGR from NGR at 48 months.

Mediation analysis

Causal mediation analysis was employed to explore the 
potential mediation effects of the identified metabolites 
from baseline glycaemic status to follow-up. Consistent 
with incidence results, lysoPC a C17:0 showed strong sig-
nificance (proportion of mediation by 13%, mediation effect 
p=0.034, Fig. 3a), indicating that this metabolite partially 
mediated the glycaemic deterioration from NGR to IGR at 
18 months. The positive control H1 exhibited significant 
mediation effects in all groups (between 6% and 9%) as it is 
mainly represented by blood glucose.

N-Lactoylvaline (proportion of mediation 24%, mediation 
effect p<2×10−16), lactate (proportion of mediation 22%, 
mediation effect p=0.002), N-lactoylleucine (proportion 
of mediation 20%, mediation effect p=0.006), formimino-
glutamate (proportion of mediation 11%, mediation effect 
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p=0.034) and X-24295 (proportion of mediation 11%, medi-
ation effect p=0.042) were all observed to show significant 
mediation effects from baseline NGR to IGR at 18 months’ 
follow-up (Fig.  3b). Furthermore, formiminoglutamate 
(proportion of mediation 23%, mediation effect p=0.006) 
showed a significant mediation effect from NGR to IGR at 
48 months. These results suggest that these metabolites own 
a significant mediation effect on glycaemic deterioration.

MR

The availability of genetic data on type 2 diabetes makes 
the use of MR particularly compelling. To assess bidi-
rectional causal relationships between type 2 diabe-
tes and metabolites (Fig. 4), we employed 2SMR tests. 
After multiple testing correction only the concentration 
of the sum of H1 was determined by type 2 diabetes 
(p<0.05/117=0.00042). For untargeted metabolites we 
found instruments for only 19% of the metabolites (i.e. 
151 out of 779). For example, instruments are from genes 
TCF7L2, IGF2BP2, NOTCH2, CDKAL1, PABPC4, FTO 
and JAZF1, known to be associated with diabetes and that 
have been further significantly associated with the metab-
olites. Following multiple testing correction, it suggests 
that the change in an amino acid (glutamate) and a lipid 
(caproate, FA C6:0) was caused by change in type 2 diabe-
tes status (p<0.05/151=0.000331). However, metabolites 
that are causal for type 2 diabetes (meaning that the change 
in metabolite caused change in the disease status) included 
several phosphatidylcholines, namely PC aa C36:2, PC aa 
C36:5, PC ae C36:3 and PC ae C34:3, from the targeted 
metabolomics dataset. From the untargeted metabolomics 

Table 2   Metabolites from targeted measurements significantly associ-
ated with HbA1c progression rate from a linear regression model

The dependent variable is the HbA1c progression rate while the inde-
pendent variable is the loge-transformed and standardised baseline 
concentration of a given metabolite, adjusted by age and sex
The pfdr values represent the adjusted p value for multiple testing by 
Bonferroni correction

Metabolite β (95% CI) p value pfdr value

LysoPC a C17:0 −0.053 (−0.080, 
−0.027)

8.25×10−5 0.011

Gly −0.051 (−0.078, 
−0.024)

2.63×10−4 0.0345

H1 0.048 (0.022, 0.075) 3.42×10−4 0.045

Table 3   Metabolites from 
untargeted metabolomics 
measurements significantly 
associated with HbA1c 
progression rate from a linear 
regression model

The dependent variable is the HbA1c progression rate while the independent variable is the 
loge-transformed and standardised baseline concentration of a given metabolite, adjusted by age and sex. 
The pfdr are adjusted p for multiple testing by Bonferroni correction

Metabolite β (95% CI) p value pfdr value

Pyruvate 0.087 (0.060, 0.114) 1.65×10−10 1.28×10−7

N-Lactoylleucine 0.082 (0.056, 0.109) 8.43×10−10 6.57×10−7

Lactate 0.075 (0.049, 0.102) 3.30×10−8 2.57×10−5

N-Lactoylphenylalanine 0.074 (0.048, 0.100) 3.66×10−8 2.85×10−5

X-15245 0.074 (0.047, 0.100) 6.24×10−8 4.86×10−5

N-Lactoylisoleucine 0.068 (0.042, 0.095) 3.11×10−7 2.42×10−4

N-Lactoylvaline 0.067 (0.041, 0.094) 5.69×10−7 4.43×10−4

X-11444 0.068 (0.041, 0.094) 6.22×10−7 4.84×10−4

Orotidine 0.065 (0.038, 0.091) 1.74×10−6 1.35×10−3

Metabolonic lactone sulphate 0.063 (0.036, 0.089) 2.9 ×10−6 2.28×10−3

3,4-Dihydroxybutyrate 0.060 (0.033, 0.087) 1.11×10−5 8.64×10−3

N4-Acetylcytidine 0.059 (0.033, 0.085) 1.16×10−5 9.06×10−3

X-24337 0.058 (0.032, 0.085) 1.47×10−5 0.011
1-(1-Enyl-palmitoyl)-2-oleoyl-GPC(P-16:0/18:1)* −0.058 (−0.084, −0.032) 1.49×10−5 0.016
X-25828 −0.058 (−0.085, −0.032) 1.50×10−5 0.017
Cortolone glucuronide 0.058 (0.032, 0.085) 1.73×10−5 0.013
X-24295 0.057 (0.031, 0.084) 1.77×10−5 0.014
Formiminoglutamate 0.059 (0.032, 0.088) 2.75×10−5 0.021
1-Palmitoyl-2-oleoyl-GPE (16:0/18:1) 0.056 (0.029, 0.082) 3.59×10−5 0.028
N-Lactoyltyrosine 0.055 (0.029, 0.082) 3.98×10−5 0.031
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dataset, two n-3 fatty acids, namely stearidonate (18:4n3) 
and docosapentaenoate (n3 DPA; 22:5n3), were identified 
to be causal for type 2 diabetes. Detailed statistics of our 
MR analysis are presented in ESM Tables 29–32.

Discussion

In this study, we used untargeted metabolomics to provide 
semi-quantitative global screening of metabolites in the 
development of a disease whereas targeted metabolomics 
was used to quantify a pre-selected subset of metabo-
lites with absolute concentrations. However, the overlap 
between the two metabolomic techniques was limited to a 
few amino acids and lipids. In the current study we report 
19 metabolites (three from targeted and 14 from global 
profiling, plus one common lysoPC a C18:0 / 1-stearoyl-
GPC [18:0]) that were significantly associated with predia-
betes in the DIRECT cohort. The advantages of global pro-
filing become evident as it allows for the identification of 
a broader spectrum of metabolites. Few notable examples 
are given here. First, picolinoylglycine (HMDB0059766), 
which is potentially a phase II product of picolinic acid, 
a degradation product of tryptophan [29] and glycine 
[30], and shows potential as a novel marker for glycaemic 
deterioration. Prediabetes is often associated with dyslipi-
daemia, marked by an imbalanced lipid profile compared 
with individuals with NGR [24]. Second, N-lactoyl amino 
acids are not infrequently observed in metabolomic data-
sets. In fact it has come to light that N-lactoyl amino acids 
were misidentified in some metabolomic studies and were 
erroneously reported as 1-carboxyethyl amino acids. In 
particular, N-lactoyl-phenylalanine (Lac-Phe) is known to 
act as an appetite suppressant when given to obese mice 
[31]. However, in humans Lac-Phe concentrations were 
observed to rise following vigorous exercise [32]. In fact, 
the most recent study shows that Lac-Phe facilitates the 
impact of metformin on both food intake and body weight 
[33, 34]. It seems that the exact role of Lac-Phe in the 
human body and pathways downstream, such as energy 
metabolism, insulin signalling, exercise-induced pathways, 
are unclear and needs further research.

We are aware of several limitations to our study. 
Although metabolomics screening showcases numerous 
valuable attributes in health science, challenges inherent 
to this approach continue to exist, especially in the accu-
rate identification of metabolites which is crucial for the 
biological interpretation and validation of metabolomics 

Table 4   Metabolites from targeted measurements that were signifi-
cantly associated with incidence of IGR and type 2 diabetes in differ-
ent pairwise comparisons

Baseline metabolites were taken as the independent variables with 
glycaemic category in different timelines (18 months and 48 months) 
as the dependent variables, adjusted by study centre, sex, age, BMI, 
BP, fasting HDL-cholesterol, fasting triacylglycerol, smoking status, 
alcohol status and health status
ORs and p values were calculated from the logistic regression model
T2D, type 2 diabetes

Comparison OR (95% CI) p value

18 months
  398 NGR vs 244 IGR
    lysoPC a C17:0 −0.246 (−0.452, −0.043) 0.018
  897 IGR vs 71 T2D
    H1 0.545 (0.164, 0.945) 0.006
48 months
  244 NGR vs 295 IGR
    H1 0.433 (0.189, 0.690) 7x10−3

  821 IGR vs 128 T2D
    H1 0.347 (0.064, 0.642) 0.018

Table 5   Metabolites from untargeted measurements that were signifi-
cantly associated with incidence of IGR and type 2 diabetes in differ-
ent pairwise comparisons

Baseline metabolites were taken as the independent variables with 
glycaemic category in different timelines (18 months and 48 months) 
as the dependent variables, adjusted by study centre, sex, age, BMI, 
BP, fasting HDL-cholesterol, fasting triacylglycerol, smoking status, 
alcohol status and health status
ORs and p values were calculated from the logistic regression model
T2D, type 2 diabetes

Comparison OR (95% CI) p value

18 months
  398 NGR vs 244 IGR
    Formiminoglutamate 0.369 (0.157, 0.588) 7.7×10−4

    Lactate 0.373 (0.143, 0.557) 0.002
    N-Lactoylleucine 0.294 (0.079, 0.514) 0.008
    N-Lactoylvaline 0.248 (0.039, 0.460) 0.021
    X-24295 0.225 (0.022, 0.432) 0.031
  897 IGR vs 71 T2D
    X-24295 0.474 (0.162, 0.801) 3.6x10−3

    Lactate 0.409 (0.077, 0.747) 1.6x10−2

48 months
  821 IGR vs 128 T2D
    X-24295 0.474 (0.162, 0.801) 3.6x10−3

    Lactate 0.409 (0.077, 0.747) 1.6x10−2
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data [35]. Variability in sample collection, preparation 
and analytical techniques can impact the reproducibil-
ity and comparability of results across different studies. 
Standardisation efforts are ongoing but may not fully 
address all sources of variation. The identification of 
metabolites, especially in untargeted metabolomics, can 
be challenging. Incomplete databases and the presence of 
unknown or novel metabolites have been reported with 
a metabolite name with an asterisk (*) sign. However, 
ongoing advancements in technology, methodology and 
standardisation efforts aim to enhance the robustness and 
applicability of metabolomics studies [35]. The current 
study is predominantly based on White male participants 
from the Kuopio region of Europe, and for this reason 
an additional sex-based sensitivity analysis has been per-
formed and reported separately (ESM Results 1 and 2). 
Challenges in MR studies include limited statistical power, 
potential reverse causation, confounding and pleiotropy 
[36]. Caution is advised in interpreting causality inference, 

considering the various limitations mentioned in the meth-
ods, and precautionary measures were taken by using valid 
MR instruments and reporting Bonferroni significance.

A drug–metabolomics associations study [17] was exam-
ined to determine whether or not metabolites linked to type 
2 diabetes from the DIRECT study were also associated 
with a particular drug. Looking at our results and those of 
Allesøe et al [17], we found that 44% (15 out of 34) of tar-
geted metabolites and 3% (three out of 99) of non-targeted 
metabolites that were significantly associated with type 2 
diabetes also showed a significant association with at least 
one of the 20 drugs. This suggests that metabolites linked to 
type 2 diabetes may be confounded by polypharmacy.

However, metabolite association with incident predia-
betes or diabetes (IGR-T2D) showed that lysoPC a C17:0 
could predict the risk of developing IGR at 18 months and 
48 months. It has already been shown that lysoPCs differ 
significantly between individuals with incident IGT or type 
2 diabetes and individuals with NGR in the KORA study 

a

b

Fig. 3   Schematic overview of mediation analysis with lysoPC a 
C17:0 and hexoses (a) or N-lactoylvaline, lactate, N-lactoylleucine, 
formiminoglutamate and X-24295 (b) as mediators. Numbers above 

the red arrows indicate the percentage and significance of mediation 
effects. T2D, type 2 diabetes
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[37]. LysoPC a C17:0 was negatively associated with diabe-
tes, a finding that was confirmed in several studies [38, 39]. 
The aforementioned drug–metabolomics association study 
[17] showed that lysoPC a 17:0 was not associated with the 
drugs. However, the origin of odd-chain fatty acids (mainly 
C15:0 and C17:0) remains elusive. Jenkins et al [40] investi-
gated the origin of circulating odd-chain fatty acids (C17:0, 
C15:0) through a combination of animal and human stud-
ies to determine possible contributions of fatty acids from 
the gut-microbiota, diet and novel endogenous biosynthesis 
[41]. The findings suggested that C15:0 was linked to die-
tary intake, while C17:0 was predominantly biosynthesised, 
indicating independent origins and non-homologous roles in 
disease causation.

Causal mediation analysis indicated that plasma lactate 
strongly mediates the effects of identified metabolites in the 
transition from baseline glycaemic status to follow-up [42]. 
In a longitudinal study of Swedish men, elevated serum lac-
tate was independently linked to a higher incidence of type 
2 diabetes, irrespective of obesity measures [43]. Formimi-
noglutamate was confirmed to be associated with a higher 
risk of incident type 2 diabetes in older Puerto Ricans [44]. 
N-lactoylleucine and N-lactoylvaline, derivatives of leucine 
and valine, respectively, are ubiquitous pseudodipeptides of 
lactic acid and amino acids that are formed by reverse prote-
olysis [32] and are correlated with underivatised amino acids 
in human plasma. The Microbiome and Insulin Longitudinal 
Evaluation Study (MILES) [45] investigated the association 
between ABO haplotypes and insulin-related characteristics, 
and explored possible pathways that could mediate these 

associations. The study showed that the A1 haplotype poten-
tially enhances favourable insulin sensitivity in non-Hispanic 
White individuals, with lactate likely influencing this mecha-
nism, while gut bacteria are not believed to be a contributing 
factor.

In MR, causality signifies that modifying exposure leads 
to a predictable change in the outcome. Our 2SMR analysis 
suggests that the metabolites causal for type 2 diabetes are 
PC aa C36:2, PC aa C36:5, PC ae C34:3 and PC ae C36:3 
and all these metabolites are significantly associated with 
drug–metabolomics. However, from untargeted metabo-
lomics two n-3 fatty acids, namely stearidonate (18:4n3) and 
docosapentaenoate DPA 22:5n3), are not further associated 
with drugs. In 2012, Banz et al [46] explored the therapeutic 
implications of stearidonate acid in preventing or managing 
type 2 diabetes. The Fatty Acids and Outcomes Research 
Consortium (FORCE) [47] found that higher circulating bio-
markers of seafood-derived n-3 fatty acids were associated 
with lower type 2 diabetes risk. On the contrary, branched-
chain amino acids [48] and sphingomyelin [15] have been 
shown to have a causal role in type 2 diabetes development, 
a correlation not observed in the DIRECT study.

Conclusions

Our study demonstrates that alteration in blood plasma 
metabolites is associated with glycaemic deterioration. The 
progression from prediabetes to diabetes is mediated by novel 
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metabolites such as picolinoylglycine and N-lactoyl-amino 
acids, as demonstrated by evidence from the DIRECT study. 
N-lactoyl-amino acids are known to be exercise-induced 
metabolites that suppress food intake and influence glucose 
homeostasis. Additional functional research and quantifica-
tion are needed to advance the identification of early meta-
bolic biomarkers such as N-lactoyl-amino acids, which have 
the potential to forecast the onset of type 2 diabetes. Collec-
tively, these findings direct attention towards novel metabolic 
signatures associated with glycaemic deterioration.
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Abstract

Aims: A data-driven cluster analysis in a cohort of European individuals with type

2 diabetes (T2D) has previously identified four subgroups based on clinical character-

istics. In the current study, we performed a comprehensive statistical assessment to

(1) replicate the above-mentioned original clusters; (2) derive de novo T2D subpheno-

types in the Kooperative Gesundheitsforschung in der Region Augsburg (KORA)

cohort and (3) describe underlying genetic risk and diabetes complications.

Methods: We used data from n = 301 individuals with T2D from KORA FF4 study

(Southern Germany). Original cluster replication was assessed forcing k = 4 clusters
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using three different hyperparameter combinations. De novo clusters were derived

by open k-means analysis. Stability of de novo clusters was assessed by assignment

congruence over different variable sets and Jaccard indices. Distribution of polygenic

risk scores and diabetes complications in the respective clusters were described as an

indication of underlying heterogeneity.

Results: Original clusters did not replicate well, indicated by substantially different

assignment frequencies and cluster characteristics between the original and current

sample. De novo clustering using k = 3 clusters and including high sensitivity

C-reactive protein in the variable set showed high stability (all Jaccard indices >0.75).

The three de novo clusters (n = 96, n = 172, n = 33, respectively) adequately cap-

tured heterogeneity within the sample and showed different distributions of poly-

genic risk scores and diabetes complications, that is, cluster 1 was characterized by

insulin resistance with high neuropathy prevalence, cluster 2 was defined as age-

related diabetes and cluster 3 showed highest risk of genetic and obesity-related

diabetes.

Conclusion: T2D subphenotyping based on its sample's own clinical characteristics

leads to stable categorization and adequately reflects T2D heterogeneity.

K E YWORD S

clustering, cohort study, database research, diabetes complications, type 2 diabetes

1 | INTRODUCTION

Diabetes is a rapidly growing global health concern.1,2 The underlying

causes of pancreatic beta-cell dysfunction are heterogeneous, and

individual trajectories of hyperglycaemia and subsequent diabetes

complications vary widely.3,4 Therefore, classifications of type 2 diabe-

tes (T2D) that predict the risk of complications and provide options

for a tailored treatment have been actively studied.5–8

Traditionally, diabetes is mainly classified into type 1 (T1D) and T2D,

primarily determined by the presence (T1D) or absence (T2D) of autoan-

tibodies. A novel approach to identify subphenotypes of diabetes was

the hallmark study by Ahlqvist et al.9 They used six diabetes-related vari-

ables including age at diagnosis, body mass index (BMI), haemoglobin

A1c (HbA1c), homeostasis model assessment (HOMA) estimates of beta-

cell function (HOMA2-B) and insulin resistance (HOMA2-IR) and gluta-

mic acid decarboxylase antibodies (GADA) to categorize individuals with

diabetes into five clusters. Thereby, four clusters mainly represent T2D

subphenotypes and one cluster with severe autoimmune diabetes (SAID)

mainly corresponds to the T1D subphenotype. The four T2D subpheno-

types were labelled based on their distinctive features as severe insulin-

deficient diabetes (SIDD), severe insulin resistant diabetes (SIRD), mild

obesity-related diabetes (MOD) and mild age-related diabetes (MARD)

and exhibited different risks of disease progression and diabetes compli-

cations. These clusters have been replicated in diverse ethnic groups

such as British,10 German,11,12 American and Chinese,13,14 Mexican,15

Icelandic,16 Japanese17 and Asian Indian cohorts.18 Recently, subpheno-

types were characterized in more detail from a molecular perspective,

including potential underlying genetic determinants19,20 and cluster-

specific signatures of metabolomics and proteomics.21,22 There appear to

be differences in biomarkers of inflammation between diabetes subphe-

notypes, which is in line with the involvement of inflammatory mecha-

nisms, most often assessed by C-reactive protein (CRP), in the

progression of diabetes.12,23 Taken together, the current state of evi-

dence suggests that diabetes subphenotyping, including deep molecular

phenotyping, holds the potential to offer key insights into the underlying

pathophysiology of glucose dysregulation and the onset of comorbidities

among individuals with T2D, while it further enables the advancement of

personalized treatment of diabetes.

In the current study, we aimed to perform a comprehensive statisti-

cal assessment of T2D subphenotyping in the Cooperative Health

Research in the Region of Augsburg (KORA) FF4 cohort (Southern

Germany). Our aims were threefold: (1) to investigate to which extent

the original clusters from Ahlqvist et al.9 could be replicated in the KORA

sample; (2) to derive novel T2D subphenotypes based on data-driven

clustering, also accounting for inflammation and (3) to investigate hetero-

geneity between the de novo derived subphenotypes by describing the

distribution of genetically predicted risk as captured by a polygenic risk

score (PRS), diabetes-related complications and parental history of diabe-

tes. An overview of the study design is shown in Figure 1.

2 | METHODS

2.1 | Study population and clinical data

KORA comprises several deeply phenotyped population-based epide-

miological surveys.24 The current analysis is based on data from the

KORA-FF4 study, conducted between 2013 and 2014. Details about
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F IGURE 1 Study design. The left part in orange corresponds to aim (1) whereas the right part in blue corresponds to aims (2) and (3). The
fixed variable set contained the basic variables: Age, body mass index, haemoglobin A1c, homeostasis model assessment (HOMA) estimates of
beta-cell function (HOMA2-B) and insulin resistance (HOMA2-IR), corresponding to the original ANDIS study. Variable sets in KORA contained
the basic variables plus one additional variable, respectively: High sensitivity C-reactive protein, triglycerides, HDL-cholesterol or systolic blood
pressure. ANDIS, Swedish All New Diabetics in Scania cohort; KORA, ‘Cooperative Health Research in the Region of Augsburg’ cohort; T2D, type
2 diabetes; PRS, polygenic risk score.

TABLE 1 Characteristics of the KORA FF4 participants for men and women.

Men (N = 178) Women (N = 123) p

Age at examination (years) mean (SD) 69.6 (10.0) 69.4 (10.2) 0.83

BMI (kg/m2) mean (SD) 30.3 (4.9) 32.2 (5.7) 0.003

HbA1c (mmol/mol) mean (SD) 46.9 (11.7) 47.9 (10.9) 0.48

HOMA2-B % mean (SD) 72.3 (38.4) 71.5 (31.8) 0.85

HOMA2-IR (SD) 2.1 (1.2) 2.0 (1.0) 0.52

hsCRP (mg/L) mean (SD) 2.7 (3.3) 4.5 (6.0) 0.001

TG (mmol/L) mean (SD) 1.9 (1.1) 1.6 (0.8) 0.025

HDL-C (mmol/L) mean (SD) 1.4 (0.4) 1.6 (0.4) <0.001

SBP (mmHg) mean (SD) 130.4 (17.8) 122.3 (19.9) <0.001

Fasting glucose (mmol/L) mean (SD) 7.6 (2.0) 7.5 (1.9) 0.543

Use of metformin 84 (47.2) 57 (46.3) 0.94

Any oral antidiabetic medication or insulin treatment 96 (53.9) 64 (52.0) 0.80

Known diabetes (%) 123 (69.1%) 84 (68.3%) 0.982

Note: Mean and standard deviation (SD) are provided for quantitative variables and differences were evaluated by student's t test. Count and percentage

are provided for categorical variables and differences were evaluated by chi square test.

Abbreviations: BMI, body mass index; HbA1C, haemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; hsCRP, high sensitivity C-reactive protein;

HOMA2-B, homeostasis model assessment estimates of beta-cell function; HOMA2-IR, homeostasis model assessment estimates of insulin resistance;

Known diabetes, the diabetes diagnosis was known prior to the study; TG, triglycerides; SBP, systolic blood pressure.

340 DONG ET AL.



the study sample and the assessment of clinical data are presented in

Supplementary Material.

For the current analysis, only participants with T2D were included

for cluster analysis. Participants with T1D (n = 6) were excluded from

all analyses. Moreover, participants with missing values for clustering

variables (described below) were excluded (n = 20). Finally, the cluster

analysis comprised N = 301 individuals with T2D (Table 1). For the

assessment of genetically T2D risk, a PRS was calculated for all indi-

viduals with T2D (N = 301) and without T2D (N = 1357) as the con-

trol group (Table S1).

2.2 | Genotyping and polygenetic risk score

Genetically predicted T2D risk was calculated by an established PRS,

as described in Supplementary Material.

2.3 | Statistical analysis

Statistical analysis was conducted using R version 4.1.1. A two-sided

p value <0.05 was considered statistically significant. A detailed

description of (1) the replication of original clusters, including different

combinations of scaling and centroid hyperparameters, (2) de novo

cluster derivation in the KORA study and (3) assessment of differ-

ences between clusters with respect to PRS, parental history of diabe-

tes and diabetes complications is presented in Supplementary

Material.

3 | RESULTS

3.1 | Study sample

The final sample included 301 individuals with T2D, thereof

94 (31.2%) with newly detected diabetes by oral glucose tolerance

test (oGTT). Comparison between women and men showed higher

BMI, hsCRP and HDL-C values in women and higher TG and SBP

levels in men, whereas medication intake (metformin and any other

oral antidiabetic medication or insulin treatment) was similar (Table 1).

Fasting glucose and HbA1c values over time are presented in

Figure S1.

3.2 | Replication of the four ANDIS T2D clusters

3.2.1 | Assignment by using ANDIS scaling and
ANDIS centroids

First, clinical variables of the KORA participants were scaled based on

ANDIS's scaling parameters, and each participant was assigned to a

single cluster based on the Euclidean distance to the ANDIS cen-

troids.25 The characteristics of four clusters are shown in Table S2

and Figure 2A. The SIDD cluster in KORA was characterized by a rela-

tively younger age, lower insulin secretion (HOMA2-B) and highest

HbA1c; the SIRD cluster had the highest level of insulin resistance

(HOMA2-IR) and insulin secretion (HOMA2-B); the MOD cluster had

a high BMI but younger age and the MARD cluster showed low insulin

resistance, low BMI and older age. The relative cluster sizes in KORA

were not comparable to those found in the ANDIS study. SIDD made

up only 2% of the T2D cases in KORA compared to 17.5% in ANDIS.

More than 80% of participants in KORA were assigned to the MARD

cluster, compared to only around 40% in ANDIS.

3.2.2 | Assignment by using KORA scaling and
ANDIS centroids

Second, the clinical variables of KORA participants were scaled

based on own scaling parameters derived from the KORA sample

and then assigned to a single cluster based on the Euclidean dis-

tance to the ANDIS centroids.21 The characteristics of four clusters

are shown in Table S2 and Figure S2A. The SIDD cluster in KORA

was characterized by a relatively younger age, lower insulin secre-

tion (HOMA2-B) and poorer glycaemic control (higher HbA1c); the

SIRD cluster had the highest level of insulin resistance (HOMA2-IR)

and insulin secretion (HOMA2-B); the MOD cluster had a high BMI

and individuals were younger and the MARD cluster had low insulin

resistance and low BMI, but an older age. All these variables

followed the same trend in KORA and ANDIS. The relative cluster

sizes in KORA were comparable to those found in the ANDIS study,

for example, most participants were allocated to MARD for both

KORA (46.8%) and ANDIS (39.1%), and 15.3% of individuals in

KORA were assigned to SIDD which was similar to the ANDIS

study (17.5%).

We then investigated the transfer of individuals when using

ANDIS centroids, with either ANDIS scaling or KORA scaling. Sixty-

five percent of participants were assigned to the same clusters

(Figure S2B). Compared to ANDIS scaling, clusters were more

evenly distributed when using KORA scaling. Most strikingly, a

substantial part of the MARD cluster when using ANDIS scaling

was allocated to the SIDD, SIRD and MOD clusters using KORA

scaling.

3.2.3 | Assignment by using KORA scaling and
KORA centroids

Third, clusters were derived based on hyperparameters from KORA

data alone, using k-means clustering on the same variable set (age,

BMI, HbA1c, HOMA2-B and HOMA2-IR) forcing the same number of

clusters (k = 4) as in the ANDIS cohort. As shown in Figure S3, cluster

1 was characterized by low insulin secretion (low HOMA2-B), high

BMI and poor metabolic control (high HbA1c); thus, we labelled clus-

ter 1 as SIDD. Cluster 2 had insulin resistance as evidenced by a high

HOMA2-IR which could be compared to SIRD. Cluster 3 featured
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elderly individuals with relatively mild metabolic irregularities which is

similar to MARD in the ANDIS study. Cluster 4 represented a novel

distinct subphenotype with the overall most modest metabolic impair-

ments and low BMI and was thereby distinct from the ANDIS

cluster MOD.

We also generated the Sankey diagram to visualize and compare

the cluster assignment based on the second approach (using KORA

scaling and ANDIS centroids) and the third approach (using

KORA scaling and KORA centroids). We observed consistent cluster

assignments for only 45% of the individuals between the second and

third approach (Figure 2C). Taken together, these results suggest that

the original ANDIS clusters do not fully reflect the characteristics of

the KORA sample.

3.3 | De novo cluster derivation in KORA

3.3.1 | Determination of k and cluster derivation

Both silhouette width and the elbow plot methods agreed that k = 3

rather than k = 4 was the optimal number of clusters for the KORA

data (Figure S4). Subsequently, k-means was used on the basic vari-

able set to categorize KORA participants into three clusters represent-

ing three T2D subphenotypes. Clinical characteristics according to

each subphenotype are shown in (Figure S5A). Cluster 1 (n = 96,

31.9%) was characterized by hyperinsulinemia and insulin resistance

(most similar to the SIRD cluster in the ANDIS cohort); participants in

cluster 2 (n = 172, 57.1%) had older age, low BMI and low insulin

F IGURE 2 Distributions of age at examination, body mass index (BMI), haemoglobin A1c (HbA1c), homeostasis model assessment (HOMA)
estimates of beta-cell function (HOMA2-B) and insulin resistance (HOMA2-IR) in the KORA FF4 cohort for each cluster (A) using ANDIS scaling
and ANDIS centroids or (B) with additional high sensitivity C-reactive protein (hsCRP) derived from de novo k-means with k = 3. The upper and
lower bounds of boxes represent the first and third quartiles, box centres represent the median values and circles represent outliers. (C) Sankey
diagram displaying the transfer of individuals between the clusters identified using KORA scaling and ANDIS centroids (left side) and the clusters
identified using KORA scaling and KORA centroids (right side), (D) transition of individuals between the clusters originally replicated using KORA
scaling and KORA centroids (left side, corresponding to the right side of Figure 2C) and de novo derivation (right side) and (E) transition of
individuals between the de novo clusters identified using basic variables (left side) and with the additional variable hsCRP (right side). MARD, mild
age-related diabetes; MOD, mild obesity-related diabetes; SIDD, severe insulin-deficient diabetes; SIRD, severe insulin resistant diabetes.
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resistance which could be compared to MARD in the ANDIS cohort;

and cluster 3 (n = 33, 11.0%) showed insulin deficiency (low

HOMA2-B), high BMI and poor glycaemic control (high HbA1c), which

is a distinct cluster from those present in the ANDIS cohort. We then

compared participant transitions from the original cluster replication

using KORA centroids and KORA scaling (third approach as described

above) with the de novo derived clusters (Figure 2D). Individuals pre-

viously allocated to the MARD subphenotype were reallocated to the

new cluster 1 and cluster 2. Individuals previously allocated to

the novel distinct subphenotype were mainly reallocated not only to

the new cluster 2, but also to the new cluster 3 (distinct). Individuals

previously allocated to the SIRD subphenotype were reallocated to

the new cluster 3.

3.3.2 | Different variable sets and final clusters

We assessed the stability of cluster assignments when using differ-

ent sets of variables for clustering: basic variables (age at examina-

tion, BMI, HbA1c, HOMA2-B and HOMA2-IR) plus hsCRP, TG,

HDL-C or SBP, respectively. In general, the addition of these vari-

ables did not substantially influence the distribution of the basic

variables between clusters and did not lead to substantial transition

of participants between clusters (Figure 2B,D, Figures S5, S6 and

S7). In detail, 90%, 93%, 90% and 98% of participants were allo-

cated to the same cluster when using basic variables compared to

when adding hsCRP, TG, HDL-C or SBP, respectively. To account

for the role of systemic inflammation in diabetes differentiation, we

defined the clusters derived from the variable set of age, BMI,

HbA1c, HOMA2-B and HOMA2-IR plus hsCRP as the final subphe-

notypes, presented in Figure 2B, Tables S3 and S4. Cluster

1 included 91 participants (30.2%) and was characterized by insulin

resistance (high HOMA2-IR) and hyperinsulinemia, with a high pro-

portion of newly diagnosed diabetes cases (most similar to the

SIRD cluster in ANDIS). Cluster 2 included 182 individuals (60.5%)

and was characterized by high age, low BMI and low insulin resis-

tance (most similar to the MARD cluster in ANDIS). Cluster

3 included 28 participants (9.3%) and was characterized by a high

BMI, poor glycaemic control, high level of subclinical inflammation

(high hsCRP) and relative insulin deficiency, broadly resembling a

typical patient seen in clinical practice (most similar to SIDD/MOD

cluster in ANDIS).

The assessment of cluster stability showed that Jaccard indices

of all final clusters were above 0.75, indicating reasonably high

cluster stability for the final variable set (Table S5). Of note, with

additional variables TG, HDL-C or SBP, stability slightly decreased

for all clusters and cluster 3 even showed Jaccard indices below

0.75 (Table S5). Besides, the majority of individuals (95%) were

assigned to the same cluster as in the initial data analysis, and both

men and women showed the same trend on the clinical variable

distribution (Figure S8), suggesting a lack of substantial sex-specific

effects.

3.4 | Cluster differences in genetic risk, diabetes-
related complications and parental history

3.4.1 | Polygenic risk score

The overall distribution of the PRS in the KORA FF4 sample is given

in Figure 3A. Participants with T2D had significantly higher PRS

values (p < 0.001) compared to those without T2D and were

F IGURE 3 (A) Density plot shows the polygenic risk score (PRS) distribution in the KORA FF4 sample without (light green) and with (light red)
type 2 diabetes (T2D). Data beyond the two vertical lines indicate extreme values of the PRS distribution, and the corresponding numbers reflect
the proportion of individuals without (light green) and with (light red) T2D who showed extreme PRS values. (B) Percentile of increasing PRS (x-
axis) versus the prevalence of T2D (y-axis). (C) Distributions of PRS in control group (marked as 0) and three clusters representing T2D
subphenotypes.
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overrepresented in the highest quantiles of the distribution

(Figure 3A,B). When comparing the distribution of PRS in the respec-

tive clusters to individuals without diabetes (Figure 3C), the PRS in

cluster 2 and cluster 3 was significantly different to the control group

(both p < 0.001, respectively) but the PRS in cluster 1 was not differ-

ent to the control group. An additional t test confirmed that cluster

3 had a significantly higher PRS than cluster 1 (p = 0.034), whereas

there was no significant difference between cluster 1 and cluster 2.

3.4.2 | Diabetes-related complications and parental
history of diabetes

We evaluated the prevalence of diabetes-related complications and

parental history of T2D in the three clusters. As shown in Figure S9

and Table S7, in general, individuals in clusters 1 and 2 had a substan-

tially higher prevalence of myocardial infarction, stroke and chronic

kidney disease (CKD). Individuals in cluster 3 had a more frequently

positive parental history of diabetes.

Moreover, compared to cluster 1, cluster 2 had a lower frequency

of neuropathy (p = 0.043) but a higher prevalence of stroke (not sig-

nificant) and CKD (p = 0.030).

4 | DISCUSSION

The T2D subphenotype classification scheme proposed by Ahlqvist

et al.9 has been replicated in different populations and has proven to

be a useful tool to further characterize potential pathophysiological

pathways and diabetes progression. Our study aimed at a comprehen-

sive assessment of original cluster replication, including a systematic

illustration of participant transitions between replicated clusters, de

novo cluster derivation, including the assessment of cluster stability,

and underlying genetic risk and complication distribution. We found

that the original clusters only partially reflected the characteristics of

individuals with T2D in the KORA sample, whereas de novo derived

clusters showed excellent stability and captured the underlying het-

erogeneity between the T2D subphenotypes. Our results therefore

underscore the importance of subphenotyping by illustrating the

importance of individual study characteristics, and we contribute

another potential T2D subphenotype to the existing panel.

Our results align with recent findings, which indicated that 11 of

18 studies either delineated distinct subphenotypes or failed to iden-

tify all ANDIS subphenotypes.26 Part of the lack of replicability of the

original clusters may be attributed to differences in the study setup

and participants' characteristics. For example, we used age at exami-

nation for clustering, since age of diabetes onset for most T2D partici-

pants was not available. Therefore, the average age used in the KORA

sample was significantly higher compared to the ANDIS cohort

(Table S1), especially in the de novo cluster 2 (comparable to MARD).

Moreover, individuals in KORA had better glycaemic control and less

insulin resistance compared to the ANDIS sample (Table S1), indicat-

ing that KORA potentially included a larger proportion of T2D cases

with less severe disease. Furthermore, our HOMA models were based

on insulin instead of C-peptide, which might have led to differences in

estimates. Some studies27,28 suggested that C-peptide better

reflected insulin secretion, while another study29 suggested that both

of them performed similar in evaluating beta cell function.

Employing different scaling parameters generated a big difference

in cluster allocation, and different studies applied different

approaches.21,25 The incongruence of cluster assignment, together

with the identification of a novel, distinct subphenotype not present

in ANDIS when using KORA centroids, shows that the original clusters

do not capture the characteristics of the KORA sample as well. We

consider this finding important for personalized prevention. While the

ANDIS cohort captured crucial subphentoypes, these clusters might

take different shapes or not fully reflect the underlying sample in

other cohorts with different characteristics. Contributions from multi-

ple studies are therefore needed to expand and refine the current

panel of T2D subphenotypes.

Determination of the optimal number of clusters k based on sil-

houette and elbow plot showed that in the KORA sample, k = 3 was

the best number of clusters, which is consistent with the Danish DD2

study.25 A head-to-head comparison between the clusters from KORA

and DD2 revealed major similarities (Table S8). Consistent with the

research from Safai et al.,30 which did not identify an evident

MOD-like cluster in their de novo cluster analysis (when using k = 5,

including SAID), the clusters with the highest BMI also exhibited sig-

nificantly higher insulin resistance. Besides the clinical characteristics

used for clustering, multiple other factors are associated with T2D.

We thus assessed cluster stability across different variable sets, addi-

tionally including hsCRP, HDL-C, TG or SBP, respectively. We found

that these additional variables did not contribute much to the reallo-

cation of individuals, as more than 90% individuals were still assigned

to the same cluster, indicating high cluster stability and robustness

towards different variable sets. One could thus hypothesize that the

original variables already capture a major part of T2D heterogeneity

and are adequate to identify clinically meaningful T2D subpheno-

types. Other studies18,30,31 also applied analytical approaches for a

wider range of clusters or included different variables than the ANDIS

study but did not systematically evaluate how participants were real-

located when using different clustering variables.

CRP is regulated by proinflammatory cytokines derived from adi-

pose tissue.32,33 In individuals with T2D, CRP levels are chronically

elevated.34 In the current analysis, we included hsCRP for clustering

to account for the role of subclinical inflammation and assess potential

differences according to subphenotypes. The de novo derived cluster

3 could not be mapped to one of the original ANDIS clusters and was

characterized by high BMI, high hsCRP and relatively low HOMA2-B.

Increased CRP levels have been linked to excess body weight since

adipose tissue produces tumour necrosis factor α (TNF-α) and

interleukin-6 (IL-6), which are pivotal factors for CRP stimulation.32,33

We could thus hypothesize that cluster 3 represents a T2D subpheno-

type with chronic, obesity-induced subclinical inflammation. The PRS

and the prevalence of self-reported parental history of diabetes were

both the highest in cluster 3. So, cluster 3 could represent a T2D
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subphenotype with higher genetically induced risk for both diabetes

and obesity, resulting in chronic subclinical inflammation (Table S6

and Figure S10). We note that the use of a PRS to define subgroups

of diabetes is still questionable and would render the algorithm less

readily applicable in clinical practice and other studies, which is why

we only use it descriptively. Since non-genetic risk factors might have

even stronger unfavourable impacts in individuals with genetic predis-

position, the group in cluster 3 would particularly benefit from rigor-

ous weight control, either through lifestyle modifications or drug

treatment. Moreover, these individuals should be monitored for

potential other causes of inflammation, such as infections or wounds.

The analysis of diabetes complications showed that in cluster

2, there was a higher proportion of CKD cases and a relatively higher

percentage of stroke (not significant) compared to cluster 3. This

could be due to the higher average age in cluster 2, since it is well-

established that age is a major risk factor for metabolic complications

in T2D.35,36 Because risk in cluster 2 is mainly conferred by aging pro-

cesses, and age is a non-modifiable factor, for this cluster in particular,

close monitoring of comorbidities and strict, potentially medication-

based, control of, for example, blood pressure and renal function is

advisable. Cluster 1 was characterized by hyperinsulinemia and a com-

paratively higher prevalence of neuropathy compared to cluster

2. Insulin dysregulation can contribute to neuropathic changes in sen-

sory neurons, and the peripheral nervous system is one of several

organ systems that are profoundly affected in diabetes.37 Interest-

ingly, HbA1c levels in cluster 1 were comparatively low, so it would

be crucial to investigate the use of glucose-lowering therapy in this

cluster to evaluate their role in the prevention of neuropathy in

this subphenotype. Medication therapy in this cluster was compara-

tively low, likely due to the high proportion of newly diagnosed diabe-

tes cases, so this would be an obvious target to tackle insulin

resistance in these individuals. Moreover, lifestyle interventions would

be beneficial, including dietary changes by reducing calorie intake and

limiting high glycaemic index carbohydrates and regular physical activ-

ity which enhances calorie burning and increases insulin sensitivity in

muscle tissue.38,39 Evidence indicates that an increased level of hsCRP

is linked with diabetes-related complications,40,41 but cluster 3 with

the highest hsCRP levels was not characterized by a high load of com-

plications. This may be due to the younger age of individuals in cluster

3 (Figure 2B), since given the potential pathway discussed above

about a genetic predisposition to obesity-induced inflammation, it

would be possible that diabetes complications in cluster 3 have not

yet developed.

We acknowledge the limitations of our current study. The sample

size was relatively small compared to other population-based studies,

and although unsupervised clustering does not have strict sample size

requirements, the small number of individuals with diabetes-related

complications and family history information impedes the interpreta-

tion of shared disease characteristics. While the clusters represent a

true underlying structure in the data from a statistical perspective, this

structure could also have emerged due to other shared characteristics

of the respective individuals, for example, environmental factors, and

do not necessarily represent shared pathophysiology. Moreover, our

results regarding diabetes complications need to be interpreted with

caution, since complications were self-reported, and the sample size

was small. We were unable to model medication effects, since medica-

tion could not be included as a variable in the clustering procedure, and

participants' individual medication regimes could not be disentangled.

Moreover, our participants were exclusively of white European ethnic-

ity, which limits the generalizability to other populations.

In conclusion, to exploit the full advantages of T2D subphenotyp-

ing, a potential mismatch between reported T2D clusters and the indi-

vidual study characteristics has to be taken into account. Since

adapting the clustering algorithm might not always be possible, further

efforts should be undertaken to identify further subtypes from differ-

ent well-characterized studies, in order to expand and refine the cur-

rent panel of T2D subphenotypes.
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