
Improving the methodological
basis of cross-species
scRNA-seq analysis

Dissertation an der Fakultät für Biologie

der Ludwig-Maximilians-Universität München

Philipp Janßen

München 2025





Improving the methodological
basis of cross-species
scRNA-seq analysis

Dissertation an der Fakultät für Biologie

der Ludwig-Maximilians-Universität München

Philipp Janßen

München 2025



Diese Dissertation wurde angefertigt

unter der Leitung von PD Dr. Ines Hellmann

an der Fakultät für Biologie

der Ludwig-Maximilians-Universität München

Erstgutachter: PD Dr. Ines Hellmann

Zweitgutachter: Prof. Dr. Korbinian Schneeberger

Tag der Abgabe: 11.04.2025

Tag der mündlichen Prüfung: 09.10.2025



Eigenständigkeitserklärung und Erklärung

Eigenständigkeitserklärung

Hiermit versichere ich an Eides statt, dass die vorliegende Dissertation von mir

selbstständig verfasst wurde und dass keine anderen als die angegebenen Quellen

und Hilfsmittel benutzt wurden. Die Stellen der Arbeit, die anderen Werken dem

Wortlaut oder dem Sinne nach entnommen sind, wurden in jedem Fall unter

Angabe der Quellen (einschließlich des World Wide Web und anderer elektronischer

Text- und Datensammlungen) kenntlich gemacht. Weiterhin wurden alle Teile der

Arbeit, die mit Hilfe von Werkzeugen der künstlichen Intelligenz de novo generiert

wurden, durch Fußnote/Anmerkung an den entsprechenden Stellen kenntlich

gemacht und die verwendeten Werkzeuge der künstlichen Intelligenz gelistet. Die

genutzten Prompts befinden sich im Anhang. Diese Erklärung gilt für alle in der

Arbeit enthaltenen Texte, Graphiken, Zeichnungen, Kartenskizzen und bildliche

Darstellungen.

München, den 11.04.2025

Philipp Janßen



iv



v

Erklärung

Hiermit erkläre ich, dass die Dissertation nicht ganz oder in wesentlichen Teilen

einer anderen Prüfungskommission vorgelegt worden ist und dass ich mich

anderweitig einer Doktorprüfung ohne Erfolg nicht unterzogen habe.

München, den 11.04.2025

Philipp Janßen





Contents

Abbreviations xi

Publications xii

Declaration xvi

Summary 1

1 Introduction 3

1.1 Cell type characterization and identification using single-cell

transcriptomics . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Measuring gene expression . . . . . . . . . . . . . . . . . 4

1.1.2 The rise of single-cell RNA sequencing . . . . . . . . . . 5

1.1.3 Computational analysis of scRNA-seq data . . . . . . . . 6

1.1.4 Approaches for cell type annotation . . . . . . . . . . . . 9

1.1.5 Relevance of marker genes . . . . . . . . . . . . . . . . . 11

1.2 Evaluate technical artifacts with species-mixing experiments . . 14

1.2.1 Technological confounders of cell type identification . . . 14

1.2.2 Species-mixing experiments . . . . . . . . . . . . . . . . 15

1.3 Comparative single-cell studies and cross-species analysis . . . . 18

vii



viii CONTENTS

1.3.1 Evolutionary cell type definition . . . . . . . . . . . . . . 18

1.3.2 Cross-species comparisons in primates . . . . . . . . . . 19

1.3.3 Generation and characterization of primate iPSCs . . . . 20

1.3.4 iPSC-derived organoid systems . . . . . . . . . . . . . . 22

1.3.5 Computational challenges of cross-species analysis . . . . 23

1.4 Aims of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Results 29

2.1 The effect of background noise and its removal on the analysis

of single-cell expression data . . . . . . . . . . . . . . . . . . . . 31

2.2 A non-invasive method to generate induced pluripotent stem

cells from primate urine . . . . . . . . . . . . . . . . . . . . . . 69

2.3 Generation and characterization of three fibroblast-derived Rhe-

sus Macaque induced pluripotent stem cells . . . . . . . . . . . 85

2.4 Generation and characterization of two Vervet monkey induced

pluripotent stem cell lines derived from fibroblasts . . . . . . . . 93

2.5 Generation and characterization of two fibroblast-derived Ba-

boon induced pluripotent stem cell lines . . . . . . . . . . . . . 101

2.6 Identification and comparison of orthologous cell types from primate

embryoid bodies shows limits of marker gene transferability . . . . . 109

3 Discussion 169

3.1 The power of genetic variants in transcriptomic experiments . . 170

3.1.1 Enhancing multiplexing in cross-species studies . . . . . 170

3.1.2 Authentication of cell lines . . . . . . . . . . . . . . . . . 172



Table of Contents ix

3.1.3 Genetic variants as natural barcodes in cell-mixing ex-

periments . . . . . . . . . . . . . . . . . . . . . . . . . . 173

3.2 Marker genes - fragile cornerstones of scRNA-seq analysis . . . . 175

3.2.1 Susceptibility to background noise . . . . . . . . . . . . . 176

3.2.2 Limited transferability across species . . . . . . . . . . . 177

3.3 Cell type assignment across species . . . . . . . . . . . . . . . . 178

3.3.1 Classification of bulk RNA-seq data . . . . . . . . . . . . 179

3.3.2 Orthologous cell type assignment from scRNA-seq data . 179

4 Conclusion and Outlook 181

Bibliography 185

List of Figures 208

Acknowledgements 211





Abbreviations

Abbreviation Definition

AUC area under the curve
CD Cluster of Differentiation
cDNA complementary DNA
CoRC core regulatory complex
DE differential expression
DNA deoxyribonucleic acid
EB embryoid body
ESC embryonic stem cell
GSEA Gene Set Enrichment Analysis
iPSC induced pluripotent stem cell
lncRNA long non-coding RNA
mRNA messenger RNA
NHP non-human primate
PBMC peripheral blood mononuclear cell
PCA principal component analysis
RNA ribonucleic acid
RNA-seq RNA-sequencing
RT-qPCR Real-time quantitative PCR
scRNA-seq single-cell RNA sequencing
SNP single nucleotide polymorphism
snRNA-seq single-nucleus RNA sequencing
STR Short Tandem Repeat
TF transcription factor
UMAP Uniform Manifold Approximation and Projection
UMI unique molecular identifier
WES whole-exome sequencing
WGS whole-genome sequencing

xi





Chronological List of Publications

I. Geuder J, Wange LE, Janjic A, Radmer J, Janssen P, Bagnoli JW, Müller S, Kaul A, Ohnuki M,

Enard W:

"A non-invasive method to generate induced pluripotent stem cells from primate urine."

Scientific Reports 11, 3516 (2021). doi: 10.1038/s41598-021-82883-0

II. Janssen P, Kliesmete Z, Vieth B, Adiconis X, Simmons S, Marshall J, McCabe C, Heyn H, Levin

JZ, Enard W, Hellmann I:

"The effect of background noise and its removal on the analysis of single-cell expression data."

Genome Biology 24, 140 (2023). doi: 10.1186/s13059-023-02978-x

III. Jocher J, Edenhofer FC, Janssen P, Müller S, Lopez-Para DC, Geuder J, Enard W:

"Generation and characterization of three fibroblast-derived Rhesus Macaque induced pluripotent

stem cell lines."

Stem Cell Research 74, 103277 (2023). doi: 10.1016/j.scr.2023.103277

IV. Jocher J, Edenhofer FC, Müller S, Janssen P, Briem E, Geuder J, Enard W:

"Generation and characterization of two Vervet monkey induced pluripotent stem cell lines derived

from fibroblasts."

Stem Cell Research 75, 103315 (2024). doi: 10.1016/j.scr.2024.103315

V. Jocher J, Edenhofer FC, Müller S, Janssen P, Briem E, Geuder J, Enard W:

"Generation and characterization of two fibroblast-derived Baboon induced pluripotent stem cell

lines."

Stem Cell Research 75, 103316 (2024). doi: 10.1016/j.scr.2024.103316

VI. Jocher J and Janssen P, Vieth B, Edenhofer FC, Dietl T, Térmeg A, Spurk P, Geuder J, Enard W,

Hellmann I:

"Identification and comparison of orthologous cell types from primate embryoid bodies shows limits

of marker gene transferability."

Reviewed Preprint at eLife 14:RP105398 (2025). doi: 10.7554/eLife.105398.1

xiii





Other Publications

VII. Kälin RE, Cai L, Li Y, Zhao D, Zhang H, Cheng J, Zhang W, Wu Y, Eisenhut K, Janssen P,

Schmitt L, Enard W, Michels F, Flüh C, Hou M, Kirchleitner SV, Siller S, Schiemann M, Andrä I,

Montanez E, Giachino C, Taylor V, Synowitz M, Tonn JC, von Baumgarten L, Schulz C, Hellmann I,

Glass R:

“TAMEP are brain tumor parenchymal cells controlling neoplastic angiogenesis and progression.”

Cell systems 12, 248-262 (2021). doi: 10.1016/j.cels.2021.01.002

xv





Declarations of contribution

as a first-author

The effect of background noise and its removal on the analysis of single-cell

expression data

Ines Hellmann, Wolfgang Enard, and I conceptualized this study. Ines Hellmann and I

wrote the original draft. I, Beate Vieth, and Zane Kliesmete conducted the formal analysis.

Sean Simmons did the data curation. Xian Adiconis, Jamie Marshall, and Cristin McCabe

performed the experiments. Joshua Z. Levin supervised the experiments. Wolfgang Enard,

Holger Heyn, and Joshua Z. Levin acquired funding.

According to the regulations for the Cumulative Doctoral Thesis at the Faculty of Biology,

LMU München, I confirm the above contributions of Philipp Janßen to these publications.

Ines Hellmann

xvii



xviii Declarations

Identification and comparison of orthologous cell types from primate embryoid

bodies shows limits of marker gene transferability

Wolfgang Enard and Ines Hellmann conceived the study. Jessica Jocher optimized and

conducted EB differentiation experiments and performed 10x scRNA-seq data generation

with support of Fiona C. Edenhofer. Johanna Geuder generated and provided human and

orangutan iPSCs and supported optimization of EB differentiation protocols. Paulina Spurk

established FACS analyses of EBs. I and Jessica Jocher did primary data analysis. I did the

pre-processing of the data, developed the pipeline for orthologous cell type assignment, and

created the Shiny app. I and Beate Vieth performed the cell type specificity and marker gene

conservation analysis. Anita Térmeg prepared reference genomes for non-human primates.

Tamina Dietl supported cell type annotation. I, Jessica Jocher and Ines Hellmann wrote the

manuscript.

According to the regulations for the Cumulative Doctoral Thesis at the Faculty of Biology,

LMU München, I confirm the above contributions of Philipp Janßen to these publications.

Jessica Jocher

Ines Hellmann

Wolfgang Enard



Declarations of contribution

as a co-author

A non-invasive method to generate induced pluripotent stem cells from

primate urine

Johanna Geuder, Mari Ohnuki and Wofgang Enard conceived the study. I helped

with analysis of bulk RNA-seq data. Johanna Geuder and Wolfgang Enard wrote

the manuscript.

Generation and characterization of three fibroblast-derived Rhesus Macaque

induced pluripotent stem cell lines

Wolfgang Enard and Jessica Jocher conceived the study. I and Jessica Jocher ana-

lyzed the scRNA-seq data. Dana C. Lopez-Parra and I performed variant calling for

authentication. Wolfgang Enard and Jessica Jocher wrote the manuscript.

Generation and characterization of two Vervet monkey induced pluripo-

tent stem cell lines derived from fibroblasts

The study was conceived by Wolfgang Enard and Jessica Jocher. I performed variant

calling from bulk RNA-seq data. Wolfgang Enard and Jessica Jocher wrote the

manuscript.

xix



xx Declarations

Generation and characterization of two fibroblast-derived Baboon induced

pluripotent stem cell lines

Wolfgang Enard and Jessica Jocher conceived the study. I performed variant calling

from bulk RNA-seq data. Wolfgang Enard and Jessica Jocher wrote the manuscript.

According to the regulations for the Cumulative Doctoral Thesis at the Faculty of Biology,

LMU München, I confirm the above contributions of Philipp Janßen to these publications.

Ines Hellmann



Summary

Single-cell RNA sequencing (scRNA-seq) has become a powerful method to explore cell

type diversity and gene expression at unprecedented resolution. Extending this approach

across species not only enables the identification of conserved and species-specific cell types,

but also provides insight into how cellular programs evolve. Comparative single-cell studies

in primates are especially valuable for understanding the molecular changes that underlie

human-specific traits within an evolutionary framework. However, meaningful cross-species

comparisons rely not only on the availability of single-cell data from different organisms, but

also on robust data quality, well-matched cellular systems and appropriate computational

frameworks for integration. This thesis addresses key challenges in cross-species single-cell

transcriptomics, with a focus on improving the methodological foundation for comparative

studies in primates.

Ensuring good data quality is essential for all single-cell studies and becomes even more

important when comparing data across species. Yet technical artifacts are not uncommon

and can obscure biological signal and complicate data interpretation. One such artifact is

background noise, which originates from cell-free ambient RNA or barcode swapping events.

To evaluate the extent and impact of background noise in 10x Genomics data, I established

a benchmarking dataset generated from pooled kidney cells of two mouse subspecies. I used

naturally occurring genetic variants to determine the origin of individual reads and identify

transcripts that were incorrectly assigned to a cell barcode to quantify background noise. I

found that background levels varied substantially between cells and replicates, with ambient

RNA identified as the primary source. This noise particularly compromises the detection

1



2 Summary

of marker genes, reducing their specificity. Furthermore, I evaluated several computational

methods for noise correction and found that most approaches improved marker detection, with

CellBender showing the strongest performance. These findings help characterize the nature

of background noise and provide practical guidance for its mitigation in future single-cell

studies.

Besides accurate measurements, cross-species single-cell studies also rely on access to

comparable cellular material. For primates in particular, obtaining such material remains a

challenge. In this context, induced pluripotent stem cells (iPSC) and their derivates offer a

powerful resource for comparative studies. I contributed to the characterization of newly

established iPSC lines from various non-human primates (NHP), including vervet monkeys,

baboons, rhesus macaques, gorillas and orangutans. My contributions focused on validating

the pluripotency and identity of these cell lines using bulk and single-cell RNA-seq data.

On the one hand, I helped to classify primary cells, iPSCs and derived cell types based on

their expression profiles. On the other hand, I called genetic variants from RNA-seq data for

authentication of the cell lines.

Finally, I analysed a cross-species dataset of embryoid bodies (EB) derived from human

and NHP iPSCs to enable comparative analyses of early primate development. This dataset

includes four species and spans a wide range of different cell types. To identify orthologous cell

types in this complex setting, I developed a semi-automated pipeline combining classification

and manual annotation steps. Based on these annotations I investigated cross-species

conservation of gene expression, with a particular focus on the transferability of marker genes.

The results showed that while broadly expressed genes are relatively well conserved, many

cell type-specific marker genes are less transferable across species. These findings underscore

the challenges of cell type annotation in cross-species settings and provide a curated dataset

and computational approach to support future comparative analyses in primates.



1 | Introduction

Over the past decade, advances in transcriptomic technologies have dramatically increased

the resolution and sensitivity with which cellular states can be measured. In particular,

the ability to profile gene expression at single-cell resolution has transformed how we study

cellular diversity and define cell types. Including multiple species in single-cell analyses

not only places cell type characterizations in a broader biological context, but also enables

direct comparisons across species to study evolutionary change. In this thesis, I explore how

multi-species single-cell transcriptomic data can be used to improve cell type characterization

and address some challenges associated with such analyses.

First, in the section Cell type characterization and identification using single-cell

transcriptomics, I describe the basic principles and commonly used strategies for identifying

and defining cell types based on gene expression profiles.

In the section Evaluating technical artifacts with species-mixing experiments,

I focus on technical confounders such as background RNA contamination that can distort

cell type assignments, and explain how controlled species-mixing experiments can be used to

assess the magnitude and impact of these artifacts.

Finally, in the section Comparative single-cell studies and cross-species analysis,

I explore how including multiple species - particularly non-human primates - can help refine

our understanding of cell types, and discuss the conceptual and methodological challenges

involved in comparing transcriptomic data across species.

3



4 1. Introduction

1.1 Cell type characterization and identifica-
tion using single-cell transcriptomics

1.1.1 Measuring gene expression

Cells are the fundamental structural and functional units of life. All cells in a multicellular

organism carry essentially the same genome, yet they can develop into remarkably diverse

cell types. This diversity is driven not by differences in genetic content, but by differential

gene regulation, which determines which genes are active in a given cell type. Since active

genes are transcribed into RNA, measuring RNA levels provides a direct insight into gene

activity. Messenger RNA (mRNA), in particular, is the intermediary between genes and

proteins, so its abundance offers an informative readout of gene expression at a given moment

(Lowe et al. 2017). Before high-throughput genomics, gene expression was measured one gene

at a time. One of the earliest approaches was Northern blotting, which detects specific RNA

molecules by separating them via gel electrophoresis and hybridizing them to labeled probes

(Alwine et al. 1977). Real-time quantitative PCR (RT-qPCR) later improved sensitivity

by converting mRNA into complementary DNA (cDNA) and amplifying target sequences

(Heid et al. 1996). To go beyond the analysis of single genes, the introduction of microarrays

enabled the parallel profiling of hundreds to thousands of genes by hybridizing labeled cDNA

to pre-spotted DNA sequences (Schena et al. 1995).

The introduction of RNA sequencing (RNA-seq) in the late 2000s transformed transcrip-

tomics by enabling high-throughput, unbiased gene expression measurement (Mortazavi et al.

2008). The method involves converting RNA into cDNA, fragmenting it, and sequencing

millions of reads, which are then mapped back to the genome to quantify transcript levels.

Unlike microarrays, RNA-seq is not restricted to predefined probes, allowing the genome-wide

quantification of RNA variants. In its standard form, bulk RNA-seq is performed on RNA

extracted from a population of cells, generating a single, averaged gene expression profile.

This approach is well-suited for identifying global expression patterns and comparing gene

activity between conditions but does not distinguish contributions from individual cell types

within a mixed sample (Trapnell 2015).
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1.1.2 The rise of single-cell RNA sequencing

Motivated by the scarcity of biological material in contexts like embryonic development

(Kolodziejczyk et al. 2015) and the limitations of bulk RNA-seq, which masks cellular

heterogeneity through averaging (Trapnell 2015), researchers began developing RNA-seq

protocols with single-cell resolution to enable more precise characterization of cell types and

states.

The first whole transcriptome mRNA measurements from a single cell were achieved

in 2009 by Tang et al. (2009). In the years that followed, advances in technology led to

an almost exponential increase in the number of cells that could be profiled in a single

experiment (Svensson et al. 2018). A key advance was the introduction of early barcoding

strategies, which allowed multiple single cells to be processed simultaneously (Islam et al.

2011). This was soon complemented by improvements in cell isolation and capture techniques,

paving the way for high-throughput protocols. Two main approaches emerged: plate-based

methods, which capture individual cells in microwell plates (Picelli et al. 2014) and droplet-

based methods, which encapsulate single cells in nanoliter emulsions (Macosko et al. 2015).

The introduction of unique molecular identifiers (UMI) around the same time improved

the accuracy of transcript quantification by correcting for amplification bias, making high-

throughput protocols more reliable (Islam et al. 2014). Within a decade, further improvements

in throughput and sensitivity, along with the decreasing cost of next-generation sequencing,

have enabled a drastic scale-up from profiling tens or hundreds of cells to millions (Cao et al.

2019a).

Today, scRNA-seq technologies come in many variations, but they all follow the same

core workflow (Kolodziejczyk et al. 2015; Ziegenhain et al. 2017): single cells are first isolated,

followed by the reverse transcription of mRNA into cDNA. The cDNA is then amplified

and finally prepared into libraries for next-generation sequencing to generate transcriptomic

data. While most scRNA-seq methods rely on whole-cell capture, an alternative approach,

single-nucleus RNA sequencing (snRNA-seq), isolates and profiles mRNA from cell nuclei

instead. This method is particularly useful for studying frozen or hard-to-dissociate tissues,

where intact cells are difficult to obtain (Lake et al. 2016).
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With these technical foundations in place, scRNA-seq has rapidly become a key tool across

diverse areas of biological and biomedical research. One of its most significant applications

is cell atlas projects, which aim to catalog the diversity of cell types in different organisms.

Large-scale efforts like the Human Cell Atlas (Regev et al. 2017) and Tabula Muris (Tabula

Muris Consortium et al. 2018) have mapped gene expression across many tissues, providing a

reference for understanding how cells function in health and disease. In biomedical research,

scRNA-seq has been instrumental in studying diseases at the cellular level. In cancer research,

for example, it has helped to dissect tumor heterogeneity (González-Silva et al. 2020; Wu

et al. 2021) and highlight interactions within the tumor microenvironment (Ren et al. 2021;

Bridges and Miller-Jensen 2022). In immunology, it has provided insights into immune cell

states and responses to infection, including COVID-19 (Liao et al. 2020).

1.1.3 Computational analysis of scRNA-seq data

Alongside the rapid growth of scRNA-seq technologies, data and applications, there has

been an equally fast expansion of computational tools for data analysis. As of 2025, more

than 1800 methods had already been developed for various types of scRNA-seq analysis

(scRNA-tools.org n.d.). In principle, the analysis workflow can be divided into three main

stages (Figure 1): 1) raw data processing, 2) pre-processing of the count matrix and 3)

downstream analysis at either the cell or gene level.

Firstly, raw sequencing data are processed to generate a count matrix (Figure 1A). This

begins with quality control of the sequencing reads, where low-quality sequences and adapter

contamination are removed. Next, the reads are aligned to a matching reference genome. For

protocols which use UMIs to correct for PCR amplification bias, an additional step involves

collapsing reads that share the same UMI. Finally, gene expression is quantified by counting

the number of reads or UMIs assigned to each gene for each cell barcode. To automate these

steps, analysis pipelines such as Cell Ranger (Zheng et al. 2017) and zUMIs (Parekh et al.

2018) are commonly used. The output is a gene-by-cell matrix, which forms the basis for all

subsequent analysis.

Next, several pre-processing steps are required to prepare the count matrix for downstream
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analysis (Figure 1B). This involves quality control and filtering at both the cell and gene level.

Low quality cells are typically identified and removed based on thresholds on the number of

counts and genes detected per cell, as well as the fraction of counts from mitochondrial genes

(Ilicic et al. 2016). Furthermore, doublets - instances where more than one cell is captured

and measured together - can be detected based on their expression profile (McGinnis et al.

2019a; DePasquale et al. 2019; Wolock et al. 2019). Gene-level filtering is also commonly

applied to remove genes with very low or no expression, which can introduce noise and inflate

data sparsity (Luecken and Theis 2019). In addition, ambient RNA removal methods perform

quality control and correction directly on the count level to correct for contamination with

cell-free or wrongly assigned RNA molecules (Fleming et al. 2023; Yang et al. 2020; Young

and Behjati 2020). Following these filtering and correction steps, the count matrix then

needs to be normalized to account for sampling differences between individual cells. This

step has been shown to be particularly crucial for some downstream analysis (Vieth et al.

2019). If cells were handled in different groups or experiments, additional batch correction

and data integration steps might be necessary (Haghverdi et al. 2018; Stuart et al. 2019;

Korsunsky et al. 2019). Finally, for many downstream analyses it is helpful to reduce the

dimensionality of the data. In this context, feature selection aims to reduce noise by keeping

only a set of most informative genes. In contrast, dimensionality reduction condenses the

expression space into a smaller set of components. Linear methods like principal component

analysis (PCA) are commonly used for this purpose in order to summarize the data for

other analysis steps, while non-linear approaches like Uniform Manifold Approximation and

Projection (UMAP) are primarily for visualization (Luecken and Theis 2019).

Once the count matrix has been processed, a wide range of analytical approaches can

be applied to explore patterns in the data (Jovic et al. 2022; Luecken and Theis 2019)

(Figure 1C). A key step in most downstream workflows, however, is the grouping of cells into

clusters or distinct cell types. Beyond this step, which will be discussed in detail in a later

section, several other cell-level analyses can provide complementary insights. Compositional

analysis evaluates shifts in cell type or state proportions across conditions (Cao et al. 2019b).

Cell–cell communication tools infer signaling interactions based on ligand-receptor expression

(Efremova et al. 2020). When discrete categorization of cells is not sufficient, trajectory
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Figure 1. Computational workflow for scRNA-seq analysis. The analysis is broadly
divided into three stages: (A) Raw data processing, including read quality control, alignment
to a reference genome, and quantification to generate a count matrix; (B) Pre-processing of
the count matrix, involving filtering of low-quality cells and genes, doublet detection, ambient
RNA correction, normalization, and dimensionality reduction; (C) Downstream analysis,
which includes both cell-level approaches such as clustering, cell type annotation, trajectory
inference and cell-cell communication analysis, and gene-level analyses like marker gene
identification, DE analysis, gene set enrichment analysis, and inference of gene regulatory
networks. Created with BioRender.com
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inference methods can reconstruct cellular transitions (Trapnell et al. 2014; Street et al.

2018).

Gene-level analyses are often performed in parallel. Marker gene identification is used to

pinpoint genes that define specific populations (Pullin and McCarthy 2024), while differential

expression (DE) analysis identifies genes that vary between conditions (Finak et al. 2015;

Vieth et al. 2019). Gene set enrichment analysis (GSEA) can then be applied to identify

overrepresented biological processes in long candidate gene lists (Kuleshov et al. 2016). In

addition, gene regulatory network inference aims to uncover interactions between transcription

factors and their downstream targets which helps characterize the regulatory programs

underlying cellular identity (Aibar et al. 2017).

1.1.4 Approaches for cell type annotation

Despite the wide range of possible downstream analyses, most rely on a common foundation:

the classification of cells into biologically meaningful groups. Accurate cell type annotation

is thus a central task in single-cell analysis. There are two main strategies to achieve this

task: unsupervised clustering followed by manual annotation and supervised classification

with a reference dataset (Sun et al. 2022).

Unsupervised approaches start by grouping cells with a similar expression profile into

discrete clusters. For this task, community-detection algorithms like Louvain are commonly

employed (Luecken and Theis 2019). The resulting clusters are subsequently annotated

based on the expression of individual genes. Candidate gene lists are generated by comparing

expression patterns across clusters and are then matched to known marker genes from the

literature or databases, which exhibit cell type-specific expression patterns (Wang et al.

2020). If a cluster shows high expression of a well-established marker gene or a characteristic

set of genes associated with a particular cell type, it is assigned the corresponding label.

This manual approach allows for flexible interpretation, enabling the identification of novel

or unexpected cell types. However, it is time-consuming and relies on expert knowledge,

making it inherently subjective and susceptible to bias.

In contrast, supervised methods assign cell type labels by comparing query cells to a
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pre-annotated reference dataset. These approaches can be broadly sub-categorized into

classification methods and integration-based label transfer. Classification methods use

correlation measures or machine learning techniques to predict cell types for single cells

in the query based on expression profiles in the reference (Pasquini et al. 2021). They

offer a fast and automated solution, but their accuracy depends heavily on the quality and

completeness of the reference dataset. When dealing with novel or rare cell types that are not

well represented in the reference, classification methods may default to an "unassigned" label,

but also risk incorrect assignments (Abdelaal et al. 2019). Integration-based label transfer

methods, on the other hand, align the query data with a reference dataset before assigning

labels to query cells based on their neighborhood in the integrated space (Stuart et al. 2019;

Lotfollahi et al. 2022). They can be more robust than classification methods, as they also

account for relationships between query cells rather than assigning labels independently.

However, if the reference and query datasets are poorly matched, particularly when cell type

compositions differ significantly, these methods may misalign cell populations, leading to

inaccurate annotations. While both approaches enhance reproducibility compared to manual

annotation, their effectiveness hinges on the availability of a well-matched, high-quality

reference dataset.

Overall, cell type annotation is rarely a straightforward process, and relying on a single

approach or method is unlikely to produce fully reliable results. When using reference-based

supervised methods, combining annotations across multiple reference datasets (Yuan et al.

2022) and multiple computational tools (Ergen et al. 2024) can improve accuracy. This not

only results in a more robust consensus annotation, but importantly also highlights areas of

uncertainty that may require further investigation. Furthermore, annotations should not be

taken at face value and should undergo careful validation using a combination of manual and

supervised approaches. For instance, Clarke et al. (2021) recommend a three-step workflow:

1) automatic annotation to assign initial labels based on available reference data, 2) manual

annotation to review and refine these labels by assessing marker gene expression and 3)

verification through additional experiments, statistical analyses or expert consultation.
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1.1.5 Relevance of marker genes

During cell type annotation, the examination of marker gene expression plays a key role at

several stages. Whether used for manual cluster annotation, refining and verifying existing

labels, or selecting candidate genes for experimental validation, marker genes remain essential

throughout the process.

Here, I refer to marker genes as genes with specific expression patterns, allowing for

clear distinction between different cell populations. In this role they have already been

relevant in cellular biology long before the emergence of scRNA-seq. Historically, surface

proteins such as Cluster of Differentiation (CD) markers have been widely used for cell

classification via flow cytometry (Maecker et al. 2012) or immunohistochemistry (Lyck et al.

2008). With the advent of transcriptomics, marker discovery has expanded beyond surface

proteins to include any gene exhibiting sufficiently discriminatory expression patterns. An

ideal marker gene should meet several criteria: 1) specificity, meaning it is highly expressed

in the target cell type while showing minimal expression elsewhere (Pullin and McCarthy

2024); 2) stability and replicability, ensuring consistent expression in this cell type across

conditions and datasets (Fischer and Gillis 2021); and 3) detectability, meaning that, in

the case of scRNA-seq, its mRNA levels are high enough at the time of measurement to be

reliably detected despite the dropout events inherent to this technology (Hicks et al. 2018).

In many cases, strong marker genes are also biologically relevant for the function or identity

of the cell type, making them especially meaningful.

Given these properties, marker genes play an important role in characterizing the

heterogeneity within a dataset. On the one hand, they serve as a reference point for known cell

types. On the other hand, they are also essential for describing novel or poorly characterized

cell types. To systematically identify marker genes, gene expression is compared across

clusters or cell types to determine which genes exhibit discriminatory expression patterns.

This is typically done using one-vs-rest comparisons, where each cluster is tested against all

others, or alternatively pairwise comparisons that evaluate differences between individual

cluster pairs (Pullin and McCarthy 2024). One of the most widely used strategies is DE-

based analysis. Common statistical tests include the Wilcoxon rank-sum test, Student’s
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t-test or logistic regression. These tests are readily available in a one-vs-rest setting in

standard analysis frameworks like Seurat and scanpy, making them widely popular. Despite

their simplicity, they have proven to be highly effective in a recent benchmark (Pullin and

McCarthy 2024). Pairwise testing, such as implemented in scran, aims to make the DE testing

more independent of the overall cell type composition (Amezquita et al. 2020). Another

intuitive strategy is presence/absence scoring, which identifies genes that are consistently

detected in one population but absent in others. By focusing on detection alone rather than

quantitative expression levels, this binary approach can be a simple yet effective alternative to

DE methods. Beyond traditional DE testing and presence/absence scoring, feature selection

and machine learning-based approaches provide an alternative way to define marker genes.

Examples include NS-Forest (Liu et al. 2024), which uses Random Forest classifiers, SMaSH

(Nelson et al. 2022), a deep learning-based selection method, and RankCorr (Vargo and

Gilbert 2020), which ranks genes based on correlation patterns. While these methods can

improve marker selection, they are computationally intensive and do not always outperform

simpler DE-based approaches (Pullin and McCarthy 2024).

Regardless of the method used for identification, an additional challenge is determining

how many markers should be selected to best define a cell type. Using p-value cut-offs can

be problematic, as pseudo-replication can inflate false discovery rates (Squair et al. 2021).

Instead, markers are often ranked based on effect sizes such as log fold change, Cohen’s

d or area under the curve (AUC), with a fixed number of top genes selected (Amezquita

et al. 2020). Binary metrics that compare detection rates between the target cell type and

others can also be useful for ranking markers. For example, Fischer and Gillis (2021) used

a detection rate-based approach to evaluate the signal-to-noise ratio of marker genes in

combination with measures for coverage and replicability and found that around 50 to 200

markers were optimal for defining cortical cell types.

After identifying marker genes within a dataset, the next step is to compare them

to previously established markers to better understand their biological significance. To

support this, thousands of marker genes have been compiled into publicly available databases

like PanglaoDB (Franzén et al. 2019) and CellMarker (Zhang et al. 2019; Hu et al. 2023),

which provide curated lists of established cell type-specific markers for human and mouse.
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Collections of large-scale single-cell datasets also serve as valuable resources for marker-based

annotation (CZI Cell Science Program et al. 2025). Beyond databases, a literature search for

marker genes reported and validated in published studies can also yield useful references.

However, caution is needed when using markers identified through different technologies or

experimental approaches. For instance, protein markers do not always correlate well with

RNA expression (Stoeckius et al. 2017). Similarly, signatures derived from bulk RNA-seq data

may be difficult to detect in scRNA-seq (Noureen et al. 2022). Additionally, marker lists from

different sources can be inconsistent, with significant variation between databases and studies

(Franzén et al. 2019; Zhang et al. 2019; Clarke et al. 2021). Given these challenges, careful

validation is essential when incorporating external marker genes into single-cell analyses.

cell type A cell type B cell type C cell type D

Figure 2. Visualization of marker genes to support cell type annotation. UMAPs
show the expression of individual markers across cells (left), while heatmaps summarize
multiple markers across cell types (right). Adapted from Janssen et al. (2023).

Finally, marker genes also serve a practical purpose: they help simplify and communicate

the results of scRNA-seq analyses (Clarke et al. 2021). Given that single-cell datasets contain

thousands of genes across thousands of cells, raw expression data can be overwhelming.

Distilling this complexity into a set of key marker genes enhances interpretability. An

important aspect of this simplification is visualization. Individual marker genes are often

visualized by overlaying their expression on a 2D-embedding like UMAP, while heatmaps
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and dot plots provide an intuitive summary for multiple marker genes across cell types

(Figure 2). In this function, marker genes not only help in annotation, but also enhance

reproducibility and clarity when presenting the results, ultimately concluding the cell type

annotation process.

1.2 Evaluate technical artifacts with species-

mixing experiments

1.2.1 Technological confounders of cell type identifica-

tion

For the annotation of cell types, the base assumption is that reads that are associated

with the same cell barcode originate from a single cell. However, certain technical artifacts

introduced during the experimental workflow can challenge this assumption and impact

downstream analysis. One notable artifact is the formation of doublets that occurs when two

cells are captured within the same droplet. Due to the stochastic nature of cell encapsulation

in droplet-based scRNA-seq technologies, a fraction of the droplets will contain two or more

cells, proportional to the loaded cell density (Germain et al. 2021). For instance, in a typical

10x Genomics scRNA-seq experiment recovering 10,000 cells, this fraction is estimated to

be approximately 8% (10xgenomics.com n.d.). Doublets can also arise from incomplete

cell dissociation during sample preparation, where cells remain physically attached in the

suspension (Schiebout et al. 2023). Doublets can be classified into two types: homotypic

doublets, involving two cells of the same transcriptional state, and heterotypic doublets,

involving two cells with distinct transcriptional states (Germain et al. 2021). While homotypic

doublets are less disruptive as their combined transcriptional profiles may resemble that of

a single cell, heterotypic doublets are particularly problematic. These hybrid profiles can

introduce spurious cell clusters, creating the false appearance of novel or transitional cell

types (Xi and Li 2021; Wolock et al. 2019; McGinnis et al. 2019a). To address this issue,
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several computational tools have been developed to identify and remove doublets (Bais and

Kostka 2020; DePasquale et al. 2019; McGinnis et al. 2019a; Wolock et al. 2019; Bernstein

et al. 2020; Weber et al. 2021; Zhang et al. 2023a). These tools use various strategies,

including artificial doublet simulation and gene expression similarity metrics, to flag and

remove suspected doublets, thereby improving the reliability of downstream analyses.

In addition to doublets, even droplets containing a single cell can be affected by back-

ground noise of transcripts attributed to the wrong cell. This noise partly originates from

cell-free ambient RNA that is released by ruptured or degraded cells into the suspension

(Fleming et al. 2023; Young and Behjati 2020). Moreover, the formation of chimeric cDNA

molecules during library amplification can lead to misassigned transcripts (Dixit 2016). This

spillover of transcripts reduces the specificity of cell-type marker genes and can lead to the

creation of artificial marker gene combinations, ultimately causing misannotation of cell types

and masking distinctions between rare populations. Several computational tools (Fleming

et al. 2023; Young and Behjati 2020; Yang et al. 2020) have been developed to address these

issues by estimating and subtracting the contribution of ambient RNA and have proven

effective in various scenarios such as for example removing counts from neuronal ambient

RNA in non-neuronal cell populations (Caglayan et al. 2022; Zhang et al. 2023b).

Together, the impacts of doublets and background noise highlight the critical importance

of rigorous quality control and artifact correction in scRNA-seq workflows. Characterizing

how these artifacts influence analyses, as well as evaluating the performance of computational

methods for their mitigation, remains a key challenge.

1.2.2 Species-mixing experiments

To characterize the extent and impact of these artifacts, it is essential to work with datasets

where the distinction between true biological signal and technical noise is possible. One

powerful approach to generating such ground-truth data involves species-mixing experiments,

where cells from different species are pooled together before sequencing. These experiments

make use of the genetic variation between species as natural barcodes, making it possible to

assign individual transcripts to their species of origin.
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The core idea behind these mixing experiments is straightforward: cells from two or more

species—or alternatively other genetically distinct sources like subspecies or even individuals—

are pooled into the same suspension and processed together through the scRNA-seq workflow

(Figure 3). After sequencing, individual reads can be assigned to their genetic origin based

on sequence identity. For species with sufficiently divergent genomes, like in the commonly

used mixtures of human and mouse cell lines, this is typically done by aligning reads to both

reference genomes and assigning them based on alignment quality. For more closely related

species, subspecies or individuals of the same species, where a shared reference genome is

used, single-nucleotide variants can be used to make this distinction (Kang et al. 2018; Huang

et al. 2019; Xu et al. 2019; Heaton et al. 2020).

In a perfect, noise-free mixing experiment with two species, all reads assigned to a given

cell barcode would originate from only one of the two species. In reality, however, transcripts

from both species can be detected within the same barcode. In this case, a small fraction

of foreign transcripts typically indicates background noise, such as ambient RNA spillover

from lysed cells (Fleming et al. 2023). If transcripts from both species appear in similar

proportions, it suggests a doublet, where two cells were captured together.

In this way, cell-mixing experiments enable the quantification of background noise and

doublet rates, but they only detect cross-species events and therefore provide a lower-bound

estimate. By considering the mixing proportions, these estimates can be extrapolated to

approximate the overall rate of these artifacts, including within-species effects that cannot

be directly identified (Bloom 2018).

Cell-mixing experiments have played a key role in evaluating the technical performance

of single-cell technologies. For example, they are frequently used to demonstrate the doublet

rate of newly developed methods (Macosko et al. 2015; Goldstein et al. 2017; Zheng et al. 2017;

Rosenberg et al. 2018). Additionally, they have been employed in systematic comparisons of

different protocols, helping to highlight differences in doublet rates and levels of ambient

RNA contamination (Ding et al. 2020).

Beyond benchmarking, cell-mixing approaches are also used in experimental designs that

combine different species or individuals to increase throughput and reduce batch effects. In

such cases, the principles outlined above can be taken advantage of for quality control and
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filtering of the count matrix. Computational tools designed for demultiplexing individuals

based on genotype such as demuxlet (Kang et al. 2018), vireo (Huang et al. 2019) or scSplit

(Xu et al. 2019) include functionality for identifying and removing doublets, while souporcell

(Heaton et al. 2020) in addition provides an estimate of ambient RNA.

Finally, cell-mixing datasets serve as a ground truth for benchmarking computational

methods. A widely used example is the mixture of the human HEK293T and mouse NIH3T3

cell lines provided by 10x Genomics. This dataset has been used to assess the accuracy of

doublet-detection methods (Wolock et al. 2019; DePasquale et al. 2019; Xi and Li 2021).

It has also played an important role in the evaluation of computational approaches for

background noise removal (Yang et al. 2020; Young and Behjati 2020; Fleming et al. 2023).

Similarly, Tian et al. (2019) used controlled mixtures of human lung adenocarcinoma cell lines

to create structured datasets with known proportions, providing a benchmark for evaluating

computational methods across various stages of scRNA-seq analysis.
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Figure 3. Species mixing experiments for scRNA-seq quality assessment. Cells
from two or more species are pooled prior to performing scRNA-seq. During analysis,
reads can be attributed back to their species of origin using genome alignment differences
or single-nucleotide variants. Summarizing the contributions of different species per cell
barcode helps to quantify technical artifacts: balanced contributions suggest doublets, while
low-level signals from a second species indicate background RNA contamination. Created
with BioRender.com
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1.3 Comparative single-cell studies and cross-

species analysis

Beyond the technology-focused application of species-mixing experiments, integrating scRNA-

seq with cross-species analysis offers a powerful approach to gain biological insights, par-

ticularly in evolutionary research. In this section, I will explore how comparing cell types

across species can deepen our understanding of cell type biology and evolution. Focusing on

primate transcriptomics, I will discuss the experimental challenges that such studies face

and highlight how in vitro cellular systems can help address them. Finally, I will outline

the main analysis challenges associated with cross-species datasets and discuss strategies to

overcome them.

1.3.1 Evolutionary cell type definition

While grouping transcriptomic profiles from a single species is sufficient for defining cell

types (see 1.1), incorporating an evolutionary perspective adds depth to these classifications.

It has been proposed that cell types can be defined as evolutionary units, maintained

through conserved regulatory mechanisms (Arendt et al. 2016). Comparative single-cell

transcriptomics is a powerful tool to identify these cell type-specific regulatory programs and

gene expression profiles, providing insights into how cell types evolve (Arendt et al. 2019).

This perspective also helps to distinguish between genuine cell types and transient cell states,

which can be difficult to disentangle based on single-species data alone. While cell types

are characterized by stable, hard-wired regulatory programs, cell states reflect reversible

responses to environmental stimuli or physiological conditions (Tasic 2018). Cross-species

comparisons make it possible to identify transcriptional programs that are consistently

maintained—suggesting conserved cell types—as opposed to programs that vary flexibly

within a type, indicating state-dependent changes (Arendt et al. 2019).
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1.3.2 Cross-species comparisons in primates

Narrowing this perspective to comparisons within the primate clade offers a more targeted

view on human biology. Primate studies have long been used to investigate evolutionary

change at the DNA level, identifying instances of lineage-species sequence divergence and

signatures of selection in both coding regions and regulatory elements (Rogers and Gibbs 2014;

Chimpanzee Sequencing and Analysis Consortium 2005; Prabhakar et al. 2006; Lindblad-Toh

et al. 2011). These efforts have provided important insights into the genetic basis of species

differences, but they offer only indirect clues about how such changes translate into cellular

or phenotypic effects. With transcriptomic data it is now possible to study gene expression

directly, obtaining a functional readout that is closer to cellular phenotypes than genomic

sequence alone (Khaitovich et al. 2006). Comparative single-cell analysis in particular has

the potential to characterize evolutionary changes in gene expression and regulation at the

cell type level.

In addition to revealing general patterns of gene regulation and expression, cross-species

studies in primates can also highlight human-specific features. These include both novel cell

types and regulatory changes within orthologous cell types—features that have only become

accessible through single-cell transcriptomic approaches (Pollen et al. 2023; Juan et al. 2023).

Beyond their evolutionary relevance, comparative primate studies also hold significant value

for biomedical research. While the mouse remains the most widely used model organism,

it often fails to replicate key aspects of human physiology. In this context, NHPs serve as

an important intermediate model, helping to bridge the gap between rodent systems and

humans (Enard 2012).

The brain’s complexity and its link to human-specific traits make it a primary focus

of comparative primate single-cell transcriptomic research so far and recent studies have

provided examples of how this approach can uncover cellular and molecular differences.

Several studies have identified human- or primate-specific shifts in cellular diversity. For

instance, Krienen et al. (2020) compared single-nucleus RNA-seq from the brains of primates

(human, macaque and marmoset), mice, and weasels and reported an expansion of inhibitory

interneurons in primates. In addition, Ma et al. (2022) profiled the dorsolateral prefrontal
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cortex in humans, chimpanzees, rhesus macaques, and marmosets, detecting some human-

specific microglial and neuronal subtypes. Other studies have focused on species-specific

gene expression and regulation differences within conserved cell types. Suresh et al. (2023)

and Jorstad et al. (2023) analyzed single-cell transcriptomes from the middle temporal

gyrus of humans, chimpanzees, gorillas, macaques, and marmosets, where the cell type

composition is largely conserved across primates. They identified human-specific expression

and co-expression changes in hundreds of genes (Suresh et al. 2023). Jorstad et al. (2023)

further showed that gene expression evolved faster in human neurons compared to other

primates, with human-specific changes enriched in genes related to synaptic function.

While these studies provide valuable insights into species differences in adult brain

tissues, they capture only a limited view of evolutionary processes, missing the dynamic

changes that occur during development. Comparisons of development across primates are

of special interest, as this is when the foundation for many phenotype differences is laid.

However, it is particularly difficult to obtain developmental tissues due to ethical and practical

limitations (Pollen et al. 2023). Therefore, cellular systems that can model aspects of primate

development in vitro are essential.

1.3.3 Generation and characterization of primate iPSCs

A widely used system for this purpose is induced pluripotent stem cells (iPSCs) (Wunderlich

et al. 2014), which can be maintained in culture and differentiated in a wide range of cell

types and organoid systems. In early approaches, pluripotent stem cells were obtained as

embryonic stem cells from human and primate blastocysts (Thomson et al. 1995; Thomson

et al. 1998). The possibility to generate iPSCs by reprogramming somatic cells revolutionized

the field by providing an ethical and accessible alternative to embryonic stem cells. Soon

after the initial experiments in mice (Takahashi and Yamanaka 2006), this technology was

successfully adapted to generate the first human iPSC lines (Takahashi et al. 2007; Yu et al.

2007) as well as iPSCs from rhesus macaques, an NHP model organism (Liu et al. 2008). By

2023, researchers have derived over 100 iPSC lines from NHPs (Anwised et al. 2023).

An important consideration for the generation of primate iPSC lines is the availability
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of primary cells. A majority of studies so far used skin fibroblasts or blood samples as

source material (Juan et al. 2023). These cells are typically obtained post-mortem or during

medical procedures and are a somatic cell type for which the reprogramming process is

well established in humans (Raab et al. 2014). In a study by Geuder et al. (2021), urine

from NHPs was explored as a non-invasive alternative. In this study, I contributed to the

transcriptomic characterization of the primary urine cells and reprogrammed iPSCs.

Once a new stem cell line has been established, it is crucial to validate it. For human

cell lines, some standardized protocols and recommendations have been defined to streamline

the process (Ludwig et al. 2023). This includes the use of functional assays such as teratoma

formation or in vitro differentiation into all three germ layers (ectoderm, mesoderm and

endoderm) to confirm pluripotency. Additionally, the undifferentiated state can be validated

by the presence of specific marker genes. Moreover, genome stability is a critical aspect

of validation, with karyotyping routinely performed to detect chromosomal abnormalities.

Importantly, authentication is necessary to ensure the identity of the cell line can be reliably

verified in the future. For human cell lines, this is commonly achieved using short tandem

repeat (STR) analysis.

While proper validation is equally important for NHP iPSC lines, the protocols are

less standardized and approaches developed for human cell lines are not always directly

applicable (Yang et al. 2018). For instance, established markers for humans may exhibit

different cell type specificities in NHPs and antibodies are often susceptible to cross-reactivity

(Bjornson-Hooper et al. 2022). Furthermore, STR panels have been developed or adapted

from human panels for certain primate species, including rhesus macaques (Kanthaswamy

et al. 2006), African green monkeys (Almeida et al. 2011) and chimpanzees (Singh et al.

2019). However, due to their species-specific nature, STR panels are unlikely to generalize

across non-human primates, and comprehensive validation would be required for each species

individually.

Bulk and single-cell RNA-seq offers a versatile readout for cell line characterization and

authentication in NHPs. First of all, comparing whole transcriptomes to reference cell types

allows for characterization independent of individual markers and antibody specificity. In

this context, I contributed to the characterization of orangutan and gorilla iPSC lines, as
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well as primary cells, by classifying bulk RNA-seq profiles with a reference dataset of human

cell types (Geuder et al. 2021). Furthermore, sequencing data allows for the identification of

single nucleotide polymorphisms (SNPs), providing an alternative to STR profiling for cell

line authentication. To this end, I compiled a list of informative variants from bulk RNA-seq

data for two baboon iPSC lines (Jocher et al. 2024b) and two vervet monkey iPSC lines

(Jocher et al. 2024c), as well as from scRNA-seq data of three rhesus macaque iPSC lines

(Jocher et al. 2024a). Additionally, scRNA-seq could confirm pluripotency for the rhesus

macaque iPSC lines by demonstrating the presence of cell populations of all three germ layers

in an embryoid body formation experiment (Jocher et al. 2024a).

1.3.4 iPSC-derived organoid systems

The main benefit of having iPSCs from multiple primate species and individuals is their

potential for use in comparative differentiation protocols and organoid models. These systems

not only overcome some limitations in tissue availability, but also enable conducting time-

course measurements and provide a controlled environment for genetic modifications and

other experimental manipulations (Pollen et al. 2023). Their integration with high-throughput

approaches like scRNA-seq is especially powerful for detailed comparative analyses of gene

expression and cellular dynamics across species. In a directed differentiation approach

towards a specific cell type, single-cell resolution makes it possible to distinguish intermediate

differentiation stages and pinpoint species-specific divergence points. For instance, Housman

et al. (2022) used iPSC-derived mesenchymal stem cells from humans and chimpanzees to

study osteogenic differentiation at the single-cell level. They found that while most gene

expression patterns were conserved, hundreds of genes were differentially expressed between

species and the biggest differences were observed in mineralizing osteoblasts, a transitional

cell type.

In recent years, the emergence of organoid models has made it possible to recapitulate

some aspects of tissue organization and development with 3D in vitro models (Clevers

2016). In this case, single-cell transcriptomics helps to dissect the cellular composition

and regulatory programs. Comparative studies building on this synergy of organoid and
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single-cell technologies improve the analysis of cross-species developmental variation. For

instance, several studies have used scRNA-seq data of cerebral organoids to study differences

in cortical development across humans, chimpanzees and other primates (Kanton et al. 2019;

Pollen et al. 2019; Mora-Bermúdez et al. 2016; Fischer et al. 2022). These studies indicated

differences in differentiation speed (Kanton et al. 2019), regulation of signaling pathways in

radial glia cells (Pollen et al. 2019) and the function of human-specific genes (Fischer et al.

2022), all of which may contribute to unique features of human cortical development.

A simple organoid system that is well-suited to study early cell differentiation processes

are embryoid bodies (EBs). They are three-dimensional structures that form by spontaneous

and asynchronous differentiation of pluripotent stem cells (Han et al. 2018; Rhodes et al. 2022).

As such, EBs contain a wide range of different cell types from all three germ layers, as well as

from different stages of differentiation. This high variability is both the greatest strength and

limitation of EBs. On the one hand, it allows to study gene regulation in a broad spectrum of

differentiation processes and cell types. On the other hand, the unpredictable nature of EBs

and variability across replicates and individuals (Rhodes et al. 2022) complicates comparative

analyses. Nevertheless, several studies have used single-cell technologies to dissect the cell

type composition of EBs and study early developmental trajectories in humans (Han et al.

2018; Moon et al. 2019; Rhodes et al. 2022), mouse (Spangler et al. 2018; Kim et al. 2020),

as well as in a comparative setting of human and chimpanzee (Barr et al. 2023).

1.3.5 Computational challenges of cross-species analysis

Using comparable experimental systems is an important step toward meaningful cross-species

comparisons, but comparability also needs to be ensured at every step of the data analysis.

Cross-species analysis presents some unique computational challenges. Cross-species single-

cell studies come with specific computational challenges that affect nearly every step of the

workflow, from generation of the count matrix to cell type annotation. In this section, I will

discuss the main obstacles and the strategies used to address them.
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Comparable feature space

In scRNA-seq, genes serve as the fundamental features for profiling and representing cells.

In cross-species studies, matching genes between species is therefore essential, not only to

directly compare gene expression but also to obtain a shared feature space for cell-level

analyses (Tanay and Sebé-Pedrós 2021). A common approach is to restrict comparisons

to one-to-one orthologs to ensure direct gene correspondence across species. However, this

can substantially reduce the feature space, especially when multiple species are included

(Tarashansky et al. 2021). Alternative strategies aim to incorporate many-to-many gene

relationships to preserve complex gene correspondences. For example, SAMap (Tarashansky

et al. 2021) refines gene mappings based on both sequence and expression similarity and

SATURN (Rosen et al. 2024) identifies functionally related genes using large protein language

models. Besides orthology challenges, genome annotation quality further complicates gene

comparability. While the human genome is well-curated, non-human primate annotations

are often incomplete or inaccurate (Housman and Gilad 2020). These discrepancies can bias

gene mappings and affect downstream analyses.

Batch effects

Technical batch effects are a common challenge in scRNA-seq and can complicate cross-

species comparisons by introducing unwanted variation. These effects can arise at various

experimental stages, potentially obscuring true biological differences or creating misleading

artifacts (Hicks et al. 2018). Distinguishing real cross-species variation from batch effects

is therefore crucial. Careful experimental design can help minimize these issues or allow

them to be accounted for during data processing. One way to reduce batch effects is sample

multiplexing, where cells from different samples are pooled before sequencing (Zhang et al.

2022). When working with samples from different individuals or species, naturally occurring

genetic variants can be used to computationally assign cells back to their sample of origin

(Kang et al. 2018; Xu et al. 2019; Huang et al. 2019; Heaton et al. 2020).
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Homologous cell type assignment

As with most scRNA-seq analyses, organizing single cells into distinct cell types is essential for

cross-species comparisons. However, achieving a consistent and reliable cell type assignment

across species is not always straightforward. Various strategies have been proposed to address

this challenge.

One option is to integrate data from different species and assign cell types on a combined

representation (Figure 4A). In this approach, the species differences are treated as a batch

effect and data integration tools are applied to correct for the species effect and combine the

data in a shared embedding (Shafer 2019). Cell types are then assigned based on clustering

within this shared space. Data integration is a central step in scRNA-seq analysis, and

numerous tools have been developed and evaluated for this purpose. However, a benchmarking

study of integration methods (Luecken et al. 2020) found that cross-species integration,

specifically between human and mouse immune cells, was among the most challenging

scenarios for all tested methods. The species effect is particularly strong compared to

other batch effects and the harsh integration required across species often leads to a loss of

biologically meaningful variation (Luecken et al. 2020). The challenge becomes even greater

when comparing multiple species or when large phylogenetic distances make it difficult to

establish accurate gene orthologies (Tanay and Sebé-Pedrós 2021). More specialized methods,

such as SAMap (Tarashansky et al. 2021) and SATURN (Rosen et al. 2024), aim to improve

cross-species integration by considering sequence similarity and functional relatedness of genes.

SAMap refines gene relationships iteratively based on expression similarity, allowing for the

detection of functional paralogs, while SATURN makes use of protein language models to

align functionally similar genes across species. Indeed, benchmarks of cross-species integration

have shown the effectiveness of these methods especially when combining distantly related

species (Song et al. 2023; Zhong et al. 2025). However, integration can blur species-specific

expression signatures, and overcorrection may lead to loss of cell type distinguishability,

limiting the reliability of annotation in some cases Song et al. 2023.

An alternative approach is to use a well-annotated species as a reference and transfer cell

type labels to the other species (Figure 4B). This effectively turns it into a classification task,
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where the reference species serves as the training set and cell type identities are predicted in

the query species. This method is particularly effective when one species has comprehensive

annotations and the others are expected to have similar cellular compositions. Several

single-cell classification tools, that were originally developed for within-species cell type

prediction, have also been applied and tested for cross-species classification between human

and mouse (Pliner et al. 2019; Tan and Cahan 2019; Abdelaal et al. 2019). Alternatively,

specialized cross-species methods have been developed to improve annotation transfer, even

across greater phylogenetic distances (Liu et al. 2023; Zhang et al. 2024; Park et al. 2024).

However, this approach has certain limitations: it relies on a highly comprehensive reference

dataset and since it assumes that cell types in the query species correspond to those in the

reference, it does not allow for the identification of novel or species-specific cell types.
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Figure 4. Main approaches for cross-species cell type assignment from scRNA-seq
data. A) Integration across species and annotation on a shared embedding. B) Classification
or label transfer from one annotated reference species to the other. C) Independent grouping
of cells within each species, followed by identification of correspondences across species.
Created with BioRender.com

Finally, a third approach involves grouping cells within each species and then matching

these groups across species ((Figure 4C). The grouping can be based on preliminary cell type

annotations or unsupervised clustering. Once clusters are established, they are compared

using different similarity metrics. One popular tool, MetaNeighbor (Crow et al. 2018), applies

a neighbor-voting algorithm to assess how well the transcriptional profile of a cluster is
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retained across species. Other strategies include scoring the similarity of cluster-specific

marker gene lists and fold changes (Gao et al. 2019; González-Velasco et al. 2024) or employing

classification-based metrics that evaluate how well a cluster in one species can be classified

using another species as a reference (Biharie et al. 2023). The final step consists of linking

clusters across species by selecting the most similar pairs or groups of clusters based on

predefined similarity metrics. The main advantage of this approach is that it can preserve

species-specific differences and avoids the risk of overintegration. Nevertheless, it depends on

accurate initial clustering or annotation, making it sensitive to errors in grouping. In addition,

selecting an appropriate similarity metric and matching criteria is not straightforward.

The choice of the general approach and particular methods ultimately depends on features

of the dataset like the number of species, phylogenetic distances and the complexity and

overlap of the cell type compositions. There is no "one-for-all" solution to the problem of cell

type matching across species and careful evaluation of the final assignments remains crucial.



1.4 Aims of the thesis

The aim of this thesis is to improve the methodological basis for cross-species scRNA-seq,

with a focus on primates. To this end, the work addresses key technical and conceptual

challenges that affect how reliably scRNA-seq data can be interpreted in a comparative

context. The specific aims are as follows:

• To assess and quantify the impact of ambient RNA contamination in single-cell and

single-nucleus RNA-seq data and to evaluate correction strategies using species-mixing

experiments as a benchmarking framework.

• To support comparative primate studies by validating and characterizing iPSC lines

from multiple non-human primates and to provide a reference dataset for early primate

differentiation dynamics using an embryoid body model.

• To explore how reliably marker genes can be used across species and to better

understand the challenges of assigning cell types in a cross-species setting.

Together, these studies aim to improve the quality and reliability of cross-species single-cell

analyses and to support more accurate biological interpretation.
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Abstract 

Background:  In droplet-based single-cell and single-nucleus RNA-seq experiments, 
not all reads associated with one cell barcode originate from the encapsulated cell. 
Such background noise is attributed to spillage from cell-free ambient RNA or barcode 
swapping events.

Results:  Here, we characterize this background noise exemplified by three scRNA-
seq and two snRNA-seq replicates of mouse kidneys. For each experiment, cells from 
two mouse subspecies are pooled, allowing to identify cross-genotype contaminat-
ing molecules and thus profile background noise. Background noise is highly variable 
across replicates and cells, making up on average 3–35% of the total counts (UMIs) per 
cell and we find that noise levels are directly proportional to the specificity and detect-
ability of marker genes. In search of the source of background noise, we find multiple 
lines of evidence that the majority of background molecules originates from ambient 
RNA. Finally, we use our genotype-based estimates to evaluate the performance of 
three methods (CellBender, DecontX, SoupX) that are designed to quantify and remove 
background noise. We find that CellBender provides the most precise estimates of 
background noise levels and also yields the highest improvement for marker gene 
detection. By contrast, clustering and classification of cells are fairly robust towards 
background noise and only small improvements can be achieved by background 
removal that may come at the cost of distortions in fine structure.

Conclusions:  Our findings help to better understand the extent, sources and impact 
of background noise in single-cell experiments and provide guidance on how to deal 
with it.
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Background
Single cell and single nucleus RNA-seq (scRNA-seq, snRNA-seq) are in the process of 
revolutionizing medical and biological research. The typically sparse coverage per cell 
and gene is compensated by the capability of analyzing thousands of cells in one experi-
ment. In droplet-based protocols such as 10x  Chromium, this is achieved by encap-
sulating single cells in droplets together with beads that carry oligonucleotides. These 
usually consist of a oligo(dT) sequence which is used for priming reverse transcription, 
a bead-specific barcode that tags all transcripts encapsulated within the droplet as well 
as unique molecular identifiers (UMIs) that enable the removal of amplification noise 
[1–3]. As proof of principle that each droplet encapsulates only one cell, it is common to 
use mixtures of cells from human and mouse [3]. Thus doublets, i.e., droplets containing 
two cells, can be readily identified as they have an approximately even mixture of mouse 
and human transcripts. However, barcodes for which the clear majority of reads is either 
mouse or human, still contain a small fraction of reads from the other species [3–5]. Fur-
thermore, presumably empty droplets also yield sequence reads [4].

One potential source of such contaminating reads or background noise is cell-free 
“ambient” RNA that leaked from broken cells into the suspension. The other potential 
source are chimeric cDNA molecules that can arise during library preparation due to 
so-called ’barcode swapping’. The pooling of barcode tagged cDNA after reverse tran-
scription but before PCR amplification, is a decisive step to achieve high throughput. 
However, if amplification of tagged cDNA molecules occurs from unremoved oligo-
nucleotides from other beads or from incompletely extended PCR products (originally 
called template jumping [6]), this generates a chimeric molecule with a “swapped” bar-
code and UMI [7, 8]. When sequencing this molecule, the cDNA is assigned to the wrong 
barcode and hence “contaminates” the expression profile of a cell. However, unless the 
swapping occurs between two different genes, the barcode and UMI will still be counted 
correctly. Another type of barcode swapping can occur during PCR amplification on a 
patterned Illumina flowcell before sequencing [9] with the same effects, although double 
indexing of Illumina libraries has reduced this problem substantially. This said, here we 
focus on barcode swapping that occurs during library preparation.

Irrespective of the source of background noise, its presence can interfere with analy-
ses. For starters, background noise reduces the separability of cell type clusters as well 
as the power to pinpoint important (marker) genes via differential expression analysis. 
Moreover, reads from cell type-specific marker genes spill over to cells of other types, 
thus yielding novel marker combinations and hence implying the presence of novel 
cell types [8, 10]. Besides, background noise can also confound differential expression 
analysis between samples, e.g., when looking for expression changes within a cell type 
between two conditions. Varying amounts of background noise or differences in the 
cell type composition between conditions can result in dissimilar background profiles, 
which might generate false positives when identifying differentially expressed genes. To 
alleviate such problems during downstream analysis, algorithms to estimate and correct 
for the amounts of background noise have been developed.

SoupX estimates the contamination fraction per cell using marker genes and then 
deconvolutes the expression profiles using empty droplets as an estimate of the back-
ground noise profile [11]. In contrast, DecontX defaults to model the fraction of 
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background noise in a cell by fitting a mixture distribution based on the clusters of good 
cells [8], but also allows the user to provide a custom background profile, e.g., from 
empty droplets. CellBender requires the expression profiles measured in empty drop-
lets to estimate the mean and variance of the background noise profile originating from 
ambient RNA. In addition, CellBender explicitly models the barcode swapping contribu-
tion using mixture profiles of the ’good’ cells [4].

In order to evaluate method performance, one dataset of an even mix between one 
mouse and one human cell line [3] is commonly used to get an experimentally deter-
mined lower bound of background noise levels that is identified as counts covering genes 
from the other species [4, 8, 11, 12]. Since this dataset is lacking in cell type diversity, it is 
common to additionally evaluate performance based on other datasets that have a com-
plex cell type mixture and where most cell types have well known profiles with exclusive 
marker genes. In such studies the performance test is whether the model removes the 
expression of the exclusive marker genes from the other cell types. In both cases, the fea-
ture space of the contamination does not overlap with the endogenous cell feature space. 
Mouse and human are too diverged, so that mouse reads only map to mouse genes and 
human reads only to human genes. Similarly, when using marker genes it is assumed that 
they are exclusively expressed in only one cell type, hence the features that are used for 
background inference are again not overlapping. However, in reality background noise 
will mostly induce shifts in expression levels that cannot be described in a binary on or 
off sense and it remains unclear how background correction will affect those profiles.

Here, we use a mouse kidney dataset representing a complex cell type mixture from 
three mouse strains of two subspecies, Mus musculus domesticus and M. m. castaneus. 
From both subspecies, inbred strains were used and thus we can distinguish exogenous 
and endogenous counts for the same features using known homozygous SNPs [13]. 
Hence, this dataset serves as a much more realistic experimental standard, providing a 
ground truth in a complex setting with multiple cell types which allows to analyze the 
variability, the source and the impact of background noise on single cell analysis. Moreo-
ver, this dataset enables us to better benchmark existing background removal methods.

Results
Mouse kidney single cell and single nucleus RNA‑seq data

We obtained three replicates for single cell RNA-seq (rep1-3) data and two replicates 
for single nucleus RNA-seq (snRNA-seq, nuc2 and nuc3) data from the same samples 
that were used in scRNA-seq replicates 2 and 3, respectively. Each replicate consists of 
one channel of 10× [3] in which cells from dissociated kidneys of three mice each were 
pooled: one M. m. castaneus from the strain CAST/EiJ (CAST) and two M. m. domes-
ticus, one from the strain C57BL/6J (BL6) and one from the strain 129S1/SvImJ (SvImJ) 
(Fig.  1A). Based on known homozygous SNPs that distinguish subspecies and strains, 
we assigned cells to mice (Fig. 1B). In total, we identified > 40, 000 informative SNPs of 
which the majority (32,000) separates the subspecies and ∼ 10, 000 SNPs distinguish the 
two M. m. domesticus strains (Fig. 1C). On average, each cell had sufficient coverage for 
∼ 1, 000 informative SNPs ( ∼ 20% of total UMIs per cell) to provide us with unambigu-
ous genotype calls for those sites. The coverage for the nuc2 data was much lower with 
only ∼ 100 SNPs (Fig. 1D).
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Overall, each experiment yielded 5000–20,000 good cells with 9–43% M. m. castaneus 
(Fig. 1B). Thus, the majority of background noise in any M. m. castaneus cell is expected 
to be from M. m. domesticus (Additional file 1: Fig. S1B) and therefore we expect that 
genotype-based estimates of cell-wise amounts of background noise for M. m. castaneus 
to be fairly accurate (Additional file 1: Fig. S2). Hence from here on out we focus on M. 
m. castaneus cells for the analysis of the origins of background noise and also as the 
ground truth for benchmarking background removal methods.

This dataset has two advantages over the commonly used mouse-human mix [3]. 
Firstly, the kidney data have a high cell type diversity. Using the data from Denisenko 
et  al. [14] as reference dataset for kidney cell types, we could identify 13 cell types. 

Fig. 1  Generation of mouse strain mixture datasets to quantify background noise. A Experimental 
design (created with BioRender.com). B Strain composition in 5 different replicates, subjected to scRNA-seq 
(rep1-3) or snRNA-seq (nuc2, nuc3). The replicates rep2 and nuc2 and rep3 and nuc3 were generated 
from the same samples each. CAST: CAST/EiJ strain; BL6: C57BL/6J strain; SvImJ: 129S1/SvImJ. C Number of 
homozygous SNPs with a coverage of more than 100 UMIs that distinguish one strain from the other two. 
D Per cell coverage in M. m. castaneus cells of informative variants that distinguish M. m. castaneus and M. 
m. domesticus. E Cell type composition per replicate and strain; labels were obtained by reference-based 
classification using mouse kidney data from Denisenko et al. [14] as reference. F UMAP visualization of M. m. 
castaneus cells in single-cell replicate 2, colored by assigned cell type. PT, proximal tubule; CD_IC, intercalated 
cells of collecting duct; CD_PC, principal cells of collecting duct; CD_Trans, transitional cells of collecting 
duct; CNT, connecting tubule; DCT, distal convoluted tubule; Endo, endothelial; Fib, fibroblasts; aLOH, 
ascending loop of Henle; dLOH, descending loop of Henle; MC, mesangial cells; Podo, podocytes
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Encouragingly, the cell type composition is very similar across mouse strains as well as 
replicates with proximal tubule cells constituting 66–89% of the cells (Fig. 1E, F; Addi-
tional file 1: Fig. S3). Secondly, due to the higher similarity of the mouse subspecies, we 
can identify contaminating reads for the same features. ∼ 7, 000 genes carry at least one 
informative SNP about the subspecies. Because so many genes have informative SNPs, 
the fraction of UMIs that cover an informative SNP is a little higher for PTs, the most 
frequent cell type, but very comparable across all other cell types, allowing us to quantify 
contaminating reads (Additional file 1: Fig. S1A).

Background noise fractions differ between replicates and cells

Around 5–20% of the UMI counts are from molecules that contain a SNP that is inform-
ative about the subspecies of origin. We quantify in each M. m. castaneus cell how often 
an endogenous M. m. castaneus allele or a foreign M. m. domesticus allele was covered. 
Assuming that the count fractions covering the SNPs are representative of the whole cell, 
we detect a median of 2–27% counts from the foreign genotype over all cells per experi-
ment (Additional file 1: Fig. S1C). This observed cross-genotype contamination fraction 
represents a lower bound of the overall amounts of background noise. As suggested in 
Heaton et al. [15], we then integrate over the foreign allele fractions of all informative 
SNPs to obtain a maximum likelihood estimate of the background noise fraction ( ρcell ) 
of each cell that extrapolates to also include contamination from the same genotype 
(see the “Methods” section, Additional file 1: Fig. S2). Based on these estimates, we find 
that background noise levels vary considerably between replicates and do not appear 
to depend on the overall success of the experiment measured as the cell yield per lane 
(Fig. 2). For example in scRNA-seq rep3 (3900 cells), we detected overall the fewest good 
cells, but most of those cells had less than 3% background noise, while the much more 
successful rep2 (15,000 cells) we estimated the median background noise level at around 
11% (Fig. 2A). This said, the snRNA-seq data generated from frozen tissue have much 
higher background levels than the corresponding scRNA-seq replicates — 35% in nuc2 
vs. 11% rep2 and 17% in nuc3 vs. 3% in rep3. How we define good cells based on the UMI 
counts has little impact on this variability. We still find by far the highest background 
levels in nuc2 and the lowest in rep3 (Additional file 1: Fig. S4). This high variability is 
not very surprising. This being a real life experiment and experimental conditions were 
improved for nuc3 based on the experience with nuc2 (see the “Methods” section). The 

Fig. 2  The level of background noise is variable across replicates and single cells. A Estimated fraction 
of background noise per cell. The replicates on the x-axis are ordered by ascending median background 
noise fraction. B In M. m. castaneus cells both endogenous M. m. castaneus specific alleles (x-axis) and M. m. 
domesticus specific alleles (y-axis) have coverage in each cell. The detection of M. m. domesticus specific alleles 
can be seen as background noise originating from cells of a different mouse
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number of contaminating RNA-molecules (UMIs) depends only weakly on the total 
UMI counts covering informative variants as a proxy for sequencing depth of the cell 
(Fig. 2B, Additional file 1: Table S1). Such a weak correlation could be explained by vari-
ation in the capture efficiency in each droplet. An alternative, but not mutually exclusive 
explanation of such a correlation could be that the source of some contaminating mol-
ecules is barcode swapping that can occur during library amplification.

However, by and large the absolute amount of background noise is approximately con-
stant across cells and thus the contamination fraction mainly depends on the amount of 
endogenous RNA: the larger the cell, the smaller the fraction of background noise, point-
ing towards ambient RNA as the major source of the detected background (Fig. 2B).

Contamination profiles show a high similarity to ambient RNA profiles

In order to better understand the effects of background noise, it is helpful to understand 
its origins and composition. To this end, we constructed profiles representing endog-
enous, contaminating and ambient expression profiles by using M. m. domesticus allele 
counts in M. m. domesticus cells (endogenous), M. m. domesticus allele counts in M. m. 
castaneus cells (contamination) and M. m. domesticus allele counts in empty droplets 
(empty) (Fig. 3A , B; Additional file 1: Fig. S5A-E).

The number of contaminating UMI counts per cell is at a similar level as the UMI 
counts in empty droplets in all replicates (Fig. 3C, Additional file 1: Fig. S5F). Moreover, 
if the median UMI count in empty droplets is high for one replicate, we also observe 

Fig. 3  Characterization of ambient RNA in cells and empty droplets. A Ordering droplet barcodes by their 
total UMI count to distinguish cell-containing droplets with high UMI counts from empty droplets that only 
contain cell-free ambient RNA and are identifiable as a plateau in the UMI curve, shown here for replicate 
2. B UMI counts of reads covering M. m. domesticus specific alleles were used to construct three profiles 
depending on whether they were associated with M. m. domesticus cell barcodes (endogenous counts, 
endo), M. m. castaneus cell barcodes (contaminating counts, cont) or empty droplet barcodes (empty). 
Counts from droplets that are not clearly assignable as cell-containing or empty were excluded from further 
analysis (other). C UMI counts per cell for each of the three profiles. D Spearman rank correlation between 
pseudobulk profiles. Error bars indicate 95% confidence intervals obtained by bootstrapping over genes. E 
Deconvolution of cell type contributions to each pseudobulk profile, exemplified by replicates rep2 and nuc2. 
The stacked barplots depict the estimated fraction of each cell type in the profile as inferred by SCDC using 
the annotated single cell data of each replicate as reference. PT, proximal tubule; CD_IC, intercalated cells of 
collecting duct; CD_PC, principal cells of collecting duct; CD_Trans, transitional cells of collecting duct; CNT, 
connecting tubule; DCT, distal convoluted tubule; Endo, endothelial; Fib, fibroblasts; aLOH, ascending loop of 
Henle; dLOH, descending loop of Henle; MC, mesangial cells; Podo, podocytes. F Fraction of reads covering 
intronic variants in each of the three profiles
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more contaminating UMIs, which is also consistent with ambient RNA as the main 
source for background noise.

In addition, when comparing pseudobulk aggregates of the three scRNA-seq replicates, 
we find that the contamination profiles correlate highly and similarly well with empty 
(Spearman’s ρ = 0.73− 0.85 ) and endogenous profiles (Spearman’s ρ = 0.70− 0.87 ), 
while for the nuc2 and nuc3 the contamination profiles are clearly more similar to the 
empty (Spearman’s ρ ∼ 0.85 ) than to the endogenous profiles (Spearman’s ρ ∼ 0.50 ) 
(Fig. 3B).

Using deconvolution analysis[16], we reconstructed the cell type composition from 
the pseudobulk profiles. In agreement with the correlation analysis, we find that in our 
scRNA-seq data the cell type compositions inferred for endogenous, contamination and 
empty counts are by and large similar with a slight increase in the PT-profile in empty 
droplets, suggesting that this cell type is more vulnerable to dissociation procedure than 
other cell types. In contrast, deconvolution of the empty droplet and contamination 
fraction of nuc2 and nuc3, that in contrast to the scRNA-seq data were prepared from 
frozen samples, shows a clear shift in cell type composition with a decreased PT fraction 
(Fig. 3C, Additional file 1: Fig. S6).

Moreover, we expect that cytosolic mRNA contributes more to the contaminat-
ing profile than to the endogenous profile. Indeed, in our snRNA-seq data we find that 
in good nuclei (endogenous molecules) more than 25% of the allele counts fall within 
introns, while out of the molecules from empty droplets less than 18% fall within introns 
(Fig. 3D). Similarly also in the scRNA-seq data, we find with ∼ 14% more intron vari-
ants than in empty droplets. The intron fraction of the contaminating molecules lies in-
between the endogenous and the empty droplet fraction, but is in all cases much closer 
to the empty intron fraction, thus suggesting again that the majority of the background 
noise likely originates from ambient RNA.

Only little evidence for barcode swapping

In addition to ambient RNA, barcode swapping resulting from chimera formation dur-
ing PCR amplification can also contribute to background noise. With the 12bp UMIs 
from 10x, the probability that we capture the same UMI-cell barcode combination 
twice independently is very low, hence how often we find the same combination of cell 
barcode and UMI associated with more than one gene is a good measure for barcode 
swapping [7]. The median fraction of such chimeric molecules varies between 0.2% for 
rep3 and 0.7% for nuc3 (Additional file 1: Fig. S7A). In line with our expectations out-
lined before, the absolute amount of swapping per cell correlates strongly with the total 
molecule count (Additional file 1: Table S1). In combination with the weak correlation 
between the number of contaminating with endogenous molecule counts, this supports 
the notion that the majority of background noise does not come from swapping. To be 
more quantitative, we combine the swapping and the total background fractions to esti-
mate how much swapping could contribute to the total background and find that the 
median contribution of barcode swapping to background noise is lower than 10% for all 
replicates (Additional file 1: Fig. S7B).

Furthermore, molecules with a swapped barcode are expected to have a lower aver-
age number of reads per UMI. This is because chimera that are formed late during PCR 
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subsequently undergo less amplification [7]. Thus, if the majority of contaminating 
reads were to originate from barcode swapping, we would expect that the distribution 
of reads per UMI for cross-genotype contaminating molecules (cont) is similar to that 
of observed chimeras. This is not what we see (Additional file 1: Fig. S7C): The distribu-
tion of reads per UMI for contaminating reads is much more distinct from the distri-
bution for chimeras (Kolmogorov-Smirnov distance, �n = 0.381 (rep3) to 0.595 (nuc3)) 
than for endogenous reads ( �n = 0.008 (rep2) to 0.046 (rep3)). In summary, we find that 
barcode swapping during library preparation only contributes little to the overall back-
ground noise in this data.

The impact of contamination on marker gene analyses

The ability to distinguish hitherto unknown cell types and states is one of the greatest 
achievements made possible by single cell transcriptome analyses. To this end, marker 
genes are commonly used to annotate cell clusters for which available classifications 
appear insufficient. An ideal marker gene would be expressed in all cells of one type 
but in none of the other present cell types. Thus, when comparing expression levels of 
one cell type versus all others, we expect high log2-fold changes, the higher the change 
the more reliable the marker. However, such a reliance on marker genes also makes this 
type of analysis vulnerable to background noise. Our whole kidney data can illustrate 
this problem well, because with the very frequent proximal tubular (PT) cells we have 
a dominant cell type for which rather specific marker genes are known [17]. Slc34a1 
encodes a phosphate transporter that is known to be expressed exclusively in PT cells 
[18, 19]. As expected, it is expressed highly in PT cells, but it is also present in a high 
fraction of other cells (Fig.  4A, E; Additional file  1: Fig. S8). Moreover, the log2-fold 
changes of Slc34a1 are smaller in replicates with larger background noise, indicating that 

Fig. 4  Background noise affects differential expression and specificity of cell type specific marker genes. 
A UMAP representation of replicate 2 colored by the expression of Slc34a1, a marker gene for cells of the 
proximal tubule (PT). Besides high counts in a cluster of PT cells, Slc34a1 is also detected in other cell type 
clusters. Differential expression analysis between PT and all other cells shows a decrease of the detected log 
fold change of Slc34a1 (B) at higher background noise levels, as well as an increase of the fraction of non PT 
cells in which UMI counts of Slc34a1 were detected (C). D Estimation of the background noise fraction of 
Slc34a1 expression indicates that the majority of counts in non PT cells originates from background noise. 
Error bars indicate 90% profile likelihood confidence intervals. E Heatmap of marker gene expression for 
four cell types in replicate 2, downsampled to a maximum of 100 cells per cell type. F Comparison across 
replicates of log2 fold changes of 10 PT marker genes calculated based on the mean expression in PT cells 
against mean expression in all other cells. G For the same set of genes as in E, the log ratio of fraction of cells 
in which a gene was detected in others and PT cells shows how specific the gene is for PT cells
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the detection of Slc34a1 in non-PT cells is likely due to contamination (Fig. 4B–D). We 
observe the same pattern for other marker genes as well: they are detected across all 
cell types (Fig. 4E, Additional file 1: Fig. S9) and an increase of background noise levels 
goes along with decreasing log2-fold changes and increasing detection rates in other cell 
types (Fig.  4F,G). Thus, the power to accurately detect marker genes decreases in the 
presence of background noise.

Benchmark of background noise estimation tools

Given that background noise will be present to varying degrees in almost all scRNA-
seq and snRNA-seq replicates, the question is whether background removal methods 
can alleviate the problem without the information from genetic variants. SoupX [11], 
DecontX [16] and CellBender [4], all provide an estimate of the background noise level 
per cell. Here, we use our genotype-based background estimates as ground truth to 
compare it to the estimates of the three background removal methods (Fig. 5A, Addi-
tional file  1: Fig. S10). All methods have adjustable parameters, but also provide a set 
of defaults. For CellBender the user can adjust the nominal false positive rate to put 
a cap on losing information from true counts. For SoupX and DecontX the resolu-
tion of the clustering of cells that is later used to model the endogenous counts can be 
adjusted. In addition, SoupX can be provided with an expected background level and 
for DecontX the user can provide a custom background profile rather than using the 

Fig. 5  Accuracy of computational background noise estimation. A Estimated background noise levels 
per cell based on genetic variants (gray) and different computational tools. B Taking the genotype-based 
estimates as ground truth, Root Mean Squared Logarithmic Error (RMSLE) and Kendall rank correlation serve 
as evaluation metrics for cell-wise background noise estimates of different methods. Low RMSLE values 
indicate high similarity between estimated values and the assumed ground truth. High values of Kendall’s τ 
correspond to good representation of cell to cell variability in the estimated values
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default estimation strategy for the background profile. At least with our reference data-
set, CellBender does not seem to profit from changing the defaults, while SoupX’s per-
formance is boosted, if provided with realistic background levels (Additional file 1: Fig. 
S15). Because in a real case scenario, the true background level is unknown, we decided 
to report the SoupX performance metrics under default settings. DecontX defaults to 
estimating the putative background profile from averaging across intact cells. To ensure 
comparability, we report DecontX’s performance with empty droplets as background 
profile (DecontXbackground ) in addition to DecontX with default settings (DecontXdefault).

We find that CellBender and DecontX can estimate background noise levels similarly 
well for the scRNA-seq replicates, while SoupX tends to underestimate background 
levels and also cannot capture the cell to cell variation as measured by the correlation 
with the ground truth (Fig. 5B). For nuc2 and nuc3 , SoupX performs better at estimat-
ing global background levels, but as for the scRNA-seq still cannot capture cell to cell 
variation. In contrast, both CellBender and DecontX perform worse for nuc2 and nuc3. 
Moreover for nuc2 and nuc3, DecontX with default setting provides worse estimates 
than with empty droplets as background profile.

All in all, CellBender shows the most robust performance across replicates with default 
settings, while DecontX’ and SoupX’ performance seems to require parameter tuning. 
A drawback of CellBender is its runtime. While SoupX and DecontX take seconds and 
minutes to process one 10× channel, CellBender takes ∼ 45 CPU hours. However, paral-
lelization is possible.

All methods struggled most with the nuc3 replicate that has the fewest M. m. cas-
taneus cells and the lowest cell type diversity among our five data sets (Fig. 1B, E). This 
also presents a problem for other downstream analyses and thus we do not consider 
nuc3 further.

Effect of background noise removal on marker gene detection

Above we have shown that computational methods can estimate background noise lev-
els per cell. Moreover, all three methods provide the user with a background corrected 
count matrix for downstream analysis. Here, we compare the outcomes of marker 
gene detection, clustering and classification when using corrected count matrices from 
SoupX, DecontX, and CellBender (Fig. 6A, Additional file 1: Fig. S11). To characterize 
the impact on marker gene detection, we first check in how many cells an unexpected 
marker gene was detected; for example, how often Slc34a1 was detected in cells other 
than PTs (Fig. 6B). Without correction we find Slc34a1 reads in ∼ 60% of non-PT cells 
of rep2, SoupX reduces this rate to 54%, CellBender to 7% and DecontXbackground to 
9%. DecontXdefault manages to remove most contaminating reads reducing the Slc34a1 
detection rate outside PTs to 2%. While we find a similar ranking when averaging across 
several marker genes from the PanglaoDB database [17] and scRNA-seq replicates 
(Fig. 6C), the ranking changes for nuc2: DecontXdefault fails: after correction, Slc34a1 is 
still found in 87% of non-PT cells while DecontXbackground is better with a rate of 20%. 
Here, CellBender and SoupX are clearly better with reducing the Slc34a1 detection rate 
to 4% and < 1% , respectively (Additional file 1: Fig. S12).

Even though the changes in the marker gene detection rates outside the designated 
cell type seem dramatic (Additional file 1: Fig. S13A), the identification of marker genes 
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[21] is affected only a little. CellBender correction has the largest effect on marker gene 
detection, yet 8 from the top 10 genes without correction remain marker genes with 
CellBender correction (Spearman’s correlation for top 100 ρ = 0.84 ). In contrast, in 
the nuc2 data with high background levels, the change in marker gene detection is dra-
matic. Here, only one of the top 10 marker genes remains after correction (Spearman’s 

Fig. 6  Effect of background removal on downstream analysis. A UMAP representation of replicate 2 
single-cell data before and after background noise correction, colored by cell type labels obtained from 
reference based classification. Individual cells that received a new label after correction are highlighted. 
PT, proximal tubule; CD_IC, intercalated cells of collecting duct; CD_PC, principal cells of collecting duct; 
CD_Trans, transitional cells of collecting duct; CNT, connecting tubule; DCT, distal convoluted tubule; Endo, 
endothelial; Fib, fibroblasts; aLOH, ascending loop of Henle; dLOH, descending loop of Henle; MC, mesangial 
cells; Podo, podocytes. B Expression of the PT cell marker Slc34a1 before and after background noise 
correction in replicate 2. Cells that were classified as PT cells in the uncorrected data, but got reassigned after 
correction, are highlighted. C, D Differential expression analysis of 10 PT markers, evaluating the expression 
fraction in non-PT cells (C) and the log2 fold change between PT and all other cells (D). E Evaluation metrics 
for the effect of background noise correction on classification and clustering. For each metric the change 
relative to the uncorrected data is depicted. The values were scaled by the possible range of each metric. 
Prediction score: cell-wise score “delta” of reference based classification with SingleR [20]. Average silhouette: 
Mean of silhouette widths per cell type. Purity: Cluster purity calculated on cell type labels as ground truth 
and Louvain clusters as test labels. k-NN overlap: overlap of the k=50 nearest neighbors per cell compared to 
genotype-cleaned reference k-NN graph
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correlation for top 100 ρ = 0.04 ). The largest improvement is achieved with CellBender: 
After correction, four out of the top 10 were known marker genes [17], while this over-
lap amounted to only one in the raw data (Additional file 1: Fig. S13B). Moreover, we 
find that background removal also increases the detected log-fold-changes of known 
marker genes across all replicates and methods, with CellBender providing the largest 
improvement (Fig. 6D, Additional file 1: Fig. S13C).

Effect of background noise removal on classification and clustering

One of the first and most important tasks in single cell analysis is the classification of cell 
types. As described above, we could identify 13 cell types in our uncorrected data using 
an external single cell reference dataset [14, 20]. Going through the same classification 
procedure after correction for background noise, changes the classification of only very 
few cells (Fig. 6A, Additional file 1: Fig. S11). For the scRNA-seq experiments < 1% and 
for the nuc2 up to 1.3% of cells change labels after background removal compared to the 
classification using raw data. Before correction, these cells are mostly located in clusters 
dominated by a different cell type (Fig. 6A). Moreover, these cells tend to have higher 
background levels as exemplified by the PT-marker gene Slc34a1 (Fig. 6B). Finally, back-
ground removal —  irrespective of the method - improves the classification prediction 
scores (Fig.  6E, Additional file  1: Fig. S14). Together, this indicates that background 
removal improves cell type classification.

Similarly, background removal also results in more distinct clusters. Here, we reason 
that cells of the same cell type should cluster together and evaluate the impact of back-
ground removal (1) on the silhouette scores for cell types and (2) on the cell type purity 
of each cluster using unsupervised clustering (Fig. 6E). For the scRNA-seq data DecontX 
results in the purest and most distinct clusters, while for the nuc2 data SoupX wins in 
these categories.

All in all, it seems clear that all background removal methods sharpen the broad struc-
ture of the data a little, but how about fine structure? To answer this question, we turn 
again to the genotype cleaned data to obtain a ground truth for the k-nearest neighbors 
of a cell and calculate how much higher the overlap of the background corrected data is 
with this ground truth as compared to using the raw data (Fig. 6E). For the scRNA-seq 
data, DecontX has the largest improvement on the broad structure, but at same time 
in particular DecontXbackground lowers the overlap in k-NN with our assumed ground 
truth, suggesting that this change in structure is a distortion rather than an improve-
ment. SoupX leaves the fine structure by and large unchanged in the scRNA-seq data, 
while both CellBender and DecontX make the fine structure slightly worse. In contrast, 
for the high background levels of the nuc2, all background removal methods achieve an 
improvement, with SoupX and CellBender performing best.

Discussion
Here we provide a dataset for the characterization of background noise in 10× Genom-
ics data that is ideal to benchmark background removal methods. The mixture of cell 
types in our kidney data provides us with realistic cell type diversity and the mixture of 
mouse subspecies enables us to identify foreign alleles in a cell, thus resulting in a data-
set that allows us to quantify background noise across diverse cell types and features. In 
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addition, the replicates exhibit varying degrees of contamination, enabling us to evaluate 
the effects of low, intermediate, and high background levels. Given that every sample 
poses new challenges for the preparation of a suspension of intact cells or nuclei that 
is needed for a 10× experiment, we expect that such variability in sample quality is not 
unusual. Consequently, marker gene identification is affected and markers appear less 
specific, as they are detected in cell types where they are not expressed. The degree of 
this issue directly depends on background noise levels (Fig. 4). This particular problem 
has been observed previously and has been used as a premise to develop background 
correction methods [4, 11, 22].

The novelty of this analysis is that —  thanks to the mix of mouse subspecies — we 
are able to obtain expression profiles that describe the source of contamination in each 
sample and also have a ground truth for a more realistic dataset. We started to char-
acterize background noise by comparing the contamination profile with the profile of 
empty droplets and that of endogenous counts of good cells. In agreement with the idea 
that ambient RNA is due to leakage of cytosol, we find that empty droplets show less 
evidence for unspliced mRNA molecules and that the unspliced fraction in the contami-
nation profiles is similar to that of empty droplets. This is a first hint that a large pro-
portion of the background noise is ambient RNA. In addition, we find only little direct 
evidence for barcode swapping as provided by chimeric UMIs, which only explains up 
to 10% of background noise (Additional file 1: Fig. S7B). Hence, also the observed cor-
relation between cell size and the absolute amounts of background noise per cell in most 
of the replicates is likely due to variation in dropout rates [4] (Fig. 2B, Additional file 1: 
Table S1).

Another important insight from comparing contamination, empty and endogenous 
profiles is that we can deduce the origin of the contamination. While for rep1-3 all three 
profiles are highly correlated and are the result of very similar cell type mixtures, for 
nuc2 and nuc3 the empty and the contamination profiles are distinct from the expected 
endogenous mixture profile. Encouragingly the endogenous profiles of all replicates 
agree well with one another as well as with the cell type proportions from the literature 
[14, 23]. Moreover, the higher similarity of the contamination to the empty than to the 
endogenous profile supports the notion that the majority of background noise is ambi-
ent RNA and hence using the empty rather than the endogenous profile as a reference 
to model background noise is the better choice for our data. Indeed, the performance 
of DecontX for nuc2 is improved by providing the empty droplet profile as compared 
to the endogenous profile which is the default (Fig. 5A). We also observed that SoupX 
performs much better for the snRNA-seq data than the scRNA-seq data. We speculate 
that the marker gene identification that is the basis for estimating the experiment-wide 
average contamination is hampered by the fact that our dataset has one very dominant 
cell type that has the same prevalence in the empty droplets, thus masking all back-
ground. However, even if SoupX gets the overall background levels right, it by design 
grossly underestimates the variance among cells and cannot capture the cell to cell vari-
ation (Fig. 5B, C). Overall CellBender provides the most accurate estimates of the back-
ground noise levels and also captures the cell to cell variation rather well. We note that 
this finding is largely due to the robustness of CellBender to cell type composition and 
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the source of contamination, that determines the similarity between the contamination 
and the endogenous profiles.

In line with this, also marker gene detection is most improved by CellBender, which 
is the only method that removes marker gene molecules from other cell types and 
increases the log-fold-change consistently well. The effect of background removal on 
other downstream analyses is much more subtle. For starters, classification using an 
external reference is rather robust. Even with high levels of background noise, back-
ground removal improves classification only for a handful of cells and we cannot say 
that one method outperforms the others (Fig. 6E, Additional file 1: Fig. S14). Similarly, 
the broad structure of the data improves only minimally and this minimal improvement 
comes at the cost of disrupting fine structure (Fig. 6E). Here, again CellBender strikes 
the best balance between removing variation but preserving the fine structure, while 
DecontX tends to remove too much within-cluster variability, as the k-NN overlap with 
the genotype-based ground truth for DecontX is even lower than for the raw data. All in 
all, CellBender shows the best performance in removing background noise.

Conclusions
Levels of background noise can be highly variable within and between replicates and 
the contamination profiles do not always reflect the cell type proportions of the sam-
ple. Marker gene detection is affected most by this issue, in that known cell type spe-
cific marker genes can be detected in cell clusters where they do not belong. Existing 
methods for background removal are good at removing such stray marker gene molecule 
counts. In contrast, classification and clustering of cells is rather robust even at high 
levels of background noise. Consequently, background removal improves the classifica-
tion of only few cells. Moreover, it seems that for low and moderate background levels 
the tightening of existing broad structures may go at the cost of fine structure. In sum-
mary, for marker gene analysis, we would always recommend background removal, but 
for classification, clustering and pseudotime analyses, we would only recommend back-
ground removal when background noise levels are high.

Methods
Mice

Three mouse strains were ordered from Jackson Laboratory at 6–8 weeks of age: 
C57BL/6J (000664), CAST/EiJ (000928), and 129S1/SvlmJ (002448). All animals were 
subjected to intracardiac perfusion of PBS to remove blood. Kidneys were dissected, 
divided into 1/4s, and subjected to the tissue dissociation protocol, stored in RNAlater, 
or snap-frozen in liquid nitrogen.

Tissue dissociation for single cell isolation

The single cell suspensions were prepared following an established protocol [24] with 
minor modifications. In detail, one of each kidney sagittal quarter from three perfused 
mice of different strains C57BL/6, CAST/EiJ and 129S1/SvImJ were harvested into 
cold RPMI (Thermo Fisher Scientific, 11875093) with 2% heat-inactivated Fetal Bovine 
Serum (Gibco, Thermo Fisher Scientific, 16140-071; FBS) and 1% penicillin/strepto-
mycin (Gibco, Thermo Fisher Scientific, 15140122). Each piece of the tissue was then 
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minced for 2 min with a razor blade in 0.5 ml 1x liberase TH dissociation medium (10x 
concentrated solution from Millipore Sigma, 05401135001, reconstituted in DMEM/
F12(Gibco, Thermo Fisher Scientific, 11320-033 in a petri dish on ice. The chopped tis-
sue pieces were then pooled into one 1.5 ml Eppendorf tube and incubated in a ther-
momixer at 37◦ C for 1 hour at 600rpm with gentle pipetting for trituration every 10 
min. The digestion mix was then transferred to a 15 ml conical tube and mixed with 10 
ml 10% FBS RPMI. After centrifugation in a swinging bucket rotor at 500g for 5 min at 
4 °C and supernatant removal, the pellet was resuspended in 1ml red blood cell lysing 
buffer (Sigma Aldrich, R7757). The suspension was spun down at 500g for 5 min at 4 °C 
followed by supernatant removal. The pellet cleared of the red blood cell ring was then 
resuspended in 250 µ l Accumax (Stemcell Technologies, 7921) and incubated at 37 °C 
for 3 mins. The reaction was stopped by mixing with 5 ml 10% FBS RPMI and spinning 
down at 500g for 5 min at 4 °C followed by supernatant removal. The cell pellet was then 
resuspended in PBS with 0.4% BSA (Sigma, B8667) and passed through a 30 µ m filter 
(Sysmex, 04-004-2326). The cell suspension was then assessed for viability and concen-
tration using the K2 Cellometer (Nexcelom Bioscience) with the AOPIcell stain (Nexce-
lom Bioscience, CS2-0106-5ML).

Nuclei isolation from RNAlater preserved frozen tissue

The single nuclei suspensions were prepared following an established protocol [25] with 
minor modifications. In detail, the RNAlater reserved frozen tissue of 3 mice kidney 
quarters were thawed and transferred to one petri dish preloaded with 1 ml TST buffer 
containing 10 mM Tris, 146 mM NaCl, 1 mM CaCl2, 21 mM MgCl2, 0.03% Tween-20 
(Roche, 11332465001), and 0.01% BSA (Sigma, B8667). It was minced with a razor blade 
for 10 min on ice. The homogenized tissue was then passed through a 40 µ m cell strainer 
(VWR, 21008-949) into a 50 ml conical tube. One ml TST buffer was used to rinse the 
petri dish and collect the remaining tissue into the same tube. It was then mixed with 3 
ml of ST buffer containing 10 mM Tris, 146 mM NaCl, 1 mM CaCl2, and 21 mM MgCl2 
and spun down at 500g for 5 min at 4 °C followed by supernatant removal. In the second 
experiment this washing step was repeated 2 more times. The pellet was resuspended in 
100 µ l ST buffer and passed through a 35 µ m filter. The nuclei concentration was meas-
ured using the K2 Cellometer (Nexcelom Bioscience) with the AO nuclei stain (Nexce-
lom Bioscience, CS1-0108-5ML).

Single‑cell and single‑nucleus RNA‑seq

The cells or nuclei were loaded onto a 10× Chromium Next GEM G chip (10x Genom-
ics, 1000120) aiming for recovery of 10,000 cells or nuclei. The RNA-seq libraries were 
prepared using the Chromium Next GEM Single Cell 3’ Reagent kit v3.1 (10× Genom-
ics, 1000121) following vendor protocols. The libraries were pooled and sequenced on 
NovaSeq S1 100c flow cells (Illumina) with 28 bases for read1, 55 bases for read2 and 8 
bases for index1 and aiming for 20,000 reads per cell.

Processing and annotation of scRNA‑seq and snRNA‑seq data

The scRNA-seq and snRNA-seq data were processed using Cell Ranger 3.0.2 using as 
reference genome and annotation mm10 version 2020A for the scRNA-seq data and and 
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a pre-mRNA version of mm10 2.1.0 as reference for snRNA-seq. In order to identify cell 
containing droplets we processed the raw UMI matrices with the DropletUtils package 
[5]. The function barcodeRanks was used to identify the inflection point on the total 
UMI curve and the union of barcodes with a total UMI count above the inflection point 
and Cell Ranger cell call were defined as cells.

For cell type assignment we used 3 scRNA-seq and 4 snRNA-seq experiments from 
Denisenko et al. [14] as a reference. Cells labeled as “Unknown” (n=46), “Neut” (n=17) 
and “Tub” (n=1) were removed. The reference was log-normalized and split into seven 
count matrices based on chemistry, preservation and dissociation protocol. Subse-
quently, a multi-reference classifier was trained using the function trainSingleR with 
default parameters of the R package SingleR version 1.8.1 [20]. After this processing, we 
could use the data to classify our log-normalized data using the classifySingleR function 
without fine-tuning (fine.tune = F). Hereby, each cell is compared to all seven references 
and the label from the highest-scoring reference is assigned. Some cell type labels were 
merged into broader categories after classification: cells annotated as “CD_IC,” “CD_
IC_A,” or “CD_IC_B” were relabeled as “CD_IC,” cells annotated as “T,” “NK,” “B,” or 
“MPH” were relabeled as “Immune.” Cells that were unassigned after pruning of assign-
ments based on classification scores were removed for subsequent analyses.

Demultiplexing of mouse strains

A list of genetic variants between mouse strains was downloaded in VCF format from 
the Mouse Genomes Project [13], accessed on 21 October 2020. This reference VCF file 
was filtered for samples CAST_EiJ, C57BL_6NJ and 129S1_SvImJ and chromosomes 
1–19. Genotyping of single barcodes was performed with cellsnp-lite [26], filtering for 
positions in the reference VCF with a coverage of at least 20 UMIs and a minor allele fre-
quency of at least 0.1 in the data (–minCOUNT 20, –minMAF 0.1). Vireo [22] was used 
to demultiplex and label cells based on their genotypes. Only cells that could be unam-
biguously assigned to CAST_EiJ (CAST), C57BL_6NJ (BL6) or 129S1_SvImJ (SvImJ) 
were kept, cells labeled as doublet or unassigned were removed.

Genotype‑based estimation of background noise

Based on the coverage filtered VCF-file (see above), we identified homozygous SNPs that 
distinguish the three strains and removed SNPs that had predominantly coverage in only 
one of the strains (1st percentile of allele frequency).

In most parts of the analysis, we focused on the comparison between the mouse sub-
species, M. m. domesticus and M. m. castaneus. To this end, we subseted reads (UMI-
counts) that overlap with SNPs that distinguish the two mouse subspecies.

To estimate background noise levels based on allele counts of genetic variants, an 
approach described in Heaton et  al.[15] was adapted to estimate the total amount of 
background noise for each cells. First, the abundance of endogenous and foreign allele 
counts (i.e., cross-genotype background noise) was quantified per cell. Because of the 
filter for homozygous variants, there are two possible genotypes for each locus, denoted 
as 0 for the endogenous allele, i.e., the expected allele based on the strain assignment of 
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the cell, and 1 for the foreign allele. The probability for observable background noise at 
each locus l in cell c is given by

where ρc is the total background noise fraction in a cell and the experiment wide (over 
cells and empty droplets) foreign allele fraction is calculated from the foreign allele 
counts Al,1 and the endogenous allele counts Al,0 . The foreign allele fraction is then used 
to account for intra-genotype background noise (contamination within endogenous 
allele counts).

The observed allele counts Ac per cell are modeled as draws from a binomial distribu-
tion with the likelihood function:

A maximum likelihood estimate of ρc was obtained using one dimensional optimiza-
tion in the interval [0,1].

The 95% confidence interval of each ρc estimate was calculated as the profile likelihood 
using the function uniroot of the R package stats [27].

Comparison of endogenous, contamination, and empty droplet profiles

Empty droplets were defined based on the UMI curve of the barcodes ranked by UMI 
counts, thus selecting barcodes from a plateau with ∼ 500− 1000 UMIs (Additional 
file 1: Fig. S5). For the following analysis, the presence of M. m. domesticus alleles in M. 
m. domesticus cells (i.e., endogenous), in M. m. castaneus cells (i.e., contamination) and 
empty droplets was compared. After this filtering, we summarized counts per gene and 
across barcodes of the same category to generate pseudobulk profiles.

In order to estimate cell type composition in the empty and contamination profiles, we 
used the deconvolution method implemented in SCDC[16], the endogenous single cell 
allele counts from the respective replicate were used as reference (qcthreshold = 0.6). 
In addition, cell type filtering (frequency>0.75%) was applied. Endogenous, contamina-
tion and empty pseudobulk profiles from each replicate were deconvoluted using their 
respective single cell/single nucleus reference.

To compare the correlation between the different profiles, pseudobulk counts were 
downsampled to the same total size.

Detection of barcode swapping events

Information about the number of reads per molecule and the combination of cell bar-
code (CB), UMI and gene were extracted from the molecule info file in the Cellranger 
output. We assume that a combination of CB and UMI corresponds to a single origi-
nal molecule. Thus we define a PCR chimera as a non-unique CB-UMI combination in 
which multiple genes were associated with the same CB and UMI. Since we can only 
detect PCR chimera, if we detect at least 2 reads for a CB-UMI combination, we also 

(1)p = ρc ∗
Al,1

Al,0 + Al,1

(2)P(Ac|ρc) =

l∈L

Al,c,0 + Al,c,1

Al,c,1
pAl,1(1− p)Al,0
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restrict the total molecule count to CB-UMI combinations with at least 2 reads for the 
calculation of the chimera fraction.

For the comparison of reads/UMI the identified chimera were intersected with iden-
tified cross-genotype contamination. To this end, the the analysis was restricted to M. 
m. castaneus cells and CB-UMI-gene combinations which can be associated with an 
informative SNP. The number of reads/UMI was summarized per CB-UMI-gene com-
bination for chimera (as defined above), unique CB-UMI-gene combinations with cov-
erage for an endogenous allele (endo) and unique CB-UMI-gene combinations with 
coverage for a foreign allele (cont).

Evaluation of marker gene expression

A list of marker genes for Proximal tubule cells (PT), Principal cells (CD_PC), Interca-
lated cells (CD_IC), and Endothelial cells (Endo) was downloaded from the public data-
base PanglaoDB [17], accessed on 13 May 2022.

Log2 fold changes contrasting PT cells against all other cells were calculated with 
Seurat using the function FindMarkers after normalization with NormalizeData. The 
expression fraction e of PT markers was calculated as the fraction of cells for which 
at least 1 count of that gene was detected. To contrast expression fraction in PT cells 
against non-PT, the negative log-ratio was calculated as −log((ePT + 1)/(enon−PT + 1)).

Computational background noise estimation and correction methods

CellBender [4] makes use of a deep generative model to include various potential sources 
of background noise. Cell states are encoded in a lower-dimensional space and an inte-
ger matrix of noise counts is inferred, which is subsequently subtracted from the input 
count matrix to generate a corrected matrix.

The remove-background module of CellBender v0.2.0 was run on the raw feature bar-
code matrix as input, with a default fpr value of 0.01. For the comparison of different 
parameter settings, fpr values of 0.05 and 0.1 were also included in the analysis. For the 
parameter expected-cells the number of cells after cell calling and filtering in each repli-
cate was provided. The parameter total-droplets-included was set to 25,000.

SoupX [11] estimates the experiment-wide amount of background noise based on the 
expression of strong marker genes that are expected to be expressed exclusively in one 
cell type. These genes can either be provided by the user or identified from the data. A 
profile of background noise is inferred from empty droplets. This profile is subsequently 
removed from each cell after aggregation into clusters to generate a corrected count 
matrix.

Cluster labels for SoupX were generated by Louvain clustering on 30 principal compo-
nents and a resolution of 1 as implemented by FindClusters in Seurat after normalization 
and feature selection of 5000 genes. Providing the CellRanger output and cluster labels 
as input, data were imported into SoupX version 1.6.1 and the background noise profile 
was inferred with load10X. The contamination fraction was estimated using autoEst-
Cont and background noise was removed using adjustCounts with default parameters.

For the comparison of parameter settings, different resolution values (0.5, 1, 2) for 
Louvain clustering were tested, alongside with manually specifying the contamination 
fraction (0.1, 0.2).
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DecontX  [8] is a Bayesian method that estimates and removes background noise by 
modeling the expression in each cell as a mixture of multinomial distributions, one 
native distribution cell’s population and one contamination distribution from all other 
cell populations. The main inputs are a filtered count matrix only containing barcodes 
that were called as cells and a vector of cluster labels. The contamination distribution is 
inferred as a weighted combination of multiple cell populations. Alternatively, it is also 
possible to obtain an empirical estimation of the contamination distribution from empty 
droplets in cases where the background noise is expected to differ from the profile of 
filtered cells.

The function decontX from the R package celda version 1.12.0 was run on the filtered, 
unnormalized count matrix and clusters were inferred with the implemented default 
method based on UMAP dimensionality reduction and dbscan [28] clustering. For the 
“DecontX_default” results the parameter “background” was set to NULL, i.e., estimating 
background noise based on cell populations in the filtered data only. “DecontX_back-
ground” results were obtained by providing an unfiltered count matrix including all 
detected barcodes as “background” to empirically estimate the contamination distri-
bution. Besides the default clustering method implemented in DecontX, cluster labels 
obtained from Louvain clustering (resolution 0.5, 1, and 2) were also provided to test 
different parameter settings.

Evaluation metrics

Estimation accuracy

The genotype-based estimates ρc for M. m. castaneus cells served as ground truth to 
evaluate the estimation accuracy of different methods. For each method cell-wise back-
ground noise fractions ac were calculated from the corrected count matrix X and the 
uncorrected (“raw”) count matrix R as

for cells c and genes g.
RMSLE The Root Mean Squared Logarithmic Error (RMSLE) is a lower bound metric 

that we use to quantify the difference between estimated background noise fractions per 
cell ac from different computational background correction methods and the genotype-
based estimates ρc , obtained from genotype based estimation. It is calculated as:

Kendall’s 
 τ To evaluate how well cell-to-cell variation of the background noise fraction is cap-

tured by the estimated values ac , the Kendall rank correlation coefficient τ to the geno-
type-based estimates ρc was computed using the implementation in the R package stats 
[27] as τ = cor(ac, ρc,method = “kendall′′).

(3)ac = 1−

∑

g xc,g
∑

g rc,g

(4)RMSLE =

√

√

√

√

1

n

n
∑

c=1

(log(ac + 1)− log(ρc + 1))2
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Marker gene detection

The same set of 10 PT marker genes from PanglaoDB as in the “Evaluation of marker 
gene expression” section was used to evaluate the improvement on marker gene detec-
tion on corrected count matrices.

Log2 fold change for each gene between the average expression in PT cells and aver-
age expression in other cells were obtained using the NormalizeData and FindMarkers 
functions in Seurat version 4.1.1.

Expression fraction Entries in each corrected count matrix were first rounded to the 
nearest integer. The expression fraction of each gene in a cell population was calculated 
as the fraction of cells for which at least 1 count of that gene was detected. For evalu-
ation of PT marker genes, unspecific detection is defined as the expression fraction in 
non-PT cells.

Cell type identification

Prediction score Each corrected count matrix was log-normalized and reference-based 
classification in SingleR [20] was performed with a pre-trained model (see “Processing 
and annotation of scRNA-seq and snRNA-seq data” section) on data from Denisenko 
et al. [14]. SingleR provides delta values as a measure for classification confidence, which 
depicts the difference of the assignment score for the assigned label and the median 
score across all labels. The delta values for each cell were retrieved using the function 
getDeltaFromMedian relative to the cells highest-scoring reference. A prediction score 
per cell type was calculated by averaging delta values across individual cells and a global 
prediction score per replicate was calculated by averaging across cell type prediction 
scores.

Average silhouette The silhouette width is an internal cluster evaluation metric to 
contrast similarity within a cluster with similarity to the nearest cluster. The cell type 
annotations from reference-based classification were used as cluster labels here. Count 
matrices were filtered to select for M. m. castaneus cells and cell types with more than 
10 cells. Distance matrices were computed on the first 30 principal components using 
euclidean distance as distance measure. Using the cell type labels and distance matrix as 
input, the average silhouette width per cell type was computed with the R package clus-
ter version 2.1.4. An Average silhouette per replicate was calculated as the mean of cell 
type silhouette widths.

Purity Purity is an external cluster evaluation metric to evaluate how well a clustering 
recovers known classes. Here, Purity was used to assess to what extent unsupervised 
cluster labels correspond to cell types. Count matrices were filtered to select for M. m. 
castaneus cells and cell types with more than 10 cells and Louvain clustering as imple-
mented in FindClusters of Seurat version 4.1.1 on the first 30 principal components and 
with a resolution parameter of 1 was used to get a cluster label for each cell. Provid-
ing cell type annotations as true labels alongside the cluster labels, Purity was computed 
with the R package ClusterR version 1.2.6 [29].

k-NN overlap To evaluate the lower-dimensional structure in the data beyond clus-
ters and cell-types k-NN overlap was used as described in Ahlmann-Eltze and Huber 
[30]. A ground truth reference k-NN graph was constructed on a ’genotype-cleaned’ 
count matrix, only counting molecules that carry a subspecies-endogenous allele. Raw 
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and corrected count matrices were filtered to contain the same genes as in the reference 
and a query k-NN graph was computed on the first 30 principal components. The k-NN 
overlap summarizes the overlap of the 50 nearest neighbors of each cell in the query 
with the reference k-NN graph.
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Supplementary Tables

Table S1 Spearman correlation analysis of background noise and barcode swapping. Endogenous and
contaminating allele counts refer to M.m. castaneus and M.m. domesticus allele counts in M.m.
castaneus cells, respectively. Chimera refer to barcode swapping events that are observable by the
association of multiple genes with the same cell barcode (CB)-UMI combination.

Endogenous vs contaminating
allele counts per cell

Chimera vs unique BC-UMI-gene
counts per cell

replicate rho p-value rho p-value
rep3 0.27 <2.2e-16 0.81 <2.2e-16
rep1 0.07 9e-08 0.81 <2.2e-16
rep2 0.06 0.0021 0.64 <2.2e-16
nuc3 0.03 0.499 0.77 <2.2e-16
nuc2 0.15 2.56e-09 0.52 <2.2e-16
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Supplementary Figures
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Fig. S1 Detection of cross-genotype contamination A) Variants that are variable between mouse
subspecies were used to identify background noise. Boxplots show the fraction of detected
molecules (UMI counts) that contain an informative SNP in each cell across cell types with more
than 50 cells. CD IC: intercalated cells of collecting duct; CD PC: principal cells of collecting
duct; CD Trans: transitional cells of collecting duct; CNT: connecting tubule; DCT: distal
convoluted tubule; Endo: endothelial; Fib: fibroblasts; aLOH: ascending loop of Henle; dLOH:
descending loop of Henle; MC: mesangial cells; Podo: podocytes. B) For each informative SNP we
can detect either the M.m. castaneus or the M.m. domesticus allele. The stacked bar plots
indicate the allele fraction per replicate, integrating over all cells and SNPs. Since each replicate is
a mixture experiment with a majority of M.m. domesticus cells, M.m. domesticus alleles are
detected more often at covered informative SNPs. C) M.m. castaneus allele frequency per cell in
cells from different subspecies and mixed-subspecies doublets. In all replicates varying amounts of
M.m. castaneus alleles are detected in M.m. domesticus cells and vice versa, pointing towards
background noise originating from cross-genotype contamination.
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Fig. S2 Estimation of background noise levels. A) Estimates of background noise (ρcell) per
cell. Cells were ordered by ascending ρcell in each replicate. Colored bars indicate 95% confidence
intervals calculated by profile likelihood. B) Summary of ρcell estimates per strain. C) Width of
confidence intervals for ρcell.
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Fig. S3 UMAP visualization showing the composition per replicate of A) all cells, colored by
strain assignment, B) all cells, colored by cell type assignment and C) M. m. castaneus cells only,
colored by cell type assignment.

2.1 The effect of background noise and its removal on the analysis of
single-cell expression data 57



Janssen et al. Page 5 of 13

Fig. S4 Definition of true cells and its effect on background noise estimates A) UMI curves
showing the total UMI counts for droplet barcodes arranged in descending order. True cells (red)
were defined based on a combination of CellRanger cell calls and an inflection point in the UMI
curve. The dashed line indicates a hard cutoff of 1000 cells that was used to check the robustness
of background noise estimates. B) Estimated background noise levels per cell for the 1000 cells
with the highest total UMI counts (left) and for all cells that were defined as true cells based on
replicate specific cutoffs (right).

58 2. Results



Janssen et al. Page 6 of 13

Fig. S5 Definition of endogenous, empty droplet and contamination profiles across replicates.
A-E) Droplet barcodes were ordered by their total UMI counts and empty droplets were defined
from this UMI curve as barcodes in the low UMI count plateau area (upper panel). UMI counts of
reads covering M. m. domesticus specific alleles were used to construct three different profiles
(lower panel left). M. m. domesticus allele counts in M. m. domesticus cells were defined as
endogenous counts (endo), M. m. domesticus allele counts in M. m. castaneus cells as
contaminating counts (cont) and M. m. domesticus allele counts associated with barcodes of the
empty droplet plateau as empty droplet counts (empty). F) Boxplots indicate how many UMI
counts could be obtained for each profile per droplet barcode.
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Fig. S6 Dissection of cell type contributions by deconvolution of pseudobulk profiles. The
stacked bar plots of ’reference’ depict the proportions of cell types in a single cell reference used
for deconvolution with SCDC [16]. The ’endo’, ’empty’ and ’cont’ bar plots show the estimated
fraction of cell types after deconvolution of pseudobulk profiles that were aggregated for each
category.
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A non‑invasive method to generate 
induced pluripotent stem cells 
from primate urine
Johanna Geuder1, Lucas E. Wange1, Aleksandar Janjic1, Jessica Radmer1, Philipp Janssen1, 
Johannes W. Bagnoli1, Stefan Müller2, Artur Kaul3, Mari Ohnuki1* & Wolfgang Enard1*

Comparing the molecular and cellular properties among primates is crucial to better understand 
human evolution and biology. However, it is difficult or ethically impossible to collect matched tissues 
from many primates, especially during development. An alternative is to model different cell types 
and their development using induced pluripotent stem cells (iPSCs). These can be generated from 
many tissue sources, but non-invasive sampling would decisively broaden the spectrum of non-
human primates that can be investigated. Here, we report the generation of primate iPSCs from urine 
samples. We first validate and optimize the procedure using human urine samples and show that 
suspension- Sendai Virus transduction of reprogramming factors into urinary cells efficiently generates 
integration-free iPSCs, which maintain their pluripotency under feeder-free culture conditions. We 
demonstrate that this method is also applicable to gorilla and orangutan urinary cells isolated from a 
non-sterile zoo floor. We characterize the urinary cells, iPSCs and derived neural progenitor cells using 
karyotyping, immunohistochemistry, differentiation assays and RNA-sequencing. We show that the 
urine-derived human iPSCs are indistinguishable from well characterized PBMC-derived human iPSCs 
and that the gorilla and orangutan iPSCs are well comparable to the human iPSCs. In summary, this 
study introduces a novel and efficient approach to non-invasively generate iPSCs from primate urine. 
This will extend the zoo of species available for a comparative approach to molecular and cellular 
phenotypes.

Primates are our closest relatives and hence play an essential role in comparative and evolutionary studies in 
biology, ecology and medicine. We share the vast majority of our genetic information, and yet have considerable 
molecular and phenotypic differences1. Understanding this genotype–phenotype evolution is crucial to under-
stand the molecular basis of human-specific traits. Additionally, it is biomedically highly relevant to interpret 
findings made in model organisms, such as the mouse, and to identify the conservation and functional relevance 
of molecular and cellular circuitries2,3. However, obtaining comparable samples from different primates, espe-
cially during development, is practically and—more importantly—ethically very difficult or even impossible.

Embryonic stem cells have the potential to partially overcome this limitation by their ability to differentiate 
into all cell types in vitro and divide indefinitely4. However, the necessary primary material collection from 
an embryo is in most cases impossible. Fortunately, a pluripotent state can also be induced in somatic cells by 
ectopically expressing four genes5. Since this discovery of induced pluripotency, great efforts have been made 
to identify suitable somatic cells6 and optimize reprogramming methods7. Most of this research, however, has 
focused on human or mouse. While the methods are generally transferable and iPSCs from several different 
non-human primates8–10 and other mammals11,12 have been generated, these methods have not been optimized 
for non-model organisms.

One major challenge for establishing iPSCs of various non-human primates is the acquisition of the primary 
cells. So far iPSCs have been generated from fibroblasts, peripheral blood cells or vein endothelial cells derived 
during medical examinations or from post mortem tissue8–10,13,14. However, also these sources impose practical 
and ethical constraints and therefore limit the availability of the primary material.

To overcome these limitations, we adapted a method of isolating reprogrammable cells from human urine 
samples15,16 and applied it to non-human primates (Fig. 1). We find that primary cells can be isolated from 
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unsterile urine sampled from the floor, can be efficiently reprogrammed using the integration-free Sendai Virus17 
and can be maintained under feeder-free conditions as shown by generating iPSCs from human, gorilla and 
orangutan.

Results
Isolating human urinary cells from small‑volume and stored samples.  To assess which method is 
most suitable for isolating and reprogramming primate cells, we first tested different procedures using urinary 
cells from human samples (Fig. 1). We collected urine from several humans in sterile beakers and processed 
them as described in Zhou et al.15,16. We found varying cell numbers in the urine samples (range 46–2250 cells 
per ml; Supplementary Table S1) with about 60% living cells. As previously reported18,19, we initially observed 
two morphologically distinct colony types that became indistinguishable after the first passage and consisted of 
grain-shaped cells that proliferated extensively (Fig. 2a, Supplementary Figure S1b). In total we processed 19 
samples of several individuals in 122 experiments using different volumes and storage times (Supplementary 
Table S2). Similar to previous reports20, we isolated an average of 7.6 colonies per 100 ml of urine when process-
ing samples immediately with a considerable amount of variation among samples (0–70 colonies per 100 ml, 
Supplementary Table S2) and among aliquots (0–160 per 100 ml; Supplementary Table S2; Fig. 2b), but no dif-
ference between sexes (Supplementary Table S2). Furthermore, storing samples for up to 4 h at room tempera-
ture or on ice did not influence the number of isolated colonies (9 samples, 7.4 colonies on average per 100 ml, 

Figure 1.   Workflow overview for establishing iPSCs from primate urine. We established the protocol for iPSC 
generation from human urine based on a previously described protocol16. We tested volume, storage and culture 
conditions for primary cells and compared reprogramming by overexpression of OCT3/4, SOX2, KLF4 and 
MYC (OSKM) via lipofection of episomal vectors and via transduction of a Sendai virus derived vector (SeV). 
We used the protocol established in humans and adapted it for unsterile floor-collected samples from non-
human primates by adding Normocure to the first passages of primary cell culture and reprogrammed visually 
healthy and uncontaminated cultures using SeV. Pluripotency of established cultures was verified by marker 
expression, differentiation capacity and cell type classification using RNA sequencing.
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range: 0–17). As sample volumes can be small for non-human primates, we also tested whether colonies can be 
isolated from 5, 10 or 20 ml of urine (Fig. 2b). We found no evidence that smaller volumes have lower success 
rates as we found that for 42% of the 5 ml samples, we could isolate at least one colony (Supplementary Table S2). 
Many more samples and conditions would be needed to better quantify the influence of different parameters on 
the isolation efficiency of colonies. However, in most practical situations such parameters would not be used to 
make a decision as one would anyway try to obtain colonies with the urine samples at hand, especially in our 
case where samples from primates are rare. Fortunately, low-volume human urine samples stored for a few hours 
at room temperature or on ice are a possible source to establish primary urinary cell lines. In summary, these 
experiments are a promising starting point for the use of small-volume urine samples from non-human primates 
to generate primary cell lines, which may then be reprogrammed into iPSCs.
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Figure 2.   Establishing urinary cell isolation and reprogramming to iPSCs in human samples. (a) Human urine 
mainly consists of squamous cells and other differentiated cells that are not able to attach and proliferate (upper 
row). After ~ 5 days, the first colonies become visible and two types of colonies can be distinguished as described 
in Zhou (2012). Scale bars represent 500 μm. (b) Isolation efficiency of urine varies between samples. The 
efficiency between 5 ml, 10 ml and 20 ml of starting material is not different (Fisher’s exact test p > 0.5). (c) SeV 
mediated reprogramming showed significantly higher efficiency than Episomal plasmids (Wilcoxon rank sum 
test: p = 1.1e−05). (d) Established human colonies transduced with SeV expressed Nanog, Oct4 and Sox2; Scale 
bars represent 50 μm and (e) differentiated to cell types of the three germ layers; scale bar represents 500 µm in 
the phase contrast pictures and 100 µm in the fluorescence pictures. See also Supplementary Figure S1.
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Reprogramming human urinary cells is efficient when using suspension‑Sendai Virus trans‑
duction.  Next, we investigated which integration-free overexpression strategy would be the most suitable to 
induce pluripotency in the isolated urine cells. To this end we compared transduction by a vector derived from 
the RNA-based Sendai Virus14,17 in suspension10, to lipofection with episomal plasmids (Epi) derived from the 
Epstein Barr virus21,22. We chose to use the suspension transduction method as it yielded a significantly higher 
reprogramming efficiency than the method on attached cells (suspension reprogramming efficiency: 0.24%, 
N = 7; attached reprogramming efficiency: 0.09%, N = 7; Wilcoxon rank sum test: p = 0.003; Supplementary 
Table S3, Supplementary Figure S2d). Both systems have been previously reported to sufficiently induce repro-
gramming of somatic cells without the risk of genome integrations. In our experiments presented here, trans-
duction of urinary cells with a Sendai Virus (SeV) vector containing Emerald GFP (EmGFP) showed substan-
tially higher efficiencies than lipofection with episomal plasmids (~ 97% versus ~ 20% EmGFP+; Supplementary 
Figure S2a and S2b). We assessed the reprogramming efficiency of these two systems by counting colonies with 
a pluripotent-like cell morphology. Using SeV vectors, 0.19% of the cells gave rise to such colonies (Fig. 2c). In 
contrast, when using Episomal plasmids only 0.009% of the cells gave rise to colonies with pluripotent cell-like 
morphology (N = 23 and 18, respectively; Wilcoxon rank sum test: p = 0.00005), resulting in at least one colony 
in 87% and 28% of the cases. Furthermore, the first colonies with a pluripotent morphology appeared 5 days 
after SeV transduction and 14 days after Epi lipofection. To test whether the morphologically defined pluripotent 
colonies also express molecular markers of pluripotency, we isolated flat, clear-edged colonies from 5 indepen-
dently transduced urinary cell cultures on day 10. All clones expressed POU5F1 (OCT3/4), SOX2, NANOG and 
differentiated into the three germ layers during embryoid body formation as shown by immunocytochemistry 
(Fig. 2d,e). Notably, while the transduced cells also expressed the pluripotency marker SSEA4, this was also true 
for the primary urinary cells (Supplementary Figure S2c). SSEA4 is known to be expressed in urine derived 
cells18,23 and hence it is an uninformative marker to assess the reprogramming of urinary cells to iPSCs. Further-
more, SeV RNA was always absent after the first five passages (Supplementary Figure S3) and the pluripotent 
state could be maintained for over 100 passages (data not shown).

In summary, we find that the generation of iPSCs from human urine samples is possible from small volumes, 
and our results also reveal that reprogramming is most efficient when using suspension SeV transduction. Hence, 
we used this workflow for generating iPSCs from non-human primate cells.

Isolating cells from unsterile primate urine.  For practical and ethical reasons, the collection procedure 
is a decisive difference when sampling urine from non-human primates (NHPs). Samples from chimpanzees, 
gorillas and orangutans were collected by zoo keepers directly from the floor, often with visible contamination. 
Initially, culturing these samples was not successful due to the growth of contaminating bacteria. The isolation 
and culture of urinary cells only became possible upon the addition of Normocure (Invivogen), a broad-spec-
trum antibacterial agent that actively eliminates Gram+ and Gram− bacteria from cell cultures. We confirmed 
that Normocure did not affect the number of colonies isolated from sterile human samples (Supplementary 
Table S2). Furthermore, many NHP samples also had volumes below 5 ml. We attempted to isolate cells from a 
total of 70 samples, but only 24 NHP samples showed collection parameters comparable to human urine samples 
as described above (≥ 5 ml of sample, < 4 h storage at RT or 4 °C and no visible contamination). From chimpan-
zees, gorillas and orangutans we collected a total of 87, 70 and 39 ml of urine in 11, 8 and 5 samples from several 
individuals and isolated 0, 5 and 2 colonies respectively (Supplementary Table S4). For gorilla and orangutan this 
rate (7.3 and 5.2 colonies per 100 ml urine) is not significantly different from the rate found for human samples 
(6.0 per 100 ml across all conditions in Supplementary Table S2, p = 0.8 and 0.6, respectively, assuming a Poisson 
distribution). However, obtaining zero colonies from 87 ml of chimpanzee urine is less than expected, given the 
rate found in human samples (p = 0.005). While isolating primary cells from urine samples seems comparable to 
humans in two great ape species, it seems to have at least a two- to threefold lower rate in our closest relatives, 
suggesting that the procedure might work in many but not in all NHPs. Fortunately, it is possible to culture many 
samples in parallel so that screening for urinary cells in a larger volume with more samples is relatively easy.

The first proliferating cells from orangutan and gorilla could be observed after six to ten days (Fig. 3a,b) in 
culture and could be propagated for several passages, which is comparable to human cells. While we observed dif-
ferent proliferation rates and morphologies among samples, these did not systematically differ among individuals 
or species (Fig. 3b). Infection with specific pathogens, including simian immunodeficiency virus (SIV), herpes 
B virus (BV, Macacine alphaherpesvirus 1), simian T cell leukemia virus (STLV) and simian type D retroviruses 
(SRV/D), was not detected in these cells (data not shown).

Expression patterns of urinary cells are most similar to mesenchymal stem cells, epithelial 
cells and smooth muscle cells.  To characterize the isolated urinary cells, we generated expression profiles 
using prime-seq a 3′ tagged RNA-seq protocol24–26, on early passage primary urinary cells (p1–3) from three 
humans, one gorilla and one orangutan. Note that some of these samples contained cells from 1–4 different 
colonies (Supplementary Table S2 and S4) and hence could be mixtures of different cell types. To classify these 
urinary cells we compared their expression profile to 713 microarray expression profiles grouped into 38 cell 
types27 using the SingleR package28. SingleR uses the most informative genes from the reference dataset and 
iteratively correlates it with the expression profile to be classified. The most similar cell types were mesenchymal 
stem cells, epithelial cells and/or smooth muscle cells and at least two groups are evident among the six samples 
(Fig. 3c). To further investigate these cell types, we isolated 19 single colonies from six different individuals 
(Supplementary Table S1) and analyzed their expression profiles as described above. A principal component 
analysis revealed three clearly distinct clusters A, B and C with 10, 6 and 3 colonies, respectively (Fig. 3d). When 
we classified these 19 profiles using SingleR27,28 as described above, we found the three colonies from cluster C 
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clearly classified as epithelial cells from the bladder (Fig. 3e). This cluster shows high KRT7 expression, as also 
described in Dörrrenhaus et al.19 as well as high FOXA1 expression, both hinting towards an urothelial origin 
(Supplementary Figure S4). The colonies of the other two clusters are classified as MSCs, whereas cluster B also 
has a high similarity to epithelial profiles (Fig. 3e). They could resemble the two renal cell types described in 
Dörrrenhaus et al.19 and are probably derived from the kidney as also evident by their PAX2 and MCAM expres-
sion (Supplementary Figure S4). We also used differential gene expression and Reactome pathway analysis29 to 
further characterize the differences between these clusters (Supplementary Figure S4a, S4c). In sum, our findings 
indicate that at least three types of proliferating cells can be isolated from urine, one of urothelial and two of renal 
origin and that the same types can also be isolated from gorilla and orangutan.
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Figure 3.   Isolation and characterization of primate urinary cells. (a) Workflow of cell isolation from primate 
urine samples. NC Normocure, REMC renal epithelial mesenchymal cell medium. (b) Primary cells obtained 
from human, gorilla and orangutan samples are morphologically indistinguishable and display similar EmGFP 
transduction levels. Scale bars represent 400 μm. (c) The package SingleR was used to correlate the expression 
profiles from six samples of primate urinary cells (passage 1–3) to a reference set of 38 human cell types. 
Normalized scores of the eight cell types with the highest correlations are shown (MSC mesenchymal stem 
cells, SM smooth muscle, Epi epithelial, Endo endothelial). Color bar indicates normalized correlation score. 
(d) Principal component analysis of primary cells from single colony lysates using the 500 most variable genes. 
(e) Heatmap of normalized SingleR scores show that cluster C is classified as epithelial cell originating from the 
bladder. The scores for MSCs in Cluster A and B are similarly high, although cluster B also shows higher scores 
for epithelial cells than cluster A. See also Supplementary Figure S5.
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Reprogramming efficiency of urinary cells is similar in humans and other primates.  To gener-
ate iPSCs from the urinary cells isolated from gorilla and orangutan, we used Sendai Virus (SeV) transduction 
and the reprogramming timeline that we found to be efficient for human urinary cells (Fig. 4a). Human, gorilla 
and orangutan urinary cells showed similarly high transduction efficiencies with the EmGFP SeV vector (data 
not shown). Transduction with the reprogramming SeV vectors led to initial morphological changes after 2 days 
in all three species, when cells began to form colonies and became clearly distinguishable from the primary cells 
(Fig. 4b). When flat, clear-edged colonies appeared that contained cells with a large nucleus to cytoplasm ratio, 
these colonies were picked and plated onto a new dish. We found that the efficiency and speed of reprogram-
ming was variable (Supplementary Figure S5b), probably depending on the cell type, the passage number and 
the acute state (“health”) of the cells, in concordance with the variability and efficiency found in other studies 
utilizing urine cells as a source for iPSCs15. Also the mean reprogramming efficiency over all replicates was dif-
ferent (Kruskal–Wallis test, p = 0.015) for human (0.19%), gorilla (0.28%) and orangutan (0.061%). However, 
many more samples would be necessary to disentangle the effects of all these contributing factors. Of note, we 
observed that the orangutan iPSCs showed more variability in proliferation rates and morphology compared to 
human and gorilla iPSCs. Several subcloning steps were needed until a morphologically stable clone could be 
generated. However, the resulting iPSCs were stable and had the same properties as the other iPSCs (Fig. 4). To 
what extent this is indeed a property of the species is currently unclear. Importantly, from all primary samples 
that were transduced, colonies with an iPSC morphology could be obtained. So, while considerable variability in 
reprogramming efficiency exists, the overall success rate is sufficiently high and sufficiently similar in humans, 
gorillas and orangutans.

Urine derived primate iPSCs are comparable to human iPSCs.  We could generate at least two lines 
per individual from each primary cell sample, all of which showed Oct3/4, TRA-1-60, SSEA4 and SOX2 immu-
nofluorescence (Fig. 4c). Furthermore, karyotype analysis by G-banding in three humans, one gorilla and one 
orangutan iPS cell line revealed no recurrent numerical or structural aberrations in 33–60 metaphases analyzed 
per cell line. All five cell lines analyzed showed inconspicuous and stable karyotypes (Supplementary Figure S6). 
iPSCs from all species could be expanded for more than fifty passages, while maintaining their pluripotency, 
as shown by pluripotency marker expression (Fig. 4c) and differentiation capacity via embryoid body forma-
tion (Fig. 4d,e). Both the human and NHP iPSCs differentiated into ectoderm (beta-III Tubulin), mesoderm 
(α-SMA) and endoderm (AFP) lineages (Fig. 4e, Figure S7a). Dual-SMAD inhibition led to the formation of 
neurospheres in floating culture, as confirmed by neural stem cell marker expression (NESTIN+, PAX6+) using 
qRT-PCR (Supplementary Figure S7b).

To further assess and compare the urine-derived iPSCs, we generated RNA-seq profiles from nine human, 
three gorilla and four orangutan iPSC lines as well as the six corresponding primary urinary cells (see analysis 
above). As an external reference, we added a previously reported and well characterized blood-derived human 
iPS cell line that was generated using episomal vectors and adapted to the same feeder-free culture conditions 
as our cells (1383D2)30. All lines were grown and processed under the same conditions and in a randomized 
order in one experimental batch. We picked one colony per sample and used prime-seq, a 3′ tagged RNA-seq 
protocol24–26 to generate expression profiles with 19,000 genes detected on average.

We classified the expression pattern of the iPSCs relative to the reference dataset of 38 cell types using SingleR 
as described for the urinary cells. ES cells or iPS cells are clearly the most similar cell type for all our iPS samples 
including the external PBMC-derived iPSC line (Fig. 5a). Principal component analysis of the 500 most variable 
genes (Fig. 5b), shows clear clustering of the samples according to cell type (54% of the variation in PC1) and 
species (23% of the variance in PC2). The external, human blood-derived iPSC line is interspersed among our 
human urine derived iPS cell lines. Using the pairwise Euclidean distances between samples to assess similarity, 
they also cluster first by cell type and then by species (Supplementary Figure S5d). When classifying the expres-
sion pattern of the iPSCs relative to a single cell RNA-seq dataset covering distinct human embryonic stem cell 
derived progenitor states (Chu et. al. 2016), again all our iPSC lines are most similar to embryonic stem cells and 
are indistinguishable from the external PBMC-derived iPSC line (Fig. 5c), also confirming the immunostainings. 
Finally, expression distances within iPS cells of the same species were similar, independent of the individual and 
donor cell type (Fig. 5d).

Taken together, these analyses do not only indicate that our urine derived iPS cells show a pluripotent expres-
sion profile and differentiate as expected for iPS cells but can also not be distinguished from an iPSC line derived 
in another laboratory from another cell type with another vector system. Hence, the expression differences 
among species are far larger than these technical sources of variation, indicating that these cells are well suited 
to assess species differences among primates in iPS cells as well as in cell types derived from these pluripotent 
cells by in vitro differentiation strategies.

Discussion
Here, we adapted a previously described protocol for human urine samples16 to isolate proliferating cells from 
unsterile primate urine. We show that these urinary cells can be efficiently reprogrammed into integration-free 
and feeder-free iPSCs, which are closely comparable among each other and to other iPSCs. Our findings have 
implications for generating and validating iPSCs from primates and other species for comparative studies. Addi-
tionally, some aspects might also be of relevance when generating iPSCs from human urinary cells for medical 
studies.

Human urine mainly contains cells, such as squamous cells, which are terminally differentiated and can-
not attach or proliferate in culture. The first proliferating cells from human urine were isolated in 197231 and 
since then a variety of different cells have been isolated and described that can proliferate, differentiate and be 
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Figure 4.   Generation and characterization of primate iPSCs. (a) Workflow for reprogramming of primate 
urinary cells. Urine collection and cell seeding is carried out in primary medium, then after 5 days changed 
to REMC medium, and only passaged for the first time after 10–14 days. When the cells reach confluency 
reprogramming is induced and after 5 days the medium is changed to mTeSR1. Once the reprogrammed 
cells are ready to be picked, the cells are seeded in StemFit medium. REMC renal epithelial mesenchymal 
cell medium. (b) Cell morphology of the three species is comparable before (p0), during (p1–3) and after 
reprogramming (~ p5). Scale bar represents 400 µm. (c) Immunofluorescence analysis of pluripotency 
associated proteins at passage 10–15: TRA-1-60, SSEA4, OCT4 and SOX2. Nuclei were counterstained with 
DAPI. Scale bars represent 200 µm. (d) Differentiation potency into the three germ layers. iPSC colony before 
differentiation, after 8 days of floating culture and after 8 days of attached culture. Scale bar represents 400 µm. 
(e) Immunofluorescence analyses of ectoderm (β-III Tubulin), mesoderm (α-SMA) and endoderm markers 
(α-Feto) after EB outgrowth. Nuclei were counterstained with DAPI. Scale bars represent 400 μm. See also 
Supplementary Figure S7a.
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reprogrammed to iPSCs (see32 for a recent overview). As these urine-derived stem cells (UDSCs) can be isolated 
non-invasively at low costs and reprogrammed efficiently16, they are increasingly used to generate iPSCs from 
patients (e.g.33–35). Perhaps the only major drawback of using UDSCs for iPSC generation is that the number of 
UDSCs that can be grown per milliliter is quite variable among samples. While parameters such as body size, 
age and cell count correlate with the number of isolated colonies20, isolation can fail despite large volumes and 
can be successful despite small volumes (Supplementary Table S1, Supplementary Table S2). As UDSC culturing 
is neither very cost- nor time-intensive, the best practical solution will in most cases be to try isolating UDSCs 
independent of those parameters.

While it is known for a long time that different types of UDSCs can be isolated, the quantitative relation 
between morphology, marker expression, potency and reprogramming efficiency among the different UDSCs is 
not clear. The RNA-seq profiles of single colonies presented here, allow for the first time to classify them based on 
genome-wide expression patterns. In agreement with previous findings using marker staining and morphological 
analysis19, we find three different cell types, of which one is most similar to epithelial cells from the bladder and 
the other two are most similar to mesenchymal stem cells and probably originate from the kidney. Importantly, 
all three cell types seem to reprogram with sufficient efficiency and the expression of pluripotency markers like 
KLF4 and OCT3/4 in all three cell types (Supplementary Figure S4) might be one factor why the reprogramming 
efficiency of UDSCs is relatively high compared to other primary cells. Regarding the reprogramming method, 
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Figure 5.   Characterization of primate iPSCs by expression profiling. (a) The package SingleR was used to 
correlate the expression profiles from seventeen samples of primate iPSCs (passage 1–3) to a reference set of 
38 human cell types. The twelve cell types with the highest correlations are shown (MSC mesenchymal stem 
cells). All lines are similarly correlated to embryonic stem cells and iPS cells. Color bar indicates correlation 
coefficients. (b) Principal component analysis of primary cells and derived iPSC lines using the 500 most 
variable genes. PC1 separates the cell types and PC2 separates the species from each other. (c) Correlation 
coefficient of iPSCs compared to a single cell dataset covering distinct human embryonic stem cell derived 
progenitor states (Chu et al. 2016). (d) Expression distances of all detected genes are averaged from pairwise 
distances for six different groups of comparisons. Note that the distance between individuals and between 
species is calculated within iPSCs and distances between individuals within species. Pairwise t-tests are all below 
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the species. See also Supplementary Figure S5.
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we find that transduction using the commercial Sendai Virus based vector in suspension10 is substantially more 
efficient for UDSCs than lipofection of episomal plasmids, and also leads to a change in morphology within 
2 days. While it is established that Sendai Virus reprogramming is an expensive but efficient method to gener-
ate iPSCs from fibroblasts7,36, our findings indicate that the suspension method might be especially efficient for 
UDSCs. Finally, a relevant side note of our findings is that SSEA4, which is occasionally used as a marker for 
pluripotency37,38, is not useful when starting from urinary cells as these express SSEA4 at already high levels 
(Supplementary Figure S2c). In summary, our findings contribute to a better understanding of human UDSCs 
and to a method to more efficiently reprogram them into iPSCs.

Maybe more important are the implications of our study for isolating urinary stem cells for the generation of 
iPSC from primates and other mammals. This could be useful in contexts where invasive sampling is difficult, as 
it is the case for non-model primates and many other mammals, and where iPSCs are needed for conservation11 
or comparative approaches as discussed below. So how likely is it that one can find UDSCs in other primates 
and mammals? In humans, UDSCs originate from the kidney and the urinary tract as also shown by our tran-
scriptional profiles. We isolated UDSCs from orangutan and gorilla and found similar transcriptional profiles, 
morphologies and growth characteristics. Given the general similarity of the urinary tract in mammals and our 
successful isolation of UDSCs in two apes, it seems likely that most primates, and maybe even most mammals, 
shed UDSCs in their urine. However, our failure to isolate UDSCs from chimpanzees suggests that even very 
closely related species might have at least 2–3 times less of those cells in their urine. An alternative possibility 
is that the culture conditions, e.g. the FBS, do not work for isolating chimpanzee UDSCs. However, given that 
UDSCs from gorilla and orangutan can be isolated under these conditions and fetal calf serum works for tissue 
cultures of chimpanzee kidneys39, we think that a lower concentration of UDSCs in some species is the more likely 
cause. Hence, from which species UDSCs can be isolated in practice might depend mainly on the concentration 
of UDSCs and the available amount of urine. Fortunately, this can be easily tested for any given species of inter-
est, as culturing systems are very cost-efficient. Furthermore, our procedure to use unsterile samples from the 
ground to isolate such cells broadens the practical implementation of this approach considerably.

Given that it is possible to isolate UDSCs from a species, the efficiency of reprogramming and iPSC mainte-
nance will determine whether one can generate stable iPSCs from them. Fortunately, the efficiency of reprogram-
ming UDSCs is shown to be high, probably higher than for many other primary cell types6. This is especially 
true when using SeV transduction in suspension as is evident from the fact that we could generate iPSCs from 
all twelve UDSC reprogramming experiments (Supplementary Table S5). To what extent this reprogramming 
procedure works in other species is currently unclear, but as the Sendai virus is thought to infect all mamma-
lian cells40 it could be widely applicable. Additionally, iPSCs have been previously generated from many spe-
cies, even avian species11, when using human reprogramming factors and culture conditions, albeit with over 
tenfold lower reprogramming efficiencies41,42. So, while in principle it should be possible to isolate iPSCs from 
many or even all mammals, variation in reprogramming efficiency with human factors and culture conditions 
to keep cells pluripotent with and without feeder cells42 will considerably vary among species and will make it 
practically difficult to obtain and maintain iPSCs from some species. Investigating the cause of this variation 
more systematically will be important to better understand pluripotent stem cells in general and to generate 
iPSCs from many species in practice. Recent examples of such fruitful investigations include the optimization 
of culture conditions for baboons43, and the optimization of feeder-free culture conditions for rhesus macaques 
and baboons42. A related aspect of generating iPSCs from different species is testing whether iPSCs from a given 
species are actually bona fide iPSCs. While for humans a variety of tools exist, such as predictive gene expression 
assays, validated antibody stainings and SNP arrays for chromosomal integrity, these tools cannot be directly 
transferred to other species. Fortunately, due to the availability of genome sequences, RNA-sequencing in com-
bination with human or mouse reference cell types to which generated iPSCs can be compared, but also rather 
traditional techniques such as karyotyping, the characterization of non-human iPSCs becomes feasible as also 
shown in this paper. In summary, while extending the zoo of comparable iPSCs is a daunting task and requires 
considerable more method development, we think our method to isolate UDSCs from unsterile urine could be 
a promising tool in this endeavor.

Assuming that our approach works in at least some non-human primates (NHPs), the effectiveness and non-
invasiveness of the protocol allows sampling many more individuals and species than currently possible. Why 
is this important? So far, iPSCs have been generated from only a few individuals in a very limited set of NHP 
species. One main application is to model biomedical applications of iPSCs in primates such as rhesus macaques 
or marmosets44. As these species are used as model organisms, non-invasive sampling is less of an issue. Another 
main application are studies investigating the molecular basis of human-specific phenotypes e.g. by comparing 
gene expression levels in humans, chimpanzees and an outgroup8,9,45,46 to infer human-specific changes more 
robustly47. A third type of application with considerable potential has been explored much less, namely using 
iPSCs in a comparative framework to identify molecular or cellular properties that are conserved, i.e. functional 
across species2,3,48. This is similar to the comparative approach on the genotype level in which DNA or protein 
sequences are compared in orthologous regions among several species to identify conserved, i.e. functional 
elements49. This information is crucial, for example, when inferring the pathogenicity of genetic variants50. 
Accordingly, it would be useful to know whether a particular phenotypic variant, e.g. a disease associated gene 
expression pattern, is conserved across species. This requires a comparison of the orthologous cell types and states 
among several species. Primates are well suited for such an approach, because they bridge the evolutionary gap 
between human and its most important model organism, the mouse, and because phenotypes and orthologous 
cell states can be more reliably compared in closely related species. However, for practical and ethical reasons, 
orthologous cell states are difficult to obtain from several different primates. Hence, just as human iPSCs allow 
one to study cell types and states that are for practical and ethical reasons not accessible, primate iPSCs extend 
the comparative approach to these cell types and states, leveraging unique evolutionary information that is not 
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only interesting per se, but could also be of biomedical relevance. As our method considerably extends the pos-
sibilities to derive iPSCs from primates, it could contribute towards leveraging the unique information generated 
during millions of years of primate evolution.

Methods
Experimental model and subject details.  Human urine samples.  Human urine samples from healthy 
volunteers were obtained with written informed consent and processed anonymously. This experimental proce-
dure was ethically approved by the responsible committee on human experimentation (20-122, Ethikkommis-
sion LMU München). All experimental procedures were performed in accordance with relevant guidelines and 
regulations. Additional information on the samples is available in Supplementary Table S2.

Primate urine samples.  Primate urine was collected at the Hellabrunn Zoo in Munich, Germany. Caretakers 
noted the time and most likely donor and took up available urine on the floor with a syringe, hence the collec-
tion procedure was fully non-invasive without any perturbation of the animals. Due to the collection procedure 
we do not know with certainty from which individual the samples were derived. Additional information on the 
samples can be found in Supplementary Table S4.

iPSC lines.  iPSC lines were generated from human and non-human primate urinary cells. Reprogramming 
was done using two different techniques. Reprogramming using SeV (Thermo Fisher) was performed as suspen-
sion transduction as described before10. Episomal vectors were transfected using Lipofectamine 3000 (Thermo 
Fisher). iPSCs were cultured under feeder-free conditions on Geltrex (Thermo Fisher) -coated dishes in Stem-
Fit medium (Ajinomoto) supplemented with 100 ng/ml recombinant human basic FGF (Peprotech), 100 U/ml 
Penicillin and 100 μg/ml Streptomycin (Thermo Fisher) at 37 °C with 5% carbon dioxide. Cells were routinely 
subcultured using 0.5 mM EDTA. Whenever cells were dissociated into single cells using 0.5 × TrypLE Select 
(Thermo Fisher) or Accumax (Sigma Aldrich), the culture medium was supplemented with 10 µM Rho-associ-
ated kinase (ROCK) inhibitor Y27632 (BIOZOL) to prevent apoptosis.

Isolation of cells from urine samples.  Urine from human volunteers was collected anonymously in 
sterile tubes. Usually a volume of 5–50 ml was obtained. Urine from NHPs was collected from the floor at Hel-
labrunn Zoo (Munich) by the zoo personnel, using a syringe without taking special precautions while collecting 
the samples. Samples were stored at 4 °C until processing for a maximum time span of 5 h. Isolation of primary 
cells was performed as previously described by Zhou et al. 2012. Briefly, the sample was centrifuged at 400×g for 
10 min and washed with DPBS containing 100 U/ml Penicillin, 100 μg/ml Streptomycin (Thermo Fisher), 2.5 µg/
ml Amphotericin (Sigma-Aldrich). Afterwards, the cells were resuspended in urinary primary medium consist-
ing of 10% FBS (Life Technologies), 100 U/ml Penicillin, 100  μg/ml Streptomycin (Thermo Fisher), REGM 
supplement (ATCC) in DMEM/F12 (TH. Geyer) and seeded onto one gelatine coated well of a 12-well-plate. To 
avoid contamination stemming from the unsanitary sample collection, 100 µg/ml Normocure (Invivogen) was 
added to the cultures until the first passage. 1 ml of medium was added every day until day 5, where 4 ml of the 
medium was aspirated and 1 ml of renal epithelial and mesenchymal cell proliferation medium RE/MC prolif-
eration medium was added. RE/MC consists of a 50/50 mixture of Renal Epithelial Cell Basal Medium (ATCC) 
plus the Renal Epithelial Cell Growth Kit (ATCC) and mesenchymal cell medium consisting of DMEM high 
glucose with 10% FBS (Life Technologies), 2 mM GlutaMAX-I (Thermo Fisher), 1 × NEAA (Thermo Fisher), 
100 U/ml Penicillin, 100 μg/ml Streptomycin (Thermo Fisher), 5 ng/ml bFGF (PeproTech), 5 ng/ml PDGF-AB 
(PeproTech) and 5 ng/ml EGF (Miltenyi Biotec). Half of the medium was changed every day until the first colo-
nies appeared. Subsequent medium changes were performed every second day. Passaging was conducted using 
0.5 × TrypLE Select (Thermo Fisher). Typically 15 × 103 to 30 × 103 cells were seeded per well of a 12-well plate.

Single colony isolation from urine samples.  For the UDSC single colony characterization experiment 
we seeded cells of 3 ml urine sample per well and chose the wells with only one colony for further characteriza-
tion. The cells grew without further passage for two weeks (some colonies appeared only after one week) and 
were dissociated, counted and lysed in RLT Plus (Qiagen) as soon as they reached a sufficient size to be counted.

Generation of NHP iPSCs by Sendai virus vector infection.  Infection of primary cells was performed 
with the CytoTune-iPS 2.0 Sendai Reprogramming Kit (Thermo Fisher) at a MOI of 5 using a modified protocol. 
Briefly, 7 × 105 urine derived cells were incubated in 100 µl of the CytoTune 2.0 SeV mixture containing three 
vector preparations: polycistronic Klf4–Oct3/4–Sox2, cMyc, and Klf4 for one hour at 37 °C. To control transduc-
tion efficiency 3.5 × 105 cells were infected with CytoTune-EmGFP SeV. Infected cells were seeded on Geltrex 
(Thermo Fisher) coated 12-well-plates, routinely 10 × 103 and 25 × 103 cells per well. Medium was replaced with 
fresh Renal epithelial and mesenchymal cell proliferation medium RE/MC (ATCC) every second day. On day 5, 
medium was changed to mTeSR1 (Stemcell Technologies), with subsequent medium changes every second day. 
After single colony picking, cells were cultured in StemFit (Ajinomoto) supplemented with 100 ng/ml recombi-
nant human basic FGF (Peprotech), 100 U/ml Penicillin and 100 μg/ml Streptomycin (Thermo Fisher).

Immunostaining.  Cells were fixed with 4% PFA, permeabilized with 0.3% Triton X-100, blocked with 5% 
FBS and incubated with the primary antibody diluted in 1% BSA and 0.3% Triton X-100 in PBS overnight 
at 4 °C. The following antibodies were used: Human alpha-Smooth Muscle Actin (R&D Systems, MAB1420), 
Human/Mouse alpha -Fetoprotein/AFP (R&D Systems, MAB1368), Nanog (R&D Systems, D73G4), Neuron-
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specific beta-III Tubulin (R&D Systems, MAB1195), Oct-4 (NEB, D7O5Z), Sox2 (NEB, 4900S), SSEA4 (NEB, 
4755), EpCAM (Fisher Scientific, 22 HCLC, TRA-1-60 (Miltenyi Biotec, REA157) and the isotype controls IgG2a 
(Thermo Fisher, eBM2a) and IgG1 (Thermo Fisher, P3.6.2.8.1). The next day, cells were washed and incubated 
with the secondary antibodies for one hour at room temperature. Alexa 488 rabbit (Thermo Fisher, A-11034) 
and Alexa 488 mouse (Thermo Fisher, A-21042) were used in a 1/500 dilution. Nuclei were counterstained using 
DAPI (Sigma Aldrich) at a concentration of 1 µg/ml.

Karyotyping.  iPSCs at ~ 80% confluency were treated with 50 ng/ml colcemid (Thermo Fisher) for 2 h, harvested 
using TrypLE Select (Thermo Fisher) and treated with 75 mM KCL for 20 min at 37 °C. Subsequently, cells were fixed 
with methanol/acetic acid glacial (3:1) at − 20 °C for 30 min. After two more washes of the fixed cell suspension in 
methanol/acetic (3:1) we followed standard protocols for the preparation of slides with differentially stained mitotic 
chromosome spreads using the G-banding technique. Between 33 and 60 metaphases were analyzed per cell line.

RT‑PCR and PCR analyses.  Total RNA was extracted from cells lysed with Trizol using the Direct-zol 
RNA Miniprep Plus Kit (Zymo Research, R2072). 1 µg of total RNA was reverse transcribed using Maxima H 
Minus Reverse Transcriptase (Thermo Fisher) and 5 µM random hexamer primers. Conditions were as follows: 
10 min at 25 °C, 30 min at 50 °C and then 5 min at 85 °C. Quantitative polymerase chain reaction (qPCR) studies 
were conducted on 5 ng of reverse transcribed total RNA in duplicates using PowerUp SYBR Green master mix 
(Thermo Fisher) using primers specific for NANOG, OCT4, PAX6 and NESTIN. Each qPCR consisted of 2 min 
at 50 °C, 2 min at 95 °C followed by 40 cycles of 15 s at 95 °C, 15 s at 55 °C and 1 min at 72 °C. Cycle threshold 
was calculated by using default settings for the real-time sequence detection software (Thermo Fisher). For rela-
tive expression analysis the quantity of each sample was first determined using a standard curve and normalized 
to GAPDH and the average target gene expression (deltaCt/average target gene expression).

Genomic DNA for genotyping was extracted using DNeasy Blood and Tissue Kit (Qiagen). PCR analyses 
were performed using DreamTaq (Thermo Fisher). Primate primary cells were genotyped using primers that 
bind species-specific Alu insertions (adapted from51).

To confirm the transgene-free status of the iPSC lines, SeV specific primers were used described in CytoTune-
iPS 2.0 Sendai Reprogramming Kit protocol (Thermo Fisher).

In vitro differentiation.  For embryoid body formation iPSCs from one confluent 6-well were collected 
and subsequently cultured on a sterile bacterial dish in StemFit without bFGF. During the 8 days of suspension 
culture, medium was changed every second day. Subsequently, cells were seeded into six gelatin coated wells of a 
6-well-plate. After 8 days of attached culture, immunocytochemistry was performed using α-fetoprotein (R&D 
Systems, MAB1368) as endoderm, α-smooth muscle actin (R&D Systems, MAB1420) as mesoderm and β-III 
tubulin (R&D Systems, MAB1195) as ectoderm marker.

For directed differentiation to neural stem cells (NSCs) cells were dissociated and 9 × 103 cells were plated into 
each well of a low attachment U-bottom 96-well-plate in 8GMK medium consisting of GMEM (Thermo Fisher), 
8% KSR (Thermo Fisher), 5.5 ml 100 × NEAA (Thermo Fisher), 100 mM Sodium Pyruvate (Thermo Fisher), 
50 mM 2-Mercaptoethanol (Thermo Fisher) supplemented with 500 nM A-83–01 (Sigma Aldrich), 100 nM 
LDN 193189 (Sigma Aldrich) and 30 µM Y27632 (biozol). Half medium change was performed at days 4, 8, 11. 
Neurospheres were lysed in TRI reagent (Sigma Aldrich) at day 7 and differentiation was verified using qRT PCR.

Bulk RNA‑seq library preparation.  In this study two bulk RNA-seq experiments were performed, one 
to validate the generated iPS cells and the corresponding primary cells and one to further characterize human 
UDSCs derived from single colonies. For the first experiment one colony per clone corresponding to ~ 2 × 104 cells 
and 2 × 103 primary cells of each individual was lysed in RLT Plus (Qiagen) and stored at − 80 °C until processing. 
While for the single colony urinary cell characterization experiment we used lysate from 500 to 1000 cells per 
colony. The prime-seq protocol, which is based on SCRB-seq24–26, was used for library preparation24–26. The full 
protocol can be found on protocols.io (https​://www.proto​cols.io/view/prime​-seq-s9veh​66). Even though prime-
seq was used in both cases some minor differences between the two experiments exist. In particular in regards 
to the oligo dT primers that were used and the library preparation method as highlighted below. Briefly, proteins 
in the lysate were digested by Proteinase K (Ambion), RNA was cleaned up using SPRI beads (GE, 22%PEG). In 
order to remove isolated DNA, samples were treated with DNase I for 15 min at RT. cDNA was generated using 
oligo-dT primers containing well specific (sample specific) barcodes and unique molecular identifiers (UMIs). 
Unincorporated barcode primers were digested using Exonuclease I (New England Biolabs). cDNA was pre-
amplified using KAPA HiFi HotStart polymerase (Roche) and pooled before library preparation. Sequencing 
libraries for the iPSC/primary cell experiment were constructed from 0.8 ng of preamplified cleaned up cDNA 
using the Nextera XT kit (Illumina). Sequencing libraries for the single colony experiment were constructed using 
NEBNext (New England Biolabs) according to the prime-seq protocol. In both cases 3′ ends were enriched with a 
custom P5 primer (P5NEXTPT5, IDT) and libraries were size-selected for fragments in the range of 300–800 bp.

Sequencing.  Libraries were paired-end sequenced on an Illumina HiSeq 1500 instrument. Sixteen/twenty-
eight bases were sequenced with the first read to obtain cellular and molecular barcodes and 50 bases were 
sequenced in the second read into the cDNA fragment.

Data processing and analysis.  All raw fastq data were processed with zUMIs52 using STAR 2.6.0a53 to 
generate expression profiles for barcoded UMI data. All samples were mapped to the human genome (hg38). 

80 2. Results



12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3516  | https://doi.org/10.1038/s41598-021-82883-0

www.nature.com/scientificreports/

Gene annotations were obtained from Ensembl (GRCh38.84). Samples were filtered based on number of genes 
and UMIs detected, and genes were filtered using HTS Filter. DESeq254 was used for normalization and variance 
stabilized transformed data was used for principal component analysis and hierarchical clustering.

Mitochondrial and rRNA reads were excluded and singleR (v1.4.0, https​://bioco​nduct​or.org/packa​ges/Singl​
eR/) was used to classify the cells. SingleR was developed for unbiased cell type recognition of single cell RNA-
seq data, however, here we applied the method to our bulk RNA seq dataset28. The 200 most variable genes were 
used in the ‘de’ option of SingleR to compare the obtained expression profiles to55 as well as HPCA27. Based on 
the highest pairwise correlation between query and reference, cell types of the samples were assigned based on 
the most similar reference cell type.

We averaged and compared pairwise expression distances for different groups (Fig. 5d): the distances among 
iPSC clones within and between each species (N = 14 samples), the average of the distances between 1383D2 
and the urinary derived human iPSCs (N = 9) and the average of the pairwise distance between and within indi-
viduals among iPSCs and species (within individuals: N = 6 (6 individuals with more than one clone), between 
individuals: N = 8).

Data availability
RNA-seq data generated here are available at GEO under accession number GSE155889.

Code availability
 Code is available upon request.
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a Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Martinsried, Germany 
b Institute of Human Genomics, Munich University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany  

A B S T R A C T   

Cross-species comparisons using pluripotent stem cells from primates are crucial to better understand human biology, disease, and evolution. An important primate 
model is the Rhesus macaque (Macaca mulatta), and we reprogrammed skin fibroblasts from a male individual to generate three induced pluripotent stem cell (iPSC) 
lines. These cells exhibit the typical ESC-like colony morphology, express common pluripotency markers, and can differentiate into cells of the three germ layers. All 
generated iPSC lines can be cultured under feeder-free conditions in commercially available medium and are therefore valuable resources for cross-species 
comparisons.   

1. Resource Table  

Unique stem cell lines identifier MPC-MacMul-C00001 (83Ab1.1) 
MPC-MacMul-C00002 (83D1) 
MPC-MacMul-C00003 (87B1) 

Alternative name(s) of stem cell lines 83Ab1.1 
83D1 
87B1 

Institution Faculty of Biology, Ludwig-Maximilians- 
Universität München 

Contact information of distributor Prof. Dr. Wolfgang Enard: enard@bio. 
lmu.de 
Jessica Jocher: jocher@bio.lmu.de 

Type of cell lines iPSCs 
Origin Rhesus Macaque (Macaca Mulatta) 
Additional origin info Sex: Male 
Cell Source iPSCs were derived from Rhesus macaque 

skin fibroblasts, kindly provided by the 
DPZ Göttingen 

Clonality Clonal 
Method of reprogramming Integration-free sendai virus based OSKM 

vectors (CytoTune-iPSC 2.0 Sendai 
Reprogramming Kit, Thermo Fisher 
Scientific) were used for reprogramming 

Evidence of the reprogramming 
transgene loss (including genomic 
copy if applicable) 

PCR analysis for transgene detection 
(negative) 

Associated disease N/A 
Gene/locus N/A 
Date archived/stock date November 2020 
Cell line repository/bank N/A 

(continued on next column)  

(continued ) 

Ethical approval The study was ethically approved by the 
Animal Welfare Committee at DPZ which 
is registered and authorized by the local 
and regional veterinary governmental 
authorities (Ref. no. 122910.3311900, PK 
36674).  

2. Resource utility 

The three iPSC lines derived from one male Rhesus macaque skin 
sample can be used for cross-species comparisons investigating e.g., the 
molecular and cellular evolution of early primate development. 
Thereby, the three lines can help to assess clonal variation within one 
Rhesus macaque genetic background. 

3. Resource details 

Comparative analyses of human and non-human primates (NHP) can 
leverage unique information to understand evolutionary and develop
mental mechanisms and bridge the phylogenetic gap between humans 
and mice for translationally and biomedically relevant questions (Enard, 
2012). Among NHPs, the Rhesus macaque (Macaca mulatta) is probably 
the most important model across biological disciplines and comprises 
65 % of all NHP subjects used in the United States (Cooper et al., 2022). 
However, ethical, and practical limitations make it difficult to obtain 
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comparable cells especially during development. Induced pluripotent 
stem cells (iPSCs) can be used to overcome these challenges (Juan et al., 
2023). 

Here, skin fibroblast obtained from Rhesus macaque were reprog
rammed to iPSCs using Sendai viruses to introduce the Yamanaka factors 
OCT3/4, SOX2, KLF4 and C-MYC. Following reprogramming, colonies 
were picked, accustomed to feeder-free culture conditions and further 
characterized (Table 1). The established colonies exhibited a typical 
ESC-like morphology with defined borders, tight cellular packaging, and 
prominent nucleoli (Fig. 1A). A primate-specific SINE based PCR 
demonstrated that the iPSCs show the same Macaque-specific ALU 
element insertions as the parental skin fibroblasts, confirming that they 
were derived from the same species (Herke et al., 2007) (Supplementary 
Fig. S1A). In addition, single nucleotide polymorphisms (SNPs) were 
called from single-cell RNA-sequencing (scRNA-seq) data to profile the 
genotype of the cell lines. Around 4000 high quality SNPs with high 
coverage in all three clones were retrieved (Supplementary Fig. S1B). 
After some passages, karyotype analysis was performed and revealed no 
recurrent numerical or structural aberrations (Fig. 1B). In addition, one 
cell line was used for a detailed high resolution validation of numerical 
and structural chromosome integrity by FISH using human chromosome 
specific painting probes (Supplementary Fig. S1C). Immunofluorescence 
(IF) staining was performed, confirming the expression of the pluripo
tency associated proteins OCT3/4, SOX2 and NANOG, as well as the 
presence of the cell surface markers SSEA4 and EpCAM (Fig. 1D). 
Quantification of the IF staining for OCT3/4, SOX2 and NANOG showed 
that > 95 % of cells were positive for these pluripotency markers 

(Figure C). All three iPSCs were negative for mycoplasma DNA (Fig. 1E) 
and negative for the Sendai-based reprogramming vectors (Fig. 1F). 
Moreover, all iPSC lines had the ability to differentiate into cells of the 
three germ layers, confirmed by positive immunofluorescence staining 
of germ layer-specific markers. Endodermal cells were positively stained 
for alpha-fetoprotein (AFP), mesodermal cells expressed alpha-smooth 
muscle actin (SMA) and ectodermal cells displayed neuron-specific 
beta-III tubulin expression (Fig. 1G). Additionally, scRNA-seq of 
Embryoid bodies (EBs) confirmed their potential for trilineage differ
entiation and the expression of germ layer-specific marker genes (Sup
plementary Fig. S1D). In summary, these characteristics suggest the 
successful reprogramming of three lines to mycoplasma free, integration 
free and feeder-free iPSCs from Rhesus macaque (Macaca mulatta). 

4. Materials and methods 

4.1. Reprogramming of fibroblasts and iPSC maintenance 

Fibroblasts were cultured on 0.2 % Gelatin-coated dishes in DMEM/ 
F12 (Fisher Scientific) supplemented with 10 % FBS and 100 U/mL 
Penicillin and 100 μg/mL Streptomycin (Thermo Fisher Scientific) at 
37 ◦C with 5 % CO2. For reprogramming, a CytoTune™-iPS 2.0 Sendai 
Reprogramming Kit (Thermo Fisher Scientific) was used at a MOI of 5, 
using a modified protocol. Fibroblasts were incubated with the virus mix 
for 1 h at 37 ◦C in suspension, followed by seeding on feeder cell-coated 
wells. Cells were switched to mTesR1™ medium (STEMCELL Technol
ogies) on day 5 after transduction. Emerging colonies were manually 

Table 1 
Characterization and validation.  

Classification Test Result Data 

Morphology Photography Bright field Normal iPSC colony morphology Fig. 1A 
Scale bar represents 
500 µm 

Phenotype Qualitative analysis by 
immunocytochemistry 

iPSCs were positively stained for OCT4, NANOG, SOX2, SSEA4 and EpCAM Fig. 1D 
Scale bar represents 
100 µm 

Quantitative analysis by 
immunocytochemistry counting 

% total cells positive for pluripotency markers (mean ± SD): Fig. 1C 
83Ab1.1 
OCT4: 97.6 % ± 1.1 % 
NANOG: 94.4 % ± 2.8 % 
SOX2: 98.3 % ± 0.7 % 
83D1 
OCT4: 97.8 % ± 2 % 
NANOG: 98.4 % ± 0.3 % 
SOX2: 98.7 % ± 0.5 % 
87B1 
OCT4: 98.7 % ± 0.2 % 
NANOG: 98.7 % ± 0.9 % 
SOX2: 98.9 % ± 0.6 % 

Genotype Karyotype (G-banding and FISH) 3x inconspicuous male karyotype, 42,XYNo recurrent numeric or structural 
aberrations, after G-banding analysis of 46 to 48 cells per cell line with up to 
approximately 400 bphs (bands per haploid set) 

Fig. 1B and  
Supplementary Fig. S1C 

Identity SINE-based genotyping PCR DNA profiling performed, matched between iPSCs and parental fibroblasts Supplementary Fig. S1A 
SNP analysis Variant calling performed resulting in 4000 high quality SNPs Submitted in archive 

with journal 
Summary:  
Supplementary Fig. S1B 

Mutation analysis (IF 
APPLICABLE) 

N/A   
N/A   

Microbiology and 
virology 

Mycoplasma Mycoplasma testing by PCR: negative Fig. 1E 
Sendai virus PCR analysis for Sendai virus presence: negative Fig. 1F 

Differentiation potential Embryoid body formation - IF 
staining 

iPSCs are capable of differentiating into the three germ layers. Mesoderm: Smooth 
muscle actin (SMA) Endoderm: α-feto protein (AFP) 

Fig. 1G 
Scale bar represents 
100 µm 

Ectoderm: β-III Tubulin  
Embryoid body formation - scRNA- 
seq 

Expression of multiple cell type and germ layer specific marker genes Supplementary Fig. S1D 

Donor screening 
(OPTIONAL) 

N/A   

Genotype additional info 
(OPTIONAL) 

N/A   
N/A    
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Fig. 1. Characterization of the three Rhesus macaque iPSC lines. (A) Phase contrast microscopy images of iPSC colonies. Scale bar represents 500 μm. (B) Karyotype 
analysis. (C) Immunofluorescence counting results for NANOG, OCT4 and SOX2. (D) Immunofluorescence staining for pluripotency markers. Scale bar represents 100 
μm. (E) Mycoplasma test. (F) PCR for Sendai-based reprogramming vectors. (G) Immunofluorescence staining for germ layer-specific markers. Scale bar represents 
100 μm. 
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picked on feeder cells and cultured in StemFit® Basic02 (Ajinomoto) 
supplemented with 100 ng/mL bFGF (Peprotech) and 100 U/mL Peni
cillin and 100 μg/mL Streptomycin. For generating feeder-free iPSCs, 
colonies were split using 0.5 mM EDTA on 1 % Geltrex™ (Thermo Fisher 
Scientific) -coated wells in feeder-conditioned StemFit. The ratio of 
feeder-conditioned to normal StemFit was reduced by 25 % after every 
second passage, until iPSCs could be cultured under feeder-free condi
tions. iPSCs were passaged using 0.5 mM EDTA at a ratio of 1:10–1:50 
every 5 days, with medium changes every other day. 

4.2. Immunocytochemistry 

Attached cells (passage 15–20) were fixed for 15 min with 4 % PFA, 
permeabilized with 0.3 % Triton X-100 (Sigma Aldrich) and blocked 
with 5 % FBS for 30 min. Cells were incubated with primary antibodies 
(Table 2) diluted in staining buffer (PBS containing 1 % BSA and 0.3 % 
Triton X-100) overnight at 4 ◦C. The next day, cells were washed with 
PBS and incubated with secondary antibodies (Table 2) diluted in 
staining buffer for 1 h at room temperature. Nuclei were counterstained 
with 1 µg/mL DAPI. Positively-stained cells were quantified using the 
ImageJ software with the Cell Counter plugin. 

4.3. Embryoid body formation 

iPSCs at passage 15–20 were dissociated into clumps and cultured in 
sterile bacterial dishes containing StemFit Basic02 w/o bFGF at 37 ◦C 
with 5 % CO2. A medium change was performed every other day during 
the first 8 days of floating culture. Afterwards, EBs were seeded into 6- 
wells coated with 0.2 % Gelatin for 8 days of attached culture. On day 
16, differentiated cells were analyzed with specific antibodies for 
mesoderm, endoderm, and ectoderm (Table 2) using immunocyto
chemistry. In addition, cells were also sampled for scRNA-seq on day 16. 
Briefly, EBs were dissociated using Accumax, and sequencing libraries 
were generated using the 10x Genomics Chromium Next GEM Single 
Cell 3′Kit V3.1 workflow. Cluster analysis was performed in R using the 
package Seurat v5 and clusters were assigned to germ layers based on 
the expression of known marker genes. 

4.4. Karyotyping 

For Metaphase preparation, cells (passage 16–23) at 80 % confluency 
were incubated with 0.1 mg/mL Colcemid (Gibco) for 13 h and 

harvested using Accumax (Sigma Aldrich). Cells were treated with hy
potonic Na-Citrate/NaCl for 35 min at 37 ◦C, followed by a subsequent 
fixation with methanol/acetic acid glacial (3:1) for 20 min at -20 ◦C. 
After pelleting, cells were washed twice with methanol/acetic acid as 
stated above. Differentially stained mitotic chromosome spreads were 
prepared using the G-banding technique and fluorescence in situ hy
bridization (FISH) was performed using human chromosome specific 
painting probes, following standard procedures. 

4.5. Mycoplasma testing 

The medium of a confluent 6-well with iPSCs at passage 15–20 was 
collected and pelleted, followed by resuspension in 100 µL PBS. After a 5 
min incubation at 95 ◦C, 1 µL was used for a screening PCR with specific 
primers for the Mycoplasma 16S rRNA (Table 2). 

4.6. Genotyping PCR 

Total gDNA was isolated from cell pellets using the DirectPCR Lysis 
Reagent (VWR) supplemented with 20 mg/mL Proteinase K (Life 
Technologies), and a PCR (36 cycles) was performed with primers for 
the primate-specific Alu SINE (Table 2). 

4.7. Variant calling 

10x scRNA-seq data of day 16 EBs were used to call SNPs against the 
reference genome rheMac10 using GATK (Genome Analysis Tool Kit). 
High quality, biallelic SNPs were retained by joint genotyping of all 
three clones followed by quality filtering of the variants for high 
coverage (DP > 99) and quality by depth (QD > 2). 

4.8. SeV detection 

Total RNA was isolated from iPSCs at passage 10–15 using the Direct- 
zol RNA Microprep Kit (Zymo Research). After cDNA synthesis using the 
Maxima H Minus Reverse Transcriptase (Thermo Fisher Scientific), the 
cDNA was used to perform a PCR (36 cycles) with specific primers for 
SeV and GAPDH (Table 2). 
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The authors declare the following financial interests/personal 

Table 2 
Reagents details.  

Antibodies used for immunocytochemistry  

Antibody Dilution Company Cat # RRID 

Pluripotency Markers Rabbit anti-OCT4 1:400 Cell Signaling Technology, Cat# 2750S RRID: AB_823583 
Mouse anti-SOX2 1:400 Cell Signaling Technology, Cat# 4900S RRID: AB_10560516 
Rabbit anti-Nanog 1:400 Cell Signaling Technology, Cat# 4903S RRID: AB_10559205 
Mouse anti-SSEA4 1:500 NEB, Cat# 4755S RRID: AB_1264259 
Rabbit anti-EpCAM 1:500 Thermo Fisher Scientific, Cat# 710524 RRID: AB_2532731 

Differentiation Markers Mouse anti- ɑ-Smooth Muscle Actin 1:100 R&D Systems, Cat# MAB1420 RRID: AB_262054 
Mouse anti- Neuron-specific beta-III Tubulin 1:100 R&D Systems, Cat# MAB1195 RRID: AB_357520 
Mouse anti-alpha Fetoprotein 1:100 R&D Systems, Cat# MAB1368 RRID: AB_357658 

Secondary Antibodies Alexa Fluor 488 donkey anti-mouse IgG (H + L) 1:500 Thermo Fisher Scientific, Cat# A-21202 RRID: AB_141607 
Alexa Fluor 594 donkey anti-rabbit IgG (H + L) 1:500 Thermo Fisher Scientific, Cat# A-21207 RRID: AB_141637  

Primers  

Target Size of band Forward/Reverse primer (5′-3′) 

Reprogramming factor clearance Sendai Virus 180 bp GGATCACTAGGTGATATCGAGC/ 
ACCAGACAAGAGTTTAAGAGATATGTATC 

GAPDH (housekeeping gene) 450 bp ACCACAGTCCATGCCATCAC/TCCACCACCCTGTTGCTGTA 
Mycoplasma testing Mycoplasma 16S 270 bp TGCACCATCTGTCACTCTGTTAACCTC/ 

GGGAGCAAACAGGATTAGATACCCT 
Genotyping PCR Alu (primate-specific SINE) 548 bp CTCTCAGCTCCCTGTTTCTGTT/CATGGACATCAGACTAGCCACT  
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Generation and characterization of two Vervet monkey induced pluripotent 
stem cell lines derived from fibroblasts 

Jessica Jocher a, Fiona C. Edenhofer a, Stefan Müller b, Philipp Janssen a, Eva Briem a, 
Johanna Geuder a, Wolfgang Enard a,* 

a Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Martinsried, Germany 
b Institute of Human Genetics, Munich University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany  

A B S T R A C T   

Cross-species comparisons using pluripotent stem cells from primates are crucial to better understand human biology, disease, and evolution. The Vervet monkey 
(Chlorocebus aethiops sabaeus) serves as an important primate model for such studies, and therefore we reprogrammed skin fibroblasts derived from a male and a 
female individual, resulting in two induced pluripotent stem cell lines (iPSCs). These iPSCs display the characteristic ESC-like colony morphology, express key 
pluripotency markers, and possess the ability to differentiate into cells representing all three germ layers. Importantly, both generated cell lines can be maintained in 
feeder-free culture conditions using commercially available medium.   

1. Resource Table  

Unique stem cell lines 
identifier 

MPC-ChlSab-C00001 (76A3) 
MPC-ChlSab-C00002 (80B1) 

Alternative name(s) of stem 
cell lines 

76A3 
80B1 

Institution Faculty of Biology, Ludwig-Maximilians- 
Universität München 

Contact information of 
distributor 

Prof. Dr. Wolfgang Enard: enard@bio.lmu.de 
Jessica Jocher: jocher@bio.lmu.de 

Type of cell lines iPSCs 
Origin Vervet monkey (Chlorocebus aethiops sabaeus) 
Additional origin info Sex: female (76A3) and male (80B1) 
Cell Source iPSCs were derived from fibroblasts established 

from skin biopsies collected at the Vervet Research 
Colony and kindly provided by the UCLA. 

Clonality Clonal 
Method of reprogramming Integration-free sendai virus based OSKM vectors 

(CytoTune-iPSC 2.0 Sendai Reprogramming Kit, 
Thermo Fisher Scientific) were used for 
reprogramming 

Evidence of the 
reprogramming transgene 
loss 

PCR analysis for transgene detection (negative) 

Associated disease N/A 
Gene/locus N/A 
Date archived/stock date November 2020 
Cell line repository/bank N/A 

(continued on next column)  

(continued ) 

Unique stem cell lines 
identifier 

MPC-ChlSab-C00001 (76A3) 
MPC-ChlSab-C00002 (80B1) 

Ethical approval Fibroblast sample collection was approved by the 
UCLA and VA Institutional Animal Care and Use 
Committees. Fibroblast import was approved by 
CITES (permit number: 18US12381D/9)  

2. Resource utility 

The two iPSC lines derived from fibroblasts of a male and a female 
Vervet monkey, provide a valuable resource for cross-species compari
sons, e.g., enabling investigations of molecular and cellular processes 
during early primate development. Furthermore, the two cell lines can 
help to assess intra-species variation within the Vervet genetic back
ground and allow to investigate sex-related genetic factors. 

3. Resource details 

To gain insights into evolutionary and developmental mechanisms, 
as well as to bridge the phylogenetic gap between humans and mice, 
comparative analyses of human and non-human primates (NHP) can 
provide valuable and unique information (Enard, 2012). Among NHPs, 
the Vervet monkey (also called African green monkey) is, next to Rhesus 
macaques, the most commonly investigated NHP in biomedical 
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research. One reason for this is that they are a natural host to the Simian 
Immunodeficiency Virus (SIV) and can be used to study adaptations to 
lentiviral infections. In contrast to African Vervets, the Caribbean Ver
vets (Chlorocebus aethiops sabaeus) also used here, are SIV free which 
allows safe and controlled studies on SIV infections and has made them a 
valuable source for NHP genetics (Jasinska, 2013). Generating induced 
pluripotent stem cells (iPSCs) from Vervets links this important NHP 
model to stem cell biology and comparative primate genomics (Juan 
et al., 2023). 

Here, Vervet monkey skin fibroblasts were reprogrammed to iPSCs 
using a commercially available Sendai virus kit to introduce OCT3/4, 
SOX2, KLF4 and C-MYC into the cells. Emerging colonies were picked, 
gradually transferred to feeder-free culture conditions, and further 
characterized (Table 1). The two derived clones exhibit the typical ESC- 
like morphology with tight cellular packaging, prominent nucleoli, and 
defined colony borders (Fig. 1A). Immunofluorescence (IF) staining 
confirmed the expression of the pluripotency associated proteins OCT3/ 
4 and SOX2, as well as the presence of the cell surface markers TRA-1- 
60, SSEA4 and EpCAM (Fig. 1B). Quantification of the IF staining 
revealed that > 95 % of cells are expressing both pluripotency markers 
OCT3/4 and SOX2 (Fig. 1C). A primate-specific SINE based PCR 
confirmed the presence of Vervet-specific ALU element insertions in the 
iPSCs as well as the parental skin fibroblasts, confirming their derivation 
from the same primate species (Herke et al., 2007) (Supplementary Fig. 
S1A). In addition, single nucleotide polymorphisms (SNPs) were called 
from bulk RNA-sequencing (bulk RNA-seq) data to profile the genotype 
of the cell lines. Around 5100 and 4300 high quality SNPs with high 
coverage were retrieved for the cell lines 76A3 and 80B1, respectively 
(Supplementary Fig. S1B,C). All iPSCs were negative for mycoplasma 
contamination (Fig. 1E) and negative for Sendai-based reprogramming 
vectors (Fig. 1F). Furthermore, karyotype analysis was performed, 

revealing no recurrent numerical or structural aberrations in the two 
iPSC lines (Fig. 1D). In addition, a detailed high resolution validation of 
numerical and structural chromosome integrity was performed by FISH 
using human chromosome specific painting probes on the 76A3 line 
(Supplementary Fig. S1D). To assess their differentiation capacity, an in 
vitro differentiation to embryoid bodies (EBs) was conducted and 
stainings for alpha-fetoprotein (AFP) and SOX17 were used to verify 
endodermal differentiation, alpha-smooth muscle actin (SMA) and pro- 
collagen-1 alpha-1 (COL1A1) for mesodermal differentiation, and 
neuron-specific beta-III tubulin and PAX6 for ectodermal differentiation 
(Fig. 1G). In summary, these characteristics indicate the successful 
establishment of two feeder-free iPSC lines from Vervet monkey 
(Chlorocebus aethiops sabaeus). 

4. Materials and methods 

4.1. Reprogramming of fibroblasts and iPSC maintenance 

Fibroblasts were cultured on 0.2 % Gelatin coated dishes in DMEM/ 
F12 (Fisher Scientific) supplemented with 10 % FBS and 100 U/mL 
Penicillin and 100 μg/mL Streptomycin (Thermo Fisher Scientific) at 37 
◦C and 5 % CO2. The CytoTune™-iPS 2.0 Sendai Reprogramming Kit 
(Thermo Fisher Scientific) was used for reprogramming following a 
modified protocol. Briefly, fibroblasts were incubated in suspension 
with the virus mix at a MOI of 5 for 1 h at 37 ◦C and then seeded onto a 
feeder layer. On day 5, medium was switched to mTesR1™ (STEMCELL 
Technologies). Appearing colonies were manually picked onto feeder 
cells and cultured in StemFit® Basic02 (Ajinomoto) supplemented with 
100 ng/mL bFGF (Peprotech) and 100 U/mL Penicillin and 100 μg/mL 
Streptomycin. For a feeder free culture, cells were passaged using 0.5 
mM EDTA on 1 % Geltrex™ (Thermo Fisher Scientific) coated wells in 

Table 1 
Characterization and validation.  

Classification Test Result Data 

Morphology Photography phase contrast Normal colony morphology Fig. 1A 
Scale bar represents 500 µm 

Phenotype Qualitative analysis by 
immunocytochemistry 

iPSCs were positively stained for OCT4, SOX2, TRA-1–60, 
SSEA4 and EpCAM 

Fig. 1B 
Scale bar represents 100 µm 

Quantitative analysis by 
immunocytochemistry counting 

% total cells positive for pluripotency markers (mean ± SD): Fig. 1C 
76A3 
OCT4: 97.2 % ± 1.5 % 
(2,436 cells counted) 
SOX2: 98.6 % ± 1.2 % 
(1,693 cells counted) 
80B1 
OCT4: 96 % ± 1.9 % 
(2,128 cells counted) 
SOX2: 97.5 % ± 2.4 % 
(1,508 cells counted) 

Genotype Karyotype (G-banding and FISH) 76A3: inconspicuous female karyotype, 60,XX Fig. 1D and Supplementary 
Fig. S1D 80B1: inconspicuous male karyotype, 60,XY 

Identity  SINE-based genotyping PCR DNA profiling performed, matched between iPSCs and 
parental fibroblasts 

Supplementary Fig. S1A 

SNP analysis Variant calling performed resulting in 5100 (76A3) and 4300 
(80B1) high quality SNPs 

Submitted in archive with 
journal 
Summary: Supplementary 
Fig. S1B,C 

Mutation analysis (IF 
APPLICABLE) 

N/A   
N/A   

Microbiology and virology Mycoplasma Mycoplasma testing by PCR: negative Fig. 1E 
Sendai virus PCR analysis for Sendai virus presence: negative Fig. 1F 

Differentiation potential Embryoid body formation iPSCs are capable of differentiating into the three germ layers. 
Mesoderm: Smooth muscle actin (SMA) and COL1A1 
Endoderm: α-feto protein (AFP) and SOX17 
Ectoderm: β-III tubulin and PAX6 

Fig. 1G 
Scale bar represents 100 µm 

Donor screening (OPTIONAL) N/A   
Genotype additional info 

(OPTIONAL) 
N/A   
N/A    
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Fig. 1. Characterization of two Vervet monkey iPSC lines. (A) Phase contrast microscopy images of iPSC colonies. Scale bar represents 500 μm. (B) Immunofluo
rescence staining for pluripotency markers. Scale bar represents 100 μm. (C) Immunofluorescence couting results for OCT4 and SOX2. (D) Karyotype analysis. (E) 
Mycoplasma test. (F) PCR for Sendai-based reprogramming vectors. (G) Immunofluorescence staining for germ layer-specific markers. Scale bar represents 100 μm. 
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feeder-conditioned StemFit. The ratio of feeder-conditioned to normal 
StemFit was reduced by 25 % every other passage until iPSCs could be 
cultured under feeder-free conditions. iPSCs were passaged using 0.5 
mM EDTA at a ratio of 1:10–1:40 every 5 days, changing the medium 
every other day. 

4.2. Immunocytochemistry 

Attached cells (passage 19–25) were fixed with 4 % PFA for 15 min at 
RT, permeabilized with 0.3 % Triton X-100 (Sigma Aldrich) and blocked 
for 30 min with 5 % FBS. Cells were incubated with primary antibodies 
(Table 2) diluted in staining buffer (PBS containing 1 % BSA and 0.3 % 
Triton X-100) overnight at 4 ◦C. Thereafter, cells were washed with PBS 
and incubated with secondary antibodies (Table 2) diluted in staining 
buffer for 1 h at RT. Nuclei were counterstained using DAPI at a con
centration of 1 µg/mL. To obtain proportions of positively-stained cells, 
images of the fluorescence staining and the corresponding DAPI staining 
were counted using the Cell Counted plugin in ImageJ. Between 1,508 
and 2,436 cells were counted for each marker and percentages were 
calculated based on the number of positively-stained cells divided by the 
number of DAPI stained nuclei. The standard deviation was calculated 
based on the difference between the counted images. 

4.3. Embryoid body formation 

One 6-well of iPSCs at passage 19–25 was dissociated into clumps, 
transferred to a sterile bacterial dish containing StemFit w/o bFGF and 
cultured at 37 ◦C with 5 % CO2. During the first 8 days of floating cul
ture, the medium was changed every other day. Then, EBs were seeded 
into 0.2 % Gelatin-coated 6-wells for 8 days of adherent culture. On day 
16, the cells were stained with antibodies for mesoderm, endoderm, and 
ectoderm (Table 2) as stated above. 

4.4. Karyotyping 

Cells (passage 15–20) at 80 % confluency were incubated with 0.1 
mg/mL Colcemid (Gibco) for 14 h and harvested using Accumax™ 
(Sigma Aldrich). Cells were treated with hypotonic Na-Citrate / NaCl for 
35 min at 37 ◦C and then fixed with methanol / acetic acid glacial (3:1) 

for 20 min at -20 ◦C. After pelleting, cells were washed twice with 
methanol/acetic acid before conducting standard protocols for chro
mosome preparation, G-banding, and fluorescence in situ hybridization 
(FISH) using human chromosome specific painting probes. 

4.5. Mycoplasma testing 

The medium of a confluent 6-well with iPSCs at passage 15–25 was 
collected, pelleted, and resuspended in 100 µL PBS. After incubation at 
95 ◦C for 5 min, 1 µL was used for a screening PCR with specific primers 
for the Mycoplasma 16S rRNA (Table 2). 

4.6. Genotyping PCR 

gDNA was isolated using the DirectPCR Lysis Reagent (VWR) sup
plemented with 20 mg/mL Proteinase K (Life Technologies), and a PCR 
(36 cycles) was carried out with primers for the primate-specific Alu 
SINE (Table 2). 

4.7. SeV detection 

Total RNA was isolated from iPSCs at passage 15–18 using the Direct- 
zol RNA Microprep Kit (Zymo Research) according to the manufac
turer’s instructions. After reverse transcription using the Maxima H 
Minus Reverse Transcriptase (Thermo Fisher Scientific), the cDNA was 
used to perform a PCR (36 cycles) with specific primers for SeV. The 
housekeeping gene GAPDH was used as positive control (Table 2). 

4.8. Bulk RNA-sequencing and variant calling 

iPSCs of both individuals were dissociated using Accumax, sampled 
in three biological replicates each and bulk RNA-seq libraries were 
generated using the Prime-seq workflow (https://www.protocols.io/v 
iew/prime-seq-81wgb1pw3vpk/v2). Bulk RNA-seq data of iPSCs were 
used to call SNPs against the reference genome chlSab2 using GATK 
(Genome Analysis Tool Kit). High quality, biallelic SNPs were retained 
by quality filtering of the variants for high coverage (DP > 49) and 
quality by depth (QD > 2). 

Table 2 
Reagents details.   

Antibodies used for immunocytochemistry/flow-cytometry  

Antibody Dilution Company Cat # RRID 

Pluripotency Markers Rabbit anti-OCT4 1:400 Cell Signaling Technology, Cat# 2750S RRID: AB_823583 
Mouse anti-SOX2 1:400 Cell Signaling Technology, Cat# 4900S RRID: AB_10560516 
Mouse anti-SSEA4 1:500 NEB, Cat# 4755S RRID: AB_1264259 
Rabbit anti-EpCAM 1:500 Thermo Fisher Scientific, Cat# 710524 RRID: AB_2532731 
Mouse anti-TRA-1–60 1:100 Stem Cell Technologies, Cat# 60064 RRID: AB_2686905 

Differentiation Markers Mouse anti-ɑ-Smooth Muscle Actin 1:100 R&D Systems, Cat# MAB1420 RRID: AB_262054 
Sheep anti-COL1A1 1:200 R&D Systems, Cat# AF6220 RRID: AB_10891543 
Mouse anti- Neuron-specific beta-III Tubulin 1:100 R&D Systems, Cat# MAB1195 RRID: AB_357520 
Rabbit anti-PAX6 1:100 Thermo Fisher Scientific, Cat# 42–6600 RRID: AB_2533534 
Mouse anti-alpha Fetoprotein 1:100 R&D Systems, Cat# MAB1368 RRID: AB_357658 
Rabbit anti-SOX17 1:500 Bio-Techne, Cat# NBP2-24568 RRID: AB_3075468 

Secondary Antibodies Alexa Fluor 488 donkey anti-mouse IgG (H + L) 1:500 Thermo Fisher Scientific, Cat# A-21202 RRID: AB_141607 
Alexa Fluor 594 donkey anti-rabbit IgG (H + L) 1:500 Thermo Fisher Scientific, Cat# A-21207 RRID: AB_141637 
Alexa Fluor 488 donkey anti-sheep (H + L) 1:500 Thermo Fisher Scientific, Cat# A-11015 RRID: AB_2534082   

Primers  
Target Size of band Forward/Reverse primer (5′-3′) 

Reprogramming factor clearance Sendai Virus 180 bp GGATCACTAGGTGATATCGAGC / 
ACCAGACAAGAGTTTAAGAGATATGTATC 

GAPDH (housekeeping gene) 450 bp ACCACAGTCCATGCCATCAC / TCCACCACCCTGTTGCTGTA 
Mycoplasma testing Mycoplasma 16S 270 bp TGCACCATCTGTCACTCTGTTAACCTC / 

GGGAGCAAACAGGATTAGATACCCT 
Genotyping PCR Alu (primate-specific SINE) 680 bp CACAAAATACTAAAGGACTGTTAAAGG / 

CACAAAATACTAAAGGACTGTTAAAGG  
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Lab Resource: Animal Multiple Cell lines 

Generation and characterization of two fibroblast-derived Baboon induced 
pluripotent stem cell lines 

Jessica Jocher a, Fiona C. Edenhofer a, Stefan Müller b, Philipp Janssen a, Eva Briem a, 
Johanna Geuder a, Wolfgang Enard a,* 

a Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Martinsried, Germany 
b Institute of Human Genetics, Munich University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany  

A B S T R A C T   

Cross-species comparisons studying primate pluripotent stem cells and their derivatives are crucial to better understand the molecular and cellular mechanisms 
behind human disease and development. Within this context, Baboons (Papio anubis) have emerged as a prominent primate model for such investigations. Herein, we 
reprogrammed skin fibroblasts of one male individual and generated two induced pluripotent stem cell (iPSC) lines, which exhibit the characteristic ESC-like 
morphology, demonstrated robust expression of key pluripotency factors and displayed multilineage differentiation potential. Notably, both iPSC lines can be 
cultured under feeder-free conditions in commercially available medium, enhancing their value for cross-species comparisons.   

1. Resource Table  

Unique stem cell lines 
identifier 

MPC-PapAnu-C00001 (100A1) 
MPC-PapAnu-C00002 (100B1.3) 

Alternative name(s) of stem 
cell lines 

100A1 
100B1.3 

Institution Faculty of Biology, Ludwig-Maximilians- 
Universität München 

Contact information of 
distributor 

Prof. Dr. Wolfgang Enard: enard@bio.lmu.de 
Jessica Jocher: jocher@bio.lmu.de 

Type of cell lines iPSCs 
Origin Baboon (Papio anubis) 
Additional origin info Sex: male 
Cell Source iPSCs were derived from baboon skin fibroblasts 
Clonality Clonal 
Method of reprogramming Integration-free sendai virus based OSKM vectors 

(CytoTune-iPSC 2.0 Sendai Reprogramming Kit, 
Thermo Fisher Scientific) were used for 
reprogramming 

Evidence of the 
reprogramming transgene 
loss 

PCR analysis for transgene detection (negative) 

Associated disease N/A 
Gene/locus N/A 
Date archived/stock date April 2021 
Cell line repository/bank N/A 
Ethical approval Fibroblasts were isolated during an autopsy in an 

unrelated project that was approved by the 
Government of Upper Bavaria, Munich, Germany 

(continued on next column)  

(continued ) 

Unique stem cell lines 
identifier 

MPC-PapAnu-C00001 (100A1) 
MPC-PapAnu-C00002 (100B1.3) 

(reference number 55.2–1-54–2532-184–2014, 
September 2015).   

1.1. Resource utility 

The utilization of two iPSC lines derived from one male Baboon skin 
sample enables cross-species comparisons, particularly for investigating 
the molecular and cellular evolution during early primate development. 
Additionally, these two lines offer the opportunity to evaluate clonal 
variation within the genetic background of one single Baboon. 

2. Resource details 

Comparative analyses of human and non-human primates (NHP) can 
provide valuable and unique information, allowing to gain insights into 
evolutionary and developmental mechanisms, as well as bridge the 
phylogenetic gap between humans and mice (Enard, 2012). The Baboon 
(Papio anubis) is a frequently used model in biomedical research, as well 
as in behavioral ecology (Fischer et al., 2019). However, availability of 
these animals is limited and obtaining comparable cells especially dur
ing development is practically and ethically challenging for many 

* Corresponding author. 
E-mail address: enard@bio.lmu.de (W. Enard).  

Contents lists available at ScienceDirect 

Stem Cell Research 

journal homepage: www.elsevier.com/locate/scr 
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studies. Therefore, generating induced pluripotent stem cells (iPSCs) 
from NHPs can aid in establishing renewable sample resources and help 
to overcome these challenges (Juan et al., 2023). 

Here, Baboon skin fibroblasts were reprogrammed to iPSCs using a 
commercially available Sendai virus kit to introduce the Yamanaka 
factors OCT3/4, SOX2, KLF4 and C-MYC into the cells. Following 
transduction, emerging colonies were picked, gradually transitioned to 
feeder-free culture conditions, and further characterized (Table 1). The 
resulting iPSC clones exhibit characteristic ESC-like features, including 
compact cellular packaging, defined colony borders and a high nuclear / 
cytoplasm ratio (Fig. 1A). To confirm pluripotency of the iPSCs, 
immunofluorescence (IF) staining was performed, affirming the 
expression of the pluripotency-associated proteins NANOG, OCT3/4 and 
SOX2, in addition to the presence of cell surface markers TRA-1–60 and 
SSEA4 (Fig. 1B). Quantitative analysis of the IF staining demonstrated a 
substantial proportion of cells (>95 %) are expressing NANOG, OCT3/4 
and SOX2 (Fig. 1C). A primate-specific SINE-based PCR was conducted, 
confirming the same Baboon-specific ALU element insertions as the 
parental skin fibroblasts, thereby validating their origin from the same 
species (Herke et al., 2007) (Supplementary Fig. S1A). In addition, 
single nucleotide polymorphisms (SNPs) were called from bulk RNA- 
sequencing (bulk RNA-seq) data to profile the genotype of the cell 
lines. Around 7000 high quality SNPs with high coverage in both clones 
and parental fibroblasts were retrieved (Supplementary Fig. S1B,C). All 
iPSCs were negative for mycoplasma contamination (Fig. 1E) and the 
absence of Sendai-based reprogramming vectors was proven by PCR 
(Fig. 1F). Karyotype analysis revealed no recurrent numerical or struc
tural abnormalities (Fig. 1D). In addition, a detailed high resolution 
analysis of numerical and structural chromosome integrity was per
formed by FISH using selected human whole chromosome specific 
painting probes to further validate one of the cell lines. All chromosomes 
were stained as expected, with baboon chromosome 10 being stained 
with two probes based on an evolutionary fusion of human chromosome 
20 and 22 homologs (Best et al., 1998) (Supplementary Figure S1D). To 
assess the differentiation potential of iPSCs, an in vitro differentiation to 
embryoid bodies (EBs) was performed, and subsequent staining for 
alpha-fetoprotein (AFP), SOX17, alpha-smooth-muscle actin (SMA), pro- 
collagen-1 alpha-1 (COL1A1), PAX6 and neuron-specific beta-III tubulin 
confirmed differentiation into the three germ layers (Fig. 1G). In 

Table 1 
Characterization and validation.  

Classification Test Result Data 

Morphology Photography Bright 
field 

Normal colony 
morphology 

Fig. 1A 

Phenotype Qualitative analysis by 
immunocytochemistry 

iPSCs were 
positively 
stained for 
OCT3/4, 
NANOG, SOX2, 
TRA-1–60 and 
SSEA4 

Fig. 1B 

Quantitative analysis 
by 
immunocytochemistry 
counting 

% of total cells 
positive for 
pluripotency 
markers (mean 
± SD): 

Fig. 1C 

100A1 
OCT3/4: 97.9 % 
± 2.9 % 
(3,071 cell 
counted) 
NANOG: 98.2 % 
± 0.3 % 
(3,070 cell 
counted) 
SOX2: 99.1 % ±
0.6 % 
(3,362 cell 
counted) 
100B1.3 
OCT3/4: 97.8 % 
± 0.6 % 
(3,725 cell 
counted) 
NANOG: 98.8 % 
± 1.1 % 
(2,845 cells 
counted) 
SOX2: 98.9 % ±
0.3 % 
(2,492 cells 
counted) 

Genotype Karyotype (G-banding) 
and resolution 

2x 
inconspicuous 
male karyotype, 
42,XY 
No recurrent 
numeric or 
structural 
aberrations, 
after G-banding 
analysis of more 
than 45 cells per 
cell line with up 
to 
approximately 
400 bphs (bands 
per haploid set) 

Fig. 1D and 
Supplementary 
Fig. S1D 

Identity SINE-based genotyping 
PCR 

DNA profiling 
performed, 
matched 
between iPSCs 
and parental 
fibroblasts 

Supplementary 
Fig. S1A 

SNP analysis Variant calling 
performed 
resulting in 
7000 high 
quality SNPs 

Submitted in 
archive with 
journal 
Summary:  
Supplementary 
Fig. S1B,C 

Mutation 
analysis (IF 
APPLICABLE) 

N/A   
N/A   

Microbiology 
and virology 

Mycoplasma Mycoplasma 
testing by PCR: 
negative 

Fig. 1E  

Table 1 (continued ) 

Classification Test Result Data 

Sendai virus PCR analysis for 
Sendai virus 
presence: 
negative 

Fig. 1F 

Differentiation 
potential 

Embryoid body 
formation 

iPSCs are 
capable of 
differentiating 
into the three 
germ layers. 
Mesoderm: 
Smooth muscle 
actin (SMA) and 
COL1A1,  
Endoderm: 
α-feto protein 
(AFP) and 
SOX17,  
Ectoderm: β-III 
Tubulin and 
PAX6 

Fig. 1G 

Donor 
screening 
(OPTIONAL) 

N/A   

Genotype 
additional 
info 
(OPTIONAL) 

N/A   
N/A    
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Fig. 1. Characterization of two Baboon iPSC lines. (A) Phase contrast microscopy images of iPSC colonies. Scale bar represents 500 μm. (B) Immunofluorescence 
staining for pluripotency markers. Scale bar represents 100 μm. (C) Immunofluorescence counting results for NANOG, OCT4 and SOX2. (D) Karyotype analysis. (E) 
Mycoplasma test. (F) PCR for Sendai-based reprogramming vectors. (G) Immunofluorescence staining for germ layer-specific markers. Scale bar represents 100 μm. 
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summary, these characteristics suggest the successful reprogramming of 
Baboon fibroblasts to two feeder-free iPSC lines. 

3. Materials and methods 

3.1. Reprogramming of fibroblasts and iPSC maintenance 

Fibroblasts were cultured in DMEM/F12 (Fisher Scientific) supple
mented with 10 % FBS, 100 U/ml Penicillin and 100 μg/ml Strepto
mycin (Thermo Fisher Scientific) on 0.2 % Gelatin-coated dishes at 37 ◦C 
with 5 % CO2. For reprogramming, the CytoTune™-iPS 2.0 Sendai 
Reprogramming Kit (Thermo Fisher Scientific) was used at a MOI of 5 
following a modified protocol. Briefly, a suspension infection with the 
virus mix was conducted for 1 h at 37 ◦C, followed by seeding on feeder 
cell (mitomycin-C treated mouse embryonic fibroblasts) -coated wells. 
The culture medium was switched to mTesR1™ (STEMCELL Technolo
gies) on day 5. Emerging colonies were manually picked on feeder cells 
in StemFit® Basic02 (Ajinomoto) supplemented with 100 ng/mL bFGF 
(Peprotech) and PenStrep. To generate feeder-free iPSCs, cells were split 
using 0.5 mM EDTA on 1 % Geltrex™ (Thermo Fisher Scientific) -coated 
wells in feeder-conditioned StemFit. The ratio of normal to feeder- 
conditioned StemFit was increased by 25 % after every second pas
sage, until iPSCs adapted to feeder-free culture conditions. Every 5–7 
days, 0.5 mM EDTA was used for routine passaging at a ratio of 
1:10–1:40, and the medium was exchanged every other day. 

3.2. Immunocytochemistry 

Cells at passage 20–25 were fixed with 4 % PFA for 15 min, per
meabilized with 0.3 % Triton X-100 and blocked with 5 % FBS for 30 
min. Cells were incubated with primary antibodies (Table 2) diluted in 
staining buffer (PBS containing 1 % BSA and 0.3 % Triton X-100) at 4 ◦C 
overnight. Following, cells were washed with PBS and incubated with 
secondary antibodies (Table 2) diluted in staining buffer for 1 h at RT. 
Nuclei were counterstained with 1 µg/mL DAPI. The percentage of 
positively-stained cells was quantified with the ImageJ software using 
the Cell Counter plugin. Between 2,492 and 3,725 cells were counted for 
each marker. 

3.3. Embryoid body formation 

One 6-well of iPSCs at passage 20–25 was dissociated to clumps and 

cultured in sterile bacterial dishes containing StemFit w/o bFGF at 37 ◦C 
with 5 % CO2. Medium was changed every second day during the first 8 
days of floating culture. On day 8, EBs were seeded into 6-wells coated 
with 0.2 % Gelatin allowing outgrowth of the EBs. On day 16, differ
entiated cells were stained using specific antibodies for mesoderm, 
endoderm, and ectoderm (Table 2). 

3.4. Karyotyping 

Cells at 80 % confluency (passage 15–20) were incubated with 0.1 
mg/mL Colcemid (Gibco) for 15 h, dissociated using Accumax™ (Sigma 
Aldrich) and treated with hypotonic Na-Citrate / NaCl for 35 min at 
37 ◦C. Subsequently, cells were fixed with methanol / acetic acid glacial 
(3:1) for 20 min at -20 ◦C and washed twice with methanol/acetic as 
stated above. A standard protocol for the preparation of differentially 
stained mitotic chromosome spreads using the G-banding technique was 
applied. Fluorescence in situ hybridization (FISH) was performed using 
human chromosome specific painting probes. In brief, mixtures of fluor 
conjugated paint probes were denatured at 75 ◦C for 5 min, added to the 
metaphase slide, covered with a cover slip and sealed with rubber 
cement. The slide was denatured at 75 ◦C for 2 min in a Hybrite (VYSIS, 
US) hybridization station and hybridized at 37 ◦C overnight, followed by 
a 2 min post-hybridization wash in 0.1xSSC buffer at 60 ◦C. Final slides 
were mounted in Vectashield embedding medium containing DAPI 
(Vector Laboratories, UK) and analyzed using an Axioplan 2 Imaging 
microscope (Zeiss, Germany). 

3.5. Mycoplasma testing 

The medium of one confluent 6-well with iPSCs at passage 19–22 was 
collected, pelleted, and resuspended in 100 µL PBS. After an incubation 
for 5 min at 95 ◦C, 1 µL was used for a screening PCR with specific 
primers for the Mycoplasma 16S rRNA (Table 2). A sample that had 
previously tested positive was used as an internal control. 

3.6. Genotyping PCR 

Total gDNA was isolated using the DirectPCR Lysis Reagent (VWR) 
supplemented with 20 mg/mL Proteinase K (Life Technologies), and a 
PCR (36 cycles) was conducted with primers for the primate-specific Alu 
SINE (Table 2). 

Table 2 
Reagents details.   

Antibodies used for immunocytochemistry/flow-cytometry  

Antibody Dilution Company Cat # RRID 
Pluripotency Markers Rabbit anti-OCT4 1:400 Cell Signaling Technology, Cat# 2750S RRID: AB_823583  

Mouse anti-SOX2 1:400 Cell Signaling Technology, Cat# 4900S RRID: AB_10560516  
Rabbit anti-NANOG 1:400 Cell Signaling Technology, Cat# 4903S RRID: AB_10559205  
Mouse anti-SSEA4 1:500 NEB, Cat# 4755S RRID: AB_1264259  
Mouse anti-TRA-1-60 1:100 Stem Cell Technologies, Cat# 60064 RRID: AB_2686905 

Differentiation Markers Mouse anti-α-Smooth Muscle Actin 1:100 R&D Systems, Cat# MAB1420 RRID: AB_262054  
Sheep anti-COL1A1 1:200 R&D Systems, Cat# AF6220 RRID: AB_10891543  
Mouse anti-Neuron-specific beta-III Tubulin 1:100 R&D Systems, Cat# MAB1195 RRID: AB_357520  
Rabbit anti-PAX6 1:100 Thermo Fisher Scientific, Cat# 42-6600 RRID: AB_2533534  
Mouse anti-alpha Fetoprotein 1:100 R&D Systems, Cat# MAB1368 RRID: AB_357658  
Rabbit anti-SOX17 1:500 Bio-Techne, Cat# NBP2-24568 RRID: AB_3075468 

Secondary Antibodies Alexa Fluor 488 donkey anti-mouse IgG (H + L) 1:500 Thermo Fisher Scientific, Cat# A-21202 RRID: AB_141607  
Alexa Fluor 594 donkey anti-rabbit IgG (H + L) 1:500 Thermo Fisher Scientific, Cat# A-21207 RRID: AB_141637  
Alexa Fluor 488 donkey anti-sheep IgG (H + L) 1:500 Thermo Fisher Scientific, Cat# A-11015 RRID: AB_2534082  
Primers  
Target Size of band Forward/Reverse primer (5′-3′) 

Reprogramming factor clearance Sendai Virus 180 bp GGATCACTAGGTGATATCGAGC / 
ACCAGACAAGAGTTTAAGAGATATGTATC 

GAPDH (housekeeping gene) 450 bp ACCACAGTCCATGCCATCAC / TCCACCACCCTGTTGCTGTA 
Mycoplasma testing Mycoplasma 16S 270 bp TGCACCATCTGTCACTCTGTTAACCTC / 

GGGAGCAAACAGGATTAGATACCCT 
Genotyping PCR Alu (primate-specific SINE) 666 bp TCTAAGGCAGCCATTGAGTG / CCAGGTTTGCCTCTGACTCC  
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3.7. SeV detection 

Total RNA was isolated from one 6-well of iPSCs (passage 15–20) 
using the Direct-zol RNA Microprep Kit (Zymo Research) and cDNA was 
synthesized using the Maxima H Minus Reverse Transcriptase (Thermo 
Fisher Scientific). 50 ng cDNA were used to perform a PCR (36 cycles) 
with specific primers for SeV and GAPDH as housekeeping gene 
(Table 2). 

3.8. Bulk RNA-sequencing and variant calling 

iPSCs and parental fibroblasts were dissociated using Accumax, 
sampled in three biological replicates each and bulk RNA-seq libraries 
were generated using the Prime-seq workflow (https://www.protocols. 
io/view/prime-seq-81wgb1pw3vpk/v2). Bulk RNA-seq data of iPSCs 
and parental fibroblasts were used to call SNPs against the reference 
genome papAnu4 using GATK (Genome Analysis Tool Kit). High quality, 
biallelic SNPs were retained by joint genotyping of data from both iPSC 
lines and fibroblasts followed by quality filtering of the variants for high 
coverage (DP > 99) and quality by depth (QD > 2). 
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Abstract

The identification of cell types remains a major challenge. Even after a decade of single-cell

RNA sequencing (scRNA-seq), reasonable cell type annotations almost always include manual

non-automated steps. The identification of orthologous cell types across species complicates

matters even more, but at the same time strengthens the confidence in the assignment. Here,

we generate and analyze a dataset consisting of embryoid bodies (EBs) derived from induced

pluripotent stem cells (iPSCs) of four primate species: humans, orangutans, cynomolgus,

and rhesus macaques. This kind of data includes a continuum of developmental cell types,

multiple batch effects (i.e. species and individuals) and uneven cell type compositions

and hence poses many challenges. We developed a semi-automated computational pipeline

combining classification and marker based cluster annotation to identify orthologous cell

types across primates. This approach enabled the investigation of cross-species conservation

of gene expression. Consistent with previous studies, our data confirm that broadly expressed

genes are more conserved than cell type-specific genes, raising the question how conserved

- inherently cell type-specific - marker genes are. Our analyses reveal that human marker

genes are less effective in macaques and vice versa, highlighting the limited transferability of

markers across species. Overall, our study advances the identification of orthologous cell

types across species, provides a well-curated cell type reference for future in vitro studies

and informs the transferability of marker genes across species.
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Background

Cell types are a central concept for biology, but are - as other concepts like species - 1

practically difficult to identify. Theoretically, one would consider all stable, irreversible 2

states on a directed developmental trajectory as cell types. In practice, we are limited by 3

our experimental possibilities. Historically, cell type definitions hinged on observations of 4

cell morphology in a tissue context, which was later combined with immunofluorescence 5

analyses of marker genes [1]. A lot of the functional knowledge that we have about cell 6

types today is based on such visual and marker-based cell type definitions. With single 7

cell-sequencing our capabilities to characterize and identify new cell types have radically 8

changed [2, 3]. Clustering cells by their expression profiles enables a more systematic and 9

higher-resolution identification of groups of cells that are then interpreted as cell types. 10

However, distinguishing them from cell states or technical artifacts is not straight forward. A 11

key criterion for defining a true cell type is its reproducibility across experiments, individuals, 12

or even species. 13

Hence, identifying the same, i.e. orthologous, cell types across individuals and species is 14

crucial. There are three principal strategies to match cell types from scRNA-seq data. 1) 15

One is to integrate all cells prior to performing a cell type assignment on a shared embedding 16

[4]. 2) The second approach is to consider cell types from one species as the reference and 17

transfer these annotations to the other species using classification methods [5]. 3) The third 18

strategy is to assign clusters and match them across species, which has the advantage of not 19

requiring data integration of multiple species or an annotated reference [6, 7, 8]. 20

Furthermore, established marker genes are still heavily used to validate and interpret clus- 21

ters identified by scRNA-seq data [9, 10, 11]. Together with newly identified transcriptomic 22

markers for human and mouse they are collected in databases [12, 13] and provide the basis 23

for follow-up studies using spatial transcriptomics and/or immunofluorescence approaches. 24

However, previous studies have shown that the same cell types may be defined by different 25
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marker genes in different species [14, 7]. For example, Krienen et al. [15] found that only 26

a modest fraction of interneuron subtype-specific genes overlapped between primates and 27

even less between primate and rodent species. 28

To better understand how gene expression in general and the expression of marker genes 29

in particular evolves across closely related species, we used induced pluripotent stem cells 30

(iPSCs) and their derived cell types from humans and non-human primates (NHP). One 31

fairly straight forward way to obtain diverse cell types from iPSCs are embryoid bodies 32

(EBs). EBs are the simplest type of iPSC-derived organoids, contain a dynamic mix of cell 33

types from all three germ layers and result from spontaneous differentiation upon withdrawal 34

of key pluripotency factors [16, 17, 18, 19, 20]. 35

EBs and brain organoids from humans and chimpanzees have for example been used to 36

infer human-specific gene regulation in brain organoids [21] or to investigate mechanisms of 37

gene expression evolution [22]. 38

Here we explore to what extent levels of cell type specificity of marker genes are conserved 39

in primates. We generated scRNA-seq data of 8 and 16 day old EBs from human, orangutan 40

(Pongo abelii), cynomolgus (Macaca fascicularis) and rhesus macaque (Macaca mulatta) 41

iPSCs. Using this data, we established an analysis pipeline to identify and assign orthologous 42

cell types. With this annotation we provide a well curated cell type reference for in vitro 43

studies of early primate development. Moreover, it allowed us to asses the cell type-specificity 44

and expression conservation of genes across species. We find that even though the cell 45

type-specificity of a marker gene remains similar across species, its discriminatory power 46

still decreases with phylogenetic distance. 47
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Results 48

Generation of embryoid bodies from iPSCs of different primate species 49

We generated EBs from iPSCs across multiple primate species: two human iPSC clones 50

(from two individuals), two orangutan clones (from one individual), three cynomolgus clones 51

(from two individuals), and three rhesus clones (from one individual) [23, 24, 25]. To 52

optimize conditions for generating a sufficient number of cells from all three germ layers 53

across these four species, we tested combinations of two culturing media (”EB-medium” 54

and ”DFK20”, see Methods) and two EB-differentiation conditions (”single-cell seeding” 55

and ”clump seeding”, see Methods). After 7 days of differentiation, germ layer composition 56

was analyzed by flow cytometry (Supplementary Figure S1A,B,C). Among the four tested 57

protocols, culture in DFK20-medium with clump seeding resulted in the most balanced 58

representation of all germ layers, yielding a substantial number of cells from each layer across 59

all species (Supplementary Figure S1D). 60

Under these conditions, we established an EB formation protocol based on 8 days of 61

floating culture in dishes, followed by 8 days of attached culture (Figure 1A). This results 62

in the formation of cells from all three germ layers, as confirmed by immunofluorescence 63

staining for AFP (endoderm), β-III-tubulin (ectoderm) and α-SMA (mesoderm) (Figure 64

1B). To generate scRNA-seq data, we dissociated 8 or 16 day old EBs into single cells and 65

pooled cells from all four species to minimize batch effects (Figure 1C). We performed the 66

experiment in three independent replicates, generating a total of four lanes and six lanes of 67

10x Genomics scRNA-seq at day 8 and day 16, respectively (Supplementary Figure S2A). 68

This resulted in a dataset comprising over 85,000 cells after filtering and doublet removal, 69

distributed fairly equally over time points, species and clones (Supplementary Figure S2B-D). 70

In agreement with the immunofluorescence staining, we detected well-established marker 71

genes of pluripotent cells and of all three germ layers [26] in the scRNA-seq data: SOX2, 72
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SOX10, and STMN4 expression was used to label ectodermal cells, APOA1 and EPCAM for 73

endodermal cells, COL1A1 and ACTA2 (α-SMA) for mesodermal cells, and POU5F1 and 74

NANOG for pluripotent cells (Figure 1D). Expression of these marker genes corresponded 75

well with a classification based on a published scRNA-seq dataset from 21 day old human 76

EBs [18]. This initial, rough germ layer assignment shows that our differentiation protocol 77

generates EBs with the expected germ layers and cell type diversity from all four species 78

(Figure 1E,Supplementary Figure S3A). 79
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ED

Figure 1. Generation of primate embryoid bodies. A) Overview about the EB differentiation
workflow of the four primate species human (Homo sapiens), orangutan (Pongo abelii), cynomolgus
(Macaca fascicularis) and rhesus (Macaca mulatta), including their phylogenetic relationship. Scale
bar represents 500 µm. B) Immunofluorescence staining of day 16 EBs using α-fetoprotein (AFP),
β-III-tubulin and α-smooth muscle actin (α-SMA). Scale bar represents 100 µm. C) Schematic
overview of the sampling and processing steps prior to 10x scRNA-seq. D) UMAP representation
of the whole scRNA-seq dataset, integrated across all four species with Harmony. Single cells are
colored by the expression of known marker genes for the three germ layers and undifferentiated cells.
E) UMAP representation, colored by assigned germ layers, split by species.
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Assignment of orthologous cell types 80

Many integration methods encounter difficulties when they are applied to data from multiple 81

species and uneven cell type compositions [4]. Indeed, when comparing clusters derived from 82

an integrated embedding across all species [27, 28] to the aforementioned preliminary cell 83

type assignments, we observed signs of overfitting. For instance, a cluster predominantly 84

containing cells classified as neurons in humans, cynomolgus, and rhesus macaques consisted 85

mainly of early ectoderm and mesoderm cells in orangutans (Supplementary Figure S3B,C). 86

To address this issue, we developed an approach that assigns orthologous cell types without 87

a common embedding space in an interactive shiny app (https://shiny.bio.lmu.de/Cross 88

Species CellType/; Figure 2A, B): 89

First, we assign cells to clusters separately for each species. To avoid losing rare cell types, 90

we aim to obtain at least double as many high resolution clusters (HRCs) per species as 91

expected cell types. We then use the HRCs of one species as a reference to classify the cells 92

of the other species using SingleR [29]. These pair-wise comparisons are done reciprocally for 93

each species and via a cross-validation approach also within each species (see Methods). For 94

each comparison, we average the two values for the fraction of cells annotated as the other 95

HRC. For example, a perfect ”reciprocal best-hit” between HRC-A in human and HRC-B 96

in rhesus would have all cells of HRC-B assigned to HRC-A when using the human as a 97

reference and reciprocally all cells in HRC-A assigned to HRC-B when using the rhesus as a 98

reference. Next, we used the resulting distance matrix as input for hierarchical clustering 99

to find orthologous clusters across species and merge similar clusters within species. Here, 100

the user can choose and adjust the final cell type cluster number. This allows us to identify 101

orthologous cell type clusters (OCCs) across all four species, while retaining species-specific 102

clusters when no matching cluster was identified. 103

In the last steps, OCCs are manually further refined by merging neighboring OCCs with 104

similar marker gene and transcriptome profiles (see Methods). To avoid bias, we first identify 105
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marker genes independently for each species solely based on scRNA-seq expression data 106

[30]. We then intersect those lists to identify the top ranking marker genes with consistently 107

good specificity across all species. The final set of conserved marker genes then serves us to 108

derive cell type labels by searching the literature as well as databases of known marker genes 109

(Figure 2E). If the marker-gene based cell type assignment reveals cluster inconsistencies, 110

they can be marked for further splitting. This feature is of particular importance for rare 111

cell types. For example, we separated a cluster of early progenitor cells into iPSCs, cardiac 112

progenitors, and early epithelial cells. 113

Suresh et al. [8] devised a conceptually similar approach to ours to identify orthologous 114

cell types across species. The main difference is that they used scores from MetaNeighbor [6] 115

where we use SingleR to measure distances between HRCs. However, in essence both scores 116

are based on rank correlations and hence it may not be surprising that both scoring systems 117

yield consistent cluster groupings that show high replicability across species. However, using 118

our SingleR-based scores to compare OCCs across species may yield more clearly defined 119

correspondences compared to MetaNeighbor scores (Supplementary Figures S5 and S4). 120

Overall, we are confident that our approach yields meaningful orthologous cell type 121

assignments, without requiring a prior annotation per species or a reference dataset. Moreover, 122

the necessary fine tuning of the cell type clusters by the expert user is facilitated by an 123

interactive app. 124
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Figure 2. Assignment of orthologous cell types across species. A) Schematic overview of
the pipeline to match clusters between species and assign orthologous cell types. B) Sankey plot
visualizing the intermediate steps of the cell type assignment pipeline. Each line represents a cell
which are colored by their species of origin on the left and by their current cell type assignment
during the annotation procedure on the right. An initial set of 118 high resolution clusters (HRCs),
25-35 per species, was combined into 26 orthologous cell type clusters (OCCs). Similar cell type
clusters were merged and after further manual refinement provided the basis for final orthologous
cell type assignments. C) Fraction of annotated cell types per species. D) UMAPs for each species
colored by cell type. E) To validate our cell type assignments, we selected three marker genes per
cell type that exhibit a similar expression pattern across all four species and have been reported to
be specific for this cell type in both human and mouse (Supplementary Table S1). The heatmap
depicts the fraction of cells of a cell type in which the respective gene was detected for cell types
present in at least three species.
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Cell type-specific genes have less conserved expression levels 125

Using the strategy described in the previous section, we detected a total of 15 reproducible 126

cell types from the three germ layers, all of which were detected in at least 3 separate cell 127

lines in 3 independent replicates. 9 of these were detected in at least 3 species, and 7 cell 128

types were highly reproducibly detected in all four species (Figure 2C, D; Supplementary 129

Figure S6). These 7 cell types consisted of iPSCs, two cell types representing ectoderm: early 130

ectoderm and neural crest, two cell types of mesodermal origin: smooth muscle cells and 131

cardiac fibroblasts and two endodermal cell types: epithelial cells and hepatocytes (Figure 132

2C,E). Based on the premise that it is not necessarily the expression level, but rather the 133

expression breadth that determines expression conservation [31], we developed a method to 134

call a gene ’expressed’ or not that considers the expression variance across the cells of one 135

type, which we then used to score cell type-specificity and expression conservation (Figure 136

3B); see Methods). 137

For example, we find that the neural crest-marker SOX10 [32] is cell type-specific and 138

conserved, the lncRNA ESRG is iPSC- and human-specific, in contrast RPL22, a gene 139

that encodes a protein of the large ribosomal subunit, is broadly expressed and conserved 140

(Figure 3A). Overall we find on average ∼15% of genes to be cell type-specific, i.e. our score 141

determined them to be expressed in only one cell type, while ∼40% of genes were found to 142

be broadly expressed in all seven cell types (Supplementary Figure S7A). 143

Additionally, we obtained a measure of expression conservation, which quantifies the 144

consistency of the cell type expression score across species. We found that broadly expressed 145

genes present in all cell types exhibited high expression conservation, whereas cell type-specific 146

genes tended to be more species-specific (Figure 3C; Supplementary Figure S7B). 147

Unsurprisingly, broadly expressed genes also showed higher average expression levels [33] 148

(Supplementary Figure S7D). To ensure that the observed relationship between expression 149

breadth and conservation in our data is not solely due to expression level differences, we 150
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sub-sampled genes from all cell type-specificity levels for comparable mean expression. This 151

did not change the pattern: also broadly expressed genes with a low mean expression 152

level are highly conserved across species (Supplementary Figure S7E,F). Moreover, also the 153

coding sequences of broadly expressed genes show higher levels of constraint than more 154

cell type-specific genes, thus supporting the notion that also the higher conservation of the 155

expression pattern that we observed here is due to evolutionary stable functional constraints 156

on this set of genes (Figure 3D; Supplementary Figure S7C). 157

Marker gene conservation 158

Building on our previous observation that cell type-specific genes are less conserved across 159

species, we investigated the conservation and transferability of marker genes, which are, by 160

definition, cell type-specific, in greater detail. To this end, we call marker genes for all cell 161

types and species, using a combination of differential expression analysis and a quantile 162

rank-score based test for differential distribution detection[35]. Additionally, we define a 163

good marker gene as one that is upregulated and expressed in a higher fraction of cells 164

compared to the rest. To prioritize marker genes, we rank them based on the difference in 165

the detection fraction: the proportion of cells of a given type in which a gene is detected 166

compared to its detection rate in all other cells. 167

We found a low overlap of top marker genes among species, with a median of 15 of the top 168

100 ranked marker genes per cell type shared across all four species, while a larger proportion 169

of markers was unique to individual species (Figure 4A). Notably, these species-specific 170

markers often exhibited cell type-specific expression in only one species, with reduced or 171

non-specific expression in others (Figure 4B; Supplementary Figure S8). 172

Given the special role of transcriptional regulators for the definition of a cell type [36] 173

and the differences in conservation between protein-coding and non-coding RNAs [37], we 174

analyzed the comparability of marker genes of different types. To this end, we assessed the 175
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A

C D

B

Figure 3. Effect of cell type specificity on expression conservation. A) UMAP visualiza-
tions depicting expression patterns of selected example genes: SOX10 (conserved cell type-specific
expression in neural crest cells), ESRG (species-specific and cell type-specific expression in human
iPSCs), and RPL22 (conserved, broad expression). B) For each gene, expression was summarized
per species and cell type as the expression fraction and binarized into ”not expressed”/”expressed”
(black frame) based on cell type-specific thresholds. The same example genes as in A) are shown here.
iPSCs: induced pluripotent stem cells, EE: early ectoderm, NC: neural crest, SMC: smooth muscle
cells, CFib: cardiac fibroblasts, EC: epithelial cells, Hepa: hepatocytes. c) Boxplot of expression
conservation of genes with different levels of cell type specificity in human. D) Boxplot of the fraction
of coding sequence sites that were found to evolve under constraint based on a 43 primate phylogeny
[34], stratified by human cell type specificity.
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concordance of the top 100 marker genes across species for protein-coding genes, lncRNAs, 176

transcription factors (TFs) or all genes using rank biased overlap (RBO) scores [38]. We 177

find that marker genes that are TFs have the highest concordance between species and that 178

the two macaques species which are also phylogenetically most similar are also most similar 179

in their ranked marker gene lists. In contrast, lncRNA markers show the lowest overlap 180

between species. In fact, their cross-species conservation is so low that they also significantly 181

reduce the performance if they are included together with protein-coding markers (Figure 182

4C). 183

To properly evaluate the performance of marker genes, it is essential to consider their 184

ability to differentiate between cell types. This discriminatory power ultimately determines 185

how well marker genes perform in cell type classification within and across species. To this 186

end, we trained a k-nearest neighbors (kNN) classifier on varying numbers of marker genes 187

per cell type in one human clone (29B5) and evaluated prediction performance using the 188

average F1-score across cell types (Supplementary Figure S9). Again, we analyzed markers 189

from a set of all protein-coding genes and TFs only and find that even though TFs appear 190

to be more conserved across species, they do not discriminate cell types as well as the top 191

protein-coding markers (Supplementary Figure S10). Using protein-coding marker genes 192

only determined with 29B5 to classify the other human clone, we achieve good discriminatory 193

power (F1 score > 0.9) with only 11 marker genes per cell type. In contrast, the classification 194

performance for clones from the other species was substantially lower, failing to reach the 195

performance levels observed in human clones even when using up to 30 marker genes (Figure 196

4D). 197

In summary, we find that lncRNA markers genes have low transferability between species, 198

while protein-coding markers do reasonably well. However, the predictive value of marker 199

genes decreases with increasing phylogenetic distance, requiring longer marker gene lists to 200

achieve accurate cell type classification for more distantly related species. 201
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Figure 4. Evaluation of marker gene conservation. A) UpSet plot illustrating the overlap
between species for the top 100 marker genes per cell type. B) Heatmap showing the expression
fractions of marker genes: on the left, markers shared among all species, and on the right, markers
unique to the human ranking. For each cell type, one representative gene is labeled and further
detailed in Supplementary Figure S8. iPSCs: induced pluripotent stem cells, EE: early ectoderm,
NC: neural crest, SMC: smooth muscle cells, CFib: cardiac fibroblasts, EC: epithelial cells, Hepa:
hepatocytes. C) Rank-biased overlap (RBO) analysis comparing the concordance of gene rankings
per cell type for lncRNAs, protein-coding genes and transcription factors. D) Average F1-score for a
kNN-classifier trained in the human clone 29B5 to predict cell type identity based on the expression
of 1-30 marker genes. Each line represents the performance in a different clone, with shaded areas
indicating 95% bootstrap confidence intervals.

Discussion 202

An essential criterion for a true cell type is reproducibility across experiments, individuals, or 203

even species. This raises the question of how to reliably identify reproducible cell types across 204

species. When cell types are annotated separately for each species, their reproducibility 205

can be evaluated based on transcriptomic similarity [6, 39]. If integration-based methods 206

are used to accomplish this task [22, 7], reproducibility not only depends on the similarity 207

of the expression profiles but also on cell type composition. Integration works best when 208

the cell type compositions are as similar as possible across experiments. This however is 209

not the case for organoids, which often have highly heterogeneous cell type compositions 210
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[40] and our EB-data are no exception. Moreover, integration methods struggle with large 211

and variable batch effects, which are expected due to the varying phylogenetic distances 212

across species [4]. In contrast, classification methods such as SingleR [29] rely mainly on 213

the similarity to a reference profile, which makes it less vulnerable to cell type composition 214

and batch effects. Hence, in our pipeline to identify orthologous cell types we mainly rely 215

on classification. We start with an unsupervised approach in that we identify cell clusters 216

and then ensure reproducibility as well as comparability using a supervised approach with 217

reciprocal classification of clusters across all species pairs. 218

Defining cell types in a developmental dataset is particularly challenging, and we do 219

not believe that there is one perfect solution that would fit all cell types and samples. 220

Therefore, we rely on an interactive approach that we implemented in a shiny app (https:// 221

shiny.bio.lmu.de/Cross Species CellType/) to facilitate the flexible choice of parameters 222

for cluster matching, merging and inspection by visualizing marker genes. Suresh et al [8] 223

employed a similar approach also requiring several manual parameter choices. This makes a 224

formal comparison difficult. Generally both methods seem to agree well on the orthology 225

assignments of cell type clusters (Supplementary Figures S5& S4). 226

Hence, the carefully annotated dataset presented here can serve as a valuable resource 227

for future research. Non-human primate iPSCs are central to many studies focusing on 228

evolutionary comparisons, and the pool of iPSC lines for these purposes is expected to 229

grow, incorporating more species and individuals. In this context, the transcriptomic data 230

we generated offer a reference dataset that can be used to verify the pluripotency and 231

differentiation potential of non-human primate iPSC lines by examining gene expression 232

during EB formation. 233

The set of shared cell types between all four primate species allowed us to evaluate the 234

conservation and transferability of marker genes between species. To begin with, marker 235

genes are by definition cell type-specific and also with this dataset, we can show that they 236
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are less conserved than broadly expressed genes. Expression breadth can be interpreted as a 237

sign of pleiotropy and hence higher functional constraint [41, 31]. Conversely, we expect cell 238

type-specific marker genes to be among the least conserved genes. Indeed, we and others 239

find that the overlap of marker genes across species is limited [14, 15, 7, 42]. Moreover, 240

conservation varies significantly across gene biotypes. On the one hand, lncRNAs, which are 241

often highly cell type-specific, exhibit lower cross-species conservation. Their low sequence 242

conservation further complicates their utility for comparative studies [37]. On the other hand, 243

TFs, which have been proposed as central elements of a Core Regulatory Complex (CoRC) 244

that defines cell type identity [36], are among the most conserved markers across species. 245

However, the power to distinguish cell types based solely on the expression of TF markers 246

remains lower than when markers are selected from the broader set of all protein-coding genes 247

(Supplementary Figure S10). Even though within species already a handful of marker genes 248

can achieve remarkable accuracy, their discriminatory power remains lower for other species. 249

Thus, whole transcriptome profiles offer a more comprehensive approach to cross-species cell 250

type classification for single cell data. 251

This said, marker genes remain fundamental to most current cell type annotations. 252

Moreover, marker genes will continue to be used to match cell types across modalities, 253

as for example to validate cell type properties in experiments that are often based on 254

immunofluorescence of individual markers or gene panels as used for spatial transcriptomics 255

[43, 44]. To this end, we have refined the ranking of marker genes beyond differential 256

expression analysis to focus on consistent differences in detection rate. Markers identified in 257

this way are bound to translate better into protein-based validations than markers defined 258

based on expression levels, due to the discrepancy of mRNA and protein expression [45]. 259

Furthermore, the presence-absence signal is more robust against cross-species fluctuations in 260

gene expression than measures based on expression level differences. 261

In conclusion, we present a robust reference dataset for early primate development 262
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alongside tools to identify and evaluate orthologous cell types. Our findings emphasize the 263

need for caution when transferring marker genes for cell type annotation and characterization 264

in cross-species studies. 265
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Methods 266

EB differentiation method comparison 267

Four EB differentiation protocols are compared initially, which are combinations of two 268

differentiation media (DFK20 and EB-medium) and two differentiation methods (dish and 269

96-well). 270

For single-cell differentiation in 96-well plates, primate iPSCs from one 80% confluent 271

6-well are washed with DPBS and incubated with Accumax (Sigma-Aldrich, SCR006) for 7 272

min at 37 °C. Afterwards, iPSCs are dissociated to single-cells, the enzymatic reaction is 273

stopped by adding DPBS, and cells are counted and pelleted at 300 xg for 5 min. Single cells 274

are resuspended in EB-medium consisting of StemFit Basic02 (Nippon Genetics, 3821.00) 275

w/o bFGF or DFK20, both supplemented with 10 µM Y-27632 (Biozol, ESI-ST10019). The 276

DFK20-medium consists of DMEM/F12 (Fisher Scientific, 15373541) with 20% KSR (Thermo 277

Fisher Scientific, 10828-028), 1% MEM non-essential amino acids (Thermo Fisher Scientific, 278

11140-035), 1% Glutamax (Thermo Fisher Scientific, 35050038), 100 U/mL Penicillin, 100 279

µg/mL Streptomycin (Thermo Fisher Scientific, 15140122) and 0.1 mM 2-Mercaptoethanol 280

(Thermo Fisher Scientific, M3148). Afterwards, 9,000 cells in 150 µl medium are seeded per 281

well of a Nuclon Sphera 96-well plate (Fisher Scientific, 15396123) and cultured at 37 °C 282

and 5% CO2. A medium change with the corresponding EB differentiation medium w/o 283

Rockinhibitor is performed every other day during the whole protocol. EBs are collected 284

from the 96-well plate and subjected to flow cytometry after 7 days of differentiation. 285

For clump differentiation in culture dishes, primate iPSCs from one 80% confluent 12-well 286

are washed with DPBS and incubated with 0.5 mM EDTA (Carl Roth, CN06.3) for 3-5 min 287

at RT. The EDTA is removed, StemFit (Nippon Genetics, 3821.00) supplemented with 10 288

µM Y-27632 (Biozol, ESI-ST10019) is added and cells are dissociated to clumps of varying 289

sizes. Subsequently, the clumps are transferred to sterile bacterial dishes with vents and 290
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cultured at 37 °C and 5% CO2. After 24 h, the medium is exchanged by either EB-medium or 291

DFK20 supplemented with 10 µM Y-27632 for additional 24 h, before changing the medium 292

to EB-medium or DFK20. A medium change is performed every other day during the 293

protocol from day 4 on. EBs are collected from the dishes and subjected to flow cytometry 294

after 7 days of differentiation. 295

Flow cytometry 296

Flow cytometry is performed on day 7 of the differentiation protocol. Therefore, 1/10 of the 297

EBs are collected, washed with DPBS, incubated with Accumax (Sigma-Aldrich, SCR006) 298

for 10 min at 37 °C and dissociated to single cells. After washing, cells are incubated with 299

the Viability Dye eFluor 780 (Thermo Fisher Scientific, 65-0865-18) diluted 1/1000 in PBS 300

for 30 min at 4°C in the dark. The live/dead stain is quenched by the addition of Cell 301

Staining Buffer (CSB) consisting of DPBS with 0.5% BSA (Sigma-Aldrich, A3059), 0.01% 302

NaN3 (Sigma-Aldrich, S2002) and 2 mM EDTA (Carl Roth, CN06.3). Subsequently, cells 303

are pelleted and incubated with a mixture of the following antibodies diluted 1/200 in CSB 304

for 1h at 4°C in the dark. The antibodies used are anti-TRA-1-60-AF488 (STEMCELL 305

Technologies, 60064AD.1), anti-CXCR4-PE (BioLegend, 306505), anti-NCAM1-PE/Cy7 306

(BioLegend, 318317) and anti-PDGFRα-APC (BioLegend, 323511). After centrifugation, 307

cells are resuspended in PBS containing 0.5% BSA, 0.01% NaN3 and 1 µg/ml DNase I 308

(STEMCELL Technologies, 07469), filtered through a strainer and analyzed using the BD 309

FACSCanto Flow Cytometry System. Flow cytometry data are analyzed using FlowJo 310

(V10.8.2). 311

In-vitro embryoid body differentiation 312

Two human, two orangutan, three cynomolgus and three rhesus iPSC lines are used for 313

EB differentiation. The human and orangutan iPSCs are reprogrammed from urinary cells, 314
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while cynomolgus and rhesus iPSCs were reprogrammed from fibroblasts. All cell lines were 315

characterized and validated previously and were tested negative for mycoplasma and SeV 316

reprogramming vector integration [23, 24, 25]. 317

For embryoid body formation prior to 10x scRNA-seq, the EB differentiation protocol 318

using DFK20 medium in culture dishes is performed in duplicates for each clone. After 319

8 days of floating culture in dishes, EBs from both replicates are pooled and seeded into 320

6-wells coated with 0.2% gelatin (Sigma-Aldrich, G1890) for another 8 days of attached 321

culture with subsequent medium changes every other day. In total, three replicates of EB 322

formation are performed on different days, and each replicate includes cell lines from all four 323

primate species. 324

scRNA-seq library generation and sequencing 325

EBs are sampled on day 8 and day 16 of the protocol. For dissociation, floating EBs are 326

collected, while attached EBs are kept in their wells, washed with DPBS and incubated with 327

Accumax (Sigma-Aldrich, SCR006) for 10-20 min at 37 °C. Afterwards, EBs are pipetted 328

up and down with a p1000 pipette until they are completely dissociated. The enzymatic 329

reaction is stopped by adding DFK20 medium, cells are pelleted at 300 xg for 5 min and 330

resuspended in 1 mL DPBS. If cell clumps are observed, the liquid is filtered through a 40 331

µm strainer before counting them with a Countess II automated cell counter (Thermo Fisher 332

Scientific, C10228). Equal cell numbers from each cell line are pooled, washed with DPBS 333

+ 0.04% BSA and resuspended in DPBS + 0.04% BSA aiming for a final concentration of 334

800 - 1000 cells/µL. scRNA-seq libraries are generated using the 10x Genomics Chromium 335

Next GEM Single Cell 3´Kit V3.1 workflow in three replicates. Each time, evenly pooled 336

single cells from the different cell lines are loaded on 2 to 6 lanes of a 10x chip, targeting 337

16,000 cells per lane. Libraries are sequenced on an Illumina NextSeq1000/1500 with an 338

100-cycle kit and the following sequencing setup: read 1 (28 bases), read 2 (10 bases), read 339
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3 (10 bases) and read 4 (90 bases). 340

Alignment of scRNA-seq data 341

Reads are processed with Cell Ranger version 7.0.0. We map all reads to 4 reference genomes: 342

Homo sapiens GRCh38 (GENCODE release 32), Pongo abelii Susie PABv2/ponAbe3, 343

Macaca fascicularis macFas6 and Macaca mulatta rheMac10. The orangutan, cynomolgus 344

macaque and rhesus macaque GTF files are created by transferring the hg38 annotation to 345

the corresponding primate genomes via the tool Liftoff [46], followed by removal of transcripts 346

with partial mapping (<50%), low sequence identity (<50%) or excessive length (>100 bp 347

difference and >2 length ratio). 348

Species and individual demultiplexing 349

Since we pool cells from multiple species on each 10x lane, we use cellsnp-lite [47] version 350

1.2.0 and vireo [48] version 0.5.7 to assign single cells to their respective species. Initially, 351

we obtain a list of 51000 informative variants (referred to as ’species vcf file’) from a 352

bulk RNA-seq experiment involving samples from Homo sapiens, Pongo abelii and Macaca 353

fascicularis, mapped to the GRCh38 reference genome. We run cellsnp-lite in mode 2b 354

for whole-chromosome pileup and filter for high-coverage homozygous variants to identify 355

informative variants. 356

For the demultiplexing of species in the scRNA-seq data we employ a two step strategy: 357

1) Initial species assignment: Using the Cell Ranger output aligned to GRCh38, we 358

genotype each single cell with cellsnp-lite providing the species vcf file as candidate SNPs 359

and setting a minimum UMI count filter of 10. Subsequently we assign single cells to human, 360

orangutan or macaque identity with vireo using again the species vcf file as the donor file. 361

2) Distinguishing macaque species: To differentiate between the two macaque species, 362

Macaca fascicularis and Macaca mulatta, we use the Cell Ranger output aligned to rheMac10. 363
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After genotyping with cellsnp-lite we demultiplex with vireo specifying the number of donors 364

to two, without providing a donor vcf file in this case. We assign the donor, for which the 365

majority of distinguishing variants agreed with the rheMac10 reference alleles, to Macaca 366

mulatta and the other donor to Macaca fascicularis. 367

To distinguish different human individuals pooled in the same experiment, we genotype 368

single cells with cellsnp-lite with a candidate vcf file of 7.4 million common variants from 369

the 1000 Genomes Project, demultiplexed with vireo specifying two donors and assign 370

donors to individuals based on the intersection with variants from bulk RNA-seq data of the 371

same individuals. To distinguish different cynomolgus individuals, we use a reference vcf 372

with informative variants obtained from bulk RNA-seq data to genotype single cells and 373

demultiplex the individuals. 374

Processing of scRNA-seq data 375

We remove background RNA with CellBender version 0.2.0 [49] at a false positive rate 376

(FPR) of 0.01. After quality control we retain cells with more than 1000 detected genes 377

and a mitochondrial fraction below 8%. We remove cross-species doublets based on the 378

vireo assignments and intra-species doublets using scDblFinder version 1.6.0 [50], specifying 379

the expected doublet rate based on the cross-species doublet fraction. For each species, 380

we normalize the counts with scran version 1.28.2 [51] and integrated data from different 381

experiments with scanorama [27]. UMAP dimensionality reductions are created with Seurat 382

version 4.3.0 on the first 30 components of the scanorama corrected embedding per species. 383

Besides the separate processing per species, we also create an integrated dataset of all 384

4 species together using Harmony version 0.1.1 [28]. We identify clusters on the first 20 385

Harmony-integrated PCs with Seurat at a resolution of 0.1 (Figure 1D,E). 386
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Reference based classification 387

To get an initial cell type annotation, we download a reference dataset of day 21 human EBs 388

[18]. We normalize the count matrix with scran and intersect the genes between reference 389

and our scRNA-seq dataset. Next, we train a SingleR version 2.0.0 [29] classifier for the 390

broad cell type classes defined in Figure 1G of the original publication [18] using trainSingleR 391

with pseudo-bulk aggregation. Cell type labels are transferred to cells of each species with 392

classifySingleR. 393

Orthologous cell type annotation 394

To annotate orthologous cell types, we first perform high resolution clustering of the scRNA- 395

seq data for each species separately. For this we take the first 20 components of the 396

scanorama corrected embedding as input to perform clustering in Seurat with FindNeighbors 397

and FindClusters at a resolution of 2 to obtain the initial high resolution clusters (HRCs). 398

Next, we score the similarity of all HRCs with an approach based on reciprocal classifica- 399

tion. For each species, we train a SingleR classifier on all HRCs of a species. We then classify 400

the cells of all other species with classifySingleR. In this way, we can calculate the similarity 401

of each HRC in the target species to each HRC in the reference species as the fraction of 402

cells of the target HRC classified as the reference HRC. To also obtain similarity scores 403

between HRCs within a species, we split the data of each species into a reference set with 404

80% of cells and a test set with 20% of cells. Analogous to the cross-species classification 405

scheme, we transfer HRC labels from the reference set to the test set and score the overlap 406

of target and reference HRCs. 407

In the next step, we combine HRCs based on pairwise similarity scores. We average the 408

bidirectional similarity scores for each HRC pair and construct a distance matrix with all 409

HRCs. Subsequently, based on hierarchical clustering (hclust, average method) we define 26 410

initial orthologous cell type clusters (OCCs) based on the visual inspection of the distance 411
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matrix. In this way, we merge similar HRCs within species and match HRCs across species 412

to obtain a set of OCCs. 413

OCCs with very similar expression and marker profiles can be further merged. Therefore, 414

we create pseudobulk profiles for each OCC and calculate Spearman’s ρ for all pair-wise 415

comparisons within a species (s) based on the 2,000 most variable genes. We perform 416

hierarchical clustering on 1 − ρ̄s and merge orthogolous clusters at a cut height of 0.1, that 417

was interactively determined by also inspecting the similarity of the top marker genes as 418

found by Seurat’s FindMarkers. In the shiny app, we provide a list of OCC markers for 419

each species separately, but also the intersection of conserved markers. Based on those 420

marker combinations the user can then assign the cell types. If the marker gene distribution 421

as visualized in UMAPs reveals overmerged OCCs, the user can split them interactively. 422

Specifically, we separate merged OCC 4 into iPSCs, cardiac progenitor cells and early 423

epithelial cells for the final assignment. We assign merged OCC 5 as neural crest I, but 424

re-annotate a subcluster present only in cynomolgus and rhesus macaques as fibroblasts. 425

Similarly, we re-annotate a subcluster of merged OCC 12 (granule precursor cells) as astrocyte 426

progenitors in cynomolgus and rhesus macaque. Finally, we exclude OCCs with less than 427

800 cells that are only present in 1 or 2 species. 428

We assess the correspondence of the final cell type assignments across species with two 429

approaches. For the scores shown in Supplementary Figure S4 we apply the same reciprocal 430

classification approach as described above providing cell type labels instead of HRCs as 431

initial clusters. For the scores shown in Supplementary Figure S5 we use the function 432

MetaNeighborUS of MetaNeighbor version 1.18.0 to compare cell type labels across species. 433

Presence-absence scoring of expression 434

To determine when to define a gene as expressed in a certain cell type, we derive a lower 435

limit of gene detection per cell type and species while accounting for noise and differences 436
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in power to detect expression. We first filter the count matrices for each clone, keeping 437

only genes with at least 1% nonzero counts and cells within 3 median absolute deviations 438

for number of UMIs and the number of genes with counts > 0 per cell type and species. 439

These filtered matrices are then downsampled so that we keep the same number of cells in 440

each species (n=18,800), while keeping the original cell type proportion. Next, per species, 441

we estimate the following distributional characteristics per gene (i) across cell types (j): 442

1) the fraction of nonzero counts (fij), 2) the mean (µ ij ± s.e.(µij)) and dispersion (θ i) 443

of the negative binomial distribution using glmgampoi v1.10.2 [52]. In the next step, we 444

define a putative expression status per gene per cell type. 1) genes are detectable if their log 445

mean expression log(µij) is above the fifth quantile of the log(µ) value distribution across 446

all genes per cell type. 2) genes are reliably estimable if the ratio log(
s.e.(µij)

µij
) is below the 447

90th quantile of log( s.e.(µ)µ ) value distribution. Only when both conditions are met is the 448

expression status set to 1, otherwise 0. A binomial logistic regression model using Firth’s 449

bias reduction method as implemented in R package logistf (version 1.26.0) is then applied 450

to derive the minimal gene detection needed to call a gene expressed, i.e. when P(Y=1) 451

solve log( p
1−p) = a + b ∗ fij towards fij . To ensure consistency between species, we set the 452

detection threshold for each cell type to the maximum threshold among all species. 453

Cell type specificity and expression conservation scores 454

To assess cell type specificity and expression conservation of genes across species, we first 455

determine in which cell types a gene is expressed in a species, using the thresholds defined 456

in the previous section. Thus we determine cell type specificity as the number of cell types 457

in which a gene was found to be expressed. Here this score can be maximally 7, i.e. the 458

gene is detected in all cell types that were found in all four species. 459

To evaluate expression conservation, we develop a phylogenetically weighted conservation 460

score for each gene, reflecting the number of species in which the gene is expressed, weighted 461
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by the scaled phylogenetic distance as estimated in Bininda-Edmonds et al. [53]. For each 462

gene, we calculate the expression conservation score as follows: 463

Expression conservation =
1

Nct

∑

ct

∑

b∈detected
bl (1)

where Nct is the number of cell types in which the gene is detected. We then simply sum the 464

scaled branch lengths bl across all cell types (ct) and branches (b) on which we infer the gene 465

to be expressed. Because we only have 4 species, we only have one internal branch, for which 466

we infer expression if at least one great ape and one macaque species show expression in that 467

cell type. The score ranges from 0.075 (detected only in cynomolgus or rhesus macaque) to 468

1 (detected in the same cell types in all 4 species). 469

Furthermore, we extract measures of sequence conservation for protein-coding genes from 470

Supplementary Data S14 in the study by Sullivan et al. [34]. Here, we use the fraction of 471

CDS bases with primate phastCons ¿= 0.96 as a gene-based measure of constraint. 472

Marker gene detection 473

We filter the count matrices for each clone to retain only genes with nonzero counts in one 474

of the 7 cell types that were detected in all species. We then downsample these filtered 475

matrices to equalize the number of cells across species, leaving us with ∼11,600 cells per 476

species. Furthermore, to mitigate differences in statistical power due to varying numbers of 477

cells per cell type, we perform testing on cell types with a minimum of 10 and a maximum of 478

250 cells for each pairwise comparison of ’self’ versus ’other’. We identify marker genes using 479

the p-values (padj < 0.1) determined by ZIQ-Rank [35] and use Seurat FindMarkers with 480

logistic regression to identify the cell types for which the gene is a marker. Furthermore, the 481

marker gene needs to be above the cell type’s detection threshold (see above) and needs to 482

be up-regulated in the cell type for which it is a marker (log fold change > 0.01). Finally, a 483

marker gene must be detected in a larger proportion of cells for which it is a marker than in 484
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other cell types (pj − p̄other = ∆ > 0.01). The detection proportion ∆ is also used as to sort 485

the lists of marker genes, deeming the genes with the largest ∆ as the best marker genes. In 486

order to also gauge within species variation in marker gene detection, we conducted the same 487

analysis across clones instead of species. In order to compare cross-species reproducibility of 488

different types of marker genes, i.e protein-coding, lncRNAs and transcriptional regulators, 489

we wanted to compare the ranked lists of marker genes across species. To this end, we 490

perform a concordance analysis using rank biased overlap (RBO) [38] on the top 100 marker 491

genes (rbo R package version 0.0.1). For this part, a list of transcription factors were created 492

by selecting genes with at least one annotated motif in the motif databases JASPAR 2022 493

vertebrate core [54], JASPAR 2022 vertebrate unvalidated [54] and IMAGE [55]. Annotations 494

for protein-coding and lncRNA genes were extracted from the Ensembl GTF file provided 495

with the human Cell Ranger reference dataset (GRCh38-2020-A). To assess the predictive 496

performance of marker genes, we conduct a kNN classification (FNN R package version 497

1.1.4.1). We train a kNN classifier (k=3) on the log-normalized counts of the top 1-30 human 498

markers per cell type in the human clone 29B5. We then predict the cell type identity in all 499

clones and summarize classification performance per cell type with F1-scores, as well as the 500

average F1-score across all seven cell types. 501
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Abbreviations 502

CDS coding sequence

DEA Differential Expression Analysis

EBs embryoid bodies

ESCs embryonic stem cells

HRC high resolution cluster

iPSCs induced pluripotent stem cells

kNN k-nearest neighbors

NHPs non-human primates

OCC orthologous cell type cluster

RBO rank biased overlap

scRNA-seq single cell RNA-sequencing

SeV Sendai virus

SNP single nucleotide polymorphism

TF transcription factor

UMI unique molecular identifier

UMAP Uniform Manifold Approximation and Projection

VCF Variant Call Format
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Supplementary Figure S1. Comparison of EB differentiation protocols using flow
cytometry. A) Antibody combination to analyze iPSCs and cells of the three primary germ layers
in a single sample. B) Flow cytometry gating overview using human EBs at day 7 of differentiation.
1. Gating of cell population. 2. Gating of single cell population. 3. Gating of live cell population.
4.-6. Gating of cells belonging to pluripotent or germ layer populations based on the antibody
combination shown in S1A). C) Phase contrast images of orangutan EBs on day 6 of differentiation
in 4 different culture conditions. Scale bar represents 250 µm. D) Barplot of pluripotency and germ
layer proportions of day 7 EBs from human, orangutan, cynomolgus and rhesus in the 4 different
culture conditions.
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C

Supplementary Figure S2. Total number of recovered cells. A) Barplot of cell numbers per
species and experimental batch and 10x lane. B) Barplot of cell numbers per species and day of
differentiation. C) Barplot of cell numbers per clone. D) Barplot of cell numbers per clone and day
of differentiation.
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Supplementary Figure S3. Reference based cell type classification. A) UMAP represen-
tations colored by labels from a classification with a reference dataset of day 21 human embryoid
bodies [18]. B) Single cell clusters in integrated data from all 4 species. C) Stacked bar plot of the
proportions of predicted labels across clusters obtained in the integrated dataset.
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Supplementary Figure S4. Replicability of cell types across species measured by
reciprocal classification. A) Heatmap illustrating ’all vs all’ similarities of cell types from all four
species. For each cell type pair the similarity represents the average classification fraction obtained
through reciprocal classification between each species pair. B) Average classification fractions for cell
types that are shared among each species pair. AP: astrocyte progenitor, CFib: cardiac fibroblasts,
CEndo: cardiac endothelial cells, CPC: cardiac progenitor cells, EEC: early epithelial cells, EE: early
ectoderm, EC: epithelial cells, Fib: fibroblasts, GPC: granule precursor cells, Hepa: hepatocytes,
NCI: neural crest I, NCII: neural crest II, Neu: neurons, SMC: smooth muscle cells.
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Supplementary Figure S5. Replicability of cell types across species measured with
MetaNeighbor. A) Heatmap illustrating ’all vs all’ similarities of cell types from all four species.
For each cell type pair the similarity represents area under the receiver operator characteristic curve
(AUROC) scores obtained with MetaNeighbor [6] in unsupervised mode. B) AUROC scores for cell
types that are shared among each species pair. AP: astrocyte progenitor, CFib: cardiac fibroblasts,
CEndo: cardiac endothelial cells, CPC: cardiac progenitor cells, EEC: early epithelial cells, EE: early
ectoderm, EC: epithelial cells, Fib: fibroblasts, GPC: granule precursor cells, Hepa: hepatocytes,
NCI: neural crest I, NCII: neural crest II, Neu: neurons, SMC: smooth muscle cells.
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Supplementary Figure S7. Characteristics of genes with different levels of cell type-
specific expression. A) Stacked bar plot of the number of genes per cell type specificity level for
different species. B) Boxplot of expression conservation of genes with different levels of cell type
specificity in orangutan, cynomolgus and rhesus. C) Boxplot of gene-level constraint based on primate
phastCons scores [34] for protein-coding genes. D) Boxplot of mean expression per cell type for genes
with different levels of cell type specificity. E) Boxplot of mean expression per cell type for a subset
of 236 genes per cell type specificity and species that were sampled to have a similar distribution of
mean expression. F) Boxplot of expression conservation of the same subsampled genesets as in E).
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Supplementary Figure S8. Expression patterns of shared and human specific marker
genes. A) UMAP representation per species filtered for the 7 cell types that are present in all
4 species. B) UMAP representations colored by the log-normalized expression of 7 representative
marker genes that are shared among the top100 marker genes per cell type in all 4 species. C) UMAP
representations colored by the log-normalized expression of 7 representative marker genes that are
only present in the human top100 marker gene ranking per cell type.
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Supplementary Figure S10. kNN classification performance for transcription factors
and protein coding marker genes. A) Average F1-score for a kNN-classifier trained in the human
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B) Comparison of the maximum average F1-score between transcription factors and protein coding
markers for the classifications depicted in A).
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Supplementary Table S1. Marker genes. Literature review for marker genes used in human
and mouse / rodents to determine a specific cell type.

Cell type Marker gene used in human used in mouse

iPSCs POU5F1 [56] [57]

iPSCs NANOG [56] [58]

iPSCs L1TD1 [59] [59]

early ectoderm SOX2 [60] [61]

early ectoderm HES5 [62] [63]

early ectoderm RFX4 [62] [64]

granule precursor cells NFIA [65] [66]

granule precursor cells ZIC1 [67] [68]

granule precursor cells ZIC4 [67] [69]

neural crest SOX10 [32] [32, 70]

neural crest FOXD3 [71] [72]

neural crest S100B [73] [74]

neurons STMN2 [75] [76, 77]

neurons TAGLN3 (NP25) [78] [77]

neurons DCX [79] [79]

smooth muscle cells COL8A1 [80] [81]

smooth muscle cells ACTG2 [82] [81]

smooth muscle cells ACTA2 [80] [81]

cardiac fibroblasts TNNT2 [83] [84]

cardiac fibroblasts DCN [85] [86]

cardiac fibroblasts HAND2 [83] [87]

epithelial cells CDH1 [88] [89]

epithelial cells EPCAM [90] [91]

epithelial cells CLDN7 [92] [93]

hepatocytes TTR [94] [95]

hepatocytes APOA1 [96] [97]

hepatocytes APOA2 [96] [98]
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3 | Discussion

Among its many applications, scRNA-seq has significant potential for comparative and

evolutionary transcriptomics. However, meaningful cross-species analyses require more than

just collecting single-cell data from different organisms; they depend on robust data quality,

comparable cellular systems and computational tools to align data between species. This thesis

contributes to establishing a foundation for cross-species analysis in primates by addressing

some of these challenges. First, I examined data quality and technical artifacts in single-cell

and single-nucleus RNA-seq by characterizing background noise and assessing correction

methods to improve data reliability (Janssen et al. 2023). Additionally, I contributed to

expanding available cellular resources and datasets by characterizing newly generated iPSC

lines from multiple non-human primates (Geuder et al. 2021; Jocher et al. 2024a; Jocher

et al. 2024b; Jocher et al. 2024c), as well as by curating a reference dataset for early primate

differentiation in embryoid bodies (Jocher et al. 2025). Lastly, I addressed the challenge

of assigning comparable cell types across species by developing a pipeline for orthologous

cell type annotation and assessing the transferability of marker genes (Jocher et al. 2025).

Beyond these broader contributions, this work has also led to specific insights that emerged

across multiple projects. In the following sections, I will discuss these findings in more detail.

169
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3.1 The power of genetic variants in transcrip-

tomic experiments

In bulk or single-cell RNA-seq experiments the primary representation of the data is counts,

summarizing RNA expression levels per gene and sample or per gene and cell. While

sequencing is a crucial step in generating these data, the actual sequence of the reads is

typically only used to determine their genomic position and convert them into count data, if

they overlap with an annotated gene. This takes place early in data pre-processing, after

which downstream analyses is centered around the resulting count matrix. So why should

we still care about the sequence itself? On one hand, it can be used to examine transcript

structure (Haas et al. 2017; Shen et al. 2014) and transcriptional dynamics (Qi and Battle

2024; Larsson et al. 2019). On the other hand, sequence differences reflect the genetic

background of the species or individual, allowing reads to be traced back to their origin. As

demonstrated in this thesis, this possibility to distinguish species and individuals based on

sequence differences can have useful applications in the analysis of (single-cell) RNA-seq

data.

3.1.1 Enhancing multiplexing in cross-species studies

First of all, it enables multiplexed experimental design with minimal experimental manip-

ulation. Multiplexing, i.e. combining multiple samples in the same experiment, is a key

strategy in scRNA-seq which makes it possible to increase throughput and have a nested

study design in which batch effects between technical replicates can be accounted for (Tung

et al. 2017). Typically, multiplexing relies on experimental labeling strategies to introduce a

sample-specific barcode that can later be used for in silico demultiplexing (Cheng et al. 2021).

These methods often involve additional handling steps, such as tagging common surface

proteins with barcoded antibodies (Stoeckius et al. 2018) or labeling the cell membrane with

lipid tags (McGinnis et al. 2019b). However, an alternative approach eliminates the need for

experimental manipulation: when samples are genetically distinct, their inherent sequence



3.1 The power of genetic variants in transcriptomic experiments171

variation can serve as a natural barcode for demultiplexing.

Several computational tools have been developed to leverage genetic variants for de-

multiplexing scRNA-seq data, mainly with the goal to distinguish individuals from the

same species (Kang et al. 2018; Heaton et al. 2020; Huang et al. 2019; Xu et al. 2019).

These methods have proven to be highly effective, requiring only a relatively small number

of variants for accurate classification. As species are even more biologically distinct than

individuals, the same principle can readily be applied in cross-species studies. In this case,

an alternative demultiplexing strategy involves mapping sequencing reads to a combined

reference genome containing sequences from all species in the experiment and then assigning

each cell based on alignment preference. This method is routinely used in experiments

involving mixed human and mouse cells, for which a combined reference is readily available

from Cell Ranger and commonly applied (Cheloni et al. 2021). However, particularly for

closely related species demultiplexing based single-nucleotide variants mapped onto a single

reference genome remains valuable, as demonstrated for instance in salamander species

(Cardiello et al. 2023).

The choice of demultiplexing strategy thus depends on the specific combination of species

involved and can become more complex when multiple species with varying phylogenetic

distances, or even species and multiple individuals from the same species, are pooled together

in the same experiment. For the four primate species that we multiplexed in each scRNA-

seq experiment for our embryoid body study (Jocher et al. 2025), we therefore developed

a stepwise approach, moving from broader distinctions to finer resolution. Initially, we

distinguished human, orangutan and macaque cells (combining cynomolgus and rhesus

macaques at this stage due to their high genetic similarity) by mapping the data to the

human genome and identifying distinctive variants. Subsequently, we separated cells from

different human individuals using a candidate set of variants and re-aligned macaque cells

to the rhesus genome for further demultiplexing. To distinguish cynomolgus and rhesus

macaques we first performed unsupervised demultiplexing based on genetic variants and then

assigned the resulting donor groups to species based on the fraction of informative variants

that aligned more strongly to either the rhesus or cynomolgus genome.

Although the exact demultiplexing strategy may need adjustment based on the exper-
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imental design, in practice it is usually possible to confidently assign cells back to their

original individual or species. An important part of this process is assigning labels to the

demultiplexed cell groups. This can be made easier by using reference panels of informative

variants, for example curated from earlier transcriptomic datasets. These panels help with

interpretation and make the process more efficient, since only a subset of relevant variants

needs to be considered. A practical side effect of genotype-based demultiplexing is that

cross-species doublets can be readily identified. Multiplexing therefore represents a valuable

approach for designing multi-species single-cell experiments, as it reduces bias and batch

effects in downstream analyses without compromising data quality and requiring only minimal

additional experimental effort for pooling samples.

3.1.2 Authentication of cell lines

We also used the identification of genetic variants from bulk and single-cell RNA-seq data

for the authentication of non-human primate iPS cell lines (Jocher et al. 2024a; Jocher et al.

2024b; Jocher et al. 2024c). Being able to confirm the identity of a cell line in subsequent

experiments is crucial, since cross-contamination and misidentification are not rare occurrences

(Capes-Davis et al. 2010). The most widely used approaches for authentication include STR

analysis, which is the standard for human pluripotent stem cell lines (Ludwig et al. 2023), and

SNP profiling. STR analysis is well established for human and mouse cell lines, but much less

so for other species, making SNP profiling an attractive alternative for cell line authentication

(Fasterius et al. 2017). Moreover, creating a suitable STR panel requires species-specific

marker selection and assay design, which is less automated than sequencing-based approaches.

The most comprehensive methods for SNP genotyping are whole-genome sequencing (WGS)

and whole-exome sequencing (WES), but both options remain relatively expensive. RNA-seq

provides a more cost-effective alternative that still allows detection of up to 70% of expressed

coding variants (Piskol et al. 2013). This has facilitated the use of RNA-seq based approaches

for cell line authentication (Fasterius et al. 2017; Mohammad et al. 2019).

A major advantage of RNA-seq-based authentication is that transcriptomic data for cell

lines are often available or generated as part of standard characterization efforts, making it
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possible to use the same dataset to evaluate multiple aspects of cell identity. For example, we

used scRNA-seq data from three rhesus iPSC lines not only for SNP-based authentication but

also to assess their differentiation potential by analyzing cell-type composition in embryoid

bodies (Jocher et al. 2024a). Similarly, we performed SNP profiling using bulk RNA-seq

data from two baboon iPSC lines (Jocher et al. 2024b) and two vervet iPSC lines (Jocher

et al. 2024c). If these lines are used in future transcriptomic studies, the lists of informative

expressed variants we generated can be directly employed to validate their identity.

It should be noted here that both the prime-seq bulk RNA-seq protocol (Janjic et al. 2022)

and the 10x Genomics scRNA-seq protocol used in these studies have a strong enrichment of

reads towards the 3’ end of transcripts. As a result, SNP detection is largely restricted to

regions with high coverage near transcript ends. While this limits the breadth of genotyping

compared to whole-transcript RNA-seq, it also offers practical advantages: concentrating

coverage at the transcript ends improves the reliability of variant calls in those regions and

ensures strong overlap between samples and similarly biased reference panels. Therefore, the

power to perform simultaneous transcriptomic characterization and authentication makes

cost-efficient bulk RNA-seq methods like prime-seq a valuable tool for the validation of cell

lines, especially for non-model organisms for which more targeted authentication methods

may not yet be established.

3.1.3 Genetic variants as natural barcodes in cell-mixing

experiments

Finally, genetic variants can be used as natural barcodes in cell-mixing experiments to generate

ground-truth datasets for the benchmarking of technical performance and computational

methods. We applied this principle to study background noise in single-cell and single-nucleus

RNA-seq experiments (Janssen et al. 2023).

When creating experimental ground-truth datasets, it is essential to strike a balance

between simplification to isolate specific effects and maintaining a level of complexity that

is representative for real-world scenarios. While in silico simulations can also be used to
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produce ground-truth datasets, they are known to introduce artificial biases, especially when

modeling complex data such as those from scRNA-seq experiments (Crowell et al. 2023).

Thus, experimentally generated datasets remain indispensable.

In the case of background noise, the challenge of obtaining suitable experimental data

becomes evident. The frequently used mixture of a human and mouse cell line presents a

very simple and straightforward dataset to estimate the magnitude of background noise in

the data (Macosko et al. 2015; Goldstein et al. 2017; Fleming et al. 2023). However, a major

limitation of this setup is that the species difference largely prevents ambient RNA from

one species (e.g. mouse) from contaminating the transcriptome of another (e.g. human).

Since reads are typically aligned to a combined reference genome and assigned to the species

with the best alignment, mouse-derived background RNA is not counted toward human gene

expression, and vice versa. This separation reduces the realism of the noise, as it avoids the

cross-cell-type contamination seen in same-species experiments. Additionally, the lack of

cell type diversity in this dataset makes it difficult to draw conclusions about the impact

on downstream analysis. This oversimplification also prevents a comprehensive evaluation

of the performance of background noise removal methods. To address this, these methods

are often additionally tested on more complex datasets with well-characterized cell types,

such as peripheral blood mononuclear cells (PBMCs) (Yang et al. 2020; Young and Behjati

2020). In these datasets, exclusive marker genes are well-defined, and their expression in

unrelated cell types is assumed to result from background noise. However, this approach does

not provide a true ground truth, as it relies on assumptions about marker gene exclusivity

rather than direct measurement of background noise. Addressing these limitations requires

a dataset that not only captures the complexity of real scRNA-seq data but also provides

a controlled framework for assessing noise levels and the effectiveness of computational

correction methods.

To fill this gap, we developed a more nuanced experimental dataset by pooling kidney

cells from three mouse strains representing two distinct subspecies (Janssen et al. 2023).

Using subspecies instead of species made it possible to align the data to a single reference

genome, providing a unified feature space. At the same time, the density of informative

genetic variants was high enough to estimate background noise levels for individual cells,
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rather than only in aggregate or across the entire dataset. Establishing a pipeline to identify

and quantify background noise based on these variants enabled us to examine its sources and

downstream impact in detail. Furthermore, the complex cell type structure and variable levels

of background noise in this dataset allowed us to systematically evaluate three background

noise removal methods, providing the first independent benchmark of this kind.

This analysis clearly demonstrated that more complex cell-mixing experiments have

great potential for generating realistic benchmark datasets. While mixtures of human and

mouse cell lines have been commonly used, pooling cells from more closely related species

(or even subspecies in this case), combined with a diverse cell type composition, can avoid

oversimplifications and better reflect real experimental scenarios. The dataset and analytical

framework presented in Janssen et al. (2023) could be adapted for additional applications

such as evaluating doublet detection and removal methods or examining feature-level effects

of background noise. Moreover, similar experimental designs may be valuable for investigating

technical artifacts across other single-cell modalities such as scATAC-seq.

3.2 Marker genes - fragile cornerstones of scRNA-

seq analysis

The strength of scRNA-seq comes from the robustness of using the whole transcriptome to

characterize single cells, however the use of individual marker genes remains indispensable

for two main reasons: 1) Making high-level analysis interpretable and visualizable and 2)

incorporating prior knowledge into the analysis that may be crucial for example to annotate

cell types. At the same time, the dependency on a few selected genes makes the analysis

prone to artifacts and misinterpretation. Their reliability is affected by both technical and

biological factors.
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3.2.1 Susceptibility to background noise

We found that marker gene detection is particularly strongly affected by background noise

compared to other lines of downstream analysis like clustering or classification which are

based on the whole transcriptome (Janssen et al. 2023). At high levels of background noise,

we observed a strong decrease in the specificity of marker genes, reflected in lower log2-fold

changes and higher detection rates in other cell types. Markers of abundant cell types are

particularly susceptible to being detected widely across unrelated cell populations. For

instance, markers that should specifically label proximal tubule cells, the most abundant cell

type in our kidney datasets, were also detected in virtually all other cell types in samples

with high background noise levels. This can lead to artificial combinations of marker genes

and may result in incorrect cell type annotations.

Caglayan et al. (2022) illustrated this issue in brain single-nucleus data. They re-analysed

a previously annotated dataset in which one cell population was identified as ’immature oligo-

dendrocytes’, marked by high expression of neuronal genes. Upon closer inspection Caglayan

et al. (2022) found that markers of immature oligodendrocytes significantly overlapped with

the most abundant ambient RNA markers. They concluded that this population most likely

represents glial cells with high levels of background noise originating from neuronal cells,

which have been misannotated in several previous studies. Similarly, Zhang et al. (2023b)

also detected neuronal markers such as Syt1 and Grin2b in microglia and other non-neuronal

populations in snRNA-seq data from mice. In both studies, computational background

correction with CellBender successfully removed the contaminating signals and resolved the

misannotations.

How much background noise is present—and how strongly it impacts analysis—depends

on both technical and biological aspects of the experiment. Single-nucleus RNA-seq data

are especially prone to background contamination, as reflected in our own comparisons and

noted in previous studies (Fleming et al. 2023; Caglayan et al. 2022; Zhang et al. 2023b).

The extent of this impact also depends on the biological system. In our kidney dataset,

where cell types are well separated, classification remained reliable even in the presence of

moderate background noise. But in developmental datasets, where differences between cell
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types are more subtle, background RNA tends to blur cell identities more strongly and can

significantly affect annotation accuracy.

Taken together, these results underscore the importance of interpreting conclusions

based on individual genes or marker combinations with caution. Wherever possible, such

analyses should be complemented by transcriptome-wide approaches, larger gene sets or

experimental validation to reduce the risk of misinterpreting technical artifacts. Furthermore,

our benchmarking showed that computational tools for the removal of background noise can

be highly effective in improving marker gene detection, with CellBender (Fleming et al. 2023)

performing best in this task. Thus, including the extra step of background noise correction

can substantially improve the reliability of cell type annotation.

3.2.2 Limited transferability across species

Marker genes are not only affected by technical noise, but also by biological variation.

Our study on primate EBs (Jocher et al. 2025) shows that the transferability of marker

genes decreases with increasing evolutionary distance between species. The specificity and

ranking of marker genes may differ strongly between species for the same cell types and their

discriminatory power is also reduced in the cross-species setting.

This is in line with previous observations that the expression breadth of a gene is linked

to its conservation. Genes that are broadly expressed across multiple tissues tend to be more

evolutionarily constrained and also show more conserved expression patterns between species

(Cardoso-Moreira et al. 2019; Brawand et al. 2011). A similar pattern emerged in our analysis

of primate EBs: genes with broad expression tended to show conserved patterns across

species, whereas those with more cell type–specific expression were often more species-specific

as well (Jocher et al. 2025). Marker genes, which are by definition cell-type specific, fall on

the more divergent end of this spectrum. This helps to explain their limited transferability.

However, not all marker genes are equally affected, as differences in conservation also

emerge between gene types. For example, genes encoding long non-coding RNAs (lncRNAs)

are often very cell type-specific in their expression (Johnsson et al. 2014; Mattick et al. 2023)

which makes them in principle good candidates as marker genes. Indeed, lncRNAs like



178 3. Discussion

ESRG or LINC00678 are among the most specific marker genes for human iPSCs (Lemmens

et al. 2023). However, their low sequence conservation (Johnsson et al. 2014) and divergent

expression patterns (Jocher et al. 2025) make lncRNAs less suitable as cross-species markers.

In contrast, transcription factor (TF) markers show the highest concordance across species.

This is in line with the concept of core regulatory complexes (CoRCs) proposed by Arendt

et al. (2016), which define cell identities through conserved sets of TFs and are thought to

underlie homologous cell types across species.

Overall, the transferability issue of marker genes has important implications for cross-

species analysis. First of all, most resources for previously characterized marker genes are

restricted to a few well-established model organisms. Large marker databases for single-cell

studies like PanglaoDB (Franzén et al. 2019) and CellMarker (Zhang et al. 2019; Hu et al.

2023) focus on mouse and human data. As a result, it remains unclear which of these markers

can be reliably used for other species. In such cases, markers shared between human and

mouse may offer the most reliable option, but this narrows the pool of usable candidates

considerably. Another important implication concerns cell type assignment across species.

When marker genes vary across species, relying too heavily on them for annotation can lead

to incorrect or inconsistent labels. This is particularly problematic when markers behave

differently for orthologous cell types. This highlights the need for alternative strategies for

identifying corresponding cell types across species that rely less on individual genes and more

on transcriptome-wide expression patterns.

3.3 Cell type assignment across species

Not least because of the limited reliability of marker genes in cross-species contexts, comparing

cell types between organisms is a delicate challenge. Both bulk and single-cell RNA-seq data

can be used to characterize the transcriptome and assign cell types across species.
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3.3.1 Classification of bulk RNA-seq data

Despite lacking single-cell resolution, cross-species cell type annotation can still be performed

on bulk RNA-seq samples when relatively homogeneous cell populations are profiled. In

our study on the generation of iPSCs from urinary cells of different primates (Geuder et al.

2021), we used reference-based classification to explore the identity of the primary cells and

assess the outcome of reprogramming. By correlating the bulk RNA-seq data with a human

reference using SingleR (Aran et al. 2019), both human and non-human primate urinary

cells were classified as mesenchymal stem cells, epithelial cells, or smooth muscle cells, while

all iPSC samples mapped clearly to iPSC or ESC profiles. This supported the successful

reprogramming of the cells. Notably, the consistent results across species also showed that

the classification worked reliably for non-human primates with a human reference.

In cases where the bulk samples are more heterogeneous, deconvolution methods using

single-cell references make it possible to get an estimate of the cell type composition. In this

context it can also be valuable to use reference data from another species to benefit from the

availability of comprehensive data sets for well characterized model organisms. The cross-

species performance of deconvolution depends on the phylogenetic distance. For example,

one study found that deconvolution of rat kidney data using a mouse reference still produced

good results (Wang et al. 2019). In contrast, a benchmark study showed that using a mouse

reference to deconvolve human brain data consistently led to reduced performance across

several methods (Sutton et al. 2022). This might again relate to the limited transferability

of marker genes, as many deconvolution methods rely on cell type–specific genes to build

reference signatures. If these markers do not behave consistently across species, deconvolution

accuracy is likely to suffer.

3.3.2 Orthologous cell type assignment from scRNA-seq

data

Single-cell transcriptomics offers the highest resolution to distinguish fine-grained cell types,

but in cross-species studies this resolution also poses a challenge: corresponding cell types
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must be carefully matched across species, despite differences in expression profiles and cellular

composition. This is particularly relevant for datasets with substantial variation in cell type

proportions and even the absence of certain populations in some species, as seen in our

primate EB study (Jocher et al. 2025). In such heterogeneous settings, some approaches

based on classification or data integration are not ideal as they either assume full overlap in

cell types to one reference species or risk overcorrecting biological differences.

To address this, we developed a cluster-matching pipeline. Instead of aligning data at

the single-cell level, we first clustered cells within each species and then used a classification-

based approach to score the similarity between clusters across species. This approach has

the advantage of preserving within-species structure and avoiding the strong assumptions

required for integration or label transfer methods. It also accommodates cases where certain

cell types are absent from one species, reducing the risk of forced or incorrect matches. A

similar strategy has been applied in other recent studies facing complex cell type compositions

across species (Jorstad et al. 2023; Suresh et al. 2023).

One limitation of this cluster-based matching approach is that it starts with discrete

populations, which may lead to some ambiguity in continuous differentiation trajectories.

Another important consideration is gene mapping across species. In our case, human gene

annotations were transferred to the other primates, which is relatively straightforward due to

close evolutionary proximity and helped compensate for gaps in the NHP genome annotations.

However, this approach is less suitable for more distantly related species, where accounting

for more complex gene correspondences is necessary (Tarashansky et al. 2021; Rosen et al.

2024).

Finally, while automated pipelines can support the annotation process, fully automatic

cell type matching across species is not yet feasible. Manual curation remains essential for

refining annotations and resolve ambiguities. To support this process, we developed an

interactive Shiny app for our EB dataset (Jocher et al. 2025) that enables parameter tuning

for the annotation workflow and exploration of marker gene expression. Such interactive

tools, alongside careful expert evaluation and refinement, will continue to be a necessary

part of cell type annotation workflows within and across species.
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The synergy of scRNA-seq technologies with cross-species analysis holds great potential,

but also comes with unique challenges. In this thesis, I aimed to address some of these,

ranging from the validation of comparable primate cellular systems and the evaluation of

scRNA-seq data quality to the refinement of methodological frameworks for comparative

analysis. By systematically assessing background RNA contamination—a foundational yet

often overlooked technical issue affecting all single-cell transcriptomic analyses—I highlighted

its substantial impact on data interpretation and underscored the necessity for correction

strategies. Additionally, I demonstrated that marker genes commonly used for cell type

identification often lack robustness when transferred across species, emphasizing the need

for cautious validation. I also addressed the methodological challenge of assigning cell types

across species. Collectively, these findings help lay the groundwork for future evolutionary

single-cell studies, particularly for comparative primate transcriptomics.

While this thesis focused on the technical and methodological foundations of cross-species

single-cell analysis, the full potential of this approach lies in its application to evolutionary

questions. Comparative studies allow us not only to detect differences, but to understand how

cell types emerged, diversified, and specialized over time. Recent efforts to build comparative

primate brain cell atlases have already uncovered both human-specific features and conserved

patterns of cellular organization across species (Bakken et al. 2021; Jorstad et al. 2023;

Suresh et al. 2023). Extending such studies to additional tissues and a wider range of species

will provide a more comprehensive view of cell type evolution.

In this context, iPSCs and their derivatives have become increasingly valuable tools

for comparative studies, especially for modeling early development across species. Even

relatively simple systems, such as the embryoid bodies characterized in this work, provide
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access to a diversity of cell types and species that would be difficult to study in vivo. As

organoid models continue to increase in complexity and reproducibility, they will play an

increasingly central role in modeling organ development and addressing functional questions

in an experimentally controlled cross-species framework (Juan et al. 2023).

In developmental contexts, where cellular identities change gradually rather than dis-

cretely, aligning differentiation trajectories across species presents an additional challenge

for analysis. While methods exist for aligning cell trajectories between different conditions

(Alpert et al. 2018; Sugihara et al. 2022), cross-species comparisons are more complex due to

asynchronous timing and the need to compare more than two trajectories simultaneously. A

second major difficulty lies in comparing gene expression dynamics between species along

these trajectories. Most current approaches to study dynamic gene expression focus on

changes within a trajectory or contrast different trajectories (Van den Berge et al. 2020;

Song and Li 2021), but are less suited for comparing how the same trajectory unfolds under

different conditions—such as between species. Recent work by Sumanaweera et al. (2025)

represents a step in this direction, as their Genes2Genes framework enables gene-level align-

ment of pseudotime trajectories. Moving forward, continued development of trajectory-based

methods will be essential to enable meaningful cross-species comparisons of developmental

programs.

Finally, when characterizing cell types across species, transcriptomic data alone provide

only a partial view. Understanding how cell types evolve requires looking beyond gene

expression to the regulatory mechanisms that control it by profiling chromatin accessibility,

transcription factor activity, and epigenetic modifications. With the growing availability

of single-cell assays for chromatin accessibility and other modalities, it is now possible to

investigate these regulatory layers in a comparative cross-species framework. Integrating

transcriptomic data with other layers through multimodal analysis will be essential for

uncovering how regulatory programs are rewired across species.
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