
Computational Approaches
to Construction Grammar

and Morphology

Inaugural-Dissertation
zur Erlangung des Doktorgrades der Philosophie
an der Ludwig–Maximilians–Universität München

vorgelegt von
Leonie Alexandra Weißweiler

aus Herdecke

2025



Referent: Prof. Dr. Hinrich Schütze
Korreferentin: Prof. Dr. Barbara Plank

Tag der Einreichung: 14. März 2024
Tag der mündlichen Prüfung: 03. Juli 2024



Abstract

For the past 100 years, there has been a debate in Linguistics and Natural Language Processing
(NLP) over the mechanisms underlying human linguistic capabilities, and the best methods to re-
present them computationally. Pretrained Language models (PLMs) have even been proposed as
proxies that are easier to study than language processing in the human mind, but first, it will be
necessary to assess how well they currently model language, and to investigate the mechanisms by
which they do it. This thesis proposes to do so with diverse and novel methodology from Linguistics,
enabling us to target rarer and less compositional phenomena, which may challenge the models.

To develop methods for evaluating PLMs’ linguistic capabilities, we first propose to evalua-
te their ability to represent and learn constructions. Constructions are form-meaning pairings at
any level of granularity. A classic example of a well-described construction is the English Compa-
rative Correlative, i.e. The X-er, the Y-er. We develop novel probing and evaluation methods, and
show that modern PLMs have mostly acquired the syntactic structure of constructions, but even
state-of-the-art large PLMs struggle with the non-compositional meaning attached to them. We al-
so evaluate PLM’s ability for morphological generalisation, which is the process of applying some
learned pattern to the formation of new words. We find that while PLMs are remarkably human-like
in their generalisation to novel words, they still make errors and rely on different mechanisms than
humans. These results show that while large PLMs have come remarkably close to human linguistic
capabilities, we can still find areas where improvement is necessary.

Examining what modern NLP can contribute to Linguistics, we first tackle the lack of anno-
tated data for Construction Grammar (CxG). As it is currently not possible to fully automatically
annotate or parse constructions, we propose human-in-the-loop strategies to aid linguists in crea-
ting corpora. We show the results of a community project to introduce a CxG layer into the Universal
Dependencies treebanks. We further develop a hybrid annotation pipeline that uses large LMs to
reduce human annotation effort, therefore enabling the cost-efficient creation of corpora for very
rare phenomena. Lastly, we show how highly parallel corpora can be used for the unsupervised
induction of morphological structure for low-resource languages.
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Chapter 1

Introduction and Motivation

I do believe that Large Language Models should be causing a
rethinking of the foundations of Linguistic Theory.

—Christopher D. Manning
Keynote, Empirical Methods in Natural Language Processing 2023

This thesis presents newmethodology to evaluate the linguistic capabilities of Pre-trained Language
Models (PLMs) with regards to their ability to learn constructions and morphologically generalise.
We further present ways of contributing to linguistic research and data collection with methods
from modern Natural Language Processing (NLP).

We frame this as a contribution to the current debate in both Linguistics and NLP over the
suitability of state-of-the-art PLMs as models, or even stand-in experimental subjects, for the widely
debated processes through which humans learn, understand, and produce language.

This debate is especially important as it has deep roots in both Linguistics and NLP, which we
will now briefly summarise in Section 1.1. We then elaborate on the specific motivation of the work
presented here, in the context of this debate, in Section 1.2. To conclude this introduction, we
provide detail for our research questions, approach, and contributions, for Construction Grammar
(CxG) and Morphology, respectively.

1.1 A Short Joint History of NLP and Linguistics

What is the internal structure of language and how do humans acquire it? How do children who
share the same native language all come to acquire the same intuitions of it, and form generalisa-
tions and new sentences? How can we describe what they have learned, and how do we apply it to
form new sentences and understand given ones?

In the early 1950s, the study of these questions was dominated by the school of American Struc-
turalism, also known as Distributionalism (Bloomfield, 1926; Harris, 1954; Swadesh, 1950; Sapir,
1929; Boas, 1889). They proposed a method for the discovery of the structure of language, which
would establish elements and structures based on their usage in context, in a sufficiently large cor-
pus of texts. Even though this method was largely unimplemented due to the technical limitations of
the time, the hypothesis of Distributionalism was that it would be possible to learn these structures
from a corpus.

Concurrently, as a first implemented computational model of language, Markov chains were
utilised by Shannon (1948) as simple n-gram models of human language and quickly gained pop-
ularity in language modelling and beyond. This development was famously criticised by Noam
Chomsky (Chomsky, 1956, 1957; Miller and Chomsky, 1963), who argued that Markov Models are
“surely inadequate for the purposes of grammar”, and that the notion of the probability of a sen-
tence is “an entirely useless one” (Chomsky, 1969). The influence of this work was sufficient to
halt the further consideration of statistical models in Linguistics for decades. A second key notion
of Chomsky’s criticism was that of the poverty of the stimulus (Chomsky, 1957, 1987), which is his
argument that children must be born with some innate knowledge of the structure of language, as
they are not exposed to sufficient input to enable them to learn it otherwise.

In this relatively short period of time, two major themes emerge.
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The first is the central disagreement between Chomsky and his supporters, and the opposi-
tion. Chomsky concluded that language is not learnable unless humans have innate biases that
are specific to language, such as a fixed set of principles that all languages follow and a fixed set
of parameters in which they vary, all of which would be genetically predisposed (Chomsky and
Lasnik, 1993). Opponents, for example from Cognitive Linguistics (Croft and Cruse, 2004; Lakoff,
1987; Langacker, 1986; Ungerer and Schmid, 2006), argue that no such universal grammar (UG,
Chomsky, 2006) is necessary, and that we can acquire language solely from data, and our general
cognitive biases (Croft and Cruse, 2004).1 The two sides also disagree about the nature of the data.
Chomsky proposes Transformational Grammar (Chomsky, 1957, 1965), the theory that all sentences
have a deep structure, which undergoes transformations to reach the surface structure that we can
observe. Construction grammar argues (Goldberg, 2006) that “what you see is what you get”, and
that deep structure is not cognitively plausible.

The second is the shared aim between computer scientists and mathematicians on the one hand
and linguists on the other: to build a working model of language. While the motivation for a
computer scientist might be application-based, and they might be content to simply improve the
model step by step to increase its usefulness, a linguist is motivated by the broader consequences.
As even one of the first disagreements in modern linguistics shows: a theory of language may be
confirmed by building a model based on it, if it perfectly replicates human behaviour, given the
same input as humans. Conversely, a theory of language may be criticised, or even temporarily
considered disproved, if critical flaws in its language model are discovered. Such criticism can
usually be divided into two categories:

1. at specific and provable points, the does not perfectly replicate human behaviour

2. the was not provided with the same input as an average human

We now briefly summarise the most important points in this debate as it progressed through the
development of better language models.

The Markov models first proposed by Shannon (1948) were picked up again for speech recog-
nition in 1975 (Baker, 1990; Jelinek et al., 1975; Baker, 1975; Bahl et al., 1983; Jelinek, 1990), and
later used in connection with some of the first works proposing an implementation of distributional
semantics for natural language processing (Schütze, 1992, 1998, 1995).

On the linguistics side, the first neural network to be implemented for this debate was that of
Rumelhart and McClelland (1986), who built a simple connectionist model for the acquisition of
English past-tense formation. Flaws in this model and its imperfect replication of human behaviour
were pointed out by Pinker and Prince (1988). They found flaws from both categories that we out-
lined above: 1) that the output of the model for many words did not correspond to human intuition,
and 2) an overreliance on manually encoding various phonological features of the input.

While this influential critique discredited neural networks in the eyes of many linguists, their
advancement continued in Natural Language Processing. This led to a perceived contradiction
between the linguistics and the development of working models, summarised best in the famous
quote “Every time we fire a phonetician/linguist, the performance of our system goes up” (Frederick
Jelinek, 1985, as reported by Moore (2005)).

This perceived gap may have increased because, in contrast to the common goal of develop-
ing a language model, efforts in both linguistics and natural language processing at the time were
very much focused on specific tasks. Advancements were being made using statistical and early
neural models for applications such as part-of-speech tagging or machine translation (Brown et al.,
1993). At the same time, more linguistics-inspired work in the earliest general meetings of the
Association for Computational Linguistics (Sondheimer, 1979, 1980) focused on logical implemen-
tations of formal theories of language, such as logical semantics (Barwise, 1981; Palmer, 1981),
unification-based grammars (Neumann and Finkler, 1990; Emele and Zajac, 1990) or statistical
parsers for hierarchical sentence structures (Martin, 1980), perhaps creating the impression of a
dichotomy between purely formal linguistics and purely neural language processing.

NLP steadily progressed with the popularisation of word embeddings, which were demonstrated
to be useful for next word prediction (Bengio et al., 2003, 2006), and for word meaning in a variety
of tasks (Collobert and Weston, 2007, 2008; Collobert et al., 2011). A major advancement was
made by Mikolov et al. (2011) who used recurrent neural networks (RNNs) as language models,

1For an introduction to Cognitive Linguistics, see Chapter 2.
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Figure 1.1: A visual overview of our research directions and the works included in this thesis. Green
indicates Construction Grammar, blue indicates Morphology. The top two boxes are contributing
from Linguistics to NLP (Q1), while the two bottom boxes contribute from NLP to Linguistics (Q2).

and showed that word embeddings could be trained using a language modelling objective (Mikolov
et al., 2013a,b).

The success of RNN-based models enabled Kirov and Cotterell (2018) to revisit the debate over
English past-tense by training an RNN-based encoder-decoder model.2 Crucially, they generalise
the problem setting to the production of any English verb form from the lemma. They find that their
model improves on previous efforts on English past tense, but warn against taking it as a proxy
for child language learners, as they do not observe some of the patterns expected during a child’s
process of acquiring the English past tense.

This is an example of a larger trend that comes out of the advances in language modelling: both
linguistics and engineers can now work on the same language models. This becomes even more
apparent with the introduction of pre-trained language models (PLMs), which are a main focus of
this thesis.3 They are suitable both for adaptation by fine-tuning to any given NLP task, and to
linguistic investigation of the base model.

1.2 Motivation

How do language models learn? Interpretability (Belinkov et al., 2020) of models seeks to explain
their behaviour and develop ways of investigating their underlying mechanisms and the reasons for
their success.4 Interpretability and evaluation are thus well-suited to help assess the first potential
criticism above: has a model learned everything about language that a human has?

PLMs are essentially a black box (Belinkov et al., 2023), which means that any evaluation has to
be targeted, meaning that an input will be given to the model, and a specific behaviour observed,
such that inferences can be made about the underlying mechanisms of the model.

Necessarily, the evaluation of the linguistic capabilities of PLMs research must come from the
perspective of a certain linguistic theory; specific aspects of language must be tested, and the de-
sirable behaviour specified. We claim that this is dangerous if PLMs are eventually to be used as
evidence in the debate over human language processing; if the only tool we have is the hammer
of testing against rule-based grammar, everything might look like a nail, or rather, like a model
that implements syntactic rules. Or to phrase it differently, if we judge PLMs’ linguistic compe-
tency by their adherence to formal syntactic rules, the community may under- or overestimate their
performance, and deny them their place in the debate about the acquisition of language.

As a solution, in this work, we propose to diversify the theoretical standpoints that underlie the
linguistic evaluation of PLMs and develop evaluation methods based on areas of Linguistics that
have been understudied or -used in NLP.

2For more details on this debate, see Section 2.2.1.1
3For an introduction to PLMs and an overview of the specific models used in this work, see Section 3.2
4For a more detailed introduction, see Section 3.3.2.
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Ch. Construction(s) Evaluation Contributions Data Contributions

4 - Review of prior work Review of prior work

5 Comparative Correlative BERT, RoBERTa, DeBERTa Small annotated corpus

6 Comparative Correlative BERT, RoBERTa, DeBERTa, OPT Small annotated corpus

7 Causal Excess, Licensed Causal,
Licensed Non-causal

GPT-3.5, GPT-4, Llama 2 Small annotated corpus

8 Interrogative, Existential,
Conditional, Resultative, NPN

- Automatic annotation in UD

9 Caused-Motion GPT, Gemini, Llama 2, Mistral Annotation pipeline, small
annotated corpus

Table 1.1: Overview of the chapters in Part II

Our work will primarily focus on areas where the community may have overestimated the linguis-
tic capabilities of PLMs, by identifying challenging constructions and showing that PLMs have not
fully learned them. However, this can also show areas of underestimation, where formal grammar
is simply not a good description of either human or model behaviour. As Baroni (2022) argues:

Neural language models, by inducing a large set of context-dependent and fuzzy pat-
terns from natural input, and by being inherently able to probabilistically generate and
process text, should be better equipped to handle phenomena such as polysemy, the par-
tial productivity of morphological derivation, non-fully-compositional phrase formation
and diachronic shift.

Our first research question is therefore:
Q1: How can we diversify the evaluation of linguistic capabilities of PLMs?
Even though it is clear that this is an ongoing field of research and that language models are by

no means perfect, they have nevertheless reached a level of performance where they can be used,
with guidance, in aiding linguistics research. Our second research question is therefore:

Q2: Given the current state of the art, how can NLP already contribute to Linguistics?

Approach from two perspectives In this work, we focus specifically on Construction Grammar
and (word-paradigm) Morphology. Both have so far been under-studied in NLP, and we will argue
in the following that both can make important contributions in evaluating PLMs.

For both areas, we make contributions to both research questions. For Construction Grammar,
we present our contributions to Q1 in Section 1.3.1 and to Q2 in Section 1.3.2. For Morphology, we
present our contributions to Q1 in Section 1.4.1 and to Q2 in 1.4.2.

1.3 Construction Grammar

Construction Grammar (Goldberg, 1995; Croft, 2001) posits constructions, pairings of form and
meaning, as the central unit in language (Goldberg, 2003).5

Wepropose to use Construction Grammar to help evaluate how far PLMs have come in emulating
human language behaviour. Motivated by the difficulty of procuring corpora for this effort, we
further develop methods of creating new corpora for constructions, which we hope will also be
helpful for linguists. We present an overview of the chapters dealing with Construction Grammar
in Table 1.1, organised by constructions covered, and contributions to both evaluation of LLMs and
collection of CxG data.

We first turn to Q1, the development of novel evaluation methods for LMs using a more diverse
perspective on Linguistics, in this case from CxG. Within CxG theory, most evaluations of LMs could
be said to be using CxG, as everything is a construction (Croft, 2001). However, given the current
state of LM evaluation, we see the greatest possible contribution from CxG to be the individual
constructions described in the literature to illustrate CxG and contrast it with other theories. Such
constructions are almost always highly idiosyncratic, have interesting syntactic structure and carry

5For an introduction to Construction Grammar, see Section 2.1.
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non-compositional meaning (Kay and Michaelis, 2019; Schmid, 2007). We hypothesise that exactly
these qualities might make them challenging for LMs, and our approach is therefore to choose
constructions from the literature and develop novel methods for evaluating LMs’ understanding of
them.

1.3.1 How Well Have PLMs Learned Constructions?

The evaluation of the syntactic capabilities of LMs represents an important strand of research in
interpretability, in which several strategies have evolved. The two main ones are probing classifiers,
where a simple classifier is trained to extract the sought-for linguistic property from a contextual
embedding, and behavioural testing, where a test is given to the model that it will only be able
to answer if it has learned the property in question.6 Strikingly, most of the previous work on
the linguistic information captured in PLMs has been from a perspective of formal grammar. We
hypothesise several reasons for this popularity.

The first is the availability of existing datasets. For example, numerous studies have evaluated
PLMs against the Universal Dependencies dataset (Hewitt andManning, 2019;Manning et al., 2020;
Müller-Eberstein et al., 2022)7. As a large, coherent, existing and readily available dataset, UD is
very accessible, particularly for NLP researchers coming from Computer Science.

The second reason is the simple relationships represented in formal notions of grammar. For
example, Hewitt and Manning (2019) test if the token to which the most attention is given from
another token is also the one to which it is connected by an edge in the UD dependency tree. This
unique methodology is only applicable to a theory in which a word is always connected to exactly
one other word.

The third reason is the availability of minimal pairs. Minimal pairs are a device from linguistics
literature, where a pair of sentences, one grammatically acceptable and one not, differ only in one
specific property, and are therefore used to demonstrate the effect of this property on grammatical-
ity. For example, in the sentence “This thesis [MASK] great”, comparing the likelihoods of “is” and
“are”, we can evaluate specifically if the model is capable of subject-verb number agreement (Wei
et al., 2021), as nothing else would influence this choice. This is uniquely suited to the evaluation
of PLMs in a controlled setting, as for models trained with masked language modelling (cf. Section
3.2.2), the probabilities of different tokens may be measured in the one position where they differ
(in the example, X), or for auto-regressive language models, the perplexity (cf. Section 3.3.1.4)
assigned to the whole sentence may be measured for both sentences in the minimal pair, without
fear of confounding factors. Minimal pairs are either collected from linguistic textbooks (Warstadt
et al., 2020), or can even be automatically created by applying simple rule-based changes to existing
sentences (Wei et al., 2021).

We see this as problematic for two reasons.

• Problem 1 a false dichotomy may be created, as the community, particularly outside of the
niche of Computational Linguistics, sees these normative evaluations and datasets as the abso-
lute truth, against which LMs are to be evaluated, andwhich theymust be developed to achieve
human language behaviour. For example, Wei et al. (2021) criticise BERT for being overcome
by frequency effects instead of perfectly following the rule of subject-verb-agreement.

• Problem 2 it may lead to an overestimation of the linguistic behaviour of PLMs, as the exact
properties outlined above are likely to make the phenomena easier to learn for models. This
overestimation may lead to claims of human or even superhuman performance (Dale, 2021;
Haider, 2023), which underrepresent the remaining challenges.

1.3.1.1 Approach

We seek to alleviate these problems and approach Q1 from the perspective of CxG, we develop
probing methods for evaluating PLM’s knowledge of constructions. In Chapter 4, we argue how
Construction Grammar relates to each of the problems outlined above, summarise the little work
that has been done in this direction, and propose solutions. First, we argue that CxG-based probing
would help with Problem 1, because it will introduce more diversity into the conversation about
the ideal linguistic behaviour for PLMs. CxG might even be a more natural theory of grammar to

6For a more detailed review of these methods, see Section 3.3.2.
7For an introduction to UD, see Section 3.1
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evaluate LLMs against, as it is usage-based, does not require hierarchical structure, and accounts
for frequency effects (Goldberg, 2024). Aside from these theoretical considerations, this will help
with Problem 2, as literature in CxG mostly focuses on “interesting” constructions, those that are
non-compositional in meaning and have surprising syntactic structure.

Prior work on evaluating PLMs on CxG has been limited. Tayyar Madabushi et al. (2020) in-
vestigated how well BERT (Devlin et al., 2019) can learn to classify whether two sentences contain
instances of the same construction, where the constructions are automatically induced using a
modified algorithm from Dunn (2017).8 Li et al. (2022) focus on argument structure constructions
(Goldberg, 1992) and automatically generate instances for a sorting task, in which PLMs, as well as
humans, prefer to sort sentences by construction, rather than by verb. Somewhat problematically,
the instances are not manually verified and as argument structure constructions have subtle seman-
tic constraints, many of the generated sentences do not hold up upon inspection.9 Lastly, Tseng
et al. (2022) filter a pre-existing list of Chinese constructions (Zhan, 2017) down to those that are
easily automatically identified, and find that PLMs seem to have learned about the fixed and the
more open slots in the constructions, as they find the more open slots more difficult to predict when
masked. While more comprehensive, this evaluation remains fairly superficial.

In developing our own probing studies for CxG, we, therefore, have two goals: a) to push the
boundaries of the previously introduced probing methodology to make it more applicable to con-
structions, and b) to choose constructions from the literature that we hypothesise might be chal-
lenging for language models, with the aim of showing their current limitations and inspiring further
development to overcome them.

1.3.1.2 Contributions

In Chapter 5, we develop our first probing method for a specific construction, the English Compara-
tive Correlative (CC, Culicover and Jackendoff, 1999), also known as the “the xer, the yer” construc-
tion (e.g., “the more, the merrier”). Our main innovation is to consider the syntactic component of
the construction as well as the semantics. We adapt the methodology of training a probing classi-
fier with minimal pairs as described above in Section 1.3.1, and automatically generate instances
of the CC, as well as structurally similar non-instances, to form minimal pairs. We use this setup
to evaluate BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and DeBERTa (He et al., 2021) at
different sizes for their recognition of the structure of the CC. We further design a behavioural task
in which the models have to apply their understanding of the CC in context to predict the correct
word for a masked token.

As this specific setupwas only compatible with PLMs trained onmasked languagemodelling, but
the state of the art progressed in the direction of larger PLMs trained on an autoregressive language
modelling objective (cf. Section 3.2.3) we extend our methodology in Chapter 6. As smaller PLMs
were found to be proficient at the syntactic task but not the semantic one, we specifically focus on
this. We adapt our setup such that instead of measuring the probability of the masked token, we
instead measure the perplexity of entire sentences to assess if the model is able to use the CC’s
meaning in context.

Despite interesting results, our evaluation setup has some limitations, which we address in the
following chapters. First, the construction of minimal pairs was not organic and even after tweak-
ing, it was still difficult to guarantee that the pairs really were minimal, which we circumvented
by using two different setups with different workarounds for this issue. Second, there were no
guarantees that models of this size and general capability would be able to understand the setup of
the semantics task, so a lack of satisfactory performance might not entirely be due to problems in
understanding the construction.

Returning to these issues in the age of Large Language Models (LLMs), we find solutions to
both issues in Chapter 7. We solve the problem of minimal pairs by finding a “naturally occurring”
minimal pair of two constructions: lexically licensed finite complement clauses, either non-causal
(“I was so certain that I saw you”) or causal (“I was so happy that I was freed”) on the one hand,
and the Causal Excess Construction (Kay and Sag, 2012; Fillmore et al., 2012) (“I was so happy
that I cried”) on the other. The syntactically identical structure accompanied by three different
meaning components regarding causality presents an ideal test case for the understanding of these
constructions. The second problem was that of ensuring that the behavioural task itself is feasible,

8For a more detailed discussion of the problems associated with automatically inducing constructions, see Section 1.3.2.
9For a more detailed discussion of argument structure constructions, see Chapter 9.
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and that failure can therefore be attributed to a lack of understanding of the construction. We solve
this both by evaluating larger LMs (GPT-3.5, GPT-4 (OpenAI, 2022), Llama 2 (Touvron et al., 2023b))
and by testing the understanding using the well-established task of Natural Language Inference
(NLI, Bowman et al., 2015).

But how can we evaluate the understanding of constructions when we are not lucky enough
to find a trick that uses an established task? One advantage of using instruction-tuned LLMs is
that we can now expect them to be able to answer simple questions about their understanding of a
sentence and what is happening in it. We use this to our advantage in Chapter 9, where we evaluate
LLMs for their understanding of the caused-motion construction (CMC, Goldberg, 1992), e.g. “She
sneezed the foam off the cappuccino”. We again form a sort of minimal pair, in making the motion
component explicit by replacing “sneeze” with “throw”. About both sentences, we ask the model
“In this sentence, is the foam moving?”. The idea behind this evaluation is that a model that lacks
understanding of the CMC will answer “no” to the original sentence, but “yes” to the version with
an explicit motion verb.

1.3.2 HowCanWeUseNLP ToHelp Annotate Data for Construction Grammar?

A recurring theme in the work described above has been the lack of data to perform probing at
the scale that is necessary for drawing statistically valid conclusions. In our own work, we have
either artificially generated data at a larger scale (Chapters 5, 6), or manually collected annotated
data at a much smaller scale (Chapters 5 - 7). Both approaches carry disadvantages: automatically
generating data is difficult for semantically more complex phenomena, and even for questions of
syntactic acceptability, brings with it the challenge of ensuring that there are no easily exploitable
cues for themodel, as generated data may not have the full spectrum of variability found in language
(cf. Chapter 5). Manually annotating data carries the obvious disadvantage that manual labour
needs to be carried out, which limits the size of the dataset and therefore endangers the statistical
significance of the result.

There is another dimension to this lack of data: the lack of datasets covering more than one
construction, which would make it possible to make broader claims about PLMs such as the ones
in Hewitt and Manning (2019).

We argue in Chapter 4 that a possible solution could come from constructicons, which are
databases of constructions for one language, sometimes with examples, compiled by linguists.10

However, in their current state, no constructicon is ready to be used for computational purposes:
only some of them are available to freely download, they never include more than a few example
sentences, and descriptions of constructions are mostly freeform text and not systematic enough
to be used without significant manual work.

Finding a solution to this will contribute to Q2, as creating CxG datasets for the purposes of
evaluation will also benefit corpus-linguistic research on the same constructions.

1.3.2.1 Approach

We advocate for the use of more natural data in using CxG to evaluate PLMs, and propose larger-
scale solutions, which we hope will be more systematic than the current practice of creating a
custom solution for every study involving one construction.

Our key ideas are as follows. First, it is vital to rely on pre-existing resources, even if those
resources are built with the assumption of conflicting grammatical theories. This can mean either
the usage of automated methods such as part-of-speech taggers (Harris, 1965) and dependency
parsers (Nivre, 2003) on large-scale corpora, or the search for constructions in pre-annotated tree-
banks such as Universal Dependencies (UD, de Marneffe et al., 2021). This includes a size-accuracy
trade-off: despite high accuracy for state-of-the-art parsers, they may introduce errors, particularly
for rare and non-compositional constructions, while annotated treebanks may be too small to in-
clude sufficient instances of rare constructions. We further argue that this means no theoretical
commitment to any link between CxG and dependency grammar, but rather the usage of corpora
and parsers as a means to an end. Second, that manual verification of the produced output is key.
As we have already demonstrated in Chapters 5 - 7, and 9, some of the most interesting construc-
tions are impossible to fully automatically annotate with current methods. Our approach therefore

10For a more detailed overview of constructicons, see Section 2.1.4.
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emphasises the importance of either manually verifiying the output of any automatic process, or
critically evaluating it with the help of trained linguists.

Crucially, we see the creation of larger corpora for CxG not only as helpful for further CxG-based
evaluation of PLMs (Q1), but also as a contribution to the CxG community in Linguistics (Q2), where
corpus-based studies have been facing the same challenges. We hope that our efforts for corpora
creation can enable more quantitative studies of constructions and their distributional properties in
the future.

1.3.2.2 Contributions

Our first contribution to this challenge is the product of a community effort, which began at the
2023 Dagstuhl Seminar on Universals of Linguistic Idiosyncrasy in Multilingual Computational Lin-
guistics (Baldwin et al., 2023). We argue for the creation of a construction layer in UD, both for
the purpose of creating larger datasets for CxG, and for the enhancement and greater crosslingual
comparability of UD. This should serve the purposes of both communities: from a CxG perspective,
UD represents a large and well-established community, which we hope can aid in the creation of
larger-scale CxG corpora if they are included in the UD annotation schema. From a UD perspec-
tive, the annotation of constructions can close gaps in crosslingual comparability, which is one of
its major promises.11 To this end, we present a case study, considering five construction families
in ten languages. For each language and construction family, we construct graph pattern queries
and match them against UD trees. We then evaluate the challenges encountered, finding that while
some constructions were easy to identify, others presented fundamental challenges because of the
aforementioned semantic criteria, or were difficult to adequately define across languages. We fur-
ther propose and implement an annotation schema for UD, in which the heads and constituents of
constructions will be marked, and hope that this pioneering study will encourage an effort from the
larger community to annotate more constructions.

While this community project will hopefully grow into a larger annotated corpus for CxG over
time, it has some drawbacks in its usability for our PLM evaluations, both due to its general ap-
proach and its current state of execution. First, as shown in the quantitative evaluation of the
project, many constructions are so rare that even the largest treebanks will return fewer than 100
instances, making it unsuitable for work where more instances are required, either to assess the
diversity and distributional properties of the instances, or to make statistically sound statements
about PLMs’ performance on them. Second, there are many constructions with semantic subtleties
for which automatic annotation, even with a group of graph pattern queries, will not be possible for
sufficient accuracy. These constructions may often be particularly interesting for studying PLMs,
as the same semantic subtleties make them more challenging to learn. As a solution to this, we
present a hybrid human-LLM corpus construction method in Chapter 9 and demonstrate its usage
on the caused-motion construction (CMC, Goldberg, 1992). Starting with the assumption that for
such a complex construction, manual annotation is necessary as the last step, we aim to decrease
the annotation effort required by filtering the corpus in which the annotator will search for instances,
or “concentrating” the instances of the construction. For this, similarly to Chapter 8, we propose
the usage of subtree graph queries, but use them on top of a much larger corpus that has been auto-
matically parsed for dependencies. After this prefiltering, we propose to use few-shot classification
with GPT (OpenAI, 2022) to further filter the set of potential instances, and finally annotate the re-
sult manually to arrive at our final corpus of CMC instances. We give recommendations for prompt
design and create a method for calculating the tradeoff between the cost of more elaborate prompt-
ing methods and that of human annotation. While we demonstrate this pipeline on the example of
the CMC, it can be used for any other construction, which we hope will lead to the construction of
more large-scale corpora for rare phenomena.

1.4 Morphology

The morphological capability of humans is the capacity to create words according to systematic
patterns of covariation in form and meaning (Haspelmath and Sims, 2010).12 We consider Mor-
phology to be an important testbed for the capabilities of PLMs, due to its complexity. For example,

11For an introduction of Universal Dependencies, see Section 3.1.
12For an introduction to Morphology, see Section 2.2.
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the English past tense has been documented to show not only irregular forms, but islands of reg-
ularity (Albright, 2002), where a few words might form the past tense the same way, even though
it is drastically different from the regular +ed rule (Bybee and Slobin, 1982). We also expect that
PLMs might struggle with morphological tasks due to difficulties with the subword tokenizer, which
doesn’t necessarily form tokens that correspond to morphemes (Hofmann et al., 2021, 2022).

1.4.1 Have PLMs Acquired a Human-Like Capacity for Morphological General-
isation?

Before the arrival of PLMs, morphological inflection and derivation were studied as NLP tasks. The
task of inflection was therefore to generate an inflected form, given a stem and a morphological
tag (Cotterell et al., 2017a, 2018; Vylomova et al., 2020; Goldman et al., 2022) and was solved by
various trained systems, including encoder-decoder RNN models or transformer models. Similar
research focused on modelling derivation (Cotterell et al., 2017b; Vylomova et al., 2017; Deutsch
et al., 2018; Hofmann et al., 2020b,c).

With the increasing performance of PLMs, the question of morphological research on LMs shifts.
When before, it might have been summarised as “Can we train our model to be able to inflect
words correctly?”, given the advances of PLMs, it now becomes possible to ask “Have the models
acquired morphological capabilities in an unsupervised fashion purely from raw text?”. This shift
enables us to connect Morphology toQ1 and make it a further criterion for the human-like linguistic
performance of PLMs.

Previous work examining the morphological capabilities of PLMs (Edmiston, 2020; Hofmann
et al., 2020a) has focused on smaller models such as BERT. As LLMs have increasingly been claimed
to have reached human performance on many linguistic phenomena (Bubeck et al., 2023) claims
have been made that they have reached human performance even on morphological generalisation.
In early 2023, claims were made on Twitter by leading LLM researchers who had anecdotally tested
ChatGPT on the classic example of thewug-test: “This is a wug. Now there is another one. There are
two of them. There are two __” and took themodel’s correct answer as evidence of a groundbreaking
level of morphological generalisation. This is problematic, as the original wug-test is now 70 years
old and is almost certain to have been seen in the training data of most LLMs, therefore leading
to overstated claims of LLM performance. This follows a general trend in the evaluation of LLMs,
where training data contamination poses an increasing obstacle to thorough evaluation (Jacovi et al.,
2023; Sainz et al., 2023).

1.4.1.1 Approach

Our approach is to study the underlying mechanisms of morphological generalisation in PLMs by
using previously unseen data. We adapt the methodology of wug-testing (Berko, 1958), an experi-
mental paradigm in which participants were asked to provide an inflected or derived form of a novel
(nonce) word. By creating new nonce words that are guaranteed to not be contained in the train-
ing data, we create a rigorous evaluation. Recalling Q1, our question is therefore “To which degree
are LLMs reaching human behaviour regarding inflectional and derivational morphology?”. The ad-
vances in LLMs with instruction tuning, which greatly increased their ability to reply to instructions,
allow us to almost directly replicate human experimental settings with LLMs, thereby enabling a
more direct comparison between human and LLM behaviour. A further component of our approach
is to compare the performance of LLMs against that of other systems that have been purpose-built
to learn inflection and derivation from training data. There is a long history of these systems with
different underlying mechanisms, including rule-learning systems (Liu and Mao, 2016; Wilson and
Li, 2021), analogical methods (Calderone et al., 2021), and a transformer-based system (Wu et al.,
2021). The usage of these supervised methods not only provides a useful reference point for assess-
ing the performance of LLMs under different conditions, but can also be used to make inferences
about the mechanisms underlying LLM performance on morphological generalisation. If we find
that LLMs have reached human performance, the next question would be: do they behave more like
a rule-based or more like an analogy-based system? One way of assessing this can be to compare
each of their predictions on nonce words with that of the LLM.
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1.4.1.2 Contributions

In Chapter 10, we introduce the first systematic test of morphological generalisation for ChatGPT.
As described above, we create entirely new nonce words in four languages and collect human judg-
ments for them. We then evaluate LLMs on the classic wug-test setup of Berko (1958), and evaluate
both their performance and that of state-of-the-art baseline systems against the newly collected hu-
man judgments. Crucially, our evaluation takes into account the variability of human judgments:
there is no absolute true answer, but rather the human behaviour that should be emulated is given
by the frequency distribution over participants’ answers. We therefore evaluate the models using
top-n-accuracy (cf. Section 3.3.1.3) at different values of n, where n controls how many of the most
frequent human answers are considered as correct.

This work’s main limitation was its focus on closed-source models, for which we can investigate
neither the training data nor the tokeniser or the log probabilities. We were able to assess how far
LLMs have comewith respect to morphological generalisation, but not which cognitive mechanisms
underlie their relative success. To improve on this, in Chapter 11, we take two steps. First, we
turn to GPT-J (Wang and Komatsuzaki, 2021), an open-source model trained on an open-source
corpus. Second, we choose a phenomenon that is well-suited to the comparison between rule-
based and analogy-based models: that of English adjective nominalisation either with -ity or -ness.
We again collect a novel set of nonce words and collect human judgements on them, and compare
them against GPT-J prompting results. Crucially, we further compare its results directly against a
rule-based and an analogy-based system, to evaluate which provides the better fit for its behaviour.
Additionally, we analyse the training data to assess how well GPT-J’s predictions match the statistics
in the data. As it could be argued that our analysis of GPT-J is specific to the model and would not
hold for larger models like GPT-4, we additionally compare against it.

1.4.2 How Can We Leverage Parallel Data for Unsupervised Morphology?

The unsupervised induction of morphological structure has traditionally been a central field of inter-
est in NLP (Yarowsky and Wicentowski, 2000; Goldsmith, 2001; Schone and Jurafsky, 2001; Creutz
and Lagus, 2002; Hammarström and Borin, 2011). While a working model for this induction would
doubtless be useful for linguistics, especially typology, it is also relevant toQ2: if we build a working
model, we will have shown that this structure is, in principle, learnable from data.

1.4.2.1 Approach

Our approach to this problem is from a typological perspective, using a highly parallel corpus. The
key idea is that in utilising this corpus, we have access to crucial information gained from seeing so
many ways to express one sentence, which we can use to induce linguistic structure in an otherwise
unsupervised manner. For example, if we have many translations of the same noun phrase available,
which will be grouped into different cases by different case systems, the combination of these cases
will tell us something very specific about the noun phrase.

1.4.2.2 Contributions

In Chapter 12, we introduce a new task in computational morphology, that of unsupervised case
marker extraction. To build a first model for this task, we leverage the Bible corpus (Mayer and
Cysouw, 2014), a massively multilingual sentence-aligned corpus, to extract case markers in 83
languages. Compared to other chapters, our approach relies on simple technology, as we require
only the corpus, a noun phrase chunker which will extract all noun phrases from each sentence,
and a word alignment system (Jalili Sabet et al., 2020).

1.5 Outline

The remainder of this work is structured as follows. Part II contains our work on Construction
Grammar, with Chapters 5 through 7 about CxG as amethod for evaluating PLMs and Chapters 8 and
9 about NLP-aided data collection for CxG. Part III contains our work on Morphology, with Chapters
10 and 11 about evaluating LLMs for their morphological generalisation and Chapter 12 about the
automatic extraction of casemarkers. The rest of this part provides background information relevant
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to the publications, which we see as particularly important, given the interdisciplinary nature of
this work. In Chapter 2, we discuss the linguistic background, which is divided into Construction
Grammar in Section 2.1 and Morphology in Section 2.2. In Chapter 3, we introduce the background
in Natural Language Processing, starting with a discussion of Universal Dependencies in Section
3.1 and moving on to an overview of the utilised Pre-trained Language Models in Section 3.2 and an
overview of evaluation paradigms in Section 3.3. We conclude in Part IV, which contains a summary
of our findings and an outlook into future research directions.





Chapter 2

Linguistic Background

In this section, we introduce the background from the field of Linguistics for this thesis. We aim to
thereby make the following chapters more accessible to readers who come from a purely computa-
tional background. We first give an overview of Construction Grammar in Section 2.1, and then of
Morphology in Section 2.2.

2.1 Construction Grammar

We give an overview of the central themes and ideas of Construction Grammar (CxG), with special
emphasis on the theories used implicitly or explicitly in the practical work presented in Sections
2.1.2 and 2.1.3. We also discuss in detail the various efforts to create comprehensive databases for
Construction Grammar, called constructions, in Section 2.1.4. For a more general overview of the
field, we refer the reader to Hoffmann and Trousdale (2013) and Fried and Nikiforidou (2025).

2.1.1 A Short History of Construction Grammar

Construction Grammar is a theory which posits form-meaning pairings called constructions as the
central units of language. These units could be anything from a word or even subword unit to a
syntactic construction encompassing an entire sentence, therefore removing the traditional barrier
between Lexicon and Grammar (Chomsky, 1965, 1995; Pinker, 1999).

This theory was first developed in opposition to Chomsky’s principles-and-parameters approach
(Chomsky, 1995) which hypothesises a strict separation between syntax and semantics, and sees
constructions such as “The Xer, the Yer” (e.g., “The more I read, the less I know“) as peripheral phe-
nomena, or exceptions to the rule. The Chomskian view is summarised by Fillmore et al. (1988) as
follows. Speakers have knowledge of the lexicon of their language, including the meaning of words
and where they can appear. In addition to this, they have knowledge of the (basic) grammatical
rules of their language, which enable them to combine these words into more complex structures.
Separately from these, they also know basic semantic interpretation principles, with which they
can infer the meaning of entire sentences. To use the sentences in context, they further use their
pragmatic knowledge to associate them with particular types of situations.

Crucially, this view of language is entirely compositional: the syntactic acceptability of a sen-
tence is determined by applying the syntactic rules to the lexicon, and the rules of semantic inter-
pretation similarly build the sentence meaning.

Many phenomena in language are incompatible with this idea, as was first pointed out by Fill-
more in the pioneering 1985 Syntactic Intrusions and The Notion of Grammatical Construction
(Fillmore, 1985) who refers to “constructions often endowed with properties which are not indepen-
dently determined by facts about their constituency or their derivation”. Along with constructions,
he introduces another notion central to CxG: “single-level representation of complex syntactic ob-
jects, as opposed to multi-level or derivational representations”. He describes two constructions
which he initially calls syntactic intrusions, the redundant have in past counterfactual clauses under
certain conditions, and the intrusion of phrases like the heck into a question. Fillmore argues that
the only way to account for these syntactic intrusions that have very specific conditions attached to
them is to see them as constructions, lexical entries “capable of occupying particular higher-phrase
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positions in sentences” and including “both the needed semantic role and the needed specification
of structural requirements”. He also introduced the central disagreement between Construction
and Transformational Grammar that would become even clearer later: while neither dispute that
constructions exist, the difference is that Transformational Grammar sees them as the periphery of
language and not its core, while Construction Grammar claims that there is no major discontinuity
between the two.1

It is important to note here that our empirical work does not necessarily take a strong stance on
this, as all Chapters dealing with constructions and NLP in a practical way could equally be carried
out from a standpoint of Transformational Grammar. The position paper in Chapter 4 discusses the
implications of adopting a CxG constructions all the way down approach for NLP. For amore detailed
discussion of computational methods that explicitly target this debate over rules vs. periphery, see
the Future Work proposed in Section 13.4.

To continue the history of CxG, several case studies on specific English constructions followed,
arguing that each are incompatible with the Chomskian view of language.

The English Comparative Correlative, also called the “the X-er, the Y-er” construction, was in-
troduced in Fillmore (1986).2 Lakoff (1987) argues that the semantic difference of the two types
of there-constructions, deictic (“There’s Harry with his red hat on”) and existential (“There was a
man shot last night”) cannot be adequately be accounted for using previous approaches. He fur-
ther asserts that “grammatical constructions have a real cognitive status” and that a continuum
exists between the grammar and the lexicon. He also empathises the link between CxG and pro-
totypes (Rosch, 1973), stating that “prototype-based categorization occurs in grammar”.3 Fillmore
et al. (1988) similarly discuss the “let alone” construction, as exemplified by “I barely got up in
time to EAT LUNCH, let alone COOK BREAKFAST.” He argues that “those linguistic processes that
are thought of as irregular cannot be accounted for by constructing lists of exceptions: the realm
of idiomaticity includes a great deal that is productive, highly structured, and worthy of serious
grammatical investigation”. He also introduces the central notion that meaning can be attached to
arbitrarily large structures.

These were summarised by Fillmore (1988), who also first proposes to “treat grammatical con-
structions as syntactic patterns which can fit into each other, impose conditions on each other, and
inherit properties from each other”, a notion that would later develop into the concept of a construc-
tion (Section 2.1.4). He also describes the notion of slots in constructions, which require fillers with
certain properties, which will become important in computational work.

Another classic example, the “What’s X doing Y?” construction, was introduced by Kay (1999).
With the example of “What’s this fly doing in my soup?”, where the question is not about the fly’s
activities in the soup, but about the reason for its presence there, to argue for “a grammar in which
the particular and the general are knit together seamlessly”.

The foundations laid by these classic works have been and continue to be developed. Today,
some central tenets are the shared basis for most approaches to CxG (Goldberg, 2013; Ziem and
Lasch, 2013). First, constructions show the continuum between lexicon and grammar (Boas, 2010;
Broccias, 2012; Goldberg, 1995; Fillmore, 1989), on which all constructions are situated. While the
two ends of the spectrum exist, with one-word lexical constructions on the one hand and highly
syntactic constructions like the ditransitive on the other, many constructions are idiomatic and only
partially schematic, and therefore showcase that the separation between these two extremes can
not be cognitively plausible. Second, constructions form a network of hierarchies called a construc-
ticon (Jurafsky, 1992; Boas, 2011; Goldberg, 1995; Fillmore et al., 2012).4 Third, constructions are
prototypical structures that become entrenched with increasing frequency (Goldberg, 2006; Brooks
and Tomasello, 1999; Boyd and Goldberg, 2011; Schmid, 2020). Goldberg (2006) requires that con-
structions be either entrenched in the language community, or contain a syntactic or semantic
component that is not predictable by the application of general rules to its components.

Beyond these central tenets, a variety of constructionist approaches have been developed in
slightly different directions. We now turn to describing the two which are relevant to this thesis in
detail: Goldbergian (Goldberg, 1995, 2006), and Radical Construction Grammar (Croft, 2001). We
then briefly summarise other approaches.

1Note that this central question of rules and exceptions on the one hand, and a continuum on the other, will come up
again in the Morphology part of this work (Part III).

2We investigate different PLMs’ understanding of this construction in Chapter 5.
3This links the CxG part of our work to themorphological part, in which analogy- and prototype-based theories are central.
4See Section 2.1.4.
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Construction Examples

Word Iran, another, banana
Word (partially filled) pre-N, V-ing
Idiom (filled) give the Devil his due
Idiom (partially filled) jog <someone’s> memory
Idiom (minimally filled) The Xer the Yer
Ditransitive construction: Subj V Obj1 Obj2 (unfilled) He baked her a muffin
Passive: Subj aux Vpp (PPby) (unfilled) The armadillo was hit by a car

Table 2.1: Constructions at varying levels of complexity and abstraction, adapted from Goldberg
(2013).

2.1.2 Goldbergian Construction Grammar

Under the supervision of George Lakoff, Goldberg (1992, 1995) discusses four Argument Struc-
ture Constructions (ASCs): i) the ditransitive construction (“Elwin faxed her the news”), ii) the
caused-motion construction (“Sam sneezed the napkin off the table”), iii) the resultative construc-
tion (“She kissed him unconscious”) and iv) the X’s way construction (“She smiled her way through
the crowd”). Each of these constructions affects both the argument structure of the verb and the
meaning of the sentence. She argues that these constructions make it apparent that meaning must
attach to the ASC and not the verb, as it would be unreasonable to expect every verb that could ever
appear in, e.g., a caused-motion construction, to include this possibility, and the resulting changes
to meaning and argument structure, in its entry in the mental lexicon.

Much like Lakoff’s earlier work, this approach to CxG focuses on the cognitive plausibility of CxG,
and on the mechanisms by which speakers acquire constructions. Goldberg (2013) summarises
the main tenets of CxG as follows: i) grammatical constructions are learned pairings of form and
function ii) semantics is associated directly with surface form iii) constructions form a network in
which nodes are related by inheritance links iv) languages vary in wide-ranging ways.

She includes a fifth tenet which is central to Goldbergian CxG: that it is usage-based and that
“knowledge of languages includes both items and generalisations, at varying levels of specificity”.
A modified version of the examples of constructions at varying levels of complexity and abstraction
can be seen in Table 2.1.

Goldberg (2006) elaborates on the theme of acquiring generalisations from input to learn con-
structions. She presents experiments in which children are shown to acquire novel constructions
quickly based on input. Crucially, these experiments are successful without the need for explicit
negative feedback about overgeneralisation, which has long been a central claim of Transforma-
tional Grammar (Chomsky, 1957, 1965).

Goldbergian Construction Grammar is an implicit basis for Chapter 4, in which we argue that
CxG is a good fit to evaluate LLMs, and the main inspiration for Chapter 9, which concerns the
caused-motion construction.

2.1.3 Radical Construction Grammar

Croft (2001) proposes Radical Construction Grammar, a theory of Syntax that argues that “virtu-
ally all aspects of the formal representation of grammatical structure are language-particular”. It
suggests using an inductive method of analysis to find generalisations between languages, but si-
multaneously respect the diversity and the inherent arbitrariness of the world’s languages. Croft
finds that constructions rarely generalise across languages, and even when they do, they display
“wildly different distributions”. Perhaps most strikingly, he argues that even parts of speech such
as noun and adjective do not hold up to typological scrutiny without compromises that should not
be made.

Most recently, Croft (2022) attempts to describe the “morphosyntax of the world’s languages”
and therefore takes a view of CxG that is chiefly motivated by typology. A central notion is that
a construction not only has a meaning, but also a way of conveying that meaning: information
packaging. Croft introduces a functional framework for categorising the functions expressed by
language, both in terms of semantic content and in terms of information packaging. This packaging
is divided into three categories: reference (what the speaker is talking about), predication (what
they are asserting about the referent), and modification (additional information about the referent).
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Figure 2.1: The relationship between constructions, information packaging, semantic content, and
morphosyntax, adapted from Croft (2022).

For example, a meaning related to “sharp” may be packaged using reference (“the sharpness”) or
modification (“the sharp thorns”). For Croft, constructions are “any pairing of form and function in a
language used to express a particular combination of semantic content and information packaging’.
This means that a construction does not define how the function is expressed, but merely what
function is expressed. The specific way of expressing a particular function is called a strategy,
e.g., both English and Spanish can be said to employ a verbal copula strategy for their predicate
nominal constructions. The aim for this view of CxG is then to chart all constructions, along with
the strategies that exist across languages, and which languages employ which strategy.

Radical Construction Grammar is the theoretical basis for Chapter 8, in which we automatically
annotate four constructions and one strategy as defined by Croft.

2.1.4 Constructicons

Construction Grammar in general suffers from a lack of annotated corpora. This is partially inherent
to a theory which proposes that a large number of constructions are stored in memory, and mul-
tiple constructions are applied in the same sentence and interact in a way that has not been fully
specified. The former makes it difficult to build comprehensive lists of constructions (constructi-
cons), while the latter makes it virtually impossible to create corpora in which sentences have been
fully annotated with every construction they contain. This stands in contrast to simpler theories of
grammar such as dependency grammar, where both exist (cf. Subsection 3.1).

However, several recent projects are attempting to build constructions for their language. An
overview is provided by Lyngfelt et al. (2018). We summarise them in Table 2.2. Most efforts are
fairly recent and not all are available freely online, and only one, the Russian Constructicon, contains
more than 500 entries. While the efforts are currently disconnected, a Constructicon Alignment
Workshop was held in December of 2022 at the University of Gothenburg, with the aim of fostering
collaboration and a shared data structure.5 This shared structure is based on the theoretical basis
of Croft (2022), who proposes a framework for the constructions of all languages.

The relatively small size of constructions motivates our work on using NLP to annotate more
data in Chapters 8 and 9.

2.2 Morphology

Morphology is the study of the internal structure of words (Haspelmath and Sims, 2010). A distinc-
tion is typically made between inflectional morphology, which is concerned with different forms
of one word (e.g. draw, draws, drew), and derivational morphology, which is concerned with fam-
ilies of related words (e.g., read, readable, reader). There are three distinct approaches to mor-
phology: morpheme-based, lexeme-based, and word-based. Morpheme-based morphology, also
called the item-and-arrangement approach (Hockett, 1947, 1954) analyses words as arrangements
of morphemes, which are the minimal meaningful units of language. Lexeme-based morphology
(Anderson, 1992), also called the item-and-process approach, sees a word form as the result of
the application of some alteration rule to another word form. In contrast, word-based morphology
(Matthews, 1991), also called the word-and-paradigm approach, sees morphology not as the study

5https://www.globalframenet.org/caw2022

https://www.globalframenet.org/caw2022
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Name Language Years Avail. Size

CASA (Herbst and Hoffmann,
2018)

English 2018– LIC 168

German Framenet-Constructicon
(Ziem et al., 2019)

German 2017– Free 244

SweCcn (Lyngfelt et al., 2018) Swedish 2012– Free 409

FrameNet Brasil Constructicon
(Laviola et al., 2017)

Brazilian Portuguese 2010– Free 220

Russian Constructicon (Janda
et al., 2018)

Russian 2016–2021 Free 2277

(Ohara et al., 2004) Japanese 2014– No Unknown

Table 2.2: Overview of Constructicon Initiatives in different languages, by years active, availability
and size (number of constructions). For availability (Avail.), free stands for freely available, LIC for
available, but with some licence restrictions, and no stands for not available online.

of morphemes, but rather as “the branch of linguistics which is concerned with the forms of words
in different uses and constructions”.

A central dichotomoty exists between item-and-arrangement and item-and-processes approaches
on the one hand, and word-and-paradigm approaches on the other. While the former assume that
morphology, just like Syntax (cf. Section 2.1) is governed by compositional rules operating over
subword items (i.e., morphemes), the latter puts forward that words, rather than morphemes are
the basic unit of morphology, and morphological behaviour is governed by analogical processes
between them.

We now briefly summarise the debate of rules vs. analogy in morphology, which is highly related
to Chapters 10 and 11. For a more general introduction, we refer the reader to Haspelmath and
Sims (2010).

2.2.1 Computational Modelling of Rules and Analogy

Chapters 10 and 11 are specifically written in the context of the morphological debate about rules
vs. analogy, which asks: can the morphological behaviour of humans be learned by a connectionist
model (Rumelhart and McClelland, 1986) such as a neural network, or is a rule-based learner re-
quired? This is related to larger debates in linguistics, where one side is represented by Chomsky’s
ideas (Chomsky, 1956; Chomsky and Lasnik, 1993; Chomsky, 1995) that language is a system of
vocabulary items and rules that operate on them, and the other side claims that language can be
acquired without explicit rules simply on the basis of forming analogies and abstractions over seen
input (Croft, 2001; Goldberg, 1995)

2.2.1.1 English Past Tense

The most prominent example discussed in this debate has been the phonological realisation of the
English past tense inflection. Most verbs inflect for past tense with either /-d/, /-Id/ or /-t/ but some
form rare and irregular inflection classes (e.g., “teach” → “taught”).

A first computational model of English past tense was presented from the connectionist point
of view by Rumelhart and McClelland (1986), who built a simple neural network that they claimed
was able to learn English past tense from data without inductive biases or explicit mechanisms for
rules. This resulted in a debate that continues to the present day, an overview of which can be seen
in Figure 2.2.

Pinker and Prince (1988) proposed a dual-route system with separate mechanisms for rules and
exceptions, and pointed out several flaws in the experimental setup of Rumelhart and McClelland
(1986).

To test the descriptive adequacy of the models, the main methodology has become the testing
of a system on novel words. Following the wug test (Berko, 1958), where children were prompted
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(1995)

Albright & Hayes
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McCurdyet al.
(2020)

Dankers et al.
(2021)

Wiemerslageet
al. (2022)

Corkeryet al.
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Figure 2.2: Summary of the computational debate over the English past tense and German noun
plurals, adapted from Wiemerslage et al. (2023). Green is used for papers finding in favour of
connectionist models, while red is used for papers finding against. Blue papers present inconclusive
results.

to form, amongst other forms, the past tenses of made-up English verbs such as “wug”, several
datasets of human past tenses formed for novel verbs have been created (Marcus et al., 1995; Al-
bright and Hayes, 2003). This was first applied to the past tense debate by Prasada and Pinker
(1993), who compare the Rumelhart and McClelland (1986) model to human behaviour on the
same set of wug words, and find that it cannot account for human generalisation. Albright and
Hayes (2003) build an analogy- and a rule-based model and test it on their wug datasets and the
frequencies assigned by humans to different inflected forms, and find that the rule-based model
matches human nonce word inflection better.

The debate was picked up again by Kirov and Cotterell (2018), who train a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) with attention (Bahdanau et al., 2016) and conclude that it
solves many of the issues that Pinker and Prince (1988) first observed with the Rumelhart and
McClelland (1986)model. This work was again criticised by Corkery et al. (2019), who re-implement
the model and perform multiple runs to simulate multiple participants. They find that while the
LSTM model outperforms earlier neural network models, it still falls short of rule-based methods,
e.g. by overproducing irregular forms.

2.2.1.2 German Noun Plurals

A similar debate with similar methodology has been carried out over the issue of German noun
plurals. This is interesting because of the five plural suffixes /-(e)n/, /-e/, /-er/, /-s/, and /∅/, none
have a regular majority. Additionally, the inflection class that is most frequently used to generalise
to nonce forms, /-s/, is not the most frequent in the regular German data.

An LSTM model for this was presented by McCurdy et al. (2020), who find that the model over-
generalises to the most frequent inflection class in the training data (/-e/), and that the model did
not correlate well with human production probabilities in general. Dankers et al. (2021) perform
behavioural and structural analysis, and find that RNNs mostly generalise like humans, but also rely
on shortcuts, such as word length.

Wiemerslage et al. (2022) additionally train simple transformer models on both English past
tense and German noun plurals, and find that while not perfect, they correlate better with human
performance than previous models. The debate is therefore still ongoing.

We contribute to these two debates specifically in Chapter 10, in choosing the English past tense
and German noun plurals as test cases for the evaluation of morphological inflection in ChatGPT.

2.3 Summary

We have summarised the linguistic background of our work. We have introduced Construction
Grammar, placing special emphasis on the approach of Goldberg and Croft, which are used in
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this work. We have also given an overview of the available constructicons in different languages.
We have further given a short introduction to Morphology and elaborated on the computational
modelling of rules and analogy. We now turn to summarising the technical background of our
work.





Chapter 3

Natural Language Processing
Background

In this section, we introduce the background from the field of Natural Language Processing that is
required for this thesis. We aim to thereby make the following chapters more accessible to readers
who come from a purely linguistic background. The section is divided into two parts: in Subsection
3.1, we introduce the framework of Universal Dependencies, and in Subsection 3.2, we introduce
the pre-trained language models used in later chapters.

3.1 Universal Dependencies

As the most successful and widespread linguistic annotation framework in current NLP, Universal
Dependencies (UD, de Marneffe et al., 2021) is an important tool for several of the works presented
here. It is both a framework for the annotation of parts of speech, morphological features, and
syntactic dependencies, and a community-built treebank covering over 100 languages. In the fol-
lowing, we present a brief history and overview of UD, and then describe how it is useful for the
computational study of Construction Grammar.

3.1.1 History of Universal Dependencies

Universal Dependencies grew out of several concurrent efforts to create universal schemata for
dependency annotation. Stanford Dependencies were originally developed in 2005 for the Stanford
parser (de Marneffe et al., 2006; de Marneffe and Manning, 2008). A separate effort, the Google
universal tag set, was released in 2012 (Petrov et al., 2012), and used in HamleDT (Rosa et al., 2014),
a project that brought treebanks of many languages under a common annotation scheme.

The Universal Dependency Treebank project (UD, Nivre et al., 2016) released treebanks for 6,
and shortly after, for 11 languages, and brought together Stanford Dependencies and the Google
universal tagset, while the second version of HamleDT (Rosa et al., 2014) provided this annotation
for 30 languages. Shortly after, the Universal Stanford Dependencies (USD, de Marneffe et al., 2014
were released, merging the initiatives. Since 2017, a Universal Dependencies Workshop has been
held every year, and UD v2 was released in 2020 (Nivre et al., 2020) with updates to the annotation
guidelines.

3.1.2 Annotation Principles of Universal Dependencies

The annotation principles of UD have grown from the motivating principles of usefulness for NLP
and comparability across languages. This makes it different from other variants of dependency
grammar, as it emphasises simple surface representations to allow parallelism between similar
constructions across languages, despite differences in word order, morphology, or function words.

An example of this is shown in Figure 3.1, for parallel sentences from English, Bulgarian, Czech,
and Swedish. The main grammatical relations involving a passive verb, a nominal subject, and an
oblique agent are the same, but the specific grammatical realisation varies.
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Figure 3.1: Example of the parallel syntactic-semantic structure of UD for the sentence “The dog
was chased by the cat” in English, Bulgarian, Czech, and Swedish. Adapted from the Universal
Dependencies website https://universaldependencies.org/introduction.html.

https://universaldependencies.org/introduction.html
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Figure 3.2: An encoder-decoder model for machine translation, translating “Ich bin Studentin”
(German) into “I am a student” (English).

3.2 Pre-trained Language Models

The goal of a language model (LM) is to model the properties of language and to be able to gen-
erate text. Training a model to generate the next token given some previous input is called auto-
regressive language modelling. Formally, they factorise the probability p(w) of a text sequence
w = Wi, ..., wn ∈ V ∗ as

p(w) =
n∏

i=1
p(w1|w1, ..., wi−1) (3.1)

where V is a vocabulary of tokens.
While the first language models were introduced in 1948 (Shannon, 1948), significant advances

were not made until the usage of Recurrent neural networks (RNNs, Elman, 1990) was popularised
in NLP (Sutskever et al., 2014). RNNs were used to build encoder-decoder models. In an encoder-
decoder model, the encoder builds a representation of the input that consists of some kind of hidden
state, while the decoder uses this representation to generate text. For example, in a translation task,
the meaning of the source sentence is encoded, and then decoded into the target sentence.

A central issue in the development is that of scaling: as LMs have generally shown improvement
when trained on more data, how can we build architectures that can be trained so efficiently that it
becomes feasible to train them on large amounts of data?

While scaling was difficult for RNNs due to their sequential nature, a significant advancement
was made by the introduction of the Transformer.

3.2.1 Transformer

The Transformer (Vaswani et al., 2017) is an encoder-decoder architecture based on attention mech-
anisms. It was originally created for the task of machine translation (MT).

While neither encoder-decoder models nor attention were a novel idea for MT (Bahdanau et al.,
2016), the key innovation was to make both the encoder and decoder rely entirely on self-attention
for the computation of the input and output. This enabled it to process inputs in parallel and made
it more efficient, contributing to its dominance as a Language Model architecture.
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Figure 3.3: Schematic overview of stacked encoder blocks in an encoder-only transformer model.

The basic architecture is shown in Figure 3.2, consisting of an encoder and a decoder. A
schematic representation of the encoder and decoder layers is shown in Figure 3.2, for the example
of translating a French sentence to English. The encoder consists of stacked encoder blocks, which
all have the same internal structure, but do not share parameters. The output from one block are
fed as inputs to the next. Each encoder block consists of a multi-head attention and a feedforward
layer, with layer normalisation and skip connections in between.

The decoder uses masked multihead-attention during training to ensure that the model does not
have access to the correct next word at any given time. In each decoder block, between the masked
multi-head attention and the feedforward layer, unconstrained multi-head attention attends to the
output of the encoder while using the queries from the previous decoder layer, thus enabling the
model to incorporate both the encoded source-language sentence and the partial target-language
sentence it has output thus far. An overview is shown in Figure 3.3.

We now describe the main components separately.

Positional Encodings Since the Transformer processes all input tokens in parallel, it has no knowl-
edge of the position of each token in the sentence. This is therefore manually injected via fixed
Position Encodings (Gehring et al., 2017). Because the position encodings vary slightly for each
position, the model can learn different behaviour for the same token in different positions. The
encodings are computed as follows:

PE(pos,2i) = sin( pos

100002i/dmodel
)

PE(pos,2i+1) = cos( pos

100002i/dmodel
)

(3.2)

where PE ∈ RT ×dmodel , T is the maximum sequence length, dmodel is the dimensionality of the
embedding vectors, pos is the position in the sequence, and i is the index of the hidden dimension.

Attention Attention is a mechanism by which weights can be learned from each token to each
token. This means that the model can learn how important tokens are for each other. In self-
attention, the output representation of each token is a transformation of itself and all other tokens’
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input representations weighted by attention, such that information about the surrounding words
can be incorporated and make the representation contextual. This is the central mechanism behind
the Transformer architecture.

For each token, the mechanism takes the encoder input and produces three vectors q, k, and v.
Given an input sequence s = (s1, s2, ..., sn) with n tokens and their embeddings X ∈ RN×dmodel , it
computes:

K = XWK ,Q = XWQ,V = XWV (3.3)

whereWK ,WQ,WV are weight matrices. The self-attention of X is then computed as:

Attention(Q,K,V) = softmax(QK
T

√
dk

)V (3.4)

where the scaling factor dk is the dimension of the keys. The result is a weighted sum, where the
weights are given by a probability distribution determining the attention that should be given to
each input token.

To increase the model’s representational capacity, Vaswani et al. (2017) propose Multi-Head
Attention, which consists ofm linear projections (heads) for q, k, and v to dq, dk, and dv dimensions:

MultiHeadAttention(Q,K,V) = concat(head1, ..., headm)WO (3.5)

where WO ∈ Rmdv×dmodel is a projection matrix. Given WQ
i and WK

i ∈ Rdmodel×dk , and WV
i ∈

Rdmodel×dv , each attention head is computed as:

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3.6)

The formulation for the attention used in the decoder model is slightly different, as the attention is
limited to the previous word embeddings with respect to the current position:

MaskedAttention(Q,K,V) = softmax(QK
T +M√

dk

)V (3.7)

where the maskM is a matrix of zeros and −∞.
The transformer was trained using supervised data: for example, for translation, each source

sentence is paired with a target sentence that the model aims to generate. It is therefore clear what
the output should be, and the trained model is specific to this task. By contrast, the task of language
modelling as introduced above is self-supervised: there is no clear target, rather, the aim of the
learning process is to capture the underlying structures of the training data (i.e., a corpus). This
is inherently more challenging but also brings greater opportunities: a self-supervised language
model will be more versatile and could be adapted to handle different tasks.

Seeking to build a language model based on the transformer architecture, but with only a de-
coder, which would thus be suited for self-supervised learning of text generation, Radford et al.
(2018) present the Generative Pre-trained Transformer (GPT), a 117M parameter model, with lim-
ited success. Taking a different approach, Devlin et al. (2019) propose to train an encoder-only
model using masked language modelling (MLM). The training idea is to pass the input sequence
to the model but choose a subset of positions to be masked. The model is trained on the task of
reconstructing these tokens from the surrounding context, thereby forcing the contextualised rep-
resentations to be useful. For example, in Figure 3.4, in the sentence “how are you doing today?”,
“you” has been replaced with a [MASK] token, and the model is predicting the word that has been
replaced.

With the comparatively limited resources available at the time, this made more efficient use
of both training data and computational resources and led to rich contextual representations of
tokens. They also introduced the notion of pre-training (training the general model purely onMLM),
and fine-tuning (using supervised data and continuing to train the model, so that the knowledge
acquired in pre-training can enable better performance on some down-stream task).

3.2.2 Early PLMs: Masked Language Modelling

This idea was used in several pre-trained language models. Below, we briefly summarise those that
are used in this work, and provide an overview in Table 3.1.
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BERT Masked Language Model

how are [MASK] doing today [SEP][CLS]

how are doing today [SEP][CLS]

you , they, your, …

Figure 3.4: A BERT masked language model learning to predict the correct token for “you” in the
sentence ”how are you doing today”.

Model Obj. Data Data Size Sizes Chap.

BERT (Devlin et al.,
2019)

MLM, NSP Books, Wikipedia 3.3B/16GB 110M, 340M 5, 6

RoBERTa (Liu
et al., 2019)

MLM Books, Wikipedia,
Additional

160GB 125M, 355M 5, 6

DeBERTa (He
et al., 2021)

MLM Books, Wikipedia,
Openwebtext,
Reddit, Stories

78GB 150M, 400M,
750M, 900M, 1.5B

5, 6

Table 3.1: The PLMs with MLM used in this work. Obj. stands for training objective, Chap. stands
for chapter
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3.2.2.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019) is a trans-
former encoder pre-trained with the MLM objective, with several additions. Tokens at masked
positions are replaced with a [MASK] token only with an 80% chance, for the other 20%, they are
either replaced with a random token, or left intact. BERT uses a next sentence prediction (NSP)
objective in addition to MLM, for which the model is given the concatenation of two input sen-
tences and has to classify if they originally appeared together or have been randomly combined. To
enable to model to differentiate between the same words at different position, sinusoidal position
embeddings are added to the input embeddings after the embedding layer.

BERT is trained on the BookCorpus (Zhu et al., 2015, 16GB) and an English Wikipedia dump.
Two variants of BERT are released, BERT-base (110M parameters) and BERT-large (340M parame-
ters).

3.2.2.2 RoBERTa

RoBERTa (A Robustly optimized BERT Pretraining Approach, Liu et al., 2019) uses the same archi-
tecture as BERT, but makes several improvements. The model is trained for longer and with bigger
batches over more data in longer sequences, and the NSP objective is removed, as it was found to
have little influence on performance. While BERT creates static masks for each sentence during
the training data preparation, RoBERTa dynamically creates a new mask every time a sentence is
processed. The vocabulary for RoBERTa is larger, and tokenisation is performed with byte- rather
than character-level BPE (Sennrich et al., 2016). RoBERTa is trained on a 160GB mix of the Book-
Corpus (16GB), CC-News, the English portion of the CommonCrawl News (76GB), OpenWebText
(Gokaslan and Cohen, 2019, 38GB), and Stories (Trinh and Le, 2019, 31 GB). Two model sizes are
released: RoBERTA-base (125M parameters) and RoBERTa-large (355M parameters).

3.2.2.3 DeBERTa

DeBERTa (Decoding-enhanced BERT with disentangled attention, He et al., 2021) is a BERT-style
model released by Microsoft that introduces two novel techniques. First, DeBERTa uses two sep-
arate vectors for the input and the contextual embedding, for which separate representations and
attention matrices are computed throughout the model. Second, an enhanced mask decoder is then
used to incorporate absolute positions into the decoding layer. It is trained on a similar mix of data
as RoBERTa: Wikipedia1 (12GB), BookCorpus (Zhu et al., 2015, 6GB), OpenWebText(Gokaslan and
Cohen, 2019, 38GB), and Stories (Trinh and Le, 2019, 31 GB). The total data size after deduplication
is 78G, much smaller than for RoBERTa. Two models are released: base (150M parameters) and
large (400M parameters), xlarge (750M) (and in DeBERTa version 2, two even larger models are
included: another xlarge (900M parameters) and xxlarge (1.5B parameters).

3.2.3 Large-Scale Autoregressive PLMs: Large Language
Models

As the quality of encoder-only models was levelling off and more computational resources, data
sources and optimisation techniques became available, the idea of decoder-only transformer mod-
els trained on autoregressive language modelling was revisited by Radford et al. (2019), with con-
siderably greater success thanks to the larger scale of both model size and data. Models with this
architecture have been demonstrated to scale effectively and are used in a new group of language
models which are much larger than those based on MLM, and are therefore commonly called large
language models (LLMs). The focus has therefore shifted from the paradigm of pre-training contex-
tual representations and making them usable in downstream tasks by finetuning, to training models
to generate text, and rephrasing the same downstream tasks into text generation tasks.

A compact summary of some key characteristics of the decoder-only models used in this work
can be found in Table 3.2.

1https://dumps.wikimedia.org/enwiki/

https://dumps.wikimedia.org/enwiki/
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Text Embedding
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Figure 3.5: A decoder-only transformer architecture

Model IT Data Tokens Sizes Chap.

GPT-3.5 (Brown et al., 2020) + unknown unknown unknown 10, 9

GPT-4 (OpenAI et al., 2024) + unknown unknown unknown 11,9

GPT-J (Wang and
Komatsuzaki, 2021)

− Pile 800GB 6B 11

OPT (Zhang et al., 2022) − Books, Pile, Reddit 180B 125M, 350M, 1.3B, 2.7B,
6.7B, 13B, 30B, 66B, 175B

6

Llama2 (Touvron et al.,
2023b)

± unknown 2T 7B, 13B, 70B 9

Mistral (Jiang et al., 2023) ± unknown unknown 7B 9

Mixtral (Jiang et al., 2024) ± unknown unknown 8x7B 9

Gemini (Team et al., 2024) + unkown unknown 1.8B, 3.25BM (Nano),
unknown (Pro and Ultra)

9

Table 3.2: Large Language Models used in this work. IT stands for Instruction Tuning. ± indicates
that versions with and without Instruction Tuning are available.
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3.2.3.1 Instruction Tuning

Autoregressive Language Models (ALMs) are pre-trained on the task of generating a plausible con-
tinuation for a given input text, which stands in contrast to the way that users intend to interact
with it. For example, given the question “Can you please give me a recipe for Carbonara?”, an ALM
might simply continue with ”I had a recipe myself but I lost it”, or something similar that would have
been a plausible next sentence in the training data. To counteract this issue, Instruction Tuning (IT)
was introduced to specifically change the ways that users are able to interact with ALMs. IT simply
means fine-tuning the model on a dataset that contains pairs of instructions and correct replies, for
example “Q: Can you please give me a recipe for Carbonara? A: Sure! You will need two egg yolks
...”. This is not expected to fundamentally change the representations and model weights learned
in pre-training, but rather to make the learned knowledge more accessible, in teaching the model
how to interact with a user.

From the perspective of probing and evaluating LLMs, this opens up a new perspective. First,
it enables us to ask the model specific questions about sentences, or the world, such as “Is some-
thing physically moving in this sentence?”, and second, it creates the exciting possibility of re-using
instructions made for humans from psycholinguistic experiments and comparing the model’s be-
haviour to that of humans.

Some of the LLMs described in the following are only available as instruction-tuned versions
(GPT-3.5, GPT-4, Gemini), while others are not instruction-tuned (GPT-J, OPT), or available in both
variants, which enables us to make statements about the effect of IT (Llama2, Mistral, Mixtral).

3.2.3.2 GPT

The Generative Pretrained Transformer (GPT) family of decoder-only transforme-based models by
OpenAI.

GPT (Radford et al., 2018) had 117M parameters and was trained on the BookCorpus (Zhu et al.,
2015, 16GB). GPT-2 (Radford et al., 2019) was trained on OpenWebText (Gokaslan and Cohen,
2019, 38GB), which excludes all Wikipedia documents. It was available in the sizes of 124M, 335M,
774M, and 1.5B parameters. GPT-3 (Brown et al., 2020) had 175B parameters and was trained on a
filtered CommonCrawl (410B tokens), WebText2 (19B tokens), Books1 and 2 (12B and 55B tokens),
and Wikipedia (3B tokens).

Less information is available about the commercial models GPT-3.5 and GPT-4 used in this work.
The parameters and training data of the models are unknown, and the models can only be accessed
through an API or the OpenAI website.2

3.2.3.3 GPT-J

GPT-J (Wang and Komatsuzaki, 2021) is a 6B parameter open-source model with the GPT archi-
tecture. Crucially, it is the only autoregressive LM covered here for which the training data, the
Pile (Gao et al., 2020), is fully available. This makes it uniquely suited to analyses comparing the
training data statistics with the model behaviour, as we demonstrate in Chapter 11.

3.2.3.4 OPT

OPT (Open Pre-trained Transformer) (Zhang et al., 2022) is a set of LLMs in various sizes released
by Meta, mirrorring the architecture of GPT. It was trained on a mix of the BookCorpus (Zhu et al.,
2015, 16GB), Stories (Trinh and Le, 2019, 31 GB), and CCNews from the training corpus of RoBERTa
(Liu et al., 2019), as well as a subset of the Pile (Gao et al., 2020), and the PushShift.io Reddit corpus
(Baumgartner et al., 2020), with a total dataset size of 180B tokens. The available model sizes are
125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, 66B, and 175B.

3.2.3.5 Llama2

Llama2 (Touvron et al., 2023b) is a family of open LLMs in sizes 7B, 13B, and 70B released by Meta.
Along with every model, an instruction-tuned “chat” model is also released. While the previous

2openai.com

openai.com
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version, Llama (Touvron et al., 2023a), provided details about the source of the training data, for
Llama2 it is only known that the models were trained on 2T tokens.

For reference, Llama was trained on 1T or 1.4T tokens depending on the size of the model,
with a make up of 67% English CommonCrawl, 15% C4, 4.5% each of Github, Wikipedia, and
Gutenberg/Books3, 2.5% arXiv and 2% stackexchange.

3.2.3.6 Mistral and Mixtral

Mistral 7B (Jiang et al., 2023) is an open LLM released by MistralAI. It builds on the transformer
architecture and adds sliding window attention, rolling buffer cache, and pre-fill and chunking. It
is released alongside an instruction-tuned version, but no details about either the pretraining or the
instruction-tuning data are available.

Mixtral 8x7B (Jiang et al., 2024) is a sparse mixture of experts model based on Mistral 7B. Each
layer consists of 8 feedforward blocks, with a router module that chooses 2 out of the 8 blocks
of parameters to process the inputs, and add their outputs together. Similarly to Mistral 7B, an
instruction-tuned version is also released, trained on an instruction dataset with supervised fine-
tuning and on a paired feedback dataset with Direct Preference Optimisation (Rafailov et al., 2023).
No further details about the training data are provided.

3.2.3.7 Gemini

The Gemini (Team et al., 2024) family of models, released by Google, are a set of multimodal models,
with the largest model, Ultra, reportedly competitive with GPT-4. The number of parameters, except
for the smallest model, and the training data, are unknown. Its advantage over the GPT models, for
an NLP practictioner, is that the API for Gemini Pro, the mid-size model, is free up to a certain daily
quota, as of the time of writing.

3.3 Evaluation

Amajor theme of this thesis is that we do not create any new LLMs, but we are interested in studying
how they work internally, for the (above described) purposes of learning more about language, and
also trying to improve the models.

3.3.1 Metrics

In this section, we describe some of the metrics used in the following chapters to evaluate models,
probes, and pipelines.

3.3.1.1 Accuracy

Take a classification task with two classes, P (the positive class) and N (the negative class). Let
TP , the true positives, be the number of correctly classified positive instances and TN , the true
negatives, be the number of correctly classified negative instances. The classification errors are
divided into two categories: FP , the false positives, which are the number of negative instances
that have been falsely classified as positive, and FN , the false negatives, which are the number of
positive instances that have been falsely classified as negative.

The simplest way to evaluate the classifier is then to compute the accuracy, the ratio of correctly
classified samples (TP and TN ) to the entire set:

A = TP + TN

TP + TN + FP + FN
(3.8)

However, this does not give insights into the particular ways in which a classifier might be failing,
and it is also misleading for imbalanced datasets: if the dataset is sufficiently imbalanced, a high
accuracy could be achieved by classifying all instances as either positive or negative.
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3.3.1.2 Precision, Recall, and F-measure

We therefore utilise a set of three metrics to assess classifiers: Precision, Recall, and F-measure.
Precision addresses the question: out of the instances that were classified as positive, which were
actually correct? Formally,

Precision = TP

TP + FP
(3.9)

Recall addresses the question: out of the actual positive instances, which were found? Formally,

Recall = TP

TP + FN
(3.10)

An overall measure for the performance of the classifier is given by the F-measure or F1-score, the
harmonic mean of precision and recall. Formally,

F1 = 2
Recall−1 + Precision−1 = 2 Precision ∗ Recall

Precision + Recall
= 2TP

2TP + FP + FN
(3.11)

3.3.1.3 Top-n-accuracy

When evaluating the prediction of a model against a ranked list of gold labels, for example, a fre-
quency distribution of human answers, we use Top-n-accuracy, also later referred to as accuracy@k.
Top-n-Accuracy is defined as the percentage of model answers that are contained in the list of the
top n gold labels.

3.3.1.4 Perplexity

To evaluate how well an ALM has learned to model a sentence, we measure its probability to predict
the sentence word for word, which can also be considered the probability that the model assigns
to the sentence. The commonly used metric is perplexity, which is the inverse probability of the
sentence. Formally, letm be a language model and s = s1, ..., sn a sequence of words, the perplexity
of m on s is defined as

PPL(m, s1, ..., sn) = 2− 1
n log2 m(s1,...,sn) (3.12)

3.3.1.5 Pearson Correlation Coefficient

The Pearson Correlation Coefficient is used to measure the correlation between two variables. Let
X and Y be the variables, the correlation is then defined as

ρX,Y = cov(X, Y )
σxσY

(3.13)

where cov is the covariance and σ is the standard deviation of each variable. At ρX,Y = 1, the
variables have a strong positive relationship, at ρX,Y = 0, they are independent, and at ρX,Y = −1,
they have a strong negative relationship.

3.3.1.6 Entropy

The entropy of a random variable is the average level of uncertainty attached to its possible out-
comes. Given a discrete random variable X, which takes values in X and is distributed according
to p : X → [0, 1], the entropy is defined as

H(X) := −
∑
x∈X

p(x) log p(x) (3.14)

3.3.2 Interpretability of LLMs

Some of the work in this thesis is concerned with making statements about the internal mechanisms
of LLMs. By default, they are opaque: the models are trained on raw text in an unsupervised fashion,
and while we can observe their output and measure their performance on downstream tasks, we
cannot without further effort determine what exactly they have learned, how they are achieving
their output, and where they might have undiscovered flaws. The field of Interpretability (Belinkov
et al., 2020) aims to change this with several methods.
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3.3.2.1 Probing classifiers

The idea of a probing classifier is the following. First, we generate representations from our LLM for
a given input sentence or set of sentences. We then train a probing classifier on the representations
to predict some property, for example word class. If the classifier is able to learn the property, we
can infer that the model has learned information relevant to it. The crucial point here is that the
probing classifier is a small model, e.g. a perceptron (McCulloch and Pitts, 1943), and the task
is a complex one, e.g. example part-of-speech tagging. We therefore assume that if the probing
classifier is able to learn the task, it has succeeded not because of its own representational capacity,
but because it has learned to extract the necessary information out of the LLM representations,
where it was already present. This method of probing LLMs was widespread for PLMs trained with
MLM. We use probing classifiers in Chapters 5, 6 and 7.

3.3.2.2 Behavioural Testing

In comparison, autoregressive models are at a disadvantage when it comes to probing classifiers.
Their left-to-right processing means that contextual embeddings of any given word will only encode
information learned from words to its left. In addition, the rise of commercial models, which cannot
be downloaded and for which only generated text, not the hidden states, are made available through
an API (Team et al., 2024; OpenAI, 2022), has further constrained the applicability of methods that
rely on contextual embeddings.

An alternative to this is behavioural testing with setups taken from psycholinguistics (Ettinger,
2020). This means using tests that have been designed to assess humans’ implicit knowledge of lan-
guage, such as “the restaurant owner forgot which customer the waitress had __”, where either the
human or the language model can now complete the sentence by giving the next word. For masked
language models, the blank could even be in the middle of the sentence, and would be replaced
with a masked token to be predicted, e.g. “The tea [MASK] nothing”. This sort of setup is difficult
for an autoregressive language model, but can be circumvented with instruction-tuned models (cf.
3.2.3.1). As models can now be expected to be able to respond to questions and instructions, it
becomes possible to support implicit prompting with instructions, e.g. “Fill in the blank: They wug
all the time. In fact, they __ just yesterday.”

While this alsomakes explicit evaluation possible, for example by simply asking themodel “What
would be the past tense of the verb ‘to wug’?”, it has the disadvantage that we are relying on the
model’s understanding of the categories of “past tense” and “verb’ as defined by standard linguistic
literature, which is not necessarily identical with its ability to use them correctly in generating a
sentence or solve a task. It also introduces another confounding factor as, unlike humans, models
are known to change their answer significantly depending on the prompt phrasing (Ishibashi et al.,
2023; Lu et al., 2022; Zhou et al., 2023; Zhao et al., 2021). We use behavioural testing in Chapters
5, 6, 7, 9, 10, and 11.

3.4 Summary

We have introduced the technical background in NLP for this work. We have first introduced the
Universal Dependencies treebanks. We then explained the transformer architecture, and gave de-
tails on all the specific architectures and models used in our work. Finally, we provided an overview
of the evaluation metrics and paradigms that were used. We now move on to the practical work.
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Abstract

Construction Grammar (CxG) has recently
been used as the basis for probing studies that
have investigated the performance of large pre-
trained language models (PLMs) with respect
to the structure and meaning of constructions.
In this position paper, we make suggestions for
the continuation and augmentation of this line
of research. We look at probing methodology
that was not designed with CxG in mind, as
well as probing methodology that was designed
for specific constructions. We analyse selected
previous work in detail, and provide our view
of the most important challenges and research
questions that this promising new field faces.

1 Introduction

In this paper, we will analyse existing literature
investigating how well constructions and construc-
tional information are represented in pretrained
language models (PLMs). We provide context to
support the argument that this is one of the most im-
portant challenges facing Language Models (LMs)
today, and provide a summary of the current open
research questions and how they might be tackled.

Our paper is organised as follows: In Section 2,
we explain why LMs must understand construc-
tions to be good models of language and perform
effectively on downstream tasks. In Section 3, we
analyse the existing literature on non-CxG-focused
probing to determine its limitations in analysing
constructional knowledge. In Section 4, we sum-
marise the existing probing work that is specific to
CxG and analyse its data, methodology, and find-
ings. In Section 5, we argue that the development
of an appropriate probing methodology for con-
structions remains an open and important research
question (§5.1), and highlight the need for data col-
lection and annotation for facilitating this area of
research (§5.2). Finally, in Section 5.4, we sug-
gest next steps that LMs might take if CxG probing
reveals fundamental problems.

the funnier the example

fixed the
comparative

phrase
expressions

being correlated

the more citations the paper will have

Figure 1: An example illustrating the complexity of
a construction. It is an instance of the English Com-
parative Correlative (CC), with its syntactic features
highlighted above the text and paraphrases illustrating
its meaning below.

1.1 Construction Grammar

Although there are many varieties of CxG, they
share the assumption that the basic building block
of language structure is a pair of form and meaning.
The form can be anything from a simple morpheme
to the types of feature structures seen in Sign-
Based Construction Grammar (SBCG) (Boas and
Sag, 2012), which can be constellations of inflec-
tional features, morphemes, categories like parts
of speech, and syntactic mechanisms. Construc-
tions with many detailed parts in SBCG include
comparative constructions in sentences such as The
desk is ten inches taller than the shelf (Hasegawa
et al., 2010) and the causal excess construction
as in It was so big that it fell over (Kay and Sag,
2012). Most importantly, the form or syntax of
a sentence is not reduced to an idealized binary-
branching tree or a set of hierarchically arranged
pairs of head and dependants. For the purposes of
this paper, we take the meaning of a construction to
be a combination of Frame Semantics (Petruck and
de Melo, 2014) and comparative concepts in se-
mantics and information packaging from language
typology (Croft, 2022). Because CxG does not
have a clear line separating the lexicon and the
grammar, the same kinds of meanings that can be
associated with words can be associated with more
complex structures. Table 1.1, adapted from Gold-
berg (2013) illustrates constructions at different
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Construction Name Construction Template Examples

Word Banana
Word (partially filled) pre-N, V-ing Pretransition, Working
Idiom (filled) Give the devil his due
Idiom (partially filled) Jog <someone’s> memory She jogged his memory
Idiom (minimally filled) The X-er the Y-er The more I think about it, the less I know
Ditransitive construction (unfilled) Subj V Obj1 Obj2 He baked her a muffin
Passive (unfilled) Subj aux VPpp (PP by) The armadillo was hit by a car

Table 1: Standard examples of constructions at various levels, adapted from Goldberg (2013)

levels of complexity that contain different numbers
of fixed lexemes and open slots.

In this paper, we ask whether PLMs model con-
structions as gestalts in both form and meaning.
For example, we want to know whether a PLM
represents a construction like the Comparative Cor-
relative (The more papers we write, the more fun
we have) as more than the sum of its individual
phrases and dependencies. We also want to know
whether the PLM encodes knowledge of the open
slots in the construction and what can fill them. In
terms of meaning, we want to find out whether the
sentence’s position in embedding space indicates
that it has something to do with the correlation
between the increase in writing more papers and
having more fun. We would like to know whether
PLMs represent the meaning of a correlative sen-
tence as close to the meaning of other constructions
in English and other languages that have different
forms but similar meanings (e.g., When we write
more papers, we have more fun).

1.2 Language Modelling

This paper is partially concerned with the funda-
mental questions of language modelling: what is
its objective, and what is required of a full lan-
guage model? We see the objective of language
modelling very pragmatically: we aim to build a
system that can predict the words in a sentence
as well as possible, and therefore our aim in this
paper is to point out where this requires knowl-
edge of constructions. We do not take the objective
of language modelling to mean that LMs should
necessarily achieve their goal the same way that
humans do. Therefore, we do not argue that lan-
guage models need to “think” in terms of construc-
tions because humans do. Rather, we consider con-
structions an inherent property of human language,
which makes it necessary for language models to
understand them.

2 Motivation

There has recently been growing interest in devel-
oping probing approaches for PLMs based on CxG.
We see these approaches as coming from two differ-
ent motivational standpoints, summarised below.

2.1 Constructions are Essential for Language
Modelling

According to CxG, meaning is encoded in abstract
constellations of linguistic units of different sizes.
This means that LMs, which the field of NLP is
trying to develop to achieve human language com-
petency, must also be able to assign meaning to
these units to be full LMs. Their ability to assign
meaning to words, or more specifically to subword
units which are sometimes closer to morphemes
than to words, has been shown at length (Wiede-
mann et al., 2019; Reif et al., 2019; Schwartz et al.,
2022). The question therefore remains: are PLMs
able to retrieve and use meanings associated with
patterns involving multiple tokens? We do not take
this to only mean contiguous, fixed expressions, but
much more importantly, non-contiguous patterns
with slots that have varying constraints placed on
them. To imitate and match human language be-
haviour, models of human language need to learn
how to recognise these patterns, retrieve their mean-
ing, apply this meaning to the context, and use them
when producing language. Simply put, there is no
way around learning constructions if LMs are to
advance. In addition, we believe that it is an in-
dependently interesting question whether existing
PLMs pick up on these abstract patterns using the
current architectures and training setups, and if not,
which change in architecture would be necessary
to facilitate this.

2.2 Importance in Downstream Tasks

Regardless of more fundamental questions about
the long-term goals of LMs, we also firmly be-
lieve that probing for CxG is relevant for analysing
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Lang Reference Translation DeepL Translation

German Sie nieste den Schaum von ihrem Cappuccino runter. Sie nieste den Schaum von ihrem Cappuccino.
Italian Lei ha starnutito via la schiuma dal suo cappuccino. Starnutì la schiuma del suo cappuccino.
Turkish Cappuccino’sunun köpüğünü hapşırdı. Hapşırarak cappuccino’sunun köpüğünü uçurdu.

Table 2: Translations of ‘She sneezed the foam off her cappuccino.’ given by DeepL1. Translated back to English
by humans, they all mean “She sneezed her cappuccino’s foam.”, which does not correctly convey the resultative
meaning component, i.e., that the foam is removed from the cappuccino by the sneeze (as opposed to put there).

the challenges that face applied NLP, as evaluated
on downstream tasks, at this point in time. Dis-
cussion is increasingly focusing on diagnosing the
specific scenarios that are challenging for current
models. Srivastava et al. (2022) propose test suites
that are designed to challenge LMs, and many of
them are designed by looking for ‘patterns’ with
a non-obvious, non-literal meaning that is more
than the sum of the involved words. One example
of such a failure can be found in Table 2, where
we provide the DeepL1 translations for the famous
instance of the caused-motion construction (Gold-
berg, 1995, CMC;): ‘She sneezed the foam off her
cappuccino’, where the unusual factor is that sneeze
does not usually take a patient argument or cause
a motion. For translation, this means that it either
has to use the corresponding CMC in the target
language, which might be quite different in form
from the English CMC, or paraphrase in a way that
conveys all meaning facets. For the languages we
tested, DeepL did not achieve this: the resulting
sentence sounds more like the foam was sneezed
onto the cappuccino, or is ambiguous between this
and the correct translation. Interestingly, for Rus-
sian, the motion is conveyed in the translation, but
not the fact that it is caused by a sneeze.

Targeted adversarial test suites like this transla-
tion example can be a useful resource to evaluate
how well LMs perform on constructions, but more
crucially, CxG theory and probing methods will
inform the design of better and more systematic
test suites, which in turn will be used to improve
LMs (§5.4).

2.3 Diversity in Linguistics for NLP
Discussions about PLMs as models of human lan-
guage processing have recently gained popularity.
One forum for such discussions is the Neural Nets
for Cognition Discussion Group at CogSci20222.
The work is still very tentative, and most people
agree that LMs are not ready to be used as models

1https://www.deepl.com/translator
2http://neural-nets-for-cognition.net

of human language processing. However, the dis-
cussion about whether LMs are ready to be used as
cognitive models is dominated by results of prob-
ing studies based on Generative Grammar (GG), or
more specifically Transformational Grammar. This
means that GG is being used as the gold standard
against which the cognitive plausibility of LMs
is evaluated. Studies using GG assume a direct
relationship between the models’ performance on
probing tasks and their linguistic competency. In-
creased performance on GG probing tasks is seen
as a sign it is becoming more reasonable to use
LMs as cognitive models. Another linguistic rea-
son for theoretical diversity is that if we could show
that LMs conform better to CxG rather than GG,
this might open up interesting discussions if they
ever start being used as cognitive models.

3 Established Probing Methods Are Only
Applicable to Some Aspects of CxG

Established probing methods have focused on dif-
ferent aspects of the syntactic and semantic knowl-
edge of PLMs. In this section, we summarise the
major approaches that were not designed specif-
ically with constructions in mind. We show that
although each of these methodologies deals with
some aspect of CxG, and might even fully inves-
tigate some simpler constructions, none of them
fully covers constructional knowledge as defined
in Section 1.1.

3.1 Probing Using Contextual Embeddings

Various probing studies (Garcia et al., 2021;
Chronis and Erk, 2020; Karidi et al., 2021;
Yaghoobzadeh et al., 2019; inter alia) have fo-
cused on analysing contextual embeddings at dif-
ferent layers of PLMs, either of one word or mul-
tiple words, or both. The common thread in their
methodology is that they compare the embeddings
of the same word in different contexts, or of dif-
ferent words in the same context. From a con-
structional point of view, this requires finding two
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constructions with similar surface forms. By com-
paring the embeddings over many sentences, they
are able to investigate if a certain word “knows” in
which construction it is, which provides evidence
for the constructional knowledge of a model.

While this is a useful starting point for probing,
it is also limited. Sentences with similar construc-
tions have to be identified, which is not always
possible. More importantly, this methodology cur-
rently does not tell us anything about if the model
has identified the extent of the construction cor-
rectly, or if the model has correctly learned how
each slot can be filled.

3.2 Probing for Relationships Between Words

Some probing studies investigate whether a PLM
recognises a word pair associated with a meaning-
ful relationship of some kind (Rogers et al. (2020)).
Most prominently, probing based on Universal De-
pendencies (UD; de Marneffe et al. (2021)) by
Hewitt and Manning (2019) attempts to find out
whether there is a high attention weight between
words that are in a dependency relation where one
word is the head and the other word is the depen-
dent. They found different attention heads at dif-
ferent layers that seem to represent specific depen-
dency relations such as a direct object attending to
its verb, a preposition attending to its object, deter-
miners attending to nouns, possessive pronouns at-
tending to head nouns, and passive auxiliary verbs
attending to head verbs.

The methodology as it was used by Hewitt and
Manning (2019) looked at the one token that each
token attended to the most. This made sense for
the Hewitt and Manning (2019) study because they
were probing for UD structures, which consist of
binary relationships of heads and dependents in a
hierarchical structure.

However, the methodology would have to be
extended if we want to find out whether a whole
construction with many construction elements is
represented in the model in something other than
a hierarchical set of binary relations. Most vari-
eties of CxG recognise constructions with more
than two daughters and constructions such as thirty
miles an hour (Fillmore et al., 2012) in which no
element is the head (headless constructions). As a
research question, it is still unclear what patterns
of attention we would consider as evidence that a
model encodes a construction that may have head-
less and non-binary branches. An appropriate prob-

ing methodology has not yet been developed.

3.3 Probing with Minimal Pairs

Some works in probing based on Generative Gram-
mar have relied on finding minimal pairs of sen-
tences that are identical except for one specific
feature that, if changed, will make the sentence
ungrammatical (Wei et al., 2021). For example,
in The teacher who met the students is/*are smart,
a language model that encodes hierarchical struc-
ture would predict is rather than are after students,
whereas a language model that was fooled by ad-
jacency might predict are because it is next to stu-
dents. The sentences can be safely compared, be-
cause only one feature, in this case, the verb be-
ing assigned the same number as the subject, is
changed, and no other information can intervene
or distort the probe. Other studies use a more com-
plicated paradigm of minimal pairs involving filler-
gap constructions, contrasting I know what the lion
attacked (gap) in the desert and I know that the lion
attacked the gazelle (no gap) in the desert.

These probing methodologies have led to pro-
ductive lines of research and have been applied
to complex constructions such as the Comparative
Correlative Construction (Weissweiler et al., 2022).
However, they depend on finding two minimally
different constructions, which differ only in one
way (e.g., singular/plural or gap/no gap), but close
minimal pairs are simply not available for every
construction.

4 CxG-specific Probing

We have argued that the most commonly used and
straightforward probing methods are not sufficient
for fully investigating constructional knowledge in
PLMs. However, there have been several papers
which have created new probing methodologies
specifically for constructions. In this section, we
will analyse them in terms of

• Which constructions were investigated? Does
the paper investigate specific constructions or
does it use a pre-compiled list of constructions
or restrain itself to a subset?

• For the specific instances of their construction
or constructions, what data are they using?
Is it synthetic or collected from a corpus? If
from a corpus, how was it collected?

• What are the key probing ideas?
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Paper Language Source Construction Example

Tayyar Madabushi
et al. (2020)

English From automatically con-
structed list by Dunn
(2017)

Personal Pronoun + didn’t
+ V + how

We didn’t know how or
why.

Li et al. (2022) English Argument Structure Con-
structions according to
Bencini and Goldberg
(2000)

caused-motion Bob cut the bread into the
pan.

Tseng et al. (2022) Chinese From constructions list by
(Zhan, 2017)

a +到 +爆, etc. 好吃到爆了！
It’s so delicious!

Weissweiler et al.
(2022)

English McCawley (1988) Comparative Correlative The bigger, the better.

Table 3: Overview of constructions investigated in CxG-specific probing literature, with examples.

• Does the paper only investigate probing of
(unchanged) pretrained models or is finetun-
ing also considered?

For ease of reference, we provide an overview of
the constructions investigated by each of the papers
in Table 3.

4.1 CxGBERT

Tayyar Madabushi et al. (2020) investigate how
well BERT (Devlin et al., 2019) can classify
whether two sentences contain instances of the
same construction. Their list of constructions is
extracted with a modified version of Dunn (2017)’s
algorithm: they induce a CxG in an unsupervised
fashion over a corpus, using statistical association
measures. Their list of constructions is taken di-
rectly from Dunn (2017), and they find their in-
stances by searching for those constructions’ oc-
currences in WikiText data. This makes the con-
structions possibly problematic, since they have
not been verified by a linguist, which could make
the conclusions drawn later from the results about
BERT’s handling of constructions hard to gener-
alise from.

The key probing question of this paper is: Do
two sentences contain the same construction? This
does not necessarily need to be the most salient or
overarching construction of the sentence, so many
sentences will contain more than one instance of a
construction. Crucially, the paper does not follow
a direct probing approach, but rather finetunes or
even trains BERT on targeted construction data, to
then measure the impact on CoLA. They find that
on average, models trained on sentences that were
sorted into documents based on their constructions
do not reliably perform better than those trained

on original, unsorted data. However, they addition-
ally test BERT Base with no additional pre-training
on the task of predicting whether two sentences
contain instances of the same construction, mea-
suring accuracies of about 85% after 500 training
examples for the probe. These results vary wildly
depending on the frequency of the construction,
which might relate back to the questionable quality
of the automatically identified list of constructions.

4.2 Neural Reality of Argument Structure
Constructions

Li et al. (2022) probe for LMs’ handling of four
argument structure constructions: ditransitive, re-
sultative, caused-motion, and removal. Specifically,
they attempt to adapt the findings of Bencini and
Goldberg (2000), who used a sentence sorting task
to determine whether human participants perceive
the argument structure or the verb as the main fac-
tor in the overall sentence meaning. The paper
aims to recreate this experiment for MiniBERTa
(Warstadt et al., 2020) and RoBERTa (Liu et al.,
2019), by generating sentences artificially and us-
ing agglomerative clustering on the sentence em-
beddings. They find that, similarly to the human
data, which is sorted by the English proficiency of
the participants, PLMs increasingly prefer sorting
by construction as their training data size increases.
Crucially, the sentences constructed for testing had
no lexical overlap, such that this sorting prefer-
ence must be due to an underlying recognition of
a shared pattern between sentences with the same
argument structure. They then conduct a second ex-
periment, in which they insert random verbs, which
are incompatible with one of the constructions, and
then measure the Euclidean distance between this
verb’s contextual embedding and that of a verb that

89

48

48



is prototypical for the corresponding construction.
The probing idea here is that if construction infor-
mation is picked up by the model, the contextual
embedding of the verb should acquire some con-
structional meaning, which would bring it closer to
the corresponding prototypical verb meaning than
to the others. They indeed find that this effect is
significant, for both high and low frequency verbs.

4.3 CxLM
Tseng et al. (2022) study LM predictions for the
slots of various degrees of openness for a corpus of
Chinese constructions. Their original data comes
from a knowledge database of Mandarin Chinese
constructions (Zhan, 2017), which they filter so
that only constructions with a fixed repetitive ele-
ment remain, which are easier to find automatically
in a corpus. They filter this list down further to
constructions which are rated as commonly occur-
ring by annotators, and retrieve instances from a
POS-tagged Taiwanese bulletin board corpus. They
binarise the openness of a given slot in a construc-
tion and mark each word in a construction as either
constant or variable. The key probing idea is then to
examine the conditional probabilities that a model
outputs for each type of slot, with the expectation
that the prediction of variable slot words will be
more difficult than that of constant ones, providing
that the model has acquired some constructional
knowledge. They find that this effect is significant
for two different Chinese BERT-based models, as
negative log-likelihoods are indeed significantly
higher when predicting variable slots compared
to constant ones. Interestingly, the negative log-
likelihood resulting from masking the entire con-
struction lies in the middle of the two extremes.
They further evaluate a BERT-based model which
is finetuned on just predicting the variable slots of
the dataset they compiled and find, unsurprisingly,
that this improves accuracy greatly.

4.4 Probing for the English Comparative
Correlative

Weissweiler et al. (2022) investigate large PLM
performance on the English Comparative Correl-
ative (CC). There are two key probing ideas, cor-
responding to the investigation of the syntactic vs.
the semantic component of CC. They probe for
PLM understanding of CC’s syntax by attempting
to create minimal pairs, which consist of sentences
with instances of the CC and very similar sentences
which do not contain an instance of the CC. They

collect minimal pairs from data by searching for
sentences that fit the general pattern and manually
annotate them as positive and negative instances,
and additionally construct artificial minimal pairs
that turn a CC sentence into a non-CC sentence by
reordering words. They find that a probing classi-
fier can distinguish between the two classes easily,
using mean-pooled contextual PLM embeddings.
They also probe the models’ understanding of the
meaning of CC, for which they choose a usage-
based approach, constructing NLU-style test sen-
tences in which an instance of the construction is
given and has then to be applied in a context. They
find no above-chance performance for any of the
models investigated in this task.

4.5 Summary

In this section, we summarise the findings of previ-
ous work on CxG-based LM probing and analyse
them in terms of the constructions that are inves-
tigated, the data that is used and the probing ap-
proaches that are applied.

4.5.1 Constructions Used
So far, Tseng et al.’s (2022) study is only the work
that chose a set of constructions from a list precom-
piled by linguists. They constrain their selection to
contain only constructions that are easy to search
for in a corpus, and the resource they use only con-
tains constructions with irregular syntax, but it is
nevertheless to be considered a positive point that
they are able to reach a diversity of constructions
investigated. In contrast, both Li et al. (2022) and
Weissweiler et al. (2022) pick one or a few con-
structions manually, both of which are instances
of ‘typical’ constructions frequently discussed in
the linguistic literature. This makes the work more
interesting to linguists and the validity of the con-
structions is beyond doubt. But the downside is
selection bias: the constructions that are frequently
discussed are likely to have strong associated mean-
ings and do not constitute a representative sample
of constructions, from a constructions-all-the-way-
down standpoint (Goldberg, 2006). Lastly, Tay-
yar Madabushi et al. (2020) rely on artificial data
collected by Dunn (2017). We consider this method
to be unreliable, but it has the resulting dataset has
the advantage of variety and large scale.

4.5.2 Data Used
The two main approaches to collecting data are:
(i) patterns: finding instances of the constructions
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using patterns of words / part-of-speech (POS) tags
and (ii) generation of synthetic data. Tseng et al.
(2022), Weissweiler et al. (2022) and Tayyar Mad-
abushi et al. (2020) use patterns while Li et al.
(2022) and a part of Weissweiler et al. (2022) gener-
ate data based on formal grammars. Patterns have
the advantage of natural data and are less prone to
accidental unwanted correlations. But there is a
risk of errors in the data collection process, even
after the set of constructions has to be constrained
to even allow for automatic classification, and the
data may have been post-corrected by manual anno-
tation, which is time-intensive. On the other hand,
generation bears challenges for making the sen-
tences as natural as possible, which can eliminate
confounding factors like lexical overlap.

4.5.3 Probing Approaches Used
Regarding the probing approaches, all previous
work has had its own idea. Weissweiler et al. (2022)
and Li et al. (2022) both operate on the level of sen-
tence embeddings, classifying and clustering them
respectively. Tayyar Madabushi et al. (2020) could
maybe be classified with them, as it employs the
Next Sentence Prediction objective (Devlin et al.,
2019), which operates at the sentence level. On
the other hand, another part of Weissweiler et al.
(2022), as well as Tseng et al. (2022), works at the
level of individual predictions for masked tokens.

The greatest difference between these works is
in their concept of evidence for constructional in-
formation learned by a model, and what this in-
formation even consists of. Tayyar Madabushi
et al. (2020) frame this information as ‘do these
two sentences contain the same construction’, Li
et al. (2022) as ‘is clustering by the construction
preferred over clustering by the verb’, Weissweiler
et al. (2022) as ‘can a small classifier distinguish
this construction from similar-looking sentences’
and ‘can information given in form of a construc-
tion be applied in context’, and Tseng et al. (2022)
as ‘are open slots more difficult to predict than
closed ones’. There is little overlap to be found
between these approaches, so it is difficult to draw
any conclusion from more than one paper at a time.

4.5.4 Overall Findings
We nonetheless make an attempt at summarising
the findings so far about large PLMs’ handling of
constructional information. Regarding the struc-
ture, all findings seem to be consistent with the
idea that models have picked up on the syntactic

structure of constructions and recognised similar-
ities between different instances of the same con-
struction. This appears to hold true even when
tested in different rigorous setups that exclude bias
from overlapping vocabulary or accidentally simi-
lar sentence structure. This has mostly been found
for English, as Tseng et al. (2022) are the only
ones investigating it for a non-English language,
and it remains to be seen if it holds true for lower-
resources languages. Considering the acquisition
of the meaning of constructions, only Weissweiler
et al. (2022) have investigated this, and found no
evidence that models have formed any understand-
ing of it, but were not able to provide conclusive
evidence to the contrary.

5 Research Questions

In this section, we lay out our view of the problems
that are facing the emerging field of CxG-based
probing and the reasons behind these challenges,
and propose avenues for potential future work and
improvement.

5.1 How Can We Develop Probing Methods
that are a Better Fit for CxG?

Going forward, we see two directions. One is
what has already been happening: keep finding new
ways to get around the inherent difficulty of prob-
ing for constructions, which leads us to mostly non-
conclusive and not entirely reliable evidence. The
better, and more difficult way forward, is to adopt
a fundamentally different methodology that would
establish a standard of evidence/generalisability
comparable to GG-based probing.

5.2 Data
Another reason why so little work has been done
in this important field is likely the lack of data. We
view the lack of data as divided into three parts: the
lack of lists of constructions, the lack of meaning
descriptions or even a unified meaning formalism
for them, and the lack of annotated instances in
corpora. We explain different opportunities for the
community to obtain this data going forward below.

5.2.1 Exploiting Non-constructicon Data
Many resources are available, as already stated
above, that have collected or created data with spe-
cific constructions, with the aim of making certain
tasks more challenging to the models in a specific
way. We can analyse those datasets and the results
on them from a CxG point of view, and this can
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add to our pool of knowledge about what models
struggle with regarding constructions. They will
probably not contain any meaning descriptions, but
some, like in Srivastava et al. (2022), are grouped
naturally by construction, and contain instances in
data, which may however be artificial.

5.2.2 Making Constructicons Available
Recently, there has been substantial work by lin-
guists to develop constructicons for different lan-
guages (Lyngfelt et al., 2018; Ziem et al., forth-
coming). Some of these constructicons are readily
available online, e.g., the Brazilian Portuguese one,
but many are either not available or have an in-
terface that makes them difficult to access, e.g.,
because it is in the constructicon’s language. Al-
though to our knowledge, none of these constructi-
cons contain annotated instances in text, and their
meaning representations will be very difficult to
unify, they are an important resource at least for
lists of constructions that can be investigated by
probing methods. They are especially valuable be-
cause of their linguistic diversity (English, German,
Japanese, Swedish, Russian, Brazilian Portuguese),
the lack of which is a major flaw in the current
literature, as we stated above in §4.5.4.

5.2.3 Universal Constructicon
As a more ambitious project than simply making
these constructicons available online, we firmly
believe that the field would benefit greatly from
an attempt to unify their representations and make
them available as a shared resource. Parallels can
be drawn here to UD (de Marneffe et al., 2021), a
project which developed a simplified version of de-
pendency syntax that could be universally applied
and agreed upon, and then provided funding for
the creation of initial resources for a range of lan-
guages, which was later greatly added to by com-
munity work in the different communities. This
was a major factor in the popularisation of depen-
dency syntax within the NLP community, to the
point where it is now almost synonymous with syn-
tax itself, due in no small part to its convenience
for computational research.

As a second step after the creation of a shared
online resource to access the existing constructi-
cons, the community could consider developing
a shared representation to formalise the surface
form of the constructions. A dataset without mean-
ing representation that includes multiple languages
would already be a very useful resource. As a next

step after that, we could think about aligning con-
structions across languages that encode a similar
meaning. The last and most ambitious step would
be unifying and linking the meaning representa-
tions, which would ideally be formalised similarly
to AMR (Banarescu et al., 2013). This would en-
able us to develop automatic test suites that can
really account for the constructions’ meanings and
not just their structure.

5.2.4 Annotated Instances in Text
In any stage of the development of ’construction
lists’ detailed above, it would be necessary to find
instances of the constructions in text. Some of
the probing literature described above have gener-
ated this data artificially, which is time-consuming
and also removes two important advantages of
precompiled construction lists: objectivity and
scale. Therefore, the ideal solution would be to
find resources to have data annotated for construc-
tions. This in itself faces many challenges from
a constructions-all-the-way-down perspective: an-
notating even one sentence completely would be
very time-consuming and require many discussions
about annotation schemata in advance. A more
basic way of acquiring data would be to focus on
a limited set of constructions, which is selected
manually, and to use pre-filtering methods similar
to those employed by Tseng et al. (2022) and Weis-
sweiler et al. (2022), to acquire simply an Inside-
Outside-Beginning marking in sentences that might
be instances of a construction. On the downside,
this is far less linguistically rigorous and also less
timeless than Universal Dependencies, which guar-
antees that any annotated sentence has been fully
annotated and will probably not need to be revised.
Nevertheless, a compromise will need to be found
if annotated data is to be created at all.

5.3 CxG and Transformer Architecture

As more work is done on CxG-based probing, the
field will hopefully soon be able to approach the
questions that we see as crucial. Current probing
techniques have not yet shown that PLMs are able
to adequately handle the meaning of constructions.
Assuming that more comprehensive probing tech-
niques will show conclusively that this is not the
case, is it due to a lack of data? Or is there a funda-
mental incompatibility of current architectures and
the concept of associating a pattern with a mean-
ing? In 5.3.1 and 5.3.2, we elaborate on why the
latter might be the case.
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5.3.1 Non-compositional Meaning
It is possible that constructions are intrinsically
difficult for LMs because they include non-
compositional meaning that is not attached to a
token. It is tempting to compare them to simpler
multiword expressions, which also have meaning
that spans several words and that is only instanti-
ated when they appear together. They also pose a
challenge to LMs because of this, as their concept
of sentence meaning is often too compositional
(Liu and Neubig, 2022). The key difference is in
our view, that for very complex constructions, it
is not clear where in the model we can search or
probe for the additional meaning.

The meaning is not attached to the words instan-
tiating the construction, but rather to the abstract
pattern itself (Croft, 2001), which we can recognise,
connect mentally to previous instances and store
meaning for. Once we have retrieved this mean-
ing, it is potentially applied to the whole sentence,
and can therefore have consequences for the con-
textual meaning of words which were never even
involved in it. In a transformer-based LM, this addi-
tional meaning component cannot be stored in the
static embeddings and contextualised through the
attention layers, because unlike for MWEs, many
constructions have very open slots, so that it is im-
possible to say that their meaning should somehow
be stored with the meaning of the words that may
instantiate them. The only place to store construc-
tional information, therefore, remains the model
weights, which are much harder to investigate or
alter than the model’s input, and further probing
might reveal that they are unable to store it at all.

5.3.2 The Language Modelling Objective
Another possibility for fundamental difficulties
arises from the nature of the training objective.
PLMs are typically trained either on a masked or
causal language modelling objective (Devlin et al.,
2019; Radford et al., 2019). It makes sense that
this incentivises them to learn word meaning in
context, which they will need to predict certain
words, and also relationships between words, such
as simple morphological dependencies. However,
information about the meaning of a construction
might not often be learned in a language modelling
setting, simply because it will not be needed to
make the correct prediction. The meaning of a
construction might not be necessary information
to predict one of its component words correctly
when it is masked, although its structure certainly

will. In contrast, finetuning on a downstream task
that requires assessment of sentence meaning, such
as sentence classification, might enable us to bet-
ter access the constructional meaning contained
in PLMs, because the finetuning objective has re-
quired explicit use of this meaning. On the other
hand, this might also be thought of as a distortion
of the lens, as grammatical knowledge is not typ-
ically evaluated on finetuned models, because the
findings might not generalise well.

5.4 Adapting Pretraining for CxG
If we do decide that there is a fundamental prob-
lem with the current architecture and/or training
regime, the next logical step would be to think
about how to alter these so that acquisition of con-
structional meaning becomes possible. Something
similar has already been considered by Tseng et al.
(2022), where models are finetuned on data that
has been altered to mask entire construction in-
stances at once, and by Tayyar Madabushi et al.
(2020), which collects sentences that contain in-
stances of the same construction into ‘documents’
and pretrains on them. This line of thinking, which
can be summarised as data modification with con-
structional biases, can be further expanded, to give
models some help with associating sentences with
similar constructions with each other.

A far more radical idea would be to think about
injecting something into the architecture that could
represent this additional meaning, in the style of
a position embedding, or a control token (Martin
et al., 2020).

6 Conclusion

We have motivated why probing large PLMs for
CxG is a very important topic both for computa-
tional linguists interested in the ideal LM and for
applied NLP scientists seeking to analyse and im-
prove the current challenges that models are facing.
We then summarised and analysed the existing lit-
erature on this topic. Finally, we have given our
reasons for why CxG probing remains a challenge,
and detailed suggestions for further development in
this field, within the realms of data, methodology,
and fundamental research questions.
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Abstract

Construction Grammar (CxG) is a paradigm
from cognitive linguistics emphasising the con-
nection between syntax and semantics. Rather
than rules that operate on lexical items, it
posits constructions as the central building
blocks of language, i.e., linguistic units of dif-
ferent granularity that combine syntax and se-
mantics. As a first step towards assessing the
compatibility of CxG with the syntactic and
semantic knowledge demonstrated by state-of-
the-art pretrained language models (PLMs), we
present an investigation of their capability to
classify and understand one of the most com-
monly studied constructions, the English com-
parative correlative (CC). We conduct exper-
iments examining the classification accuracy
of a syntactic probe on the one hand and the
models’ behaviour in a semantic application
task on the other, with BERT, RoBERTa, and
DeBERTa as the example PLMs. Our results
show that all three investigated PLMs are able
to recognise the structure of the CC but fail to
use its meaning. While human-like perform-
ance of PLMs on many NLP tasks has been al-
leged, this indicates that PLMs still suffer from
substantial shortcomings in central domains of
linguistic knowledge.

1 Introduction

The sentence “The better your syntax, the better
your semantics.” contains a construction called
the English comparative correlative (CC; Fillmore,
1986). Paraphrased, it could be read as “If your
syntax is better, your semantics will also be better.”
Humans reading this sentence are capable of doing
two things: (i) recognising that two instances of
“the” followed by an adjective/adverb in the compar-
ative as well as a phrase of the given structure (i.e.,
the syntax of the CC) express a specific meaning
(i.e., the semantics of the CC); (ii) understanding
the semantic meaning conveyed by the CC, i.e.,
understanding that in a sentence of the given struc-

ture, the second half is somehow correlated with
the first.

In this paper, we ask the following question: are
pretrained language models (PLMs) able to achieve
these two steps? This question is important for
two reasons. Firstly, we hope that recognising the
CC and understanding its meaning is challenging
for PLMs, helping to set the research agenda for
further improvements. Secondly, the CC is one
of the most commonly studied constructions in
construction grammar (CxG), a usage-based syntax
paradigm from cognitive linguistics, thus providing
an interesting alternative to the currently prevailing
practice of analysing the syntactic capabilities of
PLMs with theories from generative grammar (e.g.,
Marvin and Linzen, 2018).

We divide our investigation into two parts. In
the first part, we examine the CC’s syntactic prop-
erties and how they are represented by PLMs, with
the objective to determine whether PLMs can re-
cognise an instance of the CC. More specifically,
we construct two syntactic probes with different
properties: one is inspired by recent probing meth-
odology (e.g., Belinkov et al., 2017; Conneau et al.,
2018) and draws upon minimal pairs to quantify
the amount of information contained in each PLM
layer; for the other one, we write a context-free
grammar (CFG) to construct approximate minimal
pairs in which only the word order determines if
the sentences are an instance of the CC or not. We
find that starting from the third layer, all invest-
igated PLMs are able to distinguish positive from
negative instances of the CC. However, this method
only covers one specific subtype of comparative
sentences. To cover the full diversity of instances,
we conduct an additional experiment for which we
collect and manually label sentences from C4 (Raf-
fel et al., 2020) that resemble instances of the CC,
resulting in a diverse set of sentences that either
are instances of the CC or resemble them closely
without being instances of the CC. Applying the
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same methodology to this set of sentences, we ob-
serve that all examined PLMs are still able to sep-
arate the examples very well.

In the second part of the paper, we aim to de-
termine if the PLMs are able to understand the
meaning of the CC. We generate test scenarios in
which a statement containing the CC is given to the
PLMs, which they then have to apply in a zero-shot
manner. As this way of testing PLMs is prone to a
variety of biases, we introduce several mitigating
methods in order to determine the full capability
of the PLMs. We find that none of the PLMs we
investigate perform above chance level, indicating
that they are not able to understand and apply the
CC in a measurable way in this context.

We make three main contributions:

– We present the first comprehensive study examin-
ing how well PLMs can recognise and understand
a CxG construction, specifically the English com-
parative correlative.

– We develop a way of testing the PLMs’ recog-
nition of the CC that overcomes the challenge
of probing for linguistic phenomena not lending
themselves to minimal pairs.

– We adapt methods from zero-shot prompting and
calibration to develop a way of testing PLMs for
their understanding of the CC.1

2 Construction Grammar

2.1 Overview

A core assumption of generative grammar (Chom-
sky, 1988), which can be already found in Bloom-
fieldian structural linguistics (Bloomfield, 1933), is
a strict separation of lexicon and grammar: gram-
mar is conceptualized as a set of compositional
and general rules that operate on a list of arbit-
rary and specific lexical items in generating syn-
tactically well-formed sentences. This dichotom-
ous view was increasingly questioned in the 1980s
when several studies drew attention to the fact
that linguistic units larger than lexical items (e.g.,
idioms) can also possess non-compositional mean-
ings (Langacker, 1987; Lakoff, 1987; Fillmore
et al., 1988; Fillmore, 1989). For instance, it is
not clear how the effect of the words “let alone”(as

1In order to foster research at the intersection of NLP
and construction grammar, we will make our data and code
available at https://github.com/LeonieWeissweiler/
ComparativeCorrelative.

in “she doesn’t eat fish, let alone meat”) on both the
syntax and the semantics of the rest of the sentence
could be inferred from general syntactic rules (Fill-
more et al., 1988).. This insight about the ubiquity
of stored form-meaning pairings in language is ad-
opted as the central tenet of grammatical theory by
Construction Grammar (CxG; see Hoffmann and
Trousdale (2013) for a comprehensive overview).
Rather than a system divided into non-overlapping
syntactic rules and lexical items, CxG views lan-
guage as a structured system of constructions with
varying granularities that encapsulate syntactic and
semantic components as single linguistic signs—
ranging from individual morphemes up to phrasal
elements and fixed expressions (Kay and Fillmore,
1999; Goldberg, 1995). In this framework, syn-
tactic rules can be seen as emergent abstractions
over similar stored constructions (Goldberg, 2003,
2006). A different set of stored constructions can
result in different abstractions and thus different
syntactic rules, which allows CxG to naturally ac-
commodate for the dynamic nature of grammar as
evidenced, for instance, by inter-speaker variability
and linguistic change (Hilpert, 2006).

2.2 Construction Grammar and NLP

We see three main motivations for the development
of a first probing approach for CxG:

– We believe that the active discourse in (cognit-
ive) linguistics about the best description of hu-
man language capability can be supported and
enriched through a computational exploration of
a wide array of phenomena and viewpoints. We
think that the probing literature in NLP investig-
ating linguistic phenomena with computational
methods should be diversified to include theor-
ies and problems from all points on the broad
spectrum of linguistic scholarship.

– We hope that the investigation of large PLMs’ ap-
parent capabilities to imitate human language and
the mechanisms responsible for these capabilit-
ies will be enriched by introducing a usage-based
approach to grammar. This is especially import-
ant as some of the discourse in recent years has
focused on the question of whether PLMs are
constructing syntactically acceptable sentences
for the correct reasons and with the correct under-
lying representations (e.g. McCoy et al., 2019).
We would like to suggest that considering altern-
ative theories of grammar, specifically CxG with
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its incorporation of slots in constructions that
may be filled by specific word types and its focus
on learning without an innate, universal grammar,
may be beneficial to understanding the learning
process of PLMs as their capabilities advance
further.

– Many constructions present an interesting chal-
lenge for PLMs. In fact, recent work in challenge
datasets (Ribeiro et al., 2020) has already started
using what could be considered constructions,
in an attempt to identify types of sentences that
models struggle with, and to point out a potential
direction for improvement. One of the central
tenets of CxG is the relation between the form of
a construction and its meaning, or to put it in NLP
terms, a model must learn to infer parts of the
sentence meaning from patterns that are present
in it, as opposed to words. We believe this to be
an interesting challenge for future PLMs.

2.3 The English Comparative Correlative
The English comparative correlative (CC) is one
of the most commonly studied constructions in lin-
guistics, for several reasons. Firstly, it constitutes
a clear example of a linguistic phenomenon that
is challenging to explain in the framework of gen-
erative grammar (Culicover and Jackendoff, 1999;
Abeillé and Borsley, 2008), even though there have
been approaches following that school of thought
(Den Dikken, 2005; Iwasaki and Radford, 2009).
Secondly, it exhibits a range of interesting syntactic
and semantic features, as detailed below. These
reasons, we believe, also make the CC an ideal
testbed for a first study attempting to extend the
current trend of syntax probing for rules by devel-
oping methods for probing according to CxG.

The CC can take many different forms, some of
which are exemplified here:

(1) The more, the merrier.

(2) The longer the bake, the browner the colour.

(3) The more she practiced, the better she became.

Semantically, the CC consists of two clauses, where
the second clause can be seen as the dependent vari-
able for the independent variable specified in the
first one (Goldberg, 2003). It can be seen on the one
hand as a statement of a general cause-and-effect
relationship, as in a general conditional statement
(e.g., (2) could be paraphrased as “If the bake is
longer, the colour will be more brown”), and on the
other as a temporal development in a comparative

sentence (paraphrasing (3) as “She became better
over time, and she practiced more over time”). Us-
age of the CC typically implies both readings at the
same time. Syntactically, the CC is characterised
in both clauses by an instance of “the” followed
by an adverb or an adjective in the comparative,
either with “-er” for some adjectives and adverbs,
or with “more” for others, or special forms like
“better”. Special features of the comparative sen-
tences following this are the optional omission of
the future “will” and of “be”, as in (1). Crucially,
“the” in this construction does not function as a de-
terminer of noun phrases (Goldberg, 2003); rather,
it has a function specific to the CC and has vari-
ously been called a “degree word” (Den Dikken,
2005) or “fixed material” (Hoffmann et al., 2019).

3 Syntax

Our investigation of PLMs’ knowledge of the CC
is split into two parts. First, we probe for the PLMs’
knowledge of the syntactic aspects of the CC, to
determine if they recognise its structure. Then we
devise a test of their understanding of its semantic
aspects by investigating their ability to apply, in a
given context, information conveyed by a CC.

3.1 Probing Methods

As the first half of our analysis of PLMs’ know-
ledge of the CC, we investigate its syntactic aspects.
Translated into probing questions, this means that
we ask: can a PLM recognise an instance of the
CC? Can it distinguish instances of the CC from
similar-looking non-instances? Is it able to go bey-
ond the simple recognition of its fixed parts (“The
COMP-ADJ/ADV, the ...”) and group all ways of com-
pleting the sentences that are instances of the CC
separately from all those that are not? And to frame
all of these questions in a syntactic probing frame-
work: will we be able to recover, using a logistic
regression as the probe, this distinguishing inform-
ation from a PLM’s embeddings?

The established way of testing a PLM for its
syntactic knowledge has in recent years become
minimal pairs (e.g., Warstadt et al., 2020, Dem-
szky et al., 2021). This would mean pairs of sen-
tences which are indistinguishable except for the
fact that one of them is an instance of the CC and
the other is not, allowing us to perfectly separate
a model’s knowledge of the CC from other con-
founding factors. While this is indeed possible for
simpler syntactic phenomena such as verb-noun
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number agreement, there is no obvious way to con-
struct minimal pairs for the CC. We therefore con-
struct minimal pairs in two ways: one with artificial
data based on a context-free grammar (CFG), and
one with sentences extracted from C4.

3.1.1 Synthetic Data
In order to find a pair of sentences that is as close
as possible to a minimal pair, we devise a way to
modify the words following “The X-er” such that
the sentence is no longer an instance of the con-
struction. The pattern for a positive instance is
“The ADV-er the NUM NOUN VERB”, e.g., “The harder
the two cats fight”. To create a negative instance,
we reorder the pattern to “The ADJ-er NUM VERB the
NOUN”, e.g., “The harder two fight the cats”. The
change in role of the numeral from the depend-
ent of a head to a head itself, made possible by
choosing a verb that can be either transitive or in-
transitive, as well as the change from an adverb
to an adjective, allows us to construct a negative
instance that uses the same words as the positive
one, but in a different order.2 In order to generate
a large number of instances, we collect two sets
each of adverbs, numerals, nouns and verbs that
are mutually exclusive between training and test
sets. To investigate if the model is confused by ad-
ditional content in the sentences, we write an CFG
to insert phrases before the start of the first half, in
between the two halves, and after the second half
of the CC (see Appendix, Algorithms 1 and 2 for
the complete CFG).

While this setup is rigourous in the sense
that positive and negative sentences are exactly
matched, it comes with the drawback of only con-
sidering one type of CC. To be able to conduct
a more comprehensive investigation, we adopt a
complementary approach and turn to pairs extrac-
ted from C4 (see Appendix, Tables 6 and 7, for
examples of training and test data). These cover a
broad range of CC patterns, albeit without meeting
the criterion that positive and negative samples are
exactly matched.

3.1.2 Corpus-based Minimal Pairs
While accepting that positive and negative in-
stances extracted from a corpus will automatically
not be minimal and therefore contain some lexical

2Note that an alternative reading of this sentence exists:
the numeral “two” forms the noun phrase by itself and “The
harder” is still interpreted as part of the CC. The sentence is
actually a positive instance on this interpretation. We regard
this reading as very improbable.

overlap and context cues, we attempt to regularise
our retrieved instances as far as possible. To form
a first candidate set, we POS tag C4 using spaCy
(Honnibal and Montani, 2018) and extract all sen-
tences that follow the pattern “The” (DET) followed
by either “more” and an adjective or adverb, or an
adjective or adverb ending in “-er”, and at any point
later in the sentence again the same pattern. We dis-
card examples with adverbs or adjectives that were
falsely labelled as comparative, such as “other”.
We then group these sentences by their sequence of
POS tags, and manually classify the sequences as
either positive or negative instances. We observe
that sentences sharing a POS tag pattern tend to be
either all negative or all positive instances, allowing
us to save annotation time by working at the POS
tag pattern level instead of the sentence level. To
make the final set as diverse as possible, we sort the
patterns randomly and label as many as possible.
In order to further reduce interfering factors in our
probe, we separate the POS tag patterns between
training and test sets (see Appendix, Table 8, for
examples).

3.1.3 The Probe
For both datasets, we investigate the overall ac-
curacy of our probe as well as the impact of sev-
eral factors. The probe consists of training a
simple logistic regression model on top of the
mean-pooled sentence embeddings (Vulić et al.,
2020). To quantify the impact of the length of
the sentence, the start position of the construction,
the position of its second half, and the distance
between them, we construct four different subsets
Dtrain

f and Dtest
f from both the artificially construc-

ted and the corpus-based dataset. For each subset,
we sample sentences such that both the positive and
the negative class is balanced across every value of
the feature within a certain range of values. This
ensures that the probes are unable to exploit correla-
tions between a class and any of the above features.
We create the dataset as follows

Df =
⋃

v∈fv

⋃

l∗∈L
S(D, v, l∗, n∗),

where f is the feature, fv is the set of values for
f , L = {positive, negative} are the labels, and S
is a function that returns n∗ elements from D that
have value v and label l∗.

To make this task more cognitively realistic,
we aim to test if a model is able to general-
ise from shorter sentences, which contain relat-
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Figure 1: Overall accuracy per layer for Dlength. All
shown models are the large model variants. The models
can easily distinguish between positive and negative
examples in at least some of their layers.

ively little additional information besides the parts
relevant to the classification task, to those with
greater potential interference due to more addi-
tional content that is not useful for classification.
Thus, we restrict the training set to samples from
the lowest quartile of each feature so that fv be-
comes [vmin

f , vmin
f + 1

4(v
max
f −vmin

f )] for Dtrain
f and

[vmin
f , vmax

f ] for Dtest
f . We report the test perform-

ance for every value of a given feature separately to
recognise patterns. For the artificial syntax probing,
we generate 1000 data points for each value of each
feature for each training and test for each subset
associated with a feature. For the corpus syntax
probing, we collect 9710 positive and 533 negat-
ive sentences in total, from which we choose 10
training and 5 test sentences for each value of each
feature in a similar manner. To improve compar-
ability and make the experiment computationally
feasible, we test the “large” size of each of our
three models, using the Huggingface Transformers
library (Wolf et al., 2019). Our logistic regression
probes are implemented using Scikitlearn (Pedre-
gosa et al., 2011).

3.2 Probing Results
3.2.1 Artificial Data
As shown in Figure 1, the results of our syntactic
probe indicate that all models can easily distin-
guish between positive and negative examples in
at least some of their layers, independently of any
of the sentence properties that we have investig-
ated. We report full results in the Appendix in
Figures 2, 3, and 4. We find a clear trend that De-
BERTa performs better than RoBERTa, which in
turn performs better than BERT across the board.

As DeBERTa’s performance in all layers is nearly
perfect, we are unable to observe patterns related to
the length of the sentence, the start position of the
CC, the start position of the second half of the CC,
and the distance between them. By contrast, we ob-
serve interesting patterns for BERT and RoBERTa.
For Dlength, and to a lesser degree Ddistance (which
correlates with it), we observe that at first, perform-
ance goes down with increased length as we would
expect—the model struggles to generalise to longer
sentences with more interference since it was only
trained on short ones. However, this trend is re-
versed in the last few layers. We hypothesize this
may be due to an increased focus on semantics in
the last layers (Peters et al., 2018; Tenney et al.,
2019), which could lead to interfering features par-
ticularly in shorter sentences.

3.2.2 Corpus Data
In contrast, the results of our probe on more nat-
ural data from C4 indicate two different trends:
first, as the positive and negative instances are not
identical on a bag-of-word level, performance is
not uniformly at 50% (i.e., chance) level in the first
layers, indicating that the model can exploit lexical
cues to some degree. We observe a similar trend as
with the artificial experiment, which showed that
DeBERTa performs best and BERT worst. The cor-
responding graphs can be found in the Appendix in
Figures 5, 6, and 7.

Generally, this additional corpus-based experi-
ment validates our findings from the experiment
with artificially generated data, as all models per-
form at 80% or better from the middle layers on,
indicating that the models are able to classify in-
stances of the construction even when they are very
diverse and use unseen POS tag patterns.

Comparing the average accuracies on Dlength

for both data sources in Figure 1, we observe that
all models perform better on artificial than on cor-
pus data from the fifth layer on, with the notable
exception of a dip in performance for BERT large
around layer 10.

4 Semantics

4.1 Probing Methods

4.1.1 Usage-based Testing
For the second half of our investigation, we turn
to semantics. In order to determine if a model has
understood the meaning of the CC, i.e., if it has
understood that in any sentence, “the COMP .... the
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No. Purpose Approach Sentence Schema

S1 Base The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.
NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

S2
B

ia
s

Te
st

Recency The ANT1-er you are, the ANT2-er you are. The ADJ1-er you are, the ADJ2-er you are.
NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

S3 Vocabulary The ADJ1-er you are, the ANT2-er you are. The ANT1-er you are, the ADJ2-er you are.
NAME2 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

S4 Name The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.
NAME2 is ADJ1-er than NAME1. Therefore, NAME2 is [MASK] than NAME1.

S5

C
al

ib
ra

tio
n

Short NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

S6 Name The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.
NAME1 is ADJ1-er than NAME2. Therefore, NAME3 is [MASK] than NAME4.

S7 Adjective The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.
NAME1 is ADJ3-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

Table 1: Overview of the schemata of all test scenarios used for semantic probing

COMP” implies a correlation between the two halves,
we adopt a usage-based approach and ask: can the
model, based on the meaning conveyed by the CC,
draw a correct inference in a specific scenario? For
this, we construct general test instances of the CC
that consist of a desired update of the belief state of
the model about the world, which we then expect
it to be able to apply. More concretely, we gen-
erate sentences of the form “The ADJ1-er you are,
the ADJ2-er you are.”, while picking adjectives at
random. To this general statement, we then add a
specific scenario with two random names: “NAME1
is ADJ1-er than NAME2.” and ask the model to draw
an inference from it by predicting a token at the
masked position in the following sentence: “There-
fore, NAME1 is [MASK] than NAME2.” If the model
has understood the meaning conveyed by the CC
and is able to use it in predicting the mask, we ex-
pect the probability of ADJ2 to be high. To provide
the model with an alternative, we add a second
sentence, another instance of the CC, using the
antonyms of the two adjectives. This sentence is
carefully chosen to have no impact on the best filler
for [MASK], but also for other reasons explained
in Section 4.1.2. The full test context is shown in
Table 1, S1. This enables us to compare the prob-
ability of ADJ2 for the mask token directly with a
plausible alternative, ANT2. One of our test sen-
tences might be “The stronger you are, the faster
you are. The weaker you are, the slower you are.
Terry is stronger than John. Therefore, Terry will
be [MASK] than John”, where we compare the prob-
abilities of “faster” and “slower”.

Note that success in our experiment does not

necessarily indicate that the model has fully un-
derstood the meaning of the CC. The experiment
can only provide a lower bound for the underlying
understanding of any model. However, we believe
that our task is not unreasonable for a masked lan-
guage model in a zero-shot setting. It is compar-
able in difficulty and non-reliance on world know-
ledge to the NLU tasks presented in LAMBADA
(Paperno et al., 2016), on which GPT-2 (117M
to 1.5B parameters) has achieved high zero-shot
accuracy (Radford et al., Table 3). While we invest-
igate masked language models and not GPT-2, our
largest models are comparable in size to the sizes
of GPT-2 that were used (340M for BERTL, 355M
for RoBERTaL, and 1.5B parameters for DeBERTa-
XXLL), and we believe that this part of our task is
achievable to some degree.

4.1.2 Biases
In this setup, we hypothesise several biases that
models could exhibit and might cloud our assess-
ment of its understanding of the CC, and devise a
way to test their impact.

Firstly, we expect that models might prefer to re-
peat the adjective that is closest to the mask token.
This has recently been documented for prompt-
based experiments (Zhao et al., 2021). Here, this
adjective is ANT2, the wrong answer. To test the in-
fluence this has on the prediction probabilities, we
construct an alternative version of our test context
in which we flip the first two sentences so that the
correct answer is now more recent. The result can
be found in Table 1, S2.

Secondly, we expect that models might assign
higher probabilities to some adjectives, purely
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based on their frequency in the pretraining corpus,
as for example observed by Holtzman et al. (2021).
To test this, we construct a version of the test con-
text in which ADJ2/ANT2 are swapped, which means
that we can keep both the overall words the same
as well as the position of the correct answer, while
changing which adjective it is. The sentence is now
S3 in Table 1. If there is a large difference between
the prediction probabilities for the two different
versions, that this means that a model’s prediction
is influenced by the lexical identity of the adjective
in question.

Lastly, a model might have learned to associ-
ate adjectives with names in pretraining, so we
construct a third version, in which we swap the
names. This is S4 in Table 1. If any prior associ-
ation between names and adjectives influences the
prediction, we expect the scores between S4 and
S1 to differ.

4.1.3 Calibration

After quantifying the biases that may prevent us
from seeing a model’s true capability in understand-
ing the CC, we aim to develop methods to mitigate
it. We turn to calibration, which has recently been
used in probing with few-shot examples by Zhao
et al. (2021). The aim of calibration is to improve
the performance of a model on a classification task,
by first assessing the prior probability of a label
(i.e., its probability if no context is given), and
then dividing the probability predicted in the task
context by this prior; this gives us the conditional
probability of a label given the context, represent-
ing the true knowledge of the model about this task.
In adapting calibration, we want to give a model
every possible opportunity to do well so that we do
not underestimate its underlying comprehension.

We therefore develop three different methods
of removing the important information from the
context in such a way that we can use the prediction
probabilities of the two adjectives in these contexts
for calibration. The simplest way of doing this is to
remove both instances of the CC, resulting in S5 in
Table 1. If we want to keep the CC in the context,
the two options to remove any information are to
replace either the names or the adjectives with new
names/adjectives. We therefore construct two more
instances for calibration: S6 and S7 in Table 1.

For each calibration method, we collect five ex-
amples with different adjectives or names. For a
given base sample Sb, we calculate Pc, the calib-

Accuracy Decision Flip

S1 S2 S2 S3 S4

BERTB 37.65 64.64 26.98 75.69 02.70
BERTL 36.85 67.21 30.44 73.31 02.32
RoBERTaB 61.60 52.84 09.91 76.18 02.76
RoBERTaL 55.71 68.00 14.33 79.47 04.33
DeBERTaB 49.72 49.80 00.91 99.66 01.07
DeBERTaL 50.88 51.40 07.04 94.83 02.23
DeBERTaXL 47.73 49.33 05.46 89.28 02.51
DeBERTaXXL 47.34 48.72 03.59 82.09 01.13

Table 2: Selected accuracies and results for the semantic
probe. We report the average accuracy on the more dif-
ficult sentences in terms of recency bias (S1) and the
easier ones (S2), as well as the percentage of decisions
flipped by changing from the base S1 to the sentences
testing for recency bias (S2), vocabulary bias (S3), and
name bias (S4). RoBERTa and DeBERTa perform close
to chance on S1 and S2 accuracy, indicating that they
do not understand the meaning of CC. BERT’s perform-
ance is strongly influenced by biases (recency, lexical
identity), also indicating that it has very limited if any
understanding of CC.

rated predictions, as follows:

Pc(a|Sb) = P (a|Sb)/[
i=5∑

i=1

(P (a|Ci)/5)]

where Ci is the i-th example of a given calibration
technique, a is the list of adjectives tested for the
masked position, and the division is applied ele-
mentwise. We collect a list of 20 adjectives and
their antonyms manually from the vocabulary of
the RoBERTa tokenizer and 33 common names
and generate 144,800 sentences from them. We
test BERT (Devlin et al., 2019) in the sizes base
and large, RoBERTa (Liu et al., 2019) in the sizes
base and large, and DeBERTa (He et al., 2020) in
the sizes base, large, xlarge and xxlarge.

4.2 Results

In Table 2, we report the accuracy for all examined
models. Out of the three variations to test biases,
we report accuracy only for the sentence testing the
recency bias as we expect this bias to occur system-
atically across all sentences: if it is a large effect, it
will always lead to the sentence where the correct
answer is the more recent one being favoured. To
assess the influence of each bias beyond accuracy,
we report as decision flip the percentage of sen-
tences for which the decision (i.e., if the correct
adjective had a higher probability than the incorrect
one) was changed when considering the alternative
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sentence that was constructed to test for bias. We
report full results in Appendix, Table 4.

Looking at the accuracies, we see that
RoBERTa’s and DeBERTa’s scores are close to
50% (i.e., chance) accuracy for both S1 and S2.
BERT models differ considerably as they seem to
suffer from bias related to the order of the two
CCs, but we can see that the average between them
is also very close to chance. When we further
look at the decision flips for each of the biases,
we find that there is next to no bias related to the
choice of names (S4). However, we can see a
large bias related to both the recency of the cor-
rect answer (S2) and the choice of adjectives (S3).
The recency bias is strongest in the BERT models,
which also accounts for the difference in accuracies.
For RoBERTa and DeBERTa models, the recency
bias is small, but clearly present. In contrast, they
exhibit far greater bias towards the choice of ad-
jective, even going as far as 99.66% of decisions
flipped by changing the adjective for DeBERTa
base. This suggests that these models’ decisions
about which adjective to assign a higher probability
is almost completely influenced by the choice of
adjective, not the presence of the CC. Overall, we
conclude that without calibration, all models seem
to be highly susceptible to different combinations
of bias, which completely obfuscate any underly-
ing knowledge of the CC, leading to an accuracy at
chance level across the board.

We therefore turn to our calibration methods,
evaluating them first on their influence on the de-
cision flip scores, which directly show if we were
able to reduce the impact of the different types of
bias. We report these only for order and vocabulary
bias as we found name bias to be inconsequen-
tial. We report the complete results in Appendix,
Tables 4 and 5. We see that across all models, while
all three calibration methods work to reduce some
bias, none does so consistently across all models
or types of bias. We report the impact of all calib-
ration methods on the final accuracies of the three
largest models in Table 3. Even in cases where cal-
ibration has clearly reduced the decision flip score,
we find that the final calibrated accuracy is still
close to 50%. This indicates that despite the ef-
fort to retrieve any knowledge that the models have
about the CC, they are unable to perform clearly
above chance, and we have therefore found no evid-
ence that the investigated models understand and
can use the semantics of the CC.

Model Test - S5 S6 S7

BERTL

S1 36.85 31.91 47.21 44.03
S2 67.13 73.48 54.39 64.45
S3 36.46 43.43 47.79 44.36

RoBERTaL

S1 55.72 58.37 65.08 69.53
S2 68.01 74.53 62.73 77.76
S3 55.36 52.02 65.28 69.23

DeBERTaXXL

S1 47.35 53.56 54.92 54.12
S2 48.73 52.85 54.03 53.81
S3 47.57 49.36 55.25 53.59

Table 3: Effect of our three calibration methods com-
pared to no calibration, for the three largest models. We
report the accuracy scores for the base sentence (S1),
recency bias (S2), and vocabulary bias (S3). The results
indicate that, even if we try to address bias through cal-
ibration, the models are unable to perform clearly above
chance. We have therefore found no evidence that the
models understand the semantics of the CC.

4.2.1 Problem Analysis

Different conclusions might be drawn as to why
none of these models have learned the semantics
of the CC. They might not have seen enough ex-
amples of it in their training corpus to have formed
a general understanding. Given the many examples
that we were able to find in C4, and the overall pos-
itive results from the syntax section, we find this to
be unlikely. Alternatively, it could be argued that
models have never had a chance to learn what the
CC means because they have never seen it applied,
and do not have the same opportunities as humans
to either interact with the speaker to clarify the
meaning or to make deductions using observations
in the real world. This is in line with other con-
siderations about large PLMs acquiring advanced
semantics, even though it has for many phenomena
been shown that pretraining is sufficient (Radford
et al., 2019). Lastly, it might be possible that the
type of meaning representation required to solve
this task is beyond the current transformer-style ar-
chitectures. Overall, our finding that PLMs do not
learn the semantics of the CC adds to the growing
body of evidence that complex semantics like neg-
ation (Kassner and Schütze, 2020) is still beyond
state-of-the-art PLMs.

5 Related Work

5.1 Construction Grammar in NLP

CxG has only recently and very sparsely been
investigated in neural network-based NLP. Tay-
yar Madabushi et al. (2020) use a probe to show
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that while a probe on top of BERT contextual em-
beddings is able to mostly correctly classify if two
sentences contain instances of the same construc-
tion, injecting this knowledge into the model by
adding it to pretraining does not improve its per-
formance. Our work differs from this study in that
we delve deeper into what it means to understand
a construction on a semantic level, and take care-
ful precautions to isolate the recognition of the
construction at the syntax level from confounding
factors. Li et al. (2022) recreate the experiments
of Bencini and Goldberg (2000) and Johnson and
Goldberg (2013) on argument structure construc-
tions, by creating artificial sentences with four ma-
jor argument structure types and a random combin-
ation of verbs, to investigate whether PLMs prefer
sorting by construction or by main verb. Tseng
et al. (2022) choose items from a Chinese construc-
tion list and investigate PLM’s predictions when
masking the open slots, the closed slots, or the en-
tire construction. They find that models find closed
slots easier to predict than open ones. Other com-
putational studies about CxG have either focused
on automatically annotating constructions (Dunietz
et al., 2017) or on the creation and evaluation of
automatically built lists of constructions (Marques
and Beuls, 2016; Dunn, 2019).

5.2 Probing

Our work also bears some similarity to recent work
in generative grammar-based syntax probing of
large PLMs in that we approximate the minimal
pairs-based probing framework similar to Wei et al.
(2021), Marvin and Linzen (2018) or Goldberg
(2019). However, as we are concerned with dif-
ferent phenomena and investigating them from a
different theoretical standpoint, the syntactic half
of our work clearly differs.

The semantic half of our study is closest to re-
cent work on designing challenging test cases for
models such as Ribeiro et al. (2020), who design
some edge cases for which most PLMs fail. Des-
pite the different motivation, the outcome is very
similar to a list of some particularly challenging
constructions.

6 Conclusion

We have made a first step towards a thorough in-
vestigation of the compatibility of the paradigm of
CxG and the syntactic and semantic capabilities
exhibited by state-of-the-art large PLMs. For this,

we chose the English comparative correlative, one
of the most well-studied constructions, and invest-
igated if large PLMs have learned it, both syntactic-
ally and semantically. We found that even though
they are able to classify sentences as instances of
the construction even in difficult circumstances,
they do not seem to be able to extract the mean-
ing it conveys and use it in context, indicating that
while the syntactic aspect of the CC is captured
in pretraining, the semantic aspect is not. We see
this an indication that major future work will be
needed to enable neural models to fully understand
language to the same degree as humans.

Limitations

As our experimental setup requires significant cus-
tomisation with regards to the properties of the
specific construction we investigate, we are unable
to consider other constructions or other languages
in this work. We hope to be able to extend our
experiments in this direction in the future. Our ana-
lysis is also limited—as all probing papers are—by
the necessary indirectness of the probing tasks: we
cannot directly assess the model’s internal repres-
entation of the CC, but only construct tasks that
might show it but are imperfect and potentially
affected by external factors.
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Algorithm 1 Context-Free Grammar for Artificial Data Creation Training Set
S→ SPOS | SNEG
SPOS→ POS1 PUNCT POS2 ’.’ | POS1 INSERT PUNCT POS2 ’.’
SNEG→ NEG1 PUNCT NEG2 ’.’ | NEG1 INSERT PUNCT NEG2 ’.’
PUNCT→ ’,’ | ’;’ | ”
CORE_POS→ ADV_I ’the’ NUM NOUN VERB
CORE_NEG→ ADV_I NUM VERB ’the’ NOUN
POS_UPPER→ ’0 The’ CORE_POS
POS_LOWER→ ’0 the’ CORE_POS
NEG_UPPER→ ’0 The’ CORE_NEG
NEG_LOWER→ ’0 the’ CORE_NEG
POS1→ POS_UPPER | POS_UPPER ADD | START POS_LOWER | START POS_LOWER ADD
POS2→ POS_LOWER | POS_LOWER ADD
NEG1→ NEG_UPPER | NEG_UPPER ADD | START NEG_LOWER | START NEG_LOWER ADD
NEG2→ NEG_LOWER | NEG_LOWER ADD
INSERT→ INSERT1 | INSERT2
INSERT2→ ADDITION BETWEEN_ADD_AND_SENT SENT
PRON→ ’we’ | ’they’
ADDITION→ ’, and by the way ,’ | ’, and I want to add that’ | ’, and’ PRON ’just want to say that’ | ’,
and then’ PRON ’said that’ | ’, and then’ PRON ’said that’
SAY→ ’say’ | ’think’ | ’mean’ | ’believe’
BETWEEN_ADD_AND_SENT→ PRON SAY ’that’ | PRON SAY ’that’ | PRON SAY ’that’ | PRON
SAY ’that’
LOC_SENT→ PRON ’said this in’ LOC ’too’
LOC→ CITY ’and’ LOC | CITY
CITY→ ’Munich’ | ’Washington’ | ’Cologne’ | ’Prague’ | ’Istanbul’
SENT→ ’this also holds in other cases’ | ’this is not always true’ | ’this is always true’ | ’this has only
recently been the case’ | ’this has not always been the case’ | ’this has always been the case’
INSERT1→ ’without stopping’ | ’without a break’ | ’without a pause’ | ’uninterrupted’ |
START→ ’Nowadays ,’ | ’Nowadays’ | ’Therefore ,’ | ’Therefore’ | ’We can’ CANWORD ’that’ | ’It is’
KNOWNWORD ’that’ | ’It follows that’ | ’Sometimes’ | ’Sometimes ,’ | ’It was recently announced that’
| ’People have told me that’ | ’I recently read in a really interesting book that’ | ’I have recently read in
an established , well-known newspaper that’ | ’It was reported in a special segment on TV today that’
CANWORD→ ’say’ | ’surmise’ | ’accept’ | ’state’
KNOWNWORD→ ’clear’ | ’known’ | ’accepted’ | ’obvious’
ADD→ TEMP | UNDER1 | TEMP UNDER1 | UNDER1 TEMP
ADV_I→ ADV | ADV ’and’ ADV
TEMP→ TEMP1 TEMP2
TEMP1→ ’before’ | ’after’ | ’during’
TEMP2→ ’the morning’ | ’the afternoon’ | ’the night’
UNDER1→ ’under the’ UNDER2
UNDER2→ ’bed’ | ’roof’ | ’sun’
VERB→ ’push’ | ’attack’ | ’chase’ | ’beat’ | ’believe’ | ’boil’ | ’box’ | ’burn’ | ’call’ | ’date’
NOUN→ ’lions’ | ’pandas’ | ’camels’ | ’pigs’ | ’horses’ | ’sheep’ | ’chickens’ | ’foxes’ | ’cows’ | ’deer’
ADV→ ’worse’ | ’earlier’ | ’slower’ | ’deeper’ | ’bigger’ | ’smaller’ | ’flatter’ | ’weaker’ | ’stronger’ |
’louder’
NUM→ ’twelve’ | ’thirteen’ | ’fourteen’ | ’fifteen’ | ’sixteen’ | ’seventeen’ | ’eighteen’ | ’nineteen’ |
’twenty’ | ’twenty-one’
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Algorithm 2 Context-Free Grammar for Artificial Data Creation Test Set
S→ SPOS | SNEG
SPOS→ POS1 PUNCT POS2 ’.’ | POS1 INSERT PUNCT POS2 ’.’
SNEG→ NEG1 PUNCT NEG2 ’.’ | NEG1 INSERT PUNCT NEG2 ’.’
PUNCT→ ’,’ | ’;’ | ”
CORE_POS→ ADV_I ’the’ NUM NOUN VERB
CORE_NEG→ ADV_I NUM VERB ’the’ NOUN
POS_UPPER→ ’0 The’ CORE_POS
POS_LOWER→ ’0 the’ CORE_POS
NEG_UPPER→ ’0 The’ CORE_NEG
NEG_LOWER→ ’0 the’ CORE_NEG
POS1→ POS_UPPER | POS_UPPER ADD | START POS_LOWER | START POS_LOWER ADD
POS2→ POS_LOWER | POS_LOWER ADD
NEG1→ NEG_UPPER | NEG_UPPER ADD | START NEG_LOWER | START NEG_LOWER ADD
NEG2→ NEG_LOWER | NEG_LOWER ADD
INSERT→ INSERT1 | INSERT2
INSERT2→ ADDITION BETWEEN_ADD_AND_SENT SENT
PRON→ ’I’ | ’you’
ADDITION→ ’, and by the way ,’ | ’, and I want to add that’ | ’, and’ PRON ’just want to say that’ | ’,
and then’ PRON ’said that’ | ’, and then’ PRON ’said that’
SAY→ ’say’ | ’think’ | ’mean’ | ’believe’
BETWEEN_ADD_AND_SENT→ PRON SAY ’that’ | PRON SAY ’that’ | PRON SAY ’that’ | PRON
SAY ’that’
LOC_SENT→ PRON ’said this in’ LOC ’too’
LOC→ CITY ’and’ LOC | CITY
CITY→ ’London’ | ’New York’ | ’Berlin’ | ’Madrid’ | ’Paris’
SENT→ ’this also holds in other cases’ | ’this is not always true’ | ’this is always true’ | ’this has only
recently been the case’ | ’this has not always been the case’ | ’this has always been the case’
INSERT1→ ’without stopping’ | ’without a break’ | ’without a pause’ | ’uninterrupted’ |
START→ ’Nowadays ,’ | ’Nowadays’ | ’Therefore ,’ | ’Therefore’ | ’We can’ CANWORD ’that’ | ’It is’
KNOWNWORD ’that’ | ’It follows that’ | ’Sometimes’ | ’Sometimes ,’ | ’It was recently announced that’
| ’People have told me that’ | ’I recently read in a really interesting book that’ | ’I have recently read in
an established , well-known newspaper that’ | ’It was reported in a special segment on TV today that’
CANWORD→ ’say’ | ’surmise’
KNOWNWORD→ ’clear’ | ’known’
ADD→ TEMP | UNDER1 | TEMP UNDER1 | UNDER1 TEMP
ADV_I→ ADV | ADV ’and’ ADV
TEMP→ TEMP1 TEMP2
TEMP1→ ’before’ | ’after’ | ’during’
TEMP2→ ’the day’ | ’the night’ | ’the evening’
UNDER1→ ’under the’ UNDER2
UNDER2→ ’bridge’ | ’stairs’ | ’tree’
VERB→ ’slam’ | ’break’ | ’bleed’ | ’shake’ | ’smash’ | ’throw’ | ’strike’ | ’shoot’ | ’swallow’ | ’choke’
NOUN→ ’cats’ | ’dogs’ | ’girls’ | ’boys’ | ’men’ | ’women’ | ’people’ | ’humans’ | ’mice’ | ’alligators’
ADV→ ’faster’ | ’quicker’ | ’harder’ | ’higher’ | ’later’ | ’longer’ | ’shorter’ | ’lower’ | ’wider’ | ’better’
NUM→ ’two’ | ’three’ | ’four’ | ’five’ | ’six’ | ’seven’ | ’eight’ | ’nine’ | ’ten’ | ’eleven’
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Figure 2: Full results for BERTLARGE on artificial data. Columns indicate the variable that the training and test set
controls for.
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Figure 3: Full results for RoBERTaLARGE on artificial data. Columns indicate the variable that the training and test
set controls for.
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Figure 4: Full results for DeBERTaLARGE on artificial data. Columns indicate the variable that the training and test
set controls for.
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Figure 5: Full results for BERTLARGE on corpus data. Columns indicate the variable that the training and test set
controls for.
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Figure 6: Full results for RoBERTaLARGE on corpus data. Columns indicate the variable that the training and test set
controls for.
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Figure 7: Full results for DeBERTaLARGE on corpus data. Columns indicate the variable that the training and test set
controls for.
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Model Test Scenario - S5 S6 S7

BERTB

S1 37.65% 37.62% 44.39% 47.9%
S2 64.64% 62.79% 56.66% 55.41%
S3 38.04% 44.78% 44.09% 48.29%

BERTL

S1 36.85% 31.91% 47.21% 44.03%
S2 67.13% 73.48% 54.39% 64.45%
S3 36.46% 43.43% 47.79% 44.36%

RoBERTaB

S1 61.6% 58.76% 42.13% 62.32%
S2 52.85% 51.35% 71.33% 60.25%
S3 62.21% 55.17% 43.04% 62.76%

RoBERTaL

S1 55.72% 58.37% 65.08% 69.53%
S2 68.01% 74.53% 62.73% 77.76%
S3 55.36% 52.02% 65.28% 69.23%

DeBERTaB

S1 49.72% 49.72% 49.86% 49.2%
S2 49.81% 48.67% 49.7% 49.06%
S3 50.28% 50.19% 49.97% 50.0%

DeBERTaL

S1 50.88% 49.86% 50.03% 49.39%
S2 51.41% 48.09% 47.21% 48.04%
S3 50.58% 49.94% 50.41% 49.42%

DeBERTaXL

S1 47.73% 45.08% 43.31% 43.67%
S2 49.34% 46.27% 45.58% 41.74%
S3 47.9% 49.14% 42.68% 45.58%

DeBERTaXXL

S1 47.35% 53.56% 54.92% 54.12%
S2 48.73% 52.85% 54.03% 53.81%
S3 47.57% 49.36% 55.25% 53.59%

Table 4: Accuracies for the semantic probe with our three calibration methods compared to no calibration. We
report the average accuracy on the more difficult sentences in terms of recency bias (S1),the easier ones (S2), and
vocabulary bias (S3). Our calibration tecniques are short (S5), name (S6), and adjective (S7).

10879

76

76



Model Test Scenario - S5 S6 S7

BERTB

S2 26.99% 25.22% 14.75% 10.77%
S3 75.69% 23.51% 86.33% 91.05%
S4 2.71% - - -

BERTL

S2 30.44% 41.8% 13.37% 22.24%
S3 73.31% 25.94% 88.65% 85.97%
S4 2.32% - - -

RoBERTaB

S2 9.92% 8.67% 31.13% 10.86%
S3 76.19% 22.04% 79.03% 74.75%
S4 2.76% - - -

RoBERTaL

S2 14.34% 17.82% 15.94% 15.86%
S3 79.48% 43.54% 64.78% 57.27%
S4 4.34% - - -

DeBERTaB

S2 0.91% 11.77% 7.13% 10.8%
S3 99.67% 56.44% 96.52% 94.94%
S4 1.08% - - -

DeBERTaL

S2 7.04% 7.85% 14.31% 14.28%
S3 94.83% 43.18% 85.75% 79.86%
S4 2.24% - - -

DeBERTaXL

S2 5.47% 7.87% 13.48% 18.78%
S3 89.28% 45.44% 68.48% 65.94%
S4 2.51% - - -

DeBERTaXXL

S2 3.59% 3.09% 17.02% 17.21%
S3 82.1% 79.06% 63.43% 59.81%
S4 1.13% - - -

Table 5: Decision flip scores for the semantic probe with our three calibration methods compared to no calibration.
We report the percentage of decisions flipped by changing from the base S1 to the sentences testing for recency bias
(S2), vocabulary bias (S3), and name bias (S4). Our calibration tecniques are short (S5), name (S6), and adjective
(S7).
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Sentence Label

Nowadays , the bigger the eighteen sheep date , the louder and bigger the twelve horses beat
under the sun .

Positive

The flatter the fourteen lions push , the deeper and smaller the sixteen deer burn under the
roof .

Positive

The deeper the sixteen cows beat ; the flatter and earlier the twenty cows attack . Positive
Therefore , the worse the sixteen sheep believe after the morning without a pause , the smaller
the thirteen cows box after the morning under the sun .

Positive

The flatter the fourteen lions push , the deeper and smaller the sixteen deer burn under the
roof .

Positive

Sometimes , the worse and earlier seventeen believe the deer , and we just want to say that
they mean that this has always been the case , the flatter twenty-one attack the foxes before
the afternoon under the roof .

Negative

Nowadays , the smaller sixteen box the camels , and by the way , they mean that this is
always true ; the weaker thirteen date the cows .

Negative

Therefore the earlier and weaker fourteen chase the deer , the stronger and earlier thirteen
boil the chickens during the night .

Negative

The weaker and worse fifteen box the lions during the morning under the sun , the worse
twenty push the cows .

Negative

It follows that the worse twelve date the pigs without a break the flatter and louder nineteen
call the pigs under the sun .

Negative

Table 6: Examples of artificial training data

Sentence Label

The harder and longer the three cats throw , the harder and shorter the ten dogs shake . Positive
I have recently read in an established , well-known newspaper that the later the ten mice
strike ; the later and better the seven men smash under the tree during the night .

Positive

The shorter the ten girls break without a pause ; the later the ten boys bleed under the tree . Positive
It was recently announced that the better and later the five women break ; the quicker the six
mice smash under the tree during the evening .

Positive

The faster the seven humans choke under the stairs after the evening , and I just want to say
that I think that this is not always true , the lower and higher the two boys swallow .

Positive

The higher nine strike the women without a pause the shorter ten choke the girls . Negative
We can say that the longer and faster four strike the men under the stairs before the evening ,
the harder four throw the dogs after the day under the bridge .

Negative

The quicker and higher eight bleed the people , and then I said that you believe that this also
holds in other cases ; the longer seven break the girls after the night .

Negative

The shorter four smash the people before the night , and by the way , you think that this is
always true ; the harder three bleed the people .

Negative

The longer seven shoot the women without stopping , the faster ten strike the mice after the
night under the bridge .

Negative

Table 7: Examples of artificial test data
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Sentence Label

" The higher up the nicer ! " Positive
She thinks the more water she drinks the better her skin looks . Positive
It becomes an obsession lightly because the more fish you catch the higher your adrenaline
flows .

Positive

It is worth noting , however , that the more specific you are the better . Positive
In other words , the more videos you make the greater your audience reach . Positive
Subtract the smaller from the larger . " Negative
The way the older guys help out the younger guys is fantastic . Negative
In this procedure the lower lip is pulled ventrally to expose the lower incisors . Negative
The 5th bedroom is on the lower floor with easy access to the lower bath . Negative
Note the distinctive bend of the larger vein adjacent to the smaller vein at the top . Negative

Table 8: Examples of corpus data
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Chapter 6

Corresponds to the following publication:

Leonie Weissweiler, Valentin Hofmann, Abdullatif Köksal, Hinrich Schütze (2023). Ex-
plaining Pretrained Language Models’ Understanding of Linguistic Structures using
Construction Grammar. Frontiers in Artificial Intelligence.

Declaration of Co-Authorship I conceived the idea of extending the experimental setup of Chap-
ter 5 to autoregressive models together Hinrich Schütze and Valentin Hofmann. I discussed the im-
plementation and the usage of perplexity for evaluation with Abdullatif Köksal, who also contributed
code snippets. Based on these, I implemented and conducted the experiments and discussed the
results with Hinrich Schütze. All authors helped review the final draft of the paper and gave advice.

Research Context This work builds on Chapter 5. Soon after the publication of the initial work
on the Comparative Correlative, masked language models became less relevant and the state-of-
the-art changed to autoregressive models. This raised the question: did the new models similarly
struggle with representing the meaning of the Comparative Correlative? To investigate this, we
adapted our methods such that similar tests could be carried out by measuring perplexity for full
sentences. A desirable side-effect of the change in this setup was eliminating the need for antonym
pairs, simplifying the evaluation and removing a component that could have caused the models
difficulties unrelated to the construction itself.
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Explaining pretrained language
models’ understanding of
linguistic structures using
construction grammar
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and Hinrich Schütze1,2

1Center for Information and Language Processing, LMU Munich, Munich, Germany, 2Munich Center for

Machine Learning, Munich, Germany, 3Faculty of Linguistics, University of Oxford, Oxford,
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Construction Grammar (CxG) is a paradigm from cognitive linguistics emphasizing

the connection between syntax and semantics. Rather than rules that operate on

lexical items, it posits constructions as the central building blocks of language, i.e.,

linguistic units of di�erent granularity that combine syntax and semantics. As a first

step toward assessing the compatibility of CxG with the syntactic and semantic

knowledge demonstrated by state-of-the-art pretrained language models (PLMs),

we present an investigation of their capability to classify and understand one of

the most commonly studied constructions, the English comparative correlative

(CC). We conduct experiments examining the classification accuracy of a syntactic

probe on the one hand and the models’ behavior in a semantic application task on

the other, with BERT, RoBERTa, and DeBERTa as the example PLMs. Our results

show that all three investigated PLMs, as well as OPT, are able to recognize the

structure of the CC but fail to use its meaning. While human-like performance of

PLMs onmany NLP tasks has been alleged, this indicates that PLMs still su�er from

substantial shortcomings in central domains of linguistic knowledge.

KEYWORDS

NLP, probing, construction grammar, computational linguistics, large language models

1. Introduction

The sentence “The better your syntax, the better your semantics.” contains a construction

called the English comparative correlative (CC; Fillmore, 1986). Paraphrased, it could be read

as “If your syntax is better, your semantics will also be better.” Humans reading this sentence

are capable of doing two things: (i) recognizing that two instances of “the” followed by an

adjective/adverb in the comparative as well as a phrase of the given structure (i.e., the syntax

of the CC) express a specific meaning (i.e., the semantics of the CC); (ii) understanding the

semantic meaning conveyed by the CC, i.e., understanding that in a sentence of the given

structure, the second half is somehow correlated with the first.

In this paper, we ask the following question: are pretrained language models (PLMs)

able to achieve these two steps? This question is important for two reasons. Firstly, we

hope that recognizing the CC and understanding its meaning is challenging for PLMs,

helping to set the research agenda for further improvements. Secondly, the CC is one of

the most commonly studied constructions in construction grammar (CxG), a usage-based

syntax paradigm from cognitive linguistics, thus providing an interesting alternative to the

currently prevailing practice of analysing the syntactic capabilities of PLMs with theories

from generative grammar (e.g., Marvin and Linzen, 2018).

Frontiers in Artificial Intelligence 01 frontiersin.org82

82



Weissweiler et al. 10.3389/frai.2023.1225791

We divide our investigation into two parts. In the first part, we

examine the CC’s syntactic properties and how they are represented

by PLMs, with the objective to determine whether PLMs can

recognize an instance of the CC. More specifically, we construct

two syntactic probes with different properties: one is inspired by

recent probing methodology (e.g., Belinkov et al., 2017; Conneau

et al., 2018) and draws upon minimal pairs to quantify the amount

of information contained in each PLM layer; for the other one,

we write a context-free grammar (CFG) to construct approximate

minimal pairs in which only the word order determines if the

sentences are an instance of the CC or not. We find that starting

from the third layer, all investigated PLMs are able to distinguish

positive from negative instances of the CC. However, this method

only covers one specific subtype of comparative sentences. To cover

the full diversity of instances, we conduct an additional experiment

for which we collect and manually label sentences from C4 (Raffel

et al., 2020) that resemble instances of the CC, resulting in a diverse

set of sentences that either are instances of the CC or resemble

them closely without being instances of the CC. Applying the same

methodology to this set of sentences, we observe that all examined

PLMs are still able to separate the examples very well.

In the second part of the paper, we aim to determine if the PLMs

are able to understand the meaning of the CC. We generate test

scenarios in which a statement containing the CC is given to the

PLMs, which they then have to apply in a zero-shot manner. As this

way of testing PLMs is prone to a variety of biases, we introduce

several mitigating methods in order to determine the full capability

of the PLMs. We find that neither the masked language models nor

the autoregressive models that we investigated performed above

chance level on this task.

We make three main contributions:

– We present the first comprehensive study examining how

well PLMs can recognize and understand a CxG construction,

specifically the English comparative correlative.

– We develop a way of testing the PLMs’ recognition of the

CC that overcomes the challenge of probing for linguistic

phenomena not lending themselves to minimal pairs.

– We adapt methods from zero-shot prompting and calibration

to develop a way of testing PLMs for their understanding of

the CC.

2. Construction grammar and natural
language processing

2.1. Construction grammar

A core assumption of generative grammar (Chomsky, 1988),

which can be already found in Bloomfieldian structural linguistics

(Bloomfield, 1933), is a strict separation of lexicon and grammar:

grammar is conceptualized as a set of compositional and general

rules that operate on a list of arbitrary and specific lexical items in

generating syntactically well-formed sentences. This dichotomous

view was increasingly questioned in the 1980s when several studies

drew attention to the fact that linguistic units larger than lexical

items (e.g., idioms) can also possess non-compositional meanings

(Lakoff, 1987; Langacker, 1987; Fillmore et al., 1988; Fillmore,

TABLE 1 Standard examples of constructions at various levels, adapted

from Goldberg (2013).

Construction
name

Construction
template

Examples

Word Banana

Word (partially filled) pre-N, V-ing Pretransition, Working

Idiom (filled) Give the devil his due

Idiom (partially filled) Jog <someone’s>

memory

She jogged his memory

Idiom (minimally filled) The X-er the Y-er The more I think about

it, the less I know

Ditransitive construction

(unfilled)

Subj V Obj1 Obj2 He baked her a muffin

Passive (unfilled) Subj aux VPpp (PP by) The armadillo was hit by

a car

1989). For instance, it is not clear how the effect of the words

“let alone” (as in “she doesn’t eat fish, let alone meat”) on both

the syntax and the semantics of the rest of the sentence could

be inferred from general syntactic rules (Fillmore et al., 1988).

This insight about the ubiquity of stored form-meaning pairings

in language is adopted as the central tenet of grammatical theory

by Construction Grammar (CxG; see Hoffmann and Trousdale,

2013 for a comprehensive overview). Rather than a system divided

into non-overlapping syntactic rules and lexical items, CxG views

language as a structured system of constructions with varying

granularities that encapsulate syntactic and semantic components

as single linguistic signs—ranging from individual morphemes up

to phrasal elements and fixed expressions (Goldberg A., 1995; Kay

and Fillmore, 1999). In this framework, syntactic rules can be

seen as emergent abstractions over similar stored constructions

(Goldberg, 2003, 2006). A different set of stored constructions can

result in different abstractions and thus different syntactic rules,

which allows CxG to naturally accommodate for the dynamic

nature of grammar as evidenced, for instance, by inter-speaker

variability and linguistic change (Hilpert, 2006).

2.2. Why construction grammar for NLP?

There has recently been growing interest in developing probing

approaches for PLMs based on CxG. We see these approaches as

coming from two different motivational standpoints, summarized

below.

2.2.1. Constructions are essential for language
modeling

According to CxG, meaning is encoded in abstract

constellations of linguistic units of different sizes. Examples

of these can be found in Table 1. This means that LMs, which

the field of NLP is trying to develop to achieve human language

competency, must also be able to assign meaning to these units

to be full LMs. Their ability to assign meaning to words, or

more specifically to subword units which are sometimes closer to
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TABLE 2 Translated back to English by humans, they all mean “She

sneezed her cappuccino’s foam,” which does not correctly convey the

resultative meaning component, i.e., that the foam is removed from the

cappuccino by the sneeze (as opposed to put there).

Lang Reference translation DeepL translation

German Sie nieste den Schaum von

ihrem Cappuccino runter.

Sie nieste den Schaum von

ihrem Cappuccino.

Italian Lei ha starnutito via la schiuma

dal suo cappuccino.

Starnutì la schiuma del suo

cappuccino.

Turkish Cappuccino’sunun köpüğünü

hapşırdı.

Hapşırarak cappuccino’sunun

köpüğünü uçurdu.

morphemes than to words, has been shown at length (Reif et al.,

2019; Wiedemann et al., 2019; Schwartz et al., 2022). The question

therefore remains: are PLMs able to retrieve and use meanings

associated with patterns involving multiple tokens? We do not

take this to only mean contiguous, fixed expressions, but much

more importantly, non-contiguous patterns with slots that have

varying constraints placed on them. To imitate and match human

language behavior, models of human language need to learn how

to recognize these patterns, retrieve their meaning, apply this

meaning to the context, and use them when producing language.

Simply put, there is no way around learning constructions if LMs

are to advance. In addition, we believe that it is an independently

interesting question whether existing PLMs pick up on these

abstract patterns using the current architectures and training

setups, and if not, which change in architecture would be necessary

to facilitate this.

2.2.2. Importance in downstream tasks
Regardless of more fundamental questions about the long-term

goals of LMs, we also firmly believe that probing for CxG is relevant

for analysing the challenges that face applied NLP, as evaluated on

downstream tasks, at this point in time. Discussion is increasingly

focusing on diagnosing the specific scenarios that are challenging

for current models. Srivastava et al. (2023) propose test suites that

are designed to challenge LMs, and many of them are designed

by looking for “patterns” with a non-obvious, non-literal meaning

that is more than the sum of the involved words. One example

of such a failure can be found in Table 2, where we provide the

DeepL1 translations for the famous instance of the caused-motion

construction (Goldberg A. E., 1995, CMC): “She sneezed the foam

off her cappuccino,” where the unusual factor is that sneeze does not

usually take a patient argument or cause a motion. For translation,

this means that it either has to use the corresponding CMC in the

target language, which might be quite different in form from the

English CMC, or paraphrase in a way that conveys all meaning

facets. For the languages we tested, DeepL did not achieve this:

the resulting sentence sounds more like the foam was sneezed

onto the cappuccino, or is ambiguous between this and the correct

translation. Interestingly, for Russian, themotion is conveyed in the

translation, but not the fact that it is caused by a sneeze.

Targeted adversarial test suites like this translation example

can be a useful resource to evaluate how well LMs perform

on constructions, but more crucially, CxG theory and probing

1 https://www.deepl.com/translator

methods will inform the design of better and more systematic test

suites, which in turn will be used to improve LMs.

2.2.3. Diversity in linguistics for NLP
Discussions about PLMs as models of human language

processing have recently gained popularity. One forum for such

discussions is the Neural Nets for Cognition Discussion Group at

CogSci20222. The work is still very tentative, andmost people agree

that LMs are not ready to be used as models of human language

processing. However, the discussion about whether LMs are ready

to be used as cognitive models is dominated by results of probing

studies based on Generative Grammar (GG), or more specifically

Transformational Grammar. This means that GG is being used as

the gold standard against which the cognitive plausibility of LMs is

evaluated. Studies using GG assume a direct relationship between

the models’ performance on probing tasks and their linguistic

competency. Increased performance on GG probing tasks is seen

as a sign it is becoming more reasonable to use LMs as cognitive

models. Another linguistic reason for theoretical diversity is that if

we could show that LMs conform better to CxG rather than GG,

this might open up interesting discussions if they ever start being

used as cognitive models.

3. The English comparative correlative

The English comparative correlative (CC) is one of the most

commonly studied constructions in linguistics, for several reasons.

Firstly, it constitutes a clear example of a linguistic phenomenon

that is challenging to explain in the framework of generative

grammar (Culicover and Jackendoff, 1999; Abeillé and Borsley,

2008), even though there have been approaches following that

school of thought (Den Dikken, 2005; Iwasaki and Radford, 2009).

Secondly, it exhibits a range of interesting syntactic and semantic

features, as detailed below. These reasons, we believe, also make

the CC an ideal testbed for a first study attempting to extend the

current trend of syntax probing for rules by developing methods

for probing according to CxG.

The CC can take many different forms, some of which are

exemplified here:

(1) The more, the merrier.

(2) The longer the bake, the browner the color.

(3) The more she practiced, the better she became.

Semantically, the CC consists of two clauses, where the second

clause can be seen as the dependent variable for the independent

variable specified in the first one (Goldberg, 2003). It can be

seen on the one hand as a statement of a general cause-and-

effect relationship, as in a general conditional statement [e.g., (2)

could be paraphrased as “If the bake is longer, the color will be

more brown”], and on the other as a temporal development in a

comparative sentence [paraphrasing (3) as “She became better over

time, and she practiced more over time”]. Usage of the CC typically

implies both readings at the same time. Syntactically, the CC is

characterized in both clauses by an instance of “the” followed by

an adverb or an adjective in the comparative, either with “-er” for

2 http://neural-nets-for-cognition.net
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some adjectives and adverbs, or with “more” for others, or special

forms like “better.” Special features of the comparative sentences

following this are the optional omission of the future “will” and of

“be,” as in (1). Crucially, “the” in this construction does not function

as a determiner of noun phrases (Goldberg, 2003); rather, it has a

function specific to the CC and has variously been called a “degree

word” (Den Dikken, 2005) or “fixed material” (Hoffmann et al.,

2019).

4. Related work

4.1. Construction grammar probing

4.1.1. CxGBERT
Tayyar Madabushi et al. (2020) investigate how well BERT

(Devlin et al., 2019) can classify whether two sentences contain

instances of the same construction. Their list of constructions is

extracted with a modified version of Dunn (2017)’s algorithm:

they induce a CxG in an unsupervised fashion over a corpus,

using statistical association measures. Their list of constructions

is taken directly from Dunn (2017), and they find their instances

by searching for those constructions’ occurrences in WikiText

data. This makes the constructions possibly problematic, since

they have not been verified by a linguist, which could make the

conclusions drawn later from the results about BERT’s handling of

constructions hard to generalize from.

The key probing question of this paper is: Do two sentences

contain the same construction? This does not necessarily need to

be the most salient or overarching construction of the sentence,

so many sentences will contain more than one instance of a

construction. Crucially, the paper does not follow a direct probing

approach, but rather finetunes or even trains BERT on targeted

construction data, to then measure the impact on CoLA. They find

that on average, models trained on sentences that were sorted into

documents based on their constructions do not reliably perform

better than those trained on original, unsorted data. However, they

additionally test BERT Base with no additional pre-training on

the task of predicting whether two sentences contain instances of

the same construction, measuring accuracies of about 85% after

500 training examples for the probe. These results vary wildly

depending on the frequency of the construction, whichmight relate

back to the questionable quality of the automatically identified list

of constructions.

4.1.2. Neural reality of argument structure
constructions

Li et al. (2022) probe for LMs’ handling of four argument

structure constructions: ditransitive, resultative, caused-motion,

and removal. Specifically, they attempt to adapt the findings

of Bencini and Goldberg (2000), who used a sentence sorting

task to determine whether human participants perceive the

argument structure or the verb as the main factor in the overall

sentence meaning. The paper aims to recreate this experiment

for MiniBERTa (Warstadt et al., 2020b) and RoBERTa (Liu et al.,

2019), by generating sentences artificially and using agglomerative

clustering on the sentence embeddings. They find that, similarly

to the human data, which is sorted by the English proficiency of

the participants, PLMs increasingly prefer sorting by construction

as their training data size increases. Crucially, the sentences

constructed for testing had no lexical overlap, such that this sorting

preference must be due to an underlying recognition of a shared

pattern between sentences with the same argument structure. They

then conduct a second experiment, in which they insert random

verbs, which are incompatible with one of the constructions,

and then measure the Euclidean distance between this verb’s

contextual embedding and that of a verb that is prototypical for

the corresponding construction. The probing idea here is that if

construction information is picked up by the model, the contextual

embedding of the verb should acquire some constructional

meaning, which would bring it closer to the corresponding

prototypical verb meaning than to the others. They indeed find that

this effect is significant, for both high and low frequency verbs.

4.1.3. CxLM
Tseng et al. (2022) study LM predictions for the slots of various

degrees of openness for a corpus of Chinese constructions. Their

original data comes from a knowledge database of Mandarin

Chinese constructions (Zhan, 2017), which they filter so that only

constructions with a fixed repetitive element remain, which are

easier to find automatically in a corpus. They filter this list down

further to constructions which are rated as commonly occurring

by annotators, and retrieve instances from a POS-tagged Taiwanese

bulletin board corpus. They binarize the openness of a given slot

in a construction and mark each word in a construction as either

constant or variable. The key probing idea is then to examine

the conditional probabilities that a model outputs for each type

of slot, with the expectation that the prediction of variable slot

words will be more difficult than that of constant ones, providing

that the model has acquired some constructional knowledge. They

find that this effect is significant for two different Chinese BERT-

based models, as negative log-likelihoods are indeed significantly

higher when predicting variable slots compared to constant ones.

Interestingly, the negative log-likelihood resulting from masking

the entire construction lies in the middle of the two extremes. They

further evaluate a BERT-based model which is finetuned on just

predicting the variable slots of the dataset they compiled and find,

unsurprisingly, that this improves accuracy greatly.

4.1.4. A discerning several thousand judgments
Mahowald (2023) focuses on the English Article + Adjective +

Numeral + Noun (AANN) construction, e.g. “The president has

had a terrible 5 weeks” and GPT-3’s recognition of its particular

semantic and syntactic constraints. He designs a few-shot prompt

for grammatical acceptability using the CoLA corpus of linguistic

acceptability (Warstadt et al., 2019). As probing data, he artificially

constructs several variants of the AANN construction to test for

GPT-3’s understanding of its properties. Its output on the linguistic

acceptability task is also contrasted with human ratings sourced

from Mechanical Turk. The probing concept exploits that the

AANN construction has several properties that seem to violate a

number of rules: “a” is not marking a singular here, as the noun is

plural. Also, the order of the number and the adjective is reversed,

and in some cases, verb agreement rules must be suspended.

There are also interesting constraints on the construction itself: for
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example, some adjectives, such as color words, are not acceptable.

Furthermore, qualitative adjectives must appear before quantitative

ones. Overall, GPT-3 judgments match the direction of the human

ones across a variety of conditions, except on the question of

quantitative vs qualitative adjectives, where humans showed no

preference, and GPT-3 had a slightly preference against the one

described in the literature. This shows that the model understood

the syntactic structure of the AANN construction to the point

where it can override more global “rules” about word order, but

makes no statement about its understanding of the meaning.

4.2. NLP and construction grammar

Other computational studies about CxG have either focused

on automatically annotating constructions (Dunietz et al., 2017)

S → SPOS | SNEG

SPOS → POS1 PUNCT POS2 ‘.’ | POS1 INSERT PUNCT POS2 ‘.’

SNEG→ NEG1 PUNCT NEG2 ‘.’ | NEG1 INSERT PUNCT NEG2 ‘.’

PUNCT→ ‘,’ | ‘;’ | ǫ

CORE_POS→ ADV_I ‘the’ NUM NOUN VERB

CORE_NEG→ ADV_I NUM VERB ‘the’ NOUN

POS_UPPER→ ‘0 The’ CORE_POS

POS_LOWER→ ‘0 the’ CORE_POS

NEG_UPPER→ ‘0 The’ CORE_NEG

NEG_LOWER→ ‘0 the’ CORE_NEG

POS1 → POS_UPPER| POS_UPPER ADD| START POS_LOWER| START POS_LOWER ADD

POS2 → POS_LOWER| POS_LOWER ADD

NEG1 → NEG_UPPER| NEG_UPPER ADD| START NEG_LOWER| START NEG_LOWER ADD

NEG2 → NEG_LOWER| NEG_LOWER ADD

INSERT → INSERT1 | INSERT2

INSERT2 → ADDITION BETWEEN_ADD_AND_SENT SENT

PRON→ ‘we’ | ‘they’

ADDITION → ‘, and by the way,’ | ‘, and I want to add that’ | ‘, and’ PRON ‘just want to say that’ | ‘, and

then’ PRON ‘said that’ | ‘, and then’ PRON ‘said that’

SAY → ‘say’ | ‘think’ | ‘mean’ | ‘believe’

BETWEEN_ADD_AND_SENT→ PRON SAY ‘that’ | PRON SAY ‘that’ | PRON SAY ‘that’ | PRON SAY ‘that’

LOC_SENT→ PRON ‘said this in’ LOC ‘too’

LOC → CITY ‘and’ LOC | CITY

CITY → ‘Munich’ | ‘Washington’ | ‘Cologne’ | ‘Prague’ | ‘Istanbul’

SENT → ‘this also holds in other cases’ | ‘this is not always true’ | ‘this is always true’ | ‘this has only

recently been the case’ | ‘this has not always been the case’ | ‘this has always been the case’

INSERT1 → ‘without stopping’ | ‘without a break’ | ‘without a pause’ | ‘uninterrupted’

START → ‘Nowadays, ’ | ‘Nowadays’ | ‘Therefore, ’ | ‘Therefore’ | ‘We can’ CANWORD ‘that’ | ‘It is’ KNOWNWORD

‘that’ | ‘It follows that’ | ‘Sometimes’

START → Sometimes,’ | It was recently announced that’ | People have told me that’ | I recently read in a

really interesting book that’ | I have recently read in an established, well-known newspaper that’ | It was

reported in a special segment on TV today that’

CANWORD→ say’ | surmise’ | accept’ | state’

KNOWNWORD→ clear’ | known’ | accepted’ | obvious’

ADD → TEMP | UNDER1 | TEMP UNDER1| UNDER1 TEMP

ADV_I → ADV | ADV and’ ADV

TEMP → TEMP1 TEMP2

TEMP1 → before’ | after’ | during’

TEMP2 → the morning’ | the afternoon’ | the night’

UNDER1→ under the’ UNDER2

UNDER2→ bed’ | roof’ | sun’

VERB → push’ | attack’ | chase’ | beat’ | believe’ | boil’ | box’ | burn’ | call’ | date’

NOUN→ lions’ | pandas’ | camels’ | pigs’ | horses’ | sheep’ | chickens’ | foxes’ | cows’ | deer’

ADV → worse’ | earlier’ | slower’ | deeper’ | bigger’ | smaller’ | flatter’ | weaker’ | stronger’ | louder’

NUM→ twelve’ | thirteen’ | fourteen’ | fifteen’ | sixteen’ | seventeen’ | eighteen’ | nineteen’ | twenty’ |

‘twenty-one’

Algorithm 1. Context-free grammar for artificial data creation training set.
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or on the creation and evaluation of automatically built lists of

constructions (Marques and Beuls, 2016; Dunn, 2019).

4.3. General probing

Our work also bears some similarity to recent work in

generative grammar-based syntax probing of large PLMs in that we

approximate the minimal pairs-based probing framework similar

to Wei et al. (2021), Marvin and Linzen (2018), or Goldberg

(2019). However, as we are concerned with different phenomena

and investigating them from a different theoretical standpoint, the

syntactic half of our work clearly differs.

The semantic half of our study is closest to recent work on

designing challenging test cases for models such as Ribeiro et al.

(2020), who design some edge cases for which most PLMs fail.

Despite the different motivation, the outcome is very similar to a

list of some particularly challenging constructions.

S → SPOS | SNEG

SPOS → POS1 PUNCT POS2 ’.’ | POS1 INSERT PUNCT POS2 ’.’

SNEG→ NEG1 PUNCT NEG2 ’.’ | NEG1 INSERT PUNCT NEG2 ’.’

PUNCT→ ’,’ | ’;’ | ”

CORE_POS→ ADV_I ’the’ NUM NOUN VERB

CORE_NEG→ ADV_I NUM VERB ’the’ NOUN

POS_UPPER→ ’0 The’ CORE_POS

POS_LOWER→ ’0 the’ CORE_POS

NEG_UPPER→ ’0 The’ CORE_NEG

NEG_LOWER→ ’0 the’ CORE_NEG

POS1 → POS_UPPER | POS_UPPER ADD | START POS_LOWER | START POS_LOWER ADD

POS2 → POS_LOWER | POS_LOWER ADD

NEG1 → NEG_UPPER | NEG_UPPER ADD | START NEG_LOWER | START NEG_LOWER ADD

NEG2 → NEG_LOWER | NEG_LOWER ADD

INSERT → INSERT1 | INSERT2

INSERT2 → ADDITION BETWEEN_ADD_AND_SENT SENT

PRON→ ’I’ | ’you’

ADDITION → ’, and by the way ,’ | ’, and I want to add that’ | ’, and’ PRON ’just want to say that’ | ’,

and then’ PRON ’said that’ | ’, and then’ PRON ’said that’

SAY → ’say’ | ’think’ | ’mean’ | ’believe’

BETWEEN_ADD_AND_SENT→ PRON SAY ’that’ | PRON SAY ’that’ | PRON SAY ’that’ | PRON SAY ’that’

LOC_SENT→ PRON ’said this in’ LOC ’too’

LOC → CITY ’and’ LOC | CITY

CITY → ’London’ | ’New York’ | ’Berlin’ | ’Madrid’ | ’Paris’

SENT → ’this also holds in other cases’ | ’this is not always true’ | ’this is always true’ | ’this has

only recently been the case’ | ’this has not always been the case’ | ’this has always been the case’

INSERT1 → ’without stopping’ | ’without a break’ | ’without a pause’ | ’uninterrupted’ |

START → ’Nowadays ,’ | ’Nowadays’ | ’Therefore ,’ | ’Therefore’ | ’We can’ CANWORD ’that’ | ’It is’

KNOWNWORD ’that’ | ’It follows that’ | ’Sometimes’ | ’Sometimes ,’ | ’It was recently announced that’ |

’People have told me that’ | ’I recently read in a really interesting book that’ | ’I have recently read in

an established , well-known newspaper that’ | ’It was reported in a special segment on TV today that’

CANWORD→ ’say’ | ’surmise’

KNOWNWORD→ ’clear’ | ’known’

ADD → TEMP | UNDER1 | TEMP UNDER1 | UNDER1 TEMP

ADV_I → ADV | ADV ’and’ ADV

TEMP → TEMP1 TEMP2

TEMP1 → ’before’ | ’after’ | ’during’

TEMP2 → ’the day’ | ’the night’ | ’the evening’

UNDER1→ ’under the’ UNDER2

UNDER2→ ’bridge’ | ’stairs’ | ’tree’

VERB → ’slam’ | ’break’ | ’bleed’ | ’shake’ | ’smash’ | ’throw’ | ’strike’ | ’shoot’ | ’swallow’ | ’choke’

NOUN→ ’cats’ | ’dogs’ | ’girls’ | ’boys’ | ’men’ | ’women’ | ’people’ | ’humans’ | ’mice’ | ’alligators’

ADV → ’faster’ | ’quicker’ | ’harder’ | ’higher’ | ’later’ | ’longer’ | ’shorter’ | ’lower’ | ’wider’ |

’better’

NUM→ ’two’ | ’three’ | ’four’ | ’five’ | ’six’ | ’seven’ | ’eight’ | ’nine’ | ’ten’ | ’eleven’

Algorithm 2. Context-free grammar for artificial data creation test set.
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5. Syntax

Our investigation of PLMs’ knowledge of the CC is split into

two parts. First, we probe for the PLMs’ knowledge of the syntactic

aspects of the CC, to determine if they recognize its structure. Then

we devise a test of their understanding of its semantic aspects by

investigating their ability to apply, in a given context, information

conveyed by a CC.

5.1. Probing methods

As the first half of our analysis of PLMs’ knowledge of the

CC, we investigate its syntactic aspects. Translated into probing

questions, this means that we ask: can a PLM recognize an

instance of the CC? Can it distinguish instances of the CC from

similar-looking non-instances? Is it able to go beyond the simple

recognition of its fixed parts (“The COMP-ADJ/ADV, the ...”) and

group all ways of completing the sentences that are instances of

the CC separately from all those that are not? And to frame all of

these questions in a syntactic probing framework: will we be able to

recover, using a logistic regression as the probe, this distinguishing

information from a PLM’s embeddings?

The establishedway of testing a PLM for its syntactic knowledge

has in recent years become minimal pairs (e.g., Warstadt et al.,

2020a; Demszky et al., 2021). This would mean pairs of sentences

which are indistinguishable except for the fact that one of them

is an instance of the CC and the other is not, allowing us to

perfectly separate a model’s knowledge of the CC from other

confounding factors. While this is indeed possible for simpler

syntactic phenomena such as verb-noun number agreement, there

is no obvious way to construct minimal pairs for the CC. We

therefore construct minimal pairs in two ways: one with artificial

data based on a context-free grammar (CFG), and one with

sentences extracted from C4.

5.1.1. Synthetic data
In order to find a pair of sentences that is as close as possible

to a minimal pair, we devise a way to modify the words following

“The X-er” such that the sentence is no longer an instance of the

construction. The pattern for a positive instance is “The ADV-er the

NUM NOUN VERB,” e.g., “The harder the two cats fight.” To create

a negative instance, we reorder the pattern to “The ADJ-er NUM

VERBthe NOUN,” e.g., “The harder two fight the cats.” The change

in role of the numeral from the dependent of a head to a head itself,

made possible by choosing a verb that can be either transitive or

intransitive, as well as the change from an adverb to an adjective,

allows us to construct a negative instance that uses the same words

as the positive one, but in a different order.3 In order to generate

a large number of instances, we collect two sets each of adverbs,

numerals, nouns, and verbs that are mutually exclusive between

training and test sets. To investigate if the model is confused by

additional content in the sentences, we write an CFG to insert

phrases before the start of the first half, in between the two halves,

and after the second half of the CC. We show the rules making up

the CFG in Algorithms 1, 2.

While this setup is rigorous in the sense that positive and

negative sentences are exactly matched, it comes with the drawback

of only considering one type of CC. To be able to conduct a more

comprehensive investigation, we adopt a complementary approach

and turn to pairs extracted from C4. We show examples of training

3 Note that an alternative reading of this sentence exists: the numeral “two”

forms the noun phrase by itself and “The harder” is still interpreted as part of

the CC. The sentence is actually a positive instance on this interpretation. We

regard this reading as very improbable.

TABLE 3 Examples of data for the syntactic probe.

Sentence Label Source

“The higher up the nicer!” Positive Corpus

She thinks the more water she drinks the better her skin looks. Positive Corpus

Subtract the smaller from the larger. Negative Corpus

The way the older guys help out the younger guys is fantastic. Negative Corpus

Nowadays, the bigger the 18 sheep date, the louder and bigger the 12 horses beat under the sun. Positive Artificial train

The flatter the 14 lions push, the deeper and smaller the 16 deer burn under the roof. Positive Artificial train

Sometimes, the worse and earlier 17 believe the deer, and we just want to say that they mean that this has

always been the case, the flatter 21 attack the foxes before the afternoon under the roof.

Negative Artificial train

Nowadays, the smaller 16 box the camels, and by the way, they mean that this is always true; the weaker 13

date the cows.

Negative Artificial train

The harder and longer the three cats throw, the harder and shorter the 10 dogs shake. Positive Artificial test

I have recently read in an established, well-known newspaper that the later the ten mice strike; the later

and better the seven men smash under the tree during the night.

Positive Artificial test

The higher nine strike the women without a pause the shorter 10 choke the girls. Negative Artificial test

We can say that the longer and faster four strike the men under the stairs before the evening, the harder

four throw the dogs after the day under the bridge.

Negative Artificial test
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and test data in Table 3. These cover a broad range of CC patterns,

albeit without meeting the criterion that positive and negative

samples are exactly matched.

5.1.2. Corpus-based minimal pairs
While accepting that positive and negative instances extracted

from a corpus will automatically not be minimal and therefore

contain some lexical overlap and context cues, we attempt to

regularize our retrieved instances as far as possible. To form a

first candidate set, we POS tag C4 using spaCy (Honnibal and

Montani, 2018) and extract all sentences that follow the pattern

“The” (DET) followed by either “more” and an adjective or adverb,

or an adjective or adverb ending in “-er,” and at any point later

in the sentence again the same pattern. We discard examples with

adverbs or adjectives that were falsely labeled as comparative, such

as “other.” We then group these sentences by their sequence of

POS tags, and manually classify the sequences as either positive

or negative instances. We observe that sentences sharing a POS

tag pattern tend to be either all negative or all positive instances,

allowing us to save annotation time by working at the POS tag

pattern level instead of the sentence level. To make the final set

as diverse as possible, we sort the patterns randomly and label as

many as possible. In order to further reduce interfering factors in

our probe, we separate the POS tag patterns between training and

test sets. We give examples in Table 3.

Please note that due to the inherent difficulty of creating

minimal pairs for this construction, while the two approaches

are complementary, neither of them is perfect. While we think

that our experimental setup (e.g., no surface patterns indicating

positive/negative classes, clear distinction between training/test

data) is designed well-enough, we would like to note that probing

classifiers with logistic regression are not robust to such confound

variables.

5.1.3. The probe
For both datasets, we investigate the overall accuracy of our

probe as well as the impact of several factors. The probe consists

of training a simple logistic regression model on top of the mean-

pooled sentence embeddings (Vulić et al., 2020). To quantify the

impact of the length of the sentence, the start position of the

construction, the position of its second half, and the distance

between them, we construct four different subsets Dtrain
f

and Dtest
f

from both the artificially constructed and the corpus-based dataset.

For each subset, we sample sentences such that both the positive

and the negative class is balanced across every value of the feature

within a certain range of values. This ensures that the probes are

unable to exploit correlations between a class and any of the above

features. We create the dataset as follows

Df =
⋃

v∈fv

⋃

l∗∈L

S(D, v, l∗, n∗),

where f is the feature, fv is the set of values for f , L =

{positive, negative} are the labels, and S is a function that returns

n∗ elements from D that have value v and label l∗.

To make this task more cognitively realistic, we aim to test if a

model is able to generalize from shorter sentences, which contain

relatively little additional information besides the parts relevant to

the classification task, to those with greater potential interference

due to more additional content that is not useful for classification.

Thus, we restrict the training set to samples from the lowest quartile

of each feature so that fv becomes [vmin
f

, vmin
f

+ 1
4 (v

max
f

− vmin
f

)]

for Dtrain
f

and [vmin
f

, vmax
f

] for Dtest
f

. We report the test performance

for every value of a given feature separately to recognize patterns.

For the artificial syntax probing, we generate 1,000 data points

for each value of each feature for each training and test for each

subset associated with a feature. For the corpus syntax probing,

we collect 9,710 positive and 533 negative sentences in total, from

which we choose 10 training and five test sentences for each value

of each feature in a similar manner. To improve comparability

FIGURE 1

Overall accuracy per layer for Dlength. All shown models are the large model variants. The models can easily distinguish between positive and negative

examples in at least some of their layers.
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and make the experiment computationally feasible, we test the

“large” size of each of our three models, using the Huggingface

Transformers library (Wolf et al., 2019). Our logistic regression

probes are implemented using Scikitlearn (Pedregosa et al., 2011).

5.2. Probing results

5.2.1. Artificial data
As shown in Figure 1, the results of our syntactic probe indicate

that all models can easily distinguish between positive and negative

examples in at least some of their layers, independently of any of the

sentence properties that we have investigated. We report full results

in Figures A1–A3 in the Appendix (Supplementary material). We

find a clear trend that DeBERTa performs better than RoBERTa,

which in turn performs better than BERT across the board. As

DeBERTa’s performance in all layers is nearly perfect, we are unable

to observe patterns related to the length of the sentence, the

start position of the CC, the start position of the second half of

the CC, and the distance between them. By contrast, we observe

interesting patterns for BERT and RoBERTa. For Dlength, and to a

lesser degree Ddistance (which correlates with it), we observe that at

first, performance goes down with increased length as we would

expect—the model struggles to generalize to longer sentences with

more interference since it was only trained on short ones. However,

this trend is reversed in the last few layers. We hypothesize this may

be due to an increased focus on semantics in the last layers (Peters

et al., 2018; Tenney et al., 2019), which could lead to interfering

features particularly in shorter sentences.

5.2.2. Corpus data
In contrast, the results of our probe on more natural data from

C4 indicate two different trends: first, as the positive and negative

instances are not identical on a bag-of-word level, performance is

not uniformly at 50% (i.e., chance) level in the first layers, indicating

that the model can exploit lexical cues to some degree. We observe

a similar trend as with the artificial experiment, which showed

that DeBERTa performs best and BERT worst. The corresponding

graphs can be found in Figures A4–A6 in Supplementary material.

Generally, this additional corpus-based experiment validates

our findings from the experiment with artificially generated data,

as all models perform at 80% or better from the middle layers

on, indicating that the models are able to classify instances of the

construction even when they are very diverse and use unseen POS

tag patterns.

Comparing the average accuracies on Dlength for both data

sources in Figure 1, we observe that all models perform better on

artificial than on corpus data from the fifth layer on, with the

notable exception of a dip in performance for BERT large around

layer 10.

6. Semantics

6.1. Probing approach

For the second half of our investigation, we turn to semantics.

In order to determine if a model has understood the meaning of

the CC, i.e., if it has understood that in any sentence, “the COMP

.... the COMP” implies a correlation between the two halves, we

adopt a usage-based approach and ask: can the model, based on

the meaning conveyed by the CC, draw a correct inference in a

specific scenario? For this, we construct general test instances of

the CC that consist of a desired update of the belief state of the

model about the world, which we then expect it to be able to apply.

More concretely, we generate sentences of the form “The ADJ1-er

you are, the ADJ2-er you are.,” while picking adjectives at random.

To this general statement, we then add a specific scenario with

two random names: “NAME1is ADJ1-er than NAME2.” and ask

the model to draw an inference from it. We first construct a test

scenario for this that works with masked language models and test

BERT, RoBERTa andDeBERTa on it, and thenmodify the setup and

move on to autoregressive models, specifically OPT (Zhang et al.,

2022).

6.2. Experiments on masked language
models

6.2.1. Probing methods
In our experiments with masked language models, we now ask

the models to draw an inference from the context by predicting a

token at the masked position in the following sentence: “Therefore,

NAME1is [MASK] than NAME2.” If the model has understood the

TABLE 4 Overview of constructions investigated in CxG-specific probing literature, with examples.

References Language Source Construction Example

Tayyar Madabushi et al.

(2020)

English From automatically constructed

list by Dunn (2017)

Personal Pronoun + didn’t + V +

how

We didn’t know how or why.

Li et al. (2022) English Argument structure constructions

according to Bencini and Goldberg

(2000)

caused-motion Bob cut the bread into the pan.

Tseng et al. (2022) Chinese From constructions list by Zhan

(2017)

a +到+爆, etc. 好吃到爆了!

It’s so delicious!

Weissweiler et al. (2022) English McCawley (1988) Comparative correlative The bigger, the better.

Mahowald (2023) English Jackendoff (1977) Article + Adjective + Numeral +

Noun

A lovely 5 days

Frontiers in Artificial Intelligence 09 frontiersin.org90

90



Weissweiler et al. 10.3389/frai.2023.1225791

TABLE 5 Overview of the schemata of all test scenarios used for semantic probing for masked language models.

No. Purpose Approach Sentence schema

S1 Base The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.

NAME1is ADJ1-er than NAME2. Therefore, NAME1is [MASK] than NAME2.

S2 Bias test Recency The ANT1-er you are, the ANT2-er you are. The ADJ1-er you are, the ADJ2-er you are.

NAME1is ADJ1-er than NAME2. Therefore, NAME1is [MASK] than NAME2.

S3 Vocabulary The ADJ1-er you are, the ANT2-er you are. The ANT1-er you are, the ADJ2-er you are.

NAME2is ADJ1-er than NAME2. Therefore, NAME1is [MASK] than NAME2.

S4 Name The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.

NAME2is ADJ1-er than NAME1. Therefore, NAME2is [MASK] than NAME1.

S5 Calibration Short NAME1is ADJ1-er than NAME2. Therefore, NAME1is [MASK] than NAME2.

S6 Name The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.

NAME1is ADJ1-er than NAME2. Therefore, NAME3is [MASK] than NAME4.

S7 Adjective The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.

NAME1is ADJ3-er than NAME2. Therefore, NAME1is [MASK] than NAME2.

meaning conveyed by the CC and is able to use it in predicting the

mask, we expect the probability of ADJ2 to be high.

To provide the model with an alternative, we add a second

sentence, another instance of the CC, using the antonyms of the

two adjectives. This sentence is carefully chosen to have no impact

on the best filler for [MASK] , but also for other reasons explained

in Section 6.2.1.1. The full test context is shown in Table 5, S1.

This enables us to compare the probability of ADJ2 for the mask

token directly with a plausible alternative, ANT2. One of our test

sentences might be “The stronger you are, the faster you are. The

weaker you are, the slower you are. Terry is stronger than John.

Therefore, Terry will be [MASK] than John,” where we compare

the probabilities of “faster” and “slower.”

Note that success in our experiment does not necessarily

indicate that themodel has fully understood themeaning of the CC.

The experiment can only provide a lower bound for the underlying

understanding of any model. However, we believe that our task

is not unreasonable for a masked language model in a zero-shot

setting. It is comparable in difficulty and non-reliance on world

knowledge to the NLU tasks presented in LAMBADA (Paperno

et al., 2016), on which GPT-2 (117 M to 1.5 B parameters) has

achieved high zero-shot accuracy (Radford et al., 2019, Table 4).

While we investigate masked language models and not GPT-2, our

largest models are comparable in size to the sizes of GPT-2 that were

used (340M for BERTL, 355M for RoBERTaL, and 1.5 B parameters

for DeBERTa-XXLL), and we believe that this part of our task is

achievable to some degree.

6.2.1.1. Biases

In this setup, we hypothesize several biases that models could

exhibit and might cloud our assessment of its understanding of the

CC, and devise a way to test their impact.

Firstly, we expect that models might prefer to repeat the

adjective that is closest to the mask token. This has recently been

documented for prompt-based experiments (Zhao et al., 2021).

Here, this adjective is ANT2, the wrong answer. To test the

influence this has on the prediction probabilities, we construct an

alternative version of our test context in which we flip the first two

sentences so that the correct answer is now more recent. The result

can be found in Table 5, S2.

Secondly, we expect that models might assign higher

probabilities to some adjectives, purely based on their frequency

in the pretraining corpus, as for example observed by Holtzman

et al. (2021). To test this, we construct a version of the test context

in which ADJ2/ANT2 are swapped, which means that we can

keep both the overall words the same as well as the position of the

correct answer, while changing which adjective it is. The sentence

is now S3 in Table 5. If there is a large difference between the

prediction probabilities for the two different versions, that this

means that a model’s prediction is influenced by the lexical identity

of the adjective in question.

Lastly, a model might have learned to associate adjectives with

names in pretraining, so we construct a third version, in which

we swap the names. This is S4 in Table 5. If any prior association

between names and adjectives influences the prediction, we expect

the scores between S4 and S1 to differ.

6.2.1.2. Calibration

After quantifying the biases that may prevent us from seeing

a model’s true capability in understanding the CC, we aim to

develop methods to mitigate it. We turn to calibration, which has

recently been used in probing with few-shot examples by Zhao

et al. (2021). The aim of calibration is to improve the performance

of a model on a classification task, by first assessing the prior

probability of a label (i.e., its probability if no context is given),

and then dividing the probability predicted in the task context by

this prior; this gives us the conditional probability of a label given

the context, representing the true knowledge of the model about

this task. In adapting calibration, we want to give a model every

possible opportunity to do well so that we do not underestimate its

underlying comprehension.

We therefore develop three different methods of removing the

important information from the context in such a way that we

can use the prediction probabilities of the two adjectives in these
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TABLE 6 Selected accuracies and results for the semantic probe.

Accuracy Decision flip

S1 S2 S2 S3 S4

BERTB 37.65 64.64 26.98 75.69 02.70

BERTL 36.85 67.21 30.44 73.31 02.32

RoBERTaB 61.60 52.84 09.91 76.18 02.76

RoBERTaL 55.71 68.00 14.33 79.47 04.33

DeBERTaB 49.72 49.80 00.91 99.66 01.07

DeBERTaL 50.88 51.40 07.04 94.83 02.23

DeBERTaXL 47.73 49.33 05.46 89.28 02.51

DeBERTaXXL 47.34 48.72 03.59 82.09 01.13

We report the average accuracy on the more difficult sentences in terms of recency bias (S1)

and the easier ones (S2), as well as the percentage of decisions flipped by changing from the

base S1 to the sentences testing for recency bias (S2), vocabulary bias (S3), and name bias (S4).

RoBERTa and DeBERTa perform close to chance on S1 and S2 accuracy, indicating that they

do not understand the meaning of CC. BERT’s performance is strongly influenced by biases

(recency, lexical identity), also indicating that it has very limited if any understanding of CC.

contexts for calibration. The simplest way of doing this is to remove

both instances of the CC, resulting in S5 in Table 5. If we want

to keep the CC in the context, the two options to remove any

information are to replace either the names or the adjectives with

new names/adjectives. We therefore construct two more instances

for calibration: S6 and S7 in Table 5.

For each calibration method, we collect five examples with

different adjectives or names. For a given base sample Sb, we

calculate Pc, the calibrated predictions, as follows:

Pc(a|Sb) = P(a|Sb)/[

i=5∑

i=1

(P(a|Ci)/5)]

where Ci is the i-th example of a given calibration technique,

a is the list of adjectives tested for the masked position, and the

division is applied elementwise. We collect a list of 20 adjectives

and their antonyms manually from the vocabulary of the RoBERTa

tokenizer and 33 common names and generate 144,800 sentences

from them. We test BERT (Devlin et al., 2019) in the sizes base

and large, RoBERTa (Liu et al., 2019) in the sizes base and large,

and DeBERTa (He et al., 2020) in the sizes base, large, xlarge, and

xxlarge.

6.2.2. Results
In Table 6, we report the accuracy for all examined models. Out

of the three variations to test biases, we report accuracy only for

the sentence testing the recency bias as we expect this bias to occur

systematically across all sentences: if it is a large effect, it will always

lead to the sentence where the correct answer is themore recent one

being favored. To assess the influence of each bias beyond accuracy,

we report as decision flip the percentage of sentences for which the

decision (i.e., if the correct adjective had a higher probability than

the incorrect one) was changed when considering the alternative

sentence that was constructed to test for bias. We report full results

in Table 7.

Looking at the accuracies, we see that RoBERTa’s andDeBERTa’s

scores are close to 50 (i.e., chance) accuracy for both S1 and S2.

BERT models differ considerably as they seem to suffer from bias

related to the order of the two CCs, but we can see that the average

between them is also very close to chance. When we further look at

the decision flips for each of the biases, we find that there is next

to no bias related to the choice of names (S4). However, we can

see a large bias related to both the recency of the correct answer

(S2) and the choice of adjectives (S3). The recency bias is strongest

in the BERT models, which also accounts for the difference in

accuracies. For RoBERTa and DeBERTa models, the recency bias

is small, but clearly present. In contrast, they exhibit far greater

bias toward the choice of adjective, even going as far as 99.66%

of decisions flipped by changing the adjective for DeBERTa base.

This suggests that these models’ decisions about which adjective to

assign a higher probability is almost completely influenced by the

choice of adjective, not the presence of the CC. Overall, we conclude

that without calibration, all models seem to be highly susceptible

to different combinations of bias, which completely obfuscate any

underlying knowledge of the CC, leading to an accuracy at chance

level across the board.

We therefore turn to our calibration methods, evaluating them

first on their influence on the decision flip scores, which directly

show if we were able to reduce the impact of the different types

of bias. We report these only for order and vocabulary bias as we

found name bias to be inconsequential. We report the complete

results in Table 7. We see that across all models, while all three

calibration methods work to reduce some bias, none does so

consistently across all models or types of bias. Even in cases where

calibration has clearly reduced the decision flip score, we find that

the final calibrated accuracy is still close to 50%. This indicates that

despite the effort to retrieve any knowledge that the models have

about the CC, they are unable to perform clearly above chance, and

we have therefore found no evidence that the investigated models

understand and can use the semantics of the CC.

To investigate if this was result was exclusive to smaller, masked

language models, we repeat our experiment and turn to larger,

autoregressive models, more specifically, different sizes of OPT

(Zhang et al., 2022).

6.3. Experiments on autoregressive
language models

6.3.1. Methods
6.3.1.1. Probing setup

Since we concluded from our experiments with masked

language models that none of them have reached significant

performance on our task, we move on to investigating newer

autoregressive models. We hope that as these models have

been shown to perform significantly better on natural language

understanding (NLU; Zhang et al., 2022), which is a prerequisite

for our probing setup, their performance will be more directly

indicative of their understanding of the CC in context.

As we can no longer perform our experiments on the basis of

comparing the predictions for a given MASK token, we modify

the setup such that our metric is based on the comparison of

the perplexity of two competing whole sentences. Our main idea

is to no longer work with antonyms but instead create contrast
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TABLE 7 Accuracies for the semantic probe with our three calibration methods compared to no calibration.

Accuracies Decision flips

Model Test sentence − S5 S6 S7 − S5 S6 S7

BERTB

S1 37.65 37.62 44.39 47.9 – – – –

S2 64.64 62.79 56.66 55.41 26.99 25.22 14.75 10.77

S3 38.04 44.78 44.09 48.29 75.69 23.51 86.33 91.05

S4 – – – – 2.71 – – –

BERTL

S1 36.85 31.91 47.21 44.03 – – – –

S2 67.13 73.48 54.39 64.45 30.44 41.8 13.37 22.24

S3 36.46 43.43 47.79 44.36 73.31 25.94 88.65 85.97

S4 – – – – 2.32 – – –

RoBERTaB

S1 61.6 58.76 42.13 62.32 – – – –

S2 52.85 51.35 71.33 60.25 9.92 8.67 31.13 10.86

S3 62.21 55.17 43.04 62.76 76.19 22.04 79.03 74.75

S4 – – – – 2.76 – – –

RoBERTaL

S1 55.72 58.37 65.08 69.53 – – – –

S2 68.01 74.53 62.73 77.76 14.34 17.82 15.94 15.86

S3 55.36 52.02 65.28 69.23 79.48 43.64 79.75 78.32

S4 – – – – 3.25 – – –

DeBERTaB

S1 41.61 36.41 32.79 43.27 – – – –

S2 42.95 43.04 33.77 42.36 24.21 24.4 8.79 7.49

S3 41.92 38.64 32.39 43.31 74.58 17.83 72.29 64.42

S4 – – – – 1.67 – – –

DeBERTaL

S1 58.5 60.34 45.17 65.42 – – – –

S2 64.56 66.43 49.99 62.77 13.47 14.27 14.43 13.15

S3 58.8 59.84 45.41 65.45 78.25 30.36 75.61 70.21

S4 – – – – 2.65 – – –

DeBERTaXL

S1 67.24 74.59 57.33 76.64 – – – –

S2 76.31 78.92 63.75 78.41 18.02 18.79 17.37 16.48

S3 67.28 74.35 57.51 76.69 82.35 43.29 78.43 72.99

S4 – – – – 3.34 – – –

We report the average accuracy on the more difficult sentences in terms of recency bias (S1), the easier ones (S2), and vocabulary bias (S3), as well as the percentage of decisions flipped by

changing from the base S1 to each sentence. Our calibration techniques are short (S5), name (S6), and adjective (S7).

FIGURE 2

Accuracy and name bias scores for test sentences S8–S11 on the left and S12–S15 on the right, on di�erent sizes of OPT.
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TABLE 8 Overview of the schemata of test scenarios S8–S15, used for semantic probing for autoregressive language models.

No. Name order Validity Sentence schema

S8 Same True The ADJ1-er you are, the ADJ2-er you are. NAME1is ADJ1-er than NAME2.

Therefore, NAME1will be ADJ2-er than NAME2.

S9 False The ADJ1-er you are, the ADJ2-er you are. NAME1is ADJ1-er than NAME2.

Therefore, NAME2will be ADJ2-er than NAME1.

S10 True The ADJ1-er you are, the ADJ2-er you are. NAME2is ADJ1-er than NAME1.

Therefore, NAME2will be ADJ2-er than NAME1.

S11 False The ADJ1-er you are, the ADJ2-er you are. NAME2is ADJ1-er than NAME1.

Therefore, NAME1will be ADJ2-er than NAME2.

S12 Flipped True The ADJ1-er you are, the ADJ2-er you are. NAME1is less ADJ1 than NAME2.

Therefore, NAME2will be ADJ2-er than NAME1.

S13 False The ADJ1-er you are, the ADJ2-er you are. NAME1is less ADJ1 than NAME2.

Therefore, NAME1will be ADJ2-er than NAME2.

S14 True The ADJ1-er you are, the ADJ2-er you are. NAME2is less ADJ1 than NAME1.

Therefore, NAME1will be ADJ2-er than NAME2.

S15 False The ADJ1-er you are, the ADJ2-er you are. NAME2is less ADJ1 than NAME1.

Therefore, NAME2will be ADJ2-er than NAME1.

by swapping the two names in the last sentence. Given the

context “The ADJ1-er you are, the ADJ2-er you are. NAME1is

ADJ1-er than NAME2.,” we contrast the perplexities of “Therefore,

NAME1will be ADJ2-er than NAME2” and “Therefore, NAME2

will be ADJ2-er than NAME1.” While the sentences are bag-of-

words equivalent, only the first one follows from the context.

This has the additional effect of removing the confounding

factor of the second sentence with antonyms from the factors

that influence the model’s performance. For example, we would

now contrast “The stronger you are, the faster you are. Terry

is stronger than John. Therefore, Terry will be faster than

John” with “The stronger you are, the faster you are. Terry is

stronger than John. Therefore, John will be faster than Terry.”

6.3.1.2. Name bias

Similarly to our previous experiment in Section 6.2.1, we

hypothesize biases to this setup and test them. Our “adjective bias”

and “recency bias” are not immediately applicable here, as we no

longer have a masked token.

However, we expect that models might consistently prefer one

final sentence, which is the one that changes the acceptability of

the entire test phrase, over another, regardless of context. To test

this, we construct a second pair of sentences, where the names are

swapped both times. This means that when iterating through all 4-

tuples of sentences that belong together, we can now compare all

four and count only those as valid results where either both pairs

were correctly classified or both were incorrectly classified. For the

others, where one was correct and the other incorrect, this indicates

that the model preferred one final sentence over the other in all

contexts. We count how many times this occurs to quantify the

strength of this name bias in a model.

6.3.2. Initial results
For our results, we consider each four-tuple of sentences S8-

S11.We perform perplexity comparisons twice: firstly, we expect the

perplexity of S8 to be lower than that of S9; secondly, we anticipate

the perplexity of S10 to be lower than that of S11. We denote C

to represent the count of correct results where both conditions

are met, I to represent the count of incorrect results where both

conditions fail, and In to represent the count of inconclusive results

where one condition is met and the other is not.

The general trend for these three counts can be seen in the right

half of Figure 2. As the models increase in size, C rises and In drops,

with I remaining generally low. The only exception to this is the

OPT-1.3b model, for unknown reasons.

We then develop two more abstract metrics based on these

counts:

1. We define the accuracy, A, as the number of correct responses

divided by the number of valid responses (correct and incorrect

ones). In mathematical terms: A = C
C+I .

2. As a complementary metric, we define the “name bias,” B, as

the percentage of inconclusive responses over total responses.

Mathematically, B = In
C+I+In .

We use “name bias” to denote situations where the model

consistently favored one of the two possibilities for the last sentence,

indicating a possible bias for this sentence, perhaps due to the order

of names and the combination with the particular adjective.

Our observations show that A remains consistently high (with

the exception of 1.3 b) and B decreases as the model size increases.

These results were initially encouraging for the hypothesis that

larger, autoregressive models are able to capture the semantics

of the CC. However, there is one important possibility for bias

in all four sentences: the correct answer is consistently that in
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which the two names are in the same order in both sentences.

We therefore have to examine the possibility that the near-perfect

accuracy displayed in our task is merely due to the name order

being parallel and not to any deeper understanding of the sentences.

6.3.3. Additional experiment
We therefore construct four additional sentences, named S12–

S15 in Table 8. They are constructed with “less,” to ensure that the

correct answer is now the one where the order of names is swapped.

We rerun the same experiment as before with these sentences.

We expect that if the model was merely preferring the parallel

order of names, the accuracy would be close to zero, whereas a

continued good accuracy would indicate that it formed a deeper

understanding of the task.

The results in Figure 2 show that unfortunately the former was

the case: all values are approximately inverted compared to the first

experiment. If the model had formed an understanding of the CC

in this task, our reformulation of the task could not have completely

destroyed the performance. We therefore conclude that none of the

models, at least in this setup, have demonstrated an understanding

of the CC.

6.4. Problem analysis

Different conclusions might be drawn as to why none of

these models have learned the semantics of the CC. Firstly, they

might not have seen enough examples of it to have formed a

general understanding. Given the amount of examples that we

were able to find in C4, and the overall positive results from

the syntax section, we find this to be unlikely. Secondly, it could

be argued that models have never had a chance to learn what

the CC means because they have never seen it together with a

context in which it was immediately applied, and do not have

the same opportunities as humans available, which would be to

either interact with the speaker to clarify the meaning, or to make

deductions using observations in the real world. This is in line

with other considerations about large PLMs acquiring advanced

semantics, even though it has for many phenomena been shown

that pre-training is enough (Radford et al., 2019). Lastly, it might

be possible that the type of meaning representation required to

solve this task is beyond the current transformer-style architectures.

Overall, our finding that PLMs do not learn the semantics of the CC

adds to the growing body of evidence that complex semantics like

negation (Kassner and Schütze, 2020) is still beyond state-of-the-art

PLMs.

7. Conclusion

We have made a first step toward a thorough investigation of

the compatibility of the paradigm of CxG and the syntactic and

semantic capabilities exhibited by state-of-the-art large PLMs. For

this, we chose the English comparative correlative, one of the most

well-studied constructions, and investigated if large PLMs based

on masked language modeling have learned it, both syntactically

and semantically. We found that even though they are able to

classify sentences as instances of the construction even in difficult

circumstances, they do not seem to be able to extract the meaning it

conveys and use it in context, indicating that while the syntactic

aspect of the CC is captured in pretraining of these models, the

semantic aspect is not. We then repeated a modified version of our

semantic experiments with larger, autoregressive language models,

and found that they were similarly unable to capture the semantics

of the construction.

8. Limitations

As our experimental setup requires significant customization

with regards to the properties of the specific construction we

investigate, we are unable to consider other constructions or

other languages in this work. We hope to be able to extend our

experiments in this direction in the future. Our analysis is also

limited—as all probing papers are—by the necessary indirectness

of the probing tasks: we cannot directly assess the model’s internal

representation of the CC, but only construct tasks that might show

it but are imperfect and potentially affected by external factors.
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Abstract
In this paper, we make a contribution that can be understood from two perspectives: from an NLP perspective,
we introduce a small challenge dataset for NLI with large lexical overlap and show that GPT-4 and Llama 2 fail it
completely, and then create further challenging subtasks to attempt to explain this failure. From a Computational
Linguistics perspective, we identify a group of two constructions with three classes of adjectives which cannot
be distinguished by surface features. This enables us to probe for LLM’s understanding of these constructions
in various ways, and we find that they fail in a variety of ways to distinguish between them, suggesting that they
don’t adequately represent their meaning.

Keywords:LLMs, construction grammar, semantics, natural language inference, prompting

1. Introduction

This paper focuses on three families of adjec-
tive phrases that all contain the intensifier so and
a finite clausal complement. As shown in Fig-
ure 1, they look superficially similar, but have dif-
ferent meanings and syntactic behaviour. The
purpose of this paper is to test large language
models (LLMs) for their ability to differentiate be-
tween them, enabling us to draw larger conclu-
sions about LLM’s understanding of construc-
tions, meaning-bearing units that contain multiple
words, morphemes, and syntactic relationships.
Two of the three types of adjectives lexically li-

cense finite complement clauses such as happy in
happy that I was freed and certain in certain that
I saw you, for which the intensifier so is optional
(so certain that I saw you or certain that I saw you).
When combined with a complement clause, ad-
jectives like happy (mostly affective adjectives) dif-
fer in meaning from adjectives like certain (mostly
epistemic adjectives). An affective adjective with
a complement usually triggers an inference that
the complement caused the feeling expressed by
the adjective. For example, in happy that I was
freed, we can infer that freeing me caused me to
be happy. In contrast, in certain that I saw you,
seeing you is not the cause of my being certain.
In fact, I might not have seen you.
The third class is the Causal Excess Construc-

tion (CEC, Kay and Sag, 2012; Fillmore et al.,
2012), where the adjective is interpreted as the
cause of the complement. For example in so
happy that I cried, being happy is interpreted as
the cause of my crying. Crucially, the CEC can
contain adjectives that do not license a clausal
complement on their own. So big that it fell over is
not acceptable without so. *Big that it fell over is

Epistemic Adjective
Phrases (EAP) I was so certain that I saw you

Affective Adjective
Phrases (AAP) I was so happy that I was freed

Causal Excess
Construction (CEC) I was so happy that I cried

causality

causality

Figure 1: Examples of the clausal complement and
causal excess constructions. Markers of the construc-
tions are boxed in red.

ungrammatical. Conversely, and importantly for
the experiments we present, any sentence with-
out so cannot be CEC, so although so happy that
I cried can be CEC, happy that I cried cannot be
CEC—crying has to be the cause of happiness
in the latter example. Kay and Sag classify CEC
as a head-functor construction because it is the
function word so, that licenses the clausal comple-
ment, not the lexical head. Many adjectives can
occur both in the CEC and with lexically licensed
complements (so happy that I cried). When both
complements occur, the lexically licenced one ap-
pears closer to the head adjective (so happy that
you are here that I cried vs *so happy that I cried
that you are here.)
In this work, we ask: how well can LLMs dif-

ferentiate between these constructions? They of-
fer an ideal testbed for linguistic probing, since
they are structurally identical, which means that
there are no exploitable surface cues, and above-
baseline performance necessarily stems from a
deeper world knowledge, which allows the model
to interpret these sentences correctly. Specifi-
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cally, we investigate GPT-3.5 (OpenAI, 2021), GPT-
4 (OpenAI, 2023), OpenAI’s ada-002 and Llama
2 (Touvron et al., 2023) with various questions, for
each using both a prompt and a probing classi-
fier.1 We have observed that, LLMs exhibit lim-
ited capability to effectively discriminate between
these constructions with a high degree of accu-
racy, and display a strong bias towards CEC,
meaning LLMs tend to judge sentences contain-
ing so... that... as causal and the main clause be-
ing the reason for the subordinate clause. Gener-
ally, Llama 2 demonstrates superior performance
compared to both GPT-3.5 and GPT-4.

2. Related Work

Our work is situated in the framework of Construc-
tion Grammar (CxG), which asserts that there is
not a strict division between lexicon and syntax,
and that there are meaning-bearing units that con-
sist of multiple words and morphemes, i.e. syn-
tactic structures are paired with meanings just as
words are (Croft, 2001; Fillmore et al., 1988; Gold-
berg, 1995, 2006; Hoffmann and Trousdale, 2013).
In this work, we define a construction as a pairing
of form and meaning. We are considering AAP,
EAP and CEC to be three different constructions.
They differ in meaning (affective, epistemic, and
excessive states) and in form (a clause that is li-
censed by a lexical head and a clause that is li-
censed by the intensifier so.)
Recent studies have used CxG to probe the in-

ner workings of LLMs (Weissweiler et al., 2022;
Chronis et al., 2023; Mahowald, 2023), as well as
made general observations about the compatibil-
ity of the theory of CxG with the recent successes
of LLMs (Goldberg, To appear; Weissweiler et al.,
2023). Most related to our work, McCoy et al.
(2019) construct a challenging dataset for Natural
Language Inference that uses pairs of sentences
with high lexical overlap. They show that the sur-
face similarity of words almost always fools BERT
into assuming that one sentence entails the other.
Recent work (Si et al., 2022; Basmov et al., 2023)
suggests that performance of recent LLMs on the
McCoy et al. (2019) data has improved, though it
is still far from perfect, which is part of our motiva-
tion to create a new challenge dataset.

3. Dataset

Our data collection process takes advantage of
Universal Dependencies (Nivre et al., 2020) an-
notations, which we use for prefiltering before
manual annotation. We use SPIKE (Shlain et al.,
2020) to access a parsed Wikipedia corpus and

1See Appendix Table 7 for hyperparameters

a parsed Amazon Reviews corpus. We estab-
lished that the parse trees of all CEC AAP and
EAP constructions have an edge labelled ccomp
from the adjective to the head verb of the com-
plement clause. We use SPIKE to extract all sen-
tences matching this pattern.
We group the sentences by adjective andmanu-

ally, where possible, extract a sentence pair where
one is CEC and one either AAP or EAP resulting
in 111 such pairs. For the adjectives that cannot
license a clausal complement, we extract 101 sen-
tences, each with a different adjective. We call
this class OCE(only causal excess).
In total, we collected 323 sentences with 212

different adjectives.2 An example of each sen-
tence type is given in the first row of Table 1.

4. Experiments

We conduct our experiments with two methods.
The first approach involves the development of
both implicit and explicit prompts.3 In the second
approach, we extract the last-layer embeddings
of sentences generated by LLMs and then apply
perceptron-based classification to these embed-
dings, to assess how well the categories are inter-
nally represented in the models.
Probing Classifiers We employ a perceptron
classifier to test the final layer embeddings of
Llama 2, and ada-002 sentence embeddings.
For Llama 2, we use the mean over token em-
beddings as a sentence embedding, and also test
on only adjective embeddings. When the two
classes tested are imbalanced, we upsample the
smaller class. We group sentences containing the
same adjectives together and trained the percep-
tron using cross-validation over adjectives, mean-
ing that the adjective itself is no longer an ex-
ploitable feature. A Bag-of-Words (BoW) model
serves as the baseline.

4.1. Natural Language Inference
As shown in Table 2 (Prompts 1-X), we design
four prompt variants to test whether LLMs can de-
tect significant changes in meaning when so is re-
moved from sentences of the CEC type. For ex-
ample, I was so happy that I cried does not auto-
matically entail I was happy that I cried, whereas I
was so happy that I was freed entails I was happy
that I was freed.
The results shown in Figure 2 are striking: For

CEC and OCE sentences, models achieve accu-

2Data and code are available at
https://github.com/shijiazh/
Constructions-Are-So-Difficult

3For each prompt, we repeat the mean over six runs
of the experiment.
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Type Transformation CEC OCE AAP EAP

O Original I was so happy that I cried. It was so big that it fell over. I was so happy that I was freed. I was so certain that I saw you.

DS − ‘so’ I was {} happy that I cried. It was {} big that it fell over . I was {} happy that I was freed. I was {} certain that I saw you.
DT − ‘that’ I was so happy {} I cried. It was so big {} it fell over . I was so happy {} I was freed. I was so certain {} I saw you.
DST − ‘so’ & ‘that’ I was {} happy {} I cried. It was {} big {} it fell over . I was {} happy {} I was freed. I was {} certain {} I saw you.

AN + ‘not’ I was not so happy that I cried. It was not so big that it fell over . I was not so happy that I was freed. I was not so certain that I saw you.

P1 main clause I was so happy. It was so big. It was so happy. I was so certain.
P2 sub. clause I cried. It fell over. I was freed. I saw you.

Y-N yes–no question Did I cry? Did it fall over? Was I freed? Did I see you?

Table 1: Transformations of the dataset with examples

racy below 10%, while demonstrating 90% accu-
racy for AAP and EAP. It indicates a pronounced
bias towards entailment in themodels, which repli-
cates a behaviour shown for much smaller mod-
els: “assume that a premise entails all hypotheses
constructed fromwords in the premise” byMcCoy
et al. (2019).

C
E

C

Prompt 1-1 Prompt 1-2 Prompt 1-3 Prompt 1-4
100%

75%

50%

25%

0%
100%

75%

50%

25%

0%
100%

75%

50%

25%

0%
100%

75%

50%

25%

0%

A
cc

ur
ac

y

GPT- 
3.5

GPT- 
4

Lla
ma 2

GPT- 
3.5

GPT- 
4

Lla
ma 2

GPT- 
3.5

GPT- 
4

Lla
ma 2

GPT- 
3.5

GPT- 
4

Lla
ma 2

O
C

E
A

A
P

E
A

P

Figure 2: Performance of CEC, OCE, AAP, EAP on the
central NLI task. Corresponding gold labels are no en-
tailment, no entailment, entailment, and entailment. All
models have a strong bias to answer entailment.

In the following, we investigate three hypothesis
that further decompose why LLMs fail at this task:
(i) LLMs fail to recognize that removing so gram-
matically disrupts the causal excess construction;
(ii) LLMs are unable to identify causality in sen-
tences; (iii) LLMs do not recognize the change in
the direction of causality.

4.2. Grammatical Acceptability
Prompting We base our template for grammat-
icality judgments on Mahowald (2023): 8 pairs
of sentence and judgment from the CoLA corpus
(Warstadt et al., 2019) are given. The target sen-
tence is inserted, and the model is asked to gen-
erate one token, good or bad.4
We test the original sentences (O) and four

transformations: DS, DT, DST, and AN. Deleting
that (DT) or adding not (AN) will not affect the

4The full prompt is given in the Appendix.

grammaticality, whereas removing so (DS) from
CEC makes the grammaticality debatable and for
OCE sentences, renders them ungrammatical.
As can be seen in Table 3, compared to CEC

OCE is more likely to be rated as bad by both
GPT-3.5 and GPT-4, regardless of the transforma-
tion. When the gold label for both is bad, the gap
of their accuracy increases. It demonstrates that
GPT models have indeed detected the distinction
between OCE and CEC especially regarding their
reliance on the grammaticality with so. Notably,
for GPT models, removing that from of AAP and
EAP sentences results in more good, whereas re-
moving that from DS sentences tends to yield
more bad ratings even though it has no effect on
grammaticality.
Llama 2’s answers deviate from that of GPT

models. It rates all O, DT, and AN sentences
as good, which is exactly the gold label, signi-
fying its robust inclination to not only consider
sentences featuring so... that... as acceptable,
but also acknowledge the possibility of omitting
that in such contexts. However, its performance
on DS and DST is far from perfect. Although it
achieves higher accuracy for the DS variants of
CEC, categorized as bad, the 50.03% accuracy is
akin to random performance. Additionally, GPT4
performs better on the DS variants of LLC.5

4.3. Identifying Causality
Prompting As depicted in Table 4, we devise
two prompts to assess the models’ capability to
identify causal relationships. The first simply asks
about a causal relationship between the main and
the subordinate clause, while the second addi-
tionally provides the pre-segmented parts. In the
EAP category, all models have accuracy below
20%, suggesting a predisposition to infer causal-
ity in sentences containing so... that... even when
the adjective is epistemic. Llama 2 displays a
stronger bias, attributing causality to over 90% of
sentences in all categories. Combining the previ-
ous observation that Llama 2 tends to categorise
every sentence containing so and that as gram-
matically correct, along with its sensitivity to the

5A probing classifier for this prompting task would
not be well-defined.
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No. Template

1
1 premise: O ⧵n hypothesis: DS ⧵n Classify as entailment, no entailment, or contradiction.
2 premise: O ⧵n hypothesis: DS ⧵n Classify as entailment, no entailment, or contradiction.
3 O Can we infer that “DS”? ⧵n Answer with yes, no or uncertain.
4 O Can we infer that “DS”? ⧵n Answer with yes, no or uncertain.

3 1 O ⧵n Is there a causal relationship between the main clause and the subordinate clause? ⧵n Answer with yes, no or uncertain.
2 O ⧵n Part1: P1 ⧵n Part2: P2 ⧵n Is there a causal relationship between part 1 and part 2? ⧵n Answer with yes, no or uncertain.

4

1 premise: O ⧵n hypothesis: P2 ⧵n Classify as entailment, no entailment, or contradiction.
2 O ⧵n Y-N ⧵n Answer with yes, no or uncertain.
3 O ⧵n Part1: P1 ⧵n Part2: P2 ⧵n Can we infer that Part1 is the cause of Part2? ⧵n Answer with yes, no or uncertain.
4 O ⧵n Part1: P1 ⧵n Part2: P2 ⧵n Can we infer that Part2 is the cause of Part1? ⧵n Answer with yes, no or uncertain.
5 O ⧵n This entails one of two options. ⧵n 1) P1 because P2 ⧵n 2) P2 because P1 ⧵n Answer with the correct number.

Table 2: Prompt templates of the central NLI task. To test the stability of model responses, we design variants of
each prompt, removing only so from premise as hypothesis or removing both so and that.

No. Model CEC OCE AAP EAP Gold Label

O
GPT-3.5 92.43 89.31 80.96 73.57

G|G|G|GGPT-4 92.97 89.31 81.93 73.57
Llama 2 100.00 100.00 100.00 100.00

DS
GPT-3.5 15.31 36.83 87.23 79.28

B|B|G|GGPT-4 15.68 36.43 88.92 78.57
Llama 2 23.70 39.58 80.62 83.34

DT
GPT-3.5 89.55 80.40 72.29 60.00

G|G|G|GGPT-4 88.83 80.40 70.60 56.43
Llama 2 100.00 100.00 100.00 100.00

DST
GPT-3.5 32.61 57.83 67.95 65.71

B|B|G|GGPT-4 33.33 57.83 68.92 65.72
Llama 2 50.03 49.77 60.50 76.46

AN
GPT-3.5 90.63 83.76 74.46 69.29

G|G|G|GGPT-4 90.45 84.36 76.14 74.29
Llama 2 100.00 100.00 100.00 100.00

Table 3: Accuracy of the grammaticality task. Bold font
indicates the models with the highest accuracy for a
type and transformation. G: good, B: bad.

No. Model CEC OCE AAP EAP Gold Lab.

3-1
GPT-3.5 60.90 67.33 41.68 18.57

Y|Y|Y|NGPT-4 58.74 63.37 41.20 15.00
Llama 2 98.65 95.05 95.18 08.93

3-2
GPT-3.5 64.14 54.46 49.15 06.43

Y|Y|Y|NGPT-4 65.95 57.03 46.02 04.28
Llama 2 99.10 95.54 92.78 08.93

Table 4: Accuracy of the task of identifying causality
with different prompts

absence of so in CEC, this suggests a limited
grasp of semantic nuances and an overreliance
on simple lexical cues. GPT models both strug-
gle about equally, with less than 50% accuracy in
AAP instances. Even more perplexing, EAP sen-
tences are classified as causal at a significantly
higher rate than CEC and OCE.
Probing Classifier The classifiers for CEC vs
EAP and AAP vs EAP serve to assess the models’
representation of causality. As illustrated in Figure
3, on CEC vs EAP, perceptrons trained on sen-
tence embeddings beat the baseline while those
trained on adjective embeddings do not, suggest-
ing that causality is encoded, but not necessarily
in the adjective. Interestingly, the adjective per-
ceptron beats the baseline on the AAP vs EAP
test, even though the sets of adjectives are mu-
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Figure 3: Accuracy of perceptrons trained with differ-
ent embeddings across three tasks. In all subtasks in-
volving CEC structures, we attempt to replace CECwith
OCE. OCE adjectives are mutually exclusive with those
in EAP and AAP.

tually exclusive and we perform cross-validation
over them, meaning that the only source of infor-
mation left would be a deeper commonality be-
tween them. This suggests that the models may
have learned common features for affective and
epistemic adjectives, respectively. Furthermore,
the result also demonstrates that the distinction
between EAP and CEC is more pronounced in the
model’s perspective compared to the distinction
between EAP and AAP, especially for Llama 2 sen-
tence embeddings.

4.4. Direction of Causality

Prompting The negation not before so influ-
ences the truth value of the subclause for CEC
but has no influence in AAP. For instance, He was
not so big that he fell. (CEC) does not imply that
he fell, while He was not so happy that he went.
(LLC) suggests that he went. Asking the model to
distinguish between these is equivalent to distin-
guishing the direction of causality.
Therefore, we have devised an explicit NLI

prompt 4-1 (Webson and Pavlick, 2022) and an
implicit prompt 4-2 (AN + Y-N) to explore these
effects. Accurate answers depend on the mod-
els’ precise understanding of the causal direction.
In addition, we introduced prompt 4-3, where P1
and P2 are provided, and the question is whether
P1 is the cause of P2. Prompt 4-4 maintains the
same structure but now inquires whether P2 is
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Type Model CEC OCE AAP Gold Labels

4-1
GPT-3.5 29.19 28.71 62.41

N|N|YGPT-4 29.01 26.93 62.65
Llama 2 49.10 39.60 53.62

4-2
GPT-3.5 2.52 4.55 60.24

N|N|YGPT-4 2.16 4.95 60.72
Llama 2 18.47 16.34 40.97

4-3
GPT-3.5 82.88 74.46 13.25

Y|Y|NGPT-4 83.96 77.03 8.91
Llama 2 93.69 87.13 46.99

4-4
GPT-3.5 42.70 50.69 44.09

N|N|YGPT-4 40.18 48.31 47.95
Llama 2 71.17 77.23 81.92

4-5
GPT-3.5 60.72 61.19 77.59

2)|2)|1)GPT-4 54.78 60.80 79.27
Llama 2 45.49 51.98 78.31

Table 5: Accuracy of direction of causality task with dif-
ferent prompts. Y: yes/entailment, N: no/contradiction.

the cause of P1. Prompt 4-5 is structured as a
multiple-choice format, offering two directions as
options.
As can be seen in Table 5, results for prompts

4-1 and 4-2 suggest that they bias all models to-
wards answering yes for any sentence. By con-
trast, prompts 4-3 and 4-4 show a clearer pic-
ture, still biased, but Llama 2 scores clearly corre-
late with the gold label. By comparing these two
sets of prompts, we can discern that Llama 2’s re-
sponses are grounded in an analysis of P1 and
P2, rather than simply providing uniform yes or
no answers. Interestingly, prompt 4-5 has elicited
better performance from the GPT models in con-
trast, suggesting that it might be more suited to
the multiple-choice answer format. We conclude
that all models have some representation of the
direction of causality, but it is far from perfect.

Probing Classifier The classifier for CEC vs
AAP serve to assess the models’ capability to dif-
ferentiate the direction of causality. The results in
Figure 3 are similar to those for identifying causal-
ity in section 4.3, with the notable exception of
the OCE test set, which is easiest for the adjec-
tive classifiers with no obvious explanation.
Figure 3 displays that on CEC vs AAP, simi-

lar to CEC vs EAP, models trained with sentence
embeddings outperform the baseline, while those
trained with adjective embeddings slightly lag be-
hind. Additionally, the perceptron attains the high-
est accuracy on the OCE test set.
Given that adjectives in OCE can only appear

in CEC, while adjectives in CEC can also occur
in AAP or EAP, this can be interpreted as OCE’s
adjective embeddings beingmore easily identified
as belonging to the CEC structure than those of
CEC.

5. Conclusion

Overall, our most striking result remains that
no LLM performed adequately on our NLI task,
and that this result is not sufficiently explained
by the mediocre but better-than-baseline perfor-
mance on the subtasks. Llama 2 performed bet-
ter in those than the GPT models, but generally,
prompting results are often consistently below
random and probing classifier results only slightly
above baseline. Interestingly, GPT-4 does not per-
form significantly better than GPT-3.5 at any task.
Both in the central NLI task, and the sub-tasks,

all LLMs show bias to offer positive answers.
Llama 2 demonstrates a more comprehensive un-
derstanding of the grammatical structures within
CE, an enhanced ability to identify causality within
sentences, and a greater proficiency in ascertain-
ing the direction of causality compared to GPT
models. These findings align with our initial ob-
servations in the central NLI task.
We have excluded the following from the cur-

rent work: (1) Extraposition from clausal subject
(That I left was so bad/It was so bad that I left)
(2) CEC meanings with other intensifiers such as
enough and non-finite clauses (big enough to fall
over) (3) CEC headed by nouns (so many people
that the police came). We have also not inves-
tigated the CEC in sentences other than copula
sentences, or when the CEC adjective is part of a
noun phrase (I met many people so short that they
couldn’t reach the counter).
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Now we are going to say which sentences are
acceptable (i.e., grammatical) and which are not.

Sentence: Flosa has often seen Marn.
Answer: good

Sentence: Chardon sees often Kuru.
Answer: bad

Sentence: Bob walk.
Answer: bad

Sentence: Malevolent floral candy is delicious.
Answer: good

Sentence: The bone chewed the dog.
Answer: good

Sentence: The bone dog the chewed.
Answer: bad

Sentence: I wonder you ate how much.
Answer: bad

Sentence: The fragrant orangutan sings loudest at
Easter.
Answer: good

Sentence: [TEST SENTENCE GOES HERE]
Answer:
Sentence: I wonder you ate how much.
Answer: bad

Sentence: The fragrant orangutan sings loudest at
Easter.
Answer: good

Sentence: [TEST SENTENCE GOES HERE]
Answer:

Table 6: Few-shot CoLA prompts template created by
Mahowald (2023). We tested 5 types of sentence: O,
DS, DT, DST and AN.
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Appendix

GPT-3.5/GPT-4 Llama 2
temperature 1 0.7
top_p 1 0.95
top_k - 40
max_tokens null 512
frequency_penalty 0 -
presence_penalty 0 -

Table 7: Hyperparameters for GPT-3.5, GPT-4, Ope-
nAI’s ada-002 and Llama 2
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Adjective Type Sentence
CEC In one XFM show , he became so frustrated that he left the room before Karl finished the

segment .frustrated AAP I am so frustrated that a $ 500 purchase brought such short lived joy .
CEC Mandhata had dominated the whole planet and he became so proud that he wanted to

rule heaven also .proud AAP My dad was so proud that his son made ” aliyah ” .
CEC One man was so afraid that he camped in the middle of his flock , hoping to evade

patrolling cowboys .afraid EAP He was so afraid that rival loyalist inmates wished to kill him inside the prison .
CEC Like Napoleon , Hitler was so optimistic that he falsely believed he ’d make it to Moscow

before Winter .optimistic EAP I am so optimistic that I made the best choice .
abrupt OCE The growth was so abrupt that a village sprang .
beautiful OCE The palace was so beautiful that the king of Mengwi heard of Tan Cin Jin .

Table 8: Examples from the collected database. CEC represents causal excess construction, where the adjective
is interpreted as the cause of the complement. AAP stands for affective adjective phrases, which usually trigger an
inference that the complement caused the feeling expressed by the adjective. EAP stands for epistemic adjective
phrases, which lexically liscence non-causal complement.
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Abstract
The Universal Dependencies (UD) project has created an invaluable collection of treebanks with contributions
in over 140 languages. However, the UD annotations do not tell the full story. Grammatical constructions that
convey meaning through a particular combination of several morphosyntactic elements—for example, interrogative
sentences with special markers and/or word orders—are not labeled holistically. We argue for (i) augmenting UD
annotations with an annotation layer for such meaning-bearing grammatical constructions, and (ii) approaching this in
a typologically informed way so that morphosyntactic strategies can be compared across languages. As a case study,
we consider five construction families in ten languages, identifying instances of each construction in UD treebanks
through the use of morphosyntactic patterns. In addition to findings regarding these particular constructions, this
study yields important insights on methodology for describing and identifying constructions in language-general and
language-particular ways, and lays the foundation for future constructional enrichment of UD treebanks.

Keywords: grammatical constructions, treebanks, Universal Dependencies, typology, corpus annotation

1. Introduction

The notion of a construction is an important concept
in grammar as it allows for an analysis of patterns of
form and function within languages as well as sys-
tematic comparisons across languages. Consider
the WH-interrogatives in English and Coptic. While
English uses a combination of WH-words and word
order to encode such questions, Coptic typically
leaves WH-words in situ, meaning they occur in the
same position as non-interrogative pronouns:1

(1) e-
foc-

i-
I-

na-
fut-

je
say

-pai/-ou
-it/-what

na-
to-

f [cop]
him

‘I shall say it to him.’ /
‘What shall I say to him?’ (e:i:na:;e:ou na:f)

The notion of a WH-interrogative construction is a
shared level of abstraction that underlies the dif-
ferences between the languages: both languages
have conventionalized morphosyntactic means to
convey that a piece of information is being sought.

Meaning-bearing grammatical constructions
such as interrogatives, conditionals, and resulta-
tives are an object of study within and across lan-
guages, and many of these have been the focus of

1In many cases, prosody or punctuation can also
indicate a clause is interrogative. Coptic texts, however,
do not use question marks, and e.g. web data contains
nonstandard punctuation use (Sanguinetti et al., 2022).

semantic/pragmatic annotation schemes, usually
involving manual annotation (§3). Our goal is to
annotate them on a large scale across many lan-
guages in UD treebanks as automatically and ac-
curately as possible. In this paper, we demonstrate
how UD treebanks can be enriched with a layer
identifying these larger constructions in a typologi-
cally informed way so as to enable cross-linguistic
comparisons and typological studies. We present
a case study of five construction families and ten
languages to illustrate the challenges and opportu-
nities of this approach.

Our goal is challenging because holistic construc-
tions are often not reflected in syntactic labels used
in treebanks, which aim to break sentences down
into minimal grammatical parts. The UD frame-
work, for example, annotates the individual compo-
nents of a construction (like the object relation and
the interrogative pronoun in (1)) but not the larger
whole: there is no ‘interrogative clause’ label in UD.
There are other challenges as well. For example,
there are many non-canonical and elliptical ways
of asking questions in English (e.g., Can you tell
us where?) and some questions look identical to
exclamations. For example, What stunning views
can be read as a question or exclamation.

Continuing with the example of interrogative con-
structions highlights some of the challenges, even
within English. (2) illustrates a few cases, including
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ambiguity with exclamatives, as well as noncanoni-
cal kinds of interrogatives involving ellipsis, idioms,
and echo questions.

(2) a. WOW what stunning views. [en-EWT]
(Inferred interpretation: ‘What stunning
views!’, not ‘What stunning views?’)

b. Can you tell us where. [en-EWT]
c. WELL GUESS WHAT!!! [en-EWT]
d. She didn’t have what? [en-GUM]

Thus, defining constructions (or families of re-
lated constructions) in cross-linguistically compa-
rable ways, determining what is within scope for
annotation in a particular language, and reckoning
with ambiguity are all significant challenges.

Despite these challenges, we see constructional
annotation as a worthy mission for the multilingual
computational linguistics community, because the
empirical work will deepen understanding of con-
structional phenomena across languages and pro-
vide data for further typological studies. It is, in
our view, also a viable way forward, because the
work will draw on the rich ecosystem of UD tree-
banks and tools in order to add and refine construc-
tional descriptions over time. In addition to offering
fuller grammatical descriptions of the treebanked
sentences, construction annotations may be used
to improve the intra- and interlingual consistency
of UD guidelines and data. On the more practi-
cal side, construction annotation could be used
for downstream tasks like inducing frame-semantic
representations, information extraction, or predict-
ing grammatical difficulty for L2 learners depending
on strategies found in the L1 language, or for her-
itage learners depending on strategies found in the
dominant language (Bhatia and Montrul, 2020).

To compare across languages, it is necessary
to identify patterns larger than a single word or
grammatical relation, and to do so in a way that is
sensitive to different morphosyntactic strategies ex-
hibited by different languages (Haspelmath, 2010;
Croft, 2016, 2022). This study is grounded in ideas
from Construction Grammar and linguistic typology
(§2). Our empirical methodology (§3) is to anno-
tate treebanks in each of 10 languages—English,
German, Swedish, French, Spanish, Portuguese,
Hindi, Mandarin, Hebrew, and Coptic—for selected
constructions by constructing graph pattern queries
and matching them against UD trees. The construc-
tions in focus in this paper are interrogatives (§4),
existentials (§5), conditionals (§6), resultatives (§7),
and noun-adposition-noun combinations where the
noun is repeated (NPN; §8). Highlights from our
corpus investigations corresponding to each con-
struction are discussed in the respective sections,
with a quantitative and qualitative discussion in §9.2

2Our queries and the final annotated corpora are avail-
able at https://github.com/LeonieWeissweiler/UCxn.

2. Background

Universal Dependencies (UD) is a framework for
cross-linguistically consistent morphosyntactic an-
notation, which to date has been applied to over 140
languages (Nivre et al., 2016, 2020; de Marneffe
et al., 2021). UD annotation consists of two layers:
a morphological layer, where each word is assigned
a lemma, a universal part-of-speech tag, and a set
of morphological features; and a syntactic layer,
where all words are connected into a dependency
tree labeled with universal syntactic relations. The
syntactic representations are defined to prioritize
direct relations between content words, which are
most likely to be parallel across different languages;
function words are treated as grammatical markers
on content words. While the inventories of part-
of-speech tags and syntactic relations are fixed to
support cross-linguistic comparison, the framework
allows language-specific elaboration through the
use of language-specific morphological features
and subtypes of syntactic relations. CoNLL-U is
the standard file format for UD treebanks; trees are
encoded in 10 tab-separated columns. The last of
these, MISC, is open-ended to support annotations
beyond the UD standard itself.

Construction Grammar (CxG) is an approach
to linguistic analysis in which the basic unit is a
pairing of form and meaning and in which meaning-
bearing units can have multiple parts (Construction
Elements) (Fillmore et al., 2012; Croft, 2001; Fill-
more et al., 1988; Goldberg, 1995, 2006; Hoffmann
and Trousdale, 2013). A construction grammar is
generally represented as a network indicating taxo-
nomic, partonomic and other relations between con-
structions, called a Constructicon (Diessel, 2019;
Fillmore et al., 2012; Lyngfelt et al., 2018).

Much work in CxG is done in a single language,
where, for example, the English Interrogative Con-
struction is defined by both a particular function
and its specific form in English. A broader analysis
usually looks at different functions of a construc-
tional form. This is a semasiological approach: it
starts from a form and examines its possible func-
tions. However, in crosslingual construction an-
alysis, such as linguistic typology, one must find a
basis for crosslingual comparison. The basis is gen-
erally the function of a construction, because form
varies greatly across languages, and many features
of morphosyntactic form are defined in language-
specific terms such as specific morphemes (English
do) or word classes (English Auxiliary).

For example, a typology of interrogative construc-
tions compares sentence forms across languages
that express the function of a speech act requesting
information from an interlocutor. The typological
approach is onomasiological, starting from a func-
tion and considering the various forms realizing it.
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Language Instance Query

German
pattern

EXP [lemma=“es”];
PRED [lemma=“geben”];
PRED -[nsubj]-> EXP ;

Hebrew

pattern
PRED [lemma=“ ;[”יש!
PRED -[nsubj]-> PIV ;

without

LE[lemma=“ ;[”ל!
PRED -[obl]->N; N-[case]->LE;

Mandarin
pattern

PRED [form=“有”];
PRED -[ obl:lmod]-> COD ;

Spanish
pattern

PRED [lemma=“haber”];
PRED -[ obj ]-> PIV ;
DET[upos=DET , Definite=Ind];
PIV -[det]->DET;

Table 1: Existential/presententional construction instances in selected languages and the Grew queries
used to identify them. The predicate (PRED), pivot (PIV), coda (COD) and expletive subject (EXP) construction
elements and the nsubj, obj and obl:lmod dependency relations are color-coded in the trees and queries.

In typology, a construction as a crosslinguistically
valid comparative concept (Haspelmath, 2010) is
defined in terms of its function, not its form.3,4

Morphemes and word-order can also be de-
scribed in a crosslinguistically valid fashion. For ex-
ample, many languages use a special morpheme in
interrogative constructions such as Chinese吗 ma.
We can describe this as an “interrogative marker”.
Other languages change word order in compari-
son to the declarative construction, albeit in differ-
ent ways. An interrogative marker or a word order
change are two different strategies for expressing
the interrogative function. We can then describe
languages as using the same strategy, or different
strategies, for the interrogative construction.

Another important concept is morphosyntactic re-
cruitment. If two different constructions such as an
existential construction and a possessive construc-
tion are morphosyntactically similar, we may say
that one construction has recruited a strategy from
the diachronically or conceptually prior construc-
tion, although the directionality or their etymological
source may not always be clear.
Related Work Prior work on creating datasets
annotated with constructions has been in the form
of various Constructicon projects, repositories de-
scribing the constructions of a language. One of
the first and best known is the Berkeley FrameNet
Constructicon for English (Fillmore et al., 2012).

3In order to distinguish language-specific construc-
tions from constructions as comparative concepts, we
follow typological practice and capitalize the names of
language-specific constructions.

4Some work in CxG such as Hasegawa et al. (2010) is
onomasiological and cross-lingual, using frame seman-
tics as the meaning.

Some Constructicons incorporate UD annotations
and corpora (for German, Brazilian Portuguese,
and Russian; Ziem et al., 2019; Torrent et al., 2018;
Bast et al., 2021). While those Constructicons may
select individual attestations from corpora to exem-
plify a construction, in this paper we are concerned
with labeling as many instances of the construc-
tion as possible in the corpus. Here we take a
fundamentally crosslinguistic view of constructions,
though the annotation layer could just as well in-
clude language-specific constructions. Ultimately
we foresee a healthy feedback loop between Con-
structicon development and corpus enrichment of
the kind pursued in this paper.

Construction Grammar has also recently gained
popularity in NLP. There have been practical stud-
ies using CxG to probe the inner workings of large
language models (Weissweiler et al., 2022; Ma-
howald, 2023), as well as general observations
about the compatibility of usage-based construc-
tionist theories with the recent successes of lan-
guage models (Goldberg, To appear; Weissweiler
et al., 2023). Earlier work (Dunn, 2017; Dunietz
et al., 2017, 2018; Hwang and Palmer, 2015) in
construction-based NLP focused on the annotation,
automatic detection and induction of constructions.

3. Methodology

Selection of Constructions For the purpose of
cross-lingual comparison, we define constructions
in terms of function (e.g., a speech act requesting in-
formation), rather than form (e.g., subject-auxiliary
inversion). We take a modified onomasiological ap-
proach: start from a function, and identify the most
conventional forms that express the function. In
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many cases, a language conventionally uses more
than one strategy for a construction’s function. We
annotated a few, but not all, of the conventionalized
strategies for each construction in each language.
Our aim is to see if morphosyntactic queries can
detect each strategy in each language, starting only
with the information available in UD.

We chose our constructions to be as diverse
as possible. We have selected a speech act con-
struction (interrogative), an information structure
construction (existential), a complex sentence con-
struction (conditional), an argument structure con-
struction (resultative), and a phrasal construction
(NPN). These constructions cover a broad range
of specificity, probably annotation complexity, and
size. With the NPN construction (Jackendoff, 2008),
we examine a strategy, to compare the functions it
expresses in the languages in our sample whereas
with the other constructions, we examine the func-
tions to compare the strategies recruited in the lan-
guages in our sample.

Previous work has explored the relationship be-
tween UD annotation and the annotation of (seman-
tically idiosyncratic) multiword expressions (Savary
et al., 2023). Here, by contrast, we focus on con-
structions that are not fully lexically specified—but
we share the goal of identifying structures with more
to them semantically than meets the eye.
Selection of Languages We select 1 or 2 tree-
banks for each of a diverse set of languages, with
respect to treebank size and typological family.
Each language is worked on by at least one lin-
guist who is also a native or proficient level speaker.
Our languages and the treebanks we used can be
seen in Table 5 in Appendix A. We use UD v2.13.

Although our sample of languages is not rep-
resentative of global language diversity, covering
several languages from several regions ensures
that we will cover some variation in strategies.
Identifying Constructions Constructions are de-
fined crosslingually in terms of their function, but
UD annotates morphosyntactic form. For some
languages and datasets, we do have functional
annotations in addition to syntax trees: for exam-
ple, the UD English GUM corpus is also annotated
with Rhetorical Structure Theory (RST, Mann and
Thompson 1988), which identifies pragmatic func-
tions for clauses, including e.g. conditional ones,
regardless of how they are expressed. Although
we can use this type of information to help identify
the scope of ways of expressing a certain mean-
ing or class of meanings in a language, we as-
sume that such annotations are either unavailable
for most languages, or do not cover the full breadth
of functions whose corresponding constructions
we are interested in. Our hypothesis is that, in
many cases, we can search for the morphosyn-
tactic strategies associated with a construction us-

ing UD morphosyntactic annotations and extract
tokens of the construction from a treebank with
reasonable accuracy.

We test this hypothesis using Grew-match (Guil-
laume, 2021), which allows us to specify search
queries with constraints on sentences and their
UD annotations, as shown in Table 1. For each
construction, a language may have multiple Grew-
match patterns corresponding to multiple mor-
phosyntactic strategies. Grew-match can be com-
bined with Arborator-grew (Guibon et al., 2020) to
annotate the trees that it finds.

Annotation atop UD From a technical perspec-
tive, we use the optional misc field (10th column) of
the CoNLL-U format used for UD treebanks. The for-
mat allows for the introduction of arbitrary key-value
annotations. We introduce the key Cxn, which is
placed on the syntactic head token of the construc-
tion from the UD tree perspective, i.e. the highest-
ranking node involved in the construction according
to the UD tree, or the earliest such node in case
of ties. Construction names are given possibly hi-
erarchical names if subtypes are identifiable, such
as Interrogative-Polar-Direct below, to reflect
queries at different levels of granularity.

1 You you PRON ... _
2 have have VERB ... Cxn=Interrogative-Polar-Direct
3 a a DET ... _
4 pencil pencil NOUN ... _
5 ? ? PUNCT ... _

Appendix B offers a technical specification with full
details on the format and naming conventions in our
data. The specification also offers the option of an-
notating construction elements in a CxnElt field. At
present, we annotate only content elements (such
as the Protasis and the Apodosis clauses for con-
ditionals; §6), but not functional elements like sub-
ordinators that may be strategy-specific.

Next, we proceed construction by construction,
first describing a construction in general terms, then
highlighting notable findings from querying tree-
banks.

4. Interrogatives

Typological Overview An interrogative is a
speech act construction, expressing a request for
information from the addressee. We focus on
clauses realizing two major subfunctions: polar-
ity (“Yes/No”) questions such as Is she coming?
and information (content, “WH”) questions such as
Who did you see?. The most common strategies
are special prosody, a question marker (see §2)
and special verb forms; less common is a change
of word order, as in the English examples above.
Content questions contain interrogative phrases
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Non-interrog. Interrog.
pre post pre post

English
(GUM)

advmod 8258 2196 122 1
nsubj 14512 500 50 0
obj 265 8889 28 3
det 15985 36 26 0
obl 1255 7867 6 1
ccomp 142 1370 4 0
xcomp 15 2831 4 0
other 139 8732 4 1

Coptic

advmod 1110 1702 1 3
nsubj 4844 575 5 2
obj 2 2585 0 15
obl 228 4339 35 23
ccomp 0 750 0 43
other 2 2478 2 15

Table 2: Pre- and post-posed dependent WH pro-
nouns and non-WH equivalents in EN and CO.

such as who, what or which (cat); their position
varies across languages.

Automatic Annotation Efforts In this section
we compare information questions in which the
interrogative phrase is placed either in the same
position as its non-interrogative counterpart as in
(3) or in a different, often fronted position as in (4).

(3) You went where?
(4) Where did you go?

To identify interrogatives, we relied on either the
presence of WH items (what, who, etc.), word
order (in languages using it for marking), as well as
the presence of question marks or sentence type
annotations where available. In some languages,
WH items are identical to indefinite pronouns or
free-relative heads (e.g. I ate what you cooked is
not interrogative, despite containing what), but the
UD morphological feature PronType=Int helps to
disambiguate. We did not see the special verb form
strategy in our treebanks.

Table 2 shows pre- and post-posed realization
frequencies for different grammatical functions for
WH pronouns in interrogatives (i.e. excluding uses
such as ‘I know who!’), compared to overall usage
excluding such pronouns. The table shows the
strong preference to front objects in English (28:3
in favor of pre-posed), (other objects appear after
their head at a ratio of 265:8889). For other func-
tions, the picture is more complex: interrogative
adverbials such as ‘when’ and ‘where’ appear al-
most exclusively preposed, while non-interrogative
phrases strongly prefer fronting, but only at a rate
of 8258/2196 (79% of cases).

Turning to a different language for comparison,
Table 2 shows a rather different picture for Cop-
tic. The tendency for placing subjects before their
heads and objects after them is much weaker (5:2,

but based on only 7 cases); for adverbial interroga-
tives, fronting occurs proportionally less than in non-
interrogatives. The frequent presence of the Coptic
focalizing marker ere, which indicates a contrast
with a previously uttered or implied phrase, plays
a role in promoting late realization of arguments,
above and beyond the tendency for each grammat-
ical function (cf. Green and Reintges 2001).
Takeaways Although typological literature often
classifies languages in terms of basic word order
or the possibility of word order changes, the actual
picture in individual language data is much more
complex. We have shown that quantitative analy-
ses with construction-annotated data give a more
nuanced picture of how languages realize such
word order dependencies in interrogatives.

5. Existentials

Typological Overview Existentials assert the ex-
istence (or not) of an entity (‘pivot’), almost al-
ways indefinite, and usually specified in a location
(‘coda’), as in There are yaks in Tibet. This func-
tion is closely related to the presentational function,
introducing a referent, as in There’s a yak on the
road. In our language sample, the two functions
are expressed using the same strategies, such that
their distinction may be largely context-dependent.
For this reason, we consider here both existentials
and presentatives.

Languages vary with respect to the predicate that
they use in the existential. One class of languages
employ a construction-specific lexeme, such as
Swedish finnas. In Coptic there are lexicalized
negative and positive existence predicates, oun
oun and mmn mmn. Historically, predicative pos-
session used the same items, but through lexical-
ization, the possessive versions are now lexically
distinct from the existentials.

The relationship between existence and posses-
sion also has synchronic manifestations. Our sam-
ple includes languages that use a possession verb
as the predicate in an existential, one predicate to
express both existence and possession, such as
ter ‘to have’ in Brazilian Portuguese, French avoir
in the phrase il y a, or the Mandarin predicate 有
yǒu. This duality is also found in Hebrew, where
possession is expressed by adding a possessive
dative argument to the existential construction (5).

(5) hayu
were.3p

(la-nu)
(to-us)

kama
few

taxanot
stops.pf

ba-derex
in.the-way

‘There were/We had a few stops on the way.’
( !Kבדר תחנות! כמה! ( (לנו! (היו! [he-HTB]

An additional existential strategy shares a copula
predicate with the predicational locative construc-
tion. In Hebrew, the copula היה! haya is used in
past and future tense existentials (hayu in (5) is the
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inflected form). For Mandarin, the use of the copula
是 shì is an alternative to the lexicalized existential
predicate 有 yǒu. The link between the locative
construction and the existentials is also found in
locatives that grammaticalized into unique existen-
tial forms such as English There(’s) or French y
(in il y a).

Finally, the existential predicates haber and
haver in Spanish and European Portuguese, re-
spectively, also function as auxiliaries and modals,
similarly to the English have, modulo possession.

The argument structure of existential predicates
is not uniform crosslinguistically, with pivots ex-
hibiting different degrees of subjecthood proper-
ties (Keenan, 1976). This diversity is manifested
in the UD annotation. In one class of languages,
no argument is identified as nsubj and the pivot is
attached as obj in UD. This is the case in Spanish
and Mandarin (see Table 1).

Other languages identify the pivot as nsubj. This
is the case in Hebrew, where the copular predicate
standardly exhibits agreement with the pivot, as in
(5). However, unlike typical subjects, the Hebrew
pivot appears post-verbally, does not always trigger
agreement, and in informal speech may receive
accusative marking, if definite. Likewise, in Coptic
the pivot is nsubj in postverbal position, though the
adverb there is added in around 5% of cases in
the UD data with no clear antecedent.

A different strategy involves employing an exple-
tive as a co-argument to the pivot. This is found
in our language sample in French and English (6)
and in German (Table 1).

(6) il
it

y
there

a
has

une
a

salle
room

à l’étage
upstairs

‘There is a room upstairs.’ [fr-GSD]

Here, too, UD annotations vary across languages.
In the English treebank the pivot is attached as
nsubj and there as expl. In French, the expletive
y is expl:comp and the pivot is obj. In German the
expletive es is nsubj and the pivot is obj.
Automatic Annotation Efforts Our languages
vary in the difficulty in identifying existential con-
structions. The easiest cases were those in which
a construction-specific lexical item is employed(e.g.,
the lexicalized existential predicates in Coptic and
Swedish). In French, instances of the existen-
tials are identified by queries which target the
construction-specific cooccurrence of the clitic y
and the verb avoir in a comp:expl relation.

The more challenging cases are those in which
the elements which encode existence are multi-
functional. In some treebanks, this challenge
is overcome by construction-specific annotations.
Thus, for example, in the Hebrew HTB the predi-
cate היה! haya is annotated as HebExistential=Yes
where it is used in its existential function.

When disambiguating annotations are not avail-
able, the queries rely on other distributional prop-
erties of the construction to avoid false positives.
In French, the queries only target indefinite piv-
ots, excluding definite determiners and numerals.
In Hebrew, the queries exclude instances where
the predicate has a obl dependent with a dative
case marker, i.e., the possessor (see query in Table
1). Furthermore, to distinguish between the pred-
icational and existential functions of היה! haya in
UD_Hebrew-IAHLTwiki (Zeldes et al., 2022), where
this information is not annotated, the query targets
only post-verbal nsubj dependents.
Takeaways Lexical items that are associated with
the existential construction are often shared with
other constructions. For this reason, in order to
maximize accuracy the queries cannot only rely on
these lexical items but also target morphosyntactic
properties and dependency relations.

6. Conditionals

Typological Overview A conditional construc-
tion is a complex sentence construction describing
a broadly “causal” link between the two states of
affairs, the protasis (condition) and the apodosis
(consequence) (Comrie, 1986, pp. 81–82). The
strategies for conditional constructions are largely
the typical ones for complex sentences in general
(Croft, 2022, pp. 532–34). The construction may
be an adverbial subordinate construction or a coor-
dinate construction. The clauses may be balanced
(identical in form to a declarative main clause) or
deranked (one clause, usually the protasis, is in
a distinct form, with a special verb form and other
differences). There may be a subordinating con-
junction such as if , or rarely a change in word order,
as in English Had he stayed, he would have seen it.
The nonfactual nature of conditionals may manifest
in irrealis or subjunctive verb forms.
Automatic Annotation Efforts Common strate-
gies for conditionals are the use of a subordinating
conjunction as in German Wenn die Möglichkeit da
ist (lit. if the opportunity there is) (3291 instances
in German-HDT, 240 in Swedish-Talbanken, 243
in Hindi-HDT, 495 in English-GUM), or word order
inversion as in Swedish Har du god kondition (lit.
have you good condition; if you are in good shape)
(1182 instances in German-HDT, 68 in Swedish-
Talbanken, 7 in English-GUM). A very different strat-
egy involves conditional circumfixes. In Coptic e-
-šan is a circumfix that conveys conditionality (CD)
and applies to the pronominal subject of the condi-
tional clause so that e-f-šan-eibe (CD-he-CD-thirst)
means If he is thirsty.

Our investigation of conditionals has shown that
it may not be possible, using the information avail-
able in UD, to create queries that accurately retrieve
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conditional sentences. There are three sources of
difficulty: (1) the need for information that is not
yet encoded in UD, (2) subordinating conjunctions
and clause types that are not exclusively used in
conditional constructions, and (3) the variety of sub-
ordinating conjunctions and other strategies that
are used to express the conditional construction.

Conditional subordinating conjunctions can be
divided into: simple subordinating conjunctions like
agar /yadi (Hindi) (‘if’); complex subordinating con-
junctions like förutsatt att (Swedish) (‘provided
that’); and V2 sentence embedders like angenom-
men (German) (‘presumed’) (Breindl et al., 2014).
Complex subordinating conjunctions and V2 sen-
tence embedders are problematic in German HDT
because the part of speech is not conjunction and
the dependency label is not mark (or fixed expres-
sion as in Swedish), making it necessary to search
for the lemma of the connector, which results in
many false positives. These conjunctions are also
not labeled as mark.

In Germanic languages, conditional construc-
tions without subordinating conjunctions usually
express the protasis as verb-initial clauses that pre-
cede the main clause. In Swedish and German, any
verb can be used in a verb-initial protasis clause.
In English, however, it is restricted to certain auxil-
iaries (e.g. Had I gone, I would have seen you).

While the subtypes of English conditionals (e.g.
neutral or negative epistemic stance) require many
search queries but are in principle findable with UD,
this is not the case in German. A major problem
for German conditionals—especially with regard
to semantic and syntactic subcategorization—was
posed by the inadequate mood annotations. Ger-
man HDT does not annotate conditional or potential
verb forms and marks most verb forms as indica-
tive, even when there is a clear conditional or sub-
junctive structure. It is therefore not possible to
search for semantic subcategories based on differ-
ent mood annotations in HDT, although verb mood
is the most common indication of grouping condi-
tionals in German (Schierholz and Uzonyi, 2022).

Takeaways The conditional strategies are in prin-
ciple searchable, although writing these rules re-
quires an exhaustive study of the phenomenon in
each language. Search requirements vary in com-
plexity depending on the depth of the underlying
linguistic analyses of the phenomenon. Annotation
practices in the treebank complicate the search pro-
cess and even make some distinctions impossible.

7. Resultatives

Typological Overview From a functional per-
spective the resultative construction expresses an
event with two subevents: a dynamic subevent

such as paint and a resulting state subevent such
as red in They painted the door red.

(7) They painted the door red.

The English resultative construction is a prime ex-
ample of an argument structure construction (Ho-
vav and Levin, 2001; Goldberg and Jackendoff,
2004). A basic transitive clause describing an event
is augmented with a secondary predicate describ-
ing the result state of a participant, but there are
many strategies to express this function. English,
for example, also uses adverbial subordination of
the dynamic event: The door was red as a result
of their painting it or I flattened the metal by ham-
mering. In our study of resultatives, we are only
considering cases where the language provides a
conventionalized form-meaning pairing for express-
ing the complex event composed of a manner of
action and a result state as a complex predicate,
resulting in some interesting challenges.
Automatic Annotation Efforts In the sample lan-
guages, we encountered several challenges. First,
in some languages a resultative conceptualization
is lacking: they do not combine a dynamic event
with a stative result event into a complex predi-
cate. In Hebrew, the most natural way of express-
ing the painting event literally translates as ‘They
painted the door in red’ (the result expressed with
an oblique marked by the prepositional prefix be-
‘in’). In Hindi, complex predicates expressing a
cause-result relation have a dynamic event as a
result (8). We consider these languages as lacking
the resultative construction as defined above.

(8) ...
...

ki
that

veh
it

duSman
enemy

ko
acc

maar
hit

bhagaa-ye
run.caus-subj

[hi-HUTB]

‘... that it beat and chase away the enemy.’

Second, in several languages the overwhelming
number of “resultative” constructions were of the
form [‘make/do’ X STATE], where the dynamic event
is the causative verb ‘make/do’, e.g., Hindi kar ‘do’,
Swedish göra ’make/do’, or German machen as in
Nvidia machts möglich. (Nvidia makes it possible).
This construction is analyzed as the causative of a
stative event, and is excluded from the resultative
category. In the German and Swedish treebanks,
removal of the causative left few or no examples of
genuine resultatives.

Third, in some languages, the UD annotation of
the resultative construction is indistinguishable from
another construction such as depictive secondary
predication. For example, I hammered the metal
flat (resultative) has the same structure as I left the
door open (depictive). It was necessary in English
for queries to incorporate lexical lists of predicates
licensing the construction, in order to disambiguate
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Lang. SU CO OP PR QU
COP + − + − (+)
EN + + + + +
FR + (+) + + (+)
DE + − + + +
HE + + + + (+)
HI (?) (?) (?) − −
ZH (?) − − − −
PT + + + + (+)
ES + + + + (+)
SV + (+) (+) + +

Table 3: Semantic categories of NPN and
their cross-linguistic attestation in UD treebanks.
− means that the target meaning is not possible
in the language. (+) signals that the meaning is
possible but not attested in the UD treebanks. (?)
means that the existence of this meaning is unclear,
see footnote 6. Succession: SU, Comparison: CO,
Opposition: OP, Proximity: PR, Quantification: QU

from other sentences with similar UD structures, at
the expense of generalizability to predicates that
have not been seen in the resultative construction.

Finally, Chinese has a very productive resultative
construction (9), which is already annotated in the
treebank Chinese-HK (Wong et al., 2017) with a
label specifically designed for resultative comple-
ments: compound:vv. They are trivially extracted by
querying for that dependency relation.

(9) wǒ
1sg

qiāo
hit

píng
flat

le
perf

dı̄ngzi [zh-HK]
nail

‘I hammered the nail flat.’ (我敲平了钉子.)

Takeaways In summary, the attempt to annotate
the resultative construction has shown us several
difficulties: annotating a construction where bound-
aries are in dispute within the literature, which might
not even exist in all languages depending on the def-
inition, and where considerable linguistic expertise
and manual effort is required to write a comprehen-
sive set of rules, indicating the need for collabora-
tion among theoretical linguists, corpus linguists, ty-
pologists and computational linguists. Efforts such
as ours can reveal constructions that need further
linguistic investigation, or can help solidify linguistic
consensus on the definition of the construction.

8. NPN

Typological Overview With the preceding four
constructions, we took an onomasiological ap-
proach, examining them cross-linguistically on a
functional basis. Most work in CxG, however, takes
a semasiological (form-first) approach to charac-
terizing a formal pattern and its function(s), usu-
ally within a single language. In our terms, this
approach starts with a strategy and examines the
range of functions using that strategy. The UD

framework offers a common vocabulary for de-
scribing formal categories of morphology, parts
of speech, and grammatical relations across lan-
guages. In this section, we consider how a sema-
siological (or strategy-based) inquiry can be con-
ducted cross-linguistically using UD corpora. As a
case study, we look at the “NPN” strategy, in which
a meaning related to quantification or iteration is
expressed with a repeated noun and an adposition
or case marker on the second noun. Examples in
English include day after day, shoulder to shoulder,
box upon box, etc. While infrequent and often a
source of idioms, this strategy recurs across many
languages (Postma, 1995; Matsuyama, 2004; Jack-
endoff, 2008; König and Moyse-Faurie, 2009; Roch
et al., 2010; Pskit, 2015, 2017; Kinn, 2022).5
Automatic Annotation Efforts We find exam-
ples of NPN strategies across 8/10 languages.6 In
our queries, we limit ourselves to instances where
the two Ns are the same lemma, though there are
related NPN uses where the two Ns are not the
same (Jackendoff, 2008). A few examples of NPN
from our treebanks are presented in (10).

(10) PT: frente a frente ‘face to face’ (lit. ‘front to
front’), FR: jour pour jour ‘to the day’ (lit. ‘day
for day’), SV: steg för steg ‘step by step’
(lit. ‘step for step’), HE: mila be-mila ‘word
for word’ (lit. ‘word in word’)

In terms of morphosyntactic form, NPN strate-
gies are well captured by our queries because of
the strict precedence relationship between the con-
stituent elements. We find that there is consider-
able variability in whether NPNs are analyzed as
fixed expressions in UD (using the fixed relation
type), or whether the second N is analyzed as an
nmod of the first N.7

The semantics of NPN have been well investi-
gated in previous literature (Jackendoff, 2008; Roch
et al., 2010; Sommerer and Baumann, 2021; Kinn,
2022). We find that most of the previously proposed
semantic subcategories emerge in our languages.
Following the categorization and discussion in Jack-
endoff (2008) and later works, we find the following
semantic subtypes of NPN: succession (hour af-

5The studies cover Dutch, English, French, German,
Norwegian, Japanese, Mandarin, Polish, and Spanish.

6We did not find any attestations of NPN in the Chi-
nese or Hindi treebanks. It is unclear whether NPN is
productive in these languages, but we are aware of ex-
pressions that might qualify: e.g. Mandarin yı̄ tiān bı̌ yı̄
tiān and Hindi din ba din (both ‘day by day’).

7We restrict our queries to exclude cases where the
first N is marked by another adposition, because we
find that in many languages the PNPN strategy (from
time to time) has a different range of meanings than the
NPN strategy. We also exclude cases where nouns are
modified with adjectives, as these are extremely rare.
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Lang. Interrogative (§4) Existential (§5) Conditional (§6) Resultative (§7) NPN (§8) total sent. total tokens
EN 599; 544 319; 478 (f) 256; 516 (D) 64; 64 (H, D) 11; 19 11k; 17k 187k; 254k
DE 8376 (H) 3480 (H) 4437 (A,H) D 40 190k 3.5m
SV 234 10 306 (H) D 7 6k 96k
FR 669 109 (F) 296 (F) D 12 16k 400k
ES 887 160 (F) 515 (F) D 37 18k 567k
PT 293 (A) 358 (F) 116 D 7 9k 227k
HI 186 2058 (F) 288 (A) D 0 16k 351k
ZH 148 58 (F) 31 78 (D) – 1k 9k
HE 225; 35 335; 230 192; 57 D 9; 11 6k; 5k 160k; 140k
CO 158 78 186 D 2 2k 55k

Table 4: Counts of identified construction instances by treebank, along with qualifications: definitional
issues (D), UD annotation errors (A), occasional false positives (f), frequent false positives (F), unattested
strategies (H). A dash means the construction does not exist in that language. The two numbers for EN
and HE represent the two treebanks for each (cf. Table 5).

ter hour), comparison (man for man), opposition
(brother against brother), proximity (hand in hand)
and quantification (particularly of a large quantity,
snacks upon snacks). Qualitatively, we noticed that
the succession submeaning was most prevalent
across our treebanks, and opposition is typically
restricted to body parts, as in (10). Table 3 summa-
rizes our empirical findings by semantic subtype
and language.
Takeaways Using a strategy, like NPN, as the
basis of typological comparison is not without issue
(Croft, 2022); however, we do find considerable
functional overlap in terms of the meanings which
are conveyed by the NPN strategy in our language
sample. Notably, NPN is the only investigated con-
struction/strategy for which the query is almost uni-
versal across languages, meaning that it is the most
well-integrated with UD: if the promise is universal-
ity across languages, then ideally a query would
also work across all languages. It makes perfect
sense that this only works with strategies, which
are defined by their form, and not for constructions,
which are defined by their meaning, as UD itself
focuses on form.

9. Survey Summary

Our 5 case studies have surveyed constructions
and strategies in 10 languages. Table 4 provides
a quantitative summary in terms of matched in-
stances per treebank. Treebanks ranged in size
from 9k to 3.5m tokens; in some cases, the scale
was too small for a robust set of results. NPN was
particularly sparse—this is simply a rare strategy.

Table 4 also provides a qualitative summary of
some of the major kinds of issues encountered:
definitional issues (D), annotation errors in the tree-
bank (A), unavoidable occasional false positives
(f), many false positives due to overlap with an-
other construction (F), and unattested strategies
for which at least one query returned 0 examples

(H). For most of the languages, we abandoned at-
tempts to quantify resultatives given the definitional
challenges. Note that some of the larger treebanks
had unattested strategies (H)—this is not necessar-
ily because of a problem with the treebanks, but
reflects that more effort was put into writing queries
for long-tail strategies in those languages.

We are pleased to see that UD annotation errors
(A) were not a major source of difficulty for most of
the treebanks examined. On the other hand, many
constructions were fundamentally difficult to circum-
scribe (D) or distinguish from other constructions
given the available UD annotations (F). These may
necessitate human annotation and/or supplemen-
tary information from semantic analyzers.

For English and Hebrew, where we consulted
two treebanks, we can see some differences in the
construction counts that are not explained by the
size of the treebank but rather by the domain. This
underscores the importance of domain diversity in
empirical studies of constructions.

10. Conclusion and Future Work

In this work, we have provided a case study of
annotating constructions in UD treebanks. We
developed automatic annotation queries for ten
languages and five construction families, and de-
tailed our results and takeaways. Overall, we find
that annotating constructions is feasible with a mix
of automatic and manual efforts, and that with
typologically-based construction definitions, the an-
notations support crosslinguistic quantitative stud-
ies. The next step is to scale up our annotation
methodology to more languages and constructions,
possibly with the aid of construction parsers (and/or
UD parsers to produce larger-scale silver treebanks
for investigating rare constructions). Beyond the
created resources, these efforts may prompt im-
provements to the UD annotation guidelines and
to language-specific Constructicons. Crucially, this
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work has been a first attempt at bringing two im-
portant frameworks together. We aim to gather
feedback and input from the community to further
our goal of integrating constructions fully with UD.

Acknowledgments

This work was initiated by the Dagstuhl Sem-
inar 23191 “Universals of Linguistic Idiosyn-
crasy in Multilingual Computational Linguis-
tics” https://www.dagstuhl.de/en/seminars/
seminar-calendar/seminar-details/23191. We
are grateful for Grew infrastructure support from
Bruno Guillaume, and for feedback from members
of the NERT lab at Georgetown and anonymous
reviewers. This work was supported in part by
Israeli Ministry of Science and Technology grant
No. 0002336 (Nurit Melnik, PI) and NSF award
IIS-2144881 (Nathan Schneider, PI).

Bibliographical References

Radovan Bast, Anna Endresen, Laura A. Janda,
Marianne Lund, Olga Lyashevskaya, James Mc-
Donald, Daria Mordashova, Tore Nesset, Ekate-
rina Rakhilina, Francis M. Tyers, and Valentina
Zhukova. 2021. The Russian Constructicon.
An electronic database of the Russian gram-
matical constructions. Available at https://
constructicon.github.io/russian/.

Riyaz Ahmad Bhat, Rajesh Bhatt, Annahita Farudi,
Prescott Klassen, Bhuvana Narasimhan, Martha
Palmer, Owen Rambow, Dipti Misra Sharma,
Ashwini Vaidya, Sri Ramagurumurthy Vishnu,
et al. 2017. The Hindi/Urdu treebank project.
In Handbook of Linguistic Annotation. Springer
Press.

Archna Bhatia and Silvina Montrul. 2020. Compre-
hension of differential object marking by Hindi
heritage speakers. In A. Mardale and S. Mon-
trul, editors, The Acquisition of Differential Object
Marking, pages 261–281. John Benjamins Pub-
lishing Company.

Emanuel Borges Völker, Maximilian Wendt, Felix
Hennig, and Arne Köhn. 2019. HDT-UD: A very
large Universal Dependencies treebank for Ger-
man. In Proceedings of the Third Workshop
on Universal Dependencies (UDW, SyntaxFest
2019), pages 46–57, Paris, France. Association
for Computational Linguistics.

Eva Breindl, Anna Volodina, and Ulrich Hermann
Waßner. 2014. Handbuch der deutschen Konnek-
toren 2: Semantik der deutschen Satzverknüpfer,

volume Band 13 of Schriften des Instituts für
Deutsche Sprache. De Gruyter, Berlin and
München and Boston.

Bernard Comrie. 1986. Conditionals: a typology.
In E. C. Traugott, A. ter Meulen, J. S. Reilly, and
C. A. Ferguson, editors, On Conditionals, pages
77–99. Cambridge University Press.

William Croft. 2001. Radical Construction Gram-
mar: Syntactic theory in typological perspective.
Oxford University Press, Oxford, UK.

William Croft. 2016. Comparative concepts and
language-specific categories: Theory and prac-
tice. Linguistic Typology, 20(2):377–393. Pub-
lisher: De Gruyter Mouton.

William Croft. 2022. Morphosyntax: Constructions
of the world’s languages. Cambridge University
Press.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021.
Universal Dependencies. Computational Linguis-
tics, 47(2):255–308.

Holger Diessel. 2019. The Grammar Network: How
Linguistic Structure is Shaped by Language Use.
Cambridge University Press, Cambridge.

Jesse Dunietz, Jaime Carbonell, and Lori Levin.
2018. DeepCx: A transition-based approach
for shallow semantic parsing with complex con-
structional triggers. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1691–1701, Brussels,
Belgium. Association for Computational Linguis-
tics.

Jesse Dunietz, Lori Levin, and Jaime Carbonell.
2017. The BECauSE corpus 2.0: Annotating
causality and overlapping relations. In Proceed-
ings of the 11th Linguistic Annotation Workshop,
pages 95–104, Valencia, Spain. Association for
Computational Linguistics.

Jonathan Dunn. 2017. Computational learning of
construction grammars. Language and cognition,
9(2):254–292.

Jan Einarsson. 1976. Talbankens skriftspråk-
skonkordans. Institutionen för nordiska språk,
Lunds universitet.

Charles J. Fillmore, Paul Kay, and Mary Catherine
O’Connor. 1988. Regularity and idiomaticity in
grammatical constructions: the case of ‘let alone’.
Language, 64(3):501–538.

Charles J. Fillmore, Russell R. Lee-Goldman, and
Russell Rhodes. 2012. The FrameNet Construc-
ticon. In Hans C. Boas and Ivan A. Sag, editors,

119

119



Sign-Based Construction Grammar, pages 283–
322. CSLI Publications, Stanford, CA.

Adele E. Goldberg. 1995. Constructions: a con-
struction grammar approach to argument struc-
ture. University of Chicago Press, Chicago.

Adele E. Goldberg. 2006. Constructions at Work:
The Nature of Generalization in Language. Ox-
ford University Press, Oxford.

Adele E. Goldberg. To appear. A chat about con-
structionist approaches and LLMs. Constructions
and Frames.

Adele E Goldberg and Ray Jackendoff. 2004. The
english resultative as a family of constructions.
language, pages 532–568.

Melanie Green and Chris H. Reintges. 2001.
Syntactic anchoring in Hausa and Coptic wh-
constructions. Proceedings of the Annual Meet-
ing of the Berkeley Linguistics Society, 27(2).

Gaël Guibon, Marine Courtin, Kim Gerdes, and
Bruno Guillaume. 2020. When collaborative tree-
bank curation meets graph grammars. In Pro-
ceedings of The 12th Language Resources and
Evaluation Conference, pages 5293–5302, Mar-
seille, France. European Language Resources
Association.

Bruno Guillaume. 2021. Graph matching and graph
rewriting: GREW tools for corpus exploration,
maintenance and conversion. In Proceedings of
the 16th Conference of the European Chapter
of the Association for Computational Linguistics:
System Demonstrations, pages 168–175, Online.
Association for Computational Linguistics.

Bruno Guillaume, Marie-Catherine de Marneffe,
and Guy Perrier. 2019. Conversion et améliora-
tions de corpus du français annotés en Universal
Dependencies [conversion and improvement of
Universal Dependencies French corpora]. Traite-
ment Automatique des Langues, 60(2):71–95.

Yoko Hasegawa, Russell Lee-Goldman, Kyoko Hi-
rose Ohara, Seiko Fujii, and Charles J. Fillmore.
2010. On expressing measurement and com-
parison in English and Japanese. In Hans C.
Boas, editor, Contrastive Studies in Construc-
tion Grammar, pages 169–200. John Benjamins,
Amsterdam.

Martin Haspelmath. 2010. Comparative concepts
and descriptive categories in crosslinguistic stud-
ies. Language, 86(3):663–687.

Thomas Hoffmann and Graeme Trousdale. 2013.
The Oxford handbook of construction grammar.
Oxford University Press.

Malka Rappaport Hovav and Beth Levin. 2001. An
event structure account of english resultatives.
Language, pages 766–797.

Jena D. Hwang and Martha Palmer. 2015. Identi-
fication of caused motion construction. In Pro-
ceedings of the Fourth Joint Conference on Lexi-
cal and Computational Semantics, pages 51–60,
Denver, Colorado. Association for Computational
Linguistics.

Ray Jackendoff. 2008. “Construction after Con-
struction” and Its Theoretical Challenges. Lan-
guage, 84(1):8–28.

Edward Keenan. 1976. Towards a universal defini-
tion of subject. In Charles N. Li, editor, Subject
and Topic, pages 303–334. Academic Press New
York, New York.

Torodd Kinn. 2022. Regular and compositional
aspects of NPN constructions. Journal of Lin-
guistics, 58(1):1–35.

Ekkehard König and Claire Moyse-Faurie. 2009.
Spatial reciprocity: between grammar and lexis,
page 57–68. De Gruyter Mouton.

Benjamin Lyngfelt, Lars Borin, Kyoko Ohara, and
Tiago Timponi Torrent. 2018. Constructicog-
raphy: Constructicon development across lan-
guages, volume 22. John Benjamins Publishing
Company.

Kyle Mahowald. 2023. A discerning several thou-
sand judgments: GPT-3 rates the article + ad-
jective + numeral + noun construction. In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 265–273, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243–281.

Tetsuya Matsuyama. 2004. The N After N Con-
struction. English Linguistics, 21(1):55–84.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajič, Christopher D.
Manning, Ryan McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Dan
Zeman. 2016. Universal Dependencies v1: A
multilingual treebank collection. In Proceedings
of the 10th International Conference on Lan-
guage Resources and Evaluation (LREC), pages
1659–1666.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Jan Hajič, Christopher D. Manning,

120

120



Sampo Pyysalo, Sebastian Schuster, Francis Ty-
ers, and Dan Zeman. 2020. Universal Dependen-
cies v2: An evergrowing multilingual treebank
collection. In Proceedings of the 12th Interna-
tional Conference on Language Resources and
Evaluation (LREC), pages 4034–4043.

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006.
Talbanken05: A Swedish treebank with phrase
structure and dependency annotation. In Pro-
ceedings of the Fifth International Conference on
Language Resources and Evaluation (LREC’06),
Genoa, Italy. European Language Resources As-
sociation (ELRA).

Gertjan Postma. 1995. Zero Semantics — The
syntactic encoding of quantificational meaning.
Linguistics in the Netherlands, 12:175–190.

Wiktor Pskit. 2015. The Categorial Status and In-
ternal Structure of NPN Forms in English, page
27–42. Cambridge Scholars Publishing.

Wiktor Pskit. 2017. Linguistic and philosophical
approaches to NPN structures, page 93–110.
Wydawnictwo Uniwersytetu.

Alexandre Rademaker, Fabricio Chalub, Livy Real,
Cláudia Freitas, Eckhard Bick, and Valeria
de Paiva. 2017. Universal Dependencies for
Portuguese. In Proceedings of the Fourth In-
ternational Conference on Dependency Linguis-
tics (Depling 2017), pages 197–206, Pisa,Italy.
Linköping University Electronic Press.

Claudia Roch, Katja Keßelmeier, and Antje Muller.
2010. Productivity of NPN sequences in German,
English, French, and Spanish. In Proceedings of
the Conference on Natural Language Processing
2010, page 158–163, Saarbrücken, Germany.

Shoval Sade, Amit Seker, and Reut Tsarfaty. 2018.
The Hebrew Universal Dependency treebank:
Past present and future. In Proceedings of the
Second Workshop on Universal Dependencies
(UDW 2018), pages 133–143, Brussels, Belgium.
Association for Computational Linguistics.

Manuela Sanguinetti, Lauren Cassidy, Cristina
Bosco, Özlem Çetinoğlu, Alessandra Teresa
Cignarella, Teresa Lynn, Ines Rehbein, Josef
Ruppenhofer, Djamé Seddah, and Amir Zeldes.
2022. Treebanking user-generated content: a
ud based overview of guidelines, corpora and
unified recommendations. Language Resources
and Evaluation, 57:493–544.

Agata Savary, Sara Stymne, Verginica Barbu Mi-
titelu, Nathan Schneider, Carlos Ramisch, and
Joakim Nivre. 2023. PARSEME Meets Univer-
sal Dependencies: Getting on the same page in

representing multiword expressions. Northern
European Journal of Language Technology, 9(1).

Stefan J. Schierholz and Pál Uzonyi, editors. 2022.
Grammatik: Band 2: Syntax, volume Bd. 1.2 of
Wörterbücher zur Sprach- und Kommunikation-
swissenschaft. De Gruyter, Berlin and Boston.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Chris Manning. 2014. A gold
standard dependency corpus for English. In
Proceedings of the Ninth International Confer-
ence on Language Resources and Evaluation
(LREC’14), pages 2897–2904, Reykjavik, Ice-
land. European Language Resources Associa-
tion (ELRA).

Lotte Sommerer and Andreas Baumann. 2021.
Of absent mothers, strong sisters and peculiar
daughters: The constructional network of en-
glish NPN constructions. Cognitive Linguistics,
32(1):97–131.

Mariona Taulé, M. Antònia Martí, and Marta Re-
casens. 2008. AnCora: Multilevel annotated
corpora for Catalan and Spanish. In Proceed-
ings of the Sixth International Conference on
Language Resources and Evaluation (LREC’08),
Marrakech, Morocco. European Language Re-
sources Association (ELRA).

Tiago Timponi Torrent, Ely Edison Matos, Lud-
mila Meireles Lage, Adrieli Laviola, Tatiane
da Silva Tavares, Vânia Gomes de Almeida, and
Natália Sathler Sigiliano. 2018. Towards conti-
nuity between the lexicon and the constructicon
in FrameNet Brasil. In Benjamin Lyngfelt, Lars
Borin, Kyoko Ohara, and Tiago Timponi Torrent,
editors, Constructicography: Constructicon de-
velopment across languages, pages 107–140.
John Benjamins, Amsterdam.

Leonie Weissweiler, Taiqi He, Naoki Otani, David
R. Mortensen, Lori Levin, and Hinrich Schütze.
2023. Construction grammar provides unique
insight into neural language models. In Pro-
ceedings of the First International Workshop on
Construction Grammars and NLP (CxGs+NLP,
GURT/SyntaxFest 2023), pages 85–95, Wash-
ington, D.C. Association for Computational Lin-
guistics.

Leonie Weissweiler, Valentin Hofmann, Abdullatif
Köksal, and Hinrich Schütze. 2022. The better
your syntax, the better your semantics? prob-
ing pretrained language models for the English
comparative correlative. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 10859–10882,
Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

121

121



Tak-sum Wong, Kim Gerdes, Herman Leung, and
John Lee. 2017. Quantitative comparative syn-
tax on the Cantonese-Mandarin parallel depen-
dency treebank. In Proceedings of the Fourth
International Conference on Dependency Lin-
guistics (Depling 2017), pages 266–275, Pisa,
Italy. Linköping University Electronic Press.

Amir Zeldes. 2017. The GUM corpus: creating
multilayer resources in the classroom. Language
Resources and Evaluation, 51(3):581–612.

Amir Zeldes and Mitchell Abrams. 2018. The Cop-
tic Universal Dependency Treebank. In Proc.
of the Second Workshop on Universal Depen-
dencies (UDW 2018), pages 192–201, Brussels,
Belgium.

Amir Zeldes, Nick Howell, Noam Ordan, and Yifat
Ben Moshe. 2022. A second wave of UD Hebrew
treebanking and cross-domain parsing. In Pro-
ceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
4331–4344, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Alexander Ziem, Johanna Flick, and Phillip Sand-
kühler. 2019. The german constructicon project:
Framework, methodology, resources. Lexico-
graphica, 35(2019):61–86.

122

122



A. List of Treebanks

An overview of the treebanks used in this work
along with their total number of sentences is pro-
vided in Table 5. The genres covered by each
treebank are shown in Table 6.

B. Technical Specification

The specification of the data format and naming
conventions for constructions and construction ele-
ments appears below.
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Lang Treebanks Num. Sents
EN EWT, GUM (Silveira et al., 2014; Zeldes, 2017) 16,662; 10,761
DE HDT (Borges Völker et al., 2019) 189,928
SV Talbanken (Einarsson, 1976; Nivre et al., 2006) 6,026
FR GSD (Guillaume et al., 2019) 16,342
ES AnCora (Taulé et al., 2008) 17,662
PT Bosque (Rademaker et al., 2017) 9,357
HI HUTB (Bhat et al., 2017) 15,649
ZH Chinese-HK (Wong et al., 2017) 1,004
HE HTB, IAHLTwiki (Sade et al., 2018; Zeldes et al., 2022) 6,143; 5,000
CO Coptic Scriptorium (Zeldes and Abrams, 2018) 2k

Table 5: UD treebanks used in our crosslinguistic study. Some cover specific varieties, e.g., AnCora
represents European Spanish, whereas Bosque covers both European and Brazilian Portuguese. Chinese
is limited to Mandarin. Coptic (Sahidic) is the only historical language.

EN DE SV FR ES PT HI ZH HE CO
academic +
bible +
blog + +
e-mail +
fiction + +
government +
grammar examples
learner essays
legal
medical
news + + + + + + + +
nonfiction + + + +
poetry
reviews + +
social +
spoken + +
web + +
wiki + + +

Table 6: Genres covered by the UD treebanks used in the paper.
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Chapter 9

Corresponds to the following publication:

Leonie Weissweiler, Abdullatif Köksal, Hinrich Schütze (2025). Hybrid Human-LLM
Corpus Construction and LLM Evaluation for the Caused-Motion Construction. North-
ern European Journal of Language Technology.

Declaration of Co-Authorship: I conceived the research contribution. I implemented the data
collection pipeline and manually annotated the necessary data. Abdullatif Köksal advised me on
the choice of LLMs to evaluate and ran my evaluation code using these models. I wrote the initial
draft of the paper, and all authors provided feedback and helped to refine the draft.

Research Context After developing the initial phase of a community project for CxG annotation,
I was still in need of data for my next evaluation project, which was not on one of the five construc-
tions included. While the UCxn project will hopefully develop into a large database, I believe that
immediate solutions for finding data are still needed. With the aim of evaluating LLMs’ understand-
ing of the caused-motion construction, after initial experiments showed them to be struggling, I
expanded on the methodology for annotation from Chapter 5 and included queries on dependency
trees, very similar to those used in Chapter 8. However, the caused-motion construction is so se-
mantically complex that it would be classified as having a high number of false positives, by the
standards laid out in the last chapter. The key idea is therefore to further reduce false positives
by prompt-engineering ChatGPT, and then to ensure the quality of the final data, finally perform
manual annotation. Using the collected data, we will now go on to test LLMs on the subtleties of
the construction.



Hybrid Human-LLM Corpus Construction and LLM Evaluation for

the Caused-Motion Construction

Leonie Weissweiler, Abdullatif Köksal, Hinrich Schütze

LMU Munich & Munich Center for Machine Learning

weissweiler@cis.lmu.de

Abstract The caused-motion construction (CMC, “She sneezed the foam off her cappuccino”) is one of the most well-studied con-

structions in Construction Grammar (CxG). It is a prime example for describing how constructions must carry meaning, as otherwise

the fact that “sneeze” in this context takes two arguments and causes motion cannot be explained. We form the hypothesis that this

remains challenging even for state-of-the-art Large Language Models (LLMs), for which we devise a test based on substituting the

verb with a prototypical motion verb. To be able to perform this test at a statistically significant scale, in the absence of adequate

CxG corpora, we develop a novel pipeline of NLP-assisted collection of linguistically annotated text. We show how dependency

parsing and LLMs can be used to significantly reduce annotation cost and thus enable the annotation of rare phenomena at scale.

We then evaluate OpenAI, Gemma3, Llama3, OLMo2, Mistral and Aya models for their understanding of the CMC using the newly

collected corpus. We find that most models struggle with understanding the motion component that the CMC adds to a sentence.

1 Introduction

(1) She sneezed the foam off her cappuccino.

(2) They laughed him off the stage.

These are two examples of the caused-motion construc-

tion (CMC) inwhich the verb behaves unusually: sneeze
and laugh typically do not take multiple arguments, nor

do they typically convey that something was moved by

sneezing/laughing. This poses a challenge to any naive

form of lexical semantics: it would not make sense for

someone writing a dictionary to include, for each in-

transitive verb, the meaning and valency of the CMC.

Almost any verb can appear in the CMC as long as

we can imagine a scenario in which the action it de-

scribes causes motion. The fact that humans easily un-

derstand the CMC showcases a main feature of Con-

struction Grammar (Croft, 2001; Goldberg, 1995): the

meaning is attached to the construction itself, and not

the verb. Putting the verb into this construction adds

the new meaning and valency. This is one reason that

constructions pose a challenge to Large LanguageMod-

els (LLMs), as they would have to learn to attach the

meaning to this construction and retrieve it when nec-

essary. Its extreme rarity and productivity makes it im-

possible to memorise all instances and memorisation

would not be sufficient because themeaning shift to the

verb is creative and is influenced by the specific context.

The research questions of this paper therefore are:

Have LLMs learned the meaning of the CMC and how

canwe construct the resources needed to determine the

status of CMC in LLMs?

We first address the second question, of collecting

data for this at scale. This is challenging for several rea-

sons. First, the CMC is a very rare phenomenon. Sec-

ond, we are mostly interested in instances that are non-

prototypical, i.e., where the verb does not typically en-

code motion, unlike e.g. ‘kick’ or ‘throw’. Third, this

construction cannot be automatically identified using

only syntactic criteria: words might be in the correct

syntactic slots required by the CMC, but not create a

CMC reading if the semantics of the sentence do not fit.

For example, “I would take that into account” is struc-

turally identical to the examples above, but nothing is

moving.

This shows that there is a crucial semantic compo-

nent. The rarity makes it very costly to manually sift

through a corpus to collect a dataset of the CMC, while

the semantic complexity makes it infeasible to do so

fully automatically.

In this way, we consider the CMC exemplary of rare

phenomena of language that have been largely set aside

in Computational Linguistics and in recent evaluation

of LLMs in particular. This may be due to them being

considered the periphery of language, rather than the

core (Chomsky, 1993), or simply due to the described
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difficulty in finding appropriate data to investigate both

the phenomena and their representation in LLMs. How-

ever, it is our point of view that as the performance of

suchmodels increases across the board, it is vital to turn

to “edge cases” to accurately identify performance gaps.

This is particularly important as rare phenomena may

be indicators of systematic underlying problems of an

NLP paradigm.

To study rare phenomena, we need natural data for

them at scale. To this end, in section 3 we propose a

novel annotation pipeline that combines dependency

parsing with the use of LLMs. The aim of our pipeline is

to minimise the cost of running the LLM and compen-

sating human annotators, while maximising the num-

ber of positive, manually verified, linguistically diverse

instances in the dataset.

After creating our corpus, we now return to our

aim of evaluating state-of-the-art LLMs for their under-

standing of the CMC, as an example of a semantically

challenging “edge case”.

In Section 4, we therefore develop a test for differ-

ent LLMs’ understanding of the CMC, by giving an in-

stance and asking if the direct object is physically mov-

ing. We then replace the verb (e.g., “sneeze”) by a proto-

typical one that always encodes motion (e.g., “throw”)

and ask the model again if the direct object is mov-

ing. We expect models that do not fully understand the

CMC to fail to consistently answer both questions with

“yes”. We observe that models struggle with this task to

varying degrees.

We make three main contributions:

• We propose a hybrid human-LLM corpus con-

struction method and show its effectiveness for

the CMC, an extremely rare phenomenon. We

discuss how our design and our guidelines can be

applied to data collection needs for other linguis-

tic phenomena.

• We release a corpus of manually verified in-

stances of the CMC of 500 sentences.
1

• We evaluate different sizes of Llama3, Gemma3,

OLMo2, Mistral, Aya, and OpenAI models on

their understanding of the CMC and find that

most models struggle.

2 Related Work
Evaluation of LLMs’ Understanding of Construc-
tions. Tayyar Madabushi et al. (2020) conclude that

BERT (Devlin et al., 2019) can classify whether two

sentences contain instances of the same construction.

1
Code and data are provided on https://github.com/

LeonieWeissweiler/CausedMotion

Tseng et al. (2022) show that LMs have higher predic-

tion accuracy on fixed than on variable syntactic slots

and infer that LMs acquire constructional knowledge

(i.e., they understand the “syntactic context” needed

to identify a fixed slot). Weissweiler et al. (2022) find

that LLMs reliably discriminate instances of the English

Comparative Correlative (CC) from superficially similar

contexts. However, LLMs do not produce correct infer-

ences from them, i.e., they do not understand its mean-

ing.

Zhou et al. (2024) evaluate LMs’ understanding of

the causal excess construction by contrasting it with

two constructions of similar structure, and using the

LMs’ ability to distinguish between them as a proxy

for measuring their understanding. They find that even

large models like GPT-4 perform poorly on this. By

contrast, Rozner et al. (2025a), using the same dataset

among others, investigate smaller masked language

models. They do not test understanding but rather

probe the internal representations of the output layer

to recover systematic differences between the construc-

tions, showing that distinguishing between them is pos-

sible. Rozner et al. (2025b) repeat this experiment with

BabyLM models and find that even they are capable

of picking up many constructions, providing valuable

evidence about construction learning with developmen-

tally plausible amounts of data.

Bonial and Tayyar Madabushi (2024) compile a cor-

pus of examples from several constructions, includ-

ing the 52 caused-motion sentences collected from the

Abstract Meaning Representation (AMR) dataset (Ba-

narescu et al., 2013). They evaluate GPT-4 and GPT-

3.5 on their ability to pick out three caused-motion

sentences from among a larger set, and find that per-

formance does not exceed 60%. However, it should

be noted that this was metalinguistic prompting, rely-

ing on a model’s understanding of the term ‘caused-

motion’, which many humans may also be unfamiliar

with.

Most related to this work, Li et al. (2022) probe for

LMs’ handling of four Argument Structure Construc-

tions (ASCs): ditransitive, resultative, caused-motion,

and removal. They adapt the findings of Bencini and

Goldberg (2000), who used a sentence sorting task to

determine whether human participants perceive the ar-

gument structure or the verb as the main factor in the

sentence meaning. They find that, while human partic-

ipants prefer sorting by the construction more if they

are more proficient English speakers, language models

show the same effect in relation to training data size.

In a second experiment, they then insert random verbs

that are incompatible with one of the constructions,

and measure the Euclidean distance between the verbs’

contextual embedding and that of a verb that is pro-

totypical for the construction. They demonstrate that
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Figure 1: Flowchart of our annotation pipeline. For details of each step refer to §3.

construction information is picked up by the model, as

the contextual embedding of the verb is brought closer

to the corresponding prototypical verb embedding.

Mahowald (2023) investigates GPT-3’s (Brown et al.,

2020) understanding of the English Adjective-Article-

Numeral-Noun construction (AANN), assessing its

grasp of the construction’s semantic and syntactic con-

straints. Utilising a few-shot prompt based on the

CoLA corpus of linguistic acceptability (Warstadt et al.,

2019), he creates artificial AANN variants as prob-

ing data. GPT-3’s performance on the linguistic ac-

ceptability task is found to align with human judg-

ments across most conditions. More recently, Misra

and Mahowald (2024) investigate the same construc-

tion for smaller models trained on the BabyLM corpus

(Warstadt et al., 2023) and show how its learning is sup-

ported by more frequent, smaller constructions. In a

similar vein, Scivetti et al. (2025) investigate how well

BabyLM size models acquire the let-alone construction.

Linguistic Annotation with LLMs Since the re-

lease of ChatGPT, numerous papers have proposed to

use it or similar LLMs as an annotator. Gilardi et al.

(2023) find that ChatGPT outperforms crowd-workers

on tasks such as topic detection. Yu et al. (2023) and

Savelka and Ashley (2023) evaluate the accuracy of GPT-

3.5 and GPT-4 against human annotators, while Kop-

tyra et al. (2023) annotate a corpus of data labelled for

emotion by ChatGPT, but acknowledge its lower accu-

racy compared to a human-annotated version. In the

area of Construction Grammar, Torrent et al. (2023) use

ChatGPT to generate novel instances of constructions.

Most related to our work are papers that propose

a cooperation between the LLM and the human anno-

tator. Holter and Ell (2023) create a small gold stan-

dard for industry requirements by generating an ini-

tial parse tree with GPT-3 and then correcting it with

a human annotator. Pangakis et al. (2023) investigate

LLM annotation performance on 27 different tasks in

two steps. First, annotators compile a codebook of an-

notation guidelines, which is then given to the LLM as

help for annotation, and then the codebook is refined

by the annotators in a second step. However, they find

little to no improvement from the second step. Gray

et al. (2023) make an LLM pre-generate labels for legal

text analytics tasks which are then corrected by human

annotators, but find that this does not speed up the an-

notation process.

In contrast, our work proposes a hybrid human-

LLM pipeline that minimizes the cost of dataset cre-

ation. We emphasise prompt design and engineering,

a critical factor in effective use of LLMs.

Computational Approaches to Argument
Structure Constructions. In addition to the prob-

ing work discussed above, ASCs have also been

studied from a computational perspective. Kyle and

Sung (2023) leverage a UD-parsed corpus as well as

FrameNet (Fillmore et al., 2012) semantic labelling to

annotate a range of ASCs.

Hwang and Palmer (2015) identify CMCs and four

different subtypes based on linguistic features. Some of

these are automatically generated, but others are gold

annotations. This limits the applicability to large, unan-

notated corpora.

Hwang and Kim (2023) conduct an automatic anal-

ysis of constructional diversity to predict ESL speakers’

language proficiency. Similar to our first filtering step,

they perform an automatic dependency parse and then

identify a range of constructions, including the CMC,

using a decision tree built on the parse. They do not

employ any further filtering.

3 Data Collection

Concept of the CMC In collecting a dataset of CMC

instances, we must first find a working definition of

the CMC to guide our automatic and manual annota-

tion. While we base our definition on that of Goldberg

(1992), we also restrict it further to include only sen-

tences in which the object is physically moving. This

is not meant as a universal definition of the CMC, but

rather as one that suits the needs of our project, as

we later ask LLMs if the direct object is moving and

where. We therefore make no definitive statement as

to whether metaphorical movement (I laughed myself
off the chair), the electronic movement of data (I sent
him an email), or movement involving a metaphysical

location (She sneezed herself out of existence) constitute
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instances of the CMC.

Data Collection Pipeline Our aim is to investigate

how well the caused-motion construction is learned

by LLMs, for which we require a dataset of caused-

motion sentences, which should be natural and there-

fore sourced from text. The simplest version of this

would be to have human annotators sift through a

corpus and extract all caused-motion sentences. This

would be very expensive, as we assume caused-motion

sentences to be quite rare. On the other hand, they

are so semantically complex that we cannot simply use

automated filtering, e.g. based on dependencies. We

therefore propose a hybrid approach combining linguis-

tic resources, an LLM, and an expert annotator.

Our key idea is that data collection will proceed

in a pipeline, where a corpus is first filtered using de-

pendency parsing and the syntactic constraints of the

CMC, the output set of sentences is further filteredwith

prompt-based classification using an LLM, and the sen-

tences which it labels as positive are then manually an-

notated by a human. Each step in the pipeline is meant

to further concentrate the rate of instances in the cor-

pus that will then be manually annotated, therefore re-

ducing total annotation effort.

The main cost of data collection is the cost of the

LLM API and for human annotators. We assume that

any expenses for linguistic resources and the computa-

tional infrastructure (not relevant to running LLMs) at

our disposal are negligible in comparison. Our aim is to
minimise the cost for the LLM and annotators while max-
imising the number of positive, manually verified, diverse
instances.

We propose a way of computing the cost for this

problem setting and a pipeline for producing a novel lin-

guistic resource while minimising cost.

Our main goal is to minimise the cost per confirmed

CMC sentence; however, we also have a secondary goal:

the final set of sentences should be diverse. Regardless

of the specific goals of the linguistic researcher, it is un-

likely that they would be served by a set of sentences

that do not represent the true diversity of the CMC. Ex-

treme cost-minimising measures – such as making the

dependency filtering rules described in §3.1 too strict

or asking the LLM to provide examples of the CMC –

would therefore be counterproductive.

The baseline here is to take an annotator, give them

a corpus, set them on the task of reading through it

and marking all sentences that contain instances of the

CMC. As the corpus contains very few true positives,

this would be highly costly. We therefore turn to de-

pendency parsing with spaCy (Honnibal et al., 2020) for

prefiltering. We select the reddit corpus (Baumgartner

et al., 2020), with the motivation that it will contain a

high rate of creative language usage, aiding our goal

class PR RE F1 n

True 79.76 97.10 87.58 69

False 75.00 26.09 38.71 23

Avg 77.38 61.59 63.15 92

Table 1: Accuracies of the dependency filtering based

on the total set of positive and negative instances from

Goldberg (1992). We focus on maximising Recall (RE)

of the True class, to minimise the number of potential

CMC sentences that are lost before human annotation,

achieving 97%.

of finding as many non-prototypical CMC instances as

possible.

3.1 Step 1: Dependency Parsing
Figure 1 shows our pipeline. In the first step, we

dependency-parse the corpus and apply a pattern to fil-

ter out all sentences that, with high likelihood, are not

instances of the phenomenon.

For this dependency annotation, we could rely on

annotated treebanks such as Universal Dependencies

(de Marneffe et al., 2021). But to find a diverse and

sufficiently large set of instances, particularly in lan-

guages other than English, available treebanks may not

be large enough for the rare phenomenon that we are

targeting.

We therefore turn to automated dependency pars-

ing to annotate large amounts of data, which we can

run by using minimal computational resources without

the need for GPUs.

After dependency parsing, we want filters that pre-

serve the diversity of the found sentences. We there-

fore design subtree filters that preserve recall above all

else. This is especially advisable as parsing will lead to

some parsing errors that we want to be tolerant of, and

as CMC sentences are rare, they are more likely to be

parsed incorrectly.

To design the pattern, we start with a list of gold

instances taken from Goldberg (1992), which we parse

with the spaCy toolkit.
2

The instances are positive

and negative examples for the CMC. On the basis of

their dependency parses, we develop dependency con-

straints as a filter for our dependency-parsed sentences.

Specifically, we iterate over the verbs in a sentence,

then look for a direct object or a recursive dependent

of the direct object, e.g. an adjective, immediately fol-

lowing the verb. In the position immediately following,

we check for an adposition, while taking into account

that it may comprise several tokens. We do not impose

constraints on the dependency between adposition and

2
version 3.2.0
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prepositional object, as we have found these to be espe-

cially vulnerable to parsing errors. We then look for a

pobj-dependent of this adposition.

She sneezed the foam off the cappuccino

verb noun → adp noun

dobj pobj

We design the subtree to optimise recall with rea-

sonable precision, following the overall goal of losing

as few sentences as possible in the pipeline to maximise

final dataset diversity.

We then evaluate its recall and precision on this

small development set, comprising the total sum of pos-

itive and negative CMC instances given in Goldberg

(1992), and report on the results in Table 1. Our filter

achieves 97.10 % recall for true CMC instances, minimis-

ing the number of sentences lost in this step.

This filtering step also allows us to extract the loca-

tion of the potential CMC instance and its parts as a

side product of the filtering step: We extract the sen-

tence, the lemmatised verb, direct object, preposition,

and prepositional object, as well as their positions in

the sentence.

3.2 Step 2: Selection of Sentences for
Classification

Given that we now have a lot of dependency-filtered

data and limited resources for classification, we want

to select the optimal set of sentences for this classifica-

tion, in order to optimise several criteria for our final

dataset. As the dataset will form a challenging evalua-

tion set for LLMs, themost important of these criteria is

that the dataset contains as many verbs as possible that

do not usually contain motion. Even though we con-

sider sentences like “I throw the ball” instances of the

CMC, they would not challenge a model’s understand-

ing, as “throw” already encodes motion. As a proxy for

this, we sort verbs by how frequently they are used in-

transitively, with the idea that these would make for

less prototypical CMC sentences.

We compute statistics about the verbs with UD.

Specifically, we merge the English treebanks EWT (Sil-

veira et al., 2014), GUM (Zeldes, 2017), GUM reddit (Be-

hzad and Zeldes, 2020), LinES (Ahrenberg, 2007), part-

TUT (Sanguinetti and Bosco, 2015), PUD (Zeman et al.,

2017), and GENTLE (Aoyama et al., 2023), and then for

each verb, we compute the ratio of how often that verb

has an object. We then go through the dependency-

filtered dataset from the last step and sort by this ratio.

This has the added benefit of removing verbs that never

appeared in UD as lemmata, which removes noise from

the reddit dataset.

3.3 Step 3: Prompt-based Few-shot Clas-
sification with an LLM

Goals Even after dependency-based filtering, the pos-

itive instances would still be very rare in the output, and

it is therefore not feasible that the output is directly an-

notated by a human. We therefore introduce a further

filtering step with an LLM to “concentrate” the positive

instances even more, i.e. we want the LLM to remove

most negative instances while keeping as many posi-

tive instances as possible. The remaining data can then

be cost-effectively annotated by the human annotator.

The aim is to reduce the cost per instance (i.e., cost per

true positive, TP) as much as possible.

There are two components of the cost: the cost of

querying the LLM and the cost of human annotation.

Our two key ideas are:

• We consider the two costs jointly and optimise the

pipeline for overall lowest cost per TP.

• Design and selection of the prompting setup (includ-

ing the prompt, the choice of model, howmany times

it’s run, etc.) used with the API is a major determi-

nant for the cost of the pipeline. We propose a work-

flow for creating effective prompting setups.

A particular prompting setup may require many to-

kens in total, thereby incurring a higher API cost. But it

may also have high accuracy, thereby reducing the cost

of human annotation. We jointly consider both cost

components when designing and selecting prompting

setups.

Development Set For creating the development set

𝑉 , we manually annotate 500 (183 positive, 317 nega-

tive) sentences from the output of the dependency fil-

tering step. To ensure that 𝑉 is both diverse and rel-

evant, we group the prefiltered dataset by verb, and

starting with the highest-frequency verbs, take at most

5 positive and 5 negative sentences from every verb,

where no preposition appears twice in either the pos-

itive or the negative sentences selected. We choose 25

shots from each class to be included as examples in the

prompt, which are not used for 𝑉 .

Minimising the cost per true positive Given this

development set, let 𝐽 (𝐶HR,𝐶API, 𝑖) be the cost per true
positive where 𝐶HR is the human annotation cost per

sentence,𝐶API is the cost of processing an input/output

token with the API and 𝑖 (for instruction) is a prompting

setup. We can then estimate 𝐽 (𝐶HR,𝐶API, 𝑖), the cost per
true positive, as follows:

𝐶API𝑡 (𝑉 , 𝑖) +𝐶HR (TP(𝑉 , 𝑖) + FP(𝑉 , 𝑖))
TP(𝑉 , 𝑖) (1)
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Sent’s to Annotate Total Cost

P Details Prec. Rec. LLM Human API 𝐶HR=$.002 𝐶HR=$.006 𝐶HR=$.5

1 Base (4o-mini) 0.486 0.582 3535 1719 0.01 3.46 10.3 860

2 1 + repeat sentence with json 0.459 0.656 3320 1524 0.04 3.13 9.2 762

3 2 + reason 0.470 0.662 3217 1512 0.07 3.15 9.2 756

4 3 + structured information 0.648 0.621 2483 1610 0.07 3.33 9.8 805

5 4 + sentence 0.519 0.664 2900 1505 0.07 3.13 9.2 753

6 4 + cmc string 0.393 0.462 5507 2167 0.09 4.44 13.1 1083

7 4 + cmc string continuous 0.536 0.681 2744 1469 0.06 3.06 8.9 735

8 6 + sentence 0.536 0.658 2839 1520 0.06 3.15 9.2 760

9 7 + sentence 0.579 0.658 2622 1519 0.06 3.14 9.2 760

10 4 + few shots 0.557 0.600 2990 1667 0.08 3.46 10.1 833

11 10 + explanations 0.694 0.608 2371 1646 0.06 3.39 10.0 823

12 11 + all shots 0.710 0.653 2155 1531 0.07 3.18 9.3 766

13 12 + only 10 samples 0.721 0.714 1943 1402 0.11 3.02 8.6 701

14 12 + only 1 sample 0.552 0.789 2296 1267 0.76 4.17 9.2 635

15 12 + only 5 samples 0.639 0.713 2192 1402 0.19 3.18 8.8 701

16 12 + only 25 samples 0.738 0.678 1998 1474 0.08 3.09 9.0 737

17 14 + new few-shots 0.552 0.789 2296 1267 0.76 4.17 9.2 635

18 17 + alternating shots 0.588 0.805 2114 1243 0.70 4.04 9.0 623

19 17 + grouped shots 0.448 0.796 2803 1256 0.93 4.53 9.6 630

20 19 + majority vote 0.486 0.840 2449 1191 2.44 7.97 12.7 601

21 19 on o3-mini 0.913 0.856 1280 1168 4.91 13.83 18.5 595

22 21 + 100 samples 0.760 0.874 1506 1144 0.67 3.90 8.5 574

23 21 + 250 samples 0.820 0.806 1513 1240 0.52 3.64 8.6 621

24 21 + 50 samples 0.803 0.865 1440 1156 0.80 4.20 8.8 580

25 21 + 25 samples 0.798 0.864 1451 1158 0.83 4.27 8.9 581

26 24 + majority vote 0.803 0.891 1397 1122 2.42 8.13 12.6 567

27 24 on 4o 0.814 0.837 1467 1195 0.75 4.10 8.9 599

28 24 - sentence 0.787 0.878 1447 1139 0.75 4.07 8.6 571

29 27 - sentence 0.803 0.821 1516 1218 0.54 3.65 8.5 610

30 28 - reason 0.803 0.891 1397 1122 0.70 3.96 8.4 563

31 29 - reason 0.760 0.790 1667 1266 0.60 3.82 8.9 634

32 22 on o1 0.880 0.920 1235 1087 5.79 16.72 21.1 558
33 32 + 50 samples 0.891 0.916 1226 1092 7.10 19.94 24.3 564

34 33 + majority vote 0.869 0.952 1209 1050 22.30 60.10 64.3 583

- Human only - - - 2732 0.00 5.46 16.4 1366

Table 2: A comparison of all prompting setups for different values of 𝐶HR. P = Prompting Setup. We give numbers

(sentences that need to be annotated by LLM/human) for a scenario in which the desired size of the final resource

(output of pipeline when applied to the raw corpus) is 𝑁 = 1000. The human baseline depends solely on the rate of TPs

(which is higher here than for the raw corpus to be processed by the pipeline as the development set contains more

positive instances). The different values of𝐶𝐻𝑅 were chosen to highlight the different scenarios in which the three best

prompting setups, 13, 30, and 32, are each optimal.

where we process the development set using the API

and prompting setup 𝑖 and record: TP(𝑉 , 𝑖), the number

of true positives, FP(𝑉 , 𝑖)), the number of false positives,

and 𝑡 (𝑉 , 𝑖), the sum of the number of tokens input to

the API and the number of tokens returned by the API.

We create a variety of different prompting setups

(where with prompting setup we refer to a combination

of prompt, model, and other configurations like major-

ity voting) 𝑖 and then select our final prompting setup

𝑖′ as the one with the lowest per-TP cost:

𝑖′ = argmin𝑖 𝐽 (𝐶HR,𝐶API, 𝑖)

Determining the size of the input corpus To com-

pile our CMCdataset, we set a target number of TPreq =

292 instances of the CMC, to bring the total up to 500

by later adding the manually annotated positive devel-

opment instances and the positive few-shots. After se-

lecting a prompting setup 𝑖 and determining TP(𝑉 , 𝑖) on
the development set, we can estimate the size 𝑁 of the
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input corpus that will result in a set of TPreq instances

to be output by the pipeline as:

𝑁 := |𝑉 |
TPreq

TP(𝑉 , 𝑖)

Iterative Prompting Setup Development We start

with a simple base prompting setup and iteratively at-

tempt improvements to it. The total cost of this ex-

perimentation was about $22. The full details of all at-

tempted prompting setups are given in the appendix in

Section A. We test four models from OpenAI of those

available in February 2025: 4o-mini, 4o, o3-mini, and

o1. For this experiment, we use sampling with temper-

ature=1.0 and top_p=1.0.
3

During prompt development, we do not have a good

estimation of the human annotator cost, as we will ul-

timately annotate the sentences ourselves. We, how-

ever, assume that 𝐶𝐻𝑅 should be at least $0.001, which

means that we can determine many prompting setup

improvements to be clear improvements and only have

to consider the cost tradeoff for some.

We start with a simple prompting setup that gives

no few-shot examples and asks for sentence IDs and

classifications in a csv codeblock, classifying 50 sen-

tences at a time with 4o-mini. The instruction remains

the same throughout and can be seen in the prompt ex-

ample in Table 3. We achieve straightforward improve-

ments by making the model repeat the sentence (and

therefore giving the output as a json object to avoid

confusion over commas), but not with having 4o-mini

give a reason for its decision. We then try out differ-

ent combinations of giving the entire sentence, only the

substring containing the core CMC, and the structured

information given by the dependency parsing step. We

add few shots and hand-written explanations for our la-

bels for them. We also vary the number of samples, in-

crease the number of few-shots, and reorder them. We

then add majority voting after running each sentence 3

times, and try out different numbers of sentences to be

classified for each prompt. During this process, we also

switch to the more expensive models o3-mini, 4o, and

o1. The final optimal prompting setup depends on the

human annotation cost. In Figure 2, we visualise with

grey vertical lines where one prompting setup “over-

takes” another, meaning the human annotation cost per

sentence where the optimal prompting setup changes.

We then show example total cost figures for three rea-

sonable values in between these change points in Table

2, revealing that the best prompting setups are 13, 30,

and 32, depending on human annotation cost.

As our final prompting setup, we select prompt-

ing setup 30 as it is a good tradeoff between API cost

3
The specific models used were gpt-4o-mini-2024-07-18,

gpt-4o-2024-11-20, o3-mini-2025-01-31 and

o1-2024-12-17.

and human cost.

3.4 Final Dataset Collection
In combination with the 183 positive instances from

the development set, and an additional 25 positive in-

stances from the few shots, we now set out to anno-

tate additional data using our pipeline, to reach a fi-

nal dataset of 500 hand-annotated CMC instances. To

this end, we classify an additional 9,046 sentences with

prompting setup 30, with approximately 3.6 USD in API

costs. 598 of these (6.6%) are classified as positive by

the model. We annotate these by hand, resulting in

292 positive and 396 negative instances, which gives the

prompting setup a precision of 48.83% in practice. We

see the reason for this lower precisionmostly in the fact

that the concentration of true positives was likely much

lower in the data processed here, than in the develop-

ment set, which was chosen to havemany diverse CMC

instances. Examples for sentences in the final dataset

are given in Table 4.

4 Evaluation of LLMs’ Under-
standing of the CMC

4.1 Methods
The goal of our evaluation is to assess different LLMs

for their understanding of the CMC. The performance

reached by the prompts in the data collection phase is

not a suitable measure for this, since it relied on met-

alinguistic prompting and few-shots.

Our LLM evaluation setup in this section differs

from prompting setup evaluation as we do not explicitly

refer to the “caused-motion construction”, but rather

prompt implicitly for the model’s understanding of the

situation described. The key idea is that in a CMC sen-

tence, something is always physically moving, even if

the verb (e.g., “sneeze”) does not indicate this. The dis-

tinction between prototypical vs. non-prototypical in-

stances is crucial here: for prototypical CMC instances

(“throw”, “kick”), the verb already conveys the meaning

component of motion while for non-prototypical CMC

instances (“sneeze”, “laugh”) it does not and the LLM

has to infer the additional meaning component of mo-

tion from the construction.

Our setup is to ask “In the sentence "...", is di-
rect_object moving, yes or no?”. If a model were to an-

swer this with “yes”, we would feel confident that it has

understood the CMC; however, if it answered with “no”,

we could not be sure that the model has failed specifi-

cally in its understanding of the CMC, and not of the

sentence or situation in general. We therefore construct

a control question, for which we replace the verb of the

CMC with the appropriately inflected form of “throw”,
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30 28 - reason

31 29 - reason

32 22 on o1

33 32 + 50 samples

34 33 + majority vote

Figure 2: A comparison of all prompting setups that were considered in development. On the left, the total cost per true

annotated sentence is shown dependent on the human annotation cost, in USD. On the right, prompts are compared

by recall and precision.

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Table 3: An example prompting setup (30)

I crumble them into the bowl one at a time .

I just wept a single tear into my beard .

He hissed air through his clenched teeth .

did people really crane grand pianos to upper floors ?

Gently swirl it into the batter .

Table 4: Examples from the final dataset. Verbs are high-

lighted in green, direct objects in purple, prepositions in

blue, and prepositional objects in red.

and ask the same question again, using the structural

information extracted by the dependency filtering step.

This is intended to test if the model is having a gen-

eral problem understanding the sentence (which would

still be an issue, but not the one we set out to find), or

specifically with the CMC. While the sentence variants

with “throw” are still instances of the CMC, they are

now prototypical ones, which we expect to require no

deeper understanding of the semantics of the CMC, as
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Question Type Example Sentence

original In the sentence ’did people really [crane|throw] grand pianos to upper floors ?’, did pianos really move, yes or no?

original_prep In the sentence ’did people really [crane|throw] grand pianos to upper floors ?’, did pianos really move to floors, yes or no?

medium In the sentence ’People [crane|throw] grand pianos to upper floors .’, do pianos move, yes or no?

medium_prep In the sentence ’People [crane|throw] grand pianos to upper floors .’, do pianos move to floors, yes or no?

short In the sentence ’You [crane|throw] pianos to floors .’, do pianos move, yes or no?

short_prep In the sentence ’You [crane|throw] pianos to floors .’, do pianos move to floors, yes or no?

Table 5: An overview of the prompt formats for LLMs, for the example sentence ‘did people really crane grand pianos

to upper floors?’. For each prompt, the main verb ‘crane’ is optionally replaced with the appropriate form of ‘throw’.

Each question exists once with the direct object and once without. The sentence itself is modified with two stages of

simplification (medium and short).

the verb is behaving in a prototypical and frequently

observed way. We expect that models with no under-

standing of the CMC would answer “yes” both times

only for prototypical instances, and switch from “no”

to “yes” for non-prototypical ones. Models with a per-

fect understanding of the CMC would always answer

“yes”.

As this only covers the most basic element of under-

standing the CMC sentence, the presence ofmotion, we

also expand the evaluation paradigm to also query the

destination of the caused motion. This results in a ques-

tion of the format “In the sentence "...", is direct_object
moving prep prep_obj, yes or no?”. This is a more chal-

lenging version of the question, which will allow us to

test the models on all aspects of the CMC’s meaning.

Some of the sentences in our corpus contain modal

verbs (e.g., I may sneeze the foam off the cappuccino),
questions (e.g. Did you sneeze the foam off the cappuc-
cino?), or other hypotheticals (e.g. I nearly sneezed the
foam off the cappuccino.). Asking if the foam moved off

the cappuccino in any of these sentences should be cor-

rectly answered with ‘no’, or at least with a lengthy ex-

planation, which introduces noise into our evaluation.

We therefore automatically modify each sentence us-

ing the existing dependency parse to form simpler sen-

tences in the present tense and indicative mood, which

we call “medium” sentences. In a more radical edit, we

also form a “short” version, which consists only of the

verb, direct object, preposition, and prepositional ob-

ject, forming a sentence together with a pronoun. This

is meant to evaluate if additional context helps or hin-

ders the models in answering the question. Examples

for all sentence and question types are given in Table 5.

We conduct this experiment on our corpus of 500

hand-annotated sentences. As API-based LLM, we in-

vestigate OpenAI’s 4o-mini (OpenAI, 2022). From the

family of open LLMs, we further choose Llama3 (Tou-

vron et al., 2023) in sizes 8B and 70B from version 3.1,

and 1B and 3B from version 3.2, Mistral 7b (Jiang et al.,

2023), OLMo2 in sizes 7B and 13B (OLMo et al., 2025),

Gemma3 in sizes 1B, 4B, 12B, and 27B (Team et al.,

2025), as well as Aya Expanse 8B (Dang et al., 2024).

Models generate a sentence in response, which we then

parse for versions of “yes” and “no”. We use tempera-

ture 0 for all models, i.e. greedy decoding.

4.2 Results
Figure 3 presents the results in three groups. (i) Green:

the model answers “yes” both times and therefore

demonstrates that it understands the CMC. (ii) Red:

The model answers with “no” for the original sen-

tence but changes its answer to “yes” when the verb

is changed to “throw”, meaning that it does not un-

derstand the CMC. (iii) Grey: Even with “throw”, the

model does not answer correctly that the direct object

is moving. We consider these to be general failures of

the model to understand the instruction, rather than

the CMC specifically.

Indicative Present Sentences On this subgroup, ti-

tled ‘medium’ and ‘medium_prep’ in the plot, perfor-

mance is higher for all models than on the questions

formed with original sentences. This fits well with our

intuition that the original sentences sometimes con-

sider modals and hypotheticals, and can therefore not

straightforwardly be answered with ‘yes’, and we there-

fore consider these to be the main LLM results.

Context-Free Sentences For this minimal version

of the evaluation, models overall perform as well or

slightly worse than for the indicative present variants.

This indicates that the lack of additional context only

minimally hurts model performance, and consequently,

that models were only utilising the context to answer

the question to a small degree.

Destination of CausedMotion If we ask only if the

direct object is moving, we cannot take any model’s ac-

curacy as a direct measure of its understanding of the

entire construction. It is possible that a model might

understand that the direct object is moving in some

way, but not precisely in which direction, and therefore

wouldn’t have entirely captioned the boundaries of the

Northern European Journal of Language Technology 35Vol. 11, 2025
134

134



Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

0.0

0.2

0.4

0.6

0.8

or
ig

in
al

0.0

0.2

0.4

0.6

0.8

or
ig

in
al

 (p
re

p)

0.0

0.2

0.4

0.6

0.8

m
ed

iu
m

0.0

0.2

0.4

0.6

0.8

m
ed

iu
m

 (p
re

p)

0.0

0.2

0.4

0.6

0.8

sh
or

t

13
B7B 8B12

B1B 27
B4B

70
B (3

.1)

8B
 (3

.1)

1B
 (3

.2)

3B
 (3

.2) 7B

4o
-m

ini

      Llama3                Gemma3           OLMo2   Mistral  Aya  OpenAI

0.0

0.2

0.4

0.6

0.8

sh
or

t (
pr

ep
)

Figure 3: Results for each model and evaluation type.

Examples for the evaluation types are given in Table 5.

Correct answers are coloured in green, incorrect in red,

and invalid results in grey.

Neither is it ever going to vibrate itself out of place .

I chop up the bacon and crumble it on top .

Do not squat the bar off the ground .

We thin the weak from the heard .

It rained arrows from the sky at any rate .

Table 6: Examples from the final dataset which were

wrongly classified as negative instances by prompt 30.

Verbs are highlighted in green, direct objects in purple,

prepositions in blue, and prepositional objects in red.

CMC. To test this, we design a second question that in-

cludes the prepositional object, examples for which can

be seen in Table 5, where the question types are suffixed

with _prep.

Across the board, models give fewer correct answers

to these questions than to the ones which do not in-

clude the destination (always directly above in Figure

3). However, the rate of false answers mostly stays the

same or decreases, while the rate of invalid answers

increases, meaning that models are more likely to an-

swer ‘no’ when asked the question, including the des-

tination of ‘throw’. This may indicate that models are

having general trouble interpreting these complex sen-

tences. The pattern holds even when considering the

short_prep category, where nothing else in the sentence

could interfere with the model’s understanding.

Results by Model Comparing different models, we

find that Gemma3 perform best, with the 27B vari-

ant consistently in the range of 90%. The performance

of Llama3 is correlated with model size, while that of

Gemma3 is not. Gemma3 1B stands out in particular

with performance almost rivalling that of the 27B ver-

sion, for unknown reasons. The high performance of

Gemma3 27B indicates that our questions are solvable

for models, but remain a challenge for most of them.

This is further supported by the fact that the only sen-

tence types where this model falls below 90% is in the

original and original_prep categories, which may in-

clude sentences where ‘yes’ is not the correct answer,

as explained above.

4.3 Results on False Negatives

Even though our pipeline to create the test corpus in-

cluded manual verification of all sentences, there is still

a possibility that the automated steps introduced bias,

i.e. mistakenly filtered out a set of sentences that would

have significantly altered the results of our LLM evalua-

tion. To investigate this, we repeat the same evaluation

using specifically the false negatives from our corpus

collection. While it would be infeasible to collect false

negatives from the dependency filtering step due to the
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very low concentration of CMC sentences in raw data,

we can take a sample of the false negatives of the LLM

filtering step simply by using the false negatives from

the development set that we hand-annotated earlier.

With the final prompt 30, this was a set of 36 sentences

that had been hand-annotated as CMC sentences, but

were wrongly missed by the prompt. If the results of

running the LLM evaluation on these were identical to

running it on the entire collected dataset, this would

tell us that the LLM filtering does not systematically

exclude sentences that are more or less challenging for

other LLMs to answer questions about than a random

sample would have been. While we cannot find any ob-

vious patterns in the set of false negatives, we provide

some example sentences from it in Table 6.

We present the results of this in Figure 4. The results

are striking: all models perform significantly worse on

this set of 36 false negatives. Most interestingly, the

largest change is the increase in false answers and de-

crease in invalid answers. This leads us to two conclu-

sions. First, the LLMs overlap in their notion of dif-

ficulty of a CMC sentence: while the false negatives

come from prompt 30, which used GPT-4o, the sen-

tences that it misclassified were not only more difficult

for 4o-mini, but also for all other models. Second, the

results in the previous section, while more robust be-

cause they were based on 500, not just 36 sentences,

overestimated all models’ understanding of the CMC.

Interestingly, the previously best model, Gemma3 27B,

is now rivalled by its much smaller variant, Gemma3

1B, and neither performs as well as on the full dataset.

On the other hand, specifically the short variant, which

are minimal sentences where we do not ask for the des-

tination of movement, were still almost fully solved by

Gemma3 27B. It should also be noted, however, that the

general relative trends between models are very similar

to those of the full evaluation. This control set is, of

course, also not a representation of the true distribu-

tion; it is likely that it represents exactly the most diffi-

cult subset of CMC sentences from an LLM perspective.

Overall, this has shown that while our hybrid

pipeline is not perfect, the evaluation based on it still

shows the general trend that most language models

have large deficits in understanding the CMC, even

though they are slightly underestimated.

5 Conclusion
We have introduced an annotation pipeline aided by de-

pendency parsing and prompting LLMs, which can be

specifically used for phenomena that are so rare that lit-

tle to no corpora have been created, as the human anno-

tation effort would be too great. We have demonstrated

this pipeline on the example of the caused-motion con-

struction, and a corpus of 500 caused-motion sentences.
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Figure 4: Results for each model and evaluation type.

Examples for the evaluation types are given in Table 5.

Correct answers are coloured in green, incorrect in red,

and invalid results in grey.

Northern European Journal of Language Technology 37Vol. 11, 2025
136

136



Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

We have used the manually annotated corpus to eval-

uate state-of-the-art LLMs for their understanding of

the CMC, and found that many have high error rates

when asked to interpret situations describedwith a non-

prototypical CMC.

We hope that our work will inspire more computa-

tional and corpus-based studies of rare linguistic phe-

nomena. We note that even though prompt engineer-

ing is complex, large gains can be achieved by using

intermediate-complexity prompting setups and basic

knowledge of LLMs. We are confident that further ad-

vances in instruction-tuned LLMs will make the cost-

benefit ratio of incorporating them into this hybrid an-

notation pipeline even stronger.

We see several opportunities for interesting future

work in both halves of the paper. For the data collection

part, it is a promising engineering direction to develop

tools that automate parts of this process so that it be-

comes available to linguists without the need for com-

plex prompt engineering. Continued progress in LLMs

is likely to make the process even more efficient.

Concerning the evaluation of LLMs’ understanding

of constructions, a straightforward direction for future

work would be to expand to the other three Argument

Structure Constructions described in Goldberg (1992).

Limitations
Due to cost reasons, the evaluation experiments were

limited to replacing the verbs only with “throw”. A fur-

ther validation of the results could be achieve by repeat-

ing the experiment with several other prototypical mo-

tion verbs.

Because the evaluation prompts as shown in Table

5 are automatically generated, the resulting sentences

might occasionally be slightly unnatural, which could

affect how models reply to them.
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A Full details for each prompt
We report in Tables 7 to 24 the details of the prompt,

alongwith the change that it represents from a previous

prompt.

B Few Shots
In Table 41, we give the five shots from each class given

to ChatGPT as examples.

Northern European Journal of Language Technology 42Vol. 11, 2025
141

141



Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Classify the following sentences: { "id": "...", "sentence": "..." }.

Output Format Reply with a csv codeblock (wrapped in three backticks), with the headers ’id’ and ’label’. label should be

either True or False. Label all 50 sentences.

Few-Shots 0

Sentences 50

Model 4o_mini

Majority Vote No

Change Base

Shot Strategy all

Table 7: Prompt 1

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Classify the following sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes.

Few-Shots 0

Sentences 50

Model 4o_mini

Majority Vote No

Change 1 + repeat sentence with json

Shot Strategy all

Table 8: Prompt 2

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Classify the following sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 0

Sentences 50

Model 4o_mini

Majority Vote No

Change 2 + reason

Shot Strategy all

Table 9: Prompt 3
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Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Classify the following sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 0

Sentences 50

Model 4o_mini

Majority Vote No

Change 3 + structured information

Shot Strategy all

Table 10: Prompt 4

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Classify the following sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 0

Sentences 50

Model 4o_mini

Majority Vote No

Change 4 + sentence

Shot Strategy all

Table 11: Prompt 5

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Classify the following sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 0

Sentences 50

Model 4o_mini

Majority Vote No

Change 4 + cmc string

Shot Strategy all

Table 12: Prompt 6

Northern European Journal of Language Technology 44Vol. 11, 2025
143

143



Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Classify the following sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 0

Sentences 50

Model 4o_mini

Majority Vote No

Change 4 + cmc string continuous

Shot Strategy all

Table 13: Prompt 7

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Classify the following sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 0

Sentences 50

Model 4o_mini

Majority Vote No

Change 6 + sentence

Shot Strategy all

Table 14: Prompt 8

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Classify the following sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 0

Sentences 50

Model 4o_mini

Majority Vote No

Change 7 + sentence

Shot Strategy all

Table 15: Prompt 9
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Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 10 positive examples: . Here are 10 negative examples: . Classify the following sentences: { "id": "...",

"sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 10

Sentences 50

Model 4o_mini

Majority Vote No

Change 4 + few shots

Shot Strategy first of each verb and class

Table 16: Prompt 10

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 10 positive examples: . Here are 10 negative examples: . Classify the following sentences: { "id": "...",

"sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 10

Sentences 50

Model 4o_mini

Majority Vote No

Change 10 + explanations

Shot Strategy first of each verb and class

Table 17: Prompt 11

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: . Here are 50 negative examples: . Classify the following sentences: { "id": "...",

"sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 50

Model 4o_mini

Majority Vote No

Change 11 + all shots

Shot Strategy all

Table 18: Prompt 12
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Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: . Here are 50 negative examples: . Classify the following sentences: { "id": "...",

"sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 10

Model 4o_mini

Majority Vote No

Change 12 + only 10 samples

Shot Strategy all

Table 19: Prompt 13

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: . Here are 50 negative examples: . Classify the following sentences: { "id": "...",

"sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 1

Model 4o_mini

Majority Vote No

Change 12 + only 1 sample

Shot Strategy all

Table 20: Prompt 14

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: . Here are 50 negative examples: . Classify the following sentences: { "id": "...",

"sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 5

Model 4o_mini

Majority Vote No

Change 12 + only 5 samples

Shot Strategy all

Table 21: Prompt 15
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Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: . Here are 50 negative examples: . Classify the following sentences: { "id": "...",

"sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 25

Model 4o_mini

Majority Vote No

Change 12 + only 25 samples

Shot Strategy all

Table 22: Prompt 16

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: . Here are 50 negative examples: . Classify the following sentences: { "id": "...",

"sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 1

Model 4o_mini

Majority Vote No

Change 14 + new few-shots

Shot Strategy all

Table 23: Prompt 17

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: . Here are 50 negative examples: . Classify the following sentences: { "id": "...",

"sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 1

Model 4o_mini

Majority Vote No

Change 17 + alternating shots

Shot Strategy all_alternating

Table 24: Prompt 18
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Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 1

Model 4o_mini

Majority Vote No

Change 17 + grouped shots

Shot Strategy all_grouped

Table 25: Prompt 19

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 1

Model 4o_mini

Majority Vote Yes

Change 19 + majority vote

Shot Strategy all_grouped

Table 26: Prompt 20
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Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 1

Model o3_mini

Majority Vote No

Change 19 on o3-mini

Shot Strategy all_grouped

Table 27: Prompt 21

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 100

Model o3_mini

Majority Vote No

Change 21 + 100 samples

Shot Strategy all_grouped

Table 28: Prompt 22
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Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 250

Model o3_mini

Majority Vote No

Change 21 + 250 samples

Shot Strategy all_grouped

Table 29: Prompt 23

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 50

Model o3_mini

Majority Vote No

Change 21 + 50 samples

Shot Strategy all_grouped

Table 30: Prompt 24
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Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 25 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 25 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 25

Sentences 50

Model o3_mini

Majority Vote No

Change 21 + 25 samples

Shot Strategy all_grouped

Table 31: Prompt 25

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 50

Model o3_mini

Majority Vote Yes

Change 24 + majority vote

Shot Strategy all_grouped

Table 32: Prompt 26
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Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 50

Model 4o

Majority Vote No

Change 24 on 4o

Shot Strategy all_grouped

Table 33: Prompt 27

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 50

Model o3_mini

Majority Vote No

Change 24 - sentence

Shot Strategy all_grouped

Table 34: Prompt 28
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Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 50

Model 4o

Majority Vote No

Change 27 - sentence

Shot Strategy all_grouped

Table 35: Prompt 29

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 50

Model o3_mini

Majority Vote No

Change 28 - reason

Shot Strategy all_grouped

Table 36: Prompt 30
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Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes. Before you give the label,

justify your decision with a reason.

Few-Shots 50

Sentences 50

Model 4o

Majority Vote No

Change 29 - reason

Shot Strategy all_grouped

Table 37: Prompt 31

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes.

Few-Shots 50

Sentences 100

Model o1

Majority Vote No

Change 22 on o1

Shot Strategy all_grouped

Table 38: Prompt 32
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Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes.

Few-Shots 50

Sentences 50

Model o1

Majority Vote No

Change 32 + 50 samples

Shot Strategy all_grouped

Table 39: Prompt 33

Instruction The task is to classify whether the sentences contain instances of the caused-motion construction. The

caused-motion construction is a construction where an agent causes an object to move. This motion has

to be literal, not metaphorical. Each sentence that you will be given includes a subject, a verb, a direct object,

and a prepositional phrase. In the caused motion instances, the verb causes the motion of the direct object,

in the direction specified by the prepositional phrase. The action does not need to actually happen, it could

be only mentioned or hypothetical or occur in the past or future.

Input Format Here are 50 positive examples: { "sentence": "...", "verb": "...", "direct_object": "...", "preposition": "...", "prepo-

sitional_object": "...", "reason": ..., "label": ... }. Here are 50 negative examples: { "sentence": "...", "verb": "...",

"direct_object": "...", "preposition": "...", "prepositional_object": "...", "reason": ..., "label": ... }. Classify the follow-

ing sentences: { "id": "...", "sentence": "..." }.

Output Format Respond with a jsonl codeblock (wrapped in three backticks) using double quotes.

Few-Shots 50

Sentences 50

Model o1

Majority Vote Yes

Change 33 + majority vote

Shot Strategy all_grouped

Table 40: Prompt 34
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Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

Sentence Verb Dir Obj Prep P-Obj Lab. Explanation

I actually giggled myself to tears . giggle myself to tear False This is a negative example because being ’in tears’ is a state, not a location,

so the subject here didn’t move but rather changed state.

Nope , they just giggle their microscopic excretions into the air . giggle excretion into air True This is a positive example because the act of giggling is causing the excretions

to move

I ’ll stop it from repeating and fade it into a single background color . fade it into color False This is a negative example which describes the act of fading a color so that

it can’t be told apart from the background color, which means that nothing

moved.

Just hover your mouse over it hover mouse over it False This is a negative example because the mouse is hovering over it, but it is not

moving, it is staying in place while hovering.

Once she was strapped back in he started to hover her out of the room . hover she out of room True This is a positive example because they are moving her out of the room by

hovering.

They tug him to the ground and start jumping on him and licking his face . tug he to ground True This is a positive example because someone was tugged and that moved him

to the ground.

I gulped it from the bottle while watching old movies . gulp it from bottle True This is a positive example because what was in the bottle moved from the

bottle because the person was drinking it.

I would rather take the spoon , I can gulp it in one go . gulp it in go False This is a negative example because one go is not a destination, it specifies

the manner of gulping.

Cruz was trailing Clinton in basically every poll . trail Clinton in poll False This is a negative example because no movement is happening, the sentence

describes the relative position of two politicians in a poll.

She began trailing a finger down his chest . trail finger down chest True This is a positive example because she is moving the finger down his chest.

He stopped for ten minutes while wheezing himself to death . wheeze himself to death False This is a negative example because death is a state, not a physical location.

It is not cute to watch your dog wheeze himself to the floor because he was

so excited you picked up his tug of war rope .

wheeze himself to floor True This is a positive example because the wheezing is causing the dog to move

to the floor.

I bounced it off the wall . bounce it off wall True This is a positive example because the ball moved off the wall.

We bounce ideas off each other . bounce idea off other False This is a negative example because an idea can’t physically move.

I was in bed for about a week and thought I was going to shiver myself to

death .

shiver myself to death False This is a negative example because death is a state, not a destination of a

physical movement.

She needs to stop darting her eyes to the side every time she says something dart eye to side False This is a negative example because her eyes are rotating but they’re not mov-

ing.

He nervously darted his tongue into her mouth . dart tongue into mouth True This is a positive example because his tongue is moving into her mouth.

For some reason every time i overflow the sink in Dalia ’s bathroom , the

Sheik always comes up to investigate ...

overflow sink in bathroom False This is a negative example because the sink is not moving.

Most importantly the toilet was overflowing water into the pan , almost on

constant flush .

overflow water into pan True This is a positive example because the water is moving into the pan.

You ’re trying to wriggle your way out of it now ! wriggle way out of it False This is a negative example because while something is moving, it is not the

direct object way.

At one point he wriggles himself into position to block a soccer ball with his

head while Latin on the street .

wriggle himself into position True This is a positive example because he is moving himself into position.

I swim laps in the pool . swim lap in pool False This is a negative example because while I am moving, the laps are not mov-

ing.

My wife lapped me on the scoring track . lap I on track False This is a negative example because I am moving, but my wife is not causing

me to move.

He will nibble you to death ! nibble you to death False This is a negative example because death is a state, not a location.

I eat my Twix by nibbling the chocolate off the sides , then off the top , then

eat the caramel and cookie .

nibble chocolate off side True This is a positive example because the chocolate is moving off the sides.

I aimed at her , and gazed her in her eyes before I successfully hit her face

with the snowball .

gaze she in eye False This is a negative example because a gaze is not something that can physi-

cally move.

I choose to be the one that goes hiking with friends into waterfalls , out

galloping horses in open fields , and having fun times with my SO .

gallop horse in field False This is a negative example because the horses are moving, but they are not

moving in the direction of the field, they are already in it.

I can confirm that galloping a horse through an open field is amazing . gallop horse through field True This is a positive example because the horse is moving through the field.

I scramble them in the hot pan . scramble they in pan False This is a negative example because the eggs are not moving in the direction

of the pan, they are already in it.

Once it firms a little , scramble it into the rice . scramble it into rice True This is a positive example because the eggs are moving into the rice.

To continue with your explanation , we see not only that this man here can

afford to encrust rare and obviously expensive jewels onto his box of ’ Fruity

Pebbles ’ brand breakfast cereal , but also that he can afford the ’ Family Size

’ box .

encrust jewel onto box True This is a positive example because the jewels are moving onto the box.

I peel paint off walls . peel paint off wall True This is a positive example because the paint is moving off the wall.

I peel bananas from the bottom peel banana from bottom False This is a negative example because the banana is not moving, only the peel

is, and it is not moving from the bottom.

In my defense I was actually very drunk when I plowed my car into that

crowd of pedestrians .

plow car into crowd True This is a positive example because I caused tha car to move into the crowd.

I plow snow in the winter plow snow in winter False This is a negative example because in the winter is a time, not a location.

And drag queens cake themselves in makeup . cake themselves in makeup False This is a negative example because the drag queens are not moving.

I would cake makeup on my face to hide it . cake makeup on face True This is a positive example because the makeup is moving onto the face.

Whereas WWE charred it to a crisp and drowned it in A-1 sauce . char it to crisp False This is a negative example because it is changing state to a crips, not moving.

I fermented it in a 3 gallon food grade plastic bucket . ferment it in bucket False This is a negative example because it is staying in the bucket and not moving.

When the child collapsed , the mother hurried him to the hospital , where he

died .

hurry he to hospital True This is a positive example because the child is moving to the hospital.

I will take my time or hurry you through a meal , there are no rules against

that .

hurry you through meal False This is a negative example because the meal here is an action, not a destina-

tion

I love blackening it in a roasting pan . blacken it in pan False This is a negative example because it is not moving, it is staying in the pan.

I rarely use them but my girlfriend is crocheting them into reusable shopping

bags ...

crochet they into bag False This is a negative example because the bags are not moving, they are being

made into something else.

When " nice guys " change their MO to target " nice girls " the equilibrium

will tilt the earth off its axis and hurtle us into space , thus settling this tired

argument for all eternity .

hurtle we into space True This is a positive example because we are moving into space.

Then you drip juice into it and vape . drip juice into it True This is a positive example because the juice is moving into it.

As in you literally gnaw it off the bone . gnaw it off bone True This is a positive example because it is moving off the bone

I twitch my head to the side . twitch head to side True This is a positive example because the head is moving to the side.

He snorted coke off my ass snort coke off ass True This is a positive example because the coke moved off my ass.

I ca n’t tell if she ’s smiling or is she ’s about to sneeze the sand off of her

nose .

sneeze sand off of nose True This is a positive example because the sand moves off her nose.

It was like a little rocket that tried to burrow itself into the ground . burrow itself into ground True This is a positive example because the rocket moves into the ground.

Table 41: Few shots. P-Obj stands for Prepositional Object, Dir Obj for Direct Object.
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Abstract

Large language models (LLMs) have recently
reached an impressive level of linguistic capa-
bility, prompting comparisons with human lan-
guage skills. However, there have been rel-
atively few systematic inquiries into the lin-
guistic capabilities of the latest generation of
LLMs, and those studies that do exist (i) ig-
nore the remarkable ability of humans to gen-
eralize, (ii) focus only on English, and (iii)
investigate syntax or semantics and overlook
other capabilities that lie at the heart of hu-
man language, like morphology. Here, we
close these gaps by conducting the first rigor-
ous analysis of the morphological capabilities
of ChatGPT in four typologically varied lan-
guages (specifically, English, German, Tamil,
and Turkish). We apply a version of Berko’s
(1958) wug test to ChatGPT, using novel, un-
contaminated datasets for the four examined
languages. We find that ChatGPT massively
underperforms purpose-built systems, particu-
larly in English. Overall, our results—through
the lens of morphology—cast a new light on
the linguistic capabilities of ChatGPT, suggest-
ing that claims of human-like language skills
are premature and misleading.

1 Introduction

Do large language models (LLMs) possess human-
like linguistic capabilities? With the advent of the
latest generation of LLMs such as GPT-4 (OpenAI,
2023b), LLaMA (Touvron et al., 2023), and PaLM
(Chowdhery et al., 2022), there appears to be grow-
ing evidence for answering this question with yes
(Bubeck et al., 2023): LLMs are capable of gen-
erating text that crowdworkers cannot distinguish
from human-generated text (Clark et al., 2021) and
excel at linguistic probing tasks such as predicting
grammaticality, detecting the subject and tense of

*Equal contribution.
†Authors sorted alphabetically.

gel→ gelemedik
ye→ yiyemedik
zulu→

LLM

Humans

zuluyemedin

zuluyamadık

Evaluation

Figure 1: Experimental paradigm for this study (illus-
trated with Turkish). Human annotators and an LLM
are given examples and a nonce word to be inflected.
The generated inflected forms are compared.

clauses, and identifying the grammatical number
of subjects and objects (Jin et al., 2022).
Despite these encouraging results, the existing

body of work has so far examined a relatively lim-
ited part of the full spectrum of phenomena that
are known to characterize human language, with a
heavy focus on syntax and semantics. One area
that has been neglected in particular is morphol-
ogy, i.e., the capacity to create words according
to systematic patterns of covariation in form and
meaning (Haspelmath and Sims, 2010). This gap
in the LLM literature is noteworthy given that mor-
phology has been a hallmark of research on com-
putational approaches to language since the very
beginnings of neural language processing in the
1980s (Rumelhart and McClelland, 1986b; Plun-
kett and Juola, 1999; Albright and Hayes, 2002,
2003; Goldberg, 2019).
In this study, we present the first systematic anal-

ysis of the morphological capabilities of LLMs, fo-
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cusing on ChatGPT (OpenAI, 2023a) as the most
prominent and most widely-used LLM. Specifi-
cally, we investigate ChatGPT’s morphological ca-
pabilities using the wug test (Berko, 1958), an
experimental paradigm in which a participant is
asked to provide an inflected or derived form
of a nonce word. An example for our evalua-
tion setup is given in Figure 1. Our experiments
cover a broad range of morphological construc-
tions and four typologically diverse languages: En-
glish, German, Tamil, and Turkish. We find that
ChatGPT falls short not only of human perfor-
mance but also of various supervised baselines.
In sum, our contributions are as follows:

• We conduct the first systematic analysis into the
morphological capabilities of LLMs.

• Our study covers a diverse set of morphological
constructions/languages and introduces datasets
for future research in the area.1

• We show that ChatGPT has not achieved human
parity—or even state-of-the-art performance—
on our nonce-word inflection/reinflection tasks
but performs about as well as some older super-
vised models. We furthermore find evidence for
the existence of a real word bias in ChatGPT that
is the more pronounced the more data ChatGPT
has seen for a given language.

2 Related Work

2.1 Computational Morphology
Linguists divide morphology into inflection and
derivation (Haspelmath and Sims, 2010). While
inflection accounts for the different word forms of
a lexeme, e.g., listen, listens, and listened, deriva-
tion accounts for the different lexemes of a word
family, e.g., listen, listener, and listenable. Both
inflection and derivation have been addressed in
computational linguistics and natural language pro-
cessing (NLP), albeit with a heavy focus on in-
flection. One line of work, which is conceptu-
ally similar to wug testing, has sought to gener-
ate inflected forms, given a stem and a morpho-
logical tag (Cotterell et al., 2017a, 2018; Vylo-
mova et al., 2020; Goldman et al., 2022), using
systems ranging from weighted finite state trans-
ducers and GRU/LSTM encoder-decoder models

1We release our dataset along with our code at https://
github.com/dmort27/chatgpts-wugs, carefully following
the guidelines laid out by Jacovi et al. (2023).

(with soft attention or hard monotonic attention) to
various transformer models. A special subtype of
this task is morphological reinflection, where the
input can be a form that is itself inflected (Cot-
terell et al., 2016a; Kann and Schütze, 2016; Kann
et al., 2017; Silfverberg et al., 2017; Pimentel et al.,
2021). Other typical tasks in computational re-
search on inflection are morphological segmenta-
tion (Cotterell et al., 2015, 2016b,c; Kann et al.,
2016), unsupervised morphology induction (Ham-
marström and Borin, 2011; Soricut and Och, 2015;
Xu et al., 2018; Weissweiler et al., 2022), and mor-
phological paradigm completion (Erdmann et al.,
2020a,b; Jin et al., 2020). There has also been
some interest in the modeling of derivation (Cot-
terell et al., 2017b; Vylomova et al., 2017; Deutsch
et al., 2018; Hofmann et al., 2020b,c).
More recently, there have been a few studies

examining the morphological capabilities of lan-
guage models (Edmiston, 2020; Hofmann et al.,
2020a), but they focus on smaller language models
such as BERT (Devlin et al., 2019). By contrast,
we examine ChatGPT, a model whose parameter
count is three orders of magnitude larger, and we
analyze its zero-, one-, and few-shot capabilities,
an approach fully neglected by prior work.

2.2 Multilingual Capabilities of LLMs
Recent studies have extensively examined the eval-
uation of LLMs in multilingual settings. Some of
these studies have specifically investigated the ex-
tent to which LLMs can be used for traditional
multilingual NLP tasks such as machine transla-
tion (Bawden et al., 2022; Hendy et al., 2023; Jiao
et al., 2023;Wang et al., 2023). Brown et al. (2023)
demonstrate that LLMs perform well across mul-
tiple languages even with minimal task-specific
training, highlighting their transferability and gen-
eralization in multilingual understanding.

2.3 LLM Performance on Unseen Data
The fact that LLMs have been pretrained on mas-
sive amounts of data means that they have seen and
potentially memorized a substantial amount of the
items of data used in typical evaluation setups (Ma-
gar and Schwartz, 2022). There have been a few
attempts in NLP to specifically control for previ-
ous exposure (Haley, 2020; Hofmann et al., 2020a;
Maudslay and Cotterell, 2021). We follow this
idea by generating datasets of novel and uncontam-
inated nonce words, thus ensuring that the words
have not been seen by ChatGPT before.
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3 Data and Morphological Constructions

In this paper, we examine ChatGPT’s morpho-
logical behavior on a typologically diverse set of
languages: English, German, Tamil, and Turkish.
While English and German belong to the same lan-
guage family, German has a more fusional mor-
phological system than English. Turkish is cho-
sen since it is a non-Indo-European language with
a fully agglutinative morphology. Tamil is cho-
sen since it is a Dravidian language exhibiting an
agglutinative morphology with fusional elements.
Thus, in terms of the classical triangle of fusional,
isolating, and agglutinative morphologies (Dixon,
1994), the languages cover four different points:
almost fully isolating (English), intermediate be-
tween isolating and fusional (German), interme-
diate between fusional and agglutinative (Tamil),
and fully agglutinative (Turkish). Furthermore, the
chosen languages also cover different points in the
spectrum from low-resource to high-resource, en-
abling us to form hypotheses about the impact of
the amount of language-specific training data on
the morphological capabilities of an LLM. Statis-
tics for the amount of data in train, dev, and test
for the baselines, as well as the number of wug test
words, are given in Table 1. We report the accuracy
of one annotator at a time against the judgments of
all other annotators in Table 2.

3.1 English

The English past tense has a long and storied
history in computational studies of morphology
(Rumelhart and McClelland, 1986a; Pinker and
Prince, 1988; Ullman et al., 1997; Plunkett and
Juola, 1999; Albright and Hayes, 2002, 2003;
Kirov and Cotterell, 2018; Ma and Gao, 2022). En-
glish displays a handful of conjugation classes as
well as frequent morphographemic alternations—
consonant doubling and e-deletion, for example—
affecting past forms of verbs.
To create the English data, 50 two- to five-letter

irregular verbs (defined as verbs that do not form
the past tense simply by adding -ed) were sam-
pled from the UniMorph 4.0 dataset (Batsuren
et al., 2022). These items were each perturbed by
one or two letters (substituting phonetically simi-
lar sounds) producing a word not included in Uni-
Morph. These verbs were then annotated by 28
volunteer annotators. Participants were asked to
provide the past tense of the nonce word and given
an example (wug→ wugged) and the frame “They

Lang. Train Dev Test Wug test

English 10,000 1,000 1,000 50
German 10,000 1,000 1,000 174
Tamil 1,541 368 — 123
Turkish 8,579 851 846 40

Table 1: Data statistics. Please see Appendix A.1 for
the distribution of morphological tags across the differ-
ent splits for the four languages. There was not enough
data available for Tamil to form a test set.

Accuracy (%)

Lang. @1 @3 @5

English 67.14 ± 17.76 85.29 ± 13.06 87.64 ± 12.13
German 63.05 ± 12.62 83.80 ± 10.57 87.88 ± 10.34
Tamil 37.09 ± 26.39 43.85 ± 26.95 43.85 ± 26.95

Table 2: Accuracy of one annotator at a time against the
judgments of the other annotators on our collected wug
dataset, for different values of k. For Turkish, since the
morphology is deterministic, there is no variation.

{nonce_word} all the time. In fact, they
just yesterday.” This yielded mappings between
a lemma and a ranked list of inflected verbs, e.g.,
veed→ [veeded, ved, vode]. Themodal annotation
was always a regularly inflected form (-ed with ap-
propriate allomorphic variation), but other inflec-
tional classes were attested.

3.2 German
The German plural of nouns is a morphological
phenomenon intensely studied in linguistics and
the cognitive sciences due to the general complex-
ity of the alternation between the eight different op-
erations that can be used to express it. German plu-
ralization is particularly notable due to the fact that
none of the possible operations express it in a ma-
jority of cases (McCurdy et al., 2020). In fact, the
most frequent German plural noun suffix -en has
been argued not to be the default (i.e., the suffix
that applies to novel nouns)—an honor that goes
to -s (Marcus et al., 1995).
To create the dataset of novel German nonce

nouns, we drew upon Unipseudo.2 We generated
200 nonce words with a length between four and
seven characters (50 nonce words per character
length), using German nouns as input to the algo-
rithm. We then had one German native speaker un-
related to the study (i) generate articles (der, die, or
das) for each of the nonce words, and (ii) generate
a plural based on the nonce words and the previ-

2http://www.lexique.org/shiny/unipseudo/
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ously selected articles. We manually filtered out
words whose plural is blocked by existing German
lexemes, resulting in a final set of 174 nonce nouns.
These nouns were then annotated by 21 volunteer
annotators. Participants were asked to provide the
plural of the nonce word and were given an exam-
ple (Wug → Wugs) and the frame “Hier ist ein/e
{nonce_word}. Jetzt sind es zwei .” Simi-
larly to English, this yielded mappings between a
lemma and a ranked list of inflected nouns.

3.3 Tamil
Tamil is a Dravidian language primarily spoken
in regions of South India and Sri Lanka. It is an
agglutinative languange in which verbs are conju-
gated for tense, transitivity, person, number, and
(in some cases) gender. For the most part, af-
fixes display allomorphy only due to phonologi-
cal conditioning and are otherwise invariant across
verbs, as is the casewith the person/number/gender
(PNG) affix (Arden, 1891, 71). This is not the
case, however, for tense markers. Among linguists
working on Tamil, it is not completely agreed upon
how many verb classes there are in the language,
with some proposing up to 13 and others as few as
three (Lisker, 1951; Agesthialingom, 1971). In the
spoken form of Tamil, there are points where verbs
are part of completely different classes than their
literary counterpart, so in this study we focus ex-
clusively on the written form (Schiffman and Ren-
ganathan, 2009).
To simplify the analysis, we utilize a modifi-

cation of Graul’s classification seen in The En-
glish Dictionary of the Tamil Verb, where there
are seven primary classes (Schiffman and Ren-
ganathan, 2009). The tense most impacted by
these verb classes is the past tense, with each class
having a unique form, while the present and future
only demonstrate three forms across the classes.
As such, we focus on the past tense and desig-
nate the same transitivity (intransitive) and PNG
(third person singular masculine) affix across all
experiments. In examining this, we gain infor-
mation about the ways LLMs handle morpholog-
ically complex languages with inflectional classes
defined in both phonological and morphological
terms. This contrasts with English, where inflec-
tion is not agglutinative, and Turkish, where mor-
phology is agglutinative but where there are no in-
flectional classes.
To create a dataset for training the baseline

models and generating samples for the few-shot

Features Example
First person singular
agreement and past tense

zöbür-ür-üm→ zöbür-dü-m

Second person plural
agreement,
reported/inferential past
tense, and negative
polarity

zöbür-ür-sünüz→
zöbür-me-miş-siniz

Dative case, first person
possessive

zürp-ten→ zürb-üm-e

Accusative singular börüt→ börüd-ü

Table 3: Turkish tasks. Forms with colored suffixes are
actually used in the long prompt in a contextually mean-
ingful short sentence. Hyphens represent morpheme
boundaries. The last row is for simple inflection. The
predicted forms (to be predicted, on the right) have the
following morphosemantics: “I [verb]-ed”, “(I heard
that) you have not [verb]-ed”, “to my [noun]”, “the
[noun] (as a definite object)”.

prompts, 86 common Tamil verbs were sampled
and conjugated with every possible combination
of tense and PNG suffixes. These conjugations
were generated automatically and then validated
by two native speakers for accuracy. Unlike in
the nonce word case, there was 100% agreement
between speakers. The nonce words were gener-
ated by combining syllables from real verb roots
and checking against a Tamil dictionary to assure
the words created were not real. Nonce verbs
were created to be between two and six letters long
to best match the distribution of real Tamil verbs.
In order to get the “correct” past tense for these
verbs, five native Tamil speakers were asked to pro-
vide past tense forms (e.g.,நிடு niʈu→ [நிடுத்தான்
niʈut̪ːaːn, நிட்டான் niʈːaːn, நீடினான் niːʈinaːn]).
The mode of these responses was taken to be the
gold form, with the level of agreement amongst
speakers recorded for later analysis. The compar-
atively lower inter-annotator agreement can be ex-
plained by the lack of historical and linguistic con-
text given to the annotators, since a large part of
classification is historical.

3.4 Turkish

Turkish is an agglutinative language where words
consist of multiple morphemes attached to a root.
Surface realizations of morphemes are influenced
by deterministic morphophonological processes
like vowel harmony, consonant assimilation, and
elision. Unlike many other languages, Turkish
has complex word form morphotactics, particu-
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larly when multiple derivations are present.
To simplify the task and reduce the number

of feature combinations, we utilized four datasets
with different levels of complexity and a limited
number of inflectional features. In most cases, the
context provides an inflected form with one set of
features, and the model must predict the form with
the requested set of features. The first three tasks
are reinflection tasks, demanding proficiency in
both morphotactics and morphographemics. The
fourth task is a straightforward inflection task (see
Table 3). Each task consists of up to five shot exam-
ples for real roots and 10 test examples with nonce
roots. Stimuli and gold annotations were produced
by our (single) Turkish annotator.

4 Methodology

We compare the outputs of ChatGPT under a vari-
ety of prompting regimens and a substantial set of
supervised baselines (both neural and non-neural)
to human annotations of the data described in Ap-
pendix 3. Results are evaluated using accuracy
at k (acc@k), i.e., a model’s response is regarded
as correct if it is in line with any of the top k
human responses. This evaluation method takes
into account inter-speaker morphological variabil-
ity, which is more wide-spread than previously
thought (Dammel and Schallert, 2019).

4.1 Baselines

We investigate the efficacy of several baselines
for the task of morphological inflection. The cho-
sen baselines encompass both statistical and neu-
ral architectures that have shown impressive per-
formance on the morphological generalization task
in recent years. We evaluate their performance on
the SIGMORPHON 2023 task as well as on our
constructed wug test set. The baselines have com-
plementary strengths (see Section 5).

4.1.1 Training Data
We used the train/dev/test splits of the SIGMOR-
PHON 2023 Inflection Shared Task3 for English
and German. The choice of the train/dev/test splits
was motivated by the fact that there was no over-
lap of lemmata between the individual splits, thus
mimicking a wug-like setting.
The Turkish training data for baselines was gen-

erated directly using a Turkish morphological ana-
3https://github.com/sigmorphon/

2023InflectionST

lyzer/generator (Oflazer, 1994), because the afore-
mentioned SIGMORPHON 2023 dataset did not
have a sufficient number of examples for most of
the feature combinations. The morphological gen-
erator was set up to generate only Turkish word
forms that corresponded to the selected inflectional
morpheme combinations we selected, for all ap-
plicable roots. For testing, we expected the base-
line systems to generate the word forms with the
selected inflectional feature combinations, but for
10 nonce roots. The nonce roots were chosen so
that they would force the inflected forms to orthog-
onally adhere to surface morphographemic con-
straints and rules such as various types of vowel
harmony, consonant elision, or assimilation at mor-
pheme boundaries.
Similarly, for Tamil, we split the data into train

and dev sets. Since we have a limited amount of
Tamil data, we kept the split ratio at around 4:1
between train and dev sets.
We report the results of all baselines in Table 4.

Baselines generally perform as expected, validat-
ing our usage of them. It should be noted that Min-
Gen and AED are evaluated in IPA/feature space
and may therefore be at a disadvantage compared
to baselines operating directly in orthography. The
training data was converted from orthography into
IPA using Epitran (Mortensen et al., 2018).

4.1.2 Affix Rule Learner (ARL)
As a baseline for the 2020 and 2021 SIGMOR-
PHON shared tasks, a simple non-neural system
(Liu and Mao, 2016) was implemented that uses
edit distance to “discover prefix and suffix rules in
training data.”4 At test time, the system modifies
a lemma by applying the longest matching suffix
rule and most frequently applied prefix rule for a
given morphosyntactic description.

4.1.3 Minimal Generalization Learner
(MinGen)

Wilson and Li (2021) proposed a minimal gener-
alization model based on a simplified form of Al-
bright and Hayes (2002) to learn morphological
rules. First, base rules that describe the changes
needed to convert a lemma to an inflected form are
generated from training data. The rules are further
generalized by comparing phonological features of
the rule contexts. The rules are then scored by
a confidence metric based on their accuracy and

4https://github.com/sigmorphon/2021Task0/tree/
main/baselines
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English German Turkish Tamil

Model Dev Test Dev Test Dev Test Dev

ARL 95.40 96.60 77.40 79.80 94.36 93.50 85.60
MinGen 81.40 78.70 72.70 70.70 93.65 93.03 87.23

FIT 96.22 ± 0.19 94.93 ± 0.49 79.01 ± 1.16 81.04 ± 1.39 97.00 ± 0.22 96.25 ± 0.26 64.24 ± 3.11
PPI 95.95 ± 0.63 94.74 ± 0.90 73.57 ± 5.37 78.26 ± 4.66 96.61 ± 0.60 96.56 ±0.66 76.76± 2.10
AED 71.06 ± 5.74 70.16 ± 5.79 64.44 ± 1.85 67.44 ± 2.02 95.54 ± 0.77 95.19 ±1.41 50.70± 2.84

Table 4: Results (acc@k) of the baselines on our development and test data. See Section 4.1.1 for full details.

scope. At test time, the rule with the highest score
among the applicable rules is used.

4.1.4 Feature Invariant Transformer (FIT)
Wu et al. (2021) proposed a simple technique em-
ploying a character-level transformer for feature-
guided transduction that was used as a baseline for
the 2021 SIGMORPHON shared task.5 This is a
generative model capable of performing character-
level decoding to generate target inflections. In
comparison to a vanilla transformer model, posi-
tional counts are used only for characters and not
for features. The model also incorporates unique
tokens to mark whether a given token is a feature.

4.1.5 Principle Parts for Inflection (PPI)
We apply the approach of Liu and Hulden (2020),
which recasts the task of morphological inflec-
tion as a “paradigm cell filling problem.” This
leverages a lexeme’s principal parts—the mini-
mum subset of paradigm slots needed to gener-
ate the other slots in its paradigm. Specifically,
for low-resource scenarios, the principal parts of a
paradigm identify additional slots that are crucial
in generating the target-inflected lemma.

4.1.6 Analogical Encoder-Decoder (AED)
Following up on Albright and Hayes (2003) and
Kirov and Cotterell (2018), Calderone et al.
(2021) proposed a recurrent neural network
encoder-decoder architecture augmented with pre-
compiled analogical patterns for generating mor-
phological inflections of nonce words. This model
leverages the UniMorph Tags and fine alternation
pattern (FAP) associated with each lemma in rela-
tion to its inflection form. FAPs analyze the posi-
tioning of word forms within the system to iden-
tify recurrent patterns representing conventional
linguistic elements.

5https://github.com/sigmorphon/2021Task0/tree/
main/baselines

4.2 Prompting

We employ three distinct prompting styles, namely
zero-, one-, and few-shot, to interact with the lan-
guage model. We start with a simple instruction in
each language, for example:

“Fill in the blank with the correct past
tense of the word ‘wug’. Give your re-
sponse in one word.
They wug all the time. In fact, they
just yesterday.”

For Tamil, the instruction portion of the prompt is
omitted because of ChatGPT’s unreliable perfor-
mance when given instructions in that language.
We select one examplewith real words for eachma-
jor inflection class of the phenomenon in question.
We then perform multiple runs: 10 for the zero-
shot scenario, one for every shot for the one-shot
scenario, and 10 for the few-shot scenario, with
a new random permutation of all examples each
time. We query gpt-3.5-turbo-0613, select the
first word of the response, and filter by removing
non-word characters. We evaluate by computing
the accuracy for each of the runs, averaged over
all queried nonce words, and compute the mean
and standard deviation across all runs. We employ
acc@k as our evaluation metric, setting k = 5 for
our main evaluation. We provide results for k = 1
and k = 3 in Appendix A.4. The k gold forms are
the k responses most frequently generated by hu-
mans. Since only one Turkish response is possible
(the morphology is deterministic), k is always 1 for
this language. We then perform an additional ex-
periment for comparison in which we remove the
context around the nonce word and only give the
instructions as well as the last line. We call this
the short prompt and the original described above
the long prompt. We provide instances of long and
short prompt in Appendix A.5.
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5 Results

5.1 Overall Performance

For acc@5, the performance of ChatGPT never ex-
ceeded that of the strongest baselines (ARL, AED,
and PPI) regardless of the prompting regime, as
shown in Table 5. However, it beats certain older
baselines such as MinGen (the minimum general-
ization learner). ChatGPT performed best when
it was explicitly prompted to complete an analogy
with a single example (i.e., short 1-shot), as can be
seen in Figure 2. We observe that similar trends
hold for acc@1 and acc@3 (see Appendix A.4),
but the gap between the strongest baselines and
ChatGPT decreases with k.

English ChatGPT’s performance on Englishwas
uniformly worse than both the average annota-
tor (87.64%) and the strongest baselines. acc@1
falls below 60% in the 0-shot condition but is
markedly better when shots are supplied. Short
prompts, which require the model to complete
a simple analogy, resulted in better performance
than long prompts. In all conditions, authentic En-
glishwords that did not occur in the reference anno-
tations appeared as outputs when the nonce word
and the authentic word were orthographically sim-
ilar (see the discussion in Section 6.4).

German The best German result was 88.94%
(short 1-shot), which beat all of the baselines ex-
cept for ARL and FIT. The other results are simi-
larly strong in contrast to the other languages. The
impact of k is not noticeable here. This, in com-
bination with the fact that the human performance
on acc@5 was 88%, indicates that the task is per-
fectly performed by ChatGPT. It has reached the
upper bound given by the inherent subjectivity of
the task (reflected in the human variability) and the
impact of k is, therefore, not measurable. This is
further solidified by the very small impact of the
long vs. short prompts.

Tamil Tamil performance of ChatGPT was sig-
nificantly worse than the provided baselines, even
in the few-shot conditions. For the few-shot case,
there was marginally better performance when us-
ing short prompts, but this did not apply to the 0-
or 1-shot case (in which no accurate outputs were
generated). Across the board, the performance on
Tamil was markedly worse than performance on
English and German. However, considering that
the average annotator had only 43.85% accuracy

long 0­shot long 1­shot long few­shot
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k=5

Figure 2: Results for the different prompt scenarios, for-
mats, languages, and values of k.

against the judgments of the other annotators, the
few-shot accuracy is quite reasonable.

Turkish The prompting performance for the
Turkish inflection task is worse than for English
and German, especially in the long prompt case.
For this task, the morphotactics is trivial but the
selection of the allomorph depends on stem vow-
els, stem-final consonants, whether there is a con-
sonant cluster ending the stem, and whether the
stem is monosyllabic or not. ChatGPT gets better
results with the short prompt through an analogi-
cal example. For the three reinflection tasks, Chat-
GPT gets mixed results that are overall worse than
for the inflection task (see Table 6).

6 Analysis

6.1 The Nature of the Task

The inherent complexity of the inflection tasks for
the various languages (and the reinflection task for
Turkish) varies greatly. English and Turkish are
the simplest: the top-ranked form can always be
obtained by adding a single suffix and applying a
few morphographemic alternations. German anno-
tations show no dominant pattern and assign nonce
words to morphological classes according to com-
plex criteria. However, German performance is
clearly better, suggesting that factors other than in-
herent complexity play a role in ChatGPT’s ability
to generalize morphological patterns.

6.2 Impact of Tokenization

There is mounting evidence that the morpho-
logically suboptimal nature of many tokenizers
may limit the morphological capabilities of LLMs
(Bostrom andDurrett, 2020; Hofmann et al., 2021).
ChatGPT’s tokenization, i.e., byte-pair encoding
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Method English German Tamil Turkish

ARL 100.00 94.25 61.48 60.00
MinGen 62.00 64.37 49.18 40.00
FIT 98.00 ± 1.26 92.87 ± 0.74 63.28 ± 3.36 67.00 ± 4.58
PPI 94.60 ± 2.54 85.98 ± 5.91 55.33 ± 1.84 68.00 ± 4.00
AED 57.60 ± 6.62 48.51 ± 5.45 58.69 ± 5.46 56.00 ± 4.90

long 0-shot 58.40 ± 5.28 86.49 ± 1.07 0.00 28.00 ± 14.00
long 1-shot 73.60 ± 6.97 85.42 ± 2.52 14.52 ± 7.48 20.00 ± 14.14
long few-shot 76.40 ± 4.45 87.36 ± 2.37 42.70 ± 3.96 54.00 ± 10.20
short 0-shot 75.40 ± 5.87 88.62 ± 1.64 0.00 3.00 ± 4.58
short 1-shot 82.80 ± 5.60 88.94 ± 2.35 3.28 ± 3.99 58.00 ± 7.48
short few-shot 78.60 ± 2.84 88.33 ± 1.15 43.36 ± 3.12 59.00 ± 9.43

Table 5: Results (acc@k) for all languages (k = 5 except for Turkish where k = 1, cf. Section 4.2).

Type 0-shot 1-shot few-shot

long 3.00 ± 1.80 20.67 ± 5.73 33.33 ± 4.94
short 7.00 ± 4.33 18.67 ± 6.18 31.00 ± 4.23

Table 6: Results for Turkish averaged over the three
reinflection tasks (k = 1).

(Sennrich et al., 2016), has been shown to be par-
ticularly problematic (Bostrom and Durrett, 2020;
Hofmann et al., 2022).
To examine the impact of tokenization, we mea-

sured the number of tokens into which the nonce
words are split for the individual languages and
computed the accuracy as a function of the num-
ber of tokens. Our hypothesis was that longer to-
ken sequences are less optimal, potentially leading
to worse performance. However, using two-sided
t-tests, we did not find a significant difference be-
tween nonce words with different token lengths.
We interpret this as indicating that tokenization
plays a less pronounced role for ChatGPT.

6.3 Impact of k

We observe that the gap between the baselines
and our results increases with k (see Table 5, Ap-
pendix A.4), suggesting that ChatGPT tends to
generate either a top-ranked form or an implausi-
ble inflection while the baselines tend to produce
plausible inflections which are less frequent in the
human annotations. ChatGPT’s penchant for im-
plausible inflectionsmay be a result of its real word
bias (see Section 6.4 below).

6.4 Real Word Bias

In English and German—and to a lesser extent in
Turkish—many of the forms generated by Chat-
GPT belong to a different lexeme than the nonce
word and thus do not constitute inflections in any

strict linguistic sense (see Section 2.1). Crucially,
the stem of the generated form is always a real
word (i.e., a word that exists in the respective lan-
guage). Examples of this phenomenon include, for
English: did as the past tense of dedo, blushed as
the past tense of blus, fried as the past tense of
fride; and for German: Ozeane (‘oceans’) as the
plural of Ozeak, Institute (‘institutes’) as the plu-
ral of Instite, Sklaven (‘slaves’) as the plural of
Schlave. It is important to notice that in all these
cases, (i) the generated form has the correct mor-
phological properties—e.g., the English forms did,
blushed, fried are indeed past tense forms—but the
stem is a real word rather than the nonce word, and
(ii) the stem that is generated in lieu of the nonce
word is a frequently occurring word in the respec-
tive language and has a certain (sometimes strong)
orthographic similarity to the nonce word. We de-
note this tendency real word bias.

The concept of real word bias allows us to make
a hypothesis about the way in which ChatGPT ad-
dresses morphological tasks. We think ChatGPT is
not applying morphological rules to a stem, which
would be in line with item-and-process accounts
of morphology (Hockett, 1954). Rather, it seems
to linguistically decode the point in its representa-
tional space defined by the semantic constraints in
the prompt. In cases where this point (and its im-
mediate neighborhood) is unoccupied, it generates
a form based on the nonce word, but in cases where
there is a form of a real word close to the point
(e.g., because of superficial orthographic similar-
ity), it generates this form instead. The fact that the
real word bias is strongest for German and English
(the two high-resource languages) suggests that the
representational space is more dense for these two
languages, increasing the probability that there is a
real word close to the point that the model is trying
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Figure 3: Confusion matrix for competing German plu-
ral morphemes for the few-shot setting.

to decode based on the prompt.

6.5 Morphological Productivity

The productivity of a morpheme is traditionally de-
fined as its propensity to be used in novel combi-
nations (Plag, 1999; Bauer, 2001; Haspelmath and
Sims, 2010). Crucially, morphemes with the same
meaning can differ in their productivity—for ex-
ample, for English deadjectival nominalizing suf-
fixes, -ness (e.g., robustness) is generallymore pro-
ductive than -ity (e.g, equality), which in turn is
more productive than the fully non-productive -th
(e.g., warmth). We are interested to see whether
there is any difference in the productivity of mor-
phological patterns exhibited by ChatGPT com-
pared to the human sample. We focus on German
as it has the most complex pattern of competing
morphemes, and we examine the few-shot results
as they show the best performance overall.
We start by comparing the distribution over al-

ternative plural morphemes generated by ChatGPT
with the human responses. As shown in Figure 3,
there are several morphemes that are used by Chat-
GPT similarly to humans (e.g., the null morpheme).
Cases of overgeneralization, where ChatGPT sys-
tematically generalizes the usage of a particular
suffix to contexts where the suffix is not used
by humans, are mainly limited to two plural mor-
phemes: -en (77 generations for gold morpheme
-e) and -s (79 generations for gold morpheme -e).
Interestingly, these two plural morphemes are the
two most productive plural morphemes in Ger-
man (Köpcke, 1988). This indicates two important
points: (i) ChatGPT is sensitive to the productiv-
ity of morphemes, i.e., it has acquired the ability
to model how productive certain morphemes are

as a result of pretraining; (ii) it does not identically
mirror the behavior of humans, but rather ampli-
fies the productivity of certain morphemes. The
finding that the most productive morphemes (for
humans) are becoming more productive for Chat-
GPTwhile the least productivemorphemes (for hu-
mans) are becoming less productive for ChatGPT
bears some theoretical resemblance to discussions
about bias amplification (Ahn et al., 2022).

7 Future Directions

Morphological patterns are only one kind of gen-
eralization that can be investigated through a wug-
like experimental paradigm. The form-meaning re-
lationships encoded in language and multimodal
models, including constructional and iconic pair-
ings, can be investigated through prompting with
nonce stimuli, leading to new insights regarding
the generalizations they capture.

Limitations

Our research was conducted with a single model
(gpt-3.5-turbo-0613), so it is not certain that our
results will generalize to other versions of GPT-3
or to GPT-4, let alone other LLMs. Although
we went to great lengths to develop prompts that
would maximize ChatGPT’s performance on the
tasks, it is not possible to state definitively that
another strategy would not produce better perfor-
mance. While the languages were typologically
varied, it is not clear whether the results observed
in the current study are generally robust or are co-
incidental properties of the small set of languages
and datasets under investigation. Furthermore,
comparing the languages to one another is prob-
lematic because it was not possible to control other
variables while varying the language. For example,
the English and Tamil tasks involve verbal inflec-
tion while the German and Turkish tasks involve
nominal inflection. Finally, the number of annota-
tors for Tamil was very small and inter-annotator
agreement was very low, meaning that the results
of the Tamil experiments must be approached with
special caution (but see our discussion about mor-
phological variation in Section 3).

Ethics

LLMs are already impacting the world’s people in
significant ways, for good and ill. Understanding
their limitations, particularly with regard to non-
hegemonic language communities, is an ethical im-
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perative. This study highlights one specific way
in which an LLM should not be treated as a sur-
rogate human, thus motivating additional research
on language modeling for structurally diverse and
low-resource languages.

Acknowledgements

This work was funded by the European Research
Council (#740516). The second author was also
supported by the German Academic Scholarship
Foundation. We thank the reviewers for their ex-
tremely helpful comments.

References
S Agesthialingom. 1971. A note on Tamil verbs. An-

thropological Linguistics, pages 121–125.

Jaimeen Ahn, Hwaran Lee, Jinhwa Kim, and Alice Oh.
2022. Why knowledge distillation amplifies gen-
der bias and how to mitigate from the perspective
of DistilBERT. In Proceedings of the 4th Work-
shop on Gender Bias in Natural Language Process-
ing (GeBNLP), pages 266–272, Seattle, Washington.
Association for Computational Linguistics.

Adam Albright and Bruce Hayes. 2002. Modeling en-
glish past tense intuitions with minimal generaliza-
tion. In Proceedings of the ACL-02 Workshop on
Morphological and Phonological Learning - Volume
6, MPL ’02, page 58–69, USA. Association for Com-
putational Linguistics.

Adam Albright and Bruce Hayes. 2003. Rules
vs. analogy in English past tenses: A computa-
tional/experimental study. Cognition, 90(2):119–
161.

Albert Henry Arden. 1891. A progressive grammar
of common Tamil. Society for Promoting Christian
Knowledge.

Khuyagbaatar Batsuren, Omer Goldman, Salam Khal-
ifa, Nizar Habash, Witold Kieraś, Gábor Bella,
Brian Leonard, Garrett Nicolai, Kyle Gorman, Yusti-
nus Ghanggo Ate, Maria Ryskina, Sabrina Mielke,
Elena Budianskaya, Charbel El-Khaissi, Tiago Pi-
mentel, Michael Gasser, William Abbott Lane,
Mohit Raj, Matt Coler, Jaime Rafael Montoya
Samame, Delio Siticonatzi Camaiteri, Esaú Zu-
maeta Rojas, Didier López Francis, Arturo Once-
vay, Juan López Bautista, Gema Celeste Silva Vil-
legas, Lucas Torroba Hennigen, Adam Ek, David
Guriel, Peter Dirix, Jean-Philippe Bernardy, An-
drey Scherbakov, Aziyana Bayyr-ool, Antonios
Anastasopoulos, Roberto Zariquiey, Karina Sheifer,
Sofya Ganieva, Hilaria Cruz, Ritván Karahóǧa,
Stella Markantonatou, George Pavlidis, Matvey Plu-
garyov, Elena Klyachko, Ali Salehi, Candy An-
gulo, Jatayu Baxi, Andrew Krizhanovsky, Na-
talia Krizhanovskaya, Elizabeth Salesky, Clara Va-
nia, Sardana Ivanova, Jennifer White, Rowan Hall

Maudslay, Josef Valvoda, Ran Zmigrod, Paula
Czarnowska, Irene Nikkarinen, Aelita Salchak,
Brijesh Bhatt, Christopher Straughn, Zoey Liu,
Jonathan North Washington, Yuval Pinter, Duygu
Ataman, Marcin Wolinski, Totok Suhardijanto,
Anna Yablonskaya, Niklas Stoehr, Hossep Dolatian,
Zahroh Nuriah, Shyam Ratan, Francis M. Tyers,
Edoardo M. Ponti, Grant Aiton, Aryaman Arora,
Richard J. Hatcher, Ritesh Kumar, Jeremiah Young,
Daria Rodionova, Anastasia Yemelina, Taras An-
drushko, Igor Marchenko, Polina Mashkovtseva,
Alexandra Serova, Emily Prud’hommeaux, Maria
Nepomniashchaya, Fausto Giunchiglia, Eleanor
Chodroff, MansHulden, Miikka Silfverberg, AryaD.
McCarthy, David Yarowsky, Ryan Cotterell, Reut
Tsarfaty, and Ekaterina Vylomova. 2022. UniMorph
4.0: Universal Morphology. In Proceedings of the
Thirteenth Language Resources and Evaluation Con-
ference, pages 840–855, Marseille, France. Euro-
pean Language Resources Association.

Laurie Bauer. 2001. Morphological productivity. Cam-
bridge University Press, Cambridge (UK).

Rachel Bawden, Jonathan Poinhos, Eleni Kogkitsidou,
Philippe Gambette, Benoît Sagot, and Simon Gabay.
2022. Automatic normalisation of early Modern
French. In Proceedings of the Thirteenth Language
Resources and Evaluation Conference, pages 3354–
3366, Marseille, France. European Language Re-
sources Association.

Jean Berko. 1958. The child’s learning of English mor-
phology. Word, 14(2-3):150–177.

Kaj Bostrom and Greg Durrett. 2020. Byte pair encod-
ing is suboptimal for language model pretraining. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4617–4624, Online.
Association for Computational Linguistics.

Romina Brown, Santiago Paez, Gonzalo Herrera, Luis
Chiruzzo, and Aiala Rosá. 2023. Experiments on au-
tomatic error detection and correction for uruguayan
learners of English. In Proceedings of the 12th
Workshop on NLP for Computer Assisted Language
Learning, pages 45–52, Tórshavn, Faroe Islands.
LiU Electronic Press.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of Artificial General In-
telligence: Early experiments with GPT-4.

Basilio Calderone, Nabil Hathout, and Olivier Bonami.
2021. Not quite there yet: Combining analogical
patterns and encoder-decoder networks for cogni-
tively plausible inflection. In Proceedings of the
18th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 274–282, Online. Association for Computa-
tional Linguistics.

6517

169

169



Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Mor-
eira, Rewon Child, Oleksandr Polozov, Katherine
Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
Mark Diaz, Orhan Firat, Michele Catasta, Jason
Wei, KathyMeier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. 2022. PaLM: Scal-
ing Language Modeling with Pathways. Arxiv,
2204.02311.

Elizabeth Clark, Tal August, Sofia Serrano, Nikita
Haduong, Suchin Gururangan, and Noah A. Smith.
2021. All that’s ‘human’ is not gold: Evaluating
human evaluation of generated text. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 7282–7296,
Online. Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sabrina J. Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, pages 1–27, Brus-
sels. Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
GéraldineWalther, Ekaterina Vylomova, Patrick Xia,
Manaal Faruqui, Sandra Kübler, David Yarowsky,
Jason Eisner, and Mans Hulden. 2017a. CoNLL-
SIGMORPHON 2017 shared task: Universal mor-
phological reinflection in 52 languages. In Pro-
ceedings of the CoNLL SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection, pages
1–30, Vancouver. Association for Computational
Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016a. The SIGMORPHON 2016 shared Task—
Morphological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 10–22, Berlin, Germany. Association for Com-
putational Linguistics.

Ryan Cotterell, Arun Kumar, and Hinrich Schütze.
2016b. Morphological segmentation inside-out. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2325–2330, Austin, Texas. Association for Compu-
tational Linguistics.

Ryan Cotterell, Thomas Müller, Alexander Fraser, and
Hinrich Schütze. 2015. Labeled morphological seg-
mentation with semi-Markov models. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning, pages 164–174, Bei-
jing, China. Association for Computational Linguis-
tics.

Ryan Cotterell, TimVieira, and Hinrich Schütze. 2016c.
A joint model of orthography andmorphological seg-
mentation. InProceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 664–669, San Diego, California. As-
sociation for Computational Linguistics.

Ryan Cotterell, Ekaterina Vylomova, Huda Khayral-
lah, Christo Kirov, and David Yarowsky. 2017b.
Paradigm completion for derivational morphology.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
714–720, Copenhagen, Denmark. Association for
Computational Linguistics.

Antje Dammel and Oliver Schallert. 2019. Morpholog-
ical variation: Theoretical and empirical perspec-
tives. John Benjamins, Amsterdam.

Daniel Deutsch, John Hewitt, and Dan Roth. 2018. A
distributional and orthographic aggregation model
for English derivational morphology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1938–1947, Melbourne, Australia. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Robert M. Dixon. 1994. Ergativity. Cambridge Uni-
versity Press, Cambridge, UK.

Daniel Edmiston. 2020. A systematic analysis of mor-
phological content in BERT models for multiple lan-
guages. Arxiv, abs/2004.03032.

Alexander Erdmann, Micha Elsner, Shijie Wu, Ryan
Cotterell, and Nizar Habash. 2020a. The paradigm
discovery problem. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7778–7790, Online. Association
for Computational Linguistics.

6518

170

170



Alexander Erdmann, Tom Kenter, Markus Becker, and
Christian Schallhart. 2020b. Frugal paradigm com-
pletion. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8248–8273, Online. Association for Computa-
tional Linguistics.

YoavGoldberg. 2019. Assessing BERT’s syntactic abil-
ities. Arxiv, 1901.05287.

Omer Goldman, David Guriel, and Reut Tsarfaty. 2022.
(Un)solving morphological inflection: Lemma over-
lap artificially inflates models’ performance. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 864–870, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Coleman Haley. 2020. This is a BERT. now there are
several of them. can they generalize to novel words?
In Proceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 333–341, Online. Association for Com-
putational Linguistics.

Harald Hammarström and Lars Borin. 2011. Unsuper-
vised learning of morphology. Computational Lin-
guistics, 37(2):309–350.

Martin Haspelmath and Andrea Sims. 2010. Under-
standing Morphology. Routledge, Oxford (UK).

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas
Raunak, Mohamed Gabr, Hitokazu Matsushita,
Young Jin Kim, Mohamed Afify, and Hany Has-
san Awadalla. 2023. How good are GPT models
at machine translation? a comprehensive evaluation.
Arxiv, 2302.09210.

Charles F. Hockett. 1954. TwoModels of Grammatical
Description. WORD, 10(2-3):210–234.

Valentin Hofmann, Janet Pierrehumbert, and Hinrich
Schütze. 2020a. DagoBERT: Generating deriva-
tional morphology with a pretrained language model.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3848–3861, Online. Association for Computa-
tional Linguistics.

Valentin Hofmann, Janet Pierrehumbert, and Hinrich
Schütze. 2020b. Predicting the growth of morpho-
logical families from social and linguistic factors. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7273–
7283, Online. Association for Computational Lin-
guistics.

Valentin Hofmann, Janet Pierrehumbert, and Hinrich
Schütze. 2021. Superbizarre is not superb: Deriva-
tional morphology improves BERT’s interpretation
of complex words. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3594–3608, Online. Associa-
tion for Computational Linguistics.

Valentin Hofmann, Hinrich Schuetze, and Janet Pierre-
humbert. 2022. An embarrassingly simple method
to mitigate undesirable properties of pretrained lan-
guage model tokenizers. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
385–393, Dublin, Ireland. Association for Computa-
tional Linguistics.

Valentin Hofmann, Hinrich Schütze, and Janet Pierre-
humbert. 2020c. A graph auto-encoder model of
derivational morphology. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1127–1138, Online. Asso-
ciation for Computational Linguistics.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav
Goldberg. 2023. Stop uploading test data in plain
text: Practical strategies for mitigating data contam-
ination by evaluation benchmarks. arXiv preprint
arXiv:2305.10160.

Wenxiang Jiao, WenxuanWang, JT Huang, XingWang,
and ZP Tu. 2023. Is ChatGPT a good translator? Yes
with GPT-4 as the engine. arXiv, 2301.08745.

Huiming Jin, Liwei Cai, Yihui Peng, Chen Xia, Arya
McCarthy, and Katharina Kann. 2020. Unsuper-
vised morphological paradigm completion. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6696–
6707, Online. Association for Computational Lin-
guistics.

Zijia Jin, Xingyu Zhang, Mo Yu, and Lifu Huang. 2022.
Probing script knowledge from pre-trained models.
In Proceedings of the Workshop on Unimodal and
Multimodal Induction of Linguistic Structures (UM-
IoS), pages 87–93, Abu Dhabi, United Arab Emi-
rates (Hybrid). Association for Computational Lin-
guistics.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2016. Neural morphological analysis: Encoding-
decoding canonical segments. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 961–967, Austin,
Texas. Association for Computational Linguistics.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2017. Neural multi-source morphological reinflec-
tion. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, pages
514–524, Valencia, Spain. Association for Compu-
tational Linguistics.

Katharina Kann and Hinrich Schütze. 2016. MED: The
LMU system for the SIGMORPHON 2016 shared
task on morphological reinflection. In Proceedings
of the 14th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, pages 62–70, Berlin, Germany. Associa-
tion for Computational Linguistics.

6519

171

171



Christo Kirov and Ryan Cotterell. 2018. Recurrent neu-
ral networks in linguistic theory: Revisiting pinker
and prince (1988) and the past tense debate. Transac-
tions of the Association for Computational Linguis-
tics, 6:651–665.

Klaus-Michael Köpcke. 1988. Schemas in German plu-
ral formation. Lingua, 74(4):303–335.

Leigh Lisker. 1951. Tamil verb classification. Journal
of the American Oriental Society, 71(2):111–114.

Ling Liu and Mans Hulden. 2020. Leveraging princi-
pal parts for morphological inflection. In Proceed-
ings of the 17th SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology, pages 153–161, Online. Association
for Computational Linguistics.

Ling Liu and Lingshuang Jack Mao. 2016. Morpho-
logical reinflection with conditional random fields
and unsupervised features. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 36–40, Berlin, Germany. Association for Com-
putational Linguistics.

Xiaomeng Ma and Lingyu Gao. 2022. How do we
get there? Evaluating transformer neural networks
as cognitive models for English past tense inflec-
tion. In Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 12th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1101–1114, Online only.
Association for Computational Linguistics.

Inbal Magar and Roy Schwartz. 2022. Data contami-
nation: From memorization to exploitation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 157–165, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Gary F Marcus, Ursula Brinkmann, Harald Clahsen,
Richard Wiese, and Steven Pinker. 1995. German
inflection: The exception that proves the rule. Cog-
nitive psychology, 29(3):189–256.

Rowan Hall Maudslay and Ryan Cotterell. 2021. Do
syntactic probes probe syntax? experiments with jab-
berwocky probing. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 124–131, Online. Associ-
ation for Computational Linguistics.

Kate McCurdy, Sharon Goldwater, and Adam Lopez.
2020. Inflecting when there’s no majority: Limi-
tations of encoder-decoder neural networks as cog-
nitive models for German plurals. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1745–1756, On-
line. Association for Computational Linguistics.

David R.Mortensen, Siddharth Dalmia, and Patrick Lit-
tell. 2018. Epitran: Precision G2P for many lan-
guages. InProceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Paris, France. European Language Re-
sources Association (ELRA).

Kemal Oflazer. 1994. Two-level description of Turk-
ish morphology. Literary and Linguistic Computing,
9(2):137–148.

OpenAI. 2023a. ChatGPT. Large language model.

OpenAI. 2023b. GPT-4 Technical Report.

Tiago Pimentel, Maria Ryskina, Sabrina J. Mielke,
Shijie Wu, Eleanor Chodroff, Brian Leonard, Gar-
rett Nicolai, Yustinus Ghanggo Ate, Salam Khal-
ifa, Nizar Habash, Charbel El-Khaissi, Omer Gold-
man, Michael Gasser, William Lane, Matt Coler,
Arturo Oncevay, Jaime Rafael Montoya Samame,
Gema Celeste Silva Villegas, Adam Ek, Jean-
Philippe Bernardy, Andrey Shcherbakov, Aziyana
Bayyr-ool, Karina Sheifer, Sofya Ganieva, Matvey
Plugaryov, Elena Klyachko, Ali Salehi, Andrew
Krizhanovsky, Natalia Krizhanovsky, Clara Va-
nia, Sardana Ivanova, Aelita Salchak, Christo-
pher Straughn, Zoey Liu, Jonathan North Wash-
ington, Duygu Ataman, Witold Kieraś, Marcin
Woliński, Totok Suhardijanto, Niklas Stoehr, Zahroh
Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M.
Ponti, Grant Aiton, Richard J. Hatcher, Emily
Prud’hommeaux, Ritesh Kumar, Mans Hulden,
Botond Barta, Dorina Lakatos, Gábor Szolnok, Ju-
dit Ács, Mohit Raj, David Yarowsky, Ryan Cotterell,
BenAmbridge, and Ekaterina Vylomova. 2021. SIG-
MORPHON 2021 shared task on morphological re-
inflection: Generalization across languages. In Pro-
ceedings of the 18th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 229–259, Online. Associa-
tion for Computational Linguistics.

Steven Pinker and Alan Prince. 1988. On language and
connectionism: Analysis of a parallel distributed pro-
cessing model of language acquisition. Cognition,
28(1-2):73–193.

Ingo Plag. 1999. Morphological productivity: Struc-
tural constraints in English derivation. De Gruyter,
Berlin.

Kim Plunkett and Patrick Juola. 1999. A connectionist
model of English past tense and plural morphology.
Cognitive Science, 23(4):463–490.

David E Rumelhart and James L McClelland. 1986a.
On learning the past tenses of English verbs. In Par-
allel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, volume 2, pages 216–271.
MIT Press, Cambridge, MA.

David E. Rumelhart and James L. McClelland. 1986b.
Parallel Distributed Processing: Explorations in the
Microstructure of Cognition: Foundations. The
MIT Press.

6520

172

172



Harold F Schiffman and Vasu Renganathan. 2009. An
English dictionary of the Tamil verb. Linguistic Data
Consortium.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Miikka Silfverberg, AdamWiemerslage, Ling Liu, and
Lingshuang Jack Mao. 2017. Data augmentation for
morphological reinflection. In Proceedings of the
CoNLL SIGMORPHON 2017 Shared Task: Univer-
sal Morphological Reinflection, pages 90–99, Van-
couver. Association for Computational Linguistics.

Radu Soricut and Franz Och. 2015. Unsupervised mor-
phology induction using word embeddings. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1627–1637, Denver, Colorado. Association for Com-
putational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothee Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. 2023.
LLaMA: Open and Efficient Foundation Language
Models.

Michael T Ullman, Suzanne Corkin, Marie Coppola,
Gregory Hickok, John H Growdon, Walter J Ko-
roshetz, and Steven Pinker. 1997. A neural dissoci-
ation within language: Evidence that the mental dic-
tionary is part of declarative memory, and that gram-
matical rules are processed by the procedural system.
Journal of Cognitive Neuroscience, 9(2):266–276.

Ekaterina Vylomova, Ryan Cotterell, Timothy Baldwin,
and Trevor Cohn. 2017. Context-aware prediction
of derivational word-forms. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, pages 118–124, Valencia, Spain. As-
sociation for Computational Linguistics.

Ekaterina Vylomova, Jennifer White, Eliza-
beth Salesky, Sabrina J. Mielke, Shijie Wu,
Edoardo Maria Ponti, Rowan Hall Maudslay, Ran
Zmigrod, Josef Valvoda, Svetlana Toldova, Francis
Tyers, Elena Klyachko, Ilya Yegorov, Natalia
Krizhanovsky, Paula Czarnowska, Irene Nikkarinen,
Andrew Krizhanovsky, Tiago Pimentel, Lucas
Torroba Hennigen, Christo Kirov, Garrett Nicolai,
Adina Williams, Antonios Anastasopoulos, Hilaria
Cruz, Eleanor Chodroff, Ryan Cotterell, Miikka
Silfverberg, and Mans Hulden. 2020. SIGMOR-
PHON 2020 shared task 0: Typologically diverse
morphological inflection. In Proceedings of the
17th SIGMORPHON Workshop on Computational

Research in Phonetics, Phonology, and Morphology,
pages 1–39, Online. Association for Computational
Linguistics.

Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui
Zhang, Dian Yu, Shuming Shi, and Zhaopeng Tu.
2023. Document-level machine translation with
large language models. arXiv, 2304.02210.

Leonie Weissweiler, Valentin Hofmann, Masoud
Jalili Sabet, and Hinrich Schuetze. 2022. CaMEL:
Case Marker Extraction without Labels. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 5506–5516, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Colin Wilson and Jane S.Y. Li. 2021. Were we there
already? Applying minimal generalization to the
SIGMORPHON-UniMorph shared task on cogni-
tively plausible morphological inflection. In Pro-
ceedings of the 18th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 283–291, Online. Associa-
tion for Computational Linguistics.

ShijieWu, Ryan Cotterell, andMansHulden. 2021. Ap-
plying the transformer to character-level transduc-
tion. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 1901–1907,
Online. Association for Computational Linguistics.

Hongzhi Xu, Mitchell Marcus, Charles Yang, and Lyle
Ungar. 2018. Unsupervised morphology learning
with statistical paradigms. In Proceedings of the
27th International Conference on Computational
Linguistics, pages 44–54, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

A Appendices

A.1 Morphological Tags
In Table 7, we provide details about themorpholog-
ical tags that are comprised by the train, dev, test,
and wug test sets for the four languages. The tags
for English (eng), German (deu), and Tamil (tam)
are defined in accordance with the description in
UniMorph 4.0 dataset. For Turkish (tur),the tags
are defined in Section 3.

A.2 Hyperparameter Tuning
For all baselines, we follow the hyperparameter
settings from the publicly available code reposito-
ries. The only exception is AED, where the num-
ber of epochs was increased from 40 to 200.

A.3 Qualtrics Details
Our study leveraged Qualtrics, a robust and com-
prehensive survey software tool that facilitates the
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Lang Tags Train Dev Test Wug

eng V;NFIN 2015 206 202 0
eng V;PRS;NOM(3,SG) 1987 190 213 0
eng V;PST 1981 198 185 50
eng V;V.PTCP;PRS 2018 201 200 0
eng V;V.PTCP;PST 1999 205 200 0

deu V.PTCP;PRS 246 19 19 0
deu V;IMP;NOM(2,PL) 246 19 16 0
deu V;IMP;NOM(2,SG) 241 22 17 0
deu V;IND;PRS;NOM(1,PL) 246 20 18 0
deu V;IND;PRS;NOM(1,SG) 227 21 17 0
deu V;IND;PRS;NOM(2,PL) 250 29 21 0
deu V;IND;PRS;NOM(2,SG) 258 25 15 0
deu V;IND;PRS;NOM(3,SG) 233 21 22 0
deu V;IND;PST;NOM(1,PL) 235 26 28 0
deu V;IND;PST;NOM(1,SG) 236 17 11 0
deu V;IND;PST;NOM(2,PL) 257 20 23 0
deu V;IND;PST;NOM(3,PL) 243 15 29 0
deu V;IND;PST;NOM(3,SG) 247 22 27 0
deu V;NFIN 248 21 13 0
deu V;SBJV;PRS;NOM(1,PL) 234 25 18 0
deu V;SBJV;PST;NOM(1,PL) 243 20 20 0
deu V;SBJV;PST;NOM(2,SG) 229 27 24 0
deu V;SBJV;PST;NOM(3,PL) 247 22 22 0
deu N;ACC(PL) 368 44 49 0
deu N;ACC(SG) 385 47 53 0
deu N;DAT(PL) 361 44 48 0
deu N;DAT(SG) 382 47 52 0
deu N;GEN(PL) 364 44 48 0
deu N;GEN(SG) 385 47 50 0
deu N;NOM(PL) 370 44 49 174
deu N;NOM(SG) 391 47 53 0
deu V.PTCP;PST 242 23 23 0
deu V;IND;PRS;NOM(3,PL) 232 25 19 0
deu V;IND;PST;NOM(2,SG) 215 25 18 0
deu V;SBJV;PRS;NOM(2,PL) 248 20 23 0
deu V;SBJV;PRS;NOM(3,PL) 247 26 26 0
deu V;SBJV;PRS;NOM(3,SG) 238 26 24 0
deu V;SBJV;PST;NOM(3,SG) 261 22 26 0
deu V;SBJV;PRS;NOM(1,SG) 246 22 16 0
deu V;SBJV;PST;NOM(1,SG) 238 21 28 0
deu V;SBJV;PST;NOM(2,PL) 239 17 17 0
deu V;SBJV;PRS;NOM(2,SG) 222 18 18 0

tur V;POS;PAST;A1SG 2005 201 202 10
tur V;NEG;NARR;A2PL 2005 201 202 10
tur N;A3SG;P1SG;DAT 2170 214 214 10
tur N;A3SG;PNON;ACC 2172 214 214 10

tam V;PRS-1SG 67 16 0 0
tam V;FUT-1SG 67 16 0 0
tam V;PST-2SG 67 16 0 0
tam V;PRS-2SG 67 16 0 0
tam V;FUT-2SG 67 16 0 0
tam V;PST-3SG.M 67 16 0 123
tam V;PRS-3SG.M 67 16 0 0
tam V;FUT-3SG.M 67 16 0 0
tam V;PST-3SG.F 67 16 0 0
tam V;PRS-3SG.F 67 16 0 0
tam V;FUT-3SG.F 67 16 0 0
tam V;PST-3SG.HON 67 16 0 0
tam V;PRS-3SG.HON 67 16 0 0
tam V;FUT-3SG.HON 67 16 0 0
tam V;PST-1PL 67 16 0 0
tam V;PRS-1PL 67 16 0 0
tam V;FUT-1PL 67 16 0 0
tam V;PST-2PL 67 16 0 0
tam V;PRS-2PL 67 16 0 0
tam V;FUT-2PL 67 16 0 0
tam V;PST-3PL 67 16 0 0
tam V;PRS-3PL 67 16 0 0
tam V;FUT-3PL 67 16 0 0

Table 7: Distribution of tags over the different splits for
the four languages.
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Figure 4: Confusion matrix for competing German plu-
ral morphemes for the one-shot setting.
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design of intricate online surveys.6
We initiated the survey by presenting an intro-

duction that detailed the concept of a wug test and
the associated information for the survey. This in-
troductory passage served to inform participants of
the nature and intent of the research study, and it
also provided examples to further facilitate their
understanding of our task requirements.
Our data collection phase consisted of two parts:

the English wug test and the German wug test.
Upon consenting to participate, respondents were
guided through a series of thoughtfully designed
prompts related to the wug test. These prompts en-
couraged them to provide suitable responses based
on their understanding of the task.
For the English wug test, we employed the fol-

lowing exemplary prompt: “Fill in the blank with
the correct past tense of the word ‘wug’. There is
no predetermined correct answer. We encourage
you to rely on your linguistic intuition. If you be-
lieve there are multiple possible responses, simply
note the form that seems most accurate to you. For
instance, ‘They wug all the time. In fact, they __
just yesterday!’”. Such prompts stimulated the par-
ticipants to produce responses that were entirely
their own, drawing on the provided information.
For the German wug test, we translated the task in-
structions and prompts into German, ensuring easy
comprehension for native German speakers.
In total, the English wug test incorporated 50

unique words for participants to respond to, while
the German version consisted of 174 unique words.
We received 28 responses for the English wug test
and 21 responses for the German wug test.

A.4 Other Values of k
Table 8 presents results for k = 1 and k = 3. Re-
sults for k = 5 are given in Section 5.

A.5 Prompts
We leveraged the following prompts for the indi-
vidual languages:

• English:

– Long: “Fill in the blank with the correct
past tense of the verb X. Answer with
one word. They X all the time. In fact,
they _ just yesterday! _ :”

– Short: “Form the correct past tense of
the verb X. Answer with one word. X :”

6https://www.qualtrics.com/

• German:

– Long: “Fülle die Lücke mit dem korrek-
ten Plural des Nomens X aus. Antworte
mit einemWort. Hier ist ein X. Jetzt sind
es zwei _! _:”

– Short: “Bilde den korrekten Plural des
Nomens X. Antworte mit einemWort. X
:”

• Tamil:

– Long: “ேநற்று அவரிடம், "நீ X"
என்ேறன். அைதக் ேகட்டு அவன் ேபாய்
_. _:”

– Short: “X :”

• Turkish:

– Long: “Boşlukları X ile verilen eylemin
birinci tekil şahıs geçmiş zaman formları
ile doldurun. Ben her zaman X. Ama
dün _. _:”

– Short: “Tek bir sözcük ile farazi X
eyleminin birinci tekil şahıs geçmiş za-
man hali nasıl olur? X :”
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English German Tamil

Method k = 1 k = 3 k = 1 k = 3 k = 1 k = 3

ARL 66.00 98.00 71.84 91.95 49.18 61.48
MinGen 56.00 60.00 39.66 60.92 39.34 49.18
FIT 84.00 ± 2.97 96.20 ± 0.60 70.06 ± 1.67 90.69 ± 0.99 44.75 ± 2.01 59.84 ± 3.07
PPI 1 72.60 ± 6.00 90.80 ± 4.49 60.17 ± 6.80 82.59 ± 6.56 37.30 ± 2.57 51.07 ± 1.56
AED 44.20 ± 7.18 56.20 ± 6.54 27.82 ± 3.94 42.87 ± 4.65 46.15 ± 4.18 57.87 ± 5.46

long 0-shot 42.60 ± 4.90 55.60 ± 5.99 62.18 ± 2.45 81.55 ± 1.77 0.00 0.00
long 1-shot 58.40 ± 7.20 72.40 ± 6.50 63.36 ± 4.01 81.61 ± 3.09 5.27 ± 2.83 12.65 ± 6.19
long few-shot 57.60 ± 6.97 74.60 ± 4.90 65.86 ± 3.03 82.59 ± 1.96 15.25 ± 2.98 38.03 ± 4.18
short 0-shot 55.40 ± 6.07 72.20 ± 6.35 66.38 ± 2.48 84.43 ± 2.63 0.00 0.00
short 1-shot 61.20 ± 8.16 81.60 ± 6.97 67.31 ± 3.92 84.41 ± 2.36 1.99 ± 2.47 3.04 ± 3.58
short few-shot 61.40 ± 3.69 77.20 ± 3.12 68.97 ± 2.02 84.43 ± 1.07 17.05 ± 2.64 38.77 ± 2.86

Table 8: Results for other values of k.
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Research Context After the work presented in Chapter 10, the most natural extension is from
morphological inflection to derivation. Derivation, in the following work specific from adjective to
noun with either -ity or -ness, offers an ideal testbed to extend our field of research: we do not
only ask how well the models have learned to generalise on this, we also investigate the underlying
mechanism. This is possible for two reasons: 1) we have access to the weights of the language
model, and its training data, allowing us to compare the frequencies of different suffixes to the
production probabilities of the LM, and 2) the behaviour with regards to this derivation can be
classified into several adjective classes, with varying degrees of homogeneity. These together allow
for a more detailed assessment of the generalisation mechanisms in LLMs.
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What mechanisms underlie linguistic generalization in large language models (LLMs)?
This question has attracted considerable attention, with most studies analyzing the
extent to which the language skills of LLMs resemble rules. As of yet, it is not
known whether linguistic generalization in LLMs could equally well be explained
as the result of analogy. A key shortcoming of prior research is its focus on regular
linguistic phenomena, for which rule-based and analogical approaches make the same
predictions. Here, we instead examine derivational morphology, specifically English
adjective nominalization, which displays notable variability. We introduce a method
for investigating linguistic generalization in LLMs: Focusing on GPT-J, we fit cognitive
models that instantiate rule-based and analogical learning to the LLM training data and
compare their predictions on a set of nonce adjectives with those of the LLM, allowing us
to draw direct conclusions regarding underlying mechanisms. As expected, rule-based
and analogical models explain the predictions of GPT-J equally well for adjectives with
regular nominalization patterns. However, for adjectives with variable nominalization
patterns, the analogical model provides a much better match. Furthermore, GPT-
J’s behavior is sensitive to the individual word frequencies, even for regular forms,
a behavior that is consistent with an analogical account but not a rule-based one.
These findings refute the hypothesis that GPT-J’s linguistic generalization on adjective
nominalization involves rules, suggesting analogy as the underlying mechanism.
Overall, our study suggests that analogical processes play a bigger role in the linguistic
generalization of LLMs than previously thought.
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In the recent past, large language models (LLMs) such as Chinchilla (1), Gemini
(2), GPT-4 (3), LLaMA (4), Mistral (5), OLMo (6), and PaLM (7) have reached
an unprecedented level of linguistic capability. While some have likened the language
skills of LLMs to those of humans (8, 9), others have highlighted the persistent linguistic
inadequacies of LLMs (10–13). Crucially, however, it is well established that they go
beyond simply copying from the training data (14–19). With the ability to generate and
process novel expressions being widely viewed as a hallmark of human intelligence, the
controversy around the extent to which the language skills of LLMs are human-like has
sparked a wider discussion about whether AI is finally truly intelligent.

What are the mechanisms underlying linguistic generalization in LLMs? Are they
human-like? Prior studies have approached this question by investigating the extent to
which the language skills of LLMs resemble abstract, symbolic linguistic rules (20, 21).
For instance, the consistency with which LLMs provide the correct agreement marking
for unseen subject–verb pairs has been interpreted as evidence that they implicitly infer a
set of rules from the training data (18). Rules are a form of generalization that results from
language learners scanning the available data and distilling abstract knowledge about the
linguistic patterns exhibited in the data. Each rule has a structural description, which
specifies what properties must be met for the rule to apply, and a structural change,
which specifies how the input is changed to produce the output. When processing novel,
previously unseen input, the rule matching the input properties is selected, and applied
to produce the output.

Much less attention has been devoted to the question of whether the language skills
of LLMs could be the result of analogical processes operating on stored exemplars.
Typically expressed in the form A : B :: C : D (“A is to B as C is to D”), an analogy is
an assertion that the relation of A to B is similar to the relation of C to D. For example,
the analogy moon:planet::planet:sun makes a generalization about our solar system, and
entertaining this analogy was an important step in the Copernican development of the
heliocentric theory. Analogical models of linguistic generalization take the D position
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in the template to be an unknown and add a level of statistical
inference to find the optimal way to fill the D position.
Specifically, for a probe C with unknown D, they ask which
of the potential completed analogies for C has the best statistical
support, as defined by the behavior of exemplars in memory that
are similar to C (referred to as the neighborhood of C ). Analogical
models of word formation have proved successful in capturing
detailed patterns of variation in multiple languages (22–28). For
example, an analogical model can explain why the past tense of
an English nonce verb spling is often judged to be splang (even
though an -ed past tense is more common), based on the behavior
of verbs in its neighborhood such as sing, ring, and sink (27).

Within cognitive science, analogical generalization is argued to
be a central learning mechanism and a foundation for the ability
of humans to form abstract conjectures (29–32). In evaluating the
LLMs’ analogical capabilities, we thus share with prior work the
goal of evaluating the LLMs’ capabilities for implicit abstraction.
However, there are significant differences between analogical and
rule-based theories of human reasoning, particularly with regard
to effects of frequency. By generalizing on the fly over stored
exemplars, analogical models have both the forest and the trees,
in the form of both generalizations (forests) and trees (individual
exemplars). As a result, frequency effects at multiple levels from
individual known words to the overall prevalence of different
patterns are predicted. Frequency effects do appear in rule-based
theories in that the learner must encounter a sufficient mass of
examples to learn a rule in the first place. However, the mental
lexicon is only a repository of unpredictable information, which
means that once a regular rule has been learned, its outputs
are not stored. For example, the lexicon would include rotate,
since the association of this word form with this specific concept
could not have been predicted. However, it does not include the
regular past tense rotated. The frequency of rotated would not be
available in the model, neither as a factor in forming the past form
of rotate, nor as an influence on the output for other base forms.
This central difference between analogical models and rule-based
models means that frequency effects are a repeated theme in the
sections below.

LLMs store a considerable amount of their training data
in their model weights (19, 33–35), thus implicitly providing
a reservoir of stored exemplars that might support analogical
reasoning as a mechanism for all generalizations. However, it is
also possible that the models memorize examples but generalize
only via rules. A third possibility is that LLMs learn rules for
regular linguistic phenomena, while handling irregular linguistic
phenomena by means of analogy over stored exemplars, in line
with dual-mechanism approaches (27, 36–38). Thus, the way
that the stored data are used in generalizing by LLMs is an open
question.

Here, we present in-depth analysis of the role of analogical
linguistic generalization in LLMs. Our work is motivated by a
key shortcoming of the existing literature: Prior studies, most
of which explore rule-based generalization in LLMs (e.g., ref.
18), have focused on syntactic phenomena such as subject–
verb agreement, which display a high degree of regularity.
Crucially, in such cases, both rule-based and analogical, exemplar-
based approaches make the exactly same predictions (39–41); in
other words, rule-like behavior of LLMs on regular linguistic
phenomena does not represent any evidence for rule-based
generalization. This very insight was at the heart of the pioneering
research that first applied neural networks in the context of
language learning, which argued that “lawful behavior and
judgments may be produced by a mechanism in which there
is no explicit representation of the rule” (42). In fact, neural

network models of language depend in important ways on
similarity relations among input examples (43–47), suggesting
that analogy might play a major role for the language skills
of LLMs. This hypothesis has not been systematically tested
previously.

We focus on a domain of language that is known to
exhibit more variability than syntax, making it better suited
for distinguishing rule-based from analogical generalization:
derivational morphology (48–52). Specifically, we analyze how
LLMs learn English adjective nominalization with -ity and
-ness (53–56), focusing on adjectives that themselves contain a
derivational suffix (e.g., available, self ish, hyperactive). Such cases
of affix stacking are an ideal testbed for our purposes since the
adjective class (i.e., the adjective-final suffix) provides a controlled
way to vary the regularity of the nominalization process: While
some adjective classes are nominalized in a very regular way,
exhibiting a clear preference for either -ity (e.g., adjectives
ending in -able such as available) or -ness (e.g., adjectives ending
in -ish such as selfish), others exhibit a substantial degree of
variability (e.g., adjectives ending in -ive such as hyperactive).
Furthermore, English adjective nominalization with -ity and -ness
has been shown to be fully explainable as a result of analogical
generalization in humans (57), suggesting that LLMs might
employ the same mechanism. In general, probabilistic models
(58), and particularly exemplar-based analogy models (59, 60),
have recently proven very successful at modeling competition
between nearly synonymous linguistic structures, which is an
additional motivation for our work. While there has been some
previous work on the morphological capabilities of LLMs (e.g.,
refs. 13, 15, and 61–63), it has not diagnosed the generalization
mechanisms underlying those capabilities.

As a key contribution of our work, we introduce a method for
probing the generalization mechanisms underlying the language
skills of LLMs: We fit cognitive models that instantiate certain
generalization mechanisms to the LLM training data and com-
pare their predictions on unseen data with those of the LLM.
This approach, which is inspired by a long line of research in
computational psychology using computer simulations (64–66),
adds to the growing body of work that seeks to explain the
behavior of LLMs as a result of the data on which they were
trained (18, 67–70). Our method also informs the LLMs that we
analyze. Our primary target is GPT-J (71). GPT-J is one of the
GPT series of generative pretrained transformer models, and it is
one of the few LLMs whose training data, namely the Pile (72),
is publicly available. We also present some results on GPT-4,
as an example of a state-of-the-art model, even though lack of
access to its training data creates some limitations. For the sake of
convenience, we provide short definitions of the technical terms
used throughout the paper in Table 1.

Results

Generalization to Nonce Words. We compare the linguistic gen-
eralization behavior of GPT-J with that of two high-performing
cognitive models: the Minimal Generalization Learner (MGL;
73, 74) and the Generalized Context Model (GCM; 29, 30, 75).
The MGL is a rule-based model that we have selected because
it undertakes to capture detailed patterns of variation that
earlier rule-based models did not capture, by assigning statistical
reliability to rules. The GCM is an exemplar-based analogy
model that was developed for perceptual categorization, and then
successfully adapted to variability in inflectional morphology
(24, 27). The two models are similar in that both generalize
over word pairs consisting of a base form and a derived form,
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Table 1. Key technical terms used in the paper, as they
apply to the domain of word-formation

Adjective class Set of adjectives ending in the same
suffix.

Adjective nominalization Derivational morphology that
converts adjectives to nouns.

Analogy Inference of a new word form D
from word forms A, B, and C such
that C is phonologically similar to A,
and D is to C as B is to A.

Derivational morphology Operations that change the meaning
or part of speech of a word.

Derivative Word form obtained by applying
derivational morphology.

Exemplar A specific instance of an item that is
stored in memory.

Frequency Count of a word or set of words in
the corpus.

Neighborhood Exemplars with a high phonological
similarity to a probe.

Nonce word Pseudoword invented for the
purposes of an experiment.

Probability Likelihood of a form as computed by
a model.

Probe Word form for which a derived word
form is to be generated.

Rule Statement of a pattern in which the
output depends only on a symbolic
description of the input.

and generate predictions for a novel derived form by mapping
the phonological form of the base to the phonological form of
the derivative. They can be trained on either word types or word
tokens. The inventory of word types corresponds to the list of
words in a mental lexicon; only the existence of a word in the
language is taken into account, and not its frequency in the
training data. In an inventory of word tokens, each occurrence
of a word in the training data is treated separately, with the result
that more frequent words have more instances than less frequent
words. We consider both settings since the contrast between
behaviors governed by type frequencies and those governed by
token frequencies is a major theme in cognitive research on the
lexicon (e.g., ref. 74).

The mechanics of GPT-J is substantially different. GPT-J has
been trained on a large corpus of text, encoded as sequences of
words and subunits of words (e.g., individual characters). The
input and output of GPT-J both consist of text that can span
several hundred words. To probe the implicit world knowledge
of a model such as GPT-J, we can ask it to generate text answering
questions about real-world facts. Similarly, to probe the model’s
implicit knowledge of derivational morphology, we can ask it
to answer questions about the derived forms corresponding to a
variety of base forms.

We focus on English adjective nominalization and examine
four adjective classes (i.e., sets of adjectives ending in the same
suffix), two of which clearly prefer -ity or -ness (specifically,
adjectives ending in -able or -ish), and two of which are less
regular while still showing an overall tendency toward one of the
two suffixes (specifically, adjectives ending in -ive or -ous). We
train the cognitive models on all adjective–derivative pairs that
meet the following three criteria: i) the adjective belongs to one
of the four adjective classes in question; ii) the derivative ends

in -ity or -ness; iii) both the adjective and the derivative occur in
the Pile.

For evaluation, we use UniPseudo (76) to generate 50 nonce
adjectives for each of the four adjective classes. We check that
both the generated nonce adjective and the two corresponding
derivatives have a frequency of zero in the Pile, i.e., they have
never been seen by either the cognitive models or GPT-J, thus
providing an ideal test set for probing linguistic generalization.
We then feed all nonce adjectives into the cognitive models and
determine which of the two competing derivatives they prefer.
For GPT-J, we measure the probability that it assigns to the two
derivatives resulting from adding -ity and -ness to the adjectives.
Specifically, we use GPT-J’s autoregressive language modeling
head to compute the log probabilities for the subword units
into which the derivatives are split and sum them. We take the
derivative with the higher total log probability as the preferred
one. Since prior research has shown that varying prompts (i.e.,
the texts used to elicit LLM responses) can heavily affect LLM
behavior (77), we repeat this procedure with 12 different prompts
(SI Appendix, Supporting Text). If not stated otherwise, the
presented results are averaged over prompts.

As shown in Fig. 1, both MGL and GCM—in the type-based
as well as the token-based setting—make completely consistent
predictions for the two adjective classes that strongly prefer
one affix. They always predict -ity for -able and -ness for -ish.
Thus, both cognitive models reproduce the regular behavior that
characterizes these two adjective classes. GPT-J also predicts -ity
for -able, and it predicts -ness for -ish in all but two cases for just
one of the prompts (turgeishity and prienishity). GPT-J is nearly
as successful in capturing the regular cases as MGL and GCM,
and these in turn match the predictions of GPT-J equally well
(Table 2, Upper panel). Thus, the regular adjective classes do
not tell us whether GPT-J is more like a rule-base model or an
analogical model.

Moving to the two adjective classes that show more variability
between -ity and -ness (i.e., -ive and -ous), both MGL and GCM
generate variable outcomes with a higher rate of -ness for -ous than
for -ity (Fig. 1). However, the predictions differ substantially in
detail: the cognitive models (in the type-based as well as the
token-based setting) agree in only 54% of the adjective types.
Crucially, the cognitive model that matches the predictions of
GPT-J on these two adjectives classes best is the token-based
GCM model (Table 2, Lower panel). As a concrete example, we
consider the nonce adjective pepulative. The MGL models map
pepulative to a rule that prescribes -ity following -tive, which in
the type-based as well as the token-based setting has the highest
confidence of all competing rules and is hence selected by both
MGL models. The GCM models, by contrast, are more strongly
influenced by local similarity effects. While overall there are a
larger number of -ity derivatives in the neighborhood of pepulative
(e.g., for adjectives ending in -lative there are 88 derivatives with
-ity vs. 27 with -ness), many of the adjectives particularly close
to pepulative have -ness derivatives with a high token frequency
(e.g., manipulativeness has a token frequency of 1,544 vs. 26 for
manipulativity). This difference is reflected by the GCM models,
where the type-based model predicts -ity, but the token-based
model predicts -ness. GPT-J, on the other hand, prefers -ness for
this example and hence matches the behavior of the token-based
GCM model.

Our results show that the generalization behavior of LLMs
on linguistic phenomena with a high degree of variability is best
explained as a result of analogical mechanisms. This finding is in
line with the observation that LLMs store a considerable amount
of their training data in their model weights (19, 33–35), and
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A B

C

E

D

Fig. 1. Distribution of preferred nominalization type (specifically, ratio of
-ness derivatives) for unseen nonce adjectives, for rule-based models (A and
B), exemplar-based models (C and D), and GPT-J (E). Models based on types
are shown on the Left (A and C), and models based on tokens are shown on
the Right (B and D). The ratio is computed as the number of -ness predictions
divided by the total number of predictions (i.e., -ness and -ity predictions).

it further suggests that these stored data actively contribute to
the language skills displayed by LLMs. Our results are consistent
with a model that generalizes all adjective nominalizations by
analogy; they eliminate the possibility that all nominalizations
are generated by rules. However, there remains the possibility
that LLMs effectively use analogies in cases of variation and

apply rules for adjective classes with a high degree of regularity.
This possibility is suggested by earlier theories of inflectional
morphology, proposing dual-mechanism models in which regular
plurals and past tenses are created by rules, while irregular
forms involve analogies (36–38). To address this possibility, it
is necessary to look into frequency effects for individual words,
as discussed in prior work (78, 79). We will do so in the next
sections.

Predictions for Seen Words. According to cognitive theories,
analogies are based on remembered examples. If the mechanism
underlying GPT-J’s behavior is analogical, it must implicitly
remember a large number of examples. As the first step in
evaluating this inference, we ask how well GPT-J’s behavior
matches the frequencies of words seen in its training data.
Accurately matching the training data, derivative by derivative,
would imply that the distributed representations in GPT-J
encode information about individual derivatives.

We extend the four adjective classes examined so far and
include six other adjective classes that can be nominalized with
either -ity or -ness: -al, -ar, -ed, -ic, -ing, and -less. We can divide
the ten adjective classes into four groups with similar degrees of
competition between -ity and -ness (SI Appendix, Table S2):

• -ed, -ing, -ish, -less (R-NESS): This group exhibits the highest
degree of regularity and almost always takes -ness.

• -able, -al, -ar, -ic (R-ITY): This group also exhibits a high degree
of regularity (although somewhat lower than in the case of
R-NESS), with a strong tendency toward -ity.

• -ous (V-NESS): This adjective class exhibits a high degree of
variability, with a slight tendency toward -ness.

• -ive (V-ITY): This adjective class also exhibits a high degree of
variability, with a slight tendency toward -ity.

We ask whether GPT-J treats adjectives from these four groups
differently, and whether differences between the more regular
and more variable ones correspond to differences in the training
data. We draw upon the Pile and extract all derivatives ending
in -ity and -ness whose bases belong to one of the 10 adjective
classes. To decrease noise, we only extract derivatives whose bases
also occur in the Pile and apply several filtering heuristics, such
as excluding words with nonalphabetic characters. To include all
productively formed derivatives, we do not impose a frequency
threshold on the derivatives.

The overall setup of probing GPT-J is identical to the com-
parison with the cognitive models: We measure the probability
that GPT-J assigns to the two derivatives resulting from adding
-ity and -ness to the adjectives, using the same set of prompts.
Following this procedure, we evaluate GPT-J on all 48,995 bases

Table 2. Comparison with cognitive models
Examples Counts MGL GCM

Regularity Suffix Real Nonce -ity -ness Type Token Type Token

High -able available tegornable 11,081 1,034 0.893 0.893 0.893 0.893
-ish selfish friquish 0 1,502 0.997 0.997 0.997 0.997

Low -ive sensitive cormasive 4,508 2,438 †0.658 0.662 †0.622 0.688
-ous luminous momogorous 1,372 2,450 †0.657 †0.613 †0.610 0.703

The table shows real and nonce examples for the four examined adjective classes, the counts of corresponding derivatives in the Pile as well as the results of rule-based and exemplar-
based analogy models evaluated against GPT-J. Specifically, the choice of -ity or -ness for each nonce word by each of the four models shown is compared to GPT-J’s choice for that item.
The evaluation measure is accuracy, i.e., the percentage of the model’s choices that matched GPT-J’s choice. We highlight the highest accuracy value (i.e., the best-matching cognitive
model) in each row in boldface—for the two adjective classes where there is a winner (i.e., -ive and -ous), this is the token-based GCM model. We highlight accuracy values that are
significantly (P < 0.05) worse than the highest accuracy value in each row with a † .
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A B
Fig. 2. Ratio of bases preferring -ness in the Pile (A) and GPT-J’s predictions with one example prompt (B). Results are similar for the other prompts. The suffixes
of the base (i.e., adjective classes) are grouped by degree of competition between -ity and -ness.

from the Pile. If not stated otherwise, results are again averaged
across prompts.

Fig. 2 compares, for each adjective class, the ratio of bases for
which GPT-J prefers -ness compared to -ity with the statistics
from the Pile. We find that the two distributions are very similar:
almost no competition for the bases in R-NESS (i.e., -ed, -ing, -ish,
-less), little competition for the bases in R-ITY (i.e., -able, -al, -ar,
-ic), and strong competition for V-NESS (i.e., -ous) and V-ITY (i.e., -
ive). The tendency toward -ity and -ness is also exactly as predicted
based on the training data—the average correlation between the
class-level -ity/-ness ratios in the training data (Fig. 2A) and
GPT-J predictions (Fig. 2B) is 0.995 (±0.004; P < 0.001 for all
prompts), measured using Pearson’s r. For multiple comparisons,
P-values are corrected using the Holm–Bonferroni method (80).

Furthermore, GPT-J matches the training data statistics even
on the level of individual bases: Across all bases, the accuracy
of GPT-J’s preference for one of the two derivatives compared
against the training data (considered here as the ground truth) is
89.5% (±4.8%); the derivative preferred by GPT-J is generally
the derivative that is more likely in the training data.

Table 3 shows that there is variation between individual
adjective classes, with bases in R-NESS (-ed, -ing, -ish, -less) having
above 95% accuracy, bases in R-ITY (-able, -al , -ar, -ic) having
above 85% accuracy, and bases in V-ITY (-ive) and V-NESS (-ous)
having below 85% accuracy, but the general level of agreement
is very high.

Thus, GPT-J’s morphological preferences closely mirror the
statistics of the data it was trained on. The fact that GPT-J very
consistently prefers the derivative with the higher frequency in
the training data, even in cases such as adjectives ending in -ive
where the suffix alone is a bad predictor of -ity vs. -ness, suggests
that it stores many derivatives in its model weights. This is again
in line with an analogical mechanism.

However, it is still possible that some of the high-regularity
adjective classes (e.g., -ish) are handled by a rule, as suggested by
dual-mechanism approaches. Next, we will disentangle these two
hypotheses.

Frequency Effects and Neighborhood Effects. To further test
whether at least part of GPT-J’s behavior on adjective nominal-
ization can be explained by rules, we analyze the extent to which
GPT-J prefers an observed nominalized form over an alternative,
nonobserved nominalized form. We consider only cases in which
just one outcome of nominalization is attested in the Pile and
measure the difference in the log probability that GPT-J assigns
to the attested vs. the unattested form. This difference can be
viewed as reflecting GPT-J’s confidence in using a form that it
has encountered during training; a large difference indicates high

confidence, while a small difference reflects low confidence. For
each adjective class, we create two sets: one in which the attested
derivative has a low frequency in the Pile, f ∈ (0, 10], and one
in which the attested derivative has a high frequency in the Pile,
f ∈ (100,∞).

If an adjective class is handled by a rule, the difference
in frequency between the two sets should not affect GPT-J’s
confidence in predicting the attested derivative. This is because
rule-based theories abstract away from individual words; once a
rule has been acquired, regular complex forms are assumed to be
generated on the fly, much like complex sentence structures are,
rather than being stored in memory. Does this match GPT-J’
behavior for any of the adjective classes? We operationalize
this question by i) measuring GPT-J’s confidence (i.e., the log
probability difference between the attested and the unattested
derivative) for low-frequency derivatives with f ∈ (0, 10], and ii)
measuring the relative increase in confidence for high-frequency
derivatives with f ∈ (100,∞). If an adjective class is handled
by a rule, this relative increase should be zero. We again divide
the adjective classes into the four regularity-based groups defined
above (R-NESS, R-ITY, V-NESS, and V-ITY).

Fig. 3 displays the results. The relative increase in confidence
is positive for all adjective classes and for all prompts, indicating
that GPT-J is always more confident in its decision for the
frequent than the rare derivatives, even for the R-NESS class. This
indicates that the model has stored distributed representations for
all the derivatives, contrary to the predictions of dual-mechanism
models. Put differently, none of the adjective classes are handled
by rule.

Overall, the examined adjective classes exhibit a downward
slope in Fig. 3, which is also reflected by the R-NESS and R-ITY
groups individually (indicated by trendlines). Thus, the more

Table 3. Match between preferred derivatives in the
training data and derivatives preferred by GPT-J
Adjective class Suffix Accuracy

R-NESS -ed 0.986 ± 0.007
-ing 0.989 ± 0.014
-ish 0.995 ± 0.004
-less 0.999 ± 0.001

R-ITY -able 0.896 ± 0.082
-al 0.884 ± 0.073
-ar 0.896 ± 0.060
-ic 0.867 ± 0.090

V-NESS -ous 0.788 ± 0.038
V-ITY -ive 0.842 ± 0.012
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Fig. 3. Impact of word frequency on GPT-J’s confidence in its choice. x-axis:
Log probability difference between the attested and unattested choices
for low-frequency derivatives with f ∈ (0,10]. We have converted the log
probabilities from base e to base 10 for better readability. y-axis: Relative
increase in confidence for high-frequency derivatives with f ∈ (100,∞). Each
dot corresponds to GPT-J’s predictions for an adjective class given a specific
prompt. Dots are colored by degree of competition between -ity and -ness.
We added LOWESS lines for R-NESS and R-ITY. Dots at y = 0% indicate the
expected behavior if R-NESS and R-ITY were handled by rule.

confident the model was in its decisions for the low-frequency
group, the smaller the effect of word frequency on confidence.
This finding is difficult to explain in a rule-based model, but it
is perfectly in line with analogy as the underlying generalization
mechanism.

More specifically, we will attribute the downward slope to the
fact that the neighborhoods for probes from different adjective
classes show varying degrees of competition between -ity and
-ness. For the most regular adjective classes on the right-hand side
of Fig. 3, there is little competition between -ity and -ness in the
neighborhood for any given probe; for example, for an adjective
ending in -ish, all adjectives in its neighborhood are nominalized
with -ness (cf. Table 2), and hence the model confidence is high
even if the attested derivative has a low frequency. In other words,
if a derivative is strongly encoded in the model weights due to
high frequency in the training data, this does not increase model
confidence, because a highly homogeneous neighborhood already
provides a clear signal as to which form should be preferred.

Lower confidence levels for the low-frequency forms toward
the left of Fig. 3 represent cases in which the neighborhood of
the probe is more heterogeneous. Here, the neighborhood alone
provides a less clear signal as to which of the two alternative
derivatives should be preferred; for example, for an adjective
ending in -ive, its neighborhood often contains both adjectives
nominalized with -ness and adjectives nominalized with -ity (cf.
Table 2). As a result, the frequency in the training data becomes
a critical factor for model confidence. If the frequency of the
attested derivative is low, it is only weakly encoded in the model
weights. Consequently, the model must rely on a heterogeneous
neighborhood, which results in low confidence. On the other
hand, if the frequency of the attested derivative is high, the result-
ing encoding in the model weights is strong, thus providing a clear
signal beyond the neighborhood and leading to high confidence.

To quantify the neighborhood effect, we calculate the Shannon
entropy of the distribution over -ity and -ness as the preferred
form in the Pile for each adjective class. This serves as a
rough approximation of the competition between -ity and
-ness that is expected to exist in the neighborhoods of probes
from each adjective class. We then use Pearson’s r to measure
the correlation between the entropy and the confidence increase
for high-frequency derivatives. At r2 = 0.75, P < 0.001, this

correlation is highly significant. Thus, the more heterogeneous
the neighborhoods of probes from an adjective class, the greater
the impact of the attested derivative’s frequency on GPT-J’s
confidence—a finding that is exactly in line with the predictions
of analogical models (e.g., ref. 81) while being completely at odds
with rule-based approaches, which do not assume such frequency
effects to begin with.

The left side of Fig. 3 exhibits more variability than the
right side. We believe that this variability is caused by local
neighborhood effects and the interaction of these effects with the
prompting mechanism. Recall from the discussion of the nonce
word pepulative that analogical models are sensitive not merely
to the overall statistics for the two competing nominalizations,
but also to the similarity and frequency of the most similar
neighbors. These localized effects—which for the case of attested
derivatives would also include semantic similarity—create a
lumpy prediction landscape whose properties we do not try to
quantify here. Meanwhile, the prompting mechanism is known
to influence the focus and bias of the underlying transformer
model (82). Slightly different prompts direct the focus toward
different parts of the lumpy landscape, and would hence produce
noise in the datapoints for Fig. 3.

To sum up, our analysis suggests that GPT-J learns adjective
nominalization by implicitly storing derivatives in its model
weights. In cases where the exemplar neighborhood for a probe
is highly homogeneous, GPT-J produces highly regular outputs.
While regular, or rule-like, behavior of LLMs has been observed
before (e.g., ref. 18), our results contextualize this finding in
important ways, suggesting that rule-like behavior forms the end
of a gradient characterized by varying levels of regularity. This
result is not consistent with assuming a qualitative difference
between forms derived by rule and stored exemplars. However, it
is exactly in line with the predictions of exemplar-based analogy
models (e.g., refs. 24, 27, and 28).

Human Use of Word Types vs. Tokens. We have established that
GPT-J relies on token-level analogical generalization. In contrast,
previous studies have concluded that humans generalize over
word types (83–85): Their propensity to generalize a word for-
mation pattern depends on the number of distinct word types in
the individual’s mental lexicon that support the pattern (referred
to as the size of the lexical gang). This points to a difference
between the morphological processing in humans and LLMs. We
will now investigate this difference in greater detail, by comparing
the predictions of GPT-J to judgments made by humans.
Judgments of nonce words. First, we make a direct comparison
to GPT-J’s behavior for nonce words. 22 native English speaker
volunteer annotators indicated their preference for the -ity vs. the
-ness derivative of each nonce adjective in our study. Because
GPT-J is not a state-of-the-art model, we also introduce an
additional comparison, by asking whether a more recent model
is more human-like in its judgments. Specifically, we evaluate
GPT-4 (3) on the same set of adjectives. If GPT-4 displays more
human-like judgments than GPT-J, then the trend of improving
LLMs through larger training sets and bigger model sizes will
have paid off in this domain.

In Table 4, we take the derivative more often selected by
humans as the ground truth. The table gives the accuracy of
GPT-J, GPT-4, as well as the cognitive models considered
above (i.e., MGL and GCM), measured against this human
response. The type-based GCM model overall matches the
human behavior best. While all cognitive models perfectly
reproduce the homogeneous behavior for -able and -ish, the type-

6 of 11 https://doi.org/10.1073/pnas.2423232122 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 8
0.

18
7.

69
.1

08
 o

n 
M

ay
 1

5,
 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

80
.1

87
.6

9.
10

8.

183

183



Table 4. Human evaluation
MGL GCM LLMs

Suffix Type Token Type Token GPT-J GPT-4

-able 1.000 1.000 1.000 1.000 0.893 0.960
-ish 1.000 1.000 1.000 1.000 0.997 1.000
-ive 0.720 0.680 0.760 0.700 0.632 0.440
-ous 0.560 0.520 0.640 0.520 0.503 0.400

The table shows the results of rule-based and exemplar-based analogy models as well as
GPT-J and GPT-4 evaluated against human annotations. The measure is accuracy.

based GCM model better matches the human predictions for
-ive and -ous, as reflected by large gaps compared to the second-
best model, type-level MGL (-ive: 4%, -ous: 8%). The token-
based variants of MGL and GCM match the human behavior
substantially worse than the type-based variants, which is exactly
in line with what has been suggested in prior work (74, 84).
Moving to the results for GPT-J, it turns out to match the
human responses worse than any of the cognitive models, for all
four adjective classes. The gap compared to the best cognitive
model, type-based GCM, is considerable, especially for -ive and
-ous, amounting to roughly 13% in both cases. The picture is
overall even worse for GPT-4. While the predictions for the
high-regularity classes are good (almost always -ity for -able and
-ness for -ish, like all other models), the match with humans is
more than 10% worse than GPT-J for both -ive and -ous.

Why do GPT-J and GPT-4 match the human behavior so
much worse than the much simpler type-based GCM? The key
factor, we argue, is that both of these LLMs are driven by
the token frequencies of the words in the training data. Just
as for GPT-J, the token-based GCM and MGL models match
the behavior of GPT-4 better than the type-based models (SI
Appendix, Table S3). Token-oriented behavior is desirable in
that it results in highly realistic implicit knowledge of individual
words, as we have seen above. However, humans step back from
the frequencies of individual words when making generalizations
about possible words. LLMs seem to lack the ability to do this.

Furthermore, our results suggest that GPT-4’s overreliance on
token frequency is if anything worse than that of GPT-J. Thus
GPT-4’s morphological generalization behavior seems to be even
less human-like than that of GPT-J. This finding is reminiscent
of recently reported “inverse scaling effects,” more specifically
the tendency of larger LLMs to rely even more strongly on prior
statistics from the training data than smaller models do (86).

Since the performance of the best model, the type-based GCM,
leaves room for improvement, we can ask why its performance
was not better. The single biggest discrepancy was that the
GCM selected -ness after -ous more than the humans did. Our
analysis does not deal with the possibility that some people
may consider the affix -osity to be a unified affix bundle, along
the lines suggested in refs. 87 and 88; this would enhance its
availability. Given that the GCM was fit to all word pairs attested
in the Pile, the analysis also failed to allow for differences among
human mental lexicons. Other studies have found considerable
variability among human participants in the area of derivational
morphology in general, and in preference for -ity over -ness
specifically (89–93). In this context, it is noteworthy that the
participants in our study were recruited from a highly educated
community, whereas much of the Pile consists of web data such as
informal discussions on Reddit (72). There is thus the possibility
that there was a misalignment between the sociolect most strongly
represented in the Pile and the ideolects sampled as part of our
annotation study. Finally, the GCM works on the basis of word

forms only, and has no way of taking into account similarities in
meaning that also play a role in shaping morphological systems.
In contrast, LLMs are able to consider similarities in meaning, but
any advantage they might gain from their semantics in this highly
focused task appears to be more than offset by the drawbacks of
their reliance on token frequencies.
Familiarity of complex words. Our results on nominalizations
indicate that GPT-J and GPT-4 do not have a mental lexicon
in the sense that humans do, in that they lack the ability to step
back from word tokens and generalize over word types. Here, we
present a brief demonstration that this observation pertains to
morphologically complex words more generally, and not just to
nominalizations. For this demonstration, we draw on the Hoosier
Lexicon, a dataset of 19,320 English words that includes word
frequencies and familiarity ratings on a seven-point Likert Scale
(94). An important finding of the original study was a dissociation
between word frequency and rated familiarity; one might expect
the two to be highly correlated; however, some infrequent words
are judged as much more familiar than their frequency would
suggest. Needle et al. (95) identify morphological structure as an
important factor contributing to this dissociation. A word like
precancellation, with a recognizable prefix, stem, and suffix seems
familiar even though it is rare, on the strength of the familiarity
of its parts.

We analyze the n = 2,835 words in the Hoosier lexicon that
have a frequency of less than 10,000 in the Pile (corresponding to
a frequency of roughly 1 in 50,000,000 words or less). Leveraging
the CELEX dictionary (54) and methodology from prior work
(96, 97), we use affix-stripping to identify the n = 1,005
words that exemplify derivational morphology by virtue of being
parsable as a simpler word plus any combination of affixes.
n = 1,830 words cannot be parsed in this way, and we consider
them to be simplex words (SI Appendix, Supporting Text). For
human judgments, we take the familiarity ratings reported by
Nusbaum et al. (94). We estimate the “familiarity” that GPT-J
assigns to a word as the log probability that it assigns in the
context of neutral prompts. Comparing log probabilities to
human familiarity ratings is justified because the probabilities
assigned to words by language models are known to correlate
with psycholinguistic measures of lexical access (e.g., reading
times; 98), which for humans are impacted by familiarity to a
larger extent than frequency (99).

Results for humans are displayed in Fig. 4A. The average
familiarity of words with a morphological parse (n = 1,005)
is significantly higher than that of words with no morphological
parse (n = 1,830), t(2,120.2) = 19.2, P < 0.001 (Welch’s
t test). This confirms the results reported by Needle et al. (95).

A B
Fig. 4. Impact of morphological decomposability of words on their
familiarity as rated by human annotators (A) and the log probability assigned
to them by GPT-J (B). Parsability increases familiarity for humans (A), but not
for GPT-J (B).
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Due to this important factor, the correlation between familiarity
and log frequency in the entire Hoosier lexicon proves to
be modest according to a linear regression, F (1, 19,318) =
11,251.2, R2 = 0.368, P < 0.001. For GPT-J, on the
other hand, words with a morphological parse do not have any
advantage (Fig. 4B); quite the opposite, the estimated familiarity
of words with a morphological parse is significantly lower than
the estimated familiarity of words with no morphological parse
for GPT-J, t(2,285.9) = −4.9, P < 0.001. This outcome can
be explained by the fact that the correlation between the log
frequencies and the log probabilities assigned to the words by
GPT-J is very high, F (1, 19,318) = 58,553.5, R2 = 0.752,
P < 0.001, and the target words without a parse have somewhat
higher average frequency (m = 4,285.1) than those having a
parse (m = 4,093.7).

Experimental studies on wordlikeness judgments (95) and
on speech perception (100–102) show that humans continually
monitor for known words inside rare or novel words. This means
that their type-level lexical representations are exploited during
processing, and can cause rare words to seem familiar. GPT-J
does not rely on this type-level mechanism and hence lacks the
dissociation between frequency and familiarity that is caused by
morphological structure.

Discussion

This paper provides empirical evidence for analogical linguistic
generalization in LLMs. We found that an analogical cognitive
model best explains how GPT-J nominalizes unseen nonce ad-
jectives whose adjective class exhibits a high degree of variability.
While the analogical and the rule-based model explained GPT-J’s
predictions on adjective classes with a high degree of regularity
equally well, we showed that the rule-like behavior for those ad-
jectives is the end point of a continuum, where the position of an
adjective class is precisely predictive from the level of heterogene-
ity in the training data. This result is in line with the predictions
made by exemplar-based analogy models (e.g., ref. 25). It is not
consistent with assuming rules, even with rules having a limited
role, as in dual-mechanism approaches. We further found that
GPT-J stores a considerable quantity of seen derivatives in its
weights, again in line with analogical generalization.

Humans have been also argued to employ analogical gener-
alization in adjective nominalization. However, while humans
generalize based on types, we showed that GPT-J generalizes
based on tokens. Is this difference between humans and LLMs
reflected by their predictions? Indeed it is: The predictions of
GPT-J, and similarly of GPT-4, are less human-like than any
of the examined cognitive models. We further found that a
central manifestation of type-level representations in humans, the
decomposition of complex words into morpheme types, is not
mirrored by language models. This suggests a critical difference
in the organization of the lexicon between humans and LLMs.
While humans have a mental lexicon organized around types, the
lexical knowledge of LLMs is organized around tokens. Given
that analogical generalization mechanisms depend on the lexicon
they are operating on, a non-human-like lexicon leads to non-
human-like generalizations.

We have presented an intensive study of a single mor-
phological process, nominalization. However, our study has
broader repercussions for the language sciences. In historical
linguistics, a common trend is for the irregular forms in an
inflectional paradigm to become regularized over time; typically,
rare forms are affected first (83, 103, 104). However, in some

cases, neologisms in a language take on the irregular form, and
regular forms can even shift to become irregular (81, 105). In
theories of language change, these phenomena are discussed
under the rubric of analogical pressure; it is assumed that the
acquisition, memory, or production of any inflected form is
influenced by pressure from related forms in its neighborhood.
Our exploration of frequency effects and neighborhood effects
has shown that LLMs can and do operationalize analogical
pressure. The boundary between morphology and syntax can
be unclear, and in usage-based theories of linguistics, it is also
proposed that multiword expressions can be stored in the mental
lexicon (106). Krott (107) proposes an analogical approach
to productive compounding, and our results suggest that an
analogical theory implemented with a deep learning model could
also hold promise for documented cases of variability in syntactic
constructions (e.g., ref. 58).

Our findings are also related to the ongoing debate about
how human-like the language skills of LLMs are (108–110), by
highlighting a clear example of an area where the generalizations
of LLMs—even the most performant ones—are decidedly
non-human-like. The specific shortcoming that we observe
in LLMs is that they do not distill token occurrences in text
into more abstract type-level representations. From a semantics
perspective, this can be interpreted as a failure to semantically
ascend (111) to a level of representations that would make
it possible for the LLMs to generalize over linguistic objects
(specifically, word relations). More generally, this finding can
be connected to converging evidence that LLMs fail to form
meta-level representations the way humans do (112), in our case
meta-level linguistic representations.

Materials and Methods
Cognitive Models. The MGL (73, 74) works by inferring abstract rules from the
lexicon. Itstartsbyiteratingoverpairsofwordsandforminginitialgeneralizations
based on shared phonological features, which are then iteratively merged,
yielding increasingly abstract rules. Each rule is associated with a value signifying
its statistical reliability. The reliability is derived from the rate at which the rule
applies to the n forms matching its structural description, adjusted for the
uncertainty in the estimate of this rate due to the sample size n. To make
predictions for a new input, the rule with the highest reliability that matches
the phonological properties of the input is selected. In SI Appendix, Supporting
Text, we provide example rules, including some induced by the MGL.

The GCM (29, 30, 75) does not infer abstract rules but instead stores all forms
from the training data in an inventory. To make predictions for a new input, the
input is compared to all instances that exhibit each relevant type of output (e.g.,
to all bases that have a derivative with -ity, vs. all bases that have a derivative with
-ness). The selection of the output pattern is a cumulative effect of similarity and
frequency (e.g., the number of different examples weighted by the similarity of
those examples to the input). Because of the similarity-based weighting, a small
number of highly similar examples can dominate a large number of less similar
examples in the decision.

We use the implementation of MGL made available by Albright and Hayes
(74), using default hyperparameters. For GCM, our implementation exactly
follows prior studies in linguistics using the model (e.g., refs. 24, 27, and 74).

Nonce Adjectives. To create the nonce adjectives for the four adjective classes,
we draw upon UniPseudo (76). UniPseudo uses an algorithm based on Markov
chains of orthographic n-grams that it applies to a specifiable list of input words,
generating a list of pseudowords. Importantly, when all input words end in a
certain sequence of characters, the generated pseudowords also end in that
sequence of characters. We leverage this property of UniPseudo to generate 50
nonce adjectives for each adjective class based on a curated list of adjectives
drawn from CELEX (113), MorphoLex (114), and MorphoQuantics (115). For
pseudoword length, we use the two most frequent lengths as measured on
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the extracted adjectives for each class and generate 25 pseudowords for each
length. We use the bigram algorithm. See SI Appendix, Table S1 for the full list
of pseudowords.

GPT-J. We describe the method we use to probe GPT-J more formally. Let
b be a base (e.g., sensitive) and s be a suffix (e.g., -ity). We denote with
d(b, s) the derivative resulting from adding s to b and applying all required
morpho-orthographic changes (e.g., deletion of base-final e). For instance, for
b = sensitive and s = -ity, we have d(b, s) = sensitivity. To measure the
probability that GPT-J assigns to d(b, s) as a derivative of b, we use various
prompts t(b). While some of the prompts ask GPT-J to nominalize b (e.g.,
t(b) = Turn the given adjective into a noun. b →), others are less explicit
(e.g., t(b) = b →). See SI Appendix, Supporting Text for the full set of
prompts.

Given a filled prompt t(b), we pass it through GPT-J and measure the
probability that GPT-J assigns to the two derivatives d(b, -ity) and d(b, -ness) as
continuations of t(b).

We use the GPT-J implementation available on Hugging Face (116). GPT-J
has a total of 6,053,381,344 parameters. All experiments are performed on a
stack of eight GeForce GTX 1080 Ti GPUs (11 GB).

Adjective Annotation. For determining whether humans prefer -ity vs. -ness
for the nonce adjectives, we collected human judgments from volunteers using
theSoSciSurveyplatform.NativespeakersofEnglishwererecruitedinauniversity
community using snowball sampling. Hence most or all of them have university-
level education. They were asked whether they were willing to participate in a
survey about derivational morphology. They were unaware of the exact goals
of the study. In total, 28 participants took part. Responses of six participants
were removed because they did not finish the survey (attrition rate of 21.4%).
Before starting the survey, the participants saw a consent form that described the
study and explained that the anonymous responses would be collected, stored,
and used for research purposes. They clicked “yes” to indicate their consent and
continue on to the survey. The collection and use of the data were submitted
to the institutional review board of the Allen Institute for AI for review. It ruled
that the study was exempt from regulation because no personally identifiable

information would be collected. See SI Appendix, Supporting Text for more
details about the annotation study.

GPT-4. Since the OpenAI API does not provide access to output probabilities,
we cannot use the same method as for GPT-J. Instead, we leverage GPT-4’s
instruction-following capabilities and directly ask it which of the two derivatives
it prefers for a given nonce adjective.

Vocabulary Test. To measure the probability that GPT-J assigns to a word w,
we use various prompts t(w) (e.g., t(w) = Thefollowingisaword :w). See SI
Appendix, Supporting Text for the full set of prompts.

Given a filled prompt t(w), we pass it through GPT-J and measure the
probability that GPT-J assigns to the word.

Data, Materials, and Software Availability. Outputs of computational
models have been deposited in GitHub (117). Anonymized data on human
judgments of nonwords collected in a crowd-sourcing experiment have been
deposited in GitHub (117). The following data cannot be shared: One study
reported in the article uses the Hoosier Lexicon dataset described in the study
of Nusbaum et al. (94). This heavily cited work predates the FAIR standards
by several decades. No online repository ever existed. Research groups using
the data received it under a do-not-recirculate agreement. We feel that this
situation does not compromise the replicability of our own work, because the
study of Nusbaum et al. includes ample detail about how the data were collected,
and its main claims have been independently validated by other laboratories.
Previously published data were used for this work: CELEX: (113). MorphoLex:
(114). MorphoQuantics: (115).
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Supporting Information Text11

Example Rules. The standard notation for linguistic rules is as follows:

SD → SC / LC RC

Here, SD is the structural description of the rule, SC specifies the change to produce the output, LC is an optional left-hand12

context, and RC is an optional right-hand context.13

Many researchers might suggest the following default rule for the phonological spell-out of nominalization. NOM represents
the underlying morpheme that may be spelled out as -ness or -ity at the phonological level. (Throughout the paper we make
the simplifying assumption that the two spell-outs are synonymous.)

NOM → -ness

This rule has no left or right context because the morpheme NOM would only occur at the morphosyntactic level on stems with
suitable syntactic and semantic properties. Under this assumption, all forms in -ity would be memorized exceptions. The most
statistically reliable rule for our dataset — and one that is induced by the MGL — includes a specification of the left context:

NOM → -ness /


-ed
-ing
-ish
-less


This rule corresponds to the blue dots in Fig. 3 in the main article. The following rule for r-ity is also induced by the MGL
but is less reliable:

NOM → -ity /


-able
-al
-ar
-ic


This rule corresponds to the orange dots in Fig. 3 in the main article.14

Prompts. We want to test which of two derivatives — the one ending in -ness or the one ending in -ity — is preferred by a15

language model. To do so, we need to measure the probability that the language model assigns to the two competing forms.16

For example, we need to measure the probability that the language model assigns to sensitiveness, and the probability that it17

assigns to sensitivity. Language models such as GPT-J and GPT-4 always assign probabilities to tokens given a sequence of18

preceding tokens. Therefore, in order to measure the probability that a language model assigns to a specific derivative, we need19

to decide on what tokens to use as the preceding context. This is commonly referred to as prompting, and the sequence of20

preceding tokens that is fed into the language model as prompt (1). Properties of the prompt (e.g., the exact wording of a21

request) can substantially affect the language model predictions (2), which is why it has become common practice to examine22

several different prompts when analyzing the behavior of language models. Here, we use the following 12 prompts to measure23

the probabilities that GPT-J assigns to the derivatives:24

• Nominalized adjective:25

• Noun:26

• The following is a nominalized adjective:27

• The following is a noun:28

• b →29

• b :30

• b -31

• b32

• Adjective: b Nominalization:33

• Form the nominalization of the given adjective. b →34

• Nominalize the given adjective. b →35

• Turn the given adjective into a noun. b →36

As in the main text, b here is a variable that refers to a base. For example, with the prompt Nominalized adjective: and the37

base sensitive, we measure the probability assigned to sensitivity in the context Nominalized adjective: sensitivity as well as the38

probability assigned to sensitiveness in the context Nominalized adjective: sensitiveness. The presented results are averaged39

across prompts; for example, to get GPT-J’s match with the cognitive models, we calculate the match based on each of the 1240

prompts and report the mean of these 12 scores.41

We use the following prompts to measure the probabilities that GPT-J assigns to the words in the vocabulary test:42
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• Word:43

• Real word:44

• The following is a word:45

• The following is a real word:46

Derivative Statistics. We analyze the statistics of -ity and -ness derivatives in the Pile (Table S2). We first focus on type47

frequency, i.e., the number of different derivatives contained in the Pile. For most classes, there is a clear preference for either48

-ity or -ness, the only two exceptions being adjectives ending in -ive and -ous. For adjectives ending in the Germanic suffixes49

-ed, -ing, -ish, and -less, there is a particularly strong preference for -ness, although a few derivatives in -ity can be found in50

the data. These statistics are similar to the results of a recent analysis based on dictionary data (3), indicating that the Pile51

provides a realistic picture of the variation between -ity and -ness in present-day English.52

Next, we turn to token frequency, i.e., the number of times individual derivatives occur in the Pile. We notice that the53

trends for type frequency are largely reflected by token frequency: in the case of adjective classes for which -ity derivatives54

have a higher type frequency than -ness derivatives, -ity derivatives also tend to have a higher average token frequency than55

-ness derivatives (and vice versa). The only exception is -ous, where -ity has a lower type frequency but a higher average token56

frequency than -ness. This is due to a particularly large number of -ity derivatives in the high token frequency range: excluding57

the top 5% of derivatives with the highest token frequency, the average token frequency is higher for -ness (73.0) than -ity58

(15.1), in line with the type frequency trend for -ous.59

Finally, we examine a measure that linguistic scholarship has suggested to be particularly relevant for productivity (4, 5),60

specifically the number of hapaxes (i.e., derivatives occurring only once in the Pile). Here, the trends for individual adjective61

classes are similar to type frequency and token frequency, with the potential exception of -ive, where the preponderance of -ity62

compared to -ness is slightly less pronounced.63

Adjective Annotation. Each participant coded half of the nonce words (i.e., 100 nonce words). The 22 participants who64

completed the full survey were evenly divided between the two halves. Participants were first shown an introductory message65

explaining the task as shown in Fig. S1a. Participants who consented to the collection and use of their data, as described in66

the introductory message, indicated their consent by clicking "yes". They were then given one of two survey versions, each with67

100 nonce words that cycled through the four suffixes to avoid repetition. To reduce the total time necessary for completing68

the survey, participants were immediately shown the next question upon clicking a word. An example of a question is shown in69

Fig. S1b.70

Fig. S2b plots for each tested adjective class the ratio of bases for which participants overall preferred -ness over -ity, i.e.,71

more participants selected the -ness rather than the -ity derivative. There is a clear preference for -ity in the case of -able and72

a clear preference for -ness in the case of -ish. For the two suffixes with a larger degree of competition, -ive shows the expected73

pattern, with participants preferring -ity over -ness for the majority of bases, but -ous shows a preference for -ity, which is74

different from its greater association with -ness in the Pile. This can also be seen from the ratio of participants preferring -ness75

over -ity for individual bases (see Fig. S3a), which is on average smaller than 50% for -able (17.7%), -ive (39.8%), and -ous76

(47.5%), and greater than 50% only for -ish (95.1%). Fig. S3a also shows a high degree of variation between individual bases of77

a certain adjective class: e.g., for -ous, there are bases for which participants clearly preferred -ity (e.g., 81.8% preferred -ity for78

indaminous), but there is also a base for which participants exclusively selected -ness (100% preferred -ness for rebelorous).79

Participants differed in terms of how often they selected -ity or -ness for each adjective class (see Fig. S3b). For example, 1380

participants preferred -ity for -ous bases, but nine participants preferred -ness. This high degree of variation is reflected by a81

small inter-annotator agreement (IAA) of 0.335, measured using Fleiss’ κ. However, measuring IAA on all bases hides the fact82

that IAA is substantially higher for -ish (0.899) and -able (0.587) than for -ive (0.096) and -ous (0.054), measured using Gwet’s83

AC1 (6). There is also a correlation between the responses given by individual participants for bases of different adjective84

classes, especially between -able and -ive (0.417), and -ive and -ous (0.415), measured using Pearson’s r.85

Morphological Parse. The parsability of words in the Hoosier lexicon is determined as follows. In a first step, we check whether86

a word is contained in CELEX (7), a lexical database that contains information about the morphological status of more than87

50,000 English words. 16,417 words from the Hoosier lexicon are listed in CELEX. For the remaining 2,903 words, we determine88

the morphological status by means of a simple method from prior work (8, 9): we test whether the beginning or end of words89

matches common prefixes/suffixes of the English language, and whether the remaining part of the word is a stem. To do so, we90

draw upon a list of 46 English prefixes and 44 English suffixes (10). As potential stems, we use all English words contained in91

CELEX. The algorithm is sensitive to morpho-orthographic rules of English (11).92

As a result of this procedure, 6,499 words from the Hoosier lexicon are classified as morphologically complex. The words are93

diverse in terms of the involved affixes: except for pseudo and mini, all affixes from the list mentioned above show up.94
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(a) Introductory message

(b) Example question

Fig. S1. Screenshots of the introductory message seen by participants of our survey (a) and an example question given to participants (b).
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(b) Humans

Fig. S2. Distribution of preferred nominalization type (specifically, ratio of -ness derivatives) for unseen nonce adjectives, for GPT-J (a) and human annotators (b). The ratio is
computed as the number of -ness predictions divided by the total number of predictions. Panel (a) replicates Fig. 1e from the main article for easier comparison.
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(a) Base variation
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(b) Participant variation

Fig. S3. Variation in the derivative preferred by humans, shown separately for bases (a) and participants (b). In (a), each dot represents one base. In (b), each line represents
the response pattern of one participant in our annotation study.
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Table S1. Complete list of all used nonce adjectives.

-able -ish -ive -ous

actignable badyish atecusive adodagious
anilicable beavish cogective adupendous
anvastable breyish conovative anoninous
chalinable carmish cormasive aurtiguous
comfolvable clangish cuminitive cazardous
compechable clurlish decertive coivonous
condumable cunkish deflosive creninous
contaitable devevish defrertive dardulous
corgervable direish dejovative dexarious
covornable doutish depulsive erenymous
cresucable dwaplish dermasive eretulous
enocutable fadyish dignitive euphitious
expeaceable fawkish dimusitive eutrigeous
expelocable fevetish exhauctive faluminous
expernable fevewish expecative fapturous
fispoceable fevilish extuctive glamalous
fupeactable frietish gederative glumonous
fusuperable friquish imimative gluninous
imalatable ghumpish impuctive gropenious
impalvable gireish indetative hibeguous
inbeadable goguish nogensive honoderous
inedifiable higetish nombasive indaminous
infoustable knarish nonvuptive iniragious
intoundable laretish nutensive insicious
intountable lureish obsensive lasavenous
inveicable lurmish pedititive leamogous
irediocable moguish pedulsive ligegious
mecoushable peftish pepulative liratonous
parendable preanish pransitive luticorous
peplaicable prienish prediasive malicinous
praleckable purerish prititive meglarious
preneckable radyish protrative momogorous
prequakable reckish pumbative mystuorous
previnable redyish recentive nomeneous
previtable rourfish recumotive oblicious
puneadable shigeish rejeptive pecacious
pustameable skierish ruchontive plalorous
redeptable slarish seceptive poncorous
rempadable slownish sejensive prolacious
retaleable slundish serposive ralygerous
sempoivable slungish submiative ravarious
swimitable snoulish submictive reamorous
tegornable sonkish submistive rebelorous
unaclerable tivilish sumpertive slaicitous
unalintable turgeish sumurative suspibious
undeperable wabyish suprective tefigious
unutintable waguish tecensive trospurous
unvatrable wainish tendusive undicitous
unvediable wawkish tredictive vexuteous
utililable woungish vederative vombageous
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Table S2. Statistics of -ity and -ness derivatives for the 10 examined adjective classes in the Pile (12), the corpus used to train GPT-J (13). The
total number of bases is 48,995. The values for token frequency are averaged across all word types belonging to a specific adjective class.

Type frequency Token frequency Hapaxes
Suffix -ity -ness -ity -ness -ity -ness
-able 11,081 1,034 3937.7 817.3 1,673 226
-al 9,133 1,011 5904.9 172.1 2,078 251
-ar 2,433 214 5833.7 10.3 451 59
-ed 62 4,786 2.4 539.6 28 1,134
-ic 6,215 617 4162.7 45.7 790 175
-ing 2 1,600 1.0 1104.5 2 448
-ish 0 1,502 0.0 397.0 0 437
-ive 4,508 2,438 15075.8 3252.1 626 554
-less 3 2,020 1.7 1159.8 1 506
-ous 1,372 2,450 5453.1 2420.3 325 675
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Table S3. Match of rule-based and exemplar-based models with GPT-4 on nonce adjectives.

MGL GCM
Suffix Type Token Type Token
-able .960 .960 .960 .960
-ish 1.000 1.000 1.000 1.000
-ive .400 .480 .440 .500
-ous .680 .760 .640 .800
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Abstract

We introduce CaMEL (Case Marker
Extraction without Labels), a novel and chal-
lenging task in computational morphology
that is especially relevant for low-resource
languages. We propose a first model for
CaMEL that uses a massively multilingual
corpus to extract case markers in 83 languages
based only on a noun phrase chunker and an
alignment system. To evaluate CaMEL, we
automatically construct a silver standard from
UniMorph. The case markers extracted by
our model can be used to detect and visualise
similarities and differences between the case
systems of different languages as well as to
annotate fine-grained deep cases in languages
in which they are not overtly marked.

1 Introduction

What is a case? Linguistic scholarship has shown
that there is an intimate relationship between mor-
phological case marking on the one hand and se-
mantic content on the other (see Blake (1994) and
Grimm (2011) for overviews). For example, the
Latin case marker -ibus1 (Ablative or Dative Plural)
can express the semantic category of location. It
has been observed that there is a small number of
such semantic categories frequently found cross-
linguistically (Fillmore, 1968; Jakobson, 1984),
which are variously called case roles or deep cases.
Semiotically, the described situation is complicated
by the fact that the relationship between case mark-
ers and expressed semantic categories is seldom
isomorphic, i.e., there is both case polysemy (one
case, several meanings) and case homonymy or
case syncretism (several cases, one marker) (Baer-
man, 2009). As illustrated in Figure 1, the Latin
Ablative marker -ibus can express the semantic

1In this paper, we use italic when talking about case mark-
ers as morphemes in a linguistic context and monospace
(accompanied by $ to mark word boundaries) when talking
about case markers in the context of our model. Translitera-
tions of Cyrillic examples are given after slashes.

-ibus
ABL DAT

I L R

-ами
INST

I

-ах
LOC

L

-ам
DAT

R

Figure 1: Morpho-semiotic foundation of this study.
The Latin case marker -ibus is used for both the Abla-
tive (ABL) and the Dative (DAT), which in turn express
the three semantic categories of instrument (I), location
(L), and recipient (R). This is an example of both case
polysemy (one case: ABL, several meanings: I and L)
and case syncretism (several cases: ABL and DAT, one
marker: -ibus). Russian, on the other hand, has an
isomorphic relationship between Instrumental (INST),
Locative (LOC), and Dative (DAT), the case markers
corresponding to them (-ами/-ami, -ах/-ax, -ам/-am),
and the expressed semantic categories (I, L, R).

category of instrument besides location (case poly-
semy), and it is also the marker of the Dative Plural
expressing a recipient (case syncretism). In ad-
dition, there is case synonymy (one case, several
markers), which further complicates morphosemi-
otics; e.g., in Latin, -is is an alternative marker of
the Ablative Plural.

The key idea of this paper is to detect such com-
plex correspondences between case markers and
expressed semantic categories in an automated way.
Specifically, we build on prior work by Cysouw
(2014), who lays the theoretical foundation for our
study by showing that deep cases can be induced
from cross-linguistic usage patterns of case mark-
ers. As opposed to Latin, Russian has separate
cases (with separate case markers) for the seman-
tic categories of instrument (-ами/-ami), location
(-ах/-ax), and recipient (-ам/-am). Thus, knowing
the Russian case marker corresponding to Latin
-ibus reduces the uncertainty about the expressed
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case role (Figure 1). This reduction of uncertainty
can be particularly helpful in a low-resource setting
where other means of analysis are unavailable.

In this work, we rely on the Parallel Bible Cor-
pus (PBC; Mayer and Cysouw, 2014), a massively
multilingual corpus, to investigate the relationship
between surface cases and their deep meanings
cross-linguistically. To put our idea into practice,
we require an exhaustive set of case markers as
well as a set of parallel noun phrases (NPs) that we
can further analyze with respect to deep cases using
the set of case markers. Both requirements pose a
serious challenge for languages with limited avail-
able resources. We therefore introduce CaMEL
(Case Marker Extraction without Labels), a novel
and challenging task of finding case markers using
only (i) a highly parallel corpus covering many lan-
guages, (ii) a noun phrase chunker for English, and
(iii) word-level pre-computed alignments across
languages.

Our work uses the parallel nature of the data in
two ways.

First, we leverage the word-level alignments for
the initial step of our pipeline, i.e., the marking of
NPs in all languages (even where no noun phrase
chunker is available). To do so, we mark NPs in 23
different English versions of the Bible and project
these annotations from each English to each non-
English version using the word-level alignments,
resulting in parallel NPs that express the same se-
mantic content across 83 languages. Based on the
projected annotations, we leverage the frequencies
of potential case markers inside and outside of NPs
as a filter to distinguish case markers from lexi-
cal morphemes and other grammatical morphemes
typically found outside of NPs.

Second, we leverage the alignments for a fine-
grained analysis of the semantic correspondences
between case systems of different languages.

We make three main contributions.

• We define CaMEL (Case Marker Extraction
without Labels), a new and challenging task with
high potential for automated linguistic analysis
of cases and their meanings in a multilingual
setting.

• We propose a simple method for CaMEL that
is efficient, requires no training, and generalises
well to low-resource languages.

• We automatically construct a silver standard
based on human-annotated data and evaluate our

method against it, achieving an F1 of 45%.

To foster future research on CaMEL, we make the
silver standard, our code, and the extracted case
markers publicly available2.

2 Related Work

Unsupervised morphology induction has long been
a topic of central interest in natural language pro-
cessing (Yarowsky and Wicentowski, 2000; Gold-
smith, 2001; Schone and Jurafsky, 2001; Creutz
and Lagus, 2002; Hammarström and Borin, 2011).
Recently, unsupervised inflectional paradigm learn-
ing has attracted particular interest in the research
community (Erdmann et al., 2020; Jin et al., 2020),
reflected also by a shared task devoted to the issue
(Kann et al., 2020). Our work markedly differs
from this line of work in that we are operating on
the level of case markers, not full paradigms, and
in that we are inducing morphological structure in
a massively multilingual setting.

There also have been studies on extracting gram-
matical information from text by using dependency
parsers (Chaudhary et al., 2020; Pratapa et al.,
2021) and automatically glossing text (Zhao et al.,
2020; Samardžić et al., 2015) as well as compil-
ing full morphological paradigms from it (Moeller
et al., 2020). By contrast, our method is indepen-
dent of such annotation schemata, and it is also
simpler as it does not aim at generating full gram-
matical or morphological descriptions of the lan-
guages examined. There has been cross-lingual
work in computational morphology before (Snyder
and Barzilay, 2008; Cotterell and Heigold, 2017;
Malaviya et al., 2018), but not with the objective
of inducing inflectional case markers.

Methodologically, our work is most closely re-
lated to the SuperPivot model presented by As-
gari and Schütze (2017), who investigate the typol-
ogy of tense in 1,000 languages from the Parallel
Bible Corpus (PBC; Mayer and Cysouw, 2014) by
projecting tense information from languages that
overtly mark it to languages that do not. Based on
this, Asgari and Schütze (2017) perform a typolog-
ical analysis of tense systems in which they use
different combinations of tense markers to further
divide a single tense in any given language. Our
work differs in a number of important ways. First,
we do not manually select a feature to investigate

2https://github.com/LeonieWeissweiler/
CaMEL
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but model all features in our chosen sphere of inter-
est (i.e., case) at once. Furthermore, we have access
to word-level rather than verse-level alignments
and can thus make statements at a more detailed
resolution (i.e., about individual NPs). Finally, we
extract features not only for a small selection of
pivot languages, but even for languages that do not
mark case “non-overtly”, i.e., in a way that deviates
to a large degree from a simple 1–1 mapping (see
discussion in §1).

3 Linguistic Background

There is ongoing discussion in linguistic typol-
ogy about the extent to which syntactic categories
are shared and can be compared between the
world’s languages (see Hartmann et al. (2014) for
an overview). While this issue is far from being
settled, there is a general consensus that (while
not being a language universal) there is a core of
semantic categories that are systematically found
cross-linguistically, and that are expressed as mor-
phosyntactic case in many languages. Here, we
adopt this assumption without any theoretical com-
mitment, drawing upon a minimal set of deep cases
detailed in Table 1. The set is loosely based on the
classical approach presented by Fillmore (1968).

Going beyond deep cases, Cysouw (2014) en-
visages a more fine-grained analysis of what is
conventionally clustered in a deep case or semantic
role. Briefly summarised, the theoretical concept
is this: if every language has a slightly different
case system, with enough languages it should be
possible to divide and cluster NPs at any desired
level of granularity, from the conventional case
system down to a specific usage of a particular
verb in conjunction with only a small set of nouns.
For example, the semantic category of location
could be further subdivided into specific types of
spatial relationships such as ‘within’, ‘over’ and
‘under’. Taken together, it would then be possible
to perform theory-agnostic typological analysis of
case-like systems across truly divergent and low-
resource languages by simply describing any lan-
guage’s case system in terms of its clustering of
very fine-grained semantic roles into larger systems
that are overtly marked.

The approach sketched in the last paragraph
is not limited to case systems but has been ap-
plied to person marking (Cysouw, 2008), the
causative/inchoative alternation (Cysouw, 2010),
and motion verbs (Wälchli and Cysouw, 2012).

The variety of linguistic application areas high-
lights the potential of developing methods that are
much more automated than the work of Cysouw
and collaborators. While we stay at the level of
traditional deep cases in this paper, we hope to be
able to extend our method into the direction of a
more general analysis tool in the future.

The remainder of the paper is structured as fol-
lows. Section 4 describes our method in detail.
Section 5 gives an overview of our results. Finally,
Section 6 presents two exploratory analyses.

4 Methodology

4.1 Data

We work with the subset of the PBC (Mayer and
Cysouw, 2014) for which the SimAlign alignment
algorithm (Jalili Sabet et al., 2020) is available, re-
sulting in 87 languages for our analysis. From the
corpus, we only extract those verses that are avail-
able in all languages, thus providing for a relatively
fair comparison, and remove Malagasy, Georgian,
Breton, and Korean, as they have much lower cov-
erage than the other languages. This leaves us with
83 languages and 6,045 verses as our dataset. We
also select 23 English versions from the PBC that
cover the same 6,045 verses. For each of the 6,045
verses, we then compute 83 × 23 = 1909 verse
alignments: 83 (for each language) multiplied with
23 (for each English version). In the following,
we will describe the components of our pipeline
(Figure 2).

4.2 NP Annotation

Because our intermediate goal is to induce com-
plete lists of case markers in all languages we
cover, the first step is to restrict the scope of our
search to NPs. We hope that this will allow us
to retrieve case markers for nouns and adjectives
while disregarding verb endings that might other-
wise have similar distributional properties. As we
are working with 83 languages, most of which are
low-resource and lack high-quality noun phrase
chunkers, we first identify NPs in English using
the spaCy noun phrase chunker (Honnibal et al.,
2020) and then project this annotation using the
alignments to mark NPs in all other languages. The
exception to this are German and Norwegian Bok-
mål, for which noun phrase chunkers are available
directly in spaCy. Because both the spaCy noun
phrase chunker and the alignments are prone to
error, we make use of 23 distinct English versions
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Deep Case Description Example

Nominative The subject of the sentence He is the Messiah!
Genitive An entity that possesses another entity Are you the Judean People’s Front?
Recipient A sentient destination I gave the gourd to Brian.
Accusative The direct object of the sentence Consider the lilies.
Locative The spatial or temporal position of an entity They haggle in the market.
Instrumental The means by which an activity is carried out The graffiti was written by hand.

Table 1: Descriptions and examples for the deep cases distinguished in this paper, which loosely follow the core
deep cases proposed in the classical approach of Fillmore (1968).

NP Annotation

NP Projection

Candidate Set Creation

Frequency Filtering

Inside/Outside Filtering

Restriction to Word Endings

Figure 2: Overview of our pipeline.

of the Bible and mark the NPs in each of them with
the goal of lessening the impact of noise.

4.3 NP Projection

We project the NP annotation of a given English
version to a second language using the alignments.
Specifically, we find the NP in the target language
by following the alignments from all words in the
English NP while maintaining the word order of the
target sentence. We treat each annotated version
of the corpus resulting from the different English
versions as a separate data source. As an example,
Figure 3 shows two English versions and the NP
projections for Latin and German. While the align-
ments, particularly those from English to Latin, are
not perfect, they result in complementary errors.
The first wrongly aligns the first mention of pastor
bonus, resulting in only pastor being marked as an
NP. The second misses the alignment of life and

animam. In these two cases, the other alignment
corrects the error.

There are two major results from this process.
First, we obtain the set N of all NPs marked in

English, each with all of its translations in the other
languages. An example of an entry in this set, taken
from Figure 3, would be the fine shepherd, pastor
bonus, der vortreffliche Hirte, ..., while the fine
shepherd, pastor, der vortreffliche Hirte, ... would
be another, slightly defective, example.

Second, we obtain a pair of multisets, W l
in and

W l
out, one for each language l. W l

in (resp. W l
out) is

the multiset of all word tokens that appear inside
(resp. outside) of NPs of language l. In the follow-
ing, we will use M(w) to refer to the frequency of
word w in the multiset M .

For each language, we want to remove false pos-
itives from the word types contained within NPs
(which are an artefact of wrong alignments) by us-
ing the frequency of each word type inside and
outside of NPs.

In principle, this could be done by means of a
POS tagger and concentrating on nouns, adjectives,
articles, prepositions, and postpositions, but as we
do not have access to a reliable POS tagger for
most languages covered here, we use the relative
frequency information gained from our NP annota-
tions. More specifically, we assign each word type
w ∈W l

in∪W l
out to Il (the set of words for language

l that are NP-relevant) if |W l
in(w)| > |W l

out(w)|,
and to Ol (the set of words for language l that
are not NP-relevant) otherwise. This enhances the
robustness of our method against occasional mis-
annotations: for Latin, ovibus ‘sheep’, from our
previous example, occurred once outside an NP but
45 times inside and is now an element of ILatin,
while intellegent ‘they understand’ occurred once
inside an NP but 22 times outside and is therefore
an element of OLatin.

5509

203

203



Ego sum pastor bonus ; bonus pastor animam suam ponit pro ovibus .

I am the fine sheperd ; the fine sheperd surrenders his soul on behalf of the sheep .

Ich bin der vortreffliche Hirte ; der vortreffliche Hirte gibt seine Seele zugunsten der Schafe hin .

Ego sum pastor bonus ; bonus pastor animam suam ponit pro ovibus .

I am the good sheperd ; the good sheperd sacrifices his life for the sheep .

Ich bin der vortreffliche Hirte ; der vortreffliche Hirte gibt seine Seele zugunsten der Schafe hin .

Figure 3: Example of alignments and NP projections (English to Latin and English to German) with two different
English versions (top and bottom).

4.4 Candidate Set Creation

From each language, we create a set of candi-
date case markers candidates(w) for a word w
by collecting all character n-grams of any length
from w that are also members of Il. We explic-
itly mark the word boundaries with $ so that n-
grams in the middle of words are distinct from
those at the edges. For example, candidates ex-
tracted from ovibus would be $ovi, ibus$, but
also $ovibus$ and i. Our first candidate set is
computed as C l

1 =
⋃
{candidates(w) | w ∈ Il}.

4.5 Frequency Filtering

We define Il(c) as the number of words in Il that
contain the candidate c, and Ol(c) analogously for
Ol. As a first step, we filter out all n-grams with
a frequency in Il lower than a threshold θ.3 This
results in C l

2 = {c | c ∈ C l
1, Il(c) ≥ θ}.

4.6 Inside/Outside Frequency Filtering

For this step, we make use of the observation that
case is a property of nouns. Hence, a case marker
is expected to occur much more frequently within
NPs. This will serve to distinguish the case mark-
ers from verb inflection markers, which should oth-
erwise have similar distributional properties. To
implement this basic idea, for each candidate c in
language l, we first construct the contingency table
shown in Table 2.

We use the table to test whether a candidate is
more or less likely to appear inside NPs by com-
paring the frequencies of the candidate inside and
outside NPs to those of all other candidates. Shown

3We set θ = 97 based on grid search.

c ¬c

NP Il(c)
∑

c′ 6=c∈Cl
2
Il(c

′)

¬ NP Ol(c)
∑

c′ 6=c∈Cl
2
Ol(c

′)

Table 2: Contingency table for candidate case marker c
in language l for inside/outside filtering. A morpholog-
ical marker that occurs significantly more often inside
NPs than outside of NPs is likely to be a nominal case
marker.

in the cells are the frequencies used for the test for
each candidate. The columns correspond to the
frequency of the candidate in question versus all
other candidates while the rows distinguish the fre-
quencies inside versus outside NPs. We carry out
a Fisher’s Exact Test (Fisher, 1922) on this table,
which gives us a p-value and an odds ratio r. r < 1
if the candidate is more likely to occur outside an
NP, and r > 1 if it is more likely to occur inside.
The p-value gives us a confidence score to support
this ratio (lower is better). We keep for C l

final only
those candidates for which p < φ and r > χ.4

For example, ibus$ makes it past this filter with
p(ibus$) = 2.869·10−6 and r(ibus$) = 1.915
– it is significant and it occurs inside NPs more often
than outside NPs. In contrast, t$ is discarded as it
has p(t$) = 3.18 · 10−149 and r(t$) = 0.249 – it
is significant, but it has been found to occur much
more likely outside than inside NPs.

4.7 Restriction to Word Endings
Suffixoidal inflection is cross-linguistically more
common than prefixoidal and infixoidal inflection
(Bauer, 2019). This is also reflected in our dataset,

4We set φ = 0.08 and χ = 0.34 based on grid search.
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where not a single language has prefixoidal or in-
fixoidal inflection. We hence restrict the set of
considered n-grams to ones at the end of words.

5 Evaluation of Retrieved Case Markers

We evaluate our method for case marker extraction
without labels using a silver standard.

5.1 Silver Standard

As we are, to the best of our knowledge, the first
to introduce this task, we cannot rely on an ex-
isting set of gold case markers for each language
we cover. As most of the languages included are
low-resource, reliable grammatical resources do
not always exist, which makes the handcrafting of
a gold standard difficult. Therefore, and also to
ensure relative comparability, we evaluate against a
silver standard automatically created from the Uni-
Morph (Sylak-Glassman 2016, Kirov et al. 2018,
McCarthy et al. 2020)5 dataset. The UniMorph
data consists of a list of paradigms, which we first
filter by their POS tag, keeping only nouns and
adjectives and filtering out verbs and adverbs. An
example of a paradigm is given in Table 3. While
the Nominative Singular (left column) is included
in addition to the inflected forms (middle column),
the straightforward approach of extracting the suf-
fixes of the inflected forms is not optimal for every
language, as the Nominative Singular form can dif-
fer from the root. We therefore proceed as follows.

First, we form a multiset of all inflected forms.
In our example, this would result in {Abflug,
Abfluges, Abflug, Abflug, Abflüge, Abflüge, Abflü-
gen, Abflüge}. Next, we iterate over this multiset,
removing one word each time if it occurs only once.
This is meant to make the algorithm more robust
against outlier words which do not share a common
base with the rest of the paradigm. We then extract
the longest common prefix for the remaining ele-
ments. We build a frequency list of these prefixes,
which in our example has only one element, Abfl,
with a frequency of 3. We take the most frequent
element from the frequency list and compare it
to the Nominative Singular, Abflug. Of these two
candidates, we take the longer one. We thereby
prioritise precision over recall as roots that are too
short quickly result in many different suffixes that
are too long, due to the high overall number of
paradigms. Finally, we iterate over the inflected
forms again, extracting the suffix if the chosen root

5https://unimorph.github.io

Nominative inflected unused
Singular forms information

base suffix

Abflug

Abfl ug N NOM SG
Abfl ug es N GEN SG
Abfl ug N DAT SG
Abfl ug N ACC SG
Abfl üge N NOM PL
Abfl üge N GEN PL
Abfl ügen N DAT PL
Abfl üge N ACC PL

Table 3: Example of silver standard creation. Marked
in orange is the Nominative Singular form, in red the
base (“base”) as determined by the algorithm, and in
green the only suffix (“suffix”) that is extracted from
this paradigm. Additional, unused information in the
UniMorph data is marked in grey.

is a prefix, which in our example yields one new
suffix: es$, as Abflüge and Abflügen are not pre-
fixed by Abflug. We examine the results for each
language and exclude the languages where either
basic knowledge of the language or common sense
makes it apparent that sets are much too large or too
small, resulting in a diverse set of 19 languages to
evaluate our methods against. We note that this pro-
cess automatically excludes adpositions and clitics,
which is in line with our focus on suffixoidal in-
flection (Section 4.6). We make our silver standard
publicly available.

5.2 Results

Our results are provided in Table 4. We observe
that precision is higher, at times even substantially,
than recall for most languages contained in the sil-
ver standard. Looking at Table 5 as an example, we
can see that low precision is mostly due to retrieved
case markers being longer (ение$/enie) or shorter
(й$/j) than the correct ones. It is one of the main
challenges in this task to select the correct length of
a case marker from a series of substring candidates.
The shorter substrings will automatically be more
frequent and often correct, but this is not easily
solved by a frequency threshold, which excludes
other correct candidates that are naturally less fre-
quent. Additionally, we observe that some recall
errors are due to an incorrect length of n-grams
in the silver standard (ьям/’jam), highlighting that
this issue also exists in its creation process, and sug-
gesting that our performance might even improve
when measured against handcrafted data.
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Language P R F1

Albanian .74 .47 .58
Belarusian .43 .41 .42
Bengali .50 .40 .44
Czech .50 .58 .54
German .54 .47 .50
Greek .67 .19 .30
Icelandic .83 .31 .45
Indonesian .31 .42 .36
Irish .42 .30 .35
Latin .65 .56 .60
Lithuanian .18 .38 .24
Nynorsk .79 .48 .59
Bokmål .67 .45 .54
Polish .52 .33 .40
Russian .54 .54 .54
Slovenian .41 .28 .33
Swedish .68 .25 .36
Ukrainian .45 .48 .47

Average .54 .41 .45

Table 4: Precision (P), Recall (R) and F1 on the task
of case marker extraction without labels for languages
contained in our silver standard. Nynorsk and Bokmål
are two varieties of Norwegian.

5.3 Ablation Study

We conduct an ablation study to assess the effects
of the different pipeline components.

5.3.1 Evaluating NP Projection

In order to evaluate how well our method of pro-
jecting NP annotation using alignments to lan-
guages without an available NP chunker (see Sec-
tion 4.3) works, we evaluate it against the mono-
lingual spaCy chunkers for Norwegian Bokmål
and German, which are the only available lan-
guages besides English. We do not directly com-
pare annotated spans but instead their influence
on our method as we have intentionally designed
our pipeline to be robust to some noise. As Il, the
set of words considered to be NP-relevant, is the
essential output of the annotation projection, we
compare two versions, the set as a result of direct
NP chunking and the set as a result of our annota-
tion procedure. Taking the former as the ground
truth for evaluating the latter (assuming that the
directly chunked set has superior quality), we ob-
serve an F1 of 88.5 % for German and 67.8 % for
Norwegian Bokmål. While these numbers seem
low at first, the fact that our overall F1 on Norwe-

pol:ach$
pol:om$

Figure 4: t-SNE plot of the contextual distribution of
the Latin case marker -ibus and the Polish case mark-
ers -ach and -om. Outliers omitted. The plot shows
NPs who in Latin are marked with the case marker
ibus$ and in Polish either with ach$ (orange) or
om$ (green). Centroids are marked with an X. The
plot shows that the Polish case markers exhibit a more
fine-grained representation of the underlying semantic
categories, which makes it possible to disambiguate the
homonymous Latin case marker.

gian Bokmål (.54, see Table 4) is better than on
German (.50) indicates that the later elements of
the pipeline are to a certain extent robust against
misclassification of NPs.

5.3.2 Ablating Pipeline Components
We report the average Precison, Recall, and F1
across all languages in our silver standard without
individual filtering components in Table 6. Simple
frequency filtering (see “¬θ”), excluding n-grams
within words (see “middle”) and at the beginning
of words (see “beginning”) are all necessary for
good performance. Inside/outside filtering based
on p-value is the most important component of the
pipeline (see “¬φ”). Surprisingly, inside/outside
filtering based on odds ratio has almost no effect.

6 Exploratory Analyses

We can use our automatically extracted case mark-
ers, in combination with the parallel NPs that are
extracted as part of the pipeline, for innovative lin-
guistic analyses. We present two examples in this
section.

6.1 Marking of Deep Cases

First, we demonstrate how, given a parallel NP, the
case markers can be used to determine its deep
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Intersection Algorithm Only Silver Standard Only

у, я, ом, ого, о, в, ой, и, ми, ам,
ей, ю, ы, ов, ых, а, м, х, ами

ий, ные, ое, ение, ии, го, ый, ка,
ые, к, ки, ия, ние, й, ния, ие

ыми, ах, ев, ьям, ому, ья, н, ьях,
ями, ям, е, ях, ьев, ем, ым, ья-
ми

u, ja, om, ogo, o, v, oj, i, mi, am,
ej, ju, y, ov, yx, a, m, x, ami

ij, nye, oe, enie, ii, go, yj, ka, ye,
k, ki, ija, nie, j, nija, ie

ymi, ax, ev, ’jam, omu, ’ja, n,
’jax, jami, jam, e, jax, ’ev, em,
ym, ’jami

Table 5: The output of our algorithm for Russian compared to the silver standard. We show suffixes that occur
in the intersection of algorithm output and silver standard (“Intersection”), those that occur only in the algorithm
output (“Algorithm Only”) and those that occur only in the silver standard (“Silver Standard Only”). To allow for
a clear and concise presentation, the table does not observe the convention of using $ for boundaries.

ablation P R F1

our method
(Table 4) .54 .41 .45

¬θ .11 .59 .16
¬φ .00 .00 .00
¬χ .53 .41 .44
middle .11 .41 .17
beginning .33 .41 .35

Table 6: Precision (P), Recall (R) and F1 averaged over
all languages on the task of case marker extraction with-
out labels when each step of our pipeline is ablated.
¬θ: no Frequency Filtering; ¬φ: no Inside/Outside Fil-
terung based on p-value; ¬χ: no Inside/Outside Filter-
ing based on odds ratio; middle: include middle of the
word; beginning: include beginning of the word.

case. We return to N (see Section 4.3), our set
of parallel NPs extracted from the PBC, and for a
selected subset of languages, group them by their
combination of case markers. The basic idea is to
infer an NP’s (potentially very fine-grained) deep
case by representing it as its combination of case
markers across languages.

For example, we can disambiguate the Latin case
marker -ibus by looking at the different groups the
NPs containing it form with Russian case markers.
Recall that -ibus can express location, instrument,
and recipient and that Russian expresses these cat-
egories by separate case markers: -ах/-ax for lo-
cation, -ами/-ami for instrument, and -ам/-am for
recipient (see Figure 1) – all three of which have
been retrieved by our method. Given a Latin NP
marked by the ending -ibus, the parallel NP in Rus-
sian can help us determine its deep case. Thus, for
domibus, дворцах/dvorcax shows that the seman-
tic category is location, i.e., ‘in the houses’. For
operibus bonis, добрыми делами/dobrymi delami

shows that the semantic category is instrument, i.e.,
‘through the good deeds’. Finally, for patribus,
предкам/predkam shows that the semantic cate-
gory is a recipient, i.e., ‘for/to the parents’.

6.2 Similarities between Case Markers

We also demonstrate how we can use their distri-
butional similarities over NPs to show how case
markers that are similar in this respect correspond
to similar combinations of deep cases. We first
generate an NP-word cooccurrence matrix over
the NP vocabulary of all languages in which each
row, corresponding to an inflected word firm w in
language l, indicates which NPs (corresponding
to columns) cooccur with w. in the parallel data.
We then reduce the dimensionality of the matrix
by means of t-SNE (Van der Maaten and Hinton,
2008), allowing us to inspect systematic patterns
with respect to the “contexts” in which certain case
markers occur (where “context” refers to words the
case marker is aligned to in other languages, not
words the case marker coccurs with in its own lan-
guage). In a semiotic situation like the one shown
in Figure 1, this setup allows us to examine how
the semantic region expressed by a certain homony-
mous case marker in one language is split into more
fine-grained regions in another language that dis-
tinguishes the semantic categories that are lumped
together by the case marker (and which, if they are
at the right level of abstraction, can correspond to
deep cases).

Figure 4 shows this scenario for the Latin Ab-
lative marker -ibus. It corresponds to two distinct
case markers in Polish, -ach (LOC) and -om (DAT).
The figure shows that the region occupied by Latin
-ibus splits into two distinct clusters in Polish, al-
lowing us to visually determine which underlying
case is expressed by the homonymous suffix -ibus.

5513

207

207



This underscores the exploratory potential of our
approach.

7 Conclusion and Future Work

We have introduced the new and challenging task of
Case Marker Extraction without Labels (CaMEL)
and presented a simple and efficient method that
leverages cross-lingual alignments and achieves
an F1 of 45% on 19 languages. We introduce an
automatically created silver standard to conduct
our evaluation. We have further demonstrated two
ways in which our retrieved case markers can be
used for linguistic analysis.

We see two potential avenues for future work.
The first is the further improvement of case marker
extraction. The main problem to tackle here is that
of small sets of overlapping substrings of which
only one is the correct marker, and developing
some further measures by which they can be dis-
tinguished. Furthermore, it would be useful to find
data from more low-resource languages and lan-
guages that have typological properties different
from the extensively studied large language fam-
ilies (Indo-European, Turkic, Sino-Tibetan etc.).
We could then verify that our method performs
well across languages and attempt to expand our
silver standard to more languages while still en-
suring quality. The second area is that of further
automating the analysis of deep case and case syn-
cretism. Ideally, we would develop a method that
can distinguish the different possible reasons for
divergent case marking in languages, with the even-
tual goal of creating a comprehensive overview of
case and declension systems for a large number of
languages.
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In the context of the long debate in Linguistics over the mechanisms underlying human language
learning, and the recent advancements in Natural Language Processing, we have explored syner-
gies between Linguistics and modern NLP. These synergies were categorised in two directions:
from Linguistics to NLP, where we have evaluated pre-trained language models for their linguistic
abilities, and from NLP to Linguistics, where we proposed applying NLP methods to problems in
Linguistics.

This final part is divided into these two research directions, as Chapters 13 and 14. Each is di-
vided into a summary of our answers to the presented research questions, an overview of concurrent
related work, and our proposal for future work.





Chapter 13

A More Diverse Assessment of the
Linguistic Capabilities of PLMs

The first of our overarching research questions was: How can we diversify the evaluation of the
linguistic capabilities of PLMs (Q1)?

We now summarise our contributions to answering this question, using Construction Grammar
(Section 13.1) and Morphology (Section 13.2) to develop specific investigations. We then sum-
marise concurrent research in similar directions, for both subfields, and give an overview for what
we believe to be exciting directions for future research.

13.1 Construction Grammar

Our approach showing how we can diversify the evaluation of the linguistic capabilities of PLMs
came from two different sub-fields of Linguistics: Construction Grammar and Morphology.

13.1.1 Our Results

In Section 1.3.1, we asked: ‘How well have PLMs learned constructions?”. In our work on evaluat-
ing PLMs for constructions in Chapters 4 through 7 and Chapter 9, we have shown that even the
largest LLMs still struggle with the meaning of some constructions. This was partially due to the
design of our studies and does not mean that we can conclude that LLMs don’t understand con-
structions. As we have argued in Chapter 4, from a CxG standpoint, everything is a construction,
and therefore LLMs clearly already model many constructions well. The constructions that we have
investigated in detail (namely, the English Comparative Correlative, Causal Excess, licensed causal
and non-causal, and caused-motion) were chosen intentionally to test the boundaries of LLms, es-
pecially with regards to construction meaning. We have found that the boundaries we hypothesised
currently exist, as models struggled to apply the construction meaning to novel contexts.

13.1.2 Concurrent Research

During the time that this work was carried out, the idea of evaluating LLMs for their knowledge
of constructions has received increased attention. This is evidenced, for example, by the first
Construction Grammar and NLP workshop at the Georgetown University Round Table (Bonial and
Tayyar Madabushi, 2023), or the two chapters dedicated to the relationship of CxG with Artificial
Intelligence and Language Models respectively (Beuls and Eecke, 2025; Madabushi et al., 2025).

Numerous works investigated knowledge of constructions in BERT by looking in detail at the
contextual embeddings. Chronis et al. (2023) focused on the Article-Adjective-Numeral-Noun con-
struction (AANN, Goldberg and Michaelis, 2017; Jackendoff, 1977) as well as subject and object
roles for noun phrases, and found shifting meaning dimension for key words in the constructions in
comparison to outside of it. Veenboer and Bloem (2023) compare BERT’s predictions for a masked
token with collostructional analysis (Hilpert, 2014; Schmid and Küchenhoff, 2013) of the same token
using the BNC (BNC Consortium, 2007) for the ”X waiting to happen” (Fillmore et al., 1988) and
the ditransitive construction (Goldberg, 1992), and find that the ranked lists of predictions/usages
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correlate well and constructional information is therefore represented in the model. Tseng et al.
(2022) study various Chinese constructions in BERT, and find that it has learned the difference be-
tween the open and the closed slots, as its predictions have a higher entropy for the former. Li
et al. (2022) study argument structure constructions in RoBERTa, and find evidence that the verbs’
contextual embeddings acquire some of the constructional meaning. While this line of work has
been creative and enlightening, it is unfortunately impossible with larger autoregressive language
models, as the techniques above all rely on a contextual embedding containing both the left and
the right context.

As the sole work engaged in using CxG to enhance a PLM, Xu et al. (2023) automatically ex-
tract non-overlapping constructions from sentences and use them as the basis of a graph attention
network, making constructional information available for downstream tasks. In the era of LLMs, Ma-
howald (2023) prompts GPT-3 for its grammatical acceptability judgments of the AANN, and finds
that it consistently ranks it as grammatical, and slight variations as ungrammatical. Potts (2024)
investigate PiPP constructions (Huddleston and Pullum, 2002) and show that the surprisal of GPT-3
given a valid or invalid start of the construction matches human intuition.

From a more linguistic and abstract standpoint, Goldberg (2024) lays out similarities between
the learning mechanisms and behaviour of ChatGPT and Construction Grammar, and in particu-
lar emphasises the parallels between instruction tuning and the evolutionary pressure on human
communication to be helpful.

13.2 Morphology

13.2.1 Our Results

In Section 1.4.1, we asked: “Have PLMs acquired a human-like capacity for morphological gener-
alisation?”. Testing the boundaries of LLMs with regards to Morphology in Chapters 10 and 11,
we have investigated their capabilities to form human-like morphological generalisations to nonce
words. Testing GPT-3.5 on inflectional morphology in Chapter 10, we found it to struggle even in
few-shot settings for English and German, but doubly so for Turkish and Tamil. In repeating the
experiment for GPT-41, we found it to have reached perfect acc@5 for English, for zero-shot and
few-shot settings, but worse than GPT-3.5 on the one-shot setting due to over-generalisation to the
given example. Evaluating GPT-J and GPT-4 on derivational morphology in Chapter 11, we find
that both fail to match human judgements on nonce words. We investigated the errors in more de-
tail and found an overreliance on token, rather than type, frequency, and suboptimal tokenisation.
Crucially, we also find evidence that GPT-J represents a continuum between rule-like and analogy-
based behaviour, which is fully explainable by the level of heterogeneity in the data. This suggests
that the underlying mechanism is a similarity operation on stored exemplars.

13.2.2 Concurrent Research

To the best of our knowledge, no other work has evaluated the morphological capabilities of LLMs.
Most related to our work on the role of analogy in the learning mechanisms of LLMs, Kim and

Smolensky (2021) use wug words in contexts that assign them a certain part of speech and investi-
gate BERT’s contextual embeddings for them. They find that BERT needs repeated exposure to the
novel context to infer the category correctly. Delving deeper into the learning process, Misra and
Kim (2023) find that in a similar setup, the representations of the nonce words move consistently
towards category exemplars, independent of their initialisation. This might indicate that PLMs form
exemplar-based abstract categories for parts of speech.

13.3 General Direction of the Field

Outside of our two more specific subareas, the larger debate in Linguistics and NLP about the
suitability of PLMs as models of human linguistic capability has gained both traction and publicity.
In an Op-Ed in the New York Times soon after the release of ChatGPT, Chomsky et al. (2023) is of
the opinion that “given the [...] linguistic incompetence of these systems, we can only laugh or cry

1These results were not published and are available only on the poster that was presented at EMNLP 2023.
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at their popularity”. The structure of his argument serves as confirmation to our warning in Section
1.2 that the choice of linguistic theory largely decides the outcome of our evaluation of PLMs, as
Chomsky bases his criticism on the assumption that “the human mind is a surprisingly efficient and
even elegant system that operates with small amounts of information; it seeks not to infer brute
correlations among data points”.

The opposite standpoint is taken by Piantadosi, who in a preprint entitled “Modern language
models refute Chomsky’s approach to language” claims that because LLMs work, and because
their working principles contradict Chomsky’s assumptions, they are proof against his theories. He
agrees with Baroni (2022) that language models should be treated as bona fide linguistic theories,
or rather as a restriction of possible theories down to those which are consistent with the language
models. These bold claims were soon followed by a Chomskyist opinion piece (Katzir, 2023) argu-
ing that Piantadosi is wrong and that LLMs are in facto poor theories of linguistic cognition, and
claiming that this will not change with more data and bigger models.

Most recently, Chomsky’s claim that LLMs are “incapable of distinguishing the possible from the
impossible” has been criticised using practical methods by Kallini et al. (2024), who train GPT-2
variants on artificially constructed “impossible” languages. They find that GPT-2 struggles to learn
impossible languages as compared to English, challenging Chomsky’s claim.

The experimental setup of studies arguing for or against the linguistic suitability of LLMs re-
mains an issue. Dentella et al. (2023) prompted GPT-3 and GPT-3.5 for grammaticality judgments on
a variety of minimal pairs for different grammatical phenomena, and find the responses both inaccu-
rate and biased towards generically answering “yes”, which they attribute to Chomsky’s claim that
probability is fundamentally useless for the notion of grammatical acceptability (Chomsky, 1957). In
a response, Hu and Levy (2023) re-examine the data, but use perplexity measures over sentences
instead of explicitly prompting the model. With this method, which they have previously shown
yields persistently better results on grammatical acceptability, they show that GPT-3.5’s judgements
are highly correlated with those of humans. Their work also includes an anti-Chomskyist shift in
perspective: while Dentella et al. (2023) framed their human results on the dataset as imperfect
because of performance issues in humans, Hu and Levy (2023) reframe the human responses as
graded acceptability judgements and correlate them with the graded judgements of the model.

As the linguistic competence of LLMs undoubtedly increases, the issue of training data for cog-
nitive plausibility moves into focus. As we have argued in Section 1.1, even a perfect LLM may still
be criticised for having been trained on cognitively implausible amounts of data. The BabyLM chal-
lenge (Warstadt et al., 2023) was newly initiated as a first step towards alleviating this issue, and
presents a corpus of 100M words, which is equivalent to the average lifetime input to a 13-year-old
native speaker of English. The shared task then consists of building a language model using only
this corpus, which is aimed at challenging participants to develop novel architectures that may be
more cognitively plausible. While this is a laudable first effort, the best model won mostly by train-
ing for 300 epochs, highlighting the difficulty of defining exact parameters that would make both
the data and the training setup as cognitively plausible as possible, while still allowing for creative
ideas and architectures.

13.4 Future Work

We now discuss exciting avenues for future work in the area of evaluating LLMs for their linguistic
capabilities in comparison with humans. Notably, this section is not divided into CxG and Morphol-
ogy, as we hope to combine aspects of both in future research.

13.4.1 Construction Meaning

It has become clear that while LLMs seem to have no difficulty recognising and producing the
syntactic aspect of constructions, our research and that of others have shown that they struggle with
semantically complex constructions. We believe that investigating the causes for this discrepancy
could yield insights not only into the inner workings of LLMs, but also show us potential defects in
the architecture or training setup.

The essential question is therefore: what causes this issue? Is it a lack of data for very rare
constructions, or a lack of diversity in the data (possibly relating to genres with non-creative and
repetitive usages rather than diverse and novel ones)? Is it simply the size of the model and will a
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larger model have the representational capacity to solve this? Or is it, as some have suggested (Gu
and Dao, 2024; Zador et al., 2023), a flaw in the architecture hindering its ability to generalise and
therefore acquire the semantic nuances of constructions?

These questions are also connected to the notion of compositionality, as it has frequently been
argued that LLMs are not compositional enough (Smolensky et al., 2022). In contrast, we have
found that the most challenging constructions for LLMs have been those with non-compositional
meaning, perhaps indicating that the models are too compositional in some sense. Or instead, they
could be struggling on both fronts, and not appropriately adjust the level of compositionality as
needed.

To study this in more detail, we believe that a more systematic setup is needed, which is made
possible by recent advances in open language models and training data.

The first step is better knowledge of the conditions of the experiment. Most simply, this can
mean access to the training data of the models we investigate, which has been difficult so far be-
cause many models do not disclose their exact training data. However, two models are now avail-
able where this is not the case: GPT-J 2, trained on the Pile, and OLMo (Groeneveld et al., 2024),
trained on Dolma (Soldaini et al., 2024). Using these models, we hope to be able to count the oc-
currences of the constructions that we are investigating in the training data, and test correlations
between data frequencies and the model’s performance. This amounts to a combination of our CxG
work with the methodologies introduced in Chapter 11.

The second step is to also have access to the internal states of the model, as is the case for GPT-
J and OLMo, but also for Mistral models (Jiang et al., 2023) and the recently announced Gemma
models.3 This will enable us to directly access the perplexities and make clearer statements than
by using prompting, as advised by Hu and Levy (2023).

The third ideal step is to have access to models in different sizes, which is the case for the OPT
suite of models as well as for Mistral and Gemma, and will soon be the case for OLMo.

The fourth step is to investigate how the model develops these representations over its training
time, which is possible to do for models like Olmo, for which training checkpoints are released. This
can enable us to compare the learning process, the order in which constructions are learned, to that
of humans, giving us a further dimension of comparison to assess how human-like LLMs learn.

Using all these parameters of variation, we hope to be able to conduct more systematic research
into why models fail to acquire some semantics of complex non-compositional constructions.

13.4.2 Abstraction and Learning of Constructions

This line of research is connected to that in Chapter 11 of investigating the learning mechanisms of
LLMs in terms of analogy vs rules. We were able to do this for morphological derivation because
we had different classes of adjectives (with respect to their -ity vs. -ness behaviour) with different
levels of variability in the data, which gave us a controlled variable so that we could then make
statements about the level of abstraction. These particular properties are not often found and we
therefore have to find a new way to generalise the methodology.

The key idea is to artificially change the training data to study similar phenomena in a controlled
setting. The BabyLM corpus (Warstadt et al., 2023) is a good prerequisite for this, as it was designed
to be a cognitively plausible amount of training data, and its relatively small size allows us to train
many different model variations on it. To study how constructions are learned, in the absence of
“naturally controlled” phenomena like morphological derivation, we can identify all instances of a
construction in the training data and change them systematically. For example, we might investi-
gate if the construction is still learned if all of its instances are removed. We can also investigate
the experimental results of Casenhiser and Goldberg (2005) that humans learn constructions more
easily if its instances are not uniformly distributed but skewed.

Going even further than modifying the instances of a construction, we might also modify the
construction itself, or create new ones. This can help us investigate the network of constructions
that is hypothesised in CxG, but has not been worked out in detail in the literature (Hoffmann, 2017).
In the spirit of Kallini et al. (2024), we can create constructions that we think are impossible and
test if LLMs can acquire them. We can also create constructions that are plausible to exist based
on all external factors, but don’t, and attempt to make an LLM learn them.

2https://huggingface.co/EleutherAI/gpt-j-6b
3https://www.kaggle.com/models/google/gemma

https://huggingface.co/EleutherAI/gpt-j-6b
https://www.kaggle.com/models/google/gemma
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Training many new models under different conditions will also enable us to observe their learn-
ing process at different stages, a more direct version of investigating the training checkpoints of
large open models as described above.

13.4.3 New Methodologies for Probing Internal Representations

So far, investigations of the degree to which LLMs have learned constructions has focused either
on generated output or on contextual embeddings at the last layer of the model. We have also
described how we can investigate the models’ learning process by applying the same test to the
model at different checkpoints during training. Another dimension that we have yet to assess is
that of the layers of the model: how are the meaning representations of large, non-compositional
constructions built from smaller components, and how are they passed through the layers? A new
line of work in interpretability seeks to provide methods for this, which we can adapt to investigate
the learning of constructions. With logit lens (Nostalgebraist, 2020), the hidden states in the layer
of any model can be decoded into a vocabulary distribution, enabling us to gain an insight into the
processing state at that layer using natural language. Merullo et al. (2023) have demonstrated this
for tasks such as naming the capital city of a country, or forming the past tense of a verb. They
find distinct stages of processing in the model, the preparing of arguments and the surfacing of
arguments. Similar methods could be employed to find the point in the layers where LLMs will
apply the meaning of constructions.

13.4.4 Morphosyntax

All our work so far has been categorised into either Construction Grammar or Morphology. While
this selection of areas of Linguistics might have seemed arbitrary, they are clearly connected, and
we hope to make this more explicit in the future by conducting research into LLMs andMorphosyn-
tax. As can be seen in the example of the Comparative Correlative in Chapters 5 and 6, constructions
can have morphological constraints and components, such as requiring an adjective or adverb to
be in the comparative. This means that LLMs’ learning of them might be influenced by the prop-
erties of the tokenizer, which has been shown to influence performance on morphology (Hofmann
et al., 2021) A possible direction for future research might be to find out if constructions with mor-
phological constraints are more difficult to learn than those without, and how this is influenced by
tokenization.

13.4.5 Constructions and Typology

William Croft’s Morphosyntax, subtitled Constructions of the World’s Languages (Croft, 2022) is a
seminal work in typology, describing the constructions of all languages and how different strate-
gies are used to express them. Croft uses the word strategy to signify the specific way in which a
language expresses a meaning, for example, predication is expressed with a copula in some lan-
guages and without a copula in others. This grouping opens up fascinating avenues for CxG-based
research of multilingual LLMs: do they form abstract representations at the level of constructions in
Croft’s sense, or at the level of strategies? How much do they acquire about the typological similar-
ities between languages, and do they generalise better to low-resource languages when they have
learned the parallel strategy for a high-resource one?





Chapter 14

Linguistic Contributions to NLP

Our second overarching research question was about the contributions that NLP and LLMs, in their
current state of the art, can make to linguistics research and the creation of corpora. Specifically, we
asked: “Given the current state of the art, how can NLP already contribute to Cognitive Linguistics?”
(Q2). We now summarise our contributions to this question for both Construction Grammar in
Section 14.1 and Morphology in Section 14.2, summarise concurrent research in similar directions
for both subfields, and then give an overview of exciting directions for future research.

14.1 Construction Grammar

Our contribution to CxG research with methods from modern NLP has been in the form of semi-
automatic data annotation methods to create much-needed new corpora.

14.1.1 Our Results

In Section 1.3.2, we asked: “How can we use NLP to help annotate data for Construction Gram-
mar?”. In Chapter 8, we have introduced a new construction layer into Universal Dependencies.
We have evaluated the feasibility of automatic annotation for ten languages and five constructions,
and released the results, along with our proposal for annotation. As our work was done in conjunc-
tion with the UD core group, we hope that the new layer will be implemented swiftly and will make
it possible for treebank maintainers to add their own rules and annotations, thereby harnessing an
existing community to annotate data for CxG, where data has historically been sparse. Expanding
beyond annotated treebanks, in Chapter 9, we have developed a novel hybrid annotation pipeline,
which leveraged a dependency parser and ChatGPT. We have demonstrated that this greatly re-
duces human annotation cost and therefore enables the creation of larger corpora for CxG while
preserving the quality control of manual annotation as the final step.

In this way, we have shown that although LLMs have not perfectly understood every construction,
we can nonetheless use existing datasets, parsers, and LLMs along with human verification to aid
in data creation.

14.1.2 Concurrent Research

Torrent et al. (2024) propose to use ChatGPT to help linguists investigate constructions. Notably,
their main proposition is to ask the model to give examples of and explanations for a given construc-
tion. They investigate the diversity and accuracy of such examples. It is our position that it would
be dangerous to treat these outputs as actual language data, and we therefore see their function
more as a rubber duck for the linguist.

Most related to our work, Yan and Li (2023) have recently proposed a tool for the automatic
extraction of constructions. The tool is highly interactive, and first provides a range of automatic
annotations for a given corpus. It then presents statistically significant patterns to the user. Notably,
it is not clear how well this technology will scale, as it is applied as an example to the relatively small
BNC corpus (BNC Consortium, 2007).
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14.2 Morphology

As a contribution of NLP methods to Morphology, we have studied unsupervised morphological
induction using highly parallel corpora.

14.2.1 Our Results

In Section 1.4.2, we asked “How can we leverage parallel data for unsupervised morphology?” In
Chapter 12, we have introduced the new task of unsupervised case marker extraction and built a
baseline system for it, which leverages an automatic noun phrase annotation system and a highly
parallel corpus. We have concluded that while our baseline has shown promise, this task remains
challenging even with modern methods.

14.2.2 Concurrent Research

To the best of our knowledge, the only recent work related to ours is that of Kodner et al. (2023),
who also evaluate LM-based models for morphological generalisation. In contrast to our work, they
investigate the capabilities of purpose-built models, not general PLMs. This further highlights the
research gap in evaluating PLMs for Morphology compared to other areas of Linguistics, such as
Syntax or Semantics.

14.3 General Direction of the Field

The idea of using LLMs for linguistic annotation has seen increased attention since the release of
ChatGPT. Gilardi et al. (2023) find that ChatGPT outperforms crowd-workers on tasks such as topic
detection. Yu et al. (2023) and Savelka and Ashley (2023) evaluate the accuracy of GPT-3.5 and
GPT-4 against human annotators, while Koptyra et al. (2023) annotate a corpus of data labelled for
emotion by ChatGPT, but acknowledge its lower accuracy compared to a human-annotated version.
Holter and Ell (2023) create a small gold standard for industry requirements by generating an initial
parse tree with GPT-3 and then correcting it with a human annotator. Pangakis et al. (2023) inves-
tigate LLM annotation performance on 27 different tasks in two steps. First, annotators compile
a codebook of annotation guidelines, which is then given to the LLM as help for annotation, and
then the codebook is refined by the annotators in a second step. However, they find little to no
improvement from the second step. Gray et al. (2023) make an LLM pre-generate labels for legal
text analytics tasks which are then corrected by human annotators, but find that this does not speed
up the annotation process.

14.4 Future Work

Wedo not see it as likely that automatic annotationmethods will be adopted in Linguistics in the near
future, as manual control from annotators is still key, and fully automated extraction or annotation
pipelines will not be trusted in terms of accuracy or diversity. While we have shown that semi-
automatic and hybrid methods are possible, they have all relied on finding researchers who are
somewhat competent in using computational methods. The hybrid-human annotation pipeline that
we have proposed in Chapter 9 requires computational infrastructure, a programmer to set up the
dependency parsing, and competence in using the GPT API. The community annotation project
for UD that we have described in Chapter 8 was made possible by a community of computational
linguists who were able to operate the grew-match (Guillaume, 2021) website. These projects are
promising, but are expected to reach mostly computational and corpus linguists. We therefore see
it as an avenue for future research to turn these ideas into softwares or websites, for example, by
making the dependency-parsed version of the reddit corpus available to search. This unfortunately
raises infrastructure problems, as making corpora searchable through websites and putting the
necessary software engineering work into making the tools accessible for linguists will probably
not be possible for university research labs.



Zusammenfassung

In den letzten 100 Jahren gibt es in der Linguistik und der natürlichen Sprachverarbeitung (Natural
Language Processing; NLP) eine Debatte über die Mechanismen, die den menschlichen sprachli-
chen Fähigkeiten zugrunde liegen, und die besten Methoden, sie rechnerisch zu repräsentieren.
Sprachmodelle (Language Models; LMs) wurden sogar als Stellvertreter vorgeschlagen, die einfa-
cher zu untersuchen sind als das menschliche Gehirn. Zunächst ist es jedoch notwendig zu be-
werten, wie gut sie derzeit Sprache modellieren, und die Mechanismen zu untersuchen, durch die
sie dies tun. Diese Arbeit schlägt vor, dies mit vielfältiger und neuartiger Methodologie aus der
Linguistik zu tun, die es uns ermöglicht, seltener vorkommende und weniger zusammengesetzte
Phänomene anzugehen, die die Modelle herausfordern können.

UmMethoden zur Bewertung der sprachlichen Fähigkeiten von LMs zu entwickeln, schlagen
wir zunächst vor, ihre Fähigkeit zur Darstellung und zum Erlernen von Konstruktionen zu bewer-
ten. Konstruktionen sind Form-Bedeutungs-Paarungen auf jeder Ebene der Granularität. Ein klassi-
sches Beispiel für eine oft beschriebene Konstruktion ist der englische comparative correlative, d.h.
the x-er, the y-er. Wir entwickeln neuartige Sondierungs- und Evaluierungsmethoden und zeigen,
dass moderne LMs größtenteils die syntaktische Struktur von Konstruktionen erlernt haben. Selbst
modernste große Sprachmodelle haben jedoch Schwierigkeiten mit der nicht-kompositionellen Be-
deutung, die ihnen zugeordnet ist. Wir evaluieren auch die Fähigkeit von LMs zur morphologischen
Generalisierung, dem Prozess, ein gelerntes Muster auf die Bildung neuer Wörter anzuwenden. Wir
stellen fest, dass große Sprachmodelle zwar bemerkenswert menschenähnlich in ihrer Generalisie-
rung auf neue Wörter sind, jedoch immer noch Fehler machen und sich auf andere Mechanismen
als Menschen verlassen. Diese Ergebnisse zeigen, dass große Sprachmodelle zwar bemerkenswert
nahe daran sind, ähnlich wie Menschen zu agieren, aber wir immer noch Bereiche finden können,
in denen Verbesserungen notwendig sind.

Bei der Untersuchung dessen,was die moderne NLP zur Linguistik beitragen kann, gehen wir
zunächst den Mangel annotierter Daten für die Konstruktionsgrammatik (Construction Grammar;
CxG) an. Da es derzeit nicht möglich ist, Konstruktionen vollständig automatisch zu annotieren oder
zu parsen, schlagen wir Strategien vor, bei denen Menschen in den Prozess einbezogen werden,
um Linguisten bei der Erstellung von Korpora zu unterstützen. Wir zeigen die Ergebnisse eines
Community-Projekts zur Einführung einer CxG-Ebene in die Universal Dependencies Treebanks
vor. Darüber hinaus entwickeln wir eine hybride Annotationspipeline, die große Sprachmodelle
verwendet, um den menschlichen Annotationsaufwand zu reduzieren und somit die kostengünstige
Erstellung von Korpora für sehr seltene Phänomene zu ermöglichen. Schließlich zeigen wir, wie
hochparallele Korpora für die unüberwachte Induktion morphologischer Struktur für Sprachen mit
geringen Ressourcen genutzt werden können.

In Abschnitt 1.3.1 fragen wir: “Wie gut haben PLMs Konstruktionen gelernt?”. In unserer Arbeit
zur Evaluierung von PLMs für Konstruktionen in den Kapiteln 4 bis 7 und Kapitel 9 haben wir ge-
zeigt, dass selbst die größten Sprachmodelle immer noch Schwierigkeiten mit dem Verständnis der
Bedeutung einiger Konstruktionen haben. Dies lag teilweise an der Gestaltung unserer Studien und
bedeutet nicht, dass wir daraus schließen können, dass große Sprachmodelle Konstruktionen nicht
verstehen.Wie wir im Kapitel 4 argumentiert haben, ist aus Sicht der Konstruktionsgrammatik (CxG)
alles eine Konstruktion, und daher modellieren große Sprachmodelle bereits viele Konstruktionen
gut. Die Konstruktionen, die wir im Detail untersucht haben (insbesondere den englischen Kompa-
rativkorrelativ, causal excess, licensed causal und caused-motion), wurden absichtlich ausgewählt,
um die Grenzen von große Sprachmodelle zu testen, insbesondere hinsichtlich der Bedeutung von
Konstruktionen. Wir haben festgestellt, dass die von uns vermuteten Grenzen derzeit existieren, da
Modelle Schwierigkeiten hatten, die Bedeutung der Konstruktion auf neuartige Kontexte anzuwen-
den.

Im Abschnitt 1.4.1 fragen wir: “Haben PLMs eine menschenähnliche Fähigkeit zur morpholo-
gischen Generalisierung erworben?”Bei der Untersuchung der Grenzen von große Sprachmodelle
hinsichtlich der Morphologie in den Kapiteln 10 und 11 haben wir ihre Fähigkeiten zur Bildung
menschenähnlicher morphologischer Verallgemeinerungen für Pseudowörter untersucht. Bei der
Prüfung der GPT-3.5 auf Flexionsmorphologie im Kapitel 10 stellten wir fest, dass sie selbst in Few-
Shot-Einstellungen für Englisch und Deutsch Schwierigkeiten hatte, aber dies galt umso mehr für
Türkisch und Tamil. Als wir das Experiment für GPT-4 wiederholten,1 stellten wir fest, dass es für

1Diese Ergebnissewurden nicht veröffentlicht und sind nur auf demPoster verfügbar, das auf der EMNLP 2023 präsentiert
wurde.
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Englisch bei Zero-Shot- und Few-Shot-Einstellungen eine perfekte Trefferquote von 5 erreicht hatte,
aber in der One-Shot-Einstellung schlechter abschnitt als GPT-3.5, aufgrund einer Übergneralisie-
rung des gegebenen Beispiels. Bei der Bewertung von GPT-J und GPT-4 in Bezug auf derivationale
Morphologie im Kapitel 11 stellten wir fest, dass beide nicht in der Lage waren, menschliche Beur-
teilungen zu Pseudowörtern zu approximieren. Wir untersuchten die Fehler genauer und stellten
eine übermäßige Abhängigkeit von Token-Frequenz anstelle von Typ-Frequenz sowie eine subopti-
male Tokenisierung fest.

Im Abschnitt 1.3.2 haben wir die Frage gestellt: “Wie können wir NLP nutzen, um Daten für die
Konstruktionsgrammatik zu annotieren?”. Im Kapitel 8 haben wir eine neue Konstruktionsebene in
Universal Dependencies eingeführt. Wir haben die Machbarkeit automatischer Annotation für zehn
Sprachen und fünf Konstruktionen evaluiert und die Ergebnisse zusammen mit unserem Vorschlag
zur Annotation veröffentlicht. Da unsere Arbeit in Zusammenarbeit mit der UD-Kerngruppe durch-
geführt wurde, hoffen wir, dass die neue Ebene schnell implementiert wird und es den Treebank-
Verwaltern ermöglicht, ihre eigenen Regeln und Annotationen hinzuzufügen. Dadurch kann eine
bestehende Community genutzt werden, um Daten für die Konstruktionsgrammatik zu annotieren,
wo historisch gesehen wenig Daten vorhanden waren.

In Kapitel 9 haben wir über die annotierten Treebanks hinausgegriffen und eine neuartige hy-
bride Annotationspipeline entwickelt, die einen Dependenzparser und ChatGPT nutzt. Wir haben
gezeigt, dass dies die Kosten für die menschliche Annotation erheblich reduziert und somit die
Erstellung größerer Korpora für die Konstruktionsgrammatik ermöglicht, während die Qualitäts-
kontrolle der manuellen Annotation als abschließender Schritt erhalten bleibt.

Auf diese Weise haben wir gezeigt, dass, obwohl große Sprachmodelle nicht jede Konstruktion
perfekt verstanden haben, wir dennoch bestehende Datensätze, Parser und große Sprachmodel-
le zusammen mit menschlicher Verifizierung nutzen können, um bei der Erstellung von Daten zu
helfen.

Im Abschnitt 1.4.2 haben wir die Frage gestellt: “Wie können wir parallele Daten für die un-
überwachte Morphologie nutzen?” Im Kapitel 12 haben wir die neue Aufgabe der unüberwach-
ten Extraktion von Kasusmarkierungen vorgestellt und ein Baselinesystem dafür entwickelt, das
ein automatisches Annotationssystem für Nominalphrasen und einen stark parallelen Korpus nutzt.
Obwohl unser Baselinesystem vielversprechend ist, bleibt diese Aufgabe auch mit modernen Me-
thoden weiterhin anspruchsvoll.
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