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Zusammenfassung

Die Allgemeine Relativitätstheorie, die in der Differentialgeometrie ausgedrückt ist,
hat unser Verständnis des Universums revolutioniert. Sie legte den Grundstein für
die berühmte Inflationstheorie, die vorhersagt, dass die großräumigen Strukturen im
Universum durch Quantenfluktuationen in der Hintergrundmetrik entstehen. Slow-
Roll Inflationsmodelle stellen jedoch eine Herausforderung für das Inflationsparadigma
dar, das einst auf der Planckskala begann, während man versuchte, Probleme der
Feinabstimmung zu vermeiden, was zu einem Multiversum und einem Verlust der
Vorhersagbarkeit der Inflationstheorie führte. Tatsächlich stößt die Gravitationstheorie
selbst bei diesen hohen Krümmungsregimen an ihre Grenzen. Andererseits werden
Quantenfluktuationen, die unterhalb der Planckschen Skalen der Metrik auftreten,
größer als eins, wodurch die klassische geometrische Beschreibung der Raumzeit in diesen
Skalen zusammenbricht. Diese Probleme machen unser Verständnis der Physik auf den
Planckschen Skalen unvollständig und legen nahe, dass eine alternative Beschreibung
des Gravitationsrahmens selbst erforderlich ist.
In dieser Arbeit untersuchen wir zwei grundlegende Probleme innerhalb des Gravita-
tionsrahmens, die strukturell und dynamisch nahe der Planckskala auftreten.
Der erste Teil befasst sich mit dem dynamischen Problem der autauchenden Landschaft
und dem Multiversum, das in slow-roll Inflationsmodellen auf Planckschen Skalen
auftritt. Wir präsentieren ein Inflationsmodell im Rahmen der Mimetischen Gravitation,
einer Erweiterung der Allgemeinen Relativitätstheorie, welche die Metrik durch ein
eingeschränktes Skalarfeld ϕ re-parametrisiert. Wir modifizieren die dynamischen
Gleichungen bei hohen Krümmungen minimal, indem wir das Inflatonfeld über die
invariante Größe □ϕ an das mimetische Feld koppeln. Dadurch kann die mimetische
Inflation auf der Planckskala beginnen, wo die Bedingung der Selbstreproduktion
ab H ∼ 1 verletzt wurde, so dass das Auftreten des Multiversums und die damit
verbundenen Probleme erfolgreich umgangen werden. Gleichzeitig vermeidet dieses
Modell das Problem der Feinabstimmung in diesem sich aufblähenden Bereich und stellt
die Vorhersagbarkeit der Inflationstheorie in der ansonsten riesigen Landschaft wieder
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her. Das Modell sagt auch den skalaren Spektralindex ns und das Tensor-zu-Skalar-
Verhältnis r voraus, die mit den aktuellen Beobachtungsdaten für N = 50 e-Falten
übereinstimmen.
Der zweite Teil der Arbeit befasst sich mit dem strukturellen Problem der Raumzeitbeschrei-
bung der Einsteinschen Gravitation bei Längen kleiner als die Planckskala. Um eine
Verbindung zwischen einer klassischen und einer Quantenbeschreibung für die Gravitation
zu schaffen, betrachten wir eine neue Formulierung der diskreten Gravitation, in der wir
die Gravitation als eine Eichtheorie der Poincare-Gruppe darstellen. Diese Formulierung
basiert auf der Definition einer diskreten Mannigfaltigkeit, die aus Elementarzellen in
Planckscher Größe besteht, die jeweils mit einem Tangentenraum und Verschiebung-
soperatoren ausgestattet sind. Wir erweitern den Tangentenraum um Translationen
durch die inhomogene Lorentzgruppe ISO(d). Während ein wesentliches Merkmal der
Allgemeinen Relativitätstheorie, die Diffeomorphismusinvarianz, auf dem Gitter verloren
geht, ersetzen wir sie, indem wir Translationsinvarianz auferlegen und ihre Parameter
durch die Null-Torsions-Bedingung in Beziehung setzen. Dann leiten wir Ausdrücke
für Krümmung und Torsion auf dem Gitter ab, zusammen mit Transformationen der
Eichfelder, und indem wir einen offensichtlichen kontinuierlichen Grenzwert annehmen,
wurden die üblichen Ausdrücke der Differentialgeometrie erfolgreich wiederhergestellt.



Abstract

The theory of General Relativity, written in the language of differential geometry, has
revolutionized our understanding of the Universe. It laid the ground for the celebrated
Inflationary theory, which predicts that the large-scale structures in the universe are
seeded from quantum fluctuations on the background metric. Slow-roll inflationary
models, however, pose a challenge to the inflationary paradigm, once set to begin at the
Planck scale, while trying to avoid problems of fine-tuning, resulting in a multiverse
picture and a loss of predictability of the Inflationary theory. In fact, the gravitational
theory itself faces limitations at these high curvature regimes. On the other hand,
quantum fluctuations occurring below Planckian scales of the metric become larger
than unity, which breaks down the classical geometric description of space-time at these
scales. These problems render our understanding of physics at the Planckian scales
incomplete, suggesting an alternative description of the gravitational framework itself is
needed.
In this thesis we study two fundamental problems within gravitational framework
presenting structurally and dynamically close to the Planck scale.
The first part addresses the dynamical problem of emergent landscape and the multiverse
exhibited in slow-roll models of Inflation beginning at Planckian scales. We present
an Inflationary Model within the Mimetic Gravity framework, an extension of General
Relativity that reparametrizes the metric through constrained scalar field ϕ. We
minimally modify the dynamical equations at high curvatures by coupling the Inflaton
field to the Mimetic field through the invariant quantity □ϕ. This allows Mimetic
Inflation to start at the Planck scales, where the self-reproduction condition was violated
starting at H ∼ 1, hence the appearance of the multiverse and its adverse problems are
successfully evaded. At the same time, this model avoids the issue of fine-tuning in this
inflating patch, restoring the predictability of Inflationary theory in the otherwise vast
landscape. The model also predicts scalar spectral index ns and tensor-to-scalar ratio r
which is in agreement with current observational data for N = 50 e-folds.
The second part of the thesis addresses the structural problem of space-time description
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of Einstein’s gravity at lengths smaller than the Planck scale. In what foresees a
connection between a classical and a quantum description for gravity, we consider
a new Discrete Gravity formulation, in which we present gravity as a gauge theory
of the Poincare group. This formulation is based on defining a discrete manifold,
constructed from Planckian-sized elementary cells, each equipped with a tangent space
and displacement operators. We expand the tangent space to include translations
through the inhomogeneous Lorentz group ISO(d). While an essential feature of
General Relativity, diffeomorphism invariance, is lost on the lattice, we replace it by
imposing translational invariance, and relating their parameters through the zero-torsion
condition. Then we derive expressions for curvature and torsion on the lattice, together
with transformations of the gauge fields, and by taking a manifest continuous limit, the
usual expressions of differential geometry were successfully recovered.
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Chapter 1

Inflationary Cosmology: Theory and
Observations

1.1 Historical Prelude: A Rundown on Ideas in The Cosmic
Plane

It was only when Nicolas Copernicus first challenged Ptolemy’s geocentric model in 1543,
that the first step towards thinking about the universe on a grande scale was ever taken.
After that, the planets were set in motion in their orbits by Johannes Kepler in 1609, and
Galileo Galilei then pointed his telescope at Jupiter, an unfulfilled star, and observed its
moons in 1610. Later, the idea of an infinite, static universe emerged in Newton’s work,
Philosophiæ Naturalis Principia Mathematica in 1687, which grounded planetary motion
in a gravitational central field, and extending this idea to the cosmos at large then set
the stage for a long and ongoing discourse on the state, history and future of our universe.

Key Astronomical Observations that shaped Modern Cosmology
Aside from the involved debate on the gravitational stability of an infinite static
universe, and Einstein’s famous contribution to the discussion through the introduction
of a cosmological constant Λ, a shift in paradigm was set forward by a sequence of
observations. First, the possibility of measuring cosmic distances opened up through
Henrietta Leavitt’s discovery of the Cepheid Variable Period-Luminosity Relation in
1912, which linked a Cepheid’s intrinsic brightness (luminosity) to its pulsation period.
With this relationship at hand for the Cepheid, astronomers then could determine the
absolute brightness of this ‘standard candle’ by measuring its period, and comparing it
to its apparent brightness, and that allowed them for the first time to calculate reliably,
more or less, distances to distant galaxies. This method then laid the foundation for
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measuring the scale of the universe and discovering cosmic expansion. But before that,
Vesto Slipher had to discover the redshift in observed galaxies through studying their
spectral lines in 1917 [3], which was the earliest evidence that the universe was expanding.
Edwin Hubble then took Leavitt’s Cepheid variable method to measure distances to
galaxies, and cross examined them with the measured redshifts of Slipher, and came
forward with the infamous Hubble’s Law in 1929 that served as direct observational proof
that our universe is expanding, through the linear relationship that reads as the farther
a galaxy is, the faster it moves away from us [4]. The impact of his discovery rippled
through many courses simultaneously, confirming that Einstein’s general relativity
could also be used to describe the cosmos, at the same time overturning his and his
predecessor’s static universe model. After the discovery of the expansion of the universe
through the receding galaxies, it took two more decades until George Gamow, Alpher
and Herman concluded that our universe must have originated from a denser and hotter
state, if it has expanded in the past, and still is today. With this inference, the Big
Bang model was put forward, and through their seminal work in 1984 [5], Gamow et
al predicted the Cosmic Microwave Background (CMB) radiation as leftover heat, a
radiation relic, from the early universe. Finally, the discovery of the Cosmic Microwave
Background in 1965 [6] laid the foundation for the Big Bang model and all of modern
cosmology.

1.2 Friedmann-Robertson-Walker Cosmology and Big Bang Prob-
lems

After the discovery of the Cosmic Microwave Background, many studies and experi-
ments emerged, and together with large-scale structure surveys and cosmic expansion
measurements served as independent observations which advanced our understanding
of our observable universe, and strongly supported the theory of Cosmic Inflation. To
introduce Inflation as the theory that solved the standing puzzles at the time, and bring
forward the problems with the standard Big Bang model, it will be useful to outline the
basics and main concepts in cosmology, following detailed discussions found in [94], [101].

Observations suggest that the universe, as seen on scales larger than 100 Mpc, is
homogeneous and isotropic. On smaller scales however, inhomogeneous structures start
to appear. As mentioned before, the observable universe expands following Hubble’s law.
Therefore, the observable region must be described by a general metric that preserves
its symmetries, and it can be captured with a metric of the following form, namely the



3

Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)
(

dr2

1− kr2 + r2(dθ2 + sin2θdϕ2)
)
. (1.1)

The spatial part of the metric describes certain hypersurfaces, that scale with the scale
factor a(t) which is evolving in time. It allows for different curvatures such that

1. for k = 0, the spatial slice describes a flat space,

2. for k = +1, it describes a sphere of positive constant curvature,

3. for k = −1, it describes a hyperbolic space which has a negative constant curvature.
The spatial surface is in fact an embedding of a 3-dimensional sphere, or pseudo sphere
depending on the sign of k, in a higher dimensional space with the appropriate signature.
The scale factor a2 is then positive, and describes the radius of curvature for the curved
spaces, however it has no physical meaning for the flat space, and by performing a
change of coordinates, it can be reabsorbed into the new variables. From the scale
factor, one can define the Hubble rate

H = ȧ

a
, (1.2)

and it has a dimension of t−1. It will be more useful to redefine the radial coordinate r
into a new variable χ, such that

r2 = Φ(χ2) =


sinh2χ for k = −1,
χ2 for k = 0,
sin2χ for k = +1.

(1.3)

The new radial variable χ removes the degeneracy which r has in the positively curved
space. Introducing conformal time η into the picture, such that it is given by

η =
∫ dt

a(t) , (1.4)

the metric described above in terms of the new variables becomes

ds2 = a2(η)[−dη2 + dχ2 + Φ(χ)(dθ2 + sin2θdϕ2], (1.5)

and in terms of the new coordinates τ and χ, the causal structure of space-time becomes
more transparent. With the metric being conformally flat, with an isotropic spatial
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part, in the η − χ coordinates, the propagation of light will look like that in Minkowski
space. It is described by the condition ds2 = 0, which are the radial light geodesics with
θ, ϕ = const. In the η − χ plane, this corresponds to light-cones at ±45 deg, such that

χ = ±η + const. (1.6)

Horizons — It is now convenient to define the horizons associated with the maximum
duration of time light can propagate from a given point to a reference observer, and
vice versa. Considering that the universe could have a finite age, then during a time t,
the furthest point in space that can receive a signal sent from a reference observer at
the origin will be located at χp such that

χp = η − ηi =
∫ t

ti

dt

a
, (1.7)

which is called a particle horizon, and it is the largest co-moving distance which light
could have traveled from the moment of time ηi when the universe originated. The
reference observer at the origin will not receive any signal from an event happening
at χ > χp, therefore in a sense it is really more like a causal horizon. The physical
co-moving distance can be obtained from

dp(t) = a(η)χp(η). (1.8)

On the other hand, there is also a maximum separation for which signals sent from a
point in space can be received by the observer in the future, and this is called the event
horizon, defined by

χe(η) = ηmax − η =
∫ tmax

t

dt

a
, (1.9)

where at a given moment η, a future observer will not be able to perceive events in the
regions beyond χe.

This description of the horizons will be important for outlining why the Big Bang model
falls short at explaining the observed universe and why one needs a period of inflation
instead.

Evolution equations —

From the previous discussions, it is clear that the causal relationship between events
at a given moment in time will depend on the scale factor. Then, the evolution of the
scale factor a(t) will follow from the Einstein Equations, governing the dynamics of the
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metric components gµν which fully describe the gravitational field,

Gαβ ≡ Rαβ −
1
2gαβR = 8πGTαβ. (1.10)

From the symmetries of the metric gµν , these equations reduce to ten. For the FRW
metric, these further reduce to two key equations, where matter is described by the
energy-momentum tensor obeying Tαβ

;α = 0. The energy-momentum tensor for matter
at cosmological scales can be captured by that of a perfect fluid which is given by

Tαβ = (ε+ p)uαuβ − pgαβ, (1.11)

where p is its pressure, ε is the energy density, and uα is the 4-velocity. With this matter
component, the Einstein equations give

Ḣ +H2 = −4πG
3 (ε+ 3p), (1.12)

H2 + k

a2 = 8πG
3 ε, (1.13)

which are the First and Second Friedmann equations respectively. In the first equation,
ä/a ≡ Ḣ + H2. In the second equation, k appears as an integration constant, but
it carries the meaning of the curvature defined earlier for the different space slice.
Combining the first and second Friedmann equations, one gets

ε̇ = −3H(ε+ p) (1.14)

which is simply an expression of energy conservation, and for a homogeneous and
isotropic universe it is a manifestation of the conversation law Tα

0 ,α = 0. Now, for the
matter described in (1.11), its equation of state can be written as

p(ε) = wε (1.15)

and w will depend on the properties of matter. Substituting this equation into (1.14),
the solution obtained reads

ε ∝ a−3(1+w) (1.16)

where for non-relativistic matter with w = 0 one gets εm ∝ a−3, and for ultra-relativistic
gas or radiation with w = 1/3, εrad ∝ a−4. In the standard Big Bang picture then, one
assumes the universe was filled with matter having ω > 0.

Finally, defining the cosmological parameter Ω(t) = ∑
i Ωi(t), such that for a given
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matter component,
Ωi(t) ≡

εi(t)
εcr(t)

, (1.17)

with εcr = 3H2

8πG
, and for the curvature component k it is defined as

Ωk(t) = − k

a2H2(t) , (1.18)

then using these definitions, one can rewrite the second Friedmann equation as

Ωk(t) = Ω(t)− 1. (1.19)

The geometrical properties of the universe will be dictated by the value of Ω(t), i.e.,
open universe , k = −1, for Ω > 1
flat universe , k = 0, for Ω = 1
closed universe , k = +1, for Ω < 1.

(1.20)

Problems of Big Bang cosmology — Assuming in the Big Bang scenario that the
early universe was filled with either relativistic or non-relativistic matter with ω = 0, 1/3
respectively, in order to explain the observed properties today, the initial requirements
will have to be oddly fine-tuned. From here, one can directly describe the first problem
arising from Big bang cosmology, the flatness problem. From observations today, Ωk is
measured to be almost zero, with Ωk ≪ 10−3. However, since the contribution of the
curvature is through the factor a−2, in comparison to other components as ordinary
matter which scales as a−3 and radiation scaling as a−4, Ωk is expected to dominate
today. The fact that it does not, means that the universe must have started initially
flat, with the cosmological parameter Ω(t) being close to unity. The question becomes,
what would drive Ωk to be almost negligible in that early phase? While it is possible
to simply set the value of k to zero initially, having such a pre-set peculiar value does
not seem satisfying without a mechanism that explains it, hence the role of inflation in
specifying that mechanism.

The second problem, arises from the fact that the CMB radiation which was measured
to be incredibly uniform across the sky by experiments like COBE, WMAP, and Planck,
with very tiny fluctuations. Now if one considers that a given form of matter with
w > −1/3 fills the universe, as it expands, the co-moving distance of light will grow,
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and can be computed from (1.7) as

χp(η) =
∫ a

ai

da

Ha2 ∼ a(1+3w)/2 − a(1+3w)/2
i . (1.21)

This horizon grows in proportion to contributions from the first term at the latest
moments, hence, as time progresses, new portions of the universe that were formerly
outside causal range establish causal contact. Now assuming that at the earliest times,
at Planckian times tP l, the universe was dominated by primordial radiation, then from
(1.21) the co-moving distance light could travel is lp ∼ t1/2. Comparing the ratio of
this distance measured today at t0 to that at the Planck time from an initial surface,
one finds l0/lp ∼ 1030, meaning around 1090 initially causally disconnected Hubble
volumes must have the homogeneous energy density distribution observed today with
a small variation of δε/ε. The Big Bang model, without inflation, would need a high
degree of fine tuning in the initial density of the matter field to justify why the scale of
homogeneity already greatly exceeded the initial causality scale, and this is called the
homogeneity or horizon problem. Another problem, to complete the shortcomings of
the Big Bang, is explaining the origin of the initial density perturbations that seed the
formation of the large-scale cosmic structures. Following the pattern of temperature
variations seen in the CMB, the initial amplitude of these primordial inhomogenieties
needs to be on the order of δε/ε ∼ 10−5 on scales corresponding to galactic sizes. This
is called the initial perturbations problem.

1.3 Predictions from Inflationary Theory

Following these shortcomings that the Big Bang model could not answer, Cosmic Infla-
tion therefore emerged as an extension of the Big Bang that proposed that the universe
underwent an exponentially large expansion in a minute fraction of a second right after
the Big Bang, with a dominant form of matter having an equation of state p ≈ −ε. This
equation of state can be realized by scalar-field models, or other self-interacting fields
or higher-curvature gravity models, which effectively converge on similar dynamical
features as constrained by observations. More broadly, inflation set forth a set of expla-
nations of the problems faced by Big Bang model that were discussed before, and also
provided a set of predictions that were confirmed by observation. Independently of a par-
ticular model, Inflation stands on a set of pillars which are hereby presented following [8].

General features of Inflationary Models — Taking into account different existing
classes of inflationary models, that are accompanied with a graceful exit, there are
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common features that these models yield, and they factor into a set of general predictions
of Inflation. These set of predictions are:

1. Geometry of the Universe is Euclidean: This means that the spatial curvature
of the observable universe is zero, k = 0, and Ωk = 1. This is known from precision
measurements of the cosmic microwave background (CMB), where a nearly-flat geometry
of the universe is deduced from the the temperature anisotropy spectrum, particularly
the angular size of the first acoustic peak (and subsequent peaks) which are sensitive to
such geometry [7]. In addition, this flat geometry is confirmed from the Baryon Acoustic
Oscillations (BAO) that are measured at late times from large-scale structures.

2. The amplitude of the gravitational potential Φ depends logarithmically on the physical
scale λ: This is an important prediction of inflation, with the amplitude growing roughly
as a function of the logarithm of λ, and getting larger at bigger scales. Approximately
the relation can be written as

Φ2 = ⟨Φ2
kk

3⟩ = λ1−ns (1.22)

on the observable scales. This relation has an underlying physical reason, and it is due
to the fact that the ns − 1 depends on the equation of state, which has small deviations
from p ≈ −ε that allow a graceful exit from inflation. For a steady variation in (p+ε)

ε
,

the signature of inflation will be a spectrum which is red-tilted.

3. Primordial perturbations should be Gaussian: This means they are precisely char-
acterized by two-point correlation function. Of course, the initial inhomogeneities are
only nearly Gaussian, and through the interaction with the background gravitational
field they got amplified. Deviations from Gaussianity enter at the second order in
perturbation theory for the gravitational potential Φg, with the leading non linear term
fNLΦ2

g, which is expected to be of order fNL ∼ O(1). Recent analysis from Planck [46]
find |fNL| ≲ 10 as theoretically predicted.

4. Primordial perturbations are Adiabatic: With high-precision measurements of
the CMB, data from WMAP and Planck effectively rule out isocurvature scenarios,
confirming that initial perturbations should be adiabetic.

5. Existence of long-wave Gravitational Waves: While inflation in general does not
specify an exact value for the the tensor-to-scalar ratio r, which will depend on the
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model considered, one can set a lower-limit for the gravitational waves produced after
the spectral index nS has been determined. The limit, however, is insensitive of the
details of a specific inflation model.

Predictions and other requirements from an Inflationary Model — Getting
slightly ahead in the chronology of the story, it is worthwhile to mention that, starting
from these predictions for a general inflationary model, the main interest in finding
a new Inflationary model, as Mimetic Inflation presented in this work, is not only to
reproduce these general features, which represent the minimum necessary conditions to
have a viable inflationary scenario, but also to address and resolve some of the broader
questions which put the whole Inflationary Paradigm in question, as will be discussed
in the next section following [49]. That being said, it is important to highlight that
addressing the new challenges presented to Inflation is another criterion for a model to
be considered viable, though its robustness in facing the very questions that undermine
Inflation, not just as a theory that explains the observations, but as a scientific theory
with predictive power, a key concern which had driven cosmologists in recent years away
from Inflation.

1.4 Inflationary Theory Facing Trouble

After Planck satellite published its data in 2013 [50], providing precise numerical limits
on the available cosmological parameters, it confirmed through its observations the
predictions that Inflation set forward, and that were described in the previous section,
the spatial geometry of the universe being nearly flat, a spectrum of perturbations that
is close to scale-invariance yet having a slight red-tilt, and the close-to Gaussianity of
the perturbations. And for the first time, the data came in favor of simpler models, and
removed from the pool of candidates exotic models with complex dynamics.

Models Favored by Planck data — By confirming that the observed primordial
inhomogeneities are indeed nearly Gaussian, which is predicted by the standard single-
field inflaton framework is favored over the multi-field inflationary models and scenarios
with elaborate dynamics. Among the simplest single-field models, the data excluded
the original ‘chaotic’ inflation, inflation with exponential potentials, and various other
power-law driven inflation, etc... (e.g., [38]-[42]). Then, out of the single-field models,
observations favored those having potential with a plateau. Under this category falls
a multitude of models that can be recast as such by a transformation to the Einstein
frame [50], and at instances by a change of variable. Such models include for example
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the Starobinsky model [105], models with symmetry-breaking (out of which those with
non-minimal coupling currently survive)[54]-[56], certain modified hilltop scenarios [57],
and of particular interest, Higgs-like inflation.

However, the celebrated results from Planck did not stand for a long time before serious
issues were raised by Ijjas, Steinhardt, and Loeb in their work [49] challenging the
single scalar field, with a plateau-like potential inflationary models that the Planck
collaboration favored through its data. The authors set forth a number of problems
facing these models, and concluded that the data in fact tends to disfavor the inflationary
scenarios that were most-motivated being ‘exponentially unlikely according to the inner
logic of the inflationary paradigm itself’, quoting the authors in [49], when one begins
inflation at the Planck scale even if plausible initial conditions were taken, and took these
challenges as far as touching on the core of the Inflationary theory as a self-consistent
scientific theory. These issues will be summarized, with arguments presented in favor of
the Inflationary theory, highlighting some arguments following [69], and concluding the
way forward.

Problems facing inflation

Likeliness for Inflation to begin — This problem stands as the ‘unlikeliness
problem’ of inflation, which the authors of [49] refer to in regards to their claim that for
plateau-like potentials, for example a Higgs-like potential of the form

V (φ) = λ(φ2 − φ2
0)2 (1.23)

inflation can occur only in a narrow range of the parameters that such a model carries,
and inflation on the plateau part of the potential, where |φ| < φ0 occurs exponentially
less than inflation on the power-law part with |φ| > φ0, the latter being the models
that are disfavored by Planck. This argument is based on the fact that in the power-law
part of the potential, the range of values ∆φ is significantly larger, and consequently
the maximum number of e-folds, Nmax, is also significantly larger. Counter arguments
to this issue, as presented in [69], can be based on the ambiguity of details related
to particle physics dynamics and assumptions made at the Planck-scale, where it is
difficult to discern the likeliness of having the scalar-field in a given interval of its
possible values or in another, which a valid question to ask in single-field models; or if
one accepts that for the available plateau-models, eternal inflation with a multiverse
is an inevitable outcome of inflation occurring on that plateau (as will be described
in the section on Self-Reproduction), then the problem becomes that of finding the
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appropriate probability measure, on which no consensus has been reached thus far.
Another argument that avoids the given formulation of the unlikeliness problem is
looking at slightly more complicated dynamics of the scalar-field, like considering a
scenario where tunneling occurs from a metastable state which precedes the desired
last number of e-folds occurring on the plateau. This would force one to choose the
metastable phase as a reference when comparing with the values of ∆φ and Nmax on
the power-law part, rather than the plateau. As such, the general argument of the
unlikeliness problem starts to break down when considering various particularities for
each model.

Fine tuning of initial conditions— As Planck data favored single-field inflationary
models having a potential characterized by a plateau, the latter characterization arises
from the requirement on the tensor-to-scalar perturbations ratio r, whereby the value
of its upper bound r < 0.032 (which is the most recent value obtained by including
data from BAO [43], and the CMB lensing data [44]) restricts the slope of the potential
to be small at the moment of time tI , when the segment of inflation pertaining to
observations begins. Then, the inflationary scale which is characterized by the plateau
with V (φI) ≡ VI , where φI ≡ φ(tI), is then estimated from the ratio r to be orders
of magnitude much less than the Planckian scale Mpl, particularly VI ∼ 10−12M4

pl.
While one could assume rather natural initial conditions for different forms of energy
1
2 φ̇ ∼

1
2 |∇φ|

2 ∼ V at Planckian scales as described by chaotic inflation, this assumption
fails for the required energies for the plateau VI . Hence, with the small value of the
energy density at the plateau, the fine-tuning problem arises from the fact that starting
at the Planck scale one would have to control the initial conditions, such that after the
energy density falls to values of order VI , the Hubble-sized patch could remain nearly
uniform when observable inflation starts. The reason for this is that the kinetic terms
and gradient terms would dominate over the potential which has a low energy density
around tI , and prevent inflation from beginning unless initial smoothness is somewhat
maintained. To give an estimate from [49], starting with an initially homogeneous patch
at Planckian scales, for it to remain homogeneous until the onset of inflation requires a
scale of homogeneity of order 103 Hubble lengths to which its radius grows until the
inflation scale is reached, by simply comparing the energy scales MP l/MI ∼ 103, which
is rather huge. However, this problem can be avoided in a scenario where inflation starts
at Planckian scales and while the energy scale shifts to lower values at the plateau where
the last 50-60 e-folds of inflation take place, then the initial inhomogeneities will be
stretched out to unobservable scales, and the minimal initial condition that remains
is that the gradient terms do not prevent inflation from starting in the initial patch,
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rather than requiring a high degree of homogeneity for a large number of Hubble sized
volumes. Several scenarios in which inflation kicks off at Planckian density, then ends on
the plateau can be found in (e.g. [37] and references therein), however the problem with
such models that begin inflation at the Planck scale is that it leads to eternal inflation
and the multiverse. To have inflation begin at the Planck scale then requires these two
issues to be addressed simultaneously.

The problem of the Multiverse — Following the Planck-favored plateau-like poten-
tials for Inflationary Models, a common phenomenon with this class of models emerges
when trying to kick-start expansion at the Planck scale, whereby this patch of space,
once it had entered the accelerated expansion phase, it remains in that inflationary
stage forever. This problem was named Eternal Inflation, and it can happen at different
regions in space, which leads to islands of eternally expanding disconnected universes,
resulting in a multiverse picture, in which “anything that can happen will happen, and
it will happen an infinite number of times” [58]. This then undermines the power of
predictability of Inflation as a theory. The reason for that is, since different universes
with different physical properties could emerge when starting with a single inflationary
model with a unique set of parameters, the model fails to predict the outcome of the
universe and uniquely explain its properties, with the emergence of these physically dis-
tinct pocket universes. This is a main contradiction that a theory with predictive power
faces, and hence testing for this regime in a given model is an important self-consistency
check that makes it a viable candidate as an inflationary scenario. For those models
which exhibit eternal inflation and the multiverse picture, there were various attempts
to find a certain ‘measure’ to define probabilities for the resulting infinite universes, but
these didn’t yield any success (e.g. [59]-[63]), and on the contrary some are presented
with additional problems such as the Youngness Paradox (e.g. [64, 65]). The only way
forward to avoid this fractal of issues is then to find a class of models that evades eternal
inflation altogether, through avoiding self-reproduction.

1.5 Self-Reproduction and the Problem of the Multiverse

In this section, the focus will be on demonstrating the technical details involving the
phenomenon of self-reproduction, and these arguments will be used later in the analysis
of the Mimetic Inflation Model to show how it overcomes this regime by starting inflation
at the Planck scale. As mentioned earlier, one is interested in having inflation begin at
the Planck scale and restore the natural initial conditions described earlier, to avoid the
fine-tuning problem of these conditions needed to start inflation. Hence the goal will be



13

to solve both problems simultaneously, producing a viable candidate model.
Background Equations for a Generic Slow-Roll Model — The action for a
general inflationary model driven by a scalar field that is homogeneously distributed is
given in the Einstein-Hilbert frame by

S =
∫
d4x
√
−g

(
−1

2R + 1
2g

µν∂µφ∂νφ− V (φ)
)
, (1.24)

where Planck units with 8πG = 1 are used hereafter. The dynamics of the scalar field
are then analyzed in a flat expanding universe which has its metric defined by

ds2 = dt2 − a2 (t) δikdx
idxk. (1.25)

The energy-momentum tensor for φ can be computed as

Tµν = −1
2
δSφ

δgµν

= ∂µφ∂νφ− gµν

(1
2∂αφ∂

αφ+ V (φ)
)
, (1.26)

then comparing with the Tαβ expression for a perfect fluid in (1.11), the energy density
and pressure for the scalar field can be deduced

ρφ = 1
2 φ̇

2 + V (φ), pφ = 1
2 φ̇

2 − V (φ), (1.27)

and here the derivative with respect to the physical time t is denoted by dot. Then to
mimic the equation of state p ≈ −ε, from

ωφ = pφ

ρφ

=
1
2 φ̇

2 + V (φ)
1
2 φ̇

2 − V (φ) , (1.28)

the potential term must dominate over the kinetic energy,

1
2 φ̇

2 ≪ V (φ). (1.29)

The usual equations of motion for the scale factor a(t) driven by the dynamics of a
scalar field φ with a potential V (φ) in a (non-modified) General Relativity framework
are then

φ̈+ 3Hφ̇+ V ′ = 0, (1.30)

H2 = 1
3

(1
2 φ̇

2 + V
)
, (1.31)
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with H ≡ ȧ/a as the Hubble constant, and the derivative with respect to the field φ is
denoted by prime.

Slow-Roll Conditions — The plateau-like potential favored by the data must then
satisfy the following slow-roll conditions,

(
V ′

V

)2

≪ 1, V ′′

V
≪ 1, (1.32)

for which the time-evolutions equations can be further simplified, where the acceleration
term for the scalar field φ̈ in (1.30) can be neglected, similarly the kinetic energy term
in the Friedmann Equation (1.31) will be negligible compared to the potential energy
term, so that the expressions become

3Hφ̇+ V ′ ≈ 0, (1.33)

H2 ≈ 1
3V, (1.34)

and hence as the field rolls down slowly along the platueau, the universe undergoes
exponential expansion dominated by the potential.

Condition for Self-Reproduction — To trace back the physical origin for eternal
inflation in a given Planckian-sized space patch, one can define a cosmological timescale
tH ≃ H−1 for studying the process, and in this case it will be the time needed for the
classical scalar field to decreases its value by an amount

δφcl ≃ φ̇tH ≃
φ̇

H
. (1.35)

and from (1.33), φ̇ ≃ −V ′/3H, the classical scalar field hence decreases during tH by

δφcl ∼ −
V ′

V
. (1.36)

During this time tH , quantum fluctuation of the field δφq are being super imposed over
the classical field value, such that the amplitude of these fluctuations at the Hubble
scale H−1 is

δφq = ±H. (1.37)

In total, at the Hubble scale H−1, the total change of the background field ∆φ, for
those superimposed quantum fluctuations that are positive and hence push the field
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upward its potential, is positive

∆φ = δφcl + δφq ≃ H − V ′

V
> 0, (1.38)

given that H ∼ 1 and from slow-roll conditions
(

V ′

V

)2
≪ 1. This means that, when it is

the case, the quantum fluctuations with a positive amplitude are continuously pushing
the field up its potential, keeping it from exiting the inflationary regime. This could
happen at different patches in space, and the resulting picture is eternally inflating
universe bubbles, separated by regions where inflation has ended, hence the emergence
of the Multiverse. The number of these regions where inflationary expansion continues
forever is exponentially large, and so their volume outweighs the domains that have
exited inflation and produced a standard matter-dominated Friedmann universe [35, 36],
even when considering the different definitions of the measure taken for comparing these
volumes (e.g., in [48]).
For this work, the important consideration is the self-reproduction condition that drives
the situation into an eternally expanding state, namely

∆φ ≃ H − V ′

V
> 0,

which takes into account the slow-roll condition for a usual plateau-model in a non-
modified Gravity framework. A possible solution to violate this condition will be to
modify the slow-roll conditions, which in this case result from the regular set of equations
for a(t) and φ(t) in (1.30) and (1.31). This can be achieved by obtaining a modified set
of equations, and deriving new slow-roll conditions for them, then putting to the test
the effect of quantum fluctuations on the classically evolving background. This will be
shown in the Mimetic Inflation Model presented in this thesis.
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Chapter 2

Mimetic Inflation and
Self-Reproduction

In this chapter of the thesis work, the Mimetic framework, mainly through its covariant
quantity defining extrinsic curvature, will be employed to construct simple inflationary
models that avoid eternal inflation and solve the problem of self-reproduction with its
many problems. Core results in this chapter are based on the original published work
Chamseddine, Khaldieh, and Mukhanov (2023) [1].
In the next section, the focus will be on motivating the Mimetic Gravity framework
within which the class of models of Mimetic Inflation is developed. In the sections that
follow, Mimetic Inflation will be presented through a concrete example, studying the
action and its background solutions, then showing how self-reproduction is avoided, and
developing its cosmological perturbations leading to its observational predictions.

2.1 Mimetic Gravity Framework

Modified Gravity: Theoretical and Observational Motives

The question on why one appeals to modified gravitational theories stems from several
theoretical and observational motivations which suggest that General Relativity, as the
current most successful gravitational theory, might not be the complete description of
gravity, despite being extremely successful in explaining a wide range of gravitational
phenomena, from planetary motion to the evolution of the Universe, and from describing
black holes to gravitational waves as ripples in space-tine [66]-[68]. Attempts to extend
General Relativity and include it in a broader unifying framework have existed early on
since the establishing of this theory. On this theoretical end, modified theories included
higher dimensional generalizations such as theories of Kaluza-Klein, additional fields
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with dynamical degrees of freedom such as Brans-Dicke’s Scalar-Tensor theory, and the
addition of higher order corrections to the General Relativity action as in Sakharov’s
proposal, to name a few, aside from the large front that is aimed at finding a Quantum
Gravity theory. A comprehensive survey of such theories can be found in many reviews
(e.g. [74]). On the observational end, many empirical tensions emerged that revealed
many limitations of General relativity, and at the same time provided an evaluation
ground of the various modified theories. The ‘dark universe’ picture of the ΛCDM model
which Einstein’s equations yield with a dominant proportion over all known forms of
matter taking an unusual form of ‘dark energy’, driving the evolution of the Universe,
was the first lead hinting that Einstein’s theory might be incorrect at such cosmic scales.
Building on this picture, the observed small value for the cosmological constant Λ,
which falls short on 120 orders-of-magnitude from what is expected from quantum field
theory, poses another serious challenge for ΛCDM. Another component of the proposed
dark sector, dark matter, faces problems when theoretical simulations are faced with
observations. These include the theorized cuspy-density profile of dark matter in its halo
contrasted with the observed constant density cores in galaxies [75], the discrepancy
between the number of satellite galaxies expected in cosmological simulations with dark
matter and the number which is observed [76], and other problems on scales of clusters
as Bullet-cluster speed [77], emptier cosmic voids [78], and large-angle CMB anomalies
[79]. All these challenges suggest diverging routes from ΛCDM, insofar systematic effects
can be resolved. And while there is still no observed explanation from particle dark
matter ventures, attempts of modification of the gravitational theory are on the front
seat.

Why Mimetic Gravity?

Motivation — Now the question turns to why, out of all other modified gravity
theories, is Mimetic Gravity a desirable candidate? To begin, Mimetic gravity is not
simply a modification to GR, rather a small extension that isolates the conformal degree
of freedom of the metric, and through imposing a constraint on the isolated conformal
factor Ω2(x) that is expressed through the derivatives of a scalar-field ϕ. It utilizes a
non dynamical degree of freedom, namely the longitudinal gravitational mode, that then
‘mimics’ the Dark Matter component in the universe without adding new dynamical
fields. Since it only involves a reparameterization of the metric while introducing new
dynamics, Mimetic gravity is one of the simplest geometrical extensions to GR, in
contrast to other Scalar-Tensor gravity theories (e.g., [83, 84]), where the added fields
there bring in an external degree of freedom that Einstein’s Gravity does not already
encompass.
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The Original work on Mimetic Gravity — It was first introduced by A. H.
Chamseddine and V. Mukhanov in 2013 [82], as Mimetic Dark Matter, which offered a
geometric explanation for the dark matter component, and since then, many extensions
to the original formulation appeared by adding terms involving the field ϕ, either
through higher-derivative terms or through a potential V (ϕ), or incorporate it into
broader gravitational frameworks, and was hence renamed more generally as Mimetic
gravity.
After discussing the general framework following [82], Mimetic Gravity will be utilized
to suggest a new solution to the problem of Self-Reproduction and the Multiverse with
their undesirable corollaries.

The Mimetic Framework: Its Equations and Interpretations

Metric Conformal Factor — While General Relativity is not invariant under scale
transformations of the metric as

g̃µν(x) = Ω2(x)gµν(x), (2.1)

in Mimetic gravity, the Mimetic field ϕ was introduced to rescale the metric in the
following way

gµν =
(
g̃αβ∂αϕ∂βϕ

)
g̃µν , (2.2)

where in this case g̃µν is an auxiliary metric, and under conformal transformations of
g̃µν → Ω2g̃µν , the physical metric remains invariant gµν → gµν .
The Mimetic Constraint — Taking the inverse of the definition (2.2), the mimetic
field ϕ then satisfies the constraint equation

gµνϕ,µϕ,ν = 1. (2.3)

which is a first order differential equation. To see how the field ϕ acts as the Dark
Matter component, when combined with the longitudinal mode of gravity, the Energy-
Momentum tensor will be computed.
Extra Degree of Freedom — To find how the additional degree of freedom behaves,
a variation of the action for gravity with a general matter Lagrangian Lm is performed,
taking into account that the variation of the physical metric gµν will include the variation
of field ϕ and the auxiliary metric,

S = −1
2

∫
d4x

√
−g(g̃µν , ϕ)[R(g(g̃µν , ϕ)) + Lm], (2.4)
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such that such variation leads to, after a few additional steps that can be found in [82],
the following field equations

Gµν = T µν + T̃ µν , (2.5)

with T µν as the usual energy momentum tensor for matter, and a new contribution from

T̃ µν = (G− T )gµαgνβ∂αϕ∂βϕ. (2.6)

The last expression could be reformulated in terms of the Energy-Momentum tensor
describing a perfect fluid

T̃ µν = (ρ+ p)uµuν − pgµν , (2.7)

where in the expression (2.6), the pressure can be identified to be p = 0, while the
energy density ρ and the four-velocity uµ become

ρ = G− T, uµ = gµκ∂κϕ. (2.8)

From here, it can be understood how the extra degree of freedom ‘mimics’ dark matter,
by imitating the equation of state of dust, with p = 0 and ρ = G− T ≠ 0 even when
matter is not present. Taking gµκ∂κϕ as the velocity for dust, the constraint equation
(2.3) then simply reflects the normalization condition uµuµ = 1.

The Mimetic Field ϕ — To understand in physical terms the Mimetic Field ϕ itself,
it is useful to choose a gauge, and the simplest way will be to use the synchronous
coordinate system,

ds2 = dt2 − γikdx
idxk, (2.9)

in which the the solution to the first order differential equation (2.3) is simply

ϕ = t, (2.10)

hence, ϕ can be interpreted as the coordinate for ‘time’ which then defines the slicing of
the four-dimensional space-time into spatial hypersurfaces.

Mimetic Dark Matter — Building on the last part, and in a way which will be more
practical for the purposes of building an action that integrates the Mimetic framework,
it is useful to reformulate the same picture of the physical metric with the isolated
conformal degree of freedom in the general action below, which was first shown in [10],

S =
∫
d4x
√
−g
(
− 1

2R + λ
(
gµν∂µϕ∂νϕ− 1

)
+ Lm

)
. (2.11)
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Therefore, varying this action with respect to ϕ, the solution to the scalar field equation
will give

λ = const√
detγij

, (2.12)

where γij is the spatial part of the metric as in (2.9), and in a flat Friedmann universe,
this expression becomes

λ = const

a3 . (2.13)

This expression represents the dark matter component, and completes the picture of
how Mimetic Dark Matter is realized.

Extrinsic curvature κ — Many extensions to Mimetic Gravity are realized through
mimetic field ϕ by constructing the covariant quantity, namely □ϕ. In the synchronous
coordinate system defined earlier, the physical interpretation of the invariant quantity

□ϕ = gµνϕ;µν ≡ κ (2.14)

becomes more transparent, and for the three-dimensional spatial hypersurface having
ϕ = const, it represents the trace of its extrinsic-curvature, where

κ = 1
2
∂

∂t
ln (det γik) . (2.15)

Thus, by incorporating functions f(□ϕ) ≡ f(κ) into the Lagrangian, the equations of
Einstein’s gravity can be modified, iterating on the fact that it is done without introducing
any new scalar degrees of freedom. This invariant has previously been utilized in works
that go beyond the minimal extension, for instance to address cosmological singularities
in the universe and singularities in black holes as in [85]-[87], and incorporate the idea of
limiting curvature to study asymptotically free solutions as in [88, 89]. The field ϕ can
also be implemented directly to obtain different cosmological solutions by adding V (ϕ)
as in [90], or to further generalize the mimetic framework into F (R) Gravities as in
[91], and other general Scalar-Tensor theories [92]. Numerous extensions were developed
since the first work on Mimetic Gravity appeared and a comprehensive review of these
works until 2016 can be found in [93].
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2.2 Action For the Theory and Field Equations

The Action — To Begin, the action for Mimetic Inflation is presented as

S =
∫
d4x
√
−g

[
−1

2R + λ(gµν∂µϕ∂νϕ− 1) + 1
2g

µν∂µφ∂νφ− C (κ)V (φ)
]
, (2.16)

where reduced Planck units are used such that 8πG = 1, and φ is the usual inflaton field
driving the exponential expansion through the potential V (φ). Here V (φ) is coupled
to spatial curvature through a function C(κ), which is formally expressed through the
d’Alembertian of the mimetic field κ = □ϕ, and as such enters the action in a covariant
way.
Mimetic Constraint — To get the constraint equation for the mimetic field, this
action is varied with respect to the Lagrange multiplier λ, and the previous expression
for the constraint (2.3) is recovered

gµνϕ,µϕ,ν = 1,

Modified Einstein Equaitions — Now onto the modified Einstein equations, whereby
varying the action with respect to the metric gives the usual structure for the Einstein
tensor,

Gµν = Rµν −
1
2gµνR = T̃µν , (2.17)

albeit a modified form for the Energy-Momentum tensor, denoted by T̃µν , and given by

T̃µν = 2λ∂µϕ∂νϕ+ gµν ((C − κC ′)V − gρσ∂ρ (C ′V ) ∂σϕ)

+ (∂µ (C ′V ) ∂νϕ+ ∂ν (C ′V ) ∂µϕ) + ∂µφ∂νφ−
1
2gµν (gρσ∂ρφ∂σφ) , (2.18)

and here the prime indicated the derivative with respect to the argument of the particular
function, in case it depends on one variable only, for instance, the coupling function C

as it depends on κ and as such C ′ ≡ dC/dκ, and similarly for the potential function
V (φ), where V ′ ≡ dV/Dφ.
Equations of Motion — For the mimetic field ϕ, one gets the following equation of
motion

∂µ

[√
−ggµν (2λ∂νϕ+ ∂ν (C ′V ))

]
= 0, (2.19)

and that for the inflaton field is therefore obtained by varying (2.16) with respect to φ
to get

□φ+ CV ′ = 0, (2.20)
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where □φ = 1√
−g
∂µ (√−ggµν∂νφ).

2.3 Dynamical Evolution and Background Solutions

To solve the equations of motion obtained, for a flat expanding universe, the metric is
expressed by

ds2 = dt2 − a2 (t) δikdx
idxk. (2.21)

Solution for mimetic field — As expressed before, the solution to the mimetic field
will be identified through ϕ = t with the time foliation of space-time.
Homogeneous Inflaton Field — In the universe considered, the inflaton field will be
a homogeneous one, and only time dependence will be expressed in the field configuration
as φ = φ(t). The inflaton field will evolve then according to its equation of motion

φ̈+ κφ̇+ CV ′ = 0. (2.22)

which is recovered from (2.20)
Friedmann Equations — Taking the previous results, φ(t) and ϕ = t, and plugging
them into the 0− 0 Einstein Equation, it becomes

1
3κ

2 = 2λ+ (C − κC ′)V + (C ′V )˙+ 1
2 φ̇

2, (2.23)

where κ = 3ȧ/a, and the dot denotes the derivative w.r.t. time. The spatial curvature κ
is hence understood as the Hubble constant, H = ȧ/a multiplied by a factor of three.
To find then the expression for λ, the equation for ϕ (2.19) is solved, and the explicit
solution is

2λ = B

a3 − (C ′V ) ,̇ (2.24)

and here B appears as an integration constant which ‘quantifies’ the amount of ‘mimetic
dust’, adding to the total value of the amount of cold dark matter in the universe, and
here is set to zero since the universe during inflation is not yet in a phase where regular
matter should play any role. Hence, the first Friedmann Equation resulting from the
Action of the theory (2.16) simplifies to

1
3κ

2 = (C − κC ′)V + 1
2 φ̇

2. (2.25)

Up till this point, the time-evolution behavior of the scale factor a(t) and the inflaton
field φ(t) can be fully determined by the equation of motion in (2.22) and the first
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Friedman Equation in (2.25).
To find the second Friedmann Equation, the time derivative of the first equation (2.25)
is taken, and the expression for the equation of motion for the inflaton (2.22) is used to
substitute for the φ̈ that appears, one finds that the Hubble constant changes at a rate
of

3Ḣ ≡ κ̇ = −3
2
(
φ̇2 + (C ′V )

)̇
. (2.26)

The previous expression can be rewritten its more explicit form,

Ḣ = −1
2
φ̇ (φ̇+ C ′V ′)

1 + 3
2C

′′V
. (2.27)

in which the particularities of the Mimetic Inflation Model presented in this thesis work
will be substituted for the arbitrary functions of the potential and the coupling function
in the general theory, to find asymptotical solutions of the homogeneous background,
and carry on with the rest of the analysis which are needed in presenting the viability
of this model.

2.4 Presenting Mimetic Inflation: A Successful Model

The Potential and Coupling Term for Mimetic Inflation — While there is
usually a tradeoff between a model that is ‘simple’ and one that satisfies all necessary
observational requirements and solves other problems in its corollaries, in the case of
the work presented in this thesis, the problems posed earlier in Section (1.4) can be
addressed using the simplest possible model, choosing the following functions for its
potential and coupling term that enter the action (2.16),

V (φ) = 1
2

m2φ2

(1 + φ2)
(
1 +mφ4

)
, (2.28)

and
C (κ) = 1 + κ

κ0
, (2.29)

where κ0 in the coupling term of the mimetic with the inflaton field is taken to be of
the order of the inflaton mass, κ0 = m.
To understand the limits of the potential and how they enter into the analysis for the
problem of self-reproduction it is useful to study the limits of its analytical expression
at hand. For that, a rescaled plot is given in Figure (2.1), which will also be helpful to
visually guide the different parts and limits.
For small φ < 1 : the potential reduces to the usual one which describes the self
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Figure 2.1: A rescaled plot of the potential for the inflaton field V (φ)

interaction of a massive field,
V ≃ 1

2m
2φ2. (2.30)

For larger φ > 1 : The potential, and for later convenience its derivative, are well
approximated as

V ≃ 1
2m

2
(

1− 1
φ2 +mφ4

)
, (2.31)

V ′ ≃ m2
(

1
φ3 + 2mφ3

)
. (2.32)

Therefore, for φ > 1, this approximation will be substituted in the previously obtained
expressions for the Friedmann equation (2.25) and the inflaton equation of motion
(2.22),

3H2 = V + 1
2 φ̇

2, (2.33)

φ̈+ κφ̇+
(

1 + κ

m

)
V ′ = 0, (2.34)

to obtain explicitly the expressions,

3H2 = 1
2m

2
(

1− 1
φ2 +mφ4

)
+ 1

2 φ̇
2, (2.35)

φ̈+ κφ̇+
(

1 + κ

m

)(
m2

φ3 + 2m3φ3
)

= 0, (2.36)
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keeping in mind that 3H ≡ κ are used interchangeably.
These expressions will be the main expressions used to demonstrate analytically the
resulting inflationary scenario. Since for inflation and its corollaries, including the
phenomenon of self-reproduction, the region of interest for the field behavior is φ > 1,
therefore, from this point onward all the dynamics will be analyzed in the limit φ > 1.

2.4.1 Asymptotical Solutions for Mimetic Inflation

Given that the equations of motion for a(t) and φ(t) that resulted from the theory action
(2.16) are modified, the usual slow-roll parameter analysis in the literature will not be
directly applicable to the potential at hand. However, one can re-derive the slow-roll
conditions for the current model, starting from the basic arguments for slow-roll, and
finding new conditions for which the model at hand reproduces the slow-roll regime
of inflation. To begin, the main assumption for slow-roll is φ̈ ≪ κφ, and the second
condition for slow-roll is usually used in potential-dominated inflation where H2 ≃ V ,
since the kinetic term 1

2 φ̇
2 during slow roll is usually suppressed in comparison to the

potential term in the Friedmann equation. In this Mimetic Model, it turns out, that while
the field is rolling through different parts of its potential, slow-roll conditions are still met,
with a subtle difference, whereby for dynamics involving different parts of the potential,
inflation will be dominated by either the potential term (on the plateau) entering in the
Friedmann equation, or the kinetic term which will dominate inflation when the inflaton
field is rolling along the quartic part of the potential. For the inflationary solution itself,
finding an exact analytic solution is not of direct interest for more involved models,
rather demonstrating how an inflationary phase is possible and draw from it relevant
quantities and asymptotic limit, which will be shown below. The analysis for avoiding
self-reproduction will be presented after.

Kinetically Driven Exponential Expansion in Mimetic Inflation

The goal in Mimetic Inflation will to be to begin the inflationary phase in the kinetically-
dominated region, since as will be shown later, this will be the lesser degree of fine tuning
required from the model which will simultaneously avoid eternal inflation. For that, an
outline for the derivation of the asymptotical solutions for the homogeneous background
will be presented, starting from the kinetically-dominant part of the dynamics, which
on the Figure (2.1), starts with the scalar field rolling down the quartic part of the
potential φ > m−1/2.
Hence, in the part of the potential where the kinetic term dominates, κ/m > 1, the
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effective coupling term reduces to

C(κ) ≃ κ

m
, (2.37)

and the set of equations of motion for a(t) and φ in (2.33) and (2.34) simplify to

κ2 = 3
2 φ̇

2, φ̈+ κ (φ̇+ V ′/m) = 0. (2.38)

Now, knowing that the scalar field decreases during expansion, hence φ̇ < 0, the Hubble
parameter becomes

κ = −
√

3
2 φ̇, (2.39)

which is then substituted into the simplified equation of motion for φ in (2.38), which
can now be rewritten as

dφ̇

dφ
=
√

3
2

(
φ̇+ V ′ (φ)

m

)
, (2.40)

using the definition φ̈ = φ̇(dφ̇/dφ).

This first order differential equation of φ̇ has an explicit solution in terms of φ,

φ̇ = b

m
ebφ

φ∫
V ′ (φ̃) e−bφ̃dφ̃, (2.41)

where b =
√

3/2 is defined to simplify the expression. The solution corresponding to the
lower limit of the integral is proportional to Cebφ, where C is an integration constant,
and given that the field φ is decreasing with time, this solution is decaying and can
be ignored. Then, integrating the expression (2.41) by parts, one finds the following
attractor solution to the equation in (2.40)

φ̇ = − 1
m

(
V ′ + V ′′

b
+ V ′′′

b2 + ...

)
. (2.42)

Considering the class of power-law potentials, as is the case with the relevant parts of
the potential V in Mimetic-Inflation, where V ∝ φn, the series in this solution (2.42)
will be finite in its terms. The expression above can then be subsequently integrated to
find the solution φ (t).

Example — To demonstrate an explicit solution for φ, the following simpler potential
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will be used as an example to give a complete analytical picture,

V (φ) = 1
2m

2φ2, (2.43)

Equation (2.42) then becomes

φ̇ = −m
b

(1 + bφ) , (2.44)

which can be integrated, giving

φ (t) =
(
φi + 1

b

)
e−mt − 1

b
, (2.45)

with φi evaluated at the initial time φ (t = 0). At t = 0, if inflation begins at the Planck
scale , then φ̇2 ≃ 1, and for m≪ 1, one gets from (3.75) that φi ≃ m−1 ≫ 1.
Equations of state — For the above potential, following equations (2.25) and (2.27
one gets

κ̇

κ2 = − 1
1 + bφ

. (2.46)

Recalling earlier κ = 3H, one has

H2 = ε/3, Ḣ = −1
2 (ε+ p) , (2.47)

with ε as the energy density and p as pressure, one can rewrite the expression in (2.46)
as in (e.g., [94])

ε+ p

ε
= 2

1 + bφ
. (2.48)

Then, when φ≫ 1, the ratio satisfies

(ε+ p) /ε≪ 1, (2.49)

so that the equation of state is
p ≈ −ε (2.50)

and the universe enters the phase of exponential expansion. Inflation then ends when
the field reaches φ < 1 , and as it continues to drop to values |φ| ≪ 1, one recovers the
ultra-hard equation of state

p ≈ +ε, (2.51)

where the universe is now matter-dominated.
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Then starting with a kinetically-driven Mimetic-Inflation, and integrating (2.39), the
solution for the scale factor becomes

a = ai exp
(

1√
6

(φi − φ)
)
, (2.52)

and during inflation it grows by a large number of e-folds

af

ai

≃ exp
(

1√
6m

)
≫ 1, (2.53)

where m≪ 1.
For a Generic Potential in Mimetic-Inflation — The previous analysis can be
extended to the whole class of potentials in Mimetic Inflation by finding the requirements
on a generic potential V (φ) which can drive the inflationary phase outlined above. To
rederive the conditions for slow-roll in the case of the Mimetic Inflation, the main
assumption that φ̈ is neglected in equation (2.34) must hold. Recalling that κ > m for
φ > 1, the solution to (2.34) can then be approximated by

φ̇ ≈ −V
′

m
. (2.54)

Taking this solution into account, and using (2.39), one finds that the slow-roll condition
|φ̈| ≪ |κφ̇| is valid only when

V ′′

V ′ ≪ 1. (2.55)

Then by looking at the how the Hubble scale is changing

|κ̇|
κ2 ≃

|φ̈|
|κφ̇|

≃ V ′′

V ′ , (2.56)

exponential expansion with |κ̇| /κ2 ≪ 1 can occur when the potential satisfies the
inequality (2.55).
Clearly, this condition is satisfied for any power-law potential, when φ > 1, and as
will be shown in the next part, the self-reproduction condition is met only when the
curvature exceeds the Planckian curvature.

2.4.2 Avoiding Self-Reproduction in Mimetic Inflation

Now, the goal is to show how self-reproduction can be avoided as the inflaton field spans
all parts of its potential, using conditions that apply to each part separately. Recalling
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that the condition for self-reproduction is for the amplitude of quantum fluctuations to
exceed the change in the classical background field,

∆φtot = ∆φcl + ∆φq ≃
φ̇

H
+H > 0, (2.57)

to evade self-reproduction then, the condition that ∆φtot < 0 must be verified for each
part of the potential, considering that a different approximation for the potential is
used for φ̇ in each segment, and similarly H will be evaluated for each case, first when
inflation is dominated by the potential, then by the kinetic term. The analysis is shown
below, taking the mass

m ≃ 10−6, (2.58)

which is needed for correct observational estimates.

I. When Mimetic-Inflation is driven by the Potential V (φ):

The analysis in this part will be focused on making the case of how the potential-
dominated inflation evades self-reproduction.
For the plateau region in the potential, where 1 < φ < m−1/2, κ > m, recalling that in
the slow-roll regime where φ̈ is negligible in (2.34), plugging in the potential (2.32) into
the simplified expression for φ̇ already obtained in (2.54), the equation becomes

φ̇ ≃ −V
′

m
≃
(
m

φ3 + 2m2φ3
)
. (2.59)

In this region, indeed V > φ̇2, hence H2 ≃ V/3. Using (2.59), and plugging these back
into (2.57) gives

∆φtot = − V ′

mH
+H ≃ − V ′

m
√
V/3

+
√
V

3 > 0 (2.60)

and so, the condition for self-reproduction for the potential-dominated Mimetic Inflation
can be rewritten as

mV

3V ′ > 1. (2.61)

Now, this condition will be tested in each segment of the plateau separately, and show
how it is violated.
For region 1 < φ < m−1/6 : The potential and its derivative as given in (2.31) and
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(2.32) can be further approximated by

V ≃ 1
2m

2
(

1− 1
φ2

)
, V ′ ≃ m2 1

φ3 . (2.62)

Testing the self-reproduction condition , mV
V ′ ∼ m3φ3

m2 < 1, so (2.61) is clearly violated in
the region 1 < φ < m−1/6.
For region m−1/6 < φ < m−1/4: The potential is at the plateau and the second term in
its derivative in (2.32) dominates over the first term , giving

V ≃ 1
2m

2, V ′ ≃ 2m3φ3. (2.63)

Again, in this region of the potential, mV
V ′ ∼ m3

m3φ3 < 1 violates the condition for
self-reproduction in (2.61).
For region m−1/4 < φ < m−1/2: The potential and its derivative can be described
predominantly by

V = 1
2m

3φ4, V ′ = 2m3φ3, (2.64)

and here it can be further deduced that the condition for self-reproduction is violated
for φ < m−1/2, keeping in mind that this region is the beginning of the transition into
the kinetically-driven inflation region, at φ = m−1/2, and must be connected with the
next region to conclude its behavior at the limit of this approximation.

Therefore, for the whole range 1 < φ < m−1/2, and during a typical Hubble time tH , the
condition for self-reproduction is violated throughout, and the classical background field
δφcl ≃ φ̇tH decreases more than the quantum fluctuations’ amplitude δφq in the Hubble
scale during potential-driven inflation, and self-reproduction is successfully avoided. At
the limit of this region, the energy density for φ ≃ m−1/2 has a value of ε ≃ m.

II. When Mimetic-Inflation is Kinetically-driven:

For region φ > m−1/2: In the quartic part of the potential, the kinetic term dominates
over the potential term in (2.33), and drives inflation as was shown earlier. In this
region, recalling that effective coupling term is

C(κ) ≃ κ

m
, (2.65)
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and that the set of equations of motion for a(t) and φ in (2.33) and (2.34) simplified to

κ2 = 3H2 = 3
2 φ̇

2, φ̇ ≃ −V ′/m, (2.66)

now one can test that self-reproduction is avoided in this kinetically-dominated inflation
region. From the equations above, H ∼ −φ̇, and so the condition (2.57) can be rewritten
as

∆φtot = −1 +H > 0. (2.67)

It can be clearly seen that the self-reproduction condition is violated only up to the
Planckian scale H ∼ 1, which the scalar field reaches at φ ≃ m−2/3, obtained from the
condition

H ∼ 2m3φ3 ∼ 1. (2.68)

Therefore, at the Planck scale, inflation can begin, as was demonstrated, avoiding an
eternally self-reproducing universe.

Initial Conditions with a lesser degree of fine-tuning in Mimetic Inflation

Based on the previous result, the limit for which self-reproduction is absent emerges
naturally in the model as a desirable cut off. Therefore, starting inflation at the Planck
scale simultaneously solves the problem of fine-tuning of initial conditions and avoids a
Universe that is eternally self-reproducing. It is worth stressing again that these two
problems have not been simultaneously solved in any previous work and breaks a core
argument against Inflation as a theory with no viable models.
Finally, to conclude this part, it is important to note that all the analysis was performed
using the simplest Mimetic-Model of those specified by the action in (2.16), and numerous
other models can be developed which are also compatible with current CMB observations.
And as will be presented in the following section, the model studied meets every
observational constraint, while avoiding the pitfalls of eternally inflating universes.

2.5 Cosmological Perturbations

2.5.1 A General Outline for Perturbation Equations

The goal in this section will be to derive the main equations for the perturbations in
the Mimetic Model. For that, a general outline for linearizing the Einstein Equations
for small inhomogeneities about the background metric for a flat Friedmann universe
will be laid out first, following [94].
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Decomposing Perturbations — For perturbations around a background metric,
the line element is given by

ds2 = [gµν + δgµν(xκ)] dxµdxν , (2.69)

with |δgµν | ≪ |gαβ|, and for a flat Friedmann universe, the metric expressed in conformal-
time is

gµνdx
µdxν = a2(η)(dη2 − δijdx

idxj). (2.70)

Now, one can see that the perturbations δgµν can be naturally decomposed into scalar,
vector, and tensor modes reflecting how they behave under transformations that leave
the metric describing the homogeneous and isotropic universe invariant, i.e., the trans-
formations that belong to the translational and rotational groups. Hence one obtains
the components δg00, δg0i, and δgij which behave respectively as a scalar, vector, and
tensor under rotations, and are described by the functions that preserve their property
as

δg00 = 2a2ϕ (2.71)
δg0i = a2(B,i + Si) (2.72)
δgij = a2(2ψδij + 2Eij + Fi,j + Fj,i + hij) (2.73)

where ϕ, ψ, E, and B are scalars, Si and Fi are vectors with zero divergence, and hij is
a traceless transverse tensor. Hence, the independent functions describing the metric
perturbations δgµν are in total ten. They have distinct properties based on their type,
for instance,

- Scalar modes are generated by the variations in the energy density. In the Mimetic
model presented in the thesis, the energy density has new contributions from the Mimetic
field and its coupling to the scalar field potential that are distinct from the standard
expressions obtained in typical inflationary models, and so its effect will also be reflected
in the spectrum of perturbations.

- Vector modes decay rapidly, which makes them largely insignificant in cosmological
contexts, and similarly in Mimetic Inflation their behavior will remain unaltered.

- Tensor modes capture the two dynamical degrees of freedom of gravity, and describe
propagating gravitational waves.

Gauge-Invariant Variables

Since we are interested in studying the effect of physical or ‘real’ matter perturbations on
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the metric, its important to eliminate the fictitious effect of coordinate transformations

xα → x̃α + ξα, (2.74)

with the infinitesimal quantity ξα being a function of space and time, ξα ≡ (ξ0, ξi).
Skipping over the details of how the previously described decomposition of metric
perturbations in (2.71) transforms under these coordinate changes which can be found
in references (e.g., [94]), out of the different possibilities of combinations that produce
gauge-invariant variables, the following are the simplest linear combinations of the
perturbation functions

Φ ≡ 1
a

[a(B − E ′]′, Ψ ≡ ψ + a′

a
(B − E ′)

V i = Si − F ′
i (2.75)

while the tensor hij is already gauge invariant, and the prime here denotes the derivative
with respect to conformal time. After isolating coordinate freedom, the physical degrees
of freedom describing the metric perturbations reduce to six, two scalar, two vector, and
two in the tensor sector. As will be seen in the equations for the perturbations below,
only the tensor degrees of freedom will propagate.

Linearized Einstein Equations — Starting with the field equations, momentarily
restoring the factor 8πG,

Gµ
ν ≡ Rµ

ν −
1
2δ

µ
µR = 8πGT µ

ν , (2.76)

where the Einstein tensor can computed for the perturbed metric in (2.69),

Gµ
µ =(0) Gµ

ν + δGµ
ν + ... , (2.77)

collecting terms up to linear order in the perturbations into δGµ
ν , the non-zero components

of the unperturbed (0)Gµ
ν for the conformally flat metric (2.70) can be computed as

(0)G0
0 = 3H2

a2 , (0)Gi
j = 1

a2 (2H′ +H2)δij, (2.78)

with H ≡ a′/a. Similarly for the energy-momentum tensor, the background components
will be diagonal, such that

(0)T 0
i = 0, (0)T i

j ∝ δij. (2.79)
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The linearized perturbation equations can be written as

δGµ
ν = 8πGδT µ

ν , (2.80)

where δGµ
ν and δT µ

ν are written in gauge-invariant terms, following

δT 0
0 = δT 0

0 − ((0)T 0
0 )′(B − E ′),

δT 0
i = δT 0

i − ((0)T 0
0 −(0) T k

k /3)(B − E ′),i , (2.81)
δT i

j = δT i
j − ((0)T i

j )′(B − E ′),

with T k
k denoting the trace. Similar expressions can be obtained for the components of

δGµ
ν .

Following the decomposition of the metric perturbations into scalar, vector and tensor
parts, the components of δTα

β can be split in a similar way, and since these sectors
decouple at linear order, their evolution equations can be studied independently for
the corresponding part of δTα

β , and will be listed below for completeness. Therefore,
computing δGα

β , equations (2.80) are split into
Scalar Perturbations

∆Ψ− 3H(Ψ′ +HΦ) = 4πGa2δT
0
0 (2.82)

(Ψ′ +HΦ),i = 4πGa2δT
0
i , (2.83)

[Ψ′′ +H(2Ψ + Φ)′ + (2H′ +H2)Φ + 1
2∆(Φ−Ψ)]δij

−1
2(Φ−Ψ),ij = −4πGa2δT

i

j (2.84)

Vector Perturbations

∆V i = 16πGa2δT
0
i(V ) (2.85)

(V i,j + V j,i)′ + 2H(V i,j − V j,i) = −16πGa2δT
i

j(V ). (2.86)

Tensor Perturbations

(h′′
ij + 2Hh′

ij −∆hij) = 16πGa2δT
i

j(T ) (2.87)

Now, the equations described in this section will be utilized for the Mimetic Inflation
Model, and will be analyzed for the modifed Energy-Momentum tensor that was obtained
for the model in (2.6).
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2.5.2 Cosmological Perturbations in Mimetic Inflation

Newtonian Gauge — The gauge choice for the perturbed metric will be the conformal
Newtonian gauge, given that for linearized perturbations δT i

k is diagonal.
Hence,

ds2 = (1 + 2Φ) dt2 − a2 (t)
[
(1− 2Φ) δikdx

idxk − h(t)
ik dx

idxk
]
, (2.88)

and here Φ represents the gravitational-potential for the scalar fluctuations, and h(t)
ik are

the tensor modes described earlier.

Tensor Perturbations in Mimetic-Inflation

In this Mimetic Inflation model, the equation for tensor perturbations is the same as
in non-modified general relativity, and so the solution for gravitational waves does not
change, and so it is not of interest in this work to reproduce the same result, details of
which can be found in [94].

Scalar Perturbations in Mimetic-Inflation

On the other hand, the equations for scalar perturbations in the Mimetic-Inflation
Model presented are substantially modified in comparison to the standard picture, since
contributions from the perturbation of the Mimetic field δϕ will enter the equations, but
their analysis will in fact be very similar to the normal case, since all the complicated
extra terms in the equations will simplify greatly.
Mimetic field perturbations — To begin, the perturbation of the solution of the
Mimetic field in the synchronous coordinate system (2.9) is

ϕ = t+ δϕ, (2.89)

and plugging this in the constraint equation gµν∂µϕ∂νϕ = 1, one gets for linearized
perturbations the following expansion

(1− 2Φ)(1 + 2 ˙δϕ+O( ˙δϕ2)) = 1, (2.90)

from which the expression relating the mimetic field perturbations to the gravitational
potential is obtained

˙δϕ = Φ. (2.91)

Similarly, by varying the equation for the d’Alembertian of the Mimetic field with
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respect to the metric gµν ,

□ϕ = 1√
−g

∂µ(
√
−ggµν∂νϕ) (2.92)

one obtains the expression for the variation for the trace of extrinsic curvature κ, given
by

δκ ≡ δ□ϕ = −3δ̈ϕ− 3H ˙δϕ− ∆
a2 δϕ, (2.93)

keeping in mind that H = κ/3 is the Hubble constant.

Energy-Momentum Tensor Perturbations — Considering the modified expression
for the Energy-Momentum tensor in (2.18), its gauge-invariant perturbations in the
components are given by

δT
0
0 = 2δλ+ ΦV ′φ̇− V ′δφ̇− V ′′φ̇δφ− Φφ̇2 + φ̇δφ̇+ V ′δφ, (2.94)

δT
0
i = (2λ+ (C ′V )˙) δϕ,i + δ(C ′V ),i + φ̇δφ,i, (2.95)

δT
i

k = δi
k

(
Φ(−V ′φ̇+ φ̇2) + (V ′ − φ̇)δφ̇+ (V ′ + V ′′φ̇)δφ

)
, (2.96)

Linearized Perturbation Equations — Using the metric in the Newtonian Gauge
defined in (2.88), taking again 8πG = 1, the linearized Einstein Equations become

2
a2 ∆Φ− 6H(Φ̇ +HΦ) = δT

0
0, (2.97)

2(Φ̇ +HΦ),i = δT
0
i , (2.98)

2Φ̈ + 6HΦ̇ + 2(3H2 + 2Ḣ)Φ = δT i
k. (2.99)

0–i Einstein Equation — Ignoring the contribution of mimetic dust by setting B = 0
in (2.24), the first term in the δT 0

i expression drops out, and the second term can be
computed as

δ (C ′V ) = C ′′V δκ+ C ′V ′δφ

= −3C ′′V
(

Φ̇ +HΦ + 1
3a2 ∆δϕ

)
+ C ′V ′δφ. (2.100)
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One then obtains from the 0− i Einstein equation (2.98) the following expression

Φ̇ +HΦ = 1
2
(
1 + 3

2C
′′V
) [(φ̇+ C ′V ′) δφ− C ′′V

a2 ∆δϕ
]

= −Ḣ
φ̇
δφ− C ′′V

(2 + 3C ′′V ) a2 ∆δϕ, (2.101)

where (2.91) was used to express the derivative of δϕ, and (2.27) was used to substitute
for Ḣ.

Inflaton Perturbations — To linear order in perturbation, the equation for the
Inflaton fluctuations is obtained from (2.20) as

δ̈φ+ 3H ˙δφ− 1
a2 ∆δφ− 4φ̇Φ̇− 2 (φ̈+ 3Hφ̇) Φ + δ (CV ′) = 0, (2.102)

where δφ ≡ δφ. And similarly as in (2.100), one has

δ (CV ′) = −3C ′V ′
(

Φ̇ +HΦ + 1
3a2 ∆δϕ

)
+ CV ′′δφ. (2.103)

Now, by deriving the equation of motion for the inflaton (2.20) with respect to time,
CV ′′ can be expressed as

CV ′′ = − 1
φ̇

( ...
φ + 3Hφ̈+ 3Ḣφ̇+ 3C ′V ′Ḣ

)
, (2.104)

then plugging this expression into (2.102), together with the expression of (Φ̇ + HΦ)
obtained in (2.101), the equation for the Inflaton perturbations (2.102) becomes

δ̈φ+ 3H ˙δφ− 1
a2 ∆

(
δφ+ 2C ′V ′ − 4φ̇C ′′V

2 + 3C ′′V
δϕ

)

−
( ...
φ

φ̇
+ 3H φ̈

φ̇
− Ḣ

)
δφ− 2 (φ̈+Hφ̇) Φ = 0. (2.105)

0–0 Einstein Equation — From the 0− 0 Einstein Equation, one can only find the
variation in the Lagrange multiplier, δλ, which is not important. And by further taking
the time derivative of the 0− 0 equation, and using the linearized Mimetic field equation
given in (2.19), one simply recovers again the above equation of motion of the inflaton
perturbations. Therefore this equation does not provide any additional insight to the
analysis.
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i–i Einstein Equation — This equation does not give any useful insight either, since
by substituting the expression for δφ in terms of Φ and δϕ from (2.101) into δT i

k, one
finds that the i− i Einstein equation is simply identically satisfied.

From here, the equation for the Mimetic field perturbations in (2.91), the 0− i Einstein
Equation in (2.101), and the equation for the evolution of the Inflaton perturbations
in (2.105) will be the main equations which are enough to find solutions for the three
variables δφ,Φ and δϕ.

Plane Wave Solution for Perturbations

Considering plane wave perturbations of the Mimetic field, Inflaton field, and gravita-
tional potential

δφ,Φ, δϕ ∝ exp
(
i
−→
k .−→x

)
, (2.106)

where k = |−→k | is the co-moving wave number, and −→x is the direction of the wave
propagation. The relative size of their physical wavelength λph with respect to the
Hubble curvature scale H−1 will affect their evolution, otherwise referred to as the
horizon scale. While the H−1 scale remains somewhat constant during exponential
expansion, the physical size of the perturbations λph ≃ a/k will grow.
The three main equations (2.91), (2.101) and (2.105) will be solved in two cases: in the
limit of short-wavelength perturbations which have a physical wavelength λph ≪ H−1,
and in the limit of λph ≫ H−1.
For short-wavelength perturbations — Inside the Hubble scale, the co-moving
wave number is k ≫ Ha. In this case, the equation for the inflaton perturbations (2.105)
greatly simplifies to

¨δφk + 3H ˙δφk + k2

a2 δφk ≃ 0. (2.107)

This simplification follows first from the fact that the gravitational field does not affect
the evolution of short-wavelength perturbations, so the term with Φ becomes negligible
as the spatial derivative term dominates. Keeping in mind that Φ and δφ oscillate in
this limit, their time-derivatives can be approximated as

Φ̇ ∼ k

a
Φ, ˙δϕ ∼ k

a
δϕ, (2.108)

which are valid in the leading order, and combining them with Φ = ˙δϕ from (2.91) into
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equation (2.101), one finds that

2C ′V ′ − 4φ̇C ′′V

2 + 3C ′′V
δϕ ∼ Ḣ

(k/a)2 δφ, (2.109)

and so for the term inside the Laplacian containing perturbations of the mimetic field
δϕ, it can be ignored for k/a≫ H relative to δφ. The last terms in (2.105) that were
dropped are smaller by at least a factor of order Ha/k ≪ 1 relative to the terms that
are kept in (2.107).
Hence, the solution to the simplified equation in (2.107) is given by the scalar-field
modes

δφk ≃
Ak

a
exp

(
±ik

∫ dt

a

)
, (2.110)

with a constant of integration Ak, which physically start out as quantum fluctuations of
the vacuum.
For long-wavelength perturbations — For modes that have crossed the Hubble
scale, the co-moving wave number is k ≪ Ha. These inhomogeneities cross the horizon
at tk, where this crossing time is specified from the relation k ∼ Hkak. Then, the spatial
derivative terms in the main equations start decaying proportionally to 1/a2, and so the
Laplacian terms in the equation for the inflation perturbations in (2.101) and (2.105)
will be dropped, such that the expressions take the form

Φ̇ +HΦ ≃ −Ḣ
φ̇
δφ

δ̈φ+ 3H ˙δφ−
( ...
φ

φ̇
+ 3H φ̈

φ̇
− Ḣ

)
δφ− 2 (φ̈+Hφ̇) Φ ≃ 0. (2.111)

The exact solutions for the above equations are obtained as

δφ = A
φ̇

a

∫
adt, (2.112)

Φ = A
d

dt

(1
a

∫
adt

)
, (2.113)

and can be simply proven through direct substitution, keeping in mind that A is a
constant of integration. The solution for the mimetic field follows from the relation
(2.91),

δϕ = A
1
a

∫
adt. (2.114)

These solutions are obtained for arbitrary functions for the coupling term C(κ) and the
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potential V (φ) used, and remain valid during and after inflation has ended.

2.5.3 Spectrum of Inhomogenieties

In this section, the spectrum of inhomogeneities that results from the initial quantum
fluctuations will be computed for the Mimetic Inflation model presented earlier. Before
that, some problems and subtleties regarding initial perturbations will be discussed.

Quantum Fluctuations from Cosmic Inflation: Point of View — The cosmo-
logically relevant perturbations are those that start out below the Hubble scale with
λph ≪ H−1 and later cross it, then the evolution of these modes can be studied. The
amplitude for the quantum minimal fluctuations is fixed on these sub-horizon scales to
the smallest value that the uncertainty principle permits, as they can be well defined
only on the scales smaller than the Hubble scale, where the space-time manifold can be
treated effectively as a flat Minkowski metric. That being said, there are certain technical
subtleties that arise from the mathematical description of the initial perturbations and
their evolution that gives rise to various conceptual problems that are then debated in
the literature, which will be discussed below. From the point of view of cosmic inflation,
the most important outcome is that the scalar field will have unavoidable quantum
fluctuations that are described at the sub-Hubble scales by the evolution equation given
in (2.107), that describe the vacuum fluctuations and preserve the vacuum spectrum.
Classical Inhomogeneities — The first problem is regarding pre-existing inhomo-
geneities. The initial spectrum of the relevant perturbations on sub-Hubble scales is
not - and does not have to be- fine-tuned at the outset, so it can still contain particles
([95]-[97]). But these particles and other present inhomogeneities do not pose a problem
since they will be stretched by expansion from the sub-Hubble scales to large unob-
servable scales and will ultimately become non relevant. The only condition on such
inhomogeneities is that they do not prevent the quasi-exponential expansion of inflation
from its very beginning. This reinforces the idea that for cosmological perturbations
there is no fine-tuning problem, even if the region that is undergoing inflation is largely
inhomogeneous, granted that the initial inhomogeneities do not prevent this region from
entering the inflationary stage or stop it from the very beginning.
The Trans-Planckian Problem and Bunch-Davies Vacuum — These are the
two other problems discussed in the literature (e.g. [98]-[100]). Regarding the choice
of a Bunch-Davies vacuum, contrary to many arguments, one does not in fact need to
assume a Bunch-Davies vacuum, nor a Minkowski vacuum on scales where λph < H−1,
where particles are absent, since soon after inflation starts, the inhomogeneities present
will be the quantum fluctuations. As highlighted previously, the only condition on the
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pre-existing inhomogeneities is that they do not spoil inflation such that the exponential
expansion is not terminated from the beginning. When that is the case, the exponential
expansion will take care of diluting these inhomogeneities, and so they do not affect the
evolution of the universe and become less relevant to it at the observable scales.

Regarding the Trans-planckian problem, it can be formulated for perturbations in
inflation analogously to Hawking radiation. This problem appears as an artifact from
the method of calculation used to derive these effects. As mentioned, during inflation the
inhomogeneities that were initially present on the scales smaller than the Hubble scale
will be ‘cleaned up’ as a result of the expansion, and the only remaining fluctuations on
scales λph < H−1 will be the quantum fluctuations. These fluctuations can either be
described in the static coordinate system which can still be defined within the Hubble
scale, and so they resemble the known Minkowski vacuum; alternatively, it is possible
to describe the vacuum in a coordinate system which is expanding, such as for the
short wavelength perturbations of δφk in (2.110). The reason for choosing expanding
coordinates is that one can relate the perturbations on scales that are within the Hubble
scale, to those that exceed it, where a static coordinate system can no longer be defined,
and this is a purely technical advantage from the point of view of the calculations.
For λph < H−1, the spectrum of fluctuations for the scalar field, which describes how
amplitude depends on the physical wavelength λph ≃ a/k, stays invariant, and during
the evolution that is described for δφk in (2.107), it does not change. So for a massive
scalar field, the amplitude δφ is given by

δφ ≡
√
δφ2

kk
3 ≃ 1/λph, (2.115)

which becomes δφ ≃ H on the Hubble scale or at the moment of horizon crossing.
Hence, considering perturbation on given physical scale after they have been stretched
out by expansion, then following the calculations in expanding coordinates, it may seem
as if these perturbations were replaced by those for which the physical wavelength must
have started smaller than the Planck scale to so that the invariant vacuum spectrum is
preserved. This picture is at the core of the Trans-Planckian problem. But as explained,
it is simply a technique used to make the calculations simpler, and can be interpreted
rather differently. For the modes that were stretched by expansion from physical scales
λph < H−1, new perturbations can be generated naturally by the uncertainty principle
with the needed amplitude. In such a way, the vacuum spectrum remains invariant in the
static coordinate system at the sub-Hubble scales, and one can overcome the conceptual
loophole that perturbations existing on Trans-Planckian scales had to be stretched
to some physical scale by expansion. Therefore, the Trans-Planckian problem can be
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disregarded as an artifact of the calculations, and not associated with any physically
real problem, which is also analogous to describing the Minkowski vacuum in Milne
coordinates which are expanding.
Perturbations at the Horizon-crossing — Before Horizon-crossing, the amplitude
of the quantum fluctuations while they were still in the oscillating mode was

δφ ∼ |δφk|k3/2 ∼ k

ak

,

and during inflation, this amplitude was decaying inversely proportionally to the scale
factor. At the moment of Horizon crossing, on scales λph ≃ H−1 when k ∼ Hak, it
becomes

δφ ≃ H, (2.116)

and so the amplitude of the scalar field fluctuations is inversely proportional to the
physical scale. These are regarded as the initial conditions for the perturbation with a
co-moving wave-number k and at a time tk which satisfies k ≃ a(tk)H(tk), and will be
used to fix the initial amplitude of perturbations described in the expanding coordinates
in (2.112) on scales that exceed the Hubble scale when curvature becomes relevant.
After Horizon-crossing, for t > tk, with the exponential growth of the scale factor the
Hubble parameter remains somewhat constant, and the solution for the perturbation
that satisfies the condition k < Ha is given in (2.112). During slow-roll inflation, these
solutions are simplified, taking into account Ḣ ≪ H2, and the integral part of the
solutions can be expanded as

1
a

∫
adt = 1

a

∫ da

H
= 1
H

(
1 + Ḣ

H2 + ...

)
+ D

a
≃ 1
H
, (2.117)

where the decaying mode with the integration constant D is ignored. Now, taking a
perturbation with a co-moving wave-number k, and given that the typical amplitude
of the quantum fluctuations at time tk is

√
δφ2

kk
3 ≃ Hk=Ha, one finds that that the

integration constant from the equation of δφ in (2.112) is given by

A ≃
(
H2

|φ̇|

)
k=Ha

, (2.118)

and here the subscript indicates that the given quantity in the parenthesis is to be
evaluated at the moment in time when the perturbation gets stretched by inflationary
expansion to the physical scale λph ≃ H−1.

For the next part, since the total amplitude of the spectrum is a free parameter of the
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theory and is to be determined by observations, the coefficients of order O(1) will be
omitted from further estimates.
Spectrum of Gravitational Potential — Substituting the previous result into
the solution for the gravitational potential at the scales exceeding the Hubble scale in
(2.112), it can be written as

Φ ≃
(
H2

|φ̇|

)
k=Ha

d

dt

(1
a

∫
adt

)
. (2.119)

After inflation ends, the time-dependent term on the right becomes simply a constant
which is of order one. Therefore, for the perturbations that are of interest, which have
left the Hubble scale during inflation, the spectrum for the gravitational potential defined
by δΦ ≡

√
Φ2

kk
3 is then

δΦ ≃
(
H2

|φ̇|

)
k=Ha

. (2.120)

Spectrum of Gravitational Waves — As have been mentioned earlier, the produced
gravitational waves in Mimetic Inflation follow the same consideration as in standard
inflation, one can therefore simply use the final result for the gravitational waves
spectrum which is given by

δh ≃ Hk=Ha. (2.121)

Now, these results will be used to find the spectrum of perturbations for the Mimetic
Model with the potential and coupling term described in (2.28) and (2.29).

Spectrum in Potential-dominated Mimetic Inflation — The observationally
relevant phase of inflation occurs in the region where the potential dominates over the
kinetic term in equation (2.33), where the scalar field spans

1 < φ < m−1/2, (2.122)

and in this region, apart from the modified expression for φ̇ for higher curvatures when
k > m, the perturbations have a similar consideration as in standard potential-driven
inflation models. Hence, given that in this region φ̇ follows equation (2.59), and the
potential is approximated by (2.31), the spectrum becomes

δΦ ≃ m

(
φ3 1 +mφ4

1 + 2mφ6

)
k=Ha

. (2.123)
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Rewriting field variables in terms of number of e-folds N — To obtain estimates for
predictions of needed observables, it will be useful to express the scalar field φk=Ha in
terms of N for a given co-moving wave-number k. For that, the number of e-folds N
before the end of inflation is defined as

a ≃ afe
−N , (2.124)

and here the scale factor at the end of inflation is defined as af . Then, one can define
Nk as the number of e-folds at which a perturbation with a given k crosses the Hubble
scale before inflation ends, satisfying the condition k = Ha, such that it is given by

Nk ≃ ln
(
Haf

k

)
. (2.125)

The span of N which will be considered is 50 < Nk < 60, and it encompasses the range
of scales probed by the CMB observations, while the exact values N will depend on the
details of processes like reheating that occur immediately after inflation has ended, and
are based on particle physics beyond the Standard Model, which is currently far from
being understood.
Now, starting with the

H = −dN
dφ

φ̇, (2.126)

one arrives at the following relation between Nk and the field values φk=aH

N = −
∫ H

φ̇
dφ ≃

∫ φ3 (1 +mφ4)1/2

1 + 2mφ6 dφ, (2.127)

in the potential-dominated region.

2.5.4 Predictions from Mimetic Inflation

To find the predictions for the spectral index and tensor-to-scalar ratio r in Mimetic-
Inflation, one can further restrict the observational range to 1 < φ < m−1/6 for the
scalar field, taking into account the approximations for the potential and its derivative
for this region are given in (2.62).
Spectral Index ns — Using (2.62) in (2.127), the expression for N can then be
integrated to obtain

Nk ≃ φ4
k=Ha. (2.128)



46 2. Mimetic Inflation and Self-Reproduction

Taking this expression and from (2.123), the spectrum becomes

δΦ ≃ mφ3
k=Ha ≃ mN

3/4
k , (2.129)

and the spectral index can be written as

ns − 1 ≡ d ln δ2
Φ

d ln k = −d ln δ2
Φ

dNk

= − 3
2Nk

. (2.130)

Evaluating the above result for Nk = 50 gives

ns = 0.97, (2.131)

which is in agreement with the value inferred from observations (ns = 0.965 ± 0.004
from Planck [45], ns = 0.9660± 0.0046 from Atacama Cosmology Telescope (ACT) data
combined with WMAP larger-scale data, ns = 0.9709± 0.0038 from Planck and ACT
data combined [47]). To yield the proper amplitude for the gravitational potential in
the observable scales, the inflaton mass was set to m ≃ 10−6. The expression for the
spectral index in (2.130) is in fact valid for the range of scales where 1 < Nk < 104,
which is well-beyond the cosmological horizon present today.

Tensor-to-Scalar Ratio r — Using the previous result for δΦ, and given that
1 < φ < m−1/6 one gets δh ≃ m, the tensor-to-scalar ratio is computed as

r ≡ δ2
h

δ2
Φ
∝ 1
N3/2 . (2.132)

One concludes that this value for N = 50 is in agreement with the upper bound on r

that is observed today, r < 0.032 ([43],[44]). Moreover, the ratio r in Mimetic-Inflation
is then more suppressed than in R2 or Higgs-Inflation scenarios [56], but with a different
function for the potential V , one can obtain a Mimetic-Inflation model that agrees with
the former at the observed scales.

The Full Spectrum of Perturbations — To complete the picture for the spectrum
of perturbations in the whole range of dynamics in Mimetic Inflation, the amplitudes for
the spectrum for gravitational potential and gravitational waves is presented in Figure
(2.2) which is obtained using numerical computation of the equations for δΦ and δh as
a function of scale corresponding to φk=Ha, and the approximate analytic behavior is
detailed below.
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Figure 2.2: Amplitudes of the spectrum for scalar perturbations and gravitational waves

For m−1/6 < φk=Ha < m−1/4, the perturbation amplitude at these scales decreases as

δΦ ≃ φ−3
k=Ha, (2.133)

and as the scale grows its value goes from m1/2 to m3/4.
For m−1/4 < φk=Ha < m−1/2, the amplitude begins to increase again at these larger
scales as

δΦ ≃ mφk=Ha. (2.134)

At φ ≃ m−1/2 this amplitude becomes

δΦ ≃ δh ≃ m1/2. (2.135)

For φ > m−1/2, inflation is driven by the kinetic term which dominates over the potential
in this region, as discussed in Section (2.4). During this stage, which is the onset of
inflation in the Mimetic model considered, the modes that cross the Hubble scale acquire
an equal amplitude for the scalar perturbations and gravitational waves, such that

δΦ ≃ δh ≃ m2φ3
k=Ha. (2.136)

When the Planck densities are reached for φ ≃ m−2/3, this amplitude becomes of order
one. Otherwise the amplitude is always smaller than unity below the Planck scale,
which ensures that self-reproduction does not occur in line with the conditions presented
earlier.
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Chapter 3

Discrete Gravity

3.1 Introduction

After exploring the evolution of the universe starting with small patches at Planckian
scales, a natural question which follows is how does space-time emerge at these scales,
and what is the proper framework to describe gravity there, knowing that the Einstein’s
theory faces serious limitations at Planckian scales. This comes from the observation
that at the Planck scale, if one uses normal perturbation theory in Minkowski Space
to quantize small perturbations of the gravitational field, these field perturbations
become larger than unity, i.e. larger than the Minkowski metric, as soon as one reaches
sub-scales of ℓ < ℓP l. Therefore, the Minkowskian manifold description inevitably breaks
down at these sub-Planckian scales, and it becomes natural to think of an alternative
description for the manifold with some form of a minimal structure at this limiting
scale. This could be realized by first implementing minimal quanta of geometry which
take the form of cell-like structures that discretize the space, and within which points
in space are indistinguishable. Then, the next step in recovering gravitational effects
would be to associate geometric invariants with these discrete spaces, such as curvature,
whereby in the continuous limit where the characteristic length of a discrete cell goes
to zero, ℓpl → 0, one obtains the familiar expressions of differential geometry. Hence,
in constructing this picture, a discrete gravity formalism emerges, where the quanta of
geometry give rise to space-time.
From here, this part of the thesis will explore and further develop the new Discrete
Gravity framework first introduced in the work of Chamseddine and Mukhanov in
2021 [19]. By studying the fundamental mathematical concepts that the classical and
continuous theory of General Relativity bases its description of the space-time manifold
on, we will proceed to construct their analogues for the discrete spaces described in
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this novel framework. In this attempt to write down a discrete theory for gravity, the
aim will be to preserve the essential features of the classical theory, which includes
symmetries like diffeomorphism invariance. Implementing different symmetries on the
discrete manifold will be done through the ‘gauging procedure’ as inspired by other
approaches to discretization as in Lattice Gauge Theory [20]. This will require a gauge
treatment of gravity, which would allow one to build curvature and other invariants in the
discrete setting, and provides the main advantage for the formalism which is a manifest
continuous limit to the corresponding notions in General Relativity, in contrast to other
discretization methods as in Regge Calculus [31]. In its first formulation [19], Discrete
Gravity is initially constructed for a limited symmetry group, the group of rotations in
space, since the discretization is considered for Euclidean spaces for simplicity. In the
work presented in this thesis, the mathematical foundation of this discrete formulation
will be expanded as to include the Poincaré group of symmetries, and hence obtain
new discrete expressions for the geometric invariants. And even though diffeomorphism
invariance stands under question as a requirement to fulfill at the discrete resolution
of the theory, while also being absent in the first formulation, this work will use the
expanded symmetry group to replace this property with translational invariance as
another step in further developing this Discrete Gravity formalism. Core results in this
chapter are published in the original work Chamseddine and Khaldieh (2024) [2].

In the sections that follow, the mathematical background for a gauge treatment of
gravity will be laid out for the Poincaré group considered in this work, followed by a
brief outline of ideas from Lattice Gauge theory that inspired the original formulation
of Discrete Gravity [19], for which the mathematical structure will be explained and
expanded. Then, building up on the main definition of the discrete curvature expression,
we find new expressions with the extended symmetry studied in this thesis [2], and later
demonstrate the manifest continuous limit for the various expressions obtained.

3.2 Gravity as a Gauge Theory

It is interesting to think that, despite the triumphs of the Gauge theory in particle physics
and describing elementary interactions, Gauge theory owes its rise to explorations of
Gravity and General relativity. Beginning with Hermann Weyl’s invention of the ‘Gauge
Principle’, the conceptual foundation that Weyl laid using the U(1) gauge symmetry,
and what became the basis for Quantum Electrodynamics as an Abelian Gauge theory,
originally started from his attempt to unify gravitational and electromagnetic interactions
[12]. And before Chen-Ning Yang and Robert Mills extended Weyl’s idea of gauge
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symmetry beyond U(1) to groups like SU(2) and SU(3), and set the formal framework
for non-Abelian gauge theories, the mathematical elements of non-Abelian Gauge theory
were already present the work of Elie Cartan on differential geometry [13], and have
foundational ties to the gravitational gauge theories developed.
From here, exploring Gravity as a gauge theory could be attributed to Cartan’s geometry,
where the gauge theory is not constructed for a Unitary group describing internal
symmetries, but rather invokes the Poincaré group ISO(3, 1), with Cartan’s connections
on the base manifold playing the role of the gauge fields, and the torsion as one of the
corresponding field-strength components.
As will be also shown, these connections transform according to the same rules as in
usual gauge theories, where for a Lie group G, with a Lie algebra g, a gauge field Aµ

will transform under a local gauge transformation g(x) ∈ G in the following way

Aµ −→ Ãµ = gAµg
−1 + g∂µg. (3.1)

To elaborate on these notions, the following section will build up the necessary differential
geometry elements for gravity in the tetrad formalism, arriving at the transformation
rules for gravitational gauge fields as in the relation above, which will be used later in
the Discrete Gravity formulation.

3.2.1 The Tetrad Formalism

In order to describe Gravity as a gauge theory of the Poincaré Group, it is necessary to
lay down the elements of the tetrad formalism of General Relativity first, and after that
rewrite the main equations for curvature in terms of the new variables. The discussion
presented below will be based on the methods present in Misner, Thorne and Wheeler
[102], and so their notation will be utilized in the equations, in addition to [81] where
the treatment was extended to larger tangent spaces.
In General Relativity, gravity is described using the metric tensor gµν , which in the
tetrad formalism can be rewritten in terms of the soldering forms ea

µ which relate the
spacetime coordinate basis vectors eµ to local orthonormal tetrad frames va.
Starting with a d-dimensional manifold, with coordinate basis eµ that induce the metric
through the abstract definition of the metric as a ‘bilinear machine’,

gµν = g(eµ, eν) = eµ • eν , (3.2)

A d-dimensional tangent space can then be defined at every point, which is spanned by
a set of d vectors va, the vielbeins, that are linearly independent and orthonormal, such
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that
ηab = va • vb, (3.3)

with ηab being the Minkowski metric. The space-time coordinates are denoted by Greek
indices, and tangent space coordinates are denotes by Latin indices. Then, the vielbeins
are acted upon by the Lorentz transformations, such that the scalar product is preserved
in the following way

ṽa = Λb
avb, ṽa • ṽb = ηab, (3.4)

where the Lorentz transformations satisfy Λc
aηcdΛd

b = ηab. The soldering forms ea
µ then

relate the coordinate basis eµ to the va basis through

eµ = ea
µva, (3.5)

so that the information about curvature will be stored in the soldering forms,

eaµ = (va • eµ), (3.6)

where one can raise and lower the tangent space and manifold indices using the flat
metric and the curved manifold metric respectively

ea
µ = ηabebµ, eµ

a = gµκeaκ = gµκηabe
b
κ. (3.7)

An important remark follows form this, where these soldering forms eb
µ and eµ

a are
regarded as the inverse of each other only in the case when the dimension of manifold is
equal to the dimension of the tangent space, and in the case where the dimension of
tangent space is expanded, then eκ

b e
a
κ ̸= δa

b . This picture will be useful when working
with spinors in curved space, since they ‘live’ in flat space, and hence can be connected
to the curved space through these soldering forms. In the tetrad formalism, the soldering
forms will also be important for writing down Lagrangians that are gauge invariant.
Now, to obtain the expression of the metric in terms of the soldering forms, one can
simply substitute (3.5) in the definition in (3.2) to obtain

gµν = ea
µe

b
νηab. (3.8)

Parallel Transport and Torsion — To relate the change in the soldering forms due
to the transformation of the vielbeins and basis vectors under the action of parallel
transport on the manifold, one starts with the definitions

∇µeν = Γκ
µνeκ, ∇µva = −ωµa

bvb, (3.9)
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where covariant derivative ∇µ which measures the rate of change of the vectors eν and va

along the basis vector eµ is determined through the affine and spin connections, keeping
in mind that the spin connections are antisymmetric in the tangent-space indices due to
the metricity condition

∇ηab = ωµab − ωµba = 0. (3.10)

In the absence of torsion, the affine connections become symmetric in the lower space-time
indices

Γκ
µν = Γκ

νµ. (3.11)

Finally, using the above equations for the parallel transported vectors (3.9), the change
in the soldering forms can be directly obtained using the definition in (3.6), where ∇ν

acts on eaµ as a scalar function ∇νeaµ ≡ ∂eaµ/∂x
ν ,

∂νeaµ = −ωνa
bebµ + Γκ

µνeaκ. (3.12)

3.2.2 Invariance under Local Lorentz Group

Considering for now the group of local Lorentz transformations Λa
b ≡ Λa

b(x), one can
finally arrive at the transformation law for the spin connections, requiring that the
theory be invariant under this symmetry group. First, starting with the transformation
of the vielbeins under the Lorentz group

ṽa = Λa
bvb, (3.13)

and then the transformation of the spin connection follows from the definition in (3.9)

ω̃µa
bṽb = −∇µṽa, (3.14)

and after substituting ṽa and ∇µva = −ωµa
bvb into the above expression, one obtains

ωµa
b −→ ω̃µa

b =
(
ΛωµΛ−1

)b

a
+
(
Λ∂µΛ−1

)b

a
. (3.15)

This expression can now be compared with that for a general gauge field transformation
given earlier in (3.1), and hence the spin connections transform as gauge fields for
spacetime rotations under local group action Λa

b(x). Similarly, the transformation law
for the soldering forms under local Lorentz transformations is obtained from ṽb = ẽµ

b eµ,
so that

eµ
b −→ ẽµ

b = Λa
beµ

a . (3.16)
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The soldering form eµ
a is an important quantity in the tertrad or vielbein formalism, and

under Lorentz Group it simply transforms as a vector. When the group of symmetries
is extended from the Lorentz group, or the group of rotations in space-time, to the
Poincaré Group which includes translations, the soldering forms will play the role of the
gauge fields for the translations. Considering the group of local Lorentz transformation
is useful for the example that will be shown from the earlier work on Discrete Gravity
in [19], whereby only the rotations in space were considered, and which this thesis work
aims to expand through including the translations into the group of symmetry and
finding extensions and corrections to the obtained equations.

3.2.3 Gauging the Poincaré Group

Euclidean Signature — To put Einstein’s theory of gravity on the same footing as a
Gauge theory, one needs to consider the full Poincaré group, and even so, it is regarded
as the group of global symmetries of spacetime only in the absence of gravity. As the
symmetries in the discrete formalism will be considered for Euclidean spaces, in this
case, the symmetry group considered on the tangent space can be expanded from the
group of rotations SO(d), the Euclidean counter part of Lorentz transformations, to
the inhomogeneous group ISO(d) in order to include the translational symmetry part
of the Poincaré group. The generators of the space-time rotational symmetry and the
generators of translations are respectively given by

Jab = ζµ
[ab]∂µ = (xaδ

µ
b − xbδ

µ
a )∂µ, (3.17)

Pa = ζµ
a ∂µ = δµ

a∂µ. (3.18)

Clearly, these symmetries considered for a flat space-time differ from those of General
Relativity in the presence of gravity. When factoring in gravity, the curved spacetime
will carry the symmetry associated with general coordinate transformations, namely
diffeomorphism invariance, in addition to local Lorentz transformations that were
previously described for the tangent space. Then, to draw a connection between General
Relativity and the gauge theory of the Poincaré group, general coordinate transformations
must be replaced by the translational symmetry, which is in principle absent in Einstein’s
theory, but will be possible through relating the parameters associated with these
symmetries. As will be shown later, this will be realized through imposing the zero torsion
condition, or in other words taking the curvature component related to translations to
be zero.
Gauge Transformations — In Riemannian geometry with Euclidean signature, for
d−dimensional manifolds, one can consider the transformation of spinors ψ(x) under
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the Lie group ISO(d). By promoting the global transformations to local ones, with the
spin connections ωab

µ (x) acting as the rotational gauge fields, and the soldering forms
ea

µ(x) as the translational gauge fields, the coupling of the spinors ψ to the gauge fields
can be done through defining the connection Dµ for the Dirac action

SD =
∫
d4x
√
gψiγaeµ

aDµψ,

as
Dµψ = (∂µ + ωµ + eµ)ψ, (3.19)

where
ωµ ≡ ωab

µ Jab, eµ ≡ ea
µPa. (3.20)

Then, the spinors ψ transform under the action of the gauge group as

ψ(x)→ ψ′(x) = eλ(x)+ζ(x)ψ(x), (3.21)

where λ(x) = λab(x)Jab and ζ(x) = ζa(x)Pa are the parameters of the rotations and
translations respectively.

Gauge Field Infinitesimal Transformations — The derivative of ψ will transform
covariantly as

Dµψ → D′
µψ

′ = eλ(x)+ζ(x)Dµψ, (3.22)

provided that the gauge fields transform infinitesimally through

δeµ
a = ∂µζ

a + ωµ
abζb − λabeb

µ ,

δωµ
ab = ∂µλ

ab + ωµ
acλcb − ωµ

bcλca. (3.23)

These gauge fields also transform under a general coordinate transformation x̃ν = xν +ζν

through the action of the Lie Derivative along ζν , which is the vector field parameter of
these transformations, such that

δ′ea
µ = ζν∂νe

a
µ + ea

ν∂µζ
ν , (3.24)

δ′ωab
µ = ζν∂νω

ab
µ + ωab

ν ∂µζ
ν . (3.25)

Curvature as Field Strength — To find the curvature associated with the gauge fields,
the commutator of the covariant derivatives is then taken

[Dµ, Dν ] = Rµν , (3.26)
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where the curvature components for each gauge field can be deduced from

Rµν = 1
4Rµν

ab(ω)Jab + 1
2R

a
µν(e)Pa, (3.27)

with the the generators of the Lie algebra of the rotation and translation groups satisfying
the following commutation relations

[J[ab], J[cd]] = ηbcJ[ad] − ηacJ[bd] − ηbdJ[ac] − ηadJ[bc], (3.28)
[J[cd], Pa] = Pcηda − Pdηca,

[Pa, Pb] = 0.

Finally, the curvature associated with the local translations, or Torsion, and that of
local rotations are given by

Ra
µν(e) ≡ Tµν

a = ∂µeν
a − ∂νeµ

a + ωµ
a

beν
b − ων

a
beµ

b ,

Rµν
ab(ω) = ∂µων

ab − ∂νωµ
ab + ωµ

acωνc
b − ων

acωµc
b . (3.29)

Relating Diffeomorophisms to Translations — As mentioned earlier, the key to
bridging Poincaré gauge theory with Gravity will be through relating the translations to
the general coordinate transformations, and this is done by first defining field dependent
parameters for translation and rotation as follows

ζa(x) = ζν(x)ea
ν(x), λab(x) = ζν(x)ωab

ν (x), (3.30)

then, by substituting those parameters into the infinitesimal transformation of the
soldering form in (3.23), one gets the following relation

δea
µ = ∂µ(ζνea

ν) + (ζνeb
ν)ωab

µ − (ζνωab
ν )eb

µ (3.31)
= δ′ea

µ + ζνT a
µν . (3.32)

where the second line is obtained after adding and subtracting the term ζν∂νe
a
µ after

expanding the expression in the first line. With this, the transformation of the soldering
form δ′ea

µ under diffeomorphisms can be directly related to its gauge transformations
under translation and rotation, or more generally for all tensors, the diffeomorphism
transformations can be generated by translational gauge transformation of the field,
with the condition that

Tµν
a = 0.
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This condition has two important consequences, one is that it allows for the spin
connection field ωab

µ to be fully determined by the soldering forms ea
µ, and allows to

identify the spin connection with the Levi-Civita connection, which is necessarily torsion
free in General relativity. Meanwhile, in the presence of torsion the translational and
rotational gauge fields can act independently. Hence, in General Relativity extensions,
lifting the torsion constraint promotes the spin connection ωµa

b to an independent
variable, and allows for new dynamics to arise from spin-gravity couplings.
Relation to Einstein-Hilbert Action — In the absence of torsion, the gauge invariant
action can be written using the scalar curvature of local rotations as

S = − 1
2κ2

∫
d4x
√
gR(ω), (3.33)

where the curvature is contracted using the soldering forms

R(ω) = eµ
ae

ν
bRµν

ab(ω). (3.34)

It can be shown that this action be equivalent to the Einstein-Hilbert action with

Rρ
σµν(Γ) = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µκΓκνσ − Γρ
νκΓκ

µσ, (3.35)

by relating the curvatures expressions as

R(Γ) = gρµRν
ρνµ(Γ)

= eµ
ae

ν
bRµν

ab(ω) = R(ω),

where a detailed proof is found in [81].

3.2.4 Ideas from Lattice Gauge theory

Since the goal in Discrete Gravity will be to implement gravity as a gauge theory on
the lattice, which was inspired originally by Lattice Gauge Theory, a brief outline of the
latter will be presented following (e.g., [103, 104]), highlighting the elements that will
be used in the Discrete Gravity formalism that this part of the thesis work builds on.
First, the setup is given by a cubic Euclidean lattice with a measure a defining the
lattice separation, and it represents a natural ultra violet cutoff defined by a = 1/ΛUV .
Points on the lattice will be separated by unit vectors denoted by µ̂, where µ = 1, .., d,
which define a d−dimensional basis. A 2-dimensional representation of the lattice is
given in Figure (3.1).
Considering a general gauge group SU(N), a group element U(x) ∈ G will be defined
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Figure 3.1: A path traversing a plaquette of the lattice with sites connected through
links.

on the links between two lattice sites x and x+ µ̂, with the spacing a is introduced into
the definition as

Uµ(x) = eiaAµ(x), (3.36)

and Aµ(x) simply represent the gauge fields. Then, U(x) transforms under gauge
transformations Ω(x) as

Uµ(x) −→ Ũµ(x) = Ω(x)Uµ(x)Ω(x+ µ̂). (3.37)

A Wilson loop Uµν can be written for a closed path as shown on the plaquette in
Figure(3.1) using the group elements U(x) and their conjugates, which connect two
neighboring sites as follows

Uµ(x) : x −→ x+ µ̂, U †
µ(x) : x −→ x− µ̂.

Then, using the definitions for the link variables given above, one has

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †
µ(x+ µ̂)Uν(x), (3.38)

where path ordering is important for non-commuting elements when considering a
non-Abelian group.
To construct a real-valued curvature, one can sum over two loops with opposite orienta-
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tions, such that the Lattice action can be written as

SLattice = cTr
∑

x

−1
2
(
Uµν(x) + U †

µν(x)
)
, (3.39)

where c is a constant which will be related to the coupling constant in Yang-Mills, and
in the discrete case for a group of dimension N , c = β

N
.

Then by expanding (3.38),

Uµν(x) = eiaAµ(x)eiaAν(x+µ̂)e−iaAµ(x+ν̂)e−iaAµ(x), (3.40)

one can find its definition in terms of Aµ by calculating a few terms in the exponent
using the Baker-Campbell-Hausdorff formula

eAeB = eA+B+ 1
2 [A,B]+..., (3.41)

where Aµ(x+ ν̂) is proportional to lattice spacing as such

Aµ(x+ ν̂) ≈ Aµ(x) + a∂νAµ(x) + ... (3.42)

Then one obtains for matrix-valued field tensor Fµν

Uµν(x) ≈ eia2Fµν(x), (3.43)

and up to order a2, one can recover in the continuous limit

Fµν → Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]. (3.44)

Finally, taking the trace of Uµν(x) gives

treia2Fµν(x) ≈ tra
4

2 FµνFµν + ..., (3.45)

Hence, the Lattice action can be computed in the continuum limit as

SLattice →
a4β

4N

∫
dx4tr(FµνFµν) + ... (3.46)

which in the leading order coincides with the Yang-Mills action, with β
2N
≡ 1

g2 .

To this end, it is worth noting that Lattice gauge theory violates rotational invariance,
while trying to preserve U(n) gauge invariance, which will be a starting point to address
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and change in the new Discrete Gravity formalism.

3.3 The Mathematical Basics of Discrete Gravity

We now move to construct the mathematical structures and definitions that will be
used in our extension of the Discrete Gravity formulation. These definitions are heavily
based on the work by A. Chamseddine and V. Mukhanov in 2021 [19], which laid down
the original framework.

3.3.1 Building the Discrete Cells Manifold

Discrete Manifold and Its Dimension — To build a discrete lattice from which the
usual space-time manifold will reemerge in the continuous limit, one has to take a step
back and walk through how the picture of the continuous manifold which defines the
space-time was constructed. In principle, one starts with a set of points that are like
sand, and on this set, one starts to define structures on the set, starting with defining
the dimensionality Rd and a (standard) topology O∫ , which together form a topological
space (Rd,O∫ ), and this can be understood as a rubber sheet that can be stretched
differently to cover a physical manifold. Only when this topological space becomes
equipped with a smooth-Atlas and a connection, that the manifold acquires shape, and
loses the rubber-sheet description, and then defining the metric gives the manifold size.
Then, it makes sense to begin with defining the dimensionality of the manifold in the
continuous and the discrete cases. Starting with the continuous limit, a d-dimensional
manifold is then described as the topological space (Rd,O∫ ) where the neighborhood
of every point in this space can be mapped, via a homeomorphism, to an open subset
of the Euclidean space Rd. Now, in the case of the discrete-cells manifold, there is
a subtlety around the point-like description, which is in fact replaced by a cell-like
structure and now used to define the dimensionality of the discrete manifold. This
discrete-cell manifold is built such that it consists of cells of minimal size and elementary
volume which can be taken as the Planck volume, and every cell is associated with
one point only taken to be at the ‘center’, and within which no smaller resolution is
admissible, and hence no points in this cell are physically distinguishable. The shape
of the cell is undefined apriori, as to avoid the picture of a fixed chart or grid, but the
important element is that the cells will still have a certain boundary with neighboring
cells, and it defines the dimensionality of the discrete manifold in the following way:

A discrete manifold is said to have dimension d such that every cell shares
its boundary with 2d adjacent cells,
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this space is then set to have a Euclidean signature.
Cell numbering and functions on the lattice — Naturally, in order to define
functions on the discrete cell manifold and operate on them, the cells are numbered
with a set of d integers such that

nµ ≡
(
n1, n2, · · · , nd

)
≡ n, (3.47)

where the numbering of points in two adjacent cells is separated by just one unit integer
[19]. Looking ahead, this enumeration of the cells will retrieve the usual coordinate
values in the continuous case, when the volume of the cells will shrink to zero, which
will be shown later after introducing a length scale ℓµ ≡ ∆xµ into the picture. Now, a
set of scalar function f(nµ) can be defined on the cell-lattice, so that for every minimal
volume these scalar functions assign only a finite number of degrees of freedom. Then
for a scalar field, for instance, one degree of freedom is assigned in a cell, while two
degrees of freedom are assigned for a massless vector-field, etc...
To illustrate this in an example, a two-dimensional lattice is shown in Figure (3.2), and
to enumerate this lattice only two integers for nµ will be needed. Now, taking point
M as a reference in the marked cell, it will be enumerated with nM = (n1, n2). The
right-neighboring cell with point N will have then the numbering nN = (n1 + 1, n2), if
for the right-direction the index is set to µ = 1, and so for the upward-direction µ = 2,
and one gets for cell with point P , nP = (n1, n2 − 1). The neighboring cells around M

from the opposite directions to N and P will be labeled with (n1−1, n2) and (n1, n2 + 1)
respectively. Note that the integers in the enumeration can be positive or negative
valued.

Figure 3.2: Illustration of a discrete lattice in two dimensions.

Lattice structure and Freedom of re-enumeration — A comment is due on the
shape of the lattice, which seems from the illustration that is shown that it is somewhat
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a fixed grid. It should be clear that this is not the case, as the shape of the cells and how
they connect through their boundaries in the real sense is not specified, and the goal
is to be able to navigate these physical points that are a priori scattered like sand as
explained earlier, before structure is imposed on this set of points. Here, the structure
specified is so far minimal, and there is no avoiding labeling the physical points, which
will be navigated through the operators to be defined in the next paragraph. Skipping
ahead to when the metric will be defined, which should give meaning to the volume
of the manifold, and in this case to the individual cells when it is specified at a point,
setting a minimal volume to the cells does not contradict the statement made before
on the lattice not having a fixed grid-like structure, as this volume could be occupied
by arbitrarily shaped cells, with the only condition being the number of neighbors
this cell is supposed to have, as to keep with the consistency of the definition for the
dimensionality of the discrete manifold. Figure (3.3) is another illustration accentuating
this arbitrariness in the discretization of the 2D Lattice. This picture, together with
the freedom of numeration of the cells, is kept as a guide when thinking about the
diffeomorphism invariance feature in General Relativity and trying to preserve it, or
finding an analogue for it on the lattice.

Figure 3.3: Arbitrary choices of discretizing lattices in two dimensions.

Vectors on the Discrete Manifold — In order to construct tangent vectors on
the cell manifold, one starts by generalizing the notion of a vector on the discrete
space to an operator. Now, one can define in each elementary volume a set of d shift
operators denoted by Eβ, such that they form a basis on a linear space of dimension d,
which will allow one to move between the neighboring cells. Hence, these forward-shift
or displacement operators will act on the function defined on the cell by shifting its
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argument, for instance acting on point M in the previous figure (3.2), keeping arbitrary
indices as

Eν(nM)f(nµ
M) ≡ f(nµ

M + δµ
ν ), (3.48)

where the function has now moved one unit δµ
ν ≡ 1µ forward in the µ-direction, and if

µ = 1, then the shift operator moves the function to cell N so that

E1(nM)f(nM) = f(nM + 11) ≡ f(nN). (3.49)

Similarly, the backward displacement is defined through the inverse shift-operators E−1
ν

that act on the function at point M as

E−1
ν (nM) f (nµ) ≡ f (nM − δµ

ν ) , (3.50)

i.e. through E−1
ν ≡ E−ν , and if here β = 2, the function is shifted a unit δµ

2 ≡ 12 from
point M in the downward direction to point P such that

E−1
2 (nM) f (nM) = f (nM − 12) ≡ f(nP ), (3.51)

keeping in mind that shift operator and its inverse must satisfy the following relation at
every point (n∗)

Eµ(n∗)E−1
µ (n∗) = E−1

µ (n∗)Eµ(n∗) = 1. (3.52)

To complete the formal definition for the linear space of the shift operators, the spaced
is equipped with a sum and multiplication, such that for a set of real numbers (b, c) ∈ R

(bEκ + cEγ)f (n) = bf (n+ 1κ) + cf (n+ 1γ) . (3.53)

A subtlety arises when applying the shift-operators on a function in sequence, as their
action can only be defined when applied to the function and other operators that are in
the same cell, and so the order of operation is from left-to-right in an expression, as for
instance

Eκ(n)E−1
γ (n)f(n) = Eκ(n)

(
E−1

γ (n)f(n)
)

= E−1
γ (n+ 1κ)f(n+ 1κ)

= f(n+ 1κ − 1γ), (3.54)

and when κ = γ, the identity for the shift-operators in (3.52) is satisfied.



64 3. Discrete Gravity

3.3.2 Tangent Operators and the Discrete Metric

Now that every cell is equipped with a d-dimensional linear space of shift operators,
d tangent operators can be constructed from those operators defined through central
difference as follows [19]

eµ(n) ≡ 1
2
(
Eµ(n)− E−1

µ (n)
)
. (3.55)

This central difference definition will be key for recovering the tangent vector definition
on the continuous coordinate lines. In the same linear space, one can define a set of d
orthonormal operators, or vielbeins va, that satisfy the usual orthogonality condition in
each cell

va • vb = δab, (3.56)

and these operators carry Latin indices spanning a, b, .. = 1, 2, ..., d, with δa
b playing the

role of the Euclidean ηab metric.
As the theory must preserve local rotational invariance on the discrete manifold, as the
space is set to be Euclidean, the vielbeins will be acted upon by the elements of the
rotation group, such that

ṽa(n) = Rb
a(n)vb(n), Rb

a(n) ∈ SO(n), (3.57)

with Rb
a(n) defined in the vector representation.

Once again, similar to the standard definitions, the tangent operators eµ and the
operators va can be connected through the soldering forms ēµ

a(n), which are used to
express va as linear combinations of eµ as

va(n) = ēµ
a(n)eµ(n), (3.58)

eµ(n) = eb
µ(n)vb(n), (3.59)

and to write the second expression, the inverse of the soldering form eb
µ(n) was used,

from which one then gets
eaµ(n) = va(n) • eµ(n), (3.60)

keeping in mind that the soldering form and its inverse satisfy

eb
µ(n)ēµ

a(n) = δb
a. (3.61)

And now one arrives at the metric definition, which gives a notion of size to the
elementary cell as explained before, and so the metric is defined on the discrete lattice
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in analogy to how the covariant components in the metric are obtained in (3.2) and so
in every cell one has

gµν(n) ≡ eµ(n) • eν(n) = ea
µ(n)eb

ν(n)δab. (3.62)

In this and the coming parts, Einstein’s summation rule was used.

Parallel Transport and Affine Connections — In order to recover the expression
for the affine connection, the parallel transport rules will be derived on the discrete
manifold. Drawing on parallels with the earlier definition of covariant derivative action
on the basis vectors and the vielbeins, the covariant derivative can be deconstructed as
follows,

∇eν eµ(n) = lim
ε−→0

ep.t.
µ (n+ 1ν −→ n)− eµ(n)

ε
, (3.63)

where ‘p.t.’ is short for ‘parallel transported’, and by keeping with the minimal length
unit set to one, ε can be dropped from the limit, and shall be recovered later when
taking the continuous limit, and hence from the earlier definitions of ∇νeµ and ∇νvA,
one can write [19]

ep.t.
µ (n+ 1ν → n) = eµ(n) + Γγ

µν(n)eγ(n), (3.64)
vp.t.

a (n+ 1ν → n) = (Ω−1
ν (n))b

avb(n), (3.65)

with (Ω−1
ν (n))b

a is the inverse of the local spin connection group element

Ων(n) = exp
(
ωcd

ν (n)Jcd

)
, (3.66)

and ωab
ν being the spin connection. Keeping in mind the construction of the formalism

was based only on the rotational invariance on the cells, the rotation group is thus used
in deriving all the preliminary expressions, but later can be generalized to use elements
Ων(n) from the desired group of symmetries.

Keeping with the group of rotations as the main symmetry of the theory, the generators
of the commutations Jab are then appropriately taken in the vector representation

(Jcd)b
a = 1

2(δb
cδda − δacδ

b
d), (3.67)

satisfying the appropriate commutation relations. Now, given that the scalar product
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does not change in parallel transport, it follows from (3.60) that

ep.t.
aµ (n+ 1ν −→ n) = eaµ(n+ 1ν), (3.68)

and from the definitions in (3.64) and (3.65), one can compute

eaµ(n+ 1ν) = vp.t.
a (n+ 1ν → n) • ep.t.

µ (n+ 1ν → n)
= (Ω−1

ν (n))b
ava(n) •

(
eµ(n) + Γγ

µν(n)eγ(n)
)

= (Ω−1
ν (n))b

aebµ(n) + (Ω−1
ν (n))b

aΓγ
µν(n)ebγ(n). (3.69)

Finally, multiplying the last equality by Ω, the affine connections can be deduced in
terms of soldering forms and spin connections as follows [19]

Γγ
µν(n)eaγ(n) = (Ων(n))b

aebµ(n+ 1ν)− eaµ(n). (3.70)

Spinor Representation — For the following, it will be more convenient to use the spinor
representation, where the Dirac gamma matrices are defined such that they satisfy the
following Clifford algebra

{γa, γb} ≡ γaγb + γbγa = 2δab, (3.71)

and are assumed to be Hermitian. The generators for the rotation group are then defined
through the gamma matrices as

Jab = 1
8(γaγb − γbγa), (3.72)

with their commutation relations given by

[Jab, γc] = 1
2 (δbcγa − δacγb) . (3.73)

3.3.3 Curvature and Torsion in SO(d)

Curvature — To define the main curvature expression in this lattice formulation, it
will be convenient to define the operator [19]

Υ µ(n) ≡ Ωµ(n)Eµ(n), (3.74)

which combines the two actions of Eµ(n) and Ωµ(n) in a combined shift and rotate
action, with and Ωµ(n) defined in (3.66), while the generators associated with this group
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element will depend on the choice of representation. The spinor representation will be
used to derive the torsion condition for the associated spinors, and will be easier for the
computation for the rotational invariance in the 2-dimensional case, as shown in [19] as
an example.

Considering now a path along a plaquette that begins from a given cell n, and traverses a
loop around the neighboring cells, just like in the setup pictured earlier for Lattice gauge
theory, with the shift and rotate operators Υ µ(n) and Υ ν(n) performing the measurement
by moving to the neighboring cells in a given direction around the plaquette, so that
the curvature will be the difference form the measure over the loop and its opposite
orientation. The curvature can hence be defined as [19]

Rµν(n) = 1
2ℓµℓν

(
Υ µ(n)Υ ν(n)Υ−1

µ (n)Υ−1
ν (n)− Υ ν(n)Υ µ(n)Υ−1

ν (n)Υ−1
µ (n)

)
, (3.75)

where the length scales introduced ℓµ can be different in each direction. This curvature
expression agrees with the Yang-Mills definition, with the important note that the
curvature measure around the plaquette here is in effect antisymmetric,

Rµν (n) = −Rνµ (n) . (3.76)

The curvature Rµν (n) defined above is covariant, and this can be seen through the
covariant transformations of the operators Υ µ(n) its encompasses, which will be shown
below. Considering that in the discrete space formulation described the invariance is
with respect to the local rotations, with the vielbeins va transforming in the vector
representation

ṽa(n) = Rb
a(n)vb(n), (3.77)

under the action the rotation group SO(n). Then under the action of this group of
symmetries, the spin connection group element transforms as

Ων(n)→ Ω̃ν(n) = R(n)Ων(n)R−1(n+ 1ν), (3.78)

where R(n) in this case must be taken in the spinor representation. From here onwards,
in order to simplify the notation, the unit shift in the argument indicating the cell will
written as 1µ → µ̂, indicating for instance R−1(n + 1ν) ≡ R−1(n + ν̂). Next, to find
how the rotation-shift operators Υ µ(n) that were introduced earlier transform under
rotations, one can introduce into the expression for Ω̃ν(n) the shift operator by letting
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it act on a function f(n+ ν̂) = Eν(n)f(n) through

Ω̃ν(n)
(
f(n+ ν̂)

)
= Ω̃ν(n)Eν(n)f(n)

= R(n)Ων(n)R−1(n+ ν̂)
(
f(n+ ν̂)

)
= R(n)Ων(n)Eν(n)R−1(n)f(n), (3.79)

and from this expression the transformation of the operators Υ µ(n) can be found

Υ µ(n)→ Υ̃µ(n) = R(n)Υ µ(n)R−1(n), (3.80)

resulting in the covariant transformation of the curvature,

R̃µν = R(n)Rµν(n)R−1(n). (3.81)

In an expanded form, the curvature Rµν(n) can be written as

Rµν(n) = 1
2ℓµℓν

(
Ωµ(n)Ων(n+ µ̂)Ω−1

µ (n+ ν̂)Ω−1
ν (n)− (µ↔ ν)

)
. (3.82)

It is important to note that for the symmetry groups SO(d) considered, for dimensions
d = 2, 3, 4, the curvature as expressed in (3.82) is in fact an element of the Lie algebra of
the respective group which becomes evident when the group elements Ωµ are expanded,

(exp(ωµ(n)) exp(ων(n+ µ̂) exp(−ωµ(n+ ν̂)) exp(−ων(n)))− µ↔ ν ∈ Lie Algebra

and so the components for curvature can be obtained from the expression

Rµν(n) = Rµν
ab(n)Jab, (3.83)

with the rotation generators Jab taken in the spinor representation presented earlier.

Torsion Condition — In the absence of the translational group in the symmetry con-
sidered so far, the zero-torsion condition which allows one to define the spin connections
ωab

ν (n) in terms of the eaν , can be expressed through the affine connection as

Γγ
µν − Γγ

νµ = 0,

which gives the following equation from which one can compute ωab
ν (n), after using the
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definition obtained in (3.70),(
(Ων(n))b

aebµ(n+ ν̂)− eaµ(n)
)
− (µ↔ ν) = 0. (3.84)

In the spinor representation, one can define the curved gamma matrices eµ through
connecting the soldering forms to the Clifford algebra

eµ(n) ≡ ea
µ (n) γa, (3.85)

and the condition for zero-torsion can be written for the matrices eµ in an analogue to
the expression in (3.84). Starting from the metricity condition (3.12), it can be written
in the following form for eν [19],

Υµ(n)eν(n)Υ−1
µ (n)− eν(n) = Γρ

µν(n)eρ(n), (3.86)

with the left hand side obtained from the spin connection group elements Ων(n) using
the relation

eωeνe
−ω = eν + [ω, eν ] + 1

2! [ω, [ω, eν ]] + · · · 1
m! [ω, · · · [ω, eν ]] + · · · . (3.87)

keeping in mind that applying Υ µ(n) ≡ Ωµ(n)Eµ(n) to an intermediate trial function
f(n) gives

Υµ(n)eν(n)Υ−1
µ (n) = Ωµ(n)eν(n+ µ̂)Ω−1

µ (n). (3.88)

Then the expression in (3.86) gives the zero-torsion expression for eµ as

(Υν(n)eµ(n)Υ−1
ν (n)− eµ(n))− (µ↔ ν) = 0, (3.89)

which can be otherwise be case in the form

T a
µνγa = 0. (3.90)

It is important to note here that the expression for torsion given in (3.89) which was
obtained in the original formulation [19] is in fact not complete, as Torsion must be
computed when translations enter into the group element Ων(n), and will be re-derived
fully in the context of diffeomorphism invariance that this part of the thesis studied.
But for invariance under rotations, it served as a good approximation to determine the
spin connection explicitly from the soldering forms in the given cell and its surrounding
when considering the example of SO(2) in [19], from the conditions provided in (3.90).
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3.3.4 Actions in Discrete Gravity

Dirac Action — To obtain a discrete expression of the Dirac action, the hermitian
Dirac operator must be defined such that the usual equation can be recovered in the
continuous manifold limit. Starting with a continuous action that couples gravity to
spinors, with the symmetry tangent group SO(d), one has

S =
∫
d4xeψ†Dψ, (3.91)

and the Dirac operator in this continuous case is given by

D = γaeµ
a(∂µ + ωµ), (3.92)

with ωµ = 1
4ω

ab
µ Jab, and Jab was given in (3.72). Then, the first naive attempt at writing

the Dirac action is by taking the expression inspired by Lattice gauge theory,

∑
n

∑
µ

i

2ψ
†(n)γµ(ψ(n+ µ̂)− ψ(n− µ̂)), (3.93)

which can be simply written in the language of the shift operators as

∑
n

∑
µ

i

2ψ
†(n)γµ(Eµ(n)ψ(n)− E−1(n)ψ(n)), (3.94)

and is not invariant under SO(d). To introduce the spin connections into the picture,
the following definition for the inner product was considered,

(ψ, ψ) =
∑

n

ψ†(n)ψ(n), (3.95)

and taking into account that the spinor ψ(n) must transform under the tangent group
as a spinor of SO(d),

ψ(n) −→ R(n)ψ(n), (3.96)

where
R(n) = exp

(1
4λ

ab(n)γab

)
(3.97)

with the parameters λab(n) taken to be real. The connection Υ µ(n) = Ωµ(n)Eµ(n) was
incorporated into the discrete candidate for the Dirac operator with the ansatz [19]

D(n) ≡ iv(n)ēµ(n)(Υµ(n)−Υ−1
µ (n)), (3.98)
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with ēµ(n) ≡ ēµ
b (n)γb connecting the Euclidean γb to the discrete manifold through eµ

b (n).
The density function v(n) will become the determinant of eb

µ only in the continuous
limit, and in the discrete setting it is obtained from the requirement that the Dirac
operator D is hermitian with respect to the inner product such that

(ψ,Dψ) = (Dψ,ψ), (3.99)

one can compute first

(ψ,Dψ) =
∑

n

(
ψ(n), iv(n)ēµ(n)(Υµ(n)−Υ−1

µ (n))ψ(n)
)

=
∑

n

iv(n)ψ†(n)ēµ(n)
(
Ωµ(n)ψ(n+ µ̂)− Ω−1

µ (n− µ̂)ψ(n− µ̂)
)
, (3.100)

and similarly one obtains for

(Dψ,ψ) =
∑

n

(
iv(n)ēµ(n)(Υµ(n)−Υ−1

µ (n))ψ(n)
)†
ψ(n)

=
∑

n

−i
(
v(n+ µ̂)ψ†(n)Ωµ(n)ēµ(n+ µ̂)ψ(n+ µ̂)

− v(n− µ̂)ψ†(n)Ω−1
µ (n− µ̂)ēµ(n− µ̂)ψ(n− µ̂), (3.101)

where
D†(n) = i(Υµ(n)−Υ−1

µ (n))v(n)ēµ(n). (3.102)

Therefore, comparing the two expressions (3.100) and (3.101), one finds that v(n)
satisfies the equation

v(n)ēµ(n)Ωµ(n) = v(n+ µ̂)Ωµ(n)ēµ(n+ µ̂), (3.103)

From these proposed definitions, the discrete version for the Dirac Action was obtained
as [19]

S =
∑

n

iψ†(n)v(n)ēµ(n)(Υµ(n)−Υ−1
µ (n))ψ(n). (3.104)

Discrete Action for Gravity — The discrete action for gravity in Euclidean space
is hence written as [19]

S =
∑

n

v(n)R(n), (3.105)

which is gauge invariant, and the scalar curvature can be obtained by contracting with
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the soldering forms in the usual way

R(n) = Rµν
ab(n)eµ

a(n)eν
b (n). (3.106)

3.4 Poincaré Invariance in Discrete Gravity

In this section, we will develop our new extension [2] of the previously described for-
mulation of Discrete Gravity, where the symmetry group will be expanded to include
translations and attempt to replace diffeomorphism invariance with translational in-
variance on the lattice. New discrete expressions for the curvatures involved will be
computed, together with the transformations of the spin connections and soldering forms
for the case of a two-dimensional space.

3.4.1 Extension of Tangent Space and Group Contraction

In order to implement Poincaré invariance into the discrete space through the inhomo-
geneous group ISO(d), one can start with the rotation group in one dimension higher,
SO(d+ 1) instead of SO(d), then perform a contraction. First, recalling the generators
of rotation JAB where

[JAB, JCD] = δBCJAD − δACJBD − δBDJAC + δADJBC , (3.107)

with indices A = a, · · · , d+ 1, and a = 1, · · · , d. Isolating the (d+ 1)th element of JAB

in the following way,
Ja(d+1) = rPa, (3.108)

as to isolate the generator of translation from the higher dimension element of the
rotation generators JAB, so the commutation relations for it become

[Ja(d+1), Jb(d+1)] = −Jab, (3.109)
[Jab, Jc(d+1)] = δbcJa(d+1) − δacJb(d+1), (3.110)

and the commutation relations with generators Pa then become

[Pa, Pb] = − 1
r2Jab, (3.111)

[Jab, Pc] = δbcPa − δacPb. (3.112)

Effectively, using this contraction method and taking the limit r −→ ∞, the Poincaré
group is thus recovered from the SO(d+ 1) group. It is worthwhile to mention that this
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method was implemented into the geometric construction of Supergravity with N = 1 as
a gauge symmetry of the supersymmetry algebra after it was discovered in 1976, and is
considered an elegant way to derive the supergravity action [16].
Now, one can define the begin by defining the spin connection on the extended tangent
space with the rotation group SO(n+ 1), where it can be expanded as

1
4∆xµωAB

µ γAB = 1
4∆xµωab

µ γab + 1
2r∆xµea

µ(n)γaγ, (3.113)

where the the sum is over the Latin indices only, and a, b = 1, ..., d. For the Clifford
algebra basis γ = γd+1, the following relations are satisfied

γ2 = 1, {γ, γa} = 0. (3.114)

The spin connection group element Ωµ(n) in a given cell n in this splitting becomes

Ωµ(n) = exp
(
ωµ(n) + 1

r
eµ(n)

)
, (3.115)

with the following definitions for ωµ(n) and eµ(n)

ωµ(n) = 1
4∆xµωab

µ γab, eµ(n) = 1
2r∆xµea

µ(n)γaγ. (3.116)

The group element U(n) is defined as

U(n) = exp
(
λ(n) + 1

r
ζ(n)

)
, (3.117)

where
λ(n) = 1

4λ
ab(n)γab, ζ(n) = 1

2rζ
a(n)γaγ. (3.118)

Recalling that the connection Υµ(n) = Ωµ(n)Eµ(n) transforms under the action of this
group as

Υ′
µ = U(n)Υµ(n)U−1(n), (3.119)

and acting through with the shift operator, one recovers the transformation of Ωµ(n) as

Ω′
µ(n) = U(n)Ωµ(n)U−1(n+ µ̂), (3.120)

and expanding the group elements the expression above becomes

eω′
µ(n)+ 1

r e′
µ(n) = eλ(n)+ 1

r ζ(n)eωµ(n)+ 1
r eµ(n)e−(λ(n+µ̂)+ 1

r ζ(n+µ̂)). (3.121)
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Expanding the exponential — Since it is of interest to obtain the transformations of ωµ

and eµ, one needs to expand fully the expression of the form

eωµ(n)+ 1
r

eµ(n) ≡ eX+Y , (3.122)

which is in principle complicated as it is given by the Zassenhaus formula

eX+Y = eXeY
∞∏

n=2
eCn(X,Y ), (3.123)

with Cn(X, Y ) being a homogeneous Lie polynomial of degree n in X and Y , and the
formula is only known to order 9. But in this case, the result that is of of interest is
after the group contraction is applied, which is occurring in the limit r →∞, and hence
one can use the expansion that was obtained by Volkin [22],

eω(n)+ 1
r

e(n) = eω(n)
(

1+ 1
r

(e− 1
2! [ω, e]+

1
3! [ω, [ω, e]]−

1
4! [ω, [ω, [ω, e]]])+O( 1

r2 )
)
, (3.124)

and in this case it is valid to all orders. Obtaining a closed-form expression for the
infinite series given above is in principle possible for SO(d+1) groups, but in the process
of derivations it turns out the expressions for d = 3, 4 were not transparent. In the
following, the procedure will be shown for the space of dimension d = 2, as the higher
dimensional cases will require further development.

3.4.2 Group Compactification in Two-Dimensional Space

The goal will be now to find discrete expressions for the transformation of the zweibein
and its Torsion expression in a 2-dimensional space, by contracting the SO(3) group on
the tangent space following the previous procedure.
The expansion of a general Lie group element Ωµ(n) in 3−dimensions is well known and
is given by the formula

e
i
2 ℓµAi

µ(n)σi = cos 1
2ℓ

µAµ(n) + i
Ai

µ

Aµ

sin 1
2ℓ

µAµ(n)σi, (3.125)

where the field in this case splits as

Ai
µ(n)σi = ωµ(n)σ3 + 2

r
ea

µ(n)σa, (3.126)
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and for SO(3) the group generators are given by

ωµσ3 = ωab
µ γab, ea

µσa = ωa3
µ γa3. (3.127)

The magnitude Aµ is computed as

(Aµ)2 = (ωµ(n))2 + 4
r2 e

a
µe

a
µ (3.128)

with the summation on the Latin indices only, and then by expanding it in a power
series in r for the limit r →∞,

Aµ(n) = ωµ(n)

√√√√1 + 4
r2
ea

µ(n)ea
µ(n)

(Aµ)2

= ωµ +O( 1
r2 ), (3.129)

and so up to order O( 1
r2 ) the magnitude in (3.125) will be estimated by Aµ ≃ ωµ. The

Lie group element (3.115) for the contracted SO(3) group then becomes

Ωµ(n) = e
i
2 ℓµωµ(n)σ3 + 2i

r

ea
µ(n)
ωµ(n) sin 1

2ℓ
µωµ(n) σa. (3.130)

Transformation of ωµ and eµ — Now, the transformations for ωµ and ea
µ will be

obtained from expanding

Ω′
µ(n) = e

i
2 ℓµω′

µ(n)σ3 + 2i
r

e′a
µ(n)

ω′
µ(n) sin 1

2ℓ
µω′

µ(n) σa, (3.131)

under gauge transformations

Ω′
µ(n) = U(n)Ωµ(n)U−1(n+ µ̂).

A similar expansion as in (3.130) can be written for the group element U(n), where one
obtains

U(n) = e
i
2 λ(n)σ3 + 2i

r

ζa(n)
λ(n) sin 1

2λ(n) σa. (3.132)

Expanding the right hand side in (3.120) to orders 1/r , and plugging in (3.132), one
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gets

Ω′
µ(n) =

(
e

i
2 λ(n)σ3 + 2i

r

ζa(n)
λ(n) sin 1

2λ(n) σa

)(
e

i
2 ℓµωµ(n)σ3 + 2i

r

ea
µ(n)
ωµ(n) sin 1

2ℓ
µωµ(n) σa

)
(
e− i

2 λ(n+µ̂)σ3 + 2i
r

ζa(n+ µ̂)
λ(n+ µ̂) sin 1

2λ(n+ µ̂) σa

)
, (3.133)

and separating terms with respect to their r-dependence, one gets

Ω′
µ(n) = e

i
2 (λ(n)−λ(n+µ̂)+ℓµωµ(n))σ3 + 2i

r

(
e

i
2 (λ(n)−λ(n+µ̂)σ3 ēa

µ(n) (3.134)

+ e
i
2 (λ(n+µ̂)−ℓµωµ(n))σ3 ζ̄a(n) + e− i

2 (λ(n)+ℓµωµ(n))σ3 ζ̄a(n+ µ̂)
)
σa,

and to make the expression more compact, the following definitions were introduced for
ea

µ and ζ(n)

ēa
µ(n) ≡

ea
µ(n)
ωµ(n) sin

(1
2ℓ

µωµ(n)
)
, ζ̄(n) ≡ ζa(n)

λ(n) sin
(1

2λ(n)
)
. (3.135)

Now, equating the expansion in (3.134) with the definition in (3.131), for the r-dependent
parts one gets

ℓµω′
µ(n) = ℓµωµ(n) + λ(n)− λ(n+ µ), (3.136)

from which an explicit discrete transformation for the spin connection ωµ(n) is obtained
with ℓµ ≡ 1

ω′
µ(n) = ωµ(n)−∆µλ. (3.137)

To get the transformation for the zweibein ea
µ, the r-dependent part is now considered

e′a
µ

ω′
µ(n) sin 1

2ℓ
µω′

µ(n) σa =
(
e− i

2 ℓµ∆µλ(n)σ3 ēa
µ(n) + e

i
2 (λ(n+µ̂)−ℓµωµ(n))σ3 ζ̄a(n)

− e
i
2 (λ(n)+ℓµωµ(n))σ3 ζ̄a(n+ µ̂)

)
σa. (3.138)

In order to simplify this expression, the rotation parameter λ −→ 0 will be taken as a
gauge choice, since for the purpose of this exploration, only the transformation under
translation is of interest. Then, the transformation of ωµ in (3.137) is substituted into
(3.138), and an exact solution is then obtained

e′a
µ (n)σa =

(
ea

µ(n) + ωµ(n)
sin 1

2ℓ
µωµ(n)

(
e− i

2 ℓµωµ(n)σ3ζa(n)− e i
2 ℓµωµ(n)σ3ζa(n+µ)

))
σa. (3.139)
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The transformation of the zweibein ea
µ(n) can expressed in terms of real fields through

implementing the following identity

eiασ3βaσa = (cosαβa + sinαϵabβb)σa, (3.140)

to finally arrive at the expression for the discrete transformation of ea
µ(n)

e′a
µ (n) = ea

µ(n)− ℓµωµ(n) cot 1
2ℓ

µωµ(n)∆µζ(n)− ωµ(n)ϵab
(
ζb(n) + ζb(n+ µ)

)
. (3.141)

In the above expression one has to substitute the solution of ωµ(n) as function of
ea

µ(n), however, the best one can achieve is to develop a perturbative expansion of the
expression as a function of ℓµ, as the substitution can only be implemented numerically
with the torsion equation being a transcendental equation.

Transformation of the metric gµν — For completion, the discrete transformation of the
metric can be directly computed from (3.141) as

g′
µν(n) = gµν(n)− ℓµωµ(n) cot 1

2ℓ
µωµ(n)∆µζ

a(n)ea
ν(n)

− ℓνων(n) cot 1
2ℓ

νων(n)∆νζ
a(n)ea

µ(n)

− ωµ(n)ϵab(ζb(n) + ζb(n+ µ̂))ea
ν(n) (3.142)

− ων(n)ϵab(ζb(n) + ζb(n+ ν̂))ea
µ(n) +O(ζa)2.

3.4.3 Curvature and Torsion in ISO(d)

Now the goal will be to compute the curvature expression and torsion for 2-dimensional
lattice starting with the tangent group SO(3). Recalling that the curvature expression
is

Θµν(n) = 1
2ℓµℓν

(
Υ µ(n)Υ ν(n)Υ−1

µ (n)Υ−1
ν (n)− µ←→ ν

)
= 1

2ℓµℓν

(
Ωµ(n)Ων(n+ µ̂)Ω−1

µ (n+ ν̂)Ω−1
ν (n)− µ←→ ν

)
,
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it is convenient to define the element Pµν such that

Pµν(n) ≡ Ωµ(n)Ων(n+ µ̂)Ω−1
µ (n+ ν̂)Ω−1

ν (n) (3.143)

=
(
e

i
2 ℓµωµ(n)σ3 + 2i

r

ea
µ(n)
ωµ(n) sin 1

2ℓ
µωµ(n) σa

)
(
e

i
2 ℓνων(n+µ̂)σ3 + 2i

r

ea
ν(n+ µ̂)
ων(n+ µ̂) sin 1

2ℓ
νων(n+ µ̂) σa

)
(
e− i

2 ℓµωµ(n+ν̂)σ3 − 2i
r

ea
ν(n+ ν̂)
ωµ(n+ ν̂) sin 1

2ℓ
µωµ(n+ ν̂) σa

)
(
e− i

2 ℓνων(n)σ3 − 2i
r

ea
ν(n)
ων(n) sin 1

2ℓ
νων(n) σa

)
, (3.144)

then by expanding this product up to order 1
r
, and separating terms based on r-

dependence, one can write Pµν(n) as

Pµν(n) = P (0)
µν + 2i

r
P (r)

µν , (3.145)

with its r-independent term given by

P (0)
µν (n) = e

i
2 (ℓµωµ(n)+ℓνων(n+µ̂)−ℓµωµ(n+ν̂)−ℓνων(n))σ3 , (3.146)

and similarly the r-related term is

P (r)
µν =

(
e

i
2 (−ℓνων(n+µ̂)+ℓµωµ(n+ν̂)+ℓνων(n))σ3 ēa

µ(n)− µ←→ ν
)

+
(
e

i
2 (ℓµωµ(n)+ℓµωµ(n+ν̂)+ℓνων(n))σ3 ēa

ν(n+ µ̂)− µ←→ ν
)
σa, (3.147)

From Θµν(n) one can then deduce the discrete curvature expression, which in the
compact notation is written as

Rµν(n) = 1
ℓµℓν

(P 0
µν − P 0

νµ) = 4i
ℓµℓν

sin ℓ
µℓν

2
(
∆µων(n)−∆νωµ(n)

)
σ3. (3.148)

Finally, the discrete torsion expression can be written compactly using (3.147) as

T a
µνσa = 1

ℓµℓν
(P (r)

µν − P (r)
νµ ) = 2

ℓµℓν
P (r)

µν , (3.149)

which in this case was obtained by including translations into the symmetry group.
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3.4.4 Continuous Limits in the Discrete Gravity Formalism

To recollect the picture, the discrete space setup consisted of cells with a minimal volume
that was set to unity, with each cell labeled by a set of integers. In order to connect the
discrete picture with the continuous limit, the procedure in [19] will be first outlined,
then applied to the case with Poincaré invariance explored in this thesis. To get the
continuous manifold limit, the volume of the discrete cells must shrink to zero. For that,
one can start by transforming the integer labels into coordinate variables

xµ = ϵnµ, (3.150)

then the continuous limit ϵ→ 0 has to be taken in such a way so that all discrete cells
do not shrink into one single point. To fix the obtained points then, a given point xµ

will remain finite in the continuous limit only when n→∞.

For the Shift Operator — The definition introduced earlier for the shift operator acting
on a function then becomes

Eν(n)f(n) = f(n+ 1ν) → Eν(x)f(x) = f(x+ ϵν), (3.151)

were now the coordinate x ≡ (x1, ..., xd) replaces the cell numbering and ϵν ≡ ϵ1ν

indicates the infinitesimal change in a given d coordinate, such that

Em(x)f(x) = f(x1, ..., xm + ϵm, ..., x
d).

For the Tangent Operators — Using the above definition in the action of the tangent
operator on a function f(x), and restoring ϵ for the finite difference definition, the
tangent operator becomes the partial differential operator in the limit ϵ→ 0

eν(x)f(x) = lim
ϵ→0

f(x+ ϵν)− f(x− ϵν)
2ϵν

= ∂

∂xν

f(x), (3.152)

i.e., on a given coordinate line of the continuous manifold the operator eν(x) is simply
the tangent vector [19]

eν(x) ≡ ∂

∂xν

. (3.153)
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For Parallel Transport — Restoring ϵ in the parallel transport expression (3.64),

ep.t.
µ (x+ ϵν → x) = eµ(x) + Γγ

µν(x)eγ(x)ϵν , (3.154)

which simply recovers the known expression for the covariant derivative, as inspired
earlier in the derivation through taking the limit ϵ→ 0

lim
ϵ−→0

ep.t.
µ (x+ ϵν −→ x)− eµ(x)

ϵν

= Γγ
µν(x)eγ, (3.155)

hence,
∇νeµ = Γγ

µνeγ. (3.156)

Similarly, by expanding the spin connection group element in ϵ

Ων(x) = exp
(
ϵνω

cd
ν (x)Jcd

)
,

one obtains for Ων(x) and its inverse

Ω−1
ν (x) = 1 + ϵνω

cd
ν Jcd, Ω−1

ν (x) = 1− ϵνω
cd
ν Jcd, (3.157)

ignoring higher order terms in ϵ and plugging in the expression

vp.t.
a (x+ ϵν → x) = (Ω−1

ν (x))b
avb(x), (3.158)

and rearranging then taking the limit in similar steps as for the tangent operator, one
obtains the needed covariant derivative expression for the vielbein

∇νva = ω b
νa vb. (3.159)

For the Curvature — In the limit ϵ → 0, the curvature expression can be expanded
using the group elements obtained in (3.157)

Rµν(x) = lim
ϵ→0

1
2ϵµϵν

(
Ωµ(x)Ων(x+ ϵµ)Ω−1

µ (x+ ϵν)Ω−1
ν (x)− (µ↔ ν)

)
(3.160)

= lim
ϵ→0

1
2ϵµϵν

(
(1 + ϵµωµ(x))(1 + ϵνων(x+ ϵµ)(1− ϵµωµ(x+ ϵν)(1− ϵνων(x))

− (µ↔ ν)
)
,
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and in the continuous limit one recovers the curvature in the form of

Rµν = ∂µων − ∂νωµ + [ωµ, ων ], (3.161)

where its components can be deduced from Rµν(x) ≡ Rµν
abJab

R cd
µν (x) = ∂µω

cd
ν − ∂νω

cd
µ + ωcl

µω
d

νl − ωcl
ν ω

d
µl . (3.162)

which is the usual expression for the curvature associated with the spin connections.

For the case with Poincaré invariance

Now the same method is applied on the discrete expressions obtained from gauging the
Poincaré group. Starting with the transformation of the soldering forms,

e′a
µ (x) = ea

µ(x)− ϵµωµ(x) cot 1
2ϵµωµ(x)∆µζ(x)− ωµ(x)ϵab

(
ζb(x) + ζb(x+ ϵµ)

)
,

in the continuous limit ϵµ → 0, the ea
µ transformation simply becomes

e′a
µ → ea

ν − ∂µζ
a − ωµϵ

abζb. (3.163)

For the curvature expression (3.148) obtained with ISO(2) as the tangent group,

Rµν(x) = 4i
ϵµϵν

sin ϵµϵν

2
(
∆µων(x)−∆νωµ(x)

)
σ3,

the curvature components in the continuous limit are obtained in a straightforward way,
however in rather more simplified form for the 2-dimensional space considered

Rµν → ∂µων − ∂νωµ, (3.164)

The torsion computed in (3.149) can be written explicitly as

T a
µνσa = 2

ϵµϵν

(
e

i
2 (−ϵνων(x+µ̂)+ϵµωµ(x+ν̂)+ϵνων(x))σ3

ea
µ(x)
ωµ(x) sin

(1
2ϵµωµ(x)

)
(3.165)

+
(
e

i
2 (ϵµωµ(x)+ϵµωµ(x+ν̂)+ϵνων(x))σ3

ea
ν(x+ ϵµ)
ων(x+ ϵµ) sin

(1
2ϵνων(x+ ϵµ)

)
− (µ←→ ν)

)
σa,
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then expanding for small ϵ, the expression becomes

T a
µνσa = 2

ϵµϵν

(1
2ϵµe

b
µ(x)(δa

b + ϵab(−ϵνων(x+ ϵµ) + ϵµωµ(x+ ϵν) + ϵνων(x))

− 1
2ϵµe

b
µ(x+ ϵν)(δa

b + ϵab(ϵµωµ(x) + ϵνων(x+ ϵµ) + ϵνων(x))− (µ←→ ν)
)
σa

= 1
ϵν

(
(ea

µ(x)− ea
µ(x+ ϵnu))

+ 1
2ϵ

ab(ϵµωµ(x+ ϵν)− ϵνων(x+ ϵµ)− ϵµωµ(x)− ϵνων(x+ ϵµ))
)
− (µ←→ ν),

and from here, the components for torsion in the continuous limit ϵ→ 0 are recovered as

T a
µν → (∂µe

a
ν − ∂νe

a
µ + ϵabωµeνb − ϵabωνeµb). (3.166)

For the Discrete Curvature Action — Finally, returning to the Discrete Action in [19],
replacing the sum with an integral over the line element,

ϵ
∑
−→

∫
dx,

from the following simple relation

lim
ϵ→0

∑
n

ϵf(n) =
∫
f(x)dx, (3.167)

the discrete action for gravity (3.105) in is therefore recovered below in the continuous
limit

S =
∫

det
(
eb

µ

)
R(x)dx1...dxd. (3.168)

Therefore, this completes the proof that in this construction, the Discrete Gravity
formalism considered successfully recovers the essential differential geometry elements
in the continuous limit and in a manifest way.

3.4.5 Torsion corrections from the extended symmetry

Comparing now the torsion that was obtained in this thesis work by requiring invariance
under the Poincaré group ISO(d), with the old one [19] shown in Section (3.3.3) by
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requiring invariance under group of rotations SO(d), which is quoted below

T a (old)
µν (n) = 1

ℓµ
(Υµ(n)eν(n)Υ−1

µ (n)− eν(n))− 1
ℓν

(Υν(n)eµ(n)Υ−1
µ (n)− eµ(n)), (3.169)

it can be written in an expanded form by using the definition of a Lie group element in
(3.125) into

Υµ(n)eν(n)Υ−1
µ (n) = e

i
2 ℓµωµ(n)σ3ea

ν(n+ µ̂)σae
− i

2 ℓµωµ(n)σ3 , (3.170)

hence for the sake of comparison the old torsion (3.169) takes the form

T a (old)
µν (n) = 1

ℓµ
(cos ℓµωµ(n)ea

ν(n+ µ̂) + sin ℓµωµ(n)ϵabeb
ν(n+ µ̂)− ea

ν(n))− (µ↔ ν).
(3.171)

Rewriting now the new torsion expression obtained in (3.149) more explicitly as

T a
µνσa = 2

ℓµℓν

[
e

i
2 (−ℓµℓν∆µων(n)+ℓµωµ(n+ν̂))σ3

(
ēa

µ(n) (3.172)

− ei(− 1
2 ℓµℓν∆νωµ(n)+ℓνων(n+µ̂))σ3 ēa

µ(n+ ν̂)
)
− (µ←→ ν)

]
σa,

one finds that the torsion obtained from ISO(d) includes corrections that extend to the
zweibein which in this approach becomes rescaled

ea
µ(n) −→ ēa

µ(n)
sin
(

1
2ℓ

µωµ(n)
)

ωµ(n) ea
µ(n)

with the scaling factor being in fact small sin 1
2 ℓµωµ(n)

1
2 ℓµωµ(n) < 1. Other corrections that depend

on the factor
e

i
2 ℓµℓν∆µων(n)σ3

can also be regarded as small for fine lattices. The most important corrections then
come from the factor

e
i
2 (ℓµωµ(n+ν)−ℓνων(n+µ))σ3

which appears in the zero torsion condition. These corrections are important to include
in computations, especially when implementing numerically this condition for solving
the spin connections as functions of the soldering forms.
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3.4.6 Can the Translational Invariance replace Diffeomorphism Invariance
on a Discrete Lattice?

In the process of producing this work, there were many attempts at recreating a discrete
version for the general coordinate transformations (GCT) explicitly without trying to
appeal to the gauge-like formalism, where as a starting point, the idea was to utilize the
shift operators in matrix combinations that would act on the functions which are defined
on the lattice to produce in the continuous limit the proper equations of coordinate
transformations, but the main problem which was not quite resolved was that the mixing
of the action of shift operators would not output the function at the correct cell position.
Alternatively, and appealing to the idea that the the the GCT parameter with spacetime
indices ζµ can be connected to the translation parameter of the group of translations
with tangent space indices ζa through the soldering forms

ζa = ζµea
µ,

following the previous discussion in the continuous limit, it was possible to relate the
transformations of the translational gauge fields δea

µ to those under general coordinate
transformations δ′ea

µ through the relation quoted below

δea
µ = δ′ea

µ + ζνT a
µν ,

hence, finding the right expression for torsion in the discrete setting and enforcing the
condition T a

µν = 0 allows for appropriately relating the symmetries of General Relativity
with the Poincaré group.
To this end, while in the first work [19] the authors tried to relate the freedom in
enumerating the lattice as the remnant of this essential feature of general relativity, the
torsion condition was derived without invoking the translation group into the picture.
In this thesis work we took another conceptually step in that direction, considering
replacing diffeomorphism invariance with the translational invariance, and relating their
parameters through defining torsion as the curvature associated with the translational
gauge field on the lattice

Rµν
a(ea

µ) = 0,

which was absent in the original formulation as the group of symmetries on the lattice
was restricted to rotational invariance. In our approach, this procedure was done more
explicitly invoking the translation group into the tangent space symmetry defined for the
theory, and the torsion expression was derived more systematically, giving the properly
corrected expression for torsion.
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Alas, it remains an open discussion whether our alternative realization of diffeomorphism
invariance on the lattice provides the final answer in discrete spaces, while its remnant,
the freedom in choosing a slicing for the discrete lattice, remains inherent in the formalism
as long as the connection between the cells keeps with the definition of the dimensionality
of the discrete manifold.
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Chapter 4

Conclusions and Future Outlook

In this thesis work we studied two fundamental problems that occur near the Planckian
scales, starting first from the early Universe dynamics, down to the structural foun-
dations of the gravitational theory. Studying how the universe evolves starting with
a small patch at the Planck scale, which is the focus of the first part of the thesis,
lends itself to the question of how space-time can emerge at these scales, knowing
that the geometric description of the gravitational theory faces problems below Planck
lengths. The natural framework to address this emergent problem then presents itself in
a Discrete Gravity approach, which the second part of the thesis explored and expanded
on both mathematical and conceptual ends.

In the first part of the thesis work, we showed how the long-standing problem of eternal
inflation and the self-reproduction of the universe were evaded, and at the same time, the
issue of fine-tuning of initial conditions was avoided in a class of models where inflation
starts at the Planck curvature. This was achieved within a minimally modified gravity
framework, Mimetic Gravity, by coupling the mimetic ϕ field to the Inflaton potential
V (φ), and obtaining modified dynamical equations that allowed for the violation of
self-reproduction conditions. The coupling function C(κ) in the Lagrangian of the
Mimetic Model was taken to be linear in κ for large curvatures, ensuring that the kinetic
energy of the inflaton field has the dominant contribution in the energy density, driving
inflation at the onset, and generating scalar perturbations and gravitational waves
with a comparable amplitude at these scales. On the observable scales, for the model
studied, the tensor-to-scalar ratio of these perturbations agrees with the current bound
on r < 0.032, and the computed spectral index ns agrees with current measurements.
Interestingly, the Lagrangian that was used modified Einstein’s gravity only at high
curvatures, where it is already known to face limitations, and the known degrees of



88 4. Conclusions and Future Outlook

freedom for gravity were not altered in this process, as the mimetic framework does not
add any new dynamical degrees of freedom through the mimetic field, but rather adds
a ‘dust’ component through its constrained degree of freedom. In fact, quickly after
inflation begins, the dust component becomes negligible, but later it can be restored
again to describe the dark matter component of the universe. While we have studied in
this thesis a particular inflationary scenario for a specified potential, the Lagrangian
laid out describes a whole class of inflationary models that can be explored given that
the coupling function can be arbitrary at low curvatures. Hence this work restored the
ground for predictability of the Inflationary theory which was debated earlier in [49] as
discussed in the first chapter. The resolution of the fine-tuning problem and avoiding
the Multiverse has not been shown in any other work.

The next question to address on this end would be: how can coupling to the Mimetic
field be further exploited in cosmological settings? — The Lagrangian used in this
work can be generalized by adding another potential Ṽ (φ) that is different from the
coupled one, or by having an extra coupling term to the scalar kinetic term, such as
gµνD(κ)∂µϕ∂νϕ, so that even when the potential of the field vanishes, the new coupling
term can mimic different equations of state depending on the power of κ in the coupling.
This could potentially address the Dark Energy problem today through an effective
equation of state. Indeed, we are currently investigating this model as an extension
of the Mimetic inflation model presented here. On the other hand, there are other
interesting variants to be explored, such as a direct coupling of the scalar field to the
mimetic field ϕ through its derivative of the form gµνE(κ)∂µF (φ)∂νϕ, from which new
and simple inflationary scenarios can be constructed. Hence, this new type of coupling
through κ in the Lagrangian opens many possibilities for further investigation of the
early and late-time evolution of the universe.

Turning to the structural end of issues associated with the Planckian scale, in the second
part of the thesis, we explored a novel Discrete Gravity framework. Therein, we took
a new step in advancing the conceptual and computational aspects of this formalism,
by implementing the idea of having gravity as a gauge theory of the Poincaré group
into the new discrete lattice formulation, inspired by Lattice gauge theory. This allowed
for obtaining new modified expressions for the curvatures associated with the gauge
fields, after imposing translational invariance. We achieved that by expanding the
tangent space to include translations together with the rotational symmetry through
the inhomogeneous rotational group ISO(d), which was recovered by performing a
contraction on the higher-dimension (d+ 1) of the group SO(d+ 1), taking its radius to
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infinity. As a result, we obtained the full discrete torsion expression, which is needed to
calculate the spin connection elements, and allows to compute numerically the curvature
for defined surfaces, as was done using the old definitions in [23, 24, 25]. This was done
by considering two-dimensional spaces. By comparing our new curvature and torsion
expressions to the old ones obtained in [19], the results show that the modifications are
functions of higher order in lattice size. We also derived the discrete transformations
for the spin connections and vielbein in the example for ISO(d) invariance in two-
dimensions. Finally, while diffeomorphism invariance is still not made manifest in
discrete spaces, and was only reflected in the freedom in renumbering the discrete cells
and choosing them, we took a new step in replacing this invariance by translational
invariance, which was absent in the old formulation. It is noteworthy that in the used
Discrete Gravity formalism we succeeded in recovering manifest continuous limits for
the obtained expressions, which is a main advantage over other discrete approaches in
literature.
Looking forward, as this Discrete Gravity formalism is being developed and expanded,
more work is anticipated for finding the obtained expressions in two dimensions for
higher dimensional spaces, and recovering discrete expressions for other mathematical
relations found in General Relativity, for instance a form for the Bianchi identities for
curvature as a next step. On the other hand, in line with our idea of expanding the
tangent space for the discrete manifold, a worthwhile question becomes: is it possible
to achieve unification on the lattice? — The unification of gravity with other gauge
interactions on the lattice comes as a further step to lattice gauge theory that this
Discrete Gravity formulation may allow for. By taking the current symmetries on the
tangent space, a similar extension on the symmetry groups can be performed to include
the other gauge groups, which is worthwhile to explore since this approach was already
shown to be fruitful in the continuous case as done in the work in [106]. Then, spinors
defined on the lattice would have an additional rotational SO(d) or ISO(d) symmetry,
and the main challenge there would be in applying the Baker-Campbell-Hausdorf formula
for the Lie groups. Another problem to address on this end would be the doubling of
fermions in Euclidean spaces which still remains in this discrete formulation, as it is the
case for other approaches too.

Another fundamental question that this discrete formulation opens to is: could Discrete
Gravity be a new competing approach to Quantum Gravity? — This bigger scheme of
reconciling gravity with the quantum theory has followed competing approaches, many
centered around discretization, for example, those starting with discretizing the path
integral as in Regge Calculus [31] and Dynamical Triangulations [32]. However, these
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face problems in taking the continuum limit, which is important for recovering the limit
to the classical theory with a continuous manifold. In contrast, a manifest continuum
limit is a main advantage of the framework adopted in this thesis, which makes it a
viable alternative. On the other hand, using this formalism, quantization can be applied
to the space where discretization is applied to the space-like hypersurfaces, leaving the
time coordinate continuous, which is a natural approach to take as seen in canonical
quantum gravity. The goal would be then to replace quantum field theory with one
that incorporates gravity and instead has a finite number of degrees of freedom, which
appears naturally in the description of the elementary volumes in discrete gravity that
carry a finite number of such degrees of freedom, possibly giving an inherent UV cut-off
in the theory. Another step in this direction can be taken in promoting the continuous
indices carried by field variables to integers on the lattice, and this in a sense would
bring quantum field theory closer to quantum mechanics. This direction then requires
finding a proper Hamiltonian description of this discrete formalism.

Alas, the dynamical and structural problems addressed in this thesis that start from
the Planckian scale have opened the door to several connected and interesting problems
interpolating between: i) challenges to the gravitational theory of GR at the classical
level, which motivated the search for a modified gravity theory at the high curvature
limit from observational and theoretical standpoints, and solving long standing problems
in its most celebrated theory of Inflation; ii) to another set of challenges pertaining
to the classical description of space-time, which breaks down at the smallest scales,
requiring novel frameworks, such as Discrete Gravity, which builds on a gauge theoretical
description of Gravity on the lattice, and invites deeper questions on reconciling gravity
with quantum mechanics.
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