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Abstract
Grid cells in the mammalian entorhinal cortex have spatial firing fields that repeat pe-

riodically, forming a hexagonal lattice. Grid cells are organized into modules, with cells in
each module sharing the same spacing between fields, called the grid scale, and the same
lattice orientation. Across modules, spatial scales follow an approximately geometric pro-
gression with a ratio of about 3 : 2.
This thesis addresses the possible role of intermodular connections for maintaining a

consistent spatial representation across the hierarchy of modules, using continuous attrac-
tor network (CAN) models. In the absence of landmarks or other spatial cues to calibrate
the firing rate maps, I show how the spatial representation in such models will invariably
drift, even in deterministic CANmodels with no noise. When combining information
across different spatial scales, independent drift in different modules can lead to catas-
trophic errors. For this reason, in this study I explore the role of biologically inspired, yet
weak inter-modular connections could play in canceling or reducing the relative drift. I
show that when the inter–modular connections reinforce the 3:2 ratio of the spatial scales
across modules the relative drift is reduced by an order of magnitude. Moreover, I show
that this reduction does not occur when the inter-modular connections are randomized.
Targeted inter-modular connections, therefore, are a simple yet powerful means to mitigate
drift and prevent catastrophic errors in multi-scale grid codes.
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Abstract
Gitterzellen im entorhinalen Kortex von Säugetieren haben räumliche Feuerfelder, die sich
periodisch wiederholen und ein hexagonales Gitter bilden. Diese Zellen sind inModulen
organisiert, wobei die Zellen in jedem einzelnenModul die gleichen Abstände zwischen
den Feuerfeldern und die gleichen Gitterachsen haben. Die räumlichen Skalen zwischen
den verschiedenenModulen folgen näherungsweise einer geometrischen Progression mit
einem Skalenverhältnis von 3 : 2.
Diese Arbeit befasst sich mit der möglichen Rolle intermodularer Verbindungen für

die Aufrechterhaltung einer konsistenten räumlichen Repräsentation über die Hierarchie
der Module hinweg, wobei Modelle eines kontinuierlichen Attraktorennetzwerks (CAN)
verwendet werden. In Ermangelung von Landmarken oder anderen räumlichen Anhalt-
spunkten zur Kalibrierung der Feuerratenkarten zeige ich, wie die räumliche Repräsenta-
tion in solchenModellen unweigerlich driftet, selbst in deterministischen CAN-Modellen
ohne jegliches Rauschen. Wenn Information über verschiedene räumliche Skalen hin-
weg kombiniert wird, kann eine unabhängige Drift in verschiedenenModulen zu katas-
trophalen Fehlern bei der Ortsbestimmung führen. Aus diesem Grund untersuche ich in
dieser Studie, welche Rolle biologisch inspirierte, schwache intermodulare Verbindungen
bei der Reduzierung der relativen Drift spielen können.
Ich zeige, dass die relative Drift um eine Größenordnung reduziert wird, wenn die inter-

modularen Verbindungen das 3/2-Verhältnis der räumlichen Skalen zwischen denMod-
ulen verstärken. Außerdem zeige ich, dass diese Verringerung nicht auftritt, wenn die inter-
modularen Verbindungen randomisiert sind. Gezielte inter-modulare Verbindungen sind
daher ein einfaches, aber wirkungsvolles Mittel, um die Drift zu mindern und katastrophale
Fehler in mehrskaligen Gitterzellen-Darstellungen zu verhindern.
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1
Introduction

We initially feel disoriented when we visit a new environment, such as a foreign city. To

navigate to a restaurant or museum, we rely on printed maps from tourist kiosks or elec-

tronic maps on our smartphones. However, as we become more familiar with the envi-

ronment, we start to recognize previously encountered routes and landmarks, eventually

navigating back to our hotel using shortcuts or alternative routes. But how is physical space
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represented in the brain and used for navigation?

A well-known theory in experimental psychology suggests that humans and other ani-

mals internalize spatial experiences in the form of a ‘cognitive map’—a mental representa-

tion of space that incorporates known places and their relationships into a common refer-

ence frame (Tolman, 1948). For instance, when trying to remember where we parked our

car in a large parking lot, we can mentally visualize the lot’s layout, the position of land-

marks, and the relative location of our car. This visualization is an example of a cognitive

map.

While a cognitive map relies on stored landmarks, animals can also keep track of location

on-the-fly by path integration. This process involves continuously updating the current

position vector by summing every movement’s distance and direction relative to its starting

point. Thus, it enables an animal to return directly to its nest or food source even in com-

plete darkness (Mittelstaedt andMittelstaedt, 1982; Etienne and Jeffery, 2004). Path inte-

gration is often used when there are no visual landmarks, or when following an odor trail

would be inefficient. It relies on internal (idiothetic) cues, such as proprioceptive feedback

(body position and movement), vestibular information (balance and spatial orientation),

and motor efference copies (parallel to signals sent from the brain to muscles).

Tolman’s cognitive map concept remained a theoretical construct until O’Keefe and

Dostrovsky (1971) discovered hippocampal place cells. By recording from freely-moving

rats, O’Keefe and Dostrovsky (1971) found neurons in the dorsal hippocampus that re-

sponded specifically when the rat was in a particular location facing a specific direction.

These place cells were proposed as neural correlates of Tolman’s cognitive map, providing

evidence for the idea that spatial representations exist in the brain.
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Place cells contribute to cognitive mapping and have been implicated to play a role in

path integration because they encode the animal’s current location. They fire when an ani-

mal is in a specific location, forming a spatial map of the environment. While place cell ac-

tivity is modulated by self-motion cues (such as proprioception, vestibular input, and mo-

tor efference) (McNaughton et al., 2006; Gothard et al., 1996), it remains debated whether

they themselves perform path integration or reflect computations occurring elsewhere in

the navigation system (Haas et al., 2019).

The discovery of hippocampal place cells generated significant interest in systems neuro-

science. It provided a way to study high-level cognitive concepts like spatial perception at a

mechanistic level.

Some thirty years later, in their investigation of the inputs to hippocampal place cells,

Hafting et al. (2005) discovered neurons in the medial entorhinal cortex (MEC) that each

fired at multiple spatial locations with a regular triangular pattern and specific length scale

and orientation. These neurons, termed grid cells, represent physical space with periodic

tuning curves at multiple spatial scales. Grid cell activity is stable, persisting without exter-

nal landmarks and in darkness (Hafting et al., 2005). Grid-like firing is expressed immedi-

ately in new environments Hafting et al. (2005) and Barry et al. (2007) have shown that the

grid spacing can adapt, when the environment undergoes modest rescaling. Because grid

cells can maintain spatially regular firing in darkness and respond to velocity input, they

have been proposed to contribute to path integration.

Several mechanisms have been proposed. Continuous-attractor network (CAN) mod-

els explain grid translation as a velocity-driven shift of an activity bump across a recurrent

sheet (Burak and Fiete, 2009). Alternative frameworks include oscillatory-interference
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models, in which phase differences between theta-modulated oscillators generate the grid

periodicity (Burgess et al., 2007), and single cell plasticity models 2.7. Using Fisher infor-

mation, Mathis et al. (2012) showed that a multi-scale grid code is more efficient than a

place-cell code of comparable size.

Animals possess many grid cells that span a wide range of scales with scales increasing

from dorsal to ventral along the longitudinal axis of MEC (Hafting et al., 2005). These

scales are not smoothly distributed but cluster around specific values (Stensola et al., 2012;

Burgess et al., 2007); each of these clusters constitutes a module. Consecutive pairs of mod-

ules have consistent scale ratios, suggesting a universal scale ratio in the range of 1.4 −

1.7 (Stensola et al., 2012; Krupic et al., 2015; Burgess et al., 2007). Within a module, the

grid lattices have the same spacing between nodes and nearly identical axes (Hafting et al.,

2005). Across modules, grid lattices have clustered orientations (Stensola et al., 2012; Barry

et al., 2007; Gardner et al., 2022).

Previous work from our lab (Mathis et al., 2012; Stemmler et al., 2015) and others (Fi-

ete et al., 2008; Burak, 2014; Sreenivasan and Fiete, 2011) have shown that this modular

structure of the representation is advantageous because it gives the grid code a large capacity

and reduces ambiguity in the decoded position. A geometric series of the grid scales is the

optimal code (Mathis et al., 2012).

In figure 1.1, one can see the one dimensional (1D) analog of 3 modules with different

scales and a periodic code representing position. The inferred position is given by find-

ing the location where neurons in all modules overlap. In the absence of sensory cues, the

phase represented in each module will probably drift gradually (Hardcastle et al., 2015),

relative to the value that matches the true position of the animal. These drifts may occur
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independently in different modules, leading to false position estimates (Burak, 2014; Fiete

et al., 2008; Mosheiff and Burak, 2019).

Figure 1.1: In a one dimensional (1D) analog of the grid cell code, all neurons in a single module represent position as a
1D phase, relative to the grid spacing. The thin black bars represent the encoded phase in each module, and the red,
blue and green bars represent the possible locations compatible with the activity in each module. The width of the
colored bars schematically represents the accuracy of readout. Combining the activity from all neurons in the three
modules can greatly reduce the ambiguity. Here, the joint activity from the three modules is compatible with a single
location (yellow bar) within the range shown. The full range over which positions can be unambiguously inferred is the
capacity of the code, whereas the width of the yellow bar roughly represents the resolution of the code. Figure taken
from Burak (2014) with permission.

The emergence of the grid pattern and the implementation of path integration has been

modeled for single modules (Burak and Fiete, 2009; Guanella et al., 2007). However, how

this geometric ratio of scales emerges is not well understood and no current experimental

data about the connectivity between different modules exist, other than weak intermodular

correlations reported by Gardner et al. (2019). In addition, it is not known how the grid

cells remain stable in the dark in the absence of any sensory cues.

1.1 Aim and scope of the thesis

We propose that geometrically derived connections between specific neurons in different

modules can reduce relative error between them and make the drift coherent. For this, we

will model each grid cell module as a continuous attractor network and determine the ge-
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Figure 1.2: Grid cell properties. A: Left: schematic of single unit recording. Middle left: raw data from a sample grid cell.
The animal’s path is in black, and the positions at which grid cells fire are superimposed in blue. Middle right: firing rate
map for the same grid cell. Right: the regular firing pattern can be characterized by its orientation, scale, and offset or
spatial phase. B: Two grid cells co‐recorded on a single tetrode in different environments exhibit the same grid scale and
orientation but differ in their offset or relative spatial phase. Top row: firing rate maps for a pair of grid cells recorded in
a familiar (left) and novel (right) environment. Bottom row: spatial cross‐correlation of the grid cell firing rate maps in
each environment. Black dashed lines indicate the central six peaks of the cross‐correlation; colored line shows the
distance and direction from the central peak to the origin of the spatial cross‐correlation. C: Grid cells appear to be
organized into discrete functional modules whose scale increases in discrete steps along the dorso‐ventral axis of MEC
D: Grid field orientation of grid cells recorded in three different rats. The orientations of grid firing patterns are
significantly clustered within and between modules. Figure from: Bush et al. (2015) (License: CC BY 4.0).
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ometric coupling between the modules which could be set up by some plausible plasticity

mechanism based on correlations. We will compare this response with other possible cou-

plings (such as randomly coupled and uncoupled).

Our proposed model will play a crucial role in making experimental predictions about

the type of couplings between grid cell modules and the role the combined network plays

in path integration. We will investigate how the coupling found using the above approach

may be implemented by recurrent synaptic connectivity within the MECwith a simple

biologically plausible structure.

Thus, we aim to:

• Estimate the response of grid cells in a continuous attractor network model and the

accumulation of error in a deterministic network

• Identify and compare possible couplings between grid modules that allow for coher-

ent drift across modules and make experimental predictions for existing couplings.

1.2 Outline of thesis

The thesis is structured as follows. We will begin by reviewing the current literature, partic-

ularly a model of interest (Burak and Fiete, 2009). Then, we model each grid cell module as

a 2D sheet of recurrently connected neurons such that their activity pattern forms a contin-

uous attractor network. Continuous attractor network models have been shown to explain

the emergence and update of grid cells, but the models are prone to diffusive drift over time

(Burak and Fiete, 2009). The network neurons will represent a population of nearby grid

cells of the MEC, whose grids share the same orientation and spacing but have different
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phases. The different grid scales will emerge when using different gains (with the correct

gain ratio) to modulate the external velocity input. We will conduct extensive tests on our

model to quantify the accumulation of error with time, distance traveled, and grid module

parameters of a single module.

Even though a single module can be modeled as an attractor withN neurons, the net-

work activity converges to a state in a 2 dimensional manifold. With a network consisting

ofM uncoupled modules, there is a 2M dimensional space of phases accessible to the net-

work. Using the aboveM uncoupled modules, the drifting neuronal representations due to

independent errors can lead to readout errors in the animal’s location.

Based on earlier experimental Stensola et al. (2012); Barry et al. (2007); Krupic et al.

(2015) and theoretical (Stemmler et al., 2015; Mosheiff et al., 2017; Wei et al., 2015b) work,

we argue that the scale ratio of 1.5 or 3/2 gives a specific geometric relationship between the

modules and thus makes the set of accessible states much smaller than 2M. This helps to

reduce the drift and allows for error correction.

In 1D, the coupling between the different modules based on the specific scale ratio can

be determined easily, which may provide intuitive insight into the geometrical relationship

between them.

The coupling has to be strong enough to allow for mutual error correction but not so

strong that it interferes with the stability of the grid pattern of a given module. In addition,

the network needs to update network activity based on self-motion signal (velocity) coher-

ently to allow for the correct decoding of position frommultiple modules. We will come

up with a weak correlation-based coupling between modules.

We will compare the stability of the grid pattern and the error accumulation in the po-
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sition estimate of our derived coupling with uncoupled modules and modules with other

connection schemes (unidirectional all-to-all, random). Thus, we will determine whether

such a coupling allows for coherent drift.

Based on the derived coupling, we can design an in-silico mock-lesion experiment to

make specific experimental predictions about the nature of the coupling that may exist in

the MEC between grid cell modules. This will allow experimentalists to test for connec-

tions between modules indirectly.
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2
Literature Review

This chapter reviews current empirical knowledge on grid cells, explicitly delving into their

firing patterns, the modulation of their activity by sensory inputs, and their relation to

other spatial cells within the hippocampal system. Next, it explores various classes of com-

putational models of grid cells, including continuous attractor network models highlight-

ing the significance of recurrent connectivity, oscillatory-interference models emphasizing
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the role of rhythmic oscillations, and single cell plasticity models emphasizing the impact of

external sensory cues and learning.

2.1 Grid cells in the entorhinal cortex

The discovery of grid cells stemmed from the quest to understand the origins of place cell

activity in the hippocampus. A key finding was that hippocampal place fields in CA1 were

partially maintained even after the CA3–CA1 connections were severed, suggesting that the

entorhinal cortex (EC), the other major input to CA1, might provide spatial signals to the

hippocampus (Brun et al., 2002). Recordings from the dorsal MEC by the Mosers’ group

revealed sharp spatial firing, with single cells exhibiting multiple firing fields arranged in a

regular triangular pattern (Fyhn et al., 2004; Hafting et al., 2005). These were termed grid

cells.

The spatial firing pattern of a grid cell has three fundamental properties:

• Grid scale: the distance between neighboring firing fields.

• Grid orientation: the angle between one of the grid axes and a reference direction.

• Grid spatial phase: the two-dimensional spatial offset between the firing fields and a

reference point.

Nearby grid cells recorded from the same tetrode show similar scale and orientation but

have scattered phases, indicating that while grid scale and orientation are topographically

organized in the cortex, grid phase is not (Hafting et al., 2005).

The remainder of the chapter reviews (i) the anatomical and modular organization of

grid cells, (ii) local versus long-range circuitry and its relation to theta oscillations, (iii) in-
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teractions with other spatial cell types, (iv) environmental and behavioral influences, and

(v) empirical limits on path-integration accuracy—providing the context for the modeling

work in Chapters 3–5.

2.1.1 Anatomical Organization of theMEC

The medial entorhinal cortex is a six-layered cortical area. Superficial layers convey neocor-

tical output to the hippocampus, whereas deep layers return hippocampal output to cortex

(Witter et al., 2017).

Layer II contains two excitatory populations: reelin-positive stellate cells and calbindin-

positive pyramidal cells, both capable of grid firing (Fuchs et al., 2016). Layer II exhibits

a striking anatomical modularity where these segregate into cell clusters referred to as ’is-

lands’ embedded in an ’ocean’ of cells. Island cells are the calbindin-positive pyramidal

neurons located in clusters (‘islands’), while ocean cells are the surrounding reelin-positive

stellate neurons (Fuchs et al., 2016; Kitamura et al., 2014). These populations differ in con-

nectivity and projection targets: ocean cells largely project to the dentate gyrus and CA3,

while island cells project to distal CA1 where they provide feed-forward inhibition through

local interneurons (Kitamura et al., 2014; Sun et al., 2015). This anatomical modularity

creates parallel output channels fromMEC layer II and may underlie functional differences

in spatial information processing (Domnisoru et al., 2013; Kropff et al., 2015).

Layer III is composed primarily of pyramidal neurons that target CA1 and the subicu-

lumWitter et al. (2017). Deep layers V–VI receive hippocampal feedback and project

widely to MEC and neocortical/subcortical targets, completing the cortico-hippocampal

loop (Witter et al., 2017).
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2.1.2 Modular Organization of Grid cell Activity

Two years after grid cells were first reported, Barry et al. (2007) found that grid scale in-

creases along the dorso-ventral axis of the MEC. This increase was not continuous, but in

discrete steps(Barry et al., 2007). The ratio between subsequent grid scales in an animal was

a constant, about 1.7, matching theoretical predictions for optimal spatial coding with pe-

riodic codes (Stemmler et al., 2015; Wei et al., 2015a). Independent studies reported similar

ratios (1.4–1.7) (Stensola et al., 2012; Krupic et al., 2015).

Stensola et al. (2012) found that grid cell activity is organized into a small number of

discrete functional modules. Within a module, grid patterns share similar scale, orientation,

and elliptic distortion, but these properties vary across modules. They identified four to

five modules per animal, suggesting a limited number of grid modules. Grid fields from

different cells within a module drift together from trial to trial, regardless of whether the

environment is real or virtual or whether the animal moves in light or darkness (Nagele

et al., 2020).

2.1.3 Local and long-range connectivity ofMEC grid modules

Paired recordings show that excitatory connections between neighboring stellate cells in

layers II and III are sparse, whereas fast-spiking interneurons provide dense recurrent in-

hibition (Couey et al., 2013). Principal cells therefore influence one another mainly via

di-synaptic inhibitory loops rather than direct excitation. Within a grid module, excitatory

and inhibitory neurons form a locally connected sub-network whose spatial organization

mirrors the module’s hexagonal firing geometry (Dunn et al., 2015). This architecture is

consistent with continuous-attractor models in which short-range inhibition stabilizes a
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locally coherent grid pattern.

Recordings that track multiple modules simultaneously show that modules are inter-

nally coherent yet only loosely tethered to one another. When a boundary of an enclo-

sure was shifted, cells within a module rescaled coherently, but distinct modules within the

same animal often rescaled by very different amounts (Stensola et al., 2012). Across con-

texts, cells in a module preserve fixed phase relationships, whereas cross-module relation-

ships drift (Yoon et al., 2013). Pairwise functional‐connectivity analyses reveal strong inter-

actions within modules but near-zero coupling across modules (Dunn et al., 2015). Dur-

ing cue-free navigation, grid phases in different modules drift almost in register, remain-

ing within a few cm of each other, even as the entire map slips against the world, implying

a weak but non-zero inter-module tether (Waaga et al., 2021; Hardcastle et al., 2015). A

parsimonious interpretation is that modules are stabilized primarily by their own local at-

tractor dynamics and only weakly tethered to one another—enough to limit catastrophic

phase divergence, but insufficient to force identical responses to environmental distortions.

Together, these findings are consistent with a “weak-coupling” regime: modules behave as

autonomous attractors whose small relative drifts are corrected by modest shared inputs or

sparse long-range interactions. This “weak-coupling” regime is the working assumption of

the models explored in this thesis.

2.1.4 Theta oscillations and septal input

During active exploration, local field potentials in MEC exhibit a sustained 6–10Hz theta

rhythm that is phase-locked with hippocampal theta. Grid-cell spikes are modulated by

this rhythm and often show theta phase precession within their firing fields, analogous to

19



hippocampal place cells (Hafting et al., 2008).

Septal pacemaker

The medial septum–diagonal band (MS-DB) provides convergent cholinergic and GABAer-

gic input to MEC. Septal GABAergic neurons rhythmically inhibit entorhinal interneu-

rons, while septal cholinergic tone depolarizes principal cells, together pacing the theta

cycle (Robinson et al., 2024). When the MS-DB is pharmacologically or optogenetically

inactivated, the network theta is abolished and grid periodicity collapses, even though head-

direction tuning in the same recordings remains intact (Brandon et al., 2011; Koenig et al.,

2011; Robinson et al., 2024). These experiments demonstrate that theta-paced inhibition

is essential for maintaining the grid attractor, whereas head-direction signaling can persist

without it.

Intrinsic resonance gradient

Layer-II stellate cells exhibit intrinsic theta-range oscillations; their resonant frequency de-

creases from dorsal to ventral MEC in parallel with the increase in grid scale (Giocomo

et al., 2007), suggesting that intrinsic resonance contributes to module-specific spatial peri-

ods.

Network coordination

Theta provides a common temporal reference that aligns spikes across modules and be-

tweenMEC and hippocampus, supporting coherent phase updates during path integra-

tion. Removing the septal drive eliminates this shared clock, disorganizing grid patterns
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while leaving local circuitry intact (Koenig et al., 2011). Thus, weakly coupled modules

depend on a common theta oscillation to limit relative drift and maintain a unified met-

ric. Consistent with the weak-coupling framework, modules rely on a global theta drive to

maintain synchrony; when that drive is removed, inter-module coordination weakens and

grid patterns degrade.

2.2 Relationship of grid cells to other hippocampal spatial cells

Grid cells are only one type of many spatially-modulated cells in the hippocampal system.

Other types include place cells (O’Keefe and Dostrovsky, 1971), head-direction cells Taube

et al. (1990), border cells (Solstad et al., 2008), speed cells (Kropff et al., 2015) and object-

vector cells (Høydal et al., 2019). This section summarizes the key findings that link grid

cell activity to the cells most relevant for the present work, specifically place, head-direction,

and border cells.

2.2.1 Grid and place cells

The hippocampus receives direct input from the superficial layers of the MEC, where grid

cells are abundant (Hafting et al., 2005; Sargolini et al., 2006). This led to the hypothesis

that entorhinal grid fields generate hippocampal place fields (Solstad et al., 2006; Cheng

and Frank, 2011). This is supported by evidence of monosynaptic connections from grid

cells to hippocampal neurons (Zhang et al., 2013) and the spatial scale of both grid and

place fields being affected by genetic manipulations in the entorhinal cortex (Mallory et al.,

2018).

However, evidence also suggests that grids are not necessary to form place fields. For ex-
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ample, place cells develop before grid cells (Wills et al., 2010) and place fields remain largely

intact after entorhinal lesions (Van Cauter et al., 2008) or disruption of grid cell activity

via septal inactivation (Koenig et al., 2011). However, place fields might still form from

degraded grids (Azizi et al., 2014).

Conversely, grid fields could be influenced or anchored by hippocampal place fields.

Hippocampal inactivation (Bonnevie et al., 2013) or lesions (Fyhn et al., 2004) disrupt grid

cell firing. Together, these findings indicate an overall bidirectional influence between these

cell types.

2.2.2 Grid and head direction cells

Head direction (HD) cells fire based on the orientation of the animal’s head, independent

of its location (Taube et al., 1990). First discovered in the dorsal presubiculum (Taube

et al., 1990), HD cells have also been found in the anterior thalamic nucleus (ATN) (Taube,

1995), parasubiculum (Taube, 1995b), and entorhinal cortex (Sargolini et al., 2006). HD

cells are prevalent in MEC layers III, V, and VI, where grid and conjunctive grid-HD cells

are also located (Sargolini et al., 2006). Conjunctive cells are used by many models (Bu-

rak and Fiete, 2009), since HD cells likely provide grid cells with self-motion information,

which is crucial for computational models of grid cell activity.

Lesions or inactivation of the ATN degrades both HD fields and grid firing patterns in

the MEC (Winter et al., 2015). Conversely, septal inactivation abolishes theta and collapses

grid firing while leaving head-direction coding largely intact (see § 2.1.4 for details).
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2.2.3 Grid and border cells

Border cells are neurons that ‘selectively fire as an animal approaches the boundaries of an

enclosure’ (Solstad et al., 2008; D’Albis, 2018). Found in the MEC (Solstad et al., 2008;

Savelli et al., 2008) and parasubiculum (Boccara et al., 2010), border cells are functionally

related to the boundary-vector cells in the subiculum, which are fire whenever the animal is

at a certain distance to a boundary wall (Barry et al., 2006).

Since boundaries influence both the symmetry and alignment of grid fields, border cells

are believed to provide input to grid cells. This is why border cells have been proposed to

correct path-integration errors in grid cell models (Hardcastle et al., 2015).

2.3 Environmental and behavioral modulation

2.3.1 Sleep and Awake Correlations

Grid cells maintain similar correlation patterns both during active navigation and rest

states, such as sleep (Trettel et al., 2019; Gardner et al., 2019). This consistency supports

the idea that grid cell networks rely on intrinsic connectivity, possibly organized into a con-

tinuous attractor network (CAN) structure, to maintain spatial coherence. These mod-

els predict that grid cells will exhibit similar co-activity patterns during different modes of

behavior. Intramodular grid cell pairs (cells within the same module) have higher correla-

tion amplitudes than trans-modular pairs (cells from different modules) across active and

sleep states (Trettel et al., 2019; Gardner et al., 2019). This finding indicates that recurrent

connectivity is stronger within grid cell modules than between them. Also, Gardner et al.

(2022) showed that grid cell population activity can span a toroidal manifold, which is in-
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variant across different environments and brain states.

2.3.2 Boundary and Local Geometry Influences

Proximal boundaries and their geometric configuration are essential for anchoring (Savelli

et al., 2008; Solstad et al., 2008; Stensola et al., 2015; Krupic et al., 2015), shaping bound-

aries (Barry et al., 2007; Krupic et al., 2015) and correction (Hardcastle et al., 2015) of the

grid pattern. Theoretical work suggests that grid cells primarily represent geometric in-

formation about the local enclosure and that boundaries help stabilize grid maps (Krupic

et al., 2016; Stensola andMoser, 2016).

Grid cell activity is influenced by external sensory cues, as shown by studies manipu-

lating the local geometry of the environment.Grid cells rescale along with environmental

compression (Barry et al., 2007; Solstad et al., 2008). Similarly, grid fields locally shift when

animals move between previously separate enclosures (Wernle et al., 2018).

Krupic et al. (2015) showed that in square environments, grid orientation is anchored

to the walls: rotating the enclosure by 45◦ rotated the grids by the same amount, despite

stationary distal cues. In these square arenas, grid axes were typically offset by about 9◦

from the walls, and simultaneously recorded modules exhibited preferred relative orien-

tations clustering around 0◦ and 30◦, with 0◦ being most common. Importantly, these

relative orientation relationships persisted when animals were tested in circular or hexago-

nal enclosures, even though absolute grid orientations were less tightly clustered in circular

enclosures.

In more complex arenas, such as hairpin mazes (Derdikman et al., 2009) or in trape-

zoidal arenas (Krupic et al., 2015), the characteristic triangular symmetry of grid cell firing
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is largely lost, further supporting the significant influence of environmental factors on grid

cell activity.

2.3.3 Error CorrectionMechanisms

While the modular structure of grid cells enhances coding capacity and reduces ambigu-

ity, it also poses challenges for error correction. Small drifts in the decoded positions from

different modules can accumulate over time, potentially leading to errors in spatial repre-

sentation (Burak, 2014; Sreenivasan and Fiete, 2011; Welinder et al., 2008). Mechanisms

for correcting these errors, particularly in the absence of sensory cues, remain an area of

active research.

2.3.4 Self-motion inputs versus external sensory cues

When grid cells were first discovered, Hafting et al. (2005) found that grid fields remained

stable in darkness, suggesting they might arise from integrating self-motion cues such as

vestibular signals or proprioceptive feedback. However, the same study showed that grid

patterns rotated with polarizing visual cues. These findings led to the hypothesis that grid

patterns emerge from path integration and anchor to external landmarks with experience

(McNaughton et al., 2006).

Despite this, the initial emphasis on self-motion inputs might have been overestimated,

as grid patterns in darkness could also be influenced by olfactory or somatosensory cues

from arena boundaries (Hafting et al., 2005; Barry et al., 2012). This is supported by grid

patterns quickly disrupted in darkness in elevated arenas and minimal olfactory conditions

in mice but not in rats (Chen et al., 2016; Pérez-Escobar et al., 2016). This suggests that the
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balance between self-motion and external cues might differ across species.

2.3.5 Grid cell patterns across environments

Grid cell patterns change across environments in a process that can be compared to the

‘remapping’ observed in hippocampal place cells. Remapping in place cells occurs in two

ways depending on the manipulation of the spatial context: global remapping and rate

remapping.

When a rat encounters two different boxes in a room or similar boxes in different rooms,

hippocampal activity undergoes global remapping, where place cells active in one condition

are either silent or have fields in different locations in the other (Wills et al., 2005; Leutgeb

et al., 2005). In contrast, when the same room is used but salient features of the arena such

as wall colors, arena shape, or odors are changed, place cells undergo rate remapping, where

the firing fields remain stable but firing rates vary substantially (Hayman et al., 2003; Leut-

geb et al., 2005; Latuske et al., 2018).

Fyhn et al. (2007) recorded entorhinal grid cells in conditions where hippocampal fir-

ing undergoes either global or rate remapping. They found that grid cell activity was sig-

nificantly more stable compared to hippocampal activity, maintaining the cells’ spatially

periodic firing across contexts even when place fields were globally remapped. In the same

room with different boxes, grid patterns shifted coherently within modules, meaning cells

recorded from the same electrode had similar changes in phase offsets. When identical

boxes were in different rooms, grids rotated and translated but maintained constant relative-

phase relationships within modules, termed ‘coherent remapping’ (Fyhn et al., 2007; Yoon

et al., 2013).
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In scenarios where place fields underwent rate remapping, grid cells either remained sta-

ble or shifted coherently, though peak firing rates within fields varied (Ismakov et al., 2017;

Diehl et al., 2017). Grid cell remapping is typically studied in familiar environments, where

grid fields maintain similar size and spacing (Fyhn et al., 2007; Marozzi et al., 2015; Ismakov

et al., 2017; Diehl et al., 2017). However, grid patterns expand in novel environments and

become less regular (Barry et al., 2012).

2.3.6 Behavioral accuracy of path integration in rodents

Rodents can navigate back to a home refuge after complex outbound paths even in com-

plete darkness. Classic homing-table studies showed that rats keep angular error within

10–15◦ and distance error below∼ 10% of path length over returns of 1–3 m (Etienne and

Jeffery, 2004). Error grows roughly linearly with traveled distance until the animal contacts

a boundary or landmark that re-anchors its internal map.

Hippocampal integrity is essential for path integration: rats with hippocampal lesions

show impaired homing when only self-motion cues are available (Maaswinkel et al., 1999).

Medial entorhinal cortex lesions likewise disrupt homing, whereas lateral entorhinal lesions

do not (Van Cauter et al., 2013). Genetic disruption of grid cell firing further impairs path

integration, as shown in mice lacking GluA1 AMPA receptors or NMDA receptor func-

tion inMEC circuits (Gil et al., 2018; Allen et al., 2014). Taken together, these behavioral

studies demonstrate that both hippocampus and entorhinal grid circuits are required for

accurate path integration.

Physiological recordings for rats during foraging in a circular arena show that in dark-

ness, the decoded position deviated from the true position, with a mean absolute error
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(MAE) substantially larger than in light (Waaga et al., 2021), with errors reached ∼30 cm

in high-MAE segments. Importantly, this drift occurred coherently across modules: de-

coded positions from different grid scales remained aligned with each other even as they

collectively deviated from the animal’s actual path (Waaga et al., 2021). Thus, while the ab-

solute decoded position drifted from the animal’s true trajectory, relative alignment across

modules was preserved (Waaga et al., 2021).

Peng et al. (2023) extends these findings: grid cells in mice can represent self-motion in

both an arena-centred and an object- (lever-) centred reference frame, and firing patterns

switch between these frames depending on task demands. Thus, grid activity supports path

integration across changing reference frames while preserving coherent population coding.

2.4 Continuous attractor models

Continuous attractor networks (CANs) underlie one of the most prominent theories for

the origin of grid cell patterns. The core idea behind such models is that a properly wired

recurrent neural network has a continuum of neutrally stable states in the activity of its

neurons (Amari, 1977). Because all states are neutrally stable, small external perturbations

can push the network to a nearby stable configuration. Thus, the network activity at any

given time reflects the cumulative effects of the external inputs onto the system (Wu et al.,

2008).

As CANs can potentially integrate well, they have been employed in models of various

brain networks that require tracking continuous variables. For instance, CANmodels have

been used in the oculomotor system to monitor eye position (Cannon et al., 1983; Seung,

1998), in the thalamus to monitor head direction (Skaggs et al., 1994; Zhang, 1996; Blair
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and Sharp, 1996), and in the hippocampal system to monitor position (McNaughton et al.,

1996, 2006; Fuhs and Touretzky, 2006).

Because CANs share the same basic architecture, we start with the network setup for the

simplest scenario, the head direction system.

2.4.1 Continuous attractor models of HD cells

The population activity of HD cells forms a distributed representation of the animal’s cur-

rent heading using population vector encoding. The current heading estimate, θ, is the

weighted circular mean of unit vectors φi and normalized firing rate ri:

θ(t) =
∑

j
rj(t)eiφj (2.1)

In rats, the HD system remains active even in darkness, indicating that non-visual inputs

are sufficient for updating the heading estimate. In the model, neurons that acquire head

direction tuning are arranged on a ring, with nearby neurons having strong excitatory con-

nections and distant neurons having inhibitory connections. This connectivity pattern gen-

erates a localized activity bump on the ring, which moves with the animal’s head rotation

due to two groups of ‘rotation neurons’: clockwise-rotation and anticlockwise-rotation

neurons.

HD cells provide the current heading, while vestibular angular velocity input supplies

head-turning velocity. When the animal turns its head, rotation neurons are activated pro-

portional to the turning speed. These neurons project back to the HD ring asymmetrically,

effectively generating an HD signal by integrating angular velocity from the vestibular sys-

tem.
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At any given time, the location of the activity bump on the ring can be used to determine

head direction, where each cell has a bell-shaped directional tuning curve. The network’s

topology matches the encoded signal’s nature: cells are connected on a ring because HD

is a one-dimensional periodic variable. This ring-like connectivity does not imply a topo-

graphical arrangement of preferred head orientations on neural tissue, as observed in mam-

mals (Taube et al., 1990; Taube, 1995). First theorized in the 1990s, CANmodels of HD

cells have more recently gained experimental support from imaging studies in the brains of

flies (Seelig and Jayaraman, 2015; Turner-Evans et al., 2017) and zebrafish (Petrucco et al.,

2023).

2.4.2 Continuous-attractor models of grid cells

Since the discovery of the periodic grid cell tuning in the MEC (Hafting et al., 2005), CAN

models of place cells have been adapted to explain grid cell activity (McNaughton et al.,

2006; Fuhs and Touretzky, 2006).

Two classes of models have been studied: models where a single activity bumpmoves on

a network with twisted-torus topology (Guanella et al., 2007) and models with periodic

boundary conditions that exhibit multiple activity bumps (Fuhs and Touretzky, 2006; Bu-

rak and Fiete, 2009; Couey et al., 2013; Widloski and Fiete, 2014).

Multi-bump attractor networks can form triangular grids at the single cell level without

periodic boundary conditions. However, they are poor velocity integrators and unlikely to

generate stable grids at the single cell level due to edge effects (Burak and Fiete, 2009).

The grid scale can controlled by different scales of connectivity (Kang and Balasubra-

manian, 2019) or by the speed modulation gain of conjunctive cells, which translate the
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activity pattern (bumps) on the neuronal sheet with the animal’s movements. High speed

gains result in faster bumps and small grids, while lower gains produce slower bumps and

larger grids.

To address the issue of topographic organization, McNaughton et al. (2006) proposed a

learning process for forming CANs during development. In the first step, a transient pop-

ulation activity pattern initially emerges in a ‘teaching layer’ of neurons via Mexican-hat

(characterized by an excitatory center and inhibitory surround) connectivity. Then, synap-

tic noise translates this pattern randomly across the teaching layer, enabling downstream

neurons to form locally periodic recurrent connections. While intriguing, this model has

faced mathematical challenges (Burak and Fiete, 2009) and limited experimental support.

Widloski and Fiete (2014) suggested an alternative method for learning grid cell CANs,

requiring spatial exploration during development. Place-selective and self-motion inputs

activate an initial random network as the animal explores. Temporally asymmetric synaptic

plasticity then generates a network connectivity akin to hard-wired CANs. After learn-

ing, synaptic plasticity is turned off, and the mature network’s dynamics are driven by self-

motion inputs alone, sustaining multiple coherent activity bumps.

However, this model has several issues. First, the population-activity pattern in the

mature network does not consistently align with the spatial inputs active during learning

(Widloski and Fiete, 2014). While this is presented as a feature, it seems conceptually odd

for feed-forward and recurrent inputs to contradict each other in a familiar, cue-rich envi-

ronment. Second, the aperiodic learned connectivity makes the model susceptible to noise

Burak and Fiete (2009).
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Single cell grid formation in CANmodels

CANmodels require precise integration of the animal’s velocity and heading to form sin-

gle cell grids from population patterns. However, any integrating system is prone to errors

without external calibrating signals. For CANs, an integration error equivalent to the grid

spacing (tens of centimeters) can completely disrupt single cell firing patterns. Burak and

Fiete (2009) estimated that a noisy periodic network with approximately 104 neurons ac-

cumulates errors at a rate of about≈ 1cm/min, indicating that velocity integration must

be corrected or reset every few minutes of exploration. In biological systems, errors may

accumulate faster due to smaller network sizes, inhomogeneous connectivity patterns, or

spatially irregular feed-forward inputs. Also, coherent grid firing across exploration sessions

requires anchoring network activity to stable environmental landmarks.

Landmark based error correction and anchoring have been discussed in grid cell liter-

ature (e.g., Welinder et al. (2008)), with few explicit models (Guanella et al., 2007; Hard-

castle et al., 2015; Pastoll et al., 2013). One possibility is that hippocampal place cells con-

stantly calibrate grid cell CANs (Guanella et al., 2007; Pastoll et al., 2013). Hebbian synap-

tic plasticity could rapidly form biologically plausible associations between simultaneously

active grid and place cells as the animal explores a new environment. Place cell firing could,

in this case, correct CAN integration errors within sessions and anchor grid fields across

sessions (Guanella et al., 2007; Pastoll et al., 2013). However, since place cell activity remaps

across environments, this solution requires ‘one-shot learning’ of place to grid associations

in each environment.

A more straightforward solution involves using border cell inputs for calibration (Hard-

castle et al., 2015). These authors found that grid cell spike dispersion aligns with the in-
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tegration drifts predicted by CANmodels, which reduce after the animal encounters an

arena boundary. Furthermore, grid cell firing is more precise in the direction perpendicu-

lar to the last-encountered boundary, indicating that border cells provide error-correction

signals to grid cells. Since border cells remain stable across different spatial contexts (Sol-

stad et al., 2008), this border-based calibration does not require rapid learning in new envi-

ronments. However, border inputs only provide spatial information perpendicular to the

boundary, which is insufficient for anchoring single cell grids across sessions.

Evidence

As summarized in § 2.3.4, behavioral and lesion work show that self-motion cues can sus-

tain grids in darkness and that disrupting upstreamHD signals or septal theta degrades

them, consistent with CAN assumptions. The attractor theory also aligns with the modu-

lar organization of grid cell activity and its coherent remapping across environments (Sten-

sola et al., 2012; Yoon et al., 2013) and behavioral states (Trettel et al., 2019; Gardner et al.,

2019). Such models predict a topographic organization of grid spatial phases in the cortex,

which is observed experimentally (Gu et al., 2018) and toroidal topology (Gardner et al.,

2022). However, attractor models require a sophisticated neural architecture with an un-

clear developmental origin. They need anchoring to physical space and fail to explain how

external sensory cues and environmental geometry distort grid fields.

2.5 Oscillatory interference models

Oscillatory interference (OI) models propose that grid patterns arise from temporal inter-

ference between multiple velocity-controlled oscillations and a baseline theta rhythm, pre-

33



dicting that amplitude modulation of intracellular theta drives grid cell firing. This concept

builds on the theta modulation of grid-cell spiking described in Section 2.1.4, where septal

input entrains a 610 Hz rhythm across MEC and hippocampus. In OI models, these oscil-

lations occur within individual cells and their phase relationships encode spatial location.

The model was extended to 2D environments (Burgess et al., 2007), where a theta-range

oscillation of the somatic membrane potential interferes with multiple velocity-controlled

oscillations (VCOs) of the dendritic membrane potential. However, phase-locking issues

can be overcome by modeling VCOs as separate units or ‘theta cells’ (Burgess et al., 2007).

VCOs must be tuned to movement directions differing by 60 degrees to generate a trian-

gular grid. While two VCOs can create grid-like patterns, we need six for omnidirectional

phase precession (Climer et al., 2015; Jeewajee et al., 2014; Reifenstein et al., 2014). How-

ever, these models cannot account for path-dependent phase precession features (Reifen-

stein et al., 2014).

A fundamental weakness of OI models is the manual insertion of the 60-degree peri-

odicity and the requirement for precise phase matching of multiple VCOs. While self-

organizing processes have been proposed Burgess et al. (2007), they have yet to be explicitly

simulated. Additionally, grid-like periodicity is susceptible to disruption by noise (Welinder

et al., 2008; Zilli et al., 2009), and it is unclear if network synchronization can mitigate this

in realistic settings (Zilli and Hasselmo, 2010).

Evidence

OI models are supported by evidence of sub-threshold oscillations in entorhinal neurons

(Alonso and Llinás, 1989; Alonso and Klink, 1993), theta-modulated and phase-precessing
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grid cell activity (Hafting et al., 2005; Schmidt-Hieber and Häusser, 2013; Domnisoru

et al., 2013), and experimentally identified velocity-modulated theta cells (Welday et al.,

2011). Also, the dorso-ventral frequency gradient in stellate cells corresponds to increasing

grid spacing (Giocomo et al., 2007), and abolishing theta modulation disrupts grid cell

firing (Brandon et al., 2011).

However, there is solid evidence against OI models: in Reifenstein et al. (2012), it is

shown that the observed phase precession in grid cells is incompatible with global oscilla-

tor interference.

2.6 Hybrid interference and attractor models

Schmidt-Hieber and Häusser (2013) and Domnisoru et al. (2013) recorded membrane

voltages of grid cells during virtual exploration, finding depolarizing ramps within firing

fields. Both membrane voltage and output spikes were theta-modulated, with increased

intracellular power within firing fields. Further analysis indicated that depolarizing ramps,

rather than theta power, predicted output spiking, favoring CANmodels. The observed

intracellular theta modulation led to hybrid interference-attractor models (Schmidt-Hieber

and Häusser, 2013; Bush and Burgess, 2014).

Hybrid models connect grid cells driven by temporal interference, with strong connec-

tions between cells with similar spatial phases. Unlike CANmodels, VCOs control activity

bump shifts, generating spatial periodicity and intracellular theta modulation, while recur-

rent connections produce depolarization ramps.

Hybrid models also generate phase precession (Schmidt-Hieber and Häusser, 2013;

Bush and Burgess, 2014). Navratilova et al. (2012) suggested that CANmodels alone could
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generate grid fields and phase precession using theta-modulated conjunctive cells and in-

trinsic synaptic currents. However, realistic grid scales required long synaptic delays and

running-speed-modulated intrinsic currents.

2.7 Single cell plasticity models

A final class of models proposes that grid patterns emerge at the single cell level through

spatially-tuned feed-forward inputs and Hebbian synaptic plasticity (D’Albis and Kempter,

2017; Monsalve-Mercado and Leibold, 2017). Unlike previous models, these theories sug-

gest that periodic spatial patterns emerge from integrating external sensory inputs rather

than self-motion signals.

2.8 Example CANmodel: Burak and Fiete (2009)

2.8.1 Network architecture

The model consists of (nx × ny) neurons, arranged on a 2D sheet with coordinates!r =

(x, y), where x, y ∈ N, 1 ≤ x ≤ nx,1 ≤ y ≤ ny.

Neuron i is assigned a directional preference along the angle θi =N, S, E or W depend-

ing on its position on the neuronal sheet. Neurons with the four directional preferences are

arranged in repeating blocks of 2 × 2 on the sheet, and the unit vector along the direction

preference of a particular neuron i is denoted by êθi .
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2.8.2 Neuronal Dynamics

The activation of the ith neuron is given by si. The dynamics is governed by the following

equation:

τdsidt + si = f




∑

j
Wijsj + Bi



 (2.2)

Here, τ is the neuronal time constant and the activation function f(x) = max(0, x).

Wij denotes the weight from neuron j to neuron i and Bi defines the feed-forward input

to the ith neuron. The synaptic weight from neuron j to neuron iwithin a module is given

by

Wij = W0(!ri − !rj − l̂eθj) (2.3)

whereW0(!r) = e−γ|!r|2 − e−β|!r|2 . The symmetric termW0 is the difference of two Gaussians

with γ > β, which allows for local inhibition with a Mexican Hat shape. !ri,!rj are the posi-

tions of the neurons i, j respectively in the sheets for both modules as described above and

|!r| is the Euclidean distance between the neurons.

Thus, the outgoing weights of neuron j (defined byWij) have a center-surround struc-

ture, with an asymmetry introduced through the shifting of the center by l units in the

direction along the preferred direction of neuron j.

If the system received only this input, it would relax to a state where all neurons are inac-

tive, since the connections are purely inhibitory. To offset the inhibition, a constant feed-

forward excitation is supplied to all neurons, and this leads to static bumps being formed.
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The total feed-forward input to the ith neuron is:

Bi = (1+ αêθi · !vin) (2.4)

where, !vin is the input velocity of the animal and α is the gain factor.

The movement of the patterns is controlled by the second term in Bi and the pattern

flow does not destroy the stability of the lattice if α| !vin| << 1. Small velocity gain factors

αmake the integrator respond slowly for the same input velocity. As a result, for smaller

α, the pattern on the neural sheet would need to cover more distance in physical space in

order to return to its starting position, thus forming larger grids in physical space. If the

gain factors are chosen to be in the ratio of 3 : 2, then the grid cells in two modules have

their spatial scales in the ratio≈ 1.5, lying in the experimentally observed range of scale

ratios (1.4− 1.7) (Stensola et al., 2012; Barry et al., 2007; Krupic et al., 2015).

2.9 Open Questions

2.9.1 Problem of catastrophic readout

In general, the neural representation in each module is prone to gradual diffusive drift.

Such errors are bound to accumulate and corrupt the estimate of position. This problem

is of special significance in the absence of salient sensory cues, since the phases represented

in different modules might drift independently of each other under these conditions. A

mechanism is needed to prevent the position estimate from rapidly deviating from the ac-

tual location of the animal.

The key questions for our study are:
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Figure 2.1: Catastrophic read‐out when two grid cell modules drift independently. Top row: At t0, activity in Module 1
(cyan, larger period) and Module 2 (orange, smaller period) both encode the animal’s true position (black dot). Their
likelihood maps overlap at the same location (black dot). Bottom row: At t1, small independent phase drifts shift Module
1 leftward and Module 2 upward. The joint likelihood could lie at a distant yellow dot which is far from the animal,
illustrating a catastrophic read‐out error. Cropped and recolored from Fig. 1a of Mosheiff and Burak (2019) under
CC BY 4.0 (creative commons) license.

• Do different modules in biological grid-cell systems function independently?

• What happens when different modules are drifting independently?

• Can intermodular coupling between modules contribute to error correcting mecha-

nisms in the absence of external sensory cues?

Now, if the modules are independent, the joint estimate gets worse and worse with time

and the incoherent drift between the 2 modules would accumulate and make the decoded

position be very far away from the actual position. This was referred to as catastrophic read-

out by Burak (2014) and is illustrated in figure 2.1.
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2.9.2 Non-stationary velocity input

In natural foraging, a rodent’s velocity vector varies continuously: speed accelerates and

decelerates, brief pauses occur, and heading changes are frequent (Sargolini et al., 2006;

Kropff et al., 2015). Such non-stationary input contrasts with the constant-velocity as-

sumption used in many early continuous-attractor (CAN) models of grid cells. Empiri-

cally, running speed modulates both grid-cell firing rate and theta phase precession (Jee-

wajee et al., 2014), implying that integration mechanisms must cope with variable speed as

well as direction.

Classical CAN simulations show that very low speeds can fail to translate the activity

bump or produce non-linear updates, leading to phase errors (Burak and Fiete, 2009). Sub-

sequent models therefore introduced velocity-gated dynamics or trained agents on natural-

istic rodent trajectories to maintain stable grids under realistic movement statistics (Fuhs

and Touretzky, 2006; Raudies and Hasselmo, 2012). These studies highlight a practical

requirement for grid-module coupling: if each module integrates the same noisy, non-

stationary velocity signal, weak inter-module interactions can help prevent the independent

phase drifts that would otherwise accumulate during slow or irregular motion.
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3
Modified Burak and Fiete model

In this chapter, we identify and analyze sources of drift in the deterministic version of the

Burak and Fiete (2009) model and propose a modification to reduce it. Additionally, we

examine the model’s response to constant velocity inputs and identify its attractor states.
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3.1 Problems with the original model of Burak and Fiete

Since one aim of this thesis is to study drift as a limiting factor for path integration in the

grid-cell system, we aim to quantify and understand its sources in the deterministic Burak

and Fiete (2009) model. This section explains our parameter choices and model adjust-

ments as we identify or quantify different sources of drift.

3.1.1 Squeezing/ Stretching of emergent activity patterns

In a translation-invariant continuous attractor, such as an infinite neuronal sheet with zero

velocity input, the homogeneous firing state is stable if small perturbations of any spatial

wavelength decay. Linear stability analysis tests this by decomposing perturbations into

spatial Fourier modes, each with a growth rate λ(k) given by the connectivity spectrum

Ŵ(k)minus a uniform decay term (Amari, 1977; Zhang, 1996). If λ(k) > 0 for some

k, modes of that wavelength grow. The wavenumber k_0 at which λ(k) is maximal is the

first unstable mode: it grows fastest after instability onset and sets the natural wavelength

λnat = 2π/k0 of the emergent bump lattice. This wavelength reflects the network’s pre-

ferred spacing in the absence of boundary constraints, and serves as the benchmark against

which we can detect global stretching or squeezing in finite networks.

The recurrent coupling functionW(x) and its Fourier transform, as well as its deriva-

tives, help us identify the magnitude of the wavevector k0 of the first unstable mode. Given

the coupling function:

W(|!x|) = exp(−γ|!x|2)− exp(−β|!x|2)
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with γ = cβ. Since the coupling is radial, the Fourier transform only depends on k = |!k|

and is given by:

Ŵ(k) = π
cβ exp

(
− k2
4cβ

)
− π

β exp
(
− k2
4β

)

The first unstable mode (minimum k) will occur for dŴ(k)/dk = 0. The magnitude of

the wavevector of the first unstable mode is:

k0 =
√
8βc ln(c)
c− 1

(3.1)

For the parameters of Burak and Fiete (2009), β = 3/132 and c = 1.05, linear sta-

bility analysis gives 2π/k ≈ 16.47 which deviates from the spacing of the actual pattern

(≈ 21.33) (fig. 3.1(a)). In other words, the periodic boundary conditions force the net-

work pattern to be globally stretched in the x- and y- directions by roughly 23%. To use

the nomenclature of physics, the states formed are “frustrated’ (forced into a spacing or ori-

entation that differs from the intrinsic one) and this mismatch has the potential to derail

the system’s path-integration capabilities, and one should try to choose network parame-

ters that allow for a “relaxed” (at its intrinsic spacing without external constraints) activity

pattern.

To address this issue, the network size was adapted instead, as detailed in the next sec-

tion. The period for the 2D case was determined numerically for a large sheet size to avoid

edge effects, resulting in good agreement with theoretical values (Figure 3.2), even though

we used linear stability analysis as an approximation for our non-linear system. As a con-

sequence, the pattern that forms no longer has to be squeezed or stretched to fit into the

network. This minimizes the “quantization” effect, and the result is in good agreement
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(a) Burak and Fiete network (b) Bush and Schmidt-Hieber network

Figure 3.1: (a‐b) 128× 128 neurons grid cell networks from Burak and Fiete (2009) and Bush and Schmidt‐Hieber
(2018) are not composed of regular hexagons with angle 60◦. Note: There is a slight shearing in (a) (which is absent in
(b)) ‐ in one dimension, the pattern is aligned with the coordinate axis but not in the other, as indicated by the blue lines.
The extra line in (a) is parallel to the y‐direction and the two bumps not aligned helps to see the deviation from perfect
hexagonality clearly. Figures modified from Burak and Fiete (2009) and Bush and Schmidt‐Hieber (2018).

with the first unstable mode.

3.1.2 Size of neural sheet

When the network has periodic boundary conditions, the formation of the pattern de-

pends on the size of the sheet considered. If the pattern period is incommensurate with the

size of the neuronal sheet, the pattern would be deformed and deviate from an exact multi-

bump hexagonal pattern. Such distortion is not merely cosmetic: in a continuous attractor,

exact translational symmetry ensures unbiased velocity integration, whereas stretching or

shearing breaks this symmetry. The resulting anisotropy in the attractor landscape induces

direction-dependent restoring forces that bias bumpmotion, leading to potential decod-

ing errors (Fuhs and Touretzky, 2006). This happens for (Burak and Fiete, 2009) where
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Figure 3.2: Zero input equilibrium activity pattern for a network with 120×104 neurons (left) for which the central
peaks (red dots) of the autocorrelogram (right) are used to calculate the spatial period of the grid pattern. This pattern
has an average period of 15.009 for a system with c = 1.1 and theoretical spacing= 15 neurons. We consider the
large network to reduce spurious influences of the boundary conditions.

the instantaneous population activity on the neural sheet, although grid-like, is not truly

hexagonal.

One solution is using the size of the sheet such that it is a multiple of a unit cell. The pat-

tern in Figure 3.1(a) has a unit cell of base of size 128/6 = 21.33 and height of 128/7 =

18.28 neurons. This leads to a height-to-base ratio of 0.8571, and the angle would be

arcsin(0.8571) = 58.992◦, a deviation of 1.68% from the desired value of 60◦. An alter-

nate implementation by Bush and Schmidt-Hieber (2018) replaces the 7 rows with 6, and

leads to a pattern with height-to-base ratio 0.833 without the shearing distortion but has

the stretching discussed in the previous section. Couey et al. (2013) also use a sheet with

128× 128 neurons but have a height to base ratio of 0.93.

Since the neurons are located at integer points on a rectangular 2D sheet, our unit cell

would be of size (λ, λ sin(60◦)). To minimize distortion, the neural sheet should ideally

have integer unit cells, leading to a more accurate and stable pattern. For an ideal sheet,

h/b = sin(60◦) = 0.8660
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We considered which integral combinations would allow us to obtain a ratio as close as

possible to the above. The continued fraction representation of
√
3/2 yields 1, 6/7, 13/15,

84/97, 181/209 and so on. And we know, fromDirichlet’s theorem, that for any of the p/q

rational numbers above, the difference to
√
3/2 is less than 1/q2 in magnitude.

Choosing b= 15 and h= 13 results in a h/b ratio of 0.8666, corresponding to an angle

of 60.07◦, i.e., a relative distortion of only about 0.1%. Thus, the sheet is set to have a unit

cell (15× 13) or (30× 26).

Side note: this choice comes with the complication that the bumps on a sheet would

not be identical - since if one maximum lies at (x, y), then another would have to be at (x +

λ/2, y+13) and for an odd λ, one maximumwould be at a single neuron but in other cases,

it would be shared between 2. This is because the rational h/b, in terms of their reduced

form, have both b and h odd. Therefore, using unit cells of 30×26 neurons is advantageous

but costlier simulation-wise.

Our findings open up new possibilities for future research, such as the use of hexagonal

tiling in the neuronal sheet itself. While this approach is beyond the scope of our current

work, it could be a promising direction for further exploration in such modeling.

3.1.3 Discrete states in finite “continuous” attractor networks

For the activity patterns of the form shown in fig. 3.1, when an external input is applied,

the whole pattern moves instead of distorting. The network activity dynamics of a con-

tinuous attractor network as described in Burak and Fiete (2009) is thus conceptualized as

minimizing an energy functional, and the attractor states correspond to local minima of
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this functional. *

In a continuous-attractor network, any rigid translation of the steady-state activity pat-

tern is another steady state with the same Lyapunov energy (Amari, 1977; Seung, 1998).

Appropriately tuned velocity input therefore moves the bump along a neutrally-stable, low-

dimensional manifold, enabling path integration (Burak and Fiete, 2009). By contrast, dis-

placements orthogonal to that manifold raise the energy, so the landscape is flat only within

the translational subspace; in finite discretized networks the resulting pinning barriers may

become appreciable (Noorman et al., 2022).

In general, CANmodels require many neurons to approximate a smooth continu-

ous manifold and achieve accurate persistence and integration (Zhang, 1996). Strikingly,

biological circuits can implement ring-attractor–like dynamics with far fewer neurons:

Seelig and Jayaraman (2015) showed that a bump of activity in the fly ellipsoid body tracks

heading even in darkness, consistent with a continuous attractor implemented by only a

few dozen neurons. Noorman et al. (2022) also demonstrated that, with exact tuning of

threshold-linear dynamics, such bumps can be eliminated, yielding mathematically perfect

integration even with few neurons. However, these solutions are highly sensitive to parame-

ter mistuning, suggesting that biological systems may rely on large populations or corrective

sensory inputs for robust function.

The limitations of such networks have been formalized: Noorman et al. (2022) showed

that a finite one-dimensional network has a “bumpy” energy landscape in general, leading

to a discrete set of stable states. This discreteness produces velocity thresholds, saturation at

*Note that the terms “energy” and “energy landscape” will be used as metaphors; to date, there is no proof
that the dynamics of the Burak and Fiete (2009) system is actually governed by a Lyapunov (or “energy”)
function for non-zero velocity input.
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low inputs, and inconsistent responses to constant drive, in contrast to the unbiased con-

tinuous integration expected from an ideal attractor.

Specifically, the bumpy energy landscape of a discrete 1D network leads to the following

properties for the network dynamics (Noorman et al., 2022):

• In the absence of input, the network will be attracted to local energy minima, result-

ing in a discrete number of stable states.

• In the presence of low input velocity, the system cannot follow the input, and the

output saturates at the nearest stable point. This can create a minimum velocity

threshold that the system needs to exceed in order to start moving. Therefore, if

the input is sufficiently small, the systemmay fail to integrate, leaving the bump

pinned at a fixed state until input exceeds a threshold. This can be likened to a car be-

ing pushed uphill, experiencing decreasing speed for the same force, and eventually

reaching a point where it can no longer move unless the force (input) is increased.

• The network processes higher input velocities so that, depending on the duration

of the input, the system transitions to one of multiple distinct attractor states. As a

result, the response to a constant input is not consistent, but rather displays peaks

and troughs that correspond to the discrete nature of the energy landscape.

These effects are explored in detail and characterized for the 2D case in later sections in

this chapter.
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Figure 3.3: Example to illustrate problems in path integration caused by lack of symmetry. The difference in the
y‐positions of the center of mass of an activity bump on the neuronal sheet from two simulations where the network
receives a constant input of 1m/s along 5◦ and−5◦ relative to the x‐axis for 50s. During that time period, the patterns
move by a total distance of≈ 1750 neurons.

3.1.4 Asymmetry of grid cell locations

In the model of Burak and Fiete (2009), neurons on the sheet are arranged in tiles of 2 × 2,

with neurons of each of the 4 preferred directions arranged in times of




N S

E W



.

This leads the system to behave differently depending on the angle of the input. The

elementary NSEW-quadruple is not mirror symmetric. For example, when the network

receives a constant velocity input along 5◦ and along−5◦, the output (in this case measured

as the position of the center of mass of an activity bump as a function of time) is the same

in the x- but varies in the y-direction. This difference is shown in figure 3.3.

3.2 The solution: a four-sheet model

FollowingWidloski and Fiete (2014); Kang and DeWeese (2019) and others, we propose

a modification to the model of Burak and Fiete (2009), where a grid module consists of
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(a) (b)

Figure 3.4: The (a) architecture and (b) activity of our modified model with 4 sub‐populations corresponding to the
directional preferences θ of the neurons. Thus, at every x, y location on the neuronal sheet, there are 4 neurons. The
contribution each neuron receives from neurons of all directional preferences is equal; the only difference comes from
the external input. So, the activity pattern looks the same with zero input and can look slightly different when vin is
non‐zero, depending on the direction. In (b) the velocity is towards only along the ‐y (south direction) and no input in the
x‐direction.

a 2D sheet, and at each location on this neuronal sheet, we have 4 neurons, each with a

different directional preference. Thus, the position of neuron i, θ on the neuronal sheet is

characterized as (xi, yi, θ) = (!ri, θ) and where θ ∈ {E,W,N, S} .

The activity of each neuron is a function of time and its position on the sheet. Analo-

gous to equation 2.3, the synaptic weights are given by:

Wijθ = W0(!ri − !rj − l̂eθ) (3.2)

whereW0 is a function of the relative distance and direction between neurons i and j, and

êθ represents the unit vector in the direction θ of the sending neuron.
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For the network depicted in Figure 3.4, the weightsWij are defined similarly to equation

2.3, with one key modification: neurons with all four directional preferences lie at the same

position !ri on the neural sheet. This effectively removes any asymmetry arising from the po-

sitions of the sub-populations on the 2D sheet. We modify the weight matrix to maintain

consistency with the original system by setting the shift l to 1 instead of 2 neurons.

Thus, the network equation for one module is:

τdsiθdt + siθ = f




∑

j

∑

θ′
Wijθ′ sjθ′ + Biθ



 (3.3)

where si,θ is the activity of neuron iwith directional preference θ, and θ′ represents summa-

tion over all directional preferences.

The external input Biθ is defined as:

Biθ = 1+ α(̂eθ ·!vin) (3.4)

where α is a scaling factor, êθ is the unit vector in the direction θ, and!vin is the input velocity

vector.

3.2.1 Investigated model parameters

Final parameters used with the basis of Burak and Fiete (2009) and the considerations from

the previous section are listed in table 3.1. The coordinate Y′ corresponds to an axis in-

clined at 60◦ with respect to the x-direction.

Note: A pinning input is applied during the pattern stabilization period to control the
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Table 3.1: Default simulation parameters for a single module model.

Number of neurons along x nx = 30∗
Number of neurons along y ny = 26∗

Velocity gains α(1) = 0.2∗
α(2) = 0.3∗

Time Step (ms) dt = 1
Total simulation time (ms) simdur = 50000

Time without velocity input (ms) tstab = 2000
Neuronal time constant (ms) τ = 10

Weight matrix within the module γ/β = 1.1
β = 3/Λ2, Λ = 15∗

Number of spatial bins along X and Y’ for rate map 80 or 150
Arena Radius (cm) 90

orientation of the output pattern. This is a two-point input along the x-direction with a

period of Λ.

Our second configuration uses the same parameters as in Table 3.1 except for the follow-

ing modifications: Λ = 30, nx = 60, and ny = 52 to halve the discreteness δn/2, and

α(1) = 0.4, α(2) = 0.6 to ensure the distance moved on the neuronal sheet by a given input

is identical in both cases.

3.3 Decoding

3.3.1 Network phases

In order to quantify the movement of the activity pattern, one can either track the move-

ment of a single bump or of the entire sheet. A single bump can be tracked by looking at

the center of mass of a bump and how it changes as a function of time. However, this ap-

proach relies on the shape of the bump, the tracking window, and leads to discretization
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errors.

Thus, we tracked the ‘phase’ of the entire pattern using the fundamental idea that any

translations of the pattern only change its Fourier phase spectrum, and not the amplitude

spectrum. In our simulations the amplitude remained constant over analysis time window.

Let f(x, y) be a hexagonal pattern on the neuronal sheet. When the pattern moves by

!c = [cx, cy], the new pattern can be described by g(x, y) = f(x + cx, y + cy) . In the Fourier

space, one can determine the movement vector!c using the difference in the phases of the

Fourier transforms of f and g:

kxcx + kycy = arg(̃f(kx, ky))− arg(g̃(kx, ky)) (3.5)

where!k = [kx, ky] is the wavevector of the hexagonal pattern and f̃, g̃ are the Fourier

transforms of f and g respectively. Determining this at each time step allows one to get a

comprehensive description of the pattern movement over time. Fig 3.6 shows the behavior

of!c(t) as a function of the initial phase of the pattern. Note that phases will generally be la-

beled in terms of inter-neuron distances, i.e., a phase difference of one neuron corresponds

to 2π radians.

3.3.2 Neuronal Phases

The system is now simulated with allNtraj input trajectories, to get each neuron’s firing

rate map. These maps are determined within the unit cell in physical space. The unit cell

is a minimal version of the pattern, which reconstructs the entire periodic pattern when

repeated. In this case, we are considering a rhombic unit cell with one axis along 0◦ and the

y′-axis 60◦ inclined (fig 3.5) with side corresponding to the length scale of the module. We
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Figure 3.5: Example rate maps of a neuron from a particular module, within the unit cell binned (150× 150) . One can
see that there is only one firing field and since module 2 has a smaller scale, the average activity per bin is higher.

bin the unit cell with nBinsx × nBinsy′ spatial bins to get the firing rate map. The center

of mass of the firing field in the rate map within a unit cell gives the 2D neuronal phase

φ = (φx, φy′).

This is calculated using the circular mean - with each bin assigned a phase between 0

and 2π and weighted by the activity of the neuron in the respective bin. The x-phase of the

neuron nwith directional preference θ in module k is determined using:

φ(k)
x (n, θ) = arg




nBinsx∑

jx=1
exp

(
2πi.jx
nBinsx

)
r(k)nθ (jx)



 (3.6)

where, r(k)nθ is the spatial firing rate normalized by occupancy as shown in the rate map for

neuron n in module k. Similarly, one can calculate the phase along the y′ axis.

The distribution of phases has redundancy corresponding to the multi-bump struc-

ture. Thus, for each module, the phase distribution consists of 390 unique points, corre-

sponding to 30 neurons along the x direction and 15 sin(π/3) ≈ 13 neurons along the
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y-direction. Each phase is shared by 8 other neurons (2 bumps in the same row× 4 direc-

tional sheets), and thus the phase distribution accounts for all the neurons of the module.

As discussed in Section 3.1, only the bumps with same x−coordinates share the phases due

to the period being odd (Λ = 15).

These phase distributions can then be used to decode the trajectories directly using the

activities of the corresponding neurons at each time step.

3.3.3 Decoding position

Using the phases of the neurons, one can get the position encoded by each neuron in a fun-

damental domain. The decoded position (for novel and already seen trajectories) at time t,

X(k)(t) is the circular mean of the phases weighted by the activity of the respective neurons.

This is an approximation of the formula derived in Stemmler et al. (2015) with the spike

number being replaced by neural activation.

X(k)(t) = λ(k)

2π arg




∑

θ∈{E,W,N,S}

nxny∑

j=1
s(k)jθ (t) exp

(
iφ(k)

jθ

)


 (3.7)

Here, the spatial phase of neuron jwith directional preference θ in module k is φ(k)
jθ and

exp(iφ(k)
j ) = cos(φ(k)

jθ ) + i sin(φ(k)
jθ )whose argument gives the circular mean.

3.3.4 Decoding error

For trial i at time t, define the decoding error where!pi(t) is the current position and !̂pi(t) is

the decoded position:
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di(t) =
∥∥!̂pi(t)−!pi(t)

∥∥
2.

We use mean decoding error acrossN trials:

d(t) =
1
N

N∑

i=1
di(t).

3.3.5 Theoretical limit on decoding error

If we assume that the actual and the decoded positions can be approximated as two random

walk processes on a circular disk of radiusR, then the expectation value 〈e〉 of the distance

between two points drawn from a uniform distribution on the disk would give us an upper

bound for the average asymptotic decoding error. This is the solution of an integral of the

distance between two points at positions (r1, 0) and (r2, θ2):

〈e〉 = 4
πR2

∫ 2π

0

∫ R

0

∫ R

0

√
r21 + r22 − 2r1r2 cos(θ2)r1r2 dθ2 dr1 dr2 (3.8)

This is given by Dunbar (1997) to be: 128R
45π , which for our system is≈ 81 cm.

3.4 Discrete attractor states

We investigated two different 2D neuronal sheets, both in the absence and presence of ex-

ternal inputs, and observed their asymptotic behavior to understand attractor states. We

examined the final states and differences between the principal directions of the network.
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3.4.1 Attractors and their basins

For our first in-silico experiment, we gave the system no input but varied initial conditions.

To examine the nature of our system’s energy landscape, we used rigidly translated versions

of the stationary activity pattern as initial conditions. The system was initialized using 20

translations in the x-direction and 10 in the y-direction.

Without any external input, the pattern on the neuronal sheet (30 × 26 neurons) was

then allowed to settle, and the dynamics of these 20 × 10 patterns were observed. Due

to the odd number of neurons corresponding to a period (15 neurons) in the x-direction,

bump centers of mass would have (15, 0) or (7.5, 13) as their phase differences. Thus, stable

states corresponding to a movement by 0.5 neurons in x are equivalent (because of the unit

cell 15×13, the x-maxima are at 0, 7.5, 15 etc), whereas only a movement by integer number

of neurons in ywould be equivalent to each other. This produces an inherent asymmetry

in the x− and y−directions.

Each attractor’s basin of attraction (the set of initial conditions whose long-term behav-

ior approaches the given attractor state) is shown in figure 3.6. Note that the system con-

sists of a finite number of point attractor states and is thus a discrete attractor (Noorman

et al., 2022).

The presence of the stable states at x = 0.25 neurons and x = 0.75 neurons is explained

by A simple explanation is the discretization imposed by the 15× 13 unit cell, possibly via a

second-harmonic component of the pattern. We did not quantify this component.

For our second in-silico experiment, the network received a step input of 0.5m/s at t =

2s which was withdrawn at different times ranging from t = 4s to t = 6s in steps of 0.1s.

Since the network’s response to a constant input is not constant, we expected the system to
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Figure 3.6: Trajectories for the 30× 26 network for different initial conditions, color‐coded with the normalized speed
along the transients. The red dots represent the equilibrium states of the network. Four points— (0, 0), (0.25, 0),
(0.50, 0) and (0.75, 0)—are attractors. The points at (0.25, 0.5) and (0.75, 0.5) are saddles: stable for
perturbations along x but unstable along y. The remaining two red dots, (0, 0.5) and (0.50, 0.5), are unstable. Thus,
initial states (0, 0.499) and(0, 0.501) converge to (0, 0) and (1, 0)respectively. The x‐axis is aligned with one basis
vector of the hexagonal lattice, whereas the y‐axis is orthogonal to x and not parallel to the second lattice vector.
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Figure 3.7: For a step velocity input of different durations (inset), the response of the system (30× 26, main figure) has
the same attractor states as that of the one with shifted initial states as would be expected. This can be seen as the
attractor states match the red dots for zero input above. Here, the initial y‐phase was set to zero, and velocity input was
applied only in the x‐direction for the sake of simplicity.
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end up in different basins of attraction depending on when the input was withdrawn (see

fig. 3.7). This is indeed the case and the asymptotic states in this case are identical to the

red dots in fig. 3.6 with y‐phase= 0. This is because the initial y-phase was set to zero, and

velocity input was applied only in the x‐direction for the sake of simplicity.

Keeping in mind the discreteness described by Noorman et al. (2022) for head direction

systems, we looked at the response of the network to different input velocities (see figures

3.8 and 3.9). In our system, the 2D analogues are:

• If the system does not start at a local energy minimum, it will move towards it, even

in the absence of external input.

• For small inputs, the system cannot climb over the neighboring maximum (and the

phase comes to a stand still even when the non-zero input persists).

• For larger inputs, the system has a jagged movement over different stable states and

moves to the nearest stable state once the input is removed.

All these discretization effects in this deterministic system lead to as drift when time-

varying inputs are given. Other than the size of the input, response differences between the

different input directions can also result from the discretization.

3.4.2 Larger Network

To quantify the effect of discretization, we replicated the simulation with neurons placed

at half the original distance, yielding a 60 × 52 sheet whose unit-cell length is Λ≈ 30 neu-

rons (Fig.3.10). This denser lattice alters the basins of attraction, the number of stationary

solutions, and their stability.
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(a) αv = 2× 10−5 (b) αv = 1× 10−4

(c) αv = 1.4× 10−4 (d) αv = 2× 10−4

Figure 3.8: For a fixed shift of the equilibrium bump‐pattern along the y‐axis (0.3 neurons), we checked the response of
the 30× 26 system to a constant input v, introduced at t = 4s. (a) For very low inputs, the initial states approach
nearest stable state. (b) For low inputs, the system cannot overcome the energy barrier and responds with a constant
phase. (c) A transition state where one of the energy maxima is overcome, but the velocity is not large to overcome the
next one. (d) The network integrates larger inputs non‐linearly in this jagged manner. We only need to show X phases
with initial states in (0, 0.5) due to the symmetry of the system.

61



(a) αv = 10−4 (b) αv = 10−4

Figure 3.9: With zero input in x and a constant input in y introduced at t = 4s, (a) the x‐phases from different initial
conditions converge during the transient and then remain at fixed values. (b) the y‐phase first relaxes to 0 in the absence
of drive and, shifts to and remains at a nearby constant value near 0, after the input is introduced.The traces illustrate
three effects of a discretized attractor: pinning (the bump remains locked once it reaches a local basin), thresholds (weak
velocities are insufficient to move the bump), and shifted equilibrium (the fixed point is displaced without producing
continuous drift).

Firstly, doubling the neuron density sharpens the spatial representation: bumps are now

identical copies of one another, whereas in the 30×26 sheet odd spacing forces slight shape

differences.

Secondly, increasing the sheet to 60×52 neurons changes both the number and the spac-

ing of equilibrium points. In the 30 × 26 sheet four fully-stable minima are separated by

Δx = 0.25 neurons (0.017λ), whereas in the 60× 52 sheet, the nearest-neighbour distance

between successive minima is Δx = 0.17 neurons (the smaller of the two arcs 0.330.50

and 0.500.66), producing a denser lattice of pinning wells (Fig.3.6 vs 3.10). This trend

matches the finite-size analysis of pinning barriers in continuous attractors by Noorman

et al. (2022).

Lastly, some equilibria are saddle points: they are restoring in one phase direction (e.g. y)

but repelling in the other. The relative proportions as well as the locations of minima and

saddles differ between the two networks.
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Figure 3.10: Trajectories of the 60× 52 network launched from a grid of initial translations (colour indicates normalized
speed along the transient). Red dots mark the equilibrium positions reached with zero external input. Three fully‐stable
attractors lie at phase coordinates (x, y) = (0.33, 0), (0.50, 0), (0.66, 0) and so on. Saddle points, at (0, 0.5), and
(0.5, 0.5), are stable along x but unstable along y and vice‐versa for the points at (0, 0).
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(a) αv = 4× 10−6 (b) αv = 4× 10−6

(c) αv = 2× 10−4 (d) αv = 2× 10−4

(e) αv = 2× 10−3 (f) αv = 2× 10−3

Figure 3.11: 60× 52 network response with different αv values for inputs along x‐direction with different starting
x‐phases and initial y‐phase 0.3 neurons. At t = 4s, the network receives a constant input speed v along the
x‐direction. (a‐b) For very low inputs, the initial states approach nearest stable state in the x‐ and y‐directions. (c‐d) For
low inputs, there are two types of response: in one case, the system cannot overcome the energy barrier and responds
with a constant phase (see top two traces in (c)). In the other, a transition state where one of the energy maxima is
overcome, but the velocity is not large to overcome the next one (in this case because it is an unstable state in the
x‐direction at x = 0). Note that since y = 0 is stable in the y‐direction, this behavior is similar to (b). (e‐f) The network
integrates larger inputs non‐linearly in this jagged manner in the x‐direction and shows qualitatively the same response
as (b,d) in the y‐direction.
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In contrast, all the three properties corresponding to the three levels of input mentioned

in the previous section can be seen in figure 3.11. Note that, since x = 0 is unstable in the

x-direction, small inputs move the pattern to the nearest stable fixed point.

The threshold values of the input required to observe different dynamical regimes vary

slightly between the two networks. For example, in the larger system, the lower threshold

for low inputs and the threshold for a high-velocity response is higher. While one possible

explanation is that finer discretization in the larger network produces shallower basins for

low inputs and higher barriers at higher inputs, we have not directly quantified the valley

depths or barrier heights to confirm this.

3.4.3 Implications for the grid cell system

When the velocity input is set to zero, the bump simply relaxes to a handful of fixed points

(Fig.3.6). These equilibria are not interpreted as dedicated “memory’’ states; they emerge

solely because a finite lattice samples a continuous attractor imperfectly, producing shal-

low pinning wells at a few phase offsets. Their direct biological relevance is therefore lim-

ited. Nonetheless, the wells have clear consequences once motion resumes: (i) local min-

ima cause drift in the absence of input, (ii) inputs below the barrier height leave the de-

coded position locked, and (iii) very strong inputs bypass the wells but still introduce phase-

dependent gain, so drift accumulates over closed paths.

In a strictly deterministic network the response to velocity is therefore non-linear and

higher resolution generally improves precision.
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Figure 3.12: The slopes of the linear fits between input and output differ across angles. This shows that as a function of
the movement direction, velocity inputs vary in their effect on the displacement of the grid pattern. As a consequence,
even in its deterministic form, the investigated CAN model cannot support path integration.

3.5 Response to constant input velocities

The system is given constant input speeds along different directions for 50s and the average

flow rate of the pattern on the neuronal sheet is measured to get the response. This flow

rate is fit as a linear function of the input speed for a fixed angle in the range of velocities

considered ([0, 1]m/s) as seen in fig. 3.12 for different input speeds every 0.1 m/s. The av-

erage of different slope curves along different input directions (sampled every 9◦) is how we

get the scaling factor between neural and physical space. The x−intercepts are used to de-

termine the minimum thresholds along different directions. The summary is given in Fig.

4.2.
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(a) (b)

Figure 3.13: Direction‐dependent decoding bias in Module 1. (a) Angular decoding error (decoded direction – true
direction) as a function of input direction. (b) Flow rate expressed as a fraction of the flow rate at 0°. Both panels show
curves for input speeds 0.1–1.0 m/s in 0.1 m/s steps; color indicates input speed.

3.5.1 Dependence on the angle of the input trajectory

The direction of the input velocity does not have to correspond to the direction of the pat-

tern flow. We want to quantify the error in flow direction as a function of the input speed

and input angle. Across speeds from 0.1 m/s to 1 m/s the angular decoding error follows an

approximate sin 2θ pattern (Fig. 3.13(a)).

For each curve, we divide the flow rate at a particular input direction by the flow rate at

the same input speed along 0◦ to determine shape differences for all the speeds. The de-

coded speed shows a systematic angle dependence: it is highest near 90◦/270◦ and low-

est around 0◦/180◦ axes, with the relative gain profile similar for all tested speeds (Fig.

3.13(b)).

3.5.2 Sheet-dependent response differences

Depending on the input magnitude and direction, different sheets show a change in their

shape. This effect is most pronounced in the case of an input along the preferred directions.
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(a) (b) (c)

Figure 3.14: The activity pattern formed differs across the four neuronal sheets corresponding to preferred directions
(East, West, North, South). The input is applied along 0° (East), and its speed is varied. The resulting bump size,
measured as the full width at half maximum (FWHM), is plotted for each sheet. (a) FWHM values for sheets with
preferred directions perpendicular to the input (North and South) show minimal variation; their curves overlap in the
central region. (b) In the sheet aligned with the input (East), bump width increases with input magnitude. (c) In the sheet
opposite to the input (West), bump width decreases with increasing input. The color coding is as follows: green
represents the East sheet (aligned with input), red represents the West sheet (opposite to input), and the two overlaid
curves in grey represent North and South (perpendicular to input). The three line styles in each plot correspond to
FWHM estimates along the x‐ and y‐directions, and their mean.

Figure 3.14 shows the full-width at half-maximum as a function of the input speed in the

x-direction.
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4
Model response to random trajectories

In this chapter, we focus on the response of the model to real and simulated trajectory in-

puts. We describe our decoding methodology and discuss the problem of catastrophic read-

out.
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4.1 Inputs and decoding

4.1.1 Input Trajectories

A large numberNtraj ≈ 100 of random walk trajectories are used as inputs to ensure that

the two modules’ unit cells are completely covered (occupancy of bins is non-zero every-

where in the arena). Our trajectories are generated using the algorithm specified in Raudies

and Hasselmo (2012) for a circular arena of radius 90 cm.

The system has some inertia and cannot follow instantaneous changes in the input (see

Section 3.1.3 for details on pattern inertia). This allows us to reduce the frequency of speed

updates (we chose every 20th time step), to reduce the computational costs, and linearly

interpolate in between.

Generating the trajectories involves a combination of deterministic algorithms and ran-

dom components. The process starts by defining the initial position to be at the center

of the arena and a randomly chosen heading direction of the simulated point-sized agent.

The running speeds are drawn from a Rayleigh distribution, and rotational velocities are

sampled from a normal distribution with mean μ = −2.5◦/s and standard deviation

σ = 350◦/s from Raudies and Hasselmo (2012). The probability density of the Rayleigh

distribution is:

p(vin; σ) =
vin
σ2

(
e
−v2in
2σ2

)
(4.1)

Here σ is the scale parameter of the distribution, such that the mean of the input distribu-

tion is 0.17m/s. We chose this based on the running speeds of animals as in Raudies and

Hasselmo (2012).

At each 20-ms step, we check whether the agent is within 2-cm of the nearest wall. If
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(a) (b)

(c) (d)

Figure 4.1: Trajectories are generated using an algorithm based on Raudies and Hasselmo (2012) with an arena of radius
90 cm resembling that of Hafting et al. (2005). In (a) we see the histogram corresponding to random draws from a
Rayleigh distribution for the input speeds. (b) shows the histogram for the angular speed which is approximately a
Gaussian with zero mean. (c) shows a representative 5‐minute trajectory showing the animal’s position in 2D space, with
the center of the arena (0, 0) as the animal’s starting point. (x and y in meters). (d) shows 30 different simulated
trajectories overlaid to show that together they sample the entire arena.
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it is and its heading points toward the wall (angle to the outward wall normal< 90°), we

apply a wall-avoidance update: (i) rotate the heading by the shortest amount needed to be

parallel to the wall, and, (ii) compress the forward speed toward a floor vmin = 0.05 m/s via

v ← v − 0.5(v − vmin). When the agent is outside the border band or not headed toward

the wall, it follows the baseline random-walk dynamics. The resulting speed and turn-angle

distributions and a sample trajectory are shown in Fig. 4.1.

4.2 Model Dynamics

4.2.1 Summary of response

As in Burak and Fiete (2009), the response to different input speeds is linear in the inter-

mediate range of input speeds considered, but the response slope depends on movement

direction. As explained in section 3.6, we have a threshold effect at low input speeds, and

thus a non-zero x-intercept in the input vs. output speed curves.

In order to determine the input-output relationship of the system and a scaling factor

between neuronal and physical space, we gave the system constant inputs for 52000 time

steps (1 time step = 1ms) in steps of 0.1 m/s, in the range of 0 to 1 m/s. The first 2000 time

steps were ignored to avoid any transients resulting from the change in input speed. We

then calculated the average flow rate of the network (in neurons/s) over the remaining

50, 000 time steps and plotted the input-output curve. The average over all the steps al-

lows us to not have to consider short-term effects resulting from the inertia of the pattern

movement.

The above is done for inputs along angles from (0◦, 360◦) in steps of 4.5◦. We then get

the slopes for the input-output relation along these angles and take an average. The means
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(a) (b)

Figure 4.2: (a) The average slopes of a linear fit to input‐output curves for each input direction and (b) the x‐intercept
from quantifying the thresholding for low input speeds.

were identical for corresponding bumps from all four sub-networks - and thus do not de-

pend on the directional preference of a particular neuron. This slope is the one considered

for determining the size of the unit cell and the calculation of phases.

The decoding error for module 1 is shown in figure 4.3(a). This is simply the distance

between the actual and decoded positions.

4.2.2 Model ofModel

Given that we know the input-output characteristics of the system as a function of the

input speed and angle as determined previously (see figures 4.2 and 3.13), we can model the

decoded position and hence the decoding error directly. This allows us to understand the

form of figure 4.3(a) without further simulations and lets us separate the contributions of

speed mis-scaling and direction bias to the decoding error.

• Speed-only model: We kept the true heading for every time step and applied the

above fitted gain/offset to the speed. The resulting error 4.3(b) stays well below the
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curve in panel (a), indicating that speed mis-scaling alone adds only a modest contri-

bution.

• Angle-only model: Here the true speed was preserved while each heading was shifted

by the direction-dependent bias Δθ(θ). Angular mismatch clearly dominates: panel

(c) reproduces the bulk of the error seen in panel (a),

• Full model: We combine both terms: speed mismatch and directional bias.

Most of the error is explained by angular mismatch as opposed to speed mismatch (see

fig4.3). Since our drawn speeds have a low probability of lying in the non-linear higher

speed range (probability of speed> 0.8 m/s= 1.6 × 10−5), the small contribution of the

speed mismatch makes sense.

4.2.3 Effect of boundaries

The errors in Figure 4.3 all show a noticeable kink in the mean error at approximately 250

time steps, followed by a subsequent slowdown. This kink, a sudden change in the error

behavior, is a significant observation as it suggests a potential point of interest in the trajec-

tory. We investigated the relationship between this kink and the arena’s size to understand

why this occurs. We found that the peak error time strongly correlates with the arena’s size,

suggesting that the kink may be linked to boundary encounters. In what follows, we inves-

tigate this hypothesis in detail.
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(a) Result from Simulations (b) Only Model Speed

(c) Only Angle (d) Both Speed and Angle

Figure 4.3: Decoding error (euclidean distance between actual and decoded positions) for module 1 using (a)
Simulations, (b) Modeling the variation in speed only and direction fixed to true heading, (c) Modeling variation in angle
only and retaining true speed, (d) Using the complete model including speed miscaling of (b) and direction bias of (c).
Gray traces: RMS position error of individual trajectories (20 ms bins). Colored traces: mean across trajectories in each
panel: panel (a) solid blue, panel (b) dashed red, panel (c) dashed green, panel (d) dashed dark blue. Note, that the y‐axes
have different ranges in the 4 panels.
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Figure 4.4: The mean and median times of the first boundary encounter for 3 radii of the arena, over a 100 trajectories
each. Note that the right most panel has reflective boundary conditions and the y‐axes have different scales. Since the
distributions are long tailed, the median provides a better central tendency measure than the mean.

4.2.4 Different arena sizes

We asked whether the timing of the first boundary encounter tracks the timing of the first

peak in the (trial-averaged) decoding error across arena sizes. For clarity, by interruption we

mean a boundary-locked change in the mean error trajectory (the kink) occurring within a

short window of the first wall contact.

• Circular arena, radiusR = 90 cm: median first boundary time= 5.10 s; first peak of

mean decoding error at 5.06 s (Δ=−0.04 s).

• Smaller arena,R = 45 cm: median first boundary time= 2.56 s; first peak at 2.74 s

(Δ=0.18 s).

• Larger arena,R = 180 cm: median first boundary time= 12.08 s; first peak at 13.14

s (Δ=1.06 s).

• Reflective boundary,R = 90 cm: median first boundary time= 5.30 s; first peak at

5.46 s (Δ=0.16 s).
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Figure 4.5: By aligning the decoding errors from 50 trajectories at their first boundary encounter (grey line), we analyze
the error behavior before and after the encounter. The error averaged across trajectories (blue line) falls after the
boundary encounter.

Across arena sizes and boundary conditions, the time of the first peak in the mean de-

coding error occurs close to the first boundary encounter and co-scales with arena size, con-

sistent with a boundary-locked interruption of otherwise diffusive error growth. We did

not, however, perform single-trial correspondences between first-hit times and peak times;

establishing such within-trial linkage is outside the scope of the present analysis.

4.2.5 Error reduction at boundary

We aligned multiple trajectories at their first boundary encounter to analyze the error be-

havior before and after the encounter. Figure 4.5 shows that the average error decreases

after a boundary encounter.

To further investigate this phenomenon, we looked at the input statistics near bound-

aries. One property of our simulated trajectories is that, by design, they slow down in the

boundary region. We wanted to check if this effect is also observed in running trajectories

of rodents in experiments to see if this effect could be generalizable.
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(a) (b)

Figure 4.6: Panels (a‐b) use data from a single rat trajectory reported by (Stensola et al., 2012) in a square arena of size
150× 150 cm. (a) Positions< 10cm from the enclosure boundary, color‐coded by speed at those points. Grey dots are
speeds> 100cm/s. (b) Kernel‐density estimates of instantaneous speed for samples near the boundary (distance 10 cm
to the nearest wall; red) versus the interior (> 10 cm; blue). Inset: Within the boundary subset, speeds are split by
direction relative to the nearest wall’s inward normal. Along Wall (dashed) = the middle 50% of angles between the
velocity vector and the wall normal (i.e., roughly tangential); Towards/Away (solid) = angles outside this interval.

4.2.6 Experimental trajectory

To examine the input statistics of an actual trajectory, we used data from Stensola et al.

(2012) where a rat runs in a 3m×3m square enclosure. The boundary region was defined

as positions within 10 cm of the nearest wall, as shown in Figure 4.6(a). This choice was

motivated by the larger arena and that unlike the simulated trajectories, the experiments

were not carried out with point-like agents but with (spatially extended) rats. Thus, the size

of the boundary region is considered based on the choice by Hardcastle et al. (2015). As

expected, the probability of lower speeds is higher near the boundary (Figure 4.6(b)).

Thus, both experimental data from Stensola et al. (2012) and simulated trajectories show

slower speeds near the boundary. This observation raised the question: Could the slowing

down near boundaries explain the observed effect?
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(a) τ = 10ms (b) τ = 50ms (c) τ = 100ms

Figure 4.7: For three different τ, the network received different velocity inputs for 3 s and then subsequently the agent
came to an abrupt stop. We did this to see the effect of slowing down without encountering boundaries. We observe a
transient error reduction of (a) 0.105 cm, (b)0.427 cm, and (c) 1.03 cm for the three time constants. The time behavior
after the stopping is reminiscent of Fig. 3.8, corresponding to the network approaching different attractor states after
input is withdrawn differently.

4.2.7 Illustration

An analogy can help understand this phenomenon: When a swimmer moves quickly through

a pool, the wave (representing the decoded position) trails behind. The waves catch up as

the swimmer stops at the pool’s walls. To quantify the effect on the decoding error, we

used a stopping protocol, where the network received different velocity inputs for 3 s and

then subsequently the agent came to an abrupt stop.

Using the leaky integrator x as a rough approximation, we get:

τdxdt = −x(t) + v(t) (4.2)

The effect up to the first order will be proportional to vτ. Since for our system τ = 10

ms, the magnitude is small and timescale is on the order of τ. Thus, the leading order ef-

fects are small and fast, and thus insufficient to explain the observed kink and subsequent

slowdown in the error. Figure 4.7 demonstrates that varying τ shows some error reduction

but does not fully account for the observed effect.
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Given the bound above, simply slowing down near boundaries does not entirely account

for the error reduction. A plausible additional mechanism is attractor relaxation at low

drive: When v(t) ≈ 0, recurrent dynamics of the continuous attractor relax the phase

toward a nearby stable state with a network time constant τnet > τ. Also, motion within a

thin region around the boundary is directionally biased (towards/away constrained, along

allowed), so
√
〈v2‖〉+ 〈v2⊥〉 is reduced when 〈v2⊥〉 is small (with v‖ = v · θ̂ and v⊥ = v · r̂).

However, exploring these other possibilities falls beyond the scope of this study.
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5
intermodular connections

This chapter describes the intermodular connection scheme we propose. Then, we discuss

the results for the uncoupled systems and the effect of different types of coupling.
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Module 1

Module 2

Agent at t = t1 Agent at t = t3Agent at t = t2
Physical space

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

1

Figure 5.1: Conceptual sketch of geometric coupling in one dimension. The agent moves along a linear track in physical
space (black line, bottom), with positions at t1, t2, and t3 marked. Each row of circles represents neurons from two
modules: module 1 (blue) and module 2 (orange), whose spatial scales form a 3:2 ratio. Neurons are arranged
periodically: after each module’s spatial period (blue and orange boxes), the numbering restarts, reflecting the repeating
structure of grid fields. Filled circles indicate neurons active at the agent’s current position. Because of the integer scale
ratio, module 2 neuron 4 is coactive with module 1 neurons 4, 8, and 12 at successive agent positions, motivating
excitatory couplings between them (arrows). This schematic illustrates the coupling rule; in simulations both modules
contain the same number of neurons, unlike in this simplified cartoon. Figure code generated with the assistance of
ChatGPT.

5.1 A geometrical hypothesis

We hypothesize that a coupling between different modules that ‘correctly’ wires the differ-

ent activities can potentially serve as a mechanism to prevent the position estimate from

rapidly deviating from the actual location of the animal. What happens when there are

drifts and/or errors, and is it possible that having coupled modules helps with error correc-

tion?

Here we implement a model where we couple 2 networks of neurons, both exhibiting

different spatial scales, and then we ask - can the coupling that exploits the geometrical rela-

tionship between modules correct for the drifts?

Figure 5.1 shows a simplified 1D sketch of activity in two grid-cell modules as an agent

moves along a linear track. The horizontal black line at the bottom represents the phys-
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ical track. Black dots mark the agent’s positions at times t1, t2, and t3; for example, at t1

the agent is at position 4. Above the track, two rows of circles represent the two modules.

Their periodic spatial scales are indicated by the blue (module 1) and orange (module 2)

boxes. Numbers label the neurons within one spatial period of module 1 (1–12) and mod-

ule 2 (1− 8). Filled circles denote active neurons, open circles inactive ones.

At t1, neurons 4 in both modules are coactive. At later positions t2 and t3, module 2 neu-

ron 4 remains active while neurons 12 and 8 in module 1 are coactive with it. Thus, mod-

ule 2 neuron 4 aligns with module 1 neurons 4, 8, and 12 (highlighted in blue).

Because the module scales form a ratio of 3/2, our hypothesis is that excitatory con-

nections link coactive neurons. In this example, module 2 neuron 4 couples to module 1

neurons 4, 8, and 12 as indicated by the arrows. All remaining excitatory projections from

neurons in module 2 to module 1 can be determined in a similar manner.

In simulations both modules contain the same number of neurons, unlike in this simpli-

fied cartoon. Additionally, in order to not disturb the formation of the pattern, we intro-

duce weak inhibitory connections between neuron 4 in module 2 and all other neurons in

module 1 to balance excitation and inhibition. In one dimension, this yields 3 couplings; in

two dimensions, the rule extends to 3× 3 = 9 couplings.

5.2 Correlations between networks

A good starting point to get the connections between the modules would be to determine

the correlations between the activities of the neurons between the modules. Since the ratios

of the scales is chosen to be exactly 1.5, we would expect a regular pattern similar to fig 5.2.

This is the consequence of uniform and exact translation of the activity pattern across the
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(a) (b)

Figure 5.2: Panel (a) shows the correlations of module 2 neuron (0, 0,E) with neurons of the E subpopulation in
module 1. In this case the number of firing fields in physical space is four times the number of activity bumps on the
neuronal sheet, which gives 16 correlation peaks. Panel (b) shows the correlations of module 1 neuron (0, 0,E) with
neurons of the E subpopulation in module 2. Here the number of firing fields in physical space is nine times the number
of activity bumps on the neuronal sheet, which gives 36 correlation peaks. These factors arise because the arena is set
equal to the multi‐module fundamental domain, which consists of four unit cells of module 1 and nine unit cells of
module 2. The same correlation patterns are observed for the other three subpopulations, which are not shown. The
results are illustrated for a 60× 52 network with a period of 30 neurons.

two modules and the fact that the scale ratio is exactly 3/2. This is then be used to get the

connections between the modules (motivating a Hebbian-like correlation based connection

scheme).

5.3 Connectivity scheme

Figure 5.3 illustrates the two-dimensional connectivity scheme. We show the connections

from a single reference neuron in module 2, neuron (0, 0,E), to neurons in module 1. Ex-

citatory targets are shown as black dots and inhibitory targets as blue dots. The excitatory

targets form 9 clusters, as expected from the 3 × 3 combinations of coactive neurons along

the two axes. This generalizes the one-dimensional case (Figure 5.1), where one neuron in

module 2 aligned with 3 neurons in module 1; in two dimensions, the same principle ap-

plies independently along x and y′, giving 3× 3 = 9 clusters.
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(a) (b)

(c) (d)

Figure 5.3: This figure shows the connectivity scheme in two dimensions. Connections from a single reference neuron in
module 2 at position (0, 0,E) to neurons in module 1 are plotted in phase space (0, 2π) along the x and y′ axes as
defined in Eq. 3.6, where y′ is oriented 60◦ relative to x. Black dots indicate excitatory targets, and blue dots indicate
inhibitory targets. The excitatory targets form 9 distinct clusters, which correspond to the 3× 3 combinations of
coactive neurons along x and y′ (compare to the one‐dimensional case in Figure 5.1). Each cluster contains multiple
neurons, because with an odd value of λ the activity bumps can produce either one or two maxima depending on their
shape. All four module 1 populations (east, west, north, and south) exhibit the same clustered distribution. Phases are
determined using the actual data and are not assigned automatically and hence have some undulations reflecting
decoding errors.
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To display these connections we use the phase coordinates defined in Eq. 3.6. In this

representation, each neuron is assigned a pair of phases (φx, φy′)modulo the lattice peri-

ods, so that all repeating copies of the same grid field collapse into a single unit cell. This

provides a compact view in which the repeating structure of the grid pattern is represented

once within the unit cell (0, 2π) × (0, 2π). Phase space is therefore the natural coordinate

system for identifying clusters of coactive neurons, which would be spread across many

locations if plotted directly in physical space.

Each cluster contains more than one dot because neurons that are equivalent in phase

can differ depending on the shape of the underlying activity bump. With an odd value of λ,

some bumps on the neuronal sheet have a single central maximum, whereas others exhibit

two local maxima. These additional maxima show up as more than one co-active neuron.

As a result, multiple dots appear within each cluster in the phase-space plot.

There are exactly 13 rows because the unit cell repeats after 13 steps in the y′-direction.

Along the x-direction the discretization step is 1/30 instead of 1/15, because the presence

of two local maxima for some bumps effectively halves the spacing when λ is odd. This

asymmetry, causes the clusters to contain different numbers of neurons across rows. The

overall pattern of 9 excitatory clusters is preserved and is the same across all four module 1

populations (E,W,N, S).

5.4 Fixed Points in a two-module network

How are the stable states affected by weak intermodular coupling? How do they change

based on the coupling strength?

For a two-module system, we introduced weak coupling between the modules with dif-
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(a) (b) Coupling Strength η = 10−4

(c) Coupling Strength η = 10−3 (d) Coupling Strength η = 10−2

Figure 5.4: Attractor states with intermodular coupling from module 2 to module 1 are shown for the 30× 26 system.
(a) Module 2 states are uniformly distributed as expected. (b) Very weak coupling, module 1 states are unaffected. (c)
Weak coupling, resulting in a superposition of the attractor states from both modules. (d) If the coupling is strong
enough, then the states of module 1 resemble those of module 2 Note: We still need to keep the connections weak
enough that they do not destroy the grid pattern of the network. See Fig. 5.7 for activity patterns at different coupling
strengths.
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ferent strengths (η) frommodule 2 (smaller scale) to module 1 (larger scale) once both sys-

tems settled at t = 2s. The stable states are shown in fig. 5.4 for an initial set of states with

different shifts in the x-direction and no external input. Since the module scales have a ratio

of 1.5, a shift in neuronal space of 2 neurons in module 1 corresponds to a shift of 3 neu-

rons in module 2.

For very weak coupling (η = 10−4), the stable states of module 1 are not affected by the

input frommodule 2. For a coupling strength of η = 10−3, module 1 stable states depend

on those of module 2, especially when they belong to different basins of attraction, to begin

with. For an even higher coupling strength, module 2 dominates module 1, making the

final stable states of module 1 progressively resemble those of module 2.

A higher density of stable states allows the network to represent a larger variety of pat-

terns or configurations. This can improve the network’s ability to encode and distinguish

between different inputs, enhancing its spatial resolution. In principle, the intermediate

stable states could allow module 1 to drift less in cases with coupling as opposed to without

coupling.

5.5 Multi-module model and drift

5.5.1 Multi-module model

In order to describe a multi-module model, we have two terms, one for within module (see

eq 3.3) and the intermodule term with a connection strength η and an intermodular weight

matrix W̃.
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τds
(k)
iθ
dt + s(k)iθ = f




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iθ +
∑

n(=k

ηkn
∑

j′θ′′
W̃ij′θ′′ s

(n)
j′θ′′



 (5.1)

where: s(k)iθ is the activity of neuron iwith directional preference θ in module k.

The input to neuron (i, θ) in module k contains three terms:

•
∑

j,θ′ Wijθ′ s
(k)
jθ′ : Sum of contributions from all neurons with all directional prefer-

ences in the same module k.

• B(k)
iθ = 1 + α( ˆe(k)θ ·!vin): External input to neuron iwith directional preference θ in

module k. By changing α(k), we can control the scale of the module.

• Coupling term representing input from other modules n += k.

– ηkn: Connection strength for coupling frommodule n to module k.

– Sum of contributions from all neurons with all directional preferences in mod-

ule nwith the intermodular weight matrix W̃.

Since the modules have the same connectivity, the superindex k has been dropped above.

Unless stated otherwise, we consider a 2 module system, with connections frommodule 2

to module 1. The form of the intermodular weight matrix is discussed in detail in section

5.3.
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(a) η = 0 (b) Module 2

(c) η = 10−5 (d) η = 10−4

(e) η = 10−3 (f) η = 10−2

Figure 5.5: Mean squared error increases as a function of time. Each panel shows the fit to a piece‐wise linear function
with slopes a and b and x and y intercepts for the second fit t0 and c2 respectively. For different connection strengths,
the rate of the error increase differs for module 1. By itself, module 2 provides the highest accuracy, as indicated by the
small size of slope b shown in (b). But even very weak coupling to module 1 strongly improve the accuracy of that
module, unless the coupling is too strong so that it destroys the hexagonal grid‐field structure. All values were
determined using 100 simulated trajectories.
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Figure 5.6: The slope (b) for different coupling strengths summarizing the results in 5.5. When coupling is weak, the rate
of error accumulation in module 1 goes down.

5.6 Effect of coupling

5.6.1 Smaller to larger module

Since the module with the smaller scale has a better resolution, we examined uni-directional

projections frommodule 2 to module 1. This would result in intermediate steady states in

module 1 (Fig. 5.4). The results for different coupling strengths are shown in Fig. 5.5. Since

module 2 receives no additional input, its rate of error accumulation does not depend on

η. But the slope of error accumulation in module 1 varies - with even a very weak coupling

resulting in a sharp fall in the rate of error accumulation. In order to understand how the

coupling affects module 1 activity patterns, we can look at the activity patterns in Fig. 5.7

at a time step t for module 1 for different coupling strengths. While very weak coupling

has little to no effect (panels c-d), stronger coupling can change the bump shapes and even

destroy the hexagonal pattern entirely. The cumulative effect of the coupling can be seen

through the rate maps in Fig. 5.11 for single neurons in module 1 for different connection

strengths. To be able to compare, we also depict the above for module 2. We see that for
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module 1, the size of the fields (Fig.5.8) depends on the coupling - with larger coupling

strengths they start to get sharper and ultimately the pattern breaks down for a coupling

strength 10−1.

5.6.2 Random connections

We compared our connection scheme with a control condition with the same number and

strengths of connections as the previous case, but with randomized locations. The mean

squared errors for two different connection strengths are shown in figure 5.9 for two con-

nection strengths. They are clearly worse than correlation-based connections.

5.6.3 One-to-one connections

Alternatively, we tried one-to-one connections for neurons at the same positions (!r, θ) on

the neuronal sheet (fig. 5.10). Trivially, this is a subset of connections considered in the case

of the correlations if the 2 sheets are initialized to be exactly in sync with each other before

the input is given.
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(a) Module 1, η = 0 (b) Module 2

(c) η = 10−6 (d) η = 10−5

(e) η = 10−4 (f) η = 10−3

(g) η = 10−2 (h) η = 10−1

Figure 5.7: The activity patterns for Module 1 subpopulation E for different connection strengths. While for very weak
coupling strengths η (c‐d), we do not see a big change in the activity pattern as compared to the uncoupled one (a).
However, the peak activity increase with η = 10−2 (g) and the pattern is completely destroyed for η = 10−1 (h)
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Figure 5.8: The average size of the fields in the rate maps characterized by the full‐width at half‐maximum of a fitted
Gaussian. The size and the variability of the fields falls for larger coupling strengths, as can be seen in the figure 5.11. A
part of the wiggles is due to discretized bins.

(a) η = 10−3 (b) η = 10−2

Figure 5.9: Mean squared errors for module 1 increase much more rapidly when we use random couplings from module
2 to module 1. In that case the performance of module 1 is worse than without any inter‐module coupling.

94



(a) η = 10−3 (b) η = 10−2

Figure 5.10: Mean squared errors for module 1 increase much more rapidly when we use couplings from module 2 to
module 1 that connect neurons with the same position (!r, θ) on the neuronal sheet. These are much worse than the
uncoupled network.
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(a) η = 0 (b) Module 2

(c) η = 10−6 (d) η = 10−5

(e) η = 10−4 (f) η = 10−3

(g) η = 10−2 (h) η = 10−1

Figure 5.11: The rate maps for different connection strengths using 10 simulated trajectories over 5 minutes. The white
regions indicate unvisited bins in the arena. For the uncoupled and very weakly coupled systems, we can see that the
fields are diffusing, whereas (b) and (c) are much sharper. (h) shows a combination of the fields from module 1 and
module 2.



6
Discussion

We have shown that weak correlation-based coupling between modules improves the accu-

racy of decoding position for a larger module compared to an uncoupled network. Specif-

ically, our model with a configuration of 26 × 30 × 4 neurons shows a mean error accu-

mulation slope for different coupling strengths is shown in Fig. 5.6. For context, the Burak

and Fiete (2009) model with 40× 40 neurons accumulates error at a rate of 0.03 cm/s, and
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their larger 128× 128 neuron model has an error rate of 0.01 cm/s.

We note that while their reported errors are based on a single trajectory, our values are

averaged across multiple trajectories.

Furthermore, we characterized the discrete nature of the attractor network’s energy land-

scape, building upon the work of Noorman et al. (2022), which examined this landscape

in 1D and extended it to 2D. Our model serves as a proof of concept for a simple yet novel

mechanism for coordination between modules that uses their geometrical relationships.

6.1 Conclusions

6.1.1 Error reduction through geometric coupling

In our deterministic two-module model (3 : 2 scales), weak geometric input from the

smaller-scale module reduced drift in the larger-scale module and yielded sharper fields.

The effect reflects improved of the larger-scale readout; it does not increase resolution be-

yond the finer module.

6.1.2 Boundary error reductionwithout boundary cells

We observed a notable reduction in errors at the boundaries without including boundary

cells as in Hardcastle et al. (2015). The deceleration near boundaries observed in actual tra-

jectories is a partial explanation for this reduction in error. This suggests that the dynamics

and input statistics improve boundary accuracy, providing an avenue for further research.
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6.2 Relation to existing models

6.2.1 Moshieff and Burak

Mosheiff and Burak (2019) proposed a model where the position estimate of one grid cell

module is used as an additional input to other modules, effectively reducing error through

dynamic feedback mechanisms. This synaptic connectivity between modules helps sup-

press incompatible drifts driven by noise while preserving the capacity of the grid cell code.

This model dynamically adjusts to maintain stability, ensuring the representation remains

robust against noise.

Mosheiff and Burak (2019) refer to fixed-phase relation as a condition where the phases

(or positions) of grid cell modules have a constant relationship, akin to two gears mesh-

ing together such that their rotation angles are always identical. When modules are phase-

coupled this way, there is effectively only one encoded angle, limiting the dynamic range

of the representation. This means that every neuron’s phase in one module directly corre-

sponds to a fixed phase in another, reducing the system’s capacity to represent a wide range

of positions.

In contrast, our fixed geometrical coupling model simplifies the design and implementa-

tion by establishing a correlation-based relationship across modules, avoiding the complex-

ity of continuous exchange of the position estimate and dynamic feedback. The primary

advantage is its simplicity and ease of implementation using a Hebbian-like mechanism,

making it biologically plausible.

Mosheiff and Burak (2019) suggest that synaptic connectivity between grid cell modules

within the MEC can enforce the desired coupling, relying on broad, relatively unstructured
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connections based on heading preference; these connections ignore absolute phase and

allow any phase offset as long as the modules move at the same speed. By contrast, our ge-

ometric coupling links each coarse-scale neuron weakly to the subset of fine-scale neurons

whose phases are compatible with the 3:2 scale ratio. This many-to-many pattern favours

certain relative phases but does not impose a unique, fixed offset. Consequently it con-

strains inter-module drift without the strong phase locking, or the broad, phase-agnostic

velocity coupling, used inMosheiff and Burak (2019)’s formulation.

Our approach lacks the robustness of Mosheiff and Burak (2019)’s model. It cannot dy-

namically adjust to changes in neural activity patterns due to external stimuli or internal

fluctuations, which could lead to a loss of accuracy and coherence in the system’s perfor-

mance.

Mosheiff and Burak (2019)’s model significantly reduces error accumulation due to cou-

pling. Without coupling, position representations by different modules can diverge due to

noise, leading to catastrophic readout errors (Burak, 2014; Mosheiff and Burak, 2019). The

mean squared error accumulation rate is reduced by a factor equal to the number of mod-

ules in the coupled system (Mosheiff and Burak, 2019), effectively eliminating catastrophic

errors over time.

Future work should explore how weak couplings in our model affect the capacity of the

grid cell code and whether they adapted in response to neural activity changes. Comparing

both models’ long-term stability and error rates under various conditions could provide

deeper insights into their respective advantages and limitations. Another approach could

be combining fixed geometrical coupling for baseline stability with dynamic feedback for

adaptability and noise suppression to achieve a robust and flexible system for grid cell repre-
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sentation.

6.2.2 Kang and Balasubramanian

Kang and Balasubramanian (2019) propose a dynamical self-organization mechanism that

may explain how grid modules with characteristic scale ratios naturally emerge in the MEC.

Each module resembles a Burak and Fiete (2009)-like network, and different spatial scales

are generated by varying inhibition distances. Their approach primarily focuses on achiev-

ing modular structures with fixed scale ratios through competition between intermodular

excitation and intra-modular inhibition by incorporating local excitatory coupling between

modules (Kang and Balasubramanian, 2019).

In contrast, our model emphasizes geometric coupling to reduce decoding errors and

enhance robustness. While Kang and Balasubramanian (2019)’s model achieves modular

self-organization, it does not explicitly address error correction mechanisms. Their reliance

on geometric relationships between triangular grids to maintain constant scale ratios shows

limitations, particularly when producing discrete scale ratios using a velocity gain approach.

Our model starts with predefined scale ratios to ensure coherent activity across modules,

simplifying the system while maintaining robust spatial representation and error correc-

tion.

Kang and Balasubramanian (2019) argue that using a velocity gain approach can result

in slips or independent drifts in the relative phases of the modules, causing occasional catas-

trophic errors. They exclusively use excitatory coupling, which may contribute to slips in

the relative phases of the modules when using velocity-based scaling. In contrast, our model

employs a dual coupling strategy focusing on excitatory and inhibitory interactions be-
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tween modules, where inhibitory couplings between out-of-phase neurons may result in a

stabilizing effect and better error correction.

6.2.3 Waaga et al. 2021

Waaga et al. (2021) analyzed grid-cell activity during foraging in light and darkness, quan-

tifying both the absolute error of the decoded trajectory (MAE) and the relative alignment

between modules (δi,Δij). They found that while MAE increased substantially in darkness,

inter-module distances remained unchanged, indicating preserved relative alignment even

during high-error epochs. In contrast, our model tracks the absolute error of each module’s

estimate relative to ground truth, but does not quantify inter-module distances. Thus, our

results can be directly compared to their MAEmeasures, but not to their (δi,Δij) metrics.

Future extensions of our model could incorporate inter-module distance analyses to enable

a more direct comparison to their findings on preserved coordination across modules.

6.3 Biological significance

6.3.1 Predicted correlations

The experimentally measured correlations between neurons from the same module are

quite strong (Gardner et al., 2019; Trettel et al., 2019) and change as a function of the

phase difference between the neurons (Barry et al., 2007; Stensola et al., 2012). However,

intermodular correlations are more complex and variable (Trettel et al., 2019; Gardner

et al., 2019). For example, environmental context, behavioral states, and cognitive demands

can influence intermodular correlations. This flexibility allows the grid cell network to

adapt to various spatial tasks and environments.
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The circuit mechanisms that generate intermodular correlations remain unclear. One

possibility is indirect coordination via the hippocampus and connected cortical areas;

hippocampo-entorhinal feedback can disrupt or realign grid firing (Zhang et al., 2013).

Another proposal is that weak, spatially patterned recurrent projections within the medial

entorhinal cortex couple modules directly (Couey et al., 2013; Kang and Balasubrama-

nian, 2019). In either case, synaptic plasticity and theta-phase-locked excitation are likely

contributors to the residual synchrony observed across modules (Bush and Burgess, 2014;

Pastoll et al., 2013). Our correlation-based coupling scheme is consistent with the empirical

finding that inter-module grid-cell pairs exhibit only weak synchrony: the model employs

very small inter-module weights, sufficient to reduce relative drift without inducing the

strong, phase-locked correlations characteristic of cells within the same module.

6.3.2 Boundary effects

Other grid cell models, including Burak and Fiete (2009) also observe a slowing down of

the drift after a rapid initial increase (Figure 1a). Here, we identify and quantify the factors

contributing to both the rapid increase (the geometry and size of the arena) and the subse-

quent slowing down (boundary encounters) of the drift.

We also observe a decrease in error immediately after boundary encounters, similar to

the findings of Hardcastle et al. (2015) and consistent with grid-pattern shear reported in

square arenas (Stensola et al., 2015). Unlike Hardcastle et al. (2015), we did not incorporate

border cells into our model, demonstrating that the observed effects are at least partially

intrinsic to the network’s dynamics and input statistics. Hardcastle et al. (2015) focused on

quantifying errors due to intrinsic neuronal noise and spiking, which are factors that can
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also be assessed in an extension to our model. Error reduction near boundaries may also be

attributed to a combination of the two factors.

Since rodents tend to spend a significant amount of time near the walls (Chen et al.,

2016; Pérez-Escobar et al., 2016), further exploration of the changes in statistical properties

of the input near boundaries or the drift could be promising areas for future research. This

includes examining how boundary conditions affect network stability and error rates and

how these factors interact with input noise and spiking activity. By extending our analysis

to include these elements, we can better understand the robustness and adaptability of grid

cell networks in various spatial environments.

Finally, integrating our findings with experimental data from real-world navigational

tasks is crucial. This integration can help validate and refine our models and more impor-

tantly, it can contribute to the development of biologically plausible models of spatial navi-

gation, with potential real-world applications.

We measure and formalize the drift in deterministic variants of the Burak and Fiete

(2009) model, providing important insights for other modelers. Our findings show that

errors depend more significantly on the direction of movement relative to the network-

intrinsic flow than on the flow rate itself. Additionally, we elucidate the inertia of the

pattern flow, highlighting the limitations of this type of model. While parameter regimes

where the network operates in a continuous state may exist, exploring such regimes would

be important for future work. The relationship between the number, locations, and type of

fixed points and the rate of error accumulation needs to be more carefully explored.
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6.4 Limitations of our approach

Our model relies on the assumption that the ratio of the scales of the modules is exactly

1.5. Because the scale ratio is a ratio of two small integers (Stemmler et al., 2015; Wei et al.,

2015a), we have a unique correlation structure with peaks that repeat periodically. If the ra-

tio is not exactly 1.5, this correlation structure would become much less stable (Fiete et al.,

2008; Stemmler et al., 2015; Wei et al., 2015a), with correlations that are not consistent but

depend on the size of the arena considered.

We did not include input or spiking noise. We did not compute a joint multi-module

decoder, measure inter-module alignment, or quantify changes in spatial period.

6.5 Further work

Possible directions to explore include further examining the error at the boundaries, the

response of the couplings to input noise, and exploring a spiking network to study the in-

terplay between inter-module coupling and intrinsic neuronal noise. Finally, it would be

illuminating to see if bidirectional correlation-based intermodular couplings might reduce

the absolute drift.

105



Acknowledgments

Completing this PhD has been an unexpected and incredible journey, especially consid-
ering my family’s entrepreneurial background. I am profoundly grateful to everyone who
has played a pivotal role in this achievement.
First, I sincerely thank my parents, grandmothers, and brother for their unwavering sup-

port, patience, and positivity. Your belief in me has given me the courage and wings to ex-
plore new horizons.
I want to express my heartfelt thanks to my supervisor, Andreas Herz, for his relentless

guidance, belief in my potential, and continuous push to excel scientifically.
To my TACmembers, Caroline Geisler, Anton Sirota, and Christian Leibold thank

you for your invaluable feedback and guidance. Martin Stemmler, your enthusiastic feed-
back has been incredibly motivating and always thought-provoking. Special appreciation
goes to Florian Eberhardt for being a steadfast friend and confidant, Dora Csordas for her
superhero-like support, Michaela Poth for her kind and wise words, FlorianMueller for his
indispensable software and IT support and Aditya Chowdhury, for believing in me and
helping expedite my coding processes.
To Sharmistha, Neha, Sanskriti, and Hasneet, your support through the highs and lows

of this challenging journey has been invaluable. Thank you to all my teachers, from school
and university, for their guidance and encouragement throughout my academic journey.
I also thank the GSN team: Lena, Verena, Stefanie, Katrin, Raluca, and the adminis-

trative staff: Silke, Martina, andMonika. Your assistance and support have been crucial.
Thanks also to the IT department, Mr. Schimmel andMr. Molter.
Last but certainly not least, I want to acknowledge the incredible women who have

supported and inspired me throughout this journey. Your laughter, food, and unwaver-
ing strength as role models have been a constant source of inspiration: Elena Kalantzis,
Reema Gupta, Naiiri Ghazari, Preshika Wright, Erika Lupieri, Anna Umurzakova, Mary
Antonova, Poornima Ramesh, Rangoli Saxena, Sai Ayachit, Julia Mayer, MiaoWang,
MariamMuseridze, Katharina Bracher, Ann Kotkat andMagdalena Kautzky.
Thank you all for being a part of this journey. Your support and encouragement have

made this achievement possible.

106



References

Allen, K., Gil, M., Resnik, E., Toader, O., Seeburg, P., andMonyer, H. (2014). Impaired
path integration and grid cell spatial periodicity in mice lacking glua1-containing ampa
receptors. Journal of Neuroscience, 34(18):6245–6259.

Alonso, A. and Klink, R. (1993). Differential electroresponsiveness of stellate and
pyramidal-like cells of medial entorhinal cortex layer ii. Journal of Neurophysiology,
70(1):128–143.

Alonso, A. and Llinás, R. R. (1989). Subthreshold na+-dependent theta-like rhythmicity
in stellate cells of entorhinal cortex layer ii. Nature, 342(6246):175–177.

Amari, S.-i. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields.
Biological cybernetics, 27(2):77–87.

Barry, C., Ginzberg, L. L., O’Keefe, J., and Burgess, N. (2012). Grid cell firing patterns
signal environmental novelty by expansion. Proceedings of the National Academy of Sci-
ences, 109(43):17687–17692.

Barry, C., Hayman, R., Burgess, N., and Jeffery, K. J. (2007). Experience-dependent
rescaling of entorhinal grids. Nature neuroscience, 10(6):682–684.

Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O’Keefe, J., Jeffery, K., and
Burgess, N. (2006). The boundary vector cell model of place cell firing and spatial mem-
ory. Reviews in the Neurosciences, 17(1-2):71–98.

Blair, H. T. and Sharp, P. E. (1996). Visual and vestibular influences on head-direction
cells in the anterior thalamus of the rat. Behavioral neuroscience, 110(4):643.

Boccara, C. N., Sargolini, F., Thoresen, V. H., Solstad, T., Witter, M. P., Moser, E. I.,
andMoser, M.-B. (2010). Grid cells in pre-and parasubiculum. Nature neuroscience,
13(8):987–994.

107



Bonnevie, T., Dunn, B., Fyhn, M., Hafting, T., Derdikman, D., Kubie, J. L., Roudi, Y.,
Moser, E. I., andMoser, M.-B. (2013). Grid cells require excitatory drive from the hip-
pocampus. Nature neuroscience, 16(3):309–317.

Brandon, M. P., Bogaard, A. R., Libby, C. P., Connerney, M. A., Gupta, K., and Has-
selmo, M. E. (2011). Reduction of theta rhythm dissociates grid cell spatial periodicity
from directional tuning. Science, 332(6029):595–599.

Brun, V. H., Otnæss, M. K., Molden, S., Steffenach, H.-A., Witter, M. P., Moser, M.-B.,
andMoser, E. I. (2002). Place cells and place recognition maintained by direct entorhinal-
hippocampal circuitry. Science, 296(5576):2243–2246.

Burak, Y. (2014). Spatial coding and attractor dynamics of grid cells in the entorhinal
cortex. Current opinion in neurobiology, 25:169–175.

Burak, Y. and Fiete, I. R. (2009). Accurate path integration in continuous attractor net-
work models of grid cells. PLoS Comput Biol, 5(2):e1000291.

Burgess, N., Barry, C., and O’keefe, J. (2007). An oscillatory interference model of grid
cell firing. Hippocampus, 17(9):801–812.

Bush, D., Barry, C., Manson, D., and Burgess, N. (2015). Using grid cells for navigation.
Neuron, 87(3):507–520. This work is licensed under the Creative Commons Attribution
4.0 International License. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

Bush, D. and Burgess, N. (2014). A hybrid oscillatory interference/continuous attractor
network model of grid cell firing. Journal of Neuroscience, 34(14):5065–5079.

Bush, D. and Schmidt-Hieber, C. (2018). Computational models of grid cell firing. Hip-
pocampalMicrocircuits: A ComputationalModeler’s Resource Book, pages 585–613.

Cannon, S. C., Robinson, D. A., and Shamma, S. (1983). A proposed neural network for
the integrator of the oculomotor system. Biological cybernetics, 49(2):127–136.

Chen, G., Manson, D., Cacucci, F., andWills, T. J. (2016). Absence of visual input results
in the disruption of grid cell firing in the mouse. Current Biology, 26(17):2335–2342.

Cheng, S. and Frank, L. M. (2011). The structure of networks that produce the transfor-
mation from grid cells to place cells. Neuroscience, 197:293–306.

108

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Climer, J. R., DiTullio, R., Newman, E. L., Hasselmo, M. E., and Eden, U. T. (2015).
Examination of rhythmicity of extracellularly recorded neurons in the entorhinal cortex.
Hippocampus, 25(4):460–473.

Couey, J. J., Witoelar, A., Zhang, S.-J., Zheng, K., Ye, J., Dunn, B., Czajkowski, R., Moser,
M.-B., Moser, E. I., Roudi, Y., et al. (2013). Recurrent inhibitory circuitry as a mechanism
for grid formation. Nature neuroscience, 16(3):318–324.

D’Albis, T. (2018). Models of spatial representation in the medial entorhinal cortex. PhD
thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät.

D’Albis, T. and Kempter, R. (2017). A single-cell spiking model for the origin of grid-cell
patterns. PLoS Computational Biology, 13(10):e1005782.

Derdikman, D., Whitlock, J. R., Tsao, A., Fyhn, M., Hafting, T., Moser, M.-B., and
Moser, E. I. (2009). Fragmentation of grid cell maps in a multicompartment environ-
ment. Nature neuroscience, 12(10):1325–1332.

Diehl, G. W., Hon, O. J., Leutgeb, S., and Leutgeb, J. K. (2017). Grid and nongrid cells
in medial entorhinal cortex represent spatial location and environmental features with
complementary coding schemes. Neuron, 94(1):83–92.

Domnisoru, C., Kinkhabwala, A. A., and Tank, D. W. (2013). Membrane potential dy-
namics of grid cells. Nature, 495(7440):199–204.

Dunbar, S. R. (1997). The average distance between points in geometric figures. The
CollegeMathematics Journal, 28(3):187–197.

Dunn, B., Mørreaunet, M., and Roudi, Y. (2015). Correlations and functional connec-
tions in a population of grid cells. PLoS computational biology, 11(2):e1004052.

Etienne, A. S. and Jeffery, K. J. (2004). Path integration in mammals. Hippocampus,
14(2):180–192.

Fiete, I. R., Burak, Y., and Brookings, T. (2008). What grid cells convey about rat location.
Journal of Neuroscience, 28(27):6858–6871.

Fuchs, E. C., Neitz, A., Pinna, R., Melzer, S., Caputi, A., andMonyer, H. (2016). Local
and distant input controlling excitation in layer ii of the medial entorhinal cortex. Neuron,
89(1):194–208.

Fuhs, M. C. and Touretzky, D. S. (2006). A spin glass model of path integration in rat
medial entorhinal cortex. Journal of Neuroscience, 26(16):4266–4276.

109



Fyhn, M., Hafting, T., Treves, A., Moser, M.-B., andMoser, E. I. (2007). Hippocampal
remapping and grid realignment in entorhinal cortex. Nature, 446(7132):190–194.

Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., andMoser, M.-B. (2004). Spatial repre-
sentation in the entorhinal cortex. Science, 305(5688):1258–1264.

Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N. A., Dunn, B. A.,
Moser, M.-B., andMoser, E. I. (2022). Toroidal topology of population activity in grid
cells. Nature, 602(7895):123–128.

Gardner, R. J., Lu, L., Wernle, T., Moser, M.-B., andMoser, E. I. (2019). Correlation
structure of grid cells is preserved during sleep. Nature Neuroscience, 22:25–37.

Gil, M., Ancau, M., Schlesiger, M. I., Neitz, A., Allen, K., DeMarco, R. J., andMonyer,
H. (2018). Impaired path integration in mice with disrupted grid cell firing. Nature
neuroscience, 21(1):81–91.

Giocomo, L. M., Zilli, E. A., Fransén, E., and Hasselmo, M. E. (2007). Temporal fre-
quency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science,
315(5819):1719–1722.

Gothard, K., Skaggs, W., andMcNaughton, B. (1996). Dynamics of hippocampal ensem-
ble coding during space coding tasks. Journal of Neuroscience, 16(24):8027–8040.

Gu, Y., Lewallen, S., Kinkhabwala, A. A., Domnisoru, C., Yoon, K., Gauthier, J. L., Fiete,
I. R., and Tank, D. W. (2018). A map-like micro-organization of grid cells in the medial
entorhinal cortex. Cell, 175(3):736–750.

Guanella, A., Kiper, D., and Verschure, P. (2007). A model of grid cells based on a twisted
torus topology. International journal of neural systems, 17(04):231–240.

Haas, B., Givon-Mayo, R., Nachmani, E., and Ulanovsky, N. (2019). Can hippocampal
place cells support path integration? Hippocampus, 29(7):599–607.

Hafting, T., Fyhn, M., Bonnevie, T., Moser, M.-B., andMoser, E. I. (2008).
Hippocampus-independent phase precession in entorhinal grid cells. Nature,
453(7199):1248–1252.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., andMoser, E. I. (2005). Microstructure
of a spatial map in the entorhinal cortex. Nature, 436(7052):801–806.

Hardcastle, K., Ganguli, S., and Giocomo, L. M. (2015). Environmental boundaries as an
error correction mechanism for grid cells. Neuron, 86(3):827–839.

110



Hayman, R. M., Chakraborty, S., Anderson, M. I., and Jeffery, K. J. (2003). Context-
specific acquisition of location discrimination by hippocampal place cells. European Jour-
nal of Neuroscience, 18(10):2825–2834.

Høydal, Ø. A., Skytøen, E. R., Andersson, S. O., Moser, M.-B., andMoser, E. I. (2019).
Object-vector coding in the medial entorhinal cortex. Nature, 568(7752):400–404.

Ismakov, R., Barak, O., Jeffery, K., and Derdikman, D. (2017). Grid cells encode local
positional information. Current Biology, 27(15):2337–2343.

Jeewajee, A., Barry, C., Douchamps, V., Manson, D., Lever, C., and Burgess, N. (2014).
Theta phase precession of grid and place cell firing in open environments. Philosophical
Transactions of the Royal Society B: Biological Sciences, 369(1635):20120532.

Kang, L. and Balasubramanian, V. (2019). A geometric attractor mechanism for self-
organization of entorhinal grid modules. Elife, 8:e46687.

Kang, L. and DeWeese, M. R. (2019). Replay as wavefronts and theta sequences as bump
oscillations in a grid cell attractor network. Elife, 8:e46351.

Kitamura, T., Pignatelli, M., Suh, J., Kohara, K., Yoshiki, A., Abe, K., and Tonegawa, S.
(2014). Island cells control temporal association memory. Science, 343(6173):896–901.

Koenig, J., Linder, A. N., Leutgeb, J. K., and Leutgeb, S. (2011). The spatial periodicity of
grid cells is not sustained during reduced theta oscillations. Science, 332(6029):592–595.

Kropff, E., Carmichael, J. E., Moser, M.-B., andMoser, E. I. (2015). Speed cells in the
medial entorhinal cortex. Nature, 523(7561):419–424.

Krupic, J., Bauza, M., Burton, S., Barry, C., and O’Keefe, J. (2015). Grid cell symmetry is
shaped by environmental geometry. Nature, 518(7538):232–235.

Krupic, J., Bauza, M., Burton, S., and O’Keefe, J. (2016). Framing the grid: effect of
boundaries on grid cells and navigation. The Journal of physiology, 594(22):6489–6499.

Latuske, P., Kornienko, O., Kohler, L., and Allen, K. (2018). Hippocampal remapping
and its entorhinal origin. Frontiers in behavioral neuroscience, 11:253.

Leutgeb, S., Leutgeb, J. K., Barnes, C. A., Moser, E. I., McNaughton, B. L., andMoser,
M.-B. (2005). Independent codes for spatial and episodic memory in hippocampal neu-
ronal ensembles. Science, 309(5734):619–623.

111



Maaswinkel, H., Jarrard, L. E., andWhishaw, I. Q. (1999). Hippocampectomized rats are
impaired in homing by path integration. Hippocampus, 9(5):553–561.

Mallory, C. S., Hardcastle, K., Bant, J. S., and Giocomo, L. M. (2018). Grid scale drives
the scale and long-term stability of place maps. Nature neuroscience, 21(2):270–282.

Marozzi, E., Ginzberg, L. L., Alenda, A., and Jeffery, K. J. (2015). Purely translational
realignment in grid cell firing patterns following nonmetric context change. Cerebral
Cortex, 25(11):4619–4627.

Mathis, A., Herz, A. V., and Stemmler, M. (2012). Optimal population codes for space:
grid cells outperform place cells. Neural computation, 24(9):2280–2317.

McNaughton, B. L., Barnes, C. A., Gerrard, J. L., Gothard, K., Jung, M.W., Knierim,
J. J., Kudrimoti, H., Qin, Y., Skaggs, W., Suster, M., et al. (1996). Deciphering the hip-
pocampal polyglot: the hippocampus as a path integration system. Journal of Experimen-
tal Biology, 199(1):173–185.

McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., andMoser, M.-B. (2006).
Path integration and the neural basis of the’cognitive map’. Nature Reviews Neuroscience,
7(8):663–678.

Mittelstaedt, H. andMittelstaedt, M.-L. (1982). Homing by path integration. In Avian
Navigation: International Symposium on Avian Navigation (ISAN) held at Tirrenia
(Pisa), September 11–14, 1981, pages 290–297. Springer.

Monsalve-Mercado, M. M. and Leibold, C. (2017). Hippocampal spike-timing correla-
tions lead to hexagonal grid fields. Physical Review Letters, 119(3):038101.

Mosheiff, N., Agmon, H., Moriel, A., and Burak, Y. (2017). An efficient coding theory for
a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules.
PLoS computational biology, 13(6):e1005597.

Mosheiff, N. and Burak, Y. (2019). Velocity coupling of grid cell modules enables stable
embedding of a low dimensional variable in a high dimensional neural attractor. Elife,
8:e48494.

Nagele, J., Herz, A. V., and Stemmler, M. B. (2020). Untethered firing fields and intermit-
tent silences: Why grid-cell discharge is so variable. Hippocampus, 30(4):367–383.

112



Navratilova, Z., Giocomo, L. M., Fellous, J.-M., Hasselmo, M. E., andMcNaughton,
B. L. (2012). Phase precession and variable spatial scaling in a periodic attractor map
model of medial entorhinal grid cells with realistic after-spike dynamics. Hippocampus,
22(4):772–789.

Noorman, M., Hulse, B. K., Jayaraman, V., Romani, S., and Hermundstad, A. M. (2022).
Accurate angular integration with only a handful of neurons. bioRxiv, pages 2022–05.

O’Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map: preliminary
evidence from unit activity in the freely-moving rat. Brain research.

Pastoll, H., Solanka, L., van Rossum, M. C., and Nolan, M. F. (2013). Feedback inhibi-
tion enables theta-nested gamma oscillations and grid firing fields. Neuron, 77(1):141–
154.

Peng, J.-J., Throm, B., Jazi, M. N., Yen, T.-Y., Monyer, H., and Allen, K. (2023). Grid cells
perform path integration in multiple reference frames during self-motion-based naviga-
tion. bioRxiv, pages 2023–12.

Pérez-Escobar, J. A., Kornienko, O., Latuske, P., Kohler, L., and Allen, K. (2016). Visual
landmarks sharpen grid cell metric and confer context specificity to neurons of the medial
entorhinal cortex. Elife, 5:e16937.

Petrucco, L., Lavian, H., Wu, Y.-K., et al. (2023). Neural dynamics and architecture of the
heading direction circuit in zebrafish. Nature Neuroscience, 26(5):765–773.

Raudies, F. and Hasselmo, M. E. (2012). Modeling boundary vector cell firing given optic
flow as a cue. PLoS computational biology, 8(6):e1002553.

Reifenstein, E., Stemmler, M., Herz, A. V., Kempter, R., and Schreiber, S. (2014). Move-
ment dependence and layer specificity of entorhinal phase precession in two-dimensional
environments. PLoS ONE, 9(6):e100638.

Reifenstein, E. T., Kempter, R., Schreiber, S., Stemmler, M. B., and Herz, A. V. M.
(2012). Grid cells in rat entorhinal cortex encode physical space with independent firing
fields and phase precession at the single-trial level. Proceedings of the National Academy of
Sciences, 109(16):6301–6306.

Robinson, J. C., Ying, J., Hasselmo, M. E., and Brandon, M. P. (2024). Optogenetic
silencing of medial septal gabaergic neurons disrupts grid cell spatial and temporal coding
in the medial entorhinal cortex. Cell Reports, 43(8).

113



Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B. L., Witter, M. P., Moser, M.-B., and
Moser, E. I. (2006). Conjunctive representation of position, direction, and velocity in
entorhinal cortex. Science, 312(5774):758–762.

Savelli, F., Yoganarasimha, D., and Knierim, J. J. (2008). Influence of boundary re-
moval on the spatial representations of the medial entorhinal cortex. Hippocampus,
18(12):1270–1282.

Schmidt-Hieber, C. and Häusser, M. (2013). Cellular mechanisms of spatial navigation in
the medial entorhinal cortex. Nature Neuroscience, 16(3):325–331.

Seelig, J. D. and Jayaraman, V. (2015). Neural dynamics for landmark orientation and
angular path integration. Nature, 521(7551):186–191.

Seung, H. S. (1998). Continuous attractors and oculomotor control. Neural Networks,
11(7-8):1253–1258.

Skaggs, W., Knierim, J., Kudrimoti, H., andMcNaughton, B. (1994). A model of the
neural basis of the rat’s sense of direction. Advances in neural information processing sys-
tems, 7.

Solstad, T., Boccara, C. N., Kropff, E., Moser, M.-B., andMoser, E. I. (2008). Represen-
tation of geometric borders in the entorhinal cortex. Science, 322(5909):1865–1868.

Solstad, T., Moser, E. I., and Einevoll, G. T. (2006). From grid cells to place cells: a math-
ematical model. Hippocampus, 16(12):1026–1031.

Sreenivasan, S. and Fiete, I. (2011). Grid cells generate an analog error-correcting code for
singularly precise neural computation. Nature neuroscience, 14(10):1330.

Stemmler, M., Mathis, A., and Herz, A. V. (2015). Connecting multiple spatial scales to
decode the population activity of grid cells. Science Advances, 1(11):e1500816.

Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M.-B., andMoser, E. I. (2012).
The entorhinal grid map is discretized. Nature, 492(7427):72–78.

Stensola, T. andMoser, E. I. (2016). Grid cells and spatial maps in entorhinal cortex and
hippocampus. Micro-, meso-and macro-dynamics of the brain, pages 59–80.

Stensola, T., Stensola, H., Moser, M.-B., andMoser, E. I. (2015). Shearing-induced asym-
metry in entorhinal grid cells. Nature, 518(7538):207–212.

114



Sun, C., Kitamura, T., Yamamoto, J., Martin, J., Pignatelli, M., Kitch, L. J., Schnitzer,
M. J., and Tonegawa, S. (2015). Distinct speed dependence of entorhinal island and
ocean cells, including respective grid cells. Proceedings of the National Academy of Sciences,
112(30):9466–9471.

Taube, J. S. (1995). Head direction cells recorded in the anterior thalamic nuclei of freely
moving rats. Journal of Neuroscience, 15(1):70–86.

Taube, J. S., Muller, R. U., and Ranck, J. B. (1990). Head-direction cells recorded from
the postsubiculum in freely moving rats. i. description and quantitative analysis. Journal
of Neuroscience, 10(2):420–435.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological review, 55(4):189.

Trettel, S. G., Trimper, J. B., Hwaun, E., Fiete, I. R., and Colgin, L. L. (2019). Grid cell
co-activity patterns during sleep reflect spatial overlap of grid fields during active behav-
iors. Nature Neuroscience, 22:25–37.

Turner-Evans, D., Wegener, S., Rouault, H., Franconville, R., Wolff, T., Seelig, J. D.,
and Jayaraman, V. (2017). Angular velocity integration in a fly heading circuit. Elife,
6:e23496.

Van Cauter, T., Camon, J., Alvernhe, A., Elduayen, C., Sargolini, F., and Save, E. (2013).
Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cerebral Cortex,
23(2):451–459.

Van Cauter, T., Poucet, B., and Save, E. (2008). Unstable ca1 place cell representation in
rats with entorhinal cortex lesions. European journal of Neuroscience, 27(8):1933–1946.

Waaga, T., Agmon, H., Normand, V. A., Nagelhus, A., Gardner, R. J., Moser, M.-B.,
Moser, E. I., and Burak, Y. (2021). Grid-cell modules remain coordinated when neural
activity is dissociated from external sensory cues. bioRxiv.

Wei, X.-X., Prentice, J., and Balasubramanian, V. (2015a). An optimal grid cell code for
space. Neuron, 84(6):1183–1190.

Wei, X.-X., Prentice, J., and Balasubramanian, V. (2015b). A principle of economy pre-
dicts the functional architecture of grid cells. Elife, 4:e08362.

Welday, A. C., Shlifer, I. G., Bloom, M. L., Zhang, K., and Blair, H. T. (2011). Cosine
directional tuning of theta cell burst frequencies: evidence for spatial coding by oscillatory
interference. Journal of Neuroscience, 31(45):16157–16176.

115



Welinder, P. E., Burak, Y., and Fiete, I. R. (2008). Grid cells: the position code, neural
network models of activity, and the problem of learning. Hippocampus, 18(12):1283–
1300.

Wernle, T., Waaga, T., Mørreaunet, M., Treves, A., Moser, M.-B., andMoser, E. I. (2018).
Integration of grid maps in merged environments. Nature neuroscience, 21(1):92–101.

Widloski, J. and Fiete, I. R. (2014). A model of grid cell development through spatial
exploration and spike time-dependent plasticity. Neuron, 83(2):481–495.

Wills, T. J., Cacucci, F., Burgess, N., and O’Keefe, J. (2010). Development of the hip-
pocampal cognitive map in preweanling rats. science, 328(5985):1573–1576.

Wills, T. J., Lever, C., Cacucci, F., Burgess, N., and O’Keefe, J. (2005). Attractor dynam-
ics in the hippocampal representation of the local environment. Science, 308(5723):873–
876.

Winter, S. S., Clark, B. J., and Taube, J. S. (2015). Disruption of the head direction cell
network impairs the parahippocampal grid cell signal. Science, 347(6224):870–874.

Witter, M. P., Doan, T. P., Jacobsen, B., Nilssen, E. S., and Ohara, S. (2017). Architecture
of the entorhinal cortex a review of entorhinal anatomy in rodents with some comparative
notes. Frontiers in systems neuroscience, 11:46.

Wu, S., Hamaguchi, K., and Amari, S.-i. (2008). Dynamics and computation of continu-
ous attractors. Neural computation, 20(4):994–1025.

Yoon, K., Buice, M. A., Barry, C., Hayman, R., Burgess, N., and Fiete, I. R. (2013). Spe-
cific evidence of low-dimensional continuous attractor dynamics in grid cells. Nature
neuroscience, 16(8):1077–1084.

Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the
head-direction cell ensemble: a theory. Journal of Neuroscience, 16(6):2112–2126.

Zhang, S.-J., Ye, J., Miao, C., Tsao, A., Cerniauskas, I., Ledergerber, D., Moser, M.-B.,
andMoser, E. I. (2013). Optogenetic dissection of entorhinal-hippocampal functional
connectivity. Science, 340(6128):1232627.

Zilli, E. A. and Hasselmo, M. E. (2010). Coupled noisy spiking neurons as velocity-
controlled oscillators in a model of grid cell spatial firing. Journal of Neuroscience,
30(41):13850–13860.

116



Zilli, E. A., Yoshida, M., Tahvildari, B., Giocomo, L. M., and Hasselmo, M. E. (2009).
Evaluation of the oscillatory interference model of grid cell firing through analysis and
measured period variance of some biological oscillators. PLoS Computational Biology,
5(11):e1000573.

117



Thesis: Interactions between continuous attractors on multiple scales in a

grid cell network model

Avleen Sahni, Martin Stemmler and Andreas V.M. Herz

A.V.M.H. conceptually designed the project; A.S., developed and imple-

mented the model; A.S. performed research and simulated and analyzed data

under supervision from A.V.M.H. and M.S.; A.S. wrote the thesis, A.V.M.H

and M.S. provided corrections.

During the preparation of this work A.S. used ChatGPT-3.5 and Grammarly

in order to check grammar and spelling. ChatGPT-3.5 was also used for gener-

ating the code for some figures as indicated in the main text. After using this

tool, A.S. reviewed and edited the content as needed and takes full responsibility

for the content of the publication.

1


	Introduction
	Aim and scope of the thesis
	Outline of thesis

	Literature Review
	Grid cells in the entorhinal cortex
	Relationship of grid cells to other hippocampal spatial cells
	Environmental and behavioral modulation
	Continuous attractor models
	Oscillatory interference models
	Hybrid interference and attractor models
	Single cell plasticity models
	Example CAN model: Burak and Fiete (2009)
	Open Questions

	Modified Burak and Fiete model
	Problems with the original model of Burak and Fiete
	The solution: a four-sheet model
	Decoding
	Discrete attractor states
	Response to constant input velocities

	Model response to random trajectories
	Inputs and decoding
	Model Dynamics

	intermodular connections
	A geometrical hypothesis
	Correlations between networks
	Connectivity scheme
	Fixed Points in a two-module network
	Multi-module model and drift
	Effect of coupling

	Discussion
	Conclusions
	Relation to existing models
	Biological significance
	Limitations of our approach
	Further work

	References

