

Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

# Beiträge zur Chemie der Pseudohalogenide des Tellurs

vorgelegt von Ingo Schwab aus Essen

2005

Gesetzt in DIN А5 aus der 9 pt Адове Utopia mit pdfT<sub>E</sub>X

# Für meine Eltern und die kleine Waldfee

We must not cease from exploration. And the end of all our exploring will be to arrive where we began and to know the place for the first time.

(T.S. Elliot)

#### Erklärung

Diese Dissertation wurde im Sinne von §13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Prof. Dr. Thomas M. Klapötke betreut.

### Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.

München, den 14. März 2005

Jugo Schurt

(Unterschrift)

Dissertation eingereicht am 14. 03. 2005 1. Berichterstatter: Prof. Dr. Thomas M. Klapötke 2. Berichterstatter: Prof. Dr. Dr. h.c. mult. Heinrich Nöth Mündliche Prüfung am 22. 04. 2005 Die vorliegende Arbeit wurde in der Zeit von Februar 2002 bis Februar 2005 am Department Chemie der Ludwig-Maximilians-Universität München unter der Anleitung von

### Prof. Dr. Thomas M. KLAPÖTKE

angefertigt.

Mein Dank gilt an vorderster Stelle meinem Doktorvater, Herrn Prof. Dr. rer. nat. T. M. KLAPÖTKE, FRSC für das Interesse an dieser Arbeit, die Bereitstellung des Themas, seine stete Bereitschaft zu Diskussion und Hilfe sowie die mir gewährte Forschungsfreiheit.

#### Danksagung

Herr Prof. Dr. Dr. h.c. mult. H. Nötth hat dankenswerterweise die Zweitberichterstattung der vorliegenden Dissertation übernommen und einige der beschriebenen Röntgenstrukturanalysen ausgeführt.

Besonderer Dank gebührt Dr. B. KRUMM für die Aufnahme der allermeisten NMR-Spektren, "fruchtbare" Diskussionen, Geduld bei der Korrektur zahlreicher Publikationen, eine verschworene Laborgemeinschaft und unseren denkwürdigen Ausflug nach New Orleans, Louisiana (USA).

Des weiteren möchte ich mich bei allen Mitgliedern des Arbeitskreises und der analytischen Abteilung bedanken, die mir geholfen haben, diese Arbeit anzufertigen. Besonders seien hier Frau I. Scheckenbach, Dr. A. HAMMERL, G. SPIESS, sowie die Kristallographen Dres. J.-C. GÁLVEZ-RUIZ, P. MAYER, K. POL-BORN und M. SUTER genannt.

Unvergessen werden mir meine F-Praktikanten M. RAUSCHER, B. KINDLER, M. SCHERR und J.-C. RYBAK bleiben, die sich als ungewöhnlich fähig erwiesen haben.

Zu den schönsten Erinnerungen als Verwalter der Dienstgeschäfte eines Vertragsassistenten zählt die Zeit im AC1-Praktikum mit C. VOGLER, R. BETZ und Dr. B. TERECZKI, sowie den Belegschaften unserer F-Säle.

Dem Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften gebührt Dank für die reichliche Bemessung von Kapazitäten an den Cluster-Rechenanlagen, dabei speziell Dr. L. PALM für die Betreuung in der Anfangszeit, zudem Dr. F. WEIGEND (Forschungszentrum Karlsruhe) für eine modifizierte Version des RIMP2-Modules in TURBOMOLE, Prof. D. NAUMANN (Universität zu Köln) für die Überlassung von  $(CF_3)_2$ TeF<sub>2</sub> und  $(CF_3Te)_2$ , Prof. B. SILVI (Université Pierre et Marie Curie, Paris), Prof. L. Visscher (Vrije Universiteit Amsterdam) und Prof. K. Fægri Jr. (Universitetet i Oslo) für hilfreiche Korrespondenz zur *ELF*-Analyse bzw. zu vollrelativistischen 4-Komponenten-Rechnungen.

Für finanzielle Mittel danke ich dem Fonds der Chemischen Industrie und der Universität, der HANS-RUDOLPH-Stiftung für ein Stipendium und dem Dekanat der Fakultät für großzügige Zuweisung von Reisemitteln aus der Lautrach-Schenkung.

Gedankt sei auch allen meinen Freunden und Bekannten, die zu mir hielten ohne zu verstehen was ich hier eigentlich mache. Bei den meisten von Euch weiß ich es auch nicht.

#### Abstract

This thesis focuses on the experimental and theoretical investigation of tellurium pseudohalides, especially azides. Tellurium tetraazide,  $Te(N_3)_4$ , was prepared directly from  $TeF_4$  with  $Me_3SiN_3$  as an extremely sensitive solid; and azidation of pentafluorotellurate(IV)  $TeF_5^-$  gave the pentaazidotellurate(IV) anion. The crystal structure of the pyridinium salt [pyH][Te(N\_3)\_5] consists of  $[Te(N_3)_5]^-$  units, considerably distorted from ideal square pyramidal symmetry and linked by  $Te\cdots N$  interactions between two anions.

The labile tellurium cyanide species  $Te(CN)_2$  and  $Te(CN)_4$  have been prepared by treatment of tellurium(IV) tetrahalides with cyanide. Both are thermosensitive solids and in addition, the tetracyanide was found to be pyrophoric. Fluorination of  $R_2Te$  ( $R = 2,4,6-Me_3C_6H_2$  (= Mes),  $2,4,6-iPr_3C_6H_2$  (= Trip)) with xenon difluoride afforded the sterically demanding diorganotellurium(IV) difluorides  $R_2TeF_2$ . The reaction of  $R_2TeF_2$  (R = Me, Ph, Mes, Trip) with trimethylsilyl cyanide resulted in the formation of either  $R_2Te(CN)_2$  (R = Ph, Mes) or the tellanes  $R_2Te$  (R = Me, Trip). The crystal structure of  $Te(CN)_2$ , a binary tellurium cyanide and (Mes\_2TeCN)\_2O have been determined. All structures of  $Te(CN)_2$ ,  $Te(CN)_4$ , and  $Te(CN)_6$  have been calculated at various levels of theory.

The perfluoroaryl tellurolates  $C_6F_5$ TeLi and 4-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>TeLi were prepared. These intermediates were identified by NMR spectroscopy and may form, depending on the reaction conditions, either the corresponding ditellanes  $(C_6F_5Te)_2$  and (4-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>Te)\_2 by subsequent oxidation, or a telluranthrene  $(C_6F_4Te)_2$  depending on the reaction conditions. The halogenation products of  $(C_6F_4Te)_2$ ,  $(C_6F_4Te)_2F_4$ ,  $(C_6F_4Te)_2Cl_4$ ,  $(C_6F_4Te)_2Br_4$ , as well as the azidation product  $(C_6F_4Te)_2(N_3)_4$  were synthesized. Furthermore, in pursuit of our recent work on tellurium azides, the syntheses and properties of  $R_2Te(N_3)_2$  (R = CF<sub>3</sub>,  $C_6F_2H_3$ ) and RTe(N<sub>3</sub>)<sub>3</sub> (R = CF<sub>3</sub> and  $C_6F_5$ ) are reported. The crystal structures of  $(CF_3C_6F_4Te)_2$ ,  $(C_6F_4Te)_2Br_4$ , and  $(C_6F_2H_3)_2Te(N_3)_2$  were determined.

The reaction of azide with organotellurium(v1) halides  $Ph_5TeBr$  and  $(biphen)_2TeF_2$  (biphen = 2,2'-biphenyldiyl) resulted in the formation and isolation of  $Ph_5TeN_3$  and  $(biphen)_2Te(N_3)_2$ , which are the first tellurium(v1)– pseudohalide species. In addition to spectroscopic data, both crystal structures have been determined. Furthermore, the stability of possible Te(v1)

species with higher azide contents  $Ph_xTe(N_3)_{6-x}$  and  $Me_xTe(N_3)_{6-x}$  as well as the syntheses and properties of their  $Ph/Me_xTeF_y$  precursors were investigated, including the crystal structure determination of *trans*-Ph<sub>2</sub>TeF<sub>4</sub>. *Ab initio* and density functional studies of all molecules regarding the structures and electronic populations were performed.

The first tellurium compounds containing the extremely bulky tris(phenyl dimethylsilyl)methyl (Tpsi) and 2,6-bis(2,4,6-tri-iso-propylphenyl)phenyl (2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) moieties have been synthesized and isolated. Careful oxidation of the tellurolate TpsiTeLi resulted in the formation of the crowded ditellane (TpsiTe)<sub>2</sub>; subsequent iodination gave the alkanetellurenyl iodide TpsiTeI. In a similar fashion, the terphenyl substituted ditellane (2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Te)<sub>2</sub> and the arenetellurenyl iodide 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeI were prepared. Reaction of the tellurenyl iodides TpsiTeI, 2,6-Trip2C6H3TeI, as well as TripTeI, Mes\*TeI and the donor-stabilized 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeI with AgN<sub>3</sub> resulted in the formation and isolation of the corresponding tellurenyl azides TpsiTeN<sub>3</sub>, TripTeN<sub>3</sub>, Mes\*TeN<sub>3</sub>, 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeN<sub>3</sub>, and 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeN<sub>3</sub>. Furthermore, the tris(ethyldimethylsilyl)methyl (Tesi) tellurium compounds (TesiTe)2, TesiTeI, and TesiTeN<sub>3</sub> have been prepared, but could not be isolated in pure form. The crystal structures of TpsiTeLi, (TpsiTe)<sub>2</sub>, TpsiTeN<sub>3</sub>, 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeI, 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeN<sub>3</sub>, and 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeN<sub>3</sub> have been determined by X-ray diffraction. Additionally, computational studies of the molecules for which experimental structural data were available, were performed.

# Inhaltsverzeichnis

| Ab  | bildungsverzeichnis                                      | XV   |
|-----|----------------------------------------------------------|------|
| Та  | bellenverzeichnis                                        | xvii |
| I.  | Einleitung                                               | 1    |
| 1.  | Historischer Überblick                                   | 3    |
| 2.  | Aufgabenstellung                                         | 7    |
| II. | . Gang der Untersuchungen                                | 9    |
| 3.  | Binäre Tellur-Stickstoff-Verbindungen                    | 11   |
|     | 3.1. Frühere Untersuchungen                              | 11   |
|     | 3.2. Das Tellurtetraazid                                 | 12   |
|     | 3.3. Das Pentaazidotellurat                              | 13   |
| 4.  | Tellurcyanide                                            | 19   |
|     | 4.1. Das Tellurdicyanid                                  | 19   |
|     | 4.2. Das Tellurtetracyanid                               | 22   |
|     | 4.3. Theoretische Untersuchungen                         | 24   |
|     | 4.4. Untersuchungen über Organotellur(IV)dicyanide       | 27   |
|     | 4.4.1. Kenntnisstand                                     | 27   |
|     | 4.4.2. Darstellung und Stabilität                        | 27   |
|     | 4.4.3. Kristallstrukturen                                | 29   |
| 5.  | Versuche zur Darstellung von Tellur(I)-Pseudohalogeniden | 33   |
|     | 5.1. Kenntnisstand                                       | 33   |
|     | 5.2. Ergebnisse und Diskussion                           | 33   |
|     | 5.2.1. Die Ditellurdihalogenide                          | 33   |
|     | 5.2.2. Reaktivität                                       | 36   |
|     | 5.3. Quantenchemische Rechnungen                         | 37   |

| 6. | Tellur(VI)azide und -halogenide                                        | 41  |
|----|------------------------------------------------------------------------|-----|
|    | 6.1. Kenntnisstand                                                     | 41  |
|    | 6.2. Stabile Aryltellur(VI)azide                                       | 41  |
|    | 6.3. Organotellur(VI)fluoride und ihr Verhalten bei Azidierung         | 48  |
|    | 6.4. Rechnungen an $Me_x TeF_{6-x}$ und $Me_x Te(N_3)_{6-x}$ (x = 0–6) | 52  |
| 7. | Poly- und Perfluororganotellur(IV)azide                                | 61  |
|    | 7.1. Kenntnisstand                                                     | 61  |
|    | 7.2. Erzeugung und Reaktionen der Tellurolate $R_F$ TeLi               | 61  |
|    | 7.3. $5\lambda^4$ , $10\lambda^4$ - Perfluor telluranthren - Derivate  | 64  |
|    | 7.4. $(CF_3)_n Te(IV)$ - und Fluorphenyltellur(IV)azide                | 65  |
| 8. | Tellur(II)azide und -halogenide                                        | 71  |
|    | 8.1. Kenntnisstand                                                     | 71  |
|    | 8.2. Tpsi-Derivate                                                     | 72  |
|    | 8.2.1. TpsiTeLi – ein monomeres Alkyltellurolat                        | 72  |
|    | 8.2.2. $(TpsiTe)_2$ – ein planares Dialkylditellan                     | 74  |
|    | 8.2.3. TpsiTeI – ein monomeres Tellurenyliodid                         | 77  |
|    | 8.3. Sperrige Aryl- und Terphenyl-Derivate                             | 77  |
|    | 8.4. Stabile Alkan- und Arentellurenylazide                            | 79  |
|    | 8.5. Rechnungen an ausgewählten Verbindungen                           | 87  |
| 9. | Quantenchemische Untersuchungen                                        | 91  |
|    | 9.1. Allgemeines                                                       | 91  |
|    | 9.2. RI-Methoden                                                       | 92  |
|    | 9.3. Relativistische Wellengleichungen                                 | 94  |
|    | 9.3.1. Die Klein-Gordon-Gleichung                                      | 94  |
|    | 9.3.2. Die Dirac-Gleichung                                             | 96  |
|    | 9.4. Hypervalenz                                                       | 99  |
|    | 9.5. Die <i>ELF</i> -Analyse                                           | 101 |
|    | 9.5.1. Die <i>ELF</i> -Funktion                                        | 101 |
|    | 9.5.2. Becken im <i>ELF</i> -Gradientenfeld                            | 102 |
|    | 9.5.3. Basin-Populationsanalyse                                        | 104 |
| 10 | Zusammenfassung                                                        | 107 |

## III. Experimenteller Teil

113

| 11. | Allgemeines                                                                               | 115 |
|-----|-------------------------------------------------------------------------------------------|-----|
|     | 11.1. Apparatives                                                                         | 115 |
|     | 11.2. Chemikalien                                                                         | 115 |
|     | 11.3. Analytik                                                                            | 116 |
|     | 11.4. Vorsichtsmassnahmen                                                                 | 117 |
| 12. | Versuchsbeschreibungen                                                                    | 119 |
|     | 12.1. Binäre Te–N-Verbindungen                                                            | 119 |
|     | 12.1.1. Synthese von Te(N <sub>3</sub> ) <sub>4</sub>                                     | 119 |
|     | 12.1.2. Synthese von $[Me_4N]$ $[Te(N_3)_5]$                                              | 119 |
|     | 12.1.3. Synthese von $[pyH][Te(N_3)_5]$                                                   | 119 |
|     | 12.2. Synthese der Tellurcyanide                                                          | 120 |
|     | 12.2.1. Synthese von $Te(CN)_2$                                                           | 120 |
|     | 12.2.2. Synthese von Te(CN) <sub>4</sub>                                                  | 120 |
|     | 12.2.3. Synthese der sperrigen Aryltellane                                                | 121 |
|     | 12.2.4. Synthese der sperrigen Diaryltellur(1v)difluoride                                 | 122 |
|     | 12.2.5. Reaktionen der Organotellurfluoride mit Trimethylsilylazid                        |     |
|     | und -cyanid                                                                               | 123 |
|     | 12.3. Synthese der Organotellur(VI)azide                                                  | 125 |
|     | 12.3.1. Synthese von $Ph_5TeN_3$                                                          | 125 |
|     | 12.3.2. Synthese von $cis$ -biphen <sub>2</sub> Te(N <sub>3</sub> ) <sub>2</sub>          | 125 |
|     | 12.3.3. Synthese von $Ph_2TeF_4$                                                          | 126 |
|     | 12.3.4. Synthese von $mer$ -Ph <sub>3</sub> TeF <sub>3</sub>                              | 126 |
|     | 12.3.5. Synthese von $PhTeF_5$                                                            | 127 |
|     | 12.3.6. Synthese von $cis$ -Me <sub>4</sub> TeF <sub>2</sub>                              | 127 |
|     | 12.3.7. Synthese von $mer$ -Me <sub>3</sub> TeF <sub>3</sub>                              | 127 |
|     | 12.3.8. Synthese von <i>trans</i> -Me <sub>2</sub> TeF <sub>4</sub>                       | 127 |
|     | 12.3.9. Versuchte Synthese von $MeTeF_5$                                                  | 128 |
|     | 12.3.10. Versuchte Synthese von Me $_5$ TeHal $\ldots \ldots \ldots \ldots \ldots \ldots$ | 128 |
|     | 12.3.11. Versuchte Synthese von <i>cis</i> -Me <sub>4</sub> TeCl <sub>2</sub>             | 128 |
|     | 12.4. Synthese der Poly- und Perfluororganotellur (IV)-Verbindungen $\ .$                 | 129 |
|     | 12.4.1. Synthese von $(R_FTe)_2$                                                          | 129 |
|     | 12.4.2. Synthese von $(C_6F_4Te)_2$                                                       | 130 |
|     | 12.4.3. Synthese von $(C_6F_4Te)_2F_4$                                                    | 130 |
|     | 12.4.4. Synthese von $(C_6F_4Te)_2Cl_4$                                                   | 131 |
|     | 12.4.5. Synthese von $(C_6F_4Te)_2Br_4$                                                   | 131 |
|     | 12.4.6. Synthese von $(C_6F_4Te)_2(N_3)_4$                                                | 132 |
|     | 12.4.7. Synthese von $(CF_3)_2$ Te $(N_3)_2$                                              | 132 |
|     | 12.4.8. Synthese von $(C_6F_2H_3)_2$ Te $(N_3)_2$                                         | 133 |
|     | 12.4.9. Synthese von $CF_3Te(N_3)_3$                                                      | 133 |

|    | 10.4.10 Synthese yer $C_{a}E_{-}T_{a}(N_{a})_{a}$                                                   | 10.4   |
|----|-----------------------------------------------------------------------------------------------------|--------|
|    | 12.4.10. Synthese der Organistellur(II)aride und Helegenide                                         | 134    |
|    | 12.5. Synthese der Organotenur(II) azide und -Haiogenide                                            | 134    |
|    | 12.5.1. Synthese von TpsiTeLi                                                                       | 134    |
|    | 12.5.2. Synthese von $(1psne)_2$                                                                    | 134    |
|    | 12.5.3. Synthese von Tpsifel                                                                        | 135    |
|    | 12.5.4. Synthese von $1ps11eN_3$                                                                    | 135    |
|    | 12.5.5. Synthese von lesilei                                                                        | 136    |
|    | 12.5.6. Synthese von lesile $N_3$                                                                   | 136    |
|    | 12.5.7. Synthese von Irip $IeN_3$                                                                   | 137    |
|    | 12.5.8. Synthese von Mes <sup>*</sup> $1eN_3$                                                       | 137    |
|    | 12.5.9. Synthese von $(2,6-\text{Trip}_2\text{C}_6\text{H}_3\text{Te})_2$                           | 137    |
|    | 12.5.10. Synthese von 2,6-Trip <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Tel $\ldots$              | 138    |
|    | 12.5.11. Synthese von 2,6-Trip <sub>2</sub> C <sub>6</sub> H <sub>3</sub> TeN <sub>3</sub>          | 139    |
|    | 12.5.12. Synthese von 2-Me <sub>2</sub> NCH <sub>2</sub> C <sub>6</sub> H <sub>4</sub> TeI $\ldots$ | 140    |
|    | 12.5.13. Synthese von $2$ -Me $_2$ NCH $_2$ C $_6$ H $_4$ TeN $_3$                                  | 140    |
|    | 12.6. Synthese der Organotellur(I)-Verbindungen                                                     | 141    |
|    | 12.6.1. Versuchte Darstellung von Ditellurdifluorid                                                 | 141    |
|    | 12.6.2. Versuchte Darstellung von Ditellurdiiodid                                                   | 141    |
|    | 12.6.3. Darstellung von Dicyanoditellan                                                             | 142    |
|    | 12.6.4. Darstellung von Diazidoditellan                                                             | 142    |
| A. | Details zu den quantenchemischen Rechnungen der einzelnen Kapite                                    | el 145 |
|    | A.1. Rechnungen an Tellurcyaniden                                                                   | 145    |
|    | A.2. Rechnungen an Tellur(VI)-Verbindungen                                                          | 146    |
|    | A.2.1. Kartesische Koordinaten der Aryltellur(VI)-Verbindungen                                      | 148    |
|    | A.2.2. Kartesische Koordinaten für $Me_xTeF_{6-x}$ und $Me_xTe(N_3)_{6-x}$ (x                       |        |
|    | = 0–6)                                                                                              | 151    |
|    | A.3. Rechnungen im Kapitel 8                                                                        | 157    |
|    | A.4. Praktische Durchführung von <i>ELF</i> -Analysen                                               | 157    |
| B. | Kristallstrukturanalysen                                                                            | 161    |
| C. | NMR-Daten                                                                                           | 169    |
| D. | Abkürzungsverzeichnis                                                                               | 173    |
| E. | Literaturverzeichnis                                                                                | 175    |

# Abbildungsverzeichnis

| 1.1.         | F. J. Müller von Reichenstein                                                                                                  | 4  |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| 1.2.         | Th. Curtius         4                                                                                                          |    |  |  |  |  |  |
| 2.1          | Berechnete Strukturen von Te(Na), und Te(Na),                                                                                  | 19 |  |  |  |  |  |
| J.1.         | Molekülstruktur des $[TeO_{2}F_{0}]^{2-}$                                                                                      | 15 |  |  |  |  |  |
| J.∠.<br>2.2  | Elementarzelle der Kristallstruktur von $[nvrH]$ [TeE_] $_{0}$ [Te $_{0}$ OeE_]                                                | 15 |  |  |  |  |  |
| 3.3.         | Molekülstruktur des Pentaazidotellurat-Anions                                                                                  | 10 |  |  |  |  |  |
| 3.4.<br>3.5. | Te···N-Wechselwirkungen zwischen Pentaazidotellurat-Anionen                                                                    | 17 |  |  |  |  |  |
| 4.1.         | Schwingungsspektren von Te(CN) <sub>2</sub>                                                                                    | 20 |  |  |  |  |  |
| 4.2.         | Molekülstruktur von Te(CN) <sub>2</sub>                                                                                        | 22 |  |  |  |  |  |
| 4.3.         | <i>ELF</i> -Isofläche für fünf Te(CN) <sub>2</sub> -Moleküle                                                                   | 23 |  |  |  |  |  |
| 4.4.         | Elementarzelle von Te(CN) <sub>2</sub>                                                                                         | 23 |  |  |  |  |  |
| 4.5.         | Berechnete Molekülstruktur von Te(CN) <sub>4</sub>                                                                             | 25 |  |  |  |  |  |
| 4.6.         | Molekülstruktur von Mes <sub>2</sub> Te                                                                                        | 29 |  |  |  |  |  |
| 4.7.         | Molekülstruktur von Mes <sub>2</sub> TeF <sub>2</sub>                                                                          | 30 |  |  |  |  |  |
| 4.8.         | Molekülstruktur von (Mes <sub>2</sub> TeCN) <sub>2</sub> O                                                                     | 31 |  |  |  |  |  |
| 5.1.         | $^{125}$ Te-NMR-Spektrum von Te <sub>2</sub> (CN) <sub>2</sub> mit Te(CN) <sub>2</sub>                                         | 35 |  |  |  |  |  |
| 5.2.         | $^{125}$ Te-NMR-Spektrum von Te <sub>2</sub> (N <sub>3</sub> ) <sub>2</sub>                                                    | 36 |  |  |  |  |  |
| 5.3.         | Ausschnitt aus der Kristallstruktur von Li[Ag(CN) <sub>2</sub> ]·2 MeCN                                                        | 37 |  |  |  |  |  |
| 5.4.         | ELF-Darstellung von $Te_2Br_2$                                                                                                 | 38 |  |  |  |  |  |
| 6.1.         | Molekülstruktur von Ph <sub>5</sub> TeN <sub>3</sub>                                                                           | 42 |  |  |  |  |  |
| 6.2.         | Schwingungsspektren von $Ph_5TeN_3$ und <i>cis</i> -biphen <sub>2</sub> Te(N <sub>3</sub> ) <sub>2</sub>                       | 44 |  |  |  |  |  |
| 6.3.         | $^{14}$ N NMR Spektren von Ph <sub>x</sub> Te(N <sub>3</sub> ) <sub>y</sub>                                                    | 45 |  |  |  |  |  |
| 6.4.         | Molekülstruktur von <i>cis</i> -biphen <sub>2</sub> Te $(N_3)_2$                                                               | 46 |  |  |  |  |  |
| 6.5.         | <sup>125</sup> Te NMR-Spektrum von <i>trans</i> -Me/Ph <sub>2</sub> TeF <sub>4</sub>                                           | 49 |  |  |  |  |  |
| 6.6.         | Molekülstruktur von <i>trans</i> -Ph <sub>2</sub> TeF <sub>4</sub>                                                             | 50 |  |  |  |  |  |
| 6.7.         | Reaktionen der Organotellur(vı)fluoride mit $Me_3SiN_3 \ldots \ldots$                                                          | 51 |  |  |  |  |  |
| 6.8.         | VB-Strukturen des TeF <sub>6</sub>                                                                                             | 55 |  |  |  |  |  |
| 6.9.         | <i>ELF</i> von <i>trans</i> -Me <sub>2</sub> TeF <sub>4</sub> und <i>cis</i> -Me <sub>4</sub> Te(N <sub>3</sub> ) <sub>2</sub> | 57 |  |  |  |  |  |
| 7.1.         | Mögliche Seitenreaktionen bei der Synthese von $(C_6F_5Te)_2$                                                                  | 62 |  |  |  |  |  |

| 7.2.  | Molekülstruktur von $(4-CF_3C_6F_4Te)_2$                                                                                            | 63  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7.3.  | Synthese der $5\lambda^4$ , $10\lambda^4$ -Telluranthren-Derivate                                                                   | 65  |
| 7.4.  | Molekülstruktur von $(C_6F_4Te)_2Br_4$                                                                                              | 66  |
| 7.5.  | Molekülstruktur von $(C_6F_2H_3)_2$ Te $(N_3)_2$                                                                                    | 67  |
| 7.6.  | $\text{Te}{\cdots}\text{N}$ Kontakte in der Struktur des $(\text{C}_6\text{F}_2\text{H}_3)_2\text{Te}(\text{N}_3)_2$ $\ldots$       | 68  |
|       |                                                                                                                                     |     |
| 8.1.  | Molekülstruktur eines Ionenpaares in TpsiTeLi(THF) <sub>4</sub>                                                                     | 73  |
| 8.2.  | Molekülstruktur von (TpsiTe) <sub>2</sub>                                                                                           | 75  |
| 8.3.  | Molekülstruktur von TpsiTel                                                                                                         | 76  |
| 8.4.  | Molekülstruktur von 2,6-Trip <sub>2</sub> $C_6H_3$ TeI                                                                              | 80  |
| 8.5.  | Reaktionsschema zur Synthese der Terphenyltellur-Verbindungen                                                                       | 80  |
| 8.6.  | Molekülstruktur von Mes*TeI                                                                                                         | 81  |
| 8.7.  | $^{15}N{^{1}H} MR-Spektren von 2-Me_2NCH_2C_6H_4Se/TeN_3$                                                                           | 83  |
| 8.8.  | Molekülstruktur von TpsiTeN <sub>3</sub>                                                                                            | 84  |
| 8.9.  | Molekülstruktur von 2,6-Trip $_2C_6H_3$ TeN $_3$                                                                                    | 85  |
| 8.10. | . Molekülstruktur von 2-Me <sub>2</sub> NCH <sub>2</sub> C <sub>6</sub> H <sub>4</sub> TeN <sub>3</sub>                             | 86  |
|       |                                                                                                                                     |     |
| 9.1.  | H. Hellmann                                                                                                                         | 91  |
| 9.2.  | Abbildung der relativistischen Wahrscheinlichkeitsdichte                                                                            | 99  |
| 9.3.  | Kanonische Lewis-Strukturen                                                                                                         | 100 |
| 9.4.  | ELF-Isoflächen- und Isoliniendarstellung für Tetramethyltellur .                                                                    | 104 |
|       |                                                                                                                                     |     |
| 10.1. | Molekülstruktur des Pentaazidotellurat-Anions                                                                                       | 107 |
| 10.2. | . Molekülstruktur von Te(CN) <sub>2</sub>                                                                                           | 108 |
| 10.3. | Molekülstruktur von <i>cis</i> -biphen <sub>2</sub> Te(N <sub>3</sub> ) <sub>2</sub>                                                | 109 |
| 10.4. | . Das zyklische Tetraazid $(C_6F_4Te)_2(N_3)_4$                                                                                     | 110 |
| 10.5. | . Molekülstruktur von TpsiTeN <sub>3</sub>                                                                                          | 110 |
| 10.6. | . Reaktionsschema zur Synthese der Terphenyltellur-Verbindungen                                                                     | 111 |
|       | Developments (Amultinum and Die T-M sieldward hill T (M))                                                                           |     |
| A.1.  | betechnete Strukturen von Ph <sub>5</sub> leN <sub>3</sub> , <i>cis/trans</i> -biphen <sub>2</sub> le(N <sub>3</sub> ) <sub>2</sub> |     |
|       | und $Ph_2 1eF_4$                                                                                                                    | 148 |
| A.2.  | Berechnete Strukturen von Me <sub>x</sub> IeF <sub>6-x</sub> und Me <sub>x</sub> Ie(N <sub>3</sub> ) <sub>6-x</sub> (x = $0-6$ )    | 150 |

# Tabellenverzeichnis

| 3.1.         | Experimentelle und berechnete Parameter von $[Te(N_3)_5]^-$ , <i>E</i> [Hartree], ZPE [kJ mol <sup>-1</sup> ]. Schwingungsfrequenzen unskaliert $[cm^{-1}]$ .                                                             | 17  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.1.         | Experimentelle und berechnete Werte für $Te(CN)_2$ (3), $Te(CN)_4$<br>(4) und $Te(CN)_6$                                                                                                                                  | 26  |
| 5.1.         | Übersicht über die durchgeführten Rechnungen für X–Te–Te–X $% {\mbox{ .}}$ .                                                                                                                                              | 38  |
| 6.1.         | Quantenchemische Rechnungen für $Ph_5TeN_3$ , <i>cis/trans</i> -<br>biphen <sub>2</sub> Te(N <sub>3</sub> ) <sub>2</sub> und $Ph_2TeF_4$                                                                                  | 47  |
| 6.2.         | Quantenchemische Rechnungen für die <i>cis/trans-</i> bzw. <i>fac/mer</i> -<br>Isomere der Me <sub>x</sub> TeF <sub>6-x</sub> und Me <sub>x</sub> Te(N <sub>3</sub> ) <sub>6-x</sub> (x = $o-6$ ) Moleküle                | 53  |
| 6.3.         | Geometrische und populationsanalytische Daten für die $Me_x TeF_{6-x}$ und $Me_x Te(N_3)_{6-x}$ (x = 0–6) Moleküle                                                                                                        | 58  |
| 8.1.         | <sup>125</sup> Te NMR-Verschiebungen der Tellurenyliodide, -azide und Poly-<br>tellane.                                                                                                                                   | 82  |
| 8.2.<br>8.3. | Die aufgefundenen Minima für $(TsiTe)_2$                                                                                                                                                                                  | 87  |
|              | und 2-Me <sub>2</sub> NCH <sub>2</sub> C <sub>6</sub> H <sub>4</sub> TeN <sub>3</sub>                                                                                                                                     | 89  |
| 9.1.<br>0.2  | Pseudopotentiale für Tellur.                                                                                                                                                                                              | 92  |
| 9.2.         | thyltellurs                                                                                                                                                                                                               | 103 |
| A.1.         | Berechnete Werte für die NMR-Verschiebung von Te(CN) <sub>2</sub> bezo-<br>gen auf Me <sub>2</sub> Te                                                                                                                     | 146 |
| B.1.         | Kristallstrukturdaten für $[pyH]$ [Te(N <sub>3</sub> ) <sub>5</sub> ] ( <b>2b</b> ), $[pyrH]_4$ [TeF <sub>5</sub> ] <sub>2</sub><br>[Te <sub>2</sub> O <sub>2</sub> F <sub>6</sub> ] und Te(CN) <sub>2</sub> ( <b>3</b> ) | 162 |
| Б.2.         | $(\text{Mes}_2 \text{TeCN})_2 O \cdot CH_2 Cl_2 (12) \dots \dots$                                                   | 163 |

| В.з. | Kristallstrukturdaten für $Ph_5 TeN_3$ (13), $biphen_2 Te(N_3)_2$ (14) und                                                                                |     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | $trans-Ph_2TeF_4$ (15)                                                                                                                                    | 164 |
| B.4. | Kristallstrukturdaten für (4-CF $_3C_6F_4Te$ ) $_2$ (19), (C $_6F_4Te$ ) $_2Br_4\cdot C_6H_6$                                                             |     |
|      | (23) und $(C_6F_2H_3)_2$ Te $(N_3)_2$ (26)                                                                                                                | 165 |
| B.5. | Kristallstrukturdaten für TpsiTeLi $\cdot$ 4 THF ( <b>29</b> ), (TpsiTe) <sub>2</sub> ( <b>30</b> ) und                                                   |     |
|      | $TpsiTeN_3 \cdot C_6H_6 (\textbf{37}). \dots \dots$ | 166 |
| B.6. | Kristallstrukturdaten für Mes*TeI (36) und TpsiTeI (31)                                                                                                   | 167 |
| B.7. | Kristallstrukturdaten für 2,6-Trip $_2C_6H_3$ TeI (35), 2,6-Trip $_2C_6H_3$ TeN $_3$                                                                      |     |
|      | (40) und 2-Me <sub>2</sub> NCH <sub>2</sub> C <sub>6</sub> H <sub>4</sub> TeN <sub>3</sub> (41)                                                           | 168 |
|      |                                                                                                                                                           |     |
| C.1. | NMR-Verschiebungen ausgewählter Tellurverbindungen                                                                                                        | 169 |

I.

Einleitung

### 1. Historischer Überblick

Ach der Entdeckung des Tellurs im Jahre 1782 durch MÜLLER VON REI-CHENSTEIN<sup>1\*</sup> war es WÖHLER, der mit der Synthese des Diethyltellans 1840 die Chemie des Tellurs mit organischen Substituenten begründet und damit ein sehr frühes Beispiel für elementorganische Verbindungen überhaupt gegeben hat.<sup>2</sup> In den folgenden Jahrzehnten hat sich die Tellurchemie nur schleppend fortentwickelt, was sowohl auf die damals schlechte Verfügbarkeit dieses Elements als auch die geringe Stabilität vieler seiner Verbindungen zurückzuführen ist. Erst mit der grosstechnischen Kupferraffination fiel soviel Tellur im Anodenschlamm an, dass Tellur-Chemie nicht mehr auf einige wenige Forscher begrenzt blieb. Zum anderen besitzen vor allem die leichtflüchtigen Dialkyltellane einen lange Zeit anhaftenden und abstoßenden Geruch, bei dem es auch heute noch manchem Chemiker schwerfällt mit diesen Substanzen zu arbeiten, wie schon Wöhler vom Dimethyltellan zu berichten wusste:

"Auch nehmen wir für die kleine Arbeit, die wir im Folgenden mittheilen wollen, nur das Verdienst in Anspruch, uns den Widerwärtigkeiten unterzogen zu haben, die mit der Untersuchung eines so übel riechenden Körpers unvermeidlich verbunden sind. [...] Sein Geruch ist höchst unagenehm, knoblauchartig, sehr intensiv und so lange haftend, daß selbst der Athem bei der Veschäftigung damit auf einige Zeit den Geruch annimmt."<sup>3</sup>

Th. Curtius berichtete als erster im Jahr 1890 über die Erstsynthese einer Polystickstoffwasserstoffverbindung der Zusammensetzung HN<sub>3</sub>, der Stickstoffwasserstoffsäure.<sup>4</sup> Durch diese Entdeckung war der Weg zur Synthese einer Vielzahl ionischer und kovalenter Azidverbindungen RN<sub>3</sub> freigegeben. Durch einfache Umsetzung von Alkalisalzen des N<sub>3</sub><sup>-</sup>-Ions (z. B. LiN<sub>3</sub>, NaN<sub>3</sub>) mit XHal (X = Element, Hal = Cl, Br, I) sind Elementazide in großer Zahl zugänglich.<sup>5,6</sup> Kovalente Azide sind, besonders in reiner Form und mit zunehmendem Stickstoffgehalt meist mehr oder weniger explosiv, und erfordern daher beim präparativen Arbeiten stets Sicherheitsvorkehrungen wie das Tragen von Gesichtsschildern, Lederschutzkleidung, Handschuhen sowie Gehörschutz. Man arbeitet zudem mit kleinen Ansatzgrößen um die Gefährdung noch weiter zu verringern, nicht zuletzt auch wegen der Toxizität der Stickstoffwasserstoffsäure und

<sup>\*</sup>Der Name des Elementes stammt von Martin H. KLAPROTH, der Müllers Entdeckung vor dem Vergessen bewahrte.

#### 1. Historischer Überblick



#### Abbildung 1.1.: Briefmarke der Republik Österreich zum 250. Geburtstag von Franz Joseph Müller von Reichenstein, dem Entdecker des Tellurs ("metallum problematicum") in transsylvanischen Erzen (Ausgabe: 27. März 1992, Nennwert 5 ATS).

vieler ihrer Derivate, wie z.B.  $CH_3N_3$  oder  $Me_3SiN_3$ , die eine mit Blausäure vergleichbare Giftigkeit aufweisen und bekanntermaßen zu starkem Kopfschmerz reizen.

Seit längerem beschäftigt sich unsere Arbeitsgruppe mit der Chemie der kovalenten Hauptgruppenelementazide. Dabei handelt es sich oft um kleine hochenergetische Stoffe, die mit Hilfe moderner spektroskopischer Methoden und quantenmechanischen Berechnungen charakterisiert werden. Als Beispiel seien hier Strukturbestimmungen der Halogenazide BrN<sub>3</sub> und IN<sub>3</sub>, die Synthese von N<sub>4</sub>O sowie die Isolierung von Polyazidometallaten wie dem [As(N<sub>3</sub>)<sub>6</sub>]<sup>-</sup> zu nennen.<sup>7,8</sup>



Abbildung 1.2.: THEODOR CURTIUS, Begründer der Azidchemie.

Vergleichsweise wenig war aber zu Beginn dieser Arbeit über kovalente Chalkogenazide bekannt. Die Schwefelazide sind von allen Chalkogenaziden am besten untersucht. So kennt man etwa C<sub>6</sub>H<sub>5</sub>SO<sub>2</sub>N<sub>3</sub>,<sup>9</sup> CF<sub>3</sub>SN<sub>3</sub>,<sup>10</sup> ClSO<sub>2</sub>N<sub>3</sub> und H<sub>2</sub>NSO<sub>2</sub>N<sub>3</sub>,<sup>11</sup> das Diazid SO<sub>2</sub>(N<sub>3</sub>)<sub>2</sub><sup>12</sup> sowie das Azidosulfit-Anion,<sup>13,14</sup> jedoch bislang keine binäre Verbindung. Im Gegensatz dazu waren kovalente Selenazide vollkommen unbekannt, bis KRUMM im Jahre 2003 die erste Isolierung einer intramolekular durch Donor-Koordination stabilisierten Spezies 2-Me2N-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>SeN<sub>3</sub> gelang.<sup>15</sup> Auch mit sperrigen Resten lassen sich die Verbindungen RSeN3 NMR-spektroskopisch nachweisen, ihre Isolierung gelingt iedoch aufgrund des raschen Zerfalls in die Diselane nicht. Die berichtete Isolierung von 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>SeN<sub>3</sub>, hat sich im Nachhinein als nicht reproduzierbar erwiesen, und wurde auch von BACK et al. im selben Jahr zurückgezogen.<sup>16,17</sup> Ionische Selenoniumazide  $[R_3Se]N_3$  (R = Me, Ph) sind vom Autor dargestellt und vollständig charakterisiert worden.<sup>18,19</sup> Die ersten Vertreter der kovalenten Tellurazide, TeCl<sub>3</sub>N<sub>3</sub> und TeCl<sub>2</sub>(N<sub>3</sub>)<sub>2</sub>, hat N. WIBERG darstellen können,<sup>20</sup> fertigte jedoch wegen der hohen Gefährlichkeit lediglich Schwingungsspektren an. Neben ionischen Telluroniumaziden  $[R_3Te]N_3$  (R = Me, Ph)<sup>18,21,22</sup> existierten bis vor kurzem relativ wenige Tellurazide. So hat PASSMORE beim Versuch der Synthese von [Te2N]<sup>+</sup> unerwartet aus [Te4][SbF6] das Triazidotelluronium-Kation [Te(N<sub>3</sub>)<sub>3</sub>]<sup>+</sup> erhalten.<sup>23</sup> Als überzeugendem Beweis der kinetischen Stabilisierung von sperrigen Organotellurenyl-Verbindungen konnte SLADKY kurze Zeit später das Organotellurenylazid (Me<sub>3</sub>Si)<sub>3</sub>CTeN<sub>3</sub> isolieren. Neben [Te(N<sub>3</sub>)<sub>3</sub>][SbF<sub>6</sub>] liegt auch für [(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>TeN<sub>3</sub>]<sub>2</sub>O eine Röntgenstrukturanalyse vor.<sup>24</sup> Im Rahmen der Untersuchungen in unserer Arbeitsgruppe betreffend die Tellurazide konnte Ruscitti aus den entsprechenden Fluoriden die Organotellur(IV)di- und -triazide R2Te(N3)2 bzw. RTe(N3)3 gewinnen und vollständig charakterisieren.<sup>25,26</sup> Abschließend sei noch darauf hingewiesen, dass ein Sauerstoffdiazid, für das mit verschiedenen ab initio-Methoden intrinsische Stabilität gefunden wird, obwohl als kurzlebiges Intermediat wahrscheinlich, präparativ nicht fassbar zu sein scheint.<sup>27</sup>

### 1. Historischer Überblick

#### 2. Aufgabenstellung

Nachdem bereits die Organotellur(IV)azide näher untersucht worden waren, sollte abschließend jeweils ein Vertreter mit einem Perfluoralkyl-Substituenten untersucht und besonders die Chemie der kovalenten Azide des Tellurs auf binäre Spezies ausgeweitet werden. Zudem galt es der Frage nachzugehen, inwiefern sich Tellurazide in den andere gängigen Oxidationsstufen II und vI darstellen und bezüglich Struktur und Stabilität klassifizieren lassen. Während von den Tellurenylaziden zumindest zwei Vertreter beschrieben waren, davon das erwähnte (Me<sub>3</sub>Si)<sub>3</sub>CTeN<sub>3</sub> spektroskopisch – wenn auch nicht strukturell – gut charakterisiert, lagen über die Isolierung von Tellur(vI)-Pseudohalogeniden keine Erkenntnisse vor. Mit dem weiteren Studium der Tellurazide sollte auch zur Fortentwicklung des Forschungsgebietes der Tellur–Stickstoff-Chemie allgemein beigetragen werden, welches besonders in jüngster Zeit beachtliche Fortschritte erlebt hat.<sup>28–37</sup>

Die Chemie der Cyanide des Tellurs ist, obwohl es sich auch hier um Pseudohalogenid-Derivate handelt, nicht nur anders entwickelt, sondern auch anders geartet. Ebenso wie bei den Telluraziden, war keine binäre Spezies hinreichend charakterisiert. Zwar kennt man schon seit beinahe hundert Jahren das Dicvanotellan Te(CN)<sub>2</sub>,<sup>38–40</sup> das nach dem Pseudohalogenkonzept<sup>41,42</sup> als gemischtes Pseudohalogen (formales Produkt der Reduktion aus den Cyanidund Tellurocyanat-Anionen) gelten kann, dieses war jedoch modernen analytischen Methoden nicht unterzogen worden und ist zudem sehr empfindlich. Eine eingehende Untersuchung des Te(CN)<sub>2</sub>, zusammen mit der strukturellen Charakterisierung der verglichen mit den analogen Aziden weniger stabilen Organotellur(IV)dicyaniden schien erstrebenswert. Röntgenstrukturanalysen an Einkristallen ausgewählter Vertreter typischer Verbindungen, sowie die Kombination mit quantenchemischen Methoden sollen Einblicke in die Struktur und Bindungsverhältnisse dieser Moleküle liefern und vollständige Charakterisierung mittels Schwingungs- und Multikern-NMR-Spektroskopie für möglichst alle neuen Verbindungen erbringen.

## 2. Aufgabenstellung

II.

Gang der Untersuchungen

### 3. Binäre Tellur-Stickstoff-Verbindungen

Bon zehn Versuchen zur Darstellung dieses Präparates (Tellurnitrid) endeten nur zwei nicht durch Explosion und lieferten eine schön citronengelbe Substanz (Strecker 1925). Die zitronengelbe, zerreibliche Masse explodiert durch Stoß oder beim Erbigen auf 200 Grad Celsius mit äußerster Heftigseit unter Vildung eines außergewöhnlich seinen, schwarzen Staubes von Tellur (Megner 1898). Explodiert, wenn dem Präparat kein Ammonial mehr anhasstet, sehr bestig bei Bewegung des Glases (Damiens 1923).

#### 3.1. Frühere Untersuchungen

Vorsuche bis etwa 1935 findet sich in Lit. <sup>47</sup> So führt die Ammonolyse von TeBr<sub>4</sub> laut STRECKER <sup>45</sup> zum Te<sub>3</sub>N<sub>4</sub> (Gl. 3.1).

$$3 \operatorname{TeBr}_4 + 16 \operatorname{NH}_3 \xrightarrow[-70°C]{} \operatorname{Te}_3 \operatorname{N}_4 + 12 \operatorname{NH}_4 \operatorname{Br}$$
(3.1)

Aus neueren Untersuchungen mit gleichen Edukten schloss GARCIA-FERNANDEZ<sup>48</sup> auf die Formulierung Te<sub>4</sub>N<sub>4</sub>, während SCHMITZ-DUMONT<sup>49</sup> anders vorging. Er will das Nitrid durch eine Umsetzung nach Gl. 3.2 in flüssigem Ammoniak als einziger rein erhalten haben. Damit bleiben die Befunde über die Zusammensetzung dieser binären Tellur–Stickstoff-Verbindungen widersprüchlich.

$$K_2 Te(NH)_3 + NH_4 NO_3 \xrightarrow{\text{fl. NH}_3} Te_3 N_4$$
 (3.2)

#### 3.2. Das Tellurtetraazid Te $(N_3)_4$ (1)

Die Chemie der Tellurazide wurde von N. WIBERG in den 70er Jahren begründet.<sup>20</sup> Verschiedenartige Beispiele von homoleptischen Azidometallaten der Übergangsmetalle und Hauptgruppenpolyaziden sind beschrieben, <sup>50–56</sup> darunter aber keines aus der Gruppe der Chalkogene. WIBERG und PASSMO-RE jedoch wiesen in ihren Berichten bereits warnend auf die mögliche Existenz eines hochexplosiven Te(N<sub>3</sub>)<sub>4</sub> hin. Wie aus der Synthese von TeCl<sub>3</sub>(N<sub>3</sub>) und TeCl<sub>2</sub>(N<sub>3</sub>)<sub>2</sub> bekannt,<sup>57</sup> und durch eigene Untersuchungen bestätigt ist, führt die Umsetzung von TeCl<sub>4</sub> mit überschüssigem Me<sub>3</sub>SiN<sub>3</sub> nicht zu einer weiteren Substitution der Chloratome. Alle erfolgreichen Darstellungsweisen für R<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> und RTe(N<sub>3</sub>)<sub>3</sub> (R = Alkyl, Aryl, Trifluormethyl und Perfluoraryl) verlaufen über die entsprechenden Tellurdi- und trifluoride R<sub>2</sub>TeF<sub>2</sub> and RTeF<sub>3</sub>.<sup>25,26,58</sup> Daher wurden zur Synthese von Te(N<sub>3</sub>)<sub>4</sub> (1) und [Te(N<sub>3</sub>)<sub>5</sub>]<sup>-</sup> (2) die fluorierten Spezies TeF<sub>4</sub> und [Me<sub>4</sub>N][TeF<sub>5</sub>] als Ausgangsmaterialien herangezogen. Tellurtetrafluorid reagiert in CFCl<sub>3</sub>-Suspension bei o °C rasch zu einem gelblichen Niederschlag (Gl. 3.3), 1, der in DMSO löslich ist.\*

$$\operatorname{TeF}_{4} + 4\operatorname{Me}_{3}\operatorname{SiN}_{3} \xrightarrow{\operatorname{CFCl}_{3}/0^{\circ}C} \operatorname{Te}(N_{3})_{4} (1)$$

$$(3.3)$$

Bei einem Versuch, diesen Feststoff aus einer Lösung in CH<sub>2</sub>Cl<sub>2</sub> zu erhalten, kam es beim Eindampfen in einem Falle zu einer heftigen Explosion ohne ersichtlichen Grund. Lösungen von 1 in DMSO-D<sub>6</sub> weisen eine sehr breite <sup>125</sup>Te NMR-Resonanz bei  $\delta$  1380 ppm auf, entschirmt im Vergleich zu derjenigen von TeF<sub>4</sub> ( $\delta$  1195 ppm). Die Resonanz von 1 ist mit jener identisch, die man bei einer Mischung der Dismutationsprodukte von C<sub>6</sub>F<sub>5</sub>Te(N<sub>3</sub>)<sub>3</sub> (**28**) beobachtet (neben 1 entsteht (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub>, siehe dazu Kapitel 7 auf Seite 61).<sup>58</sup> Aufgrund der Erfahrungen mit der unberechenbaren Explosivität von trockenem 1 wurde auf Schwingungsspektren, Massenspektren und Elementaranalyse verzichtet, da in zwei unabhängigen Fällen mit kleinen Mengen des reinen, amorphen 1 dieses im Glasgefäß noch vor einer beabsichtigten Messung seines Ra-

 $<sup>^{*}</sup>$ Unabhängig hiervon haben Christe und Mitarbeiter 1 dargestellt, sowie die Struktur des  $[{\rm Te}(N_3)_6]^{2-}$ - Ions bestimmt.  $^{59}$ 

man-Spektrums explodierte und dabei beachtliche Schäden verursachte. Eine eingehende Darstellung der Schwingungsdaten von 1 findet sich in Lit.<sup>59</sup>

An dieser Stelle soll die berechnete Struktur des 1 eine kurze Erwähnung finden, da sie auch für die theoretische Beurteilung der möglichen Existenz des Te(N<sub>3</sub>)<sub>6</sub> von Belang ist. Wie erwartet, weist die berechnete Struktur des Hexaazids  $\mathscr{S}_6$  Symmetrie auf, und sein experimentell beobachteter, reduktiver Zerfall in 1 und drei Moleküle Distickstoff ist hochgradig exotherm. Auf dem MP2(FC)/cc-pVDZ-Niveau berechnet sich dafür eine Energiedifferenz  $\Delta E$  von -686.43 kJ mol<sup>-1</sup> (B3LYP/cc-pVTZ: -679.50 kJ mol<sup>-1</sup>). Im Gegensatz zu der in Lit.<sup>59</sup> berichteten Struktur findet man jedoch eine andere Konformation, bei der die axialen Azidgruppen vom freien Elektronenpaar am Tellur weggedreht sind. Dazu muss gesagt werden, dass die Potentialhyperflächen bezüglich Drehung der Azidgruppen eines solchen Moleküls für gewöhnlich sehr "flach" sind. Die gefundene Konformation kann daher relativ stark von Basissatz und/oder Methode abhängen.

#### **3.3.** Das Pentaazidotellurat $[Te(N_3)_5]^-$ (2)

Auf ähnliche Weise reagiert  $[Me_4N]$ [TeF<sub>5</sub>] mit Me<sub>3</sub>SiN<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> zu einer gelben Lösung von  $[Me_4N]$ [Te(N<sub>3</sub>)<sub>5</sub>] (**2a**) (Gl. 3.4), aus der durch Kühlen auf -20 °C gelbe Kristalle gezüchtet werden können.

$$[Me_4N][TeF_5] + 5Me_3SiN_3 \xrightarrow{CH_2Cl_2/0^{\circ}C} [Me_4N][Te(N_3)_5] (2a)$$
(3.4)

In einigen Fällen scheidet sich ein extrem empfindliches gelbes Öl ab, das bereits beim Rühren der kalten Mischung explodieren kann. Für **2a** findet man



**Abbildung 3.1.:** Berechnete Strukturen der neutralen Tellurazide  $Te(N_3)_6$  (links) und  $Te(N_3)_4$  (rechts) auf MP2(FC)/cc-pVDZ-Niveau.

eine scharfe <sup>125</sup>Te NMR-Resonanz bei  $\delta$  1258 ppm (CD<sub>2</sub>Cl<sub>2</sub>), ebenfalls bei tieferem Feld als für [TeF<sub>5</sub>]<sup>-</sup>.<sup>†</sup> Das Ramanspektrum von **2a** zeigt Banden bei 2105/2055 ( $\nu_{as}N_3$ ) und 409/347 ( $\nu$ TeN) cm<sup>-1</sup>, im typischen Bereich für Tellurazide. <sup>25,26,58</sup> Eine Reaktion zwischen [Me<sub>4</sub>N]<sub>2</sub>[TeCl<sub>6</sub>] und Me<sub>3</sub>SiN<sub>3</sub> hingegen findet nicht statt, auch auf die Existenz des Anions [TeF<sub>6</sub>]<sup>2-</sup> gibt es nach wie vor keinen Hinweis. <sup>60</sup> In einem Versuch, das Tetraazid **1** zu stabilisieren, wurde ein Pyridin·TeF<sub>4</sub> Addukt eingesetzt, in der Hoffnung bezüglich der Charakterisierung zu einem beständigeren Produkt zu gelangen.

Solcherlei Addukte von TeF<sub>4</sub> sind beschrieben, außer Elementaranalysen jedoch keine analytischen Daten auffindbar.<sup>61</sup> Um deren postulierte Zusammensetzung [L·TeF<sub>3</sub>][TeF<sub>5</sub>] (L = Me<sub>3</sub>N, Pyridin etc.) zu bestätigen,  $^{62}$  war eine weitergehende Untersuchung erstrebenswert. Im Zuge der Darstellung eines solchen Pyridin·TeF<sub>4</sub> Adduktes haben die Ergebnisse einer Strukturaufklärung an Einkristallen zunächst überraschenderweise offenbart, dass hier eine komplexe Anordnung von Pyridiniumpentafluorotellurat(IV), dimeren TeF<sub>4</sub>-Einheiten und Pyridin als Solvat vorliegt. Die Besonderheit der Struktur dieses Dimeren läge darin begründet, dass es sich hierbei nicht um einen Teil aus der polymeren Struktur des kristallinen TeF<sub>4</sub> handelt, <sup>63,64</sup> sondern um ein anderes Verknüpfungsmuster: Während im TeF4 über je zwei apikale Fluoratome verbundene Polymerketten (F-TeF<sub>3</sub>-F-TeF<sub>3</sub>-) vorliegen, wären hierbei zwei TeF<sub>4</sub>-Einheiten über je ein apikales und das basale Fluoratom verknüpft. Diese Anordnung resultiert wohl aus der Minimierung der Elektronenpaarabstoßung. Es findet in der Literatur bisher lediglich einmal ein diskretes TeF<sub>4</sub>-Dimer Erwähnung, nämlich bei der theoretischen Behandlung von  $EF_4$ -Assoziaten (E = S, Se, Te) auf semiempirischem Niveau.<sup>65</sup> Angesichts dessen, dass semiempirische Methoden für 10-atomige Moleküle nicht mehr Stand der Technik sind, wurden quantenchemische Untersuchungen mit DFT- und MP2-Methoden durchgeführt. Diese stützen die experimentellen Werte aus der Kristallstruktur nur schlecht. So wird durch analytische Frequenzrechnung auf B3LYP/TZVP-Niveau zwar die Existenz eines Minimums mit Ci-Symmetrie gefunden (Tei-F1/2 1.946Å, Te1-F3 1.882Å, Te-F4 1.927Å), der Abstand Te1-F4(*i*) ist bei allen berechneten Strukturen jedoch sehr viel höher als im Kristall.

Bei näherer Betrachtung fällt auf, dass an allen Pyridinmolekülen N–H Wasserstoffatome gefunden werden, und das so entstehende Ladungsproblem mittels Ersatz der verbrückenden Fluoratome (F4) durch Sauerstoffatome gelöst werden kann. Sowohl Temperaturfaktoren als auch R-Werte reagieren positiv, es handelt sich bei dem "dimeren" TeF<sub>4</sub> daher in Wahr-

<sup>&</sup>lt;sup>†</sup>Das <sup>125</sup>Te NMR-Signal von [TeF<sub>5</sub>]<sup>–</sup> beobachtet man bei 25°C in CH<sub>2</sub>Cl<sub>2</sub> und der Gegenwart von [Ph<sub>4</sub>P]<sup>+</sup> als ein Dublett von Quintetts bei  $\delta$  1161 ppm (<sup>1</sup>J<sub>125Te-F(apical)</sub> = 2918 Hz, <sup>1</sup>J<sub>125Te-F(basal)</sub> = 1386 Hz)



 Abbildung 3.2.: Molekulare Struktur von [TeO<sub>2</sub>F<sub>6</sub>]<sup>2−</sup> im Kristall [pyrH]<sub>4</sub>[TeF<sub>5</sub>]<sub>2</sub>

 [Te<sub>2</sub>O<sub>2</sub>F<sub>6</sub>], thermische Schwingungsellipsoide entsprechen 40% Wahrscheinlichkeit. Ausgewählte Bindungslängen [Å] und Winkel [°]: Te1–O

 1.899(2), Te1–F1 2.007(2), Te1–F2 1.998(2), Te1–F3 1.964(2), Te1–O(i)

 2.119(2); O–Te1–F1 84.17(9), O–Te1–F2 85.08(9), O–Te1–F3 83.22(9),

 F1–Te1–F2 168.16(8), F1–Te1–F3 87.64(9), F2–Te1–F3 86.18(8).



Abbildung 3.3.: Elementarzelle von [pyrH]<sub>4</sub>[TeF<sub>5</sub>]<sub>2</sub>[Te<sub>2</sub>O<sub>2</sub>F<sub>6</sub>] mit vollständigen Molekülen und Blick entlang der c-Achse (001). Thermische Schwingungsellipsoide entsprechen 40 % Wahrscheinlichkeit, Wasserstoffatome nicht abgebildet.

#### 3. Binäre Tellur-Stickstoff-Verbindungen

heit um  $[Te_2O_2F_6]^{2-}$  (siehe Abbildung 3.2); bei dem Kristallindividuum also um  $[pyrH]_4[TeF_5]_2[Te_2O_2F_6]$  (siehe Abbildung 3.3). Das  $[Te_2O_2F_6]^{2-}$  Anion ist kürzlich als Kaliumsalz KTeOF<sub>3</sub> charakterisiert worden. <sup>66</sup> Eine für das  $[TeO_2F_6]^{2-}$ -Ion auf B<sub>3</sub>LYP/TZVP-Niveau durchgeführte Rechnung ergibt wesentlich bessere Übereinstimmung mit den im Kristall gefundenen Werten (Te–F1 2.070 Å, Te–F2 2.070 Å, Te–F3 2.028 Å, Te–O 1.891 Å,Te–O 2.246 Å).

Da Kristalle von **2a** aus der Reaktionslösung zum raschen Zerfließen neigen, wurde versucht aus einer gemischten Lösung von Pyridin und TeF<sub>4</sub> mit Me<sub>3</sub>SiN<sub>3</sub> zu kristallisieren. Obwohl die so nach mehreren Wochen erhaltenen Kristalle als das Pyridiniumsalz [pyH][Te(N<sub>3</sub>)<sub>5</sub>] (**2b**) identifiziert werden konnten, das sich wahrscheinlich durch die Reaktion von TeF<sub>4</sub> mit Fluoridionen zu [TeF<sub>5</sub>]<sup>-</sup> im verwendeten Glasgefäß bildet, bleibt das entstandene Pentaazidotellurat(rv)-Anion davon unberührt. Das Pyridiniumsalz **2b** kristallisiert in der triklinen Raumgruppe  $P\bar{1}$  mit verzerrter  $\Psi$ -oktaedrischer TeEN<sub>5</sub>-Koordination (Abbildung 3.4), und ist damit das einzige fünffach koordinierte Polyazidion außer [Fe(N<sub>3</sub>)<sub>5</sub>]<sup>2-</sup>.<sup>67,68</sup>

Das Ion  $[Te(N_3)_5]^-$  stellt das erste strukturell charakterisierte anionische Tellurazid dar. Ähnlich wie bei neutralen Organotellur(IV)aziden, <sup>22,25,26</sup> so bilden auch hier lange Te···N-Sekundärbindungen unterhalb des VAN-DER-WAALS-



Abbildung 3.4.: Molekulare Struktur des Anions in [pyH][Te(N<sub>3</sub>)<sub>3</sub>] (2b), thermische Schwingungsellipsoide entsprechen 50% Wahrscheinlichkeit. Ausgewählte Bindungslängen [Å] und -winkel [°]: Te–N1 2.185(2), Te–N4 2.256(2), Te–N7 2.075(2), Te–N10 2.175(2), Te–N13 2.242(2); N1–N2–N3 176.9(2), N7–N8–N9 175.8(2), N1–Te–N7 85.34(8), N7–Te–N13 74.53(7).



Abbildung 3.5.: Sekundäre Te···N-Wechselwirkungen zwischen [Te(N<sub>3</sub>)<sub>5</sub>]<sup>−</sup> -Anionen in 2b. Ausgewählte Bindungslängen [Å]: Te···N3(i) 3.324(2), Te···N4(i) 3.227(2), Te(ii)···N10 3.127(2) Å, wobei i = 1−x, 1−y, −z; ii = −x, 1−y, −z.

 Tabelle 3.1.: Experimentelle und berechnete Parameter von  $[Te(N_3)_5]^-$ , E [Hartree], ZPE  $[kJ mol^{-1}]$ . Schwingungsfrequenzen unskaliert  $[cm^{-1}]$ .

| Methode                         | Е        | ZPE   | d Te-N <sub>ap</sub> | d Te–N <sub>bas</sub> [Å] | $v_{as}N_3$ |
|---------------------------------|----------|-------|----------------------|---------------------------|-------------|
| Experiment                      | -        | -     | 2.075                | 2.175-2.256               | 2112–2037   |
| RHF/SDD                         | -823.791 | 9.79  | 2.058                | 2.108-2.218               | 2311–2203   |
| MPW1PW91/SDD                    | -828.642 | 9.05  | 2.124                | 2.159-2.218               | 2133–2097   |
| B3LYP/SDD                       | -828.877 | 8.77  | 2.140                | 2.179-2.245               | 2067–2030   |
| MP2(FC)/SDD                     | -825.815 | 8.72  | 2.113                | 2.156-2.238               | 2275–2144   |
| B3LYP/SDB-cc-pVTZ <sup>69</sup> | -824.538 | 10.67 | 2.020                | 2.098 - 2.209             | 2488–2369   |
|                                 | -829.440 | 9.53  | 2.077                | 2.159 - 2.229             | 2226–2171   |

Radius' (3.61 Å) <sup>70</sup> netzwerkartige Strukturen aus, die zu einer achtfachen Koordination der Telluratome in **2b** führen (Abbildung 3.5). Die Te–N Bindungslängen liegen zwischen 2.075(2) Å (Te–N7) für die apicale Azidgruppe und etwas verlängerten 2.175(2)–2.256(2) Å für die basalen Azidgruppen. Das apicale Azid weist die kürzesten N $\alpha$ –N $\beta$ /N $\beta$ –N $\gamma$  Abstände und den geringsten N–N–N Winkel auf. Die N–Te–N Winkel reichen von 74.53(7)–165.99(8) °, die N–N–N Winkel erstrecken sich über 175.8(2)–177.9(3) °. Die ziemlich irreguläre quadratischpyramidale Struktur resultiert vermutlich aus elektrostatischen Abstoßungskräften zwischen den unterschiedlich polarisierten N $\alpha$  und N $_{\beta}$  Atomen der Azidgruppen untereinander, sowie dem freien Elektronenpaar des Te(IV). Es existieren zwei Sätze beinahe identischer Te–N Abstände jeweils zweier geminaler Azidgruppen mit vier verschiedenen Orientierungen bezüglich der apicalen Position (siehe Abbildung 3.4 auf Seite 16).

Die elektronische Struktur des  $[\text{Te}(N_3)_5]^-$  Ions wurde mittels *ab initio*- sowie Dichtefunktional-Methoden und zwei verschiedenen Basissätzen berechnet (siehe Tabelle 3.1 auf der vorherigen Seite). Alle Strukturen wurden im Rahmen der gewählten Methode voll optimiert und stellen Minima mit  $\mathscr{C}_1$ -Symmetrie in guter Übereinstimmung mit der experimentell bestimmten Kristallstruktur dar. Die besten Ergebnisse bezüglich Bindungslängen und Schwingungsfrequenzen erhält man mit der Kombination B3LYP/SDD. Dies jedoch ist möglicherweise auf eine zufällige Kompensation der Pseudopotential- bzw. Basissatzfehler zurückzuführen, was eine höhere Genauigkeit dieser weniger aufwendigen Methode suggeriert.<sup>71</sup>
# 4. Tellurcyanide

# 4.1. Das Tellurdicyanid Te(CN)<sub>2</sub> (3)

Auf der Suche nach niedervalenten Tellur-Pseudohalogeniden stößt man auf vereinzelte Berichte über das Dicyanotellan Te(CN)<sub>2</sub> (3). Dieses beinahe "vergessene Molekül" wurde zuerst von Cocksedge im Jahre 1908 durch Reaktion von TeBr<sub>4</sub> mit AgCN im Überschuß dargestellt, 38 und weist eine recht spärliche Publikationsgeschichte auf.<sup>39,40,72–76</sup> Zudem überrascht, dass **3** nur jeweils einmal IR-spektroskopisch untersucht<sup>75</sup> und erfolglos als Edukt eingesetzt wurde.<sup>76</sup> Die stabilen Dicyanide der leichteren Homologen des Tellurs, S(CN)<sub>2</sub> und Se(CN)<sub>2</sub>, sind demgegenüber eingehender untersucht worden, 77,78 während O(CN)2 allem Anschein nach nur als Intermediat existiert und theoretisch bearbeitet worden ist.<sup>79-81</sup> Die Tellur(II)dihalogenide TeHal<sup>2</sup> (Hal = Cl, Br, I) sind in kondensierter Phase gegenüber Disproportionierung nicht stabil, <sup>47,82,83</sup> wurden jedoch in der Gasphase untersucht; <sup>84,85</sup> auf die Existenz eines TeF<sub>2</sub> gibt es keine Hinweise. Die strukturelle Charakterisierung von binären Hauptgruppencyaniden beschränkte sich bislang - von HCN, (CN)2 und den Halogencyanen HalCN abgesehen - auf jene von P(CN)<sub>3</sub>, As(CN)<sub>3</sub>, S(CN)<sub>2</sub>, und Se(CN)<sub>2</sub>, die allesamt aus den 1960er Jahren stammen.<sup>86–92</sup> Daher erschien die Aufklärung der strukturellen und spektroskopischen Eigenschaften von 3 lohnenswert.

Ähnlich der von Cocksedge angegebenen Originalvorschrift<sup>38</sup> lässt sich Te(CN)<sub>2</sub> (**3**) in analytisch reiner Form durch Reaktion von TeBr<sub>4</sub> oder TeI<sub>4</sub> mit AgCN durch Auswaschen mit Et<sub>2</sub>O unter striktem Feuchtigkeitsausschluss darstellen (Gl. 4.1).

TeHal<sub>4</sub> + 3AgCN 
$$\xrightarrow{\text{Benzol, 60 °C}}$$
 Te(CN)<sub>2</sub> (**3**) + HalCN; Hal = Br, I (4.1)

Nach dem Eindampfen dieser etherischen Lösung verbleibt ein leicht bräunlich gefärbter Rückstand, aus dem durch langsames Sublimieren bei unter  $80 \,^{\circ}$ C und unter  $10^{-4}$  mbar (Vollglasverbindung, zugeschaltete Diffusionspumpe) ein beinahe farbloses Produkt erhalten wird, das sehr feuchtigkeitsempfindlich ist und sich oberhalb 100  $^{\circ}$ C langsam in elementares Tellur und Dicyan zersetzt.

## 4. Tellurcyanide

Die Schwingungsspektren von festem **3** (IR und Raman) zeigen symmetrische und antisymmetrische C=N-Streckschwingungen bei 2176/2177 ( $\mathscr{A}_1$ ) und 2168/2170 ( $\mathscr{B}_1$ ), sowie Banden bei 410/409 ( $\mathscr{A}_1$  Te-C Str.), 398/395 ( $\mathscr{B}_2$  Te-C Str.), 296/- ( $\mathscr{B}_1$  TeCN Deformationsschwingung), 277/279 ( $\mathscr{A}_2$  TeCN Def.), und 147/136 cm<sup>-1</sup>( $\mathscr{A}_1$  CTeC Def.) (siehe Abbildung 4.1). Die deutlichen Unterschiede zwischen den berechneten und gefundenen Frequenzen und Intensitäten resultieren wohl zum einen aus dem prinzipiellen Unterschied zwischen Gasphase und festem Zustand, in dem intermolekulare Wechselwirkungen vorliegen (*vide infra*), sowie der Tatsache, dass die unskalierten berechneten Schwingungsfrequenzen eine nichtlineare, systematische Abweichung bezüglich der Unterschiede jeweils der Te-C und C=N Streckschwingungen aufweisen.

Im EI-Massenspektrum wird bei m/z 182 das Molekülion gefunden, zusammen mit den Fragmenten [TeCN]<sup>+</sup> bei m/z 156 und Te<sub>2</sub><sup>+</sup> bei m/z 256. Im <sup>125</sup>Te NMR-Spektrum misst man eine einzelne Resonanz bei  $\delta$  567 ppm in THF-D<sub>8</sub> ( $\delta$  585 ppm in Et<sub>2</sub>O). Im <sup>13</sup>C NMR-Spektrum wird ein Signal bei  $\delta$  86.2 ppm mit einer <sup>1</sup>J<sub>C-Te</sub> von 330.2 Hz, im <sup>14</sup>N NMR-Spektrum eine breite Resonanz bei  $\delta$  –70 ppm ( $\Delta v_{1/2}$ = 1300 Hz) gefunden. Spuren von Dicyan aus thermischem Zerfall werden bei  $\delta$  –123 ppm ( $\Delta v_{1/2}$ = 170 Hz) beobachtet.

Aus gesättigten Lösungen von **3** in frisch ketyliertem Et<sub>2</sub>O, die mit *n*-Heptan überschichtet wurden, konnten nach ca. 18 Monaten unter peinlichstem Feuchtigkeitsausschluss bei -25 °C ganz leicht bräunlich durchscheinende Nadeln von **3** erhalten werden. Der Temperatur- bzw. Konzentrationsbereich



Abbildung 4.1.: Experimentelle und berechnete Schwingungsspektren für Te(CN)<sub>2</sub> (3), unskalierte Frequenzen auf dem MP2(FC)/MDF28-cc-pVQZ Niveau.

in dem geeignete Einkristalle für die Röntgenstrukturanalyse gezüchtet werden können, erwies sich als sehr klein, durch Sublimation lassen sich zudem nur amorphe Pulver gewinnen. Darüberhinaus neigt **3** über so lange Zeiträume selbst bei diesen Temperaturen auch zum Zerfall, der dann mit der langsamen Kristallisation in Konkurrenz tritt; **3** kristallisiert im hexagonalen System, Raumgruppe  $R\bar{3}c$  mit Z = 36.

Während die berechneten Molekülstrukturen mit allen Methoden (siehe Tabelle 4.1 auf Seite 26) für die Gasphase die erwartete  $C_{2v}$ -Symmetrie mit einem C–Te–C Winkel um die 95° vorhersagen – ganz ähnlich dem TeCl<sub>2</sub>-Molekül in der Gasphase mit 97.0(6)°,<sup>85</sup> weist **3** im festen Zustand gemäß der Röntgenstrukturanalyse zwar zwei beinahe identisch lange Te–C Bindungslängen auf (2.090(5) und 2.091(6)Å), jedoch sind die beiden C≡N Abstände deutlich verschieden (1.131(7) und 1.149(7)Å) und der C–Te–C hier mit 85.4(2)° kleiner als 90° (siehe Abbildung 4.2 auf der nächsten Seite).

Die Te-C Bindungslängen in 3 liegen im Bereich derjenigen für Diaryltellane Ar<sub>2</sub>Te, <sup>93</sup> jedoch mit einem kleineren C-Te-C Winkel. Die verfügbaren strukturellen Daten für S(CN)2 und Se(CN)2, sofern ihre relativ schlechte Qualität eine Diskussion zulässt, weisen im Gegensatz zu 3 auf C-S/Se-C Valenzwinkel von 96 bzw. 99° hin.77,90-92 Die ungewöhnlich kleinen C-Te-C Winkel in festem 3 sind wahrscheinlich bedingt durch die quadratisch-planare Koordination um das Telluratom, zu den beiden kovalent gebundenen Cyanogruppen kommen noch jeweils zwei kurze Te···N-Kontakte (2.745(5) und 2.758(5) Å) mit zwei Cyanogruppen benachbarter Te(CN)<sub>2</sub> Moleküle (siehe Abbildung 4.2 auf der nächsten Seite), die von den beiden einsamen Elektronenpaaren des Te(11) zur Seite gedrängt werden, was anhand einer ELF-Analyse für denselben Ausschnitt aus der Kristallstruktur wie in Abbildung 4.2 verdeutlicht werden kann (siehe Abbildung 4.3 auf Seite 23). Diese Koordination spannt ein dreidimensionales Netzwerk auf, das alle Moleküle in kristallinem 3 verbindet. Bei Betrachtung entlang der c-Achse fallen kleine, röhrenförmige Hohlräume mit etwa 8Å Durchmesser auf, in denen schwache Restelektronendichten gefunden werden. Diese wurden bei der Verfeinerung als Kohlenstoffatome von fehlgeordneten und unterbesetzten Solvatmolekülen (Et<sub>2</sub>O oder *n*-Heptan) mit gleichem SOF (site occupation factor) angenommen (siehe Abbildung 4.4 auf Seite 23).

Der einzige Bericht über die Reaktivität von **3** ist derjenige über die versuchte Umsetzung mit CN<sup>-</sup> in MeCN, bei der das erhoffte Tricyanotellurat(II) Anion, [Te(CN)<sub>3</sub>]<sup>-</sup>, jedoch sofort wieder zerfällt.<sup>76</sup> Eigene Versuche zur Fluorierung von **3** mit XeF<sub>2</sub> in MeCN oder EtCN führen zu bei –20 °C für einige Stunden stabilen, farblosen Lösungen. Bei höheren Temperaturen treten Dismutations- und Zerfallsreaktionen ein; aus den Rückständen gewinnt man durch Sublimation wieder **3** zurück.

#### 4. Tellurcyanide



Abbildung 4.2.: ORTEP der Molekülstruktur von Te(CN)2 (3) im Kristall mit thermischen Ellipsoiden bei 50 % Wahrscheinlichkeit. Gezeigt ist mittig ein Molekül 3 mit seinen nächsten Nachbarn. Ausgewählte Bindungslängen [Å], Abstände [Å] und Winkel [\*]: Te1-C1 2.090(5), Te1-C2 2.091(6), N1-C1 1.131(7), N2-C2 1.149(7); C1-Te1-C2 85.4(2), N1-C1-Te1 178.3(5), N2-C2-Te1 179.2(5); Te1…N1(i) 2.758(5), Te1…N2(ii), 2.745(5); C1-Te1…N1(i) 163.3(5), C1-Te1…N2(ii) 77.8(5), C2-Te1…N1(i) 78.0(5), C2-Te1…N2(ii) 163.2(5), N1(i)…Te1…N2(ii) 118.8(1), mit i = -1/3 + x, -1/6 + x - y, -1/6 + z; ii = 4/3 - x + y, -1/6 + z; iii = 1/3 + x, -1/3 + x - y, 1/6 + z; iv = 2/3 - x + y, 1/3 + y, -1/6 + z.

# 4.2. Das Tellurtetracyanid Te(CN)<sub>4</sub> (4)

Die Reaktion von TeF<sub>4</sub> mit Me<sub>3</sub>SiCN ähnlich der Darstellungsmethode des Te(N<sub>3</sub>)<sub>4</sub> (1) führt zum Tellur(IV)cyanid Te(CN)<sub>4</sub> (4) (Gl. 4.2), einer pyrophoren und thermisch wenig stabilen Substanz als farblosem Festkörper.

$$TeF_4 + 4 Me_3 SiCN \xrightarrow{CH_2 Cl_2, -20 \,^{\circ}C} Te(CN)_4 \, (4)$$

$$(4.2)$$

Über –20 °C beobachtet man rasche Zersetzung zu einem braunen Öl, das **3** enthält, wie durch <sup>125</sup>Te NMR-Spektroskopie gezeigt werden konnte. Der thermische Zerfall unter reduktiver Eliminierung einer R–R Einheit gleicht demje-



 Abbildung 4.3.: Kugel-Stäbchen Modell mit überblendeter ELF-Isofläche für fünf Te(CN)<sub>2</sub>
 (3) Moleküle wie in Abbildung 4.2, Rechnung auf B3LYP/MWB46-VDZ-Niveau mit experimentellen Koordinaten; η = 0.78, Gitterinkrement 0.2Å.



**Abbildung 4.4.:** Elementarzelle des kristallinen  $Te(CN)_2$  (**3**), Atome innerhalb  $0.5 \le z \le -1$  nicht abgebildet, Blick entlang der c-Achse (001). Die Restelektronendichten (C11–C15, SOF = 0.207) der Solvatmoleküle sind als graue Kugeln in den röhrenförmigen Zwischenräumen abgebildet, C11, C12 und C13 liegen auf einer dreizähligen Achse.

nigen anderer R4Te Verbindungen.94 Nach dem Abpumpen aller flüchtigen Komponenten nach der Darstellung von 4 in CH<sub>2</sub>Cl<sub>2</sub>-Suspension bei -20 °C wurde beim Umfüllen des pulverartigen Produkts unter Argon in zwei Fällen eine spontane Verpuffung beobachtet, die den Reaktionskolben zerstörte und vermutlich durch thermischen Zerfall infolge des raschen Erwärmens bei der Handhabung auftrat. Die Charakterisierung von 4 ist auf ein schnell bei tiefer Temperatur aufgenommenes Raman-Spektrum beschränkt, da alle anderen Analysenmethoden aufgrund der thermischen Empfindlichkeit oder der Unlöslichkeit der Substanz versagten. Die Tatsache, dass vier Äquivalente Me<sub>3</sub>SiCN bei der Umsetzung verbraucht wurden, legt jedoch den Austausch aller vier Fluoratome des TeF4 nahe, was zu 4 führt. Im experimentellen Raman-Spektrum erkennt man vier verschiedene C=N-Streckschwingungen, was mit der Annahme zweier verschiedener Cyanogruppen (axial und äguatorial) im Einklang ist. Um ein Derivat von 4 zu erhalten, wurde zudem die Existenz eines denkbaren Pentacyanotellurats(IV) [Te(CN)<sub>5</sub>]<sup>-</sup> überprüft. Leider führt die Reaktion von [Me<sub>4</sub>N][TeF<sub>5</sub>] mit Me<sub>3</sub>SiCN lediglich zur sofortigen Zersetzung in Tellur, Cyanid und Dicyan.

Die Umsetzung von TeF<sub>6</sub> mit zwei Äquivalenten Me<sub>3</sub>SiCN in CD<sub>3</sub>CN führt überraschenderweise erst nach einigen Stunden bei Raumtemperatur zu einer deutlichen Reaktion, NMR-spektroskopisch zeigt sich in der Reaktionslösung eine langsame Zunahme des Me<sub>3</sub>SiF-Gehaltes. Nach beendeter Reaktion liegt nur noch eine tellurhaltige Spezies vor, die anhand ihrer <sup>13</sup>C und <sup>125</sup>Te NMR-Resonanzen eindeutig als Te(CN)<sub>2</sub> (**3**) identifiziert werden kann ( $\delta$  <sup>125</sup>Te: 569 ppm;  $\delta$  <sup>13</sup>C: 85.4 ppm (CD<sub>3</sub>CN)). Zum gegenwärtigen Zeitpunkt sind aber keine definitiven Aussagen über den genauen Reaktionsverlauf möglich. Mögliche isolierbare Verbindungen des Typs Te(CN)F<sub>5</sub> oder auch Te(CN)<sub>2</sub>F<sub>4</sub> werden Gegenstand zukünftiger Untersuchungen sein.

# 4.3. Theoretische Untersuchungen

Da sowohl **4** als auch Te(N<sub>3</sub>)<sub>4</sub> (**1**) hochsensible Verbindungen darstellen, wurde wie für das hypothetische Te(N<sub>3</sub>)<sub>6</sub> die mögliche Existenz von Te(CN)<sub>6</sub> mit theoretischen Methoden untersucht. Die elektronischen Strukturen von Te(CN)<sub>2</sub> (**3**), Te(CN)<sub>4</sub> (**4**) und Te(CN)<sub>6</sub> wurden mit verschiedenen *ab initio*- und Dichtefunktional-Methoden untersucht (siehe Tabelle 4.1 auf Seite 26). Alle Strukturen wurden zunächst in  $\mathcal{C}_1$ -Symmetrie voll optimiert und dann in der erreichten Symmetrie neu optimiert bis keine imaginären Frequenzen verblieben. (**3** und **4**:  $\mathcal{C}_{2y}$ ; Te(CN)<sub>6</sub>:  $\mathcal{O}_h$ )

Der reduktive Zerfall der Te(CN)<sub>x</sub> Moleküle ergibt dabei jeweils energetische Differenzen für die Produkte Te(CN)<sub>x-2</sub> und ein Molekül Dicyan von 75.78



 
 Abbildung 4.5.: Berechnete Molekülstruktur von Te(CN)₄ (4, C<sub>2ν</sub>) auf MP2(FC)/MDF28cc-pVTZ-Niveau. Ausgewählte Bindungslängen [Å] und -winkel [°]: Te-C<sub>eq</sub> 2.042, C<sub>eq</sub>-N<sub>eq</sub> 1.177, Te-C<sub>ax</sub> 2.180, C<sub>ax</sub>-N<sub>ax</sub> 1.179; C<sub>eq</sub>-Te-C<sub>eq</sub> 105.60, C<sub>ax</sub>-Te-C<sub>ax</sub> 158.50, Te-C<sub>eq</sub>-N<sub>eq</sub> 177.73, Te-C<sub>ax</sub>-N<sub>ax</sub> 172.21.

kJ mol<sup>-1</sup> (x = 2), -357.81 kJ mol<sup>-1</sup> (x = 4) und -343.32 kJ mol<sup>-1</sup> (x = 6) auf dem MP2(FC)/MDF28-cc-pVDZ-Niveau (korrigiert um die molare Atomisierungsenergie des Tellurs von 196.7 kJ). Dies untermauert die gefundene Instabilität von 4 und mehr noch jene des hypothetischen Te(CN)<sub>6</sub> im Vergleich zu 3. Zusätzlich wurden vollrelativistische Allelektronenrechnungen auf dem DIRAC-HARTREE-FOCK-Niveau für 3 mit einem energieoptimierten, relativistischen Basissatz unter Annahme einer endlichen Kerngröße mit gaussförmiger Ladungsverteilung (Exponent: 1.8193056289 · 10<sup>8</sup>) <sup>95</sup> durchgeführt (für Details siehe Kapitel A.1 auf Seite 145).

| Iā                                                       | abelle 4.1.: Experi                                                        | mentelle und l                         | berechnete Wei                                         | rte fur Te( $CN$ ) <sub>2</sub> (3                 | 3), Ie(CN) <sub>4</sub> (4) 1                         | ind Te(CN) <sub>6</sub> in               | der Gasphase.                            |                                         |
|----------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|
| Molekül                                                  | Methode                                                                    | dd                                     | E [Hartree]                                            | zpe [kJ mol <sup>-1</sup> ]                        | d Te-C $[Å]$                                          | <i>d</i> C–N [Å]                         | < C-Te-C [°]                             | <i>v</i> CN [cm <sup>-1</sup> ] a       |
| Te(CN) <sub>2</sub> ( <b>3</b> , $\mathscr{C}_{2\nu}$ )  | exp. b                                                                     | I                                      | I                                                      | I                                                  | 2.090(5)<br>2.091(6)                                  | 1.131(7)<br>1.149(7)                     | 85.4(4)                                  | 2170/2177 <sup>C</sup>                  |
|                                                          | B3LYP/                                                                     | MWB46                                  | -193.8048                                              | 41.08                                              | 2.040                                                 | 1.154                                    | 94.90                                    | 2270/2279                               |
|                                                          | CC-PV1Z<br>B3LYP/<br>CC-nVTZ                                               | MDF28                                  | -453.8274                                              | 40.63                                              | 2.057                                                 | 1.154                                    | 94.45                                    | 2267/2275                               |
|                                                          | B3LYP/                                                                     | MDF28                                  | -453.8442                                              | 40.57                                              | 2.054                                                 | 1.153                                    | 94.46                                    | 2266/2274                               |
|                                                          | cc-pVQZ<br>MP2/cc-pVTZ                                                     | MWB46                                  | -193.3315                                              | 38.90                                              | 2.036                                                 | 12ri                                     | 93.21                                    | 2099/2100                               |
|                                                          | MP2/cc-pVTZ                                                                | MDF28                                  | -452.5439                                              | 38.95                                              | 2.030                                                 | 12 rt                                    | 93.13                                    | 2099/2100                               |
|                                                          | MP2/cc-pVQZ                                                                | MDF28                                  | -452.6322                                              | 39.05                                              | 2.021                                                 | 12TI                                     | 93.19                                    | 2100/2101                               |
|                                                          | CCD/cc-pVIZ                                                                | MDF28<br>MDF28                         | -452.2726<br>-452.5324                                 | 40.90<br>41.58                                     | 2.064                                                 | 1.156                                    | 93.19<br>93.48                           | 2281/2285<br>2300/2304                  |
|                                                          | CCD/cc-pVQZ                                                                | MDF28                                  | -452.6691                                              | p_                                                 | 2.023                                                 | 1.152                                    | 93-57                                    | - q                                     |
|                                                          | TT-DHE/                                                                    | I                                      | -6796.2623                                             | I                                                  | 2.059                                                 | 1.138                                    | 94.06                                    | - f                                     |
|                                                          | cc-pVDZ e<br>DHF/                                                          | I                                      | -6978.4023                                             | I                                                  | 2.059                                                 | 1.138                                    | 93.75                                    | I                                       |
|                                                          | cc-pVDZ <sup>c</sup><br>LL-MP2/<br>cc-pVDZ <sup>e</sup>                    | I                                      | -6796.9235                                             | I                                                  | 2.046                                                 | 1.191                                    | 93.60                                    | I                                       |
| Te(CN) <sub>4</sub> (4, $\mathscr{C}_{2\nu}$ )           | B3LYP/<br>cc-nVTZ                                                          | MDF28                                  | -639.4585                                              | 88.91                                              | 2.074/2.227                                           | 1.152/1.155                              | 84.35/104.06                             | 2263/2265                               |
|                                                          | MP2(FC)/<br>cc-pVTZ                                                        | MDF28                                  | -637.7936                                              | 00'22                                              | 2.042/2.180                                           | 1.176/1.180                              | 83.53/105.60                             | 2053/2057<br>2086/2089                  |
| Te(CN) <sub>6</sub> ( $\mathscr{O}_h$ )                  | B3LYP/                                                                     | MDF28                                  | -825.0674                                              | 125.49                                             | 2.118                                                 | 1.153                                    | 06                                       | 2292-2297                               |
|                                                          | CC-PV12<br>MP2(FC)/<br>CC-PVTZ                                             | MDF28                                  | -823.0421                                              | 118.69                                             | 2.078                                                 | 1.179                                    | 06                                       | 2062–2070                               |
| <sup>a</sup> unskalierte Schwing<br>hohen Speicherbedarf | ungsfrequenzen. <sup>b</sup> Binc<br>'s (über 250 GB). <sup>e</sup> Mit (; | dungslängen verscl<br>20s18p11d+1s1p1d | hieden aufgrund er<br>I) Basis. <sup>96 f</sup> Das vo | rniedrigter Symmetrie<br>ollrelativistische Progra | im Kristall. <sup>C</sup> Ramar<br>ammsystem Dırac ur | I-Frequenzen. d Fr<br>iterstützt moments | equenzanalyse unn<br>an noch keine Freqi | öğlich aufgrund zu<br>ıenzberechnungen. |

4. Tellurcyanide

# 4.4. Untersuchungen über Organotellur(IV)dicyanide

# 4.4.1. Kenntnisstand

Nach der erfolgreichen Charakterisierung des Te(CN)<sub>2</sub> (3) und der bewiesenen Existenz des binären Tellur(IV) cvanides Te(CN)<sub>4</sub> (4) war eine neuerliche Untersuchung von Diorganotellur(IV)dicyaniden, formalen Derivaten von 4 reizvoll. Während in der Klasse der Tellurazide die Te(IV)-Verbindungen im Allgemeinen stabiler sind als die Te(II)- und Te(VI)azide (vgl. Kapitel 6 und 8), sind Organotellur(II)cyanide RTeCN schon länger bekannt und besser charakterisiert.<sup>97–99</sup> Vor einiger Zeit wurde aus unserer Arbeitsgruppe über Diorganotellur(IV)dicvanide ( $R_{\rm E}$ )<sub>2</sub>Te(CN)<sub>2</sub> ( $R_{\rm E} = C_6F_5$ , *p*-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>) berichtet,<sup>100</sup> die unter reduktivem Zerfall in Dicyan (CN)2 und die entsprechenden Monotellane (R<sub>F</sub>)<sub>2</sub>Te leiden. Dies wird durch die stark elektronenziehenden Eigenschaften ihrer perfluorierten Arylsubstituenten möglicherweise noch erleichtert und hat ihre Charakterisierung durch Kristallstrukturanalyse auch aufgrund der geringeren Löslichkeit bisher verhindert. Durch die Verwendung von weniger elektronegativen und sterisch anspruchsvolleren, substituierten Phenylderivaten sollten wesentlich stabilere Verbindungen R2Te(CN)2 zugänglich sein, die sich auch besser charakterisieren und mit den z.T. bekannten Difluoriden und Diaziden vergleichen lassen.

#### 4.4.2. Darstellung und Stabilität

Der Zugang zur Einführung von Cyanogruppen am Tellur erfolgt in Anlehnung an die bewährte Methode zur Darstellung der Diorganotellur(IV)diazide durch Umsetzung von Diorganotellur(IV)difluoriden mit Me<sub>3</sub>SiCN. Als Ausgangsmaterialien für die benötigten Diaryltellur(IV)difluoride wurden die Tellane Mes<sub>2</sub>Te (**5**, Mes = 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>)<sup>101-105</sup> und Trip<sub>2</sub>Te (**6**, Trip = 2,4,6*i*Pr<sub>3</sub>C<sub>6</sub>H<sub>2</sub>) dargestellt, letzteres wurde erst kürzlich ohne Angabe von analytischen Daten erwähnt.<sup>106</sup> In beiden Fällen lieferte Detellurierung der Ditellane (MesTe)<sub>2</sub> und (TripTe)<sub>2</sub> mit Kupferpulver bei hohen Temperaturen die Monotellane in analytisch reiner Form. Die Fluorierung zu den entsprechenden Diaryltellur(IV)difluoriden Mes<sub>2</sub>TeF<sub>2</sub> (**7**) und Trip<sub>2</sub>TeF<sub>2</sub> (**8**) gelingt problemlos mit Xenondifluorid. Im Vergleich zu Ph<sub>2</sub>TeF<sub>2</sub> und (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>TeF<sub>2</sub> verursacht die Alkylierung am Arylsubstituenten eine deutlich erhöhte Löslichkeit. In Lösung zeigen **7** und **8** dynamische NMR-Phänomene, die durch die eingeschränkte Rotation um die Te–C-Bindung verursacht werden,<sup>100</sup> worauf hier jedoch nicht näher eingegangen werden soll.

Die Reaktion von  $R_2 TeF_2$  (R = Ph, Mes (7), Trip (8)) mit Me<sub>3</sub>SiCN führte

zu den Diaryltellur(IV)dicyaniden  $Ph_2Te(CN)_2$  (9) und  $Mes_2Te(CN)_2$  (10), nicht aber zum erwünschten  $Trip_2Te(CN)_2$  (Gl. 4.3).

$$R_2 \text{TeF}_2 + 2 \text{Me}_3 \text{SiCN} \xrightarrow{\text{CH}_2 \text{Cl}_2, \text{ o }^\circ \text{C}}_{-2 \text{Me}_3 \text{SiF}} \Rightarrow R_2 \text{Te}(\text{CN})_2 \quad \text{R} = \text{Ph}(\textbf{9}), \text{Mes}(\textbf{10})$$
(4.3)

Stattdessen wurde nur Trip2Te (6), das Produkt des reduktiven Zerfalles isoliert. Im Gegensatz zu einem Bericht über ein angeblich stabiles Me<sub>2</sub>Te(CN)<sub>2</sub>,<sup>107</sup> ergibt die Reaktion von Me<sub>2</sub>TeF<sub>2</sub> mit Me<sub>3</sub>SiCN auch bei tiefen Temperaturen ebenfalls nur Me2Te, das als einzige tellurhaltige Substanz in der Reaktionslösung <sup>125</sup>Te NMR-spektroskopisch nachgewiesen wurde. Man beobachtet bei Zugabe von Me3SiCN im Unterschuss neben jener von Me<sub>2</sub>TeF<sub>2</sub> eine schwache Resonanz, die einem Me<sub>2</sub>Te(CN)F ( $\delta$  <sup>125</sup>Te: 641 ppm,  ${}^{1}J_{\text{Te-F}}$  = 896 Hz) zugeordnet werden konnte, aber keinen Hinweis auf die Existenz eines Me<sub>2</sub>Te(CN)<sub>2</sub>. Reduktiver Zerfall wird auch für 9, wenn auch in geringerem Maße, beobachtet und führt dazu, dass nach einem Tag in DMSO bei Raumtemperatur ca. 5% Ph<sub>2</sub>Te ( $\delta$  <sup>125</sup>Te: 704 ppm) neben Spuren weiterer, nicht identifizierbarer Zerfallsprodukte vorliegen. Ältere Berichte über die Verbindungen  $R_2 Te(CN)_2$  (R = Alkyl, Phenyl) und weitere derartige Pseudohalogenide des Tellur(IV) muss man als zweifelhaft ansehen, <sup>107–109</sup> da sie sich nicht nur hier, sondern auch schon früher als nicht reproduzierbar erwiesen haben.\* So soll etwa das Ph2Te(CN)2 einen Schmelzpunkt von 70°C und eine breite CN-Streckschwingung (IR) bei 2100 cm<sup>-1</sup> aufweisen.<sup>109</sup> Das aus dem Difluorid Ph<sub>2</sub>TeF<sub>2</sub> dargestellte, analysenreine **9** jedoch schmilzt erst bei 154 °C unter Zersetzung und weist eine vCN bei 2137 cm<sup>-1</sup> auf. Man kann daher sagen, dass es sich bei 10 um die bisher stabilste der R2Te(CN)2 Verbindungen handelt. Während 9 in CH<sub>2</sub>Cl<sub>2</sub> und CH<sub>3</sub>CN unlöslich ist, und nur in DMSO-D<sub>6</sub> NMR-spektroskopisch vermessen werden konnte, ist 10 schon in CH<sub>2</sub>Cl<sub>2</sub> wesentlich besser löslich. Wie die Kristallstruktur von 7 belegt, so ist wahrscheinlich auch bei 10 der räumliche Anspruch der Mesitylsubstituenten so hoch, dass höhere Assoziation behindert und eine leichtere Löslichkeit die Folge ist. Die Reaktion von 7 mit Me<sub>3</sub>SiN<sub>3</sub> ergibt analog zum Dicyanid 10 das Diazid Mes<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (11), ein recht stabiles Tellur(IV)diazid. Darstellung und Stabilität von 11 zeigen somit, dass Mesitylsubstitution allgemein gut für die Stabilisierung und Untersuchung verschiedener Organotellur(IV)-(Pseudo)halogenide geeignet ist.

<sup>&</sup>lt;sup>\*</sup>So berichteten SRIVASTAVA *et al.* über die Darstellung von Me<sub>2</sub>TeX<sub>2</sub> (X = CN, N<sub>3</sub>, NCO).<sup>107</sup> Das Dimethyltellur(IV)diazid wurde in unserer Arbeitsgruppe analysenrein dargestellt und ist nicht mit dem zuvor beschriebenen Präparat identisch.<sup>26</sup>

Das Studium der <sup>125</sup>Te NMR-Resonanzen in der Serie der Mesitylderivate zeigt die erwartete Tendenz bezüglich der Oxidation am Telluratom von Mes<sub>2</sub>Te (**5**) nach Mes<sub>2</sub>TeX<sub>2</sub>. Das Difluorid Mes<sub>2</sub>TeF<sub>2</sub> (**7**) weist mit  $\delta$  1206 ppm vs.  $\delta$  276 ppm (**5**) die größte Entschirmung auf, das Signal des Diazids **11** wird bei etwas höherem Feld gefunden ( $\delta$  908 ppm) und eine deutliche Hochfeldverschiebung zeigt sich für das Dicyanid **10** mit  $\delta$  320 ppm. Ähnlich verhält es sich bei den Phenylderivaten, mit chemischen Verschiebungen zwischen  $\delta$ 1128–601 ppm. Verglichen mit (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Te(CN)<sub>2</sub> ( $\delta$  177 ppm)<sup>100</sup> liegen die Resonanzen von **9** und **10** bei höherem Feld.

# 4.4.3. Kristallstrukturen

Da ein 2,4,6-tri-*iso*propylphenyl-substituiertes Tellur(IV)dicyanid sich als nicht stabil gegenüber Reduktion erwiesen hatte, und die Kristallisation von **9** wegen seiner sehr schlechten Löslichkeit nicht aussichtsreich war, erschien der strukturelle Vergleich von **5**, **7** und **10** am sinnvollsten. Geeignete Einkristalle von **5** lassen sich aus CH<sub>2</sub>Cl<sub>2</sub> durch Eindunsten gewinnen und kristallisieren im monoklinen System, Raumgruppe *C*<sub>2</sub>/*c* mit *Z* = 4 (siehe Abbildung 4.6), die einzelnen Moleküle liegen dabei auf zweizähligen Achsen durch das Telluratom als monomere Einheiten ohne intermolekulare Wechselwirkungen vor. Die Te–C Bindungen sind etwas kürzer als in (2,4,6-*t*Bu<sub>3</sub>C<sub>6</sub>H<sub>2</sub>)<sub>2</sub>Te<sup>110</sup> und (2,4,6-(CF<sub>3</sub>)<sub>3</sub>C<sub>6</sub>H<sub>2</sub>)<sub>2</sub>Te<sup>111</sup> (2.140(3) vs 2.156(5)/2.151(5) Å), der C–Te–C Winkel ist dabei



Abbildung 4.6.: ORTEP der Molekülstruktur von Mes₂Te (5) im Kristall. Ausgewählte Bindungslängen [Å] und Winkel [°]: Te1–C1 2.140(3), Te1–C1(i) 2.140(3), C–C 1.386(4)–1.508(4); C1–Te1–C1(i) 101.0(1), C6–C1–Te1 119.9(2), C2–C1–Te1 119.7(2), mit i = −x, y, 1/2 − z.

kleiner als in diesen noch stärker sterisch überladenen Tellanen (101.0(1) vs. 107.3(2)/107.4(2)°).

Während von  $(2,4,6-tBu_3C_6H_2)_2$ Te bekannt war, dass es für oxidative Additionsreaktionen zu sperrig ist,<sup>110</sup> ist das Difluorderivat **7** ohne Weiteres zugänglich und fällt durch Überschichten gesättigter Lösungen in CH<sub>2</sub>Cl<sub>2</sub> mit *n*-Hexan einkristallin im triklinen System, Raumgruppe *P*i mit *Z* = 2 an. Im Gegensatz zu den meisten R<sub>2</sub>TeF<sub>2</sub> Verbindungen bildet es im festen Zustand keine polymere Kettenstruktur, sondern diskrete zentrosymmetrische Dimere mit  $\Psi$ -trigonal-bipyramidaler Koordination um das Telluratom aus (siehe Abbildung 4.7). Die Te $\cdots$ F2(*i*) Abstände (3.069(1) Å) sind ähnlich wie jene in Fluoraryltellur(Iv)difluoriden (R<sub>F</sub>)<sub>2</sub>TeF<sub>2</sub> (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub>, C<sub>6</sub>H<sub>3</sub>F<sub>2</sub>, CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>),<sup>25,112</sup> aber kürzer als in Ph<sub>2</sub>TeF<sub>2</sub> (2.9–3.0 Å bzw. 3.2 Å).<sup>113</sup> Dies zeigt, dass der elektronische Einfluss des elektronegativen Substituenten nicht notwendigerweise entscheidenden Einfluss auf die Assoziation der Moleküle im Festkörper hat.

Beim Versuch, auch von **10** Einkristalle zu erhalten, erwies sich der vermessene Kristall unerwarteterweise bereits als partielles Hydrolyseprodukt (Mes<sub>2</sub>TeCN)<sub>2</sub>O·CH<sub>2</sub>Cl<sub>2</sub> (**12**), das sich während der längeren Wachstumszeit der Kristalle in der Lösung gebildet haben muss. Die Kristallstruktur von **12** 



 

 Abbildung 4.7.: ORTEP der Molekülstruktur von Mes₂TeF₂ (7) im Kristall, Wasserstoffatome nicht abgebildet. Ausgewählte Bindungslängen [Å] und Winkel [°]: Te-F1 2.007(2), Te-F2 2.007(2), Te-C1 2.129(3), Te-C10 2.125(3), Te···F2(i) 3.069(1); F1-Te-F2 167.23(8), F1-Te-C1 85.6(1), F2-Te-C1 86.7(1), F1-Te-C10 87.1(1), F2-Te-C10 86.0(1), C10-Te-C1 110.1(1), F2(i)-Te-F2 66.1(1), Te(i)-F2-Te 113.9(1), mit i = -x, -y, -z.



Abbildung 4.8.: ORTEP der Molekülstruktur von (Mes<sub>2</sub>TeCN)<sub>2</sub>O (12) im Kristall, Wasserstoffatome und Solvatmoleküle der Übersichtlichkeit wegen nicht gezeigt. Ausgewählte Bindungslängen [Å] und Winkel [°]: Te-C1 2.365(4), Te-C2 2.141(4), Te-C11 2.134(4), Te-O 2.003(1), C1-N 1.129(6); Te-C1-N 173.6(4), C1-Te-C2 84.5(2), O-Te-C2 88.1(1), O-Te-C11 90.4(1), O-Te-C1 168.9(1), C11-Te-C1 85.1(1), C11-Te-C2 113.5(2), Te(1)-O-Te 137.9(2), mit i = -x, y, 1/2 − z.

zeigt eine ähnlich Anordnung wie bei (Ph<sub>2</sub>TeN<sub>3</sub>)<sub>2</sub>O, dem ersten Organotellurazid für das eine Strukturanalyse vorlag.<sup>24</sup> Die (Mes<sub>2</sub>TeCN)<sub>2</sub>O Moleküle liegen auf zweizähligen Achsen durch die verbrückenden Sauerstoffatome ( $\mathscr{C}_2$ -Symmetrie), es werden aber keine intermolekularen Te···N-Kontakte ausgebildet. Die molekulare Struktur kann als über das gemeinsame axiale Sauerstoffatom verknüpfte Anordnung zweier leicht verzerrter  $\Psi$ -trigonaler Bipyramiden (O–Te–C1 168.9(1)°) beschrieben werden. Die Te–C<sub>aryl</sub> Bindungslängen sind dabei jenen im Diphenyltellur( $\tau$ )diazid Ph<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> ähnlich (ca. 2.1 Å), die Te–CN<sub>axial</sub> Abstände sind gegenüber jenen in Te(CN)<sub>2</sub> (**3**) deutlich verlängert (2.365(4) vs. 2.09 Å), wobei die Te–C–N Einheiten von der Linearität leicht abweichen (173.6(4)°, berechnet für Te(CN)<sub>4</sub>: 172.2°, siehe Abbildung 4.5 auf Seite 25). Die C–Te–C Winkel von Mes<sub>2</sub>Te (**5**, 101.0°), Mes<sub>2</sub>TeF<sub>2</sub> (**7**, 110.1°) und (Mes<sub>2</sub>TeCN)<sub>2</sub>O (**12**, 113.5°) werden mit der Oxidation am Telluratom immer grö-

# 4. Tellurcyanide

ßer. Das Dimesityltellur(iv)diazid (ii) wurde in Anbetracht der Fülle an Verbindungen dieses Typs nicht strukturell untersucht.

# 5. Versuche zur Darstellung von Tellur(I)-Pseudohalogeniden

#### 5.1. Kenntnisstand

Während in der Reihe der Tellur(IV)halogenide die TeHal<sub>4</sub>-Vertreter (Hal = F, Cl, Br, I) lange bekannt sind, existiert für das Tellur(VI) lediglich das binäre TeF<sub>6</sub> neben den ternären Spezies TeF<sub>5</sub>Cl und TeF<sub>5</sub>Br.<sup>47</sup> Die divalenten Tellurhalogenide TeHal<sub>2</sub> sind gegenüber Disproportionierung in kondensierter Phase nicht stabil (siehe dazu auch Kapitel 4 auf Seite 19). Subhalogenide des Tellurs jedoch, z. B. TeI, <sup>114</sup> Te<sub>2</sub>Br und Te<sub>3</sub>Cl<sub>2</sub><sup>115</sup> sind durch Komproportionierung mittels Festkörperreaktion darstellbar.<sup>116</sup> Vor einigen Jahren berichteten LAITINEN *et al.* außerdem über die erfolgreiche Darstellung der molekularen Halogenide Te<sub>2</sub>Hal<sub>2</sub> (Hal = Cl, Br) durch Komproportionierung in Lösung (siehe Gln. 5.1 und 5.2).<sup>117,118</sup>

Te 
$$\xrightarrow{\text{Li[Et_3BH], THF}}$$
 Li<sub>2</sub>Te (5.1)

$$\text{Li}_2\text{Te} + \text{TeHal}_4 \xrightarrow{\text{THF/0 °C}} \text{Te}_2\text{Hal}_2 \qquad (5.2)$$

NMR-spektroskopische und massenspektrometrische Untersuchungen lagen vor, außer einer Umsetzung zur Ringsynthese von 1,2-Te<sub>2</sub>E<sub>5</sub> (E = S, Se) war über die Reaktivität dieser Halogenide jedoch nichts bekannt. Nach der Darstellung des Tellurtetraazids (1) und der Charakterisierung des Tellurdicyanids (3) war insbesondere die mögliche Existenz der unbekannten Tellur(1)pseudohalogenide Te<sub>2</sub>(N<sub>3</sub>)<sub>2</sub> und Te<sub>2</sub>(CN)<sub>2</sub> von Interesse. Zudem lag es nahe, auch nach Hinweisen auf die Halogenide Te<sub>2</sub>F<sub>2</sub> und Te<sub>2</sub>I<sub>2</sub> zu suchen. Ein Te<sub>2</sub>(CN)<sub>2</sub> wurde zwar als instabile Zwischenstufe bei der elektrochemischen Oxidation des Tellurocyanats TeCN<sup>-</sup> erwähnt, <sup>119</sup> weitere Informationen über dieses Pseudohalogen waren jedoch nicht verfügbar.

## 5.2. Ergebnisse und Diskussion

## 5.2.1. Die Ditellurdihalogenide Te<sub>2</sub>Hal<sub>2</sub>

Sowohl  $Te_2Cl_2$  als auch  $Te_2Br_2$  waren wie beschrieben durch Reaktion von  $Li_2Te$  (*in situ* mit  $Li[BEt_3H]$  hergestellt) mit dem entsprechenden Tetrahalo-

genid TeHal<sub>4</sub> (Hal = Cl, Br) darstellbar und wurden als Maßlösungen aufbewahrt. Durch Verbesserung der Aufarbeitung konnte die Ausbeute jeweils auf 54 bzw. 63% gesteigert werden; die Verbindungen sind stabiler als erwartet. Bei eingehender Untersuchung zeigt sich, dass die erhaltenen hochviskosen Öle (Te<sub>2</sub>Cl<sub>2</sub>: gelb, Te<sub>2</sub>Br<sub>2</sub>: orange) sich auch beim Evakuieren auf 10<sup>-6</sup> mbar bei Raumtemperatur nicht verfestigen lassen. Erstaunlicherweise erfolgte jedoch bei der Extraktion der Reaktionsrückstände mit CS<sub>2</sub> (Li-Salze, Te und TeHal<sub>4</sub> bleiben zurück) durch Kühlung der gesättigten Lösungen teilweise Kristallisation, wobei die Färbung der Kristalle den Lösungen entspricht. Werden die Kristalle jedoch der CS2-Atmosphäre der Mutterlauge entnommen, tritt sofortige Verölung ein, die sich auch durch Verwendung von Perfluoretheröl bei -40 °C nicht verhindern ließ. Vermutlich handelt es sich bei den erhaltenen Kristallen um hochgradig solvathaltige Individuen. Nach mehreren Monaten bei -25°C aus Toluol erhaltene, gelbe Nadeln aus einem Ansatz nach Gl. 5.2 (Hal = Br) konnten nach röntgendiffraktometrischer Untersuchung als Li<sub>2</sub>[TeBr<sub>4</sub>] identifiziert werden. Die Kristallqualität erlaubt zwar keine genaue Bestimmung der Lithium-Atomlagen, eine Pattersonsynthese liefert jedoch eindeutig quadratisch-planare [TeBr<sub>4</sub>]<sup>2-</sup>-Einheiten, deren Te–Br Bindungslängen gut mit jenen aus der Strukturbestimmung von [Et<sub>4</sub>N]<sub>2</sub>[TeBr<sub>4</sub>]·CH<sub>3</sub>CN übereinstimmen.120

Die <sup>125</sup>Te NMR-Spektren der beiden Ditellurdihalogenide, Te<sub>2</sub>Cl<sub>2</sub> und Te<sub>2</sub>Br<sub>2</sub>, zeigen beide nur ein Hauptsignal bei  $\delta$  1297 (Te<sub>2</sub>Cl<sub>2</sub>) und 1254 ppm (Te<sub>2</sub>Br<sub>2</sub>), in Übereinstimmung mit den Literaturdaten.<sup>118</sup> PIETIKÄINEN und LAI-TINEN folgerten daraus, dass diese Verbindungen in einer offenkettigen Struktur der Form X-Te-Te-X vorliegen und nicht in einer verzweigten Struktur der Form X<sub>2</sub>Te=Te. In aufgearbeiteten Maßlösungen beider Verbindungen fällt jedoch ein zweites Signal von variierender Intensität und einer chemischen Verschiebung bei  $\delta$  940–820 ppm auf. Da diese Resonanz mit zunehmender Alterung der Probe an Intensität gewinnt, kann angenommen werden, dass sie einem Produkt der Zersetzung von Te2Br2 und Te2Cl2 zuzuordnen ist. Nach Lit.<sup>118</sup> könnte es sich bei diesem Zersetzungsprodukt um Te<sub>8</sub> handeln, worauf jedoch konkrete Hinweise fehlen. Zu bemerken ist hier, dass PIETIKÄINEN und LAITINEN für Te2Br2 und Te2Cl2 das gleiche Zerfallsprodukt postulieren. Der im Rahmen der hier durchgeführten Untersuchungen gemessene Unterschied in der chemischen Verschiebung der Zersetzungsprodukte beträgt ca. 120 ppm. Anhand dieser Daten ist es eher unwahrscheinlich, dass es sich beim Zerfallsprodukt von Te<sub>2</sub>Cl<sub>2</sub> und Te<sub>2</sub>Br<sub>2</sub> um dieselbe Verbindung handelt, zudem im jeweils gleichen Lösungsmittel gemessen wurde. Wohl handelt es sich eher um eine halogenhaltige Spezies, was die unterschiedliche Verschiebung erklären könnte. Nochmalige <sup>125</sup>Te NMR-spektroskopische Messung der

als Li<sub>2</sub>[TeBr<sub>4</sub>] identifizierten Kristalle und ihrer Mutterlauge ergab wiederum nur eine Resonanz mit derselben chemischen Verschiebung von  $\delta$  1254 ppm. Da von den entsprechenden [TeHal<sub>4</sub>]<sup>2–</sup>-Anionen (Hal = Cl, Br), leider keine <sup>125</sup>Te NMR-Verschiebungen bekannt waren, wurden zum Vergleich die Salze [Ph<sub>4</sub>P]<sub>2</sub>[TeBr<sub>4</sub>] und [*n*-Bu<sub>4</sub>N]<sub>2</sub>[TeBr<sub>4</sub>] nach der bekannten Methode dargestellt.<sup>120</sup> Diese sind in MeCN-Lösung stabil, zeigen jedoch übereinstimmend mehr oder weniger breite Resonanzen bei  $\delta$  1355 ppm, was signifikant von den für "Te<sub>2</sub>Br<sub>2</sub>" gemessenen Verschiebungen abweicht.

Die Durchführung analoger Reaktionen mit TeF<sub>4</sub> und TeI<sub>4</sub> (Gl. 5.2, Hal = F, I) ergab keine Hinweise auf stabile Te(t)halogenide. Die Stabilität von Te<sub>2</sub>F<sub>2</sub> war von vornherein als gering einzuschätzen, auch da die analoge Selenverbindung Se<sub>2</sub>F<sub>2</sub> zwar durch Direktfluorierung von Selendampf zugänglich ist, aber bei tiefen Temperaturen abgefangen werden muss.<sup>121</sup> Führt man alternativ zur Darstellung von Te<sub>2</sub>I<sub>2</sub> die Reaktion von Te<sub>2</sub>Cl<sub>2</sub> mit NaI durch, so tritt eine augenblickliche Redoxreaktion unter Bildung von Iod und Tellurabscheidung ein (Gl. 5.3).



Abbildung 5.1.: <sup>125</sup>Te-NMR-Spektrum der Reaktionslösung nach Gl. 5.5 und Zugabe von Te(CN)<sub>2</sub> (3).



Abbildung 5.2.: <sup>125</sup> Te-NMR-Spektrum der Reaktionslösung nach Gl. 5.4, man erkennt zusätzlich bei ca. 1380 ppm eine breite Resonanz, vermutlich Te(N<sub>3</sub>)<sub>4</sub> (1).

## 5.2.2. Reaktivität

Die Halogenide Te<sub>2</sub>Hal<sub>2</sub> (Hal = Cl, Br), nach Lit.<sup>118</sup> erhalten, wurden mit AgX, NaX und Me<sub>3</sub>SiX (X = CN, N<sub>3</sub>) umgesetzt. Die chlorhaltige Spezies erwies sich dabei als weniger reaktiv und zudem aufgrund ihrer geringeren Haltbarkeit als weniger geeignet. Bei Verwendung von Te<sub>2</sub>Br<sub>2</sub> und den entsprechenden Silbersalzen findet vollständiger Umsatz statt, und es lässt sich reproduzierbar jeweils ein neues <sup>125</sup>Te NMR-Signal bei  $\delta$  539–537 (X = CN) bzw. 1033–1028 ppm (X = N<sub>3</sub>) beobachten (siehe Abbildung 5.1 auf der vorherigen Seite sowie 5.2).

$$Te_2Br_2 + 2AgN_3 \xrightarrow{\text{THF/CH}_3CN} , Te_2(N_3)_2$$
 (5.4)

Durch Zugabe von Te(CN)<sub>2</sub> (**3**, siehe Kapitel 4.1 auf Seite 19) wurde sichergestellt, dass es sich bei dem isolierten Produkt (Gl. 5.5) nicht um **3** handeln kann. Von allen erhaltenen Produkten konnten leider keine aussagefähigen Schwingungs- oder Massenspektren aufgenommen werden. In einem Falle, nach Durchführung der Synthese nach Gl. 5.5 wurden farblose Prismen erhalten, die durch Röntgenstrukturanalyse als Li[Ag(CN)<sub>2</sub>] identifiziert wurden (siehe Abbildung 5.3 auf der nächsten Seite). Das enthaltene Lithium stammt aus der Reduktion mit Li[Et<sub>3</sub>BH].

$$Te_2Br_2 + 2AgCN \xrightarrow{THF/CH_3CN} , Te_2(CN)_2$$
 (5.5)

Sowohl im Falle der Umsetzung mit Silbercyanid, als auch mit Silberazid kann nicht mit absoluter Sicherheit davon ausgegangen werden, dass es sich bei den isolierten Produkten tatsächlich um  $Te_2(CN)_2$  bzw.  $Te_2(N_3)_2$  handelt. Die Daten aus den NMR-Spektren lassen zwar eine derartige Deutung zu, jedoch würden letztendlich nur eindeutige Schwingungs- oder Massenspektren, sowie eine Strukturanalyse Sicherheit bringen. Die angefertigten Massenspektren waren jedoch in dieser Hinsicht nicht verwertbar, die Kristalle nicht beständig (s. o.). In diesem Zusammenhang sei nochmals auf die nicht vollständig und zweifelsfrei charakterisierten  $Te_2Cl_2$  und  $Te_2Br_2$  verwiesen.

## 5.3. Quantenchemische Rechnungen

Die theoretischen Untersuchungen zur Struktur der Moleküle X–Te–Te–X (X = F, Cl, Br, I, CN, N<sub>3</sub>) mithilfe der Programmpakete TURBOMOLE5.7<sup>125</sup> und GAUS-SIANO3<sup>126</sup> wurden auf dem IA32 Cluster des Leibniz-Rechenzentrums durchgeführt. Alle Moleküle wurden zunächst in  $\mathscr{C}_2$ -Symmetrie mit TURBOMOLE interaktiv auf dem RI-MP2(FC)/TZVPNiveau voroptimiert,<sup>127,128</sup> Te und I unter Verwendung von large-core MWB46-Pseudopotentialen.<sup>129</sup> Die dabei er-



Abbildung 5.3.: Ausschnitt aus der Kristallstruktur von Li[Ag(CN)<sub>2</sub>]·2MeCN. Die Verbindung Li[Ag(CN)<sub>2</sub>] ist beschrieben, <sup>122,123</sup> strukturelle Informationen konnten aber weder in ICSD noch CCDC gefunden werden. Man kennt jedoch die Strukturen von Komplexen der Rubidium- und Cäsiumdicyanoargentate mit 18-Krone-6. <sup>124</sup>



Abbildung 5.4.: ELF-Darstellung von Te<sub>2</sub>Br<sub>2</sub> bei zwei verschiedenen Werten für η(r). Monosynaptische Becken in rot, Kernbecken in magenta und disynaptische Becken in grün dargestellt. Geometrie und Wellenfunktions-Input aus MP2(FC)/cc-pVTZ Rechnung mit MDF10(Br) und MDF28(Te). Im Schnittbild (links) erkennt man gut die Polarität der Te–Br-Bindung und den small-core Charakter der Pseudopotentiale, die eine Schalenstruktur für das obere Telluratom erzeugen.

 

 Tabelle 5.1.: Übersicht über die durchgeführten Rechnungen für X-Te-Te-X (X = F, Cl, Br, I, CN, N<sub>3</sub>), mit vollständigen Strukturparametern [Å/°].

| Molekül                            | Methode     | PP (Atom)     | Ε          | Te–X     | Те-Те | Те-Те-Х | Torsion |
|------------------------------------|-------------|---------------|------------|----------|-------|---------|---------|
| Te <sub>2</sub> F <sub>2</sub>     | RI-MP2/TZVP | MWB46 (Te)    | -214.994   | 1.967    | 2.639 | 102.6   | 95.9    |
|                                    | MP2/cc-pVTZ | MDF28 (Te)    | -733.921   | 1.930    | 2.563 | 102.9   | 89.4    |
| $Te_2Cl_2$                         | RI-MP2/TZVP | MWB46 (Te)    | -935.256   | 2.389    | 2.656 | 103.5   | 98.7    |
|                                    | MP2/cc-pVTZ | MDF28 (Te)    | -1453.925  | 2.352    | 2.606 | 103.1   | 88.0    |
| Te <sub>2</sub> Br <sub>2</sub>    | RI-MP2/TZVP | MWB46 (Te)    | -5161.065  | 2.546    | 2.663 | 103.7   | 99.6    |
|                                    | MP2/cc-pVTZ | MDF28 (Te)    | -1366.066  | 2.496    | 2.615 | 102.9   | 87.0    |
|                                    |             | MDF10 (Br)    |            |          |       |         |         |
|                                    | CCD/cc-pVTZ | MDF28 (Te)    | -1366.072  | 2.503    | 2.642 | 102.4   | 87.3    |
|                                    |             | MDF10 (Br)    |            |          |       |         |         |
| Te <sub>2</sub> Br <sub>2</sub> -Y | MP2/cc-pVTZ | MDF28 (Te)    | -1366.052  | 2.535    | 2.514 | -       | -       |
|                                    |             | MDF10 (Br)    |            |          |       |         |         |
| Te <sub>2</sub> I <sub>2</sub>     | RI-MP2/TZVP | MWB46 (Te, I) | -38.550    | 2.759    | 2.681 | 104.2   | 101.4   |
|                                    | MP2/cc-pVTZ | MDF28 (Te, I) | -1128.318  | 2.699    | 2.635 | 102.7   | 84.8    |
| $Te_2(CN)_2$                       | RI-MP2/TZVP | MWB46 (Te)    | -201.180   | 2.057    | 2.732 | 96.92   | 93.3    |
|                                    | MP2/cc-pVTZ | MDF28 (Te)    | -719.800   | 2.036    | 2.681 | 96.5    | 90.2    |
| $Te_2(N_3)_2$                      | RI-MP2/TZVP | MWB46 (Te)    | -343.617   | 2.108    | 2.662 | 100.6   | 93.7    |
|                                    | MP2/cc-pVTZ | MDF28 (Te)    | kein Minim | um gefun | den   |         |         |

haltenen Geometrien wurden dann mit GAUSSIANO3 auf MP2(FC)/cc-pVTZ-Niveau weiter optimiert, wobei jetzt die neuen small-core MDF10 bzw. MDF28-Pseudopotentiale für Br, Te und I zur Anwendung kamen.<sup>130,131</sup> Analytische Frequenzrechnung auf diesem Niveau zeigte für keines der Moleküle imaginäre Frequenzen. Eine Übersicht der Rechnungen gibt Tabelle 5.1 auf der vorherigen Seite. Zum Vergleich möglicher Konstitutionsisomere wurde für das System Te<sub>2</sub>Br<sub>2</sub> auch ein Y-Isomer berechnet, das jedoch eine negative Frequenz aufwies (Sattelpunkt) und nach weiterer Relaxation entlang dieser Mode in eine pyramidale Struktur optimierte. Diese weist eine signifikant höhere Energie als das H2O2-analoge Isomer auf. Der Vergleich der erhaltenen Geometrien zeigt den starken Einfluß der Basissatz- und Pseudopotentialfehler auf die Bindungslängen dieser Moleküle. Die durch Vergleichsrechnung auf CCD(FC)/cc-pVTZ-Niveau (analytische 2. Ableitungen in GAUSSIAN verfügbar) für Te<sub>2</sub>Br<sub>2</sub> bestimmten Bindungslängen sind wieder etwas länger. Zur Verdeutlichung der Lage der freien Elektronenpaare wurde eine ELF-Analyse für Te<sub>2</sub>Br<sub>2</sub> durchgeführt, die Abbildung mit dem Programm ScIAN erstellt (siehe Abbildung 5.4 auf der vorherigen Seite).<sup>132</sup>

5. Versuche zur Darstellung von Tellur(I)-Pseudohalogeniden

# 6. Te(v1)azide und -halogenide

#### 6.1. Kenntnisstand

Seit der Entdeckung von Me<sub>6</sub>Te und Ar<sub>6</sub>Te,<sup>13,134</sup> sind derartige hyperkoordinierte Te(v1)-Verbindungen Gegenstand kontinuierlichen Interesses, sowohl was ihre Synthese als auch ihre theoretische Beschreibung betrifft.<sup>135–143</sup> Sieht man von den schon länger bekannten homoleptischen Verbindungen TeF<sub>6</sub> und Te(OR)<sub>6</sub> ab, so sind einige Ph<sub>x</sub>TeF<sub>y</sub> Spezies,<sup>144–151</sup> sowie *trans*-(C<sub>2</sub>F<sub>5</sub>)<sub>2</sub>TeF<sub>4</sub>,<sup>152</sup> *cis*-(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>TeF<sub>4</sub>,<sup>153</sup> ClCF<sub>2</sub>CH<sub>2</sub>TeF<sub>5</sub>,<sup>154</sup> *cis*-Me<sub>4</sub>TeF<sub>2</sub> und *mer*-Me<sub>3</sub>TeF<sub>3</sub><sup>133</sup> bislang bekannt, aber nicht immer vollständig charakterisiert worden, und nur wenig ist über Te(v1)pseudohalogenide bekannt. Betrachtet man einmal die Entwicklung der Chemie der Tellurazide, die mit den Te(rv)aziden TeCl<sub>3</sub>(N<sub>3</sub>) und TeCl<sub>2</sub>(N<sub>3</sub>)<sub>2</sub> beginnend<sup>20</sup> über Te(II), d. h. (Me<sub>3</sub>Si)<sub>3</sub>CTeN<sub>3</sub><sup>98,155</sup> verlief, so fällt auf, dass selbst die Synthese vieler Organotellurazide in den letzten Jahren eines vollständig vernachlässigt hat: Te(v1)azide. Der einzige Bericht bezüglich dieser Substanzklasse ist die <sup>19</sup>F NMR-spektroskopische Untersuchung von TeF<sub>6</sub>/Me<sub>3</sub>SiN<sub>3</sub>-Mischungen,<sup>156</sup> in deren Verlauf jedoch keine einzige Verbindung isoliert wurde.

# 6.2. Stabile Aryltellur(vi)azide

Kürzlich wurde von ΑκιβΑ über die Eintopfsynthese von Tellur(vI)-Verbindungen des Typs Ph<sub>5</sub>TeHal (Hal = F, Cl, Br) berichtet, die in eleganter Weise die Isolierung des intermediären Ph<sub>4</sub>Te umgeht. Aufgrund eigener Erfahrung mit der Isolierung dieser seit den 50er Jahren bekannten Verbindung, der ersten Tetraorganotellur-Spezies überhaupt,<sup>157</sup> deren nebenproduktfreie Synthese sich als unerwartet schwierig erwies, erschien diese neue Synthesemethode als sehr vielversprechend. Zur Darstellung von Organotellur(vI)aziden wurde zunächst die bewährte Umsetzung des Fluorids Ph<sub>5</sub>TeF mit Me<sub>3</sub>SiN<sub>3</sub> in Erwägung gezogen. Behindert wird dieser Ansatz jedoch nicht nur durch die unerwartete Labilität der Ph<sub>5</sub>TeHal-Moleküle in Lösung: <sup>125</sup>Te NMR-Spektroskopie in CDCl<sub>3</sub> lässt stets auch Verunreinigung (Ph<sub>5</sub>TeCl und [Ph<sub>3</sub>Te]<sup>+</sup>) durch Halogen-Austausch erkennen, zudem tritt langsame Zersetzung im Vakuum ein. Bei der berichteten Darstellung von Ph<sub>5</sub>TeF durch Metathese aus KF und Ph<sub>5</sub>TeBr entsteht ein Produktgemisch, das auch von AKIBAS Arbeitsgruppe nur durch HPLC getrennt werden konnte. Es stellte sich jedoch heraus, dass das leichter zugängliche Bromderivat  $Ph_5$ TeBr mit AgN<sub>3</sub> zum in Lösung beinahe farblosen PhTeN<sub>3</sub> (13) reagiert (Gl. 6.1).

$$Ph_{5}TeBr + AgN_{3} \xrightarrow{CH_{2}Cl_{2}, 25 \,^{\circ}C} Ph_{5}TeN_{3} (\mathbf{13})$$

$$(6.1)$$

Azidopentaphenyl- $\lambda^6$ -tellan (**13**) ist stabil und neigt lediglich im Vakuum zu langsamer Zersetzung; Kristallisation ist die einzig aufgefundene Reinigungsmethode. Langsames Abdunsten einer Lösung von **13** in CH<sub>2</sub>Cl<sub>2</sub> ergibt gelbe Plättchen die sich für eine Einkristall-Röntgenstrukturanalyse eignen (siehe Abbildung 6.1).

Die Molekülstruktur zeigt ein oktaedrisch umgebenes Telluratom mit einem Te–N-Abstand von 2.292(4) Å, der verglichen mit denjenigen in Organotellur(IV) aziden <sup>25,26</sup> um 0.25 Å deutlich verlängert ist. Eine ähnliche Streckung des Te–Hal-Abstandes findet man auch in den Strukturen der Ph<sub>5</sub>TeHal-Moleküle (Hal = F, Cl, Br)<sup>141,158</sup> in Bezug auf Organotellur(IV) halogenide. Dies ist zudem in Einklang mit Werten aus DFT- und *ab initio*-Rechnungen (2.271Å, s.u.). Bemerkenswert sind weiter die recht ähnlichen N1–N2 und N2–N3-



Abbildung 6.1.: Molekülstruktur von Ph<sub>5</sub>TeN<sub>3</sub> (13) im Kristall, Wasserstoffatome zur besseren Übersichtlichkeit nicht gezeigt. Ausgewählte Bindungslängen [Å] und -winkel [°]: Te1-CI 2.200(4), Te1-C7 2.159(4), Te1-C13 2.196(4), Te1-C19 2.196(4), Te1-C25 2.195(4), Te1-NI 2.292(4), NI-N2 1.161(5), N2-N3 1.158(6), N1-N2-N3 175.6(5), C1-Te1-NI 88.1(2), C13-Te1-NI 84.2(2), C19-Te1-NI 82.3(1), C25-Te1-NI 85.4(1), C7-Te1-N 178.4(1), C1-Te1-C13 172.3(2).

Abstände, die bereits auf einen erhöhten ionischen Charakter der Azidogruppe hindeuten. Die Bindungswinkel aus der leicht verzerrt-oktaedrischen Koordination um das Telluratom von **13** ähneln stark den Ph<sub>5</sub>TeHal-Derivaten.<sup>158</sup>

Das Raman-Spektrum von 13 zeigt die vas N3-Streckschwingung bei 2035 cm<sup>-1</sup>, die jedoch im IR-Spektrum fehlt, obwohl sie aus DFT-Rechnungen mit hoher Intensität zu erwarten wäre (siehe Abbildung 6.2 auf der nächsten Seite). Die Te-N-Streckschwingung, normalerweise mit hoher Intensität zwischen 420 (TeCl<sub>3</sub>N<sub>3</sub>) und 330 cm<sup>-1</sup> ((C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub>) auffindbar, kann auch durch Vergleich mit den berechneten Werten weder in den IR- noch den Raman-Spektren eindeutig zugeordnet werden. Dies widerspricht in gewissem Maße den drei im <sup>14</sup>N NMR-Spektrum aufgefundenen, mehr oder weniger breiten Resonanzen, die man typischerweise für kovalente Azide erwartet. Dies macht deutlich, dass es sich bei 13 um einen Grenzfall zwischen einem rein kovalenten und ionischen Tellurazid handeln muss (siehe Abbildung 6.3 auf Seite 45). Die kovalente Natur von 13 wird klarer, wenn man bedenkt, dass Ph<sub>5</sub>TeF im <sup>125</sup>Te NMR-Spektrum ein Dublett aufgrund von <sup>125</sup>Te-<sup>19</sup>F-Kopplung zeigt, und zudem die <sup>125</sup>Te NMR-Resonanz von rein ionischem  $[Ph_5Te][B(C_6F_5)_4]$  in CDCl<sub>3</sub> mit  $\delta$  659 ppm bei deutlich tieferem Feld als alle Ph<sub>5</sub>TeX (X = Hal, N<sub>3</sub>) mit  $\delta$  564–580 ppm erscheint.

In ganz ähnlicher Weise, wie bei der bewährten Prozedur zur Darstellung der Organotellur(IV) azide kann das sterisch stabilisierte Organotellur(VI) diazid *cis*-biphen<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (biphen = 2,2'-biphenyldiyl, **14**) aus dem entsprechenden Difluorid *cis*-biphen<sub>2</sub>TeF<sub>2</sub><sup>159</sup> durch Reaktion mit Me<sub>3</sub>SiN<sub>3</sub> dargestellt werden (Gl. 6.2). Das Fluorid wird zuvor durch Umsetzung von biphen<sub>2</sub>Te<sup>160,161</sup> mit XeF<sub>2</sub> gewonnen.



Obgleich sowohl in Lösung als auch im Festkörper viele stabile Tellur(IV)azide existieren, stellt 14 das bisher einzige Dipseudohalogenid des Tellurs(VI) dar, welches in reiner Form isoliert und charakterisiert werden konnte. Beide Organotellur(VI)azide 13 und 14 sind im festen Zustand zumindest einige Wochen haltbar, das Diazid 14 jedoch unterliegt in Lösung einem langsamen, reduktivem Zerfall und lässt sich nicht unzersetzt schmelzen. Obwohl der Stickstoffgehalt von 14 im Vergleich zu den meisten anderen Telluraziden geringer ist,



Abbildung 6.2.: Schwingungsspektren von  $Ph_5TeN_3$  (13) und cis-biphen<sub>2</sub>Te( $N_3$ )<sub>2</sub> (14).



**Abbildung 6.3.:** <sup>14</sup>N NMR Spektren der Verbindungen  $Ph_x$ Te $(N_3)_y$  in CDCl<sub>3</sub> bei 25 °C (die Resonanz bei – 71 ppm ist  $N_2$  aus reduktivem Zerfall oder  $N_2$ -gesättigten Lösungsmitteln).

so bemerkt man doch ein deutliches Spratzeln beim Einbringen in eine Brennerflamme. Im Gegensatz zur Reaktion mit Azid führt die Umsetzung von *cis*biphen<sub>2</sub>TeF<sub>2</sub> mit Me<sub>3</sub>SiCN nicht zu einem Te(vı)dicyanid und ein Tetramethyltellur(vı)diazid ist ganz im Gegensatz zu **14** nicht stabil gegenüber reduktivem Zerfall (siehe Schema 6.7 auf Seite 51). Wie bereits angedeutet, stellt die Reindarstellung von *cis*-Ph<sub>4</sub>TeF<sub>2</sub> – als Alternative zu *cis*-biphen<sub>2</sub>TeF<sub>2</sub> als Tetraorganotellur(vı)-Quelle – nach der Literaturvorschrift ein Problem dar, dass bisher nicht bewältigt werden konnte, da das Ph<sub>4</sub>Te dafür nicht in ausreichender Reinheit und v. a. nicht frei von Diethylether und Ph<sub>2</sub>Te aus der Reaktionslösung erhalten werden konnte. Wegen seiner aufwendigen Synthese ist **14** nur in geringen Mengen darstellbar, konnte aber dennoch vollständig und eindeutig charakterisiert werden.

Während die strukturellen und spektroskopischen Merkmale von **13** in gewisser Hinsicht auf einen  $\lambda^5$ -Telluronium-artigen Bau schließen lassen, also verlängerte Te–N Bindung und fehlende Te–N-Streckschwingung, so weist das Organotellur(vI)diazid **14** stärker kovalente Natur auf: Die Te–N-Abstände sind kürzer im Vergleich zu **13** und in den Schwingungsspektren findet man die antisymmetrischen Streckschwingungen der Azidgruppen ( $v_{as}N_3$ ) als starke (IR)



Abbildung 6.4.: Molekülstruktur von cis-biphen<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (14), Wasserstoffatome nicht gezeigt. Ausgewählte Abstände [Å] und Winkel [°]: Te1–C1 2.134(3), Te1–C12 2.109(3), Te1–C13 2.129(3), Te1–C24 2.109(3), Te1–N1 2.209(3), Te1–N4 2.220(3), N1–N2 1.197(5), N2–N3 1.129(5), N4–N5 1.206(4), N5–N6 1.141(4); N1–Te1–N4 87.2(1), N1–N2–N3 177.6(5), N4–N5–N6 177.7(4), C1–Te1–N1 88.4(1), C1–Te1–N4 88.2(1), C1–Te1–C13 174.7(1), C12–Te1–C24 96.8(1).

bzw. mittelstarke (Raman) Banden zwischen 2054 und 2037 cm<sup>-1</sup>. Die berechneten Werte für die Te–N-Bindungslängen von 2.225 Å (B3LYP/cc-pVDZ) stimmen zudem gut mit jenen aus der Kristallstrukturbestimmung überein (Tei–N1 2.209(3), Tei–N4 2.220(3) Å) und der Unterschied zwischen den N<sub> $\alpha$ </sub>–N<sub> $\beta$ </sub> und N<sub> $\beta$ </sub>–N<sub> $\gamma$ </sub>-Abständen ist in 14 wesentlich stärker ausgeprägt. Weder 13 noch 14 bilden im festen Zustand irgendwie geartete intermolekulare Wechselwirkungen wie etwa Te···N-Kontakte aus. Die Koordination um das Telluratom ist daher bemerkenswerterweise in diesen Organotellur(v1)aziden niedriger als in allen bisher strukturell charakterisierten Tellur(Iv)aziden.<sup>25,26,58</sup>

| 3P86/SVP R1-BP86/TZVP R1-BP86/TZVP R1-MP2/TZVP | $E$ $\Delta E$ $E$ $\Delta E$ $ZPE$ $E$ $\Delta E$ $E$ $\Delta E$ | 9 - $-1330.880$ - $1181.7^{a}$ $-1320.436$ - $-1321.869$ - | 1 0 -1261.059 01251.3461252.692 - | $3 - 57.71 - 1261.081 - 58.24 875.0^{a} - 1251.378 - 84.72 - 1252.725 - 85.36$ | 5 0 -871.092 0 - 865.093 0 -866.060 0                    | 4 – 24.81 – 871.105 – 32.55 480.44 <sup>b</sup> – 865.073 – 51.38 – 866.075 – 41.23 | nit SNF <sup>162</sup> <sup>b</sup> Analytische Frequenzberechnung mit AoForce. <sup>163</sup> <sup>c</sup> ZPE für <i>trans</i> -Ph <sub>2</sub> TEF <sub>4</sub> (22) auf dem RI-BP86/SVP<br>Po/SVP Niveau: 520,444/mol <sup>10</sup> auf dem RI-MP5/TZVP Niveau: 527,464/mol <sup>10</sup> |
|------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SVP 1                                          | $\Delta E$ E                                                      | 1330.880                                                   | 0 -1261.059                       | -57.71 -1261.081                                                               | 0 -871.092                                               | -24.81 -871.105                                                                     | TE 162 b Analytische Freque<br>P Niveau: 529 44 kI/mol <sup>b</sup> ;                                                                                                                                                                                                                         |
| RI-BP86/5                                      | Ε                                                                 | -1329.459                                                  | -1259.731                         | -1259.753                                                                      | -870.105                                                 | -870.114                                                                            | berechnung mit SN                                                                                                                                                                                                                                                                             |
|                                                |                                                                   | $Ph_5TeN_3$                                                | trans-biphen2Te(N3)2              | cis-biphen <sub>2</sub> Te(N <sub>3</sub> ) <sub>2</sub>                       | cis-Ph <sub>2</sub> TeF <sub>4</sub> ( $\mathscr{C}_1$ ) | trans-Ph2TeF4 (202) <sup>c</sup>                                                    | <sup>a</sup> Numerische Frequenz<br>Niveau: 484-77 kI/mol <sup>b</sup>                                                                                                                                                                                                                        |

| , cis/trans- $biphen_2 Te(N_3)_2$ und |                |
|---------------------------------------|----------------|
| $Ph_5 TeN_3$                          |                |
| пол                                   |                |
| [kJhmol]                              |                |
| $\Delta E$                            |                |
| Energien                              |                |
| relative                              | sätzen.        |
| nnd                                   | sasis          |
| [k][mol]                              | H pun ua       |
| ZPE-Korrektur                         | edenen Methodu |
| [Hartree],                            | mit verschi    |
| Tabelle 6.1.: Energien                | $Ph_2 TeF_4$   |

# 6.3. Organotellur(VI)-Fluoride $R_x$ TeF<sub>6-x</sub> und ihr Verhalten bei Azidierung

Nach der erfolgreichen Synthese der stabilen Azide **13** und **14** sind weitere, höhersubstituierte Organotellur(v1) azide denkbar, weshalb als Edukte die Darstellung aller Moleküle der Typen Me<sub>x</sub>TeF<sub>6-x</sub> (x = 1–5) and Ph<sub>x</sub>TeF<sub>6-x</sub> (x = 1, 2, 3) durchgeführt wurde, die z. T. bereits beschrieben waren. Die bekannten Methoden für die Herstellung der Verbindungen Ph<sub>x</sub>TeF<sub>6-x</sub> (x = 1, 2, 3) erwiesen sich dabei auch für die Darstellung präparativer Mengen als brauchbar, selbst dann wenn lediglich NMR-Experimente beschrieben waren. <sup>144,145,149,151</sup> Eine elegante Verbesserung zur Synthese der R<sub>3</sub>TeF<sub>3</sub>-Derivate ermöglicht dabei die Fluorierung des entsprechenden Triorganotelluronium-Azides [R<sub>3</sub>Te]N<sub>3</sub><sup>18,22</sup> unter Umgehung der problematischen Darstellung der [R<sub>3</sub>Te]F-Verbindungen. <sup>164</sup> Außer *cis*-Me<sub>4</sub>TeF<sub>2</sub>, das als Ausgangsmaterial in der Synthese von Me<sub>6</sub>Te Verwendung fand, <sup>133</sup> ist bisher kein weiteres Me<sub>x</sub>TeF<sub>6-x</sub> (x = 1–5) Derivat dargestellt worden. Wie MORRISON *et al.* bereits berichtet haben, wandelt sich *cis*-Me<sub>4</sub>TeF<sub>2</sub> bei Gegenwart von HF aus der Reaktionslösung langsam in *mer*-Me<sub>3</sub>TeF<sub>3</sub> um, das durch seine <sup>19</sup>F NMR-Signale identifiziert worden ist.

Wie sich herausgestellt hat, kann der experimentelle Ansatz zur Synthese der Phenyltellur(v1)fluoride auch für die analogen Methylverbindungen erfolgreich angewendet werden. Im allgemeinen verlaufen diese Eintopfsynthesen von Me<sub>x</sub>TeF<sub>6-x</sub> und Ph<sub>x</sub>TeF<sub>6-x</sub> (x = 1, 2) über eine erste, schnelle Fluorierung zum Tellur(IV) mit XeF<sub>2</sub>. Die darauf folgende, wesentlich langsamere Weiterreaktion zum Te(vI) kann durch Zugabe von [Et<sub>4</sub>N]Cl deutlich beschleunigt werden, ohne dass messbare Kontamination durch Chlor in den Produkten eintritt. Sowohl für die Methyl- als auch die Phenyltellur(vi)fluoride beobachtet man die gleiche stereochemische Präferenz, dh. nur die mer-R<sub>3</sub>TeF<sub>3</sub> (R = Ph oder Me) Isomere werden gebildet, ein fac-Isomeres wurde auch für die sperrigere Phenylverbindung, die langsamere Isomerisierung zeigen sollte, niemals aufgefunden. Die Verbindungen des Typs R2TeF4 wandeln sich in Lösung in die jeweiligen *trans*-Isomere um (R = Me: schnell; R = Ph: langsam), wohingegen Me<sub>x</sub>TeF<sub>6-x</sub> und Ph<sub>x</sub>TeF<sub>6-x</sub> (x = 3, 4) von vornherein nur als *mer*- bzw. *cis*-Isomer gebildet werden. Die bei der Herstellung von Me2TeF4 benötigten langen Reaktionszeiten zusammen mit der schnellen Isomerisierung verhindern den Nachweis und die Isolierung von cis-Me2TeF4 vollständig. Diese stereochemische Präferenz wird auch von ab initio-Berechnungen auf dem MP2(FC)/ccpVDZ-Niveau vorhergesagt, die mer-Me3TeF3 mit 15.9 kJ/mol begünstigen. Im Falle der cis- und trans-Isomere von Me4TeF2 und Me2TeF4 beträgt die Energiedifferenz (siehe Tabelle 6.2 auf Seite 53) entsprechend 14.5 bzw. 33.6 kJ/mol.



**Abbildung 6.5.:** <sup>125</sup>Te NMR Spektrum von trans-Me<sub>2</sub>TeF<sub>4</sub> ((a) gemessen in CD<sub>2</sub>Cl<sub>2</sub>), mit <sup>1</sup>J<sub>Te-F</sub> (quin, 2826Hz) und <sup>2</sup>J<sub>Te-H</sub> (sept, 71.5Hz) Kopplungen. Im <sup>125</sup>Te{<sup>1</sup>H} NMR-Spektrum konnte im Gegensatz zu Ph<sub>2</sub>TeF<sub>4</sub> ((b) gemessen in C<sub>6</sub>D<sub>6</sub>) keine Spur des cis-Isomeren gefunden werden. trans 84 (Quintett) : cis 16 (Triplett von Tripletts \*) Isomerengemisch.



Abbildung 6.6.: Molekülstruktur von trans-Ph<sub>2</sub>TeF<sub>4</sub> (15a), Wasserstoffatome nicht gezeigt. Ausgewählte Abstände [Å] und Winkel [°]: Te–F1 1.900(2), Te–F2 1.896(2), Te–C1 2.088(3); F1–Te–F2 89.6(1), F2–Te1–C1 89.8(1), F1–Te1–C1 89.9(1), C1–Te–C1 180.00.

Als schwieriger in der Reindarstellung erwiesen sich mer-Me<sub>3</sub>TeF<sub>3</sub> und mer-Ph<sub>3</sub>TeF<sub>3</sub>, da sie leichter in die recht stabilen Telluroniumfluoride [Me<sub>3</sub>Te]F und [Ph<sub>3</sub>Te]F zerfallen können. Versuche, Me<sub>5</sub>TeF analog zu Ph<sub>5</sub>TeCl/Br durch Eintopfsynthese über "Me5TeLi" bei sehr tiefen Temperaturen bis -120 °C herzustellen, sind allesamt fehlgeschlagen. Stattdessen wurden in mehreren Versuchen jeweils Mischungen von Me<sub>6</sub>Te, Me<sub>4</sub>Te, und Me<sub>2</sub>Te durch <sup>125</sup>Te NMR-Spektroskopie identifiziert, ein Beweis für eine Reaktion von Me<sub>4</sub>Te mit MeLi in Diethylether oder THF zwischen -90 und +25 °C konnte nicht erbracht werden. Im Gegensatz zur Darstellung von PhTeF<sub>5</sub>, die bereits beschrieben war, ist MeTeF<sub>5</sub> nicht erfolgreich isoliert worden. Hinweise auf eine hochreaktive Spezies ergaben sich jedoch aus einer überaus heftigen Reaktion von XeF<sub>2</sub> mit (MeTe)2, aus der lediglich das Hydrolyseprodukt trans-MeTeF4OH isoliert werden konnte. Dieses lässt sich durch ein Quintett von Quartetts bei  $\delta$  832 ppm im <sup>125</sup>Te NMR-Spektrum und ein Singulett bei  $\delta$  –32.1 ppm (mit den <sup>125</sup>Te-Satelliten) im <sup>19</sup>F NMR-Spektrum identifizieren. Für PhTeF<sub>4</sub>OH, das bekannte Hydrolyseprodukt von PhTeF<sub>5</sub>, findet man eine Mischung aus *cis*- und *trans*-Isomeren.<sup>146</sup> Dennoch konnten bei der Reaktion von [Me<sub>3</sub>Te]N<sub>3</sub> mit XeF<sub>2</sub> kleine Mengen von MeTeF5<sup>19</sup>F NMR-spektroskopisch durch ihr Quintett und Quartett bei  $\delta$  –21.4 bzw. –36.2 ppm nachgewiesen werden. Neben MeTeF<sub>5</sub> ist bislang nurmehr eine weitere Alkyl-TeF5-Verbindung, nämlich das mäßig stabile ClCF<sub>2</sub>CH<sub>2</sub>TeF<sub>5</sub> von Seppelt et al. beschrieben.<sup>154</sup>

Die Substitution durch Azidgruppen verursacht für die Aryltellur(vI)-Verbindungen eine Tendenz zur Hochfeldverschiebung der <sup>125</sup>Te NMR-Resonanzen im Vergleich zu den Halogeniden Ph<sub>5</sub>TeHal (Hal = F:  $\delta$  580 ppm; Br = 571 ppm) und cis-biphen<sub>2</sub>TeF<sub>2</sub>, ähnlich wie bei den entsprechenden Organotellur(IV)aziden und -Fluoriden).  $^{25,26,58}$  Der Verschiebungsunterschied ist dabei offensichtlich für **13** ( $\delta$  568 ppm) kleiner als für **14** ( $\delta$  633 ppm). Für die Serie Ph<sub>x</sub>TeF<sub>6-x</sub> (x = 1–5) findet man die  $^{125}$ Te NMR-Resonanzen in der Region zwischen  $\delta$  580 und 725 ppm mit  $^{125}$ Te $^{-19}$ F-Kopplungskonstanten von 1500–3600 Hz. Für die Methylderivate Me<sub>x</sub>TeF<sub>6-x</sub> (x = 1–4) liegen sowohl die chemischen Verschiebungen als auch die Kopplungskonstanten bei sehr ähnlichen Werten.

Während im Falle von *cis*-Me<sub>4</sub>TeF<sub>2</sub> und *trans*-Me<sub>2</sub>TeF<sub>4</sub> alle bei -25 °C erhaltenen Kristalle ungeeignet waren, konnten von *trans*-Ph<sub>2</sub>TeF<sub>4</sub> (**15a**) selbst durch Eindampfen an Luft für eine Röntgenstrukturanalyse geeignete Einkristalle erhalten werden. Die Kristallstruktur von **15a** (siehe Abbildung 6.6 auf der vorherigen Seite) weist ein Inversionszentrum auf, somit liegt annähernd  $\mathcal{D}_{4h}$ -Koordination um das Telluratom vor. *Ab initio*- und Dichtefunktional-Rechnungen für die Gasphase zeigen jedoch, dass hier für **15a**  $\mathcal{D}_2$ -Symmetrie zu erwarten wäre, da die beiden Phenylringe nicht koplanar zueinander stehen sollten. Die beiden in der Kristallstruktur gefundenen Te–F Abstände (1.896(2), 1.900(2) Å) weichen nur geringfügig voneinander ab und sind dabei wesentlich kleiner als jene in typischen Te(rv)-Verbindungen ( $\approx 2.0$  Å).<sup>93</sup> Etwas größere Differenzen für die Te–F-Bindungen finden sich naturgemäß aufgrund der verschiedenen Struktur in der Gasphase für  $\mathcal{D}_2$ -Symmetrie (Te–F 1.951/1.962 Å, B3LYP/cc-pVDZ).

Während die Aryltellur(v1)azide **13** und **14** recht stabil sind, waren alle Versuche zur Darstellung von Methyltellur(v1)aziden durch Umsetzung der entsprechenden Fluoride mit Me<sub>3</sub>SiN<sub>3</sub> bei verschiedenen Reaktionsbedingungen leider erfolglos. In allen Fällen erhält man als Zersetzungsprodukte nach Abspaltung von molekularem Stickstoff entsprechend Diazidodimethyl- $\lambda^4$ -tellan<sup>26</sup>

$$\begin{array}{c} cis\text{-Me}_{4}\text{TeF}_{2} \xrightarrow{2 \text{ Me}_{3}\text{SiN}_{3}/25 \,^{\circ}\text{C}} & \text{Me}_{2}\text{Te}(\text{N}_{3})_{2} + [\text{Me}_{3}\text{Te}]\text{N}_{3} + \text{N}_{2} \\ \hline & -\text{Me}_{3}\text{SiF} \end{array} \xrightarrow{3 \text{ Me}_{3}\text{SiN}_{3}/25 \,^{\circ}\text{C}} & \text{R}_{2}\text{Te}(\text{N}_{3})_{2} + [\text{R}_{3}\text{Te}]\text{N}_{3} + \text{N}_{2} \\ \hline & -\text{Me}_{3}\text{SiF} \end{array} \xrightarrow{3 \text{ Me}_{3}\text{SiN}_{3}/25 \,^{\circ}\text{C}} & \text{R}_{2}\text{Te}(\text{N}_{3})_{2} + \text{TeF}_{4} + \text{N}_{2} \\ \hline & \text{trans-R}_{2}\text{TeF}_{4} \xrightarrow{4 \text{ Me}_{3}\text{SiN}_{3}/25 \,^{\circ}\text{C}} & \text{R}_{2}\text{Te}(\text{N}_{3})_{2} + \text{TeF}_{4} + \text{N}_{2} \\ \hline & \text{PhTeF}_{5} \xrightarrow{5 \text{ Me}_{3}\text{SiN}_{3}/25 \,^{\circ}\text{C}} & \text{Ph}_{2}\text{Te}(\text{N}_{3})_{2} + \text{TeF}_{4} + \text{N}_{2} \end{array}$$

**Abbildung 6.7.:** Nachgewiesene Produkte der Reaktion von Organotellur(vI)fluoriden mit Me<sub>3</sub>SiN<sub>3</sub>; R = Ph, Me. und Trimethyltelluronium-Azid, die durch ihre NMR-Resonanzen in den Reaktionslösungen nachgewiesen wurden.<sup>18,22</sup> Im Falle der Reaktionen von PhTeF<sub>5</sub> und R<sub>2</sub>TeF<sub>4</sub> mit Me<sub>3</sub>SiN<sub>3</sub> wurde zudem die Bildung von TeF<sub>4</sub> nachgewiesen, dessen Azidierungsprodukt, das Tetraazid Te(N<sub>3</sub>)<sub>4</sub> (**1**), jedoch nicht beobachtet werden konnte. Möglicherweise wurde bei dieser Reaktion das Azidierungsreagens Me<sub>3</sub>SiN<sub>3</sub> schon zuvor als Reduktionsmittel verbraucht. Höher azidierte Phenyltellur(vI)-Derivate als das Diazid **14** wurden nicht nachgewiesen und zerfielen ebenfalls reduktiv zu Tellur(IV)-Verbindungen. Abbildung 6.7 auf der vorherigen Seite verdeutlicht qualitativ die auftretenden Reaktionen der Organotellur(VI)fluoride mit Me<sub>3</sub>SiN<sub>3</sub>. Die Neigung zum reduktiven Zerfall dieser Verbindungen ist im Einklang mit demjenigen für die Reaktion von TeF<sub>6</sub> mit Me<sub>3</sub>SiN<sub>3</sub>.<sup>59,156</sup> Weiterhin konnte leider kein Beweis für die Existenz von Me<sub>4</sub>TeCl<sub>2</sub> erbracht werden, da bei der Reaktion von SO<sub>2</sub>Cl<sub>2</sub> mit Me<sub>4</sub>Te selbst bei sehr tiefen Temperaturen – ähnlich wie für die Umsetzung von *cis*-Me<sub>4</sub>TeF<sub>2</sub> mit Me<sub>3</sub>SiN<sub>3</sub> – stets reduktive Zersetzung zu [Me<sub>3</sub>Te]Cl beobachtet wurde.

# 6.4. Quantenchemische Untersuchungen an Molekülen der Typen $Me_xTeF_{6-x}$ und $Me_xTe(N_3)_{6-x}$ (x = 0–6)

Zum besseren Verständnis wurde die Berechnung der Strukturen und die topologische *ELF/AIM* bzw. die *NPA*-Analyse der Moleküle vom Typ Me<sub>x</sub>TeF<sub>6-x</sub> und Me<sub>x</sub>Te(N<sub>3</sub>)<sub>6-x</sub> (x = o–6) durchgeführt. Dies auch, um die substituierten Verbindungen mit TeF<sub>6</sub> vergleichen zu können, für das bereits z. T. recht alte theoretische Untersuchungen vorlagen. <sup>165–167</sup> Alle Strukturen wurden dazu in internen Koordinaten voll optimiert bis Strukturen ohne imaginäre Frequenz erreicht waren; Tabelle 6.2 auf der nächsten Seite gibt eine Übersicht.

| re der               |                  |
|----------------------|------------------|
| er-Isome             |                  |
| fac/me               |                  |
| bzw.                 |                  |
| cis/trans-           | sissätzen.       |
| der                  | d Ba             |
| [k]hnol]             | nn nəpc          |
| $\Delta E$           | Metho            |
| Energien             | iedenen 1        |
| relative             | nit versch       |
| pun                  | üle n            |
| [kJhmol]             | 5) Molek         |
| orrekturen           | -x (x = 0 - 0)   |
| ZPE-Ka               | $Te(N_3)_{\ell}$ |
| [Hartree],           | -r und Me        |
| nelle 6.2.: Energien | $Me_{r}TeF_{6-}$ |
| Tał                  |                  |

|               | 0                    | $\Delta E$ | I                      | I                  | I                                  | 0         |              | -26.14    |              | 0         |                 | -19.62    |                 | 0         |                                  | -10.73    |                                  | 0         |                                                  | -2.31     |                                                  | 0         |              | -19.64    |              |
|---------------|----------------------|------------|------------------------|--------------------|------------------------------------|-----------|--------------|-----------|--------------|-----------|-----------------|-----------|-----------------|-----------|----------------------------------|-----------|----------------------------------|-----------|--------------------------------------------------|-----------|--------------------------------------------------|-----------|--------------|-----------|--------------|
|               | MP2(F                | Ε          | $-7210.156^{\ddagger}$ | -7148.768          | -7470.954                          | -7090.325 |              | -7090.335 |              | -7346.883 |                 | -7346.890 |                 | -7030.396 |                                  | -7030.400 |                                  | -7222.818 |                                                  | -7222.819 |                                                  | -6970.456 |              | -6970.463 |              |
| atzen.        | T)                   | $\Delta E$ | I                      | I                  | I                                  | 0         |              | -36.20    |              | 0         |                 |           |                 | 0         |                                  | -18.52    |                                  | 0         |                                                  | -4.03     |                                                  | 0         |              | -12.57    |              |
| en una basiss | CCSD(                | Ε          | $-864.8610^{\dagger}$  | -805.029           | -1125.762                          | -745.177  |              | -745.191  |              | -1001.133 |                 | -1001.759 |                 | -685.315  |                                  | -685.322  |                                  | -877.747  |                                                  | -877.748  |                                                  | -625.445  |              | -625.449  |              |
| пеп метроа    |                      | $\Delta E$ | I                      | I                  | I                                  | 0         |              | -33.62    |              | 0         |                 | -5.80     |                 | 0         |                                  | -15.93    |                                  | 0         |                                                  | -7.50     |                                                  | 0         |              | -14.51    |              |
| u verschiede  | MP <sub>2</sub> (FC) | ZPE        | 39.92                  | 131.11             | 264.85                             | 221.80    |              | 222.44    |              | 330.34    |                 | 329.38    |                 | 312.29    |                                  | 312.65    |                                  | 393.64    |                                                  | 393.36    |                                                  | 401.50    |              | 402.04    |              |
| м этонеките т |                      | Ε          | -864.870               | -805.017           | -1125.732                          | -745.146  |              | -745.158  |              | -1001.714 |                 | -1001.716 |                 | -685.264  |                                  | -685.270  |                                  | -877.690  |                                                  | -877.693  |                                                  | -625.374  |              | -625.379  |              |
| 6-x (x = 0-0) |                      | $\Delta E$ | I                      | I                  | I                                  | 0         |              | -42.37    |              | 0         |                 | -3.59     |                 | 0         |                                  | -24.11    |                                  | 0         |                                                  | -5.28     |                                                  | 0         |              | -11.93    |              |
| 1 Mex le(IN3) | B3LYP                | ZPE        | 38.14                  | 131.12             | 262.98                             | 216.00    |              | 216.33    |              | 327.20    |                 | 325.69    |                 | 304.97    |                                  | 305.15    |                                  | 387.87    |                                                  | 388.51    |                                                  | 391.94    |              | 394.13    |              |
| wn x-9Jer     |                      | Ε          | -867.124*              | -807.208           | -1128.938                          | -747.269  |              | -747.285  |              | -1004.645 |                 | -1004.646 |                 | -687.318  |                                  | -687.327  |                                  | -880.346  |                                                  | -880.348  |                                                  | -627.358  |              | -627.363  |              |
| W             |                      |            | $\mathrm{TeF}_6$       | MeTeF <sub>5</sub> | MeTe(N <sub>3</sub> ) <sub>5</sub> | cis-      | $Me_2 TeF_4$ | trans-    | $Me_2 TeF_4$ | cis-      | $Me_2Te(N_3)_4$ | trans-    | $Me_2Te(N_3)_4$ | fac-      | Me <sub>3</sub> TeF <sub>3</sub> | mer-      | Me <sub>3</sub> TeF <sub>3</sub> | fac-      | Me <sub>3</sub> Te(N <sub>3</sub> ) <sub>3</sub> | mer-      | Me <sub>3</sub> Te(N <sub>3</sub> ) <sub>3</sub> | trans-    | $Me_4 TeF_2$ | cis-      | $Me_4 TeF_2$ |

6.4. Rechnungen an  $Me_x TeF_{6-x}$  und  $Me_x Te(N_3)_{6-x}$  (x = 0–6)

53

\* Basissatz = cc-pVDZ ((8s6p6d)/[4s3p2d]) mit dem MDF28 *small-core*-Pseudopotential.<sup>131</sup>

 $^{\dagger}$  In optimierten Geometrien aus vorangegangenen MP2(FC) Berechnungen. $^{\pm}$ Basissatz = TZVPall. $^{68}$ 

| omere der                                              |         | $\Delta E$ | 0         |                 | -18.94    |                 | I                   | I           | I         | I                                |
|--------------------------------------------------------|---------|------------|-----------|-----------------|-----------|-----------------|---------------------|-------------|-----------|----------------------------------|
| w. fac/mer-Iso<br>setzung).                            | MP2(FG  | Ε          | -7098.737 |                 | -7098.744 |                 | -6910.516           | -6974.659   | -6850.564 | -7595.011                        |
| s/trans- <i>bz</i><br>ätzen (Fort.                     | 0       | $\Delta E$ | 0         |                 | -10.12    |                 | I                   | I           | I         | I                                |
| kJmol] der cis<br>len und Basiss                       | CCSD(1  | Ε          | -753.729  |                 | -753.733  |                 | -565.567            | -629.710    | -505.678  | -1249.581                        |
| rgien $\Delta E ~[$ nen Method                         |         | $\Delta E$ | 0         |                 | -16.68    |                 | I                   | I           | I         | I                                |
| relative Ene<br>it verschiede                          | MP2(FC) | ZPE        | 456.38    |                 | 456.50    |                 | 489.73              | 518.26      | 577.71    | 199.53                           |
| [k]Imol] und<br>) Moleküle m                           |         | Ε          | -753.656  |                 | -753.662  |                 | -565.478            | -629.622    | -505.571  | -1249.736                        |
| orrekturen $_{j-x}(x = 0-6)$                           |         | $\Delta E$ | 0         |                 | -18.16    |                 | I                   | I           | I         | I                                |
| treel, ZPE-K<br>1 Me <sub>x</sub> Te(N <sub>3</sub> )( | B3LYP   | ZPE        | 448.30    |                 | 450.14    |                 | 479.74              | 509.03      | 566.39    | 199.41                           |
| vergien [Har.<br>? <sub>x</sub> TeF <sub>6-x</sub> unu |         | Ε          | -756.037  |                 | -756.043  |                 | -567.388            | -631.729    | -507406   | -1253.222                        |
| <b>Tabelle 6.2.:</b> Er.<br>Mı                         |         |            | trans-    | $Me_4Te(N_3)_2$ | cis-      | $Me_4Te(N_3)_2$ | Me <sub>5</sub> TeF | $Me_5TeN_3$ | $Me_6 Te$ | Te(N <sub>3</sub> ) <sub>6</sub> |
Der AIM-Code in Gaussiano3 erlaubt leider keine Verwendung von Pseudopotentialen, weshalb zunächst versucht wurde, die AIM-Analyse mit AHLRICHS TZVPall Allelektronen-Basissatz für Tellur durchzuführen. Dabei stößt jedoch das Programm wiederum an die Grenze der maximalen Anzahl von Integrationsdomänen, die vermutlich von den polaren Te-F Bindungen hervorgerufen wird. Kleinere Allelektronen-Basissätze sind qualitativ in der Beschreibung der Moleküle bei weitem nicht befriedigend, so dass als einziger Ausweg die Verwendung des AIM-Modules im ToPMoD-Paket bleibt, das den Einsatz von Pseudopotentialen ermöglicht. Dies sollte in Kombination mit den verwendeten small-core Pseudopotentialen zu quantitativ brauchbaren Ergebnissen führen. Die Moleküle der MexTeF6-x Serie weisen eine zunehmende Anzahl von stark ionischen Te-F Bindungen auf, weshalb das Hauptaugenmerk der Untersuchung auf der Bindungssituation des Tellurs und der theoretischen Vorhersage der experimentell gefundenen Präferenz für bestimmte Konfigurationsisomere lag. Ein weiteres, immer noch kontrovers angesehenes Thema ist die angebliche "Hypervalenz" dieser hochkoordinierten Chalkogenverbindungen. Während beispielsweise  $EF_6$  (E = S, Se, Te) in der Vergangenheit als klassische Beispiele für die Verletzung der Oktettregel nach LEWIS galten, die man mit einer spd-artigen Hybridisierung erklärte, so haben weitere theoretische Studien ergeben, dass d-Orbitale nicht im erwarteten Sinne an den Bindungen teilhaben, sondern eher als Polarisationsfunktionen dienen.<sup>169–173</sup> Dennoch bereitet der Begriff der "Hypervalenz" weiterhin Schwierigkeiten, da er - obwohl von vielen Theoretikern als hinreichend genau definiert angesehen - oftmals ungerechtfertigterweise verwendet wird. Man sollte hierbei nicht vergessen, dass selbst das in weiten Kreisen anerkannte NBO-Konzept von WEINHOLD nicht unangreifbar ist. 143,174,175

Die Beschreibung der Moleküle TeF $_6$ , Me $_6$ Te und Te(N $_3$ ) $_6$  ohne 5d Atomorbitale als Hybridisierungsfunktionen führt zu 4-Elektronen-3-Zentren-



Abbildung 6.8.: Je eine KEKULÉ (I) und increased-valence-Struktur (II) des TeF<sub>6</sub>

Bindungen. Wie für TeF<sub>6</sub> schon früher gezeigt, kann man ausgehend von der KEKULÉ-Typ LEWIS-Struktur (I) durch Einelektronen-Delokalisation aus zwei F<sup>-</sup>-Ionen in bindende MOs der F<sup>-</sup>-Te<sup>2+</sup>-Einheiten die *increased-valence* Struktur (II) erzeugen (siehe Abbildung 6.8 auf der vorherigen Seite).<sup>176-179</sup> Mit  $\mathcal{O}_h$ -Symmetrie für TeF<sub>6</sub> ergeben sich 12 äquivalente *increased-valence*-Strukturen die in Resonanz miteinander stehen. Das Telluratom in TeF<sub>6</sub> betätigt zwei sp-Hybridorbitale und bildet in jeder der VB-Strukturen "normale" Te–F-Bindungen aus. Die verbleibenden 5p Atomorbitale beteiligen sich an den 4-Elektronen-3-Zentren-Bindungen. In Lit.<sup>176,177</sup> sind die *increased-valence*-Strukturen des SF<sub>6</sub> (TeF<sub>6</sub> kann analog behandelt werden) mit der Erweiterung des Valenzraumes angegeben.

Die Entwicklung topologischer Methoden bezüglich der Elektronendichte<sup>180</sup> und der Elektronenlokalisationsfunktion<sup>142,143,181–183</sup> bietet eine Alternative zur NBO-Analyse, weitaus zuverlässiger und weniger abhängig vom verwendeten Basissatz als die althergebrachte Diskussion der MULLIKEN-Population.<sup>184</sup> Für Me<sub>6</sub>Te und andere permethylierte Elemente haben neuere *ELF*-Untersuchungen gezeigt, dass die Besetzung der Valenzschale dabei durchaus acht überschreiten kann und somit die Oktettregel "nicht von fundamentaler Bedeutung" ist.<sup>142,143</sup>

Die topologische Analyse der *ELF* für die Me<sub>x</sub>TeF<sub>6-x</sub> und Me<sub>x</sub>Te(N<sub>3</sub>)<sub>6-x</sub> (x = 0–6) Moleküle (zu Grundlagen der ELF-Analyse vgl. Kapitel 9.5 auf Seite 101) führt zum einen zu der Einsicht, dass hier Me-Te Bindungen von deutlich kovalentem Charakter vorliegen, mit einem disynaptischen Becken<sup>§</sup> sehr nahe der exakten Mitte der Kernverbindungsachse und mit einer Besetzung nahe zwei. Die hauptsächlich ionischen Te-F und Te-N Bindungen jedoch führen dazu, dass man zwar für Te-N das disynaptische Becken nahe dem Stickstoffatom auffindet; die V(Te, F) jedoch sind im Gegensatz zu den S-F-Bindungen des  $SF_6$  mit dem monosynaptischen V(F) vereinigt (siehe Abbildung 6.9 auf der nächsten Seite). Die Ergebnisse der ELF-, AIM- und NPA-Analysen sind in Tabelle 6.3 auf Seite 58 wiedergegeben. Wenn man die Unterschiede der Elektronegativitäten und ionischen Bindungsanteile der Bindungen bedenkt, können damit die Verbindungen Me<sub>x</sub>TeF<sub>6-x</sub> und Me<sub>x</sub>Te(N<sub>3</sub>)<sub>6-x</sub> (x = o-6) aber keineswegs einfach in zwei Kategorien eingeteilt werden, was die Anzahl der in den Valenzschalen aufgefundenen Elektronen anbelangt, da all diese Moleküle sich recht ähnlich sind und auch in ihren chemischen Eigenschaften, etwa auch der NMR-Verschiebung stark ähneln.

<sup>&</sup>lt;sup>§</sup>Der originäre englische Ausdruck "basin" wurde hierzu mit "Becken" übersetzt



**Abbildung 6.9.:** Drahtnetzdarstellung der ELF-Isoflächen für trans-Me<sub>2</sub>TeF<sub>4</sub> (oben), mit den disynaptischen Becken V (Te,C) die einer kovalenten Te–C-Bindung entsprechen (grün), und mit den in hohem Maße ionischen Te–F-Bindungen, für die man lediglich mit den monosynaptischen V(F) vereinigte Becken findet (N( $\Omega_{F1}$ ) = 7.8, rot). Gerenderte ELF-Isofläche und Zuordnung der Becken für cis-Me<sub>4</sub>Te(N<sub>3</sub>)<sub>2</sub> (unten) mit den disynaptischen Becken für die Te–C und Te–N<sub>α</sub>-Bindungen (grün), sowie den monosyn aptischen Becken V(N) an N<sub>α</sub> und N<sub>γ</sub> (rot). Attraktorpositionen: Te–V(Te, C1) 1.351Å, V(Te, C1)–C1 0.814Å, N( $\Omega_{Te,C1}$ ) 2.00; Te–V(Te, N1) 1.553Å, V(Te, N1)–N1 0.665Å, N( $\Omega_{Te,N1}$ ) 1.47, N<sub>v</sub>(Te) 10.78. Darstellung mit  $\eta$  = 0.75, Gitterinkrement 0.1Å, Kernbecken in magenta, protonierte Becken blau dargestellt.

| <b>Tabelle 6.3.:</b> Te-F .<br>und N<br>mit ve                        | Bindungslängen<br>VPA-Atomladung,<br>erschiedenen Met | [Å], Te–N <sub>a</sub> Bindun<br>en sowie NPA Elekt<br>thoden und Basissi | ıgslängen [Å], Te–C<br>ronenkonfiguratioi<br>ïtzen. | ' Bindungslängen<br>1en (ElKf) für die | 1 [Å], ELF Valenz<br>Me <sub>x</sub> TeF <sub>6-x</sub> und | schalenpopula)<br>Me <sub>x</sub> Te(N <sub>3</sub> )6–x ( | ion N <sub>v</sub> (Te), AIM-<br>x = 0–6) Moleküle       |
|-----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|
|                                                                       | Te-F                                                  | Te–N $_{lpha}$                                                            | Te-C                                                | $N_{V}(Te)$                            | AIM $q(Te)$                                                 | NPA $q(Te)$                                                | NPA EIKf (Te)                                            |
| TeF <sub>6</sub>                                                      | 1.880                                                 | I                                                                         | I                                                   | I                                      | +3.89                                                       | +3.24                                                      | 5s(1.05) 5p(1.41)<br>6s(0.01)                            |
| MeTeF5                                                                | 1.886 1.904                                           | I                                                                         | 2.080                                               | I                                      | +3.56                                                       | +3.18                                                      | 5d(0.13)<br>5s(1.12) 5p(1.52)<br>6s(0.01)                |
| MeTe(N <sub>3</sub> )5                                                |                                                       | 2.078, 2.090,<br>2.095, 2.118,                                            | 2.105                                               | 9.22                                   | +3.32                                                       | +2.50                                                      | 5d(0.12)<br>5s(1.31) 5p(2.08)<br>6s(0.01)                |
| trans-Me <sub>2</sub> TeF <sub>4</sub>                                | 1.935                                                 | 2.146<br>-                                                                | 2.079                                               | I                                      | +3.23                                                       | +2.98                                                      | 55(0.08)<br>55(1.19)<br>56(0.01)<br>56(0.01)<br>56(0.01) |
| cis-Me <sub>2</sub> TeF <sub>4</sub>                                  | 1.915, 1.925                                          | I                                                                         | 2.098                                               | I                                      | +3.39                                                       | +3.00                                                      | 58(1.16) 5p(1.68)                                        |
| $(e_i)$<br>trans-<br>Me <sub>2</sub> Te(N <sub>3</sub> ) <sub>4</sub> | I                                                     | 2.094, 2.118,<br>2.151 2.161                                              | 2.117, 2.122                                        | 9.53                                   | +3.20                                                       | +2.41                                                      | 55(1.31) 50(0.11)<br>55(1.31) 5p(2.18)<br>65(0.01)       |
| cis-<br>Me <sub>2</sub> Te(N <sub>3</sub> ) <sub>4</sub>              | I                                                     | 2.119, 2.121                                                              | 2.133                                               | 9.86                                   | +2.89                                                       | +2.43                                                      | 5s(1.31) 5p(2.16)<br>6s(0.01)                            |
| $(\mathfrak{F}_i)$<br><i>mer</i> -Me <sub>3</sub> TeF <sub>3</sub>    | 1.951, 1.961                                          | I                                                                         | 2.102, 2.123                                        | I                                      | +3.02                                                       | +2.79                                                      | 5d(0.08)<br>5s(1.20) 5p(1.86)<br>6s(0.01)                |
| fac-Me3 TeF3                                                          | 1.940                                                 | I                                                                         | 2.114                                               | I                                      | +3.19                                                       | +2.80                                                      | 54(0.0)<br>58(1.18) 5p(1.89)<br>68(0.01)<br>5d(0.09)     |

## 6. Tellur(VI)azide und -halogenide

| <b>Tabelle 6.3.:</b> Te–F<br>und<br>mit ı                        | <sup>7</sup> Bindungslängen  <br>NPA-Atomladunge<br>verschiedenen Met <sup>]</sup> | ÅJ, Te-N <sub>a</sub> Bindi<br>m sowie NPA Ele<br>hoden und Basis | ungslängen [Å], Te–(<br>ktronenkonfiguratio<br>ssätzen (Fortsetzung) | C Bindungslängen<br>nen (ElKf) für die<br>). | n [Å], ELF Valenz<br>? Me <sub>x</sub> TèF <sub>6-x</sub> und I | schalenpopulaı<br>Me <sub>x</sub> Te(N <sub>3</sub> ) <sub>6-x</sub> ( | tion $N_v(Te)$ , AIM-<br>x = 0-6) Moleküle                     |
|------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|
|                                                                  | Te-F                                                                               | ${\rm Te-N}_{lpha}$                                               | Te-C                                                                 | N <sub>v</sub> (Te)                          | AIM $q(Te)$                                                     | NPA $q(Te)$                                                            | NPA ElKf (Te)                                                  |
| <i>me</i> r-<br>Me <sub>3</sub> Te(N <sub>3</sub> ) <sub>3</sub> | I                                                                                  | 2.129, 2.132,<br>2.193                                            | 2.127, 2.137,<br>2.156                                               | 10.10                                        | +2.93                                                           | +2.33                                                                  | 5s(1.30)<br>5p(2.27)<br>6e(0.01)                               |
| fac-<br>Me <sub>3</sub> Te(N <sub>3</sub> ) <sub>3</sub>         | I                                                                                  | 2.138, 2.150,<br>2.198                                            | 2.122, 2.134,<br>2.145                                               | 10.06                                        | +3.10                                                           | +2.32                                                                  | 5d (0.07)<br>5s(1.30)<br>5p(2.29)<br>6s(0.01)                  |
| cis-Me4TeF2                                                      | 1.983                                                                              | I                                                                 | 2.124, 2.138                                                         | I                                            | +2.91                                                           | +2.57                                                                  | 5d(0.07)<br>5s(1.21) 5p(2.10)<br>6s(0.01)                      |
| trans-Me4TeF2                                                    | 1.969                                                                              | I                                                                 | 2.144                                                                | I                                            | +2.87                                                           | +2.62                                                                  | 5d(0.09)<br>5s(1.23)<br>5p(2.03)<br>6c(0.03)                   |
| cis-<br>Me4Te(N3)2                                               | I                                                                                  | 2.197, 2.215                                                      | 2.138, 2.145,<br>2.147, 2.162                                        | 10.78                                        | +3.06                                                           | +2.24                                                                  | 5d(0.09)<br>5s(1.29)<br>5p(2.39)<br>6s(0.01)                   |
| <i>trans-</i><br>Me4Te(N <sub>3</sub> ) <sub>2</sub>             | I                                                                                  | 2.155, 2.155                                                      | 2.162 2.162 2.168,<br>2.168                                          | 10.60                                        | +3.10                                                           | +2.29                                                                  | 5d(0.07)<br>5s(1.29)<br>5p(2.33)<br>6s(0.01)                   |
| Me5TeF                                                           | 2.004                                                                              | I                                                                 | 2.157, 2.163,<br>2.165, 2.166                                        | I                                            | +2.68                                                           | +2.38                                                                  | 5d (0. 07)<br>5s(1.24)<br>5p (2. 29)<br>6s(0.01)<br>5d (0. 08) |

| -x (x = 0–6) Moleküle                     | e) NPA ElKf (Te)      | 19 5s(1.28)<br>5p(2.45)             | 5d(0.07)<br>5s(1.25) | 5P(2:50)<br>5d(0.07)<br>i2 5s(1.29) 5p(1.96)<br>6s(0.01) | 5d(0.09) |
|-------------------------------------------|-----------------------|-------------------------------------|----------------------|----------------------------------------------------------|----------|
| 1 Mex Te(N <sub>3</sub> )6-               | NPA q(Te              | +2.1                                | +2.1                 | +2.6                                                     |          |
| lie Me <sub>x</sub> TeF <sub>6-x</sub> um | AIM $q(Te)$           | +3.03                               | +2.63                | +3.52                                                    |          |
| ionen (ElKf) für o<br>g).                 | $N_{V}(Te)$           | 10.79                               | 11.04                | 8.89                                                     |          |
| ktronenkonfigurat<br>sätzen (Fortsetzun   | Te-C                  | 2.155, 2.169,<br>2.170, 2.177 2.181 | 2.192                | I                                                        |          |
| n soure NPA Eler<br>oden und Basis        | ${\rm Te-N}_{\alpha}$ | 2.244                               | I                    | 2.080                                                    |          |
| rrschiedenen Meth                         | Te-F                  | I                                   | I                    | I                                                        |          |
| und N<br>mit ve                           |                       | Me <sub>5</sub> TeN <sub>3</sub>    | Me <sub>6</sub> Te   | $Te(N_3)_6$                                              |          |

## 6. Tellur(VI)azide und -halogenide

## 7. Poly- und Perfluororganotellur(IV)azide

#### 7.1. Kenntnisstand

Obwohl Tellurverbindungen mit perfluorierten Aryl- oder Alkyl-Substituenten seit vielen Jahren bekannt und Ditellane im allgemeinen über viele verschiedene Wege leicht zugänglich sind,<sup>102,185</sup> so bereitet doch die Synthese von C<sub>6</sub>F<sub>5</sub>TeTeC<sub>6</sub>F<sub>5</sub> (**16**) im Besonderen einige Schwierigkeiten.<sup>100,186</sup> Zwar war über **16** schon 1968 berichtet worden,<sup>187</sup> die dabei angegebene Synthese scheint jedoch fragwürdig zu sein.<sup>186</sup> Nachdem NAUMANN *et al.* zunächst glaubten, eine geeignete Darstellungsmethode aufgefunden zu haben, hat sich aber auch diese als nicht reproduzierbar erwiesen. Somit blieb als einzige Möglichkeit die Reaktion nach Standardmethoden für nichtfluorierte Substituenten, was jedoch bekanntermaßen nur zu sehr geringen Ausbeuten deutlich unter 10 % führt.<sup>100</sup> Davon abgesehen ist **16** aber bereits vollständig charakterisiert.

Da **16** als Edukt für die Synthese von C<sub>6</sub>F<sub>5</sub>TeF<sub>3</sub><sup>188</sup> und damit eines Pentafluorphenyltellur-Triazides unverzichtbar ist, wurden weitere, systematische Versuche unternommen um zu einer reproduzierbaren Darstellungsmethode für **16** in zumindest moderaten Ausbeuten zu gelangen. Dies stellt den Ausgangs- und Angelpunkt für die weitergehende Untersuchung von neuartigen Tellur(Iv)diaziden und -triaziden mit stark elektronegativen Substituenten dar.

#### 7.2. Erzeugung und Reaktionen der Tellurolate R<sub>F</sub>TeLi

Der erste Schritt bei der Standardmethode zur Darstellung von Diarylditellanen ist die Reaktion von Lithiumarylen ArLi mit elementarem Tellur. Es ist bekannt, dass aus nicht genau bekannten Gründen diese Insertionsreaktion bei Verwendung von Perfluoraryl-Substituenten R<sub>F</sub>Li versagt.<sup>100,189</sup> Seit einigen Jahren bereits ist vereinzelt über den Einsatz von Phosphantelluriden als lösliche Tellurquelle bzw. den Einsatz von Phosphanen als Aktivierungsreagenzien und Katalysatoren für Tellurinsertionsreaktionen berichtet worden. Neben Ph<sub>3</sub>P<sup>190</sup> kamen dabei v.a. *t*-Bu<sub>3</sub>P und *n*-Bu<sub>3</sub>P zum Einsatz.<sup>191</sup> EDEL-MANN *et al.* berichteten über die Synthese von Bis[2,4,6-tris(trifluoromethyl) phenyl]ditellan mittels *n*-Bu<sub>3</sub>PTe, ohne jedoch experimentelle oder spektroskopische Daten mitzuteilen. Daher wurde versucht, ob mithilfe von *n*-Bu<sub>3</sub>P in der Reaktion von Tellur mit  $R_FLi$  zu  $R_FTeLi$  ( $R_F = C_6F_5$  (**17**) und 4-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub> (**18**)) eine Erhöhung der Ausbeuten möglich ist.

Wie sich herausgestellt hat, sind katalytische Mengen von n-Bu<sub>3</sub>P und Reaktionszeiten von mehr als zwölf Stunden ein brauchbarer synthetischer Weg zu perfluorierten Aryltellurolaten. Dabei wurde ein deutlicher Unterschied zwischen der Stabilität von 17 und 18 beobachtet, je nachdem ob als Lösungsmittel Et<sub>2</sub>O oder THF verwendet wird. Rote Lösungen von 17 und 18 in THF sind selbst beim Sieden unter Rückfluß stabil, aber sehr hydrolyseempfindlich. Sie zeigen verbreiterte <sup>19</sup>F NMR-Resonanzen sowie <sup>125</sup>Te NMR-Signale bei  $\delta$  –323 (17) und -222 ppm (18), entgegen den Trends in Lit.<sup>192</sup> deutlich stärker abgeschirmt als für PhTeLi ( $\delta$  –122 ppm). Ihre Oxidation sowohl an feuchter Luft als auch mit trockenem Sauerstoff führt nicht, oder nur in sehr geringen Mengen, zu den entsprechenden Ditellanen. Mit Iod als mildem Oxidationsmittel werden jedoch über die mäßig stabilen, intermediären Tellurenyliodide R<sub>F</sub>TeI, die auch im <sup>125</sup>Te NMR-Spektrum beobachtet werden konnten ( $\delta$  <sup>125</sup>Te [CDCl<sub>3</sub>] 768 ppm (C<sub>6</sub>F<sub>5</sub>TeI), 781 ppm (4-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>TeI)), die Ditellane (R<sub>F</sub>Te)<sub>2</sub> (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub> (16) und  $4\text{-}CF_3C_6F_4$  (19)) gebildet (Gl. 7.1). Die Isolierung dieser Tellurenyliodide gelang jedoch nicht, da sie schneller Dismutation zu den Ditellanen unterliegen (siehe Kapitel 8 auf Seite 71). Die notwendige Reinigung der Produkte mittels Säulenchromatographie und fraktionierter Kristallisation zur Abtrennung von den Tellanen  $(R_F)_2$ Te bedingt leider eher moderate Ausbeuten; zu-



Abbildung 7.1.: Mögliche Seitenreaktionen bei der Synthese von  $(C_6F_5Te)_2$  (16).

dem treten diverse Nebenreaktionen ein (siehe Abbildung 7.1 auf der vorherigen Seite).

$$R_{\rm F}H \xrightarrow[\text{THF}]{\text{THF}} R_{\rm F}Li \xrightarrow[\text{10 mol}]{\text{Te}/-20\,^{\circ}\text{C}} R_{\rm F}TeLi \xrightarrow[\text{12 /reflux}]{\text{Te}/-20\,^{\circ}\text{C}} (R_{\rm F}Te)_2$$
(7.1)

Das Ditellan (4-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>Te)<sub>2</sub> (**19**) kristallisiert im monoklinen System und der Raumgruppe *C*<sub>2</sub>/*c* mit *Z* = 8 (siehe Abbildung 7.2), seine strukturellen Eigenschaften sind dabei den für (C<sub>6</sub>F<sub>5</sub>Te)<sub>2</sub> (**16**) gefundenen recht ähnlich.<sup>100</sup> Der Diederwinkel C–Te–Te–C ist mit 100.7(3) ° vermutlich aufgrund des höheren Raumbedarfs des Perfluortolyl-Substituenten etwas größer als in letzterem (91.8(1) °).

Wird hingegen für die Lithiierung und Tellurinsertion Et<sub>2</sub>O als Lösungsmittel verwendet, so tritt schon oberhalb von -20 °C ein anderer Reaktionsverlauf in den Vordergrund. Durch inter- oder intramolekulare LiF-Eliminierung wird Oktafluortelluranthren (C<sub>6</sub>F<sub>4</sub>Te)<sub>2</sub> (**20**) gebildet. Diese Reaktion verläuft entweder über einen S<sub>N</sub>Ar-Mechanismus und Additions-Eliminierungs-Schritte, oder zunächst über die Spaltung einer *ortho* C–F Bindung des Tellurolats **17** gefolgt von einem nucleophilen Angriff eines weiteren Moleküls **17**. Letzteres kann als ein Spezialfall einer S<sub>N</sub>1-Reaktion verstanden werden, bei der das intermediäre Zwitterion möglicherweise durch einen Nachbargruppeneffekt in Gestalt eines dreigliedrigen Tellurirens stabilisiert wird wie in Lit.<sup>189</sup> postuliert. Zwischen den möglichen Reaktionswegen kann aufgrund des Produktes **20** jedoch nicht unterschieden werden, da es auf beiden gleichermaßen gebildet werden kann. Im Falle des 4-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>TeLi (**18**) wird bei gleichen Reaktionsbedingungen eine komplexe Mischung mehrerer Produkte gefunden, deren



Abbildung 7.2.: Molekülstruktur von (4-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>Te)<sub>2</sub> (16). Ausgewählte Bindungsabstände [Å] und -winkel [°]: Te1–Te2 2.6948(9), Te1–C1 2.110(8), Te2–C8 2.124(8), C1–Te1–Te2–C8 100.7(3).

Identifizierung und Trennung nicht zweifelsfrei gelang. Nach Rückflußkochen von **17** in Et<sub>2</sub>O stellt das Oktafluortelluranthren ( $C_6F_4Te$ )<sub>2</sub> (**20**) das Hauptprodukt dar und kann nach Flash-Chromatographie in reiner Form erhalten werden. Schon früher war **20**, allerdings durch eine aufwendigere Reaktion, ausgehend von 1,2-Diiod-tetrafluorbenzol mit Tellur bei 300 °C und anschließender Reinigung über Derivatisierung in sein Tetrabromid ( $C_6F_4Te$ )<sub>2</sub>Br<sub>4</sub> dargestellt worden. <sup>193</sup> Demgegenüber stellt die hier vorgestellte Methode eine Verbesserung dar, da sie als Eintopfreaktion mit insgesamt über 30 % Ausbeute verläuft (Gl. 7.2).



## 7.3. $5\lambda^4$ , $10\lambda^4$ -Perfluortelluranthren-Derivate

Da das Oktafluortelluranthren 20 auf die neue, oben beschriebene Weise nunmehr relativ leicht zugänglich ist, war es von Interesse, ob sich dieses zyklische, bifunktionelle Tellan gegenüber Halogenierung mit XeF<sub>2</sub>, SO<sub>2</sub>Cl<sub>2</sub> und Br2 ebenso verhält wie andere Fluoraryltellane.93 Es zeigte sich, dass ganz analog die Tetrahalogeno- $5\lambda^4$ , $10\lambda^4$ -Perfluortelluranthrene (C<sub>6</sub>F<sub>4</sub>Te)<sub>2</sub>F<sub>4</sub> (21),  $(C_6F_4Te)_2Cl_4$  (22) und  $(C_6F_4Te)_2Br_4$  (23) dargestellt werden können, nicht jedoch das Tetraiodid. Alle diese Verbindungen zeigen eine im Vergleich zu 20 deutlich verringerte Löslichkeit, das Fluorid 21 ist selbst in DMSO-D<sub>6</sub> nur in geringem Maße löslich. Während 22 und 23 sehr stabil sind und einfach gehandhabt werden können, so ist **21** anders als etwa  $(C_6F_5)_2$ TeF<sub>2</sub> hochreaktiv gegenüber Glasgefäßen und muss in ihnen bei niedrigen Temperaturen oder alternativ in Teflonkolben gelagert werden. Mit vier Äquivalenten Me<sub>3</sub>SiN<sub>3</sub> tritt verhältnismäßig rasche und vollständige Substitution aller vier an Tellur gebundenen Fluoratome zum Tetraazid  $(C_6F_4Te)_2(N_3)_4$  (24) ein. Alle Halogenderivate (21-23) sind thermisch bis über 330 °C belastbar, nur das Azid 24 zerfällt schon bei 180 °C. Obwohl es nicht reibungsempfindlich zu sein scheint, verpufft es doch beim Kontakt mit der Bunsenflamme.

Im Vergleich zu **20** ( $\delta^{125}$ Te 762 ppm) liegen die  $^{125}$ Te NMR-Resonanzen für die  $_{5\lambda^4,10\lambda^4}$ -Perfluortelluranthren-Derivate, wie für Tellur(IV)-Verbindungen erwartet, etwa um 300 ppm zu tiefem Feld verschoben. Etwas ungewöhnlich ist

dabei nur, dass entgegen dem sonst beobachteten Trend (normalerweise sind die Fluoride am stärksten entschirmt) das Signal des Tetrabromids **23** mit  $\delta$  1172 ppm (in DMSO-D<sub>6</sub> am weitesten tieffeldverschoben wird. In den <sup>19</sup>F NMR-Spektren findet man zwei Sätze Fluorresonanzen, für **21** zusätzlich ein breites Signal bei $\delta$ –63 ppm für die TeF<sub>2</sub>-Einheiten.

Das Tetrabromid kristallisiert beim langsamen Abdunsten einer übersättigten Lösung in Benzol im monoklinen System, Raumgruppe  $P_{21}/c$  mit Z = 2. Die Molekülstruktur von **23** ist in Abbildung 7.4 auf der nächsten Seite gezeigt. In ähnlicher Weise wie bei azyklischen Dibromdiorgano- $\lambda^4$ -tellanen<sup>93</sup> besetzen die Bromatome axiale Positionen, während die äquatorialen Positionen an den Telluratomen mit dem planaren Ringsystem verbunden sind. Im Gegensatz zu den Strukturen von **20** und anderen Te(II)-Telluranthrenen<sup>189,193</sup> ist der innere C<sub>4</sub>Te<sub>2</sub>-Ring planar, da das eine freie Elektronenpaar pro Telluratom nach außen orientiert werden kann. Das Ringsystem verhindert auch jeweils die üblichen sekundären Wechselwirkungen im festen Zustand, die bei R<sub>2</sub>TeX<sub>2</sub> stets gefunden werden und dort die effektive Koordination um das Telluratom erhöhen.<sup>93,113</sup> Die Te–Br Abstände wiederum sind denen in azyklischen R<sub>2</sub>TeBr<sub>2</sub> Verbindungen sehr ähnlich.<sup>93</sup>

### 7.4. Trifluormethyltellur(IV)- und Fluorphenyltellur(IV)azide

Bis(trifluormethyl)tellur(IV)diazid (**25**), Bis(2,6-difluorphenyl)tellur(IV)diazid (**26**) sowie die Trifluormethyltellur(IV)- und Pentafluorphenyltellur(IV)triazide



**Abbildung 7.3.:** Synthese der  $5\lambda^4$ ,  $10\lambda^4$ -Telluranthren-Derivate von **20**.



Abbildung 7.4.: Molekülstruktur von (C<sub>6</sub>F<sub>4</sub>Te)<sub>2</sub>Br<sub>4</sub> (23). Ausgewählte Bindungslängen [Å] und -winkel [°]: Te–Br1 2.6201(11), Te–Br2 2.6615(10), Te–C1 2.120(8), Br1–Te–Br2 174.60(4).

 ${\bf 27}$  und  ${\bf 28}$  können analog zu nichtfluorierten Organotellur-Aziden dargestellt werden (Gln. 73 und 7.4).  $^{26}$ 

$$(R_F)_2 \text{TeF}_2 \xrightarrow[CFCl_3]{Me_3 \text{SiN}_3 / \text{o}^{\circ}\text{C}} (R_F)_2 \text{Te}(N_3)_2; R_F = CF_3 \text{ (25)}, C_6 F_2 H_3 \text{ (26)} (7.3)$$

$$R_{F} TeTeR_{F} \xrightarrow{1. XeF_{2}/2. Me_{3}SiN_{3}} R_{F} Te(N_{3})_{3}; R_{F} = CF_{3} (27), C_{6}F_{5} (28)$$
(7.4)

Das Diazid **26** wurde zur Überprüfung der strukturellen Einflüsse der Aryl-Substituenten dargestellt, was einen Vergleich mit Ph<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> und  $(C_6F_5)_2$ Te(N<sub>3</sub>)<sub>2</sub> erlaubt. Alle vier Verbindungen stellen gelbliche, feuchtigkeitsempfindliche Festkörper dar, wobei **25** unter allen Tellur(IV) diaziden das empfindlichste bezüglich Hydrolyse und Explosionsneigung darstellt. Dies wird wahrscheinlich durch den starken Polarisationseffekt der CF<sub>3</sub>-Gruppe verursacht, welcher die N<sub> $\alpha$ </sub>-N<sub> $\beta$ </sub> Bindung schwächt, und so die Abspaltung von molekularem Stickstoff erleichtert. Das Triazid CF<sub>3</sub>Te(N<sub>3</sub>)<sub>3</sub> (**27**) ist sogar noch empfindlicher und war in reiner Form nicht darstellbar.

Das Pentafluorphenyltellur(IV)triazid  $C_6F_5Te(N_3)_3$  (**28**) wurde in einer Mischung mit ( $C_6F_5$ )<sub>2</sub>Te( $N_3$ )<sub>2</sub> and Te( $N_3$ )<sub>4</sub> (**1**) erhalten. Das intermediär durch die Fluorierung von **16** gebildete  $C_6F_5TeF_3$  neigt bekanntermaßen zur Dismutation in ( $C_6F_5$ )<sub>2</sub>TeF<sub>2</sub> und TeF<sub>4</sub>.<sup>188</sup> Bei der Umsetzung mit Me<sub>3</sub>SiN<sub>3</sub> werden daraus dann die entsprechenden Azide gebildet, die <sup>125</sup>Te NMR-spektroskopisch durch Vergleich mit authentischen Proben in DMSO-D<sub>6</sub> eindeutig identifiziert wurden. Das Diazid ( $C_6F_5$ )<sub>2</sub>Te( $N_3$ )<sub>2</sub> (916 ppm, DMSO-D<sub>6</sub>) wurde dazu nach Lit.<sup>25</sup>, das Tetraazid Te( $N_3$ )<sub>4</sub> (1382 ppm, DMSO-D<sub>6</sub>)

durch direkte Synthese aus TeF $_4$  mit Me $_3$ SiN $_3$  dargestellt (siehe Kapitel 3.2 auf Seite 12 und Lit.<sup>194</sup>).

Die Tellurazide **24–28** zeigen asymmetrische Streckschwingungen ( $v_{as}N_3$ ) der Azidgruppen und intensive Te–N Valenzschwingungen in ihren Raman-Spektren. Für das Tetraazid **24** findet man zwischen 2100 und 2000 cm<sup>-1</sup> mehr als fünf unterschiedliche Banden für die  $v_{as}N_3$ . Im Vergleich zu Me<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub><sup>26</sup> sind bei (CF<sub>3</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (**25**) sowohl die  $v_{as}N_3$  als auch die vTe–N zu etwas höheren Wellenzahlen verschoben. Die vTe–C Streckschwingung, die man für Me<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> bei 550 cm<sup>-1</sup> auffindet, wird nicht beobachtet. Drei unterschiedliche  $v_{as}N_3$  (axial "out of phase", axial "in phase", äquatorial) werden im Falle der Triazide **27** und **28** zwischen 2115 und 2048 cm<sup>-1</sup> gefunden. Im Vergleich zu Ph<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> and (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub><sup>25</sup> liegen die beiden diskreten Banden für die  $v_{as}N_3$  des (C<sub>6</sub>F<sub>2</sub>H<sub>3</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (**26**) bei etwas höheren Wellenzahlen.

Die <sup>125</sup>Te NMR-Resonanzen der Diazide findet man normalerweise – und so auch hier – bei etwas höherem Feld als jene der entsprechenden Difluoride; so z. B. (in CDCl<sub>3</sub>)  $\delta$  <sup>125</sup>Te 1116 (**25**) im Vergleich mit 1200 ppm ((CF<sub>3</sub>)<sub>2</sub>TeF<sub>2</sub>). Die Signale der Triazide **27** und **28** liegen stets bei tieferem Feld als die der Diazide mit gleichem Substituenten.

Durch Überschichten einer gekühlten Lösung von 26 mit n-Hexan er-



Abbildung 7.5.: Molekülstruktur von (C<sub>6</sub>F<sub>2</sub>H<sub>3</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (26). Ausgewählte Bindungsabstände [Å] und -winkel [°]: Te–N1 2.228(2), Te–N4 2.202(2), Te–C1 2.113(2), Te–C7 2.106(3), C–F 1.350(3)–1.362(3), N1–N2 1.213(3), N2–N3 1.142(3), N4–N5 1.229(3), N5–N6 1.136(3), N1–Te–N4 167.71(8), C1–Te–C7 106.56(10), N1–N2–N3 177.5(3), N4–N5–N6 177.1(3).



**Abbildung 7.6.:** Te···N Kontakte in der Struktur des  $(C_6F_2H_3)_2$  Te $(N_3)_2$  (**26**). Ausgewählte Abstände [Å]: Te···N1(i) 3.287(2), Te···N4(ii) 2.970(2); mit i = 1-x, 1-y, 1-z; ii = -x, 1-y, 1-z.

hält man Einkristalle im triklinen System, Raumgruppe  $P\overline{1}$  mit Z = 2. Die Unterschiede in der sterischen Orientierung zwischen Ph<sub>2</sub>Te( $N_3$ )<sub>2</sub> und (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub>, die in der Ausrichtung der Azidgruppen in Bezug auf den Aryl-Substituenten liegt, ist bereits hinsichtlich des sterischen Anspruchs und elektrostatischer Wechselwirkungen der einsamen Elektronenpaare diskutiert worden.<sup>25</sup> Im Falle von **26** wird dieselbe Ausrichtung der Azidgruppen wie in  $Ph_2Te(N_3)_2$  gefunden (siehe Abbildung 7.5 auf der vorherigen Seite), wenn auch in diesem Falle keine Isotypie vorliegt (**26**:  $P\bar{1}$ , Ph<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub>: Pbca). Sowohl in 26 als auch in Ph2Te(N3)2 sind die in axialen Positionen befindlichen Azidgruppen zu den Aryl-Substituenten gewandt; das Gegenteil trifft auf die Struktur des (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> zu. Die Substitution zweier H-Atome gegen Fluoratome am Substituenten, die mit einer Erhöhung der Gruppenelektronegativität einhergeht, verursacht demnach noch keine Änderung der Orientierung. Auch die Te-N Abstände sind jenen in Ph<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> recht ähnlich (Te-N1 2.228(2), Te-N4 2.202(2) Å). Die intermolekularen Te···N-Kontakte (Te···N4 2.970(2), Te···N1 3.287(2) Å) in festem 26 sind zwar kürzer als jene in Ph<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (Te···N 3.141/3.497 Å), erzeugen aber im Prinzip dasselbe Verknüpfungsmuster (Te···N<sub> $\alpha$ </sub>-Te, aber in (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub>: Te···N<sub> $\gamma$ </sub>-Te, kein Te···N<sub> $\alpha$ </sub>, siehe Abbildung 7.6). Daraus kann geschlossen werden, dass die Orientierung der Azidgruppen in Bezug auf den Arylsubstituenten nicht von den sterischen oder elektronischen Verhältnissen abhängt, da diese Effekte beide in bedeutendem Maße auch von den beiden ortho-Difluorphenyl Substituenten

hervorgerufen werden. Vielmehr scheint es sich bei diesen Unterschieden um Packungseffekte zu handeln.

7. Poly- und Perfluororganotellur(IV)azide

## 8. Tellur(II)azide und -halogenide

#### 8.1. Kenntnisstand

Während der letzten Jahre kam es zu einer raschen Entwicklung der Chemie der kovalenten Organotellur-Azide, die hauptsächlich die Te(IV) azide und dann auch Te(v1)azide (siehe Kapitel 6 auf Seite 41) betraf. 20,23,24,26,59,93,195 Das erste Organotellur-Azid jedoch, TsiTeN<sub>3</sub> (Tsi =  $(Me_3Si)_3C$ ), war bereits 1991 von SLADKY zusammen mit anderen Pseudohalogeniden dieses Typs dargestellt worden und verdankt seine Existenz dem außerordentlich sperrigen Alkylsubstituenten. 98,155 Leider waren keine strukturellen Daten berichtet, welche die Existenz einer monomeren TsiTeX (X = (Pseudo)halogenid) Einheit untermauern könnten. Ein großes Hindernis stellt dabei die bekanntermaßen hohe Neigung des Trisylrestes dar, Kristallisation zu erschweren und im festen Zustand Fehlordnungen auszubilden, was exemplarisch an der Struktur des Tritellans (TsiTe)<sub>2</sub>Te, einer Ausgangsverbindung für TsiTeN<sub>3</sub> ersichtlich ist.<sup>196</sup> Da Tellurenylhalogenide RTeHal (Hal = Cl, Br, I) üblicherweise raschen Disproportionierungs- oder Dismutationsgleichgewichten unterliegen, muss man sie entweder kinetisch durch möglichst sperrige Substituenten stabilisieren, oder durch funktionelle Gruppen intramolekular koordinieren.

$$2 \operatorname{RTeHal} \xrightarrow{\text{Dismutation}} (\operatorname{RTe})_2 + \operatorname{Hal}_2$$
(8.1)

$$3 \text{ RTeHal} \xrightarrow{\text{Disproportionierung}} \text{ RTeHal}_3 + (\text{RTe})_2$$
(8.2)

$$2 \text{ RTeHal} \xrightarrow{\text{Disproportionierung}} R_2 \text{TeHal}_2 + \text{Te}$$
(8.3)

Auf diese Weise sind bereits einige Verbindungen der Zusammensetzungen 2,4,6-R<sub>3</sub>C<sub>6</sub>H<sub>2</sub>TeHal (R = *i*-Pr (Trip), *t*-Bu (Mes\*); Hal = Br, I),<sup>197</sup> TsiTeHal (Hal = Cl, Br, I),<sup>198,199</sup> sowie einige donorstabilisierte Tellurenylhalogenide isoliert worden.<sup>200,201</sup> Das einzige strukturell charakterisierte Organotellurenyl-(pseudo)halogenid ohne zusätzliche Donorgruppen ist bislang das tetramere (PhTeI)<sub>4</sub>.<sup>202,203</sup> Die terphenyl-substituierte Verbindung 2,4,6-Ph<sub>3</sub>C<sub>6</sub>H<sub>2</sub>TeI, vermutlich relativ stabil, ist nicht näher untersucht worden.<sup>204</sup> Die Verwendung von sperrigen Substituenten erbringt dabei nicht nur erhöhte kinetische Stabilität, sondern führt auch zu ungewöhnlichen strukturellen Eigenschaften der Edukt-Ditellane. Sowohl für (TsiTe)<sub>2</sub><sup>196,205</sup> als auch für das Hypersilylditellan [(Me<sub>3</sub>Si)<sub>3</sub>SiTe]<sub>2</sub><sup>206</sup> ist eine ungewöhnliche, grüne Farbe in Lösung und im Festkörper beobachtet worden (normalerweise sind Ditellane immer orange bis rot gefärbt), die einer möglichen antiperiplanaren Konformation der RTeTeR-Einheit – verursacht durch den hohen Raumbedarf der Substituenten – zugeschrieben wird. Um auch strukturelle Einblicke zu ermöglichen, wurden die Tpsi (= (PhMe<sub>2</sub>Si)<sub>3</sub>C)<sup>207–210</sup> und Terphenyl (= 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sup>211–213</sup> Substituenten erstmalig in die Tellurchemie eingeführt, in der Hoffnung so kristalline Derivate zu erhalten. Zudem erlaubt der 2-Dimethylaminomethylphenyl-Substituent 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub><sup>200,214</sup> den direkten Vergleich mit der entsprechenden Selenverbindung.

#### 8.2. Tpsi-Derivate

#### 8.2.1. TpsiTeLi – ein monomeres Alkyltellurolat

Der erste Schritt der Synthese von Ditellanen ist üblicherweise die Insertion von Tellurmetall in die entsprechende Organolithium-Verbindung zum Tellurolat (Tellanid) RTeLi, die normalerweise in hohen Ausbeuten verläuft, wobei perfluorierte Lithiumaryle eine Ausnahme darstellen (siehe Kapitel 7.2 auf Seite 61). Trotz der Sperrigkeit von TpsiLi<sup>209,215–217</sup> und 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Li<sup>213</sup> inseriert<sup>\*</sup> auch hier aktiviertes Tellur innerhalb einiger Stunden beinahe vollständig. Im Gegensatz zur Reaktion von TsiLi mit Tellur, bei der auch die Bildung des Ditellurolates TsiTeTeLi bestätigt werden konnte (<sup>125</sup>Te NMR:  $\delta$  –32 und – 190 ppm), <sup>196</sup> beobachtet man für TpsiLi keine zweite Tellurinsertion bei Tellur-überschuß. Das Tellurolat TpsiTeLi (**29**, <sup>125</sup>Te NMR:  $\delta$  –141 ppm) kann in THF dargestellt (Gl. 8.4) und, wiederum in auffälligem Gegensatz zu TsiTeLi, durch Überschichten konzentrierter Lösungen mit gesättigten Kohlenwasserstoffen und Kühlen auf –25 °C kristallisiert werden.

TpsiH 
$$\xrightarrow{\text{MeLi, THE, 4h reflux}}$$
 TpsiLi  $\xrightarrow{\text{Te, 3h}}$  TpsiTeLi (29) (8.4)

Dabei fällt **29** in orangen Prismen im monoklinen System, Raumgruppe  $P_{2_1}/n$  mit Z = 4 an. Die Lithiumkationen in **29** sind tetraedrisch von vier Molekülen THF koordiniert, der kürzeste Te···Li Abstand im Kristall beträgt über 6Å (siehe Abbildung 8.1). Im Unterschied zu den anderen strukturell untersuchten Silyl- und Aryltellurolaten (Me<sub>3</sub>Si)<sub>3</sub>SiTeLi(THF),<sup>206</sup>

<sup>\*</sup>Die übliche Form des Wortes "insertieren" aus "Insertion" ist bezüglich der Ableitung aus dem Lateinischen nicht korrekt. Zwar wird das Substantiv aus dem Partizip Perfekt Passiv "sertum" gebildet, das Stammverb ist jedoch "serere" ohne "t".<sup>218</sup>



Abbildung 8.1.: Molekülstruktur eines Ionenpaares in [TpsiTe][Li(THF)4] (29), Wasserstoffatome nicht dargestellt. Das TpsiTe<sup>-</sup>-Anion ist monomer, der nächste Te···Li-Abstand beträgt 6.128(5) Å. Ausgewählte Bindungslängen [Å] und -winkel [°]: Te1–C1 2.270(4), C1–Si1 1.874(5), C1–Si2 1.866(5), C1–Si3 1.884(5); Te1–C1–Si1 104.4(2), Te1–C1–Si2 105.0(2), Te1–C1–Si3 105.0(2), Si1–C1–Si2 114.4(2), Si1–C1–Si3 114.2(2), Si2–C1–Si3 112.5(2).

Mes\*TeLi(THF)<sub>3</sub> und 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeLi(DME),<sup>219</sup> bildet **29** weder Te···Li Kontakte noch Koordination zu Lewis-Basen aus. Ähnlich wie [(12-Krone-4)<sub>2</sub>Li][TeSi(SiMe<sub>3</sub>)<sub>3</sub>]<sup>220</sup> besteht **29** im Kristall aus diskreten Ionenpaaren mit deutlich getrennten  $Li(THF)_4^+$  Kationen und "nackten" Tellurolat-Anionen. Zusammen mit [n-BuTeLi(TMEDA)]<sub>2</sub>,<sup>221</sup> stellt **29** zwar das einzige strukturell charakterisierte Alkyltellurolat dar, weist aber eine vollkommen andere Struktur auf: Während im [n-BuTeLi(TMEDA)]<sub>2</sub>-Dimer kurze Te···Li Kontakte vorliegen (2.802(6)–2.824(6)Å), ganz ähnlich jenen in den oben erwähnten Aryl- und Silytellurolaten, liegt 29 monomer vor und sein Telluratom ist gewissermaßen "entblößt"; der einzige kurze Abstand ist das ipso-Kohlenstoffatom des Tpsi-Substituenten. Diese Te1-C1 Bindung ist länger als jene in [n-BuTeLi(TMEDA)]2 (2.191(4) und 2.26(1) Å), alle weiteren bekannten Te-C Abstände in den Tellurolaten 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeLi(DME), Mes\*TeLi(THF)<sub>3</sub>, und [CpFe{C5H3(CH2NMe2)TeLi(DME)}]<sup>222</sup> (2.122(2)-2.184(4) Å) sind ebenfalls kürzer. Die Phenylreste der PhMe2Si-Untereinheiten sind von der Mitte des Moleküls weggedreht, offensichtlich um so die sterische Belastung zu minimieren. Obwohl das Telluratom in 29 von seinem Tpsi-Substituenten nicht vollständig umgeben ist, und zudem als sehr weiches nucleophiles Zentrum angesehen werden kann, weist es zusätzlich zum Fehlen einer Te…Li-Koordination keinerlei Wechselwirkung mit den Methyl- oder Phenylresten seines Substituenten auf. Von allen im Rahmen dieser Arbeit kristallographisch untersuchten

Verbindungen mit dem Tpsi-Substituenten zeigt jener in **29** die geringsten Abweichungen von der erwarteten geometrischen Gleichartigkeit der PhMe<sub>2</sub>Si-Untergruppen auf: die C1–Si Abstände sind sehr ähnlich, die Siliziumatome liegen beinahe genau in den Ebenen der Phenylringe, alle drei C1–Si–*ipso*C Winkel liegen um die 112° und die Me–Si–C1–Te Torsionswinkel sind 46 bzw. 166°.

#### 8.2.2. (TpsiTe)<sub>2</sub> – ein planares Dialkylditellan

Die Oxidation von **29** zum entsprechenden Ditellan (TpsiTe)<sub>2</sub> (**30**) stellt sich als ungewöhnlich schwierig heraus. Obwohl die meisten Ditellane durch verschiedene Standardmethoden herstellbar sind, so z. B. (TsiTe)<sub>2</sub> aus TsiTeLi durch Oxidation an feuchter Luft,<sup>196,205</sup> führt dies im Falle von **29** nicht zu **30**, da bei Kontakt mit Feuchtigkeit sofort elementares Tellur abgeschieden wird. Reaktion mit molekularem Sauerstoff unter Feuchtigkeitsausschluß ergibt auch nicht das Ditellan, sondern eine Mischung von (TpsiTe)<sub>2</sub>Te und weiteren nicht identifizierbaren Tellurverbindungen. Auch alternative Verfahren wie die Umsetzung des Tellurolats mit HgCl<sub>2</sub> oder CuCl<sup>205,220</sup> waren erfolglos. Nach vielen Versuchen erwies sich die langsame Zugabe von Iod in Pentan zu frisch dargestellten Lösungen des Tellurolats **29** in THF (Gl. 8.5), wonach **30** in Form eines grünen Niederschlages isoliert werden kann, als einzig gangbarer Weg.

$$\mathbf{29} \xrightarrow[-\text{LiI}]{0.5 \text{ I}_2, \text{ Pentan, 2 h}} (\text{TpsiTe})_2 (\mathbf{30}) \tag{8.5}$$

Bei dieser Synthese reagiert das durch Umsetzung von **29** mit Iod im Unterschuß gebildete TpsiTeI (**31**) mit noch vorhandenem **29** zum Ditellan **30**. Dieses ist verglichen mit (TsiTe)<sub>2</sub> und den Verunreinigungen aus seiner Darstellung in Pentan wesentlich schlechter löslich und kann daher auch vorteilhaft durch Waschen mit Pentan und MeOH gereinigt werden. Im Vergleich zu (TsiTe)<sub>2</sub> scheint **30** im festen Zustand wesentlich stabiler zu sein, wobei es jedoch in Lösung wesentlich empfindlicher ist. Festes **30** kann unzersetzt über ein Jahr aufbewahrt werden, (TsiTe)<sub>2</sub> verfärbt sich unter denselben Bedingungen braun und nimmt bei dieser Zersetzung einen widerlichen Geruch an. Lösungen von **30** sind bei Raumtemperatur nur einige wenige Stunden stabil, man beobachtet eine einzelne <sup>125</sup>Te NMR-Resonanz bei  $\delta$  442 ppm. Bereits nach drei Tagen im Dunklen bei 25 °C findet man in CDCl<sub>3</sub> vollständigen Zerfall unter Abscheidung elementaren Tellurs in das Tritellan (TpsiTe)<sub>2</sub>Te (<sup>125</sup>Te NMR:  $\delta$  519, 496 ppm). Dennoch lassen sich durch Eindunsten von gesättigten Lösungen in CH<sub>2</sub>Cl<sub>2</sub> grüne Prismen von **30** ohne Solvat erhalten. Sublimationsversuche



Abbildung 8.2.: Molekülstruktur von (TpsiTe)<sub>2</sub> (30, *C<sub>i</sub>*) im Kristall, Wasserstoffatome der besseren Übersichtlichkeit halber nicht gezeigt. Ausgewählte Bindungslängen [Å] und -winkel [°]: Te1–Te1(i) 2.7717(5), Te1–C1 2.221(3), C1–Si1 1.923(3), C1–Si2 1.938(1), C1–Si3 1.907(3); C1–Te1–Te1(i) 106.71(9), Te1–C1–Si1 112.5(2), Te1–C1–Si2 97.8(1), Te1–C1–Si3 104.9(1), Si1–C1–Si2 110.6(2), Si1–C1–Si3 116.5(2), Si2–C1–Si3 112.9(2).

bei 30–100 °C/10<sup>-3</sup>–10<sup>-5</sup> mbar waren leider erfolglos, oberhalb 100 °C kommt es zu langsamen, thermischem Zerfall. Die ungewöhnliche grüne Farbe von **30** deutet bereits auf eine besondere Konformation hin. <sup>206</sup> Das Dialkylditellan **30** kristallisiert dabei im monoklinen System, Raumgruppe  $P_{21}/n$  mit Z = 2(siehe Abbildung 8.2).

Die Molekülgestalt von **30** wird erwartungsgemäß vom Raumanspruch der beiden extrem sperrigen Tpsi-Substituenten bestimmt, so dass die Phenylringe der PhMe<sub>2</sub>Si-Untereinheiten gegenseitig auf Lücke stehen. Es wird klar, dass so eine antiperiplanare Konformation ( $\mathscr{C}_i$ -Symmetrie) günstig wird, bei der das Inversionszentrum (*i*) mit der Mitte der Te–Te-Kernverbindungsachse zusammenfällt. Da die Spezies (RE)<sub>2</sub> (E = O, S, Se, Te) normalerweise R–E–E–R Diederwinkel um 100° und somit antiklinale (gauche) Konformation aufweisen, stellt der antiperiplanare Bau von **30** insofern eine Besonderheit dar. Die planaren Strukturen von (2-MeOC<sub>6</sub>H<sub>4</sub>COTe)<sub>2</sub><sup>223</sup> und (3-Cl-2-TeC<sub>5</sub>H<sub>3</sub>N)<sub>2</sub> (tiefblau)<sup>224</sup>

werden im Gegensatz dazu höchstwahrscheinlich durch elektronischen Einfluß des Substituenten bzw. die funktionellen Gruppen verursacht; zudem findet man in (3-Cl-2-TeC5H3N)2 einen ungewöhnlich kleinen C-Te-Te Winkel, der auf intramolekulare Te···N-Koordination hindeutet. Die einzige wirklich mit 30 vergleichbare Verbindung stellt das teilweise fehlgeordnete Trisyldiselan (TsiSe)<sub>2</sub> dar,<sup>225</sup> womit **30** das einzige strukturell charakterisierte planare Dialkylditellan ist. Weiterhin fällt der besonders lange Te-Te Abstand in **30** auf (2.7717(5) Å), der nach einer Recherche (CCDC-Datenbank, 2004) der längste für Ditellane beobachtete Bindungsabstand zu sein scheint (Paulings Einfachbindung für Te: 2.74 Å<sup>226</sup>). Der C1–Te–Te(*i*) Winkel ist mit 106.71(9) ° gegenüber anderen Ditellanen (bei 100° gelegen) leicht aufgeweitet. Von einer Fußnote in Lit.<sup>199</sup> abgesehen, in der für (TsiTe)<sub>2</sub> ein Te-Te Abstand von 2.783 Å angegeben wird, finden sich keine Angaben über diese Struktur in der CCDC-Datenbank sowie in den Originalarbeiten aus der Arbeitsgruppe SLADKYS.<sup>198,205</sup> Verglichen mit 29 weisen die PhMe2Si-Untergruppen in 30 wesentlich stärkere geometrische Abweichungen voneinander auf: Die C1-Si Abstände liegen hier zwischen 1.938(1) und 1.907(3) Å, die Te-C-Si Winkel zwischen 97.8(1) und 112.5(2) °. Die Konformationen um die C1-Si Achse sind ebenfalls recht verschieden, was an den Te-C1-Si-Me Torsionswinkeln von 35.2(2)-58.6(2) ° bzw. 156.9(2)-179.1(2) ° deutlich wird.



Abbildung 8.3.: Molekülstruktur von TpsiTeI (31), Wasserstoffatome der besseren Übersichtlichkeit halber nicht gezeigt. Ausgewählte Bindungslängen [Å] und -winkel [°]: Te1–I1 2.6915(8), Te1–C 2.214(4), Si1–C1 1.880(5), Si1–C7 1.874(5), Si1–C8 1.866(5); C–Te1–I1 110.4(1), C–Si1–C1 115.5(2), C–Si1–C7 109.5(2), C–Si1–C8 111.6(2), C1–Si1–C7 104.0(2), C1–Si1–C8 105.7(2), C7–Si1–C8 110.3(2).

#### 8.2.3. TpsiTeI - ein monomeres Tellurenyliodid

Durch Spaltung von **30** mit Iod kann das Alkantellurenyliodid TpsiTeI (**31**, <sup>125</sup>Te NMR:  $\delta$  1199 ppm) analog zum bereits beschriebenen TsiTeI (<sup>125</sup>Te NMR:  $\delta$  1182 ppm)<sup>198,199</sup> als dunkelgrüner Feststoff (blau in THF) dargestellt werden. Die starke kinetische Stabilisierung von **31** äußert sich im Fehlen des üblichen Zerfallsweges durch Dismutation in I<sub>2</sub> und **30**; stattdessen zerfällt **31** in TpsiI unter Abscheidung elementaren Tellurs. So gelingt auch die Kristallisation von **31** nur gemeinsam mit TpsiI. Beide Verbindungen konnten röntgenkristallographisch identifiziert werden, wobei die Kristallstruktur von **31** auch verfeinert wurde. Die dunkelgrün bis schwarz gefärbten Quader kristallisieren im monoklinen System, Raumgruppe  $P_{21}/c$  mit Z = 4 (siehe Abbildung 8.3 auf der vorherigen Seite, vergleichende Diskussion der Tellurenyliodide auf Seite 79).

Als eine nur wenig sperrigere Alternative zum Tsi-Substituenten, mit eventuell höher Kristallisationsneigung, wurde auch die Eignung des Tesi (= (EtMe<sub>2</sub>Si)<sub>3</sub>C) Substituenten zur kinetischen Stabilisierung von Tellurenyliodiden und -aziden untersucht. Leider erwies sich jedoch die Reindarstellung der Verbindungen (TesiTe)<sub>2</sub>Te, TesiTeI (**32**) und TesiTeN<sub>3</sub> (**33**) als unmöglich. Dennoch wurden die Substanzen eindeutig durch <sup>125</sup>Te NMR-Spektroskopie identifiziert (siehe Tabelle 8.1 auf Seite 82).

#### 8.3. Sperrige Aryl- und Terphenyl-Derivate

Da aufgrund seiner verhältnismäßig schwachen Stabilität TpsiTeI (**31**) nicht in spektroskopisch reiner Form zugänglich war, ist daraus zu schließen, dass zwar der Tpsi-Substituent sperrig genug ist, um Dismutationsreaktionen zu unterbinden, jedoch ein aromatischer Rest von vergleichbarer oder besserer Raumfülle in Bezug auf die Stabilität der C–Te–I Gruppierung überlegen sein könnte. Daher wurde nicht nur die Eignung der bekannten Tellurenyliodide TripTeI und Mes\*TeI (Trip = 2,4,6-*i*-Pr<sub>3</sub>C<sub>6</sub>H<sub>2</sub>; Mes\* = 2,4,6-*t*-Bu<sub>3</sub>C<sub>6</sub>H<sub>2</sub>),<sup>197</sup> sondern auch jene von 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeI als mögliche Kandidaten für die erfolgreiche Synthese stabiler Organotellurenylazide untersucht.

Durchaus vergleichbar mit TpsiLi reagiert 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Li<sup>213</sup> mit aktiviertem Tellurpulver zu tiefroten Lösungen des Tellurolats 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeLi, das im Gegensatz zu TpsiTeLi (**29**) an feuchter Luft oxidiert werden kann, wobei Mischungen der Di- und Tritellane (2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Te)<sub>2</sub> (**34**, <sup>125</sup>Te NMR:  $\delta$  332 ppm) bzw. (2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Te)<sub>2</sub>Te (554 *Te*-Te-*Te*; 425 ppm Te-*Te*-Te) entstehen. Umsetzung dieser Reaktionsmischungen mit überschüssigem Quecksilber in Analogie zur erfolgreichen Detellurierung von (TsiTe)<sub>2</sub>Te zu (TsiTe)<sub>2</sub> liefert das gewünschte Ditellan **34** nur in geringen Mengen. Stattdessen findet man neben einer nicht identifizierten Verbindung bei  $\delta$  402 ppm das Insertionsprodukt (2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Te)<sub>2</sub>Hg, das NMR-spektroskopisch eindeutig identifiziert werden konnte (<sup>199</sup>Hg NMR:  $\delta$  –1802 ppm, <sup>1</sup>J<sub>199Hg-125Te</sub> = 7050 Hz;  $^{125}$ Te NMR:  $\delta$  199 ppm, Kopplung zu  $^{199}$ Hg bestätigt dies). Da Terphenyldi-und -tritellan auch chromatographisch keiner präparativen Trennung zugänglich sind, wurden sie beide zunächst durch Titration mit Iod in das ungewöhnlich stabile Terphenyltellurenyliodid 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeI (**35**,  $^{125}$ Te NMR:  $\delta$  944 ppm) umgewandelt. Alle Reaktionslösungen enthalten unglücklicherweise wechselnde Anteile an 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>I aus unvollständiger Lithiierung, teilweiser Hydrolyse oder aus dem oxidativen Schritt (Tellurunterschuß bei der Umwandlung zum Tritellan). Die Trennung des 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>I vom erwünschten **35** war nur durch Reduktion desselben mit Superhydrid<sup>©</sup> (Li[BEt<sub>3</sub>H]) zu **34** und anschließende Säulenchromatographie möglich. Das Ditellan 34 wird erstaunlicherweise sowohl von Superhydrid<sup>©</sup> als auch von Lithiummetall nicht weiter, d.h. nicht zu 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeLi reduziert. Obgleich **34** und **35** bei Raumtemperatur und im Tageslicht sowohl im festen Zustand als auch in Lösung stabil sind, so erfolgt doch die gegenseitige Umwandlung, also die Spaltung von 34 in 35 mit Iod sowie die Reduktion von 35 in 34 mit Li[BEt<sub>3</sub>H], überraschend schnell. Im Vergleich zu (TpsiTe)<sub>2</sub> (**30**), TpsiTeI (**31**) und Mes\*TeI, die sich alle entweder in Lösung oder durch Bestrahlung zersetzen, ist die Stabilität von 34 und 35 gegenüber Luft, Feuchtigkeit, Licht und Dismutation bei Raumtemperatur sicherlich außergewöhnlich.

Durch langsames Eindunsten von Lösungen in CH<sub>2</sub>Cl<sub>2</sub>/Pentan kann 35 in dunkelblauen Plättchen, orthorhombisches System, Raumgruppe Pnma mit Z = 4 kristallisiert werden (siehe Abbildung 8.4 auf Seite 80). Unter den zahlreichen Tellur-Iod-Verbindungen sind bislang lediglich zwei neutrale Organotellurenyliodide, (PhTeI)4<sup>202,203</sup> und 2-Me2NCH2C6H4TeI<sup>201</sup> kristallographisch untersucht worden. Das extrem sperrige terphenyl-substituierte Tellurenyliodid 35 stellt das erste kinetisch stabilisierte Beispiel seiner Art dar, für das eine Röntgenstrukturanalyse möglich war. Die Te-I Einheit darin kann als fehlgeordnet über die Spiegelebene des Gesamtmoleküls beschrieben werden. Die Verfeinerung gelang mit Tellur- und Iodatomen, weggerückt von besonderen Lagen auf der Spiegelebene mit einem SOF (site occupation factor) von 0.5. Der Te-I Abstand in 35 ist deutlich kürzer als jene in (PhTeI)<sub>4</sub> und 2-Me<sub>2</sub>N-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeI (2.617(1) vs. 2.799–2.842(4) und 2.898(4) Å), und der C–Te–I Winkel ist erwartungsgemäß deutlich größer als in der tetrameren Spezies (106.2(2) vs. 92.3–94.0°). Die *i*-Pr-Gruppen der Trip-Substituenten sind von den Schweratomen weggedreht, und ihre Ringebenen weichen dem Iodatom aus, um sterische Wechselwirkungen zu vermeiden. Weder die Tellur- noch die Iodatome in 35 zeigen intermolekulare, sekundäre Wechselwirkungen, weshalb die Kristallstruktur als die erste monomere eines Tellurenylhalogenids angesehen werden muss. Die in der Röntgenstruktur aufgefundenen Trends werden auch durch Dichtefunktionalrechnungen bestätigt, die von einer idealisierten Struktur aus gestartet wurden. $^{\dagger}$ 

Im Rahmen dieser Untersuchungen gelangt auch die Bestimmung der Kristallstruktur von Mes\*TeI (36) (Siehe Abbildung 8.6 auf Seite 81), das in sehr dünnen, intensiv grün gefärbten Nadeln im monoklinen System, Raumgruppe  $P_{21}/c$  mit Z = 4 kristallisiert. Beim Vergleich des monomeren Alkantellurenyliodids TpsiTeI (31) mit den beiden Arentellurenvliodiden 36 und 35 finden sich Te-I Bindungslängen von 2.6915(8) Å bzw. 2.7179(7) Å und 2.617(1) Å. Während dieser Abstand für 31 und 36 relativ ähnlich ist, fällt er für 35 deutlich kürzer aus. Die Te-C Bindungslängen betragen 2.214(4) Å bzw. 2.136(6) Å und 2.154(4) Å, hierbei wirkt sich also eher der Unterschied zwischen Alkyl- und Aryl-Substituenten aus. Alle hier strukturell charakterisierten Tellurenyliodide liegen monomer mit gewinkelter C-Te-I Einheit vor (95.6-110.4°) und sind blau oder grün gefärbt. Signifikante Te···I-, Te···Te- oder I···I-Kontakte bestehen nicht. Die Struktur der zu 36 homologen Selenverbindung Mes\*SeI ist seit einiger Zeit bekannt,<sup>227</sup> ähnlich wie dort findet man auch für die Aryltelluro-Einheit in 36 leichte Abweichungen von der Planarität, die für 2,4,6-tri-tert-butylphenylsubstituierte Systeme jedoch nicht unüblich sind.<sup>228</sup>

# 8.4. Synthese und Charakterisierung stabiler Alkan- und Arentellurenylazide

Um die Stabilität von Tellurenylaziden im Allgemeinen vergleichen zu können, wurden drei Typen von gegenüber rascher Dismutation stabilen Tellurenyliodiden mit Silberazid in Toluol/Acetonitril umgesetzt: Die extrem sperrigen Alkantellurenyliodide TpsiTeI (**31**), TesiTeI (**32**) und TsiTeI, <sup>199</sup> die sterisch überladenen Arentellurenyliodide TripTeI, Mes\*TeI, <sup>197</sup> und 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeI (**35**), sowie das durch intramolekulare Koordination stabilisierte Arentellurenyliodid 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeI.<sup>201</sup> In all diesen Reaktionen (Gl. 8.6) tritt vollständiger Umsatz zu den entsprechenden Tellurenylaziden TpsiTeN<sub>3</sub> (**37**), TesiTeN<sub>3</sub> (**33**), TsiTeN<sub>3</sub>, <sup>98</sup> TripTeN<sub>3</sub> (**38**), Mes\*TeN<sub>3</sub> (**39**), 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeN<sub>3</sub> (**40**) und 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeN<sub>3</sub> (**41**) ein.

$$(\text{RTe})_2 + I_2 \xrightarrow{\text{Toluol}} 2 \text{ RTeI} + \text{AgN}_3 \xrightarrow{\text{Toluol/MeCN}} 2 \text{ RTeN}_3$$
 (8.6)

<sup>&</sup>lt;sup>†</sup>Zum Zeitpunkt der Rechnungen lag die Röntgenstrukturanalyse noch nicht vor.



Abbildung 8.4.: Molekülstruktur von 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeI (35), Wasserstoffatome und die zweite, durch Fehlordnung über die kristallographische Spiegelebene erzeugte Te–I Einheit nicht abgebildet. Ausgewählte Bindungslängen [Å] und -winkel [°]: Te1–I1 2.617(1), Te1–C1 2.136(6); C1–Te1–I1 106.2(2), I1– Te1–C1–C2 103.5(4), Te1–C1–C2–C3 170.4(3), C1–C2–C5–C6 83.8(6).



Abbildung 8.5.: Reaktionsschema zur Synthese der reinen Verbindungen (2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Te)<sub>2</sub> (34) und 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeI (35).



 
 Abbildung 8.6.: Molekülstruktur von 2,4,6-t-Bu<sub>3</sub>C<sub>6</sub>H<sub>2</sub>Tel (36), Wasserstoffatome nicht gezeigt. Ausgewählte Bindungslängen [Å] und -winkel [°]: Te1–II 2.7179(7), Te1–C1 2.154(4); C1–Te1–II 95.6(1), Te1–C1–C2–C3 162.5(1).

Schnelle Eintopfreaktionen von (PhTe)<sub>2</sub> und (MesTe)<sub>2</sub> (Mes = 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>) mit I<sub>2</sub> und anschließend mit AgN<sub>3</sub> zeigten, dass diese weniger sperrig substituierten Tellurenylazide nicht stabil gegenüber reduktivem Zerfall sind und man lediglich die eingesetzten Ditellane isolieren kann. Während Mes\*TeN<sub>3</sub> (39) für über ein Jahr bei -25 °C in Lösung weitgehend unzersetzt gelagert werden konnte, wird TripTeN<sub>3</sub> (38) bei gleichen Bedingungen vollständig in (TripTe)2 umgewandelt. Ein noch stabileres Arentellurenylazid stellt 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeN<sub>3</sub> (40) dar, das bei Raumtemperatur ohne Zersetzung in Lösung gelagert werden kann und laut <sup>125</sup>Te NMR nach über zwei Monaten erst zu ca. 50 % Zerfall zeigt. In den  $^{125}\mathrm{Te}$  NMR-Spektren der Tellurenvlazide findet man scharfe Resonanzen zwischen 2235 und 1630 ppm mit einer deutlichen Entschirmung in Bezug auf die entsprechenden Iodide ( $\delta$  2235 (**38**) vs. 842 (TripTeI) ppm,  $\delta$  1630 (41) vs. 1204 (2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>Te) ppm) (siehe Tabelle 8.1 auf der nächsten Seite). Die für alle diese Azide aufgefundenen drei <sup>14</sup>N NMR-Resonanzen deuten auf kovalente Natur hin. Von allen Te(II)aziden im Rahmen dieser Untersuchungen weist 41 die geringste Tieffeldverschiebung im <sup>125</sup>Te NMR-Spektrum auf, was wohl von der starken Te···N-Koordination verursacht wird.

Die hohen Löslichkeiten von **41** und dem analogen Selenenylazid 2-Me<sub>2</sub>N-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>SeN<sub>3</sub> ermöglichten erstmals den direkten Vergleich der <sup>15</sup>N NMR-Spektren zweier homologer Chalkogenazide (siehe Abbildung 8.7 auf Seite 83). Während bei <sup>14</sup>N NMR-Spektren kovalenter Tellurazide die Resonanzen von N<sub>α</sub> und N<sub>γ</sub> immer mehr oder weniger verbreitert sind, was in einigen Fällen bis zur Unauffindbarkeit des N<sub>α</sub>-Signales führen kann (siehe Abbildung 6.3 auf Seite 45), findet man im Falle von **41** und 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>SeN<sub>3</sub> die <sup>15</sup>N-Resonanzen aller vier Stickstoffkerne als scharfe Signale. Der Ersatz von Selen

| Substituent R =                                                                  | Lm.               | RTeTeTeR | RTeTeR            | RTeI               | RTeN3              |
|----------------------------------------------------------------------------------|-------------------|----------|-------------------|--------------------|--------------------|
| Tpsi (= $(PhMe_2Si)_3C)$                                                         | CDCl <sub>3</sub> | 519, 496 | 442 ( <b>30</b> ) | 1199( <b>31</b> )  | 1952 ( <b>37</b> ) |
| Tsi (= $(Me_3Si)_3C)^a$                                                          | $CDCl_3$          | 504, 352 | 363               | 1182               | 2032               |
| Tesi (= $(EtMe_2Si)_3C)$                                                         | $C_6D_6$          | 498, 397 | 376               | 1195 ( <b>32</b> ) | 2031 ( <b>33</b> ) |
| Trip (= 2,4,6- $i$ -Pr <sub>3</sub> C <sub>6</sub> H <sub>2</sub> ) <sup>a</sup> | $C_6D_6$          | -        | 204               | 842                | 2235 ( <b>38</b> ) |
| $Mes^* (= 2,4,6-t-Bu_3C_6H_2)^a$                                                 | $C_6D_6$          | -        | 568 <sup>b</sup>  | 1162               | 1981 ( <b>39</b> ) |
| 2,6-Trip <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                              | $C_6D_6$          | 554, 425 | 332 ( <b>34</b> ) | 944 ( <b>35</b> )  | 1860 ( <b>40</b> ) |
| 2-Me <sub>2</sub> NCH <sub>2</sub> C <sub>6</sub> H <sub>4</sub> <sup>a</sup>    | $CDCl_3$          | -        | 373               | 1204               | 1630 ( <b>41</b> ) |

Tabelle 8.1.: <sup>125</sup> Te NMR-Verschiebungen der Tellurenyliodide, -azide und Polytellane.

<sup>a</sup> Bei bekannten Verbindungen sind die im Rahmen dieser Arbeit gemessenen Werte angegeben.
<sup>b</sup> Der Shift von 320 ppm in Lit.<sup>197</sup> ist höchstwahrscheinlich fehlerhaft.

durch Tellur zeigt im Vergleich eine schwächere Entschirmung aller Kerne in **41** ausgenommen N<sub>β</sub>. Das Verhältnis  $\delta^{(125}\text{Te})/\delta^{(77}\text{Se})$  liegt bei etwa 1.55 und somit nahe den Verhältnissen aus dem Vergleich anderer homologer Verbindungen des Selens und Tellurs (1.6–1.8).<sup>229</sup>

Die baroloroten Lösungen des Alkantellurenvlazids 37 unterliegen bei Raumtemperatur einer langsamen Zersetzung sowohl reduktiv in das entsprechende Ditellan 30 als auch, in geringerem Maße als bei TpsiTeI (31) beobachtet, in Tpsil. Um die spektroskopischen Eigenschaften von 37 vergleichen zu können, wurde auch das einzige andere bislang beschriebene Alkantellurenylazid, TsiTeN<sub>3</sub>,98 dargestellt. Der Unterschied zwischen den beiden Verbindungen liegt nicht in ihrer Stabilität sondern in der Tatsache, dass ähnlich wie für das Tellurolat 29 und das Ditellan 30 gezeigt, nach einigen Monaten bei -25°C aus Lösungen in Benzol/MeCN rote Nadeln von 37 erhalten werden konnten, die im orthorhombischen System, Raumgruppe Pbca mit Z = 4 und einem Molekül Benzol als Solvat kristallisierten. Der hohe Raumbedarf des Tpsi-Substituenten führt, ganz ähnlich wie in der Kristallstruktur von 31 zu einer monomeren RTeN3-Einheit. Die einzige strukturell charakterisierte Verbindung mit RTeX-Einheiten ohne weitere funktionelle Gruppen, das (PhTeI)<sub>4</sub>,<sup>202,204</sup> besteht aus tetrameren, quadratisch-planaren Einheiten, die über lange Te $\cdot \cdot \cdot$ I-Wechselwirkungen ein [Te<sub>4</sub>I<sub>4</sub>]<sub>n</sub>-Netzwerk aufspannen. Im Gegensatz dazu zeigt 37, obwohl Te···N-Sekundärbindungen in Organotellur(IV) aziden wohlbekannt sind, lediglich zweifache Koordination am Telluratom. Damit ähnelt 37 in gewisser Weise mehr dem Organotellur(vi)azid  $(biphen)_2 Te(N_3)_2$  (14, siehe Abbildung 6.4 auf Seite 46), das ebenfalls keine Te···N-Wechselwirkungen aufweist. Gegenüber den bei Organotellur(IV) aziden gefundenen Te-N Abständen zwischen 2.0 und 2.2Å ist die Te-N Bindung in 37 eher kurz (2.063(7)Å). Der Te1-N1-N2 Winkel von 115.7(6)° gleicht denen in  $[Te(N_3)_5]^-$  (2, siehe Abbildung 3.4 auf Seite 16) und 14, ungewöhnlich



Abbildung 8.7.: <sup>15</sup>N{<sup>1</sup>H} MR-Spektren von 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>SeN<sub>3</sub> (oben, Lit. <sup>15</sup>) und 41 (unten) in CDCl<sub>3</sub> bei 25 °C. Die Resonanzen der Me<sub>2</sub>N-Gruppen erscheinen aufgrund eines großen NOE-Effektes mit anderem Vorzeichen.

sind die sehr ähnlichen N<sub> $\alpha$ </sub>-N<sub> $\beta$ </sub> und N<sub> $\beta$ </sub>-N<sub> $\gamma$ </sub> Abstände (N1–N2 1.177(12), N2–N3 1.168(12) Å), auch weil der N1–N2–N3 Winkel ganz im Rahmen des Üblichen für kovalente (Tellur)Azide liegt (175.4(9) °).

Im Gegensatz zu **37** gelang es nicht, von **38** oder **39** geeignete Einkristalle für eine Strukturanalyse zu züchten, da diese Verbindungen bei allen Versuchen nur als amorphe rote Pulver erhalten wurden. Dennoch war die strukturelle Charakterisierung eines Arentellurenylazides durch die besondere Stabilität und Löslichkeit des Terphenyltellurenylazides 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeN<sub>3</sub> (**40**) in gesättigten Kohlenwasserstoffen möglich. Durch Abkühlung einer bei Raumtemperatur gesättigten Lösung in *n*-Hexan kristallisierten dunkelbraune Quader im orthorhombischen System in der Raumgruppe *Pbcm* mit *Z* = 4 (siehe Abbildung 8.9 auf Seite 85). Ganz ähnlich dem entsprechenden Arentellurenyliodid **35** findet man auch hier Fehlordnung über die kristallographische Spiegelebene. Zudem ist die Situation komplizierter, da offenbar aufgrund der sehr ähnlichen Eigenschaften von 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>I (Verunreinigung aus der Herstellung) und **40** ein 25:75 Cokristallisat von Terphenyliodid und Terphenyltellurenylazid vorliegt. Das Iodatom liegt dabei in spezieller Lage auf der Spiegelebene



 Abbildung 8.8.: Molekülstruktur von TpsiTeN3 (37), Wasserstoffatome weggelassen. Ausgewählte Bindungslängen [Å] und -winkel [°]: Te1–N1 2.064(8), N1–N2 1.18(1), N2–N3 1.17(1), C1–Te1 2.181(7), Si1–C1 1.885(8), Si2–C1 1.902(7), Si3–C1 1.909(7); C1–Te1–N1 103.5(3), Te1–N1–N2 115.7(6), N1–N2–N3 175.4(9), Te1–C1–Si1 111.8(3), Te1–C1–Si2 100.1(3), Te1–C1–Si3 104.6(3), Si1–C1–Si2 111.4(3), Si1–C1–Si3 114.3(3), Si2–C1–Si3 113.6(4).

und in der Ebene des zentralen Phenylringes (C1–I1 2.088(5) Å vs. 2.102(6) Å in 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>I<sup>230</sup>), das Telluratom liegt zu jeweils 50 % links und rechts der Spiegelebene und oberhalb der Ringebene, zusammen mit der gebundenen Azidgruppe. Die Konformation der äußeren Terphenylringe gleicht der in der Kristallstruktur von **35**, es liegen auch hier keine intermolekularen Wechselwirkungen vor. Damit stellt **40**, wie **37**, ein monomeres Organotellurenylazid dar.

Neben TsiTeN<sub>3</sub>, <sup>98</sup> existiert noch ein weiteres bekanntes Tellurenylazid, das donor-stabilisierte 2-Azidotellurenylbenzal-4'-methylanilin, <sup>231</sup> das durch eine Halogen-Austauschreaktion darstellbar und aufgrund intramolekularer Te····N-Koordination thermisch stabil ist. Unlängst gelang es in unserer Arbeitsgruppe mit einem ähnlichen Substituenten das erste stabile kovalente Selenazid, das Selenenylazid 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>SeN<sub>3</sub> vollständig einschließlich Röntgenstrukturanalyse zu charakterisieren.<sup>15</sup> Durch Darstellung der analogen Tellurverbindung 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeN<sub>3</sub> (**41**) ist erstmals ein direkter Vergleich zweier äquivalenter kovalenter Chalcogenazide möglich, ähnlich wie für die ionischen Chalcogenoniumazide [Ph<sub>3</sub>E]N<sub>3</sub> und [Me<sub>3</sub>E]N<sub>3</sub> (E = Se, Te).<sup>18,22</sup> Das



Abbildung 8.9.: Molekülstruktur von 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeN<sub>3</sub> (40), Wasserstoffatome und zweite, durch Fehlordnung und Symmetrie erzeugte Te–N<sub>3</sub>-Einheit nicht dargestellt. Die Kristalle enthielten ca. 25% der Verunreinigung 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>I, wesentlich mehr als <sup>1</sup>H NMR-spektroskopisch in der Mutterlauge nachweisbar war. Ausgewählte Bindungslängen [Å] und -winkel [°]: Te1–N1 2.00(1), Te1–C1 2.134(4), N1–N2 1.20(1), N2–N3 1.14(1); N1–Te1–C1 102.2(3), Te1–N1–N2 Te1 114.0(7), N1–N2–N3 175(1), Te1–C1–C2–C3 167.5(3), C1–C2–C5–C6 91.3(4).

Tellurenylazid 41 wurde durch Reaktion des entsprechenden Iodids 2-Me<sub>2</sub>N-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeI mit AgN<sub>3</sub> dargestellt. Dieses Tellurenvliodid ist aus dem Ditellan (2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>Te)<sub>2</sub> durch lodspaltung zugänglich, war zuvor jedoch lediglich als Nebenprodukt bei der Synthese von 2-Me2NCH2C6H4TeMe erhalten und beschrieben worden.<sup>201</sup> Eine alternative Route zu 41 besteht grundsätzlich in der Umsetzung des Tellurenylfluorids 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeF (<sup>19</sup>F NMR (CD<sub>3</sub>CN):  $\delta$  –238.3 ppm; <sup>125</sup>Te NMR (CD<sub>3</sub>CN):  $\delta$  1960 ppm, <sup>1</sup> $J_{\text{Te-F}}$  = 1616 Hz) mit Me<sub>3</sub>SiN<sub>3</sub>, die aber aufgrund von rascher Dismutation und der hohen Empfindlichkeit des Tellurenvlfluorids für einen präparativen Zugang ausscheidet. Das Tellurenylazid 41 ist dabei deutlich stabiler als das analoge Selenenylazid 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>SeN<sub>3</sub>, das auch im Kristall zu langsamer Zersetzung bei Raumtemperatur neigt, und kristallisiert isotyp zu diesem im orthorhombischen System, Raumgruppe *Pbca* mit Z = 8 (siehe Abbildung 8.10 auf der nächsten Seite). Beide Verbindungen sind sich daher auch strukturell sehr ähnlich, es fallen lediglich für 41 deutlich kürzere Te···Te Kontakte von 4.004Å auf (2-Me2N-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>SeN<sub>3</sub> Se···Se 4.213 Å). Man findet eine ganz gleich geartete Koordination des Aminomethyl-Stickstoffatoms zum Telluratom, was einen Fünfring mit T-förmiger, dreifacher Koordination für das Telluratom und vierfacher Koordination für die Amin-Untergruppe ergibt. Der Me<sub>2</sub>N…Te Abstand in 41 ist jenen in 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeCl/I sehr ähnlich (2.355(3) vs. 2.362(3)/2.366(4)Å),<sup>201,232</sup> der Te-C1 Abstand ist etwas kürzer (2.112(4) vs. 2.120(3)/2.127(4)Å). Die Koordination um das Telluratom ist vergleichbar mit der in 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeCl/I wenn man die C1–Te1–N2 (90.0(2) vs. 91.40(9)/95.6(1) °) und N1···Te1–N2 Winkel (166.0(2) vs. 167.91(8)/172.08(8) °) vergleicht. Die im "ungestörten" 2c-2e-System **37** gemessene Te–N<sub>3</sub> Bindungslänge (2.064(8) Å), bei Organotellur(IV)- und Organotellur(V1)aziden zwischen 2.0 und 2.2 Å, ist in **41** aufgrund der zusätzlichen Me<sub>2</sub>N···Te-Koordination auf 2.241(4) Å verlängert, der Te1–N2–N3 Winkel bleibt davon jedoch unbeeinflusst (114.5(3) vs. 115.7(6) °). Im Gegensatz zur Struktur des Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>SeN<sub>3</sub> findet man für **41** deutlicher voneinander abweichende N2–N3 und N3–N4 Abstände (N $_{\alpha}$ –N $_{\beta}$  1.198(6), N $_{\beta}$ –N $_{\gamma}$  1.145(6) Å), die Azid-gruppe ist erwartungsgemäß leicht gewinkelt (N $_{\alpha}$ –N $_{\beta}$ –N $_{\gamma}$  176.6(5) °).

Die EI-Massenspektren der Organotellurenylazide RTeN<sub>3</sub> spiegeln die steigende Stabilität dieser Verbindungen in Abhängigkeit vom Substituenten R wider. Während man für Mes\*TeN<sub>3</sub> (**39**) einen sehr schwachen Molekülionenpeak beobachtet, der von durch Zersetzung entstandenem Ditellan begleitet ist, zeigt 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeN<sub>3</sub> (**40**) [M<sup>+</sup>] und [M<sup>+</sup> –N<sub>2</sub>] bei m/z 653 (30%) bzw. 625 (15%). Auch im Falle des 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeN<sub>3</sub> (**41**) findet man [M<sup>+</sup>] bei m/z 306 mit 10% Intensität. In den Schwingungsspektren von TpsiTeN<sub>3</sub> (**37**) und **40** findet man die antisymmetrischen Streckschwingungen der Azidgruppen bei 2069 bzw. 2052 cm<sup>-1</sup>, beim Donor-stabilisierten **41** etwas niedriger bei 2039 cm<sup>-1</sup>. Die Te–N-Streckschwingungen für **37** und **40** liegen in den Raman-Spektren bei 425 bzw. 417 cm<sup>-1</sup>. Damit sind die Frequenzen der  $v_{as}N_3$  ähnlich jenen in den Organotellur(v1)aziden Ph<sub>5</sub>TeN<sub>3</sub> (**13**) und biphen<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (**14**), die



Abbildung 8.10.: Molekülstruktur von 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeN<sub>3</sub> (41) im Kristall. Ausgewählte Bindungslängen [Å] und -winkel [°]: Te1–N1 2.355(3), Te1–N2 2.241(4), C1–Te1 2.112(4), N2–N3 1.198(6), N3–N4 1.145(6); C1–Te1–N1 76.4(1), C1–Te1–N2 90.0(2), N1–Te1–N2 166.0(2), Te1–N2–N3 114.5(3), N2–N3–N4 176.6(5), N3–N2–Te1–N1 130.20(2).

ebenfalls keine intermolekularen Wechselwirkungen der Azidgruppen im festen Zustand ausbilden.

# 8.5. Berechnete Strukturen von TpsiTeLi (29), (TsiTe)<sub>2</sub>, TpsiTeN<sub>3</sub> (37), 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeI (35) und 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeN<sub>3</sub> (41)

Um die experimentell ermittelten Röntgenstrukturen von **29**, dem Ditellan **30**, **35** und den Tellurenylaziden **37** und **41** mit berechneten Strukturen vergleichen zu können, wurden quantenchemische Rechnungen auf verschiedenen theoretischen Niveaus angefertigt. Dabei war der rechnerische Aufwand für die theoretische Behandlung von (TpsiTe)<sub>2</sub> (**30**, 124 Atome) verglichen mit den minimal unterschiedlichen Ergebnissen im Vergleich mit dem weniger anspruchsvollen (TsiTe)<sub>2</sub> Molekül (82 Atome) unverhältnismäßig. Daher wurde versucht, mit der Untersuchung von (TsiTe)<sub>2</sub> das Verhalten von sperrigen Dialkylditellanen gegenüber Änderung ihrer Konformation durch Drehung um die Te–Te-Bindung in der Gasphase zu beleuchten.

Für (TsiTe)<sub>2</sub> wurden mehrere Minima bezüglich der Konformation der R<sub>3</sub>C–Te–Te–CR<sub>3</sub>-Untereinheit aufgefunden. Interessanterweise führt die Strukturoptimierung für (TsiTe)<sub>2</sub> auf dem BP86/SV(P)-Niveau zu einem Minimum (NI-MAG = 0) mit Torsionswinkel 180°, d. h. Symmetrie  $\mathcal{C}_i$ , analog der Struktur von **30** im Kristall (siehe Abbildung 8.2 auf Seite 75). Erweitert man nun jedoch den Basissatz auf TZVP, so weist die antiperiplanare Struktur eine imaginäre Frequenz auf, die nicht totalsymmetrisch ( $\mathcal{A}_u$ ) ist und die Symmetrie des Moleküls auf  $\mathcal{C}_1$  erniedrigt. Optimiert man von der leicht entlang dieser Mode verzerrten Struktur aus weiter, so gelangt man zu Minima ohne imaginäre Frequenzen mit Torsionswinkeln von 158–166°. Auch manuelles Verdrehen der Inputgeometrien um die Te–Te-Achse auf 160 bzw. 170° führt im Folgenden zu Minima mit Torsionswinkeln von 161° (siehe Tabelle 8.2).

Tabelle 8.2.: Die aufgefundenen Minima für (TsiTe)<sub>2</sub>.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | / 2.248<br>/ 2.248<br>/ 2.249<br>/ 2.246<br>/ 2.249<br>/ 2.248<br>/ 2.248<br>/ 2.246<br>/ 2.249 |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------|

Die berechneten Strukturen der Azide 37 und 41 stimmen recht gut mit den experimentellen Strukturparametern aus den Röntgenstrukturanalysen überein. Ein Vergleich der Te-C und Te-N Bindungslängen in 41 zeigt, dass die Beschreibung der Te···NMe<sub>2</sub>-Wechselwirkung durch Dichtefunktionaltheorie wie erwartet problematisch ist. Mit der korrelierten RI-MP2-Methode jedoch erreicht man eine deutliche Verkürzung des Te···N Abstandes sowie eine bessere Beschreibung des Moleküls in toto. Die Molekülstruktur des Tellurenvliodids **35** wurde zunächst von einer idealisierten Inputgeometrie ( $\mathscr{C}_{s}$ ) aus begonnen, da zu diesem Zeitpunkt keine Röntgenstrukturanalyse vorlag. Man gelangt so über eine imaginäre Frequenz, welche die Symmetrie bricht, nach Verzerrung und Reoptimierung zu einem Minimum, das die Trends der Molekülstruktur im Kristall bestätigt (siehe Abbildung 8.4 auf Seite 80). In der C-Te-I-Einheit liegt das Telluratom etwas über der mittleren Ringebene, die Te-I Bindung ist nicht mehr rechtwinklig zu dieser Ebene. Auch die Orientierung der i-Pr-Gruppen und der Kippwinkel zwischen innerem und äußeren Ringen sind sehr ähnlich (eine Übersicht über die Rechnungen gibt Tabelle 8.3 auf der nächsten Seite).

Der Einsatz sterisch extrem anspruchsvoller Substituenten im Rahmen dieser Untersuchungen hat Einblicke in die Stabilität und Struktur von solcherlei substituierten Tellurolaten, Ditellanen, Tellurenyliodiden und -aziden ermöglicht. Die so erreichte Stabilisierung von Organotellurenyl(II)iodiden und aziden erlaubte eine vollständige Charakterisierung dieser Spezies. Zum ersten Mal war auch der direkte Vergleich zweier *ortho*-Amino-substituierter Chalkogenylazide REN<sub>3</sub> (E = Se, Te) möglich. Eine Isolierung von oligomeren Tellurenylaziden erscheint somit eher unwahrscheinlich, da die für die kinetische Stabilisierung dieser Verbindungen nötigen, sperrigen Substituenten auch eine intermolekulare Te···N-Koordination verhindern. 
 Tabelle 8.3.: Energien [Hartree], ZPE Korrekturen [klmol] und ausgesuchte Bindungsparameter von 29, (TsiTe)2, 37, 35 und 41 auf verschie 

 Annan theoretischen Nimeaus (siehe zuch Kenitel A 3)

|                                                                                        | nit initiation initiation |            |                     |            |                   |
|----------------------------------------------------------------------------------------|---------------------------|------------|---------------------|------------|-------------------|
| Molekül                                                                                | Methode                   | Ε          | d C–Si [Å]          | d C-Te [Å] | d Te-N/I [Å]      |
| TpsiTe <sup>-</sup> ( <b>29</b> , <i>C</i> <sub>1</sub> )                              | exp.                      | I          | 1.866(5) - 1.884(5) | 2.270(4)   | I                 |
|                                                                                        | MARIJ-BP86/TZVP           | -1849.7422 | 1.924-1.929         | 2.290      | I                 |
| TpsiTeN <sub>3</sub> $(37, \mathscr{C}_1)$                                             | exp.                      | I          | 1.885(7) - 1.909(7) | 2.180(6)   | 2.064(8)          |
|                                                                                        | MARIJ-BP86/TZVP           | -2013.9283 | 1.955-1.972         | 2.226      | 2.131             |
|                                                                                        | MARIJ-BP86/TZVPP          | -2014.0142 | 1.948-1.960         | 2.210      | 2.107             |
|                                                                                        | B <sub>3</sub> YLP/TZVPP  | -2012.9646 | 1.949-1.963         | 2.216      | 2.087             |
| 2,6-Trip <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Tel ( <b>35</b> , % <sub>1</sub> ) | exp.                      | I          | I                   | 2.136(6)   | 2.617(1)          |
|                                                                                        | MARIJ-BP86/TZVP           | -1421.4556 | I                   | 2.166      | 2.784             |
|                                                                                        | MARIJ-BP86/TZVPP          | -1421.5240 | I                   | 2.140      | 2.740             |
| 2-Me2NCH2C6H4TeN3(41, &1)                                                              | exp.                      | I          | I                   | 2.112(4)   | 2.241(4)/2.355(3) |
|                                                                                        | MARIJ-BP86/TZVP           | -577.4671  | I                   | 2.141      | 2.193/2.550       |
|                                                                                        | MARIJ-BP86/TZVPP          | -577.5040  | I                   | 2.129      | 2.162/2.568       |
|                                                                                        | B <sub>3</sub> YLP/TZVPP  | -577.0190  | I                   | 2.137      | 2.163/2.606       |
|                                                                                        | RI-MP2/TZVP               | -575.6324  | I                   | 2.125      | 2.163/2.470       |
|                                                                                        | RI-MP2/TZVPP              | -576.0123  | I                   | 2.107      | 2.139/2.440       |

8. Tellur(II)azide und -halogenide
# 9. Quantenchemische Untersuchungen

"The underlying physical laws necessary for [...] the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble." (P. A. M. DIRAC)<sup>233</sup>

## 9.1. Allgemeines

Die Untersuchung der im Rahmen dieser Arbeit dargestellten Verbindungen mithilfe quantenchemischer Methoden wirft eine Reihe von Schwierigkeiten auf. Zunächst einmal ist die Durchführung von *ab initio* oder Dichtefunktionalrechnungen für Moleküle, die Telluratome enthalten durch die übliche Verwendung von Allelektronen-Basissätzen nicht praktikabel, auch da relativistische Effekte für das recht schwere Telluratom bereits wirksam werden. Es empfiehlt sich daher der Einsatz von Pseudopotentialen, deren Entwicklung auf H. HELLMANN zurückgeht (Gl. 9.1, das sog. "Zusatzpotential" in HELLMANNS "Kombiniertem Näherungsverfahren").<sup>234,235</sup>

$$U(r) = -\frac{1}{r} + \frac{A}{r}e^{-2\kappa r}$$
(9.1)



Abbildung 9.1.: Einer der Pioniere der modernen Quantenchemie, H. HELLMANN (1903– 1938), auf den die Idee zur Pseudopotentialmethode zurückgeht. Das Portrait zeigt ihn vor dem sogenannten HELLMANN-FEYNMAN-Theorem (Gemälde von T. Livshits, ausgestellt im Karpov-Institut, Moskau). Hierbei wird berücksichtigt, dass der Atomkern mit seinen Rumpfschalen nicht nur durch die elektrostatischen Coulomb-Potentiale anziehend wirkt, sondern dass das PAULI-Prinzip eine mehr oder weniger starke Trennung der Valenzelektronen vom Bereich der besetzten Atomrumpfschalen verursacht. Die Summe der Anteile aus Coulombpotential und abstoßendem Effekt durch das Besetzungsverbot wird Pseudopotential genannt. Das chemische Konzept der homologen Reihen findet so seine Übertragung in die Quantenchemie. Die für das Tellur verfügbaren Pseudopotentiale stammen z. T. bereits aus den siebziger Jahren und sind durchweg large-core, d. h. alle außer den  $5s^2$  und  $5p^4$  Elektronen werden in das Rumpfpotential mit einbezogen. Die einzige Ausnahme besteht in dem erst kürzlich veröffentlichten MDF28 von DoLG und STOLL (siehe Tabelle 9.1), <sup>131</sup> das bei der quantitativen Beschreibung der Bindungsverhältnisse mithilfe der *ELF*-Analyse herangezogen wurde (siehe Kapitel 6.4 auf Seite 52).

#### 9.2. RI-Methoden

Eine weitere Schwierigkeit besteht v.a. in der theoretischen Behandlung der relativ großen Moleküle in Kapitel 8, TpsiTeLi (**29**), (TsiTe)<sub>2</sub>, TpsiTeN<sub>3</sub> (**37**), 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeI (**35**) und 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeN<sub>3</sub> (**41**), die sperrige Substituenten tragen. Die Verwendung der Näherungsverfahren MARI-*J* und RI-MP2 ermöglicht mit TURBOMOLE dabei die Durchführung von DFT- bzw. *ab initio*-Berechnungen selbst für diese relativ großen Moleküle. Nachfolgend ist eine kleine Erläuterung zu diesen Verfahren gegeben, da sie noch recht neu und damit weniger etabliert als konventionelle Methoden sind.\*

| Bezeichnung                                                                                                                                                   | core                                                                                                                                                                        | Basissätze                                                     | Methode                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| LANL2 <sup>236</sup><br>CRENBL <sup>237</sup><br>SBKJC <sup>238,239</sup><br>SDB-MWB46 <sup>129</sup><br>SDB-MDF46 <sup>240</sup><br>SDB-MDF28 <sup>131</sup> | [Kr] 4d <sup>10</sup><br>[Kr] 4d <sup>10</sup><br>[Kr] 4d <sup>10</sup><br>[Kr] 4d <sup>10</sup><br>[Kr] 4d <sup>10</sup><br>[Kr] 4d <sup>10</sup><br>[Ar] 3d <sup>10</sup> | DZ, DZdp<br>(3s,3p,4d)<br>VDZ<br>cc-pVxZ<br>cc-pVxZ<br>cc-pVxZ | shape consistent<br>shape consistent<br>shape consistent<br>energy consistent<br>energy consistent<br>energy consistent |

Tabelle 9.1.: Pseudopotentiale für Tellur.

<sup>\*</sup>RI-Methoden sind zudem zum gegenwärtigen Zeitpunkt in Gaussian noch nicht implementiert, in Molpro existieren aber ähnliche, sogenannte lokale MP2-Methoden.

#### RI-MP2

In der Møller-Plesset-Störungstheorie zweiter Ordnung (MP2) lautet der Ausdruck für die MP2-Energie:

$$E_{\rm MP2} = \frac{1}{4} \sum_{ijab} \frac{\left|\langle ij||ab\rangle\right|^2}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b} , \qquad (9.2)$$

wobei *i* und *j* besetzte, *a* und *b* virtuelle Orbitale darstellen. Gl. 9.2 enthält im Nenner die Energien der MOs ( $\epsilon_p$ ) und im Zähler die Elektron-Elektron-Wechselwirkungsintegrale ( $\langle ij || ab \rangle = \langle ij |ab \rangle - \langle ij |ba \rangle$ ), ebenfalls in der Basis der MOs. Diese erhält man durch Berechnung in der Basis der atomzentrierten Basisfunktionen (AO-Basis), skalierend mit N<sup>4</sup> und anschließende Transformation in die MO-Basis mit den Lösungen des HARTREE-FOCK-Verfahrens (HF-SCF). Dies sind vier Rechenschritte, von denen jeder – zumindest formal – mit N<sup>5</sup> skaliert. Für die Berechnung der MP2-Energie steigt der Aufwand an Rechenzeit daher mit N<sup>5</sup>, der Bedarf an Ressourcen ist hoch, weshalb schon für recht kleine Moleküle die Berechnung der MP2-Korrektur aufwendiger ist als die Berechnung der HF-SCF-Energie. Eine Möglichkeit, durch ein Näherungsverfahren die Berechnnung von Zweielektronenintegralen effizienter zu machen, ist die sogenannte RI-Näherung.

Zur Berechnung der MP2-Energie ist die Berechnung der Integrale (ia|jb)nötig. Ganz offensichtlich ist die Verarbeitung einer vierfach indizierten Größe aufwendiger als diejenige einer dreifach indizierten. Die RI-Näherung ermöglicht die – näherungsweise – Berechnung der vierfach indizierten Größe (ia|jb) durch drei- und zweifach indizierte Größen. Dazu nähert man die Produkte von Basisfunktionen  $\rho_{\nu\mu}(\mathbf{r}) = \varphi_{\nu}(\mathbf{r})\varphi_{\mu}(\mathbf{r})$  durch eine lineare Entwicklung nach sogenannten Auxiliarbasisfunktionen  $P(\mathbf{r})/Q(\mathbf{r})$  an:

$$\rho_{\nu\mu}(\mathbf{r}) = \varphi_{\nu}(\mathbf{r})\varphi_{\mu}(\mathbf{r}) \approx \widetilde{\rho}_{\nu\mu}(\mathbf{r}) = \sum_{P} c_{\nu\mu}^{P} P(\mathbf{r})$$
(9.3)

Bestimmung der Entwicklungskoeffizienten  $c_{\nu\mu}^P$  mittels einer Fehlerfunktion und eines bezüglich  $c_{\nu\mu}^P$  stationären Funktionals ergibt schließlich<sup>127</sup>

$$(\nu\mu|\kappa\lambda) \approx (\nu\mu|\kappa\lambda)_{\rm RI} = \sum_{P} c_{\nu\mu}^{P}(P|\kappa\lambda) = \sum_{Q,P} (\nu\mu|Q)(Q|P)^{-1}(P|\kappa\lambda).$$
(9.4)

Gl. 9.4 enthält formell eine Zerlegung der Einheit, daher der Name *resolution of the identity*. An die Stelle der Berechnung der Integrale  $(\nu\mu|\kappa\lambda)$  und ihrer anschließenden Transformation nach (ia|jb) tritt nun die Berechnung der Integrale  $(\nu\mu|P)$ , die Transformation nach (ia|P) sowie die Berechnung und Invertierung der Matrix (P|Q). Effizienz und Genauigkeit der Näherung hängen offensichtlich von der Wahl einer geeigneten Auxiliarbaisis ab. Solcherlei Basissätze wurden zusammen mit der Implementierung in das Programmpaket TURBOMOLE in der Arbeitsgruppe Ahlrichs optimiert und sind für alle Hauptgruppen- sowie Übergangsmetallatome verfügbar; das Verfahren führt zu 5–10-fachen Einspareffekten (abhängig von der Basissatzgröße).<sup>127,128,241</sup>

#### MARI-J für DFT-Rechnungen

Das MARI-*J*-Verfahren für DFT-Rechnungen beschleunigt zusätzlich zum ebenfalls von Ahlrichs implementierten RI-*J*-Verfahren<sup>242</sup> die Berechnung der Coulombintegrale durch Aufteilung in Fern- und Nahwechselwirkungen. Behandlung der fernen Coulomb-Wechselwirkungen mittels einer Multipole entwicklung<sup>†</sup> (daher *multipole accelerated resolution of identity* = MARI) verringert den Rechenaufwand nochmals um etwa den Faktor 6.5.<sup>243</sup> Die Verwendung von RI-Näherungen für DFT-Rechnungen setzt die Verwendung reiner Funktionale ohne HF-Austauschterm voraus, daher wird normalerweise das BECKE-PERDEW-Funktional (BP86) verwendet.

Alle RI-Methoden führen zu sehr kleinen Fehlern, die gut dokumentiert sind und normalerweise unterhalb der Schwelle der Basissatzfehler liegen. Leider sind RI-MP2 und MARI-*J* für die DFT in TURBOMOLE bisher nicht parallelisiert (RI-MP2 ist z. B. eine  $N^5$ -Methode, die auf zwei Prozessoren für ein System nur um 1/32 leistungsfähiger wird), können aber dennoch für relativ aufwendige Rechnungen mit mehreren tausend Basissätzen noch seriell durchgeführt werden. Greift die RI-Näherung nicht, v. a. für Hybridfunktionale wie B3LYP, so profitiert man von der MPI-Parallelisierung in TURBOMOLE,<sup>244</sup> die mit beinahe linearer Skalierung auch für große Basissätze wirtschaftliche Rechnungen zulässt.<sup>‡</sup> Leider unterstützt TURBOMOLE momentan routinemäßig noch keine Pseudopotentiale mit  $\ell > 3$ , d. h. man ist für solcherlei Rechnungen auf GaussIAN angewiesen.

## 9.3. Relativistische Wellengleichungen

#### 9.3.1. Die Klein-Gordon-Gleichung

Das einfachste physikalische System ist ein isoliertes, freies Teilchen im Raum, für das die nichtrelativistische Energie mit

$$E = \frac{p^2}{2m} \tag{9.5}$$

<sup>&</sup>lt;sup>†</sup>Entwicklung des Potentials  $\Phi(\mathbf{r})$  einer Ladungsverteilung für große Entfernungen von der erzeugenden Ladungsverteilung  $p(\mathbf{r})$  nach Potenzen von 1/r.

<sup>&</sup>lt;sup>‡</sup>Derartige Rechnungen wurden mit ТиквомоLе5.6 auf dem Xeon-Cluster des Departments mit 8 oder 16 Prozessoren durchgeführt.

gegeben ist. Wie üblich geht man zur Quantenmechanik über durch die Substitution

$$\begin{cases} E \to i\hbar \frac{\partial}{\partial t} \\ p_x \to -i\hbar \frac{\partial}{\partial x} \end{cases}$$
(9.6)

was zur nichtrelativistischen Schrödinger-Gleichung

$$i\hbar\frac{\partial\psi(\mathbf{r},t)}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r},t)$$
(9.7)

führt. Gl. 9.7 ist bezüglich einer LORENTZ-Transformation \$ nicht invariant, <sup>245</sup> weshalb zur Entwicklung einer streng invarianten Theorie anders vorgegangen werden muss. Über die Bedingung

$$E^2 = c^2 p^2 + m^2 c^4 \tag{9.8}$$

gelangt man zur Energie eines freien relativistisch betrachteten Teilchens

$$E = \sqrt{c^2 p^2 + m^2 c^4},$$
 (9.9)

gleichbedeutend mit

$$i\hbar\frac{\partial\psi(\mathbf{r},t)}{\partial t} = \sqrt{c^2\nabla^2 + m^2c^4}\psi(\mathbf{r},t)$$
(9.10)

für eine analoge, quantenmechanische Betrachtung. Das Problem besteht nunmehr nicht in der Gleichung selbst, sondern in der Interpretation des Wurzeloperators auf ihrer rechen Seite. Um eine nichtlokale Theorie zu vermeiden, und mathematischer Einfachheit den Vorzug zu geben, wandelt man Gl. 9.10 um in

$$-\hbar \frac{\partial^2 \psi(\mathbf{r},t)}{\partial t^2} = -(c^2 \nabla^2 + m^2 c^4) \psi(\mathbf{r},t)$$
(9.11)

die üblicherweise als KLEIN-GORDON-Gleichung bezeichnet wird.<sup>246,247</sup> Durch die Quadrierung des Energieausdrucks ergeben sich negative Lösungen für die Energie, die als Positronen interpretiert werden können.<sup>248</sup>

<sup>&</sup>lt;sup>§</sup>Umrechnung der Koordinaten eines Ereignisses von einem Bezugssystem auf das andere im Sinne von Einsteins spezieller Relativitätstheorie.

#### 9. Quantenchemische Untersuchungen

#### 9.3.2. Die DIRAC-Gleichung

Für die Beschreibung des Elektrons ist die KLEIN-GORDON-Gleichung nicht befriedigend, da sie den Elektronenspin nicht enthält und durch das Auftreten der zweiten Ableitung nach der Zeit die Einführung stationärer Zustände erschwert. Um zu einer alternativen Beschreibung zu gelangen, versuchte DIRAC eine LORENTZ-invariante Gleichung der Form

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}_D\psi \tag{9.12}$$

zu finden.<sup>249,250</sup> Gelingt dies, so kann wie im nichtrelativistischen Fall eine zeitunabhängige Gleichung der Form

$$\hat{H}_D \psi = E \psi \tag{9.13}$$

mit positiver Wahrscheinlichkeitsdichte erhalten werden. Solch eine Gleichung muss dann nicht nur linear bezüglich der Ableitung von t, sondern auch linear bezüglich der Raumkoordinaten sein.<sup>245</sup> Dies bedingt die Gestalt

$$i\frac{\partial\psi}{\partial t} = -ic\left(\alpha_1\frac{\partial\psi}{\partial x_1} + \alpha_2\frac{\partial\psi}{\partial x_2} + \alpha_3\frac{\partial\psi}{\partial x_3}\right) + \beta mc^2\psi \tag{9.14}$$

die unter Verwendung von Gl. 9.6 als

$$i\frac{\partial\psi}{\partial t} = c\alpha \cdot \mathbf{p}\psi + \beta mc^2\psi \tag{9.15}$$

formuliert werden kann, wobei  $\alpha_i$  (i = 1,2,3) und  $\beta$  über zusätzliche Kriterien noch zu bestimmen sind. Dies wird möglich, wenn man sich klarmacht, dass Gl. 9.15 auch die KLEIN-GORDON-Gleichung (Gl. 9.11) erfüllen muss. Durch Umformung und Termvergleich mit Gl. 9.8 gelangt man zu

$$-\frac{\partial^2 \psi}{\partial t^2} = -c^2 \sum_{i,j=1}^3 \frac{\alpha_i \alpha_j + \alpha_j \alpha_i}{2} \frac{\partial^2 \psi}{\partial x_i \partial x_j} - imc^3 \sum_{i=1}^3 (\beta \alpha_i + \alpha_i \beta) \frac{\partial \psi}{\partial x_i} + \beta^2 m^2 c^4$$
(9.16)

und folgenden Bedingungen:

$$\begin{cases} \alpha_i \alpha_j + \alpha_j \alpha_i = 2\delta_{ij} \\ \beta \alpha_i + \alpha_i \beta = 0 \\ \beta^2 = 1 \end{cases}$$
(9.17)

zu deren Lösung skalare Größen  $\alpha_i$  und  $\beta$  nicht genügen,<br/>wohl aber die folgenden Matrizen:

$$\beta = \begin{pmatrix} \mathbf{I} & 0\\ 0 & -\mathbf{I} \end{pmatrix}$$
(9.18)

$$\alpha = \begin{pmatrix} 0 & \sigma \\ \sigma & 0 \end{pmatrix}. \tag{9.19}$$

Mit der 2×2 Einheitsmatrix I und den 2×2 PAULI-Matrizen  $\sigma$ 

$$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(9.20)

erhält man in vollständiger Form

$$\alpha = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$
(9.21)

und

$$\beta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$
 (9.22)

Da der DIRAC-Operator  $\hat{H}_D$  4×4 Matrizen enthält ist er nur sinnvoll, wenn man annimmt, dass die Wellenfunktion einen 4-komponentigen Vektor darstellt. Solche 4-komponentigen Einelektronen-Wellenfunktionen werden "Spinoren" genannt.

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}. \tag{9.23}$$

Schreibt man den HAMILTON-Operator des freien Elektrons aus Gl. 9.15 als  $4 \times 4$  Matrix

$$\hat{H}^{fe} = \beta mc^2 + \alpha \cdot \mathbf{p}c = \begin{pmatrix} mc^2 \mathbf{I} & \sigma \cdot \mathbf{p}c \\ \sigma \cdot \mathbf{p}c & -mc^2 \mathbf{I} \end{pmatrix}$$
(9.24)

so erhält die DIRAC-Gleichung folgende Struktur:

$$\hat{H}^{fe} = \begin{pmatrix} \psi_L \\ \psi_S \end{pmatrix} = E \begin{pmatrix} \psi_L \\ \psi_S \end{pmatrix}$$
(9.25)

#### 9. Quantenchemische Untersuchungen

mit

$$\psi_L = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \text{ und } \psi_S = \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix}.$$
(9.26)

Weil für elektronische Lösungen  $\psi_S$  stets einen wesentlich kleineren Beitrag hat als  $\psi_I$ , spricht man auch von großen und kleinen Komponenten (*large* and small components). Da die DIRAC-Gleichung vier Komponenten benötigt, ist sie wesentlich schwieriger zu lösen als die nichtrelativistische SCHRÖDIN-GER-Gleichung. Zudem taucht bei der Lösung elektronischer Zustände ein zusätzliches Problem auf: Normalerweise stellt das Variationsprinzip ein verlässliches Verfahren zum Auffinden der Grundzustände in der Quantenchemie dar. Durch die (beidseitige) Ungebundenheit des DIRAC-Operators (Anwesenheit eines Kontinuums bei positiven und negativen Energien) entstehen prinzipielle Probleme: Im Einelektronenfall sind dies der Variationskollaps (variational collapse<sup>251</sup>) und damit zusammenhängende Schwierigkeiten bei Verwendung nicht sachgemäß gewählter endlicher Einteilchenbasen (finite basis set disea $se^{252}$ ). Abhilfe schafft hierbei die Beachtung des richtigen "kinetischen Gleichgewichtes" (kinetic balance) der Basis, 253 d.h. im Wesentlichen müssen die unteren Komponenten den Funktionsraum der Ableitungen der oberen Komponenten aufspannen.<sup>253</sup> Im Allgemeinen führt dann die Erzeugung der Basisfunktionen für die kleinen Komponenten aus derjenigen der großen Komponenten für eine *l* Bahnfunktion zum Entstehen von l-1 und l+1 Atomorbitalen für die kleine Komponente. Das führt dazu, dass die Basis der kleinen Komponente beinahe doppelt so groß werden kann wie die der großen Komponente. So erhält man mit kinetic balance für das Telluratom aus einem [20s16p10d1f] Basissatz für die große Komponente einen [16s30p17d10f1g] Basissatz für die kleine Komponente. Im Mehrelektronenfall kommt eine weitere Form des Variationskollaps hinzu, die als BROWN-RAVENHALL-Krankheit (BROWN-RAVENHALL disease<sup>254</sup>) bzw. Auflösung eines gebundenen Zustandes in ungebundene Zustände, d.h. Kontinuumszustände (continuum dissoluti $on^{255}$ ), bekannt ist.

Eine interessante Konsequenz der vier-komponentigen Wellenfunktion ist eine Wahrscheinlichkeitsdichte, die sich additiv aus den Wahrscheinlichkeitsdichten der kleinen und großen Komponenten  $\psi_L$  und  $\psi_S$  zusammensetzt. Die Radialteile von  $\psi_L$  und  $\psi_S$  haben jedoch eine verschiedene Anzahl von Knotenflächen, die ganz allgemein nicht zusammenfallen, d. h. es haben zwar  $\psi_L^* \psi_L$  und  $\psi_S^* \psi_S$  für sich Knoten, ihre Summe ist aber *knotenfrei* (siehe Abbildung 9.2 auf der nächsten Seite). Ganz allgemein findet sich an Stelle der Knoten aus der nichtrelativistischen Behandlung ein endlicher Beitrag zur Wahrscheinlichkeitsdichte durch die kleine Komponente.<sup>257–259</sup> Dies beantwortet



**Abbildung 9.2.:** Plot der gewichteten Radialfunktionen g(r) und f(r) für die großen bzw. kleinen Komponenten und der resultierenden Wahrscheinlichkeitsdichte  $\rho(r) = g(r)^2 + f(r)^2$  für den  $2s_{1/2}$  Zustand des Telluratoms. Auf die Tatsache, dass sowohl Radial- als auch Winkelanteil der Lösungen der Dirac-Gleichung für wasserstoffähnliche Atome keine Nullstellen aufweisen, wird bereits in einer sehr frühen Arbeit hingewiesen, <sup>256</sup> dies fand aber lange Zeit keine breitere Wahrnehmung – insbesondere in Lehrbüchern.<sup>257</sup>

die häufig während des Chemiestudiums gehörte Frage: "Wie kommen die Elektronen durch die Knoten der Orbitale?", da es solcherlei Knoten nicht gibt!

## 9.4. Hypervalenz und hypervalente Verbindungen

Über den Begriff der hypervalenten Verbindungen, wichtig für die Diskussion der Te(vI)-Verbindungen in Kapitel 6, besteht keineswegs Einigkeit. Vielfach werden Verbindungen wie  $Ph_5P$  und  $Ph_4Te$  als hypervalent bezeichnet, auch weil sie in vielerlei Hinsicht Besonderheiten aufweisen. So definiert etwa die "Encyclopedia of Computational Chemistry" Hypervalenz als:

"The ability of an atom in a molecular entity to expand its valence shell beyond the limits of the Lewis octet rule. [...] A typical example of a hypervalent bond is a linear 3-center, 4-electron bond, e.g.  $F_{ax}$ -P- $F_{ax}$ ."

Diese Sichtweise herrscht in weiten Teilen der chemischen Forschungsgemeinde vor und kommt z.B. in der Einbeziehung sehr vieler hyperkoordinierter Verbindungen in dem Buch "The Chemistry of Hypervalent Compounds" von Актва zum Ausdruck.<sup>137</sup> Dabei wird auf die Untersuchung der elektronischen Struktur im Einzelnen v. a. mit theoretischen Methoden meist gänzlich verzichtet. Das populäre Buch von KUTZELNIGG spricht von hypervalenten Molekülen, wenn "zumindest für ein Atom die Zahl der Nachbarn  $N_N$  größer als die Zahl der Valenz-AOs  $N_A$  ist".<sup>169,260</sup> Die Unterscheidung in "hypervalente Verbindung 1. Art und 2. Art" geht auf MUSHER zurück und gründet in der Unterscheidung zwischen Verbindungen, die noch mit Hilfe von Dreizentrenbindungen und jenen, die nur durch völlig delokalisierte MOs beschrieben werden können.<sup>261</sup>

Eine andere Auffassung vertritt HARCOURT, <sup>176–179,262–266</sup> der von Hypervalenz nur dann spricht wenn, "die Valenz eines Atoms  $V_A = \Sigma BO_{AB}$  (BO = bond order) größer als vier ist". Dies kann nur dann auftreten wenn entweder

- das Atom seine *valence shell* erweitert, um fünf Elektronenpaar-Bindungen zu betätigen |<u>F</u>-AF<sub>3</sub>-<u>F</u>|, oder
- Ein-Elektronen-Bindungen ausbildet ohne dabei unbedingt zusätzliche Atomorbitale heranzuziehen (wie in  $|\overline{F}-AF_3\cdot\cdot\overline{F}|$ ).

Hypervalenz in einer increased-valence Struktur kann somit auftreten, ohne dass ein Atom seine *valence shell* erweitert oder hyperkoordiniert ist (siehe O<sub>3</sub>, NO<sub>2</sub> usf.). Jedes AO kann eine Valenz größer als eins betätigen, wenn es an der Ausbildung von PAULINGschen 3-Elektronen-Bindungen beteiligt ist.

Wie kann nun ein Atom hypervalent sein ohne seine *valence shell* zu erweitern? Sei die betreffende Bindung Y–A–B, z. B.  $F_{ax}$ –P– $F_{ax}$  (PF<sub>5</sub>) oder  $F_{ax}$ –S–  $F_{ax}$  (SF<sub>4</sub>), dann liegt eine axiale 4e-3c-Bindung vor und in jeder der KeKULÉ-Strukturen I und II (siehe Abbildung 9.3) ist die Valenz von Atom A ( $V_A$ ) eins. Diese kann jedoch durch Resonanz mit der DEWAR-Struktur III erhöht sein.

Abbildung 9.3.: Kanonische LEWIS-Strukturen vom KEKULÉ (I und II), DEWAR (III) und increased-valence-Typ (IV).

Dies ist gleichbedeutend mit Gl. 9.27, wobei  $\Psi$  einbindendes A–B MO darstellt (Gln. 9.28 und 9.29). Die dieser Linearkombination entsprechende VB-Struktur ist die *increased-valence*-Struktur **IV**.

$$\Psi_{IV} = N_{IV} (|y^{\alpha} \Psi^{\alpha}_{ab} a^{\beta} b^{\beta}| + |a^{\alpha} b^{\alpha} y^{\beta} \Psi^{\alpha}| \equiv N_{IV} N_{ab} \{k(\Psi_I / N_I) + (\Psi_{III} / N_{III})\}$$
(9.27)

$$\Psi = N_{ab}(a+kb) \tag{9.28}$$

$$N_{ab} = \frac{1}{\sqrt{k^2 + 2kS_{ab} + 1}}$$
(9.29)

Damit ergeben sich die möglichen Fälle der Hypervalenz wenn:

- Die Valenz von Atom A ( $V_A$ ) 1 überschreitet:  $V_a = V_{ay} + V_{ab} > 1$ , oder
- die Summe aller Valenzen  $V_{ges}$  den Wert 1 übersteigt:  $V_{ges} = V_{ya} + V_{yb} + V_{ay} + V_{ab} + V_{by} + V_{ba} > 1.$

## 9.5. Die ELF-Analyse

#### 9.5.1. Die ELF-Funktion

Die Charakterisierung von chemischen Bindungen ist mehr eine qualitative denn eine quantitative Aufgabe, und es stellt sich die Frage, wie man durch Messung oder quantenchemische Rechnungen an die dafür relevanten Informationen gelangen kann. So hat BADER mit einem topologischen Ansatz für die Interpretation der Elektronendichte  $\rho(\mathbf{r})$  versucht, die chemische Bindung zu beleuchten (AIM-Methode).<sup>180</sup> Die Elektronendichte alleine verdeutlicht jedoch noch nicht die Konsequenzen des PAULI-Prinzips für die chemische Bindung, wie sie z. B. mit der VSEPR-Theorie offenbar werden. Eine Möglichkeit dies zu tun, besteht mit der Elektronen-Lokalisationsfunktion (*ELF*), die von BECKE und EDGECOMBE entwickelt wurde,<sup>181</sup> um eine Beschreibung der Elektronen-Lokalisation zu erhalten, die orbitalunabhängig, d. h. invariant gegenüber Transformation in lokalisierte Molekülorbitale ist. Der Ausdruck für die *ELF*-Funktion ist:

$$\eta(\mathbf{r}) = \frac{1}{1 + \left(\frac{D_{\sigma}}{D_{\sigma}^{\circ}}\right)^2} \tag{9.30}$$

#### 9. Quantenchemische Untersuchungen

wobei  $D_{\sigma}$  und  $D_{\sigma}^{\circ}$  die Verteilung der Elektronenpaardichte der Elektronen mit identischem Spin  $\sigma$  (das sog. FERMI-Loch) für das aktuelle System ( $D_{\sigma}$ ) beziehungsweise ein homogenes Elektronengas derselben Dichte ( $D_{\sigma}^{\circ}$ ) darstellen. Die analytische Form der *ELF*-Funktion begrenzt ihren Wert zwischen o und 1, ihre Herleitung betrachtet den Laplace-Operator der HARTREE-FOCK-Wahrscheinlichkeit für das Auffinden eines Elektrons mit  $\sigma$ -Spin in der Position  $\mathbf{r}_2$  wenn sich ein erstes Elektron bereits in Position  $\mathbf{r}_1$  befindet.

$$D_{\sigma} = (\nabla_2^2 P_{cond}^{\sigma\sigma}(1,2))_{1=2} = \sum_{i=1}^N |\nabla \varphi_i|^2 - \frac{1}{4} \frac{|\nabla \rho^{\sigma}(1)|^2}{\rho^{\sigma}(1)}$$
(9.31)

Je geringer die Wahrscheinlichkeit ist, ein zweites Elektron gleichen Spins nahe dem Bezugspunkt aufzufinden, desto besser lokalisiert ist das Bezugselektron. Geht  $D_{\sigma}$  in Gl. 9.30 gegen o, so geht der Term  $\frac{D_{\sigma}}{D_{\sigma}^{2}}$  gegen o, was perfekte Lokalisation bedeuten würde. Wie von SAVIN *et al.* gezeigt wurde,<sup>267</sup> ist dieser Ausdruck formal identisch mit der Differenz der positiven lokalen kinetischen Energie eines Systems von Fermionen ohne Wechselwirkungen  $T_{s}^{\sigma}[\rho]$  in der KOHN-SHAM-Gleichung<sup>268</sup> und dem von Weizsäcker-Funktional:<sup>269</sup>

$$D_{\sigma} = T_{s}^{\sigma}[\rho] - \frac{1}{4} \frac{|\nabla \rho^{\sigma}(1)|^{2}}{\rho^{\sigma}(1)}$$
(9.32)

#### 9.5.2. Becken im ELF-Gradientenfeld

Die topologische Analyse des *ELF*-Gradientenfeldes beruht auf der formalen Analogie desselben mit einem Geschwindigkeitsfeld  $\nabla \eta(\mathbf{r}) = d\mathbf{r}/dt$ . Für jeden Punkt im molekularen Raum bestimmt die zeitliche Integration eine eindeutige Trajektorie, deren Anfang und Ende in der Umgebung von Punkten liegt für die  $\nabla \eta(\mathbf{r}) = 0$  gilt und die als  $\alpha$ - und  $\omega$ -Grenzen bezeichnet werden. Solche sogenannten kritischen Punkte werden mit ihren Indizes I(m), der Anzahl der positiven Eigenwerte der Hessematrix, charakterisiert. Ein Punkt mit dem Index o ist ein lokales Maximum oder *Attraktor* und der Satz der Trajektorien, die zu diesem Punkt führen, wird als "Becken" (engl. "basin") des Attraktors bezeichnet. Eine beispielhafte Anwendung der Methode ist in Abbildung 9.4 auf Seite 104 und Tabelle 9.2 auf der nächsten Seite für das Molekül Me<sub>4</sub>Te aufgeführt, für das im Gegensatz zu Me<sub>6</sub>Te noch keine *ELF*-Analyse vorlag.<sup>143</sup>

Es gibt zwei Arten von Becken: *Core basins*, die an den Nukliden zentriert sind und *valence basins* im übrigen Raum. Ein *valence basin* ist durch seine synaptische Ordnung charakterisiert, der Anzahl der *cores* mit denen es verbunden ist. Ein monosynaptisches Becken V(X) entspricht einem einsamen Elektronenpaar oder einer Gruppe solcher, ein disynaptisches Becken V(X, Y)

| $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $(0_2)$ , $($ |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| prot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| iosyn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| disyn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |

**Tabelle 9.2.:** Liste der gefundenen basins am Beispiel des Me<sub>4</sub>Te, mit Attraktorkoordinaten (**r**), max. ELF-Wert ( $\eta$ (**r**)), Bezeichnung, Volumen ( $V(\Omega_i)$  für  $\int_{\Omega_i} d\mathbf{r} \ge$ 0.02), Population ( $\bar{N}(\Omega_i)$ ), Spindichte ( $S_z((\Omega_i))$  und Typ.

einer Zwei-Zentren-Bindung, ein trisynaptisches Becken V(X, Y, Z) einer Drei-Zentren-Bindung usf. Je kovalenter eine Bindung wird, um so mehr wandert der Attraktor zwischen die Zentren und liegt im ideal kovalenten Fall symmetrisch zwischen diesen. Die Attraktorposition kann somit als quantitatives Maß für den Grad der Polarität einer Bindung genutzt werden. Solange der Attraktor noch auf der Verbindungsachse zwischen den Nukliden liegt und vom Kernbecken über eine Trajektorie getrennt werden kann oder diesen noch nicht einhüllt, entspricht das der Situation, die man üblicherweise als polare Kovalenz auffasst. Ist der Attraktor aber nahe am Rumpfbereich eines der Atome und nicht mehr auf der Verbindungslinie, so kann eine ionische Formulierung in Frage kommen.

#### 9. Quantenchemische Untersuchungen



**Abbildung 9.4.:** Exemplarische ELF-Isoflächen- und Isoliniendarstellung für Me<sub>4</sub>Te (in  $\mathscr{C}_{2v}$  auf RMP2(FC)/cc-pVDZ-Niveau, PP<sub>Te</sub> = MDF28), Schnitt entlang der äquatorialen C–Te–C-Achse. Attraktorentfernungen [Å]: V(Te)–C(Te) 1.917, C(Te)–V(Te,C) 1.233/1.505. Die disynaptischen Becken V(Te,C) wurden dunkel eingefärbt,  $\eta = 0.75$ , 100×100×70 Gitterpunkte, Darstellung mit dem Programm VIS5D.

#### 9.5.3. Basin-Populationsanalyse

Auf quantitativer Basis werden die Eigenschaften der Lokalisations-Becken dadurch bestimmt, dass man die Dichte der Eigenschaft  $\rho_A(\mathbf{r})$  über das mit  $\Omega_i$ bezeichnete Volumen des Beckens integriert (Gl. 9.33), wobei  $\hat{A}$  dabei für den entsprechenden Einelektronenoperator der Eigenschaft steht.

$$\langle \hat{A}_{\Omega_i} \rangle = \int_{\Omega_i} \rho_A(\mathbf{r}) d\mathbf{r}$$
 (9.33)

Die einfachste der integrierbaren Eigenschaften ist die Population des Beckens  $\bar{N}(\Omega_i)$ , die allgemein als Summe der Spinbeiträge formuliert werden kann (Gl. 9.34). Die atomare Valenzschale  $V_A$  ("valence shell") ist definiert als die Summe der Valenzbecken ("valence basins") die an das Kernbecken C(A) ("core basin") angrenzen.

$$\bar{N}(\Omega_i) = \sum_{\mu=1}^{occ.} n_\mu \left\langle \varphi_\mu | \varphi_\mu \right\rangle_{\Omega_i}$$
(9.34)

Durch Addition der durch *ELF*-Populationsanalyse für die Valenzbecken von Me<sub>4</sub>Te am Telluratom erhaltenen Werte kommt man auf einen Wert für die Va-

lenzschalenpopulation von  $N_v(Te) = 9.60$ , ähnlich jenen für Me<sub>5</sub>P und Me<sub>5</sub>As.<sup>¶</sup> Die erweiterte Oktettregel wird also auch von Me<sub>4</sub>Te nicht befolgt. Die effektiven Ladungen der Atome können über die Aufteilung der Dichte in atomare Wirkunsbereiche ermittelt werden, und der kovalente Bindungsanteil wird über die Zahl der Elektronen im gemeinsamen elektronischen Wirkungsbereich/Attraktor (Teilung der ELF) erhalten.

Zur Durchführung von *ELF*-Analysen ist das freie Programmpaket ToPMoD aus der Arbeitsgruppe SILVI (Université Pierre et Marie Curie, Paris) verfügbar, das auf Unix/Linux Rechnern selbst kompiliert werden muss. Zur Steuerung der einzelnen Programmteile dient ein Perl-Skript, dessen Urfassung von A. CLARK erweitert und verbessert wurde.

 $<sup>^{9}</sup>$ Das Molekül Me<sub>5</sub>P ist unbekannt,  $^{270}$  Me<sub>5</sub>As jedoch konnte von Schmidbaur hergestellt und charakterisiert werden.  $^{271}$ 

9. Quantenchemische Untersuchungen

## 10. Zusammenfassung

**D** iese Arbeit befasst sich mit der Darstellung und Charakterisierung von Pseudohalogeniden des Tellurs und dabei insbesondere mit seinen Aziden. Im Rahmen dieser Untersuchungen gelang die Synthese zweier bisher unbekannter, binärer Pseudohalogenide des Tellurs, des Tellurtetraazids Te(N<sub>3</sub>)<sub>4</sub> (1) sowie des Pentaazidotellurat-Anions [Te(N<sub>3</sub>)<sub>5</sub>]<sup>-</sup> (2) direkt aus den entsprechenden Tellur(Iv)fluoriden (Kapitel 3). Während das Tetraazid 1 von unberechenbar explosiver Natur, und daher praktisch nicht handhabbar ist, konnten vom ebenfalls brisanten 2 Einkristalle erhalten werden, deren Strukturanalyse eine verzerrte  $\Psi$ -oktaedrische TeEN<sub>5</sub>-Koordination durch sterischen Einfluss des freien Elektronenpaares offenbarte (Abbildung 10.1). Das Anion in 2 ist das erste homoleptische, anionische Chalkogenazid und das einzige fünffach koordinierte Polyazid-Ion außer [Fe(N<sub>3</sub>)<sub>5</sub>]<sup>2-</sup>.\*



Abbildung 10.1.: Molekulare Struktur des Anions in [pyH][Te $(N_3)_3$ ] (2b).

Weiterhin konnte auch das zwar 1908 beschriebene, aber sehr empfindliche und kaum untersuchte Tellurdicyanid  $Te(CN)_2$  (**3**) vollständig charakterisiert werden (Kapitel 4). Nach mehreren Monaten unter absolut trockenen Bedingungen gelang die Züchtung geeigneter Einkristalle dieses "vergessenen Moleküls", deren Strukturanalyse ungewöhnlich kleine C-Te-C Winkel und quadratisch-planare Koordination mit kurzen Te···N-Kontakten um das Telluratom ergab (Abbildung 10.2 auf der nächsten Seite). Bei den anschließen-

<sup>&</sup>lt;sup>\*</sup>Unabhängig hiervon haben zeitgleich Christe und Mitarbeiter 1 dargestellt, sowie die Struktur des [Te(N<sub>3</sub>)<sub>6</sub>]<sup>2-</sup>-Ions bestimmt.<sup>59</sup>

den Untersuchungen im System Te(CN)<sub>n</sub> konnte experimentell gezeigt werden, dass das Tellurtetracyanid Te(CN)<sub>4</sub> (**4**) zwar existiert, sich aber aufgrund seiner Labilität und Unlöslichkeit einer vollständigen Charakterisierung entzieht; Umsetzung von TeF<sub>6</sub> mit Me<sub>3</sub>SiCN brachte keine Hinweise auf Tellur(vI)cyanide sondern ergab nach reduktivem Zerfall **3**. Zudem konnten in Lösung und im festen Zustand stabile Organotellur(IV)dicyanide mit Substituenten relativ hohen Raumbedarfs dargestellt und charakterisiert werden, was zur ersten Kristallstruktur eines Tellur(IV)cyanides geführt hat.



Abbildung 10.2.: ORTEP der Molekülstruktur von Te(CN)<sub>2</sub> (3) im Kristall. Gezeigt ist mittig ein Molekül 3 mit seinen nächsten Nachbarn. Diese Koordination spannt ein dreidimensionales Netzwerk auf, das alle Moleküle in kristallinem 3 verbindet.

Erstmalige präparative Untersuchungen zu Tellur(v1)aziden ergaben, dass Tellur(v1)-N<sub>3</sub> und Tellur(v1)-(N<sub>3</sub>)<sub>2</sub>-Spezies mit Arylsubstituenten stabil, höher azidsubstituierte Moleküle dagegen nicht stabil bezüglich Reduktion zu Distickstoff und Tellur(17) sind (Kapitel 6). Ebenfalls konnten keine Hinweise auf die Existenz von Methyltellur(v1)aziden gefunden werden, auch hier tritt reduktive Zersetzung beim Versuch ihrer Darstellung ein. Die für diese Studien benötigten Verbindungen  $R_x$ TeF<sub>6-x</sub> (R = Me, Ph) wurden z. T. erstmalig hergestellt bzw. die bekannten Darstellungswege überprüft und analytisch bestätigt. Kristallstrukturanalysen an Ph<sub>5</sub>TeN<sub>3</sub> (**13**), *cis*-biphen<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (**14**, Abbildung 10.3 auf der nächsten Seite) und *trans*-Ph<sub>2</sub>TeF<sub>4</sub> (**15a**) zeigten den erwarteten oktaedrischen Bau dieser Moleküle sowie das Fehlen von sekundären

Te···N-Wechselwirkungen im festen Zustand, die bisher bei Organotellur(IV)aziden stets beobachtet worden sind. Quantenchemische Strukturoptimierungen, Frequenz- und Populationsanalysen für **13** und alle denkbaren Isomere von biphen<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> und Ph<sub>2</sub>TeF<sub>4</sub> sowie der Moleküle R<sub>x</sub>TeF<sub>6-x</sub> (R = Me, Ph) bestätigten die vorliegenden experimentellen Befunde. Topologische Analysen der Elektronenlokalisations-Funktion (*ELF*) für *trans*-Me<sub>2</sub>TeF<sub>4</sub> und *cis*-Me<sub>4</sub>Te(N<sub>3</sub>)<sub>2</sub> – Modellverbindungen für **15a** und **14** – ermöglichten zusätzlichen Einblick in die vorliegende Bindungssituation bei Organotellur(VI)fluoriden bzw. -aziden.



Abbildung 10.3.: Molekülstruktur von cis-biphen<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (14).

Zur Vervollständigung der vorliegenden Kenntnisse über Organotellur(IV)diazide und -triazide wurde dieses um die Gruppe der Verbindungen mit stark elektronegativen Substituenten erweitert (Kapitel 7). Im Rahmen dieser Arbeiten konnten die Trifluormethyltellur(tv)derivate (CF<sub>3</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (25) und  $CF_3Te(N_3)_3$  (27) sowie das  $C_6F_5Te(N_3)_3$  (28) dargestellt werden. Der starke Polarisationseffekt der CF<sub>3</sub>-Gruppe führt zu erhöhter Brisanz von **25** und **27**. Bei der Synthese des Triazids 28 wurde aufgrund einsetzender Dismutation erstmals das später auch direkt dargestellte  $Te(N_3)_4$  (1) in Lösung beobachtet. Im Laufe dieser Untersuchungen konnte nach mehreren Jahrzehnten endlich eine verlässliche und reproduzierbare Synthese für Pentafluorphenylditellan  $(C_6F_5Te)_2$  (16) gefunden werden. Katalytische Mengen von *n*-Bu<sub>3</sub>P erlauben es, durch Tellurinsertion in Perfluoraryllithium-Verbindungen Perfluoraryltellurolate zu erzeugen. Diese zeigten sich je nach Wahl des Lösungsmittels als sehr reaktiv, was über eine Eintopfsynthese mit LiF-Eliminierung zur effizienten Darstellung von Oktafluortelluranthren ( $C_6F_4Te$ )<sub>2</sub> (**20**) nutzbar ist. Dieses bifunktionelle, zyklische Tellan kann durch Halogenierung mit XeF2, SO2Cl2 und Br2 analog zu nichtzyklischen R2 Te-Verbindungen in seine TetrahalogenoDerivate **21–23** übergeführt und daraus das interessante, zyklische Te(IV)tetraazid ( $C_6F_4Te$ )<sub>2</sub>(N<sub>3</sub>)<sub>4</sub> (**24**) dargestellt werden (Abbildung 10.4).



Abbildung 10.4.: Das zyklische Tetraazid  $(C_6F_4Te)_2(N_3)_4$  (24).



Abbildung 10.5.: Molekülstruktur von TpsiTeN<sub>3</sub> (37).

Ein weiteres Forschungsgebiet dieser Arbeit besteht in der Verwendung extrem sperriger Alkyl- und Arylsubstituenten (Kapitel 8), um die ansonsten sehr labilen Tellurenyle RTeX (X = (Pseudo)halogen) zu stabilisieren. Der erstmalige Einsatz von Tpsi- (Tris(phenyldimethylsilyl)methyl) und extrem sperriger Terphenyl-Substituenten (Abbildung 10.6 auf der nächsten Seite) in der Organotellurchemie führte zur Darstellung mehrerer Verbindungen mit ungewöhnlichen Eigenschaften: So gelang die Charakterisierung des monomeren Tellurolates TpsiTeLi (**29**) mit "nackter" RTe<sup>-</sup>-Einheit, die Bestätigung des auch für ein anderes, ebenfalls grün gefärbtes Ditellan vermuteten, antiperiplanaren Baus von (TpsiTe)<sub>2</sub> (**30**), sowie die Isolierung bei Raumtemperatur kinetisch stabiler, kristalliner Tellurenylazide und -iodide. Strukturaufklärung an Einkristallen beweist für diese Tellurenyle das Vorliegen monomerer molekularer Ein-



**Abbildung 10.6.:** Reaktionsschema zur Synthese der reinen Verbindungen (2,6- $Trip_2C_6H_3Te)_2$  (**34**) und 2,6- $Trip_2C_6H_3TeI$  (**35**).

heiten ohne Wechselwirkungen im Festkörper (Abbildung 10.5 auf der vorherigen Seite). Durch Darstellung des donor-stabilisierten Tellurenylazids 2-Me<sub>2</sub>N- $CH_2C_6H_4TeN_3$  (**41**) ist erstmals ein direkter Vergleich zweier kovalenter Chalcogenazide möglich, da die analoge Selenverbindung kürzlich als erste ihrer Art in unserer Arbeitsgruppe dargestellt werden konnte.

# 10. Zusammenfassung

III.

Experimenteller Teil

## 11. Allgemeines

#### 11.1. Apparatives

ie im folgenden beschriebenen Reaktionen, sowie die zur Aufbereitung der Reaktionsgemische nötigen Schritte wurden unter Schutzgasatmosphäre (Argon 4.8, Fa. Messer, Griesheim) durchgeführt. In einigen Fällen wurde das Argon zusätzlich durch eine Gasreinigungsanlage geleitet. Diese Anlage besteht aus fünf Rohren, gefüllt mit Molekularsieb 5Å, KOH, R3-11 (BTS-Katalysator), Sicapent MERCK<sup>©</sup> und einem Cr(II)-Kontakt,<sup>272</sup> die in dieser Reihenfolge durchströmt werden. Ihre Aufgabe besteht in der Adsorption bzw. Absorption von O<sub>2</sub>, H<sub>2</sub>O, CO<sub>2</sub> und anderen Verunreinigungen des Argons. Alle Umsetzungen erfolgten mittels herkömmlicher Schlenktechniken unter Luftund Wasserausschluss, <sup>273</sup> Die Fluorierungsreaktionen zu Te(vi)-Verbindungen wurden in Kunststoff-Schlenkgefäßen durchgeführt. Für Operationen im Vakuum stand eine zweistufige Drehschieberpumpe (EDWARDS RV5) zum Arbeiten mit Schlauchverbindungen bis 10<sup>-3</sup> mbar (ÖV), und eine Vollglasapparatur zum Arbeiten mit Kegelschliff-Verbindungen zur Verfügung, die mittels zusätzlich angeflanschter Öldiffusionspumpe (Leybodiff 170, Treibmittel PFEIF-FER AN 175) bis hinab zu  $10^{-6}$  mbar (HV) evakuiert werden kann.

## 11.2. Chemikalien

Die als Lösungsmittel eingesetzten Kohlenwasserstoffe und Ether wurden jeweils frisch von Natrium/Benzophenon, Acetonitril von  $P_4O_{10}$  und Methylenchlorid von Calciumhydrid destilliert, alle übrigen Lösungsmittel mittels Standardmethoden getrocknet<sup>273</sup> und über Molekularsieben aufbewahrt.

Die Verbindungen Ph<sub>5</sub>TeBr,<sup>158</sup> (biphen)<sub>2</sub>TeF<sub>2</sub>,<sup>274</sup> AgN<sub>3</sub>,<sup>47</sup> Ph<sub>2</sub>Te/(PhTe)<sub>2</sub>/(MeTe)<sub>2</sub>/Me<sub>2</sub>Te,<sup>40</sup> [Me<sub>3</sub>Te]N<sub>3</sub>/[Ph<sub>3</sub>Te]N<sub>3</sub>,<sup>18,22</sup> Me<sub>4</sub>Te,<sup>94</sup> PhMe<sub>2</sub>SiCl,<sup>275</sup> (PhMe<sub>2</sub>Si)<sub>3</sub>CH (= TpsiH),<sup>209</sup> (EtMe<sub>2</sub>Si)<sub>3</sub>CH (= TesiH),<sup>276</sup> 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>I,<sup>213</sup> ((Me<sub>3</sub>Si)<sub>3</sub>CTe)<sub>2</sub> (= (TsiTe)<sub>2</sub>),<sup>196</sup> TsiTeI,<sup>198,199</sup> TsiTeN<sub>3</sub>,<sup>98</sup> (TripTe)<sub>2</sub>/(Mes\*Te)<sub>2</sub>,<sup>197</sup> Me<sub>2</sub>TeF<sub>2</sub>,<sup>26</sup> Ph<sub>2</sub>TeF<sub>2</sub>,<sup>112,113</sup> TeF<sub>4</sub>,<sup>277</sup> TeF<sub>6</sub>,<sup>278</sup> [Me<sub>4</sub>N][TeF<sub>5</sub>],<sup>62</sup> TeBr<sub>4</sub>,<sup>47</sup> TeI<sub>4</sub>,<sup>279</sup> Te<sub>2</sub>Cl<sub>2</sub> und Te<sub>2</sub>Br<sub>2</sub><sup>118</sup> wurden nach Literaturvorschriften dargestellt.

Kommerziell bezogen und unverändert eingesetzt wurden  $C_6F_5H$  (Avocado), 4- $CF_3C_6F_4H$  (Avocado), Me<sub>3</sub>SiN<sub>3</sub> (Aldrich), TeO<sub>2</sub> (Merck),

TeCl<sub>4</sub> (Avocado), MeLi in Et<sub>2</sub>O (1.6 M, Chemetall), *n*-BuLi in Hexanfraktion (2.5 M, Aldrich), Li[BEt<sub>3</sub>H] (Superhydrid<sup>©</sup>) in THF (1 M, Aldrich), EtMe<sub>2</sub>SiCl (Abcr) und I<sub>2</sub> (Acros).

Im Handel erhältliches Bromoform (MERCK) wurde zunächst durch mehrmalige Extraktion mit Wasser von stabilisierendem Ethanol befreit, dann im Vakuum destilliert und unter Argon im Dunklen bei 4 °C gelagert. Elementares Tellur der Firma Aldrich (200 mesh) wurde unverändert eingesetzt oder für die Insertionsreaktionen in die sperrigen Lithiumorganyle TpsiLi, TesiLi und 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Li mit 5 mol% Ph<sub>3</sub>P versetzt 24 h in siedendem Toluol aktiviert, dekantiert, mit kaltem Toluol gewaschen und nach Trocknung im Vakuum unter Argon gelagert.

Die Verbindungen  $(CF_3)_2$ TeF<sub>2</sub> und  $(CF_3$ Te)<sub>2</sub> wurden freundlicherweise von Prof. D. NAUMANN (Universität zu Köln) bereitgestellt.<sup>280,281</sup>

## 11.3. Analytik

Alle Schmelzpunkte wurden an einem Gerät Büchi B540 gemessen und sind nicht korrigiert. Elementaranalysen wurden im Mikroanalytischen Labor des Departments Chemie der Universität München an einem ELEMENTAR Vario EL durchgeführt, und die Massenspektren wurden mit einem JEOL MStation JMS 700 Spektrometer angefertigt, wobei sich die Fragmentmassen dabei auf das Isotop mit der größten Häufigkeit (z. B. <sup>35</sup>Cl, <sup>130</sup>Te) beziehen. Die Infrarotspektren der Feststoffe wurden als KBr- oder Polyethylenpressling oder als Verreibung zwischen KBr-Platten an einem PERKIN ELMER Spektrum One FT-IR oder an einem NICOLET 520 FT-IR Spektrometer aufgenommen. Die Raman-Spektren wurden als reine Feststoffe in Glaskapillaren oder Reaktionskolben mit einem PERKIN ELMER Spectrum 2000 NIR FT-Raman Spektrometer, ausgestattet mit einem Nd:YAG Laser (1064 nm) aufgenommen. Da die chemische Verschiebung der tellurhaltigen Verbindungen im <sup>125</sup>Te NMR Spektrum stark temperaturabängig ist, wurden sämtliche <sup>125</sup>Te NMR Spektren temperiert bei 25°C gemessen. Die chemischen Verschiebungen beziehen sich auf folgende Standards  $\delta$  = 0: Me<sub>4</sub>Si (<sup>1</sup>H, 399.8 MHz; <sup>13</sup>C, 100.5 MHz; <sup>29</sup>Si, 79.5 MHz), MeNO<sub>2</sub> (<sup>14</sup>N/<sup>15</sup>N, 28.9/40.6 MHz), CFCl<sub>3</sub> (<sup>19</sup>F, 376.1 MHz), Me<sub>2</sub>Te (<sup>125</sup>Te, 126.1 MHz) und Me<sub>2</sub>Hg (<sup>199</sup>Hg, 71.7 MHz). Die Angaben der Ausbeuten beziehen sich auf die im Unterschuss eingesetzte Komponente und sind nicht optimiert.

## 11.4. Vorsichtsmassnahmen

Alle Tellurverbindungen sind mehr oder weniger toxisch, der MAK-Wert für Tellur liegt bei  $0.1 \text{g/m}^{3.*}$  Während Selenverbindungen bei längerem Einwirken auf den menschlichen Körper schnell zu Entzündungen ("Selenschnupfen") führen, sind Tellurverbindungen v.a. deshalb weniger gefährlich, da sie die Darmwand nicht passieren können. Dennoch kommt es bei längerem, regelmäßigem Kontakt zur charakteristischen Ausscheidung von Me<sub>2</sub>Te und dem damit verbundenem knoblauchähnlichen Geruch. Beim Arbeiten mit Tellurverbindungen sollte grundsätzlich der Hautkontakt vermieden werden. Besonders bei Me<sub>2</sub>Te und anderen leichtflüchtigen Substanzen ist zudem darauf zu achten, dass die schon in Spuren deutlich wahrnehmbaren Dämpfe (Geruch nach Knoblauch) nicht eingeatmet werden.

**Vorsicht**: Binäre Tellurazide und alle kovalenten Azide mit hohem Stickstoffgehalt sind extrem gefährliche, schlag-, reibungs und feuchtigkeitsempfindliche Materialien, die zu plötzlichen und unerwarteten Explosionen neigen. Entsprechend geeignete Sicherheitsvorkehrungen wie Kevlar-Handschuhe (Fa. SAHLBERG, München), Gesichtsschild, Ledermantel (Fa. QUADRATFUSS, Berlin) müssen getroffen und Teflonspatel (Fa. MERCK, Darmstadt und LMU-Spezialanfertigung) verwendet werden, wobei die von kundigem Personal eingesetzten Mengen reiner Substanz 100 mg besser nicht überschreiten sollten.

<sup>\*</sup>Zum Vergleich: MAK-Wert für HCN 10 mg/m<sup>3</sup>, für Hg-Dämpfe 0.1 mg/m<sup>3</sup>.

# 11. Allgemeines

## 12. Versuchsbeschreibungen

#### 12.1. Binäre Tellur-Stickstoff-Verbindungen

## 12.1.1. Synthese von Te(N<sub>3</sub>)<sub>4</sub> (1)

Eine Suspension von 0.3 mmol TeF<sub>4</sub> in CFCl<sub>3</sub> (10 mL) wird mit 1.2 mmol Me<sub>3</sub>SiN<sub>3</sub> bei 0 °C versetzt. Man rührt 2h und dekantiert dann die überstehende Lösung ab. Der verbleibende, gelbe Niederschlag wird zum Zwecke der NMR-Untersuchung in DMSO-D<sub>6</sub> aufgelöst. **Achtung:** Beim Trocknen des Rückstandes im Vakuum kann es zu spontanen Explosionen kommen, die zur völligen Zerstörung der verwendeten Gerätschaften führen. Daher wurde von weiterer Handhabung abgesehen.

<sup>14</sup>N NMR (DMSO-D<sub>6</sub>, 25 °C, Δ $v_{1/2}$  [Hz])  $\delta$  –141 (80, N<sub>β</sub>), –234 (1000, N<sub>γ</sub>), ca. –270 (extrem breit, N<sub>α</sub>); <sup>125</sup>Te NMR (DMSO-D<sub>6</sub>, 25 °C)  $\delta$  1380 ppm.

## 12.1.2. Synthese von [Me<sub>4</sub>N][Te(N<sub>3</sub>)<sub>5</sub>] (2a)

Eine Lösung von 0.15 mmol [Me<sub>4</sub>N][TeF<sub>5</sub>] in 5 mL CH<sub>2</sub>Cl<sub>2</sub> wird mit 0.75 mmol Me<sub>3</sub>SiN<sub>3</sub> bei 0 °C umgesetzt. Nach einigen Minuten bildet sich eine gelbe Lösung. Nach Entfernen aller flüchtigen Bestandteile im Vakuum verbleibt ein gelber Feststoff. **Achtung:** Konzentrierte Lösungen von **2a** neigen vor allem bei Kühlung zur Abscheidung gelber Öle, die schon im kalten Zustand beim Rühren spontan explodieren können.

Raman (100 mW, 25 °C)  $\tilde{v}$  = 3037 (20), 2979 (20), 2921 (20), 2105 (40)/2055 (15,  $v_{\rm as}N_3$ ), 1472 (10), 1459 (10), 1447 (15), 1312 (15) ( $v_{\rm s}N_3$ ), 1263 (10), 948 (15), 753 (20), 668 (10), 639 (20), 409 (100)/347 (85, vTeN), 255 (30), 203 (40), 174 (50) cm<sup>-1</sup>.

<sup>14</sup>N NMR (CD<sub>2</sub>Cl<sub>2</sub>, 25 °C, Δν<sub>1/2</sub> [Hz])  $\delta$  –139 (20, N<sub>β</sub>), –236 (270, N<sub>γ</sub>), ca. –250 (extrem breit, N<sub>α</sub>), –337.8 (3, Me<sub>4</sub>N); <sup>125</sup>Te NMR (CD<sub>2</sub>Cl<sub>2</sub>, 25 °C)  $\delta$  1258 ppm.

#### 12.1.3. Synthese von [pyH][Te(N<sub>3</sub>)<sub>5</sub>] (2b)

Eine Suspension von 1 mmol TeF<sub>4</sub> in 5 mL trockenen Pyridins wird 12 h gerührt. Man entfernt alle flüchtigen Anteile im Vakuum und versetzt einen Teil des so gewonnenen Rückstandes (100 mg) mit 1.1 mmol Me<sub>3</sub>SiN<sub>3</sub> bei 0 °C, rührt eine Stunde und dekantiert die entstandene gelbe Mischung. Durch Kühlen auf -25 °C für 30 min erhält man gelbe Kristalle von **2b**, die vorsichtig von der Lösung getrennt werden können.

Raman (100 mW, 25 °C)  $\tilde{v}$  = 3109 (5), 3052 (5), 2112(30)/2079 (10)/2064 (5)/2037 (15,  $v_{as}N_3$ ), 1640 (2), 1618 (2), 1490 (2), 1323 (10,  $v_{as}N_3$ ), 1298 (5), 1272 (5), 1245 (5), 1200 (5), 1029 (10), 1011 (20), 667 (5), 651 (5), 639 (10), 406 (100)/342 (50, *v*TeN), 300 (20), 253 (15), 193 (35), 170 (30) cm<sup>-1</sup>.

<sup>14</sup>N NMR (CDCl<sub>3</sub>, 25 °C, Δ $v_{1/2}$  [Hz])  $\delta$  = -115 (400, py), -141 (25, N<sub>β</sub>), -234 (360, N<sub>γ</sub>), -245 (extrem breit, N<sub>α</sub>); <sup>125</sup>Te NMR (CDCl<sub>3</sub>, 25 °C)  $\delta$  1334 ppm.

## 12.2. Synthese der Tellurcyanide

#### 12.2.1. Te(CN)<sub>2</sub> (3)

In einem sorgfältig ausgeheizten Schlenkrohr, an das eine G3-Glasfritte angesetzt ist, werden 3.5 mmol TeBr<sub>4</sub> und 5.0 g AgCN in 10 mL Benzol 3 d bei 60 °C gerührt. Dann wird die überstehende Lösung verworfen und der bräunliche Rückstand mehrmals mit je 15 mL siedendem Et<sub>2</sub>O extrahiert und die Extrakte jeweils über die Fritte in einen Vorratskolben geleitet. Nach Eindampfen der vereinigten Extrakte im Feinvakuum bei Raumtemperatur verbleibt ein schwach bräunlicher Rückstand, der bei < 80 °C/10<sup>-5</sup> mbar (Diffusionspumpe)</sup> langsam sublimiert wird. Man erhält **3** als beinahe farbloses Sublimat, das mit der Zeit leicht nachdunkelt.

Ausbeute 68 %; Schmp. 80-82 °C.

Raman (200 mW, 25 °C)  $\tilde{v}$  = 2177 (100, *v*CN), 2170 (50, *v*CN), 409 (69, *v*TeC), 395 (40, *v*TeC), 279 (5, δTeCN), 136 (30, δCTeC) cm<sup>-1</sup>; IR (PE-Pressling)  $\tilde{v}$  = 2176 (vs, *v*CN), 2168 (s, *v*CN), 462 (sh), 410 (vs, *v*TeC), 398 (vs, *v*TeC), 296 (w, δTeCN), 277 (w, δTeCN), 147 (m, δCTeC) cm<sup>-1</sup>.

<sup>13</sup>C NMR (THF-D<sub>8</sub>, 25 °C) δ 86.2 (<sup>1</sup> $J_{C-Te}$  = 330.2 Hz); <sup>14</sup>N NMR (THF-D<sub>8</sub>, 25 °C, Δ $v_{1/2}$  [Hz]) δ –70 (1300); <sup>125</sup>Te NMR (THF-D<sub>8</sub>, 25 °C) δ 567 ppm.

EI MS m/z (rel. Int.) 256 (20)  $[{\rm Te}_2^+],$  182 (90)  $[{\rm M}^+],$  156 (68)  $[{\rm TeCN}^+],$  130 (100)  $[{\rm Te}^+].$ 

EA ber. für C<sub>2</sub>N<sub>2</sub>Te (179.63): C 13.4, N 15.6; gef. C 13.6, N 15.4.

#### 12.2.2. Te(CN)<sub>4</sub> (4)

In eine Suspension von 1.0 mmol TeF<sub>4</sub> in 5 mL CH<sub>2</sub>Cl<sub>2</sub> werden bei -20 °C 1.1 mmol Me<sub>3</sub>SiCN getropft und 7 h gerührt. Dann werden alle flüchtigen Bestandteile bei -20 °C abgepumpt. **Achtung:** Der erhaltene farblose Rückstand neigt zu plötzlichem, explosionsartigem Zerfall bei Kontakt mit der Luft oder Erwärmung.

Raman (200 mW, -20 °C)  $\tilde{v}$  = 2204, (25, vCN), 2191 (45, vCN), 2149 (40, vCN), 2129 (15, vCN), 640 (65), 474 (35), 426 (br, 55), 381 (br, 55), 220 (75), 155 (50) cm<sup>-1</sup>.

#### 12.2.3. Synthese der sperrigen Aryltellane (RTe)<sub>2</sub> (R = Mes, Trip)

Zu den Lösungen der Ditellane (RTe)<sub>2</sub> (1.0 mmol) in Toluol werden 2.0 mmol Kupferpulver gegeben und 6 h unter Rückfluss erhitzt. Es tritt ein Farbwechsel der Lösung von dunkelrot nach gelb ein. Man filtriert, konzentriert im Vakuum auf halbes Volumen und erhält nach Überschichten mit *n*-Hexan die Tellane als gelbliche (**5**) bzw. farblose (**6**) kristalline Feststoffe in analytisch reiner Form und 90–95 % Ausbeute.

#### Mes<sub>2</sub>Te (5)

Schmp. 128–129 °C (Lit. 101: 129 °C).

Raman (200 mW)  $\tilde{v}$  = 3018 (20), 2960 (30), 2916 (50), 1595 (50), 1563 (15), 1463 (5), 1376 (55), 1294 (100), 1269 (10), 1012 (10), 954 (10), 585 (35), 558 (80), 541 (55), 346 (35), 220 (50), 176 (55), 102 (25) cm<sup>-1</sup>; IR (KBr)  $\tilde{v}$  = 3012 w, 2958 m, 2945 m, 2850 m, 2726 w, 1750 w, 1717 w, 1637 w, 1616 m, 1594 m, 1594 m, 1558 m, 1461 s, 1432 s, 1372 m, 1294 m, 1174 w, 1032 m, 1005 s, 948 w, 876 w, 845 s, 703 m, 698 m, 545 m, 540 m cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 6.90 (2H, Ar-H), 2.38 (6H, o-Me), 2.28 (3H, p-Me) ppm (übereinstimmend mit Lit.<sup>102</sup>); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) δ 144.2 (m-C), 137.8 (p-C), 127.7 (o-C,  ${}^{2}J_{C-Te} = 56.9$  Hz), 119.0 (ipso-C,  ${}^{1}J_{C-Te} = 295.6$  Hz), 28.1 (o-Me), 20.8 (p-Me) ppm; <sup>125</sup>Te NMR (CDCl<sub>3</sub>) δ 276 ppm.

EI MS m/z (rel. Int.) 368 (M<sup>+</sup>, 46), 248 (MesTe<sup>+</sup>, 65), (Mes<sup>+</sup>, 100). EA ber. für  $C_{18}H_{22}$ Te: C 59.1, H 6.1; gef. C, 59.1; H, 6.0.

#### Trip<sub>2</sub>Te (6)

Schmp. 48-49 °C.

Raman (200 mW)  $\tilde{v}$  = 3084 (5), 3038 (20), 2960 (100), 2934 (80), 2905 (85), 2865 (65), 2754 (10), 2710 (10), 1593 (50), 1559 (10), 1462 (40), 1445 (30), 1382 (10), 1345 (25), 1304 (25), 1262 (50), 1107 (30), 1057 (20), 1011 (22), 956 (20), 883 (50), 838 (15), 815 (10), 598 (35), 516 (30), 476 (15), 447 (25), 317 (15), 269 (40), 207 (45), 150 (20) cm<sup>-1</sup>; IR (KBr)  $\tilde{v}$  = 2956 vs, 2864 s, 1592 w, 1557 m, 1458 m, 1419 m, 1380 w, 1361 m, 1310 br, 1235 w, 1166 w, 1099 w, 1054 m, 1004 m, 963 w, 875 m, 740 m, 645 w, 645 w, 513 w cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.03 (2H, Ar-H), 3.69 (sept, 2H, o-C*H*(CH<sub>3</sub>)<sub>2</sub>, <sup>3</sup>*J*<sub>H-H</sub> = 6.8 Hz), 2.94 (sept, 1H, p-C*H*(CH<sub>3</sub>)<sub>2</sub>, <sup>3</sup>*J*<sub>H-H</sub> = 6.8 Hz), 1.31 (d, 6H, p-CH(CH<sub>3</sub>)<sub>2</sub>), 1.11 (d, 12H, o-CH(CH<sub>3</sub>)<sub>2</sub>) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  153.8 (o-C), 149.4 (p-C), 122.4 (ipso-C, <sup>1</sup>*J*<sub>C-Te</sub> = 288.3 Hz), 121.6 (m-C), 39.5 (o-CH(CH<sub>3</sub>)<sub>2</sub>), 34.0 (p-

CH(CH<sub>3</sub>)<sub>2</sub>), 24.4 (o-CH(CH<sub>3</sub>)<sub>2</sub>), 24.0 (p-CH(CH<sub>3</sub>)<sub>2</sub>) ppm; <sup>125</sup>Te NMR (CDCl<sub>3</sub>)  $\delta$  175 ppm.

DEI MS m/z (rel. Int.) 536 (M<sup>+</sup>, 100), 332 (M<sup>+</sup> –Trip, 12), 247 (M<sup>+</sup> –Trip –2*i*Pr, 7).

EA ber. für C<sub>30</sub>H<sub>46</sub>Te (534.29): C 67.4, H 8.7; gef. C 67.3, H 8.7.

#### 12.2.4. Synthese der sperrigen Diaryltellur(IV)difluoride R2TeF2

Zu den Lösungen der Tellane  $R_2$ Te (1.0 mmol) in  $CH_2Cl_2$  werden 1.0 mmol Xe $F_2$  bei 0 °C gegeben. Man lässt unter stetem Rühren auf Raumtemperatur kommen und rührt für weitere 2h. Nach dem Entfernen aller flüchtigen Komponenten im Vakuum erhält man die reinen, farblosen Diaryltellur(rv)difluoride 7 and 8 in praktisch quantitativen Ausbeuten.

#### Mes<sub>2</sub>TeF<sub>2</sub> (7)

Schmp. 223-225 °C.

Raman (200 mW)  $\tilde{v}$  = 3021 (40), 2985 (50), 2922 (95), 1598 (40), 1448 (20), 1381 (40), 1293 (65), 1017 (22), 585 (35), 556 (100), 520 (45), 474 (65,  $v{\rm TeF}$ ), 361 (35), 238 (40), 174 (65), 134 (35) cm $^{-1}$ ; IR (KBr)  $\tilde{v}$  = 3019 m, 2931 m, 2857 m, 2740 w, 1719 w, 1595 m, 1566 m, 1456 s, 1406 m, 1382 s, 1290 s, 1261 w, 1178 w, 1084 br, 1033 br, 1012 m, 954 w, 928 w, 886 w, 847 s, 805 br, 702 m, 584 w, 556 w, 545 w, 499 w, 467 vs, 454 vs, 358 m, 334 w cm $^{-1}$ .

<sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  6.99/6.96 (4H, Ar-H), 2.76/2.35 (12H, o-Me), 2.30 (6H, p-Me) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  143.6/141.5 (o-C), 141.4 (p-C), 135.9 (ipso-C, <sup>2</sup>*J*<sub>C-F</sub> = 6.9 Hz), 130.5/130.2 (m-C), 24.0/22.4 (o-Me), 21.0 (p-Me) ppm; <sup>19</sup>F NMR (CDCl<sub>3</sub>):  $\delta$  -121.6 (<sup>2</sup>*J*<sub>F-125Te</sub> = 783.3 Hz, <sup>2</sup>*J*<sub>F-123Te</sub> = 648.1 Hz) ppm; <sup>125</sup>Te NMR (CDCl<sub>3</sub>):  $\delta$  1206 (t) ppm.

EI MS m/z (rel. Int.) 406 (M<sup>+</sup>, 3), 387 (M<sup>+</sup> –F, 96), 368 (M<sup>+</sup> –2F, 19), 353 (M<sup>+</sup> –2F –Me, 13), 287 (M<sup>+</sup> –Mes, 28), 268 (MesTeF<sup>+</sup>, 92).

EA ber. für  $C_{18}H_{22}F_2$ Te (403.96): C 53.5, H 5.5; gef. C 52.7, H 5.4.

## $Trip_2TeF_2$ (8)

Schmp. 176–177 °C.

Raman (200 mW)  $\tilde{v} = 3044$  (20), 2946 (77), 2907 (71), 2866 (44), 2711 (8), 1593 (49), 1563 (13), 1446 (36), 1383 (15), 1362 (20), 1309 (20), 1286 (20), 1263 (55), 1237 (20), 1105 (30), 1085 (20), 1009 (32), 956 (25), 885 (70), 842 (25), 816 (20), 600 (60), 515 (45), 495 (100), 417 (53), 320 (50), 274 (60), 195 (65), 157 (50) cm<sup>-1</sup>; IR (KBr)  $\tilde{v} = 2945$  s, 2860 m, 1591 m, 1561 m, 1463 s, 1420 m, 1380 m, 1360 m, 1314 w, 1260 w, 1163 m, 1132 w, 1103 m, 1056 w, 1005 w, 935 w, 883 w, 741 w, 648 w, 516 w, 495 m, 470 (vTeF) vs cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.15 (4H, Ar-H), 3.6/2.9 (br, 4H, o-C*H*(CH<sub>3</sub>)<sub>2</sub>), 2.89 (sept, 2H, p-C*H*(CH<sub>3</sub>)<sub>2</sub>, <sup>1</sup>*J*<sub>H-H</sub> = 6.8 Hz), 1.7/1.0 (br, 24H, o-CH(CH<sub>3</sub>)<sub>2</sub>, 1.26 (d, 12H, p-CH(CH<sub>3</sub>)<sub>2</sub>) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) δ 154.6/152.7 (br, o-C), 151.8 (p-C), 136.4 (ipso-C, <sup>3</sup>*J*<sub>C-Te</sub> = 322.9 Hz, <sup>2</sup>*J*<sub>C-F</sub> = 5.6 Hz), 124.8/123.3 (br, m-C), 36.5/33.1 (br, o-CH(CH<sub>3</sub>)<sub>2</sub>), 34.1 (p-CH(CH<sub>3</sub>)<sub>2</sub>), 23.7 (p-CH(CH<sub>3</sub>)<sub>2</sub>), 28.1/25.8/24.6/23.3 (br, o-CH(CH<sub>3</sub>)<sub>2</sub>) ppm; <sup>19</sup>F NMR (CDCl<sub>3</sub>) δ -106.2 (<sup>1</sup>*J*<sub>F-125Te</sub> = 828.8 Hz, <sup>1</sup>*J*<sub>F-123Te</sub> = 688.4 Hz) ppm; <sup>125</sup>Te NMR (CDCl<sub>3</sub>) δ 1236 (t) ppm.

EI MS m/z (rel. Int.) 554 (M<sup>+</sup> –F, 100), 536 (Trip<sub>2</sub>Te<sup>+</sup>, 55), 371 (TripTeF<sub>2</sub><sup>+</sup>, 70), 352 (TripTeF<sup>+</sup>, 61) und Fragmente von **6**.

EA ber. für C<sub>30</sub>H<sub>46</sub>F<sub>2</sub>Te (572.28): C 63.0, H 8.1; gef. C 62.6, H 8.0.

## 12.2.5. Reaktionen von R2TeF2 mit Me3Si(N3/CN)

#### Versuchte Darstellung von Me<sub>2</sub>Te(CN)<sub>2</sub>/Trip<sub>2</sub>Te(CN)<sub>2</sub>

In eine konzentrierte Lösung von spektroskopisch reinem R<sub>2</sub>TeF<sub>2</sub> in CDCl<sub>3</sub> gibt man einen Tropfen Me<sub>3</sub>SiCN bei o °C. Sofortige Messung eines <sup>125</sup>Te NMR-Spektrums zeigt ein Dublett bei  $\delta$  641 ppm ( ${}^{1}J_{\text{Te}-F}$  = 896 Hz) im Falle des Methylderivates, das der Verbindung Me<sub>2</sub>Te(CN)F zugeordnet wird, sowie eine starke Resonanz für R<sub>2</sub>TeF<sub>2</sub> (Me<sub>2</sub>TeF<sub>2</sub>:  $\delta$  1232 ppm). Zugabe von weiterem Me<sub>3</sub>SiCN führt zu rascher und vollständiger Reduktion des Te(rv) und ergibt R<sub>2</sub>Te mit  $\delta$  o ppm (Me<sub>2</sub>Te) und  $\delta$  175 ppm (**6**) als die einzigen nachweisbaren tellurhaltigen Verbindungen in der Reaktionslösung. Außer der Bildung dunkler CN Polymerisationsprodukte wurde keine Niederschlagsbildung beobachtet.

#### Darstellung von Ph<sub>2</sub>Te(CN)<sub>2</sub> und Mes<sub>2</sub>Te(CN)<sub>2</sub>

In eine Lösung von 1.0 mmol  $Ph_2TeF_2$  oder  $Mes_2TeF_2$  (7) in 3 mL  $CH_2Cl_2$  tropft man 2.2 mmol  $Me_3SiCN$  bei 0 °C. Nach dem Erwärmen auf Raumtemperatur und stetem Rühren für 5 h dekantiert man von einem farblosen Niederschlag und verwirft die Lösung. Nach Trocknen des Rückstands im Vakuum verbleibt  $Ph_2TeF_2$  (9). Im Falle des  $Mes_2Te(CN)_2$  (10) dekantiert man nicht, sondern dampft die gesamte Lösung ein und erhält 10 ebenfalls als farblosen Rückstand in 95% Ausbeute.

#### Ph2Te(CN)2 (9)

Schmp. 154 °C (Zers.).

Raman  $\tilde{v} = 3140$  (10), 3070 (80), 2993 (5), 2137 (100, vCN), 1576 (20), 1477 (10), 1436 (5), 1332 (5), 1184 (10), 1159 (20), 1059 (5), 1019 (50), 999 (90), 840 (5), 741 (5), 687 (5), 657 (40), 613 (10), 464 (10), 363 (30), 287 (30), 268 (90), 238 (60), 187 (20), 125 (22) cm<sup>-1</sup>; IR  $\tilde{v} = 3083$  w, 2129 m (vCN), 1474 s, 1432 s, 1384 m, 1330 w, 1304 w, 1180 w, 1156 w, 1054 m, 1061 m, 994 vs, 967 m, 915 w, 839 m, 736 vs, 682 vs, 462 s $\rm cm^{-1}.$ 

<sup>1</sup>H NMR (DMSO-D<sub>6</sub>) δ 7.97 (m, 2H, Ar-H), 7.62 (m, 3H, Ar-H) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (DMSO-D<sub>6</sub>) δ 135.4 (o-C, <sup>2</sup> $J_{C-Te}$  = 14.3 Hz), 131.3 (p-C), 130.6 (CN), 130.3 (m-C), 127.0 (ipso-C, <sup>1</sup> $J_{C-Te}$  = 281.4 Hz) ppm; <sup>14</sup>N NMR (DMSO-D<sub>6</sub>) nicht beobachtet; <sup>125</sup>Te NMR (DMSO-D<sub>6</sub>) δ 601 ppm.

DEI MS m/z (rel. Int.) 310 (M<sup>+</sup> –CN, 1), 284 (Ph<sub>2</sub>Te<sup>+</sup>, 40), 207 (PhTe<sup>+</sup>, 15), 154 (Ph<sub>2</sub><sup>+</sup>, 100).

EA ber. für  $C_{14}H_{10}N_2$ Te (333.84): C 50.4, H 3.0, N 8.4; gef. C 50.3, H 3.1, N<br/>8.2.

#### $Mes_2Te(CN)_2$ (10)

Schmp. 150 °C (Zers.).

Raman  $\tilde{v}$  = 3021 (55), 2989 (55), 2922 (100), 2137 (90)/2128 (45, vCN), 1596 (40), 1452 (25), 1380 (55), 1296 (60), 1001 (25), 584 (45), 552 (80), 541 (70), 364 (50), 284 (50), 226 (45), 176 (60), 132 (60) cm<sup>-1</sup>; IR  $\tilde{v}$  = 3010 w, 2960 w, 2923 w, 2126 (vCN) m, 1637 s, 1617 vs, 1594 m, 1453 br, 1383 s, 1293 m, 1261 m, 1100 br, 1028 br, 861 m, 852 m, 802 m, 617 br, 476 m cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.16/7.07 (4H, Ar-H), 2.86/2.48 (12H, o-Me), 2.32 (6H, p-Me) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) δ 144.8/140.8 (o-C), 142.6 (p-C), 131.7/131.2 (m-C), 126.8 (ipso-C), 124.7 (CN), 24.5/24.2 (o-Me), 20.9 (p-Me) ppm; <sup>14</sup>N NMR (CDCl<sub>3</sub>) δ -125 ( $\Delta v_{1/2}$  300 Hz) ppm; <sup>125</sup>Te NMR (CDCl<sub>3</sub>) δ 320 ppm.

MS: Nur Fragmente von 5.

EA ber. für C20H22N2Te (418.01): C 57.4, H 5.3, N 6.7; gef. C 56.0, H 4.8, N 6.0.

#### $Mes_2Te(N_3)_2$ (11)

In eine Lösung von 0.7 mmol 7 in 10 mL  $CH_2Cl_2$  tropft man 1.4 mmol  $Me_3SiN_3$  bei 0 °C. Nach dem Erwärmen auf Raumtemperatur und stetem Rühren für 6 h dampft man die gesamte Lösung ein und erhält **11** als farblosen Rückstand.

Ausbeute 95 %; Schmp. 150 °C.

Raman  $\tilde{v}$  = 3020 (10), 2921 (20), 2048 (20,  $v_{as}N_3$ ), 1597 (10), 1448 (5), 1393 (10), 1294 (20), 1001 (5), 586 (5), 552 (15), 363 (75)/330 (100, vTeN), 230 (15), 172 (45), 110 (25) cm<sup>-1</sup>; IR  $\tilde{v}$  = 3026 w, 2967 m, 2923 m, 2857 w, 2037 vs/2029 vs ( $v_{as}N_3$ ), 1596 m, 1452 s, 1382 m, 1313 s, 1293 s, 1258 vs, 1179 w, 1096 br, 1030 br, 852 m, 804 br, 698 w, 618 br, 592 w, 541 m, 278 vs cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.06/7.04 (4H, Ar-H), 2.76/2.40 (12H, o-Me), 2.32 (6H, p-Me) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) δ 144.1/141.7 (o-C), 142.2 (p-C), 131.2/130.4 (m-C), 129.4 (ipso-C), 24.5/23.1 (o-Me), 21.0 (p-Me) ppm; <sup>14</sup>N NMR (CDCl<sub>3</sub>) δ -138 (N<sub>β</sub>,  $\Delta v_{1/2}$  75 Hz), -201 (N<sub>γ</sub>, $\Delta v_{1/2}$  300 Hz), -298 (N<sub>α</sub>,  $\Delta v_{1/2}$  2500 Hz) ppm; <sup>125</sup>Te NMR (CDCl<sub>3</sub>) δ 908 ppm.

DCI MS m/z (rel. Int.) 424 (M<sup>+</sup>  $-N_2$ , 5), 410 (M<sup>+</sup>  $-N_3$ , 30), 382 (M<sup>+</sup>  $-N_2 - N_3$ , 40), 368 (Mes<sub>2</sub>Te<sup>+</sup>) und Fragmente von **6**.

EA ber. für  $C_{18}H_{22}N_6$ Te (450.01): C 48.0, H 4.9, N 18.7; gef. C 47.4, H 5.1, N 16.0.

## 12.3. Synthese der Organotellur(v1)azide

## 12.3.1. Synthese von Azidopentaphenyl- $\lambda^6$ -tellan Ph<sub>5</sub>TeN<sub>3</sub> (13)

Zu einer Lösung von 1mmol Ph<sub>5</sub>TeBr in 20 mL  $CH_2Cl_2/Hexan$  1:1 werden 1.5 mmol AgN<sub>3</sub> gegeben und für einen Tag gerührt. Nach Filtration werden 10 mL Hexan zugefügt und die Lösung auf 0 °C abgekühlt. Man erhält **13** als schwach gelbe Plättchen.

Ausbeute 48 %; Schmp. 160 °C.

Raman (200 mW)  $\tilde{v}$  = 3057 (60), 2035 (10,  $v_{as}N_3$ ), 1573 (40), 1474 (10), 1433 (5), 1324 (10), 1182 (15), 1014 (50), 1001 (100), 643 (50), 614 (10), 270 (35), 215 (65), 120 (60) cm $^{-1}$ ; IR (KBr)  $\tilde{v}$  = 3047 m, 3011 w, 2982 w, 1576 w, 1566 m, 1479 m, 1432 s, 1327 w, 1302 w, 1270 w, 1180 m, 1157 w, 1057 w, 1045 m, 1017 w, 996 m, 969 w, 914 w, 843 w, 732 vs, 689 s, 665 w, 640 w, 612 w, 474 m, 457 s, 279 s, 261 vs cm $^{-1}$ .

<sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.65–7.23 (m, ar-H); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  150.4, 133.2, 129.5, 128.2; <sup>14</sup>N NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  –139 (N<sub> $\beta$ </sub>), –207 (N<sub> $\gamma$ </sub>), –275 (N<sub> $\alpha$ </sub>) ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  568 ppm.

EI MS m/z (rel. Int.) 515 (2)  $[M^+ -N_3]$ , 436 (10)  $[M^+ -Ph -N_3]$ , 361 (25)  $[M^+ -2Ph -N_3]$ , 282 (30)  $[Ph_2Te^+]$ , 154 (100)  $[C_{12}H_{10}^+]$ .

EA ber. für C<sub>30</sub>H<sub>25</sub>N<sub>3</sub>Te: C 64.9, H 4.5, N 7.6; gef. C 64.1, H 4.7, N 6.6.

# 12.3.2. Synthese von *cis*-Diazido-bis(2,2'-biphenyldiyl)- $\lambda^6$ -tellan biphen<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (14)

Zu einer Lösung von 1 mmol (biphen)<sub>2</sub>TeF<sub>2</sub> in 10 mL  $CH_2Cl_2$  werden bei 0 °C 2 mmol  $Me_3SiN_3$  getropft. Nach 5 h Rühren bei Raumtemperatur dampft man ein und erhält **14** als gelben Feststoff.

Ausbeute 70 %; Schmp. 153 °C (Zers.).

Raman (200 mW)  $\tilde{v} = 3056$  (25), 2044 (20) /2037 (10,  $v_{as}N_3$ ), 1579 (100), 1468 (15), 1291 (65), 1268 (10), 1234 (10), 1157 (15), 1038 (20), 1028 (25), 666 (10), 381 (25), 316 (55, vTeN), 283 (40), 188 (25), 135 (30) cm<sup>-1</sup>; IR (KBr)  $\tilde{v} = 3055$  m, 2916 w, 2850 w, 2054 vs/2045 vs/2038 vs ( $v_{as}N_3$ ), 1626 br, 1582 m, 1468 m, 1439 s, 1314 s, 1289 s, 1258 vs, 1166 m, 1157 m, 1109 w, 1060 w, 873 w, 749 vs, 706 m, 665 w, 612 w, 483 m, 415 m, 328 vs cm<sup>-1</sup>.

<sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 8.30 (dd), 8.24 (dd), 8.05 (d), 7.75 (m), 7.53 (td), 7.20 (td), 6.77 (dd); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 135.8, 135.2, 135.1, 134.0, 133.2, 132.6, 131.8, 130.1, 129.9, 127.0, 134.4, 123.4; <sup>14</sup>N NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ -140 (N<sub>β</sub>), -182 (N<sub>γ</sub>), -268 (N<sub>α</sub>) ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>) δ 633 ppm.

EI MS m/z (rel. Int.) 476 (0.2)  $[M^+ -N_3]$ , 434 (1)  $[M^+ -2N_3]$ , 280 (100) [biphenTe<sup>+</sup>], 152 (80) [biphen<sup>+</sup>].

EA ber. für C<sub>24</sub>H<sub>16</sub>N<sub>6</sub>Te: C 55.9, H 3.1, N 16.3; gef. C 54.5, H 2.8, N 15.4.

# 12.3.3. Synthese von Tetrafluor-diphenyl- $\lambda^6$ -tellan Ph<sub>2</sub>TeF<sub>4</sub> (15)

Ähnlich der in Lit.<sup>144</sup> angegebenen Vorschrift wird 1 mmol Diphenyltellan bei Raumtemperatur mit 2 mmol XeF<sub>2</sub> innerhalb zweier Tage zu **15** umgesetzt. Der Anteil des *cis*-Isomers **15b** in der Reaktionslösung beträgt gemäß <sup>19</sup>F NMR zunächst etwa 16 % und nimmt dann langsam innerhalb mehrerer Tage ab. Nach dem Entfernen aller flüchtigen Bestandteile erhält man *trans*-Ph<sub>2</sub>TeF<sub>4</sub> (**15a**) als farblosen Feststoff.

Ausbeute 86 %; Schmp. 167–169 °C.

Raman (200 mW)  $\tilde{v} = 3081$  (35), 3076 (35) 1582 (10), 1176 (5), 1161 (5), 1060 (10), 1021 (30), 1001 (50), 668 (15), 613 (15), 546 (100), 281 (10), 221 (70), 127 (3) cm<sup>-1</sup>; IR (KBr)  $\tilde{v} = 3098$  w, 3079 w, 1629 br, 1567 m, 1475 s, 1442 s, 1331 m, 1281 m, 1177 m, 1018 m, 991 s, 738 s, 679 s, 609 s, 601 vs, 466 s cm<sup>-1</sup>.

NMR-Daten von **15a**: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  8.03, 7.55, 6.90 ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  147.2, (C1, quin, <sup>2</sup>*J*<sub>C-F</sub> = 16.2 Hz), 131.2 (C3), 128.7 (C2, quin, <sup>3</sup>*J*<sub>C-F</sub> = 2.7 Hz), 128.2 (C4) ppm; <sup>19</sup>F NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  -57.2 (s, <sup>1</sup>*J*<sub>F-123Te</sub> = 2497 Hz, <sup>1</sup>*J*<sub>F-125Te</sub> = 3011 Hz) ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  821 (quin, <sup>1</sup>*J*<sub>Te-F</sub> = 3011 Hz) ppm.

NMR-Daten von *cis*-Ph<sub>2</sub>TeF<sub>4</sub> (**15b**): <sup>19</sup>F NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  -33.6 (t, <sup>1</sup>*J*<sub>F-F</sub> = 87.2 Hz, 2F), -75.8 (t, 2F) ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  806 (tt, <sup>1</sup>*J*<sub>Te-F</sub> = 2904, 2689 Hz) ppm.

EI MS m/z (rel. Int.) 360 (20) [M<sup>+</sup>], 341 (5) [M<sup>+</sup> –F], 245 (10) [PhTeF<sub>2</sub><sup>+</sup>], 96 (100) [PhF<sup>+</sup>].

EA ber. für C<sub>12</sub>H<sub>10</sub>F<sub>4</sub>Te: C 40.0, H 2.8; gef. C 40.1, H 2.8.

## 12.3.4. Synthese von *mer*-Trifluor-triphenyl- $\lambda^6$ -tellan *mer*-Ph<sub>3</sub>TeF<sub>3</sub>

In eine Lösung von 0.25 mmol  $[Ph_3Te]N_3$  in 5 mL  $CH_2Cl_2$  werden 0.4 mmol XeF<sub>2</sub> gegeben und heftig gerührt. Nach 3 h bei Raumtemperatur, wenn die Entwicklung von Xe und N<sub>2</sub> beendet ist, werden alle im Feinvakuum flüchtigen Bestandteile entfernt und man erhält einen farblosen Feststoff.

 $^{19}{\rm F}$  NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  –3.5 (t, 1F,  $^2J_{\rm F-F}$  = 37.0 Hz), –95.5 (d, 2F) ppm;  $^{125}{\rm Te}\{^1{\rm H}\}$  NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  786 ppm.
## 12.3.5. Synthese von Pentafluor-phenyl- $\lambda^6$ -tellan PhTeF<sub>5</sub>

Auf der Grundlage der in Lit. <sup>144,147</sup> beschriebenen Versuche wird 0.5 mmol (PhTe)<sub>2</sub> in 15 mL CH<sub>2</sub>Cl<sub>2</sub> gelöst mit 2.5 mmol XeF<sub>2</sub> umgesetzt. Man gibt 0.1 mmol [Et<sub>4</sub>N]Cl zu und rührt 1 d bei Raumtemperatur. Nach dem Entfernen aller im Feinvakuum flüchtigen Bestandteile erhält man ein farbloses Öl in 89 % Ausbeute.

<sup>19</sup>F NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  –36.8 (quin, <sup>2</sup> $J_{F-F}$  = 150.3 Hz), –53.5 (d) ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  725 (dquin, <sup>1</sup> $J_{Te-Fax}$  = 3610 Hz, <sup>1</sup> $J_{Te-Feq}$  = 3016 Hz) ppm.

# 12.3.6. Synthese von *cis*-Difluor-tetramethyl- $\lambda^6$ -tellan *cis*-Me<sub>4</sub>TeF<sub>2</sub>

Basierend auf dem in Lit.<sup>133</sup> angegebenen Verfahren werden in eine Lösung von 1.7 mmol Me<sub>4</sub>Te in 5 mL MeCN bei –40 °C 1.7 mmol XeF<sub>2</sub> gegeben. Man wärmt innerhalb 3 h auf o °C auf und dampft bei –10 °C/1<sup>-3</sup> mbar ein, bis kein messbarer Dampfdruck mehr besteht. Man extrahiert den Rückstand mit 10 mL Et<sub>2</sub>O/Pentan 1:1 und erhält eine beinahe reine Lösung von *cis*-Me<sub>4</sub>TeF<sub>2</sub>. Man entfernt bei –10 °C/10<sup>-3</sup> mbar die Lösungsmittel und kristallisiert aus Toluol/Pentan bei tiefen Temperaturen um.

<sup>19</sup>F NMR (C<sub>6</sub>D<sub>6</sub>) δ 7.0 ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>) δ 592 (t, <sup>1</sup> $J_{Te-F}$  = 1790 Hz) ppm. Siehe dazu auch Lit. <sup>133</sup>

### 12.3.7. Synthese von *mer*-Trifluor-trimethyl- $\lambda^6$ -tellan *mer*-Me<sub>3</sub>TeF<sub>3</sub>

In eine Lösung von 0.46 mmol [Me<sub>3</sub>Te]N<sub>3</sub> in 5 mL CH<sub>2</sub>Cl<sub>2</sub> gibt man 0.8 mmol XeF<sub>2</sub> und 0.1 mmol [Et<sub>4</sub>N]Cl bei 0 °C und rührt für 3 h bei Raumtemperatur bis die Gasentwicklung aufhört. Man pumpt bei -45 °C/10<sup>-3</sup> mbar alle flüchtigen Bestandteile ab und erhält einen farblosen Rückstand.

 $^{19}{\rm F}$  NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  –22.8 (t, F<sub>a</sub>, 1F,  $^2J_{\rm F-F}$  = 32 Hz), –65.1 (d, F<sub>b</sub>, 2F) ppm;  $^{125}{\rm Te}\{^1{\rm H}\}$  NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  937 (dt,  $^1J_{\rm Te-F}$  = 2728 (F<sub>a</sub>), 1780 Hz (F<sub>b</sub>)) ppm.

Zusätzlich wurden MeTeF $_{\rm 5}$  und Me $_{\rm 2}$ TeF $_{\rm 2}$  im Rückstand NMR-spektroskopisch identifiziert.

# 12.3.8. Synthese von *trans*-Tetrafluor-dimethyl- $\lambda^6$ -tellan *trans*-Me<sub>2</sub>TeF<sub>4</sub>

In eine Lösung von 1.1 mmol Me<sub>2</sub>Te in 10 mL  $CH_2Cl_2$  werden 2.2 mmol XeF<sub>2</sub> und 0.1 mmol [Et<sub>4</sub>N]Cl gegeben. Man rührt 2 d bei Raumtemperatur, pumpt dann alle flüchtigen Komponenten im Feinvakuum ab und erhält einen farblosen Rückstand.

<sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  3.0 (quin) ppm; <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  –34.6 (sept, <sup>1</sup> $J_{\rm F-H}$  = 4.7 Hz) ppm; <sup>125</sup>Te NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  983 (<sup>1</sup> $J_{\rm Te-F}$  = 2826 Hz, <sup>2</sup> $J_{\rm Te-H}$  = 71.5 Hz) ppm.

# 12.3.9. Versuchte Synthese von Pentafluor-methyl- $\lambda^6$ -tellan MeTeF<sub>5</sub>

Zu einer Lösung von 1.5 mmol (MeTe)<sub>2</sub> in 5 mL CH<sub>2</sub>Cl<sub>2</sub> fügt man 7.5 mmol XeF<sub>2</sub> und 0.1 mmol [Et<sub>4</sub>N]Cl bei -40 °C. Man lässt unter stetem Rühren innerhalb von 2h auf Raumtemperatur kommen, dekantiert von der farblosen Lösung und extrahiert noch mehrmals mit CH<sub>2</sub>Cl<sub>2</sub>. Die vereinigten Extrakte werden bei -40 °C im Feinvakuum vom Lösungsmittel befreit und man erhält ein farbloses Öl, das etwa 90 % *trans*-MeTeF<sub>4</sub>OH enthält.

NMR-Daten von *trans*-MeTeF<sub>4</sub>OH: <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  2.16 (m), 6.17 (br) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  37.1 (quin, <sup>2</sup>J<sub>C-F</sub> = 8.1Hz) ppm; <sup>19</sup>F NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$ -32.1 (s) ppm; <sup>125</sup>Te NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  832 (Quintet von Quartets, <sup>1</sup>J<sub>Te-F</sub> = 3384 Hz, <sup>2</sup>J<sub>Te-H</sub> = 71.4 Hz) ppm.

Die gewünschte Verbindung, MeTeF<sub>5</sub>, wird lediglich als Nebenprodukt bei der Synthese von *mer*-Me<sub>3</sub>TeF<sub>3</sub> beobachtet.

MR-Daten von MeTeF<sub>5</sub>: <sup>19</sup>F NMR (CDCl<sub>3</sub>)  $\delta$  –21.4 (quin, 1F, <sup>2</sup> $J_{F-F}$  = 175.8Hz), –36.2 (d, 2F, <sup>2</sup> $J_{F-125Te}$  = 3653 Hz) ppm; Die <sup>125</sup>Te NMR-Resonanz konnte nicht eindeutig identifiziert werden.

# 12.3.10. Versuchte Synthese von Halogen-pentamethyl- $\lambda^6$ -tellanen Me<sub>5</sub>TeHal

Ähnlich der Eintopfsynthese von Ph<sub>5</sub>TeHal<sup>158</sup> wurde bei –110 °C zu frisch hergestellten Lösungen von Me<sub>4</sub>Te in Et<sub>2</sub>O oder THF ein fünftes Äquivalent Me-Li getropft. Nach 10 min bei –110 °C wurde jeweils ein Äquivalent XeF<sub>2</sub>, SO<sub>2</sub>Cl<sub>2</sub> oder Br<sub>2</sub> zugegeben und die Mischung langsam auf Raumtemperatur gebracht. Bei den Reaktionen mit SO<sub>2</sub>Cl<sub>2</sub> und Br<sub>2</sub> wurde dabei lediglich Zersetzung zu den Telluroniumsalzen [Me<sub>3</sub>Te]Cl und [Me<sub>3</sub>Te]Br beobachtet. Mit XeF<sub>2</sub> entsteht laut <sup>125</sup>Te NMR-Spektrum (Et<sub>2</sub>O, ungelockt) eine Mischung aus Me<sub>2</sub>Te ( $\delta$  19 ppm, sept, <sup>2</sup> $J_{Te-H}$  = 20.5 Hz), Me<sub>4</sub>Te ( $\delta$  –45 ppm, Tridezett, 11 Linien beobachtet, <sup>2</sup> $J_{Te-H}$  = 24.1 Hz) und Me<sub>6</sub>Te ( $\delta$  35 ppm, <sup>2</sup> $J_{Te-H}$  < 3 Hz).

# 12.3.11. Versuchte Synthese von *cis*-dichlor-tetramethyl- $\lambda^6$ -tellan *cis*-Me<sub>4</sub>TeCl<sub>2</sub>

Zu einer Lösung von 1.6 mmol Me<sub>4</sub>Te in Et<sub>2</sub>O gibt man bei -70 °C 1.6 mmol SO<sub>2</sub>Cl<sub>2</sub> unter stetem Rühren. Man lässt die gelbe Mischung innerhalb von 3 h auf Raumtemperatur kommen und pumpt bei -50 °C/10<sup>-3</sup> mbar alles Flüchtige ab. Im  $^{125}$ Te NMR-Spektrum des Rückstandes findet man nur die Resonanz von [Me<sub>3</sub>Te]Cl.<sup>22</sup>

### 12.4. Synthese der Poly- und Perfluororganotellur(IV)-Verbindungen

## 12.4.1. Synthese von $(R_FTe)_2$ $(R_F = C_6F_5$ (16), 4-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>) (19)

Zu einer auf -78 °C gekühlten Lösung von 25 mmol C<sub>6</sub>F<sub>5</sub>H oder 4-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>H in ca. 30 mL THF tropft man langsam 27.5 mmol *n*-BuLi (2.5 M in Hexanfraktion). Nach 1.5 h werden 25 mmol feines Tellurpulver und 2.5 mmol *n*-Bu<sub>3</sub>P zugegeben. Man lässt diese Mischung nun langsam auf -20 °C kommen und rührt 15 h bei dieser Temperatur. Dann werden 25 mmol Iod zugegeben, die Mischung auf Raumtemperatur aufgetaut und für 2 h unter Rückfluß zum Sieden erhitzt. Nach dem erneuten Abkühlen auf Raumtemperatur setzt man 0.25 mmol Schwefelblüte zu und erhitzt anschließend nochmals für 30 min. Die nun erhaltene Mischung wird filtriert und auf eine Lösung von 25 mmol NaHSO<sub>3</sub> in 150 mL Wasser gegossen. Man schüttelt mit Ether aus, trocknet über CaCl<sub>2</sub> und erhält nach Abziehen des Lösungsmittels ein braunes Öl, das mit Petrolether/ Methylenchlorid 10:1 als Eluens auf Kieselgel 60 chromatographiert wird. Die erhaltenen tiefroten Lösungen werden langsam an der Luft eingedampft und die roten Rhomben (**16**) bzw. Nadeln (**19**) der Ditellane von den gelben Monotellanen manuell getrennt.

### $(C_6F_5Te)_2$ (16)

Ausbeute 33 %, analytische Daten siehe Lit. 100,186

#### $(4-CF_3C_6F_4Te)_2$ (19)

Ausbeute 46 %, Schmp. 92–93 °C.

Raman  $\tilde{v} = 1643$  (25), 1377 (15), 917 (5), 782 (10), 718 (15), 502 (55), 444 (20), 403 (25), 310 (15), 197 (100, *v*TeTe), 175 (70) cm<sup>-1</sup>; IR  $\tilde{v} = 1642$  m, 1597 w, 1481 vs, 1468 vs, 1414 w, 1378 w, 1351 w, 1322 vs, 1294 w, 1259 w, 1213 m, 1181 s, 1156 s, 973 s, 920 s, 782 w, 715 s, 646 w, 546 w, 502 w, 422 w, 307 w cm<sup>-1</sup>.

<sup>19</sup>F NMR (CDCl<sub>3</sub>) δ –56.9 (t, <sup>4</sup>*J*<sub>F-F</sub> = 21.7 Hz, 3F, CF<sub>3</sub>), –113.0 (m, 2F, 2-F), –138.7 (m, 2F, 3-F) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ 149.0 (dm, <sup>1</sup>*J*<sub>C-F</sub> = 250.6 Hz, <sup>2</sup>*J*<sub>C-Te</sub> = 18.9 Hz, C-2), 142.4 (dm, <sup>1</sup>*J*<sub>C-F</sub> = 265.2 Hz, <sup>3</sup>*J*<sub>C-Te</sub> = 16.6 Hz, C-3), 120.6 (q, <sup>1</sup>*J*<sub>C-F</sub> = 274.8 Hz, CF<sub>3</sub>), 111.8 (m, C-4), 91.0 (tm, <sup>2</sup>*J*<sub>C-F</sub> = 31.1 Hz, <sup>1</sup>*J*<sub>C-Te</sub> = 420.1 Hz, <sup>2</sup>*J*<sub>C-Te</sub> = 8.5 Hz, C-1) ppm; <sup>125</sup>Te NMR CDCl<sub>3</sub>) δ = 338 (tm, <sup>3</sup>*J*<sub>Te-F</sub> = 65.2 Hz) ppm.

EI MS m/z (rel. Int.) 689 [M<sup>+</sup>] (15), 670 [M<sup>+</sup> –F] (2), 563 [M<sup>+</sup> –Te] (50), 347 [CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>Te<sup>+</sup>] (100).

EA ber. für  $C_{14}F_{14}Te_2$ : C 24.4; gef. C 24.6.

#### 12. Versuchsbeschreibungen

#### 12.4.2. Synthese von Octafluortelluranthren $(C_6F_4Te)_2$ (20)

Zu einer auf -78 °C gekühlten Lösung von 20 mmol C<sub>6</sub>F<sub>5</sub>H oder 4-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>H in ca. 30 mL Et<sub>2</sub>O tropft man langsam 22 mmol *n*-BuLi (2.5 M in Hexanfraktion). Nach 1.5 h werden 22 mmol feines Tellurpulver und 2.0 mmol *n*-Bu<sub>3</sub>P zugegeben. Man lässt diese Mischung nun langsam auf -20 °C kommen und rührt 15 h bei dieser Temperatur. Nach Rückflußkochen für 2.5 h filtriert man und engt im Vakuum ein. Reinigung mittels Säulenchromatographie auf Kieselgel 60 mit Petrolether/Methylenchlorid 4:1 als Eluens ergibt eine orangegelbe Lösung, aus der nach Konzentration gelbe Kristalle von **16** ausfallen.

Ausbeute 33 %; Schmp. 122–124 °C.

Raman  $\tilde{\nu}$  = 1610 (20), 1591 (20), 1483 (10), 1421 (10), 1294 (20), 1266 (40), 771 (45), 637 (15), 474 (100), 395 (20), 357 (45), 234 (70), 212 (95), 191 (35), 133 (15) cm^{-1}.

<sup>19</sup>F NMR (CDCl<sub>3</sub>) δ = -108.0 (m, 2F, 2-F); -151.6 (m, 2F, 3-F) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ = 148.0 (d, <sup>1</sup>*J*<sub>C-F</sub> = 239.9 Hz, <sup>2</sup>*J*<sub>C-Te</sub> = 38.8 Hz, <sup>3</sup>*J*<sub>C-Te</sub> = 11.9 Hz, C-2), 140.1 (d, <sup>3</sup>*J*<sub>C-F</sub> = 253.6 Hz, <sup>3</sup>*J*<sub>C-Te</sub> = 12.7 Hz, C-3), 111.6 (m, <sup>1</sup>*J*<sub>C-Te</sub> = 332.1 Hz, <sup>2</sup>*J*<sub>C-Te</sub> = 71.9 Hz, C-1) ppm; <sup>125</sup>Te NMR [CDCl<sub>3</sub>] δ = 762 (t, <sup>3</sup>*J*<sub>Te-F</sub> = 15.9 Hz) ppm. Massenspektren, Elementaranalyse und IR-Spektrum siehe Lit.<sup>193</sup>

# 12.4.3. Synthese von 1,2,3,4,5,5,6,7,8,9,10,10-Dodecafluoro-5 $\lambda^4$ 10 $\lambda^4$ -telluranthren (C<sub>6</sub>F<sub>4</sub>Te)<sub>2</sub>F<sub>4</sub> (21)

In eine auf o °C gekühlte Lösung von 2 mmol **16** in 15 mL CFCl<sub>3</sub> gibt man unter stetem Rühren 4.2 mmol XeF<sub>2</sub>. Die gelbe Farbe des Edukts verschwindet augenblicklich und es bildet sich eine farblose Suspension. Nach weiterem Rühren für 1.5 h bei Raumtemperatur dampft man ein und erhält **21** als farblosen Feststoff.

Ausbeute 88 %; Schmp. 333 °C (Zers.).

Raman starke Fluoreszenz; IR  $\tilde{v}$  = 1612 m, 1603 m, 1576 m, 1523 m, 1489 vs, 1459 vs, 1370 w, 1328 w, 1316 w, 1299 w, 1272 m, 1107 s, 1027 s, 813 w, 772 w, 634 w, 619 m, 595 w, 519 m, 485 m, 472 m, 424 m, 382 m, 361 m, 315 m, 296 m cm<sup>-1</sup>.

<sup>19</sup>F NMR (DMSO-D<sub>6</sub>) δ –63 (br, 2F, TeF), –122.0 (m, 2F, 2-F), –150.3 (m, 2F, 3-F) ppm; <sup>13</sup>C{<sup>19</sup>F} NMR (DMSO-D<sub>6</sub>) δ = 147.3 (<sup>2</sup> $J_{Te-C}$  = 43.8 Hz, C-2), 140.7 (C-3), 130.0 (<sup>1</sup> $J_{Te-C}$  = 331.4 Hz, C-1) ppm; <sup>125</sup>Te{<sup>19</sup>F} NMR (DMSO-D<sub>6</sub>) δ 1112 (br) ppm.

EI MS m/z (rel. Int.) 627 [M<sup>+</sup>] (43), 607 [M<sup>+</sup> -F] (24), 589 [M<sup>+</sup> -2F] (20), 442 [M<sup>+</sup> -F -TeF<sub>2</sub>] (78), 315 [M<sup>+</sup> -TeF -TeF<sub>2</sub>] (20), 296 [C<sub>12</sub>F<sub>8</sub><sup>+</sup>] (100).

EA ber. für  $C_{12}F_{12}Te_2$ : C 23.0; gef. C 23.5.

#### 12.4.4. Synthese von

# 5,5,10,10-Tetrachloro-1,2,3,4,5,6,7,8,9,10-octafluoro-5 $\lambda^4$ 10 $\lambda^4$ -telluranthren (C\_6F4Te)\_2Cl\_4 (22)

In eine auf o °C gekühlte Lösung von 0.7 mmol **16** in 15 mL CFCl<sub>3</sub> gibt man unter stetem Rühren 5 mL SO<sub>2</sub>Cl<sub>2</sub>. Die gelbe Farbe des Edukts verschwindet rasch und es bildet sich eine farblose Suspension. Nach weiterem Rühren für 4h bei Raumtemperatur dampft man ein und erhält **22** als farblosen Feststoff.

Ausbeute 99 %; Schmp. >345 °C (Zers.).

Raman  $\tilde{v} = 1615$  (10), 1279 (10), 771 (15), 472 (25), 396 (20), 373 (25), 357 (25), 291 (100, *v*TeCl), 251 (35), 210 (43), 160 (20) cm<sup>-1</sup>; IR  $\tilde{v} = 1621$  m, 1600 s, 1549 w, 1501 vs, 1443 vs, 1354 w, 1318 m, 1304 m, 1271 m, 1118 s, 1104 s, 1017 s, 827 m, 805 w, 762 m, 722 w, 636 m, 605 w, 568 w, 519 w, 470 w, 370 m, 351 w, 297 m cm<sup>-1</sup>.

<sup>19</sup>F NMR (DMSO-D<sub>6</sub>) δ –114.6 (m, 2F, 2-F), –150.9 (m, 2F, 3-F) ppm; <sup>13</sup>C{<sup>19</sup>F} NMR (DMSO-D<sub>6</sub>) δ 145.4 (<sup>2</sup> $J_{C-Te}$  = 40.7 Hz, C-2), 138.9 (C-3), 130.4 (<sup>1</sup> $J_{C-Te}$  = 369.0 Hz, C-1) ppm; <sup>125</sup>Te{<sup>19</sup>F} NMR (DMSO-D<sub>6</sub>) δ 1076 (br) ppm.

EI MS m/z (rel. Int.) 658  $[M^+ -Cl]$  (100), 623  $[M^+ -2Cl]$  (29), 588  $[M^+ -3Cl]$  (55), 551  $[M^+ -4Cl]$  (45), 426  $[M^+ -Te -4Cl]$  (80), 404  $[M^+ -Te -F -4Cl]$  (25).

EA ber. für C<sub>12</sub>F<sub>8</sub>Te<sub>2</sub>Cl<sub>4</sub>: C 20.7, Cl 20.8; gef. C 20.7; Cl 22.0.

#### 12.4.5. Synthese von

# 5,5,10,10-Tetrabromo-1,2,3,4,5,6,7,8,9,10-octafluoro-5 $\lambda^4$ 10 $\lambda^4$ -telluranthren (C\_6F4Te)\_2Br\_4 (23)

In eine auf o °C gekühlte Lösung von 0.7 mmol **16** in 15 mL CFCl<sub>3</sub> gibt man unter stetem Rühren 150  $\mu$ L Brom. Das Produkt fällt sofort aus. Nach weiterem Rühren für 1h bei Raumtemperatur dampft man ein und erhält **23** als gelblichen Feststoff.

Ausbeute 96 %; Schmp. >345 °C (Zers.).

Im Raman-Spektrum starke Fluoreszenz.

<sup>19</sup>F NMR (DMSO-D<sub>6</sub>) δ –114.0 (m, 2F, 2-F), –150.2 (m, 2F, 3-F) ppm; <sup>13</sup>C{<sup>19</sup>F} NMR (DMSO-D<sub>6</sub>) δ 147.4 (<sup>2</sup> $J_{C-Te}$  = 38.4 Hz, C-2), 140.8 (C-3), 131.9 (<sup>1</sup> $J_{C-Te}$  = 386.7 Hz, C-1) ppm; <sup>125</sup>Te{<sup>19</sup>F} NMR (DMSO-D<sub>6</sub>) δ 1172 (br) ppm.

EI MS m/z (rel. Int.) 792 [M<sup>+</sup> –Br] (30), 711 [M<sup>+</sup> –2Br] (7), 632 [M<sup>+</sup> –3Br] (95), 426 [M<sup>+</sup> –Te –4Br] (100).

Massenspektren, Elementaranalyse und IR siehe Lit.<sup>193</sup>

#### 12.4.6. Synthese von

# 5,5,10,10-Tetraazido-1,2,3,4,5,6,7,8,9,10-octafluoro-5 $\lambda^4$ 10 $\lambda^4$ -telluranthren $(C_6F_4Te)_2(N_3)_4$ (24)

In eine auf o °C gekühlte Lösung von 0.5 mmol **16** in 30 mL MeCN gibt man unter stetem Rühren 1.2 mmol XeF<sub>2</sub>. Nach Rühren für 4h bei Raumtemperatur, tropft dann 4.4 mmol Me<sub>3</sub>SiN<sub>3</sub> zu, wobei sich die Farbe kurzzeitig nach orange verändert. Nach 2h bei Raumtemperatur dampft man ein und erhält **24** als gelben Feststoff.

Schmp. >180 °C (Zers.).

Raman  $\tilde{v} = 2103 (20)/2086 (15)/2063 (20)/2033 (20)/2003 (15, <math>v_{as}N_3$ ), 1607 (5), 1345 (20), 1325 (15), 1278 (15), 1024 (5), 816 (10), 771 (10), 644 (20), 600 (10), 572 (20), 547 (20), 488 (60), 472 (45), 407 (30), 373 (70), 356 (70), 331 (100, *v*TeN), 308 (50), 266 (50), 228 (80), 206 (55), 157 (55) cm<sup>-1</sup>; IR  $\tilde{v} = 2050/2037$  vs ( $v_{as}N_3$ ), 1621 m, 1544 w, 1489 vs, 1456 vs, 1663 w, 1327 m, 1313 m, 1271 s, 1106 s, 1042 m, 1025 s, 809 w, 769 m, 732 w, 717 w, 566 m, 542 m, 470 w, 378 m, 352 w, 313 m cm<sup>-1</sup>.

<sup>19</sup>F NMR (DMSO-D<sub>6</sub>) δ –120.5 (m, 2F, 2-F), –149.5 (m, 2F, 3-F) ppm; <sup>13</sup>C{<sup>19</sup>F} NMR (DMSO-D<sub>6</sub>) δ 148.0 (C-2), 141.3 (C-3), 128.0 (C-1) ppm; <sup>14</sup>N NMR (DMSO-D<sub>6</sub>,  $\Delta v_{1/2}$  [Hz]) δ –134 (N<sub>β</sub>, 80), –165 (N<sub>γ</sub>, 300), –244 (N<sub>α</sub>, >2000) ppm; <sup>125</sup>Te{<sup>19</sup>F} NMR (DMSO-D<sub>6</sub>) δ 1074 (br) ppm.

DCI MS m/z (rel. Int.) 658  $[M^+$   $-N_3]$  (1), 595  $[M^+$   $-3N_3]$  (1), 553  $[M^+$   $-4N_3]$  (100). Wegen des hohen Stickstoffgehalts und des Verhaltens in der Flamme wurde auf Elementaranalysen verzichtet.

## 12.4.7. Synthese von Bis(trifluormethyl)diazido- $\lambda^4$ -tellan (CF<sub>3</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (25)

Unter stetem Rühren werden bei o°C zu einer Lösung von 0.4 mmol  $(CF_3)_2$ TeF<sub>2</sub> in 5 mL CH<sub>2</sub>Cl<sub>2</sub> 0.9 mmol Me<sub>3</sub>SiN<sub>3</sub> getropft. Nach 2 h dampft man die gelbe Suspension ein, trocknet noch einige Stunden bei 10<sup>-3</sup> mbar und erhält **25** als gelben, reibungsempfindlichen Feststoff. **Achtung:** Beim Manipulieren mit trockenem **25** kam es in einem Falle zu einer schweren Explosion unter Zerstörung der Glasgeräte und leichten Verletzungen durch Splitterwirkung. Man führe die Darstellung der Verbindung nur unter großer Vorsicht und nicht in größeren Mengen durch.

Schmp. 35 °C.

Raman  $\tilde{v}$  = 2070 (20)/2025 (5,  $v_{\rm as}N_3$ ), 1328 (5), 1093 (5), 1039 (5), 743 (10), 642 (10), 355 (100,  $v{\rm TeN}$ ), 290 (10), 266 (10), 239 (10), 205 (10) cm $^{-1}$ ; IR  $\tilde{v}$  = 2144 m/ 2052 vs ( $v_{\rm as}N_3$ ), 1681 m, 1313 w, 1261m, 1170, 1102 m, 1054 s, 622 s, 527 m cm $^{-1}$ .

 $^{19}{\rm F}$  NMR  $\delta$  –41.7 ( $^2J_{\rm F-Te}$  = 133.9 Hz) (CDCl<sub>3</sub>); –49.6 (DMSO-D<sub>6</sub>) ppm;  $^{13}{\rm C}$  NMR  $\delta$  122.5 ( $^1J_{\rm C-Te}$  = 215.6 Hz) [{ $^{19}{\rm F}$ }, CDCl<sub>3</sub>]; 127.0 ( $^1J_{\rm C-F}$  = 368.3 Hz) (DMSO-

D<sub>6</sub>) ppm; <sup>14</sup>N NMR, (CDCl<sub>3</sub>,  $\Delta v_{1/2}$  [Hz]) δ –142 (N<sub>β</sub>, 40), –237 (N<sub>γ</sub>, 1100), –275 (N<sub>α</sub>, 1700) (CDCl<sub>3</sub>); –139 (N<sub>β</sub>, 120), –199 (N<sub>γ</sub>, 580), –290 (N<sub>α</sub>, >2000) (DMSO-D<sub>6</sub>) ppm; <sup>125</sup>Te NMR δ 1116 (sept) (CDCl<sub>3</sub>); 1152 (m) (DMSO-D<sub>6</sub>) ppm.

EI MS m/z (rel. Int.) 495  $[CF_3CF_2TeTeCF_2CF_3^+]$  (8), 426  $[CF_3CF_2TeTeCF_2^+]$  (4), 337  $[Te(CF_3)_3^+]$  (2), 324  $[M^+-N_2]$  (1), 287  $[(CF_3)_2TeF^+]$  (10), 283  $[M^+-CF_3]$  (5), 282  $[(CF_3)_2TeN^+]$  (5), 268  $[(CF_3)_2Te^+]$  (10), 199  $[CF_3Te^+]$  (40), 69  $[CF_3^+]$  (100). Auf Elementaranalysen wurde wegen der Erfahrungen mit trockenem **25** verzichtet.

# 12.4.8. Synthese von Bis(2,6-difluorphenyl)diazido- $\lambda^4$ -tellan $(C_6F_2H_3)_2Te(N_3)_2$ (26)

Unter stetem Rühren werden bei o°C zu einer Lösung von 0.7 mmol  $(C_6F_2H_3)_2$ TeF<sub>2</sub> in 5 mL CH<sub>2</sub>Cl<sub>2</sub> (2 mmol) Me<sub>3</sub>SiN<sub>3</sub> getropft. Nach 2 h dampft man die gelbe Suspension ein, wäscht mit 2 mL CH<sub>2</sub>Cl<sub>2</sub>, trocknet noch einige Stunden bei 10<sup>-3</sup> mbar und erhält **26** als gelblichen Feststoff.

Ausbeute 78 %; Schmp. 176 °C.

Raman  $\tilde{v} = 3091$  (30), 2072 (25)/2050 (20,  $v_{as}N_3$ ) 1605 (10). 1464 (5), 1440 (5), 1317 (10), 1271 (15), 1154 (10), 1082 (5), 1037 (10), 753 (5), 696 (5), 646 (15), 555 (25), 378 (20), 344 (100, vTeN), 330 (50), 308 (65), 258 (15), 195 (25), 149 (25) cm<sup>-1</sup>; IR  $\tilde{v} = 3084$  m, 2066 s/2049 vs/2038 vs ( $v_{as}N_3$ ), 1604 s, 1592 s, 1580 s, 1538 w, 1468 vs, 1457 vs, 1317 m, 1261 m, 1233 s, 1151 m, 1082 m, 1034 w, 985 s, 785 s, 785 s, 753 m, 698 m, 640 br, 555 m, 535 m, 504 m cm<sup>-1</sup>.

<sup>19</sup>F NMR (CDCl<sub>3</sub>) δ –96.2/–97.3 (m, 2F, 2-F) ppm; <sup>13</sup>C{<sup>19</sup>F} NMR (CDCl<sub>3</sub>) δ 162.5 (br, C2), 136.5 (C4), 134.8 (C3), 105.3 (C1) ppm; <sup>14</sup>N NMR (CDCl<sub>3</sub>, Δν<sub>1/2</sub> [Hz]) δ –139 (N<sub>β</sub>, 80), –191 (N<sub>γ</sub>, 300), –290 (N<sub>α</sub>, 1400) ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) δ 773 (m) ppm.

EI MS m/z (rel. Int.) 356  $[\rm M^+$  –2N\_3] (100), 242  $[\rm C_6F_2H_3Te^+]$  (55), 226  $[\rm C_{12}H_6F_4^+]$  (80).

EA ber. für C<sub>12</sub>H<sub>6</sub>N<sub>6</sub>F<sub>4</sub>Te: C 32.9, H 1,4, N 19.2; gef. C 33.0, H 1.3, N 18.5.

## 12.4.9. Synthese von Trifluormethyltriazido- $\lambda^4$ -tellan CF<sub>3</sub>Te(N<sub>3</sub>)<sub>3</sub> (27)

Unter stetem Rühren werden bei o °C zu einer Lösung von 0.3 mmol (CF<sub>3</sub>Te)<sub>2</sub> in 5 mL CFCl<sub>3</sub> 1 mmol XeF<sub>2</sub> gegeben. Nach 40 min gibt man in die trübe Lösung 2.2 mmol Me<sub>3</sub>SiN<sub>3</sub> bei -20 °C, rührt für 15 min bis die Gasentwicklung aussetzt, dampft dann die gelbe Suspension ein, und erhält **27** als gelblichen Feststoff.

Raman  $\tilde{v}$  = 2115 (35)/2091 (15)/2070 (15,  $v_{as}N_3),$  737 (15), 662 (20), 422 (100), 402 (90), 365 (65, vTeN), 278 (50), 198 (50) cm  $^{-1}.$ 

<sup>19</sup>F NMR (DMSO-D<sub>6</sub>) δ –56.0 (s) ppm; <sup>13</sup>C NMR (DMSO-D<sub>6</sub>) δ 128.5 (<sup>1</sup> $J_{C-F}$  = 363.8 Hz) ppm; <sup>14</sup>N NMR (DMSO-D<sub>6</sub>,  $\Delta v_{1/2}$  [Hz]) δ –140 (N<sub>β</sub>, 120), –230 (N<sub>γ</sub>, >2000), –260 (N<sub>α</sub>, >2000) ppm; <sup>125</sup>Te NMR (DMSO-D<sub>6</sub>) δ 1406 (m) ppm.

## 12.4.10. Synthese von Pentafluorphenyltriazido- $\lambda^4$ -tellan C<sub>6</sub>F<sub>5</sub>Te(N<sub>3</sub>)<sub>3</sub> (28)

Unter stetem Rühren werden bei o °C zu einer Lösung von o.2 mmol (C<sub>6</sub>F<sub>5</sub>Te)<sub>2</sub> in 10 mL CFCl<sub>3</sub> 0.7 mmol XeF<sub>2</sub> gegeben. Nach 25 min gibt man in die trübe Lösung 1.6 mmol Me<sub>3</sub>SiN<sub>3</sub> bei –20 °C, rührt für 10 min bis die Gasentwicklung aussetzt und dampft dann die bräunliche Suspension ein. Gemäß <sup>19</sup>F und <sup>125</sup>Te NMR-Spektren liegen neben **28** noch ca. 30 % der Dismutationsprodukte (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub><sup>26</sup> und Te(N<sub>3</sub>)<sub>4</sub> (siehe Kapitel 3.2 auf Seite 12 und Lit. <sup>59,194</sup>) vor. Raman  $\tilde{v} = 2110$  (20)/2085 (30)/2048 (15,  $v_{as}N_3$ ), 1639 (5), 1516 (5), 1319 (5), 1263 (5), 1088 (5), 803 (5), 648 (15), 587 (10), 536 (5), 493 (20), 418 (100), 381 (25), 341 (95, vTeN), 310 (30), 245 (20), 222 (20), 178 (30) cm<sup>-1</sup>.

<sup>19</sup>F NMR (DMSO-D<sub>6</sub>) δ –127.6 (br, 2F, 2-F), –147.9 (br, 1F, 4-F), –160.0 (br, 2F, 3-F) ppm; <sup>13</sup>C{<sup>19</sup>F} NMR (DMSO-D<sub>6</sub>) δ 146.4 (C-2), 142.8 (C-4), 137.5 (C-3), 117.4 (br, C-1) ppm; <sup>14</sup>N NMR (DMSO-D<sub>6</sub>,  $\Delta v_{1/2}$  [Hz]) δ –140 (N<sub>β</sub>, 120), –230 (N<sub>γ</sub>, >2000), –260 (N<sub>α</sub>, >2000) ppm; <sup>125</sup>Te NMR (DMSO-D<sub>6</sub>) δ 1277 (m) ppm.

## 12.5. Synthese der Organotellur(II)azide und -Iodide

#### 12.5.1. Lithium-tris(phenyldimethylsilyl)methyltellurolat TpsiTeLi (29)

Zu einer Lösung von 12.0 mmol (PhMe<sub>2</sub>Si)<sub>3</sub>CH (zuvor bei 90 °C/10<sup>-3</sup> mbar sublimiert) in 85 mL THF tropft man 13.0 mmol (9.3 mL) einer frisch filtrierten Lösung von MeLi in Et<sub>2</sub>O (1.6 M). Der Ether wird fraktioniert abdestilliert und die leicht gelbliche Lösung für 4h unter Rückfluß zum Sieden erhitzt, dann auf Raumtemperatur abgekühlt und 12.1 mmol feines Tellurpulver zugegeben. Nach weiteren 3h Rühren bei Raumtemperatur ist beinahe alles Tellur abreagiert und die jetzt dunkelbraune Lösung wird durch eine Glasfritte filtriert und mit 50 mL *n*-Heptan überschichtet. Nach Kühlen auf -25 °C auf 1h erhält man **29** als orange Prismen; Ausbeute schwankt stark je nach Lagerung.

<sup>125</sup>Te{<sup>1</sup>H} NMR (THF)  $\delta$  –141 ppm.

#### 12.5.2. Bis(tris(phenyldimethylsilyl)methyl)ditellan (TpsiTe)<sub>2</sub> (30)

Zu einer frisch dargestellten Lösung von 7.4 mmol TpsiTeLi (**29**) in 30 mL THF tropft man langsam unter Eiskühlung eine Lösung von 3.7 mmol Iod in 60 mL *n*-Pentan. Man rührt 1h bei Raumtemperatur nach und entfernt alle flüchtigen Bestandteile im Feinvakuum. Der schmutzig-braune Rückstand wird mit

Aceton extrahiert und dann mit dem gleichen Volumen Wasser versetzt. Ein dunkel grünlicher Niederschlag wird abfiltriert und solange mit MeOH und *n*-Pentan gewaschen bis die Extrakte farblos werden. Weitere Reinigung des Produktes erreicht man durch Flashchromatographie an Kieselgel (Merck 60, 70–230 mesh) mit CH<sub>2</sub>Cl<sub>2</sub> als Laufmittel. Rasches Eindampfen dieser Lösungen bei Raumtemperatur ergibt **30** als grüne Prismen. Die Produkte enthalten stets geringe Mengen des Tritellans (TpsiTe)<sub>2</sub>Te sowie von TpsiH.

37 % Ausbeute, Schmp. 140 °C (Zers.).

Raman starke Fluoreszenz; IR (KBr) 3068 m, 3046 m, 3028 m, 3014 m, 2985 m, 2956 m, 2896 m, 1948 w, 1879 w, 1814 w, 1588 w, 1565 w, 1486 m, 1425 s, 1403 m, 1307 w, 1253 s, 1245 s, 1191 w, 1155 w, 1104 s, 1069 w, 999 w, 820 vs, 813 vs, 781 s, 736 s, 724 s, 699 vs, 659 s, 637 m, 581, 472 m cm $^{-1}$ .

<sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.74–7.24 (Ar), o.44 (Me) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ 140.0/ 136.3/129.1/127.3 (Ar), 4.1 (Me, <sup>1</sup> $J_{C-29Si} = 54.2$  Hz), -2.3 (Si<sub>3</sub>C) ppm; <sup>29</sup>Si NMR (CDCl<sub>3</sub>) δ -2.0 ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)δ 442 ppm.

EI MS m/z (rel. Int.) 1094 (0.1) [M<sup>+</sup>], 959 (0.1) [M<sup>+</sup> –PhMe<sub>2</sub>Si], 824 (0.1) [M<sup>+</sup> –2PhMe<sub>2</sub>Si].

#### 12.5.3. Tris(phenyldimethylsilyl)methantellurenyliodid TpsiTeI (31)

Zu einer Lösung von 0.28 mmol (TpsiTe)<sub>2</sub> in 10 mL Benzol werden 0.23 mmol festes Iod in einer Portion zugegeben. Man rührt für eine Stunde bei Raumtemperatur, wobei sich die Farbe von dunkelgrün nach dunkel blaugrün verschiebt. Nach Abziehen des Lösungsmittels erhält man **31** als dunkelgrünen Feststoff neben geringen Mengen TpsiI und einem leichten Tellurspiegel. Daher sind Ausbeute, Schmelzpunkt sowie Elementaranalysen nicht einheitlich.

IR (KBr) 3068 w, 3025 w, 2957 w, 2896 w, 1953 br, 1886 br, 1818 br, 1618 br, 1585 w, 1486 w, 1425 s, 1308 w, 1249 vs, 1193 w, 1157 w, 1106 s, 1096 s, 1070 m, 998 w, 919 w, 838 vs, 805 vs, 778 s, 735 s, 723 s, 700 s, 661 m, 638 m, 581 m, 473 m, 465 m  $\rm cm^{-1}.$ 

<sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 7.54–7.21 (Ar), o.55 (Me) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ 138.1/ 136.4/135.3/129.4/127.5 (Ar), 3.6 (Me, <sup>1</sup> $J_{C-29Si} = 54.6$  Hz), -1.9 (Si<sub>3</sub>*C*, <sup>1</sup> $J_{C-29Si} = 31.5$  Hz) ppm; <sup>29</sup>Si NMR (CDCl<sub>3</sub>) δ –0.1 ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) δ 1199 ppm.

#### 12.5.4. Tris(phenyldimethylsilyl)methantellurenylazid TpsiTeN<sub>3</sub> (37)

Zu einer frisch hergestellten Lösung von **31** aus 0.28 mmol **30** und 0.23 mmol Iod in 10 mL Benzol (siehe vorstehende Vorschrift) werden 10 mL MeCN und 0.67 mmol AgN<sub>3</sub> gegeben und die Mischung für 3h bei Raumtemperatur gerührt. Dann filtriert man die nunmehr weinrote Lösung durch eine G4-Glasfritte und dampft das Filtrat im Feinvakuum ein.

Raman 3055 (48), 2967 (15), 2903 (32), 2069 (12,  $v_{as}N_3$ ), 1590 (23), 1567 (12), 1193 (10), 1110 (7), 1031 (27), 1001 (100), 787 (15), 659 (55), 621 (17), 597 (11), 473 (11), 425 (35, *v*TeN), 326 (30), 219 (31), 158 (33) cm<sup>-1</sup>; IR (KBr) 3070 w, 2958 w, 2068 vs ( $v_{as}N_3$ ), 1938 m, 1618 m, 1486 w, 1425 w, 1384 w, 1309 br, 1248 m, 1225 m, 1154 w, 999 w, 838 s, 810 s, 784 m, 739 m, 721 m, 701 m, 656 w, 635 w, 595 w, 471 w cm<sup>-1</sup>.

<sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>) δ 7.48–7.05 (Ar), o.46 (Me) ppm; <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>) δ 138.0/136.3/129.7/127.7 (Ar), 8.2 (Si<sub>3</sub>C, <sup>1</sup>*J*<sub>C-29Si</sub> = 32.3 Hz), 3.1 (Me, <sup>1</sup>*J*<sub>C-29Si</sub> = 54.6 Hz) ppm; <sup>14</sup>N NMR (C<sub>6</sub>D<sub>6</sub>,  $\Delta v_{1/2}$  [Hz]) δ –129 (N<sub>β</sub>, 260 Hz), –189 (N<sub>γ</sub>, 650 Hz), (N<sub>α</sub> nicht detektiert) ppm; <sup>29</sup>Si NMR (C<sub>6</sub>D<sub>6</sub>) δ –2.8 ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>) δ 1952 ppm.

#### 12.5.5. Tris(ethyldimethylsilyl)methantellurenyliodid TesiTeI (32)

Zu einer Lösung von 2.0 mmol (EtMe<sub>2</sub>Si)<sub>3</sub>CH in 20 mL THF werden 2.4 mmol (2.2 mL) einer frisch filtrierten Lösung von MeLi in Et<sub>2</sub>O (1.1 M) getropft. Nach Rückflußkochen für 8h gibt man nochmals 0.8 mmol (0.7 mL) MeLi-Lösung hinzu und kocht nochmals für 2h. Die gelbe Lösung wird dann auf o°C abgekühlt und 2.8 mmol Tellurpulver werden zugefügt. Nachdem man für 4 h bei Raumtemperatur weitergerührt hat ist das meiste Tellur abreagiert, und man öffnet den Reaktionskolben und erlaubt feuchter Luft den Zutritt unter starkem Rühren. Nach 1d dampft man vollständig ein, extrahiert den Rückstand mit Et<sub>2</sub>O und trocknet den Extrakt über MgSO<sub>4</sub>. Die so erhaltene Lösung des Tritellans (TesiTe)<sub>2</sub>Te ( $^{125}$ Te NMR  $\delta$  498, 352 ppm) titriert man im Anschluß mit einer gesättigten Lösung von Iod in Et<sub>2</sub>O bis ein deutlicher Farbumschlag von blau (TesiTeI) nach braun erfolgt (Iodüberschuß). Die Lösung wird nun über Faltenfilter vom ausgefallenen Tellur getrennt und zweimal mit einer gesättigten NaHSO3-Lösung in Wasser ausgeschüttelt. Nach Trocknen und Eindampfen erhält man (32) als dunkelgrünes Öl (Ausbeute nahe 50%) relativ niedriger Reinheit. Die Produkte enthalten laut DC bis zu fünf unterschiedliche, nicht präparativ trennbare Verbindungen.

<sup>125</sup>Te{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  1195 ppm.

### 12.5.6. Tris(ethyldimethylsilyl)methantellurenylazid TesiTeN<sub>3</sub> (33)

Zu einer frisch hergestellten Lösung von 0.5 mmol 32 in 3 mL Toluol gibt man 3 mL MeCN und  $0.67 \text{ mmol } AgN_3$  und rührt für 3 h bei Raumtemperatur. Die entstandene rote Lösung wird durch eine G4-Glasfritte gefiltert und das Filtrat im Feinvakuum eingedampft.

<sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>) δ 0.87 (t, CH<sub>3</sub>CH<sub>2</sub>, <sup>3</sup>J<sub>H-H</sub> = 8.2 Hz), 0.71 (q, CH<sub>3</sub>CH<sub>2</sub>), 0.17 (CH<sub>3</sub>Si) ppm; <sup>14</sup>N NMR (C<sub>6</sub>D<sub>6</sub>,  $\Delta v_{1/2}$  [Hz]) δ –127 (N<sub>β</sub>, 64 Hz), –192 (N<sub>γ</sub>, 255 Hz), –372 (N<sub>α</sub>, 800 Hz) ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>) δ 2031 ppm.

### 12.5.7. Synthese von 2,4,6-Tri-*iso*-propylbenzoltellurenylazid TripTeN<sub>3</sub> (38)

Zu einer Lösung von 0.6 mmol (TripTe)<sub>2</sub> in 10 mL Toluol tropft man 0.6 mmol Iod in Toluol. Nach einer Stunde wird die grüne Lösung im Vakuum auf die Hälfte ihres Volumens aufkonzentriert und 1.2 mmol AgN<sub>3</sub> werden mit 10 mL MeCN zugegeben. Nach drei Stunden Rühren bei Raumtemperatur filtriert man durch eine G4-Glasfritte und erhält nach Eindampfen im Vakuum **38** als dunkelroten, öligen Rückstand, der stets mit Spuren von (TripTe)<sub>2</sub> verunreinigt ist. Der relativ rasche Zerfall von **38** erlaubte lediglich Charakterisierung durch  $^{125}$ Te NMR.

<sup>125</sup>Te{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  2235 ppm.

## 12.5.8. Synthese von 2,4,6-Tri-*tert*-butylbenzoltellurenylazid Mes\*TeN<sub>3</sub> (39)

In eine Lösung von 0.33 mmol (Mes\*Te)<sub>2</sub> in 25 mL Toluol tropft man 0.33 mmol Iod in 10 mL Toluol und rührt bei Raumtemperatur. Nach einer Stunde wird die grüne Lösung ((**36**)) sim Vakuum auf die Hälfte ihres Volumens aufkonzentriert und 0.67 mmol AgN<sub>3</sub> werden mit 10 mL MeCN zugegeben. Nach drei Stunden Rühren bei Raumtemperatur filtriert man durch eine G4-Glasfritte und erhält nach Eindampfen im Vakuum **39** als tiefvioletten Rückstand, verunreinigt mit Spuren von (Mes\*Te)<sub>2</sub>.

<sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>) δ 7.63 (2H, Ar–H), 1.59 (18 H, o-CMe<sub>3</sub>), 1.21 (9 H, p-CMe<sub>3</sub>); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>) δ 159.1 (o-C), 153.3 (p-C), 122.9 (m-C), 115.6 (i-C, <sup>1</sup>J<sub>C-125Te</sub> = 336 Hz), 40.5 (o-CMe<sub>3</sub>), 35.3 (p-CMe<sub>3</sub>), 34.5 (o-CMe<sub>3</sub>), 31.3 (p-CMe<sub>3</sub>) ppm; <sup>14</sup>N NMR (C<sub>6</sub>D<sub>6</sub>,  $\Delta v_{1/2}$  [Hz]) δ –130 (N<sub>β</sub>, 50 Hz), –204 (N<sub>γ</sub>, 1200 Hz), –335 (N<sub>α</sub>, > 1200 Hz) ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>) δ 1981 ppm.

EI MS m/z (rel. Int.) 750 (1) [(Mes\*Te)<sub>2</sub>], 417 (2) [M<sup>+</sup>], 375 (2) [M<sup>+</sup>  $-N_3$ ], 319 (3) [M<sup>+</sup>  $-N_3 - tBu$ ], 245 (80) [Mes\*<sup>+</sup>].

# 12.5.9. Synthese von Bis(2,6-bis(2,4,6-tri-*iso*-propylphenyl)phenyl)ditellan (2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Te)<sub>2</sub> (34)

Zu einer Suspension von 15 mmol 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>I in 90 mL *n*-Hexan und 20 mL Et<sub>2</sub>O werden 16 mmol (6.4 mL) *n*-BuLi (2.5 M) bei Raumtemperatur zugegeben. Nach 24 h Rühren dampft man die nunmehr klare Lösung im Vakuum ein und nimmt den verbleibenden Rückstand in 60 mL Et<sub>2</sub>O auf und gibt 15 mmol aktiviertes Tellurpulver zu. Nach weiteren 8 h ermöglicht man unter Rühren für

16 h Luftzutritt, filtriert, wäscht die dunkelrote Lösung mit Wasser und titriert im Anschluß mit einer gesättigten Lösung von Iod in Et<sub>2</sub>O bis ein deutlicher Farbumschlag von blau (2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Tel) nach braun erfolgt (Iodüberschuß). Die Lösung wird nun über Faltenfilter vom ausgefallenen Tellur getrennt und zweimal mit einer gesättigten NaHSO<sub>3</sub>-Lösung in Wasser ausgeschüttelt. Man dampft die etherischen Extrakte ein, nimmt in 20 mL THF auf, setzt unter Argon 2.7 mmol (2.7 mL) einer Lösung von Li[BEt<sub>3</sub>H] in THF (1M) tropfenweise zu und rührt bis die Gasentwicklung beendet ist. Man dampft erneut ein und extrahiert den Rückstand mehrmals mit *n*-Pentan und filtriert. Die nunmehr klare, blaue Lösung des Ditellans wird eingeengt und mittels Säulenchromatographie an Kieselgel (Merck 60, 70–230 mesh) mit CH<sub>2</sub>Cl<sub>2</sub>/Pentan als Laufmittel vom enthaltenen 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>I getrennt. Rasches Eindampfen dieser Lösungen ergibt **34** große, violette Prismen (wahrscheinlich ein CH<sub>2</sub>Cl<sub>2</sub>-Solvat), die langsam verwittern. Durch Umkristallisation aus 2-Propanol erhält man **34** als kleine grüne Kristalle.

20–30 % Ausbeute abhängig vom Erfolg der chromatographischen Trennung, Schmp. 252–254 $\,^{\circ}\mathrm{C}.$ 

Raman  $\tilde{v}$  3038 (25), 2959 (60), 2905 (61), 2865 (47), 1606 (49), 1563 (34), 1461 (36), 1292 (45), 1249 (14), 1171 (18), 1107 (25), 1057 (15), 1005 (31), 956 (14), 884 (40), 599 (23), 501 (28), 199 (100, *v*TeTe), 147 (27) cm<sup>-1</sup>; IR (KBr)  $\tilde{v}$  3046 w, 2957 vs, 2924 s, 2864 m, 1605 m, 1563 m, 1458 m, 1380 m, 1360 m, 1315 w, 1168 w, 1099 w, 1068 w, 1050 w, 1002 w, 939 w, 873 m, 799 m, 739 w, 648 w cm<sup>-1</sup>.

<sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  7,14 (4H, m-Trip*H*), 7,135 (2H, m-Ar*H*), 6.89 (m, 1H, p-Ar*H*), 2.90 (sept, 4H, p-C*H*(CH<sub>3</sub>)<sub>2</sub>, <sup>3</sup>*J*<sub>H-H</sub> = 6.8 Hz), 2.73 (sept, 4H, o-C*H*(CH<sub>3</sub>)<sub>2</sub>, <sup>3</sup>*J*<sub>H-H</sub> = 6.8 Hz), 1.35 (d, 12H, p-CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.30 (d, 12H, o-CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.06 (d, 12H, o-CH(C*H*<sub>3</sub>)<sub>2</sub>) ppm; <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  148.7, 147.1, 147.0, 139.2, 129.8, 126.2, 122.1 (*C*-Te), 121.5, 34.6 (p-CH(C*H*<sub>3</sub>)<sub>2</sub>), 31.2 (o-CH(C*H*<sub>3</sub>)<sub>2</sub>), 25.9 (CH(C*H*<sub>3</sub>)<sub>2</sub>), 24.33 (CH(CH<sub>3</sub>)<sub>2</sub>), 24.28 (CH(CH<sub>3</sub>)<sub>2</sub>) ppm; <sup>14</sup>Te{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  332 ppm. EI MS m/z (rel. Int.) 1222 (100) [M<sup>+</sup>], 611 (30) [M<sup>+</sup> -*i*Pr], 568 (40) [M<sup>+</sup> -*2i*Pr]. EA ber. für C<sub>72</sub>H<sub>98</sub>Te<sub>2</sub>: C 70.7, H 8.0; gef. C 70.9, H 8.1.

## 12.5.10. Synthese von 2,6-Bis(2,4,6-tri-*iso*-propylphenyl)benzoltellurenyliodid 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeI (35)

In eine Lösung von 0.10 mmol **34** in Et<sub>2</sub>O werden 0.10 mmol Iod gegeben. Man rührt für 0.5 h bei Raumtemperatur, wäscht diese Lösung zweimal mit gesättigter NaHSO<sub>3</sub>-Lösung und trocknet über MgSO<sub>4</sub>. Eindampfen ergibt **35** als blaues Pulver.

80–90 % Ausbeute, Schmp. >180 °C (Zers.).

Raman  $\tilde{v}$  3043 (20), 2957 (43), 2927 (40), 2865 (32), 1606 (28), 1564 (19), 1459

(21), 1382 (10), 1293 (20), 1552 (10), 1172 (9), 1104 (14), 1056 (19), 883 (17), 602 (10), 544 (7), 497 (15), 202 (100, vTeI), 145 (12) cm<sup>-1</sup>; IR (KBr)  $\tilde{v}$  3049 w, 2955 vs, 2924 s, 2864 s, 1637 br, 1606 m, 1564 w, 1457 m, 1379 m, 1361 m, 1314 m, 1101 m, 1068 w, 1051 w, 1004 w, 940 w, 875 m, 798 m, 734 w, 649 w cm<sup>-1</sup>.

<sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>) δ 7.165 (2H, m-Ar*H*), 7.15 (4H, m-Trip*H*), 6.98 (m, 1H, p-Ar*H*), 2.94 (sept, 4H, p-C*H*(CH<sub>3</sub>)<sub>2</sub>, <sup>3</sup>*J*<sub>H-H</sub> = 6.8 Hz), 2.84 (sept, 4H, o-C*H*(CH<sub>3</sub>)<sub>2</sub>, <sup>3</sup>*J*<sub>H-H</sub> = 7.0 Hz), 1.49 (d, 12H, p-CH(C*H*<sub>3</sub>)<sub>2</sub>) ppm), 1.25 (d, 12H, o-CH(C*H*<sub>3</sub>)<sub>2</sub>), 1.12 (d, 12H, o-CH(C*H*<sub>3</sub>)<sub>2</sub>) ppm; <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>) δ 150.5, 148.1, 144.8, 135.9, 129.7, 127.1, 121.5, 113.7 (C-Te, <sup>1</sup>*J*<sub>C-125Te</sub> = 358.6 Hz), 34.9 (p-CH(C*H*<sub>3</sub>)<sub>2</sub>), 31.3 (o-CH(C*H*<sub>3</sub>)<sub>2</sub>), 25.5 (CH(C*H*<sub>3</sub>)<sub>2</sub>), 24.3 (CH(C*H*<sub>3</sub>)<sub>2</sub>, 24.0 (CH(C*H*<sub>3</sub>)<sub>2</sub> ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>) δ 944 ppm.

EI MS m/z (rel. Int.) 738 (90) [M<sup>+</sup>], 611 (55) [M<sup>+</sup> –I], 568 (85) [M<sup>+</sup> –I –iPr], 478 (55) [M<sup>+</sup> –TeI].

EA ber. für C<sub>36</sub>H<sub>49</sub>ITe: C 58.7, H 6.7, I 17.2; gef. C 59.0, H 6.9, I 17.6.

## 12.5.11. Synthese von 2,6-Bis(2,4,6-tri-*iso*-propylphenyl)benzoltellurenylazid 2,6-Trip<sub>2</sub>C<sub>6</sub>H<sub>3</sub>TeN<sub>3</sub> (40)

Zu einer Lösung von 0.075 mmol **35** in Toluol gibt man 0.10 mmol AgN<sub>3</sub>. Nach 3 h Rühren bei Raumtemperatur hat sich die Farbe der Lösung von blau nach orange verändert. Man filtriert durch eine Glasfritte und erhält nach Eindampfen **40** als braunen Feststoff.

75–80 % Ausbeute, > 135 °C Zersetzung in (**34**), anhand der grünen Farbe ersichtlich).

Raman  $\tilde{v}$  3047 (13), 3022 (11), 2957 (38), 2906 (36), 2688 (29), 2709 (6), 2052 (16,  $v_{as}N_3)$ , 1608 (31), 1566 (19), 1460 (22), 1382 (9), 1294 (23), 1252 (8), 1173 (9), 1105 (15), 1056 (12), 1006 (14), 946 (11), 883 (28), 657 (13), 498 (20), 417 (100,  $v{\rm TeN}$ ), 273 (18), 250 (16), 190 (28), 175 (27), 142 (20) cm $^{-1}$ ; IR (KBr)  $\tilde{v}$  3049 w, 2955 vs, 2924 s, 2864 s, 2054 vs ( $v_{as}N_3$ ), 1638 br, 1606 m, 1564 w, 1457 m, 1379 m, 1361 m, 1313 m, 1260 w, 1212 m, 1101 m, 1068 w, 1051 w, 940 w, 875 m, 798 m, 738 w, 649 w, 493 w cm $^{-1}$ .

<sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>) δ 7.16 (4H, m-Trip*H*), 7.04–6.96 (m, 3H, m/p-Ar*H*), 2.92 (sept, 4H, p-C*H*(CH<sub>3</sub>)<sub>2</sub>, <sup>3</sup>*J*<sub>H-H</sub> = 6.8 Hz), 2.85 (sept, 4H, o-C*H*(CH<sub>3</sub>)<sub>2</sub>, <sup>3</sup>*J*<sub>H-H</sub> = 7.0 Hz), 1.41 (d, 12H, p-CH(CH<sub>3</sub>)<sub>2</sub>) ppm), 1.27 (d, 12H, o-CH(CH<sub>3</sub>)<sub>2</sub>), 1.11 (d, 12H, o-CH(CH<sub>3</sub>)<sub>2</sub>) ppm; <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>) δ 150.1, 147.5, 143.6, 134.0, 130.5, 127.5, 126.6 (C–Te), 121.7, 34.9 (p-CH<sub>3</sub>)<sub>2</sub>), 31.3 (o-CH<sub>3</sub>)<sub>2</sub>), 25.5 (CH(CH<sub>3</sub>)<sub>2</sub>), 24.3 (CH(CH<sub>3</sub>)<sub>2</sub>), 24.0 (CH(CH<sub>3</sub>)<sub>2</sub>) ppm; <sup>14</sup>N NMR (C<sub>6</sub>D<sub>6</sub>,  $\Delta v_{1/2}$  [Hz])  $\delta$  –127 (N<sub>β</sub>, 330 Hz), –188 (N<sub>γ</sub>, 1150 Hz), (N<sub>α</sub> nicht sichtbar) ppm; <sup>15</sup>N NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  1860 ppm.

EI MS m/z (rel. Int.) 653 (30)  $[M^+]$ , 625 (15)  $[M^+ -N_2]$ , 611 (55)  $[M^+ -N_3]$ , v, 568 (85)  $[M^+ -N_2 - iPr]$ .

EA ber. für  $\rm C_{36}H_{49}N_{3}Te:$  C 66.2, H 7.5, N 6.4; gef. C 65.47, H 7.7, N 5.6.

## 12.5.12. Synthese von 2-Dimethylaminomethylbenzoltellurenyliodid 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeI

Zu einer Lösung von 30.6 mmol *N*,*N*-Dimethylbenzylamin in 150 mL Et<sub>2</sub>O tropft man 36 mmol (14.4 mL) *n*-BuLi. Nach 16 h Rühren bei Raumtemperatur dekantiert man die gelbe Lösung vom farblosen Rückstand, wäscht dieses zweimal mit 10 mL Et<sub>2</sub>O, nimmt in 50 mL Et<sub>2</sub>O auf und gibt 30 mmol Tellurpulver zu. Nach weiteren 16 h wird für mind. 10 min trockener Sauerstoff durch die Lösung geleitet. Danach öffnet man den Reaktionskolben, wäscht zweimal mit Wasser und trocknet über Na<sub>2</sub>SO<sub>4</sub>. Durch Eindampfen erhält man ein rotes Öl, das man in CH<sub>2</sub>Cl<sub>2</sub> aufnimmt und mit Iod bis zur bleibenden Farbvertiefung titriert. Man rührt 15 h nach und entfernt dann alles Flüchtige im Feinvakuum. Der verbleibende Rückstand wird bei 55 °C/10<sup>-3</sup> mbar fraktioniert sublimiert um das enthaltene (2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>Te abzutrennen. Ab 80 °C erhält man reines 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeI als dunkeloranges Pulver.

70 % Ausbeute, Schmp. 158 °C.

Die <sup>1</sup>H und <sup>13</sup>C NMR-spektroskopischen Daten sowie die Massenspektren sind im Einklang mit Lit. <sup>201</sup> <sup>125</sup>Te{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  1204 ppm.

## 12.5.13. Synthese von 2-Dimethylaminomethylbenzoltellurenylazid 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeN<sub>3</sub> (41)

Zu einer dunkelorangen Lösung von 2 mmol 2-Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>TeI in 10 mL Toluol/MeCN 1:1 gibt man unter starkem Rühren 2 mmol AgN<sub>3</sub> bei Raumtemperatur. Nach 4h dekantiert man die jetzt gelbe Lösung von den Niederschlägen, wäscht dies noch mehrmals mit Toluol aus, dampft die vereinigten Extrakte im Vakuum ein und erhält **41** als gelben Feststoff.

95 % Ausbeute, Schmp. 58 °C).

Raman starke Fluoreszenz; IR (KBr)  $\tilde{\nu}$  3058 w, 3000 w, 2970 w, 2910 br, 2838 w, 2039 vs ( $v_{as}N_3$ ), 1989 w, 1628 br, 1584 m, 1458 s, 1439 m, 1408 w, 1354 w, 1313 m, 1297 w, 1260 m, 1205 w, 1177 w, 1154 w, 1146 w, 1101 w, 1026 m, 1002 m, 973 w, 838 s, 746 s, 501 w, 461 m cm^{-1}.

<sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.72 (d, 1H, Ar–H), 7.26–7.10 (m, 3H, Ar–H), 3.80 (2H, CH<sub>2</sub>), 2.61 (6H, Me<sub>2</sub>N) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  137.3, 131.3, 128.6, 126.7, 126.6, 125.9 (C–Te, <sup>1</sup>*J*<sub>C–125Te</sub> = 328.2 Hz), 66.8 (CH<sub>2</sub>, <sup>3</sup>*J*<sub>C–125Te</sub> = 14.6 Hz), 46.7 (Me<sub>2</sub>N) ppm; <sup>14</sup>N NMR (CDCl<sub>3</sub>,  $\Delta v_{1/2}$  [Hz])  $\delta$  –131 (N<sub>6</sub>, 64 Hz), – 214 (N<sub>γ</sub>, 190 Hz), –329 (N<sub>α</sub>, 1150 Hz), (Me<sub>2</sub>N nicht sichtbar) ppm; <sup>15</sup>N NMR (CDCl<sub>3</sub>)  $\delta$  –130.5 (N<sub> $\beta$ </sub>), –214.3 (N<sub> $\gamma$ </sub>), –334.0 (N<sub> $\alpha$ </sub>), –348.7 (Me<sub>2</sub>N) ppm; <sup>125</sup>Te{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  1630 ppm. EI MS m/z (rel. Int.) 306 (10) [M<sup>+</sup>], 264 (45) [M<sup>+</sup> –N<sub>3</sub>], 202 (5) [C<sub>7</sub>H<sub>6</sub>Te<sup>+</sup>]. EA ber. für C<sub>9</sub>H<sub>12</sub>N<sub>4</sub>Te: C 35.3, H 3.9, N 18.3; gef. C 35.6, H 4.0, N 18.3.

## Dallmayr Extra Spezial (verschiedene Modifikationen)

In einer fünftassigen Krups Aroma Café 5 (Artikelnummer 1830-76) werden 37.8 g eines Dallmayr Extra spezial Kafféepulvers<sup>\*</sup> in einem Melitta Type 2 Papierfilter vorgelegt und mit Trinkwasser nach dem maschinellen Programm aufgebrüht. Eine tiefbraune Lösung wird abgetrennt, noch 20 Minuten ohne Rührung bei 80 °C gehalten und dann ein- bzw. umgesetzt. Wird die Lösung länger als 3 Stunden bei dieser Temperatur unter Luftzutritt aufbewahrt, so muss sie verworfen oder kann für die Reaktion nach KARAGHIOSOFF<sup>282</sup> verwendet werden. Dazu wird die Lösung langsam durch Ausschalten der Heizplatte auf Raumtemperatur gebracht und zwei Stunden stehen gelassen. Zu dem erhaltenen schwarzen Öl werden dann vier Presslinge Saccharose gegeben und kalt weiter umgesetzt. Alternativ kann durch Tempern über ein Wochenende Kafféeanhydrid nach Lit.<sup>282</sup> erhalten werden.

## 12.6. Synthese der Organotellur(1)-Verbindungen<sup>†</sup>

### 12.6.1. Versuchte Darstellung von Te<sub>2</sub>F<sub>2</sub>

3.7 mmol Te-Pulver wurden unter leichtem Erwärmen im Wasserbad in einem großen Schlenkrohr mit 7.4 mmol einer LiBHEt<sub>3</sub>-Lösung in 10 mL THF versetzt. Nach Ende der Gasentwicklung wird die Lösung auf –30 bis –40 °C gekühlt. 3.72 mmol TeF<sub>4</sub> werden bei Raumtemperatur in 5 mL THF gelöst. Die Lösung wurde nun tropfenweise zur gekühlten Telluridlösung gegeben. Es entstanden ein schwarzer fester Niederschlag und eine farblose Lösung. In der Lösung wird weder <sup>19</sup>F noch <sup>125</sup>Te NMR-Resonanz gemessen.

#### 12.6.2. Versuchte Darstellung von $Te_2I_2$

Zu 3 mL einer 0.15 M Lösung von Te $_2$ Cl $_2$  in THF werden 1.8 mmol NaI gegeben. Es tritt augenblickliche Reaktion ein, die Lösung färbt sich braun-rot und wird

<sup>\* 500</sup> g Packung, vakuumverpackt, seit Sommer 2004 nur noch als ganze Bohnen erhältlich.

<sup>&</sup>lt;sup>†</sup>Eine ausführlichere Darstellung der experimentellen Arbeiten findet sich in Lit. <sup>283</sup>

weitere 5 min im Dunkeln gerührt. Das Lösungsmittel wird im Vakuum entfernt, man erhielt einen schwarz-braunen Rückstand. Dieser enthält keine lösliche Tellurverbindung.

### 12.6.3. Darstellung von Te<sub>2</sub>(CN)<sub>2</sub>

4 mL einer 0.25 M Lösung von Te<sub>2</sub>Br<sub>2</sub> in THF (1 mmol) werden in einem großen Schlenkrohr mit 2.2 mmol AgCN versetzt. Man erhält eine gelbe Suspension, die über Nacht bei Raumtemperatur gerührt wird. Nach 5 min Zentrifugation bei 1200 U/min erhält man eine gelbe Lösung und einen farblosen Feststoff als Pellet. Die Lösung wird mittels einer Spritze, möglichst ohne Mitnahme des Feststoffes, in einen kleinen Schlenkkolben dekantiert. Der Rückstand wird erneut mit 3 mL THF extrahiert, zentrifugiert und ca 1.5 h stehen gelassen. Die vereinigten Extrakte wurden im Vakuum vom Lösungsmittel befreit, es bleibt ein schwarz-brauner Rückstand. Dieser wurde mit 10 mL Acetonitril aufgeschlämmt und die Lösung über eine Schlenkfritte in einen tarierten Kolben überführt. Das farblose Filtrat wird im Vakuum langsam vom Lösungsmittel befreit, man erhält einen beigen bis schwach braunen Feststoff, Ausbeute 55%.

 $^{125}$ Te NMR (THF + C<sub>6</sub>D<sub>6</sub>)  $\delta$  538 ppm.

### 12.6.4. Darstellung von $Te_2(N_3)_2$

#### Variante A (Reaktion in THF)

2 mL einer 0.25 M Lösung von Te<sub>2</sub>Br<sub>2</sub> in THF (0.5 mmol) werden mit 1.33 mmol AgN<sub>3</sub> versetzt und über Nacht bei Raumtemperatur gerührt. Es bildet sich eine gelbe Lösung über einem braunen Feststoff. Die Lösung wird abdekantiert und das Lösungsmittel im Vakuum entfernt. Man erhält ein orange-braunes Öl.

 $^{125}\text{Te-NMR}$  (THF + C<sub>6</sub>D<sub>6</sub>)  $\delta$  1028 ppm.

### Variante B (Reaktion in CH<sub>3</sub>CN)

0.42 mmol Te<sub>2</sub>Br<sub>2</sub> werden in 10 mL Acetoniril gelöst und 1.33 mmol AgN<sub>3</sub> zugegeben. Der Ansatz wird ca. 65 h bei 0 °C gerührt. Man erhält eine farblose Lösung sowie einen ockerfarbenen Niederschlag. Über eine Schlenkfritte wird die farblose Flüssigkeit abgetrennt und mit insgesamt 2 mL CH<sub>3</sub>CN portionsweise nachgespült. Die Lösung wird im Vakuum auf etwa die Hälfte eingeengt und dann eine halbe Stunde bei -25 °C gelagert. Man erhält einen amorphen, farblosen bis beigen Niederschlag. Das Lösungsmittel wird nun vollständig entfernt, es blieb ein schwach beiger, amorpher Feststoff.

<sup>125</sup>Te-NMR (CD<sub>3</sub>CN)  $\delta$  1033 ppm.

Anhang

# A. Details zu den quantenchemischen Rechnungen der einzelnen Kapitel

Die angegebenen Basissätze und Pseudopotentiale wurden, sofern nicht in den genannten Programmpaketen implementiert, von der Extensible Computational Chemistry Environment Basis Set Database bezogen.\*

#### A.1. Rechnungen an Tellurcyaniden (Kapitel 4)

GAUSSIANO3 auf Itanium2 (64 bit),<sup>126</sup> DFT, MP2(FC) und CCD Methoden, MWB46 large-core und MDF28 small-core Pseudopotentiale mit den entsprechenden cc-pVnZ-PP Basissätzen für Tellur,<sup>69,129,131</sup> und die cc-pVnZ Basissätze für Kohlenstoff- und Stickstoffatome;<sup>284</sup> (sehr) strenge Konvergenzkriterien für **3** bzw. **4** und Te(CN)<sub>6</sub> mit max. force  $\leq 2/15 \cdot 10^{-6}$  Hartree, root-mean-square force  $\leq 1/10 \cdot 10^{-6}$  Hartree, max. displacement  $\leq 6/60 \cdot 10^{-6}$  Hartree, root-mean-square displacement  $\leq 4/40 \cdot 10^{-6}$  Hartree. Vollrelativistische, direkte 4-Komponenten Dirac-Hartree-Fock und MP2 Rechnungen mit dem DIRAC Programmpaket<sup>285</sup> auf Pentium4, Dirac-Coulomb Hamiltonoperator, relativistischer dual-family-Basissatz für Tellur (20s18p11d+1s1p1d), strenge "kinetic balance" <sup>96</sup> und cc-pVDZ Basissätze für Kohlenstoff- und Stickstoffatome.<sup>284</sup> *ELF*-Werte berechnet mit dem ToPMoD Programmpaket,<sup>286</sup> dargestellt mit Molekel 4.2.<sup>287</sup>

Außerdem wurde versucht, die <sup>125</sup>Te NMR-Verschiebung von Te(CN)<sub>2</sub> (**3**) bezogen auf den Standard Me<sub>2</sub>Te mit mit dem DIRAC Programmpaket<sup>285</sup> zu berechnen. <sup>292–296</sup> Die relativ zuverlässigen Methoden, die zu diesem Zweck für leichtere Elemente (v. a. der ersten und zweiten Periode) angewandt werden können, scheiden für das Tellur wegen der ausgeprägten relativistischen Einflüsse auf die NMR-Verschiebung aus. Dies liegt darin begründet, dass die NMR-Verschiebung hauptsächlich von der elektronischen Umgebung des Atomkernes abhängt, weshalb auch die sonst erfolgreichen Pseudopotentialansätze nicht greifen. Wie aus Tabelle A.1 auf der nächsten Seite ersichtlich ist, hängen die Ergebnisse stark von den gewählten Strukturen und Basissätzen ab,

<sup>\*</sup> Pflichtreferenz: Version 02/25/04, as developed and distributed by the Molecular Science Computing Facility. Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830.

| Tabelle A.1.: Berechnete | Werte für die <sup>125</sup> Te NMR-Verschiebung von Te(CN) <sub>2</sub> ( <b>3</b> ) bezogen |
|--------------------------|-----------------------------------------------------------------------------------------------|
| auf Me <sub>2</sub> Te.  | Vollrelativistische, direkte 4-Komponentenrechnung auf DIRAC-                                 |
| HARTREE-FC               | оск Niveau mit DIRAC, Abschirmungskonstanten ( $\sigma$ ) und chemi-                          |
| sche Verschi             | iebung (δ) in ppm. Bezugspunkt ("gauge origin") auf den Koordi-                               |
| naten des T              | elluratoms.                                                                                   |

| Molekül            | Methode                                          | Struktur             | $\sigma$ (tot) | $\sigma$ (dia) | $\sigma$ (para) | δ    |
|--------------------|--------------------------------------------------|----------------------|----------------|----------------|-----------------|------|
| Me <sub>2</sub> Te | exp. <sup>288</sup>                              |                      |                |                |                 | ≡ 0  |
|                    | Faegriı + cc-pVDZ                                | Haaland <sup>a</sup> | 5130.6         | 5708.9         | -578.3          | -    |
|                    | Fægrii <sup>96</sup> + cc-pVDZ <sup>284</sup>    | RI-MP2 <sup>b</sup>  | 5092.3         | 5709.0         | -616.7          | -    |
|                    | Fægri1 + cc-pVDZ                                 | RI-MP2               | 5091.3         | 5708.6         | -617.3          | -    |
|                    | DyallVDZ <sup>289</sup> + cc-pVDZ                | RI-MP2               | 5143.5         | 5709.0         | -565.5          | -    |
|                    | DyallVTZ <sup>290</sup> + cc-pVTZ <sup>284</sup> | RI-MP2               | 5144.5         | 5709.1         | -564.5          | -    |
|                    | DyallVDZ + AhlrichsDZ <sup>291</sup>             | RI-MP2               | 4923.3         | 5709.1         | -785.7          | -    |
| Te(CN)2            | exp. (THF-D <sub>8</sub> )                       | _                    | -              | -              | -               | 567  |
|                    | Fægri1+ cc-pVDZ                                  | DHF-opt              | 4405.5         | 5729.3         | -1323.8         | 725  |
|                    | Fægri1+ cc-pVDZ                                  | avg <sup>c</sup>     | 4040.8         | 5729.1         | -1688.3         | 1090 |
|                    | Fægri1+ cc-pVDZ                                  | RI-MP2               | 4556.7         | 5729.2         | -1172.5         | 535  |
|                    | DyallVDZ + cc-pVDZ                               | RI-MP2               | 4521.2         | 5729.1         | -1208.0         | 622  |
|                    | DyallVTZ + cc-pVTZ                               | RI-MP2               | 4655.0         | 5729.2         | -1074.2         | 490  |
|                    | DyallVDZ + AhlrichsDZ                            | RI-MP2               | 3595.6         | 5729.1         | -2133.5         | 1328 |

<sup>a</sup> Struktur aus experimenteller Messung in der Gasphase. <sup>b</sup> Struktur aus vorhergehender Optimierung auf RI-MP2/TZVP-Niveau mit Тиквомось. <sup>c</sup> gemittelte Struktur aus anharmonischer Frequenzrechnung auf MP2/cc-pVDZ-Niveau (PP = MDF28) mit GAUSSIAN.

die Absolutwerte der chemischen Verschiebung werden hauptsächlich vom paramagnetischen Term bestimmt; zudem müssen Einflüsse der Elektronenkorrelation wegen der vollrelativistischen Behandlung von vornherein vernachlässigt werden. Eine aussagekräftige und zuverlässige Berechnung ist daher nicht erreicht worden.

## A.2. Rechnungen an Tellur(VI)-Verbindungen (Kapitel 6)

Die elektronischen Strukturen der  $Me_xTeF_{6-x}$  und  $Me_xTe(N_3)_{6-x}$  (x = o–6) Moleküle wurden mit Dichtefunktional- (B3LYP<sup>297,298</sup>) sowie Møller-Plesset-Methoden ("frozen core") zweiter Ordnung berechnet. Verwendet wurden die cc-pVDZ Basissätze von DUNNING für H, C, N und F Atome, sowie die an das relativistische small-core Pseudopotenial SDB-MDF28 für Te angepasste ccpVDZ ((8s6p6d)/[4s3p2d]) Basis.<sup>131,240</sup> Dabei werden die äußeren 4spd Schalen des Tellurs zusammen mit der 5sp Valenzschale berechnet und der innere [Ar] 3d<sup>10</sup>-Kern durch das Pseudopotential ersetzt. Alle Strukturen wurden in redundanten internen Koordinaten optimiert (wenn nicht anders angegeben in  $\mathscr{C}_1$  Symmetrie) bis keine imaginäre Frequenz verblieb (NIMAG = o). Zudem wurden auch MP2(FC) Strukturoptimierungen mit AHLRICHS' TZVP Allelektronenbasissätzen (TZVPall) durchgeführt, ursprünglich um damit in GAUSSIAN AIM-Analysen durchzuführen, was jedoch an technischen Problemen scheiterte (zu viele Integrationsdomänen aufgrund der sehr polaren Te-F Bindungen). Die mit GAUSSIANO3 (Rev. B 01)<sup>126</sup> optimierten Strukturen auf MP2(FC)/ cc-pVDZ-Niveau mit dem MDF28 Pseudopotential wurden nun für CCSD(T) Singlepoints, ELF-, NBO- und AIM-Analysen verwendet. Die Coupled-Cluster Rechnungen wurden dabei mit dem Programmsystem Molpro,<sup>299</sup> die ELFbzw. AIM-Analysen mit dem ToPMoD-Packet angefertigt.<sup>286</sup> Für Ph<sub>5</sub>TeN<sub>3</sub> (13), biphen<sub>2</sub>Te $(N_3)_2$  (14) und *trans*-Ph<sub>2</sub>TeF<sub>4</sub> (15) wurden Strukturen mit TURBOMO-LE5.3<sup>125,241,242,300</sup> auf RI-DFT (Becke-Perdew86 Austausch-Korrelationsfuntional<sup>297,301</sup>) and RI-MP2-Niveau unter Verwendung von SVP und darauffolgend TZVP Basissätzen<sup>291,302</sup> sowie dem large-core MDW46 Pseudopotential<sup>129</sup> für Tellur optimiert. Mit den RI-BP86/TZVP-Strukturen wurden MPI-parallele, numerische Frequenzrechnungen für 13, 14 und 15 mit dem SNF-Programm<sup>162</sup> durchgeführt.

# A.2.1. Kartesische Koordinaten von Ph<sub>5</sub>TeN<sub>3</sub>, *cis/trans*-biphen<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> und Ph<sub>2</sub>TeF<sub>4</sub> auf dem B<sub>3</sub>LYP/cc-pVDZ (PP(Te) = MDF<sub>2</sub>8) Niveau

|    | Ph        | 15 TeN3 (13) |           |   | н  | 2 420608  | 2 001084  | 0 556822  |
|----|-----------|--------------|-----------|---|----|-----------|-----------|-----------|
|    |           |              |           | - | C  | 0.827704  | 4.047577  | -0.076562 |
| Te | 0.015028  | -0.030696    | -0.179852 |   | н  | -1.014470 | 5 12 4202 | -0.766002 |
| С  | 0.144349  | -0.272037    | 2.023219  |   | н  | 2 822020  | 4 440180  | 0.700022  |
| С  | 0.151618  | -1.546702    | 2.609528  |   | н  | 1.000766  | 6.024786  | -0.066080 |
| С  | 0.223265  | 0.857115     | 2.851735  |   | C  | 1.009700  | 0.024700  | -0.000002 |
| С  | 0.235469  | -1.687037    | 3.999859  |   | č  | 2.225103  | -0.354/15 | -0.464413 |
| Н  | 0.098006  | -2.443024    | 1.991313  |   | c  | 2.05//90  | 0.003031  | -1.033730 |
| С  | 0.302122  | 0.712944     | 4.241986  |   | č  | 2.974108  | -0.991418 | 0.531821  |
| Н  | 0.225059  | 1.859969     | 2.423801  |   | L. | 4.233264  | -0.113196 | -1.801867 |
| С  | 0.308964  | -0.558597    | 4.820103  |   | н  | 2.277142  | 0.568176  | -2.418383 |
| Н  | 0.243242  | -2.687628    | 4.439099  |   | C  | 4.350532  | -1.187688 | 0.358480  |
| Н  | 0.359884  | 1.603871     | 4.872128  |   | н  | 2.502581  | -1.337197 | 1.452456  |
| Н  | 0.372295  | -0.669796    | 5.905024  |   | C  | 4.982381  | -0.749211 | -0.807509 |
| С  | -2.211217 | 0.284915     | -0.125752 |   | Н  | 4.718015  | 0.231750  | -2.718698 |
| С  | -2.837651 | 0.814637     | 1.008120  |   | н  | 4.926371  | -1.684959 | 1.143138  |
| С  | -2.978841 | -0.081773    | -1.237168 |   | Н  | 6.055805  | -0.902704 | -0.941567 |
| С  | -4.228341 | 0.980160     | 1.026998  |   | С  | -0.352474 | -2.196845 | -0.582213 |
| Н  | -2.257002 | 1.101986     | 1.885887  |   | С  | 0.523399  | -2.899996 | -1.414048 |
| С  | -4.368084 | 0.086880     | -1.214726 |   | С  | -1.470143 | -2.841342 | -0.040352 |
| Н  | -2.497968 | -0.508613    | -2.119004 |   | С  | 0.287558  | -4.251379 | -1.692431 |
| С  | -4.994807 | 0.618361     | -0.083985 |   | Η  | 1.385868  | -2.401167 | -1.856917 |
| Н  | -4.710079 | 1.393436     | 1.916745  |   | С  | -1.697181 | -4.196007 | -0.313068 |
| Н  | -4.959779 | -0.200043    | -2.087512 |   | Н  | -2.172208 | -2.298809 | 0.595472  |
| Н  | -6.079345 | 0.749550     | -0.068290 |   | С  | -0.818996 | -4.902075 | -1.139762 |
| С  | 0.360719  | 2.182124     | -0.104789 |   | Н  | 0.972382  | -4.793677 | -2.349022 |
| Ċ  | -0.655418 | 3.069699     | -0.476129 |   | Н  | -2.567522 | -4.695401 | 0.119975  |
| C  | 1.615778  | 2.680388     | 0.270264  |   | Н  | -1.000071 | -5.957350 | -1.357387 |
| Ć  | -0.417940 | 4,450484     | -0.463642 |   | Ν  | -0.080710 | 0.093408  | -2.453444 |
| н  | -1.634926 | 2.702002     | -0.779652 |   | Ν  | -0.511205 | 1.095973  | -2.998754 |
| C  | 1.843900  | 4,060412     | 0.292264  |   | Ν  | -0.919424 | 2.006150  | -3.575268 |



**Abbildung A.1.:** Berechnete Strukturen von  $Ph_5TeN_3$  (13), cis-biphen<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (14) und trans- $Ph_2TeF_4$  (15) auf dem B3LYP/cc-pVDZ (PP(Te) = MDF28) Niveau.

# A.2. Rechnungen an Tellur(vi)-Verbindungen

|    | trans-Ph2 Te | eF4 ( <b>15</b> , ∅ <sub>2</sub> -Sym | metrie)   |
|----|--------------|---------------------------------------|-----------|
| Те | -0.000000    | 0.000000                              | -0.000000 |
| С  | -0.000000    | -0.000000                             | 2.132318  |
| С  | 1.225507     | 0.011953                              | 2.798847  |
| С  | -1.225507    | -0.011953                             | 2.798847  |
| С  | 1.212173     | 0.014015                              | 4.197566  |
| Н  | 2.161909     | 0.014642                              | 2.243373  |
| С  | -1.212173    | -0.014015                             | 4.197566  |
| Н  | -2.161909    | -0.014642                             | 2.243373  |
| С  | 0.000000     | -0.000000                             | 4.893546  |
| Н  | 2.159354     | 0.024530                              | 4.741154  |
| Н  | -2.159354    | -0.024530                             | 4.741154  |
| Н  | 0.000000     | -0.000000                             | 5.985743  |
| С  | -0.000000    | 0.000000                              | -2.132318 |
| С  | -1.095952    | 0.548544                              | -2.798847 |
| С  | 1.095952     | -0.548544                             | -2.798847 |
| С  | -1.083065    | 0.544546                              | -4.197566 |
| Н  | -1.936188    | 0.961893                              | -2.243373 |
| С  | 1.083065     | -0.544546                             | -4.197566 |
| Н  | 1.936188     | -0.961893                             | -2.243373 |
| С  | -0.000000    | 0.000000                              | -4.893546 |
| Η  | -1.929554    | 0.969657                              | -4.741154 |
| Н  | 1.929554     | -0.969657                             | -4.741154 |
| Н  | -0.000000    | 0.000000                              | -5.985743 |
| F  | 1.911652     | -0.441867                             | -0.000000 |
| F  | 0.439453     | 1.901210                              | 0.000000  |
| F  | -1.911652    | 0.441867                              | 0.000000  |
| F  | -0.439453    | -1.901210                             | -0.000000 |
|    |              |                                       |           |

|    | cis-biph  | en2Te(N3)2 (14 | .)        |
|----|-----------|----------------|-----------|
|    | 0.074101  | 0 101515       | 0.060500  |
| č  | 0.064992  | 0.023014       | 1 466526  |
| c  | 1 211166  | 0.120520       | 2 247750  |
| č  | 2 420102  | 0.139339       | 1.615550  |
| c  | 2.429192  | 0.420403       | 0.227145  |
| č  | 1 200528  | 0.301402       | -0.540852 |
| c  | -1 212752 | 0.470119       | -0.666708 |
| č  | -2 274285 | -0.201576      | 0.080760  |
| c  | -2 624102 | -0.226140      | -0.520056 |
| č  | -3 732543 | -0.186513      | -1 908547 |
| c  | -2 580014 | 0.077405       | -2.670600 |
| c  | -1 240721 | 0.204212       | -2.050585 |
| н  | 1.340721  | 0.016015       | 2.039303  |
| н  | 2 220817  | 0.520725       | 3.329004  |
| н  | 3 419697  | 0.320723       | -0.266253 |
| н  | 1 270448  | 0.003003       | -1 621060 |
| н  | -4 511657 | -0.528000      | 0.082205  |
| н  | -4.311037 | -0.280760      | -2 202450 |
| н  | -2 671678 | 0.188414       | -2 754142 |
| н  | -0.465100 | 0.411820       | -2 676718 |
| Te | -1 020027 | -0.205272      | 2 180840  |
| C  | -1.845027 | -2 555012      | 2.169449  |
| č  | -3.060981 | -3 132216      | 2 580308  |
| č  | -0.751097 | -3 330670      | 1 797754  |
| č  | -3 153305 | -4 534295      | 2 601464  |
| č  | -4 170169 | -2 217200      | 2 965974  |
| č  | -0.860292 | -4 725816      | 1 825648  |
| н  | 0 184078  | -2 858220      | 1 489872  |
| c  | -2.061199 | -5 310852      | 2 227038  |
| н  | -4.078344 | -5.022607      | 2 012141  |
| C  | -3 949447 | -0.829557      | 2 890716  |
| č  | -5.433492 | -2.649078      | 3.406270  |
| н  | -0.008787 | -5 346147      | 1 537559  |
| н  | -2.148896 | -6.408235      | 2.251260  |
| C  | -4.914233 | 0.107912       | 3.248441  |
| č  | -6.415917 | -1.721742      | 3.760563  |
| н  | -5.656033 | -3.714917      | 3.477382  |
| C  | -6.164051 | -0.348260      | 3.686650  |
| н  | -4.687731 | 1.172489       | 3.188460  |
| н  | -7,389376 | -2.078185      | 4.104550  |
| н  | -6.933855 | 0.369903       | 3.976690  |
| Ν  | -2,401960 | 1.767500       | 2,434286  |
| N  | -1.110740 | -0.426216      | 4.254390  |
| Ν  | -1.480662 | 2,476328       | 2.820804  |
| Ν  | -1.831177 | 0.031946       | 5.132883  |
| Ν  | -0.654315 | 3.191459       | 3.173350  |
| Ν  | -2.463786 | 0.441295       | 5.999372  |



**Abbildung A.2.:** Berechnete Strukturen von  $Me_x TeF_{6-x}$  und  $Me_x Te(N_3)_{6-x}$  (x = 0–6) auf dem B3LYP/cc-pVDZ (PP(Te) = MDF28) Niveau.

A.2.2. Kartesische Koordinaten für die Moleküle  $Me_x TeF_{6-x}$  und  $Me_x Te(N_3)_{6-x}$  (x = 0–6), optimiert auf dem MP2/cc-pVDZ (PP(Te) = MDF28) Niveau.<sup> $\dagger$ </sup>

|    | cis-1   | Me <sub>2</sub> TeF <sub>4</sub> |         |    | cis-M   | e2Te(N3)4 |         |    | CIS-    | Me4 TeF2 |         |
|----|---------|----------------------------------|---------|----|---------|-----------|---------|----|---------|----------|---------|
| e. | 1.88177 | 2.51668                          | 1.90595 | Te | 3.25538 | 2.56718   | 3.21471 | Te | 2.37481 | 2.28099  | 2.63779 |
|    | 2.01563 | 2.49501                          | 3.82575 | Z  | 3.25538 | 2.56718   | 5.33386 | C  | 2.30898 | 2.33016  | 4.76038 |
|    | 3.97332 | 2.47601                          | 1.75018 | N  | 5-37575 | 2.56718   | 3.17831 | Н  | 3.26826 | 2.73853  | 5.10697 |
| _  | 4.22632 | 2.49122                          | 0.68017 | Z  | 1.13501 | 2.56718   | 3.25111 | Н  | 2.18163 | 1.29566  | 5.11032 |
| _  | 4.35861 | 3.36959                          | 2.25962 | N  | 3.25538 | 2.56718   | 1.09556 | Н  | 1.47051 | 2.96662  | 5.08435 |
| _  | 4.33563 | 1.55827                          | 2.23659 | Z  | 5.91532 | 1.82500   | 4.01379 | C  | 1.24920 | 4.08034  | 2.37789 |
|    | 1.97849 | 4.42835                          | 1.96386 | N  | 3.88805 | 1.64051   | 0.57064 | Н  | 1.91921 | 4.92631  | 2.59604 |
|    | 1.65286 | 2.65457                          | 0.00000 | Z  | 0.59544 | 3.30935   | 2.41563 | Н  | 0.38945 | 4.08619  | 3.06705 |
|    | 1.49479 | 0.45707                          | 1.81265 | N  | 2.62270 | 3.49385   | 5.85878 | Н  | 0.89132 | 4.14514  | 1.33748 |
| _  | 1.57507 | 0.05804                          | 2.83419 | Z  | 6.51076 | 1.15030   | 4.76903 | C  | 2.90748 | 2.13998  | 0.58634 |
| _  | 0.47752 | 0.33034                          | 1.41820 | N  | 2.04481 | 4.34301   | 6.42942 | Н  | 3.27949 | 3.12628  | 0.27377 |
| _  | 2.23719 | 0.00000                          | 1.14182 | Z  | 0.00000 | 3.98405   | 1.66040 | Н  | 2.02365 | 1.84316  | 0.00000 |
|    | 0.00000 | 2.80788                          | 2.10903 | Z  | 4.46595 | 0.79134   | 0.00000 | Н  | 3.70242 | 1.38575  | 0.50690 |
|    |         |                                  |         | C  | 3.18917 | 0.44260   | 3.39624 | C  | 0.63886 | 1.04500  | 2.46171 |
|    |         |                                  |         | Н  | 3.80789 | 0.18899   | 4.26971 | Η  | 0.97957 | 0.00000  | 2.39800 |
|    |         |                                  |         | Н  | 2.12747 | 0.20794   | 3.55697 | Н  | 0.07523 | 11.31911 | 1.55544 |
|    |         |                                  |         | Н  | 3.58544 | 0.00000   | 2.46990 | Н  | 0.00000 | 1.17674  | 3.35010 |
|    |         |                                  |         | C  | 3.32158 | 4.69175   | 3.03319 | F  | 4.03259 | 3-35757  | 2.79365 |
|    |         |                                  |         | Н  | 4.38329 | 4.92641   | 2.87246 | ц  | 3.48471 | 0.65959  | 2.90370 |
|    |         |                                  |         | Н  | 2.70287 | 4.94536   | 2.15972 |    |         |          |         |
|    |         |                                  |         | н  | 9 09539 | 5 13/35   | 3 05052 |    |         |          |         |

Auf die Angabe der Ergebnisse der analytischen Frequenzrechnungen für die o.g. Moleküle wurde an dieser Stelle verzichtet. Diese sind in der Supporting Information zu Lit.<sup>195</sup> (http://pubs.acs.org/subscribe/journals/jacsat/suppinfo/jao46637q/jao46637q/jao46637qsizoo40608\_112526.pdf) oder auf Anfrage vom Autor er-hältlich.

| Te         2.6265         2.59150         2.56631         Te         2.5633         3.3753         3.3753         2.56203           N         2.60343         2.51936         4.7133         N         2.51033         3.37553         3.37553         2.47123           H         2.0053         2.61934         4.73130         N         2.51423         3.37553         2.64253           H         5.20273         2.51666         3.51661         H         1.98370         4.37746         N         2.75033         2.56753           H         5.20273         2.51666         3.51661         H         1.99399         1.65441         N         1.99639         2.67073           H         5.20273         2.51697         0.43560         H         0.256473         1.65541         N         1.99639         2.67073           H         5.17073         2.51657         0.43560         H         0.236470         N         2.41992         2.066353           H         2.69776         0.43560         H         0.236470         N         2.43692         2.69739         2.58759         4.4756           H         2.69779         0.43756         1.70389         2.45656         N <th></th> <th>cis-M</th> <th>le4 Te(N3)2</th> <th></th> <th></th> <th>fac-</th> <th>Me<sub>3</sub>TeF<sub>3</sub></th> <th></th> <th></th> <th>fac-M</th> <th>le3 Te(N<sub>3</sub> )<sub>3</sub></th> <th></th>                                                                                                          |    | cis-M    | le4 Te(N3)2 |         |    | fac-    | Me <sub>3</sub> TeF <sub>3</sub> |         |    | fac-M   | le3 Te(N <sub>3</sub> ) <sub>3</sub> |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|-------------|---------|----|---------|----------------------------------|---------|----|---------|--------------------------------------|---------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Te | 2.62655  | 2.59150     | 2.56651 | Te | 2.61603 | 2.51645                          | 1.91637 | Te | 2.51203 | 3.37659                              | 2.56200 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | z  | 2.61244  | 2.59264     | 4.78130 | U  | 2.58647 | 2.49699                          | 4.03017 | z  | 2.51203 | 3.37659                              | 4.71129 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | υ  | 4.78683  | 2.66934     | 2.51524 | Н  | 3.62682 | 2.41697                          | 4.37736 | z  | 4.64851 | 3.37659                              | 2.64251 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Η  | 5.02105  | 3.51147     | 1.84747 | Н  | 2.14250 | 3.44248                          | 4.37416 | z  | 2.76642 | 1.19688                              | 2.68782 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Η  | 5.20279  | 2.84668     | 3.51861 | Н  | 1.99389 | 1.63479                          | 4.37528 | z  | 1.90087 | 0.60492                              | 2.03848 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Η  | 5.14486  | 1.71079     | 2.10647 | U  | 0.53431 | 2.77677                          | 1.65541 | z  | 2.41139 | 2.27959                              | 5.28251 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U  | 2.51395  | 2.69178     | 0.43360 | Н  | 0.26200 | 2.38055                          | 0.66635 | Z  | 5.12535 | 2.70072                              | 3.56598 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Η  | 2.60973  | 3.74974     | 0.14456 | Н  | 0.00000 | 2.24029                          | 2.45562 | z  | 5.64992 | 2.08529                              | 4.41531 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Η  | 3.33442  | 2.09752     | 0.00000 | Н  | 0.32458 | 3.85516                          | 1.70389 | Z  | 1.09520 | 0.00000                              | 1.41956 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Η  | 1.54290  | 2.29034     | 1/101.0 | н  | 2.82156 | 2.74091                          | 0.00000 | z  | 2.30832 | 1.29791                              | 5.91911 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U  | 0.51497  | 2.85929     | 2.82843 | н  | 2.83875 | 4.44224                          | 1.99904 | C  | 2.66994 | 3.25119                              | 0.43731 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Η  | 0.24037  | 3.74552     | 2.23768 | C  | 2.62317 | 0.41761                          | 1.66296 | Н  | 2.09178 | 2.37841                              | 0.09387 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Η  | 0.00000  | 1.95270     | 2.47013 | Н  | 3.50459 | 0.01404                          | 2.18219 | Н  | 2.26282 | 4.17744                              | 0.00000 |
| C         2.4907         0.44997         2.63372         H         1.63365         0.00000         2.036979         3.26379         3.26379         3.26379         3.26379         3.26379         3.26379         3.26379         3.26367         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25697         3.25772         2.25995         2.44966         2.37572         2.41773         2.41773         2.41773         2.41773         2.41733         2.41734         2.59109         2.25915         2.43956         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056         2.43056 <td>Η</td> <td>0.34348</td> <td>3.02397</td> <td>3.90174</td> <td>Н</td> <td>2.68994</td> <td>0.21223</td> <td>0.58470</td> <td>Н</td> <td>3.73724</td> <td>3.13447</td> <td>0.20058</td> | Η  | 0.34348  | 3.02397     | 3.90174 | Н  | 2.68994 | 0.21223                          | 0.58470 | Н  | 3.73724 | 3.13447                              | 0.20058 |
| H         2.09124         0.18751         3.6317         F         4.55519         2.45666         1.95056         H         0.04399         3.64866         3.55697           H         1.80928         0.10728         1.43311         H         0.00000         3.59967         1.77782           H         3.48597         0.00728         1.43311         H         0.00300         3.54966         2.4377           N         3.45740         2.75051         5.38938         H         0.003100         3.24955         2.43172           N         4.65942         2.89508         6.02423         H         0.03130         5.81519         2.29513           N         4.76594         5.43268         H         3.58057         5.81519         2.29913           N         2.77931         4.76598         6.02423         H         1.7134         5.81519         2.21991           N         2.77931         5.82439         1.7134         5.81519         2.27931         3.76933           N         2.77931         5.82439         5.81549         2.7733         1.7134         5.81599         2.7733           N         2.77931         5.80222         5.81549         5.76422                                                                                                                                                                                                                                                                                                                               | U  | 2.49007  | 0.44997     | 2.63972 | Н  | 1.69365 | 0.00000                          | 2.08159 | U  | 0.36979 | 3.26389                              | 2.57925 |
| H         1.8028         0.10728         1.8431         H         0.00000         2.8965         1.5772           H         2.8657         5.0340         H         0.03100         2.23655         2.4372           N         3.6774         2.75031         5.38836         6.02423         2.63765         2.4372           N         4.65942         2.89568         6.02423         H         3.52852         5.8159         2.23951           N         4.76590         5.32202         5.8159         2.23951         H         3.52832         5.8159         2.21991           N         2.78931         5.32202         3.68249         H         1.71334         5.8169         2.17133           N         2.78931         5.32202         3.68249         H         1.71334         5.81699         2.17133           N         2.77935         4.63260         5.75422         3.75633         3.75633         3.75633           N         3.1729         5.90272         4.63260         5.75422         3.75633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Η  | 2.09124  | 0.18751     | 3.63117 | ц  | 4.55519 | 2.45668                          | 1.95056 | Н  | 0.04399 | 3.64866                              | 3.55697 |
| H         3.4857         0.00000         2.50340         H         0.03130         2.22655         2.43172           N         3.67764         2.73051         5.38336         C         2.58765         5.43956         2.43057           N         3.67764         2.73051         5.38336         C         2.22655         2.43176         2.43956         5.43956         5.43956         2.43057         5.6107         2.21991         2.7391         1.7334         5.8159         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21991         2.21931         3.25832         5.81599         2.21713         3.75632         5.81599         2.21713         3.75632         5.81699         2.21713         3.75632         5.81699         2.21713         3.75635         5.41733         3.75635         3.75632         5.81699         2.1773         3.75635         5.81699         2.1773         3.75635         5.81649         2.49816         2.7                                                                                                                                                                                                                          | Η  | 1.80928  | 0.10728     | 1.84311 |    |         |                                  |         | Н  | 0.00000 | 3.89967                              | 1.75782 |
| N         3.6716.4         2.75051         5.38836         2.49079           N         3.65942         2.89506         6.02423         C         2.59715         5.48366         2.49079           N         2.69942         2.89506         6.02423         H         3.52832         5.81519         2.21991           N         2.75941         5.32202         5.81519         2.21991         H         1.71334         5.91809         2.1773           N         2.55474         5.32202         3.68449         H         1.71334         5.91809         2.1773           N         2.55474         5.32202         3.68449         H         1.7334         5.91809         2.1773           N         2.55474         5.32202         3.68449         H         2.57915         5.75422         3.75633           N         3.17269         5.90272         4.63260         H         2.57915         5.75422         3.75633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Η  | 3.48597  | 0.00000     | 2.50340 |    |         |                                  |         | Н  | 0.03130 | 2.22655                              | 2.43172 |
| N         4.659.4         2.89508         6.02423         5.81519         2.21991           N         2.77931         4.76599         2.35712         2.21913           N         2.7753         5.81519         2.21713           N         2.75541         5.81639         2.37734           N         2.75541         5.81649         7.7733           N         3.17289         5.90472         4.55462         3.75633           N         3.17289         5.90472         4.55420         3.75633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | z  | 3.67164  | 2.75051     | 5.38838 |    |         |                                  |         | C  | 2.58765 | 5.49366                              | 2.69079 |
| N         2.72931         4.78599         2.53712         H         1.71334         5.91809         2.1773           N         2.95474         5.32202         3.62849         H         2.57915         5.75422         3.75953           N         2.95474         5.32202         3.62849         H         2.57915         5.75422         3.75953           N         3.17289         5.90272         4.63260         4.63260         4.63260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | z  | 4.65942  | 2.89508     | 6.02423 |    |         |                                  |         | Н  | 3.52832 | 5.81519                              | 2.21991 |
| N 2.95474 5.32202 3.62849<br>N 3.17289 5.90272 4.63260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z  | 2.72931  | 4.78599     | 2.53712 |    |         |                                  |         | Н  | 1.71334 | 5.91809                              | 2.17173 |
| N 3.17289 5.90272 4.63260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | z  | 2.95474  | 5.32202     | 3.62849 |    |         |                                  |         | Н  | 2.57915 | 5.75422                              | 3.75953 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | z  | 3.172.89 | 5.90272     | 4.63260 |    |         |                                  |         |    |         |                                      |         |

A. Details zu den quantenchemischen Rechnungen der einzelnen Kapitel

|    | N.      | 4e5 TeF |         |    | M       | le5 TeN3 |          |    | ł       | Me <sub>6</sub> Te |         |
|----|---------|---------|---------|----|---------|----------|----------|----|---------|--------------------|---------|
| Te | 2.55623 | 1.98195 | 2.64453 | Te | 2.62754 | 2.60449  | 2.55314  | Te | 2.60957 | 2.65409            | 2.62643 |
| υ  | 2.57005 | 1.99826 | 4.80696 | Z  | 2.56011 | 2.57490  | 4.79642  | C  | 2.56396 | 2.63992            | 4.81797 |
| Η  | 3.51927 | 1.54099 | 5.12621 | C  | 4.79164 | 2.66382  | 2.78220  | Н  | 3.57821 | 2.49097            | 5.22474 |
| Η  | 1.72943 | 1.40471 | 5.19899 | Н  | 5.06972 | 3.62906  | 3.23324  | Н  | 2.17285 | 3.61410            | 5.15807 |
| Η  | 2.50546 | 3.03764 | 5.17027 | Η  | 5.08762 | 1.84052  | 3.45293  | Н  | 1.89962 | 1.83371            | 5.17283 |
| U  | 1.67609 | 3.94348 | 2.46716 | Н  | 5.27249 | 2.54212  | 11.79711 | C  | 3.43244 | 4.68291            | 2.73554 |
| Η  | 2.45936 | 4.71926 | 2.46425 | C  | 2.58209 | 2.72354  | 0.40215  | Н  | 3.89027 | 4.95311            | 1.76878 |
| Η  | 0.99563 | 4.11174 | 3.31804 | Н  | 3.60786 | 2.72524  | 0.00000  | Н  | 2.64051 | 5.40827            | 2.98668 |
| Η  | 1.10061 | 3.99892 | 1.52851 | Η  | 2.03430 | 1.85169  | 71600.0  | Н  | 4.20450 | 4.69672            | 3.52381 |
| U  | 2.76329 | 1.69078 | 0.51160 | Η  | 2.06703 | 3.65066  | 0.10281  | C  | 0.53595 | 3.36461            | 2.60696 |
| Η  | 2.74160 | 2.66763 | 0.00000 | C  | 0.46913 | 2.52008  | 2.74846  | Н  | 0.00000 | 2.83298            | 1.80211 |
| Η  | 1.95534 | 1.04488 | 0.13384 | Η  | 0.00000 | 2.73581  | 1.77304  | Н  | 0.05597 | 3.14374            | 3.57550 |
| Η  | 3.73279 | 1.19572 | 0.34721 | Η  | 0.18091 | 1.51958  | 3.10611  | Н  | 0.50104 | 4.45002            | 2.41451 |
| U  | 0.58353 | 1.09149 | 2.61772 | Н  | 0.18227 | 3.27503  | 3.49625  | C  | 2.59590 | 2.79793            | 0.43914 |
| Η  | 0.71153 | 0.00000 | 2.69208 | C  | 2.54653 | 4.76528  | 2.74057  | Н  | 3.63108 | 2.79148            | 0.05756 |
| Η  | 0.07723 | 1.35343 | 1.67429 | Η  | 1.58742 | 5.12720  | 2.33447  | Н  | 2.03329 | 1.95710            | 0.00000 |
| Η  | 0.00000 | 1.46682 | 3.47418 | Н  | 2.63110 | 5.01071  | 3.81058  | Н  | 2.10861 | 3.74845            | 0.16215 |
| ц  | 3.32144 | 0.13773 | 2.81109 | Η  | 3.38708 | 5.19883  | 2.17334  | C  | 1.88116 | 0.58662            | 2.61698 |
| U  | 4.57066 | 2.77677 | 2.67776 | C  | 2.75670 | 0.42954  | 2.45207  | Н  | 0.83237 | 0.55814            | 2.95826 |
| Η  | 4.76300 | 3.32677 | 1.74164 | Η  | 2.95620 | 0.00000  | 3.44739  | Н  | 1.95366 | 0.15593            | 1.60425 |
| Η  | 4.68419 | 3.45182 | 3.54219 | Н  | 1.80895 | 0.03918  | 2.04677  | Н  | 2.50856 | 0.00000            | 3.30972 |
| Η  | 5.26388 | 1.92532 | 2.76728 | Η  | 3.59018 | 0.18497  | 1.77166  | C  | 4.64807 | 1.85254            | 2.54189 |
|    |         |         |         | Z  | 3.21511 | 1.66573  | 5.30055  | Н  | 4.95119 | 1.46234            | 3.52790 |
|    |         |         |         | N  | 3.83920 | 0.79600  | 5.81341  | Н  | 4.66256 | 1.03244            | 1.80373 |
|    |         |         |         |    |         |          |          | Н  | 5.34815 | 2.64407            | 2.22471 |

|    | mer-N   | Ae <sub>3</sub> Te(N <sub>3</sub> ) <sub>3</sub> |         |    | Me      | Te(N <sub>3</sub> )5 |         |    | T       | e(N <sub>3</sub> )6 |         |
|----|---------|--------------------------------------------------|---------|----|---------|----------------------|---------|----|---------|---------------------|---------|
| Te | 3.31238 | 2.49819                                          | 2.54068 | Te | 3.23960 | 2.44693              | 3.29052 | Te | 2.96541 | 3.26119             | 3.21285 |
| z  | 3.30865 | 2.44639                                          | 4.73310 | Z  | 3.23960 | 2.44693              | 5.36868 | Z  | 2.91585 | 3.25456             | 5.29238 |
| z  | 5.44302 | 2.51750                                          | 2.45828 | z  | 5.33477 | 2.44693              | 3.25666 | Z  | 4.04501 | 3.33267             | 5.82000 |
| z  | 1.18409 | 2.48463                                          | 2.47100 | z  | 3.18345 | 4.58348              | 3.48105 | Z  | 4.26025 | 1.63722             | 3.32749 |
| z  | 6.01003 | 2.75833                                          | 3-53543 | z  | 1.15234 | 2.35384              | 3.22953 | Z  | 1.28413 | 2.03745             | 3.25816 |
| z  | 0.61906 | 2.71922                                          | 3.55099 | z  | 3.13135 | 2.57091              | 1.17898 | Z  | 3.01496 | 3.26783             | 1.13332 |
| z  | 3.27625 | 3.49993                                          | 5.37330 | z  | 5.89649 | 3.54310              | 3.43577 | Z  | 4.64669 | 4.48493             | 3.16754 |
| z  | 6.62999 | 2.98445                                          | 4.50770 | Z  | 4.18530 | 2.92759              | 0.61935 | Z  | 1.67057 | 4.88517             | 3.09821 |
| z  | 3.24967 | 4.47401                                          | 6.04319 | z  | 3.20403 | 5.20903              | 2.40593 | Z  | 1.43941 | 0.99842             | 3.93329 |
| z  | 0.00000 | 2.93781                                          | 4.52519 | Z  | 0.60369 | 3.39140              | 2.81361 | z  | 0.83203 | 4.92251             | 4.02287 |
| U  | 3.36637 | 0.37754                                          | 2.79544 | z  | 2.57876 | 3.35524              | 5.90760 | Z  | 1.88581 | 3.18971             | 0.60570 |
| Η  | 3.58824 | 0.18533                                          | 3.85430 | z  | 6.52264 | 4.51992              | 3.59129 | Z  | 4.49141 | 5.52396             | 2.49241 |
| Η  | 2.37400 | 0.00000                                          | 2.50555 | z  | 1.98622 | 4.15409              | 6.52183 | Z  | 5.09879 | 1.59988             | 2.40283 |
| Η  | 4.16529 | 0.01251                                          | 2.13221 | Z  | 0.00000 | 4.31865              | 2.43350 | Z  | 1.46270 | 0.00000             | 4.53867 |
| U  | 3.27829 | 2.37320                                          | 0.41734 | z  | 5.12383 | 3.26033              | 0.00000 | Z  | 5.04155 | 3.39545             | 6.42570 |
| Η  | 4.30115 | 2.14726                                          | 0.07862 | z  | 3.23147 | 5.88433              | 1.44604 | Z  | 5.93082 | 1.46153             | 1.59507 |
| Η  | 2.57904 | 1.56941                                          | 0.14032 | C  | 3.33294 | 0.34412              | 3.26381 | Z  | 4.46812 | 6.52239             | 1.88703 |
| Η  | 2.93107 | 3.33039                                          | 0.00000 | Н  | 3.45164 | 0.01736              | 4.30712 | Z  | 0.00000 | 5.06086             | 4.83064 |
| U  | 3.32185 | 4.65453                                          | 2.52227 | Н  | 2.38672 | 0.00000              | 2.82297 | Z  | 0.88927 | 3.12694             | 0.00000 |
| Η  | 4.17899 | 4.91857                                          | 1.88446 | Н  | 4.20348 | 0.08125              | 2.64617 |    |         |                     |         |
| Η  | 2.35901 | 4.94612                                          | 2.07581 |    |         |                      |         |    |         |                     |         |
| Η  | 3.43548 | 5.06856                                          | 3.53496 |    |         |                      |         |    |         |                     |         |

|    | trans-  | Me. Te(No).      |         |    | trans    | -Me. TeFo  |         |    | trans_        | o(oN)eT.eM    |         |
|----|---------|------------------|---------|----|----------|------------|---------|----|---------------|---------------|---------|
|    |         | 5 ft ft mar 7 mm |         |    | 09/42/19 | 7 101 1011 |         |    | Y _ C9 (9) 19 | 7/2010 1 4000 |         |
| Te | 3.13441 | 2.51463          | 2.46405 | Te | 1.96347  | 2.50185    | 2.58899 | Te | 2.62944       | 2.39713       | 2.57375 |
| z  | 3.13441 | 2.51463          | 4.61512 | C  | 1.99944  | 2.50154    | 4.73242 | C  | 2.63544       | 2.40718       | 4.74192 |
| z  | 5.25134 | 2.51463          | 2.39497 | Н  | 3.05533  | 2.47037    | 5.04714 | Н  | 3.67305       | 2.27602       | 5.08545 |
| z  | 3.08337 | 4.67529          | 2.51191 | Н  | 1.51179  | 3.41803    | 5.09820 | Н  | 2.25325       | 3.39202       | 5.05297 |
| z  | 1.04522 | 2.65105          | 2.41766 | Н  | 1.45840  | 1.61580    | 5.09886 | Н  | 1.98664       | 1.60192       | 5.12676 |
| z  | 5.84089 | 2.64156          | 3.48201 | C  | 2.01716  | 0.35881    | 2.58132 | C  | 0.71406       | 3.40028       | 2.60526 |
| z  | 4.16476 | 5.20726          | 2.81329 | Н  | 2.60990  | 0.01305    | 3.44194 | Η  | 0.90981       | 4.47761       | 2.72805 |
| z  | 0.55082 | 3.31556          | 3.34426 | Н  | 0.97760  | 0.00000    | 2.65542 | Н  | 0.19903       | 3.19470       | 1.65415 |
| z  | 3.23703 | 3.61334          | 5.18657 | Н  | 2.48061  | 0.01622    | 1.64356 | Н  | 0.12647       | 3.00717       | 3.45095 |
| z  | 6.48559 | 2.76073          | 4.45470 | C  | 1.69291  | 2.50914    | 0.46242 | C  | 2.72125       | 2.56563       | 0.41986 |
| z  | 3.34018 | 4.60192          | 5.81273 | Н  | 2.69301  | 2.47913    | 0.00000 | Н  | 2.15806       | 3.46196       | 0.11731 |
| z  | 0.00000 | 3.92123          | 4.18053 | Н  | 1.10467  | 1.62467    | 0.17393 | Н  | 3.77792       | 2.65890       | 0.12031 |
| z  | 5.14600 | 5.79110          | 3.09343 | Н  | 1.15843  | 3.42689    | 0.17324 | Н  | 2.27152       | 1.65158       | 0.00000 |
| C  | 3.07278 | 0.40176          | 2.64754 | ц  | 3.92695  | 2.44343    | 2.44794 | C  | 4.44669       | 1.21533       | 2.52744 |
| Η  | 3.24926 | 0.15934          | 3.70548 | ц  | 0.00000  | 2.56027    | 2.73005 | Н  | 4.35683       | 0.53351       | 1.66734 |
| Η  | 2.07304 | 0.07549          | 2.32283 | C  | 2.14438  | 4.63791    | 2.57981 | Н  | 5.32412       | 1.87370       | 2.40839 |
| Η  | 3.86925 | 0.00000          | 2.00284 | Н  | 2.62753  | 4.95166    | 1.64190 | Н  | 4.50924       | 0.64008       | 3.46394 |
| C  | 3.12922 | 2.57434          | 0.34759 | Н  | 2.75645  | 4.94850    | 3.44031 | z  | 3.613.05      | 4.30885       | 2.72292 |
| Η  | 4.15536 | 2.36507          | 0.00946 | Н  | 1.12795  | 5.05790    | 2.65341 | z  | 1.59345       | 0.51902       | 2.36388 |
| Η  | 2.41604 | 1.81099          | 0.00000 |    |          |            |         | z  | 4.70494       | 4.36241       | 2.14805 |
| Η  | 2.80215 | 3.58240          | 0.05719 |    |          |            |         | z  | 0.78419       | 0.28390       | 3.26688 |
|    |         |                  |         |    |          |            |         | z  | 5.75487       | 4.47552       | 1.62248 |
|    |         |                  |         |    |          |            |         | Z  | 0.00000       | 0.0000        | 4.10104 |
|    |         |                  |         |    |          |            |         |    |               |               |         |

|    | mer     | -Me <sub>3</sub> TeF <sub>3</sub> |         |    | trans   | s-Me2TeF4 |         |    | N       | deTeF <sub>5</sub> |         |
|----|---------|-----------------------------------|---------|----|---------|-----------|---------|----|---------|--------------------|---------|
| Te | 2.45059 | 2.08257                           | 1.96016 | Te | 1.57091 | 1.56828   | 2.41405 | Te | 2.44154 | 1.89948            | 1.89400 |
| U  | 2.48463 | 2.02448                           | 4.08241 | C  | 1.57028 | 1.59053   | 4.49319 | F  | 2.42515 | 1.81580            | 3.79603 |
| Η  | 3.53102 | 2.01672                           | 4.42365 | Н  | 2.56629 | 1.25933   | 4.81546 | н  | 4.32437 | 1.92376            | 1.99227 |
| Η  | 1.97981 | 1.10788                           | 4.42365 | Н  | 0.78321 | 0.89791   | 4.81960 | F  | 2.62130 | 1.97262            | 0.00000 |
| Η  | 11.96.1 | 2.91801                           | 4.45676 | Н  | 1.36105 | 2.62436   | 4.79712 | U  | 0.36396 | 1.90658            | 1.78433 |
| U  | 0.61545 | 1.07533                           | 1.76845 | F  | 2.72044 | 3.12477   | 2.42420 | Н  | 0.09669 | 2.49299            | 0.89507 |
| Η  | 0.14347 | 1.42482                           | 0.84121 | C  | 1.57016 | 1.61768   | 0.33537 | Н  | 0.04494 | 0.85912            | 1.69695 |
| Η  | 0.00000 | 1.31809                           | 2.64701 | Н  | 2.56613 | 1.29062   | 0.00875 | Н  | 0.00000 | 2.37061            | 2.71080 |
| Η  | 0.84031 | 0.00000                           | 1.71804 | Н  | 0.78301 | 0.92945   | 0.00000 | F  | 2.49479 | 3.80083            | 1.97585 |
| ц  | 2.47204 | 2.04597                           | 0.00000 | Н  | 1.36101 | 2.65540   | 0.04499 | F  | 2.55121 | 0.00000            | 1.82165 |
| U  | 4.22645 | 3.19100                           | 1.76845 | F  | 3.12581 | 0.41705   | 2.40649 |    |         |                    |         |
| Η  | 4.31558 | 3.84656                           | 2.64701 | F  | 0.00000 | 2.69796   | 2.42146 |    |         |                    |         |
| Η  | 5.05457 | 2.46911                           | 1.71804 | F  | 0.43803 | 0.00000   | 2.40383 |    |         | TaFe               |         |
| Η  | 4.15234 | 3.77359                           | 0.84121 |    |         |           |         |    |         | 9 151              |         |
| ц  | 1.46331 | 3.76766                           | 1.95555 |    |         |           |         | Te | 1.88011 | 1.88011            | 1.88011 |
| ц  | 3.43696 | 0.39905                           | 1.94984 |    |         |           |         | Р  | 1.88011 | 1.88011            | 0.00000 |
|    |         |                                   |         |    |         |           |         | F  | 0.00000 | 1.88011            | 1.88011 |
|    |         |                                   |         |    |         |           |         | F  | 1.88011 | 3.76021            | 1.88011 |
|    |         |                                   |         |    |         |           |         | F  | 3.76021 | 1.88011            | 1.88011 |
|    |         |                                   |         |    |         |           |         | ц  | 1.88011 | 0.00000            | 1.88011 |

3.76021

1.88011

1.88011

ц

## A.3. Rechnungen im Kapitel 8

Die Strukturen von 29 (Anion), (TsiTe)2, 37, 35 und 41 wurden mit Тиквомо-LE5.7<sup>125</sup> unter Verwendung von Dichtefunktionalmethoden (m4 Grid, BECKE-PERDEW86 or B3LYP functionals, <sup>297,298,301</sup> teilweise mit (MA)RI-*I*-Näherung) berechnet. <sup>241–244,300,303</sup> Dabei kamen AHLRICHS' SV(P), TZVP and TZVPP Basissätze zum Einsatz, 291,302 bei Telluratomen mit den Stuttgart-Dresden largecore MWB46 ECPs.<sup>129</sup> Alle Strukturen wurden in internen, redundanten Koordinaten optimiert mit SV(P)-Basen und MARI-J-Näherung voroptimiert (SCF-Konvergenz bis  $\le 10^{-7}$  Hartree, Energie konvergiert auf  $\le 1 \cdot 10^{-6}$  Hartree, max. Norm der Energiegradienten konvergiert auf  $\leq 1 \cdot 10^{-3}$  Hartree;  $C_1$ -Symmetrie soweit nicht anders angegeben), und dann mit analytischem LES (lowest eigenvalue search, d. h. nur der niedrigste Eigenwert der Hessematrix wird bestimmt) auf negative Frequenzen untersucht.<sup>163,304,305</sup> Durch Verzerrung der Struktur entlang auftretender negativer Moden wurde weiteroptimiert, bis ein stationärer Punkt erreicht war. Von diesen Strukturen aus wurde anschließend mit TZVP und TZVPP Basissätzen fortgesetzt. Zur Überprüfung des Einflusses der MARI-J-Näherung wurden für 37 und 41 auch MPI-parallele Strukturoptimierungen auf B3LYP/TZVPP-Niveau (m4 Grid, 16 Intel Xeon CPUs) mit TURBO-MOLE5.6 durchgeführt.<sup>306</sup> Zusätzlich wurden für **41** auch Strukturen auf MP2-Niveau mit RI-Näherung optimiert. 127,128

## A.4. Praktische Durchführung von ELF-Analysen

Das Programmpaket ToPMoD ist freie Software. <sup>286</sup> Da mich immer wieder Fragen erreicht haben, wie die Durchführung erfolgen muss, und da die Dokumentation des ToPMoD-Programms zu knapp ist, im Folgenden eine kleine Anleitung zur Reproduktion der durchgeführten Rechnungen.

## top\_grid

Das Programm top\_grid berechnet den Wert der *ELF* für eine bestimmte Zahl von Raumteilen, deren Volumina durch die Eingabe bestimmt werden.

- \*.wfn angeben: Hier die aus GAUSSIAN exportierte \*.wfn Datei angegeben (out=wfn Karte im \*.gjf setzen). Diese muss sich im aktuellen Verzeichnis befinden und ggf. nach Unix-Codierung umgewandelt worden sein.
- 2. output density: **nein**, außer wenn später auch AIM-Analyse gewünscht wird.
- 3. die angegebenen Raumkoordinaten wie angegeben kopieren.

- A. Details zu den quantenchemischen Rechnungen der einzelnen Kapitel
  - 4. **intervals**: Diese Eingabe bestimmt die Dichte der berechneten Raumabschnitte, mittels  $\frac{\text{Raumkante}(x,y,z)}{\text{Schritt}}$  lassen sich die Eingaben berechnen. Ich empfehle für die Schrittlänge (grid increment) mind. 0.5, als Standard 0.1 und für sehr genaue Rechnungen 0.05.

Das Programm beendet sich bei korrektem Lauf mit der Meldung "STOP normal termination". Man erhält eine Dateien \*\_elf.stf (*ELF*) und \*\_rho.stf (AIM).

## top\_bas

Das Programm top\_bas ordnet die erzeugten Raumpunkte jeweils einem *basin* zu.

- 1. type of function: elf
- 2. \*.wfn
- 3. accuracy: o für kleine Moleküle, 1 als Standard
- 4. find attractors: y
- 5. search mode: o (vollautomatische Suche über den gesamten Raum)
- assign grid points: y, außer wenn die ausgegebenen Attraktorzuordnungen als falsch erkannt werden. Dann muss nach Eingabe von n die Datei temp.bas manuell korrigiert werden.

Ein zweiter Lauf mit Eingabe **aim** (bei 1.) muss für AIM-Analysen durchgeführt werden.

## top\_pop

Das Programm top\_pop analysiert die Population und Varianz für die in top\_bas erzeugten *basins*. Man erhält die Dateien \*\_ebas.stf (*ELF*) und \*\_rbas.stf (AIM).

## 1. \*.wfn

- 2. threshold: 7 als Standard
- 3. number of *ELF* and AIM basins considered: **o o** (alle betrachten)

Zur Visualisierung verwendet man am besten das Programm ScIAN (nur für IRIX Workstations),<sup>132</sup> oder das unter Linux lauffähige VIs5D (ursprünglich für die Meteorologie entwickelt). Man erzeugt zunächst mit bas\_to\_syn eine Farbcode-Datei (Typ: syn) und wandelt dann mit sbf\_to\_stf bzw. sbf\_to\_v5d in das Ausgabeformat um.

Die Automatisierung von *ELF*-Analysen kann, besonders für den Batchbetrieb, durch ein perl-Skript erreicht werden, das beim Autor (isw) erhältlich ist. A. Details zu den quantenchemischen Rechnungen der einzelnen Kapitel

## B. Kristallstrukturanalysen

Zur Röntgenstrukturanalyse standen am Department Diffraktometer mit Flächendetektion (Sroe & Cie. IPDS, Nonius Kappa-CCD und Siemens P4 mit SMART Area-Detektor) und Tieftemperatureinheit sowie ein Einkristalldiffraktometer mit Szintillationszähler (Nonius CAD4) zur Verfügung. Luftempfindliche Kristalle wurden mit perfluoriertem Öl ummantelt und auf einer Glaskapillare montiert. Die Strukturen wurden mit direkten Methoden gelöst (SHELXS), und nach der Methode der kleinsten Fehlerquadrate im Vollmatrixverfahren auf  $F^2$ -Werten verfeinert (SHELXL).<sup>307</sup> Die Abbildungen erfolgten, sofern nicht anders angegeben, mit Schwingungsellipsoiden von 40 % Wahrscheinlichkeit.

Auf die Angabe von vollständigen Atomkoordinaten und Auslenkungsparametern wurde an dieser Stelle verzichtet. Diese können entweder auf Anfrage kostenfrei vom Cambridge Crystallographic Centre (CCDC, 12 Unions Road, Cambridge CB21EZ (Fax: (+44)1223-336-033; E-mail: deposit@ccdc.cam.ac.uk)) unter Angabe der Hinterlegungsnummern (in den folgenden Tabellen) oder vom Autor angefordert werden.

|                                       | $[pyH][Te(N_3)_5]$ (2b)                          | $[pyrH]_4[TeF_5]_2[Te_2O_2F_6]$                                                               | Te(CN) <sub>2</sub> (3)          |
|---------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|
| Summenformel                          | C <sub>5</sub> H <sub>6</sub> N <sub>16</sub> Te | C <sub>20</sub> H <sub>24</sub> O <sub>2</sub> F <sub>16</sub> N <sub>4</sub> Te <sub>4</sub> | C <sub>2</sub> N <sub>2</sub> Te |
| Molmasse [Da]                         | 417.81                                           | 1166.80                                                                                       | 179.63                           |
| Temperatur [K]                        | 200                                              | 200                                                                                           | 193                              |
| Kristallgröße [mm]                    | 0.14×0.22×0.30                                   | 0.07×0.20×0.30                                                                                | 0.6×0.1×0.08                     |
| Farbe, Habitus                        | gelbe Plättchen                                  | farblose Quader                                                                               | farblose Nadeln                  |
| Kristallsystem                        | triklin                                          | monoklin                                                                                      | hexagonal                        |
| Raumgruppe                            | $P\bar{1}$                                       | P21/c                                                                                         | Rāc                              |
| a [Å]                                 | 7.6459(1)                                        | 10.1509(2)                                                                                    | 16.2881(7)                       |
| b [Å]                                 | 10.3875(1)                                       | 20.0739(3)                                                                                    | 16.2881(7)                       |
| c [Å]                                 | 10.5173(2)                                       | 7.9950(1)                                                                                     | 21.267(1)                        |
| α [°]                                 | 117.6238(8)                                      | 90                                                                                            | 90                               |
| β [°]                                 | 91.5610(9)                                       | 105.8894(8)                                                                                   | 90                               |
| γ [°]                                 | 107.847(1)                                       | 90                                                                                            | 120                              |
| V [Å <sup>3</sup> ]                   | 690.13(2)                                        | 1566.88(4)                                                                                    | 4886.3(4)                        |
| Ζ                                     | 2                                                | 2                                                                                             | 36                               |
| $\rho_{\rm calc}  [{\rm g  cm^{-3}}]$ | 2.011                                            | 2.473                                                                                         | 2.198                            |
| $\mu [\text{mm}^{-1}]$                | 2.184                                            | 3.810                                                                                         | 5.321                            |
| F(000)                                | 400                                              | 1080                                                                                          | 2808                             |
| $\theta$ -Bereich [°]                 | 3.4-27.5                                         | 3.3-27.5                                                                                      | 4.80-58.32                       |
| Indexbereich                          | $-9 \le h \le 9$                                 | $-13 \le h \le 13$                                                                            | $-10 \le h \le 19$               |
|                                       | $-13 \le k \le 13$                               | $-26 \le k \le 26$                                                                            | $-21 \le k \le 13$               |
|                                       | $-13 \leq l \leq 13$                             | $-10 \le l \le 10$                                                                            | $-28 \le l \le 28$               |
| gesammelte Reflexe                    | 10103                                            | 36947                                                                                         | 7815                             |
| davon unabhängig                      | 3134 ( <i>R</i> int = 0.0376)                    | $3586 (R_{int} = 0.0733)$                                                                     | 1378 ( <i>R</i> int = 0.0414)    |
| davon beobachtet                      | 2940                                             | 2947                                                                                          | 943                              |
| R1, $wR2$ (2 $\sigma$ )               | 0.0228, 0.0545                                   | 0.0291, 0.0597                                                                                | 0.0370, 0.1079                   |
| R1, wR2 (alle)                        | 0.0257, 0.0554                                   | 0.0427, 0.0637                                                                                | 0.0511, 0.1159                   |
| Max./min. Transm.                     | 0.7852, 0.6412                                   | 0.7735, 0.4291                                                                                | 1.00, 0.665                      |
| Daten/Restr./Param.                   | 3134/0/223                                       | 3586/0/212                                                                                    | 1378/0/56                        |
| GOOF $F^2$                            | 1.160                                            | 1.077                                                                                         | 1.084                            |
| Restdichten [e/Å <sup>3</sup> ]       | 0.370/-1.106                                     | 0.981/-1.129                                                                                  | 1.319/-1.841                     |
| CCDC                                  | 215495                                           | -                                                                                             | 244701                           |
| Gerät                                 | KappaCCD                                         | KappaCCD                                                                                      | P4 CCD                           |
| Messung/Lösung                        | Mayer                                            | Mayer                                                                                         | Gálvez-Ruiz/Nöth                 |
|                                       |                                                  |                                                                                               |                                  |

**Tabelle B.1.:** Kristallstrukturdaten für [pyH][Te(N<sub>3</sub>)<sub>5</sub>] (**2b**), [pyrH]<sub>4</sub>[TeF<sub>5</sub>]<sub>2</sub>[Te<sub>2</sub>O<sub>2</sub>F<sub>6</sub>] und Te(CN)<sub>2</sub> (**3**).
|                                             | Mes <sub>2</sub> Te (5)            | $Mes_2TeF_2$ (7)                                  | $(Mes_2TeCN)_2O \cdot CH_2Cl_2$ (12)                                            |
|---------------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|
| Summenformel                                | C <sub>18</sub> H <sub>22</sub> Te | C <sub>18</sub> H <sub>22</sub> F <sub>2</sub> Te | C <sub>39</sub> H <sub>46</sub> N <sub>2</sub> Cl <sub>2</sub> OTe <sub>2</sub> |
| Molmasse [Da]                               | 365.96                             | 403.96                                            | 884.90                                                                          |
| Temperatur [K]                              | 295                                | 200                                               | 200                                                                             |
| Kristallgröße [mm]                          | 0.57×0.53×0.17                     | 0.12×0.20×0.23                                    | 0.05×0.07×0.10                                                                  |
| Farbe, Habitus                              | farblose Blöcke                    | farblose Blöcke                                   | farblose Blöcke                                                                 |
| Kristallsystem                              | monoklin                           | triklin                                           | orthorhombisch                                                                  |
| Raumgruppe                                  | C2/c                               | $P\overline{1}$                                   | Pbcn                                                                            |
| a [Å]                                       | 13.0504(8)                         | 8.1467(1)                                         | 15.9007(3)                                                                      |
| b [Å]                                       | 9.316(1)                           | 9.6899(2)                                         | 16.7784(3)                                                                      |
| c [Å]                                       | 13.642(2)                          | 11.1943(2)                                        | 14.8593(3)                                                                      |
| α [°]                                       | 90                                 | 82.4558(7)                                        | 90                                                                              |
| β [°]                                       | 102.901(9)                         | 76.0096(8)                                        | 90                                                                              |
| γ [°]                                       | 90                                 | 74.1637(8)                                        | 90                                                                              |
| $V [Å^3]$                                   | 1616.6(3)                          | 822.91(2)                                         | 3964.3(1)                                                                       |
| Z                                           | 4                                  | 2                                                 | 4                                                                               |
| $\rho_{\rm calc}  [{\rm g}  {\rm cm}^{-3}]$ | 1.504                              | 1.630                                             | 1.483                                                                           |
| $\mu [\mathrm{mm}^{-1}]$                    | 1.826                              | 1.819                                             | 1.637                                                                           |
| F(000)                                      | 728                                | 400                                               | 1760                                                                            |
| θ-Bereich [°]                               | 2.71-23.96                         | 3.6-27.5                                          | 3.2-27.5                                                                        |
| Indexbereich                                | $-14 \le h \le 14$                 | $-10 \le h \le 10$                                | $-20 \le h \le 18$                                                              |
|                                             | $-10 \leq k \leq 0$                | $-12 \le k \le 12$                                | $-21 \le k \le 20$                                                              |
|                                             | $-15 \le l \le 0$                  | $-14 \le l \le 14$                                | $-19 \le l \le 18$                                                              |
| gesammelte Reflexe                          | 1330                               | 16219                                             | 68732                                                                           |
| davon unabhängig                            | $1268 (R_{int} = 0.021)$           | $3739 (R_{int} = 0.040)$                          | $4525 (R_{int} = 0.096)$                                                        |
| davon beobachtet                            | 1236                               | 3390                                              | 3253                                                                            |
| R1, $wR2$ (2 $\sigma$ )                     | 0.0220, 0.0598                     | 0.0333, 0.0817                                    | 0.0379, 0.0866                                                                  |
| $R_1, wR_2$ (alle)                          | 0.0226, 0.0604                     | 0.0387, 0.0841                                    | 0.0641, 0.0976                                                                  |
| Max./min. Transm.                           | 0.9981, 0.7958                     | 0.8215, 0.7360                                    | 0.9497. 0.8751                                                                  |
| Daten/Restr./Param.                         | 1268/0/91                          | 3739/0/190                                        | 4525/0/209                                                                      |
| GOOF $F^2$                                  | 1.154                              | 1.111                                             | 1.056                                                                           |
| Restdichten [e/Å <sup>3</sup> ]             | 0.666/-0.432                       | 1.041/-1.008                                      | 1.034/-1.055                                                                    |
| CCDC                                        | 263753                             | 263338                                            | 263337                                                                          |
| Gerät                                       | CAD4                               | KannaCCD                                          | KappaCCD                                                                        |
| Moogung/Lögung                              | Polhorn                            | Mayer                                             | Mayor                                                                           |

**Tabelle B.2.:** Kristallstrukturdaten für Mes2Te (5), Mes2TeF2 (7) und (Mes2TeCN)2O $\cdot CH_2Cl_2$  (12).

| Tabelle B.3.: Kristallstrukturdaten | für | $Ph_5 TeN_3$ | ( <b>13</b> ), | $biphen_2 Te(N_3)_2$ | (14) | und | trans- |
|-------------------------------------|-----|--------------|----------------|----------------------|------|-----|--------|
| $Ph_2 TeF_4$ (15).                  |     |              |                |                      |      |     |        |

|                                         | Ph <sub>5</sub> TeN <sub>3</sub> (13)             | biphen <sub>2</sub> Te(N <sub>3</sub> ) <sub>2</sub> ( <b>14</b> ) | <i>trans</i> -Ph <sub>2</sub> TeF <sub>4</sub> ( <b>15</b> ) |
|-----------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| Summenformel                            | C <sub>30</sub> H <sub>25</sub> N <sub>3</sub> Te | C <sub>24</sub> H <sub>16</sub> N <sub>6</sub> Te                  | C <sub>12</sub> H <sub>10</sub> F <sub>4</sub> Te            |
| Molmasse [Da]                           | 555.13                                            | 516.03                                                             | 357.80                                                       |
| Temperatur [K]                          | 295(2)                                            | 295(2)                                                             | 295(2)                                                       |
| Kristallgröße [mm]                      | 0.53×0.30×0.13                                    | 0.53×0.30×0.10                                                     | 0.57×0.43×0.13                                               |
| Farbe, Habitus                          | gelbe Plättchen                                   | gelbe Parallelepipede                                              | farblose Blöcke                                              |
| Kristallsystem                          | monoklin                                          | monoklin                                                           | triklin                                                      |
| Raumgruppe                              | $P_{21}/n$                                        | P21/c                                                              | $P\bar{1}$                                                   |
| a [Å]                                   | 10.411(2)                                         | 8.350(2)                                                           | 6.6539(9)                                                    |
| b [Å]                                   | 17.363(4)                                         | 27.805(6)                                                          | 7.299(1)                                                     |
| c [Å]                                   | 13.854(2)                                         | 9.803(2)                                                           | 7.820(1)                                                     |
| β [°]                                   | 92.13(2)                                          | 114.60(1)                                                          | 66.84(1) <sup>a</sup>                                        |
| V [Å <sup>3</sup> ]                     | 2502.5(9)                                         | 2069.5(7)                                                          | 297.77(7)                                                    |
| Ζ                                       | 4                                                 | 4                                                                  | 1                                                            |
| $\rho_{\text{calc}} [\text{g cm}^{-3}]$ | 1.473                                             | 1.656                                                              | 1.995                                                        |
| $\mu [{\rm mm}^{-1}]$                   | 1.211                                             | 1.462                                                              | 2.522                                                        |
| F(000)                                  | 1112                                              | 1016                                                               | 170                                                          |
| $\theta$ -Bereich [°]                   | 2.35-23.98                                        | 2.68-23.97                                                         | 3.11-23.97                                                   |
| Indexbereich                            | $-11 \le h \le 11$                                | $-9 \le h \le 8$                                                   | $-7 \le h \le 7$                                             |
|                                         | $0 \le k \le 19$                                  | $0 \le k \le 31$                                                   | $-8 \le k \le 0$                                             |
|                                         | $-15 \leq l \leq 0$                               | $0 \le l \le 11$                                                   | $-8 \le l \le 7$                                             |
| gesammelte Reflexe                      | 4091                                              | 3446                                                               | 1016                                                         |
| davon unabhängig                        | $3915 (R_{int} = 0.0164)$                         | $3242 (R_{int} = 0.0158)$                                          | 933 ( $R_{int} = 0.0109$ )                                   |
| davon beobachtet                        | 3360                                              | 2640                                                               | 932                                                          |
| R1, wR2 (2 $\sigma$ )                   | 0.0309, 0.0796                                    | 0.0267, 0.0575                                                     | 0.0220, 0.0540                                               |
| R1, wR2 (alle)                          | 0.0403, 0.0848                                    | 0.0398, 0.0627                                                     | 0.0220, 0.0540                                               |
| Max./min. Transm.                       | 0.8938, 0.5806                                    | 0.9996, 0.8880                                                     | 0.9980, 0.7088                                               |
| Daten/Restr./Param.                     | 3915/0/307                                        | 3242/0/280                                                         | 933/0/79                                                     |
| GOOF $F^2$                              | 1.165                                             | 1.111                                                              | 1.168                                                        |
| Restdichten [e/Å <sup>3</sup> ]         | 0.736/-0.556                                      | 0.579/-0.338                                                       | 0.934/-0.754                                                 |
| CCDC                                    | 255732                                            | 255733                                                             | 255734                                                       |
| Gerät                                   | CAD4                                              | CAD4                                                               | CAD4                                                         |
| Messung/Lösung                          | Polborn                                           | Polborn                                                            | Polborn                                                      |
|                                         |                                                   |                                                                    |                                                              |

<sup>a</sup>  $\alpha = 60.50(1), \gamma = 69.29(1)^{\circ}$ .

|                                          | $(4-CF_3C_6F_4Te)_2$ (19)  | $(C_6F_4Te)_2Br_4 \cdot C_6H_6$ (23) | $(C_6F_2H_3)_2Te(N_3)_2$ (26)          |
|------------------------------------------|----------------------------|--------------------------------------|----------------------------------------|
| Summenformel                             | C14F14Te2                  | C18H6Br4F8Te2                        | C12H6F4N6Te                            |
| Molmasse [Da]                            | 689.33                     | 949.04                               | 437.81                                 |
| Temperatur [K]                           | 200                        | 200                                  | 200                                    |
| Kristallgröße [mm]                       | 0.03×0.09×0.37             | 0.02×0.10×0.10                       | 0.07×0.20×0.26                         |
| Farbe, Habitus                           | gelbe Quader               | rote Nadeln                          | gelbliche Stäbchen                     |
| Kristallsystem                           | monoklin                   | monoklin                             | triklin                                |
| Raumgruppe                               | c2/c                       | $P_{21}/c$                           | $P\bar{1}$                             |
| a [Å]                                    | 29.519(6)                  | 11.1563(6)                           | 7.5448(2)                              |
| b [Å]                                    | 6.1941(8)                  | 7.2559(4)                            | 9.8636(2)                              |
| c [Å]                                    | 18.932(3)                  | 15.3136(9)                           | 11.3422(3)                             |
| β [°]                                    | 99.93(2)                   | 111.312(2)                           | 91.4537(8) <sup>a</sup>                |
| $V [Å^3]$                                | 3410(1)                    | 1154.9(1)                            | 730.08(3)                              |
| Ζ                                        | 8                          | 2                                    | 2                                      |
| $\rho_{\text{calc}}  [\text{g cm}^{-3}]$ | 2.686                      | 2.729                                | 1.992                                  |
| $\mu [{\rm mm}^{-1}]$                    | 3.567                      | 9.515                                | 2.089                                  |
| F(000)                                   | 2512                       | 860                                  | 416                                    |
| $\theta$ -Bereich [°]                    | 2.2-23.8                   | 2.9-19.8                             | 3.2-27.5                               |
| Indexbereich                             | $-33 \le h \le 33$         | $-10 \le h \le 10$                   | $-9 \le h \le 9$                       |
|                                          | $-6 \le k \le 6$           | $-6 \le k \le 6$                     | $-12 \le k \le 12$                     |
|                                          | $-19 \leq l \leq 21$       | $-14 \le l \le 14$                   | $-14 \leq l \leq 14$                   |
| gesammelte Reflexe                       | 9082                       | 6043                                 | 11028                                  |
| davon unabhängig<br>davon beobachtet     | 2559 ( $R_{int} = 0.101$ ) | 1040 ( $R_{int} = 0.056$ )           | 3305 ( <i>R</i> <sub>int</sub> =0.046) |
| R1, $wR2$ (2 $\sigma$ )                  | 0.0512, 0.1255             | 0.0256, 0.0563                       | 0.0245, 0.0569                         |
| R1, wR2 (alle)                           | 0.0592, 0.1306             | 0.0342, 0.0607                       | 0.0274, 0.0583                         |
| Max./min. Transm.                        | 0.8938, 0.5806             | 0.6411, 0.3476                       | 0.8923, 0.7278                         |
| Daten/Restr./Param.                      | 2559/0/271                 | 1040/0/145                           | 3305/0/208                             |
| GOOF $F^2$                               | 0.979                      | 1.190                                | 1.052                                  |
| Restdichten [e/Å <sup>3</sup> ]          | 1.376/-2.201               | 0.400/-0.381                         | 0.495/-1.151                           |
| CCDC                                     | 211267                     | 211268                               | 211269                                 |
| Gerät                                    | IPDS                       | KappaCCD                             | KappaCCD                               |
| Messung/Lösung                           | Mayer                      | Mayer                                | Mayer                                  |

**Tabelle B.4.:** Kristallstrukturdaten für (4-CF<sub>3</sub>C<sub>6</sub>F<sub>4</sub>Te)<sub>2</sub> (19), (C<sub>6</sub>F<sub>4</sub>Te)<sub>2</sub>Br<sub>4</sub>·C<sub>6</sub>H<sub>6</sub> (23) und (C<sub>6</sub>F<sub>2</sub>H<sub>3</sub>)<sub>2</sub>Te(N<sub>3</sub>)<sub>2</sub> (26).

<sup>a</sup>  $\alpha = 114.1008(8), \gamma = 106.2896(8)^{\circ}.$ 

|                                          | TpsiTeLi · 4 THF (29)       | (TpsiTe) <sub>2</sub> ( <b>30</b> ) | $TpsiTeN_3 \cdot C_6H_6 (\textbf{37})$                            |
|------------------------------------------|-----------------------------|-------------------------------------|-------------------------------------------------------------------|
| Summenformel                             | C41 H65LiO4 Si3 Te          | C50H66Si6Te2                        | C <sub>28</sub> H <sub>36</sub> N <sub>3</sub> Si <sub>3</sub> Te |
| Molmasse [Da]                            | 840.74                      | 1090.77                             | 626.47                                                            |
| Temperatur [K]                           | 193(2)                      | 193(2)                              | 193(2)                                                            |
| Kristallgröße [mm]                       | 0.15×0.15×0.10              | 0.20×0.15×0.10                      | 0.12×0.18×0.30                                                    |
| Farbe, Habitus                           | orange Prismen              | grüne Prismen                       | fahlrote Nadeln                                                   |
| Kristallsystem                           | monoklin                    | monoklin                            | monoklin                                                          |
| Raumgruppe                               | $P_{21}/n$                  | $P_{21}/n$                          | $P_{21}/n$                                                        |
| a [Å]                                    | 14.039(2)                   | 13.5963(9)                          | 15.719(3)                                                         |
| b [Å]                                    | 18.740(2)                   | 14.8897(9)                          | 10.579(2)                                                         |
| c [Å]                                    | 16.900(2)                   | 13.9463(9)                          | 20.952(4)                                                         |
| β [°]                                    | 91.287(2)                   | 114.390(1)                          | 110.38(3)                                                         |
| V [Å <sup>3</sup> ]                      | 4445.1(9)                   | 2571.4(3)                           | 3266(1)                                                           |
| Ζ                                        | 4                           | 2                                   | 4                                                                 |
| $\rho_{\text{calc}}  [\text{g cm}^{-3}]$ | 1.256                       | 1.409                               | 1.274                                                             |
| $\mu [{ m mm}^{-1}]$                     | 0.786                       | 1.306                               | 1.040                                                             |
| F(000)                                   | 1760                        | 1108                                | 1276                                                              |
| $\theta$ -Bereich [°]                    | 3.24-49.42                  | 3.28-46.50                          | 2.82-58.72                                                        |
| Indexbereich                             | $-15 \le h \le 16$          | $-15 \le h \le 15$                  | $-19 \le h \le 18$                                                |
|                                          | $-21 \le k \le 21$          | $-16 \le k \le 16$                  | $-7 \le k \le 14$                                                 |
|                                          | $-19 \leq l \leq 19$        | $-15 \le l \le 15$                  | $-27 \leq l \leq 25$                                              |
| gesammelte Reflexe                       | 22388                       | 11321                               | 9427                                                              |
| davon unabhängig                         | 3531                        | 3062                                | 3239                                                              |
| davon beobachtet                         | 7352 ( $R_{int} = 0.0629$ ) | $3602 (R_{int} = 0.0330)$           | $3748 (R_{int} = 0.0342)$                                         |
| R1, $w$ R2 (2 $\sigma$ )                 | 0.0447, 0.0930              | 0.0273, 0.0647                      | 0.0558, 0.1721                                                    |
| <i>R</i> 1, <i>wR</i> 2 (alle)           | 0.1023, 0.0998              | 0.0359, 0.0675                      | 0.0650, 0.1838                                                    |
| Max./min. Transm.                        | 0.9132/0.7463               | 0.8240/0.7378                       | 1.000/0.3470                                                      |
| Daten/Restr./Param.                      | 7352/0/457                  | 3602/0/268                          | 3748/0/316                                                        |
| GOOF F <sup>2</sup>                      | 0.804                       | 1.009                               | 0.998                                                             |
| Restdichten [e/Å <sup>3</sup> ]          | 1.184/-0.566                | 0.502/-0.337                        | 1.269/-0.583                                                      |
| CCDC                                     |                             |                                     |                                                                   |
| Gerät                                    | P4 CCD                      | P4 CCD                              | P4 CCD                                                            |
| Messung/Lösung                           | Suter                       | Suter                               | Gálvez-Ruiz/Nöth                                                  |

**Tabelle B.5.:** Kristallstrukturdaten für TpsiTeLi · 4 THF (**29**), (TpsiTe)2 (**30**) und TpsiTeN3 · $C_6H_6$  (**37**).

|                                         | Mes*TeI ( <b>36</b> )               | TpsiTeI (31)                                        |  |
|-----------------------------------------|-------------------------------------|-----------------------------------------------------|--|
| Summenformel                            | C <sub>18</sub> H <sub>29</sub> ITe | C <sub>25</sub> H <sub>33</sub> ISi <sub>3</sub> Te |  |
| Molmasse [Da]                           | 499.91                              | 672.28                                              |  |
| Temperatur [K]                          | 200                                 | 200                                                 |  |
| Kristallgröße [mm]                      | 0.35×0.08×0.05                      | 0.22×0.4×0.4                                        |  |
| Farbe, Habitus                          | grüne Nadeln                        | dunkelgrüne Rhomben                                 |  |
| Kristallsystem                          | monoklin                            | monoklin                                            |  |
| Raumgruppe                              | $P_{21}/c$                          | P21/c                                               |  |
| a [Å]                                   | 17.801(4)                           | 16.068(3)                                           |  |
| b [Å]                                   | 6.023(1)                            | 17.253(4)                                           |  |
| c [Å]                                   | 18.504(4)                           | 9.886(2)                                            |  |
| β [°]                                   | 100.47(3)                           | 101.18(3)                                           |  |
| V [Å <sup>3</sup> ]                     | 1950.9(7)                           | 2688.5(9)                                           |  |
| Ζ                                       | 4                                   | 4                                                   |  |
| $\rho_{\text{calc}} [\text{g cm}^{-3}]$ | 1.702                               | 1.661                                               |  |
| $\mu [{\rm mm}^{-1}]$                   | 3.099                               | 2.400                                               |  |
| F(000)                                  | 968                                 | 1320                                                |  |
| $\theta$ -Bereich [°]                   | 2.24-25.85                          | 1.29-28.20                                          |  |
| Indexbereich                            | $-21 \le h \le 19$                  | $-20 \le h \le 20$                                  |  |
|                                         | $-7 \le k \le 7$                    | $-10 \le k \le 10$                                  |  |
|                                         | $-22 \leq l \leq 22$                | $-10 \le l \le 11$                                  |  |
| gesammelte Reflexe                      | 13085                               | 15312                                               |  |
| davon unabhängig                        | 3761                                | 4847                                                |  |
| davon beobachtet                        | $3019 (R_{int} = 0.0592)$           | 3757 ( <i>R</i> int = 0.0341)                       |  |
| R1, wR2 (2 $\sigma$ )                   | 0.0334, 0.0898                      | 0.0414, 0.1059                                      |  |
| R1, wR2 (alle)                          | 0.0448, 0.0939                      | 0.0562, 0.1128                                      |  |
| Max./min. Transm.                       | 0.5426, 0.8766                      | 1.0, 0.7246                                         |  |
| Daten/Restr./Param.                     | 3761/0/181                          | 4847/0/271                                          |  |
| GOOF F <sup>2</sup>                     | 0.955                               | 1.014                                               |  |
| Restdichten [e/Å <sup>3</sup> ]         | 0.808/-1.242                        | 1.745/-1.233                                        |  |
| CCDC                                    | -                                   | -                                                   |  |
| Gerät                                   | KappaCCD                            | P4 CCD                                              |  |
| Messung/Lösung                          | Mayer/Schwab                        | Nöth                                                |  |

Tabelle B.6.: Kristallstrukturdaten für Mes\*TeI (36) und TpsiTeI (31).

| Tabelle B.7.: Kristallstrukturdaten                     | für              | 2,6-Trip <sub>2</sub> C <sub>6</sub> H <sub>3</sub> TeI | (35), | 2,6-Trip <sub>2</sub> C <sub>6</sub> H <sub>3</sub> TeN <sub>3</sub> | ( <b>40</b> ) |
|---------------------------------------------------------|------------------|---------------------------------------------------------|-------|----------------------------------------------------------------------|---------------|
| und 2-Me <sub>2</sub> NCH <sub>2</sub> C <sub>6</sub> H | <sub>4</sub> Tel | N <sub>3</sub> ( <b>41</b> ).                           |       |                                                                      |               |

|                                       | 2,6-Trip <sub>2</sub> C <sub>6</sub> H <sub>3</sub> TeI ( <b>35</b> ) | 2,6-Trip $_2C_6H_3$ TeN $_3$ (40)                 | $2-Me_2NCH_2C_6H_4TeN_3$ (41)                    |
|---------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|
| Summenformel                          | C <sub>36</sub> H <sub>49</sub> ITe                                   | C <sub>36</sub> H <sub>49</sub> N <sub>3</sub> Te | C <sub>9</sub> H <sub>12</sub> N <sub>4</sub> Te |
| Molmasse [Da]                         | 736.25                                                                | 651.38                                            | 303.83                                           |
| Temperatur [K]                        | 200(3)                                                                | 200(3)                                            | 295(2)                                           |
| Kristallgröße [mm]                    | 0.33×0.21×0.06                                                        | 0.43×0.31×0.20                                    | 0.17×0.33×0.53                                   |
| Farbe, Habitus                        | dunkelblaue Plättchen                                                 | braune Quader                                     | gelbe Quader                                     |
| Kristallsystem                        | orthorhombisch                                                        | orthorhombisch                                    | orthorhombisch                                   |
| Raumgruppe                            | Pnma                                                                  | Pbcm                                              | Pbca                                             |
| a [Å]                                 | 12.0621(8)                                                            | 10.9540(8)                                        | 9.268(2)                                         |
| b [Å]                                 | 25.666(2)                                                             | 12.0599(8)                                        | 11.039(1)                                        |
| c [Å]                                 | 10.965(1)                                                             | 25.553(2)                                         | 22.333(5)                                        |
| β[°]                                  | 90                                                                    | 90                                                | 90                                               |
| V [Å <sup>3</sup> ]                   | 3394.5(5)                                                             | 3376(1)                                           | 2284.8(8)                                        |
| Ζ                                     | 4                                                                     | 4                                                 | 8                                                |
| $\rho_{\rm calc}  [{\rm g  cm^{-3}}]$ | 1.441                                                                 | 1.282                                             | 1.767                                            |
| $\mu [{\rm mm}^{-1}]$                 | 1.807                                                                 | 0.908                                             | 2.573                                            |
| F(000)                                | 1480                                                                  | 1352                                              | 1168                                             |
| $\theta$ -Bereich [°]                 | 2.02-23.99                                                            | 1.59-24.02                                        | 2.86-23.96                                       |
|                                       | $-13 \le h \le 13$                                                    | $-12 \le h \le 12$                                | $0 \le h \le 10$                                 |
|                                       | $-27 \le k \le 29$                                                    | $-13 \le k \le 13$                                | $-12 \le k \le 0$                                |
|                                       | $-12 \leq l \leq 12$                                                  | $-26 \le l \le 29$                                | $0 \le l \le 25$                                 |
| gesammelte Reflexe                    | 18748                                                                 | 18450                                             | 1795                                             |
| davon beobachtet                      | 1792                                                                  | 2015                                              | 1586                                             |
| davon unabhängig                      | 2718 ( $R_{int} = 0.1105$ )                                           | 2721 ( $R_{int} = 0.0928$ )                       | 1794 ( $R_{int} = 0.0114$ )                      |
| R1, $w$ R2 (2 $\sigma$ )              | 0.0448, 0.0984                                                        | 0.0419, 0.1011                                    | 0.0246, 0.0660                                   |
| <i>R</i> 1, <i>wR</i> 2 (alle)        | 0.0741, 0.1070                                                        | 0.0618, 0.1072                                    | 0.0287, 0.0683                                   |
| Max./min. Transm.                     | 0.7497/0.4403                                                         | 0.7655/0.8420                                     | 0.9990/0.7942                                    |
| Daten/Restr./Param.                   | 2718/0/190                                                            | 2721/18/212                                       | 1794/0/129                                       |
| GOOF F <sup>2</sup>                   | 0.909                                                                 | 0.999                                             | 1.110                                            |
| Restdichten [e/Å <sup>3</sup> ]       | 0.974/-0.711                                                          | 0.689/-0.425                                      | 0.595/-0.507                                     |
| CCDC                                  |                                                                       |                                                   |                                                  |
| Gerät                                 | CAD4                                                                  | IPDS                                              | CAD4                                             |
| Messung/Lösung                        | Polborn                                                               | Mayer/Schwab                                      | Polborn                                          |

### C. NMR-Daten



| δ | 1257 | Гe |
|---|------|----|
|---|------|----|

 

 Tabelle C.1.: Tabellarische Übersicht von NMR-Verschiebungen ausgewählter Tellurverbindungen, nach Oxidationsstufen 1, 11, 1V und VI unterteilt. Gemessen in CDCl<sub>3</sub> mit jEOL 400e bei 25 °C, außer wenn anders angegeben.

|                                                           |         | -                    |                         |                       |
|-----------------------------------------------------------|---------|----------------------|-------------------------|-----------------------|
| Verbindung                                                | Lit.    | Lsm.                 | <sup>125</sup> Te-shift | <sup>19</sup> F-shift |
| (MeTe) <sub>2</sub>                                       |         |                      | 53                      | -                     |
| (PhTe) <sub>2</sub>                                       |         |                      | 440                     | -                     |
| (CF <sub>3</sub> Te) <sub>2</sub>                         |         |                      | 702                     | -26.1                 |
| (MesTe) <sub>2</sub>                                      |         |                      | 216                     | -                     |
| (TripTe) <sub>2</sub>                                     |         | $C_6D_6$             | 204                     | -                     |
| (Mes*Te) <sub>2</sub>                                     |         | $C_6D_6$             | 566                     | -                     |
| $(C_6F_5Te)_2$ (16)                                       | 100,186 |                      | 316                     | -114.5/-149.4/-159.3  |
| $(CF_3C_6F_4Te)_2$ (19)                                   |         |                      | 338                     | -56.9/-113.0/-138.7   |
| (TsiTe) <sub>2</sub>                                      | 196,205 |                      | 365                     | -                     |
| (TsiTe) <sub>2</sub> Te                                   | 196,205 |                      | 352/503                 | -                     |
| (TpsiTe) <sub>2</sub> ( <b>30</b> )                       |         |                      | 469                     | -                     |
| $(2-NMe_2CH_2C_6H_4Te)_2$                                 |         |                      | 373                     | -                     |
| Te(CN) <sub>2</sub> (3)                                   |         | [D <sub>8</sub> ]THF | 576                     | _                     |
| Me <sub>2</sub> Te                                        |         |                      | $\equiv 0$              | -                     |
| Ph <sub>2</sub> Te                                        |         |                      | 729                     | -                     |
| Mes <sub>2</sub> Te (5)                                   | 102     |                      | 276                     | -                     |
| Trip <sub>2</sub> Te ( <b>6</b> )                         |         |                      | 175                     | -                     |
| (CF <sub>3</sub> ) <sub>2</sub> Te                        | 308     | $CD_3CN$             | 1368                    | -21.1                 |
| C <sub>6</sub> F <sub>5</sub> TeLi (17)                   |         | Et <sub>2</sub> O    | -323                    | -114.6/-164.8/-166.1  |
| 4-CF <sub>3</sub> C <sub>6</sub> F <sub>4</sub> TeLi (18) |         | Et <sub>2</sub> O    | -222                    | -56.7/-114.2/-146.6   |
| TsiTeLi                                                   | 196,205 | THF                  | -287                    | -                     |
| TsiTe <sub>2</sub> Li                                     | 196,205 | THF                  | -32/-190                | -                     |
| TpsiTeLi (29)                                             |         | THF                  | -141                    | -                     |

| Verbindung                                                      | Lit.    | Lsm.                  | <sup>125</sup> Te-shift | <sup>19</sup> F-shift |
|-----------------------------------------------------------------|---------|-----------------------|-------------------------|-----------------------|
| (C <sub>6</sub> F <sub>2</sub> H <sub>3</sub> ) <sub>2</sub> Te |         |                       | 203                     | -89.5                 |
| $(C_6F_5)_2$ Te                                                 |         |                       | 305                     | -115.4/-149.2/-159.0  |
| $(4-CF_3C_6F_4)_2Te$                                            |         |                       | 397                     | -57/-115.3/-138.2     |
| (n-Butyl) <sub>3</sub> P=Te                                     |         |                       | 362                     | -                     |
| $(C_6F_4)_2Te_2$ (20)                                           | 193     |                       | 762                     | -107.1/-150.7         |
| $(2-Me_2NCH_2C_6H_4)_2Te$                                       |         |                       | 563                     | -                     |
| 2-Me2NCH2C6H4TeF                                                |         |                       | 1831                    | -245.9                |
| TipTeI                                                          |         | $C_6D_6$              | 842                     | -                     |
| Mes*TeI                                                         |         | $C_6D_6$              | 1162                    | -                     |
| TsiTeI                                                          | 198,199 | 0 0                   | 1182                    |                       |
| TpsiTeI (31)                                                    |         |                       | 1199                    | -                     |
| 2-Me2NCH2C6H4TeI                                                |         |                       | 1204                    | -                     |
| TripTeN3 (38)                                                   |         | CeDe                  | 2235                    | -                     |
| $Mes^{*}TeN_{2}$ (39)                                           |         | CeDe                  | 1984                    | -                     |
| TsiTeN <sub>2</sub>                                             | 98,155  | -0-0                  | 2028                    | -                     |
| The Transition $(27)$                                           |         |                       | 1052                    | _                     |
| $2-Me_2NCH_2C_6H_4TeN_3$ (41)                                   |         |                       | 1628                    | -                     |
| Me <sub>4</sub> Te                                              |         |                       | -54                     | -                     |
| Me <sub>3</sub> Te <sup>+</sup> F <sup>-</sup>                  | 18      | $C_6D_6$              | 490                     | -134                  |
| Ph <sub>3</sub> Te <sup>+</sup>                                 | 18      |                       | 759-795                 | -                     |
| Ph <sub>4</sub> Te                                              | 157,309 |                       | 529                     | -                     |
| $(\eta^2 - C_{12}H_8)_2$ Te                                     |         |                       | 506                     | -                     |
| $(C_6F_4)_2Te_2F_4$ (21)                                        |         | [D <sub>6</sub> ]DMSO | 1074                    | -63/-119.6/-143.5     |
| $(C_6F_4)_2Te_2Cl_4$ (22)                                       |         | [D <sub>6</sub> ]DMSO | 1083                    | -114.7/-150.2         |
| $(C_6F_4)_2Te_2Br_4$ (22)                                       | 193     | [D <sub>6</sub> ]DMSO | 1172                    | -113.9/-150.2         |
| $(C_6F_4)_2Te_2(N_3)_4$ (24)                                    |         | [D <sub>6</sub> ]DMSO | 1017                    | -121.7/-147.4         |
| $(CF_3)_2$ TeF <sub>2</sub>                                     | 310,311 |                       | 1200                    | -48.5/-123.0          |
| $(CF_3)_2 Te(N_3)_2$ (25)                                       |         |                       | 1124                    | -41.8                 |
| $CF_3Te(N_3)_3$ (27)                                            |         | [D <sub>6</sub> ]DMSO | 1277                    |                       |
| Me <sub>2</sub> TeF <sub>2</sub>                                |         |                       | 1232                    | -124.8                |
| Me <sub>2</sub> Te(CN)F                                         |         |                       | 641                     |                       |
| Ph <sub>2</sub> TeF <sub>2</sub>                                | 113     |                       | 1128                    | -128.2                |
| Meso TeFo                                                       |         |                       | 1206                    | -121.6                |
| PhoTeClNo                                                       |         |                       | 958*                    | _                     |
| $Ph_2 Te(N_2)_2$                                                | 25      |                       | 983                     | -                     |
| $Ph_2 Te(CN)_2$ ( <b>a</b> )                                    |         |                       | 601                     | _                     |
| $PhTe(N_2)_2$                                                   |         |                       | 1284                    | -                     |
| $C_{e}F_{\pi}Te(N_{2})_{2}$ (28)                                |         | [De]DMSO              | 1277                    |                       |
| $Mes_2Te(N_3)_2$ (11)                                           |         | 0,                    | 908                     | -                     |
| $Mes_2 Te(CN)_2$ (10)                                           |         |                       | 320                     | -                     |
| $Trip_2 TeF_2$ (8)                                              |         |                       | 1236                    | -106.2                |
| $(C_c F_2 H_2)_2 Te(N_2)_2$                                     |         |                       | 772                     | 100.2                 |
| TeClaNa                                                         | 20      |                       | 1670                    | _                     |
| TeCla(Na)a                                                      | 20      |                       | 1670                    | _                     |
| ToE.                                                            | 153     | C <sub>a</sub> D-     | 1040                    | -                     |
| 101.4                                                           | 20      | C6D6                  | 1329                    | -26.6                 |

 

 Tabelle C.1.: Tabellarische Übersicht von NMR-Verschiebungen ausgewählter Tellurverbindungen, nach Oxidationsstufen 1, 11, 1V und VI unterteilt. Gemessen in CDCl<sub>3</sub> mit jeol. 400e bei 25 °C, außer wenn anders angegeben (Fortsetzung).

\* Im Gemisch mit Ph2Te(N3)2

| Verbindung                                            | Lit. | Lsm.                  | <sup>125</sup> Te-shift | <sup>19</sup> F-shift   |
|-------------------------------------------------------|------|-----------------------|-------------------------|-------------------------|
| [TeF <sub>5</sub> ] <sup>-</sup>                      |      | $CH_2Cl_2$            | 1161                    | -131.2 (1F)/-142.2 (4F) |
| $Te(N_3)_4$ (1)                                       |      | [D <sub>6</sub> ]DMSO | 1380                    | -                       |
| $[Te(N_3)_5]^-$ (in <b>2a</b> )                       |      | $CD_2Cl_2$            | 1258                    | -                       |
| Me <sub>6</sub> Te                                    | 133  | $C_6D_6$              | 22                      | -                       |
| cis-Me <sub>4</sub> TeF <sub>2</sub>                  | 133  | $C_6D_6$              | 592                     | ca. +8                  |
| mer-Me <sub>3</sub> TeF <sub>3</sub>                  |      | $C_6D_6$              | 939                     | +23.0/-65.2             |
| trans-Me2TeF4                                         |      |                       | 987                     | -34.9                   |
| MeTeF <sub>5</sub>                                    |      | $C_6D_6$              |                         | -21.4/-36.2             |
| Ph <sub>5</sub> TeF                                   | 158  |                       | 580                     | -42                     |
| Ph <sub>5</sub> TeCl                                  | 158  |                       | 564                     | -                       |
| Ph <sub>5</sub> TeBr                                  | 158  |                       | 571                     | -                       |
| Ph <sub>5</sub> TeN <sub>3</sub> (13)                 |      | $CD_2Cl_2$            | 568                     | -                       |
| $(\eta^2 - C_{12}H_8)_2 \text{TeF}_2$                 |      |                       | 719                     | -50                     |
| $(\eta^2 - C_{12}H_8)_2 \text{Te}(N_3)_2$ (14)        |      | $CD_2Cl_2$            | 633                     | _                       |
| cis-Ph <sub>4</sub> TeF <sub>2</sub>                  | 134  |                       | 678                     | -31                     |
| [Ph <sub>3</sub> TeF <sub>2</sub> ] <sup>+</sup>      | 145  |                       | 896                     | -122                    |
| cis-Ph <sub>3</sub> TeF <sub>2</sub> Cl               | 147  |                       | 776                     | +3/-86                  |
| trans-Ph3TeF2Cl                                       | 147  |                       | 783                     | -99                     |
| mer-Ph <sub>3</sub> TeF <sub>3</sub>                  | 145  | $C_6D_6$              | 786                     | -2.5/-97.6              |
| trans-Ph <sub>2</sub> TeF <sub>4</sub> ( <b>15a</b> ) | 144  | $C_6D_6$              | 821                     | -57.2                   |
| cis-Ph <sub>2</sub> TeF <sub>4</sub> (15b)            | 144  | $C_6D_6$              | 806                     | -33.6/-75.8             |
| PhTeF <sub>5</sub>                                    | 144  | $C_6D_6$              | 725                     | -36.9 (1F)/-53.6 (4F)   |
| TeF <sub>6</sub>                                      | 278  |                       | 565                     | -5.6                    |

 

 Tabelle C.1.: Tabellarische Übersicht von NMR-Verschiebungen ausgewählter Tellurverbindungen, nach Oxidationsstufen I, II, IV und VI unterteilt. Gemessen in CDCl<sub>3</sub> mit jEOL 400e bei 25 °C, außer wenn anders angegeben (Fortsetzung).

#### C. NMR-Daten

# D. Abkürzungsverzeichnis

| ber.             | berechnet                                            |
|------------------|------------------------------------------------------|
| dez              | Dezett                                               |
| DFT              | Dichtefunktionaltheorie                              |
| EI               | Elektronenstoßionisation                             |
| et al.           | <i>et altera</i> = und andere                        |
| gef.             | Gefunden                                             |
| Hal              | Halogen                                              |
| HV               | Hochvakuum                                           |
| IR               | Infrarotspektroskopie                                |
| J                | Kopplung                                             |
| m                | mittelstark (IR)                                     |
| $M^+$            | Molekülkation                                        |
| Me               | Methyl                                               |
| MP2              | Møller-Plesset-Störungstheorie zweiter Ordnung       |
| MS               | Massenspektrum                                       |
| m/z              | Relative Masseneinheiten                             |
| NMR              | Kernmagnetische Resonanz                             |
| ORTEP            | Oak Ridge Thermal Ellipsoid Plot                     |
| Ph               | Phenyl                                               |
| ppm              | parts per million                                    |
| Refl.            | Reflexe                                              |
| RI               | Resolution of Identity (Näherung für DFT-Rechnungen) |
| Ohor             | berechnete Dichte                                    |
| s S              | Singulett (NMR), stark (IR)                          |
| Sdp              | Siedenunkt                                           |
| Schmp.           | Schmelzpunkt                                         |
| Subl.            | Sublimation                                          |
| THE              | Tetrahydrofuran                                      |
| w                | schwach (IR)                                         |
| z. B.            | zum Beispiel                                         |
| Zers.            | Zersetzung                                           |
| δ                | chemische Verschiebung                               |
| $\Delta v_{1/2}$ | Halbwertsbreite                                      |
| Vas              | asymmetrische Valenzschwingung                       |
| Ve               | symmetrische Valenzschwingung                        |
| 5                | .,                                                   |

# D. Abkürzungsverzeichnis

#### E. Literaturverzeichnis

- 1. Frh. Müller von Reichenstein, F. J. *Phys. Arb. einträcht. Freunde Wien* **1785**, 1 (nur zwei Ausgaben gedruckt), 47.
- 2. Wöhler, F. Justus Liebigs Ann. Chem. 1840, 35, 111.
- 3. Wöhler, F. Ann. Chem. Pharm. 1855, 233.
- 4. Curtius, T. Ber. Dtsch. Chem. Ges. 1890, 23, 3023.
- 5. Patai, S. *The Chemistry of the Azido Group*; Wiley Interscience, London: London, 1971.
- Tornieporth-Oetting, I. C.; Klapötke, T. M. Angew. Chem. 1995, 107, 559– 568; Angew. Chem., Int. Ed. Engl. 1995, 34, 511–520.
- Schulz, A.; Tornieporth-Oetting, I. C.; Klapötke, T. M. Angew. Chem. 1993, 105, 1697–1699; Angew. Chem., Int. Ed. Engl. 1993, 32, 1610–1612.
- Klapötke, T. M.; Nöth, H.; Schütt, T.; Warchhold, M. Angew. Chem. 2000, 112, 2197–2199; Angew. Chem., Int. Ed. 2000, 39, 2108–2109.
- 9. Maricich, T. J.; Hoffman, V. L. J. Am. Chem. Soc. 1974, 96, 7770-7781.
- 10. Haas, A.; Mischo, T. Can. J. Chem. 1989, 67, 1902.
- 11. Shodza, R. J.; Vernon, J. A. J. Org. Chem. 1967, 32, 2876-2880.
- 12. Curtius, T.; Schmidt, F. Ber. 1922, 55, 1571-1581.
- Christe, K. O.; Boatz, J. A.; Gerken, M.; Haiges, R.; Schneider, S.; Schroer, T.; Tham, F. S.; Vij, A.; Vij, V.; Wagner, R. I.; Wilson, W. W. *Inorg. Chem.* **2002**, *41*, 4275–4285.
- Kornath, A.; Blecher, O.; Ludwig, R. Z. Anorg. Allg. Chem. 2002, 628, 183– 190.
- Klapötke, T. M.; Krumm, B.; Polborn, K. J. Am. Chem. Soc. 2004, 126, 710– 711; Chem & EngNews 2004, 82 (5), 24.

- 16. Back, T. G.; Kerr, R. G. J. Chem. Soc., Chem. Commun. 1987, 134-135.
- 17. Back, T. G.; Kerr, R. G. J. Chem. Soc., Chem. Commun. 1987, 1208.
- Schwab, I. "Untersuchungen zu Synthese und Eigenschaften von Telluroniumpseudohalogeniden und der ersten Selenoniumazide", Diplomarbeit, LMU, 2001.
- Klapötke, T. M.; Krumm, B.; Mayer, P.; Piotrowski, H.; Polborn, K.; Schwab, I. Z. Anorg. Allg. Chem. 2002, 628, 1831–1834.
- 20. Wiberg, N.; Schwenk, G.; Schmid, K. H. Chem. Ber. 1972, 105, 1209-1215.
- 21. Ziolo, R. F.; Pritchett, K. J. Organomet. Chem. 1976, 116, 211-217.
- Klapötke, T. M.; Krumm, B.; Mayer, P.; Piotrowski, H.; Schwab, I.; Vogt, M. Eur. J. Inorg. Chem. 2002, 2701–2709.
- 23. Johnson, J. P.; MacLean, G. K.; Passmore, J.; White, P. S. *Can. J. Chem.* **1989**, *67*, 1687–1692.
- 24. Magnus, P.; Roe, M. B.; Lynch, V.; Hulme, C. J. Chem. Soc., Chem. Commun. 1995, 1609–1610.
- Klapötke, T. M.; Krumm, B.; Mayer, P.; Ruscitti, O. P. Inorg. Chem. 2000, 39, 5426–5427.
- Klapötke, T. M.; Krumm, B.; Mayer, P.; Piotrowski, H.; Ruscitti, O. P.; Schiller, A. *Inorg. Chem.* 2002, 41, 1184–1193.
- 27. Crawford, M.-J.; Klapötke, T. M. Inorg. Chem. 1999, 38, 3006-3009.
- Kirsch, G.; Christiaens, L. Chem. Org. Selenium Tellurium Compd. 1987, 2, 421–461.
- 29. Bjoergvinsson, M.; Roesky, H. W. Polyhedron 1991, 10, 2353-2370.
- 30. Chivers, T.; Doxsee, D. D. Comments Inorg. Chem. 1993, 15, 109-135.
- 31. Chivers, T.; Gao, X.; Parvez, M. J. Chem. Soc., Chem. Commun. 1994, 2149–2150.
- Passmore, J.; Schatte, G.; Cameron, T. S. J. Chem. Soc., Chem. Commun. 1995, 2311–2312.

- 33. Chivers, T.; Gao, X.; Parvez, M. J. Am. Chem. Soc. 1995, 117, 2359-2360.
- 34. Chivers, T.; Gao, X.; Parvez, M. Inorg. Chem. 1996, 35, 4336-4341.
- 35. Lau, C.; Krautscheid, H.; Neumüller, B.; Dehnicke, K. Z. Anorg. Allg. Chem. 1997, 623, 1375–1379.
- 36. Massa, W.; Lau, C.; Möhlen, M.; Neumüller, B.; Dehnicke, K. Angew. Chem. **1998**, 110, 3008–3010; Angew. Chem., Int. Ed. **1998**, 37, 2840–2842.
- 37. Chivers, T.; Gao, X.; Sandblom, N.; Schatte, G. *Phosphorus, Sulfur, and Silicon* **1998**, *136*, 11–24.
- 38. Cocksedge, H. J. Chem. Soc. 1908, 93, 2175-2177.
- Rheinboldt, H. Herstellung und Umwandlung organischer Selen- und Tellurverbindungen. In *Houben-Weyl: Methoden der Organischen Chemie*; Müller, E. (Hrsg.); Houben-Weyl Thieme: Stuttgart, 1952.
- Irgolic, K. J. Organische Selen- und Tellur-Verbindungen. In *Methoden der* Organischen Chemie; Klamann, D. (Hrsg.); Houben-Weyl Thieme: Stuttgart, 1990.
- 41. Köhler, H. Kem. Kozlem. 1974, 41, 205-220.
- 42. Köhler, H. Nova Acta Leopold. 1985, 59, 259-276.
- 43. Metzner, R. Ann. Chim. Phys. 1898, 15, 257-263.
- 44. Damiens, A. Ann. Chim. Phys. 1923, 19, 74-76.
- 45. Strecker, W.; Ebert, W. Chem. Ber. 1925, 58, 2527.
- 46. Strecker, W.; Mahr, C. Z. Anorg. Chem. 1935, 221, 204.
- Gmelin, L.; Meyer, J.; Pietsch, E. H. E.; Kotowski, A.; Becke-Goehring, M. Gmelin Handbuch der Anorganischen Chemie; Springer-Verlag: Berlin, 8. Aufl.; 1978.
- 48. Garcia-Fernandez, H. Bull. Soc. Chim. Fr. 1973, 1210-1215.
- Schmitz-DuMont, O.; Ross, B. Angew. Chem. 1967, 79, 1061–1062; Angew. Chem., Int. Ed. Engl. 1967, 6, 1071–1072.
- Kornath, A. Angew. Chem. 2001, 113, 3231–3232; Angew. Chem., Int. Ed. 2001, 40, 3135–3136.

- Sussek, H.; Stowasser, H.; Pritzkow, H.; Fischer, R. A. *Eur. J. Inorg. Chem.* 2000, 455.
- Beck, W.; Klapötke, T. M.; Klüfers, P.; Kramer, G.; Rienäcker, C. M. Z. Anorg. Allg. Chem. 2001, 627, 1669–1674.
- 53. Fraenk, W.; Habereder, T.; Hammerl, A.; Klapötke, T. M.; Krumm, B.; Mayer, P; Nöth, H.; Warchhold, M. *Inorg. Chem.* **2001**, *40*, 1334–1340.
- 54. Fraenk, W.; Nöth, H.; Klapötke, T. M.; Suter, M. Z. Naturforsch., B 2002, 57, 621–624.
- 55. Filippou, A. C.; Portius, P.; Schnakenburg, G. J. Am. Chem. Soc. 2002, 124, 12396–12397.
- Karaghiosoff, K.; Klapötke, T. M.; Krumm, B.; Nöth, H.; Schütt, T.; Suter, M. Inorg. Chem. 2002, 41, 170–179.
- 57. Wieber, M.; Rohse, S. Phosphorus, Sulfur, and Silicon 1991, 55, 79-83.
- Klapötke, T. M.; Krumm, B.; Mayer, P.; Naumann, D.; Schwab, I. J. Fluorine Chem. 2004, 125, 997–1005.
- Haiges, R.; Boatz, J. A.; Gerken, M.; Schneider, S.; Schroer, T.; Christe, K. O. Angew. Chem. 2003, 115, 6027–6031; Angew. Chem., Int. Ed. 2003, 42, 5847–5851.
- Mahjoub, A. R.; Leopold, D.; Seppelt, K. Z. Anorg. Allg. Chem. 1992, 618, 83–88.
- 61. Aynsley, E. E. J. Chem. Soc. 1953, 3016-3019.
- 62. Greenwood, N. N.; Sarma, A. C.; Straughan, B. P. J. Chem. Soc., A 1966, 1446–1447.
- 63. Edwards, A. J.; Hewaidy, F. I. J. Chem. Soc. A 1968, 2977-2980.
- Kniep, R.; Korte, L.; Kryschi, R.; Poll, W. Angew. Chem. 1984, 96, 351–352;
   Angew. Chem., Int. Ed. Engl. 1984, 23, 388–389.
- Martynyuk, E. G.; Pashinnik, V. E.; Markovskii, L. N.; Kachovskii, A. D. Russ. J. Gen. Chem. 1999, 69, 1273–1276.
- 66. Kessler, U.; Jansen, M. Z. Anorg. Allg. Chem. 2001, 627, 1782-1786.

- Beck, W.; Fehlhammer, W.; Pollmann, P.; Schuierer, E.; Feldl, K. Chem. Ber. 1967, 100, 2335.
- 68. Drummond, J.; Wood, J. J. Chem. Soc., Chem. Commun. 1969, 1373.
- 69. Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408-3420.
- 70. Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
- 71. Dolg, F. Quasirelativistische und relativistische energiekonsistente Pseudopotentiale für quantentheoretische Untersuchungen der Chemie schwerer Elemente, Habilitationsschrift, Universität Stuttgart, 1997.
- 72. Challenger, F.; Peters, A.; Halévy, J. J. Chem. Soc. 1926, 1650.
- 73. Birckenbach, L.; Huttner, K. Z. Anorg. Allg. Chem. 1930, 190, 1.
- 74. Montignie, E. Z. Anorg. Allg. Chem. 1962, 315, 102-103.
- 75. Fritz, H. P.; Keller, H. Chem. Ber. 1961, 94, 1524-1533.
- 76. Austad, T.; Esperas, S. Acta Chem. Scand., Ser. A 1974, A28, 892-896.
- 77. Pierce, L.; Nelson, R.; Thomas, C. J. Chem. Phys. 1965, 43, 3423-3431.
- 78. Cataldo, F. Polyhedron 2000, 19, 681-688.
- 79. Mayer, E. Monatsh. Chem. 1970, 101, 846-849.
- 80. Rosenberg, H.; Olsen, J. F.; Howell, J. M. J. Mol. Struct. 1978, 48, 249-258.
- 81. Nguyen Minh, T.; Ruelle, P.; Ha, T. K. Theochem 1983, 13, 353-364.
- 82. Damiens, A. Compt. rend. 1920, 171, 1140-1143.
- 83. Damiens, A. Compt. rend. 1921, 173, 300-303.
- Oppermann, H.; Stoever, G.; Wolf, E. Z. Anorg. Allg. Chem. 1976, 419, 200– 212.
- Fernholt, L.; Haaland, A.; Volden, H. V.; Kniep, R. J. Mol. Struct. 1985, 128, 29–31.
- 86. Emerson, K.; Britton, D. Acta Crystallogr. 1963, 16, 113-118.
- 87. Hazell, A. C. Acta Crystallogr. 1963, 16, 843-844.

- 88. Emerson, K.; Britton, D. Acta Crystallogr. 1964, 17, 1134-1139.
- 89. Emerson, K. Acta Crystallogr. 1966, 21, 970-974.
- 90. Linke, K. H.; Lemmer, F. Z. Anorg. Allg. Chem. 1966, 345, 203-210.
- 91. Linke, K. H.; Lemmer, F. Z. Anorg. Allg. Chem. 1966, 345, 211-216.
- 92. Linke, K. H.; Lemmer, F. Z. Naturforsch. 1966, 21, 192.
- Klapötke, T. M.; Krumm, B.; Mayer, P.; Polborn, K.; Ruscitti, O. P. Inorg. Chem. 2001, 40, 5169–5176.
- Gedridge, R. W.; Harris, D. C.; Higa, K. T.; Nissan, R. A. Organometallics 1989, 8, 2817–2820.
- 95. Visscher, L.; Dyall, K. Atom. Data Nucl. Data Tabl. 1997, 67, 207.
- 96. Fægri, K. Theor. Chem. Acc. 2001, 105, 252-258.
- 97. Spencer, H. K.; Lakshmikantham, M. V.; Cava, M. P. J. Am. Chem. Soc. 1977, 99, 1470–1473.
- 98. Fimml, W.; Sladky, F. Chem. Ber. 1991, 124, 1131-1133.
- 99. Sadekov, I. D.; Skopenko, V. V.; Burlov, A. S.; Ivanova, E. I.; Garnovskii, A. D. Russ. J. Gen. Chem. 1997, 67, 1058–1067.
- 100. Klapötke, T. M.; Krumm, B.; Mayer, P.; Polborn, K.; Ruscitti, O. P. J. Fluorine Chem. 2001, 112, 207–212.
- 101. Lederer, C. Chem. Ber. 1916, 49, 345.
- 102. Akiba, M.; Lakshmikantham, M. V.; Jen, K. Y.; Cava, M. P. J. Org. Chem. 1984, 49, 4819–4821.
- 103. Engman, L.; Stern, D. Organometallics 1993, 12, 1445-1448.
- 104. Jeske, J.; du Mont, W.-W.; Jones, P. G. Angew. Chem. 1997, 109, 2304–2306; Angew. Chem. Int. Ed. Engl. 1997, 36, 2219–2221.
- 105. Jeske, J.; du Mont, W.-W.; Ruthe, F.; Jones, P. G.; Mercuri, L. M.; Deplano, P. *Eur. J. Inorg. Chem.* **2000**, 1591–1599.
- 106. Oba, M.; Endo, M.; Nishiyama, K.; Ouchi, A.; Ando, W. J. Chem. Soc., Chem. Commun. 2004, 1672–1673.

- 107. Srivastava, P. C.; Trivedi, A. *Ind. J. Chem.* **1989**, *28A*, 1110–1111 ; und Zitate darin.
- 108. Lowry, T. M.; Gilbert, F. L. J. Chem. Soc. 1929, 2076-2083.
- 109. Srivastava, T. N.; Srivastava, R. C.; Singh, M. J. Organomet. Chem. 1978, 160, 449–454.
- Wieber, M.; Habersack, R. Phosphorus, Sulfur, and Silicon 1995, 106, 233– 241.
- Völker, H.; Labahn, D.; Bohnen, F. M.; Herbst-Irmer, R.; Roesky, H. W.; Stalke, D.; Edelmann, F. T. *New J. Chem.* **1999**, *23*, 905–909.
- 112. Aramini, J.; Batchelor, R. J.; Jones, C. H. W.; Einstein, F. W. B.; Sharma, R. D. *Can. J. Chem.* **1987**, *65*, 2643–2648.
- 113. Berry, F. J.; Edwards, A. J. J. Chem. Soc., Dalton Trans. 1980, 2306–2308.
- 114. Kniep, R.; Mootz, D.; Rabenau, A. *Angew. Chem.* **1974**, *86*, 411–412; *Angew. Chem., Int. Ed. Engl.* **1974**, *13*, 403–404.
- 115. Kniep, R.; Mootz, D.; Rabenau, A. Z. Anorg. Allg. Chem. 1976, 422, 17-38.
- 116. Kniep, R.; Rabenau, A. Top. Curr. Chem. 1983, 111, 145-192.
- 117. Pietikäinen, J.; Laitinen, R. Phosphorus, Sulfur, and Silicon 1997, 124/125, 453–456.
- Pietikäinen, J.; Laitinen, R. J. Chem. Soc., Chem. Commun. 1998, 2381– 2382.
- 119. Cauquis, G.; Pierre, G. Bull. Soc. Chim. Fr. 1976, 736-738.
- 120. Pohl, S.; Saak, W.; Krebs, B. Z. Naturforsch. 1985, 40B, 251-257.
- 121. Haas, A.; Willner, H. Z. Anorg. Allg. Chem. 1979, 454, 17-23.
- 122. Jones, L. H. Spectrochim. Acta 1963, 19, 1675-1681.
- 123. Rossmanith, K. Monatsh. Chem. 1965, 96, 1690-1694.
- 124. Manskaya, Y. A.; Ponomareva, V. V.; Domasevich, K. V.; Sieler, I.; Kokozei, V. N.; Skopenko, V. V. *Russ. J. Gen. Chem.* **1998**, *68*, 1194–1201.

- 125. Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165.
- 126. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanavakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. "Gaussian 03", 2003.
- 127. Weigend, F.; Häser, M. Theor. Chem. Acc. 1997, 97, 331-340.
- 128. Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. *Chem. Phys. Lett.* **1998**, 294, 143–152.
- 129. Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuss, H. Mol. Phys. 1993, 80, 1431–1441.
- 130. Metz, B.; Stoll, H.; Dolg, M. J. Chem. Phys. 2000, 113, 2563-2569.
- 131. Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. **2003**, *119*, 1113–11123.
- 132. Pepke, E.; Murray, J.; Lyons, J.; Hwu, T.-Z. "Scian", Supercomputer Computations Research Institute, Florida State University, 1996.
- 133. Ahmed, L.; Morrison, J. A. J. Am. Chem. Soc. 1990, 112, 7411-7413.
- 134. Minoura, M.; Sagami, T.; Akiba, K.-y.; Modrakowski, C.; Sudau, A.; Seppelt, K.; Wallenhauer, S. Angew. Chem. 1996, 2827–2829; Angew. Chem., Int. Ed. Engl. 1996, 35, 2660–2662.
- 135. Minoura, M.; Sagami, T.; Miyasato, M.; Akiba, K.-y. *Tetrahedron* **1997**, *53*, 12195–12202.

- 136. Akiba, K.-Y. Phosphorus, Sulfur, and Silicon 1998, 136, 239-254.
- 137. Akiba, K.-y. *The Chemistry of Hypervalent Compounds*; Wiley VCH: New York, 1999.
- 138. Minoura, M.; Mukuda, T.; Sagami, T.; Akiba, K.-Y. *Heteroat. Chem.* **2001**, *12*, 380–384.
- 139. Miyasato, M.; Minoura, M.; Akiba, K.-y. Angew. Chem. 2001, 113, 2746– 2748; Angew. Chem., Int. Ed. 2001, 40, 2674–2676.
- 140. Miyasato, M.; Sagami, T.; Minoura, M.; Yamamoto, Y.; Akiba, K.-y. *Chem. Eur. J.* **2004**, *10*, 2590–2600.
- 141. Minoura, M.; Mukuda, T.; Sagami, T.; Akiba, K.-y. J. Am. Chem. Soc. **1999**, *121*, 10852–10853.
- 142. Gillespie, R. J.; Silvi, B. Coord. Chem. Rev. 2002, 233-234, 53-62.
- 143. Noury, S.; Silvi, B.; Gillespie, R. J. Inorg. Chem. 2002, 41, 2164-2172.
- 144. Alam, K.; Janzen, A. F. J. Fluorine Chem. 1985, 27, 467-469.
- 145. Secco, A. S.; Alam, K.; Blackburn, B. J.; Janzen, A. F. *Inorg. Chem.* **1986**, *25*, 2125–2129.
- 146. Janzen, A. F.; Alam, K.; Jang, M.; Blackburn, B. J.; Secco, A. S. *Can. J. Chem.* **1988**, *66*, 1308–1312.
- 147. Janzen, A. F.; Alam, K.; Blackburn, B. J. J. Fluorine Chem. 1989, 42, 173-178.
- 148. Janzen, A. F.; Jang, M. Can. J. Chem. 1989, 67, 71-75.
- 149. Jang, M.; Janzen, A. F. J. Fluorine Chem. 1991, 52, 45-50.
- 150. Wang, C.; Mo, Y.; Jang, M.; Janzen, A. F. Can. J. Chem. 1993, 71, 525-528.
- 151. Ou, X.; Janzen, A. F. J. Fluorine Chem. 2000, 101, 279-283.
- 152. Desjardins, C. D.; Lau, C.; Passmore, J. Inorg. Nucl. Chem. Lett. 1974, 10, 151–153.
- 153. Klein, G.; Naumann, D. J. Fluorine Chem. 1985, 30, 259-268.
- 154. Grelbig, T.; Krügerke, T.; Seppelt, K. Z. Anorg. Allg. Chem. 1987, 544, 74-80.

- 155. Fimml, W. "Tris-(Trimethylsily)methantellurenyl-Pseudohalogenide und -Chalkogenide", Diplomarbeit, Leopold-Franzens-Universität, Innsbruck, 1990.
- 156. Gorrell, I. B.; Ludman, C. J.; Matthews, R. S. J. Chem. Soc., Dalton Trans. 1992, 2899–2903.
- 157. Wittig, G.; Fritz, H. Justus Liebigs Ann. Chem. 1952, 577, 39-46.
- 158. Minoura, M.; Sagami, T.; Akiba, K.-y. Organometallics 2001, 20, 2437– 2439.
- 159. Sato, S.; Yamashita, T.; Horn, E.; Furukawa, N. Organometallics **1996**, *15*, 3256–3258.
- 160. Hellwinkel, D.; Fahrbach, G. Justus Liebigs Ann. Chem. 1968, 712, 1-20.
- 161. Hellwinkel, D.; Fahrbach, G. Chem. Ber. 1968, 101, 574-584.
- 162. Kind, C.; Reiher, M.; Neugebauer, J.; Hess, B. "SNF", Software für Linux, Friedrich-Alexander-Universität Erlangen-Nürnberg und Universität Bonn, 1999–2004.
- 163. Deglmann, P.; Furche, F.; Ahlrichs, R. Chem. Phys. Lett. 2002, 362, 511-518.
- 164. Eméleus, H. J.; Heal, H. G. J. Chem. Soc. 1946, 1126.
- 165. Fowler, J. E.; Hamilton, T. P.; Schaefer, H. F. J. Am. Chem. Soc. 1993, 115, 4155–4158.
- 166. Fowler, J. E.; Schaefer, H. F.; Raymond, K. N. *Inorg. Chem.* **1996**, *35*, 279–281.
- 167. Kovacs, A.; Szabo, A. Chem. Phys. Lett. 1999, 305, 458-464.
- 168. Ahlrichs, R.; May, K. Phys. Chem. Chem. Phys. 2000, 2, 943-945.
- 169. Kutzelnigg, W. Angew. Chem. 1984, 96, 262–286; Angew. Chem. Int. Ed. Engl. 1984, 23, 272–295.
- 170. Reed, A. E.; Weinhold, F. J. Am. Chem. Soc. 1986, 108, 3586-3593.
- 171. Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434-1445.
- 172. Magnusson, E. J. Am. Chem. Soc. 1990, 112, 7940-7951.

- 173. Magnusson, E. J. Am. Chem. Soc. 1993, 115, 1051-1061.
- 174. Häser, M. J. Am. Chem. Soc. 1996, 118, 7311-7325.
- 175. Molina, J. M.; Dobado, J. A. Theor. Chem. Acc. 2001, 105, 328-337.
- 176. Harcourt, R. D. Qualitative Valence Bond Descriptions of Electron-Rich Molecules. In *Lecture Notes in Chemistry*, Vol. 30; Springer: Berlin, 1982.
- 177. Harcourt, R. D. J. Mol. Struct. (Theochem) 1989, 55, 131-165.
- 178. Harcourt, R. D.; Klapötke, T. M. J. Fluorine Chem. 2003, 123, 5-20.
- 179. Harcourt, R. D.; Klapötke, T. M. J. Fluorine Chem. 2003, 123, 273-278.
- 180. Bader, R. F. W. *Atoms in molecules a quantum theory*; Clarendon Press: Oxford, 1990.
- 181. Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397-5403.
- 182. Silvi, B.; Savin, A. Nature (London) 1994, 371, 683-686.
- 183. Noury, S.; Colonna, F.; Savin, A.; Silvi, B. J. Mol. Struct. 1998, 450, 59-68.
- 184. Bachrach, S. M. Rev. Comp. Chem. 1994, 5, 171-227.
- 185. Chen, M. T.; George, J. W. J. Am. Chem. Soc. 1968, 90, 4580-4583.
- 186. Kasemann, R.; Naumann, D. J. Fluorine Chem. 1990, 48, 207-217.
- 187. Kostiner, E. S.; Reddy, M. L. N.; Urch, D. S.; Massey, A. G. J. Organomet. Chem. 1968, 15, 383–395.
- 188. Kasemann, R.; Naumann, D. J. Fluorine Chem. 1988, 41, 321-334.
- 189. Klapötke, T. M.; Krumm, B.; Mayer, P.; Piotrowski, H.; Polborn, K. J. Fluorine Chem. 2003, 123, 133.
- 190. Erker, G.; Hock, R. Angew. Chem. 1989, 101, 181–182; Angew. Chem., Int. Ed. Engl. 1989, 28, 179–180.
- 191. Han, L.-B.; Mirzaei, F.; Tanaka, M. Organometallics 2000, 19, 722-724.
- 192. Bildstein, B.; Irgolic, K. J.; O'Brien, D. H. *Phosphorus Sulfur* **1988**, *38*, 245–256.

- 193. Rainville, D. P.; Zingaro, R. A.; Meyers, E. A. J. Fluorine Chem. 1980, 16, 245–256.
- 194. Klapötke, T. M.; Krumm, B.; Mayer, P.; Schwab, I. Angew. Chem. 2003, 115, 6024–6026; Angew. Chem., Int. Ed. 2003, 42, 5843–5846; siehe auch Chem&EngNews 2003, 81 (50), 22 und Nachr. Chem. Tech. März 2004, 52, 238.
- 195. Klapötke, T. M.; Krumm, B.; Polborn, K.; Schwab, I. J. Am. Chem. Soc. 2004, 126, 14166–14175.
- 196. Sladky, F.; Bildstein, B.; Rieker, C.; Gieren, A.; Betz, H.; Huebner, T. J. Chem. Soc., Chem. Commun. **1985**, 1800–1801.
- 197. Du Mont, W.-W.; Meyer, H. U.; Kubiniok, S.; Pohl, S.; Saak, W. *Chem. Ber.* **1992**, *125*, 761–766.
- Giselbrecht, K. "Tristrimethylsilylmethantellurenyl-Halogenide", Diplomarbeit, Leopold-Franzens-Universität, Innsbruck, 1987.
- 199. Giselbrecht, K.; Bildstein, B.; Sladky, F. Chem. Ber. 1989, 122, 1255-1256.
- 200. Sudha, N.; Singh, H. B. Coord. Chem. Rev. 1994, 135/136, 469-515.
- 201. Kaur, R.; Singh, H. B.; Butcher, R. J. Organometallics 1995, 14, 4755-4763.
- 202. Boyle, P. D.; Cross, W. I.; Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G.; Sarwar, S.; Sheffield, J. M. Angew. Chem. 2000, 112, 1866–1868; Angew. Chem., Int. Ed. 2000, 39, 1796–1798.
- 203. Schulz Lang, E.; Fernandes, Ramao M., J.; Silveira, E. T.; Abram, U.; Vazquez-Lopez, E. M. Z. Anorg. Allg. Chem. **1999**, 625, 1401–1404.
- 204. Schulz Lang, E.; Abram, U.; Strähle, J. Z. Anorg. Allg. Chem. 1997, 623, 1968–1972.
- 205. Bildstein, B. *Telluride*, Dissertation, Leopold-Franzens-Universität, Innsbruck, 1985.
- 206. Becker, G.; Klinkhammer, K. W.; Lartiges, S.; Boettcher, P.; Poll, W. Z. Anorg. Allg. Chem. 1992, 613, 7–18.
- 207. Eaborn, C.; Hitchcock, P. B.; Lickiss, P. D. J. Organomet. Chem. 1984, 269, 235–238.

- 208. Al-Juaid, S. S.; Dhaher, S. M.; Eaborn, C.; Hitchcock, P. B.; McGeary, C. A.; Smith, J. D. *J. Organomet. Chem.* **1989**, *366*, 39–51.
- 209. Al-Juaid, S. S.; Eaborn, C.; Habtemariam, A.; Hitchcock, P. B.; Smith, J. D.; Tavakkoli, K.; Webb, A. D. J. Organomet. Chem. 1993, 462, 45–55.
- 210. Al-Juaid, S. S.; Al-Rawi, M.; Eaborn, C.; Hitchcock, P. B.; Smith, J. D. J. Organomet. Chem. 1998, 564, 215–226.
- 211. Niemeyer, M.; Power, P. P. Inorg. Chim. Acta 1997, 263, 201-207.
- 212. Hino, S.; Brynda, M.; Phillips, A. D.; Power, P. P. Angew. Chem. 2004, 116, 2709–2712; Angew. Chem., Int. Ed. 2004, 43, 2655–2658.
- 213. Schiemenz, B.; Power, P. P. Organometallics 1995, 15, 958-964.
- 214. Manzer, L. J. Am. Chem. Soc. 1978, 100, 8068-8073.
- 215. Eaborn, C.; Hitchcock, P. B.; Smith, J. D.; Sullivan, A. C. J. Chem. Soc., Chem. Comm. 1983, 1390–1391.
- 216. Eaborn, C.; Mansour, A. I. J. Chem. Soc., Perkin Trans. 2 1985, 729-735.
- 217. Uhl, W.; Jantschak, A.; Saak, W.; Kaupp, M.; Wartchow, R. Organometallics 1998, 17, 5009–5017.
- 218. Vogler, C.; Wagner, A. 2005, Privatmitteilung.
- 219. Bonasia, P. J.; Arnold, J. J. Organomet. Chem. 1993, 449, 147-57.
- 220. Bonasia, P. J.; Gindelberger, D. E.; Dabbousi, B. O.; Arnold, J. J. Am. Chem. Soc. **1992**, *114*, 5209–5214.
- 221. Clegg, W.; Davies, R. P.; Snaith, R.; Wheatley, A. E. H. *Eur. J. Inorg. Chem.* **2001**, 1411–1413.
- 222. Gornitzka, H.; Besser, S.; Herbst-Irmer, R.; Kilimann, U.; Edelmann, F. T. Angew. Chem. 1992, 104, 1252–1253; Angew. Chem., Int. Ed. Engl. 1992, 31, 1260–1261.
- 223. Niyomura, O.; Kato, S.; Inagaki, S. J. Am. Chem. Soc. 2000, 122, 2132-2133.
- 224. Junk, T.; Irgolic, K. J.; Meyers, E. A. Acta Crystallogr. 1993, C49, 975-976.

- 225. Wagner, I.; du Mont, W.-W.; Pohl, S.; Saak, W. Chem. Ber. 1990, 123, 2325– 2327.
- 226. Pauling, L. *Die Natur der chemischen Bindung*; Verlag Chemie: Weinheim, 1962.
- 227. Du Mont, W.-W.; Kubiniok, S.; Peters, K.; von Schnering, H. G. Angew. Chem. **1987**, *99*, 820-821; Angew. Chem., Int. Ed. Engl. **1987**, *26*, 780–781.
- 228. Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.; Higuchi, T. Angew. Chem. **1980**, 92, 405–406; Angew. Chem., Int. Ed. Engl. **1980**, 19, 399–400.
- 229. Mason, J. Multinuclear NMR; Plenum Press: New York, 2nd Aufl.; 1989.
- 230. Twamley, B.; Hardman, N.; Power, P. P. Acta Crystallogr. 2000, C56, 514– 515.
- 231. Sadekov, I. D.; Maksimenko, A. A.; Maslakov, A. G.; Minkin, V. I. J. Organomet. Chem. 1990, 391, 179–188.
- 232. Engman, L.; Wojton, A.; Oleksyn, B.; Sliwinski, K. *Phosphorus, Sulfur, and Silicon* **2004**, 179, 285–292.
- 233. Dirac, P. A. M. Proc. Roy. Soc. 1929, 123A, 714.
- 234. Hellmann, H. C. R. Acad. Sci. URSS 1934, 4, 444-446.
- 235. Hellmann, H. *Einführung in die Quantenchemie*; Deuticke: Leipzig und Wien, 1937.
- 236. Hay, P.; Wadt, W. R. J. Chem. Phys. 1985, 82, 284-298.
- 237. LaJohn, L. A.; Christiansen, P. A.; Ross, R. B.; Atashroo, T.; Ermler, W. C. *J. Chem. Phys.* **1987**, *87*, 2812–2824.
- 238. Stevens, W. J.; Basch, M.; Krauss, H. J. Chem. Phys. 1984, 81, 6026.
- 239. Stevens, W. J.; Krauss, H.; Basch, M.; Jasien, P. G. *Can. J. Chem.* **1992**, 70, 612.
- 240. Stoll, H.; Metz, B.; Dolg, M. J. Comput. Chem. 2002, 23, 767-778.
- 241. Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. *Theor. Chem. Acc.* 1997, 97, 119–124.

- 242. Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. *Chem. Phys. Lett.* **1995**, *240*, 283–90.
- 243. Sierka, M.; Hogekamp, A.; Ahlrichs, R. J. Chem. Phys. 2003, 118, 9136-9148.
- 244. v. Arnim, M.; Ahlrichs, R. J. Comput. Chem. 1998, 19, 1746-1757.
- 245. Almlöf, A.; Gropen, O. Rev. Comp. Chem. 1996, 8, 203-244.
- 246. Klein, O. Z. Phys. 1927, 41, 407.
- 247. Gordon, W. Z. Phys. 1926, 40, 117.
- 248. Pauli, W.; Weisskopf, V. Helv. Phys. Acta 1934, 7, 709.
- 249. Dirac, P. A. M. Proc. Roy. Soc. (London) A 1928, 117, 610-624.
- 250. Dirac, P. A. M. Proc. Roy. Soc. (London) A 1928, 118, 351.
- 251. Schwarz, W. H. E.; Wallmeier, H. Mol. Phys. 1982, 46, 1045.
- 252. Schwarz, W. H. E.; Wechsel-Trakowski, E. Chem. Phys. Lett. 1982, 85, 94.
- 253. Stanton, R. E.; Havriliak, S. J. Chem. Phys. 1984, 81, 1910.
- 254. Brown, G. E.; Ravenhall, D. Proc. Roy. Soc. (London) A 1951, 208, 552.
- 255. Sucher, J. Phys. Rev. 1980, A22, 348.
- 256. White, H. E. Phys. Rev. 1931, 38, 513-521.
- 257. Powell, R. E. J. Chem. Educ. 1968, 45, 558-563.
- 258. Szabo, A. J. Chem. Educ. 1969, 46, 678.
- 259. McKelvey, D. R. J. Chem. Educ. 1983, 60, 112-116.
- 260. Kutzelnigg, W. *Einführung in die Theoretische Chemie*; Verlag Chemie: Weinheim New York, 1975.
- 261. Musher, J. I. Angew. Chem. 1969, 81, 68–83; Angew. Chem., Int. Ed. Engl. 1969, 8, 54–68.
- 262. Harcourt, R. D. J. Chem. Educ. 1968, 45, 779-786.
- 263. Harcourt, R. D. Int. J. Quantum Chem. 1996, 60, 553-566.

- 264. Harcourt, R. D.; Klapötke, T. M.; Schulz, A.; Wolynec, P. J. Phys. Chem. A **1998**, *102*, 1850–1853.
- 265. Schulz, A.; Harcourt, R. D.; Klapötke, T. *Quantum chemical methods in main-group chemistry*; Wiley: Chichester, 1998.
- 266. Harcourt, R. D.; Schulz, A. J. Phys. Chem. A 2000, 104, 6510-6516.
- 267. Savin, A.; Becke, A. D.; Flad, J.; Nesper, R.; Preuss, H.; Von Schnering, H. G. Angew. Chem. 1991, 103, 421–424; Angew. Chem., Int. Ed. Engl. 1991, 30, 409–412.
- 268. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 137, 1697-1705.
- 269. Weizsäcker, C. F. Z. Phys. 1935, 96, 431-458.
- 270. Monkowius, U. V.; Nogai, S.; Schmidbaur, H. J. Chem. Soc., Dalton Trans. 2004, 1610–1617.
- 271. Mitschke, K. H.; Schmidbaur, H. Chem. Ber. 1973, 106, 3645-3651.
- 272. Krauss, H. L.; Stach, H. Z. Anorg. Allg. Chem. 1969, 366, 34-42.
- 273. Shriver, D. F.; Drezdzon, M. A. *The manipulation of air sensitive compounds*; Wiley: New York, 1986.
- 274. Sato, S.; Yamashita, T.; Horn, E.; Takahashi, O.; Furukawa, N. *Tetrahedron* **1997**, *53*, 12183–12194.
- 275. Lehnert, R.; Porzel, A.; Rühlmann, K. Z. Chem. 1988, 5, 190-192.
- 276. Uhl, W.; Jantschak, A. J. Organomet. Chem. 1998, 555, 263-269.
- 277. Seppelt, K. Inorg. Synth. 1980, 20, 33.
- 278. Christe, K. O.; Dixon, D. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Wilson, W. W. J. Am. Chem. Soc. 1993, 115, 9461–9467.
- 279. Gutbier, A.; Flury, F. Z. Anorg. Allg. Chem. 1904, 108.
- 280. Herberg, S.; Naumann, D. Z. Anorg. Allg. Chem. 1982, 492, 95-102.
- 281. Kischkewitz, J.; Naumann, D. Z. Anorg. Allg. Chem. 1987, 547, 167-172.
- 282. Karaghiosoff, C.; Krumm, B.; Schwab, I. *Proc. Black Tar Synthesis* **2002**, *1*, 1–9.

- 283. Rybak, J.-C. Synthese und Reaktionen von Ditellurdihalogeniden, Bachelorarbeit, LMU, 2004.
- 284. Dunning, T. H. J. Chem. Phys. 1989, 90, 1007-23.
- 285. Jensen, H. J. A.; Saue, T.; Visscher, L.; Bakken, V.; Eliav, E.; Enevoldsen, T.; Fleig, T.; Fossgaard, O.; Helgaker, T.; Laerdahl, J.; Larsen, C. V.; Norman, P.; Olsen, J.; Pernpointner, M.; Pedersen, J. K.; Ruud, K.; Salek, P.; van Stralen, J. N. P.; Thyssen, J.; Visser, O.; Winther, T. "Dirac, a relativistic ab initio electronic structure program, Release DIRAC4.0", Software für Linux, Universitäten Amsterdam, Odense, Oslo etc., 2004.
- 286. Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. "TopMoD A program for the calculation of the ELF function on a 3-dimensional grid, the assignment of the basins and the calculation of the basin populations and of their variance", Software für Linux, Université Pierre et Marie Curie, Paris, 1997.
- 287. Portmann, S.; Lüthi, H. P. CHIMIA 2000, 766-770.
- 288. Blom, R.; Haaland, A. Acta Chem. Scand. 1983, A37, 595-595.
- 289. Dyall, K. G. Theor. Chem. Acc. 1998, 99, 366-371.
- 290. Dyall, K. G. Theor. Chem. Acc. 2002, 108, 335.
- 291. Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571-2577.
- 292. Ruiz-Morales, Y.; Schreckenbach, G.; Ziegler, T. J. Phys. Chem. **1997**, A101, 4121–4127.
- 293. Visscher, L.; van Lenthe, E. Chem. Phys. Lett. 1999, 306, 357-365.
- 294. Visscher, L.; Enevoldsen, T.; Saue, T.; Jensen, H. J. A.; Oddershede, J. J. Comput. Chem. **1999**, 20, 1262–1273.
- 295. Hada, M.; Wan, J.; Fukuda, R.; Nakatsuji, H. *J. Comput. Chem.* **2001**, *22*, 1502–1508.
- 296. Gomez, S. S.; Romero, R. H.; Aucar, G. A. J. Chem. Phys. 2002, 117, 7942– 7946.
- 297. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
- 298. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.

- 299. Amos, R. D.; Bernhardsson, A.; Berning, A.; Celani, P.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.; Hetzer, G.; Knowles, P. J.; Korona, T.; Lindh, R.; Lloyd, A. W.; McNicholas, S. J.; Manby, F. R.; Meyer, W.; Mura, M. E.; Nicklass, A.; Palmieri, P.; Pitzer, R.; Rauhut, G.; Schütz, M.; Schumann, U.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Werner, H.-J. "MOLPRO, a package of ab initio programs designed by H.-J. Werner and P. J. Knowles, version 2002.1", 2002.
- 300. Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. *Chem. Phys. Lett.* **1995**, *242*, 652–60.
- 301. Perdew, J. Phys. Rev. B 1986, 33, 8822-8824.
- 302. Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829-5835.
- 303. Treutler, O.; Ahlrichs, R. J. Chem. Phys. 1995, 102, 346-354.
- 304. Deglmann, P.; Furche, F. J. Chem. Phys. 2002, 117, 9535-9538.
- 305. Deglmann, P.; Furche, F.; Ahlrichs, R. Chem. Phys. Lett. 2002, 362, 511-518.
- 306. v. Arnim, M.; Ahlrichs, R. J. Chem. Phys. 1999, 111, 9183-9190.
- 307. Sheldrick, G. M. "SHELXL-97", 1997.
- 308. Herberg, S.; Naumann, D. Z. Anorg. Allg. Chem. 1982, 494, 159-165.
- 309. Smith, C. S.; Lee, J. S.; Titus, D. D.; Ziolo, R. F. Organometallics 1982, 1, 350–354.
- 310. Naumann, D.; Herberg, S. J. Fluorine Chem. 1982, 19, 205-212.
- 311. Preut, H.; Fischer, J.; Naumann, D. Acta Crystallogr. 1988, C44, 579-581.

## Publikationsliste

#### Zuschriften

- "The First Selenonium Azides and a Selenonium Selenocyanate", Klapötke, T. M.; Krumm, B.; Mayer, P; Piotrowski, H.; Schwab, I.; Vogt, M. *Eur. J. Inorg. Chem.* **2002**, 2701–2709.
- "Synthesis and Structures of Triorganotelluronium Pseudohalides", Klapötke, T. M.; Krumm, B.; Mayer, P.; Piotrowski, H.; Polborn, K.; Schwab, I. Z. Anorg. Allg. Chem. 2002, 628, 1831–1834.
- "Binary Tellurium(IV) Azides: Te(N<sub>3</sub>)<sub>4</sub> and [Te(N<sub>3</sub>)<sub>5</sub>]<sup>-"</sup>, Klapötke, T. M.; Krumm, B.; Mayer, P.; Schwab, I. *Angew. Chem.* 2003, *115*, 6024–6026. *Chem&EngNews* 2003, *81* (50), 22.
   *Nachr. Chem. Tech.* März 2004, *52*, 238.
- "Fluorinated Tellurium(IV) Azides and Their Precursors", Klapötke, T. M.; Krumm, B.; Mayer, P.; Naumann, D.; Schwab, I. *J. Fluorine Chem.* **2004**, 125, 997–1005.
- "Organotellurium(vi) Azides and Halides", Klapötke, T. M.; Krumm, B.; Polborn, K.; Schwab, I. *J. Am. Chem. Soc.* **2004**, *126*, 14166–14175.
- "Experimental and Theoretical Studies of Homoleptic Tellurium Cyanides Te(CN)<sub>x</sub>; Crystal Structure of Te(CN)<sub>2</sub>", Klapötke, T. M.; Krumm, B.; Gálvez-Ruiz, J. C.; Nöth, H.; Schwab, I. *Eur. J. Inorg. Chem.* **2004**, *24*, 4764– 4769.
- "Developments on the Chemistry of Tellurium and Selenium Azides", Klapötke, T. M.; Krumm, B.; Schwab, I. *Phosphorus, Sulfur, and Silicon* **2005**, *180*, 957–960.
- "Kinetic and Donor Stabilization of Organotellurenyl Iodides and Azides", Klapötke, T. M.; Krumm, B.; Nöth, H.; Gálvez-Ruiz, J. C.; Polborn, K.; Schwab, I.; Suter, M. *Inorg. Chem.* **2005**, im Druck.
- "Some Investigations on Organotellurium(IV) Cyanides", Klapötke, T. M.; Krumm, B.; Mayer, P.; Polborn, K.; Schwab, I. *Z. Anorg. Allg. Chem.* **2005**, im Druck.

#### E. Literaturverzeichnis

- "Reactions of Group 13 and 14 Hydrides and Group 1, 2, 13 and 14 Organyl Compounds with (*tert*-Butylimino)(2,2,6,6-tetramethylpiperidino)borane", Braun, U.; Böck, B.; Nöth, H.; Schwab, I.; Schwartz, M.; Weber, S.; Wietelmann, U. *Eur. J. Inorg. Chem.* **2004**, *18*, 3612–3628.\*
- "A Bicyclo[1.1.0]-1,3,2,4-diphosphadiboretane Cation and an Imino(phosphinidene)borane-AlBr3 Adduct", Knabel, K.; Klapötke, T. M.; Nöth, H.; Paine, R. T.; Schwab, I.; *Eur. J. Inorg. Chem.* 2005, *6*, 1099–1108.

#### Vorträge

- "Progress in Tellurium Azide Chemistry", 225<sup>th</sup> ACS National Meeting, Abstr. INOR–456, New Orleans, LA, USA, März **2003**, Klapötke, T. M.; *Krumm, B.;* Schwab, I.
- "Developments on the Chemistry of Tellurium and Selenium Azides", 9<sup>th</sup> International Conference on the Chemistry of Selenium and Tellurium, Abstr. IL–5, Mumbai, India, Februar 2004, Klapötke, T. M.; *Krumm, B.*; Polborn, K.; Schwab, I.
- "Stabilization of Chalcogen Azides and Cyanides", 36<sup>th</sup> International Conference on Coordination Chemistry, Abstr. O–4.20, Merida-Yucatan, Mexico, Juli 2004, Klapötke, T. M.; *Krumm, B.;* Mayer, P.; Polborn, K.; Schwab, I.
- "Synthese von perfluorierten Organotelluraziden, deren Vorstufen sowie Organotellur(v1)-Fluoriden", 11. Deutscher Fluortag, Schmitten/Taunus, September **2004**, Klapötke, T. M.; Krumm, B.; Mayer, P.; Polborn, K.; *Schwab, I.*

#### Posterbeiträge

- "Synthesis and Structures of Triorganotelluronium Pseudohalogenides", 6<sup>th</sup> International Conference on Inorganic Chemistry, AGICHEM, München, April **2002**, Klapötke, T. M.; Krumm, B.; Mayer, P.; Piotrowski, H.; Polborn, K.; *Schwab, I*; Vogt, M.
- "Synthesis and Characterization of Tellurium Cyanides", 225<sup>th</sup> ACS National Meeting, New Orleans, LA, USA, März **2003**, Klapötke, T. M.; Krumm, B.; Mayer, P.; *Schwab, I.*

<sup>\*</sup> Dieser und der folgende Artikel enhalten DFT- und *ab initio*-Rechnungen, die nicht Teil dieser Arbeit, sondern in Kooperation mit Prof. H. Nöth entstanden sind.

## Lebenslauf

#### Persönliche Daten

Ingo Schwab Orléansstrasse 63 81667 München E-Mail: ingo.schwab@web.de Geb. am 24. Sept. 1975 in Essen ledig, Deutscher Eltern: Ursula Schwab geb. Karow, Betriebswirtin; Karl Schwab, Dipl.-Ing. (DL1KSA)

## Schulbildung

| 09/1982–07/1986 | Grundschule Taufkirchen am Wald                                                                                           |
|-----------------|---------------------------------------------------------------------------------------------------------------------------|
| 09/1986–06/1995 | Gymnasium Unterhaching b. München mit Abschluss der<br>Allgemeinen Hochschulreife (Leistungskurse: Chemie, Eng-<br>lisch) |

## Zivildienst

| 08/1995–09/1996 | Zivildienst in der Landesgeschäftsstelle des Paritätischen |
|-----------------|------------------------------------------------------------|
|                 | Wohlfahrtsverbandes Bayern in München                      |

## Studium

| 11/1996–10/1998 | Grundstudium der Chemie, Ludwig-Maximilians-<br>Universität München (LMU)                                                                                                                                                           |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10/1998–05/2001 | Hauptstudium der Chemie (Nebenfach: Biochemie), LMU                                                                                                                                                                                 |
| 07/2001–12/2001 | Anfertigung der Diplomarbeit bei Prof. Dr. T. M. KLAPÖTKE<br>zum Thema "Untersuchungen zu Synthese und Eigenschaf-<br>ten von Telluroniumpseudohalogeniden und der ersten Se-<br>lenoniumazide", Abschluss als DiplChem. an der LMU |
| seit 02/2002    | Anfertigung dieser Dissertation bei Prof. Dr. T. M. Klapötke                                                                                                                                                                        |
|                 |                                                                                                                                                                                                                                     |

## Stipendium

| 01/2001-03/2002 | Stipendiat | der HANS-RUDO | olph-Stiftung |
|-----------------|------------|---------------|---------------|
|-----------------|------------|---------------|---------------|

# Berufstätigkeit

| 09/1996–10/1996 | Werkstudent bei der DAIMLER-BENZ Aerospace AG (jetzt EADS), Personalabteilung Produktbereich Militärflugzeuge, Ottobrunn                                                                                                                                                            |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09/1997–10/1997 | abermals Werkstudent bei der DAIMLER-BENZ Aerospace<br>AG, Produktbereich Militärflugzeuge, Ottobrunn                                                                                                                                                                               |
| 06/1998–12/2001 | Studentische Hilfskraft, später wissenschaftliche Hilfskraft<br>für Datenbankprogrammierung am Lehrstuhl für Betriebs-<br>wirtschaftslehre, Unternehmensführung, Logistik und Pro-<br>duktion (Prof. Dr. Dr. habil. Dr. h.c. mult. H. WILDEMANN),<br>Technische Universität München |
| 12/2000         | Access97 – Kursleiter an der VHS Starnberger See e. V.                                                                                                                                                                                                                              |
| 02/2002-04/2002 | Teilzeitbeschäftigter Wissenschaftlicher Mitarbeiter (BAT IIa/2) am Department Chemie der LMU                                                                                                                                                                                       |
| 04/2002–02/2003 | Vollzeitbeschäftigter Wissenschaftlicher Mitarbeiter (BAT<br>IIa) am Department Chemie der LMU                                                                                                                                                                                      |
| seit 03/2003    | Teilzeitbeschäftigter Wissenschaftlicher Mitarbeiter (BAT IIa/2) am Department Chemie und Biochemie der LMU                                                                                                                                                                         |

# Mitgliedschaften

| seit 12/2002 | American Chemical Society (ACS)                                                                                                     |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|
| seit 03/2004 | Gesellschaft Deutscher Chemiker (GDCh)                                                                                              |
| seit 09/2004 | Gründungs- und Vorstandsmitglied des Vereins zur Förde-<br>rung der Fakultät für Chemie und Pharmazie e. V. an der<br>LMU (ALUMNUS) |

finis

Es genügt nicht, keine Gedanken zu haben, man muß auch unfähig sein, diese auszudrücken

(Karl Kraus)