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1 Summary

Organisation is a fundamental principle of life. Matter needs to be arranged in space

in such a way that it enables reproduction. In biology, this organisation occurs at

different scales: from whole ecosystems to multicellular organisms and their tissues,

to individual cells and subcellular compartments with defined functions.

The blueprint for the spatial organisation of individual organisms is outlined in their

genomes. Understanding these blueprints to define what differentiates individual or-

ganisms from one another is a fundamental task in biology. Since an organism’s iden-

tity is defined by its genome, relating its structural composition directly to its genome

provides deeper biological insights into how life is organised. In cell biology, we focus

on understanding these relationships from the level of individual cells to tissues.

One biochemical method to analyse the spatial composition of individual cells builds

on subcellular fractionation. In this approach cells are split into their distinct com-

partments, for example by sequential centrifugation steps. The composition of each

compartment can then be investigated separately. By coupling cellular fractionation

to mass spectrometry (MS), this in principle allows for the unbiased identification of

the subcellular localisation of all components in a cell. This technique can further be

combined with perturbing a cell’s genome to directly link specific genes to their effect

on subcellular composition. I demonstrated the strengths of this approach in my char-

acterisation of the molecular mechanisms underlying activation of the immune sensor

NLRP3. Using subcellular fractionation coupled to mass spectrometry, we identified

the recruitment of NLRP3 to the trans-Golgi network as a key mechanism governing

inflammasome activation.

While this approach can generate deep biological insights, it is restricted to a com-

paratively low number of genes that can be investigated and provides limited spatial

resolution. Light microscopy delivers much higher spatial resolution while also allow-

ing for high-throughput analysis of composition and architecture of millions of cells.

However, gaining biological insights from microscopy images is not trivial. In recent
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1 Summary

years, a new method has emerged from computer vision research that uses machine

learning powered by deep neural networks to identify and compress complex patterns

into a representative feature space. This approach, called deep learning, shows promise

for extracting meaningful biological information from microscopy data.

Another technology that allows for the investigation of spatial composition at the

level of tissues is deep visual proteomics (DVP). In DVP, we use microscopy images to

identify cells within the larger spatial context of tissues and analyse them further using

mass spectrometry. This allows us to collect unbiased information on the molecular

composition of these cells while preserving spatial information. By increasing MS

sensitivity, we can even break this down to investigate the molecular composition

of single cells. Using this approach, I was able to delineate key markers defining

hepatocyte zonation in the liver.

Taking it a step further, I used deep learning models to unbiasedly phenotype hepato-

cytes on the basis of their subcellular distribution of Alpha-1 antitrypsin (AAT) in the

fibrogenic liver disease AAT deficiency (AATD), which is characterised by the misfold-

ing and accumulation of AAT . Combining this deep learning-driven phenotyping of

cellular morphology with DVP, resulted in the identification of a terminal hepatocyte

state marked by globular protein aggregates with a distinct proteomic signature, that

holds promise for understanding and ultimately counteracting the molecular mecha-

nisms underlying AATD disease progression.

The above-described approaches are observational, linking distinct cellular composi-

tions assayed using microscopy and MS to their functional implications. However, the

high throughput facilitated by modern microscopes allows for the assessment of various

aspects of cellular composition over millions of cells, which is compatible with a per-

turbational approach that looks at the effect of all coding genes on specific subcellular

phenotypes.

To enable this type of analysis, I developed spatially resolved CRISPR screening

(SPARCS). SPARCS uses automated high-speed laser microdissection to physically

isolate phenotypic variants in situ for subsequent genotyping. This enables robust,

genome-wide, high-throughput screening for spatial cellular phenotypes. Using SPARCS,

I was able to identify most known regulators of the cellular process of macroautophagy

in a single experiment, and even identified a gene with a previously undescribed cellu-

lar phenotype. SPARCS opens up a new paradigm for investigating the genetic basis

of subcellular phenotypes that can be applied to a variety of biological contexts.
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Finally, to facilitate the types of spatial analysis performed throughout this thesis, I

developed a software platform called scPortrait that generates single-cell images from

raw microscopy data. These single-cell images can be used for deep learning-based cell

phenotyping, as demonstrated throughout this thesis, but also for the development of

new deep learning models that generate even deeper biological insights. Completely

open source and building on available open data formats, scPortrait is maximally

compatible and provides a framework for the routine implementation of deep learning-

based investigation of cellular composition across various areas of biology.
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2 Introduction

2.1 From Observational to Perturbational Genetics

2.1.1 Decoding Phenotypic Traits: The Role of Genes in Protein
Biosynthesis and Deciphering the Genetic Code

Understanding the fundamental principles governing life has been a topic of profound

interest for centuries. Up until the mid-1800s, beliefs about the origins and diversity

of life were predominantly influenced by religious and philosophical doctrines; the

most prevalent view at the time was that humans were created by a divine entity, a

perspective deeply rooted in cultural and religious traditions and buttressed by the

belief that the complexity and diversity of life could only be the result of a higher

power.

Later in the 19th century, scientists began to challenge these views. In 1859, Charles

Darwin published his seminal work On the Origin of Species, where he proposed that

the diversity and complexity observed across species is the result of an evolution that

is given a direction through the process of natural selection (Darwin 1951). According

to Darwin, individuals with traits better suited to their environment, i.e. those with a

higher fitness, are more likely to survive and reproduce. These advantageous traits are

then passed on to subsequent generations, leading to gradual changes - or evolution

- in the species over time. This theory was based on the observation of the natural

variability of traits observed within populations and how certain traits conferred a

survival advantage in specific environments. Darwin’s theory provided a framework

for understanding the vast variety of observable traits found across species. From the

beak variations in finches to the shape of tortoise shells, this diversity results from an

adaptation to different environments.
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2.1 From Observational to Perturbational Genetics

Only seven years after Darwin’s publication, Gregor Mendel laid the foundation for

understanding how these highly varied traits are passed from one individual to the

next. In meticulous experiments in pea plants, he observed that phenotypic traits

did not blend, but instead appeared in specific ratios in the resulting offspring. For

example, crossing a plant with purple flowers and one with white flowers did not result

in a plant with pink flowers, but rather a fixed ratio of offspring with either white or

purple flowers. Based on these and other observations, Mendel proposed that parents

contribute “invisible factors”, discrete units which carry phenotypic information for a

particular trait, to their offspring (Mendel 1866). Each individual carries two “factors”

for each trait, one from each parent. These factors can either be “dominant” or

“recessive”, whereby the presence of a “dominant” factor always masks the presence

of a “recessive” factor in the resulting phenotype. Furthermore, Mendel stipulated

that the inheritance of these traits occurs independently of each other, allowing for

the generation of unique combinations of traits in offspring.

Combining Darwin’s theories on evolution by means of natural selection and Mendel’s

theories on inheritance, a new framework emerged in the first half of the 20th century

termed the “modern synthesis”, which sought to create a unified theory of evolution

and genetics (Fisher 1930; Wright 1931; Haldane 1932; Dobzhansky 1941). According

to modern synthesis, the main drivers of evolution are small genetic changes (muta-

tions) that occur within populations. These genetic changes are inherited according

to Mendelian principles, where traits are passed from parents to offspring as discrete

units. Natural selection then acts on these variations, favouring those that enhance

an organism’s fitness. Over time, this process leads to the evolution of new species.

Today, we understand that the “invisible factors” Mendel described are genes, seg-

ments of DNA that encode the instructions for building and maintaining an organism,

but in the early 20th century, the field of genetics was still in its infancy. The con-

cept of a gene as the fundamental unit of heredity was first introduced in 1909 by

the Danish botanist and geneticist Wilhelm Johannsen (Johannsen 1909). Through

the introduction of the term, he sought to distinguish between the physical basis of

heredity (genes or genotype) and their observable effects (phenotype). However, at

the time it remained unclear how this genetic information was stored so that it could

be passed from one individual to the next.

Only a few years after Mendel published his work on inheritance, Friedrich Miescher,

who was studying the composition of white blood cells, isolated a new substance

from the cell nuclei which he called nuclein. He found that nuclein was distinct from

proteins, and he noted that it was acidic, high in phosphorus, and contained nitrogen
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2 Introduction

(Miescher 1871). Eventually, this substance was identified as deoxyribonucleic acid

(DNA), a molecule consisting of a sugar-phosphate backbone and the four nucleotide

bases adenine (A), cytosine (C), guanine (G), and thymine (T) (Kossel 1911; P. Levene

and London 1929; P. A. Levene and Jacobs 1909). Despite Miescher’s initial tentative

suggestion that nuclein could be the sought after carrier of genetic information (Dahm

2008), experimental evidence conclusively identifying DNA as the molecule encoding

genes was only obtained much later, in the middle of the 20th century.

Meanwhile, exciting developments were taking place in the study of chromosomes,

thread-like structures that could be observed during cell division. Theories brought

forward by Edmund Wilson, Theodor Boveri and Walter Sutton postulated that chro-

mosomes were the carriers of genetic information and that their segregation during

cell division aligns with the Mendelian principles of inheritance (Schäfer 1897; Boveri

1902; Sutton 1902; Sutton 1903).

A key contribution to validating these theories was made by American geneticist Nettie

Stevens, who, for the first time, showed that the presence of specific chromosomes

directly correlates with the manifestation of specific physical traits. Stevens’s research

focused on the process of spermatogenesis (the production of sperm) in a variety of

insect species. During her research she made the key observation that somatic cells

from male mealworms had one chromosome that was smaller than the others, while

those of somatic cells from females were all the same size (Stevens 1905). Based

on this observation, she reasoned that this smaller chromosome determines the sex

of the organism. In a second work published a year later, she further showed that

during the process of spermatogenesis, the smaller and larger chromosomes, which

later became known as the X and Y chromosomes, exhibit Mendelian behaviour in

how they segregate during meiosis I and II (Stevens 1906).

Shortly thereafter, Thomas Hunt Morgan published the first experimental evidence

that genes reside on chromosomes. After performing random mutagenesis on the

fruit fly Drosophila melanogaster , Morgan discovered a mutant which had white eyes

instead of red ones. After cross-breeding experiments with red-eyed flies, he observed

that only male offspring inherited the white-eye trait. Through further experiments he

confirmed that this white-eye trait fit the pattern of sex-linked recessive inheritance

(Morgan 1910). In subsequent studies, he and his team observed and statistically

analysed the patterns of inheritance of multiple different traits (Morgan 1911; Morgan

1919; Bridges and Morgan 1923). Their research revealed a phenomenon known as

“genetic linkage”, where certain traits appear to be inherited together more often than
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2.1 From Observational to Perturbational Genetics

would be expected if all traits were inherited independently of one another, suggesting

that the genes governing these traits reside in close proximity to one another on the

same chromosome.

Together, their work established that certain regions of chromosomes are associated

with specific traits. This built a bridge between the abstract concept of heredity

and physical structures within cells. Yet, even with these advancements, the precise

biochemical nature of the hereditary substance remained a mystery.

This mystery was solved a few years later. In a seminal experiment conducted by Fred-

erick Griffith in 1928, he discovered that non-virulent bacteria could become virulent

when exposed to material from dead virulent bacteria, a concept he termed the “trans-

forming principle” (Griffith 1928). Then, in 1944, Oswald Avery, Colin MacLeod, and

Maclyn McCarty were able to identify the specific substance responsible for this trans-

formation. Using enzymes to selectively degrade specific components of the bacterial

lysates, they demonstrated that receiving bacteria were only transformed if the DNA

was left intact (Avery et al. 1944). This proved that DNA is the carrier of genetic

information, a finding that was later confirmed by Alfred Hershey and Martha Chase

through their work with bacteriophages (Hershey and Chase 1952). This constituted

a paradigm shift, as proteins, due to their higher complexity and diversity, were pre-

viously considered the likely candidates for genetic material.

Even with DNA identified as the carrier of genetic information, central questions

remained: How does DNA encode information? And what is the molecular mechanism

of its inheritance? In a further pivotal step in unraveling the genetic code, Edwin

Chargaff, through meticulous analysis of the chemical constitution of DNA, discovered

two key regularities in the base composition of DNA, now known as Chargaff’s rules.

First, he observed that the amount of adenine (A) always equals the amount of thymine

(T), and the amount of guanine (G) always equals the amount of cytosine (C) (Chargaff

1950). This regularity suggested a specific pairing mechanism in the DNA structure.

Second, he noted that, while the proportions of the bases vary between species, the

ratio of A to T and G to C remains constant across species (Chargaff et al. 1951;

Chargaff 1951). This suggested that this common pairing mechanism is universally

relevant even across different species.

At the time, it was already understood that biological entities like DNA or proteins

exist in three-dimensional shapes, although the structure of DNA remained elusive.

In the quest to uncover this unknown structure, Rosalind Franklin, together with

7



2 Introduction

Raymond Gosling, used X-ray crystallography to produce several high-resolution pho-

tographs of DNA fibers, in particular the famous “Photo 51” (Franklin and Gosling

1953) in 1953.

Building on Franklin and Goslings’ X-ray diffraction data and Chargaff’s rules, James

Watson and Francis Crick proposed that DNA took on the shape of a double-helix.

Their model suggested that DNA is composed of two opposing strands that form a

helical shape, with each strand consisting of a sugar-phosphate backbone and paired

bases (A with T and G with C) interacting with their counterpart through hydrogen

bonds (Watson and Crick 1953b). This structure not only explained the regulari-

ties in base composition observed by Chargaff, but also suggested a mechanism for

DNA replication: the two strands could separate and serve as templates for new com-

plementary strands (Watson and Crick 1953a). Watson and Crick’s groundbreaking

papers marked the beginning of a new era in molecular biology, as they provided a

clear framework for understanding how genetic information is not only stored but also

replicated.

However, despite understanding the structure of DNA, scientists were still unsure

about two key aspects: how the order of the DNA building blocks could be converted

into proteins (the genetic code), and how DNA specifies the chains of amino acids

that fold into three dimensional proteins. It was known that proteins are composed

of twenty different amino acids, and the challenge was to understand how the linear

sequence of four different nucleotides in DNA specified the amino acid sequence in

proteins, and, thereby, their function. Moreover, given that in eukaryotes DNA resided

in the nucleus and protein biosynthesis occurred outside of the nucleus, it was evident

that DNA could not directly serve as a template for protein synthesis, but that there

needed to be some type of intermediate substance that could move between cellular

compartments.

Through a variety of experiments looking at the infectious potential of viruses (Fraenkel-

Conrat and Williams 1955; Gierer and Schramm 1956), another nucleic acid called

ribonucleic acid (RNA) became the most likely candidate for this intermediate sub-

stance. Like DNA, RNA consists of four nucleotide bases in combination with a

sugar-phosphate backbone. In contrast to DNA, RNA contains the nucleotide base

uracil (U) instead of thymine (T) and ribose, a sugar with an additional oxygen atom

compared to the deoxyribose contained in DNA.

Building on theoretical postulations by the physicist George Gamow on a four-digit

system underlying the genetic code (Gamow 1954; Gamow and Yčas 1955) and under
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2.1 From Observational to Perturbational Genetics

the assumption that RNA was the missing intermediate substance, Crick, Griffith and

Orgel proposed the triplet codon hypothesis in 1957 to explain how a nucleic acid

sequence could be translated into an amino acid sequence. This hypothesis suggested

that each amino acid in a protein is specified by a set of three adjacent nucleotides,

called a codon, in the DNA sequence (Crick et al. 1957). Central to their theory

were the assumptions that all possible sequences of amino acids may occur and that

at every point the sequence can only be read in one correct way. To accommodate

these assumptions, they postulated that the genetic code needed to limit the number

of amino acids it could encode. Furthermore, the codons needed to be selected in such

a way that, during protein synthesis, the probability of accidentally reading frame-

shifted codons was minimised.

The first experimental validation of the role of RNA in carrying genetic informa-

tion came through experiments conducted by Sydney Brenner, François Jacob, and

Matthew Meselson in 1961. Using pulse-chase labelling, they showed that newly syn-

thesized RNA in Escherichia coli quickly became associated with ribosomes, serving

as a template for protein synthesis (Brenner et al. 1961). This specific type of RNA,

whose role it is to carry genetic information from the DNA to the ribosomes in the cy-

toplasm, is referred to as messenger RNA (mRNA) as proposed by Jacob and Jacques

Monod in a second publication in 1961 (F. Jacob and Monod 1961).

Concurrently, Marshall Nirenberg and Heinrich Matthaei provided the first experimen-

tal validation for the triplet codon hypothesis. Using a cell-free system they demon-

strated that synthetic RNA sequences could direct the synthesis of specific polypep-

tides (M. W. Nirenberg and Matthaei 1961). Their pioneering work showed that the

RNA sequence UUU encoded the amino acid phenylalanine, confirming the existence

of triplet codons. Through further experiments using the same system, Nirenberg con-

tinued to decipher more codons (M. Nirenberg and Leder 1964). In parallel, Har Gob-

ind Khorana developed methods for synthesising defined sequences of repeating RNA

(T. M. Jacob and Khorana 1965). By repeating a specific nucleotide sequences and

then observing the polypeptides produced, he determined the corresponding amino

acids – such as AAG specifying lysine (Nishimura et al. 1965; Söll et al. 1965).

By 1966, through the combined effort of Nirenberg, Khorana and other researchers,

the codons for all 20 amino acids had been identified, establishing the rules of the

genetic code specifying how triplets of nucleotides correspond to specific amino acids,

start or stop signals during protein synthesis — thus arguably cracking the code of life

(M. Nirenberg, Caskey, et al. 1966; Khorana et al. 1966). By working in a variety of
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2 Introduction

different organisms they determined how each amino acid was specified and demon-

strated that this code of life is universally applicable, constant across organisms and

must have existed for billions of years.

This breakthrough, paved the way for a deeper exploration of how genetic information

is processed and utilised within cells. In a concept first published in 1958 (Crick 1958)

and later expanded on in a second publication in 1970 (Crick 1970), Francis Crick

proposed the “central dogma” of biology, in which he described how he imagined the

flow of biological information, i.e. how the “the amino acid sequence of the protein”

was specified. He envisioned a system in which genes are encoded within the DNA,

which is then transcribed into RNA, which in turn is translated into proteins (Crick

1970). In his dogma the flow of information is unidirectional: once information has

been transformed into an polypeptide chain it can no longer reverse to become a nucleic

acid again (Crick 1958). This “central dogma” provided a framework to understand

how genetic information directs the synthesis of proteins, thereby linking the genetic

material to a functional output in living organisms. As James Watson, co-discoverer

of the double helical structure of DNA, once noted, “We used to think our fate was in

the stars. Now we know, in large measure, our fate is in our genes”.

2.1.2 Phenotypes are a Manifestation of a Multitude of Elements
Working in Concert

The identification of DNA as the carrier of genetic information and the subsequent

deciphering of the genetic code, marked a critical step in furthering our understanding

of the molecular mechanisms underpinning life. It became clear, that the biologi-

cal processes defining an organism are fundamentally encoded within its DNA. In

essence, DNA can be regarded as a sophisticated source code, providing a comprehen-

sive blueprint required for the development of an organism. If DNA is the source code,

then proteins should be considered the “molecular workhorses” of the cell. Proteins

make up the majority of a cell’s dry mass (Alberts et al. 2008). They serve not just

as the fundamental units that construct a cell, but also as the key players that carry

out nearly all cellular operations.

In the simplest view, proteins consist of a linear sequence of amino acids, a polypeptide

chain, that directly corresponds to the DNA sequence. Upon synthesis, they undergo

intricate three-dimensional structural changes as they assemble into their final three-

dimensional shape or structural conformation (Anfinsen 1973). This process is driven
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2.1 From Observational to Perturbational Genetics

by non-covalent interactions between the different amino acids in the polypeptide chain

(Alberts et al. 2008). These interactions are a consequence of the different chemical

properties of the amino acids contained in the chain: polarity, charge, hydrophobicity,

and the ability to form hydrogen or disulphide bonds, all fundamentally influence a

proteins’ final conformation and thus its biological function.

The same weak bonds that allow a polypeptide chain to fold, also allow proteins to

bind to one another to form larger structures in the cell. In fact, most biochemical

processes underlying cellular functions are orchestrated by large complexes of proteins

working in concert. Recent data suggest that a protein in yeast cells may interact with

at least 16 different partners on average (Michaelis et al. 2023).

As an added layer of complexity, proteins also frequently undergo post-translational

modifications (PTMs) after their initial synthesis. These modifications entail the co-

valent addition of functional groups like phosphate, acetyl- or ubiquitin groups to a

specific amino acid side chain, altering the chemical composition of the protein (Doll

and Burlingame 2015). PTMs can significantly affect both a protein’s conformation as

well as its activity, localisation or its interactions with other molecules (Alberts et al.

2008).

Moreover, protein expression is highly regulated and subject to multiple layers of

control. This regulation determines when and where a protein is synthesised, it’s lo-

calisation and it’s stability and eventual degradation (Preissler and Deuerling 2012;

Dikic 2016). While proteins constitute the main executors of all biological processes,

only about 3% of the human genome codes for proteins (Dunham et al. 2012). Some

other parts of the genome contain instructions for non-protein coding RNAs like ri-

bosomal (rRNA) that have a catalytic or structural function (Zhang et al. 2022), or

species like long-non-coding RNAs (lncRNAs), which appear to predominantly have

a regulatory function, for example during cell differentiation or development (Mattick

et al. 2023). But, the largest part of the genome is not transcribed at all, instead

fulfillling a regulatory role, for example by shaping the three-dimensional structure

of the genome (Rowley and Corces 2018) or by modulating the binding of proteins

regulating RNA transcription (Spitz and Furlong 2012). In this way, while individual

gene products are the functional units that execute the processes of life, their creation,

composition and interaction is tightly regulated through additional DNA sequences.

If “phenotype” is defined as a set of observable characteristics or traits, then, in the

context of individual cells, this would encompass all cellular components, as well as

their spatial orientation. Considering what we now know about the regulation of these
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2 Introduction

individual components, it is clear that not a single gene or DNA sequence, but instead

a multitude of sequences working in concert is the genetic basis for almost any given

cellular phenotype.

2.1.3 Perturbational Genetics to Map Genes to their Biological
Function

Since groundbreaking biological discoveries, like Stevens’s identification of the Y chro-

mosome and its role in sex determination, are built on observational studies, they can

initially only generate correlative insights and not determine causation. In contrast,

deliberately altering – or “perturbing” – the genomic sequence, also allows for the

exploration of causative relations by enabling comparative experiments between per-

turbed and unchanged wild type organisms. This paradigm is called “perturbational

genetics” and encompasses two fundamentally different approaches: reverse and for-

ward genetics. In reverse genetics, we start with a known alteration in a gene sequence,

and seek to determine the phenotypic effects resulting from this alteration. For exam-

ple, we can disrupt or “knock out” a specific gene, and, by observing what happens to

the organisms’ phenotype, infer the gene’s function. In contrast, in forward genetics,

we start with a phenotype and then identify the genetic basis underlying that pheno-

type. For example, we can randomly induce mutations in a number of organisms and

then select those individuals displaying a desired trait. By finding the location in the

genome that has been mutated, one can then identify the region driving the chosen

phenotype. Both techniques represent powerful tools to map genes to their biological

function.

2.2 Key Techniques of Molecular Genetics: from

sequencing to programmable gene editing

2.2.1 Nucleotide Sequencing

To better understand how a DNA sequence relates to molecular function, it is impor-

tant to be able to efficiently read the order of nucleotides within a DNA molecule or

“sequence” it.
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2.2 Key Techniques of Molecular Genetics

The chain-termination method, introduced by Frederick Sanger and his team in 1977,

marked a significant advancement in this area. Their method uses modified nucleotides

called dideoxynucleotides (ddNTPs) that lack the 3’ hydroxyl group found in regular

nucleotides, preventing the addition of further nucleotides during DNA strand elon-

gation. Consequently, DNA strand elongation terminates during synthesis whenever

ddNTPs are incorporated. By performing four separate reactions, each incorporat-

ing a different radioactively labeled ddNTP (ddATP, ddTTP, ddCTP, or ddGTP), a

mixture of DNA fragments of varying lengths is produced. Analysing the lengths of

these fragments through gel electrophoresis allows the reconstruction of the original

DNA sequence; Each fragment ends in the ddNTP used in that specific reaction, with

the fragment length corresponding to the position of that nucleotide (Sanger et al.

1977).

Later advancements, generally referred to as sequencing by synthesis (SBS), greatly

improved sequencing efficiency and throughput. Key innovations included transition-

ing from a four-reaction process to a single-reaction process by employing fluorescently

labeled dideoxynucleotides instead of radioactive ones, which streamlined the detection

process (Prober et al. 1987), and shifting from post-separation detection of fragment

lengths to real-time detection, which further enhanced the speed and accuracy of se-

quencing (Hunkapiller et al. 1991; Luckey et al. 1990).

These improvements enabled large-scale sequencing projects, beginning with simpler

model organisms like Caenorhabditis elegans (Waterston and Sulston 1995), Saccha-

raomyces cerevisiae (Goffeau et al. 1996) and moving to more complex organisms like

Drosophila melanogaster (Adams et al. 2000) orMus musculus (Chinwalla et al. 2002),

and ultimately culminating in the completion of the human genome sequence in 2001

(Consortium et al. 2001; Venter et al. 2001; Nurk et al. 2022). Ongoing efforts aim to

expand this to genomes of over 70 000 vertebrate species by 2030 (Rhie et al. 2021).

As the technologies improved, and specifically with the advent of next generation se-

quencing (NGS), which allows for massively parallel sequencing of millions of DNA

fragments simultaneously, sequencing costs per base have exponentially decreased

(Mardis 2011). While sequencing a whole human genome in 2008 cost approximately

1 million dollars (Wheeler et al. 2008), generating this same information in 2014 cost

less than 1000 dollars (Hayden 2014) and has further decreased since.

Recently, novel sequencing technologies that focus on generating long reads have

emerged (Kasianowicz et al. 1996; Jain, Olsen, et al. 2016). With the ability to
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generate reads of tens to thousands of kilobases in length, these platforms have signif-

icantly improved the quality of genome assemblies by reducing gaps and ambiguities

(Jain, Koren, et al. 2018), as well as allowed for the detection of structural variants,

large-scale alterations in the genome that involve significant rearrangements of DNA

(Amarasinghe et al. 2020).

The ability to sequence nucleotides has facilitated the emergence of centralised efforts,

like ENCODE, to annotate all bases with their biological function (Dunham et al.

2012) across a multitude of species.

While a central application of nucleotide sequencing is to understand genomic DNA

sequences, it can also be applied to the sequencing of RNA, thereby providing a snap-

shot of the expressed genes within cells at a given time. Sequencing RNA through SBS

involves generating a cDNA template through a reverse transcription reaction (Bal-

timore 1970; Temin and Mizutani 1970). Novel long-read technologies like Nanopore

now also facilitate the direct reading of RNA molecules (Jain, Abu-Shumays, et al.

2022; Workman et al. 2019).

2.2.2 Polymerase Chain Reaction

Another critical development was the invention of the polymerase chain reaction

(PCR) by Kary Mullis in 1983. PCR allows for the targeted amplification and modi-

fication of specific DNA sequences, with minimal knowledge of the targeted sequence

itself (Mullis and Faloona 1987).

A PCR consists of repeated cycles of DNA double strand denaturation at a high tem-

perature, the annealing of short complementary oligonucleotides (“primers”) flanking

the targeted DNA sequence to the template DNA, and the elongation of these primers

by a DNA polymerase enzyme. Because primers and building blocks for new DNA

strands (dNTPs) are provided in a large excess, PCR exponentially amplifies the tar-

geted sequence by a factor of 2n, with n indicating the number of cycles. The targeted

sequence can be modified by including sequences at the 5’ end of the primers, which

will be fused to the ends of the PCR product by the incorporation of the primers. In

this capacity, PCR serves as the basis for most single-cell transcriptomic technologies

as well as NGS methods.
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2.2.3 Molecular Cloning

The invention of PCR along with the discovery of additional molecular tools such

as restriction enzymes, which cut DNA at specific sequences called restriction sites,

(Arber 1978) and DNA ligases, which join DNA fragments (Lehman 1974), enabled

scientists to combine arbitrary DNA sequences together. The process of assembling

these blocks and subsequently directing their replication within a host organism is

referred to as molecular cloning. By using defined DNA constructs to transfer genetic

information to new organisms, called a vector, DNA sequences assembled via cloning

can be subsequently expressed in a compatible host organism. This technology can be

used to investigate the function of naturally existing or newly created genes in con-

trolled or biologically interesting contexts, or to drive the production of “recombinant”

proteins.

For example, by deliberately employing a mismatched primer during a PCR reaction, a

point mutation in a gene of interest can be introduced. In a subsequent PCR reaction,

compatible restriction sites can be brought into the DNA sequence using a primer

with overhanging 5’ ends. This mutated gene PCR product can then be cloned into a

plasmid, a short, circular piece of DNA, for example, by restriction and ligation. This

plasmid can then be amplified in bacteria such as Escherichia coli before being used

to express the mutated gene in a relevant model organism to study the effect of the

mutation. Indeed, plasmids conferred the virulence trait observed by Griffith in his

experiments on the nature of the genetic material (Griffith 1928).

This is only one example of the manifold applications possible using molecular cloning,

coupled with protein expression, in perturbational genetics. While this is a very power-

ful strategy, synthetically introducing a gene construct into an organism generally does

not accurately reflect physiological conditions. For instance, proteins might not un-

dergo the same post-translational modifications as their native counterparts or might

be shuttled to different cellular compartments, both of which could significantly alter

their function. Furthermore, synthetically expressed constructs do not follow the same

regulatory mechanisms as the native gene, which makes it difficult to study dynamic

processes or look at temporal regulation.
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2.2.4 Precise Genome Editing

Another strategy to manipulate an organism’s DNA is through genome editing. Here,

an organism’s genomic DNA is directly modified in a defined manner. For example,

the function of individual genes can be disrupted (“knock-out”) or short DNA frag-

ments can be inserted at random or defined positions (“knock-in”). This allows for the

targeted perturbation of genetic sequences under physiological conditions. Modern

genome editing technologies rely on endonucleases to create double-stranded breaks

(DSBs) at specific locations in the genome. These breaks are then repaired by the cell’s

own machinery, either through the error-prone non-homologous end joining (NHEJ)

(J. K. Moore and Haber 1996; Chang et al. 2017) or mostly error-free homologous re-

combination also called homology-directed repair (HDR) (Liang et al. 1998) pathways.

NHEJ can occur throughout the cell cycle, whereas HDR is mainly limited to the S/G2

phases (Hendrickson 1997; Saleh-Gohari and Helleday 2004). If the repair pathway

introduces a mutation in the targeted locus, the endonuclease no longer recognises

its target site on the genomic DNA, completing the editing process. Otherwise, the

endonuclease cuts the DNA again, and the process restarts.

If the resulting mutation is not an insertion or deletion of a number of nucleotides that

is a multiple of three this disrupts the reading frame of the encoded protein, introduc-

ing a so-called frameshift mutation. This shift results in a completely altered protein

sequence and, given that three of 64 possible codons encode a translation stop, likely

the premature termination of the polypeptide sequence. These types of prematurely

terminated mRNAs, where the stop codon is found in an unusual context, are usu-

ally degraded through specific cellular mechanisms such as nonsense-mediated mRNA

decay (Lykke-Andersen and Jensen 2015), resulting in a “knock-out”. If, during

the gene-editing process, a repair sequence is provided which is homologous to the

targeted locus, the HDR pathway can use this template to accurately repair the break

(J. Y. Wang and Doudna 2023), allowing for precise insertion of the desired genetic

sequence. While this approach usually has a lower efficiency than the generation of

knock-outs, it can be used to introduce specific mutations, correct genetic defects, or

insert new genes at targeted locations in the genome. Zinc finger nucleases (ZFNs)

were among the first tools developed for precise genome editing. ZFNs are engineered

nucleases created by combining a custom zinc finger DNA-binding domain with an

non-specific DNA cleavage domain from the FokI restriction enzyme (Y. G. Kim et

al. 1996). The DNA-binding domain consists of several zinc finger (ZF) motifs, each

recognising a specific 3-base pair DNA sequence. Typically, ZFNs have three to six
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ZFs, allowing them to target a 9 to 18-base pair sequence. For the FokI nuclease to

be able to cut double-stranded DNA, it needs to dimerise, thus to create a DSB, a

pair of ZFNs need to be designed that flank the desired locus (Miller, Holmes, et al.

2007). Transcription activator-like effector nucleases (TALENs) were developed

more recently, and work similarly to ZFNs, but use different DNA-binding domains.

In TALENs, the transcription activator-like effector (TALE) DNA-binding domain is

fused to the same FokI cleavage domain (Miller, S. Tan, et al. 2011). A TALE domain

consists of repeated units of 33-34 amino acids where the 12th and 13th positions de-

termine the nucleotide recognised by that repeat. By linking several of these repeats

together, the TALE domain can be designed to match the targeted DNA sequence

(R. Moore et al. 2014). Compared to ZFNs, TALENs offer a modular design, which

makes their application more straightforward and flexible, but they nevertheless re-

quires that a specific set of proteins needs to be engineered for each genetic locus that

is to be targeted. This is a time-consuming process. When a system called clustered

regularly interspaced short palindromic repeats (CRISPR) was discovered, which facil-

itates RNA-guided precise genome editing, the field of genome engineering underwent

a revolution. To target a new genetic locus using CRISPR, only a single, comparatively

short sgRNA molecule needed to be provided instead of a new engineered protein.

Originally described in bacteria, CRISPR is a bacterial defence system against bacteria-

targeting viruses called bacteriophages (Barrangou et al. 2007; Brouns et al. 2008;

Gasiunas et al. 2012; Jinek et al. 2012). After becoming infected by a phage, bacteria

capture short sequences of DNA from the invading phage and integrate them into a re-

gion called the CRISPR array in their own genome. The integrated sequences serve as

a genetic memory of the infection. Upon reinfection, the CRISPR array is transcribed

and processed into individual CRISPR RNAs (crRNAs). These crRNAs assemble

with trans-activating crRNA (tracrRNA) and CRISPR associated (Cas) proteins to

form an RNA-protein complex, which binds to the complementary DNA sequence in

the phage genome. Through the nuclease activity of the Cas protein a DSB is then

introduced to incapacitate the phage.

A crucial component of the CRISPR/Cas system is the Protospacer Adjacent Motif

(PAM). The PAM is a short, conserved DNA sequence on the target DNA that is

essential for the Cas protein to bind (Wiedenheft et al. 2012). Sequence specificity in

CRISPR/Cas systems is therefore generated through the combination of two factors:

complementarity to the spacer sequence and the presence of a PAM sequence directly

adjacent to the spacer sequence. The requirement for a PAM ensures, that in bacteria,

the CRISPR/Cas system as part of the prokaryotic immune system, only targets
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foreign DNA and not the host’s own genome, as the PAM sequence is not present in

the CRISPR array itself.

Building on this system, scientists were able to design synthetic single guide RNAs

(sgRNA) that allow the targeted introduction of a DSB at chosen genomic loci with

a suitable PAM sequence (Ran et al. 2013). The application of the CRISPR/Cas

system to genome editing has dramatically simplified the generation of genetic knock-

outs. In recognition of this breakthrough development, Emmanuelle Charpentier and

Jennifer Doudna were awarded the Nobel Prize in Chemistry for their development of

the CRISPR/Cas gene editing technology in 2020 (Press release: The Nobel Prize in

Chemistry 2020 - NobelPrize.org 2024), less than 10 years after its discovery.

2.3 Proteomics as a Tool for the Unbiased

Investigation of Cellular Composition

Proteomics is the large-scale study of protein abundances, modifications, localisations

and interactions. As the final product in the gene expression cascade, proteins are not

just the fundamental units that build a cell, but also the key players that execute nearly

all cellular processes. Because proteins carry out the actual functions of the cell, they

most directly determine cellular phenotype and function. Therefore, understanding the

complete proteome, the entire set of proteins expressed by a cell, tissue, or organism, is

crucial for comprehensively and mechanistically understanding biology at a molecular

level.

2.3.1 Basic Principles of Mass Spectrometry

Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge

ratio (m/z) of charged particles (ions). It works by ionising chemical compounds to

generate charged molecules or molecule fragments, which are then separated based on

their m/z ratio using electric or magnetic fields (Sinha and Mann 2020).

This principle goes back to the English physicist, J.J. Thomson, who, while investi-

gating the nature of cathode rays (streams of electrons observed in vacuum tubes),

observed that these rays were deflected by electric and magnetic fields (Thomson

1897). The degree of their deflection depended on their m/z. As a result, ions with
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different m/z will either travel at different speeds or follow different flight paths in the

same electromagnetic field (Thomson 1921). This fundamental principle is used by

MS to separate incoming ions according to their m/z. By measuring the intensity of

the separated ions, a mass spectrum can be generated, which can be used to infer the

composition and structure of the measured sample (Sinha and Mann 2020).

While all mass analysers rely on the same fundamental principles of how ions behave

in electric and magnetic fields, the specific method through which they deduce an ion’s

m/z depends on the build of the mass analyser.

The earliest type of mass analyser, the magnetic sector, uses a magnetic field to bend

the path of ions according to their momentum (Aston 1920; Thomson 1921). The

degree of bending (deflection) of the ion’s path in the magnetic field is directly related

to its m/z ratio given the same prior acceleration. By precisely controlling the magnetic

field strength, ions with specific m/z ratios can be directed to the detector.

Following the magnetic sector, the quadrupole mass analyser and the ion trap were

developed (Paul and Steinwedel 1953). In a quadrupole, ions are passed through four

parallel rods with alternating radiofrequency (RF) and direct current (DC) voltages.

Only ions with a specific m/z have a stable trajectory and can pass through the

quadrupole at a given time. By varying the RF and DC voltages, ions of different

m/z ratios are selectively filtered and detected, allowing for the sequential scanning

of a range of m/z values. In an ion trap, ions are confined within a three-dimensional

quadrupole field generated by a ring electrode and two endcap electrodes with applied

RF and DC voltages. Only ions with a specific m/z maintain a stable trajectory within

the trap. By varying the RF voltage, ions of different m/z values become unstable

and are sequentially ejected toward the detector, enabling the scanning of a mass

spectrum.

Around the same time as quadrupole analysers, time-of-flight (TOF) mass analysers

were introduced (Wolff and Stephens 1953). They function by accelerating ions with

the same kinetic energy and allowing them to drift through a field-free region (Ligon

1979). Since all ions were accelerated with the same kinetic energy, but the velocity

of an ion is dependent on its weight, lighter ions (with a lower m/z) travel faster than

heavier ions (with a higher m/z) (Sinha and Mann 2020). The time it takes for ions

to reach the detector (time of flight) is measured with great accuracy (ps) and used

to calculate the m/z ratio.

19



2 Introduction

Finally, the Orbitrap mass analyser represents a more recent advance in MS (Makarov

2000). The Orbitrap traps ions in an electrostatic field, where they orbit around a

central electrode with a circular and axial component. The axial frequency of these

oscillations only depends on the m/z ratio, and this frequency is detected, with the

m/z ratio being directly proportional to the square root of the oscillation frequency.

A Fourier transform converts these frequencies into a mass spectrum, providing high-

resolution measurements of m/z.

In modern mass spectrometry (MS) devices, multiple mass analysers are often used

in sequence to accurately quantify and identify even complex analytes. For instance,

it is common for the initial mass analyser to be a quadrupole, which is then followed

by a collision cell and a TOF or Orbitrap analyser. This configuration lends itself to

a process known as tandem mass spectrometry (MS/MS). In MS/MS, ions generated

in the initial mass spectrometry step, known as precursor ions, are selectively isolated

and then fragmented within the collision cell generating so called fragment ions, which

undergo a second round of mass analysis. The mass patterns of these fragment ions

offer additional structural information, allowing for more precise identification of com-

pounds and detailed determination of molecular structures. Often, signal intensities

at the MS1 level are used for quantification, while m/z spectra at the MS2 level are

used for identification (Sinha and Mann 2020).

In MS/MS devices, a central step is how precursor ions are selected for subsequent

analysis. Until recently, this was ubiquitously performed through data-dependent ac-

quisition (DDA) schemes, where the user defines a set of rules based on which the mass

spectrometer selected as many precursor ions as possible for further characterisation

(Sinha and Mann 2020). Recently, an alternative approach termed data-independent

acquisition (DIA) has emerged and is set to become the new standard (Venable et al.

2004; Gillet et al. 2012). In DIA methods, the mass spectrometer continuously cy-

cles across the entire mass range to select precursor ions in predefined fragmentation

windows. This generates unbiased insights into the composition of the precursor ions,

with much higher data completeness than DDA methods. However, it also generates

much more complex spectra which require advanced analysis techniques to map back

to individual proteins (Ludwig et al. 2018; Wallmann et al. 2024).
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2.3.2 Application to Proteins

The application of mass spectrometry (MS) to analyse the entire protein composition of

samples, known as proteomics, presents unique challenges due to the complex nature of

proteins. Proteins exhibit a wide range of sizes, structures, and modifications, making

their analysis far more intricate compared to small molecules or oligonucleotides.

Furthermore, in proteomics, it is not only crucial to identify the molecular weight of

peptides derived from a sample, but also to gain insight into their molecular structures.

For example, two peptides with identical molecular weights but different sequences can

have completely distinct biological roles. Therefore, simply measuring the mass is not

sufficient; the exact peptide sequence must be determined to accurately identify a

protein. For peptides, the MS/MS step provides vital information on the amino acid

sequence (Steen and Mann 2004). This complexity is further compounded by the

presence of post-translational modifications (PTMs), which can significantly alter a

protein’s structure and function.

A technique to help resolve these types of complex mixtures is liquid chromatography

coupled mass spectrometry (LC-MS), which first emerged in the late 1970s and early

1980s. Liquid chromatography (LC) is a technique that separates the components of

a mixture based on their differential interactions with a stationary phase and a mobile

phase, allowing for the isolation and analysis of individual compounds (Mondello et

al. 2023). Combining LC with MS, allows for the separation of complex mixtures of

analytes (like those in biological samples) followed by their precise identification and

quantification through MS or MS/MS (Arnott et al. 1993; Eng et al. 1994).

A breakthrough in the applicability of this approach was achieved with the develop-

ment of Electrospray Ionization (ESI) in the late 1980s (Whitehouse et al. 1985; Fenn

et al. 1989; Mann et al. 1989). A discovery for which John Fenn was awarded the

Nobel Prize in Chemistry in 2002 (Press release: The Nobel Prize in Chemistry 2002

- NobelPrize.org 2024).

ESI allows for the conversion of liquid-phase analyses (like those emerging from LC)

directly into gas-phase ions (Whitehouse et al. 1985). This is achieved by introducing

the sample, which is dissolved in a liquid solvent (often a mixture of water, organic sol-

vents like methanol or acetonitrile, and a small amount of acid to enhance ionisation)

into the ESI source through a narrow metal capillary or needle. A high voltage is ap-

plied to the metal capillary, creating a strong electric field at the tip. When the liquid

emerges from the capillary, this electric field causes it to form a fine mist of charged
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droplets, which are carried toward the mass spectrometer inlet by a combination of

the electric field and a stream of heated gas (nebuliser or drying gas), often nitrogen.

As the droplets travel, the solvent rapidly evaporates, causing them to shrink and the

charge density on their surface to increase, until the repulsive forces between the like

charges becomes greater than the surface tension of the droplet. At this point, the

droplet undergoes a “Coulomb explosion”, where it breaks apart into smaller droplets

and free ions. This process can repeat multiple times, further reducing the size of

the droplets, and eventually producing individual gas-phase ions from the analyte

molecules. These gas-phase ions are then directed into the mass spectrometer through

an inlet orifice, where they are analysed based on their m/z ratio. Through ESI,

the analyte molecules typically acquire multiple charges resulting in multiply charged

ions. This is advantageous because it effectively reduces the m/z ratio, allowing even

large biomolecules to be detected within the mass range of most mass spectrometers

(Fenn et al. 1989), but it also requires specialised software to extract molecular mass

information from the resulting spectra (Mann et al. 1989).

In principle, this approach can be applied to intact proteins or to protein fragments

called peptides as already alluded to above. So called top-down approaches anal-

yse intact proteins directly, in principle providing information about the entire pro-

tein molecule, including its post-translational modifications and sequence variations.

In contrast, bottom-up approaches analyse peptide mixtures, which are generated

through the enzymatic digestion of complete proteins. While top-down approaches

offer a more comprehensive view of protein structure and function, they can be chal-

lenging due to the larger size and complexity of intact proteins and limited sensitivity

resulting from poor ionisation of full-length proteins (Tran et al. 2011). Much more

common, is the application of bottom up proteomics (Nesvizhskii and Aebersold 2005),

which provides a high degree of sensitivity and throughput, while retaining a high level

of proteome coverage (Aebersold and Mann 2016).

Since the advent of MS based proteomics, many further advances both in LC perfor-

mance as well as in MS sensitivity (Bian, Bayer, et al. 2021; Bian, Zheng, et al. 2020;

Brunner et al. 2022; Thielert et al. 2023; Stewart et al. 2023) have greatly enhanced

our ability to accurately identify and quantify the proteins composing a sample. In

tissues and cell lines, 10 000 proteins can now be routinely quantified in a single LC-

MS run (Meier et al. 2018), even with sample runtimes of only 30 min (Guzman et al.

2024). This has also facilitated the practical applicability of MS to the analysis of

single-cells (Brunner et al. 2022). Using novel multiplexing strategies 3× 60 samples
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with a median depth of 2370 proteins per cell and per day have recently been analysed

in our group (Thielert et al. 2023)

2.4 Forward Genetic Screens as a Tool for

Uncovering Biology

Forward genetic screening is a powerful technique to map cellular phenotypes to their

underlying genetic basis. By generating a pool of mutagenised individuals and selecting

and genotyping those individuals which show a particular phenotype of interest, all of

the genes relevant for a specific biological process can, in principle, be identified in an

unbiased manner.

The process through which Thomas Hunt Morgan was able to map specific traits

to regions on the chromosomes of Drosophila melanogaster was one of the earliest

applications of a genetic screen. While he did not yet have the tools available to de-

termine the underlying gene sequence, the general screening principles have remained

the same. Since then, forward genetic screens have been used to understand a wide

range of biological processes.

One of the first seminal genetic screens was performed by Leland Hartwell in 1970.

After inducing random mutations in yeast cells, he identified temperature-sensitive

mutants with replication defects. Because yeast cells exhibit distinct morphological

changes at different stages of the cell cycle, Hartwell was able to determine the specific

stage where each of the mutants arrested using microscopy. This allowed him to

arrange them according to their time-resolved relevance during the cell cycle. Using

this approach, he was able to identify key regulators of cell cycle progression (Hartwell

et al. 1970), a breakthrough for which he was awarded the Nobel Prize in physiology

and medicine in 2001 (The Nobel Prize in Physiology or Medicine 2001 - NobelPrize.org

2024).

Another pivotal forward genetic screen was carried out by Sydney Brenner in 1974

using the roundworm Caenorhabditis elegans . By employing random mutagenesis,

Brenner generated a pool of approximately 300 mutants with altered morphology

(Brenner 1974). Since Caenorhabditis elegans has a relatively simple body plan with

a fixed number of cells and well-defined developmental stages, Brenner could easily

identify mutants with aberrant developmental patterns or morphology. Through this
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approach, he characterised the function of around 100 genes, establishing Caenorhab-

ditis elegans as a vital model system for genetic studies and identifying key genes

involved in its development.

In the 1980s, H. Robert Horvitz and his colleagues conducted another influential screen

in Caenorhabditis elegans . Similar to Brenner and building on his work, they made use

of the fact that Caenorhabditis elegans has a clearly defined body plan. Caenorhabditis

elegans is one of the few organisms that has an invariant cell lineage, meaning that the

exact number and position of cells in an adult worm are consistent across individuals.

This allowed the scientists to readily identify mutants affecting regulated cell death

pathways, as they showed an abnormal accumulation of cells that normally would

die and disappear. Using this approach, he was able to characterise the process of

apoptosis and identify regulators underlying this programmed cell death pathway (Ellis

and Horvitz 1986).

Brenner and Horwitz both received the Nobel Prize for their discoveries in “genetic

regulation and programmed cell death” in 2002 (The Nobel Prize in Physiology or

Medicine 2002 - NobelPrize.org 2024).

Finally, another pivotal forward genetic screen was performed in 1980 by Christiane

Nüsslein-Volhard and Eric Wieschaus. Using Drosophila melanogaster as a model sys-

tem, they performed a large-scale mutagenesis screen to identify genes relevant to con-

trol segment formation during development (Nüsslein-Volhard and Wieschaus 1980).

Drosophila melanogaster has a well-documented embryonic development process, in-

cluding the formation of distinct segmentation patterns. This ensured that mutations

affecting this process were readily visible under the microscope. This screen led to

the discovery of many key developmental regulators such as “toll” or “knüppel”, and

again was awarded with a Nobel prize in physiology and medicine in 1995 (The Nobel

Prize in Physiology or Medicine 1995 - NobelPrize.org 2024).

A commonality of all of these landmark screens is that a model organism was chosen

in which the phenotype of interest was readily visible. Indeed, this marks a core

principle of a successful screen: individuals with a positive phenotype need to be

easily distinguishable from those without.

The advent of modern genome-editing technologies with the ability to disrupt both

alleles of a given genetic locus, such as CRISPR/Cas, allows us to miniaturise genetic

screens to the level of individual human cells. We can now generate large mutant
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libraries, where each cell carries a different genetic knockout whereby all protein-

coding genes in the genome can be targeted at once. While this significantly increases

throughput, it also requires phenotypes to be read out at the single-cell level. As in the

previously described screens, how interesting phenotypes or “hits” are identified and

isolated is of critical importance. Considering the number of protein coding genes in

the genome, these libraries typically consist of millions of cells whose phenotype needs

to be assessed. This has largely limited cell-based genome-wide screens to one of three

types of easily selectable phenotypes: a difference in proliferation rate (Shalem et al.

2014), an inhibition of cell death (T. Wang et al. 2014), or a change in fluorescence

intensity compatible with fluorescence-activated cell sorting (FACS) (Parnas et al.

2015).

An example of an important discovery made by these modern pooled forward ge-

netic screens is the protein Gasdermin D (Shi et al. 2015). This protein controls a

strongly pro-inflammatory type of cell death called “pyroptosis”. When Gasdermin D

is activated by cleavage, its N-terminal portion translocates to the plasma membrane,

where it forms large pores that lead to water influx. Eventually the plasma membrane

ruptures and the cell bursts open, spreading its cytosolic contents. This stands in

contrast to apoptosis, which is a cell death pathway during which no cytosolic content

leaks. The discovery of Gasdermin D via a cell-based screen was corroborated by a

concurrent forward genetic screen in mice (Kayagaki et al. 2015).

2.5 Light Microscopy as a Technique to Assay

Cellular Composition

Light microscopy uses visible light focused through a series of lenses to magnify small

objects, thereby enabling the exploration of the spatial composition of cells down to

subcellular resolution. Especially following the invention of digital cameras, light mi-

croscopy has been automated to a high degree, making it possible to assay millions

of cells at high throughput. However, translating the resulting images into quantifi-

able metrics that facilitate conclusions about biological phenotypes is not straightfor-

ward.

In principle, images can be considered as arrays of numbers, that represent the intensity

of light at different regions – pixels, in case of digital image acquisition – of the imaged

area. But, unlike most other datatypes, the values of individual pixels only obtain
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their relevance through their neighbours. In contrast, in a gene expression dataset

describing a cell, the order in which we consider the genes, which are labelled with

an interpretable identifier, i.e. the gene name, is irrelevant and has no effect on the

represented biology. In an image this is not the case. If we randomly permute the

order of the pixels in an image, the information contained in the image will change.

Furthermore, cellular images do not have an inherent orientation. If we take an image

of a cell and rotate it by 180 degrees, then the cellular phenotype observed will not

have changed, i.e. the image still captures the same underlying biology, but if we are

directly comparing the matrix representation of these images, they will have almost

no overlap. Thus, to be able to extract meaningful information from these images, one

must be able to condense the extremely high dimensional pixel space into meaningful

features that capture the underlying biology of interest.

In recent years, the field of computer vision has emerged which, focuses on obtaining

detailed information and insights from digital images and videos through the devel-

opment of algorithms and models. Coupled with advances in computer hardware this

goal has recently become a reality.

2.5.1 A Brief History of Microscopy

Remarkably, light microscopy has already been used for over 300 years. One of the

early pioneers of microscopy was Antonie van Leeuwenhoek, who developed new tech-

niques for the crafting of microscopy lenses which allowed for clearer, more detailed

observations at higher degrees of magnification (Zuylen 1981). His work led to the first

descriptions of various microorganisms, including bacteria, protozoa, and spermatozoa

(Leeuwenhoek 1997), and provided some of the earliest insights into human tissues,

blood cells, and reproductive biology (Robertson 2023).

Since van Leeuwenhoek’s time, microscopy has undergone tremendous and continuing

advancements, particularly with the development of high-resolution techniques. The

introduction of Charge-Coupled Devices (CCDs) in the middle of the 20th century was

a major breakthrough, enabling the conversion of optical images into digital signals

(Boyle and Smith 1970). This innovation facilitated high-resolution, reproducible, and

quantifiable imaging, allowing for real-time visualisation, simplified data storage and

automated acquisition.
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Additionally, the discovery and application of fluorescent proteins, such as Green Flu-

orescent Protein (GFP) (Shimomura et al. 1962), and fluorescently labeled antibodies

have revolutionised the cell microscopy subfield by enabling researchers to tag and

visualise specific proteins on and within cells (Miyawaki 2011).

Further developments in microscope architecture have greatly enhanced imaging ca-

pabilities, offering unprecedented detail and clarity in cellular analysis. Notable ex-

amples are confocal microscopy, which uses a pinhole to block out out-of-focus light

and allow for the acquisition of high-resolution images also in the z-dimension (Marvin

1961; Minsky 1988), and super resolution techniques like STED (Stimulated Emission

Depletion) (Hell and Wichmann 1994) and PALM (Photo-Activated Localisation Mi-

croscopy) (Betzig et al. 2006), that circumvent the diffraction limit of light microscopy,

achieving nanometer-scale resolution.

2.5.2 A Brief History of Computer Vision

In 1943, Warren McCulloch and Walter Pitts introduced the first computational model

of a neuron that mimicked the functionality of animal brains (McCulloch and Pitts

1943). Their model consisted of an input layer which receives multiple binary inputs,

a logical layer which applies weights to these inputs and sums them up and an output

layer which fires if the sums exceed a specific threshold.

While this model, also called perceptron, provided the starting point for the devel-

opment of artificial neural networks, its application was limited to linear problems.

Linear problems are classification tasks where the data can be separated or classified

using a straight line (in two dimensions) or a hyperplane (in higher dimensions). Fur-

thermore, the model did not include any type of learning mechanism, which meant

that weights and threshold needed to be set manually.

A notable improvement on this model is Rosenblatt’s perceptron, which also operates

as a single-layer perceptron, but unlike McCulloch and Pitts’ neuron, incorporated a

learning algorithm to adjust weights to minimise classification errors based on previ-

ous results(Rosenblatt 1957; Rosenblatt 1958). This meant, that the weights could be

iteratively adjusted through successively passed inputs, minimising the difference be-

tween desired and actual output. While still limited to linear problems, Rosenblatt’s

perceptron demonstrated the practical application of ‘learning’ in neural networks

(Rosenblatt 1960).
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Figure 2.1 | Schematic Overview of a Perceptron. The basic structure of a
neural network unit, or perceptron. Each input node has a weight associated with
it, and the perceptron sums the weighted inputs and passes the result through an
activation function, typically a step function, to produce the output.

The first implementation of a neural network which was able to solve a nonlinear clas-

sification problem was the multi-layer Perceptron (MLP). Nonlinear problems require

more complex functions to separate the input space, which can no longer be described

by a single straight line (Fig 2.2). In contrast to a single-layer perceptron, an MLP

consists of multiple layers of nodes, with at least one input layer, one or more hidden

layers with non-linear activation functions and a final output layer (Rosenblatt 1961).

This concept presented a fundamental advance in the design of neural networks, which

allowed for the approximation of complex functions and decision boundaries.

Early MLPs struggled with effective learning due to a lack of efficient algorithms to

update weights in the model during training. The introduction of backpropagation

by Geoffrey Hinton, David Rumelhart, and Ronald Williams in the mid-1980s made

the efficient training of multilayer neural networks feasible (Rumelhart et al. 1986).

Backpropagation involves computing the gradient of the loss function, the metric used

to quantify the difference between the predicted values and the actual values during

training, with respect to each weight by applying the chain rule of calculus. This

gradient is then used to adjust the weights in the network to minimise the loss function.

Through backpropagation the training of deep neural networks finally became feasible,

and the field of neural networks experienced a resurgence of interest. By increasing

the number of layers, or the depth of the network, neural networks can learn more

intricate relationships between inputs and outputs, making it possible to model more
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class A
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Figure 2.2 | A linear vs a nonlinear Problem. In linear problems the two classes
can be separated by a single straight line. In nonlinear problems this is not possible.

complex data distributions. The training paradigm established by Hinton, Rumelhart,

and Williams remains the basis for training deep neural networks to this day.

The next fundamental advance in neural networks was the introduction of convo-

lutional kernels, so-called convolutional neural networks (CNN). CNNs combine two

special types of layers: Convolutional layers with trainable kernel weights learn spatial

hierarchies of features from input data. Pooling layers then reduce the dimensionality

of their input data by summarising features in local regions.

In simple terms, a convolution is akin to placing a small window (the filter) over an

image, multiplying the numbers under the window by the values in the filter, and

summing them up to obtain a single number that goes into a new image (the feature

map) (see Figure 2.3a). This process is repeated as the window slides across the entire

image, helping the network identify patterns like edges, textures, or shapes.

By convolving the original image with the convolutional kernels, and applying a nonlin-

ear activation function new feature mappings are obtained and each feature mapping

can be used as a class of extracted image features. To extract higher-level and more

complete feature representations, multiple convolution layers can be stacked within

the network model.

The resulting features are then compressed by the pooling layer, which in essence

divides the feature map into many distinct regions and aggregates or “pools” all values

in that region together (see Figure 2.3b). This not only effectively compresses the
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Figure 2.3 | Schematic Representation of a Convolution and a Max Pooling
Operation. (A) A convolution is a mathematical operation where a kernel slides over
an input image and is multiplied with the input values. The products are summed at
each position to produce a feature map. (B) Max pooling is a mathematical operation
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amount of data and parameters, but also makes the network invariant to some small

local morphological changes while retaining a larger perceptual field.

With this combination, CNNs are much better suited to generating meaningful low-

dimensional features from input images than MLPs, even for larger input images.

The original concept of CNNs was first introduced by Kunihiko Fukushima in 1980

with his Neocognitron model, which was designed to recognise visual patterns using a

hierarchical, multi-layered approach Fukushima.1980, but CNNs only gained practical

applications through work by Yann LeCun and colleagues much later. Through their

work on LeNet-5, a CNN designed for digit recognition tasks, they demonstrated

the effectiveness of CNNs for image recognition tasks for the first time (Lecun et al.

1998).

In the 2010s, significant advancements in Graphics Processing Units (GPUs) dramat-

ically accelerated the training of neural networks (Sun et al. 2019). GPUs, originally

mostly applied in the gaming industry, are specialised hardware designed for parallel

processing where they handle multiple computations simultaneously. This makes them

ideal for the matrix operations that form the basis of deep learning (C. Song et al.

2024). With drastic speed improvements over previous hardware, GPUs enabled the

efficient training of deeper and more complex neural networks.

The next iteration of CNNs - and revolution in deep learning - was marked by the intro-

duction of AlexNet by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton in 2012.

AlexNet introduced several innovations, including the Rectified Linear Unit (ReLU)

activation function, which speeds up training, dropout for regularisation to prevent

overfitting, and the concept of data augmentation to enhance model generalisation

(Krizhevsky et al. 2012):

1. ReLU is an activation function that replaces negative values with zero and lin-

early scales positive values. This non-saturating behaviour reduces the likelihood

of vanishing gradients, a problem that occurs when the gradients of the loss func-

tion become very small with respect to the model weights, so that weights are

updated very slowly or not at all during training. Vanishing gradients are a

problem more common in deeper networks, and preventing their occurrence is

key for the training of deeper, more performant networks.

2. Dropout regularisation is a technique where, during training, random neurons

are “dropped out” or deactivated in each training iteration. This forces the
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network to learn more robust features and prevent overfitting because it cannot

rely on the information from individual neurons. This method not only prevents

overfitting, but also makes models more resilient to variations in training data.

3. The performance of a neural network critically depends on the amount of input

data available for training. More extensive and diverse datasets typically en-

able models to learn more robust features and generalise better to new, unseen

examples. The process of data augmentation, where additional training sam-

ples are synthetically generated by applying transformations such as rotations,

translations or scaling to the original training dataset, increase variability in the

training data, helping models to generalise better to new unseen data without

requiring the acquisition of additional training data.

The development of AlexNet marked a pivotal moment in computer vision by achieving

a substantial improvement in the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) in 2012. ImageNet is a visual database used for training and evaluating

image classification algorithms. AlexNet ’s performance was a breakthrough, as it

reduced the top-5 error rate in withheld test data by more than 10 percentage points

compared to the previous best results (Krizhevsky et al. 2012), showcasing a dramatic

leap in accuracy and setting a new standard for performance in image recognition

tasks.

Since the development of AlexNet, a variety of further CNNs have been developed,

each improving upon previous models and achieving notable performance increases

(see Table 2.1).

These advancements in computer vision and CNN architectures have continually pushed

the boundaries of image recognition, contributing to significant improvements in var-

ious applications such as medical imaging (Esteva et al. 2017), autonomous driving

(X. Chen et al. 2016; J. G. Song and Lee 2023) and more.

2.5.3 The Modern Era of Computer Vision

The field of computer vision has continued to evolve, moving beyond traditional CNNs

to embrace new architectures and training paradigms. Two significant developments

in this modern era are the introduction of transformers and the rise of unsupervised

learning. These advancements have not only improved the accuracy and efficiency
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Table 2.1 | Overview of CNNs. Summary of different CNN models performance
on ImageNet classification task. Top1 Accuracy values taken from (Feng et al. 2019)
except when indicated with a *.

Model Year Key Features Top1 Acc Params Reference

AlexNet 2012 Introduced ReLU activation,
dropout, data augmentation

57.2% 60M (Krizhevsky et
al. 2012)

VGGNet 2014 Deep architecture with 16 or 19 lay-
ers, small 3× 3 filters

71.5% 138M (Simonyan and
Zisserman 2014)

GoogLeNet 2014 Inception module for efficiency, fewer
parameters

69.8% 6.8M (Szegedy et al.
2014)

ResNet 2015 Residual connections to enable very
deep networks

78.6% 55M (He et al. 2015)

DenseNet 2016 Dense connections between layers for
improved feature reuse

79.2% 25.6M (Huang et al.
2016)

EfficientNet 2019 Compound scaling for balancing net-
work depth, width, resolution

79.8%* 9.2M (M. Tan and Le
2019)

ConvNeXT 2022 Refined convolutional architecture
with improved performance and effi-
ciency

83.1%* 50M (Liu et al. 2022)

of computer vision models, but also expanded their applicability to a wide range of

complex problems, including biological research.

Transformers

A transformer is a deep learning model that leverages a mechanism called “self-

attention” to effectively capture long-range dependencies in data (Vaswani et al. 2017).

Self-attention enables the model to determine which parts of the input data are most

important for making predictions. It works by creating three different vectors (query,

key, and value) for each input element. The model then calculates how much attention

each element should pay to every other element by comparing their query and key vec-

tors, resulting in a set of attention scores. These scores are normalised into weights,

which are used to combine the value vectors of the input elements (Lin et al. 2021). In

the so called feed forward layers, self-attention outputs are processed to generate more

refined representations of the input data, which are then passed through additional

layers to produce the final prediction results. The name “transformer” reflects the

model’s ability to transform input data into meaningful representations through these

layers. This allows the model to dynamically focus on relevant parts of the input, and

capture relationships and dependencies within the data.

Transformers, while originally developed for natural language processing (NLP) tasks
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(Vaswani et al. 2017), have since also been adapted to image recognition tasks. Unlike

CNNs, which process images using convolutional layers, Vision Transformers (ViTs),

divide images into patches and treat them as sequences, similar to words in a sentence,

allowing the model to learn spatial relationships and patterns across the entire image

(Dosovitskiy, Beyer, et al. 2020). Vision Transformers offer advantages over traditional

CNNs, including improved performance and the ability to capture global context in

images more effectively. However, they require very large datasets for initial train-

ing, as they lack some of the inductive biases inherent to CNNs, such as translational

equivariance (that shifting input results in a corresponding shift in the output) and

locality (the ability to focus on local areas of the input data when making decisions).

This leads to poor generalisation when insufficient training data is used (Dosovitskiy,

Beyer, et al. 2020). But, much like NLP Transformers, ViTs achieve excellent perfor-

mance when pre-trained on large datasets with a subsequent fine-tuning on a specific

task with fewer datapoints.

Self-supervised Learning

A key principle in the training of deep neural networks is the use of a loss function to

quantify the difference between the predicted and actual values, which then guides the

adjustment of the model’s weights accordingly. However, generating labeled datasets

is time-consuming and limits the amount of available input data for training, which in

turn restricts model performance. As a result, self-supervised learning, where models

are trained without a priori labeled data, has gained increasing interest in computer

vision. In this approach, the model uses the data itself to generate labels or training

signals, thereby circumventing the need for manually labeled datasets.

Self-supervised learning in computer vision typically involves one of two main para-

digms: reconstruction tasks and contrastive tasks. In reconstruction tasks, the model

learns to predict missing parts of the data based on the remaining parts, effectively

generating useful features from the data itself (Caron et al. 2021). Contrastive tasks,

on the other hand, involve learning representations by distinguishing between similar

and dissimilar examples, which helps the model to capture meaningful patterns and

structures in the data (Dosovitskiy, Fischer, et al. 2014; T. Chen et al. 2020). One

technique for generating similar examples involves using data augmentation techniques

to create different views of the same data instance, such as by applying transformations

like rotations or cropping. Dissimilar examples are often generated by sampling from
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distinct, unrelated data instances, ensuring a broad range of contrasts for effective

learning.

2.5.4 Applications of Deep Learning to Biological Problems

The recent advancements in deep learning have found manifold application in the

analysis of complex biological data and have provided new solutions to challenges in

various biological domains, including protein structure prediction (Jumper et al. 2021;

Krishna et al. 2024), genomic analysis (Poplin et al. 2018; Theodoris et al. 2023; Cui

et al. 2024) or mass spectrometry (Zeng et al. 2022; Wallmann et al. 2024).

One of the most prominent applications is in protein structure prediction. AlphaFold,

developed by DeepMind, revolutionised this field with a breakthrough performance

that demonstrated a significant leap in accuracy over previous methods (Jumper et al.

2021).

In the realm of cellular imaging, deep learning has dramatically transformed the pro-

cess of image segmentation. While previous approaches mainly relied on thresholding

and watershed algorithms, segmentation via deep learning models has become the new

state-of-the-art. These approaches mainly utilise the U-Net architecture, which con-

sists of an encoder-decoder structure with skip connections to capture both high-level

and fine-grained details (Ronneberger et al. 2015). Variant implementations such as

DeepCell (Valen et al. 2016) or CellPose (Stringer et al. 2021), have further improved

cellular segmentation and tracking of cells in live-cell imaging.

Furthermore, deep learning has found application in the generation of image represen-

tations on the basis of microscopy images to predict cellular function. A recent example

is scDINO, an adapted ViT model trained on multichannel microscopy data, which

showed good performance in classifying immune cells in peripheral blood (Pfaendler

et al. 2023). In another application, scientists used a large perturbational microscopy

dataset containing cells treated with different chemical compounds, to train a variety

of self-supervised models to predict drug targets and gene family classification (V. Kim

et al. 2024). While so far no breakthrough performance akin to that of AlphaFold has

been achieved, these types of applications are promising. Through improved training

paradigms in combination with better training datasets, as well as the integration with

other data modalities, these types of models could, in the future, be used to create

“foundation models” that would be able to decode cellular function.
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3 Aims of the Thesis

In this thesis, I aimed to find a way to investigate phenotypes that capture the spa-

tial arrangement of cellular components in genetic screens. The developed technology

should provide sufficient throughput to scale to genome-wide applications in human

cells, while retaining a high resolution to also permit the capture of subtle pheno-

types. This type of technology would allow me to directly link specific genes to their

subcellular phenotypes.

Furthermore, I wanted to develop a tool that could identify these subtle phenotypes

robustly at the multi-million cell scale I was aiming at. In a first proof of concept,

I aimed to use supervised deep learning methods to characterise previously defined

phenotypes. Due to the current successes with deep learning, I later aimed to expand

this to include the unbiased identification of novel phenotypes.

Finally, the application of deep-learning techniques to microscopy images is partially

hindered by the lack of standardised frameworks for representing image-based pheno-

types at a single-cell level and making single-cell images available for deep learning

applications. Vast resources of microscopy images are publicly available, that as of

now, are not yet being fully utilised due to an absence of easy-to-use, open, standard-

ised computational tools.

To bridge this gap, I aimed to develop a computational framework that not only pro-

vides end-to-end processing of raw microscopy images into single-cell image datasets,

which is compatible with deep-learning based cellular phenotyping, but also establishes

a standardised data format for saving these images, which interfaces with current state-

of-the art deep learning platforms like PyTorch. Through the development of such a

framework, I hope to facilitate the generation of better computer vision models, as

well as to facilitate the training of multimodal models that are fully able to decode

cellular function.
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4.1 IKKβ primes inflammasome formation by

recruiting NLRP3 to the trans-Golgi network

The protein NLRP3 is a sensor of the innate immune system that indirectly de-

tects pathogen-derived molecules as well as cellular damage. Upon activation, it as-

sembles a large protein complex called the inflammasome which induces a strongly

pro-inflammatory form of cell death known as pyroptosis.

NLRP3 has been implicated in mediating the inflammatory component of diseases like

gout, atherosclerosis, Alzheimer’s disease as well as several infectious diseases, but its

molecular activation mechanism remained unclear. It was known that various triggers

have the capacity to activate NLRP3 inflammasome formation, but the specific signal

that is recognised by NLRP3 was unknown. In addition, a variety of signalling path-

ways have been described that modulate responsiveness of NLRP3 to these signals -

for example through PTMs. In the field of NLRP3 research this activity modulation

is referred to as “priming”, describing an increased capacity of NLRP3 to become

activated in response to an activating stimulus without already forming an inflamma-

some. Our understanding of what differentiates primed from non-primed NLRP3 on

a molecular level remains limited.

In this publication, we identified the recruitment of NLRP3 to the trans-Golgi net-

work as a priming modality of the NLRP3 inflammasome. Using cellular fractiona-

tion coupled with mass-spectrometry, we demonstrated that in response to a priming

stimulus, NLRP3 shifted to a cellular fraction strongly enriched for proteins of the

trans-Golgi network but not the cis-Golgi network. This observation corroborated

findings obtained via microscopy imaging, showing that primed NLRP3 co-localised

with phosphatidylinositol-4-phosphate (PI4P), a membrane phospholipid strongly as-

sociated with the trans-Golgi network. Together, our findings shed light on the rules
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governing NLRP3 inflammasome formation by uncovering a new priming modality of

the sensor protein NLRP3 .

The following research article was originally published here:

Schmacke, N. A., O’Duill, F., et al. (2022). “IKKβ primes inflammasome forma-

tion by recruiting NLRP3 to the trans-Golgi network”. In: Immunity 55.12, 2271–

2284.e7. issn: 1074-7613. doi: 10.1016/j.immuni.2022.10.021

38

https://doi.org/10.1016/j.immuni.2022.10.021


Article

IKKb primes inflammasome formation by recruiting
NLRP3 to the trans-Golgi network

Graphical abstract

Highlights

d iPSC-derived human macrophages form an NLRP3

inflammasome independently of NEK7

d NLRP3 priming by IKKb proceeds independently of

transcription and substitutes NEK7

d IKKb activity constitutes the predominant NLRP3 priming

mechanism in human cells

d IKKb drives NEK7-independent priming by recruiting NLRP3

to the phospholipid PI4P

Authors

Niklas A. Schmacke, Fionan O’Duill,

Moritz M. Gaidt, ..., Matthias Mann,

Heinrich Leonhardt, Veit Hornung

Correspondence
hornung@genzentrum.lmu.de

In brief

The NLRP3 inflammasome causes lytic

cell death and inflammation, but its

activationmechanism remains enigmatic.

Schmacke et al. now show that the kinase

IKKb provides an essential priming signal

for inflammasome formation by recruiting

NLRP3 to the trans-Golgi network.

Human cells predominantly use IKKb

instead of the priming factor NEK7.

Schmacke et al., 2022, Immunity 55, 2271–2284
December 13, 2022 ª 2022 Elsevier Inc.
https://doi.org/10.1016/j.immuni.2022.10.021 ll

4.1 IKKβ primes inflammasome formation by recruiting NLRP3 to the trans-Golgi network

39



Article

IKKb primes inflammasome formation
by recruiting NLRP3 to the trans-Golgi network
Niklas A. Schmacke,1 Fionan O’Duill,1 Moritz M. Gaidt,1,7 Inga Szymanska,1 Julia M. Kamper,1

Jonathan L. Schmid-Burgk,1,8 Sophia C. M€adler,2 Timur Mackens-Kiani,1 Tatsuya Kozaki,3 Dhruv Chauhan,1

Dennis Nagl,1 Che A. Stafford,1 Hartmann Harz,4 Adrian L. Fröhlich,1 Francesca Pinci,1 Florent Ginhoux,3,5,6
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SUMMARY

The NLRP3 inflammasome plays a central role in antimicrobial defense as well as in the context of sterile in-
flammatory conditions. NLRP3 activity is governed by two independent signals: the first signal primes
NLRP3, rendering it responsive to the second signal, which then triggers inflammasome formation. Our un-
derstanding of how NLRP3 priming contributes to inflammasome activation remains limited. Here, we show
that IKKb, a kinase activated during priming, induces recruitment of NLRP3 to phosphatidylinositol-4-phos-
phate (PI4P), a phospholipid enriched on the trans-Golgi network. NEK7, a mitotic spindle kinase that had
previously been thought to be indispensable for NLRP3 activation, was redundant for inflammasome forma-
tion when IKKb recruited NLRP3 to PI4P. Studying iPSC-derived human macrophages revealed that the
IKKb-mediated NEK7-independent pathway constitutes the predominant NLRP3 priming mechanism in hu-
man myeloid cells. Our results suggest that PI4P binding represents a primed state into which NLRP3 is
brought by IKKb activity.

INTRODUCTION

Cells of the innate immune system employ a repertoire of so-

called pattern recognition receptors (PRRs) to discriminate self

from non-self. Engagement of these PRRs triggers a broad array

of effector functions geared toward eliminating a microbial

threat. The inflammasome pathway constitutes a special class

of this PRR system that is signified by the activation of the

cysteine protease caspase-1 in a large supramolecular protein

complex.1 Activation of caspase-1 causes maturation of pro-in-

flammatory cytokines, most prominently IL-1b,2 as well as the in-

duction of a special type of cell death, known as pyroptosis.3

Among inflammasome sensors, NLRP3 plays a pivotal role in

antimicrobial defense as well as sterile inflammatory diseases.4

This is owed to the fact that NLRP3 is a highly sensitive, yet

non-specific PRR. In this regard, NLRP3 has been shown to

respond to the perturbation of cellular homeostasis by a broad

array of diverse stimuli, rather than being activated by a specific

microbe-derived molecule.5 K+ efflux from the cytosol has been

identified as a common denominator of many NLRP3 triggers.6

In this function, several types of lytic cell death have been shown

to result in secondary engagement of the NLRP3 inflammasome

pathway.7 However, K+ efflux-independent NLRP3 stimuli have

also been described,8,9 and a recent report has identified

dispersal of the trans-Golgi network (TGN) as a common denom-

inator of both K+ efflux-dependent and -independent NLRP3

triggers.10

Unlike other inflammasome sensors, NLRP3 critically depends

on the engagement of a priming step.11 This priming signal can

be provided by different types of receptors, typically PRRs that

trigger NF-kB activation. Lipopolysaccharide (LPS) activating

TLR4 is commonly used to provide a priming signal preceding

the actual NLRP3 activation step. Initially, the necessity of prim-

ing had been ascribed to the fact that NLRP3 is expressed at

limiting amounts in murine macrophages. In this respect, it has

been shown that in a process now also called ‘‘transcriptional

Immunity 55, 2271–2284, December 13, 2022 ª 2022 Elsevier Inc. 2271
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priming,’’ NF-kB activating stimuli drive the expression of Nlrp3,

thereby facilitating its activation.12,13 In line with these findings,

inhibition of transcription blocks this mode of NLRP3 priming,

whereas transgenic expression of NLRP3 bypasses the require-

ment of transcriptional priming.12,13 Extending this concept,

NLRP3 can also be primed non-transcriptionally, e.g., by a short

pulse of LPS treatment.14–16 These modes of priming have been

ascribed to a variety of post-translational modifications of

NLRP3, including phosphorylation, de-phosphorylation, de-

ubiquitination, and de-sumoylation.17,18 Although being mecha-

nistically unrelated, these events are commonly referred to as

post-translational or non-transcriptional priming. The fact that

many cells already express NLRP3 at sufficient amounts under

steady-state conditions underscores the importance of non-

transcriptional priming.19

Despite considerable insight into pathways that result in

NLRP3 priming, the activation step of the NLRP3 inflammasome

and its interconnection with priming have remained enigmatic. In

this regard, we and others have identified the mitotic spindle ki-

nase NEK7 (NIMA-related kinase 7) as a critical cofactor in

NLRP3 activation in murine cells.20–22 Notably, this role of

NEK7 is distinct from its function in the cell cycle, as its kinase

activity is not required for NLRP3 activation.21,22 NEK7 has

been suggested to interact with NLRP3 in a K+ efflux-dependent

manner, and deletion of NEK7 does not affect transcriptional

NLRP3 priming.21,22 This, in combination with a study modeling

a NEK7-containing NLRP3 pyroptosome based on a cryo-EM

structure of the NLRP3/NEK7 complex,23 has led to the conclu-

sion that NEK7 is involved in NLRP3 activation downstream of K+

efflux.24 Of note, studies identifying NEK7 as an indispensable

factor for NLRP3 activation have mainly been conducted in mu-

rine models. Here, we report that reductionist genetic dissection

of NLRP3 signaling in human cells revealed an additional

pathway of NLRP3 priming that enables NLRP3 inflammasome

activation independently of NEK7.

RESULTS

Human iPSC-derived macrophages and human myeloid
cell lines activate NLRP3 independently of NEK7
We and others have previously described NEK7 to be essential

for the activation of the NLRP3 inflammasome in the murine sys-

tem.20–22 To study the role of NEK7 in the human system, we

adopted a recently described iPSC-derived macrophage model,

in which human iPS cells are differentiated into macrophages

in vitro (hiPS-Macs).25 hiPS-Macs are fully capable of inflamma-

some activation: after priming with LPS, activation of the NLRP3

inflammasome with the ionophore Nigericin or the NAIP-NLRC4

inflammasome with Needle Tox resulted in pyroptosis (LDH

release) accompanied by the release of IL-1b and IL-18

(Figures S1A and S1B). Both cytokine and LDH release in

response to Nigericin, but not Needle Tox, were sensitive to

the NLRP3 inhibitor MCC950 (Figures S1A and S1B). To investi-

gate the role of NEK7 in NLRP3 inflammasome activation in

hiPS-Macs, we generated NEK7�/� iPS cell clones via

CRISPR-Cas9 genome editing. NEK7 deficiency neither affected

macrophage differentiation nor did it lead to altered NLRP3

expression levels (Figure S1C). Contrasting previous reports

from mouse cells,20–22 NEK7-deficient hiPS-Macs showed no

major impairment of their NLRP3 inflammasome response

(Figures 1A and S1D). Cytokine and LDH release following Niger-

icin stimulation remained sensitive to MCC950 in NEK7�/� hiPS-

Macs, confirming that Nigericin-induced pyroptosis was still

mediated by NLRP3 in these cells (Figure 1A). As expected,

NAIP-NLRC4 activation and IL-6 release also proceeded unper-

turbed in NEK7�/� hiPS-Macs (Figures 1A and S1D).

We then sought to further characterize NEK7-independent

NLRP3 activation in human cells. To this end, we used the

BLaER1 transdifferentiation system that we have previously

adopted to study innate immune sensing.26,27 Mirroring hiPS-

Macs, NEK7-deficiency showed no impact on NLRP3 inflamma-

some activation as assessed by release of LDH and IL-

1b (Figures 1B and S1E). To address whether the role of NEK7

for NLRP3 activation in human cells was overshadowed by a

functional redundancy with its close homolog NEK6, we gener-

ated cells deficient for both NEK6 and NEK7. Analogous to

NEK7-deficient cells, NEK6�/� 3 NEK7�/� BLaER1 cells

displayed unimpaired activation of the NLRP3 inflammasome

(Figures 1B and S1E). As expected, NLRP3�/� BLaER1 cells

showed no response to Nigericin stimulation, whereas they re-

mained responsive to NAIP-NLRC4 inflammasome activation

(Figures 1B and S1E). In line with these observations,

caspase-1 maturation upon Nigericin treatment also proceeded

independently of NEK7 (Figure 1C). Pretreatment with the

Figure 1. Human iPSC-derived macrophages and human myeloid cell lines activate the NLRP3 inflammasome independently of NEK7

(A) Four clones per indicated genotype of human iPSCs were differentiated into macrophages (hiPS-Macs), primed with LPS for 4 h and then treated with the

inflammasome activatorsNigericin (NLRP3) or Needle Tox (NAIP-NLRC4) in the presence of theNLRP3 inhibitor MCC950 as indicated before release of LDH (left),

IL-1b (middle), and IL-18 (right) was measured. Dots represent separately differentiated iPS cell clones of the indicated genotypes.

(B and C) BLaER1 monocytes of the indicated genotypes were primed with LPS for 4 h and subsequently stimulated with Nigericin or Needle Tox. LDH release

(B) of one or two clones per genotype is depicted. (C) One representative immunoblot of three independent experiments is shown.

(D) Three clones of THP-1 cells of the indicated genotypes were primedwith Pam3CSK4 for 4 h and subsequently stimulated with Nigericin for 2 h before release of

LDH (left) and TNF (right) were measured. Two different sgRNAs against NEK7 were used (#1 and #2). Dots represent individual clones.

(E) THP-1 cells of the indicated genotypes were primed with Pam3CSK4 for 4 h and subsequently stimulated with Nigericin for 2 h before immunoblotting. One

representative immunoblot of three independent experiments is shown.

(F) NLRP3�/� BLaER1 cells expressing the indicated NLRP3 orthologs under the control of a doxycycline-inducible promoter were treated with doxycycline for

the last 24 h of differentiation, primed with LPS for 4 h and subsequently stimulated with Nigericin (left) or Needle Tox (right) for 2 h. The same vector expressing

mCherry instead of NLRP3 was used as a mock control.

(G) Western blot of cells treated as in (F), one representative of three independent experiments is shown.

Data are represented as mean ± SEMwith dots representing biological replicates conducted on separate days unless indicated otherwise (one outlier in B is not

depicted #). ***p < 0.001, **p < 0.01, *p < 0.05, ns p R 0.05 calculated by two-way ANOVA followed by Tukey’s test (A, B, and D: TNF) or �Sidák’s test (D: LDH).

See also Figures S1 and S2.
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Figure 2. Priming activates IKKb to bypass NEK7 via a translation-independent mechanism in mouse cells

(A–C)Mousemacrophages constitutively expressingmmNlrp3 (mmMacs) of the indicated genotypes were stimulated with LPS +Nigericin simultaneously for 4 h,

with DNA for 28 h or with LPS + ATP for 2 h. (B) One immunoblot representative of two clones from two independent experiments is shown.

(legend continued on next page)
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NLRP3-specific inhibitor MCC95028 or prevention of K+ efflux by

increased extracellular K+ concentration6 blunted NLRP3 activa-

tion in wild type, NEK7�/� and NEK6�/� 3 NEK7�/� cells stimu-

lated with Nigericin, whereas it left the NAIP-NLRC4 inflamma-

some intact (Figures S1F and S2A–S2D), indicating that

Nigericin still relied on inducing K+ efflux to trigger NLRP3 inflam-

masome activation in absence of NEK7. In line with the results

obtained in BLaER1 cells, THP-1 cells deficient in NEK7 showed

no attenuation of Nigericin-triggered inflammasome activation,

whereas NLRP3�/� THP-1 cells were completely defective

(Figures 1D, 1E, and S2E).

NEK7-independent NLRP3 activation in human cells contrasts

with NEK7-dependent NLRP3 activation in mouse cells pub-

lished by us and others.20–22 To investigate if this difference is

caused by species-specific features of the human andmouse or-

thologs of NLRP3, we reconstituted NLRP3�/� BLaER1 cells

with different NLRP3 orthologs. Phenocopying the human ortho-

log, NEK7-deficient BLaER1 cells expressing mouse NLRP3

(mmNlrp3) mounted an unperturbed response to Nigericin

(NLRP3) and Needle Tox (NAIP-NLRC4) (Figures 1F, 1G, and

S2F). Taken together, these results demonstrate that unlike

mouse cells, human cells are intrinsically capable of activating

NLRP3 in a NEK6- and NEK7-independent manner.

Priming activates IKKb to enable NEK7-independent
NLRP3 inflammasome formation
Having established that human cells activate NLRP3 in absence

of NEK7, we wondered whether the NEK7-independent pathway

could be triggered in mouse cells where NLRP3 activation has

been shown to depend on NEK7.21 Here, we used an immortal-

ized mouse macrophage cell line constitutively expressing

mmNlrp3 (mmMacs) in which we had initially discovered the

requirement of NEK7 for NLRP3 activation through a forward ge-

netic screen.20 These cells do not require transcriptional priming

of NLRP3 for inflammasome activation, and stimulation with Ni-

gericin alone already activated NLRP3 in a fully NEK7-depen-

dent manner (Figures 2A and 2B). When testing different priming

modalities, we found that simultaneous treatment with LPS and

Nigericin led to NLRP3 activation independently of NEK7, as

determined by LDH release and caspase-1 maturation 4 h after

stimulation (Figures 2A and 2B). Concurrent stimulation with

Pam3CSK4 or R848 instead of LPS (Figures S3A–S3D) and

with ATP instead of Nigericin (Figure 2C) similarly resulted in a

NEK7-independent response. Of note, this NEK7 bypass trig-

gered by concurrent priming and stimulationwas only uncovered

when studying the inflammasome response several hours after

treatment (Figure S3E). Indeed, the NLRP3 inflammasome

response 1 h following concurrent LPS + Nigericin treatment

was still NEK7-dependent (Figure S3F). However, concomitant

LPS treatment enhanced this early NEK7-dependent NLRP3 in-

flammasome response compared with Nigericin treatment

alone. This is consistent with previous reports on rapid, non-tran-

scriptional NLRP3 priming enabling accelerated inflammasome

formation.14,15,29 Taken together, these results suggest that

NEK7-mediated priming and the LPS-induced NEK7 bypass

pathway are not only functionally redundant but may also act

synergistically to accelerate NLRP3 activation.

LPS sensing initiates diverse transcriptional programs. How-

ever, NEK7-independent priming remained functional in the

presence of translation-blocking concentrations of cyclohexi-

mide (CHX), indicating that it does not require de novo protein

synthesis (Figures 2D and S3G). To elucidate the signaling

cascade of NEK7-independent post-translational priming, we

genetically perturbed TLR4 and its downstream signaling adap-

tors TRIF (Ticam1) and MyD88 in either unmodified or Nek7�/�

mmMac cells. NLRP3 activation in response to Nigericin treat-

ment remained intact in Ticam1�/� orMyd88�/� cells (Figure 2E,

right panel; Table S1), whereas these cells displayed a selective

lack of antiviral (IP-10) or pro-inflammatory (TNF) gene expres-

sion, respectively (Figure 2E, left and middle panels). TLR4 defi-

ciency abrogated LPS-dependent cytokine production alto-

gether (Figure 2E, left and middle panels). Accordingly, unlike

their TLR4-sufficient counterparts, Nek7�/� 3 Tlr4�/� cells

were fully defective in NLRP3 activation (Figure 2E). In contrast,

Nek7�/� cells additionally deficient in either MyD88 or TRIF were

still able to mount an NLRP3 inflammasome response after

LPS + Nigericin treatment, albeit less effectively (Figure 2E). As

expected, Myd88�/� 3 Ticam1�/� cells deficient in NEK7 were

fully defective in NEK7-independent NLRP3 activation (Fig-

ure 2E). Altogether, these results indicate that the NEK7 bypass

can be induced downstream of both Myd88 and TRIF signaling.

To identify the common factor mediating the NEK7 bypass, we

turned our attention to the TAK and IKK complexes that consti-

tute the apical kinase complexes governing pro-inflammatory

signal transduction downstream of both MyD88 and TRIF.

When we used the small molecule Takinib to block the activity

of TAK1, the key kinase of the TAK complex, we found that the

NEK7 bypass was largely inhibited, whereas NLRP3 activation

in response to Nigericin remained intact (Figure S4A). We ob-

tained analogous results when we blocked IKKb, a kinase in

the IKK complex, using TPCA-1 (Figure S4B). Of note, for both

inhibitors, the NEK7 bypass was not fully abrogated; however,

it was attenuated to the same extent as the production of the

NF-kB-dependent cytokine TNF (Figures S4A and S4B).

The NEK7 bypass was blocked when we deleted Ikbkb, the

gene coding for IKKb, but remained unperturbed when

we deleted Chuk, the gene coding for IKKɑ (Figures 2F–2H).

Nek7�/� 3 Ikbkb�/� mmMac cells were almost completely

defective in NLRP3 inflammasome activation, whereas AIM2 in-

flammasome activation in response to dsDNA transfection

(D) mmMacs were pretreated with cycloheximide (CHX) for 30 min and stimulated as in (C).

(E) Two mmMacs clones per genotype were stimulated as indicated. Release of IP-10 (left), TNF (middle), and LDH (right) of two clones (sub-columns) from three

independent experiments (sub-rows) are depicted as heatmaps.

(F and G) mmMacs of the indicated genotypes were stimulated as in (A) before the release of LDH (F) and TNF (G) was measured.

(H) mmMacs of the indicated genotypes were stimulated as in (A) for 2 h. One representative of three independent biological replicates is shown.

Data are represented as mean ± SEM with dots representing biological replicates conducted on separate days. ***p < 0.001, **p < 0.01, *p < 0.05, ns p R 0.05

calculated by two-way ANOVA followed by Tukey’s test (A, C, and F), �Sidák’s test (D), or Dunnett’s test (G).

See also Figures S3 and S4 and Table S1.
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remained intact (Figures 2F–2H). Priming with R848 or NLRP3

activation with ATP similarly resulted in IKKb-dependent

NLRP3 inflammasome formation independently of NEK7

(Figures S4C and S4D). In conclusion, since IKKb is activated

downstream of the TAK1 complex, these findings suggest that

IKKb constitutes the critical kinase mediating NEK7-indepen-

dent NLRP3 inflammasome formation.

RIPK1 and caspase-8 have been implicated in non-transcrip-

tional NLRP3 priming.30 Although the NEK7 bypass continued

to function in Nek7�/� 3 Ripk1�/� mmMac cells (Fig-

ure S4E), Nek7�/� 3 Casp8�/� mmMacs were fully defective in

A

B

C

Figure 3. K+ efflux works synergistically

with IKKb to bypass NEK7

(A) mmMacs of the indicated genotypes were stim-

ulated with the NLRP3 inflammasome inducers Ni-

gericin or Imiquimod in the presence of LPS as

indicated for 4 h (Nigericin) or 6 h (Imiquimod).

(B andC)mmMacs of the indicated genotypeswere

stimulated as indicated and imaged every 30 min

(C) for 3 h in Hank’s balanced salt solution with or

without potassium + 10% FCS and 5 mg/mL propi-

dium iodide before LDH release was measured (B).

Data are represented as mean ± SEM with dots

representing biological replicates conducted on

separate days unless indicated otherwise.

***p < 0.001, **p < 0.01, *p < 0.05, ns p R 0.05

calculated by two-way ANOVA followed by Tu-

key’s test.

activating the NLRP3 inflammasome

despite Casp8�/� cells displaying unper-

turbed NLRP3 activation (Figure S4F).

ASC specking was also abrogated in

Nek7�/�3Casp8�/�mmMacs in response

to LPS + Nigericin (Figure S4G), showing

that caspase-8 deficiency affects NEK7-in-

dependent NLRP3 priming upstream of in-

flammasome formation. Since we found

IKKb to be crucial for the NEK7 bypass,

we checked whether caspase-8 deficiency

had an effect on IKKb activity.31 Indeed, we

observed reduced IKKb phosphorylation

after LPS stimulation ofCasp8�/�mmMacs

(Figure S4H), suggesting that reduced IKKb

activity, rather than a specific role of

caspase-8, explains the inability of

Nek7�/� 3 Casp8�/� mmMacs to activate

NLRP3 in response to LPS + Nigericin.

In contrast to ATP and Nigericin, which

depend on K+ efflux to engage NLRP3,

the TLR7 agonist Imiquimod (R837) has

been shown to induce NEK7-dependent

NLRP3 inflammasome formation indepen-

dently of K+ efflux.9 In mmMac cells, Imi-

quimod strongly depended on NEK7 for

NLRP3 activation even in combination

with LPS (Figure 3A). Given that all K+

efflux-dependent stimuli tested here can

engage the NEK7 bypass with concurrent

IKKb activation, we investigated whether K+ efflux might boost

Imiquimod-driven NLRP3 activation in Nek7�/� mmMacs.

Indeed, under low extracellular K+ conditions that facilitate K+

efflux,10 Imiquimod stimulation together with LPS led to a

NEK7-independent response that was significantly increased

over LPS stimulation alone and not detectable with a physiolog-

ical extracellular K+ concentration of 5 mM (Figures 3B and 3C).

Although the relative contributions of LPS- or Imiquimod-

induced IKKb activity and K+ efflux- or Imiquimod-induced

NLRP3 activation remain unclear, these data indicate that K+

efflux enhances the NEK7-bypassing effect of IKKb activation.
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Human myeloid cells use IKKb instead of NEK7 to prime
NLRP3 by default
Moving back into the human system, we wondered whether

NLRP3priming through IKKbwasalso responsible for theNEK7-in-

dependence of NLRP3 activation in human cells. Using the hiPS-

Macmodel, we found that IKBKB�/� cells showed a strong defect

in NLRP3 inflammasomeactivation,whereasNAIP-NLRC4 activa-

tionproceedednormally,with IL-18 releasebeingpartially compro-

mised (FiguresS5AandS5B).However,wealsoobserveda reduc-

tion in IL-6 amounts in IKKb-deficient hiPS-Macs following LPS

stimulation (Figure S5C). IKKb, by governing NF-kB-dependent

NLRP3 expression and also mediating the non-transcriptional

NEK7 bypass, fulfills a dual role in NLRP3 priming. Hence, any ef-

fects onNLRP3priming in IKBKB�/� hiPS-Macs cannot unequivo-

cally be ascribed to either transcriptional or non-transcriptional

NLRP3 priming based on these experiments. Although these re-

sultsestablish that IKKb is critical forNLRP3priming inhumancells,

the relative contributions of transcriptional and non-transcriptional

priming remain unclear in the hiPS-Mac model.

To clarify whether transcriptional or non-transcriptional NLRP3

priming is the predominant primingmodality in the human system,

we employed the BLaER1 model system. Given that hiPS-Macs

express NLRP3 under steady-state conditions without transcrip-

tional priming, we first sought to clarify if transcriptional priming

was required for NLRP3 activation in BLaER1 cells. Although

BLaER1 cells deficient in TAK1 (MAP3K7), in which NF-kB-medi-

ated transcription after LPS sensing is completely abrogated, did

indeed not produce pro-IL-1b upon LPS treatment anymore, they

still expressed NLRP3 (Figure S5D). Congruently, blocking protein

translation with CHX did not affect NLRP3 activation in these cells

(Figure S5E). These data show that in BLaER1 cells, transcrip-

tional priming is not required for NLRP3 inflammasome activation.

Still, again mirroring hiPS-Macs, stimulation with Nigericin alone

was not sufficient to activate NLRP3, but additional treatment

with LPSwas required to enable NLRP3 inflammasome formation

in BLaER1 cells (Figure S5F). The NAIP-NLRC4 inflammasome

formed in response to Needle Tox irrespectively of LPS priming

as expected (Figure S5F). These data demonstrate that BLaER1

cells require non-transcriptional priming of NLRP3 for inflamma-

some activation. In line with these findings, a short pulse of

concomitant LPS + Nigericin treatment led to robust NLRP3 acti-

vation in BLaER1 cells (Figure S5G). RIPK1, RIPK3, and caspase-

8 were dispensable for NLRP3 activation in response to Nigericin

and NLRC4 activation, but in GSDMD�/� BLaER1 cells, LDH

release for both inflammasomes was blunted (Figure S5H).

Given that non-transcriptional priming was still dependent on

TAK1 in BLaER1 cells and that TAK1 activates IKKb, we then as-

sessed NLRP3 activation in BLaER1 cells deficient for IKKb.

Corroborating our findings from hiPS-Macs and the murine sys-

tem, LDH release and caspase-1 maturation following NLRP3

activation were blunted in IKBKB�/� BlaER1 cells (Figures 4A,

4B, and S5I). In contrast, cells deficient in IKKɑ (CHUK), a close

homolog of IKKb, did not display a defect in inflammasome for-

mation (Figure 4A). Cells deficient in both IKKɑ and IKKb

(CHUK�/� 3 IKBKB�/�) phenocopied IKBKB�/� cells (Figures

4A and 4B). As expected, given the steady-state expression of

NLRP3 in BLaER1 cells, RELA�/�3 RELB�/� cells displayed un-

perturbed NLRP3 activation (Figures 4A and S5I) despite

strongly reduced pro-inflammatory cytokine transcription (Fig-

ure S5J). Reconstitution of IKBKB�/� BlaER1 cells with wild-

type IKKb, but not IKKb-K44M, a kinase-dead mutant of

IKKb,32 rescued NLRP3 activation, showing that the kinase ac-

tivity of IKKbwas required for non-transcriptional NLRP3 priming

(Figures 4C and 4D).

To investigate the kinetics of IKKb-mediated non-transcrip-

tional NLRP3 priming, we added the IKKb inhibitor TPCA-1 to

BLaER1 cells at different time points pre and post NLRP3 prim-

ing. Expectedly, adding TPCA-1 concurrently with LPS blocked

all priming and abrogated NLRP3 activity (Figure 4E). However,

adding TPCA-1 concurrently with or 30 min after Nigericin also

blocked or strongly reduced NLRP3 activity, respectively (Fig-

ure 4E). Experiments with primary human monocytes corrobo-

rated these findings (Figure S5K). In summary, these data

show that rapid, non-transcriptional priming by IKKb is required

for NLRP3 activation, further suggesting that human cells are

NLRP3 inflammasome competent in the absence of NEK7

because they engage IKKb by default.

Synergistically with IKKb, NEK7 can accelerate NLRP3
activation human cells
Having demonstrated that IKKb activation constitutes the pre-

dominant priming pathway in the human system, we wondered

whether NEK7-mediated priming could be used by human cells

at all. A hallmark of NEK7-mediated NLRP3 priming is the direct

interaction of NEK7 and NLRP3.21 NLRP3 co-immunoprecipi-

tated with NEK7 from THP-1 cells, indicating that the human

NEK7 protein (hsNEK7) could in principle function to prime

NLRP3 (Figures 5A and S6A). Of note, this interaction was inde-

pendent of K+ efflux. We then reconstituted NLRP3 inflamma-

some signaling in HEK-293T cells, which normally do not ex-

press NLRP3 or ASC, the core signaling components of the

NLRP3 inflammasome (Figures S6B and S6C). Notably, in this

reconstitution system, inflammasome activation is driven by

overexpression of NLRP3 and proceeds without stimulation by

Nigericin. Hence, we consider inflammasome formation in this

HEK-293T inflammasome assay to directly report the priming

status of NLRP3. Here, we found that the mouse and human or-

thologs of NEK7 enhanced the activation of both NLRP3 ortho-

logs, showing that hsNEK7 is capable of priming NLRP3

(Figures 5B and S6D). To investigate if NEK7 has a physiological

role in NLRP3 priming, we went back to our hiPS-Mac system.

Since we had found NLRP3 activation to require both NEK7

and LPS priming after concomitant LPS + Nigericin stimulation

at early time points in mouse cells (Figure S3F), we tested the

same condition in hiPS-Macs. Indeed, concomitant stimulation

with LPS + Nigericin for 1 h resulted in NEK7-dependent release

of LDH, whereas 4 h of LPS + Nigericin stimulation rendered

NLRP3 activation NEK7-independent (Figures 5C and 5D).

From these data, we conclude that IKKb, which is required to

activate NLRP3 in all human cell lines tested here, operates in

synergywith NEK7 to drive NLRP3 priming. NEK7 can accelerate

NLRP3 priming at early time points, when IKKb is not yet fully

active. At later time points, IKKb becomes redundant with NEK7.

Recruitment of NLRP3 to PtdIns4P induces NEK7-
independent inflammasome activation
Finally, we investigated how IKKb activation enables NEK7-inde-

pendent NLRP3 activation. As it has recently been reported that
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interaction of NLRP3 with phosphatidylinositol-4-phosphate

(PI4P) on the TGN is an essential requirement for inflammasome

formation,10 we investigated the subcellular localization of

NLRP3 during priming. To this end we generated Pycard�/�

J774 mouse macrophages expressing a fusion protein of the

PI4P-binding pleckstrin homology (PH)-domain of oxysterol-

binding protein (OSBP) and mCherry (OSBP[PH]-mCherry). In

these cells, we found LPS treatment to result in the accumulation

of NLRP3 at PI4P-rich sites (Figures 6A and 6B). Of note, this

translocation cannot be caused by NLRP3-mediated pyroptosis,

since Pycard�/� cells are incapable of NLRP3 inflammasome

formation. The recruitment of NLRP3 to PI4P was markedly

reduced by the IKKb inhibitor TPCA-1 (Figures 6A and 6B). In

line with our findings on LPS-dependent non-transcriptional

priming in human and mouse cells, NLRP3 recruitment to PI4P

occurred rapidly, generally within 30 min after LPS stimulation

(Figure S6E). We did not observe NLRP3 translocation to mito-

chondria—in fact, PI4P-rich sites appeared mostly distinct

from mitochondria (Figure S6F). To identify the cellular compart-

ment that NLRP3 is recruited to, we fractionated lysates of

Pycard�/� J774 cells. Post-nuclear lysates were centrifuged at

5,000 3 g to obtain a pellet (P5) and supernatant (S5) fraction.

The S5 fraction was further subjected to centrifugation at

100,0003 g to yield a pellet (P100) and supernatant (S100) frac-

tion. We found NLRP3 in all fractions irrespectively of LPS prim-

ing or concomitant IKKb inhibition (Figure 6C). However, when

we further fractionated P100 across a linear sucrose gradient,

we found NLRP3 to become enriched in the top fractions upon

LPS stimulation, where we also found the PI4P-binding

OSBP(PH)-mCherry fusion protein (Figure 6D). This enrichment

of NLRP3 was blocked in the presence of TPCA-1, and, in line

with our imaging data, unstimulated cells showed some

NLRP3 enrichment on both ends of the gradient. Of note, the

mitochondrial membrane protein TOMM40 was also present in

A B

C D E

Figure 4. NLRP3 priming through IKKb is required for inflammasome activation in human myeloid cell lines

(A) LDH release from BLaER1 clones of the indicated genotypes primed with LPS for 2 h and subsequently treated with Nigericin or Needle Tox for 2 h.

(B) One representative of three immunoblots from cells treated as in (A). The asterisk denotes an unspecific band.

(C) Immunoblot of IKBKB�/� BLaER1 cells expressing wild-type IKKb or kinase-dead IKKb-K44M under the control of a doxycycline-inducible promoter treated

with doxycycline during the last 8 h of differentiation.

(D) LDH release from BLaER1 cells as in (C) primed with LPS for 2 h and subsequently treated with Nigericin or Needle Tox as indicated.

(E) LDH release from BLaER1 monocytes primed with LPS for 2 h before stimulation with Nigericin or Needle Tox. TPCA-1 was added at different time points as

indicated.

Data are represented as mean ± SEM with dots representing biological replicates conducted on separate days. ***p < 0.001, **p < 0.01, *p < 0.05, ns p R 0.05

calculated by two-way ANOVA followed by Dunnett’s test (A and E) or �Sidák’s test (D).

See also Figure S5.
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the P100 fraction, but at the opposite end of where the

OSBP(PH)-mCherry construct was found. We then analyzed

the organelles present in fractions #2 and #11 via mass spec-

trometry (Table S2). The TGN, but not the cis-Golgi network,

was highly enriched in fraction #2 along with weakly PI4P+ or-

ganelles such as endosomes33 (Figures 6E and S6G). Taken

together, upon priming, NLRP3 translocates to PI4P-rich sites

mostly on the TGN.

Based on these data, we hypothesized that the accumulation of

NLRP3 on PI4P-rich sites induces NEK7-independent NLRP3

activation. To confirm this hypothesis, we directly tethered

NLRP3 to PI4P by fusing it to the PH-domain of OSBP as reported

before.10 Although a previously described K127A, K128A, K129A,

and K130A quadruple mutant of mmNlrp3 (Nlrp3(4KA)) was

incapable of localizing to the TGN in J774 cells, Nlrp3(4KA-

OSBP(PH)) constitutively localized to the TGN as expected (Fig-

ure S6H). When we expressed wild-type Nlrp3, Nlrp3(4KA), and

Nlrp3(4KA-OSBP(PH)) in Nlrp3�/� J774 mouse macrophages,

we found wild-type Nlrp3 to facilitate caspase-1 maturation in a

NEK7-dependent manner and Nlrp3(4KA-OSBP(PH)) to activate

caspase-1 independently of NEK7 (Figure 6F). Nlrp3(4KA) expect-

edly did not lead to any detectable caspase-1 processing (Fig-

ure 6F). Of note, these cells did not require priming with LPS, as

they expressedNlrp3 under the control of a doxycycline-inducible

promoter, mirroring above results (Figure 2).

Together, these results demonstrate that IKKb induces NEK7-

independent NLRP3 priming by increasing the recruitment of

NLRP3 to PI4P and establish PI4P-recruitment of NLRP3 as a

priming modality of the inflammasome (Figure S6I).

DISCUSSION

Since its first description in 2001,34 NLRP3 has attracted much

attention as a key driver of antimicrobial and sterile inflamma-

tion.7 Nonetheless, despite being in the focus for almost two de-

cades, the molecular mechanism of NLRP3 activation has re-

mained obscure. The two-step model of inflammasome

priming and activation predates the discovery of NLRP3 and

A B

C D

Figure 5. NEK7 accelerates NLRP3 activation at early priming time points in iPSC-derived human macrophages

(A) THP-1 cells were primedwith Pam3CSK4 for 4 h and then stimulated with Nigericin for 30min before lysateswere immunoprecipitatedwith anti-NEK7 antibody

or isotype control. One representative immunoblot of three independent experiments is shown.

(B)NEK7�/�HEK293T cells were transiently transfected with plasmids driving expression of an ASC-RFP fusion protein andmouse or human orthologs of NLRP3

and NEK7 as indicated. ASC-RFP specks were imaged 24 h after transfection. Dots represent technical replicates from one representative of three independent

experiments.

(C and D) Four clones per genotype of NEK7�/� or wild-type human iPS cells were differentiated into hiPS-Macs and treated with Nigericin or LPS + Nigericin for

4 h or LPS + Nigericin for 1 h in the presence of the NLRP3 inhibitor MCC950 as indicated. Dots represent individual clones.

***p < 0.001, **p < 0.01, *p < 0.05, ns p R 0.05 calculated by two-way ANOVA followed by Dunnett’s test (B) or �Sidák’s test (C and D).

See also Figure S6.
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inflammasomes altogether, originating from the notion that both

a pro-inflammatory and a cell-death inducing signal are required

to release mature IL-1b from murine bone marrow-derived mac-

rophages.35 In retrospect, these early studies had assessed

NLRP3 inflammasome activation employing a K+ efflux-inducing

trigger. Subsequent studies have revealed that the pro-inflam-

matory signal indeed serves two independent functions in the

context of NLRP3 inflammasome activation. Although this signal

is critically required to induce pro-IL-1b expression, it is also

necessary to render NLRP3 activatable in the first place. This

became apparent when studying the maturation of caspase-1,

the expression of which is independent of a pro-inflammatory

signal, as a proxy of NLRP3 inflammasome activation. Here, it

has been revealed that unprimed macrophages do not mature

caspase-1 upon K+ efflux-inducing stimuli13,36 but that addi-

tional priming by a pro-inflammatory signal was required to facil-

itate this step. Of note, this unique requirement of NLRP3 priming

by a pro-inflammatory signal (referred to as signal 1 or priming in

this manuscript) must not be confused with the signal that in-

duces pro-IL-1b expression. Indeed, although both signals can

be provided through the same PRR, they can also be separated,

and the pro-IL-1b inducing stimulus is not necessary for NLRP3

inflammasome activation.

Although the two-step activation model constitutes an impor-

tant conceptual framework for NLRP3 activation, it has proven to

be an enormous conundrum because it is not trivial to allocate

signaling events upstream of NLRP3 to either priming or activa-

tion. The fact that several pathways toward NLRP3 priming have

been described37 is likely attributable to stimulus-, cell type-, and

species-dependent aspects as well as temporal dynamics play-

ing an important role in this context. We conceptualize that prim-

ing serves the function to increase the cellular pool of NLRP3

molecules that are able to respond to an activating stimulus,

either by upregulating production of the NLRP3 protein or by

lowering the activation threshold of individual NLRP3 molecules.

In this regard, wewould interpret the existence of multiple redun-

dant NLRP3 priming pathways as the possibility to integrate

diverse pro-inflammatory inputs to achieve this activatable state.

In fact, we consider this pleiotropy to be a key trait of NLRP3

priming, but not activation pathways.

The mitotic spindle kinase NEK7 has been shown to be an

essential cofactor of NLRP3 activation,20–22 and it has been sug-

gested that NEK7 facilitates inflammasome formation by medi-

ating recognition of the second signal.21,23 Studying the role of

NEK7 in iPS-cell-derived humanmacrophages, wemade the un-

expected discovery that NLRP3 activation can be fully opera-

tional in the absence of NEK7. By genetically dissecting

NLRP3 inflammasome signaling, we uncovered that these cells

employ a NEK7-independent signaling cascade instead that

drives IKKb-dependent, post-translational priming of NLRP3.

Although this IKKb-dependent priming signal is the default

pathway by which human cells engage the NLRP3 inflamma-

some, murine macrophages predominantly rely on NEK7 for

NLRP3 priming. However, they can bypass NEK7 and switch

to IKKb-dependent priming under pro-inflammatory conditions

signified by, for example, TLR activation. The NEK7-indepen-

dence in human myeloid cells could not be attributed to spe-

cies-specific constitutions of the NEK7 or NLRP3 molecules

themselves: immunoprecipitation and reconstitution experi-

ments showed that human NEK7 interacted with human

NLRP3 and that NEK7 was able to facilitate NLRP3 activity. In

line with this notion, iPSC-derived human macrophages also

employ NEK7 to activate the NLRP3 inflammasome; however,

this requires LPS priming and indicates a synergy between

NEK7 and IKKb only observed at an early time point, when the

IKKb post-translational priming mechanism is not yet fully oper-

ational. Indeed, in these cells, NEK7 becomes obsolete after pro-

longed LPS-priming when the IKKb priming cascade is active.

Mechanistically, IKKb activity recruited NLRP3 to PI4P, a phos-

pholipid enriched on the TGN. Tethering NLRP3 to PI4P led to in-

flammasome activation independently of NEK7, confirming that

increased PI4P interaction serves to prime NLRP3 for inflamma-

some formation. Based on the redundancy between IKKb and

NEK7 in facilitating NLRP3 inflammasome formation, we

conclude that NEK7 serves as a priming factor of the NLRP3

inflammasome.

NEK7 holds a unique position among NLRP3 priming path-

ways in that it is constitutively expressed and apparently un-

coupled from upstream signals in its pro-inflammatory capacity.

It has been suggested that NEK7 is employed for NLRP3 activa-

tion to avoid inflammasome formation during mitosis, when

NEK7 is not available.22 Furthermore, it has been speculated

that the cellular perturbation triggering NLRP3 commonly occurs

during mitosis, and thus, the dependency on NEK7 prevents

Figure 6. IKKb-mediated recruitment of NLRP3 to PI4P enables NEK7-independent inflammasome formation

(A)Nlrp3�/�3 Pycard�/� J774 cells of the indicatedNek7 genotypes expressing mCherry tethered to phosphatidylinositol-4-phosphate (PI4P) via the PH domain

of OSBP (OSBP(PH)-mCherry) and doxycycline-inducible mVenus-mmNlrp3 were treated with doxycycline for 24 h and TPCA-1 for 1 h before stimulation with

LPS for 30 min. Scale bars represent 10 mm.

(B) Quantification of at least 10 randomly chosen fields of view per experimental condition from three independent experiments described in (A). Data are

represented as mean ± SEM with dots representing biological replicates conducted on separate days.

(C) Lysates of J774 cells pretreated with TPCA-1 for 1 h and then stimulated with LPS for 30 min were depleted of nuclei (5 min 1,000 3 g), and the supernatant

was then centrifuged at 5,000 3 g for 10 min (pellet P5) followed by 100,000 3 g for 20 min (pellet P100, supernatant S100) before immunoblotting. One

representative of three independent experiments is shown.

(D) P100 fractions from (C) were further fractionated across a linear sucrose gradient (20%–60%) into 12 fractions which were then immunoblotted. One

representative of three independent biological replicates is shown.

(E) Enrichment of organelle-specific protein sets identified via mass spectrometry analysis of the protein content of fractions #2 and #11. p-values for set

enrichment were calculated based on proteins differing between the two fractions (FC R 1.5, FDR < 0.05) using Fisher’s exact test with Benjamini-Hochberg

correction.

(F) Nlrp3�/� J774 cells of the indicated Nek7 genotypes expressing doxycycline-inducible variants of Nlrp3 as indicated were treated with doxycycline for 18 h

followed by 2 h of Nigericin before immunoblotting.

***p < 0.001, **p < 0.01, *p < 0.05, ns p R 0.05 calculated by two-way ANOVA followed by Tukey’s test unless indicated otherwise.

See also Figure S6 and Table S2.
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inadvertent inflammasome activation during cell division.23 How-

ever, the here-uncovered redundancy of NEK7 priming with

other cell cycle-independent priming pathways (e.g., IKKb) ad-

vocates against a specific de-coupling of NLRP3 inflammasome

activation and proliferation. This is also in line with the fact that

many NLRP3 inflammasome-competent cells of the innate im-

mune system are postmitotic. As such, despite detailed mecha-

nistic insight into how NEK7 can accelerate NLRP3 inflamma-

some activation, the physiological role of NEK7 remains to be

determined. The redundancy of NEK7 with a priming factor

that acts by enhancing the interaction of NLRP3 and PI4P sug-

gests that NEK7 itself might be involved in recruiting NLRP3 to

PI4P at the TGN.

The role of K+ efflux is currently debated in the field: although

it was recently shown that K+ efflux alone is not sufficient to

drive inflammasome activation in primed BMDMs and conse-

quently argued that K+ efflux only promotes recruitment of

NLRP3 to the TGN,10 an older report demonstrated that K+

efflux does indeed suffice: inflammasome activation did occur

in response to K+ efflux in primed BMDMs.6 Our study shows

that recruitment of NLRP3 to PI4P can be induced by IKKb acti-

vation independently of K+ efflux. In line with the latter report, K+

efflux was still required for inflammasome formation following

IKKb-mediated PI4P recruitment of NLRP3, hinting at a role of

K+ efflux beyond recruiting NLRP3 to PI4P. Whether K+ efflux

or dispersal of the TGN serves as the ultimate trigger of

NLRP3 inflammasome formation remains to be investigated.

From the fact that both IKKb- and NEK7-mediated NLRP3 prim-

ing still require K+ efflux for inflammasome formation but that

IKKb-mediated priming can bypass NEK7, we conclude that

NEK7 itself acts as a priming factor upstream of K+ efflux. Of

note, K+ efflux-independent NLRP3 activators have also been

described.8,9 For one such agonist, Imiquimod, the NEK7

bypass was only activated in the presence of K+ efflux, sug-

gesting that K+ efflux boosts NEK7-independent NLRP3 activa-

tion synergistically with IKKb.

Another study recently implicated IKKb in the recruitment of

NLRP3 to the TGN.38 In contrast with our findings, in their

setting, Nigericin stimulation was still required for TGN recruit-

ment of NLRP3, as reported previously.10 The authors

concluded that IKKb enhances Nigericin-dependent TGN

dispersal, which they suggested to be the cause of increased

NLRP3 activity.38 However, whether increased TGN dispersal

is a cause or an effect of increased cell death cannot be

concluded from their work. In our study, we observed that

IKKb activation recruited NLRP3 to PI4P on an undispersed

TGN independently of Nigericin stimulation or TGN dispersal

in pyroptosis-deficient Pycard�/� cells. We showed that recruit-

ing NLRP3 to an intact TGN was sufficient for subsequent in-

flammasome formation independently of an additional priming

stimulus. Hence, it is unlikely that the increased TGN dispersal

observed by Nanda and colleagues would explain the priming

effect of IKKb that we describe here. Rather, given that we

observe K+ efflux to act synergistically with IKKb and NEK7,

increased recruitment of NLRP3 to the TGN might explain the

previously reported effects.38

This study establishes NEK7 as a priming rather than an activa-

tion signal for NLRP3.Moreover, in its capacity as a priming factor

NEK7 does not constitute an absolute requirement for NLRP3 in-

flammasome activation. Instead, a priming signal emanating from

IKKb can fully compensate for NEK7 by enhancing the interaction

ofNLRP3 and PI4P. This signal supersedes theNEK7 requirement

in human myeloid cell lines and also represents the dominant

priming entity in iPSC-derived human macrophages.

Limitations of the study
We have shown that NEK7-independent priming of NLRP3 de-

pends on the kinase activity of IKKb but does not require de

novo translation. However, the target that is phosphorylated by

IKKb remains to be determined in future studies. To confirm that

recruitment of NLRP3 to PI4P is sufficient for NEK7-independent

inflammasomeactivation,weoverexpressedanengineered fusion

protein of NLRP3(4KA) and the PI4P-interacting PH domain of the

protein OSBP that constitutively interacts with PI4P, as reported

previously.10 Althoughwe controlled for unspecific NLRP3 activa-

tion by expressing NLRP3 fused to a non-PI4P-binding point-

mutated version of the same PH domain, we cannot exclude that

engineering NLRP3 influenced its dependency on NEK7. Finally,

owing to the fact that Nek7�/� mice are not viable,39 this study

does not include an experiment showing that IKKb activation by-

passes NEK7 in vivo.
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essential mediator of NLRP3 activation downstream of potassium efflux.

Nature 530, 354–357. https://doi.org/10.1038/nature16959.

22. Shi, H., Wang, Y., Li, X., Zhan, X., Tang, M., Fina, M., Su, L., Pratt, D., Bu,

C.H., Hildebrand, S., et al. (2016). NLRP3 activation and mitosis are mutu-

ally exclusive events coordinated by NEK7, a new inflammasome compo-

nent. Nat. Immunol. 17, 250–258. https://doi.org/10.1038/ni.3333.

23. Sharif, H., Wang, L., Wang, W.L., Magupalli, V.G., Andreeva, L., Qiao, Q.,
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Antibodies

anti-Caspase-1 (p20) (human), mAb (Bally-1) AdipoGen, San Diego, CA Cat# AG-20B-0048-C100

anti-Caspase-1 (p20) (mouse), mAb (Casper-1) AdipoGen Cat# AG-20B-0042-C100

anti-NEK7 Abcam, Cambridge, UK Cat# ab133514

anti-NLRP3/NALP3, mAb (Cryo-2) AdipoGen Cat# AG-20B-0014-C100

anti-Human IL-1 beta /IL-1F2 R&D Systems Inc,

Minneapolis, MN

Cat# AF-201-NA

Chemicals, peptides, and recombinant proteins

1-Thioglycerol (MTG) Sigma-Aldrich, St. Louis, MO Cat# M6145

Accutase Stemcell Technologies,

Vancouver, Canada

Cat# 07920

Adenosine 50-triphosphate
disodium salt hydrate

Sigma-Aldrich Cat# A6419

Ascorbic Acid Sigma-Aldrich Cat# A4544-100G

B-27 supplement Thermo Fisher Scientific,

Waltham, MA

Cat# 17504-001

Blasticidin S HCl (10 mg/ml) Thermo Fisher Scientific Cat# A1113903

BSA GE Healthcare, Chicago, IL Cat# SH30574.01

CHIR99021 Miltenyi Biotec, Bergisch

Gladbach, Germany

Cat# 130-103-926

Cycloheximide Carl Roth, Karlsruhe, Germany Cat# 8682.1

Doxycycline hyclate Sigma-Aldrich Cat# D9891-1G

Geltrex Thermo Fisher Scientific Cat# A1413302

GeneJuice Merck, Darmstadt, Germany Cat# 70967-3

Ham’s F12 nutrient mix Thermo Fisher Scientific Cat# 21765029

Herring Testis(HT)-DNA sodium salt Sigma Aldrich Cat# D6898

Hoechst-33342 Sigma-Aldrich Cat# B2261-25MG

Human CSF-1 (M-CSF) (iPSC differentiation) R&D Systems Cat# 216-MC-005

Human Transferrin Roche, Basel, Switzerland Cat# 10-652-202-001

IMDM with GlutaMAX Thermo Fisher Scientific Cat# 31980022

Imiquimod (R837) Invivogen Cat# tlrl-imq

L-Glutamine Thermo Fisher Scientific Cat# 25030024

LFn-YscF Rauch et al.40 N/A

Lipofectamine 2000 Transfection Reagent Thermo Fisher Scientific Cat# 11668019

LPS-EB Ultrapure Invivogen, San Diego, CA Cat# tlrl-3pelps

LysC Wako Cat# 12902541

MCC950 Sigma-Aldrich Cat# PZ0280

MitoTracker DeepRed Thermo Fisher Scientific Cat# M22426

mTeSR1 Stemcell Technologies Cat# 85850

N-2 Supplement Thermo Fisher Scientific Cat# 17502048

Nigericin sodium salt Sigma-Aldrich Cat# N7143

Pam3CSK4 Invivogen Cat# tlrl-pms

Phorbol 12-myristate 13-acetate ENZO Life Sciences,

Farmingdale, NY

Cat# BML-PE160-0005

Protective antigen (pA) Biotrend, Cologne, Germany Cat# LL-171E

Puromycin Dihydrochloride Carl Roth Cat# 0240.4
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R848 Invivogen Cat# tlrl-r848-5

Recombinant Human BMP-4 R&D Systems Cat# 314-BP-010

Recombinant Human CSF-1

(M-CSF) (BlaER1 differentiation)

Recombinantly produced N/A

Recombinant Human DKK-1 R&D Systems Cat# 5439-DK-010

Recombinant Human FGF2 R&D Systems Cat# 233-FB-025

Recombinant Human IL-3 R&D Systems Cat# 203-IL-010

Recombinant Human IL-3

(BLaER1 differentiation)

Recombinantly produced N/A

Recombinant Human IL-6 R&D Systems Cat# 206-IL-010

Recombinant Human SCF R&D Systems Cat# 255-SC-010

Recombinant Human VEGF R&D Systems Cat# 293-VE-010

ROCK Inhibitor Y-27632 Stemcell Technologies Cat# 72302

Stempro-34 SFM Thermo Fisher Scientific Cat# 10639-011

Takinib Selleck Chemicals, Houston, TX Cat# S8663

TPCA-1 R&D Systems Cat# 2559/10

Trypsin Sigma-Aldrich Cat# T6567

b-Estradiol Sigma-Aldrich Cat# E8875

Critical commercial assays

Human IL-1b ELISA Set II BD Biosciences, San José, CA Cat# 557953

Human Total IL-18 DuoSet ELISA R&D Systems Cat# DY318-05

MiSeq Reagent Kit v2, 300 Cycles Illumina, San Diego, CA Cat# MS-102-2002

Mouse CXCL10/IP-10/CRG-2 DuoSet ELISA R&D Systems Cat# DY466

Mouse TNF (Mono/Mono) ELISA Set II BD Biosciences Cat# 558534

OptEIA Human IL-6 ELISA Set BD Biosciences Cat# 555220

OptEIA Mouse IL-1b Elisa Set BD Biosciences Cat# 559603

Pierce LDH Cytotoxicity Assay Kit Thermo Fisher Scientific Cat# 88954

Deposited data

Mass spectrometry data of Figure 6E This study PRIDE: PXD035302

Immunoblot source data and raw

numerical data used to plot the figures

This study Mendeley data:

https://doi.org/10.17632/h7vc8hnb7j.1

Experimental models: Cell lines

BLaER1 Rapino et al.26 N/A

HEK-293T Cavlar et al.41 N/A

iPSC Camargo Ortega et al.42 N/A

Mouse Macrophages, Nlrp3,

Asc-CFP, Cas9-expressing

Franklin et al.43 N/A

THP-1 ATCC, Manassas, VA Cat# TIB-202

Target sites of sgRNAs used in this study

hsMAP3K7 GTAAACACCAACTCATTGCGTGG

hsNEK6 GTCTTTTCGCTGCTCGCTGGCGG

hsNEK7 ATTACAGAAGGCCTTACGACCGG

hsNLRP3 GCTAATGATCGACTTCAATGGGG

hsIKBKB ATGAAGGTATCTAAGCGCAGAGG

mmMyd88 GGTTCAAGAACAGCGATAGGCGG

mmNek7 GTCTCTTGGATGGAGTGCCGG

mmNlrp3 CCTCTCTGCTCATAACGACGAGG

mmTicam1 GTACAGGCGAGCCACCGTCCAGG
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Veit Hor-

nung (hornung@genzentrum.lmu.de).

Materials availability
All unique reagents generated in this study are available from the lead contact with a completed materials transfer agreement.

Data and code availability
Mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (PRIDE:

PXD035302) and are publicly available as of the date of publication.

Immunoblot source data and raw numerical data used to plot the figures were deposited on Mendeley Data: https://doi.org/10.

17632/h7vc8hnb7j.1

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

This paper does not report original code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

BLaER1 cells
BLaER1 cells (female) were cultivated in RPMI supplemented with 10 % FCS, 1 mM pyruvate, 100 U/ml penicillin and 100 mg/ml

streptomycin at 37 �C and 5 % CO2. BLaER1 cells were differentiated in medium containing 10 ng/ml hrIL-3, 10 ng/ml hrCSF-1

(M-CSF) and 100 nM b-estradiol for 5-6 days. In the course of these studies, we serendipitously identified that BLaER1

cells express transcripts of SMRV (squirrel monkey retrovirus) and subsequent experiments confirmed that BLaER1 cells

harbor the SMRV proviral genome. Testing early passages of BLaER1 cells by Dr. Thomas Graf (personal communication)

confirmed that the parental BLaER1 cell line26 is positive for SMRV. Of note, extensive characterization of BLaER1

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

mmTlr4 GATCTACTCGAGTCAGAATGAGG

mmPycard GTGCAACTGCGAGAAGGCTATGG

Recombinant DNA

LentiCas9-Blast Sanjana et al.44 N/A

LentiGuide-Puro Sanjana et al.44 N/A

pBabe-U6-sgRNA-Cas9 Schmidt et al.45 N/A

pBlast-hsNEK7 This study N/A

pBlast-mCherry-OSBP(PH) This study N/A

pBlast-mmNek7 This study N/A

pLIX-hsNLRP3 This study N/A

pLIX-mmNlrp3 This study N/A

pLIX-mVenus-mmNlrp3 This study N/A

pLIX-mVenus-mmNlrp3(4KA) This study N/A

pLIX-mVenus-mmNlrp3(4KA-OSBP(PH)) This study N/A

pLK0.1-sgRNA-CMV-GFP Schmid-Burgk et al.46 N/A

pRP-Asc-RFP This study N/A

pRZ-CMV-Cas9 Schmidt et al.45 N/A

Software and algorithms

CellProfiler 3.1.5 Carpenter et al.47 https://cellprofiler.org

CHOPCHOP Labu et al.48 https://chopchop.cbu.uib.no

MaxQuant 2.0.3 Cox and Mann49 https://maxquant.org

Outknocker Schmid-Burgk et al.46 http://www.outknocker.org

Perseus Tyanova et al.50 https://maxquant.org/perseus/

Prism 9.0 GraphPad, San Diego, CA https://www.graphpad.com/

scientific-software/prism/
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monocytes in comparison to other human myeloid cells has not provided any indication that SMRV positivity would impact on

the functionality of these cells as myeloid cells. Samples of other cell lines used in this work were confirmed to be free of SMRV

by PCR. All BLaER1 cell experiments were conducted on a CASP4�/� background (herein referred to as control).

THP-1 cells
THP-1 cells (male) were obtained from ATCC and cultivated in RPMI supplemented with 10 % FCS, 1 mM pyruvate, 100 U/ml peni-

cillin and 100 mg/ml streptomycin at 37 �C and 5%CO2. THP-1 cells were differentiated by adding 100 ng/ml PMA to the medium for

18 hours, rinsed off with ice-cold PBS and replated for experiments.

mmMacs and J774 mouse macrophages
Mouse macrophages were cultivated in DMEM supplemented with 10 % FCS, 1 mM pyruvate 100 U/ml penicillin and 100 mg/ml

streptomycin at 37 �C and 5 % CO2. mmMacs were detached for passaging with 0.05 % Trypsin at 37 �C for 15 minutes after

one PBS wash and then rinsed off with DMEM. J774 cells were passaged by scraping in 5 ml fresh DMEM and transferred to

new flasks.

hiPSC, hiPS-Macs cell culture
Human induced pluripotent stem cells (hiPSCs) used to make NEK7-/- hiPSCs were kindly provided by Adam O’Neill and Magdalena

Götz.42 hiPSCs for IKBKB-/- were purchased from XCell Science. hiPSCs were cultivated on Geltrex-coated plates in complete

mTeSR1 Medium at 37 �C and 5 % CO2 and detached for passaging using 1.5 ml Accutase for 5 minutes at 37 �C after a PBS

wash. After passaging, cells were cultivated in the presence of 5 mM ROCK-Inhibitor overnight.

Differentiation of hiPSCs into hiPS-Macs
Differentiation into iPS-Macs was achieved as described previously.25 Briefly, 150,000 hiPSCwere plated into a onewell of a Geltrex-

coated 6-well plate and differentiated in StemPro basemediumwith StemPro Supplement, 200 mg/ml human transferrin, 2mMgluta-

mine, 0.45 mM MTG and 0.5 mM ascorbic acid ( = StemPro medium, ascorbic acid was added just before use) by stimulation with

50 ng/ml VEGF, 5 ng/ml BMP-4 and 2 mMCHIR99021 at 5 % oxygen for two days, followed by two days of stimulation with 50 ng/ml

VEGF, 5 ng/ml BMP-4 and 20 ng/ml FGF2. From day four, StemPro medium was supplemented with 15 ng/ml VEGF and 5 ng/ml

FGF2. Starting at day six, 10 ng/ml VEGF, 10 ng/ml FGF2, 50 ng/ml SCF, 30 ng/ml DKK-1, 10 ng/ml IL-6 and 20 ng/ml IL-3were added

to StemPro medium until day ten. From day eight, cells were cultivated under normoxic conditions. From day twelve, 10 ng/ml FGF2,

50 ng/ml SCF, 10 ng/ml IL-6 and 20 ng/ml IL-3 were added to StemPro medium. Starting at day sixteen, cells were cultivated in 75%

IMDM with 25 % F12 supplement, N2 supplement, B-27 supplement, 0.05 % BSA and 100 U/ml penicillin and 100 mg/ml strepto-

mycin (= SF-Diff medium) supplemented with 50 ng/ml rhCSF-1 (M-CSF) at least until day 28. Culture medium was exchanged as

necessary, but at least every two days. After differentiation, hiPS-Macs were carefully harvested from the supernatant, spun

down and replated in RPMI with 10 % FCS, 1 mM Pyruvate, 100 U/ml Penicillin and 100 mg/ml Streptomycin for experiments.

HEK-293T cells
HEK-293T cells were cultivated in DMEM with 10 % FCS, 1 mM pyruvate, 100 U/ml penicillin and 100 mg/ml streptomycin at 37 �C
and 5 % CO2. For passaging, cells were washed with PBS once and then incubated with 0.05 % Trypsin at 37� for 5 minutes. Cells

were then rinsed off with DMEM.

METHOD DETAILS

Trans-Golgi network imaging
J774 macrophages expressing mVenus-mmNlrp3 and the PH-domain of hsOSBP (OSBP-PH) fused to mCherry were plated in ibidi

8-well slides (100,000 per well in 200 ml of DMEM) and imaged on a Nikon Eclipse Ti spinning disk confocal microscope with 100x

magnification on the following day. Results weremanually quantified from at least 10 randomly selected areas per condition per repli-

cate using FIJI.51 For nuclear staining, Hoechst-33342 was diluted to a final concentration of 10 mg/ml.

ASC speck imaging
ASC specks in transiently transfected HEK-293T cells were imaged 24 hours after transfection on a Leica Hi8 epifluorescence mi-

croscope using 10x magnification. Specks were quantified with CellProfiler.47

Immunoblotting
Cells were lysed at approximately 5 Mio/ml in 1x L€ammli Buffer and boiled for 5 minutes at 95 �C. For precipitation of total pro-

tein from supernatants, stimulations were done in medium containing 3% FCS. Precipitation of total protein from supernatants

was achieved by combining 700 ml of supernatant with 700 ml MeOH and 150 ml of CHCl3. Samples were spun down at 20.000 g

for 20 minutes, and the upper phase was discarded. Again, 700 ml MeOH were added and samples were centrifuged at 20.000 g

for 20 minutes. The pellet was then dried and resuspended in 100 ml 1x L€ammli buffer and boiled at 95 �C for 5 minutes. Sam-

ples were run on 12% SDS-PAGE gels at 150 V for 85 minutes and were subsequently transferred onto a nitrocellulose
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membrane at 100 V for 75 minutes at 4 �C. Membranes were then blocked in 5 % milk for 1 hour at room temperature. Primary

and secondary antibodies were diluted in 1-5 % milk.

ELISA and LDH assay
LDH assays were done on supernatants immediately after experiments. Results are presented relative to a lysis control from the

same experiment with the values of unstimulated controls subtracted as background. ELISAs were done according to manufac-

turer’s instructions on supernatants stored at -20 �C.

Stimulation of immune signaling
NLRP3 was primed as indicated with 1 mg/ml Pam3CSK4 or 200 ng/ml LPS. NLRP3 was activated with 5 mM ATP or Nigericin at

6.5 mM (BLaER1 cells) or 10 mM (all other cells) as indicated. To activate the AIM2 inflammasome 400 ng HT-DNA were transfected

into a 96-well with 0.5 ml Lipofectamine in 50 ml OptiMEM by incubating OptiMEM and Lipofectamine for 5 minutes followed by 20mi-

nutes of incubation of the Lipofectamine-DNAmix in OptiMEM and dropwise addition of the mix to the cells. For immunoblots, trans-

fections were done in a 12-well format. The amount of Lipofectamine and HT-DNA was scaled accordingly by well area. The NAIP-

NLRC4 inflammasome was activated with an anthrax toxin lethal factor fused to the Burkholderia T3SS needle protein (LFn-YscF,

0.025 mg/ml), which was delivered into cells with protective antigen (pA, 0.25 mg/ml).40 If not otherwise indicated, cells were stimu-

lated with this construct (herein referred to as Needle Tox) for 2 hours.

Inhibition of translation
For mmMacs, cycloheximide (CHX) was added to the medium 30minutes before stimulation to a final concentration of 10 mg/ml. For

BLaER1 cells, CHX was added to the medium simultaneously with LPS at the indicated concentrations in the range of 1-10 mg/ml.

Doxycyclin-inducible gene expression
In BLaER1 cells and J774 Pycard�/� cells transduced with pLIX-Puro derived vectors, gene expression was induced by adding me-

dium to a final concentration of 1 mg/ml doxycycline for the last 24 hours of differentiation. J774 cells transduced with Nlrp3 variants

for analysis of caspase-1 processing were stimulated with 1 mg/ml doxycycline for 18 hours before stimulation for inflammasome

activation.

Inhibition of TAK1, IKKb and NLRP3
Takinib was added to a final concentration of 50 mMas indicated. TPCA-1was used at 5 mMfinal concentration as indicated.MCC950

was added as indicated to a final concentration of 10 mM.

Inhibition and induction of K+ efflux
To block K+ efflux, Potassium chloride (KCl) was added to medium together with the priming stimulus to the indicated final concen-

trations. The osmolarity of the medium was kept constant over all conditions. To induce K+ efflux, cells were stimulated in sterile

Hank’s balanced salt solution with (140 mM NaCl, 5 mM KCl, 1.3 mM CaCl2, 1.0 mM MgSO4, 10 mM HEPES (pH 7.5), 5.5 mM

glucose) or without potassium (145 mM NaCl, 1.3 mM CaCl2, 1.0 mM MgSO4, 10 mM HEPES (pH 7.5), 5.5 mM glucose) with

10% FCS as described before.10

Sucrose gradient fractionation
For the fractionation experiment, Nlrp3�/� x Pycard�/� J774 cells stably transduced with pLI-mVenus-mmNLRP3, pBlast-AUG-

OSBP(PH)-mCherry were used.

Two days prior to stimulation, 13107 cells were plated per 15 cm dish, using 2 dishes per condition (unstimulated, LPS, TPCA-

1 > LPS). 18-20 hours prior to stimulation, doxycycline was added to a final concentration of 1 mg/ml to induce expression of mVe-

nus-mmNLRP3. As indicated, cells were pre-treated with 5 mM TPCA-1 for 30 minutes. Subsequently, cells were stimulated with

200 ng/ml LPS for 30 minutes. Cells were washed once with PBS and scraped using 500 mL of ice-cold isotonic buffer (0.25 M su-

crose, 10 mM Tris$HCl (pH 7.5), 10 mM KCl, 1.5 mMMgCl2, 1 mM DTT) supplemented with protease inhibitor . Then, cells were ho-

mogenized by performing 30 strokes with a 29G needle (VWR, BDAM324891). Lysates were centrifuged at 10003g for 5 minutes at

4�C to remove nuclei and any remaining cells. The resulting supernatant was centrifuged at 50003g for 10 minutes at 4�C to obtain

the heavy membrane fraction (pellet, P5). The resulting supernatant was centrifuged at 100,0003g for 20 minutes at 4�C in a TLA

120.2 rotor (Beckman Coulter) to obtain the light membrane fraction (pellet, P100) and the cytosolic fraction (supernatant, S100).

The fractions P5 and P100 were washed once with isotonic buffer, pelleted repeating the centrifugation step at 50003g and

100,0003g, respectively, and resuspended in 500 mL isotonic buffer.

The fraction P100 was then loaded onto a 20%-60% continuous sucrose density gradient (10 mM Tris$HCl (pH 7.5), 100 mM KCl,

1.5 mMMgCl2, 1 mM DTT, and protease inhibitor cocktail). The gradients were centrifuged in an SW40Ti rotor (Beckman Coulter) at

170,0853g for two hours at 4�C and 13 fractions of 0.93 ml each were collected using a BioComp Gradient Station. 30 mL of each

fraction were used for SDS-PAGE followed by immunoblotting.
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Furthermore, to analyze the distribution of various organelle markers, the fractions P5, P100 and S100 were subjected to SDS-

PAGE followed by immunoblotting. Protein concentrations were determined by BCA assay and adjusted between samples (unstimu-

lated, LPS, TPCA-1 > LPS) for each of the fractions separately.

Mass spectrometry sample preparation
Sucrose gradient fractions #2 and #11 were lysed in 1% SDC with 100mM Tris-HCl. Protein amounts from each sample were

adjusted to 30 mg with a BCA protein assay kit. Samples were reduced with 10mM tris(2-carboxy(ethyl)phosphine) (TCEP), alkylated

with 40mM 2-chloroacetamide (CAA), and digested with trypsin and lysC (1:50, enzyme/protein, w/w) overnight. Digested peptides

were desalted using SDB-RPS-stage tips. Desalted peptides were resolubilized in 5ml 2% ACN and 0.3% TFA and about 200 ng of

peptides were injected into the mass spectrometer.

Samples were loaded onto 50-cm columns packed in-house with C18 1.9mMReproSil particles (Dr. Maisch GmbH), with an EASY-

nLC 1200 system (Thermo Fisher Scientific) coupled to the MS (Orbitrap Exploris 480, Thermo Fisher Scientific). A homemade col-

umn oven maintained the column temperature at 60�C. Peptides were introduced onto the column with buffer A (0.1% formic acid)

andwere elutedwith a 120-min gradient starting at 5%buffer B (80%ACN, 0.1% formic acid) followed by a stepwise increase to 30%

in 95 min, 65% in 5 min, 95% in 235 min and 5% in 235 min at a flow rate of 300 nL/min.

Samplesweremeasured in data-dependent acquisition with a TopNMSmethod in which one full scan (300–1650m/z, R=60,000 at

200m/z) at an Automatic Gain Control (AGC) target of 3310e6 ions was first performed, followed by 15 data-dependent MS/MS

scans with higher-energy collisional dissociation (AGC target 1x10e5 ions, maximum injection time at 25ms, isolation window 1.4

m/z, normalized collision energy 30%, and R=15,000 at 200 m/z). Dynamic exclusion of 30 s was enabled.

Analysis of MS samples
The MS raw files were processed in MaxQuant version 2.0.3.049 and fragment lists were queried against the mouse UniProt FASTA

database (25,320 entries, Oct 2020) with cysteine carbamidomethylation as a fixed modification and N-terminal acetylation and

methionine oxidations as variable modifications. Enzyme specificity was set as C-terminal to arginine and lysine as expected using

trypsin and lysC as proteases and a maximum of two missed cleavages.

Bioinformatics analysis of the MS data was performed using the Perseus software suite (version 1.6.7.0).50 After filtering to remove

potential contaminants, reverse hits, and proteins only identified by modification sites, the remaining summed intensities were log2-

transformed. Quantified proteins were filtered for at least 2 valid values in one fraction across three biological replicates. Missing

valueswere imputed by sampling from a normal distribution (width 0.3, downshift 1.8) and significantly up- or downregulated proteins

were determined by two-sided Student’s t-test (FDR < 0.05, S0R 1.5). To determine the systematic enrichment or de-enrichment of

a select list of GOCC annotated organelles in each fraction a Fisher’s exact test was performed on the significantly differentially regu-

lated proteins between the two fractions.

Transient Transfection of HEK-293T cells
HEK-293T cells were transiently transfected with 400 ng plasmid DNA in 50 ml OptiMEMwith 1 ml GeneJuice by incubating GeneJuice

with OptiMEM for 5 minutes followed by 15 minutes of incubation of the DNA-GeneJuice mix in OptiMEM. DNA concentrations were

kept constant across all conditions using pBluescript as stuffer DNA.

Plasmid DNA purification
Plasmid DNA was purified from E.Coli DH5a using a Thermo HiPure Maxiprep Kit according to manufacturer’s instructions.

Preparation of lentiviral particles
Lentiviral particles were prepared according to.52 Briefly, HEK-293T cells were transfected with 20 mg transfer plasmid, 15 mg

pCMVD8.91 packaging plasmid and 6 mg pMD2.G VSV-G pseudotyping plasmid dish by diluting the plasmids in 1ml 1x HBS, adding

50 ml 2.5 M Calcium chloride and gently pipetting the mix onto a 10-cm dish with approximately 6 Mio. HEK-293T cells in fresh me-

dium. Alternatively, pMDLg/pRRE and pRSV-REV were used as packaging plasmids.53 After 8 hours the medium was exchanged.

Supernatants were harvested 48 hours later, spun down and filtered before being used to transduce target cells. Successfully trans-

duced cells were selectedwith 2.5 - 5 mg/ml puromycin or 10 mg/ml blasticidin S for 48 hours, or FACSorted for fluorescencemarkers.

Genome editing and overexpression
sgRNA oligos were designed using CHOPCHOP48 and cloned into expression plasmids as described previously.44,46 BLaER1 cells

were electroporated in OptiMEM with 5 mg of plasmids driving expression of Cas9 and an sgRNA on a BioRad GenePulser XCell as

described previously.45 THP-1 cells and murine macrophages were transduced with lentiviral particles driving expression of Cas9

(Lenti-Cas9-Blast44) or an sgRNA (LentiGuide-Puro44). HEK-293T cells were transiently transfected with plasmids driving expression

of Cas9 or an sgRNA.

hiPS cells conditioned to grow as single cloneswere electroporatedwith Cas9-crRNA-trRNA complexes (RNPs) targetingNEK7 on

a 4D-Nucleofector (Lonza Bioscience). Grown single clones were duplicated, lysed and out-of-frame editing in NEK7 was analyzed

via deep sequencing as described previously.46 Several NEK7-/- and NEK7+/+ clones were expanded and used for experiments. To

generate IKBKB-/- hiPSCs, XCL1 hiPS cells were electroporated with 0.5 mg of plasmids driving expression of Cas9 and an sgRNA
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targeting IKBKB with a 4D-Nucleofector (Lonza Bioscience). Grown single clones were picked and the sequence of the targeted

IKBKB region was confirmed by Sanger sequencing.

Plasmids
Cloning of genes of interest into pLIX, pRP and pFUGW backbones was performed by conventional restriction enzyme cloning.

pMDLg/pRRE was a gift from Didier Trono (Addgene plasmid #12251; http://n2t.net/addgene:12251; RRID:Addgene_12251),

pRSV-Rev was a gift from Didier Trono (Addgene plasmid #12253; http://n2t.net/addgene:12253; RRID:Addgene_12253),

pLIX_403 (herein referred to as pLIX) was a gift from David Root (Addgene plasmid #41395; http://n2t.net/addgene:41395;

RRID:Addgene_41395). LentiGuide-Puro (Addgene plasmid # 52963; http://n2t.net/addgene:52963; RRID:Addgene_52963) and

lentiCas9-Blast (Addgene plasmid #52962; http://n2t.net/addgene:52962; RRID:Addgene_52962) were a gift from Feng Zhang.

pTY-zeo-NLRP3(127-128-129-130 4KA)-GFP) and pTY-zeo-Flag-NLRP3(DKKKK OSBPPH)) were a gift from Zhijian J. Chen.10

QUANTIFICATION AND STATISTICAL ANALYSIS

Numbers of independent replicates (n) are reported in the respective figure legends. p-values were calculated based on two-way

ANOVAs followed by �Sidák’s multiple comparisons test for groups containing two elements, or Tukey’s test for larger groups. Dun-

nett’s test was usedwherever comparing all experimental conditions to one control instead of all other conditions was appropriate as

indicated in the respective figure legends. All statistical analyses were done using GraphPad Prism 9. *p < 0.05, **p < 0.01,

***p < 0.001, ns p R 0.05.
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Figure S1 related to Figure 1. Human iPSC-derived macrophages and human myeloid cell lines 

activate NLRP3 independently of NEK7 

(A, B) Four different clones of human iPS cells were differentiated into macrophages (hiPS-Macs), 

primed with LPS for 4 hours and subsequently stimulated with the inflammasome activators Nigericin 

(NLRP3) and Needle Tox  (NAIP-NLRC4) for 2 hours in the presence of the NLRP3 inhibitor 

MCC950 as indicated. LDH release (A) and cytokine release (B) are depicted as mean ± SEM with 

dots representing individual clones. 

(C) hiPS-Macs of the indicated genotypes were stimulated with LPS for 4 hours before 

immunoblotting for NLRP3 inflammasome components. 

(D) hiPS-Macs of the indicated genotypes were treated with LPS for 6 hours before IL-6 release was 

measured. 

(E) BLaER1 monocytes of the indicated genotypes were primed with LPS for 4 hours and 

subsequently stimulated with the inflammasome activators Nigericin (NLRP3) and Needle Tox  

(NAIP-NLRC4) for 2 hours before release of the indicated cytokines was measured by ELISA. 

(F) BLaER1 monocytes of the indicated genotypes were stimulated as in (E) in the presence of the 

NLRP3 inhibitor MCC950. 

Data are represented as mean ± SEM with dots representing biological replicates conducted on 

separate days unless indicated otherwise. *** p < 0.001, ** p < 0.01, * p < 0.05, ns p ≥ 0.05 calculated 

by two-way ANOVA followed by Tukey’s test (E IL-1β), Dunnett’s test (E IL-6) or Šidák’s test (F).  
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Figure S2 related to Figure 1. Human myeloid cell lines activating NLRP3 independently of NEK7 

are sensitive to MCC950 and K+ efflux 

(A, B) BLaER1 monocytes of the indicated genotypes were primed with LPS for 4 hours and 

subsequently stimulated with Nigericin or Needle Tox in the presence of 10 µM MCC950 as 

indicated. Release of IL-1β and IL-6 is depicted as mean ± SEM of three independent experiments. 

(C, D) BLaER1 monocytes of the indicated genotypes were primed with LPS for 4 hours and 

subsequently stimulated with Nigericin or Needle Tox in the presence of up to 60 mM potassium 

chloride (KCl) as indicated. 

(E) THP-1 cells of the indicated genotypes were primed with Pam3CSK4 for 4 hours and subsequently 

stimulated with Nigericin for 2 hours before release of IL-1β was measured. Dots represent individual 

clones. Two different sgRNAs against NEK7 were used (#1 and #2). 

(F) NLRP3-/-
 BLaER1 cells expressing the indicated NLRP3 orthologues under the control of a 

doxycycline-inducible promoter were treated with doxycycline for the last 24 hours of differentiation, 

primed with LPS for 4 hours and subsequently stimulated with Needle Tox for 2 hours. The same 

vector expressing mCherry instead of NLRP3 was used as a mock control. One representative 

immunoblot of three independent replicates is shown. 

Data are represented as mean ± SEM with dots representing biological replicates conducted on 

separate days unless indicated otherwise. *** p < 0.001, ** p < 0.01, * p < 0.05, ns p ≥ 0.05 calculated 

by two-way ANOVA followed by Šidák’s test (A, B), Dunnett’s test (C, D) or Tukey’s test (E).  
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Figure S3 related to Figure 2. Priming bypasses NEK7 via a translation-independent mechanism 

(A) Mouse macrophages constitutively expressing mmNlrp3 (mmMacs) of the indicated genotypes 

were treated with R848 + Nigericin simultaneously for 4 hours. 

(B) mmMacs of the indicated genotypes were treated with R848 + Nigericin simultaneously for 3 

hours. 

(C) mmMacs of the indicated genotypes were treated with Pam3CSK4 + Nigericin simultaneously for 

4 hours. 

(D) mmMacs of the indicated genotypes were treated with Pam3CSK4 + Nigericin simultaneously for 

3 hours. 

(E) mmMacs of the indicated genotypes were stimulated as indicated for up to 4 hours. 

(F) mmMacs of the indicated genotypes were treated with LPS + Nigericin simultaneously for 1 hour. 

(G) mmMacs of the indicated genotypes were pretreated with cycloheximide (CHX) and stimulated 

with LPS for 2 hours. 

Data are represented as mean ± SEM with dots representing biological replicates conducted on 

separate days unless indicated otherwise. Western Blots represent one of two clones from one of three 

independent experiments. *** p < 0.001, ** p < 0.01, * p < 0.05, ns p ≥ 0.05 calculated by two-way 

ANOVA followed by Tukey’s test (A, C, F) or Šidák’s test (G).  
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Figure S4 related to Figure 2. IKKβ activity enables NEK7-independent NLRP3 activation in mouse 

cells 

(A) mmMacs of the indicated genotypes were pretreated with Takinib for 30 minutes before 

stimulation as indicated. 

(B) mmMacs of the indicated genotypes were pretreated with TPCA-1 for 30 minutes before 

stimulation as indicated. 

(C) mmMacs of the indicated genotypes were stimulated as indicated for 3 hours. 

(D) mmMacs of the indicated genotypes were stimulated as indicated for 3 hours. One representative 

of three independent biological replicates is shown. 

(E, F) mmMacs of the indicated genotypes were stimulated as indicated for 4 hours. 

(G) mmMacs of the indicated genotypes were stimulated as indicated for 4 hours. ASC-CFP specking 

was imaged every hour. The number of ASC-CFP specks in three separate visual fields was averaged 

for each biological replicate. 

(H) mmMacs of the indicated genotypes were stimulated with LPS for 30 minutes. One wildtype and 

two Casp8-/-
 clones generated in a wildtype or Nek7-/-

 background are shown. One representative of 

three independent biological replicates is shown. 

Data are represented as mean ± SEM with dots representing biological replicates conducted on 

separate days unless indicated otherwise. *** p < 0.001, ** p < 0.01, * p < 0.05, ns p ≥ 0.05 calculated 

by two-way ANOVA followed by Šidák’s test (A, B) or Tukey’s test (C, E, F, G).  
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Figure S5 related to Figure 4. NLRP3 activation in human iPSC-derived macrophages and human 

myeloid cell lines requires non-transcriptional priming via IKKβ 

(A) Lysates of IKBKB-/-
 hiPS-Macs were immunoblotted for IKKβ. 

(B, C) IKBKB-/-
 hiPS-Macs were primed with LPS for 4 hours and subsequently treated with the 

indicated inflammasome agonists before the release of LDH and the indicated cytokines was 

measured. Cells in (C) were treated with LPS for 4 hours. Dots represent separate, parallel 

differentiations of the clone shown in (A). 

(D) Three clones of TAK1-deficient BLaER1 monocytes (MAP3K7-/-
) were treated with LPS for 6 

hours before lysates were immunoblotted. One representative of three independent experiments is 

shown. 

(E) BLaER1 monocytes were treated with LPS and Nigericin or Needle Tox in the presence of the 

indicated concentrations of cycloheximide (CHX) for 4 hours. 

(F) BLaER1 monocytes of the indicated genotypes primed with LPS for 4 hours or left unprimed 

were stimulated with inflammasome inducers Nigericin (NLRP3) or Needle Tox (NAIP-NLRC4). 

(G) BLaER1 monocytes of the indicated genotypes were concurrently stimulated with LPS and 

Nigericin for 1 hour before LDH release was measured. 

(H) BLaER1 monocytes of the indicated genotypes were stimulated as indicated before LDH release 

was measured. Arrows denote 4 hours of LPS priming followed by the indicated stimulation. 

(I) BLaER1 monocytes of the indicated genotypes were primed with LPS for 2 hours and then 

stimulated with Imiquimod or Needle Tox  for 2 hours before LDH release was measured. 

(J) BLaER1 monocytes of the indicated genotypes were stimulated with LPS for 4 hours before IL-6 

secretion was measured. 

(K) LDH release from primary human monocytes primed with LPS for 2 hours before stimulation for 

2 hours as indicated. TPCA-1 was added at different timepoints as indicated. Bars depict mean ± 

SEM of three independent experiments. 

Data are represented as mean ± SEM with dots representing biological replicates conducted on 

separate days unless indicated otherwise. *** p < 0.001, ** p < 0.01, * p < 0.05, ns p ≥ 0.05 calculated 

by two-way ANOVA followed by Tukey’s test (E LDH, H) or Dunnett’s test (E IL-6, F, G, I, J, K).  
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Figure S6
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Figure S6 related to Figures 5 and 6. J774 mouse macrophages recruit NLRP3 to the TGN upon 

priming 

(A) THP-1 cells were primed with Pam3CSK4 for 4 hours before stimulation with Nigericin for 30 

minutes. IL-1β release from three independent replicates is shown. The replicate highlighted in red 

corresponds to the immunoprecipitation shown in Figure 5A. 

(B) Overview of NLRP3 inflammasome reconstitution in NEK7-/-
 HEK-293T cells. 

(C) Expression of inflammasome components in NEK7-/-
 HEK-293T cells transiently transfected with 

NLRP3 inflammasome components as depicted in (B). “mmv2” refers to an annotated shorter 

transcript of mouse Nek7. The immunoblot corresponding to the replicate depicted in Figure 5B is 

shown. 

(D) Micrographs of NEK7-/-
 HEK-293T transiently expressing the indicated NLRP3 inflammasome 

components. Images of ASC-RFP are shown with inverted colors. The second row shows the result 

of automated ASC-speck detection in the upper left region indicated in the top row. Scalebars 

represent 300 µm. 

(E) Nlrp3-/-
 x Pycard-/-

 J774 cells of the indicated Nek7 genotypes expressing mCherry tethered to 

phosphatidylinositol-4-phosphate (PI4P) via the PH domain of OSBP (OSBP(PH)-mCherry) and 

doxycycline-inducible mVenus-mmNlrp3 were treated with doxycycline for 24 hours and TPCA-1 

for 1 hour before stimulation with LPS for 30 minutes. Images were taken every 5 minutes. Scalebars 

represent 10 µm. 

(F) As (E) but in the presence of MitoTracker DeepRed and images taken 35 minutes after 

stimulation. 

(G) Mass spectrometry analysis of the protein content of fractions #2 and #11 (Figure 6D). Proteins 

with FC ≥ 1.5 and FDR < 0.05 were considered to be significantly enriched in one fraction over the 

other and used for organelle enrichment analysis (Figure 6E). Proteins known to be on the TGN are 

highlighted in red. 

(H) Nlrp3-/-
, Pycard-/-

 J774 cells expressing doxycycline-inducible mVenus-mmNlrp3(4KA) or 

mVenus-mmNlrp3(4KA-OSBP(PH)) were treated with doxycycline for 24 hours and Hoechst-33342 

for 30 minutes before imaging. Scalebars represent 10 µm. 

(I) Overview of NLRP3 priming pathways including IKKβ-mediated PI4P recruitment of NLRP3. 

The role of K
+
 efflux, and whether it acts up- or downstream of TGN dispersal, is controversial. 

4.1 IKKβ primes inflammasome formation by recruiting NLRP3 to the trans-Golgi network
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Table S1 related to Figure 2E. Statistical significance of LDH release from murine macrophages 

deficient in the indicated TLR4 signaling components 

LDH release from murine Macrophages (mmMacs) of the indicated genotypes following the 

indicated treatments as depicted in Figure 2E was compared to the respective WT or Nek7-/- 

controls. Results of ANOVA followed by Tukey’s multiple comparison test are reported as follows: 

* p < 0.05, ** p < 0.01, *** p < 0.001, ns p ≥ 0.05, ns: not significant. 

 

 
 

Stimulation LPS Nigericin LPS + Nigericin 
Background WT Nek7-/- WT Nek7-/- WT Nek7-/- 
Clone # 1 2 1 2 1 2 1 2 1 2 1 2 
Tlr4-/- ns ns ns ns ns ns ns ns * * *** *** 
Myd88-/- ns ns ns ns ns ns ns ns ns * ns ns 
Ticam1-/- ns ns ns ns ns *** ns ns ns * *** ns 
Myd88-/-, 
Ticam1-/- 

ns ns ns ns ns ns ns ns * ns *** *** 
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4.2 Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome

4.2 Spatial single-cell mass spectrometry defines

zonation of the hepatocyte proteome

Proteomics is a powerful technology that allows for the unbiased and large-scale char-

acterisation of protein abundances. We recently developed deep visual proteomics

(DVP), a technology which can investigate the molecular composition of tissues in

a spatial context (Mund et al. 2021). In DVP, microscopy is used to identify cells

of interest in the larger context of the tissue. Subsequently pools of phenotypically

similar cells are analysed via mass-spectrometry (MS)-based proteomics. In this pub-

lication, by increasing MS sensitivity we were able to facilitate the analysis of single

cells from tissues while preserving their spatial information which we termed single-

cell DVP (scDVP). We used this approach to investigate the molecular components

driving zonation of hepatocytes in the liver. Obtaining high quality images in which

to identify cells of interest and map obtained protein abundances back to the spatial

context requires an advanced imaging and image processing workflow. We developed

an imaging routine that allowed for the high-throughput acquisition of confocal mi-

croscopy images on tissue sections. During image processing, we stitch individual

image tiles with sub-micrometer accuracy even across entire microscopy slides. This

enabled the development of a computational model that could assign proteome classes

to all cells across the imaged tissue section on the basis of the acquired images alone.

With these innovations, scDVP now allows for the fine-grained proteomic analysis of

tissues while retaining the spatial context of the analysed cells through imaging.

The following research article was originally published here:

Rosenberger, F. A., Thielert, M., et al. (2023). “Spatial single-cell mass spectrometry

defines zonation of the hepatocyte proteome”. In: Nature Methods 20.10, pp. 1530–

1536. issn: 1548-7091. doi: 10.1038/s41592-023-02007-6
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Spatial single-cell mass spectrometry defines 
zonation of the hepatocyte proteome

Florian A. Rosenberger    1, Marvin Thielert    1, Maximilian T. Strauss    2, 
Lisa Schweizer1, Constantin Ammar1, Sophia C. Mädler1, Andreas Metousis1, 
Patricia Skowronek    1, Maria Wahle1, Katherine Madden1, 
Janine Gote-Schniering3, Anna Semenova3, Herbert B. Schiller3, 
Edwin Rodriguez1, Thierry M. Nordmann1, Andreas Mund    2 & 
Matthias Mann    1,2 

Single-cell proteomics by mass spectrometry is emerging as a powerful 
and unbiased method for the characterization of biological heterogeneity. 
So far, it has been limited to cultured cells, whereas an expansion of the 
method to complex tissues would greatly enhance biological insights. Here 
we describe single-cell Deep Visual Proteomics (scDVP), a technology that 
integrates high-content imaging, laser microdissection and multiplexed 
mass spectrometry. scDVP resolves the context-dependent, spatial 
proteome of murine hepatocytes at a current depth of 1,700 proteins from 
a cell slice. Half of the proteome was differentially regulated in a spatial 
manner, with protein levels changing dramatically in proximity to the 
central vein. We applied machine learning to proteome classes and images, 
which subsequently inferred the spatial proteome from imaging data alone. 
scDVP is applicable to healthy and diseased tissues and complements other 
spatial proteomics and spatial omics technologies.

Mass spectrometry (MS)-based single-cell proteomics (scProteom-
ics) has made tremendous progress within just a few years, and can 
now quantify more than 1,000 proteins in cultured cells1–3. While 
this trajectory is promising, proteome depth, throughput and lack 
of spatial context limit biological use. We have recently introduced 
deep visual proteomics (DVP), a spatial technology that combines 
imaging, cell segmentation, laser microdissection and MS into a single 
workflow to investigate complex tissues with various cell types and 
metabolic niches4. DVP overcomes depth and throughput limitations 
with pooling the required number of cells with similar morphological 
features and staining patterns to identify statistically and analytically 
robust cellular phenotypes (‘biological fractionation’). By its nature, 
it depends on prior knowledge of adequate markers of the cells of 
interest that resolve their heterogeneity. These markers might not 
be available for all subtypes of cells or those tissues that have rapidly 

changing proteome types such as heterogeneous tumors. To address 
this, we here developed single-cell DVP (scDVP), a complementary 
approach that extends scProteomics technologies into the intact 
tissue context.

In this Article, we use scDVP to explore spatial characteristics 
of hepatocyte subsets in mammalian liver—a highly organized and 
functionally repetitive tissue, in which the proteome of hepatocytes 
is determined by paracrine signaling, as well as oxygen and nutrient 
gradients5. These metabolic gradients require distinct functional cell 
states along the portal vein (PV) to central vein (CV) axis. This phenom-
enon of liver zonation has been described by single-cell RNA sequenc-
ing (scRNAseq) for hepatocytes6,7, fluorescence-activated cell sorting 
(FACS) and MS-based proteomics8, and multiplexed imaging9. Despite 
this long and varied background, the extent of spatial heterogeneity 
and proteome variation in hepatocyte remains an open question.
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signal (Extended Data Fig. 1a). To confirm biological ground truth, 
we performed initial experiments on five adjacent shapes per well 
(corresponding to about two complete hepatocyte cell masses), cut 
from randomly chosen locations. With these five shapes, we reached 
a median depth of 1,235 proteins across 230 samples (Extended Data 
Fig. 1b). The results confirmed expected liver biology, for instance, by 
differential expression of the PV marker argininosuccinate lyase (Asl) 
and central Cytochrom P450 2E1 (Cyp2e1, Extended Data Fig. 1c). Using 
zonation anchor proteins to arrange all the samples in pseudo-space 
(Extended Data Fig. 1d), we characterized spatially enriched gene sets 
along the zonation axis. While the protein sets for electron transport 
chain and oxidative phosphorylation (OXPHOS) were among processes 
upregulated in proximity to the PV, biotransformation and oxidations 
by cytochrome P450 were increased proximal to the CV, providing 
positive controls for low-input proteomics (Extended Data Fig. 2 and 
Supplementary Tables S1 and S2).

Multiplex-DIA drastically increases proteome depth
Encouraged by these spatial results, we next asked whether single 
shapes alone could produce deep and interpretable proteomic results. 
To improve sensitivity further, we adopted and optimized elements of 

Results
Robust isolation and characterization of hepatocyte shapes
To map the proteome of mouse hepatocytes at single-cell resolution, 
we established a modular and automated workflow aimed at loss-less 
sample preparation of the initial input cell for injection into the mass 
spectrometer (Fig. 1a). Mice livers were embedded and immediately fro-
zen after cardiac arrest. We fixed 10 µm sections and stained them with 
a one-step protocol marking PVs and CVs, the sinusoidal architecture, 
nuclei and cell membranes (Fig. 1b and Methods). Individual cells were 
segmented by deep learning as before4, and the resulting masks trans-
ferred to a laser microdissection microscope that automatically excised 
and collected individual shapes in 384-well plates. Given hepatocyte 
sizes of 20–30 µm, one shape cut from a 10 µm section corresponds 
to a third or half of a hepatocyte, or approximately 250 pg of protein 
input, equivalent to the protein content of one HeLa cell. We automated 
protein extraction and digestion by reagent addition into the same plate, 
omitting extra transfer steps, followed by peptide separation on the 
Evosep system10 and injection into a trapped ion mobility time-of-flight 
single-cell proteomics (timsTOF SCP) mass spectrometer (Fig. 1a).

To establish an efficient workflow, we applied our scProteomics 
protocol2 and titrated the number of cells required to obtain a robust 

WGA

E-cadherin Glul

Phalloidin

b

Liver painting and
high-content microscopy

Automated sample
preparation and multiplexing

∆0
∆4

∆8

AI-based cell segmentationFresh-frozen mouse liver
10 µm sections

Laser microdissection

a

Low-flow chromatography
MS on timsTOF SCP

timsTOF
SCP

Fig. 1 | Isolation and characterization of individual hepatocyte shapes in 
situ. a, The scDVP workflow comprised embedding of fresh mouse liver tissue, 
staining and high-content microscopy, AI-guided hepatocyte segmentation, 
cutting and sorting of cells on a laser microdissection microscope, and peptide 
preparation with or without dimethyl labeling. The ∆0 channel contains the 
reference proteome and ∆4 and ∆8 contain two individual samples, which are all 

analyzed by ultra-high-sensitivity mass spectrometry. Created with BioRender.
com. b, Liver painting with four stains. Left: E-cadherin marks PV regions, 
glutamate-ammonia ligase (Glul) surrounds the CV, the cell segmentation 
marker phalloidin, and the sinusoidal and nuclear counterstain WGA. Right: false 
color overlay of all channels: orange, E-cadherin; yellow, WGA, gray, phalloidin; 
turquoise, Glul. Scale bars, 100 µm.
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our scProteomics workflow11. These include addition of the surfactant 
n-dodecyl-β-D-maltoside (DDM) to maximize peptide recovery12, 
lowering the chromatographic flow rate to 100 nl min−1 for increased 
ionization efficiency2 (‘Whisper gradients’ on the Evosep system) and 
achieving higher chromatographic resolution with zero dead volume 
columns (IonOpticks)13. Most importantly, we added a labeled refer-
ence channel for multiplexed data-independent acquisition (mDIA) 
that decouples identification and quantification11 (Fig. 1a).

For scDVP, we constructed a dimethyl-labeled bulk liver reference. 
Our robotic sample preparation setup achieved about 99% labeling 
efficiency in all three channels (Extended Data Fig. 3a). We co-injected 
10 ng of the reference proteome together with the labeled proteomes 
of two single shapes at a mean size of 600 µm2 (Extended Data Fig. 3b).  
This resulted in a doubling of identified proteins with a median num-
ber of 1,712 proteins across three biological replicates and 455 single 
shapes, at twice the previous throughput (Extended Data Fig. 3c).  
A maximum of 2,769 proteins were identified in one shape, and 3,738 
unique proteins were found across all samples (Fig. 2a and Extended 
Data Fig. 3c). Four histone components ranked in the top ten, but we 
also found many transcription factors (Fig. 2a). In contrast, plasma 
proteins produced in hepatocyte were of medium abundance and 
hemoglobin subunits were not detected. This suggests little to no con-
tamination from surrounding blood, a common issue in bulk proteom-
ics (Extended Data Fig. 3d). The number of detected proteins correlated 
logarithmically with the microdissected area (Extended Data Fig. 3e), 
indicating that scDVP requires the highest possible MS sensitivity. 
Data completeness across all samples increased with median intensity 
per protein. Coefficients of variation were less than 50% and strongly 
depended on cell size and position along the zonation axis, reflecting 
biological heterogeneity in the data (Extended Data Fig. 3f,g). We 
hypothesized that the nuclear proportion in the cell slice would cor-
relate with the intensity of these histones. Indeed, shapes with lowest 
histone intensities did not have any evident nuclear signal, while top 
intensities were in shapes with large or two nuclei. In addition to this, 
the intensity of the top four abundant histone proteins was highest in 
arterioles that we cut as technical control structures, and which are 
composed of more than one cell and nucleus (Fig. 2b and Extended 
Data Fig. 3h).

Single-shape proteomes accurately reflect hepatocyte zonation
To test the biological validity of our proteomics data, we first reduced 
dimensionality in a principal component analysis (PCA), which revealed 
that PC1 represented the measured distance of a hepatocyte to PV 

and CV (Fig. 3a,b). Overlays of known liver zonation markers includ-
ing Cyp2e1 and argininosuccinate lyase (Asl) showed opposite visual 
enrichment along PC1 (Extended Data Fig. 4a,b). In contrast, PC2 did 
not correlate with measured distance or hepatocyte zonation markers 
but rather with cytoskeletal components (Extended Data Fig. 4c,d). PC2 
was also the dimension in which portal arterioles, which we excised as 
technical controls, separated from hepatocytes (Extended Data Fig. 4e).

We asked whether single-cell resolution provides any benefit 
over combining adjacent shapes. To this end, we iteratively combined 
shape information and averaged protein levels of cells with the same 
relative location along the zonation axis (‘pseudo-neighbors’). Start-
ing from the combination of as little as two shapes, PC1 continuously 
gained importance as measured by interquartile range and variance 
explained, whereas PC2 and all subsequent components dropped 
in explanatory value (Extended Data Fig. 5). This demonstrates that 
single-cell data retains subtle biological differences compared to the 
excision of larger areas.

On the basis of the distance ratio of PV and CV, we grouped the data 
into 20 spatial bins—approximately the maximum number of cells along 
the zonation axis. Analysis of variance (ANOVA) testing across all bins 
revealed that 49% of all proteins detected in at least half of the samples 
were significantly different between zones (false discovery rate (FDR) 
<0.05; Extended Data Fig. 6a and Supplementary Table S2). Zonation 
was also apparent after spatial sorting at the total proteome level (Fig. 3c  
and Supplementary Table S3) and for known hepatocyte zonation 
markers (Fig. 3d). Only 5.8% of these proteins were expressed equally 
in all zones (multiple testing-adjusted Shapiro–Wilk test, P > 0.05), 
including electron transfer flavoprotein β (Etfb), the electron accep-
tor in mitochondrial fatty acid β-oxidation (Extended Data Fig. 6b).

The first principal component along the zonation axis indicated 
that portal and periportal regions were more similar to one another 
than central and pericentral zones (Fig. 3b). Indeed, the spatial expres-
sion of the top ten significant zonation markers for each portal and 
central regions followed a hockey-stick curve from portal to central 
(Fig.3e), similar to Wnt-controlled transcripts in a scRNAseq dataset6 
and in line with a CV origin of Wnt signaling14. In contrast, this pattern 
was absent for the hits with the highest P values (least zonated hits; 
Extended Data Fig. 6d).

A cross-omics comparison with scRNAseq data6 confirmed the 
directionality of the most prominent zonation markers (Pearson’s 
R = 0.97, Extended Data Fig. 7a,b), while correlation was low across 
all proteins and transcripts (Pearson’s R = 0.12). Notably, a number 
of proteins were regulated only in the RNA or protein dimension, or 
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even inversely correlated (Extended Data Fig. 7c), such as dimethylgly-
cine dehydrogenase in the choline catabolic pathway. Similarly, when 
we compared our data with a FACS-based hepatocyte proteome8, we 
found slightly lower correlation of markers and better overlap overall 
(Pearson’s R of 0.16 versus 0.12, Extended Data Fig. 7d–f). Members of 
glutathione metabolism had similar spatial distribution in both data-
sets (Extended Data Fig. 7g). This underlines that the scDVP dataset 
provides orthogonal insight into liver physiology instead of merely 
complementing existing datasets.

Enrichment of functional protein sets across the spatial bins con-
firmed that arginine biosynthesis and OXPHOS were highly enriched 
toward the PV (Fig. 3f). When we added subcellular annotations to 
our dataset, we found negligible differences to a bulk mouse liver 
proteome for many compartments including the plasma membrane 
(summed intensity of 10.6% in the library versus 10.7% in this scDVP 
data), highlighting that laser microdissection is suitable to excise the 
entire shape (Fig. 3g and Supplementary Table S6). On a biological 
level, we found only small changes of summed organellar intensities 
across spatial bins (Extended Data Fig. 8 and Supplementary Table S6),  
namely decreasing mitochondrial and endoplasmic reticulum mass 
and increasing Golgi apparatus and nucleoplasm from PV to CV. When 
cross-mapping the scDVP data with the mitochondrial protein library 
Mitocarta 3.0 (ref. 15), the five complexes of OXPHOS decreased col-
lectively by more than 25%, yet mitochondrial proteins related to 
fatty acid metabolism mildly increased conspatially, suggesting dif-
ferential regulation within the same cellular compartment (Fig. 3h). 
Remarkably, these protein sets reach their spatial expression at the 
midpoint between PV and CV in contrast to the hockey-stick distri-
bution of the top ten differentially expressed proteins (Fig. 3e,h), 
suggesting that the mitochondrial compartment is not dependent 
on the Wnt-signaling gradient.

The scDVP data correctly confirmed that proteins participat-
ing in ammonia fixation of the urea cycle were highly expressed in 
portal regions, while those involved in ammonia capture on gluta-
mate were strongly pericentral (Fig. 3i). To our surprise, several other 
signaling-related pathways were also zonated including peroxisome 
proliferator-activated receptor (PPAR) signaling (Fig. 3f and Sup-
plementary Table S5). This was corroborated by prominent central 
expression of enzymes required for peroxisomal degradation of 
very-long-chain fatty acids, and ω-oxidation of dicarboxylic C12 fatty 
acids, enriched in, for instance, coconut oil (Fig. 3j). We conclude that 
the spatial proteome data from single hepatocyte shapes is biologically 
accurate and informative, and furthermore, contains rich biological 
information to be mined.

Spatial context regulates single-cell proteomes
Combining the single-shape proteomes with their inherent spatial 
information and staining intensities, scDVP revealed clear dependence 
of fluorescent intensities with the eight proteome classes established 
above (Fig. 4a,b).

Encouraged by the evident complementarity between extensive 
proteomics and spatial data, we reasoned that the microscopic image 
could contain sufficient information to predict the proteome. To this 
end, we trained a machine-learned (ML) model on 17 features to predict 
the proteome classes from imaging data. We grouped the training 
set into five proteome classes by k-means clustering (Extended Data  
Fig. 9a), and used the information in all imaging channels as predic-
tors (Extended Data Fig. 9b). This model reached an average precision 
of 0.94 (Extended Data Fig. 9c,d), correctly assigning the proteome 
class of almost all cells. Errors occurred exclusively between spatially 
neighboring classes (Fig. 4c).

We tested the model performance on a new section (not used in 
training), from which we measured 60 single-shape proteomes. Visual 
inspection indicated that the predicted classes were correctly located 
in proximity to CV or PV, even in the presence of cutting artifacts  
(Fig. 4d). We used the class probabilities as weights to predict the spatial 
proteome, which accurately approximated overall protein intensi-
ties (R = 0.78 between prediction and measurement, Fig. 4e). When 
predicting the proteome of a larger section for all quantified proteins, 
the ML model correctly assigned the spatial directionality of zonation 
markers, as well as their expected extension into the intermediate zone  
(Fig. 4f ). Thus, the model confirms the accuracy of measured 
single-shape proteomes, and is furthermore a potent predictor of 
spatial proteomes across any imaged areas.

Discussion
Here, we present a single-cell spatial map of the murine liver acquired 
by MS-based proteomics. Our approach successfully combines micro-
scopic imaging data with ultra-high-sensitivity proteomics, build-
ing on four major technological advances: (1) artificial intelligence 
(AI)-assisted segmentation and laser microdissection, (2) multiplex-DIA 
(mDIA), (3) low-flow gradients and (4) the ultra-high sensitivity of a 
timsTOF SCP mass spectrometer.

To date, MS-based scProteomics has been exclusively reported 
for cell suspensions. State-of-the-art workflows currently reach a pro-
teomic depth of up to 2,000 proteins in cultured cells, with about 
250 pg of cellular protein mass. This is similar to the protein material 
in our sliced hepatocytes, taking the section thickness of 10 µm and 
hepatocyte size of 20–30 µm into account. With our scDVP workflow, 
we achieved more than 1,700 proteins per single shape (and up to 
2,700) despite working from sections that were fixed, stained, imaged 
and laser dissected. Laser microdissection successfully separated 
hepatocytes from surrounding material including blood remnants, 
which holds promise for smaller cell types in more complex tissue 
environments. The size of our shapes correlated strongly with the 
number of identified proteins, suggesting that scDVP is currently 
limited by MS sensitivity and will thus profit from continuous techni-
cal developments. We established the scDVP protocol to combine 
one reference channel with two single shapes (effective two-plex) 
and used a 40 samples per day chromatography method. This can be 

Fig. 3 | Single-shape proteomes are accurate descriptors of zonated 
hepatocytes. a, PCA of all hepatocytes. The color overlay corresponds to the 
ratio of measured distance PV over CV in the microscopy image. b, Measured 
distance ratio versus PC1. Relative distance of 0 is at the PV and of 1 is at the CV. 
Black: smoothing curve. c, Heat map of protein expression as z-score per protein 
across all samples. Proteins are ordered according to ANOVA fold change (FC) 
across 20 spatial equidistant bins, summarizing samples with a similar distance 
ratio to PV and CV. The ten top and bottom proteins are given. Only proteins that 
were detected in 70% of all samples are included. d, Protein expression as z-score 
of selected marker proteins, ordered by relative distance to PV and CV. One line 
is one shape measurement. Gray: protein not detected. e, Expression of the top 
20 significant proteins in 20 spatial bins, relative to total expression from portal 
to central. Zonation peak at PV: positive ANOVA fold change (n = 10), and vice 

versa (n = 10). f, Selected gene sets in individual spatial bins versus all others 
bins, depicting normalized enrichment score after gene set enrichment analysis. 
Dot size: significance after multiple testing adjustment. g, The proportion 
of protein signal stratified by subcellular compartment in a bulk mouse liver 
proteome and the scDVP dataset. Percentages refer to mean across spatial bins 
in the scDVP data. h, Relative expression in 20 bins from PV to CV of proteins 
constituting mitochondrial OXPHOS components (C) I–V, and mitochondrial 
lipid metabolism. i, Levels of urea cycle and connected enzymes from portal (left) 
to central (right) bins as log2FC relative to median expression in the two center 
bins. Portal box: active in portal regions. Central box: active in central region.  
j, Levels of peroxisomal enzymes related to very-long chain fatty acid 
degradation, spatially resolved as in g. Data from three mice were pooled.
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further scaled to five-plex (effective four-plex) and 80 samples per day, 
scaling to 320 shapes per day11. Given the more stable core proteome 
compared with single-cell transcriptomes2 and the resulting lower 
required sample number, scDVP experiments encompassing a few 
hundred single shapes could be done in just a few days. Furthermore, 
because of the very low quantities and absence of proprietary reagents, 
marginal costs are extremely low.

Our proteomics data from single shapes correctly and accurately 
recapitulates hepatocyte physiology by direction, extent and spatial 
organization of zonation. More than half of quantified proteins were 
significantly different between portal and central zones, in line with 
scRNAseq data6,16 and FACS-based proteomics data8. The fact that 
we detected all of the previously used markers of liver zonation6 sug-
gests that our proteomic depth is sufficient to integrate into other 
omics datasets. This became further apparent on the level of functional 
pathways, including signaling and disease pathways. Interestingly, 
peroxisomal degradation of very-long-chain fatty acids, as well as 
dicarboxylic C12 fatty acids, was enriched in proximity to the CV. Bio-
chemical evidence by radiolabeling experiments support the notion 
that nonmitochondrial fatty acid oxidation localizes to pericentral 
regions17. We report an almost linear decrease of mitochondrial mass 

and OXPHOS subunits along the zonation axis. This is in line with intra-
vital microscopy data showing decreasing mitochondrial membrane 
potential18. A rhythmic expression pattern has been previously shown 
for a large number of liver transcripts and proteins16,19. While we have 
not covered the temporal aspect here, the scDVP approach could con-
tribute to such studies by adding a spatial dimension.

In the previously described DVP workflow, we used pools of cells 
combined on the basis of common features, such as the expression 
intensity of already known markers, or morphology4. This approach 
allows a deep, rapid and robust proteome characterization that accu-
rately represents the underlying biology. By analyzing single cellular 
shapes without prior assumptions, scDVP now removes the depend-
ency on established markers or features. This makes it a promising 
approach in heterogeneous tissues with partially or not defined sub-
types of cells, such as in many tumor tissues. Moreover, scDVP can be 
a method of choice to map proteomic disturbances along gradients of, 
for instance, signaling factors, nutrients or gases, and in physiological 
settings that may create impediments for other omics methods, for 
instance, in extracellular fibrotic scars.

Our results demonstrate that the central challenge of scDVP is the 
sensitivity of the overall workflow. Although we have here reduced the area 
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required for laser microdissection by 100-fold compared with our initial 
DVP report4, we note that one excised hepatocyte shape contains approxi-
mately ten times more protein than the smallest cells of interest, such 
as typical resting lymphocytes20. While the required sensitivity is being 
developed, the original DVP approach using pooled cells of the same type 
is a powerful tool for this kind of problems. We also note recent success in 
drastically scaling down DVP for formalin-fixed and paraffin-embedded 
samples, which are readily available in many clinical settings21.

There have been advances in the quantification of posttrans-
lational modifications from ultra-low-input material, such as from 
1 µg down to the material corresponding to single cell, for instance 
in the enrichment protocol µPhos22. In combination with scDVP, this 
holds promise for single cells, although the biological information in 
single-cell phosphoproteomics data would currently be limited to a 
few high-abundance proteins with high modification stoichiometries. 
Subtle signaling events, such as the liver-dominant Wnt signaling, will 
require additional technological developments for in-depth biological 
description of signaling in single cells by MS.

We have shown that single-cell data can be used to train an accurate 
ML model that predicts the proteome class from visual information 
only. Evidence suggests that morphological features such as nuclear 
vacuolation and texture associate with zonation, and can even serve 
as a progression and stratification marker of nonalcoholic fatty liver 
disease23. Combining such easily available features and extensive pro-
teomic sampling can clearly lead to higher precision of the predictive 
models. Transfer learning might then extend the approach to many 
new areas, as already shown for single-cell transcriptomics data24. 
The modular nature of scDVP, especially the open format from laser 
microdissection to 384-well plates for sample preparation, makes it 
widely applicable and also compatible with other spatial omics tech-
nologies such as spatial transcriptomics, epigenomics25 or multiplexed 
imaging. In conclusion, scDVP is a powerful tool for basic discovery 
science, working in concert with DVP and other omics methods to 
enrich spatial workflows.
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Methods
Mouse experiments and organ collection
Pathogen-free male and female 10-week-old C57BL/6J-rj mice were 
purchased from Janvier and maintained at the appropriate biosafety 
level under constant temperature and humidity conditions with a 12 h 
light cycle. Animals were allowed food and water ad libitum. All experi-
ments were performed on 12- or 13-week-old wild-type mice. These were 
killed by cervical dislocation, and the liver was rapidly excised through 
a ventral opening of the peritoneum. The organ was rinsed in cold 
phosphate-buffered saline (PBS), and the left lateral lobe was divided 
into three pieces. For this study, the distal-caudal quarter was embed-
ded in optimal cutting temperature medium (Sakura Finetek) in 15 mm 
disposable cryomolds (Sakura Finetek) and frozen in isopentane that 
was precooled to dew point in liquid nitrogen. Fully solidified blocks 
were transferred to dry ice, and then to a −80 °C freezer until further 
processing. Animal handling and organ withdrawal were performed 
in accordance with the governmental and international animal wel-
fare guidelines and ethical oversight by the local government for the 
administrative region of Upper Bavaria (Germany), registered under 
ROB-55.2-2532.Vet_02-16-208.

Immunofluorescence staining
Two micrometer polyethylene naphthalate membrane slides were 
pretreated by ultraviolet ionization for 1 h at 254 nm. Without delay, 
slides were consecutively washed for 5 min each in 350 ml acetone and 
7 ml VECTABOND reagent to 350 ml with acetone, and then washed in 
ultrapure water for 30 s before drying in a gentle nitrogen air flow. For 
sectioning, tissue blocks were transferred to a cryostat (Leica CM3050) 
at −18 °C chamber and −15 °C object temperature, and left to equilibrate 
for 30 min. Blocks were then trimmed, and final sections were cut at 
10 µm thickness with a disposable high-profile blade (Leica 818). Frozen 
sections were transferred to pretreated, cold polyethylene naphthalate 
membrane slides, and melted for less than 5 s on a room temperature 
surface. The sections were then fixed in prewarmed 4% paraformal-
dehyde in PBS at 37 °C, then in 95% ethanol at room temperature and 
finally again in 4% paraformaldehyde in PBS at 37 °C. Slides were rinsed 
in PBS and left in 5% BSA–PBS blocking solution for 1 h until staining. 
Sections were stained for 1 h at 37 °C in a humid and dark chamber with 
200 µl of a one-step liver painting in 1% BSA: 1:300 phalloidin coupled 
to Atto-425 (Sigma 66939), 1:200 wheat germ agglutinin (WGA) cou-
pled to Alexa Fluor 488 (Invitrogen, W11261), 1:100 anti-E-cadherin 
coupled to Alexa Fluor 555 (BD 560064), anti-glutamine synthase 
(Abcam, ab176562) and 1:500 anti-rabbit nanobody coupled to Alexa 
Fluor 647 (Chromotek srbAF647-1-100). Slides were washed three 
times for 2 min in PBS in the dark, and mounted with 21 FL ProLong 
Diamond mounting medium (Invitrogen, P36961) and a 22 × 22 mm 
#1.5 coverslip. Slides were stored until imaging in 50 ml tubes with 
desiccating material at 4 °C.

High-content imaging
Sections were imaged on an OperaPhenix high-content microscope, 
controlled with Harmony v4.9 software, at 40× magnification, with 
binning of two and a per tile overlap of 10%. At excitation wavelengths 
of 425 nm, 555 nm and 647 nm, an 80% laser intensity were used at an 
illumination time of 100 ms, while in the 488 nm (CFP) channel, 20% and 
20 ms were used. E-cadherin and glutamine synthetase were imaged 
simultaneously, while phalloidin and WGA were imaged consecutively.

Image postprocessing
Acquired images were flat-field corrected using the Harmony soft-
ware. Stitching of image tiles was performed using the ashlar Python 
API (application programing interface)26 with a max shift value of 30. 
Stitched images were exported as .tif files and imported into the Bio-
logical Image Analysis Software (BIAS, Single-Cell Technologies Ltd.)4 
with the packaged import tool. In BIAS, large tif images were first retiled 

to 1,024 × 1,024 px at an overlap of 5%. Hepatocytes were identified 
with a deep neural network for histological cytoplasm segmentation 
on the basis of phalloidin staining at 1.2 input spatial scaling, 40% 
detection confidence and 30% contour confidence. Only contours 
between 135 µm2 and 1,350 µm2 were taken into consideration, and no 
further exclusion criteria were applied. After removal of duplicates and 
false identifications by supervised machine learning, contours were 
exported without additional shape offset together with three calibra-
tion points that were chosen at characteristic tissue positions. Contour 
outlines were simplified by removing 99% of data points. For five-shape 
proteomes, directly adjacent shapes forming a pentagon-like struc-
ture were manually picked. Single shapes were randomly picked and 
every 15–25th shape was assigned to adjacent wells in a 384-well plate. 
Arterioles were manually assigned based on WGA signal, ellipticity and 
proximity to the E-cadherin positive PV.

Laser microdissection
Contour outlines were imported after reference point alignment, and 
shapes were cut by laser microdissection with the LMD7 (Leica) in a 
semi-automated manner at the following settings: power 59, aperture 
1, speed 60, middle pulse count 1, final pulse −1, head current 48–52%, 
pulse frequency 3,282 and offset 100. For the five-shape experiment, 
the microscope was controlled with LMD v8.2, with which five directly 
adjacent shapes were sorted into a low-binding 384-well plate (Eppen-
dorf 0030129547) with one empty well between samples. Single shapes 
were cut and sorted with the software LMD beta 10 after calibration of 
the gravitational stage shift into 384-well plates into all wells, leaving 
the outermost rows and columns empty. A ‘wind shield’ plate was used 
on top of the sample stage to avoid erroneous sorting. Plates were 
sealed, centrifuged at 1,000g for 5 min and then frozen at −20 °C until 
further processing.

Reference peptide preparation for five-shape and 
single-shape proteomes
The proximal part of two biologically independent lobes of the same 
mice as in the scDVP experiments was used to construct a library. The 
tissue embedded in optimal cutting temperature medium was removed 
from −80 °C and directly disintegrated in a plastic bag with a manual 
tissue homogenizer (rubber hammer). Pieces of approximately 1 mm3 
were transferred into a low-binding 96-well plate with magnets (Beat-
Box Tissue Kit, Preomics), covered with 50 µl of 60 mM triethylammo-
nium bicarbonate buffer with 10% acetonitrile (ACN; lysis buffer), and 
lysed in a BeatBox (Preomics) at standard settings for 10 min. Samples 
were then boiled at 96 °C for 20 min, transferred to 1.5 ml low-binding 
tubes, filled up to 500 µl with lysis buffer and sonicated for five times 
30 s on/off cycles. After centrifugation at 2,000g for 1 min, the protein 
concentration in the supernatant was estimated on a NanoDrop, and 
LysC and trypsin were added at a protein-to-enzyme ratio of 1:100. After 
digest for 20 h, samples were acidified to 1% trifluoroacetic acid (TFA), 
centrifuged at 3,000g for 10 min at room temperature, and dried in a 
SpeedVac for 30 min. Digest was filled to 1 ml with buffer A (0.1% formic 
acid (FA)), and desalted on C-18 columns (Waters WAT036820). They 
were activated and equilibrated with 2 ml of methanol, 2 ml of buffer 
B (100% ACN, 0.1% FA) and 2 ml of buffer A, before sample loading. 
Peptides were washed with buffer A two times, eluted in 80% ACN with 
0.2% FA and dried down.

Library fractionation for five-shape proteomes
Peptides were reconstituted in 18 µl buffer A* (0.1% FA, 2% ACN) frac-
tionated on a 30-cm-long 1.9 µm ReproSil C-18 column (PepSep) using a 
100 min high-pH gradient. The concentration of buffer B was increased 
from 3% to 30% in 45 min, to 40% in 12 min, to 60% in 5 min, to 95% in 
10 min, kept constant for 10 min, reduced to 5% in 10 min and kept 
constant for 8 min. The eluted peptides were automatically collected 
into 48 fractions with a concatenation time of 90 s per fraction. The 

4.2 Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome

83



Nature Methods

Article https://doi.org/10.1038/s41592-023-02007-6

fractions were dried in a SpeedVac, reconstituted in 0.1% FA and directly 
loaded onto Evotips.

Labeling of single-shape reference proteome
Peptides were reconstituted to 0.125 µg µl−1 in 60 mM triethylammo-
nium bicarbonate buffer with 10% ACN, pH 8.5. The peptides were then 
dimethyl labeled with 0.15% light formaldehyde (CH2O) and 0.023 M 
light sodium cyanoborohydrate (NaBH3CN) for 1 h at room tempera-
ture, quenched with 0.13% ammonia and acidified to 1% TFA. After 
drying in a SpeedVac, pellets were reconstituted in 100 µl buffer A, and 
desalted via 5 µg C-18 columns on an AssayMap (Agilent) following the 
standard protocol. The resulting reference peptides were dried, and 
reconstituted to 1 ng µl−1 in buffer A.

Peptide preparation of single shapes and dimethyl labeling for 
multiplexing
Peptides were prepared semi-automated on a Bravo pipetting robot 
(Agilent), similarly to as described previously11. During each incuba-
tion step, plates were tightly sealed with two stacked aluminum lids to 
avoid evaporation (Thermo Fisher Scientific, AB0626). For this, plates 
were removed from the freezer and centrifuged. The wells were then 
washed on the robot with 28 µl of 100% ACN and dried in a SpeedVac 
(Eppendorf) at 45 °C for 20 min. Shapes were then resuspended in 6 µl 
of 60 mM triethylammonium bicarbonate buffer (pH 8.5, Sigma) with 
0.013% DDM (Sigma), and cooked for 30 min at 95 °C in a PCR cycler 
at a lid temperature of 110 °C. After addition of 1 µl of 80% ACN (final 
concentration 10%), samples were incubated for another 30 min at 
75 °C, cooled briefly, and 1 µl with 4 ng LysC and 6 ng trypsin was added. 
The samples were digested for 18 h, and then 1 µl of either intermediate 
(CD2O) or heavy formaldehyde (13CD2O) was added to a final concen-
tration of 0.15%. Without delay, either light (NaBH3CN) or heavy (NaB-
D3CN) sodium cyanoborohydrate were added to 0.023 M to retrieve 
∆4 and ∆8 dimethyl-labeled single-shape samples. The sealed plate 
was then incubated at room temperature for 1 h, and the reaction was 
quenched to 0.13% ammonia and acidified to 1% TFA.

Peptide loading onto C-18 tips
C-18 tips (Evotip Pure, EvoSep) were activated for 5 min in 1-propoanl, 
washed twice with 50 µl of buffer B (99.9% ACN, 0.1% FA), activated for 
5 min in 1-propanol, and washed twice with 50 µl buffer A (0.1% formic 
acid). Single-shape samples were then loaded automatically with the 
Agilent Bravo robot into 30 µl buffer in the tip that was spun through 
the C-18 disk for a few seconds only. For loading, 10 µl of 1 ng µl−1 refer-
ence peptides (∆0) were pipetted first, followed by ∆4, and ∆8 samples 
with the same tip. Wells were rinsed with 15 µl buffer A that was also 
loaded onto the tip. After peptide binding, the disk was further washed 
once with 50 µl buffer A and then overlayed with 150 µl buffer A. All 
centrifugation steps were performed at 700g for 1 min, except sample 
loading for 2 min.

For five-shape proteomes, plates were treated as above, with the 
exception of lysis in 4.5 µl 60 mM triethylammonium bicarbonate 
buffer, pH 8.5 without DDM, and consecutive addition of 1 µl LysC and 
1.5 µl trypsin to achieve the same digestion volume as above. Five-shape 
samples were not dimethyl labeled and multiplexed, but acidified 
directly after digest, and loaded manually onto Evotips following the 
protocol described above.

LC–MS/MS analysis of five shapes
Samples were measured with the Evosep One LC system (EvoSep) cou-
pled to a timsTOF SCP mass spectrometer (Bruker Daltonics). The 30 
samples per day method was used with the Evosep Performance column 
15 cm, 150 µm ID (EV1137 EvoSep) at 40 °C inside a nanoelectrospray ion 
source (Bruker Daltonics) with a 10 µm emitter (ZDV Sprayer 10, Bruker 
Daltonics). The mobile phases were 0.1% FA in liquid chromatography 
(LC)–MS-grade water (buffer A) and 99.9% ACN/0.1% FA (buffer B). We 

used a dia-PASEF method with 16 dia-PASEF scans separated into four 
ion mobility windows per scan covering an m/z range from 400 to 1,200 
by 25 Th windows and an ion mobility range from 0.6 to 1.6 V s cm−2 
(‘standard scheme’27). The mass spectrometer was operated in high 
sensitivity mode, with an accumulation and ramp time at 100 ms, capil-
lary voltage set to 1,750 V and the collision energy as a linear ramp from 
20 eV at 1/K0 = 0.6 V s cm−2 to 59 eV at 1/K0 = 1.6 V s cm−2.

LC–MS/MS analysis of single shapes
Samples were measured with the Evosep One LC system (EvoSep) 
coupled to a timsTOF SCP mass spectrometer (Bruker Daltonics). The 
Whisper40 samples per day method was used with the Aurora Elite 
CSI third generation 15 cm and 75 µm ID (AUR3-15075C18-CS IonOp-
ticks, Australia) at 50 °C inside a nanoelectrospray ion source (Bruker 
Daltonics). The mobile phases were 0.1% formic acid in LC–MS-grade 
water (buffer A) and 99.9% ACN/0.1% FA (buffer B). The timsTOF SCP 
was operated with an optimal dia-PASEF method generated with our 
Python tool py_diAID28. The method contained eight dia-PASEF scans 
with variable width and two ion mobility windows per dia-PASEF scan, 
covering an m/z from 300 to 1,200 and an ion mobility range from 0.7 
to 1.3 V s cm−2, as previously used on the same gradient and similar input 
material amount11. The mass spectrometer was operated in high sensi-
tivity mode, with an accumulation and ramp time at 100 ms, capillary 
voltage set to 1,400 V and the collision energy as a linear ramp from 
20 eV at 1/K0 = 0.6 V s cm−2 to 59 eV at 1/K0 = 1.6 V s cm−2.

The labeling efficiency was accessed on the same LC–MS/MS in 
data-dependent acquisition (dda)-PASEF mode with ten PASEF scans 
per topN acquisition cycle. Singly charged precursors were excluded 
by their position in the m/z-ion mobility plane using a polygon shape, 
and precursor signals over an intensity threshold of 1,000 arbitrary 
units were picked for fragmentation. Precursors were isolated with a 
2 Th window below m/z 700 and 3 Th above, as well as actively excluded 
for 0.4 min when reaching a target intensity of 20,000 arbitrary units. 
All spectra were acquired within a m/z range of 100–1,700. All other 
settings were kept as described before.

Spectral library generation
The spectral library was generated on five dda-PASEF single shots 
from 50 ng mouse reference peptide, using the same chromatography 
method as above. Spectra were search with FragPipe v18.0 (ref. 29) 
using MSFragger v3.5, Philosopher v4.4.0 and EasyPQP v0.1.32 against 
a mouse FASTA reference file with 55,319 entries used throughout this 
study, excluding 50% decoys. Standard settings of the DIA_SpecLib_
Quant workflow were used with the following exceptions: N-terminal 
and lysine mass shift of 28.0313 Da were set as fixed modifications, and 
methionine oxidation as variable modification. Carbamidomethylation 
was unselected as samples were not reduced and alkylated. One missed 
cleavage was accepted. The precursor charge ranged from 2 to 4. The 
peptide mass range was set to 300–1,800, and peptide length from 7 
to 30. For DIA-NN compatibility, the column ‘FragmentLossType’ was 
removed in the output library file.

Spectral search
All 263 files were search together in DIA-NN (version 1.8.1) (ref. 30) against 
the above-generated library, using a mass and MS1 mass accuracy of 15.0, 
scan windows of 9, and activated isotopologues, Match-between-Runs 
(MBR), heuristic protein inference and no shared spectra, in single-pass 
mode. Proteins were inferred from genes. Library generation was set 
as ‘IDs, RT & IM profiling’, and ‘Robust LC (high precision)’ as the quan-
tification strategy. Dimethyl labeling at N-termini and lysins was set as 
fixed modification at 28.0313 Da, and ∆4 or ∆8 were spaced 4.0251 Da or 
8.0444 Da from the reference ∆0 ({–fixed-mod Dimethyl, 28.0313, nK} 
and {–channels Dimethyl, 0, nK, 0:0; Dimethyl, 4, nK, 4.0251:4.0251; Dime-
thyl, 8, nK, 8.0444:8.0444}). Additional settings were {–original-mods}, 
{–peak-translation}, {–ms1-isotope-quant}, {–report-lib-info}.
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Data analysis

 (1) RefQuant: to determine the quantities of the precursors in the 
DIA-NN report.tsv file, we utilized the Python-based RefQuant al-
gorithm11. In brief, RefQuant determines the ratio between target 
and reference channels for each individual fragment ion and MS1 
peak that is available. This gives a collection of ratios from which 
RefQuant estimates a likely overall ratio between target and 
reference. The ratio between target and reference was rescaled 
by the median reference intensity over all runs for the given pre-
cursor, thereby giving a meaningful intensity value for the target 
channel. The RefQuant quantification matrix was filtered for ‘Lib.
PG.Q.Value’ <0.01, ‘Q.value’ <0.01 and ‘Channel.Q.Value’ <0.15 
and was then collapsed to protein groups using the MaxLFQ algo-
rithm31 as implemented in the R package iq (version 1.9.6) (ref. 32) 
with median normalization turned off.

 (2) Sample filtering and normalization: protein group data 
were then further analyzed in R v4.2.1 operating in RStudio 
v2022.07.2. Samples were excluded if the number of detected 
proteins was below 1.5 or above 3 s.d. from the sample iden-
tification median, or within (806, 3,362) identified proteins, 
resulting into a dropout of 8.9% (41 of 459 samples). Four 
samples were removed due to their outlier position on the PCA, 
see Supplementary Table S3. Eight samples were removed due 
to their cell sizes larger than the BIAS cutoff of 1,350 µm2. This 
resulted in 406 included samples, of which 400 were hepato-
cytes and 6 endothelial structures for validation. After sample 
filtering, data was median normalized to a set of proteins that 
were quantified across all samples (175 proteins quantified in 
100% of included samples; Supplementary Table S3), thus cor-
recting for the dependence of protein numbers on shape size. 
For hepatocyte specific analysis, the arteriole proteomes were 
removed before normalization.

 (3) Figure generation: we chose 20 classes for all comparative 
spatial analyses as this matches the approximate number of 
cells from PV to CV, and five classes for machine learning as 
a compromise between meaningful separation and having 
enough samples per class. Proteome bins were based on an 
equidistant split of PC1, distance classes accordingly on a 
split of PV over CV distance ratios, and applied as indicated. 
PCA were performed with the PCAtools v2.8.0 package. 
Limma v3.52.4 was used for statistical testing across pro-
teome bins on a 50%-complete protein data matrix. ‘FDR’ was 
applied for multiple testing correction, and an FDR cutoff of 
5% was considered significant. Heat mapping was performed 
with pheatmap 1.0.12, the completeness of the data matrix is 
indicated in the figure legends. Proteomic gene set enrich-
ment analyses were done with WebGestalt 2019 (ref. 33) in 
an R environment using Kyoto Encyclopedia of Genes and 
Genomes metabolic pathways or Wikipathway as functional 
library and an FDR threshold for reporting of 1. Significance 
was defined as FDR <10%, and normalized enrichment scores 
are reported here. Subcellular localization and mitochondrial 
functional protein sets were retrieved from mouse Mitocarta 
3.0 (ref. 15). Urea cycle and peroxisomal fatty acid degrada-
tion proteins were manually curated. Normality was assessed 
with Shapiro–Wilk’s test, and P values were corrected for 
multiple testing and expressed as FDR. Spatial data from  
xml files was plotted with the package sf v1.0-9. For compari-
sons to scRNAseq data, the dataset of Halpern et al.6 was  
used, for which we binned the proteome data into nine  
equidistant spatial bins as described above. We used the 
dataset by Ben-Moshe et al.8 to compare scDVP data with 
FACS-based proteomics data, binning our samples into eight 
equidistant spatial bins.

Image processing
Image data analysis was done in Python (3.8.11). Image shapes were 
extracted from the stitched tiles using Pillow (9.0.0). For each shape, 
the bounding box was calculated by taking the floor and ceiling of each 
shape coordinate and taking the maximum and minimum in x and y. 
The bounding rectangle was used to crop out the respective region 
of interest of the image. For image with offset extraction, the center 
of each bounding rectangle was calculated and rounded to the next 
integer. An offset of 1,000 was added to each direction to addition-
ally capture the surrounding environment, and the bounding box 
was highlighted. For composite images, each image was exported per 
channel with matplotlib (3.5.1), reloaded, merged with NumPy (1.4.2) 
and saved again. ImageJ was used to manually measure the distance of 
a shape to its proximal PV and CV.

Machine learning
For each shape and in all four channels (cyan fluorescent protein, 
Alexa488, Alexa568 and Alexa647), the mean, median, minimum and 
maximum intensity of each bounding box were calculated, as well as the 
shape area. This feature list was saved with pandas (1.22.3). Proteomics 
data were clustered with a k-means algorithm into five clusters. Next, 
we used a supervised learning approach to classify the proteomic 
clusters based on the feature list. The training was performed using 
the scikit-learn package (1.0.2). Data (n = 408) were randomly split 
in train and test datasets (split of 0.2). For classification, we used a 
RandomForestClassifier (n_estimators=200) and achieved a testing 
accuracy of 0.90. To export probabilities, we used the predict_proba 
functionality of RandomForest. Diagnostic plots were generated using 
the Yellowbrick package (1.5). The random state was set to 23 for train/
test-split and RandomForestClassifier.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE34 partner repository with 
the ID PXD038699. Imaging data has been deposited to BioImages35 
with the accession number S-BIAD596.

Code availability
The R and Python code used to produce the figures can be down-
loaded from the Mann lab Github repository via https://github.com/
MannLabs/single-cell-DVP.
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Extended Data Fig. 1 | Five shape proteomes resolve liver zonation.  
a, Titration of number of shapes (10 µm thick) versus proteome depth achieved 
(n = 3), and measured with the original protocol (single shape, 44 min Evosep 
gradient, 15 cm column at 500 nL/min, dia-PASEF 27 without optimized windows, 
library-dependent search in DIA-NN 30). Boxes are first and third quartile, 
the thick line is median, whiskers are ± 1.5 interquartile range, and outliers are 
indicated as individual points. b, Protein numbers per five shapes across 230 

samples. Line is a smoothing curve. c, Principal component analyses with a color 
overlay of two indicated zonation markers; n.q. not quantified. d, Unbiased k 
means clustering of all samples into four bins. Labeled arrows are the top driver 
proteins of separation. e, Marker expression sorted by central (top) or portal 
(bottom) markers in the indicated k means clusters in d, expressed as z-score of 
log2 transformed protein abundances, and sorted according to summed zonal 
probability across all markers.
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Extended Data Fig. 2 | Statistical analysis of five-shape proteomes. a, Volcano 
plot after an ANOVA over four sorted k means clusters (see Extended Date  
Fig. 1d). Statistically significant proteins (FDR < 0.05, n = 333 of 1652) with an 
absolute fold change of more than 0.5 are labeled. Colors indicate upregulation 
towards portal, or central zones. b, Heatmapping of statistically significant 

proteins in a. The blocks are separate by negative, or positive fold change.  
Protein expression as z-score of log2 transformed protein abundances.  
c,d, Five top significant terms (FDR < 0.05) after over-representation analysis 
enriched in peri-portal (c) or peri-central regions (d). See Supplementary table S2 
for further reference.

4 Publications

88



Nature Methods

Article https://doi.org/10.1038/s41592-023-02007-6

Extended Data Fig. 3 | Performance overview of single-shape proteomes. 
a, Labeling efficiency of 10 ng mouse liver peptide samples. Mean efficiency 
by intensity is stated in the bar (n = 5, mean and individual measurements). 
b, Density distribution of shape areas across all measured and included 
hepatocytes, split by visually distinguished mono- (N = 191) and binucleated 
(N = 99) hepatocytes. Vertical lines and numbers above are mean sizes in the 
respective group. c, Number of proteins per sample (N = 455). The dotted line is 
the median, the fine pricked line is the sample exclusion cutoff of median minus 
1.5 standard deviations. Samples were measured from left to right. Shape type 
indicates whether the samples was included for the final analysis. d, Levels of 
plasma proteins in the scDVP dataset. Hba, Hbb and Hbd were not detected.  
e, Association between the area of the cut shape, and number of proteins.  

Line is a log10 regression curve. Symbols indicate whether sample was 
included or discarded for analysis, for exclusion criteria see Methods section. 
f, Percentage of proteins quantified, binned into four groups, versus log10 
transformed median intensities in the respective bin. Data completeness is 
defined as percentage of samples across all samples in which a particular protein 
was quantified in. g, Coefficient of variation (CV) in bins of similarly sized shapes 
(color coded), and spatial bins with similar distance ratio to portal and central 
vein, that is similar zonation profile. h, Levels of four histone proteins shown in 
Fig. 2b by number of nuclei in the isolated shapes. Binuc: binucleated (N = 99); 
Mono: mononucleated (N = 191); NoNuc: no nucleus (N = 101). Boxes are first and 
third quartile, the thick line is median, whiskers are ± 1.5 interquartile range, and 
outliers are indicated as individual points.
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Extended Data Fig. 4 | Dimensionality reduction of single shape data.  
a, Color overlay is expression level of the portal marker Asl, or b, the central 
marker Cyp2e1. c, PC2 versus measured distance ratio portal over central vein 

for all shapes. d, Top 10-leading edges as Eigenvectors (arrows) with proteins. e, 
Arterioles were cut as quality controls (see Methods section), and separate from 
hepatocytes on PC2 (n = 6).
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Extended Data Fig. 5 | Information aggregation from single shapes. 
 a, Principal component analysis after averaging of close-by cells, as measured by 
relative position along the portal to central vein zonation axis. Ratios over every 

sub-plot indicate concatenation ratio (1:x averages x cells). b, Interquartile range 
(IQR) of principal components 1 – 5 at given concatenation ratio. c, Variance 
explained by the indicated principal component at given concatenation ratio.
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Extended Data Fig. 6 | Functional analysis of single shape data. a, Volcano plot 
after ANOVA across 20 spatially guided bins. Color overlay specifies adjusted p 
value, the top 40 significant proteins are labeled. b, Score and multiple testing-

adjusted p value of a Shapiro-Wilk normality test. Lowest proteins are labeled.  
c, Relative expression normalized to 1 for each contributing protein (n = 10) of the 
least significant Shapiro-Wilk hits in b, from portal to central distance-guided bins.
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Extended Data Fig. 7 | Comparison of scDVP to existing scRNAseq data (a-c) 
and FACS-based proteomics data (d-g). a, Abundance normalized to 1 across 
9 bins in Halpern et al. 6 (marker expression-guided bins), and this scDVP data 
(spatial bins). b, Intensity correlation of all hits (opaque dots, color according to 
cluster) and markers (black dots). Linear regression as dashed line, with Pearson 
correlation coefficient given over the figure. Grey line is the 45 degree line.  
c, Correlation coefficient for targets across all bins, with multiple testing 
adjusted p value. Top hits on either side are labeled in dark red, and marker 
proteins in orange. d, Abundance normalized to 1 across 8 bins in Ben-Moshe 

et al. 8 (marker expression-guided bins), and this scDVP data (spatial bins). 
e, Intensity correlation of all hits (opaque dots, color according to cluster) and 
markers (black dots). Linear regression as dashed line, with Pearson correlation 
coefficient given over the figure. Grey line is the 45 degree line. f, Correlation 
coefficient for targets across all bins, with multiple testing adjusted p value. 
Top hits on either side are labeled in dark red, and marker proteins in orange. 
g, A significant hit after gene set enrichment analysis on Pearson correlation 
coefficients, with normalized abundance of protein levels as heatmap colors.
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Extended Data Fig. 8 | Changes in subcellular compartment composition 
across space. Spatial bins are mean single shape data in 20 equidistant bins from 
portal to central vein. Ordinate values are z-transformed proportions of summed 

signal intensities per compartment. Pearson’s R was calculated on z scores from 
a linear model. Blue line is the linear regression line with the 95% confidence 
interval in grey.
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Extended Data Fig. 9 | Machine learning (ML) accurately predicts proteome class. a, k means clustering, dividing all samples into five classes that inform the ML. 
b, Feature importance of the ML model, relative to the highest contributor. c, Receiver-Operating-Characteristics for each class. The individual Area Under the Curve 
(AUC) is given in the graph. d, Precision-recall-curve for the five classes.
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4.3 SPARCS, a platform for genome-scale CRISPR

screening for spatial cellular phenotypes

Pooled forward genetic screens can characterise the function of individual genes in an

organism’s genome in an unbiased manner: After generating a library of mutations,

those with interesting phenotypes are isolated and their genotype determined. These

screens can be scaled up to cover the entire genome of an organism, allowing for the

unbiased determination of all genes relevant for a specific biological process.

On the level of individual cells, mutations covering all protein-coding genes could be

introduced via CRISPR/Cas systems. Each cell in the generated pool then carries a

different mutation. While these types of screens scale to millions of cells to allow for

genome-scale throughput, so far they have only been possible on comparatively simple

phenotypes with limited descriptive power. Here we developed spatially resolved

CRISPR screening (SPARCS), a technology to perform genome-scale CRISPR screens

on microscopy-based phenotypes. In SPARCS, the generated mutant cell library

is plated on polyphenylene sulfide (PPS) slides and imaged with a light microscope.

This generates hundreds of millions of images describing different aspects of the spatial

organisation of individual cells. Using deep learning, cells with interesting spatial phe-

notypes can be identified. By fully automating laser microdissection, we enabled the

rapid and specific isolation of individual mutant cells from a library of millions of cells

for subsequent genotyping. SPARCS is compatible with any light microscopy setup

which makes it easily adoptable without the need for specialised imaging equipment.

In our first SPARCS screen, we screened for the spatial distribution of autophagosomes

in human U2OS cells. Autophagosomes are double-membraned vesicles that form, to

help cells recycle their components, a process known as “autophagy” - for example in

response to starvation. These vesicles are covalently decorated with proteins from the

LC3 family. To follow the generation of autophagosomes we engineered U2OS cells

to express an LC3 protein fused to the fluorescent protein mCherry. After building

a mutant library covering the entire human genome in which one protein-coding gene

is knocked out in each cell, we induced a starvation response and assessed their ability

to form autophagosomes with a confocal microscope. With a deep learning classifier

that we had trained to recognise autophagy-deficient cells, we were able to identify

individual mutant cells with impaired autophagosome biogenesis. Excising these cells

and sequencing their genetic knockout, we robustly identified almost all known au-

tophagy regulators, demonstrating the power of SPARCS. We also identified a gene
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called EI24 that had so far only been described to cause the formation of spontaneous

autophagosomes when knocked out, rather than a decrease in autophagosomes. The

discovery of a novel phenotype for EI24 in our screen is especially interesting as it

establishes that even supervised deep learning approaches like the one developed here

are capable of identifying previously undescribed phenotypes. Ultimately, SPARCS

enables a new type of cell-based forward genetic screen on complex spatial phenotypes

defined by microscopy.

The following research article was originally published here:

Schmacke, N. A., Mädler, S. C., et al. (2023). “SPARCS, a platform for genome-scale

CRISPR screening for spatial cellular phenotypes”. In: bioRxiv, p. 2023.06.01.542416.

doi: 10.1101/2023.06.01.542416
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Abstract 

Forward genetic screening associates phenotypes with genotypes by randomly inducing 

mutations and then identifying those that result in phenotypic changes of interest. Here we 

present spatially resolved CRISPR screening (SPARCS), a platform for microscopy-based genetic 

screening for spatial cellular phenotypes. SPARCS uses automated high-speed laser 

microdissection to physically isolate phenotypic variants in situ from virtually unlimited library 

sizes. We demonstrate the potential of SPARCS in a genome-wide CRISPR-KO screen on 

autophagosome formation in 40 million cells. Coupled to deep learning image analysis, SPARCS 

recovered almost all known macroautophagy genes in a single experiment and discovered a role 

for the ER-resident protein EI24 in autophagosome biogenesis. Harnessing the full power of 

advanced imaging technologies, SPARCS enables genome-wide forward genetic screening for 

diverse spatial phenotypes in situ.  
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Introduction 

Genetic screens offer a powerful approach to dissecting the complexity inherent in biological systems. 

Within this space, forward genetic screening is an unbiased way to map phenotypic changes to changes 

in the genome: From a library of genetic variants generated by random mutagenesis, mutants with 

interesting phenotypes are selected and their genotypes determined. This approach has led to 

groundbreaking discoveries in a variety of model organisms (1-3). Now, with the ability to specifically 

target mutagenesis to exonic regions of interest and disrupt both alleles of a given genetic locus, 

CRISPR-based genome editing technologies (4) have enabled the generation of large mutant libraries 

in which a single gene is knocked out in each cell (5). Individual genetically perturbed cells can now 

be profiled for their transcriptome (6-10), protein expression (11), spatial composition (12) and 

chromatin landscape (13). However, genome-wide screening libraries typically contain tens of millions 

of cells, a scale with which most of these techniques are currently incompatible. To overcome this 

limitation, only those cells with an interesting phenotype are typically isolated from the library and 

subsequently genotyped. This paradigm has largely limited cell-based genome-wide screens to three 

types of easily selectable phenotypes: a difference in proliferation rate, an inhibition of cell death, or a 

change in fluorescence intensity compatible with fluorescence-activated cell sorting (FACS) (14-17). 

Increasingly powerful microscopic imaging provides information-rich data on diverse cellular 

phenotypes (18) and would therefore be an ideal technology to read out biological phenotypes of 

interest, particularly if combined with recent advances in deep learning. However, its application in 

genome-wide forward genetic screening has been hampered by a lack of scalability and other 

limitations: ‘in situ sequencing by synthesis’, a technology originally developed to profile the cellular 

transcriptome in tissue samples, has been adapted to sequencing short perturbation-encoding barcodes 

on the DNA level (19, 20). This method separates genotyping and image collection, resulting in 

complete image datasets for unbiased identification of new phenotypes. However, by design it does not 

include an enrichment step for selected phenotypes, requiring all cells in a mutant library to be 

sequenced irrespectively of whether they show a phenotype. In addition, the genotype can only be 

determined for a fraction of cells due to low sequencing fidelity even in low-complexity libraries (20), 

which in combination with the technology’s high costs has limited its applicability for screening 

genome-wide libraries at sufficient coverage (21). Image-based flow cytometers with sorting 

capabilities have recently enabled the investigation of spatial phenotypes at high throughput (22, 23). 

These devices rely on low-resolution flow-based microscopy of detached cells, preventing the 

identification of complex phenotypes. In addition, this technology makes sorting decisions in real time, 

restricting it to the identification of predefined phenotypes and preventing reanalysis of past screens. A 

method originally proposed for the transcriptomic characterization of B-cell populations (24) 

photoactivates fluorophores to mark cells for subsequent isolation by FACS (25-27). This approach can 

only separate few different phenotypes by fluorophore brightness (28). It also requires a real time 
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decision on which cells to isolate, preventing whole-dataset analysis to discover unexpected new 

phenotypes and has not been demonstrated to be compatible with cell fixation, which is necessary for 

antibody-based staining of intracellular targets. 

To enable robust genome-wide high-throughput screening for spatial cellular phenotypes, we set out to 

develop a technology that meets four key requirements: First, it should work on cells in situ and utilize 

state-of-the-art microscopy techniques. Second, it should accommodate large screening libraries to 

ensure adequate representation of rare phenotypes. Third, it should be compatible with the unbiased 

identification of previously unknown phenotypes from entire complex image datasets rather than single 

images in real time. Fourth, it should allow for reanalysis and reselection of cells for genotyping from 

previous archived screens. Importantly, the latter feature would allow the application of novel image 

analysis methods to previously performed screens as they become available. 

Results 

Spatial genotyping by laser microdissection 

To analyze the spatial composition of tissues and clinical samples by mass spectrometry, we have been 

advancing workflows based on laser microdissection (LMD), a technique that uses a focused UV laser 

to cut out and collect arbitrary shapes from tissue sections (29, 30). In a most recent development, deep 

visual proteomics (DVP), we use LMD to excise defined tissue regions for subsequent proteomic 

characterization of individual cell types or extracellular zones by mass spectrometry (31, 32). We 

reasoned that the isolation of single phenotypically interesting cells from a pooled library by LMD 

would provide an ideal basis for a forward genetic screening technology for spatial phenotypes. 

LMD requires samples to be present on a membrane that can be cut by a UV laser, so we first tested 

whether cells could be grown and imaged directly on such polymer membranes. Indeed, on 

polyphenylene sulfate (PPS) membranes, spinning disk confocal microscopy produced high-quality 

images that showed normal cellular morphology (fig. 1A). By segmenting these images into individual 

cells, we generated multi-channel perturbation image datasets from which we aimed to identify cells 

with phenotypes of interest for genotyping (fig. 1B). We then developed a rapid cutting protocol for 

LMD that is compatible with subsequent genotyping by minimizing autofocus time and optimizing the 

trade-off between laser speed and accuracy. Compressing the cutting path and leveraging the fact that 

it is sufficient to isolate nuclei to determine a cell’s CRISPR perturbation by sequencing, we ultimately 

reached a speed of 1,000 nuclei per hour. 

Counting of excised membrane regions collected in a microwell plate using this protocol showed a yield 

of approximately 80 % (fig. 1C). We then tested the genotyping of excised nuclei by generating a pool 

of U2OS cells each expressing one of 77,441 unique sgRNAs in the Brunello CRISPR library (33), 
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plated these cells onto PPS membranes and imaged them. To register membrane slides between imaging 

microscopes and the LMD microscope, we marked the membrane with calibration crosses as landmarks 

that define a coordinate system across each slide, allowing us to find the positions of cells to excise. 

We stitched individual field of view images of a slide into one whole slide image (WSI), segmented 

nuclei based on a DNA stain, generated a cutting map using our newly developed open-source python 

library py-lmd (fig. S1) and then excised and lysed 1,000 nuclei. Sequencing identified 549 unique 

sgRNAs on average in these lysates, demonstrating that isolating individual nuclei for subsequent 

CRISPR genotyping is feasible with LMD (fig. 1D). Comparing the number of unique sgRNAs in the 

LMD lysate with a lysate of cells from the same library isolated by FACS revealed that both techniques 

recovered an sgRNA from approximately 50 % of cells (fig. 1D). From these data we concluded that 

potential DNA damage induced by laser microdissection does not hamper sgRNA recovery. In 

summary, our results show that it is possible to employ LMD to recover genetic information from 

imaged cells at a throughput compatible with genetic screening (fig. 1E). We call this approach spatially 

resolved CRISPR screening (SPARCS). 

Validating SPARCS for genetic screening 

To further develop SPARCS we applied it to screen for regulators of starvation-induced 

macroautophagy (hereafter referred to as autophagy), a fundamental process for cellular energy 

management (34, 35). The signature of autophagy is the formation of vesicles called autophagosomes. 

These are covalently decorated with proteins from the ATG8 family, including the well-studied human 

protein LC3B. During a key event in autophagosome biogenesis LC3B is conjugated to the head group 

of the lipid phosphatidylethanolamine (PE) through a series of ubiquitin ligation-like reactions. A 

critical component of this cascade is the protein ATG5 that forms an E3-like complex with ATG12 to 

mediate the covalent attachment of LC3B to PE. To follow the formation of autophagosomes during 

starvation we stably expressed LC3B tagged with mCherry in U2OS cells, because – unlike GFP – 

mCherry remains fluorescent upon fusion with the lysosome. We then treated these cells with the mTOR 

inhibitor Torin-1 to mimic starvation, which induces autophagy. Cells treated this way began to 

accumulate mCherry-LC3-positive puncta over the course of 14 hours (fig. 2A).  

In a screen, those cells containing sgRNAs against essential regulators of autophagy are unable to form 

these puncta. To identify these cells we trained a deep learning-based image classifier to differentiate 

between cells with or without autophagosomes (fig. 2B, fig. S2A). The training dataset was composed 

of segmented single cell images of mCherry-LC3 expressing U2OS cells that were treated with Torin-

1 (autophagy-on class) or left untreated (autophagy-off class). As an additional group we introduced 

cells treated with Torin-1, yet deficient in ATG5 (autophagy-off class). We used images from several 

biological replicates to avoid overfitting of our classifier to batch-specific characteristics such as 

staining intensity or cell density (table S1). To evaluate the performance of this classifier 1.0, we 
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generated a new test dataset of images from unstimulated and Torin-1 stimulated wildtype and ATG5
-/- 

mCherry-LC3-expressing U2OS cells that had not been part of the training set and as such had never 

been seen by the classifier before. Classifier 1.0 achieved a false discovery rate (FDR) of < 1% (fig. 

S2B) at the chosen threshold, meaning that less than 1% of cells classified as potential hits with an 

autophagy-off phenotype were instead false positives that actually came from the autophagy-on class. 

We then validated SPARCS by performing a small pilot screen on autophagosome formation in 1.2 

million Torin-1-stimulated mCherry-LC3 U2OS cells transduced with the Brunello CRISPR knockout 

(KO) library (fig. 2C). From this library we isolated the top 0.1 % of cells classified as autophagy-off 

by classifier 1.0 with a score > 0.94, corresponding to a test set FDR of 0.38 %. Compared to the entire 

library, we found sgRNAs targeting ATG5 to be highly enriched among isolated cells (median 200-

fold) (fig. 2D). sgRNAs targeting other autophagy-related genes had a median of 60-fold enrichment 

with the most strongly enriched sgRNAs even exceeding 700-fold (fig. 2D). Control sgRNAs not 

targeting any human genes (‘non targeting controls’ (NTCs)) were rare among isolated cells with a 

median enrichment of 10-fold (fig. 2D). These results confirm that the SPARCS protocol stitches and 

registers WSI with sufficient accuracy for the isolation of the nuclei of interest. They also demonstrate 

that assessing autophagosome formation based on images is feasible with a deep learning classifier, and 

that in SPARCS, this classifier can be used to screen for autophagosome formation. 

Accurate detection of autophagy defects in single cell images 

A classifiers’ Receiver Operating Characteristic (ROC) curve visualizes the tradeoff between true 

positive rate (the fraction of all autophagy-off cells that are correctly identified) and false positive rate 

(the fraction of autophagy-on cells incorrectly predicted as autophagy-off). The ROC curve of our 

classifier 1.0 confirmed its overall accuracy with an area under the curve (AUC) of > 0.92 (fig. S2C). 

However, at the precision (the fraction of predicted autophagy-off cells that are actually autophagy-off, 

1-FDR) corresponding to 1 % FDR, the recall (= true positive rate) of classifier 1.0 was below 26% 

(fig. S2D). Closer analysis of the different categories of cells in the test dataset revealed that the 

classifier excelled at identifying autophagy-on cells, but performed poorly at recognizing autophagy-

off cells (fig. S2E, F). 

To improve classification of autophagy-off cells we refined our staining and imaging protocol and then 

trained a new version of our classifier. For this version 2.0 we decided to use a more streamlined 

multilayer perceptron (MLP) head with fewer trainable parameters, add another linear layer and 

increase the number of cells and biological replicates in the training dataset to capture as much 

biological variance as possible (fig. 3A, B, table S1). We also prefiltered the unstimulated and Torin-1 

stimulated images for autophagy-off and -on cells to minimize the number of mislabeled training 

examples (table S1). To evaluate classifier 2.0, we first used parametric UMAP (36) to investigate if 

layers of the CNN had learned to differentiate between images of autophagy-on and autophagy-off cells. 
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This revealed that wildtype cells stimulated with Torin-1, unstimulated wildtype cells and ATG5
-/- cells 

clustered separately in representations of lower layers, most prominently in the 8th of 9 convolutional 

layers (fig. 3C). These results suggested that our CNN had now learned to featurize images of LC3 

distribution in a way that enables accurate classification of cells undergoing autophagy. Of note, the 

network of classifier 2.0 was capable of discriminating between ATG5
-/- and unstimulated wildtype cells 

despite those cells being in the same training class (fig. 3C), a clear improvement over classifier 1.0 

(fig. S2G). Its ROC curve was also drastically improved with an AUC of > 0.999 (fig. 3D). Remarkably, 

in the binary classification output almost all cells were correctly classified according to their autophagy 

status even with a simple classification score threshold of 0.5 (fig. 3E, F). With classifier 2.0, 

classification thresholds > 0.98 produced FDRs of < 1 %, with higher thresholds reducing the FDR 

further without yet diminishing the excellent recall of nearly 100 % (fig. 3G, fig. S2H). Thus, for a 

complex biological process such as autophagy, training a CNN-based classifier on images from 

comparatively few biological replicates achieves excellent performance. 

Genome-wide autophagy screen with SPARCS 

Encouraged by these results we used SPARCS to conduct a genome-wide screen on autophagosome 

formation. We screened a library of 40 million mCherry-LC3 expressing U2OS cells at a median 

coverage of 1,818 cells per gene in the human genome in batches of 5 and 35 million cells (fig. S3). 

Classifying autophagy based on the distribution of LC3 within the first batch showed that 0.56% of 

cells had a score > 0.98. We regarded these cells as potential autophagy-defective hits and, upon 

examining the 8th CNN layer featurization of their LC3 distribution using parametric UMAP, found 

them to cluster separately from autophagy-on cells in the library with a classification score < 0.02 (fig. 

S4A, B). For genotyping we divided the hits into six bins according to their classification score (fig. 

S4C): The top bin represented a cutoff at which we found ATG5
-/- to be strongly enriched in our test 

dataset, whereas the second bin corresponded to unstimulated wildtype cells. Bins 3 – 6 contained the 

remaining potential hits with a roughly equal number of cells per bin. Zooming in on the 8th CNN layer 

featurization of the LC3 distribution in the potential hits revealed that cells in bins 1 & 2 clustered 

separately from bins 3 - 6 (fig. S4D). This indicated that they contained different phenotypic variants 

with regard to their LC3 distribution, potentially corresponding to stronger defects in autophagosome 

formation. Indeed, we observed the fewest LC3 puncta in cells from bins 1 & 2 (fig. S4E). 

For the second genome-wide screen batch we refined our classifier by more stringently selecting 

training examples of autophagy-on and -off cells, thereby further improving its overall performance 

(fig. S5). Using this new classifier 2.1 we obtained similar results from the second batch compared to 

2.0 on the first screen batch: 1.40% of cells were classified as autophagy-off with a score above 0.98 

and in their 8th CNN layer featurization these cells again clustered separately from their autophagy-on 

counterparts with a score < 0.02 (fig. 4A, B). We therefore applied the same binning strategy to these 
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images (fig. 4C), and, upon zooming in on their 8th CNN layer featurization using parametric UMAP, 

found the separation of cells in bin 1 & 2 to be even more apparent than in the first batch (fig. 4D, E). 

We then isolated a total of 395,173 nuclei across both screen batches and sequenced their sgRNAs. 

Given their similarity on the phenotypic level we analyzed the genetic data of both batches together. 

All bins showed a marked enrichment of targeting over non-targeting sgRNAs and enrichment scores 

up to 600-fold, promising the identification of autophagy relevant genes (fig. 4F). In line with our FDR 

calculation (fig. 3G, fig. S5B) and our conclusions from the featurization of individual images (fig. 4D, 

fig. S4D), sgRNAs targeting genes known to be involved in autophagosome formation were most 

strongly enriched in bins 1 & 2 (fig. 4F). On the gene level ATG5, which our classifier was trained to 

identify, was among the most highly enriched genes in several bins, validating our supervised 

classification approach in the context of this large-scale screen (fig. 4G). The Brunello library targets 

each gene in the human genome with four sgRNAs. While in the higher score bins 1 & 2, genes with a 

high mean enrichment score had several sgRNAs enriched, in lower bins genes with a relatively high 

mean enrichment score often only had a single highly enriched sgRNA, indicating potential off-target 

effects. This prompted us to evaluate the number of sgRNAs enriched per gene as an alternative metric 

to score screening hits. Here we again found the strongest hits to contain mainly autophagy-related 

genes (fig. 4H). Taken together, these results establish that SPARCS is highly effective for large scale 

genetic screens on spatial phenotypes. Furthermore, despite the inherent complexity of image-based 

phenotypes, our supervised classifier facilitated the enrichment of a very small subset of individual cells 

with a genetically defined phenotype from a diverse genome-wide library of 40 million cells. 

EI24 reorganizes membranes for autophagy 

The power of SPARCS became even more apparent when we evaluated our screen from the perspective 

of the investigated biological process: Remarkably, this single screen recovered almost all known 

essential genes of the starvation-induced macroautophagy pathway. This included the complete ULK1 

complex and LC3 lipidation cascade (fig. 5A). Closer inspection of individual hits revealed that the 

most strongly enriched gene that is not a canonical macroautophagy gene was EI24, a gene coding for 

an ER-resident transmembrane protein (37) (fig. 5B). EI24
-/- cells have previously been described as 

autophagy-defective, but with a phenotype resulting in spontaneous LC3-puncta formation (38). This 

finding is not in line with the 82-fold enrichment of EI24 in our screen, given that our classifier was 

trained to recognize cells with impaired rather than increased autophagosome formation. To investigate 

why we found EI24 KOs enriched among cells classified as autophagy-off, we generated individual 

EI24
-/- clones. Consistent with the previously reported spontaneous LC3 puncta formation, EI24-

deficient cells have been described to exhibit increased lipidation of LC3 under steady state conditions 

(38), a phenotype we confirmed in EI24
-/- clones (fig. 5C). However, in contrast to previous results we 

found LC3 puncta formation in response to Torin-1 to be largely abolished in EI24-deficient cells (fig. 

5D). Instead, these cells formed a single mCherry-LC3-positive speck that became more pronounced 
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with Torin-1 stimulation, indicating a general defect in membrane traffic or autophagosome formation 

(fig. 5E). These results explain why our classifier picked up EI24 knockouts and demonstrate again that 

even supervised image classification is capable of identifying previously undescribed phenotypes. Our 

results further indicate that EI24 is required for autophagosome formation and has a function beyond 

its recently described LC3 puncta promoting role in maintaining Ca2+ homeostasis across the ER 

membrane (39) that remains to be investigated. 

Discussion 

We present SPARCS, a platform that enables unbiased exploration of the genetic basis of subcellular 

spatial features in forward genetic screens. At the core of the SPARCS methodology, we have adapted 

and refined laser microdissection technology to unprecedented throughput to facilitate genetic screening 

applications. We have improved the precision and efficiency of isolating single nuclei from cell 

cultures, while automating the extraction of several hundred thousand nuclei into distinct bins. By 

integrating a deep learning-based classifier, our genome-wide SPARCS screen successfully identified 

nearly all known genes related to macroautophagy and revealed a novel phenotype associated with the 

EI24 gene. 

SPARCS offers a unique combination of features (table S2) that make it a powerful forward genetic 

screening platform. It can be seamlessly integrated with any state-of-the-art microscope for in situ cell 

imaging. The screening library size is not constrained, except by the imaging microscope's throughput. 

Consequently, microscopy-based genome-wide perturbation screens can now achieve exceptional 

coverage. Besides the method described here, which involves isolating cells based on predefined 

classes, SPARCS is also compatible with the identification of individual cells exhibiting entirely novel 

or unexpected phenotypes. This is achieved through unbiased clustering and anomaly detection applied 

to the entire image dataset. Furthermore, we discovered that samples can be stored long-term, allowing 

for the reanalysis of archived SPARCS screens using newer algorithms. This facilitates the exploration 

of new biological insights within existing data. To streamline the process of translating the identification 

of individual cells with subcellular spatial phenotypes into a cutting map for LMD we have developed 

py-lmd, an open-source Python library for laser microdissection on arbitrary sample types that is 

available on GitHub. We hope that the accessible design of SPARCS, compatible with standard 

microscopes and sequencing workflows, will encourage its adoption by the scientific community. 

Our screen uncovered a potential role in macroautophagy for EI24. This gene had previously been 

implicated in autophagy based on a C. elegans screen in 2010, but its mechanism of action had remained 

unclear (38). Beyond the original observation that EI24 deficiency leads to pronounced formation of 

non-functional autophagosomes even under steady state conditions, it was recently suggested that 

spontaneous Ca2+ fluxes across the ER membrane initiated autophagy in EI24 deficient cells (39). How 
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spontaneous induction of autophagosome formation in EI24
-/- cells can be reconciled with a defect in 

autophagy remained unclear. The results from our screen and the following live cell imaging 

experiments, in which we found EI24
-/- cells to form fewer autophagosomes than wildtype cells, now 

suggest that EI24 plays a – potentially additional – role in autophagosome formation. 

Systems biology is increasingly driven by large-scale artificial intelligence models that set new 

standards for reconstructing and predicting cellular behavior, but require enormous amounts of data to 

train. In light of this development, comprehensive, unbiased data acquisition approaches that can 

generate large datasets across modalities have become highly desirable. In this context, SPARCS, with 

its focus on open and accessible design and the ability to screen large libraries, can make a valuable 

contribution to understanding biology from the molecular to the organismic scale.  
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microdissection microscope (https://github.com/MannLabs/py-lmd). 
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The SPARCStools python library provides code to rename TIF image files generated by the 

PerkinElmer Harmony software and stitch these into WSIs 

(https://github.com/MannLabs/SPARCStools). 

The SPARCSpy python library contains the autophagy classifiers, as well as code to segment and 

extract single-cell images from entire fields of view up to WSIs 

(https://github.com/MannLabs/SPARCSpy). 

All other data are available from the authors upon request. 
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Methods 

Cell culture 

U2OS cells were cultured in DMEM supplemented with 10 % fetal calf serum (FCS), 

penicillin/streptomycin and 1 mM sodium pyruvate and split every 2-3 days. PPS membrane slides were 

sterilized for 30 minutes under the UV light of a cell culture hood with their cavity side down. Cells 

were then plated onto these slides cavity down in 4-well plates with 5 mL DMEM per well. 

Genome engineering 

U2OS cells stably expressing Cas9, mCherry-LC3 and mNeon tagged N-terminally with the lipidation 

sequence of Lck (LckLip-mNeon, the original plasmid was a gift from Dorus Gadella (Addgene plasmid 

# 98821, (40))) were generated via lentiviral transduction. Briefly, HEK-293T cells were transfected 

with transfer plasmids for Cas9 or mCherry-LC3 and 3rd generation lentiviral particle production 

plasmids pMDLg and pRSV as wells as a VSV G-protein pseudotyping plasmid 18 hrs after plating. 

Eight hrs later, the medium was exchanged and cells were washed once in PBS. After 48 hrs 

supernatants containing viral particles were harvested and transferred onto U2OS cells plated 18 hrs 

before. 48 hrs later U2OS cells were washed. Cells were selected for Blasticidin resistance with 

10 µg/mL Blasticidin or FACS-sorted for high fluorescent protein expression and single clones 

generated by limiting dilution cloning. A bright clone with a visible reaction to 600 nM Torin-1 was 

selected, expanded and used for all experiments. Lentiviral particles for the expression of individual 

sgRNAs from LentiGUIDE-Puro were generated analogously. Cells were selected for sgRNA 

expression with 5 µg/mL puromycin for 48 hrs. Of note, the cell line used for the autophagy screens 

did not yet stably express Cas9 but was instead transduced with a LentiCRISPRv2, a vector driving 

expression of both Cas9 and an sgRNA. 

Laser microdissection 

Cutting paths for laser microdissection of selected cells were generated using our open-source python 

library py-lmd (https://github.com/MannLabs/py-lmd) with the configurations specified in the “screen 

config” file. Each shape was dilated to ensure that the cutting line did not go through or damage the 

nucleus. Laser microdissection was carried out on a Leica LMD7 at 40 x magnification using the 

software version 8.3.0.8275. The microscope was equipped with the Okolab LMD climate chamber 

(H201-ENCLOSURE-LMD and H201-LEICA-LMD) to ensure stable temperatures throughout the 

cutting process. Slides were equilibrated in the microscope to 34.5 °C before cutting to ensure focus 

stability. Cutting contours were imported from the XML files generated with py-lmd after reference 

point alignment and cut with the following settings: power 60, aperture 1, speed 100, head current 46 % 

- 51 %, pulse frequency 1128 and offset 185. Autofocus adjustment was performed every 30 shapes.

Shapes were sorted into 48-well plates.  During cutting a custom-built wind protection was used around
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the collection plate to ensure collection of excised shapes into the center of the well and prevent wind 

disturbances. After cutting, samples were stored at 4 °C before lysis and library generation. 

CNN-based image classifier training 

Neural networks with 9 randomly initialized convolutional layers and 3 (classifiers 1, P) or 4 (classifiers 

2.1 & 2.2) linear layers were trained to classify segmented single cell images as autophagy-on or 

autophagy-off (table S1). The training datasets were based on several biological replicates of mCherry-

LC3 expressing U2OS cells with and without autophagosomes. The autophagy-off class consisted of 

images from unstimulated wildtype cells (pre-filtered to remove cells showing spontaneous 

autophagosome formation for 2.1 and 2.2) and two different ATG5
-/- clones. Where applicable, pre-

filtering was performed with classifier P. The autophagy-on class consisted of single-cell images from 

stimulated wildtype cells, where applicable pre-filtered with classifier P to remove non-responding 

cells. To increase variability captured in the training data, the training slides were plated at an angle to 

include varying cell densities on one slide. 500 k, 1 million or 1.2 million single-cell images respectively 

were randomly selected from each class for training while ensuring balanced sampling from each test 

slide. An additional 50 k cells from each class were used for testing and validation during training. 

Training data were augmented by Gaussian blur, addition of Gaussian noise and random rotations in 

90° steps. Training was performed using single-gradient descent with a learning rate of 1 × 10-3. 

Gradient clipping was set to 0.5. Training was performed over a total of 20, 30 or 40 epochs. Classifier 

performance was tested on a biologically independent set of unstimulated wildtype cells, Torin-1 

stimulated wildtype cells and ATG5
-/- cells. Models were built and trained using PyTorch (41). 

Segmentation of individual cells 

Images were flat-field corrected during image acquisition using the Perkin Elmer Harmony software 

(v4.9) and intensity rescaled to the 1 % and 99 % quantile. Extremely bright regions (pixel values 

greater than 40000) were set to 0 before determining the normalization quantiles. Stitching of image 

tiles was performed using the ashlar python API (42) in our open-source python library SPARCStools 

(https://github.com/MannLabs/SPARCStools). 

Stitched whole slide images were segmented using our open-source SPARCSpy python library 

(https://github.com/MannLabs/SPARCSpy) with the parameters defined in “config_screen” or 

“config_training” respectively. A nucleus segmentation mask was generated using a local median 

thresholding approach and the cytosol segmentation mask was calculated using fast marching from 

nuclear centroids with WGA staining as a potential map.  

Single cell images were extracted based on nuclear and cytosolic segmentation masks. The masked area 

was extended using a Gaussian filter with a sigma of 5 to extract information from each of the imaged 

channels and saved to hdf5 files as individual 128 × 128	px images. 
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Sample preparation and imaging of autophagy 

After stimulation with 600nM Torin-1, PPS slides were washed 1x in PBS in a Coplin jar and then 

stained with 10 µg/mL WGA-Alexa488 in PBS for 10 minutes at 37 ºC. After washing 1 x with PBS 

slides were fixed for 10 minutes at room temperature in 4 % MeOH-free PFA in PBS in 4-well plates. 

After washing 3 x in PBS, slides were stained with 10 µg/mL Hoechst-33342 in PBS at 37 ºC for at 

least 30 minutes. After washing 3 x in PBS, slides were dried in a centrifuge at 3,400 g for 1 minute. 

Cells in ibidi microwell slides and plates were stained according to the same protocol but imaged in 

PBS. Imaging was done on a Nikon Eclipse Ti2 spinning disk confocal microscope or an Opera Phenix 

high-content imager as indicated. 

Genetic screening for autophagy regulators 

We conducted our screen in mCherry-LC3 expressing U2OS cells using the Brunello human CRISPR 

KO library in the LentiCRISPRv2 backbone. The Brunello library was a gift from David Root and John 

Doench (Addgene #73178) and amplified according to their protocol (33). U2OS cells were transduced 

with lentiviral particles produced as described above at an MOI of approximately 0.2. After 48 hrs, 

successfully transduced cells were selected with 5 µg/mL puromycin for two days and then expanded 

for three days. We then plated 50 million cells on a total of 109 slides in 4 well plates, and in addition 

included unstimulated and wildtype controls on separate slides with every screening batch for classifier 

training. The day after plating, cells were stimulated with 600 nM Torin-1 for 14 hrs. Slides were then 

prepared for microscopy as described above and imaged on an Opera Phenix high content imager at 

20 x resolution. Where applicable slides were stored at -20 °C and brought to 4 °C the day before laser 

microdissection. Cells from each bin were excised into multiple wells. Nuclei were then lysed in 48-

well plates using the arcturis PicoPureTM DNA extraction kit. 120 µL of lysis buffer was added to each 

well and incubated at 65 °C for 4 hrs. Proteinase K was inactivated at 95 °C for 15 mins. Cooled samples 

were transferred to PCR tubes and the emptied wells were rinsed with 40 µL of ddH2O. Amplification 

of sgRNAs was performed as described previously (43) but in a single step PCR (33) over 36 cycles 

with no added water. Sequencing was performed on an Illumina NextSeq with 500 reads per nucleus 

on average. An sgRNA read count table was generated for each sequencing library. Low quality 

sgRNAs were removed by applying a minimum number of reads per sgRNA threshold that was set 

based on the distribution of read counts per sgRNA in the sample. The non-targeting sgRNA with the 

sequence TACGTCATTAAGAGTTCAAC was excluded from sequencing results of approximately 

40 % of cells from bins 3 - 6 of batch 2 of the genome-wide screen due to a contamination of the 

sequencing library leading to abnormally high read counts of this specific sequence. For further analysis 

only sgRNAs with at least a fraction of reads corresponding to a single cell per well were used. sgRNA 

read fractions of individual wells were then aggregated per bin by multiplying with the fraction of 

excised cells in that well over all excised cells in the bin. The per-bin aggregated sequencing results 
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were used for all further data analysis. Enrichment values were determined by normalizing the 

aggregated fraction of reads per sgRNA to the fraction of reads per sgRNA in the input cell library. 

Immunoblotting 

20,000 U2OS cells were plated per 96-well. 18 hrs after plating, cells were stimulated and then 

harvested in 1 x Lämmli buffer. 3 wells were pooled per condition. Lysates were boiled at 95 ºC for 

5 min. and then run on 16 % TRIS-glycine polyacrylamide gels before immunoblotting onto 0.2 µm 

nitrocellulose membrane for 90 minutes. Membranes were blocked in 5 % milk in PBST for 1 hr and 

incubated with primary antibody at 4 ºC overnight. After washing 3 x in PBST for a total of 15 min. 

membranes were incubated with HRP-labelled secondary antibody for 2 hrs at room temperature. After 

washing 3 x in PBST for a total of 15 min. membranes were covered in luminescent HRP substrate and 

immediately imaged. 
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Figure 1 | SPARCS enables genome-wide CRISPR screening for spatial phenotypes in human 

cells 

(A) Example images of U2OS cells on PPS membranes in several channels. Solid lines indicate nuclear

segmentation based on Hoechst DNA staining; dotted lines indicate cytosol segmentation based on fast

marching from nuclear centroids with wheat germ agglutinin (WGA)-Alexa 488 staining as a potential

map. Numbers correspond to images of individual cells shown in (B). Images were acquired on an

Opera Phenix microscope in confocal mode with 20 x magnification. Scalebars represent 15 µm. PPS:

polyphenylene sulfide.

(B) Post-segmentation images of individual mCherry-LC3 expressing U2OS cells. Numbers correspond

to cells shown in (A).

(C) 100 or 500 regions were excised from U2OS cells grown on a PPS membrane slide and subsequently

counted. Five and two technical replicates were excised from one slide, respectively.

(D) Comparison of sgRNA recovery after isolation of sgRNA-expressing fixed cells from one library

either by laser microdissection (Leica LMD7, 1,000 nuclei per replicate, 3 independent biological

replicates) or FACS (technical replicates). Bars indicate mean % sgRNAs recovered, error bars indicate

SEM. p-value was calculated with an unpaired two-tailed t-test.

(E) Overview of genome-wide CRISPR screening for microscopy-based spatial phenotypes with the

SPARCS pipeline. Laser microdissection of individual nuclei on a Leica LMD7 has been optimized to

isolate 1,000 nuclei/hr. Instructions for laser microdissection of selected cells are generated using our

open-source python library py-lmd. PPS: polyphenylene sulfide.
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Figure 2 | SPARCS achieves strong enrichment of spatial phenotypes in a forward genetic screen 

(A) U2OS cells expressing mCherry-LC3 and mNeon tagged with the lipidation signal of Lck at the N-

terminus (membrane marker) were stimulated with Torin-1 and imaged live once per hour on a Nikon

Eclipse Ti2 confocal microscope with 100 x magnification. Scalebars represent 15 µm. One

representative of three independent experiments.

(B) Schematic describing the training of a convolutional neural network-based image classifier for the

identification of individual autophagy-defective cells.

(C) Overview of SPARCS screening for autophagy.

(D) Results from a SPARCS screen for autophagosome formation on 1.2 million U2OS cells. The top

0.1 % of cells classified as autophagy-off with a score above 0.94 by classifier 1.0 were isolated by

laser microdissection (LMD) and their sgRNAs sequenced to determine their enrichment relative to the

input library. p-values were calculated with a Kruskal-Wallis test followed by Tukey’s test.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.06.01.542416doi: bioRxiv preprint 

4 Publications

118



A

1
100

0.01
wt

wt
+ Torin-11

100

0.01

0.80.60.40.20 1

ATG5-/-

+ Torin-1

classification score

1
100

0.01

ce
ll 

co
un

t [
%

]

E F G

500 100
% cells in class

97.7

4.73

0.18

on

2.30

95.3

99.8

off

autophagy
classified as

wt

wt
+ Torin-1
ATG5-/-

+ Torin-1

mCherry-LC3

MLP classifierCNNlabelled single cell training images

ATG5-/-

+ Torin-1

wt

wt
+ Torin-1

x 1,000,000

x 1,000,000

1

0

autophagy
on

autophagy
off

convolution, ReLU
max pooling

1

2

3 4
5 6 7 8 9

12
8 

px

Figure 3

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

convolutional
layer 5

linear
layer 3

linear
layer 2

linear
layer 1

convolutional
layer 9

convolutional
layer 8

convolutional
layer 7

convolutional
layer 6

wt + Torin-1wt ATG5-/- + Torin-1
C

D

false positive rate
0.80.60.40.20 1

tru
e 

po
si

tiv
e 

ra
te 0.8

0.6

0.4

0.2

1

0

AUC = 0.9996 99

100

98

Pr
ec

is
io

n 
[%

] 95

90

85

80

100

75

Re
ca

ll 
[%

]

0.990.980.970.96 1
classification score threshold

B
nucleimembranemCherry-LC3

mCherry-LC3
membrane

nuclei

wt
+ Torin-1

library

ATG5-/-

+ Torin-1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.06.01.542416doi: bioRxiv preprint 

4.3 SPARCS: genome-scale CRISPR screening

119



Figure 3 | Deep learning accurately identifies autophagy-defective cells 

(A) Unsegmented images that were used for training autophagy classifier 2.0 after segmentation.

Membranes were stained with WGA-Alexa488. “Library” refers to cells transduced with the Brunello

CRISPR KO library. Images were acquired on an Opera Phenix microscope in confocal mode with 20 x

magnification. Scale bars represent 30 µm.

(B) Overview of the architecture and training paradigm of the convolutional neural network-based

classifier 2.0 for autophagic or non-autophagic distribution of mCherry-LC3 in single U2OS cells. 1

million 128 ´ 128 px single cell images from several biological replicates were used in each training

class. The autophagy-on class consisted of images of wildtype cells stimulated with Torin-1 pre-filtered

for responsive cells. The autophagy-off class consisted of images of unstimulated wildtype cells pre-

filtered to remove cells showing spontaneous autophagosome formation and images from two different

ATG5
-/- clones. Images were acquired on an Opera Phenix microscope in confocal mode with 20 x

magnification. CNN: convolutional neural network. MLP: multilayer perceptron.

(C) UMAPs of mCherry-LC3 images of single U2OS cells featurized through the autophagy classifier

2.0 illustrated in (B) up to the indicated layers. Colors depict the indicated genotypes and treatments.

20,000 cells are shown for each genotype and treatment.

(D) Receiver Operating Characteristic (ROC) curve of the autophagy classifier 2.0. AUC: Area under

the curve.

(E) Histograms of images of mCherry-LC3 expressing U2OS cells of the indicated genotypes treated

as indicated after autophagy classification with our classifier 2.0 as illustrated in (B).

(F) Heatmap showing the percentage of cells in e classified as autophagy-on or autophagy-off with a

classification score threshold of 0.5.

(G) Precision (Percent ATG5
-/- among cells classified as autophagy-off from an equal mix of Torin-1

stimulated wildtype cells and ATG5
-/- cells) and recall (Percent ATG5

-/- cells classified as autophagy-

off) of our autophagy classifier at different thresholds for classifying cells as “autophagy-defective”.

The data used for (C) – (G) come from an independent test dataset that was not used during training of 

the autophagy classifier. 
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Figure 4 | Genome-wide CRISPR screening for autophagosome formation in 40 million U2OS 

cells using SPARCS 

(A) Example region from a genome-wide SPARCS CRISPR knockout screen on autophagosome

formation in mCherry-LC3 expressing U2OS cells after Torin-1 stimulation for 14 hrs. Colors in nuclei

indicate the result of binary autophagy classification with the classifier 2.1, dotted lines indicate cytosol

segmentation. Images were acquired on an Opera Phenix microscope in confocal mode with 20 x

magnification.

(B) Histogram of autophagy classification scores in the genome-wide CRISPR KO library batch 2

(inset) zoomed in on cells classified as autophagy-off with a score above 0.975. Colored boxes illustrate

the binning strategy we used to isolate cells for sgRNA sequencing.

(C) UMAP representation of single cell images from all cells in screen batch 2 with a classification

score ≥ 0.98 (dark blue) or < 0.02 (light blue) featurized through the first 8 convolutional layers of

autophagy classifier 2.1. 91,320 images are depicted for each category.

(D) As C but colored according to our binning strategy along different autophagy classification

thresholds as outlined in (B). 15,220 images are depicted per bin. Right panel shows a magnification of

the UMAP region containing the putative screening hits.

(E) Images of individual cells from each bin in screen batch 2.

(F) z-scored enrichments of individual sgRNAs in each bin from batches 1 & 2. Vertical lines depict

median, boxes depict interquartile range (IQR) and whiskers depict 1.5 ´ IQR. #: One sgRNA targeting

the gene ENTPD4 with a z-score of 42.1 in bin 5 is not depicted. p-values were calculated with a

Kruskal-Wallis test followed by Dunn’s test. NTC: non-targeting control.

(G) sgRNA sequencing results of the top 50 genes in each of the six bins filtered for genes for which

we found at least two different sgRNAs in the respective bin in batches 1 & 2. Enrichment is calculated

as the fraction of reads for an sgRNA in the respective bin divided by the fraction of reads of that

sgRNA in the entire library. Bars indicate average enrichment per gene calculated from the enrichment

of individual sgRNAs indicated as dots. Filled bars depict autophagy-related genes highlighted in bold.

(H) Number of different sgRNAs per gene in each bin for all genes with at least 9 total sgRNAs across

all bins. sgRNAs were counted if they were sequenced with a read fraction in the top 50 % per bin.
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Figure 5 | Analysis of hits from genome-wide SPARCS screen 

(A) Overview of the canonical macroautophagy pathway. Colors indicate the highest enrichment value

we found for a given gene in any bin. USO1 was not found with at least two different sgRNAs in any

single bin.

(B) Enrichment vs read count for individual sgRNAs in the top two bins for genes where we found at

least two different sgRNAs in the respective bin. Circle sizes indicate the total number of different

sgRNAs we found for a given gene, colors indicate different groups of genes. Individual sgRNAs from

the “other” group are annotated. NTC: non-targeting control.

(C) Immunoblot of endogenous LC3 lipidation in wildtype and EI24
-/- mCherry-LC3 and LckLip-

mNeon expressing U2OS cell. Two clones are shown per genotype. One representative of three

independent experiments.

(D) Time course analysis of autophagy classification in clones of wildtype and EI24
-/- mCherry-LC3

and LckLip-mNeon expressing U2OS cells. Cells were treated with Torin-1 for up to 14 hrs. Dots

represent average classifier scores from cells in 15 fields of view per timepoint and clone from three

independent experiments, shaded areas represent SEM. Images were acquired on an Opera Phenix

microscope in confocal mode with 20 x magnification.

(E) Images of live mCherry-LC3 and LckLip-mNeon expressing wildtype and EI24
-/- U2OS cells after

14 hrs of Torin-1 stimulation. Arrowheads indicate larger mCherry-LC3 aggregates. Images were

acquired on a Nikon Eclipse Ti2 confocal microscope with 100 x magnification. Scalebars represent

15µm. One representative of three independent experiments.
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Figure S1 | The py-lmd python library generates cutting paths for automated laser 

microdissection 

(A) Overview of cutting path generation with py-lmd.

(B) py-lmd allows the generation of arbitrary shapes such as calibration crosses.
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Figure S2
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Figure S2 | Performance of LC3 image-based autophagy classifiers 

(A) Overview of the architecture and training paradigm of our convolutional neural network-based

classifier 1.0 for autophagic or non-autophagic distribution of mCherry-LC3 in single U2OS cells.

500,000 128 ´ 128 px single cell images from several biological replicates were used in each training

class. The autophagy-on class consisted of images of wildtype cells stimulated with Torin-1. The

autophagy-off class consisted of images of unstimulated wildtype cells and images from two different

ATG5
-/- clones. CNN: convolutional neural network. MLP: multilayer perceptron.

(B) False discovery rates (FDR) of the autophagy classifier 1.0 at different classification score cutoffs.

(C) Receiver Operating Characteristic (ROC) curve for autophagy classifier 1.0. AUC: area under the

curve.

(D) Precision-Recall curve for our autophagy classifier 1.0.

(E) Histograms of images of mCherry-LC3 expressing U2OS cells of the indicated genotypes treated

as indicated after autophagy classification with classifier 1.0 as illustrated in (A).

(F) Heatmap showing the percentage of cells in d classified as autophagy-on or autophagy-off with a

classification score threshold of 0.5.

(G) Parametric UMAPs of mCherry-LC3 images of single U2OS cells featurized through our autophagy

classifier 1.0 illustrated in (A) up to the indicated layers. Colors depict the indicated genotypes and

treatments. 20,000 cells are shown for each genotype and treatment.

(H) Precision-Recall curve of classifier 2.0.

(B) – (H) were calculated on independent test datasets for the respective classifiers
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Figure S3 | Overview of genome-wide SPARCS screening for autophagy 

(A) Batching and binning strategy for screening autophagosome formation in 40 million mCherry-LC3

expressing U2OS cells. We dissected fewer cells than we imaged for a given bin due to the quality

control step outlined in e. *The efficiency of the PCR on bin 2 from batch 2 had decreased dramatically,

presumably due to the high density of membrane fragments in the reaction, leading to a loss of sgRNAs

for sequencing. PPS: polyphenylene sulfide.

(B) Number of cells segmented per screen slide.

(C) Distribution of human genes targeted in the screen across cells in the library as determined by deep

sequencing.

(D) Distribution of non-targeting and targeting sgRNAs in the reference library as determined by deep

sequencing.

(E) Quality control strategy for false positives arising from out-of-focus images. When we spatially

clustered hits using DBSCAN, we found clusters above a certain size to correspond to entire out-of-

focus imaging tiles and removed these clusters before nuclei excision.
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Figure S4 | Results from genome-wide autophagy screen batch 1 

(A) Example region from a genome-wide SPARCS CRISPR knockout screen on autophagosome

formation in mCherry-LC3 expressing U2OS cells after Torin-1 stimulation for 14 hrs. Colors in nuclei

indicate the result of binary autophagy classification with classifier 2.0, dotted lines indicate cytosol

segmentation. Images were acquired on an Opera Phenix microscope in confocal mode with 20 x

magnification.

(B) UMAP representation of single cell images from all cells in screen batch 1 with a classification

score ≥ 0.98 (dark blue) or < 0.02 (light blue) featurized through the first 8 convolutional layers of

autophagy classifier 2.0. 4,806 cells are depicted per category.

(C) Histogram of autophagy classification scores in the genome-wide CRISPR KO library batch 1

(inset) zoomed in on cells classified as autophagy-off with a score above 0.975. Colored boxes illustrate

the binning strategy we used to isolate cells for sgRNA sequencing.

(D) As (B) but colored by screening bin. 801 cells shown per bin.

(E) Images of individual cells from each bin in screen batch 1.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.06.01.542416doi: bioRxiv preprint 

4 Publications

132



Figure S5
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Figure S5 | Performance metrics of classifier 2.1 

(A) Receiver Operating Characteristic (ROC) curve for autophagy classifier 2.1. AUC: area under the

curve.

(B) Precision-Recall curve for our autophagy classifier 2.1.

(C) Histograms of images of mCherry-LC3 expressing U2OS cells of the indicated genotypes treated

as indicated after autophagy classification with classifier 2.1.

(D) Heatmap showing the percentage of cells in (C) classified as autophagy-on or autophagy-off with

a classification score threshold of 0.5.

(A) – (D) were calculated on an independent test dataset.
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Table S1 | Overview of CNN-based image classifiers trained in this study 

All classifiers were trained on 128 ´ 128 px single cell images using PyTorch lightning. Unstimulated 

control slides containing library cells plated in parallel with the screen slides were included during 

training to capture possible batch effects introduced during plating and staining of the screening library. 

Cells were pre-filtered according to their autophagy score using classifier version P where indicated. 
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Table S1 

Classifier 
Version 

Description Architecture Number of 
trainable 
parameters 

Training data Training 
Epochs 

Number 
of cells 
per class 

Fig. Used to 
classify 
dataset 

Independent Test 
Dataset 

AUC 
ROC 
Curve 

1.0 Trained on 
initial 
staining 
protocol. 
Used to 
classify pilot 
screen 

As in Fig. 2b 
but classifier 
head only 
consists of 3 
fully 
connected 
linear layers 

17,882,244 2 slides unstimulated wt 
2 slides wt + Torin-1 
1 slide ATG5-/- clone 1 
1 slide ATG5-/- clone 2 

40 500,000 2, 
S2 

A 
1.2 
million 
cells 

1 slide ATG5-/- 
cells clone 1 
1 slide 
unstimulated wt 
cells 
1 slide wt cells + 
Torin-1 

0.925879 

P Only used to 
pre-filter 
cells for 
training 2.0 
& 2.1 

As in first 
classifier 

17,882,244 3 slides wt + Torin-1 
3 slides ATG5-/- mixed 
clones 
1 slide ATG5-/- clone 1 
1 slide ATG5-/- clone 2 

30 1,200,000 1 slide ATG5-/- 
cells clone 1 
1 slide 
unstimulated wt 
cells 
1 slide wt cells + 
Torin-1 

2.0 Used on 
initial batch 
of genome-
wide screen 

As shown in 
Fig. 2b 

14,340,484 1 slide ATG5-/- clone 1 
1 slide ATG5-/- clone 2 
3 slides ATG5-/- mixed 
clones 
2 slides unstimulated screen 
cells score > 0.9 
(autophagy-off) 
3 slides wt + Torin-1 score 
< 0.1 (autophagy-on) 

20 1,000,000 3, 
S4 

Screen 
batch 1 
5 
million 
cells 

1 slide ATG5-/- 
cells clone 1 
1 slide 
unstimulated wt 
cells 
1 slide wt cells + 
Torin-1 

0.999649 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.06.01.542416doi: bioRxiv preprint 

4 Publications

136



2.1 Refined for 
largest part 
of genome-
wide screen 

As shown in 
Fig. 2b 

14,340,484 1 slide ATG5-/- clone 1 
1 slide ATG5-/- clone 2 
3 slides ATG5-/-  mixed 
clones 
2 slides unstimulated screen 
cells score > 0.999 
(autophagy-off) 
3 slides wt + Torin-1 score 
< 0.001 (autophagy-on) 

20 1,000,000 4, 
S5 

Screen 
batch 2 
35 
million 
cells 

1 slide ATG5-/- 
cells clone 1 
1 slide 
unstimulated wt 
cells 
1 slide wt cells + 
Torin-1 

0.999772 
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Table S2 | Comparison of high-throughput methods for combined spatial phenotyping and 

genotyping 

Search space: library size that can be screened for phenotypes. Target space: Proportion of library that 

can be analyzed. Phenotypic variants that can be discriminated: The maximum number of different 

phenotypes that can be recovered from a single screen. Real time decision for genotyping necessary: 

Whether a decision has to be made for a given image in real time during screening (“yes”) or whether 

entire single cell datasets can be analyzed after imaging before a decision on which cells to genotype 

has to be made (“no”). 

*A genome-wide screen using in situ-seq has recently been reported (ref 21) with a small library of 10

million cells in which the number of screened and successfully sequenced cells and sgRNA

representation remain unclear.

°These technologies have low costs per screened cell, but require the use of instruments often provided 

by core facilities such as a laser dissection microscope for SPARCS, an imaging sorter device for 

imaging flow cytometry or an imaging setup equipped with a fluorescence recovery after 

photobleaching (FRAP) laser for pA-mCherry. 
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Table S2 

SPARCS In situ seq Imaging flow 

cytometry 

pA-mCherry 

References This study 19, 20, 21 22, 23 25, 26, 27 

Search space large medium large large 

Target space small medium large small 

Phenotypic variants that 

can be discriminated 

microtiter plate unlimited microtiter plate 4 per 

fluorophore 

Image quality confocal confocal flow-based confocal 

Real time decision for 

genotyping necessary 

No No Yes Yes 

Discovery of new 

phenotypes after screen by 

reanalysis with new 

computational model 

possible 

Yes Yes No No 

Largest library size 40 million 31 million 12 million 12.6 million 

Genes targeted 19,114 5,072* 18,408 18,905 

Special equipment 

required 

Laser 

microdissection 

microscope 

Ultrafast 

imaging setup 

and precise 

stage for 

sequencing 

cycles 

Imaging flow 

sorter 

FRAP laser or 

equivalent 

Cost per cell in library Low˚ High Low˚ Low˚ 
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4.4 Deep Visual Proteomics maps proteotoxicity in a

genetic liver disease

Alpha-1 antitrypsin deficiency (AATD), is a fibrogenic liver disease that is charac-

terised by the misfolding and accumulation of alpha-1 antitrypsin (AAT) in hepato-

cytes. Despite having a homozygotic incidence of 1:2000, the progression mechanisms

determining fibrogenesis or hepatocyte survival remain unclear which limits treatment

options. Using our DVP technology, we characterised the proteomic makeup of hep-

atocytes with AAT accumulation to gain a better understanding of the underlying

molecular mechanisms. By using a computer vision model that was pretrained on a

large collection of natural images we were able to stratify cells according to their AAT

aggregate morphology in an unbiased manner. Combining this unbiased AI-driven

phenotyping with proteomics, resulted in the identification of a terminal hepatocyte

state marked by globular protein aggregates with a distinct proteomic signature. The

molecular targets identified through this analysis provide a valuable resource to bet-

ter characterise AATD and perhaps intervene clinically. Furthermore, the approach

established here of combining unbiased image featurisation with DVP, provides a ro-

bust framework for dissecting complex cellular processes in situ across a spectrum of

proteotoxic diseases.

The following research article was originally published here:

Rosenberger, F. A., Mädler, S. C., et al. (2025). “Deep Visual Proteomics maps

proteotoxicity in a genetic liver disease”. In: Nature 642.8067, pp. 484–491. issn:

0028-0836. doi: 10.1038/s41586-025-08885-4
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Deep Visual Proteomics maps proteotoxicity 
in a genetic liver disease

Florian A. Rosenberger1 ✉, Sophia C. Mädler1,13, Katrine Holtz Thorhauge2,3,13, 
Sophia Steigerwald1,13, Malin Fromme4, Mikhail Lebedev1, Caroline A. M. Weiss1, Marc Oeller1, 
Maria Wahle1, Andreas Metousis1, Maximilian Zwiebel1, Niklas A. Schmacke1,5, 
Sönke Detlefsen3,6, Peter Boor7, Ondřej Fabián8,9, Soňa Fraňková10, Aleksander Krag2,3,11, 
Pavel Strnad4 & Matthias Mann1,12 ✉

Protein misfolding diseases, including α1-antitrypsin de"ciency (AATD), pose 
substantial health challenges, with their cellular progression still poorly understood1–3. 
We use spatial proteomics by mass spectrometry and machine learning to map AATD 
in human liver tissue. Combining Deep Visual Proteomics (DVP) with single-cell 
analysis4,5, we probe intact patient biopsies to resolve molecular events during 
hepatocyte stress in pseudotime across "brosis stages. We achieve proteome depth  
of up to 4,300 proteins from one-third of a single cell in formalin-"xed, para#n-
embedded tissue. This dataset reveals a potentially clinically actionable peroxisomal 
upregulation that precedes the canonical unfolded protein response. Our single- 
cell proteomics data show α1-antitrypsin accumulation is largely cell-intrinsic, with 
minimal stress propagation between hepatocytes. We integrated proteomic data with 
arti"cial intelligence-guided image-based phenotyping across several disease stages, 
revealing a late-stage hepatocyte phenotype characterized by globular protein 
aggregates and distinct proteomic signatures, notably including elevated TNFSF10 
(also known as TRAIL) amounts. This phenotype may represent a critical disease 
progression stage. Our study o%ers new insights into AATD pathogenesis and 
introduces a powerful methodology for high-resolution, in situ proteomic analysis  
of complex tissues. This approach holds potential to unravel molecular mechanisms 
in various protein misfolding disorders, setting a new standard for understanding 
disease progression at the single-cell level in human tissue.

Spatial omics technologies are revolutionizing our ability to deconvo-
lute molecular events at single-cell resolution within a tissue context. 
Whereas much focus has been placed on spatial genomics and tran-
scriptomics, recent advances in multiplexed imaging and proteomics 
are beginning to shed light on the functional proteomic layer. Mass 
spectrometry (MS)-based proteomics has made significant strides 
towards biologically informative single-cell analysis, now enabling 
quantification of up to 5,000 proteins in cultured cells6–8. In the tissue 
context, we have recently introduced Deep Visual Proteomics (DVP), 
which integrates staining, artificial intelligence-guided cell segmenta-
tion and classification, laser microdissection of single-cell shapes and 
high-sensitivity MS4,5. DVP excels in digital pathology applications with 
pronounced spatial and visual components, providing simultaneous and 
deep proteomic characterization at the level of thousands of proteins9.

We reasoned that these emerging technologies would be ideally 
suited to elucidate molecular events during the progressive worsening 
of proteotoxicity as it unfolds in patients. Proteotoxicity, characterized 
by the accumulation of misfolded and aggregated proteins leading 
to cell damage, is a hallmark of many diseases, including neurode-
generative pathologies such as Alzheimer’s disease and Parkinson’s 
disease10–12. The underlying cause of proteotoxicity is a disruption 
in protein homeostasis, resulting in an imbalance between protein 
synthesis, folding and clearance mechanisms3.

To investigate proteotoxicity in a clinically relevant context, we 
focused on a disorder with unmet clinical need that exemplifies the chal-
lenges of protein misfolding and aggregation in a vital organ. The fibro-
genic liver disease α1-antitrypsin (AAT) deficiency (AATD) is a genetic 
disorder caused by autosomal, codominant mutations in the SERPINA1 
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gene, resulting in misfolding and accumulation of AAT in hepatocytes. 
Most severe AATD cases are caused by a homozygous Z-variant (Pi*ZZ 
genotype) with a peak incidence of 1:2,000 in individuals of European 
descent1,2,13,14. Current hypotheses suggest that the severity of liver dam-
age correlates with the amount of accumulated AAT15–20. However, the 
mechanisms driving fibrogenesis or hepatocyte survival versus death 
remain unclear, leaving potentially druggable targets unexplored.

To address this challenge, we curated a cohort of formalin-fixed 
paraffin-embedded (FFPE) biopsies and liver explants from patients 
homozygous for the pathogenic Z-variant, encompassing all fibro-
sis stages (n = 34; Extended Data Fig. 1a and Supplementary Table 1). 
Despite the same underlying disease-causing mutation at a similar 
median age (58 ± 10 (s.d.) years) and BMI (25.2 ± 4.0), fibrosis stages 
varied drastically, indicating unexplored molecular resilience or risk 
profiles.

Proteomic map of proteotoxic response
To elucidate the molecular basis of the observed clinical heterogeneity 
in patients with AATD, we implemented a comprehensive proteomic 

mapping approach to characterize hepatocyte responses to proteo-
toxic stress. We first laser microdissected 3-µm-thick FFPE sections 
from patient biopsies and analysed them with MS following our DVP 
workflow. After staining for cell outlines and AAT, we segmented and 
stratified cells into low, moderate and high aggregate load groups on 
the basis of their microscopy images (Fig. 1a,b). The proteome of 100 
shapes—equivalent to the volume of 10–15 complete hepatocytes—
was then acquired on the recently introduced Orbitrap Astral mass 
spectrometer, yielding a high-quality dataset with a mean proteomic 
depth exceeding 5,000 proteins per sample (Extended Data Fig. 1b,c 
and Supplementary Table 1). We observed a striking 23-fold differ-
ence in AAT levels between low- and high-load cells. The AAT load 
was captured on the second principal component, preceded only by 
the fibrosis stage on the first and second component (Extended Data 
Fig. 1d–f). Given the sparsity of AAT+ cells in biopsy material, this vali-
dated our laser microdissection approach as it allowed the biological 
phenotype to emerge more clearly. Biopsies with a low fibrosis stage 
exhibited lower AAT baseline loading compared with high fibrosis 
stages on both proteomics and imaging data, in line with previous 
findings15, whereas the maximum load remained fairly equal across 
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Fig. 1 | Proteomic mapping of hepatocyte stress response. a, Overview  
of the Deep Visual Proteomics workflow. Fibrosis stages are Kleiner scores.  
b, Immunofluorescence staining of AAT, the cell outline marker pan-cadherin 
(pan-Cadh), nucleus (SYTOX Green) and three-colour overlay. c, Proteomic 
changes in high versus moderate versus low AAT-accumulating cells. Enriched 
in high on the right side. Top significant and top changed hits are named 
(paired two-sided moderated t-test with load class as covariable, multiple 

testing corrected; n = 96 at 100 shapes per sample). d, MS intensity of selected 
proteins across three classes. One dot is one sample from a patient (n = 34). 
Boxplots show first and third quartiles (box), median (thick line) and whiskers 
(±1.5 interquartile range). e, Significantly (FDR < 0.05) enriched Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways after GSEA. Each line  
is a member of the pathway. NS, not significant. Scale bars, 1 mm (a), 50 µm (b).
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all stages (Extended Data Fig. 1g,h). The proteomes of the three load 
classes differed markedly (17.4% significant hits at <5% false discovery 
rate (FDR), paired two-sided moderated t-test; Fig. 1c). Alongside AAT, 
several known markers of AATD liver pathology were highly enriched 
in aggregate-positive cells, such as a 1.6-fold increased endoplasmic 
reticulum (ER) chaperone HSPA5 and a 2.9-fold increased ER–Golgi 
cargo receptor LMAN1 (Fig. 1d)21–23.

Among the most dysregulated hits, we identified other secretory 
proteins, including many unambiguous SERPINs, coagulation and 
complement factors (Fig. 1c and Extended Data Fig. 2a–d). This aligns 
with recent findings of SERPIN sequestration in AAT-inclusions, and sup-
ports the notion of crowding in the ER space18,24, with potential systemic 
pathological implications due to accumulation of annotated plasma 
proteins in affected hepatocytes (Extended Data Fig. 2e). Galectin-3 
binding protein LGALS3BP and the apoptotic inducer TNFSF10 had 
the most pronounced positive changes (Fig. 1c,d). LGALS3BP is a 
hepatocyte-produced protein targeted for secretion that is elevated 
in plasma from patients with liver disease25. Reports describing the 
immunomodulatory activity of LGALS3BP could explain the involve-
ment of immune cells in AATD liver pathology15,26,27.

Pathway enrichment analysis showed a strong elevation of proteins 
related to the three branches of unfolded protein response (UPR) medi-
ated through ATF6, PERK and IRE1 along with a general upregulation 
of chaperones, accompanied by a reduction in the transcription and 
translation machinery. This occurred at the expense of physiological 
functions such as bile secretion (Fig. 1e). Many responses converged 

into a protective response to reactive oxygen species with upregulation 
of thioredoxins and glutaredoxins, including an atypical increase in the 
peroxisomal compartment and reduction of mitochondrial complex I 
(Fig. 1d and Extended Data Fig. 2a,b,f–j). Proteasomal and autophagy 
proteins remained largely unchanged, and neither did we detect dis-
turbances of calcium homeostasis (Fig. 1e and Extended Data Fig. 2k).

Early and late-stage stress responses
Our experimental design, encompassing three aggregate load classes, 
should allow us to resolve the stepwise progression of molecular events. 
To determine the sequence in which molecular responses occur dur-
ing AAT build-up, we first correlated AAT with other protein levels to 
identify ‘followers’ that tightly track AAT levels. Proteins of the ER were 
among the top ten hits, with many destined for secretion (Fig. 2a and 
Extended Data Fig. 3a). This included many structurally similar SER-
PINs, and the tight tracking of AAT levels suggests that these proteins 
accumulate in tandem with AAT rather than being coregulated.

We then categorized proteins into early and late responders to 
proteotoxic stress caused by AAT accumulation (Fig. 2b and Supple-
mentary Table 2). We observed the most consistent relation with AAT 
load among coelevated proteins, with most (77.7%) manifesting as late 
responders and only a smaller fraction as early responders. The immu-
nomodulatory marker LGALS3BP was most prominent among early 
responders, followed by the ER cargo receptor MCFD2 together with its 
co-binder LMAN1 (Fig. 2c). A strong peroxisomal biogenesis response 
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emerged early on, characterized by the peroxisomal proliferation fac-
tor PEX11B and other membrane-integral proteins, along with lipid 
metabolism and superoxide detoxifying proteins (Fig. 2d,e, Extended 
Data Figs. 3b–d and 4 and Supplementary Table 2). By contrast, most 
proteins of the core machinery of the UPR appeared later during AAT 
build-up, despite visual protein accumulation at earlier stages (Fig. 2d 
and Extended Data Fig. 3e,f). The crosstalk between UPR and peroxiso-
mal activity remains poorly understood, yet lipid metabolism, choles-
terol metabolism and reactive oxygen species detoxification intersect 
both pathways. Together, the data indicate a dominant increase of the 
ER oxidoreductase-1α (ERO1A)—a main peroxide producer (Fig. 1c and 
Extended Data Fig. 2f).

We then analysed samples at various fibrosis stages, revealing prin-
cipal dysregulations with increasing fibrosis stage in proteotoxicity- 
responsive pathways (Fig. 2f and Extended Data Fig. 5). Notably, this 
included the peroxisomal response, which showed a gradually pro-
longed onset time relative to AAT load (Fig. 2g). Peroxisomal chaper-
ones or chaperone-like proteins remained unaltered, suggesting that 
peroxisomes are unlikely to contribute to the clearance of unfolded 
proteins (Extended Data Fig. 3d).

Single-cell mapping in intact tissue
The accumulation of AAT in intact tissue exhibits a pronounced spatial 
component. Previous work has demonstrated that AAT accumulates 
unequally along the zonation gradient from portal to central vein axis 
in patients with AATD with the Pi*ZZ genotype15,28,29. Yet, sharp borders 
and the absence of gradual changes between neighbouring AAT+ and 
AAT− cells, as well as single positive cells, indicate a more complex pic-
ture (Fig. 3a). To map the spatial proteome in these regions, we built on 
our previous single-cell DVP workflow5. We isolated single shapes from 
selected regions in 10-µm-thick FFPE sections (equivalent to one-third 
to one-half of a complete hepatocyte) from six F1-stage biopsies. We 
selected early-stage (F1) biopsies to examine stress processes in a mini-
mally fibrotic environment, reducing potential confounding effects 
from advanced disease. We quantified the proteome of these ‘shapes’ 
one at a time using the Orbitrap Astral mass spectrometer and a variable 
window precursor selection design (Extended Data Fig. 6a,b).

In this way, we quantified the proteome of 259 single shapes in three 
biopsies at a median depth of 2,785 proteins, and reaching up to 4,299 
proteins (Fig. 3b, Extended Data Fig. 6c,d and Supplementary Table 3). 
The laser capturing proved highly precise, as evidenced by the complete 
separation of adjacent AAT+ and AAT− cells (Fig. 3a and Extended Data 
Fig. 6e–g). On comparing AAT+ and AAT− cells at border regions, we 
identified similar proteotoxic stress markers as before (Extended Data 
Figs. 6h and 7a,b). Interestingly, cells of the first or second row within 
a border region and within their respective AAT class displayed very 
similar proteomes (Fig. 3c). Consistent with this, the AAT accumulation 
markers LGALS3BP and ERO1A were markedly different between AAT+ 
and AAT− cells, but not among first- and second-order neighbours. Con-
sequently, the data support an absence of dedicated stress propagation 
between neighbouring cells, suggesting that AAT-induced proteotoxic 
stress is a cell-intrinsic response.

AAT accumulation has been characterized previously as a periportal 
event30. However, our data indicate only partial or no dependence of 
AAT accumulation on zonation, as evidenced by no or little change 
in the expression levels of the portal markers ASS1, HAL and ARG1, 
or the central markers ADH1 and CYP2E1 at borders. We also did not 
observe any zonation effect in single AAT+ cells compared with AAT− 
direct neighbours (Extended Data Fig. 7c).

On mapping early- and late-responder markers back onto tissue, 
we found the expected pattern at border regions for SERPINC1 and 
LGALS3BP, which mirrored AAT levels early on. The late marker DNAJB11 
remained unchanged in four of the six samples, indicating that we 
captured the accumulation event at an early to medium stage (Fig. 3d). 

However, we detected upregulation of the apoptotic inducer TNFSF10 
in the border cells in two samples. Further inspection revealed that 
the aggregate morphology was markedly different, with a globular 
phenotype in contrast to amorphous AAT accumulation in the other 
two samples.

Globular aggregates mark apoptotic cells
Motivated by this observation, we enhanced our DVP workflow to 
connect morphological information with proteomic data acquisition. 
We obtained liver resection samples containing thousands of cells 
with various AAT aggregate morphologies on one slide. After staining 
and confocal imaging of 3-µm-thick sections of three biological and 
four technical samples, we segmented cells and transformed the AAT 
channel signal within cell boundaries into 2,048 features representing 
AAT morphology using the ConvNeXt convolutional neural network31. 
We projected these representations into a two-dimensional space 
using uniform manifold approximation and projection (UMAP) and 
determined 50 equally distributed centre points across the image 
information layer, from which we selected the 50 closest cells. These 
were isolated by laser microdissection and measured by MS, result-
ing in 250 morphology classes representing a total of 12,500 cells  
(Fig. 4a).

Using UMAP to project the representation of these microdissected 
cells into a two-dimensional space validated that the convolutional 
neural network used could indeed stratify cells by aggregate morpholo-
gies, with aggregate-devoid cells clustering on one end and globular 
and amorphous morphologies located at the opposite side and clearly 
separated from one another (Fig. 4b). We achieved a median proteomic 
depth of 5,970 proteins from the equivalent of five to ten complete 
hepatocytes (Extended Data Fig. 8a and Supplementary Table 4). The 
main drivers of our proteomic data were dynamic changes in keratins 
and AAT levels on principal components 1 and 2, respectively (Fig. 4c 
and Extended Data Fig. 8b–d). When grouping samples by proteome 
into clusters, patient samples were distributed equally across prot-
eomic clusters without apparent genotypic or technical biases (Fig. 4d). 
As an inverse proof-of-principle, we mapped the proteomic clusters 
back onto the UMAP image space with clear dimensional separation 
(Extended Data Fig. 8e). Consistently, samples of one proteome clus-
ter also exhibited the shortest distances to one another on a prot-
eomic UMAP and t-distributed stochastic neighbour embedding plot 
(Extended Data Fig. 8f,g).

To better understand the molecular responses underlying morphol-
ogy types, we comparatively analysed samples with clear globular 
versus amorphous aggregates (Fig. 4e). Contrary to expectation, 
markers that typically follow AAT levels, such as CES2 and ERO1A, 
were decreased in globular types. Conversely, the apoptotic inducer 
TNFSF10 and the inflammatory marker C-reactive protein (CRP) were 
positively enriched, indicating this to be a late-stage phenotype. We 
then mapped levels of marker proteins back onto the UMAP-derived 
image space. Intriguingly, ERO1A and TNFSF10 were localized in two 
distinct cell populations (Fig. 4f and Extended Data Fig. 9a–d). While 
ERO1A, indicative of an ongoing UPR response, was highly enriched 
in amorphous aggregate types, TNFSF10 was present mostly in cells 
with globular aggregates alongside innate immune system activators. 
In line with this, gene set enrichment analysis (GSEA) further identi-
fied processes related to cell death as upregulated in globular types 
(Extended Data Fig. 9e).

Given a rather linear response rate of CRP across the image UMAP 
space (Fig. 4f), we then sorted all samples in pseudotime by CRP 
expression levels. Across all four biological samples, we observed 
the emergence and disappearance of small corpuscular aggregates 
despite retained CRP signal. This was followed by a fulminant amor-
phous aggregation before condensation into globular aggregates 
as a late-stage feature before cell death and clearance (Fig. 4g).  
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In addition to TNFSF10, we identified EGF-like domain-containing pro-
tein 7 (EGFL7) as a viable marker of this stage that appeared late in the 
AATD phenotype. Notably, EGFL7 is also upregulated in hepatocellular 
carcinoma, and high expression levels are associated with poor prog-
nosis32. However, a potential link between globular phenotypes and 
hepatocellular carcinoma incidence in AATD remains unexplored. This 
late-stage phenotype was further characterized by a stagnating or even 
declining UPR in late stages, as evidenced by Calreticulin and ERO1A 
levels, whereas declining levels of proteins such as UGT2B17 suggest 
the termination of physiological functions in this hepatocyte subtype  
(Fig. 4h).

Discussion
We present a pseudotime-resolved proteome of individual hepato-
cytes undergoing proteotoxic stress due to AAT aggregation. Our 
findings, derived from FFPE biopsies and resections from patients, 
provide new insights into the progression and hepatic manifestation 
in AAT deficiency. Although there are several model systems in the 
field, including mouse models33 and patient-derived induced pluri-
potent stem cells34, our approach uniquely captures responses to 
proteotoxic stress directly in patients using human tissue specimens 
representing the full disease spectrum (stages F1–F4). Notably, our 
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data reveal that existing Pi*ZZ models do not accurately recapitu-
late the UPR, which manifests as a late but fulminant mode of action 
in our patient-derived samples1,35. This discrepancy extends to the 
globular phenotype, which we now identify as a late-stage cellular 
feature preceding cell death16. Our approach strikingly underlines the 
power of harnessing patient cohorts and tissues. As many potentially 

druggable targets and pathways are intrinsically more difficult to 
validate when appropriate model systems are not in place, this inverts 
the traditional biomedical discovery cycle. A limitation of this study 
is the low sample numbers due to limited availability of particularly 
low-grade fibrotic tissue. This prevents us from further disentangling 
confounding factors such as alcohol consumption. Nevertheless, the 
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cellular enrichment by DVP allows the biological phenotype to emerge 
more clearly, leading to statistically robust and actionable insights 
even at low sample numbers.

Here we developed a single-cell proteomics approach to generate 
high-resolution maps of adjacent hepatocytes in intact tissue, lever-
aging recent advancements in ultra-low-input MS6,7,36. Building on our 
previous work mapping zonation profiles in frozen mouse liver sections 
at single-cell resolution5, we now quantify 50% more proteins and apply 
single-cell DVP (scDVP) to FFPE tissue using the Orbitrap Astral mass 
spectrometer with a variable window precursor selection scheme. 
This compatibility with FFPE tissue specimens—the gold standard in 
diagnostic pathology—expands access to cohorts of virtually any origin, 
age and size37, broadening the potential applications of this technology. 
Spatial transcriptomics has become a powerful tool for spatial analyses 
in intact FFPE tissue, often approaching single-cell resolution38. By 
contrast, the scDVP approach provides orthogonal biological insights 
by directly measuring protein abundance with single-cell localization. 
This is particularly valuable when post-transcriptional regulation and 
protein accumulation are central to pathology, such as for understand-
ing proteotoxic diseases38. Although the scDVP approach is currently 
limited in throughput compared with transcriptomics, its combination 
with the herein presented morphology-guided DVP allows efficient sam-
pling of histologically heterogenous material. This could be expanded 
into morphology-based proteome prediction for large numbers of cells.

Our findings indicate that cells without aggregates are not directly 
affected or triggered by seeding-like mechanisms from adjacent  
aggregate-bearing cells. However, the presence of large patches of 
positive cells implies a propagation mechanism. Given the extensive 
metabolic perturbations observed, including alterations in fatty acid 
metabolism and detoxification pathways, AAT aggregate formation 
in one cell may lead to changes in the metabolic microenvironment, 
thereby inducing stress and proteostatic imbalance in adjacent cells. 
This hypothesis aligns with other reports in the AATD field, and similar 
mechanisms have been proposed in the context of neurodegenera-
tive proteotoxic disorders, where it remains the subject of ongoing 
debate39,40.

We present an integration of image featurization and DVP that ena-
bles characterization of the entire proteomic and phenotypic lifecycle 
of stressed hepatocytes in a proteotoxic and fibrogenic liver disease. 
This methodology establishes a robust framework for dissecting com-
plex cellular processes in situ across a spectrum of proteotoxic diseases. 
This strategy—an example of digital pathology with quantitative and 
very deep proteomic readout—yielded exceptionally deep proteomes 
of 6,000 quantified proteins, sufficient to infer most of the functional 
proteome of a given cell type. Our datasets are large enough to generate 
robust models capable of predicting the proteome of a cell solely on the 
basis of its phenotype. This advancement paves the way for whole-slide 
proteomics in the future, representing a leap forward in our ability to 
comprehensively analyse tissue types by MS at exceptional molecular 
and spatial resolution.

The methods developed here recapitulate known disease progression 
markers while identifying hundreds of additional dysregulated pro-
teins. The present study is necessarily limited in functional follow-ups, 
yet these new candidates clearly offer a valuable resource for biological 
and clinical validation. Of particular clinical relevance, we uncover an 
early upregulation of the peroxisomal compartment in samples from 
patients with low-grade liver fibrosis. This response is significantly 
delayed in high-grade fibrotic samples, suggesting a potential window 
for therapeutic intervention. Of note, a peroxisomal response is not 
significantly correlated with fibrotic stages in bulk liver proteomes of 
patients with alcohol-related liver disease, suggesting that it is specifi-
cally important to the AATD pathomechanism25. PPAR-α agonists, such 
as fibrates, which increase peroxisome load in the liver, may be promis-
ing candidates for treating patients with late-diagnosed advanced liver 
fibrosis due to AATD. Given their well-established safety profiles, we 

suggest that these drugs could be repurposed for AATD, potentially 
transforming the treatment landscape of this proteotoxic disorder.
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Methods
Clinical cohorts and sample preparation
Patient biopsies and explant samples were obtained at two different 
sites, Odense University Hospital (OUH) and Aachen RWTH Univer-
sity Hospital (UKA). The sample origin is indicated in Supplementary 
Table 1. Following ethical guidelines, the clinical data provided here 
are deidentified by reporting only sample type, fibrosis score and site 
of origin.

OUH patient recruitment. Patients were recruited through the Danish 
patient organization (Alfa-1 Denmark) and clinical departments for liver 
and lung diseases as part of a cohort study. The cohort was designed 
to investigate liver health among nonpregnant adults (minimum age 
18 years) diagnosed with AATD of any genotype and carrier status. This 
specific study includes 16 people diagnosed with Pi*ZZ who consented 
to undergo the procedure. The study was approved by the Danish Ethi-
cal Committee (S-20160187), and participants gave informed consent 
before enrolment. Participants without a history of liver transplant or 
decompensated cirrhosis were offered a percutaneous liver biopsy. The 
patients underwent liver core needle biopsies at OUH between 2017 
and 2021. Liver core needle biopsies were taken during this period, 
stored in 4% formalin and embedded in paraffin. For the assessment 
of fibrosis stage, FFPE blocks were cut on a microtome into 3-µm-thick 
sections and mounted on FLEX IHC slides (Dako). Tissue sections were 
deparaffinized with xylene, rehydrated in serial dilutions of ethanol and 
stained with Sirius Red. A certified hepatopathologist (S.D.) assessed 
the Kleiner fibrosis stage (0–4) according to the Pathology Committee 
of the NASH Clinical Research Network (NAS-CRN).

UKA patient recruitment. The recruitment of patients is described 
in detail in ref. 41. Of this cohort, the present study includes 19 people 
diagnosed with Pi*ZZ, of whom 14 underwent liver core needle biopsies 
owing to medical indication and five received a liver transplant because 
of end-stage liver disease. One patient’s sample was later removed 
owing to its outlier position on the proteome PCA (Supplementary 
Table 1). Samples were stored in 4% formalin and embedded in paraf-
fin. Fibrosis stage was assessed after trichrome staining of 5-µm-thick 
sections by a certified hepatopathologist. Blocks were stored at room 
temperature. Ethical approval was provided by the institutional review 
board of Aachen University (EK 173/15). All participants provided writ-
ten informed consent and were treated following the ethical guidelines 
of the Helsinki Declaration (Hong Kong Amendment) as well as Good 
Clinical Practice (European guidelines).

Staining
Polyethylene naphthalate membrane slides (2 µm; MicroDissect GmbH) 
were exposed to ultraviolet light (254 nm) for 1 h and then coated with 
Vectabond (Vector Laboratories; catalogue no. SP-1800-7) according 
to the manufacturer’s protocol. FFPE sections (3-µm-thick, DVP, ML; 
10-µm-thick, scDVP) were mounted onto these slides and dried at 37 °C 
overnight. Slides were stored at 4 °C until further processing, upon 
which slides were baked at 55 °C for 40 min and then deparaffinized 
and rehydrated (xylene 2 ( 2 min, 100% ethanol 2 ( 1 min, 90% ethanol 
2 ( 1 min, 75% ethanol 2 ( 1 min, 30% ethanol 2 ( 1 min, ddH2O 2 ( 1 min). 
Slides were transferred to prewarmed glycerol-supplemented antigen 
retrieval buffer (DAKO pH 9 S2367 + 10% glycerol) at 88 °C for 20 min, 
followed by a 20-min cooldown at room temperature (22 °C). After 
washing in water, sections were blocked with 5% bovine serum albumin 
(BSA) in PBS for 1 h, followed by an overnight incubation with primary 
antibodies in 1% BSA/PBS at 4 °C in a humid staining chamber (1:200 
mouse IgG1 monoclonal AAT 2C1, Hycult catalogue no. HM2289; 1:200 
rabbit recombinant anti-pan-Cadh (EPR1792Y), Abcam catalogue no. 
ab51034). After three washes in PBS for 2 min each, secondary anti-
bodies (1:400 goat anti-mouse IgG1, Invitrogen catalogue no. A21127; 

1:400 goat anti-rabbit AF647, Invitrogen catalogue no. A21245) in 1% 
BSA/PBS were applied for 90 min, followed by two 2-min washes in 
PBS, 15 min in SYTOX Green (1:40,000 in PBS, Invitrogen catalogue no. 
S7020), and three final 2-min washes in PBS. Excess liquid was removed 
and samples were coverslipped using SlowFade Diamond Antifade 
Mountant (Invitrogen, catalogue no. S36963).

Imaging
Widefield imaging. For DVP and scDVP experiments (Figs. 1–3), sec-
tions were imaged using a Zeiss Axioscan 7. For all excitation wave-
lengths (493 nm, 577 nm and 653 nm), 50% light source intensity was 
used. The illumination time was specified on one section and applied to 
all consecutive samples within one experimental group. Three z-stacks 
at an interval of 2 µm were recorded with a Plan-Apochromat (20, 0.8 
numerical aperture M27 objective and an Axiocam 712 camera at 14-bit, 
with a binning of 1 and a tile overlap of 10%, resulting in a scaling of 
0.173 µm ( 0.173 µm. Multiscene images were then split into single 
scenes, z-stacks combined into a single plane using extended depth 
of focus (variance method, standard settings) and stitched on the 
pan-Cadh channel using the proprietary Zeiss Zen Imaging software.

Confocal imaging. For experiments with downstream machine learn-
ing applications (Fig. 4), sections were imaged on a Perkin Elmer Opera-
Phenix high-content microscope, controlled with Harmony v.4.9 soft-
ware, at (40 magnification and 0.75 numerical aperture, with a binning 
of 1 and a per tile overlap of 10%. Only one z-plane was recorded, which 
was specified manually for each slide and channel. The three channels 
were imaged consecutively after deactivation of simultaneous record-
ing to avoid any leakage between channels.

Cell selection with Biological Image Analysis Software
Images were imported as .czi files into the Biological Image Analysis 
Software (BIAS) using the packaged import tool4. Within BIAS, images 
were then retiled to 1,024 ( 1,024 pixels with an overlap of 10%, and 
empty tiles were excluded from further analyses. Outlines of all cells 
per biopsy were identified in an unbiased way by using Cellpose v.2.0 
with the default cyto2 model based on anti-pan-Cadh stains42. Masks 
were imported into BIAS, and duplicates, as well as cells touching the 
borders of a tile (0.1% on each side), were removed. Further filtering 
was applied to retain cells with a minimum size of 3,000 pixels, enrich-
ing for the hepatocyte population. For classification based on low, 
medium and high aggregate load, all cells per biopsy or explant tissue 
were divided into five classes using a multilayer perceptron with the 
following parameters: weight scale 0.01; momentum 0.01; maximum 
iterations 10,000; epsilon 0.0005 and five neurons in the hidden layer. 
Classification was based on the AAT maximum, median and mean inten-
sity within the cell outline mask, involving no human intervention. The 
low class was attributed to the cells with the lowest normalized mean 
intensity, medium to the third highest and high to the highest normal-
ized mean intensity; the other two intermediate classes were dropped. 
Reference points were selected on the basis of prominent nuclear and 
histological features; 100 cells were picked randomly for excision.

For single shape experiments, six characteristic low fibrosis samples 
(all F1) and regions were selected that presented with a clear border-like 
phenotype (that is, a row of AAT+ cells in direct neighbourhood to AAT− 
cells) or with single AAT+ cells surrounded by AAT− cells. The cells were 
selected manually in BIAS, starting from the innermost cell and moving 
spiral-like to the outermost cell, thus avoiding cross-contamination of 
consecutively cut material.

Single-cell image generation
Images were flat-field corrected during image acquisition using the 
Perkin Elmer Harmony software (v.4.9). Stitching of the flat-field cor-
rected image tiles was performed using the Python library scPortrait 
(https://github.com/MannLabs/scPortrait). The stitched tile positions 
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were calculated using the anti-pan-Cadh stains imaged in the Alexa647 
channel as a reference and then transferred to the other image chan-
nels. During stitching, the tile overlap was set to 0.1, the filter sigma 
parameter to 1 and the max shift parameter to 50.

The stitched images were then further processed in scPortrait. Cell 
outlines were identified on the basis of the seven times downsampled 
anti-pan-Cadh stains using Cellpose v.2.0 with the pretrained ‘cyto’ 
model42. Segmentation was performed in a tiled mode with a 100-pixel 
overlap. After resolving the cell outlines from overlapping regions, 
the resulting segmentation mask was upscaled to the original input 
dimensions during which the edges of the masks were smoothened 
by applying an erosion and dilation operation with a kernel size of 7.

Then, the generated segmentation mask was used to extract 
single-cell image datasets with a size of 280 pixels ( 280 pixels. Dur-
ing extraction, the same single-cell image masks are used to obtain 
the pixel information from each channel for each cell. The resulting 
single-cell images were then rescaled to the [0, 1] range while preserving 
relative signal intensities. The resulting single-cell image datasets were 
filtered to contain only cells from within manually annotated regions 
in the tissue section containing hepatocytes but not fibrotic tissue.

Cell selection with the convolutional neural network
The filtered single-cell image datasets produced by scPortrait were 
further filtered to remove any cells that fell outside the 5–97.5% size 
percentile. Representations of the remaining cells were generated by 
featurization using the natural image-pretrained ConvNext model31. For 
this, the single-cell images depicting the Alpha-1 channel were rescaled 
to the expected image dimensions of N pixels ( N pixels and triplicated 
to generate a pseudo-rgb image. Inference was then performed using 
the huggingface transformers package v.4.26 (ref. 43).

The resulting 2,048 image features were projected into a two- 
dimensional space using the UMAP algorithm44. The UMAP dimensions 
were calculated on the basis of the first 50 principal components and 
the 15 nearest neighbours. Using the spectral clustering algorithm from 
scikit-learn45, the resulting UMAP space was split into 50 clusters. The 
geometric centre of each cluster was calculated and the 50 cells with 
the smallest Euclidean distance to the cluster centre were selected for 
laser microdissection.

Contour outlines of the selected cells were generated in scPortrait 
using the py-lmd package46, whereby the cell outlines were dilated with 
a kernel size of 3 and a smoothing filter of 25 was applied. Furthermore, 
the number of points defining each shape were compressed by a fac-
tor of 30 to improve laser microdissection cutting performance. The 
cutting path, that is, which cell is cut after one another, was optimized 
using the Hilbert algorithm (https://github.com/galtay/hilbertcurve).

Laser microdissection
After aligning the reference points, contour outlines were imported, 
and shapes were cut using the LMD7 (Leica) laser microdissection 
system in a semi-automated mode with the following settings: power 
45; aperture 1; speed 40; middle pulse count 1; final pulse 0; head cur-
rent 42–50%; pulse frequency 2,982 and offset 190. The microscope 
was operated with the LMD beta v.10 software, calibrated for the 
gravitational stage shift into 384-well plates (Eppendorf, catalogue 
no. 0030129547), leaving the outermost rows and columns empty. To 
prevent sorting errors, a ‘wind shield’ plate was placed on top of the 
sample stage. Plates were then sealed, centrifuged at 1,000g for 5 min, 
and subsequently frozen at −20 °C for further processing.

Peptide preparation and Evotip loading
Peptides were prepared as described previously using a BRAVO pipet-
ting robot (Agilent)47. Briefly, 384-well plates were thawed, and shapes 
(both combined and individual) were rinsed from the walls into the 
bottom of the well with 28 µl of 100% acetonitrile (ACN). The wells were 
dried completely in a SpeedVac at 45 °C, followed by the addition of 

6 µl of 60 mM triethylammonium bicarbonate (Supelco, catalogue no. 
18597) (pH 8.5) supplemented with 0.013% n-dodecyl-beta-)-maltoside 
(Sigma-Aldrich, catalogue no. D5172). Plates were sealed and incubated 
at 95 °C for 1 h. After adjusting to 10% ACN, samples were incubated 
again at 75 °C for 1 h. Subsequently, 6 ng and 4 ng of trypsin and Lys-C 
protease, respectively, in 1 µl of 60 mM triethylammonium bicarbonate 
buffer were added to each sample, and proteins were digested for 16 h 
at 37 °C. The reaction was quenched by adding trifluoroacetic acid to a 
final concentration of 1%. Peptide samples were then frozen at −20 °C.

For loading, new Evotips were first soaked in 1-propanol for 1 min, 
then rinsed twice with 50 µl of buffer B (ACN with 0.1% formic acid). 
After another 1-propanol soaking step for 3 min, the tips were equili-
brated with two washes of 50 µl buffer A (0.1% formic acid). Samples 
were loaded into 70 µl of preloaded buffer A. Following one additional 
buffer A wash, the peptide-containing C18 disk was overlaid with 150 µl 
buffer A and centrifuged briefly through the disk. All centrifugation 
steps were performed at 700g for 1 min. The final tips were stored 
in buffer A for a maximum of 4 days before liquid chromatography 
(LC)-MS.

LC-MS data acquisition
The peptide samples were analysed using an Evosep One LC system 
(Evosep) coupled to an Orbitrap Astral mass spectrometer (Thermo 
Fisher Scientific). Peptides were eluted from the Evotips with up to 
35% ACN and separated using an Evosep low-flow ‘Whisper’ gradient 
for DVP samples, or an experimental Evosep ‘Whisper Zoom’ gradient 
for single shapes and DVP-machine learning samples, with a throughput 
of 40 samples per day on an Aurora Elite TS column of 15-cm length, 
75-µm-internal diameter, packed with 1.7 µm C18 beads (IonOpticks). 
The column temperature was maintained at 50 °C using a column heater 
(IonOpticks).

The Orbitrap Astral mass spectrometer was equipped with a FAIMS 
Pro interface and an EASY-Spray source (both Thermo Fisher Scientific). 
A FAIMS compensation voltage of −40 V and a total carrier gas flow of 
3.5 l min−1 were used. An electrospray voltage of 1,900 V was applied for 
ionization, and the radio frequency level was set to 40. Orbitrap MS1 
spectra were acquired from 380 to 980 m/z at a resolution of 240,000 
(at m/z 200) with a normalized automated gain control (AGC) target 
of 500% and a maximum injection time of 100 ms.

For the Astral MS/MS scans in data-independent acquisition (DIA) 
mode, we determined the optimal methods experimentally across 
the precursor selection range of 380–980 m/z: (1) for DVP samples, a 
window width of 5 Th, a maximum injection time of 10 ms and a nor-
malized AGC target of 800% were used. (2) For DVP-machine learning 
samples, a window width of 6 Th, a maximum injection time of 13 ms 
and a normalized AGC target of 500% were applied. (3) For single shapes 
and other DIA scans, the window width was optimized on the basis of 
precursor density across the selection range of 380–980 m/z. A total of 
45 variable-width DIA windows (Supplementary Table 3) were acquired 
with a maximum injection time of 28 ms and an AGC target of 800%. 
The isolated ions were fragmented using higher-energy collisional 
dissociation with 25% normalized collision energy. Detailed method 
descriptions are provided in a default format with each supplementary 
data table.

Spectral searches and normalization
The raw files were searched together with match-between run-in 
library-free mode within each experimental group with DIA-NN v.1.8.1 
(ref. 48). A FASTA file containing only canonical sequences was obtained 
from Uniprot (20,404 entries, downloaded on 2 January 2023), and the 
disease-causing amino acid was changed manually (E342K). We allowed 
a missed cleavage rate of up to 1, and set mass accuracy to 8, MS1 accu-
racy to 4 and the scan window to 6. Proteins were inferred on the basis 
of genes, and the neural network classifier was set to ‘single-pass mode’. 
For DVP and DVP-machine learning samples, precursor intensities in 
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the ‘report.tsv’ file were then normalized using the directLFQ GUI at 
standard settings including a minimum number of non-NaN ion intensi-
ties required to derive a protein intensity of 1 (ref. 49). The single shape 
data was additionally median-normalized to a set of proteins quantified 
across all samples (451 proteins quantified in 100% of included samples; 
Supplementary Table 3), thereby correcting for the dependence of 
protein numbers on shape size5.

Data analysis and statistics
Data were analysed using R v.4.4.1. The directLFQ output file ‘pg_matrix.
tsv’ was used for all subsequent data analysis, including the reported 
protein counts. Samples were included if the number of protein groups 
exceeded (1) the mean − 1.5 s.d. for DVP, resulting in 5.9% (6 of 102) 
dropouts; (2) the mean − 0.5 s.d. for DVP-machine learning samples;  
(3) a fitted logarithmic curve − 1.5 interquartile ranges for scDVP, taking 
the relation between size and proteomic depth into account, resulting 
in 15.4% (40 of 259) dropouts. The lower cutoffs were selected after 
manual inspection of the data distribution. Although some samples 
were collected in technical duplicates per patient biopsy, only the first 
replicate was used for statistical analyses and all reported measure-
ments were taken from distinct samples. Coefficients of variation were 
calculated on nontransformed intensity values. For principal compo-
nent analysis (PCA), the R package PCAtools v.2.16.0 was used on a 
complete data matrix, removing the lower 10% of variables based on 
variance. Statistical analyses were performed on proteins with at least 
30% data completeness across samples, assuming normality using the 
limma package v.3.60.3 with two-sided moderated t-tests and ‘fdr’ as 
a multiple testing correction method. A per patient statistical pairing 
was applied for DVP and single shape experiments. Intensity and fold 
changes are reported as log2-transformed values unless indicated other-
wise. GSEA was conducted using WebGestalt 2024 against the indicated 
databases, with an FDR of <0.05 considered significant50. Interaction 
networks were calculated with STRING database at standard settings51. 
Plasma proteins were retrieved from the Human Protein Atlas resource 
section with the search term ‘sa_location:Secreted to blood AND tissue_
category_rna:liver;Tissue enriched’52. The timing of responses ranked 
by the absolute difference between B values of limma’s moderated t-test 
comparing three AAT load groups: low to moderate, and moderate to 
high. Only proteins with more than 70% data completeness and sig-
nificance (FDR < 0.05) in either or both comparisons were considered. 
Differential pathway expression across fibrosis stages was calculated 
by fitting a linear model through log2-transformed intensity values of 
individual proteins in samples with log2(AAT)-intensity <25, and the 
slopes of proteins in a particular pathway were compared between F1 
and F4 samples by a two-sided Wilcoxon rank test without assumption 
of normality. Indicated P values are corrected for multiple testing using 
the ‘fdr’ method. Spatial data was mapped using the ‘simple features’ 
package. Binned expression presented in supplementary tables was 
constructed by grouping AAT or CRP expression into ten equidistant 
bins and on median expression of proteins across samples in each bin.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The MS proteomics data have been deposited to the ProteomeXchange 
Consortium through the PRIDE53 partner repository with the dataset 
identifier PXD054440. Imaging data of explant and morphological clus-
ters have been deposited to BioStudies54 with the identifier S-BIAD1523.

Code availability
The R and Python code used in this study are documented at https://
github.com/MannLabs/Proteotoxicity with a readily deployable script 
to generate most of the figure panels.
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Extended Data Fig. 1 | Quality control of Deep Visual Proteomics data.  
a, Summary of clinical metadata shown as patient numbers or percentages 
(absolute numbers in brackets). Values reported as mean ± SD. b, Number  
of proteins detected across all runs before excluding technical replicates 
(n = 134). Upper dotted line: median number of protein groups. Lower dotted 
line: median – 1.5 SD. Excluded samples are marked with crosses. c, Coefficient 
of variation across fibrosis stages. d, MS intensity of alpha-1 antitrypsin in the 
three microdissected cell classes (N = 34 patients, n = 96 samples). e, Principal 
component analysis showing components 1 and 2 colored by fibrosis stage, and 

f, components 2 and 3 colored by alpha-1 antitrypsin level. Each dot represents 
one sample (n = 96). g, Alpha-1 antitrypsin levels by fibrosis stage across the 
three microdissected cell classes (N = 31 patients, n = 88 samples with known 
fibrosis status). h, AAT fluorescence intensity distribution across cells from 
biopsies with Kleiner scores (n = 31 biopsies, 2,967,275 cells total). Values were 
normalized to a 0–1 range after removing outliers (below 1st and above 99th 
percentile). Box plots show first and third quartiles (box), median (thick line), 
and whiskers (±1.5 interquartile range).
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Extended Data Fig. 2 | Proteomics responses to proteotoxic stress.  
a, STRING interaction network of significantly upregulated proteins (FDR < 0.05) 
and b, downregulated proteins in cells (see Fig. 1c). c, Changes in SERPINA protein 
family members relative to baseline hepatocyte group. d, Changes in SERPIN 
protein family precursors across three hepatocyte classes. Lines connect the 
same precursor (defined as peptide by charge state). e, Changes in proteins 
targeted for plasma secretion relative to baseline hepatocyte group. Plasma 
protein dataset obtained from Human Protein Atlas using query “sa_location: 
Secreted to blood AND tissue_category_rna:liver;Tissue enriched” (‘FALSE’ 

includes 5806 protein, ‘TRUE’ includes 100 proteins). f, Changes in ER proteins 
(annotated as such in Uniprot, n = 677) relative to baseline hepatocyte group 
with a manually curated subset of ER-UPR components. g-k, Protein levels in 
indicated pathways comparing cells with and without aggregates. Circles show 
means, bars indicate SD across patient samples (n = 34). Proteins in panels i-m 
were manually selected; panel n shows proteins from KEGG database. Box plots 
show first and third quartiles (box), median (thick line), and whiskers (±1.5 
interquartile range).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Early and late responses to proteotoxic stress.  
a, Pearson’s correlation coefficient (R) between each detected protein and 
alpha-1 antitrypsin levels per MS sample. Top and bottom 10 proteins are 
highlighted in boxes. b, Proteomic changes across high, moderate, and low 
AAT-accumulating cells with manually curated labels. c, Panel (b) overlaid with 

proteins from indicated KEGG pathways. Non-pathway proteins shown as 
density cloud. d, Expression levels of proteins involved in peroxisomal protein 
import, e, XBP1 signaling, and f, the Calnexin/Calreticulin cycle. Values shown 
as z-scores (assuming normal distribution) across samples split by load class. 
Database identifiers listed below each graph (n = 96 samples from 34 patients).
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Extended Data Fig. 4 | Changes in functional pathways. a-f, Scaled protein intensities (z-scored) from indicated KEGG pathways plotted against AAT intensity. 
KEGG pathways identified by ‘hsa00000’ identifiers. Purple lines show local regression (span 0.75, degree 2).
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Extended Data Fig. 5 | Impact of fibrosis on functional pathways in relation 
to AAT load. a, Statistical comparison of three AAT load-defined hepatocyte 
classes, stratified by fibrosis grade (F1: n = 11, F4: n = 6; paired two-sided t-test 
with load class as covariate, multiple testing corrected). b, Gene Set Enrichment 
Analysis of fold changes shown in panel (a). Significant pathways are indicated 

by filled (black) or unfilled (white) markers; selected non-redundant terms  
are labeled. c, Scaled protein intensities (z-scored within fibrosis groups) for 
detected proteins in KEGG pathways plotted against AAT intensity. KEGG 
identifiers shown as ‘hsa00000’. Purple line indicates local regression (span 
0.75, degree 2). Legend for all panels shown in top right.
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Extended Data Fig. 6 | The single-cell proteome. a, MS/MS acquisition design 
on the Orbitrap Astral mass spectrometer showing window width and injection 
time. “v” indicates variable windows (represented by box sizes). AAT expression 
shown by color in regions with single-positive cells. AAT levels for indicated shapes 
displayed in adjacent dot plots. b, Number of proteins quantified per acquisition 
strategy (n > 5) after exclusion of samples with less than 500 proteins. Error bars 
are positive standard deviations. c, Protein quantification across all hepatocyte 
shape runs (n = 259). Lower dashed line: median in batch A (2601 proteins); upper 

dashed line: median in batch B (3004 proteins). d, Summary statistics per sample. 
e, and f, AAT expression visualized by color in regions with single-positive cells. 
AAT levels for indicated shapes shown in adjacent dot plots. g, AAT expression in 
specified regions measured by immunofluorescence across all included samples 
(n = 219). Box plots show first and third quartiles (box), median (thick line), and 
whiskers (±1.5 interquartile range). h, Statistical comparison between AAT+ and 
AAT- cells in regions classified as ‘borders’ (paired two-sided t-test, multiple 
testing corrected, 63 AAT+ cells and 44 AAT- cells).
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Extended Data Fig. 7 | Comparison of the single-cell proteome with DVP 
class data and zonation. a, Comparison of log2(fold changes) and b, adjusted 
P values between AAT+ and AAT- single-cell comparisons (x-axis) versus cells 
along the accumulation gradient (y-axis; refer to Figs. 1 and 2). Statistics as in 

Extended Data Fig. 6h, and Fig. 1c. c, Protein expression in spatial regions for 
indicated markers. Periportal markers: ASS1 and HAL; pericentral markers: 
ALDH1A1 and CYP2E1. Box plots show first and third quartiles (box), median 
(thick line), and whiskers (±1.5 interquartile range).
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Extended Data Fig. 8 | Quality control of morphology-guided DVP. a, Number 
of protein groups detected per sample. Each dot is one sample, the horizontal 
line indicates the mean across all included samples (n = 209 included, n = 41 
excluded and marked with a cross). Exclusion criteria were that the number of 
detected proteins was smaller than mean minus 0.5 SD. b, Principal component 

analysis of all included samples with AAT, c, KRT1 expression levels, or d,  
shape size color coded (n = 209). e, Annotation of the proteome cluster in 
Fig. 4d onto the image space UMAP. Dropped samples are in grey (n = 12,500).  
f, Representation of individual samples color coded by proteome cluster in a 
proteomic UMAP, or g, tSNE space (n = 209).
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Extended Data Fig. 9 | The proteome of cells with various aggregate 
morphologies. a-d, Protein expression across phenotypic UMAP space.  
Each panel represents one tissue section (n = 4). Notable clusters indicated  

by arrows and numbers, with representative images shown below. e, Gene Set 
Enrichment Analysis (GO: Biological Process noRedundant) comparing 
globular versus amorphous aggregate types.
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4.5 scPortrait integrates single-cell images into

multimodal modeling

Light microscopy is uniquely capable of assessing the spatial composition of cells down

to a sub cellular resolution at high throughput. Furthermore, modern microscopes have

the capacity to generate datasets of hundreds of millions of images describing various

aspects of cellular composition and architecture in short time frames.

Machine learning powered by deep neural networks or deep learning, is a method

that has recently emerged from computer vision research to evaluate these types of

datasets. In deep learning, the many layers of the neural network are able to identify

complex patterns in the input data and compress the contained information into a

much smaller dimensional space. But for these types of models to be able to learn

accurate representations, they need large amounts of training data. While modern

microscopes have the capacity to generate datasets of hundreds of millions of images,

to efficiently utilise this data for deep learning requires that it is properly organised.

For microscopy data, especially when integrating data from different sources, this task

is very challenging. It requires the effective segmentation of individual cell outlines

followed by the generation of single-cell images that can be provided to the model.

Furthermore, this data needs to be stored in a format that can both handle terabyte-

scale datasets, as well as quickly providing individual data instances on the fly, to

allow for the efficient training of deep learning models.

Here, we built a computational pipeline which we have called scPortrait, which solves

this task. scPortrait is built in python and is completely open source. Using out-

of-core computation, it can efficiently handle very large image datasets that exceed

available memory. By embracing open data formats and integrating into the scverse

environment it is fully compatible with existing datasets and packages facilitating

integrative workflows. Our package is widely applicable and is already being used

across a variety of projects at multiple institutes.

We showcase scPortrait ’s ability to not only generate single-cell image datasets, but to

utilise these for cross-modality modelling by annotating fluorescently imaged tonsillitis

samples with gene expression profiles generated in silico through flow matching. Addi-

tionally, we embed single-cell images into transcriptomic reference atlases and leverage

morphological features to identify a specific subset of tumor-associated macrophages.

162



4.5 scPortrait integrates single-cell images into multimodal modeling

We anticipate that scPortrait will play a key role in future initiatives aimed at mod-

elling cell behaviour using images and across multiple data modalities.

The following research article was originally published here:

Mädler, S. C. et al. (2025). “scPortrait integrates single-cell images into multimodal

modeling”. In: bioRxiv. doi: 10.1101/2025.09.22.677590
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Abstract 

Machine learning increasingly uncovers rules of biology directly from data, enabled by large, 
standardized datasets. Microscopy images provide rich information on cellular architecture and are 
accessible at scale across biological systems, making them an ideal foundation for modeling cell 
behavior. However, a standardized image format does not exist at the single-cell level. Here we present 
scPortrait, an scverse software package for generation, storage, and application of single-cell image 
datasets. scPortrait reads, stitches and segments raw fields of view with out-of-core computation scaling 
to larger-than-memory datasets. Parallelization enables rapid extraction of individual cells into a 
standardized single-cell image format with fast access to accelerate machine learning. scPortrait 
enables analysis across modalities including images, proteomics and transcriptomics, identifying 
cancer-associated macrophage subpopulations by morphology and embedding single-cell images into 
transcriptome atlases. scPortrait turns microscopy images into a reusable resource for integrative cell 
modeling, establishing single-cell images as a core modality in systems biology. 

Introduction 

The advent of machine learning has transformed multiple 
research fields including natural language processing1, 
computer vision2-4 and climate science5. Computational 
models can now detect patterns in complex datasets 
without external guidance. Given that biological datasets 
often contain entangled information on multiple under-
lying processes, and are therefore not straightforward to 
interpret, applying machine learning to biology research 
promises to uncover new mechanisms and generate new 
hypotheses6,7. 

A limitation of current machine learning approaches is 
their requirement for large datasets during training2. This 
has hampered their adoption in biology, where data 
acquisition is often costly and siloed. Fortunately, one of 
the most readily acquired modalities is imaging, a domain 
in which machine learning has recently shown tremendous 
success. Images can be acquired comparatively easily 
across biological scales, from whole ecosystems to 
subcellular structures, and they capture information on 
the spatial and temporal arrangement of a system’s 
components in exquisite detail8. In cell biology, com-
prehensive image collections now describe cellular 
architecture9, tissue structure10,11 and perturbation re-

sponses12. In addition to increases in scale, recent 
advances have enabled the joint acquisition of images and 
other modalities such as genetic information13,14, protein 
abundances and transcriptomics15. Techniques like deep 
visual proteomics16 and spatial transcriptomics17 even 
enable paired collection of images and other modalities 
directly from tissue samples. The combination of spatially 
resolved imaging with the complementary and orthogonal 
molecular information from other modalities makes the 
resulting datasets a rich substrate for machine learning 
models18. 

Recent approaches to building comprehensive models of 
cellular activity, also called foundation models or virtual 
cells, critically depend on learning from multiple 
modalities6,18,19. Realizing the potential of the spatial 
resolution provided by images requires machine learning-
compatible data structures that can support integration 
and large-scale modeling20. Storing data at the level of 
individual cells, the smallest functional units of life, is the 
de-facto standard in other modalities such as transcrip-
tomics. However, existing image analysis software such as 
SPACEc21, MCMICRO22, spatiomic23, QuPath24, and 
CellProfiler25,26 does not generate single-cell image 
datasets but instead runs analyses to generate and save 
collections of features. OME-NGFF, a recently proposed 
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storage format for biological images, currently does not 
provide a specification for saving single-cell images27. In 
addition, it saves images as collections of individual files in 
the zarr format, slowing down random access required 
when training machine learning models. 

To address these limitations we present scPortrait, a 
software package and file format to process and store 
single-cell images (https://github.com/MannLabs/
scPortrait). Through efficient parallelization and out-of-
core computation, scPortrait accelerates the generation of 
standardized image datasets for machine learning from 
raw microscopy images on high-performance compute 
clusters. The resulting .h5sc files enable fast random 
access, reproducibility and integration with the scverse 
ecosystem, establishing images as a first-class modality for 
machine learning. We demonstrate the power of scPortrait 
for cross-modality modeling by annotating fluorescently 
imaged tonsillitis samples with gene expression data 
generated in silico using flow matching28-30 and by em-
bedding single cells into transcriptome atlases based on 
their images. We also use morphological information to 
identify a tumor-associated macrophage subset. We expect 
scPortrait to become an integral part of future efforts to 
model cell behavior across modalities. 

Results 

scPortrait generates single-cell image datasets 
at scale 

scPortrait (https://github.com/MannLabs/scPortrait) is a 
software package and file format that transforms raw 
microscopy into standardized, analysis-ready single-cell 
images (Fig. 1). It ingests data from common sources, such 
as TIFF and zarr files, stitches individual fields-of-view31, 
applies segmentation with built-in or external algorithms32 
and extracts individual cells into single-cell image datasets 
(Methods, Fig. S1a). These functions can be run in batches 
or included in workflow managing systems such as 
snakemake33 or nextflow34, using out-of-core computation 
to deal with larger-than-memory input images. Its open 
design allows individual processing steps in scPortrait to 
be run with integrated algorithms or to be offloaded to 
external pipelines. All intermediate results are saved as 
SpatialData35 objects that can be inspected interactively36. 
CPU- and GPU parallelization speeds up processing. Using 
64 threads, scPortrait extracts more than 700 cells per 
second (Fig. S1b, c). Extracted images are saved in our 
newly defined .h5sc file. The .h5sc format stores single-cell 
images based on the HDF5 containers of AnnData37 and 
the scverse ecosystem38, ensuring compatibility with 
existing and future tools35,39-45. By enabling fast reading 
and writing, the .h5sc format accelerates modern machine 
learning applications (Fig. S1d). 

As we demonstrate below, scPortrait powers analyses built 
on generative modeling and morphology assessment and 
maps inferred cellular attributes back into the spatial 
domain, for example into tissue contexts. By making 
single-cell image storage findable, accessible, inter-

operable, and reusable (FAIR)46, scPortrait provides the 
foundation for cross-dataset and cross-modality cellular 
representation learning, powering analyses from gene-
rative modeling to morphology-based tissue mapping47. 

To demonstrate that scPortrait supports diverse single-cell 
image embedding strategies, we generated a Golgi 
morphology benchmark using reporter HeLa cells 
expressing a fluorescent trans-Golgi marker. We then 
stimulated these Golgi reporter cells with compounds 
known to affect Golgi organization and imaged their Golgi 
morphology (Fig. S2a). Following processing with 
scPortrait, we featurized the resulting single-cell images in 
three ways: with ConvNeXt48, a convolutional neural 
network (CNN) model pre-trained on natural images, with 
SubCell49, a transformer-based model pre-trained on 
cellular images of the Human Protein Atlas9 and with 
CellProfiler25,26, a software that extracts pre-defined 
cellular features (Fig. S2b, c). Despite their different 
architectures, all embedding strategies clustered cells 
according to treatment, while separating them from 
untreated controls (Fig. S2c). In line with previous efforts 
to extract phenotypic information from image em-
bedders50, this shows that all perturbations induce 
reproducible and separable Golgi morphologies (Fig. S2a, 
c). We release this Golgi morphology dataset with 
scPortrait as a ready-to-use benchmark for comparing 
image-embedding methods. 

Tissue modeling across modalities with 
scPortrait 

scPortrait has already proven invaluable in the analysis of 
120 million single-cell images from 40 million cells in a 
genome-scale image-based genetic screen for auto-
phagosome formation14 and in classifying the distinct 
intracellular distributions of the protein α1-antitrypsin in 
patient samples of the liver disease α1-antitrypsin de-
ficiency (AATD)51. To highlight how scPortrait enables 
inference across modalities in a disease context, we 
analyzed a 59-plex CODEX imaging dataset of human 
tonsils affected by tonsillitis21, which contained 1.1 million 
images of almost 20,000 cells after segmentation (Fig. 
S3a, b, c). To explore how individual cells contribute to 
tissue architecture beyond what imaging alone can 
provide, we sought to map publicly available dissociated 
CITE-seq data of human tonsils52 onto this CODEX 
dataset. Since these datasets originate from different 
samples, there is no mapping between individual cells 
across modalities and neither dataset can be expected to 
contain all cell types or -states. This makes cross-modality 
alignment a non-trivial challenge, ideally suited to 
scPortrait’s integrative framework. 

To address this challenge, we turned to optimal transport, 
a mathematical framework that determines the most 
efficient way to map one distribution to another. In 
biology, optimal transport has recently been used to 
construct developmental trajectories over time and in 
space42,53. Because CODEX, via antibody staining and 
imaging, and CITE-seq, via sequencing of antibody-
conjugated nucleotides, both measure protein abundances, 
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we reasoned that these data should be well suited to 
generating a probability matrix linking cells across 
modalities under optimal transport constraints. Using this 
mapping, we then predicted gene expression based on 
CODEX features. However, this mapping is discrete, 
potentially suffering from sampling bias, and it does not 
necessarily contain all cell states of interest. To generalize 
beyond observed cell pairs and continuously infer gene 
expression based on CODEX features, we turned to flow 
matching29,30. This framework constructs probability paths 
that transform noise into data based on optimal transport 
maps, making it an ideal fit for our image-to-gene 
expression modeling problem. Flow matching has 
previously been used to predict cell behavior in response 
to diverse stimuli and perturbations54-56. To generate gene 
expression features conditioned on CODEX features, we 
trained our flow matching model by sampling pairs of 
source (CODEX) and target (gene expression) cells 
according to the probabilities in our optimal transport 
map (Fig. S3d). 

To evaluate whether the gene expression profiles inferred 
by flow matching retained biological information, we 
tested for recovery of canonical cell type markers. We 
assigned cell types by k-nearest neighbors prediction to 
generated gene expression profiles in CITE-seq space. 
Indeed, we found enrichment of classic markers such as 
LYZ in monocytes and dendritic cells, CD3 in T cells and 
NKG7 in NK cells (Fig. S3e). As an aggregate measure of 
flow matching accuracy, UMAP representations of the 
measured and flow matching-inferred gene expression 
spaces overlap substantially, despite expected differences 
in cell type proportions between CODEX and CITE-seq 
data (Fig. S3f). These data show that flow matching 
predicts plausible gene expression features conditioned on 
CODEX data. 

We then used our flow matching model to infer the 
expression of TCL1A, a marker gene of germinal center B 
cells (GCBC) that was not measured in the CODEX 
dataset. The inferred profiles revealed clusters of TCL1A-
expressing cells precisely localized to germinal centers 
(Fig. S3g, h). Similarly, when inferring the expression of T 
cell marker CD2, we find strong colocalization with CD3 in 
the tonsil tissue (Fig. S3i, j). Beyond single marker genes, 
optimal transport enables transfer of higher-level 
annotations such as cell types from the CITE-seq reference 
onto the tissue, revealing structures including germinal 
centers (Fig. S3k). These data demonstrate that image-
based cross-modality modeling can recover missing 

molecular features and reconstruct tissue organization, 
even when samples across modalities are not matched. 

Modeling morphology of cells in tissues with 
scPortrait 

Our CODEX data analysis relied on a simple featurization 
that collapsed single-cell images to mean intensities per 
channel, corresponding to protein abundances. To 
investigate the information contained in more complex, 
spatially resolved features, we turned to a joint spatial 
transcriptomics and fluorescence microscopy dataset of 
human ovarian cancer acquired using the 10x Genomics 
Xenium platform57 (Fig. 2a, b). Using the provided 
segmentation masks we extracted 1.6 million single-cell 
images across four channels with scPortrait (Fig. 2c). We 
aimed to embed these cells into a continuous re-
presentation space based on their morphologies alone. 
Rather than biasing this representation towards pre-
defined labels, we adopted a self-supervised learning 
approach to retain as much cell morphology information 
as possible. This paradigm has been shown to generate 
meaningful image representations irrespective of external 
labels by training on auxiliary tasks such as reconstructing 
masked image patches58. 

We fine-tuned a vision transformer-based autoencoder 
(ViT-MAE)59 on the ATP1A/CD45/E-Cadherin, 18S and 
αSMA/Vimentin channels of the ovarian cancer dataset by 
mask reconstruction (Fig. 2d). The representation learned 
by this model’s encoder captured meaningful biology, as 
demonstrated by its ability to separate single-cell images 
by their morphological phenotypes in line with a previous 
report60 (Fig. 2e, S4a). Remarkably, it had also implicitly 
learned to group cells by type despite never being trained 
on cell type labels (Fig. 2e, S4a). To test whether this 
image-based representation contained information absent 
from the transcriptome, we inspected the difference in 
local neighborhood structure for each cell in both image- 
and transcriptome space. If the two modalities contained 
similar information, the same cells should be neighbors of 
one another in each embedding. Average neighborhood 
overlap was less than 5% across cell types, demonstrating 
that our image-based embedding encodes largely non-
redundant information (Fig. S4b, c). Tumor cells generally 
exhibited the highest overlap while T and NK cells showed 
the lowest (Fig. S4c). 

To probe the information captured by our fine-tuned ViT-
MAE model in more detail, we focused on macrophages, a 
heterogeneous and functionally diverse cell type. 
Clustering all macrophages by image features revealed 

4

Figure 1 | The scPortrait software package and file format for single-cell image dataset generation 

scPortrait generates single-cell image datasets from raw imaging inputs. It reads common image formats and stitches raw fields-of-
view with high precision. Segmentation masks can then be created with built-in algorithms, external tools, or loaded directly. All 
intermediates are saved as SpatialData objects for compatibility with external annotations and third-party software. scPortrait then 
produces standardized single-cell datasets by applying segmentation masks for extraction of single-cell images. Out-of-core 
computation handles larger-than-memory datasets and all steps are parallelized to enable rapid processing. The resulting single-cell 
image datasets are stored in an HDF5-based .h5sc file format built on AnnData. This format is directly compatible with downstream 
analysis steps such as representation learning and integrates with existing software tools for single-cell analysis including scanpy and 
the scverse ecosystem.
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several morphologically distinct subclusters (Fig. 2f, g, 
S4d). Their spatial distributions differed strikingly, par-
ticularly in their intra- versus extratumoral localization 
(Fig. 2h, S4e, f). Thus, morphology alone was sufficient to 
distinguish macrophage states associated with distinct 
tissue niches, demonstrating that image-based em-
beddings can resolve biologically meaningful hetero-
geneity. 

To explore the functional characteristics of these 
morphologically distinct macrophages, we turned to their 
spatial transcriptomics profiles. Differential gene ex-
pression analysis revealed cluster-specific signatures (Fig 
2i, S4g): Clusters 4, 11 and 12, predominantly extra-
tumoral, express MRC1, encoding CD206, and STAB1, 
markers of anti-inflammatory macrophage subpopula-
tions61,62. In contrast, clusters 8 and 9 were almost 
exclusively found intratumoral and expressed LUM and 
COL5A1, consistent with a population of cancer-associated 
fibroblasts mislabeled as macrophages63,64. These results 
show that morphology-based clustering by representation 
learning with scPortrait can resolve functionally defined 
cell states from images. 

scPortrait embeds cells into a transcriptome 
atlas based on their images 

Large, labeled single-cell collections are increasingly 
becoming available65-67, but most of these atlases are 
centered around single-cell transcriptomics. After using 
single-cell images to identify an anti-inflammatory 
macrophage subset, we asked whether single-cell images 
could be annotated directly from transcriptome atlases. 
We reasoned that a small amount of overlap in image- and 
transcriptome-based information might be sufficient to 
embed cells into transcriptomic atlases directly from their 
images. 

We first projected all cells of the ovarian cancer data set 
into the SCimilarity atlas65 based on their transcriptome. 
Then, using the ViT-MAE image features we generated as 
inputs, we trained a multilayer perceptron (MLP) as a 
cross-modality model to predict SCimilarity features from 
the ViT-MAE image embeddings (Fig. 3a). For all analyses 
of these data we excluded tumor cells, since SCimilarity is 
not trained to properly embed them65. On a held-out test 
set this cross-modality model achieved an R2 value of 0.65 
(Fig. 3b). Inspecting assigned ovary cell type labels showed 

that a variety of cell types was predicted, and similar cell 
types clustered together. To understand the biases of our 
model we then investigated the prediction error by cell 
type. Error analysis revealed similar performance across 
most cell types, with epithelial cells and T / NK cells 
showing the highest errors, suggesting that variance was 
not dominated by a single lineage (Fig. 3c). 

An advantage of projecting cells of new experiments into 
existing atlases is that atlas labels can be used to infer 
biological information about previously unlabeled 
samples. Given that the ovarian cancer dataset contained 
cell type labelling already, we compared the provided cell 
types with those predicted by transcriptome- or image-
based SCimilarity embeddings. Most cells showed strong 
agreement across all three labels (Fig. 3d, S5a, b) and 
mismatches typically involved related types such as 
smooth muscle cells and myofibroblasts. In line with the 
increased prediction error, ciliated epithelium and 
leukocytes were notable exceptions (Fig. 3c, d). To further 
validate the approach, we mapped predicted cell types 
onto a tissue region not used for training. Both 
transcriptome- and image-derived SCimilarity cell type 
labels annotated the tissue correctly, identifying epithelial 
structures, fibroblasts and smooth muscle cells (Fig. 3e, f, 
g). Together, these results demonstrate that cells can be 
embedded into transcriptome atlases based on images 
alone, recovering meaningful biological information and 
underscoring the role of imaging in multimodal 
integration and modeling. 

Discussion 

Microscopy is one of the most information-rich and 
scalable ways to study cells, yet image data have lagged 
behind other single-cell modalities in standardization and 
integration. While transcriptomics and proteomics already 
rely on widely adopted formats that enable large-scale 
analysis, image-based datasets remain fragmented, often 
tied to specific pipelines or instruments. scPortrait 
addresses this gap by introducing .h5sc, a standardized 
and accessible format for single-cell images, together with 
a scalable software framework for dataset generation and 
sharing. 

Open formats are crucial for modern life science 
research47. By building .h5sc on HDF5 and the AnnData 

6

Figure 2 | scPortrait identifies macrophage subpopulations in ovarian cancer 

a, H&E overview image of tissue region contained in 10x Genomics Xenium dataset of human ovarian cancer. Scalebar represents 
1 mm. b, Magnified region of a, black outlines show cell cytosol borders. Different panels show modalities contained in the dataset. 
Dots in center panel correspond to probes binding individual transcripts. Scalebars represent 50 µm. c, Single-cell images extracted 
with scPortrait. ATP1A + CD45 + E-Cadherin and αSMA + Vimentin were stained together in single imaging channels. We extracted a 
total of 1,627,204 single-cell images across four channels. The images were min-max scaled for visualization. d, Overview of single-cell 
image embedding strategy. We trained a transformer-based encoder-decoder model on the ATP1A + CD45 + E-Cadherin, 18S and 
αSMA + Vimentin channels via mask reconstruction (ViT-MAE) independently of biological labels. We used the internal 
representation learned by this model as an image-based featurization of cells in the dataset. e, t-SNE visualization of ViT-MAE 
embeddings of single-cell images colored by dataset cell type annotation. Each dot represents one cell. Images from indicated regions 
were not rescaled. f, e filtered for macrophages. Colors indicate selected Leiden clusters. g, Single-cell images of macrophages from 
clusters in f. h, Distribution of macrophage clusters from f across the tissue region. i, Genes differentially expressed in macrophage 
clusters from f.
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specification37, scPortrait ensures compatibility with the 
scverse ecosystem and downstream tools such as squidpy44 
or bento40. This design promotes interoperability, 
reproducibility, and reuse, aligning single-cell imaging 
with the FAIR principles46. In addition, .h5sc delivers fast 
random access to individual cells — essential for training 
large machine learning models — and avoids repeated, 
compute-intensive preprocessing. Thereby, scPortrait 
elevates single-cell imaging to the same level of access-
ibility and reuse that transcriptomics has already achieved, 
filling a critical community need. 

A key advantage of images is the short turnaround time of 
their acquisition, enabling iterative evaluations with 
machine learning models in a loop. Paradigms such as 
active learning68, where new observations are specifically 
sampled to address a model’s current uncertainties, 
benefit from faster iteration times with scPortrait. Such 
approaches can be used in real time to regulate image 
acquisition parameters, enabling microscopes to dyna-
mically respond to sample characteristics69. Across ex-
periments, reinforcement learning can guide experimental 
design: A model would use the results from a given round 
of imaging experiments combined with the knowledge 
from already available representations learned by existing 
models70 to recommend a new set of experiments for the 
next round, iteratively exploring the underlying biology. 
Reinforcement learning benefits directly from consistent 
representation of data at a defined level, achieved through 
the standardized .h5sc single-cell image datasets created 
by scPortrait. 

In this study, we showed how scPortrait enables analyses 
that go beyond current imaging workflows. Using self-
supervised representations of ovarian cancer tissue, we 
identified macrophage subpopulations with distinct spatial 
distributions and transcriptomic signatures, illustrating 
how morphology can resolve biologically meaningful cell 
states. In tonsil tissue, cross-modality mapping and flow 
matching allowed us to infer gene expression directly from 
CODEX images, recovering missing markers such as 
TCL1A and revealing tissue organization without matched 
samples. Finally, embedding cells into the SCimilarity 
transcriptome atlas demonstrated that morphology-
derived features can generalize across datasets, opening 
the door to image-driven atlas annotation. 

Beyond its immediate applications, image-based modeling 
raises unique challenges that will shape the next stage of 
single-cell analysis. Imaging experiments vary widely in 

hardware, staining protocols and preprocessing, leading to 
strong batch effects that hinder integration across 
datasets71. Similar challenges have been addressed in 
transcriptomics and proteomics71,72, and a standardized 
format such as .h5sc can catalyze comparable solutions for 
imaging by making large, diverse datasets broadly 
accessible. 

Another limitation is interpretability: image embeddings 
often lack clear biological meaning compared with 
transcript or protein abundances. Here, integration across 
modalities provides a powerful remedy. In our ovarian 
cancer analysis, scPortrait-derived morphology separated 
macrophage subsets whose molecular identities were 
clarified by transcriptomic profiles. Such cross-modality 
approaches not only validate image-based findings but 
also enable the discovery of new cell states that might 
otherwise remain hidden. 

In conclusion, scPortrait provides the infrastructure 
needed to place imaging alongside transcriptomics and 
proteomics as a core modality for single-cell biology. By 
enabling large-scale sharing and integration, it supports 
the development of multimodal foundation models that 
learn from images as well as molecular profiles. Such 
models hold the promise of capturing complementary 
aspects of cell identity and behavior, ultimately enabling a 
more complete and predictive understanding of human 
biology. 

Methods 

The scPortrait software package 

The Python-based scPortrait software package is available 
on GitHub (https://github.com/MannLabs/scPortrait) 
w i t h d o c u m e n t a t i o n a n d t u t o r i a l s ( h t t p s : / /
mannlabs.github.io/scPortrait/). scPortrait reads raw 
microscopy data and then follows a processing pipeline 
that generates standardized single-cell image datasets via 
t h r e e m a i n s t e p s a s o u t l i n e d h e r e ( h t t p s : / /
mannlabs.github.io/scPortrait/pages/workflow.html): 

• Stitching
• Segmentation
• Extraction

8

Figure 3 | scPortrait enables cross-modality embedding of single-cell images into a transcriptome atlas 

a, Overview of our strategy to embed single cells into a transcriptome atlas by their images. First, we embed all cells from the ovarian 
cancer dataset into the single-cell transcriptome atlas SCimilarity by their transcriptome. We then train a multilayer perceptron 
(MLP) model to predict a cell’s SCimilarity embedding from its ViT-MAE image embedding. This model embeds cells into SCimilarity 
even if only low-quality transcriptome information is available, based solely on their images. b, t-SNE of test set cells embedded into 
SCimilarity atlas, colored by SCimilarity cell type label. c, Left: Mean squared error (MSE) of SCimilarity embedding prediction from 
single-cell images by cell type. Only test set data are shown. Right: Corresponding single-cell images. d, Comparison of cell type labels 
in the ovarian cancer dataset (left) to transcriptome-derived SCimilarity embeddings (center) and image-derived SCimilarity 
embeddings (right). Only test set data are shown. e, f, g, Spatial distribution of cell type labels from the ovarian cancer dataset (e), 
transcriptome-derived SCimilarity embeddings (f) and image-derived SCimilarity embeddings (g). The depicted tissue region was 
excluded from the training set. Scalebars represent 50 µm.
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Two additional steps can follow: 

• Featurization 
• Selection of cells for downstream computational or 

biological analysis 

All processing steps are carried out on an scPortrait 
project that defines a data structure on disk for saving 
intermediate and final results. One config file per project 
specifies options for each of the above steps. A variety of 
workflows are available for each step and can be used 
directly or adapted to suit specific dataset characteristics. 

Processing of human tonsil CODEX data 

Raw TIFF images were percentile-normalized to the 0.1 % 
- 99.9 % range per channel and then separated by disease 
status into healthy and tonsillitis tissue cores. These 
images were then segmented with scPortrait using the 
CellPose32 nucleus model followed by mask expansion to 
generate cell borders. Single-cell images were then 
extracted into 36 × 36 px images. To preserve relative 
signal strengths across cells for each channel we did not 
rescale single-cell image intensities. Single cells were then 
featurized using the scPortrait CellFeaturizer, and mean 
intensity per channel was used for downstream analyses. 

Mapping CODEX features to single-cell RNA-
seq with generative Optimal Transport 

Problem statement 

Given a dataset of  CODEX cell images represented by  
protein marker features measured by scPortrait, our goal 
is to derive an approximation of the gene expression 
profiles of the imaged cells, leveraging a multi-modal 
single-cell reference dataset containing gene expression 
counts and protein markers. 

Formally, let  be the matrix of  imaged cells 
across  marker-specific features. Moreover, denote 

 and  the cell × protein and 
cell × gene matrices in a reference single-cell CITE-seq 
atlas from the same tissue as the CODEX samples. Note 
that has the same number of features as , as we subset 
the two feature spaces to reflect the same measured 
protein markers. Our goal is to derive a predicted gene 
expression matrix  for each cell imaged by 
CODEX. 

Our approach consists of two steps:  

1. Match CODEX samples to their putative single-cell 
counterpart based on the similarity between image-
based and CITE-seq-derived protein marker abun-
dances. We pair the two modalities with Optimal 
Transport (OT). 

2. Learn a mapping that transports CODEX features to 
the single-cell gene expression measured in the atlas.  

To account for the noise in the single-cell dataset, we train 
a generative model based on flow matching29,30 that 

generates novel gene expression profiles using the image-
based marker features as input. 

Learning OT with flow matching 

Flow matching learns a parameterized, time-resolved 
vector field that maps samples from a prior 
distribution  (by convention, at ) to a target 
data distribution  at , thereby acting as a generative 
model by turning noise into data samples via the following 
equation: 

, with  and

.         (1) 

The integral function  mapping noise to data is called 
flow. 

Klein et al.28 showed that one can train flow matching to 
approximate a generative OT map from a source 
distribution  to the target data distribution  described 
above by conditioning the generative process with samples 

from the source: 

, with 

 and .         (2) 

In other words, flow matching learns to transport a sample 
 from the source to the target stochastically according to 

an OT criterion, based on a pre-defined cost function. 

Model training 

In our setting, where the aim is to map cells from single-
cell images in CODEX to single-cell CITE-seq, we indicate 
the image-based feature distribution as  and the single-
cell CITE-seq distribution as . We parameterize the 
velocity function  using a neural network trained 
with stochastic gradient descent over minibatches. One 
training iteration consists of the following steps: 

1. Draw a random batch of  samples  
from the CODEX dataset. 

2. Draw a random batch of  single cells from the multi-
modal reference atlas in both their protein and gene 
expression views as a target. We denote the target 
batch with .  

3. Compute an OT coupling matrix  between all 
observations in  and  minimizing the following 
Euclidean cost:  . The 
coupling approximates a joint distribution between 
source and target sample indices, where CODEX cells 
are mapped with a higher probability to atlas cells 
with similar marker abundance. 

N D
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4. Resample couples of source and target indices from
the joint distribution , yielding the resampled
batches  and . The 
sample in  is transported to the  sample in 
with high probability .

5. Perform a flow matching iteration30, training the
vector field to transport a noise sample 
to the gene expression vector  conditioned on its
matched CODEX feature vector .

Inference 

During inference, we transport a CODEX sample  to its 
gene expression counterpart by sampling a noise point 

 and computing . 

Data preprocessing 

We subset the CODEX features extracted by scPortrait to 
the mean intensity of the marker channels and standardize 
individual features to mitigate skewness towards zero. To 
ensure correspondence between image and single-cell 
protein abundance data, we subset the CODEX features 
extracted by scPortrait and the single-cell protein 
abundance measurements to their 31 shared markers. 

Since flow matching is a model working in continuous 
space, we use batch-corrected and 50-dimensional 
expression features extracted by the HARMONY algo-
rithm73 as a target representation for generation. To 
predict gene expression from translated CODEX features, 
we pre-train a decoder function that maps HARMONY 
embeddings to gene expression. 

Model architecture and training details 

1. The flow matching velocity model is an MLP 
with 3 layers of 1024 hidden dimensions each and an 
ELU activation function. We train it with the AdamW 
optimizer with a learning rate of 1e-4, a batch size of 
256 and across 2000 epochs. The velocity function 

 inputs a concatenation of the current state with
a generation time embedding. To embed the gene-
ration time, we use a sinusoidal encoding1 with 128 
dimensions. 

2. The decoder function, which maps HARMONY
features to normalized gene expression, is an MLP
with two layers of 64 hidden dimensions. We train the
model for 200 epochs with a batch size of 256 and a
learning rate of 1e-3. We choose a mean-squared error
(MSE) loss function to reconstruct gene expression.

Processing of human ovarian cancer dataset 

We downloaded the Xenium ovarian cancer dataset from 
1 0 x G e n o m i c s u s i n g t h i s l i n k : h t t p s : / /
www.10xgenomics.com/datasets/xenium-prime-ffpe-
human-ovarian-cancer. After reading the dataset into 
SpatialData35, we generated single-cell images with 
scPortrait by extracting into 224  ×  224 px images using 
the segmentation masks provided with the dataset. To 

preserve relative signal strengths across cells for each 
channel we did not rescale image single-cell intensities. 

Golgi morphology experiments 

On day 0, 1 million HeLa cells expressing hsTGOLN2-
mCherry were plated per well of a 4-well plate containing a 
UV-sterilized metal frame slide with a polyphenylene 
sulfate (PPS) membrane. Cells were cultured in DMEM 
supplemented with 10 % FCS, 1 mM pyruvate, 100 U/ml 
penicillin and 100  µg/mL streptomycin at 37  °C and 
5  %  CO2. On day 2, cells were treated with 10  µM 
Golgicide A, 10 µM Nigericin or 20 µM Monensin for 2 hrs 
or with 5 mg/mL Nocodazole for 30 minutes. Cells were 
then stained with 10 µg/mL WGA-Alexa-647 in PBS for 10 
minutes at 37 °C before being washed 3× in PBS and then 
fixed in 4 % paraformaldehyde (PFA) diluted in PBS for 10 
minutes at room temperature. After fixation, cells were 
washed 3× in PBS again before being stained with 
10  µg/mL Hoechst 33342 for 15 minutes at room 
temperature. Afterwards, cells were washed 3× in PBS 
again and imaged on a Nikon Eclipse Ti2 spinning disc 
confocal microscope. 

Training ViT-MAE 

We fine-tuned a vision transformer-based masked 
autoencoder (ViT-MAE59) on the ovarian cancer dataset to 
learn a representation of cell morphology in an 
unsupervised manner, starting from a model pre-trained 
on natural images (https://huggingface.co/facebook/vit-
mae-base)74. The raw images contained 4 stains: DAPI, 
ATP1A/CD45/E-Cadherin, 18S and αSMA/Vimentin. To 
match the input dimensions of the pretrained model we 
subsetted to three channels, discarding DAPI to focus on 
the functional structures of cells. The dataset contains 
406,875 images of single cells, which were split into 90 %, 
5  % and 5  % for training, validation and test sets 
respectively, including a spatially defined region in the test 
set. Prior to training, the images were cropped around the 
center at a fixed size of 128 × 128 and resized to 224 × 224 
to match the expected ViT-MAE input size. The resulting 
single-cell image dimension was 3 × 224 × 224. No other 
augmentations were applied. The model was trained for 
119 epochs using the scPortrait PyTorch dataloader with a 
batch size of 12875. After splitting the input image into 
16  ×  16 px patches, the encoder of the model passes the 
input through 12 transformer layer blocks, each of which 
uses multihead self-attention with 768 embedding 
dimensions per head and 12 attention heads. The patch 
size is 16 × 16. GELU is used as an activation function with 
a layernorm of eps=1e-12. The decoder of the network is 
lighter than the encoder but contains the same structure 
with 8 attention blocks of 512 embedding dimensions and 
16 attention heads. The intermediate sizes of the 
feedforward layers are 3072 and 2048 for the encoder and 
the decoder. We use a masking ratio of 75 % of patches, 
which is set to 0 during inference after training. In total, 
the model has 111 million trainable parameters. We 
construct the latent space by average pooling across all 
tokens. After scaling to zero mean and unit variance we 

θ~Yb
~Xb =  {(~x Gi , ~x P

i)}B
i=1 ith

~Yb ith ~Xb
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used the Leiden algorithm with a resolution of 0.25 for 
clustering the latent space on 15 neighbors. 

Embedding cells into SCimilarity atlas 

To embed cells from the ovarian cancer dataset into 
SCimilarity, transcriptomics data were preprocessed as 
described in the SCimilarity documentation: Each cell was 
normalized to 10,000 counts, and the expression matrix 
was aligned with the SCimilarity atlas. Of note, we did not 
log1p transform our data, since the distribution of probe-
based spatial transcriptomics counts is different from 
stochastically sampled dissociated transcriptomics assays. 
We then calculated SCimilarity features for all cells in the 
dataset. The SCimilarity checkpoint used was downloaded 
from https://zenodo.org/records/10685499.  

To embed cells into SCimilarity based on their images, we 
trained a multilayer perceptron (MLP) to predict 
transcriptome-derived SCimilarity features from per-
vector min-max scaled ViT-MAE embeddings. The MLP 
consisted of five linear layers gradually decreasing in size 
from the 768 dimensions of the ViT-MAE features to the 
128 dimensions of the SCimilarity features. ReLU was 
used as an activation function. The model was trained to 
minimize the mean squared error (MSE) of predicted to 
transcriptome-derived SCimilarity features with a learning 
rate of 1e-5. Model training was done in PyTorch 
Lightning75,76, with minimal validation loss as a selection 
criterion for the final set of model parameters used during 
inference. The same test set was held out from both ViT-
MAE training and cross-modality MLP training, including 
a spatially defined region. 

When predicting cell types for the ovarian cancer dataset 
we limited the list of possible cell types to those typically 
found in the ovary. All tumor cells were excluded from 
SCimilarity cell type predictions, because tumor cells were 
not part of the training data. 

Differential marker expression testing 

Subgroups for testing of marker enrichment were assigned 
by Leiden clustering in scanpy or via external labels such 
as cell types. Differentially enriched markers or expressed 
genes were determined using scanpy’s rank_genes_groups 
f u n c t i o n . T h e r e s u l t s w e r e v i s u a l i z e d u s i n g 
rank_genes_groups_dotplot. 

Data Availability 

All data generated as part of this work are available at 
https://zenodo.org/records/17162225 or can be 
regenerated from publicly available sources using the code 
in the repository at the following URL: https://
github.com/MannLabs/scPortrait_manuscript.  

Code Availability 

The scPortrait software package is available at https://
github.com/MannLabs/scPortrait. All figures in this 

manuscript can be recreated using the code in the 
repository at the following URL: https://github.com/
MannLabs/scPortrait_manuscript.  
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Figure S2 | scPortrait recognizes trans-Golgi network morphologies in combination with different single-cell image 
embedding strategies 

a, Single-cell images of HeLa cells expressing hsTGOLN2-mCherry stimulated with the indicated compounds. b, Embedding strategies 
for images from a. c, Three different single-cell image embedders were used to generate representations of images shown in a: 
ConvNeXt, a CNN trained as a classifier on natural images, CellProfiler, a list of predefined single-cell image features and SubCell, a 
transformer model trained on human protein atlas images. The representations learned by these models are visualized via three 
different techniques: t-SNE, UMAP and PCA. Colors indicate chemical perturbations from a.
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Figure S3 | Optimal Transport matches CODEX imaging of human tonsil with transcriptome data 

a, Overview of human tonsil tissue core from a tonsillitis patient stained with 58 antibodies and DAPI using the CODEX assay. Right 
panels depict magnification of regions indicated on the left. Colors depict selected stains. White outlines indicate cytosol borders 
determined by nuclear expansion segmentation based on CellPose. Scalebars represent 75  µm. b, Individual imaging channels of 
magnified region from a. Scalebars represent 75 µm. c, Example single-cell images following scPortrait extraction showing all 59 
channels per cell. “Synaptoph.” = Synaptophysin. d, Overview of our strategy to match image-based CODEX data of human tonsil with 
unpaired single-cell transcriptomics data of human tonsil using optimal transport to train a flow matching model. We process the 
respective data modalities with scPortrait (images) and scanpy (transcriptomics), collapsing images to median channel intensity per 
cell. We then calculate a probabilistic mapping between modalities using Monge optimal transport. Sampling batches according to this 
optimal transport coupling between modalities, we then train a flow matching model to generate a cell’s gene expressions conditioned 
on its CODEX profile. e, Flow matching-inferred expression of selected marker genes across CITE-seq derived cell types. Cell types 
were assigned to inferred expression profiles by k-nearest neighbor majority. f, UMAP representation of gene expression measured by 
CITE-seq or inferred by flow matching per cell. Outlines correspond to joint UMAP. g, Germinal center marker CD21 expression 
measured by CODEX in the tonsillitis sample. Black outlines show germinal centers defined by the expression of this marker. h, 
TCL1A expression inferred by flow matching in the tonsillitis sample. Black outlines show germinal centers defined by the expression 
of CD21. i, T cell marker CD3 expression measured by CODEX in the tonsillitis sample. Black outlines show T cell zone borders 
defined by the expression of this marker. j, CD2 expression inferred by flow matching in the tonsillitis sample. Black outlines show T 
cell zone borders defined by the expression of CD3. k, Cell type annotation from dissociated transcriptomics data mapped onto 
tonsillitis tissue via optimal transport. 

p-values correspond to spatially differential gene expression in- and outside of the highlighted zones and were calculated by a two-
sided Mann-Whitney U test with Bonferroni correction.
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Figure S4
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Figure S4 | Cross-modality modeling of spatial transcriptomics and imaging data with scPortrait 

a, t-SNE visualization of ViT-MAE embeddings of single-cell images colored by 10x Xenium cell type annotation. Each dot represents 
one cell. Only test set data are shown. b, t-SNE visualization of single-cell transcriptome (top) and ViT-MAE embeddings of single-cell 
images (bottom) colored by transcriptome-based Leiden clusters. Each dot represents one cell. Only test set data are shown. c, Boxplot 
depicting local neighborhood overlap between transcriptome space and image-based embeddings (b). X-axis shows percent of 
neighbors of a given cell that are identical between transcriptome space and image-based embeddings. Y-axis shows 10x cell types. d, a 
filtered for macrophages. Colors indicate Leiden clusters. Only test set data are shown. e, Distribution of macrophage clusters from d 
across the tissue region. Only test set data are shown. f, Tissue region annotation of ovarian cancer dataset. g, Genes differentially 
expressed in macrophage clusters from d. Only test set data are shown.
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Figure S5 | Embedding of single-cell images into a transcriptome atlas with scPortrait 

a, Heatmap showing which cell types cells get assigned after embedding into SCimilarity space based on their transcriptome as a 
percentage of 10x Xenium cell types. b, Heatmap showing which cell types cells get assigned after embedding into SCimilarity space 
based on their images as a percentage of transcriptome-based SCimilarity cell types.
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5 Discussion

Understanding the spatial organisation of tissues and cells provides valuable insights

into how life is structured. A key goal is to directly link cellular phenotypes to their

underlying genetic and molecular determinants.

Through the development of SPARCS, I established a new platform that allows for

the direct investigation of genetic determinants of image-based phenotypes in forward

genetic screens (Publication 4.3). This technology scales to whole-genome applications

and even allows for the reanalysis of archived screens for additional phenotypes when

new computational models become available. As such, it presents a powerful tool for

relating cellular phenotypes to their underlying biology. Since SPARCS was designed

in an open and accessible manner, and works with standard light microscopy setups,

I hope that it will be adopted by scientists working in different biological fields.

To facilitate the characterisation of such image-based phenotypes, I not only devel-

oped a computational framework, scPortrait, that provides end-to-end processing of

raw microscopy images into single-cell image datasets, but also established a stan-

dardised format for the storage of such information (Publication 4.5). This framework

interfaces with state-of-the-art deep learning frameworks which permits the easy in-

tegration of image-based methods to asses cellular composition into machine learning

approaches.

In particular, the combination of image-based phenotyping with proteomic character-

isation in scDVP (Publication 4.2), allows for the fine-grained molecular characterisa-

tion of the composition of individual cells while preserving their spatial information.

This technology generates data which lays the groundwork for future models that are

able to directly predict molecular composition on the basis of cellular imaging. When

combined with scPortrait, this opens up many new approaches for the unbiased detec-

tion of cellular phenotypes. As demonstrated for AATD (Publication 4.4), this type

of analysis paradigm is promising to dissect complex cellular processes in situ across

a variety of different proteotoxic diseases.
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5 Discussion

Throughout this thesis, I established that deep-learning-based characterisation of cel-

lular phenotypes based on microscopy images is a powerful approach to understanding

the underlying characteristics of cellular morphology. In a supervised approach, I was

able to develop and train a CNN classifier that, using intracellular LC3 distribution,

was able to identify autophagy-defective cells with a high degree of confidence. This

was crucial for the identification of almost all known autophagy regulators in a single

experiment and also facilitated the identification of a novel previously undescribed

phenotype (Publication 4.3). Even more promising are unbiased approaches where no

a priori knowledge of the types of observable phenotypes is required, as demonstrated

by the identification of a terminal hepatocyte state marked by globular protein aggre-

gates, which holds the potential to understand and ultimately counteract molecular

mechanisms underlying AATD disease progression (Publication 4.4).

The tools I have developed here, have the potential to advance biological discovery,

contributing to a wide range of fields from tissue-based disease mechanisms to the

detailed understanding of the role of individual genes in the spatial composition of

cells. I have placed a strong focus on making my platforms and software tools easily

accessible and open-source. I believe that this is a central cornerstone of modern

science and hope that through the development of tools like SPARCS, scDVP and

scPortrait, I can contribute to the generation of better computational models that are

fully able to decode cellular function.
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AAT Alpha-1 Antitrypsin

AATD Alpha-1 Antitrypsin Deficiency

Cas CRISPR associated

CCD Charge Coupled Device

CNN Convolutional Neural Network

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

crRNA CRISPR RNA

DC Direct Current

DDA Data-Dependent Acquisition

DIA Data Independent Acquisition

DNA Deoxyribonucleic Acid

DSB Double-Strand Break

DVP Deep Visual Proteomics

ddNTP Dideoxynucleotide Triphosphate

dNTP Deoxynucleotide Triphosphate

ESI Electrospray Ionisation

GFP Green Fluorescent Protein

GPU Graphics Processing Unit

HDR Homology-Directed Repair
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ILSVRC ImageNet Large Scale Visual Recognition Challenge

LC Liquid Chromatography

LC-MS Liquid Chromatography-Mass Spectrometry

lncRNA Long Non-Coding RNA

MLP Multilayer Perceptron

mRNA Messenger RNA

MS Mass Spectrometry

MS/MS Tandem Mass Spectrometry (also known as MS2)

NHEJ Non-Homologous End Joining

NGS Next-Generation Sequencing

NLP Natural Language Processing

PALM Photo-Activated Localisation Microscopy

PAM Protospacer Adjacent Motif

PCR Polymerase Chain Reaction

PPS Polyphenylene Sulfide

PTM Post-Translational Modification

ReLU Rectified Linear Unit

RF radio frequency

RNA Ribonucleic Acid

rRNA Ribosomal RNA

SPARCS Spatially Resolved CRISPR Screening

scDVP Single-Cell Deep Visual Proteomics

sgRNA single-guide RNA

STED Stimulated Emission Depletion

TALE Transcription Activator-Like Effector
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TALEN Transcription Activator-Like Effector Nuclease

TOF Time-of-Flight

ViT Vision Transformer

ZF Zinc Finger

ZFN Zinc Finger Nuclease
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