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Zusammenfassung

Ionisierende Strahlung wird seit Ende des 19. Jahrhunderts zur Behandlung von Krebs ein-
gesetzt. Die moderne Strahlentherapie ermöglicht es, den Strahl mit Millimeterpräzision so
zu formen, dass die höchstmögliche Dosis auf den Tumor gerichtet wird, während die Dosis
auf das umliegende gesunde Gewebe so gering wie möglich bleibt. Tumore in bestimmten
anatomischen Bereichen bewegen sich jedoch während der Behandlung. Im Bauchraum
und im Brustkorb beispielsweise können sich Tumore, die durch die Atmung des Patienten
beeinflusst werden, um Zentimeter verschieben, was die Genauigkeit der Strahlentherapie
verringert. Hybride Magnetresonanztomographie (MRI)-Linearbeschleuniger (MRI-Linacs)
ermöglichen es die sich bewegende Anatomie während der Bestrahlung sichtbar zu machen
und somit den Strahl in Echtzeit (Hunderte von Millisekunden) an die Bewegung anzupassen.
In dieser kumulativen Dissertation wurden verschiedene Methoden der künstlichen Intelli-
genz (KI) entwickelt, um Echtzeit-Bewegungsmanagement mit MRI-Linacs zu unterstützen.
Jeder Schritt der Echtzeitanpassung benötigt eine bestimmte Zeit, was zu einer Verzögerung
zwischen der physikalischen Bewegung des Tumors und der tatsächlichen Strahlanpassung
führt, die als Systemlatenz bezeichnet wird. Die ersten drei Projekte zielten darauf ab, die
Latenzzeit der MRI-Linacs durch den Einsatz von KI-basierter Zeitreihenvorhersage zu kom-
pensieren. Im ersten Projekt wurde ein Long-Short-Term Memory-(LSTM-)Netzwerk zur
Vorhersage von Atembewegungen auf der Grundlage von Cine-MRI-Daten, die während
MRI-Linac-Behandlungen aufgenommen wurden, entwickelt. Das LSTM wurde sowohl an-
hand von Populationsdaten als auch auf patientenspezifische Weise optimiert und mit einem
populationsbasierten und einem patientenspezifischen konventionellen linearen Regressions-
modell verglichen. Bei der Auswertung mit Daten aus zwei verschiedenen Einrichtungen in
München und Rom zeigte sich, dass das patientenspezifische LSTM die beste Leistung bei der
Vorhersage der zukünftigen Schwerpunktposition des Tumors in superior-inferior Richtung
erzielte. Im zweiten Projekt dieser Arbeit wurden dieselben Cine-MRI-Daten verwendet, um
die Modelle auf die Vorhersage zukünftiger 2D Tumorkonturen zu erweitern. Das LSTM
aus dem vorherigen Projekt wurde mit einer rigiden Verschiebung der letzten verfügbaren
Tumorkontur kombiniert und mit Faltungs-LSTMs verglichen, die entweder direkt die zu-
künftigen Konturen oder zukünftige Deformationsfelder vorhersagen, die zur Verformung
der letzten verfügbaren Kontur verwendet werden können. Das patientenspezifische LSTM
in Kombination mit der rigiden Verschiebung übertraf die faltungsbasierten LSTMs in beiden
Auswertungsdatensätzen. Im dritten Projekt wurde das patientenspezifische LSTM aus dem
ersten Projekt mit einem Forschungsprototyp MRI-Linac in Sydney integriert und mit einem
Multi-Leaf-Collimator-(MLC-)Tracking Experiment validiert. In einer Phantomstudie wurde
das Modell wiederum mit einem populationsbasierten LSTM, einer patientenspezifischen
linearen Regression und einem Szenario ohne Bewegungsvorhersage verglichen. Die in-silico-
Ergebnisse aus dem vorherigen Projekt bestätigend wurde gezeigt, dass die Genauigkeit, mit
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der die Strahlung das Ziel im Phantom traf, am höchsten war, wenn das patientenspezifische
LSTM verwendet wurde, und dass der Fehler im Vergleich zu dem Szenario, bei dem die
Latenz nicht kompensiert wird, fast halbiert wurde. Im vierten Projekt dieser Arbeit wurde
der Schwerpunkt von der Bewegungsvorhersage auf die Echtzeitlokalisierung des Tumors
auf dem aktuellen Cine-MRI-Bild verschoben. Konkret wurde unter Verwendung von in
München aufgenommenen MRI-Linac-Daten ein Transformer-Netzwerk für schnelle defor-
mierbare Bildregistrierung (DIR) entwickelt und mit einem KI-Autosegmentierungsmodell
und einem langsamen konventionellen B-Spline-DIR-Modell verglichen. Der Transformer
wurde mit verschiedenen unüberwachten, überwachten und patientenspezifischen Strategien
optimiert. Der patientenspezifische Transformer zeigte die beste Leistung und übertraf alle
anderen Modelle und Optimierungsstrategien, ohne dass es zu signifikanten zusätzlichen
Latenzzeiten kam. Zukünftige Studien könnten basierend auf den hier entwickelten Model-
len fortschrittlichere KI-basierte Bewegungsmanagementmodelle in 3D entwickeln, um die
Genauigkeit der echtzeitadaptiven MRI-geführten Strahlentherapie weiterhin zu verbessern,
wie im Ausblick und im Review Paper im Anhang dieser Arbeit beschrieben.



Abstract

Ionizing radiation has been used to treat cancer since the end of the 19th century. Modern
radiotherapy allows to shape the radiation beam with millimeter precision to deliver the
highest possible dose to the tumor while keeping the dose to surrounding healthy tissue as
low as possible. Tumors in certain anatomical locations, however, move during the treatment.
In the abdomen and thorax for instance, tumors affected by the patient’s respiration can move
by centimeters, thus decreasing the accuracy of radiotherapy. Hybrid magnetic resonance
imaging (MRI)-linear accelerators (MRI-linacs) allow to visualize the moving anatomy during
irradiation and therefore to adapt the beam to the observed motion in real-time (hundreds of
milliseconds). In this cumulative dissertation, different artificial intelligence (AI) methods
were developed to support real-time motion management with MRI-linacs. Each step of the
real-time adaptation takes a certain time to complete, which leads to a delay between the
physical motion of the tumor and the actual beam adaptation called the system latency. The
first three projects aimed at compensating for MRI-linac latency by using AI for time series
prediction. In the first project, a long short-term memory (LSTM) network for respiratory
motion prediction based on cine MRI acquired during MRI-linac treatments was developed.
The LSTM was optimized both using population data and in a patient-specific fashion and
compared with a population-based and a patient-specific conventional linear regression
model. The patient-specific LSTM was found to perform best in predicting the future
centroid position of the tumor in super-inferior direction when evaluated on data from
two different institutions in Munich and Rome. In the second project of this thesis, the
same cine MRI data was used to extend the models to the prediction of future 2D tumor
contours. The LSTM from the previous project combined with a rigid shift of the last
available tumor contour was compared to convolutional LSTMs predicting either directly
the future contours or future deformation fields which can be used to warp the last available
contour. The patient-specific LSTM combined with the rigid shift was found to outperform
the convolutional LSTMs on both evaluation sets. In the third project, the patient-specific
LSTM for tumor centroid prediction was integrated and validated in a multi-leaf collimator
(MLC)-tracking experiment on a research prototype MRI-linac in Sydney. In a phantom
study the model was again compared to a population-based LSTM, a patient-specific linear
regression and a scenario without any motion prediction. Confirming the in-silico results
from the previous project, it was shown that the accuracy with which the irradiation hit the
target in the phantom was highest when the patient-specific LSTM was used and that the
error compared to the scenario where the latency was not compensated for was nearly halved.
In the fourth project of this thesis, the focus was changed from motion prediction to the real-
time localization of the tumor on the current cine MRI frame. Specifically, using MRI-linac
data acquired in Munich a transformer network was developed for fast deformable image
registration (DIR) and compared to an AI auto-segmentation model and a slow conventional
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B-spline DIR model. The transformer was optimized with different unsupervised, supervised
and patient-specific strategies. The patient-specific transformer was found to perform best,
outperforming all other models and optimization strategies without introducing significant
additional latency. Future studies could start from the models developed herein to build
more advanced AI-based motion management models in 3D to further improve the accuracy
of real-time adaptive MRI-guided radiotherapy, as described in the outlook and in the review
paper included in the appendix of this thesis.



Chapter 1

Introduction

According to the World Health Organization, in 2022 there were about 20 million new
cancer cases and 9.7 million deaths, with about 1 out of 5 people developing cancer in their
lifetime [1]. Estimates from the Global Cancer Observatory for the same year show that
lung cancer was the most common type of cancer worldwide (12.4%), followed by breast
(11.6%) and colorectal cancer (9.6%). In terms of mortality, lung cancer was the leading type
(18.7%), followed by colorectal (9.3%) and liver cancer (7.8%). Over the past century, several
therapeutic options have been developed to treat cancer, including surgery, radiotherapy
and systemic therapies such as chemotherapy or immunotherapy. Often, combinations of
therapies are used, with approximately 50% of all cancer patients undergoing radiotherapy
at some point during their illness [2].

In modern radiotherapy, the radiation beam can be shaped with millimeter accuracy
to deliver the highest possible dose to the tumor while sparing surrounding healthy tissue.
Current developments to improve efficacy can be broadly categorized in [3]: 1) biology-driven
personalized treatment prescription and 2) technology-driven improvement of irradiation
conformity. The former aims at using biomarkers, such as expression of a particular gene or
for instance hypoxia levels obtained from imaging, to tailor the prescribed irradiation dose
in a patient-specific fashion based on the measured values. The latter aims at improving
the delivered dose distributions by either leveraging the different physical interaction with
matter of some particles with respect to others (proton or heavy ion therapy instead of
photon therapy) or by using imaging such as x-rays, magnetic resonance imaging (MRI) or
ultra-sound imaging (US) to guide the radiotherapy treatment at different stages.

The research conducted in this thesis falls in the category of image-guided radiotherapy.
More specifically, different deep learning (DL) algorithms were developed to manage motion
imaged during radiotherapy delivery fractions. So called intra-fractional motion, which
mainly derives from patient respiration, has been shown to decrease the accuracy of radio-
therapy [4], as tumors for instance in the lung can move by centimeters while radiotherapy
treatment plans assume a static anatomy. Early solutions included the usage of additional
margins around the gross tumor volume (GTV), which added to the other margins applied to
account for uncertainties in delineation, positioning uncertainty and dose delivery, lead to
higher dose in healthy tissues [5]. The last decade has seen the clinical introduction of hybrid
MRI-linear accelerators (MRI-linacs), which allow to capture internal motion in real-time
during the treatment and, by adapting to it, reduce these treatment margins [6]. The work-
flow of real-time adaptation includes several challenging steps, from imaging and localizing
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the tumor, to compensating for latencies and adapting the radiation beam. Being both fast
and accurate, DL motion management models can play an increasingly important role in
supporting the different steps of real-time adaptive MRI-guided radiotherapy (MRIgRT), as
shown in this thesis.

This cumulative dissertation is structured as follows: in chapter 1 an introduction to
radiotherapy in general, MRIgRT, adaptive radiotherapy, and to the DL algorithms, state-
of-the-art literature and evaluations metrics relevant to the candidate’s work is given. In
chapter 2 the articles published in the scope of this thesis are shown. Specifically, in section 2.1
a long short-term memory (LSTM) network developed for the real-time prediction of future
tumor centroid positions is presented. In section 2.2 the LSTM was extended to predict
the future 2D tumor contour while in section 2.3 the model from the first publication was
experimentally validated in a phantom study. In section 2.4 the development of a transformer
network for real-time localization of the tumor is described. In section A.1 a review article on
the role of DL for real-time motion management during MRIgRT published by the candidate
as a result of a workshop organized by the European Society for Radiotherapy and Oncology
is shown. Finally, chapter 3 summarizes the results and outlooks possible future studies
based on this work.

1.1 Modern radiotherapy

External beam radiotherapy uses a linear accelerator (linac) to treat cancer with ionizing
radiation by accelerating electrons in a waveguide to typical energies between 6 and 15 MeV.
In most treatments nowadays, the electrons are then converted to photons via bremsstrahlung
on a high-density material. The generated photon beam is then flattened (i.e., a uniform
dose distribution is achieved) using filters and shaped with millimeter precision using jaws
(high-density rectangular blocks) and a multi-leaf collimator (MLC) (multiple thin leaves
made of a high-density material that can move independently). The linac is mounted on
a gantry that can rotate around the patient lying on a couch to irradiate the tumor from
multiple angles [7]. Radiotherapy treatments are usually delivered in multiple sessions called
fractions as radiobiological studies have shown this to lead to a higher differential cell killing
between cancerous and healthy cells [8].

Technological improvements over the last three decades led to the integration of imaging
devices into radiotherapy linacs [9]. Image-guided radiotherapy using x-rays is today’s
standard-of care: most linacs are equipped with a kV x-ray source (mounted on the gantry
90° from the MV treatment beam), which is routinely used prior to treatment to acquire
a cone beam computed tomography (CBCT). CBCTs are volumetric images having lower
quality compared to computed tomography (CT) images but which are sufficient to account
for inter-fractional changes, i.e., changes in the anatomy occurring from one fraction to the
next, as detailed in the next section. X-ray guidance to account for intra-fractional changes is
emerging but limited by the low soft-tissue contrast.

1.2 MRI-guided radiotherapy

Over the past decade, treatment machines that integrate MRI with external photon irradiation
have been introduced into clinical practice. The primary motivations for adopting MRIgRT
are the need to account for anatomical changes both before and during a treatment fraction,
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Table 1.1: A summary of integrated MRI-linac designs as of 2024 is provided. The third
column details the magnetic field strength, radiation beam energy and orientation of the field
relative to the beam (perpendicular/inline). (*) Asterisk denotes that the Siemens MRI-linac
was never built, only a patent was issued. Adapted from [6, 10].

Company/institution Commercial? MRI and beam specification

Viewray yes 0.35 T split bore, 6 MV (originally Co-60), perpendicular
Elekta yes 1.5 T closed bore, 7 MV, perpendicular
MagnetTx yes 0.5 T biplanar, 4 and 6 MV, inline/perpendicular
Australian MRI-linac no 1.0 T split bore, 4 and 6 MV, inline/perpendicular
Siemens no* 0.5 T closed bore, 6 MV (inside bore), perpendicular

and the ability to selectively target the most aggressive and radiation-resistant tumor sub-
regions.

The advantage of MRI compared to x-ray based guidance lies in its superior soft-tissue
contrast, which comes with no additional dose and allows an excellent visualization of the
tumor and surrounding organs at risk (OAR). The integration of an MRI scanner with a
linac posed a remarkable engineering challenge which took decades to complete and has
led to the development of a few different MRI-linac designs, as can be seen in Table 1.1. In
the following, detailed descriptions of the two first commercial systems, the 0.35 T Viewray
system and the 1.5 T Elekta system, and of the 1.0 T Australian system are provided, the
Viewray and the Australian MRI-linac having been used in this thesis.

The Viewray-MRIdian system, originating from early work at the University of Florida
and clinically implemented in 2014, represents the first commercial MRI-guided external
beam radiotherapy device [11]. Initially featuring three Co-60 radiation sources mounted 120°
apart on a ring gantry, it later transitioned into a 6 MV linac-based delivery system leveraging
a double stack MLC configuration to shape the beam (leaf travel direction perpendicular
to B0). With a B0 magnetic field of 0.35 T, the MRIdian system employs for the magnet a
split-bore design with a vertical gap, the linac and MRI being electro-magnetically isolated
from each other using shielding components (multi-layer ferromagnetic and carbon buckets)
mounted around the gantry, as visible in Figure 1.1. The radiation beam coming from the
linac rotates around the stationary magnet and remains always perpendicular to the B0
magnetic field. This minimizes skin dose as contaminant electrons generated in the linac
head are swept away. However, these contaminant electrons can land somewhere else on the
patient’s surface. Compared to inline configurations (B0 parallel to radiation beam), it also
presents dosimetric challenges related to the secondary electrons generated inside the patient
which get deviated by the magnetic field [12, 13]. A MRIdian system was installed at the
LMU University Hospital and started treatments beginning of 2020. As of 2024, about 60
machines are in clinical use worldwide.

Clinically used for the first time in 2017, the second commercial MRI-linac is the Elekta-
Unity system [12]. The system features a 7 MV linac mounted on a rotating ring within a
1.5 T MRI system, as shown in Figure 1.2. As the MRIdian, the Unity system employs passive
and active shimming to maintain magnetic field homogeneity and its coil configuration was
tuned to create a low magnetic field region in which the most sensitive linac components were
placed. The linac rotates within this low field region with the radiation passing through the
magnet’s cryostat, which leads to attenuation and explains the slightly higher linac energy of
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Figure 1.1: (a) The Viewray-MRIdian MRI-linac system consisting of superconducting split-
bore magnet, rotating circular radiation gantry and patient couch; (b) detailed drawing of the
gantry with linac components and shielding buckets. Reproduced from [13].

7 MV compared to the MRIdian system. The MLC is similar to the one used in conventional
Elekta linacs, however, it was rotated by 90° such that the leaf motion is in the superior-
inferior direction, facilitating the MLC-tracking in this main direction of motion planned
in a future upgrade. The Unity system’s 1.5 T MRI provides higher signal compared to the
lower field MRI-linacs. To prevent significant image quality degradation, the noise from the
linac components is minimized through a specially designed Faraday cage, which isolates
the gantry (with all linac components) from the MRI. As of 2024, about 80 machines are in
clinical use worldwide.

Figure 1.2: Illustration of the Elekta-Unity MRI-linac system with superconducting closed
bore magnet, rotating circular radiation gantry and patient couch. B0 iso-field lines are
indicated in yellow. Reproduced from [12].

Depicted in Figure 1.3, the MRI-linac from the Australian MRI-linac Program features a
1.0 T split bore magnet combined with an inline 6 MV industrial linac placed on rails at a
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variable distance between 1.8 and 3.2 m [12]. Active shielding was designed to have a low
magnetic field at the linac’s location. The radiation beam can be shaped with a 120 leaves
MLC placed right after the linac in the region of low B-field. As for the Unity and in contrast
to the MRIdian, the leaf motion is parallel to the patient’s superior-inferior direction. The
system presents a 50 cm gap between the two magnet halves which is smaller than that in
modern computed tomography (CT) and MRI devices and was chosen as a trade-off between
patient comfort and imaging quality. A rotating couch can be inserted in the gap to allow
treatments of the patient from multiple angles. As the patient is immobilized and rotated
this approach leads to more discomfort but it has the advantage of being more cost effective
compared to the gantry approaches of other MRI-linac systems [14]. An electronic portal
imaging device (EPID) can be mounted along the beam-line behind the patient and the second
magnet half to measure the attenuated radiation beam. A single prototype of the system
was installed at the Liverpool Hospital in Sydney and acquired first images in 2016. Being
a prototype, it provides easier access for integrating novel developments for pre-clinical
research.

Figure 1.3: Illustration of the Australian MRI-linac system with superconducting double-
donut magnet and inline (parallel to B0) linac without gantry. An MLC is positioned between
the linac and magnet (leaf motion in superior-inferior direction) while the patient lies on a
rotating couch (not shown) which can be inserted between the two magnet halves. Reproduced
from [12].

MRI-linac systems are considered the state of the art when it comes to adaptive radio-
therapy. Broadly speaking, the aim of adaptive radiotherapy is to tailor the irradiation to
changes in the patient’s anatomy, which includes for example plan adaptation to increase
the dose to the GTV if the daily OAR position allows it or adaptation of the beam in real-
time based on the patient’s respiration. While in standard radiotherapy a treatment plan
is calculated only once based on a single planning CT and delivered without changes over
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several days or weeks, in adaptive radiotherapy the treatment plan can be changed during
the irradiation fraction. The evolution of adaptive radiotherapy is closely linked to the one of
image-guided radiotherapy as adaptation is based on changes observed with imaging. Based
on the timescale of the adaptation, adaptive radiotherapy can be divided in three categories
[12]:

• Offline adaptation (days)

• Online adaptation (minutes)

• Real-time adaptation (seconds)

Early examples of adaptive radiotherapy feature the usage of in-room CBCT scanners on
standard linacs for offline adaptation of head and neck cancer patients. If on the daily CBCT a
substantial weight loss or lesion shrinkage was observed, the original plan would be irradiated
on that fraction but the patient would then be sent to acquire a new planning CT for which a
new treatment plan is calculated. Offline adaptation therefore takes place after the current
treatment fraction and typically follows the same clinical workflow as the initial treatment
planning. In contrast, online adaptation takes place prior to the start of the daily treatment
fraction, while the patient is on the couch, and is possible only with dedicated machines as
rapid 3D imaging, re-planning, plan review and patient-specific quality assurance are needed.
Similarly, dedicated machines are needed for real-time adaptation which is performed without
any therapist intervention in seconds or even milliseconds during the course of the treatment.

In the following two subsections, a more detailed description of online adaptation and
real-time adaptation, with focus on MRI-linac implementations, is given.

1.2.1 Online adaptation

During online adaptation, the patient’s treatment plan is adjusted to account for inter-
fractional changes in the anatomy such as tumor shrinkage or OAR configurations which
differ from the planning CT (e.g., different rectal filling). Currently, MRI-guided online
adaptive radiotherapy is clinically applied using either the Viewray-MRIdian or the Elekta-
Unity system. Being more relevant for this thesis, a detailed description of the MRIdian
workflow is provided in the following together with an illustration in Figure 1.4. The online
adaptive workflow on the Unity does not differ substantially.

As for radiotherapy on conventional linacs, an initial planning CT providing the electron
density information is required to calculate the treatment dose distribution in the patient.
Additionally, a volumetric planning MRI scan is acquired on which the target/OAR contour
delineation is performed. The planning CT is then deformably registered to the MRI to
generate the so called synthetic CT. The synthetic CT provides both segmentations and
electron density information so it can be used to perform the treatment plan optimization.

On the day of the treatment, the process of on-table adaptation involves several steps
[6]. First, an in-room volumetric MRI is acquired to visualize the anatomy of the day. The
synthetic CT from the planning stage is then used to obtain a segmented in-room synthetic
CT by performing a DIR with respect to the in-room MRI. This provides an up-to-date 3D
electron density image of the patient in treatment position, and in theory also up-to-date
contours. However, in clinical practice a manual adjustment of the contours by the physicians
is always performed. As this is time intensive, physicians usually focus only on the relevant
region around the irradiation target with DL auto-segmentation models having been proposed
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Figure 1.4: Viewray-MRIdian online adaptive MRIgRT workflow. Figure courtesy of PD Dr.
Christopher Kurz.

to accelerate this process [15, 16]. After the correction of the contours, a re-calculation of the
baseline treatment plan on the daily anatomy is performed to determine whether treatment
adaptation is required. A fast dose engine capable of incorporating magnetic fields (Monte
Carlo-based) is used for the calculation. Critical parameters such as tumor coverage and dose
in the OARs are then compared to the baseline plan and depending on the agreement the
physicians might opt for no adaptation or for a full re-optimization of the treatment plan by
the physicists in the team. For quality assurance of the newly optimized plan, the MRIdian
provides a secondary Monte Carlo dose calculation that can as well incorporate the magnetic
field [13]. Shortly before the treatment starts, a so called preview 2D cine MRI is acquired in
preparation for the real-time adaptation with gating during the irradiation, as described in
the next subsection. The tracking target, the desired gating margin and the percentage of
the target allowed outside of the margin before the beam is automatically stopped are also
defined at this stage. The online adaptation steps prior to the start of the irradiation have
been reported to take up to 30 min on the MRIdian system [17].

1.2.2 Real-time adaptation

During real-time adaptation, the radiation beam is adjusted to compensate for motion occur-
ring during the course of a treatment fraction, for example cardiac-induced or respiratory
motion affecting the target and OARs. Clinically, until 2023 the Viewray-MRIdian was the
only system providing actual beam adaptation during the treatment based on MRI-guidance
[18]. Recently, the first clinical experience of intra-fractional beam adaptation was reported
for the first Elekta-Unity system [19], all other 1.5 T clinical systems before this real-time
adaptation-enabling upgrade being only able to visualize the motion.

Figure 1.5 also illustrates an optimal real-time adaptive MRIgRT workflow. No single
MRI-linac system currently provides the displayed workflow, however, all steps have been
separately shown to work either clinically or with prototype machines in a research setting
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[20]. As this is the focus of the candidate’s publications, a more comprehensive description
of the various techniques used for real-time motion management in MRIgRT is presented
below, covering both clinically available methods and those currently under investigation in
research settings for each step of the motion management process.

Real-time imaging Target/OAR localization

.

Motion prediction *

Current target center

Predicted target center

Beam adaptation

MLC-tracking *

Target in             Beam ON
  Target out             Beam OFF   Gating

or

or ...

Figure 1.5: Real-time adaptive MRIgRT workflow. (*) Asterisks denote that motion prediction
and MLC-tracking have currently been implemented only on prototype MRI-linacs. Repro-
duced from the candidate’s review article (section A.1) [20].

Real-time imaging

The first step involves the real-time visualization of the patient anatomy using cine MRI
with dedicated sequences having short repetition times and which are therefore robust to
motion. MRI-linac vendors currently offer cine MRI in either a single 2D sagittal plane or
multiple parallel or orthogonal 2D planes. Balanced steady-state free precession sequences
with in-plane pixel sizes between 2 and 4 mm, slice thicknesses between 5 and 15 mm and
frame rates between 2.5 and 8 Hz are used in clinical practice [20]. The imaging plane is
placed in the tumor or a surrogate tracking target in case the tumor is too hard to see to
visualize the internal motion and adapt the irradiation to it.

Ideally, continuous 3D+t cine MRI at a frame rate of few Hz and a voxel size of few mm3

should be used to obtain full anatomical information. However, to achieve this in real-time
is a challenge with the current technology and a topic of active research [21]. For instance,
3D+t cine MRI at a frame rate of about 2 Hz but coarse spatial resolution of about 5 mm
in all directions has been shown feasible using current commercial acceleration methods
[22]. DL solutions to improve image reconstruction of under-sampled data or to convert
low-resolution images to high-resolution are also emerging [23, 24].

Target/OAR localization

The second step involves localizing the treatment target or a surrogate thereof and if needed
nearby OARs every time a new cine MRI frame is acquired. Various fast algorithms have been
proposed for this task.

Clinically, both the Viewray-MRIdian and, more recently, the Elekta-Unity system provide
real-time target localization (often referred to as target tracking) based on image registration.
The Viewray algorithm first used in 2017 relied on multi-scale deformable image registration
(DIR) of a reference frame. The reference frame is automatically selected from the preview
cine MRI based on image similarity with a 2D sagittal slice from the 3D daily static MRI
[13]. During treatment, the reference frame is in turn deformably registered to the acquired
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cine MRI frames (and simultaneously also the other way around to ensure robustness) by
minimizing a cross-correlation cost function with gradient magnitude regularization [25].
In a more recent version of the algorithm, multiple trackers with individual cost functions
and regularization functioning both locally and globally are implemented and combined
[26]. Four different tracker combinations are available for the clinical team to choose from: 1)
"Large and Deforming Targets" (three global trackers), 2) "Small Mobile Targets" (three local
trackers), 3) "Complex Mobile and Deforming Targets" (three global and three local trackers)
and 4) "Default" (one global and two local trackers). Depending on the motion characteristics
and the current accuracy, the team is able to freely switch from one algorithm to another
during treatment. Since early 2023, a tracking algorithm for the Elekta-Unity has been
introduced [27]. Their model requires a 3D daily MRI-linac scan and a pre-treatment cine
MRI on which template image pairs are generated in both coronal and sagittal orientation.
The template images are then matched to newly acquired frames to rigidly shift a target mask
during treatment. While only employed for research, the Australian MRI-linac prototype
also features a template matching algorithm to localize the target centroid on newly acquired
2D sagittal cine MRI frames in real-time. Finally, also for target localization, different DL
algorithms have been proposed and shown to achieve superior performance to conventional
image registration algorithms in-silico [28, 29], as detailed in section 1.4.

Motion prediction

Each step in the workflow requires a certain time to complete, which leads to a time delay
between the actual physical motion of the target and the final beam adaptation step. This
time delay is called the system latency. Experimental studies have been performed for the
different MRI-linac systems and found a latency of 300 ms for the Viewray-MRIdian (clinical
system with gating) [30], 350 ms for the Elekta-Unity (prototype with MLC-tracking) [31]
and 330 ms for the Australian system (prototype with MLC-tracking) [32]. The Australian
researchers have developed a straightforward method to measure the system latency on their
MRI-linac: a target in a phantom is moved using a sinusoidal trace while it is irradiated
using MLC-tracking. Using the EPID, the sinusoidal of the target in the phantom and the
sinusoidal from the MLC aperture can be extracted and the phase shift between the two
curves can be calculated to obtain the latency. The main contributor to the system latency is
the imaging step with about 200-250 ms (with half of the time lag for this step coming from
the low frame-rate of 4 Hz), target localization taking about 20-50 ms and beam adaptation
20-110 ms depending on the adaptation strategy (see next subsection).

To compensate for the latency, respiratory motion prediction algorithms can be used:
by predicting for instance the future position of the target, the beam adaptation step can
be performed based on the predicted position and therefore in synchrony with the actual
motion. Several algorithms have been proposed in-silico for the prediction of the future target
center-of-mass or the next 2D frame, as discussed in section 1.4. In general, conventional
linear regression is very promising for latencies up to 250 ms but has been shown to be
outperformed by DL models such as LSTMs for larger forecasts [33]. One advantage of
linear regression is the existence of an analytical solution to calculate its parameters, which
demands minimal computation time. This has led to the development of models that can
be regularly updated using real-time patient-specific motion data during the treatment [34].
Such a continuously updated linear regression predictor has been used by Uijtewaal et al. to
successfully compensate for the latency and improve the dosimetric accuracy in a phantom
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study with a prototype Elekta-Unity system using 4 or 8 Hz imaging in combination with
MLC-tracking [35]. Clinical systems do not compensate for latencies, however, it can be
argued that there is a negligible dosimetric error if gating is used as beam adaptation strategy,
as detailed in the next subsection.

Beam adaptation

On MRI-linacs, the two main systems of adaptation to improve beam-target alignment are
beam gating and MLC-tracking. These systems are independently controlled and could
therefore also be used in parallel.

Beam gating enables treatment of the target in a fixed spatial position, though at the
expense of longer treatment duration. The beam is automatically switched on once the
tumor or a surrogate volume enters a predetermined area, and switched off when it moves
outside. Gating can be applied during free breathing or using breath-hold methods (e.g.,
for lung treatments). While it has been shown that gating achieves dose conformity similar
to static scenarios, it leads to extended treatment times as the target needs to be inside
the predetermined area. In literature, duty cycle efficiencies (the ratio of beam-on time to
treatment duration) ranging from 20% to 55% have been reported for clinical systems treating
with breath-holds [36, 37]. The gating latency can be divided in two parts: the time to switch
the beam off when the target moves outside the boundary area and the time to switch the
beam on when the target moves inside the area. The former is of more concern as it leads to
less accurate irradiation of the target while the latter only reduces the duty cycle efficiency
but is nonetheless important for patients with limited breath-hold ability.

MLC-tracking is a more advanced form of beam adaptation in which the leaves shaping
the beam are continuously realigned to compensate for target motion. The realignment
process can be both rigid, i.e., the entire MLC bank is shifted or deformable, i.e., single leave
positions are re-optimized in real-time to account also for target deformation or rotations.
Compared to gating which has been used clinically since the first treatments with the Viewray-
MRIdian, MLC-tracking has only been used in experimental studies with phantoms. Uijtewaal
et al. showed in two studies with a prototype Elekta-Unity system that MLC-tracking
combined with different radiation delivery techniques (step-and-shoot intensity-modulated
radiation therapy and volumetric-modulated arch therapy) results in highly conformal dose
distributions without the cost of additional treatment time [35, 38]. In another phantom
study, Liu et al. have shown how simultaneous adaptation to multiple independently moving
targets is possible using MLC-tracking on the Australian MRI-linac system. All these studies
have underlined how latency is more problematic when using MLC-tracking. Compared to
gating, where the beam-off latency leads to incorrect irradiation only in about one frame
every time the target exits the boundary area, MLC-tracking with latency leads to incorrect
irradiation in most of the treatment, as the leaves constantly lag behind the current target
position. Motion prediction as discussed in the previous subsection is therefore more critical
with this adaptation strategy. Finally, it can be noted that DL models for the MLC position
optimization problem are not needed as accurate analytical solutions, which can be completed
in the order of milliseconds, exist [39]. In contrast to MRIgRT, early clinical experiences
using MLC-tracking on conventional linacs have been reported [40, 41]. Both studies relied
on electromagnetic transponders implanted into the patients’ prostate or lung to accurately
localize the irradiation target and reported delivered doses similar to the static treatment
plan without a prolongation of the irradiation due to beam pauses.
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1.3 Deep learning

Many different definitions exist for natural intelligence. If we define natural intelligence as
the ability to learn and solve complex problems, then artificial intelligence (AI) can be defined
as the simulation of natural intelligence with machines. With first studies dating back to the
1950s, in the last two decades the development of AI models to solve problems including but
not limited to perception, recognition, analysis, and decision-making has become increasingly
crucial across various fields [42].

To date, machine learning (ML) is considered a sub-category of AI, encompassing numeri-
cal algorithms and models designed to analyze data and acquire decision-making capabilities
for accomplishing specific tasks [43]. In other words, ML tries to find hidden patterns from
data to solve a problem of interest.

DL is in turn considered a sub-category of ML, sharing the same goals of ML but be-
ing characterized by more advanced algorithms with more parameters which has lead to
breakthroughs in performance in processing images, video, speech and audio [44]. This
was enabled by the recent availability of large-scale datasets and technological advances in
parallelized computing.

Applications of AI and in particular DL in medicine are manifold, and include diagnosis
of diseases, drug discovery, medical robots and outbreak prediction [45]. Also the field of
medical physics has seen a steep rise in the utilization of DL to solve various tasks.

Specifically for MRIgRT, DL has found relevant applications in image segmentation,
synthetic CT generation, automatic online treatment planning and outcome prediction
[46]. Considering the complex treatment workflows, AI is expected to rapidly contribute to
MRIgRT, primarily by either safely and efficiently automatising the various manual operations
during online adaptation or as a fast and more accurate alternative to conventional algorithms
when considering the time constrains of real-time adaptation.

The candidate’s publications fall in the category of DL applications for real-time adapta-
tion to motion in MRIgRT. In the two following subsections, the DL algorithms which were
found to perform well are described.

1.3.1 Long short-term memory networks

Recurrent neural networks (RNNs) are AI algorithms designed for processing sequential
input data, such as time series data. Unlike commonly used regression or classification AI
models such as the artificial neural network (ANN) or convolutional neural network (CNN),
they include an additional set of weights that connects hidden layers from one time step to
the next, which allows them to capture temporal dependencies more efficiently. However,
the original RNN architecture was found to be limited due to instability when training
over longer input sequences [42]. Consequently, more sophisticated architectures have been
proposed, with the most widely used RNN being the LSTM model [47].

The LSTM module was specifically developed to facilitate the learning of longer sequences
of data more effectively and is shown in Figure 1.6. The core idea of LSTM is the introduction
of the memory cell state ct, which enables more stable training (back-propagation of errors)
and a smooth flow of information. To control the addition or removal of information from
the cell state, so called gates are utilized: The forget gate f t is used for deciding whether
to retain or discard past information in ct−1, while the input gate it regulates the flow of
information into the new memory cell state c̃t. These gates, along with the previous memory,
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are combined to create the final memory cell state ct. This final memory cell state is then
filtered using the output gate ot to determine which information for making predictions to
retain or discard, ultimately producing the hidden state ht. In mathematical terms, at a given
time step t, the LSTM module can be described as follows:

Forget gate: f t = σ (W f x
t +U f h

t−1 +bf ) (1.1)

Input gate: it = σ (W ix
t +U ih

t−1 +bi) (1.2)

New memory cell state: c̃t = tanh(W cx
t +U ch

t−1 +bc) (1.3)

Final memory cell state: ct = f t ⊙ ct−1 + it ⊙ c̃t (1.4)

Output gate: ot = σ (W ox
t +U oh

t−1 +bo) (1.5)

Hidden state: ht = ot ⊙ tanh(ct) (1.6)

where b,W and U denote the biases, input sequence weights and recurrent weights which

Figure 1.6: Illustration of repeating LSTM module with different gates. Reproduced from the
candidate’s Paper I (section 2.1) [48].

are learned during the training process. The symbol ⊙ denotes element-wise multiplication
between matrices or vectors. The sigmoid function σ (x) is usually employed for the gates,
while the hyperbolic tangent function is used for the states. At each time step, the hidden
state of one LSTM layer serves as the input for the subsequent LSTM layer. In the final hidden
layer of the LSTM, the hidden state from the last time point tf is fed into a fully connected
layer to obtain the predicted output sequence:

Predicted output: ŷi = W FCh
tf +bFC (1.7)

where W FC and bFC denote the weight matrix and bias vector for the fully connected layer.
While the LSTM module presented above performs well with scalar sequences, its fully

connected nature leads to redundancy when dealing with sequences of images. Therefore,
Shi et al. [49] proposed the convolutional LSTM: by replacing matrix multiplications between
the hidden and cell states with convolutions, they found the model to capture spatiotemporal
correlations more efficiently. Mathematically, the convolutional LSTM module is defined as
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follows:

Forget gate: f t = σ (W f ∗ xt +U f ∗ht−1 +bf ) (1.8)

Input gate: it = σ (W i ∗ xt +U i ∗ht−1 +bi) (1.9)

New memory cell state: c̃t = tanh(W c ∗ xt +U c ∗ht−1 +bc) (1.10)

Final memory cell state: ct = f t ⊙ ct−1 + it ⊙ c̃t (1.11)

Output gate: ot = σ (W o ∗ xt +U o ∗ht−1 +bo) (1.12)

Hidden state: ht = ot ⊙ tanh(ct) (1.13)

where b,W and U denote the biases, input sequence convolutional kernels and recurrent
convolutional kernels which are learned during model training. The symbol ∗ represents the
convolution operation.

1.3.2 Transformer networks

Even though the LSTM was designed to better learn longer sequences, it was realized that the
longer the input the harder it is for the model to focus on elements lying further in the past: as
all information needs to be encoded in the memory cell state vector, this leads to a bottleneck.
One of the attempts to tackle the problem resulted in the introduction of a mechanism at
the recurrent neural network’s bottleneck that allows the model to pay attention to the most
relevant parts of the encoded input [50].

In a seminal paper, Vaswani et al. [51] proposed to get rid of all recurrent neural
network components and to implement an architecture which is solely based on the attention
mechanism. They called the proposed machine translation model the transformer. As
illustrated in Figure 1.7, their model has an encoder-decoder structure. On a high-level, the
encoder made up of N identical layers is used to map an input sequence into an abstract
representation. Each layer has two sub-layers, the so called multi-head attention layer and
a simple feed-forward layer, both sub-layers being combined with layer normalization and
residual connections to facilitate model training. The abstract representation from the last
encoder layer is then used in the decoder to generate the output sequences one element at
the time. The decoder is called auto-regressive, as previously generated elements are used
as additional input to the decoder when generating the next element. Also the decoder
contains several stacked layers with a slightly different version of multi-head attention and
feed-forward sub-layers.

One advantage of attention compared to recurrent neural networks is that all input
elements, or tokens, can be processed at once in a highly efficient way. In the following,
a mathematical description of the attention mechanism is provided. Given the input se-
quence of embedded tokens (e.g., words) X̂ ∈RN×D with N the number of tokens and D the
embedding dimension (set in the word embedding algorithm which is separate from the
transformer), the first step is to retain the positional information of the single input tokens, as
these are processed all at once. For that, Vaswani et al. proposed a fixed sinusoidal positional
encoding scheme which is simply added to the input embedding

X = X̂ +Epos (1.14)

with Epos ∈RN×D . However, the authors note that using a randomly initialized Epos matrix
which is learned during model optimization leads to similar results. The embedded and
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Figure 1.7: Illustration of the transformer architecture (left) and the attention mechanism
(right). Reproduced from [51].

positionally encoded tokens are then linearly transformed to build the queries, keys and
value matrices Q,K,V ∈RN×Dqkv

[Q,K,V ] = XW q,k,v (1.15)

with the learnable weight matrices W q,k,v ∈ R
D×Dqkv and Dqkv being the new embedding

dimension of queries, keys and values. Queries and keys are then multiplied, scaled and
normalized to get the attention matrix A ∈RN×N

A = softmax

 QKT√
Dqkv

 (1.16)

The attention matrix is in turn multiplied with the values to get the self-attention matrix
SA ∈RN×Dqkv

SA = AV (1.17)

The intuition behind the usage of the queries, keys and value matrices comes from retrieval
systems. The queries pinpoint what we are interested in (e.g., a specific topic we are looking
for in a book), the keys provide context and relevance (e.g., the summary of a book) and the
values give us the actual information we need (e.g., the detailed information in that book).
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When computing self-attention, information from multiple tokens (e.g., books) is obtained to
understand which tokens are more relevant than others [52]. In practice, multiple attention
heads are computed in parallel with each of the h heads being randomly initialized with a
separate weight matrix. The set of weight matrices W O ∈ RhDqkv×D is then multiplied with
the self-attention matrix obtained from each head to obtain a single multi-head self-attention
matrix MSA ∈RN×D

MSA = concat(SA1, ...,SAh)W O (1.18)

This way, the transformer gets increased representational power (more learnable weights) in
an efficient way (the head computations can be parallelized). The two (multi-head) attention
mechanisms in the decoder only present small differences with respect to the self-attention
computation described above. When computing masked self-attention (also called causal
self-attention), all entries in the attention matrix A above the diagonal are set to zero to avoid
that the decoder has access to future words. When computing the attention that connects the
encoder to the decoder, which is often called cross-attention, the keys and values matrices
come from the encoder while the queries come from the decoder in contrast to encoder
self-attention where all matrices come from the input tokens.

Since their publication in 2017, transformers have been replacing other DL algorithms
in a wide range of tasks, from natural language processing where they were first proposed
to computer vision, audio recognition or healthcare [53]. A key idea allowing the spread of
transformers in many domains was presented by Dosovitskiy et al. when applying trans-
formers for image classification [54]: by splitting each input image into smaller patches and
treating each patch as an input token, they could leverage the attention mechanism without
the computational overhead which would be obtained if every single pixel was considered as
a token. While this works well for classification tasks, a problem with this approach arises
when the model’s prediction is on a dense pixel level, such as for segmentation tasks. To solve
this issue, Liu et al. proposed the shifted-window (swin) attention mechanism, in which the
patches are organized into windows where attention is computed only locally, which is less
computationally expensive [55].

1.4 State-of-the-art literature

The candidate’s work focused on the application of DL algorithms to motion prediction in the
first three papers and to target localization in the last paper. In the following, an overview of
state-of-the-art methods related to these two topics in the medical imaging and radiotherapy
field is provided.

In a comparative study from 2019, Joehl et al. optimized a total of 18 respiratory motion
prediction algorithms based on 93 1D motion traces obtained from LED markers externally
attached to patients’ chests [57]. Prediction horizons of 160 ms and 480 ms were investigated
for traces resampled to a frequency of 25 Hz. The implemented algorithms included con-
ventional algorithms such as linear regression, support vector regression and Kalman filters
as well as an ANN. For all models a patient-specific optimization was performed, i.e., the
data values used for training were updated at every time step by adding the current and
discarding the oldest time sample of the current patient. They found that for both prediction
horizons linear algorithms such as linear regression were sufficient for accurate respiratory
motion prediction. For this reason, a linear regression was implemented as the baseline for
comparisons in the motion prediction publications in this thesis which used 1D traces as
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Figure 1.8: Illustration of the TransMorph architecture for 3D deformable medical image
registration. Reproduced from [56].

input (section 2.1 and section 2.3). Also in 2019, a study showing the superiority of LSTM
networks in predicting respiratory motion compared to ANNs was published by Lin et al.
[58]. The authors used a total of 1703 1D motion traces obtained from markers positioned
on the patients’ chest or abdomen and localized with an infrared camera and could show
that tuning of the LSTM hyper-parameters could improve the performance by up to 20%.
However, they did not optimize the models in a patient-specific fashion. The theoretical
advantage of LSTMs when dealing with sequential data and the promising performance in a
radiotherapy setting found by Lin et al. lead to the usage of an LSTM network in the first
paper in this thesis (section 2.1). Of inspiration for the candidate’s second paper (section 2.2)
was the model developed by Romaguera et al., who instead of predicting future 1D target po-
sitions implemented an encoder-decoder convolutional LSTM for the prediction of future 2D
deformation fields [59]. Specifically, they could show that the proposed model outperformed
both a conventional principal component-based and a DL-based spatio-temporal prediction
algorithm, achieving vessel position accuracy in the next temporal image (320-400 ms) below
0.5 mm for MRI, CT and US datasets affected by respiratory motion. However, the cine MRI
data used in this study was from healthy subjects imaged on a 3 T diagnostic scanner. Of
relevance for the third publication in this thesis (section 2.3) was the experimental work
published in 2020 by the research group in Sydney on MLC-tracking with the Australian
MRI-linac [32]. The authors showed in a phantom study that it is possible to simultaneously
track multiple independent targets moved with 1D motion traces from lung and prostate
cancer patients. They showed the accuracy of the irradiation to be significantly improved
compared to a scenario without MLC-tracking and identified in the system latency the major
remaining source of error for MLC-tracking with lung motion traces.

Looking at target localization for MRI-linacs, the work by Friedrich et al. [28] from
2021 and the work by Hunt et al. [29] from 2023 should be mentioned. Friedrich et al.
implemented an auto-segmentation CNN and found it to outperform a conventional B-spline
DIR model when applied to under-sampled 2D cine MRI data from a 0.35 T Viewray-MRIdian
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machine. The CNN was trained in a patient-specific fashion using the first 10 frames from
each patient’s cine MRI, however, only three manually contoured liver cancer patients were
investigated in total. Hunt et al. also implemented a CNN but for DIR (VoxelMorph) of
2D cine MRIs from a Viewray-MRIdian. They found their model to outperform affine,
B-spline and Demons image registration methods on a large set of about 629,000 frames.
However, they evaluated their models only using image metrics in contrast to Friedrich et
al. which used more relevant target contour metrics (see next section). Of relevance for the
candidate’s fourth publication (section 2.4) was also the model published by Chen et al. for
fast DIR of 3D medical images [56]. As can be seen in Figure 1.8, the authors leveraged swin
transformer blocks in the encoder to efficiently learn spatial correspondences in the input
fixed and moving images. Convolutions were instead used in the decoder to recover the
dense deformation field which was applied to the moving image to obtain the output image.
They could show that TransMorph outperformed a variety of other registration algorithms,
including both conventional and DL ones, when applied to register 3D brain MRI and 3D CT
to phantom images.

1.5 Evaluation metrics

In the following section, the evaluation metrics used in the candidate’s papers are defined.
Even though the task changed from motion prediction to target localization, the metrics
used are the same and measure the alignment between model outputs and ground truth
scalars/vectors or contours. Additionally, in all papers the model inference (forward-pass)
time was measured to ensure that a real-time application would be possible.

1.5.1 Root Mean Squared Error

The root mean squared error (RMSE) is a measure of the differences between predicted values
and ground truth values (e.g., target centroid positions). Mathematically, it is defined as the
square root of the average of the squared differences between the predicted and true values
[48]:

RMSE =

√√√
1
N

N∑
i=1

(yi − ŷi)2 (1.19)

where yi are the true values, ŷi are the predicted values, and N is the number of observations.
Smaller values indicate better model performance.

1.5.2 Maximum Error

The maximum error (ME) is the largest absolute difference between the predicted values and
the true values. It is defined as [48]:

ME = max
i
|yi − ŷi | (1.20)

This metric indicates the worst-case performance of a model with smaller values indicating
better model performance.
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1.5.3 Dice Similarity Coefficient

The dice similarity coefficient (DSC) is a measure of overlap between two contours, in this
thesis between the predicted contour and the manually annotated ground truth contour. It is
defined as [60]:

DSC =
2|A∩B|
|A|+ |B|

(1.21)

where A and B are the two sets representing the predicted and ground truth contours,
respectively. The value of DSC ranges from 0 to 1, with 1 indicating perfect overlap and 0
indicating no overlap.

1.5.4 Hausdorff Distance

The Hausdorff distance (HD) is a measure of the maximum distance between boundary points
in two sets. It is used in this thesis to indicate the greatest of all the distances from a point in
the predicted contour to the closest point in the ground truth contour. For two sets of points
A and B, the HD is defined as [61]:

HD = max
{
max
a∈A

min
b∈B
∥a− b∥,max

b∈B
min
a∈A
∥b − a∥

}
(1.22)

where ∥a−b∥ denotes the Euclidean distance between points a and b. To account for outliers, a
modified version of the HD using distance percentiles was used in this thesis. The α-percentile
HD is defined as:

HDα = max
{
Pα

(
{min
b∈B
∥a− b∥ | a ∈ A}

)
, Pα

(
{min
a∈A
∥b − a∥ | b ∈ B}

)}
(1.23)

where Pα denotes the α-percentile of the set of distances, i.e., the distances are ranked by
magnitude and a value is selected according to the desired percentile instead of taking the
maximum distance. Smaller HD values indicate a better alignment of the contours.



Chapter 2

Articles

2.1 Paper I: Offline and online LSTM networks for respiratory mo-
tion prediction in MR-guided radiotherapy

In this study different LSTM networks for the prediction of future 1D target centroid positions
in superior-inferior direction were implemented. The models were trained on respiratory
motion traces extracted from 2D cine MRI acquired at the Viewray-MRIdian at the LMU
University Hospital in Munich and tested on LMU and independent data obtained from a
Viewray-MRIdian at the Gemelli Hospital in Rome. It was shown that the LSTM which is
continuously re-optimized based on recent motion from a specific patient outperformed a
population-based LSTM, a population-based linear regression and a continuously updated
linear regression, which is considered the current state of the art. The investigated prediction
horizons of 250 ms, 500 ms and 750 ms imply that LSTM models could be used to successfully
compensate for the system latency in MRIgRT.

Reprinted with permission from "Lombardo, E., Rabe, M., Xiong, Y., Nierer, L., Cusumano,
D., Placidi, L., ... & Landry, G. (2022) Offline and online LSTM networks for respiratory
motion prediction in MR-guided radiotherapy. Physics in Medicine & Biology, 67(9), 095006".





motionmanagement, showing its potential to increase the dose delivery accuracy (Menten et al 2016) and the
technical feasibility of its implementation (Glitzner et al 2019,Uijtewaal et al 2021). On the other hand,
automatic gated beamdelivery by use of cineMRI has been clinically used on theMRIdian for years (Green et al
2018). To reduce treatment time, gating on the 0.35 TMR-linac ismostly performed in combinationwith
breath-holds. However, not all patients can performbreath-holds or can perform them in a reproducible way
(Persson et al 2019).MLC-tracking could address this limitation and achieve similar treatment accuracy as
gating in amore-time efficient way (Keall et al 2021).

To be able to fully exploit the potential ofMLC-tracking, the system latency needs to be accounted for in
real-time (Poulsen et al 2010). The total latency forMLC-tracking is defined as the time lag between the physical
targetmotion and the execution of theMLCmotion instructions (Keall et al 2021). Recently, Glitzner et al have
experimentally quantified the total latency for 4HzMRI-guidance withMLC-tracking to be about 350 ms for
the ElektaUnity (Glitzner et al 2019). For theMRIdian, beam-off latencies for gating have been quantified to
about 400 ms for theCobalt-60 version (Green et al 2018) and to about 250ms for the linac versionwith 4Hz
cineMRI (Kim et al 2020). To overcomeRT system latencies, severalmotion prediction algorithms have been
proposed in the past (Sharp et al 2004, Krauss et al 2011, Yun et al 2012): in a recent review study by Joehl et al a
continuously re-optimized (i.e. online) linear regression (LR)model was found to performbest on average
compared to othermotion predictors such as artificial neural networks or Kalman filters (Joehl et al 2020).

In the past few years, several different artificial intelligence (AI) algorithms have found relevant applications
in the field ofMR-guidedRT, e.g. in image segmentation, synthetic CT reconstruction or automatic online
planning (Cusumano et al 2021). Long short-termmemory (LSTM)networks (Hochreiter and
Schmidhuber 1997) are a class of AImodels whichwere designed to efficiently capture temporal dependencies in
the input data and are therefore ideally suited formotion prediction. In fact, studies have shown the potential of
LSTMs formotion prediction in RT based on infrared real-time positionmanagement data from a standard
linear accelerator (Lin et al 2019) and on opticalfiducialmarker data from a robotic radiosurgery system (Wang
et al 2018).

In this work, we developed LSTMnetworks and benchmarked their performancewith LRmodels for the
prediction of tumor centroid positions based on 4Hz cineMRI data acquired at two different institutes with a
MRIdianMR-Linac and aMRIdianMR-Cobalt-60. Specifically,motion curves frompatients treated at the
UniversityHospital of the LMUMunichwere used for training, validation and testing of themodels.
Additionally, patients treated at the Fondazione PoliclinicoUniversitario AgostinoGemelli in Romewere used
as independent testing set. Both the LSTMand the LRwere implementedwith offline and online training
schemes, taking into account feasibility in a 4Hz intra-fractionalmotionmanagement clinical scenario. To the
best of our knowledge, this is the first study inwhich LSTMswere applied toMR-guidedRT data and inwhich
the usage of continuously re-optimized LSTMswas investigated formotion prediction in RT.

2.Material andmethods

2.1. Respiratorymotion data
We retrospectively collected respiratorymotion data from2D+t cineMRIs across two institutions. Specifically,
cine videos from88 patients were collected at theDepartment of RadiationOncology of theUniversityHospital
of the LMUMunich. As the RT treatment received by every patient is usually split into several fractions and for
each fraction a cineMRI sequence is acquired, we obtained 556 videos from the 88 LMUpatients. All patients
were treatedwith theMRIdianMR-linac using breath-hold techniques and comprised tumors in the lung (37
cases), pancreas (22), heart (6), liver (20) andmediastinum (3). At the Fondazione PoliclinicoUniversitario
AgostinoGemelli in Rome, three patients with in total 15 cine videoswere collected. For this cohort, we only
selected patients treated in free-breathing using aMRIdianMR-Cobalt-60machine. Tumor sites comprised
lung (2) and pancreas (1).

For all cohorts, the 2D+t cineMRswere acquired at 4Hz in a sagittal planewith a balanced steady-state free
precession sequence (TRUFI; in-plane resolution 3.5× 3.5mm2;field-of-view 270× 270mm2 or 350× 350
mm2; slice thickness of 5, 7 or 10 mm). The information on the field-of-viewwas used to convert themotion
amplitudes from video pixels intomm.The cineMRswere exportedwith target and boundary contours in the
OGVvideo format, as supported by the vendor. This resampled and interpolated video file was then used for
analysis. The contours are present in every exported cineMR frame as they are used for the gated beamdelivery:
prior to treatment, a user defines a target structure (tumor) in a sagittal slice of the volumetricMRI, as well as a
boundary structure which defines the gating area where the beam is turned on.During treatment, the target
contour is continuously propagated to the current cineMR frame using fast deformable image registration by
the vendor’s software (Green et al 2018, Klueter 2019).
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2.2.Data pre-processing
2.2.1. Centroid position extraction
To obtainmotion trajectories from the cineMRIswe used an in-house developed software. Figure 1 summarizes
theworkflowof themotion extraction from the cineMR frames containing target (green) and boundary (red)
contours (a). Briefly, both target and boundary contourswere extracted from the videos using thresholds in
RGB-space (b). The contourswere thenfilled using thewatershed algorithm (Roerdink andMeijster 2000).
From the filled contourswe subsequently computed the superior–inferior (SI) tumor centroid position relative

Figure 1. Steps of centroidmotion extraction from the frames of the exported cineMRI video for a selected patient with a liver tumor.
(a)Cine frameswith target and boundary contours. (b)Extraction of contour pixels. (c) Filling and extraction of centroid position
(depicted by a cross). (d)Obtainedmotion curve. Steps (b) and (c)were also performed for the boundary contour.
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to thefixed boundary SI centroid position (c). Once the tumor SImotion curves (d)were obtained for all
patients, further pre-processingwas done, as detailed in the following sections.

2.2.2. Outlier replacement and filtering
First, we replaced outliers arising from incorrect filling of contours using slidingwindows of size three. In detail,
we computed themedian centroid positionwithin the current slidingwindow and if the absolute difference
between the central data point in thewindow and themedian valuewas a larger than an optimized threshold, we
replaced that point with themedian value of thewindow. For this step, the curves were temporarily normalized
such that a single threshold independent from the absolutemotion amplitudes could be used. The
normalizationwas then reversed as themotion inmm is needed to exclude cine videos with smallmotion (see
2.2.4). After that, the curves were smoothedwith amoving average filter applied on slidingwindows of size three.

2.2.3. Breath-holds and image pauses exclusion
For the LMUcohort only, we then analyzed themotion trajectories to detect the breath-holds. Using sliding
windows of size 20, we considered the current window a breath-hold if themedian deviation from themedian
centroid position of thewindowwas smaller than an optimized threshold. This informationwas then used to
exclude all breath-hold data points from themotion trajectories and keep only the free-breathing sub-
trajectories in between. Additionally, for this cohort we separated the data according to detected imaging pauses.
Cine imaging pauses are inherently part of theMRIdianMR-linac treatment: when the gantry rotates fromone
irradiation angle to the next, itsmoving electronics interferes with theMRI causing the image quality to degrade.
These degraded cineMRI frames are automatically excluded from the exported videos by the vendor, but their
start is indicated by displaying the statement ‘imaging paused’ on the top right of the video.We automatically
detected the frameswhere this statement was displayed and used this information to separate themotion
trajectories into two sub-trajectories. This avoids jumps in the curves arising froman imaging pause between
data points.

2.2.4. Small motion exclusion and data normalization
For both the LMUand theGemelli cohorts we excluded all data of cine videos forwhich the interquartile range
(IQR) of SI free-breathingmotionwas below 3.5 mm (in-plane resolution ofMRIdian cineMRIs), as this
motion ismore substantially affected by imaging noise. This led to the exclusion of 73 LMUand 5Gemelli
videos. Finally, we again normalized allmotion curves to the range 1 to+1 using theminimumandmaximum
tumor centroid position of each cineMRI. Thesemin/max values were saved to disk and used during evaluation
to undo the normalization of the predicted curves.

After pre-processing, we obtained 16.1 h ofmotion datawithout breath-holds (105.8 h if the breath-holds
were not excluded) for the LMUcohort and 1.5 h of free-breathingmotion for theGemelli cohort.

2.3.Motion predictionmodels
2.3.1.Mathematical formulation of prediction problem
Following the terminology used byRemy et al (2021), motion prediction is about obtaining future target
positions (at time t+Δt) from the current targetmotion (at time t). In general, for a given time step i, every
prediction task can be simply formulated as

=y xf , 1i iˆ ( ) ( )
where f () is amotion prediction algorithm, xi is the ith vector containing the input data window and yî is the ith
vector with the predicted output data window. The corresponding vector yi contains the ground truth output
data windowused to optimize the algorithm. In our case, x and y contain input and output SI target centroid
positions. The length of xwas treated as a hyper-parameter (see section 2.4.2). On the other hand, the length of ŷ
(and y) is automatically related to the forecasted time span. In this study, we investigated forecasts of 250 ms,
500 ms and 750 ms, corresponding to ŷ having length of 1, 2 or 3, respectively, for 4Hz imaging.

2.3.2. Linear ridge regression
Over the last decade, severalmotion prediction algorithms have been proposed to account for latencies in image
guidedRT. Joehl et alusedmotion traces from a robotic radiosurgery system to compare 18 different predictors
for 160 ms and 480 ms forecasts (Joehl et al 2020). On average, they found an (online) LRmodel to performbest,
sowe decided to leverage it as baselinemodel.Mathematically, the regression function is defined as (Krauss et al
2011)

b b= +x xf , 2T
0( ) ( )

4

Phys.Med. Biol. 67 (2022) 095006 E Lombardo et al

2.1. Paper I: Offline and online LSTM networks for respiratory motion prediction in MR-guided
radiotherapy 23



where the vectorβ contains the parameters of the regressionmodel. The loss function to beminimized to solve
the regression is given by

åb bl= - +
=

xL y f , 3
i

N

i i
1

2 2( ) ( ( )) ∣∣ ∣∣ ( )

whereN is the number of input/output trainingwindows andλ is an L2-regularization parameter. Ifλ≠ 0, the
term ridge regression is usually used.

If we define amatrixX such that its rows equal the inputwindow vectors xi andY amatrix with the true
outputwindow vectors yi, the loss function L(β) is analytically solved by the optimal parameters

*b l= + -X X I X Y , 4T T1( ) ( )
where I is the identitymatrix. Therefore, the LRmodel has a closed form solution and does not need iterative
optimization.

2.3.3. LSTM
Recurrent neural networks (RNN) are a class ofmachine learning algorithms ideally suited for sequential input
data (e.g. time series data). Compared to artificial neural networks or convolutional neural networks, recurrent
neural networks have an extra set of weights which connects hidden layers fromone time point to the next.
However, the original RNNmodule comprising a simple fully connected layer was found to be limited due to
unstable gradient issues when back-propagating over longer input sequences (Shen et al 2020). Therefore,more
advancedRNNarchitectures have been proposed and themostwidely adopted is the LSTMmodel (Hochreiter
and Schmidhuber 1997), whichwas specifically designed tomore easily learn longer sequences of data.

The repeatingmodule of LSTMs is shown infigure 2. LSTMs introduce thememory cell state ct, which
allows a stable back-propagation of errors and straightforward flowof information. To remove or add
information to the cell state, structures called gates are used. Intuitively, the forget gate ft is used to keep/discard
past information in ct 1 while the input gate it allows tofilter information in the newmemory cell state c t˜ . The
previous gates andmemory are then combined to build thefinalmemory cell state ct. Thefinalmemory cell is
filteredwith the output gate ot to keep/discard some information and build the hidden stateht.Mathematically,
at a specific time step t, the LSTMmodule is described as follows:

s= + +-f W x U h bForget gate: 5t
f

t
f

t
f

1( ) ( )
s= + +-i W x U h bInput gate: 6t

i
t

i
t

i
1( ) ( )

= + +-c W x U h bNew memory cell state: tanh 7t
c

t
c

t
c

1˜ ( ) ( )
 = +-c f c i cFinal memory cell state: 8t t t t t1 ˜ ( )

s= + +-o W x U h bOutput gate: 9t
o

t
o

t
o

1( ) ( )
=h o cHidden state: tanh , 10t t t( ) ( )

where b,W andU denote the biases, input windowweights and recurrent weights which are learned during the
optimization process. The symbole represents element-wisemultiplication betweenmatrices/vectors. The
sigmoid functionσ(x)was used for the gates and the hyperbolic tangent functionwas used to generate the states.
For each time step, the hidden state of one LSTM layer is used as input for the next LSTM layer. For the last

Figure 2. Sketch depicting LSTMmodules in the first hidden layer of an LSTMnetwork. The bold arrow symbolizes the flowof
information in the cell state.
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hidden layer of the LSTM, the hidden state of the last time point tf is input to a fully connected layer to build the
predicted outputwindow

= +y W h bPredicted output: , 11i
t

FC FCfˆ ( )

whereWFC and bFC denote theweightmatrix and bias vector for the fully connected layer.
In this study, a stateless LSTMwas implemented, whichmeans that during optimization the hidden state and

the cell state were cleared after every batch of data. The LSTMarchitecture was inspired by the one used by Lin
et al (2019). Specifically, we performed our hyper-parameter optimization based on the range of values used in
their hyper-parameter search.More details can be found in section 2.4. Figure 3 schematically shows the
working principle of the proposed LSTM.At every time point, a single SI tumor centroid position is given as
input for asmany points as the length of the input data window. The LSTMmodules in the hidden layer (green
boxes) process the time-dependent information as shown infigure 2 until the last LSTMmodule is reached. The
hidden vector which is output by the last LSTMmodule ismapped via a fully connected layer to the predicted
outputwindow following equation (11). Note that infigure 3 only one hidden layer is shownwhereas this
numberwas treated as a hyper-parameter in our optimizations (see section 2.4.2).

2.4.Model optimization
2.4.1. Data subdivision
To optimize and evaluate themodels we split the LMUdata into training, validation and testing sets. Specifically,
we assigned themotion trajectories belonging to 60%of the patients to the training set (52 patients), 20% to the
validation set (18 patients) and the remaining 20% to the testing set (18 patients) and did this procedure only
once at the beginning. This splitting roughly also led to 60%of themotion trajectories being in training (9.1 h),
20% in validation (4.0 h) and 20% in testing (3.0 h). As theGemelli cohort was smaller (1.5 h) but at the same
time in free-breathing, we decided to use this dataset as an independent additional testing set. Finally, we also
applied the bestmodels trained/validated on the LMUdatawithout breath-holds to the LMU testing set without
excluding the breath-holds during pre-processing.

2.4.2. Hyper-parameter search
Tofind the optimal set of hyper-parameters for both the LSTMand the LRwe repeatedly performed training and
validationwhile varying the parameters for all three analyzed forecasts and for all four training strategies (see
section 2.4.3) separately. For the LSTM, the following hyper-parameters were varied, based on the hyper-
parameter search performed by Lin et al:

• Number of layers: the number of hidden layers of the LSTMwas chosen among the following values {1, 3, 5, 10}.

• Dropout: the dropout rate on the outputs of each hidden layer (but the last one)was sampled from the set
{0, 0.1, 0.2}.

Figure 3.The proposed LSTMmodel takes a vector xiwith inputmotion data (black) and outputs the predictedmotion yî (red). In
this example, the input windowhas length equal to eight (hyper parameter) and the output windowhas length equal two (i.e. 500 ms
forecast given the data sampling is at 4Hz). Themean squared error (MSE) loss between the predicted outputwindow yî and the true
output window yi (blue) is used to optimize the LSTM.
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• Learning rate: the learning rate of the optimizer was sampled from the set {1× 10 4, 5× 10 4, 1× 10 3,
5× 10 3, 1× 10 2}.

• Batch size: the batch size, i.e. the number of input windows fed to the network simultaneously, can be varied
only for the offline trained LSTM (see section 2.4.3) andwas set to either 64 or 128.

• L2-regularization: the L2-regularization parameterλ (also calledweight decay)was sampled from the set {0,
1× 10 6, 1× 10 5, 1× 10 4}.

All optimizations for the LSTMswere carried out using theAdamoptimizer (Kingma andBa 2015)with a
normalizedmean squared error (MSE) loss function and learning rates from the set shown above.We set the
number of features in the hidden layer vector ht to 15 like Lin et al. No batch normalizationwas used. For the LR,
the following hyper-parameter was varied in logarithmic steps over a large range of values:

• L2-regularization: the L2-regularization parameterλwas sampled from the set {1× 10 5, 1× 10 4, 1× 10 3,
1× 10 2, 1× 10 1, 1, 10}.

Both for the LSTMand for the LRwe varied the length of the input datawindow x between 8, 16, 24 and 32 data
points, corresponding to 2, 4, 6 and 8 seconds of pastmotion.

2.4.3. Training strategies
Retrainingmodels on recentmotion data has been shown to improve the predictive performance (Krauss et al
2011, Sun et al 2020). Thus, two different training strategies were investigated for the LSTMand for the LR
model.

• Offline LSTM: the offline LSTMoptimizationwas carried out following the typicalmachine learning training/
validation/testing subdivision. Themodel was iteratively optimized on the training set for 600 epochswhile
monitoring training and validation losses. If the validation loss improved, themodel weights were saved to
disk. If the validation loss did not improve for 100 epochs, the optimizationwas stopped, a technique know as
early stopping. For final inference, we loaded theweights and hyper-parameters of the best performingmodel
on the validation set and applied it unchanged to the testing set.

• Offline+online LSTM: to allow adaptation to recentmotion patterns, we continuously retrained the LSTMon
current data. Specifically, wefirst loaded theweights of a previously optimized offline LSTM. The LSTMwas
then re-optimized on the last 20 s of validation data using a sliding set of validation input/outputwindows
updatedwith afirst-in-first-out approach, as shown infigure 4. The online optimization of the LSTMwas
done for 10 epochs, taking about 150 ms. This would allow an implementation in a 4Hz image acquisition
clinical scenario. To prevent the iterative optimization to introduce an additional latency, within the 250 ms
between one cineMRI frame and the next, we performed the prediction before optimizing the LSTM. To
calculate the validation loss we used the ground truth data point lying 250 ms, 500 ms or 750 ms (depending
on the forecast) in the futurewith respect to the last centroid position in the currently used 20 s of optimization
data. For final inference, we loaded the offline LSTM, set the hyper-parameters leading to the best result on the
validation set and continuously retrained and evaluated themodel on the testing set.

• Offline LR: the offline LR training is analogous to the offline LSTM training but for the fact the the LR is solved
analytically while the LSTM is iteratively optimized. Specifically, the LRwas solved on the training set and then
applied unchanged to validation set to perform the hyper-parameter search. For final inference, as for the
offline LSTM,we loaded theweights and set the hyper-parameters of the best performingmodel on the
validation set and applied it unchanged to the testing set.

• Online LR: on the other hand, the online LR is different from offline+online LSTM.As no iterative fine-tuning
is needed for the LR, noweights from a pre-trained offline LRwere loaded. The online LRwas continuously
solved ‘from scratch’ based on the last 20 s of validation data using a sliding set of validation input/output
windows updatedwith a first-in-first-out approach (figure 4). As solving the LR is simply amatrix
multiplication (see equation (2)), it takes less than 1 ms. As this additional latency is not significant, for the
online LRwe performed the prediction after the optimization, as illustrated infigure 4. This is advantageous as
themodel’s prediction can take into account themost recently acquired data point.

Asmentioned in section 2.3.1, our data was subdivided in inputwindows xwhere the number of entries len
(x) is a hyper-parameter. To obtain a set of windowswith a total duration of 20 s to be used for online training,
we need several input windows. Given that every inputwindow is shifted by one and that the cine imaging is
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performed at a frame rate of 4Hz, the number of input windows needed is given by

= - -xNr. input windows 20 4 len 1. 12· ( ) ( )
Therefore, 73 inputwindows are needed if we choose len(x)= 8 as infigure 4. This number corresponds to the
batch size for the offline+online LSTM,which is thus not freely selectable if we fix the duration of the online
optimization data to 20 s. The number of input windows between the last windowused for optimization and the
windowused for prediction is given by the current forecasted time span. For example for the 500 ms forecast
scenario shown infigure 4, this difference is equal to two (e.g. step 0: x72 is the last window in the optimization
matrix and x74 is thewindowused for prediction). For the 250 ms forecast this difference is one and for the
750 ms forecast this difference is equal to three.

2.5. Loss and evaluationmetrics
The loss function used to optimize the LSTMwas theMSE,which is defined as

å= -
=

y y
B

MSE
1

, 13
i

B

i i
1

2( ˆ ) ( )

whereB is the batch size, yi is the vector with the true outputwindow and yî is the vector with the predicted
outputwindowof centroid positions. Note that theMSEwas computed using normalized outputwindows.

The rootmean squared error (RMSE) andmaximumerror (ME) errorwere used to evaluate the LSTMand
LRpredictive performance on the validation and testing sets. Prior to the computation of the evaluationmetrics,
the normalization of the ground truth and predicted curves was reversed, such that themetrics are inmm. The
RMSE andMEwere calculated on a treatment fraction basis (oneRMSE/MEper cineMRI video) and are
defined as

å= -
=N

y yRMSE
1

14
i

N

i i
1
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Figure 4.Workflowof the online optimization for the LSTMand the LRmodels, shown for a forecasted time span of 500 ms.On the
top, two input windows and the corresponding predicted and true output windows are shown. As the two input windows are shifted
by one data point (slidingwindow approach), they are labeled xi and xi+1. Given an input window size of 8, for each optimization step,
73 input and output windows shifted by one data point are contained in thematricesX andY, such that the total duration of training
windows amounts to 20 s (see equation (12)).
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whereN is the number of data points in themotion curves belonging to a single cineMRI, yi is the true future
centroid position and yî is the predicted centroid position. The analysis was done using only the last element of
each outputwindow,which is the hardest to predict (Sharp et al 2004).

Finally, we averaged over the RMSEs/MEs of different fractions to build themeanRMSE/MEwith
corresponding standard deviation.

2.6. Statistical tests
To analyze if there is a statistically significant difference between the RMSE values obtainedwith the different
models on the different testing sets, non-parametric Friedman tests were performed (Friedman 1937). A p-value
<0.05was considered significant. If the Friedman test revealed a significant difference, we consecutively
performed a post-hocNemenyi test (Nemenyi 1963) to infer whichmodel obtained significantly better RMSEs
in a pair-wise fashion.

2.7. Implementation details
All code used for this studywaswritten in Python 3.8.5 and is freely available: https://github.com/LMUK-
RADONC-PHYS-RES/lstm_centroid_prediction. To build and optimize the LSTMs, the PyTorch library
(Paszke et al 2017) version 1.8.0was used. Training for both the offline and the offline+online LSTMwas carried
out on anNVIDIAQuadroRTX8000GPUwith 48GBofmemory. The LRwas built and solved using the scikit-
learn library (Pedregosa et al 2011) version 0.24.1. The LRwas trained on an Intel XeonGold 6254 (Cascade
Lake-EP) 18-CoreCPU.

3. Results

In terms of prediction speed, a forward pass with an LSTM takes about 5 mswhile for the LRmodels less
than 1 ms.

3.1. Validation
Figure 5 shows the normalizedMSE losses for an optimization of an offline LSTMand an offline+online LSTM.
For the shown offline LSTM, the best validation loss was obtained at epoch 89which led to early stopping of the
optimization at epoch 189.On the other hand, no validation loss wasmonitored for the offline+online LSTM.As
shown infigure 4, within one training stepwefirst performed the prediction and then iteratively re-optimized
the LSTM for 10 epochs (see section 2.4.3), as this is themaximumnumber of epochswhichwould still allow a
re-optimization in a 4Hz clinical scenario.

Table 1 shows the best RMSEs obtainedwith the four differentmodels on the validation set. The
corresponding set of best hyper-parameters for eachmodel is shown in the appendix (tables A1, A2 andA3). For
all three forecasted time spans, the offline+online LSTMachieved the best performance, reaching basically the
same as the offline LSTM for the 250 ms forecast, and slightly better performance for the 500 ms and 750 ms
forecasts. The best performing LRwas the offline one, however its performancewasworse than both LSTM
training schemes.

Figure 5.Training and validation losses for an offline LSTM (left) and training losses for one step of an offline+online LSTM (right).
The best validation loss for the offline LSTMwas achieved at epoch 89, as highlighted by the arrow.
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3.2. Testing
Figure 6 shows for two selected patients of the LMU testing set (datawithout breath-holds) ground truth versus
predicted respiratorymotion trajectories for the best LSTMmodel (offline+online) and the best LRmodel
(offline LR) for all the forecasted time spans.Qualitatively, no noticeable difference is seenwhen comparing the
best LR and the best LSTM for the 250 ms forecast. On the other hand, both for the 500 ms forecast and for the
750 ms one can see how the LSTMoutperforms the LR especially when it comes to predicting steep inhalations/
exhalations. Similar observations can bemadewhen looking at figure 7 displaying true vs predicted curves for
Gemelli testing patients. Althoughwe noticed that the LSTMovershootsmore often than the LR, the former is
able tomore quickly adapt to changes in themotion trajectories (from steeper/shallower inhalations/
exhalations to irregularities)which leads to an overall smaller error, as can be seen in the error plots infigures 6
and 7. Table 2 shows the RMSEs obtainedwith the four best validationmodels on the LMU testing set (data
without breath-holds). The offline+online LSTMwas confirmed the bestmodel for all three forecasts. These

Figure 6.True versus predictedmotion sub trajectory for a regularly (left) and an irregularly (right) breathing LMU testing patient
(datawithout breath holds). Results are displayed for the offline+online LSTM in red and the offline LR in blue for the 250 ms (a), the
500 ms (b) and 750 ms (c) forecasts. The difference between the true curve and LSTM/LRpredicted curve is shown below the
correspondingmotion curves.

Table 1.Mean and standard deviation of RMSEs for the validation set. TheRMSE of the
best performingmodel is shown in bold for each forecasted time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast

RMSE [mm]

Offline LSTM 0.55 ± 0.44 1.40 ± 1.00 2.58 ± 1.71

Offline+online LSTM 0.54 ± 0.43 1.36 ± 0.94 2.54 ± 1.63

Offline LR 0.63 ± 0.49 1.68 ± 1.11 3.09 ± 1.91

Online LR 0.74 ± 0.53 1.76 ± 1.13 3.15 ± 1.87
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results were confirmed alsowhen looking atMEs, as shown in table A4 in the appendix. In general, allmodels
performed slightly better than during validation both in terms ofmean and standard deviation of the RMSE.

When applying the Friedman test, we found a significant difference among themodels for all forecasts and
testing sets. For the LMU testing set without breath-holds, the post-hocNemenyi test yielded the p-values shown
in table 3. The bestmodel in terms of RMSEs, i.e. the offline+online LSTMwas found to perform significantly
better than both LRmodels while therewas no significant difference between the offline LSTMand the offline
+online LSTM for all investigated forecasts.

As shown in table 4, the results obtained on the LMUvalidation and testing set (datawithout-breath-holds)
were confirmedwith theGemelli testing set (free-breathing data). The offline+online LSTMwas found to
performbest for all three forecasted time spans followed by the offline LSTM. This time, the online LR performed
better than the offline LR and reached the sameRMSE as the offline LSTM for the 750 ms forecast. Table 5 shows

Figure 7.True versus predictedmotion sub trajectory for aGemelli testing patient breathing normally atfirst but then changing his
breathing amplitude (left) and a patient with small baseline drifts (right) (free breathing data). Results are displayed for the offline
+online LSTM in red and the online LR in blue for the 250 ms (a), the 500 ms (b) and 750 ms (c) forecasts. The difference between the
true curve and LSTM/LRpredicted curve is shown below the correspondingmotion curves.

Table 2.Mean and standard deviation of RMSEs for the LMU testing set without breath
holds. TheRMSE of the best performingmodel is shown in bold for each forecasted
time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast

RMSE [mm]

Offline LSTM 0.49 ± 0.29 1.24 ± 0.70 2.34 ± 1.25

Offline+online LSTM 0.48 ± 0.28 1.20 ± 0.65 2.20 ± 1.12

Offline LR 0.54 ± 0.30 1.42 ± 0.78 2.61 ± 1.38

Online LR 0.64 ± 0.38 1.54 ± 0.79 2.73 ± 1.41
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the p-values obtainedwith theNemenyi test on theGemelli testing results. This time, the offline+online LSTM
was found to be significantly better than the offline LR for all forecasts and significantly better than the online LR
for the 250 ms and the 500 ms forecast.

Finally, we also applied the bestmodels obtained on the LMUdatawithout breath-holds to the LMU testing
set with breath-holds. As shown in table 6, the offline+online LSTMagain outperformed all othermodels for all
three forecasts followed by the offline LSTMand the offline LR.While these threemodels substantially improved
their performance compared to the LMU testing set without breath-holds (table 2), the online LR evenworsened
its performance for the 500 ms and 750 ms forecasts.When applying theNemenyi test, we found significant
differences between all pairwisemodel combinations excluding the offline LSTMversus the offline LR, as shown
in table 7.

Table 4.Mean and standard deviation of RMSEs for theGemelli free breathing testing
set. TheRMSE of the best performingmodel is shown in bold for each forecasted
time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast

RMSE [mm]

Offline LSTM 0.47 ± 0.12 1.14 ± 0.29 2.02 ± 0.49

Offline+online LSTM 0.42 ± 0.13 1.00 ± 0.30 1.77 ± 0.54

Offline LR 0.57 ± 0.14 1.52 ± 0.34 2.76 ± 0.71

Online LR 0.53 ± 0.17 1.22 ± 0.30 2.02 ± 0.49

Table 5.P values obtained from the post hocNemenyi test for theGemelli free breathing testing set for all possible pairwisemodel
comparisons. Significant p values (< 5e 2) are denotedwith an asterisk.

Comparison 250 ms forecast 500 ms forecast 750 ms forecast

Model 1 Model 2 p value

Offline LSTM Offline LR 3e 2* 3e 2* 1e 2

Offline LSTM Online LR 2e 1 8e 1 9e 1

Offline+online LSTM Offline LR 1e 3* 1e 3* 1e 3*

Offline+online LSTM Online LR 3e 3* 2e 2* 8e 2

Offline LSTM Offline+online LSTM 4e 1 2e 1 8e 2

Offline LR Online LR 4e 1 6e 2 1e 2*

Table 6.Mean and standard deviation of RMSEs for the LMU testing set with breath
holds. TheRMSE of the best performingmodel is shown in bold for each forecasted
time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast

RMSE [mm]

Offline LSTM 0.34 ± 0.17 0.83 ± 0.45 1.59 ± 0.95

Offline+online LSTM 0.30 ± 0.17 0.74 ± 0.39 1.34 ± 0.74

Offline LR 0.36 ± 0.19 0.96 ± 0.51 1.83 ± 1.03

Online LR 0.63 ± 0.65 1.39 ± 0.93 2.81 ± 2.12

Table 3.P values obtained from the post hocNemenyi test for the LMU testing set without breath holds for all possible pairwisemodel
comparisons. Significant p values (<5e 2) are denotedwith an asterisk.

Comparison 250 ms forecast 500 ms forecast 750 ms forecast

Model 1 Model 2 p value

Offline LSTM Offline LR 3e 1 3e 2* 2e 1

Offline LSTM Online LR 6e 1 1e 1 3e 1

Offline+online LSTM Offline LR 1e 3* 1e 3* 1e 3*

Offline+online LSTM Online LR 2e 3* 1e 3* 1e 3*

Offline LSTM Offline+online LSTM 9e 2 6e 2 6e 2

Offline LR Online LR 9e 1 9e 1 9e 1
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Animated figureswith sliding input, true output and predicted output windows for a testing patient from the
LMU set without breath-holds, theGemelli set and the LMU set with breath-holds respectively are shown in the
onlinematerial (stacks.iop.org/PMB/67/095006/mmedia).

4.Discussion

LSTMnetworks have been successfully applied for time series prediction inmany fields,making themone of the
most popular versions of RNNs (Shen et al 2020). In this study, we applied LSTMs to forecast tumor centroid
positions based on respiratorymotion trajectories obtained from0.35TMR-linacs. The fact that the proposed
offline+online LSTMoutperformed all the othermodels for all testing cohorts and for all forecasted time spans
confirms our hypothesis that LSTMs are well suited formotion prediction inMR-guided RT. The offline+online
LSTMwas found to perform significantly better than the best performing LR in 8/9 testing scenarios. The only
scenariowhere the better RMSEof the offline+online LSTMwas not significant compared to the best LRwas for
the 750 ms forecast with theGemelli testing data.However, theGemelli testing set presents less data compared
to the other two testing sets, as there are less videos over which the RMSE is calculated.

As expected from literature (Murphy and Pokhrel 2009, Sun et al 2020), the offline+online LSTMachieved
better performance than the offline LSTM for all testing cohorts when looking at RMSE. Additionally, for the
LMU testing set with breath-holds this difference was statistically significant. As this testing cohort differsmore
substantially from the training and validation sets than the other two, we expected this improvement. In general,
we conclude that iterative fine-tuning using the latest respiratory patterns is beneficial also for LSTMs. The
offline+online LSTMwas implemented such that online optimization took about 150 ms and could therefore be
used in a 4Hz cineMRI guidedRT treatment.

Allmodels achieved bettermeanRMSEon the LMU testing set with breath-holds included. This is expected
since this data contains long time intervals offlatmotion trajectories, which are easy to predict.

For theLMUtesting setwithoutbreath-holds, the offlineLR regressionwas found toperformbetter than the
onlineLR (see table 2), afinding indisagreementwith literature (Krauss et al2011,Uijtewaal et al2021).However, the
differencewasnot significant, as shown in table 3.When comparing themeanRMSEobtained for the 500ms forecast
withour offlineLR to themeanRMSEobtainedwith the onlineLRbyUijtewaal et al for the 500ms forecast,we can
see that bothmodels achieved a valueof about 1.5mm.Furthermore, the onlineLRwas found toperformbetter than
the offlineon theGemelli testing set,which likely differs from theLMUtraining set. Additionally, the free-breathing
Gemelli datamight be easier topredict than theLMUdatawithout breath-holds as the latter consists of sub-
trajectories of free-breathingmotion in-betweenbreath-holds and can thus contain irregular breathingor steep
inhalations and exhalations. This could also explainwhy theonlineLRperformedbetter on theGemelli testing set.

To compare the performance obtained in this studywith the one obtained by the LSTM implemented by Lin
et al, we report here normalized RMSEs obtainedwith our offline+online LSTM for the 500 ms forecast. The
normalizationwas done using themin-max amplitudes saved to disk during pre-processing.We found amean
normalized RMSEof 0.086 for the LMU testing set without breath-holds and 0.107 for theGemelli testing set.
These results are in agreementwith themean testing RMSEof 0.139 found by Lin et al (2019). Furthermore, we
can approximately compare theRMSE obtainedwith our offline+online LSTM for the 500ms forecast with the
RMSEobtained byWang et al using a Bi-LSTM for a 400 ms forecast (Wang et al 2018). Since they found amean
validation normalized RMSEof 0.081 (no testing set was used, unlike in this study), we conclude that our offline
+online LSTM is comparable.

In general, we noticed large standard deviations of the RMSEs. This suggests that substantial performance
differencesmight be observed among different patients. The standard deviations for theGemelli testing set and
the LMU testing set with breath-holds were smaller than for the LMU testing set without breath-holds. As the
Gemelli data consists of regular free-breathing and the LMUdatawith breath-holds largely consists offlat

Table 7.P values obtained from the post hocNemenyi Friedman test for the LMU testing set with breath holds for all possible pairwise
model comparisons. Significant p values (< 5e 2) are denotedwith an asterisk.

Comparison 250 ms forecast 500 ms forecast 750 ms forecast

Model Model 2 p value

Offline LSTM Offline LR 3e 1 2e 3* 9e 3*

Offline LSTM Online LR 1e 3* 1e 3* 1e 3*

Offline+online LSTM Offline LR 1e 3* 1e 3* 1e 3*

Offline+online LSTM Online LR 1e 3* 1e 3* 1e 3*

Offline LSTM Offline+Oonline LSTM 1e 3* 1e 3* 1e 3*

Offline LR Online LR 1e 3* 1e 3* 1e 3*
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motion regions, we hypothesize that this decreased variability in the data leads to smaller standard deviations.
The fact that themean and standard deviation of the validation RMSEwere larger than the LMU testing results
(compare tables 1 and 2), might be explained by the fact that by chance, when splitting the LMUcohort in
training, validation and testing,more irregularmotion curves were assigned to the validation compared to the
testing set.

As observed in several studies (Sharp et al 2004, Seregni et al 2016,Wang et al 2018,Uijtewaal et al 2021), the
predictive performance decreasedwith increasing forecasted time span.However, sub-resolution accuracy
(<3.5 mm)was still reached for all three forecasts. The goodRMSEof about 1 mmof the offline+online LSTM
for the 500 ms forecast shows that thismodel could be used to successfully account for the system latencies
found byGlitzner et al (2019)when performingMLC tracking on an ElektaUnityMR-linac.

The current study has a few limitations. The first is that all models were optimized and applied onmotion
curves which were normalized based on the globalminimum andmaximum SI centroid position of each cine
video, following (Lin et al 2019, Yu et al 2020). In clinical practice of course, the globalminimum and
maximum for the entire fraction cannot be known before the treatment ends. However, with the 0.35 TMR-
linac, right before the treatment starts a preview cineMRI is acquired (Klueter 2019) for automatic selection
of a tracking key frame, to inspect if the gating window needs to be adjusted and similar aspects. This cine
MRI could also be used to get themin-max amplitudes to be used for the normalization of themotion curves
acquired for the treatment. A small window size (equal to three)was taken for both the outlier replacement
and themoving average filter tomake an implementation in a real-time clinical scenario possible. The
second limitation consists in the fact that ourmodels only predict the future centroid position in SI direction.
While this could already be used for centroidMLC tracking in parallel direction, where theMLC shape is
shifted to the predicted SI position, latencies for deviations in anterior-posterior direction would not be
accounted for. To achieve this, a secondmodel predicting the other direction could be run in parallel.
Alternatively, the anterior-posteriormotion could be included as input, a possible extension to themodels
presented in this work. However, only predicting centroid positions would not allow formore advanced
forms of dynamicMLC tracking (Ge et al 2014), where theMLC shape is adapted the predicted tumor
location and shape, possibly taking into account in-plane rotations and deformations (Keall et al 2021). In a
future study, we plan to extend the proposed LSTM to directly predict future 2D cineMR frames, thus
allowing for dynamicMLC tracking. Finally, ourmodel cannot predict out-of-planemotion as the cineMRIs
are acquired in a single sagittal plane. However, severalmethods have been proposed to obtain time-resolved
volumetricMRI (Fayad et al 2012, Stemkens et al 2016, Paganelli et al 2018a, Rabe et al 2021), whichmight be
combined with ourmotion predictionmodel in future studies.

5. Conclusions

In this study, we developed LSTMs for SI tumor centroid position prediction based on cineMRIs acquiredwith
0.35 TMRIdianmachines from two different institutions and showed that they outperformed state-of-the-art
LR algorithms for all investigated forecasts (250 ms, 500 ms and 750 ms). The proposedmodels generalized their
predictive performance to different testing sets with different breathing patterns, ranging from free-breathing to
treatments with prolonged breath-holds. The continuously re-optimized offline+online LSTMnetwork
achieved superior performance in all tasks compared to offline optimizedmodels. In conclusion, LSTMswere
shown to have great potential as respiratorymotion predictors to account for the system latencies present in
MR-guided RTwithMLC tracking.
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2.2 Paper II: Evaluation of real-time tumor contour prediction us-
ing LSTM networks for MR-guided radiotherapy

In this follow-up study to the first publication, using the same datasets the models were
extended to predict the future 2D target contour instead of the 1D centroid position. Specifi-
cally, three LSTMs were implemented: 1) the LSTM-shift model is an extension of the model
from the previous study to predict both the centroid in superior-inferior and in anterior-
posterior direction. The difference between the predicted centroid position and the last
available centroid position is used to rigidly shift the 2D contour obtained from the Viewray
target localization algorithm. 2) an encoder-decoder convolutional LSTM predicting directly
the future 2D contour and 3) an encoder-decoder convolutional LSTM predicting future 2D
deformations which are used to warp the available tumor contour, similarly to Romaguera et
al. [59]. As the convolutional LSTMs have more parameters, only population-based training
was performed, while the LSTM-shift was continuously re-optimized as in the previous study.
It was shown that the two LSTM-shift models, and in particular the patient-specific one,
performed the best. This suggests that no large changes in the tumor contour happen from
the last available frame to the predicted frame 500 ms in the future.

Reprinted with permission from "Lombardo, E., Rabe, M., Xiong, Y., Nierer, L., Cusumano,
D., Placidi, L., ... & Landry, G. (2023) Evaluation of real-time tumor contour prediction using
LSTM networks for MR-guided radiotherapy. Radiotherapy and Oncology, 182, 109555".





while a proof-of-principle study showed the feasibility of adaption
of the MLC aperture to account for tumor deformation [14].

To fully leverage MLC-tracking, the system latency has to be
accounted for in real-time [15]. The latency is defined as the time
difference between the motion of the tumor and, in the case of
MLC-tracking, the execution of the MLC motion [7]. Experimental
studies have found an MLC-tracking end-to-end latency of
350ms for the Unity MR-linac [16], 330ms for the Australian
MR-linac [17] and 340ms for the linac-MR (University of Alberta)
[18]. In the last years, several motion prediction algorithms have
been proposed to compensate for system latencies in RT [19–26].
The presented algorithms take a series of past target positions as
input and predict the future target positions in 1D, 2D or 3D, there-
fore providing latency compensation via rigid shifts of the MLC. On
the other hand, only few studies have been conducted to predict
future tumor contours (or equivalently binary masks) [27–29].
Romaguera et al. introduced an artificial intelligence (AI) model
to predict deformation vector fields which they used to obtain
future cine MRI frames (at a diagnostic 3T scanner), however, they
did not specifically investigate contour prediction [30].

Recently, AI models have been successfully applied on a variety
of tasks in medical physics [31–35], including MRgRT [36]. For
motion prediction, a class of AI models called Long Short-Term
Memory (LSTM) networks has been shown to perform best in a ser-
ies of studies [23,24,26], as they are designed to take into account
long-term temporal dependencies in the input data [37]. In a pre-
vious study [26], we showed that an LSTM model outperformed a
state-of-the-art linear regression for the prediction of superior-
inferior (SI) tumor center of mass positions. Shi et al. implemented
the convolutional LSTM, which by construction can handle both
temporal and spatial correlations in the input data and showed it
to outperform the LSTM on a precipitation forecasting problem
[38].

In this work, we compared three different AI-based contour pre-
diction models using LSTM which could be used for deformable
MLC-tracking during MRgRT. Compared to previous studies [27–
29], this is the first time that AI algorithms are implemented and
compared for this task and their performance is evaluated on clin-
ically acquired contours. Compared to the previous study [26], we
extended a classical LSTM to predict future tumor positions in two
directions of motion and to shift an existing contour in real-time
and compared it with two variants of convolutional LSTM net-
works [38,30] directly providing the future tumor contour. The
models were evaluated with multiple overlap and distance metrics
to investigate the accuracy for deformable MLC-tracking using data
acquired during patient treatments with 0.35 T MR-linacs at two
institutions.

Materials and methods

Datasets

We retrospectively collected 2D + t cine MRIs from 88 patients
treated at the Department of Radiation Oncology of LMU Munich.
Tumor sites comprised lung (37), pancreas (22), heart (6), liver
(20) and mediastinum (3) and all patients were treated using
breath-hold and gating with the MRIdian MR-linac. We also col-
lected imaging data of 3 patients irradiated at Gemelli Rome in
free-breathing with the MRIdian MR-Cobalt-60 machine. For these
patients, tumor sites comprised lung (2) and pancreas (1). All cine
MRIs were acquired at 4Hz in a sagittal plane with a balanced
steady-state free precession sequence (TrueFISP; in-plane resolu-
tion 3:5� 3:5mm2; field-of-view 270� 270mm2 or
350� 350mm2; slice thickness of 5, 7 or 10mm) and exported in
the OGV video format as supported by the vendor. Each video con-
tained the up-sampled cine MRI with tracking target and gating

boundary contours (color-coded). The tracking target contours
were obtained during treatment by propagating the contour from
a reference frame to the current frame with a deformable image
registration algorithm by the vendor [39,40]. These contours were
used both as input and as ground truth output (at later time points)
for model optimization. Informed consent was obtained from all
patients and all methods were carried out in accordance with rel-
evant ethics guidelines and regulations.

Data pre-processing

To extract the target tracking contours from the OGV video data,
we used the same in–house software developed previously [26]. In
contrast to the former study, where we extracted only the SI center
of mass motion trajectories, we also extracted the anterior-
posterior (AP) motion trajectories and additionally kept the binary
masks obtained from the extracted contours. More details can be
found in the supplementary material.

In summary, after pre-processing we obtained 4.8h of binary
mask and SI/AP center of mass motion for the LMU cohort without
breath-holds (40.3h if the breath-holds were included) and 2.9h of
motion for the free-breathing Gemelli cohort.

Motion prediction models

Motion prediction can be formulated as the task of obtaining
future data points from past data points at a given time step t:

ŷt ¼ f ðxtÞ ð1Þ
where f ðÞ is a predictor algorithm, xt is the t-th fixed window of
input data and ŷt is the t-th fixed window of predicted output data.
In this study, an element of the input/output window can be a vec-
tor with the centroid coordinates in SI and AP or a 2D array repre-
senting the binary tumor contour. The length of the input window is
a hyper-parameter while the length of the predicted window deter-
mines the forecasted horizon. This parameter was set equal to two,
which corresponds to a 500ms prediction when using an imaging
frequency of 4Hz. We implemented three different algorithms
based on LSTM modules for the prediction of contours and com-
pared them with a baseline no-predictor:

� LSTM-shift: we extended an LSTM model developed in a previ-
ous study [26] to predict the future centroid coordinates in SI
and AP and used the difference between the predicted centroids
and the centroids of the last available tumor contour to shift
that contour. The LSTM-shift was trained both offline and online,
the latter to enable real-time patient-specific adaption to recent
respiration.

� ConvLSTM: we used the convolutional LSTM introduced by Shi
et al. [38] to directly predict future tumor contours from a
sequence of observed contours.

� ConvLSTM-STL: we implemented the convolutional LSTM com-
bined with spatial transformer layers proposed by Romaguera
et al. [30] to predict future deformation vector fields which
were used to warp the last observed tumor contour.

� No-predictor: we considered the last observed contour without
any changes as baseline prediction.

A more detailed description of the models can be found in the
supplementary materials.

Model optimization

Data partitioning
All three models were trained using 60% of the LMU patients (52

in total), validated on 20% of the LMU patients (18) and tested with
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breathing Gemelli patients. The ConvLSTM-STL by Romaguera et al.
[30] was found to achieve better performance than the ConvLSTM
by Shi et al. [38], however both models performed less well com-
pared to the offline and online LSTM-shift. The reason for that might
be that, as hypothesized by Bourque et al. [27], the shape of the
tumor on the last acquired image is a good proxy of the shape of
the tumor 250ms and, in this study, 500ms in the future. From
this, we conclude that it might be more relevant to train models
which focus on correct alignment of the centroids (i.e., LSTM-
shift) rather than models that additionally try to predict changes
in shape within the 500ms prediction. Another explanation might
be that the amount of training data is not sufficient for the more
complex convolutional LSTMs, which have substantially more
weights than the LSTM-shift models (about 2� 106 parameters
compared with 1� 104). The fact that training with data augmen-
tations improved the performance of both convolutional LSTMs
seems to support this hypothesis.

The online LSTM-shift significantly outperformed both convolu-
tional LSTMs and the no-predictor while showing smaller standard
deviations, meaning that it could provide robust predictions over a
large span of respiratory patterns. While the standard deviation
might still seem large compared to the average improvements, it
should be noted that its magnitude does not derive from noisiness
in the models, as shown by the stable validation accuracy obtained
when re-training (see Table S2). Instead it is caused by the high
variability in respiratory patterns translating in substantially dif-
ferent prediction accuracies from one patient to the other (see
Fig. 3). Even though the differences between the models were sta-
tistically significant, the gain in accuracy achieved by the online
LSTM-shift will not be clinically relevant for certain patients (e.g.
LMU patient 74 and Gemelli patient 2 in Fig. 3). For other patients
the improvement can exceed 2mm over the ConvLSTM-STL and
3mm over the no-predictor (e.g. LMU patient 81 and 82). Looking
at the corresponding line plots for the motion range, we noticed a
correlation between large motion and substantial performance dif-
ferences between the models, and small motion and negligible dif-
ferences between the models. Therefore, the larger the patient’s
motion, the more likely it is to obtain a benefit from using the
LSTM-shift compared to the other models. The models were
trained to predict both 250ms and 500ms into the future, thus
the prediction horizon could easily be adjusted to machine specific
latencies (which are typically 330ms to 350ms) [16–18], by using
interpolation between the two predictions.

Compared to previous contour prediction studies [27,29], this is
the first time different AI models, which have been shown to out-
perform traditional algorithms, are compared. A direct comparison
between the studies is not possible as the testing data is different.
However, we can say that the testing RMSESI of 1.3mm (LMU) and
1.1mm (Gemelli) for the 500ms forecast are comparable with the
RMSE of 1.3mm obtained by Bourque et al. for the 250ms forecast
and the average median centroid distance of 0.63mm reported by
Ginn et al. for 250–330ms forecasts. In general, the achieved pre-
dictive performance would be sufficient to improve MLC-tracking
accuracy, while further performance improvements might be lim-
ited by the in-plane resolution of 3:5� 3:5mm2 of the cine MRIs.

Even though it is meaningful to use clinically acquired contours,
it represents one of the main limitations of this study. The predic-
tive performance of our algorithms is inherently limited by the
performance of the clinical tracking algorithm, which was
observed to present some noisiness and fluctuations in target
shape, especially when tracking smaller targets. Additionally, the
in–house contour extraction software was not always able to per-
fectly extract the vendor’s contour from the videos. Even though
we excluded videos for which this was happening more often
(see supplementary material), it is very likely that a few incorrectly

extracted contours are still present in our datasets. However, as
both the convolutional LSTMs and the LSTM-shift are either based
directly on the extracted binary masks or use centroids computed
from them, incorrect contours and the 3.5mm pixel size will affect
all models in a similar way. In future studies, we would like to
build an AI deformation model which could be trained to perform
the combined contour tracking and prediction. It should be noted
that contour prediction using one of the proposed models would
currently be possible with the MRIdian MR-linac [40] or with the
Alberta linac-MR [18], which provide the current tumor shape
using either deformable image registration or artificial neural net-
works, while other machines currently localize the tumor using
template matching [13,17] and therefore provide the tumor center
of mass. Another limitation of the study is that the models cannot
predict out-of-plane motion, as the underlying cine MRI data is
acquired on a single sagittal 2D slice. However, several methods
have been discussed in the literature to obtain time-resolved volu-
metric MRIs[45–48], which could be combined with motion pre-
diction models especially considering the increase in latency
expected when generating 3D real-time data. In particular for
MLC-tracking, also beam’s eye view cine MRI with tumor-volume
projection might represent an acquisition scheme ensuring beam
conformality [49,50].

Conclusions

We have implemented and compared AI models based on LSTM
for the prediction of future 2D tumor contours using data from
treatments with 0.35T MR-linacs from two institutions. The exper-
iments showed that the LSTM-shift models, i.e., LSTMs predicting
future center of mass positions, which are used to shift the last
available tumor mask, significantly outperformed the convolu-
tional LSTM counterparts and obtained substantial improvements
especially when the motion range was larger. They are therefore
very promising candidates to overcome the system latency present
in deformable MLC-tracking during MRgRT. An advantage of the
LSTM model relative to the convolutional LSTMs is that, given its
smaller number of parameters, it can be continuously re-
optimized on current motion data to further improve its
performance.

Conflict of Interest Statement

The Department of Radiation Oncology of the University Hospi-
tal of LMU Munich has research agreements with Brainlab, Elekta
and ViewRay.

Acknowledgments

Seyed-Ahmad Ahmadi is thanked for fruitful discussions. This
work was supported by the German Research Foundation (DFG)
within the Research Training Group GRK 2274.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.radonc.2023.
109555.

References

[1] Kurz C et al. Medical physics challenges in clinical MR-guided radiotherapy.
Radiat Oncol 2020;15:93. https://doi.org/10.1186/s13014-020-01524-4.

[2] Alongi F et al. 1.5 T MR-guided and daily adapted SBRT for prostate cancer:
feasibility, preliminary clinical tolerability, quality of life and patient-reported

Contour prediction with LSTMs for MRgRT

6

42 Articles



outcomes during treatment. Radiat Oncol 2020;15:1 9. https://doi.org/
10.1186/s13014-020-01510-w.

[3] Langen KM, Jones DT. Organ motion and its management. Int J Radiat Oncol
Biol Phys 2001;50:265 78. https://doi.org/10.1016/s0360-3016(01)01453-5.

[4] Shirato H, Seppenwoolde Y, Kitamura K, Onimura R, Shimizu S. Intrafractional
tumor motion: lung and liver. Seminars in radiation oncology, vol. 14. Elsevier;
2004. p. 10 8. https://doi.org/10.1053/j.semradonc.2003.10.008.

[5] Keall P, Kini V, Vedam S, Mohan R. Motion adaptive x-ray therapy: a feasibility
study. Phys Med Biol 2001;46:1. https://doi.org/10.1088/0031-9155/46/1/301.

[6] Sawant A, Venkat R, Srivastava V, Carlson D, Povzner S, Cattell H, et al.
Management of three-dimensional intrafraction motion through real-time
DMLC tracking. Med Phys 2008;35:2050 61. https://doi.org/10.1118/
1.2905355.

[7] Keall PJ, Sawant A, Berbeco RI, Booth JT, Cho B, Cerviño LI, et al. AAPM task
group 264: The safe clinical implementation of MLC tracking in radiotherapy.
Med Phys 2021;48:e44 64. https://doi.org/10.1002/mp.14625.

[8] Menten MJ, Fast MF, Nill S, Kamerling CP, McDonald F, Oelfke U. Lung
stereotactic body radiotherapy with an mr-linac quantifying the impact of the
magnetic field and real-time tumor tracking. Radiother Oncol
2016;119:461 6. https://doi.org/10.1016/j.radonc.2016.04.019.

[9] Eze C et al. MR-guided radiotherapy in node-positive non-small cell lung
cancer and severely limited pulmonary reserve: a report proposing a new
clinical pathway for the management of high-risk patients. Radiat Oncol
2022;17:1 8. URL https://ro-journal.biomedcentral.com/articles/10.1186/
s13014-022-02011-8.

[10] Finazzi T, de Koste JRVS, Palacios MA, Spoelstra FO, Slotman BJ, Haasbeek CJ,
et al. Delivery of magnetic resonance-guided single-fraction stereotactic lung
radiotherapy. Phys Imaging Radiat Oncol 2020;14:17 23. https://doi.org/
10.1016/j.phro.2020.05.002.

[11] Pantarotto JR, Piet AH, Vincent A, de Koste JRvS, Senan S. Motion analysis of
100 mediastinal lymph nodes: potential pitfalls in treatment planning and
adaptive strategies. Int J Radiat Oncol Biol Phys 2009;74:1092 9. https://doi.
org/10.1016/j.ijrobp.2008.09.031.

[12] Feng M, Balter JM, Normolle D, Adusumilli S, Cao Y, Chenevert TL, et al.
Characterization of pancreatic tumor motion using cine MRI: surrogates for
tumor position should be used with caution. Int J Radiat Oncol Biol Phys
2009;74:884 91. https://doi.org/10.1016/j.ijrobp.2009.02.003.

[13] Uijtewaal P, Borman PT, Woodhead PL, Hackett SL, Raaymakers BW, Fast MF.
Dosimetric evaluation of MRI-guided multi-leaf collimator tracking and
trailing for lung stereotactic body radiation therapy. Med Phys
2021;48:1520 32. https://doi.org/10.1002/mp.14772.

[14] Ge Y, O’Brien RT, Shieh C-C, Booth JT, Keall PJ. Toward the development of
intrafraction tumor deformation tracking using a dynamic multi-leaf
collimator. Med Phys 2014;41:061703. https://doi.org/10.1118/1.4873682.

[15] Poulsen PR et al. Detailed analysis of latencies in image-based dynamic MLC
tracking. Med Phys 2010;37:4998 5005. https://doi.org/10.1118/1.3480504.

[16] Glitzner M et al. Technical note: MLC-tracking performance on the Elekta
Unity MRI-linac. Phys Med Biol 2019;64:15NT02. https://doi.org/10.1088/
1361-6560/ab2667.

[17] Liu PZ et al. First experimental investigation of simultaneously tracking two
independently moving targets on an MRI-linac using real-time MRI and MLC
tracking. Med Phys 2020;47:6440 9. https://doi.org/10.1002/mp.14536.

[18] Yun J, Wachowicz K, Mackenzie M, Rathee S, Robinson D, Fallone B. First
demonstration of intrafractional tumor-tracked irradiation using 2D phantom
MR images on a prototype linac-MR. Med Phys 2013;40:051718. https://doi.
org/10.1118/1.4802735.

[19] Sharp G et al. Prediction of respiratory tumour motion for real-time image-
guided radiotherapy. Phys Med Biol 2004;49:425. https://doi.org/10.1088/
0031-9155/49/3/006.

[20] Krauss A, Nill S, Oelfke U. The comparative performance of four respiratory
motion predictors for real-time tumour tracking. Phys Med Biol
2011;56:5303 17. https://doi.org/10.1088/0031-9155/56/16/015.

[21] Yun J et al. An artificial neural network (ANN)-based lung-tumor motion
predictor for intrafractional MR tumor tracking. Med Phys 2012;39:4423 33.
https://doi.org/10.1118/1.4730294.

[22] Seregni M et al. Motion prediction in MRI-guided radiotherapy based on
interleaved orthogonal cine-MRI. Phys Med Biol 2016;61:872 87. https://doi.
org/10.1088/0031-9155/61/2/872.

[23] Wang R et al. A feasibility of respiration prediction based on deep bi-LSTM for
real-time tumor tracking. IEEE Access 2018;6. https://doi.org/10.1109/
ACCESS.2018.2869780.

[24] Lin H et al. Towards real-time respiratory motion prediction based on long
short-term memory neural networks. Phys Med Biol 2019;64:085010. https://
doi.org/10.1088/1361-6560/ab13fa.

[25] Joehl A et al. Performance comparison of prediction filters for respiratory
motion tracking in radiotherapy. Med Phys 2020;47:643 50. https://doi.org/
10.1002/mp.13929.

[26] Lombardo E et al. Offline and online LSTM networks for respiratory motion
prediction in MR-guided radiotherapy. Phys Med Biol 2022;67:095006.
https://doi.org/10.1088/1361-6560/ac60b7.

[27] Bourque AE, Carrier J-F, Filion É, Bedwani S. A particle filter motion prediction
algorithm based on an autoregressive model for real-time MRI-guided
radiotherapy of lung cancer. Biomed Phys Eng Exp 2017;3:035001. https://
doi.org/10.1088/2057-1976/aa6b5b.

[28] Bourque A et al. Particle filter based target tracking algorithm for magnetic
resonance guided respiratory compensation: robustness and accuracy
assessment. Int J Radiat Oncol Biol Phys 2018;100:325 34. https://doi.org/
10.1016/j.ijrobp.2017.10.004.

[29] Ginn JS, Ruan D, Low DA, Lamb JM. An image regression motion prediction
technique for MRI-guided radiotherapy evaluated in single-plane cine
imaging. Med Phys 2020;47:404 13. https://doi.org/10.1002/mp.13948.

[30] Romaguera LV, Plantefève R, Romero FP, Hébert F, Carrier J-F, Kadoury S.
Prediction of in-plane organ deformation during free-breathing radiotherapy
via discriminative spatial transformer networks. Medical Image Anal
2020;64:101754. https://doi.org/10.1016/j.media.2020.101754.

[31] Zanca F, Avanzo M, Colgan N, Crijns W, Guidi G, Hernandez-Giron I, et al. Focus
issue: Artificial intelligence in medical physics. Phys Med 2021;83:287 91.
https://doi.org/10.1016/j.ejmp.2021.05.008.

[32] Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. Deep learning in medical image
registration: a review. Phys Med Biol 2020;65:20TR01. https://doi.org/
10.1088/1361-6560/ab843e.

[33] Kawula M et al. Dosimetric impact of deep learning-based CT auto-
segmentation on radiation therapy treatment planning for prostate cancer.
Radiat Oncol 2022;17:1 12. https://doi.org/10.1186/s13014-022-01985-9.

[34] Avanzo M et al. Machine and deep learning methods for radiomics. Med Phys
2020;47:e185 202. https://doi.org/10.1002/mp.13678.

[35] Lombardo E, Kurz C, Marschner S, Avanzo M, Gagliardi V, Fanetti G, et al.
Distant metastasis time to event analysis with CNNs in independent head and
neck cancer cohorts. Sci Rep 2021;11:1 12. https://doi.org/10.1038/s41598-
021-85671-y.

[36] Cusumano D et al. Artificial intelligence in magnetic resonance guided
radiotherapy: Medical and physical considerations on state of art and future
perspectives. Phys Med 2021;85:175 91. https://doi.org/10.1016/j.
ejmp.2021.05.010.

[37] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput
1997;9. https://doi.org/10.1162/neco.1997.9.8.1735.

[38] Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C. Convolutional LSTM
network: A machine learning approach for precipitation nowcasting. Adv
Neural Informat Process Syst 2015;28. https://doi.org/10.48550/
arXiv.1506.04214.

[39] Green O et al. First clinical implementation of real-time, real anatomy tracking
and radiation beam control. Med Phys 2018;45. https://doi.org/10.1002/
mp.13002.

[40] Klueter S. Technical design and concept of a 0.35 T MR-linac. Clin Transl Radiat
Oncol 2019;18:98 101. https://doi.org/10.1016/j.ctro.2019.04.007.

[41] Zou K et al. Statistical validation of image segmentation quality based on a
spatial overlap index. Acad Radiol 2004;11:178 89. https://doi.org/10.1016/
S1076-6332(03)00671-8.

[42] Huttenlocher D, Klanderman G, Rucklidge W. Comparing images using the
hausdorff distance. IEEE Trans Pattern Anal Mach Intell 1993;15:850 63.
https://doi.org/10.1109/34.232073.

[43] Friedman M. The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. J Am Stat Assoc 1937;32:675 701. https://doi.org/
10.1080/01621459.1937.10503522.

[44] Nemenyi PB. Distribution-free multiple comparisons. Princeton University;
1963. PhD thesis.

[45] Fayad HJ et al. A generic respiratory motion model based on 4D MRI imaging
and 2D image navigators. IEEE Nuclear Science Symp. and Medical Imaging
Conf, 2012.

[46] Stemkens B et al. Image-driven, model-based 3D abdominal motion estimation
for MR-guided radiotherapy. Phys Med Biol 2016;61:5335. https://doi.org/
10.1088/0031-9155/61/14/5335.

[47] Paganelli C et al. Feasibility study on 3D image reconstruction from 2D
orthogonal cine-MRI for MRI-guided radiotherapy. J Med Imaging Radiat Oncol
2018;62:389 400. https://doi.org/10.1111/1754-9485.12713.

[48] Rabe M et al. Porcine lung phantom-based validation of estimated 4D-MRI
using orthogonal cine imaging for low-field MR-Linacs. Phys Med Biol
2021;66:055006. https://doi.org/10.1088/1361-6560/abc937.

[49] Wachowicz K, Murray B, Fallone BG. On the direct acquisition of beam’s-eye-
view images in MRI for integration with external beam radiotherapy. Phys
Med Biol 2018;63:125002. https://doi.org/10.1088/1361-6560/aac5b9.

[50] Nie X, Rimner A, Li G. Feasibility of MR-guided radiotherapy using beam-eye-
view 2D-cine with tumor-volume projection. Phys Med Biol 2021;66:045020.
https://doi.org/10.1088/1361-6560/abd66a.

E. Lombardo, M. Rabe, Y. Xiong et al. Radiotherapy and Oncology 182 (2023) 109555

7

2.2. Paper II: Evaluation of real-time tumor contour prediction using LSTM networks for
MR-guided radiotherapy 43



Evaluation of real-time tumor contour prediction using

LSTM networks for MR-guided radiotherapy

Elia Lombardoa, Moritz Rabea, Yuqing Xionga, Lukas Nierera, Davide
Cusumanob, Lorenzo Placidib, Luca Boldrinib, Stefanie Corradinia,

Maximilian Niyazia, Michael Reinera, Claus Belkaa,c, Christopher Kurza,
Marco Riboldid, Guillaume Landrya

aDepartment of Radiation Oncology, University Hospital, LMU
Munich, Munich, 81377, Germany

bFondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
cGerman Cancer Consortium (DKTK), Munich, 81377, Germany

dDepartment of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität
München, Garching b. München, 85748, Germany

Supplementary material

Data pre-processing

Using in-house software [1, 2], we extracted SI/AP center of mass motion
curves (for the LSTM-shift) and binary masks (for the convolutional LSTMs)
from the cine MRI videos. We then performed outlier replacement and ap-
plied a moving average filter (as described previously [1]) for both the SI and
the AP motion curves to correct for wrongly extracted centroid positions.
We did not exclude any cine video based on small motion amplitude and
we changed the normalization scheme of the centroid motion trajectories:
instead of normalizing based on the minimum and maximum amplitude of
the entire individual cine video, we normalized each input window between
-1 and +1 separately, based on the minimum and maximum amplitude of
the window. This normalization is fast (≈ 1ms), so it can be applied in
real-time. We resampled each mask to a 1 × 1mm2 grid and cropped each
image to 256× 256 based on the center of the gating boundary contour.

To avoid data corrupted by unsuccessful extraction of binary masks, we
computed the dice similarity coefficient (DSC) between successive masks
and if the DSC was smaller than 0.4 for more than eight frames in total,
we excluded that whole cine video. For the LMU data, we detected the
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breath-holds based on the median deviation from the median centroid posi-
tion within 20 data points and saved this information to disk to be able to
exclude or include the breath-holds during model optimization. As in our
previous study, we also detected the start of cine MRI pauses (originating
from gantry rotations) and used this information to split the centroid and
contour data into subsets. This avoids jumps in the data arising from the
temporal discontinuities in the cine videos.

LSTM-shift model

The first model is an extension of the LSTM we implemented in a previous
study [1]. Specifically, the input was changed from being a window with SI
centroid positions to a window of both SI and AP centroid positions. As
before, the input window is fed sequentially to LSTM modules which encode
the motion over a variable number of hidden layers. The output of the last
LSTM module in the final hidden layer is input to a fully connected layer,
for which we doubled the number of neurons, such that the predicted output
window contained both the SI and the AP centroid coordinates. In this
fashion, however, the network would only allow for rigid MLC-tracking in
SI and AP direction. Therefore, following an idea by Bourque et al. [3],
we combined the network output with the binary mask corresponding to the
last input frame (thus the last contour provided by the tracking algorithm)
and then shifted this mask rigidly by the difference between the predicted
centroid coordinates at 500ms and the last centroid coordinates of the input
window. Shifting is performed using nearest neighbour interpolation. This
way, deformable MLC-tracking taking into account deformations/rotations
up to the last available input contour is possible.

In this study, we extended the offline+online LSTM, a network which can
be continuously re-optimized on current patient data, because we had found
it to perform best in Lombardo et al. [1] and labelled it online LSTM-shift.
However, we also extended an offline LSTM[1] to investigate which impact
the continuous re-optimization has in terms of final model performance and
labelled it offline LSTM-shift.

ConvLSTM model

The convolutional LSTM module was introduced by Shi et al. [4] to be
able to capture both temporal and spatial correlations in the input. Com-
pared to the classical LSTM module, matrix multiplications between the
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hidden and cell states are replaced by convolutions. At a specific time step
t, the convolutional LSTM module is described as follows:

Forget gate: f t = σ(W f ∗ xt +U f ∗ ht−1 + bf ) (S1)

Input gate: it = σ(W i ∗ xt +U i ∗ ht−1 + bi) (S2)

New memory cell state: c̃t = tanh(W c ∗ xt +U c ∗ ht−1 + bc) (S3)

Final memory cell state: ct = f t ⊙ ct−1 + it ⊙ c̃t (S4)

Output gate: ot = σ(W o ∗ xt +U o ∗ ht−1 + bo) (S5)

Hidden state: ht = ot ⊙ tanh(ct) (S6)

where b,W and U denote the biases, input window convolutional kernels
and recurrent convolutional kernels which are learned during the optimization
process. The symbol ∗ represents convolution while the symbol ⊙ represents
element-wise multiplication between matrices. As for the LSTM module,
the sigmoid function σ(x) was used for the gates and the hyperbolic tangent
function was used to generate the states.

The second model leverages convolutional LSTM modules to directly gen-
erate future 2D masks following the recurrent encoder-decoder architecture
[4, 5] illustrated in Figure S1. The purpose of the implemented spatial
encoder is to extract high-level features from the input masks. These are
then fed to the convolutional LSTM encoder modules which learn the spatio-
temporal characteristics of the motion and extrapolate them in time via the
decoder modules. A spatial decoder is then used to reconstruct this infor-
mation to the original contour dimensionality, thus outputting the predicted
binary masks. The spatial encoder branch comprises three convolutional
blocks, each formed by a convolutional layer, a ReLU activation function and
a batch normalization layer [6]. The convolutional layer of the first block has
a kernel size of five, stride of two and 32 output channels. The convolutional
layer of the second and third blocks both have a kernel size of three, 64 output
channels and a stride of one and two, respectively. The convolutional LSTM
encoder modules have a kernel size of five, 64 output channels and use a hid-
den and cell state initialization with zeros. The convolutional LSTM decoder
modules have kernel size of five and 64 output channels. The initial hidden
and cell states are taken over from the last encoder module and represent
the encoded motion. While we did not use the output of the LSTM encoder
modules, for the LSTM decoders we fed it to the subsequent spatial decoder
branch and to the next convolutional LSTM module. It has been shown
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Figure S1: At a specific time step t, the ConvLSTM model takes a window of fixed length
xt containing binary mask I1 to In as input and outputs the predicted mask at 250ms
and 500ms. Each input sequence is processed by convolutional blocks (orange) to extract
high-level features. The convolutional LSTMmodules (yellow) are used to learn the spatio-
temporal correlations and extrapolate the motion in time using a sequence to sequence
arrangement of the modules. A spatial decoder is used to reconstruct the predicted mask
from the encoded information (blue). The number of channels is displayed for each feature
block. The curly brackets indicate that the sequence dimension is merged with or separated
from the batch dimension using tensor reshaping.

that conditioning the modules on previously generated outputs improves the
predictive performance [7]. The spatial decoder branch comprises two blocks
with a transposed convolution (filter size of three, stride of two and one and
64 and 32 output channels) followed by ReLU and batch normalization and
a block with only a transposed convolution with one output channel (filter
size of three and stride of two) to obtain the final 2D masks.

ConvLSTM-STL model

The third model is an implementation of the recurrent encoder-decoder
introduced by Romaguera et al [8]. As for ConvLSTM, it takes a fixed
window of 2D binary masks as input and comprises encoding and decoding
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convolutional and convolutional LSTM blocks. However, instead of learning
to extrapolate masks in time, it learns to predict a sequence of 2D defor-
mation vector fields which are used to warp the last input mask to obtain
the future 2D masks. To be able to train the model in an end-to-end fash-
ion, the warping operation is performed using the differentiable grid sampler
present in spatial transformer networks [9]. In contrast to original spatial
transformer networks, which are convolutional neural networks on their own,
capable of learning transformations, Romaguera et al. inferred the trans-
formations from the last convolutional decoder and used the differentiable
grid sampling (which has no learnable weights) to warp the images. For this
reason, we prefer to use the term spatial transformer layer (STL), instead of
network. In this work, we implemented a ConvLSTM-STL without multi-
scale residual block and skip connections, similar to the model developed
in a follow-up publication by Romaguera et al. [10]. This model has less
parameters and its lack of skip-connections enables a sequence-to-sequence
implementation of the convolutional LSTM, which allows for a number of
outputs independent of the number of inputs.

No-predictor model

To investigate the performance achieved if no motion predictor was used,
we took for each fixed input window the last available contour and compared
it with the true contour after two frames, i.e., after 500ms. The same pre-
processed testing datasets were used as for the three previous models to
enable a fair comparison.

Hyper-parameters

In the following, we describe for each model the parameters used or if a
parameter search was performed, the range of the search.

• LSTM-shift: we mainly used the parameters found in our previous
study[1], i.e., number of hidden layers equal 5, no dropout, batch size
equal 128 and L2 regularization weight of 0 for the offline training
of the model (offline LSTM-shift). The learning rate of the offline
training was varied around 5 × 10−4, i.e., the best value found in our
previous study. Specifically, we sampled from the set {1 × 10−3, 5 ×
10−4, 3× 10−4, 1× 10−4}. The model was trained for 500 epochs with
an early stopping patience of 200 (i.e., if the model did not improve after
200 epochs we stopped training and used the best performing model
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for evaluation) when using the training set with breath-holds and for
2500 epochs with a patience of 1000 when training without the breath-
holds, to make sure that about the same number of model updates
were performed for the two scenarios presenting different amounts of
data. For online re-training (online LSTM-shift), we used a learning
rate of 1 × 10−6 and re-optimized the model at each time step for
about 150ms, as in our previous study. No data augmentations were
used. The model was trained using the mean squared error (MSE)
loss between the predicted and the true output centroid coordinates
for both the 250ms and the 500ms future time point.

• ConvLSTM: due to memory limitations we trained using a batch size of
32 for a total of 50 epochs with an early stopping patience of 20 epochs
for the breath-hold inclusion scenario and for a total of 250 epochs with
a patience of 100 when training without breath-holds. The learning rate
was chosen among the following values {1× 10−3, 5× 10−4, 1× 10−4}.
We used no dropout and an L2 regularization weight of 0 but, consid-
ering the higher number of parameters of the ConvLSTM compared to
the LSTM-shift, we compared scenarios with and without the use of
data augmentations. Specifically we used random affine transforma-
tions with a probability of 50% which included rotations up to 60◦,
shearing up to 0.5 and scaling up to 0.2. The augmentations were ap-
plied in the same way on both all input and output contours. The
model was trained using either the dice loss [11] between the predicted
and true output contours (250ms and 500ms future time points) or
the focal loss [12]. Additionally, we trained the model using both the
binary masks and the corresponding cine MRI frames as input. Online
re-training in the same fashion as for the LSTM-shift is currently not
possible with convolutional LSTMs as one online epoch was found to
take more than 250ms, which is the time at disposal before the next
cine MRI frame is available.

• ConvLSTM-STL: due to stronger memory limitations we trained using
a batch size of 3 for a total of 5 epochs with an early stopping patience
of 2 epochs for the breath-hold inclusion scenario and for a total of 25
epochs with a patience of 10 when training without breath-holds. It
should be noted that even though the number of epochs is considerably
smaller, the total number of model updates was comparable with the
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other models as the batch size was smaller. The learning rate, L2
regularization weight, dropout and augmentations were chosen as for
the ConvLSTM. The model was trained using either dice loss alone or
combined with a smoothing loss based on the gradient of the predicted
deformation vector fields as in Romaguera et al.[8]. Additionally, we
trained the model using the dice loss of the contour combined with
the MSE loss between centroids computed from the ground truth and
from the predicted contours. Again, we took both the 250ms and the
500ms forecast in consideration for the loss computation. As for the
ConvLSTM, we additionally trained this model using both the binary
masks and the corresponding cine MRI frames as input.

All models were optimized with the Adam algorithm [13] and we used an
input window length of 32 (8 s of data) for the LSTM-shift, as we had found
this length to lead to the best performance [1]. For the ConvLSTM and
ConvLSTM-STL we trained with an input window length of 8, 16 and 32
and found the latter to lead to the best validation results, so only 32 was
used for the rest of the study. When performing validation, we found training
on data without breath-holds to slightly increase the performance for all but
the ConvLSTM model, for which it slightly decreased. Specifically, we found
an average improvement over all metrics of 1.2% for the LSTM-shift, of 0.3%
for the ConvLSTM-STL and an average decline of 9.1% for the ConvLSTM.
For the offline LSTM-shift, we found a learning rate of 5× 10−4 to perform
best, as in our previous study. Both for the ConvLSTM and for ConvLSTM-
STL we found a learning rate of 1 × 10−4, the usage of augmentations and
training with dice loss to achieve the best validation performance. Using
the cine MRI frames as additional input to the binary masks led to a small
decrease in performance for both convolutional LSTMs. For the ConvLSTM-
STL we tried to put more focus on the alignment of the centroids by using
a combined dice and MSE centroid loss, however, the performance did not
improve.

Implementation details

The code for this study was written in Python 3.8.13 and is publicly avail-
able: https://github.com/LMUK-RADONC-PHYS-RES/lstm_contour_prediction.
All models were optimized and evaluated using the PyTorch based framework
MONAI 0.9.0 [14]. Both the optimization and the evaluation of the models
were carried out on an NVIDIA RTX A6000 GPU with 48 GB of memory.
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Supplementary file 1

Table S1: Tumor volumes and inter-quartile range (IQR) of motion across the datasets.

LMU (training) LMU (validation) LMU (testing) Gemelli

Min. volume [cm3] 0.9 0.7 0.6 4.2
Max. volume [cm3] 326.8 165.4 205.8 65.4
Mean volume [cm3] 31.5 29.8 52.1 34.4
Std volume [cm3] 52.7 41.6 68.9 30.6
Mean IQRSI [mm] 7.1 7.6 8.5 4.3
Mean IQRAP [mm] 3.5 3.8 3.5 1.5

Supplementary file 2

Table S2: Mean and standard deviation of different metrics for the 500ms forecasted
masks for the validation set when repeating the optimization to assess model stability
(compare to Table 1 in main text).

Model HD50%[mm] HD95%[mm] DSC RMSESI[mm] RMSEAP[mm]

offline LSTM-shift 1.1± 0.4 2.6± 1.0 0.91± 0.05 1.2± 0.7 0.7± 0.3
online LSTM-shift 1.1± 0.4 2.6± 1.0 0.91± 0.04 1.2± 0.7 0.7± 0.3
ConvLSTM 1.3± 0.7 3.2± 1.5 0.89± 0.06 1.7± 1.0 0.8± 0.4
ConvLSTM-STL 1.3± 0.6 3.2± 1.6 0.89± 0.06 1.6± 1.0 0.8± 0.4
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Supplementary file 3

(a) LSTM-shift (b) ConvLSTM (c) ConvLSTM-STL

Figure S2: Training and validation loss for the different models showing convergence of
the optimization process. The best model for the LSTM-shift was found at epoch 452, for
the ConvLSTM at epoch 46 and for the ConvLSTM-STL at epoch 22.

Supplementary file 4

Table S3: P-values obtained from the post-hoc Nemenyi test for the indicated testing
set for all possible pairwise model comparisons. Significant p-values (< 0.05) are denoted
with an asterisk.

Comparison LMU Gemelli
Model 1 Model 2 p-value

offline LSTM-shift online LSTM-shift 0.08 0.001*
offline LSTM-shift ConvLSTM 0.001* 0.001*
offline LSTM-shift ConvLSTM-STL 0.001* 0.14
offline LSTM-shift No-predictor 0.001* 0.001*
online LSTM-shift ConvLSTM 0.001* 0.001*
online LSTM-shift ConvLSTM-STL 0.001* 0.001*
online LSTM-shift No-predictor 0.001* 0.001*
ConvLSTM ConvLSTM-STL 0.90 0.001*
ConvLSTM No-predictor 0.001* 0.005*
ConvLSTM-STL No-predictor 0.001* 0.001*
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2.3 Paper III: Experimental comparison of linear regression and
LSTM motion prediction models for MLC-tracking on an MRI-
linac

During a two-month research stay at the University of Sydney, the LSTM and linear regression
models from Paper I were experimentally validated at the Australian MRI-linac, which
resulted in the following article. The models’ code was adapted to work with a real-time
stream of data and developed in a standalone software environment (container) to facilitate
the integration with the existing setup. By performing repeated MLC-tracking experiments
using an MRI-compatible phantom driven by eight unseen patient respiratory motion traces
(lung cancers), it was shown that both the LSTM and the linear regression successfully
compensated for the measured system latency of 390 ms. The continuously re-optimized
LSTM reduced the geometric MLC-tracking error significantly more than the population-
based LSTM and the continuously updated linear regression model, confirming the previous
in-silico results and convincingly demonstrating the real-time applicability of the developed
models.

Reprinted with permission from "Lombardo, E., Liu, P. Z., Waddington, D. E., Grover, J.,
Whelan, B., Wong, E., ... & Keall, P. J. (2023) Experimental comparison of linear regression
and LSTM motion prediction models for MLC-tracking on an MRI-linac. Medical Physics,
50(11), 7083-7092".
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Abstract
Background: Magnetic resonance imaging (MRI)-guided radiotherapy with
multileaf collimator (MLC)-tracking is a promising technique for intra-fractional
motion management,achieving high dose conformality without prolonging treat-
ment times. To improve beam-target alignment, the geometric error due to
system latency should be reduced by using temporal prediction.
Purpose: To experimentally compare linear regression (LR) and long-short-
term memory (LSTM) motion prediction models for MLC-tracking on an
MRI-linac using multiple patient-derived traces with different complexities.
Methods: Experiments were performed on a prototype 1.0 T MRI-linac capa-
ble of MLC-tracking. A motion phantom was programmed to move a target in
superior-inferior (SI) direction according to eight lung cancer patient respiratory
motion traces. Target centroid positions were localized from sagittal 2D cine
MRIs acquired at 4 Hz using a template matching algorithm. The centroid posi-
tions were input to one of four motion prediction models. We used (1) a LSTM
network which had been optimized in a previous study on patient data from
another cohort (offline LSTM). We also used (2) the same LSTM model as a
starting point for continuous re-optimization of its weights during the experiment
based on recent motion (offline+online LSTM). Furthermore, we implemented
(3) a continuously updated LR model, which was solely based on recent motion
(online LR). Finally, we used (4) the last available target centroid without any
changes as a baseline (no-predictor). The predictions of the models were used
to shift the MLC aperture in real-time.An electronic portal imaging device (EPID)
was used to visualize the target and MLC aperture during the experiments.
Based on the EPID frames, the root-mean-square error (RMSE) between the
target and the MLC aperture positions was used to assess the performance of
the different motion predictors.Each combination of motion trace and prediction
model was repeated twice to test stability, for a total of 64 experiments.
Results: The end-to-end latency of the system was measured to be (389 ±
15) ms and was successfully mitigated by both LR and LSTM models. The
offline+online LSTM was found to outperform the other models for all inves-
tigated motion traces. It obtained a median RMSE over all traces of (2.8 ±
1.3) mm,compared to the (3.2 ± 1.9) mm of the offline LSTM,the (3.3 ± 1.4) mm
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7084 MLC-TRACKING WITH MOTION PREDICTORS

of the online LR and the (4.4 ± 2.4) mm when using the no-predictor. Accord-
ing to statistical tests, differences were significant (p-value < 0.05) among all
models in a pair-wise comparison, but for the offline LSTM and online LR pair.
The offline+online LSTM was found to be more reproducible than the offline
LSTM and the online LR with a maximum deviation in RMSE between two
measurements of 10%.
Conclusions: This study represents the first experimental comparison of
different prediction models for MRI-guided MLC-tracking using several patient-
derived respiratory motion traces. We have shown that among the investigated
models, continuously re-optimized LSTM networks are the most promising
to account for the end-to-end system latency in MRI-guided radiotherapy
with MLC-tracking.

KEYWORDS
linear regression, long short-term memory, MLC-tracking, motion prediction, MRI-linac, respiratory
motion

1 INTRODUCTION

Magnetic resonance imaging (MRI) guided radiotherapy
(MRIgRT) offers high soft-tissue contrast visualization
and the opportunity to adapt to changes in patient
anatomy prior and during irradiation.1,2 MRI-linac sys-
tems, which are linear accelerators with an embedded
MRI unit, are increasingly being used clinically over
the past years.3 To adapt to intra-fractional changes,
for instance due to respiratory motion, current clinical
systems rely on motion monitoring4 with gated beam
delivery.5 In this type of treatment, the irradiation tar-
get is visualized in real-time using cine MRI and the
beam is automatically stopped if the target exits a pre-
defined area, thus recovering the conformality of static
treatments and avoiding an increase of dose to healthy
tissues surrounding the tumor. A disadvantage of this
approach are the increased treatment times, with duty
cycle efficiencies of 20% or 50% having being reported
in clinics, depending on patient compliance.6,7 An alter-
native approach with comparable dose conformality
but increased treatment efficiency is multileaf -collimator
(MLC)-tracking, during which the MLC aperture is con-
tinuously shifted to follow the target motion.8 However,
it has been shown that a factor which is critical to the
accuracy of MRIgRT with MLC-tracking is the system
latency.9

The system latency is defined as the time lag between
the physical motion of the target and the execution of
beam adaptation, which in the case of MLC-tracking is
the time when the MLC leaves reach their desired posi-
tions. According to the AAPM Task Group 264, a latency≤ 500 ms is necessary to meet the definition of real-
time motion compensation.10 For MRI-linacs capable of
MLC-tracking it has been experimentally measured to
range from 205 ms to 411 ms,9,11 mainly depending on
the acquisition frequency of the cine MRIs.To overcome
the system latency, temporal prediction models can be

used. Over the past decade, several respiratory motion
prediction models have been implemented in-silico for
MRIgRT12–14 or RT in general.15–17 In a comparative
computational study, Jöhl et al. used 93 respiratory
motion traces to show that among 18 motion predictors
ranging from Kalman filters to artificial neural networks,
linear regression (LR) models were the best candidates
for respiratory motion prediction for various time hori-
zons and noise levels.17 When computationally possible,
models were retrained at every time step (i.e., online)
as this approach had been shown to improve perfor-
mance.Recently,a class of machine learning algorithms
called long short-term memory (LSTM) networks, which
is ideally suited to deal with sequential input data, has
been shown to be very promising for motion predic-
tion both in RT18,19 and in MRIgRT.20,21 Specifically,
LSTMs were shown to outperform LR models for the
prediction of superior-inferior (SI) target centroid posi-
tions based on patient data acquired on a 0.35 T MRI
-linac.20

While all aforementioned studies were in-silico, to the
best of our knowledge there are four studies which
experimentally investigated motion prediction for MLC-
tracking during MRIgRT. In an early phantom study by
Yun et al.22, it was shown that motion prediction using
artificial neural networks and sinusoidal motion led to
MLC-tracking with similar dosimetric accuracy as in
the static scenario. Uijtewaal et al.23 showed that an
online LR can compensate the latency for the deliv-
ery of intensity modulated radiotherapy (IMRT) plans
with MLC-tracking to a phantom moving with Lujan
motion (cos4). In two follow up studies with the same
motion predictor, they used Lujan motion and addi-
tionally one patient-derived motion trace to investigate
MLC-tracking with VMAT plans24 and with a hybrid
2D/4D-MRI methodology.25 A limitation of all four stud-
ies is that either sinusoidal or a single patient-derived
trace was used.

 24734209, 2023, 11, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16770, W

iley O
nline L

ibrary on [23/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

2.3. Paper III: Experimental comparison of linear regression and LSTM motion prediction models
for MLC-tracking on an MRI-linac 57



MLC-TRACKING WITH MOTION PREDICTORS 7085

This study aimed at experimentally validating the
in-silico comparison of LSTM and LR motion pre-
diction models20 for MLC-tracking with a prototype
MRI-linac. Compared to previous MRIgRT studies with
MLC-tracking and motion prediction,22–25 this was the
first time multiple motion traces with different complexi-
ties were used and conventional and machine learning
based predictors were compared. Specifically, we com-
pared models trained on retrospective data (i.e., offline)
with online models updated in real-time during the
experiments. The performance of the motion predictors
with the different motion traces was evaluated in terms
of geometric accuracy of the MLC-tracking.

2 METHODS

2.1 Experimental setup

All experiments were performed on a prototype MRI-
linac system featuring a 1.0 T open bore magnet (Agi-
lent, UK) with a control system based on a Magnetom
Avanto spectrometer (Siemens, Erlangen, Germany)
and a 6 MV industrial linac (Linatron, Varex Imaging,
Utah,USA).The radiation beam generated by the linac is
aligned with the B0 field (fixed beam line, no gantry) and
shaped by a MLC with 120 leaves (Millennium, Varian,
Palo Alto, California, USA).26 The motion for the exper-
iments was executed with the MRI-compatible Quasar
phantom (Modus Medical Devices, Ontario, Canada),
positioned at a source-to-surface distance of 2.4 m.
The phantom (same as in Liu et al.9) contained a sin-
gle MRI-visible target and was placed inside the bore
such that the target was located at the isocenter. During
the experiments, the target was moved by a motor in SI
direction according to the provided motion traces (see
Section 2.2). During irradiation, the target was imaged
and localized as described in Section 2.3. The extracted
target positions were given as input to one of the motion
prediction models (Section 2.4). Prior to the motion pre-
diction experiments,a sinusoidal trace was tracked three
times to characterize the end-to-end latency of the sys-
tem, analogously to Liu et al.9: A sinusoidal was fitted
to the centroid positions of the targets and apertures
(moved by the no-predictor, see Section 2.4) and the
latency was calculated as the time difference between
the two fits. We then performed motion prediction with
four models on eight motion traces. Each experiment
was repeated twice to test the stability of the models,
for a total of 64 experiments. MLC-tracking driven by
the model predictions was used to compensate for the
observed motion (Section 2.5) and an electronic portal
imaging device (EPID) was used to quantify the geomet-
ric accuracy of tracking when using the different models
(Section 2.6).The overall experimental setup is shown in
Figure 1.

2.2 Motion traces

In this study, eight publicly available motion traces
previously exploited in a multi-institutional marker-
less lung target tracking study were used.27 The
traces were obtained from seven different lung tumor
patients and feature different motion amplitude, com-
plexity and frequency, all factors known to influence
the accuracy of tracking. Four traces were taken
from a clinical study using measurements of the
centroid position of implanted Calypso beacons.28

These 3D motion traces were originally acquired at
10 Hz and represent motion with high complexity,
high motion amplitude, mean complexity and mean
motion amplitude (https://github.com/MarcoMueller-
MCT/AAPM_GrandChallenge_MATCH/tree/master).
The other four traces were acquired during treatments
with a Cyberknife Synchrony system (Accuray Incorpo-
rated, Sunnyvale, California, USA) in 3D at a sampling
rate of 25 Hz.29 These traces include evident baseline
shifts, right-left (RL) dominant, high frequency and typ-
ical lung target motion (https://cloudstor.aarnet.edu.au/
plus/index.php/s/iHz0aoTGBho3yu2?path=%2FLung%
2F4DLungTrajectories). Additionally to the patient
traces, a sinusoidal trace with an amplitude of 20 mm
and a period of 7.5 s was used to characterize the
end-to-end latency of the system.

During the experiments, the SI component of the
traces was used to rigidly move the target but for the
“baseline shift” and the “dominant RL” traces, for which
the lateral component was used. Independently of the
component used, the target was always moved in SI
direction. For each trace, motion was executed for about
2 min, however, during analysis, we did not use the first
and last 30 s of data to exclude for instance buffering
of the motion prediction models (i.e., the time needed
until enough input positions are accumulated to start
prediction) or the time for starting the radiation/EPID.
The motion characteristics of the remaining 1 min of
each trace, which was effectively used to assess the
tracking accuracy, are shown in Table 1. While the name
of the traces was the same as in Mueller et al.,27

the period is slightly different as a different subset of
each trace has been used. Also the displacement of
each trace is different as in our experiments we re-
scaled each trace to have a peak-to-peak amplitude
over the entire trace of 30 mm to avoid very small MLC
motion (arising from the large source-to-surface dis-
tance) and limitations of the EPID (spatial and temporal
resolution).

2.3 Imaging and localization

The moving target was visualized in real-time using cine
MRI. Sagittal 2D slices were acquired using a balanced
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F IGURE 2 (Left) Cine MRI frame acquired during irradiation with real-time target localization (yellow) using template matching. (Right)
EPID frame acquired during irradiation with post-irradiation template matching analysis to obtain the target centroid positions (black) and the
MLC aperture centroid positions (blue) needed for the evaluation. EPID, electronic portal imaging device; MLC, multileaf collimator; MRI,
Magnetic resonance imaging.

2.4.1 Data pre-processing

First, the data redundancy introduced by the UDP send-
ing process was taken out by checking if the received
target position differed from the previous one, thus
recovering the original imaging frequency of 4 Hz.
Then, target positions were accumulated until an input
sequence of 8 s was formed (first buffering time). The
input sequence had fixed length,that is,every time a new
target position was available, the oldest target position
in the input sequence was dropped and the new posi-
tion was added.The input sequence was then smoothed
using a moving average filter, to decrease the impact
of noise arising from imaging/target localization on the
prediction models. The moving average filter acted on
a sliding window of three data points. To avoid bound-
ary effects for the last two points of each sequence (the
most recent and relevant for the prediction), we left the
last point unchanged and set the penultimate point to
the average between the unchanged penultimate point
and the point one would obtain with the moving average
filter. Finally, each input sequence was normalized in the
range from −1 to +1. The scaling factor for the normal-
ization was temporarily saved for each sequence to later
re-normalize the predictions.

2.4.2 Prediction models

Three respiratory motion prediction models previously
compared in-silico20 and a baseline no-predictor were
implemented in this study and applied to the eight
unseen motion traces:

1. Offline LSTM: this model had been previously trained
and validated using motion traces extracted from

4 Hz cine MRIs of 70 patients treated with a 0.35
T MRI-linac (13.1 h of data).20 It was applied without
any changes to hyper-parameters or weights to the
unseen experiment traces and predicted the future
target centroid position in 250 and 500 ms. Linear
interpolation between these two points was used to
obtain a prediction matching the end-to-end latency
measured for the system. The interpolated prediction
was then used for MLC-tracking.

2. Offline+online LSTM: this model was based on the
offline LSTM described above. However, in this case
we loaded the weights obtained from the optimiza-
tion with the cohort of 70 patients and additionally
re-optimized based on recent motion during the
experiments. This worked by accumulating 20 s of
target positions (second buffering time), which were
subdivided into sets of input and output sequences.
These pairs of input and output were used to iter-
atively train the LSTM using the mean-square-error
loss between the output and predicted sequences.
Every time a new target position was available (i.e.,
every 250 ms), the set of input/output sequences was
updated and a new training was started for 250 ms,
which allowed the completion of about 10 epochs.
A more detailed explanation of the online optimiza-
tion can be found in Lombardo et al.20 As for the
offline LSTM,the interpolated prediction was used for
MLC-tracking.

3. Online LR: similarly to the offline+online LSTM, this
model was continuously updated during the exper-
iments based on recent motion. In contrast to the
LSTM, the LR does not require iterative optimization,
as an analytical solution exists.30 For this reason, the
online LR was solely based on the last 20 s of data
and was solved from scratch on the updated set of
sequences every 250 ms, that is, every time a new
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target position was available, as in the previous in-
silico study.20 Also for the LR, linear interpolation
between the 250 and 500 ms predictions provided the
target position which was used for MLC-tracking.

4. No-predictor: to compare the three motion
prediction models with a baseline without
any prediction, we utilized the last available
target centroid position for the subsequent
MLC-tracking.

The LSTM models were run (and optimized) on an
A5000 GPU with 24 GB of VRAM while the LR was
run and solved using an Intel Xeon W-1250 CPU with
6 cores and 64 GB of RAM. A table showing the hyper-
parameters taken over from the previous in-silico study
can be found in the supplementary Table S1.

2.5 MLC-tracking

In this study, a rigid single-target MLC-tracking software
based on previous work was used.31 Prior to irradia-
tion,a rectangular MLC aperture was loaded and aligned
with the target center. During irradiation, the predicted
target position was used to calculate a displacement
vector with respect to the target’s original position. This
displacement vector was then used to calculate an
ideal aperture update which in turn was used by a
leaf fitting algorithm to calculate the closest matching
deliverable MLC aperture, taking into account physi-
cal limitations of the MLC such as finite leaf speed.
The updated leaf positions were sent at 20 Hz to the
MLC controller which shifted the aperture to compen-
sate for the observed motion in real-time, as in previous
MLC-tracking studies.8,32

2.6 Accuracy evaluation

To evaluate the geometric accuracy of MLC-tracking
with different motion predictors, EPID images were
acquired at 3.5 Hz during irradiation and then ana-
lyzed after the experiments following Liu et al.9 Using
in-house software,we first applied a low-pass filter to the
EPID frames to reduce the noise introduced by the mag-
netic field of the MRI-linac and then leveraged template
matching to extract the target centroid positions and the
MLC aperture centroid positions for each EPID frame
automatically (see Figure 2, right panel). The template
for the aperture and target were defined on a selected
EPID frame once. All positions were scaled taking de-
magnification from the EPID plane to the isocenter into
account. The root-mean-square error (RMSE) between
the target and the MLC aperture positions (representing
the motion predictions) was used to assess the per-
formance of the different motion prediction models. As
mentioned in Section 2.2, the RMSE was computed for

all prediction models on the same 1 min of each trace
to enable a fair comparison.

To find out whether there was a significant difference
between the RMSEs obtained by the four models for the
different motion traces, a non-parametric Friedman test
was used.33 If the Friedman test was significant (p-value< 0.05), a post-hoc Nemenyi test34 was used to infer
which model performed significantly better than another
in a pair-wise fashion.

3 RESULTS

3.1 Latency measurements

When repeating the MLC-tracking experiments using
no-predictor with the sinusoidal trace three times, an
average end-to-end latency of (389 ± 15) ms was
obtained. We then computationally shifted the acquired
aperture centroid curve by the calculated latency and
obtained a baseline RMSE between aperture and target
of (1.1 ± 0.1) mm.

3.2 Patient traces

Table 2 shows the RMSEs obtained for all prediction
models and traces for each of the two measurements.
MLC-tracking using the offline+online LSTM as motion
predictor resulted in the best accuracy for all investi-
gated motion traces. When calculating the mean and
standard deviation of the RMSE over all motion traces,
the offline LSTM led to (3.3 ± 1.0) mm,the offline+online
LSTM to (2.8 ± 0.7) mm, the online LR to (3.3 ± 0.7) mm
and the no-predictor to (4.5 ± 1.4) mm.The mean RMSE
over all traces and for each trace (two measurements
combined) for the different models are displayed as a
bar plot in Figure 3.

Comparing the RMSE obtained from a measurement
with its repetition revealed that the offline+online LSTM
was also the most reproducible model with a deviation of
up to 10%,compared to the offline LSTM with up to 14%
and the online LR with up to 18%. Repeating the same
trace using the no-predictor led to a maximum devia-
tion of up to 6%, which can be considered the baseline.
Differences between all models were significant accord-
ing to the Friedman test (p-value = 2e-9). The post-hoc
Nemenyi test showed that there was a significant differ-
ence between all models in a pair-wise comparison but
for the offline LSTM and the online LR pair, as shown in
Table 3.

Figure 4 shows the centroid positions of the MLC
aperture and the target obtained with the analysis
of the EPID frames for four different models and a
selected motion trace. Qualitatively, it can be noticed
that the offline LSTM was more robust to the irregu-
larity present at the end of the shown trace while the
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frequency. We also investigated reproducibility of the
models by repeating each experiment twice and found
the online LR to be the least reproducible with a devi-
ation of 18%. We hypothesize that this originates from
the fact that this is the only model which solely relies
on current data (no prior training on large datasets)
and is therefore the most sensible to variations in the
input centroids due to for example acquisition noise or
imperfections of the template matching.

While this work investigated MLC-tracking with motion
prediction using MRI-guidance, the proposed methods
could also be used with x-ray guidance. The reduced
soft-tissue contrast might require more advanced tar-
get localization algorithms than template matching in a
markerless setting.35 As the motion prediction models
are based on centroid positions, only small modifi-
cations would be needed such as training on other
temporal resolutions to reflect the different imaging fre-
quency and adjustment of the prediction horizon to
smaller latencies.

The current study presents a few limitations. The
motion phantom allows for 1D rigid shifts only,neglecting
the fact that motion occurs in all three directions and that
deformation or rotations can be observed.36,37 Assum-
ing the cine MRI is acquired in a single 2D slice as in
this study, MLC-tracking to compensate for in-plane dis-
placement/deformation/rotation could be implemented
in future studies by leveraging a deformable target local-
ization algorithm,38 a 2D contour prediction algorithm21

and a deformable MLC-tracking algorithm.39 Beam’s eye
view 2D cine MRI with tumor-volume projection might
be used to ensure better beam conformality.40,41 To fully
compensate motion in all three directions, time-resolved
volumetric MRIs would be needed, which are currently
being investigated by several groups42–44 and would
lead to an increment in latency, which in turn increases
the relevance of motion prediction. Another limitation
consists in the fact that we had to re-scale the motion
traces to 30 mm peak-to-peak amplitude due to lim-
itations in the experimental setting, the original mean
peak-to-peak amplitude over all traces being 16.4 mm
(range 9.4–23.8 mm). This means that the obtained
RMSEs represent in absolute terms an overestimation
of the error which would have been obtained with the
original traces while all relative comparisons between
the models hold true. Finally, the fact that the target in
the phantom is visible with high contrast on the cine MRI
facilitated its localization. However, imaging a real tumor
would have affected the target localization and there-
fore all models in the same manner, so the results of our
comparison should hold true.

5 CONCLUSIONS

In this study, we experimentally compared conven-
tional and machine learning motion prediction models

for MLC-tracking in SI direction based on 4 Hz cine
MRI. We showed for eight patient-derived respiratory
motion traces with different complexity that all mod-
els significantly improved the MLC-tracking performance
compared to a baseline no-predictor. A continuously re-
optimized LSTM model was found to perform the best
for all motion traces, confirming the in-silico result that
this model is an ideal candidate to mitigate the latency
and therefore improve the accuracy of MLC-tracking
during MRIgRT.
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Supplementary material

Table S1: Hyper-parameters found in the previous in-silico study1 and used without any
changes in this work. A detailed explanation of why the batch size of the offline+online
LSTM is fixed can be found there. The training with the offline LSTM took about one hour
to converge (early stopping) using the described cohort and the offline+online LSTM was
re-optimzed for 10 epochs every time a new data point was made available, as it was found
out that this takes about 150ms and is therefore compatible with 4Hz cine MRI1.

Hyper-parameter offline LSTM offline+online LSTM online LR

Number of layers 5 5 -
Dropout rate 0 0 -
Learning rate 5× 10−4 1× 10−6 -
Batch size 128 47 (fixed) -
L2 weight 0 1× 10−6 1× 10−4

Input window length 32 32 8
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Lombardo et al. page 9

References

1 E. Lombardo et al., Offline and online LSTM networks for respiratory motion prediction

in MR-guided radiotherapy, Phys. Med. Biol. 67, 095006 (2022).

2.3. Paper III: Experimental comparison of linear regression and LSTM motion prediction models
for MLC-tracking on an MRI-linac 75



76 Articles

2.4 Paper IV: Patient-specific deep learning tracking framework for
real-time 2D target localization in magnetic resonance imaging-
guided radiation therapy

In this study the focus was put on the step before motion prediction, i.e., on localizing
the tumor/irradiation target on the current 2D cine MRI frame. This study was done last
as it took the candidate some time to set up the extraction of the un-processed cine MRI
data from the MRIdian, previous studies using post-processed cine MRI video data which
could easily be exported from the system. Using unlabelled and manually labeled un-
processed data from the MRIdian at the LMU University Hospital in Munich, different DL
and conventional algorithms were compared in-silico. Specifically, a transformer DIR, a
U-net auto-segmentation and a B-spline DIR acting as the slow baseline were implemented.
The transformer was trained in an unsupervised (without labels), a supervised (with labels)
and a patient-specific (with labels) fashion while for the U-net only patient-specific models
were trained. The patient-specific transformer was found to outperform both the U-net and
the B-spline without introducing a significant additional latency (inference time of ≈ 36 ms).
The U-net was found to perform better than the best transformer only on a single testing set
patient with a very large target exhibiting large motion, suggesting that a combination of the
two models could be used to optimally localize the target for all investigated patients.

Reprinted with permission from "Lombardo, E., Velezmoro, L., Marschner, S.N., Rabe,
M., Tejero, C., Papadopoulou, C.I., ... & Landry, G. (2025) Patient-specific deep learning
tracking framework for real-time 2D target localization in magnetic resonance imaging-
guided radiation therapy. International Journal of Radiation Oncology*Biology*Physics, 122(4),
827-837".





transformer was better than the CNN in 9/12 patients, the CNN better in 1/12 patients, and the 2 PS models achieved the same
performance on the remaining 2/12 testing patients.
Conclusions: For targets in the thorax, abdomen, and pelvis, we found 2 PS DL models to provide accurate real-time target
localization during MRI-guided radiotherapy. � 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/)

Introduction

Magnetic resonance imaging (MRI)-guided radiation ther-
apy (MRIgRT) using integrated MRI-linacs is an established
technique for high-precision stereotactic body radiation
therapy of tumor sites affected by motion.1-3 MRI-linacs
allow intra-fractional motion management in real-time
through a cine MRI-based gating approach.4,5 Cine MRIs in
either a single 2D plane or interleaved orthogonal 2D planes
are continuously acquired throughout the irradiation ses-
sion, with the tumor or a surrogate tracking target localized
on the current frame for beam gating. Although this method
decreases target volume margins, it may extend the treat-
ment duration, with duty cycle efficiencies of 20% and 51%
for low-field MRI-linacs6,7 and 68% for a high-field MRI-
linac.5 Multileaf collimator (MLC)-tracking in free-breath-
ing is investigated as a dosimetrically equivalent yet more
time efficient alternative to gating.8-10 For MLC-tracking,
higher accuracy is required because the target must be pre-
cisely localized in every state of motion for accurate track-
ing.

Several target tracking algorithms utilizing cine MRI
have been proposed. The first methods made use of rigid
template matching.11-13 Because template matching cannot
provide deformation or rotation information, deformable
image registration (DIR) or auto-segmentation methods can
be used instead. In DIR-based algorithms, the deformation
between the current and a reference frame is calculated, and
then used to adapt the available reference segmentation.
Alternatively, paired samples of cine MRI frames and corre-
sponding manual segmentations are exploited to derive a
model that learns how to segment the subsequent frames
(auto-segmentation).14,15 More recently, approaches have
focused on the use of deep learning (DL) methods such as
convolutional neural networks (CNNs) for both DIR and
auto-segmentation. Once trained, their execution takes little
time, while showing superior performance compared with
conventional methods.16-18 Friedrich et al16 demonstrated
this potential by proposing a CNN for real-time auto-seg-
mentation of liver tumors for both radial and Cartesian 2D
cine MRIs from a 0.35 T MRI-linac. They introduced a
novel supervised patient-specific (PS) training strategy,
which trained CNNs from scratch using the initial 10 manu-
ally segmented frames of each patient. However, only 2
patients and a single tumor site were included in their study.
More recently, Hunt et al18 presented a CNN for 2D cine
MRI DIR, using 21 patients with liver, lung, or pancreas
tumors. By framing the task as DIR, they trained the CNN
in an unsupervised manner, avoiding the need for manual

segmentations. However, they solely evaluated registration
accuracy on an image-level and did not assess tracking accu-
racy on segmentations.

For clinical use, a tracking approach must be reliable in a
wide variety of tracking scenarios, covering targets of vari-
ous sizes and contrasts. We thus propose to develop a pair
of DL models with different underlying mechanisms and
evaluate them on manually segmented ground truth data.
Recently, the transformer DL architecture has become state-
of-the-art in many fields, from natural language process-
ing19 and computer vision20 to medical imaging.21 As shown
by Chen et al,22 one advantage of transformers compared
with CNNs is their larger effective receptive field, which
makes them capable of capturing longer-range spatial infor-
mation to improve the performance in low-contrast settings.
This is especially relevant for models based on image regis-
tration, as correlated motion from more distant locations
can be leveraged to aid deformation of a (possibly) low-con-
trast target in cine MRI. Therefore, we implemented a trans-
former for DIR as first model. The second model we
implemented is based on auto-segmentation using a CNN.
Our hypothesis is that such a model will perform well for
larger, high-contrast targets with large motion. We trained
the models with different unsupervised, supervised and PS
strategies compatible with current MRIgRT clinical work-
flows and applied them to targets in the thorax, abdomen,
and pelvis from a total of 254 patients treated on a 0.35
T MRI-linac.

Methods and Materials

Data

2D+t cine MRIs from 219 patients treated with a 0.35
T MRI-linac at the LMU University Hospital were retro-
spectively collected with ethics board approval, totaling
over 1,400,000 2D frames from different tumor sites
(13 abdomen, 58 liver, 93 lung, 2 mediastinum, 28 pan-
creas, and 25 prostate). All cine MRIs were acquired at
either 4 or 8 Hz in a single sagittal plane with a balanced
steady-state free precession sequence (TrueFISP; in-plane
resolution of 2.4 £ 2.4 or 3.5 £ 3.5 mm2; field-of-view of
270 £ 270 or 350 £ 350 mm2; slice thickness of 5, 7, or
10 mm) and exported in a binary format containing the
un-processed images (without segmentations). The cine
MRIs included data acquired during both treatment simu-
lation and delivery, and exhibited a mix of breath-holds
and periods of free-breathing. All frames were then
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resampled to 1 £ 1 mm2 using linear interpolation and
cropped to 224 £ 224 pixels. We rescaled the MRI values
0 and 1000 to 0 and 1. We refer to this cohort as the
unlabeled training set.

Additionally, over 7500 cine MRI frames from 35 differ-
ent patients were similarly collected (4 abdomen, 8 liver, 10
lung, 1 mediastinum, 6 pancreas, 4 prostate plus 2 patients
with cardiac tumor). These patients were selected to repre-
sent a wide range of tumor sizes and motions, and varying
levels of tumor visibility as assessed visually. Only treatment
simulation cine MRIs were selected for these patients, to
avoid image degradation due to gantry movements in this
dataset.18 Data acquisition, export, and pre-processing were
the same as for the first dataset. Additionally, the gross
tumor volume or a surrogate tracking target was manually
segmented on each frame by one observer based on the
tracking targets used clinically. We segmented on average
240 frames per patient (range, 89-545 frames). This cohort
was then subdivided into 3 sets: the labeled fine-tuning set
(12 patients), validation set (10 patients), and testing set (13
patients). We then asked a second observer to manually seg-
ment the gross tumor volume/target for the 13 testing set
patients following the same guidelines as the first observer.
Figure 1 shows an overview of the 13 testing set patients
with segmentations from both observers. Table 1 reports the
number of labeled frames, whether the tumor or a surrogate
was localized, the acquisition frame rate, statistics of their
respective motion, prescribed dose as well as the patient’s
sex and age.

In summary, we had 4 datasets in this study: (1) the unla-
beled training set, (2) the labeled fine-tuning set (observer
1), (3) the labeled validation set (observer 1), and (4) the
labeled testing set (both observers).

Target localization models

The 2 different DL models were based on registration and
auto-segmentation. The registration model was not opti-
mized to obtain smooth deformations, but accurate target
segmentations on the current frame. We thus tolerated a
certain amount of folding (negative Jacobian) if the segmen-
tation accuracy was high. We also compared our DL models
to a conventional B-spline DIR. A more detailed description
of the models follows here:

- TransMorph: we adapted the 3D DIR transformer-based
model developed by Chen et al22 to 2D DIR. The model
leverages shifted window transformer blocks23 in the
encoder and successive up-sampling and convolutional
layers in the decoder. The input to the encoder are the
fixed and moving unlabeled 2D cine MRI frames and the
output of the decoder is a 2D deformation vector field
(DVF), followed by a spatial transformation layer.24 This
layer warps the segmentation of the moving cine MRI
frame to yield the output binary segmentation. We con-
sistently used the first frame of each cine MRI as moving
image/segmentation and the remaining frames as fixed

Fig. 1. Segmentation of both observers (observer 1 in white and observer 2 in green) for one cine MRI frame of each testing
patient included in this study. Abbreviation: MRI = magnetic resonance imaging.
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images. A more detailed description of the TransMorph
architecture can be found in the original publication.22

We did not use the affine transformer included by Chen
et al22 before the deformable registration to keep the
model as fast as possible. A link to a GitHub repository
with the adapted code can be found in section 1.1 of the
supplementary material.

- SegResNet: similarly to Friedrich et al,16 we used a 2D
CNN for tumor tracking by means of auto-segmentation.
We employed a U-net Segmentation Residual Network
(SegResNet). SegResNet takes an unlabeled 2D MRI
frame as input and generates a binary tumor segmenta-
tion as output. A more detailed description of the model
can be found in the original publication.25

- B-spline: we used the cubic B-spline DIR implementation
provided by the Plastimatch software.26 This conventional
method is based on the iterative optimization of B-spline
functions.27 The registration process is made up of N con-
secutive stages going from coarser to finer image grids in
which pixel-wise intensity differences between the 2
frames are minimized to find the most optimized corre-
sponding B-splines. B-spline DIR was implemented to
serve as a non-real-time but state-of-the-art benchmark.

Furthermore, 2 baselines were computed:

- No-reg: we computed for each frame the evaluation met-
rics between the moving segmentation and the fixed seg-
mentation.

- Interobserver: we computed for each frame the evalua-
tion metrics between the ground truth segmentations of
the first observer and the second observer.

Model training

Figure 2 summarizes the data subdivision and DL model
training strategies. The 4 datasets were used for unsuper-
vised, supervised, and PS strategies:

- TransMorph: we trained the 2D TransMorph model
from scratch on the large unlabeled training set while
using the labeled validation set to continuously monitor
training performance. Although the validation metrics
(same as testing set metrics, see next subsection) used
labels, the loss function was solely based on image and
DVF metrics, making this training unsupervised. We
considered mean-square-error (MSE) and local normal-
ized cross-correlation as image losses LIMG, and the first
spatial derivative (diffusion regularizer)28 or the second
derivative of the DVFs (bending energy regularizer)27 for
DVF losses LDVF. DVF regularization was solely included
to improve the validation metrics and not to obtain
smooth deformations. The relative importance of the
image and DVF losses was balanced by the hyperpara-
meters g and λ:

LTOT ¼ g LIMG þ λ LDVF ð1Þ

Other hyperparameters investigated included the usage
of image augmentations (random affine, bias field, MRI
motion artifacts, elastic deformations, Gibbs noise, and
Gaussian smoothing) and the optimizer learning rate. We
trained for 30 epochs and model training was stopped after
5 epochs if the validation loss did not improve (early stop-
ping of 5 epochs). The batch size was 192. The proposed 2D
model has 31 million trainable weights but is still fast
enough for real-time inference, as shown in the results.

- TransMorph-Sup: the TransMorph model was then used
as a starting point for continued supervised training on
the labeled fine-tuning set, again using the labeled valida-
tion set to find the optimal hyperparameters. We
explored the same image and DVF losses as for Trans-
Morph plus the segmentation Dice loss LSEG,29 balanced
by an additional hyperparameter b22:

LTOT ¼ g LIMG þ λ LDVF þ b LSEG ð2Þ
Additional hyperparameters included image augmenta-

tions (the same as for 2D TransMorph training) and the
learning rate. We trained for 500 epochs with an early stop-
ping of 100 epochs and a batch size of 16.

- TransMorph-PS: the TransMorph model was also used
as a starting point for continued PS training. We ran-
domly picked 8 frames out of the first 5 seconds of cine
MRI of each patient and asked observer 1 to segment the
tumor/target. These 8 frames were then used to continue
training TransMorph separately for each patient. During
training, the PS model was validated on the remaining
frames of the patient. This was repeated on the labeled
validation set patients to find the best hyperparameters
(same parameters investigated as for TransMorph and
TransMorph-Sup) while employing the same LTOT as in
Eq. 2. The PS models were trained for 300 epochs with-
out early stopping and a batch size of 2. The best set of
hyperparameters was chosen according to the labeled
validation set and all TransMorph-PS models shared the
same set of hyperparameters.

- SegResNet-PS: the same PS procedure was applied to
the auto-segmentation SegResNet model. However, as
this model is lightweight (6 million weights) and needs
less training data compared with TransMorph, it was
trained for each patient without starting from pre-
trained weights. Substantial data augmentation was
used (see below) to avoid overfitting the 8 training
frames. This model was solely trained with a segmen-
tation loss, which was a combination of equally
weighted Dice and cross-entropy loss.30 Investigated
hyperparameters included the usage of image augmen-
tations (random affine, bias field, Gibbs noise, and
Gaussian smooth transformations) and the dropout
rate, whereas for the learning rate, the default value of
0.0001 was used. Like TransMorph-PS, this model was
trained for 300 epochs without early stopping and
with a batch size of 2.
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For all DL models the optimal set of hyperparameters
(see Table E1) was found empirically and independently by
repeating training and validation several times. The same 10
patients from the labeled validation dataset were used for all
models and model-specific hyperparameters were selected
for maximizing the overlap between the segmentations. For
all models except the ones based on PS training, the weights
of the epoch achieving the best validation performance were
used to apply the models to the labeled testing set for both
observers. For the TransMorph models, B-spline, and No-
reg, the moving segmentation of each observer was

subsequently deformed and/or compared with the ground
truth segmentation of the same observer when evaluating
performance metrics. For TransMorph-PS and SegResNet-
PS, we trained one model per testing patient only once with
8 frames of each patient, using segmentations from observer
1 only, with the set of hyperparameters determined during
validation. The model weights of the 300th epoch were then
used for testing on the remaining frames, deforming the
moving segmentation of each observer as described above.
For DIR-based models, performance was evaluated against
the same observer as for the moving segmentation.

Fig. 2. DL model training strategies. The number of patients in each dataset is indicated by n. PS training is performed
1 patient at a time for both the validation and testing sets. For the transformers, we used the TransMorph pre-trained on the
unsupervised training set as a starting point, whereas for SegResNet, we performed PS training from scratch. Abbreviations:
DL = deep learning; PS = patient-specific.
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quantitatively for all testing patients, as can be seen in
Figure 4 for the DSC and the HD95% and in Figure E2 for
the RMSESI and HD50%. TransMorph-PS achieved a median
DSC above 0.80 for all patients and a median HD50% below
2 mm, RMSESI below 2 mm, and a median HD95% below
5 mm for all patients but liver06 (large max motion of
35 mm in anterior-posterior and 57 mm in superior-infe-
rior, see Table 1). A similar observation can be made for
SegResNet-PS, which achieved a median HD50% below
2 mm, RMSESI below 2 mm and a median HD95% below
6 mm for all patients but heart02 (limited contrast). We
found SegResNet-PS to perform better than TransMorph-
PS in 1/12 testing set patients (liver06 where the DSC
improved from 0.86 to 0.96 and the HD95% from 17 to 6
mm). The 2 models achieved the same performance on 2
patients (mediastinum02 and liver27), whereas Trans-
Morph-PS was better on the remaining 9/12. Performance
over a temporal series of frames can be appreciated for
TransMorph-PS and SegResNet-PS from the animations

provided as Videos E1-E6. The metrics obtained on the vali-
dation set are shown in Table E5.

An inference time of about 36 ms was measured for
TransMorph and about 8 ms for SegResNet. Registration of
2 frames with B-spline took on average 3 seconds. Segmen-
tation of 8 frames for the PS training took 3 min on average,
whereas PS optimization for 300 epochs took an additional
4 min for SegResNet and 8 min for TransMorph.

Discussion

A framework with 2 DL models for target localization with
an MRI-linac was investigated and different training strate-
gies were compared. PS training leveraging 8 manually seg-
mented frames substantially increased the performance
compared with both supervised and unsupervised training
for transformer-based DIR models. Additionally, PS auto-
segmentation with SegResNet trained from scratch on

Fig. 3. Comparison of output segmentations. Moving segmentation (red solid, equivalent to No-reg), fixed segmentation
(white solid, ground truth segmentation by observer 1), and outputs by different models (dashed) overlaid with the fixed cine
MRI for 4 frames representative of the breathing cycle. To improve visibility, only the best performing transformer (Trans-
Morph-PS) is shown. Top: lung tumor (lung41). Middle: liver tumor (liver06). Bottom: cardiac tumor (heart01). The orange
line denotes the maximum inhalation phase. The numbers in brackets denote the Dice similarity coefficient (DSC) between
current fixed segmentation and the segmentation of the corresponding model. Abbreviations: MRI = magnetic resonance
imaging; PS = patient-specific.
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8 segmented frames can achieve results close to those of
TransMorph-PS. Both models achieved accuracy on-par
with interobserver variability on the testing set (see Table 2).
This shows how the choice of the training strategy (unsuper-
vised, supervised or PS) leads to larger performance differ-
ences than the choice of the model (transformer or CNN for
DIR or auto-segmentation) for the architectures investigated
in this study. Overall, TransMorph-PS was the best model;
however, there were some important patient-dependent dif-
ferences. TransMorph-PS worked better on patients with
small or low-contrast targets, whereas SegResNet-PS was
better for clearly visible targets with large motion. DIR mod-
els can likely use motion from surrounding tissue to cor-
rectly deform a low-contrast target but may have problems
with very large deformations (compared with the moving
image). Auto-segmentation models may be less impacted by
large motion as they output the segmentation based on the
current frame but may benefit from high-contrast. A pre-
treatment workflow could be foreseen in which both Trans-
Morph-PS and SegResNet-PS are trained in parallel using

2 GPUs, and the best one for the current patient is picked
by the clinical staff. This would be similar to current clinical
practice with different conventional DIR model variants
available on the 0.35 T MRI-linac.15 We found the conven-
tional B-spline model to achieve the same performance as
TransMorph and TransMorph-Sup; however, it was signifi-
cantly worse than the 2 PS models. PS training improved
tracking from very inaccurate to an accuracy sufficient for
clinical use in patient lung41, for which the DSC/RMSESI
improved from 0.0/17 mm with B-spline to better than
0.7/2 mm with TransMorph-PS or SegResNet-PS.

In section 1.2 of supplementary material, we describe the
implementation of TransMorph-lung-PS, for which we per-
formed the unsupervised training based only on the 93 avail-
able lung cases. It achieved a slightly worse performance on
the testing set than TransMorph-PS, also for the 2 lung
patients, which may be caused by using a smaller number of
patients for pre-training.

For the 13 testing patients we additionally collected and
manually segmented data from the first treatment fraction

Fig. 4. Box plots of evaluation metrics. Top: Dice similarity coefficient (DSC) and bottom: 95% Hausdorff distance (HD95%)
achieved by different models on the labeled testing set (observers combined). To improve visibility, TransMorph, Trans-
Morph-Sup, No-reg, and Interobserver are not shown. For the same reason, we set the y-axis limit for the DSC plot in such a
way that the box plot for B-spline for patient lung41 is not visible. Abbreviation: PS = patient-specific.
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to investigate whether the 2 PS models are robust against
inter-fractional changes without further re-training (see
supplementary material section 1.3). We found Trans-
Morph-PS to retain high accuracy, whereas a larger drop
was observed for SegResNet-PS (which can be expected as
the tracking target was sometimes changed). This is clini-
cally relevant because it shows that PS training of Trans-
Morph might be needed only during the simulation session,
avoiding a prolongation of the online adaptive workflow for
the fractions. On the other hand, if larger changes in the
tumor characteristics are observed or if the tracking target is
changed by the clinical staff, both PS models could readily
be re-trained before the fraction’s start.

Finally, we also retrospectively compared the proposed
PS framework with clinically used segmentations from the
vendor’s target localization algorithm and found Trans-
Morph-PS to perform better for all testing patients but for
liver06 (Table E6). A more detailed presentation of the seg-
mentation extraction from the vendor-provided video files
and the results is provided in section 1.4 of the supplemen-
tary material.

A direct comparison with the study by Hunt et al18 is dif-
ficult because they did not segment targets. The authors
selected the regularization λ for the DVF leading to a per-
centage of NegJ below 0.5% to obtain physically realistic
deformations. Our best model TransMorph-PS had a higher
NegJ of 2.5%, which was higher than TransMorph and
TransMorph-Sup with NegJ values of 0.1% and 0.2%,
respectively. It is likely that the high tracking accuracy
achieved with TransMorph-PS comes at the cost of less
physically realistic DVFs. This is not problematic when we
only require accurate target localization such as in current
real-time motion management approaches.35

The DSC of about 0.90 obtained on our liver patients is
comparable with the DSC obtained by Friedrich et al16 and
Frueh et al17 on their liver cases. Also, the fact that our best
models are comparable with interobserver variability agrees
with the finding by Palacios et al.15 A direct comparison
with the models from these studies would require usage of
the same patients, because tumor size, visibility, degree of
motion, and number of breath-holds are all factors that
affect the performance substantially. In addition to the geo-
metric metrics reported in this study, in section 1.5 of the
supplementary material we performed a static dose cloud
approximation in 2D to estimate relative changes in the
D98% of the tracking target for different models and con-
firmed that TransMorph-PS performs best (Table E7). Simi-
larly, in section 1.6 of the supplementary material we
estimated the tracking efficiency by the proportion of
frames for which the center-of-mass error was below 3 mm
(Table E8), and found TransMorph-PS to perform best
(99%), followed by SegResNet-PS (97%) and then the ven-
dor’s algorithm (86%).

Both TransMorph and SegResNet were found to be fast
enough for real-time tracking compared with measured
MRI-linac latencies8-10 whereas B-spline was, as expected,
too slow and was considered in this study as the benchmark

conventional registration model. The 3 minutes required for
manual segmentation of 8 frames for PS training would
only slightly prolong current online adaptive workflows,
which can take up to 30 minutes, excluding irradiation.36

The additional 4/8 minutes for PS training of SegResNet/
TransMorph could run automatically in the background. As
done currently for the 0.35 T system, the staff could switch
model or even improve it by contouring additional frames
during the treatment, if needed. Using more frames would
probably increase the performance; however, it would also
require more time for annotation and training. Future stud-
ies could investigate the trade-off between the number of
segmented frames used for PS training and model accuracy.

A limitation of this study is that target tracking was lim-
ited to a single 2D sagittal plane. This can decrease localiza-
tion accuracy when motion in the left-right direction is
present, causing the target to move in and out of the imaging
plane. Out-of-plane motion was observed for 1 patient in this
study (lung41), and observers left the segmentation empty for
those frames such that they could be excluded from the calcu-
lation of the evaluation metrics. As vendors have recently
implemented multi-plane cine MRI acquisition clinically,13,15

future studies will investigate modifications of the models to
track in multiple planes, with the final goal to perform 3D+t
target tracking and motion management in real-time.35

Another limitation is that TransMorph-PS requires pre-train-
ing on a large unlabeled dataset. However, it can be argued
that such datasets are typically available in clinics, and that
we made TransMorph’s weights publicly available. Finally,
only cine MRIs from a 0.35 T MRI-linac were used in this
work. In future studies, we plan to investigate accuracy and
transferability of the implemented models to MRI-linacs with
a different field strength.

Conclusions

A transformer-based DIR model and an auto-segmentation
CNN model were found to achieve accurate performance
for real-time target localization during MRIgRT for a wide
range of tumor sites when using a PS training approach.
Personalization to a specific patient only takes a few minutes
and would be feasible in current online adaptive pretreat-
ment workflows.
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1. Supplementary information 

1.1 Implementation details 

The code employed in this study was developed using Python 3.8.13 and is accessible at the following 
URL: https://github.com/LMUK-RADONC-PHYS-RES/transformer target localization. All DL models were 
trained using the Adam optimizer [1]. TransMorph models were optimized using the PyTorch-based 
framework MONAI 1.1.0 [2], while for SegResNet we used the MONAI Label [3] graphical user interface 
available in 3D Slicer. Training and inference of the DL models was conducted on an NVIDIA Quadro RTX 
8000 GPU equipped with 48 GB of memory while B-spline was executed on an Intel Xeon Gold 6254 
(Cascade Lake-EP) 18-Core CPU. Inference times for all models were measured and are reported in the 
results. For the PS models we also measured the time to manually segment the eight training frames and 
the time to complete the 300 epochs, as these must be compatible with the duration of the online 
adaptive treatment workflow on MRI-linacs. 

1.2 Lung-only unsupervised TransMorph 

Additionally to the unsupervised training of TransMorph using all 219 available patients as described in 
the main article, we also trained TransMorph in an unsupervised fashion using only the lung patients (93 
in total) to investigate whether this could lead to a better performance for this tumor site. The 
unsupervised-lung TransMorph was refined in a PS fashion in the same way as TransMorph-PS. 
TransMorph-lung-PS achieved the following median (IQR) results over all testing set patients: DSC of 0.90 
(0.04), HD50% of 1.0 (0.1) mm, HD95% of 3.6 (1.6) mm and RMSESI of 0.8 (0.5) mm, which is slightly worse 
than TransMorph-PS from the main article. Looking only at the two lung testing patients we found that 
for lung41 TransMorph-lung-PS achieved a DSC of 0.78 while TransMorph-PS a DSC of 0.84. For lung46 
both achieved a DSC of 0.95. These findings confirm our hypothesis that with limited labelled data, 
unsupervised training should be performed with as many patients as possible as to better learn generic 
patterns of motion. During the PS refinement phase, the motion patterns of the current tumor can be 
learned. Finally, we also applied TransMorph-lung (without any PS) to the two lung testing patients and 
compared it with TransMorph trained on all patients (without any PS). The former obtained a DSC of 
0.07 and 0.92 while the latter obtained a DSC of 0.15 and 0.81 on lung41 and lung46, respectively. As 
already discussed in the main article, including PS training makes the largest difference but it is 
interesting to note how TransMorph-lung without any PS worked better on a ‘typical lung patient’ such 
as lung46 compared to TransMorph. 
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1.3 Fractional data 

Additionally to the datasets described in the main article, we collected for the test set up to 100 frames 
per patient from the first treatment fraction and asked an additional (third) observer to segment this 
data following the same tracking target used clinically. For some patients we collected less than 100 
frames as a gantry movement started within the first 100 frames and disrupted image quality (74 for 
abdomen08 and 49 for lung46). We then applied TransMorph-PS and SegResNet-PS without re-training 
to the fractional data and compared with the manually obtained segmentations. This allowed us to 
investigate whether intra-fractional changes can affect the performance of the PS models. TransMorph-
PS retained a high accuracy on the fractions, achieving a median (IQR) over all patients for the DSC, 
HD50%, HD95% and RMSESI of 0.89 (0.06), 1.5 (0.5) mm, 4.8 (3.6) mm and 1.2 (1.2) mm, respectively. It 
worked well (DSC above 0.80 and HD50% below 2.5 mm) for all patients but for lung41, for which it 
achieved a DSC of 0.22 and a HD50% of 7.0 mm, which would not be acceptable for clinical use. On the 
other hand, we observed a drop in performance for SegResNet-PS, which achieved a median (IQR) over 
all patients for the DSC, HD50%, HD95% and RMSESI of 0.74 (0.36), 2.2 (3.0) mm, 11.5 (25.6) mm and 3.5 
(6.6) mm, respectively. It achieved substantially lower performance for several patients, but in particular 
for liver27, abdomen17 and pancreas02, for which it achieved a DSC smaller than 0.1 and an HD50% larger 
than 50 mm. Interestingly, for these three patients the clinicians had changed the tracking target from 
the pre-treatment imaging to the first fraction (often a different sagittal slice or another surrogate target 
is selected to improve tracking performance). It is expected that the performance of SegResNet-PS tends 
to zero for such cases as it was trained on a substantially different target based on the pre-treatment 
selection. TransMorph-PS is affected less by such changes as the first frame from the current fraction is 
deformed and even if the PS training focused on a different target, as long as the pre-treatment and the 
fractional target are close, we hypothesize that the learned deformations are still representative enough 
for the fractional tracking target. 

1.4 Comparison with vendor algorithm 

To enable a comparison with the vendor’s target localization algorithm (ViewRay MRIdian software version 
5.3.6.11 for all data used in this study), each cine MRI was exported twice: one time in .OGV file format, 
which is a video containing resampled and interpolated cine MRI frames with the vendor-generated target 
and gating boundary segmentation overlaid using the color channels of the video. The second export was 
in binary file format, which contains the un-processed images without any segmentation. The former was 
processed with in-house software to extract the vendor target segmentations, as described in more detail 
in [4,5]. The segmentations extracted from each testing patient were visually inspected for correctness, 
which lead to the exclusion of patients heart01, heart02, mediastinum02, prostate06 and pancreas11 due 
to a substantial number of frames with segmentations not being correctly extracted from the OGV video. 
For the sake of transparency, results for these patients are still displayed in the results tables E6, E7 and 
E8 but are not considered when computing averages/medians and for discussion. The un-processed cine 
MR images were converted from binary into .MHA using scripts provided by the vendor and used to build 
all models described in the main article. The observers were asked to manually segment the un-processed 
frames but could have a look at the frames from the video having the vendor segmentations as a clinical 
reference. To correctly compare the vendor segmentations with the segmentations obtained with the 
models of the main article two additional steps were needed: the alignment of the frames both in time 
and in space. Misalignment between the video and the binary data in time arises due to two reasons: first, 
the video is saved only starting from the 6th acquired frame, so the first six frames in the binary data need 
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to be excluded. Second, the frames during which the gantry rotates are not included in the video and the 
number of skipped frames is not available. While, as shown by Hunt et al. [6], image analysis techniques 
can be used to approximately find the frames where gantry rotation occurs in the binary data, we decided 
to use only simulation cine MRI (having no gantry rotations as no treatment is performed) for the testing 
set patients to ensure a perfect correspondence in time after exclusion of the first six frames. The spatial 
misalignment arises from the fact that in the video files additional information such as the orientation of 
the cine, beam status, tracking confidence, etc. are included at the four sides of each image in the video, 
leading to a small translation and scaling of the actual imaging data. To correct for this, we optimized the 
parameters of a scaling image transformation followed by a translation transformation to match each 
video frame and its corresponding extracted vendor segmentation to the binary imaging data and the 
corresponding segmentations of the algorithms and the ground-truth segmentations described in the main 
article. The scaling and translation transformations were the same for all patients. 

As can be seen in Table E6, TransMorph-PS obtained better performance than the vendor algorithm for 
all testing set patients for which the segmentations could be correctly obtained (8/13), excluding patient 
liver06. For that patient, the first frame selected for deformation by TransMorph-PS was in a motion 
state distant from the breath-hold state, while in clinical practice the clinical algorithm uses a key frame 
in breath-hold. As shown in Table 1, 74 % of this cine MRI was acquired during a breath-hold. 
Unfortunately, it is not possible for us to obtain the moving frame used by the vendor as this information 
is not available in the system and we therefore consider taking the first frame of each video the fairest 
solution possible. When SegResNet-PS was used for this case instead of TransMorph-PS, superior 
performance was obtained (mean DSC, HD50%, HD95% and RMSESI of 0.96, 1.4 mm,  7.5 mm and 1.1 mm, 
respectively). 

1.5 Dosimetric evaluation 

We performed a static dose cloud approximation in 2D to get a first order estimate of relative changes in 
the D98% of the tracking target for the different models implemented in this study and for the vendor 
algorithm. For each testing patient, the segmentation of the moving frame (the first frame), was 
expanded to simulate a 3 mm expansion of the GTV to the CTV, and smoothed with a Gaussian kernel of 
6 mm standard deviation  for targets in the lung (simulates a dose fall-off similar to those observed for 
lung patients in our treatment planning system) and of 4 mm for all other targets (dose fall-off for 
targets in higher density tissue). We considered this the ground truth dose distribution for each patient. 
We then shifted this dose distribution by the difference between the ground truth centroid position of 
the tracking target and the centroid position obtained by the investigated model for each frame. We 
then averaged these shifted distributions to get a centroid-error shifted dose. For each patient the 
relative difference between the GTV (or tracking target) D98% for the ground truth distribution and for the 
final shifted distribution was calculated.  

The results of the dosimetric evaluation are shown in Table E7. They confirm that TransMorph-PS is the 
overall best model. It was slightly better than SegResNet-PS and substantially better than B-spline and 
the No-reg baseline. When looking at the subset of testing patients for which a comparison with vendor 
was possible, we found TransMorph-PS to perform better for all patients but liver06. If SegResNet-PS 
was used instead of TransMorph-PS for liver06, the vendor algorithm would be outperformed for all 
investigated patients. 
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1.6 Tracking efficiency analysis 

To investigate tracking efficiency, we computed the number of frames for which the distance between 
the center of mass of the ground truth segmentation and the center of mass of the model output 
segmentation was less than 3 mm in either superior-inferior or anterior-posterior direction. We chose 3 
mm as this expansion is often applied in the clinic to create the boundary margin for gating [7]. The 
results shown in Table E8 show that TransMorph-PS has the highest tracking efficiency. When looking at 
the subset of patients for which a comparison with the vendor is possible, we find TransMorph-PS to 
perform better for all patients but for patient liver06. The vendor algorithm achieved the best tracking 
efficiency for this case, being slightly better than SegResNet-PS and substantially better than 
TransMorph-PS. When looking at the median tracking efficiency over the usable subset of testing 
patients we found TransMorph-PS to be 2% better than SegResNet-PS and 13% better than the vendor 
algorithm, with larger differences present when looking at specific patients. 

1.7 Demons algorithm 

Following Hunt et al., we also implemented the Demons algorithm as a second conventional image 
registration method next to B-spline. We used the “fast symmetric forces” variant implemented in the 
open-source Python-based library SimpleITK and performed, based on validation patients, a hyper-
parameter search for the number of iterations and the standard deviation of the Gaussian filter used to 
smooth the DVF. We found 200 iterations and a standard deviation of 2.0 pixels to lead to highest 
validation accuracy and therefore used these values for the testing set patients. Registration of one 
frame took approximately 7 seconds and the following results were obtained (median and IQR over all 
testing frames for both observers): DSC = 0.83 (0.09), HD50% = 2.0 (1.0) mm, HD95% = 5.9 (1.7) mm, RMSESI 
= 1.9 (2.5) mm. As this model is slower than B-spline and has a worse performance, we presented B-
spline as the benchmark conventional model in the main article. 
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2. Supplementary tables 

Table E1. Optimal hyper-parameters found for each model based on the labeled validation set. The 
variable γ stands for the image loss (MSE) weight, λ stands for the deformation loss (diffusion) weight 
and β stands for the segmentation loss (Dice) weight. The variable p stands for the probability of that 
given augmentation to be applied during training. 

Parameter TransMorph TransMorph-Sup TransMorph-PS SegResNet-PS 
𝛾 1.0 0.05 0.05 - 
𝜆 0.1 0.05 0.01 - 
β - 1.0 1.0 - 

Affine p 0.0 0.5 0.75 0.5 
Bias field p 0.0 0.5 0.75 0.5 

Motion artifact p 0.0 0.5 0.75 - 
Elastic deformation p 0.0 1.0 1.0 - 

Gibbs noise p 0.0 0.5 0.75 0.5 
Gaussian smooth p 0.0 0.5 0.75 0.5 

Learning rate 1e-4 1e-5 1e-5 1e-4 
Dropout rate 0.0 0.0 0.0 0.25 

 

Table E2. Metrics obtained on labeled testing set (observer 1) for the different models. Median (inter-
quartile range) over patients is shown. Best values for each metric are shown in bold and second-best 
values in italics. 

Model DSC HD50% [mm] HD95% [mm] RMSESI [mm] NegJ [%] 
No-reg 0.60 (0.35) 3.9 (4.8) 9.2 (6.6) 8.0 (6.9) - 
B-spline 0.87 (0.06) 1.6 (0.9) 4.6 (2.2) 1.5 (1.3) < 0.001 
TransMorph 0.86 (0.07) 1.5 (1.0) 5.1 (2.5) 1.7 (0.9) 0.1 (0.2) 
TransMorph-Sup  0.87 (0.06) 1.4 (0.2) 4.8 (2.6) 1.6 (1.2) 0.2 (0.2) 
TransMorph-PS 0.92 (0.03) 1.0 (0.5) 3.2 (2.1) 0.8 (0.7) 2.5 (2.2) 
SegResNet-PS 0.91 (0.04) 1.1 (0.3) 4.1 (1.4) 1.0 (0.8) - 

 

Table E3. Metrics obtained on labeled testing set (observer 2) for the different models. Median (inter-
quartile range) over patients is shown. Best values for each metric are shown in bold and second-best 
values in italics.  

Model DSC HD50% [mm] HD95% [mm] RMSESI [mm] NegJ [%] 
No-reg 0.58 (0.38) 4.3 (3.8) 10.6 (6.8) 7.1 (6.3) - 
B-spline 0.86 (0.07) 1.6 (1.0) 5.4 (4.0) 1.7 (2.4) < 0.001 
TransMorph 0.82 (0.10) 1.7 (0.7) 5.7 (2.2) 1.6 (1.3) 0.1 (0.2) 
TransMorph-Sup  0.86 (0.07) 1.4 (0.3) 4.4 (2.9) 1.6 (1.1) 0.2 (0.2) 
TransMorph-PS 0.90 (0.03) 1.1 (0.3) 3.8 (2.7) 1.0 (0.9) 2.5 (2.2) 
SegResNet-PS 0.90 (0.06) 1.4 (0.5) 4.8 (4.7) 1.2 (1.4) - 
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Table E4. P-values obtained from the post-hoc Nemenyi test for the labeled testing set (observers 
combined) for all possible model pairs. Significant p-values (<0.05) are denoted with an asterisk. 

Model 1 Model 2 p-value 
No-reg B-spline 0.001* 
No-reg TransMorph 0.001* 
No-reg TransMorph-Sup 0.001* 
No-reg TransMorph-PS 0.001* 
No-reg SegResNet-PS 0.001* 

B-spline TransMorph 0.9 
B-spline TransMorph-Sup 0.9 
B-spline TransMorph-PS 0.001* 
B-spline SegResNet-PS 0.001* 

TransMorph TransMorph-Sup 0.9 
TransMorph TransMorph-PS 0.001* 
TransMorph SegResNet-PS 0.001* 

TransMorph-Sup TransMorph-PS 0.001* 
TransMorph-Sup SegResNet-PS 0.001* 
TransMorph-PS SegResNet-PS 0.001* 

 

Table E5. Metrics obtained on labeled validation set for the different models. Median (inter-quartile 
range) over patients is shown. Best values for each metric are shown in bold and second-best values in 
italics. 

Model DSC HD50% 
[mm] 

HD95% 
[mm] 

RMSESI [mm] NegJ [%] 

No-reg 0.73 (0.18) 5.2 (7.0) 10.0 (8.0) 7.6 (9.2) - 
B-spline 0.82 (0.07) 2.6 (1.9) 10.3 (7.2) 1.4 (3.7) < 0.001 
TransMorph 0.80 (0.12) 2.1 (5.1) 10.9 (8.6) 2.4 (6.6) 0.1 (0.3) 
TransMorph-Sup  0.83 (0.08) 2.0 (1.3) 9.7 (5.7) 2.6 (4.3) 0.2 (0.3) 
TransMorph-PS 0.90 (0.04) 1.4 (0.5) 5.5 (3.0) 1.3 (1.7) 1.3  (3.6) 
SegResNet-PS 0.90 (0.06)  1.3 (0.5)  4.8 (1.3 ) 1.1 (0.9) - 
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Table E6. Metrics obtained on the labeled testing set (observer 1) with the vendor algorithm (VA) and 
TransMorph-PS (TM-PS). Mean (standard deviation) over the frames of each patient is shown. Median of 
the means and IQR is shown in the last row. The patients with an asterisk were excluded for fairness 
from the computation of the median performance for both models due to issues in the extraction of the 
vendor segmentations. 

Patient DSC HD50% [mm] HD95% [mm] RMSESI [mm] 
 VA TM-PS VA TM-PS VA TM-PS VA TM-PS 

liver06 0.87(0.15) 0.85(0.08) 4.5(5.7) 5.2(3.2) 12.1(11.6) 18.6(9.6) 5.4(9.5) 9.6(6.0) 
liver027 0.88(0.04) 0.92(0.03) 2.1(0.09) 1.2(0.5) 6.6(2.2) 5.9(3.6) 2.5(1.6) 1.3(1.1) 

abdomen08 0.88(0.03) 0.94(0.03) 1.1(0.3) 0.8(0.4) 3.2(1.1) 2.1(1.0) 1.1(0.9) 0.5(0.5) 
abdomen17 0.90(0.01) 0.93(0.01) 1.3(0.3) 1.0(0.1) 4.2(0.9) 3.6(1.0) 1.0(0.7) 0.8(0.6) 
prostate06* 0.82(0.04) 0.92(0.03) 2.3(0.8) 1.2(0.3) 8.9(2.3) 4.5(2.0) 1.7(1.3) 1.4(1.2) 
prostate13 0.89(0.02) 0.95(0.01) 1.9(0.4) 1.0(0.1) 7.7(2.2) 3.2(1.7) 2.3(1.1) 0.8(0.8) 

lung41 0.70(0.16) 0.84(0.11) 2.1(1.8) 1.3(1.7) 5.0(2.3) 3.0(2.3) 2.9(2.2) 1.0(2.2) 
lung46 0.88(0.03) 0.95(0.02) 1.3(0.4) 0.7(0.5) 3.7(0.8) 2.1(1.4) 0.8(0.6) 0.4(0.4) 

pancreas02 0.79(0.05) 0.91(0.04) 1.3(0.4) 0.7(0.5) 3.7(1.2) 2.0(0.9) 1.4(0.9) 0.6(0.4) 
pancreas11* 0.76(0.04) 0.92(0.03) 1.9(0.5) 0.8(0.4) 7.9(1.8) 2.2(1.0) 1.0(0.6) 0.6(0.4) 

heart01* 0.37(0.12) 0.94(0.03) 7.9(3.5) 0.7(0.5) 25.1(4.8) 2.2(1.6) 12.3(5.8) 0.7(0.8) 
heart02* 0.62(0.09) 0.80(0.05) 3.7(1.2) 1.2(0.3) 9.0(1.6) 4.3(1.5) 1.9(1.5) 1.5(1.3) 

mediastinum02* 0.74(0.04) 0.91(0.03) 2.4(0.9) 1.0(0.2) 12.4(1.6) 3.4(1.2) 3.0(1.0) 0.7(0.5) 
median 0.88(0.04) 0.93(0.05) 1.6(0.7) 1.0(0.4) 4.6(1.2) 3.0(1.6) 1.9(0.9) 0.8(0.9) 

 

Table E7. Relative decrease in tracking target D98% in % obtained for each patient in the labeled testing 
set (observer 1). The patients with an asterisk were excluded for fairness from the computation of the 
median performance for all models due to issues in the extraction of the vendor segmentations. Lower 
values are better. 

Patient No-Reg B-spline TransMorph-PS SegResNet-PS Vendor 
                                        D98% decrease (%) 

liver06 86 28 62 12 20 
liver027 46 27 2 10 5 

abdomen08 1 18 0 0 5 
abdomen17 53 4 1 1 2 
prostate06* 4 17 5 4 28 
prostate13 2 3 2 7 15 

lung41 99 99 1 7 20 
lung46 33 0 0 1 1 

pancreas02 81 7 0 5 7 
pancreas11* 28 12 0 1 27 

heart01* 55 10 0 10 82 
heart02* 72 7 5 65 7 

mediastinum02* 67 2 0 1 56 
median 50 13 1 6 7 
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Table E8. Tracking efficiency in % obtained for each patient in the labeled testing set (observer 1). The 
patients with an asterisk were excluded for fairness from the computation of the median performance 
for all models due to issues in the extraction of the vendor segmentations. Higher values are better. 

Patient No-Reg B-spline TransMorph-PS SegResNet-PS Vendor 
                                       tracking efficiency (%) 

liver06 7 42 18 66 70 
liver027 31 61 91 75 60 

abdomen08 99 77 100 100 96 
abdomen17 28 86 100 100 100 
prostate06* 90 72 90 93 44 
prostate13 98 96 98 91 77 

lung41 1 2 96 93 68 
lung46 20 100 100 100 100 

pancreas02 12 100 100 100 95 
pancreas11* 29 98 100 100 52 

heart01* 6 90 98 90 0 
heart02* 15 86 88 25 77 

mediastinum02* 14 100 100 100 1 
median  24 82 99 97 86 
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3. Supplementary figures 

 

 

Figure E1.Comparison of output segmentations. Moving segmentation (red solid, equivalent to No-reg), 
fixed segmentation (white solid, ground truth segmentation by observer 1) and outputs by different 
TransMorph models (dashed) overlaid with the fixed cine MRI for four frames representative of the 
breathing cycle. To improve visibility, only the transformers with different training strategies are shown. 
(Top) Lung tumor (lung41). (Middle) Liver tumor (liver06). (Bottom) Cardiac tumor (heart01). Orange line 
denotes the maximum inhalation phase. Number in brackets denotes the Dice similarity coefficient (DSC) 
between current fixed segmentation and segmentation of corresponding model. 
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Figure E2. Box plots of evaluation metrics. (Top) Root-mean-square-error in superior-inferior 
(RMSESI) and (Bottom) 50% Hausdorff distance (HD50%) achieved by different models on the 
labeled testing set (observers combined). To improve visibility, TransMorph, TransMorph-
Sup, No-reg and Inter-observer are not shown. 
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4. Supplementary videos 

 

  

Video E1: TransMorph-PS and SegResNet-PS performance for patient abdomen17. Output segmentation 
overlayed with cine MRI at the original frame rate of 8 Hz. Video file can be found online under Appendix 

Supplementary material. 

 

 

Video E2: TransMorph-PS and SegResNet-PS performance for patient heart01. Output segmentation 
overlayed with cine MRI at the original frame rate of 8 Hz. Video file can be found online under Appendix 

Supplementary material. 
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Video E3: TransMorph-PS and SegResNet-PS performance for patient liver06. Output segmentation 
overlayed with cine MRI at the original frame rate of 8 Hz. Video file can be found online under Appendix 

Supplementary material. 

 

 

Video E4: TransMorph-PS and SegResNet-PS performance for patient lung41. Output segmentation 
overlayed with cine MRI at the original frame rate of 4 Hz. Video file can be found online under Appendix 

Supplementary material. 
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Video E5: TransMorph-PS and SegResNet-PS performance for patient lung46. Output segmentation 
overlayed with cine MRI at the original frame rate of 4 Hz. Video file can be found online under Appendix 

Supplementary material. 

 

 

Video E6: TransMorph-PS and SegResNet-PS performance for patient mediastinum02. Output 
segmentation overlayed with cine MRI at the original frame rate of 8 Hz. Video file can be found online 

under Appendix Supplementary material. 
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Chapter 3

Outlook

Motion occurring during treatment, for instance due to respiration, remains one of the major
challenges in modern radiotherapy. MRI-linacs represent the state-of-the-art for real-time
motion management and currently rely on gated beam delivery with the patients holding
their breath. However, this comes at the cost of prolonged treatments, which leads to less
patients being able to benefit from this technology and therefore higher costs. MLC-tracking
in free-breathing as a more time efficient alternative to gating is currently being investigated,
however, it requires, among others, more accurate target localization in all breathing states
and compensation of the system latency to avoid lagging behind the moving tumor.

In this thesis, different DL algorithms were developed to tackle the above mentioned
problems. To compensate for the MRI-linac latency, different LSTM motion prediction models
have been developed in-silico and then experimentally validated for MLC-tracking on the
Australian MRI-linac. Furthermore, a transformer DIR model was developed for real-time
target localization based on cine MRI and shown to outperform both conventional DIR
and DL auto-segmentation models in-silico. The experimental validation of the proposed
models in an MLC-tracking study with a Viewray-MRIdian system is limited by the fact
that the vendor does not provide leaf control/access to the motion management framework
and further complicated by the hardware constraint of the MLC leaves not moving parallel
to the main component of motion, i.e., the superior-inferior direction. For these reasons,
future MLC-tracking experiments will likely be performed on the Australian MRI-linac or an
Elekta-Unity. A potential implementation issue regarding the presented target localization
transformer is that the manual labelling of multiple frames needed for the patient-specific
training requires 3 minutes and the training itself another 4 minutes, which adds additional
complexity to the online adaptive MRIgRT workflow. A possible solution to get rid of the
patient-specific training is currently being investigated in a follow-up study by another PhD
student and involves the usage of foundation models, large networks that are trained on
vast amounts of data to perform a wide range of tasks across different domains and that can
be readily adapted to a specific application. Whether transformers can replace LSTMs for
motion prediction and whether they are going to remain the first-choice architecture for most
tasks remains to be seen, with a recent publication by the inventor of the LSTM suggesting
that xLSTM, a new LSTM model with attention, can theoretically outperform state-of-the-art
transformers both in performance and scaling [62]. A well-known issue for science in general
and in particular for comparative DL studies is confirmation bias: authors involuntarily tend
to optimize the performance of the most interesting/newest model more, therefore making
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the comparison potentially unfair. Challenges in which participants from all over the world
can test their (AI or non-AI) algorithm on large curated datasets are considered a better way
to objectively compare models for specific tasks. Such a challenge for target localization
based on 2D cine MRI from commercial MRI-linacs is currently being co-organized by the
candidate together with researchers from the LMU, Italy, Belgium, the Netherlands, the Czech
Republic, Australia and China.

Finally, while MRI-guided MLC-tracking in free-breathing would lead to a substantial
improvement in terms of efficiency compared to gating, it still has drawbacks such as informa-
tion about motion being limited to a single 2D slice and OAR movement with respect to the
target being potentially different from assumptions made during treatment planning on the
static anatomy. The topical review published by the candidate and presented in section A.1
proposes a 3D+t dosimetric MLC-tracking workflow in which the MLC leaves are moved to
account for current under/over-dosage with respect to the reference treatment plan as a possi-
ble improvement to the current state-of-the-art 2D+t geometric MLC-tracking. The proposed
workflow requires AI in many of its steps, including but not limited to extending the motion
prediction models presented in this thesis to the prediction of future 3D deformations or
the extension of the target localization 2D DIR model to the real-time estimation of 3D+t
deformation fields from 2D+t multi-plane input data. While all datasets in the candidate’s
publications comprised 2D cine MRIs acquired in a single sagittal plane, multi-plane 2D cine
MRI has been collected from the MRIdian at the LMU University Hospital recently. This data
could be used in future studies to evaluate both conventional [63, 64] and AI-based [65, 66]
2D+t to 3D+t motion estimation models.

3.1 Conclusions

This thesis provides convincing evidence on the role DL can play for real-time motion
management in MRIgRT. In in-silico studies using large clinical datasets from two MRI-linacs
it was shown that DL algorithms significantly outperform conventional ones both for motion
prediction and for target localization while achieving inference times below 50 ms, which is
necessary for real-time deployment. Of note, for motion prediction the in-silico results were
additionally confirmed in a real-time experimental study with a prototype MRI-linac. Several
follow-up projects resulting from this work are already ongoing and include the application of
the developed motion prediction model to cardio-respiratory motion traces acquired with an
Elekta-Unity in the Netherlands, the in-silico validation of the developed target localization
model on 2D cine MRI data from an Elekta-Unity in China, the experimental validation of
the developed target localization model or a follow-up foundational model on the Australian
MRI-linac and the organization of a target localization challenge using multi-institutional 2D
cine MRI data from different MRI-linacs, with the ultimate goal of improving the accuracy of
MRIgRT for the treatment of cancer.



Appendix A

Additional publication

A.1 Topical review: Real-time motion management in MRI-guided
radiotherapy: Current status and AI-enabled prospects

This topical review was published as the result of a workshop organized by the European
Society for Radiotherapy and Oncology in 2022 in Lisbon. Leveraging the expertise from top
researchers from multiple countries, the candidate summarized the existing literature on the
topic of real-time motion management with MRI-linacs and proposed a future AI-enabled
3D+t dosimetric MLC-tracking workflow as a potentially more accurate alternative to the
current 2D+t geometric MLC-tracking.

Reprinted with permission from "Lombardo, E., Dhont, J., Page, D., Garibaldi, C., Künzel,
L. A., Hurkmans, C., ... & Placidi, L. (2023) Real-time motion management in MRI-guided
radiotherapy: Current status and AI-enabled prospects. Radiotherapy and Oncology, 109970".
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subregions [6,7]. Recent feasibility studies have also demonstrated the 
possibility to monitor and predict treatment response on the MR images 
acquired during RT, a promising development for personalized treat
ment approaches [8]. 

Next to the anatomical and functional imaging of changes occurring 
from one treatment day to the other (inter-fractional), MRIgRT also 
provides direct and real-time monitoring of changes occurring during a 
treatment fraction (intra-fractional) [109]. Through cine MRI, intra- 
fraction motion such as slow drifts, sudden shifts or (semi-)periodic 
motion of the target but also of nearby organs at risk (OARs) can be 
observed [9-12]. These observations open the door to real-time adap
tation, but the requirements for real-time motion management go 
beyond the availability of images. Fast and accurate localization, motion 
prediction to overcome latency, and the actual adaptation through 
gating or tracking are equally critical [13]. Of further consideration in 
the context of real-time motion management is the currently available 
spatial and temporal resolution of cine MRI on MRI-linacs, and the 
extent of the artefact-free field-of-view which is often limited to two 
dimensions at high temporal resolution. With online adaptation and 
real-time motion management added to the task list, MRIgRT has 
become a highly complex treatment modality [14,107]. 

During the ESTRO Physics workshop 2022 on “Next generation MR- 
guided radiotherapy: AI applications for planning and image guidance”, 
we built a working group on real-time motion management in MRIgRT, 
from which we present the results of our discussion in this article. Our 
aim is to describe the status and limitations of intra-fractional motion 
management in MRIgRT based on the authors’ experience, communi
cation with the different vendors and a review of the existing literature. 
To address limitations of current intra-fractional motion management 
approaches, an envisioned workflow is proposed. Considering the 
amount of data generated during an MRIgRT treatment fraction and the 
need for short computational times in real-time motion management, it 
is not surprising that an often-proposed solution to some of the current 
hurdles in MRIgRT is artificial intelligence (AI) [15]. We therefore cast a 
particular focus on these approaches and the benefit they can bring. 

Terminology and overview 

Over the last decade, the terms motion tracking, prediction, and 
estimation have been used interchangeably in the scientific literature 
[10,16-22]. In this work, we adopt the terms real-time or intra-fractional 
motion management to refer to the overall procedure going from the 
real-time visualization of target/tumour motion via dedicated imaging 
up to the adaptation of the radiation beam occurring during an RT 
treatment fraction [109,110]. From this perspective, tracking, predic
tion, and other related terms can be viewed as specific components or 
steps within this comprehensive management procedure, as we will 
elaborate upon in subsequent sections. Although this work focuses on 
MRI-guidance, these terms can also be applicable to image-guided 
radiotherapy in general. The current intra-fractional motion manage
ment procedure in MRIgRT can be conceptually divided into four 
essential steps (see Fig. 1): 

Real-time imaging 

The first step involves real-time visualization of the patient anatomy 
using cine MRI with a dedicated MRI sequence which is fast and robust 
to motion, providing continuous and consistently high-quality imaging 
needed for intra-fractional motion management [23]. Compared to 
other fast imaging techniques like fluoroscopy, cine MRI offers superior 
soft-tissue contrast, enabling accurate localization of various targets, 
including lung tumours, pancreatic lesions, and primary and secondary 
hepatic lesions [5]. Furthermore, cine MRI carries no additional radia
tion dose, allowing safe and continuous verification throughout all 
treatment fractions [24]. 

Target/OAR localization 

Once a new cine MRI frame is acquired, the next step involves 
localizing the treatment target and if needed nearby OARs. This step is 
often referred to as motion tracking, however, due to etymological 
similarity with MLC-tracking, we prefer the term localization. In this 
work, the term motion estimation is used to refer to the more general 
computation of displacement fields (no contours involved). Various al
gorithms have been proposed for real-time target localization on cine 
MRIs and will be discussed in the next section. While some methods 
focus on robustness by providing the updated centre of mass (COM) 
position of the target [16] other methods update the target contour itself 
[22,25], thus considering both rigid displacements as well as rotations 
and deformations. 

Motion prediction 

Each step of the motion management workflow requires a certain 
amount of time. The resulting time delay between the physical motion of 
the target and the execution of the adaptation is called system latency. 
Compared to other motion monitoring techniques, the acquisition of 
cine MRIs is comparably slow and represents the primary contributor to 
system latency. Measurements have shown that system latencies can 
range from approximately 200 ms to 440 ms, depending on imaging 
frequency, beam adaptation technique and MRI-linac system [17,25- 
27]. For comparison, measured latencies of 115 ms for a robotic linac 
system (optical marker localization and robotic adaptation) [104,111], 
48 ms for a gimbaled linac system (infra-red marker localization and 
MLC-tracking) [105] and 350 ms for a Kv intrafractional monitoring 
system (kilovoltage intrafraction monitoring for implanted fiducial 
localization and gating/couch-shifts or MLC-tracking) [106] have been 
reported. To mitigate the dosimetric effects of latency, temporal pre
diction algorithms have been explored. These algorithms use a sequence 
of previous inputs, which can be target coordinates, contours or entire 
cine MRI frames to forecast the future target location to be used in the 
beam adaptation step. 

Fig. 1. Workflow of real-time motion management in MRIgRT. 1. First, a 2D cine MRI is acquired to visualise the patient’s moving anatomy. 2. Then, the position of 
the moving target is localized on the current cine MRI. 3. Prediction of the future target position can be used to overcome system latency. 4. Finally, the beam is 
adapted to compensate for the target’s motion using one or a combination of different techniques. (*) Asterisks denote that motion prediction and MLC-tracking have 
currently been implemented only on prototype MRI-linacs. Adapted with permission from [93]. 
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Beam adaptation 

In the final step of intra-fractional motion management, the actual 
adaptation of the radiation beam based on the observed or predicted 
motion takes place. In this work, the term adaptation is used to describe 
either a change in the spatial distribution of the beam, for instance when 
the MLC aperture is re-shaped, or a change in time, for instance when the 
beam is paused during gated delivery. Several techniques have been 
developed and clinically applied for x-ray guidance in recent years [86- 
88]. While certain modifications may be required to adapt these tech
niques for use on MRI-linacs, the majority can be directly applied to 
MRIgRT. 

Clinical motion management, challenges and research solutions 

In the following section, a detailed description of the different 
methods which are available clinically and at a research level for the 
different steps of real-time motion management in MRIgRT will be 
provided. A focus will be given to open challenges and where AI can 
provide advancements. 

Real-time imaging 

Ideally, MRI for intra-fractional motion management would involve 
real-time 3D cine MRI, i.e., continuous 3D imaging at a framerate of few 
Hz and a voxel size of few mm3. However, achieving this ideal scenario 
remains a significant challenge due to the inherent trade-off between 
spatial and temporal resolution [28,29]. As a result, current techniques 
for time-resolved MRI in motion monitoring typically rely on acquiring 
2D information, which enables image acquisition at sub-second frame 
rates using specialized 2D cine MRI sequences. These can be acquired 
either on a single plane or multiple parallel planes (commonly in the 
sagittal direction), or, more recently, in an orthogonal sagittal/coronal/ 
axial interleaved fashion [30]. Imaging is typically centred in the 
tumour to achieve pseudo 3D information. Cine MRI used in clinical 
practice today is based on balanced steady-state free precession se
quences with cartesian or radial k-space read-out. With voxel-sizes in the 
order of few millimetres (2–4 mm in-plane with slice thicknesses of 
5–15 mm), a temporal resolution of up to 8 Hz is achieved [26,31], with 
reduced frame rates for multi-slice acquisition. 

As mentioned previously, the main contributor to the MRIgRT sys
tem latency is the time for image acquisition, which has been investi
gated extensively for gated beam delivery [34]. Alternative k-space 
trajectories have been proposed on a prototype 1.5 T MRI-linac to 
mitigate latencies directly during imaging, without relying on temporal 
motion prediction [36]. Further options exploited to speed up imaging 
in 2D include parallel imaging and under-sampling schemes [37]. De
velopments to go from multi-slice 2D cine imaging to 3D imaging are 
currently ongoing. 3D cine MRI at frame rates of about 2 Hz, yet at a 
coarse spatial resolution of about 5 mm isotropic has been shown 
feasible using current commercial acceleration methods [38]. While this 
approach may be sufficient for motion management of pelvic tumour 
sites, more advanced acceleration methods are needed for respiratory 
resolved imaging of the abdomen and thorax. AI may provide the 
necessary tools to achieve the required temporal and spatial resolution. 
AI models for MRI reconstruction are rapidly evolving and have the 
benefit to be computationally fast compared to reconstruction methods 
like compressed sensing [39,92]. Super-resolution AI models trained on 
pairs of low- and high-resolution MRI images can up-sample acquired 
low resolution images to a higher spatial resolution without increasing 
latency significantly [82,89]. In addition, one can adopt motion 
modelling techniques to generate 3D data with acceptable spatial reso
lution from 2D cine MRI [86], by creating a correlation model between 
a-priori 3D or respiratory-correlated 4D imaging and in-room 2D cine 
MRI; fast implementations are however required to achieve high frame 
rates. The estimation of 3D MRI at 3.65 Hz using a conventional motion 

modelling method has been demonstrated in a phantom study on a 0.35 
T MRI-linac [40,103], and AI solutions to obtain real-time 3D informa
tion are also emerging [41,57], as discussed in the subsection Target/ 
OAR localization. 

Target/OAR localization 

Target localization algorithms can either solely rely on the current 
image or more typically on prior knowledge such as the target shape on a 
planning image. 

Over the past decade, various methods have been explored at a 
research level, an artificial neural network (ANN) already being used for 
this task in 2011 [16]. The ANN took as input the principal components 
of the image values from a relatively small region of interest fixed 
around the target and encompassing its range of motion, thus reducing 
the input size considerably. The ANN was compared to template 
matching using the cross-correlation metric, where a manually selected 
template image of about 10 × 10 pixels was selected from the first frame. 
Shi et al. [42] also leveraged template matching to localize lung tumours 
on 2D cine MRI, achieving accuracy at a similar level to manual anno
tation. Mazur et al. [43] published one of the first studies using cine MRI 
from the 0.35 T MRI-linac, using a scale invariant feature transform 
(SIFT) approach, where a deformable spatial pyramid matching 
approach was employed to find corresponding image features. They 
reported good tracking accuracy, but their method took 250 ms per 
frame and was not used clinically. Paganelli et al. [44] also used SIFT but 
applied it to interleaved orthogonal (sagittal and coronal planes) 2D 
images from a 3 T scanner. Bourque et al. [45] used a diagnostic 1.5 T 
scanner to localize lung tumours in four lung cancer patients with a 
sequential Monte Carlo method called particle filter. Several other 
groups have explored similar approaches as listed above [46-49]. A few 
research papers have reported on using MRI tumour localization at the 
1.5 T MRI-linac to drive MLC-tracking approaches. Glitzner et al. [26] 
used a simple COM approach to demonstrate MLC-tracking feasibility 
using a phantom, and Uijtewaal et al. [50,51] used template matching 
based on cross-correlation in a similar setup. It should be noted that 
while template matching is a fast and robust localization algorithm, it 
cannot take into account target deformation and rotations. 

Clinically, since early 2023 a gating functionality based on the 
tracking method by Keiper et al. [52] has been released on the 1.5 T 
MRI-linac. The approach requires a daily reference 3D MRI with a target 
segmentation along with sagittal and coronal 2D cine MRI pairs. Tem
plate image pairs are generated from 60 images acquired over 12 s 
before beam-on and these are registered to extracted slices from the 3D- 
MRI. Subsequently the target mask is moved by rigid registration using 
template matching within 50 ms, as explained in greater detail in Jassar 
et al. [53]. The clinical use of the 0.35 T MRI-linac’s tumour-tracking- 
based gating functionality was reported in 2017 [23,54] and is appli
cable to lesions of differing contrast including outside the lung. The 
target localization in these papers was based on multi-scale DIR of a key 
frame which minimizes a cross-correlation cost function using gradient 
magnitude regularization. The problem is solved in both directions to 
ensure robustness of the obtained 2D deformation vector fields (DVF). A 
detailed description can be found in Appendix A of Feng et al. [55], 
where a runtime of 20 ms is reported for 100 × 100 pixels. In the latest 
version, several trackers are implemented with their own cost functions 
and regularization, and can operate locally and globally, as described in 
Palacios et al. [56]. The final localized target is the result of the 
consensus among the trackers. Four algorithms are available, combining 
different numbers of local and global trackers. The localization also 
reports a confidence value calculated as the intersection of all tracker 
contours over the union of all tracker contours, weighted by a function 
of the cross correlation of the deformed image from each tracker with 
the target frame. 

DIR for target localization can also be achieved using AI, the ap
proaches described in the next section having only been investigated at a 
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research level. The key challenges for such approaches are a low addi
tional latency and the availability of training and evaluation sets, all 
methods being currently available only at a research level. Most ap
proaches employ convolutional neural networks (CNNs) for the task. For 
instance, Terpstra et al. [21] showed that a CNN outperformed a con
ventional optical-flow algorithm for 2D DVF estimation in abdominal 
cancer patients and extended their work to a 3D lung dataset using a 
cascade CNN at multiple resolutions [57]. Hunt et al. [58] employed a 
VoxelMorph-based CNN to rapidly produce DFVs, showing an 
improvement over (slow) B-spline and Demons approaches. A ResNet-18 
model with self-supervised learning was found to outperform optical 
flow approaches on three different datasets (cardiac cine MRI from 

diagnostic scanner, abdominal cine MRI from 1.5 T MRI-linac and 
echocardiography) by Frueh et al. [59]. Real-time estimation of time
–resolved 3D MRI was implemented by Wei et al. [41], who employed a 
multi-branch CNN. Specifically, their model takes the daily setup 3D 
MRI and the current coronal 2D cine MRI frame and outputs a 3D DVF 
which is used to warp the setup MRI in approximately 100 ms. As ground 
truth real-time 3D cine MRI with high resolution is not available, the 
authors validated their approach by comparing a slice of the estimated 
3D MRI with 2D slices acquired orthogonally to the coronal cine MRI 
frame. Shao et al. [60] also proposed a U-Net based architecture for 3D 
DVF estimation based on under-sampled MRI, demonstrating general
isability of liver and cardiac patients, though reporting a latency slightly 

Table 1 
A summary of AI methods for target localization on cine MRI. For each publication, a categorisation of the approach is provided, alongside the details of the data set and 
metrics used and a condensed review of their performance (results and latency). Note that both DIR and auto-contouring methods can by definition account for 
deformations/rotations of the target.  

Author Approach Network Treatment site Dataset size Metrics Results Inference 
time (ms) 

Terpstra 
et al. 
(2020)  
[21] 

DIR (2D) SpyNET (CNN 
cascade) 

Abdomen 
(including 
liver, kidney, 
pancreas) 

In total, 135 patients. With 
data augmentation, this 
yielded 130,471 DVFs for 
training and validation, 
and 28,275 for testing 

Structural 
Similarity 
(SSIM), Root 
mean squared 
error (RMSE) 

For under-sampling factors of up 
to 25, SSIM > 0.8, RMSE up to 1 
mm. SpyNET performs better in 
both metrics for under-sampling 
factors > 10 compared to optical 
flow method. 

60 

Frueh et al. 
(2022)  
[59] 

DIR (2D) ResNet-18 (CNN) 
with self- 
supervised learning 

Heart, 
abdomen 

Cardiac: 1140 patients, 
372,810 frames. 
Abdominal: 50 patients, 
165,261 frames 

Forward and 
backward 
propagated DSC 

Cardiac – forward DSC: 0.89, 
backward DSC: 0.90 
Abdominal – forward DSC: 0.95, 
backward DSC: 0.96 

Not reported 

Hunt et al. 
(2023)  
[58] 

DIR (2D) VoxelMorph (CNN) Liver, lung, 
pancreas 

In total, 21 patients with 
about 21 h of cine MRI 

RMSE CNN: 0.032 
B-spline: 0.040 
Demons: 0.036 

8 

Terpstra 
et al. 
(2021)  
[57] 

DIR with 
under- 
sampling (3D) 

Multiresolution 
CNN 

Lung In total, 27 patients. 
Training on 17 patients 
equalling 2108 DVFs 

End-point-error 
(EPE) 

EPE: (1.87 ± 1.65) mm 200 

Shao et al. 
(2022)  
[60] 

DIR with 
under- 
sampling (3D) 

U-Net (CNN) Heart, liver 8 cardiac patients and 9 
liver patients 

Dice similarity 
coefficient (DSC), 
COM error 

DSC between (0.88 ± 0.03) and 
(0.89 ± 0.02), COM error 
between (1.29 ± 1.22) mm and 
(1.01 ± 0.86) mm 

600 

Wei et al. 
(2023)  
[41] 

DIR (3D) Multi-branch CNN Liver In total, 8 patients DSC, Hausdorff 
distance (HD) 

Mean DSC between (96.5 ± 1.1) 
and (98.7 ± 0.6) across a range of 
imaging planes. Mean HD 
between (3.0 ± 1.9) mm and (2.1 
± 1.1) mm across a range of 
imaging planes 

100 

Huttinga 
et al. 
(2023)  
[90] 

DIR with 
uncertainty 
estimation 
(3D) 

Gaussian Process Abdomen Digital phantom and 5 
healthy volunteers 

EPE EPE: 75th percentile below 1 mm 
when applying rejection criterion 
based on uncertainty estimation. 
Almost 6 mm without application 
of the rejection criterion 

0.1 

Yun et al. 
(2015)  
[22] 

Auto- 
contouring 
(2D) 

PCNN Lung 4 patients, 650 images per 
patient 

DSC, HD, 
centroid error 

Mean DSC: 0.87–0.92 
Mean HD: 3.12–4.35 mm 
Mean centroid error: 1.03–1.35 
mm 

20 

Yun et al. 
(2016)  
[62] 

Auto- 
contouring 
(2D) 

PCNN + intelligent 
parameter 
optimization 

Lung 6 patients, 130 images per 
patient 

DSC, HD, 
centroid error. 

Compared with Yun et al. (2015) 
method, DSC increased up to 3 %, 
HD decreased up to 1.9 mm and 
centroid error decreased up to 
0.5 mm 

20 

Yip et al. 
(2018)  
[63] 

Auto- 
contouring 
(2D) 

PCNN + intelligent 
parameter 
optimization 

Lung 6 patients, 130 images per 
patient 

DSC, HD Mean DSC: (0.87 ± 0.04). Mean 
HD: (4.8 ± 1.7) mm. Both were 
similar to the inter-observer 
variability 

20 

Bourque 
et al. 
(2016)  
[45] 

Auto- 
contouring 
(2D) 

Particle filtering 
(sequential Monte 
Carlo) 

Lung 4 patients, 240 images per 
patient 

DSC, precision, 
recall, centroid 
error 

Mean DSC: 0.89–0.91 
Mean precision: 0.88–0.91 
Mean recall: 0.89–0.95 
Mean centroid error: 0.6–2.0 mm 

2 ms every 
500 particles 
plus 14 ms 

Friedrich 
et al. 
(2021)  
[64] 

Auto- 
contouring 
with under- 
sampling (2D) 

U-Net (CNN) Liver 2 patients (3 tumours), 50 
reconstructed images per 
tumour 

DSC, HD, contour 
distance 

When 30 out of a possible 128 
spokes are used for 
reconstruction, DSC ≥ 0.83, HD 
≤ 1.4 pixel and mean contour 
distance ≤ 0.5 pixel. 
Outperforming B-spline in all 
metrics 

53  
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longer than 500 ms. On the other hand, Huttinga et al. [90] recently 
showed how a motion model based on Gaussian Processes can be used to 
obtain 3D DVFs from three mutually orthogonal k-space read outs at a 
frame rate up to 69 Hz, including data acquisition and reconstruction. 
Unlike CNN-based approaches, general adversarial networks (GANs) can 
be used to perform DIR in multi-modality workflows which include MRI. 
Whilst demonstrating a greater generalisability across treatment sites, 
current GAN implementations introduce greater latency, with an infer
ence time of 1.3 s for 3D (static) MRI registration [61] or about 3 s for 
unsupervised CT-MRI DIR [108] and are thus not yet suited for real-time 
target localization. 

AI approaches for automatic segmentation were also investigated as 
a method of localizing targets in real-time, the short inference time 
requirement posing the main challenge compared to offline auto- 
segmentation. Yun et al. propose a pulse-coupled neural network 
(PCNN) trained on at least two full breathing cycles in four patients 
imaged with 3 T MRI, where each input image pixel corresponds to a 
neuron in the network, for localizing lung tumours [22]. An extension of 
this work, which added intelligent parameter optimization [62], was 
evaluated against manual contour accuracy and was reported to be 
similar to inter-observer variability by Yip et al. [63]. Friedrich et al. 
[64] noted that their U-Net-based auto-segmentation outperforms B- 
spline DIR for localizing liver tumours in under-sampled cine MRI over a 
range of under-sampling factors; however only two patients were used. 

The AI methods discussed above are summarised in Table 1. 

Motion prediction 

Motion prediction must take place in real-time and be fast to avoid 
the introduction of further latency. While for certain tumour sites mo
tion prediction is not possible due to the random nature of motion, e.g., 
for prostate cancer [65], for all sites affected by respiration such as lung, 
liver or pancreas, prediction is possible (even for irregular breathing 
motion) and relevant, as motion typically ranges from 1 cm to 4 cm [66]. 

Over the past two decades, several motion prediction algorithms 
have been implemented and compared in-silico [19,67]. Most of the 
studies focused on the prediction of the 1D, 2D or 3D target COM po
sitions, meaning that developments were independent of the imaging 
technique used for localization, provided that similar accuracy and la
tency were guaranteed. The conventional algorithm which has been 
reported to be the most successful in predicting future target positions is 
linear regression (LR). An advantage of the LR is that an analytical so
lution to compute its parameters exists [19], which requires little time to 
compute and has led to the development of improved LR models which 
can be continuously updated based on current motion during treatment 
[67]. 

While LR models are very promising for latencies up to 250 ms, it has 
been shown that for larger forecasts they are outperformed by AI models 
[68,69]. Specifically, long short-term memory (LSTM) networks, which 
are a type of AI specifically designed to deal with sequential inputs have 
been proven successful for the prediction of target COM positions 500 
ms and 750 ms into the future [70], even in challenging cases such as 
motion with breath-holds or irregular free-breathing [69]. MRI is 
particularly suited for such challenging cases as it provides higher 
quality localization compared to x-rays, which in turn leads to better 
prediction performance. Another strength of LSTMs is that they can be 
extended via the use of convolutions to the prediction of target contours 
[71] or cine MRI frames [72], thus allowing to account for rotations or 
deformations. In particular Romaguera et al. [72] developed a con
volutional LSTM for the prediction of 2D DVFs up to 1.6 s into the future, 
which achieved submillimetre vessel position prediction accuracy on 
(diagnostic) cine MRI. 

Currently, no clinical MRI-linac is equipped with motion prediction. 
This is likely related to the fact that the gain in accuracy from prediction 
depends on the beam adaptation strategy, MLC-tracking being the one 
benefitting the most but currently available only on research machines 

(see subsection Beam adaptation). The robotic linac system is currently 
the only example of usage of motion prediction in clinical practice and 
uses an LR model [111]. At a research level, motion prediction has been 
experimentally shown to improve MLC-tracking accuracy during MRI- 
guided irradiations in phantom studies. Yun et al. [27] demonstrated 
for sinusoidal motion on a prototype 0.2 T MRI-linac that MLC-tracking 
with motion prediction using an ANN leads to minimal difference in 
beam width and beam penumbra compared to the static scenario. Uij
tewaal et al. [50] showed on a prototype 1.5 T MRI-linac, that MLC- 
tracking with motion prediction using a continuously updated LR 
model leads to accurate dose delivery in the presence of sinusoidal 
motion with baseline drifts compared to the reference dose. In a follow- 
up study with a more complex 2D/4D hybrid MRI methodology, the 
authors showed for a sinusoidal and a patient-derived motion trace that 
MLC-tracking with LR based motion prediction was still possible with a 
latency of up to 850 ms [73]. However, they observed a decrease in 
accuracy possibly caused by this large latency. Recently, Lombardo et al. 
[100] showed in a prototype 1.0 T MRI-linac that a continuously 
updated LSTM significantly outperformed LR for MLC-tracking with 
eight different patient-derived motion traces. The authors also 
compared the LSTM to a scenario without any motion prediction and 
found the geometrical error to be nearly halved thanks to a better MLC 
to target alignment. 

Beam adaptation 

MRI-linacs have three systems of adaptation to improve the beam- 
target alignment based on the MRI guidance information. These are 
beam gating, trailing, and MLC-tracking. These systems are all inde
pendently controlled and can therefore be used in parallel. For example, 
in MLC-tracking, beam gating can be enabled if the leaves cannot track 
the target and indeed is a patient safety feature [74]. 

Beam gating allows treatment of the target in a fixed position in 
space at the cost of increased treatment times. The beam is automatically 
switched on as soon as the tumour or a surrogate volume is in a pre
defined position and automatically switched off as soon as the target is 
outside of a predefined boundary. This can be performed in free 
breathing or using breath-hold techniques (e.g., for lung treatments). 
Using repeated breath-holds during gated treatment has been shown to 
lead to higher dosimetric accuracy compared to free-breathing gating in 
a phantom study by Charters et al. [96]. However, while gating can 
achieve a dose conformality close to the static scenario, it leads to lower 
duty cycle efficiency (the ratio between beam-on time and treatment 
duration) and hence longer treatments, with values of 20 % and 55 % 
having been reported in the literature [32,33]. Direct tumor position 
visual feedback has been proposed to increase the duty cycle efficiency, 
with Kim et al. reporting an increase from 44 % to 48 % in a clinical 
comparison with 13 patients [95]. For sites which are not affected by 
respiratory motion such as the prostate, it has been shown that while 
adaptation to inter-fractional changes plays an important role [97], real- 
time adaptation to intra-fractional movement of the prostate via gating 
has a negligible dosimetric effect (interruptions of the treatment due to 
shifts excluded) [35,99] To account for target localization uncertainty, 
some systems allow to define a confidence level which, if unmet, leads to 
automatic switching off of the beam. To reduce this uncertainty, authors 
have also proposed the usage of contrast agents to enhance the visibility 
of, for example, liver lesions [94]. The gating latency can be divided in 
two components: detection of the target inside/out of the boundary and 
time between detection and beam on/off. The time to switch the beam 
on or off is the same and relatively low, with typical values around 10 ms 
for the 0.35 T system. Beam on or off is enforced by switching of the 
radiofrequency pulse of the beam with pulse repetition rates of 100–120 
Hz. The beam-on latency is usually larger than the beam-off latency 
because additional data is acquired before switching on to ensure the 
target is in the desired position. While the beam-on latency contributes 
to the reduction of the duty cycle efficiency, the beam-off latency may 
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lead to a less accurate irradiation and is thus of more concern. 
In an early study carried out at the 0.35 T MRI-Cobalt system, Lamb 

et al. [75] measured a beam-off gating latency of 436 ms (4 Hz) using a 
motion phantom with a radiochromic film insert. Similar results were 
observed by Green et al. [23], who measured an average beam-off la
tency of 394 ms with a range of 246–527 ms (4 Hz). As for the 0.35 T 
MRI-linac version, Kim et al. [31] evaluated both beam-off and beam-on 
gating latency considering four localization algorithms and two imaging 
frequencies. They measured beam-off latencies of 128–243 ms at 4 Hz 
and 47–302 ms at 8 Hz and beam-on latencies of 342–464 ms at 4 Hz and 
664–785 ms at 8 Hz imaging. 

An adaptation solution with potential for drifting targets is a mid- 
position delivery in combination with trailing [76]. Trailing is a tech
nique in which the beam aperture is continuously adjusted according to 
the target’s last available time-averaged position, limiting the impact of 
tumour baseline drift. The advantage of this approach is the simplicity 
since it requires a low imaging frequency, and it is insensitive to latency. 
Uijtewaal et al. [50] experimentally demonstrated that for central and 
peripheral lung SBRT, MRI-guided trailing was highly effective in 
mitigating baseline motion while MLC-tracking maximized the sparing 
of healthy tissue. In their study, the PTV for MLC-tracking was obtained 
by a 3 mm isotropic expansion of the GTV while the PTV for trailing was 
obtained by adding anisotropic margins of 3 mm left–right, 4 mm 
anterior-posterior and 5 mm superior-inferior direction to the GTV 
based on the anticipated motion. More recently, Grimbergen et al. re
ported on the first seven patients treated with gating in combination 
with trailing on the 1.5 T system [98]. They showed that the employed 
beam adaptation strategy improved congruence to the planned static 
dose with duty cycle efficiencies ranging from 41 % to 93 %. 

MLC-tracking consists in the continuous realignment of the MLC 
positions to compensate for tumour motion [93]. The feasibility of MRI- 
guided MLC-tracking for clinically acceptable lung SBRT was proven 
with an in-silico study by Menten et al. [77] showing that MLC-tracking 
increases the dose delivery accuracy, allowing to use smaller treatment 
margins. While being the most complex of the discussed beam adapta
tion strategies, it is also the most flexible: the leaf positions can be 
optimized to compensate for geometrical differences with respect to the 
static plan, e.g., when the current target position is different from the 
expected target position (geometry-optimized MLC-tracking) or to 
compensate for over/under-dosage compared to the static plan (dose- 
optimized MLC-tracking). 

System latency is more problematic during MLC-tracking because it 
may induce residual tracking errors, causing a missing of the target and 
unplanned irradiation of the healthy tissues/organs at risks. Although 
MLC-tracking consists of several steps that all introduce latency, the 
main contributor to the end-to-end latency is the relatively low imaging 
frequency of MRI acquisition process. Glitzner et al. [26] found for the 
isolated MLC a latency of 20.67 ms, while the end-to-end system latency 
was 347.45 ms at 4 Hz imaging and 204 ms at 8 Hz on the 1.5 T MRI- 
linac. Their study represented the first experimental demonstration of 
geometry-optimized MRI-guided MLC-tracking on the 1.5 T MRI-linac 
for a single gantry angle with a conformal treatment field. In 2021, 
Uijtewaal et al. [50] confirmed these results in an experimental phantom 
study for lung SBRT IMRT plans, as described above. Using films 
inserted in the moving phantom, they could show that compensating for 
the latency using motion prediction resulted in an increase in 2 %/2mm 
gamma pass rates from 83 % (no prediction) to 100 % (continuously 
updated LR) compared to the refence static plan. In a follow-up study, 
the authors also provided a first experimental demonstration of VMAT 
combined with MRI-guided MLC-tracking for a range of lung SBRT 
fractionation schemes [51]. Geometry-optimized MLC-tracking com
bined with VMAT delivery resulted in highly conformal dose distribu
tions with similar target coverage as their respective static reference. 

Adaptation becomes more critical when two or multiple targets that 
move independently need to be treated simultaneously (e.g., primary 
lung tumour plus mediastinal lymph nodes). Liu et al. [17] 

experimentally showed geometry-optimized MLC-tracking with simul
taneous monitoring and compensation of independent motion of 2 tar
gets on a 1.0 T prototype MRI-linac. This technology would allow 
treatment margins to be reduced if multiple targets are simultaneously 
treated. 

Dose-optimized MLC-tracking has currently only being shown in- 
silico. Mejnertsen et al. [78] showed using a simplified dose calcula
tion algorithm that dose-optimized MLC-tracking achieved significantly 
lower failure rates than geometry-optimized MLC-tracking for VMAT 
deliveries in a prostate cancer patient monitored with intra-fractional 
kilovoltage imaging. In a follow-up simulation study, Hewson et al. 
[79] confirmed the dosimetric advantage when performing multi-target 
dose-optimized MLC-tracking over geometry-optimized when irradi
ating moving prostate and static lymph node targets. 

For geometry-optimized MLC-tracking instructions can all be per
formed with analytic solutions of the order of milliseconds, even for 
solving an iterative MLC optimization problem, e.g., the Ruan algorithm 
[80]. It could be argued that AI applications are not needed for 
geometry-optimized beam adaptation given there are alterative 
analytical solutions. However, when performing dose-optimized adap
tation, there is the additional computation of the patient anatomic state 
and the optimal dose to give to the patient within the constraints of the 
adaptation system. This complexity lends itself to AI solutions, partic
ularly if the optimization includes future estimates of the patient state. 
An example of an AI model calculating the 3D dose delivered by indi
vidual MLC shapes on the current patient anatomy is the CNN proposed 
by Kontaxis et al. [83]. However, their model takes 900 ms for input 
generation and 600 ms for inference, making it too slow for real-time 
dose calculation. An ideal candidate could be the transformer based 
model by Xiao et al. [101], which computes the 3D beam dose in 310 ms 
and can account for magnetic fields. On a testing set of 20 patients 
treated with the 1.5 T MRI-linac, the authors obtained 3 %/2mm gamma 
pass rates larger than 98 % compared to ground truth Monte Carlo 
simulations. 

Discussion 

Envisioned workflow 

Given the current MRI-guided intra-fractional motion management 
workflow described above, we would like to describe an envisioned 
workflow which in our opinion has the greatest potential for dosimetric 
accuracy without reducing the duty cycle efficiency of treatments (see 
Fig. 2). 

In terms of imaging, multi-slice 2D cine MRI with a frequency of 2–3 
Hz as implemented by vendors [53], combined with fast AI based 2D to 
3D motion estimation (about 100 ms) [41], could be used to obtain 3D 
DVF to be applied to the setup 3D MRI in real-time. Alternatively, AI 
reconstruction [81] and super-resolution [82] methods could be tailored 
to make 3D cine MRI suitable for respiratory resolved imaging of the 
abdomen and thorax. Real-time CNN-based 3D motion estimation from 
3D cine MRI as proposed by Terpstra et al. [57] could then be used to 
obtain the 3D DVFs within 200 ms. To compensate for the latencies 
introduced during imaging, motion estimation and the subsequent dose 
calculation and MLC-tracking steps, prediction of future DVFs with 
LSTMs could be leveraged similarly to the study by Romaguera et al. 
[72] described above but extended to 3D. The predicted DVFs could then 
be applied to the setup 3D CT (currently generated by vendors using 
image registration based on the setup 3D MRI and used to adapt the plan 
to the anatomy of the day) to generate an estimated 3D CT with target/ 
OARs structures in the current motion state. The fast transformer-based 
dose calculation framework proposed by Xiao et al. [101], could then be 
used to derive the 3D dose delivered by individual MLC shapes on the 
current patient anatomy. This dose should then be warped (using the 
inverse DVF obtained during motion estimation) to the static anatomy to 
accumulate and compare it with the planned dose. In the final step, the 
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difference between the accumulated delivered dose and the planned 
dose could be given as input to an MLC-tracking algorithm similar to the 
one proposed by Mejnertsen et al. [78], which optimizes the MLC 
aperture in about 40 ms to actively target regions of underdose while 
avoiding overdose. Alternatively, an open loop adaptive sequencing 
planning system as the one proposed by Kontaxis et al. could be used 
[102]. Using AI instead of simplified dose calculations would have the 
advantage that also changes in density such as organ filling could 
potentially be taken into account. 

An advantage of the envisioned workflow is that little to no changes 
to the hardware of current clinical MRI-linacs are needed. A challenge is 
posed by the usage of many different AI models for different steps and 
the resulting necessity for accurate end-to-end QA tests. To reduce the 
number of models, some of the steps could be combined by using a single 
AI model. Such a model could for instance perform DVF estimation and 
prediction at the same time. 

QA and AI uncertainty quantification 

One of the main physical questions to be addressed in the context of 
the modern MRIgRT systems is the ability of these machines to effec
tively adapt the beam delivery to tumour motion. Both clinical MRIgRT 
system are now equipped with gating, the 1.5 T MRI-linac being oriented 
to MLC-tracking in the future. In both cases, studies to evaluate the 
software ability in localizing the lesion and the physical latency of the 
machine have been reported in the literature. As regards the 0.35 T MRI- 
linac, three experiences have been reported, combining dynamic 
phantoms with 1D or 2D radiation detectors (ion chambers, gafchromic 
films) [23,31,75]. To determine whether the dosimetric accuracy of the 
used beam adaptation technique is preserved over time, end-to-end tests 
of the real-time adaptive workflow should be performed. Stark et al. 
[84] developed such an end-to-end test for gating at a 0.35 T MRI-linac 
using clinically realistic treatment times and gating windows. 

For AI in general and especially target localization and motion pre
diction models, it is important to understand that the uncertainty in an 
AI model can be divided into aleatoric (statistical) uncertainty, which 

refers to the notion of randomness, and epistemic (systematic) uncer
tainty, which refers to uncertainty caused by a lack of knowledge [91]. 
As opposed to aleatoric uncertainty, epistemic uncertainty can in prin
ciple be reduced based on additional information. For example, the 
target localization uncertainty could be improved by adding more data 
(e.g., with longer image acquisition times) but this would increase the 
latency. Of clinical relevance could be to quantify epistemic uncertainty 
in-real time and use it to gate the treatment, similarly to what is 
currently done with the confidence value on the 0.35 T MRI-linac [56]. 

Conclusion 

In this work, we have described the current status, both clinically and 
at a research level, of real-time intra-fractional motion management in 
MRIgRT. Based on recent scientific developments, we have then out
lined an envisioned workflow representing the most accurate treatment 
from a technological point of view. In the proposed workflow, motion is 
visualized with multiple 2D or 3D cine MRI, target/OAR structures are 
obtained on an estimated 3D CT and dose-optimized MLC-tracking is 
applied to minimize the difference between delivered and planned dose 
in real-time. The proposed workflow is challenging especially due to the 
real-time requirements; however, we think that by leveraging AI in the 
different steps of the workflow, this ambition could become clinical 
reality. In future work, the authors aim to create a shared dataset for AI 
model comparison (e.g., unlabelled and labelled cine MRIs for target 
localization) and to define common end-to-end tests for real-time 
adaptive MRIgRT. 

CRediT authorship contribution statement 

Elia Lombardo: Conceptualization, Methodology, Writing – original 
draft. Jennifer Dhont: Conceptualization, Methodology, Writing – 
original draft. Denis Page: Methodology, Writing – review & editing. 
Cristina Garibaldi: Methodology, Writing – review & editing. Luise A. 
Künzel: Methodology, Writing – review & editing. Coen Hurkmans: 
Methodology, Writing – review & editing. Rob H.N. Tijssen: 

Fig. 2. Envisioned workflow of real-time motion management in MRIgRT. First, multiple 2D cine MRI slices are acquired in real-time. A motion estimation model is 
then used to compute 3D DVFs with respect to the 3D MRI acquired prior to treatment start (not shown). Motion prediction is employed to compensate for the overall 
system latency by obtaining a predicted DVF. The predicted DVF is used to generate an estimated 3D CT (with contours) by warping the 3D setup CT obtained prior to 
treatment start (not shown). The dose on the estimated 3D CT is then calculated in real-time, accumulated and used to perform MLC-tracking based on computed 
over/under-dosage with respect to the static plan. (*) Asterisks denote where AI can play a role. Adapted with permission from [79,83] and [85]. 
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accuracy of the respiratory tumor tracking system of the cyberknife: assessment 
by analysis of log files. Int J Radiat Oncol Biol Phys 2009;74:297–303. https:// 
doi.org/10.1016/j.ijrobp.2008.12.041. 

E. Lombardo et al.                                                                                                                                                                                                                              

A.1. Topical review: Real-time motion management in MRI-guided radiotherapy: Current status
and AI-enabled prospects 115



116 Additional publication



Bibliography

1. Global cancer burden growing, amidst mounting need for services https://www.who.int/
news/item/01- 02-2024-global- cancer-burden-growing--amidst-mounting-

need-for-services#:~:text=In%202022%2C%20there%20were%20an,cases%20and%

209.7%20million%20deaths (2024).

2. Borras, J. M. et al. The optimal utilization proportion of external beam radiotherapy in
European countries: an ESTRO-HERO analysis. Radiotherapy and Oncology 116, 38–44.
10.1016/j.radonc.2015.04.018 (2015).

3. Baumann, M. et al. Radiation oncology in the era of precision medicine. Nature Reviews
Cancer 16, 234–249. 10.1038/nrc.2016.18 (2016).

4. Langen, K. M. & Jones, D. T. Organ motion and its management. International Journal of
Radiation Oncology* Biology* Physics 50, 265–278. https://doi.org/10.1016/S0360-
3016(01)01453-5 (2001).

5. Corradini, S. et al. MR-guidance in clinical reality: current treatment challenges and
future perspectives. Radiation Oncology 14, 1–12. 10.1186/s13014-019-1308-y (2019).

6. Kurz, C. et al. Medical physics challenges in clinical MR-guided radiotherapy. Radiother-
apy and Oncology 15, 93. 10.1186/s13014-020-01524-4 (2020).

7. Beyzadeoglu, M., Ozyigit, G. & Ebruli, C. Basic radiation oncology (Springer, 2010).

8. Hall, E. J., Giaccia, A. J., et al. Radiobiology for the Radiologist (Philadelphia, 2006).

9. Jaffray, D. A. Image-guided radiotherapy: from current concept to future perspectives.
Nature reviews Clinical oncology 9, 688–699. https://doi.org/10.1038/nrclinonc.
2012.194 (2012).

10. Ladbury, C. et al. Clinical applications of magnetic resonance-guided radiotherapy: A
narrative review. Cancers 15, 2916. 10.3390/cancers15112916 (2023).

11. Mutic, S. & Dempsey, J. F. The ViewRay system: magnetic resonance–guided and con-
trolled radiotherapy in Seminars in radiation oncology 24 (2014), 196–199. 10.1016/j.
semradonc.2014.02.008.

12. Keall, P. J. et al. ICRU REPORT 97: MRI-guided radiation therapy using MRI-linear accel-
erators. Journal of the ICRU 22, 1–100. https://doi.org/10.1177/147366912211419
(2022).

13. Klueter, S. Technical design and concept of a 0.35 T MR-linac. Clinical and translational
radiation oncology 18, 98–101. 10.1016/j.ctro.2019.04.007 (2019).



118 Bibliography

14. Keall, P. J., Barton, M., Crozier, S., et al. The Australian magnetic resonance imaging–linac
program in Seminars in radiation oncology 24 (2014), 203–206. 10.1016/j.semradonc.
2014.02.015.

15. Kawula, M. et al. Patient-specific transfer learning for auto-segmentation in adaptive
0.35 T MRgRT of prostate cancer: a bi-centric evaluation. Medical Physics 50, 1573–1585.
https://doi.org/10.1002/mp.16056 (2023).

16. Li, Z. et al. Patient-specific daily updated deep learning auto-segmentation for MRI-
guided adaptive radiotherapy. Radiotherapy and Oncology 177, 222–230. https://doi.
org/10.1016/j.radonc.2022.11.004 (2022).

17. Sahin, B. et al. First 500 fractions delivered with a magnetic resonance-guided radiother-
apy system: initial experience. Cureus 11. 10.7759/cureus.6457 (2019).

18. Green, O. L. et al. First clinical implementation of real-time, real anatomy tracking and
radiation beam control. Medical physics 45, 3728–3740. https://doi.org/10.1002/mp.
13002 (2018).

19. Grimbergen, G. et al. Gating and intrafraction drift correction on a 1.5 T MR-Linac:
Clinical dosimetric benefits for upper abdominal tumors. Radiotherapy and Oncology
189, 109932. https://doi.org/10.1016/j.radonc.2023.109932 (2023).

20. Lombardo, E. et al. Real-time motion management in MRI-guided radiotherapy: Current
status and AI-enabled prospects. Radiotherapy and Oncology, 109970. 10.1016/j.
radonc.2023.109970 (2023).

21. Paganelli, C. et al. MRI-guidance for motion management in external beam radiotherapy:
current status and future challenges. Physics in Medicine & Biology 63, 22TR03. 10.1088/
1361-6560/aaebcf (2018).

22. Grimbergen, G. et al. Feasibility of delivered dose reconstruction for MR-guided SBRT
of pancreatic tumors with fast, real-time 3D cine MRI. Radiotherapy and Oncology 182,
109506. https://doi.org/10.1016/j.radonc.2023.109506 (2023).

23. Waddington, D. E. et al. Real-time radial reconstruction with domain transform manifold
learning for MRI-guided radiotherapy. Medical physics 50, 1962–1974. https://doi.
org/10.1002/mp.16224 (2023).

24. Chun, J. et al. Evaluation of super-resolution on 50 pancreatic cancer patients with
real-time cine MRI from 0.35 T MRgRT. Biomedical Physics & Engineering Express 7,
055020. 10.1088/2057-1976/ac1c51 (2021).

25. Feng, Y. et al. A comparative study of automatic image segmentation algorithms for
target tracking in MR-IGRT. Journal of applied clinical medical physics 17, 441–460.
https://doi.org/10.1120/jacmp.v17i2.5820 (2016).

26. Palacios, M. A. et al. Accuracy of deformable image registration-based intra-fraction
motion management in Magnetic Resonance-guided radiotherapy. Physics and Imaging
in Radiation Oncology 26, 100437. https://doi.org/10.1016/j.phro.2023.100437
(2023).

27. Jassar, H. et al. Real-time motion monitoring using orthogonal cine MRI during MR-
guided adaptive radiation therapy for abdominal tumors on 1.5 T MR-Linac. Medical
Physics 50, 3103–3116. https://doi.org/10.1002/mp.16342 (2023).



Bibliography 119

28. Friedrich, F. et al. Stability of conventional and machine learning-based tumor auto-
segmentation techniques using undersampled dynamic radial bSSFP acquisitions on
a 0.35 T hybrid MR-linac system. Medical Physics 48, 587–596. https://doi.org/10.
1002/mp.14659 (2021).

29. Hunt, B. et al. Fast Deformable image registration for real-time target tracking during
radiation therapy using cine MRI and deep learning. International Journal of Radiation
Oncology* Biology* Physics 115, 983–993. https://doi.org/10.1016/j.ijrobp.2022.
09.086 (2023).

30. Kim, T., Lewis, B., Lotey, R., Barberi, E. & Green, O. Clinical experience of MRI4D
QUASAR motion phantom for latency measurements in 0.35 T MR-LINAC. Journal of
applied clinical medical physics 22, 128–136. 10.1002/acm2.13118 (2021).

31. Glitzner, M., Woodhead, P., Borman, P., Lagendijk, J. & Raaymakers, B. MLC-tracking
performance on the Elekta unity MRI-linac. Physics in Medicine & Biology 64, 15NT02.
10.1088/1361-6560/ab2667 (2019).

32. Liu, P. Z. et al. First experimental investigation of simultaneously tracking two indepen-
dently moving targets on an MRI-linac using real-time MRI and MLC tracking. Medical
Physics 47, 6440–6449. https://doi.org/10.1002/mp.14536 (2020).

33. Wang, R., Liang, X., Zhu, X. & Xie, Y. A feasibility of respiration prediction based on
deep Bi-LSTM for real-time tumor tracking. IEEE Access 6, 51262–51268. 10.1109/
ACCESS.2018.2869780 (2018).

34. Krauss, A., Nill, S. & Oelfke, U. The comparative performance of four respiratory
motion predictors for real-time tumour tracking. Physics in Medicine & Biology 56, 5303.
10.1088/0031-9155/56/16/015 (2011).

35. Uijtewaal, P. et al. Dosimetric evaluation of MRI-guided multi-leaf collimator tracking
and trailing for lung stereotactic body radiation therapy. Medical Physics 48, 1520–1532.
10.1002/mp.14772 (2021).

36. Eze, C. et al. MR-guided radiotherapy in node-positive non-small cell lung cancer and
severely limited pulmonary reserve: a report proposing a new clinical pathway for the
management of high-risk patients. Radiation Oncology 17, 43. https://doi.org/10.
1186/s13014-022-02011-8 (2022).

37. Ehrbar, S. et al. MR-guided beam gating: Residual motion, gating efficiency and dose re-
construction for stereotactic treatments of the liver and lung. Radiotherapy and Oncology
174, 101–108. https://doi.org/10.1016/j.radonc.2022.07.007 (2022).

38. Uijtewaal, P. et al. First experimental demonstration of VMAT combined with MLC
tracking for single and multi fraction lung SBRT on an MR-linac. Radiotherapy and
Oncology 174, 149–157. 10.1016/j.radonc.2022.07.004 (2022).

39. Ruan, D. & Keall, P. Dynamic multileaf collimator control for motion adaptive radiotherapy:
An optimization approach in 2011 IEEE Power Engineering and Automation Conference 3
(2011), 100–103. 10.1109/PEAM.2011.6135024.

40. Keall, P. J. et al. The first clinical implementation of electromagnetic transponder-guided
MLC tracking. Medical physics 41, 020702. 10.1118/1.4862509 (2014).



120 Bibliography

41. Booth, J. T. et al. The first patient treatment of electromagnetic-guided real time adaptive
radiotherapy using MLC tracking for lung SABR. Radiotherapy and Oncology 121, 19–25.
10.1016/j.radonc.2016.08.025 (2016).

42. Shen, C. et al. An introduction to deep learning in medical physics: advantages, potential,
and challenges. Physics in Medicine & Biology 65, 05TR01. 10.1088/1361-6560/ab6f51
(2020).

43. Alpaydin, E. Introduction to machine learning https : / / mitpress . mit . edu /

9780262012119/introduction-to-machine-learning/ (MIT press, 2020).

44. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. nature 521, 436–444. https://doi.
org/10.1038/nature14539 (2015).

45. Pandya, S. et al. A study of the recent trends of immunology: key challenges, domains,
applications, datasets, and future directions. Sensors 21, 7786. https://doi.org/10.
3390/s21237786 (2021).

46. Cusumano, D. et al. Artificial Intelligence in magnetic Resonance guided Radiotherapy:
Medical and physical considerations on state of art and future perspectives. Physica
medica 85, 175–191. 10.1016/j.ejmp.2021.05.010 (2021).

47. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Computation 9 (Nov.
1997).

48. Lombardo, E. et al. Offline and online LSTM networks for respiratory motion prediction
in MR-guided radiotherapy. Physics in Medicine & Biology 67, 095006. https://doi.
org/10.1088/1361-6560/ac60b7 (2022).

49. Shi, X. et al. Convolutional LSTM network: A machine learning approach for pre-
cipitation nowcasting. Advances in neural information processing systems 28. https:
//doi.org/10.48550/arXiv.1506.04214 (2015).

50. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473. https://arxiv.org/abs/1409.
0473 (2014).

51. Vaswani, A. et al. Attention is all you need. Advances in neural information processing
systems 30. https://arxiv.org/abs/1706.03762 (2017).

52. Feng, S., Garg, D., Bunnapradist, E. & Lee, S. CS 25: Overview of Transformers https:
//web.stanford.edu/class/cs25/ (Standford University, 2024).

53. Islam, S. et al. A comprehensive survey on applications of transformers for deep learning
tasks. Expert Systems with Applications, 122666. https://arxiv.org/abs/2306.07303
(2023).

54. Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929. https://arxiv.org/abs/2010.11929 (2020).

55. Liu, Z. et al. Swin transformer: Hierarchical vision transformer using shifted windows in
Proceedings of the IEEE/CVF international conference on computer vision (2021), 10012–
10022. https://arxiv.org/abs/2103.14030.

56. Chen, J. et al. Transmorph: Transformer for unsupervised medical image registration.
Medical image analysis 82, 102615. https://doi.org/10.1016/j.media.2022.102615
(2022).



Bibliography 121

57. Jöhl, A. et al. Performance comparison of prediction filters for respiratory motion
tracking in radiotherapy. Medical physics 47, 643–650. https://doi.org/10.1002/mp.
13929 (2020).

58. Lin, H. et al. Towards real-time respiratory motion prediction based on long short-term
memory neural networks. Physics in Medicine & Biology 64, 085010. 10.1088/1361-
6560/ab13fa (2019).

59. Romaguera, L. V. et al. Prediction of in-plane organ deformation during free-breathing
radiotherapy via discriminative spatial transformer networks. Medical image analysis 64,
101754. https://doi.org/10.1016/j.media.2020.101754 (2020).

60. Zou, K. H. et al. Statistical validation of image segmentation quality based on a spatial
overlap index1: scientific reports. Academic radiology 11, 178–189. https://doi.org/
10.1016/S1076-6332(03)00671-8 (2004).

61. Huttenlocher, D. P., Klanderman, G. A. & Rucklidge, W. J. Comparing images using the
Hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence 15,
850–863. 10.1109/34.232073 (1993).

62. Beck, M. et al. xLSTM: Extended Long Short-Term Memory. arXiv preprint
arXiv:2405.04517. https://arxiv.org/abs/2405.04517 (2024).

63. Paganelli, C. et al. Feasibility study on 3D image reconstruction from 2D orthogonal
cine-MRI for MRI-guided radiotherapy. Journal of medical imaging and radiation oncology
62, 389–400. 10.1111/1754-9485.12713 (2018).

64. Rabe, M. et al. Porcine lung phantom-based validation of estimated 4D-MRI using
orthogonal cine imaging for low-field MR-Linacs. Physics in Medicine & Biology 66,
055006. 10.1088/1361-6560/abc937 (2021).

65. Wei, R. et al. Real-time 3D MRI reconstruction from cine-MRI using unsupervised
network in MRI-guided radiotherapy for liver cancer. Medical Physics 50, 3584–3596.
10.1002/mp.16141 (2023).

66. Romaguera, L. V., Mezheritsky, T., Mansour, R., Carrier, J.-F. & Kadoury, S. Probabilistic
4D predictive model from in-room surrogates using conditional generative networks for
image-guided radiotherapy. Medical image analysis 74, 102250. https://doi.org/10.
1016/j.media.2021.102250 (2021).



122 Bibliography



Acknowledgments

When I started my Bachelor in Physics I already knew I wanted to do a PhD in medical
physics. While there are many people I could thank for all the support and inspiration
throughout my studies, I will here only list those, having a direct connection to this thesis.

First of all, I consider myself extremely lucky to have had not one, not two, but three
amazing supervisors which guided me throughout these years. I would like to start by
thanking Prof. Marco Riboldi who thaught me all I know about statistical tests and for being
an infinite source of tranquillity and mindfulness even during the most difficult meetings.
I do not think I have ever seen him angry or impatient and I will always try to follow his
example in my career. Next, I would like to thank PD Dr. Christopher Kurz for the cornucopia
of ideas he always threw at me during our regular meetings, for his acute observational spirit
when judging results and for nice conversations about pizza in Naples. Last, but not least
among my supervisors, I owe extreme gratitude to Prof. Guillaume Landry. Besides being
an inspiration professionally for many things including but not limited to caring about the
well-being of students, running meetings, writing papers (especially figures), managing
collaborations and following good scientific practice, I by now consider him as a friend with
whom I can talk about where to buy good fish in Munich, the latest article in The Economist
and which metal album to listen to during workout. Thank you all again and stay as you are!

I am happy I did my PhD in Munich as it is not only a great city but offers a great
environment for academic research in the field of medical physics. My work has been funded
by the German Research Foundation (DFG) within the Research Training Group GRK 2274
(Advanced Medical Physics for Image-Guided Cancer Therapy) and by the Bavarian Cancer
Research Center (BZKF). I am grateful for having been a member of the GRK which gave me
the the chance to participate in interesting seminars, summer schools, retreats, and courses
and to meet and get to network with the other doctoral candidates within the training group.
I would therefore like to thank the coordination and management team of the GRK and in
particular PD Dr. Dr. Christian Thieke, Prof. Katia Parodi, Prof. Claus Belka and Prof. Franz
Pfeiffer for creating this environment.

Thanks to DFG funding, I also got the chance to carry out measurements and stay for
two months in Sydney, another great city both scenically/culturally and in terms of medical
physics research. I am very grateful to Prof. Paul Keall for being truly inspirational and his
group for the extremely warm welcome, which made me feel like I was part of Image X since
day one. Special thanks go to Dr. Paul Liu, Dr. David Waddington and James Grover for
their amazing support with the experiments, which, as expected, worked out only on the last
available day!

Special thanks also go to Dr. Davide Cusumano, Dr. Luca Boldrini and Dr. Lorenzo
Placidi at Mater Olbia and Gemelli in Rome for the enriching and fun collaborations and for
giving me visibility within the ESTRO community. Grazie!



124 Acknowledgements

In parallel to my PhD, I was lucky to be given the possibility to carry out the training to
become a qualified medical physics expert (MPE). This training gave me a different, more
clinical perspective on the things I did in research and I am very grateful to Dr. Michael Reiner
for giving me this possibility and for his supervision. Special thanks for the supervision
during the treatment planning training go to Dr. Sylvia Garny for being the best multi-tasker,
to Dr. Christoph Losert for guiding me into Total-Body-Irradiation and to Roel Shpani for
being my favorite Albana. Special thanks for the supervision during my quality assurance
training go to Robert Kießling for being there during challenging Frühchecks, Tobias Winderl
for all the fun we had setting up QATrack+ and Winfried Hoischen for the equally valuable
insights in Linac-QA and recommendations in northern Italy. I would like to thank Amra
Mekic-Krejovic, Dr. Katrin Straub, Dr. Vasiliki Anagnostatou, Zakaria Bahammou, Dr.
Philipp Freislederer, Dr. Helmut Weingandt, Dr. Jan Hofmaier, Dr. Vanessa Filipa da Silva
Mendes, Dr. Mohammad Safari, Lukas Nierer and Catrin Rodenberg for the interesting and
funny chats in the coffee room about almost everything. On the same note I would like to
thank Dr. Christian Winkelhofer, Dr. Anita Ladenburger and Dr. Christian Heinz for the nice
conversations at Wirtshaus Franzz. I also would like to thank Prof. Claus Belka, all physicians
and other co-workers at the department for the stimulating environment and especially Prof.
Stefanie Corradini for being the AI ground-truth and Dr. Sebastian Marschner for the help
provided in countless projects.

Of course, I also had fantastic colleagues in the research group with which I share many
nice memories of conferences, beer gardens and doctor hat fabrication. Here I would like to
thank Jackie Xiong (don’t copy this), Maria Kawula, Lili Huang, Ivy Chan, Nikos Ntelopoulos,
Dr. Adrian Thummerer, Dr. Yiling Wang, Chengtao Wei, Lei Chan, Fan Xiao, Marvin Ribeiro,
Domagoj Radonic, Lukas Schimdt, Rabea Klaar, Tom Blöcker and the students I co-supervised
Claudia Tejero, Laura Velezmoro and Nicolas Mühlschlegel. Special thanks go to Dr. Moritz
Rabe for equal contributions to my image registration and beer knowledge and to Sven
Marquart and Dr. Henning Schmitz for the fun conversations in the U3 office.

Last but not least, I wish to dedicate this thesis to my love and friend Alessia, who gave
everything when studying for her Staatsexamen and inspired me to do the same. We really
like the following quote which is valid for life as well as for science:

“You have to try the impossible to reach the possible."
“Man muss das Unmögliche versuchen, um das Mögliche zu erreichen."

Hermann Hesse




