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Preface

Electricity markets and climate change are closely intertwined. Due to carbon-
intensive electricity production, electricity systems have contributed to anthropologic climate change.
But high hopes lie on the transformation of electricity systems to reduce greenhouse gas emissions and
thereby mitigate climate change. The lever seems large, as electricity is an omnipresent, basic good.
Indeed, in 2022, more people worldwide had access to electricity (IEA et al., 2023) than to safely
managed drinking water (WHO and UNICEF, 2024). Electricity powers key technology advances
like mass production, artificial light, telecommunication, digitization, internet, etc. It is therefore a
cornerstone ofmodern economies, with its global share in total energyuse doubling from10% in 1973
to 20 % in 2019 (IEA, 2021). Electricity systems, however, are not immune to the impacts of climate
change – mainly through increases in extreme weather events, which were responsible for more than
60 % of prolonged electricity outages in the U.S. in recent years (Do et al., 2023). Hence, we need to
understand how we can operate electricity markets in a way that electricity prices are fair and afford-
able, adverse consequences for the environment are minimized, that electricity markets contribute to
mitigating climate change, and that resilient supply security is achieved in a world affected by climate
change. This gives rise to three major questions. How should electricity markets be designed? How
can we steer the environmental externalities of electricity generation? How does climate change, in
turn, impact electricity systems and consumers? Insights into these three questions then allow the
development of policies to transform modern-day electricity systems as needed. Before looking into
these transformations, let me first highlight the characteristics that render electricity markets so spe-
cial.

Managing electricity markets, especially in times of transformation, is not always straightforward due
to the peculiar way of how they work. This is mainly due to electricity being an unconventional good
with special properties: It is not storable but the grid is also very sensitive to real-time imbalances
of supply and demand. At the same time, real-time demand is rather nonreactive to scarcity (see e.g,
Lijesen, 2007) because consumers usually do not receive any real-time price signals. Further, electricity
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is a basic good both for firms andhouseholds, such that the state has amajor interest in supply security,
to the point that it is a matter of national security. Paradoxically, it is, however, not a very salient good
(Hortaçsu et al., 2017), being invisible and historically a cheap product. Interesting to economists, it
is probably the most homogeneous real-life good there is. The final products of different production
technologies and firms are perfectly substitutable and even physically indistinguishable once fed into
thenetwork. There is only one socket for all; it is impossible tophysically consumegrid electricity from
a specific producer or production technology. This creates an interesting distinction between physical
electricity systems and economic value chains. Finally, the production and transmission of electricity
has traditionally been a very capital-intensive sector, and grids are (regional) natural monopolies.

As promised, let us now undertake a deeper dive into three dimensions of transformation that
modern-age electricity markets have faced and are facing.

Market and regulatory design. The combination of special characteristics outlaid above, led to the
state being heavily involved in the production, transmission, and delivery of electricity in most coun-
tries. This began to change end of the last century. In fact, the economics subfield of industrial or-
ganization saw a multi-decade endeavor of rethinking the efficient organization of electricity markets
with less state-involvement, and creating geographically integratedmarkets, such as in the EU (Jamasb
and Pollitt, 2005). Like in other network industries, an international trend towards liberalization and
privatization of the electricity system materialized. As a sector that was historically characterized by
state-owned (partially natural) monopolies, step-by-step in most countries, the value chain was un-
bundled, vertically integrated organizationswere broken up and privatized, market entrywas enabled,
andneworganizedmarketswere introduced along the value chain (see anoverview inNewbery, 1997).
A whole array of research is dedicated to evaluating the intended and unintended effects of restruc-
turing reforms, and suggesting improvements in market design, pricing mechanisms, and regulatory
set-ups. (e.g., Train andMehrez, 1994;Green, 1996;Newbery andPollitt, 1997; Joskow, 2000; Boren-
stein and Bushnell, 2015; Wolak, 2003b).

Tackling climate change. The restructuring phase was quickly joined by another transformative
push, driven by the mitigation of climate change via the abatement of greenhouse gas emissions –
primarily carbon emissions. The main reasons for the importance of electricity markets for carbon
abatement are two-fold. Firstly, electricity systems have traditionally been one of the biggest carbon
emitters in most economies. For instance, at the time of the Paris Agreement in 2015, the electricity
and heat sector accounted for 32 % of global greenhouse gas emissions (36 % in the U.S., 32 % in the
EU-27; Climate Watch, 2024). Hence, decarbonizing electricity markets represents a large-scale po-
tential to abate carbon emissions. Secondly, electricity systems unlock a secondary potential to avoid
carbon emissions in other sectors through electrification of the same. If processes, which were previ-
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ously powered by fossil energy sources, can be powered by electricity instead, this increases the lever of
using clean electricity generation tomitigate climate change. A striking example of this is the transport
sector’s shift to electric vehicles. The field of economics has since worked to figure out how the use of
decarbonization technologies can be efficiently incentivized in electricity markets (e.g., Schmalensee,
2012;Holland andMansur, 2006). Popular instruments include subsidies and remuneration schemes
for clean technologies, and carbon pricing (via a tax or a carbon emissions market). A historical pio-
neer achievement in this regard is the introduction of the EU-ETS (EU Emissions Trading System) in
2005– the first international cap-and-trade system for carbon emission allowances, and the largest one
until today. However, this quickly raised the question of who is burdened by the costs of such policies
(Fabra andReguant, 2014; Reguant, 2019; Simpson andClifton, 2016). Eventually, decarbonization
policies began to manifest in changes of the technology mix in many markets. So economists started
to research, how the tried and tested market designs that were developed after the liberalization, can
now be adjusted to accommodate new generation technologies, with new cost (recovery) profiles and
new generation profiles than conventional electricity generation (Joskow, 2019). Doing so, changes
in demand patterns from electrification of e.g. transport, need to be taken into account as well. Fi-
nally, the elephant in the room remained as to which mitigation goals are optimal and what the social
cost of carbon is (a line of research heavily influenced by the DICEmodel by Nobel laureate William
D. Nordhaus (1992)1), to which extent decarbonization efforts are needed to hit set goals,2 and if
economies are on track to achieve them.

Impacts of climate change. As for the aforementioned elephant in the room – despite increasing
mitigation efforts, it has become apparent that the world is not on track to achieve the 1.5 °C goal
set in the Paris Agreement (2015) (IPCC Synthesis Report, 2023). This means that societies and
economies have to prepare for a warming exceeding this goal. Depending on the geographical region,
the effects can for instance include a change in temperature, wind, and precipitation patterns, sea-
level rise, and extremeweather events (IPCC Synthesis Report, 2023). These changes impact people’s
way of life, businesses’ operating modes, and infrastructure. Consequently, electricity systems, from
generation via transmission to final use, are also impacted by this changing environment. Examples are
infrastructure damages from extreme weather events, changing wind and solar irradiation potentials,
constraints in power plant cooling due to high river temperatures, grid-ignited wildfires, and changes
in consumption patterns related to heating and cooling. An illustrative example of addressing one
of these issues are the grid operation strategies to proactively prevent wildfire ignition in California
– in particular, using sensor equipment to automatically trigger partial shut-offs or putting grid lines

1and joined by further models like FUND and PAGE (see an overview of models in Bosetti, 2021).
2See also e.g., models like MESSAGE, IMAGE, REMIND (see an overview of models in United Nations Climate

Change, 2025).
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underground.3 It ultimately comes down to a public or private decision whether to invest in such
costly adaptive resilience measures or to accept disruptions in supply.4

∗ ∗ ∗

In this dissertation, I explore three challenges of modern electricity markets, each arising from
one of the previously outlined transformative phases. In the bigger picture, these challenges build on
each other as follows: (1) It is vital to first make sure that electricity markets work efficiently, if (2)
policymakers want to implement efficient policies tomitigate the environmental and climate impacts
of electricity generation. As, despitemitigation efforts, climate change is already inmotion, (3) under-
standing the mechanisms of adaptive resilience is crucial to reduce vulnerability of households. The
resulting essays of this thesis are interconnected through this overarching three-part theme, however
they can also be read standalone.

In the first essay I introduce new, simpler, and more accurate methods to estimate electricity produc-
tion costs, enhancing regulators’ ability to detect and prevent suspectedmarket power abuse. This en-
ablesmore efficientmarkets withwelfare gains and rent transfers. In the second essay I reveal long-term
trade-offs in the simultaneous abatement of carbon emissions and local air pollution from electricity
generation. Damages and abatement of both emission types are linked to different generation tech-
nologies, whose mix can be carefully balanced via complementary taxation – to achieve a successful
energy transition with clean air. Finally, with increased occurrences of extreme weather events due
to climate change, the third essay investigates the aftermath of a cold-spell. I show that experiencing
extreme-weather-induced electricity outages induces households to invest in home electricity back-up
systems, but I also reveal notable socio-economic disparities in how strongly and how quickly com-
munities adapt.

Thefirst chapter is set in electricitywholesale auctionmarkets, which are known to be prone tomarket
power abuse via strategically inflated bids (e.g., Wolfram, 1998; Wolak, 2003b; Borenstein and Bush-
nell, 1999), which eventually raises prices for consumers. This chapter deals with the challenge of
auction regulators to screen for and detect suspected market power abuse, without knowing firms’
production cost. This issue is particularly policy-relevant in markets and market situations with large
potential for windfall profits, like renewable-heavy systems or the European gas price crisis (Graf et al.,
2021). Together with Moritz Bohland, I analyze existing automated mechanisms to mitigate market
power in electricity auction markets and suggest ways to redesign them. In an empirical analysis and
simulation on data from the Iberian market, this chapter compares the different design approaches

3Warner et al. (2024) undertook a risk-cost analysis of these measures.
4See a quantification of this trade-off in Brown andMuehlenbachs (2024).
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and their welfare implications. It turns out that there is large, untapped potential to improve the pre-
cision of current algorithmic mechanisms with significant welfare transfers from supplier to buyer
surplus and overall social welfare gain.

The second chapter looks at the climate and also further environmental impacts of electricity gener-
ation in Europe – namely damages from local air pollution. While the global costs of carbon emis-
sions (e.g., fromDICE-2016R) are very salient, air pollution also imposes significant local health and
ecological damages around the emission source (Dedoussi et al., 2020; Markandya and Wilkinson,
2007). Together with Mathias Mier, I numerically model the long-term damages of these two emis-
sion types under different scenarios of regulatory intervention. Moreover, I provide a quantitative
assessment of the co-benefits and trade-offs of the simultaneous taxation of carbon emissions and lo-
cal air pollution, when policy priorities exist. For instance, in theU.S., air pollution abatement ismore
emphasized, whereas in the EU, the focus lies on coordinated carbonpricing. In the former case,mod-
erate carbon taxation can complement a primary policy goal of cleaner air. Meanwhile in the reverse
case, if carbon abatement is prioritized, additional air pollution taxation always causes a long-term
abatement trade-off. These effects are steered through shifts in the technology mix of electricity gen-
eration, with carbon-capture-and-storage (CCS) technologies playing a key role. Although CCS can
be carbon-neutral or even carbon-negative, the carbon-capturing process significantly contributes to
local air pollution. While this is true today, luckily, it does not have to remain true tomorrow; from a
policy perspective, joint taxation could incentivize technological innovations in the carbon-capturing
process to mitigate this trade-off.

The third chapter studies adaptive resiliency investments of households after wide-spread electricity
outages caused by an extreme cold event – a type of extreme weather that is also expected to occur
more often due to climate change (Cohen et al., 2018). Recent studies have emphasized that house-
holds’ past experience of extremeweather events impacts their investment decisions (e.g., Sheldon and
Zhan, 2019) and that households are willing to pay for avoided outages (e.g., Brown and Muehlen-
bachs, 2024). My work combines these two lines of research and sheds light onto which groups are
more likely to invest and distinguishes between different grid substitute options. I find that neighbor-
hoods that experienced more outages during the extreme event, later invested at substantially higher
rates in both home back-up generators and solar-PV-battery systems. Further investigation of my re-
sults reveals that there are, however, socio-economic disparities in adaptive capacity. Responses are
bothweaker and slower for lower-income, less-educated, and high-minority neighborhoods. This un-
derlines inequities in both the capacity and promptness of households’ resilience efforts. In a future
impacted by climate change-induced extreme weather events, this leads to systematic imbalances in
the vulnerability of households, which should be addressed by policy makers. These results also em-
phasize the importance and distributional impact of public supply security investments, which are
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hence over-proportionally relied upon by disadvantaged subpopulations.

∗ ∗ ∗

Electricity systems and markets carry the large responsibility to produce and organize the provision
of one of the most fundamental resources of modern-day life and economies. Success of this is often
measured by invisibility – ideally, firms and households rarely need to consider the complex mecha-
nisms operating in the background or worry about disproportionate cost burdens. At the same time,
electricity markets have the potential to mitigate climate change – one of the biggest man-made chal-
lenges of humankind – and to weather the impacts of changed climate. In this spirit, I hope to con-
tribute to pinpointing and describing some of the specific challenges that electricity markets face in
current times and to exploring possible approaches to address them. These efforts are united by the
overarching objective to provide economies with competitively priced electricity, minimize environ-
mental harm, and ensure fair and equitable supply security in the future. My findings conclude that
well-designed regulatory interventions can improve social welfare by curbingmarket power abuse and
balancing climate mitigation efforts with local air pollution concerns, as well as they motivate poli-
cymakers towards targeted support of vulnerable groups to strengthen their resilience against force-
majeure disruptions. These insights contribute to an optimistic outlook – where electricity markets,
when properly governed, can serve as a powerful source for both large-scale, affordable energy provi-
sion and environmental sustainability.
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1
Redesigning AutomatedMarket Power Mitigation

in Electricity Markets



Abstract

Electricity markets are prone to the abuse of market power. Several U.S. markets employ algorithms
to monitor andmitigate market power abuse in real-time. The performance of automatedmitigation
procedures is contingent on precise estimates of firms’ marginal production costs. Currently,
marginal cost are inferred from the past offers of a plant. We present new estimation approaches
and compare them to the currently applied benchmark method. We test the performance of all
approaches on auction data from the Iberian power market. The results show that our novel
approaches outperform the benchmark approach significantly, reducing the mean (median) absolute
estimation error from 11.53 (6.08) e /MWh in the benchmark to 4.03 (2.64) e /MWh for our
preferred approach. This approach also performs best in our subsequent simulation of mitigation
procedures. Here we find large welfare transfers from supplier to buyer surplus as well as a robust
overall welfare gain, stemming from both productive and allocative efficiency gains. Our research
contributes to accurate monitoring of market power and improved automated mitigation. Although
we focus on power markets, our findings are applicable to monitoring of renewable energy tenders or
market power surveillance in rail and air traffic.1

Keywords: Regulation; Automatedmitigation procedure; Best-response pricing;Market power; Elec-
tricity; Mark-up

JEL-Codes: D22; D43; D44; D47; L13; L94
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published as ifo Working Paper No. 387 and in the dissertation ”Competition Policy andMarket Design in Low-Carbon
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1.1 Introduction

The liberalization of power markets entailed efficiency gains and cost reductions for elec-
tricity producers (e.g. Newbery and Pollitt, 1997; Davis andWolfram, 2012), but these gains did not
necessarily translate into lower market prices (Newbery, 1997). The missing link between cost reduc-
tions for producers and reductions in power prices is, at least partially, attributed to market power
abuse by electricity generating companies. Market power exertion in liberalized electricity markets is
documented for awide range ofmarkets andperiods (e.g.Green andNewbery, 1992; Borenstein et al.,
1999; Ciarreta and Espinosa, 2010). Limited storage capacities, inelastic short-run demand, and high
market concentration render power markets especially prone to market power exertion. As market
power abuse is both inefficient and undesired by policy makers, regulators aim at mitigating undue
market power.

Existing mitigation strategies include the implementation of price caps (Wilson, 2000), stringent ap-
plication of antitrust policies (Green, 1996; Borenstein et al., 1999), fostering of vertical integration
(Mansur, 2007; Bushnell et al., 2008), and the implementation of forward contracting obligations for
suppliers (Allaz and Vila, 1993; de Frutos and Fabra, 2012). In several U.S. markets, system operators
go one step further and monitor and mitigate market power in real-time. To that end, system opera-
tors implemented automatedmitigation procedures (AMP), i.e. algorithms to screen all supply offers,
detect undue market power, and mitigate affected offers. Future electricity systems will depend even
more on flexible, quickly dispatchable generators at the margin to balance increasing shares of inter-
mittent renewables (in absence of sufficient storage and short-term demand response) – hence, raising
the risk ofmarket power abuse. Graf et al. (2021) point out how this will heighten relevance of AMPs
to work properly in increasingly decarbonized systems. A striking example of this is the recent power
crisis with high marginal prices from natural gas-fired generation due to the Russian war in Ukraine.
This provides powerful firms that own a diverse generation portfoliowith the potential to strategically
deploy their units to maximize windfall profits.

Our research contributes to improved algorithms for automatedmitigation ofmarket power inmulti-
unit uniform price auctions. In electricity markets, market power is typically measured by the dif-
ference between observed offers and underlying marginal cost of power production.2 Therefore,
marginal cost estimates should be as accurate as possible to ensure unbiased measurement of market
power (Bushnell et al., 2008) and welfare-improving mitigation thereof. When all cost components
of power production are known, engineering based bottom-up calculations deliver precise estimates
of marginal cost. However, cost components and power plant characteristics are private information

2Going back to the Lerner-Index of the degree of monopoly power as price−marginal cost
price as e.g. in Wolak (2003b).
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and firms have an incentive to overstate costs. Instead, system operators thus infer marginal cost of
power plants from past offers of the respective plant, which leaves room for strategic manipulation by
firms (Shawhan et al., 2011). We use this best-practise approach as a benchmark for further analysis
and present alternative methods that deliver more accurate marginal cost estimates.

In this paper we test the accuracy of the AMP benchmark approach and alternative methods, which
we develop and apply to micro-level bidding data from the Iberian day-ahead electricity market – an
unbiased market that is currently not subject to AMPs. First, we calculate marginal cost of power
production bottom-up to obtain a measure for “true”marginal cost. To that end, we employ detailed
information on power plant characteristics and all relevant cost components. In a second step, we test
the benchmark approach based on past offers and compare the outcomes to the true marginal cost we
derived in the first step. We then proceed by testing the accuracy of alternative estimation methods
and assess their performance as compared to the current benchmark approach. Finally, we carry out a
mitigation simulation for all approaches and conduct a welfare analysis.

First, we test a theory-driven approach, which is based on Wolak (2003a, 2007) and accounts for the
price reducing effect of a firm’s forward obligations. We assume power producing companies to sub-
mit profit-maximizing offer curves as a best-response to the offers of competing firms. Under this
assumption, we infer marginal cost of power production that justify observed offers. We designate
this approach as “Best-response” approach. Additionally, we present two approaches, whichmethod-
ologically build on the benchmark approach used by system operators but address major flaws of the
existing method. In the first of these two approaches, we additionally control for distortions caused
by potential start-up and ramping cost. We refer to this approach as the “Start-up” approach. The
last estimation method we propose represents an extension to the Start-up cost approach, where we
now define clusters of similar power plants and estimate marginal cost for the whole cluster of plants
to alleviate strategic manipulation by individual firms. We refer to this method as the “Clustering”
approach.

The results of our empirical analysis reveal a low estimation accuracy of the benchmark approach. For
the sample of power plants thatwe analyze, wefind amean (median) absolute deviationof 11.53 (6.08)
e /MWhbetweenmarginal cost estimates following the benchmark approach and truemarginal cost.
All suggested alternative approaches deliver more precise estimates. Mean (median) absolute devia-
tions accrue to 10.28 (6.88) e /MWh for the Best-response approach, 7.70 (4.92) e /MWh for the
Start-up cost approach, andmerely 4.03 (2.64)e /MWh for theClustering approach. TheClustering
approach does not only deliver the most precise estimates, but likewise limits the scope for strategic
manipulation of estimates by firms. This is because estimates are based on past bids of a group of
plants instead of just one plant. Strategic manipulation of estimates and thusmitigation would hence
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require a significant extent of coordination among firms. We therefore assess the risk of strategic ma-
nipulation as reduced. Applying all approaches to an AMP simulation on the data, we find sizeable
overall welfare gains and welfare transfers from supplier to buyer surplus in the magnitude of 20–40
millione . For our preferredClustering approachwe achieve robust 0.83–1.01%welfare gains for the
average mitigated hour (roughly a doubling of the benchmark approach), which can be decomposed
into 13,060e productive and 17,800e allocative efficiency gains per average mitigated hour.

Our findings provide system operators with improved estimation techniques of power plants’
marginal cost and with more accurate methods for monitoring and real-time mitigation of market
power. Equipped with precise marginal cost estimates, system operators can apply automated mit-
igation more stringently, and achieve increased market efficiency and reduced costs for consumers.
At the same time, improved accuracy benefits producers as the scope for unjust mitigation of offers
based on flawed marginal cost estimates is reduced. The main use cases for our approaches are au-
tomated procedures for market power mitigation in spot, balancing, and reserve electricity markets.
Yet, the approaches can likewise find application in other markets, e.g. for monitoring in renewable
energy tenders or price and market power surveillance in rail and air traffic. Additionally, marginal
cost estimation approaches which are not contingent on private information facilitate power market
research for scholars. The suggested approaches are especially valuable when a bottom-up calculation
is infeasible due to limited accessibility of private information on cost components.

Considering the widespread application of AMPs in U.S. power markets and the immediate effect
of mitigation procedures on market prices, producer and consumer rents, as well as investment deci-
sions, literature on AMPs is rather scarce and to a large extent of qualitative nature. Twomey et al.
(2006) and García and Reitzes (2007) address AMPs in their reviews of market power monitoring
and mitigation measures. Helman (2006) and Graf et al. (2021) assess and compare market power
monitoring and mitigation procedures in several U.S. markets. Kiesling andWilson (2007) follow an
experimental approach to investigate effects of AMPs on market prices and investments. Shawhan et
al. (2011) likewisemake use of an experimental setting to test the impacts of AMPs and find that firms
can influence marginal cost estimates, and thus mitigation measures, strategically. For the suggested
Best-response approach, we additionally draw from the literature on strategic bidding in multi-unit
auctions (e.g. Wolfram, 1999; Wolak, 2003a,b, 2007; Hortaçsu and Puller, 2008; Brown and Eckert,
2021) and the literature on the impacts of forward contracts and vertical integration on optimal pric-
ing strategies (e.g. Allaz and Vila, 1993; Wolak, 2007; Bushnell et al., 2008). Graf and Wolak (2020)
use best-response functions to measure market power in more complex locational pricing markets.

The remainder is organized as follows. Section 1.2 gives an overview of AMPs in U.S. power markets.
In Section 1.3, we outlay and develop the suggested estimation approaches and their empirical im-
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plementation. In Section 1.4, we present the market environment in the Iberian electricity market.
Section 1.5 provides a description of the employed data. In Section 1.6, we present our results and
Section 1.7 concludes.

1.2 Automated market power mitigation in U.S. markets

1.2.1 Overview and procedure

Multiple Independent System Operators (ISO) have implemented automated mechanisms for the
mitigation of market power exertion in wholesale auction markets. These ISOs are the California In-
dependent System Operator (CAISO), the Independent System Operator New England (ISO-NE),
the New York Independent System Operator (NYISO), the Pennsylvania-New Jersey-Maryland In-
terconnection (PJM), serving various Eastern states, and theMidcontinent Independent SystemOp-
erator (MISO), whose network also covers parts of Canada. In short, these mechanisms intervene in
the bidding market by reducing suspiciously high bids to a reference price, a so-called reference level.
Reference levels are set for each generation unit individually and adjusted for daily input prices. They
serve as unit-specific proxies for marginal cost and simulate a competitive bid. The CAISO, ISO-NE,
NYISO and MISO use market observations such as historical bids and prices to construct these ref-
erence levels. The precise derivation methods are described in a review below. We exclude the PJM,
where reference levels are derived by a cost-based method, from our further review, as our goal is to
focus on settings where cost information is not available to the market operator. The ISOs are reg-
ulated by the U.S. Federal Energy Regulatory Commission (FERC) and publish their full operation
tariffs online, which serve as business practices manuals and operating rules. These FERC-approved
tariffs allow an extensive understanding of the procedures applied for automated mitigation. The
mechanism can be summarized as follows (see Table 1.1 for an overview).

General procedure First comes a structural test, which tests if the structural market situation
implies potential for market power. If so, secondly, a conduct test is carried out, which flags bids that
are excessively high. Third, to avoid excess intervention, an impact test is carried out, which tests if the
flagged bids have a relevant price impact. Only if all tests fail (i.e. test positive), mitigation is triggered,
which overrides bids of flagged generation units to their reference levels. Using these, a new supply
curve is constructed and the newmarket clearing price is calculated.

Structural test Is there structural potential for market power? Here ISOs test for (1) the oc-
currence of local transmission constraints (i.e. the local market cannot be served by alternative suppli-
ers due to the transmission constraint), or (2) the occurrence of pivotal supply (i.e. demand cannot
be fully served without the capacity of a specific supplier), or (3) both cumulatively. For the latter
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two, a pivotal supplier test is carried out after bid submission that either tests individual suppliers or
the group of n-largest suppliers for pivotal supply conditions (MISO, 2019; ISO-NE, 2020; NYISO,
2020). In the case of the CAISO, this screening is further specified by a Residual Supply Index (RSI)
analysis (CAISO, 2019). The RSI provides a score on the size of the fraction of demand, which can
be served without the capacity of a specific supplier.

Conduct test Which bids seemingly exhibit actual exercise of market power? In the case of the
CAISO the conduct threshold is met when bids exceed the competitive locational marginal price
(LMP, i.e. the nearest local electricity price) (CAISO, 2019). The other ISOs specify a certain per-
centage (e.g. 200 % or 300 %) or absolute amount (e.g. 100 $/MWh) by which the submitted bid
has to exceed the unit’s reference level. If the conduct threshold is exceeded, the bid is deemed non-
competitive (MISO, 2019; ISO-NE, 2020; NYISO, 2020).

Impact test Is there a relevant consequential price impact? One possibility is to define the impact
as significant as soon as a flagged bid sets the LMP or if the bid effectively removes the unit from the
economicmerit order (CAISO, 2019). Another possibility is to set an impact threshold as a percentage
(e.g. 200%, less for constrained areas) or absolute amount (e.g. 100 $/MWh, less for constrained areas)
by which the clearing price would be decreased in a mitigated scenario. This may also be measured by
comparing the unit’s node’s LMPagainst the node’s hubLMP (MISO, 2019; ISO-NE, 2020;NYISO,
2020).

Overriding by reference level Provided the impact threshold for a given hour is exceeded,
the automated mitigation takes place by overriding the bids of all units, for which a flagged bid had
been submitted in this hour, to the unit’s daily reference level. For all analyzed ISOs this practice is
applied in day-ahead markets and other spot markets (CAISO, 2019; MISO, 2019; ISO-NE, 2020;
NYISO, 2020). Yet, ISOs are heterogeneous in their available methods to calculate reference levels.
The applicability ranking of these methods is either at the supplier’s choice or set by the ISO. Three
general methods are in practice: accepted offer-based, LMP-based, and cost-based calculations. In
exceptional cases, reference levels are negotiated.

The first calculation method is based on previously accepted offer bids of the respective unit. It is the
default method applied by ISO-NE,MISO andNYISO. In general, the reference level is calculated as
the rollingmeanormedianof acceptedoffers over the last 90days during competitive periods, adjusted
for changes in fuel prices (MISO, 2019; ISO-NE, 2020; NYISO, 2020).

The second calculation method is based on previous LMPs at the unit’s node and is used by all four
ISOs. The reference level is calculated as the mean or median of the lowest 25 % (50 % for NYISO) of
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LMPs during hours, in which the respective unit was scheduled within the past 90 days. The calcula-
tion again includes an adjustment for changes in fuel prices. CAISO additionally distinguishes peak
and off-peak hours in the calculation (CAISO, 2019; MISO, 2019; ISO-NE, 2020; NYISO, 2020).

The third calculationmethod is based on cost estimates and is also applied by all ISOs. This approach
considers unit-specific heat rates and fuel cost, unit-specific emissions with respective permit prices,
opportunity costs and variable operation and maintenance (O&M) costs. The calculation is done in
a consultative approach together with the supplier, who has to provide the required information and
documentation of all cost components that cannot be gathered by the ISO (CAISO, 2019; MISO,
2019; ISO-NE, 2020; NYISO, 2020). This approach delivers good estimates of firms’ marginal cost,
yet requires detailed plant level information on cost structures. Furthermore, regulators are unable to
verify the accuracy of data disclosed. Generators naturally have an incentive to overstate their costs,
e.g. by understating the heat rate or by overstating the operation and maintenance cost of the power
plant.

The last method is based on negotiations and exclusively applied by the CAISO. In this approach
suppliers propose an appropriate reference level, which, if not immediately accepted by CAISO, will
be further negotiated (CAISO, 2019).

ISOs employ reference levels not only for the incremental (i.e. per MWh) cost components but also
for dynamic cost components such as start-up costs. However, the former will be at the focus of this
paper.

1.2.2 Calculation of reference levels

Our analysis focuses on the estimation of reference levels, which are crucial for efficient mitigation.
As the accepted offer-basedmethod is the default method applied by ISO-NE,MISO andNYISO, we
use this method as our benchmark. The accepted offer-based method uses previously accepted bids
from competitive periods over the recent 90 days to construct a rolling mean or median as a reference
level. The definition of competitive periods is, however, not consistent across analyzed ISOs. For the
ISO-NE ”competitive” refers to the mere economic scheduling of a unit (ISO-NE, 2020), whereas
for the MISO the term is tied to the absence of transmission constraints (MISO, 2019). The NYISO
tariff, despite stating the term, does not provide an explicit definition at all (ISO-NE, 2020).

Some ISOs impose additional conditions that narrow down the scope of relevant offers to certain
periods or hours within the competitive periods (see Table 1.2). The NYISO takes only hours into
account that start from 6am to 9pm and categorically excludes weekend and holiday hours from the
calculation (ISO-NE, 2020). This can be interpreted as an on-peak-focused approach. The MISO
does not restrict the calculation to certain hours of the day but instead distinguishes between on-peak
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Table 1.1: Overview of automated market power mitigation across U.S. markets

Procedures CAISO ISO-NE MISO NYISO

Application tied to
transmission
constraint

Yes No Yes No

Test for pivotal
supply

Yes + RSI Yes Partly Partly

Conduct threshold Bids exceeding the
competitive LMP

% / $ amount per
MWh

% / $ amount per
MWh

% / $ amount per
MWh

Impact threshold Bid sets LMP/ moves
unit out of economic
MO

% / $ amount per
MWh

% / $ amount per
MWh

% / $ amount per
MWh

Basis for reference
level

a) Prev. LMP b)
Negotiated c) Cost

a) Accepted bids b)
Prev. LMP c) Cost

a) Accepted bids b)
Prev. LMP c) Cost

a) Accepted bids b)
Prev. LMP c) Cost

Types of reference
levels

Incremental &
dynamic cost
components

Incremental &
dynamic cost
components

Incremental &
dynamic cost
components

Incremental &
dynamic cost
components

Relevance for
day-ahead

Yes Yes Yes Yes

Summary of the application procedures of automated market power mitigation by different U.S. ISOs. Compiled from CAISO (2019),
MISO (2019), ISO-NE (2020), NYISO (2020).

and off-peak hours (MISO, 2019). Last, the ISO-NE does not further narrow down the scope of
considered accepted bids apart from its definition of competitive periods (ISO-NE, 2020).

Table 1.2: Conditions for the consideration of previously accepted bids for reference level calculation

Criterion ISO-NE MISO NYISO

Retrospective
time frame

90 days 90 days 90 days

Definition of
competitive
period

Scheduling of the unit
in economic merit
order

Absence of
transmission
constraints

None given

Distinction/
exclusion
conditions

None given Distinction of
peak and off-peak
hours

Only hours starting 6am-9pm; exclusion of
weekends + holidays; exclusion of bids below 15
$/MWh

Compiled fromMISO (2019), ISO-NE (2020), NYISO (2020).

The detailed calculation approaches for the default accepted offer-based method reveal a lacking con-
sistency in the definitionofwhich categories of hourly bids aremost appropriate as a basis for reference
level calculation. From the calculation practices no consensus can be found particularly on the han-
dlingofpeak andoff-peakperiods in termsof their distinctiveuse, inclusionor exclusion. In case of the
ISO-NEno attempt of distinguishing peak andoff-peak hours is evenmade, which leads to a rudimen-
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tarymean ormedian calculation. The different approaches to accepted offer-based calculation among
the ISOs also imply differing calculation results. It is, however, unclear, which ISO’s approach yields
reference levels that best approximate competitive bids. Moreover, under certain conditions the ISOs
may switch to a cost-based calculation for individual bids. The cost-based methodologies are more
uniform among all ISOs as compared to the accepted offer-based methodologies. As a consequence,
the cost-based calculation can be expected to yield more similar reference level results across the ISOs,
when compared to results from accepted offer-based calculations. This inevitably raises the question
of how comparable reference levels of the same ISO really are, if, within the same territory, some bids
are regulated using cost-based reference levels, whereas others are regulated using accepted offer-based
reference levels.

1.2.3 Issues related to current practices

Both the accepted offer-based calculation as well as the cost-based calculation bear risks of Principal-
Agent problems arising from hidden information. As the ISOs rely severely on the accepted offer-
based method, this has evoked discussions on possible strategic bidding behavior that aims at increas-
ing reference levels. Shawhan et al. (2011) find evidence in an experimental study that, in case of suffi-
ciently highmarket power, bidders have an incentive to strategically raise their bids duringunmitigated
periods and thus manipulate the calculation basis for reference levels – so-called reference creep. This
issuewas not addressed in any of the analyzed ISO tariffs; consequently, there were nomeasures found
in place to detect or account for reference creep. The second problem of hidden information arises in
the cost-based reference method, where the ISOs depend on suppliers to truthfully disclose informa-
tion on cost components, which cannot be obtained otherwise by the ISO. This information includes
e.g. unit-specific opportunity costs. Depending on the agent to disclose such private, unobservable
information provides opportunity for strategic behavior. Even at the PJM, an ISO that is particularly
experienced in working with cost-based reference levels, these information asymmetries are hitherto
unaddressed. The PJM’s independent market monitor describes the occurrence of resulting strategic
behavior ofmarket participants in the submission of cost components and criticizes that true compet-
itive proxies cannot be obtained if suppliers’ submissions are not truthful and uniform (Monitoring
Analytics, 2019). The complexity of bottom-up cost calculation as well as the information asymme-
tries of this approach may be a reason why all analyzed ISOs, except for the CAISO, explicitly present
the cost-based method as least applicable option to calculate reference levels.

Forcing suppliers to bid at (approximated) short-run marginal cost does effectively limit short-run
market power abuse. However, this regulative strategy may still not always be optimal. This is for in-
stance the case for peakers, which rely on scarcity rents, and for opportunity costs, which remain un-
considered (Munoz et al., 2018). For this purpose, in a number ofmarkets, complex bidding has been
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implemented, which is also the case for the Iberian market used in our simulation study. Complex
bids consist of two parts; (1) A simple bid, which should reflect short-runmarginal cost of generating
electricity, and (2) a complex bid, which contains additional cost components (such as start-up cost)
or additional conditions that have to be met (such as a minimum daily revenue e.g. to recover op-
portunity costs or start-up cost)3. Hence, if such a complex bidding system is properly implemented
and used, AMPs targeted at the simple bid component do not harm the recovery of complex cost
components and scarcity rents. Rather, they contribute to decreasing distortions between simple and
complex cost components, while limiting short-run market power abuse.

1.3 Method and empirical strategy

In this section, we present and develop different empirical approaches to calculate reference levels of
power plants’ short-runmarginal cost based on observed simple supply bids. To ensure comparability,
all approaches make use of the same data from the Iberian day-aheadmarket, described inmore detail
in Section 1.5. First, we present the benchmark procedure as conducted by the NYISO, where we use
observations of the preceding 90 days to calculate reference levels. We then proceed by describing the
Best-response approach, which builds on Wolak (2003a, 2007) and Hortaçsu and Puller (2008). We
present two more approaches, which are bid pattern-driven and represent extensions to the NYISO
benchmark method. Here, we address problems, which arise due to start-up cost and reference creep,
and increase the precision of estimation. Note that our reference level calculation refers exclusively
to short-run marginal cost, i.e. the per MWh component of a bid. Some markets additionally apply
separate reference levels to complex bid components, which is, however, not in the scope of this paper.

1.3.1 The NYISO benchmark approach

To assess the relative performance of our proposed calculation approaches we first define a best-
practice benchmark. To that end we choose the NYISO method of calculating reference levels of
plants’ marginal cost. As compared to other ISOs, the NYISO provides relatively more information
on the composition of the calculation basis, i.e. the set of historical bids which is employed for the
estimation of reference levels. All U.S. system operators in our analysis follow similar procedures, yet
approaches differ in details such as the exclusion of bids from the calculation basis (see Table 1.2 for
an overview).

We calculate reference levels of plants’marginal cost for a full calendar year (01.04.2017–31.03.2018).
For each fossil power plant and day within this sample period, we determine a reference level, which
should optimally reflect the bottom-up calculated marginal cost for the respective plant and day.4 As

3See Jha and Leslie (2020) for an analysis.
4We present a detailed description of our bottom-up calculation of “true” marginal cost in Section 1.5.
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calculation basis, we use historical bids of the plant within the last 90 days. In line with the NYISO
procedure, we define the reference level as the mean or median (whichever is lower) of bids in the cal-
culation basis. Note that we only use bids within the range of 20 e /MWh to 140 e /MWh, firstly
to comply with theNYISO procedure, and secondly to limit the leverage of complementary cost con-
siderations of the firms.5

Within the 90 days period that serves as calculation basis, variation in underlying fuel cost and cost
for carbon emissions is substantial (see Table 1.4). The precision of reference levels on the one hand
benefits from the large calculation basis, but should, on the other hand, not be affected by changes of
input prices. System operators account for fuel price changes NYISO (2020), yet do not specify how
they proceed exactly.6 We present our strategy to empirically control for changes in input prices in
Appendix A.1.7 Reference levels are then defined as the rollingmean or median of all adjusted bids in
competitive hours of the last 90 days.

1.3.2 Best-response bidding

The second approach is based onWolak (2003a, 2007), who derives underlying marginal cost directly
from observed bids. We use his model of best-response pricing, which assumes according to supply
function equilibria (Klemperer and Meyer, 1989) that a profit maximizing firm will submit a set of
bids that is ex-post optimal given its residual demand. Assuming profit-maximizing behavior, it is
possible to derive a firm’s marginal cost C′ for observed residual demand RD, observed market clear-
ing prices p and its forward contracted quantity QC.8 The resulting firm profit function for a single
scheduling hour is further dependent on the price received on forward salesPC as well as the uncertain
demand shock η and can be expressed as follows:

π(p) = RD(p, η)p− C(RD(p, η))− (p− PC)QC, (1.1)

We take the first order derivative with respect to the price and solve for the marginal cost component
to receive the following condition:

5Companies alienate simple bids to signal that a plant is already running (by bidding at very low prices), or that it
would need to start-up (by bidding close to the price cap) (Reguant, 2014).

6Adjustments are contingent on detailed price information over time. As fuel prices and emission allowance prices
are publicly available, we assume that regulators possess the required information.

7This input price adjustment does not only include fuel prices but also emissions allowance cost, following Fabra and
Reguant (2014), who show that emission cost are passed through at high rates.

8Bohland and Schwenen (2022) use a similar framework to analyze the effect of renewable subsidies on strategic
pricing.
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C′(RD(p∗, η)) = p∗ − QC− RD(p∗, η)
RD′(p∗, η)

(1.2)

All bids are submitted in the expectation that the respective bid could determine the market clearing
price, therefore each bid can be regarded as an optimal price p∗. Marginal costC′ are thus derived from
observed bid levels p∗, the amount of infra-marginal quantity offered by the firmRD, the slope of the
residual demand function faced by the firm RD′, and its contracted quantity QC.9 As we possess
information on all supply and demand bids as well as the owning structure of the firms, we can derive
the infra-marginal quantity and the residual demand curves. However, residual demand functions are
step-wise bid functions in electricity markets and not continuously differentiable. We follow Wolak
(2003a) and solve this by applying smoothing parameters for the residual demand curve.10

The contracted quantity QC is a crucial element for the bidding strategy of the firm. It incorporates
both, forward sales (Wolak, 2007; Holmberg, 2011) as well as resell obligations of vertically integrated
retailers (Kühn and Machado, 2004; Mansur, 2007; Bushnell et al., 2008), as the underlying incen-
tives are identical. If the contracted quantity exceeds sales in the market, the firm acts as a net-buyer
and aims at lowering the market clearing price by bidding belowmarginal cost. If market sales exceed
the contracted quantity, the firm acts as a net-seller and bids above marginal cost to increase its prof-
its. In case the regulator possesses information on vertical sales and forward contracts, it can directly
derive QC and thus the underlying marginal cost C′. Unfortunately, we lack information on firms’
forward sales and need an alternative approach for the estimation ofQC. Wemake use of the nature of
firm strategies and identify the contracted quantity as the position where the marginal cost curve of a
firm intersects its supply function (Hortaçsu and Puller, 2008). The rationale is that if the uncertain
residual demand materializes at the exact contract position of the firm, the firm has no incentive to
influence the market clearing price and bids equal to marginal cost.11

We derive all parameters of equation (1.2) and calculate marginal cost as a function of the observed
bid-level, the firm’s hourly net-position, and the slope of the residual demand curve at the chosen bid-
level. Wedetermine reference levels for all fossil plants in our year of analysis (01.04.2017-31.03.2018).
To ensure comparability across methods, we again restrict input bids to the range from 20 e /MWh

9Firms owning a larger portfolio can strategically play on this portfolio (and potentially market power), leading to a
supply function whose underlying true marginal cost might not be non-decreasing. This implies that the marginal cost
derived by the best-response bidding model might calculate a marginal (opportunity) cost at the firm and not the unit
level. Using this marginal cost as a unit-specific reference level in mitigation however could incentivize firms to bid truth-
fully according to non-decreasing actual unit marginal cost to avoid disadvantageous reference levels.

10We use themonpol function in R, which is part of theMonoPoly package and ensures a monotonic fit. We allow for
nine degrees of freedom. Note that our findings are not contingent on the exact specification of smoothing parameters.

11To retrieve the intersection between the supply curve and the marginal cost curve, we first need to fit a marginal cost
curve. We use an isotonic regression that delivers monotonically increasing step-functions and is best-suited to mimic the
nature of marginal cost curves.
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to 140 e /MWh in competitive hours (from 7am to 11pm). Last, we define daily reference levels for
each plant as the mean of all calculated marginal cost estimates for the respective plant and day.

1.3.3 Accounting for start-up cost

In this section we present an extension of the benchmark NYISO method. By following the NYISO
approach as presented in Section 1.3.1, wedonot structurally incorporate additional cost components
such as start-up cost. Yet, the bids in our calculation basismay partly be driven by the presence of start-
up cost due to the limited use of complex bids. Reguant (2014) shows that the neglect of start-up cost
leads to biased estimates of marginal cost and eventually to flawed mark-ups and measures of market
power. Nevertheless, for the sake of simplicity and clarity, we abstain from including start-up cost
in the bottom-up calculated marginal cost estimates.12 We assess the performance of the presented
approaches by the deviation between the respective reference levels and the bottom-up estimates of
short-run marginal cost. To achieve coherence, we thus need a calculation basis that excludes bids
driven by start-up cost.13

Empirically, we address this problem by further limiting our calculation basis to those plants which
are clearly not affected by start-up cost. Firms submit very low first step bids for plants that are already
running to ensure that these plants will be scheduled with certainty (Reguant, 2014). Note that firms
are permitted to submit up to 25 discrete steps per power plant. Using the first step to determine
whether the plant should be running or not therefore comes at negligible opportunity cost. Wemake
use of this signaling behavior and limit the calculation basis to bids of power plants for which at least
one low-priced bid has been submitted within the respective hour.14 Apart from this constraint, we
use the same calculation basis as in our benchmark approach (see Section 1.3.1) and likewise account
for changes in input prices.

1.3.4 Clustering

In our final approach, we address several additional shortcomings of the NYISOmethod, namely the
large dispersionof results across power plants, themissing calculationbasis for a set of plants,15 and the
potential occurrence of reference creep. We tackle these problems by departing from the calculation

12A distinct assessment of start-up cost is difficult as in some cases firms make use of complex bids to express start-up
cost, whereas in other cases they incorporate them in simple bids, hence circumventing using a complex bid.

13The alternative would be to include start-up cost in the bottom-up estimates of marginal cost and in the reference
levels. However, we see no feasible option to determine the extent to which a bid is driven by start-up cost.

14We set the boundary at 30e /MWh and thus significantly below the expected clearing price within our sample
period (mean 51.82e /MWh, 1st quartile 45e /MWh) and which is also below bottom-up estimates of marginal cost as
seen in Figure 1.3.

15This pertains to plants who had been recently inactive in the market, e.g. due to maintenance, or to new generating
units entering the market.
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of unit-specific reference levels. Instead, we apply a machine learning algorithm (k-means clustering)
to cluster the 93 power plants in our sample with respect to their main characteristics relevant for
marginal cost, i.e. heat rate (so-called efficiency) and size. As gas-fired plants generally have a higher
heat rate than coal plants, this effectively allows also identification of the fuel type. Figure 1.1 depicts
the results of the clustering process, showing four clearly distinguishable clusters. Clusters one and
four incorporate large (cluster 1) and small (cluster 4) combined-cycle gas turbines (CCGT), whereas
clusters two and three show small (cluster 2) and large (cluster 3) coal power plants.

We use these clusters and calculate reference levels analogously to our procedure in Section 1.3.3, yet
not for each power plant individually, but at the cluster-level. Thereby we solve the problem of the
large dispersion of estimation errors across plants and receive a more concentrated distribution of
results. At the same time we limit the influence of outliers, which are usually attributed to a small
calculation basis or market power abuse. Furthermore we solve the problem of missing calculation
bases. As the calculation basis is now identical for all power plantswithin a cluster, we obtain reference
levels for a larger set of power plants.

Figure 1.1: Clustering of the sample plants with respect to relative efficiency and size
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Sample comprises 93 plants. Clusters 1 and 4 represent efficient CCGT plants with cluster 1 comprising large CCGT plants and cluster
4 smaller CCGT plants. Clusters 2 and 3 represent inefficient coal power plants, where cluster 2 comprises small coal power plants and
cluster 3 large coal power plants. Clustering by efficiency makes additional clustering by fuel-type obsolete because coal and gas power

plants are on different ranges of the efficiency spectrum for technological reasons.

For the purpose of AMPs, the main advantage of clustering the plants is the prevention, or at least
complication, of reference creep. As long as reference levels for mitigation are merely based on the
historical bids of a single power plant, strategically inflating these bids may prove to be beneficial for
the firm. The incentives and ability to strategically alter the calculation basis decrease when the reg-
ulator shifts to a clustered approach. Firstly, strategic bidding would become more apparent as the
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clusters comprise plants of similar size and efficiency. Strong deviations from the mean bidding be-
havior of the plants within the cluster would be conspicuous and could hardly be justified. Secondly,
plants within a cluster belong to a set of different firms as long as clusters are sufficiently large. Indeed
Brown and Eckert (2022) find sophisticated coordination of firms through numeric pricing patterns
of individual bids in the Alberta electricity market. However, using such strategies to jointly perform
targeted reference creep across peak and off-peak hours would require even more significant coordi-
nation among firms. The Clustering approach thus solves and mitigates several elementary problems
of accepted offer-based calculations of reference levels.

1.4 Market environment

The Iberian electricity market consists of the geographical regions of Spain and Portugal. In 2007
the two countries integrated their electricity markets into one administrative market called Mercado
Ibérico de la Electricidad (MIBEL). The peninsular electricity spot market of MIBEL is managed by
the nominated electricity market operator called Operador delMercado Ibérico de Energía – Polo Es-
pañol (OMIE), which is based in Spain. The organized forwardmarket is managed by the Portuguese
equivalent OMIP.

OMIE is responsible for the MIBEL day-ahead and intraday (auction and continuous) energy mar-
kets within the spot market management. The OMIEmarket represents the most important place of
electricity exchange withinMIBEL, as its markets traded 85 % of the total MIBEL electricity demand
in 2017, which mainly makes up our study period. Whenever interconnections between Spain and
Portugal are not at capacity limits, OMIE consists of only one pricing zone. This was the case in 94.4
% of the time in 2017. TheOMIEmarket can therefore be regarded as one coupledmarket consisting
of the geographic zones of peninsular Spain and Portugal.

This study concentrates on OMIE’s day-ahead market, as it represents the most important trading
market accounting formore than86%of the totalOMIE trading in 2017. In 2017, a total of 247TWh
was traded in the day-ahead market, of which Spanish generation accounted for the large majority
of 72 %, whereas Portuguese day-ahead generation accounted for 22 %. On the day-ahead market,
agents submit supply (sale) and demand (purchase) bids on electricity transactions for the following
day. Buying agents can be direct consumers, retailers, resellers and representative agents; selling agents
can be owners of production units, retailers, resellers and representative agents (OMIE, 2015). End
consumers can be on real-time pricing plans, although evidence by Fabra et al. (2021) suggests that
demand-price elasticity of consumers is negligible for our study’s time frame.

The daily scheduling horizon consists of 24 hourly periods, which are all auctioned in a single session.
Each bid is comprised of up to 25 blocks for each hourly scheduling period, with decreasing prices for
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Figure 1.2: Distribution of fossil power generation across firms
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demand bids and increasing prices for supply bids. The maximum possible bid price was regulated to
180.30 e /MWh in our period of analysis. Demand bids are always simple bids, meaning that they
consist only of a price and an amount of power for each block of a scheduling period. Supply bids are
tied to a production unit and can be either simple (only price and amount) or complex. Complex bids
contain additional conditions that the agent can submit to the market operator and typically cover
complementary cost factors such as start-up or ramping cost. OMIE verifies the bids and matches
supply to demand bids with the Euphemia matching algorithm that is commonly used in multiple
European electricity markets. The algorithm creates two aggregate step-wise curves for demand and
supply bids, considering any complex conditions, and finds the corresponding system marginal price
as a uniformclearingprice (OMIE, 2015). The Iberianbiddingmarket is not subject to any automated
mitigation procedures.

The day-ahead market is characterized by the presence of few large players dominating the market.
Roughly two thirds of total generation can be accounted to five company groups owning the respec-
tive generation units, namely Endesa, Iberdrola, EDP, Naturgy, and Viesgo (Comisión Nacional de
los Mercados y la Competencia, 2019). At the same time, these companies are vertically integrated,
and likewise act as electricity resellers and retailers. With smaller renewable producers entering the
market, the overall market share of the dominant producers shrank after liberalization. This is in line
with a relatively lowHerfindahl-Hirschmann-Index (HHI) of 883–1,01316 for our sample period, see
Table 1.3. In electricity markets, however, a low HHI of the whole market sheds only limited light
onto market power concerns, as substantial market power lies in the hands of the marginal, price-

16Lower and upper bounds are given because ca. 14 % of the market share could not be manually assigned to individ-
ual groups.
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setting producers. These producers are often dispatchable coal and natural gas-fired peaker units,17

which are at the center of our research. This sub-sample is still in the hands of a few large compa-
nies. Only six companies accounted for total production from coal-fired units within our sample
period, namely Endesa, Iberdrola, EDP, Naturgy, Viesgo and REN. Production from natural gas-
fired CCGTs stemmed from the same companies along with Engie, Cepsa, and Bizkaia. This makes
the sub-market for dispatchable coal- and gas-fired generation rather concentrated, as illustrated in
Figure 1.2. This is reflected by an elevated HHI for these sub-markets to a highly concentrated level
(2,306) for coal plus natural gas-fired generation, and to a moderately concentrated level (1,627) for
natural gas-fired generation, only (Table 1.3).

Table 1.3: Conventional concentration statistics

HHI Level

HHItotal 883–1,013 low
HHIcoal+gas 2,306 high
HHIgas 1,627 moderate

We take the level classification from Twomey et al. (2006), where markets with HHIs <1000 are deemed unconcentrated, 1000–1800
moderately concentrated, and>1800 highly concentrated. Note that the HHI is a conventional market concentration measure and due
to the particularities of electricity markets, does not give a full picture of market power (see a discussion in Newbery, 2009).

1.5 Data

The centerpiece of our dataset stems from the Iberian market operator OMIE and comprises all sup-
ply and demand side bids in the Iberian day-ahead market.18 Our main analyses cover a whole year
from 01.04.2017 to 31.03.2018, while our full data sample covers a slightly larger time frame from
01.01.2017 to 31.03.2018, as we require 3 leading months for our analysis.

We focus on fossil production fromcoal andnatural gas, wherewe compare the derived reference levels
with bottom-up calculated marginal cost. For fossil generation this calculation is straight forward
and delivers precise estimates of the true underlying marginal cost.19 Our bottom-up engineering
estimates of short-run marginal cost include fuel cost, cost for carbon emissions, variable O&M cost
as well as all relevant additional taxes and levies. For a detailed overview of the determinants of our
calculation, as well as sources of fuel prices and plants’ efficiency rates, please see Table A.1. Table A.2
provides the detailed magnitudes of parameters we use for our calculation.

17Unlike e.g. must-run nuclear units and renewable units, who are usually at the bottom of the merit order.
18Monthly files including all supply and demand curves are provided by OMIE online.
19Nuclear generation as must-run generation is usually always bid into the market at low prices and therefore market

power issues do not play a relevant role. Renewable generation is also bid into the market at low cost due to marginal cost
being virtually zero. We further exclude hydro power as hydro bids represent the dynamic value of water, which is strongly
driven by opportunity cost.
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Figure 1.3: Distribution of bottom-up engineered marginal cost linked to fossil power plants bids
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Figure 1.3 gives an overview of the bottom-up engineered marginal cost across both technologies in
Spain and Portugal for all bids in our full sample. Note that taxes and levies in both country juris-
dictions structurally differ, attributing to the systematic marginal cost difference between Spanish
and Portuguese plants. The initial reason stems from the additional taxation prevalent in Spain. Even
thoughPortugal implemented a clawbackmechanism tomitigate the difference inmarginal cost via an
additional fixed charge, this mechanism lacks the ability to fully compensate the cost gap. At the same
time it is apparent that marginal cost of coal power plants are subject to less volatility than marginal
cost of CCGT plants, which is attributed to the higher volatility of natural gas prices as compared to
hard coal prices.

As part of our analysis is based onfirmbehavior, we additionallymanually assign the parent companies
to each power plant, ormore precisely, to each bid, to account for ownership structures. This provides
us with a dataset that comprises all demand and supply bids within the sample period, enriched by
bottom-up engineered marginal cost, information on fuel types, and a variable specifying the owning
parent company of the respective plant.

For the benchmark method to calculate reference levels of underlying marginal cost, we mimic the
procedure of theNYISO and take it to the Iberian data. We opt for theNYISO procedure as a bench-
mark because it is the most selective and precise in defining ”competitive bids”. Analogous to the
NYISO procedure, we thus restrict our calculation basis to a certain range of bids deemed competi-
tive according to the NYISO rationale. In the NYISO calculation, all bids lower than 15 $/MWh are
excluded. We apply an analogous boundary at 20 e /MWh and furthermore set an upper boundary
of 140 e /MWh to exclude miscellaneous bids. This means we exclude all those bids, which we are
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Figure 1.4: Price distribution of bids submitted by fossil power plants
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sure not to reflect short-runmarginal cost but can rather assumed to be signaling behavior (must-run/
must-not-run). Figure 1.4 displays the observed bid levels of both technology types in our full sam-
ple, as well as the cut-offs at 20 e /MWh and 140 e . Even though firms can make use of complex
bids to cover cost complementarities such as start-up or ramping cost, firms often circumvent this;
instead they simultaneously use simple bids to either ensure that the respective power plant is run-
ning (and bid close to zero), or to signal that they not intend to start-up a plant (and bid close to the
price cap).20 This explains bid levels at 0e /MWh and the density at 180.30e /MWh as displayed in
Figure 1.4. Additionally, we limit the sample to competitive hours (from 7am to 11pm) on weekdays
to be consistent with the NYISO procedure.

In Table 1.4, we present the summary statistics of our full unrestricted sample. Note that the disper-
sion of natural gas prices by far exceeds the dispersion of hard coal prices, further shedding light on
the distribution of marginal cost in Figure 1.3.

1.6 Results

In this section we present the results of our empirical analysis. We first present results for the different
approaches to reference level calculation. Secondly, wepresent results of simulating automatedmarket
power mitigation with these different reference levels and analyze welfare effects.

20In our full sample time frame (01.01.2017–31.03.2018) out of all matched day-ahead supply bids 95 % were simple
bids, only 5 % gave complex conditions of an economical type (minimum revenue), and a negligible fraction gave complex
conditions of a technical type, only (e.g ramping conditions).
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Table 1.4: Summary statistics

Min. 1st Qu. Median Mean 3rd Qu. Max. Sd

Coal bid level [e/MWh] 0.00 37.86 47.41 58.09 57.34 180.30 45.60
Coal marginal cost [e/MWh] 36.76 44.71 48.26 47.98 51.43 59.68 4.52
Coal mark-up [e/MWh] -57.71 -7.91 -0.85 10.11 7.26 143.24 44.70
Coal bid size [MWh] 0.00 37.86 47.41 58.09 57.34 180.30 66.09
Gas bid level [e/MWh] 0.00 51.07 68.77 94.07 151.35 180.30 56.31
Gas marginal cost [e/MWh] 37.33 42.55 46.26 49.94 54.48 92.53 10.24
Gas mark-up [e/MWh] -91.40 3.12 15.37 44.13 105.96 142.97 56.62
Gas bid size [MWh] 0.00 51.07 68.77 94.07 151.35 180.30 150.91
Clearing price [e/MWh] 2.30 45.00 51.04 51.82 57.98 170.00 13.12
Hard coal price [e/MWh] 8.73 9.48 9.95 10.07 10.69 11.65 0.73
Natural gas price [e/MWh] 15.50 17.50 19.00 21.29 23.20 43.00 5.57
EUA price [e/ton of CO2] 4.39 5.06 5.79 6.63 7.68 13.64 1.99

Full unrestricted sample 01.01.2017–31.03.2018.

1.6.1 Calculating reference levels

As described in detail in Section 1.3, we tested the benchmark approach as well as three alternative
approaches to calculate reference levels of marginal cost for an annual sample from 01.04.2017–
31.03.2018. We assess the performance of the approaches based on two quality criteria. First, we
compare themean ormedian absolute error between the derived reference levels and the truemarginal
cost. The second criterion for the performance of each estimation method is the number of covered
plants. The more we restrict the calculation basis within our empirical setting, the lower the number
of plants for which we obtain reference levels. To ensure stable operation of an AMP, reference levels
should at best be available for all power plants in the market.

In Table 1.5, we present our main findings for reference level calculation.21 The benchmark NYISO
approach performsworst and exhibits the highestmean (median) absolute error across plants of 11.53
(6.08)e /MWhand the largest standard deviation. TheBest-response approach delivers smallermean
(and similar median) error terms as well as less dispersed outcomes across plants. Moreover, the max-
imum error term falls short of what we observe for the benchmark approach.

For the Start-up cost approach, where we exclude bids from the calculation basis that could be driven
by complementary cost factors, we receive a lowmean (median) error of 7.70 (4.92)e /MWh, which
clearly constitutes an improvement over the benchmark method. Yet, the lower error comes at the
price of a reduced set of plants due to the restricted calculation basis.

Our last approach overcomes this downside and delivers reference levels for all 93 fossil power plants
21In Table A.3 we present a similar table on errors in relative terms (also see Table A.4 for surplus in million € and

Table A.5 for mitigated hours by approach).

21



in our sample. TheClustering approach thus covers the broadest set of power plants, which is a crucial
aspect for the potential application in AMPs. At the same time, it delivers reference levels that lead to
the lowest standard deviation, lowest mean error term of just 4.03 e /MWh, and the lowest median
error of 2.64e /MWh.

Table 1.5: Deviation of reference levels from true marginal cost in absolute terms ine /MWh

NYISO Best-resp. Start-up Clustering
# Plants covered 92 92 84 93
1st Qu. 3.70 4.74 3.17 2.50
Mean 11.53 10.28 7.70 4.03
Median 6.08 6.88 4.92 2.64
3rd Qu. 13.76 13.51 8.23 4.51
Sd 13.14 8.48 9.09 2.58
Min. 0.66 1.84 0.83 1.65
Max 61.53 46.51 53.76 12.30

Deviation is defined as the absolute difference between derived daily reference
levels and the true marginal cost we calculated bottom-up. In total, there are 93
power plants in our sample from 01.04.2017–31.03.2018.

Figure 1.5: Accuracy of marginal cost approximation by reference levels across approaches
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Estimation error in absolute (left panel) and relative terms (right panel). Sample period 01.04.2017–31.03.2018.

The box-plots in Figure 1.5 illustrate graphically that all proposed alternatives outperform themethod
which is currently applied by theNYISO.We deem absolute values of deviations (left panel) from the
underlying marginal cost to be generally better suited to assess the performance of an approach than
relative deviations. Ultimately, a regulator applying automated mitigation or a researcher, who seeks
to receive appropriate estimates of marginal cost, is mainly interested in achieving precise estimation
– under or overestimation are both undesired.
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Nevertheless, it is relevant whether amethod leads to systematic positive or negative bias. To that end,
the right panel in Figure 1.5 shows our results in relative terms.22 Overestimation is especially pro-
nounced in the NYISO and the Best-response approach. In an AMP environment, overestimation
may turn out to be costly for consumers as incidents of market power exertion could stay unnoticed
due to erroneously high reference levels. Any underestimation, mostly observed in the Start-up and
Clustering approach, is usually driven by coal power plants, for which bid levels often fall short of
marginal cost. When firms need tomeet certain contract obligations, they often price belowmarginal
cost. Since, in our sample, coal power plants are usually situated to the left of CCGT plants within
the merit order, coal power plants are more heavily affected by these strategic considerations. If miti-
gation measures were to be strictly implemented, systematic underestimation of marginal cost would
harmproducers, asmitigationwould enforce bids below truemarginal cost. However, this problem is
addressed and alleviated in the conduct test by granting a predefinedmargin by which bids can exceed
the reference level without being flagged.

1.6.2 Mitigation simulation andwelfare impacts

In order to quantify welfare impacts that a mitigation mechanism (based on the different reference
levels) would have on a previously unmitigated market like the Iberian day-ahead, we apply all ap-
proaches in a simulation of automated mitigation. We apply the multi-step mitigation procedure
outlaid in Section 1.2 to a whole year from 01.04.2017 to 31.03.2018.23

Conduct test We submit all bids to a conduct test, which bids fail if they exceed their respective
daily reference level by more than a 20e or 50 % threshold.24

Impact test For hours where bids have failed the conduct test, we perform an impact test. This
test evaluates ifmitigationwould lead to a reduction of the clearing price bymore than 20e or 50%.25

We calculate the counterfactual mitigated clearing price by constructing a new supply curve (”impact
test supply curve”). Bids that have passed the conduct test enter this curve at their original level. Bids
that have failed the conduct test enter this curve at their reference levels. We then calculate the impact-
clearing price by finding the intersection of the original step-wise demand curve and the step-wise

22Table A.3 displays the outcomes in more detail.
23As the fossil power generation is quite concentrated in the Iberian market (see HHIs in Table 1.3), we assume that

there is a persistent potential for market power and therefore skip the structural test.
24These values follow the thresholds from the NYISO benchmark approach as we want to refrain from using arbi-

trary values. If AMPs were actually implemented it would of course make sense to consider adapting them to the specific
market conditions.

25As the Iberian day-ahead market does not have nodal or zonal pricing, we perform the impact test against a collec-
tively mitigated scenario of the whole market.
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impact test supply curve as illustrated in Figure 1.6. As a last step, we compare the original clearing
price with the impact-clearing price to determine if the above impact thresholds were exceeded.

Figure 1.6: Original and resulting market clearing curves of impact test for two exemplary hours
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(b)Mitigated hour
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Both panels display impact tests for the clustering approach for the 20th hour (19:00-20:00) of a Thursday in June (left panel) and
December (right panel). The hour in the right panel failed the impact test (in the clustering approach) simulation and was hence

mitigated.

Mitigation In hours, in which both tests fail, automated mitigation is triggered and we perform
actual bidmitigation of conduct-non-conformbids to their respective reference levels. The new clear-
ing price of these hours is now the clearing price calculated in the impact test. Out of the 8,760 hours
in our annual sample, the mitigation incidence varies by approach but within a somewhat reasonable
incidence of market interference of 0.4–0.7 %: AMP is most often triggered in the Clustering ap-
proach with 57 hours, followed by the Best-response approach with 54, the NYISO approach with
45, and the Start-up cost approach with 32 mitigated hours.

Welfare impacts We start with a surplus decomposition (Table 1.6). For all approaches we find a
deadweight-loss-decreasing rise in market efficiency. Total welfare gains are highest for the Clustering
approach with 2.24 million e . Irrespective of the mitigation incidence, this approach also exhibits
the highest average welfare gain per mitigated hour of 1.01 %. The lowest total and hourly welfare
gains are achieved by the NYISO benchmark approach. Importantly, all approaches see large welfare
transfers from supplier surplus to buyer surplus in the magnitude of 20–40 millione . For mitigated
hours this corresponds to a decrease in supplier surplus of 20–36 % and an increase in buyer surplus
of 22–29 %. This provides large potential for consumers to benefit fromAMPs in a competitive retail
market.

We further carry out a decomposition of observed efficiency gains into productive and allocative effi-
ciency (Table 1.7). The 2.24 million ewelfare gains in the Clustering approach can be decomposed
roughly equally into observed productive (1,172 thousande ) and allocative (1,063 thousande ) effi-
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ciency gains. This corresponds, on average, to 20.56 thousande and 18.65 thousande per mitigated
hour. While allocative efficiency gains per mitigated hour are roughly in the same magnitude for all
approaches, note, that due to the imprecision of reference levels, the other approaches have signifi-
cantly lower gains in productive efficiency per mitigated hour – lowest for NYISO at 3.20 thousand
e (12.92 Best-response, 5.64 Start-up).

Overall, we establish the Clustering approach as ourmost preferred way of calculating reference levels
for AMPs due to superiority in precision, coverage and risk reduction of reference creep, as well as
most sizable welfare effects.

Table 1.6: Change in observed surplus due to AMP compared to BAU in millione

NYISO Best-response Start-up Clustering
#Mitigated hours 45 54 32 57
Buyer surplus change 27.92 29.10 20.90 38.23
Av. buyer surplus change per mitigated hour 25.46 % 21.60 % 29.41 % 26.39 %
Supplier surplus change -26.98 -27.23 -20.06 -35.99
Av. supplier surplus change per mitigated hour -48.52 % -47.23 % -41.88 % -46.47 %
Total welfare change 0.95 1.87 0.84 2.24
Av. total welfare change per mitigated hour 0.57 % 0.97 % 0.71 % 1.01 %

Sample period 01.04.2017–31.03.2018.

Table 1.7: Observed productive and and allocative efficiency gains in thousande

NYISO Best-response Start-up Clustering
#Mitigated hours 45 54 32 57
Productive efficiency gains 144 698 180 1,172
Av. prod. efficiency gains per mitigated hour 3.20 12.92 5.64 20.56
Allocative efficiency gains 801 1,175 658 1,063
Av. alloc. efficiency gains per mitigated hour 17.80 21.76 20.58 18.65

Sample period 01.04.2017–31.03.2018.

Welfare robustness We have to consider, however, that the reference levels, to which non-
competitive coal and gas bids are mitigated, are only a proxy for marginal cost. The true supplier
surplus and true welfare impacts, based on true marginal cost, may hence deviate. We therefore check
if the welfare impacts are robust to the estimation errors occuring in AMPs. To that end, we calcu-
late the true welfare impacts by applying the same merit order but – for coal and gas bids – instead of
taking the (mitigated) bids for welfare calculations, we take our bottom-up engineering estimates of
marginal cost. The resulting true losses in supplier surplus are higher across all approaches. The over-
all impact on true social welfare is slightly lower than the observed one, yet still relevant at 0.83 % for
the average mitigated hour in our preferred Clustering approach (Table 1.8). We can therefore con-
clude that not only observedwelfare would increase thanks to precisemitigation, but also true welfare
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would increase by a similar magnitude. We see similar robustness of the true allocative efficiency gains
at 17.8 thousande permitigated hour (Table 1.9). Note that our preferredClustering approach is the
only one with true productive efficiency gains. The Best-response approach even exhibits true total
welfare losses.

Table 1.8: Change in true surplus due to AMP compared to BAU in millione

NYISO Best-response Start-up Clustering
#Mitigated hours 45 54 32 57
True supplier surplus change -27.26 -30.84 -20.59 -36.47
Av. true supplier surplus per mitigated hour -54.29 % -58.95 % -48.81 % -53.95 %
True total welfare change 0.67 -1.74 0.31 1.76
Av. true total welfare change per mitigated hour 0.42 % -0.93 % 0.28 % 0.83 %

Sample period 01.04.2017–31.03.2018.

Table 1.9: True productive and and allocative efficiency gains in thousande

NYISO Best-response Start-up Clustering
#Mitigated hours 45 54 32 57
True prod. efficiency gains -25 -1,756 -6 744
Av. true prod. efficiency gains per mitigated hour -0.56 -32.51 -0.20 13.06
True alloc. efficiency gains 692 16 319 1,014
Av. true alloc. efficiency gains per mitigated hour 15.37 0.29 9.95 17.80

Sample period 01.04.2017–31.03.2018.

1.7 Conclusion

This paper contributes to improved automatedmitigation ofmarket power in electricitymarkets. Au-
tomatedmitigation procedures (AMPs) findwide application inU.S. powermarkets and are designed
for real-time detection and mitigation of market power abuse. AMPs rely on so-called reference lev-
els, supposed to approximate marginal cost, to evaluate competitiveness of a bid and to mitigate it by
overriding. We design alternative approaches to derive reference levels from producers’ supply offers.
Improved accuracy of marginal cost estimates allows for both, facilitated detection of market power,
as well as refined and more targeted mitigation. Refined mitigation protects buyers from excessive
redistribution of rents to suppliers, but in a given mitigation setting likewise protects suppliers from
excessive and unjust mitigation of competitive offers.

We employ micro-level data from the Iberian day-ahead market to test our suggested approaches to
deriving reference levels against a best-practise benchmark. As benchmark approach, we choose the
procedure as followed by the New York Independent System Operator (NYISO), where reference
levels are inferred from past offers of a power plant. In our application of this benchmark approach,
we find deviations of marginal cost estimates from true marginal cost to be substantial, with a mean
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(median) absolute deviation of 11.53 (6.08) e /MWh. In comparison, the alternative approaches
we propose deliver mean (median) absolute deviations ranging between 4.03 (2.64)e /MWh for our
novel Clustering approach and 10.28 (6.88)e /MWh for the Best-response approach based onWolak
(2003a, 2007), where we reverse-engineer marginal cost from real-time hourly offers instead of past
offers of a plant. For the Clustering approach we depart from the estimation of marginal cost on the
unit-level and estimate marginal cost for clusters of similar power plants. This preferred approach
of ours does not only yield the most precise and least dispersed estimates, but likewise counteracts
reference creep, i.e the strategic manipulation of bids to evade mitigation. System operators should
hence consider the adoption of this approach for AMP purposes.

We finally apply all approaches in a simulation setting of AMP. We find a mitigation incidence be-
tween 32 (Start-up cost approach) and 57 (Clustering approach) hours out of the annual 8,760 hours,
which is associated with notable welfare implications. Welfare gains are largest for our preferred Clus-
tering approach and can be decomposed as follows: In mitigated hours buyer surplus increases by 26
% (38.23 millione in total); supplier surplus decreases by 46–54 %. This large welfare transfer comes
with overall observed welfare gains in mitigated hours of 1.01 %, which are robust against measure-
ment error (0.83 %). Accounting for measurement error, these gains can be decomposed into 13,060
e productive and 17,800e allocative efficiency gains per mitigated hour.

Ourfindings contribute topotential improvement of policies in electricitymarketswithmarket power
issues, e.g. related to locational pricing, pivotal supply, and concentrated or integrated market struc-
tures. The EU has, for instance, signaled in light of REPowerEU initiatives to reassess locational pric-
ing in the EU and to ”ensur[e] an up to date and robust framework to protect against [market power]
abuse [...] in periods of high prices and market volatility” (European Commission, Directorate-
General for Energy, 2022, p. 11). Any applied frameworks will have to make sure (1) that supply bids
are fair and competitive and (2) that underlying fluctuations in input prices are taken into account to
not harm the profitability of producers. AMPs are a suitable tool to achieve both. The recent power
crisis due to the Russian war in Ukraine is just an extreme example of flexible fossil power generation
being the marginal technology and causing high clearing prices with high windfall profits for infra-
marginal producers. This can potentially be exploited especially by firms who can strategically deploy
a technology portfolio. These constellations will continue to occur in decarbonizing electricity sys-
tems with increasing shares of cheap, intermittent renewables and limited storage capacities (Graf et
al., 2021).

To conclude, we show that currentAMPs canbe improved considerably by redesigning the estimation
of underlying marginal cost of production. This significantly improves market efficiency bymeans of
social welfare increases along with redistribution of excess rents from suppliers to buyers. Moreover,
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our enhanced approaches facilitate research whenever scholars require cost estimates for empirical
analysis in powermarkets. Our findings are likewise applicable to other use cases andmarkets, such as
monitoring of renewable energy auctions or market power surveillance in air and rail traffic.
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2
Complementary Taxation of Carbon Emissions and

Local Air Pollution



Abstract

Current decarbonization policies neglect damages from local air pollutants. We analyze the trade-off
between complementary taxation of carbon emissions and local air pollution. We quantify results
for the European power market until 2050. Taxing only air pollution results in system cost of
6,475 billion e and fosters nuclear deployment. Additional external cost accumulate to 5,890
billion e. Taxing only carbon yields system (external) cost of 8,263 (717) billion e and promotes
carbon-capture-and-storage deployment. Taxing both yields (external) cost of 7,697 (1,118) billion
e. Moderate carbon taxation can be complementary to a primary policy of air pollution abatement.
On the contrary, a primary policy of decarbonization stands in trade-off with air pollution abatement
in the long-term.1

Keywords: Taxation; External cost; Air pollution; Carbon emission; Externality; Energy system
model; Power market model; Decarbonization

JEL-Codes: C61; H21; H23; H43; L94

1This chapter is based on joint work withMathias Mier and ChristophWeissbart. A version of it was published in
Energy Economics, 132 (2024) 107460 (DOI: 10.1016/j.eneco.2024.107460). A previous version was published as ifo
Working Paper No. 375. We gratefully acknowledge the financial support by the German Federal Ministry for Economic
Affairs and Energy (grant number 020E100374092).
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2.1 Introduction

Climate change calls for prompt reductions of CO2 emissions to keep global warming (well) be-
low 2° Celsius (Paris Agreement, 2015), but a focus on CO2 emissions and climate change neglects
local effects from related air pollution and associated damages on human health or loss of biodiversity,
respectively. We address this issue by showing how accounting for social cost of air pollution (SCAP)
as well as social cost of carbon (SSC) influences power system transformations and the external cost
(in the sense of damages) from emissions associated with these systems. In particular, we study how
the optimal future European technology mix changes in response to different taxation scenarios, ex-
ploiting technology-specific emission profiles and technological substitutability. We further analyze
possible co-benefits and trade-offs when jointly abating carbon emissions and local air pollution.

With more than 40%, electricity and related heat generation are the biggest contributors of the 36.3
Gt of energy-related CO2 emissions.2 Electricity generation and its role for emitting CO2 signifi-
cantly increased over the last decades. It is expected to assume an ever bigger share in the future due to
electrification trends (digitization, air conditioning, electric mobility, economic development). Thus,
many policies focus on decarbonizing electricity generation. For example, the EuropeanUnion Emis-
sionTrading System (EUETS) reduced – among other supplementary policies –CO2 emissions from
power generation from 1.191 to 0.914 Gt in the period 2013 to 2021.3 The European Union even
proposesmore ambitious targets to achieve carbonneutrality by 2045. However, thesemeasures incur
costs where they are taken, while their benefits for climate change mitigation are global. The charac-
teristic of CO2 emissions as public bad (or reducing them as public good) allows for free riding on
abatement efforts by others and thus hampers the binding and enforceable implementation of reduc-
tion goals and targets.4

Air pollution emissions, in turn, have local impacts and every country should therefore have an own
incentive to undertake efforts to internalize those local damages by means of appropriate taxation at
the respective marginal damages. Thus, shifting the focus away from sole abatement of CO2 emis-
sions towards the internalization of air pollution might be a complementary policy to partly resolve
the free riding problem – as long as co-benefits of air pollution abatement exist for CO2 abatement.
Each electricity generation technology has a unique profile of carbon and air pollution intensity. An
optimized electricity system can therefore be expected to respond to different scenarios of external

2See https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2.
3See https://ec.europa.eu/clima/news-your-voice/news/

emissions-trading-greenhouse-gas-emissions-73-2021-compared-2020-2022-04-25_en.
4The literature developed and analyzed multiple approaches how to mitigate the problem of free-riding (e.g., Barrett,

1994; Nordhaus, 2015) but those approaches have not been globally implemented so far.
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cost internalization through its technology mix. Some climate neutral technologies such as biomass
with carbon-capture-and-storage (bio-CCS) reflect internalization trade-offs as they bind CO2 emis-
sions but are still locally air-polluting. This gives way to interesting questions about how to design a
least-cost technology mix with both low carbon and low air pollution emissions, while maintaining
system adequacy.

We use the SCC as the climate change-related global marginal damage of one quantity unit of carbon
emitted as calculated in the DICE model. We use SCAP as the country-specific external costs on hu-
man health, loss of biodiversity, regional crops, and materials of a quantity unit of a type of local air
pollutant emitted. We internalize SCC and SCAP via taxes and implement this strategy in the EURE-
GENmodel, a multi-region partial equilibriummodel of the European power market that optimizes
investments, decommissioning, and dispatch of multiple generation, storage, and transmission tech-
nologies until 2050 (Weissbart andBlanford, 2019;Weissbart, 2020). We studyhowdifferent emission
policy schemes interplay with technology-specific emission profiles and technical system adequacy in
the cost optimization problem. The European electricity market is particularly interesting to study as
it is highly integrated, yet we can exploit its heterogeneity in demand, existing technologymix, renew-
able resource potentials, and country-specific SCAP.With EUREGENwe employ a detail-richmodel
of this market with sophisticated representation of national demand (profiles), technology stocks and
(intermittent) supply profiles, wind and solar potentials, and transmission. This set-up allows us to
introduce technology- and country-specific policy cost of electricity generation, thus changing rela-
tive competitiveness of generation technologies and countries as locations for capacity expansion. By
combining social cost estimates per quantity unit emitted with technology-specific emission factors,
we achieve specific generation taxes. The resulting carbon taxes differ by technology, while the air pol-
lutant taxes differ both by country and technology. We calibrate the DICE model (Nordhaus, 2014)
to deliver a global SCC that matches population projections from the World Bank5 as well as GDP
projections from EUREGEN’s computable general equilibrium (CGE) model calibration (Siala et
al., 2022;Mier et al., 2023). We obtain country-specific SCAP for six air pollutants (NH3, NMVOC,
NOx, PM10, PM2.5, SO2) from the externE project series (Friedrich and Bickel, 2001; Bickel et al.,
2005; Pietrapertosa et al., 2009) and couple these with the respective technology-specific emission
factors (EPA, 1995; Cai et al., 2012; EEA, 2019; Juhrich and Becker, 2019).

There exists an array of literature on modeling emissions and resulting damages of electricity gener-
ation, among which several papers also consider local air pollutants.6 A number of studies carry out
retrospective damage calculations or simulations. In general, these studies provide insights into dam-

5See https://databank.worldbank.org/source/population-estimates-and-projections.
6This paper is a substantial expansion of Mier et al. (2021) but focuses on the complementary taxation of carbon

emissions and local air pollutants only. The effect of diverging private and social discount rates is analyzed inMier and
Adelowo (2022).
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agemagnitudes but unlike our analysis they do not speak to optimal future electricitymixes and dam-
age abatement potentials. For instance, Shindell (2015) extends the SCC framework to incorporate
(local) damages from air pollutants. He finds annual external cost of 330 to 970 billion $ for US elec-
tricity generation. This picture is enriched byHolland et al. (2020), who use local and global damages
from CO2 emissions and air pollution. Using an integrated assessment model, they find that annual
external cost in the US fell from 245 billion $ in 2010 to 133 billion $ in 2017. These studies give rea-
son that damages might also be substantial in Europe and that there may be potential for abatement.
Nam et al. (2010) do indeed find fundamental welfare losses (2%) from air pollution for Europe us-
ing a computable general equilibrium (CGE) analysis for 18 European countries. This study however
does not provide insights into joint abatement, possible trade-offs as well technological insights. This
is complementedby a strandof empirical literature retrospectively quantifying emission andpollution
impacts from changes in the electricity mix. Millstein et al. (2017) quantify avoided CO2 and air pol-
lution emissions via substitution effects of renewable energy generation in the US. Jarvis et al. (2022)
find extensive external cost from air pollution caused by substitution effects from the nuclear phase-
out in Germany. However, these studies do not allow for insights from optimization trade-offs in the
medium to long term, which we analyze in our work. Finally, a number of studies use power mod-
els to analyze how internalization affects carbon emissions and/or air pollution as well as co-benefits.
These studies differ from our work in limited representation of relevant pollutants, damage quantifi-
cation, or technological detail. For instance, taking a global perspective Klaassen and Riahi (2007)
apply MESSAGE-MACRO to internalize air pollution damages but unlike in our analysis they re-
frain from internalizing climate damages (fromCO2 emissions). They also use SCAP estimates from
the externE project series (that are similar but less recent than ours). However, two of our core tech-
nologies, bio-CCS and gas-CCS, are not part of their technology set, hence lacking important levers
in the technology-emission-mix. Barteczko-Hibbert et al. (2014) integrate life cycle assessment and
electricity generation, taking into account climate impacts and a wide set of environmental aspects
(ozone layer, acidification etc.). Their results indicate that internalizing climate damages also benefits
other environmental aspects. The study however has a significant focus on greenhouse gases and the
particular interplay with local damages from air pollution is not analyzed in detail. Furthermore, the
analysis is limited to theUK, such that any technological substitution effects are limited and cannot be
further encouraged by transmission interconnection. Burtraw et al. (2014) look at the introduction
of CO2 emissions regulation in the US in addition to existing air pollution regulation under different
policy scenarios by using a power market model. Their analysis focuses on quantifying (consumer)
surplus depending on the policy instrument used. The study however only covers SO2 and thus lacks
other key pollutants. Driscoll et al. (2015) find co-benefits for humanhealth from improvements in air
quality following fromCO2 emissions regulation scenarios by using US powermarket models. How-
ever, they do not quantify health benefits in monetary terms and do not take into account external
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cost beyond human health (as we do). Their scenarios differ by options to reduce CO2 emissions and
only one of their scenarios uses SCC in the sense of carbon taxation. Moreover, Driscoll et al. (2015)
only allow for carbon-capture-and-storage (CCS) in coal-fired plants. We allow for this technology
as well but identify CCS on the basis of biomass (bio-CCS) and natural gas-fired power plants (gas-
CCS) as key technologies to manage the trade-offs between damages from CO2 emissions and local
air pollutants.7

Our contribution delivers insights into how the long term technology and emission mix of the Euro-
pean power system varies under different internalization strategies or taxation choices (no taxation,
sole air pollutant taxation, sole CO2 taxation, joint CO2 and air pollutant taxation), respectively. We
test robustness of results by varying assumptions about SCC, SCAP, technological progress of wind
power, air pollutant emission factors, electricity demand, inflexibilities of power plants, and technol-
ogy cost. Sole CO2 taxation internalizes accumulated external cost of carbon (ECC) of 281 billione
in the 30 years from 2021 to 2050. Accumulated external cost of air pollution (ECAP) of 435 billion
e are not internalized (joint sum of 717 billion e). The relation of ECC and ECAP turns around
when looking at net present values (194 billion e ECC vs. 92 billion e ECAP) because CO2 emis-
sions are initially high and eventually become even negative in the long-run, while being accompanied
by considerably higher air pollution. Those late air pollutant emission damages, however, are heavily
discounted so that the net present values are below the ones from CO2 emissions. When only taxing
air pollution, 5,547 (1,340) billion e of (net present value) ECC remain uninternalized and ECAP
are reduced to 343 (92) billione. Our results show that sole CO2 taxation yields tremendously lower
external cost compared to taxing solely air pollution, underlining that the abatement of carbon emis-
sions should dominate the policy making.

Jointly abating the two yields accumulated ECC (ECAP) of 923 (195) billione. In net present value
terms, we obtain cost of 307 (53) billione, respectively. Thus, the efficient combination ofCO2 emis-
sions and air pollution yields higher ECC but lower ECAP; adding air pollution taxation to existing
carbon taxation thus inherits a trade-off with abating damages from CO2, whereas adding carbon
taxation to existing air pollution taxation comes with a substantial co-benefit. Moreover, system cost
from generating electricity (not considering any external cost) are structurally lower when taxing car-
bon and air pollutants jointly (7,697 billion e) compared to sole CO2 taxation (8,263 billion e). In
fact, deep decarbonization and even negative CO2 emissions from electricity generation (using bio-
CCS) come at extraordinary system cost. Thus, the benefit of adding air pollution taxation does not
lie in abating the occurrence of external cost but allowing less costly electricity generation technologies
due to balanced abatement.

7In fact, coal-CCS is absent in our optimized equilibrium because capture rates are worse and cost are considerably
higher than for gas-CCS.

34



We further determine trade-offs and co-benefits of taxation choices when iteratively adding increasing
tax levels for one emission type (e.g., air pollution) to a full Pigouvian tax for the other emission type
(e.g., CO2). In particular, adding air pollution taxation to existing carbon taxation always comes with
a trade-off because accumulated ECC increase substantially. Adding CO2 taxation to already existing
air pollution taxation in turn comes with some co-benefits as long as the carbon tax level is not above
the efficient one, i.e., the Pigouvian tax level. Increasing the carbon tax above the efficient level in
turn increases air pollution and related damages. Such non-linear effects stem from the substantial
differences in emission profiles of electricity generation technologies. In particular, high CO2 taxes
lead to a technology switch fromgas-CCS tobio-CCS,whereas lowor no air pollution taxes substitute
nuclear by bio-CCS. High air pollution taxes in turn reverse this shift away from nuclear at the cost
of CCS technologies. Finally, lowCO2 taxes foster the usage of conventional gas technologies. Policy
makers can use those findings to shape policies according to their preferential policy goals. When the
main goal is to primarily reduce CO2 emissions and related ECC, additional air pollution taxation
creates abatement trade-offs. When the primary goal is to reduce air pollution and associated ECAP,
moderate additional carbon taxation can further contribute to this.

Section 2.2 introduces themodeling strategy. Section 2.3 presents the calibration by focusing on emis-
sions and external cost. Section 2.4 presents results. Section 2.5 discusses, summarizes, and extends
most important results from the previous section. Section 2.6 tests for robustness of (extended) re-
sults. Section 2.7 concludes.

2.2 Modeling strategy

Notation Suppose there are generation technologies i, storage technologies j, and transmission
technologies k. r indicates regions and rr is an alias of r. We use subscripts i, j, k, r, rr for technologies
as well as regions and parentheses (h, v, t) for time indices – h is the hour, v the year of installation
(vintage), and t the current year (period) – to denote parameters (small letters) and variables (capital
letters).

IQ (v) are investments fromvintage v that translate into currently (in period t) active capacitiesQ (v, t)
(both in GW). Capacity investments are costly, cIQ > 0 (in e/GW), as it is holding capacity, cQ > 0
(ine/GW and year), so that endogenous decommissioning might be optimal, i.e.,Q (v, t) ≤ IQ (v).
For storage technologies, charge and discharge capacity (e.g., pumps and turbines) are assumed to be
the same. We assume that cost of holding capacity apply only for joint charge and discharge capacity
but not for the storage size. For transmission technologies, we refer to net transfer capacities (NTC)
and distinguish between export and import lines to reflect current political situation of constraining
capacities in one of the respective directions.
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Yi is generation, Y+j is storage charge, Y−j is storage discharge, and Yk,r,rr is the bilateral trade flow
from region r to rr (all in GWh). Generation is costly, cYi (v, t) > 0 (in e/GWh), but we assume
no further variable cost for storage operations and transmission (only losses for charge, discharge,
hourly discharge, and for transmission). η ∈ (0, 1] denotes efficiencies. In particular, ηi is the burning
efficiency of generation technologies. Finally, the overall target is to meet electricity demand d but it
could to optimal to allow for lost load L (both in GWh) at cost cL > 0 (ine/GWh).

Objective The standard objective is to minimize the net present value of overall system cost (δ (t)
is the discount factor) from investments (IQ is the vector of investment decisions for all generation,
storage, transmission technologies), holding capacity (Q the vector of capacity decisions), anddispatch
(Y is the vector of dispatch decisions) over all regions and time periods:

min
IQ,Q,Y

∑
t,r

δ (t)

[
cLr (t)

∑
h

Lr (h, t)+

∑
i

∑
v=t

cIQir (v) IQir (v) Γi (v, t) +
∑
v≤t

cQir (v, t)Qir (v, t) +
∑
v≤t

cYir (v, t)
∑
h

Yir (h, v, t)

+

∑
j

∑
v=t

cIQjr (v) IQjr (v) Γj (v, t) +
∑
v≤t

cQjr (v, t)Qjr (v, t)

+

∑
k,rr

∑
v=t

cIQk,r,rr (v) IQk,r,rr (v) Γk (v, t) +
∑
v≤t

cQk,r,rr (v, t)Qk,r,rr (v, t)

]
, (2.1)

where Γ (v, t) is the fraction of investment cost that should be considered within the planning hori-
zon (from t until tend). In particular, Γ (v, t) = 1 when the depreciation time of an investment is
completely within the planning horizon and Γ (v, t) < 1 when the depreciation time of an invest-
ment spans above the planning horizon (depreciates longer than tend). This endeffect is calculated on
the basis of private discount rates and the time exceeding the planning horizon.

The first line of (2.1) after the square bracket reflects cost of lost load: cLr (t) is the respective value
of lost load, and

∑
h Lr(h, t) is total lost load in region r in period t. The second line reflects cost of

generation technologies i: cIQir are unit investment cost (e.g., in e/MW) with IQir(v) being capacity
addings (e.g., in MW), cQir(v, t) are fixed cost in period t from capacity installed in period v (e.g., in
e/MW*a) with Qir(v, t) being installed capacity from vintage v (e.g., in MW). Finally, cYir(v, t) are
dispatch cost in period t from capacity installed in period v (e.g., in e/MWh) with Yir(h, v, t) being
generation from capacityQir(v, t) (e.g., inMWh). The third line reflects cost of storage technologies j:
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cIQjr (v) are per unit investment cost (e.g., ine/MW including reservoir size inMWh as a fixed relation
to MW) with storage capacity addings IQjr(v). There are no dispatch cost of storage in the objective
function because the cost of electricity provision is already included in the generation cost; storage
losses are part of the storage balance and demand-equals-supply constraints. However, there are fixed
cost cQjr (e.g., in e/MW*a) of storage capacity Qjr(v, t) (e.g., in MW). The fourth line reflects cost of
transmission technologies k: r, rrdescribes transmission between region r and rr. cIQk,r,rr(v) are per unit
investment cost (e.g., in e/MW) with IQk,r,rr(v) being transmission capacity addings (e.g., in MW).
Again, there are no variable cost of transmission but rather transmission losses of costly generated
electricity. However, cQk,r,rr(v, t) are fixed cost (e.g., ine/MW*a) of transmission capacityQk,r,rr(v, t)
(e.g, in MW). All transmission cost are specific to the respective region pair r, rr, that is, the distances
between two regions’ centroids represent necessary line lengths and drive cost.

Internalizationof external cost We suppose that a social planner internalizes external cost
from carbon emissions and air pollution by setting tax rates according to the respectivemarginal dam-
ages. We can thus directly include those marginal damages – SCC and SCAP – into our objective
function via generation cost. Denote by scc (t) the SCC and by scapr,ap (t) the SCAP (both ine/ton)
with ap being different air pollutants. SCC and SCAP change over time. Moreover, SCAP are region-
specific, whereas SCC refer to a global value. Carbon emission factors ξcar (v), air pollution emission
factors ξairi,ap (v) (both in ton/GWh thermal), and power plant efficiencies ηi (v)depend on the vintage,
that is, older vintages have lower efficiencies and higher emission factors leading to higher emissions.
In particular,

∑
v≤t

∑
h

1
ηi(v)

Yir (h, v, t) is total fuel used per technology in period t (inGWh thermal)
with pir (t) beeing the time-varying fuel price in region r for technology i. Multiplying this total fuel
usedwith the respective emission factors yields CO2 emissions and local air pollution (in ton). We can
now derive the generation cost as

cYir (v, t) = cvarir (v) +

pir (t) + scc (t) ξcari (v) +
∑
ap

scapr,ap (t) ξairi,ap (v)

∑
v≤t

∑
h

1
ηi (v)

.(2.2)

Variable cost cvar are independent of efficiencies. Cost from fuel, damages from CO2, and damages
from air pollution, in turn, depend on those efficiencies, while the latter two are also subject to their
respective emission factors.

Optimization constraints The minimization problem is subject to multiple constraints that
we abstain from showing here but Appendix B.1 contains the full set of demand, generation, storage,
and transmission constraints of the optimization problem.
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2.3 Calibration

2.3.1 Setup

We quantify the trade-offs and potential benefits of internalizing external cost of CO2 and air pol-
lutant emissions with EUREGEN (Weissbart and Blanford, 2019; Weissbart, 2020). EUREGEN is
a multi-region partial equilibrium model of the European power market that intertemporally (i.e.,
assumes perfect foresight) minimizes either private or social cost from 2015 (base year) to 2050 (end
year).8 Weworkwith an adjusted 2015 calibration to account for real-world developments until 2020.
In particular, we assume that taxation choices in periods 2015 and 2020 reflect real-world policies, i.e.,
until 2020 CO2 prices follow from the EU ETS and there is no air pollution tax in place.9 From 2021
onwards, we change policies to either not taxing at all, taxing only air pollution, taxing only CO2

emissions, or taxing both. In our base specification the taxes are Pigouvian taxes at the level of SCC
or SCAP, respectively.

TheCGEmodel PACE delivers annual electricity demand andmajor fuel prices (oil, coal, and natural
gas).10 CO2 emissions follow from emission factors and EUREGEN applies either a carbon price or a
quantity target (e.g.,Weissbart, 2020;Mier andWeissbart, 2020; Azarova andMier, 2021). We extend
the EUREGENmodel by emission factors for different air pollutants (Section 2.3.3). We refrain from
using carbon prices resulting from the CGE calibration or quantity targets as imposed for instance by
the EU ETS and instead apply optimal carbon or air pollution taxes that follow from SCAP (Section
2.3.4) and SCC (Section 2.3.5) from 2021 onwards.11

EUREGEN can switch between implementations of different discount and interest rates, investor
types, and spatial resolutions (Mier and Azarova, 2021). We opt for a discount rate of 7%.12 Fur-
thermore, we apply the normal investor that carries cost of investments within the period of invest-
ment and uses endeffects if the investment’s depreciation extends beyond the model horizon (and
thus neglects the role of different interest rates). Moreover, we apply the maximum spatial resolution
of 28 countries (EU27 less the island states of Cyprus and Malta, including Norway, Switzerland,

8Private cost comprise of the sum of overall system cost (from investments, holding and decommissioning of capac-
ity, and dispatch of multiple generation, storage, and transmission technologies) and taxes. Social cost comprise of the
sum of overall system cost and external cost (ECC plus ECAP).

9Except for 2015, all periods reflects 5 years, i.e., 2020 considers the years 2016 to 2020, ..., and 2050 the year 2046 to
2050.

10Appendix B.2.1 contains detailed values. Mier et al. (2023) describes the origin of the calibration in detail and how
the CGEmodel PACE is used to quantify input parameters under different qualitative scenarios for further usage in
power market models. Note that electricity demand and major fuel prices are exogenous input parameters power market
models. This means that the CGEmodel and the respective power market model are not in the same equilibrium with
respect to demand for fossil fuels, which would require feeding this fossil fuel demand from the power market model back
into the CGEmodel. See Siala et al. (2022) for an application of the very same calibration.

11Optimality refers to full internalization of the external cost (i.e, the Pigouvian tax level).
12This is in line for example with Zwick andMahon (2017); Newell and Pizer (2004).
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andUnited Kingdom) and an hour choice algorithm to reduce the temporal resolution of the year for
numerical feasibility.13

2.3.2 Considered technologies

Our generation technologies burn either biomass, coal, lignite, natural gas, and uranium or use wind,
solar, geothermal, and hydro power to generate electricity. We further consider steam turbines, gas
turbines, combined-cycle gas turbines, and engines. In particular, we consider steam turbines ”burn-
ing” biomass (bioenergy), steam turbines ”burning” biomass with carbon-capture and storage (bio-
CCS), steam turbines ”burning” coal, coal-CCS, steam turbines ”burning” lignite, and steam turbines
”burning ”natural gas (gas-ST ).14 We further consider open-cycle gas turbines burning natural gas
(gas-OCGT ), combined-cycle gas turbines burning natural gas (gas-CCGT ), the same with carbon-
capture and storage (gas-CCS), and gas turbines or engines, respectively, using oil and other non-
biomass non-natural gas fuels (oil). We restrict the annual level of burnable biomass to 2,045 thermal
TWh (half of the total available sustainable biomass potential) but have no further limits for other
fuels. Moreover, we do not account for combined-heat-and-power (CHP) plants due to the consid-
erable transformation in the heating sector that is driven by decarbonization efforts and demands for
not burning fossil fuels anymore. Such transformations make most existing CHP plants obsolete.
Moreover, heating electrification is considered by the CGE calibration.

We further consider steam turbines using uranium (nuclear) and geothermal power plants. Out of the
group of intermittent technologies, we model run-in-the-river power plants (hydro), wind onshore,
wind offshore, and solar PV by means of hourly-varying availability. Regarding wind onshore and
wind offshore we assume that the existing fleet has hub heights of 80m, while we consider hub heights
of 100m for future vintages. Hydro cannot be expanded beyond the existing level. Nuclear, lignite,
and coal expansion is restricted to countries that already use those technologies. Wind and solar expan-
sion is constrained by resource potential quality classes (high, mid, and low). Appendix B.2.2 summa-
rizes efficiencies, emission factors, and investment cost of those technologies. We further model three
storage technologies (pump hydro, batteries, and power-to-gas), where expansion of pump hydro is
again restricted to existing capacities. Transmission technologies are represented by AC lines as well
as DC cables.15

13The hour choice algorithm selects and weights hours that present the extremes of load, wind onshore, wind off-
shore, solar, and hydro generation. We obtain 280 hours and finally scale timeseries to match annual demand and full-load
hours of all intermittent technologies.

14In fact, steam turbines only use the steam generated from burning the respective fuel and do not burn it directly.
15DC cables mainly apply to connect countries that are divided by water.
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2.3.3 Emissions from electricity generation

CO2 emissions are the major source of pollution from electricity generation. We additionally focus
on ammonia NH3, non-methane volatile organic compounds NMVOC, nitrogen oxides NOx, par-
ticulate matter PM10 as well as the finer PM2.5, and sulfur dioxide SO2 (or SOx expressed in SO2

equivalents). Due to the existing wide-spread application of air pollution abatement technologies,
we abstain from using raw air pollution emission factors that do not assume any type of emission
control.16 Instead, we aim for fleet average emission factors for existing plant vintages, which are cal-
culated via annual statistics of actual total emissions after abatement and total fuel consumption. The
literature provides lower and upper bounds as well as medium range emission factors (EPA, 1995; Cai
et al., 2012; EEA, 2019; Juhrich and Becker, 2019).

Table 2.1: 2020 emission factors (in ton/GWh electric)

NOx SO2 PM2.5 PM10 NH3 NMVOC All AP CO2

Bio-CCS 1.719 0.243 0.629 0.716 0.086 0.164 3.557 -855
Bioenergy 1.376 0.194 0.503 0.573 0.023 0.132 2.801

Gas-CCGT, Gas-ST 0.001 0.005 0.005 0.001 0.201 341
Gas-CCS 0.001 0.007 0.007 0.002 0.253 41
Gas-OCGT 0.001 0.008 0.008 0.002 0.287 484

Coal 0.582 0.509 0.027 0.062 0.002 0.008 1.190 763
Coal-CCS 0.728 0.509 0.034 0.077 0.009 0.010 1.367 91
Lignite 0.545 0.686 0.024 0.059 0.002 0.011 1.327 838
Oil 0.825 0.225 0.294 0.027 2.031 910

Appendix B.2.3 contains the full set of emission intensities (in g/GJ). We combine those with technology- and vintage-
specific plant efficiencies (Table B.3 in Appendix B.2.2) to arrive at a sophisticated representation of actual emission
factors (in ton/GWh electric). For CCS technologies, we further consider increased NH3 emissions occurring during
the capture process (Heo et al., 2015) and reflect overall slightly increased emissions for NOx, NMVOC, and PM due to
increased fuel consumption via decreased efficiencies of CCS plants compared to their non-CCS counterparts.

We choose medium emission factors for existing vintages, reflecting commonly used emission control
technology. Where applicable, we include linear improvements in average abatement efficiency for
future vintages, so that 2050 vintages across all regions achieve abatement efficiencies of today’s most
modern plants. Table 2.1 summarizes emission factors of different technologies for 2020 vintages.
Observe that CO2 emission factors are by far the highest. Among the air pollutants NOx, PM10,
and PM2.5 are most emitted. Gas technologies do not emit relevant amounts of NH3, and sulfur-
content ofnatural gas is almost negligible. In general, technologies burningnatural gas are the cleanest,
whereas biomass technologies are the most emission intensive.17

16Emission control technologies include, e.g., low NOx burner technologies, selective and non-selective catalytic
reduction, electrostatic precipitation, fabric filters, and flue gas desulfurization processes (so-called scrubber systems).
See EEA (2019) for an overview of the occurrence and abatement of the respective pollutants.

17Biomass emission factors are quite dispersed in range. This reflects the availability of different abatement techniques
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2.3.4 Social cost of air pollution

Air pollution leads to higher mortality, discomfort, and productivity loss (e.g., Markandya and
Wilkinson, 2007; Dedoussi and Barrett, 2014; Dedoussi et al., 2020). Value of life concepts (e.g.,
Viscusi and Aldy, 2003) such as disability adjusted life years (e.g., Murray, 1994; Anand and Han-
son, 1997; Murray et al., 2012) monetize those damages. The externE project series calculates those
damages by employing life cycle assessment (e.g., Klöpffer, 1997), the impact pathway approach (e.g.,
Douthwaite et al., 2003), diffusion patterns of air pollutants, as well as meteorological, geological,
demographic, and health data.

We apply results from theNEEDS project (e.g., Bickel et al., 2005; Pietrapertosa et al., 2009), which is
part of the externE project series (e.g., Friedrich and Bickel, 2001; Söderholm and Sundqvist, 2003),
that provides SCAP (in current 2000-e) for six air pollutants (NH3, NMVOC, NOx, PM10, PM2.5,
SO2) for five categories of external costs (human health, loss of biodiversity, regional crops, materi-
als, and international damages) at the national level in the 28 countries under investigation, taking
into account e.g. differences in population density.18 We take the estimates for high release heights
(as suggested in the user manual for electricity generation) that are calculated for meteorological con-
ditions of 2010. NEEDS authors suggest increasing the SCAP by a rate according to GDP growth.
GDP of the 28 countries under consideration grew by 25.84% between 2000 and 2015. We apply the
same increase to translate the values from current 2000-e to current 2015-e.19 Growth rates for 2020
onwards are based on country-level projections from our CGE calibration.20

Table 2.2 shows average SCAP (in current e/ton), weighted by 2020 country annual electricity de-
mand, for the six air pollutants and the damage categories. The category International accumulates
the impact of those air pollutants outside of the 28 countries under consideration and is uppermost
relevant for NMVOC (33% of NMVOC damages). Observe that (regional) human health impacts
dominate with shares of 57% (for NMVOC) to almost 100% (for PM10). Moreover, NH3 and PM2.5

are the most damaging air pollutants, followed by NOx and SO2.21

Keep in mind that the damage estimates increase with GDP growth. Moreover, those estimates are
highly heterogeneous across countries. For example, NOx damage is highest in Switzerland (20,071

in combination with the variation in emission intensity from using heterogeneous fuels or fuel compositions (wood,
crops and agricultural residues, waste).

18See https://cordis.europa.eu/project/id/502687/de for details. The project page, https://needs-project.org, is
no longer available. Data and further documents can be now accessed via the project page of the University of Stuttgart,
https://www.ier.uni-stuttgart.de/forschung/modelle/ecosense/.

19We increase SCAP by 1.2584 to reflect GDP growth and then divide again by 1.3334. In fact, 2000-e SCAP have
the same absolute value as do 2015-e SCAP.

20See Table B.7 in Appendix B.2.4 for GDP projections.
21The SCAP values grow with GDP per capita (per country) so that 2050 values would be around 60% higher than

2020 values.

41

https://cordis.europa.eu/project/id/502687/de
https://www.ier.uni-stuttgart.de/forschung/modelle/ecosense/


Table 2.2: 2020 SCAP (e/ton) by impact category and air pollutant

NOx SO2 PM2.5 PM10 NH3 NMVOC

Human health 8,516 10,490 24,538 1,081 17,561 1,100
Loss of biodiversity 1,672 612 6,197 -136
Regional crops 382 -118 -302 337
Materials 124 463
International 234 498 282 4 5 640

Total global cost 10,928 11,945 24,820 1,084 23,461 1,940

The presented values follow fromweighting country-specific values with 2020 country-specific
annual demand. The depicted values are measured in currente. Country level data is available
in Appendix B.2.5. The international damage is the same for each country and we thus refrain
from presenting it in Appendix B.2.5.

e/ton) but very low in Finland (1,905) and Portugal (916). The estimates refer to current meteo-
rological and air pollution conditions that might change in the future. In particular, pollution levels
might change regionally, whichmight impact themarginal damage. However, for a country’s damage
estimates the total level of air pollution is less relevant than population density, quality of the health
system, and meteorological conditions. For parsimony, we thus assume that SCAP levels remain in-
dependent of the realized pollutionmix, that is, the marginal damages from air pollution are assumed
to be constant.22

2.3.5 Social cost of carbon

We apply a slightly adjusted version of DICE-2016R-091216a to calculate SCC (in currente/ton).23

DICEmaximizes the net present value of utility (from consumption) and thus the SCC is calculated
according to the fraction of the marginal of the emission equation (in utility units per ton) and the
consumption equation (in utility units per $). Utility units are in present values, so that the division
of present value utility (per ton) by present value utility (per $) leaves SCC in current $/ton. We
can thus use the calculated SCC directly again in another discounting framework that uses current
values to minimize the net present value of cost via discounting. Table 2.3 presents calibration (GDP,
population) and selected output (SCC,CO2 emissions, and temperature increase). We calculate SCC
of 206 $/ton in 2050.

22The authors are not aware of any literature providing credible evidence to assume otherwise.
23We transform the 2015 world GDP of 105.5 trillion 2010-US$ to 86.1 trillion 2015–US$ and total factor pro-

ductivity by 0.8254 to obtain real-world 2020 CO2 emission of 39.6 Gt. Moreover, we adjust population growth and
total factor productivity from 2020 to 2050 to obtain population projections from theWorld Bank and GDP projec-
tions from the CGEmodel used to calibrate EUREGEN (see DICE calibration in Table 2.3). We further reduce the
DICE default pure rate of time preference from 1.5% to 0.04% (Drupp et al., 2018). Original GAMS code is available
at http://www.econ.yale.edu/~nordhaus/homepage/homepage/DICE2016R-091916ap.gms. The adjusted version is avail-
able upon request from the corresponding author.
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Table 2.3: DICE calibration and output

2020 2030 2040 2050

Calibration Gross world GDP (trillion 2015-$) 101 134 175 224
World population (billion) 7.75 8.50 9.14 9.68

Output SCC ($/ton) 94 123 160 206
CO2 emissions (Gt) 39.60 31.03 29.05 25.26
Atmosphere temperature increase (°C) 1.02 1.36 1.68 1.99

Conversion ine SCC (e/ton) 86 112 145 187

We apply an exchange rate of 1.1 to convert US-$ intoe, i.e., 1e is worth 1.1 US-$ in 2015.

Keep in mind that we assume SCAP levels not to change with local air pollution levels (see Section
2.3.4). For carbon emissions, on the contrary, there is evidence that the marginal damage changes
considerably with the realized emission level. Observe that in theDICE output global CO2 emissions
drop from 39.6 in 2020 to 25.26 Gt in 2050 in response to an optimal carbon policy. The associated
temperature increase is 1.99°C in 2050.24 Such an optimal policy seems quite consistent with Euro-
pean decarbonization goals that eventually fully decarbonize European electricity generation. If, un-
der less stringent policy, European electricity generation were not fully decarbonized or experienced
increasing emissions even, then global carbon emissions would increase directly (by European elec-
tricity generation emissions) and indirectly (because other sectors and regions would likely experience
a similar emissions trend). In response, the SCC would rise considerably. However, such a scenario
is inconsistent with current policy targets. For parsimony, we therefore refrain from using multiple
DICE calibrations to calculate SCC for other emission trajectories that accommodate increasing elec-
tricity emissions in Europe, that is, we assume that the marginal damages from CO2 are constant.

2.3.6 Comparison of carbon and air pollution taxes

Setting carbon or air pollutant taxes equal to their respective marginal damages (SCC and SCAP) and
calculating the respective tax rate per technology by employing efficiencies and emission factors yields
results in Table 2.4. The first block shows carbon taxes and the second one shows air pollution taxes
for each of the relevant technologies. We present taxes for 2025, 2030, 2040, and 2050. Remember
that carbon and air pollution taxes in 2015 and 2020 are assumed to reflect real-world conditions with
carbon taxes of 7.75 e/ton (in 2015) and 15 e/ton (in 2020), while there is no air pollution tax in
place. Periods 2035 and 2045 are not shown for the sake of parsimony. The chosen unit (e/MWh
electric)makes tax rates directly comparable across technologies and between carbon and air pollution
taxes.

24The maximum temperature increase is in fact 3.36°C.
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Table 2.4: Technology-specific carbon and air pollution taxes (ine/MWh electric)

Carbon tax Air pollution tax
2025 2030 2040 2050 2025 2030 2040 2050

Bioenergy 31.92 32.53 34.08 36.52
Bio-CCS -80.13 -89.66 -112.09 -139.34 41.32 42.16 44.24 47.49
Gas-CCGT, Gas-ST 32.30 36.29 47.19 60.94 2.33 2.41 2.69 3.06
Gas-CCS 4.01 4.58 5.95 7.68 2.92 3.02 3.37 3.84
Gas-OCGT 44.30 49.53 63.02 81.38 3.20 3.29 3.59 4.09

Coal 69.68 77.71 101.06 130.49 12.61 12.55 13.11 13.78
Coal-CCS 8.93 10.20 13.26 17.12 14.53 14.48 15.20 16.09
Lignite* 81.88 93.50 121.59 157.01 16.43 17.51 20.11 23.47
Oil* 88.89 101.50 131.99 170.44 25.44 27.09 31.01 36.18

Values refer to state-of-the-art capacities from the respective vintage. *Lignite and oil values refer to 2015 vintages
in the respective period because we do not observe any lignite and oil expansion in our results.

Remember that bioenergy is carbon-neutral and thus not subject to carbon taxes. Bio-CCS delivers
negative carbon emissions so that the carbon tax is negative, i.e., a subsidy that grows from 80.13
to 139.34 e/ton from 2025 to 2050. The air pollution tax in turn is positive but grows only slightly
from 41.32 to 47.49e/ton due to two reasons. First, the SCAP growwithGDPby 60% from 2015 to
2050, while SCCmore than double. Second, technological improvements with regard to efficiencies
and emission factors reduce the underlying damage and thus have dampening effects on the optimal
air pollution tax. However, air pollution taxes cannot fully cover the benefits from the carbon subsidy
for bio-CCS, which is highly negative (and even higher than the average electricity price, around 70
e/MWh). Among the other technologies, coal, lignite, and oil have by far the highest carbon tax
and also air pollution tax rates are high. Gas, in turn, has considerably lower carbon tax rates and
air pollution rates are even lowest among technologies, making gas technologies a viable option in
the optimized technology mix. However, gas-CCS combines the best of the two worlds with quite
low carbon taxes and only marginally higher air pollution taxes than the corresponding comparable
conventional gas technology. Coal-CCS in turn seems to be by far less competitive than gas-CCS due
to considerably higher air pollution taxes.

2.4 Results

We now analyze the generation and emission mix when a social planner decides for no taxation, only
taxing either air pollution or CO2, and jointly taxing air pollution and CO2 (Section 2.4.1). We test
sensitivities of our results with regard to SCC and SCAP (Section 2.4.2). Finally, we summarize tech-
nology substitution patterns for those diverging tax choices as well as SCC and SCAP levels (Section
2.4.3).
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2.4.1 Taxation choice

Figure 2.1 visualizes taxation choice results. The stacked bars in the upper panel depict annual gen-
eration by technology (in TWh). The stacked bars in the lower panel show annual emissions by air
pollutant (in Mt) and the gray diamonds depict annual CO2 emissions (in Gt). 2015 serves as cali-
bration year. Different model specifications are grouped for periods 2025, 2030, 2040, and 2050.25

Assuming no air pollution taxes and CO2 prices of 7.75 e/ton (2015 EU ETS average) in our cali-
bration year 2015, the technology mix is dominated by nuclear (836 TWh, 25.8%), conventional gas
(720 TWh, 22.2%), and coal (538 TWh, 16.6%). Hydro (418 TWh, 12.9%), wind (306 TWh, 9.4%),
lignite (245 TWh, 7.6%), and solar (109 TWh, 3.4%) contribute relevant shares (above 2%). CO2

emissions are at 1.06 Gt and air pollution at 1.54Mt, stemming mainly fromNOx and SO2. PM and
NMVOCare the remaining air pollutants andNH3 amounts are negligible due to the absence ofCCS
technologies.

From 2025 onwards, taxation choices across specifications differ. No taxation (first column of each
grouping) encourages the short-run deployment of conventional gas technologies (from 720 TWh
in 2015 to 1,225 TWh in 2025 to 1,171 TWh in 2050) at the cost of nuclear (from 836 TWh to
351 TWh to 235 TWh), and promotes massive deployment of coal in the short-run as well as long-
run (from 538 to 1,286 to 3,862 TWh, generation shares of 16.6%, 28.8%, and 57.9%). However,
also wind generation more than doubles from 306 TWh (2015, 9.4%) to 763 TWh (2050, 11.4%).
Solar PV shares remain constant (3.4%, generation increases from 109 to 227 TWh). CO2 emissions
increase already in 2025 to 1.66Gt and continue to grow to 3.21Gt in 2050. Also related air pollution
increases from 1.9 Mt in 2025 to 3.81 Mt in 2050.26 The composition of the air pollution mix does
not change much over time, NOx and SO2 emissions from burning coal thus remain the dominant
air pollutants.

The generationmix completely changes when imposingAP taxation (second column). Coal is almost
absent already in 2025 (small shares remain active until 2045). In turn, conventional gas technologies
start dominating in 2025 with a generation share of 62.2% (22.2% in 2015) that increases to 67.2%
in 2050. Nuclear generation drops from 2015 to 2025 (285 TWh) as well but then remains almost
constant until 2050 (261 TWh). Wind generation quadruples and solar generation triples from 2015
to 2050. However, the 2050 generation shares of wind and solar are still low at 18.3% and 4.4%. The
reliance on technologies burning natural gas is reflected in the air pollution mix. Total air pollutant
emissions drop to 0.72 Mt in 2025 already, whereas CO2 emissions see almost no change. Also the
air pollution composition changes away from high SO2 and substantial PM emissions to a completely

25EUREGEN optimizes in five-year steps. For parsimony, we refrain from presenting 2020, 2035, and 2045 out-
comes.

26Observe that the bars and squares for no taxation leave the scale of the lower panel in 2040 already.
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Figure 2.1: Generation (upper panel) and emission (lower panel) mix for different taxation choices

NOx dominated system (82.22%). After 2025, both CO2 and air pollutant emissions then slightly
increase, but the increase of CO2 is more pronounced (to 1.55 Gt in 2050). The composition further
changes so that SO2 is almost absent andNOx is more or less the only (air) pollution source (93.15%).

The substitution of coal by conventional gas technologies is the dominant change when adding air
pollution taxation to a policy regime of no taxation. Adding instead onlyCO2 taxation (third column)
or exchanging air pollution byCO2 taxes, respectively, yields a substantially more diverse substitution
pattern. There is no one single dominating technology anymore. Instead, gas-CCS (21.8%) and wind
(35.9%) overtake the major generation part in 2025. This dynamic even intensifies over time. Gas-
CCS generation grows to 1,674 TWh (share of 25%) and wind generation to 2,775 TWh (41.4%) in
2050. Additionally, nuclear generation rises from 302 TWh in 2025 to 604 TWh in 2050 (shares of
6.8% or 9%, respectively). Conventional gas contribution is only 2.4%. Solar PV (714 TWh, 10.7%
in 2050) and bio-CCS (362 TWh, 5.4%) are the remaining relevant technologies. Turning to the
emission mix, observe that CO2 and air pollution emissions immediately drop to 0.36 Gt or 0.42
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Mt, respectively, in 2025. The air pollution level remains low until bio-CCS is introduced to the
technology mix in 2040. We can now observe substantial amounts of SO2, PM, NMVOC, and also
NH3, all stemmingmainly fromburning biomass. TheCO2 in turn is captured, so that the European
power system is carbon neutral already in 2040. The spread in the development between air pollutant
and CO2 emissions grows with bio-CCS usage until 2050, so that final air pollution is at 1.46 Mt,
whereas CO2 emissions are at -0.15 Gt.

The joint taxation of CO2 and air pollution (CO2 and AP taxation, fourth column) shows similar
patterns as sole CO2 taxation in 2025 and 2030. The gas-CCS share is slightly lower, while conven-
tional gas and wind generation is slightly higher. Those small differences yield slightly higher CO2

and slightly lower air pollutant emissions. However, the composition of air pollutants remains the
same. Major differences start in 2040 again, when sole CO2 taxation starts deploying bio-CCS, while
additional air pollution taxation discourages bio-CCS in the optimized system. However, the CO2

price increases further from 145 to 187 e/ton until 2050, making small amounts of bio-CCS (103
TWh, 1.5%) competitive in the generation mix. CO2 emissions drop from 0.18 to 0.06 Gt, whereas
air pollution increases from 0.44 to 0.67Mt. Air pollution composition is comparable to sole taxation
of CO2. The lower bio-CCS and gas-CCS generation is substituted by substantially higher nuclear
generation (12.6% compared to 9% in 2050) and more wind deployment (42.9% vs. 41.4%).

Different taxation choices for CO2 and air pollutants impose vastly different optimal technology and
emissionmixes. The taxation of air pollutants fosters conventional gas technologies. Those technolo-
gies burn natural gas, which comes at substantially lower SO2 and PM emissions. Carbon taxation
in turn encourages the deployment of intermittent renewable energies such as wind and solar and,
additionally, the deployment of CCS technologies that capture carbon and permanently store it. As a
result, gas-CCS is almost carbon-neutral and bio-CCS is even carbon-negative. There is little need for
nuclearwhen only taxingCO2 because other emission types do notmatter. Adding air pollution taxa-
tion to already existingCO2 taxation in turn incentivizes nuclear deployment because the dispatchable
carbon-neutral (gas-CCS) or carbon-negative (bio-CCS) technologies still come with substantial air
pollution (and at the related cost). However, also wind power is fostered by air pollution taxation.

2.4.2 Uncertainty of SCAP and SCC

Despite careful calibration, some uncertainty remains regarding SCAP and SCC.We address this un-
certainty by additionally modifying SCAP and SCC levels to 25%, 50%, 200%, 400%, and 800% of
the default level. We use the joint taxation specificationCO2 and AP taxation as a benchmark for this
task, where we modify either SCAP (Figure B.2) or SCC (Figure B.1) to alternative levels, while the
other one stays at the 100% default level.
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SCAP. Bio-CCS embodies an emission trade-off, as it is severely locally air polluting but tremen-
dously reduces CO2 emissions. As a result, cheap air pollution at 25% SCAP encourages full usage of
the biomass potential in terms of bio-CCS in 2050. The 50% SCAP scenario exploits almost the total
biomass potential in 2050 (but 2040 and 2045 deployment is substantially lower). 200% SCAP ends
up with negligible bio-CCS generation in 2050 (0.2%). Higher SCAP levels prevent bio-CCS alto-
gether. Gas-CCS contributes 24.2% (23.4%, 20.9%, 17%, 9.1%) and nuclear 9.4% (10.4%, 15%, 17.7%,
27%) for 25% (50%, 200%, 400%, 800%) SCAP. Wind (41.6% for 25% SCAP, 44% for 800% SCAP)
and solar (10.6% for 25% SCAP, 8.1% for 800% SCAP) are less affected by changing SCAP. Lower
SCAP thus foster CCS technologies, yield more air pollution but lowest CO2 emissions. Higher
SCAP in turn foster nuclear and wind, leading to a lower air pollution but higher CO2 emissions.

SCC. 25% and 50% SCC are insufficient to induce competitiveness of CCS technologies. Instead,
conventional gas technologies substitute for bio-CCS, gas-CCS, substantial parts of nuclear (for 25%
and 50% SCC), and considerable wind generation (only 30.2% in 2050 for 25% SCC). Not relying
on CCS technologies leaves 25% and 50% SCC with a substantially lower air pollution burden but
tremendously higher CO2 emissions (1.11Gt for 25% SCC and 0.75Gt for 50% SCC in 2050). 200%
SCC uses almost the entire biomass potential for CCS from 2030 onwards. 400% and 800% SCC
use almost the entire potential already from 2025 onwards. This biomass usage makes the European
power system carbon-negative from 2025 onwards when doubling the underlying SCC. Associated
air pollution in turn skyrockets to 2015 levels with substantially higher shares of PM, NMVOC, and
NH3 (SO2 share is smaller due to the absence of oil, lignite, and coal). Increasing SCC above 200%
does not change much in the overall CO2 emission level because biomass usage is limited. Instead,
there is a substantial shift from gas-CCS to nuclear to avoid even the small remaining CO2 emissions
associatedwith gas-CCS.As a consequence, also air pollutiondecreases again for veryhighSCCvalues.
Wind (42.2% for 50% SCC and 42% for 800% SCC) and solar shares (10.7% for 25% SCC and 8.1%
for 800% SCC) are impacted considerably less.

2.4.3 Substitution patterns

From the previous results it is apparent that technology switch patterns are of high relevance when
accounting for local air pollution. We thus analyze general behavioral patterns and trends of technol-
ogy deployment in this subsection. This allows us to synthesize technological substitution effects in
relation to system profiles of CO2 emissions and air pollution. In particular, we group specifications
into policy clusters and analyze for each cluster which technologies systematically gain and lose most
in the final 2050 mix compared to our benchmark CO2 and AP taxation (at 100% SCAP and SCC
levels). We exploit the fact that the (relative) taxation intensity of CO2 vs. air pollution varies across
all our specifications. This is achieved by different taxation choices, varying SCAP and SCC. We can
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therefore sort specifications into clusters of high air pollution taxes, low air pollution taxes, high CO2

taxes, and low CO2 taxes. Figure 2.2 depicts all clustered specifications in a scatter plot. The y-axis
measures 2050 CO2 emissions and the x-axis measures 2050 air pollution emissions, each in absolute
differences to the benchmark.27 The color scheme indicates cluster membership and emphasizes the
technologies that are at the center of the cluster’s technology switch.

Figure 2.2: 2050 emissions in relation to benchmark and clustered by technology switch

CO2 and air pollutant emissions are displayed in absolute difference to the benchmark of joint CO2 and AP taxation at 100% SCC and
SCAP.

Clusters Low AP tax and High CO2 tax both exhibit a distinct switch towards bio-CCS. For Low
AP tax, the switch takes place away from emission-neutral nuclear, whereas for High CO2 tax the
substitution happens away from gas-CCS to fully avoid this technology’s residual CO2 emissions.
However, observe that the resulting CO2 and air pollution profiles of the systems are very similar for
both clusters despite very different taxation regimes. HighAP tax ismarked by specifications that shift
away from air pollutingCCS technologies (bio-CCS and gas-CCS) towards emission-neutral nuclear.
This substitution pattern under aggressive air pollution taxation is associated with a nearly horizontal
movement along the x-axis, and thus hardly impacts CO2 intensity of the system. Low CO2 tax is
characterized by an extensive shift from various technologies to conventional gas. Such a regime of
cheap CO2 emissions does not only increase CO2 emissions but also increasingly enhances local air

27Note that social damages from CO2 are proportional to the CO2 intensity of the system. This is not the case for
air pollution, as we depict the total aggregate of all air pollutants for complexity reasons here. Across specifications, the
composition of total air pollution might change between more or less harmful compositions.
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pollution when burning natural gas.

It is interesting to note that excessive taxing of either of the emission types, i.e., clusters High CO2

tax andHigh AP tax, is also at the expensive of the solar PV generation share. The intuition behind
this implies that both clusters switch away from dispatchable gas-CCS generation, whose low but
nevertheless existing emissions are heavily taxed. This leaves the system at a lack of a flexible (low-
emission) technology to balance intermittent renewable generation. For cluster High CO2 tax, bio-
CCSas a dispatchable carbon-negative technology is expanded. However, the biomass limits constrain
usage to compensate large-scale fluctuating renewable supply. As a result, the model in both clusters
slightly cuts down on intermittent solar PV and relies more on emission-neutral nuclear.

2.5 Discussion

Our results indicate that joint taxation schemes bear important abatement and cost dynamics. We
thus discuss accumulated values as well as co-benefits of complementary taxation in the remainder of
this section.

2.5.1 Cost dynamics

Table 2.5 contains system cost, external cost, taxes, social cost, and private cost for our four main
specifications in accumulated terms (in billion e). System cost comprise all costs from generating,
storing, and transmitting electricity, including investment, fixed, and dispatch cost. System cost also
include cost of lost load (under the assumption of a certain value of lost load (VOLL)). External cost
are comprised of the external cost of carbon (ECC) and the external cost of air pollution (ECAP).
The taxes follow from the respective (optimal) taxation choices. Social cost are comprised of system
and external cost; and private cost are system cost plus taxes.28 Brackets show the net present value
(subject to discounting).

Observe that system cost are lowest for no taxation and, as a general pattern, grow due to abatement
cost when internalizing ECC and/or ECAP, respectively. However, some interesting cost dynamics
can be observed when comparing the taxation regimes. For instance, moving from no taxation to
sole air pollution taxation only leads to a slight increase in system cost while the external cost halve.
From a social planner perspective, air pollution internalization is thus a low hanging fruit, in partic-
ular, because it also reduces ECC (from 10,636 to 5,547 billion e). System cost are highest for sole
carbon taxation because deep decarbonization and negative emissions from using bio-CCS are expen-
sive. Jointly taxing both carbon and air pollution allows for more flexibility in allocating abatement

28Note that we do not account for the social benefit of reinvesting tax revenues when comparing social and private
cost. However, tax revenue is actually a supplementary benefit from social planners perspective.
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Table 2.5: Accumulated/average values and electricity price range from period
2025 to 2050

No AP CO2 CO2 &AP

System cost (billione) 5,937 (1,888) 6,475 (1,939) 8,263 (2,622) 7,697 (2,522)
External cost (billione) 12,057 (2,795) 5,890 (1,432) 717 (286) 1,118 (364)
ECC (billione) 10,636 (2,449) 5,547 (1,340) 281 (194) 923 (311)
ECAP (billione) 1,420 (346) 343 (92) 435 (92) 195 (53)
Taxes (billione) 0 (0) 343 (92) 281 (194) 1,118 (364)
Social cost (billione) 17,994 (4,684) 12,365 (3,370) 8,980 (2,908) 8,815 (2,885)
Private cost (billione) 5,937 (1,888) 6,819 (2,030) 8,544 (2,816) 8,815 (2,885)

CO2 (Gt) 73.1 38.8 3.3 7.4
CO2 (ton/GWh) 468.07 248.29 21.25 47.36
AP (Mt) 87.9 23.1 27.0 13.7
AP (ton/MWh) 562.69 148.00 172.94 87.39

System cost (e/MWh) 38.00 41.45 52.89 49.27
External cost (e/MWh) 77.18 37.70 4.59 7.16
ECC (e/MWh) 68.08 35.50 1.80 5.91
ECAP (e/MWh) 9.09 2.20 2.79 1.25
Taxes (e/MWh) 0.00 2.20 1.80 7.16
Social cost (e/MWh) 115.18 79.15 57.48 56.43
Private cost (e/MWh) 38.00 43.65 54.69 56.43

Electricity price 51.44–47.04 53.78–52.03 78.39–77.84 80.41–79.03
(e/MWh; max, year) (51.44, 2025) (53.78, 2025) (79.91, 2035) (81.07, 2045)

All values except those for electricity price refer to accumulated values from period 2025 to 2050 (30 years
because 2025 reflects years 2021–2025). Parentheses shownet present values. Average cost values (in /MWh)
calculate from the respective accumulated value divided by demand. The last column presents ranges of
electricity prices with the first value referring to period 2025 and the second one to 2050 (parentheses show
the maximum electricity price with the respective year). Social cost are the sum of system and external cost.
Private cost are the sum of system cost and taxes.

efforts and therefore leads to lower system cost. External cost rise but also taxes are four times the
amount compared to taxing carbon only (1,1182 (364) compared to 281 (194) billione).

Let us now take a closer look into the trade-off dynamics between carbon and air pollution taxation.
Table 2.5 also presents accumulated CO2 emissions (in Gt) and air pollution (in Mt). It is intuitive
that accumulated CO2 and air pollutant emissions are by far the highest for no taxation. Observe that
CO2 emissions co-dropwhen taxing air pollution. ECC decrease bymore than 5,000 billione, while
ECAP are reduced by around 1,000 billion e only. When taxing only CO2 emissions, external cost
are considerably lower, as are accumulated CO2 emissions (3.3 Gt). At the same time, accumulated
air pollution is only slightly higher than when solely taxing air pollution (27 vs. 23.1 Mt). However,
net present value ECAP remain the same because the time profile of air pollutant emissions differs
considerably between the two policy regimes. Air pollution taxation reduces air pollution in later pe-
riods. In contrast, CO2 taxation has quite an extensive abatement effect (i.e., reducing air pollution) in
the mid-term, whereas it substantially increases air pollution in the long-run (due to bio-CCS usage).

51



We observe a similar effect for ECC when adding air pollution taxation to existing CO2 taxes. Here,
ECC increase by 642 billione, but net present value ECC only by 115 billione. Again, differences
in emissions and associated external cost manifest mainly in the long-run due to the deployment of
bio-CCS.

Finally, let us turn to average cost perMWh and electricity price ranges in Table 2.5. The average cost
per MWh values follow from dividing accumulated cost by accumulated demand. Electricity prices
are given as range from period 2025 (first value) to 2050 (last value) with the maximum price and
the respective year in brackets below. As expected, electricity prices are lowest for no taxation. Air
pollution taxation increases them only by 5% (in 2025) to 10% (in 2050). CO2 taxes raise prices by
no more than 50% than in the no taxation case and by almost 50% compared to taxing air pollution
only. Combining air pollution and carbon taxes finally result in highest prices. The average cost values
allow us to view electricity prices in the context of cost compositions. In particular, in terms of cost
components, private cost are most comparable to prices.29 Observe that average external cost exceed
prices in the no taxation regime. In contrast, under joint CO2 and AP taxation, where external cost
are fully internalized by taxes, the tax share makes up only a small portion of prices and private cost.
This implies that they are mainly driven by abatement cost.

2.5.2 Co-benefits of complementary taxation

The intuition that joint taxation schemes significantly reduce external cost is not generally true be-
cause the model takes into account associated abatement cost when minimizing the net present value
of system cost. However, the composition of external cost (ECAP vs. ECC) fundamentally changes.
Such findings open up discussions about co-benefits of complementary taxation. Moreover, in prac-
tice it may not be necessary, feasible, or intended to heavily tax both emission types and nor may ”the
more the better” lead to efficient returns from taxation. With the goal of understanding how long
of a way co-abatement effects go, we analyze the co-benefits of CO2 and air pollution taxation on
the respective other emission type. For instance, if taxing air pollution as a measure to internalize lo-
cal damages also has positive benefits for ongoing CO2 emission abatement, this would be a useful
instrument to complement existing policies of carbon pricing.

Startingwith sole CO2 taxation (at 100% SCC level) as benchmark, we iteratively add increasing levels
of air pollution taxation (as done implicitly by 25% to 800% SCAP, see Section 2.4.2). The co-benefits

29Observe that average private cost do not fully explain prices, e.g., system cost divided by demand are 38e/MWh
in the no taxation scenario. Meanwhile, electricity prices range closer to 50e/MWh. This difference can be explained
by the fact that electricity prices are calculated from the shadow prices of the demand-equals-supply constraints, i.e.,
the electricity price reflects the cost of adding a marginal unit of demand to the system. The price is thus driven by the
marginal technologies and are not an average above all technologies. Consequently, electricity price ranges are strictly
above average private cost per demand unit.
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are the amount of (non-discounted, unless stated otherwise) CO2 emission damages (expressed at the
100% SCC level) that are additionally avoided compared to the benchmark. For example, sole CO2

taxation leads to ECC of 281 billion e (see Table 2.5). When air pollution taxation is added as a
complementary instrument at 25% SCAP level, this leaves a system with 182 billion e higher ECC.
The co-benefit of added air pollution taxation on ECC would then be –182 billion e. Increasing
air pollution taxation to 50% SCAP level yields an even more negative co-benefit of –356 billion e.
We continue this exercise until arriving at 800% SCAP (co-benefit is –937 billion e) and repeat it
vice versa for sole air pollution taxation and added levels of CO2 taxation. Figure 2.3 presents results.
Appendix B.2.6 contains the full set of results. The left panel shows the dynamics of adding CO2

taxation to existing air pollution taxation. The co-benefit (filled blue triangles) is thus expressed in
avoided ECAP. Hollow triangles show the net present value of co-benefits. The right panel presents
the outcome of adding air pollution taxation to existing CO2 taxation. The co-benefit (filled gray
diamonds) is measured in avoided ECC.Hollow diamonds show the net present value of co-benefits.

Figure 2.3: Co-benefits of complementary taxation as accumulated external cost avoided

The left panel shows AP taxation with diverging levels of CO2 taxation. The right panel shows CO2 taxation with diverging levels of AP
taxation. Co-benefits are expressed in reduction of ECC or ECAP (evaluated at 100% SCC or SCAP levels), respectively. Filled markers
represent non-discounted values; hollow markers represent net present values.

Coming from existing air pollution taxation (left panel), adding mild to moderate carbon pricing has
increasingly positive co-abatement effects on local air pollution. Such taxation schemes discourage
the deployment of technologies that exhibit residual emissions of both types (e.g., conventional gas,
gas-CCS). Co-benefits grow from 74 billion e at 25% to a peak of 148 billion e at 100% CO2 taxa-
tion. Co-benefits are however strongly non-linear so that beyond 100%CO2 taxation, the co-benefits
actually turn into abatement trade-offs. In fact, co-benefits drop to –250 billione for 200% and then
slightly improve to –185 billione for 800%. Aggressive CO2 taxation leads to a technology mix that
accepts increased air pollution damages for extensive abatement of carbon emissions, e.g., via bio-CCS
usage towards the end of the model horizon. Hence, in case the primary policy goal is abatement of
local air pollution, the abatement benefits can be even increased by low tomoderate carbon pricing as
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a complementary policy.

Coming from a taxation scheme that fully internalizes CO2 emission damages already (right panel),
CO2 emissions cannot be further decreased through complementary air pollution taxation. For all our
specifications with additive air pollution taxation, co-abatement effects on CO2 are negative (overall
effect on social damage abatement may still be positive). Yet again, co-benefit effects are non-linear,
such that they are slightly negative for mild air pollution taxation (–182 billione at 25% air pollution
taxation ) and floor at –966 to –937 billion e for high to very high levels of air pollution taxation.
Note that these numbers are aggregate co-benefits covering the long term optimization horizon. It is
important to keep in mind that timing of co-benefit effects matters strongly here for two reasons. (1)
The negative co-benefits ofCO2 are strongly driven by bio-CCSusage in later periods, which can turn
positive mid term co-benefits into negative co-benefits in the cumulative long-term. (2) As the nega-
tive co-benefits driven by bio-CCS occur in later periods, they are heavily discounted in the optimiza-
tion process. This causes an increasing gap between net present value co-benefits and non-discounted
co-benefits for excessive air pollution taxation. This divergence should be taken into account when
assessing actual generational (i.e. non-discounted) damages of different policy regimes.

2.6 Robustness

Uncertainties regarding SCAP and SCC are addressed in Subsection 2.4.2 already. We assess remain-
ing calibration uncertainties andmodeling inaccuracies by running sensitivity analyses with respect to
wind power improvements (technology boost), air pollution emission factors, a lower electricity de-
mand projection, and the inflexibility of nuclear power plants in adjusting production freely (nuclear
minimum dispatch). Moreover, we conduct an uncertainty analysis with respect to technology cost,
where we provide the 95% confidence intervals for results. None of these robustness checks stand
in contradiction to the results described in the two prior sections. Appendix B.2.7 contains more
detailed descriptions and the full set of results of our robustness checks.

For parsimony, we will focus on the most relevant outcomes here, which are presented in Table 2.6.
For each taxation scenario, we provide results for our default calibration and add results from the sen-
sitivity runs in terms of technology generation shares (of wind, solar, nuclear, and CCS) and average
cost measures (system cost, ECC, and ECAP). Observe fromTable 2.6 that general patterns still hold
across the taxation scenarios. That is, within a taxation scenario, generation shares and cost remain
in the same magnitudes in the sensitivity runs as in the default calibration. This pattern consistency
underlines confidence in our baseline results presented in prior sections. In the following, we provide
more detail on the robustness checks, referencing the respective results (1–21 in Table 2.6).
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Table 2.6: Selected sensitivity results

No. Sensitivity Wind Solar Nuclear CCS System ECC ECAP
cost (e/MWh)

No taxation 14.9% 3.0% 4.5% 0.0% 38.00 68.08 9.09
1 Nuclear minimum dispatch 14.9% 3.0% 4.5% 0.0% 38.00 68.08 9.09
2 Low demand growth 17.0% 3.2% 5.8% 0.0% 37.27 59.59 8.10
3 CI (95%) lower bound 14.9% 2.9% 4.4% 0.0% 37.95 66.94 8.92
4 CI (95%) upper bound 15.8% 3.1% 4.4% 0.0% 38.07 67.86 9.04

AP taxation 19.4% 3.5% 5.7% 0.0% 41.45 35.50 2.20
5 Nuclear minimum dispatch 19.4% 3.5% 5.7% 0.0% 41.45 35.51 2.20
6 Low demand growth 23.0% 3.6% 6.9% 0.0% 39.76 31.30 2.03
7 Low AP emission factor 19.0% 3.4% 5.6% 0.0% 41.41 36.42 1.88
8 High AP emission factors 20.0% 3.7% 6.0% 0.0% 41.44 34.37 3.14
9 CI (95%) lower bound 18.9% 3.4% 5.7% 0.0% 41.38 35.35 2.19
10 CI (95%) upper bound 19.7% 3.7% 5.7% 0.0% 41.52 35.79 2.21

CO2 taxation 42.2% 9.4% 7.8% 31.1% 52.89 1.80 2.79
11 Nuclear minimum dispatch 41.9% 9.4% 8.1% 31.2% 52.97 1.76 2.80
12 Low demand growth 44.2% 9.0% 7.5% 26.9% 50.15 1.10 2.85
13 CI (95%) lower bound 41.5% 9.3% 7.7% 30.4% 52.58 1.84 2.74
14 CI (95%) upper bound 42.2% 9.6% 8.6% 31.4% 52.89 2.13 2.81

CO2 and AP taxation 43.9% 9.9% 11.0% 23.7% 49.27 5.91 1.25
15 Nuclear minimum dispatch 43.5% 9.9% 11.2% 23.9% 49.32 5.90 1.25
16 Low demand growth 46.6% 9.7% 8.7% 21.3% 46.31 5.75 1.17
17 Low AP emission factor 43.7% 10.0% 10.1% 24.8% 49.51 5.73 1.09
18 High AP emission factors 44.3% 10.1% 12.2% 20.0% 48.30 6.95 1.66
19 Technology boost 52.4% 8.8% 5.4% 22.2% 45.98 6.07 1.16
20 CI (95%) lower bound 43.3% 9.7% 10.4% 23.2% 49.06 5.81 1.24
21 CI (95%) upper bound 44.1% 10.0% 11.7% 24.4% 49.38 6.13 1.28

All values refer to accumulated values from period 2025 to 2050 (30 years because 2025 reflects years 2021–2025). %-values
calculate from generation divided by demand. Average cost values in the last three columns calculate from the respective
aggregate cost divided by demand.

2.6.1 Technology boost

We generally observe stable 2050 wind deployment around 40–45% of the electricity mix across taxa-
tion choices.30 This consistency indeployment suggests that the economically viable potential ofwind
does not differ much across the underlying specifications under the given technological assumptions.
We test for this effect by introducing a technology boost in 2040—i.e., full-load hours (FLH) of wind
onshore and offshore increase (seeAppendixB.2.7 for details)—and apply jointCO2 and air pollution
taxation (19 in Table 2.6). As expected, a technology boost would raise the economically viable wind
potential, such that wind generation shares increase. This happens especially at the cost of nuclear,

30A small number of our many specifications does not follow this pattern: No taxation (11.4%), sole air pollution
taxation with low (17.3%), mid (18.3%), and high emission factor assumptions (18.2%) as well as deciding to internalize
only 25% of the SCC (30.2%) yield indeed substantially lower wind deployment rates. However, those options are also
furthest away from realistic policy options in Europe, where substantial carbon pricing plays a key role.
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hinting that wind and nuclear are deployed by the model as emission-free technological substitutes.
Figure B.3 and Appendix B.2.7 contain visualizations and supplementary results.

2.6.2 Air pollution emission factors

Air pollution emission factors additionally depend for instance on the firing/furnace technology and a
broad but diverse set of available abatement technologies.31 For air pollution emission factors, we thus
additionally develop a low and a high emission factor scenario. The low scenario starts at same values
as our benchmark but assumes more optimistic technological progress of pollution abatement than
the benchmark. The high scenario in turn is less optimistic than our default scenario. We apply those
scenarios on sole air pollution taxation as well as joint taxation. The impact of changing air pollution
emission factors on average ECAP (in e/MWh) is straightforward; lower emission factors decrease
average ECAP per MWh (7 and 17 in Table 2.6) and higher emission factors increase it (8, 18). In
contrast, the impact on average ECCdepends on the taxation scenario and the subsequent abatement
co-benefits and trade-offs, which supports our findings in Section 2.5.2. Increasing air pollution emis-
sion factors (and thus increasing average ECAP) requires more air pollution abatement efforts in the
sole AP taxation scenario, which inhibits co-abatement of carbon emissions. As a consequence, aver-
age ECC decrease (8). However, in the joint taxation scenario an abatement trade-off arises around
bio-CCS (18). Increased air pollution emissions are traded-off against negative carbon emissions, lead-
ing to a rise in average ECC. The mirrored effects can be observed for lower air pollution emission
factors and their impact on ECC (7, 17). System cost are hardly affected at all by changes in air pollu-
tion emission factors. This emphasizes our earlier finding that air pollution abatement seems to be a
low-hanging fruit. Figure B.3 and Appendix B.2.7 contain supplementary results.

2.6.3 Electricity demand

In our default calibration we assume that electricity demand increases from around 3,000 TWh to
6,203 TWh until 2050. This increase considers deep electrification of sectors (in particular, indus-
try, heating, and transport) and stems from the CGEmodel PACE that is used to calibrate the power
market model EUREGEN (Siala et al., 2022; Mier et al., 2023).32 ENTSO-E and ENTSOG (2022)
projects only a growth to 4,000 TWh in electricity demand until 2050. ENERDATA projects that
electricity demand in Europe increases to 4,645 TWh in 2050. However, their generation is at 6,300

31See EEA (2019) for an overview. Carbon emission factors are not modified as they mainly depend on the plant
efficiency and fuel used, which are both explicitly modeled.

32Electricity demand growth is endogenous in the CGEmodel and substitution effects between electricity and fos-
sil fuels are accounted for. Moreover, the increase in each country depends on the underlying industrial and economic
structure. For example, Austria sees quite an extreme increase (almost tripling), whereas electricity demand in Norway
increases only by 55%; mainly because many sectors in Norway are already electrified (e.g., heating).
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TWh in the same scenario, which leaves the careful reader puzzled.33 Most probably, the difference
is caused by European hydrogen production, which is not accounted for as electricity consumption
in their methodology. Schmitt (2022) claims that electricity demand increases to 5,500 TWh until
2050. Agora (2020) forecasts a doubling of German electricity consumption until 2050. Compared
to ENTSO-E and ENTSOG (2022) projections, Germany would already make up half of the entire
European increase. Studies substantially differ in their underlying assumptions of economic growth
and energy efficiency development.34 Moreover, uncertainty about future amounts of hydrogen pro-
duction within Europe (and the associated electrification intensities by countries) leads to consider-
able differences in demand forecasts across studies.35

Considering the high uncertainty about future electricity demand in Europe, we test robustness of
our results by assuming a more moderate electricity demand increase than in our default calibration.
We decrease 2050 European electricity by a third, that is to 4,135 instead of 6,203 TWh. We adjust
growth rates such that the growth pattern over time stays similar to our default calibration. We also
maintain relative growth patterns across countries.36 Themain effect of reduced demand is consistent
with our previous finding of an economically viable potential of wind generation. Given this wind
potential, the remaining gap to demand is smaller in the lowdemand scenario, which leads to relatively
higherwind generation shares across all taxation scenarios (2, 6, 12, and 16 inTable 2.6). Furthermore,
average cost measures decrease as wind generation is both cheap and non-polluting. The entire set of
outcomes is shown in Appendix B.2.7. Sensitivities between the two extremes are fairly linear. For
parsimony, we thus refrain from discussing and/or showing them here or in the Appendix.

2.6.4 Inflexibility of power plants

The used model version of EUREGEN ignores some technological characteristics of conventional
power plants that might change results. In particular, EUREGEN is in principle able to account for
minimum dispatch of power plants, ramping constraints (by means of the possible speed to ramp
generation up or down within capacity limits) and ramping cost (higher dispatch cost due to ramp-
ing as approximated mark-up), start-up constraints (allowing to switch nuclear power plants off with
minimum down times), and start-up cost (from the number of starts). Modeling start-up constraints

33All numbers refer to the EnerBlue scenario, demand: https://eneroutlook.enerdata.net/
forecast-world-electricity-consumption.html, generation: https://eneroutlook.enerdata.net/
total-electricity-generation-projections.html.

34Mier andWeissbart (2020) show that energy efficiency does not play a sizable role for electricity consumption be-
cause potential is limited and costly.

35For example, if hydrogen can be imported at low prices, many industries would not need to fully electrify.
For reference, full electrification of the German chemistry industry would for instance require around 500 TWh
per year—Germany’s electricity demand of today. See https://www.energate-messenger.de/news/232361/
strombedarf-der-chemieindustrie-waechst-immens.

36That is, Austria still grows more than Norway.
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(and cost) considerably increases complexity of the optimization program because it requires to for-
mulate themodel as amixed-integer program (MIP)with binary variables definingwhether the power
plant is online or offline, respectively. Ramping constraints do not add much complexity but are less
suitablewhenworkingwith representative hours (as we do).37 Those conditions constrainmainly nu-
clear power plants, to some extent also lignite power plants, and slightly even coal power plants (older
plants more so than newer ones). Gas power plants are almost unaffected. Observe that coal only
plays a vital role in the no taxation regime, which is the most unlikely scenario. Moreover, wind and
solar deployment is very limited under such a taxation choice so that all the mentioned technological
constraints are negligible. However, nuclear plays a considerable role in the schemes containing CO2

taxation and is also most affected technology-wise. We thus decide to test sensitivity for minimum
dispatch of nuclear power.38

Intuitively, modeling the inflexibility of nuclear power pushes slightly more nuclear power into the
system at the cost of wind power (i.e., relative market value of nuclear over wind increases). Another
intuitive result is that the inflexibility of nuclear increases themarket value of other options to balance
intermittent supply such as CCS power plants, which, in turn, decreases the value of wind, and in
turn increases the one of nuclear (1, 5, 11, and 15 in Table 2.6). Average system cost exhibit a slight
increase but overall cost effects are of negligible magnitude.

2.6.5 Technology cost

Projections of investment cost (see Table B.5 in Appendix B.2.2) are subject to uncertainty. We iden-
tified four decisive technology clusters in the prior sections: wind (onshore, offshore), solar, nuclear,
and CCS (bio-CCS, gas-CCS). We concentrate our following analysis on the technologies included
in these four clusters, and assess how technology cost uncertainty affects our results. In particular, we
assume that true technology cost in 2050 are normally distributed around the 2050 cost assumptions
from our default calibration. We conduct a Monte Carlo analysis, where we modify investment cost
independently for each cluster by a random index that is normally distributed around mean 1 with
a standard deviation of 0.1.39 In particular, we adjust 2050 cost by this random index and linearly

37Wework with 280 representative hours as outcome of an extensive selection and weighting algorithm, and scale
solar, hydro, wind, and load time series to re-construct full-load hours of the respective technologies and annual demand.

38We assume that nuclear power plants can reduce production to 45% of installed capacity. If the robustness check
with minimum dispatch showed fundamental changes in technology investment and dispatch, we would test ramping
constraints (and cost) as well. For start-up constraints and cost, in turn, the hourly resolution would require fundamental
changes (from 280 to less than 50 to solve the model within reasonable time frames), which would distort our original re-
sults and also some dynamics (for example, of storage) might get lost using only very few representative hours. Moreover,
from experience, we know that smaller numbers of representative hours increase the value of intermittent sources such
as wind and solar, which might be suitable for some comparative static analysis of model changes but finally would yield
highly distorted (external) cost calculations.

39We acknowledge that, in principle, cost developments might be correlated. As a side effect, this characterization of
cost uncertainties reduces the number of necessary runs from 1,600 (4 clusters times 4 taxation choices times 100 runs)
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interpolate between 2015 and 2050, while the 2015 value is assumed to be 1.

We draw a value from the distributions for each technology cluster and then run the model with the
resulting technology cost combination and repeat this procedure 100 times per taxation scenario. Our
MonteCarlo analysis is thus an analysis where uncertainties realize independently but simultaneously
for all clusters. In a second step, we take results from the 100MonteCarlo runs per taxation choice and
estimate the 95% confidence intervals for several accumulatedmodel outputs. We consider 100 runs as
minimum to estimate useful density distributions of results to determine high-quality 95% confidence
intervals later. A full set of results is provided in Appendix B.2.7, selected results are presented in
Table 2.6 (3, 4, 9, 10, 13, 14, 20, and 21). Observe that the 95% confidence intervals are very tight
for all taxation scenarios. The vast majority of our results from our default calibration lies well within
the interval bounds. Some exemptions lying slightly outside are still in the samemagnitude, such that
they do not discourage confidence in our default calibrations.

2.7 Conclusion

We derive emissions factors of six local air pollutants (NH3, NMVOC,NOx, PM10, PM2.5, and SO2)
for multiple electricity generation technologies (e.g., bio-CCS, coal, gas-CCGT, gas-CCS) depending
on fuel used (e.g., biomass, coal, natural gas) and underlying technological characteristics as well as the
year of installation to reflect potential air pollution of the current and future power plant fleet in Eu-
rope (Cai et al., 2012; EPA, 1995; EEA, 2019; Juhrich andBecker, 2019). We thenuse country-specific
estimates of the social cost of air pollution (SCAP) from the externE project series that are tailored to
electricity generation technologies (Friedrich and Bickel, 2001; Pietrapertosa et al., 2009). We further
derive social cost of carbon (SCC) from an own calibration of DICE-2016R-091216a (Nordhaus,
2014). We implement technology-specific air pollution emission factors and pollution taxes (equal to
the respective SCAP and SCC) in EUREGEN (Weissbart and Blanford, 2019) to quantify the impact
of accounting for air pollution for the European power market until 2050.40 In particular, we match
SCAP and SCC estimates with EUREGEN’s CGE calibration by accounting for country-specific
GDP growth and the underlying population projections from the World Bank. We then analyze dif-
ferent internalization strategies of external cost by either deciding for no taxation, only taxing air pol-
lution or CO2, respectively, or jointly taxing both emission types. We additionally test for sensitivities
of SCC and SCAP levels to gain insight into technological substitution patterns when deciding to tax

to 400, and thus the computation time frommore than 100 days to less than a month (for each standard deviation). We
account for this by working with technology clusters. Moreover, we undertake the very same procedure for a standard
deviation of 0.2. Results can be assessed in the supplementary material.

40EUREGEN is a multi-region partial equilibriummodel of the European power market that optimizes investments,
decommissioning, and dispatch of multiple generation, storage, and transmission technologies under the objective of
minimizing the sum of system cost and tax burden (firm perspective).
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air pollution and/or CO2 emissions. We calculate the external cost occurring from different taxation
choices and determine whether or not adding CO2 (or air pollution) taxation to already existing air
pollution (CO2) taxation comes with co-benefits (or trade-offs) bymeans of reduced (increased) dam-
ages from air pollution (CO2). Finally, we test and find robustness of results with respect to techno-
logical progress of wind power, air pollution emission factors, electricity demand growth, inflexibility
of power plants, and technology cost. Our key findings are fourfold.

First, we determine the technology and emission mix occurring under different taxation choices. No
taxation encourages coal deployment. Air pollution taxation fosters the usage of conventional gas
technologies and comes with significant reductions in air pollution, whereas carbon emissions in-
crease. CO2 taxation yields considerable amounts of nuclear as well as gas-CCS and employs air pol-
luting bio-CCS up to the biomass limit. Consequently, air pollution increases considerably when in-
troducing bio-CCS but overall carbon emissions in fact drop to negative levels in the long-run. Binary
decisions to tax either air pollution or carbon thus come with completely diverging emission profiles,
mainly due to the employment of bio-CCS (and secondarily also due to gas-CCS). The technology
and emissionmix when jointly taxing air pollution and CO2 is dominated by carbon taxes. However,
additional air pollution taxation halves the total air pollution by reducing usage of CCS technologies,
whereas nuclear generation is substantially higher.

Second, we test sensitivity of results by changing the underlying SCC and SCAP levels and thus the
respective taxation levels. We use those results to systematically assess technological substitutions pat-
terns. The results of this task underline that high air pollution taxes foster nuclear at the cost of bio-
CCS and gas-CCS. Low air pollution taxes in turn substitute nuclear by bio-CCS only. High CO2

taxes foster nuclear at the expense of gas-CCS because gas-CCS still emits residual amounts of CO2.
Moreover, bio-CCS is fostered, too, as long as the biomass limit is not reached already. LowCO2 taxes
in turn foster conventional gas technologies.

Third, we scrutinize accumulated system and external cost, emissions, as well as electricity prices from
2021 to 2050 under different taxation choices. No taxation comes with lowest electricity prices (47
e/MWh in 2050) but external cost accumulate to 12,057 billion e, which amounts to more than
400 billione/a and is close to the 2022 annual government budget of Germany—the biggest country
within the European powermarket. Sole air pollution taxationmore than halves those damages, while
electricity prices increase only by 10% in the long-run. Interestingly, air pollution taxation co-reduces
the burden of external cost of carbon from 10,636 to 5,547 billion e. CO2 taxation actually yields
lowest overall damages (281 billion e from CO2 and 435 billion e from air pollution). Here, air
pollution (damage) is only around 16% (92 billione) higher. Electricity prices increase tremendously
by around 26e/MWh (+48%). Those results show some complementarity in the abatement of CO2
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and air pollutant emissions. However, the socially optimal policy regime is joint taxation of both
emission types. Such a policy regime in fact increases the overall external cost from716 to 1,118 billion
e but comes at similar electricity prices (compared to sole CO2 taxation). However, the objective is
not to minimize external cost but the net present value of either private or social cost, which includes
abatement cost as well. In particular, the net present value of external cost increases only from 286 to
364 billione. Notably, discounting plays a fundamental role when assessing damages fromCO2 and
air pollutionbecause different taxation choices impose a completely different timeprofile of emissions.

Fourth, we determine co-benefits from different taxation regimes. In particular, we do not observe
large power systems that jointly internalize damages from CO2 and air pollution. For example, the
United Statesmainly focus on air pollution regimes, thereby neglecting damagemitigation fromCO2.
Europe, in turn, predominantly focuses on CO2 abatement. However, the internalization of local
damages from air pollution should be undertaken by each country on their own initiative because
free-riding does not matter. This might lead to situations where additional air pollution (in Europe)
possibly also reduces (global) damages from CO2. In turn, one argument to employ carbon pricing
in the United States might be that there is also an associated benefit in terms of reduced air pollution.
We quantify those scenarios and find that there is indeed a co-benefit when CO2 taxation is added
to existing air pollution taxation as long as the level of CO2 taxation is not above the efficient one.
However, adding air pollutant taxes to existing carbon taxes always comes with negative co-benefits
for CO2 abatement.

Our paper shows that the interpretation of modeling results and their consideration by policy mak-
ers requires careful review of the assumptions about taxes, underlying technological characteristics,
and prioritization of policy goals. Our findings inform about impacts of different taxation choices
and levels on resulting emissions, associated damages and technology switch patterns. Our results
also emphasize how sensitive the optimal system reacts to different versions of complementary taxa-
tion schemes. Interestingly, nuclear plays a key role because wind and solar deployment at compet-
itive spots is naturally limited and thus nuclear is the only remaining (competitive and expandable)
emission-neutral technology. As a consequence, accounting for air pollutant damages shifts the focus
back towards nuclear in the choice set of policy makers. In addition, bio-CCS is the dominant tech-
nology driving air pollutant damages but reducing those of CO2 emissions. This trade-off challenges
the role of bio-CCS as panacea to achieve a deep decarbonization. Our findings also inform about
policies that do not appropriately internalize CO2 or air pollutant damages, respectively, and under-
line that the focus on decarbonization should leave space also for co-internalization of air pollutant
damages. This is particularly important once CCS technologies become competitive. We also deliver
insights into howmuch potential is borne in complementary taxation schemes to yield co-benefits for
an existing primary abatement goal. Those co-abatement effects need to be carefully handled by pol-
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icy makers as they are non-linear. To summarize, we advise policy makers to use mild carbon pricing
as additional tool to reduce air pollution but not to use air pollution taxes as a tool to reduce carbon
emissions. However, from a holistic system perspective it is best to jointly internalize both emission
types. This joint taxation also means that ambitions to decarbonize economies must be reviewed in
the sense that one of the most powerful carbon-negative technologies, biomass in combination with
carbon-capture and storage, is problematic regarding its air pollution impact.

Our analysis comes with some limitations. We use a European power market model to quantify re-
sults. Consequently, quantification of external cost is only valid for Europe which is quite densely
populated and thus carries quite high damages from air pollutants. However, technology cost are
similar across the globe and the determined substitution effects and the emissions trade-offs of CCS
technologies are generally applicable. Moreover, wind and solar potential in time and space is limited
under current electricity demand projections. Other world regions without that scarcity might over-
come the entire air pollutant relevance by avoiding CCS technologies. Additionally, we assume that
nuclear cost decline over time and, thus, see endogenous expansion of nuclear in our model, in par-
ticular when air pollution is taxed. Such expansion depends on cost estimates that do not completely
reflect all real world cost. At least in Europe, given the history of European nuclear, the declining cost
assumption is disputable, too. Moreover, the quite prominent role of nuclear is fostered by the fact
that we do not account (for short- and long-term) radiation damages from using nuclear. Consider-
ing external cost of nuclear generation could therefore be a useful topic for future work.41 However,
reduced nuclear capacities come with higher reliance on CCS technologies, which in turn makes the
role of air pollutant damages and their appropriate taxation evenmore severe. One limitation is caused
the model resolution being limited to the national level for numerical complexity reasons. This pro-
hibits modeling air pollution taxes at a more granular regional level. However, there is also evidence
from Fowlie and Muller (2019) that under uncertainty differentiated air pollution taxation may not
be welfare-increasing. Similarly, we assume that marginal damages from carbon and local air pollu-
tants are constant across taxation choices. This is clearly a simplifying assumption that is necessary for
air pollutant damages (because there are no appropriate calibrations providing other than constant
values) and even credible for carbon if European decarbonization of electricity generation is supposed
to be in line with global decarbonization goals. Finally, we apply the very same discount rate to evalu-
ate damages from carbon and air pollutant emissions. There are at least some arguments supporting
higher discount rates on air pollutant damages than on the social cost of carbon, because the dam-
ages of local air pollution are immediate and not as long-lasting and intergenerational as those from
emitting CO2.

41Jarvis et al. (2022) conclude that the cost of unlikely yet possible nuclear accidents as well as nuclear waste disposal
are uncertain but can arguably matter to a risk-averse policy maker.
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3
ExtremeWeather Events, Blackouts, and Household

Adaptation



Abstract

Extreme weather events are becoming more frequent with climate change, yet cold stress events
remain understudied. I use the 2021 Texas freeze to examine household adaptation to extreme
weather-induced blackouts, focusing on (1) adaptation uptake, (2) socio-economic disparities in
adaptive capacity, and (3) salience spillovers. Using an event study design, I analyze the time-varying
effects of a one-off dosage treatment, defined as blackout exposure. I leverage novel data on in-
stallation permits for home generators and rooftop-solar-battery systems as adaptation measures.
Results show a significant, robust response peaking in the second calendar quarter post-treatment,
where a 10 percentage point increase in outages leads to 16.4 (8) additional quarterly permits per
10,000 households for generators (solar-battery systems). Google search data suggests the 2021
freeze was widely associated with climate change for the first time, possibly explaining the adaptation
response absent in earlier events. Notably, in addition to finding weaker responses for lower-income,
less-educated, and high-minority neighborhoods, I also identify a one-quarter time delay in their
response, highlighting disparities in both adaptive capacity and promptness. Salience spillovers
further reinforce adaptation, which can be explained both by social connectedness and geographic
proximity. My findings underscore the need for public outage resiliency investments and regulation
to decrease unequal future exposure and policies that address inequities in climate resilience.1

Keywords: Extreme weather; Adaptation; Outage; Climate change; Event study; Dosage treatment

JEL-Codes: D12; Q54; L94

1A version of this chapter is published as ifo Working Paper No. 416. I am grateful for helpful comments from
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CUP E13C22001890001, Notice No. 341 of 15/03/2022 - Piano Nazionale di Ripresa e Resilienza (PNRR), Mis-
sion 4 Istruzione e ricerca – Component 2 Dalla ricerca all’impresa – Investiment 1.3, funded by the European Union
- NextGenerationEU.
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3.1 Introduction

Climate change is already in motion and the world is on track to exceed the 1.5°C target
from the Paris Agreement (2015), as reports from the current IPCC assessment cycle have empha-
sized (IPCC, 2022; IPCC Synthesis Report, 2023). While mitigation strategies for carbon abatement
remain important, it will, however, also become relevant to understand and optimally use adaptation
potentials to dampen the impacts of climate change. With climate change, adverse weather events and
extreme temperatures become more frequent (IPCC Synthesis Report, 2023) – and go beyond heat
and drought-related events. Natural scientists forecast breakouts of the polar vortex to happen more
frequently, causing extreme cold waves in North America and Europe (Cohen et al., 2018) – hitting
also historically mild regions further south. Extreme weather events are known to cause substantial
damages and experiencing natural disasters has an impact on households’ investment choices, such as
home ownership (Sheldon and Zhan, 2019). Most prolonged outages in the U.S. are caused by ex-
treme weather (Do et al., 2023) and Rubin andRogers (2019) reveal that many studies find prepared-
ness to play a key role in household resilience against major blackouts. Understanding households’
investments (or lack thereof) in adaptation and resilience is therefore vital, if policymakers want to
incentivize appropriate adaptation under equity considerations.

In this study, I analyze the aftermath of the Texas freeze in February of 2021. This cold wave brought
extreme negative °Celsius temperatures in a state that is used to mild winters. This caused severe
outages for multiple days, leaving millions of Texans without electricity during already challenging
weather conditions.2

Hence, I use the Texas case study to analyze adaptation behavior at the ZIP code level in the City of
Austin after this extreme weather event in order to understand (1) if and to what extent households
took up adaptive resiliency measures, (2) if there are socio-economic disparities in adaptive capacity,
(3) if there are salience spillovers to adaptation behavior. In an event study design, I analyze the causal
treatment effect of an absorbing one-off dosage treatment on adaptation investments, allowing for
varying treatment effects over time. The treatment is defined as exposure to the outages during the
freeze event. As a measure of adaptation I use a novel type of granular data collected on mandatory
installation permits for home electricity stand-by generators and rooftop-solar-battery systems. These
permits are required for any permanent building and electrical construction works to building struc-
tures and granted by the city or county. My identification strategy relies on an unanticipated treat-
ment event with parallel pre-trends, and on variation in treatment dosage via the outages. The causal
identification is supported by the assumption that the blackout treatment was as good as random, as

2See a report by the University of Texas at Austin (2021) on the timeline of events.
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it is uncorrelated with relevant observables. The treatment intensity (dosage) is a continuous variable
in terms of hours and customers blacked-out per ZIP code over the course of the outage event. This
allows a rich analysis of dosage effects instead of simple binary treatments.

My findings show a significant, prolonged treatment response, which peaks in the second calendar
quarter post-treatment, where a 10 percentage point increase in electricity service disruption leads
to 16.4 (8) additional quarterly permits per 10,000 households for generators (solar-battery systems).
Sample splits by socio-economic characteristics show policy-relevant heterogeneity in treatment re-
sponses. Notably, besides finding weaker responses for lower-income, less university-educated, and
high-minority neighborhoods, I also show a consistent one-quarter time delay in their response, in-
forming on disparities in both adaptive capacity and promptness. Salience spillovers further reinforce
adaptation, which can be explained both by social connectedness and geographic proximity.

The case of the Texas freeze with its subsequent blackouts is especially interesting to study for three
reasons. First, it is known that cold-stress causes damages and seems to induce adaptation behavior
(Yu et al., 2019). However, the literature on unanticipated cold-stress events is scarce, even though
multiple regions are seeing unusual cold events (Europe cold snap 2018, Texas freeze 2021, Spanish
snowstorm 2021), which can be associated with climate change (Cohen et al., 2018). Second, I study
a case, where the baseline level of cold-stress adaptation can be assumed to be very low, such that the
treatment effect can be cleanly measured. Despite two prior cold-stress events in 1989 and 2011, the
permits for electricity generators in my sample had been consistently low prior to the 2021 event,
while adequate public investments were missing, too. Google searches around the 2011 event did not
show a systematic association with climate change and historical permit data also does not show an
obvious investment response after this event, which speaks to the unpreparedness of households. In
contrast, Google searches during the 2021 event indicate a systematic association with climate change
and coincide with significant treatment effects found in this study. This suggests that the recent re-
sponse is likely motivated by adaptive resilience. Third, the adaptation interventions of cold-stress
and related blackouts have large policy relevance. For instance, household interventions against black-
outs from cold-stress (e.g., generators) also lead to benefits in the common case of heat-stress-related
blackouts, which are also amplified by climate change. Further, interventions against weather-related
blackouts are highly relevant for energy policy and low-carbon transitions. For instance, investments
in fossil-fuel-based home electricity generators can be regarded asmaladaptation from a climate policy
perspective, while investments in rooftop-solar-battery systems can be viewed as clean adaptation.

My research complements increasing efforts in the literature to study the potentials, instruments, and
issues of households’ investments in outage resilience and adaptation to climate change. There is evi-
dence for adaptation via mortality associated with temperature extremes (Barreca et al., 2016), where
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rural households exhibit less adaptive investments than urban households (Yu et al., 2019). This in-
dicates the relevance of equity aspects of adaptation but provides no further differentiation of dis-
parities. Noll et al. (2021) provide evidence on how household characteristics influence household
adaptation efforts but are constrained to survey data. Furthermore, households’ previous experience
of natural disasters also influences their housing investments (Sheldon and Zhan, 2019), and survey-
based salience of climate change and risk perception (Demski et al., 2016). This aligns with a study on
hurricanes, where Beatty et al. (2019) find systematic differences in ex-post disaster response regarding
bottled water, batteries, and flashlights as emergency supplies.

My work is most similar to very recently published studies that used blackouts and solar-PV-battery
installations inCalifornia to analyze the value of lost load (VOLL) (Brown andMuehlenbachs, 2024),
the technological complementarity of solar PV and storage (Bollinger et al., 2023), and the welfare
effects of these private substitutes for grid reliability via a calibrated theorymodel (Brehm et al., 2024).
All of these studies focus only on California, which is known for wildfire-related outages, and do not
take into account investments in home electricity generators in the empirical analysis.3 Hence, the
VOLL from Brown and Muehlenbachs (2024) and investments in private grid substitutes in Brehm
et al. (2024) can be expected to be lower bound estimates, as important alternatives to PVwith storage,
namely generators, are not considered.

To the best of my knowledge, this study is the first to look at causal adaptive responses to electricity
infrastructure disruptions during cold-stress events, using data from a state other thanCalifornia, and
working with actual archive data for stand-by electricity generators. Combining this with data on PV
with storage from the same data source, I am the first, to my knowledge, to estimate causal responses
for both types of investment alternatives, and providing an opportunity to compare them. I further
present a novel argument that responses are of adaptive nature not only with regards to grid inde-
pendency but also to climate change being a significant risk factor for outages. This is supported by
Google searchdata associating the extremeweather eventwith climate change. Myfindings contribute
to filling the literature gap on private adaptive resilience responses to cold-stress related disruptions of
critical infrastructure services, in light of dirty and clean intervention measures and socio-economic
inequities in adaptive capacity.

The remainder of this paper is organized as follows. Section 3.2 describes the treatment event and
provides some context, Section 3.3 introduces the data, Section 3.4 develops the empirical strategy,
Section 3.5 presents results, Section 3.6 discusses them, and Section 3.7 concludes.

3Brehm et al. (2024) present survey data on the general stock of generators as motivating empirical facts. However,
their causal estimation of treatment responses is based only on battery storage.
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3.2 The treatment event and background

Weather In February 2021, Texas was hit by an unusual, largely unanticipated cold wave that
caused two-digit negative °C temperature in a region that usually experiences mild winters (e.g., in
Austin in February the average maximum temperature is +19°C and average minimum temperature
is +7°C).4 The responsible winter storm lasted from February 13 to February 20 and its severity was
largely unanticipated by both the Electric Reliability Council of Texas (ERCOT) and the public. The
University of Texas at Austin (2021) report summarizes that by end of January, the expert commu-
nity on meteorology did indeed forecast a polar vortex event. However, weather models had issues
predicting the extent and severity of the temperature impacts at the regional level. As a consequence,
theweathermodel employed byERCOTunderestimated the temperature drop even shortly before its
arrival. Due to temperature being an important predictor of electricity demand, ERCOT’s demand
projections were also underestimated for the freeze event (University of Texas at Austin, 2021).

Electricity generation failures Despite some irregular previous cold wave events, e.g., in
1989 and 2011, the Texas power system was significantly impacted by the winter storm of 2021. In
particular, already on February 13, first major generation capacity began to fail and by February 14,
first supply shortages began to occur and cause grid instability. At the peak, about 40%of theERCOT
generation capacity (thermal and renewable capacity being both affected)was out, mainly directly due
to not being able to operate under the weather conditions, due to fuel or equipment issues or due to
being taken off-grid to avoid damages at the generation unit from low grid frequencies (ERCOT,
2021). The situation in Texas is special, as the power system is largely independent and hardly con-
nected to any neighboring power systems, which could have dampened the impact of regional gener-
ation outages through cross-border transmission. In response to the severe supply shortage, ERCOT
set electricity prices to the system price cap of $ 9,000 perMWh for multiple days, which particularly
harmed a minority of customers on real-time pricing plans (University of Texas at Austin, 2021).

Electricity outages The combination of generation failures, high demand, and lack of grid in-
terconnection with other states, led to severe outages over the course of multiple days from February
15 to February 18 (University of Texas at Austin, 2021), marking the outage treatment event period.
Starting on February 15, ERCOT had to order load shedding, i.e. controlled partial blackouts, so-
called brownouts5, to avoid a complete grid collapse. The procedure was as follows. ERCOT gave
ad-hoc load shedding quotas for the next 15 minutes to the transmission network6 operators, who

4See https://weather-and-climate.com.
5For simplicity, here and in the following, I use the terms outages and blackouts synonymously.
6high-voltage, long-range grid
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then had to fulfill these quotas by in return giving quotas to their distribution network7 operators.
It was the responsibility of the distribution network operators to finally decide ad-hoc, which cir-
cuits to cut-off in real-time in their area of operation. The majority of service disruption occurred in
this partially controlled but unsystematic manual manner and was complemented by automatic load
shedding. This refers to circuits being automatically cut-off by installed grid switches, when local grid
frequencies deviate beyond a certain threshold (University of Texas at Austin, 2021). Combined, this
led to quite some variation in outage patterns and fluctuations in the hourly share of blacked-out cus-
tomers across ZIP codes over the event window (FigureC.1). Overall, it was, hence, for customers not
possible to anticipate the timing, duration, and location of outages.

Precedence Texas had experienced two similar, major cold events with subsequent blackouts in
1989 and in 2011. There are some notable similarities and differences between the three events: In
terms of temperature lows, the cold spell in 1989 was comparable to the 2021 event, but lasted only
for three days. The week long cold spell in 2011 was similarly long as in 2021 but milder. Looking
at the extent of generation failures, both preceding events fall short of the 40 % generation failure in
2021 (FERC and NERC, 2011). Controlled outages in 1989 lasted for up to 10 hours at maximum
(differing by region) and for about 8 hours in 2011. While the market structure in 1989 consisted of
vertically integrated utilities without a joint market, the 2011 market structure was roughly the same
as in 2021. System price caps were reached for multiple hours in 2011, which were at the time set
at $ 3,000 per MWh (University of Texas at Austin, 2021). In summary, both events preceding the
2021 freeze fall slightly behind in terms of outages and economic impacts, however, both constitute
major preceding electricity supply disruptions. Somepolicy intervention effortswere undertaken after
2011, relating to weatherization of generation units and emergency planning, but they were largely
unsuccessful or not properly put into action (University of Texas at Austin, 2021).

3.3 Data

3.3.1 Electricity outages data

The relevant time frame for the blackout event is February of 2021, in particular, the main event
time being the outages in the Texan power grid from February 15 to February 18. Data for out-
ages is collected and published by electricity providers and tracked and aggregated by the data service
provider Bluefire Studios LLC (2023) on PowerOutage.US. I acquired historical outage data on the
eventmonth of February 2021 from this source at the hourly level for the state of Texas. In particular,
the data contains the hourly number of tracked customers and customers with interrupted service per
tracked location. Even if not the whole population is observed, this allows to keep track of how large

7lower-voltage, shorter-range grid
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the share of observed population is and to control for possible data quality issues here. The granular-
ity level of tracked locations depends on the tracking level of electricity providers, such that the most
granular location can be at the county, city, or ZIP code level. Generally, the more densely populated
an area, the more granular the tracking level. As I need sufficient variation in outages, I constrain the
data to locations tracked at the ZIP code level. The resulting data set is ZIP code-based panel data, not
household panel data, meaning that the total number of blacked-out customers is tracked without
being able to trace household-specific durations of outages.

Figure 3.1 provides insights into the extent of outages aggregated for the City of Austin. On the
vertical axis customers with interrupted service are plotted in the aggregate for all Austin ZIP codes as
a percentage share of total tracked customers. The event period from February 15 to February 18 is
highlighted in blue.

Figure 3.1: Share of hourly outages in percent for the City of Austin
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As the ZIP code-based treatment variation is lost in the aggregate plot in Figure 3.1, Table 3.1 presents
the summary statistics for the ZIP code-specific outage shares for the whole event period.

Table 3.1: Summary statistics of the ZIP code-specific outage share over the course of Feb 15 - Feb
18, 2021

Min. 1st Qu. Median Mean 3rd Qu. Max N=

0.000 7.412 24.760 22.450 32.830 66.730 44

3.3.2 Permit data

I use novel data on grid electricity substitutes. In particular, I have collected rich permit data from
city archive records for the City of Austin, Texas (2023). Specifically, I use permits for stand-by gen-
erators, rooftop solar PV, and battery storage installations. I concentrate on Austin for my study as
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both the outages data and permit data exhibit high quality. All permits track the exact street address,
permit type, exact application and issue dates of the permit, the permit status, and some even state an
expected dollar amount for the whole work planned for the project. The permit data is available not
only for years 2021 and 2022 following the blackout event but also dates back multiple decades. This
provides a rich basis to analyze pre-trends. The request or even the granting of an installation permit
is not a guarantee that the respective household will actually have a generator installed. Instead, the
permit data only records an intent and permission to take up this adaptation intervention. However,
given that households have to invest time, effort, and a permit fee to go through the permitting pro-
cess, which is often even done by an already contracted electric installation company, it is highly likely
that the work has already been planned and commissioned and that some type of binding agreement
already exists between the household and a contractor. It can therefore be assumed that the permits
constitute a credible commitment and hence a good proxy for the installation of this adaptationmea-
sure. It should be noted that permits aremandatory for permanently installed electrical modifications
such as stand-by generators, rooftop solar PV, and battery storage in this case – but not for portable
generators. The latter are hence not covered by the permit data but also do not represent a reliable
substitute for grid electricity due to low power and lack of weatherization compared to stand-by gen-
erators. A comparison of both generator types and battery systems for rooftop solar PV, including
their potential to bridge prolonged outages, is provided in Table C.1. On a general note, the permit
application itself is a complex bureaucratic process. It involves identifying the appropriate permit
type(s) among many, checking for any permit exemptions, investigating if the application should be
submitted by the homeowner or a contractor, and gathering all necessary information to fill the re-
spective web application forms. The process may also involve appointments with service units from
the City of Austin Permitting andDevelopment Center to receive support on the permitting process.

3.3.3 Socio-economic data

In order to control for socio-economic and socio-demographic characteristics of the population in the
empirical setting, I employ U.S. Census Bureau (2021) data from the American Community Survey
(ACS) at the ZIP code level. This pertains most importantly to population size but also includes data
on income, race, education, dwelling characteristics like owner-occupancy versus renter occupancy,
etc.

3.4 Empirical strategy

I develop my empirical design tailored to the characteristics of the study setting as follows.
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Treatment is simultaneous, one-time, absorbing, with no/few never-treated units
I use the last pre-treatment period as the omitted category,8 which is supported by the following iden-
tifying assumptions; (a) I assume that there are no relevant determinants of the outcome that are
correlated with time, as the pre-trend of generator permits is virtually flat at 0 and therefore a credible
counterfactual (Miller, 2023). This is further supported by the lack of anticipation of the event (along
the lines of Borusyak et al., 2023); (b) I assume that there are no confounders that change abruptly
with treatment. Exploiting such a discontinuity introduces some regression discontinuity design in
time (RDiT) properties to my study. However, as Hausman and Rapson (2018) point out, RDiT
designs do not handle time-varying effects well, which typically leads to bias in the treatment effect
estimates. This brings me to the next point.

Treatment effects likely fade over time This is due to salience fading over time and due
to long-run saturation effects (intuitively, once a household has acquired a generator, they will be
saturated over themedium-term). In order to allow for time-varying treatment effects, I finally decide
to use an event study set-up with time period dummies.

Treatment is continuous (non-binary) Units receive treatment in different intensities, i.e.,
there is continuous variation in treatment dosage. This presents an opportunity for richer insights
from dosage response effects. For identification, I further use the supporting assumption that the
blackout treatment dosage is as good as random due to the ad-hoc nature and institutional set-up of
the rolling brown-outs (see Section 3.2).

3.4.1 Threats to identification

Sample selection bias My sample is restricted by the availability of outage (i.e. the treatment)
data at the ZIP code level. This data is collected from electricity retail providers and aggregated by
a third party – however, not all electricity retailers are covered. It would be a concern if the outage
treatments were systematically correlated with the participation in outage statistics. This, however,
is not possible as it was up to the distribution system operators (DSO) to take final decisions on load
shedding, not electricity retail companies, andDSOs further do not share the same business operation
areas as retailers. For instance, the same retail company may be active in multiple DSO areas and
multiple retail companies can operate in the same DSO area.

Treatment selection bias When analyzing dosage treatment effects, the most relevant threat
to identification is possible endogeneity with regard to the treatment intensity. Two arguments, one

8Neither never-treated unit as in a DiD design, nor not-yet-treated units as in staggered adoption designs can be used
as a control group.
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anecdotal and one empirical, support the assumption that the outages were as good as random. (1)
The institutional set-up. Remember that the rolling blackouts were decided upon by DSOs, who re-
ceived load shed quotas from the transmission system operators, who in turn received quotas from
ERCOT (University of Texas at Austin, 2021). This means that the decision process of the DSOs
was significantly constrained due to themulti-layered quota cascade and the very short-term decision-
making. (2)Descriptive empirics. The biggest concernwould be if the treatment intensity were some-
what correlated with relevant predictors for permit applications. I therefore run regressions of the
treatment intensity on loggedmedian income and the share ofWhite population (twomajor inequal-
ity indicators and likely determinants of permit applications) and find no correlation (see Figure 3.2).

Figure 3.2: Tests for selection into treatment (intensity)
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Regression of outage treatment intensity on logged median income (left panel) and on the share of White population (right panel) for
Austin ZIP codes (without controls) with 95 % confidence bands.

Parallel trends assumption and lack of anticipation Intuitively, the parallel trends as-
sumption is likely to hold due to the seemingly randomnature of treatment discussed previously. Due
to the random treatment and the short-term forecast of the weather phenomenon, it is also unlikely
that households could anticipate treatment. Both of these intuitions are supported by the raw time
series data for permit applications. Even if aggregated for the whole City of Austin, in the 10 years
prior to treatment, the monthly total generator permit applications are between 0 and 10. For most
months the number is below 5. For reference, in this time frame the number of inhabitants in Austin
ranged between 800,000 and 1,000,000. A placebo test for the parallel trends assumption and lack of
anticipation is incorporated into the regression design and outlaid in Section 3.4.2.

Average dosage response effects As part of the most recent DiD and event study literature,
Callaway et al. (2024)havepointedout some issueswhenmeasuringdosage treatment effects inTWFE
event studies. Some of their concerns relating to selection bias and variation in treatment timing are
alleviated in my study, as treatment seems as good as random and is simultaneous. Further, Callaway
et al. (2024) emphasize that the measured dosage treatment effect is mainly driven by the treatment
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effect around the average dosage, i.e. inmy case the effect of a percentage point dosage increase around
the average dose. This has two implications; (1) any non-linear dosage response effects are lost, and
(2) high weight on the dosage response makes the interpretation of the results more difficult, if the
treatment dosage is not normally distributed around the average dose or if the distribution has fat tails.
Due to the small sample size, it is unlikely that the outage intensity is normally distributed. In fact,
a density plot (Figure C.2) reveals high weight especially to the left tail of the distribution and slight
bimodality. However, there is still substantial weight of the distribution around the mean, rendering
the dosage effect still informative, while being cautious about the above-named limitations.

3.4.2 Baseline model for the adoption of generators

I start out with an event study fixed-effects design with continuous treatment:

Genit = α +
∑
k≤−2

βkOuti ∗ Ipre{k = t}+
∑
k≥0

γkOuti ∗ Ipost{k = t}+ δi + εit (3.1)

where indices i and t represent the ZIP code area and time period in quarters (treatment in t = 0),Out
is the treatment intensity, Ipre and Ipost are indicator functions for the pre- and post-treatment time pe-
riod dummies, δ are unit fixed effects.9 The omitted category for the treatment effect is the last period
before treatment, t = −1. Further, Out is a continuous treatment intensity in percentage share of
blacked-out customer×hours in the event period and themain variable of interest. Customer×hours
is a measure jointly capturing the number of hours, in which a ZIP code experienced outages (exten-
sive margin) and the number of households affected in each hour (intensive margin). I provide more
detail on how this variable is constructed in Appendix C.1. Finally, Gen is the continuous outcome
variable, measuring the generator permit applications per 10,000 households.10

As stated in my previous assumptions, the treatment is unanticipated and exhibits parallel pre-trends
such that all pre-treatment coefficients (βk) should be zero. In essence, I could therefore also reduce
equation (3.1) to

Genit = α +
∑
k≥0

γkOuti ∗ Ipost{k = t}+ δi + εit ∀ (t ≥ −1) (3.2)

where t− 1 remains the omitted category. However, I can exploit equation (3.1) with the pre-period
9I opt to not use time fixed effects, as the pre-treatment data shows generator permit applications quite stable

throughout, i.e. being very robust to time-varying external factors (e.g., macroeconomic environment). Furthermore,
I aim to capture time-varying treatment effects. These would otherwise be absorbed by time fixed effects, as there is no
variation in treatment timing (see Borusyak et al., 2023, for a related discussion).

10Note that I have aggregated the analysis at the quarterly level due to noisiness of the monthly data.
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treatment dummies included as a placebo test for parallel trends and lack of anticipation (as discussed
in de Chaisemartin and D’Haultfœuille, 2023). Given that the results are robust to the placebo test,
I can proceed by using the simplified model in equation (3.2).

To shed light on linearity of treatment effects, I also estimate amodel where the continuous treatment
variable is categorized into tertile bins:

Genit = α +
∑
k≥0

γkTertilei ∗ Ipost{k = t}+ δi + εit ∀ (t ≥ −1) (3.3)

3.4.3 Adoption of rooftop solar PVwith storage

The permit application data likewise contains data for PVwith storage. This presents an opportunity
to use this as a second outcome measure, as both options can be set-up in a way to provide back-up
power during amulti-day outage. One could argue that generators, however, leave households vulner-
able to fuel shortages (and price spikes), which can be expected to occur during such extreme events.
PV with storage, meanwhile, also serves an additional benefit beyond outage resilience thanks to pos-
sible usage throughout the year – not just during outages. In addition, considering decarbonization
and air pollution abatement efforts of current policies, generators may be seen as a maladaptation
intervention compared to clean and regularly employable rooftop-solar-battery systems.

I hence run a similar specification, where I change the outcome variable to permits mentioning PV in
combination with storage capacity (PVStor). This covers both new installations of combined solar-
battery-systems as well as retrofits of already existing PV installations through the addition or expan-
sion of battery capacity.

I also add a control variable for permits for PV-only systems, i.e. without any mention of storage, to
control for general PV adoption trends, incentive policies, and investment incentives from electricity
price signals. By measuring the net effect between PV-only and PV-battery investments, I capture the
grid independence incentive because PV-only installations are not a viable grid electricity substitute
for two reasons. Without a battery, PV can only provide electricity during sunny hours – which, even
for sunny weather, leaves evening and night-time hours uncovered. Second, in Austin, electricity gen-
erated fromPV installations is usually fed back into the grid, for which the household is remunerated,
while the household gets charged for the gross electricity consumed. In this case, the household phys-
ically consumes grid electricity even in hours in which the PV installation generates more electricity
than the household consumes. Hence, such a PV-only installation would not grant grid indepen-
dence in the case of an outage. Only combined systems with batteries provide an option for actual
self-sufficiency, which is the effect I aim to capture. Figure 3.3 graphically illustrates how, since the ar-
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rival of battery adoption in theAustinmarket (around quarter -16), permits for combined PV-storage
systems follow similar trends as permits for PV-only. This is further supported by a simple OLS esti-
mation, ZIP-code-wise regressing PVStor on PVnoStor for quarters -16 to -1 (Table C.2). I hence add
permits for PV-only systems as a control PVnoStor and obtain

PVStorit = α+
∑
k≤−2

βkOuti ∗ Ipre{k = t}+
∑
k≥0

γkOuti ∗ Ipost{k = t}+PVnoStorit+ δi+ εit (3.4)

I refrain from adding additional controls or fixed effects, as PVnoStor and PVStor are driven by essen-
tially the same conditions (high electricity prices, PV incentive policies, etc.).

Figure 3.3: Parallel trends of permits for PV with and without storage
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Permits for PV-only systems on the left axis. Permits for combined PV-storage on the right axis. Since the start of battery adoption in the
Austin PVmarket (around quarter -16), both exhibit similar overall trends in the 4 years preceding the event.

3.4.4 Model extensions

In order to understand the dynamics behind treatment effects and possible disparities, I develop
two additional sets of analyses with regard to socio-economic heterogeneity in treatment effects and
salience spillovers.

Socio-economic heterogeneity

Even if socio-economic characteristics seem to have not played a relevant role in treatment assignment,
theymay have an impact of the adaptive capacity of households. Thiswould have distributional impli-
cations on the resilience and future disaster preparedness of households and can lead to systematic dif-
ferences in vulnerability during future events. I therefore test for heterogeneous treatment effectswith
regard to socio-economic aspects. I extend the baseline models for generators and PV with storage by
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adding a dummy for the ZIP code being above the samplemedian for a socio-economic characteristic.
This is essentially performing a sample split by a socio-economic characteristic. This approach does
not provide any causal inference and some of these characteristics are likely correlated. However, it
does provide valuable insights into systematic differences in treatment effects based on policy-relevant
characteristics, while keeping statistical power with a relatively small sample size. For the example of
generators, the regression equation becomes:

Genit = α+
∑
k≤−2

(βk+ϑkDi)∗Outi∗Ipre{k = t}+
∑
k≥0

(γk+ζkDi)∗Outi∗Ipost{k = t}+δi+εit (3.5)

whereD is a dummy variable for a socio-economic characteristic, such as income, the share of White
population, education attainment, etc. It is equal to 1 for ZIP codes above the sample median and 0
otherwise. Themain treatment effect coefficients γ (and the placebo coefficients β), now represent the
treatment effect for the bottom half of the sample split, while ζ is the additional effect for the top half
(and their placebo coefficient ϑ). Consequently, the total treatment effect for the top half is given by
the sum of γ and ζ.

Treatment effect spillovers

Since salience is a relevant factor for household adaptive responses, there is a possibility that thismech-
anism is intensified by how affected the social environment of a household was by treatment. Mea-
suring spillovers is particularly relevant in contexts with variation in treatment without systematic
clustering. Section 3.4.1 has already laid out the absence of systematic clustering of outages by in-
come and the share ofWhite population of neighborhoods. Mapping out the outage intensity across
ZIP codes in Figure 3.4 shows that also spatial clustering is limited. Often, spillovers are measured
via the geographical proximity of two households. However, the social interactions through which
experiences are shared, play a major role in how spillovers happen. I therefore use the social connect-
edness index at the ZIP code level (Humanitarian Data Exchange, 2021), as introduced by Bailey et
al. (2020), to measure spillovers between two ZIP codes.

The social connectedness index (SCI) measures the number of friend connections on Facebook be-
tween two geographical areas, weighted by the product of total Facebook users in each of the two
areas, scaled to range from 0 to 1,000,000 (equation 3.6). Conceptually, the SCI therefore measures
the likelihood that two given users from the two areas are friends on Facebook.11 Hence, the SCI

11Hence, the index is robust to different levels of social media penetration.
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Figure 3.4: Spatial variation of treatment intensity
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proxies how socially intertwined two regions are.12

SCInm =
connectionsnm
usersn ∗ usersm

(3.6)

Figure 3.5a shows that the within-sample pairs in my data are not particularly sampled in terms of the
relationship of distance and SCI (except for all being inAustin), compared to pairswith out-of-sample
ZIP codes. It also illustrates that while, generally, the SCI and distance are inversely correlated, there
are some outliers where the SCI is higher or lower thanwould be predicted by distance (holds both for
within and out-of-sample pairs) – i.e. SCI is a spillover measure that can only imperfectly be proxied
by distance, especially for very low distances.

I adjust my empirical model to consider the treatment intensity of all other ZIP codes in the same
city, weighted by the SCI with ZIP code i and interact it with a dummy indicating whether t > 0,
i.e. simply whether after the treatment period. To avoid collinearity with the ZIP code FE, instead of
estimating a fixed effectsmodel, I perform a simpleOLS estimationwith a vectorX of socio-economic
and dwelling controls:

Genit = α +
∑
k≥0

γkOuti ∗ Ipost{k = t}+ η
∑
j̸=i

SCIij ∗ Outj ∗ Postt + Xi + εit ∀ (t ≥ −1) (3.7)

For comparison, I run the same specification with inverted log distance as the spillover weighting:
12The SCI is calculated based on October 2021 data and is not available as a time series. However, studies suggest that

social networks change little over time (Bailey et al., 2021; Kuchler et al., 2022).
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Figure 3.5: Social connectedness across Austin
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Left panel: Scatterplot of Austin ZIP codes and their distance and social connectedness to other ZIP codes up to 50 miles distance. Blue
scatter points mark pairs where both ZIP codes are within this study’s sample.

Right panel: Network graph of social connections between within-sample ZIP codes. Darker and thicker connections represent higher
social connectedness.

Genit = α+
∑
k≥0

γtOuti ∗ Ipost{k = t}+ η
∑
j̸=i

1
log(Distanceij)

∗Outj ∗Postt+Xi+ εit ∀ (t ≥ −1)

(3.8)

3.5 Results

3.5.1 Treatment effect for generators

Continuous treatment intensity I begin my estimating the baseline model for generators
from equation (3.1). Here and in all following reported results, I use HC1 cluster-robust standard
errors and adjust significance thresholds for a t-distribution, both to account for small numbers of
clusters.13 As expected, pre-treatment effect coefficients are not statistically different from zero. This
confirms the parallel trends assumption and provides justification to simplify the model for further
analyses without the placebo coefficients (see also Table 3.2). The results of the event study are graph-

13All results are, however, very robust to using conventional p-values, for which sets of results are reported in Ta-
ble C.7 and Figure C.6 to Figure C.9.
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ically reported in Figure 3.6a. It can be observed that in the treatment period itself (t = 0) treatment
shows no statistical effect yet. This is not surprising, as t is measured in calendar quarters, such that
the treatment event falls in the middle of the t = 0 period. Figure 3.6a also graphically illustrates the
importance of allowing for time-varying effects, as the treatment ramps up to full effect by quarters
2-3 and then begins to fade out. An intuitive mechanism behind this would be a lag in households’
investment response (e.g., due to other ad-hoc disaster issues, time-consuming collection of informa-
tion, decision processes, and bureaucratic procedures) but also salience of the experienced treatment
fading out over time and possibly saturation. As the outcome variable is measured in permit applica-
tions per 10,000 households, the interpretation of the coefficient is as follows. An increase in one per-
centage point14 of disrupted supply service15 led to 0.077 additional generator permit applications per
10,000 households in quarter 1, 0.164 in quarter 2, etc. Or in more intuitive magnitudes, an increase
of 10 percentage points in service disruptions led to 16.4 additional generator permit applications per
10,000 households at the peak in quarter 2 after treatment. For comparison, in the 10 years prior
to the event, the median (mean) number of quarterly permit applications for generators per 10,000
households was around 3.5 (4.3) in Austin. Although the effect is likely not linear, a treatment ef-
fect of 16.4 additional permits for a 10 percentage point increase of outages, when average outages
were recorded at 22.4 %, speaks to the order of response magnitude. Even around two years later, in
quarter 7 after treatment, generator permit applications per 10,000 households still remain higher by
6 applications.

Figure 3.6: Treatment effect coefficients for generator-related permits

(a) Continuous treatment
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The period preceding the treatment period is omitted (t = −1).

14around the average dosage and not ruling out non-linear dosage effects. See the discussion in Callaway et al. (2024).
15Perfect service equals 0 % outage intensity.
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Table 3.2: Treatment effect coefficients for generator-related permits with continuous treatment

Dependent variable:

Gen_per10kHH
Continuous/FE Continuous/FE

(1) (2)

Out:‘T-8‘ −0.008
(0.017)

Out:‘T-7‘ −0.007
(0.017)

Out:‘T-6‘ −0.007
(0.017)

Out:‘T-5‘ −0.007
(0.016)

Out:‘T-4‘ −0.005
(0.016)

Out:‘T-3‘ −0.004
(0.016)

Out:‘T-2‘ 0.003
(0.016)

Out:T0 0.008 0.008
(0.014) (0.027)

Out:T1 0.077∗∗∗ 0.077∗∗∗
(0.018) (0.022)

Out:T2 0.164∗∗∗ 0.164∗∗∗
(0.033) (0.032)

Out:T3 0.158∗∗∗ 0.158∗∗∗
(0.023) (0.026)

Out:T4 0.116∗∗∗ 0.116∗∗∗
(0.030) (0.030)

Out:T5 0.097∗∗∗ 0.097∗∗∗
(0.018) (0.022)

Out:T6 0.087∗∗∗ 0.087∗∗∗
(0.019) (0.026)

Out:T7 0.060∗∗∗ 0.060∗∗∗
(0.016) (0.022)

FE ZIP ZIP
clust-rob. SE ZIP ZIP
Observations 688 387
R2 0.521 0.702
Adjusted R2 0.477 0.657
Residual Std. Error 2.760 (df = 630) 2.804 (df = 336)
F Statistic 12.002∗∗∗ (df = 57; 630) 15.819∗∗∗ (df = 50; 336)

Note: Based on t-distribution: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Treatment intensitytertiles I nowmove to a decomposition by treatment intensities, where
I assign units to tertiles of treatment intensity. Tertile1 is assigned to the ZIP codes that were in the
lowest tertile of treatment intensity, Tertile3 to the ones in the highest. Since I can exploit the fact
that up to treatment, the outcome variable was virtually constant, the treatment effect ofTertile1 also
provides an idea of the magnitude of the salience effect, as this group was hardly treated. The results
are plotted in Figure 3.6b.16 For Tertile1 the point estimates of the treatment effect show a distinct
discontinuity between pre-treatment and the treatment period versus post-treatment periods. This
effect, which is likely to a high degree driven by salience, is only small but quite persistent. However,
the effect is only statistically significant at the 5 % level in quarters 2 and 3.

In contrast, treatment effect coefficients of Tertile2 and Tertile3 are much stronger and significant
at the 5 % or 1 % level from quarter 1 on, which are intuitive results. However, it is surprising that
in all periods, despite being not statistically different from each other, point estimates for Tertile2
exceed the ones of Tertile3, particularly in early periods. This suggests that the treatment effects
are not at all linear in dosage. Concretely, the treatment effect of Tertile2 peaks at 7.47 additional
generator permit applications per 10,000 households in quarter 2, while for Tertile3 the peak is
achieved one period later, in quarter 3, at only 4.95 additional permit applications. This general
pattern is also confirmed by a robustness check dividing treatment groups by quartiles (Figure C.3).
These results may seem unintuitive at first sight but a possible mechanism is the following. Neigh-
borhoods that experienced the most outages, have likely experienced not just minor inconvenience
and discomfort, but more severe structural damages and disruptions caused by the outages (e.g.,
burst pipes due to electric heating failure) and may have even temporarily relocated.17 Hence,
heavily affected households may have prioritized time, effort, and income investment in repairing
these damages and returning to daily routines, over investing in long-term resilience measures –
which would explain both the weaker and slower response. More generally, the results suggest
that for investments in generators, it matters whether to have been substantially hit by outages or
not – but experience of very extreme outages does not translate to even stronger investment responses.

Overall, the magnitude of treatment effects may not seem immense in absolute numbers at first sight.
However, compared to the median 3.5 quarterly permits per 10,000 households in Austin in the 10
years preceding the event, the treatment effects are indeed substantial. It should also be considered

16Regression table in Table C.3.
17The City of Austin, Texas (2025) reports, e.g., 381 public water pipeline damages, 200 housing complexes without

water access due to damages in private plumbing infrastructure, 1,500 emergency water shut-offs, 164 hours with neg-
ative °C temperatures in Austin and Travis County. In a survey by Jones et al. (2024), Texans were most likely to report
difficulties in food/ grocery supply, loss of internet service, loss of electricity service, and loss of access to drinkable and
running water; 18 % of Texans who lost power at home, sought shelter elsewhere.
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that for the stock of generators in a population, the treatment effects need to be accumulated over
time. For instance, for the ZIP codes in Tertile2 on average this led to a cumulative additional 31.5
generator permit applications per 10,000 households18 in the 2 years after treatment. Generally, it
can be assumed that the found estimates are a lower bound of generator-related investment responses
to the outage event, as my data does not cover lower-cost portable generators. It should be noted,
however, that portable generators are unweatherized and less powerful. They are, hence, usually not
suited for powering entire homes during extreme weather conditions. With my estimates I therefore
capture the type of generators that represent viable grid electricity substitutes.

3.5.2 Treatment effect for rooftop solar PVwith storage

Continuous treatment intensity Analogous to the analysis of generator permit applica-
tions, the placebo coefficients before treatment also confirm the parallel trends assumption for PV
with storage permit applications (Figure 3.7a), allowing me to concentrate on the post-treatment pe-
riod coefficients in subsequent analyses. The event study for PV with storage shows a similar pattern
as for generators, with statistically significant treatment effects building up until about quarter 3 and
then starting to fade out again. Themagnitude of effects, however, is smaller. At the peak in quarter 3,
a 10 percentage point increase in electricity supply disruption led to 8 additional permit applications
for (retrofits of) rooftop PV with storage per 10,000 households.

Figure 3.7: Treatment effect coefficients for PV with storage-related permits
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0.00

0.04

0.08

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
Quarter

C
oe

ffi
ci

en
t a

nd
 9

5%
 C

I

(b) Tertile treatment

0

2

4

−1 0 1 2 3 4 5 6 7
Quarter

C
oe

ffi
ci

en
t a

nd
 9

5%
 C

I

Treatment Tertile Tertile1 Tertile2 Tertile3

The period preceding the treatment period is omitted (t = −1).

Treatment intensity tertiles The analysis by treatment intensity tertiles is presented in Fig-
ure 3.7b. Tertile2 and Tertile3 exhibit significant treatment effects in virtually all post-treatment

18counting only significant effect coefficients.
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periods. However, a linear treatment effect that is systematically lowest for Tertile1 and highest for
Tertile3, cannot be confirmed. A possible intuition behind this could be that PVwith storage seems a
reasonablemeasure to all treatment groups, as it can be employed throughout the year and not only as
a back-up option – i.e. treatment intensity possiblymattering relatively less here than in the generator
analysis to justify investment.

3.5.3 Socio-economic disparities in adaptive capacity

I now turn to the heterogeneity analysis of adaptive capacity by socio-economic characteristics of
neighborhoods. Figure 3.8 plots the treatment effects for generators (Figure 3.8a) andPVwith storage
(Figure 3.8b) for repeated sample splits of the ZIP codes based on 7 socio-economic and dwelling char-
acteristics; namely median household income, the share ofWhite population, the share of Black pop-
ulation, the share of population aged 25 years or older holding a Bachelor or higher degree, the share
of population aged 65 years or older, the share of owner-occupied (as opposed to renter-occupied)
housing, and the share of single-unit buildings. Each plot shows the main effect for the bottom half
of the sample split and the total effect for the top half of the sample split (main effect + interaction
effect).19

For generators, population characteristics seem to bemore relevant to reinforced treatment responses
than dwelling characteristics. Neighborhoods with higher income, higher share ofWhite population,
higher education, and older population exhibit stronger responses to increased treatment intensity,
while neighborhoodswith higher shares of Black population exhibit weaker treatment responses. The
most striking heterogeneity is found for income, racial composition, and high education attainment
of ZIP codes – characteristics, which can be correlated. Possible mechanisms driving this could be
higher financial means for investments, better understanding of the recurrence risk and the bureau-
cratic procedures for permit applications, and systemic privileges. It is interesting that ZIP codes with
a high share of population of retirement age show a reinforced response to treatment intensity. A
possible reason could be that elderly people are more vulnerable to outages, e.g., due to lower mobil-
ity exacerbated by loss of indoor lighting, fewer social contacts providing community support, higher
dependence on electric household or medical appliances, or decreased tolerance of low room temper-
atures during loss of heating. Regarding dwelling characteristics, it could be expected that owning
your home and living in an independent 1-unit building could increase your ability and liberty to in-
stall a generator. Notably, I find no evidence that these dwelling characteristics are associated with a
statistically significant increase of the treatment response. One notable, heterogeneous pattern in the
timing of treatment responses can be observed across all sample splits. Not only do the ZIP codes in
the bottom half of the sample split (top half for the share of Black population) react more weakly to

19The same set of plots showing only the interaction effects is presented in Figure C.5.
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treatment, but they also consistently react more slowly. Note how the above-median sub-samples all
peak in quarter 2, while all the below-median sub-samples peak in quarter 3 (inversely for the share of
Black population). This underlines the advantages of estimating time-varying effects. This observa-
tionwould be consistentwith the earlier suggestion that adaptive capacity is constrained inmagnitude
and also promptness, due tohurdles like financial constraints and completing bureaucratic procedures
– exacerbated by systemic under-privileges.

The results for PV with storage are less clear-cut. Point estimates for the interaction effects are gener-
ally positive (negative for the share of Black population), this suggests that disparities exist also in the
treatment response for PVwith storage. However, magnitudes are smaller and inmost cases the inter-
action effects are not statistically different from zero. Nonetheless, this could be routed in the overall
very small numbers of permit applications for PV with storage per ZIP code and quarter, possibly
leading to noisy estimates.

3.5.4 Salience spillovers

Table C.6 reports the results from the analysis of salience spillovers based on distance (column 1) and
based on social connectedness (column 2). Both spillover measures exhibit a highly significant co-
efficient for the interaction with a post-treatment dummy. This highlights the important role that
salience plays in adaptive responses, where salience can be increased through interaction with affected
population groups. While coefficient sizes cannot be compared between the two measures because
they are in different units, the coefficient and standard errors suggest that social connectedness ex-
plains salience spillovers even slightly better than geographic proximity.

3.6 Discussion and policy implications

Concerning the adaptive nature of investments, a descriptive analysis of Google search data suggests,
that the 2021 responsemay indeed have been also a climate change adaptation-related behavior. While
both during the similar event in 2011 and in 2021, searches for blackout-related keywords saw a spike,
the search patterns for the reasons and climate context of the cold spell look very different between
the two events (Figure 3.9). It seems that the 2011 event left Texans mainly puzzled about how an
unusual snowstorm occurs in times of global warming (upper panel), as other climate change-related
keywords saw virtually no response. Notably, also no striking response in terms of generator permits
was recorded (Figure 3.10). In contrast, following the 2021 event (lower panel of Figure 3.9), Texans
seemed to understand the weather event as a polar vortex breakout and its possible relationship with
climate change (and thus risk of recurrence) after being hit the second time in 10 years. Note how,
after the 2021 event, searches now also spike for themore sophisticatedweather phenomena andmore
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Figure 3.8: Heterogenous treatment effects by socio-economic characteristics

The period preceding the treatment period is omitted (t = −1).
Above median (total effect) is plotted as the sum of the main effect point estimate and the interaction effect.
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differentiated climate-related keywords. This suggests that the very clear response after the 2021 event
that I find econometrically and that is also visible from the time series in Figure 3.10, may also be an
adaptive resilience response to the impacts of climate change-related extreme weather. This intuition
is in line with survey results in Jones et al. (2024), who find that 69 % of Texans expect that due to
climate change, Texas will more negatively impacted by extreme weather events than 30 years ago.

Figure 3.9: Relative Google search interest in Texas for multiple keywords
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Google (2023) Search interests are aggregated at the weekly level. Most popular search interest among a keyword comparison of a given
time period is normalized to 100. The black vertical line in each plot marks the freeze event week.

My results also complement suggestions and findings of recent literature on similar dynamics.

To recap, the two interventions in this study, generators and PV with storage, each embody distinct
advantages and disadvantages.20 Generators have lower upfront cost and can run as long as fuel is
available (e.g., through emergency tanks). It is possible to pre-stock fuel in larger amounts, however,
once it runs out, households are exposed to possible fuel shortages and price spikes during prolonged
disaster events. Running a generator always causes marginal (fuel) cost, such that they are an inferior
substitute when cheaper grid electricity is available. In contrast, PV installations with storage have

20See also the complementary comparison in Table C.1.
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Figure 3.10: Generator-related permits (time series)
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Dashed lines mark the 2011 and 2021 freeze events. Cumulative number for the City of Austin.

higher upfront cost and bureaucratic hurdles (e.g., tax incentives, feed-in remuneration). The dura-
tion of emergency supply via the battery depends on its initial charging level and the size of the battery.
When sun is absent (likely the case during awinter storm), no re-charge is possible. But once installed,
they can be used year-round and generate electricity bill savings. Now, I find a stronger treatment ef-
fect for generators than for PV with storage. Abstracting from local policy incentives for PV (with or
without storage), Texas is a state with excellent sun conditions for rooftop solar PV. Given that I still
find generators amuchmore widely chosen interventionmeasure, my results suggest that studies con-
sidering only PV with storage as grid substitutes, substantially underestimate both the value of lost
load (Brown and Muehlenbachs, 2024)21 and the welfare implications of grid independency invest-
ments (Brehmet al., 2024,who also leave social damages fromcarbon and air pollutant emissions from
generators unconsidered). All of these considerations are even reinforcedwhen considering that I only
observe stand-by generators and not portable generators. Despite portable generators being only an
imperfect substitute for grid electricity due to lower power, they represent a much lower-barrier in-
vestment both in terms of financial and bureaucratic barriers. Ongoing work by Harris (2023) on
portable generators suggests that they likely saw a rise in sales, too. Brehm et al. (2024) point out that
private investments in grid substitutes decrease the level of efficient public investments in grid relia-
bility. In this context, it is important to consider that if many households invest in generators because
PVwith storage is less accessible to them (financially, bureaucratically), this leaves them unequally ex-
posed to fuel shortages, fuel price spikes, and air pollution from generator emissions (Lin andKassem,
2025). This has important distributional implications for optimal public grid reliability investments
and disaster damage exposure.

21The authors acknowledge this by presenting their VOLL estimate as a lower-bound estimate for this precise reason.
My study results strongly support this rationale.
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Myfinding of socio-economic disparities in the adaptive capacity and promptness of response also has
relevant implications for support policies. First, I obtain the same average timing of response peaks as
Brehm et al. (2024), despite using different data, a different geographical location, and a different type
of extreme event causing the outages. This suggests, that the timing of responses is consistent across
different settings. However, I find that behind these aggregate effects, more weakly reacting neigh-
borhoods also react more slowly than average. This should be addressed in post-disaster aid policies.
They are often tied to a specific time window after the event, which should be long enough to also ac-
commodate delayed responses of disadvantaged households. Policies could also be designed to specif-
ically facilitatemore prompt responses for disadvantaged households, e.g., lowering financing barriers
and providing support in facing procedural barriers. In addition to that, even if I do not find signif-
icant evidence for disparities regarding dwelling characteristics, policymakers should address the fact
that some households do not have any adaptive capacity due to their housing situation. For instance,
landlords may not allow permanent modifications such as generator or PV-battery installations, and
multi-unit housing restricts individual installation decisions.

My work comes with some limitations. Firstly, the data sample size is relatively small and restricted to
ZIP codes in Austin. This is due to the fact Austin exhibited both good data quality and historical
time span of the city archive data on permits, as well as good data quality and granularity of the outage
data. This combination was not given for other major cities. Secondly, I can only exploit one single,
large-scale outage event caused by cold-stress. Such events are rare andmy outage datawas constrained
to February 2021. With a larger data sample and longer time span of outage data, e.g., more refined
econometric estimations would be possible without losing statistical power, and effects of repeated
treatment could be analyzed.

3.7 Conclusion

Climate change is associated with an increase of extreme weather events (IPCC Synthesis Report,
2023). While heat stress and drought-related weather anomalies receive much attention, cold-stress
events, whose frequency is also associatedwith climate change (Cohen et al., 2018), are also causing re-
curring service disruptions of critical infrastructure. A lack of public investments in adaptive resiliency
measures can leave households exposed andmay induce private responses. I analyze household invest-
ment responses in Austin after experiencing prolonged outages during an extreme cold-stress event
in Texas in 2021. In particular, I collect and analyze novel data on permit applications for electricity
home generators and rooftop-solar-PV installations with storage. Using event study methods with
time-varying treatment effects and a continuous treatment dosage, I find that at the peak, an increase
of 10 percentage points in grid electricity service disruption during the treatment event, led to 16.4 (8)
additional quarterly permit applications for generators (solar-PV-battery systems) per 10,000 house-
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holds. For comparison, the very stable baseline level of generator permit applications in Austin was
at a median of around 3.5 quarterly permits per 10,000 households in the preceding 10 years, while
mean treatment dosage was recorded at 22.45 %. Accounting for salience spillovers shows significant
treatment spillovers both based on geographic proximity and social connectedness of neighborhoods.

These response results are particularly interesting from a climate change adaptation angle. Based on
Google search data, during a similar prior event in 2011, the public did not make a systematic associa-
tion of the cold wave with climate change and historical time series data shows that clear responses
in investments in generators were absent. In the 2021 event instead, Google search data reveals a
systematic association with climate change, coinciding with my finding of significant investment re-
sponses after this event. Time-varying effects show that the response builds up after the treatment
event, peaks in the second quarter after treatment, and then begins to fade out. A subsequent het-
erogeneity analysis via sample splits based on socio-economic characteristics shows, that ZIP codes
with lower median income, higher minority shares, lower share of university education, and lower
share of retirement-age population exhibit not only a weaker but also consistently slower response to
treatment (peaking in quarter 3 instead of 2). This muted magnitude and delay of response could
both be a consequence of e.g., financial constraints, hurdles to completing bureaucratic procedures,
or systemic under-privileges. These systematic differences illustrate the heterogeneity of households’
adaptive capacity both in terms of magnitude and promptness – leaving underprivileged households
more vulnerable and less prepared for recurring extreme weather events.

In summary, my findings show that cold-stress events can induce adaptive resilience responses in
households through the channel of major electricity disruptions and that both fossil and renewable
resilience interventions are sought out, but the former dominate. This provides an opportunity for
policymakers to incentivize renewable intervention options, given that a household chooses to invest.
Policymakers should at the same time consider that households have heterogeneous adaptive capacity
based on socio-economic characteristics. Policies should be designed to prevent households with less
adaptive capacity from systematic vulnerability during recurring extreme weather events, as long as
public, exposure-decreasing resiliency investments are missing.
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A.1 Supplementary information

Fuel price adjustment The approach for the adjustment of fuel prices is best explained by an
example: Wewant to derive a reference level ofmarginal cost r for power plant x at a certain day t. This
means that for an exemplary bid bwithin the calculation basis B, submitted at time t− 20 for power
plant x, we can derive a hypothetical efficiency rate ε∗ that would justify the observed bid level b under
the assumption of competitive bidding. Subsequently we use this efficiency rate ε∗, as well as current
input prices at time t to calculate an adjusted bid b′ which becomes part of the adjusted calculation
basis B′. Equation (A.1) shows the first step, where we equate the past bid b on the LHS with the
marginal cost calculation on the RHS.

b(x)(t−20) =
Fuelprice(t−20) + CO2price(t−20) ∗ CO2intensity

ε∗
+ O&M+ Taxes&Levies (A.1)

We solve equation (A.1) for ε∗, which captures the level of competitiveness of bid b in t−20. We then
employ this hypothetical efficiency rate ε∗ to calculate b′ at time t, i.e. the adjusted bid that reflects
both, the level of competitiveness of bid b in t− 20, as well as fuel and emission prices at time t.

b′(x)(t) =
Fuelprice(t) + CO2price(t) ∗ CO2intensity

ε∗
+ O&M+ Taxes&Levies (A.2)

We apply this procedure to each bid in B and end up with the adjusted calculation basis B′ that in-
corporates the competitiveness of bids, net of changes in input prices. From this calculation basis, we
then derive the reference level r.
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A.2 Tables

Table A.1: Overview of variable cost input data for coal and gas-fired generation

Data type Content Scope Source

Plant
efficiencies

Plant-specific efficiency figures where
possible; or else average efficiencies acc. to
year of commissioning

All coal/ gas-fired
plants bid into the
day-ahead in 2017

Global Energy Observatory

Coal prices Daily spot prices for imported coal + RSI 2017 Bloomberg MFE1 COMB

Natural gas
prices

Daily spot prices for gas prices in the
Iberian gas market

2017 MIBGAS Data 2017,
product GDAES_D+1

EUA prices Daily spot prices for EU-ETS allowances
(EUAs)

2017 Bloomberg EEXX03EA

National
environ-
mental
taxes

1) Taxes on use/ disposal of input
resources 2) Energy generation tax (all
technologies)

Power plants on
Spanish territory; Rate
levels of 2017

Ley 15/2012 Título I, Título
III; Comisión Nacional de
Energía (2013)

Clawback
rate

Charge to compensate for unequal tax
burdens

Power plants on
Portuguese territory;
Rate levels of 2017

Decreto-Lei n.º 74/2013
Artigo 1.º; EDP (2018)

Variable
O&M costs

Median variable O&M costs per MWh Coal and gas-fired
plants, dataset of 2015

IEA and NEA (2015)

Table A.2: Overview of magnitudes of parameters applied in the marginal cost estimation

Data type Value Source

Clawback charge Portugal 6.50e /MWh until 16.11.2017
4.75e /MWh as of 17.11.2017

Decreto-Lei n.º 74/2013
Artigo 1.º; EDP (2018)

Energy generation tax Spain 7 % of revenue Ley 15/2012 Título I

Fossil fuel consumption tax Spain 0.65e /GJ Ley 15/2012 Título III

Variable O&M cost coal 2.52e /MWh IEA and NEA (2015)

Variable O&M cost gas 3.18e /MWh IEA and NEA (2015)

Net calorific value hard coal (averaged for Spain’s
main import origins Russia, Colombia, Indonesia)

7.333MWh/t United Nations (2015)
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Table A.3: Deviation of reference levels from true marginal cost in relative terms ine /MWh

NYISO Best-resp. Start-up Clustering

# Plants covered 92 92 84 93

1st Qu. -2.71 -1.19 -4.09 -2.15
Mean 7.76 3.66 1.52 -1.27
Median 2.71 2.96 -1.77 0.80
3rd Qu. 11.92 5.79 5.97 1.02
SD 15.33 10.26 11.34 4.16
Min. -8.39 -24.02 -19.53 -12.30
Max 61.53 42.63 53.76 3.22

Positive values signify that the respective approach delivers higher values than
the bottom-up calculation. Deviation is defined as the difference between de-
rived daily reference levels and the true marginal cost we calculated bottom-up.
In total, there are 93 power plants in our sample from 01.04.2017–31.03.2018.

Table A.4: Surplus in millione

BAU NYISO Best-response Start-up Clustering

#Mitigated hours 0 45 54 32 57
Buyer surplus 26,803 26,830 26,832 26,823 26,841
Supplier surplus 10,216 10,189 10,188 10,196 10,180
Total welfare 37,018 37,019 37,020 37,019 37,020
True supplier surplus 8,426 8,399 8,396 8,406 8,390
True total welfare 35,229 35,230 35,227 35,229 35,231

Sample period 01.04.2017–31.03.2018.
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Table A.5: Mitigated hours by approach

Datetime NYISO Best-response Start-up Clustering Total

2017/04/30 07:00:00 1 0 0 1 2
2017/04/30 10:00:00 1 0 0 1 2
2017/04/30 11:00:00 1 0 0 1 2
2017/04/30 12:00:00 1 0 0 1 2
2017/04/30 13:00:00 1 0 1 1 3
2017/04/30 14:00:00 1 0 1 1 3
2017/04/30 15:00:00 1 0 1 1 3
2017/04/30 16:00:00 1 0 1 1 3
2017/04/30 17:00:00 1 0 1 1 3
2017/04/30 18:00:00 1 0 1 1 3
2017/11/03 08:00:00 1 1 1 1 4
2017/11/20 07:00:00 0 0 0 1 1
2017/11/20 18:00:00 0 0 0 1 1
2017/11/23 19:00:00 0 0 0 1 1
2017/11/30 05:00:00 1 1 1 1 4
2017/12/01 02:00:00 0 1 1 0 2
2017/12/01 05:00:00 0 1 1 0 2
2017/12/02 02:00:00 1 1 1 1 4
2017/12/03 07:00:00 0 1 1 1 3
2017/12/05 18:00:00 0 0 0 1 1
2017/12/05 19:00:00 0 0 0 1 1
2017/12/06 19:00:00 0 0 0 1 1
2017/12/09 02:00:00 0 0 1 0 1
2017/12/09 18:00:00 0 0 0 1 1
2017/12/09 19:00:00 0 0 0 1 1
2017/12/10 02:00:00 1 1 1 1 4
2017/12/12 02:00:00 1 1 1 1 4
2017/12/12 06:00:00 1 0 1 1 3
2017/12/13 06:00:00 1 0 1 1 3
2017/12/14 02:00:00 1 1 1 1 4
2017/12/14 06:00:00 1 1 1 1 4
2017/12/15 06:00:00 1 1 1 1 4
2017/12/16 02:00:00 1 1 1 1 4
2017/12/17 20:00:00 0 0 0 1 1
2017/12/18 01:00:00 1 1 0 1 3
2017/12/20 02:00:00 1 1 1 1 4
2017/12/20 05:00:00 1 1 1 1 4
2017/12/21 02:00:00 1 1 1 1 4
2017/12/21 05:00:00 1 1 1 1 4
2017/12/22 02:00:00 1 1 1 1 4
2017/12/22 05:00:00 1 1 1 1 4
2017/12/23 02:00:00 1 1 1 1 4
2017/12/24 02:00:00 1 1 1 1 4
2017/12/30 06:00:00 0 0 0 1 1
2018/01/01 01:00:00 1 1 0 1 3

Continued on next page
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Datetime NYISO Best-response Start-up Clustering Total

2018/01/01 02:00:00 1 1 1 1 4
2018/01/01 03:00:00 0 1 0 0 1
2018/01/01 04:00:00 0 1 0 0 1
2018/01/01 05:00:00 0 1 0 0 1
2018/01/01 06:00:00 0 1 0 0 1
2018/01/01 07:00:00 0 1 0 0 1
2018/01/01 08:00:00 0 1 0 0 1
2018/01/01 09:00:00 0 1 0 0 1
2018/01/01 10:00:00 0 1 0 0 1
2018/01/01 11:00:00 0 1 0 0 1
2018/01/01 12:00:00 0 1 0 0 1
2018/01/01 13:00:00 0 1 0 0 1
2018/01/01 14:00:00 0 1 0 0 1
2018/01/01 15:00:00 0 1 0 0 1
2018/01/01 16:00:00 0 1 0 0 1
2018/01/03 00:00:00 1 0 1 1 3
2018/01/03 02:00:00 1 0 0 1 2
2018/01/03 03:00:00 1 0 0 1 2
2018/01/03 04:00:00 1 0 0 1 2
2018/01/03 05:00:00 1 0 0 1 2
2018/01/03 06:00:00 1 0 0 1 2
2018/01/04 01:00:00 0 1 0 1 2
2018/01/04 02:00:00 1 1 0 1 3
2018/01/04 03:00:00 1 1 0 1 3
2018/01/04 04:00:00 1 1 0 1 3
2018/01/04 05:00:00 1 1 0 1 3
2018/01/05 01:00:00 1 0 0 1 2
2018/01/06 00:00:00 0 1 0 0 1
2018/01/07 01:00:00 1 1 0 1 3
2018/01/07 02:00:00 1 0 1 1 3
2018/03/18 03:00:00 0 1 0 0 1
2018/03/18 04:00:00 0 1 0 0 1
2018/03/18 05:00:00 0 1 0 0 1
2018/03/18 06:00:00 0 1 0 0 1
2018/03/18 07:00:00 0 1 0 0 1
2018/03/18 08:00:00 0 1 0 0 1
2018/03/18 14:00:00 0 1 0 0 1
2018/03/18 15:00:00 0 1 0 0 1
2018/03/18 16:00:00 0 1 0 0 1
2018/03/18 17:00:00 0 1 0 0 1

A value of 1 corresponds to a failed impact test and thus mitigation. The first column shows the hour starting at the indicated time, e.g.,
the entry 15:00:00 corresponds to the hour 15:00–16:00, which is hour 16 of a day.
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Supplementary Materials to Chapter 2



B.1 Supplementary information

Optimization constraints

Demand constraints Equation (B.1) ensures to meet an exogenous given demand dr (h, t),
which can be reduced by allowing for lost load Lr (h, t) (demand-equals-supply constraint). The dif-
ference of demand and lost load is final consumption. Total supply from generation

∑
i,v Yir (h, v, t),

storage operations (discharge including discharge losses η−jr (v) less charge, second line), and trans-
mission operations (imports including import losses ηk,rr,r less exports including export losses ηk,r,rr,
third line; μk,r,rr describes the mapping of regions that are eligible for transmission exchange) must be
higher than consumption by distribution grid losses ηlossr (t) .

Equation (B.2) ensures that there is sufficient back-up capacity in every region to meet demand and
refrains from accounting for the possibility of lost load (resource adequacy constraint). We work with
capacity credits α that indicate the secured amount of capacity for each technology. Storage charge and
exports does not play any role here due to the fact that those operations hamper to meet the adequacy
target.

dr (h, t)− Lr (h, t)
ηlossr (t)

=
∑
i,v

Yir (h, v, t)

+
∑
j,v≤t

(
Y−jr (h, v, t) η

−
jr (v)− Y+jr (h, v, t)

)
+

∑
μk,rr,r

Yk,rr,r (h, t) ηk,rr,r −
∑
μk,r−rr

Yk,r,rr (h, t)
ηk,r,rr

∀ (h, r, t) , (B.1)

dr (h, t)
ηlossr (t)

=
∑
i,v

αiQir (h, v, t)

+
∑
j,v≤t

αjQ−
jr (h, v, t) η

−
jr (v)

+
∑
μk,rr,r

αkQk,rr,r (h, t) ηk,rr,r ∀ (h, t) . (B.2)

Generation constraints Equation (B.3) restricts generation by available capacity (capacity
constraint). βirnw(i),r (h, v) ∈ [0, 1] is hourly availability of the subset of intermittent renewables
irnw (i) (solar PV, wind onshore, wind offshore, hydro), γnot irnw,r (h, v) ∈ [0, 1] is hourly availability
for all other technologies (bioenergy, bio-CCS, gas-OCGT, gas-CCGT, gas-ST, gas-CCS, coal, coal-
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CCS, lignite, oil, nuclear, and geothermal) following frommonthly generation patterns and reliability
assumptions. We further have βnotirnw(i) = γirnw(i) = 1.

Equations (B.4) and (B.5) describe the movement of capacity over time (capacity stock constraints).
Equation (B.4) describes the movement of existing capacities qbaseir (v) that is still active at tbase (the
beginning of the planning horizon). Equation (B.5) describes the movement of added capacity.
Λi (v, t) ∈ [0, 1] is a lifetime parameter that describes the respective active share of capacity. En-
dogenous decommissioning is permitted from tbase + 1 onward. We relinquish to show the respective
constraints that avoid early decommissioning of existing capacities in tbase already. Existing or added
capacity, respectively, is capable of reaching the end of the specified lifetime. Additionally, 50\%might
be still active 5 years later, and 30% even 10 years later. We further specify Λ

(
tbase

)
,Λ

(
tbase + 1

)
= 1

for existing capacities to avoid distortions from enforced decommissioning in early periods although
those existing capacities are still active in reality. We then apply the 50% or 30%metric with one period
lag.

Equation (B.6) enforces monotonic decommissioning of capacity (monotonicity constraint), that is,
ensures that already decommissioned capacity cannot be build up again. Equation (B.7) enforces that
overall capacity does not exceed a certain limit qlimir (t) (capacity limit constraint). Equation (B.8) en-
forces investments that are alreadyplannedorunder constructionbutnot commissioned yet iqir(v)pipe

(pipeline constraint). This constraint is particular important in tbase + 1 = 2020 for wind and so-
lar investments but also in later periods when it is about ongoing nuclear projects. We work with
an adapted 2015 calibration that already contains lots of investments until the end of 2020 that are
enforced in the model by this pipeline constraint. Equation (B.9) restricts expansion of intermit-
tent renewable energies according to their resource potential by quality class (resource potential con-
straint). In particular, we consider three classes (high, mid, low) of wind onshore, wind offshore,
and solar PV potential. μirnw(i) (class) is the mapping of the respective intermittent technology to
its class. qlimir (class) is then the upper limit of the respective quality class (GW). Equation (B.10) re-
stricts annual usage of biomass (biomass constraint). bio (i) is the subset of technologies using biomass,∑

bio(i)
∑

h,v≤t
1

ηir(v)
Yir (h, v, t) is used biomass, and biolimr (t) the annual limit per region (both in

GWh thermal). Equation (B.11) restrict overall storage of carbon in the ground (stored carbon con-
straint). ccs(i) is the subset of carbon-capture-and-storage (CCS) technologies, εCCSir the capture rate
(ton/GWh electric), and sclimr is the region-specific potential of storing carbon in the ground (ton).
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Yir (h, v, t) ≤ βir (h, v) γir (h, v)Qir (v, t) ∀ (i, r, h, v ≤ t, t) , (B.3)

Qir (v, t) ≤ qbaseir (v)Λi (v, t) ∀
(
i, r, v ≤ tbase, t

)
, (B.4)

Qir (v, t) ≤ IQir (v)Λi (v, t) ∀
(
i, r, tbase < v ≤ t, t

)
, (B.5)

Qir (v, t) ≥ Qir (v, t+ 1) ∀
(
i, r, v ≤ t, t < tend

)
, (B.6)∑

v≤t
Qir (v) ≤ qlimir (t) ∀ (i, r, t) , (B.7)

IQir (v) ≥ iqpipeir (v) ∀
(
i, r, tbase < v

)
, (B.8)∑

μirnw(i)(class)

∑
v≤t

Qir (v, t) ≤ qlimir (class) ∀
(
μirnw(i)(class), r, t

)
, (B.9)

∑
bio(i)

∑
h,v≤t

Yir (h, v, t)
ηir (v)

≤ biolimr (t) ∀ (r, t) , (B.10)

∑
ccs(i)

∑
h,v,t

εCCSir (v)Yir (h, v, t) ≤ sclimr ∀ (r) . (B.11)

Storage constraints Equation (B.12) restricts storage charge by storage capacity (charge con-
straint). Equation (B.13) restricts storage discharge by storage capacity (discharge constraint). Equa-
tion (B.14) restricts the storage balance by storage size (size constraint). For parsimony, we assume a
fixed relation between charge and discharge capacity to the storage size with hoursjr (v) being a con-
stant parameter (in hours) for each technology-region pair. Equation (B.15) describes the movement
of stored energy over time (balance constraint), including hourly storage losses ηhjr (v) and charge losses
η+jr (v) (discharge losses η

−
jr (v) enter the demand-equals-supply constraint (B.1)). Equations (B.16)

and (B.17) are the capacity stock constraints, Equation (B.18) is themonotonicity constraint, Equation
(B.19) the capacity limit constraint, andEquation (B.20) the pipeline constraint. Those five constraints
mirror equations (B.4) to (B.8) from the set of generation constraints.
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Y+jr (h, v, t) ≤ Qjr (v, t) ∀ (j, r, h, v ≤ t, t) , (B.12)

Y−jr (h, v, t) ≤ Qjr (v, t) ∀ (j, r, h, v ≤ t, t) , (B.13)

Bjr (h, v, t) ≤ Qjr (v, t) · hoursjr (v) ∀ (j, r, h, v ≤ t, t) , (B.14)

Bjr (h, v, t) = Bjr (h− 1, v, t) ηhjr (v)

+Y+jr (h, v, t) η
+
jr (v)− Y−jr (h, v, t) ∀ (j, r, h, v ≤ t, t) , (B.15)

Qjr (v, t) ≤ qbasejr (v)Λj (v, t) ∀
(
j, r, v ≤ tbase, t

)
, (B.16)

Qjr (v, t) ≤ IQjr (v)Λj (v, t) ∀
(
j, r, tbase < v ≤ t, t

)
, (B.17)

Qjr (v, t) ≥ Qjr (v, t+ 1) ∀
(
j, r, v ≤ t, t < tend

)
, (B.18)∑

v≤t
IQjr (v) ≤ qlimjr (t) ∀ (j, r, t) , (B.19)

IQjr (v) ≥ iqpipejr (v) ∀ (j, r, v) . (B.20)

Transmissionconstraints Equation (B.21) restricts transmissionbetween eligible regionpairs
to the overall amount (over all vintages) of transmission capacity (trade constraint). Equations (B.22)
and (B.23) are the capacity stock constraints, Equation (B.24) is themonotonicity constraints, Equation
(B.25) is the limit constraint, andEquation (B.26) is the pipeline constraint. Those five constraintsmir-
ror equations (B.4) to (B.8) from the set of generation constraints. qlimk,r,rr is the upper limit of possible
transmission expansion and grows over time to account for the political will to increase interchange
in Europe but still limits expansion to a socially acceptable level. iqpipek,r,rr reflects plans of transmission
system operators to reach a 25% interconnectivity target and contains already planned projects.

Yk,r,rr (h, t) ≤
∑
v≤t

Qk,r,rr (v, t) ∀
(
μk,r,rr, h, t

)
, (B.21)

Qk,r,rr (v, t) ≤ qbasek,r,rr (v)Λk (v, t) ∀
(
μk,r,rr, v ≤ tbase, t

)
, (B.22)

Qk,r,rr (v, t) ≤ IQk,r,rr (v)Λk (v, t) ∀
(
μk,r,rr, t

base < v ≤ t, t
)
, (B.23)

Qk,r,rr (v, t) ≥ Qk,r,rr (v, t+ 1) ∀
(
μk,r,rr, v ≤ t, t < tend

)
, (B.24)∑

rr,v≤t
IQk,r,rr (v) ≤ qlimk,r,rr (t) ∀

(
μk,r,rr, t

)
, (B.25)

IQk,r,rr (v) ≥ iqpipek,r,rr (v) ∀
(
μk,r,rr, v

)
. (B.26)
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B.2 Tables

B.2.1 Electricity demand and fuel prices from the CGE calibration

Table B.1: Annual electricity demand (TWh)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 63 64 78 91 137 147 156 163
Belgium 83 82 96 107 131 157 181 196
Bulgaria 30 30 35 36 37 39 41 43
Croatia 16 16 17 18 18 20 23 25
Czech Republic 59 63 116 121 125 133 141 149
Denmark 32 32 37 35 39 47 52 56
Estonia 7 8 9 11 12 12 13 14
Finland 80 73 83 79 80 82 87 91
France 448 450 759 768 813 868 926 986
Germany 528 534 832 843 843 874 910 950
Greece 52 53 58 54 58 63 68 71
Hungary 38 37 44 53 67 71 75 81
Ireland 26 26 31 32 39 42 45 49
Italy 297 319 421 562 597 644 689 735
Latvia 6 7 8 9 10 12 12 13
Lithuania 10 12 18 18 17 18 19 20
Luxembourg 6 6 7 8 11 14 15 17
Netherlands 109 113 148 186 189 199 210 226
Norway 119 124 131 126 158 168 179 190
Poland 139 143 164 179 229 267 280 293
Portugal 47 52 61 62 66 70 73 76
Romania 47 47 54 58 60 67 74 80
Slovak Republic 25 27 34 39 48 56 58 60
Slovenia 13 13 15 17 19 22 23 24
Spain 239 247 313 367 494 523 543 568
Sweden 128 133 159 161 232 248 265 282
Switzerland 58 61 67 71 117 128 139 151
United Kingdom 311 317 358 389 435 489 533 595

Table B.2: Exemplary fuel prices for Germany (e/MWh thermal)

2015 2020 2025 2030 2035 2040 2045 2050

Bioenergy 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
Coal 8.35 8.22 8.09 7.94 7.79 7.68 7.58 7.49
Lignite 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
Gas 20.65 20.34 20.01 19.63 19.27 18.99 18.74 18.53
Oil 40.26 40.84 41.18 41.58 42.14 42.74 43.51 44.34
Uranium 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33

Bioenergy, lignite, and uranium prices are the same for each country. Coal, gas, and oil prices
slightly differ reflecting results from the CGE calibration. However, differences are not decisive
with regard to overall competitiveness of technologies in certain regions.
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B.2.2 Technology parameters

Table B.3: Efficiencies of generation technologies

2015 2020 2025 2030 2035 2040 2045 2050

Bioenergy 0.20 0.20 0.21 0.21 0.21 0.22 0.22 0.23
Bio-CCS 0.16 0.16 0.17 0.17 0.17 0.18 0.18 0.18

Gas-CCGT, Gas-ST 0.59 0.60 0.61 0.62 0.62 0.62 0.62 0.62
Gas-CCS 0.47 0.48 0.49 0.50 0.50 0.50 0.50 0.50
Gas-OCGT 0.42 0.44 0.45 0.46 0.46 0.47 0.47 0.47

Coal 0.45 0.47 0.48 0.49 0.49 0.49 0.49 0.49
Coal-CCS 0.36 0.37 0.38 0.39 0.39 0.39 0.39 0.39
Lignite* 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
Oil* 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

Geothermal 0.09 0.11 0.11 0.12 0.13 0.13 0.14 0.14
Nuclear 0.59 0.60 0.61 0.62 0.62 0.62 0.62 0.62

Efficiency estimates aremainly from JRC (2014). See Siala et al. (2022);Mier et al. (2023) formore details.
Values refer to state-of-the-art capacities from the respective vintage.
*Lignite and oil values refer to 2015 vintages in the respective period becausewe do not observe any lignite
and oil expansion in our results.

Table B.4: Carbon emission factors (ton/GWh electric) of generation technologies

2015 2020 2025 2030 2035 2040 2045 2050

Bio-CCS -855 -855 -805 -805 -805 -760 -760 -760

Gas-CCGT, Gas-ST 347 341 335 330 330 330 330 330
Gas-CCS 42 41 40 39 39 39 39 39
Gas-OCGT 507 484 473 463 463 453 453 453

Coal 797 763 747 732 732 732 732 732
Coal-CCS 94 91 89 86 86 86 86 86
Lignite* 838 838 838 838 838 838 838 838
Oil* 910 910 910 910 910 910 910 910

Emission factor estimates are mainly from JRC (2014). See Siala et al. (2022); Mier et al. (2023) for more
details. Values refer to state-of-the-art capacities from the respective vintage.
*Lignite and oil values refer to 2015 vintages in the respective period becausewe do not observe any lignite
and oil expansion in our results. Bioenergy, geothermal, and nuclear are emission neutral.
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Table B.5: Investment cost (e/kW) of generation technologies

2015 2020 2025 2030 2035 2040 2045 2050

Bioenergy 4,322 4,236 4,149 4,149 4,106 4,063 4,063 4,020
Bio-CCS 6,322 6,236 6,149 6,149 6,106 6,063 6,063 6,020

Gas-CCGT, Gas-ST 850 850 850 850 850 850 850 850
Gas-CCS 1,495 1,495 1,495 1,495 1,495 1,495 1,495 1,495
Gas-OCGT 437 437 437 437 437 437 437 437

Coal 1,500 1,500 1,440 1,410 1,395 1,380 1,380 1,365
Coal-CCS 3,415 3,415 3,278 3,210 3,176 3,142 3,142 3,108
Lignite* 1,640 1,640 1,640 1,640 1,640 1,640 1,640 1,640
Oil* 822 822 822 822 822 822 822 822

Geothermal 12,364 11,993 11,622 11,498 11,251 11,127 11,004 11,004
Nuclear** 7,600 7,006 6,346 6,082 5,818 5,488 5,488 5,356

Solar 1,300 1,027 936 858 819 780 741 715
Wind offshore 3,600 3,024 2,700 2,520 2,376 2,268 2,160 2,088
Wind onshore 1,520 1,397 1,368 1,339 1,325 1,310 1,310 1,296

Cost estimates are mainly from JRC (2014). See Siala et al. (2022); Mier et al. (2023) for more details. Values refer to
state-of-the-art capacities from the respective vintage.
*Lignite andoil values refer to 2015 vintages in the respective periodbecausewedonot observe any lignite andoil expansion
in our results.
** JRC (2014) provides estimates for nuclear power ranging from 4,000–6,000e/kW in 2013 to 3,350–5,000 in 2050 for
Generation III LightWater Reactor, i.e., cost are expected to fall. Social cost of nuclear are often neglected in energy system
analysis as it is decommissioning cost and cost of storing nuclear waste. Given cost estimates of around 6,000 e/kW for
installingnuclear facilities, estimates are around1,000e/kWfordecommissioning them. However, the timingof those cost
at the very end of the respective life times impedes their appropriate consideration. In fact, a discount rate of 7% leads to the
considerationof only 100e/kWdecommissioning cost. Moreover, experiences fromGermany show that decommissioning
cost are substantially higher in Europe. We thus opt for an approach, where firms need to pay a decommissioning premium
of 1,000e/kW into a decommissioning fund at time of construction, so that 2020 investment cost are at 7,000 (instead of
6,000)e/kW.
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B.2.3 Air pollution emission profiles

Table B.6: Air pollution emission intensities (g/GJ thermal)

2015 2020 2025 2030 2035 2040 2045 2050

NH3
Bio-CCS 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84
Bioenergy 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28
Coal 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.23
Coal-CCS 0.90 0.87 0.84 0.81 0.78 0.75 0.72 0.69
Gas-CCGT, Gas-OCGT, Gas-ST, Oil 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gas-CCS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Lignite 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

NMVOC
Bio-CCS, Bioenergy 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31
Coal, Coal-CCS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
Lignite 1.40 1.35 1.31 1.26 1.21 1.17 1.12 1.07
Oil 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30

NOx
Bio-CCS, Bioenergy 76.42 73.77 71.13 68.48 65.84 63.19 60.55 57.90
Coal, Coal-CCS 72.50 71.23 69.96 68.69 67.43 66.16 64.89 63.62
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 31.01 30.62 30.24 29.85 29.46 29.07 28.69 28.30
Lignite 72.50 71.64 70.78 69.92 69.07 68.21 67.35 66.49
Oil 56.60 54.57 52.54 50.51 48.49 46.46 44.43 42.40

PM10
Bio-CCS, Bioenergy 31.81 31.81 31.81 31.81 31.81 31.81 31.81 31.81
Coal, Coal-CCS 7.70 6.85 6.00 5.15 4.30 3.45 2.60 1.75
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Lignite 7.90 6.85 5.80 4.75 3.71 2.66 1.61 0.56
Oil 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20

PM2.5
Bio-CCS, Bioenergy 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94
Coal, Coal-CCS 3.40 3.14 2.87 2.61 2.35 2.09 1.82 1.56
Gas-CCGT, Gas-OCGT, Gas-ST, Gas-CCS 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Lignite 3.20 2.81 2.43 2.04 1.65 1.26 0.88 0.49
Oil 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30

SO2
Bio-CCS, Bioenergy 10.80 10.24 9.68 9.12 8.57 8.01 7.45 6.89
Coal 63.45 59.74 56.03 52.32 48.60 44.89 41.18 37.47
Coal-CCS 50.76 47.79 44.82 41.85 38.88 35.91 32.95 29.98
Gas-CCGT, Gas-OCGT, Gas-ST 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
Gas-CCS 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
Lignite 91.20 81.44 71.68 61.92 52.16 42.40 32.64 22.88
Oil 70.70 68.69 66.67 64.66 62.64 60.63 58.61 56.60

Emission intensities are displayed for each vintages and thus include technological progress of abatement measures that differ for each air
pollutant. The literature provides lower and upper bounds as well as medium range emission factors (EPA, 1995; Cai et al., 2012; EEA,
2019; Juhrich and Becker, 2019). The displayed ones showmedium range emission factors.
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B.2.4 GDP and population projections

Table B.7: GDP projections (billion 2015-e)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 436 474 511 546 589 636 683 728
Belgium 528 566 606 654 719 797 877 960
Bulgaria 56 62 67 71 75 79 83 86
Croatia 57 62 65 69 75 82 88 94
Czech Republic 204 223 238 258 277 297 317 338
Denmark 346 388 429 463 499 542 590 643
Estonia 26 29 31 33 35 38 40 41
Finland 271 287 303 323 350 382 413 445
France 2,841 3,066 3,270 3,488 3,763 4,094 4,435 4,820
Germany 3,850 4,091 4,328 4,490 4,640 4,855 5,097 5,334
Greece 234 241 246 256 275 295 306 316
Hungary 137 148 165 180 194 207 217 231
Ireland 250 282 306 333 363 393 420 455
Italy 2,132 2,273 2,409 2,556 2,733 2,939 3,144 3,385
Latvia 31 35 39 42 44 47 50 52
Lithuania 47 54 57 58 59 63 67 71
Luxembourg 65 74 84 95 108 123 138 154
Netherlands 876 938 987 1,028 1,083 1,153 1,230 1,317
Norway 507 555 601 654 715 785 861 936
Poland 542 622 698 769 826 881 919 947
Portugal 228 245 266 281 296 309 319 330
Romania 198 222 243 261 278 297 317 338
Slovak Republic 99 114 128 144 156 164 169 173
Slovenia 49 53 58 62 65 70 74 78
Spain 1,376 1,510 1,652 1,793 1,936 2,061 2,141 2,264
Sweden 570 630 697 765 847 937 1,033 1,131
Switzerland 700 776 859 950 1,055 1,172 1,300 1,430
United Kingdom 2,984 3,188 3,366 3,611 3,948 4,354 4,780 5,215

World 78,242 90,573 104,038 119,466 136,834 155,959 175,894 196,762
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Table B.8: Population projections (million)

2015 2020 2025 2030 2035 2040 2045 2050

Austria 8.64 8.92 8.98 9.04 9.07 9.06 9.01 8.93
Belgium 11.27 11.54 11.70 11.83 11.93 12.01 12.06 12.09
Bulgaria 7.18 6.92 6.66 6.38 6.10 5.84 5.59 5.36
Croatia 4.20 4.04 3.93 3.82 3.70 3.56 3.43 3.30
Czech Republic 11 11 11 11 11 11 11 11
Denmark 5.68 5.83 5.94 6.03 6.10 6.17 6.21 6.25
Estonia 1.32 1.33 1.30 1.27 1.24 1.21 1.18 1.15
Finland 5.48 5.53 5.56 5.55 5.52 5.50 5.48 5.45
France 66.55 67.20 68.01 68.54 68.87 69.09 69.18 69.09
Germany 81.69 83.15 82.55 82.22 81.72 80.93 79.80 78.53
Greece 10.82 10.66 10.38 10.15 9.93 9.71 9.48 9.20
Hungary 9.84 9.74 9.58 9.40 9.18 8.94 8.73 8.52
Ireland 4.70 4.98 5.14 5.27 5.38 5.50 5.60 5.68
Italy 60.73 60.18 59.51 58.59 57.64 56.62 55.29 53.59
Latvia 1.98 1.89 1.81 1.73 1.66 1.60 1.55 1.50
Lithuania 2.90 2.76 2.64 2.54 2.44 2.35 2.26 2.18
Luxembourg 0.57 0.63 0.66 0.69 0.72 0.74 0.76 0.78
Netherlands 16.94 17.38 17.55 17.65 17.67 17.61 17.48 17.29
Norway 5.19 5.39 5.62 5.83 6.03 6.21 6.37 6.52
Poland 37.99 37.91 37.57 36.95 36.09 35.09 34.12 33.19
Portugal 10.36 10.25 10.11 9.95 9.77 9.57 9.34 9.08
Romania 19.82 19.25 18.82 18.35 17.84 17.31 16.82 16.30
Slovak Republic 5.42 5.46 5.44 5.39 5.30 5.19 5.07 4.96
Slovenia 2.06 2.09 2.08 2.06 2.03 2.00 1.97 1.93
Spain 46.44 47.13 46.87 46.46 45.93 45.30 44.51 43.49
Sweden 9.80 10.34 10.61 10.83 11.01 11.19 11.38 11.55
Switzerland 8.28 8.63 8.90 9.13 9.32 9.47 9.59 9.68
United Kingdom 65.12 67.16 68.44 69.54 70.48 71.36 72.13 72.74

World 7,339 7,754 8,140 8,501 8,836 9,145 9,426 9,676
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B.2.5 Social cost of air pollution

Table B.9: 2020 weighted average of SCAP (e/ton) by impact category and air pollutant (1)

Average AT BE BG CH CZ DE DK EE EL

Human health
NH3 16,543 19,650 36,698 9,475 14,214 28,161 21,930 11,964 8,563 7,149
NMVOC 1,039 1,702 2,633 -87 1,301 980 1,394 957 273 259
NOx 8,003 11,803 9,576 7,235 20,071 9,885 11,574 5,131 1,903 2,553
PM10 1,019 789 2,441 634 549 939 1,493 591 241 500
PM2.5 23,105 24,759 33,185 15,381 26,800 27,356 36,745 11,805 7,360 11,544
SO2 9,844 11,300 13,504 7,551 16,003 11,381 13,067 6,214 5,397 7,207

Loss of biodiversity
NH3 5,790 6,483 3,342 1,382 14,710 8,897 10,510 2,297 5,585 1,118
NMVOC -129 -80 -60 -14 -177 -146 -356 -82 -50 -17
NOx 1,570 1,276 1,100 229 2,567 2,413 2,435 1,426 941 325
PM10 0 0 0 0 0 0 0 0 0 0
PM2.5 0 0 0 0 0 0 0 0 0 0
SO2 583 402 480 32 424 731 944 630 349 69

Regional crops
NH3 -281 -97 -133 -125 -207 -211 -106 -149 -11 -318
NMVOC 319 119 432 35 254 228 470 334 51 51
NOx 356 324 1 214 784 390 629 212 55 149
PM10 0 0 0 0 0 0 0 0 0 0
PM2.5 0 0 0 0 0 0 0 0 0 0
SO2 -112 -73 -111 4 -214 -100 -195 -127 -26 -5

Materials
NH3 0 0 0 0 0 0 0 0 0 0
NMVOC 0 0 0 0 0 0 0 0 0 0
NOx 116 141 78 82 120 203 156 121 52 88
PM10 0 0 0 0 0 0 0 0 0 0
PM2.5 0 0 0 0 0 0 0 0 0 0
SO2 435 355 461 178 387 850 733 425 165 142

SCAP data comes from theNEEDS Project (https://cordis.europa.eu/project/id/502687/de). The project page, https://needs-project.org,
is no longer available. Data and further documents can be now accessed via the project page of the University of Stuttgart, https://www.ier.
uni-stuttgart.de/forschung/modelle/ecosense/.
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Table B.10: 2020 weighted average of SCAP (e/ton) by impact category and air pollutant (2)

ES HU FI FR HR HU IE IT LT LU

Human health
NH3 6,024 22,941 5,302 14,423 19,968 22,941 3,028 16,842 7,296 29,975
NMVOC 546 810 294 1,178 992 810 859 857 547 2,554
NOx 3,034 11,998 1,905 10,928 9,590 11,998 4,149 8,406 5,868 11,334
PM10 489 1,119 74 1,040 819 1,119 384 1,073 366 1,355
PM2.5 11,273 27,537 4,921 27,382 23,825 27,537 9,386 22,115 10,308 32,757
SO2 7,391 10,882 3,742 10,548 11,005 10,882 7,651 10,455 6,809 14,702

Loss of biodiversity
NH3 2,705 5,335 3,090 5,224 7,844 5,335 635 9,755 3,905 11,331
NMVOC -43 -82 -55 -95 -100 -82 -34 -130 -49 -136
NOx 851 1,822 1,266 1,570 2,167 1,822 668 1,894 940 2,541
PM10 0 0 0 0 0 0 0 0 0 0
PM2.5 0 0 0 0 0 0 0 0 0 0
SO2 197 475 641 950 562 475 251 265 241 996

Regional crops
NH3 -451 -280 -4 -529 -336 -280 -279 -447 -19 -285
NMVOC 139 144 50 376 234 144 206 327 59 564
NOx 438 659 59 389 1,121 659 438 590 171 891
PM10 0 0 0 0 0 0 0 0 0 0
PM2.5 0 0 0 0 0 0 0 0 0 0
SO2 -80 -34 -31 -162 -108 -34 -112 -62 -75 -261

Materials
NH3 0 0 0 0 0 0 0 0 0 0
NMVOC 0 0 0 0 0 0 0 0 0 0
NOx 31 298 36 126 120 298 53 93 124 175
PM10 0 0 0 0 0 0 0 0 0 0
PM2.5 0 0 0 0 0 0 0 0 0 0
SO2 69 817 144 420 387 817 118 188 324 755

SCAP data comes from the NEEDS Project (https://cordis.europa.eu/project/id/502687/de). The project page, https://needs-
project.org, is no longer available. Data and further documents can be now accessed via the project page of the University of Stuttgart,
https://www.ier.uni-stuttgart.de/forschung/modelle/ecosense/.
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Table B.11: 2020 weighted average of SCAP (e/ton) by impact category and air pollutant (3)

LV NL NO PL PT RO SE SI SK UK

Human health
NH3 8,096 28,196 4,273 16,194 4,958 11,039 10,224 22,073 25,327 21,596
NMVOC 497 2,038 461 758 521 489 482 1,399 653 1,093
NOx 3,995 8,678 3,585 6,510 916 8,508 3,693 9,935 10,156 4,807
PM10 348 2,388 191 1,012 328 917 170 843 928 1,136
PM2.5 8,838 36,246 6,012 24,798 7,080 18,976 6,421 23,387 23,614 20,252
SO2 5,891 12,927 2,093 10,981 4,831 9,108 4,833 12,333 10,576 8,858

Loss of biodiversity
NH3 5,220 5,929 1,399 6,486 1,737 3,963 2,403 13,424 9,157 1,042
NMVOC -59 -107 -74 -90 -17 -36 -68 -150 -99 -53
NOx 994 1,760 825 1,781 270 675 1,638 2,965 1,656 1,020
PM10 0 0 0 0 0 0 0 0 0 0
PM2.5 0 0 0 0 0 0 0 0 0 0
SO2 249 1,223 463 -54 86 101 967 748 524 377

Regional crops
NH3 -14 -279 -36 -160 -361 -192 -33 -321 -216 -406
NMVOC 67 645 146 192 91 75 111 262 156 521
NOx 60 -263 360 236 102 326 191 922 644 -30
PM10 0 0 0 0 0 0 0 0 0 0
PM2.5 0 0 0 0 0 0 0 0 0 0
SO2 -39 -200 -47 -13 -42 -9 -74 -189 -47 -102

Materials
NH3 0 0 0 0 0 0 0 0 0 0
NMVOC 0 0 0 0 0 0 0 0 0 0
NOx 78 137 120 220 19 222 53 215 273 70
PM10 0 0 0 0 0 0 0 0 0 0
PM2.5 0 0 0 0 0 0 0 0 0 0
SO2 216 827 387 880 49 644 186 576 813 320

SCAP data comes from the NEEDS Project (https://cordis.europa.eu/project/id/502687/de). The project page, https://needs-
project.org, is no longer available. Data and further documents can be now accessed via the project page of the University of Stuttgart,
https://www.ier.uni-stuttgart.de/forschung/modelle/ecosense/.
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B.2.6 Supplementary Results

Table B.12: Adding AP taxation to existing CO2 taxation

0% 25% 50% 100% 200% 400% 800%

Accumulated cost (billione)
System cost 8,263 8,097 7,936 7,697 7,516 7,372 7,391

(2,622) (2,584) (2,558) (2,520) (2,482) (2,464) (2,531)
External cost 717 827 925 1,118 1,262 1,374 1,308

(286) (312) (330) (364) (405) (437) (412)
ECC 281 463 637 923 1,103 1,247 1,219

(194) (234) (264) (311) (360) (401) (385)
ECAP 435 364 288 195 158 127 89

(92) (78) (66) (53) (45) (36) (27)
Taxes 281 554 781 1,118 1,420 1,756 1,930

(194) (253) (297) (364) (450) (546) (604)
Social cost 8,980 8,924 8,860 8,815 8,778 8,746 8,698

(2,908) (2,895) (2,888) (2,884) (2,887) (2,901) (2,944)
Private cost 8,544 8,651 8,717 8,815 8,937 9,128 9,321

(2,816) (2,837) (2,855) (2,884) (2,932) (3,010) (3,135)

Accumulated and average emissions
CO2 (Gt) 3.3 4.6 5.7 7.4 8.7 9.8 9.5
CO2 (ton/GWh) 21.25 29.32 36.34 47.36 55.70 62.55 60.74
AP (Mt) 27.0 22.7 18.9 13.7 11.2 9.5 7.3
AP (ton/MWh) 172.94 145.60 121.07 87.39 71.43 60.77 46.44

Average cost (e/MWh)
System cost 52.89 51.83 50.80 49.27 48.11 47.19 47.31
External cost 4.59 5.30 5.92 7.16 8.08 8.80 8.37
ECC 1.80 2.97 4.08 5.91 7.06 7.98 7.80
ECAP 2.79 2.33 1.84 1.25 1.01 0.81 0.57
Taxes 1.80 3.55 5.00 7.16 9.09 11.24 12.35
Social cost 57.48 57.12 56.72 56.43 56.19 55.98 55.68
Private cost 54.69 55.38 55.80 56.43 57.21 58.43 59.66

All values refer to accumulated values fromperiod 2025 to 2050 (30 years because 2025 reflects years 2021–2025).
Values in parentheses show the net present value. Average cost values calculate from the respective accumulated
value divided by demand. Note that the underlying objective is to minimize the sum of system cost and taxes (in
net present value terms) because taxes are cost for firms.
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Table B.13: Adding CO2 taxation to existing AP taxation

0% 25% 50% 100% 200% 400% 800%

Accumulated cost (billione)
System cost 6,475 6,353 6,411 7,697 9,075 9,288 9,495

(1,939) (1,973) (2,059) (2,520) (3,073) (3,246) (3,436)
External cost 5,890 4,641 3,586 1,118 -149 -366 -528

(1,432) (1,161) (944) (364) (-11) (-77) (-123)
ECC 5,547 4,372 3,375 923 -742 -948 -1,056

(1,340) (1,089) (884) (311) (-170) (-241) (-271)
ECAP 343 269 211 195 594 582 528

(92) (72) (59) (53) (159) (164) (149)
Taxes 343 1,362 1,898 1,118 -891 -3,210 -7,922

(92) (344) (502) (364) (-181) (-800) (-2,023)
Social cost 12,365 10,994 9,997 8,815 8,926 8,922 8,967

(3,370) (3,135) (3,003) (2,884) (3,062) (3,169) (3,313)
Private cost 6,819 7,715 8,310 8,815 8,184 6,078 1,573

(2,030) (2,318) (2,561) (2,884) (2,892) (2,446) (1,413)

Accumulated and average emissions
CO2 (Gt) 38.8 31.0 24.4 7.4 -5.1 -6.8 -7.6
CO2 (ton/GWh) 248.29 198.16 155.99 47.36 -32.73 -43.28 -48.42
AP (Mt) 23.1 17.8 14.0 13.7 41.9 41.0 37.4
AP (ton/MWh) 148.00 113.87 89.53 87.39 268.31 262.32 239.44

Average cost (e/MWh)
System cost 41.45 40.66 41.04 49.27 58.09 59.45 60.78
External cost 37.70 29.71 22.95 7.16 -0.95 -2.34 -3.38
ECC 35.50 27.98 21.60 5.91 -4.75 -6.07 -6.76
ECAP 2.20 1.72 1.35 1.25 3.80 3.73 3.38
Taxes 2.20 8.72 12.15 7.16 -5.70 -20.55 -50.71
Social cost 79.15 70.37 63.99 56.43 57.14 57.11 57.40
Private cost 43.65 49.38 53.19 56.43 52.39 38.90 10.07

All values refer to accumulated values from period 2025 to 2050 (30 years because 2025 reflects years 2021–2025).
Values in parentheses show the net present value. Average cost values calculate from the respective accumulated
value divided by demand. Note that the underlying objective is to minimize the sum of system cost and taxes (in
net present value terms) because taxes are cost for firms. Total cost contain the social planner perspective.
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B.2.7 Robustness

Technology boost

Table B.14 shows the total theoretical potential by wind resource class as well as corresponding aver-
age (potential-weighted) full-load hours (FLH) for wind onshore (see Table B.15 for country-specific
potentials). Wind offshore is less relevant in the technologymix. We thus refrain from showing it here
(see Tables B.16 and B.17 for details). Observe that total wind onshore potential in the high resource
class is 585 GW. The potential above 3,000 FLH is just 275 GW. The technology boost increases this
potential to 946 GW, whereas FLH increase by 23% in the high class and by 49% in themid class.

Table B.14: Potential and full-load hours of wind onshore by resource class (low, mid, high) without
and with technology boost

Resource class low mid high

Total potential (GW) 585 1,756 585
Potential (GW)≥ 3000 FLHwithout boost 0 0 275
Potential (GW)≥ 3000 FLHwith boost 50 487 409
Average FLHwithout boost 1,089 1,725 2,898
Average FLHwith boost 1,776 2,578 3,558

Difference in FLH 63.08% 49.49% 22.78%
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Table B.15: Potential (GW) of wind technologies by country and resource class (low, mid, high)

Wind offshore Wind onshore
low mid high low mid high

Austria 10 30 10
Belgium 1 2 1 3 9 3
Bulgaria 12 36 12 14 43 14
Croatia 19 57 19 7 22 7
Czech Republic 10 29 10
Denmark 36 108 36 5 16 5
Estonia 13 38 13 5 16 5
Finland 27 82 27 40 119 40
France 119 358 119 71 214 71
Germany 19 58 19 43 128 43
Greece 167 502 167 17 50 17
Hungary 12 36 12
Ireland 148 444 148 9 28 9
Italy 178 535 178 37 111 37
Latvia 10 30 10 8 24 8
Lithuania 2 7 2 8 25 8
Luxembourg 0 1 0
Netherlands 22 67 22 4 12 4
Norway 321 963 321 35 106 35
Poland 10 31 10 40 119 40
Portugal 110 329 110 12 36 12
Romania 10 31 10 31 92 31
Slovak Republic 6 18 6
Slovenia 0 0 0 2 7 2
Spain 195 585 195 67 201 67
Sweden 53 159 53 53 158 53
Switzerland 5 14 5
United Kingdom 252 756 252 31 92 31

Sum 1,724 5,178 1,724 585 1,756 585
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Table B.16: Full-load hours of wind technologies by resource class (low, mid, high) without technol-
ogy boost

Wind offshore Wind onshore
low mid high low mid high

Austria 558 1,675 2,814
Belgium 2,758 2,763 3,255 2,197 2,292 2,930
Bulgaria 594 1,203 1,523 479 1,337 2,555
Croatia 462 1,107 915 284 619 2,288
Czech Republic 1,894 2,326 2,812
Denmark 2,800 3,312 4,106 1,376 2,764 2,992
Estonia 2,248 2,160 3,420 1,299 1,836 2,903
Finland 1,151 2,033 2,683 742 940 3,462
France 1,671 2,735 3,414 1,462 2,003 2,889
Germany 2,617 3,190 3,267 1,757 2,105 2,403
Greece 610 1,440 2,133 259 718 2,201
Hungary 637 848 2,686
Ireland 2,061 3,557 4,046 2,131 2,682 3,324
Italy 664 979 956 255 970 1,849
Latvia 1,809 2,833 3,375 648 2,265 2,704
Lithuania 1,885 2,708 1,881 485 1,580 2,317
Luxembourg 1,862 2,087 2,254
Netherlands 2,959 3,116 3,728 1,929 2,135 2,513
Norway 1,114 2,218 2,070 664 2,317 3,303
Poland 2,196 2,751 3,149 1,883 2,032 3,406
Portugal 1,368 1,632 2,211 620 1,619 2,821
Romania 1,112 1,336 1,667 512 1,010 2,518
Slovak Republic 679 1,620 2,834
Slovenia 685 685 457 331 894 1,722
Spain 752 1,084 1,574 1,602 2,328 3,295
Sweden 709 1,391 3,003 325 947 3,258
Switzerland 1,499 1,793 2,501
United Kingdom 2,912 3,150 4,148 1,901 2,700 3,019

Average 1,450 2,135 2,601 1,089 1,725 2,898
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Table B.17: Full-load hours of wind technologies by resource class (low, mid, high) with technology
boost

Wind offshore Wind onshore
low mid high low mid high

Austria 831 2,719 3,753
Belgium 2,964 2,970 3,489 3,269 3,247 3,616
Bulgaria 881 1,333 1,685 732 2,120 3,242
Croatia 893 923 996 472 966 2,975
Czech Republic 2,722 3,178 3,834
Denmark 3,037 3,567 4,353 1,876 4,083 4,443
Estonia 2,459 2,978 3,654 1,888 2,573 4,328
Finland 1,190 1,695 2,901 1,419 1,776 3,886
France 1,833 2,964 3,638 3,053 3,003 3,708
Germany 2,836 2,573 3,661 2,893 2,977 3,003
Greece 773 1,270 2,318 456 1,060 2,896
Hungary 965 1,271 3,575
Ireland 2,217 3,980 4,214 2,797 3,737 3,895
Italy 735 1,058 1,886 394 1,498 2,401
Latvia 1,970 3,065 3,607 1,012 3,550 3,664
Lithuania 2,044 2,891 3,205 766 2,644 3,216
Luxembourg 2,523 2,660 2,903
Netherlands 3,175 3,338 3,956 2,843 3,251 3,331
Norway 1,244 1,843 2,167 940 3,271 3,835
Poland 2,110 2,973 3,390 2,873 3,263 4,314
Portugal 1,237 1,970 2,413 968 2,847 3,646
Romania 1,240 1,583 1,844 832 1,752 2,881
Slovak Republic 1,010 2,209 3,652
Slovenia 761 761 507 515 1,509 2,417
Spain 832 1,511 2,499 2,578 3,031 3,928
Sweden 796 1,796 3,200 550 1,770 3,704
Switzerland 2,141 2,520 2,838
United Kingdom 3,127 3,375 4,324 2,387 3,642 3,615

Average 1,577 2,230 2,937 1,776 2,578 3,558
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Technology boost and air pollution emission factors

See visualization in Figure B.3.

Table B.18: Sensitivity to air pollution emission factors and the technology boost (full results)

AP taxation CO2 and AP taxation Techn.
low mid high low mid high boost

Accumulated generation (TWh)
Wind 29,698 30,376 31,291 68,244 68,530 69,174 81,851
Solar 5,285 5,498 5,813 15,664 15,468 15,759 13,808
Nuclear 8,762 8,908 9,300 15,811 17,109 19,100 8,453
CCS 0 0 0 38,805 37,087 31,230 34,609

Accumulated demand (TWh) = 156,224

Accumulated cost (billione)
System cost 6,469 6,475 6,474 7,734 7,697 7,546 7,184

(1,938) (1,939) (1,949) (2,522) (2,520) (2,484) (2,408)
External cost 5,983 5,890 5,859 1,065 1,118 1,345 1,129

(1,442) (1,432) (1,418) (353) (364) (428) (369)
ECC 5,690 5,547 5,370 895 923 1,086 948

(1,361) (1,340) (1,287) (307) (311) (354) (316)
ECAP 293 343 490 170 195 259 180

(81) (92) (131) (47) (53) (75) (53)
Taxes 293 343 490 1,065 1,118 1,345 1,129

(81) (92) (131) (353) (364) (428) (369)
Social cost 12,452 12,365 12,334 8,799 8,815 8,890 8,313

(3,380) (3,370) (3,367) (2,875) (2,884) (2,912) (2,777)
Private cost 6,762 6,819 6,964 8,799 8,815 8,890 8,313

(2,018) (2,030) (2,080) (2,875) (2,884) (2,912) (2,777)

Accumulated and average emissions
CO2 (Gt) 39.6 38.8 37.4 7.2 7.4 8.6 7.6
CO2 (ton/GWh) 253.69 248.29 239.71 46.30 47.36 54.73 48.37
AP (Mt) 20.1 23.1 33.7 11.8 13.7 17.7 12.1
AP (ton/MWh) 128.53 148.00 215.79 75.59 87.39 113.58 77.66

Average cost (e/MWh)
System cost 41.41 41.45 41.44 49.51 49.27 48.30 45.98
External cost 38.30 37.70 37.51 6.82 7.16 8.61 7.23
ECC 36.42 35.50 34.37 5.73 5.91 6.95 6.07
ECAP 1.88 2.20 3.14 1.09 1.25 1.66 1.16
Taxes 1.88 2.20 3.14 6.82 7.16 8.61 7.23
Social cost 79.70 79.15 78.95 56.32 56.43 56.91 53.21
Private cost 43.28 43.65 44.58 56.32 56.43 56.91 53.21

Low, mid, and high in brackets present the respective air pollution emission factor scenarios. The mid scenario is used
for all prior specifications. The low scenario starts at very same 2015 emission factors as the mid scenario but assumed
technological progress is higher, so that emission factor decrease more. The high scenario starts at higher 2015 emission
factors (less optimistic assumptions about current fleet) and technological progress is less optimistic as well (compared to the
mid scenario). The technology boost indeed uses joint CO2 and air pollution taxation with emission factors from the mid
scenario. All values refer to accumulated values from period 2025 to 2050 (30 years because 2025 reflects years 2021–2025).
Values in parentheses show the net present value. Average cost values calculate from the respective accumulated value divided
by demand.
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Electricity demand

Table B.19: Sensitivity to electricity demand (full results)

NO AP CO2 CO2 and AP
Demand 2050 (TWh) 4,135–6,203 4,135–6,203 4,135–6,203 4,135–6,203

Accumulated generation (TWh) 129,930–168,131 129,981–168,248 130,452–168,690 130,523–168,764
Wind 20,541–23,284 27,728–30,376 53,266–65,988 56,144–68,530
Solar 3,840–4,683 4,316–5,498 10,801–14,733 11,693–15,468
Nuclear 7,043–6,971 8,338–8,908 9,097–12,204 10,433–17,109
CCS 0 0 32,484–48,630 25,694–37,087
Sum 31,423–34,938 40,381–44,782 105,648–141,555 103,964–138,195

Accumulated demand (TWh) 120,573–156,224 120,573–156,224 120,573–156,224 120,573–156,224

Accumulated cost (billione)
System cost 4,493–5,937 4,794–6,475 6,047–8,263 5,584–7,697

(1,506–1,888) (1,531–1,939) (2,026–2,622) (1,947–2,520)
External cost 8,162–12,057 4,018–5,890 477–717 835–1,118

(2,047–2,795) (1,070–1,432) (229–286) (288–364)
ECC 7,185–10,636 3,774–5,547 133–281 694–923

(1,790–2,449) (998–1,340) (156–194) (246–311)
ECAP 977–1,420 244–343 344–435 141–195

(257–346) (72–92) (73–92) (42–53)
Taxes 0–0 244–343 133–281 835–1,118

(0–0) (72–92) (156–194) (288–364)
Social cost 12,656–17,994 8,812–12,365 6,524–8,980 6,419–8,815

(3,553–4,684) (2,601–3,370) (2,254–2,908) (2,235–2,884)
Private cost 4,493 5,937 5,039 6,819 6,180 8,544 6,419 8,815

(1,506–1,888) (1,603–2,030) (2,181–2,816) (2,235–2,884)

Accumulated and average emissions
CO2 (Gt) 50.85–73.12 27.31–38.79 2.27–3.32 5.69–7.40
CO2 (ton/GWh) 421.78–468.07 226.49–248.29 18.82–21.25 47.19–47.36
AP (Mt) 60.90–87.91 16.71–23.12 21.28–27.02 9.81–13.65
AP (ton/GWh) 505.09–562.69 138.57–148.00 176.47–172.94 81.34–87.39

Average cost (e/MWh)
System cost 37.27–38.00 39.76–41.45 50.15–52.89 46.31–49.27
External cost 67.70–77.18 33.33–37.70 3.96–4.59 6.93–7.16
ECC 59.59–68.08 31.30–35.50 1.10–1.80 5.75–5.91
ECAP 8.10–9.09 2.03–2.20 2.85–2.79 1.17–1.25
Taxes 0.00–0.00 2.03–2.20 1.10–1.80 6.93–7.16
Social cost 104.96–115.18 73.09–79.15 54.11–57.48 53.24–56.43
Private cost 37.27–38.00 41.79–43.65 51.26–54.69 53.24–56.43

First row shows 2050 exogenous demand assumption. The first value always refers to 2050 demand of 4,135 TWh and the second one
is the default assumption of 6,203 TWh. All values refer to accumulated values from period 2025 to 2050 (30 years because 2025 reflects
years 2021–2025). Values in parentheses show the net present value. Average cost values calculate from the respective accumulated value
divided by demand.
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Inflexibility of power plants

Table B.20: Sensitivity to nuclear minimum dispatch (full results)

NO NO* AP AP* CO2 CO2* CO2&AP CO2&AP*

Accumulated generation (TWh)
Wind 23,284 23,280 30,376 30,342 65,988 65,417 68,530 67,949
Solar 4,683 4,672 5,498 5,499 14,733 14,669 15,468 15,432
Nuclear 6,971 6,979 8,908 8,925 12,204 12,668 17,109 17,551
CCS 0 0 0 0 48,630 48,780 37,087 37,308
Sum 34,938 34,931 44,782 44,767 141,555 141,534 138,195 138,239

Accumulated demand (TWh) = 156,224

Accumulated cost (billione)
System cost 5,937 5,937 6,475 6,476 8,263 8,275 7,697 7,705

(1,888) (1,888) (1,939) (1,939) (2,622) (2,625) (2,520) (2,522)
External cost 12,057 12,056 5,890 5,891 717 713 1,118 1,118

(2,795) (2,795) (1,432) (1,432) (286) (285) (364) (364)
ECC 10,636 10,636 5,547 5,547 281 275 923 922

(2,449) (2,449) (1,340) (1,340) (194) (192) (311) (311)
ECAP 1,420 1,420 343 343 435 438 195 196

(346) (346) (92) (92) (92) (93) (53) (53)
Taxes 0 0 343 343 281 275 1,118 1,118

(0) (0) (92) (92) (194) (192) (364) (364)
Social cost 17,994 17,993 12,365 12,366 8,980 8,988 8,815 8,823

(4,684) (4,684) (3,370) (3,371) (2,908) (2,910) (2,884) (2,885)
Private cost 5,937 5,937 6,819 6,819 8,544 8,550 8,815 8,823

(1,888) (1,888) (2,030) (2,030) (2,816) (2,817) (2,884) (2,885)

Accumulated and average emissions
CO2 (Gt) 73.1 73.1 38.8 38.8 3.3 3.3 7.4 7.4
CO2 (ton/GWh) 468.07 468.04 248.29 248.33 21.25 20.99 47.36 47.32
AP (Mt) 87.9 87.9 23.1 23.1 27.0 27.2 13.7 13.7
AP (ton/MWh) 562.69 562.59 148.00 148.03 172.94 174.30 87.39 87.66

Average cost (e/MWh)
System cost 38.00 38.00 41.45 41.45 52.89 52.97 49.27 49.32
External cost 77.18 77.17 37.70 37.71 4.59 4.57 7.16 7.16
ECC 68.08 68.08 35.50 35.51 1.80 1.76 5.91 5.90
ECAP 9.09 9.09 2.20 2.20 2.79 2.80 1.25 1.25
Taxes 0.00 0.00 2.20 2.20 1.80 1.76 7.16 7.16
Social cost 115.18 115.18 79.15 79.16 57.48 57.53 56.43 56.48
Private cost 38.00 38.00 43.65 43.65 54.69 54.73 56.43 56.48

The columns with * show outcomes applying nuclear minimum dispatch. All values refer to accumulated values from period 2025 to 2050 (30
years because 2025 reflects years 2021–2025). Values in parentheses show the net present value. Average cost values calculate from the respective
accumulated value divided by demand.
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Technology cost

Table B.21: Technology cost uncertainty analysis forCO2 andAP taxation, σ=0.1 (full results)

Joint Min Max Med Mea SD CI (95%)

Accumulated generation (TWh)
Wind 68,530 60,164 76,060 68,553 68,313 3,041 67,710–68,917 Yes
Solar 15,468 11,905 18,387 15,459 15,404 1,364 15,133–15,674 Yes
Nuclear 17,109 8,591 31,083 17,214 17,253 4,803 16,299–18,206 Yes
CCS 37,087 27,858 48,734 36,512 37,122 4,666 36,196–38,048 Yes

Accumulated demand (TWh) = 156,224

Accumulated cost (billione)
System cost 5,937 7,399 7,971 7,676 7,689 126 7,664–7,715 Yes

(2,520) (2,438) (2,582) (2,518) (2,516) (30) (2,510–2,522) (Yes)
External cost 1,118 800 1,409 1,133 1,129 113 1,106–1,151 Yes

(364) (285) (431) (364) (365) (29) (359–371) (Yes)
ECC 923 563 1,211 937 932 124 908–957 Yes

(311) (226) (378) (313) (312) (31) (306–318) (Yes)
ECAP 195 158 242 194 196 17 193–200 Yes

(53) (46) (61) (52) (53) (3) (52–54) (Yes)
Taxes 1,118 800 1,409 1,133 1,129 113 1,106–1,151 Yes

(364) (285) (431) (364) (365) (29) (359–371) (Yes)
Social cost 7,055 8,199 9,380 8,808 8,818 102 8,798–8,838 Yes

(2,884) (2,724) (3,013) (2,882) (2,881) (24) (2,876–2,886) (Yes)
Private cost 7,055 8,199 9,380 8,808 8,818 102 8,798–8,838 Yes

(2,884) (2,724) (3,013) (2,882) (2,881) (24) (2,876–2,886) (Yes)

Accumulated and average emissions
CO2 (Gt) 7.40 4.91 9.37 7.48 7.45 0.87 7.28 – 7.62 Yes
CO2 (ton/GWh) 47.36 31.45 60.01 47.87 47.69 5.57 46.59–48.80 Yes
AP (Mt) 13.65 11.01 17.20 13.43 13.66 1.28 13.40–13.91 Yes
AP (ton/MWh) 52.75 46.21 60.72 52.50 52.97 3.02 52.37–53.57 Yes

Average cost (e/MWh)
System cost 49.27 47.36 51.03 49.13 49.22 0.81 49.06–49.38 Yes
External cost 7.16 5.12 9.02 7.25 7.22 0.73 7.08–7.37 Yes
ECC 5.91 3.60 7.75 6.00 5.97 0.80 5.81–6.13 Yes
ECAP 1.25 1.01 1.55 1.24 1.26 0.11 1.24–1.28 Yes
Taxes 7.16 5.12 9.02 7.25 7.22 0.73 7.08–7.37 Yes
Social cost 56.43 52.48 60.04 56.38 56.45 0.65 56.32–56.57 Yes
Private cost 56.43 52.48 60.04 56.38 56.45 0.65 56.32–56.57 Yes

First column shows the outcome under default parameter assumptions for joint (CO2 andAP) taxation. The remaining columns
shows the minimum (Min), maximum (Max), median (Med), mean (Mea), standard deviation (SD), and the 95% confidence
interval (CI (95%)) from the 100 randomdraws. All values refer to accumulated values fromperiod 2025 to 2050 (30 years because
2025 reflects years 2021–2025). Values in parentheses show the net present value. Average cost values calculate from the respective
accumulated value divided by demand, which is constant across all specifications within the uncertainty analysis. The last column
indicates whether or not the outcome from default assumptions lies within the 95% confidence interval.
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Table B.22: Technology cost uncertainty analysis for CO2 taxation, σ = 0.1 (full results)

CO2 Min Max Med Mea SD CI (95%)

Accumulated generation (TWh)
Wind 65,988 56,820 73,370 65,590 65,384 3,100 64,769–65,999 Yes
Solar 14,733 11,030 17,745 15,023 14,797 1,389 14,521–15,072 Yes
Nuclear 12,204 8,639 26,170 12,204 12,773 3,627 12,053–13,493 Yes
CCS 48,630 38,643 57,169 48,297 48,232 4,108 47,417–49,047 Yes

Accumulated demand (TWh) = 156,224

Accumulated cost (billione)
System cost 5,937 7,957 8,480 8,233 8,238 124 8,214–8,263 Yes

(2,622) (2,545) (2,671) (2,614) (2,614) (28) (2,609–2,620) (No)
External cost 717 529 987 735 743 93 724–761 No

(286) (232) (350) (288) (291) (25) (286–296) (No)
ECC 281 34 576 297 310 113 287–332 No

(194) (124) (264) (196) (199) (29) (193–205) (Yes)
ECAP 435 372 496 433 433 26 428–438 Yes

(92) (79) (107) (92) (92) (6) (91–93) (Yes)
Taxes 281 34 576 297 310 113 287–332 No

(194) (124) (264) (196) (199) (29) (193–205) (Yes)
Social cost 6,654 8,486 9,467 8,968 8,981 109 8,959–9,003 Yes

(2,908) (2,777) (3,021) (2,902) (2,905) (24) (2,901–2,910) (Yes)
Private cost 6,218 7,991 9,056 8,530 8,548 103 8,527–8,568 Yes

(2,816) (2,670) (2,934) (2,810) (2,814) (24) (2,809–2,818) (Yes)

Accumulated and average emissions
CO2 (Gt) 3.32 1.46 5.39 3.42 3.51 0.83 3.34 – 3.67 No
CO2 (ton/GWh) 21.25 9.34 34.48 21.90 22.45 5.28 21.40–23.50 No
AP (Mt) 27.02 22.85 31.09 26.85 26.73 1.83 26.37–27.09 Yes
AP (ton/MWh) 92.31 79.50 107.28 91.63 91.85 5.50 90.76–92.94 Yes

Average cost (e/MWh)
System cost 52.89 50.93 54.28 52.70 52.73 0.79 52.58–52.89 Yes
External cost 4.59 3.39 6.32 4.70 4.75 0.59 4.64–4.87 No
ECC 1.80 0.21 3.69 1.90 1.98 0.73 1.84–2.13 No
ECAP 2.79 2.38 3.17 2.77 2.77 0.17 2.74–2.81 Yes
Taxes 1.80 0.21 3.69 1.90 1.98 0.73 1.84–2.13 No
Social cost 57.48 54.32 60.60 57.40 57.49 0.70 57.35–57.63 Yes
Private cost 54.69 51.15 57.97 54.60 54.72 0.66 54.59–54.85 Yes

First column shows the outcome under default parameter assumptions for joint (CO2 and AP) taxation. The remaining columns
shows the minimum (Min), maximum (Max), median (Med), mean (Mea), standard deviation (SD), and the 95% confidence
interval (CI (95%)) from the 100 randomdraws. All values refer to accumulated values fromperiod 2025 to 2050 (30 years because
2025 reflects years 2021–2025). Values in parentheses show the net present value. Average cost values calculate from the respective
accumulated value divided by demand, which is constant across all specifications within the uncertainty analysis. The last column
indicates whether or not the outcome from default assumptions lies within the 95% confidence interval.

XXXI



Table B.23: Technology cost uncertainty analysis for AP taxation, σ = 0.1 (full results)

AP Min Max Med Mea SD CI (95%)

Accumulated generation (TWh)
Wind 30,376 18,449 38,517 30,128 30,140 3,269 29,492–30,789 Yes
Solar 5,498 2,804 9,251 5,497 5,577 1,102 5,358–5,795 Yes
Nuclear 8,908 8,795 8,964 8,906 8,906 34 8,899–8,913 Yes
CCS 0

Accumulated demand (TWh) = 156,224

Accumulated cost (billione)
System cost 5,937 6,332 6,623 6,478 6,475 53 6,465–6,486 Yes

(1,939) (1,922) (1,948) (1,938) (1,938) (6) (1,937–1,939) (Yes)
External cost 5,890 5,478 6,509 5,900 5,901 180 5,865–5,937 Yes

(1,432) (1,364) (1,530) (1,433) (1,433) (29) (1,428–1,439) (Yes)
ECC 5,547 5,155 6,136 5,556 5,557 171 5,523–5,591 Yes

(1,340) (1,276) (1,434) (1,341) (1,342) (28) (1,336–1,347) (Yes)
ECAP 343 323 373 344 344 9 342–345 Yes

(92) (88) (96) (92) (92) (1) (91–92) (Yes)
Taxes 343 323 373 344 344 9 342–345 Yes

(92) (88) (96) (92) (92) (1) (91–92) (Yes)
Social cost 11,827 11,810 13,131 12,378 12,376 233 12,330–12,422 Yes

(3,370) (3,286) (3,478) (3,371) (3,372) (34) (3,365–3,378) (Yes)
Private cost 6,280 6,655 6,996 6,821 6,819 62 6,807–6,831 Yes

(2,030) (2,010) (2,045) (2,030) (2,030) (7) (2,028–2,031) (Yes)

Accumulated and average emissions
CO2 (Gt) 38.79 36.40 42.37 38.84 38.86 1.04 38.65 – 39.06 Yes
CO2 (ton/GWh) 248.29 232.97 271.22 248.62 248.73 6.69 247.40–250.05 Yes
AP (Mt) 23.12 21.81 25.21 23.14 23.16 0.58 23.04–23.27 Yes
AP (ton/MWh) 91.54 88.02 96.32 91.52 91.55 1.44 91.26–91.84 Yes

Average cost (e/MWh)
System cost 41.45 40.53 42.39 41.46 41.45 0.34 41.38–41.52 Yes
External cost 37.70 35.07 41.66 37.77 37.77 1.15 37.54–38.00 Yes
ECC 35.50 33.00 39.27 35.57 35.57 1.10 35.35–35.79 Yes
ECAP 2.20 2.06 2.39 2.20 2.20 0.06 2.19–2.21 Yes
Taxes 2.20 2.06 2.39 2.20 2.20 0.06 2.19–2.21 Yes
Social cost 79.15 75.60 84.05 79.23 79.22 1.49 78.92–79.52 Yes
Private cost 43.65 42.60 44.78 43.66 43.65 0.40 43.57–43.73 Yes

First column shows the outcome under default parameter assumptions for joint (CO2 andAP) taxation. The remaining columns
shows the minimum (Min), maximum (Max), median (Med), mean (Mea), standard deviation (SD), and the 95% confidence
interval (CI (95%)) from the 100 randomdraws. All values refer to accumulated values fromperiod 2025 to 2050 (30 years because
2025 reflects years 2021–2025). Values in parentheses show the net present value. Average cost values calculate from the respective
accumulated value divided by demand, which is constant across all specifications within the uncertainty analysis. The last column
indicates whether or not the outcome from default assumptions lies within the 95% confidence interval.
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Table B.24: Technology cost uncertainty analysis for no taxation, σ = 0.1 (full results)

No Min Max Med Mea SD CI (95%)

Accumulated generation (TWh)
Wind 23,284 14,812 33,346 23,050 23,951 3,529 23,251–24,651 Yes
Solar 4,683 3,726 6,632 4,697 4,710 570 4,597–4,823 Yes
Nuclear 6,971 6,058 7,086 6,976 6,905 196 6,866–6,944 No
CCS 0

Accumulated demand (TWh) = 156,224

Accumulated cost (billione)
System cost 5,937 5,825 6,060 5,944 5,938 45 5,929–5,947 Yes

(1,888) (1,868) (1,922) (1,890) (1,891) (11) (1,889–1,893) (No)
External cost 12,057 10,841 12,832 12,086 11,933 407 11,852–12,014 No

(2,795) (2,585) (2,941) (2,803) (2,777) (71) (2,763–2,791) (No)
ECC 10,636 9,572 11,340 10,663 10,530 361 10,458–10,602 No

(2,449) (2,267) (2,581) (2,456) (2,434) (63) (2,421–2,446) (No)
ECAP 1,420 1,269 1,491 1,425 1,403 46 1,394–1,412 No

(346) (318) (360) (346) (343) (9) (341–345) (No)
Taxes 0

(0)
Social cost 17,994 16,665 18,892 18,030 17,871 451 17,782–17,961 No

(4,684) (4,454) (4,863) (4,694) (4,668) (81) (4,652–4,684) (No)
Private cost 5,937 5,825 6,060 5,944 5,938 45 5,929–5,947 Yes

(1,888) (1,868) (1,922) (1,890) (1,891) (11) (1,889–1,893) (No)

Accumulated and average emissions
CO2 (Gt) 73.12 66.50 77.63 73.31 72.49 2.25 72.04 – 72.94 No
CO2 (ton/GWh) 468.07 425.66 496.91 469.23 464.02 14.41 461.16–466.88 No
AP (Mt) 87.91 79.09 93.12 88.09 86.98 2.83 86.42–87.54 No
AP (ton/MWh) 345.94 318.16 360.42 346.48 343.12 8.52 341.43–344.81 No

Average cost (e/MWh)
System cost 38.00 37.28 38.79 38.05 38.01 0.29 37.95–38.07 Yes
External cost 77.18 69.39 82.14 77.36 76.38 2.61 75.87–76.90 No
ECC 68.08 61.27 72.59 68.26 67.40 2.31 66.94–67.86 No
ECAP 9.09 8.12 9.55 9.12 8.98 0.30 8.92–9.04 No
Taxes 0.00
Social cost 115.18 106.68 120.93 115.41 114.39 2.89 113.82–114.97 No
Private cost 38.00 37.28 38.79 38.05 38.01 0.29 37.95–38.07 Yes

First column shows the outcome under default parameter assumptions for joint (CO2 and AP) taxation. The remaining columns
shows the minimum (Min), maximum (Max), median (Med), mean (Mea), standard deviation (SD), and the 95% confidence
interval (CI (95%)) from the 100 randomdraws. All values refer to accumulated values fromperiod 2025 to 2050 (30 years because
2025 reflects years 2021–2025). Values in parentheses show the net present value. Average cost values calculate from the respective
accumulated value divided by demand, which is constant across all specifications within the uncertainty analysis. The last column
indicates whether or not the outcome from default assumptions lies within the 95% confidence interval.
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Table B.25: Technology cost uncertainty analysis forCO2 andAP taxation, σ=0.2 (full results)

Joint Min Max Med Mea SD CI (95%)

Accumulated generation (TWh)
Wind 68,530 52,333 79,811 67,734 67,911 5,649 66,790–69,032 Yes
Solar 15,468 6,862 20,118 15,003 14,863 2,549 14,357–15,368 No
Nuclear 17,109 8,524 39,022 18,224 18,639 7,732 17,104–20,173 Yes
CCS 37,087 7,229 52,736 37,485 36,443 9,255 34,607–38,279 Yes

Accumulated demand (TWh) = 156,224

Accumulated cost (billione)
System cost 5,937 6,794 8,189 7,690 7,663 271 7,609–7,717 Yes

(2,520) (2,275) (2,638) (2,514) (2,505) (65) (2,493–2,518) (No)
External cost 1,118 742 1,693 1,104 1,130 216 1,088–1,173 Yes

(364) (274) (506) (360) (365) (54) (355–376) (Yes)
ECC 923 498 1,534 924 933 236 886–980 Yes

(311) (213) (461) (309) (313) (58) (301–324) (Yes)
ECAP 195 116 275 195 198 32 191–204 Yes

(53) (37) (65) (53) (53) (6) (52–54) (Yes)
Taxes 1,118 742 1,693 1,104 1,130 216 1,088–1,173 Yes

(364) (274) (506) (360) (365) (54) (355–376) (Yes)
Social cost 7,055 7,536 9,882 8,794 8,793 218 8,750–8,837 Yes

(2,884) (2,549) (3,144) (2,874) (2,871) (50) (2,861–2,881) (No)
Private cost 7,055 7,536 9,882 8,794 8,793 218 8,750–8,837 Yes

(2,884) (2,549) (3,144) (2,874) (2,871) (50) (2,861–2,881) (No)

Accumulated and average emissions
CO2 (Gt) 7.40 2.00 11.69 7.38 7.46 1.65 7.13 – 7.78 Yes
CO2 (ton/GWh) 47.36 28.77 74.80 47.23 47.73 10.57 45.64–49.83 Yes
AP (Mt) 13.65 7.76 19.05 13.88 13.70 2.45 13.21–14.19 Yes
AP (ton/MWh) 52.75 37.20 65.30 52.77 52.97 5.73 51.84–54.11 Yes

Average cost (e/MWh)
System cost 49.27 43.49 52.42 49.23 49.05 1.73 48.71–49.39 Yes
External cost 7.16 4.75 10.83 7.07 7.24 1.38 6.96–7.51 Yes
ECC 5.91 3.19 9.82 5.91 5.97 1.51 5.67–6.27 Yes
ECAP 1.25 0.74 1.76 1.25 1.26 0.21 1.22–1.31 Yes
Taxes 7.16 4.75 10.83 7.07 7.24 1.38 6.96–7.51 Yes
Social cost 56.43 48.24 63.25 56.29 56.29 1.40 56.01–56.56 Yes
Private cost 56.43 48.24 63.25 56.29 56.29 1.40 56.01–56.56 Yes

First column shows the outcome under default parameter assumptions for joint (CO2 and AP) taxation. The remaining columns
shows the minimum (Min), maximum (Max), median (Med), mean (Mea), standard deviation (SD), and the 95% confidence
interval (CI (95%)) from the 100 randomdraws. All values refer to accumulated values fromperiod 2025 to 2050 (30 years because
2025 reflects years 2021–2025). Values in parentheses show the net present value. Average cost values calculate from the respective
accumulated value divided by demand, which is constant across all specifications within the uncertainty analysis. The last column
indicates whether or not the outcome from default assumptions lies within the 95% confidence interval.
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Table B.26: Technology cost uncertainty analysis for CO2 taxation, σ = 0.2 (full results)

CO2 Min Max Med Mea SD CI (95%)

Accumulated generation (TWh)
Wind 65,988 49,715 76,846 65,171 65,144 5,803 63,992–66,295 Yes
Solar 14,733 6,419 19,193 14,431 14,230 2,518 13,731–14,730 No
Nuclear 12,204 8,463 34,304 12,883 14,829 6,263 13,586–16,071 No
CCS 48,630 14,971 60,300 48,313 46,576 8,603 44,869–48,283 No

Accumulated demand (TWh) = 156,224

Accumulated cost (billione)
System cost 5,937 6,933 8,741 8,207 8,172 297 8,113–8,231 No

(2,622) (2,322) (2,731) (2,610) (2,599) (67) (2,585–2,612) (No)
External cost 717 438 1,456 711 765 206 724–806 No

(286) (215) (446) (284) (295) (50) (285–305) (Yes)
ECC 281 -36 1,237 285 345 261 293–397 No

(194) (109) (386) (195) (205) (61) (193–217) (Yes)
ECAP 435 137 511 442 420 63 407–432 No

(92) (43) (110) (94) (90) (12) (87–92) (No)
Taxes 281 -36 1,237 285 345 261 293–397 No

(194) (109) (386) (195) (205) (61) (193–217) (Yes)
Social cost 6,654 7,371 10,197 8,919 8,937 226 8,892–8,982 Yes

(2,908) (2,537) (3,177) (2,894) (2,894) (51) (2,883–2,904) (No)
Private cost 6,218 6,898 9,978 8,492 8,517 206 8,477–8,558 Yes

(2,816) (2,431) (3,118) (2,804) (2,804) (49) (2,794–2,814) (No)

Accumulated and average emissions
CO2 (Gt) 3.32 0.99 9.59 3.34 3.73 1.82 3.37 – 4.09 No
CO2 (ton/GWh) 21.25 6.33 61.36 21.36 23.86 11.65 21.54–26.17 No
AP (Mt) 27.02 8.74 31.85 27.43 25.94 4.14 25.12–26.76 No
AP (ton/MWh) 92.31 42.88 109.66 93.65 89.62 12.34 87.18–92.07 No

Average cost (e/MWh)
System cost 52.89 44.38 55.95 52.53 52.31 1.90 51.93–52.69 No
External cost 4.59 2.80 9.32 4.55 4.90 1.32 4.63–5.16 No
ECC 1.80 -0.23 7.92 1.82 2.21 1.67 1.88–2.54 No
ECAP 2.79 0.88 3.27 2.83 2.69 0.40 2.61–2.77 No
Taxes 1.80 -0.23 7.92 1.82 2.21 1.67 1.88–2.54 No
Social cost 57.48 47.18 65.27 57.09 57.21 1.45 56.92–57.49 Yes
Private cost 54.69 44.15 63.87 54.36 54.52 1.32 54.26–54.78 Yes

First column shows the outcome under default parameter assumptions for joint (CO2 and AP) taxation. The remaining columns
shows the minimum (Min), maximum (Max), median (Med), mean (Mea), standard deviation (SD), and the 95% confidence
interval (CI (95%)) from the 100 randomdraws. All values refer to accumulated values fromperiod 2025 to 2050 (30 years because
2025 reflects years 2021–2025). Values in parentheses show the net present value. Average cost values calculate from the respective
accumulated value divided by demand, which is constant across all specifications within the uncertainty analysis. The last column
indicates whether or not the outcome from default assumptions lies within the 95% confidence interval.
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Table B.27: Technology cost uncertainty analysis for AP taxation, σ = 0.2 (full results)

AP Min Max Med Mea SD CI (95%)

Accumulated generation (TWh)
Wind 30,376 11,381 44,801 30,485 30,079 7,078 28,675–31,483 Yes
Solar 5,498 1,805 13,265 5,513 5,595 2,034 5,192–5,999 Yes
Nuclear 8,908 8,448 8,960 8,895 8,864 97 8,845–8,884 No
CCS 0

Accumulated demand (TWh) = 156,224

Accumulated cost (billione)
System cost 5,937 6,189 6,793 6,472 6,469 119 6,445–6,492 Yes

(1,939) (1,892) (1,995) (1,936) (1,936) (16) (1,933–1,939) (Yes)
External cost 5,890 5,120 6,920 5,886 5,910 390 5,833–5,987 Yes

(1,432) (1,311) (1,621) (1,431) (1,436) (64) (1,423–1,449) (Yes)
ECC 5,547 4,816 6,528 5,544 5,566 370 5,493–5,640 Yes

(1,340) (1,226) (1,520) (1,340) (1,344) (61) (1,332–1,356) (Yes)
ECAP 343 305 392 342 344 19 340–348 Yes

(92) (85) (101) (91) (92) (3) (91–92) (Yes)
Taxes 343 305 392 342 344 19 340–348 Yes

(92) (85) (101) (91) (92) (3) (91–92) (Yes)
Social cost 11,827 11,309 13,712 12,358 12,379 508 12,278–12,479 Yes

(3,370) (3,203) (3,615) (3,367) (3,372) (78) (3,356–3,388) (Yes)
Private cost 6,280 6,494 7,185 6,814 6,813 138 6,785–6,840 Yes

(2,030) (1,977) (2,096) (2,027) (2,028) (19) (2,024–2,031) (Yes)

Accumulated and average emissions
CO2 (Gt) 38.79 34.39 45.04 38.79 38.93 2.27 38.48 – 39.38 Yes
CO2 (ton/GWh) 248.29 220.11 288.28 248.27 249.18 14.53 246.30–252.07 Yes
AP (Mt) 23.12 20.69 26.65 23.12 23.21 1.27 22.96–23.46 Yes
AP (ton/MWh) 91.54 85.37 100.88 91.32 91.64 3.25 91.00–92.28 Yes

Average cost (e/MWh)
System cost 41.45 39.62 43.48 41.43 41.41 0.76 41.26–41.56 Yes
External cost 37.70 32.78 44.29 37.68 37.83 2.50 37.33–38.33 Yes
ECC 35.50 30.83 41.78 35.49 35.63 2.37 35.16–36.10 Yes
ECAP 2.20 1.95 2.51 2.19 2.20 0.12 2.18–2.23 Yes
Taxes 2.20 1.95 2.51 2.19 2.20 0.12 2.18–2.23 Yes
Social cost 79.15 72.39 87.77 79.10 79.24 3.25 78.59–79.88 Yes
Private cost 43.65 41.57 45.99 43.62 43.61 0.88 43.43–43.78 Yes

First column shows the outcome under default parameter assumptions for joint (CO2 andAP) taxation. The remaining columns
shows the minimum (Min), maximum (Max), median (Med), mean (Mea), standard deviation (SD), and the 95% confidence
interval (CI (95%)) from the 100 randomdraws. All values refer to accumulated values fromperiod 2025 to 2050 (30 years because
2025 reflects years 2021–2025). Values in parentheses show the net present value. Average cost values calculate from the respective
accumulated value divided by demand, which is constant across all specifications within the uncertainty analysis. The last column
indicates whether or not the outcome from default assumptions lies within the 95% confidence interval.
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Table B.28: Technology cost uncertainty analysis for no taxation, σ = 0.2 (full results)

No Min Max Med Mea SD CI (95%)

Accumulated generation (TWh)
Wind 23,284 9,901 38,099 23,520 24,743 6,571 23,439–26,047 No
Solar 4,683 2,903 9,813 4,661 4,795 1,098 4,577–5,013 Yes
Nuclear 6,971 5,173 7,334 6,945 6,718 481 6,622–6,813 No
CCS 0

Accumulated demand (TWh) = 156,224

Accumulated cost (billione)
System cost 5,937 5,726 6,139 5,935 5,931 89 5,914–5,949 Yes

(1,888) (1,840) (1,944) (1,889) (1,890) (21) (1,886–1,894) (Yes)
External cost 12,057 10,215 13,475 11,985 11,799 759 11,648–11,950 No

(2,795) (2,475) (3,047) (2,784) (2,755) (133) (2,728–2,781) (No)
ECC 10,636 9,027 11,926 10,570 10,417 674 10,283–10,550 No

(2,449) (2,172) (2,677) (2,440) (2,415) (117) (2,392–2,438) (No)
ECAP 1,420 1,188 1,550 1,412 1,383 86 1,365–1,400 No

(346) (303) (370) (345) (339) (16) (336–343) (No)
Taxes 0

(0)
Social cost 17,994 15,941 19,615 17,919 17,730 847 17,562–17,898 No

(4,684) (4,315) (4,991) (4,673) (4,645) (153) (4,614–4,675) (No)
Private cost 5,937 5,726 6,139 5,935 5,931 89 5,914–5,949 Yes

(1,888) (1,840) (1,944) (1,889) (1,890) (21) (1,886–1,894) (Yes)

Accumulated and average emissions
CO2 (Gt) 73.12 63.10 81.24 72.74 71.80 4.21 70.96 – 72.63 No
CO2 (ton/GWh) 468.07 403.90 520.03 465.59 459.57 26.95 454.22–464.91 No
AP (Mt) 87.91 74.42 97.46 87.33 85.93 5.34 84.87–86.99 No
AP (ton/MWh) 345.94 302.62 370.06 344.53 339.49 16.00 336.31–342.66 No

Average cost (e/MWh)
System cost 38.00 36.65 39.30 37.99 37.97 0.57 37.85–38.08 Yes
External cost 77.18 65.39 86.26 76.71 75.53 4.86 74.56–76.49 No
ECC 68.08 57.78 76.34 67.66 66.68 4.31 65.82–67.53 No
ECAP 9.09 7.61 9.92 9.04 8.85 0.55 8.74–8.96 No
Taxes 0.00
Social cost 115.18 102.04 125.56 114.70 113.49 5.42 112.42–114.57 No
Private cost 38.00 36.65 39.30 37.99 37.97 0.57 37.85–38.08 Yes

First column shows the outcome under default parameter assumptions for joint (CO2 and AP) taxation. The remaining columns
shows the minimum (Min), maximum (Max), median (Med), mean (Mea), standard deviation (SD), and the 95% confidence
interval (CI (95%)) from the 100 randomdraws. All values refer to accumulated values fromperiod 2025 to 2050 (30 years because
2025 reflects years 2021–2025). Values in parentheses show the net present value. Average cost values calculate from the respective
accumulated value divided by demand, which is constant across all specifications within the uncertainty analysis. The last column
indicates whether or not the outcome from default assumptions lies within the 95% confidence interval.
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B.3 Figures

Figure B.1: Generation (upper panel) and emission (lower panel) mix for varying SCAP

The percentage values reflect a change in SCAP and the respective air pollution taxes from 2025 onward. The SCC and respective carbon
tax remains unchanged.
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Figure B.2: Generation (upper panel) and emission (lower panel) mix for varying SCC

The percentage values reflect a change in SCC and the respective carbon tax from 2025 onward. The SCAP and respective air pollution
taxes remain unchanged.
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Figure B.3: Generation (upper panel) and emission (lower panel)mix for air pollution emission factor
sensitivity and the technology boost

Low, mid, and high in brackets present the respective air pollution emission factor scenarios. The mid scenario is used for all prior specifi-
cations. The low scenario starts at very same 2015 emission factors as themid scenario but assumed technological progress is higher, so that
emission factor decrease more. The high scenario starts at higher 2015 emission factors (less optimistic assumptions about current fleet)
and technological progress is less optimistic as well (compared to the mid scenario). The technology boost indeed uses joint CO2 and air
pollution taxation with emission factors from the mid scenario.
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C
Supplementary Materials to Chapter 3



C.1 Supplementary information

The treatment variable I calculate the treatment intensity OUT as percentage share of
blacked-out customer×hours, i.e. as the sum of affected customers1 over over all hours relative to
the sum of tracked customers over all hours2:

OUTi =

∑
h CUSTi,h∑

h TRACKEDi,h
∗ 100 (C.1)

whereCUST is the number of customers blacked-out per each hour h of the event period in each ZIP
code area i and TRACKED is the number of customers tracked per hour and ZIP code. This allows
to capture different outage patterns like widespread short outages as well as long lasting concentrated
outages. Let for instance the event period be a 24-hour day affecting twoZIP codesA andB,with each
100 customers. For simplicity let us assume that in each hour all of the 100 customers are tracked in
both A and B. Let A experience a short but widespread blackout, where over the course of the 24-
hour event period 25 customers in total are affected in hour 9, and 23 customers in total were affected
in hour 10. In all other hours the number of affected customers is 0. For ZIP code area A OUTA

would therefore record (25+23)
100×24 × 100 = 2% blacked-out customer×hours. Meanwhile, let ZIP code

area B experience 2 affected customers for all 24 event hours. OUTB would therefore also record 2%
blacked-out customer-hours.

1Remember that this is ZIP code time series data, not household panel data, meaning that I do not know which exact
customers are affected from one hour to the next.

2Note that the number of tracked customers varies over time.
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C.2 Tables

Table C.1: Comparison of potential grid substitutes

Portable generator Stand-by generator Battery for rooftop solar PV

Installation permit required No Yes Yes
Weatherization No Yes Yes
Transfer switch Optional, manual Integrated, automatic Integrated
Professional installation Optional Required Required
Usual power/ energy output <8-10 kW 8-24+ kW 10-20 kWh (stackable)
Multi-day emergency coverage Selected appliances* Entire home* Up to entire home**
Usual price range <1,500 USD 2,000-15,000+ USD 15,000+ USD

* Based on 7-12 kW power for emergency use of essential appliances (e.g. from https://www.hinen.com, https://www.
electricgeneratorsdirect.com, https://dial1plumbing.com)
** Stacked set-up can power a home for multiple days based on average daily electricity consumption of 39 kWh of a Texan house-
hold (EIA, 2025). Daily consumption during emergency use can be lower.
Prices are before incentives and tax credits. Information, product characteristics, and price ranges are available from generator
production companies, solar PV installation companies, and energy marketplace and information platforms. E.g. https://www.
duromaxpower.com, https://www.generac.com, https://www.sunenergyguide.com, https://www.canarymedia.com, https://
www.energysage.com. Generators are usually available to buy at (online) retailers and specialized electricity equipment resellers.

Table C.2: Regressing PV with storage-related permits on PV-related permits without storage

Dependent variable:

PVStor

PVnoStor 0.006∗∗∗
(0.002)

clust-rob. SE ZIP
Observations 688
R2 0.015
Adjusted R2 0.013
Residual Std. Error 0.525 (df = 686)
F Statistic 10.334∗∗∗ (df = 1; 686)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.3: Treatment effect coefficients for generator-related permits with tertile treatment

Dependent variable:

Gen_per10kHH
By tertile/FE

Tertile1:T0 −0.065
(0.847)

Tertile2:T0 0.759
(1.463)

Tertile3:T0 0.052
(1.066)

Tertile1:T1 1.706∗

(0.902)

Tertile2:T1 3.642∗∗

(1.419)

Tertile3:T1 1.961∗∗

(0.797)

Tertile1:T2 1.794∗∗

(0.742)

Tertile2:T2 7.470∗∗∗

(2.250)

Tertile3:T2 4.576∗∗∗

(0.976)

Tertile1:T3 1.882∗∗

(0.805)

Tertile2:T3 5.632∗∗∗

(1.463)

Tertile3:T3 4.950∗∗∗

(1.106)

Tertile1:T4 0.783
(0.825)

Tertile2:T4 4.207∗∗∗

(1.545)

Tertile3:T4 3.863∗∗∗

Continued on next page
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Dependent variable:

Gen_per10kHH
By tertile/FE

(1.190)

Tertile1:T5 1.330∗

(0.660)

Tertile2:T5 4.176∗∗∗

(1.408)

Tertile3:T5 2.689∗∗∗

(0.815)

Tertile1:T6 0.912
(0.605)

Tertile2:T6 3.287∗∗

(1.285)

Tertile3:T6 2.607∗∗

(0.980)

Tertile1:T7 1.944∗∗

(0.925)

Tertile2:T7 3.093∗∗

(1.424)

Tertile3:T7 1.531∗

(0.813)

FE ZIP
clust-rob. SE ZIP
Observations 387
R2 0.717
Adjusted R2 0.658
Residual Std. Error 2.800 (df = 320)
F Statistic 12.275∗∗∗ (df = 66; 320)

Note: Based on t-distribution: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.4: Treatment effect coefficients for PV with storage-related permits with continuous treat-
ment

Dependent variable:

PVStor_per10kHH
Continuous/FE

PVnoStor_per10kHH 0.005
(0.012)

Out:T0 0.033∗∗∗
(0.008)

Out:T1 0.063∗∗∗
(0.008)

Out:T2 0.051∗∗∗
(0.009)

Out:T3 0.080∗∗∗
(0.016)

Out:T4 0.039∗∗∗
(0.008)

Out:T5 0.045∗∗∗
(0.013)

Out:T6 0.041∗∗∗
(0.008)

Out:T7 0.018∗∗
(0.007)

FE ZIP
clust-rob. SE ZIP
Observations 387
R2 0.416
Adjusted R2 0.327
Residual Std. Error 1.712 (df = 335)
F Statistic 4.683∗∗∗ (df = 51; 335)

Note: Based on t-distribution: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.5: Treatment effect coefficients for PV with storage-related permits with tertile treatment

Dependent variable:

PVStor_per10kHH
By tertile/FE

PVnoStor_per10kHH −0.001
(0.013)

Tertile1:T0 1.101∗

(0.559)

Tertile2:T0 0.973∗∗

(0.482)

Tertile3:T0 1.094∗∗∗

(0.392)

Tertile1:T1 1.393∗∗

(0.674)

Tertile2:T1 2.155∗∗∗

(0.444)

Tertile3:T1 2.054∗∗∗

(0.386)

Tertile1:T2 2.426∗∗∗

(0.796)

Tertile2:T2 1.417∗∗∗

(0.312)

Tertile3:T2 1.777∗∗∗

(0.490)

Tertile1:T3 1.720∗

(0.883)

Tertile2:T3 2.259∗∗∗

(0.629)

Tertile3:T3 2.456∗∗∗

(0.742)

Tertile1:T4 1.065∗

(0.616)

Tertile2:T4 1.652∗∗∗

Continued on next page
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Dependent variable:

PVStor_per10kHH
By tertile/FE

(0.375)

Tertile3:T4 1.036∗∗∗

(0.375)

Tertile1:T5 0.869
(0.777)

Tertile2:T5 1.511∗∗∗

(0.374)

Tertile3:T5 1.894∗∗∗

(0.692)

Tertile1:T6 2.472∗∗

(0.981)

Tertile2:T6 1.237∗∗∗

(0.387)

Tertile3:T6 1.547∗∗∗

(0.417)

Tertile1:T7 0.044
(0.717)

Tertile2:T7 0.061
(0.322)

Tertile3:T7 0.814∗∗

(0.313)

FE ZIP
clust-rob. SE ZIP
Observations 387
R2 0.462
Adjusted R2 0.349
Residual Std. Error 1.684 (df = 319)
F Statistic 4.085∗∗∗ (df = 67; 319)

Note: Based on t-distribution: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.6: Treatment and spillover effect coefficients for generator-related permits with continuous
treatment

Dependent variable:

Gen_per10kHH
Continuous/OLS Continuous/OLS

(1) (2)

Out:T0 0.017 0.032∗∗
(0.015) (0.015)

Out:T1 0.043∗∗ 0.036∗∗
(0.018) (0.018)

Out:T2 0.130∗∗∗ 0.123∗∗∗
(0.031) (0.030)

Out:T3 0.124∗∗∗ 0.117∗∗∗
(0.025) (0.025)

Out:T4 0.083∗∗∗ 0.075∗∗
(0.031) (0.030)

Out:T5 0.064∗∗∗ 0.056∗∗∗
(0.019) (0.019)

Out:T6 0.053∗∗ 0.046∗
(0.024) (0.024)

Out:T7 0.027∗ 0.019
(0.016) (0.016)

Spill_dist_scaled:Post 0.033∗∗∗
(0.011)

Spill_SCI_scaled:Post 0.024∗∗∗
(0.005)

FE - -
clust-rob. SE ZIP ZIP
Spillovers Distance SCI
Observations 387 387
R2 0.425 0.443
Adjusted R2 0.402 0.420
Residual Std. Error (df = 371) 3.707 3.648
F Statistic (df = 15; 371) 18.270∗∗∗ 19.650∗∗∗

Note: Based on t-distribution ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.7: Treatment and spillover effect coefficients for generator-related permits with continuous
treatment (conventional p-values)

Dependent variable:

Gen_per10kHH
Continuous/OLS Continuous/OLS

(1) (2)

Out:T0 0.017 0.032∗∗
(0.015) (0.015)

Out:T1 0.043∗∗ 0.036∗∗
(0.018) (0.018)

Out:T2 0.130∗∗∗ 0.123∗∗∗
(0.031) (0.030)

Out:T3 0.124∗∗∗ 0.117∗∗∗
(0.025) (0.025)

Out:T4 0.083∗∗∗ 0.075∗∗
(0.031) (0.030)

Out:T5 0.064∗∗∗ 0.056∗∗∗
(0.019) (0.019)

Out:T6 0.053∗∗ 0.046∗
(0.024) (0.024)

Out:T7 0.027∗ 0.019
(0.016) (0.016)

Spill_dist_scaled:Post 0.033∗∗∗
(0.011)

Spill_SCI_scaled:Post 0.024∗∗∗
(0.005)

FE - -
clust-rob. SE ZIP ZIP
Spillovers Distance SCI
Observations 387 387
R2 0.425 0.443
Adjusted R2 0.402 0.420
Residual Std. Error (df = 371) 3.707 3.648
F Statistic (df = 15; 371) 18.270∗∗∗ 19.650∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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C.3 Figures

Figure C.1: Hourly outage intensity by ZIP code from Feb 15 to Feb 18

Based on data from Bluefire Studios LLC (2023).
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Figure C.2: Density plot of outage intensity across the ZIP code sample
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Figure C.3: Treatment effect coefficients for generator-related permits with quartile treatment
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Figure C.4: Treatment effect coefficients for PVwith storage-related permits with quartile treatment
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Figure C.5: Heterogeneous treatment effects by socio-economic characteristics (interaction effects)

Notes: The period preceding the treatment period is omitted (t = −1). Above median (additive effect) is the interaction effect.
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Figure C.6: Treatment effect coefficients for generator-related permits (conventional p-values)

(a) Continuous treatment
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Figure C.7: Treatment effect coefficients for PVwith storage-related permits (conventional p-values)

(a) Continuous treatment
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Figure C.8: Heterogeneous treatment effects by socio-economic characteristics (conventional p-
values)

The period preceding the treatment period is omitted (t = −1).
Above median (total effect) is plotted as the sum of the main effect point estimate and the interaction effect.
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Figure C.9: Heterogeneous treatment effects by socio-economic characteristics (interaction effects)
(conventional p-values)

Notes: The period preceding the treatment period is omitted (t = −1).
Above median (additive effect) is the interaction effect.
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