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1. Introductory summary  

1.1 Immunotherapy has revolutionized cancer treatment 

Cancer is emerging as a leading global cause of mortality, with approximately 18 million new cases 
diagnosed annually, resulting in nearly 10 million deaths 1,2. Despite advancements in cancer 
prevention and early diagnosis, both incidence and mortality rates continue to rise. For a long time, 
cancer treatment was based on three pillars: surgery, radiotherapy, and chemotherapy, with limited 
durable responses, particularly for patients with advanced diseases. However, in the last 30 years, 
cancer immunotherapy has remarkably improved patients’ survival and quality of life. It is now firmly 
established as the fourth pillar of cancer treatment in various entities 3.  
Cellular aberrations develop continuously through several mechanisms, including infections, DNA and 
cellular damage, and aging. Internal control mechanisms or immune surveillance usually destroy and 
eliminate these mutated cells. The immune system comprises the innate and adaptive arms. The innate 
immune system is characterized by a rapid, non-specific response of myeloid and lymphoid cells, such 
as macrophages and natural killer (NK) cells, while the adaptive immune system induces an antigen-
specific response of lymphocytes. Upon antigen exposure, T cells and B cells proliferate, differentiate 
for effector functions, and ensure long-term memory in a tightly regulated homeostatic balance 4,5.  
Normally, endogenous immune responses alone are highly efficient in recognizing and destroying 
infected and mutated cells. However, cancerous cells develop various mechanisms to escape the 
immune system’s surveillance, such as antigen loss or downregulation of the major histocompatibility 
complex (MHC) I and II pathways and inhibitory receptor expression, like programmed cell death 
protein 1 (PD-1) ligand (PD-L1), for promoting anergy and tolerance. Furthermore, a dysfunctional 
immune system and immunosuppressive tumor microenvironment (TME), including regulatory T cells 
(Tregs), “M2”-like polarized macrophages, and myeloid-derived suppressor cells (MDSCs), support 
tumor development, progression, and recurrence 6,7.  
Hence, immunotherapies aim to counteract these mechanisms by modifying and activating immune 
cells to eliminate tumor cells, boosting the endogenous immune response, and establishing long-term, 
cancer-specific immunity 8. The goal is the sustained clearance of residual cancer cells to prevent tumor 
relapse. Cancer immunotherapy generally involves several strategies leveraging distinct mechanisms 
to enhance anti-tumor immunity. These include monoclonal antibodies (mAbs), checkpoint inhibition, 
immunomodulators, adoptive cell transfer (ACT), oncolytic viruses, and vaccination (Figure 1) 8,9.  
Conventional or modified mAbs represented a milestone in cancer treatment, as they enhance tumor-
specific targeting and induce immune-mediated tumor elimination 10. Furthermore, antibody-based 
immune checkpoint inhibition led to a new wave in cancer immunotherapy by restoring the 
endogenous immune-cell activity against cancer cells. Small molecules are also currently investigated 
as checkpoint inhibitors overcoming antibody-based limitations, such as suboptimal tumor 
penetration and potential immunogenicity 11,12. These antibody-based strategies will be discussed in 
the following chapters. Other concepts, such as ACT, include the reinfusion of ex vivo expanded tumor-
infiltrating lymphocytes (TILs) 13, genetically engineered tumor-reactive transgenic T-cell receptor T 
cells (TCR-T) 14, and chimeric antigen receptor (CAR) T cells 15 into patients. Immunomodulators, such 
as cytokines 16, and small molecules, such as toll-like receptor agonists 17, stimulate immune responses 
to enhance tumor recognition. In addition, either naturally occurring or genetically modified, oncolytic 
viruses infect and lyse tumor cells while stimulating an anti-tumor immune response 18. Lastly, cancer 
vaccines, for instance, administered as peptide cocktails or peptide-pulsed dendritic cells (DCs), prime 
the immune system to recognize tumor antigens and promote long-term immune surveillance 19,20.  
Overall, these immunotherapy strategies have remarkably improved cancer treatment, offering 
effective and durable responses and new therapeutic possibilities. However, only a subset of patients 
benefit from immunotherapy, and immune evasion mechanisms, primary and acquired resistance, and 
immune-related adverse events (irAEs) are critical limitations 15,21. Therefore, novel strategies are 
urgently needed.  
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Figure 1 Strategies of cancer immunotherapy 8,9. Different immunotherapeutic approaches are currently used and further 
evaluated for cancer treatment. These include tumor targeting by monospecific and bispecific mAbs, blockade of immune 
checkpoints by mAbs or drugs, adoptive cell transfer (ACT) of engineered CAR-T cells or ex vivo expanded TILs, vaccination by 
administration of tumor-specific peptides or pulsed DCs, immunomodulators to activate immune cells or the TME, and 
oncolytic viruses to infect and lyse cancer cells. This scheme was created with BioRender.com. 

1.2 Antibody-based immunotherapy enables a broad therapeutic window 

Immunotherapeutic mAbs can target cancer cells specifically and with high affinity to induce tumor-
restricted endogenous immune reactions, a major benefit to conventional treatments, such as 
chemotherapy and radiation therapy. 

1.2.1 Monoclonal antibodies have evolved from research tools to powerful therapeutics 

Key technologies have enabled the therapeutic use of antibodies. One milestone was the development 
of the hybridoma technique by Köhler and Milstein in 1975, which facilitated the robust and efficient 
production of highly specific mouse mAbs against human antigens 22. However, mouse mAbs can be 
cleared due to a human anti-mouse immune response after infusion 23. Subsequently, grafting human 
antibody constant regions onto mouse antibody variable regions led to the creation of chimeric 
antibodies with improved therapeutic efficacy and reduced side effects. In 1997, the U.S. Food and 
Drug Administration (FDA) approved rituximab, the first chimeric therapeutic anti-CD20 mAb, which 
led to remarkable results and is now the standard of care for treating patients with B-cell 
lymphomas 24. To further minimize antibody-based immune responses, the human content of mouse 
mAbs was increased through "humanization", a process that involves grafting the mouse antibody's 
complementarity-determining regions (CDRs) onto a human antibody framework. Trastuzumab was 
one of the first humanized mAbs directed against human epidermal growth factor receptor 2 (HER2) 25, 
followed by several others, including pembrolizumab and atezolizumab targeting PD-1 and PD-L1, 
respectively. In the 1990s, advancements such as transgenic mouse models 26 and phage display 
systems 27 enabled the generation of fully human antibodies for targeting cancer. These innovations 
have driven a rapid expansion of antibody-based therapeutics over the past 25 years, resulting in more 
than fifty FDA- and European Medicines Agency (EMA)-approvals for treating hematologic and solid 
tumors today 28.  

ACT Vaccines

Oncolytic viruses

Antibody-based targeting

Immunomodulators

Checkpoint blockade
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However, an obstacle to mAb targeting is the risk of irAEs, including anaphylaxis, autoimmunity, and 
cytokine release syndrome 29, which was most prominently detected by the dramatic and life-
threatening cytokine storm seen after infusing TGN1412, an anti-CD28 mAb 30.  

1.2.2 A variety of antibody formats have been developed  

Antibodies are characterized by a symmetric Y-shaped structure consisting of two identical light and 
heavy chains connected by disulfide bonds. Both comprise a variable (VL and VH) and a constant (CL and 
CH) domain (Figure 2a). The variable region mediates antigen binding, whereas the constant domain 
enables the effector function. The antibody can be split into two identical antigen-binding fragments 
(Fab) and a fragment crystallizable (Fc) domain 31. 
Natural antibody formats consist of full-length immunoglobulins (Igs) that bind monospecifically to one 
target antigen. They are bivalent due to one binding site (paratope) per Fab arm. Igs exist in five distinct 
isotype forms: IgA, IgD, IgE, IgG, and IgM. For immunotherapy, the IgG isotype is commonly used due 
to its long half-life (approximately 21 days), tissue penetration capability, and optimal interaction with 
activating Fcg receptors (FcgRs) while diminishing binding to inhibitory FcgRs. IgG antibodies are 
divided into four subclasses (IgG1, IgG2, IgG3, and IgG4), with most therapeutic antibodies focusing on 
the IgG1 subclass to mediate effector functions 32. Modifications of the Fc domain, such as 
glycosylation and key residue amino acid substitution, can increase effector binding and activation 33 
but also induce Fc-silencing to reduce immune reactions 34. In addition, the selection of IgG2 or IgG4 
isotypes can initiate weakened Fc activation due to reduced binding to FcgRs 35. 
Based on their structure and function, therapeutic antibody formats can be categorized into 
monospecific, bispecific, multispecific, fusion, and payload-conjugated mAbs (Figure 2). 
 

 
Figure 2 Monoclonal antibodies are developed in various formats 31,36,37. (a) The structure of a monospecific naturally 
occurring antibody and fragment-based monospecific constructs. Representative examples of artificially engineered bispecific 
(b) and multispecific (c), and fusion and conjugation (d) mAb constructs based on IgG (upper row) and fragments (middle and 
lower rows). VL and VH: variable light and heavy domain; CL and CH: constant light and heavy domain; Fab: antigen-binding 
fragments; Fc: fragment crystallizable; sdAb: single-domain antibody; scFv: single-chain variable fragment; KiH: Knob-into-
hole; IgG: immunoglobulin G; LicMAb: local inhibitory checkpoint monoclonal antibody; BiTE: bispecific T-cell engager; TriTAC: 
trispecific T-cell activating construct; DART: dual-affinity retargeting; TriKE: trispecific killer engager; CiTE: checkpoint 
inhibitory T-cell engager; ADC: antibody-drug conjugate; SIRPa: signal regulatory protein a; ECD: extracellular domain. This 
scheme was created with BioRender.com. 

Monospecific IgG antibodies include conventional IgG mAbs and non-IgG fragment-based antibodies, 
such as engineered single-chain variable fragments (scFv), generated by directly linked VL and VH 
chains 38 and Fab subunits 39 (Figure 2a).  
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Bispecific antibodies (bsAbs) include the IgG-based formats that can be engineered by 
heterodimerization of the heavy or light chains, such as knob-into-hole (KiH) 40 and DuoBody 41, or kl 
body 42, respectively, and the homodimeric IgG-scFv 43. In addition, fragment-based bsAbs are 
developed, for instance, tandem scFv bsAbs, such as bispecific T-cell engager (BiTE) 44, (tandem) 
diabody 45, dual-affinity retargeting (DART) 46, and F(ab’)2 constructs 47 (Figure 2b). Particularly, 
blinatumomab, the first-in-class CD19xCD3 BiTE, shows remarkable success in patients with 
relapsed/refractory (r/r), precursor B cell acute lymphoid leukemia 44.  
Multispecific constructs are specific to more than two targets, such as the “2+1” trispecific 48, tri- or 
tetraMab IgG formats 49,50, fragment-based trispecific T-cell activating construct (TriTAC) 51, cross-
linking interleukin (IL)-15 TriKE (trispecific killer engager) 52, Triabody, and Tetrabody molecules 53 
(Figure 2c).  
Furthermore, there are plenty of fusion constructs that can enhance the antibodies’ specificity. For 
instance, the signal regulatory protein a (SIRPa) extracellular domain (ECD) can be fused to a full-
length IgG mAb, generating a so-called LicMAb (Publication I: Reischer* & Leutbecher* et al.), or the 
PD-1 ECD can be fused to a BiTE format, generating a so-called CiTE (checkpoint inhibitory T-cell–
engager) 54. Moreover, antibody-drug conjugates (ADC) are developed by conjugating a toxin to IgG- 
and fragment-based mAbs 55,56 (Figure 2d). 
In general, conventional IgG-based mAbs have longer half-lives due to neonatal Fc receptor (FcRn)-
mediated recycling, higher solubility, and thermostability than fragment-based antibodies. However, 
these are beneficial for large-scale production in microbial systems and enhanced tissue penetration 57.  

1.2.3 Antibody-based immunotherapy can mediate several modes of action 

Most mAbs target tumor-associated antigens (TAAs) and induce cancer cell killing through several 
mechanisms, including innate immune cell activation, drug delivery, and bispecific immune cell 
engagement, particularly involving T cells. They can also block inhibitory immune checkpoints and pro-
tumoral signaling pathways regarding survival, proliferation, and angiogenesis 58 (Figure 3). Of note, 
mAbs can combine more than one strategy per molecule. 
One major mode of action is the Fc-dependent activation of innate immune cells. Particularly, IgG1 has 
a strong affinity to the activating FcgRI (CD64), FcgRIIa (CD32a), FcgRIIIa (CD16a), and FcgRIIIb (CD16b), 
expressed by NK cells, macrophages, and neutrophils 32. Binding to FcgR induces activating signal 
cascades, which mediate antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent 
cellular phagocytosis (ADCP). Moreover, the C1 complex binds opsonized tumor cells and initiates the 
complement cascade, inducing complement-dependent cytotoxicity (CDC) 32.  
In contrast to directly targeting tumor cells, immune checkpoint-blocking mAbs bind regulatory 
receptors or their ligands to disrupt inhibitory signaling cascades. T-cell responses are mostly regulated 
by immune checkpoints, such as PD-1 and cytotoxic T-lymphocyte antigen 4 (CTLA-4). Their expression 
is induced after T-cell stimulation to limit further T-cell activation by interacting with their respective 
ligands 59. More precisely, CTLA-4 competes with the co-stimulatory receptor CD28 for binding to B7-
1 (CD80) and B7-2 (CD86) expressed on antigen-presenting cells (APCs), predominantly DCs 60. PD-1 
binds to its ligands PD-L1 and PD-L2, expressed on several cells, like APCs, and particularly tumor 
cells 59, resulting in an inhibitory signal suppressing T-cell activation and proliferation 61,62. In that 
regard, checkpoint blockade provides a powerful therapeutic option leading to enhanced T-cell 
activation by lowering the activation threshold 63, reinvigorating exhausted T cells 64, and recruiting 
new T-cells into tumors 65. Blocking the innate CD47-SIRPa axis, predominantly present between 
tumor cells and macrophages, inhibits the anti-phagocytic signal in phagocytes and thus triggers 
ADCP 66. 
Additionally, due to their specificity and high affinity, mAbs can be used for targeted drug delivery of 
agents, such as immunotoxins and radiopharmaceuticals. The binding and internalization of ADCs lead 
to toxin accumulation in the cytoplasm, such as immunotoxins derived from bacteria or plant proteins, 
which promote cellular apoptosis and death by harming DNA or microtubules 55.  
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An important mechanism is the direct blockade of pro-tumoral signals, including survival, proliferation, 
and angiogenesis. Targeting epidermal growth factor family receptors, such as HER2 and epidermal 
growth factor receptor (EGFR) expressed in solid tumors, blocks receptor dimerization, resulting in cell 
cycle arrest and apoptosis 58. Targeting CD52 was shown to induce caspase-independent cell death in 
leukemia 67. Binding to vascular endothelial growth factor (VEGF) ligands and receptors impedes their 
interaction, disrupting the tumor blood supply 68.  
Bispecific or bifunctional mAbs target two distinct antigens or epitopes. Depending on the structure or 
format of the bsAb and the addressed target, they can engage multiple mechanisms. For instance, 
immune cells, particularly T cells, can be recruited to tumors. Various signaling pathways, such as 
tumor-restricted checkpoint blockade and co-stimulation, can be addressed. Additionally, target 
specificity can be enhanced 69. These targeting and activation strategies can be amplified using 
multispecific and multifunctional antibodies 70.  
 

 
Figure 3 Mode of action of antibody-based immunotherapy 58,66. Monoclonal antibodies can induce activation of innate 
immune cells by interaction of the mAb’s fragment crystallizable (Fc) domain with the Fc receptor (FcR) on FcR-expressing 
innate cells, such as NK cells and macrophages, thereby inducing antibody-dependent cellular cytotoxicity (ADCC) and 
phagocytosis (ADCP), respectively. The complement C1 complex can bind opsonizing mAbs, initiating complement-dependent 
cytotoxicity (CDC). Another mode of action is the blockade of inhibitory immune checkpoints. Thus, the innate CD47-SIRPa 
axis involving phagocytic cells, such as macrophages, and the adaptive PD-1/PD-L1 axis involving T cells and tumor cells, as 
well as the CTLA-4-CD80/CD86 axis, involving T cells and DCs, can be blocked. Moreover, mAbs conjugated with immunotoxins 
(ADCs) or radio-ligands can mediate cancer cell death by internalizing cytotoxic agents and tumor-directed radioactive 
emissions, inducing DNA and microtubule damage. The blockade of pro-tumoral signaling pathways regarding survival, 
proliferation, and angiogenesis represents an additional approach. Bispecific engagement of immune cells comprises various 
mechanisms, such as tumor-directed target-cell recruitment, activation, and inhibition. For simplicity, a schematic IgG1 mAb 
is shown here. This scheme was created with BioRender.com. 
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1.2.4 Tumor-associated antigens are favorable targets 

The ideal target antigens of antibodies are tumor-specific cell-surface proteins, which are 
overexpressed on malignant cells and absent in healthy cells 71. Rituximab was the first FDA-approved 
mAb, followed by several FDA-and EMA-approved mAbs targeting TAAs, including HER2 and EGFR for 
treating solid tumors and CD19 and CD52 for hematologic cancers. In addition, various novel TAA-
targeting mAbs are developed and clinically evaluated 28. 

1.2.4.1 Mesothelin is a promising solid tumor antigen  

Mesothelin (MSLN) was initially described as the target of the mAb K1 in ovarian cancer 72. However, 
it is expressed as a 71 kDa glycosylphosphatidylinositol (GPI)-anchored cell surface precursor protein. 
It is cleaved enzymatically into soluble 31 kDa megakaryocyte potentiating factor (MPF) and the 40 kDa 
membrane-bound form of MSLN, which is restrictedly expressed on mesothelial cells of the pleura, 
peritoneum, and pericardium 73. We and others show a high expression in several malignancies, 
particularly mesothelioma, epithelial ovarian cancer (EOC), and pancreatic ductal adenocarcinoma 
(PDAC) 74 (Publication I: Reischer* & Leutbecher* et al.). The physiological function of MSLN remains 
unknown, as MSLN-deficient mice show a normal phenotype 75. Nevertheless, the interaction of MSLN 
with cancer antigen 125 (CA-125) is involved in tumor progression and metastasis development 76. 
Thus, the restricted expression in normal tissues but high expression in solid cancers, supported by the 
beneficial blockade of the MSLN-CA-125 axis, highlights MSLN as a promising target for cancer 
therapies.  
Various MSLN-targeting immunotherapeutic approaches, including mAbs 77, ADCs 78, and CAR T-cell 
therapies 79, have been evaluated in clinical trials. For instance, amatuximab, an aMSLN mAb, has been 
well-tolerated in MSLN+ tumor patients 77. In a phase II trial enrolling mesothelioma patients, the 
combination with pemetrexed and cisplatin chemotherapy was well tolerated, led to 90% disease 
control, and improved the median overall survival (OS) of 14.8 months compared favorably with 13.3 
months in historical controls 80. The ADC anetumab ravtansine, an aMSLN mAb conjugated to the 
maytansinoid tubulin inhibitor DM4, is currently evaluated as monotherapy in patients with advanced 
MSLN+ solid tumors 78. Its combination with doxorubicin chemotherapy is particularly beneficial in a 
phase Ib study enrolling platinum-resistant EOC patients 81. 
Notably, MSLN can serve as a biomarker in various cancer entities 82, as high concentrations of soluble 
MSLN have been found in the serum of patients 83 (Publication I: Reischer* & Leutbecher* et al.). To 
maintain the therapeutic window even in the presence of shed MSLN, several approaches were 
developed, including bispecific or multifunctional antibodies 84,85 (Publication I: Reischer* & 
Leutbecher* et al.) or membrane-proximal MSLN-targeting bsAbs 86 and CAR-T cells 87. 

1.2.4.2 CD123 is a therapeutically relevant hematologic tumor antigen  

CD123, also known as the IL-3 receptor (IL-3R) α chain, binds IL-3 specifically with low affinity and 
forms, together with the common b chain, the heterodimeric high-affinity IL-3R. IL-3 regulates the 
differentiation and proliferation of myeloid cells, including granulocytes, monocytes, and particularly 
progenitor cells 88.  
CD123 is expressed on CD34+ hematopoietic progenitor cells and is maintained in the granulocytic 
lineage, in contrast to reduced expression in monocytes. Erythrocytes and megakaryocytes 
progressively lose CD123 expression during differentiation 89. Nevertheless, CD123 expression on 
plasmacytoid DCs (pDCs), eosinophils, and neutrophils results in potential on-target off-tumor 
toxicity 90.  
Jordan et al. found CD123 to be frequently expressed on leukemic stem cells (LSCs) in acute myeloid 
leukemia (AML), as opposed to normal bone marrow-derived hematopoietic cells 91. The high 
expression in various hematologic malignancies, including AML, B-cell acute lymphoblastic leukemia, 
and blastic plasmacytoid dendritic cell neoplasm 92, makes it a promising therapeutic target for mAbs 93 
(Publication II: Tahk et al.), ADCs 94, T-cell-engaging bsAbs 95, and CAR-T cell therapy 96.  
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1.2.5 Immune checkpoint inhibition led to a new wave in cancer immunotherapy 

Immune checkpoints are regulatory pathways to maintain self-tolerance and prevent overactivation 
of immune responses. Tumor cells exploit these mechanisms by upregulating inhibitory immune 
checkpoints to evade immune surveillance. Checkpoint inhibition utilizes the immune system's ability 
to recognize and eliminate cancer cells 97. To date, checkpoint inhibition focuses on the adaptive 
inhibitory pathways, with currently three FDA- or EMA-approved checkpoints, CTLA-4, PD-1/PD-L1, 
and lymphocyte-activation gene 3 (LAG-3), and more than 20 immune checkpoints being investigated 
in clinical trials 28. However, irAEs restrict the therapeutic potential 98, and despite their striking efficacy 
in some entities, such as melanoma, non-small cell lung cancer, and renal cell carcinoma 99–102, various 
cancers show only limited responses 103,104. As checkpoint inhibition only reactivates immune 
responses, cancers with low mutational burden and low PD-L1 expression, as well as an 
immunosuppressive TME, including exhausted and dysfunctional T cells, among other reasons, weaken 
this strategy 105–108. Thus, innate immune checkpoint blockade is another promising concept. 

1.2.5.1 CD47 is an important inhibitory innate immune checkpoint  

CD47 is a 50kDa transmembrane protein with an extracellular single Ig superfamily domain 109. It was 
first described as a novel TAA in ovarian cancer in 1986 110 and later named OA3 111. In 1994, Mawby 
et al. 112 identified CD47 as an abundantly expressed glycoprotein identical to OA3 and the integrin-
associated protein (IAP), another discovered protein expressed on hematopoietic cells 113. Interaction 
of CD47 with its ligands, integrin and thrombospondin-1 (TSP-1), contributes to various mechanisms, 
including cell adhesion, migration, angiogenesis, and aging 114,115.  
The most important role of CD47 as a “marker of self” on red blood cells (RBCs) was demonstrated by 
CD47-/- RBC elimination through splenic macrophages in vivo 116. The binding of CD47 to its co-receptor 
SIRPa on myeloid cells, such as macrophages and DCs, inhibits phagocytosis by inducing a “don’t eat 
me” signal. SIRPa binding leads to downstream phosphorylation of intracellular immunoreceptor 
tyrosine inhibitory motifs (ITIMs), which recruit and activate Src-homology 2 tyrosine phosphatases, 
SHP-1, and SHP-2 to inhibit signaling in tyrosine kinase-dependent activation pathways required for 
phagocytosis 114–116.  
The inhibitory checkpoint CD47 is expressed on almost every cell to mediate healthy homeostasis, 
especially in the life cycle of RBCs. However, tumor cells utilize that mechanism to escape the immune 
system by upregulating CD47 on the cell surface. AML was the first cancer entity, well characterizing 
the high CD47 expression 117, followed by a broad range of solid and hematologic malignancies 66 
(Publication I: Reischer* & Leutbecher* et al.). High CD47 expression has also been shown to correlate 
with a poorer prognosis in various cancer patients, including AML and EOC 66,117. Therefore, CD47 
represents a viable target.  

1.2.5.2 CD47 is a promising target in immunotherapy  

CD47 targeting was validated as a promising immunotherapeutic approach for treating various 
hematological and solid tumor entities 118. However, CD47 expression on healthy cells, notably RBCs, 
poses significant challenges for CD47 targeting. Multiple concepts were developed to block the CD47-
SIRPa axis, including αCD47 mAbs with reduced RBC targeting 119, SIRPα fusion proteins with an 
intrinsically lower affinity to CD47 120, and a human IgG4 isotype to minimize potential off-target 
effects 121.  
The predominant mechanism of blocking the CD47-SIRPa axis was inducing macrophages to mediate 
ADCP 118. However, further mechanisms might contribute to the immune response, including 
macrophage recruitment by secreted cytokines and chemokines 126,128, macrophage polarization 109, 
neutrophil activation 129, and an adaptive T-cell immune response induced by cross-presentation of 
phagocytic APCs 128. By bridging innate and adaptive immunity, blockade of the CD47-SIRPa pathway 
is a highly promising strategy in cancer immunotherapy.  
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Liu et al. developed the humanized 5F9 IgG4 mAb (Hu5F9-G4, magrolimab), which bound human CD47 
with 8 nM affinity, induced potent ADCP of AML cells in vitro, and eliminated AML blasts in vivo and 
toxicokinetic studies in non-human primates 121. It was subsequently evaluated in clinical trials 
enrolling patients with r/r AML or myelodysplastic syndromes (MDS) and advanced solid cancers, and 
despite evidence of monotherapy activity, combination trials were enrolled to evaluate its optimal 
therapeutic efficacy 130.  
In the last 10 years, various other CD47-targeting mAbs were evaluated as monotherapy in phase1/2 
clinical trials, including advanced hematologic and solid cancer patients. Anti-CD47 IgG4 mAbs, such as 
IBI188 131, CC-90002 132, Ti-061 133, lemzoparlimab (TJC4) 134, ligufalimab (AK117) 135, SRF231 136, and 
IMC-002 137, the anti-CD47 IgG2a mAb AO-176 138, as well as SIRPa Fc fusion mAbs, such as TTI-
621 (IgG1) 139, TTI-622 (IgG4) 140, timdarpacept (IMM01) 141 and evorpacept (ALX148) 142 were well 
tolerated and showed clinical activity. However, further development of, e.g., CC-90002 was 
discontinued due to a lack of monotherapy activity 143.  

1.2.5.3 Combinatorial approaches enhance CD47-mediated phagocytosis  

CD47 checkpoint blockade as monotherapy might not be sufficient, as additional pro-phagocytic 
signals are needed to induce significant ADCP 144. One approach to synergize the antitumor efficacy is 
the addition of Fc-active mAbs to stimulate phagocytic cells by Fc-FcgR interaction as pro-phagocytic 
signals 145. The combination with rituximab in non-Hodgkin’s lymphoma (NHL) patients 122, 
daratumumab, an anti-CD38 mAb in myeloma 146, as well as GD2-targeting in glioblastoma 147 and 
trastuzumab, an anti-HER2 mAb, in breast cancer 148, demonstrated promising pre-clinical results in 
vitro and in vivo. Notably, the combination of rituximab and magrolimab showed safe and durable 
complete responses in a phase 1b/2 trial involving patients with aggressive r/r NHL without significant 
safety events. Interestingly, this combinatorial approach restored the sensitivity of rituximab, as 95% 
of the enrolled patients were rituximab-resistant 149. Moreover, lemzoparlimab in combination with 
rituximab demonstrated anticancer activity and was well tolerated in a phase 1b study for r/r NHL 150. 
For the treatment of solid tumors, including gastric cancer and HNSCC, the combination of evorpacept 
and trastuzumab was favorable with historic controls 142. 
Another strategy is to induce immunogenic cell death, which leads to the upregulation of pro-
phagocytic ligands, such as calreticulin, on the target cells 151. In that regard, cytotoxic agents, including 
chemotherapy, poly ADP ribose polymerase inhibitors (PARPi), and stimulator of interferon genes 
(STING) agonists, synergized with CD47 blockade in solid tumors in vitro 152–154.  
Moreover, magrolimab-mediated CD47 blockade combined with the hypomethylating agent 
azacytidine was pre-clinically and clinically demonstrated as an encouraging and synergistic approach 
for hematologic malignancies, particularly AML and MDS 155. The combinatorial treatment 
demonstrated several benefits. It eliminated LSCs, potentially inducing a more durable response, and 
changed the bone marrow TME, including an increased T-cell frequency as evidence of adaptive 
immune activation. Furthermore, the response rates of TP53 mutant AML patients having a particularly 
poor prognosis were improved 156. 
Azacytidine was well tolerated by MDS patients and showed clinically meaningful activity in 
combination with evorpacept 157, lemzoparlimab 158, and timdarpacept 159 in phase 2 trials, as well as 
IBI188 160 and ligufalimab 161 in phase 1b trials.  
Furthermore, AML patients were enrolled in phase 1/2 trials evaluating magrolimab in combination 
with the BCL-2 inhibitor, venetoclax, and azacytidine, showing remarkable response rates and a safe 
profile 162. However, the randomized, double-blind, placebo-controlled, multicenter phase 3 
ENHANCE-3 study (NCT05079230) evaluating magrolimab + venetoclax + azacytidine in AML patients 
was terminated due to futility. Although full reports are missing to date, the first preliminary data 
showed increased toxicity due to on-target off-leukemia toxicity. Previously untreated AML patients, 
ineligible for intensive chemotherapy due to an older age (>75) or having comorbidities, were enrolled. 
In that regard, the elderly, frail patient cohort was a major obstacle. Furthermore, one can speculate 
if an IgG4 construct combined with a hypomethylating agent is the ideal combination to provide the 
needed pro-phagocytic signal. However, all clinical trials for the application of magrolimab in 
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hematologic and solid malignancies are withdrawn, discontinued, or terminated (e.g., NCT05079230, 
NCT06046482, NCT05169944, NCT05738161, NCT05807126). 
An alternative approach is the combination of innate and adaptive checkpoint blockade, which has 
been pre-clinically shown to be synergistic for several solid cancers 163. In a phase 2 trial, timdarpacept 
plus aPD-1 mAb tislelizumab, showed a robust anti-tumor efficacy with a well-tolerated safety profile 
for lymphoma and solid tumor patients 164. In a phase 1 trial enrolling advanced solid tumors, the 
combination of evorpacept and aPD-1 mAb pembrolizumab, was favorable to historical controls, 
supporting further investigation 142. Ligufalimab plus cadonilimab, a PD-1/CTLA-4 bsAb, and 
chemotherapy demonstrated encouraging anti-tumor activity in a phase 1 trial enrolling gastric cancer 
patients 165. 

1.2.5.4 On-target off-tumor binding can lead to CD47-induced toxicities  

The ubiquitous expression of CD47 on healthy cells demonstrates a major risk for CD47-targeting. 
Higher doses are likely needed to overcome a potential antigen sink. Moreover, the particularly high 
expression of CD47 on RBCs can lead to RBC clearance, resulting in anemia as a serious CD47-induced 
toxicity 121,166.  
Throughout the ~120-day lifespan of RBCs, high expression of CD47 diminishes during aging while 
simultaneously upregulating pro-phagocytic signals. In that regard, aged RBCs might be disposed to 
CD47 targeting. Magrolimab has been evaluated in several clinical trials, demonstrating manageable 
anemia. An initial low priming dose of 1 mg/kg of magrolimab was shown to mitigate anemia by 
eliminating aged RBCs but sparing young RBCs 156. As a result, the transient mild and predictable 
anemia was followed by compensatory reticulocytosis, and the newly generated RBCs were unaffected 
by magrolimab 156. Furthermore, a protective phenomenon named RBC pruning was detected, 
meaning that initially primed RBCs lost CD47 expression by CD47 shedding 167. Thus, this priming dose, 
followed by a higher maintenance dose, reduced anemia in phase 1 clinical trials with advanced solid 
tumor and NHL patients 149,166.  
In general, CD47-targeting mAbs were well tolerated by the patients in the clinical trials, and the 
common irAEs were manageable anemia, thrombocytopenia, and neutropenia. Furthermore, fatigue, 
nausea, and infusion-related reactions occurred 131,138,140,143. The phase 1/2 combination trials of 
magrolimab and azacytidine resulted in an irAE profile similar to azacytidine monotherapy, mainly 
anemia, thrombocytopenia, and infusion reactions 155. 
However, magrolimab showed no improved overall survival or response in the recent phase 3 
ENHANCE-3 study (NCT05079230), and the higher incidence of serious irAEs resulted in the complete 
stop of further developing magrolimab. However, as the enrolled patients are already biased due to 
their older age or comorbidities and, therefore, overall difficult to treat, the conclusions might not 
reflect the true potential of CD47 checkpoint blockade 168.  

1.2.5.5 Multispecific targeting improves CD47 checkpoint blockade  

Synergism between blocking the CD47-SIRPa pathway and additional tumor targeting or adaptive 
checkpoint blockade has been shown. Consequently, novel concepts evolved by fusing different 
strategies into one molecule, leading to bifunctional or multifunctional antibody constructs. These 
include bsAbs bridging innate and adaptive immunity to maximize the anti-tumor efficacy and improve 
a long-term response, such as CD47´PD-L1 bsAbs (IBI322 and PF-07257876) 169,170, SIRPα-Fc-CD40L 
fusion protein (SL-172154) 171 172, and SIRPα´4-1BB bsAb (DSP107) 173, for advanced solid tumors and 
hematologic malignancies. 
A major strategy is combining CD47 blockade with TAA-targeting to redirect the checkpoint blockade 
to tumor cells, thus reducing on-target off-tumor toxicities. Several bsAbs were developed pre-
clinically to treat hematologic malignancies by co-targeting CD47 with CD20 174, CD19 175, CD38 176, and 
CD70 177. Ponce et al. developed a multifunctional antibody construct targeting CD33 with high affinity 
and blocking CD47 by a fused low-affinity SIRPa domain 178. We adapted this concept to target CD123 
on AML LSCs (Publication II: Tahk et al.). Other examples are the humanized CD47´CD19 bsAb, TG-
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1801, showing clinical activity as monotherapy and an acceptable preliminary safety profile in B-cell 
lymphoma patients in combination with the aCD20 mAb ublituximab patients 179. The humanized 
CD47´CD20 BsAb, IMM0306, was well tolerated with robust anti-tumor activity in a phase 1/2 trial for 
treating r/r NHL patients as monotherapy 180 , and the combination trial with lenalidomide is currently 
ongoing, showing similar irAEs to monotherapy 181.  
For the treatment of solid tumors, several bsAbs were developed pre-clinically, such as targeting 
human HER2 182, Glypican-3 (GPC3) 183, CD24 184, CD38 185, EpCAM 186, B7-H3 187, and EGFR 188. For 
instance, the CD47´HER2 bsAb, IMM2902, demonstrated encouraging preliminary safety, tolerability, 
and anti-tumor activity in a phase 1/2 trial 189. NI-1801, an MSLN´CD47 fully human IgG1 bsAb was 
developed as kl-body format with an aMSLN l-light chain and an aCD47 k-light chain 86. It is currently 
being studied in a clinical trial for patients with MSLN-expressing solid malignancies, including EOC, 
breast cancer, and PDAC, as monotherapy and in combination with pembrolizumab or paclitaxel 42. We 
also developed an MSLN- and CD47-targeting construct. We translated the concept of Ponce et al. in 
AML 178 to solid tumors by targeting MSLN and CD47 by fusing the extracellular SIRPa domain to the 
full-length αMSLN mAb. The multivalent specificity of our construct is the major advantage compared 
to the MSLN´CD47 bsAb, leading to superior binding, ADCC, and ADCP (Publication I: Reischer* & 
Leutbecher* et al.).  

1.3 Cancer entities in focus 

Despite remarkable improvements in cancer treatment of a subset of patients, several entities, such 
as EOC, PDAC, and AML, do not benefit from immunotherapy 15,21,190. Although EOC and AML differ 
fundamentally in cellular origin and affected physiological systems, each presenting unique challenges 
in diagnosis, treatment, and prognosis, both malignancies remain highly lethal, highlighting the urgent 
need for novel treatment strategies. 

1.3.1 Epithelial ovarian cancer  

Ovarian cancer is the fifth leading cause of cancer-related death in women worldwide 191. It is a 
heterogeneous disease, with EOC accounting for the most frequent and lethal gynecological 
malignancy, as approximately 90% of the patients are affected. Malignant germ cell and sex-cord 
stromal tumors are less common. EOC is histologically classified into high-grade and low-grade serous, 
endometrioid, mucinous, and clear cell carcinomas, whereby high-grade serous ovarian carcinoma 
(HGSOC) is the predominant and most aggressive form 192,193.  
An early diagnosis of EOC with a localized tumor stage leads to a high 5-year OS rate of 93%. In contrast, 
a late diagnosis, where metastases have already spread, reduces the 5-year OS to 30% 194. 
Unfortunately, most patients are diagnosed at an advanced stage due to the combination of missing 
or nonspecific symptoms, such as back and abdominal pain, fatigue, and bloating 195, as well as 
inefficient screening and manifestation tools 196. 
The standard treatment of EOC is debulking surgery and first-line platinum-based chemotherapy. 
Despite initial remission in 80% of the women, most advanced cancer patients relapse and additionally 
develop chemoresistance. Novel strategies such as targeted therapy, hormone therapy, and 
immunotherapy are evaluated 197. The molecular heterogeneity of the disease further complicates the 
treatment options. P53 was aberrantly mutated, and in approximately 50% and 25% of HGSOC 
patients, homologous recombination deficiency (HRD) and BRCA1/2 mutations were detected, 
respectively 198. Based on this, novel strategies impeding DNA repair pathways, such as PARPi to induce 
synthetic lethality, have been developed. Since 2014, four different PARPi have been approved by the 
FDA and EMA for treating recurrent and newly diagnosed BRCA-mutated EOC patients, significantly 
improving these patients’ survival 199. Furthermore, two years ago, the FDA approved the folate 
receptor a (FolRa)-targeting ADC, mirvetuximab soravtansine, for platinum-resistant FolRa-expressing 
ovarian cancer 200. 
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However, immunotherapeutic approaches, such as PD-1/PD-L1 checkpoint blockade, have not been 
beneficial 201. Although EOC was the first tumor to detect intratumoral T cells as a prognostic factor 202, 
an immunosuppressive TME, including abundant Tregs 203 and exhausted T cells 204,205, may contradict 
the immune response. Several ongoing clinical studies evaluate novel immunotherapeutic strategies 
to fight this challenging disease.  

1.3.2 Acute myeloid leukemia  

Acute leukemias are characterized by the accumulation of aberrantly differentiated hematopoietic 
stem cells that disrupt regular hematopoiesis 206. AML is a highly aggressive and the most frequent 
form of acute leukemia in adults, with a median age of 65 years. It is described by the uncontrolled 
proliferation of immature myeloid precursor cells in the bone marrow and peripheral blood 207,208. The 
accumulation of immature blasts in the bone marrow leads to anemia, thrombocytopenia, and 
neutropenia 209. The clinical symptoms range from fatigue, pallor, bleeding, and an increased risk of 
infections 210. 
AML is driven by a rare population of LSC clones with different sequentially acquired mutations, leading 
to a heterogeneous mutational landscape of several common genetic mutations, such as fms-related 
tyrosine kinase 3 (FLT3), nucleophosmin 1 (NPM1), DNA methyltransferase 3 α (DNMT3A), isocitrate 
dehydrogenase 1 (IDH1), IDH2, TP53, and Wilm’s tumor 1 (WT1), and thousands of additional rarely 
mutated genes 211. LSCs are often chemotherapy-resistant, thereby initiating relapse. This highlights 
them as important targets to induce durable responses in AML patients 190.  
The standard treatment involves chemotherapy, followed by active immune surveillance, including 
assessment of post-treatment measurable residual disease (MRD) and maintenance therapy to 
prevent relapse. Nevertheless, approximately 40% of MRD-negative patients relapse within 5 years 
with a poor prognosis 212. High-risk patients characterized by an unfavorable cytogenetic profile may 
be considered for allogeneic hematopoietic stem cell transplantation (HSCT), currently the only 
potentially curative option, by inducing a graft-versus-leukemia effect. However, HSCT is not eligible 
for all patients, and relapse rates remain high 213.  
As current advances in understanding AML biology and genetics have identified novel targets and 
deregulated pathways, several targeted therapies were developed and recently approved by the FDA, 
including small molecules targeting FLT3, gilteritinib 214, and midostaurin 215, ADCs targeting CD33, such 
as gemtuzumab ozogamicin 216, and the combination of the BCL-2 inhibitor venetoclax with the 
hypomethylating agents azacytidine or decitabine 217 .  
Immunotherapeutic approaches, including bispecific T-cell engagers targeting CD33, such as 
flotetuzumab and AMG 330 218, and CAR-T cells, 219 are currently under investigation, showing partially 
promising early results in clinical trials with r/r AML patients. Despite recent advances, the prognosis 
for AML remains poor, with a 5-year OS rate of ~30% 211, highlighting the need for novel therapies to 
improve patient outcomes. 

1.4 Aim  

Despite favorable progress in treating various cancer entities in the last decades, several malignancies, 
such as EOC and AML, have not yet benefited and often remain lethal. Thus, novel treatment strategies 
are urgently needed. The overexpression of the innate immune checkpoint CD47 on tumor cells 
emphasizes its targeting as a promising strategy. However, ubiquitous CD47 expression on healthy cells 
poses a therapeutic risk. We aimed for the development of a multifunctional mAb construct, which 
combines low-affinity CD47 checkpoint blockade with high-affinity tumor binding, thereby (1) reducing 
on-target off-tumor toxicity by improved tumor targeting and (2) mediating a robust immune response 
in solid tumors and hematologic cancers.  
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2. Summary of publications  

2.1 Publication I: Targeted CD47 checkpoint blockade using a mesothelin-
directed antibody construct for enhanced solid tumor-specific 
immunotherapy 220 

In this study, we developed a novel multifunctional antibody construct as an immunotherapeutic 
approach to improve solid tumor treatment. Despite promising results in some cancer entities, several 
solid tumors, like EOC and PDAC, do not respond to blockade with adaptive checkpoint inhibitors, often 
resulting in poor prognosis. Effective treatment options remain limited, highlighting the need for novel 
therapeutic approaches. The innate immune checkpoint CD47 represents a promising target due to its 
widespread overexpression on cancer cells. However, its expression on healthy cells poses challenges, 
including a potential antigen sink and on-target off-tumor toxicity. This necessitates strategies to 
enhance specificity and therapeutic efficacy. Thus, we combined low-affinity CD47 blockade with high-
affinity tumor targeting in a single multifunctional mAb using MSLN as an established TAA for solid 
cancers. 
For this purpose, a local inhibitory checkpoint monoclonal antibody (LicMAb) was generated by fusing 
the endogenous N-terminal SIRPa Ig V-like domain, characterized by a lower affinity to CD47, to a high-
affinity anti-human MSLN IgG1 mAb. Two mAb clones, 4D8 and M4F5, were generated using 
hybridoma technology following mouse and rat immunization, respectively. Both SIRPa-aMSLN 
LicMAb clones were evaluated for binding, CD47 blocking, and their functional capacity mediating 
ADCC and ADCP of solid tumor cells. The EOC cancer cell line OVCAR-3 and the MSLN-transduced PDAC 
cell line SUIT-2-MSLN were used as model systems with different levels of CD47 and MSLN expression. 
First, we analyzed the RNA expression of CD47 and MSLN in various cancer entities and found both to 
be highly upregulated in several solid tumor entities, particularly in EOC and PDAC. Moreover, we 
confirmed their protein expression in primary EOC cells derived from tumor tissue and ascites. 
Next, we demonstrated the SIRPa-aMSLN LicMAb binding to the OVCAR-3, SUIT-2-MSLN, and MLSN+ 
primary EOC cells but not MSLN– cells. Importantly, the binding capacity was dependent on the MSLN 
expression levels. Despite the low-affinity binding of the fused SIRPa domain, LicMAbs blocked CD47 
on the target cells, but to a lesser extent than high-affinity aCD47 mAbs.  
As CD47-expressing RBCs are the most abundant cells in the blood and anemia was the most common 
CD47-related toxicity in clinical studies with magrolimab, we evaluated the risk of on-target off-tumor 
binding. The LicMAbs did not bind to RBCs and neutrophils nor induce platelet aggregation. However, 
lymphocytes were bound by the LicMAbs but to a significantly lesser extent than by high-affinity aCD47 
mAbs. Importantly, in competitive binding assays with excess RBC and lymphocytes, the LicMAbs 
bound specifically to the MSLN+ cancer cells and avoided binding to RBC or lymphocytes in contrast to 
high-affinity aCD47 mAbs.  
Next, the functional capacity of LicMAbs to induce NK cell-mediated cytotoxicity of EOC and PDAC cell 
lines was evaluated. The LicMAbs induced E: T-ratio- and dose-dependent lysis of OVCAR-3 and PDAC 
cells, superior to the aMSLN mAb (4D8 and M4F5) and amatuximab. The NK-cell activation and 
degranulation correlated with the dose-dependent lysis. Notably, shed MSLN is a common 
phenomenon known to diminish MSLN-targeting. Therefore, we analyzed the binding and cytotoxic 
capacity of LicMAbs in the presence of soluble MSLN. While the capability of conventional aMSLN mAb 
has been highly affected, the LicMAbs were still effective, albeit with higher concentrations.  
As a next step, the improved phagocytosis by blocking the CD47-SIRPa axis in addition to the IgG1 
prophagocytic signal was demonstrated in EOC and PDAC entities. The LicMAbs induced dose-
dependent phagocytosis of OVCAR-3 and SUIT-2-MSLN cells, dependent on the MSLN levels expressed 
on the target cells. Interestingly, the combinatorial targeting of LicMAbs showed enhanced ADCP to 
CD47 blockade mediated by aCD47 (h5F9) and magrolimab.  
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Lastly, we demonstrated the LicMAb-mediated killing of MSLN+ EOC cells in a 3D organoid system as a 
more advanced pre-clinical research model.  
Taken together, we established a novel strategy to redirect the CD47 blockade to solid cancer entities. 
CD47-related on-target off-tumor toxicities were avoided by restricting the innate immune reaction to 
MSLN-expressing tumor cells.  
 
 
My contribution: 

The shared co-authorship is due to the project initiation and the first two rounds of LicMAb expression 
(clone 4D8) done by A.R. My contribution to this publication is based on designing, planning, 
performing, analyzing, and interpreting the in vitro experiments. More precisely, I isolated the EOC 
single-cell suspensions by dissociating the primary EOC tissue samples derived from surgery or 
cultivation of ascites fluid, and I analyzed the antigen expression pattern and LicMAb binding capability 
by flow cytometry. I evaluated the binding and blocking specificity of the expressed mAbs and LicMAbs 
on the cell lines by flow cytometry. Furthermore, I took care of the continuous cultivation of the cell 
lines and the collection and isolation of the HD PBMCs used for the experiments.  
Additionally, I analyzed on-target off-tumor toxicities induced by hematopoietic cell binding and 
competition assays with both cell lines OVCAR-3 and SUIT-2-MSLN. I conducted and analyzed all 
cytotoxicity assays of OVCAR-3 cells and SUIT-2-MSLN cell lines (clone 4D8 and M4F5) by impedance 
measurement (xCELLigence) and flow cytometry, as well as the respective evaluation of the NK-cell 
activation and degranulation. Likewise, I performed and analyzed the phagocytosis assays of OVCAR-3 
cells and SUIT-2-MSLN cells (clone 4D8 and M4F5) evaluated by imaging flow cytometry and classical 
flow cytometry. Furthermore, I compared the LicMAbs and the CD47xMSLN bsAb in the ADCC and 
ADCP assays. Besides, I was involved in the preparation, evaluation, and interpretation of the ex vivo 
EOC organoid cytotoxicity assays.  
In addition, I designed all the figures, wrote the first manuscript draft, and organized and handled the 
complete submission and revision process.  
(Figures 1-6; and Supplementary Figures S1-8)  
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2.2 Publication II: SIRPa-aCD123 fusion antibodies targeting CD123 in 
conjunction with CD47 blockade enhance clearance of AML-initiating 
cells 221 

In this study, published by Tahk et al., we developed a dual-targeting immunotherapeutic strategy to 
treat AML. A major challenge in AML treatment is the persistence of the chemo-refractory AML-
initiating LSCs. In that regard, LSC targeting is a promising strategy to avoid AML relapse and achieve 
sustained remission. As the innate checkpoint CD47 and the TAA CD123 are highly expressed on bulk 
AML and LSC cells, a dual targeting approach was developed by binding CD123-expressing cells and 
locally blocking the CD47-SIRPa axis.  
In that regard, we fused an aCD123 mAb with the extracellular SIRPa domain, generating a single-
fused 1 x SIRPa-aCD123 and a double-fused 2 x SIRPa-aCD123 antibody construct. The specific 
binding and CD47 blocking properties, as well as the functional capacity to induce ADCC and ADCP of 
AML, were characterized in vitro and in vivo. 
First, binding and CD47 blocking studies were performed. Both fusion constructs bound the 
CD123+CD47+ AML cell line MOLM-13 more strongly than the aCD123 mAb. Despite the low-affinity 
binding of the SIRPa domain, the single fusion enabled CD47 blockade, which was enhanced by the 
double fusion. As expected, the high-affinity aCD47 mAb blocked the majority of CD47 on the MOLM-
13 cell surface. To evaluate the risk of on-target off-tumor toxicities and an antigen sink, competitive 
binding assays with excess RBCs or PBMCs were performed. RBCs, which are highly abundant in the 
blood, were not bound by the constructs. The fusion constructs bound PBMCs, including CD123+ pDCs, 
in the presence of AML cells. The 2 x SIRPa-aCD123 showed a similar binding strength to PBMCs 
compared to the high-affinity aCD47 mAb. Nevertheless, PBMC binding by the fusion constructs was 
significantly reduced compared to the high-affinity aCD47 control antibodies Hu5F9-G4 and 
commercially available B6H12. Platelets were less bound and aggregated by the fusion constructs than 
the CD47-targeting control antibodies.  
Next, the phagocytic capacity of the constructs was evaluated by blocking the CD47-SIRPa axis in 
combination with the prophagocytic FcR stimulation. The enhanced phagocytosis of the MOLM-13 cell 
line and primary patient-derived AML (pAML) blasts was demonstrated in an allogeneic and autologous 
setting. Thereby, 1 x and 2 x SIRPa-aCD123 induced comparable ADCP frequencies superior to aCD47 
or the combination of aCD47 and aCD123. Furthermore, the NK cell-mediated lysis of the MOLM-13 
cell line and pAML cells was analyzed. Both fusion constructs induced specific lysis of MOLM-13 and 
pAML cells with enhanced lysis mediated by the double fusion. The aCD47 did not lead to the lysis of 
pAML cells. Interestingly, a fusion construct targeting the TAA CD33 (SIRPa-aCD33) mediated less lysis 
than its SIRPa-aCD123 counterpart. The 1 x and 2 x SIRPa-aCD123 markedly increased lysis of AML 
patient-derived xenografts (PDX) compared to aCD123. 
As a last step, the cytotoxic capability of the fusion constructs was evaluated by an in vivo engraftment 
assay. To this end, residual AML PDX cells surviving an ex vivo ADCC assay served as a surrogate for 
LSCs and were transplanted into NSG mice. The 2 x SIRPa-aCD123 mediated tumor control and 
significantly longer survival of the PDX-engrafted mice compared to the aCD123-treated mice. The 
preferred targeting of LSCs over bulk AML cells was detected using the extreme limiting dilution 
algorithm. 
Overall, by developing the dual-targeting SIRPa-aCD123 fusion constructs, we localized the disruption 
of the CD47-SIRPa axis to AML cells and thus enhanced the elimination of LSC cells without on-target 
off-leukemia toxicities. 
  



2 Summary of publications   

 15 

My contribution: 

My contribution to this publication is based on performing, evaluating, and interpreting the 
experiments concerning on-target off-tumor toxicities. I collected and isolated PBMCs derived from 
HD whole blood. Primarily, I analyzed the CD123 and CD47 antigen expression on the cell surface of 
HD PBMCs. I established a multicolor flow cytometry panel and evaluated the CD47 expression levels 
on PBMCs and, in greater detail, on CD4+ and CD8+ T cells, B cells, NK cells, pDCs, and monocytes. 
Moreover, I conducted binding assays of the antibody fusion constructs and proper controls to HD 
PBMCs, depicted in Figure 2F.  
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and who always made time for me. And there are so many more friends, who I can’t even list here, but 
to whom I want to express my deepest gratitude – for everything. 
 
And most importantly, my great love, Janis. He has been there for me through all these years. He 
believed in me when I couldn't believe in myself and always made me laugh, no matter what. He 
celebrated even the smallest successes with me and supported me with endless conversations, 
patience, drying my tears, holding me in his arms, and, most of all, giving me the time and space to 
find my path. I cannot put into words how grateful I am to him. I look forward to the next, hopefully 
less stressful, chapter. Thank you! 
 
 
 
 

 
 


