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Zusammenfassung

Diese Arbeit enthélt vier Beitrdge (Manuskripte I bis IV), die jeweils neue methodische
Ansétze zum Umgang mit Verzerrungen und Bias in mehrdimensionalen IRT-Modellen
einfithren. Insbesondere wird das Potenzial nichtparametrischer, maschineller Lernver-
fahren eingehend untersucht. Die im Rahmen dieser Arbeit verfassten Manuskripte stellen
Methoden zur Schatzung von Modellparametern und latenten Variablen-Scores multi-
dimensionaler IRT-Modelle vor. Diese Methoden beriicksichtigen die Verzerrung, die
ungemessene und/oder gemessene Kovariaten auf die Parameterschétzung haben kénnen.

In Manuskript [ wird gezeigt, dass die Einbeziehung von latenten Item-Effekt-Variablen in
longitudinale IRT-Modelle fiir ordinale Antwortvariablen interindividuelle Unterschiede
in den Item-Schwierigkeits-Parametern kontrollieren kann. Auf diese Weise wird die
Verzerrung, die gemessene oder nicht gemessene Kovariaten auf die Schéatzung der Item-
Schwierigkeits-Parameter haben konnen, berticksichtigt.

AufBlerhalb der Langsschnittforschung ist es nicht moglich, solche Item-Effekt-Variablen
zu schéatzen. Interindividuelle Unterschiede in den Item-Parametern, die auch als Dif-
ferential Item Functioning (DIF) bezeichnet werden, kénnen jedoch mit Hilfe von Model
Based Recursive Partitioning (MOB) beriicksichtigt werden, einem algorithmischen Mod-
ellierungsansatz, der aus den Methoden des maschinellen Lernens stammt. Manuskript I1
zeigt, dass MOB zur Kontrolle von DIF in mehrdimensionalen IRT-Modellen verwendet
werden kann. Dies funktioniert, indem automatisch Untergruppen mit stabilen Item-
Parameterschatzungen erkannt werden.

Manuskript III stellt eine Methode zur Schatzung latenter Variablen-Scores von Indi-
viduen vor, die in Bezug auf bestimmte gemessene Kovariaten unverzerrt sind. Zu diesem
Zweck wird ein Ensemble von MOB-Trees gebildet. Innerhalb des MOB-Tree-Ensembles
werden Untergruppen mit stabilen Item-Parameter-Schatzungen verwendet, um latente
Variablen-Scores zu schatzen, die in Bezug auf relevante Untergruppen in der Population
unverzerrt sind. Somit sind diese latenten Variablen-Scores im Hinblick auf systematis-
che Finfliisse dieser gemessenen Kovariablen interpretierbar, ohne durch diese Variablen
verzerrt zu werden.

Um einen MOB-Tree zu erstellen, muss ein Parameterinstabilitatstest wiederholt fiir ein
(mehrdimensionales) IRT-Modell berechnet werden. Mehrdimensionale IRT-Modelle wer-
den effizient als ordinale Faktorenmodelle geschéatzt. Fiir das Modell wird die erste
Ableitung der Zielfunktion (d.h. die Score-Funktion) verwendet, um die Parameterin-
stabilitat zu schatzen. In Manuskript IV wird daher eine Methode zur Schatzung der
individuellen Beitrage zu dieser Funktion fiir ordinale Faktorenmodelle vorgeschlagen.
Dadurch wird es moglich, viele Parameterinstabilitiatstests fiir mehrdimensionale TRT-
Modelle in kurzer Zeit zu berechnen.

Die mit diesen vier Beitragen vorgestellten Methoden ermdglichen die effiziente Berech-
nung von Parameterinstabilitatstests fiir mehrdimensionale IRT Modelle, die Schatzung
individueller Schwierigkeits-Parameter in Langsschnittkontexten und latenter Variablen-
Scores, die auflerhalb von Langsschnittkontexten in Bezug auf spezifische gemessene Ko-
variaten unverzerrt sind.
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Summary

This thesis contains four contributions (Papers I to IV) which present approaches to deal-
ing with bias in multidimensional IRT models. In particular, the potential of nonpara-
metric tree-based machine learning methods is examined in detail. The papers written in
the scope of this thesis provide methods to estimate model parameters and latent vari-
able scores of multidimensional IRT models while considering the bias that unmeasured
and/or measured covariates may have on parameter estimation.

In Paper 1, it is shown that the inclusion of latent item effect variables in longitudinal
IRT models for ordinal response variables can control for inter-individual differences in
item difficulty parameters. This way, the bias that measured or unmeasured covariates
may have on the estimation of the item difficulty parameters is taken into account.

Outside of longitudinal research, it is not possible to estimate such item effect variables.
However, inter-individual differences in item parameters, also referred to as Differential
Item Functioning (DIF), can be accounted for via Model Based Recursive Partitioning
(MOB), an algorithmic modeling approach borrowed from the tree-based methods of
machine learning. Paper II illustrates that MOB can be used to control for DIF in
multidimensional IRT models. For such models, MOB may be used to automatically
detect subgroups with stable item parameter estimates.

Paper III introduces a method to estimate latent variable scores of individuals that
are unbiased with respect to certain measured covariates. For this, an ensemble of MOB
trees is grown. Within the MOB tree ensemble, subgroups with stable item parameter
estimates are used to estimate latent variable scores that are unbiased with respect to
relevant subgroups in the population. Thus, these latent variable scores are interpretable
with respect to systematic influences of specific measured covariates without being biased
by these variables.

In order to grow a MOB tree, a parameter instability test must be computed repeatedly
for a fitted (multidimensional) IRT model. Multidimensional IRT models are efficiently
fitted as ordinal factor models. For the fitted model, the first derivative of the objective
function (i.e. the score function) is used to estimate parameter instability. In Paper IV,
a method for the estimation of individual contributions to this score function for ordinal
factor models is therefore proposed. This makes it computationally feasible to repeatedly
compute parameter instability tests for multidimensional IRT models.

The methods introduced with these four contributions make it possible to efficiently
compute parameter instability tests for MIRT models, to estimate individual difficulty pa-
rameters in longitudinal settings and latent variable scores that are unbiased w.r.t. specific
measured covariates outside of longitudinal settings.
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1 General Introduction

Attempts to explain or predict events based on phenomena that are not directly observable
has always been common practice among humans. In psychometrics, these unobservable
phenomena are often characteristics or traits in people. Much of psychometric science
is dedicated to formulating theories about such characteristics in individuals or groups.
Hypotheses are then tested on the basis of models that formulate the key elements of a
theory. In these models, the characteristics are represented by variables. Variables that
have no values for individuals, for example because they are not directly observable, are
referred to as latent variables (Bollen, 2002). According to Bartholomew, Knott, and
Moustaki| (2011)), latent variables are practically relevant as they condense information
from many different observations, thus it is impossible to formulate theories about social
and psychological phenomena without utilizing such latent variables. To express reasoning
about such concepts in the language of mathematics, stochastic models that incorporate
latent variables are necessary. Examples for such models are latent class analysis, latent
curve, structural equation, factor analysis, and item response theory models.

In general, the variables in latent variable models are not determined in their form.
They are, however, determined by the axiom of local independence of the manifest vari-
ables. In short, this means that the latent variables in a latent variable model are sufficient
to explain the dependencies among the manifest variables. A factor analysis model (or
factor model) is commonly defined as a latent variable model in which both the manifest
and the latent variables are discrete or continuous random variables with real numerical
values (i.e. they are not categorical, see Bartholomew et al. 2011, pp. 8-11).

The origins of factor analysis can be found in psychometrics. It was Spearman| (1904))
who defined a general ability factor to account for the correlation of tests of mental abil-
ity. [Thurstone| (1947) later expanded Spearman’s model to incorporate multiple possibly
correlated factors. Several statisticians defined Spearman’s and Thurstone’s assumptions
in mathematical terms. Much of the current scientific discussion can be traced back to
Joreskog (1969, |1970), who developed a model of structural equations. This model is a
factor model that takes into account linear relationships between the latent variables.

Parallel to this development, in the context of educational testing, a different strand of
research emerged. In this, latent variable models were used to relate the probability of a
response in a test to a person’s ability as well as to the difficulty of the item. These models
were developed in particular in response to classical test theory, which viewed psychome-
tric or educational tests as one entire analytic unit. This led to the development of item
response theory (IRT) models, which focus on the properties of the test items and regard
the test items as a fundamental component of the test design. The original IRT models by
Rasch (1960) and Birnbaum (1968) only incorporated one latent variable. However, with
increasing understanding of the complexity of psychological and pedagogical processes,
more complex multidimensional IRT (MIRT) models became necessary in psychometric
science (Reckase & Reckase, 2009).

In contrast to IRT models, factor models consider the characteristics of the items
as nuisance effects that should be eliminated for adequate model estimation (Reckase &
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Reckase, 2009)). Also, IRT models use dichotomous or ordinal manifest variables whereas
factor models are most commonly used with metric manifest variables. Additionally, IRT
models treat latent variables as vectors of parameters describing the location of a person
on a latent scale and not as a random variable (Bartholomew et al., 2011). Despite these
differences, the theoretical foundation of factor models and IRT models is very similar as
they both define latent variables as determined by the axiom of local independence. Thus,
MIRT models can be considered a special case of factor models or structural equation
models (see Reckase, |1997; Maydeu-Olivares|, 2005)).

According to Breiman et al.| (2001)), the formulation of parametric assumptions about
a model such as a factor model is exemplary for data modeling culture. Through latent
variable models, the researcher tries to derive information about how observed variables
are truly associated with latent variables. Breiman et al.[(2001) claim that the conclusions
derived from such stochastic models are about the model’s mechanism, not about nature’s
mechanism. This means that a stochastic model must accurately emulate nature to lead
to informative conclusions. Most often though, stochastic models are not complex enough
to emulate nature. Machine learning models, on the other hand, are considered part of
the algorithmic modeling culture. Algorithmic models assume that natural mechanisms
that produce data are unknown.

Stochastic models are usually evaluated through goodness-of-fit testing. However,
when many different models are considered and fitted to data with complex interactions,
the yes-no answers of model fit tests may point to several different models. In this
case, choosing one model is a very challenging task. Also, it is very difficult, if not
impossible, to formulate a stochastic model that encompasses all rival models. In contrast,
an algorithmic model is usually evaluated through assessment of predictive power. It
serves the purpose of predicting new or future observations through flexible modeling with
minimal assumptions. Algorithmic models need to be flexible enough to approximate the
data generating function while also being robust towards changes in the data used to fit
the model. This compromise is referred to as bias-variance trade-off. Algorithmic models
acknowledge the complex and inconceivable ways that nature produces data. They do not
need to be fully interpretable, they rather need to provide accurate information (Breiman
et al., 2001)).

In scientific practice, stochastic models are almost always used as explanatory models
while algorithmic models are usually used as predictive models. One should not confuse
explanatory models with predictive models although both explanation and prediction are
necessary for generating and testing theories. Complicated patterns and relationships
in data sets may be hard to hypothesize within the explanatory modeling framework.
Therefore, prediction as a scientific endeavor is necessary to grasp the aforementioned
complexity of natural mechanisms. Potential new causal mechanisms can be uncovered
through the flexibility of predictive models. Also, capturing complex patterns in data can
lead to improvements to existing explanatory models (Shmueli et al., [2010)).

An ongoing problem in psychometrics is that the increasing knowledge about the natu-
ral mechanisms of the mind make it necessary to assume increasingly large and convoluted
latent variable models (Reckase & Reckase, |2009)). With increasing complexity, it becomes
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increasingly difficult to interpret and to estimate the parameters of these latent variable
models. The main question of this thesis is how predictive machine learning models can
be used to increase the informative value of explanatory latent variable models. For this,
it is crucial not to confuse explanatory and predictive modeling but to combine both
modeling cultures. The thesis places particular emphasis on the practical application of
MIRT models with ordered polytomous observables. In Section [2, I will introduce the
most important methodological background on the papers that were published within the
scope of this dissertation. In Sections[3|to[6] the contribution of the four papers are intro-
duced individually. In Section [7] limitations, chances and suggestions for further research
are discussed.

2 Methodological Background

2.1 Item Response Theory and Factor Analysis Models

A very common type of IRT model that deals with ordered polytomous categories is the
Graded Response Model (Samejimal [1969). In the multidimensional version of the GRM,
several latent variables can be included. A multidimenaional GRM models the cumulative
category response function. For a test or questionnaire with m items, that is

P<K§k|£z):®(azk_)‘;£z)v Vi7"'7m‘ (1)

This function represents the conditional probability of responding to an item i with a
response category smaller or equal to the category k given the latent variables &, that
affect item i. It is a two-parameter normal ogive function, with the item discrimination
parameters A; constant within an item but variable across items. The threshold parameters
«y, are variable within and across items.

As mentioned above, IRT models are special cases of factor models. According to
Maydeu-Olivares, Cai, and Hernandez (2011)), there is one type of factor model that is
especially suitable of being considered a special case of IRT model: the ordinal factor
model. This goes back to (Christoffersson| (1975) who developed a probabilistic factor
model for dichotomous items. The new development was that only the marginal first and
second order proportions of the item responses were used to estimate the model param-
eters, instead of all 2™ possible proportions. |[Muthén| (1978) extended this approach to
make parameter estimation even more efficient. The resulting model uses factor loadings
and threshold parameters. These parameters are virtually identical to those used in MIRT
models.

In Sections [2.1.1] and [2.1.2] we describe the assumptions of the typical metric and
ordinal factor model and how their parameters are estimated.

2.1.1 Limited Information Maximum Likelihood

Let Y; be the observed variable for item ¢, and &; the p; X 1 vector of continuous latent
variables that affect Y;, then the basic factor model equation is
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where 7; is the intercept, and 7y, is the p; x 1 vector of factor loadings of item 7. It is
assumed that the distribution of the observed variables is continuous and multivariate
normal. The residual variable for item i is defined as ¢; = E(Y; | §;) — V;.

The model parameter vector @ consists of the intercepts, factor loadings, residual
variances and latent variable (co-)variances. The estimator @ consists of the parameter
estimates that minimize the objective function

Fyup(6) = In|X(0)] + tr(SZ1(0)) — In|S| — m, (3)

where 3(8) is the model implied covariance matrix and S is the sample covariance matrix
(Joreskog, [1969). This means that for parameter estimation, only bi-variate information
from the data (in S) is used. Because of this, this estimation method is referred to as
limated information method.

2.1.2 Ordinal Factor Analysis

When the observed variables in the analyzed data only have a few response categories,
the normality assumption of the classic linear factor model is severely violated (Li, [2016)).
In this case, a continuous latent response variable Y;* is usually assumed to underlie the
actual ordered observed variable Y; for an item ¢ with £ = 1,...,[; response categories.
The conditional expectation of this latent response variable is defined similarly to the

classic linear factor model, that is
E(YF| &) =XE, Vi,...,m, (4)

where \; is the p; X 1 vector of discrimination parameters of item i (which is the equiv-
alent to the factor loadings in the classic linear factor model). Furthermore, instead of
intercepts, there are threshold parameters in the ordinal factor model that are defined as

Y=k if cigoy <) < g (5)

For each item ¢, there is always one threshold parameter less that there are response
categories [;. Thus, a;p = —o0 and a;, = +00.

The model parameter vector ¥ consists of the discrimination parameters, threshold
parameters, and latent variable (co-)variances. The estimator 1) consists of the parameter
estimates that minimize the weighed least squared type objective function, that is

Fora(9) = [k = k(9)] W [k — k(9)]. (6)

This function minimizes the discrepancy between k(1¥), which contains the elements of
the model implied covariance matrix as well as the threshold parameters, and k, which
contains the polychoric correlations and the sample thresholds. The polychoric correlation
pin of the ordered observed variables Y; and Y}, quantify the degree of linear dependence of
the latent response variables Y;* and Y, for ¢ # h. Together with the sample thresholds,

they can be easily estimated from the data (see |Olsson, |1979). Note that the parameters
in ¥ are the same as the parameters of the multidimensional GRM (see Equation [I).
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As shown in Paper I to IV, ordinal factor analysis can be used to efficiently esti-
mate the parameters of complex MIRT models. In Paper I, a longitudinal MIRT model
with correlated latent variables is introduced. Without ordinal factor analysis, parameter
estimation for such models is computationally very demanding.

2.2 Measurement Invariance and Differential Item Functioning

A problem that often occurs in practice is that the parameters estimated for a classic linear
or an ordinal factor model deviate between specific subgroups within the population. This
is the case if certain covariates of the manifest variables that are not included in the model
have an influence on the model’s parameters. Sterner, Pargent, Deffner, and Goretzko
(2024) describe how establishing measurement invariance in a latent variable model is
crucial in order to meaningfully compare latent variable scores between groups within the
population. Differences between groups should only occur due to true differences in the
latent variables and not due to measurement differences. This means that the model’s
parameters need to be equivalent across groups. They describe measurement invariance
as an inherently causal concept established by the &;-conditional independence of Y; and
any observed covariate Z in Z when the groups within the population are defined as
subsets of the covariate space over Z, that is

Y, L Z|¢, Vi=1,...,m. (7)

Equation [7] means that all group differences (denoted by different values on Z) of the
observed variable Y; are mediated through the latent construct &,. In causal terms, an
observed variable Y; is considered a biased measure of the latent construct &, with respect
to a set of manifest variables Z if there exists an active causal path linking Y; and Z
that does not pass through &,. However, in an experimental setup by [Protzko (2024), it is
shown that psychometric tests may exhibit measurement invariance between two groups
even if the test does not measure the same thing for both groups. This indicates that
testable measurement invariance is at best a necessary condition such causal relations,
not a sufficient condition.

In MIRT models, measurement invariance is usually referred to as Differential Item
Functioning (DIF). It means that if the probability of a particular response to an item
is different among equally able test takers because the test takers differ w.r.t. certain
covariates, then DIF is present. Apart from making tests unfair for certain groups, DIF
can mask true group differences in latent variables (Wang, Su, & Weiss, 2018)).

There are algorithmic approaches to detect DIF in latent variable models. However,
these methods are not easily applicable for ordinal factor analysis. Papers II to IV deal
with the detection of DIF in MIRT models.

2.3 Tree Based Machine Learning

One of the most well-known families of machine learning applications are tree-based ma-
chine learning algorithms. They come from predictive customer analytics but are increas-
ingly used in the social science and survey research context, for example for non-response
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prediction or missing value imputation (Kern, Klausch, & Kreuter, 2019)). Perhaps the
most famous representative of this family of machine learning algorithms is random forest
(Breiman|, [2001)). During training of a random forest, random subsamples are drawn from
the data (i.e. bagging) and random selections of covariates Z are made (i.e. random split
selection). The randomly sampled data are then used to build a decision tree that reduces
variance w.r.t. an outcome variable Y. The terminal nodes (also referred to as leaves) of
the tree contain a small subsample Rj,. The subgroups Ry, ..., Ry, are defined as subsets
of the covariate space over Z. During prediction, the mean of this subsample E(Y | Ry,)
is the predicted value for all values of the same subsample R;. Usually, the selection
of partitioning variables is redrawn at every node in a regression tree. This procedure
is repeated numerous times. The bagging and the split selection procedures ensure that
the trees of the forest are very likely to differ. Also, a high degree of tree complexity is
preferred in a random forest. Through the combination of several trees into a robust en-
semble, the instability of a single decision tree is leveled out (Kern et al., |2019)). Random
forest is a purely predictive method in which the true functional form of the relationship
between input and observed variables is unknown prior to the procedure and the function
approximated by the random forest cannot be interpreted directly. The predictions of a
random forests, however, are likely to be more accurate than the predictions of most ex-
planatory models (Fife & D’Onofrio, 2023)). If we acknowledge that nature produces data
in complex and inconceivable ways, a non-stochastic but accurate function approximated
by a random forest might be preferable compared to a stochastic model like a complex
MIRT model.

Random forest methodology can be adapted for other purposes. A method that ex-
tends the original random forest approach is causal forest (see |Athey & Imbens, 2016;
Wager & Athey, 2018; |Athey, Tibshirani, & Wager, |2019). It is widely used across many
scientific fields (Rehill, 2024)). The appeal of causal forests is the possibility to estimate
individual causal effects of a treatment. In contrast to random forests, where the trees
reduce the variance of Y, the trees in a causal forest reduce the variance of an observed
treatment effect F(Y|X = 1) — E(Y|X = 0), where X is a binary treatment variable.
The goal of a causal forest is the estimation of

CTElo(Z) :E(Tl—TO |Z), (8)

where 71 is the true-outcome variable of given treatment (X = 1) and 7y is the true-
outcome variable given control (X = 0). Equation [8|is the Z-conditional total treatment
effect function. It’s values are the individual causal treatment effects that are always
unbiased. For Equation 8 to be true, conditional unconfoundedness, that is

Ll X|Z (9)

is assumed. This assumption may hold for observational (non-experimental) settings if Z
comprises all potential confounders C'xy that could possibly bias the relationship between
X and Y. Note that this notion of unconfoundedness is equivalent to the Z-conditional
strong ignorability assumption (see |Steyer, Mayer, & Lossnitzer} 2023)).

Causal forests, as well as random forests, prove to be especially practical if there is
a large amount of manifest covariates Z relative to the sample size (Athey & Imbens,
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2016). Also, the presence of irrelevant covariates does not severely affect the performance
of a causal forest (Wager & Athey, [2018). However, it is not possible to include latent
variables in a causal forest.

We want to investigate how tree-based ML methods may be used in conjunction with
latent variable models. In Paper III, we investigate how tree-based ML may be used for
bias reduction in latent variable models.

2.4 Model Based Recursive Partitioning

A method that combines algorithmic modeling with explanatory modeling is Model Based
Recursive Partitioning (Zeileis, Hothorn, & Hornik, 2008). A parametric model is the
basis to any MOB algorithm. This model is handed to a tree-based algorithm to detect if
relevant covariates within Z should be included in the model definition (Kopf, Augustin,
& Strobl, 2013)). This is done by recursively partitioning the sample to which the model is
fitted to reduce the heterogeneity of the estimated model parameters. The MOB approach
combines parametric modeling with the idea of a non-parametric tree structure and is
therefore referred to as a semi-parametric approach (Strobl, Kopf, & Zeileis, |2015| 3).

In MOB, a subgroup of the sample represents a tree node that is considered as a can-
didate for potential splitting. A fitted model in a node is tested for parameter instability
with respect to any of the covariates in Z (also called partitioning variables). If there is
significant parameter instability, the node is eventually split at a point on the covariate
with the greatest instability into two locally optimal segments.

To test for parameter instability, parameter changes over a covariate are detected
through the ‘generalized M-fluctuation test’ (Zeileis & Hornik| 2007), which is more com-
monly known as the score-based test for parameter instability. For the application of the
score-based test, the item parameters are estimated jointly for the entire sample. Then,
the individual deviations of the participants from the joint model are detected. If there
is overall parameter instability in the current node, the partitioning variable Z*, that is
associated with the greatest instability, is chosen for splitting. In the next step, the ob-
jective functions of two rival segmentations are compared until the optimal split point on
Z* is found. This means that the sum of the log-likelihoods for two rival segmentations
is maximized at the optimal split point (Zeileis et al., 2008). Note that the score-based
test does not require a test for model fit differences (like e.g. the Likelihood-Ratio test)
for the decision to split a node into several subgroups.

The partitioning algorithm continues to distinct models for different subgroups via
recursive partitioning until the stopping criteria are met. The stopping criteria are usually
met when there is no more significant instability in the node or when the subsample
becomes too small. The procedure results in a tree structure with one fitted parametric
model for each terminal node.

In general, one advantage of MOB is that the researcher does not need to pre-specify
the functional form between the covariates and the model. Rather, the tree structure
is learned from the data in an exploratory way. Another clear advantage is the ease of
interpretation of the resulting subgroups. In this, the method is opposed to the latent
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class (or mixture) approach, where parameter differences are tested for all possible sub-
groups regardless of covariates that provide information about the characteristics of the
relevant subgroups (Rost} 1990). The subgroups in the leaves of a MOB-built decision
tree, on the other hand, are directly interpretable because they are built on traceable sam-
ple splits. Thus, the MOB approach combines the advantages of the mixture approach
(no pre-specification of subgroups) with the advantages of the Likelihood-Ratio-approach
(interpretable subgroups).

For complex factor models, MOB can be computationally very demanding as the split
point on a covariate Z* is found by comparing all possible rival segmentations w.r.t. the
log-likelihood of their fitted models. For covariates with a very large, number of potential
split points (e.g. metric variables), this procedure requires the fitting of twice as many fac-
tor models as there are potential split points. Therefore, Arnold, Voelkle, and Brandmaier
(2021)) came up with a method to efficiently find split points within the MOB algorithm
by using the test statistic of the score-based test for parameter instability. Using this
‘score-guided” MOB approach, a factor model has to be fitted only once per tree node.

MOB has been applied to unidimensional IRT models in the past. |Strobl et al.| (2015))
applied the algorithm to Rasch models whereas |Komboz, Strobl, and Zeileis (2018)) ap-
plied it to Partial Credit Models. Both approaches aimed at detecting Differential Item
Functioning (DIF) in the population.

However, MOB has not been applied to multidimensional GRMs in a computationally
efficient manner. In Papers II and IV, we explore different ways to do that. In Paper III
we investigate ways to use MOB for bias reduction in latent variable models.

3 Paper I: A Probit Multistate IRT Model With La-
tent Item Effect Variables for Graded Responses

3.1 Background

A practically relevant application for multidimensional IRT models is research about the
change of behavior over time. For this purpose, longitudinal MIRT models can be defined
in which there are distinct latent variables for each time point. This makes it possible
to differentiate between stable psychological traits and situational fluctuations. Latent
State-Trait (LST) theory (Steyer, Ferring, & Schmitt| [1992)) does this by defining the
latent state as an attribute of a person in a situation that always comprises the latent
trait which is the stable attribute of a person. In LST theory, the latent states and traits
are defined as conditional expectations of observed variables. The revised version of the
theory, i.e. LST-R (Steyer, Mayer, Geiser, & Cole, 2015)), includes the notion that past
experiences of a person have important implications on the concept and the properties of
latent states and traits, state residuals and measurement errors. Based on LST-R theory,
longitudinal models with latent variables can be defined in order to generate insights into
the dynamics of human attributes.

Another use of MIRT models are multitrait-multimethod (MTMM) models that usu-
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ally investigate the validity of specific scales by extracting the effects of certain methods
on the measurement of psychometric characteristics. MTMM models can also be used
to make causal inferences about the effects of specific methods. In the method effect
model by [Pohl, Steyer, and Kraus| (2008]), the method effect variable is defined as the
difference between the latent true-score variable of the manifest variable measured by a
certain method and the latent true-score variable of the same trait measured by a refer-
ence method. The scores of this method effect variable may be interpreted as individual
causal effects. A longitudinal model including method effects is the CT-C(M-1) model
by [Eid, Lischetzke, Nussbeck, and Trierweiler (2003) that defines item- and trait-specific
latent variables as conditional expectations of observed variables.

The model introduced in Paper I has several advantages to the to the CT-C(M-1)
model as it does not define the item-effect as a residual. It rather defines it as a method
effect of the item level.

3.2 Summary and Contribution

In Paper I, a longitudinal MIRT model is introduced that includes method effect variables
on the item level. We call it the probit multistate model with latent item effect variables
for graded responses (PIEG). The latent item-effect variable in the PIEG model for a
time point ¢ is defined as

Bi = Fae — Fruss (10)
where 7;; is the item-, time-, and category-specific probit state variable which is, in
essence, a latent true-outcome variable (see Equation 4 to 7 in Paper I).

The PIEG model from Paper I differs from the method effect model by Pohl et al.
(2008) in that it is a longitudinal model. In the longitudinal setting of the PIEG model,
the units (i.e. the individuals in the sample) are exposed to both treatment and con-
trol conditions if treatment is ‘answering to item ¢’ and the control is ‘answering to the
reference item’. In such settings, one can assume that the causality condition of strong
ignorability is met (see Section [2.3)). However, [Steyer et al| (2023) stresses that the treat-
ment variable X has to be prior to the outcome variable. In the PIEG model in Paper I,
the latent item-effect variables are equal across time-points so the treatment variable de-
noting ‘answering with item ¢ instead of the reference item’ is not bound to a specific time
point preceding the outcome. Thus, in contrast to the method effects model, the PIEG
model in Paper I focuses on the estimation of individual item difficulties instead of causal
effects. However, although it does not contain causal effects, the PIEG model shows that,
to a certain extent, it is possible to establish causality in latent variable models with the
help of repeated measures designs.

In Paper I, it is shown that the integration of latent item effect variables into a latent
state model leads to noticeably better model fit in real-data application. Also, extensive
Monte Carlo simulations show that only relatively small sample sizes are necessary to
estimate stable parameters with the PIEG model.
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4 Paper II: Detecting Differential Item Functioning
in Multidimensional Graded Response Models With
Recursive Partitioning

4.1 Background

As mentioned in Section it is possible to estimate the parameters of an IRT model,
specifically a GRM, via ordinal factor analysis which is a limited information estimation
method. However, the method that is most often referred to as the standard estimation
method for IRT models (see [Forero & Maydeu-Olivares, |2009) is marginal maximum
likelihood (MML) estimation via the ezpectation-mazimization (EM) algorithm (Bock &
Aitkin, [1981). This estimation method uses all information contained in the responses
Y; = {Yj1, - - Yjm} of all individuals j = 1,...,n, in a sample. In Section, we established
that the GRM is determined by the axiom of local independence. From this fundamental
assumption, it follows that the &-conditional probability responding with the response
pattern y; is

P(Y =y;|&) =] PVi=u;€). (11)
i=1
where P(Y; = y;;|£) is derived from Equation[I] To estimate the model’s parameters 9, it
is necessary to estimate the marginal response probability for each individual j = 1,...,n,
that is -
PY=y) = [ P(Y=y, 096 de. (12)

where g(£) is the continuous (multivariate) latent variable distribution in the population.
Note that if there are p latent variables in the model, & is a p-dimensional distribution and
Equation [12|is a p-dimensional integral. The calculation of such integrals is computation-
ally very demanding, especially when the latent variables are assumed to be correlated.
Also, the computational burden increases exponentially with a linearly increasing number
of latent variables (Forero & Maydeu-Olivares, 2009).

As the observed variables in the GRM are ordered variables with [; response categories,
there are [ [}, l; possible response patterns. Each individual j in the data can be assigned
to one response pattern y, and each individual marginal probability can be assigned to
the marginal probability of a respones pattern P(Y =y,.). Let p, be the relative frequency
of the pattern y, in the data. Then, across all response patterns in the data, the objective
function

Funen(®) =) _pellnp, —In P(Y =y,)], (13)

is used to successively approximate the best estimation for 9 (see |Joreskog & Moustaki,
20006)).

As full-information parameter estimation via the EM algorithm is computationally
very demanding, the application of MOB to multidimensional GRMs is not easily possible.
Note that in MOB a large number of latent variable models are fitted in succession to
create a tree.
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4.2 Summary and Contribution

To our knowledge, Paper II is the first publication to systematically evaluate the applica-
tion of MOB to MIRT models. Several different ways to apply MOB to the multidimen-
sional GRM are systematically compared.

First, note that the approach presented by [Strobl et al.| (2015)) and |Komboz et al.| (2018))
is not computationally feasible when applied to multidimensional GRMs. As proposed
by Schneider, Strobl, Zeileis, and Debelak (2022)), the GRM should be fitted using full
information parameter estimation within the MOB algorithm. As we stated in Section
[4.1] this is too computationally expensive for complex MIRT models with correlated latent
variables.

Thus, to apply MOB to multidimensional GRMs, limited information parameter esti-
mation must be used so that the algorithm remains computationally feasible. When Paper
IT was published, however, there was no practical way to estimate individual contribu-
tions to the score function from a model fitted via ordinal factor analysis (see Equation
@. Thus, the score-based test for parameter instability could not be computed for the
multidimensional GRM fitted via ordinal factor analysis. For this reason, the model was
fitted with the limited information ML method (see Equation |3) to test for parameter
instability within the MOB algorithm. For this approach, the model assumptions of the
multidimensional GRM were compromised. Nonetheless, the approach performed very
well in recovering subgroups with parameter heterogeneity when applied to simulated
data. This shows that MOB can be efficiently applied to detect DIF in MIRT models
with non-binary observed variables. Additionally, it was found in Paper II that calculat-
ing ensembles of MOB trees can be helpful in recovering subgroups within datasets with
complex subgroup structures.

5 Paper I1I: Latent Variable Forests for Latent Vari-
able Score Estimation

5.1 Background

According to Pearl (2009} p. 25), it is, to a large extent, stability that characterizes causal
relationships in models. This means that they describe objective physical constraints,
i.e. they are ontological. In contrast, probabilistic relationships are epistemic, i.e. reflecting
what is known about the concepts in the model. Causal relationships in models remain
constant as no change has taken place in the environment even when our knowledge
about the environment changes. Thus, for the causal interpretation of relationships in
latent variables models, latent variables must be understood as real variables instead of
hypothetical constructs (see Bollen, 2002) and latent variable models must be interpreted
as functional causal models. Such models consist of a set of structural equations where
the latent variables &, directly determine the observed variable Y;.

The assumptions described above refer to unparametric structural models. In prac-
tice, however, latent variable models are usually applied as parametric factor models with
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metric and/or ordinal observed variables (see e.g. |Joreskog, |1969; Muthén) |1984)). These
factor models assume a linear functional form within the latent variable model. In Sec-
tion we established that testing these models for measurement invariance does not
ensure that non-ontological relations are ruled out. However, measurement invariance is a
necessary condition for a causal, relationship in a parametric latent variable model. Note
that a causal relationship in in a model is always unbiased.

An important use for latent variable models is to scale individuals on a single construct.
For this, it is useful to estimate individual latent variable scores as values of a latent
variable. In order to estimate latent variable scores that are unbiased with respect to
certain covariates Z, the relationships within the latent variable model need to be Z-
conditionally stable. In Paper III, we investigate how tree-based machine learning can
be used to estimate such unbiased latent variable scores. The estimated latent variable
scores may then be used for descriptive and inferential purposes. They may, for example,
be used to estimate latent variable effects in factor score regression (FSR) (see Devlieger,
Mayer, & Rosseel, 2016; [Devlieger, Talloen, & Rosseel, [2019).

5.2 Summary and Contribution

We propose a method to estimate unbiased latent variable scores based on (ordinal) factor
models. For this, measurement invariance w.r.t. a predefined vector of covariates Z is
established in relevant subgroups in the sample. For each of these potentially overlapping
subgroups, latent variable scores are estimated. This is done by repeatedly growing MOB
trees and identifying it’s terminal nodes as relevant subgroups by testing the models fitted
to the subgroups in the terminal nodes for model fit and parameter stability. Model fit
is assessed with the RMSEA value and parameter instability is assessed with the score-
based test for parameter instability (the same test that is used to grow the MOB tree,
see |Zeileis & Hornik, 2007)). The estimated latent variables are then averaged across all
trees for each individual. We call the method LV Forest.

To make the algorithm computationally feasible, the trees are grown on the basis of
classic linear factor models (see Section. This means that the model fitting processes
executed in order to find the splitting variables and split points are linear factor models
assuming multivariate normality of the observed variables. Also, score-guided MOB trees
are grown (see Section [2.4). After the tree growing process is completed, the models for
each terminal nodes are fitted as ordinal factor models (see Section [2.1.2).

The idea for LV Forest arose from the fact that there is no way to include latent
variables in causal forests (see Section [2.1.1)). Where causal forests are used to estimate
individual causal treatment effects (that are always unbiased), LV Forest is used to es-
timate unbiased latent variable scores. The individual treatment effects can be used to
estimate conditional causal effects. The latent variable scores from LV Forest can be used
in a similar way. However, as we mentioned before, LV Forest does not fully establish
causality within a latent variable model. According to Bollen (1989, pp. 44-67), the
assumption of &, being the actual cause of Y;, encompasses three components: isolation,
association, and direction of influence. Where LV Forest may help to establish a certain
degree of pseudo-isolation within the relevant subgroups, the other two conditions are not



6 Paper IV: Score-Based Tests for Parameter Instability in Ordinal Factor
Models 13

addressed by the proposed method.

When the contribution of LV Forest is evaluated from the perspective of measurement
invariance or DIF research, it becomes clear that the €;-conditional independence of Y; and
Z is most likely established in the relevant subgroups found by the algorithm. However,
in LV Forest, the latent variable means and variances of the fitted models are assumed to
differ between the relevant subgroups. This way, impact of the covariates on the latent
variable is allowed across all subgroups in the sample. Impact means that a covariate Z
affects one or more latent variables in the model. For measurement invariance detection,
this phenomenon is usually problematic because the researcher has to define a model in
which the item parameters can differ between groups while controlling for group differences
in the latent variable distribution (Belzak & Bauer} [2020). Often, multiple group factor
models are used for this purpose. The use of LV Forest has the advantage that no
predefined groups need to be defined for which impact of Z on £ is assumed.

We conducted extensive simulations, showing that given parameter instability within
the simulated samples, LV Forest increases the accuracy of estimated latent variable
scores. However, in some simulation scenarios as well as in the application of LV Forest
to real data, there were relatively high level of ‘nonconvergence’. In the context of this
paper, nonconvergence of an individual means that this individual is not part of any
relevant subgroup found by the algorithm. Therefore, scores are not estimated for this
individual.

6 Paper IV: Score-Based Tests for Parameter Insta-
bility in Ordinal Factor Models

6.1 Background

The MOB algorithm is a useful tool for the detection of DIF. It may even be used for the
estimation of unbiased latent variable scores. However, the application of MOB to MIRT
models remains challenging as ordinal factor models cannot easily be used for parameter
instability testing.

In Section [2.4] we explain that the the score-based test for parameter instability is
used within the MOB algorithm to detect the individual deviations across the individuals
in the sample w.r.t. the parameter estimates of the fitted model. The score-based test
for parameter instability uses the individual score contributions to test if there is signif-
icant parameter instablilty in the sample (see |Zeileis & Hornik} [2007). These individual
score contributions are the individual contributions to the score function (). The score
function is the first derivative of the objective function with respect to the parameter
vector. For an arbitrary objective function F'(6) and for an individual j it is true that

E[y(y;,0)] = 0.

As mentioned in section [2.1.1] a factor model with metric, normally distributed ob-
served variables can be fitted by minimizing the objective function F),, (@) (shown in Equa-
tion , which corresponds to a limited information estimation method. However, F,,, ()



6.2 Summary and Contribution 14

is not an individual function, which means that it does not correspond to an individual j.
This makes it impossible estimate it’s individual score contributions. Yet, alternatively,
the parameters can be estimated by maximizing the log likelihood In L(Y",8). This full
information objective function is shown in Equation [16]in the Appendix. The derivative
of this function with respect to the parameter vector @ are the individual score contribu-
tions. From Equation [L7|in the appendix it becomes clear that all information necessary
to estimate the individual contributions to the score function ¢ (y;, 9) Vi=1,...,n, are
the observations in the data, the model implied means and covariances, and the parameter
estimates. Therefore, the score-based test for parameter instability is easily applicable to
factor models with metric, normally distributed observed variables fitted with a limited
information estimation method. The estimation of the score contributions is computa-
tionally efficient.

In Section [4.1], we introduced the full information marginal maximum likelihood es-
timation method. Equivalent to minimizing the objective function Fy,,, (1) (see Equa-
tion is maximizing the log likelihood In L(Y,9) defined in Equation [1§| in the Ap-
pendix. The derivative of this log likelihood function is defined in Equation in the
Appendix. From this Equation, it becomes clear that for the estimation of the individ-
ual score contributions for a MIRT model fitted via marginal maximum likelihood, the
computationally expensive estimation of the marginal response probability distribution

P(Y=y;)Vj=1,...,n,is necessary (see Section .

This shows that, when it comes to factor models with non-normally distributed, ordinal
observed variables, the score-based test is not that easily applicable. The ordinal factor
analysis approach introduced in Section [2.1.2]is computationally feasible but the objective
function F,p4(¥) shown in Equation [6] is not an individual function, just as F,.(0)
(Equation . However, ordinal factor models cannot be fitted by maximizing individual
log likelihoods. Thus, a model fitted via ordinal factor analysis (see Section cannot
as easily be used to estimate the individual score contributions as a metric factor model.
This issue is addressed in Paper IV.

6.2 Summary and Contribution

We introduce a method to estimate individual contributions to the score function of
ordinal factor models that is as computationally feasible as the estimation of score con-
tributions for metric factor models.

To compute scores that can then be used for the score-based parameter instability test,
we focus on an alternative parameter estimation approach to MML estimation that is also
a full information method. In contrast to MML estimation, which is a maximum likelihood
estimation method, ordinal factor analysis is a type of generalized least squares estimation
method (see Muthén|, [1984). It is also a limited information estimation method. A full
information generalized least squares estimation method is the generalized estimating
equations (GEE) approach (Reboussin & Liang, (1998} [Muthén| |1997). The method fits
latent variable models with ordered response variables. It is supposed to outperform
ordinal factor analysis in cases of small sample size and large numbers of observed indicator
variables. The estimation approach solves a set of estimating equations defined as follows.
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Let e; is the vector of empirical deviations of the first and second order empirical moments
from the true first and second order moments, that is

1, —v(9)
- i 14
“ (Sj—d(ﬁ) ’ 14
where 1, and s; are the empirical first and second order moments, and v and o are the

true first and second order moments for individual j. The estimation equations used in
the GEE estmation approach are defined as

> by 9) =Y AWgpge; =0, (15)
j=1 i=1

where A is the matrix of model derivatives, Wggg is the working covariance matrix of
first and second order empirical moments. By construction, the estimating equations
in Equation add up to 0 across the sample, we therefore refer to them as the GEE
score function. The parameters are estimated by solving this set of quadratic estimating
equations for ¥ by iteratively updating the estimator 9. We use these estimating equations
as basis for our approach to estimate the individual contributions to the score function
for ordinal factor analysis.

However, parameter estimation via the GEE approach is not equivalent to parameter
estimation via ordinal factor analysis. This means that the estimator 9 is slightly different
when estlmated by minimizing Equation [ compared to the estimator estimated by solving
Equation [15] In contrast, the estimator 6 of the factor model with metric, normally
distributed observed variables is equal when it is approximated by minimizing Equation
compared to maximizing Equation Thus, in order to define an individual score
function for ordinal factor models, our goal is to approximate the GEE score function that
would have resulted if the parameters estimated using the GEE approach were exactly
the same as those estimated using ordinal factor analysis. By doing this in Paper IV, we
successfully introduce a method to estimate model scores for ordinal factor models.

In the Technical Appendix of Paper IV, we also extend the definitions of the GEE
estimation method. Originally, it was only defined by |Reboussin and Liang (1998) and
Muthén! (1997)) for binary observed variables. To our knowledge, no specific definitions
have been published for non-binary observed variables. We applied the estimation method
for the binary and non-binary case and compared the GEE scores to the ordinal factor
model scores. The results indicate that the ordinal factor model scores are a valid ap-
proximation of the GEE scores.

In simulations, it is shown that the score-based test for parameter instability performs
very well with the ordinal factor model scores. In a variety of different simulation scenar-
ios, the test performs equally well or better than the score-based test for MIRT models
fitted with the full information MML estimator.

7 General Discussion

The four papers written in the scope of this dissertation contribute to the field of statistics,
particularly to psychometrics. According to|Galton| (1879), psychometrics means “the art
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of imposing measurement and number upon operations of the mind”. A central goal of
psychometric applications is to derive causal inference from behavioral measures. Often
enough though, such measurements are inherently biased. All four studies deal with the
question of how the bias of psychometric measurements can be reduced. A particular
focus of this dissertation is on the potential of algorithmic, predictive machine learning
methods for this endeavor.

Bias of psychometric measurements can often be found on the item level, e.g. when
it comes to items in a psychometric questionnaire. Therefore, multidimensional IRT
modeling is of great importance in the effort to reduce bias. Such explanatory MIRT
models are used to test hypotheses about unobserved phenomena of the mind, taking into
account the individual characteristics of each item. Paper I shows how in longitudinal
settings, the inter-individual differences in item difficulty can be modeled as latent item
effect variables. This illustrates that item bias in explanatory models can be reduced
through sophisticated MIRT modeling.

When inter-individual differences with respect to item characteristics, like item diffi-
culty, are not accounted for, researchers also speak of differential item functioning. When
there is no longitudinal setting and there is little theoretical guidance as to which sub-
groups exhibit DIF, then algorithmic methods can be used for DIF detection. In Paper
I, it is shown that model based recursive partitioning can be used to detect DIF in MIRT
models. This algorithmic method, especially when performed as an ensemble, can be
considered a type of machine learning model although it is not used for prediction.

Generally, MIRT models are usually not used for prediction. However, as shown in
Paper 111, together with ML methods, MIRT models can be used to compute unbiased
individual scores of latent variables. For the LV Forest approach, we step away from purely
explanatory modeling. Just like the individual effects estimated using the causal forest
approach, the latent variable scores estimated with LV Forest can be used for descriptive
and inferential purposes. Therefore, this dissertation, particularly Paper II and III, show
that machine learning methods can be used to reduce bias in MIRT models.

A central aspect of Papers II and III is the computational efficiency of the proposed
methods. With the estimation of individual score contributions for ordinal factor models,
the computation of accurate MOB tree applications for complex MIRT models becomes
computationally efficient. As machine learning in psychometrics needs to be easily appli-
cable, the reduction of computation time is crucial for the future of machine learning in
psychometrics. We address this issue in Paper IV.

Generally, there are numerous ways that machine learning techniques can be used in
psychometrics. For example, item selection for psychometric questionnaires (Gonzalez,
2021b),2025), individual classification of respondents to psychological diagnoses (Gonzalez,
2021a; [Yan, Ruan, & Jiang, 2022), or the estimation of construct and criterion validity
(Trognon, Cherifi, Habibi, Demange, & Prudent|, [2022) may be facilitated using ML meth-
ods. However, machine learning isn’t regularly used in conjunction with latent variable
models. This dissertation is a contribution to this area. Future research should focus
more on this promising field.
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Future research may also focus on the development of the thoughts that are introduced
in this thesis. More specifically, researchers could find a way to reduce the non-convergence
rate of LV Forest applications. This may be done by using a flexible RMSEA cutoff
value so that all individuals in the sample are part of at least one subgroup in which
a fitted MIRT model has stable parameter estimates. Also, to increase the accuracy of
LV Forest, the estimation of score contributions as proposed in Paper IV needs to be
implemented for score-guided SEM Trees. Furthermore, the method proposed in Paper IV
should be extended for the use with models fitted with weighted least squares estimation
methods like diagonally weighted least squares (DWLS), mean- and variance-adjusted
weighted least squares (WLSMV), or unweighted least squares (ULS). Furthermore, the
performance of the method proposed in Paper IV in combination with Vuong tests and
robust test statistics based on sandwich estimators should be investigated. Finally, the
GEE estimation method, that we implemented in the technical appendix of Paper IV,
should be systematically evaluated, especially for MIRT models with non-binary observed
variables.

This dissertation shows that objectives from explanatory modeling can be combined
with objectives from predictive modeling. The potential of ML approaches for psycho-
metrics has most likely not yet been fully exploited.
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A  Formulas for Score Functions

The full information objective function for factor models with metric, normally distributed
variables is the log likelihood function, that is

InL(Y,0) ZlnL y;,0
(16)
_ Z _5(1nyz:(0)| + (y; — 1(0))'2(0) " (y, — #(9))>v

where 3(0) is the model implied covariance matrix and p(0) is the vector of model
implied means. Maximizing Equation is equivalent to minimizing F),.(0). By the
chain rule, the first derivative of Equation with respect to 0 [16)]is

O L(Y,0) _ i OnL(y;,0) _ i Ol L(y;,B) 0B(6) _

06 = 00 ~ 0B 00
_Z dln L( y], B) dnL(y;,B)\ 08(6)
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- Z('5<E_1(y]’ —p)(y, —p)S - E_1> , (y, — u)/2—1> %(:)

= Zw(ygve) = 07
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(17)
where B = (vec(X), p) is the vector of model parameters of the saturated model. In
contrast to the structured model (with parameter vector @), the saturated model does
not impose any restrictions on the means or the covariance matrix. The matrix of model
derivatives agge) is often referred to as A(@) (see Appendix B in [Savalei & Rosseel, 2022).

The the marginal log likelihood function is defined as

InL(Y,9) =In (ﬁ P(Y:yj)> . (18)

j=1

The derivative of the marginal log likelihood with respect to the parameter vector 9 is
defined as

dIn L(Y,9) _i@lnL(yj,ﬂ) _i 1 OP(Y =y,)
o9 0 L PY=y,) o0

Jj=1 Jj=1

(19)

- Z@b(y],ﬂ) =0,
j=1

see Debelak and Strobl (2019).
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Abstract

Differential item functioning (DIF) is a common challenge when examining latent traits in large
scale surveys. In recent work, methods from the field of machine learning such as model-based
recursive partitioning have been proposed to identify subgroups with DIF when little theoretical
guidance and many potential subgroups are available. On this basis, we propose and compare
recursive partitioning techniques for detecting DIF with a focus on measurement models with
multiple latent variables and ordinal response data. We implement tree-based approaches for
identifying subgroups that contribute to DIF in multidimensional latent variable modeling and
propose a robust, yet scalable extension, inspired by random forests. The proposed techniques
are applied and compared with simulations. We show that the proposed methods are able to
efficiently detect DIF and allow to extract decision rules that lead to subgroups with well fitting
models.

Keywords
differential item functioning, multidimensional item response theory, graded response model,
categorical analysis, surveys, algorithmic modeling, machine learning

Introduction

Multi-item batteries are frequently used in social scientific surveys to examine latent traits.
Examples include the measurement of creativity (Jauk et al., 2014), social anxiety (Prenoveau
et al., 2011), and personality disorders (Drislane & Patrick, 2017). Some traits, such as self-
leadership (Furtner et al., 2015), may include multiple dimensions and can involve complex
(i.e., multidimensional) measurement structures. If these latent traits are to be meaningfully used
for substantive analyses, one must assume measurement invariance. This requires that the
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association between items of the questionnaire and latent traits of individuals do not depend on
group membership. However, especially in the context of large scale surveys, the measurement
invariance assumption rarely holds because of the heterogeneous nature of survey samples (Van
De Schoot et al., 2015). Furthermore, a researcher can rarely identify and control all factors that
jeopardize this assumption.

Measurement non-invariance is also referred to as differential item functioning (DIF). If group
differences are found in latent factors measured by a survey questionnaire, it cannot be ruled out
that this effect is only an artifact due to unnoticed DIF. That is, if DIF remains undetected, group
differences can be misinterpreted. The common methods used to test for DIF usually require pre-
specification of the subgroups in which DIF is assumed (Hambleton et al., 1991, p. 110). The
decision which subgroups to consider for assumed DIF is often driven by theoretical priors, strong
convention and biases (see Brand et al., 2019). This lets many potential relevant subgroups
undetected if they do not reflect the researcher’s assumptions. Therefore, more flexible, data-
driven approaches can complement traditional approaches for detecting DIF.

By using data-driven, algorithmic approaches, it is possible to detect subgroups with DIF when
little theoretical guidance on the relevant subgroups is available. This strand of research includes
the work of Vaughn and Wang (2010) and Schauberger and Tutz (2016), who propose data-driven
methods for detecting DIF for single dichotomous items in tests or questionnaires. A particularly
promising method to algorithmically account for heterogeneity is model-based recursive par-
titioning (MOB), which embeds model estimation and subgroup detection in one methodological
framework (Zeileis et al., 2008). In this case, the researcher only needs to specify a set of
partitioning variables along with the statistical model, which are then used to iteratively search for
relevant subgroups. Tutz and Berger (2016) as well as Strobl et al. (2015) present the usage of
MOB for detecting DIF in the Rasch model. Komboz et al. (2018) propose a MOB-based ap-
proach for the Partial Credit Model, called PCM Tree, in which a single latent variable that may be
susceptible to DIF is assumed. Similar in spirit, structural equation model tree (SEMTree)
approaches have been proposed to detect homogeneous subgroups in latent variable modeling via
recursive partitioning (Arnold et al., 2021; Brandmaier et al., 2013). However, there is little
guidance on how recursive partitioning may be best utilized for multidimensional measurement
models with ordinal response variables.

In this study, we propose and compare recursive partitioning techniques for detecting DIF with
a focus on measurement models with multiple latent variables. In terms of the response variables,
we consider ordinal scales, for example, Likert or ratings scales, that are often used in social
scientific applications. Such models may be referred to as multidimensional graded response
(MGR) models. Table 1 gives an overview of the methods considered in this paper. Starting from
PCM Tree, we will demonstrate that a direct analogue for graded response models using full
information estimation (MML) is hardly feasible to use in practice due to its high computational
costs. We therefore propose a MOB for MGR approach that eases computational burden in the
multidimensional setting by focusing on limited information estimation (ML, WLS). Furthermore,
we compare different algorithmic approaches provided by the partykit and the semtree packages.

In addition, we address the instability issues of single tree approaches when modeling DIF. Due
to MOB’s hierarchical nature, small changes in the data can severely affect which subgroups are
eventually identified in the splitting process (Brandmaier et al., 2016). While PCM Tree as well as
the partykit and semtree approaches are susceptible to such changes, a random forest-like ex-
tension to MOB for MGR models, is analyzed that allows to robustly identify subgroups with DIF
in multidimensional latent variable models.

We test and compare the outlined methods in simulations. Multiple simulation scenarios are
considered that vary in the complexity of the partitioning task. The simulation results show that the
proposed methods are able to correctly retrieve subgroups with distinct sets of model parameters.
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Table I. Comparison of tree-based methods for detecting DIF in MGR models.

Uncom-
Multiple Computa- promised
latent Complex  tionally Robustified  model
Method Estimation variables? models*?  practical? approach? assumptions?
PCM Tree® CML X X 4 X v
(FIML)
Partykit® MML v X X X v
(FIML)®
ML, WLS v v v X X
(LIML)
Naive semtree® ML, WLS v 4 X X X
(LIML)
Score-guided semtree® ML, WLS v v v X X
(LIML)
Partykit forest ML WLS v 4 X 4 X
(LIML)
Score-guided semtree ML, WLS v/ v v v X
forest (LIML)

*Multivariate models with correlated latent variables or hierarchical structure.
*Proposed by Komboz et al. (2018).

Pproposed by Zeileis et al. (2008).

“following Schneider et al. (2021).

dproposed by Brandmaier et al. (2013).

°proposed by Arnold et al. (2021).

While partykit and semtree correctly identify subgroups in settings with clean partitioning
structures, their multi-tree extensions are able to retrieve complex groups that could not have been
recovered by a single decision tree. Nonetheless, computation time varies considerably across all
considered methods.

Methodology
Methodological Background

Stochastic models which specify the relationship between single items with a limited amount of
response categories and a continuous latent variable are consolidated under the term item response
theory (IRT). Usually, in IRT models, a latent variable represents the ability of the respondent.
This ability is assumed to underlie their response behavior (Steyer & Eid, 2013). In the following,
we refer to this latent variable as . Let the graded response to item i be denoted by the response
variable Y;. In IRT models for ordered response variables, as opposed to dichotomous response
variables, ¢ is measured by a number of items i = 1, ..., m, to which the respondent answers by
choosing one of the ordered response categories k; = 0, ..., /.. The most widely applied IRT
framework for items with a small amount of ordered response categories is the graded response
model (GRM) (Samejima, 1969). Furthermore, in a multidimensional IRT framework (also re-
ferred to as MIRT, see Forero and Maydeu-Olivares (2009)) a response variable ¥; may be linked
to more than one latent variable. In the following, we refer to the multidimensional GRM as MGR
model. For an MGR model, & is a p % 1 vector containing all latent variables £, V g =1, ..., p.
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The fact that the latent variables are measured by graded responses on items means that the
probability of answering in a category smaller or equal to a certain ordered category k; depends on
the (multidimensional) distribution of the latent variables. In the MGR model, this relationship is
defined by the cumulative category response function, that is the &-conditional probability
function

P(Y;2 k&) = O (B — ay). (1)

The link function @ is the distribution function of the standard normal distribution. The threshold
parameter a;; is the location on the underlying latent variable space where P(Y; > k; |§) = 0.5. The
threshold parameters are, per definition, ordered in size, so that a;; < a;; < ... < a;;. Note that for
every item i there is one threshold parameter a;; less than the total number of ordered categories /;
within item i. The discrimination parameters S, that make up the p x 1 vector f;, can be in-
terpreted as the slope parameters of the multidimensional probability function P(Y; > k; |&) for all
categories k; = 0, ..., [; of item i. Because IRT parameters specify the relation between items and
latent variables, we will refer to the MGR model parameters as item parameters, which form the
item parameter vector, that is

O = {ai, @t Brys s By Var(&y), ..., Var (&), Cov(é, &), ..., Cov(é,-1,8,) b ()

Note that Var($),) is fixed to 1 if 8y, is freely estimated (and vice versa). Also, estimating covariances
between latent variables has an impact on the estimation of item threshold and discrimination pa-
rameters. We therefore consider latent variable variances and covariances as item parameters.

In IRT models, differential item functioning (DIF) occurs if an item parameter depends on
covariates of ¥, that is a m X 1 vector of observed response variables. Such covariates can take the
form of characteristics of the individuals who respond to the items. Different scores on these
covariates classify different subgroups in the population. The item parameters for each of these
subgroups may differ. The difficulty of an item may, for example, depend on ethnicity, education,
or gender. Differential item functioning means that the item parameter vector 4 depends on the
covariate vector Z. It does not necessarily mean that the latent variable vector & also depends on Z.
This implies that DIF is present when the probability of responding to an item is different for two
individuals with the same ability, only because of their group membership.

In practice, DIF can be very problematic because the number of relevant covariates may be
large. Also, there is an even greater amount of possible values or value ranges of these covariates
for which the item parameters might differ. In addition, complex interactions within the covariate
vector Z are possible so that subgroups may only be detected by considering several covariates
jointly. If DIF remains undetected, group differences with respect to the latent variables can be
misinterpreted (Komboz et al., 2018).

Usually, the hypothesis 9 # 3, where /4 = 2 stands for a focal subgroup and / = 1 stands for a
reference group, can be tested empirically. Let’s assume that, in this exemplary case, the subgroups
that are tested for DIF are split at the median on the metric covariate Z;. In this situation, the
Likelihood Ratio (LR) test can be applied to test if an augmented model, where all item parameters
are allowed to vary across the two groups, outperforms a femplate model, in which all item
parameters are constrained to be equal across the reference and the focal group (Bulut & Suh,
2017). If this is the case, the researcher must assume DIF for these two groups.

Turning to model parameter estimation, social scientists often use confirmatory factor analysis
(CFA) to operationalize and estimate latent variable models with Likert-scale items (Li, 2016). Ina
classic CFA model, the observed items are assumed to be measured on a continuous (metric) scale.
The basic factor analytic model with intercepts is
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Y=n+p¢+e, 3)

where € is the m % 1 vector of residual variables and 7 is the m x 1 vector of intercepts representing
the expected values of ¥; V i=1, ..., m, when the values of & are zero (Joreskog, 1969). Note that
model fit is not affected by the estimation of intercepts. In the factor analytic framework, the model
parameter vector is

0={m1,....%w 11> coos B Var(&y), ..., Var(&,), Cov(&), &), ...,

Cov(&, 1,&,), Var(er), ..., Var(e) }. @

The CFA approach can also be used to estima)tke MGR model parameters. For this, a continuous,
normally distributed latent response variable Y, is assumed to underlie each observed response
variable ¥; for item 7 (Muthén, 1984). In the factor analytic approach for ordinal items, the latent

response variable ¥, of item i is related to the observed categorical response variable Y; via a

1

threshold relation, that is
Y, = ki if ax <y, <ae. 6)

It is assumed that a respondent chooses a response category k; when the respondent’s latent
response value y; lies between thresholds o and ot 1).

Parameter estimation in the factor analytic framework for metric items is usually done with the
maximum likelihood (ML) estimator (Joreskog, 1969). The use of ML estimation in SEM requires
the assumption that the observed variables follow a multivariate normal distribution (Li, 2016).
Note that this assumption rarely holds for ordinal items. In the factor analytic framework for metric
items only univariate and bivariate information is used for parameter estimation. For this, the
objective function F;; is minimized, that is

Fy(0) = In|Z(0)| + o (S=7'(0)) — In|S| —m, 6)

where X(@) is the model implied covariance matrix and § is the sample covariance matrix
(Joreskog, 1969). This approach for parameter estimation is thus called limited information
approach (LIML) and is computationally more efficient than the full information approach
(FIML, see SupplementalMaterial S3).

Calculating the log-likelihood function for every single individual ; in the sample, that is

In L(3,0) = — {I[2(0)| + (5~ ) "=0) (0~ )}

Vi=1,...,n,

O

where 7; denotes the subvector of the model-implied mean vector and X(8); denotes the submatrix
of the model-implied covariance matrix with respect to y;. Summing the results of equation (7)
across the whole sample and maximizing the results yields asymptotically equivalent parameter
estimates to limited information maximum likelihood estimation (Lee & Shi, 2021). The de-
rivative of equation (7) can easily be derived from a model that has been fitted with F;;. This
derivative is also referred to as the score function and is particularly important for parameter
instability testing.

It is also possible to use the limited information approach to parameter estimation for factor
analysis with ordinal items. As mentioned above, normal distribution of the observed response
variables cannot be assumed in this case. However, through the use of an asymptotically dis-
tribution free weighted least squares (WLS) estimator, normal distribution of the observed




B Attached contributions

32

88 Applied Psychological Measurement 48(3)

response variables need not be assumed. Prior to parameter estimation, the thresholds that define
the relation of ¥* to ¥ (see equation (5)) are estimated through bivariate contingency tables.
Additionally, bivariate polychoric correlations are estimated in this step (Muthén, 1981). A
polychoric correlation captures the strength of the considered linear dependence between ¥; and

YS* for i # 5. The model parameters are then estimated through minimization of the WLS fit
function, that is

Fiis(0) = [ — x(0)) W[R — x(0)], ®)

where k(6) contains the vectorized elements of the lower half of the model implied covariance
matrix X(#) and K is a vector of corresponding polychoric correlation estimates below the diagonal

of the polychoric correlation matrix K. The weight matrix W is the asymptotic covariance matrix
of the polychoric correlation estimates K. The weight matrix is supposed to account for distri-
butional variability among the observed variables (Li, 2016).

Both CFA and MGR models can be consolidated under the structural equation model (SEM)
framework, as both models hypothesize about multivariate constructs by specifying relationships
between observable and latent variables.

Model Based Recursive Partitioning to Detect Differential Item Functioning

The application of tests such as the LR test to detect DIF requires a priori specification of the
analyzed groups. Often though there are several numerical or categorical covariates and a large
number of possible splitting points and the researcher may not have specified theoretical priors for
all of the possible subgroups. Consequently, some subgroups with DIF might remain uncovered.
In cases like this, recursive partitioning can be used as a data-driven method to uncover relevant
groups for DIF. Recursive partitioning methods follow tree-based, algorithmic approaches
(Breiman et al., 1984). In recursive partitioning, the full sample sits at the root of a decision tree.
This root is considered a candidate for potential splitting into subgroups with respect to any of the
covariates Z,.in {Z\, ..., Zz} (also called partitioning variables). A subgroup represents a tree node,
which in turn is a candidate for further splitting. The algorithm may continue splitting until certain
predefined stopping criteria are met. This is usually the case when there is no more significant
instability in a tree node or when the subsample becomes too small. The terminal nodes of a
decision tree are also called leaves. There are several methods that can be grouped under the
umbrella term Model Based Recursive Partitioning (MOB), which we present below.

Originally, Structural equation model trees (SEM Trees), as presented by Brandmaier et al.
(2013), combine recursive partitioning with the LR test. The algorithm searches through all
partitioning variables to find subgroups that differ with respect to the model parameters. It is
implemented in the semtree package (Brandmaier et al., 2015).

With the original (or “naive”) semtree approach, the parameters in @ are first estimated jointly
for the entire sample using an M-estimator (like the ML estimator, see section methodological
background). Then, the augmented models for all possible split points of all partitioning variables
Z,in {Z,, ..., Zp} are fitted. Note that especially if there are several (unordered) categorical and
numerical partitioning variables, this means that there is a large number of augmented models to
fit. However, this step is necessary to compute the log likelihood ratio for every augmented model
against the template model. For every partitioning variable, the maximum log likelihood ratio is
used to set the optimal split point. Then, the LR test is performed for every partitioning variable.
The partitioning variable Z, with the smallest p-value in the LR test is then chosen for splitting. If
none of the partitioning variables show a significant p-value, the partitioning process is stopped.
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Bonferroni adjustments may be used to account for multiple comparisons. The procedure results in
a tree structure with one fitted SEM for each terminal node.

One clear advantage of the naive semtree approach, compared to the LR test, is that the
researcher does not need to pre-specify the functional form between the covariates and DIF.
Rather, the tree structure is learned from the data in an exploratory way (Brandmaier et al., 2013).
Another advantage is the ease of interpretation of the resulting subgroups. They are directly
interpretable because they are built on traceable sample splits. Thus, the advantage that no pre-
specification of subgroups is necessary, as in mixture models (Rost, 1990), are combined with the
advantage of the LR approach, that the resulting subgroups are interpretable with respect to
covariates. However, the high computational cost of this method can make its application on large
data sets and complex models unfeasible.

A similar recursive partitioning approach is provided in the partykit package by Hothorn and
Zeileis (2015). In contrast to the naive semtree approach, partykit tests a fitted model in a node for
parameter instability with respect to any of the partitioning variables. If there is significant
parameter instability, the node is eventually split at a point on the covariate with the greatest
instability into two locally optimal segments. If an M-estimator is used to fit the model, parameter
instability of the fitted model with respect to a covariate can be detected through the generalized
M-fluctuation test (Zeileis & Hornik, 2007). The null hypothesis of the generalized M-fluctuation
test is rejected if the empirical fluctuation during parameter estimation with respect to a covariate is
improbably large. N

Following Stefanski and Boos (2002), an M-estimator 0 is defined as the solution to the
equation

n

> y(y.0) =o0. ©)

J=1

In the context of SEM, y is a (k x 1)-function where k denotes the number of parameters estimated
in a SEM model. The estimator 0 is the solution that minimizes the model’s objective function

-~

(e.g., Far or Fiyps, see equation (6) and (8)). For ML estimation, z//(yj, 0) is the derivative function
of the individual contributions to the model’s log likelihood with respect to the parameter vector

(see equation (7)). For 6, the derivatives add up to zero across all individuals in the sample. For £
parameters in the latent variable model, the derivative function is

~ 6lnLyv,§ 6lnLy.,§ )
(//(y]_,a) = ( 65(1/ ),..., a/é(k" )),Vj =1,...,n. (10)

The generalized M-fluctuation test uses the function z//(yj,a) to derive tests statistics that

capture the empirical fluctuation process across all parameter estimates in 9. For this, different
kinds of test statistics can be used. For example, for numerical covariates, partykit uses a test
statistic that is equivalent with the maxLM statistic from Merkle and Zeileis (2013). To assess
instability with respect to categorical or ordinal covariates, different kinds of test statistics based
on the sum of the scores in every category are used.

The generalized M-fluctuation test rejects the null hypothesis of “no structural change” when
the empirical fluctuation process becomes exceptionally large in comparison to the fluctuation of
the limiting process. This limiting process is represented by the limiting distribution which can be
approximated as closed form solutions to certain functions. If closed form solutions are not
possible, critical values for hypothesis testing can be simulated “on the fly” (Zeileis, 2006a).
Although solutions in closed form are faster, the p-values can be calculated very quickly in this
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way. The generalized M-fluctuation test is provided in the strucchange package (Zeileis et al.,
2002).

Note that the function l//(y-,b\) is easily obtained for ML estimation. As mentioned in section
2.1, from SEM models fitted with the limited information ML method, individual log-likelihood
values (equation (7)) can be easily derived (see Zeileis, 2006b). However, this is not (yet) the case
for SEM models fitted with the limited information WLS method. Parameter instability tests for
MGR models fitted with WLS are not yet available. In this paper, we therefore do not directly
apply the M-fluctuation test to models fitted with WLS.

In every node of a decision tree partykit tests for parameter instability. If there is overall
parameter instability in the current node, that is, if the instability test for any of the partitioning
variables falls below a prespecified significance level, the partitioning variable Z « that is as-
sociated with the smallest p-value is chosen for splitting. To find the optimal split pofnt in a binary
partykit decision tree, the segmented objective functions of two rival segmentations are compared
until the optimal split point on Z « is found (Zeileis et al., 2008, p. 498f.). Note that this requires
fitting as many models as there "are possible segmentations of the partitioning variable Zr*.

Compared to the naive semtree approach, one advantage of partykit is reduced computation
time. To apply the generalized M-fluctuation test to all partitioning variables, the model needs only
be fitted once. Split point selection, however, is more time consuming because the model has to be
fit for all possible segmentations of the selected partitioning variable.

The idea of testing a fitted model in a node for parameter instability with respect to the
partitioning variables is also used in the “score-guided” semtree approach (Arnold et al., 2021),
which supersedes naive semtree. As with the partykit method, the first step of the algorithm is to
select the partition variable. This is done in the same way as in partykit, through the generalized
M-fluctuation test.

The key difference between partykit and score-guided semtree is that the latter performs a
different procedure than partykit for selecting the split point given a selected partitioning variable.
Instead of calculating the log likelihoods for all possible rival segmentations, score-guided
semtree identifies which of the unique values of a partitioning variable maximizes the respective
score-based test statistic (Arnold et al., 2021, p. 8). As a result, the model only needs to be fitted
once at each node of the decision tree. Compared to the partykit method, score-guided semtree can
further reduce computation time in the construction of the decision tree. For the generalized
M-fluctuation test, both partykit and score-guided semtree use the supLM (or equivantly maxLM)
test statistic for metric covariates and the LMuo statistic for categorical variables (see Merkle &
Zeileis, 2013). Score-guided semtree uses the maxLM statistic for ordered variables (maxLMo)
(Merkle et al., 2014). All these test statistics are implemented in the strucchange package.

A drawback of naive and score-guided semtree as well as partykit is their instability towards
small changes in the data because of the hierarchical nature of the tree growing process. The
position of a split point in the partition determines how the sample is split up in new nodes. The
position of the split point as well as the selection of the splitting variable, however, strongly
depend on the particular distribution of the data. The entire structure of the tree could be altered if
one splitting variable or split point was chosen differently (Strobl et al., 2009).

Recursive Partitioning for Multidimensional Graded Response Models

As mentioned in Section 2.2, recursive partitioning can be applied to any kind of parametric model
that is fitted using an M-estimator (e.g., maximum-likelihood). Komboz et al. (2018) propose a
recursive partitioning algorithm to detect DIF in the Partial Credit Model (PCM), called PCM
Tree. The PCM is another model from the IRT framework. The PCM Tree algorithm includes a
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global test for measurement invariance. If there is significant item parameter instability with
respect to any of the covariates Z, in Z, then the assumption of measurement invariance (no DIF)
should be rejected.

In PCM Tree, only one latent variable & can be considered in the models that are associated with
the tree’s nodes and thus multidimensional graded response (MGR) models cannot be handled. A
direct analogue to PCM Tree for MGR models would draw on full information parameter es-
timation in the tree growing process (see Schneider et al., 2021). In Supplemental Material S3,
however, we establish that model based recursive partitioning for MGR models using the full
information approach is rarely feasible due to enormous computational costs. Thus, in order to
conduct MOB for MGR models, computationally efficient approaches are needed.

We present and compare practicable methods to test and control for differential item func-
tioning for complex survey scales and large scale survey data. Particularly, we suggest to combine
the limited information approach for parameter estimation (Section 2.1) and recursive partitioning
algorithms (Section 2.2) in order to efficiently compute MGR model based decision trees and to
evaluate the resulting models with regard to model fit.

Recursive Partitioning for Multidimensional Graded Response Models: Single Tree. In this section, we
introduce different ways to efficiently compute a single recursive partitioning tree for MGR
models. We distinguish between the tree growing process (first step) and the terminal node model
estimation process (second step). On this basis, we draw on different estimators to detect sub-
groups with DIF and to estimate fit indices and parameter estimates in an MGR modeling context.
We present three algorithms, utilizing the semtree and the partykit packages (Section 2.2). The
proposed methods are summarized schematically in Supplemental Material S1 in Algorithm 1, 2,
and 3. Note that the algorithms differ with respect to the tree growing process as implied by the
different packages used.

To start tree growing with the naive semtree approach, numerous models have to be fitted for
which the log likelihoods are then compared with the template model. In the first step of the
partykit method and the score-guided semtree method, the score function (see equation (10)) is
used to build the tree structure. Usually, the MML estimation method is too computationally
expensive for these approaches (see Supplemental Material S3). To efficiently calculate log-
likelihoods for naive semtree and the score function for partykit and score-guided semtree, we
propose to use (limited information) ML estimation in the tree growing process, that is, parameter
estimates are computed by minimizing the objective function of the ML estimator (equation (6)).
Thus for all three algorithms, we compromise on our assumptions about the distribution of the
response variables. In the first step of the proposed recursive partitioning approaches for MGR
models, information is used that is based on the assumption that the observed variables follow a
continuous multivariate distribution. This may lead to problems in the tree growing process. In this
study, we therefore analyze tree stability using data with simulated numeric response variables
(based on a traditional CFA model) and compare the resulting trees to those grown using data with
ordinal response variables (based on a MGR model).

Note that for partykit and semtree for MGR models, the M-fluctuation test uses the partial
derivative of the objective function with respect to the model parameter vector @ (as opposed to the
item parameter vector 9). This means that individual contributions to the score function include
individual deviations with respect to residual variances and nodes are split to minimize the
interindividual variance with respect to these parameters. However, these parameters don’t exist in
the original GRM. In the MGR model, DIF occurs if the item parameter vector 9 depends on
covariates of the response variables (see Section Methodological Background). Thus, strictly
speaking, the partial score function with respect to the item parameter vector, w(¥, ¥), needs to be
considered for DIF detection through partykit or semtree. In Supplemental Material S3, we apply




B Attached contributions

36

92 Applied Psychological Measurement 48(3)

the MOB method to detect DIF with respect to the item parameter vector <. However, this method
turned out to be nearly infeasible due to high computational costs as outlined above. The es-
timation is computationally expensive because multidimensional integrals have to be solved in
order to minimize the objective function. Using this full information approach, however, indi-
vidual contributions to the minimization of the objective function are considered and the function
w(Y, 13) is derived.

In the second step of our proposed algorithms, the parameter and model fit estimates of the
models that are stored in the terminal nodes of the decision tree are calculated using the dis-
tribution free weighted least squares (WLS) estimator. Thus, for evaluation of the resulting
decision tree, the model fit indices in the terminal nodes are estimated under consideration of non-
normally distributed response variables and the existence of the threshold relation between the
response variable vector ¥ and latent response variable vector ¥* Thus, parameters and standard
errors are only estimated for models that fit the data within the subgroup. Along with sufficient
sample size, this is very important for correctly estimating parameters and standard errors. Pa-
rameters in models in which the parameters are stable but which don’t fit the data are unlikely to be
interpretable.

Recursive Partitioning for Multidimensional Graded Response Models: Forests. While the outlined
methods allow to efficiently grow a single decision tree, this method may be slightly inaccurate
because MGR model assumptions are compromised. At some splitting points in the decision tree,
variable and split point selection may be different if the objective function considered all pa-
rameters and distributional assumptions of the MGR model (see also Supplemental Material S2).
Also, a single decision tree can be vulnerable to small changes to the data and to the set of
partitioning variables. This is a consequence of the hierarchical nature of the splitting process
(Brandmaier et al., 2016; Kern et al., 2019)—the selection of one particular partitioning variable
Zr* at the root node determines the entire tree structure.

Using the computation time saving method described above, we are able to tackle the problem
of unstable and potentially inaccurate trees by computing several structurally different trees and
evaluating the compiled results of the tree ensemble. As the computation of a decision tree using
partykit and score-guided semtree is considerably less time consuming compared to the naive
semtree approach (Arnold et al., 2021) we only consider these methods (i.e., Supplemental
Material S1, Algorithm 2 and 3) as base learner in the ensemble.

We are guided by the concept of random forests, a method that uses an ensemble of decision
trees rather than a single one to enhance prediction performance (Breiman, 2001a). We use random
split selection to grow decorrelated trees for the ensemble that are structurally different from each
other. In this procedure, random selections of partitioning variables are made. The selection of
partitioning variables is redrawn at every node in a decision tree. This way, we encourage that all
partitioning variables are considered at least once, even if a small number of trees are computed.
Another technique used in the random forest framework is bagging. If bagging is used, the tree
growing algorithm is applied to a bootstrap sample drawn from the full sample at every iteration.
However, we refrain from using bagging together with recursive partitioning for MGR models.
We want to ensure that the parameter estimates in the subgroups that are found by the algorithm are
directly replicable. This is necessary to ensure that the fit indices of the fitted models are
comparable between the trees.

The steps performed to grow a forest of partykit trees or score-guided semtrees for MGR
models are summarized in Supplemental Material S1 in Algorithm 4. Multiple decision trees are
grown using either partykit or semtree for MGR models (see section Recursive Partitioning for
MGR models: Single Tree) with random sampling of partitioning variables at each node. After
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multiple decision trees are grown, the fit indices of the fitted models in the terminal nodes of each
decision tree are evaluated. In this step, fitted models in terminal nodes that don’t exceed a
predefined cutoff criterion (y*-test p-value or RMSEA cutoff) are selected. The forest outputs a list
of subgroups for which the proposed MGR model holds and DIF is present.

Simulations

Measurement Model

We test and compare the presented recursive partitioning techniques for MGR models with
simulations. For this, a multidimensional graded response model needs to be defined. In the
following, the simulated data is created based on the assumptions of the probit multistate IRT
model with latent item effect variables for graded responses (PIEG, Classe & Steyer, 2023a).

The PIEG model is a multistate model with latent item effect variables for ordinal observables.
For every category of a response variable, one category-specific latent state variable 7;, for
category k of item 7 at time point # is defined in the PIEG model. One reference latent state variable
7, which is equal to the latent state variable of the reference item 7, is assumed for every time
point of measurement. The latent item effect variable f; is defined as the difference between the
latent state variable of the reference item and the latent state variable of another item. Thus, there
are as many latent item effect variables as there are items, minus the reference item. In this model,
variances and covariances of latent state variables, and latent item effect variables as well as the
covariances between latent item effect variables and latent state variables are estimated. The
model’s discrimination parameters are all fixed at 1. For our application, all threshold parameters
are freely estimated.

To simulate data on the basis of the PIEG model, we define three reference latent state variables
7, and two latent item effect variables f;. We are thus mimicking a longitudinal setting with data
collected for three time points. The proposed latent variables are derived from three items, re-
spectively, resulting in nine five-category ordinal response variables Y;,. The model structure is
shown in Figure 1 in Supplemental Material S1. The cumulative category response function of the
PIEG model is

P(Yilzkt"r/pﬁi) = (D(nr +ﬁi - Kikt)’ (11)
Vk=1,..,4Vi=2,...,3,Vt=1,...,3.

In this model, there are 36 free threshold parameters (4 for every five-category item), 10 free
covariances between the latent variables, and 5 free variances of the latent variables, resulting in
51 free parameters in total.

To additionally simulate data with which ML estimation can be performed without com-
promising model assumptions, we define a traditional CFA model for which the response variables
are numerical and follow the normal distribution. The model function is

Yo =my+n,+p + €,
Vi=2,..3.Nt=1,..3 (12)

where 7;, is an item- and time-specific intercept and ¢; is an item-specific residual variable. In this
model, there are 10 free covariances between the latent variables, 5 free variances of the latent
variables, 9 free intercepts and 9 free residual variances resulting in 33 free parameters in total.

For all data sets, several partitioning variables Z,. V r = 1, ..., R are simulated. Different
subgroups R, ¥V h =1, ..., H for which DIF is present may be defined as different areas on the
(multidimensional) distribution of these partitioning variables.
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Simulation Setup

We create simulated data to test and compare the performance of partykit, naive and score-guided
semtree for MGR models. Single decision tree approaches are applied to the first set of simulations
(simulation 1) while ensemble techniques are applied to the second set of simulations (simulation
2). We conduct additional simulations to test the performance of the generalized M-fluctuation test
under misspecification in Supplemental Material S2. R implementations of the proposed methods
and replication materials for all simulations are provided in the following OSF repository: https:/
osf.io/sv35m/?view_only=6cdde2777b914322b32ca00ad567f12b.

Simulation |. The samples of simulation 1 each consist of 2000 observations with values on
17 variables. There are no missing data points in the samples. We simulate 9 response variables in
two ways: One set of samples with ordinal response variables that are based on the model function
in equation (11) (see Figure 1). We also created a set of numeric samples that are based on the
model function in equation (12). For each (ordinal and numeric) sample, we created two ordinal
variables (catl and cat2) with scores on a five-point Likert Scale and one numerical variable
(numl) ranging from 1 to 200. Those three variables are relevant partitioning variables. This
means that they allow to distinguish between four subgroups with 500 observations in each
group. Additionally, for each sample five random partitioning variables (randl to rand5) were
simulated that do not systematically differentiate among the four subgroups. There are two
numerical and three ordinal random partitioning variables.

We simulated 100 ordinal samples and 100 numeric samples. For each sample, the data for each
subgroup is simulated with a different set of parameters so that the model function in equation (11) (for
the ordinal data) or equation (12) (for the numerical data) is true for each subgroup, but there is DIF in
the overall sample. The true group-specific parameters differ between the samples. Intercepts and
threshold parameters were sampled from a normal distribution, and latent variable variances and
covariances were sampled from a uniform distribution. Further details and code for replication
purposes is provided in the OSF repository. For each subgroup within one single sample, the values on
the relevant partitioning variables are simulated such that each subgroup is exclusive with respect to the
values of the relevant partitioning variables. Additionally, the structure of the simulated sample can be
broken down by a single decision tree. The subgroups are defined as

Ry : = {{numl <100}N{catl € {1,5}}},
Ry: = {{numl <100}N{catl € {2,3,4}}},
Ry: = {{num1>100}N{cat2 <2}},

Ry: = {{numl >100}N{cat2>3}}.

All subgroups within one single sample fit the assumed model very well (RMSEA of 0.05 or lower
for the models shown in equations (11) and (12), respectively).

We conduct the simulation analysis in two steps. In the first step, we apply partykit, naive and
score-guided semtree for MGR models to one single ordinal sample of simulation 1 to test if the
methods are able to detect DIF and to compare runtime results for a sample that has a clear
subgroup structure. In the respective model setup, we do not impose constraints on the minimum
sample size in the terminal nodes. Bonferroni adjustments are applied at every node to correct for
the multiple comparisons arising from the repetition of the generalized M-fluctuation test (for
partykit and score-guided semtree) or of the LR-test (for naive semtree). The number of hypothesis
repeated at every node is equal to the number of partitioning variables used.

The PIEG model fit the four subsets of this sample very well (R;: RMSEA
<.001,95%C.I. = .000 — .034, R,: RMSEA <.001,95%C.I. = .000 — .033, R;: RMSEA =
.025,95% C.1.=.000 — .048, R4: RMSEA =.013,95% C.I.=.000 — .041). Through Monte Carlo
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Figure 1. Results of single sample application of simulation 1. (a) Partykit for MGR models. (b) Score-guided

semtree for MGR models. (c) Naive semtree for MGR models.

simulation, Classe and Steyer (2023b) found that the quality of the parameter estimates and
standard errors associated with the PIEG model are very good for sample sizes of 500, given the
model fits the data. We therefore assume that recovery of the simulated subgroups, in which the
models fit very well, results in accurate parameter estimation within these subgroups. The input
parameters for all subgroups (R, to R,) in this sample that are used for data generation are shown in

Tables 1 and Table 2 in Supplemental Material S1.

In the second step, we apply partykit and score-guided semtree to all 100 ordinal and

100 numerical samples and analyze tree stability across simulations.

Simulation 2. The samples of simulation 2 each consist of 2000 observations on 18 variables.
Again, there are five random partitioning variables in these samples. In addition, there are four
relevant partitioning variables: catl (categorical), cat2 (ordinal), numl (numerical) and dichol
(dichotomous). The relevant partitioning variables differentiate among two (exclusive) subgroups

defined as

Ry : = {{cat 2>3}n{cat 2<4}N{num1<50}},
R, : = {{dichol = 0}n{catl € {1,4,5}}}.
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The subgroups R and R, consist of 500 observations each (within one single sample). The data for
the subgroups are simulated to fit the PIEG model well but with different sets of parameters such
that DIF is present. Again, 100 ordinal samples as well as 100 numeric samples are created. The
values of the simulated response variables for the remaining half of each sample of simulation
2 are random. For the ordinal samples, this means that values between 1 and 5 were randomly
sampled for all response variables for all individuals that did not belong to R; or R,. For the
numerical samples, the values were randomly sampled from a uniform distribution with a
minimum of —3 and a maximum of 3. Consequently, the PIEG model only holds true for
subgroups R; and R,. Additionally, the simulated subgroup structure of the sample of simulation
2 cannot be recovered by one single decision tree.

We again proceed in two steps. In the first step, we apply partykit and score-guided semtree
forests to a single ordinal sample of simulation 2 to test whether the methods are able to detect DIF
in a sample in which the subgroup structure is complex and the assumed MGR model does not
hold for every individual in the sample. The data of half of that sample includes the same response
variables as the initial sample of simulation 1 (i.e., except for the randomly generated data points).
The partitioning variables are re-simulated. The input parameters are shown in Supplemental
Material S1 in Table 1 and 2 in column R; and R,. For every computed decision tree, we refit the
models in each terminal node using the WLS estimator, and gather the model fit information. We
compute an ensemble of 50 trees and set an RMSEA cutoff criterion of 0.05. The minimal size of
the subgroups in the terminal nodes is set to 100 such that model parameters and fit indices can be
estimated properly. Additionally, we set the number of variables randomly sampled as candidates
at each split point to 3. For this data set, we defined the ca#2 variable as categorical so that only two
splits are necessary to retrieve the simulated subgroup R; in a terminal node of a decision tree

Ry : = {{cat2 € {3,4}}N{num1 <50} }.

In the second step, we compute score-guided semtree forests for all 100 ordinal data sets and for
100 numeric data sets and analyze the method’s ability to retrieve the two simulated subgroups
from a complex sample structure across multiple samples. We computed ensembles of 20 trees
using the same hyperparameters as in the single sample application.

Simulation Results

The results of the single sample application of simulation 1 are shown in Figure 1(a) (partykit), 1b
(score-guided semtree), and 1c (naive semtree). When using partykit and score-guided semtree for
MGR models (Figures 1(a) and (b)), all subgroups (R; to R4) were retrieved correctly. For the
naive semtree (Figure 1(c)), however, the algorithm did not stop splitting although the parameters
in a terminal node are stable. These results indicate that partykit as well as score-guided semtree
may be used for DIF detection in a sample that has a clear subgroup structure and for which the
assumed MGR model is generally true. For the naive semtree method, on the other hand, it seems
like the LR-test does not perform well with respect to numerical covariates.

When it comes to computation time, there are considerable differences between the three
methods. The computation of the partykit tree took 361.5 seconds (6 minutes), the computation of
score-guided semtree took 7.8 seconds, and the computation of the naive semtree algorithm took
4357 seconds (1.2 hours). These applications were conducted on a processor with a single core and
8 GB RAM. The runtime results show that naive semtree algorithm is computationally demanding
and not a reasonable candidate for growing a decision tree ensemble. The modern, score-guided
semtree, on the other hand, appears to be a considerably more practical method for the detection of
DIF in MGR models, also in comparison to partykit. As it allows to choose from different types of




B Attached contributions

41

Classe and Kern 97

score-based test statistics, semtree appears to be a good candidate to efficiently calculate robust
tree ensembles.

We analyze and compare tree stability results of 100-fold simulations between partykit and
score-guided semtree as well as between ordinal and numerical response data. We define three
levels of tree stability. A stable tree is defined as a tree in which all splits have been performed at
the correct split points using the correct partitioning variables and all individuals in the sample are
correctly distributed among the terminal nodes. An example for such a perfect split result is shown
in Figures 1(a) and (b). The second level of tree stability is defined as a tree in which the split point
on the numerical variable num1 has not been perfectly detected so that not all individuals in the
sample are correctly distributed among the terminal nodes. An example for such an imperfect split
result is shown in Figure 2(a). The third level of tree stability is defined as a tree in which one or
more faulty splits have been performed. An example for such an incorrect split result is shown in
Figure 2(b).

The results of applying partykit and score-guided semtree to 100 numeric and 100 ordinal
samples are shown in Table 2. The tree stability patterns show no strong differences between
partykit and semtree. However, there are apparent differences when comparing the applications on
ordinal and numerical response data. With numerical response data, more trees were perfectly
stable. However, this is only due to a higher rate of inaccuracies in split point selection and not due
to more (fully) incorrect splits with ordinal response data.

The samples for simulation 2 included two subgroups with DIF (R; and R,) and random data
such that the PIEG model only holds for a portion of the sample. In addition, the simulated
subgroups are not retrievable through one single decision tree. In a single sample application, we
first investigate if a forest of decision trees is able to correctly detect the simulated subgroups in the
data set. As shown in Tables 3 and 4, both methods are successful in the retrieval of the two
subgroups as those subgroups are repeatedly identified with best model fit. However, there were
other subgroups that also fit the data well (i.e., model fit estimate fell under RMSEA cutoff)
although these subgroups were not explicitly simulated to fit the data. It becomes apparent that the
other subgroups identified by the forests are (random) subsets of either R, or R,. This result
indicates that not all of the subgroups with acceptable model fit indices in the tree ensembles
should be strictly interpreted as subgroups in which the assumed model is inherently true. Those
groups with the best model fit that do not share any subset with another subgroup in the list,
however, may be interpreted as subgroups in which the assumed model holds.

(@) (b)
cat2>2

num1 >= 99.83

J (0= 1008)

catl in[234 ] cat2>2

num1 >=100.52 num1 >=99.96

catl in[234 ]

n232 n242

cat1 tn[234]

Figure 2. Examples for tree instability in simulation 1. (a) Inaccurate split point selection. (b) Incorrect splits

performed.
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The runtime of partykit and semtree forest depend on the number of trees of the ensemble.
Thus, holding the number of trees constant, semtree forest take considerably less time to compute
than partykit forest. In simulation 2, the computation time of the single trees in the ensembles were
on average comparable to the computation times in simulation 1, as some trees grew deeper and
others stopped splitting at the root node. Note that growing a forest can be parallelized and
therefore the computation time of recursive partitioning forests also depends on the number of
available processing cores.

Repeating the application of semtree forests with 20 trees in each ensemble on 100 ordinal data
sets resulted in 95% of the forests recovering at least one simulated subgroup (R; or R;). Fur-
thermore, 41% of the forests recovered both R; and R,. The same application on 100 numeric data
sets resulted in 78% of the forests recovering at least one simulated subgroup and only 18%
recovering both subgroups. Thus, the problem of inaccurate selection of split points in the decision
tree for ordinal data seems to be solved by using partitioning tree ensembles.

Discussion

Heterogeneity in survey samples is a common challenge when latent variable models are used to
measure latent traits in substantive research. Survey data may include multiple, complex sub-
groups which can be subject to differential item functioning, and/or for which the implied
measurement model does not hold altogether. Following the work of Strobl et al. (2015) and
Komboz et al. (2018), we investigate several approaches for accounting for DIF in the most
prominent type of multidimensional polytomous IRT model: the multidimensional graded re-
sponse (MGR) model. By focusing on ordinal response scales and allowing for multiple latent

Table 2. Tree stability across repetitions in simulation 1.

Ordinal data Numerical data
Perfect Inaccurate split Incorrect Perfect Inaccurate split Incorrect
splits point splits splits point splits
Partykit 42% 48% 10% 76% 14% 10%
Semtree 40% 47% 13% 69% 13% 18%

Table 3. Results of the application of semtree forest for MGR models to the sample of simulation 2.
Subgroups with best model fit are shown. The column label “Freq.” refers to the number of decision trees in
the forest that identified the respective subgroup.

Sim. p-value
Subgrp  Decision rule Freq n RMSEA y’-test
4 Remtree, : = {{cat2 € {3,4}}n{num| <49.88}} 3 49 0 0.592

v Rsemtree, : = {{dichol = 0}N{catl €{1,4,5}}} | 500 O 0.568
X Rsemtrees : = {{dichol = I}N{cat2 € {3,4}}N{num! <49.99}} I 254 0 0.792
X Reemtree, : = {{catl € {I,4,5}}N{num! <49.51}N{cat2€{3,4}}} 4 146 0 0.462
X Remtrees : = {{num1 =53.82}N{catl € {1,4,5}}N{dichol = 0}} 7 373 0011 0402
X Rsemtree, : = {{catl € {I,4,5}}N{numl 249.51}N{dichol = 0}} 2 382 001l 0398
X Reemiree; : = {{catl € {1,4,5}}n{num| <49.98}N{cat2 € {3,4}}} 2 147 0.0l6 04l

X Reemtrees : = {{cat2 € {1,2,5}}N{catl € {1,4,5}}n{dichol =0}} 3 349 0.027 0.198
X Remtree, : = {{catl € {2,3}}N{numl<49.91}N{cat2 € {3,4}}} 4 353 0.028 0.179
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variables, recursive partitioning for MGR models aims to tackle DIF in modeling contexts that are
common in social scientific survey settings. We draw on three different recursive partitioning
algorithms: naive and score-guided semtree (Arnold et al., 2021; Brandmaier et al., 2013) as well
as partykit (Zeileis et al., 2008). As we utilize limited information estimation in building decision
trees, we also propose practicable multi-tree extensions of partykit and semtree for MGR models.
These approaches allow to account for instabilities in the tree growing process while maintaining
computational feasibility.

In simulation 1, we demonstrated that partykit and score-guided semtree can be used to
correctly find subgroups with DIF in MGR models. Comparing the algorithms using data in which
the assumptions underlying ML estimation are compromised (i.e., ordinal response data) versus
data in which these assumptions are not compromised (i.e., numeric response data) showed that
there are not more incorrect splits performed with ordinal data. The results of the simulation study
performed in Supplemental Material S2 support this finding as they indicate that different
strucchange tests used on ordinal data do not perform worse than the same tests used on numeric
data. However, compromising the MGR model assumptions during the tree growing process can
lead to more inaccurate split points, at least for numerical partitioning variables.

The results of simulation 2 showed that a forest of semtrees is computationally more practical
than a forest of partykit trees. The repeated application of semtree ensembles indicated that it is
possible to retrieve subgroups with DIF from data with complex subgroup structures using tailored
tree ensemble approaches. Our simulation also showed that applying such a tree ensemble method
to numeric response data does not lead to better subgroup recovery. This result suggests that an
ensemble method may be able to account for the instabilities of the tree caused by the com-
promised MGR model assumptions during tree growth. Note that in real applications, samples
consist of complex subgroup structures anyway, and tree instability may be present even if the
assumptions of the underlying model are not compromised. We may thus conclude that partykit
and (ensembles of) semtree for MGR models represent useful tools for researchers working with
multidimensional latent variable models and ordinal items in survey data.

Note that in extending recursive partitioning for MGR models to a tree ensemble method, we
do no longer focus exclusively on detecting DIF. We rather consider the possibility that the
assumed model structure underlying the ordinal items does not hold for all subgroups of the
sample. Additionally, we acknowledge that the subgroup structure may be too complex to be
disentangled by a single decision tree. In other words, an ensemble of recursive partitioning trees
for MGR models recognizes that traditional data models, such as MGR models, are often not
complex enough to accurately represent the internal processes of all respondents in deciding
which categories to check off on survey scale items. It is rather likely that the assumption of a fixed
model structure with stable parameters does not hold for every individual in every context. In these
cases, parameter heterogeneity and model fit heterogeneity can be expected.

For this reason, we use a hybrid approach that includes an algorithmic model (random forest)
and a data model (multidimensional GRM). Methods from the algorithmic modeling culture
assume that natural mechanisms that produce data are unknown. Algorithmic models are usually
used as “black boxes” to predict outcomes of such natural mechanisms (Breiman, 2001b, p. 205).
Models from the data modeling culture, on the other hand, are typically restrictive explanatory
models used to estimate parameters that are then used to test causal explanations. Algorithmic
models need to be flexible enough to approximate the data generating mechanism well while also
being robust to changes in the data. This compromise is referred to as the bias-variance trade-off in
the algorithmic modeling literature (Hastie et al., 2009, p. 37). A recursive partitioning ensemble
reduces bias by identifying various decision rules and associated parameter values for which the
assumed model fits. It is these decision rules that lead to conditions under which controlling for
DIF in MGR models actually reduces bias. Variance in tree ensembles for MGR models, on the
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other hand, can be controlled via the minimum size of the subgroups in the terminal nodes. Further
extensions to this end could include the use of bootstrap resampling in tree ensembles for MGR
models.
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Figure 1: PIEG model for three time points ¢ and three items 7. One latent state variable
7; is assumed for each time point. Item 1 serves as reference item so that [,
and (3 are the only latent item effect variables in the model.
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Table 1: Input variances and covariances for simulation 1 (R; to Ry) and simulation 2
(Rl and RQ)

Parameter Subgroup
Ry R, R Ry

Var(m) 027 037 051 047
Var(ns) 027 021 030 028
Var(ns) 027 034 042 024
Var(B) 0.34 049 044  0.39
Var(js) 022 031 039 025

) 0.10 —0.05 0.15 0.26
v(n,n3) 0.06 —0.03 0.11 -0.14

) —0.08 0.12 0.11 0.04
ov(im. Bs) —0.06 —0.09 0.03 —0.33
nhﬁg) 0.07 009 010 —0.17
2, dg) —-0.21 —-0.05 0.03 —-0.10
n2,83) —0.12 —0.03 0.14 —-0.10

B2) 0.06 0.21 —-0.29 0.12
773,/3%) 0.05 012 —0.17  0.04
Bofy) 009 019  0.06 —0.01

ov

C’ov
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Table 2: Input threshold parameters for simulation 1 (R; to Ry4) and simulation 2 (R;
and Ry).

Parameter Subgroup

R, Ry ) R
k111 —0.57 —1.16 -—1.21 0.19
k112 —0.14 —0.53 —-0.58 0.81

Yoo 027 —006 002 1.30
K114 0.73 0.42 0.69 1.89
K121 —1.18 —-0.22 -0.96 -0.01

Yig K129 —0.47 0.49 0.02 0.39
K123 0.07 1.16 0.86 0.72
K124 0.67 1.88 1.72 1.14
k131 —0.65 —143 —-1.83 —1.23

Vi K132 0.14 —-049 -081 —0.68
K133 0.74 0.24 0.01 —-0.19
ko1 —2.02 0.20 —-0.19 0.16

Yo Koz —1.56 0.58 0.33 0.61
Koz —L114 094 074 097
K214 —0.69 1.36 1.24 1.46
Keor  —0.61 —047 —2.25 0.19

Yoy Koo  —0.23 0.14 —1.49 0.75
K293 0.12 0.80 —0.81 1.33
K224 0.58 142 —0.02 1.88
Koz1  —2.29 —1.83 032 —1.34

Yoy Koze  —1.80 —1.26 1.15 —0.76
K233 —-1.39 -0.72 1.93 —-0.35
Koza  —0.96 —0.12 2.83 0.19
k311 —0.46 —0.51 —0.93 0.42

Y K312 0.01 —-0.01 -0.39 0.81
K313 0.42 0.43 0.13 1.20
K314 0.84 0.96 0.68 1.61
K31 —1.45 —1.73 —-0.73 —1.34

Vi k3o  —0.67 —0.75 —-0.26 —0.59
Kaas  —0.05 0.07 0.12 0.15
K324 0.72 1.14 0.58 1.02
k331 —0.67 —1.09 —-1.58 -—1.15

v, Fam 0.04 —021 —1.06 —0.44

33

K333 0.67 0.51 —0.49 0.16
K334 1.33 1.32 0.14 0.81
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Algorithm 1: Naive semtree for MGR models

10

11

12

13

14

15

16
17

Initialization: Assign data to root node
Parameters: minimum sample size in terminal node, p-value threshold

Estimate model parameters in 0 for the sample in the current node using the ML
estimator (template model);

Compute augmented models for all possible split points for all partitioning
variables;
Compute log-likelihood ratio of all augmented models against template model;
Set optimal split point for every partitioning variable;
Perform LR test for every partitioning variable;
if minimum p-value exceeds threshold OR min node size reached then
end partitioning;
else
select partitioning variable with lowest p-value in LR test;
split node into two subnodes at optimal split point;
for each node of current tree do

‘ continue partitioning process;
end
end
for each terminal node do

‘ re-fit models using WLS estimator;
end




B Attached contributions 53

Algorithm 2: partykit for MGR models

Initialization: Assign data to root node
Parameters: minimum sample size in terminal node, p-value threshold

1 Estimate model parameters in @ for the current node using ML estimation;
2 Assess item parameter instability though generalized M-fluctuation test with
respect to each covariate 71, ..., Zg;

3 if minimum p-value exceeds threshold OR min node size reached then

4 end partitioning;

5 else

6 detect covariate Z,» with the strongest instability;

7 select the unique value as split point that maximizes the sum of the

objective functions of the two segmentations;

8 split node into two subnodes at split point;

9 for each node of current tree do

10 ‘ continue partitioning process;

11 end
12 end
13 for each terminal node do

14 ‘ re-fit models using WLS estimator;
15 end
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Algorithm 3: Score-guided semtree for MGR models

10
11
12
13
14
15

Initialization: Assign data to root node
Parameters: minimum sample size in terminal node, p-value threshold

Estimate model parameters in 8 for the current node using ML estimation;

Assess item parameter instability though generalized M-fluctuation test with
respect to each covariate 71, ..., Zg;

if minimum p-value exceeds threshold OR min node size reached then

end partitioning;
else

detect covariate Z,.« with the strongest instability;

select the unique value as split point that maximizes the score-based test
statistic;

split node into two subnodes at split point;
for each node of current tree do

‘ continue partitioning process;

end
end
for each terminal node do

‘ re-fit models using WLS estimator;
end

Algorithm 4: Recursive partitioning forest for MGR models

Parameters: minimum sample size in terminal node, M-fluctuation test p-value
cutoff, number of trees B, partitioning variable subset size, x2-test
p-value or RMSEA cutoff

forb=1 to B do

Grow recursive partitioning tree using partykit or semtree for MGR with
random draws from partitioning variables;

save decision rules and model fit indices for terminal nodes;
end

Select exclusive subgroups with model fit indices that don’t exceed cutoff;
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S2 Performance of the Generalized M-fluctuation
Test with Ordinal Data

We generate multiple samples to test the performance of the generalized M-fluctuation
test with numerical and ordinal data. partykit and semtree use the results of the
generalized M-fluctuation test to decide if the sample should be split into groups. The
results of the test also guide the selection of the partitioning variable Z,.. semtree
even uses the test statistic associated with the M-fluctuation test to determine the split
point. The M-fluctuation test, in turn, draws on the scores of the fitted model. It is
thus crucial for partykit and for semtree that the M-fluctuation test detects parameter
stability correctly, even if parameter estimates derived from ordinal data are based on
model assumptions of a common CFA model for metric items.

We simulate samples with 250, 500, 750 and 1000 observations with numerical response
variables for which a model holds that has the same structure as the outlined PIEG
model. Furthermore, corresponding samples with ordinal response variables are simu-
lated for which the PIEG model is true. The parameters are stable for all simulated
observations, i.e., there is no DIF. All samples are based on the same input parameters
for latent variable variances, latent variable covariances, and mean structure. For the
ordinal data set, 36 input threshold parameters are created instead of input intercepts.
For both types of response variables (numerical and ordinal) and all four sample sizes
(250,500, 750, 1000), we repeat the sampling process 1000 times to compile the final set
of simulated data sets.

Next, the common CFA model for numerical data (with 33 parameters) is fitted using
the ML estimator to all data sets and the generalized M-fluctuation test is applied, using
one random numerical and one random categorical partitioning variable. We use all six
test statistics that are offered in the semtree R-package (Arnold et al., 2021) to compute
the result of the generalized M-fluctuation test. This includes three test statistics for the
numerical covariate and three test statistics for the categorical covariate (see Merkle &
Zeileis, 2013; Merkle et al., 2014). With this setup, we can determine how the generalized

M-fluctuation test performs when the assumptions of a common CFA model are tested
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with data that follows a MGR model, and which test statistics are least susceptible to

this type of misspecification.

Results. The simulation results are shown in Table 3. We calculated the percentage
across all simulated data sets for which the generalized M-fluctuation test is significant
(p-value below 0.05). Because the parameters in the simulated samples are stable, we
denote this number as the dropout rate. Notably, none of the generalized M-fluctuation
tests for models fitted to simulated numerical response variables performed considerably
better than the tests for models fitted to simulated ordinal response variables. Even for
small sample sizes, there is no test statistic that yields larger dropout rates for simulated
ordinal responses. With numeric covariates, the CvM test statistic yields very high
dropout rates of around 50% for both ordinal and numeric response variables. However,
this is due to the fact that critical values of the Cv M statistic are not provided for models
with more than 25 parameters. The best tests statistics for multivariate latent variable
models with a considerable amount of parameters (33 in our simulation) seem to be the
maxLM and DM statistic for numerical covariates (see Merkle & Zeileis, 2013) and the

LM statistic for categorical covariates (see Merkle et al., 2014).
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Table 3: Results of simulation.

The proportion of p-values of the generalized M-

fluctuation test across simulated data sets that are smaller than 0.05 are shown.
The column label ‘numerical’ indicates that numerical response variables were
simulated, the label ‘ordinal’ indicates that ordinal response variables were sim-

ulated.
Numerical covariate
DM CoM maxL M
n numerical ordinal | numerical ordinal | numerical ordinal
250 | 2.3% 2.2% 50.3% 48.2% | 1.9% 2.0%
500 | 3.8% 4.5% 45.3% 46.0% | 4.2% 3.1%
750 | 4.5% 3.6% 46.5% 45.9% | 4.6% 3.1%
1000 | 5.2% 3.5% 49.4% 46.4% | 4.6% 4.1%
Categorical covariate
LM WDM maxLMop
n numerical ordinal | numerical ordinal | numerical ordinal
250 | 3.4% 4.0% 6.4% 4.8% 4.8% 4.0%
500 | 4.6% 4.4% 7.5% 5.0% 5.7% 5.1%
750 | 5.8% 4.9% 5.6% 4.2% 6.2% 4.2%
1000 | 5.0% 3.9% 5.9% 6.3% 5.9% 5.3%
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S3 Model Based Recursive Partitioning for MGR
Models with Full Information Estimation

S3.1 Methodology

For a small number of items with a small number of response categories, there are a
multitude of unique possible response patterns for the individual respondent. A response

pattern y, indicates a sequence of k;, that is

Yr = {k17k27"'7km}' (1)

m

For m items with [; response categories, there are [];

1=

1 l; different response patterns. A
full information approach to estimating the parameters of the MGR model uses all the
information contained in these response patterns (Forero & Maydeu-Olivares, 2009). The
standard full information estimation method for MGR models is the marginal mazimum
likelihood (MML) method that is usually computed via the expectation-maximization
(EM) algorithm (Bock & Aitkin, 1981).

In the MGR model, it is assumed that there is local independence, so that within a
group of respondents with the same values for &, the distributions of item responses are
independent of each other (Samejima, 1997). Therefore, the &-conditional probability of

answering in response pattern y,. is

POV =y |€) =[] P(Yi = i &) @)

For a random subject sampled from a population with a continuous multivariate ability

distribution g(£€), the unconditional probability of answering in response pattern y, is

PY=y) = [~ P(Y =y |€)9(&) d¢. 3)

where [ is a p-dimensional multiple integral. The EM algorithm estimates the probabil-

ity P(Y =y,) at every iteration through numerical approximation of the p-dimensional

10
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integral. A disadvantage of this approach is the considerable amount of computing power
required. The computational burden increases exponentially with an increasing number
of latent variable dimensions (Forero & Maydeu-Olivares, 2009).

The MML method is used to find the best estimates for the item parameters in 19
(see Equation 2) that maximize the probability for all respondents to answer in their
respective response patterns. Maximizing the log likelihood is equivalent to minimizing
the objective function Fy (1) through the EM algorithm. Let n be the sample size
and p, = n,/n be the relative frequency of occurrence of response pattern y,.. In a
sense, the objective function represents the difference between the relative frequency p,
of a certain response pattern y,. and the unconditional probability of answering in that

response pattern, that is

FI\J}WL('l?) = Zpr [hlp,. —In P(Y:yT)]' (4)

The minimalization algorithm generates successive parameter estimations 9™, 9®, ...,
such that

FMMLW(SH)] < FMMLW(S)]' ()

At every other iteration of the minimization algorithm, the gradient of the objective
function is used as the search direction (gradient descent approach). This way, the next
set of parameter estimates can be chosen so that the objective function £y, (9) decreases
(Joreskog & Moustaki, 2006).

When the objective function Fj;,,, is used, the overall model fit can be tested for by
using the test statistic Thrap = 2N Fyarn (). Thus, Tyypyp 18 2N times the minimum value
of the fit function Fj,,,., (). The test statistic T}y, is asymptotically x? distributed with
degrees of freedom equal to the number of different response patterns minus one minus
the number of independent elements of ¥ (Joreskog & Moustaki, 2006). It can then
be used to test the model against the associated saturated model in which all possible
parameters are freely estimated. This way, a test statistic for global model fit is obtained.

Schneider et al. (2021) show that it is possible to perform the generalized M-fluctuation

11
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test for several multidimensional polytomous IRT models that are fitted using MML
estimation. We can thus perform partykit for MGR models while using MML estimation
for growing the decision tree. We call this approach GRM Tree. The steps performed by
GRM Tree are shown in Algorithm 5.

Algorithm 5: partykit for MGR models using MML estimation (GRM Tree)
Initialization: Assign data to root node
Parameters: minimum sample size in terminal node, p-value threshold

1 Estimate model parameters in 1 for the current node using MML estimation;

2 Assess item parameter instability though generalized M-fluctuation test with
respect to each covariate 71, ..., Zg;

3 if minimum p-value exceeds threshold OR min node size reached then

4 end partitioning;

5 else
6 detect covariate Z,.« with the strongest instability;
7 select the unique value as split point that maximizes the sum of the objective
functions of the two segmentations;
8 split node into two subnodes at split point;
9 for each node of current tree do
10 continue partitioning process;
11 end
12 end

S3.2 Simulations

Measurement model. The computational requirements of MML estimation for MGR,
models are particularly high when the model’s latent variables are correlated (Forero &
Maydeu-Olivares, 2009). This is the case for the original measurement model defined in
Section 3.1. In order to apply GRM Tree to the PIEG model, it must be redefined as a
MGR model with orthogonal latent variables. We thus define an orthogonal PIEG model
and fix the covariances of the latent variables at 0 and the variances at 1. Discrimination
parameters are freely estimated.

As in Section 3.1, we consider three reference latent state variables 7, and two latent
item effect variables 3;. The latent variables are derived from three items at three time

points resulting in nine five-category ordinal response variables Y;;. The cumulative

12
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category response function of the orthogonal PIEG model is

P(Y; >k | i, Bi) = @(Name + 0ulBi — Kine)s

Vhk=1,...,4Yi=2..3Yt=1,...3

(6)

In this model, there are 36 free threshold parameters (4 for every five-category item) and

15 free discrimination parameters, resulting in 51 free parameters in total. The model

structure is shown in Figure 2.

(5 . )
012 522 32 2 d13 093 033 73
At A Aig Aoz Aos 32 A3
Azt
Y Y12 Y13 Yoo Yas3 Y31 Y32 Y33
€1 €9 €3 €4 €5 €6 €7 € €9

Figure 2: PIEG model with orthogonal latent variables for three time points t and three
items ¢. One latent state variable 7, is assumed for each time point. Item
1 serves as reference item so that $, and (3 are the only latent item effect
variables in the model. All latent variable variances are fixed at 1.

Simulation Setup. To test GRM Tree, we simulate a sample with a similar subgroup
structure as the sample of simulation 1 in Section 3.2. The only difference with respect
to the subgroup structure is that the numeric partitioning variable numl is replaced by

the categorical partitioning variable cat3. The structure of the entire simulated sample

13
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can be broken down by a single decision tree. The simulated subgroups are defined as

Ry = {{cat3 € {1,3}} n{catl € {1,5}}},
Ry = {{cat3 € {1,3}} Nn{catl € {2,3,4}}},
R3 = {{cat3 € {2,4,5}} Nn{cat2 € {1,2}}},

Ry = {{cat3 € {2,4,5}} N{cat2 € {3,4} }}.

Each subgroup consists of 250 observations, and thus the full sample size is 1000. The
minimum size of the terminal nodes in GRM Tree is set to 100. The outlined changes
in comparison to the setup in Section 3.2 (regarding subgroup structure, sample size,
and minimum terminal node size) were conducted in order to reduce the computational

burden in the application of GRM Tree.

Simulation Results. The results of the GRM Tree application are shown in Figure
3. It becomes apparent that the algorithm does not retrieve the simulated subgroups
correctly. The partitioning variable cat3 is (wrongly) chosen as partitioning variable
at the tree’s inner nodes 2 and 7. This indicates that the results from the generalized
M-fluctuation test may not be as accurate when all threshold parameters are part of the
score function (see Equation 10).

An additional disadvantage of GRM Tree, compared to partykit or score-based SEMTree
for MGR models, is the immense computation cost. The computation GRM Tree for the
simulated sample described above took 450 minutes (7.5 hours) on a processor with a
single core and 170GB RAM. Considering that many limitations were imposed on this
particular simulation to keep computation time low, we may conclude that GRM Tree

proved to be computationally impractical.

14
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cat3
p < 0.001

3 4 2,5
5] 9]
n=171 n=160 cats
= = b < 0.001
5

2

1,4 235
n=119 n=133

Figure 3: Results of the application of GRM Tree to simulated data.
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Abstract

We develop a latent variable forest (LV Forest) algorithm for the estimation of latent
variable scores with one or more latent variables. LV Forest estimates unbiased latent
variable scores based on confirmatory factor analysis (CFA) models with ordinal and/or
numerical response variables. Through parametric model restrictions paired with a
nonparametric tree-based machine learning approach, LV Forest estimates latent vari-
able scores using models that are unbiased with respect to relevant subgroups in the
population. This way, estimated latent variable scores are interpretable with respect
to systematic influences of covariates without being biased by these variables. By
building a tree ensemble, LV Forest takes parameter heterogeneity in latent variable
modeling into account to capture subgroups with both good model fit and stable
parameter estimates. We apply LV Forest to simulated data with heterogeneous
model parameters as well as to real large-scale survey data. VWe show that LV Forest
improves the accuracy of score estimation if parameter heterogeneity is present.

Keywords

differential item functioning, item response theory, machine learning, confirmatory
factor analysis, factor scores

Introduction

The use of psychological questionnaires or tests in research usually involves the
assumption of a latent variable measured by the questionnaire items. Latent variable
modeling provides a versatile toolkit for measuring such latent traits. There are two
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main areas where latent variables, and particularly latent variable scores, are used:
Scaling individuals on a single construct, and estimating latent variable effects in
factor score regression (FSR) (see Devlieger et al., 2016, 2019) applications.

The first purpose of psychometric latent variable modeling, individual assessment
of psychological traits, is a critical component of the cognitive and behavioral
sciences (American Psychological Association [APA], 2014). Individual latent vari-
able scores based on observed responses to items of psychological tests are used for
psychopathological diagnoses as well as assessment of abilities and personality in
occupations and education. However, a major problem is the validity of psychological
tests, especially with respect to social minorities (Reynolds et al., 2021). Generally,
validity means that a variable measures what it is supposed to measure. Evidence
against test validity usually relies on the hypothesis of construct underrepresentation
or construct-irrelevant variance, meaning that a variable measures more or less than it
should (APA, 2014, p. 12).

Providing evidence for validity usually includes taking into account deviating
response behavior in subgroups. Systematic deviations may indicate that the function-
ing of the scale item differs with regard to certain construct-irrelevant variables. This
phenomenon is referred to as measurement noninvariance (Van De Schoot et al.,
2015) or differential item functioning (DIF, Bulut & Suh, 2017), and it is present if
item parameters differ between subgroups. An item identified as exhibiting DIF is
considered biased if the source of variability is irrelevant to the trait being assessed
by the test (i.e., construct-irrelevant). However, because any individual characteristic
could be defined as construct irrelevant, controlling for item bias may cause real
group differences on these variables to be interpreted as bias (see Davies, 2010).

Latent variable scores can be estimated based on item response theory (IRT)
(Hartig & Hohler, 2009; Immekus et al., 2019) or confirmatory factor analysis (CFA)
(Li, 2016) models (Bhaktha & Lechner, 2021). Practically, construct underrepresen-
tation can be tested for through model fit tests of CFA or IRT models (APA, 2014).
Because parameter heterogeneity leads to parameter instability, the assumption of
measurement invariance may be investigated via parameter instability tests (Zeileis
& Hornik, 2007). However, such a parameter test usually requires a hypothesis about
the covariates that negatively affect the parameter stability of a model. In other
words, it requires a priori specification of the subgroups for which DIF is suspected.

In recent years, tree-based machine learning methods have been proposed to
algorithmically control for DIF in unidimensional IRT models (Komboz et al., 2018;
Strobl et al., 2015) through recursive partitioning (Zeileis et al., 2008). Machine
learning methods have also been developed to deal with effect heterogeneity in
experimental and observational studies (Athey et al., 2019; Athey & Imbens, 2016;
Wager & Athey, 2018). As these methods touch on (distinct) aspects of construct
validity, they form the ingredients of our approach that focuses on the estimation of
unbiased latent variable scores.

We propose latent variable forest (LV Forest) for estimating latent variable
scores. LV Forest tackles parameter heterogeneity in latent variable models with
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ordinal and/or numerical response variables by splitting the original data set to reduce
parameter heterogeneity. This way, parameter stability with respect to relevant sub-
groups is established. LV Forest automatically detects relevant subgroups within
which parameters do not differ w.r.t. construct-irrelevant variables. LV Forest outputs
latent variable score estimates from latent variable models with good model fit esti-
mated separately for each relevant subgroup. However, the estimated latent variable
scores may differ between these relevant subgroups. This way, latent variable scores
may be estimated without true-value group differences being misinterpreted as bias.
In psychometric testing, the opportunities and the treatment for examinees as well as
the assessment and interpretation of test scores need to be comparable across all indi-
viduals and groups in a population. For the stages between assessment and interpreta-
tion of test scores this means that construct-irrelevant variables as well as construct
underrepresentation have no systematic effect on latent variable scores (Xi, 2010).
However, relevant subgroups in which this is the case usually have to be defined a
priori. LV Forest overcomes this limitation by automatically creating suggestions for
structures of relevant subgroups. Thus, the proposal of this method fills a gap in test
methodology. LV Forest is based on the SEMTree algorithm to ensure computational
efficiency (Arnold et al., 2021; A. M. Brandmaier et al., 2013).

LV Forest comes with a number of favorable properties that allow to take
complex heterogeneities in the context of latent variable modeling into account. First,
LV Forest uses a data-driven approach for detecting groups that are subject to para-
meter heterogeneity. The researcher only needs to specify a set of construct-irrelevant
partitioning variables for which she suspects differences in model parameters. The
partitioning variables are then used to algorithmically search for subgroups with con-
ditionally stable parameters in a decision tree-like fashion. This approach is particu-
larly valuable in situations in which a priori specification of all relevant subgroups
based on theoretical assumptions may not be feasible and/or is likely to be insuffi-
cient. Second, LV Forest computes multiple decision trees to account for the instabil-
ity of single trees to small changes in the data to detect relevant subgroups robustly.
This approach is inspired by random forests and includes random split selection and
bagging to increase tree diversity (Breiman, 2001a). Third, decision trees in LV
Forest are heavily pruned. This means that subgroups that are subject to parameter
heterogeneity are only selected if the model fits the data and the model parameters
are stable with respect to a prespecified vector of covariates.

When applying LV Forest in practice, the algorithm iteratively learns which sub-
groups in the sample are relevant for estimation and uses these subgroups to repeat-
edly estimate latent variable scores. Thus, LV Forest can be used for latent variable
score estimation especially if the assumed latent variable model does not fit the (full)
data and/or includes parameter estimates that are unstable with respect to construct-
irrelevant covariates. We show that LV Forest estimates accurate scores in complex
settings and outperforms naive and singe tree approaches in simulations.

In section ‘“‘Combining Factor Analytic Modeling and Item Response Theory,”
we describe the methodological background of this paper and how the ideas of IRT
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and Confirmatory Factor Analysis (CFA) can be merged. In section ‘‘Parameter
Heterogeneity,” the issues of parameter heterogeneity are described and the M-fluc-
tuation test is introduced. In section ‘“Tree-based Machine Learning,” we briefly
introduce tree-based machine learning methods and how the algorithmic modeling
perspective can be used to account for heterogeneity. Subsequently, our LV Forest
approach is described (section ““LV Forest’”). In sections ‘‘Simulation’” and ‘‘Real
Data Application,”” simulations as well as an empirical application of LV Forest with
survey data are presented. The advantages and limitations of the proposed method
are discussed in section ‘‘Discussion.”

Latent Variable Modeling and Score Estimation

Stochastic models which specify the relationship between individual responses to
items with a limited amount of response categories and an underlying continuous
latent variable are consolidated under the term IRT. Note that IRT was originally
developed to examine the response process of individuals. Confirmatory factor anal-
ysis (CFA), however, is commonly used to formulate assumptions about items within
a model that is supposed to reflect a common unobservable phenomenon. The ade-
quacy of these assumptions is usually tested for by testing model quality (Bean &
Bowen, 2021). However, modern estimation methods merge the two traditions of
latent variable modeling so that certain variants of CFAs are equivalent to an IRT
model (Kamata & Bauer, 2008; ten Holt et al., 2010). This means that IRT models
may be used for scale evaluation, that is, to determine whether a set of items mea-
sures a latent variable. The advantage of an IRT approach is that it better maps the
response process to ordinal or dichotomous response variables.

Combining Factor Analytic Modeling and Item Response Theory

Usually, in IRT models, a latent variable represents the ability of the respondent.
This ability is assumed to underlie the response behavior (Steyer & Eid, 2013). In
the following, we refer to this latent variable as 7. In the multidimensional GRM
(see Immekus et al., 2019; Samejima, 1969), a multidimensional IRT model (MIRT)
for graded responses which can cover various model structures, several latent vari-
ables are measured by response variables Y; Vi=1, ...,m, with ordered response
categories. The latent variables are comprised in the vector 1. This means that the
probability of answering in a category smaller or equal to a certain ordered category
k; depends on the (multidimensional) distribution of the latent variables. This rela-
tionship is described by the cumulative category response function, that is the
m—conditional probability function:

P(Y; = ki|m)=®(B'm — o). (1)

The link function ® is the distribution function of the standard normal distribution.
The threshold parameter «j may be interpreted as the item-category-specific
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intercept whereas the discrimination parameters B, that make up the pX1 vector B;,
can be interpreted as the slope parameters of the multidimensional probability func-
tion in Equation 1.

It is possible to efficiently estimate MIRT parameters via CFA modeling. This
means that assumptions of an MIRT model can be translated into a special CFA
model and parameters can then be estimated in a computationally efficient manner
that is common in the CFA framework (limited information approach, see Li, 2016).
For this, a continuous, normally distributed latent response variable Y is assumed to
underlie each nonnumerical observed response variable/endogenous variable Y;. The
relation between the latent response variable Y;* and the (multidimensional) distribu-
tion of the latent variables is described by the conditional expectation function:

E(1 In)=B . @

Note that in this model, the discrimination parameters 3;; are equivalent to the fac-
tor loadings in a CFA model. In the factor analytic approach to MIRT modeling, the
latent response variable Y of item i is related to the observed categorical response
variable Y; via a threshold relation, that is

Y=k if aik<yf<ozi(k+1). (3)

Using the factor analytic approach makes it possible to estimate MIRT parameters
through weighed least squares (WLS) estimation (Muthén, 1984). Note that WLS
estimation makes it possible to include numerical and ordinal endogenous variables
within one model. For a numerical response variable Y;, the basic factor analytic
model is

Yi=m+B im+te;, (4)

where 1; is the intercept and €; is the residual variable for item i. The conditional
expectation function E(Y; | 0) is estimated such that the threshold relationship shown
in equation 3 is omitted.

For simplicity, we refer to CFA models with continuous and/or categorical vari-
ables as well as multidimensional GRMs as latent variable models in this paper. In
IRT, the location of an individual on a construct and specific item characteristics are
the only factors that account for a person’s response (Immekus et al., 2019; Reeve &
Fayers, 2005). From this point of view, it is usually desirable to determine the level
of a person in relation to the construct. When using the limited information approach
to parameter estimation of the CFA framework, one has to create scores to represent
each individual’s placement on the latent variable. These latent variable scores are
estimated from fitted models and can be used as dependent or independent variables
in regression analyses (DiStefano et al., 2009).

The latent variable score estimates in 7), however, do not represent a unique solu-
tion to the latent variable 1. For any single factor n in a model, there is an infinite
number of sets of scores that are equally consistent with the model’s parameters. A
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latent variable score estimate may not even have identical rankings on different sets
of factor scores for the same latent variable. Due to this problem, that is referred to
as indeterminacy, one can regard 7) only as an indicator of 7 that contains measure-
ment error (Bollen, 1989, p. 305). Thus, the degree to which latent scores are inter-
pretable highly depends on the degree of indeterminacy.

The indeterminacy of latent variable scores varies widely across different models,
applications and methods for latent variable score estimation. It may depend, for
example, on the degree of commonality between latent variables and response vari-
ables (Grice, 2001). It is suggested by Grice (2001), to examine the correlational
relationship between 7 and ) (referred to as validity) as well as the correlational
accuracy among the scores of all latent variables within the model to evaluate the
degree of indeterminacy of latent variable scores. This could, for example, be done
through simulation studies.

Parameter Heterogeneity

In MIRT models, DIF occurs when an item- or category-specific parameter depends
on covariates of the manifest variables (i.e., response variables). Such covariates
may take the form of characteristics of the individuals responding to the items. For
example, the difficulty of an item may depend on ethnicity, education, or gender.
Conditioning on such covariates is equivalent to analyzing separately certain sub-
groups defined by different values on these covariates. Similarly, in CFA models the
structural parameters determining the relation between latent variables and endogen-
ous variables may differ between subgroups. We refer to between-subgroup differ-
ences of parameters in both MIRT and CFA models as parameter heterogeneity.

Let Z be the vector of covariates (Z;, ..., Zg) that contribute to parameter hetero-
geneity. Let Ry, ..., Ry, be the subgroups for which there is parameter heterogene-
ity and let the subgroups be defined as subsets of the covariate space over Z and let
the model parameters be different across all subgroups. In this case, the association
with a subgroup R, corresponds to the event {Z = R;}. The model parameters in a
subgroup R, are homogeneous.

Controlling for parameter heterogeneity for ordinal dependent variables in latent
variable models can be formalized by assuming m—conditional probability functions
of the category k; on the response variable ¥; given membership to the subgroup R;,
that is

PP (Y > ki) = @By m — o). (5)

Accordingly, for a numeric response variable Y;, the jp—conditional expectation is
assumed to depend on membership to the subgroup R;, that is

B0, | m) =+ By, (6
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If the latent variables are properly defined, the latent variable vector  does not
depend on the covariate vector Z within the subgroups R, V A=1, ..., H in which
the parameters are homogeneous, only the model parameters do. This shows that
parameter heterogeneity is present when the conditional probability of responding to
an item (or the conditional expectation of an item) is different for two individuals
with the same ability, only because of their group membership.

In practice, parameter heterogeneity can be very problematic because the number
of relevant covariates may be very large. Also, there is an even greater amount of
possible values or value ranges of these covariates for which model parameters may
differ. In addition, complex interactions within the covariate vector Z are possible so
that subgroups may only be detected by considering several covariates jointly. If
parameter heterogeneity remains undetected, group differences with respect to the
latent variables could be misinterpreted (Komboz et al., 2018), meaning they may be
due to bias not due to real latent variable score differences.

Systematic parameter instability with regard to a covariate Z, can be tested with
the generalized M-fluctuation test (Zeileis & Hornik, 2007). The test is applicable
for latent variable models that were fitted to a data set via maximum likelihood
(ML). The null hypothesis of the M-fluctuation test is rejected if the empirical fluc-
tuation during parameter estimation is improbably large. To represent the empirical
fluctuation process, the partial derivatives of the individual log-likelihood function
In L(y;,0) are used. For k parameters in the latent variable model, this is given by
the score function:

. (EilnLA(y,,é) 31nL(yJ’é)> vj=1,...,n. (7)

L0)= -
v, 0) 96, 90,

Summing this function across the sample and maximizing the results yields
asymptotically equivalent parameter estimates to limited information maximum like-
lihood estimation in CFA models for metric variables (maximum likelihood estima-
tion, see Lee & Shi, 2021). Thus, in the estimation process, the score function
leads to the parameter estimates 6 via the condition >y w(yi, é) =0. The M-fluc-
tuation test checks for systematic fluctuations of the scores, ordered with regard to a
covariate Z,. If parameter heterogeneity is present, the scores will differ for different
subgroups that are defined as subsets of Z,. Thus, a test statistic is derived from the
scaled cumulative sum of the ordered scores and critical values are obtained from
simulation (Wang et al., 2014). Given multiple covariates Z, € Z, the generalized
M-fluctuation test should be applied for all covariates using a Bonferroni-corrected
a—level.

Tree-based Machine Learning

In section ‘‘Parameter Heterogeneity,”” we introduced the problem of parameter het-
erogeneity in latent variable models. We assume that reducing parameter instability
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by conditioning on a set of covariates Z will lead to several latent variable models
with stable parameters. However, we must assume that the relation between the
model parameters in a latent variable model and the covariates Z could be nonlinear
and that associations may be complex. Thus, we need a method for which no hypoth-
eses or assumptions about the functional form of parameter heterogeneity need to be
prespecified. In other words, we need an exploratory method that is able to resemble
the complex nature of parameter heterogeneity in a latent variable model. For this,
we draw on tree-based machine learning methodology.

Machine learning models are considered parts of the algorithmic modeling cul-
ture. As a counterpart to models from the data modeling culture, algorithmic models
assume that natural mechanisms, which produce data, are unknown. Data models like
latent variable models, however, are stochastic models that are supposed to represent
how response variables are truly associated with latent variables. Most often though,
stochastic models are not complex enough to emulate the true nature of the associa-
tion between latent variables and response variables (Shmueli, 2010).

In contrast, algorithmic models serve the purpose of predicting new or future
observations through flexible modeling with minimal assumptions. Algorithmic mod-
els need to be flexible enough to approximate the data generating function while also
being robust toward changes in the data used to fit the model. This compromise is
referred to as the bias-variance trade-off (Hastie et al., 2009). Algorithmic models
acknowledge the complex and inconceivable ways that nature produces data. They
do not need to be fully interpretable, they rather need to provide accurate information
(Breiman, 2001Db).

Decision trees represent a popular set of nonparametric machine learning methods
that are usually used for prediction of an outcome variable. A predictive model
(referred to as a tree) is built by recursively partitioning the covariate space over Z
into a set of nodes (referred to as leaves) in which the outcome is considered homo-
geneous (Kern et al., 2019).

Score-based structural equation model trees, as presented by Arnold et al. (2021),
combine tree-based machine learning with latent variable modeling. The algorithm
searches through all partitioning variables to find subgroups that differ with respect
to the model parameters. The aim is to find nodes in which the model parameters are
considered homogeneous. For this, the generalized M-fluctuation test with respect to
any of the partitioning variables is performed at every node of the tree. If there is sig-
nificant parameter instability, the node is eventually split at a point on the covariate
with the greatest instability into two locally optimal segments. The split point is iden-
tified as the location on a partitioning variable at which splitting maximizes the
respective score-based test statistic (Arnold et al., 2021, p. 8). As a result, the model
only needs to be fitted once at each node of the decision tree. Thus, score-based
structural equation model trees are computationally efficient methods for parameter
heterogeneity reduction. For simplicity we refer to them as SEMTrees.

For the purpose of iteratively reducing parameter heterogeneity, it is important not
to overfit a decision tree. At first, a minimum sample size within the terminal nodes
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(leaves) of the tree must be established so that parameters for latent variable models
can be properly estimated for the subsamples in the terminal nodes. Then, only splits
that significantly reduce parameter heterogeneity (according to the generalized M-
fluctuation test) should be performed, otherwise spurious parameter heterogeneities
may be induced for the models in the terminal nodes.

A popular extension to single decision trees is random forests. They are purely
predictive methods where the true functional form of the relationship between input
and response variables is assumed to be unknown before the procedure is applied and
the function approximated by random forest is not directly interpretable. The predic-
tions of a random forest, however, are likely to be more accurate than the predictions
of most data models (Fife & D’Onofrio, 2021; Shmueli, 2010). If we acknowledge
that nature produces data in complex and inconceivable ways, the approximation
through a nonstochastic but accurate function by random forest might be preferable
compared with data models.

Random forest methodology can be tailored to serve other purposes. For example,
SEM forests by A. Brandmaier et al. (2016) can be used for selection of variables that
predict differences across individuals w.r.t. parameters in Structural Equation Models
(SEMs). The method can also be used for outlier detection and clustering. Another
method that extends Breiman’s random forest algorithm is the causal forest approach
(see also Athey et al., 2019; Athey & Imbens, 2016; Wager & Athey, 2018) that is
used for the estimation of individual treatment effects. Given such tailored exten-
sions, tree-based machine learning methods are being applied more commonly in the
social science and survey research context (Buskirk, 2018; Kern et al., 2019).

LV Forest

We develop a tree-based algorithm for latent variable score estimation: LV Forest.
The proposed algorithm is outlined in Figure 1. We begin our considerations with the
assumption that the parameters of the proposed latent variable model are not equal
for all participants in the population. Parameter heterogeneity in the latent variable
model may imply unintended influence of construct-irrelevant variables on the rela-
tions within the model. Furthermore, we presume that the proposed latent variable
model does not fit the data equally well for all subgroups of the population. With the
proposed algorithm, we aim to detect subgroups relevant to bias in estimated latent
variable scores, and only latent variable models that fulfill conditional independence
from construct-irrelevant variables as well as achieve adequate model fit are chosen
for latent variable score estimation. This way, we establish both unbiasedness with
respect to construct-irrelevant variables in latent variable score estimation and latent
variable scores are not estimated with an underrepresented model. We combine the
limited-information approach for parameter estimation (section ‘‘Combining Factor
Analytic Modeling and Item Response Theory’’) and the SEMTree algorithm (section
“Tree-based Machine Learning’’) to efficiently compute an ensemble of decision
trees, in which each tree reduces parameter instability. We then prune the resulting
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Figure |. Univariate GRM Model.
Item | serves as reference item so that A, is fixed to |.

trees to detect subgroups in which the model fits the data and the parameter estima-
tions are stable. Note that we do assume that the proposed latent variable model ful-
fills the criteria for latent variable score determinacy (Grice, 2001, section ‘‘Latent
Variable Modeling and Score Estimation”’).

First, an SEMTree (section ‘‘Tree-based Machine Learning’’) is grown. Note that
for the computation of ¢, which is necessary for the generalized M-fluctuation test
(see section ‘‘Parameter Heterogeneity’’), we need to fit the model with the maxi-
mum likelihood (ML) estimator. We then re-assess parameter instability for all
construct-irrelevant variables Z, ...,Zg using the M-fluctuation test. Second, the
latent variable model is re-fit in each terminal node of the tree. The parameter and
model fit estimates in the terminal nodes of the decision tree are calculated using the
distribution free weighted least squares (WLS) estimator. Using only the models in
the terminal nodes of the tree that fulfill the criteria for model fit and stability of
parameter estimates, latent variable scores are then computed via empirical Bayes
estimation. For the computation of these Empirical Bayes Modal (EBM) scores,
information about response patterns and model parameters are combined with a prior
distribution to obtain a posterior distribution. This method is still appropriate if there
are categorical or ordinal response variables and it has performed well in simulations
(Bhaktha & Lechner, 2021).
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Algorithm 1: LV Forest

Parameters: minimum sample size in terminal node, RMSEA-cutoff, number of trees in
ensemble, number of partitioning variables to sample at each node

I do

2 fit model for current sample with ML estimator;

3 randomly sample set of partitioning variables;

4 assess item parameter instability though generalized M-fluctuation test with

respect to each selected partitioning variable;

5 if parameters are instable AND stopping criteria are not met then

6 detect covariate Z,- with the strongest instability;

7 select unique value as split point that maximizes the score-based test statistic;
8 split node into two subnodes at split point;

9 frr each node of current tree do

10 continue partitioning process;

11 end

12 | end

13 | else

14 | stop splitting;

15| end

16 | for each terminal node do

17 re-assess parameter instability w.r.t. each covariate Z|, ..., Zx (all partitioning
variables considered);

18 re-fit model for subgroup in terminal node with the WLS estimator;

19 if minimum RMSEA-cutoff exceeds AND parameters are stable then

20 | estimate latent variable scores for subgroup in terminal node;

21 end

22 | end

23 while number of iteration < number of trees in ensemble;

We might say that the decision trees in the ensemble are heavily “‘pruned,”” leav-
ing only those leaves that are most likely to contain models that are adequate for
latent variable score estimation. Specifically, this means that, we exclude terminal
nodes for which (a) the proposed model does not fit the data, and (2) the model’s
parameters are instable w.r.t. the covariates. For (a), an RMSEA-cutoff value is
defined (Hu & Bentler, 1999; Schermelleh-Engel et al., 2003) and all models that
exceed this cutoff are excluded. For (b), the generalized M-fluctuation test for para-
meter instability (Zeileis & Hornik, 2007) is performed. Classe and Kern (2024)
show that the performance of the generalized M-fluctuation test for ordinal data is as
good as for metric data and thus can be used for ML-based models.

We learn from the machine learning literature that a single decision tree may be
vulnerable to small changes in the training data and the set of partitioning variables
(Breiman, 2001a). For the most part, this is a consequence of the hierarchical nature
of the decision tree (A. Brandmaier et al., 2016; Kern et al., 2019). In addition, if an
SEMTree is grown with ordinal data this can lead to inaccuracies in the partitioning
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process because the ML estimator is used for the computation of the fitted model
scores (section ‘‘Parameter Heterogeneity’’) at the beginning of the tree growing pro-
cess. For parameter estimation via maximum likelihood, the dependent variables are
assumed to be normally distributed. This assumption rarely holds for ordinal data
(Li, 2016). We account for the problem of unstable and potentially inaccurate trees
by computing several structurally different decision trees and evaluating the com-
piled results of this ensemble of trees. We use random split selection together with
bootstrap aggregating (bagging) to ensure that the decision trees in the ensemble are
structurally different from each other. For random split selection, random selections
of partitioning variables are made. The selection of partitioning variables is redrawn
at every node in a decision tree. The researcher can specify the number of partition-
ing variables that are drawn at each node and thus determine the variability between
trees. Bagging means that subsamples are randomly drawn from the full data to grow
an individual decision tree. This process is repeated to build an ensemble of multiple
trees.

After computing all trees in the ensemble, the estimated latent variable scores are
accumulated for each individual over all relevant subgroups in the tree ensemble.
This means that across all relevant subgroups found by the algorithm that contain
individual 7, the scores are averaged.

For the application of LV Forest, the R function 1vforest was written. In sum-
mary, it computes an ensemble of SEMTrees, automatically estimates latent variable
scores and tests them for independence of potential construct-irrelevant variables.
The R implementation of the proposed method and replication materials for all simu-
lations are provided in the following OSF repository: https://osf.io/gs562/?view_
only=c5c715e8e1594445884bb5aldec27406.

Simulation
Setup

We test the performance of LV Forest with simulated data. We carried out three
simulations. For Simulation 1, the data are simulated based on a simple univariate
latent GRM model, that is

P(Yl Z ki|n):q)(/\i7]_’<ik)a (8)
Vk=1,...,6, Yi=1,...,5.

In this model, the variance and mean of the latent variable are estimated. The dis-
crimination parameter pertaining to item 1 (i.e., A;) is fixed at 1. Also, the first thresh-
old parameter pertaining to the first item «;; is fixed at 1. We simulated five items
with seven response categories each, thus there are six threshold parameters «;; for
each response variable. The model is shown in Figure 1.

The data set used in Simulation 1 consist of 10 model-compliant subsamples
(Ry Vh=1, ...,10), each with 500 data points. To simulate model-compliant data,
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first, true latent variable scores 7) were simulated. Furthermore, values of the condi-
tional probabilities P(Y; > k; | 1) were computed for all categories of all items. On
the basis of these conditional probabilities, values for five ordinal response variables
with seven categories each were sampled.

In addition, for each of the simulated subsamples, we created one numerical cov-
ariate (numy,) ranging from 1 to 200, one ordinal (ord),) and one categorical (caty)
covariate with scores on a 5-point scale. These covariates serve as partitioning vari-
ables. For each subsample, the range of values on all partitioning variables were
fixed, such that

Ry :={numy;, <50} N{caty € {1,3,5}} N{ord, > 4} N
{ord;; <3V i€ Ry={numy <50} N{caty € {1,3,5}}},
Vihs=1,...,10,5 % h.

This means that the values on num;, caty, and ord), are only fixed for those individ-
uals that belong to subgroup R; except of those individuals i belonging to any other
subgroup R, and happen to fall within the range of values of num;, N caty, to which Ry,
is fixed. Those individuals are fixed w.r.t. cat;. This way, given a complete simulated
data set, the model-compliant subsamples are recoverable in the terminal nodes of the
decision trees of a tree ensemble. It is, however, not possible to recover all model-
compliant subsamples in a single decision tree. In simulating the data this way, we
want to mimic the complex data structure produced by natural mechanisms.

All input model parameters that were used to simulate the data differ between all
subgroups R;, (see Tables 1 and 2). This way, overall parameter instability between
the model-compliant partitions of the simulated data set is simulated. The simulation
is set up such that the model (see Equation 8) fits the model-compliant subgroups

very well (see Table 2).
We apply LV Forest to the simulated data set and compute a forest of 10000 deci-
sion trees. All covariates (numy,caty,ord, ¥ 1, ...,10) are included as partitioning

variables. The minimum sample size of the terminal nodes of the trees is set to 200,
random split selection is set to 2. We set the model fit cutoff to a RMSEA value of
0.05 to make sure that only the decision rules for well-fitted models are considered
when estimating latent variable scores.

Latent variable score estimation accuracy is evaluated by comparing the true simu-
lated latent variable scores 7) to latent variable score estimates based on different
methods: one fitted model for the entire data set, that is, the naive model (1),,4,.), a
single SEMTree, that is, one fitted model for each terminal node of the single tree
(Nsermrree)s LV Forest (1 yporest)» and distinct models for the simulated subgroups,
that is, 10 separately fitted latent variable models (75 mogess)- INOte that latent vari-
able score estimation using models fitted on the simulated subgroups individually is
not possible in practice as usually the subgroups that are subject to parameter hetero-
geneity are unknown.
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Table 2. Model Fit Indicators and Input Discrimination Parameters of Simulated Data Sets.

x>  p-value RMSEA  Var(n) E(7) Al Az A3 A4 As

R, 0.116 0.039 066 099 fixedtol 067 057 080 147
R, 0.508 0.000 067 095 080 058 136 089
R3 0.641 0.000 1.13 1.21 120 048 037 1.17
R4 0.178 0.032 068 077 .12 112 066 097
Rs 0.390 0.009 054  0.80 .51 050 154 133
Re 0.715 0.000 1.04 1.76 039 090 100 .19
R; 0.285 0.022 .15 1.67 146 039 123 1.2l
Rs 0.900 0.000 0.68 1.21 157 146 052 136
Ry 0.122 0.038 0.54 1.03 040 144 132 151
Ro 0513 0.000 0.70 1.25 074 130 121 150

For Simulation 2, we simulated 100 data sets in a simplified form of the proce-
dure described above. We simulated data based on an univariate IRT model with
eight items with five categories each (instead of five items with seven categories like
in Simulation 1). Furthermore, each of the simulated data sets consist of three
model-compliant subsamples for each of which one ordinal (ord)) and one numerical
(numy,) partitioning variable were created. Each of the simulated subgroups consists
of 500 data points so the full data set size is n=1500 (instead of n=5000 in
Simulation 1). The range of values on these partitioning variables is fixed, such that

Ry, :={numh < 50} N {Ordh > 4} N {OVdis <3Vie Rs={numh < 50}}7
Vhs=1,...,3,5 #h.

Thus, the model-compliant subsamples are recoverable in the terminal nodes of
several decision trees, but not in the terminal nodes of a single decision tree. In
Simulation 2, we reduce the number of partitioning variables per simulated data set
to six (instead of 30 in Simulation 1).

We apply LV Forest to each of the simulated data sets using the same hyperpara-
meters as in Simulation 1, except that we compute 20 trees per ensemble (instead of
10,000 in Simulation 1). Furthermore, we apply LV Forest to each of the simulated
data sets and randomly select 5 out of the 6 relevant partitioning variables to be gen-
erally available for the computation of the ensemble. This way, we want to find out
how the absence of relevant partitioning variables affects latent variable score estima-
tion with LV Forest. Note that this is not random split selection, but it is a simulation
scenario in which not all relevant partitioning variables can be used by the algorithm.
We also apply a single SEMTree to each of the simulated data sets, fit a separate
model for each of the terminal nodes and estimate latent variable scores using these
fitted models.
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The accuracy of the latent variable score estimations are evaluated by comparing
the true simulated latent variable scores 7 to five kinds of latent variable score esti-
mates based on: a naive model (1),,,.), a single decision tree (fggpsrree), an LV
Forest with absence of one relevant partitioning variable ()4, 1 yFores)> a0 LV Forest
including all relevant partitioning variables (), yppes)> @nd three distinct models
fitted on each of the subgroups (7). moders)- 10 addition, we evaluate the nonconver-
gence rate of each of the five estimation methods on each of the simulated data sets.
The nonconvergence rate describes the relative frequency of individuals in a sample
for which latent variable score estimation was not possible, for example, because the
model fitting process did not converge. Note that in an LV Forest, ‘“nonconver-
gence’’ of latent variable score estimation for individual i means that i is not part of
any relevant subgroup found by the forest and thus scores are not estimated.

For Simulation 3, we simulated one data set in a similar way as in Simulation 1,
but now the full data set is simulated using a single set of parameters. We simulated
the data to fit a univariate model with five response variables with seven response
categories each. We simulate three covariates (num, caty, ord;) with random values.
We apply LV Forest to this data set and compute a forest of 10 decision trees. All
covariates are included as partitioning variables. The hyperparameters are set to the
same values as in Simulation 1.

Results

The application of LV Forest with the simulated data resulted in a tree ensemble in
which 425 out of 10,000 decision trees included at least one terminal node in which
the assumed model fits well and the model parameters are stable w.r.t. the partition-
ing variables. Overall, there are 439 terminal nodes in which these two conditions
apply. These terminal nodes remained for the estimation of latent variable scores for
the whole sample. On a 20 core, 170GB RAM server, LV Forest took 5.89 hours
(353.5 minutes) of computation time.

The estimation of the single SEMTree with the simulated data of Simulation 1
took 5.01 minutes on a 20-core, 170GB RAM server. The tree structure is shown in
Figure 2. It is obvious that the single SEMTree did not reproduce the simulated sub-
group structure. The RMSEA values of the models in the 16 terminal node range
from 0.02 to 0.18 but only two of the models have a RMSEA lower than 0.05.

To estimate the naive latent variable scores 1,,,;,., we fit the model in Equation 8
to the whole data set. As suspected, the naive model does not fit the entire data set
well (RMSEA=.090, 95% C.I.=.080 — .101). The RMSEA values of the distinct
subgroups in the data set range from 0.00 to 0.04.

The correlation matrix of the four sets of latent variable score estimates and the
true simulated latent variable scores are shown in Table 3. We used Spearman’s rank
correlation coefficient because the latent variable score estimations may not follow a
normal distribution. The accuracy of latent variable score estimations, that is, the
correlations with the simulated latent variable scores 1), are highlighted. The
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Table 3. Correlations of Estimated Latent Variable Scores From Simulation |.

7.7 ﬁdistmodels 7A’]LVForest ﬁSEMTree ﬁnaive
7 1.000
ﬁdist.models 0.830 1.000
AuvForest 0.816 0.986 1.000
A SEMTree 0.761 0.922 0.950 1.000
Mhnaive 0.728 0.899 0.936 0.940 1.000

correlation of % with 7,,,,,, (Row 2) is lower than the correlations of 7)gz1/7,. (tOW 4)
and ﬁLVForest (ROW 3) with 77 The correlations of ﬁdist.models (I'OW 2) and ﬁLVForest
(Row 3) with 7 are very similar and noticeably different from the correlations with
Nsemrree AN M0 With 7). This suggests that latent variable scores estimated by LV
Forest may be more accurate than latent variable scores estimated by a single model
fitted to the entire data set when there is substantial parameter heterogeneity in the
sample. Also, if there is a complex subgroup structure underlying the data, latent
variable scores estimated by LV Forest may be more accurate than those estimated
by a single SEMTree. Note, however, that the accuracy of latent variable scores
depends on the degree of score indeterminacy (see section ‘‘Latent Variable
Modeling and Score Estimation”). It is still possible that latent variable scores esti-
mated on the basis of a model that fits the data and has stable parameters are
inaccurate.

The results of Simulation 2 in terms of accuracy are shown in Figure 3a and the
results in terms of nonconvergence are shown in Figure 3b. The application of the
different latent variable score estimation methods on 100 simulated data sets shows
that the accuracy of latent variable score estimation based on a naive model (7,4.)
is, on average, lower than the accuracy of the other methods. In terms of nonconver-
gence, the naive model did not estimate latent variable scores on one data set. The
SEMTree algorithm did not converge on 4 data sets such that no latent variable score
estimations were made. For 27 data sets, the nonconvergence rate is larger than 10%
as individual models in the terminal nodes did not converge. For 6 data sets, the accu-
racy of the latent variable scores Mgz 18 lower than 0.5. The accuracy of 9 et
and 1) modess 15, ON average, higher than the accuracy of 7)gzy/7..- Also, there are no
outliers with accuracy lower than 0.5 for 1) yryes- Overall, 1) gy S€€mSs to be very
similar to ) moders 1N terms of accuracy. However, the analysis of the nonconver-
gence rates show that there are 17 data sets for which the nonconvergence rate of LV
Forest is larger than 10%. Note that if all relevant partitioning variables are included,
nonconvergence can be reduced to 0% if more than 20 trees are computed in an
ensemble. The analysis of 1, 1 yrores Indicates that the high accuracy of LV Forest
is not affected if not all partitioning variables are available. However, 95 of 100 data
sets exhibit a nonconvergence rate of more than 10% and 30 data sets exhibit a non-
convergence rate of over 50%. This indicates that when using LV Forest, the lack of
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Figure 3. Results of Simulation 2.

Latent variable score estimation for 100 data sets based on five different methods. The five methods
estimate 7),q,. (naive model), Tsempee (SEMTree), Typpe (LV Forest), T vrorese (LV Forest with
incomplete partitioning variables), and 74, moders (distinct models).
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Table 4. Life Satisfaction Scale Items as Asked in the LISS Panel.

Text: Below are five statements with which you may agree or disagree. Using the |7 scale
below, indicate your agreement with each item by placing the appropriate number on the line
preceding that item. Please be open and honest in your responding.

Item Wording

In most ways my life is close to my ideal

The conditions of my life are excellent

| am satisfied with my life

So far | have gotten the important things | want in life

If | could live my life over, | would change almost nothing

| T [ |
UVhAhWN —

relevant partitioning variables does not affect the accuracy of the estimated scores,
but it does affect the convergence rate and thus the coverage of the scores that are
estimated.

Over all 100 samples, the mean computation time of a single SEMTree was 15.17
seconds. The mean computation time of LV Forest was 37.86 seconds. Note that the
computations were executed on a 20 core, 170GB RAM server and the trees were
computed in parallel.

The results of Simulation 3 show that no splits were performed in any of the 10
LV Forest trees. Thus, in the absence of parameter heterogeneity, the scores estimated
by LV Forest are equal to the scores of the naive model.

Real Data Application

We demonstrate the application of LV Forest using data obtained from the LISS
(Longitudinal Internet studies for the Social Sciences) panel administered by
Centerdata (Tilburg University, The Netherlands). LISS is a comprehensive longitu-
dinal survey conducted annually, encompassing a wide range of topics such as
employment, education, income, housing and personality traits (Scherpenzeel, 2018).
For this application, we analyze the data from the first survey wave in 2008. In this
wave, 8,722 household members were contacted and 6808 individuals responded.
We focus on five items from the satisfaction with life scale (Diener et al., 1985) mea-
suring life satisfaction. We excluded all cases that did not respond on all of the five
items which leads to a final sample of n=6626. The items were rated on a 7-point
Likert-type scale. The wording of the items is shown in Table 4.

We analyze the data using the same univariate GRM model structure that
Simulation 1 is based on (see Equation 8 and Figure 1). First we fit such a model to
the whole data set and refer to it as the naive model. We then we apply LV Forest.

For the application of LV Forest, we choose 11 background variables representing
the construct-irrelevant variables for our latent variable model. These variables
describe the general characteristics of households and household members that
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participate in the LISS panel. They encode characteristics on the individual level
(such as gender, age or civil status) as well as on the household level (such as house-
hold income, domestic situation or type of dwelling). The variables are shown in
Table 5. We apply LV Forest to the data set using these background variables as par-
titioning variables and compute an ensemble of 1,000 trees. To reduce computation
time and to ensure that LV Forest outputs a manageable number of relevant sub-
groups w.r.t. post hoc analysis, we set the cutoff RMSEA value to .03. Minimum ter-
minal node size is set to 200 and random split selection to 2.

As a sensitivity check, we additionally apply LV Forest with the same data but dif-
ferent partitioning variables. We apply an ensemble with the same hyperparameters
as described above while using only the first six variables in Table 5 (geslacht to
woonvorm) as partitioning variables.

To illustrate the conditional independence of the estimated latent variable scores,
we perform post hoc tests for independence between the estimated latent variable
scores and the construct-irrelevant variables within the subgroups found by LV
Forest. For this, we apply a test based on the d-variable Hilbert Schmidt indepen-
dence criterion (Pfister et al., 2018). With this kernel-based nonparametric test, we
test for stochastic independence (instead of e.g., linear independence).

As the estimated latent variable scores are accumulated for each individual over
all relevant subgroups, the resulting latent variable scores are not expected to be inde-
pendent of construct-irrelevant partitioning variables for the full sample. Within the
relevant subgroups, however, the latent variable scores are expected to be indepen-
dent of construct-irrelevant variables. Thus, any overall effects of background vari-
ables on latent variable scores imply real differences between the relevant subgroups.
To analyze such effects on the latent variable scores, we apply regression models
using the 11 background variables as individual predictors. We do this for three dif-
ferent outcome variables: the LV Forest scores using all partitioning variables, the
LV Forest scores using only a subset of partitioning variables and the latent variable
scores estimated with the naive model.

We fit the naive model using the WLS estimator (see Section ‘‘Combining Factor
Analytic Modeling and Item Response Theory’’). The model does not fit the data well
(RMSEA=.122, C.I1.(95%)=.113 — .131).

In the LV Forest ensemble, 15 trees (1.5% of the ensemble) each generated one
terminal node that contained a subsample for which the univariate GRM model fits
the data and all parameter estimates are stable w.r.t. all 11 background variables.
The model fit indices for all subgroups are shown in Table 6. For these relevant sub-
groups, latent variable scores were estimated, such that score estimates were avail-
able for n=2631 individuals (39.7% of the entire sample). On a 20-core, 170GB
RAM server, LV Forest took 32 minutes of computation time. For the LV Forest
application with only 6 partitioning variables, score estimates were available for
n=1310 individuals. The results of independence tests within the subgroups found
by LV Forest using the full set of partitioning variables are shown in Table 7. There
is only one construct-irrelevant variable (partner) in subgroup Ry that is likely to
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be stochastically dependent on the estimated latent variable scores of Rg. This is the
case although the parameter estimates of the fitted model used for latent variable
score estimations are stable w.r.t. all construct-irrelevant variables. This result may
be due to latent variable score indeterminacy. The results of the other tests indicate
that parameter stability of well-fitting models w.r.t. construct-irrelevant partitioning
variables generally leads to latent variable scores that are independent of construct-
irrelevant partitioning variables given the affiliation to a relevant subgroup. We con-
clude that these relevant subgroups are found by LV Forest.

We analyzed the effect of the background variables on the different latent variable
score estimations (naive model vs. LV Forest vs. LV Forest with subset of partition-
ing variables). The results are shown in Table 8. The regression coefficients for the
scores of the LV Forest with all partitioning variables indicate a linear effect of two
variables (partnership status and domestic situation). For these same variables, the
regression coefficients for the scores of the reduced LV Forest show a significant
effect. Also, the Spearman’s correlation of the scores of the L'V Forest with all parti-
tioning variables and the scores of the reduced LV Forest is 0.99. In contrast, the
coefficients for the naive scores additionally show significant effects of four other
variables (civil status, age, gender, or urban character of dwelling). This indicates
that the effect of partnership status and domestic situation on life satisfaction may
not be due to bias. The effect of civil status, age, gender or urban character of dwell-
ing, however, may be due to bias w.r.t. the background variables.

Discussion

In this study, we proposed LV Forest, an algorithmic approach to latent variable
score estimation. We focused on a setting in which a naive latent variable model is
subject to parameter heterogeneity. In this case, fitting a latent variable model and
estimating latent variable scores on the basis of this model can lead to false conclu-
sions. The proposed latent variable model may, however, not violate measurement
invariance within subgroups that can be defined by covariates. Since tree-based
methods have successfully been applied to account for DIF (Komboz et al., 2018;
Strobl et al., 2015), we utilized the algorithmic machine learning perspective for han-
dling complex subgroup structures in the context of latent variable score estimation.
Assuming that the latent variable scores of a proposed model are determinate (sec-
tion “‘Latent Variable Modeling and Score Estimation’”), we argue that scores should
only be estimated if the latent variable in the proposed model is not underrepresented
and independent from construct-irrelevant variables. Construct-irrelevant variables
may have an effect on latent variable scores estimated using LV Forest. However,
this effect may not be due to bias but due to real differences w.r.t. the latent variable
scores between relevant subgroups. We build on the growing body of research that
utilizes techniques from the field of machine learning to flexibilize stochastic models
when they are confronted with complex covariate structures.
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Table 8. Regression Coefficients of Covariates on Latent Variable Scores in the Real Data
Application.

Naive model LV Forest w. all part. vars LV Forest w. subset of part. vars

Geslacht 0.07* 0.05 0.00
Partner 0.42* 0.14* 0.20*
Burgstat —0.63* —0.47 —0.15
Woning 0.54 0.33 —0.12
Sted 0.07* 0.03 —0.03
woonvorm 0.41* 0.11* 0.21*
Aantalhh 0.09 —0.40 —041
Aantalki —0.04 —0.46 —0.48
Lftdcat 0.07* —0.02 0.06
Oplzon —0.08 —0.13 —0.07
Nettocat 0.19 0.16 0.67
N 6626 2631 1310

The LV Forest with a subset of partitioning variables uses the partitioning variables geslacht to
woonvorm.

In psychological assessment, bias refers to systematically under- or overestimat-
ing personality traits or abilities. Especially cultural bias has been a polarizing issue
for many years. The controversy lies in the explanations given for the measured sys-
tematic differences in traits and abilities between specific subgroups. Are they based
on an interaction of genes and environment (i.e., genuinely different ability levels in
different groups) or on different cognitive structures requiring different test charac-
teristics, that is, test bias (see Reynolds et al., 2021). According to Bollen (1989),
causality, and therefore validity, is only possible if there are no systematic differ-
ences in a latent ability or trait with respect to variables outside of the latent variable
model. Thus, if systematic differences between groups are not part of the assumed
model, they are attributable to test bias. This way, no real differences of the latent
variable scores w.r.t. construct-irrelevant variables are interpretable. As virtually all
individual characteristics can be such construct-irrelevant variables, this notion is
problematic (see, e.g., Davies, 2010). We propose a solution to this problem by pro-
posing a method to estimate latent variables scores whose subgroup differences w.r.t.
construct-irrelevant variables are estimable and interpretable.

Latent variable scores estimated using LV Forest are also very useful when it
comes to complex SEMs that include measurement paths between latent variables. In
these models, spurious relations or suppressor relations from response variables to
latent variables are likely to occur (Bollen, 1989, pp. 51-53). These unmodelled rela-
tions distort the other parameters in the model. Therefore, the estimation of effects
between two latent variables should rather be performed via FSR (Devlieger et al.,
2019) with LV Forest being used for latent variable score estimation.

We applied LV Forest to simulated data to test whether the method is suitable for
finding simulated subgroups based on fitting IRT models with stable parameters. The
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results show that the method works well for an univariate GRM model. We also show
that latent variable score accuracy depends, to some degree, on model fit and para-
meter stability of a latent variable model. Furthermore, we show that latent variable
score estimation via a single SEMTree does not perform as good as LV Forest if the
subgroup structure behind the sample cannot be recovered by a single tree. Another
advantage of LV Forest is that a 0% convergence rate is very unlikely. However, non-
convergence rates are likely to be larger for LV Forest compared with a naive model.
However, if there are not many partitioning variables in the data and/or if the data set
is not very large, one might prefer using a single SEMTree over LV Forest to estimate
latent variable scores.

Furthermore, we applied LV Forest to real data from a large-scale survey. We ana-
lyzed five items measuring satisfaction with life and used background variables to
recursively partition the sample. As a result, latent variable scores were estimated for
40% of the sample. When the number of partitioning variables was reduced, scores
were only estimated for 20% of the sample. This shows that LV Forest may be lim-
ited when it comes to exhaustively estimating latent variable scores for the entire
sample. In reality, there may always be individuals for which the proposed latent
variable model does not apply and relevant partitioning variables are not measured.
Our simulations, however, suggest that the accuracy of LV Forest scores is still high,
even given considerable nonconvergence. When this is the case, the researcher may
increase the RMSEA-cutoff to reduce the nonconvergence rate, but potentially com-
promise on latent variable score accuracy.

The fact that the estimated latent variable scores were predominantly
Rj,—conditionally independent from all construct-irrelevant variables in the real data
application shows that controlling for DIF w.r.t. construct-irrelevant variables leads
to latent variable scores with no systematic effects regarding construct-irrelevant
variables within relevant subgroups. That is, within these subgroups, all covariance
from construct-irrelevant variables is interpreted as bias. Between those subgroups,
there may be systematic differences regarding construct-irrelevant variables. These
differences can be smaller when fewer partitioning variables and a stricter RMSEA-
cutoff are used, that is, when fewer relevant subgroups are found. LV Forest esti-
mates latent variable scores that can be interpreted w.r.t. systematic effects of
construct-irrelevant variables without inducing bias.

Comparison to Related Methods

Another tree-based machine learning approach to identify and account for parameter
heterogeneity, which is also applicable to different types of latent variable models, is
called Model Based Recursive Partitioning (MOB) (Zeileis et al., 2008). MOB is
designed to grow single trees that avoid overfitting and bias. The MOB algorithm
applies the M-fluctuation test (see section ‘‘Combining Factor Analytic Modeling
and Item Response Theory’’) at every node of the tree. Splitting is only performed if
parameter heterogeneity is significant with regard to at least one covariate. The
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covariate with the lowest p-value is selected for splitting. However, splitting is per-
formed in such a way that the sum of the log-likelihood of the two resulting models is
maximized. Thus, as many models have to be fit as there are possible split points on a
variable chosen for splitting. This is computationally more expensive than score-
based SEMTree.

Limitations

In the LV Forest framework, we focus on latent variable models that may be subject
to parameter heterogeneity. Simultaneously, we claim that we only use models with
Rj—conditionally unbiased measurement paths for latent variable score estimation.
For this, we test for parameter homogeneity using the M-based fluctuation test.
However, it is controversial to rely on this test too much if ordinal response variables
are used because ML estimation is necessary for the computation of the test. If cate-
gorical response variables are used, the assumption of normality of the response vari-
ables may be violated. However, ordinal response variables are relevant for many
applications and (Classe & Kern, 2024) showed that the results of the M-fluctuation
test can be reliable for ordinal response variables.

Practical limitations stem from the fact that it is impossible in many cases to mea-
sure all construct-irrelevant variables that may confound the measurement paths of a
presumed model. The scores estimated by LV Forest should be interpreted with
regard to the fact that there may still be potential construct-irrelevant variables that
were not collected in the study. The simulation showed that the absence of relevant
partitioning variables may lead to nonconvergence score estimation for individuals
in the sample. Thus, if not all relevant partitioning variables are measured, it may
not be possible to estimate unbiased scores for every individual in the sample. We
additionally note that large samples sizes are needed for LV Forest to be efficient.
The sample needs to be large enough that sample sizes in terminal nodes in complex
trees are sufficient to estimate model parameters, as well as to accurately perform
M-fluctuation tests. The simulation also showed that if the subgroup structure of a
sample is complex, many trees and therefore long computation times are needed. In
practice, if an assumed model does not fit the data and/or has unstable parameters it
may be viable for the researcher to adjust the model assumptions before turning to
LV Forest. We also acknowledge that LV Forest does not return an inherently inter-
pretable model function. Like random forests, LV Forest allows to model highly
complex structures of subgroups. However, a direct interpretation of the composition
of these subgroups would lead to results that are unlikely to be generally applicable.
Our proposed method therefore explicitly focuses on the estimation of latent variable
scores.
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Abstract

We present a novel approach for computing model scores for ordinal factor models, i.e.
Graded Response Models (GRMs) fitted with a limited information (LI) estimator. The
method makes it possible to compute score-based tests for parameter instability for
ordinal factor models. This way, rapid execution of numerous parameter instability
tests for Multidimensional Item Response Theory (MIRT) models is facilitated. We
present a comparative analysis of the performance of the proposed score-based tests for
ordinal factor models in comparison to tests for GRMs fitted with a full information
(FI) estimator. The new method has a good Type I error rate, high power, and is
computationally faster than FI estimation. We further illustrate that the proposed
method works well with complex models in real data applications. The method is
implemented in the lavaan package in R.

Keywords: Ordinal Factor Analysis, Multidimensional Item Response Theory,

Parameter Instability, Score Test
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Score-Based Tests for Parameter Instability in Ordinal Factor Models
Introduction

Researchers investigating thought processes and cognitive abilities often use Item
Response Theory (IRT) models to measure multiple unobserved (or latent) variables like
personality traits or proficiencies. One of the most widely applied IRT frameworks for
observed variables with a small amount of ordered response categories is the Graded
Response Model (GRM, Samejima, 1969).

However, unidimensional IRT models, i.e. models with only one latent variable, are
often not able to model the full complexity of conceptually broad personality traits or
abilities. Multidimensional Item Response Theory (MIRT) models make it possible to
analyze psychological assessment data such that underlying multidimensionality is
captured (Reckase, 1997). The potential of such models for large-scale test and
questionnaire evaluation and development has been emphasized numerous times (Bean
& Bowen, 2021; ten Holt et al., 2010; Immekus et al., 2019). A major advantage of
MIRT models is their flexibility, because latent covariance structures, hierarchical latent
variable structures, or within-item multidimensionality can be included in the model
(Hartig & Hohler, 2009). In this paper, we develop an approach to compute model
scores for a special kind of (multidimensional) IRT model, namely the ordinal factor
model. This opens up novel avenues in latent variable modeling.

A popular estimation method in IRT is marginal mazimum likelihood (MML)
estimation via the expectation mazimization (EM) algorithm (Bock & Aitkin, 1981;
Joreskog & Moustaki, 2006). This approach is commonly considered a full-information
(FI) estimation method because all distinct values on the observed variables are used
(Bolt, 2005). However, parameter estimation for MIRT models via this FI method is
computationally demanding, especially if there is more than one dimension (i.e., latent
variable) (Muraki & Carlson, 1995; Forero & Maydeu-Olivares, 2009) as the complexity
of the EM algorithm increases exponentially with the number of latent variables. In
contrast, the complexity of the Metropolis-Hastings Robbins-Monro (MH-RM) increases

linearly with the number of latent variables. It has proven to be accurate and relatively
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efficient for MIRT model estimation (Yavuz & Hambleton, 2017; Cai, 2010). However,
compared to alternative approaches, model estimation with the MH-RM algorithm is
still computationally demanding if more than one latent variable is specified in the
model.

According to Liu et al. (2018), contemporary MIRT is a convergence of developments
from test theory and confirmatory factor analysis (CFA). This means that certain types
of CFA models and IRT models are equivalent (Takane & De Leeuw, 1987). Building on
this assumption, Muthén (1984) proposed a limited information (LI) approach in which
the polychoric correlation matrix of the response variables is used for parameter
estimation. LI methods are usually computationally more efficient than FI methods and
commonly used in practice. Pairwise mazimum likelihood (PML) is a specific type of LI
method which (like MML) uses a likelihood function for parameter estimation and
maximizes the log-likelihoods associated with all item pairs (Katsikatsou et al., 2012).
In this article, however, we focus on the most widely used LI estimate, which goes back
to Muthén (1984). In the following, we therefore use ordinal factor analysis as a broad
term for (multidimensional) IRT models estimated via polychorics (Shi et al., 2020;
Maydeu-Olivares et al., 2011).

In IRT, it is generally assumed that the item parameters are independent of any
covariates of the observed variables in the population of test takers. Such covariates
may be demographic characteristics such as age, gender, or education level. Violations
of this assumption are interpreted as differential item functioning (DIF, Millsap, 2012;
Osterlind & Everson, 2009). In practice, DIF may be detected by pre-specifying
subgroups for which measurement invariance is not assumed. Alternatively, one can use
the score-based test for parameter instablility (Zeileis & Hornik, 2007) to detect DIF.
This test focuses on identifying parameter instability through an analysis of the relation
between model parameters and person covariates. It tests the null hypothesis that
model parameters remain invariant across all values of person covariates. The
score-based test is computed using the model scores, i.e., the partial derivative of the

casewise contributions to the objective function w.r.t. the model parameters (Merkle &
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Zeileis, 2013). It has been applied to a variety of different psychometric models,
including factor analysis (Merkle et al., 2014), Bradley—Terry models (Strobl et al.,
2011), binary and polytomous Rasch models (Strobl et al., 2015; Komboz et al., 2018),
logistic IRT models (Debelak & Strobl, 2019a), mixed models (Fokkema et al., 2018), as
well as the two-parameter normal ogive model via the PML estimation method

(T. Wang et al., 2018). It is, however, currently not applicable to the Graded Response
Model via ordinal factor analysis (i.e., LI estimation via polychorics).

We propose a method to efficiently approximate individual model scores, i.e. the partial
derivative of the casewise contributions to the objective function, for ordinal factor
models. With this method, it is possible to apply score-based tests to such models. The
score-based test for parameter instability can therefore be applied to MIRT models,
specifically multidimensional GRMs, with reasonable computational effort.

We simulate data based on two (uni- and multidimensional) GRMs and systematically
investigate the performance of the proposed score-based test. We compare our approach
to tests based on models fitted with FI estimation under various conditions.
Furthermore, we investigate the distribution of the scores estimated with the proposed
method by comparing the correlations of model score contributions from different fitting
approaches.

In the following, we describe the methodological background of this paper and how
score-based tests for parameter instability can be used to detect DIF. We further
introduce ordinal factor analysis and subsequently present our approach to compute
individual model scores for ordinal factor models. Next, we present simulations with
different scenarios to test the performance of score-based tests based on models fitted
with both LI and FI estimation. Following this, we apply models fitted via different
estimation methods to real data and compare the computation times and the results of
the score-based tests for parameter instability. In the last section, the results are

discussed.
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Methodological Background
Model Definition

In IRT models, the latent variable, denoted as &, typically represents the respondent’s
ability that is assumed to underlie their response patterns. Let the graded responses be
represented by the observed variable Y}, for a given item j. Usually, IRT models are
estimated based on ordered observed variables, wherein i=1, ..., n, respondents choose
from a range of ordered response categories k;=1,...,1l;, for items j=1,...,p. For
simplicity, we assume that all items have the same number of categories, such that
kij=kVj=1,...,p. In a multidimensional GRM, & is a m x 1 vector containing all
latent variables £ V ¢ =1,...,m. An observed variable Y; may be associated with
multiple latent variables.

In the GRM, the probability of answering in a category smaller or equal to a certain
ordered category k depends on the (multidimensional) distribution of the latent
variables as well as on the model’s parameters. The threshold parameters 7;; represent
the boundaries between the categories. The threshold locations determine the
difficulties of the item categories. The discrimination parameters A; denote the loadings
of the items on the latent variables. The relationship between the latent variable and

the response variables is defined by the cumulative category response function, that is

P(Y;<k|§,0) = ©(7jx — Nj§), (1)

where @ is the distribution function of the standard normal distribution. It is used as a
link function to convert a linear function into a probability function. The link function
is also known as probit function or normal ogive function. Alternatively, a logit function
can be used for the GRM (Samejima, 1997).

The model parameter vector 6 contains all freely estimated threshold parameters 7j;, all

freely estimated discrimination parameters A\;; that make up the m x 1 vector A;, as
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well as all freely estimated latent variable variances and covariances, such that

0= {Tll7 <oy Tply )‘117 ey )"mpv
Var(&),...,Var(&y), (2)

COU(gl, 62)7 R C(),U(gmfb 5m)}~
Note that Var(,) is fixed to 1 if Ay is freely estimated (and vice versa).

Differential Item Functioning

In the context of IRT models, differential item functioning (DIF) arises when an item’s
characteristics are related to person covariates. For instance, covariates such as
ethnicity, education, or gender may have an impact on, e.g., the difficulty of an item.
This means that one or more items of a test have different difficulties for subgroups
with different ethnicity, education or gender. Let Z be a covariate that induces such a
DIF effect. In this case, the item parameters in 6 deviate across the distribution of Z. If
7 is independent of the latent variable, DIF occurs when the probability of responding
to an item in a particular category differs between two individuals with the same ability
(i.e., the same values on &) solely due to their different values on Z. Practically,
undetected DIF may lead to a misinterpretation of group differences concerning latent
variables (T. Wang et al., 2018). Thus, DIF analyses are important in the practice of
test validation (Walker, 2011). Note, however, that DIF is fundamentally different to
tmpact, which means that the distribution of the latent variable depends on Z. For
example, two subgroups with different ethnicity, education, and gender may differ with
respect to the values on the latent variable but the difficulties of the test items may be
equal across these groups. If impact of the latent variable is expected, testing for DIF
requires a model in which the item parameters can differ between groups while
controlling for group differences in the latent variable distribution (Belzak & Bauer,
2020; Sterner, Pargent, Deffner, & Goretzko, 2024).

As mentioned above, DIF is closely related to the concept of measurement invariance,

which is a concept primarily used in factor analysis. Measurement invariance in a model
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is established by the conditional independence of all observed variables and all
potentially confounding covariates (Sterner et al., 2024). For a model with p observed

response variables, this rule can be expressed as

where Y; is the observed response variable for item i, Z is the vector of all potentially
confounding covariates, and &, is the vector of latent variables pertaining to item i. For
a MIRT model, it follows from Equation 3 that the &;-conditional probability of
answering to item 7 is independent from Z, which means that there is no DIF. For
simplicity, we refer to DIF as measurement non-invariance in IRT models.

Traditional approaches of empirical testing for DIF require the prespecification of
subgroups for which DIF is assumed. For a focal subgroup and a reference subgroup,
differences in item parameters can be tested for. This can be done for single items. This
way, one can detect items with DIF so that this item can, for instance, be removed from
the scale. For example, the subgroups tested for DIF are divided at the median of the
metric covariate Z. In this case, two distinct subgroups are defined and the likelihood
ratio (LR) test can be applied. With the LR test, an augmented model, permitting
variation in all item parameters across the two groups, is tested against a baseline
model where all item parameters are constrained to be equal between the reference and
focal groups (Bulut & Suh, 2017). If the likelihood ratio of these two models is
significantly different from one, researchers must assume the presence of DIF between
these two groups. In practice, prior specification of subgroups potentially subjected to
DIF can be difficult, especially in situations where there are a multitude of potential
splitting points on Z. As researchers might not have strong assumptions which groups

might be affected by DIF, certain subgroups exhibiting DIF might remain undiscovered.

Score-Based Test for Parameter Instability

A solution to this problem was proposed by Zeileis and Hornik (2007) who presented a

family of generalized M-fluctuation tests for testing parameter instability w.r.t. observed
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metric, ordinal, and categorical variables. In the following, we refer to these tests as
score-based tests. They are applicable to a wide range of IRT models to detect DIF
(Schneider et al., 2022; Debelak & Strobl, 2019a). The score-based test is a global test
for parameter instability. Usually, all freely estimated model parameters are tested for
instability when the score-based test is applied to a fitted model. The application of the
score-based test to MIRT models for DIF detection presupposes that no impact of the
latent variable is assumed. If differences in the latent variable are assumed across
prespecified groups, one can apply the score-based test to a multiple-group MIRT
model, in which the means and variances of the latent variable can differ for predefined
subgroups (Debelak & Strobl, 2019a; Debelak et al., 2022; Bock & Zimowski, 1997).
Note that such multiple-group models require one or more anchor items to make sure
that the latent variable is measured on the same scale across groups. In single-group
MIRT models, such group differences in the latent variable distributions are mistaken
for DIF if the score-based test is used for DIF detection. In this paper, we only consider
single-group MIRT models without differences in the latent variable between subgroups.
Another prerequisite for the score-based test is that an M-estimator is used to fit the
model. If this is the case, parameter instability of the fitted model with respect to a
covariate can be investigated. Following Stefanski and Boos (2002), an M-estimator 0 is

defined as the solution to the equation

> vly.d) =0, @

where 9 is a 1 x ||6]] matrix. Note that || - || denotes vector length.

The function ¢ is the first derivative of the objective function that is minimized to
estimate the model parameters. In the context of marginal maximum likelihood (MML)
estimation, which is a common full-information estimation approach for IRT models,

the objective function is the negative log-likelihood function. Following Baker and Kim
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(2004, p.160-164), the marginal likelihood L of the observed data is

where ¥y, = {yi1, ..., Yim} is the response pattern of respondent 7. The probability of the

individual response pattern of respondent 7 is

Ply) = [ Pl.1€.6)9(€) de ©)

where &, are the values of respondent ¢ on the latent variables (in IRT these are also
referred to as person parameters). These values are drawn from the specific multivariate
distribution ¢(&;). Under the usual conditional independence assumption of the GRM,
P(y,|&;,0) follows from Equation 1. The derivative of the log likelihood with respect to

some parameter x is

n

0logLYI Ziip ):Zw(y“ x) =0, (7)

i=1

where 9};(;’1') differs for each parameter z in . ! The individual contributions to the
first derivative of the log likelihood with respect to the M-estimator 6 are also referred
to as the score contributions of the fitted model. This is why the generalized
M-fluctuation test is called score-based test.

The null hypothesis of the score-based test, which states that model parameters are
invariant, is rejected if the empirical fluctuation during parameter estimation with
respect to Z is improbably large. To estimate the empirical fluctuation, the individual
model scores ¥(y;, f) are computed for all individuals i in the sample. If the model
parameters deviate across the distribution of a metric covariate Z, then a transition
from positive to negative scores for lower values on Z to higher values on Z (or vice

versa) is expected (see left hand side of Figure B3). The scores are then cumulated

according to the order of the covariate of interest Z to compute the cumulative score

! In Debelak and Strobl (2019b), other exampes of 1 can be found.
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~-1/2 1 1 A
CSP(H)=B Z¢(y(h\2)a9)7 (8)
h=1

Vi &
where (h|Z) denotes the h-th ordered observation with respect to the covariate Z. The
transition from positive to negative scores is captured as a clearly noticeable peak in the
cumulative sum process (see right hand side of Figure B3). The sum process is scaled
by an estimate B for the covariance matrix cov(¢(Y,6)) to decorrelate the scores so
that the score processes for all parameter estimates in 0 are independent from each
other. By analyzing the C'SP, a possible systematic change from positive to negative
scores across the covariate can be detected.

Different kinds of test statistics can be derived from the C'SP to capture the fluctuation
across all parameter estimates in 0. For metric covariates, the maximum Lagrange
multiplier (mazLM), the double maximum (DM), and the Cramér-von-Mises (CvM)
test statistics are available. The unordered LM test statistic (LMuo), which is based on
the sum of the values in each category, is used to assess instability in relation to
categorical covariates where it is not possible to order the values (Merkle & Zeileis,
2013). For ordered covariates, the ordered maximum LM (mazLMo) and the “weighted”
double maximum ( WDMo) statistic can be used (Merkle et al., 2014). Critical values
associated with these test statistics can either be obtained through closed-form
solutions of certain functions (DM, WDMo, LMuo), through tables of critical values
obtained from simulation (maxLM, CvM), or through repeated simulation of Brownian
Bridges (mazLMo). All these test statistics are implemented in the strucchange
package in R (Zeileis et al., 2015).

As mentioned before, the score-based test for parameter instability is applicable for
many different kinds of IRT models. However, MIRT models are commonly fitted via FI
estimation, namely with the MML estimator (Schneider et al., 2022), such that
individual score contributions can be computed as terms of the derivative of the
marginal log-likelihood (Debelak & Strobl, 2019a; Baker & Kim, 2004). For simple IRT
models, such as the Rasch model (Rasch, 1960) or the 2PL Model by Birnbaum (1968),

FI estimation is very efficient and repeated model fittings in a recursive partitioning
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algorithm are computationally feasible (see Strobl et al., 2015; Komboz et al., 2018).
However, this is not the case for complex MIRT models. For these models, LI
estimation, as common in ordinal factor analysis, is much quicker (Forero &
Maydeu-Olivares, 2009). Therefore, a method for estimating individual score
contributions for ordinal factor models is an important prerequisite for the efficient

application of the score-based test.

Full Information Estimation

The marginal maximum likelihood (MML) estimation approach via the expectation
maximization (EM) algorithm (Bock & Aitkin, 1981; J6reskog & Moustaki, 2006)
iteratively estimates the true probabilities of each observed response pattern. In the
first step of the algorithm, the latent variable is estimated (E-step), and in the second
step, the model parameters are optimized (M-step). However, for this full-information
(FI) estimation method, multidimensional integrals are evaluated in the estimation
process. Intensive computations are required, especially if latent variables in the MIRT
model are correlated (Forero & Maydeu-Olivares, 2009). Efforts to reduce computation
time have been made by Meng and Schilling (1996) via the Monte Carlo EM algorithm
and later via the Markov Chain Monte Carlo (MCMC) algorithm (Bolt & Lall, 2003;
Kim & Bolt, 2007). The Metropolis-Hastings Robbins-Monro (MH-RM) algorithm is
building on these advances (Cai, 2010). The algorithm has initially been proposed for
exploratory factor analysis. It synthesizes a type of MCMC algorithm, the
Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), with the
Robbins-Monro method (Robbins & Monro, 1951) for stochastic approximation. Its
complexity increases linearly with the number of latent variables. In the following, we
will compare the performance of the MML estimation approach via the MH-RM
algorithm with the performance of the limited-information estimation approach used for
ordinal factor analysis. We will focus on computation time and score-based parameter

instability test results.
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Ordinal Factor Analysis

Using the classic maximum likelihood approach for CFA (see Joreskog, 1969) to fit
(multidimensional) IRT models introduces model misspecification because the common
CFA assumes linear relationships between continuous and normally distributed observed
variables and continuous factors (Maydeu-Olivares et al., 2011). Thus, in order to
include ordered observed variables in CFA models, a continuous latent response variable
Y is assumed to underlie each observed ordered variable Yj for item j (Takane &

De Leeuw, 1987). This latent response variable is related to the observed ordered

variable via a threshold relation, that is

Yy =k if 7j0-1) <yj < Ty, (9)

where 7o = —oo0 and 7;; = oo. Thus, for every item j there is one threshold parameter
T, less than the total number of ordered categories [ within item j. Note that the

probability of Y; being greater than k£ may be derived from the threshold parameters, i.c.

P(Y; > k)= P(Y] > j,) = ®(—7j1.). (10)

Building on this assumption, Muthén (1984) proposed a method in which parameters of
CFA models including ordered observed variables are estimated by minimizing the
discrepancy between the polychoric correlation matrix of the observed variables and the
model-implied covariance matrix. Parameter estimation via polychorics is also referred
to as a form of limited-information (LI) estimation, as it only uses information from
bivariate relations of the observed variables. The estimation of the thresholds, as
defined in Equation 9, is performed as a first step in the model fitting process.
Furthermore, in this phase, bivariate polychoric correlations p;s are computed for all
j,s=1,...,p when j # s, following the approach established by Olsson (1979). These
polychoric correlations quantify the degree of linear dependence between the variables
Y and Y for j # s.

After the estimation of thresholds and polychoric correlations, the model parameters in
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0 are estimated through minimization of the objective function

where k and k() are the vectors of the sample and model implied polychoric
correlation matrices. Different choices for the positive-definite weight matrix W lead to
different estimators (Shi et al., 2020). In Weighted Least Squares (WLS, Muthén, 1984)
estimation, W is the asymptotic covariance matrix of K. The WLS estimator may
produce unstable results for small sample sizes and large models (Flora & Curran, 2004;
C. Wang et al., 2018; Garnier-Villarreal et al., 2021). However, it usually performs
equally well or better than FI estimation for large sample sizes (Forero &
Maydeu-Olivares, 2009). In this paper, we therefore focus on the WLS estimator for

ordinal factor analysis.

Approximated Scores for Ordinal Factor Analysis

As we assume a specific model structure for a multidimensional GRM, we may denote
the assumed model (see Equation 1) as the structured model, or Hy. It may be tested
against the unstructured or saturated model (H;) that does not impose any restrictions
on the thresholds or the covariance matrix. The vector k contains the saturated model
parameters (7,0*)’, where T is the vector of threshold parameters, and

o* = vech[Cov(Y™)] contains the vectorized non-redundant elements of the model
implied covariance matrix. The size of k is [p({ — 1) + p(p — 1)/2] x 1 which we refer to
as p* x 1 in the following.

The first derivative of k with respect to 6 is

or(0)

_ok(0) | e

A= 00 o | (12)
0

We apply the chain rule to get the first derivative of the objective function with respect
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to 6, that is the 1 x ||0|| matrix

8F059A(9) _ aFoap;:(K) 8!;(99) _ —2[|2 _ K(e)}/W_1A~ (13)

Note that Equation 13 is not an individual function, meaning that it does not refer to a
single observation ¢ and cannot be used for the score-based parameter instability test.
To our knowledge, it is not possible, with reasonable effort, to formulate the gradient of
Equation 11 as an individual function.

Therefore, to compute scores that can then be used for the score-based parameter
instability test, we focus on an alternative approach to MML estimation. Muthén
(1997) and Reboussin and Liang (1998) proposed a generalized estimating equations
(GEE) approach for the estimation of parameters in (multidimensional) latent variable
models with ordered response variables. In the Technical Appendix, we describe how
the GEE estimation method is applied to MIRT models based on non-binary response

variables. This approach minimizes a set of estimating equations, that is

n

> AW e =0, (14)

i=1

where e; is the vector of empirical deviations of the first and second order empirical
moments in the data from the true first and second order moments (see Equations 10 to
14 in the Technical Appendix). The first order empirical moments in the data are the
indicator variables, i.e.,

1, ify, >k

lysk = (15)

0, otherwise,
for all individuals i = 1,...,n, all items j = 1,...,p, and all categories minus one
k=1,...,(I=1). The weight matrix used in GEE estimation, i.e., Wggg, is defined as
the working covariance matrix of first and second order empirical moments of individual
i (see Equations 16 to 18 in the Technical Appendix). The A-matrix is the derivative of

the saturated model with respect to the model parameters 6 (see Equation 19 in the

Technical Appendix).
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In contrast to Equation 13, the estimating equations in Equation 14 are individual
functions that each refer to a single observation ¢ and add up to zero. They are the
individual contributions to the derivative of the objective function of the GEE
approach. The model parameters in 6 are estimated by iteratively updating the
estimator, i.e. solving the set of quadratic estimating equations for . The solution to
the set of quadratic estimating equations are the model scores obtained through GEE
estimation. Using the GEE estimation approach leads to slightly different parameter
estimates than ordinal factor analysis (i.e., WLS). Our goal is to approximate the GEE
scores that would have resulted if the parameters estimated using the GEE approach
were exactly the same as those estimated using ordinal factor analysis. We claim that
these approximated scores can be used for the score-based parameter instability test.
We learn from GEE estimation (e.g. Equation 28 in Muthén, 1997) that an empirical
deviation vector e;, defined on the individual level, can be used for the individual
estimating function (Equation 14). Let an alternative set of individual estimating
equations be

(Y — 1) (Y — 72)

" (Wi — 1) (55 — 73)
Sy =
(16)
(yipfl - Tp—l)(yip —7p)
n *
Yi—T

dawt| =0,

i=1 s* —o*
where y*; contains the values of individual ¢ on the latent response variables for all
items j = 1,...,p. Note that in this case, the p* x p* matrix W is an estimator of the
working covariance matrix of the vectors (y*;,s*;)" across all individuals i = 1,...,n.

The vector y*; contains the values of individual 7 on the latent response variables for all
items j = 1,...,p. The vector s*; can be referred to as the vector of the true
second-order moments.

Let us assume that the latent response variables in the model be normally distributed

and that the model’s residuals ¢; = Y} — )\;{ (see Equation 1 in the Technical
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Appendix) are independent and identically distributed. If this is the case, then
kK = k(0), i.e. the assumed model fits the data perfectly and the empirical deviation

. . . v =¥ _ . .
vector in Equation 16 is equal to , where ~ represents the arithmetic mean.

S*i —g*

To compute individual score contributions based on Equation 11, we apply the logic of
Equation 16 to the non-binary case. The aim is to mimic the scores produced by the
estimation function in Equation 16. However, the individual values of the latent

response variable distribution y* are not identifiable. Thus, the true second-order

moments s* are not identifiable either. We therefore replace the empirical deviation

vec(1y,) — vec(1ly)
vector with ' . The vector vec(1y,) contains the indicator variables

S; — S

for all items j = 1,...,p, and all categories minus one k =1,..., (I — 1) (see Equation
10 in the Technical Appendix). The vector vec(1y) of size p(I — 1) contains the
arithmetic means of the indicator variables across all individuals. Furthermore, we
replace the weight matrix of Equation 16 with the weight matrix of Equation 11. This
way, we account for the multivariate non-normality within the observed variable
distribution. Thus, we claim that the individual score contributions of an ordinal factor

model fitted using WLS can be estimated as follows

(Y — 1) (Y2 — ¥2)

(yir — 1) (i3 — U3)

(Yip—1 = Yp—1) (Yip — Up)
- L vec(1,. ) — vec(1;
S i) = Y awr [ T
i=1 i=1 S; — S
We refer to Equation 17 as the approzimated score function of the WLS estimation

method that can be used for the score-based parameter instability test.
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Computational Details

The R implementation of the proposed method, replication materials for all simulations,
all simulation results as well as the Technical Appendix are provided in the following
OSF repository:
https://osf.io/hmwpc/?view_only=69ed2919e7a64db2b0354£99243c307c. All
simulations and real data applications were executed on a 20 core, 170GB RAM server.
The proposed method to compute individual model scores for ordinal factor models is
implemented in the functions lavScores() and estfun.lavaan() in the latest version

(since version 0.6-18) of lavaan (Rosseel, 2012).

Simulation

We simulated data to fit two different IRT models: a unidimensional model with five
observed variables Y; (Figure B1) and a multidimensional model with nine observed
variables Y; (Figure B2). To simulate model-compliant data, first, true latent variable
scores were simulated for all latent variables in the model. Then, values of the
conditional probabilities P(Y; =k | £,6) were computed for all categories of all items.
On the basis of these conditional probabilities, values for five ordinal response variables
with k categories each were sampled.

From these conditional probability functions, DIF effect sizes can be calculated.

Following Chalmers (2023), the scoring function that is

S(6.0) = S (h—1)- P(V; = k| £,0), (18)

k=1
is used to compute the DIF effect size of an item j. The Noncompensoratory DIF
(NCDIF) value quantifies the average deviation of the response function of an item j
between a focal group (F) and a reference group (R). It is defined as

S5 86 br) — S(6:,0))”

ng

NCDIF =

(19)

Using the true values for §;, 6, and 0 from the simulation, we are able to compute the
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true NCDIF values of the items in the simulated data sets. To illustrate how parameter
fluctuation affects parameter estimation, we report a DIF effect size, i.e., the NCDIF
value, for one specific item (Item 2) in 24 different simulation scenarios: two different
models, i.e., the unidimensional model (Figure B1) and the multidimensional model
(Figure B2), four different numbers of threshold parameters k € {1,2,4,6}, and three
different scenarios for parameter fluctuation in the data (see below). For each scenario,
we simulate 1000 simulation samples of n = 1000 in which there is a focal group and a
reference group. For each group, the parameters of the (multidimensional) GRM are
randomly drawn. For each sample, the NCDIF values are computed. The average
NCDIF values (i.e., the arithmetric means) are shown in Table A3.

To test the performance of the score-based test, we created 36 different simulation
scenarios for each model: four different numbers of threshold parameters k € {1,2,4,6},
which means that the simulated ordinal observed variables Y; have two, three, five or
seven categories, three different sample sizes n € {500, 1000, 2000}, and three different
scenarios for parameter fluctuation in the data. For each of the simulated samples, we
created one numerical covariate (Z,,,,) ranging from 1 to 200, one ordinal (Z,,4) and
one categorical (Z..;) covariate with scores on a five-point response scale. Each
simulation sample consists of a focal and a reference group of size n/2 that both fit the
corresponding model but have different parameter values.

The three simulated scenarios for parameter fluctuation are: all parameter values differ
between the focal and the reference group, only the threshold parameters of the first
item 7y, (for the unidimensional model) or the threshold parameters of the first and the
second item (for the multidimensional model) differ between the focal and the reference
groups, or only the discrimination parameters \; (of all items) differ between the two
subsets. Thus, each simulation sample for each model for each simulation scenario is of
size n and exhibits DIF w.r.t. the covariates Z,um, Zorqd, and Z.,;. This means that all
score-based tests for parameter instability which are applied to the covariates in all data
sets should result in significant p-values. For each simulation scenario and model, 1000

simulation samples (i.e., repetitions) were generated. We denote the percentage of
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simulated samples for which the p-value of the score-based test is smaller than 0.05 as
the power of the score-based test.

For each of the simulated samples, ordinal factor models are fitted with the WLS
estimator using the lavaan package (Rosseel, 2012) and (multidimensional) GRMs are
fitted via FI estimation, namely the MML estimator, using the mirt package
(Chalmers, 2012). With FI estimation, the unidimensional model is fitted via the EM
algorithm and the multidimensional model is fitted via the MH-RM algorithm. Each of
the fitted models is tested for parameter instability using the maxLM, DM, and CoM
test statistics on Z,um, the WDMo and maxLMo test statistics on Z,.q and the LMuo
test statistic on Z..;.

We further conduct additional simulations with data that do not exhibit DIF, i.e., the
values of the covariates were simulated randomly. This means that all score-based tests
for parameter instability which are applied to the covariates in all data sets should not
result in significant p-values. We denote the percentage of simulated samples for which
the p-value of the score-based test is smaller than 0.05 as the Type I error rate of the
score-based test.

To see how the approximated scores of the ordinal factor model are distributed, we
additionally simulate two data sets to fit the unidimensional model (Figure B1). One
data set has binary response variables and the other data set has response variables
with four ordered response categories. We simulate two other data sets to fit the
multidimensional model (Figure B2). We then use three different approaches to fit the
models to the data: ordinal factor analysis (LI estimation), FI estimation, and GEE
estimation (see Technical Appendix). Subsequently, the models scores are estimated for
each model for each data set. The correlations of the model score contributions of each
parameter in the respective model are shown in Table Al (for the unidimensional

model) and A2 (for the multidimensional model).
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Results

The means of the NCDIF values in Table A3 show that DIF effect sizes on one item are
considerably lower if only the discrimination parameters differ between the focal and
the reference group. This is reflected in the power results of the simulation for both the
unidimensional and the multidimensional model. However, if only the thresholds of an
item differ between focal and reference group, the DIF effect size of that item is similar
to the case in which all parameters differ. From this result, we deduce that the power of
the score-based test in the first simulation scenario (all parameters differ) most likely
does not differ significantly from a scenario in which only the threshold values of all
items differ. The second simulated scenario for parameter fluctuation thus consists of
only the threshold parameters of one item (i.e. 20% DIF in the unidimensional model)
respectively of two items (i.e. 22% DIF in the multidimensional model) differing
between the focus and reference groups.

The results of the simulations with data based on the unidimensional model (see Figure
B1) show that power generally increases with sample sizes and the number of response
categories. For the proposed score-based tests for ordinal factor models as well as for
tests based on GRMs fitted via FI estimation, power lies between 98% and 100% when
there is parameter fluctuation w.r.t. all model parameters. Figure B4 shows that given
fluctuation w.r.t. the threshold parameters of the first item 7y; only, sample sizes of at
least n = 2000 are needed for k = 4 thresholds and sample sizes of at least n = 1000 are
needed for k = 6 thresholds to achieve power of over 90% for all test statistics. For the
simulated data sets with parameter fluctuation w.r.t. the discrimination parameters \;,
power results for both ordinal factor models and for GRMs fitted via FI estimation are
shown in Figure B5. For k£ = 1, sample sizes of n = 2000 are needed to achieve power of
over 90% for all tests statistics. In general, w.r.t. power, the score-based test does not
perform better for models fitted via FI estimation as compared to ordinal factor models.
Type I error results for the unidimensional model are generally within the expected
range of 3% and 6% for all test statistics for ordinal factor models and for GRMs fitted

via FI estimation for all sample sizes and numbers of thresholds. This indicates that the
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score-based test for ordinal factor analysis performs equally well as for the GRMs fitted
via FI estimation when estimating unidimensional IRT models. The computation times
for fitting the unidimensional GRM via FI estimation (using the EM algorithm) and the
ordinal factor models are very similar (see Table A4).

Computation times for fitting the multidimensional model (see Figure B2) are much
higher for FI estimation (using the MH-RM algorithm) compared to ordinal factor
analysis with LI estimation (see Table A5), highlighting the benefits of ordinal factor
analysis in this setting. The results also show that high power (100%) is achieved for
both ordinal factor models and for GRMs fitted via FI estimation when there is
parameter fluctuation w.r.t. all model parameters. Power results for the data sets with
parameter fluctuation w.r.t. only the threshold parameters of item 1 and 2 are shown in
Figure B6. Interestingly, the multidimensional model outperforms the unidimensional
model in this simulation scenario. Here, sample sizes of n = 1000 suffice for models with
two response categories to achieve power of over 90% for all test statistics. The power
results of the score-based test when the discrimination parameters A; of all items differ
between the focal and the reference group are shown in Figure B7. When only the
discrimination parameters differ in data sets of n = 500 and k = 1, power lies between
29.2% and 52.8%. For data sets with k = 2, power is at least 72.5%. Power results are
generally very similar between ordinal factor models and for GRMs fitted via FI
estimation. However, there are considerable differences between these two types of
models regarding the Type I error (see Figure B8). Type I error rate is higher for the
score-based tests applied to GRMs fitted via FI estimation. This is particularly the case
for the CvM, mazLM, maxLMo, and WDMo test statistics.

The correlations of the model scores for the unidimensional model in Table A1 show
that the score contributions of the model fitted with the GEE approach correlate
negatively with the scores of the models fitted with the LI (i.e., ordinal factor analysis)
or the FI approach. The approximated model score contributions of the ordinal factor
model correlate strongly with the score contributions of the model fitted with the GEE

approach. The parameter estimates are expected to differ between the two approaches,
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therefore perfect correlations of the score contributions are not expected. Interestingly,
the correlations of the model score contributions from the GEE approach with the score
contributions from the FI approach are lower for discrimination parameters and higher
for threshold parameters. The correlations of the model score contributions from the LI
approach with those from the FI approach are generally a bit lower that those from the
LI approach with those from the GEE approach. The correlations of the model scores

for the multidimensional model (Table A2) show a very similar pattern.

Real Data Application

We demonstrate the application of score-based tests with (multidimensional) GRMs
using data obtained from the LISS (Longitudinal Internet studies for the Social
Sciences) panel administered by Centerdata (Tilburg University, The Netherlands).
LISS is a longitudinal survey conducted annually, covering topics such as employment,
education, income, housing, and personality traits (Scherpenzeel, 2018). We analyze the
data from four survey waves that were conducted in 2008, 2009, 2011, and 2013. In the
survey waves of 2010 and 2012, certain application-relevant items were not included. A
total of 2893 individuals participated across all four waves of the survey. Our analysis
focuses on five items from the Satisfaction with Life (SL) scale (Diener et al., 1985),
which assesses life satisfaction. We excluded any cases that did not provide responses to
all five items, resulting in a final sample size of 2888 individuals. The items were rated
on a seven-point response scale. The specific wording of these items is displayed in
Table AG.

We apply three different models of different sizes to the data. Model 1 has the same
unidimensional GRM model structure used in the simulation (see Figure B1). The five
items Y represent the SL scale in the first survey wave. Model 2 has a multidimensional
GRM model structure with correlated latent variables and is shown in Figure B9. The
items Y}; represent the SL scale in survey waves one (¢t = 1) and two (¢ = 2). Model 3 is
a probit multistate IRT model with latent item effect variables for graded responses

(PIEG) in which one reference latent state variable 7, is assumed for every time point of
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measurement and one latent item effect variable §; is defined for every item but the
reference item (here: j = 1). In this model, the variances and covariances of the latent
state variables, as well as the latent item effect variables and the covariances between
them, are estimated. The discrimination parameters in the model are all fixed at 1

(F. L. Classe & Steyer, 2023).

We fit each model using three different estimation methods: ordinal factor analysis
(using the WLS estimator), FI estimation (Model 1 via the EM algorithm, and Model 2
and Model 3 via the MH-RM algorithm), and common factor analysis. For common
factor analysis, we use the robust maximum likelihood (MLR) estimator, since here the
model fit statistics are corrected for the non-normality of the response variables (Li,
2016).

For every fitted model, we apply the score-based test w.r.t. three different background
variables representing general characteristics of households and household members that
participate in the LISS panel: Gender (categorical: “Female”, “Male”, and “Other”),
urban character of place of residence (ordinal: five categories from “extremely urban” to
“not urban”), and individual age (metric). We do not assume an impact of any of the
covariates on satisfaction with life. This is mainly due to methodological considerations.
We do not want to specify an anchor item as we assume that the item characteristics of
all five items may differ across the subgroups defined by the covariates. For the
categorical covariate, we use the LMuo, for the ordinal covariate, we use the WDMo,
and for the metric covariate, we use the DM test statistic. All three test statistics can
be used with large models as they obtain their critical values through closed-form
solutions of certain functions instead of default tables.

We analyze the fitted models w.r.t. the degree of model fit and the computation time of
the model fitting process and apply the score-based test using the outlined covariates.
Furthermore, for each model, we analyze the time needed to compute the empirical

fluctuation process, which includes the computation of the model scores.
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Results

The results of the real data application displayed in Table A7 show that computation
time increases when fitting larger ordinal factor models compared to smaller ones.
However, compared to the considerable increase in computation time for fitting the
GRMs via FI estimation, the increase in computation time for larger ordinal factor
models is marginal. This agrees with the simulation results shown in Tables A4 and A5
and shows that FI estimation is not computationally efficient for models with two or
more non-orthogonal latent variables. Compared to FI estimation, ordinal factor
analysis is computationally efficient, even for large models. When it comes to the
results of the score-based tests, models fitted via FI estimation are very similar to
ordinal factor models, at least for model 1 and model 2. For model 3, all p-values for
the score-based test are smaller than 2.20E — 16. Also, computing the empirical
fluctuation process is particularly expensive for model 3 when fitted via FI estimation.
Comparing the results of the common factor models with the ordinal factor models
shows that common factor analysis is computationally faster than ordinal factor
analysis, especially for large models. Also, the model fit estimation results of common
factor analysis (using the MLR estimator) are similar to those of ordinal factor analysis.
However, there are considerable discrepancies w.r.t. the results of the score-based tests,
particularity for the categorical and metric covariates for all model sizes. Note that in
using common factor models for categorical data, model misspecification is introduced

as, for instance, no threshold parameters are estimated.

Discussion

The results of our simulations show that score-based tests for parameter instability
perform equally well for unidimensional GRMs fitted via FI estimation and for ordinal
factor models. As there are no considerable differences regarding computation time, we
conclude that fitting univariate IRT models and testing them for parameter instability
is equally convenient using FI estimation or ordinal factor analysis.

However, the results of the simulation regarding the multidimensional model show that
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there are considerable differences in computation times when fitting the model via FI
estimation (using the MH-RM algorithm) compared to ordinal factor analysis. The
limited information method of ordinal factor analysis is 32 to 91 times faster than the
MH-RM algorithm. The power results indicate that the proposed score-based test for
unidimensional GRMs as well as for multidimensional GRMs implemented via ordinal
factor models performs equally well as tests based on unidimensional GRMs fitted via
FI estimation. However, when it comes to multidimensional GRMs, there are
considerable specificity problems of the score-based test when applied to models fitted
via FI estimation in contrast to ordinal factor analysis. Debelak, Meiser, and Gernand
(2024) point out that increased Type I errors of the score-based test when applied to
models fitted via FI estimation could be due to numerical inaccuracies of the MH-RM
algorithm. Additional fine-tuning of the implementation of the algorithm in the mirt
package may help to obtain accurate Type I error rates.

The distribution of the approximated scores of the ordinal factor model are generally
very similar to the scores from the GEE estimation method. Note that, unlike LI
estimation, the GEE estimation method optimizes the model scores to estimate the
model’s parameters. This takes a very long time, especially for multidimensional
non-binary models. The fact that the scores are distributed similarly to the model
scores estimated with the method proposed in this paper indicates that our approach is,
in fact, a valid approximation and thus a computationally efficient alternative when it
comes to parameter instability tests.

Note that the score-based test may also be applicable for GRMs fitted via PML (which
is also a LI method). However, in their application T. Wang et al. (2018) focused on
unidimensional two-parameter normal ogive models for dichotomous response variables.
The real data applications show that the results for the score-based tests are very
similar for unidimensional ordinal factor models and models fitted via FI estimation.
This matches the results of the simulation. For very large models, however, the
discrepancy between score-based tests applied to ordinal factor models and GRMs fitted

via FI estimation is considerable. Additionally, it appears that score-based tests for
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parameter instability produce different results for ordinal factor analysis compared to
common factor analysis. We therefore conclude that ordinal factor analysis should be
preferred over common factor analysis and GRMs fitted via FI estimation when testing
for parameter instability in multidimensional GRMs.

Note that within our simulated samples, the covariates Z are always independent from
the latent variable distribution & (in both the unidimensional and the multidimensional
case). This implies that only single-group MIRT models without differences in the
latent variable between subgroups are considered. Also for the real data applications in
this paper, we assume independence of the covariates from the latent variable
distribution. Future research might investigate the performance of the score-based test

for multiple-group ordinal factor models.

Model Based Recursive Partitioning

Methods based on the score-based test can be very helpful in scenarios where there are
a multitude of metric, ordinal, or categorical covariates potentially causing DIF. In such
contexts, data-driven methods such as Model Based Recursive Partitioning (MOB,
Zeileis et al., 2008) prove valuable for identifying subgroups in which DIF is present.
This algorithm repeatedly splits a sample into subgroups based on covariates Z, in

Z1, ..., Zg (referred to as partitioning variables) to form a decision tree (see Breiman et
al., 1984). The score-based test for parameter instability can be used in such a recursive
partitioning algorithm to account for parameter instability. When parameter instability
is detected in a tree node during the partitioning process, i.e. the score-based test for
one of the partitioning variables falls below a predefined significance level, the
partitioning variable Z,- associated with the smallest p-value is selected for partitioning.
The unique value of a partitioning variable that maximizes the respective score-based
test statistic can be used as a split point (see Arnold et al., 2021). The MOB algorithm
continues to partition different subgroups until the stopping criteria are met. This is
usually the case when there is no more significant instability in a node or when the

subsample in a node becomes too small to fit the model. However, the application of
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MOB in conjunction with ordinal factor models is not yet implemented in the available
R packages. The quick computation of MOB trees for MIRT models may, among other
things, be relevant for the estimation of unbiased latent variable scores (F. Classe &
Kern, 2024). Thus, future research should further investigate the application of MOB to

ordinal factor models, building on the technique proposed in this paper.

Outlook

The efficient computation of individual model scores for MIRT models is not only useful
for efficient computation of parameter instability tests. The proposed method may also
be used to compute robust test statistics based on sandwich covariance matrices
(Zeileis, 2006). Such robust corrections are already widely used in structural equation
modeling with complete (Savalei, 2014) or incomplete (Savalei & Rosseel, 2022) data.
Another possible area of application is model selection of non-nested models via Vuong
tests, since the Vuong test statistics are generally calculated on the basis of the
individual model scores (Schneider et al., 2020). With the method proposed in this

paper, such advances can be extended to ordinal factor models.
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COT(SCOFA, SCGEE)

Appendix A

Tables

COT(SCF[, SCGEE)

COT(SCOFA, SCF])

binary = non-binary | binary non-binary ‘ binary non-binary
Var(n) 0.94 0.97 0.99 0.95 0.93 0.96
A2 0.91 0.94 0.88 0.85 0.96 0.94
A3 0.94 0.93 0.93 0.80 0.98 0.91
A 0.94 0.90 0.96 0.73 0.99 0.87
A5 0.92 0.91 0.92 0.68 0.97 0.82
T -0.98 -0.92 | -0.96 -0.94 0.99 0.76
Ti2 -0.95 -0.97 0.90
T13 -0.92 -0.99 0.90
Ta1 -0.99 -0.94 | -0.98 -0.96 1.00 0.84
Tog -0.97 -0.99 0.95
Ta3 -0.93 -1.00 0.91
T31 -0.99 -0.93 | -0.99 -0.96 1.00 0.81
T30 -0.97 -0.99 0.96
T33 -0.92 -0.98 0.85
Ti -0.97 -0.90 | -0.96 -0.99 1.00 0.84
Tao -0.97 -0.98 0.92
T43 -0.92 -0.94 0.76
Ts1 -1.00 -091| -0.99 -0.96 1.00 0.78
T2 -0.97 -0.98 0.95
T53 -0.90 -0.92 0.69

Table Al

33

Correlation of model scores for a unidimensional GRM (see Figure B1) with binary and

non-binary (four ordered categories) response variables fitted on a simulated data set

with n = 2000 respondents. The model scores of three different fitted models are

compared: SCopa meaning the approzimated scores for a ordinal factor model, SCgy
meaning the scores for a model fitted with FI estimation, and SCorr meaning the

scores of a model fitted with GEE (see Technical Appendiz).
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CO’I'(SCOFA,SCGEE) CO7‘(SCF1,SCGEE) CO7‘(SCOFA,SCF1)

binary = non-binary | binary non-binary | binary non-binary
Var( 0.97 0.96 0.92 0.71 0.96 0.83
Var( 0.91 0.95 0.80 0.67 0.83 0.80
Var(n: 0.93 0.97 0.80 0.89 0.88 0.89
Cov( 0.89 0.85 0.91 0.74 0.93 0.88
Cov( 0.91 0.84 0.90 0.85 0.95 0.93
Cov( 0.88 0.90 0.85 0.84 0.91 0.93
A2 0.93 0.91 0.85 0.51 0.87 0.68
A13 0.92 0.87 0.89 0.77 0.87 0.89
A22 0.85 0.88 0.87 0.72 0.93 0.86
A2s 0.92 0.87 0.65 0.54 0.68 0.71
As2 0.93 0.88 0.90 0.74 0.93 0.81
Ass 0.91 0.85 0.76 0.73 0.90 0.79
T -0.98 -0.88 | -0.98 -0.97 1.00 0.79
Ti2 -0.92 -0.98 0.88
Ti3 -0.89 -0.94 0.76
Tol -0.98 -0.89 | -0.98 -0.94 1.00 0.74
Too -0.93 -0.98 0.90
Tos -0.90 -0.91 0.71
T31 -0.99 -0.84 | -0.99 -0.88 1.00 0.64
T3 -0.83 -0.90 0.71
T3 -0.83 -0.94 0.82
T41 -0.95 -0.88 | -0.94 -0.94 0.99 0.71
Ta2 -0.94 -0.99 0.93
Ta3 -0.88 -0.98 0.80
Ts1 -0.88 -0.88 | -0.88 -0.98 0.97 0.81
Ts2 -0.95 -0.99 0.94
Ts3 -0.89 -0.95 0.74
T61 -0.97 -0.87 | -0.97 -0.94 0.99 0.71
Te2 -0.93 -0.99 0.92
T63 -0.88 -0.92 0.65
(el -0.81 -0.94 | -0.91 -1.00 0.84 0.92
Tro -0.93 -1.00 0.93
Tr3 -0.88 -1.00 0.87
781 -0.98 -0.90 | -0.98 -1.00 1.00 0.90
T8 -0.85 -1.00 0.85
783 -0.82 -0.99 0.81
To1 -0.94 -0.90 | -0.92 -1.00 0.99 0.90
To2 -0.88 -0.99 0.88
Tos -0.79 -0.99 0.76

Table A2

Correlation of model scores for a multidimensional GRM (see Figure B2) with binary
and non-binary (four ordered categories) response variables fitted on a simulated data
set with n = 2000 respondents. The model scores of three different fitted models are
compared: SCora meaning the approrimated scores for a ordinal factor model, SCry
meaning the scores for a model fitted with FI estimation, and SCgrr meaning the
scores of a model fitted with GEE (see Technical Appendiz).
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Model
Mode unidimensional multidimensional
all k=1 0.05 0.14
all k=2 0.18 0.48
all k=4 0.54 1.75
all k=6 1.20 3.65
thresholds k=1 0.04 0.13
thresholds k=2 0.15 0.49
thresholds k=4 0.47 1.65
thresholds k=6 1.02 3.46
lambdas k=1 0.01 0.01
lambdas k=2 0.05 0.04
lambdas k=4 0.15 0.14
lambdas k=6 0.31 0.31

Table A3

Means of noncompensatory DIF (NCDIF) effect sizes for Item 2. Results for 1000
simulated samples with sample size of n = 1000. Modes: “all” for all parameters differ,
“thresholds” for only thresholds differ, and “betas” for only discrimination parameters
differ between focal group and reference group.

FI LI FI LI FI LI

0.19 0.19|0.20 0.21]0.21 0.23
0.23 0.20 | 0.25 0.22 | 0.27 0.26
0.31 0.25]0.36 0.27 | 0.38 0.31
0.41 0.30 | 0.47 0.31|0.51 0.38

n=500 n=1000 n=2000

T

Il
S =N =

Table A4

Computation time in seconds for fitting the unidimensional GRM given no parameter
fluctuation in the data. FI, meaning full information estimation, corresponds to model
estimation with the MML estimator. LI, meaning limited information estimation,
corresponds to ordinal factor analysis with the WLS estimator.

FI LI FI LI FI LI
12.80 0.39 | 17.42 0.46 | 21.02 0.39
14.04 042 | 19.53 0.40 | 27.40 0.42
18.38 0.52 | 26.65 0.47 | 40.92 0.50
2248 0.64 | 50.66 0.84 | 57.21 0.63

n=500 n=1000 n=2000

[l
DN

k
k
k
k=
Table Ab

Computation time in seconds for fitting the multidimensional GRM given no parameter
fluctuation in the data. FI, meaning full information estimation, corresponds to model
estimation with the MML estimator. LI, meaning limited information estimation,
corresponds to ordinal factor analysis with the WLS estimator.
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Text: Below are five statements with which you may agree or disagree.
Using the 1-7 scale below, indicate your agreement with each item

by placing the appropriate number on the line preceding that item.
Please be open and honest in your responding.

Item Wording

i =1 In most ways my life is close to my ideal

1 The conditions of my life are excellent

2 I am satisfied with my life

3 So far I have gotten the important things I want in life

4 If T could live my life over, I would change almost nothing
Table A6

Life satisfaction scale items as asked in the LISS panel.

Model 1~ Model 2 Model 3
(unidim.) (multidim.) (PIEG)

Number of
Paramers 35 63 156
Ordinal RMSEA _ 0.127 0.127 0.051
Factor Score-based test cat(?gorlcal 1.04E-05  2.22E-04 0.017
Analysis p-value ordinal 0.918 0.694 0.689
metric 0.165 0.008 0.014
Computation model 0.345 0.913 6.189
time scores 0.063 0.109 0.325
Number of
Paramers 35 63 156
RMSEA 0 0 0
GRM: FI Score-based test categorical 3.92E-06 4.02E-05 0
estimation p-value ordinal 0.181 0.445 0
metric 0.197 0.002 0
Computation model 0.541 88.428 301.546
time scores 0.287 15.506 1074.466
Number of
Paramers 10 13 56
. ——_—_——
categorica, . . .
iﬁl"rsis Sfi’;i'l]sased Ot ordinal 0.2 0.453 0.770
¥ P metric 0.014 0.000 0.040
Computation model 0.186 0.142 0.514
time scores 0.089 0.194 0.247

Table A7
Results of the real data application.

36
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Appendix B
Figures
m

1 /\2 )\3 )\4 )\5

Y Y; Y3 Y, Ys

€1 €2 €3 €4 €5

Figure B1. Unidimensional graded response model (GRM) with five items.

€11 €12 €13 €21 €22 €23 €31 €32 €33

Figure B2. Multidimensional graded response model (GRM) with three non-orthogonal
latent variables and nine items.
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Figure B3. Score and CSP distribution (illustration inspired by Figure 2 in Strobl et
al., 2015).

Unidimensional Model . i < w2 o (s = ws

1.00- - 1.00-
0.75- - 0.75-
E 0.50- 0.50-
0.25- 0.25-
0.00- 0.00-
1.00- 1.00-
E 0.75- 0.75-
O o050- 050~
0.25- 0.25-
0.00- 0.00-
1.00- 1.00-
E 0.75- 0.75-
%
© 050- 0.50-
£
0.25- 0.25-
0.00- 0.00-
1.00- 1.00-
o
= 075- 0.75-
=
X 0.50- 0.50-
©
E 025- 0.25-
0.00- 0.00-
1.00- 1.00-
Q 075- 0.75-
=
S 0.50- 0.50-
0.25- 025-
0.00- 0.00-
1.00- 1.00-
9 0.75- 0.75-
= 050- 0.50-
= 025- 0.25-
0.00- | | ; 0.00- | | |
n=500 n=1000 n=2000 n=500 n=1000 n=2000
Fl estimation Ordinal Factor Analysis

Figure B4 . Power of score-based test for the unidimemensional GRM model given
fluctuation w.r.t. the threshold parameters of the fitst item 7.
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Unidimensional Model . i < w2 o (s = ws
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Figure B5. Power of score-based test for the unidimemensional GRM model given
fluctuation w.r.t. the discrimination parameters \;.
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Multidimensional Model . i < w2 o (s = ws
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Figure B6. Power of score-based test for the multidimemensional GRM model given
fluctuation w.r.t. the threshold parameters of the first two items, i.e. 7, and 7o.
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Multidimensional Model . i « « o (s = 6

1.00-
0.75-
0.50 -
0.25-
0.00-

DM

1.00- .

0.75- — —
0.50- —

0.25-
0.00-

CvM
\
\
\
\
\

1.00-
0.75-
0.50-
0.25-
0.00-

maxLM

1.00-
0.75-
0.50-
0.25-
0.00-

maxLMo

n=500 n=1000 n=2000
1.00-
0.75-
0.50-
0.25-
0.00-

WDMo

1.00-
0.75-
0.50-
0.25-
0.00-

LMuo

n=500 n=1000 n=2000

Fl estimation

1.00-
0.75-
0.50-
0.25-
0.00-

1.00-
0.75- /
0.50 - ——

0.25-
0.00-

n=500 n=1000 n=2000
100~
0.75-
0.50-
0.25-
0.00-

1.00-
0.75-
0.50-
0.25-
0.00-

1.00-
0.75-
0.50-
0.25-
0.00-

1.00-
0.75-
0.50-
0.25-
0.00-

n=500 n=1000 n=2000

Ordinal Factor Analysis

Figure B7. Power of score-based test for the multidimemensional GRM model given
fluctuation w.r.t. the discrimination parameters \;.

41




B Attached contributions

142

SCORE-BASED TESTS FOR ORDINAL FACTOR MODELS

Fl estimation Ordinal Factor Analysis
0.07 0.08 0.08 k=1 0.03 0.04 0.05
0.06 0.05 0.06 k=2 0.05 0.04 0.05
=
o
0.05 0.04 0.03 k=4 0.04 0.04 0.03
0.06 0.04 0.04 k=6 0.05 0.04 0.02
0.05 0.04 0.05
0.05 0.05 0.04
0.06 0.04 0.04
0.05 0.06 0.05
0.05 0.04 0.03
0.04 0.04 0.04
0.05 0.06 0.04
0.06 0.06 0.06
0.05 0.05 0.05
0.05 0.05 0.06
0.05 0.06 0.05
0.05 0.05 0.05
® 0.06 0.05 0.05 k=2 0.06 0.05 0.04
=)
2
0.05 0.05 0.06 k=4 0.04 0.05 0.05
0.06 0.05 0.05 k=6 0.05 0.04 0.03
o o o o o o
o o o o o o
o o Yo} o o [T}
N ~ 1] N -~ I
n n = 1] 1] =
c c c c

k=1

k=1

k=2

k=4

k=6

k=1

k=2

42

alpha
error
0.1

0.05

Figure BS. Type I errors of score-based test for the multidimemensional GRM model.
Note that for the CvM test statistic, there are no critical values implemented in the

strucchange package for models with more than 25 parameters. This also applies for
the maxL M test statistic for models with more than 40 parameters. Therefore, models
with more than 1 (for CvM) and 2 (for mazLM) threshold parameters are not shown.
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Figure B9. Real Data Application Model 2: Multidimensional graded response model
(GRM) with two latent state variables and five items on two time points.
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Figure B10. Real Data Application Model 3: Probit Multistate IRT Model With
Latent Item Effect Variables for Graded Responses (PIEG) with four latent state
variables (1), four latent item effect variables (5;), and 5 items on three time points.
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Paper 1V - Supplementary Material:

Since the supplementary material of Paper IV was still being reviewed by the
journal at the time of submission of the dissertation, the revised version of the paper’s
supplementary material originally submitted to the journal is included here. The paper’s
supplementary material has since been published.

Classe, F., Debelak, R., & Kern, C. (2025). Score-based tests for parameter instability
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Score-Based Tests for Parameter Instability in Ordinal Factor Models: Technical

Appendix
Generalized Estimating Equations (GEE) for Ordinal Factor Analysis

In the introduction of the main text, we highlight that parameter estimation for
multidimensional IRT (MIRT) models via polychorics is also referred to as
limited-information (LI) estimation, as it only uses information from bivariate relations
of the observed variables. We then present the WLS estimator, as originally introduced
by Muthén (1983, 1984). An alternative LI estimation method is presented in this
chapter. To our knowledge, this estimation method had not yet been described or
implemented for non-binary data by prior research and is thus discussed in this section.
Let Y be a p x 1 vector of ordered observed variables. For simplicity, we assume that
all ordered observed variables have [ response categories denoted by the index k. In an
ordinal factor model (Maydeu-Olivares, 2005), a continuous, normally distributed latent
observed variable Y}* is assumed to underlie each observed ordered variable
Y;Vj=1,...,p, Just as in a conventional factor model, a linear measurement
structure is assumed. That is

Y= NE e, (1)

where £ is the the m x 1 vector of continuous latent variables, and A is the m x p
matrix of discrimination parameters (also referred to as factor loadings). Also, € is a
p x 1 vector of residuals. In the following, we refer to Cov(Y™) as the model implied
covariance matrix.

The latent observed variable Y is related to the observed ordered variable via a

threshold relation, that is

Yy =k if T-1) < Y5 < Tk @)

This means that a respondent chooses a response category k; when the respondent’s

latent response value y; on item j lies between the thresholds 7;—1) and 7, where
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Tjo = —0o0 and 7y = +00.

The model parameter vector 6 contains all freely estimated model parameters. That
includes the threshold parameters 7;; for all items j = 1,...p, belonging to the item
categories k = 1,...,1 — 1. Note that, for each item, there is one threshold parameter

less than there are item categories. Furthermore, 6 contains all freely estimated

discrimination parameters Ay, for all latent variables ¢ =1,...,m, and all items
j=1,...,p, as well as all freely estimated latent variable variances and covariances,
such that
O={T1, -, Tpls M1y - -+, Ay
Var(&),...,Var(&m), (3)

CO’U(&h 62)7 R Cov(gm—lv gm)}

In the original approach, a three-stage generalized least squares procedure for
parameter estimation was proposed. However, Reboussin and Liang (1998) claim that
this estimation method may not perform well for small sample sizes and large numbers
of indicator variables. They therefore propose an alternative estimation procedure
based on an quadratic estimating equations. Muthén (1997) referred to this method as
the Generalized Estimating Equation (GEE) approach.

For the purpose of finding a computationally feasible way to compute model scores for
ordinal factor models, the GEE approach seems very promising. Parameter estimation
via GEEs is closely related to the idea of the M-estimator (Stefanski & Boos, 2002),

which is an estimator @ that satisfies

i=1

where y, is the p x 1 vector of observed responses of individual .

From Muthén (1997) and Reboussin and Liang (1998), we derive that the (model
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implied) true mean p; of the observed variable Y; is

The true category probabilities of Y; can be computed on the basis of the threshold

parameters 7z, such that

P(Y; = k) = ®(7j) if k=1,
P(Y; = k) = ®(rj3) — (1) if 1<k <, (6)

P(Y; = k) =1~ @(ry_) if k=1

The true joint probabilitiy P(Y; = k, Y, = h) and thus the true joint expectation

E(Y;Y;), can be calculated as follows

P(Y] = k7§/s = h) :(I)Z(Tjk77—sh70-;s)_
®2(Tj;k717 Tshs 0—;3)7
(I>2(7—jk77—s;h71>0';3)_ (7)

qD?(Tj;k—h Ts;h—17 U;s)a
l

E(Y;Y)) =Y Y k-h-P(Y;=FkY.=h),

g
k=1 h=1

where o7 are elements in the model implied covariance matrix, i.e. o7, = Cov(Y}).
This definition is derived from Equation 4 in Olsson (1979).

Furthermore, let the second order moment of Y; and Y, be
Ojs = E(Y;Ys) — Hjils- (8)

For the case of non-binary observed variables, the first order moments of Y; are made

up from the indicator variables 1y,»x Vk =1,...,l — 1. The true mean of 1y 5}, is
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ot

Note that 1y,~; = Y; in the special case of dichotomous observed variables (as reported
in Muthén, 1997; Reboussin & Liang, 1998).

To fit an ordinal factor models via GEEs, first and second order individual empirical
moments are defined. Let the (I — 1) x p matrix 1, contain the first order empirical

moments of individual ¢, that is

1yn>1 1yi,,>1
1,. 1,
Yi1>2 Yip>2
1, = (10)
1yi,1>l71 o 1yip>171

The first order moments of Y are in the (I — 1) x p matrix

V11 V91 e Vpl
V12 V99 . Vp2
v= (11)
V-1 V-1 --- Vpi—

Moreover, let o be a vector of second order moments of Y. This vector includes all

non-redundant, off-diagonal elements of the true covariance matrix of Y, i.e.

Op—1ip

The second order empirical moments of individual ¢ make up the p(p — 1)/2 x 1 vector
si, that is
(yir = 1) (Y2 — pr2)

(yir — 1) (Yis — p3)

(Wip—1 = Hp—1) (Yip — Hp)
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The vector of first and second order empirical deviations for individual 7 is
e = ‘ . (14)

The size of e; is [p(I — 1) + p(p — 1)/2] x 1 which we refer to as p* x 1 in the following.
An ordinal factor model that does not assume a specific model structure is referred to
as a saturated model. The p* x 1 parameter vector of the saturated model is

B = (vec(v), o). Equations 5 to 9 show that § is a function of . The parameters of the
structured model # can therefore be estimated through minimization of an objective

function, that is

Fops(0) = Zeg Wle;. (15)
=1

This GEE fitting function minimizes the deviations of the individual empirical first and
second order moments from the saturated model parameters.

The weight matrix W is defined as the working covariance matrix of 1, and s;. From
Reboussin and Liang (1998), we derive that a choice for this matrix, that is adequate

for the case of non-binary observed variables, is

W; 0
W = . (16)
0 W,

W, is the working covariance matrix of 1,, Vi =1,...,n, that is
(Wiljush = p5(1 = py) if j=sk=h,
PO/J > ]C) — VjpVjh = (D(—Tjk) — VjkVjn if ] =38, k> h,
P(Y; > ]{I,Y; > h) - ijysh = (DZ(_Tjka _7_sh>0—;s) - ijl/sh lf ] 7& S, k fé h
(17)
W, is the diagonal working covariance matrix of s; Vi = 1,...,n, with all non-diagonal

elements equal to zero and all diagonal elements equal to

> (Wis)
[Waljsjs = % — a7, (18)
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Let A be the first derivative of 5 with respect to 6, that is

Avec(v)(6)
A0 _ [P )
00 9o (6)
00

Then, the first derivative of Equation 15 with respect to 6 is

aFGEE(e) _ aFGEE(B) 85(6) _ - _on -1
2 55 0 = ; 26/ WA, (20)

Transposing the set of 1 X p row vectors resulting from Equation 20 leads to the

following set of estimating equations:

iw(yi, 0) = iA’W‘lei =0. (21)
=1

i=1

The model parameters in § are estimated by solving this set of quadratic estimating
equations for # by iteratively updating the estimator via a modified Fisher’s scoring
algorithm

G =0 4 (n- A'WIA) Zz/;(yi,é), (22)
i=1

where 6" denotes the parameter estimates at the r** iteration.
Equation 21 is the score function (see Stefanski & Boos, 2002) of the GEE estimation

method that can be used for the score-based parameter instability test.

Relation of GEE and WLS Model Scores

In order to estimate model parameters via GEEs, all three components of Equation 21
need to be updated step by step. This means that Equation 5 to 22 need to be
computed at every iteration. In contrast to this, the WLS estimation method
introduced by Muthén (1983, 1984) works without iteratively updating W, A or e;.
In the first estimation step in the model fitting process, the first and second order
sample statistics are estimated following the approach established by Olsson (1979).

These sample statistics consist of the sample thresholds ¢;, and the bivariate polychoric
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Type I Power (only
error rate  A-fluctuation )

GEE WLS GEE WLS
DM 0.03 0.05 | 0.32 0.68
CvM 0.03 0.05 | 0.43 0.60
maxLM | 0.03 0.04 | 0.40 0.63
maxLMo | 0.04 0.05 | 0.42 0.60
WDMo 0.06 0.06 |0.32 0.71
LMuo 0.02 0.05 | 035 0.66

Table 1

Power and Type I error rate of score-based test for a multidimemensional GRM model
with 9 dichotomous observed variables and 3 latent variables. Comparison of GEE
scores vs. WLS scores.

correlations pjs for all k=1,...,1, j,s=1,...,p when j # s. They make up the p* x 1
vector K.
In the third estimation step, the model parameters in 6 are estimated through

minimization of the objective function

Fora(6) = [& — k(0)) W™ [& - k(0)] (23)

Note the distinction between the thresholds that are estimated as sample statistics in
the first two steps of the model fitting process and the threshold parameters 7;; in 6.
Furthermore, W is a consistent estimator asymptotic covariance matrix of K (see
Muthén & Satorra, 1995). The weight matrix accounts for multivariate non-normality
in the observed variables. This idea goes back to Browne (1984) who focussed primarily
on continuous, non-normal observed variables. Muthén (1984) then extended this
approach to ordered categorical observed variables. Thus, the WLS estimator is often
referred to as an asymptotically distribution free estimator (Flora & Curran, 2004;
Kyriazos et al., 2018).

In the main text, we show that the application of l;(y“ é) to score-based parameter
instability tests is computationally efficient and has a low Type I error rate as well as
high power. In fact, it outperforms score-based parameter instability tests for models

fitted with a full information approach on all metrics.
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In Table 1, the performance of the score functions of Equation 21 and the pseudo score
function the main text applied to the score-based parameter instability test are
compared. To measure the performance of the score-based test for the GEE estimation
method, we used the same simulation setup as in the main text but only for a simple
multidimemensional GRM model with 3 latent variables and dichotomous observed
variables. Also, just one scenario is applied for parameter fluctuation in the data: only
the discrimination parameters A; differ within a single data set. The results shown in
Table 1 indicate that the WLS estimation method outperforms the GEE estimation

method with respect to test power.
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